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“Everything should be made as simple as possible, but not simpler”

A. Einstein
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Extevig llepiinyn

I'evikevpuévn Ocopia
EvOvuypoppung ko Kapmrvoing Aokov
ne Ieoyeopetpikn Avaivon

Ewsayoyn Extevovg [epiinyng

2m SatpPn avtn SlEPELVATOL KOl ETAVETAL GEPA TPOPANUATOV HECH  TNG
avanTuEng e€eMyuévov TPocopolOpdTOV gufbypapung kot koumoiAng dokov. ITo
oLYKEKPIEVD,  avTipetonilovion  Tto  TPOPANUOTA  OVOUOIOHOPPNG  GTPEYNG,
YEVIKELUEVNC GTPEPAOONG AOY®  O1dtunong kol oTpéyng (LECH TV omoimv PeAETATOL
TO QOWVOUEVO NG OWTUNTIKNG VLOTEPNONG), OloTpEPAmong (TOPAUOPP®ON TV
SWTON®V NG 00KV 610 emMinedd TOLG) KOOMG Kot TO TPOPANUA TNG SVVOLIKNG
avaAvong euBoypappov Kot Kopmoilwv dokdv. H avtipetonion tov mpofAnudtov
avtdVv PacileTor 6T YevikeLUEVT SOTOTTOOT KavoTopwv Bempudv dokol (Generalized
Beam Theories - GBT), pe 11¢ omoieg to medio HETOTOMICEDV KOl Ol GLVICTOCEG TMV
TOVUOTOV  TOPOUOPP®ONG KOl TAONG OWITLTAOVOVTIOL O YPUUUKOlL cuvdvacuol
YVOLEVOV LOVOOIAGTATMV Kol O01ACTUTOV GLUVOPTICEMV.

H oavolvtiky Adon tov  povodidotatwv kot  Oddotatmv  TpofAnudtov
GLUVOPLOKOV KOl OPYIKOV-GLUVOPLOKADV TIUOV TOL HOPOOVOVTOL €V YEVEL Ogv givon
€QIKTY. Q¢ €K TOVTOL, TO TPOPANUOTO AVTA ETAVOVTOL aplBunTIKd eQappolovtag
MéBodo Zvvoplakmv Xtoyeiov (Boundary Element Method - BEM), ™ Mé6odo
Avaroyumg E&iocwong (Analog Equation Method - AEM), 1 onoia amotelel eEEMEN g
BEM, kaBdg kot ™ MéBodo Ilemepaopévov Ztoweiov (Finite Element Method -
FEM). Ocov agopd otmnv emilvon HovodSIoTAT®V TPOoPANUATOV, Ol aplOuntikég
pébodor mov ypnowwonowvvtar (AEM kot FEM) ocuvvovalovionw pe epyoreio tng
[ooyempetrpikng Avaivong (Isogeometric Analysis - IGA) dote va emtevyfel pia
TPOCEYYIoN UE XAUNAOTEPO VTOAOYIGTIKO KOGTOC KOOMDS Kot Mo dadpacTikny Hetalhd
avélvong kor yeopetpiog mov Oo  emtvyydver mo  aflOMIOTO  AMOTEAECUATO
nepopilovtag 10 o@AApo mov myalet amd TNV TPOGEYYIoT NG YEOUETPLOG.
Yvykekpyéva, ot mapapetpikeés Kopmvieg B-splines kot NURBS (Non-Uniform
Rational B-Splines) mov €yovv vioBetnoet T AOYICUIKA TOKETO LOVIEAOTOINGNG UE
vroAoylot) (Computer-Aided Design - CAD) gpappolovtar otnv moapodsa dtotpipm.
Me Baon tic avamtuyBeices avolvuTikég Kot aplOuntikés d1ad1Kacieg cuVTAGGOVTOL
KOVOTOUO, TTPOYPAUUOTO NAEKTPOVIKOD VTOAOYIOTH Yol TNV aVAALOT TPIGOIICTATOV
€LOVYPOUH®V Kol KAUTVAOYPAUU®V PARIOTOV POPEMV.

Kabe xdpro kepdroro g dtotpiPrc amoteAeitan amd TV EIGOY®YY, TN SOTHTOO
ToV  TmpoPANUOTOS, TNV oplOuUNTIKY  em{Avom,  OVIUTPOCMORELTIKG  aplOuUNTIKA
TOPOOETYLLOTO KO TOL COUTEPACUATO. XTIV EloaywyN KaOe KOplov kKeparaiov mepLEyeTan
N PPMoypagkn emokOTNON TOV EPELVNTIKOD £pyov (State of the Art) Tov avTiGTOLYOL
e€etaldpevov mPoPANUATOC Kol TOPOLCIALOVTaL TO TPOTOTVTOL GYETIKA GTOlXElDL NG
gpyooiag. Téhog, 6T0 TEMKO KEPAANLO TOPOVGLALOVTOL TOL CUUTEPACLATO KOl TPOTACELS
Yol LEAAOVTIKT] EPELVAL.
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Yta TpoavapepBEvTa TPOPAN LT 1 YEVIKELUEV OTPEPADOT AOY® SLUTUNONG KOt
oTpEYNC AapPavetol VTOYN HECH TS EIGAYMYNG OTO TS0 HETATOTIGEMY EVOVYPOUUUNG
N KoumoAng dokov mpdcobetwv Pabudv elevbepiag OV GLVIGTOVV AVEEAPTNTEG
TapapETpovg otpéPrmonc. H emppor| g dwnotpéfroonc AappdveTar vwoyn PEow e
eloaymyns véov Pabudv ehevbepiog mov GLVIGTOVV TOPAUETPOVS TOPAUOPPMONG TNG
SLITOUNG, EVA GTNV TOPOVGA AVAALGT 1 EMPPOT] ToV Adyov Poisson Aappdveror vrdym
1660 GTNV TOPAUOPP®ST TG STOUNS 660 Kot oty KaBolkr avdAivon g dokov. Ot
o¢ avo PBabuol elevbepiag el6AyovTol 6TO TPOTEVOUEVO GTOLKEID dOKOV GTO TAAIGLN
Aoyiopkov pe Baon ™ MéBodo Apeonc Ztifopdtrag Yo TV avaAivot) TPIodlicToTOV
PaBOOTOV VOVYPUUL®Y Kot KOUTOA®V PopEémv. Ocov apopd 6TV aviAvon KaumTOAoV
dok®mV, Aappdvetor veoym 1 TANPNG CAANAETIOPACT) TOV POIVOUEVOV TNG GTPEYNC, TNG
oTpEPAmong Kot TG O1oTPEPAMONG GE GLVIVAGCUO LE TNV EMPPOT TNG KAUTVAOTNTOC.
Ta epyareio ¢ [ooye®peTptknig avaAvonG ¥PNOYLOTOLOVVTOL WG GUVAPTNGELS Yo TNV
aVOTOPACTACT] TOGO TNG YEOUETPIOG TNG 00K0D OGO KOl TNV TOPEUPOA TOV AYVOCTOV
KIVIUOTIK®V TOGOTNTOV. Bdoel Tov avoluTikdv Kot aplOunTik®dv Sodikacidv mTov
avanTOGGOVTOL GTNV gpyacio. avtn cuvtdyOnke TANO0C TPOYPUUUAT®OV NAEKTPOVIKOD
VTOAOYIOTN, pE TN Ponbelo TV omoiwv PEAETHONKAY AVTITPOCOTEVTIKG aPlOUNTIKA
napadelypata  Wwitepov Bepntikod Kot TPOKTIKOD  EVOLLPEPOVTOS, TO. OOl
KOTOOEIKVOOVV TNV OTTOTEAEGUATIKOTNTO KOl TO €0POG EPOPUOYNG TMOV TPOTEWVOUEVDV
nedddmv. H axpifeta kot aglomotio tov ANedéviav anotedecpdtov emPefordveron pe
VILAPYOVGEG OVOAVTIKES Ko aptOUNTIKEG AVGELS, TEWPOUOTIKA OATOTEAEGHLOTA, KOODG Kot
LE  TPOGOUOOUATO  OTEPEDV  (eCOEdPIKOV 1 TETPOUESPIKDV),  KEALQPOTAOV
(teTpamhevplkdV) Kot PoPOOTOV TMETEPACUEVOV OCTOWXEI®V EUTOPIKAOV TOKETMOV
Aoyiopikov. Yroroyilovtor OAQ To EVIATIKA, TOPOUOPPOCIOKE Kot KIVLOTIKG peyétn
10V KGBE TPOPANUATOG.

To epguvntikd épyo mov mapovcsldleTal GtV TOPOVCH OOOKTOPIKY] OoTPP
Bempeitonr TPOTOHTLITO KL TAL KVPLOL YOPAKTNPLOTIKA TOV cuvoyilovtor g eENG:

1. To mpotewvopevo poviédo elvol KatdAinAo vy v  @ANPN  avdAivon
TPLGOAOTATNG TPICUOTIKNG KAUTOANG 00K0D TUXO0VGOS SOTOUNG e £val EITEDO
otafepng KapmuAOTNTOG AaUPdvovTag VTOYN TV EMPPON| TG STPEPAMONG, TG
dwotpéPrmong, Tov Adyov tov Poisson kot tng KapUmTLAGTNTOG TOCO GTO GTATIKO
0G0 Kol GTO SLVOLKO TPOPAN L.

2. H mpotewdpuevn d0kdg (KapmvAn 1 ko evBdypapun) vrofaileTon oTic mAEoV
YEVIKES GLVONKES POPTIONG KOl GTHPENC.

3. H apBuntun enidvon tov eEelypévov Bewpidv 60koD Kol 1 EQAPLOYN TOVS GE
evBOYpappeg Kot KoumHAeg dokolg Paciletar oe gpyareia g looyewpeTpikng
avéivong (B-splines, NURBS) npocepépovtag t duvatodtnTo EVOOUATOGNS TOV
oXESOOTIKOV LOVTEAOL GTNV AVAALOT).

4. H avédivon g oatoung Pacileton o éva EXAVOAANTTIKO GYNUO 1GOPPOTIOG
GLUVOLOGUEVO HE TNV OIOHOPPIKN AVAALGY TNG TOL E£XEL OC OMOTEAECLO TN
HEION TOL VTOAOYIGTIKOD KOGTOUG KOl TNG TOAVTAOKATNTOS CLYPKIVOVTOG LE
TV apyIKY] WOOHOPPIKY avdAvon mov avagépetor otn PipAloypagio. Xtnv
TAPOVCA OAUOPPMOGCT 0 YPNOTNG WITopel v opicel TOV aplud TV WO10HOPPDOV
nov ypeldlovtol otV avaivon yio vo emtevyfel n emBount) axpifea kabmg,
EMIONG, KO TNV KOUTLAOTNTA TNG O0KOV.

5. To mpotewdpevo povtého emitpémel e €VKOAO OAAAYES OTN YEWUETPIO, OTIC
ovvOnkeg @Optong kot omPENS kabdG Kol ot OlKPITOmoinon  Tov
YPNOLOTOEITOL 6TV avdALGT S€00UEVOD OTL OAES OL SLAPOPOTOGELS YivovTal
anevBeiog otV KapmOAn yeopeTpio ™ dokov. Me avtd tov tpdmo divetal n
duvaTOHTNTO EDKOAMV KOl YPNYOP®V TOPUUETPIKMY VOAVCEWDV (GVYKPIvOVTOG e
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HOVTEAL TPIOOLICTOTOV TETPAEOPIKOV 1 KEALQOT®V OTolKElmv) mov gival
010UTEPU ONUOVTIKT] GE TPOKTIKES EPOPHOYES, OMMG GE HOVTEAD KOUTOA®V
JdOK®MV GT1 YEQLPOTOUA.

6. H ypnon gpyoireiov g Iooyempetpikng avdilvone otmv Avaroyikn e€iocmon
ovvtelel oty enitevén g emBountng akpiBelag TOV ATOTEAECUAT®V UE TOAD
UIKPOTEPO VIOAOYIOTIKO KOOTOC (Omwg apyikd cvvéPn kot pe ™ pébodo
TEMEPACUEVAOV GTOLXEIMV).

7. Méow TV TPOTEWOUEVOV HOVIEA®V O0KOU emtuyydvetow 1 aloAdynon
Kovoviou®v mov kafopilovv m péyom andotacy eVOLAUEC®HV SOPPUYUATOV
Yo TV amopuyn ¢ dlaotpéPrmons. A&ilel va onuewwbdel o1l o1 kavovicuol
umopel gite va 0ONYNOOLV OE EMCPOAELS €ITE OE AVTIOWKOVIHIKEG AVCELS
dedopévou 0Tt 0 AauPdvouy VITOYN OAEC TIC OMOTOVUEVES TOPOUUETPOVS TOL
EKAOTOTE TPOPANLOTOC.

IL. Kepdaiao 1: Evcayoyn

H soayoyf g dwtpinig (I° kepdlaio) givor a@lepopuEVn 610 GVTIKEILEVO, GTO
Kkivntpo, ot Jpbpwon Kol ot mpOToTLTieg TG epyociag. [MapdAinia, yiveton
GLVTOUN OVOLPOPA GTNV NOT VILAPYOVCH EPEVVNTIKY] EPYUGIO GYETIKA LE TNV EGOYWOYT
TOV  QUWVOUEVOV NG OTPEPAmONG Kot TG JoTpéPAONG oTNV  avAALGT TV
KAUTAOA®Y 00KV, KaBMG Kol GTNV ovayKoOTNTo NS E00YMYNG TOV PoPonTdv
eopémv kot ¢ looyempetpikng Avdivong ota chyypove HovTELN guBVYPOU®OV Kot
KOAUTOA®V SOKOV.

I11. Kepaiorwo 2: B-splines ogvtépov PaBpov otnv Avoporwopopen
oTPEYN S0KAOV
Yt0 2° kepdloio mopovolaleTal TO  TPOPANUA  AVOUOIOHOPONG  OTPEYNG
eLOVYPOUU®V OHOYEVOV 0K®V TUY0VGOS SUTOUNG, VIO TIG TAEOV YEVIKEG GUVOPLUKES
oLVvONKeG, VTOPBOALOUEVOV GE TVYOVCN GTPEMTIKY POpTion m, =m,(x) (Zyfqua 2.1). To
TPOPANLA TNG SOKOV TEPLYPAPETAL OO LOVOOLAGTATO TPOPANLLO GUVOPLOKDV TIUAV KoL
YL TO OKOTO avTO XPNCUOTOLEiTON 1) Olapopikn eElcmon TETapTng TAENG OV EMADETAL
G TPOG TN GTPENTIKY| YOVIO TNG OLLTOUNG:

d*6,(x) d*6,(x)
ECi—2—-Gl,—~—=m KOTO UK0g (2.1a)
S dx* "o '
do .
0. (x)+ooM, =05, p o + My =5 otadkpa x=0,] (2.2a,b)
X

Omov E, G &ivol o HETPA EAAGTIKOTNTAG Kot SATUNGONG TOV 1GOTPOTOL VAIKOD
mg ooxov, Cg, I, eivon ov otalepéc otpéPfrmong (yvwot) og 1,,) kar otpéyng,
dO,.(x)/ dx etvan o pvOpOg peTafforng g oTpenTikng Ywviag g dokov , (x)Kkatd To
pnkog g, M,, M, eivor ot pomég 6TpEYNG Kot GTPEPAONG oTa dkpa TNG 00KV Kat
a;, p; elvar ocvvaptioelg mov petafdAiovior KaTdAANAQ OcTE vo UmOpEl va
npocdoplotel kdBe mBavy] cvvOnkn otpiEng (m.y. Yo TOKTOUEVO GKPO 10YVEL

a =B =1, ay=ay=, = p;=0), avtictoyyo.



Ievikevpévn Oewpio Evbdypopung kot Kapmding Aokov pe Iooyeopetpikny Avaioon 16

(a)
7 | e
A T TR T b =0
E G oM,
W (’ \l’rg \\
G
: & k:“) ﬁ\/) )
) I I;
e L

(b)
2ynuo. 2.1. ITlpiouatikn 0oxog vwofallouevy oe otpertikny poption (o) Ue TOYOVGO,
oroToun mov kataloufovel o didiaaroto ywpio Q (b).

H opBuntikq emidvon tov mpoPinpatog yiveror pe ypnon g Mebdoov
Yvvoplakov Xtotyeiov (mpofAnpo dwutopng) ko e MeBdoov Avaroyikng e&icmong-
d*0.(x)
dx*
TPOPANUO TG STOUNG GLVIGTOTOL GTOV LTOAOYICUO TV oTafep®dV OTPEYNS Kot
otpéProong (Sapountzakis kot Mokos, 2003; Sapountzakis, 2000):

AEM (mpofinua doxov: =q(x), 6mov ¢(x) eivor ta Weoatd @optia). To

opt oot
Cs =] pf2a0 I = IQ[ Vit yaLZS - zaiysjm (2.3a,b)

Omnov gog(y,z) elvar n mpwtoyevng cuvvdptnom oTpEPAONG ®G TPOS TO KEVIPO
dlatunong ¢ 00Kov Tov VoAOYileTon amd KOTAAANAG SlopopeOUEVO TPOPANUL
GUVOPLOKADV TIUDV.

Ta weatd @optic mwov vmoroyilovror pécw ™ pebBddoL ™G AVOAOYIKNG
eElowong (Katsikadelis, 2002b) kot amotelovv TV TETOPTN TOPAYDOYO TOL AYVADOGTOV
pey€0ovg Tov TPOPALATOC (CTPENTIKT Ywvio 6TV TPOKEWEVN), Tpooeyyilovtal pe B-
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splines dgvtépov Pabuod mOL EGAYOVIOL OTIC OAOKANPMOTIKEG TOPOUCTAGELS TNG
npoavapepbeicag apBuntikng pebodoov kot mn emilvon tov omoiwv yivetal &ite
avalutikd eite apOuntikd (Ilopopmuata A.1 kot A.2). Emouévag, ot puntpoikég
ekppdoelg g AEM yia ™ otpentikn] yovio Kol TIC TOpay®@yovg Tng ypaeovtol
oLVOPTNoEL TV onueiwv ehéyyov (control points P) mov meptypdeovv 1o B-spline
(ITapapmmpua A.2), tov untpowv g AEM ([A], [C]) kot T@V TIUOV TNG GTPETTIKNG

YOVIOG KOl TOV TApoydymv TG o6To dkpa g 00kov (dtévucpio {6’} ):

{©} =[Al{P}+[C]{6} (2.42)
{©'}=[A{P}+[C"{6} (2.4b)
{©"}=[A"|{P}+[C"{6} (2.4¢)
{©"}=[A"]{P}+[C"1{0} (2.4d)

[Moapaiinia, epappoletor n péBodog g elcaymyng emmAéov onpeiov ta&beciog
(knot insertion) 6to didvucpa oV TEPLYPAPEL T PACT THG ICOYEMUETPIKNG KOUTOANG
tov B-splines (knot vector) pe okond ™ PBeAtioon g axpifelag g pnebddov kat
peiwon tov vworoyiotikov k6cTovg (Iapdptnua A.2).

Méow g ev Aoy Bewplag avaidovior Topadelypota 1O104TEPOV TPOUKTIKOV
EVOLLPEPOVTOGC OOV TTPAUYLOTOTOLEITOL 1 LEAETN TOV (POLVOUEVOL TNG OVOLOIOHOPPNG
oTPEYNG Y1 S1POopeS dlaTopes Ko eEetdlovTat Ta 0OQEAN amd T YpNon EpYareimv ™G
Icoyemperpikng Avédivong oty mopodca apldunTiky] Tpoceyyion Kabdg Kol T0 mMg
emnpealetar n axpifelo avdAoyo Tov TOTO TNG SOTOUNG Yot TO €V AOY® TPOPAN L.
ZVYKEKPLUEVO Y10, AGYOVG GUYKPIOTG LEAETOVTOL TEGGEPLS 101€G apEimaKTeG H0KOL £VOG
HETPOL Y10t OUOLOHOPPO KOTOVEUNUEVT GTPENTIKY) QOpTIoN m, = 1kNm/m aAAd yu
dwpopetikn datopun (Zynpa 2.2). To vAkd tov dokav gival ydivpos ( E =2.1E8kPa,
v=0.3). Ot yeoperpwés otabepéc tov Swropmv sivar (a) I, =6, 846cm*
Cg =12746cm® yiomv IPE, (B) I, = 3,049 x103m*, Cg =34,95x1072m® yiu v T,
(y) 1, =8,3903x103m*, C5 =1,1937x107%%° yio v L ko (8) I, =2,010x10 3 m*

Cg =590,10 x 10712mb yw v UPE.

210V¢ TivaKeg TOV akOAOVOOVV dIvovTaL Ol TIHEG TMV CTPENTIKAOV YOVIDOV KOl TOV
TOPAYDOYWV TOVS Yo O1dpopeg Béaelc kotd punrog twv dokav pe oatopués IPE ko T
(mapopola cedipata mopatnpovvtar yuo 1ig UPE kot L, avtictouya) vmoAoyiopéveg yio
mv mpotdétunn AEM, v AEM pe B-splines (AEM-BS) kot v avoAvtikny Adon
(Analytical Solution). Ztig meputtdoelg (B) ko (y) ypedotnke va yivel 1 elcaymyn
emmAéov onpeiov tagBeciog (CP) yio va emrvybetl n embBount axpifera (néxpr 12
CP). T'ia v emitevén TapOUolwv COUANATOV amonteiton YEVIKGE TETPATAAGIOC 0plOUOC
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otoyeiov oaxprtonoinong (NP) yio v mpotdétumn AEM. Téhog, oto Zynuo 2.3
amekovileTal 1 KOTOVOUN TOV WENTOV GOPTIOV KATA TO UNKOG TG doKov. Onwg givat
QovePO amd TN HOPPN TV KATAVOU®OV, Ta 1eatd goptio Tov dwutopdv IPE kot UPE
npooeyyilovtal pe akpifeio amd B-splines devtépov Babpov evod tov dtotoudv T ko L
eawvetor va ypelalovtal B-splines avotepov PBabuod yio vo mpoceyylotovv. Avtd
opeidetal otn otabepd oTpéPrmong, n omoio eivarl TOAD PEYOADTEPN Y10 TIC OLUTOUES
IPE xon UPE.

110 mm
0.0056 m K=
0.192m
- C
Y
g
— | i 0.0085 m
}_s
0.1lm
Z=zZ
B

E FE 7 =10.0cm
: b=55cm
) B || ene 1, =0.45cm
Mot C
\ i} ty=0.75cm
daf | r=1.0em
E=21E8
W= =03
b
10.5 em ’
() ©

2xnuo 2.2. XaAdforveg orotouss.

Ao T1g aplOpNTIKES AVAADGELS TOV TPOUVUPEPOLEVMV dOKMV, TPOKLITEL OTL V1oL
Kdmoteg dwotopég ta B-splines dgvtépov Babpod pmopodv va ddcovv moAd akpipn
amoTEAECUOTO YWPIG TNV TOKVOON TG olakprtomoinong. EmmAéov, ov otabepég g
dlatopng kot Kupimg M otabepd oTpéPAmong ennpedalovy avaAOYIKA TO. TPOKLITTOVTOL
ocpdApato Oetyvovtog €tol 0Tt 1 péBodog mapovoidler otabepdtnTa Ko okpifeta.
Té\og, 10 vroroyioTiKd KdoTog TG AEM-BS givon puikpdtepo amd v apyikr] AEM.
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AEM (3 NP) AEM-BS Analytical Error % Error %
(1) (3 CP) Solution D-3)  (2)-3)
(2) 3)

0,(1/4) 5,284E-04 5,225E-04 5,226E-04 1,10 0,022
0,(1/2) 9,350E-04 9,251E-04 9,251E-04 1,05 0,00
0,(1/4) 2,800E-03 2,800E-03 2,800E-03 0,00 0,00
0.(1/2) 0,000 0,000 6,210E-08 0,00 0,00
0.(1/4) -3,800E-03 -3,800E-03 -3,800E-03 | 0,00 0,00
0,(1/2) -1,480E-02 -1,470E-02 -1,470E-02 0,68 0,00
0.(1/4) | -8929E-02  -8770E-02  -8770E-02 | 1,81 0,00
6.(1/2) 0,000 0,000 -1,800E-06 | 0,00 0,00
0, (1/4) | 3,659E-01 3,657E-01 3,657E-01 | 005 0,00
6. (1/2) | 3,433 E-01 3,433 E-01 3433E-01 | 0,00 0,00

[Tivakag 2.1. Ztpentiké yovieg Kot Tapdywmyot Toug yio ) 6okd pe datoun IPE.
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AEM-BS AEM Analytical Error %  Error %
(12 CP) (12 NP) Solution (1)-3)  (2-0)
(1) (2) 3)

0,(1/8) | 1,220E-02 1,240E-02 1,220E-02 0,00 1,613
0,(1/8) | 13188-01  1311E-01 1,317E01 | 0076 0456
0,(3/16) | 1,206E-01 1,154E-01 1,204E-01 0,166 4,153
0,(1/8) | 2,890E-02  -5.650E-02  2930E-02 | 1,365 48,14
0,(3/16) | -2,908E-01 -2,767E-01 -2,862E-01 1,582 3,320
0,(1/16) | 22,249 -27,881 21,682 2,548 22,23
6. (1/8) -6,745 -7,005 6,901 2265 1479
6. (1/8) 126,545 117,293 126,407 0,109 7,225
0. (3/16) |  38.665 43,400 40,232 3,895 7,300

[Tivaxog 2.2. ZTpentikég ywvieg Kot Tapaymyoi Toug yia T 00ko pe otatoun T.
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2ynua 2.3. Axpifeic  koumdles 10earwv  poptiov  q(x) =d40x(x)/ dx* mov
xpnoipuororovvrar oty AEM kotd unxog twv IPE200, UPEIO00, T-
olatouns kou L-01atouns ookwv.

Kepahawo 3: Xtotikny kor Avvopiki]y Avaivoen Ievikevpévng
Yrpéfroonc EvOvypappov Aokov pe Iooyempetpikés Mebooovg

Y10 3° kepdloio mapovctdletor o TPOPANUO  YEVIKELUEVNC OTPEPAMOTG

OLOYEVAOV OOK®MV TLXOVCAS OTOUNG VIO TIG TMAEOV YEVIKEC GLVOPLOKES GLVOTKEG,

vroPoAlopevov ce tuoyodoa eEmtepikny @option (agovikn: p = p (X), KOUTTIKNA:

=p,(0), p.=p.(x), my=my(x), m, =m,x),m, =m, (x) ko m, =m, x),

OTPEMTIKN: m, =m,(X), m,=m, (x) won m =m (x) - Zympa 3.1). H avdivon oto

KEPAAOO aVTO EMEKTEIVETAL TPOKEIUEVOL VO KOAVWYEL EKTOG atd TO TPOPANUA GTPEYNC
Kol T0 TPOPANUa ™G Kapyng (Aappdvovtor vwow”n T PoVOUEVA KOl TNG GTPETTIKNG
KOl TNG KOUTTIKNG STUNTIKNG votépnong). To owwvel otatikd medio petatomicemv
kaBopiletar og e&ng:

B(x,y,2.t) =" (x,9,2,1)+@° (x,y,2,)=
=u(x,1)+6y (x,1)Z—-6, (x,t)Y+77x(x,t)¢§)(y,z)+

TPWTOYEVES
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+1y (x.0) ey (3.2)+ 117 (x.0) 85 (9.2) + & (x.0) 5 (1.2) (3.1a)
devtePOYEVES
V(x, v, z,t) :v(x,t)—zﬁx (x,t) W(x, v, Z,t)zw(x,t)+y¢9x (x,t) (3.1b,c)

11

2ynuo. 3.1, Ipiopoticn 00KkOG YeVIKEDUEVIS POPTIONHS KO TOYODOOS OLOTOUNG.

Omov u, v, w givor 1 SlopnKng Kot ot kaOeteg petatomicels e dokol mg TPog
10 Sxyz cvotnua a&dvav (S etvar To KEvipo dtdTunong); U P, i eivon 1 TPOTOYEVNG
K01 1) OEVTEPOYEVNG OLOUNKNG LETOTOTION, OVTIGTOLYO. V(XJ ), W(X,l ) elvar o1 kéBeteg
petatomicelg katd tovg afoveg Y, Z, avtictoya, evd M(XJ ) etvar m péon agovikn
LETATOTION TNG OOTOUNG GE GUYKEKPLUEVT XPOVIKT GTIYUN). Qx (X,t ) glval  oTpeEnTIKN
yovio kabadg 0, (X,f ), &y (X,f) gtval o1 yovieg otpoeng Kot tovg aoveg Y, Z,
aVTIoTOl(0, GE GUYKEKPLUEVT YPOVIKN oTiyun. 77y (X,t ), é:x (X,f ) etvar ov aveEdptnreg
TAPAUETPOL GTPEPADONG AOY® TPOTOYEVOVS KOl dELTEPOYEVOLS GTPEYNG, EVD Ty (X,f ) ,
A (X,f ) etvar ot ave&aptnteg TapdpueTpol 6TPEPAOONG AOY® KAUYNG GE CLYKEKPLUEVT
YPOVIKN GTLYUN; (05{) (y, Z), (D:g (y, Z) glvol M TPOTOYEVIG KOl OEVTEPOYEVIG GUVAPTIGELS
oTpéPAong AdY® oTpéyng (GLVAPTAGELS GYNLOTOS TNG JTOUNG) MG TPOG TO KEVTIPO

dlgTUNoNG, EVM qogy( y,z), goé’z ( y,z) glvar o1 mpwrtoyevelg cvvaptnoelg oTPEPADONG

AOY® KAPYNS OC TPOG TO KEVTPO PApovug.

210 &v AOy® kepdrowo e@apuoleton emiong kot dwdikacio 01d0pBwong Tov
Tactkov ediov ¢ dokov (Dikaros kot Sapountzakis, 2014) mpoxeipévov va avénbei
aKkpifela VITOAOYIGLOD KIVUOTIKAOV KOl EVIOTIKGOV PeYedmV, amogedyovtag tnv adénon
oL 0PV TV eumiekopevov Pabumv erevBepioc. I Tov VTOAOYICUO TOV GYETIK®OV
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CLVOPTNOEDV GTPEPAMONG SLOTLTAOVOVTOL TPOPANUATO GLVOPLOKADV TIUDV GTO EMITEIO
™G Olatoung pe ypnom g e&lomong JUNKovS TOTIKNG 1ooppomiag NG Oempiog
TPLGOLAGTATNG EAACTIKOTNTOG.

A@ob kabopioTohV o1 AveEAPTNTEG YEVIKEVUEVES TTOPOHOPPADCEL; sp  OG U ),

P S T
HY,x’ HZ,x’ Mxs Mvx> Mzx» gx,x’ Vx = XX Vx _nx_gxx’ yx_fx_nx'l_gx,x’

P S P S
7/Y =v’x—(92, 7Y:772_V,x+ez, ]/Z:W,x+ey, 7Z:77Y_W,x_9Y’ Kot ol
avTicTOUY(ES T40ELC OR , XPNCLLOTOLDVTOG mv EKQpoon
TR = f L(—] / ZggCgR + a,@gR )dx -W 100  OWQOPIKOL  AOYIGUOD  PTOPOLV Vo

TPOGIOPIGTOVY O JUPOPIKEG EEICMGELS 160pPOoTiag TG dokoV. C &ival O TAVLGTAG
edaotikdtTTog Kor W egival 1o €pyo Katavepnuévov eoptiov. Téhog, mpootifevtatl ot

adpavelaxkoi 6pot j L(]/ Zu};,,tMuR,,,)dx wote va kaboplotobv o1 e£loMoELS Kivnoelg

NG SOKOV MG TPOG TO KIVNUATIKA Heyédn. M givon to tpiodidotato untpoo pndlog kot
up ¢€lvar ov yevikevpeveg petotomioelg (g€, 3.1). Emopévoc, xabopilovior ot

YEVIKEVUEVEC €EIGADOELG TAAAVTMONG TNG 00k0D Omm¢ oTn dnpocicvon Tev Dikaros et
al. (2016). Ev ocuvveyela, dwutuondvovtal déka TpoPANUATO OPYIKOV-CUVOPLOKDV TULMDV
®C TPOG TA KwnUotikd peyédn g dokod, m emilvon twv omoiwv didel OAd Ta
TOPOLOPPOOCIOKA Kol evtaTikd peyédn mov eivor amoapoitnro Kotd v ovaivon
PUPIOTOV POPEMVY. XTNV TPOKELUEVN YPNCLLOTOOVVTOL HLOPOPIKES EELGMGELS OEVTEPIG
16&nc. apddiinia, dtatvrdvovtal To pnTp®a duokopyiog Kot palag kot eEmADETAL TO
TPOPAN LA WOOTILOV TNG dOKOD.

Ta og dveo TpoPANUATO CLVOPLIKAOV TILAOV TPoceyYilovTon aplOunTIKd pe yprion
mg MebBodov Zvvoprokdv Zrtoyeiov (mpdfAinua dwotopng) kot e Mebddov
Avoroyumng eElowons-AEM (mpdfAnua dokov) pe B-splines 1 pe Klacowd otoryeio
devtépov Pabupov. Ocov apopd 0 TPOPANHa eAeVBEPNC TOAGVTOONG TG O0KOV, EKTOG
and ™ pébodo ¢ Avoroywng eiomong, ypnowomoteitar kot 1 pEBodog TV
[lenepacuévov otoryeinv gite oV KAaoGKY| TG popen| eite pe NURBS. Méow g ev
Myo Bewplag avolvovior mapoadeiypoto 10w0itepov Be@pnTikKov KOl TPOKTIKOD
EVOLLPEPOVTOG OOV TPOYUATOTOLEITAL 1 HEAET] TOL QUIVOUEVOL 1TNG OLOLTUNTIKNG
votépnons (AOym KApYNG Kot oTpEYng) Kol TN OTOTIKY EMIALOT Kol 6TV €Ae0Bepn
TOAGVTOON NG d0KOV, v N akpifela g mpotevorevns LeBdd0L daMGTOVETOL LEGH
OLYKPICE®WV HE VTAPYOVCES OAVOAVLTIKEG KOl oplOunTikég ADGES, TEPOUOTIKA
OTOTEAECLLATO, KOOMDG KOl [LE TPOGOUOIDUATO CTEPEDMY KOl KEAVPOTMOV TEMEPUCUEVOV
oTolyEimv.

Yvykekpyéva, peretatal pio yoAvpowvn (E =2.1E8kPa, v =0.3) d0x0¢ Tp1adv
pétpov  ovpmayovs opboymvikng Swrouns (A=0.5m, b=0.2m) yw Sibpopeg
ovvOfkeg otpEng ko @optiong (p, =250kN /m 1 m, =100kNm/m). Ot Swapopig
OV TPOKVATOLV OTIG Katavouég BHOiong tov mpotevopevov LovtéAov d0kol amd TV
KAaoown Euler-Bernoulli dok6 givon a&roonueiotes. I'evikd, dtav ypnoyonotovvion B-
splines ot katovouég mpooeyyilovtatl pe peydAn axpifeio pe moAd Atydtepa otoyeio
dwakprromoinong o€ ovykplon pe v apyikn AEM. Z1n cuvéyelo HEAET®OVTOL TPELS
TPOPOAOL e SLoPOPETIKES OlaTOUES (lte opBoymVIKY KAELOTY| glTe avoyTy]) Kot yivovTol
OLYKPIGEIS TOV KIVNUATIKOV peyedmv, g dppomng Kat g opOng dtopunkovs tdomng
petald Tov mpotevopevoL povtédov pe B-splines, Tov HOVTEAOL TNG TPOTYOVUEVIG
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02 —

0.15 —

Warping 6' (x) or n(x) [rad/m]

S=—=——£> Cubic B-spline AEM
(3—E—E€) AEM 60 NP
4+ < Viasov

/== —%\ Benscoter
Jmig=ei1 Classical Nonuniform Torsion Solution
A=A Quadratic b-spline AEM

0 0.2 0.4 0.6 0.8 1 1.2

Beam Length [m]
2ynua 3.2. Topouctpos otpéflwons 1, (x) KOT0 UNKOS O00KOD uE KAELoTH
opboywviky  diatouny  yiow  KOTOVEUNUEVY — OTPETTIKY  QPOPTION

m, =10°Nm/m.

\}% 0, (rad) 6’)‘6 (rad Im) n, (rad | m) Bimon;tent
vem atx=L  or ¥ at x=L (N/m”)
0.833m at x=0
at x=L
< 0.917 m‘;

Saint-Venant Model] -0.103 - - -

Vlasov Model  -0.045 -0.012 - -18.33E-06

FEM- Benscoter Model  -0.045 -0.011 - -18.17E-06
AEM (50 NP) -0.050 -0.009 -0.010 -16.75E-06

AEM (Quadratic B-spline) -0.039 -0.006 -0.006 -13.48E-06
AEM (Cubic B-spline) -0.061 -0.013 -0.014 -18.29E-06
AEM (Quartic B-spline) -0.046 -0.008 -0.008 -15.50E-06

Classical Nonuniform Torsion
Solution-CNT (AEM-BS)| -0.043 -0.011 - -19.13E-06

[Tivakag 3.1. Aokdg avolKTig SIOTOUNG Y10 KOTAVEUNLEVT GTPETTIKY GOPTION.
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evotrag (KAaookn Bewpia avopoldpopeng otpéync- CNT), tov Vlasov povtédov, Tov
povtédov Saint-Venant kot tov poviéhov Benscoter (Shakourzadeh et al., 1995).
Evdewktikd anoteléopota mapovsidlovior oto Zynua 3.2 kot otov [Mivaka 3.1. Télog
peretator mpOPorog 0éka HETPp®V KIPoToEW0VS dwatopns. 'evikd, B-splines tpitov
Babpov umopovv vor dMGOVY ATOTEAECUATO Le VYNAN okpifela pe apketd pikpoTepo
k6otog amd Vv apytkn AEM. H Bsmpia dokov tng mponyovpevng evotnrog (CNT) dev
KOTOQEPVEL VO EKTIUNGEL UE okpifela v opbn tdom kot ) Oppomn AdY® Tng

Bedpnong o1t 0;6 =1n,. To 1610 ovpPaiver kou pe ™ Oewpion Vlasov. To povtéro

Benscoter 6ivel akpif] 0mOTEAEGLOTO GTNV TEPITTMOON CTPETTIKMV POPTIMV.

IMa ™ peAémn g mpotevopevng Hebddov 6Gov agopd to duvautkd TpOPANua,
apyko peretdtor 1 agovikn erevBepn TaAdvtoon dokol (cav €01KN TEPITTO®ON TOL
YEVIKEDUEVOL TPOPANUOTOS) HE HOvOdLio YOPOKTINPIOTIKA Yo AOYOLG GUYKPIONG
(Hughes et al., 2009) kot xotoptileTor KOVOVIKOTOUMUEVO (PACLO 1O10GVYVOTHTOV
Eympa 3.3a). opopoo @dopa dnuovpyeitor kot ywoo v mepintoon elévBepng
OTPEMTIKNG TOAAVTOONG (cav 1K) TEPITT®ON ToL Yevikevpévov mpofanuatog). H
péBodoc e NURBS divet ta axpiéotepa anoteréopata eved 1 AEM mapovotdlet moly
iKpoTEPO GApa (c@aipa M «B6pvPor») oe oxéon pe v FEM divovtog apketd mo
opord @dopata. Ov vrworoyiotikol ypovor yio TG dbpopes apuntikés peboddovg
avéavovtol exbetikd (Zynuo 3.3B) pe v avénon tov Pabucv ehevbepioc tov
npofAnuatog (1 fabuog oy mpd™ Tepintwon, 2 otn dévtepn kKo 10 oto yevikevpévo
npoPAnua). F'evikd 1 AEM mapovcialetl pikpdtepovg xpdvog amd Tig aireg pebodovc.
Téhog, amd to OSdypoppato GOYKAIONG TOL  ONUOLPYOVLVTOL YO TIC TPDOTEG
1310GVLYVOTNTEG TOV YEVIKELUEVOL TPOPALATOC TPOPOAOL déka LETPOV e KIBMTOEWN
dwtoun gtvar eavepn) n avénon (kiion) kabadg avédvetar o Pabuog tov NURBS mov
evoopatovovtal otnv AEM.

13 — 200 —
Fixed-Fixed Rod. Normalised discrete spectra
quadratic FEM

quadratic NURBS

constant AEM

linear FEM/NURBS

quadratic AEM

Computational time of Numerical methods
IGA-NURBS quadratic

== == = AEM quadratic

AEM constant

FEM linear

FEM quadratic //I

3
o
\

numerical freq./analytical freq.
L
computational time (seconds)
8
|

0.9
\ \ \ \ \ \ \ \

0 02 0.4 0.6 0.8 1 1000 2000 3000 4000
mode number/total dof total number of dofs

CY) B

2xnuo. 3.3. (a) Kovovikomomuévo @aouo 101060yvotiTmV alovIKNG TOAGVIWONS
ougiroxtns ookov yio FEM, IGA kou AEM. (B) Ymoloyiotikog ypovog
ap18untikv wuedodwv yra avéovouevoog fabuods eievbepiog.
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V. Kepaharwo 4: Xtotikny kov Avvopikn] Avaiven Ievikegvpévng
YrpéPrmonc Kapmvrov Aokav pe Iooyeopetpikég Mebooovg
Xt0 4° kepdlaio mapovoldletar o TPOPANUE  yevikevuévig oTpifrlmong
OLOYEVAV KOUTOA®V S0KOV TUXOVCHG SLOTOUNG VO TIS TAEOV YEVIKEG GUVOPLOKEG
ovvOnkeg, vrofoildpevov oe Tuxovoa eEmTepik] @OpTIoN (AEOVIKN, KOUTTIKY),
oTPENTIKN- Zynuo 4.1).

C: Centroid
S: Shear center

2ynuo. 4.1. Tpiouotiky koumoAn O00kOS TOYOVGOS OLATOUNG TOV KOTAAOUPOAVEL TO
xwpio € VIO YEVIKEDUEVH POPTION.

H avdivon oto kepdlowo ovtd enekteivetal mpokeévov va Anedel vedyn to
QOVOUEVO NG SoTuNTIKNAG LoTEPNONG (AOY® dSdTunong Kol GTPEYNS) otV EMiAvon
KOAUTOAOYPOUU®OV poBOOTOV Qopiémv e éva eminedo KAUTLAOTNTOG KOOMG Kot 1
aAANAeTidopacn TV aEOVIKOV, KOUTTIKOV KOl GTPETTIKOV TOPUUOPPDOCEDY AOY®
onTig ™G KopmuAoTnTaG. Ot YEVIKEDUEVEG TAPOHOPODCELS & elvar: u,, b ., 07 .,

P % s P %
ﬂx,X’ nY,X’ UZ,X’ gx,X’ 7 x :ex,x+?Z’ Vx =T = 7x :Ux_ex,x_?z’
: 0 P_ 5 _
7§=§x—7x=§x—’7x+9x,x+?z’ Yy =Vi—0y, Yy =tz =V +0z,

u u . , .
7/5 =w,+6y % Ko 7‘; =ny—-w,—by +E. Bdocer tov peyebov mov avtég

EUTMEPLEYOVV OLATLTMVOVTIOL Ol TOPOUOPPDGELS KO TAGELS TNG KAUTOANG dokol (pe

R 7 (z)? s , , ,
~l-—+ =) = e(R)) mov ywa cvvtopia divovtal o€ PNTpoIKy popen g eENg:

R+Z R

00 0 z ¥ ¢ o& o &
1020 0 0 0 0 0ler (4.1a)
01 y 00 0 0 0 0

[Auxl]=

oS o =
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0 —%e(R) 0 %e(R) 00 0 0 0 0
P P P P
: z y 5 or) ror) P or) Bo(ry
[Aux2]= —e(R) 0 —e(R) -1—-—e(R) 0 0O R R R R
R R R P P P P
o5y toeyy  tczy  HPsy
0 0 0 0 10 g, By .. #z.c és..
(4.1b)
&= [Auxl] u,+ [AuxZ]u 4.1¢)
o= [C][Auxl]u,x +[C][Aux2]u (4.1d)

Onwg ka1 o100 mponyovuevo kePdAato, epapuoletor emiong 1 dSodkocio
dopbwong tov Tackol mediov g dokoD pe mapdolo Tpomo. ' Tov VTOAOYIGHO TV
OYETIKOV GLVOPTNGEMY OTPEPAOONG SOTLTAOVOVTOL TPOPANUOTO CUVOPLOKDV TULOV
OTO EMIMEOO TNG OTOUNG HE ¥PNoN NG €EICOONG OUNKOVS TOTIKTG 1GOPPOTING TNG
Oewplag TPLOdIACTOTNG EAACTIKOTNTOG,

Ev ovveyela, dwatumdvovtar d€Ka mTPoPANUATO OpPYIKOV-GUVOPLOKAOV TILDV ©G
TPOG TOL KwNUOTIKE peyédn g dokol, m emilvon TtV omoimv Jidel OAa To
TOPOLOPOMCIOKG KOl EVIOTIKG pPeyedn mov eivor amoapaitnto Kotd v avdAivon
KOUTOA®V  pafOOTdV  @opEémv. XNV TPOKEWEVY] YPNOLLOTOOLVTAL  JLOPOPIKEG
e€10MOELG OEVTEPAG TAENG Y10 TV TEPLYPAPT] TNG CTATIKNG KO SUVOUKNG CUUTEPLPOPES
™G KOUmOANg dokov. IlapdAinAa, dSwatvmdvoviol To  UNTPOO  SVGKOUYIOG

dQdx) «o

(oU = T I (5147); [Auxl]T +ou’ [AuxZ]T )([C][Auxl]u’x + [C][AuxZ]u)

e(R)
nalag  (Wopaes = T I p(éuT [Awx]" [Auxt]u,, )Ldﬂdx = 6U = T(é‘uT [ Ju, )dx)
00 " e(R) 0 ’

Ko EMAVETOL TO TPOPAN LA WOOTIHLOV TG d0KOD.

Ta ©¢ Gve TPoPAUATO CLVOPLOKAOV TILAV ETADOVTAL OPIOUNTIKE LE YPNON TNG
MeB6oov Xvvoplokdv Xtotyeiov (mpdfinua dtatopng) Kot g Mebddov Avaroyikng
eElowong (mpofAnua dokov) pe B-splines 11 pe KAooowkd otoryeio devtépov Pabuov.
Extog amd ™ pébodo g Avaroyikng e€lomong, Yoo T0 Katd piKog TpOPAnUa g
d0KoV ypnowwomoteitor kou 1 péBodog twv llemepacpévov otoyeiov eite oty
KAOGOWKY, TG popen eite oe cvvdvacpud pe NURBS (opyikd mordywvo eréyyov

(x;,¥;,2;w;): (=R, 0,0, 1), (—Rcos[gj,Rsin(gj, 0, cos(gj), (—Rcos(¢), Rsin(g),

0, 1). Ta ™ ypovikn OAOKANP®ON TOL TPOPANUOTOS YpNoHoTOtlEital 1 HEB0dOG
Newmark. Méow g &v Adywm Oeswpiog avaivovtolr mopadelypato 1010itepov
OepNTIKOV Kol TPOKTIKOD EVOLOQEPOVTOS OTOL TPOYUATOTOLEITAL 1) HEAETN TOL
(QOVOUEVOL TNG SLOTUNTIKNG VOTEPNONG (AOY® KAUWYNG KOl GTPEYNG) OTN OTOTIKN KOl
duvapukn emilvon g KapmOAng dokov, eved M axpifelo g mpotevouevng pebddov
OlOTICTAOVETOL HLEGM CLYKPICEMV LE VTAPYOVGES OVOALTIKEG Kot aplOuntikég AOGELS,
KoOADG KoL [Le TPOGOUOIDUATO CTEPEDMV KOl KEAVPOTOV TEMEPACUEVOV GTOLXEIMV.
YVYKEKPUEVO, HEAETATAL TPOPBOAOG HE OITAG GLUUETPIKY OVOIKTY Stotop| Vo
CLYKEVIPOUEVO KATOKOPLPO 1| GTPENTIKO (OPTIO GTO GKPO KOl TO OMOTEAEGLOTA OO
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TNV OVOAVOT] TOV TPOTEWVOUEVOL HOVTEAOL €ivol TopOUolo HE aUTE TPLoOACTATMV
HOVTEA®V e TEMEPOUCUEVA GTOLYELD EITE V1o LETAKIVIGELS €lTE Yo Taoelc. H 1010 dokodg

aALG amd SPOpPETIKO LVAKO peretdton oe elebBepn taddvtoon (E=4E7 N/ cm?

G=2ETN/em®, p=0.025Nsec’>/m*, L=300cm ka1 R=190.58cm). Ztov [ivaxo

4.1 divovtal o1 TPOTEG TEVTE 1O10GVYVOTNTES Yo O1dpopes aplOuntikég pnebdoove Kot
povtéda. H avéivon pe NURBS biver amoteléopata kovtd o©T10 HOVIEAO L€
tprooldotarta nenepacpéva otoryeia (FEMsolid) pe opdipata pikpodtepa and 5% Ko
vy oAV Alya otoryeio. To Timoshenko kapmdro ctoyyeio dokov divel AavOacuéveg
TIEG Y10 TIC OVO TEAELTAIEG 10106VLYVOTNTES (TOL KLPLaPYEL 1| GTPEYT) dEGOUEVOL OTL OE
Aoppaver vmoyn 1t otpéPfrwon. Xtov Ilivoka 4.2 divovior ot wévie TPAOTEG

WOoLVYVOTNTEG Y10  LOVOGULUUETPIKY  avoikty  Swrtopny (E=4E7 N/ cm?

G=2E7 N/cm2 , p=0.785N sec’/m?, L=100cm ko R=63.66cm). L& LT TNV
ePInTOON TOPOAO TOL TO TPOTEWVOUEVO HOVIEAO Olvel axpifn amoteAéouparto, TO
avtiotoryo Timoshenko mapovcidalel onuoviikd ocEAApate oxeddv Yoo OAEG TIg
WOOUOPQES EMEWDN| TAL GOIVOUEVA GTPEPA®ONG Yivovian gviovotepa. TéLog, 610 Zynuo
4.20, vroroyileton n kEOETN 6TO €MMESO TNG KOUTLAOTNTOG HETATOMIOT TOV EAEVOEPOL
dkpov tng teAevtaiag dokoD Yy @optio P, =—5000 N (KeVIpikd ©TO GKPO) TOL
avéavetar oto mpota 0.05 Odevtepoienta kol ot cvvExeld pével otabepd.
[Mopatmpeitor KovoTom Tk GOYKAMON HETAED TV OMOTEAEGUATOV TV HLEBOSWV.

A/A B-splines FEMsolid Timlj)slll\g ko 5 cubic 10cubic
AEM (13000) beam NURBS NURBS
1 0.0881 0.1028 0.0944 0.0950 0.1120
2 0.4551 0.5205 0.6214 0.5230 0.5260
3 0.8790 0.9868 0.9871 1.0502 1.1042
4 1.5998 1.7888 4.5459 1.7552 1.8002
5 3.2555 3.6631 4.7959 3.4500 3.6723
[Tivaxag 4.1. [dtocvyvotnTeg KOUTOAOL TPOPOAOL e SUTAQ GUUUETPIKT] CLVOIKTY|
dwaTopn.
FEMsolid FEM Curved 5 cubic , ,
AMA T 4000) beam NURBS Tomog Idwpoperc
‘|’] 4 4
1 0.2824 0.1788 02942 1 1O10HOPON KATHKOPLGNS
petatomong
‘|’] 4 4
2 1.3623 1.1794 1.4211 17 101010p@n mhevpikiG
petatomong
'I’] 4 r
3 2.2615 4.1602 22205 2 \OIOHOPON KATHKOPLENS
HEeTOTOMIONG
4 5.7508 6.4632 5.9612 1" otpentik 1810p0pPn
5 6.3241 31.211 6.3709 2" oTpemtiKh 1810p0pen
[Tivaxag 4.2. [dtocvyvdtnTeg KOUTOHAOL TPOPOAOL LE LOVOGUUUETPIKT| OVOIKTN
dwoToun).

Y10 oyquo 4.2B divetor m petoTdmon tov gAedBepov Gkpov mTpoPoAiov e
OCVUUETPY] OLOTOUN Y10 KEVIPIKA EMPOALOUEVO GTO GKPO GLYKEVIPOUEVO POPTIO HE
okomd va kotaderydel  peiwon g akpifelag Tov poviéhov dokoH Timoshenko (umAe)
6€ 00N LE TO TPOTEWVOUEVO HoVTELD (KOKKIVO) Ko To FEMsolid povtédo (povpo).
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Time function for a gradually
s applied load at the first
% 0.05 seconds

- = Initial position
— FEMsolid
= AEMquad
= FEMbeam

Vertical Displacement (cm)

C-shaped section ~ -
_____ Solid model
(4000 elements)
A|— - — Static solution
cubic NURBS

=20
' I ' I I

0 1 2 3
Time (seconds)

(a) B)
2o, 4.2. (a)KaBetn uetotomon tov eAévbepov drxpov koumdiov mpofoiov ue

LLOVOGOUUETPIKY  OLATOUN Y10, (QPOPTIO TOL OOKEITOL UUE TO YPOVO.
(P)KacBetn petotomion tov 6kpov mpofOorov aGOUUETPHS O10TOUNS VLA
OTATIKO POPTIO.

21 ovvéyela peretaton tpoporog ( E =4E7 kN / m*, G=2ETkN / m>, L=10m
, R=6.366m) pe povoovupetpikn Kipotoedn dwroun (¢/d =0.02 xou d/L=0.1
6mov t=mdyog Ko d=0yog). 1o Tynua 4.3 divovtotl ot KOTavouég TG KOUTTIKNG POTNS,
TNG GUVOAIKNG GTPEMTIKNG POMNG KoL TNG GUVOAIKNG O1ppomng (AOY® TpmToyevols Kot
devtepoyevols oTpéPAmong) KoTd TO PAKOG NG O0KOoL Yyl £KKEVIPO (OPTIO
P, =1000 &N . Ocov a@opd v KaurTikn porn (aplotepd), Sivovtot To anoTeAEGHOTA

Moment distributions *
Cuved Beam geometry

Bimoment in

L 4 .kNm’(Mlsp0M133)1(10)
Tortional Moment

t t g in kNm (MtP+MtS+MtT) & % ‘

8000 —

Bending Moment Mz(x) [KNm]
FEM curved elements (NASTRAN)
Cuved Beam geometry

® —© ®NURBS

Moment values

# 4 = AEM quadratic

Mz (Bending Moment in kNm)

Z axis in m Z axis inm

2o 4.3. Katavoun koumntikng pomng (opiotepd,), OTPETTIKNS POTHS KOI OIPPOTHS
(0e10,) KaTG UNKOS THS KOUTOANG O00KOD YWpIS UETA-Emeéepyacio. TV
omoteleauatamv yia ™ uébodo ue NURBS (1 ue mepoatépw emelepyoaia yio.
ta FEM kxou AEM aroryeio doxod ywpic NURBS).

yw 0o mpotewvopevo povtédo pe NURBS, AEM ywpic NURBS (upe kKAacoikd ototyeia
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dgutépov Pabpov) kot yoo to Timoshenko otoyeio dokov ywpic NURBS. Ta dvo
televtaio £xovv VTOoTEl emeEepyacion Yoo Vo amoTVT®OOVV TV OTNV KOUTOAN
veopetpia. Téhog, ota 6510 TOL 1010V CYNUOTOG OMOTLVTAMOVETOL | GUVOAIKT dPPOTN
X10 ko1 M GLVOMKT GTPEMTIKN pomr). £T0 Akpo 1 dppony| gtvor to 10% mepimov g
OTPEMTIKNG POTNG OEGOUEVOL OTL 1) TPOTOYEVIG CTPEMTIKY oTafepd TG SlTOUNG tvat
oA peyoarbtepn omd TN otabepd TpwTOYEVOVS OTPEPAOONC.

[Tapdpota pe v mponyovuevn mepintmon divovral oto Zynua 4.4 (apiotepd) ot
KOTOVOUEC TNG KAOETNG oT0 €mimedo NG KOUTLAOTNTOG HETATOMIONG Yo TO
npotevopevo povtédo pe kot xopic NURBS kabmhg ko 1o FEMsolid. H dwotoun eivon

HOVOGLUUETPIKY]  Kifwtogwng (E =3E7 kN/m2 , G=15E7 kN/m2 , L=40m,
R=25465m, t/d=0.086, d/L=0.086 xar P, =10000 kN ). Ta anoterécpora e

NURBS 6éivovv c®otd TV Katovoun TV HETATOTICEDV Yopic mepartépw enesepyacio
TOV amoTeELecUdTOV evd ot pébodotl ywpic NURBS ypetdlovtar enefepyasio yio vo
QTOTLTIMGOVY GMOGTA TG KAUTOAEG TAPOAO TOV d{VOLV COGTY| HEYIOTN LETATOMIGT. XTO

Moment distributions
Cuved Beam geometry *
AEM 40 quad / \ Bimoment in ®

©—@®—® \URBS cubic 00, (Mfsp+Mfss)

Cantilever Box-section- v(x)

|

2 ;
~+————+ NURBS quad / | + Tortional Moment
- FEM 100 cubic y \'E g in KNm (MtP+MtS+MtT) [

| Primary Tortional Moment 4 ®
“. -®- .inkNm(MlP)

Secondary Tortional

X‘ @ = @ jomentin kNm (MtS) & b
-

| /

1

|

Vertical Deflection v(x)- Y axis in 3d (m)
Moment values

100000

X axis of curve (m) Z axis in m

2o 4.4. Kotovoun kaOstng UETOTOTIONS (OPIoTEPE,), TIPETTIKDV POTMDV (GVVOLIKHG,
TPWTOYEVODS KOl OEVTEPOYEVODS) Kal OpPOTHS (0edid) KOTO, UNKOS THS
KOUTTOANG 00KOD YpIG UETO-ETELENPYATIO TV OTOTEAEGUATMV Y10, TH UEG0JO
ue NURBS (1 pe mepoutépo emelepyaoio yio to. FEM xoi AEM otoiyeio
ooxov ywpic NURBS).

0o oynua (de&d) divovtal ol KOTAVOUEG TNG OPPOTNG KOl TOV GTPENTIKOV POTOV
(oVVOMKNG, TPMOTOYEVOLG Kot dgvTEPOYEVOVG). Eivanr @avepd Ot 1 GuVOAIKY| d1ppomn
&xel Tapopoo péyebog pe T oTPENTIKN pomy| 010TL | 6TadEPE TPOTOYEVOVG GTPEPAOONG
™G Slatopng etvan peyahbtepn omd TV TPOTOYEVH GTPENTIKY GTAOEPA TNG.

Téhog, pedetdton pio ap@imoKT) KOUTOAT 00KOG LE LOVOGVUUETPIKY] KIBOTOEON
Swrop] (E=325E7kN/m*, v=0.1667, L=33m, R=100m, p=2.5t/n’,
t/d=0.1 xou d/L=0.065) yio. dvvoukd @optio HETAPAAAOUEVO GOUOMOVO LE TNV
nurtovoew] cuvapmon P, =100cos(27zt) kN 610 HEGO TOL pNKovs. Xto Xynuo 4.4
otvetal M SUVOUIKY] amOKPIOT OPOPETIKAOV HOVTEA®V Kot HeBOO®V ¢ Tpog
LETATOMION O©TO WEGO TOL UNKOLG. To mpotewopevo pHovtéAo elvar kovtd pe To
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FEMsolid pe éva Swippaypo (1 tomofétnon tov dwppdypotoc enyeitor oto 6°
KePOAoo) dOedopévov OtL O AouPdver vmoyn Tt SaoTpEPAwon ™S SLOTOUNG.
[MopdAinia dev mapoatnpodvIol TAAAVIOGES otV opy], OT®g oto Solid4S (ANSYS)
povtélo yiati o AapPavetar vroyn n andsPeon ywpic OU®S vo petdveTon 1 axpipeta.

Factor

P=100 cos(2mi) KN

0.8 —

Vertical Displacement (mm)
J

\
. '1*
sﬁ*‘\ aﬁ

04 — '
y @—@—@5Solidd5 - @ @ Solid ONE DIAPH
A—A—ASolid NO DIAPH. ¥ * 3 Cubic NURBS
0.8 T | T | : | | | | |
0 0.4 08 12 16 2
Time (s)

2ynuo. 4.5. Avvopikn omokpion wg mpog v KAOETH UETATOTION Y10, OUPITOKTH OOKO
LOVOGOUUETPIKNG  KIPOTOEIO0DS — O10TOUNS DO MUITOVOELOEG
uetofaiiouevo poptio .

Keparawo 5:  Avalvon  TDevikevpévng  Awotpéfrmong
EvOoypoppov kot Kopmdhov Aokov pe Iooyemperpikég
MegB0o60ovg

Y10 57 kepdloio mapovc1dleTal To TPOPANUA TNG YEVIKELUEVNG OTPEPAOONG KaL
o TPEPAOONG COUKTOV EVOVYPAUUOV KOl KAUTOA®V 00K®V TUYOVGOS O0TOUNG VTTO
TG TALOV YEVIKEG OLVOPLOKEG GLVONKeS, LTOPOAAOUEVOV GE TLYOVGO €EMTEPIKT
@OPTION. LTO TTAPOV KEQPAANLO 1) TOPALOPPOGILOTNTO TG dtatopung AapBdvetal vedyn
HEC® SOTOTMOONG KATAAANAOL ETAVOANTTIKOD GLGTLATOS EEICADCENMY 1GOPPOTIOG TO
omoio mpokvmTEL pe TN Ponfela TV EEIGMOEMV TOTIKNG 100PPOTIOS TNG TPLEOACTUTNG
Bewplag EAOOTIKOTNTOG GE GLVOVAGUO UE TNV WIOHOPPIKY avdivomn g dtatouns. H
oAANAemidopaot petald otpéyng, otpéProong katl dtaoTpéPfrAmong Aapupdavovior vTdyn
oTN SWTVTMOOT TOV TPOPANLOTOS GUVOPLAK®Y TIUMV TNG SOTOUNG GE GLVOLOGUO LLE TNV
EMIOPAON TNG KAUTVAOTNTOS GTNV TEPITTMOOT KOAUTVANG 00KOD.

To medio Towv petatonicewv S1OUOPPOVETAL MG TO AOPOIGHA TNG Kiv|oMG GTEPEOD
ompartog (Saint Venant-SV) kot g emppong tov otnpitemv (Residual-R) g e€ng:
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L_t(x, y,z) —iS (x,y,z)+L7R (x,y,z) =u(x)+6?y (x)Z—@Z (x)YJrZai(x)Wi(y,z)
i=1
opéfloon
(5.1a)

KIivnion oTEPE0D CWUATOS

V(x, y,z) =7V (x, y,z)+\7R (x, y,z) = v(x)—z@x (x) +Z“i (x)’xDYi(y,z) (5.1b)
[ — P

Kivnon orepeoy
OOUATOS Swotpéfrmon kot Y

w(x,y,z)= WY (x, y,z)+vT/R (x,y,2) =w(x)+y0,(x)+ D a;(x) DZi(y,z)  (5.1¢c)
%—J

Kivnon orepeov il
oCOUATOS SwotpéPrmon katd Z

Omov u, v, w givon n a&ovikn, 1 KEOETN Kot 1 OKTIVIKY LETOTOTION TVY0i0L oTpeiov
™G 00KOV ®G TTPog 10 Sxyz, avtiotorye. W(y, z) ivar ot cuvaptioelg otpéfrmonc,
DY(y,z) xau DZ(y,z) elvar ot cuvaptnoelg dtactpéfrmong tng dlatoung (oe éva
owvocpa D(y,z)) evd a(x) eivor pio cvvaptnon mov meptypdest T Helwon g

£VTAGTC TOVG KaTd TO PKOG TG dokov (a(x) =e <) . Ta vrolowma eivon avticToua e
TIg mponyovueveg evotnteg. Ot KWWNGES O©TEPEOD OCOUATOG TEPTYPAPOVIOL LE
Aemtopépela 6t dnuocicvon twv Kang ko Yoo (1994), pe sind, = 6,,cosd, =1 xou
TOVG OPOVS AVAOTEPNS TAENS VO ayvoo VTl GE QUTY| TN LEAET.

Aol oploTohv 01 TOPAUOPPAOCELS Kol Ol TAGES eEoutiag G emidpaong Tov
ompitev Kot gpappdlovtag TG €EI0MGELS TOMIKNG 1GOPPOTHAG TNG TPLOOLAGTOTNG
EAACTIKOTNTOG TaPEAANAQ pe T oxéon v, = A, / [Z(J,m + 4, )] (cOpuBolra yia to AOyo
Poisson kot ti¢ Lame mopapérpoug), Stopope@dveTal T0 TPOPANIO GUVOPLIKADV TIUOV
™G draTopng oG eENg:

(vow) = {_1—2% (W), - tt'zi (VD)m} (5.22)
(v2pY) + %[(VD)m,y +(w,), |=*[~(ov),,] (5.2b)
(v’pz) + ﬂ[(vn)m +(w, )m} =c*[~(pz), | (5.20)

m1—vy,

poli pe T avtioToles cLVOPLIKES GLVONKES OV TOPAAEITOVTOL EOM YOPTV GLVTOUIOG.
Onov vy, =V, /(1-v,,) seivor o evepyos Adyog Poisson Kav g, =ty / tyer
g =,/ Hyep EWVOL EMAOTIKEG OTADEPEG O TPOG TO L, TOV EIVEL TO UETPO SLATHUNONG
TOL VAIKOU ava(opds. Xp1MOUOTOIOVTOS KATAAANAN O10KPITOTTOINGY], TO TOPATAVE®

ovlevypévo mpofinua dtapopemvetol og Eva TpdPAnua wotudv AF = ¢*BF ue ¢ va
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etvat ot WoTIEG Ko F = [W DY DZ ]T Ta 11odtovocpata. To emavoAnmTikd oo

1ooppomiag, mov TEPLYpapeTan oTig dnpoctevoelg Twv Ferradi et al. (2013) xou Dikaros
kol Sapountzakis (2014), ypnowyonoteiton £mg 6Tov vo emtevydel £VOC IKOVOTOINTIKOG
apOpdc W1opopedV oV Ba TEPpLYpApEL pe akpifela TIC GVVAPTAGELS GTPEPAMONG LE TIG
avTioTol(EG SLVOPTNHGELS OoTPEPA®ONG. [ TV apyiKomoinon avTig TG O100TKAGTG
YPNOLOTOOVVTOL Ol KIVIGELS OTEPEOD CGMUOTOS MG OPYIKES WOIOHOPPPEG KOl OTN
OCUVEXELDL Y10, TNV OTOKATACTOCT TNG 160pPOoTiag mpoodlopilovial ot deuTePEVOVGES
Wopopeéc otpéPrmong kot duotpéPrwonc. ‘Etot ocvveyiletor n dadikacio puéypt vo
VILAPYEL GUYKAION TPOG TO OKPPES CYNUO TOV CLUVOPTHCEMV TNG Ol0TOUNG. X& KaOe
Brpo eKTEAEITOL KOVOVIKOTTOINGT T®V EKAGTOTE WOIOHOPPDOV.

A@o0 TPOGOI0PIGTOVV Ol GUVAPTNCELS GYNMUOTOS, Ol LETATOMICELS AapuPavovtag
LEYPL KO OEVTEPOYEVELG IOIOLOPPEG LTOPOVV VAL YPOPOVY OVOAVTIKA OOG EENG:

i (x,y,z,1) =" (x,y,z,t)+L7S (x,y,2.1)=
u(x)+6y (x)Z =0, (x)Y +1,(x)¢¢ (,2) (5.3a)

TPOTOYEVELS

+1y (X) by (3.2)+ 17 (x) bz (3.2) + &, (%) 85 (3.2)

SevtePoyEVELG

v (x,y,2.t)=v(x)-20,(x)
+ ()€ (3. 2)+ Sy (x)vEy (3.2)+ S7 (x)vEz (.2) (5.3b)

TPOTOYEVELG

+ 2 (%) s (3. 2) + 2y (x)vey (9:2) + 22 (¥)vez (3.2)

devtEPOYEVELS

W53, 2.0) = w(2)+ 6, (x)
+oy (’C)Wf?D (y, 2)+¢y (X)Wgy (y.2)+¢; (X)Wgz (y.2) (5.3¢)
TPOTOYEVELG

+Zx(X)W§ (v.2)+ 2y (x)wgy (3.2)+ 22 (X)Wgz (y.2)

OeVTEPOYEVELS

[MopdAinia, divetoar 1 duvatdTNTa 6TO ¥PNOTN Vo AAPel vTdym Tapordve apBud
W00p0pP®V oTEPAOONG Ko dlaoTpéPAmong mote va emtevydel n emBount) axpifeia
OV TPOPANUATOG. TN GUVEXELD, glodyovtar vEéol Pabpol ehevbepiog yior TNV KaBoAKN
aviAvon G KOUTOANG 60KOV, Ol 0Toiol GLVIGTOVV OVEEAPTNTES TOPAUETPOVS TV
mpoavapepBiviav gowvopévav avdtepns taEng (<, (x), x(x) <y (x), ¢z (x),
2y (%), 27 (x) v ™ SrwotpéBrmon Adyw TpoToyEVOdS Kat devTEPOYEVODS GTPEYNS
kol Kapyng). ‘Etol, dwatumdvovion eite dekaésl eite elkoot 600 mpoPAnuota
GLVOPLOKAV TILOV (e SLVOTOTNTO KOl TEPIGGOTEPOV OVAAOYO TOV 0PSO POIVOUEVOV
avotepns TdENG mov Aapfdvovtol vTOYN) O TPOG TOL KIVNUATIKA PeYEOn ¢ dokov, N

enilvon Tov omolwv 61del OA0 TO TAPOUOPEOCINKA Kol eVTOTKE HeyEOn mov eivon
amopoitnTo Kotd TV avaivon pafowtdv eopiéwv. X10 ev Adym Kepdioto AappdvetTot
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eniong vdym Kot 1 €MPPON Tov Adyov Poisson 1660 6TV TAPALOPPOCT) TNG SLUTOUNG
000 Kot otV KaBoAMkn avaivon e 0okov. Ot TapAUOpPMOELS TG KOUTOANG 00KOD
dtpopeavovtal ™G ENG:

_ v R _ _
gx’x:(u’x_ﬁj.[ﬁj, EW :V,y’ gZZ :W,Z (543.)
_u R _ _ R _ —_
yxy=(v’x+Ej-(R_Yj+u,y, }/xz=w’x-[—R_Yj+u,Z, Yy, =Wy +V, (5.4b)
OOV tifetor og e(R) ko eivor yuo va AdPer vrdym v EmMppon g

kapumvAdmtoag. ‘Etor ypheoviag e UnTpmIK HOPON TOPOUOPPOCEIG-TACELS Kol
epopprolovtag v apyn SLVUTAOV EPYOV SLOTVTMOVOVTOL TO, UNTPMA OVCKOUYING:

100 0 Z v ¢f ¢ o, 8 0 0 0 0 0 0
000 0O O0O O O O O O O O 0 0 0
[Al]oooooooooooo 0 0 0 O(R)(S'Sa)
uxl|= e
010 -z 0 0 0 0 0 0 vi v& V& vi Vv vy
001 y 0 0 0 0 0 0 wh wh wh wi wlhy w,
oo0oo0oo0 o0 o0 0 0O 0O 0 0 O 0 0 0 0|
o Lo 0 Zew) 0 0 0 0 0 0
R R
0 0 0 0 0 0 0 0 0 0
0 0 0 o0 0 0 0 0 0 0
P P P s
[Awr2]=| z y 5wy Py PRy B oor)-
—e(R) 0 0 0 ZeR -1-—e(R) R R R R
R R R P P P N
+¢S,y +¢CY,y +¢CZ,y +¢S’y
0 0o 0 0 1 0 4. Hve Bz, 9.
| 0 0 0 0 0 0 0 0 0 0
P P P S S S ]
Vs Vey Vez Vs Vcy Vez
S o(R) “CYe(R) CZoR) S e(R) -CYe(R) ~SZeoR
Re()Re()Re()Re() e()Re()
V.é),y VgY,y ng,y V:Ss:,y vg‘Y,y VgZ,y
P P P S S S
Ws 2 Wey 2 Wez,z Ws. 2 wey 2 wez .z
0 0 0 0 0 0
0 0 0 0 0 0
W_Se,y ng,y WgZ,y W§,y WgY,y Wg‘Z,y
+V§,z +VgY,z +VgZ,z +V§’,z +Vg‘Y,z +VgZ,z i
(5.5b)

&= [Auxl]u’x +[Aux2]u (5.5¢)
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o =[C][Aux1]u, +[C][ Aux2]u (5.5d)

dQdx =

L
oU :I (5uT [Auxl +ul [Aux2] )([C][Au)d]u,x +[C][Aux2]u) (R)
e
0Q
L
— SU = I( 5“,x kot + 5uTk12u,x + 5u’_Txk21u + é‘uTkl U )dx = KOTE TOPAYOVTEG
0
L

= oU = .[(&‘T (kg o +[Kyy =k Ju + Ky 1u})dx+ |:5MT {leppe +k21”}}§

(5.5¢)

(K] {kn klz} (5.5)

k21 k22

Omov k1, k12, ko1 ko kpy (16X16 1} 22X22 KTA) TEPLEYOVV TIG YEOUETPIKEG GTAOEPES TNG
dwtoung Aapfavovtoag vwoyn m otpéPrmon, ) OcTtpéPrmon Kot to Adyo Poisson
eite og eVOVYpaULO gite 68 KOUTOAO doKAPL:

1
k=], [Auxl]T[C][Auxl]e(R) dQ. ki =[ [Aux] [C][Awx2] T
! : (5.6)
ko = [ [Awe2]' [C][Auxl Rde s [, [Aw2] [C][Aux2] R0
To épyo twv eEmtepik®dV PopTimv vroroyiletor g e&Ng:
100 0 Z -y ¢ ¢f ¢, ¢ 0 0 0 0 0 0
[Aux]=|0 1 0 —z 0 O 0 O 0 O v§ vgY vé)z v:g vgy vgz (5.7a)
001 y 0 0 0 0 0 0 w wh wh, wi w w,
L L
ow :I(§u Aux )d |:I(§M Aux] ) ] (5.7b)
0 Q 0

su’p

Omnov t ta dStavdcpata Katevhvuvong TG mTOPATAELPNG ETPAVELNG KOl P TO EEMTEPIKA
@oprtia Tng d0K0Y.

Aopupavoviog voyn Kol Toug 0dOPOVEINKOVS Opovs, vmoAoyiletor 10 UNTP®O
nalag:

my g e (5.7)

mass

L
1
Woss = [ [ p( 60" [Aue] [ A, )Edex = 5W,
0Q

O'—.P‘
/—\
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‘Etot dwapoppmvovior ot €lomoelg kivnong g evBhypapung 1 g KOpmTOANG 00ko0
poll e TG CVVOPLUKES Kot apyIKEG CLVONKEG.

Ta ©¢ Gve TPOPAUOTO GLVOPLOKAOV TILAOV ETADOVTOL OPOUNTIKAE e TN XpNon
™G Mebodov Zvvoplokdv Zrtoyeimv (mpoPfAnua dwToung) kor g MebBddov
Avoroying e€icmong (mTpofAnua 60kov) gite otV apykn e popen eite pe B-splines
kot NURBS. Extog and ™ pébodo ¢ Avoroyikng e&icmong, yoo To KoTd UNKOG
TPOPANa TG dokoV ypnopomoteitan kot  pébodog twv Ienepacuévav ototyeiov o
ocvvovaocud pe NURBS. Méow e ev AdOyw Oewplog avalvovior mopadelypoto
wWwaitepov Bempntikod Kot TPAKTIKOD eVOLAPEPOVTOG OOV TPAYLOTOTOLEITOL 1] LEAETN
TOL QOIVOUEVOL TNG SOTPEPAOONC AOY® KAUYNMG KOl OTPEYNS, EVO M okpifela g
TPOTEWVOUEVNC LeBOSOV SOMIGTOVETOL HEGHD CLYKPIGEMV LE TPOCOUOIMUOTO GTEPEDY
KOl KEADQOTOV TETEPACUEVOV GTOLYEIMV EUTOPIKOV AOYIGUIKOV.

Apywcd peietdronl pio evBOYpopun doKOC pe cuopmayr] opBoyOVIKY SloToUn Yo
OLOLPOPETIKA VAMKA ®oTe Vo emkvupmBel 1 néBodog Ko va eEETOGTEL M EMPPON TOL
Adyov Poisson. X1 cuvéyeia peretdton Vo KOUmHAOS TPOBOLOG e SITAG CUUUETPIKN
dwroun (R=0.636m,L=1m, t/d=0.048, d/L=0.035) ywn éxkevipo @optio 5 kN
6T0 GKpo. Xto Zynua 5.1 dlvetar m Katavoun Tng GLVOAIKNG HETOTOMIONG KOl GTO
Zyua 5.2 g opbng thong Katd tov Stopnkn aEova Yo T0 TPOTEWVOUEVO HOVTEAO LE
B-splines kot 10 Tpiodidctato povtého FEMsolid. Ta aroteAéopata eivor mapopota.

4
L

2 4 6 8 10

2ynua 5.1. Zvvolikn uetotomon yia (a) 3D solid FEM poviélo ue 7875
tetpanievpira aroryeio koi (b) mpotervouevo (AEM ue 10 kofixo. B-
splines 11 100 araOcpa ororyeia) yio v I-cynuotog datoun.

[TapdAinio oto Zynua 5.3 divovtol ol KATAVOUES TOV KIVIUOTIKOV Heyeddv mov
aPOpoHV GTNV TPMTOYEVN GTPEYN, OTPEPAMOT Kol S1AGTPEPAMOT] YioL AOYOVS GUYKPLIONG
Kol ylo voo KataderOel n exBetikn peiwon yoo to dvo tedevtaio peyédn. Onwg eivon
QoavePd, M SCTPEPAOOT €Vl AGTLOVTIN YOl TY) GLYKEKPLUEVT SLOTOUT GE CUYKPLON LE
™ otpéPfrlmon. Avtd eivol OVOUEVOUEVO YOTL TPOKEITAL YO OVOLKTH OloTOouT.
[MopdAAnia to péyeboc g otpéPArmong sivar onuoviikd ce PeYdAn €ktoomn Kotd To
unkoc. Ta moapamdve Olamotdvovtal and to avtioTolo HeyEén Tov pomdv GToV
[Mivaka 5.1. H pomi Ady® mpotoyevong dtaotpéPrmong and otpéyn elval acnuovin o€
oyéomn pe 1t oppom AMoym mpwtoyevovg oTpéPfrmong and otpéyn. To 1010 oydel Ko
Yo T SELTEPOYEVT OppoTn AOY® oTpEPAmong amd otpéyn (avTd onuaivel 0t to medio
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LETATOTICE®V TOL TEPLYPAPNKE TPONYOLUEVES €ivor apketd Yoo vo emtevydel 1
emBoun axpifewa).

566.2 .

415.2

[}
&
(38}

113.2

-
-
-37.74 = z
-1132 . 3
R
-264.2 M
-
-415.2 -
N~
-566.2 . -

2ynua 5.2. OpOny téon o, yo (a) 3D solid FEM uovtéio ue 7875 tetpamievpixd.
oroiyeio ko (b) mpotervouevo (AEM ue 10 xofixa B-splines n 100
otabepa ororyeia) yio. v I-cynuarog datoud.

O—O—C) primary warping parameter (n(x))x10
----- primary distortional parameter ({ (x))x100

® @ ® angle of twist /10

curved beam axis

Zynuoe 5.3. Kivyuotika peyétn 1, (x) , $y (x) Kol 0, (x) ™S Koumoing doxod I-
oyuaTog yia to mpotevduevo uovtélo ue NURBS 3% Babuob.
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c=s 1
? > i AEM FEM
t=0.5 cm %, o \: 10 cubic Solid
0S5 ——> B-splines 7875

w(m) at x=L -12.8713  -12.5466
O.(rad) atx=L | 02083  0.19702

Oy (rad) atx=L | 03274 0.3158

2 120.25 111.02
I x=1/4L
kN
. T (=) at
P, eccentric o ( m> ) 115.23 109.80
Lateral x=1/4L

Loading
My (kNm) atx=0 | 330.81 325.05

M,(kNm) at x=0 | 132301 318.31

M p(kNmz) at x=0| 3401.49
S

M s(kNmz) atx=0| 13646
S

ng(kNmz) atx=0| 16.25 -

[Tivaxag 5.1. Metaxwvhoeglg, HEYIOTEG TACEIS KoL POTEG Yo TNV KOUTOAN O0KO I-
OYNLLOTOG Y10 TO TPOTEWVOUEVO HOVTELO Kot TO avtictoryo FEMsolid.

2m ovvéyewn peietdrol mpoPorog koikng opboywvikng dwatoung 5.0X3.5 m pe
néog toyeudtay 0.30 m (E=3E7kN/m>, G=15ETkN/m>, v=0, t/d =0.085,
d/ L=0.087), unkog 10&ov 40 m ka1 R =25.465m . £to Zynua 5.4 dlveton n katavoun
NG HEYIOTNG LETOTOTIONG Y10 TO TTPOTEWVOUEVO povtédo kot To FEMsolid povtélo. Xto
Zymua 5.5 dtvovton ot opBég tacelg kotd X (A) kar Z (B) yuu ta id1 povréra. Ta
amoteléopato givol TopoOHol HE TIG UEYIOTES TIHEG OYEOOV VO, GUUTITTOLV. XTOV
[Tivaka 5.2 mwapovotdlovtal Kot ot LEYIGTEG TIUEG TOV OTUNTIKAOV TACE®V TOL £ival o€
ocvppovia v ta 000 povtéda. Edm a&ilert vo onpewwbel 011 ev avtibéoel pe v
TPONYOVLEVN OVOIKTH] OLOTOUN, M OPPOT AOY® TPWOTOYEVOLS OlGTPEPA®ONG omd
otpéyn etvar dekamAdoilo ™G avtiotoryng pomng Aoyw otpéPfrwonc. Ot avticTtoryeg
devtepoyeveic Oppoméc elvar apketd pkpotepes. Avtd onuaivel 01t 10 TMEdO
petatonicewv mov AapuPavel péxpt Kot OeVTEPOYEVEIS 1OIOUOPPEG TNG STOUNG Elvar
apkeTo Yo va emtevyfetl n emBount) axpipela. Télog, otov Ilivaxa 5.3 yiveral po
TOPOUETPIKY UEAETN TNG EMPPONG TNG KOUTLAOTNTOS OTO WEYEBOC TG KOUTTIKNG,
OTPENTIKNG Kot AOY® O1oTPEPA®ONG amd TpmToyevy oTpéyn pomne. I't’ avtd to ckomd
kataptiloviot ot HeTa&y Toug Adyot. Kabmdg Aowmdv avEdvetan 1) KOUTLAGTNTA KOl KOTH
GUVETELDL 1] GTPENTIKT] PO, TOPOTNPEITOL ADENGT TOV ADYOL TG POTNG SLGTPEPADONG
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TPOG TNV KOUTTIKT PpOTn. AVTOG 0 AOYOG EMOUEVMG ATOTEAEL £va OlkTN TG EMPPONG
MG OGTPEPAMONG OTN GLUTEPLPOPE TNG KAUTOANG dokov. TTapdAinAa, o Adyog tng
POTNG SLOTPEPAWONG TPOG TN GTPEMTIKN POTN KVUOIVETOL SLOPOPETIKA e TNV advEnom
MG KOUTLAOTNTOC. ApYKA oavEdvetor omOTORO ylol WKPN KOUTLAOTNTO KOl OTN
OULVEYELD HLELMVETOL EAGYIOTA Yo KAOE pio avEnon tng KopmvAdtrag. Avtod deiyvel tnv
actdBeio Tov dnuovpyet N amdxion tov SNk dEova and v gvbeio akdpa Kot av
elvan pkpn.

0.43

A

0.369

0.307

0.246

0.184
0.123

' (®)
. ‘ 0.0614

2o, 5.4. Xvvokikn uetatomion yio. (a) 3D solid FEM poviéio ue 2880
tetpamievpia. aroryeio kor (b) mpotervousvo (AEM e 10 kofixo, B-
splines n 80 otabepd aroryeia) yio. v KIfwToEldn daToud].

C=5s

—

t=0.3m

3.5m

|| ||

5.0m

o

i ee——

(B)
2ymua 5.5. Opbeg taoeis o, (A) kor o, (B) yia (a) 3D solid FEM povtéio ue 2880

tetpamlevpiko. otoiyeia koi (b) mpotervouevo (AEM upe 10 wxofiko B-
splines n 80 arabepd, aroryeia) yio. v Kifwtoeldon draToud.

Lotz i
SELST l

£670T
9781¢
66€ET
SELST:
TLoIT
60t€
60FET
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AEM FEM
10 cubic Solid
OpBoywvikn KIBwToEIdAG diatoury | B-splines 2880/

FEM
plate 960

w(m) at x=L 0.4266 0.4316

O.(rad) atx=L | 0.0100 0.0112

Oy(rad) atx=L | _0.0131  -0.0137

. 20539
max
T (—3) atx=0 | 21532 (solid
m
model)
(=) at x=0 i

S000kN o (%) 12602 (solid
Lateral model)
Loading My (kNm) atx=0 | _139691  -139824

M,(kNm) at x=0 | 127100 127324

M p(kNmz) at x=0| _6930.56
S

M s (kNm®) at x=0 | _1838.93
S

ng(kNmz) at x=0| 610306 -

M, (kNm*) at x=0| -1999.04

[Tivaxag 5.2. Metaxivinoelg, HEYIOTEG TACELS KO POTES Yol TNV KIPMTOEW KOUTOAN
d0Kd Y10 TO TPOTEWOUEVO HOVTELD Ko TO avtioToryo FEMsolid.

Mp,  Mp, My
OpBoywvikn KIBwWTOEIOAC dlaToury | —== ;
pBoywvikA KIB e dlaropn | = M, M,
at x=0 at x=0 at x=0
R= 0.178 2.844 15.952
R=76.394m 1.141 5.579 4.891
P, eccentric
Lateral R=50.930m 1.835 5.276 2.875
Loading
R=38.197m 2.581 5.101 1.976
R=25.465m 4.365 4.807 1.101

[Tivaxag 5.3. Adyor pom®dv Yo S0POPETIKEG KOUTLAGTNTEG TNG 00KOD KIPBMTOEO0VG
SlTOpUNG.
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211 cvvéyelo HEAETATOL TOPOO10C TPOPOAOG LE TOV TPOTYOVLEVO LE TNV OVOLKTH
dlToun ALY Yo LOVOGUUUETPIKN dtaTtoun ot T eopd (1/d =0.049, d/ L =0.055).
2N CLYKEKPIUEVT] TEPIMTOON KATOUOEIKVOETAL O POAOG TOL EMUTEIOL POPTIONG OTNV
AVATTUEN TOV POIVOUEVOV avOTEPOS TAENG. Zuykekpléva, Otav To POopTio aokeital
TOPAAANAC LE TOV AEOVO. GUUUETPIOG OEV OVATTUGOOVTOL HEYOAES TIUEG POTTAOV KO
Taoe®V avotepns TaEng oe ochykplon pe TNV ovtibetn mepintmon eite yo Kevipikd
emPoriropevo eoptio eite ékkevipa. [lapdAinia, oty TEPITTOON TOL AVOTTVCCOVTIOL
HeYOAeC OTPEPADOELG, M XPNON €VOG TESIOL WETATOMICEMV KOL HE TPITOYEVEIQ
ovvaptnoelg oTpéPrmong avédvel v axpifelo katd éva pikpd mocootd. AvTo 1O
1060010 B Tay akOpo LEYOAHTEPO OV 1) SLOTOUN NTOV OKOLO TTO AETTOTOLYN).

H emdpevn xoumoAn ookOc mov peletdrtol eivor pe KIPoTOEWN dSoToun

(E=3E7kN/m2 , G=1.5E7kN/m2, v=0, t/d=0.086, d/L=0.086,L=40m,
R =25.465m) vnd xevipid goptio P, =10000 kN o710 €hedbepo dixpo. Zto Zyfua

5.6 dlvovtarl ot KOTavoUEG TOV KIVNUOTIKGOV HEYEDDV OV aQOopodV GTNV TPMTOYEVN
oTpéyn, oTtpéfrlmon Kot StaoTPEPAmOT Yoo AOYOLS GUYKPLIONG LE T avTioToLy o Heyén
NG OVOIKTYG Ol0TOUNG Kat Y vo. kataderyBel n exBetikn peiwon yo o 000 tedevtaio
peyédn. Edm ot mapduetpor otpéfrlmong kot SacTpéPAmong €xovv  TOPOUOLES
KOTOVOUES TTOPE TO SapopeTikd péyedog kot 1 mapapetpog oTpéPAmong oev ekteiveton
1660 6€ £VTOoT KOTA TO UKOG OGO TPONYOLUEVAOCS (OVOIKTH dloToun).
// — . =— primary warping parameter (n{x))x10

----- primary distortional parameter (¢ (x))x100

angle of twist /10
— CUIVed beam axis

0,001 -
T R i -
0 /" o el
7 o -
| T /s

s ’ ]
o V]
o "
g. -0.001 -_| / ./

2ynua 5.6. Kivnuotixe ueyéln nx(x), é’x(x) Kou Hx(x)mg KOUTOANG  00KOD

Kiffwtoeldovs oyniuotog yia 1o mpotevouevo uoviédo ue NURBS 3%
Sabuod.

Ytov Ilivaka 5.4 yivetor GOYKPIoN TOV TPOTEVOUEVOL LOVTEAOV, TO OTO10 Eival G€
ocvpowvio pe 1o FEMsolid, pe 1o poviého g mponyoOUEVNG €VOTNTOG Y®PIg TNV
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200w 1 AEM FEM AEM  Timoshenko
casom " 10 cubic Solid 50 quad. FEM

B-splines 2714 GWCB beam

w(m) at x=L 0.3744 0.3547 0.3202 0.3238
0.(rad) at x=L 0.0092 0.0087 0.0067 0.0067

Oy(rad) atx=L | 00120 -0.0115 -0.0104  -0.0106

kN

l oW arx=0| 40054 38230 27633 28782
P. =1000kN max kN _

ccentric Txy (mz) arx=0 | 24135 23085 16940 3714
Lateral

Loading My (kNm) atx=0 | 254316  -254647 -254820  -254648

M,(kNm) at x=0 | 253683  -254647 -254700  -254648
2
M j» (kNm™) arx=0 342533 - -244940 0

M 5g(kNmz) at x=0| 136612 - 30717 0

ME (kNm*) at x=0 366072 _ _ ]

M3 _(kNm*) at x=0| 4127 _ _

[Tivakag 5.4. Metakivnoelg, HEYIOTEG TAGELS Kol POTES Yo TNV KIPMOTOEWN KAUTOAN
d0KO Y10 S1APOPO LOVTEAQL.

dwotpéPrwon ko o Timoshenko kapumdro ctoryeio dokov. A&ilel va onpewwbdel 6t 1
pom AOY® TpwToyevols oTpEPAmOoNG eivar peyaAdTEPN Yoo TO TOPOV TPOTEWVOUEVO
HOVTEAO o€ OYéom He vt oL LIoAoYiletal amd TO HOVIEAO TNG TPONYOVUEVNG
evomrag. [TapdAinia, to Timoshenko ctotyeio 60KOV VITOEKTIUA CNUAVTIKA TIG TAGELG
(Wwitepa ™ OwTunTikn) kabog ot AauPdver vmdyn oOte otpéPAmon ovte
dwotpéPrmon. Téhog, eivar pavepd Ot 1 dactpéPrmaon sivar mapdpown oe péyedog pe
mv ovtiotoyn otpéPrwon AOY® OTPEYNG Kol HOMOTO Alyo HEYOAVTEPT Yo TN
GLYKEKPLUEV SLoToL).

H televtaio doxog mov peletdranl givor €vog mpoPoAog KB®TOEWOOVE OTOUNG

(E=325E7kN/m*>, G=139E7kN/m?, R=100m, v=0.1667, t/d=0.1,

d/ L=0.065) pe unrog to&ov 33 m vrd Katakdpveo Keviptkd goptio 5000 kN. H o1
Ol0TOpY] HEAETATOL KOl GOV CUUUIKTN HE OLAPOPETIKO VAIKO HOVO GTO AvV® TOTYOUA TNG

(E=4E7 kN/m2 ,G=2ET7 kN/m2 , v=0). Ztov Ilivaxa 5.5 elvor oavépo mwg
HELDOVETOL 1) EMPPON TNG SLUCTPEPAMONG KOl OTIC TAGELS KO OTIS POTEG GTNV TEPIMTOON
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mov 10 Gve Ttoiympo (poll pe to mrepvyla) g OlOTOUNG KOTAOKELOOTEL omd VAKO
peyoAvtepng ovokopyioc. To amotélecpa dev eivar 10 1010 ov Paiovue oe GALa
TOLYMOUOTO 7O 1oYLPO LAMKO Y1aTi Yo T GLYKEKPIUEVN POPTIoN (TTOL €ival KOl GLYVT
oTN YEQLPOTOUN) TO Ave Tolywuo avBictatol TEPIOCOTEPO UECH KAUYNG EVO TO
TTEPVYINL TOV AEITOLPYOVV Gav TPOPoiol Kot Tapovstdlovy peydieg petatonicels Oa
YIVOUV O AKOUTTO. ZVYKPITIKE pe tnv mponyoduevn Kifotosdn owatoun, a&ilel vo
onuewbel O6TL TNV TPOKEWEVT] TEPITTOON Ol Adyol T®V POT®V delyvouv OTL M
OLYKEKPIUEVN S0KOG avBioTatol TEPICCOTEPO UECH KOUTTIKOV UNYOVIGULOV Kol OTL 1
SoTPEPAOOT AOY® GTPEYNG OV OVOTTUGGETOL EIVOL LUKPATEPT] GE TOGOGTO KOTH TO
Nuov oe oyéon pe mpv. Emione, 66ov apopd 10 avtictoryo vbiypappo dokapt, a&ilet
vo onuelwbel 0TL N SaoTpEPAmon OV AVATTOGGETOL OQEIAETOL GTNV KAWYT Kot YL 61N
otpéymn. To 1510 1oyvet kot yia ) oTpéPAmon).

— 7 4| R=100 R=100 R=o  R=100
{r— | ol AEM FEM AEM AEM
o |® 3 10 cubic Solid 100 10 cubic
o R b-splines 6600 constant  b-splines
o COPIIKTY
w(m) at x=L 0.4001 0.3899 0.3914 0.2616
0, (rad) at x=L 0.0039 0.0038 0 0.0019
Oy (rad) at x=L -0.0170  -0.0169 0.0174 -0.0116
max kN
O x (;) at x=0 52456 51825 52122 21151
kN
l r;‘;a"(;) at x=0 8425 7721 3992 3791
P, Lateral My (kNm) atx=0 | _161723 -162023 -162115 -161642
Loading
M, (kNm) at x=0 26929 26969 0 26916
M Sp(kNmz) arx=0 | 18463 ] 0 9152
2
M, (kNm™) atx=0 | 3408 - -3357.5  -11338
M Ss(kNmz) at x=0 -6198 - 0 -3130
ngy(kNmz) ar xeo| 62817 ) ] 0 (x) 20418 (x)
’ 1571 (y) 1144.57 (y) 245 (y)
Mf)xy (N at x=0 -952.89 (x) ] 0x)  1691.09 (x)
’ -1403 (y) -1072 (y)  -262(y)

[Tivaxog 5.5. Metaxivnoelg, HEYIOTES TAGELS Kol POTES Yid
00Kb Yo S1APOPO. LLOVTEAQL.

™V KIPOTOEWN KOUTOAN
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Ytov [Mivaka 5.6 mopovotdloviol ot 10106V VOTNTEG Yo TV TPOAVOPEPOUEVN
opoyevn dwtoun pe p =2.5kN sec’/m*. Ot TIUEG TTOV TPOKVITTOVV OO TNV EPAPLOYN
TOV TTPOTEWVOUEVOD LOVTEAOL Y10 TNV OUOITAKTY d0KO €lval YEVIKE O KOVTH OTIG TYES
tov FEMsolid yopig otdppaypuo evd yioo apketéc tiuég ta 0vo solid povtédo divouv
mapopoteg TéG. levikd kvplapyodv ot 130UopeES AOY®D HETOKIVAGE®V  (EKTOC
OTPENTIKNG) MO TOCOCTO TNG GULVOAKNG amOKPIong mov olvetor omd Tig 8 TpadTEG
wWopopeéc. A&ilet va onuelmBel 6t ot avtictoryes TiHég ToL TPOPOAOL givarl KaTé TOAD
pelopéves. Avtd oopPaivel enedn otov TpoRoro (AOY® TG EMPPONS TOV cLVONKOV
ompLENG) ta eavopeva oTpEPAmang Kot SloTpEPAmONG eivat TOAD evtovoTtepa.

FEMsolid FEMsolid = FEMsolid 10 cubic Tomog
AJA 6600 6600 6600 NURBS O10HOPPNG
NO Diaph. NO Diaph. 1 Diaph.  (apoeimaxktn)
(mp6Porog) (apeimaktn) (apeimoktn)

1" Bropopen
1 1.725 9.328 9.414 9.470 KATOKOPLONG
LETOTOTIONG
1" 1Sopopen

2 4.065 17.099 19.230 16.887 TAEVPIKNG
LLETOTOTTIONG
3 | 9.084 20.495 21.160 21.154 1" 1&1o0ppr

GTPEYNG

2" 131opopeny
4 10.183 21.174 22.126 21.949 KATOKOPLONG
LETOTOTIONG
2" 131op0peny

5 19.191 27.898 35.428 26.003 TAEVPIKNG
LLETOTOTIONG
3" Wdopopen
6 22.321 31.948 36.230 32.789 KATOKOPLONG
LETOTOTIONG
7 | 21.649 43247 42.768 44.500 2" 1BoL0peii
HGTPS\VHG ’
8 | 29.165  47.490 47.013 49.602 37 wiopopen

OTPEYNS
[Tivakag 5.6. Idt0cvyvoTNTEG KOUTOANG 00KOL KIBMTOEWO0VG Olatoung (opeiraktm 1

TpOPor0g).

VIIL. Kepahorwo 6: Egappoynn Koavoviepov vy  Evowdpeca

Aw@paypota ko ASloroynon Tev o TdEE@V TOVG

Y10 6° kepdlaio 1o, POVIEAQ TOL avomTOYOMKAV oTO KeQdlawo 4 kor 5
YPNOOTO0VVTOL G cvvovacpd pe ™ MéBodo Apeong Ztfapdtmrog yoo ™
SWUOPOMOT TOV TOMKAOV Kol KoBoOMK®OV uUntpoov dvokopyiog evboypopung 1M
KoumOANG o0okoV. EmmpdcOeta, mapovcidlovior ot Mo cGLYVA YPTCULOTOLOVUEVES
owtdéelg kavovioumv mov kobopilovv Tov aplBud kot T péylotTn OmdoTOoN
tomoféTnong evOlAUECS®OV  OIPPAYUAT®OV Yol TNV ATOELYN TOL QUIVOUEVOL TNG
SGTPEPADONG TOV JLATOUDV.
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Xopeova pe tov kovoviopnd AASHTO (American Association of State Highway
and Transportation Officials- 1993) o1 Odwrtdéelc 7y wopumOreg YEQULPES
aVToKLYNTOdpOp®V KaBopilovv T HEYIOTN OmOGTACT] EVOLIUECOV daPpoyraT®V Ly

08

R 1/2
Ly<Ll— =" | <25f 6.1
b (200L—7500] % ©.1)

£tol @ote M opOn thom doTpiPrwons Adym TpmToyevoLs otpéyng va ivor oto 10%
g opbng Tdong Aoym Kopyng Kot n opbn tdon yio v kdbetn kapyn va eivon 137.3
Mpa 1| kot Atydtepo.

Hapdrinra, o kavoviopog HEPCJ (Hanshin Expressway Public Corporation of
Japan- 1988) mov mapéyer T1g Swtdlels Yo 10 OYXESACUO KAUTOA®Y YEPLPDV,
TPOGOLoPILEL TNV TPOAVUPEPOLEVT HEYIOTN amdoTOoT Ly G€ GYéon pe v avtioToyn
andotacm o evvypappn 80k6 Ly TOAAUTANGLOGUEVT UE £EVO LEIMTIKO GUVTEAEOTN

k(¢.L) o e&ng

OmoL
6m for L<60m
Lpg =4(0.14L-2.4)m for 60m<L<160m (6.3)
20m for L>160m
1 for L<60m
x(o,L)= — 6.4
(¢ ) I—M for 60m< L <200m 4

1002

pe ¢ va givor 1 yovia tov t6Eov mov oymuatifel  KaumwHdAn 60k0G. O1 SaTAEELS AVTES

GTOYEVOVY VO TEPLOPIGOLY TO AVTICTOLYO TOGOGTO TOV TPOOVAPEPONKE 61O 5% Ko TNV
TN TAELPIKNG 0pONG Taong ota 4.90 Mpa 1) kot Atydtepo.

> ovvéyela avtég ol dutdéelg epapuoloviar oe HOVTEAN OOK®V amd paPowTtd
(kepdhoo 4 xor 5), oteped Ko KEALQ®MTO otoweio. (e OKOMO TN GUYKPIoN TV
OmOTEAECUATOV G EVOVYPOUIES KOl KOUTOAEG d0KOVE KaBmg Kot TV a&loAdynon tov
dwrdéewv ovtwv. To mapadelypota mov oavoAidovior elvar Kuplog TPAKTIKOD
EVOLPEPOVTOC Kol  OPOPOVV  KIPWTOEWEIG OOTOUEC OTOV  TOL  QOIVOUEVO  TNG
dwotpéProong €yovv Wwitepn onuocio Kot M ypron Swepoyudteov kodictatol
avaykoio. To omoTeEAEGHOTO KOU Ol TOPOUETPIKES GLYKPIGELS OV OLEVEPYOVVTOL
KOTAOEIKVOOVV TN ONUacio TG Bedpnong Tov GYNUATOS, TOV AGYOL T®V SCTACEWDY
NG O10TOUNG, TOV UNKOVG, TNG KOUTLAOTNTOG KOl TV cuVONK®V otnpiEng evbouypapung
N KOUTOANG d0KOD O TOPAUETPOVS OTY UEAETI] TPOGIOPIGHOD TOL aptBod Kot NG
amOGTACNG TOV OPPAYUATOV KOTE UNKog TG 00kov kabm¢ ot AauPdvovror OAeg
VIEOYT amod TIG STAEELS TOV KOVOVIGUAOV.
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Yuykekpléva, peketdral n oploywvikn KIPOTOEWNG doTopn TG TPNYOOUEVNS
evomrtag. Xoppova pe tov. AASHTO mpémet va ypnoipomombovv 6 evoldpeca
Sepaypate oTnV TEPITTOON KAUTOANG dokoV evd ovuemva pe tov HEPCJ eite yn
evBOypouun eite yuo KOUTOAN O0KO mpémel va  ypnotpomomBovv 7. Qotdco
€QOPUOLOVTOG TO TPOTEIVOUEVO LOVTELO KO GLYKPIVOVTOG HETOTOTIGELS Kol TAGELS Yiol
TEPUTTAOCEIS UE AYOTEPU SLOPPAYLOTH TPOKLATEL OTL GTNV TEPITT®OT €VOVYPAUUNG
dokov 1 pe 2 dappdypoto eivor apketd yio va meptopicovv TN dotpéPrwon. Xtnv
TEPIMTOON NG KAUTOANG d0KOV Ogv 1oyvel 1o 1010. Kabdg av&dvetor o aplBuodg tov
dwepaypdtwv doev mopatnpeitol dPopd OTIG TACELS HETA TNV Tomobétmon 4
Swppaypdtwv. Onote dev yperalovior 7 aAld 4 o avth Vv mepintwon. Tlapouola
CUUTEPACUOTO TPOKVTTOVV OTNV MEPINT®MON Oedpnong Tov 1310GVYVOTHTOV Y10
p=2.5kN sec’ / m* g euBvypouung M g koumoing dokov (ITivakag 6.1). Eivot
Qovepd OTL oYeddV OAeg ot 1dlocvyvoTNTEG €lvarl mapdpoleg eite v 4 eite yu 7
dwephypate eved otV mepimtwon tov 1 (mpotewvopevo HOVTEAO) 1 KOVEVOG
SEPAYIATOG Ol 1310CLYVOTNTES SLOPEPOVY, EIOIKA Y10 TIC WOIOUOPPES HE LITEPPOAKNY
dwoTpéPAmon.Avtd onpaivel 0t ypetdlovron ciyovpa meptocoTepa TOoL 1 dappaypaTo
Omwg Ntav avapevopevo. Ocov apopd 10 eVBVYPAUIO LOVTEAD 1] GEPA TV OIOHOPPOV
aALACeL KaBdG Kol | 6TOVAUOTNTA TNG OTPEPADONG GE AVTEC.

FEMsolid FEMsolid FEMsolid 10 cubic B- Tomoc
AJA 2880 2880 2880 NO splines [51o0p0peng
NO Diaph. 74) Diaph. in AEM
Diaphs.  (straight) (1 Diaph.)
1726 1" 18ropopeny
1 1.605 ' 1.630 1.611 KOTAKOPLONG LETATOTIONG
(1.707) , .
(aonpoavin otpéfrmon)
2261 1"1810p0p@1 TAELPIKAG
2 2.221 ' 2.168 2.155 HETOTOTIONG
(2.238) , .
(aofuavtn otpéPrmon)
7329 2" 3opopen
3 7.038 ' 9.167 7.063 KATOKOPLONG LETATOTIONG
(7.242) , .
(onuovtikn otpéPrmon)
9.626 2" 181opop@f TAeEVPIKNG
4 9.440 ' 12.099 9.296 HETATOTIONG (GNLLOVTIKTY|
(9.530) .
otpéPrmon)
16.108 1" S1opopen oTpéyng
5 14.455 (15.875) 12.791 14.795 (onuavTikh oTpéPAmon)
22770 3" 181opopoen
6 19.131 ’ 21.591 20.552 KATOKOPLONG LETATOTIONG
(22.087) 2 .
(vmepPorikn otpEPAmon)
32 479 3" 11opopeny TAeVPIKNG
7 23.306 (32' 000) 29.194 22.961 HETOTOTIONG
' (vrepPorikn oTpéPAwon)
41.895 2" 181opopen oTPéyng
8 23.478 (36.422) 22.848 25.312 (urzpPodi oTpéBhaon)

[Tivaxag 6.1. Idocvyvotmreg koumOANG 1M €vBOypauung dokod pe opboywvikn
KiBwTtog1dn dlaToun).
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21 ovvéyelo peketdton KopmHAn 60k6g ToAD AentOTOYNG KIPOTOEW0VS S1OTOUNG
(E=4ETkN/m*, G=2ETkN/m*, L=10m, p=7.85kNsec’/m*, R=6366m,
t/d=0.02, d/L= 0) vrd £KKevIpo KATAKOPLEO @opTio P, =1000 kN 61O
erevbepo GKpo. ZOUPOVO LLE TOVE KOVOVICUOVS amontovvtal 2 dappiyploto ite oty
KOUTOAN d0KO gite omnv guBoypapun. Ztn oedtepn mepintwon ond GLYKPIGES TOL
nwpotevopevov povieAov pe to FEMsolid pe ovo dwppdypoata mpoékoye OTL T 2
TANPOLV TOVG TEPLOPICHOVS. QOTOCO OTNV MEPIMTOON TNG KOUTOANG O0KOV Ot
KOVOVIGHOL 00NYOUV GE EMGPOAN OMOTEAECUOTA E101KA GTNV TPOKEWEVT] TEPITTMON
TOAD AEMTOTOLYNG S1OTOUNG KO UEYOANG KOUTVAOTNTOG TG d0K0V. 1o Zynua 6.1 sivon
eavepd OtL pe 13 dappdyuata meplopileton n éviaon g doTPEPA®ONG KATA TO
UKOG TNG O0KOV G oxéon Ue TV mepintmon 1 dagpdypotoc.

T
NN ARN e AN,
CO T

nae; WA

= HET
e FLT
M

B

2ynua 6.1. Hopopoppwuévog popéag uoviéiwv ato FEMAP ue 10976 tetpomievpird,
tpiooiaoroTo. otoryeio yio. (a) 13 1 (B) 1 dwappdyuora.

[Mopdiinia otov Ilivaxka 6.2 divovtol To KIvHatikd peyém yuo dtdpopa pLoviéda
HE SpOpeTIKEG O1aTAEES dappaypatwv. Eivar pavepd 6t mo Kovtd 610 povtélo mov
avanthyOnke oe mponyovuevn evotnrta kot o Aapupdvel voyT T dtoTpéPAmon sivar
to. FEM povtéia pe 13 dwappdypata. Ta poviédla pe 2 dtappdypoto (COLP®VA LE TOVG
KOVOVIGHOVG) divouv peyodvtepeg petakwvnoels. EmmAéov, amd tov Ilivaxa 6.3 etvon
Qavepd OTL Ol 10100VYVOTNTEC TOV HOVTEAOL pe 13 dappdypota Kot dwaitepa ot
AVATEPES, OOV 1 SGTPEPA®ON YiveTan O £vIov, €ival TO KOVIQ GTO TPOTEWVOUEVO
HOVTELD YP1G Stoppaypota (Tponyoduevn evotnta). Amo T0 TOPATAVE TPOKVTTEL OTL
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G€ QTN TNV TEPIMTMOOT Ol KAVOVIGLOL 00NYOUV Gg pio EMoQOAN Avor ylotl Tpénet vo
ANeBovV vTOYN Kol AAAEG TOPAUETPOL TOL TPOPATLLOTOG.

YA ba3om
:
£ (SIIT_:*Z o V(m) at ex(rad) QZ (md)
= é 0.03963 m I at ot
i E = x=L x=L
4 cubic NURBS
(Ch. 4-NO dist.) | 04879 -0.0202 -0.0742
FEMplate
13 Diaph. 0.4701 -0.0231 -0.0691
P, Lateral FEMplate
l Loading 2 Diaph. 0.5516  -0.0290 -0.0812
FEMplate
1 Diaph. 0.9748 -0.0951 -0.1470
FEMsolid
13 Diaph. 0.4647 -0.0229 -0.0685
FEMsolid
2 Diaph. 0.5346 -0.0279 -0.0790
8 cubic NURBS
(Ch. 5-1 Diaph.) | 0-7844  -0.0650 -0.1110
FEMsolid
1 Diaph. 0.8215 -0.0726 -0.1235

[Tivaxag 6.2. Kivnuotikd peyédn yuoo Sipopa povtéda pe M xopig Sto@payoto, yio
KOUTTOAT 00K0 e Aemtdtoym KiPwtoedn dtoTopn.

10cubic
NURBS
(Ch.4-NO dist.)

Mode FEMsolid FEMsolid FEMsolid
Number 1 Diaph. 2 Diaph. 13 Diaph.

1 0.1172 0.1416 0.1548 0.1317
2 0.2556 0.2615 0.2704 0.2191
7 0.3262 0.3644 1.0436 1.1042
8 0.3562 0.3799 1.4233 1.2311
9 0.4022 0.4761 1.5021 1.3345

[Tivaxog 6.3. [dtocvyvoTTES Y10 TO HOVTELD O0KOV TOL XyMatog 6.1.

Ta mopamaveo emPefordvovtor mo ovvortikd otov Ilivaka 6.4  d6mov
Kkataptiloviotl ot amoKAIGELS TOL LOVTEAOV oL avamtOyOnke ywpig dtuoTpéfroon and
T0 povtélo pe 000 dwgpdypato PACT TOV KOVOVIGUAOV Yol OLOPOPETIKEG OKTIVEG
kapmorottoc. H mapapetpikny avaivon kabictatal wwaitepa €0KOAN LE TN ¥pNoN TG
Iooyemperpikig avaivong oto pafowtd poviéro. A&iler va onueliwbel 6t1 KabdC
ALEAVETOL 1] OKTIVOL KOUTVAOTNTOG Ol ATOKAIGELS LEYAADVOLV KOl aVTO delyvel OTL TaL 2
olppaypato dev apkoLV TAEOV Yoo Vo TEPOPicovy TN daoTpéPAmon mov yiveTo
evTovotepn Le TNV adéNon TS KAUTLAOTNTOC.

2N ovVEXELD HEAETATOL KOUTOAT S0KOG pe KIP®TOEWN dtoTtopun Tpameloedong

oxfuatog  (E=3ETkN/m?>, G=15ETkN/m*, L=40m, R=25.465m,



Ievikevpévn Oewpio Evbdypopung kot Kapmding Aokov pe Iooyeopetpikny Avaioon 48

t/d=0.086, d/L=0.0%) y kevipikd katakopveo @optio P, =10000 kN 610

elevbepo dxpo. Ztov Ilivaka 6.4 divovion to, KvnUaTiKd pey€imn yioo dtpopo. LovTEAQ
LE SLopOPETIKO aPOUO SPPAYHATOV. ZOUEOVO LE TOVG KOVOVIGHOVGS YpetdleTot vo

Y b;,=3.0m
*
S ¥ t=0.02 m

c ] c—§2 v(%) at 0.(%) at  0,(%) at

_‘,2 g 31:1.03963 m x:L x:L x:L

) bp=1.0m
R=00 0.00 0.64 0.00
Pz Lateral R=28.65m 1.09 1.41 1.06
Loading
R=12.73m 3.03 3.40 1.91
R=6.37m 8.73 27.60 6.08

[Tivokag 6.4. ATOKAIOT TPOTEWVOUEVOL LOVTEAOV Y®PIg SaoTPEPA®ON amd TO LOVTEAO
ue 2 daepaypato (faon ToV Kavoviou®V) Yo StapopeTikd R.

\
oom | atv(m) 0, (rad) at gz(rt ad)
a
=t =L x=L
Zz
4 cubic NURBS
(Ch. 4-NO dist.) 0.3197 -0.007029 -0.0104
FEMsolid
1 Diaph. 0.3547 -0.00867 -0.0115
P, Lateral FEMSOHd 0.2914 0.00756 0.0090
l Loading 7 Diaph. : . .
FEMsolid
16 Diaph. 0.2746 -0.00778 -0.0081
FEMsolid
2 Diaph. 0.3256 -0.00782 -0.0103
FEMsolid
4 Diaph. 0.3021 -0.00753 -0.0094

[Tivaxog 6.5. Kwvnuoatikd peyédn yu d1dpopa HOVTEAD HE 1 YOPLS SLOQPAYLOTE Y10l
KOUITOAT 00KO e KIP®TOEWN dtaToun).

ypnoworomBodv 6 1 7 dwepdypata yio TV amo@uyn g dcTtpéfrmons. Amd ta
OTOTEAECUOTO GTOV TVOKO GTOGO QaiveTol OTL To Lovtéda pe 2 Kot 4 dappiyuoTo
elval Kovtd oTo TPOTEWOUEVO KOUTOAO oTOlXElo TpomyoVUEVNG €vOTNTAG TOL OF
AapPaver vroyn 1 owotpéPrwon. [HapdAinio petald tov poviéhov pe 4 xor 7
dwppdypata vapyxel pikpn oweopd. To 1010 cvoumépaciio TPokvye Kol amd Tov
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VTOAOYIGHO TOV TACEWV O, KOL Oy . TNV TEPINTOON TOV 2 SLPPOyHITOV Ol TUCELS

glvon yevikd mo kovid oe puéyebog pe avTéG ToL HOVTEAOL pE 4 dlappayuaTo oo OTL e
avtég Tov povtédov pe 1. Ola avtd kabiotovy ta 6 1 7 Saepdyrato Tov omTotTtovy ot
KOVOVICUOT OVTIOUKOVOUIKT] ADGT] KOl 1] ovoryKoio Yiol T GLYKEKPIUEVT] SLOTOUN Kot
d0K0. Oempmvtag Tig Woocvyvotnteg ¢ dokov (Ilivakag 6.6), sivar eavepd O6TL TO
Hovtédo pe 16 Sppayuato EmQEPEL JUKPEG OLPOPOTOMGELS KOl KUPIOG Yol TIC
wWwopopeéc 8, 9 kot 10 mov elvar 0pPKETA KOVTE GTO TPOTEWOUEVO HLOVIEAO YWOPIg
owotpéProon. Ocov agopd TIg LVTOAOUTEC 1O100VYVOTNTEG Ol TIMEC &lvarl YEVIKA
TOPOLOTES.

) . cubic
A/A FlEgﬁglﬁd lfglgfg’;ld NURBS (Ch. 4-

' ' NO dist.)
1 0.0488 0.0541 0.0412
2 0.1408 0.1457 0.1203
3 0.1905 0.2208 0.2501
4 0.3002 0.3885 0.3200
5 0.4643 0.5033 0.4452
6 0.5309 0.6481 0.6465
7 0.6299 0.8718 0.7046
8 0.6797 1.0252 0.9412
9 0.7125 1.1320 1.1889
10 0.7361 1.4439 1.3252

[Tivaxag 6.6. IdtocvuyvotTeg Yo HOVIELO KOUTOANG dokoV pe KiPmToedr] dtotoun
Ttpomeloe1d00g GYNLATOG.

Tehdg, peietdtor kopmOAn OokOg eite g mpOPorog eite ™G apeimaktn pe
Kifotocdr, dwroun (E=3.25E7 kN/mZ, G=1.39E7 kN/mz, R=100m,

v=0.1667, t/d=0.1, d/L=0.06%) ko pe pnkog 10&o0v 33 m. Ackeitor EKKEVIPO
KOToKOPLPO @optio P, =3000 AN . ZOHQ®VO LE TOVG KAVOVIGHOUG Xpetalovtal eite 5

(AASHTO) eite 6 (HEPCJ) dwoppdypata yio tov meplopiopd e oaoTpéPrmongs. Zto
Zyuoto 6.2 ko 6.3 divovtor ot amokAIGE oTo KIVIUATIKE HeyEtn Kot Tig HEYIOTES
téoelg (ophn Ko SoTUNTIKN) TOL TPOTEWVOUEVOL HOVTEAOL HE O18POopa SoPPAyLoTa
am6d to FEMsolid povtého yopig dwppdypata. Ocov agopd oto poviéro mpofodrov
glval apykd @avepd OTL OL AMOKMGELS Y10 TIG UEYIOTEG TACELS O peTafdAlovTon Yo
napondve ond 4 depdaypota. [HapdAinia 6cov apopd oto Kvnuotued peyéom,
mapatnpeital po amdToun avénon e andkAong oty nepintmon Tov 1 dppdyrotog
KOl OTY] GUVEYEWD YEVIKA KPOTEPES METOPOAEG. ZyeTikKd pe TNV omdKAon Tng
OTPENTIKNG YOViog, var pev avédvetal aAdd To pnéyeboc avtd kabeantd g yoviag stvot
HIKpO o€ oxéon pe o GAAO KIvNUOTIKG PLeYEON. XtV TPoKeEVN TepinTtwon eaivetal
0Tl 01 Kovoviopol mpoPAémovy évav aplBud SEPAYHATOV TOV TPOG TN HEPLE TNG
acpdrelag pmopel va BempnBel avaykaiog kot dev odnyel o avilotkovopkyn Avon.
Ocov a@opd Op®C 610 HOVTEAD TNG OUEITOKTNG O00K0D, Ol HEYIOTEG TOAOELG
petafaiiovtal ehdylota pe v avénon TV dwepaypdtov, €0Ke petd to 3
oppaypata. Ot HETAKIVIGELS 0LEAVOVTOL GLVEYMG HE TNV OOENCT TOV SL0PPOYUATOV
AOY® NG drapopomoinomg oTig otnpigels aAAd to peyefog Tovg ivor ToAD pikpdTEPO GE
oyéon He TV mponyovuevn mepintwon otpiénc. Edd oeaivetar ot kavovicpoi va
001 YOUV GE OVTIOIKOVOLLKT] AVGT) 3E00UEVOL OTL O TIG TEMKEG GUYKPICELS TOV TACEWDY
1-2 dwppdypata apkodv yio va teplopicovv T doTpéPrmaon. Avtd cupPaivet yiati ot
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KOvOVIoHO1 0V AapBdvouy voy Tig GLVONKES NG d0KOL Kat avtiuetonilovy Tpdforo
KoL QUOImaKTn e ToV 1010 TpoTo.

Box-shaped cantilever beam with eccentric tip load

-displacements are measured at the free edge
-slresses are measured at the support

st

anige of

angle of rotation

vertical dipslacement max normal stress
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Kepaiaro 7: Xopnepdoporta
Téhog oto 7° kepdlaio cuvoyilovial To. GLUTEPAGLOTA TOV TPOEKLYAV OO TNV
TOPOVCO, EPELVNTIKY] GULUPOAN Kot Tapovcstdlovial KOTeELOOVGES Yoo UEAAOVTIKY

épevval.

Yvykekpyéva, Aopupdvoviog vroym 0Tt ot PocIKEG KOUVOTOMES TNG TOPOVGOG
dwrpff|g ovvioctavtor otV EVOOUAT®OON TV  epyoieimv g looysmpetpikng
avéivone- IGA (B-splines kot NURBS) 1660 otnv AEM 660 kot otnv avaivon evog
véou otoyeiov kapmuing dokov FEM mov Aappdvel vdyn t yevikevpuévn otpéfrmon
Kol SlooTpEPA®O, uropovv vo eEayxfohv GUVOTTIKE TO TOPOKAT® CLUTEPAGLLATOL:

l.

H yprion twv B-splines kot NURBS enttvyydver axpin anotedécpata pe
HIKPOTEPO VTOAOYIOTIKO KOGTOC TOGO GTO GTOTIKO OGO Kol GTO dVVOUIKO
TPOPANHa gvBOYpapuNg 1 KAUTOANG d0KOV Ywpig avdykn yio Wdlaitepn
ueténerta enelepyacio tov anotelecpudtov. [TapdAinia, Pektidvovtol ot
pvOpol oOyKAlong mov €xel Wwitepn onuacioc TNV TEPINTOON 7OV M
Bewpia tng dok0V yeviKebETOL Kot EvTAGGovToL ToAAOL Babpol elevBepiag.
210, TPOPANUATO TOV HEAETOVTIOL GTNV TTAPoHGO JaTpIPn SomoTOVETAL
6tt B-splines  NURBS 3° Bafpod pmopodv va ddcovv moAd axpiPn
amoteAéopato pe M kor yopis emmAéov onueia tagifecioc. Qotodc0,
enedn o PabUoOC TOV KAPUTOA®V OVTAOV Kot KoTd GuvERELn 1 okpifeta TG
nuefddov pmopel va emmpedlovior amd cvykekpluéves otabepéc g
SlOTOUNG G€ KATOEG TEPITTAGELG GLVicTATOL 1] AVEN oM ToL PadLoD.

H CNT amotuyydvet va mpoPAéyetl pe v embount akpifela t1g T00e1g
Kot TS poméG AOY® mpmToyeEVOLg 6TpéPAmong. Ta amoteléouata mov divel
glvar mopopowa pe avtd g OBswpiag Vlasov. IMapduolo cvunepdopota
woyvovy v 1 Bewpio Saint Venant o oyéon pe ) otpéyn kot ) Bewpia
Euler-Bernoulli og oyéon pe v kapym.

To Timoshenko ctotyeio doko¥ (mov Kvpimg ypnoponosital 6 EUTOPLKE
npoyphupota) Oev  mpoPAémer pe  okpifeld  TWEG  1O10GLYVOTITOV
AEMTOTOLYOV  OVOYTOV 1] KAEWGTAOV OITOU®V  oKOUd Kot OmAd
ocoppeTpikav. IapdAinia, oty mepimtwon KIP®TOEWO®V OlTOUDOV Ol
TOGELG VTTOEKTILMVTOL.

H avénon g kapmvrdmrog cvvterel oty avénom tov peyébovg tmv
QovoléveV oTpEPAOong Kot O100TPEPA®ONG Kol KOTd GULVETEWD €MOPE
KOl 6TO OTOTIKO KOl TO dSLVOUIKO TPOPAN LA,

Ta eawvdpeva oTpEPAOONG OTIG OVOIKTEG OLUTOUES Kol OOGTPEPADONG
OTIG KAEIOTEG 00N YOLV TN HEIMOT TOV 1310GLYVOTITOV KOl 1010{TEPO TV
AVAOTEP®V GTNV TPAOT TEPITTOGN.

Ot TOpOUETPIKEG OVOAVCELS OE KOUTOAES OOKOVG EKTEAOVLVTIOL LE
HEYOADTEPN €VKOMO AOY® TG YpNong epyoieiov mov oamewkovifovv
anevBeiog ) yeouetpio.

Ot kavoviopol yioo v wpdPreyn ¢ HEYIOTNG OnOGTAONG EVOLAUEC®DV
olppaypdtov umopel vo  odnynoovv eite o€ emoQOAElG €ite of
OVTIOIKOVOLIKEG AVOELS YiaTi 0 AapPavouv voyn OAES TIC TOPAUETPOVS
TOL TPOPANUOTOC.
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Chapter 1

Introduction

1.1 Motivation of doctoral thesis

Warping and distortion in curved structural members

It is well known, that in case of a beam under torsional loading where the
longitudinal displacements that create warping are restrained due to boundary
conditions (e.g. restrained warping due to frontal diaphragm or forked support), the
arising torsional moment is nonuniform and normal stresses arise. These are
proportional to warping and therefore vary along the length of the beam under
consideration. In this case the arising problem is that of the “nonuniform torsion”. This
problem has been extensively examined in the literature. In an analogy with
Timoshenko beam theory, when shear deformation is of importance, the so-called
Secondary Torsional Shear Deformation Effect (STSDE) has to be taken into account
as well. Moreover, the additional secondary torsional warping due to STSDE can cause
similar effects with shear lag in flexure, i.e. a modification of the initial normal stress
distribution. Thus, the influence of shear lag phenomenon due to both flexure and
torsion, which is not constant along the beam length, should also be considered.

In the majority of works made in recent years, the effects of nonuniform shear
warping distribution or, in other words, shear lag phenomenon in flexure, have not been
extensively considered in the dynamic problems of beams by the inclusion of the
corresponding inertia effects. The same case holds for the problem of torsion. Even
though nonuniform torsion has been examined in the literature, the STSDE and the
corresponding inertia effects, in analogy to the shear lag in flexure, has not yet been
investigated in torsional vibration analysis of beams. Thus, the analyses of beam
models with warping effects in the dynamic problem could be used in a broad range of
structural applications, such as automobile, aircraft frames, decks of bridges (under
traffic and earthquake loading), high-rise buildings (under blast and wind loading), as
well as optics, electromagnetics and acoustics, where high frequencies are more
important.

Comparing to straight beam formulations, the behavior exhibited by curved
beams is far more complex regarding twist deformations. It is well known, that in case
of a horizontally curved beam under transverse loading not only vertical displacement
but twist deformation with respect to its longitudinal axis arises as well and this cannot
be captured by traditional Euler-Bernoulli or Timoshenko beam elements. Even though
the formulation remains simple, it fails to capture higher order phenomena such as
“shear lag”, which are associated with a significant modification of normal stress
distribution due to nonuniform shear warping. Similar considerations with the ones
made for flexure could be also adopted for the torsional problem, which is also should
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be encountered in the analysis of curved-in-plan beams. Regarding curved beam
formulations, a series of straight-line segments is generally used in practice in order to
approximate the curved geometry. This approximation causes an additional problem
that is the transmission of warping, which in general is not taken into account in the
analysis of complex structures. For example, an analysis of the cross section of a bridge
should be performed in the transverse direction in order to account for warping. Thin-
walled straight or curved structures having open or closed cross-section, which are
widely used in bridge engineering due to their large bending and torsional rigidities as
well as their low self-weight, suffer from these effects. Hence a realistic estimation of
stress state employing conventional beam elements becomes difficult, since generally
commercial programs consider six degrees of freedom (DOFs) at each node of a
member of a spatial frame, ignoring in this way all the warping effects due to
corresponding warping restraint. Therefore, it can be concluded that in order to
accurately estimate and assess the actual stress state of a spatial framed structure more
rigorous analyses need to be performed. The early curved beam models that have been
formulated are either restricted to the analysis of only the beam behavior in the plane of
curvature or do not take into account secondary shear deformation effect caused by
nonuniform warping, while other efforts consider only doubly symmetric cross
sections. In general, even in recent or past years, although the planar problem has been
extensively studied, comparatively little work has been done concerning the general
three dimensional, non-planar, or coupled lateral-torsional responses of curved beams.

When compared to the effort involved in static analysis, there has not been much
effort put into the dynamic analysis of curved box girder bridges. The geometric
complexities and the spatial coupling effect between bending and torsion make the
analysis of curved bridges difficult. Bridge design codes usually provide guidance for
the dynamic analysis of straight bridges (dynamic amplification factor, natural
frequencies, modelling of vehicles, placement of diaphragms etc.). These design
recommendations have been used by some designers for curved bridges, even though
some researches carried out revealed that need to be reviewed. When bridges are
curved, different kinds of loads can cause lateral bending and torsional modes of
vibration in addition to the common longitudinal or flexural modes of vibration and so
there are still many possible as well as crucial problems to be investigated regarding the
dynamic response, for example, forced vibration due to moving loads and earthquake,
vehicle-bridge coupling vibration, and wind-induced vibration.

In-plane deformations, such as distortion, occurring when thin-walled sections
undergo bending and torsional deformations can considerably weaken the flexural and
torsional stiffness of thin-walled beams. Regarding horizontally curved beams
subjected to vertical or radial loads, they inherently exhibit a more complex behavior
comparing to straight formulations due to the fact that the effects of primary and
secondary torsion are always coupled to those of bending and cross section distortion
either for centered or eccentric loads. Even though distortion is larger in magnitude
near the beam’s ends, it does not remain local (exponentially decays away from the
support) and thus it should be considered over the entire domain of the beam to account
for its stiffness-weakening effect. In practice distortion is prevented through the
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placement of diaphragms in the cross section plane. Regarding the distortional analysis
related to the intermediate diaphragms, which is more important for box girders, the
number of studies is quite limited. The study related to the distortional analysis of box
girders was initiated by Dabrowski (1968) who first formulated the distortional
phenomenon of box members with a symmetric cross section. Later and more recently,
other research efforts were undertaken regarding the distortional analysis of the
structures to give design guidelines on the intermediate diaphragms. However, in most
of these studies, the placement of diaphragms was not related whether to dynamic
property analysis or dynamic response analysis. In addition to these, elastic constraints
cannot be accommodated and due to other assumptions made these proposals lack of
generality. Finally, guide specifications for horizontally curved highway bridges do not
take into account the boundary conditions and the cross section directly for the
specification of the maximum spacing of the intermediate diaphragms through their
approximating formulae.

Importance of beam models

In engineering practice the analysis of beam structural members, which have a
longitudinal dimension significantly larger than the cross sectional ones, is frequently
encountered. However, refined models either straight or curved with shell or solid
elements are widely used in structures, such as for example the deck of a bridge with a
thin-walled cross section, for stress or strain analysis. The analysis of such members
employing the so-called “Higher-Order Beam Theories” is of increased interest due to
their important advantages over more elaborate approaches based on shell or solid
finite elements, which are mainly incorporated in commercial software. More
specifically

* A Beam formulation reduces significantly modeling effort (solid models require
cumbersome post- and pre-processing even in relatively simple cases). The design of
box-shaped thin-walled cross sections, the placement of supports, diaphragms and
loads, the additional calculations needed in order to derive cross sections’ rotations and
further manipulations to extract stress values at specific points of solid elements can be
very time consuming.

* It permits isolation of structural phenomena and results interpretation contrary
to the reduced oversight of the 3-D Finite Element (FEM) models (quantities such as
rotation, warping parameter, distortional effects, stress resultants etc. are also evaluated
in contrast to solid model which yields only translations and stress components).

* It allows straightforward model handling (support modeling and external
loading are easily applied).

 Midline of shell and plate models becomes difficult to be designed for different
thicknesses of the same cross section, while midline models exhibit difficulty in
capturing warping accurately.

» The investigation of various shell/plate or solid models in order to conduct
convergence studies and control membrane and shear locking phenomena becomes
time-consuming and multiple models need to be created.
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* It avoids difficulties in discretizing a complex structure, while the resulting
increased number of DOFs of the 3-D models leads to severe or unrealistic
computational time.

* It avoids difficulties in discretizing a structure including thin-walled members
(shear-, membrane-locking phenomena).

« It facilitates parametric analyses (solid modeling often requires construction of
multiple models).

* It does not require shape functions for the kinematical components; hence the
minimum number of elements can be employed, while the accuracy of function
derivatives is not compromised.

* Beam models allow the use of different numerical tools (i.e. Isogeometric
analysis- IGA, boundary element methods- BEM etc.) for the 2-D cross sectional and
the 1-D longitudinal analysis which could be more effective in one case or the other
and, thus, leading to an optimum approximating computational procedure.

Evolution of beam theories and state of the art

Over the past decades, classical beam theories based on specific assumptions fail
to describe accurately the structural behavior of beam elements, especially in more
complex formulations such as in curved geometries. Among these theories, that of
Saint-Venant (SV) still plays a crucial role due to the fact that the analysis reduces to
the evaluation of warping and distortional functions over the cross sectional domain.
However, this solution is exact for the uniform warping of a beam (warping/distortional
deformations are not restrained). Towards improving SV theory, several researchers
investigated the so-called SV’s principle (stated by Love, 1944) as well as the SV’s
end-effects in order to derive a more general formulation of beams’ kinematics. In most
of these studies, the solution is obtained as the sum of the SV’S solution and the
residual displacements corresponding to the end-effects. Vlasov (1961) presented the
Thin Tube Theory (TTT) and treated different cross section types as special cases of
this general theory. Dabrowski (1968) elaborated Vlasov’s theory and introduced
distortional behavior of box girders with a symmetric cross section. His model
introduces the distortion angle as the single degree of freedom which measures the
magnitude of the cross-sectional distortion. Schardt (1989, 1994) developed an
advanced formulation known as Generalized Beam Theory (GBT) which is a
generalization of the classical Vlasov beam theory in order to incorporate flexural and
torsional distortional effects. A distinguishing feature of GBT stems from the general
character of its cross sectional analysis which enables the determination of cross-
section deformation modes as well as their categorization to global, distortional or local
ones. Further developments of GBT avoid some of its cumbersome procedures through
eigenvalue cross sectional analysis. These approaches are employed nowadays by
several researchers. Towards solving the problem for arbitrarily shaped homogeneous
or composite cross sections, El Fatmi and Ghazouani (2011) presented a higher order
composite beam theory (denoted HOCBT) that starts from the exact expression of SV’s
solution and introduces in- and out-of-plane independent warping parameters for
symmetric orthotropic cross sections with the ability to extended it for arbitrary ones.
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However, in-plane warpings are only due to the flexural and axial deformation modes
and, thus, it could be stated that this research effort studies Poisson ratio effects rather
than distortional effects. Ferradi and Cespedes (2014) presented the formulation of a
3D beam element solving an eigenvalue problem for the distortional behavior of the
cross section (in-plane problem) and computing warping functions separately by using
an iterative equilibrium scheme. However, to the authors’ knowledge, there are no
research efforts that introduce a unified distortional and warping eigenvalue analysis of
arbitrarily shaped cross sections to the analysis of curved beams.

Introduction to Isogeometric Analysis

During the last decades the significant development of both software and
hardware has made possible various novel approaches to architectural form and design.
Rapid advances in CAD (Computer-Aided Design) technology have enabled architects
and engineers to overcome traditional design limits and transform any imaginable
shape into a persuasive building. The major stages of this new design trend (Free Form
Design — FFD) involve parametric modeling, interactive structural analysis and shape
optimization, which can be performed through a variety of computational tools
available to the design teams.

When it comes to engineering projects consisting of conventional structural
elements such as columns, beams and slabs, the behavior of which is easily understood
and assessed, the engineer is capable of giving direct feedback to the architect by using
well established methods and rules. However, these traditional practices cannot be
always applied on complex geometrical configurations. It is often difficult to
understand and interpret in advance the structural behavior of such three dimensional
layouts. Consequently, this difficulty gives rise to an iterative and time consuming
process of geometric design, modeling and simulation, analysis and checking, which
often limits the efficiency of structural design and does not necessarily lead to reliable
results. This raised the need for better interoperability between software packages used
by architectural and structural teams, as well as improved reliability of structural
analysis and design tools. Recent attempts towards exploiting the potential of
parametric design in combination with finite element analysis (FEA) software led to the
development of tools for free-form geometric design based on mechanical principles
(“physically-based modelling”), where material and mechanical properties are ascribed
to surfaces so that the geometry may be freely deformed by the designer to the desired
configuration. This mechanical approach to geometrical modelling leads to acceleration
of the process and to the possibility of performing more iterations of a structural
solution in order to yield the optimum result.

The connection of the geometric model to the structural one through conventional
Finite Element representations sets restrictions on the level of interaction between the
stages of structural analysis and design, on the computational time and in some cases
on the accuracy of the results. These deficiencies were initially reported during the
analysis and design of various mechanical, naval and aeronautical applications, where
the creation of an appropriate “simulation-specific” geometry is important, and set the
base of a new perspective which requires focusing on a single geometric model, which



68 Chapter 1

can be utilized directly as an analysis model. Consequently, a change from classical
FEA to an analysis procedure based on CAD representations is required. This concept
is referred to as Isogeometric Analysis and it was introduced by Hughes et al. (2009).
According to this novel approach, the structure is discretized exploiting its intrinsic
computer-aided geometric definition. Thus, a more interactive approach between
geometry and analysis is possible and more accurate results are obtained by
diminishing the geometry approximation error.

Nevertheless, even though Isogeometric analysis has been successfully applied in
shell problems and could provide solutions to structural engineering problems arising
from the use of free-form shell surfaces, limited work seems to exist concerning
Isogeometric analysis of three dimensional curvilinear beams. The majority of
contemporary free-form projects, apart from complex surfaces, comprise curvilinear
grids or stiffener nets. These beam members are an important ingredient for the
structural integrity of such constructions. Finite beam elements are an effective and
convenient means of analysis of such structures, combining ease of application and
interpretation of results with low computational cost. Moreover, up-to-date regulations
are based on quantities such as stress resultants, which are readily determined only
through beam elements. However, in most cases of FFD process, it is difficult to
incorporate the inherent curvature of the beams into the structural model (since usually
straight beam FE are used) and cumbersome procedures need to be applied in order to
refine the element mesh and capture satisfactorily the curved geometry with straight
elements. These procedures inhibit an interactive structural analysis to be performed in
an automated manner. Hence, it can be concluded that beam elements should be
combined with Isogeometric analysis in order to serve as a useful tool in modern
analysis projects.

1.2 Objectives and novelties of doctoral thesis

Having established the motivation and the state of the art behind the subject of
the present doctoral thesis, the prime objective can be founded, which is to formulate
curved beam models enhanced with the capability to take into account shear
deformation, generalized warping (shear lag effect) as well as cross sectional distortion.
By employing these models it is intended to highlight all the above structural
phenomena and their importance in beams’ analysis. Another major objective is to
incorporate the Isogeometric Analysis in the numerical methods traditionally employed
in order to increase the level of accuracy with less computational effort. For this
purpose, the main idea of the Isogeometric approach has been applied. This consists of
describing the geometry of the problem by B-splines or Non-Uniform Rational B-
splines (NURBS) interpolation exactly and using the same interpolating basis to
represent the kinematical components of the proposed curved beam model.

The accuracy and reliability of the obtained results have been verified through
comparisons with results obtained by the implementation of the Finite Element Method
(FEM) employing beam, solid (quadrilateral or triangular) or plate elements in
commercial software package, as well as with available analytical solutions and
experimental data. In addition to these, design guidelines for specifying the maximum
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spacing of intermediate diaphragms have been applied to the aforementioned solid
models and compared to the proposed one.

In the present doctoral thesis the Boundary Element Method (BEM) is employed
for the solution of two-dimensional problems on the cross sectional domain, while the
Analog Equation Method (AEM), which is considered an advancement to classical
BEM, and Finite Element Method (FEM) are employed for the solution of one-
dimensional problems along the beam length. Isogeometric tools have been integrated
in both of the previous numerical approached and their advantages have been
highlighted.

The research work presented herein is considered original and its essential
features and novel aspects are summarized as follows:

i. The proposed formulation is capable of the complete analysis of spatial curved
beams of arbitrary closed or open cross section with one plane of constant
curvature (either small or great) considering flexural-torsional shear lag effects
and transverse loading to the plane of curvature (as is usually the case in
practice). The necessity to include nonuniform warping and STSD effects in the
dynamic analysis of curved bridge decks is demonstrated.

1. The developed beam formulation is capable of the static and dynamic analysis of
spatial straight or curved beams of arbitrary closed or open and thin- or thick-
cross section considering distortional effects and Poisson ratio. The necessity to
include them in the analysis of beams is demonstrated.

iii.  The straight or curved beam is subjected to arbitrary external loading including
warping and distortional moments and is supported by the most general boundary
conditions including elastic support or restraint.

iv. The numerical solution of advanced beam theories and its application to the
analysis of straight or horizontally curved beams is based on B-splines and
NURBS (Isogeometric Analysis) offering the advantage of integrated computer
aided design (CAD) in the analysis.

v. The cross sectional analysis is based on an iterative equilibrium scheme which
results in a numerical procedure with less computational effort and complexity
comparing to traditional eigenvalue analysis reported in the literature for similar
problems. Particularly, modes attributed to different structural phenomena can be
separated directly and make the supervision of the results easier. In addition to
this, the data post-processing and the iterative procedure become faster due to the
fact that warping and distortional functions are calculated separately.

vi. The accuracy level of the numerical method proposed can be decided by the user
by setting the desirable number of the modes taken into account and, thus,
increasing the number of higher modes added in the final solution.

vii. The developed beam formulation reduces significantly modelling effort due to
the fact that there is no need for pre-processing in order to define geometry,
which is an important issue even in simple curved beams. Moreover, it allows
straightforward model handling (boundary conditions, external loading are easily
modelled) compared with three-dimensional solid curved beam models.
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viii. The use of NURBS in AEM results in drastically improved accuracy in spectral
calculations over the original AEM, as it is the case also with traditional FEM,
while AEM gives highly accurate results either original or combined with IGA
tools comparing to corresponding FEM formulations.

ix. The assessment of the design guidelines which specify the maximum spacing of
intermediate diaphragms through comparisons of the proposed curved model to
the corresponding solid or plate ones and some parametric studies is a first step
towards suggesting further provisions and limitations on the application of these
regulations.

1.3 Outline of doctoral thesis

The present doctoral thesis is organized in seven chapters and two appendices.
Each one of the chapters 2 to 6 consists of an introduction containing the necessary
literature review of the corresponding problem, the statement of the problem, the
numerical solution, a number of representative numerical examples and finally some
concluding remarks. In the final chapter, the main conclusions drawn within the present
doctoral thesis are summarized, while suggestions and goals for future research are
proposed. The appendices include additional information necessary to understand the
basic characteristics and some technical aspects of the numerical techniques employed
in the present doctoral thesis.

In Chapter 2, the Analog Equation Method (AEM), a boundary element based
method, is employed for the nonuniform torsional problem of bars of arbitrary constant
cross section, considering a quadratic B-spline approximation for the fictitious loads of
a substitute problem. The fictitious loads are established using a BEM-based technique
and the solution of the original problem is obtained from the integral representation of
the solution of the substitute problem. The bar is subjected to arbitrarily distributed
twisting moments along its length, while its edges are subjected to the most general
torsional (twisting and warping) boundary conditions. The problem is numerically
solved introducing a quadratic B-spline function for the fictitious load in the integral
representations of the aforementioned technique. Numerical results are worked out to
illustrate the method, designate its efficiency, accuracy and computational cost, as well
as verify its integrity comparing with the results of analytical solutions. In addition to
this, refinement procedures have been employed in some of the numerical examples in
order to investigate their efficiency in increasing accuracy. Knot insertion, which is one
of these, is proved to be very beneficial in refining the B-spline curve and increasing
the accuracy.

In Chapter 3, the Analog Equation Method (AEM), a boundary element based
method, is employed for the analysis of a homogenous beam element of arbitrary cross
section (thin- or thick- walled) taking into account nonuniform warping and shear
deformation effects (shear lag due to both flexure and torsion), considering B-splines
for the approximation of the fictitious loads. The Isogeometric tools, either integrated
in FEM or AEM, are employed for the vibration analysis of this element, too. The
beam is subjected to the combined action of arbitrarily distributed or concentrated axial
and transverse loading, as well as to bending, twisting and warping moments. Its edges
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are subjected to the most general boundary conditions, including also elastic support.
Nonuniform warping distributions are taken into account by employing four
independent warping parameters multiplying a shear warping function in each direction
and two torsional warping functions, which are obtained by solving corresponding
boundary value problems, formulated exploiting the longitudinal local equilibrium
equation. By employing a distributed mass model system accounting for longitudinal,
transverse, rotatory, torsional and warping inertia, ten boundary value problems with
respect to the variable along the beam time-dependent one dimensional kinematical
components are formulated. The numerical solution or the spectrum analysis of the
aforementioned problems is performed through IGA, FEM and AEM, leading to a
system of second-order differential equations, which are quasi-static and solved for the
static and free vibration case, formulating a generalized eigenvalue problem.

In Chapter 4, the static and dynamic generalized warping problem of horizontally
curved beams of arbitrary cross section, loading and boundary conditions is presented.
The proposed beam element possesses ten degrees of freedom (DOFs) per node in
order to account for out-of-plane nonuniform warping due to both flexure and torsion
(shear lag due to both flexure and torsion). This element can be employed in the
analysis of curved bridge decks of open or closed (box-shaped) cross section. Great
curvature can be considered in order to formulate the expressions of normal and shear
strains. Thus, the sectorial properties related to the thickness-curvature effect, which
need to be considered in cases of large subtended angle and small radius, are included
in this study. The numerical solution of the problem is obtained by Isogeometric tools,
either integrated in FEM or AEM. When pure AEM is considered, constant or
quadratic elements are employed in order to represent the fictitious loading. The curved
structure (e.g. bridge deck) is subjected to the combined action of arbitrarily distributed
or concentrated axial and transverse loading, as well as to bending, twisting and
warping moments. Its edges are subjected to the most general loading and boundary
conditions, including also elastic support, as in the previous chapter. Finally, by
employing a distributed mass model system, ten boundary value problems are
formulated similarly to the previous chapter. Free vibration characteristics and
responses of the stress resultants and displacements to static and moving loading have
been studied. The warping functions and the geometric constants including the
additional ones due to warping are evaluated employing a pure BEM approach. The
results obtained from the beam element are compared to those obtained from finite 3D
solutions and other research efforts. Numerical examples are presented to illustrate the
efficiency and the accuracy of this formulation.

In Chapter 5, the static and vibration analysis of straight or horizontally curved
beams of arbitrary cross section, loading and boundary conditions including
generalized cross sectional warping and distortional effects due to both flexure and
torsion is presented. The aim of this Chapter is to propose a new formulation by
enriching the beam’s kinematics both with out-of- and in-plane deformation modes
and, thus, take into account both cross section’s warping and distortion in the final 1D
analysis of curved members, towards developing GBT further for curved geometries
while employing independent warping parameters, which are commonly used in Higher
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Order Beam Theories (HOBT). A coupled two-dimensional boundary value problem is
formulated, with or without considering Poisson ratio for the 2D cross section’s domain
together with the corresponding boundary conditions. Applying a proper discretization
scheme for the cross section, the above mentioned problem will lead to the formulation
of an eigenvalue problem which the eigenvalues and the corresponding eigenvectors,
for a desired number of modes, can be extracted from. The obtained set of modes
contains axial, flexural and torsional modes in order of significance without distinction
between them. To avoid the additional effort needed in order to recognize the most
significant modes, an iterative local equilibrium scheme is adopted until the error due
to residual terms becomes minimal. Together with the warping functions calculated
first, the corresponding distortional ones are also obtained and recursively modify the
warping functions due to their coupling. With all these additional modes, the beams’
kinematics is enriched and capable of describing accurately the displacement and stress
distribution in the beam. The functions derived are evaluated employing two
dimensional BEM. A set of boundary value problems are formulated with respect to the
unknown kinematical components (displacements, rotations and independent
parameters), the number of which is defined by the user depending on the accuracy of
the results. This linear system is solved using Isogeometric tools, either integrated in in
FEM or AEM. The results obtained from the beam element are compared to those
obtained from finite 3D solutions and other research efforts. Numerical examples are
presented to illustrate the efficiency and the accuracy of this formulation as well as to
provide rules of thumb regarding the consideration of distortion and the number of
modes needed.

In Chapter 6, the beam formulations presented in Chapters 4 and 5 are employed
together with design guidelines which specify the maximum spacing of intermediate
diaphragms in order to prevent from excessive distortional effects in cross section’s
plane. These provisions are combined to FEM solid or plate/shell models and through
the comparisons of the results, the solutions provided by the guidelines are assessed
with respect to strength of the models against distortion. For this purpose, various box-
shaped cross sections and diaphragmatic arrangements have been examined for both
the static and dynamic case.

In Chapter 7, the main conclusions drawn in this doctoral thesis are summarized
and the key features and novelties of the developed formulations are highlighted.
Moreover, directions for further research are suggested.

The present doctoral thesis contains also two appendices. In Appendix A.1, the
main concept of the Analog Equation Method is presented regarding the solution
ordinary differential equations of 2" and 4™ order. Finally, in Appendix A.2, the
structure of B-splines and NURBS is described together with the procedure followed in
order to integrate them in FEM and AEM numerical approximations.

In closing, it is worth here mentioning that the outcome of the conducted research
activity presented in this doctoral thesis has been published in international journals
and international conferences. These publications are cited at each corresponding
chapter.
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Chapter 2

Quadratic B-splines for the
Nonuniform Torsional Problem of Bars

2.1 Introduction

It is well known, that in case of a beam under torsional loading where the
longitudinal displacements that create warping are restrained due to boundary
conditions (e.g. restrained warping due to frontal diaphragm or forked support), the
arising torsional moment is nonuniform and normal stresses arise. These are
proportional to warping and therefore vary along the length of the bar. In this case the
arising problem is that of the nonuniform torsion and it has been solved by various
numerical methods (Eisenberger, 1995; Sapountzakis, 2000; Mokos, 2007). Apart from
research efforts in which bars are idealized with computationally demanding three
dimensional or shell elements, several researchers proposed specialized beam elements
to analyze bars under nonuniform torsion. Due to the mathematical complexity of the
problem, the existing analytical solutions are limited to symmetric cross-sections of
simple geometry, loading and boundary conditions (Friemann, 1993; Ramm and
Hofmann, 1995). Moreover, the finite element method (Gruttmann et al., 1998), the
differential quadrature element method (Chen, 1998) and a modified Fourier series
method (Kim and Su, 1997) have also been used for the analysis of the nonuniform
torsional problem, in the case the geometry of the cross section, its boundary conditions
or its loading are not simple.

In general, Boundary Element Methods (BEM) (Katsikadelis, 2002a) have been
only sparsely used for problems of torsion and warping. These implement integral
equations and are the most contemporary numerical methods for solving boundary
value problems. A BEM approach uses in-line elements for discretization, instead of
area elements used in Finite Element Methods or Finite Different Methods leading to a
small number of elements required to achieve high accuracy. Remodeling to reflect
design changes becomes simpler. However, BEM, such as other numerical methods, is
not free of drawbacks. Particularly, application of BEM requires the so-called
fundamental solution. A promising technique that overcomes these drawbacks is the
Analog Equation Method, developed by Katsikadelis (2002b, 1994).

AEM constitutes a numerical method for solving linear and nonlinear boundary
value problems (elliptical, parabolic and hyperbolic) with linear or nonlinear boundary
conditions. This method is based on BEM while improves it and eliminates its
drawbacks. According to AEM, the real problem, which is described by a differential
operator not reversed in practice, is transformed to an equal problem which is described
by a linear differential operator of the same order with known fundamental solution and
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integral representation. In the substitute problem, the geometry of the space under
consideration and boundary conditions are preserved, while the non-homogenous terms
of the linear operator stand for fictitious loads. Fictitious loads are computed through
the numerical implementation of AEM, which leads to a system of linear or nonlinear
algebraic equations.

In this chapter, quadratic B-splines are integrated in the AEM in order to study
their advantages over the traditional AEM and investigate their main features related to
the analysis of bars. B-splines have been only sparsely used in finite element analyses
(FEM) and boundary element methods (BEM). However, lately integrated computer
aided design (CAD) and finite element analyses (FEA) using B-splines gained greater
insight with the introduction of NURBS (Non-Uniform Rational B-splines) by Hughes
et al. (2009). Thus, an introduction of B-splines in a BE-based numerical technique is a
natural starting point for the introduction of Isogeometric Analysis in the numerical
solution of advanced beam theories with BEM either straight (Chapter 3) or curved
(Chapters 4, 5 and 6). AEM is presented in a general form for one-dimensional
boundary value problems described by fourth-order differential equations, such as the
nonuniform torsional problem of a homogeneous isotropic bar, which is reduced to
solving the fourth-order differential equation with respect to the angle of twist of the
cross section. The bar is subjected to an arbitrarily distributed twisting moment while
its edges are restrained by the most general linear torsional boundary conditions. The
essential features and novel aspects of the present formulation of AEM compared with
previous ones are summarized as follows:

1. The method used is based on quadratic B-splines, that is piecewise quadratic
polynomials with C1 continuity (lowest-degree polynomial representing a planar
curve), and a collocation discretization methodology with the points of a uniform
partition being the collocation points. The most important property of B-splines
in general is that both continuity and local controllability can be achieved by their
use. Local controllability in simple words is the ability of B-splines to change
only a portion of a curve when a single point is moved.

ii. The introduction of the quadratic B-spline to replace the approximation of
fictitious loads with constant values and its integration to the expressions of the
AEM technique improves accuracy and reduces nodal points required for
discretization. Unknown values of the problem are reduced, too.

iii. The dimensions of matrices used for the numerical implementation of AEM
become smaller and less algebraic equations are required to compute fictitious
loads.

iv. The employed B-spline is a special class of B-splines called uniform quadratic B-
spline. As the name implies, parametric quadratic polynomials are used on a
uniform knot sequence, which is called the knot vector, composed of successive
integers equally spaced (linear elements of the same length used for
discretization). Three control points have been used to represent the B-spline
which is the minimum number that can be used for a quadratic B-spline (Jiittler,



Quadratic B-Splines for the Nonuniform Torsional Problem of Bars 77

2013; Piegel and Tiller, 1997; Rogers, 2001). The computation of fictitious loads
at collocation points depends now on the calculation of the three control points.

2.2 Statement of the problem
Consider a prismatic bar of length 1 with a cross section of arbitrary shape,
occupying the two dimensional multiply connected region Q of the yz plane bounded

by the K+1 curves I'y,I';,I'5,....I'x as shown in Fig.1.

When the bar is subjected to the arbitrarily distributed twisting moment
m, =m,(x) its angle of twist is governed by the following boundary value problem

(Sapountzakis and Mokos, 2003; Sapountzakis, 2000)

4 2
Ecg4 Hx‘fx) _a1,2 %’C) =m, along the bar (2.1a)
dx dx
deo
q0.(x)+aoM,=az, f o + oM, = 5 atthe bar ends x =0,/ (2.2a,b)
X

(b)

Figure 2.1. Prismatic bar subjected to a twisting moment (a) with a cross section of
arbitrary shape occupying the two dimensional region Q (b).
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where FE, G are the modulus of elasticity and the shear modulus of the isotropic

material of the bar, while Cg, I, are the warping and torsion constants of the bar’s
cross section, respectively. Moreover, d@ (x)/dx denotes the rate of change of the
angle of twist 6 (x) and it can be regarded to the torsional curvature, while M,, M,

are the twisting and warping moments due to the torsional curvature at the boundary of
the bar, respectively.

The boundary conditions (2.2a,b) are the most general linear torsional boundary
conditions for the bar problem, including also the elastic support. It is apparent that all
types of the conventional torsional boundary conditions (clamped, simply supported,
free or guided edge) can be derived from these equations by specifying appropriately

the functions a,

02:a3:ﬂ2:ﬂ3:0).
The solution of the boundary value problem given from eqns. (2.1), (2.2a,b),

and pB; (e.g. for a clamped edge it is a =/ =1,

which represents the nonuniform torsional problem of bars presumes the evaluation of
the warping and torsion constants Cg, [,, respectively, which are given as

(Sapountzakis and Mokos, 2003; Sapountzakis, 2000)

opl  opk
Cs =] pf2a0 I = IQ{ Vit yai;—zaiys}g (2.3a,b)

where (05 (y,z) 1s the primary warping function with respect to the shear center S of

the cross section of the bar, which can be established by solving independently the
Neumann problem

Vol =0 in Q (2.4)
ap§
=Py on I (2.5)

where V? =5%/ 6‘y2 +0%/07% is the Laplace operator; 0/0n denotes the directional

derivative normal to the boundary I' and n,, n, the direction cosines.

y’

2.3 Numerical Solution-Integral Representations
The evaluation of the angle of twist &€,.(x) is accomplished using AEM
(Katsikadelis, 2002b). According to this method, for the function 6,(x), which is four

times continuously differentiable along the bar and three times continuously
differentiable at the bar ends, the following relation is valid
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d*e
9 g 2.6)

dx

where g(x) is the fictitious load.

The fundamental solution of eqn. (2.6), also known as the fundamental solution
of the flexural beam, is a partial solution of the differential equation (A.1.6) given in

the Appendix A.1, where instead of u"(x,&) now ;(x,&) is applied. Employing this

fundamental solution, the integral representation of the angle of twist is obtained as in
eqn. (A.1.8) and by its differentiation, the expressions for the derivatives of 6,(&) can

be derived as in eqns. (A.1.11).

The introduction of a B-spline in the above mentioned expressions can now be
done by substituting g(x) with the polynomial representation of a quadratic B-spline
with a uniform knot vector. According to the Appendix A.2, the i B-spline basis
functions of p-degree and the fictitious load curve for a quadratic B-spline are defined.
For the sake of convenience (simplify this initial approach of fictitious load using a
quadratic B-spline in AEM, make the comparison with the AEM using constant values
of fictitious loads easier and the results more obvious) and without any loss of the
general character of the method, in the following analysis the length of the bar is
considered to be equal to unity.

Now ¢(x), which is given in eqn. (A.2.4), is substituted in eqn. (A.1.14) and the

vector {T'} can be written as follows

(T}= [_[[(;]2]}{& —>{T}=[F|{P} (2.7)

where {P} is the 3X1 vector containing the control points ({P}:[PO B Pz]T ).

Subsequently, applying the integral representations (A.1.8) and (A.1.11) at the
collocation points presented in Fig. A.2.1, the following relations are derived, similarly
to eqns. (A.1.23)

{©}=[Al{P}+[C]{0} (2.8a)
{©'}=[A{P}+[C'{0} (2.8b)
{©"}=[A"{P}+[C"{0} (2.8¢)
{©"}=[A"{P}+[C"{6} (2.8d)

where (0,0',0",0") are the vectors containing the values of the angle of twist and its
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derivatives ( (Gx(x),ﬁ;(x),19;(x),¢9;'(x))) at collocation points with respect to the
control points. The coefficients of the 3X3 square matrices [A],[A'],[A"],[A"] (eqns.

(A.1.24)) are also given with respect to the vector of the control points. Afterwards,
employing eqns. (A.1.25)-(A.1.28), eqn. (2.1a) yields the following linear system of
equations

(E[Cs1[4]1-GILIB" D[R A PZ]TZ{m,}+G[1t]{R"} (2.9)

which gives the values of the control points Fy, P, and P, instead of the values of g(x)
at collocation points as in the original AEM. The diagonal matrix [Aj]contains the
values of basis functions Ny, N;, and N, , given in eqns. (A.2.2) for X=X, X, and

Xi3 shown in Fig. A.2.1. Matrices [A],[A'],[A"],[A™], [F]and [B],[B'],[B"],[B"]as
they have been formed after substitution of B-splines in the relevant integrals are 3X3,
8X3 and 3x3, respectively. The vector of control points substitutes the fictitious load
vector of the original AEM. Matrices [Cg] and [/,]are diagonal with 2X2 dimensions

and their values depend on the cross section geometry and primary warping function.

2.4 Refinement procedures

These procedures have been described in the Appendix A.2. A new set of control points
is derived in eqn. (A.2.7) in order to refine the quadratic B-spline curve of the fictitious
load (see Fig. A.2.3). The knot vector examined previously in order to determine the
AEM technique by using a B-spline fictitious load is now enriched with the addition of
new knots (eqns. (A.2.8)). In order to approximate the curve of fictitious load i.e. in the
interval [0, %4), the basis functions given by the expressions (A.2.9n-A.2.9p) have been
substituted in eqn. (A.2.10) and the following expression is obtained

(&) = (145 By + 65(1— 4P +822P, Lif 0<E< i (2.10)

The same procedure is followed in order to derive the expression of the B-spline curve
for the rest of the intervals with respect to the other control points. It should be noted

that the basis functions ((1—45)2, 65(1-4¢), 852) employed in eqn. (2.10) differ
from those extracted from eqn. (A.2.4) ((1- 5)2, 25(1-6), 52 ). Therefore, the arising

results (and obviously their accuracy compared to the exact solution) are expected to
differ when employing the fictitious load given by eqn. (A.2.4) or by eqn. (2.10).

2.5 Numerical examples

In order to examine the advantages attained by the use of quadratic B-splines as
an approximation of the fictitious loading in the AEM technique (instead of constant
values in the original AEM) in terms of accuracy and computational cost, computer
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programs have been written and representative examples have been studied. The
numerical results have been obtained employing up to 44 nodal points (NP) in the
original AEM (AEM) or 12 collocation points (CP) in the B-spline AEM (AEM-BS)
and up to 400 boundary elements depending on the cross section type (cross sectional
discretization in order to evaluate warping and torsion constants). However it is noted
that in most of the treated examples higher accuracy could be also achieved with
coarser discretization.

2.5.1 Doubly Symmetric I-section
In the first example, a clamped steel ( E =2.1E8kPa, v=0.3) bar of length

L=Im, of a rolled doubly symmetric I-section IPE-200 (It=6,846cm4,
Cq :12746cm6, max¢£ =47,500m2 according to Kraus and Kindmann, 2009),

loaded along its length by a uniformly distributed twisting moment m, =1kNm /m has

been studied (Fig. 2.2). Three cases are examined, namely i) three discretization
elements employing original AEM technique, ii) three collocation points employing
AEM-BS and ii1) the analytical (exact) solution employing Maple programming
(Maplesoft, 2008).

110 mm

59mm gL

A
%%
I

' | 201.6mm

(a)

«~—L=1 m—

(b)
Figure 2.2. Steel IPE cross section (a) of the clamped bar of example 1(b).
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In Table 2.1 the values of the angle of twist and its derivatives at the three
collocation points (Fig. A.2.1) are presented and compared for the three
aforementioned cases, noting that the values of the fourth derivative are the values of
the fictitious load ¢(x). From this table, it is observed that the discrepancies between
the aforementioned two numerical cases and the analytic one are negligible. Moreover,
the computational cost is almost the same for both of the numerical methods and thus,
there is no need of any refinement for increased accuracy or decreased computational

Cost.
AEM (3NP) AEM-BS (3 CP) Analytical | Error % Error %
(1) ) Solution D-3)  2)-3)
A3)
0,(1/4) 5,284E-04 5,225E-04 5,226E-04 1,10 0,022
0,(1/2) 9,350E-04 9,251E-04 9,251E-04 1,05 0,00
0,(1/4) 2,800E-03 2,800E-03 2,800E-03 0,00 0,00
0,(1/2) 0,000 0,000 6,210E-08 0,00 0,00
0,(1/4) -3,800E-03 -3,800E-03 -3,800E-03 | 0,00 0,00
0,(1/2) -1,480E-02 -1,470E-02 -1,470E-02 0,68 0,00
0,(1/4) | -8929E-02  -8770E-02  -8770E-02 | 1,81 0,00
0,(1/2) 0,000 0,000 “1,800E-06 | 0,00 0,00
0, (1/4) | 3,659E-01 3,657E-01 3,657E-01 | 005 0,00
0,(1/2) | 3433E-01  3433E-01  3433E-01 | 000 0,00

Table 2.1. Angle of twist 0, (rad) and its derivatives at various positions for the bar

element of example 1.

2.5.2 Example 2: Monosymmetric T-section

A clamped steel (E=2.1E8kPa, v=0.3) bar of length L=Im, of rolled
symmetric T-section (I, =3,049 x 10°%m*, ¢ ¢ =34,95x% 102m®  according to
Sapountzakis and Dikaros, 2010), loaded along its length by a uniformly distributed
twisting moment m, =1kNm/m has been studied (Fig. 2.3). Four cases are examined,
namely 1) three discretization elements employing original AEM technique, ii) three
collocation points employing AEM-BS, iii) refinement techniques for AEM-BS and iv)
the analytical solution of the fourth order differential equation.

In Fig. 2.4 the angle of twist 6,(x) along the bar length and in Table 2.2 6, .(x)

and its derivatives at the three collocation points (Fig. A.2.1) are presented for the
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(b)
Figure 2.3. Steel IPE cross section (a) of the clamped bar of example 1(b).

aforementioned cases 1), ii) and iv). From this table and figure, it is obvious that the
discrepancies in 6, (x), 0;()6) and 0;(x) between the analytical solution and the

obtained results employing AEM-BS are quite small compared with the ones obtained
employing the original AEM. Moreover, the errors arising from the use of the AEM
with three discretization elements are not acceptable since they reach in general the
order of 40%. However, for higher order derivatives (third and fourth), the results are
inaccurate for both methods. Thus, refinement procedures, described in section 2.4, will
be implemented in order to gain more accurate results.

Refinements of the results are attempted by employing eqn. (A.2.7) in order to
define new control polygons (by adding successively control points) for the B-spline
curve. The new control points are proved to be redundant due to the fact that the
quadratic B-spline curve is explicitly defined by three control points. It would be
beneficial to add control points through an iterative procedure (as in Chaikin, 1974)
when it is aimed to approximate a target B-spline curve, possibly, of a complex shape
and with more segments. In our case there is only one segment of the curve spanning
the whole bar along its length.
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Figure 2.4. Angles of twist 0 (x) of the bar of example 2.

Thus, in our case, control point insertion should be combined with knot insertion
in order to express the same curve using the same degree. This operation of knot
insertion is described in Section 2.4 and the basis functions are specified over the [0, Y4)
interval of the knot vector. In order to express the segment of the B-spline curve over
this interval, three new control points are used. Then, three collocation points are
employed in order to compile the results for three different positions along the first
quarter of the bar’s length. In Table 2.3, the angle of twist 6 (x)and its derivatives are

presented at the three collocation points (L/16, L/8 and 3L/16) in the first quarter of the
bar’s length for the aforementioned cases 1), ii) and iv). From this table, the values
derived employing AEM-BS (employing eqn. (2.10)) are almost the same as those of
the exact solution and the errors are quite small for higher order derivatives. Only the
value of the third derivative at x =3L/16introduces a relatively large error (around
13%) when employing AEM-BS. Thus, more collocation points could be used to
eliminate also this error. Comparing to the values derived by using the original AEM, it
is concluded that some of the results are not accurate and the errors can be large,
especially for the values of higher order derivatives, for this number of discretization
elements. Thus, in Table 2.4 the results obtained when employing 44 discretization
elements-nodes for the AEM, 12 collocation points for the AEM-BS and the exact
solution are compiled.
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AEM (3 NP) AEM-BS (3 CP) Analytical |Error % Error %
(1) ) Solution (D-3)  (2)-(3)
3)
0,(1/4) 3,780E-02 2,900E-02 2,710E-02 | 2830 6,55
0,(1/2) 5,870E-02 4,020E-02 3,970E-02 | 3822 571
0,(1/4) 1,645E-01 1,009E-01 9,940E-02 39,57 1,49
0,(1/2) 0,000 0,000 -2,000E-06 | 0,00 0,00
0,(1/4) -1,881E-01 -3,227E-01 -3,679E-01 | 41,74 12,29
0,(1/2) -4,725E-01 -4,125E-01 -4,053E-01 | 14,22 1,74
0,(1/4) 12,495 1,973 _6,990E-01 | 7198 64,57
0,(1/2) 0,000 0,000 6,410E-08 | 0,00 0,00
0, (1/4) 19,820 27,691 12,806 3539 53,75
0, (1/2) 22,278 2,114 2,628E-01 | 98.82 87,57
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Table 2.2. Angle of twist 0, (rad) and its derivatives at various positions of the bar
element of example 2.

To conclude with, it is noted that errors of the same and in general quite small
magnitude are obtained when employing in the AEM-BS around the one fourth of the
number of nodes used in the original AEM, as collocation points along the length of the
bar. This means that the computational cost when employing AEM-BS is much less
than that of the original AEM in order to achieve the same or higher level of accuracy.

2.5.3 Example 3: Unequal Legged Angle

A clamped steel (E =2.1E8kPa, v=0.3) bar of length L=1Im, of the unequal
legged angle steel cross section (I, = 8,3903x10m* and Cq =1,1937 x1071%,°,
according to Sapountzakis and Dikaros, 2010), loaded along the length by a uniformly
distributed twisting moment m, =1kNm/m has been studied (Fig. 2.5). Four cases are

examined, namely 1) three discretization elements employing original AEM technique,
i1) three collocation points employing AEM-BS, ii1) refinement techniques for AEM-
BS and iv) the analytical solution of the fourth order differential equation.

In Table 2.5 the angle of twist and its derivatives at three collocation points (Fig.
A.2.1) are presented for the aforementioned cases i), ii) and iv). From this table, it is

obvious that the discrepancies in 6 (x), 0;(x) and 0;(x) between the analytical

solution and the obtained results employing AEM-BS are quite small compared with
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AEM-BS AEM Analytical Error %  Error %
(12 CP) (12 NP) Solution (D-3)  (2-3)
(1 (2) 3)

0.(1/16) | 4,300E-03 4,600E-03 4,300E-03 0,00 6,522
0,(1/3) 1,220E-02 1,240E-02 1,220E-02 0,00 1,613
6,(3/16) | 2,020E-02 2,040E-02 2,020E-02 0,00 0,980
6.(1/16) | 1,131E-01 1,197E-01 1,130E-01 0,088 5,514
6.(1/8) 1,318E-01 1,311E-01 1,317E-01 0,076 0,456
0,(3/16) | 1206E-01  1.154E-01 1,204E01 | 0166 4,153
0.(1/16) | 7.879E-01  7.840E-01 7,776E-01 1307 0816
0,(1/8) -2,890E-02 -5,650E-02 -2,930E-02 1,365 48,14
0,(3/16) | -2,908E-01 -2,767E-01 -2,862E-01 1,582 3,320
0.(1/16) | -22.249 -27,881 21,682 2,548 2223
0.(1/8) -6,745 -7,005 6,901 2265 1479
6. (3/16) 12,522 -1,033 -2,196 12,930 52,97
0. (1/16) | 400,623 399,301 397.164 0,863 0,535
6. (1/8) 126,545 117,293 126,407 0,109 7,225
0.(3/16) |  38.665 43,400 40,232 3,895 7,300

Table 2.3. Angle of twist 0, (rad) and its derivatives for the bar element of example 2,

employing knot insertion.

the ones obtained when employing the original AEM. Moreover, the errors arising from
the use of the AEM with three discretization elements are not acceptable since they
reach the order of 45%. However, the results are inaccurate for higher order derivatives
(third and fourth) for both methods. Thus, the refinement procedure of knot insertion,
which is described in section 2.4 and has already been implemented in the previous
example of T-section, will be also here employed in order to achieve more accurate
results (Table 2.6).
As it is obvious in Table 2.6, the values derived when employing AEM-BS are
almost the same as those of the analytical solution and the errors are quite small for
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AEM-BS AEM (44 NP) Analytical  |Error % Error %
(12 CP) () Solution | (1)-(3) (2)-(3)
(1) 3)

0,.(1/16) 4,300E-03 4,300E-03 4,300E-03 0,00 0,00
0. (1/8) 1,220E-02 1,230E-02 1,220E-02 | 0,00 0,813
0,(3/16) |  2,020E-02 2,02E-02 2,02E-02 0,00 0,00
6.(1/16) | 1,131E-01 1,132E-01 1,130E-01 | 0,088 0,177
0,(1/8) 1,318E-01 1,317E-01 1,317E-01 | 0,076 0,00
0.(3/16) | 1,206E-01 1,202E-01 1,204E-01 | 0,166 0,166
0,(1/16) | 7,879E-01 7,753E-01 7,776E-01 1,307 0,296
0,(1/8) -2,890E-02 -3,120E-02 2,930E-02 | 1,365 6,090

0,(3/16) | -2,908E-01 -2,861E-01 -2,862E-01 | 1,582 0,0350
0,(1/16)| 22,249 21,916 21,682 | 2548 1,066
0,(1/8) 6,745 6,926 6,901 2,265 0,362
0,(3/16)| 2,522 2,169 2,196 12,960 1252
0, (1/16)| 400,623 396,388 397.164 | 0,863 0,195
0, (1/8) | 126,545 125,800 126,407 | 0,109 0,480

0, (3/16)] 38,665 40,262 40232 | 3895 00745

Table 2.4. Angle of twist 0, (rad) and its derivatives for the bar element of example 2,

employing knot insertion and increasing nodal points.

higher order derivatives, which was not possible before refinement. Only the value of

the third derivative at x =3L/16introduces a relatively large error (around 8%) when

employing AEM-BS. Thus, more collocation points could be used to eliminate also this
error. Comparing to the values derived when using the original AEM, it is concluded
that some of the results are not accurate and the errors can be large, especially for the

values of the second order derivative and on, for this number of discretization elements.

In Table 2.7 the results obtained when employing 44 discretization elements-
nodes for the AEM, 12 collocation points for the AEM-BS and the exact solution are

compiled.
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Figure 2.5. Steel unequal legged angle cross section (a) of the clamped bar (b)
studied in example 3.

To conclude with, it is noted that errors of the same and in general quite small
magnitude are obtained when employing in the AEM-BS around the one fourth of the
number of nodes used in the original AEM, as collocation points along the length of the
bar. This means that the computational cost when employing AEM-BS is much less
than that of the original AEM in order to achieve the same or higher level of accuracy.

2.5.4 Example 4: UPE-100
A clamped steel (E =2.1E8kPa, v =0.3) bar of length L=Im, of the UPE-100

steel cross section ([, = 2,010><10_8m4 and Cg = 590,10><10_12m6 , according to
Kraus, 2005), loaded along the length by a uniform twisting moment m, =1kNm/m

has been studied (Fig. 2.6). Four cases are examined, namely i) three discretization
elements employing original AEM technique, ii) three collocation points employing
AEM-BS, iii) refinement techniques for AEM-BS and iv) the analytical solution of the
fourth order differential equation.

In Table 2.8 the angle of twist and its derivatives at three collocation points (Fig.
A.2.1) are presented for the aforementioned cases 1), ii) and iv). From this table, it is
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AEM (3NP) AEM-BS (3 CP) Aslgﬁfil Error % Error %

€] 2) 3) (-3 (2-03)
6.(1/4) |  1,200E-02 1,02E-02 9,420E-03 | 27,11 7,65
6.(1/2) | 2.020E-02 1,420E-02 1,396E-02 | 30,69 141
6.(1/4) |  4.930E-02 3,600E-02 3,600E-02 | 37,20 0,00
6.(1/2) 0,00 0,00 2,000E-07 | 0,00 0,00
0.(1/4) | -6,770E-02 -1,120E-01 -1277E-01 | 46,90 12,29
6.(1/2) | -1,724E-01 -1,494E-01 “1,469E-01 | 14,79 1,60
6.(1/4) | -9.820E-01 -7,202E-01 -3,270E-01 | 66,70 54,60
0. (1/2) 0,000 0,000 -1,170E-08 | 0,00 0,00
0. (1/4) 6,981 9,610 5,380 22,93 44,02
0. (1/2) 6,720 -4,841E-01 1,764E-01 | 97,38 63,56

Table 2.5. Angle of twist 0, (rad) and its derivatives at various positions for the bar

element of example 3.

obvious that the errors arising in the evaluation of 6 (x) and its derivatives are in

general varying from 0% to around 10%. For the AEM-BS the errors are very small (O-
1%) and values are quite close to those derived by the analytical solution of the
problem. Moreover, the errors arising from the use of the AEM when employing three
discretization elements are not acceptable since they reach the order of 10% while for
the AEM-BS the results are very accurate and actually there is no need for any
refinement. However, the refinement procedure of knot insertion, which is described in
section 2.4 and has already been implemented in previous examples, will be employed
in order for the results to be comparable (Table 2.9).

To conclude with, it should be noted that the results obtained by employing the
two methods, are both highly accurate for the cross section shown in Fig. 2.6 when
refinement procedures are employed. Particularly, the AEM-BS almost coincides with
the exact solution and, with the same computational cost, the original AEM gives
highly accurate results with small errors, which vary from 0,01% to almost 1%. In
order to eliminate errors in the original AEM and achieve the same accuracy as that of
the AEM-BS, discretization elements should be increased and, thus, the computational
cost will be increased, as was the case in previous examples.

The cross sections of bars studied in this chapter are open-shaped thin-walled
cross sections of similar dimensions in order to be able to draw conclusions and make
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AEM-BS  AEM (12NP)  Analytical |Error % Error %
(12 CP) ) Solution | (1)-3)  (2)-(3)
(1) 3)

0,.(/16) 1,400E-03 1,500E-03 1,400E-03 0,00 6,667
0.(1/8) | 4200E-03 4,200E-03 4,200E-03 0,00 0,00
0,(3/16) |  7,000E-03 7,000E-03 7,000E-03 0,00 0,00
0,(1/16) |  3,820E-02 3,990E-02 3,820E-02 0,00 4261
0,(1/8) 4,590E-02 4,570E-02 4,590E-02 0,00 0436
0.(3/16)|  4,280E-02 4,150E-02 4270E-02 | 0,234 23810
0,(1/16) |  2,890E-01 2,876E-01 2,870E-01 | 0,692 0,209
0,(1/8) 7,900E-03 6,000E-04 7,800E-03 1,266 92,31
0,(3/16) | -9,310E-02 -8,910E-02 -9,200E-02 | 1,182 3,152
0,(1/16)| 7,266 8,776 7,138 1,763 18,66
0,(1/8) 2,518 2,619 2,554 1405 2489
0,(3/16)| -9,981E-01 -4,343E-01 -9,140E-01 | 8426 52,48
6, (1/16)| 118,007 117,653 117360 | 0,549 0,249
0, (1/8) 42,032 40,042 41,998 0,081 4,657
0, 3/16)| 14727 15,810 15030 | 2,016 4,935

Table 2.6. Angle of twist 0, (rad) and its derivatives for the bar element of example 3,

employing knot insertion.

comparisons affected only by the properties of the cross section geometry related to

nonuniform torsion (/, and Cg) and not by other secondary effects (i.e. secondary

torsional moment deformation effects which are important to closed-shape hollow
section bars, according to: Sapountzakis and Mokos, 2003; Mokos, 2007). An
interesting aspect to note is that the cross sections having two parallel flanges (i.e.
example 1-IPE200 and 4-UPE100) give accurate results, as shown in Tables 2.1 and
2.8, without any need for refinement. Particularly, the results obtained when employing
the AEM-BS almost coincide with the results of the exact solution and the errors
introduced in the evaluation of the angle of twist and its derivatives are mainly equal to
zero for the IPE200 and UPE100 (in general zero for the corresponding with respect to
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AEM-BS AEM (44 NP)  Analytical |Error % Error %
(12 CP) ) Solution | (1)-3)  (2)-(3)
1) 3)

0,.(/16) 1,400E-03 1,400E-03 1,400E-03 0,00 0,00
0,(1/8) | 4,200E-03 4,200E-03 4,200E-03 0,00 0,00
6,(3/16)|  7,000E-03 7,000E-03 7,000E-03 | 000 0,00
0,(1/16) |  3,820E-02 3,820E-02 3,820E-02 0,00 0,00
0,(1/8) 4,590E-02 4,590E-02 4,590E-02 0,00 0,00
0,(3/16)| 4280E-02  4270E-02  4270E-02 | 0234  0.00
0,(1/16) | 2,890E-01 2,860E-01 2,870E-01 | 0,692 0,348

0.(1/8) | 7,900E-03  6,500E-03  7800E-01 | 1266 16,667
0.(3/16)| 9310B-02  -9.200E-02  9200E-02 | 1,182 0,00
0.(1/16)| 7266 -7,201 -7.138 1,763 0,879
6. (1/8) 2518 2,575 2,554 1,405 0,800
0.(3/16)| 9981E-01  -9,072E-01 .9 140E-01 | 8426 0,744
6. (1/16)| 118,007 117,209 117,360 0,549 0,129
6. (1/8) 42,032 41,655 41,998 0,081 0,816
0. (3/16)| 14727 15,033 15.030 2,016 0,018
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Table 2.7. Angle of twist 0, (rad) and its derivatives for the bar element of example 3,

employing knot insertion and increasing nodal points.

height UPE200, which has a torsional constant four times larger than UPE100 and a
warping constant two times larger). This happens due to the fact that the AEM is a
numerical method with its accuracy based on the approximation of the fictitious load,
which is the unknown of the fourth order differential equation considered in the
nonuniform problem of torsion (fourth order derivative of the angle of twist). Then, the
rest values (angle of twist and the lower order derivatives) are obtained with respect to
the values derived for this load, as it is explained in Section 2.2 of this chapter.

As shown in Fig. 2.7, the curves formed to represent the fictitious load given by
the analytical solution are closely related to parabolas for the bars with IPE and UPE
cross sections. This means that a quadratic B-spline is an accurate approximation of
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h=10,0cm
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tf=0,75cm
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E=2,1E8
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Chapter 2

Figure 2.6. Steel cross section (a) of the clamped bar (b) studied in example 4.

AEM-BS (3 CP) AEM (3 NP) %ﬁﬁﬁl Error % Error %
(1) () (3) (D-3) (2)-3)
0.(1/4) 9,100E-03 9,600E-03 9,100E-03 0,00 5,556
6.(1/2) 1,580E-03 1,670E-02 1,580E-03 0,00 5,952
6.(1/4) 4,680E-02 5,000E-02 4,690E-02 | 0213 6,654
60.(1/2) 0,000 0,000 -7,600E-10 0,00 0,00
0.(1/4) -7,590E-02  -8,320E-02 -7,670E-02 | 1,043 8,505
6.(1/2) -2,408E-01 -2,514E-01 -2,409E-01 | 0,0415 4,177
0. (1/4) -1,409 -1,549 -1,403 0419 10,435
0. (1/2) 0,000 0,000 0,00 0,00 0,00
6. (1/4) 7,075 7,129 7,065 0,134 0,900
6. (1/2) 4,915 5,051 4,913 0,045 2,800

Table 2.8. Angle of twist 0, (rad) and its derivatives at various positions for the bar

element of example 4.
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AEM-BS AEM (12 NP) Analytical |Error % Error %
(12 CP) 2) Solution | (1)-(3)  (2)-(3)
(1) 3)

0,(1/16) |  9,000E-04 9,000E-04 9,000E-04 | 0,00 0,00
0.(1/8) | 3,200E-03 3,200E-03 3,200E-03 | 0,00 0,00
0,(3/16)|  6,100E-03 6,100E-03 6,100E-03 | 0,00 0,00
0.(1/16) | 2,770E-02 2,770E-02 2,770E-02 | 0,00 0,00
0.(1/8) | 4,300E-02 4,300E-02 4300E-02 | 0,00 0,00
0,(3/16) | 4,870E-02 4,870E-02 4,870E-02 | 0,00 0,00
0,(1/16) | 3361E-01 3,359E-01 3,361E-01 | 0,00 0,06
0.(1/8) 1,609E-01 1,608E-01 1,609E-01 | 0,00 0,06
0,(3/16)|  2,560E-02 2,580E-02 2,560E-02 | 0,00 0,775
0,(1/16)| 3,168 3,197 3,167 | 0,006 0941
0,(1/8) 2,462 2,471 2,463 0,00 0350
0,(3/16)|  -1,884 11,893 1,884 | 0011 0444
0, (1/16)| 12,472 12,471 12,472 | 0,002 0,010
0, (1/8) 10,177 10,176 10,177 | 0,001 0,038
0, (3/16)| 8405 8,407 8,405 000 0,023
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Table 2.9. Angle of twist 0, (rad) and its derivatives for the bar element of example 4,

employing knot insertion.

this curve, which spans the whole length of the bar preserving its shape. However, in
the same figure, it is can be observed that there is a minimum plateau in the curves of
fictitious loads of the T-shaped and L-shaped cross section bars between 0,3m and
0,7m along the length of the bar. Thus, the quadratic B-spline is not a very accurate
approximation of the fictitious load for these cases of cross section due to the fact that
the curve representing the fictitious load is more complex now. This is obvious from
the results compiled in Tables 2.2 and 2.5, where the errors introduced, especially for
higher order derivatives, are very large.
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2.6 Concluding Remarks

In this chapter, a BEM based technique, called AEM, is developed for the
nonuniform torsion of bars of open-shaped thin-walled cross sections. A quadratic B-
spline curve is introduced for the representation of the fictitious load in order to
implement an Isogeometric method for the numerical simulation of this particular
problem described above. The main conclusions that can be drawn from this
investigation are
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Figure 2.7. Exact curves representing the fictitious load q(x)=d40x(x)/ dx*

considered in AEM along the length of IPE200, UPE100, T-section
and L-section bars.

i. In some cases, highly accurate and stable results can in general be obtained using
a quadratic B-spline curve without the need for any refinement.

ii.  Different section properties affect the errors (especially the warping constant) in a
proportionate way giving positive perspectives about the stability and accuracy of
the methods described in this chapter.

iii. The curve used to represent the fictitious load also affects the accuracy of the
method and this might cause the necessity of knot insertion or degree elevation
for the B-spline curve.
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1v.

The computational cost is much less using a quadratic B-spline due to the fact
that the number of the unknowns is restricted to the number of the control points
which depend on the order of the B-spline used.

In order to obtain errors closer to the AEM-BS and values closer to those of the
analytical solution, quadruple collocation points should be employed as nodes in
the original AEM.
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Chapter 3

Generalized static and dynamic
warping analysis of Straight Beams by
Isogeometric Methods

3.1 Introduction

The problem of nonuniform torsion (Chapter 2) has been extensively examined in
the literature. In an analogy with Timoshenko beam theory, when shear deformation is
of importance, the so-called Secondary Torsional Shear Deformation Effect (STSDE)
(Mokos and Sapountzakis, 2011; Tsipiras and Sapountzakis, 2012) has to be taken into
account as well. Moreover, the additional secondary torsional warping due to STSDE
can cause similar effects with shear lag in flexure (Moffatt and Dowling, 1975; Luo
and Li, 2000; Luo, Tang and Li, 2003; Malcolm and Redwood, 1970), ie. a
modification of the initial normal stress distribution. Thus, the influence of shear lag
phenomenon due to both flexure and torsion, which is not constant along the beam
length, should also be considered. It is noted that due to the complicated nature of
torsion, simplified concepts employed in up-to-date regulations, such as “effective
width”, cannot be applied to take into account this behaviour.

In the majority of works made in recent years, the effects of nonuniform shear
warping distribution or, in other words, shear lag phenomenon in flexure, have not been
extensively considered in the dynamic problems of beams by the inclusion of the
corresponding inertia effects (Dikaros et al., 2016). The same case holds for the
problem of torsion (Dikaros et al., 2016; Sapountzakis et al., 2016). Even though
nonuniform torsion has been examined in the literature (Sapountzakis and Mokos,
2003; Vlasov, 1963; Zhang and Chen, 1991), the STSDE and the corresponding inertia
effects, in analogy to the shear lag in flexure, has not yet been investigated in torsional
vibration analysis of beams. Thus, the beam element formulations employed in studies
of Dikaros et al. (2016) and Sapountzakis et al. (2016) consider the above mentioned
warping effects in the dynamic problem. These beam models could be used in a broad
range of structural applications, such as automobile, aircraft frames, decks of bridges
(under traffic and earthquake loading), high-rise buildings (under blast and wind
loading), as well as optics, electromagnetics and acoustics, where high frequencies are
more important.

In order to numerically account for the above mentioned phenomena, Boundary
Element Methods (BEM) (Dikaros et al., 2016; Katsikadelis, 2002a; Sapountzakis et
al., 2016) have in general been used. The additional geometric constants due to warping
and the elementary ones are evaluated employing a pure BEM approach, which uses in-
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line elements for discretization of the cross section’s boundary, instead of area
elements used for cross section’s domain in Finite Element Methods (FEM), leading to
a small number of elements required achieving high accuracy, while remodeling to
reflect design changes becomes simpler. In addition to this, although the FEM
computes accurately the field functions, which are the unknowns of the problem, it is
ineffective in determining their derivatives. However, BEM, such as other numerical
methods, is not free of drawbacks. Particularly, application of BEM requires the so-
called fundamental solution, as also mentioned in previous chapter. A promising
technique that overcomes these drawbacks is the Analog Equation Method (AEM),
developed by Katsikadelis (1994, 2002b). This method is employed in order to derive
the stiffness and mass matrices (and, thus, the spectrum of frequencies) formulated
according to ten boundary value problems with respect to the displacement and rotation
components and the independent warping parameters which describe the beam
behavior (Dikaros and Sapountzakis, 2014). A fundamental solution is used for a
reduced differential operator (where a fundamental solution exists) and any possible
remainder of the differential equation is taken into account as fictitious loading
(different for each kinematical component), while preserving the geometry of the space
under consideration and the boundary conditions (Fotiu and Irschik, 1989; Fotiu,
Irschik and Ziegler, 1987; Irschik and Ziegler, 1998).

The introduction of Isogeometric Analysis (IGA) in the AEM technique
employed for the generalized static and dynamic warping analysis of beams is for the
first time demonstrated in the literature. The introduction of B-splines, as an initial
research step towards the employment of NURBS, in the AEM technique has only been
examined in the work of Sapountzakis and Tsiptsis (2014), presented in chapter 2, for
the nonuniform torsional static problem of bars. During past years, in order to increase
the accuracy, NURBS basis functions were used in the eigenvalue analysis of elastic
rods subjected to longitudinal vibrations and Euler-Bernoulli beams subjected to
transverse vibrations (Hughes, 2009). In that study, the properties of smooth NURBS
functions are examined and, for a given spectrum of frequencies (given number of
degrees of freedom and bandwidth) the improved accuracy in spectral calculations over
classical finite elements analysis is demonstrated. Recently, novel Isogeometric tools
were used in FEM for the vibration analysis of straight nonlinear Euler—Bernoulli beam
(Weeger et al., 2013). In addition to this, NURBS were also used for the representation
of the geometry and solution fields of wind turbine blades (Bazilevs et al., 2011).
Moreover, Isogeometric collocation methods were employed for the Timoshenko beam
problem in order to avoid shear locking (Auricchio et al., 2012; Beirdo da Veiga et al.,
2012; Echter and Bischoff, 2010). In addition to this, improvement of Isogeometric
collocation methods regarding convergence rates has been done by using
superconvergent points (Anitescu, Jia, Jessica Zhang and Rabczuka, 2015). In a recent
software lab project, an Euler-Bernoulli beam was formulated by using B-Splines and
compared to the classical FEM with Hermitian polynomials (Tanyildiz and Ozcan,
2010). The results showed clearly that Isogeometric analysis with p-refinement feature
is far more effective than classical FEM with Hermitian polynomials for a Bernoulli
beam. Except for beams, a NURBS-based Isogeometric approach, where the same
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shape functions are used to describe the field variables as the geometry of the domain,
is employed for static, free vibration, and buckling analysis of laminated composite
Reissner-Mindlin plate structures (Chien et al., 2012). Isogeometric tools have also
been used in thin shell analysis with excellent performance (Nguyen-Thanh, Kiendl,
Nguyen-Xuan, Wiichner, Bletzinger, Bazilevs and Rabczuk, 2011; Nguyen-Thanh,
Valizadeh, Nguyen, Nguyen-Xuan, Zhuang, Areias, Zi, Bazilevs, De Lorenzis and
Rabczuk, 2015).

In this chapter, the ten boundary value problems that have been formulated in the
work of Dikaros and Sapountzakis (2014) with respect to the displacement and rotation
components as well as to the independent warping parameters are solved using the
AEM with the aid of Isogeometric Analysis (IGA). B-splines are employed in order to
represent the fictitious loading. This is the first research step towards formulating
curved beam elements subjected to arbitrary loading and boundary conditions.
Additionally, Isogeometric analysis’ tools are also applied in the general element
formulation for the dynamic nonuniform warping analysis of beams of arbitrary cross
section, taking into account shear lag effects due to both flexure and torsion, as
presented in Dikaros et al. (2016). Without loss of generality, only free vibrations have
been examined due to the fact that the calculation of natural frequencies and the
spectrum analysis are of main interest. Nonuniform warping effects are taken into
account by using four independent warping parameters which are multiplied to the
shear warping function in each direction and to two torsional warping functions
(primary and secondary). By employing a distributed mass model system accounting
for all of the different inertia, ten second-order differential equations and the
corresponding boundary conditions have been formed with respect to the displacement
components and the independent warping parameters. These equations describe the
problem and are solved as quasi-static (time variable is a parameter) either using the
analog equation method (AEM), or the finite element method (FEM) combined with
Isogeometric analysis. Isogeometric tools (B-splines and NURBS) are employed for the
representation of the basis functions and the fictitious loads of the FEM and AEM
formulations, respectively, for the ten different kinematical components. The warping
functions, the additional geometric constants due to warping, and the elementary ones
are evaluated with a pure BEM approach (Dikaros and Sapountzakis, 2014), i.e., only
boundary discretization of the cross section is used. The geometric constants are
considered equal to unity in some of the examples for comparison and simplicity
reasons. Static problem is actually a special case of the dynamic one and is examined
separately.

The new computational tool will overcome the drawbacks of AEM related to
geometry issues. Particularly, the cumbersome procedures need to be applied in order
to refine the element mesh and capture satisfactorily the three dimensional curved
geometry with straight beam Finite Elements, which are usually used in practice. This
approximation causes an additional problem that is the transmission of warping, which
in general is not taken into account in the analysis of complex structures. For example,
an analysis of the cross section of a bridge should be performed in the transverse
direction in order to account for warping. Thus, the next research step is the
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employment of Isogeometric tools (B-splines, NURBS etc.) in the order to capture the
exact geometry of the beam elements. This allows for an interactive structural analysis
to be performed in an automated manner and without the need for an analysis in the
transverse direction. Hence, it can be concluded that beam elements should be
combined with Isogeometric analysis in order to serve as a useful tool in modern
analysis projects (i.e. curved bridges of closed shape sections).

The essential features and novel aspects of the formulation described in this
Chapter compared with the corresponding previous ones are summarized as follows:

i. The proposed formulation is suitable for the investigation of flexural and
torsional shear lag effects in beams of arbitrary closed or open cross sections.

ii. The method used is based on Isogeometric tools such as B-splines and NURBS.
These tools have mainly been employed in finite element analyses (FEM) and
only sparsely in boundary element methods (BEM), especially in vibration
problems of beams. Thus, an introduction of B-splines and NURBS in a BEM-
based numerical technique is a natural starting point for the introduction of
Isogeometric Analysis in the numerical solution of advanced beam theories with
BEM and its extension to curved beam elements (Chapter 4).

iii.  As also mentioned in the novelties of the previous Chapter and being of more
importance here due to the number of equations that describe the problem (ten),
the dimensions of matrices used for the numerical implementation of AEM
become smaller. This results in easier data management and reduction of
computational effort.

iv. Comparing to previous formulation, results have also been obtained for cubic or
quartic B-splines employing four or five control points for the representation of
the fictitious load, respectively. Therefore, except for knot insertion, a kind of
degree elevation has also been investigated known as the k-refinement procedure.

v. The use of NURBS in AEM results in drastically improved accuracy in spectral
calculations over the original AEM, as it is the case with FEM, while AEM gives
highly accurate results either original or combined with IGA tools comparing to
corresponding FEM formulations.

vi. Comparisons with traditional models, which account for nonuniform torsion,
have been made in order to indicate the range of their application as well as the
obtained level of accuracy.

3.2 Statement of the problem

Consider a prismatic beam of length L, of arbitrarily shaped cross section, that
can surround a finite number of inclusions. The material, occupying the region 2 of
the yz plane (Fig. 3.1) is assumed homogeneous, isotropic and linearly elastic with

modulus of elasticity E, shear modulus G and Poisson ratio v. However, the
formulation can be easily expanded for composite cross sections.

Let also the boundary of the region €2 be denoted by I'". This boundary curve is
piecewise smooth, i.e. it may have a finite number of corners. In Fig. 3.1, CXYZ is the
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principal bending coordinate system through the cross section’s centroid C, while y.
Z., are its coordinates with respect to Sxyz system through the cross section’s center

of twist S . The beam is subjected to the combined action of arbitrarily distributed or
concentrated, time-dependent in the dynamic case, axial loading p = p (X) along X

direction, transverse loading p, =p (x) and p_=p_(x) along the y,z directions,
respectively, twisting moments m, =m,(x) along x direction, bending moments
m, =m,(x), m,=m,(x), along Y, Z directions, respectively, as well as warping
moments m,=m., x), ms=m x), m, =m, (x) and m, =m, (x) (Fig. 3.1)

which are defined in the work of Dikaros and Sapountzakis (2014).

— 0
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S:Center of twist | F= ‘q_ ‘ o \\
< .'; J” —>— /_'P\ S / o \ !
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k Y.-‘flll C Yc \
B Uf:lri I Q E G _,.../":
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(b)

Figure 3.1. Prismatic beam under axial-flexural-torsional loading (b) of an
arbitrary homogenous cross section occupying the two dimensional
region Q) (a).

Under the action of the aforementioned general loading and of possible restraints,
the beam is leaded to flexural, axial and/or torsional vibrations. In order to take into
account the warping rates of change per unit length of the beam at any time instant,
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which are responsible for shear lag effects due to both flexure and torsion, four

additional time-dependent degrees of freedom (warping parameters), namely 7y (x,t) ,
M (x,t) s Ny (x,t), & (x,t), are employed as in Dikaros et al. (2016). These additional
parameters multiply a shear warping function in each direction ((pgy (v.2), (Dgz (»2))

and two torsional warping functions (@¢ (y,z), @3 (7,z)). respectively. It is worth

here noting that the shear stresses generated by the above displacement considerations
exhibit an inconsistency concerning the non-vanishing of tractions on the lateral
surface of the beam. This inconsistency may be responsible for non-negligible errors in
estimated normal stress values and thus in the present study it is removed by
performing a suitable shear stress correction, which is discussed in detail in Dikaros
and Sapountzakis (2014).

Within the context of the above considerations, the displacement components of
an arbitrary point of the beam at an arbitrary time instant are given as

a(x,y,2.0) =" (x,y,2,1)+@° (x,y,2,1)=

= u(x,t)+0y (x,t)Z—HZ (x,t)Y+77x (x,t)¢51~3 (y,z)+

primary
+y (x.0) By (.2)+ 117 (x.0) By (.2) + &, (x.2) 85 (3.2) (3.1a)
secondary
V(x, y,z,t)=v(x,t)—z9x (x,t) sz(x, y,z,t) =w(x,t)+y0x (x,t) (3.1b,c)

where u, v, w are the axial and transverse beam displacement components with

respect to the Sxyz system of axes; u P, i° denote the primary and secondary

longitudinal displacements, respectively. Moreover, V(X,f ), W(X,f ) describe the
vertical and lateral deflection of the centre of twist, while U (X,f ) denotes the “average”
axial displacement of the cross section. 9x (X,f ) is the (total) angle of twist; (92 (X,f ) ,
t9y (X,I) are the angles of rotation due to bending about the centroidal ¥, Z axes,

respectively; 77, (X,f ), fx (X,l ) are the independent warping parameters introduced to

describe the nonuniform distribution of primary and secondary torsional warping, while

Ny (X,f ), Nz (X,f ) are the independent warping parameters introduced to describe the

nonuniform distribution of primary warping due to shear; gz)éJ (y, Z ) , (03? (y, Z) are the

primary and secondary torsional warping functions with respect to the centre of twist,
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while (Dgy (y, Z ), (Dgz ( V.2 ) are the primary shear warping functions with respect to the
centroid. Finally, it holds that Z=z—z-, Y =y—y,.

Substituting eqns. (3.1) into the well-known three dimensional linear strain-
displacement relations, and employing the Hooke’s stress-strain law, the non-vanishing
components of the Cauchy stress tensor are obtained. The correction of stress
components, due to the inconsistency mentioned previously, is performed without
increasing the number of global kinematical unknowns, following the analysis
presented in Dikaros et al. (2016) as well as in Dikaros and Sapountzakis (2014). To

this end, three additional warping functions (Dgy (y,z) ) @gz (y’Z) , (DST (y,z) are
introduced in the expressions of stresses.

Defining the independent geometric (derived from displacements) generalized
strains e a5 Uy, Oy v Oz Mo Mras Mz Sews 7x =Ocas 72 ==,
7£:§x_77x+‘9x,x’ 7/§:V,x_92’ 752772_‘),)6—'_92’ 7§:W,x+‘9Y and
}/“Zg =1y —w,—0, deriving the stress resultants o after establishing the stress
components, substituting the generalized strains and stress resultants in the two field
variational principle 7p =_[L(—1/ 2¢kCep +a,€gR)dx—W and following standard
arguments in the calculus of variations, results in the governing differential equations
of equilibrium of the beam problem. C is the spatial elasticity tensor (containing i.e.

cross section rigidities) and W is the external work for distributed or end loads. Finally,
in order to derive the differential equations of motion with respect to the kinematical

components, the terms of inertia contributions .[ L(] / 2u17£’,,MuR’n)dx have to be added

in the previous and constitutive equations to be employed. M is the spatial mass matrix
and up are the generalized displacements (kinematical components) previously

described. Thus, the generalized vibrational beam behaviour is described by the
following differential equations (Dikaros et al., 2016)

—EAu_+  pAu, =p, (3.2a)
: :

inertial contribution

~G( AL + A7) (viax = Oz.0) + AN+ G (D g = Degs ) (e = Or) +

+GDys gr&ex+ PA(Vy =~ 2c00n) = Py (3.2b)

inertial contribution

-G (Ag + Ag ) (W,xx + HY,X) + GAéﬂy,x + G(anquag — Dq>qu>§ )(nx,x — Hx,xx) +

+GD(I>§Y<D§§x,x + pA(w’ﬂ + ycex,n) =D; (3.2¢)

inertial contribution
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* S S
—E'1,,0, . ~G(AF + A5 ) (v~ 0,)+GASn, + G(D(Dgz o3~ Dos o1 )(nx —0,. )+
+GDq)ézq)zg: é:x + plzzez’n = mZ (3.2d)

ﬁ_}
inertial contribution

Elyyby o+ G(A§ * Ag)(w’x +6 )= GAzny - G(chéy@i ~Dys ot )(’7x —0,.)-
_GDch:chgégx + plyby,  =my (3.2¢)

inertial contribution

G 415 +17)0, o+ G(15 417 1 ~GITE,  +

X, XX
+G( Dyt = Py a7 ) (12 =+ 02.6)+ G Pyt~ Dagy 07 )

'(77Y,x Wi T ‘9Y,x) + ,0|:A(—ZCV,,, + yCW,tt) + ngx,tt] =my (3.2f)

inertial contribution

* S
-k (préfz(ﬂé’ e ¥t ot M2.xx + L yp s ng”) +GAY (17 =7, =07 ) ¥
+G( D01 = Pagyar ) (1 =0ur) + G g1+

+p(1 T &+ ):m (3.2g)
P ( byt Txat Tl 8 St Ty or 112,11 vty &

inertial contribution

S
-k (I(ng(0§ M xx + I(DgY(Dgy 7Ty xx + Igogyggg fx,xx) + GAZ (77Y —Wy + HY ) +
G (D(Dgy@ﬁ B D@éyq)g ) (77)( B ex,x ) + GD(Dsc‘yq)g §x +

+p(1 T, sE 4T ):m (3.2h)
P ( byl it T Lot o8 Gt T Lpr or My it Ply

inertial contribution

* S T T
—-E (I¢§’¢§’77x,xx+I¢é’y(p§’77Y,xx+I¢gz¢§nZ,xx)+G(It +It )(nx_gx,x)_GIt §x+
+6(Dys 0t = D a0 ) (12 =+ 02) + 6Dy 1 = Dyt 1)

'(77y -w,—b ) + P(1¢§¢,§Ux,rr + I¢gy¢§77y,tz + Iwgzwgﬂz,n) =M (3.2i)

inertial contribution

* T
—-E (I(pqu,g 77Y,xx + I¢gz¢ss UZ,xx + I¢SS¢§ gx,xx) + GIt (gx — 1Ny + gx,x) +
+GD¢%Z®§ (UZ —V,x + gz)“r‘ GD(DSCY(I)_]S: (77Y — W,)C — QY)—F

p p _ :
P (1¢§¢§ s Hop vy iz ) ~ "} G2)

inertial contribution
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These governing differential equations are subjected to the initial conditions
(x=0,L) given below (eqns. (3.3a)-(3.3t)) together with the corresponding boundary
conditions of the problem, which are described by the following eqns. (3.4a)-(3.4j) at
the beam ends x=0, L,

u(x,0) =y (x) i, (x,0) =g, (x) (3.3a,b)
v(x,0) = vy (x) v, (x,0) = vy, (x) (3.3¢,d)
w(x,0) = wp (x) w, (x,0)=wp, (x) (3.3e.f)
0, (x,0)=6,,(x) 0, (x,0)= 04, (x) (3.3gh)
Oy (x,O) =06y (x) Oy, (x,O) =60, (x) (3.31)
0, (x,0) =0, (x) 0., (x,0)=0,(x) (3.3k.])
17 (2.0) =140 () 77 (2,0) =150, (%) (3.3m,n)
1y (%,0) =110 () My .+ (%.0) =7y, (%) (3.30,p)
17, (%,0) =17, (%) s (%,0) =150, (%) (3.3q,1)
£ (x,0) =& (x) £ (1,0)=Eg, (%) (3.3s.0)
au+a,N, = oy (3.42)
P+ B2V, = B3 w72V =73 (3.4b,c)
POz +BoMyz =B by + 1My =73 (3.4d.e)
Bt +BoMyye =By Tty +72M, e =73 (3.4f.2)

51Qx + 52Mbt = 53 é_‘lnx + Sszgof = 6_‘3 gléx + gsz(pg = 53 (34h,1,_])
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where the reaction forces Ny, V), =Q§D +Q§, Vi fo +Qf, My,, My, M

b(/ng ’
M bt My, = MtP +M ,S +MtT , M bl M bos  AT€ given by the following relations in
terms of the kinematical components as
Nb = ErefAu,x MbY = ErefIYYeY,x MbZ = ErefIZZGZ,x (3.5a,b,c)
Mgy = Eret (I(psP of T FLgp ety s+ gr o 772’)‘) (3.5d)
Myps = Eret (1¢5y¢§ Myt gr osTz.0 4 L s s gg“) (3.5¢)
Mygr, = Eret (Iwé’y(pé’ Meox T gr o, My L or o 5“) (35D
Mygr, = Eret (Iwé’zwé’ Tex T or gt Mz ot o3 eg”) (3-5¢)

P _ P S _ S S T .

OF =GurDagap, /¥ Q) =Gt Py 0,77 +Pag 173 + Dag 174 ) (350

P _ P S _ S S T .

QZ - GrefD(Dgchgy]/Z QZ - _Gref (Dq)qu)gyyZ +Dq)gycp§7x +Dq)~qu)§7/x ) (35J»k)
P _ P S S S S

Ml‘ = Greflt Qx’x Mt = _Gref (Dq)iq)g}/x +D®zzq)§7/Y +Dq)f:yq)§7/z) (351,m)
T T S S

M =Gt (Do 74 + Doy 0178 + Doy 0172 ) (3-5m)

The quantities GD;; (i =c1>§y,<D§Z) multiplying 7/éD and 75 respectively,
correspond to the shear rigidities of Timoshenko beam theory. Thus, the simplified

notation GA}D (i=2Z,Y) could be adopted for these quantities. Similarly, GD;
(i= d)gy,d)gz) refer to the secondary shear rigidities due to nonuniform shear warping

and can be denoted as GA® (i=Z.Y). Finally, GD; (i=®3 ,q)g) refer to the
secondary (Tsipiras and Sapountzakis, 2012) and tertiary torsional rigidities and can be
e

also denoted as G refI,T , respectively.

Ie

The evaluation of the above mentioned rigidities presumes the establishment of

the warping functions due to shear q)gy , CI)gZ , @gY , d)gz and due to torsion (og , qbg

, ®L which is presented in detail in Dikaros and Sapountzakis (2014). The warping
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functions in each direction are considered to be independent. This means that when
bending is considered, pure axial and torsional are excluded. Local equilibrium
equation in the longitudinal direction can be written as follows

Oxxx tlayy T Txz . =0=
P+ P PP (3.6)
(Eref‘gYZ) y +(Gref72(DCY,y) y —i_(Grefj/Z(DCY,Z)Z =0

recalling eqns. (3.5b), (3.5)) and —M,y . + Q§ =my =0 eqn. (3.6) can be written as

My, PP P
)i xz-i_GrefyZ((I)CY,yy-i_CDC'Y,ZZ):O:>
v N " (3.7)
_Z

P P2 P 20, P Iyy w24 P
G, 77 I—ZZ+Gref;/ZV Oy =0V cbcyz—l Z=-Vboy =27
Yy

YY AZ

= 1 : . : .
where q){}y = ——Yﬁd)gy . Following this concept, the rest of the warping functions can
z

also be established.
Finally, oy, B, Bi» Br 7i> 7i» 71> Ok 0> 0, (k=1,2,3) are functions specified
at the boundaries of the beam (x=0,L). The boundary conditions (3.4) are the most

general boundary conditions for the problem at hand, including also the elastic support.
It is apparent that all types of the conventional boundary conditions (clamped, simply
supported, free or guided edge) can be derived from these equations by specifying
appropriately ~ these  functions (e.g. for a clamped edge it s

051=ﬂ1=ﬁl=B1=7/1=771=771=51=31=5~1=1 ) 0‘2=053=,32=ﬂ3=52=53=52
=B=1 == =73=0,=0,=8,=8;=5,=5;=0).

3.3 Numerical Solution with AEM-Integral Representations
According to the precedent analysis, the axial-flexural-torsional static and
dynamic analysis of beams of arbitrary cross section including generalized warping

effects reduces in establishing the components u(x,7), v(x,r), w(xr), 6,(x1),

0, (x,t), Oy (x.t), n.(x1), ny(xt), ny(x,r) and & (x,r) having continuous
derivatives up to the second order with respect to x at the interval (O,l ) and up to the

first order at x =0, L and for the dynamic problem up to the second order with respect
to t, satisfying the initial-boundary value problem described by the coupled governing
differential equations along the beam, the initial conditions and the boundary
conditions at the beam ends x =0, L given in the previous section.

Eqns. (3.2), (3.3) and (3.4) can be solved using the Analog Equation Method.
According to this method, let u(x,7), v(x,1), w(x,t), 0,(x,t), 0, (x,1), 6y (x.1),
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ne(x1), ny(xt), ny(xt) and & (x,r) be the sought solutions of the
aforementioned ~ problem.  Setting as  u (x,7)=u(x1), wy(x1)=v(x1),
uy (x,t):w(x,t), Uy (x,t)=t9x (x,t), Us (x,t)zHY(x,t), u6(x,t):92 (x,t),
uy (x,0) =n,(x,1) ug(x,t)=ny (x.1), ug(x,1) =1, (x,r) and wu;o(x,1)=&, (x,1) and

differentiating with respect to x these functions two times, respectively, yields

d’u;

LD _ o (xr), (i=1,...10) (3.8)
dx

where ¢g(x) is the fictitious load.

Eqns. (3.8) are quasi-static, i.e. the time variable appears as a parameter and they
indicate that the solution of eqns. (3.2), (3.3) and (3.4) can be established by solving
eqns. (3.8) under the same boundary conditions, provided that the fictitious load

distributions ¢;(x,z) (i=1,..,10) are first established (Appendix A.I). These
distributions can be determined using AEM. The fundamental solution of eqn. (3.8) is a
partial solution of the differential equation (A.1.32) given in the Appendix A.1, where
instead of u*(x,&). Employing this fundamental solution, the integral representations

of the kinematical components are obtained as in eqn. (A.1.34) and by its
differentiation, the expressions for their first derivative can be derived as in eqn.
(A.1.36).

The introduction of B-splines or NURBS in the above mentioned expressions can
now be done by substituting g;(x,7) with the polynomial representation of a quadratic

B-spline or NURBS with a uniform knot vector = with & e[O,l] (Appendix A.2),
which is the parameter space similar to the classic FE subdivision. The first and last
knot values are repeated depending on the B-spline degree p and their multiplicity is
usually p+1. In one dimension, basis functions formed are interpolatory at the ends

of the parameter space interval (knot vector with multiplicities). However, nonuniform
knot vectors and repeated knots can also be used with NURBS. According to Piegel
and Tiller (1997), the NURBS basis functions can be expressed in terms of B-splines
basis defined in the Appendix A.2 by the Cox-De Boor recursive formula.

Now ¢;(x,t), which is given in eqn. (A.2.30), is substituted in eqn. (A.1.39) and

the vector {T'} can be written as follows

{T}= {_[[(;]2]}@} —>{T}=[F]{P} (3.9)

where {P} is the 3X1 vector containing the control points ({P} = [P() R P ]T ) for a
quadratic B-spline. Subsequently, applying the integral representations (A.1.34) and
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(A.1.36) at the collocation points presented in Fig. A.2.1, the following relations are
derived, similarly to eqns. (A.1.47)

(U} =[Al{B}+[Cl{u; } (3.10a)
U) =[AH{P}+[CH{u;) (3.10b)

where (U;,U;) are the vectors containing the values of different kinematical

components and their first derivative at internal collocation points with respect to the
control points. The coefficients of the 3X3 square matrices [A],[A'] (eqns. (A.1.48))

are also given with respect to the vector of the control points for each kinematical

component. For the rest of the AEM matrices, eqns. (A.1.49)-(A.1.52) are employed.
Then, the stiffness and mass matrices of the beam element which behavior is

described by eqns. (3.2) can be calculated. These equations in matrix form are given as

[m, WUy + [k {0} = {p,} G.11)

[m,] ,[kl] are the generalized mass and stiffness matrices, respectively. { pt} is the
load vector which is equal to {O} for the free vibration case examined in this chapter.
Static problem can be derived as a special case of this relation. Thus, {D} vector is
equal to {0} (U ;} 1s the vector containing the second derivatives of the different
kinematical components with respect to time (in static case {U 1= {0} ) while {U i} s

the generalized unknown vector containing {U;} and {U ;} vectors. Thus, eqn. (3.11)

can be re-written as follows
[, ]1BI{G, } + [k, ][B){q; } =10} (3.12)

where {c'jt} and {%} are the values of the control points when AEM is combined with
B-splines or NURBS while [B] contains the [B] and [B'] matrices. It should be noted

here that {G,} and {g,} no longer stand for fictitious loads, as in the original form of

AEM, but for control points, the number of which depends on the B-spline’s or
NURBS’s structure.

Regarding the dynamic problem, the interest is in the natural frequencies and
modes in which the beam vibrates for the different motions. These are obtained by

separation of variables and u; (x,t) is assumed to have the form

u; (x,1) = u; (x) e (3.13)
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where u; (x) is a function of only the spatial variable x, while i =+/—1, and @ is the

natural frequency. Inserting (13) into (11) (thus, into (12)) and dividing by the common
exponential term results in the following typical generalized eigenvalue problem

(k)@ [m,])u; = {0} (3.14)

which can be tackled through any solver.

The same process, as described above, has been followed when substituting with
the polynomial representation of cubic or quartic B-splines and NURBS with uniform
knot vectors (Appendix A.2).

The rest of the AEM equations are formulated as previously described for the

quadratic B-spline. The diagonal matrix [A,] is also determined and contains the

values of basis functions N; ; (i=1..n and j=2..p) for the n different collocation
points and different p-degree B-spline cases. This matrix is employed in order to
discretize the second order terms (actually the g¢;(x,t)) of the governing differential
equations (for lower order terms the matrices in eqns. (A.1.51) and (A.1.52) are
employed). Then, [mt],[k,] are formulated and eqn. (3.14) is solved. The natural
frequencies are finally obtained. Matrices [A,A'], [F]and [B,B'] as they have been

formed after the integration of quadratic B-splines in the relevant integrals are 30X30,
40X30 and 30X30, respectively. Similarly the same matrices are 40X40, 40X40 and
40X40, respectively, in the case of cubic B-splines. The vector (4X10)X1 of the control
points substitutes the fictitious load vector of the original AEM. In the same way, eqns.
(3.2) yield a linear system of equations which gives the values of the control points Fy;,

B;, P, P;; and P, , instead of the values of the quartic ¢;(x) at collocation points. The
diagonal matrix [Ay] contains now the values of basis functions Ny 4, Ny 4, N 4, N34
and N 4 for the five collocation points. Finally, in case of a quartic B-splines, matrices

[A,A"], [F]land [B,B'] are 50X50, 40X50 and 50X50, respectively. The dimension of
the new control point vector is (5X10)X1.

3.4 Numerical Solution with FEM and NURBS

Instead of B-splines, NURBS curves in terms of B-spline basis functions can be
employed either in FEM or AEM. The description of the numerical procedures is given
in the Appendix A.2.

In this chapter, the geometry of the beam is described by a NURBS structure with

initial control points given by the following spatial coordinates (x;,y;,z;,w;): (0, 0, O,
L ) ) ) . .
1), (5, 0,0,1),(L,0,0, 1), and the straight beam geometry is obtained in this way.

[mt],[kt] matrices can finally be obtained following the procedures described in
section A.2.4 of the Appendix A.2.
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It is important to note here that regarding pre-processing (geometry, materials,
cross-sectional constants, definition of the initial NURBS’ structure and meshes for the
different unknowns), there are no important differences between the AEM and FEM
with NURBS integrated. However, during processing more matrices with smaller
dimensions (depending on the number of the unknowns) need to be assembled and
handled in the iterative loops of the FEM comparing to the AEM in order to derive
global stiffness and mass matrices (this is due to the different discretizing procedure of
the differential equations). Thus, even though final AEM stiffness and mass matrices
are larger in dimensions, computational effort is similar for both FEM and AEM with
NURBS. In addition to this, accuracy of the results becomes higher for the AEM due to
the fact that the second order derivatives of the unknowns (fictitious loads) are
approximated in the AEM technique with NURBS (see in the dynamic examples’
section where comparisons are provided). Finally, post-processing becomes easier
when employing AEM due to the fact that the derivatives of the unknowns have been
calculated during processing.

3.5 Numerical examples

On the basis of the numerical procedures presented in the previous sections,
computer programs have been written and representative examples have been studied.
AEM (either in its original form or with Isogeometric tools integrated), FEM and IGA
have been employed and compared with respect to computational effort and accuracy
in the evaluation of different quantities either for the static or the dynamic case. It
should be noted here that the same hardware and software have been used in order to
obtain the numerical results.

Regarding the static problem, the numerical results have been obtained
employing up to 400 nodal points (NP) in the original AEM with constant values for
the fictitious loads. Then, the results when employing collocation points (CP) in the B-
spline AEM (Quadratic, Cubic and Quartic B-spline AEM) and nodal points in the
original AEM are compared with the previous ones as well as, with the results obtained
by the application of the Finite Element Method (FEM) employing either beam, shell
or solid elements (FEMAP, 2010). In some of the examples, the obtained results have
been compared with the corresponding values derived by the Euler-Bernoulli, Vlasov
thin-walled and classical nonuniform torsion (CNT) (Sapountzakis and Tsiptsis, 2014)
beam theories. In the classical nonuniform torsion theory, described in Chapter 2, AEM
is employed in order to solve the fourth-order differential equation with respect to the
angle of twist of the cross section. In addition to these, up to 400 boundary elements
depending on the cross section type (cross sectional discretization) have been employed
in order to evaluate the geometric constants.

Regarding the dynamic problem, natural frequencies and spectrum analysis for
the free vibration problem of beams (frequently encountered in structures) including
warping effects are examined. Except for constant (AEM), quadratic elements have
been also used in the AEM technique (AEM 2nd). The “AEM 2nd”, which is mainly
used in this work, has been described in Appendix A.l. In addition to this, a
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commercial FEM package with solid and shell modelling capabilities (FEMAP, 2010)
is employed to compare and verify the results of the proposed method.

3.5.1 Static Case

Example 1: Beam of Rectangular cross section subjected to uniformly
distributed transverse or torsional loading
In the first example, a steel (£ =2.1E8kPa, v =0.3) beam of rectangular cross

section (h=0.5m, b=0.2m) with its edges subjected to various boundary conditions
(fixed-fixed, fixed-free, fixed-pinned) and of length L =3m has been studied. The
beam is loaded along its length by a uniformly distributed either transverse load
p, =250kN /m or twisting moment m, =100kNm/m . In Table 3.1 the geometric

constants of the beam are presented.

A =1.0000E —01m? I s,s =79582E 07 m®
S

Ps
— _ 4 _ 5
1,, =8.3333E—-05m I(ng(/7§ 0.0000E00 m
4 5
=38. — I =1.5127E -15
Iyy =8.3333E—-03m e m

I » » =9.9153E—05m"

PcyPcy
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15 =6.7341E —03m*
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D(ngQSS =1.3327E-12m
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Al =8.3218E - 02 m?
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Table 3.1. Geometric constants of the beam of example 1.

In Table 3.2 the kinematical components along the beam length with fixed end
conditions are presented for i) three elements employing original AEM technique
(AEM3), ii) three collocation points employing AEM with quadratic B-spline and iii)
400 elements employing original AEM technique (AEM400). From this table, it is
obvious that in general the discrepancies between the AEM400 and the obtained results
employing a quadratic B-spline are quite small compared with the ones obtained when
employing the AEM3. However, a finer discretization is needed. Additionally, in
Figures 3.2, 3.3 and 3.4 the deflection w(x) along the beam length with various

boundary conditions is presented for i) 201 discretization elements employing original
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o AEM (400 NP) AEM-BS (3 CP) AEM(3 NP) | Error % Error %
(1) () 3) (H-2)  (1D-B)
w (0.50) -6.645E-05 -6.644E-05 -4.220E-05 0.01 36.49
w (1.50) 0.000E-00 0.000E-00 0.000E-00 | 0.00  0.00
0,(0.50) 2.987E-05 2.977E-05 1.890E-05 033  36.72
¢9y (1.50) 0.000E-00 0.000E-00 0.000E-00 0.00 0.00
0,(0.50) 1.697E-05 1.785E-05 1.512E-05 518  10.90
0,(1.50) -5.357E-05 -5.357E-05 -3.024E-05 | 0.00  43.55
17,(0.50) -3.306E-05 -3.168E-05 2.012E-05 | 4.17  39.14
My (1.50) 0.000E-00 0.000E-00 0.000E-00 0.00 0.00
7,(0.50) -1.681E-05  _1700E-05  -1.610E-05 | 1.12 422
7,(1.50) 3.693E-05 3.703E-05 3219E-05 | 027  12.83
g,,(0.50) 1.843E-05 1.445E-05 1.743E-05 | 21.59 543
q,,(1.50) 9.069E-05 9.243E-05 6.696E-05 191  26.16
qp,(0.50) -1.419E-04 -1.428E-04  -9.074E-05 | 0.63  36.05
9p, (1.50) 0.000E-00 0.000E-00 0.000E-00 0.00 0.00
qy, (0.50) 1.073E-04 1.220E-04 9.659E-05 | 12.05  9.98
n, (1.50) 0.000E-00 0.000E-00 0.000E-00 0.00 0.00

Table 3.2. Kinematical components and their derivatives of the rectangular cross
section beam of example 1 for uniformly distributed transverse loading and
fixed edges.

AEM technique (AEM 201 Elements), ii) three collocation points employing AEM
with quadratic B-spline (AEM Quadratic B-spline), iii) four collocation points
employing AEM with cubic B-spline (AEM Cubic B-spline), iv) Euler-Bernoulli
solution and v) FEM solution using quadrilateral solid finite elements (810 elements) in
FEMAP (2010). From these figures, the validity of the present results can be
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confirmed, since their convergence to the ones retrieved from the solid model is
remarkable. It can also be observed that the AEM with the quadratic B-spline gives
satisfactory results for all different cases of boundary conditions. The results derived
from the AEM with the cubic B-spline almost coincide with the ones of the FEM
model solution. The deflections derived by the Euler-Bernoulli solution are quite
smaller.

Beam Length [m]
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0
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\(——) ©—0— Euler-Bernoulli solution
-0.0001 — 0.2m =3¢ Solid Model (810 elements)

Figure 3.2. Deflection w(x) along the length of the clamped beam of example 1 for

uniformly distributed transverse loading.

Finally, the beam is studied for three different boundary conditions with respect
to the evaluation of the angle of twist along its length due to distributed twisting
moment. Four cases are examined, namely 1) 201 discretization elements employing
original AEM technique (AEM 201 Elements), ii) three collocation points employing
AEM with quadratic B-spline (AEM Quadratic B-spline), iii) four collocation points
employing AEM with cubic B-spline (AEM Cubic B-spline), iv) classical nonuniform
torsion solution (CNT) and v) (only for the fixed-pinned case) five collocation points
employing AEM with quartic B-spline (AEM Quartic B-spline). In Figures 3.5, 3.6 and

3.7 the angle of twist 8, (x) along the beam length is presented for the aforementioned

cases. From these figures, it is obvious that the convergence of the CNT results to the
ones retrieved from the AEM with 201 elements of the present study is remarkable.
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Figure 3.3. Deflection w(x) along the length of the cantilever beam of example 1

for uniformly distributed transverse loading.
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Figure 3.4. Deflection w(x) along the length of the beam of example 1 with one

edge pinned for uniformly distributed transverse loading.
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It can also be observed that the AEM with either the quadratic or the cubic B-spline
gives satisfactory results for all different cases of boundary conditions. The errors
comparing to the original AEM with 201 constant elements are ranging from 1 to 10%
for the cases of the two fixed support and the fixed-pinned support. In the last case a
quartic B-spline is employed and the results derived from the AEM almost coincide
with the ones of the original one. Regarding the cantilever beam, the errors are larger
for both the quadratic and the cubic B-spline AEM ranging from 10-20%. An
improvement in the results around 5% is achieved by the employment of the cubic B-
spline. However, a finer discretization should be adopted and a knot insertion
refinement procedure should be implemented.

~
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0.2m
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£ 0002 —
X
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8 0 ¢ Classical Nonuniform
Torsion solution

Beam Length [m]

Figure 3.5. Angle of twist 0, (x) along the length of the clamped beam of example

1 for uniformly distributed twisting moment.

Example 2: Cantilever beams of various cross sections

In this example, in order to further investigate the employment of B-splines in the
AEM and validate their efficiency, three cantilever beams of different lengths and cross
sections are examined (Fig. 3.8). The first beam has a thin-walled rectangular cross
section (E=2.0E8kPa and G=0.77E8kPa) and is subjected to a uniformly

distributed twisting moment m, =10°Nm/m. The second one has a channel section
(E=2.0E8kPa and G =0.77E8kPa) and is subjected to a uniformly distributed

twisting moment m, = —4.07 10° Nm / m, while the third beam has a box shaped cross
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Figure 3.6. Angle of twist 0, (X) along the length of the cantilever beam of example

1 for uniformly distributed twisting moment.
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Figure 3.7. Angle of twist 0, (x) along the length of the beam of example 1 with one

edge pinned for uniformly distributed twisting moment.
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Figure 3.8. Cantilever beams of example 2.

section (E=2.0E8kPa and G =0.77E8kPa) and is subjected to a concentrated
torsional moment M, =100kNm at its free end. The geometric constants of these cross
sections are shown in Tables 3.3, 3.4 and 3.5, respectively. The above described beams
have also been analyzed in the study of Shakourzadeh, Guo and Batoz (1995) and
numerical results for comparison reasons have been retrieved. In that paper, a finite
element is formulated for the torsional problem of thin-walled beams. The element is
based on Benscoter’s beam theory (1954), which is validated for open and closed cross
sections.
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Tables 3.3, 3.4. Geometric constants of the beams in Figs. 3.8a,b.

In Figures 3.9, 3.10 and 3.11, the angle of twist 6, (x) , the warping parameter
n, (x) and the bimoment M & (x) along the length of the first beam (Fig. 3.8a) are

presented for 1) 60 discretization elements employing original AEM technique (AEM
60 NP), 11) three collocation points employing AEM with quadratic B-spline (Quadratic
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Table 3.5. Geometric constants of the beam in Fig. 3.8c.
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Figure 3.9. Angle of twist 0, (x) along the length of the beam of example 2 shown
in Fig. 3.8a.

B-spline AEM), iii) four collocation points employing AEM with cubic B-spline
(Cubic B-spline AEM), iv) Vlasov model solution (Roark and Young, 1975), v) FEM
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Figure 3.10. Warping 1, (X) along the length of the beam of example 2 shown in
Fig. 3.8a.
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Figure 3.11. Bimoment due to primary warping along the length of the beam of
example 2 shown in Fig. 3.8a.
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solution (Benscoter model) and vi) classical nonuniform torsion solution (CNT)
(analogous to 0;()6)).

In Table 3.6, the values of the angle of twist Hx(x), the warping parameter
. (x) and the bimoment M o (x) at the free end of the second beam (Fig. 3.8b) are

compiled for i) 50 discretization elements employing original AEM technique (AEM
50 NP), ii) three collocation points employing AEM with quadratic B-spline (Quadratic
B-spline AEM), iii) four collocation points employing AEM with cubic B-spline
(Cubic B-spline AEM), iv) five collocation points employing AEM with quartic B-
spline (Quartic B-spline AEM) v) Vlasov model solution (Roark and Young, 1975), vi)
Saint-Venant Model (Roark and Young, 1975), vii) FEM solution (Benscoter model)
and viii) classical nonuniform torsion solution with quadratic B-spline representation of
the fictitious load in the fourth order differential equation (AEM-BS).

In Figures 3.12 and 3.13, the angle of twist 60, (x) and the warping parameter

n, (x) along the length of the third beam are presented for 1) 60 discretization elements

employing original AEM technique (AEM 60 NP), ii) four collocation points
employing AEM with cubic B-spline (Cubic B-spline AEM), iii) Vlasov model
solution (Roark and Young, 1975), iv) FEM solution (Benscoter model), v) classical
nonuniform torsion solution (CNT) and vi) Shell model of 154 quadrilateral shell
elements as described in the work of Shakourzadeh, Guo and Batoz (1995).
Additionally, in Figure 3.14, the axial stress as stated in the work of Shakourzadeh,
Guo and Batoz (1995) in eqn. 30 is presented for 1) four collocation points employing
AEM with cubic B-spline (Cubic B-spline AEM), ii) Vlasov model solution (Roark and
Young, 1975), iii) FEM solution (Benscoter model) and iv) Shell model of 154
quadrilateral shell elements as described in the work of Shakourzadeh, Guo and Batoz
(1995).

As can be seen in Fig. 3.9, the results obtained by the AEM of the present study,
as well as the AEM with quadratic and cubic B-splines, differ from the corresponding
values derived by the Benscoter’s model solution and CNT solution, which almost
coincide. This difference is around 5% and, thus, the influence of the secondary
warping can be important for a beam with closed cross section. Regarding Vlasov’s
model solution, the values of the angles of twist are smaller than the corresponding
values given by the AEM with the cubic B-splines by around 15% or more.

From Fig. 3.10, it is obvious that the results of AEM and cubic B-spline AEM
are quite close to the Benscoter’s model solution with deviations around 5%. Cubic B-
splines give more accurate results than quadratic B-splines with respect to the
evaluation of the warping parameter. It can also be observed that Vlasov’s model and
CNT solution give much different results than the other numerical approximations.
Regarding the evaluation of the bimoment, similar comments can be made as it is
obvious from Fig. 3.11.

According to the results compiled in Table 3.6 for the beam with the channel
cross section, it can be observed that the maximum values of the angle of twist obtained
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\L*% ,,,,,,,,,,,, 0, (rad) H;C (rad Im) n.(rad /m)  Bimoment
2
1/6m at x=L or ¥ at x=L (N/m”)
‘; 0.833m at x=L at x=0

0.917 m

Saint-Venant Model] -0.103 - - -

Vlasov Model  -0.045 -0.012 - -18.33E-06

FEM- Benscoter Model  -0.045 -0.011 - -18.17E-06
AEM (50 NP) -0.050 -0.009 -0.010 -16.75E-06

AEM (Quadratic B-spline)] -0.039 -0.006 -0.006 -13.48E-06
AEM (Cubic B-spline) -0.061 -0.013 -0.014 -18.29E-06
AEM (Quartic B-spline), -0.046 -0.008 -0.008 -15.50E-06

Classical Nonuniform Torsion
Solution (AEM-BS) -0.043 -0.011 - -19.13E-06

Table 3.6. Comparison between different methods for the beam in Fig. 3.8b.

by the solutions of the present methods AEM and AEM with quadratic or cubic B-
splines differ from the Vlasov’s and Benscoter’s models by 12% to 35%. However, the
results obtained when employing a quartic B-spline are in good agreement with the
Benscoter’s model regarding the angle of twist and with the original AEM regarding
warping parameter and bimoment. It should be noted that the bimoments calculated for
the presented methods are only due to the primary torsional warping.

Regarding the box beam shown in Fig. 3.8c, the numerical results are given in
Figs. 3.12-3.14 and compared with the results of the shell model. These comparisons
show that the numerical values obtained by the presented methods almost coincide with
the results of the shell and Benscoter’s models. Particularly, the employment of a cubic
B-spline in the AEM gives highly accurate results with respect to the axial stress
estimation. However, Vlasov’s and CNT models lead to important errors.

Example 3: Cantilever Beam of Monosymmetric box-shaped cross section
In the last example, a cantilever beam of a monosymmetric box-shaped cross

section, as this is shown in Fig. 3.15, (E=4x10" kN/m?>,G=2x10" kN/m?,
L =10m) under a concentrated load P, =1000kN eccentrically applied at its tip cross

section, is examined. In Table 3.7 the geometric constants of the cross section are
presented as computed in the work of Dikaros and Sapountzakis (2014) employing pure
BEM. The aforementioned load case has also been analyzed by Ferradi et al. (2013)
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Figure 3.12. Angle of twist 0, (X) along the length of the beam of example 2 shown

in Fig. 3.8c.
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Figure 3.13. Warping 1, (x) along the length of the beam of example 2 shown in

Fig. 3.8c.
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Figure 3.14. Axial stress due to primary warping along the length of the beam of
example 2 shown in Fig. 3.8c.

and in this study proper adjustments have been made so as to account for different
coordinate systems.

In Figs. 3.16-3.18 values of the kinematical components w(x), 6, (x) and

6y (x) are, respectively, presented and compared to the ones obtained from the

FEM beam model presented in the study of Ferradi et al. (2013). From all of the

TPY Z A bp=3.0m

<«

T
y t=0.02 m

g ) c—FY
(]
< E | 003963 m
I |t
= - :

S|

bp=1.0m

Figure 3.15. Cross section of example 3.

aforementioned figures it can be easily observed that the present results and the
corresponding ones of the FEM model presented in Ferradi et al. (2013) are in excellent
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agreement. Regarding the AEM with the B-splines, it should be noted that the AEM
with cubic and quartic B-splines coincide with the original AEM of the present study
either with constant or linear elements (Dikaros and Sapountzakis, 2014). It is also
obvious that the AEM with the quadratic B-spline gives slightly different results from
the ones of the aforementioned models.

6
2 = —
A=1.1960E—01m I s,s =T71889E-05m
_ _ 4 S _ 5
1,, =5.65T0E—02m Lp o =—28455E—04m
_ — 0 ot _ —04 5
Iyy =1.9962E—02m Ip s =15685E—04m
I, » =9.9893E—04m" Al =6.3665E—02 m*
PcyPcy
AS =2.3014E—03 m? 1P =2.0184E-02 m*
15 =3.7487E-03 m* 17 =1.4397E-04 m*
_ _ 3 _ 3
Dys s =~92153E=04m’ D r =0.00000000E+00m
I p 5 =0.00000000E+00m° I , p =0.00000000E+00m’
PczPs PczPs
I, » =7.0222E—-04m* AL =32130E-02m?
PczPcz
_ 3 _ _ 3
Dys s =0.00000000E+00m°>  Dyys i =3.0309E —04 m
I p p=9.2289E—04m° AS =7.2076E —03 m*
Ps Ps

Table 3.7. Geometric constants of the beam in Fig. 3.15.

In the same figures, the maximum values are also presented for all of the models
studied. An improvement in the results is achieved by the employment of the quartic B-
spline. However, the AEM with the cubic B-spline gives highly accurate results with a
much smaller computational effort comparing to the original AEM.

In Fig. 3.19 a model of the beam implemented in FEMAP (2010) employing
FEM quadrilateral solid elements is shown. In the same figure the total deflection is
also recorded. Regarding the aforementioned kinematical components, their values
almost coincide with the corresponding ones obtained by the use of the cubic B-spline
in the AEM without any need for refinement. It is worth here noting that in order to
obtain the distributions of the kinematical components from the solid model, rigid
diaphragms were placed in regular distances, permitting the measurement of rotation
angles and translations of the reference nodes. The existence of diaphragms also
ensured the absence of local distortional phenomena of the cross sectional profiles. In
order to compare the computational effort for the different numerical models, the
computational times have been recorded. Particularly, the real computational time for
the analysis of the solid model in FEMAP (2010) is 5.3 seconds, 0.5 second for the
analysis when employing the AEM with cubic B-spline, 2.8 seconds for the AEM with



Generalized static and dynamic warping analysis of Straight Beams with I[sogeometric Methods

Displacement -w(x)/10 [m]

Figure 3.16. Deflection —w(x) /10 along the length of the beam of example 3.
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Figure 3.17. Angle of twist 0, (x) along the length of the beam of example 3.
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Figure 3.19. Model in FEMAP (2010) employing 780 quadrilateral solid finite
elements. Deflection w(x) is displayed along the length of the beam

of example 3.

200 constant elements and 1 second for the CNT. It should be noted here that all the
analyses have been carried out in the same computer, without any effort for
optimization, the run times mentioned consist of times for the assembly as well as the
solution and the languages used were VBA (Visual Basic for Applications) and Matlab
tool. However, other aspects should also been considered in order to estimate the
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computational effort needed with respect to the accuracy of the results, as it is
mentioned in Chapter 2.

In Fig. 3.20, the values of the axial stress due to bending and primary warping
obtained along the length of the beam when employing either original AEM or AEM
with B-splines are shown and compared to the ones obtained from the FEM beam
model shown in Fig. 3.19. Moreover, in Fig. 3.21, the values of bimoment due to
primary warping are displayed when employing original AEM with 200 NP, AEM with
cubic B-spline, either having 4 control points along the whole length of the beam or
more after knot insertion (Appendix A.2), and CNT with 201 NP. It is obvious that the
results obtained by the use of CNT are inaccurate, especially for the first quarter of the
length of the beam, due to the fact that the primary warping is not accurately estimated.
In addition to this, the results coincide with the original AEM, which has been
validated through comparisons with solid models and it is considered accurate, when
employing knot insertion for the cubic B-spline. The need for knot insertion becomes
imperative due to the fact that the cubic B-spline with 4 control points fails to describe
accurately the distribution of bimoment due to primary warping along the length of the
beam with arising errors being around 20%. Degree elevation (with quartic B-spline)
improves the accuracy of the results by around 10%.

3.5.2 Dynamic Case

Example 4: Spectra of natural frequencies and Computational times

In the fourth example, two simple special cases of the problem described by eqns.
(3.2) have been studied for simplicity and comparison reasons aiming to verify the
proposed numerical method (AEM with constant or quadratic elements in its original
form) and demonstrate its efficiency comparing to other methods.

The first one is the eigenproblem representing the free longitudinal vibration of a

beam fixed at both ends described by elastodynamic eqn. (3.2a), considering p,=0.
The beam is assumed to move only in the longitudinal direction. The characteristics of

the beam (E* ~E, A and p) are considered equal to 1 as in §5.1.2. of Hughes et al.

(2009). Then, eqn. (3.2a) can be written in matrix form according to AEM as follows

—p[B]{éj}+E{q}=0, q( x,t)=u,,, (3.15)

which is subjected to the initial conditions (3.3a,b) and the corresponding boundary
conditions (3.4a) (x €(0,/)) with a; =1,a, = a3 =0. The analytical solution of the free
axial vibration problem can be obtained as w, =nx, for n=1,..,0. Computer
programs have been written in order to solve eqn. (3.15) of AEM and the
elastodynamic eqn. (3.2a) either employing classical C? -continuous quadratic FEs or

¢! -continuous quadratic NURBS functions. The quality of the numerical methods
employed is assessed by comparing the ratio of the numerically computed frequencies
with the analytical result. FEs and NURBS solutions are identical to those presented by
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Hughes et al. (2009). However, in this study AEM (in its original form) results have
been added and compared with respect to computational time and effort. The analyses
were carried out employing 1000 degrees of freedom (dofs) for all of the numerical
methods for comparison reasons.

In Fig. 3.22 the normalized natural frequency results (ratio of the numerical
solution to the analytical one) versus the ratio of the mode number # to the total number

1.3 —
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Figure 3.22. Normalized discrete spectra of natural frequencies employing FEM,
IGA and AEM for the free axial vibration of a fixed beam.

of dofs (N=1000) has been plotted. According to Hughes et al. (2009) and from Fig.
3.22, it is obvious that NURBS functions exhibit a better behavior comparing to FEs
and AEM with constant or quadratic elements. In the case of piecewise linear FEs, loss
in accuracy of the results exhibits a highly increasing rate over the most of the
spectrum. Thus, quadratic FEs need to be employed. In this case, the finite element
results depict the so-called acoustical branch for n/N < 0.5 and an optical branch for
n/N > 0.5 (Hughes et al., 2009). This branching is due to the fact that each basis
function is associated with each node, as with the piecewise linear basis, and in this
case there are two distinct types of functions: those associated with the end-point nodes
at element boundaries, and those corresponding to mid-point nodes on element
interiors. The same case is for the AEM with quadratic elements but without
significantly increasing loss of accuracy, as it is the case in quadratic FEM. However,
the influence of branching is much smaller in this case and this is attributed to the AEM
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matrices constructed (eqns. (A.1.48) and (A.1.51) of the Appendix A.1) which are the
results of sequential integrations by parts employing all discretization elements for each
data entry associated with each collocation point (named the pole in BEM). This is the
reason why matrices in AEM, which is BEM-based, are fully populated and not
diagonal like in FEM. Alternatively, the quadratic NURBS basis functions, and thus
differential equations of the algebraic system, are all identical, and no such branching
takes place. Finally, AEM with constant elements gives highly accurate results (5%
error comparing to NURBS) and no branching takes place. The values of
computational time needed in order to calculate the numerical frequencies are compiled
in Table 3.8. All of the numerical methods demand a computational time of the same
order of magnitude.

Numerical method (1000 dofs) | COMpuiational time
(seconds)
Quadratic FEM 11.42
Quadratic NURBS 11.18
Linear FEM/NURBS 12.37
Constant AEM 10.27
Quadratic AEM 10.46

Table 3.8. Computational time of free axial vibration analysis for the numerical
methods presented in Fig. 3.22 (one kinematical component).

The second special case of the eqns. (3.2) studied is the eigenproblem of the free

torsional vibration considering STSDE and m, = mp = 0. The beam is subjected only
S

to torsion and warping. The characteristics of the beam (E* ~E, A IF,
ItS , I(pp(pp, I, and p) are considered equal to 1 for simplicity. Then, eqns. (3.2f) and
SFSs

(3.21) can be written as

PLp0yy =G (I +17 )0y +GIP 1, =0 (3.16)

S
pl(/’§¢7§77x’t’ h EI(pé’rp;’ Myxx ™ GI, (77x - ex,x) =0 (3.16b)

while boundary conditions remain the same as stated in eqns. (3.3k, 1), (3.3q, r), (3.4f)
and (3.41) with

My =M +M} =GI[0, . -GI (n,-0,.) (3.17a)

M (3.17b)

=FI
by oLl Tx.x
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and 6, =1,6,=0,=0,6,=1,6, =5, =0.

Finally, eqns. (3.16) can be written in matrix form according to AEM as

[ plpby;; plpby; Héjl}+

| PLororliar PLororbix | |4
[ P 4S N N
~G(1] +17)+GI by, GI by, a
(3.18)
Gl by ~Gl by —El oror TOI +bi22 =Gl by | 142

S
plpr+Gliry,

0
i =3 0 q( 1) =0y 1. qo( x,1) =

Ploryriiz +GI;'r; =G}y, {0} o oo 42 T xx
SYS

where 7,0, j=1,2 are the values compiled in {R} and {R’} (eqns. (A.1.52) of the

Appendix A.1), which are equal to zero for homogenous boundary conditions, while

bijk,i, Jj,k=1,2 are the values in [B] and [B'] (eqns. (A.1.51) of the Appendix A.1).

Thus, the numerical solution employing AEM with constant or quadratic elements can
be obtained. Due to the fact that it is quite cumbersome to derive the analytical
solution, normalization has been done with respect to the results of AEM with 2000
constant elements (4000 dofs for two kinematical components) which in fact are quite
close to the corresponding ones obtained by the analysis of a solid FEM model, as it is
also implied in the examples of Dikaros et al. (2016) (88 elements per meter of length
used in the AEM give discrepancies less or around 1% comparing to solid FEM
models). Comparisons have been made between AEM, FEM and NURBS solutions for
different orders and number of elements (i.e. “FEMS500 2nd” means 500 quadratic
FEs).

In Fig. 3.23, as in Fig. 3.22, the normalized natural frequency results (ratio of the
numerical solution to the “approximate” analytical one given by AEM) versus the ratio
of the mode number n to the total number of dofs (N=1000) has been plotted. The
branching mentioned in Fig. 3.22 for quadratic FEM is again obvious in Fig. 3.23 for
“FEMS500 2nd” with the jump displaced in n/N = 0.85. This implies higher accuracy
comparing to the previous example due to the larger number of dofs (2002 dofs). The
same case is for the AEM with quadratic elements and for the same number of dofs but
with a much smaller influence of the branching in the accuracy of the results. It should
be noted here that quadratic AEM spectrum exhibits two small jumps at n/N = 0.55 and
n/N = 0.80 due to the fact that there are two kinematical components in this case. Two
jumps are also depicted for the case of “FEM300 2nd” where the total number of dofs
is 1202. The increasing loss in accuracy is conspicuous. More accurate results are
obtained by “NURBSS500 2nd”, “FEM1000 1Ist” and “AEM1000”. It should be noted
here that there is a “knee” at /N = 0.85 for the “NURBSS500 2nd” and a steep decrease
in accuracy after this point. A similar “knee” can be observed in “AEMS500” at n/N =
0.80 but with a smaller decrease in accuracy after this point. Highly accurate results
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Figure 3.23. Normalized discrete spectra of natural frequencies employing FEM,
IGA and AEM for the free torsional vibration with STSDE of a fixed

beam.
Numerical method (<2000 dofs) Computational time
(seconds)

FEMS500 2nd 4491

NURBS1000 2nd 43.19

FEM1000 1* 52.94

AEM1000 31.45

AEM333 2nd 31.90

Table 3.9. Computational time of free torsional vibration analysis for the numerical
methods presented in Fig. 3.23 (two kinematical components).

(maximum discrepancy 2.5% at n/N=1.00 and less than 0.5% for 0<n/N<0.90) and
smooth spectrum curves have been achieved by “NURBS1000 2nd” and “AEM333
2nd” which employ around 2000 dofs. The values of computational time needed in
order to calculate the numerical frequencies are compiled in Table 3.9. All of the
numerical methods demand a computational time of the same order of magnitude.
However, comparing with the time in the previous case of one kinematical component,
the increase is smaller for the AEM technique than that of the other methods examined.
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Similar plots of spectra can be derived for free transverse or bending vibrations as
well as for the generalized vibration case presented in this chapter. Regarding accuracy
and computational effort of the different methods studied, conclusions are similar to the
previous cases studied. In Fig. 3.24, computational time of various numerical methods
versus dofs for different problems derived from the general one described by eqns.
(3.2) has been plotted. It is obvious that the rate of change while number of dofs
increases is steeper for FEM with quadratic elements and quadratic NURBS comparing
with AEM, either with constant or quadratic elements which computational time is
similar for. The same case is for FEM with linear elements but with larger
computational time comparing to all other methods. Thus, AEM technique seems to be
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Figure 3.24. Computational time of different numerical methods for increasing
number of dofs.

computationally more efficient as the number of the unknowns increases comparing to
all other methods. Finally, it should be noted here that the number of dofs is selected to
be the same for all of the numerical methods employed and large enough in order to
adequately describe the whole frequency spectrum that each method produces.

Example S: Eigenfrequencies and convergence rates
In the fifth example, the free torsional vibration of two steel ( E=2/0GPa,

G =80.8GPa, p=8.002kN sec’/m*) bars of different lengths and cross sections,
clamped at both ends have been studied. Particularly, the eigenproblem described by
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eqns. (3.16) has been solved and the first four eigenfrequencies have been obtained
employing different numerical methods. Fig. 3.25 shows the properties of the models
created. B-splines have been employed in AEM for the representation of the fictitious
load, as earlier described. Comparisons have been made with the results of FEM solid
models (Sapountzakis et al., 2016) and AEM with quadratic elements in order to verify
the proposed formulation and demonstrate the improvement of the original AEM when
comparing to the AEM with B-splines.
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Figure 3.24. Cross sections of bars of example 5 along with their lengths and
boundary conditions

Results have been compiled in Table 3.10 for the two cross section cases. It is
obvious that in general more discretization elements need to be employed for the case
of the cruciform cross section especially for higher frequencies. However, AEM with
quartic B-splines improves the results for both cross sections with only 10 dofs
(actually is the same to one discretization element) and without the need of knot
insertion only for the rectangular cross section comparing to FEM solid and AEM with
quadratic elements (300x3=900 dofs). Accurate results for the cruciform case (errors
less than 5%) can be achieved by inserting 2 more knots (4 dofs more). AEM with
cubic B-splines gives accurate results for rectangular cross section while knot insertion
needs to be employed in the cruciform section case in order to obtain the first three
modes. To obtain accurate values 8 new knots need to be inserted (16 additional dofs).
This could be explained considering the fact that a quartic B-spline can simulate better
the eigenmode of the cruciform cross section than the cubic one. Moreover, this cross
section is very thin-walled (thickness/width <<0.1 and height/length <<0.1) and
extremely suffers from out-of-plane warping (very low warping rigidity,

Cs =1 p,r <<I, = +17 +1[)). It should be noted here that the rest of the cross
S7s

sections employed in this example have in general much higher warping rigidities
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(Cg = I(pp(pp >> [,) as well as much higher height to length ratio due to the fact that

these are more frequently encountered in structural engineering practice. These
limitations could be used as a rule of thumb in choosing the least number of elements
and the optimum order of the approximation curve in order to achieve the maximum
accuracy when the proposed method is employed. However, if the two ratios mentioned
above become much lower than that of the cruciform cross section, it might be
necessary to employ more elaborate beam theories or even solid models.

3d FEM AEM AEM AEM
Mode (278000 (300 Cubic B-  quartic

Number 3d 6edral quadratic  splines  B-splines
quad) elements) (20 dofs) (10 dofs)

Hz Errors (%)
1 11.07 491 9.05 9.34
cruciform 2 22.16 4.85 8.18 11.79
section
3 33.28 477 9.83 4.69
4 44.48 4.59 31.52 16.02

3dFEM AEM (50 AEM AEM
Mode (40960  quadratic Cubic B-  quartic
Number 3d 6edral elements) splines  B-splines

quad) (8 dofs) (10 dofs)
Hz Errors (%)
1 193.07 0.32 1.04 0.38
%}ngular 2 389.16 0.61 0.02 0.25
section 3 59027  0.95 9.39 0.49
4 797.14 1.25 2.82 6.52

Table 3.10. Eigenfrequencies and errors for the free torsional vibration problem of the
beams shown in Fig.3.24.

In Fig. 3.25 the numerical errors versus the discretization quadratic elements
employed in AEM have been plotted for the cruciform section case. The method
converges in a high rate when the elements employed are increased up to 100, which is
almost the first one third of the elements used in order to obtain the maximum accuracy
(or the minimum error taken less than 5%). AEM with cubic B-splines fails to capture
the eigenfrequencies of the third and fourth modes without knot insertion (8 dofs).
When knot insertion is employed (20 dofs) only the fourth eigenfrequency cannot be
accurately evaluated. The large difference in errors after knot insertion implies high
convergence rate for the AEM with cubic B-splines.

Two cases of the free generalized vibration problem (eqns. (3.2)) have been
studied in the second example, too. The first case is a steel (E=210GPa,
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G =80.8GPa, p=7.85kN sec’/ m4) beam of a HEB500 cross section, as shown in
Fig. 3.26a and Dikaros et al. (2016), of length L=2.5m clamped at both ends. The

40 —

Convergence of AEM with quadratic elements
frequencies of mode 1
frequencies of mode 2
frequencies of mode 3
frequencies of mode 4

error (%

0
\ \ \ \ \

50 100 150 200 250 300
total number of elements

Figure 3.25. Convergence rate of the AEM with quadratic elements for the
cruciform cross section of example 5.

second one is a steel (E =40GPa, G =20GPa, p =7.85kN sec’/ m4) cantilever beam

of a box-shaped cross section, as shown in Fig. 3.26b, of length L=10m. Fig. 3.26
shows also the properties of the aforementioned cross sections. B-splines have been
employed in AEM for the representation of the fictitious load, as earlier described.
Comparisons have been made with the results of FEM solid models and AEM with
quadratic elements.

Results have been compiled in Table 3.11 for the two cross sections. Highly
accurate results have been obtained when employing either cubic or quartic B-splines
in the AEM technique for both cases examined. In addition to this, there is no need for
knot insertion. Discrepancies from solid model are in general smaller in the first case of
the HEB section keeping the same dofs number.

Finally, the convergence of the proposed formulation is studied with respect to
the eigenfrequencies of the box-shaped cross section described above. For this purpose,
the log-log scale plots have been created for increasing number of elements and
different numerical methods, namely original AEM with quadratic elements
(“AEM2nd”) and AEM with NURBS, of up to the fifth order, integrated
(“AEMNURB2nd”, “AEMNURB3rd”, “AEMNURB4th” and “AEMNURBS5th”). It
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can be concluded that the convergence rate is improved when employing NURBS in
the AEM technique and the order is increased for few elements.

28mm
l ) 854mm| A(em®)=239.11 2 (cm*)=12624.32
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Fig. 3.26. Cross sections of bars of example 5 along with their cross section

propetrties.

) =1568500

3.6 Concluding Remarks

In this chapter, a BE based technique, called AEM either in its original form or
combined with Isogeometric tools is developed and studied for the generalized static
and free vibration problem considering warping effects of arbitrarily shaped cross
section beams supported by general boundary conditions. Quadratic, cubic and quartic
B-spline curves are introduced for the representation of the fictitious load in order to
implement an Isogeometric method for the numerical simulation of the static problem
described above. Special cases of the general vibration problem have also been
examined in order to compare the results of IGA with those of AEM and FEM. The

main conclusions that can be drawn from this investigation are:

I.  Regarding the static problem

1. In most cases, highly accurate and stable results can in general be obtained by
using a quadratic B-spline curve without the need for any refinement. However,
in some cases a finer discretization is needed. In cases where shear lag effects are
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not negligible, a cubic or a quartic B-spline representation of the fictitious load
gives more accurate results (i.e. box-shaped cross sections).

3dFEM  AEM (30 AEM AEM
2 Mode (243003d  quadratic  Cubic B-  quartic B-
e Number 6edral elements)  splines (8 splines
quad) dofs) (10 dofs)
Hz Errors (%)
500mm)
1 203.11 0.02 0.80 0.03
—{ [ 14.5mm
2 238.33 0.05 1.78 0.37
«— 300mm
HEB500 3 415.93 0.01 0.14 0.06
section
4 473.25 0.02 1.52 1.84
3dFEM  AEM (30 AEM AEM
Mode (780 3d quadratic ~ Cubic B-  quartic B-
Number 6edral elements)  splines (8 splines
quad) dofs) (10 dofs)
Hz Errors (%)
1 0.85 4.33 3.65 4.31
Box-shaped
section 2 1.32 1.10 1.20 1.10
3 1.99 0.65 1.99 1.98
4 3.01 2.65 3.81 3.56

Table 3.11. Eigenfrequencies and errors for the free generalized vibration problem of

il.

1il.

1v.

the beams with cross sections shown in Fig.3.26.

CNT fails to give accurate results in the evaluation of primary warping
distribution and axial stresses or bimoments due to primary warping in the case of
closed cross sections. Results are quite close to those obtained by employing the
Vlasov model. The same case is for the Saint Venant model regarding torsion and
the Euler-Bernoulli model regarding bending.

A FEM element formulation based on Benscoter’s beam theory (1954) gives
highly accurate results only in the case of torsional loading and it is used to
validate and compare with the results obtained by the application of the present
method.

The computational effort is much less using B-splines due to the fact that the
number of the unknowns is restricted to the number of the control points which
depends on the order of the B-spline used.

A cubic B-spline is proposed in order to improve the accuracy of AEM and
simultaneously reduce the computational effort for this particular application due
to the fact that its application makes possible to accurately describe the behavior
of a beam subjected to the most general loading and boundary conditions by the
least computational cost comparing to all other methods mentioned in this paper.
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Fig. 3.27. Comparison of eigenfrequencies’ convergence on log-log scale plots for the
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first four modes of the box-shaped beam of example 5.

Regarding the dynamic problem

AEM technique with constant elements exhibits no branching in the normalized
frequency spectrum, as it is the case in quadratic FEM elements, while it
maintains accuracy in the results of high frequencies. Quadratic elements in AEM
depict a branch with much smaller impact than FEM, while they improve the
accuracy comparing to AEM with constant elements.

Computational time becomes smaller for the AEM technique as the number of
dofs increases comparing both to FEs and NURBS. However, the most accurate
results can be obtained for the whole spectrum of frequencies when employing
NURBS.

Convergence rate of AEM with constant or quadratic elements can be improved
when B-splines or NURBS are used for the representation of the fictitious loads.
This would make it possible to obtain the desired level of accuracy without
increasing discretization elements in a disproportionate way.

In cases of very thin-walled beams, which are susceptible to warping and
torsional phenomena, more elements need to be used for the AEM technique with
constant or quadratic elements. Quartic and cubic B-splines with or without knot
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insertion can help to reduce number of unknowns drastically while keep the
accuracy on a high level.
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Chapter 4

Generalized static and dynamic
warping analysis of Curved Beams by
Isogeometric Methods

4.1 Introduction

Comparing to straight beam formulations, the behavior exhibited by curved
beams is far more complex regarding twist deformations. It is well known, that in case
of a horizontally curved beam under transverse loading not only vertical displacement
but twist deformation with respect to its longitudinal axis arises as well and this cannot
be captured by traditional Euler-Bernoulli or Timoshenko beam elements. Both of these
theories maintain the assumption that cross sections remain plane after deformation.
Even though the formulation remains simple, it fails to capture higher order phenomena
such as “shear lag”, which are associated with a significant modification of normal
stress distribution due to nonuniform shear warping (Dikaros and Sapountzakis, 2014).
This phenomenon has been reported long ago (Reissner, 1946; Malcolm and Redwood,
1970; Moffatt and Dowling, 1975;) in many structural members such as beams of box-
shaped cross sections, folded structural members or beams of materials weak in shear.
In up-to-date regulations, shear lag effect in flexure is considered in the analysis by the
“effective breadth” concept (Eurocode 3, Part 1.5, 2004; Eurocode 4, Part 1.1, 2004;
Eurocode 3, Part 2, 2004). However, this simplifying approach may fail to capture
satisfactorily the actual structural behavior of the member, since the influence of shear
lag phenomenon is not constant along the beam length, while apart from the
geometrical configuration of the cross section it depends also on the type of loading (Ie
and Kosmatka, 1992; Katsikadelis and Sapountzakis, 2002). Similar considerations
with the ones made for flexure could be also adopted for the torsional problem, which
is also encountered in the analysis of curved-in-plan beams. In the case of torsional
loading where the longitudinal displacements that create warping are restrained due to
boundary conditions, the arising torsional moment is nonuniform, as mentioned in
Chapter 3. The aforementioned prevention of warping leads to the development of
normal stresses, which are proportional to warping and therefore vary along the length
of the bar (nonuniform torsion). Considering the above, the influence of shear lag
phenomenon due to both flexure and torsion, which is not constant along the beam
length, should be also considered for curved geometries. These problems have been
extensively examined in the literature but mainly for straight beams. Regarding curved
beam formulations, a series of straight-line segments is generally used in practice in
order to approximate the curved geometry though ignoring warping transmission
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between these segments, as mentioned in Chapter 3. Vlasov (1961) presented a solution
for curved beams with open arbitrary cross sections. Then, Dabrowski (1965) gave an
analysis for closed box-shaped cross sections. Having in mind the above, it is easily
concluded that the influence of shear lag phenomenon due to both flexure and torsion,
which is not constant along the beam length, should be also considered for curved
geometries. The early curved beam models that have been formulated are either
restricted to the analysis of only the beam behavior in the plane of curvature (Zhu et al.,
2010; Cazzani et al., 2014; Cazzazi et al., 2016) or do not take into account secondary
shear deformation effect caused by nonuniform warping (Heins and Spates, 1970; Luo
and Li 2000; Luu et al., 2015), while other efforts consider only doubly symmetric
cross sections (Koo and Cheung, 1989; Zhu et al., 2016). In general, even in recent or
past years, although the planar problem has been extensively studied, comparatively
little work has been done concerning the general three dimensional, non-planar, or
coupled lateral-torsional responses of curved beams (Yoo, 1979; Rosen and
Abromovich, 1984; Koo and Cheung, 1989, Gendy and Saleeb, 1992; Zhu et al, 2010).

The above described effects may become substantial in complex structural forms
comprising box-shaped homogeneous or composite cross sections, curved members,
short spans or arbitrary loading. Thin-walled straight or curved structures having open
or closed cross-section, which are widely used in bridge engineering due to their large
bending and torsional rigidities as well as their low self-weight, suffer from these
effects. Hence a realistic estimation of stress state employing conventional beam
elements becomes difficult, since generally commercial programs consider six degrees
of freedom (DOFs) at each node of a member of a spatial frame, ignoring in this way
all the warping effects due to corresponding warping restraint (Murin, 1998; Murin,
1999; Murin, and Kutis, 2002). Therefore, it can be concluded that in order to
accurately estimate and assess the actual stress state of a spatial framed structure more
rigorous analyses need to be performed. Even though refined models based on
shell/plate or solid finite elements provide the means to perform such analyses, the
inclusion of nonuniform warping effects in straight or curved beam elements based on
so-called “Higher Order Beam Theories” (El Fatmi, and Ghazouani, 2011; Ghazouani,
and El Fatmi, 2011; Sapountzakis, and Tsiptsis, 2015) is of increased interest due to
their important advantages over more elaborate approaches such as traditional solid and
plate models. More specifically

* A Beam formulation reduces significantly modeling effort (solid models require
cumbersome post- and pre-processing even in relatively simple cases).

* It permits isolation of structural phenomena and results interpretation contrary
to the reduced oversight of the 3-D Finite Element (FEM) models (quantities such as
rotation, warping parameter, stress resultants etc. are also evaluated in contrast to solid
model which yields only translations and stress components).

« It allows straightforward model handling (support modeling and external
loading are easily applied).

« It avoids difficulties in discretizing a complex structure, while the resulting
increased number of DOFs of the 3-D models leads to severe or unrealistic
computational time.
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* It avoids difficulties in discretizing a structure including thin-walled members
(shear-, membrane-locking phenomena).

« It facilitates parametric analyses (solid modeling often requires construction of
multiple models).

* It does not require shape functions for the kinematical components; hence the
minimum number of elements can be employed, while the accuracy of function
derivatives is not compromised.

* The use of shell or plate elements cannot give accurate results since warping of
the walls of a cross section cannot be taken into account (midline model).

When compared to the effort involved in static analysis, there has not been much
effort put into the dynamic analysis of curved box girder bridges (Heins, and Sahin,
1979). The geometric complexities and the spatial coupling effect between bending and
torsion make the analysis of curved bridges difficult. Bridge design codes usually
provide guidance for the dynamic analysis of straight bridges (dynamic amplification
factor, natural frequencies, modelling of vehicles, placement of diaphragms etc.). These
design recommendations have been used by some designers for curved bridges, even
though some researches carried out (Cantieni, 1983; Ontario Highway Bridge Design
Code, 1983; Billing and Green, 1984) revealed that need to be reviewed. When bridges
are curved, different kinds of loads can cause lateral bending and torsional modes of
vibration in addition to the common longitudinal or flexural modes of vibration and so
there are still many possible as well as crucial problems to be investigated regarding the
dynamic response, for example, forced vibration due to moving loads and earthquake,
vehicle-bridge coupling vibration, and wind-induced vibration (Shi et al., 2009; Huang
et al., 2012; Dimitrakopoulos and Zeng, 2015; Jun et al. 2014). Some research efforts
analyzed out-of-plane vibrations of beams either with uniform or varying cross section
and curvature (Huang et al., 2000; Tifek¢i, and Dogruer, 2006). In other studies, the
dynamic responses of thin-walled curved box girder bridges due to truck loading have
been investigated. The curved box girder bridges has been numerically modelled using
finite elements which take into account the torsional warping, distortion and
distortional warping (Huang et al., 1998; Nallasivam et al., 2007). Finally, to the
authors’ knowledge, the effects on linear and nonlinear vibrational responses of
translational and rotational springs at the ends of a beam have mainly been investigated
for straight geometry formulations (Wattanasakulpong and Chaikittiratana, 2014). In
addition to this, most of the previous models have been formulated for specific type of
loading and cross section either considering or not some higher order phenomena.

In this chapter, the static and dynamic generalized warping problem of
horizontally curved beams of arbitrary cross section, loading and boundary conditions
is presented. The proposed beam element possesses ten degrees of freedom (DOFs) per
node in order to account for out-of-plane nonuniform warping due to both flexure and
torsion (shear lag due to both flexure and torsion). This element can be employed in the
analysis of curved bridge decks of open or closed (box-shaped) cross section. Except
for these effects, curvature influences also the internal forces and deformations of the
curved continuous beam, even for dead loading, due to the fact that the curved beam
produces coupling between axial force, bending moments and torque, leading to the
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development of both angle of twist and displacement in the radial direction. Great
curvature can be considered in order to formulate the expressions of normal and shear
strains. Thus, the sectorial properties related to the thickness-curvature effect, which
need to be considered in cases of large subtended angle and small radius, are included
in this study. The numerical solution of the problem is obtained by Isogeometric tools,
either integrated in the Finite Element Method (FEM) (Hughes et al., 2009) or in a
Boundary Element based Method (BEM) called Analog Equation Method (AEM)
(Katsikadelis, 1994 and 2002b). When pure AEM is considered, constant or quadratic
elements are employed in order to represent the fictitious loading. To the authors’
knowledge Isogeometric analysis (IGA) is for the first time employed in the static and
dynamic design of curved beams with higher order beam theories, especially combined
with a BEM-based method. The developed horizontally curved model takes into
account simultaneously in and out of the curvature’s plane flexure, extension and
torsion and permits the investigation of their coupling. The structure (e.g. bridge deck)
is subjected to the combined action of arbitrarily distributed or concentrated axial and
transverse loading, as well as to bending, twisting and warping moments. Its edges are
subjected to the most general loading and boundary conditions, including also elastic
support. The displacements of an arbitrary point of the cross section is obtained as the
sum of the St. Venant solution combined with residual displacements due to end-
effects (Pai, 2014) which are responsible for the generation of self-equilibrating stress
distributions (Reagan and Pilkey, 2002). These additional displacements are written as
a sum of two-dimensional functions (out-of-plane warping functions) multiplied by
independent parameters expressing their longitudinal intensity (El Fatmi and
Ghazouani, 2011; Ghazouani and El Fatmi, 2011). Particularly, nonuniform warping
distributions are taken into account by employing four independent warping parameters
multiplying a shear warping function in each direction and two torsional warping
functions, which are obtained by solving corresponding boundary value problems,
formulated exploiting the longitudinal local equilibrium equation (Sapountzakis and
Tsiptsis, 2015). Finally, by employing a distributed mass model system accounting for
longitudinal, transverse, rotatory, torsional and warping inertia, ten boundary value
problems, described by second-order differential equations, with respect to the variable
along the beam, time-dependent and one-dimensional kinematical components are
formulated. Free vibration characteristics and responses of the stress resultants and
displacements to static and moving loading have been studied. The warping functions
and the geometric constants including the additional ones due to warping are evaluated
employing a pure BEM approach. It should be noted here that the sectorial properties
related to the thickness-curvature effect need to be considered in cases of large
subtended angle and small radius due to the fact that the arising differences become
considerable (Kim and Kim, 2005).

The essential features and novel aspects of the formulation described in this
Chapter compared with previous ones are summarized as follows:

1. The proposed formulation is capable of the complete analysis of spatial curved
beams of arbitrary closed or open cross section with one plane of constant
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curvature (either small or great) considering flexural-torsional shear lag effects

and transverse loading to the plane of curvature (as is usually the case in

practice). The necessity to include nonuniform warping and STSD effects in the
dynamic analysis of curved bridge decks is demonstrated.

ii. The developed beam formulation reduces significantly modelling effort due to
the fact that there is no need for pre-processing in order to define geometry,
which is an important issue even in simple curved beams. Moreover, it allows
straightforward model handling (boundary conditions, external loading are easily
modelled) compared with three-dimensional solid curved beam models.

iii. It avoids difficulties in discretizing a structure including thin-walled members
(shear-locking, membrane-locking phenomena).

iv. A BEM based technique is for the first time used in the generalized analysis of
curved beams.

v. The numerical solution of advanced beam theories and its application to the
analysis of horizontally curved beams is based on B-splines (for straight beam
formulations see: Sapountzakis and Tsiptsis, 2014; Sapountzakis and Tsiptsis,
2017) and NURBS (Isogeometric Analysis) offering the advantage of integrated
computer aided design (CAD) in the analysis (Koo et al., 2013). In addition to
this, the order of the basis functions can be defined by the user.

Numerical examples are worked out to illustrate the method, designate its
efficiency, accuracy and computational cost, as well as verify its integrity comparing
with the results of traditional methods used for the analysis of beams. NURBS and B-
splines of various degrees have been employed. Knot insertion and degree elevation are
proved to be very beneficial in refining the B-spline curve and increasing the accuracy
(Hughes et al., 2009).

4.2 Statement of the problem

4.2.1 Curved beam model and generalized warping

A prismatic curved beam element of arc length L with an arbitrarily shaped cross
section of homogenous, isotropic and linearly elastic material with modulus of
elasticity E and shear modulus G, occupying the region € of the yz plane (Fig. 4.1a)
is considered in Fig. 4.1b. The boundary of the region €2 is denoted by I'. This
boundary curve is piecewise smooth (i.e. it may have a finite number of corners) and
contains a finite number of inclusions. In Fig. 4.1 CXYZ is the principal bending
coordinate system through the cross section’s centroid C (considered as the flexural

system with no lack of accuracy), while y-, zo are its coordinates with respect to
Sxyz reference coordinate system through the cross section’s shear center S . It holds
that yo=y—Y and z,=z—Z. The initial radius of curvature, which is considered

constant in one plane, is denoted by R and can be parallel either to Z or to Y axis
depending on the system of axis considered (Fig. 4.1a). The beam element is subjected
to the combined action of arbitrarily distributed or concentrated axial loading

P, = p,(X) along X direction, transverse loading Py =P, (x) and p, = p (x) along
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the y, z directions, respectively, twisting moments m, =m, (x) along x direction,
bending moments my =my(x), m, =m,(x) along Z,Y directions, respectively, as

well as to warping moments (bimoments) mp=m_p x), m o =M x),

mp=m_p (x) and M, =M, (x) (Fig. 4.1b) (Sapountzakis and Tsiptsis, 2015).
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Figure 4.1. Prismatic curved beam under axial-flexural-torsional loading (b) of an

arbitrary homogenous cross section occupying the two dimensional
region Q (a)

Under the action of the aforementioned arbitrary external loading and of
possible restraints, the beam member is leaded to nonuniform flexure and/or
nonuniform torsion. It is well-known that the bending moment at a beam cross
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section represents the distribution of normal stresses due to bending (primary normal
stresses 0';). It is important to notice here that comparing to straight beam

formulation, the normal stress distribution is no more linear and follows a hyperbolic
function (Fig. 4.2). Due to the aforementioned bending moment variation along the
beam length (nonuniform bending and in a similar way for nonunifrom torsion),
shear stresses arise on horizontal sections of an infinitesimal curved beam element
(Fig. 4.3), equilibrating the variation of normal stresses due to bending. Cauchy

N.A.= neutral axis

Rop=R’¢’ N.A. % Ox
1 — ssssdusssnnanfassnnnnsgannn:
v=R-=R’1’

ex=strain=0/(1p)=-yoo/(rp)
oxx=Eex

Figure 4.2. Primary stress distribution of infinitesimal curved beam element due to

initial curvature.
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Figure 4.3. Primary stress of infinitesimal curved beam element and additional
terms due to curvature effect. “Perturbed” straight beam formulation.

principle dictates that corresponding shear stresses arise on the plane of the cross
section as well. If the assumption that plane sections remain plane after deformation
(Euler-Bernoulli or Timoshenko beam theories) is maintained, the arising shear stresses
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obtain a uniform distribution over the section (Dikaros, and Sapountzakis, 2014).
However, this distribution violates local equilibrium since the requirement of vanishing

tractions 7 on the lateral surface of the beam is not satisfied. Thus, the

xn

aforementioned shear stresses exhibit a nonuniform distribution over the cross section’s
domain so that both local equilibrium and vanishing tractions z,, on the lateral surface

of the beam are satisfied. These nonuniform shear stresses will be referred to as

primary (or St.Venant) shear stresses (rfy ,rfz) and lead the cross section to warp.

Furthermore, due to the nonuniform character of this warping along the beam length a
secondary normal stress distribution o3 is developed. This normal stress distribution

is responsible for the well-known shear lag phenomenon and it is taken into account by
employing an independent warping parameter multiplying the warping function, which
depends on the cross sectional configuration. The nonuniform distribution of secondary

normal stresses o

e along the length of the beam results in the development of

S S

Xy ? 3

Xz at an

which equilibrate the variation of o

secondary shear stresses 7 o

infinitesimal beam element. However, the secondary shear stress distribution arising
from the use of the aforementioned independent warping parameter fails to fulfill the
zero-traction condition on the lateral surface of the beam. In order to remove this

inconsistency, a shear stress correction is performed modifying the stress field by

S

adding an additional warping function to “correct” s, Thrs

according to Dikaros and

Sapountzakis (2014). The above remarks are also valid for the problem of nonuniform
torsion taking into account secondary torsional shear deformation effect — STSDE
(Mokos, and Sapountzakis, 2011; Tsipiras, and Sapountzakis, 2012; Dikaros, and
Sapountzakis, 2014). In the following analysis, in order to take into account torsional
shear lag effects as well, the normal stress distribution due to secondary torsional

warping gog is also taken into account (secondary warping normal stress O'fx). This

distribution is equilibrated by corresponding tertiary shear stresses rfy, z‘fz which,

similarly with the case of shear lag analysis in flexure, require a correction. In the
present analysis this is achieved by adding an additional torsional warping function.
Within the above described rationale, in order to take into account nonuniform
flexural and torsional warping (including shear lag effect due to both flexure and
torsion), in the study of the aforementioned element at each node of the element ends,
four additional degrees of freedom are added to the well-known six DOFs of the
classical three-dimensional frame element. The additional DOFs include four

independent parameters, namely 7y, 77,, &, 1,, multiplying a shear warping

function in each direction and two torsional warping functions, respectively. These
DOFs describe the “intensities” of the corresponding cross sectional warpings along the
beam length, while these warpings are defined by the corresponding warping function

(gof , q)g , gof , gof ), depending only on the cross sectional configuration. Thus, the

“actual” deformed configurations of the cross section due to primary (in each direction)
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shear and primary, secondary torsional warpings are given as 7y (x,t)gof (y.2),

ny (x0) 0% (3,2)s ne(x,1)@f (y,2) and & (x,7)¢; (»,z) at any time instant and
position along the beam longitudinal axis, respectively. Moreover, additional terms are
added due to curvature effect (Fig. 4.3) and the curved beam can be treated as a
“perturbed” straight beam avoiding a more refined treatment, which would be more
beneficial to geometries with large curvatures. Force F in Fig. 4.3 stands in general for
any additional vector (even displacement or strain) that will be added as a result of the
differential geometry. Finally, the corresponding stress resultants of the aforementioned
additional DOFs are the warping moments M o M o M o M o (bimoments) along

Y
the beam length, arising from corresponding normal stress distributions. These
bimoments due to the aforementioned warpings constitute additional “higher order”
stress resultants, which are considered in the nonuniform shear and torsion theories.
Within the context of the above considerations, the displacement components of
an arbitrary point of the beam at an arbitrary time instant are given as

u(x,y,z.t)=u’ (x,y,2.t)+i° (x,y,2.t)=
u(x,t)+¢9y (x,t)Z—HZ (x,t)Y
rigid body movement

17 (0. 0) 88 (3. 2)+ 11y (x.0) By (3. 2) + 117 (x,0) By (0:2) + & (0,0) 5 (v,2)  (4.1a)

out-of - plane warping

V(x,y,z,t)zv(x,t)—z@x (x,t) vT/(x, y,z,t):w(x,t)+y6?x (x,t) (4.1b,c)

rigid body movement rigid body movement

where u, v, w are the axial and transverse beam displacement components with

respect to the Sxyz system of axes; L_tP, ii° denote the primary and secondary

longitudinal displacements (given in Chapter 3), respectively. Moreover, V<X,f ),
W(X,l‘ ) describe the vertical and lateral deflection of the centre of twist, while M(X,f )
denotes the “average” axial displacement of the cross section. Qx (X,f) is the (total)
angle of twist; 0 (X,Z ), by (X,f ) are the angles of rotation due to bending about the

centroidal Y, Z axes, respectively; 7 (X,f), fx (X,f) are the independent warping
parameters introduced to describe the nonuniform distribution of primary and
secondary torsional warping, while 7]y (X,t), v (XJ ) are the independent warping

parameters introduced to describe the nonuniform distribution of primary warping due
to shear.
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After establishing the displacement field, the strain-displacement relations will be
used for the curved beam element. The general shell theory for cylindrical shells
(Sanders, 1963) can also explain the occurrence of additional terms. More specifically,

the additional terms due to curvature regarding the axial strain ¢ . are % (which
stands for the increase in length due to the radial displacement w according to
Timoshenko and Woinowsky-Krieger (1959), when R is parallel to Z) and %

(which is the decrease in the bending curvature with respect to Z axis, when R is

parallel to Z). Thus, assuming %<<1 (Gendy and Saleeb, 1992) and approximating

2
R Z (Z o . o o
~1—-—+| — | =e(R) for the strain in the tangential direction in cylindrical
R+Z R \R

coordinates, the axial strain-displacement relation is given as

w Z (Z w 0, P
— ——)Y +n@ ¢ +
& _(1{ +_j. 1__+(_j = (l/l,x"i‘ +9Y,XZ (GZ’X ) X, X S]

primary

R \ R

z (zV
(77Y,x¢gY +UZ,x¢gZ +'§x,x¢5§) '[1__4_(_] ] (42)

secondary

According to the shear components of strain

2 2
Vxy :(?x)'(l_%—i_(%j J—i_ﬁ,y :(V,x_zex,x)[l_%—i_(%j J—H’T,y (4.3a)

— 2 — 2
@ z (zZV) _ i z (zV) _
Yz Z(W,X—Ej'{l—EJf(Ej }f“,z :(W,ﬁy@x,x—ﬁj[l—ﬁ{ﬁj }“u,z (4.3b)

Defining the independent geometric (derived from displacements) generalized

. o
strains  ¢p as Uy, eY,x’ eZ,x’ Mexs TMyx> Tz é:x,x’ 75:Hx,x+?2’
s P 0, T s 7 P_
7x=77x_7x=77x_‘9x,x_?z’ 7/x=§x_7x=§x_77x+9x,x+?z’ Ty —V,x_gz,

. Z
755:77Z_V,x+02’ y§zw7x+0Y—% and 75 :77Y—w,x—0y+%, and neglecting n

effect for shear strains (viewed as higher order term by itself), the shear strain-
displacement relations are given as
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Yy = {7,5 |:Z,y +(¢gy’y)m}+}/)€ [Yy +(¢gz,y)m}+7f [—Z+((P£y)m}}+

primary
+{7§ (0lvy) +73¢(0lzy) +72 [(cof;, y) +(ef y)m]}+ [75 (o3, y)m} (4.42)
%—J
secondary tertiary

. {75 [Z,z N (¢1C°Y’Z)m} oF [Y,z + (wgz,z)m} +7y [y + (quz)m}}-l-

primary
+{7§ (0lv:) +77(0z:) +77 [(¢§z)m + (¢§,Z)m}}+ [yf (25 )m} (4.4b)
%—/
secondary tertiary

It is worth here noting that the term % has been added to the primary shear

strain due to torsion ;/f according to the concept presented in Fig. 4.3. Additionally,

the primary transverse shear strain 75 due to flexure in XZ plane (which is the plane of

curvature) can be defined if the equations of general shell theory (Sanders, 1963) are

employed and considering that the Kirchhoff hypothesis is not valid (w , # 6y ). On the

contrary, the primary transverse shear strain 75 due to flexure in XY plane is not

affected by the curvature. The above mentioned expressions of shear strains are also
analytically derived according to the refined theory of thick cylindrical shells presented
in (Voyiadjis and Karamanlidis, 1990).

Employing the Hooke’s stress-strain law, the resulting components of the Cauchy
stress tensor can be obtained after substituting the components of the strain tensor
given in eqns. (4.2, 4.4) as

w 0
Oxx = ngx = E(u,x +E+ gY,xZ o (HZ,x _EX)Y +77x,x¢5{nj+

primary

7 2
E(UY,x¢gY +UZ,X¢CF‘,Z +§x,x¢.§?) (1_E+(_j J (453)

secondary

o =Gro =GlrE |2, + (o), [+ [¥y +(0ks) JorE[-2+(h) 1+

primary
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+G{7§ ((ng,y )m +7y ((sz,y )m +7% [(ﬁl’gy )m +((p§,y )m}}+[G7§ ((Dg,y )m}

secondary

T =Gy = G{7§ [Z,z, +((/)5y,z)mJ 7y [Y,z +(lz.e )m}wf [y+(

primary

+G{y§ (ov.) +77(0bz2) +7 [((ﬂﬁz ) +(el. )m}}{G%{ (

S ——

secondary

Chapter 4

(4.5b)

where () ; denotes differentiation with respect to i . However, as stated above, attention

should be paid to the fact that the terms Gy§¢gy’i, Gy§¢gz’i, G}/fgzﬁSSJ (i=y,z) are

not capable of representing an acceptable shear stress distribution, leading to violation

of the longitudinal local equilibrium equation and the corresponding zero-traction
condition on the lateral surface of the beam. Thus, a correction of stress components is

performed without increasing the number of global kinematical unknowns. Three

additional warping functions (pgy(y,z), (sz()”z)» q0§(y,z) are introduced in

expressions (4.5b, c¢) and the components of the Cauchy stress tensor in the region

are modified as

Ps P P4 P P P
Tay =G{7z®cy,y 1y Pezy tVx (Z+¢S,y)}+

primary
SHS SHS SnS TxT
+G(7Z(DCY,y +1yPez,y +7xq)s,y)+G7x Dy,
H_/
secondary tertiary

sz = G[Vg(DgY,z +7)1’)q)163’2,z +7)1c3 (_y+¢§,z):|+

primary
SaS S5S S4S TxT
+G(7Z®CY,Z +1vQPez,. t J/XCDS,Z) +Gyy @
H_/
secondary tertiary

where, according to Dikaros, and Sapountzakis (2014),
P P N P s
Ocy =Z+¢cy Ocy =dcy + Py

P P S P S
Oy =Y+¢c, DOy =dey + P07

(4.6a)

(4.6b)

(4.7a,b)

4.7¢c,d)
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S _ 4P S T _ S T
D5 =g + s Dg = g5 + s (4.7¢,1)

In order to establish the differential equations of equilibrium based on the corrected
shear stresses (eqns. (4.6)), the principle of virtual work

5Wint = 5Wext (4.8)
is employed, where

oW, = Iv (Uxx55xx + 707 xy + T30 )dV 4.9)
W, = jLat(zxaﬁ +1,09 +1,6W) dF (4.10)

In the above equations, ¢ () denotes virtual quantities; 7., ,, . are the components

of the traction vector applied on the lateral surface of the beam including the end cross
sections, denoted by F and V is the volume of the beam.
The geometric constants of the beam are obtained by the following definitions

A=jQ aQ S, =jQz aQ s, =IQY dQ (4.11a,b.c)
Iyy :jQz2 dQ 1, :jQYZ dQ Iy, =IQYZ dQ (4.11d.e.f)
Si=[,()4Q, i=¢ oty bz 08 (4.11g)
I =[ (D)) AQ, i j=y.2.68 . #y.dz.05 (4.11h)
Dy =[ [V()-V()]AQ i.j= .28 dy. s 8 @.11i)
Ifsz(y2+z2+z¢§y—y¢§z)dQ 4.11j)

where V = ()y i +() i

Ll is the gradient operator and i,, i, the unit vectors along y,

z axes, respectively. The quantities 7 ,» » (i=Y,Z) correspond to the shear warping

bt
are the primary and secondary torsional warping

constants, while [/ 1

PP S 1S
¢SS’ ¢S¢S

constants, respectively. It should be noted that 7, constant coincides with the
S

#s

warping constant Cg of nonuniform torsion beam theory. Employing definitions in
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eqns. (4.11), having in mind that CXYZ is the centroidal principal bending coordinate
system, that S is the center of twist of the cross section and exploiting the
orthogonality conditions of the warping functions, the following relations are obtained

Sy =52 =5y =Sy, =Sgr, =S =0 (12
vz =lygr, =Tzgr, =Tvgr =Tz = Tygs =1z =lyrgs =0 (4.12b)
Por,wp, = Poger, = Paogar =0 (4.12¢)
The stress resultants of the beam are defined as
N=[ 0.dQ (4.13a)
M,y = jgamz dQ M, = —anxxY dQ (4.13b.c)
M, = [ ouds d My = [ ouds d (4.13d.e)
My = [ oudly dQ M = [ oudtz 4Q (4.13f,g)

Q)I;J = J.Q(TxyCDICJ'Z,y + szq)gZ,z ) dQ Q§ = _.[Q(Txyq)gl,y + szq)gZ,z ) dQ  (4.13h,i)

of =|

P P S S S i
(o ®Cr, 41 00 )dQ  0F =] (1,0, +7, 08 )dQ (“13jk)

ME = [ |7 (8 +2)+ e (6 - v) |02 (4.131)
M == (ry®@3, +7. 03, )dQ  M[ =[ (r,®@F, +7, 5, )dQ  @13mm)

where M; ( i=Y,Z) are the bending moments and M; (i= ¢§,¢§,(p§y,(pé’z ) are the

warping moments (bimoments). Qij (i=y,z j=P,S) are the primary and secondary
parts of total shear forces Q, (i=y,z). It is noted that the secondary shear forces are
also referred to as bishear stress resultants since they equilibrate the corresponding
warping moments (bimoments). Similarly, M tj (j=P,S5,T) are the primary,

secondary and tertiary parts of total twisting moment M, .
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Employing eqns. (4.5a), (4.6a,b), (4.11), (4.12) and (4.13), the expressions of the
stress resultants in terms of the kinematical components are obtained as

N :EA(”’X +%j+%(u;x +%_29Y’“] (4.142)
My = El, 6, (4.14b)
Mz =Elz (Qz,x ‘%) (4.14c)
Mg =Ly Ts+ g gera+ g gz (4.14d)
Mg = E(Lyp vt g o120+ g (4.14c)
Mg, = E{Lyp s+l g g g (4.14D)
Mop, = E( Ly oLy o Mo+l ) (4.14g)
Of =GDyp o 77 (4.14h)
0} ==6(Dagyap, 73 + Dag,0q7+ + Dag,or% (4140
Qf =GDyp o 77 (4.14))
Q0 = _G(Dq)qu)f:y ¥y + Ds @3 yy+ Dys o 7;) (4.14k)
M/ =GIly; =GIf (9” +%Zj (4.141)
M; = —G(Dq)gcpg 73 +Dys 0377 +Dgs 4572 ) (4.14m)

S S
M =G(Dyray 74 +Dgs 4173 + Doy 173 (4.14n)
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The quantities GD;; (i :(I)gy,(l)gz) multiplying 7/{/D and )/5 respectively,
correspond to the shear rigidities of Timoshenko beam theory. Thus, the simplified

notation GA,P (i=Y,Z) could be adopted for these quantities. Similarly, GD;
(i= (Dgy,CDgZ) refer to the secondary shear rigidities due to nonuniform shear warping
and can be denoted as GAiS (i=Y,Z). Finally, GD; (i:d)g,d)g) refer to the

secondary and tertiary torsional rigidities and can be also denoted as GItS , GI,T ,

respectively. In what follows, in order to maintain the compatibility with classical
notations, the above simplified symbols will be employed.

Using the expressions of the strain components (eqns. (4.2, 4.4)), the definitions
of the stresses and applying the principle of virtual work or any other variational
principle following standard arguments in the calculus of variations, the governing
differential equations for the curved beam in terms of the kinematical components can

be derived. Thus, the local stiffness matrix [k,]of the spatial curved beam can be

evaluated after solving the system of the linear equations.

Wy Elyy (Uye W u
_EA(M’XX+?)_T[R —2—28Yxxj (AZ+AZ)(W,x+9Y_Ej+

G s G 0,) G
R +E(D 0,08 ~Dos 0 )(77" ~ O _?}E%imﬁ Sx = Px (4.152)

o
P S S Z,
_G(AY + AY ) (V,xx - QZ,X) + GAY Mz x™+ G (DcDgZ(Dg N Dd)ézd)g )(nx,x - gx,xx - Rx j +

+GD 5 q)rfxx Py (415b)

P S ”,x S
—G(AZ + AZ)(WM +6y . - ?j +GASy  + G(Dq)gy o ~Das o7 )
0. EA w
'[nx,x - ex,xx R j GDq)qu)T égx,x + ?(u,x + Ej +

Elyy(u, w _
e (7+p—29mj—l’z (4.15¢)

o P S S
_EL, (ez’xx —%)—G(AY + 45 ) (v~ 07)+ G, +G(DCDgzcbg —Dq)ézq)g)-

6, G
'(”x s ‘7)+GD®22®§5X ~ 2 (Pog,01 = Pag,ar (2 =v.02)
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< u)_G(,s g1 6,
_E(Dcpiycbﬁ _Dcpgycpg)-(ﬂy—W,X—QY +Ej_E(1’ +1, )(qx_gx,x_? 4

G.r., G.p )
+E11 §x+EIz (9x,x+fj=mz (4.15d)
2Elyy w p S u P
_EIYYeY,xx +T(u,xx +Tx] +G(AZ + AZ) Wyt BY _E - GAzny
)
_G(D 0,08 ~Dos 0 )(”x ~Ox ;Zj ~GDys qrSx =My (4.15¢)

S
£ (’ g e Hyp o 17 00+ Lyr s 93»06)* GAy (17 =V + 0 )+

0
#G( a0 ~ Do, )(’7 O R ) Oy 0r5x =My, (4.15)

S u
_E(I¢gy¢§>77x’xx * I¢(I;Y¢gy Ty xx * I¢gy¢ss x,xx) * GAZ (HY Wi T 6}’ + EJ +

QZ
+G( Dy 03 = Dy )[’7 "™ Ej Doy, o ox =y, (4.159)

o O
_GItP gx,xx + Z:x + G(IIS + IZT) nx,x - gx,xx — L GltTgx,x +
R R
+G{ Doy s = Loy ) (125 Vo +02.0)+G{ Doyt 0 =Pt )

u E 0
'(ﬂY,x “Wax T (9Y,x + ?xj - EIZZ (QZ,x - Exj =nmy (415h)

S T o T
_E(1¢§’¢§77x,xx + I¢gy¢§’77Y,xx + I¢é’z¢§’772,xx) + G(It + It )(nx - ex,x - ?Z) - G]t gx +

+G(DCD§Z(D§ —Dq)gzq)g )(772 —V’x + QZ)+G(D(D§YCD§ —Dq)éyq)g )

u
1y —w—by I (4.151)
T O.
_E(I¢é’y¢55 77Y,xx + I¢é’z¢55 UZ,xx + I¢S5¢SS ng,xx) + Glt (éx —Tx + ex,x + ?Zj +
u
+GD<D§Z®§ (772 vty ) + GD®§Y@§ [UY —w, =6+ Ej = Mys (4.15j)

Substituting eqns. (4.14) to eqns. (4.15), the differential equations of equilibrium
of the beam are derived as
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=N —% =Dy (4.16a)
N
0y = Dy ot =P (4.16b,¢)
Ml‘
Mz =Qy+—f=my My +Q =my (4.16d,¢)
S _ _ S _
_M¢£Z’x B Qy =My M¢gy,x Q; = Myr, (4.16f,g)
M, — % =m (4.16h)
My ~M; =M =m, My +M{ =mys (4.161,j)

where the externally applied loads are related to the components of the traction vector

applied on the lateral surface of the beam ¢, ty, 1, as

pi(x)=[ tids, i=xy.:z (4.17a)
my(x)= [ ~t.y+i,zds (4.17b)
my (x)=[ 1,Zds my (x)==[ 1,¥ ds (4.17¢.d)
m(x)=[ 1,())ds, i=¢5.¢ly. 47,65 (4.17¢)

The above differential equations (eqns. (4.15)) are subjected to the corresponding
boundary conditions of the problem at hand, which are given as in eqns. (3.4) of
chapter 3.

If a curved beam as the one already described on a system of axis shown in Fig.

4.4 is now considered, without neglecting the effect 2 for shear strains and writing the

equations in matrix form, the stiffness matrix can be derived as presented in short
below:
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100 0 Z Y ¢ ¢& o &

[Auxl]=|0 1 0 =z 0 0 0 0 0 0 |eR (4.182)
001 y 00 0 0 0 0
0 —%e(R) 0 %e(R) 00 0 0 0 0

¢ & 4 ¢
1 z Y Se(R) “Le(R) “Ze(R) -e(R)
[Aux2] = Ee(R) 0 Ee(R) —I—Ee(R) 0 0 R R R R

+¢§,y +¢CPY,y +¢£Z,y +¢5€,y

0 0 0 0 L0 6, . . #.
_ (4.18b)
&= [Auxl]u’x + [AuxZ]u (4.18¢)
o =[C][Aux1]u , +[C][Aux2]u (4.18d)

Figure. 4.4. Prismatic curved beam under axial-flexural-torsional loading of an
arbitrary homogenous cross section.

oU = .L[ .[ (5147); [Auxl]T +ou’ [Aux2]T )([C][Auxl]u’x + [C][AuxZ]u) dQdx =

e(R)
L

=0U = J‘(é‘uﬂknu’x + 5uTk12u,x + 5u£k21u + 5uTk1 u )dx
0

= by parts integration =
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L
= 6U = [(Su” {~kpptt . +[kip — gy Ju + Ky e+ Su” {heypu + km”ﬂs 4180

ki ku}
k| = (4.18f)
[ l] |:k21 ko

where [Auxl], [Aux2] are auxiliary matrices to express strains € in matrix form,
1

e(R)

dQdx =dV 1is the differential volume of the curved beam for constant radius of

curvature, [C] is the elasticity matrix employed to derive stresses g, oU is the virtual
strain energy and kj;, kj, k2; and ky; are 10X10 coefficient matrices containing the
geometric properties of the cross section. These are calculated as follows

1 1
kyy = ij [Aux1]' [C][Auxl]ﬁdfz, kiy = jQ [Aux1]' [C][AuxZ]—)dQ

e(R

ky = IQm [A”xz]T (][

1
. kypy= ij [Aux2]' [C][AuxZ]ﬁdQ

(4.19)
From eqn. (4.18e) after integrating by parts, it holds that

where NOM is the vector of the stress resultants at the beam’s ends.

4.2.2 Curved beam model and Equations of Motion
In order to derive the differential equations of motion with respect to the

kinematical components, the terms of inertia contributions
OW pass = _[V p(b_l #OU +V 6V +W’,t5vT/)dV have to be added in the previous and

constitutive equations should be employed. p is the density of the material and u,v,w
are the generalized displacements as previously described. Thus, the spatial mass

matrix [m, ] can finally be derived. This is given in matrix form as follows

OW hass Zg[ (5u Auxl] [Auxl] ”)e(lR) dex:>5U:]£(5uT [mt]u’”)dx 4.21)

The generalized vibrational beam behavior is described by the differential
equations given below. Unlike the stiffness matrix and mass matrix of structure, it is
not necessary to construct the global damping matrix from the element damping matrix
by assembling technique and thus no damping matrix of element is needed to be
derived. Much commercial software employs Rayleigh damping which is a linear
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combination of mass matrix and stiffness matrix. For the proposed curved beam
formulation damping is neglected.

w EI w G u
—EA[M,XX'F?X]—TYY[? _2_29Y’XXJ R(AZ +AZ)(W’X+9Y_EJ+

R
Gs G G
R4+ (Pt 00 ~ Do, (”x Or j* & Dot0r
+  pAuy, =p, (4.22a)

L NV
inertial contribution

0,
P 4S S 4
~G(Af + AF ) (30~ 0. )+ GAI 7+ G Doy 5~ Dyt )(’7 e ]+

+GDys gr&ex+ PA(Vy =~ 2c0cn) = Py (4.22b)

inertial contribution

P S
—G(AZ+AZ)(W +0y - ]+GAZ77Yx+G( q)qubg—z)@qu)g)-

Oz EA W
'(nx,x ~Onnc R’x j +GDgs g1 &rx * ?(u,x + Ej +
R2 ( R F_ZQY’XJ_FPA(W’”+yC9fo):pz (4.22¢)

inertial contribution

0 P S
_EIZZ(QZ,X.X_%j_G(AY +Ay)( 0 )+GAYUZ +G( q)gzq)s _D(Dézq)g)
0, G
.(nx—ex —?j‘i‘GDq)gzq)Té:x—E(Dq)gzq)g _D®§Z®§)(77Z_V,x+‘92)
G ul Gros o1 o,
—E(D(Dqu)g —Dq)sc'yq)g)‘(nY_W,x_eY_'_Ej_E(It +It )(nx_gx,x_? +

+91,T§x s 1F (0 + HZ}L pl,,0,, =my (4.22d)
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Except for the boundary conditions there are also the initial conditions at beam’s
ends similar to those defined in eqns. (3.3) of Chapter 3.

After establishing the stiffness and mass matrices of the spatial curved beam
element the equation of motion in matrix form can be given as follows

[m, (U} + [k, 1T} = {p, } (4.23)

where [m,], [k,] are the generalized mass and stiffness matrices, respectively. {p,} is

the load vector which is equal to {O} for the free vibration case. {U ;} 1is the vector

containing the second derivatives of the different kinematical components with respect
to time while {l7,-} is the generalized unknown vector containing the values of the
kinematical components and their first derivatives, which will be evaluated

numerically.
The natural frequencies and modes in which the beam vibrates for the different

motions can be obtained by separation of variables and u; (x,t) is assumed to have the

form given in eqn. (3.13). Finally, the typical generalized eigenvalue problem
described by eqn. (3.14) is formulated and solved.

4.3 Numerical Solution with AEM combined to IGA
According to the precedent analysis, the axial-flexural-torsional static and

dynamic analysis of curved beams of arbitrary cross section including generalized

warping effects reduces in establishing the components u(x,z), v(x,r), w(x.rz),

O (x.1), O5(x.t), Oy(x.1), n.(xt), ny(x.t), ny(xr) and & (x,r) having
continuous derivatives up to the second order with respect to x at the interval (O, L)

and up to the first order at x =0, L and for the dynamic problem up to the second order

with respect to f, satisfying the initial-boundary value problem described by the
coupled governing differential equations along the beam, the initial conditions and the
boundary conditions at the beam ends x=0,L given in the previous section. The
problem is solved using the Analog Equation Method in a similar way as the one
described in detail in Chapter 3.

4.4 Numerical Solution with FEM and NURBS

Instead of B-splines, NURBS curves in terms of B-spline basis functions can be
employed either in FEM or AEM. The description of the numerical procedures is given
in the Appendix A.2.

In this chapter, the geometry of the beam is described by a NURBS structure
(Appendix A.2) with initial control points given by the following spatial coordinates

(x;,¥i,2;w;): (—R, 0,0, 1), (—Rcos(g),Rsin(gj, 0, cos(gj), (—Rcos(¢), Rsin(¢),

0, 1), and the arc which describes the longitudinal axis of the curved beam is obtained
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in this way. w; (el ) are weights of the control polygon which defines the arc and is ¢

the angle formed by the arc at the center of the circle that it is a part of. However, any
curve can be represented with the aid of NURBS. The aforementioned polygon will be
later refined as new knots will be inserted and degree will be elevated in order to

achieve more accurate results. [m,] ,[kt] matrices can finally be obtained following the

procedures described in section A.2.4 of the Appendix A.2.

4.5 Numerical examples

In order to validate the proposed formulation of the curved beam element
described above in static or dynamic analysis and examine the advantages attained by
the use of the numerical methods proposed in terms of simplicity, accuracy and
computational effort, computer programs have been written and representative
examples have been studied. The numerical results have been obtained employing
NURBS, beam Finite Elements (FEs) and constant or quadratic elements for the
representation of the AEM fictitious loads. Then, the results are compared to those
obtained by the application of the Finite Element Method (FEM) employing beam,
solid (quadrilateral or triangular) or plate/shell elements. The computer software
FEMAP (2010) has been used for this purpose. In addition to these, up to 800 boundary
elements depending on the cross section type (cross sectional discretization) have been
employed in order to evaluate the geometric constants with BEM. Domain
discretization has been performed with BEM in some cases, too. Finally, the Newmark
time integration scheme (Bathe, 1996) is employed for the dynamic analysis.

4.5.1 Doubly Symmetric Cross Section (I-shaped)

In the first example, a cantilever beam (E =7.3E11kPa,G =2.8E11kPa) of a
doubly symmetric I-shaped cross section (Fig. 4.5) is examined. It is subjected to either
a concentrated radial force P, =10N applied at the centroid of its free end or a

torsional moment M, =10Nm applied at the same position. Its length is 300 cm and

&
Lh
L P]
B
!
N
<3 cm>

e

< 10.5 cm >

Figure 4.5. Cross section of example 4.5.1.

the radius of curvature is 190.58 cm. In Table 4.1 the geometric constants of the beam
are presented.

This beam has also been analyzed in the study of Kim et al. (2004) as a thin-
walled beam employing a finite element solution. In this latter analysis only a primary

warping parameter due to torsion (77, (x)) is taken into account, neglecting primary
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warping due to shear (7y (x),7,(x)) and, thus, shear lag effect due to shear. In

addition to this, secondary warping parameter due to torsion (&, (x) ), which accounts
for shear lag effect due to torsion, is neglected, too. In Table 4.2 the values of the
kinematical components u(x) , w(x) and 6y (x) for the radial force at the free edge of

the beam are presented for i) 200 constant elements employing the AEM (AEMconst),
i1) 200 quadratic elements employing AEM (AEMquad), iii) 13027 quadrilateral solid
elements in FEMAP (2010) (FEMsolid) and iv) 4320 shell elements mentioned in Kim
et al. (2004) (FEMshell). In the same table the values of the kinematical components

1% (x) , 0, (x) and 6, (x) for the torsional moment at the free edge of the first beam are

also presented. In addition to this, the values of normal stresses o,, at the upper and
lower tips of the cross section are shown at the mid span of the beam for the solid and

shell models as well as for the AEMquad. Finally, normal stresses o,, and shear

A = 7.75000000E+00cm2 Is,s= 1.27645901E-+00cm®
) S

S

1, = 2.34895833E+00cm™ I » p=1.79746986E-10cm’

Pcy Ps
Iyy =1.10786458E+02cm” Lo 5= 2.61521456E-11cm’
Y¥S
I, p =1.16705460E-0lcm* AL =4.85212071E+00cm>
PcyPcy
A5 =6.21759591E-01cm? 17 =6.55741917E-01cm®
I} =6.64776201E+01cm” 1] =-2.57312637E+01cm”
_ 3 _ 3
Dy, ps =1.09684225E-09cm”  Dys 1 =2.21344669E-09cm
I p §=1.62507369E-11cm® I p » =-8.61873073E-13cm’
PczPs PczPs
I, p =277747414B-01cm® AL =2.84724686E+00cm’
PczPcz
_ 3 _ 3
Dys ps =9-68034449E-12cm’ D5 v =9.69835763E-10cm
Lor,r = 5.63639219E+01cm® AP =1.77955610E-01cm?
S¥S

Table 4.1. Geometric constants of the beam of example 4.5.1.

stresses 7,, at the upper and lower tips of the cross section are shown at the fixed end

of the beam for the solid and the AEMquad models. It is obvious that in both load cases
the results of this study for either kinematical components or stresses almost coincide
with those of the solid model (discrepancies 3-4%), while shell elements give less
accurate results by 2% to almost 6%.

The same beam model has also been examined for the dynamic case of the

proposed beam element with the following characteristics: E=4E7 N/ cm?

G=2E7N/cm*, p=0.025N sec’/m* , L=300cm and R =190.58cm.In Fig. 4.6 a
Yo
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; )
. 1p c=s tp . ;I\ u(cm) w(cm) 6y (rad)
7 — \ (5 at x=L at x=L at x=L
t=0.5cm LY z J/
<« 10.5em—
AEMCconst -4.3490 6.8226 -0.0454
—>
P. Radial AEMquad -4.3135 6.7684 -0.0450
Loading FEMsolid -4.3105 6.7715 -0.0450
FEMshell -4.0930 6.4290 -0.0431
v(cm) 0, (rad) Oz (rad)
at x=L at x=L at x=L
AEMconst 2.3250 0.0894 0.0445
M, Torsional AEMquad 23300 00873  0.0435
Moment
FEMsolid 2.3413 0.0879 0.0432
FEMshell 2.4710 0.0897 0.0452
Values at O (Nfem2)at | Oy (Nfem2) at
— Mid span Z=4.75cm Z=-4.75cm
P. Radial AEMquad -58.47 59.68
Loading
FEMsolid -59.58 62.21
FEMshell -56.66 58.92
— Values at o, (N/cm2) at Oy (N/em2) at
P. Radial Fixed end Z=4.75cm Z=-4.75cm
Loading AEMquad -89.68 91.89
FEMsolid -90.78 94.95
—_—) Values at Txy (N/cmZ) at Txy (N/CI’I’ZZ) at
P. Radial Fixed end Z=4.75cm Z=-4.75cm
Loading AEMgquad 10.30 1102
FEMsolid 10.82 -11.56

Table 4.2. Kinematical components and stresses of the beam of Fig. 4.5 for

various load cases.
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Figure 4.6. Model in FEMAP employing 13000 quadrilateral solid finite elements
for example 4.5.1.

model of the beam implemented in FEMAP (2010) employing 13000 FEM
quadrilateral solid elements is shown.

In Table 4.3 the values of different eigenfrequencies have been compiled for 1)
the proposed curved beam elements with quartic B-splines in AEM (analytically
integrated), ii) 13000 quadrilateral solid elements (FEMAP, 2010), iii) FEM curved
beam elements (FEMAP, 2010), iv) the proposed curved beam elements with 5 cubic
NURBS in FEM and v) the proposed curved beam elements with 10 cubic NURBS in
FEM. Analysis with cubic NURBS gives results quite close to the solid model with
errors around 5% for the first five eigenfrequencies. The same case is for the FEM
curved beam elements (Timoshenko beam element) with respect to the first three
modes while there is a significant loss in accuracy for the rest two. In addition to these,
the errors between the two approximations with NURBS are in general less than 5%
and this implies high convergence rate of the method employed as well as better
accuracy for higher frequencies. Finally, regarding the B-spline solution in the AEM,
errors become larger (around 10%) but still valid if the fact that only 5 control points
employed with the quartic B-spline is considered.

Mode B-splines FEMsolid FEM 5 cubic 10cubic
Number AEM (13000) Curved beam NURBS NURBS
1 0.0881 0.1028 0.0944 0.0950 0.1120
2 0.4551 0.5205 0.6214 0.5230 0.5260
3 0.8790 0.9868 0.9871 1.0502 1.1042
4 1.5998 1.7888 4.5459 1.7552 1.8002
5 3.2555 3.6631 4.7959 3.4500 3.6723

Table 4.3. Eigenfrequencies of the beam of Fig. 4.5.

In Fig. 4.7 the first four modes are presented for the proposed beam formulation
with 50 quadratic elements in AEM and for the solid model (Fig. 4.6). The initial
geometry is also displayed in the figure. Highly accurate results have been obtained
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comparing to the solid model results. It is worth here noting the importance of torsion
in the dynamic response of the curved beam due to the open shape of the cross section.

1. First mode of Vertical displacement 2. First mode of Torsion

3. First mode of Lateral displacement 4. Second mode of Torsion

Figure 4.7. First four eigenvectors for the model of Fig. 4.6 (Proposed formulation
with AEM in red line, solid model in black and initial curved geometry in
purple line).

4.5.2 C-shaped cross sections either Monosymmetric or Non-symmetric

In the second example, two cantilever beams are examined. The first one has a
monosymmetric (Fig. 4.8) cross section (E=7.3FE11kPa, G=2.8FE11kPa) and is
subjected to a concentrated radial P, =10N or vertical P, =10N force applied at the
centroid of its free end. Its length is 100 cm and the radius of curvature is 63.66 cm.
The second beam has a non-symmetric (Fig. 4.9) cross section (E =2.07E8kPa,
G =8.27E7kPa ) and is subjected to a concentrated radial force P, =0.8KN applied at

the centroid of its free end. Its length is 14.36m and the radius of curvature 9.14m.

L 8.55 cm :
. a |
t=0.5 cm IC g LS
z | |a z
lY—) 1—)
[ Yy

<1025 em—>

Figure 4.8. Monosymmetric cross section of example 4.5.2.

The geometric constants of the aforementioned cross sections are shown in
Tables 4.4 and 4.5, respectively. Similarly to the previous I-shaped cross section, the
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monosymmetric C-shaped cross section of this example is also examined in Kim et al.

(2004) as a thin-walled beam employing a finite element solution.

<13 cm>

[—

t=1.3 cm

a=8.66"

26 cm

Figure 4.9. Non-symmetric cross section of example 4.5.2.

A=1.250E+01cm?
1,, = 6.80729167E+01 cm*

Iyy =1.33635339E+02cm*
I » » =6.24400310E+00cm*

PcyPcy

A5 =9.82159616E-02cm*
I3 =5.66448858E+01 cm*
D5 s =9.93083855E-0lcm’

Dy Dy

I, =4.40225634E-12cm’

PczPs
I, » =1.40971390E+00cm”
PczPcz
_ 3
Dyys s =3-17917698E-12cm
I » » =6.66168740E+02cm®
Ps Ps

I ¢ ¢ =1.30719236E+03cm®
Ps Ps

I » »=626886158E+01cm’
Pcy Ps

I » ¢ =4.46209563E-01cm’
Pcy Ps

ALY = 8.64548828E+00cm*

17 =1.03367369E+00 cm*
1T =2.56637649E+00cm™
D5 ,r =-432978562E-0lcm’

Dey Dy

I » »=9.57456336E-13cm’

PczPs

AY =1.22335946E+00cm*
— 3
D,y o1 =2.86944080E-13cm

Ay =6.96056233E-01cm*

Table 4.4. Geometric constants of the Monosymmetric cross section of example 4.5.2.

In Table 4.6 the values of the kinematical components u(x), w(x) and 6y (x)

for the radial force at the free edge of the monosymmetric beam are presented for 1) 200
constant elements employing AEM (AEMconst), i1) 50 quadratic elements employing
AEM (AEMquad), ii1) 4033 quadrilateral solid elements in FEMAP (2010) (FEMsolid)
and iv) the approximate “analytical” solution mentioned in Kim et al. (2004),
considering only primary warping and ignoring shear lag effects. In the same table the
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A =1.12903000E-02m*
1., =4.58891474E-05m"
Iyy = 4.45437341E-04m*

I » » =1.18320830E-05m*

PcyPcy

A5 =1.97293283E-04m>
15 =1.81123894E-04m*

_ 3
D,y ps =-5-83081216E-06m
I » ¢ =-3.99169511E-08m°
PczPs
I » » =3.54561974E-06m"
PczPcz
D o s =1.97293283E-04m>
Dz Ds
I » » =1.12271655E-06m°
Ds Ps

I ¢ 5 =5.19927646E-07m°

Ps Ps
I p p=-4.23401342E-07m°
Pcy Ps
I, =7.81208062E-08m°
Pcy Ps

AP =5.67165454E-03m>

1] =6.01029864E-07m"
1T =8.20613408E-06m"

— 3
D oS, ol = 6.76039764E-05m

I » »=9.39180437E-07m’

PczPs

AL =2.79916897E-03m>
D5 ,r =6.76039764E-05m°

Dy Dy

A =1.97293283E-04m*

Table 4.5. Geometric constants of the Non-symmetric cross section of example 4.5.2.

8.55cm

S

S5cm——=

u(cm) w(cm) Oy (rad)

t=0.5cm
] ZE ) | !z at x=L at x=L at x=L
Y y

<—5

10.25 o
AEMconst 01426 02228  -0.00418
—_—
P. Radial AEMquad -0.1426 02228 -0.00417
Loading FEMsolid 01462 02168  -0.00418
Approximate -0.1306 02062  -0.00411
v(cm) 0, (rad) 0 (rad)
at x=L at x=L at x=L
AEMconst 9.3503  0.2128 0.2500
P, Lateral
l Loading AEMquad 9.4134 02133 0.2505
FEMsolid 9.9442  0.2086 0.2348
Approximate - - -

Table 4.6. Kinematical components of the beam of Fig. 4.8 for various load cases.
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values of the kinematical components v(x) , 0, (x) and 0, (x) for the lateral force at

the free edge of the second beam are also presented. From this table, it is obvious that
in general the discrepancies between the AEM and the solid model are quite small
(variation of errors from 0 to 5%). It is also important to mention that the use of
quadratic elements reduces the computational effort of the AEM. However,
computational time remains small either for constant or quadratic elements compared
with solid model. More specifically, the required computational time calculated for the
same hardware was 3 seconds for the AEMquad (50 elements), 17 seconds for the
AEMconst (200 elements) and 30 seconds for the FEMsolid (4033 solid elements)
model, without considering the time needed for modeling.

In Fig. 4.10 the models in FEMAP (2010) are presented for both load cases. It
is worth here noting that the results for the case of the radial force derived from the
analytical solution (Kim et al., 2004) show larger discrepancies from the solid model
compared to those of the proposed model with the values of the kinematical

components being smaller. This is due to the fact that the displacements 77, (x) ,

Ny (x), Ny (x) and £, (x) are ignored in the aforementioned solution. These

additional degrees of freedom are taken into account in this study and they should be
considered especially in the case of the lateral force applied on the vertical axis, which
1s not the axis of symmetry.

In Table 4.7 the values of the kinematical components u(x), w(x), Oy (x),

v(x), 0, (x) and 6, (x) for the radial force at the free edge of the non-symmetric

beam are presented for 1) curved beam elements in FEMAP (2010) (FEMbeam), i1) 150
quadratic elements employing AEM technique (AEMquad) and 1i1) 5474 quadrilateral
solid elements in FEMAP (2010) (FEMsolid). In the same table the value of normal
stress at the tip of the cross section is presented at the mid span of the beam for the
FEMsolid and the AEMquad models. It is obvious that the AEMquad model (errors 3-
12%) gives a better prediction of the beam’s behavior regarding the displacements and
the normal stress (due to the consideration of secondary effects) than the FEMbeam
model (errors 17-55%) either in the plane of the curvature or in the lateral plane. It is
worth here noting that for comparison reasons and in order to moderate distortional
phenomena two diaphragms have been employed in the solid model, namely one at the
mid span and one at the free edge of the beam. Regarding the normal stress, the error
between the AEMquad and the FEMsolid models is around 10%.

In Figs. 4.11a and 4.11b the FEMbeam and the FEMsolid models are presented
in order to demonstrate the dissimilar deformed shapes, while in Fig. 4.11c¢ the free end
positions at deformed state of the aforementioned methods are shown demonstrating
the good agreement between AEMquad and FEMsolid models.

The beam model with the monosymmetric cross section has also been examined
for the dynamic case of the proposed beam element with the following characteristics:

E=4ETN/em*,  G=2EIN/ecm*,  p=0785Nsec’/m*,  L=100cm and
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R =63.66cm . The same FEMsolid (Fig. 4.10) model previously described has been
employed here, too.

(b)

Figure 4.10. Deformed shapes of solid models for the beam of Fig. 4.8 (a) for radial
force and (b) for lateral force. (Z axis of the model corresponds to Y of
this study and X axis of the model to Z of this study).

In Table 4.8 the values of different eigenfrequencies have been compiled for 1)
4033 quadrilateral solid elements (FEMAP, 2010), ii)) FEM curved beam elements -
FEMbeam (FEMAP, 2010) and iii) the proposed curved beam elements with 5 cubic
NURBS in FEM. In addition to this, the description of the predominant modes has been
noted. Regarding the results of the proposed formulation, it should be noted that errors
are less than 5% comparing to the FEM solid model.

As it is the case in the previous example of the I-shaped cross section, torsional
modes again dominate over bending ones (for 2™ mode of vertical displacement torsion
is excessive) in the dynamic response of this curved structure due to the open shape of
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the cross section which implies low torsional rigidity. It should also be noted here that
the accuracy of the FEM curved beam approximation is less than the previous case,
which was for doubly symmetric cross section, due to the fact that the neutral axis
offsets from the shear center as well as warping are not accounted for.

o 114em u(m) w(m) Oy (rad)
to at x=L at x=L at x=L
. 52cm
' : N
] iﬁ‘r] o i H 8
2 B w2 3
3 3 2 4 ; 3 \
l @ Tip
FEMbeam -0.0036 0.0057 -0.0008
AEMquad -0.0051 0.0086 -0.0012
FEMsolid -0.0060 0.0097 -0.0013
v(m) Gx(rad) ez(rad)
at x=L at x=L at x=L
. FEMbeam 0.0229 0.0098 0.0062
P Radial AEMquad 0.0115 0.0084 0.0043
Loading
applied at C FEMsolid 0.0100 0.0081 0.0038
O, (Nem2) at Z=0.30cm
(near mid span)
AEMquad 4916.22
FEMsolid 5475.41

Table 4.7. Kinematical components and normal stress of the beam of Fig. 4.9 for radial
concentrated force.

Finally, considering the curved beam model of Fig. 4.10b and a vertical load
P, =-5000 N applied gradually for the first 0.05 seconds at the centroid of the free

end, the dynamic response is examined.

In Fig. 4.12 the out of the curvature plane displacement is plotted for a time
interval of 3 seconds as well as the static response to show the dynamic amplification at
each time. The time function that multiplies the load is also displayed. It is obvious that
the proposed model employing cubic NURBS is quite close to the solid model
response. The amplification factor of the transient response is equal to 1.98 for a
system’s period T=0.28 seconds (first mode) at time t=1.8 seconds where the maximum
value of vertical displacement occurs as shown in Fig. 4.12.
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(a)

= = [nitial position ’7‘ ~~~~~~~~~~ e

— FEMsolid I L W :

— AEMquad L R 7] o
= FEMbeam L T /

" as05

(©)
Fig.4.11. Deformed shapes of the non-symmetric beam for radial force employing

FEM beam elements (a) and FEM solid elements (b) (axes have been
taken in a different way compared with the beam formulation of this
study). Free end position at deformed state for the various methods (c).

4.5.3 Box-shaped Monosymmetric cross sections

In the third example, three box-shaped cross sections are examined for various
beam models with respect to loading, boundary conditions and geometry.

The first beam has the box-shaped cross section shown in Fig. 3.15 of Chapter
3 and exhibits the same geometric constants as those compiled in Table 3.7 of the
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Mode | FEMsolid FEM Curved 5 cubic Tvoe of mode
Number (4000) beam NURBS yP
1*' mode of Vertical
1 0.2824 0.1788 0.2942 )
displacement
st
2 13623 1.1794 14211 1" mode of Lateral
displacement
nd .
3 22615 4.1602 2.2205 2" mode of Vertical
displacement
4 5.7508 6.4632 5.9612 1* mode of Torsion
5 6.3241 31.211 6.3709 2™ mode of Torsion

Table 4.8. Eigenfrequencies of the beam of Fig. 4.8.
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Figure 4.12. Out-plane displacement at the tip of the curved beam model shown in
Fig. 4.10b for gradually applied dynamic loading.

same Chapter. The curved beam model examined at first has the following
characteristics: E =4E7kN/m?>, G=2ETkN/m*, L=10m, R=6366m. It is
subjected to a concentrated load either P, =1000kN or P, =1000kN eccentrically

applied at its free end. This cross section is thin-walled and it holds that #/d =0.02
and d/L=0.1 (t=thickness and d=height or width). This implies that significant
distortional phenomena will arise.
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In Table 4.9 the values of the kinematical components v (x) , 0, (x) and 6y (x) for the

lateral force P, at the free edge of the beam are presented for 1) curved beam elements

in FEMAP (2010) (FEMbeam), ii) 100 quadratic elements employing AEM

technique (AEMgquad), iii) 10976 quadrilateral solid elements in FEMAP (2010)
(FEMsolid) (the deformed shape of the solid model for this load case is shown in Fig.
4.13).

In the same table the values of the kinematical components v(x), 0, (x),
6y (x), u(x), w(x) and 6, (x) for the radial force P, at the free edge of beam are

also presented. In the first case, the AEMquad gives results closer to the solid model
(errors 5-7%) than the FEMbeam model (errors 8-12%). It is worth here noting that
diaphragms in the plane of the cross section have been employed along the length of

Y A by=3.0m |
T
S ¥ t=0.02 m
] 2 , v(m) 0. (rad) 6y (rad)
E § 10'03%3 m at x=L at x=L at x=L
e
bp=1.0m

FEMbeam -0.5150  0.0276 0.0752

P, Lateral
Loading AEMquad -0.4961 0.0297 0.0719

FEMsolid -0.4734  0.0315 0.0666

u(m) w(m) by (rad)

at x=L at x=L at x=L

FEMbeam 0.0593 0.0930 -0.0173

AEMquad -0.0616  0.0945 -0.0183

FEMsolid -0.0604  0.0947 -0.0183

_.> v(m) 0. (rad) 0, (rad)
P, Radial

. at x=L at x=L at x=L
Loading

FEMbeam 0.0059  -0.0062 -0.0013
AEMquad 0.0059  -0.0060 -0.0013

FEMsolid 0.0054  -0.0055 -0.0014

Table 4.9. Kinematical components of a curved beam with the cross section shown in

Fig. 3.15 for various load cases.



Generalized static and dynamic warping analysis of Curved Beams by Isogeometric Methods 183

the beam in the solid model in order to reduce the impact of distortion and to obtain
comparable results. The optimum number of these diaphragms will be investigated in
Chapter 6. In this case case the discrepancies in the results are similar to those of the
first load case with the FEMbeam model showing larger errors than the AEMquad for

the u(x) , w(x) and Gy (x) displacements, which are in the plane of the curvature.

Figure 4.13. Deformed shape of the solid model of a curved beam with the box-
shaped cross section shown in Fig. 3.15 of Chapter 3 for lateral force
employing FEM solid elements (axes have been taken in a different
way comparing to the beam formulation of this study).

Some aspects of numerical procedure employed are examined in the following.

Particularly, in Fig. 4.14 the distribution of the vertical deflection v(x) for the
concentrated load P, =10004N in the vertical direction eccentrically applied this time

at its free end. Curved beam elements proposed can accurately give the maximum
deflection of the beam model under consideration. However, the distribution along the
X axis of the arc in plan can satisfactorily be described only by the NURBS
approximation of the proposed beam model due to the fact that the same NURBS
functions, as for the representation of the kinematical components, have been used to
describe the geometry of the curved beam and no post-processing computations need to
be done as in FEM beam elements (after solving the problem values have to be
compiled as vectors and be analyzed on the curve). The discrepancies arising between
the NURBS’ model and the solid one are probably due to the number of the

diaphragms used in order to derive the values of v(x) and their positions along the

length, which make the solid model stiffer than it should be. Another reason might be
the shear locking phenomenon.
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Figure 4.14. v(x) distributions derived from the analysis of solid and curved beam

models of the cross section shown in Fig. 3.15.

Additionally, the free vibration problem of the aforementioned curved beam has
been studied and the values of different eigenfrequencies have been compiled in Table
4.10 for different models. It is obvious that the analysis employing the proposed curved
beam formulation with NURBS approximation is closer to the FEM solid model with
13 diaphragms while the eigenfrequencies of the solid model with 1 diaphragm are
quite smaller. However, the diaphragmatic model seems to be stiffer than the proposed
model especially for higher eigenfrequencies. It is also worth noting that convergence
is obtained with few beam elements when NURBS are employed.

Mode FEMsolid FEMsolid 4 cubic 10cubic
Number 1 Diaph. 13 Diaph. NURBS NURBS
1 0.1172 0.1548 0.1317  0.1317

2 0.2556 0.2704 0.2191  0.2191

7 0.3262 1.0436 1.1045 1.1042

8 0.3562 1.4233 1.2313  1.2311

9 0.4022 1.5021 - 1.3345

Table 4.10. Eigenfrequencies of the beam of Fig. 4.13.
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In Fig. 4.15 the bending moment distribution is plotted for different methods
employing either the proposed beam elements or the ones used in commercial software

=
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Figure 4.15. M, (x) distributions derived from the analysis of curved beam models

with a box-shaped cross section (Fig. 3.15) and printed directly along
with the curved model.

(Timoshenko beam elements). The proposed method is validated. It is worth noting
here that when employing NURBS there is no need for post processing of data in order
to derive stresses and stress resultants as it is the case in FEM. This is due to the fact
that the same basis functions are used for the representation of geometry and
kinematical components. Thus, the matter is just to derive deformations and their first
derivative employing the same NURBS structure for specific locations along the curve
of the beam. In addition to this, when employing AEM much more discretization
elements need to be used for the same accuracy level.

In Fig. 4.16 the torsional moment and bimoment distributions are plotted
employing the analysis of the proposed beam model with NURBS on the curved model
directly without any post-processing. Considering commercial FEM beam elements
secondary Torsional moments and bimoments are not considered. However, the
magnitude of bimoment near the fixed support is around 10% of the total Torsional
moment and should be indeed considered in the analysis. In addition to this, secondary
Torsional moment varies from 15 (near support) to 0% of the total Torsional moment
and should also be considered.
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Figure 4.16. Torsional Moment and Bimoment distributions derived from the
analysis of the proposed curved beam model with a box-shaped cross
section (Fig. 3.15) and printed directly along with the curved model.

Finally, in Fig. 4.17 the dynamic response of the curved cantilever beam
previously described is plotted in terms of the tip deflection out of the curvature plane.
The eigenfrequency of the first mode is 49.08 rad/sec (T=0.0204 seconds). A static load
P, =2000kN applied at the centroid of the free end has been dynamically applied in

three different ways, namely suddenly applied for 0.025 seconds, gradually applied for
the first 0.005 seconds and gradually applied for 0.015 seconds. It is obvious that the
amplification is less severe for the last case due to the fact that the load rise is more
gradual. This is equal to 1.3 while for the case of the suddenly applied load is equal to
1.95. Regarding the other case of gradually applied load but with a shorter rise time, the
amplification factor is equal to 1.83. Considering a straight beam of the same length
and loading, the amplification factor for the case of transient response is equal to 1.98.
The second beam has a box-shaped cross section shown in Fig. 4.18 and the
geometric constants compiled in Table 4.11. The curved beam model examined at first

has the following characteristics: E=3E7 kN/m2 , G=15E7 kN/m2 , L=40m,
R=25.465m . It is subjected to a concentrated load either P, =600kN eccentrically

applied as shown in Fig. 4.18. This cross section is thin-walled as the previous cross
section considered in this example and it holds that 7/ d =0.086 and d /L =0.086.
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Figure 4.17. Deflection at the tip of the curved cantilever beam shown in Fig. 4.13
for different cases of dynamic loading.
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Figure 4.18. Box-shaped cross section of the beam of example 4.5.3.

In Table 4.12, the values of the kinematical components v(x), 0, (x) and

Oy (x) for the lateral force P, at the midspan of the beam and for fixed end conditions

are presented for 1) curved beam elements in FEMAP (2010) (FEMbeam), ii) 100
quadratic elements employing AEM technique (AEMquad), iii) 2714 quadrilateral
solid elements in FEMAP (2010) (FEMsolid) (the deformed shape of the solid model
is given in Fig. 4.19). As it can be easily verified, the AEMquad model gives results in
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general closer to the solid one. However, it should be noted that no diaphragms in the
plane of the cross section have been employed in the solid model due to the fact that
this procedure becomes computationally inefficient regarding the obtained level of
accuracy and cumbersome for this particular cross section.

A=1.1280E+01m?
Iyy =1.69887612E+02m"

1., =1.90664591E+01m"

I, » =3.35829281E+00m"

PczPcz

A =7.69037695E-01m>
5 =2.70455808E+01m*
D5 s =2.62674568E-01m’

Dz Ds

I, s =620215034E-13m°

Pcy Ps

I » » =1.20295288E+00m"

PcyPcy

_ 3
chgyabss =1.17081534E-13m

15,3 —1.42222320E+01m°
S

Ps

I p p»=-2.81492352E+00m°

PczPs

I » §=3.96237278E+00m>

PczPs

AF =2.60795231E+00m>

17 =4.24643347E+01m"

1T =1.21016082E+00m*
D5 - =3.63838338E-01m’

Dz Dy

I » »=-1.28045357E-13nm’

PcyPs

AP = 6.75899175E+00m>

_ 3
D 05, T = 2.75075432E-14m

AS =2.97414035E-01m*

Lor,r — 6.27435249E+01m°
S

Ps

Table 4.11. Geometric constants of the box-shaped cross section shown in Fig. 4.18.

vim)  O.(rad) 6y(rad)

atx=L gtx=L  atx=L

P, Vertical FEMbeam -5.57E-4 1.81E-5 -181E-5
Loading

(eccentrically AEMgquad -5.63E-4 2.25E-5 -2.23E-5

applied) FEMsolid -5.60E-4 2.14E-5 -2.17E-5

Table 4.12. Kinematical components of a curved beam with the cross section shown in
Fig. 4.18 for vertical load and fixed end conditions.

The same cross section is employed for a beam model of the same length and

material with p=2.5t/ m> . This is examined either as cantilever (similar to Fig. 4.20)

or clamped (Fig. 4.19) for the dynamic case of the proposed beam element.
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Figure 4.19. Deformed shape of the solid models of the beam with the cross section
shown in Fig. 4.18 for vertical force employing FEM solid elements
(axes have been taken in a different way comparing to the beam
Sformulation of this study).

Figure 4.20. Deformed shape of model in FEMAP employing 2714 quadrilateral
solid finite elements for the beam of the box-shaped cross section
shown in Fig. 4.18.

The eigenfrequencies either for cantilever or clamped beam are compiled in
Table 4.13 for the proposed formulation and the solid model. Comparing the values
between models, it should be noted that errors are similar for both cases of boundary
conditions and around 5% in general. However, some errors are 6-8% and this might be
attributed to the selection of the right frequencies from the solid model (to those exactly
corresponding to the proposed model) which has thousands of nodes to account for.
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Mode Cantilever . ‘Clamped ‘
Number 10cubic FEMsolid 10 cubic FEMsolid

NURBS (2714) NURBS (2714)

1 0.0489 0.0488 0.2512 0.2306

2 0.1305 0.1408 0.5020 0.5252

3 0.2015 0.1905 0.7212 0.7547

4 0.2992 0.3002 0.7965 0.8111

5 0.4410 0.4644 0.9421 0.9120

Table 4.13. Eigenfrequencies of the beam with cross section shown in Fig. 4.18 either
cantilever or clamped.

Finally, for comparison reasons to the open shape cross sections of previous
examples, the predominant eigenvectors are presented in Fig. 4.21. The first three and
the fifth modes are given. The fifth is the first mode for torsion while the previous ones
are either displacement or bending modes due to the fact that box-shaped cross section
exhibit high torsional rigidity.

In order to further validate the proposed formulation the aforementioned box-
shaped cross section is employed for the beam model presented in Fig. 4.20. This has
the same properties as those previously mentioned and it is subjected to a concentrated

load P, =10000 N concentrically applied.
In Table 4.14 the values of the kinematical components v (x) , 0, (x) and 6, (x)
for the vertical force P, concentrically applied at the free edge of the beam are

presented for i) the proposed curved beam elements with NURBS (cubic), ii) 2714

1. First mode of Vertical displacement 2. First mode of Lateral displacement

3. First mode of Vertical Bending 5. First mode of Torsion

Figure 4.21. Eigenvectors for the model of Fig. 4.20 (Proposed formulation with AEM
in red line, solid model in black and initial curved geometry in purple line
or purple point).

quadrilateral solid elements with 2 diaphragms in FEMAP (2010) (FEMsolid 2 Diaph.)
and iii) 40 quadratic elements in the AEM technique (AEM 40 quad.). After trying



Generalized static and dynamic warping analysis of Curved Beams by Isogeometric Methods 191

different diaphragmatic arrangements, this one showed results closer to the proposed
formulation. However, the placement of intermediate diaphragms for this particular
case will be discussed in Chapter 6. Both analyses employing the beam formulation
proposed give accurate results comparing to FEM solid model with the one diaphragm
used in order to apply load concentrically (FEMsolid). However, the analysis with
NURBS exhibits less computational cost due to the coarser discretization needed.

v
0.30m v(m) at  O.(rad) at O, (rad)
=L — at
X x=L =L
z
& cubic 0.3197 0.007029 0.0104
P, Lateral NURBS : -U. -0.
Loading FEMsolid

2 Diaph. 0.3256 -0.00782 -0.0103

AEM 40 quad. 0.3197 20.07020  -0.0104

Table 4.14. Kinematical components of the beam of Fig. 4.20 for vertical load.

Similarly to previous box-shaped cross section, in Fig. 4.22 the distribution of the
vertical deflection v(x) along the x axis of the curved in plan geometry for the

concentrated load in the vertical direction mentioned previously. As it is the case in the
previous example, curved beam elements proposed can accurately give the maximum
deflection of the beam model under consideration. It is worth noting here that the

approximation of the v(x) distribution when employing quadratic elements in the

AEM technique exhibits a stiffer behavior comparing to NURBS approximation.

In Fig. 4.23 the distribution of total, primary and secondary Torsional moments
are plotted along the length of the curved beam for the concentrated load in the vertical
direction. In addition to this, the bimoment distribution has also been plotted. It is
worth noting here that Torsion and Warping are of the same order of magnitude near
the support for this specific cross section (this was not the case in the previous box-
shaped cross section). Thus, Warping effect will cause important discrepancies between
the commercial FEM beam elements and the one proposed in this study. Secondary
Torsional moment has a considerable value near support, too.

Considering the curved beam of Fig. 4.19 with fixed end supports and a load
P, =20000 kN applied at the centroid of the mid span, the amplification factor of the

transient response for is equal to 1.90 for a system’s period T=0.127 seconds (first
mode) at time t=0.0675 seconds.

The last beam has a box-shaped cross section shown in Fig. 4.24 and the
geometric constants compiled in Table 4.15. The curved beam model examined at first
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Figure 4.22. v(x) distributions derived from the analysis of solid and curved beam

models of the cross section shown in Fig. 4.18.

has the following characteristics: E =3.25E7kN / m*, v=01667, L=33m,

R=100m and p=2.5t/ m’> .1t is examined as clamped for the dynamic problem. This

cross section is also thin-walled and it holds that #/d =0.1 and d/ L =0.065.

In Table 4.16 the eigenfrequencies are compiled for three different cases, namely
proposed formulation, solid model with one diaphragm at midspan (FEMAP, 2010) and
solid model without diaphragm (ANSYS-SOLID45) (Wang et al, 2016). The
reasoning behind the placement of one diaphragm is in detail explained in Chapter 6. It
is important to note that damping is considered in the last case. The eigenfrequencies of
the proposed curved beam formulation are quite close to both solid models for the first
five modes but they are closer to the solid model of ANSYS after the fifth mode. Thus,
damping does not seem to significantly affect the results of the proposed beam model.

Finally, in Fig. 4.25 the dynamic response is obtained for the cases previously
mentioned plus the solid model without diaphragm created with FEMAP (2010) for
comparison reasons. The models are subjected to a vertical cosine load applied at
midspan. It is worth noting that damping is obvious through the oscillations present at
the solid model with damping (ANSYS - SOLIDA45) at the initial phase of its transient
response. The rest of the models exhibit in general a steady state response. However,
this does not affect significantly the results when comparing the maximum values of
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Figure 4.23. Torsional Moments and Bimoment distributions derived from the
analysis of the proposed curved beam model of Fig. 4.20 and printed
directly along with the curved model.
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Figure 4.24. Box-shaped cross section of a beam of example 4.5.3.

displacement between the solid models without diaphragm. The proposed formulation
seems to be closer to the solid model with 1 diaphragm and exhibits a quite smooth
behavior following the application of the load due to the absence of damping.

4.6 Concluding Remarks
In this chapter, the AEM, a BEM based technique is applied for the static and
dynamic analysis of curved homogeneous beams considering nonuniform warping
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effects. The presented formulation is based on advanced beam elements taking
into account secondary torsional shear deformation effect and shear lag effect due to

A =5.3700E-+00m>
Iyy =2.851910E+01m*

1, = 4.84561718E+00m"

I, » =3.06077446E-01m"

PczPcz

A =1.45066966E-01m*
15 =3.95307960E+00m*

— 3
D 05,08 = -2.94263448E-01m

I, ¢ =-1.70696790E-14nm’

PcyPs

I » » =3.04551295E-01m"*

PcyPcy

D5 s —-1.13071027E-14m"

Dy Py

Ipp — 4.16066218E+00m°
S

Ps

I s ¢ =1.84556865E+00m°
Ps Qs
I, p»=-629061071E-01n"

PczPs

I, ¢=3.17151178E-01n

PczPs
AY =3.2745776TE+00m*

17 =1.02573505E+01m*
1 =2.53467905E-01m*

— 3
D, S ol = 9.46320932E-02m

I » »=-1.22749033E-14m’

PcyPs
AP =1.17985944E-+00m>

— 3
D(ngQST =2.49995337E-15m

A5 =2.88756060E-01m*

Table 4.15. Geometric constants of the box-shaped cross section shown in Fig. 4.24.

cubic Type of the predominant

NURBS modes

1

2

7

8

Mode | FEMsolid  Solid45

Number | 1 Diaph. no Diaph.
9.72 9.67
(1.73)* (1.22)*
19.21 19.47
(0.65) (0.70)
21.58 21.66
(4.62) (4.97)
22.75 22.98
(1.11) (2.10)
33.59 36.57
(13.74) (4.48)
37.10 38.67
(7.93) (3.55)
44.16 43.74
(3.50) (2.57)
47.68 51.39
(11.84) (3.78)

First mode of vertical

9.53 displacement

19.33  First mode of lateral bending

20.58 First mode of torsion

22 49 Seconq mode of vertical
displacement

38.21

40.04

42.61

53.33

Table 4.16. Eigenfrequencies of the clamped beam with cross section shown in Fig.

4.24. *() difference between the corresponding solid model and the proposed

beam model (cubic NURBS)

both shear and torsion. The importance of the proposed beam element is highlighted
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when considering the advantages of beam models compared with solid ones, as it is
mentioned in the introduction. Thus, the main purpose is for the beam formulation to
remain simple and with the least number of degrees of freedom needed to describe its
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Figure 4.25. Dynamic response of the clamped beam with the cross section shown
in Fig, 4.24 for vertical cosine load.

behavior accurately (distortional effects and local buckling phenomena increase
significantly the dimension of the problem). Quadratic and constant discretization
elements have been employed in the AEM technique. In addition to this, Isogeometric
tools integrated in FEM and AEM are also applied for the analysis. NURBS structures
give another important advantage over solid models, especially with curved geometries,
due to the fact that they do not require cumbersome pre- and post-processing while
integrate curved geometry in the analysis employing the same shape functions.
Moreover, creation of coarse models with quadrilateral solid elements and diaphragms
is very time-consuming.

NURBS have been employed in combination with FEM or AEM beam elements
and compared to FEM models employing quadrilateral or triangular solid elements or
curved beam elements. Some of the results have also been compared to the results of
FEM plate/shell models. The main conclusions that can be drawn from this
investigation are:
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Highly accurate results can in general be obtained using quadratic elements in the
AEM technique.

FEM models employing curved beam elements give less accurate results due to
the ignorance of generalized warping and STSDE effects, showing quite different
deformed shapes than solid and AEMquad models especially in the case of non-
symmetric cross section beams. Moreover, AEMquad model gives a good
prediction of normal and shear stresses compared to the solid one.

AEMquad models give more accurate results than models with shell elements
especially in cases where the warping of the walls of a cross section is important
(shear lag due to shear and torsion).

Highly accurate results can in general be obtained using B-splines in the AEM
technique as well as NURBS in FEM beam formulations for the static and
dynamic analysis of the proposed beam element. Computational effort, including
post-processing of the results, is significantly reduced by the use of NURBS
comparing to FEM beam and solid models. Employment of NURBS either in
FEM or in AEM results in higher convergence rates and highly accurate results
with few elements. In addition to this, NURBS give more accurate values for
higher frequencies comparing to traditional FEM beam elements

FEM curved beam formulations based on Timoshenko beam theory exhibit a
significant loss in accuracy for higher frequencies even for doubly symmetric
cross sections. Thus, warping effects need to be taken into account in the
dynamic analysis.

Displacement and bending modes dominate over the torsional ones when
considering box-shaped cross sections due to higher torsional rigidities
comparing to the open shape cross sections.

Amplification factors of the dynamic response of a curved beam either for
suddenly or gradually applied force are similar to those of straight beam
formulations. The consideration of damping does not alter the response in a
significant way for the cases examined.

The magnitude of bimoment is in general not negligible comparing to the total
Torsional moment and both moments can also be of the same order of magnitude
as in the example 4.5.3 (cross section of Fig. 4.18). In addition to this, secondary
Torsional moments can be significant and should also be considered in the
analysis. These higher order additional stress resultants can now be integrated in
the analysis’ results and plotted in alignment with the curved geometry due to the
use of Isogeometric analysis.
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Chapter 5

Generalized distortional analysis of
Straight and Curved beams by
Isogeometric Methods

5.1 Introduction

In engineering practice the analysis of beam structural members, which have a
longitudinal dimension significantly larger than the cross sectional ones, is frequently
encountered. However, refined models either straight or curved with shell or solid
elements are widely used in structures, such as for example the deck of a bridge with a
thin-walled cross section, for stress or strain analysis. The analysis of such members
employing the so-called “Higher-Order Beam Theories” (Ferradi et al., 2013; Ferradi,
and Cespedes, 2014; El Fatmi, and Ghazouani, 2011) is of increased interest due to
their important advantages over more elaborate approaches based on shell or solid
finite elements (Sapountzakis and Tsiptsis, 2015), which are mainly incorporated in
commercial software. These advantages of beam models or disadvantages of the other
approximations have already been mentioned in the introduction of Chapter 4.
Particularly, the design of box-shaped thin-walled cross sections, the placement of
supports, diaphragms and loads, the additional calculations needed in order to derive
cross sections’ rotations and further manipulations to extract stress values at specific
points of solid elements can also be added to explain more precisely the imperative
need for advanced beam elements. In addition to these, midline of shell and plate
models becomes difficult to be designed for different thicknesses of the same cross
section, while midline models exhibit difficulty in capturing warping accurately.
Moreover, the investigation of various shell/plate or solid models in order to conduct
convergence studies and control membrane and shear locking phenomena becomes
time-consuming and multiple models need to be created. Distortional effects can be
isolated and further investigated for each model. Finally, beam models allow the use
of different numerical tools (i.e. Isogeometric analysis- IGA, boundary element
methods- BEM etc.) for the 2-D cross sectional and the 1-D longitudinal analysis
which could be more effective in one case or the other and, thus, leading to an
optimum approximating computational procedure.

The evaluation of the cross sectional properties, which are finally incorporated
in the one-dimensional beam analysis, is associated with the accuracy of the model
regarding the cross sectional behavior. Over the past decades, classical beam theories
based on specific assumptions fail to describe accurately the structural behavior of
beam elements, especially in more complex formulations such as in curved
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geometries. Among these theories, that of Saint-Venant (SV) still plays a crucial role
due to the fact that the analysis reduces to the evaluation of warping and distortional
functions over the cross sectional domain. However, this solution is exact for the
uniform warping of a beam (warping/distortional deformations are not restrained).
Towards improving SV theory, several researchers investigated the so-called SV’s
principle (stated by Love, 1944) as well as the SV’s end-effects in order to derive a
more general formulation of beams’ kinematics. Bauchau (1985) proposed an
approach that consists in improving the SV solution by adding a new set of
orthonormal eigenwarpings to the uniform ones, derived from energy principles in
order to formulate the governing equations. In most of these studies, the solution is
obtained as the sum of the SV’S solution and the residual displacements corresponding
to the end-effects, as it will be later explained.

In the majority of past research works, thin-walled cross sections have been
studied due to their low self-weight comparing to solid ones and, thus, their use in
practice. In-plane deformations, such as distortion, occurring when thin-walled
sections undergo bending and torsional deformations can considerably weaken the
flexural and torsional stiffness of thin-walled beams. Even though distortion is larger
in magnitude near the beam’s ends, it does not remain local (exponentially decays
away from the support) and thus it should be considered over the entire domain of the
beam to account for its stiffness-weakening effect. Vlasov (1961) presented the Thin
Tube Theory (TTT) and treated different cross section types as special cases of this
general theory. Kollbrunner and Basler (1969) and Heilig (1971) were later
reformulated TTT for multi-cell boxes with arbitrary cross sections. Kristek (1970)
obtained analytical solution for simple practical cases and separated the analysis of
transverse distortion from that of torsion with longitudinal warping employing the
superposition principle. Wright et al. (1968) studied the distortional warping response
of single-cell box girders with longitudinally and transversely stiffened plates
employing the beam on elastic foundation (BEF) analogy. Steinle (1970) tackled the
torsional distortion problem and introduced distortional stress resultants in the
analysis. Kollbrunner and Hajdin (1975) dealt with the extension of the beam theory of
prismatic folded structures to include the deformation of the cross section for open and
closed cross sections including warping. Other research efforts later expanded TTT
considering only box-shaped cross sections (single- or multi-cell) and, thus, being not
general (Kermani and Waldron, 1993; Kim and Kim, 1999a; Park et al., 2003; Park et
al., 2005b; Razaqpur and Li, 1991; Osadebe and Chidolue, 2012). Schardt (1989,
1994) developed an advanced formulation known as Generalized Beam Theory (GBT)
which is a generalization of the classical Vlasov beam theory in order to incorporate
flexural and torsional distortional effects. A distinguishing feature of GBT stems from
the general character of its cross sectional analysis which enables the determination of
cross-section deformation modes as well as their categorization to global, distortional
or local ones. Further developments of GBT avoid some of its cumbersome procedures
through eigenvalue cross sectional analysis (Ranzi and Luongo, 2011; Jonsson, 1999;
Jonsson and Andreassen, 2011; Andreassen and Jonsson, 2012a, 2012b, 2013). These
approaches are employed nowadays by several researchers. Camotim, Silvestre and
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co-researchers expanded the method to cover a variety of cross sections, orthotropic
materials, as well as geometrically nonlinear and inelastic problems (Silvestre and
Camotim, 2010; Camotim and Dinis, 2011; Dinis and Camotim, 2011, Gongalves and
Camotim, 2015). Towards solving the problem for arbitrarily shaped homogeneous or
composite cross sections, El Fatmi and Ghazouani (2011) presented a higher order
composite beam theory (denoted HOCBT) that starts from the exact expression of
SV’s solution and introduces in- and out-of-plane independent warping parameters for
symmetric orthotropic cross sections with the ability to extended it for arbitrary ones.
However, in-plane warpings are only due to the flexural and axial deformation modes
and, thus, it could be stated that this research effort studies Poisson ratio effects rather
than distortional effects. Ferradi and Cespedes (2014) presented the formulation of a
3D beam element solving an eigenvalue problem for the distortional behavior of the
cross section (in-plane problem) and computing warping functions separately by using
an iterative equilibrium scheme. Genoese, Genoese et al. (2014) developed a beam
model with arbitrary cross section taking into account warping and distortion with
their evaluation being based on the solution of the 3D elasticity problem for bodies
loaded only on the terminal bases and a semi-analytic finite element formulation.
Finally, Dikaros and Sapountzakis (2016) presented a general boundary element
formulation for the analysis of composite beams of arbitrary cross section taking into
account the influence of generalized cross sectional warping and distortion due to both
flexure and torsion. In this proposal, distortional and warping functions are evaluated
by the same eigenvalue problem and in order of importance.

Regarding horizontally curved beams subjected to vertical or radial loads, they
inherently exhibit a more complex behavior comparing to straight formulations due to
the fact that the effects of primary and secondary torsion are always coupled to those
of bending and cross section distortion either for centered or eccentric loads.
Dabrowski (1968) elaborated Vlasov’s theory and introduced distortional behavior of
box girders with a symmetric cross section. His model introduces the distortion angle
as the single degree of freedom which measures the magnitude of the cross-sectional
distortion. Bazant and Nimeiri (1974) proposed the skew-ended finite element in order
to implement the theory of non-uniform torsion for straight or curved thin-walled cross
sections. Oleinik and Heins (1975), and Heins and Oleinik (1976) employing Vlasov’s
and Dabrowski’s theories studied the structural behavior of curved box girders. In-
plane deformations were approximated using a differential equation which was solved
employing the finite difference method. In addition to this, Martin and Heins (1978)
expanded Dabrowski’s equation, which predicts the cross-sectional deformations, so
that the angular deformations induced at given points along an I-girder curved bridge
can be calculated. Zhang and Lyons (1984a, 1984b) employed Dabrowski’s theory
combined with Finite element method to develop a multi-cell box element for the
analysis of curved bridges. Nakai and Yoo (1988) presented an extended study on the
analysis and design of curved steel bridges. Razaqpur and Li (1994) extended their
previous theory to curved thin-walled box beams. Petrov and Geradin (1998)
employing the same concept with El Fatmi and Ghazouani (2011) for straight beams
formulated a theory for curved and pre-twisted beams of arbitrary homogeneous cross
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sections, covering geometrically nonlinear range as well. Kim and Kim (2002)
developed a theory for thin-walled curved beams of rectangular cross section by
extending the theory developed earlier for straight beams taking into account warping
and distortional deformations. Park et al. (2005a) expanded their previous work
(2005b), which was limited to straight box girder bridges, to curved formulations.
They developed a curved box beam element which was employed in order to develop
design charts for adequate spacing of the intermediate diaphragms of curved bridges.
Flexural and torsional displacement functions have been based on those proposed for
doubly symmetric cross section by Kang and Yoo (1994) while distortional functions
have been derived for a mono-symmetric cross section (Park et al, 2003). Despite the
practical interest of their study, their proposal cannot accommodate elastic constraints
and due to other assumptions made lacks of generality. In other research efforts, the
vibration problems of thin-walled curved box girder bridges due to moving loads have
been investigated. The curved box girder bridges have been numerically modelled
using finite elements which take into account the torsional warping, distortion and
distortional warping (Huang, 2001; Yang et al., 2001; Nallasivam et al., 2007). Other
recent research efforts as the following ones mainly constitute design guides with new
formulae for specific practical cases rather than a generalized theory for the analysis of
curved beams. Particularly, in the study of Zhang et al. (2015), a curved girder is
simplified to straight one by using the M/r method and calculation formulae for
determining the required diaphragm spacing are obtained by regression analyses.
Towards establishing a more general theory, Arici and Granata (2016) employed the
Hamiltonian Structural Analysis Method for the analysis of straight and curved thin-
walled structures on elastic foundation extending the so-called GBT. To the authors’
knowledge, there are no research efforts that introduce a unified distortional and
warping eigenvalue analysis of arbitrarily shaped cross sections to the analysis of
curved beams.

As far as the free vibration and dynamic response is concerned, it has been
noticed in studies of the last decades, mainly for straight beam formulations, that the
thin-walled members’ behavior can be highly affected by cross section’s in-plane
(distortion) deformations. There are a number of investigations with various
approaches in order to determine the cross sectional deformations which are either
restricted to quadrilateral cross sections (Kim and Kim, 1999a,b) or to the evaluation
of two distortional modes that are roughly approximated by cubic polynomials (Kim
and Kim, 2000). Thin-walled closed piecewise straight beams with angled joints were
also studied by Jang and Kim (2009), but arbitrarily shaped sections were not
investigated. More recently, Petrolo et al. (2012) as well as Carrera and Varello (2012)
developed a beam formulation which can be exploited for the analyses of compact,
thin-walled structures and bridge-like cross-sections. However, this approach is only
capable of handling problems that involve a limited range of deformation types due to
the fact that the displacement field, which is based on, is not formulated in the most
general way. In addition to these, Jang et al. (2012) and Bebiano et al. (2013)
developed more refined beam models with open- or closed-shaped cross section for
the vibration problem. However, their cross sectional analyses are based on beam-
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frame and plate models for the discretization of the cross section. However, these
approaches depend on the section’s shape, the nodal topology and the number of
intermediate nodes employed which make the procedure cumbersome while
deformation mode selection becomes important for the analysis. Regarding vibration
analysis of curved beams including distortional effects, few research efforts have taken
into account the complete coupling of torsion, warping, and distortion deformations
together with the curvature effect. Zhu et al. (2016) provided a dynamic theory for the
spatial vibration analysis of horizontally curved thin-walled rectangular box-shaped
beams based on the displacement fields proposed by Kim and Kim (1999a). Thus, to
the authors’ knowledge, there is no study on the vibration problem of curved beams
with arbitrary cross section including in- and out-of-plane deformations.

In modern regulations and design specifications, the importance of torsional and
distortional effects in stress or strain analysis of structural members is recognized.
Particularly, in sub-sections 6.2.7.1 and 6.2.7.2 of EN 1993-2, Eurocode 3: Design of
steel structures - Part 2: Steel bridges, regarding torsion, the designer is obliged to
keep the distortional stresses under a specific limiting value or follow some general
design rules in case of neglecting distortion. These are presented in clauses (1)-(9) of
section 6.2.7, regarding torsion, of EN 1993-1-1, Eurocode 3: Design of steel
structures - Part 1-1: General rules and rules for buildings. Nevertheless, no guidelines
and specific modelling methodologies offered for the aforementioned effects. It should
also be noted that most of the provisions of Eurocode 3 regarding torsion are valid
only when distortional deformation can be neglected. The same case is when the
stability of uniform members is checked as it is mentioned in clause (1) of section
6.3.3 of EN 1993-1-1. Distortional buckling is encountered in EN 1993-1-3, Eurocode
3 - Design of steel structures - Part 1-3: General rules - Supplementary rules for cold-
formed member and sheeting, and EN 1993-1-4, Eurocode 3 - Design of steel
structures - Part 1-4: General rules - Supplementary rules for stainless steels. It is
taken into account through reduction factors or special arrangements in order to
prevent distortion. In addition to these, distortional effect is also suggested be taken
into account during the design of unreinforced joints (Section 7.5.2.1(7) of EN 1993-
1-8, Eurocode 3: Design of steel structures - Part 1-8: Design of joints) to prevent
chord distortional failure and the evaluation of nominal stresses from fatigue actions
(Section 4(1) of EN 1993-1-9, Eurocode 3: Design of steel structures - Part 1-9:
Fatigue). Regarding design of aluminum structures (Eurocode 9: Design of aluminum
structures - Part 1-1: General structural rules and Part 1-3: Structures susceptible to
fatigue), some general rules account for distortion and distortional buckling without
any specific guidance.

In this study, the static and dynamic analysis of straight or horizontally curved
beams of arbitrary cross section, loading and boundary conditions including
generalized cross sectional warping and distortional effects due to both flexure and
torsion is presented. The aim of this Chapter is to propose a new formulation by
enriching the beam’s kinematics both with out-of- and in-plane deformation modes
and, thus, take into account both cross section’s warping and distortion in the final 1D
analysis of curved members, towards developing GBT further for curved geometries
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while employing independent warping parameters, which are commonly used in
Higher Order Beam Theories (HOBT). The approximating methods and schemes
proposed by Dikaros and Sapountzakis (2014, 2016) are employed and extended in
this study. Adopting the concept of end-effects and their exponential decay away from
the support (El Fatmi and Ghazouani, 2011), appropriate residual strains are added to
those corresponding to rigid body movements. Further, applying Hooke’s stress-strain
law and employing the equilibrium equations of 3D elasticity, a system of partial
differential equations can be derived for each material over the 2D cross section’s
domain together with the corresponding boundary conditions. Consequently, a coupled
two-dimensional boundary value problem is formulated, with or without considering
Poisson ratio. Applying a proper discretization scheme for the cross section, the above
mentioned problem will lead to the formulation of an eigenvalue problem which the
eigenvalues and the corresponding eigenvectors, for a desired number of modes, can
be extracted from. The obtained set of modes contains axial, flexural and torsional
modes in order of significance without distinction between them. To avoid the
additional effort needed in order to recognize the most significant modes, the iterative
local equilibrium scheme described in the work of Dikaros and Sapountzakis (2014) is
adopted until the error due to residual terms becomes minimal. The above scheme is
initialized by employing a pre-assumed vector which corresponds to rigid body
movements of the cross section (the so-called central solution). Together with the
warping functions calculated first, the corresponding distortional ones are also
obtained and recursively modify the warping functions due to their coupling. With all
these additional modes, the beams’ kinematics is enriched and capable of describing
accurately the displacement and stress distribution in the beam. The functions derived
are evaluated employing 2D BEM (Katsikadelis, 2002a). The coefficient matrices
containing the geometric and mass properties of the cross section can now be
calculated, as it will be later explained. Thus, a set of boundary value problems are
formulated with respect to the unknown kinematical components (displacements,
rotations and independent parameters) for each time instant, the number of which is
defined by the user depending on the accuracy of the results. This linear system is
solved using Isogeometric tools, either integrated in the Finite Element Method (FEM)
(Hughes, Cottrell, and Bazilevs, 2009) or in the Analog Equation Method (AEM)
(Katsikadelis, 2002b), which is BEM based. Employing the principal of virtual work
the new equilibrium equations are derived. Additionally, by employing a distributed
mass model system accounting for longitudinal, transverse, rotatory, torsional,
warping and distortional inertia, free vibration characteristics and responses of the
stress resultants and displacements to static and moving loading can be evaluated. The
results obtained from the beam element will be compared to those obtained from finite
3D solutions and other research efforts. Numerical examples are presented to illustrate
the efficiency and the accuracy of this formulation as well as to provide rules of thumb
regarding the consideration of distortion and the number of modes needed. To the
authors’ knowledge, the numerical procedures previously mentioned have not been
reported in the literature for the analysis of straight or curved beams including
distortional effects.
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The essential features and novel aspects of the formulation that will be presented
in the following compared with previous ones are summarized as follows.

i.  The developed beam formulation is capable of the static and dynamic analysis of
spatial straight or curved beams of arbitrary composite cross section with one
plane of constant curvature considering warping and distortional effects (in
addition to the previous formulations) that are introduced in the same boundary
value problem which describes the cross section’s deformations.

ii. The cross sectional analysis is based on an iterative equilibrium scheme which
results in a numerical procedure with less computational effort and complexity
comparing to traditional eigenvalue analysis reported in the literature for similar
problems. Particularly, modes attributed to different structural phenomena can
be separated directly and make the supervision of the results easier. In addition
to this, the data post-processing and the iterative procedure become faster due to
the fact that warping and distortional functions are calculated separately.

1.  The accuracy level of the numerical method proposed can be decided by the user
by setting the desirable number of the modes taken into account and, thus,
increasing the number of higher modes added in the final solution.

1v.  As also mentioned in Chapter 4, the numerical solution of the straight or curved
advanced beam is based on B-splines (Sapountzakis, and Tsiptsis, 2014;
Sapountzakis, and Tsiptsis, 2017) and NURBS (Isogeometric Analysis) offering
the advantage of integrating computer aided design (CAD) in the analysis.

v. The straight or curved beam is subjected to arbitrary external loading including
warping and distortional moments and is supported by the most general
boundary conditions including elastic support or restraint.

vi. The proposed method employs a BEM approach which requires only boundary
discretization for the cross sectional analysis with line or parabolic elements
instead of area elements of the FEM solutions, which require the whole cross
section to be discretized into triangular or quadrilateral area elements.

5.2 Statement of the problem
Let us consider a straight or curved prismatic element (Fig. 4.4 of Chapter 4) of
length L with an arbitrarily shaped composite cross section of m homogenous,

isotropic and linearly elastic materials with modulus of elasticity E,,, shear modulus
G

» and and Poisson ratio v,,, occupying the region €2, of the yz plane with finite

number of inclusions (Fig. 5.1). Let also the boundaries of the regions €2,, be denoted
by I',,. This boundary curve is piecewise smooth, i.e. it may have a finite number of
corners. In Fig. 5.1 CXYZ is the principal bending coordinate system through the cross
section’s centroid C, while y-, <z are its coordinates with respect to Sxyz
reference coordinate system through the cross section’s shear center § . It holds that

Yye=y—Y and zo=z-Z. The initial radius of curvature, denoted by R is
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considered constant and it is parallel to ¥ axis. The displacement vector u (x, v, z) of

an arbitrary point of the cross section is obtained as the sum of SV solution vector
corresponding to the rigid body motion combined with a residual (index R)
displacement vector due to end-effects which are responsible for the generation of
self-equilibrating stress distributions:

L?(x,y,z):ﬁsv (x,y,z)+L_tR (x,y.2)=u(x)+6y (x)Z-0, (x)Y+Zai(x)Wi(y,z)
i=1

rigid body movement

out-of-plane warping

(5.1a)

V(x,y,z)zVSV(x,y,z)+\7R(x,y,z)= v(x)—z0,(x) +Zai(x),xDYi(y,z) (5.1b)
o~ —— =l

distortion in Y direction

rigid body movement

w(x,y,z)= Y (x,, z)+vT/R (x,y.2)= w(x)+y0,(x) +D ;(x) DZi(y,2) (5.1¢c)
—— g

distortion in Z direction

rigid body movement
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Figure 5.1. Arbitrary composite cross section of m homogenous materials
occupying the two dimensional region Q).

where ( ) i is for differentiation with respect to j, 1 is the number of higher order cross

sectional functions considered, u, Vv, w are the axial, transverse and radial beam
displacement components with respect to the Sxyz system of axes, respectively,

W(y,z) is the warping function, DY (y,z)and DZ(y,z) are the distortional functions
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of the in-plane deformation mode D(y,z) while a(x) is a function describing the

decay of deformation along beam length. Moreover, v(x) and w(x) describe the
deflection of the centre of twist S, while u(x) denotes the “average” axial
displacement of the cross section. &, (x) is the angle of twist due to torsion, while

Oy (x) and 6, (x) are the angles of rotation due to bending about the centroidal Y,

Z axes, respectively.The derivation of rigid body motions is in more detail explained
in the work of Kang and Yoo (1994), while siné, =6, ,cosf, ~1 assumption is

adopted and higher order terms are neglected in this study. Considering the fact that

CcX

end-effects decay exponentially away from the support, a(x)=e =~ where ¢ is a

constant to be specified. However, different expressions of this parameter have also
been adopted in other research efforts (i.e. polynomials of various degrees).

After establishing the displacement field, the strain components for mth material
due to end-effects can be computed as

(£0)y = (7" (2.3.2),, )m —a, (W) (5.22)
(o), =(7" (v 3:2), ) =a.(pY,), (5.2b)
(£ )m :(WR (x, y,z)’z) =a, (DZ’Z )m (5.2¢)

=a (DY), +a(W,) (52d)

D) =72 = (75 (63.2), ) +(@ (x.7.2),) =@ (DZ), +a(W,) (520

m m

(7yz )m = (]/Zy )m = (V_VR (x, y,z)’y) +(\7R (x, y’z)’z)

m m

~a,|(0z,),+(pY.), |

(5.21)

Employing the well-known stress-strain constitutive relationship for elastic
media and isotropic solid, the stress components of the mth material are as follows in
matrix form

Atrle]+2ue 2uy 2uy .,
(04) =|  2mr  Awlslv2us, 2w, (5.3)
2uy,, 21y Atrle]+2ue .
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where i, j=x,y,2z, (trlel), =<gxx+gyy+gzz)m and A,,u, are the two Ldme

parameters of the mth material. In case poisson ratio v,, =0, 4=0 and E, =2u.

Employing local equilibrium equations of three-dimensional elasticity considering
body forces to be absent, substituting stress components (eq. (5.3)) and the exponential
function a/(x), the following system of partial differential equations can be derived for

the mth material as

I:,um (V2W)m +% (ft+ 2 ) (VD) +* (244, +im)(W)m}e_cx =0 (5.4a)

[t (VD) (it = ) (VD) =t 2 )W, )+t (DY), e =0

(5.4b)

(<ttn (V2DZ) w20 (VD) ety + A ) (W), ¢ 0, (D), o =0

(5.4¢)
Thus, the following equations need to be satisfied
(viw) =¢ {_M(W)m _ H ¥ oy (VD)m} (5.5)
Hon Hyp
o+ A [
(VZDY)m e (VD) , +(W, )m} =c*[~(DY), | (5.5b)
2 My + A T _ 2
(vopz) +Hem(vD), +(W.), |=[~(p2), ]
(5.5¢0)
Together with the following boundary conditions
(axn)m =(o*xy )m ny +(0o )m n,=0 on (FQ)m (5.6
(Ow), ==(owm), on (Tg) (Tg), m#n
(O'yn )m = (O'yy )m n, + (Gyz )m n,=0 on (FQ )m (5.6b)
(O'yn)m —(O'yn )m on (Tq) V(Tq), m#n
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m

(5.60)
(o), =—(om)  on (Tq) U(Tq), m=n ‘

{(Gm )m = (Gzy) ny +(0zz )m n, =0 on (FQ)m

Employing the relation v, =4,/ [Z(Xm + Uy, )] and expanding the stresses in

the above boundary conditions, the following boundary value problem is formulated

(VZW)m=c2[— 2_(w) - yp) (5.7a)

e m e m
I-v, I-v,,

(Wn )m =c? [—(DY)m n,—(DZ) nZ] on free surface

{gm (Wn )m +g, (Wn )n =c*(gm—28n )[—(DY)m n,—(DZ), nz] on Interfaces

(5.7b)
(v2Dr) + t:;'i (VD),,+(W,), |=¢*[~(pv),,] (5.7¢)
(v°pz) + tfj (D), +(W.), |- [-(p2),] (5.7d)

Em {(DY’" )m - [(DYJ )m y +(DZ,y )m g }} + 8 [(DY,y )m + (DZ,z ),J”y +  (5.7¢)

g, {(DZ’H ) + [(D)jz ), n,+(DZ,) nz}} +gh [(DKY ) +(pz, )mJnZ

==gn(W),,n;
g, {(DZ’,! ) +[(DKZ ) n,+(DZ,) nz}} . [(ny ) +(pz, )m}nz (579
g, {(DZ,H ), +[(DKZ ) n,+(DZ,) nz}} t gl [(ny ), +(Dz, )n}nz

= _(g;:l -g )(W)m n, on Interfaces

on free surface
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where vy, =v,,/(1-v,,) is the effective Poisson ratio while g, =,/ Hyef »
g =,/ Hyop are weighted elastic constants with respect to g, which is the shear

modulus of reference material. If a plane stress assumption is employed, v;, is

substituted by v,,. When v,, =0 it holds that g, =E, /E,, , g, =0, with E,

being the elastic modulus of reference material, and the aforementioned boundary
value problem is simplified. Therefore, employing a proper discretization for the cross
section, the above coupled boundary value problem (egs. (5.7)) will lead to the

formulation of a generalized eigenvalue problem of the form AF = ¢’*BF where A,B

are known coefficient matrices, ¢ is the eigenvalue and F :[W DY DZ]T is the

eigenvector of the problem. The solution of eigenvalue problem yields a set of
eigenvalues together with the corresponding eigenvectors which constitute a basis of
cross sectional deformation modes suitable for distortional analysis of beams.

As mentioned earlier, the iterative equilibrium scheme described by Ferradi,
Cespedes and Arquier (2013) as well as Dikaros and Sapountzakis (2014) is employed
here until a sufficient number of modes is obtained to represent accurately the non-
uniform warping effects and the corresponding distortional ones. In order to initialize
the above stated boundary value problem, the rigid body movements of the cross
section are employed. These correspond to SV flexural and torsional warping modes.
Afterwards, in order to restore equilibrium the secondary warping modes are
determined together with their corresponding distortional ones. Following this concept,
the iterative procedure is formulated converging to the exact shape of the warping in a

section. Each functional vector F;  has to fulfil the orthogonality condition with

respect to the functions F; corresponding to the previous set of modes. Knowing that

each mode is computed with respect to Ciz , it follows that

[ FPdo

g (5.8)
[ FFa0
Qm

After the evaluation of this constant, the normalized Fi+ =ci2Fl- 41 can be established

and the functions can be obtained.

Within the context of the above considerations and considering up to secondary
warping as well as distortional displacements, which are actually the independent
parameters, the enriched kinematics of an arbitrary point of the beam for mth material
at any time instant is given as
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b_t(x,y,z,t)=L7P(x,y,z,t)+b7s (x,y,z,t)z

u(x)+6y (x)Z-0, (x)Y+nx(x)¢§)(y,z) (5.9a)
primary
11y (X) by (3:2) + 1z (X) Bz (9 2) + &, (%) 5 (.2)
secondary

v (xyz.1) = v(x) =26, (x)

+8, (%) vs (3,2)+ ¢y (x )VCY( 2)+¢7 (¥)vez (.2) (5.9b)
+;(x(x)v§(y,z)+;(Y(x)vgy(y,z)+zz(x)vgz(y,z)

w(x.y,z.1) = w(x) + y0; (x)

+ ¢ () w5 (3.2) +y (2)wey (3:2) + &7 () wez (3.2) (5.9¢)
primary

+ 2 () ws (3:2) + 2y (¥) wey (3,2) + 222 (%) wez (32)
secondary

where u’, IZS, denote the primary and secondary longitudinal displacements,

respectively. 7, (x) , & (x) are the independent warping parameters introduced to

describe the nonuniform distribution of primary and secondary torsional warping,

while 7y (x), 77, (x) are the independent warping parameters introduced to describe
the nonuniform distribution of primary warping due to shear. Similarly, ¢, (x)

X (x) are the independent distortional parameters introduced to describe the

nonuniform distribution of primary and secondary distortion due to torsion, while

Sy (x), ¢z (x), ay(x), xz(x) are the independent distortional parameters

introduced to describe the nonuniform distribution of primary and secondary distortion
due to flexure. All these parameters are multiplied by the corresponding warping and
distortional functions which are components of the W(y,z) and D(y,z) vectors

derived by the solution of the coupled boundary value problem stated in eqs. (5.7). In
egs. (5.9), 16 degrees of freedom have been employed in 3D space. These activate 12
cross sectional deformation modes, namely rigid (4), primary (4) and secondary
motions (4), including extension.

If tertiary displacements have to be employed for accuracy reasons, the beam’s
kinematics is enriched further as follows:
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L_t(x,y,z,t):ﬁp (x,y,z,t)+L7S (x,y,z,t):

u(x)+6y (x)Z—-0, (x)Y +n,(x)ds (v.2)

1y (x)8Ey (3:2) +117 () By (3,2) + & (%) 85 (3:2) (5.10a)

secondary

+ & (X)ddy (3,2)+ & (x) 807 (3.2) + 0, (x) 5 (3.2)

tertiary

v(x,y,z,t)=v(x)— 20, (x)

+Cy (x)véJ (y.2)+<y (X)ng (y.2)+<5 (X)vgz (.2) (5.10b)
primary

() vs (352) +wry (¥)vey (352) + w7z (x) vz (3:2) (5.10b)
tertiary

primary
T Xx (X)WSS (v.2)+ 1y (X)Wgy (v.2)+ 12 (X)Wgz (v:2)
secondary

() w5 (3, 2) +wry () wey (3,2) +w7 (x)wez (2)

tertiary

(5.10c)

In this case 22 degrees of freedom have been employed in order to describe the

beam’s behavior. The additional 6 degrees, namely &, (x), &y (x) , O, (x), W, (x),

vy (x) and w, (x), account for 3 tertiary warping and 3 tertiary distortional effects,

respectively. These activate 4 additional cross sectional deformation modes including
extension. The enrichment of the beam’s kinematics can be done automatically by
increasing the number of modes, which are an input value for the boundary value
problem to be solved. This results in the evaluation of additional cross sectional
operators which will be employed in the analysis of the beam model, after establishing
the strain components as it will be described in the following.

After establishing the displacement field, the linear strain-displacement relations
in the system (x,y,z) can be written as follows

_ v R — _
gxxz(u,x_i).(_R_Yj, By =Ty, £n =T, (5.11a)
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_u R _ _ R _ _
Vxy =(V’X+Ej.(ﬁ)+u’y’ Yz =W’X(R—Yj+u»z’ Vyz =Wy tV, (5.11b)

where is set as e(R) in the following and introduces the thickness-curvature

effect of the curved beam.

Employing the expressions of the displacement components (eqs. (5.9)), the
strains and stresses can be computed. Applying the principle of virtual work or any
other variational principle following standard arguments in the calculus of variations,
the governing differential equations for the beam in terms of the kinematical

components can be derived. Thus, the local stiffness matrix [k,] of the spatial curved

beam can be evaluated after solving a system of linear equations. Finally, the matrix
form of stiffness matrix is derived as follows

100 0 Z v ¢ ¢b o6, ¢ 0 0 0 0 0 0
000 0 0O 0 O O O 0 0 O 0 0 0 0
(Al 000 0 0O 0 O O 0O 0 0 O 0 0 0 0 (R)(5-123)
uxl|= e
010 -2z 0 0 0 0 0 0 v v& v& vi Vv vy
001 y 0 0 0 0 0 0 w wh wh wi we w,
o000 0 O0 O O O 0 0 O 0 0 0 0 |
i 1 z
0 ——eR) 0 ~eR 0 0 0 0 0 0
2 (R) R (R)
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
P P P S
[Aw2]=| z v Bew) Doy ILor) Boery
Ee(R) 0 0 0 Ee(R) —I—Ee(R) R R R R
+¢5€,y +¢CPY,y +¢CPZ,y +¢§,y
0 0 0 0 1 0 #. v, Bz ¥
| 0 0 0 0 0 0 0 0 0 0
VP VP VP VS VS VS ]
%e(R) %e(R) %e(R) Ffe(R) %e(R) %e(R)
Vg,y VgY,y VgZ,y Vg,y vgY,y Vg‘Z,y
WS,z WgY,z WgZ,z Wg,z WgY,z Wg‘Z,z
0 0 0 0 0 0
0 0 0 0 0 0
Wg),y WgY,y WgZ,y Wg,y wg‘Y,y Wg‘Z,y
+v§,z +VgY,z +V€Z,z +v§,z +Vg‘Y,z +vg‘Z,z |

(5.12b)

£= [Auxl]u,x +[Aux2]u (5.12¢)
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o =[C|[Auxl]u,, +[C][Aux2]u (5.12d)
L
oU = ,([g[(&l];‘ [Auxl]T +ou’ [AuxZ]T )([C][Auxl]u,x + [C][Aux2]u) B dQdx =
L

= 8U = [ (6wl kgt + Su” by, + Sul kyyu+ 5u” ke = by parts integration
0
L

=0oU = I(éuT {_k22u,xx +[kyy —kyy Ju +ky 1”})dx+ [5MT {kzzu,x +k21u}l[;
0

(5.12¢)

ki k
[h]={ku 12} (5.12f)
21

k22

where [Auxl], [Aux2] are auxiliary matrices to express strains ¢ in matrix form,
1

e(R)

dQdx =dV 1is the differential volume of the curved beam for constant radius of

curvature, [C] is the elasticity matrix employed to derive stresses g, U 1is the virtual
strain energy and kj;, ki, kp1 and ky; are 16X16 coefficient matrices containing the
geometric properties of the cross section. These are calculated as follows

| 1
k) =IQ [Auxl]T [C][Auxl] B dQ, ki» =IQ [Auxl]T [C][Aux2] e(R)dQ
| 1
b = J.Q [AuxZ]T [C][Aut] B doQ, kyy = J.Q [Auxz]T [C][Aux2] o(R) dQ
(5.13)
From eq. (5.12¢) after integrating by parts, it holds that
NOM = kyyu . +kyju e

where NOM is the vector of the stress resultants at the beam’s ends.

Moreover, the external work can be derived as follows. Employing the auxiliary
matrix related to coefficients of the displacements’ field

100 0 z v ¢f o8 ¢, 4 0 0 0 0 0
[Aux]=|0 1 0 =z 0 0O O O 0 O vy
001 y 0 0 0 0 0 0 w

0
S (5.15a)

P P s N
Vey VYez Vs Yey Vez

P P S S s
Wey Wez Ws Wey Wez

and, then, substituting in the expression of virtual work, it holds that



Generalized distortional analysis of Straight and Curved beams by Isogeometric Methods 215

L

ow :T(é'uT [Aux]T t)dx+|:J‘(5uT [Aux]T t)dQ} (5.15b)

0 Q 0

su'p

where ¢ is the traction vector applied on the lateral surface of the beam including the
end cross sections and p is the external load vector of the beam.

Combining eqgs. (5.12e) with (5.15b), the expression of the variational total
potential energy can be evaluated and, thus, the governing differential equations of the
problem can be obtained together with the boundary conditions as

—kzzl/l,xx +[k12 —k21]u’x +k1 wm=p (5163.)

where ¢; are diagonal matrices and vector containing known coefficients according to
the boundary conditions of the beam (i.e. for clamped end ¢ =1 and a, =a3=0).

Employing the expressions of the displacement components in eqgs. (5.10), the
cross sectional operators (eqs. (5.13)) and the governing differential equations of the
curved beam can be obtained in a similar way when tertiary or higher warping and
distortional effects are considered.

In order to derive the differential equations of motion with respect to the
kinematical components, the terms of inertia contributions

5Wmass = _[Vp(l'_‘,né‘l/_l"‘v,nﬁ"‘ W,tté‘VT/)dV (with 4V =

dQdx ) have to be added in
e(R)

the previous (eqns. 5.12e and 5.15b) and constitutive equations should be employed. p
is the density of the material and u,v,w are the generalized displacements as

previously described. Thus, the local spatial mass coefficient matrix [ml] can finally

be derived. This can be extracted in matrix form from the following expression

:ij(&tT [Aux]T [Aux]u’n)ﬁdﬂdx:é'w =

mass
0Q

oW,

mass

(é'uT [ml ]u’ﬂ )dx (5.17)

(=Rl

with [Aux] given in eqn. (5.15a), u representing the total displacement and [ml] being

a 16X16 coefficient matrix when displacements of eqns. (5.9) are employed.
Except for the boundary conditions there are also the initial conditions at

x(0,L) similar to those defined in eqns. (3.3) of Chapter 3. After establishing the
stiffness and mass matrices of the spatial curved beam element the equation of motion

in matrix form can be given as in eqn. (4.23).
The natural frequencies and modes in which the beam vibrates for the different
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motions (including also distortional ones) can be obtained by separation of variables
and ui(x,t) is assumed to have the form given in eqn. (3.13). Finally, the typical

generalized eigenvalue problem described by eqn. (3.14) is formulated and solved.

5.3 Numerical Solution for the Cross Sectional analysis

The evaluation of the warping and distortional functions is accomplished by
solving the problems described by eqns. (5.7). Warping functions W and their
derivatives are at first computed by solving eqns. (5.7a,b). Afterwards, these values are
inserted as generalized body forces in eqns. (5.7c-f) which are solved as a 2D elasticity
problem in order to obtain distortional functions D . The solution of the problem is
accomplished employing BEM within the context of the method of subdomains and
BEM for Navier operator (Katsikadelis 2002a; Beer et al. 2008). Afterwards, the

values are normalized through the constant c,-2 , as earlier described, and the procedure

is repeated for the desired number of modes. Finally, the functions calculated are
employed in order to obtain the cross sectional operation factors given in eqns. (5.13)
as well as mass operation factors derived by eqn. (5.17). These are used as input
values together with the elasticity and function matrices to solve the curved beam
model with the methods described below.

5.4 Numerical Solution with AEM and NURBS

According to the precedent analysis, the static and vibration analysis of straight
or curved beams of arbitrary cross section including generalized warping and
distortional effects reduces in establishing the components the kinematical

components u; (either of those in eqns. (5.9) or (5.10)) having continuous derivatives
up to the second order with respect to x at the interval ((), L) , up to the first order at

x=0,L, and for the dynamic problem up to the second order with respect to time ¢,

satisfying the initial-boundary value problem described by the coupled governing
differential equations of equilibrium in eqns. (5.16a) along the beam and the boundary
conditions in eqns. (5.16b) at the beam ends, at x=0,L as well as the initial

conditions similar to eqns. (3.3). The problem is solved using the Analog Equation
Method in a similar way as the one described in detail in Chapter 3.

However, some differences arise here due to the nature of the problem stated.
The number of the kinematical components depends on the number of modes
employed, as it is obvious from eqns. (5.9) and (5.10).

Eqns. (A.1.34) and (A.1.36) of the Appendix A.l written for the boundary
points constitute a system of four simultaneous integral equations, while the boundary
conditions in eqns. (5.16b) are formulated in matrix form giving four more equations.
Combining the aforementioned equations, the system (A.1.45) is derived initially for
the case described in eqns. (5.9). For this problem, [E] becomes a 64X64 square

matrix, {u;},{D} {T;} 64X1 vectors, [Ej;], [E};] 32X32 known coefficient matrices
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and {D;} known 32X1 coefficient vector with their dimensions depending on the

number of modes employed and all explained in the Appendix A.1.

Particularly in this study, [E{], [Ej,] are calculated writing eqn. (5.16b) in the

following matrix relations

[0 +agka 1’ +[aako 1, = {azo } for x=0
. . (5.17a,b)
[, + e hepy ™ oy ko Juy ={ots, | for x=L

and iterating over the number of boundary conditions, which is 16 for each end in this

case. [kij],i, j=L2 are the geometric constant matrices given in eqn. (5.13) and

inserted as input in the beam analysis for each discretization element.
Thus, the following system is derived

[E) s} = (D} +[FI{B} > )= [E] D)+ [E] [F)(B) 6.18)

where P, are the control points if the fictitious load of AEM is represented by B-

1
splines or NURBS.

After calculating the rest of the AEM matrices as described in the Appendix A.1,
the element cross sectional operators are assigned to each discretization element in
order to calculate the stiffness matrix of the beam element employing eqn. (5.16a)
transformed into matrix form as follows as well as the mass matrix calculated as
follows

[K]=~[Kxn]+[Kin— Ky ][B]+[Ki1][B] (5.19)
[M]=p[M,][B] (5.20)

where [K;;1.[K{,1.[K5 1.[K5,] and [M;] are the geometric and mass constant

(16XNgor) X (16XNyof) matrices formulated for all of the discretization elements
through an iterative procedure with Ngor being their number. The stiffness and mass
matrices are formulated either with respect to the values of the fictitious loads in the
case of the original AEM or the control points when B-splines are integrated in the
AEM.

Additionally, substituting eqns. (A.1.50) of Appendix A.1 into eqn. (5.16a), the
load vector applied is written as follows in matrix form

{Py={p}~([Kin—Kn {R} +[ K11 ]{R}) (5.20)
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where { p} is a load vector containing the load values along the beam either

concentrated or uniformly distributed.

Finally, the global equation system can be formulated and the unknowns can be
evaluated. The result is not the displacement vector as in traditional Finite Element
(FE) Method (FEM) but it is either the fictitious load, which represents the second
derivative of the kinematical components, or the control points. Employing eqns.
(A.1.50), the kinematical components and their first derivatives can eventually be
obtained. These are employed as input values together with the function matrices in a
post-processing procedure in order to derive the total displacements, stresses and stress
resultants along the curved geometry.

Instead of B-splines, NURBS curves in terms of B-spline basis functions can be
employed either in FEM or AEM. The description of the numerical procedures is
given in the Appendix A.2. In this chapter, the geometry of the beam is described as in
Chapter 4. After establishing the kinematical components and their derivatives, total
displacements can directly be plotted on the curved geometry. Finally, stresses and
stress resultants can also be derived without the need for excessive post-processing.

Regarding the vibration analysis, the Newmark time integration scheme (Bathe,
1996), which is widely used in structural dynamics, can be employed, as in the
previous chapter. The equation of motion can be expressed at time #+Dt and the step-
by-step solution can be computed.

5.5 Numerical examples

In order to validate the proposed formulation of the straight or curved beam
element described above, investigate the importance of curvature in distortional
analysis as well as of distortion in the free vibrational characteristics of a beam and
examine the advantages attained by the use of the methods proposed in terms of
simplicity, accuracy and computational effort, computer programs have been written
and various straight and curved beam models have been studied. The numerical results
have been obtained employing NURBS in FEM and constant elements or B-splines for
the representation of the AEM fictitious loads. All the algorithms formulated take as
input the geometric and mass constant matrices obtained by the cross sectional
analysis, which was earlier described. Then, the results are compared to those
obtained by the application of the Finite Element Method (FEM) employing beam,
solid (quadrilateral) or plate elements. The computer software FEMAP (2010) has
been used for this purpose.

Different FEM models have been created with various discretization elements
and with or without Poisson ratio considered. Various cross sections and beam models
with different 7/d and d/L ratios (t, dand L are the thickness, width and length
of the straight or curved close- or open-shaped cross section beam model) have been
employed in order to estimate the magnitude of distortional effects and the number of
modes needed in order to derive accurate results. In addition to these, up to 1000
boundary elements depending on the cross section type (cross sectional discretization)
have been employed in order to evaluate the cross sectional operators and functions.
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5.5.1 Doubly Symmetric cross sections

In this example, in order to validate the proposed formulation and investigate the
importance of distortion, Poisson ratio and curvature in the analysis of straight or
curved beam models as well as the number of modes needed , the static problems of
straight or curved cantilever beams with doubly symmetric cross sections (solid, open
or closed) are examined.

The first beam model under consideration has a solid rectangular cross section
20X50 cm and a length of 3 m. Two different materials are considered with or without

Poisson ratio, namely FE =35000 kN, / m? , v=02/0 and E=21E8kN / m?

v =0.3/0. For the first material, the beam is subjected to an eccentrically applied load
of 1 kN at its tip cross section which results in a twisting moment of 0.2 kNm.

In Fig. 5.2 the total translation contours are presented for the three dimensional
(3D) FEM model (810 quadrilateral solid elements) and the one proposed (AEM with
50 constant elements) considering Poisson ratio. When employing cubic B-splines the
same tip displacements are derived with just 8 collocation points (two spline curves)
and the computational cost is significantly reduced.

e
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Figure 5.2. Total translation contours of 3D solid FEM model with 810
quadrilateral elements (above) and the proposed one (AEM with 50
constant elements) for rectangular cross section.

In Fig. 5.3 the normal stress o, contours are displayed for the same cases. It is

obvious that the two models coincide. The displacement field considered is the one
described in eqns. (5.9). Itis found that there is no need to consider additional modes.
It is also concluded that this particular cross section does not suffer excessively from
distortional effects due to the fact that the distortional moments derived from the
proposed model are insignificant. Thus, Poisson effects can be isolated and studied.
Considering 3D FEM models, it is quite difficult to deduce that distortion is not of
importance due to the fact that different structural phenomena cannot be isolated.
Different models with various diaphragmatic arrangements have to be considered and
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compared in order to come to the same conclusion. Special attention should be paid
when too many diaphragms have been used due to shear locking phenomena that make
the model falsely stiffer.

416
400

300

— -416

Figure 5.3. Normal stress o,, contours of 3D solid FEM model with 810

quadrilateral elements (above) and the proposed one (AEM with 50
constant elements) for rectangular cross section.

In Fig. 5.4 the stress contours derived by the proposed formulation are displayed
with or without (indices with 0) considering Poisson ratio. It is depicted visually that

7,y and 7, intensity is less in the case of zero Poisson ratio. It should also be noted

that the magnitude of Eyy and ¢, (0-2.5 kN/mz) normal stresses is almost insignificant

in the same case comparing to the one of v =0.2(85-95 kN/m?). Normal stress Eyp 18

less by almost 6% in the zero Poisson ratio case (*380 kN/m?) and shear stress Ty is

insignificant in both cases.
In Fig. 5.5 the stress contours at the support are presented for £ =2.1E8 kN, / m*

and v=0.3/0. Similarly to the previous material case 7,, and r stresses are smaller

Xy

by around 60% as well as ¢, and £_, normal stresses are insignificant in the case of

Yy
zero Poisson ratio. Normal stress &, is less by almost 9% when Poisson ratio is zero

and shear stress 7, is insignificant in both cases.

The second beam model under consideration has the I-shaped cross section
(E=T73000kN/m>, G =28000kN/m*, v=03, t/d =0.048, d/L=0.035) shown
in Fig. 5.6 and a length of 3 m. It is subjected to a concentrated force of 10 kN at its
free end eccentrically applied. The displacement field considered is the one described
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Figure 5.4. Stress contours derived by the proposed formulation with or without

(indices with 0) taking into account Poisson ratio for the rectangular
cross section.
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Figure 5.5. Stress contours for the rectangular cross section cross section at
support with or without (indices with 0) taking into account Poisson
ratio.
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Figure 5.6. Normal stress o, contour and deformed view of I-shaped cross

section under eccentric loading straight beam and corresponding
curved geometry (plan view).

in eqns. (5.10). In contrast to the previous cross section, ¢,, and &, normal stresses

»
differ from &, by around 40% and are of importance in this case due to the fact that

warping and distortional effects arise. However, higher order warping effects are more

significant. In addition to this, 7., and 7, stresses are much larger than the previous

Xy
case with respect to the magnitude of normal stresses.

The same I-shaped cross section shown in Fig. 5.6 is examined as curved with
R =0.636m and an arc length of 1 m (d/L=0.105), as shown in the same figure. It is
subjected to a concentrated force of 5 kN at its free end eccentrically applied. The
displacement field considered is the one described in eqns. (5.9).

In Fig. 5.7 the total translation contours are presented for the 3D FEM model
(7875 quadrilateral solid elements) and the one proposed (AEM with 10 cubic splines
or 100 constant elements).

In Fig. 5.8 the normal stress o, contours are displayed for the same cases. It is

obvious that the models are in coincidence while the use of cubic B-splines
significantly reduces the number of discretization elements for the same level of
accuracy.

In Fig. 5.9 the distributions along the length of the kinematical components

1:(x), {(x) and 6, (x)are displayed in order to investigate the order of their
magnitude along the length and compare them to each other. FEM with NURBS are

employed for this purpose. The exponential decay of the primary warping and
distortional parameters is illustrated. However, distortion decays faster than warping.
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2 4 6 8 10 12

Figure 5.7. Total translation contours of (a) 3D solid FEM model with 7875
quadrilateral elements and (b) the proposed one (AEM with 10 cubic
splines or 100 constant elements) for the I-shaped cross section.
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Figure 5.8. Normal stress o, contours for (a) 3D solid FEM model with 7875

quadrilateral elements and (b) the one proposed with 10 cubic splines

or 100 constant elements in AEM for the I-shaped cross section.
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Figure 5.9. Kinematical components 1, (x), <, (x)and 0, (x)of the I-shaped

cross section curved beam derived by the proposed formulation with
cubic NURBS.

In Table 5.1 the values of different kinematical components, shear stresses and
higher order moments are compiled for the proposed beam formulation and compared
to the FEM solid model when it is possible. It should be noted here that primary
warping moment is almost ten times larger than twisting and bending moments while
the primary distortional moment due to torsion is much lower. These quantities cannot
be obtained directly by the FEM solid model. Shear stresses are much lower than

normal stress o,,. In addition to these, secondary warping and distortional moments

are much lower than the primary ones. Thus, there is no need to consider additional
higher modes in the analysis.

Fig. 5.10 shows the normalized displacements with respect to FEM solid results
at the free end of the beam. The proposed solution using either a cubic (4 collocation
points) or a quartic (5 collocation points) give highly accurate results (errors 0-10%).
The convergence rate increases further as knots are inserted after the degree elevation
(k-refinement). Quadratic B-splines give inaccurate results when the least number of
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C=S g
’—?Z m AEM FEM
t=0.5 cm %, \A 10 cubic Solid
<—w0San——> B-splines 7875

w(m) at x=L -12.8713  -12.5466
O.(rad) atx=L | 02083  0.19702

Oy (rad) atx=L | (.3274 0.3158

T (k—]\;) at
m

T x=1/4L

120.25 111.02

T (k—N) at
P, eccentric V2 115.23 109.80
Lateral y=1/4L

Loading
My (kNm) at x=0 | 330.81 325.05

M, (kNm) at x=0 | 132301 318.31

M ., (kNm*) at x=0 3401.49 -
S

M s (kNm?) at x=0 36.46 -
S

M} (kNm*) atx=0| 16.25 -

Table 5.1. Kinematical components, Shear stresses and Stress resultants of the 1
-shaped cross section curved beam.

collocation points is employed. When employing knot insertion for the cubic B-spline
(24 collocation points) the results almost coincide to FEM solid solution. Finally,
considering the same cross section but with an arc length of 3 m, similar conclusions
have been drawn.

The third cantilever beam model studied has a rectangular box-shaped cross

section 5.0X3.5 m with plate thickness 0.30 m (E =3E7kN/m*, G=1.5E7kN/m?,
v=0, t/d=0.085, d/L=0.087) and length 40 m. Its cross section and curved
geometry are shown in Fig. 5.11. In Table 5.2 the values of the kinematical
components w(x), 0, (x) and 6y (x) at x=L for a vertical force P, =5000kN
eccentrically applied at the free edge of the beam are presented for 1) proposed curved
beam elements with 5 NURBS (cubic) and 1 diaphragm at the free end, i1) 100

constant elements in the AEM technique, iii) 960 plate elements in FEMAP with 1
diaphragm at the free end (FEMplate960), iv) 2880 quadrilateral solid elements with
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Figure 5.10. Convergence of normalized displacements at the free end of the I-
shaped cross section curved beam.

=
Il

3.5m

=03 m

5.0m

Figure 5.11.Rectangular box-shaped cross section, applied vertical load at the free
end and corresponding curved geometry (plan view).

1 diaphragm in FEMAP (FEMsolid2880), v) 5760 quadrilateral solid elements with 1
diaphragm in FEMAP (FEMsolid5760) and vi) 2880 quadrilateral solid elements
without any diaphragm in FEMAP (FEMsolid2880). All of the results are in
coincidence. It should be noted here the great reduction in discretization elements
when employing NURBS comparing to all other solutions.

In Fig. 5.12 the normal stress contours are displayed for the 3D solid FEM model
(2880 elements) and the proposed formulation with cubic B-splines in the AEM. It is
obvious that the two models coincide. After evaluating the stress resultants, it should
be noted that primary distortional moment due to torsion is highly important while
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W(m) Hx(rad) QY(rad)
atx=L gt x=L at x=L
C=S c
5.0m
5 cubic NURBS | 04042  0.0019 -0.0149
AEM100
constant 0.4039  0.0019 -0.0149
P, =4000kN FEMplate960
l eccentric 1 Diaph. 0.4094 0.0018 -0.0150
Lateral | FEMSsolid2880
oaaing 1 Diaph. 04069  0.0018  -0.0149
FEMsolid5760
1 Diaph. 0.4070  0.0018  -0.0149
FEMsolid2880 _
NO Diaph. 04168 varies -0.0150
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Table 5.2. Kinematical components of the doubly symmetric box-shaped cross section
straight beam.

42000

30000

20000

o

-20000

-30000 g

-42000 B8+

Figure 5.12. Normal stress o, contours for 3D solid FEM model with 2880

quadrilateral elements (above) and the one proposed with 10 cubic
splines in AEM for the doubly symmetric box-shaped cross section
straight beam.

secondary and tertiary higher order resultants are insignificant. Thus, the displacement
field described by eqns. (5.9) exhibits an accurate behavior.
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The same box-shaped cross section beam shown in Fig. 5.11 is examined as
curved with R=25465m and an arc length of 40 m. The displacement field
considered is the one described in eqns. (5.9). In Table 5.3 the values of different
kinematical components, shear stresses and higher order moments are compiled for the
proposed beam formulation subjected to a concentrated force of 5000 kN at its free end
eccentrically applied (Fig.5.11). The results are compared to the 3D FEM model

AEM FEM
c=s £ 10 cubic SOlid
| i B-splines 2880/
t=03m FEM
plate 960
w(m) at x=L 0.4266 0.4316
0. (rad) atx=L | 0.0100 0.0112
Oy (rad) atx=L | _0.0131 -0.0137
20539
kN
T () atx=0 | 21532 (solid
m
l model)
P, = N 11502
5000k]\_[ z_)rcnyax (_2) at x=0 12602 (solid
eccentric m
Lateral model)
Loading My (kNm) atx=0 | _139691  -139824
M, (kNm) at x=0 | 127100 127324
M¢Sp (kNm*) at x=0 -6930.56 -
M Ss(kNmz) at x=0| _1838.93 -
P 2
Mp, (kNm~) at x=0| 610306 -
M}, (kNm*) at x=0| -1999.04

Table 5.3. Kinematical components, Shear stresses and Stress resultants of the doubly
symmetric box-shaped cross section curved beam.

(2880 quadrilateral solid elements) or the equivalent plate model (960 plate elements)
when it is possible. In contrast to the previous open shaped cross section, primary
distortional moment due to torsion is around four times larger than the bending
moment while warping moments are insignificant. Secondary distortional moment is
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not of importance and, thus, there is no need to consider additional modes in the
analysis. In addition to these, shear stresses are larger than the previous case (I-shaped)

comparing to the normal stress o, .

In Fig. 5.13 the total translation contours are presented for the FEM solid model
and the one proposed (AEM with 10 cubic splines or 80 constant elements). In Fig.
5.14 the normal stresses o,,and o, contours are displayed for the same cases. It

should be noted here that in this case normal stresses o, and Oy, are of more

importance comparing to the previous cross section and exhibit large magnitude

comparing to normal stress o, .

0.43

0.369
0.307

0.246

.

0.184

0.123

0.0614

o ll

Figure 5.13. Total translation contours of (a) 3D solid FEM model with 2880
quadrilateral elements and (b) the proposed one (AEM with 10 cubic
splines or 80 constant elements) for the doubly symmetric box-
shaped cross section curved beam.
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Figure 5.14. Normal stress o (A) and o, (B) contours (a) for 3D solid FEM

model with 2880 quadrilateral elements and (b) the one proposed with
10 cubic splines in AEM or 80 constant elements in AEM for the

doubly symmetric box-shaped cross section curved beam.
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Finally, in Table 5.4 three different ratios of moments have been compiled for
various curvatures while length remains the same. The corresponding control polygons
are shown in Fig. 5.15 together with the various weights, which is the only parameter

that has to be changed during the beam’s analysis. It is important to notice that as the

Mp,  Mp, My
- ] My M, ’

— : atx=0  arx=0  arx=0
R=00 0.178 2.844 15.952

R=76.394m 1.141 5.579 4.891

P eccentric
Lateral R=50.930m 1.835 5.276 2.875
Loading

R=38.197m 2.581 5.101 1.976

R=25.465m 4.365 4.807 1.101

Table 5.4. Moments’ ratios for different radii of curvature obtained by the proposed

model for the doubly symmetric box-shaped cross section curved beam.

40 —

30 — 4 g
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. o # W
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G
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20 — r P I/Q
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Paramentric

study
R=25.465m
R=76.394m
R=50.930m
R=38.197m
Curved axis (X)

-80 -70

60

-50

Figure 5.15. Different curved geometries derived by the corresponding control
polygons by changing only one weight while length is the same.
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P

curvature increases the ratio becomes larger and, thus, distortional effects

Y

C g M ) )
become more significant. On the other hand, the —Y ratio becomes smaller as it was
t

P
Dx

expected due to the curved geometry and the ratio, even though it is initially

t
increased with the increase of curvature, afterwards slightly reduces in magnitude due
to the fact that distortion is steadily important comparing to all other quantities. It
seems that a critical value of curvature exists at which distortional effects become
much larger.

5.5.2 Monosymmetric cross sections

In this example, in order to in order to further validate the proposed formulation
and investigate the importance of distortion and curved geometry in the analysis of
beam models as well as the number of modes needed, the static problems of three
curved cantilever beams with monosymmetric cross sections (open or closed) are
examined.

A cantilever beam of a monosymmetric C-shaped cross section

(E:73OOOkN/m2, G=280001<N/m2 , v=03, t/d=0.049, d/L=0.055) and
length of 1 m under a concentrated load B, =100kN concentrically applied, as this is

shown in Fig. 5.16, is examined. The total translation contour and the deformed shape
are also presented in Fig. 5.16.

6.096 .

2.845
g 8.55 cm '
2.032i I : HT
1219. t=0.5cm ‘Fﬁ g : s
- Y [ 5
0.406 . [ vz \L z
0 - <1025 cm————> )

Figure 5.16. Total translation contours by the proposed solution for the analysis of
the C-shaped cross section straight beam and its cross section with
the load applied eccentrically (black arrow).
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< 8.55 cm =

AEM FEM

S
| * | Scubic  Solid
>

B-splines 5100

t=0.5cm F_)

55cm——>

10.25 cm

v(m) at x=L 3.3922 3.4437

O.(rad) atx=L | 03076  0.3015

—_—
P, =100kN 0z (rad) atx=L | 00508  0.0511
eccentric
Lateral w(m) at x=L 23705  2.4661
Loading

M , (kNm*) at x=0 34598 -
S

Mp, (kNm*) at x=0| 1916.7 -

Table 5.5. Kinematical components and Stress resultants for the monosymmetric C-
shaped cross section straight beam.

In Table 5.5 the most significant kinematical components have been compiled
for the AEM with cubic B-splines and the FEM solid model along with the values of
the primary warping moment due to torsion, which is around 60% of the bending
moment, and the primary distortional moment due to bending with respect to Z axis,
which is around 20% of the bending moment. It is important to note here that
secondary warping and distortion are also significant. Thus, the displacement field
suggested to be employed for this case is the one described by eqns. (5.10). However,
only tertiary warping is of some importance while tertiary distortion vanishes.

The same C-shaped cross section shown in Fig. 5.16 is examined as curved with
R =0.636m and an arc length of 1 m. This beam model is examined for four different
load cases, namely concentrically or eccentrically applied radial (parallel to axis of
symmetry) and vertical loads, and results are compared to the FEM solid model (4000
quadrilateral solid elements). The proposed formulation is initially accomplished with
10 cubic B-splines in the AEM and the displacement field described by eqns. (5.9).

In Table 5.6 the maximum values of the total displacement, the normal stress

o the shear stress 7

XX °

xy» the primary warping moment M ,», the secondary warping
S

moment M # and the distortional moment M gx due to torsion are compiled for the
S

various load cases. It should be noted here that when the load is applied radially either
concentrically or eccentrically the warping and distortional moments are much lower
than the case of the vertically applied load which results in significant primary and
secondary warping effects. This indicates that additional modes need to be employed.
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AEM 10 cubic ‘ .
B-splines c c . ¢
(FEM solid .
U™ (m) 0.127 4.85 5.01 0.31
at x=L (0.128) (5.45) (5.99) (0.284)
max kN
o (—3) 17.92 203.01 217.31 20.67
ut =”}) (18.63) (247.1) (260.2) (22.56)
kN
T () 4.23 44.75 48.1 5.25
. (3.75) (38.68) (42.44) 4.81)
M ., (kNm?)
95 0 5923.16 6591.31 229.68
at x=0
M s (kNm?)
g 0 1289.18 1171.38 40.5
at x=0
MP 2
Dy (kNm”) 23 3279 3451 241
at x=0

Table 5.6. Total displacement, stresses and higher order Moments of the C-shaped
cross section curved beam for various load cases.

Thus, in Table 5.7 the values of the same quantities are compiled for the proposed
formulation employing either 12 or 16 modes. It is important to note that errors
regarding total displacement and stresses are reduced from around 12% (12 modes) to
less than 5% (16 modes) comparing to FEM solid model.

Finally, in Table 5.8 the first five eigenfrequencies are compiled for the curved

(R=0.636m,p=0.78N sec?/m?) C-shaped cross section when employing a FEM

solid model without diaphragms (NO Diaph.) and the proposed beam formulation with
cubic NURBS as well as for the corresponding straight beam element (second column
of the Table 5.8) with FEM solid elements without the use of any diaphragms. It is
obvious that the values obtained by the proposed beam formulation are in well
coincidence with those of the FEM solid solution without any diaphragms. Comparing
to the straight beam formulation, the behavior of the beam is different. The first mode
exhibits a much lower eigenfrequency for the curved beam model. In general, modes
of vertical displacement in curved arrangement are coupled with torsional modes.
Particularly, the 4™ mode of the straight beam is pure torsional, while all of the vertical
modes of the curved beam exhibit torsional displacements, too. It should also be noted
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that after the 3™ mode, the eigenfrequencies of the straight beam are lower than those
of the curved model, which seems to be stiffer.

AEM 10 cubic
B-splines
12 modes 16 modes
——————— |
(FEM solid
4000)
”z%l;le (m) 5.01 587
atx=L (5.99) (5.99)
kN
oh (=) 21731 255 01
at x=0 (260.2) (260.2)
« kN
e () 48.1 438
m
at x=0 (42.44) (42.44)
M ., (kNm?)
’ 6591.31 7413.57
at x=0
M s (kNm®)
s 1171.38 1286.02
at x=0
MPE (kNm?
D (RNIE) 3y 5 32.03
at x=0

Table 5.7. Total displacement, stresses and higher order Moments of the C-shaped
cross section curved beam for 12 or 16 modes.

FEMsolid

Mode | FEMsolid . 10 cubic Type of mode
Number| NO Diaph. NO D1aph. NURBS
(straight)
st .
1 0.341 0.630 0.355 I mode of Vertical
displacement
st
> 1.843 1749 1.849 1" mode of Lateral
displacement
2" mode of Vertical
3 2.506 2.712 2.581 displacement
(excessive Torsion)
4 7.244 3.288 6.626 1** mode of Torsion
5 7.908 5.990 8.376 2" mode of Torsion

Table 5.8. Eigenfrequencies for the monosymmetric C-shaped cross section curved or

straight beam.
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The second beam model examined is an initially straight cantilever beam of a
trapezoidal box-shaped cross section (E=3E7 kN/m2 , G=1.5E7 kN/m2 , v=0,

t/d=0.086, d/L=0.086) and length of 40 m under a concentrated load
P, =10000 kN eccentrically applied at its free end, as it is shown in Fig. 5.17. The

total translation contour and the deformed shape are also presented in Fig.5.17.

. 0.401

0.348

0.268
& (4]

[

0.187
0.161

0.107
0.0803

.0268

= ]

Figure 5.17. Total translation contours and Deformed shape of the monosymmetric
box-shaped trapezoidal cross section straight beam derived by the
proposed solution (FEM with NURBS).

In Table 5.9 the values of the kinematical components w(x), & (x) and 6 (x)
for the vertical force P, eccentrically applied at the free edge of the beam are

presented for i) proposed beam elements with NURBS (5 cubic), ii) proposed beam
elements with NURBS (10 cubic), iii) 1840 quadrilateral solid elements in FEMAP
(FEMsolid1840), iv) 2320 quadrilateral solid elements in FEMAP (FEMsolid2320),
and v) 4320 quadrilateral solid elements in FEMAP (FEMsolid4320). It seems that
high convergence rates can be achieved with few NURBS comparing to FEM solid
elements.

In Fig. 5.18 the normal stress o, contours are displayed for the 3D solid FEM

model (2320 elements) and the proposed formulation with constant elements in the
AEM. It is obvious that the two models are in well coincidence. After evaluating the
stress resultants, it is important to note that bimoments and distortional moments due
to torsion are of high importance for this cross section. In addition to this, tertiary
distortion is also of some importance. However, the displacement field described by
eqns. (5.9) results in quite accurate results (up to secondary higher order phenomena
have been considered).
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; 2
‘—E‘ - w(m) 0. (rad) 6y (rad)
E ] atx=L  atx=L at x=L
5 cubic NURBS 0.3790 0.0025 -0.0139
10 cubic NURBS | 0.3818  0.0025 -0.0140
P, FEMsolid1840
=10000kN | Diaph. 0.3823 0.0024 -0.0140
eccentric FEMsolid2320
Lateral sol1
Loading 1 Diaph. 0.3825 0.0024 -0.0140
FEMsolid4320
1 Diaph. 0.3827 0.0024 -0.0140

Table 5.9. Kinematical components of the monosymmetric box-shaped trapezoidal
cross section straight beam.

=5

o 3 x10%

Figure 5.18. Normal stress o, contours for 3D solid FEM model with 2320

quadrilateral elements (on the left) and the one proposed with AEM (100
constant elements) for the monosymmetric box-shaped trapezoidal cross
section straight beam.

The same box-shaped cross section shown in Fig. 5.17 is examined as curved
with R =25.465m and an arc length of 40 m. The second cross section is subjected to
a vertical concentrated load P, =10000 kN concentrically applied at its free end. In
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Fig. 5.19 the kinematical components 7, (x), ¢, (x) and 6, (x)are displayed in order

to investigate the order of their magnitude and compare them to each other. FEM with

NURBS are employed for this purpose. Comparing to the 7,(x) and ¢, (x)

distributions of the I-shaped cross section of the previous example (Fig. 5.9), the
corresponding ones in this case exhibit a more similar (to each other) distribution
along the length even though they differ in order of magnitude.

= .« == primary warping parameter (n(x))x10
----- primary distortional parameter (C (x)}x100
; ) angle of twist /10

—— CLIrVed beam axis

0.001 —_ _
- — T
0 o oo iyl
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5 PLg e
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) s
© s
Z -0.001 .| ‘ ./

Figure 5.19. Kinematical components nx(x), g“x(x)ana’ Hx(x)of for the

monosymmetric box-shaped trapezoidal cross section curved beam
with cubic NURBS.

In Table 5.10 the values of different kinematical components, stresses and higher
order moments are compiled for the proposed beam formulation, the 3D FEM model
(2714 quadrilateral solid elements) when it is possible, the Generalized Warping
Curved Beam (GWCB) formulation (Chapter 4) and the traditional Timoshenko beam

element. It is worth noting here that, comparing to the rectangular box-shaped cross
P

=~ ratio is much lower while primary warping and
Y

distortional moments are of the same order of magnitude in this case (compare to

section (doubly symmetric), the
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Table 5.3 values). The reasons for these are the difference in the cross section shape
and the larger overall volume of this beam. Warping moments are much lower when
distortion is not considered in the formulation. Shear stress of Timoshenko beam
element is significantly less than the other cases.

345 m [\

200m] 1 AEM FEM AEM  Timoshenko
< 350m - 10 cubic Solid 50 quad. FEM

B-splines 2714 GWCB beam

w(m) at x=L 0.3744 0.3547 0.3202 0.3238
0, (rad) at x=L 0.0092 0.0087 0.0067 0.0067

Oy(rad) atx=L | _0.0120 -0.0115 -0.0104  -0.0106

kN
l Gxn;ax (E) at x=0 40254 38230 27633 28782
P, =1000kN max KN+ _
eccentric Ty (—) atx=0 24135 23085 16940 3714
Lateral
Loading My (kNm) at x=0 | 254316 -254647  -254820 -254648

M, (kNm) at x=0 | 253683  -254647 -254700  -254648

2
M jp (kNm®) at x=0| 342533 - -244940 0
M s (kNm®) at x=0| 36612 ; 30717 0

ME (kNm?) at x=0| -366072 _ ] _

M3 (kNm?) at x=0| 4127 ] ]

Table 5.10. Kinematical components, Shear stresses and Stress resultants of the
monosymmetric box-shaped trapezoidal cross section curved beam.

As the last case studied in this example, a third box-shaped cross section, as
shown in Fig. 424, (E=325E7kN/m*, G=139ETkN/m*, R=100m,

v=0.1667, t/d=0.1, d/L=0.065) of an arc length of 33 m is subjected to a
vertical concentrated load 5000 kN concentrically applied at its free end. This beam is
also examined with the same plan view and cross section shape as previously but with
a different material for its upper plate (composite cross section), namely

E, =4x10" kN/m*, G, =2x107 kN/m?, v, =0, as shown in Fig. 5.20 (grey color).
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Figure 5.20. Box-shaped cross section of the composite beam of example 5.5.2.

In Table 5.11 the values of different kinematical components, stresses and higher
order moments are compiled for the proposed beam formulation either curved (R) or

—— — 2 R=100 R=100 R=w R=100
o |® 5 10 cubic Solid 100 10 cubic
o R B-splines 6600 constant  b-splines
e composite
w(m) at x=L 0.4001 0.3899 0.3914 0.2616
0.(rad) at x=L 0.0039 0.0038 0 0.0019
Oy (rad) at x=L 0.0170  -0.0169  -0.0174  -0.0116
max kN
Oy (?) at x=0 52456 51825 52122 21151
kN
l Ty 3 at x=0 8425 7721 3992 3791
P, =5000xN
Lateral My (kNm) at x=0 | _161723 -162023 -162115 -161642
Loading
M, (kNm) at x=0 26929 26969 0 26916
M Sp(kNmz) atx=0 | 18463 ] 0 9152
2
M, (kNm™) atx=0 | 3408 - -3357.5  -11338
M Ss(kNmz) atx=0 | _6198 - 0 3130
ngy(kNmz) at xep | 62817 (0 ] 0 (x) 20418 (x)
’ 1571 (y) 1144.57 (y) 245 (y)
Mf)xy (kNm?) at x=0 -952.89 (x) ] 0(x)  1691.09 (x)
’ -1403 (y) 21072 (y)  -262 (y)

Table 5.11. Kinematical components, Shear stresses and Stress resultants of the
monosymmetric box-shaped cross section straight or curved beam.
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straight (R=00) and the 3D FEM model (6600 quadrilateral solid elements) when it is
possible. Additionally, the corresponding values derived by the analysis of the
composite cross section showed in Fig. 5.20 have been compiled for comparison
reasons. It should be noted here that the curved beam exhibits larger distortional
effects due to torsion comparing to the straight formulation for which warping and
distortional effects due to bending are of importance. Curvature alters significantly the
contribution of beam’s resisting mechanisms and makes it more vulnerable to higher

phenomena triggered by the arising torsion. However, comparing to the previous box-

P
Dx

shaped cross sections, the ratio is much lower and the beam resists to loading

Y

mainly through bending. Considering the corresponding beam element with composite
section, it should be noted that its performance is significantly improved through the
use of a material with higher stiffness at its upper plate. This becomes obvious through
the reduction in stresses and higher order moments due to torsion by more than 50%.
However, the primary warping moment due to bending is quite high but still much less
than the distortional one (and more desirable than the corresponding quantities due to
torsion which causes more brittle failures comparing to bending).

Finally, in Table 5.12 the first eight eigenfrequencies are compiled for the curved

FEMsolid FEMsolid FEMsolid 10 cubic Type of mode
Mode 6600 6600 6600 NURBS
Number |NO Diaph. NO Diaph. 1 Diaph. (clamped)
(cantilever) (clamped) (clamped)
1* mode of
1 1.725 9.328 9414 9.470 Vertical
displacement
1*" mode of
2 4.065 17.099 19.230 16.887 Lateral
displacement
st
3 90084 20495 21160  21.154 I”_mode of
Torsion
2" mode of
4 10.183 21.174 22.126 21.949 Vertical
displacement
2" mode of
5 19.191 27.898 35.428 26.003 Lateral
displacement
3" mode of
6 22.321 31.948 36.230 32.789 Vertical
displacement
2" mode of
7 21.649 43.247 42.768 44.500 .
r;ll“orsmn
8 29.165  47.490 47013 49.602 3_mode of
Torsion

Table 5.12. Eigenfrequencies for the monosymmetric box-shaped cross section curved
beam (clamped or cantilever).
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(R=100m, p =2.5kN sec?/m*) monosymmetric box-shaped cross section previously

described when employing FEM solid models with 1 or without diaphragms (NO
Diaph.) and the proposed beam formulation with cubic NURBS. Both clamped and
cantilever beam models have been studied for the FEM solid model without
diaphragms (NO Diaph.). It is obvious that the values obtained by the proposed beam
formulation are in well coincidence with those of the FEM solid solution without any
diaphragms and the accuracy is improved comparing to the corresponding values
compiled in Table 4.16 (where distortional effects had not been considered). The
placement of the diaphragm at the midpoint of the curved length (forth column of the
Table 5.12) results in a slight increase of the eigenfrequencies of the first four modes
and a significant increase for the 5" and 6™ modes. In addition to these, comparing to
the cantilevered model, the behavior of the beam is much different. All of the
eigenfrequencies are decreased while the order of significance is altered for the 6™ and
7™ modes. In general distortional effects are of more importance for most of the modes
(3" to 8™ and torsional modes become more significant comparing to the clamped
beam model. It should also be noted here that the procedure of finding the modes of
the cantilever beam corresponding to the same ones of the clamped beam is quite
cumbersome due to the fact that many local vibrational modes arise in the FEM solid
model.

5.6 Concluding Remarks

In this chapter, the generalized warping and distortional analysis of straight and
curved beams is mainly examined. An iterative equilibrium scheme combined with
traditional eigenvalue analysis has been developed in order to derive the cross
section’s modes that dominate and, thus, permit the isolation of structural phenomena.
Various shapes of open or closed cross sections have been considered. Boundary
Element Method has been employed for this purpose. Additionally, Isogeometric tools
(b-splines and NURBS) integrated in FEM and AEM are applied for the longitudinal
analysis of beams allowing for straightforward model handling (i.e. curvature can be
easily changed) and reducing significantly computational cost (especially when
additional higher order phenomena need to be accounted for). The presented
formulation is based on an enriched kinematic field (eqns. (5.9) and (5.10)) taking into
account primary, secondary and tertiary higher order phenomena due to both bending
and torsion. The importance of the proposed formulation is highlighted when
considering the advantages of curved beam models compared to solid and plate ones
either for static or free vibrational case. Modelling effort can be significantly reduced
(solid models require cumbersome post- and pre-processing even in relatively simple
cases) and parametric analyses can be facilitated (construction of multiple solid
models is quite cumbersome, especially for complex geometries). Moreover, the FEM
beam elements commonly employed in commercial software can be inaccurate. Thus,
the main purpose of this beam formulation is to remain simple and with the least
number of degrees of freedom needed to describe its behavior accurately. The main
conclusions that can be drawn from this investigation are:
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1il.

1v.

Vi.

Vil.

viii.

iX.

Highly accurate results can be obtained using B-splines in the AEM technique as
well as NURBS in FE beam formulations for the static analysis of the proposed
beam elements. Computational cost and post-processing of the results is
significantly reduced by the use of NURBS comparing to FEM plate and solid
models. Employment of NURBS in FEM and B-splines in AEM with or without
knot insertion results in higher convergence rates, too.

Poisson effects are in general not negligible even if distortion is not of
importance as it is shown for the solid rectangular cross section of the example
5.5.1. In addition to this, it seems that when material constants are larger,
Poisson ratio affects the magnitude of stresses more.

In general, open shaped cross sections suffer more from warping while close
ones from distortion. The consideration of up to secondary higher order
phenomena (eqns. (5.9)) is generally accurate. However, in some cases of very
thin-walled cross sections either open or closed shaped, tertiary phenomena
might need to be considered. As a rule of thumb in choosing the least number of
modes in order to achieve the maximum accuracy when the proposed method is
employed, the limitations #/d >0.05 and d/L>0.05 can be applied.
Monossymetric and, thus, asymmetric cross sections are more susceptible to
higher order phenomena due to this inherent property of their shape, as it can be
shown from example 5.5.2 comparing to example 5.5.1.

Increase in curvature causes increase in the distortion due to torsion for thin-
walled box-shaped cross sections. Cross sections with cantilever plates at both
sides undergo less severe distortional effects due to the fact that bending
resisting mechanisms become of importance, too.

Direction and position of loads can play a significant role in the behavior of
curved beams with monossymetric and, thus, asymmetric cross sections due to
the fact that the development of higher order warping (in open sections) or
distortional (in close shaped) phenomena can be significantly altered.

The ratios of distortional and warping moments to the bending ones can be
indicative of the curved beam’s behavior and offers an additional insight into the
resisting mechanisms that dominate.

The distortion of thin-walled box-shaped beams contributes significantly to
lowering the natural frequency of torsional and bending vibration modes.
Therefore, distortional effects must be considered in order to predict the dynamic
behavior of beams accurately.

Composite cross sections can be easily handled with the proposed BEM
approach due to the fact that only boundary discretization is required.
Additionally, changes in the arrangement of materials can be easily integrated in
the model and significantly improve the resistance of the curved beams against
warping and distortion.

Curved geometry alters the dynamic behavior of beam models with open or
closed-shaped cross section and not necessarily in the same way.
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xi. The procedure of identifying the type of higher modes becomes quite
cumbersome, especially for FEM solid models, thus, making comparisons of the
results to other models time-consuming and uncertain.
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Application of Diaphragms’
Guidelines and Assessment

6.1 Introduction

Regarding the distortional analysis related to the intermediate diaphragms, which
is more important for box girders, the number of researches is quite limited. The study
related to the distortional analysis of box girders was initiated by Dabrowski (1968)
who first formulated the distortional phenomenon of box members with a symmetric
cross section. Later and more recently, other research efforts were undertaken
regarding the distortional analysis of the structures to give design guidelines on the
intermediate diaphragms. Sakai and Nagai (1981), and Nakai and Murayama (1981)
presented several results on the design procedures of the intermediate diaphragms for
curved girders and noted that these play a very important role in moderating
distortional warping of girders. Yabuki and Arizumi (1989) employing BEF analogy
for distortion proposed spacing provisions which can be utilized for steel-plated
intermediate diaphragms. More recently, Park et al. (2003 and 2005a) developed a
straight and a curved box, respectively, beam finite element having nine degrees of
freedom per node in order to propose tentative design charts for adequate maximum
spacing of intermediate diaphragms. As mentioned in Chapter 5, their proposal lacks of
generality. Yoo et al. (2015) applied the concept of the BEF analogy for the analysis of
distortional stresses of horizontally curved box-girders. The proposed procedure is
capable of handling simple or continuous single cell box girders (or separated multi-
cell box girders) with rigid or deformable interior diaphragms or cross-frames.
However, in most of these studies, the placement of diaphragms was not related
whether to dynamic property analysis or dynamic response analysis.

Up to the 1980s the design of a bridge structure was based on static analysis,
corrected by a dynamic amplification factor (as also mentioned in Chapter 4) which is
based on the first natural frequency. An extensive effort was made by Hamed and
Frosting (2005) to introduce the effects of warping and distortion of bridge cross-
sections. An analytical model is developed in their works where the bridge is idealized
as being made of panels which behave as plates in the transversal direction and as
Euler—Bernoulli beams in the longitudinal direction (Petrolo et al., 2012). Special
attention is paid for distortion by the following bridge design specifications. The Guide
Specifications for Horizontally Curved Highway Bridges by the American Association
of State Highway and Transportation Officials — AASHTO (1993) specify the
maximum spacing of the intermediate diaphragms through an approximate formula as
well as the ratio of distortional and bending normal stresses. The Hanshin Expressway
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Public Corporation of Japan provides the Guidelines for the Design of Horizontally
Curved Girder Bridges — HEPCJ (1988) specifying the maximum spacing of the
intermediate diaphragms in curved box girder with respect to that in straight box
girders multiplied by a reduction factor. It should be noted here that the boundary
conditions and the cross section shape are not taken into account directly for both
specifications.

In this chapter, the beam models presented in Chapters 4 and 5 are mainly
employed either in static or dynamic case. The numerical solutions of the problems are
similar to previous chapters, too. Additionally, solid or shell/plate Finite Element
models are employed and the bridges’ design specifications mentioned above are
applied in order to compare the results and assess the provisions. The cross sections
can be considered not deformable in their plane through the presence of a sufficient
number of diaphragms along the straight or curved beam, preventing distortion. The
design guidelines related to the intermediate diaphragms have been provided to prevent
from excessive distortional warping in the longitudinal direction and transverse
bending deformation along the cross section perimeter. Thus, fixed values of the stress
ratio of the distortional warping normal stress to the bending normal stress are used.
Moreover, having in mind that a rigid diaphragm is usually placed in the sections over
each support, both the angle of twist and warping are prevented at these places
(bimoment has nonzero values at the support sections).

The assessment of the design guidelines which specify the maximum spacing of
intermediate diaphragms through comparisons of the proposed curved models to the
corresponding solid or shell/plate ones and some parametric studies is a first step
towards suggesting further provisions and limitations on the application of these
regulations.

Numerical examples are worked out to evaluate the formulated models, provide
comparable results and assess the efficiency of design guidelines with respect to
accuracy and cost. For this purpose, various models of straight or curved beams with
various arrangements of diaphragms, boundary conditions, geometric properties and
loads have been developed.

6.2 Statement of the problem-Specifications

The problem of prismatic straight or curved beam models of homogenous or
composite arbitrary cross section has already been stated in Chapters 3, 4 and 5.
Nonuniform warping and/or distortion distributions can be considered by employing
independent parameters, which are the higher degrees of freedom (DOFs), multiplying
corresponding warping/distortion modes as this is already described. Thus, the
generalized nodal displacement vector in the local coordinate system can be written for
both ends of the beam. Its dimension depends on the number of higher cross sectional
modes considered. Similarly, higher-order stress resultants arise and these constitute
additional generalized forces acting at the nodes of straight or curved beam elements.
The standard Direct Stiffness Method (DSM) can be employed in order to formulate
the local stiffness matrix of the 3-dimensional beam. Afterwards, the global stiffness
and force matrices can be derived by multiplying the local ones with the well-known
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rotation matrix of spatial frames. Regarding warping and distortional DOFs, the
transformation procedure needs special treatment in case of non-aligned members
without any diaphragms. In addition to this, adjacent curved beam elements need
special care when there is full warping and distortional continuity. Particularly,
approximate modelling techniques at joints need to be adopted and general assumptions
to be made (Jang et al., 2008; Jang and Kim, 2010). However, the cases considered in
this chapter aim mainly to provide results for comparison with models formulated when
the guidelines are applied. Thus, the study of the warping and distortion transmissions
between adjacent elements is not within the scope of this chapter.

The placement of diaphragms along the length of the beam-like frame which
consists of adjacent aligned beam elements or along the beam model has been done
according to the following guidelines. The Guide Specifications for Horizontally
Curved Highway Bridges by the American Association of State Highway and
Transportation Officials — AASHTO (1993) specify the maximum spacing of the
intermediate diaphragms Lj, as

R 1/2
Ly<Ll—=~ | <25# 6.1
b [200L—7500) / ©.1)

where L and R denote the span length and radius of curvature in feet, respectively. This
provision meets the requirement that the distortional normal stress (it is meant due to
torsion) is limited within 10% of the bending normal stress and the transverse bending
normal stress is limited to 137.3 MPa or lower.

In addition to this, the Hanshin Expressway Public Corporation of Japan provides
the Guidelines for the Design of Horizontally Curved Girder Bridges — HEPCJ (1988)
specifying the maximum spacing of the intermediate diaphragms in curved box girder
with respect to that in straight box girders multiplied by a reduction factor, which is
equal to unity for a span length less than 60 m. In those guidelines, design criteria for
the spacing of the intermediate diaphragms are specified so that the distortional normal
stress (due to torsion) is limited within 5% of the bending normal stress. In addition to
this, the transverse bending normal stress due to distortion should be limited to about
490 MPa or lower. To account for these restrictions, the guidelines specify the
maximum spacing of the intermediate diaphragms in curved box girder bridges as

where
6m for L<60m
Lpg =<1(0.14L-2.4)m for 60m<L<160m (6.3)

20m for L>160m
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1 for L<60m

K(¢’ L) - 1_\/(1_183—:/560) for 60m<L<200m o4

with Ljq, K(¢, L) and ¢ being the spacing of the intermediate diaphragms in straight

box girder bridges (in m), the reduction factor and the angle formed by the arc at the
center of the circle that it is a part of (in rad), respectively.

6.3 Numerical Solution

B-splines and NURBS curves in terms of B-spline basis functions can be
employed either in FEM or AEM. The description of the numerical procedures is given
in the Appendix A.2.

The local stiffness matrices of the elements are computed numerically by
applying either the Analog Equation Method (AEM) (Katsikadelis, 1994 and 2002b) or
the Finite Element Method (FEM) with Isogeometric tools. Warping and distortion
functions as well as geometric constants are evaluated employing a 2-D BEM
approach, as described in previous chapters.

6.4 Numerical examples

The computer programs that have already been written are employed and
compared to FEM solid (quadrilateral or triangular) or plate/shell elements (FEMAP,
2010). Either the static or dynamic problem is examined. Design guidelines for
specifying the maximum spacing of intermediate diaphragms have been applied to the
aforementioned solid models and compared to the proposed one with or without taking
into account distortional effects. Four different examples of thin-walled box-shaped
cross sections, which mainly suffer from distortion, with different geometric ratios
have been examined. According to thin-walled theory, the upper bounds of these ratios
are 1/d <0.1 and d/L<0.1, where t, d and L are the thickness, width and length
of the straight or curved box-shaped cross section, respectively.

6.4.1 Box-shaped Doubly Symmetric cross section (7/d =0.085, d/L=0.087)

The first beam has the doubly symmetric box-shaped cross section shown in Fig.
5.11 of Chapter 5. It is examined either as curved beam with an arc length of 40 m or
straight one of the same length.

According to the provisions of AASHTO, 6 intermediate diaphragms need to be
placed along the curved beam length at equal distances in order to prevent excessive
distortion. Additionally, 7 diaphragms have to be employed for the same purpose either
in curved or straight beam formulation according to HEPCJ guidelines. Some
comments should be made here with respect to the results of the previous chapter.
Regarding the values compiled in Table 5.2 for the straight beam formulation, it should
be noted that when employing 2 diaphragms the kinematical components at the free
end are almost the same with those in the case of 1 diaphragm for all of the methods
employed, thus, indicating the absence of excessive distortional phenomena for this
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cross section. This is verified when stress values are considered. Significant normal

0, and o0y, as well as shear stresses arise only when no diaphragms exist in the

model. This implies that only 1 diaphragm needs to be employed in order to prevent
distortion instead of the 7 diaphragms required according to HEPCJ. This is also

verified when considering the dynamic case (p=2.5kN sec’/m?) with a transient
vertical load P, =5000kN applied eccentrically for 3 seconds at the free end. In Fig.

6.1, the response of the beam for the vertical displacement is displayed for three cases,
namely models with 2, 4 and without diaphragms, showing that no important
differences arise. However, in the case of the same cross section with curved
configuration (Table 5.3 and Fig. 5.13), kinematical components are significantly
decreased when employing 7 diaphragms. In addition to this, in the case of the 2-

diaphragmatic arrangement, 0, remains significant comparing to the model with 6 or

y
7 diaphragms (quadruple in magnitude). When employing 4 diaphragms, the values of
stresses are closer to the arrangement with 7 diaphragms and much lower than the cases
of 1 or 2 diaphragms. Therefore, it seems to be more cost-effective to use fewer
diaphragms than those required by the provisions with respect to safety.

In Table 6.1 the first eight eigenfrequencies are compiled for the curved

(R=25.465m,p=2.5kN sec?/m*) rectangular box-shaped cross section when
employing FEM solid models with 7 or without diaphragms (NO Diaph.) and the
proposed beam formulation with cubic B-splines in AEM as well as for the
corresponding straight beam element (forth column of the Table 6.1) with FEM solid
elements without the use of any diaphragms. It is obvious that the values obtained by
the proposed beam formulation are in well coincidence with those of the FEM solid
solution without any diaphragms. The placement of diaphragms results in a slight
increase of the eigenfrequencies of the first four modes and a significant increase for
the rest four modes due to the fact that distortion becomes more important as indicated
from the description of the modes (last column of the Table 6.1). In addition to these,
comparing to the straight beam formulation, the behavior of the beam is different. The
first two modes exhibit similar eigenfrequencies for both the curved and straight model.
Regarding the rest of the modes, significant discrepancies can be noticed either in the
values of the eigenfrequencies or in the order of modes’ significance. Particularly, it
seems that torsional modes (5™ and 7™ for the straight beam) are more of importance in
the straight beam model comparing to bending modes due to the lower value of the 5t
eigenfrequency and the altered order of significance between the 7™ and 8" modes. To
conclude with, fewer diaphragms can be employed in terms of safety (suggested value
is 4) due to the fact that in common practice (as in bridge deck design) the first 3-5
eigenfrequencies, which are not highly affected when comparing arrangements with 4
and 7 diaphragms, are commonly employed in order to derive design quantities. This is
also verified when considering the dynamic case of the same transient load studied for
the corresponding straight beam, as mentioned in the previous paragraph. In Fig. 6.2
the response of the beam for the vertical displacement is displayed for the same three
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Figure 6.1. Response of the straight beam with box-shaped cross section for
different diaphragmatic arrangements under transient load.
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Figure 6.2. Response of the curved beam with box-shaped cross section for different
diaphragmatic arrangements under transient load.
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cases (in order to compare them), showing that the employment of 2 or 4 diaphragms
results in the reduction of displacements comparing to the non-diaphragmatic model.

6.4.2 Box-shaped Monosymmetric cross section (7/d =0.02, d/L=0.1)
The box-shaped cross section shown in Fig. 3.15 of Chapter 3 with the geometric
constants compiled in Table 3.7 of the same chapter is examined here. This cross

FEMsolid FEMsolid FEMsolid 10 cubic B- Type of mode
Mode 2880 2880 2880 NO splines
Number |NO Diaph. 7(4) Diaph. in AEM
Diaphs.  (straight) (1 Diaph.)
1** mode of
1726 _ Vertical
1 1.605 1.630 1.611 displacement
(1.707) SR
(insignificant
distortion)
1* mode of Lateral
2.261 displacement
2 2.221 (2.238) 2.168 2155 (insignificant
distortion)
2" mode of
7329 ‘ Vertical
3 7.038 9.167 7.063 displacement
(7.242) C
(significant
distortion)
2" mode of
9626 _ Lateral
4 9.440 12.099 9.296 displacement
(9.530) C
(significant
distortion)
1* mode of
16.108 Torsion
5 14.455 (15.875) 12.791 14.795 (significant
distortion)
3" mode of
Vertical
6 | 19031 22779 51501 20552 displacement
(22.087) .
(excessive
distortion)
3" mode of
Lateral
7 23.306 32479 29.194 22.961 displacement
(32.000) X
(excessive
distortion)
nd
41.895 2" mode of
8 23.478 22.848 25.312 Torsion (excessive
(36.422) . .
distortion)

Table 6.1. Eigenfrequencies for the doubly symmetric box-shaped cross section curved

or straight beam.
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section is employed for the beam model described in the example 4.5.3 of Chapter 4
(E=4ETkN/m*, G=2ETkN/m*, L=10m, p=7.85kN sec’/m" R=6.366m or

R = o for the straight formulation).
The straight beam under a concentrated load P, =1000kN in the vertical

direction eccentrically applied at its free end (similarly to the example 3 of Chapter 3)
is examined at first in order to investigate the provisions of the guidelines related to the
spacing of intermediate diaphragms. In Fig. 6.3 a model of the beam implemented in
FEMAP (2010) employing FEM quadrilateral solid elements is shown. In the same
figure the total deflection is also recorded. It is worth here noting that in order to
obtain the distributions of the kinematical components and stress resultants from the
solid model, rigid diaphragms have to be placed in regular distances (20 in total),
permitting the measurement of rotation angles and translations of the reference nodes.

Figure 6.3. Model in FEMAP employing 780 quadrilateral solid finite elements.
Deflection is displayed along the length of the beam.

The existence of diaphragms ensured the absence of local distortional phenomena of
the cross sectional profiles. According to the HEPCJ, Fig. 6.4a shows the deformed
shape and total translation of the beam displayed in Fig. 6.3 employing 2 diaphragms
(one at midspan and one at the free edge) while Fig. 6.4b is the same but without the
employment of any diaphragms. Results of models displayed in Figs. 6.3 and 6.4a,
which are similar to each other, almost coincide with the results obtained by the
proposed beam formulation of Chapter 4. However, it is obvious from Fig. 6.4b that the
absence of diaphragms leads to a larger total translation by 18% due to the
development of distortional effects. In addition to this, the same behavior to the model
of Fig. 6.4b is predicted by the proposed formulation of Chapter 5. Thus, HEPCJ
requires a reasonable number of diaphragms for this particular case. This can be
validated when values of stresses are evaluated.

Afterwards, the same beam, as previously described, is considered curved having
the same length and radius of curvature R =6.366m forming an arc of 90° angle in top
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view. In Fig. 6.5 two models of the beam implemented in FEMAP (2010) employing
FEM quadrilateral solid elements are shown. The difference between the two models is
in the use of diaphragms in the cross section plane. In the first one 13 diaphragms have
been employed while in the second model only one. The beams are subjected to a
vertical concentrated load P, =1000kN applied at the centroid of their free end cross

sections this time. In the same figure the total deflections are also recorded. It is worth
here noting that the placement of the rigid diaphragms along the length of the curved
beam becomes quite cumbersome due to the complexity of the solid model.

(b)
Figure 6.4. Deformed shapes and total vertical translation of the beam with the box-

shaped cross section of Fig. 3.15 (a) for 2 diaphragms and (b) without
diaphragms.

In addition to this, much more quadrilateral solid elements have been employed
comparing to the straight beam formulation (Fig. 6.3) for accuracy reasons. Comparing
the deformed shapes of the beams, it is obvious that the existence of diaphragms
ensures indeed the absence of local distortional phenomena of the cross sectional
profiles along the arc length while the total maximum translation is reduced by 46%.
Due to the very thin-walled structure of the cross section, a plate model in FEMAP
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(2010) has also been employed for comparison reasons with the solid model and in
order to detect any possible locking phenomena present.

In Table 6.2 the values of the kinematical components v(x), 6,(x) and &, (x)

X

for the vertical force P, concentrically applied at the free edge of the beam are

presented for 1) proposed curved beam model of Chapter 4 with cubic NURBS (Ch. 4-
NO dist.), i1) 1500 quadrilateral plate elements with 13 diaphragms (FEMplate 13
Diaph.), ii1) 1500 quadrilateral plate elements with 1 diaphragm (FEMplate 1 Diaph.),
iv) 1500 quadrilateral plate elements with 2 diaphragms (FEMplate 2 Diaph.)
according to guidelines previously mentioned, v) 10976 quadrilateral solid elements

(b)

Figure 6.5. Deformed shapes of models in FEMAP employing 10976 quadrilateral
solid finite elements and (a) 13 diaphragms or (b) one diaphragm.

with 13 diaphragms in FEMAP (2010) (FEMsolid 13 Diaph.), vi) 10976 quadrilateral
solid elements with 2 diaphragms in FEMAP (2010) (FEMsolid 2 Diaph.) according to
guidelines previously mentioned, vii) proposed curved beam model of Chapter 5 with
cubic NURBS (Ch. 5-1 Diaph.) and viii) 10976 quadrilateral solid elements with one
diaphragm in FEMAP (2010) (FEMsolid 1 Diaph.). Analysis with cubic NURBS in the
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model of Chapter 4 gives results closer to the solid model with diaphragms, as it is
expected, while model of Chapter 5 is closer to solid model with 1 diaphragm due to
the arising distortional effects. The results obtained by the analysis of the solid model
with diaphragms almost agree with those obtained by the plate model with diaphragms
(discrepancies around 1%). However, it is important to notice that the results obtained
by the respective models with only 1 diaphragm differ from each other (discrepancies
vary from 15 to 23%). The solid model seems to be stiffer than the plate one while the
different displacement values are exclusively related to distortional phenomena (mainly
attributed to torsion) since the corresponding models with diaphragms (no distortion)
show the same level of accuracy. Moreover, regarding the proposed model of Chapter 5
additional higher modes need to be employed in the displacement field due to the very

Y N bu=3.0m .
%
] (S:_;Z rooem v(m) at 0.(rad) 0, (rad)
% é 0.03963 m -1 at at
- R = x=L x=L
b;p=1.0m
4 cubic NURBS
(Ch. 4-NO dist.) 0.4879  -0.0202 -0.0742
FEMplate
13 Diaph, 0.4701 -0.0231 -0.0691
l Py Lateral Zngg’;f" 05516  -0.0290  -0.0812
FEMplate 1 Diaph. | (.9748 -0.0951 -0.1470
FEMsolid
13 Diaph. 0.4647  -0.0229 -0.0685
FEMsolid
2 Diaph. 0.5346  -0.0279 -0.0790
8 cubic NURBS
(Ch. 5-1 Diaph.) 0.7844  -0.0650 0.111
FEMsolid 1 Diaph. | 0.8215 -0.0726 -0.1235

Table 6.2. Kinematical components of a curved beam with the cross section shown in
Fig. 3.15 for vertical load and various numerical models.

thin-walled nature of this cross section. It is worth here noting that if diaphragms are
placed in the solid model according to the guidelines (2 diaph. case), the vertical
translation is more than the proposed formulation of Chapter 4 (Ch. 4-NO dist.) by
8.7%. Additionally, the angle of twist is increased by 25% and the angle of rotation due
to bending by 6%. Discrepancies are slightly larger comparing to the corresponding
plate model. This proposed curved beam element is obviously stricter regarding the
placement of diaphragms in terms of safety against distortional effects comparing to
solid and plate models. This implies the use of more diaphragms comparing to those
specified by the guidelines. Additionally, comparing stresses between different solid
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models, it is proved that the normal stress due to distortion is more than the specified
10% of the normal stress due to bending for the 2 diaph. model.

A parametric study considering different radii of curvature for the same beam
length and cross section has been conducted and different models have been examined.
In Table 6.3 the discrepancies between the proposed curved beam formulation of
Chapter 4 (Ch. 4-NO dist.) and the model with the diaphragmatic arrangement
according to the guidelines have been compiled (FEMsolid 2Diaph.). It is evident that
as the curvature of the beam (1/R) becomes greater, the “error” of the specified
diaphragmatic model becomes larger in an exponential rate and this rate seems to be
greater for torsion. In addition to these, considering the solid model with no
diaphragms and comparing to the other models, it seems that distortional effects are of
more importance for large curvatures and a more refined treatment should be
considered. It should also be noted that that the high ratios of the dimensions to
thickness of the cross section’s walls is also an important factor, especially for torsion.

Y4 ba=3om
=
s| t=0.02 m
c c—%z v(%) at 0.(%) at  0,(%) at
° E| 0039%3m
X 20 x=L x=L x=L
R=00 0.00 0.64 0.00
Py Lateral R=28.65m 1.09 1.41 1.06
Loading
R=12.73m 3.03 3.40 1.91
R=6.37m 8.73 27.60 6.08

Table 6.3. Discrepancies (%) in kinematical components’ values for different radii of
curvature between the proposed model and those according to guidelines.

Considering the free vibration problem of the aforementioned curved beam, the
Table 4.10 is recalled. In addition to the values compiled in that Table, the
eigenfrequencies for the 2-diaphragmatic case have been added for comparison reasons
in Table 6.4. Comparing the values of higher models with 1 or 2 diaphragms, it is
obvious that are closer to each other than in comparison with the values of the solid
model with 13 diaphragms or the proposed formulation of Chapter 4 (Ch. 4-NO dist.).

10cubic
NURBS
(Ch.4-NO dist.)

Mode FEMsolid FEMsolid FEMsolid
Number I Diaph. 2 Diaph. 13 Diaph.

1 0.1172 0.1416 0.1548 0.1317
2 0.2556 0.2615 0.2704 0.2191
7 0.3262 0.3644 1.0436 1.1042
8 0.3562 0.3799 1.4233 1.2311
9 0.4022 0.4761 1.5021 1.3345

Table 6.4. Eigenfrequencies of the beam of Fig. 6.5.
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6.4.3 Box-shaped Monosymmetric cross section (7/d =0.086, d/L=0.086)

This beam has the box-shaped cross section shown in Fig. 4.18 and the geometric
constants compiled in Table 4.11. Its dimensions to thickness ratios are almost the
same with the doubly symmetric box-shaped cross section of example 6.4.1 for
comparison reasons. Similarly to that case, either 6 or 7 intermediate diaphragms are
required to be employed in order to prevent distortion according to AASHTO or
HEPCJ, respectively. The curved beam model examined has the following

characteristics: E =3E7kN/m?, G=15ETkN/m*, L=40m, R=25.465m. It is
subjected to a concentrated load either P, =10000 4N concentrically applied at its free

end.
Additionally to Tables 4.14 and 5.10, in Table 6.5 the values of the kinematical

components v(x), 0,

(x) and 6, (x) for the vertical force P, concentrically applied
at the free edge of the beam are presented for 1) proposed curved beam model of
Chapter 4 with cubic NURBS (Ch. 4-NO dist.), i1) 2714 quadrilateral solid elements
with 1 diaphragm in FEMAP (2010) (FEMsolid), iii) 2714 quadrilateral solid elements
with 16 diaphragms in FEMAP (2010) for comparison reasons (FEMsolid 16 Diaph.),
iv) 2714 quadrilateral solid elements with 7 diaphragms according to guidelines of
HEPCJ (1988) in FEMAP (2010) (FEMsolid 7 Diaph.), v) 2714 quadrilateral solid
elements with 2 diaphragms for comparison reasons in FEMAP (2010) (FEMsolid 2
Diaph.) and vi) 2714 quadrilateral solid elements with 4 diaphragms for comparison

reasons in FEMAP (2010) (FEMsolid 4 Diaph.).

N
0.30m atv(m) Gx(rad) at 0 (rad)
_ _ at
=L x=L x=L
z
4 cubic NURBS
(Ch. 4-NO dist.) 0.3197 -0.007029 -0.0104
FEMsolid
1 Diaph. 0.3547 -0.00867 -0.0115
Py Lateral FEMsolid 0.2914 0.00756 0.0090
y ) ) 0. 0.
Loading 7 Diaph.
FEMsolid
16 Diaph. 0.2746 -0.00778 -0.0081
FEMsolid
2 Diaph. 0.3256 -0.00782 -0.0103
FEMsolid
4 Diaph. 0.3021 -0.00753 -0.0094

Table 6.5. Kinematical components of the beam of Fig. 4.20 for vertical load.
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It is worth nothing here that when using 16 diaphragms, the vertical displacement
is reduced by 23% while the angle of twist and rotation due to bending are reduced by
10% and 30%, respectively, comparing to the arrangement with 1 diaphragm. The
differences in the corresponding values of the models with 2 and 4 diaphragms from
those of the model with 1 diaphragm are larger in a disproportionate way when
comparing the corresponding values of the same models to those of the model with 7
diaphragms. In addition to this, the proposed formulation gives results closer to the
solid model with two diaphragms. Regarding the values of stresses, the discrepancies in
shear stresses between models with 2, 4 and 7 diaphragms are not of much importance

in comparison with those in normal stresses. However, regarding normal stresses o,

and o slightly different values arise for models with 4 and 7 diaphragms.

e
Additionally, the 2-diaphragmatic model exhibits stresses closer to the model with 4
diaphragms than that with 1 diaphragm. These imply that distortional effects are not of
the same importance as considered in the guidelines and the use of the numbers of
diaphragms specified make the solid model stiffer than it should be in real resulting in
uneconomic design practices for a case like this one.

Moreover, the free vibration problem is studied and the ten first eigenfrequencies
are evaluated and compiled in Table 6.6 for the solid models and the proposed one in
Chapter 4 (Ch. 4- NO dist.) analyzed employing NURBS. The values of the proposed
formulation are closer to the solid model with 1 or 16 diaphragms for the first five
eigenfrequencies and closer to the solid one with 16 diaphragms for the last three.
However, regarding the design quantities, the first eigenfrequencies are of main
interest. Thus, it is implied that distortion can be prevented with few number of
diaphragms.

. . cubic
Mode Number FlE]IS/{ Z(;)l}id lfgl\gls;;;ld NURBS (Ch. 4-

' ) NO dist.)
1 0.0488 0.0541 0.0412
2 0.1408 0.1457 0.1203
3 0.1905 0.2208 0.2501
4 0.3002 0.3885 0.3200
5 0.4643 0.5033 0.4452
6 0.5309 0.6481 0.6465
7 0.6299 0.8718 0.7046
8 0.6797 1.0252 0.9412
9 0.7125 1.1320 1.1889
10 0.7361 1.4439 1.3252

Table 6.6. Eigenfrequencies of the beam of Fig. 4.20.

6.4.4 Box-shaped Monosymmetric cross section (¢/d =0.1, d/L=0.065)

The box-shaped cross section shown in Fig. 4.24 with the geometric constants
compiled in Table 4.15. The curved beam model considered in Chapters 4 and 5 is
examined either as cantilever of clamped for the static problem.
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According to guidelines previously mentioned regarding the placement of
intermediate diaphragms, either 5 (AASHTO, 1993) or 6 (HEPCJ, 1988) diaphragms
should be at least employed in order to fulfill limitations. Considering a cantilever
beam, as the less favorable case in terms of boundary conditions, under a concentrated
load P, =3000kN eccentrically applied at its free end, several diaphragmatic

arrangements have been performed. The distributions of the main displacements and
the maximum stresses arising have been illustrated in Fig. 6.6.

16 —
Box-shaped cantilever beam with eccentric tip load
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Figure 6.6. Discrepancies from solid model without diaphragms for a cantilever
beam with the cross section shown in Fig. 4.24.

The proposed formulation in Chapter 4 with NURBS coincides with the FEM
model of 6600 triangular solid elements and one rigid diaphragm created with FEMAP
(2010) (errors around 0% for displacements and stress resultants). The discrepancies
between the proposed formulation and the solid model without any diaphragms are
quite small (less than 5%) and only for the angle of twist the difference becomes larger
(8.6 %). This implies that the distortion is not of much importance for this cross section
and this structural arrangement. Regarding the maximum normal and maximum shear
stresses, it seems that after the placement of 4 diaphragms not much difference takes
place and even for less than 4 diaphragms the “errors” arising are around 5%. Thus,
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guidelines might lead to cost ineffective solutions for this particular curved beam
element.

In addition to these, the clamped model of the same beam is considered in Fig.
6.7. Similarly to the previous case of the cantilever beam, the proposed formulation
agrees to the solid model with one diaphragm. The discrepancies between the models
become larger for displacements as the number of diaphragms increases comparing to
the previous case of the cantilever beam. However, stresses, which are of more
importance in this case due to the fact that the magnitude of displacements is quite low,
are almost unaffected by the placement of diaphragms. Thus, it seems that boundary
conditions need to be considered in the specification of diaphragms.

20 — Box-shaped clamped beam with eccentric midspan load

7| -displacements are measured at the midpoint
-stresses are measured af the support

15

10

Al

Discrepancies from solid model with no diaphragms (%)

29X shear stresg

max normal stress

K — 1 & q ' ] = ]
0 2 4 6 8
Number of Diaphragms
Figure 6.7. Discrepancies from solid model without diaphragms for a clamped
beam with the cross section shown in Fig. 4.24.

Referring back to Fig. 4.25 of Chapter 4, it should be noted that the placement of
the diaphragm in the solid model of FEMAP (2010) causes the reduction of the vertical
displacement throughout the application of the dynamic load. The proposed
formulation of Chapter 4 which does not considers distortion is closer to this model
implying again that much less diaphragms (possibly only 1 instead of 5 or 6) than those
specified are adequate to prevent distortional effects.
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6.5 Concluding Remarks

In this chapter, the proposed formulations of previous chapters are employed for

the static and dynamic analysis of straight or curved beams together with FEM solid
models in order to further highlight their importance when considering the advantages
of beam models compared with solid ones and assess the design guidelines regarding
the placement of intermediate diaphragms to prevent distortion. Results have been
obtained after placing intermediate diaphragms in the solid models according to
guidelines of (AASHTO, 1993) and (HEPCJ, 1988). The main conclusions that can be
drawn from this investigation are:

1.

il.

1il.

iv.

Regarding very thin-walled structures with 7/d <0.05 (example 6.4.2),
guidelines for spacing of diaphragms to prevent distortional effects seem to lead
to more unsafe solutions when curved beams are considered due to the higher
magnitude of warping and mainly the distortional one. In such cases the
magnitude of the curvature is of importance.

In structures with higher thickness to width ratios (examples 6.4.1, 6.4.3 and
6.4.4), it seems that the guidelines applied in this study might give uneconomic
solutions in order to moderate distortional effects, especially for curved
geometries.

The specification of the maximum spacing of intermediate diaphragms should be
encountered as a multi-parameter problem considering cross sectional geometry
together with the plan view dimensions and boundary conditions.

The use of diaphragms seems to moderate the dynamic load impact on the
structure.

Finally, material of the beam is also important and its influence on the number of
diaphragms needs to be further investigated as structures of different materials are
treated differently in practice (i.e. steel or concrete bridge decks).
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Chapter 7

Concluding Remarks

1.1 Conclusions of the conducted research and discussion

In this doctoral thesis, a series of problems concerning the development of

advanced curved beam theories have been studied and solved. The main issues
addressed are the following:

» Generalized warping (including shear lag effects due to flexure and torsion) of
curved beams,

» Distortional analysis of curved beams by taking into account Poisson ratio
influence,

» Application of the Isogeometric Analysis to the advanced beam theories proposed
and

» Application of the design guidelines which specify the maximum spacing of
intermediate diaphragms and assessment through comparisons of the proposed
curved model to the corresponding solid or plate ones.
For the solution of the examined problems, innovative methods have been

applied based on Isogeometric tools (B-splines and NURBS) either integrated in FEM
or AEM. The main conclusions and aspects of discussion that can be drawn from this
doctoral thesis are:

1.

ii.

1il.

Highly accurate results can in general be obtained using B-splines in the AEM
technique as well as NURBS in FE beam formulations for the static and dynamic
analysis of the proposed beam elements. Computational cost and post-processing
of the results is significantly reduced by the use of NURBS comparing to FEM
plate and solid models. Employment of NURBS in FEM and B-splines in AEM
with or without knot insertion results in higher convergence rates, too.

The curve used to approximate the fictitious load affects the accuracy of the
method and this might cause the necessity of knot insertion or degree elevation
when employing B-splines or NURBS in the AEM. Different section properties
(especially the warping constant) affect the order of the B-splines and NURBS
that have to be employed. In order to obtain errors closer to the AEM with
Isogeometric tools and values closer to those of the analytical solution, quadruple
collocation points should be employed as nodes in the original AEM.

Classical Nonuniform Torsion theory fails to give accurate results in the
evaluation of primary warping distribution and axial stresses or bimoments due to
primary warping in the case of closed cross sections. Results are quite close to
those obtained when employing the Vlasov model. The same case is for the Saint
Venant model regarding torsion and the Euler-Bernoulli model regarding
bending.
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1v.

Vi.

Vil.

viii.

iX.

Xi.

Chapter 7

AEM technique with constant elements exhibits no branching in a normalized
frequency spectrum, as it is the case in quadratic FEM elements, while it
maintains accuracy in the results of high frequencies. Quadratic elements in AEM
depict a branch with much smaller impact than FEM, while they improve the
accuracy comparing to AEM with constant elements.

Regarding the generalized dynamic problem of beams, in cases of very thin-
walled beams, which are susceptible to warping and torsional phenomena, more
elements need to be used for the AEM technique with constant or quadratic
elements. Quartic and cubic B-splines with or without knot insertion can help to
reduce number of unknowns drastically while keep the accuracy on a high level.
Regarding generalized curved beam analysis, the magnitude of Bimoment is in
general not negligible comparing to the total Torsional Moment and both
moments can also be of the same order of magnitude depending on the cross
section. In addition to this, secondary Torsional Moments can be significant and
should also be considered in the analysis. These higher order additional stress
resultants can now be integrated in the analysis’ results and plotted in alignment
with the curved geometry due to the use of Isogeometric tools.

FEM curved beam formulations based on Timoshenko beam theory exhibit a
significant loss in accuracy for higher frequencies even for doubly symmetric
cross sections. Thus, warping effects need to be taken into account in the
dynamic analysis.

Displacement and bending modes dominate over the torsional ones when
considering box-shaped cross sections due to higher torsional rigidities
comparing to the open shape cross sections.

Regarding very thin-walled structures, guidelines for spacing of diaphragms to
prevent distortional effects seem to lead to more unsafe solutions when curved
beams are considered due to the high level of warping and mainly the distortional
one. In such cases the magnitude of the curvature is of importance. However, in
stiffer structures with higher thickness to width ratios, it seems that the guidelines
applied might give uneconomic solutions in order to moderate distortional
effects. Thus, the specification of the maximum spacing of intermediate
diaphragms should be encountered as a multi-parameter problem considering
cross sectional geometry together with the plan view dimensions.

Poisson effects are in general not negligible even if distortion is not of
importance. In addition to this, it seems that when material constants are larger,
Poisson ratio affects the magnitude of stresses more.

In general, open shaped cross sections suffer more from warping while close ones
from distortion. The consideration of up to secondary higher order phenomena is
generally accurate. However, in some cases of very thin-walled cross sections
either open or closed shaped, tertiary phenomena might need to be considered. As
a rule of thumb in choosing the least number of modes in order to achieve the
maximum accuracy when the proposed method is employed, some limitations
have been provided.
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Xii.

Xiii.

X1iv.

XV.

1.2

Increase in curvature causes increase in the distortion due to torsion for thin-
walled box-shaped cross sections. Cross sections with cantilever plates at one
side undergo less severe distortional effects due to the fact that bending resisting
mechanisms are of importance, too.

The ratios of distortional and warping Moments to the bending ones can be
indicative of the behavior of the curved beam and offer an additional insight into
the resisting mechanisms that dominate.

Monossymetric cross sections are more susceptible to higher order phenomena
due to this inherent property of their shape.

Composite cross sections of optimal material placement can significantly reduce
stresses and, thus, reduce the number of intermediate diaphragms needed to
moderate distortional effects.

Suggestions for future research
This doctoral thesis is a contribution to the advanced structural analysis of spatial

curved beam elements of arbitrary cross section with the aid of Isogeometric tools. In

what follows suggestions that will expand and further improve the presented work are

proposed. More specifically

» Generalized warping and distortional effects can be incorporated in the

geometrically nonlinear analysis of curved beams,

» Dynamic distortional analysis of curved beams can be conducted with the aid of

Isogeometric tools,

» Curvature in two planes can be introduced in order to develop the proposed

curved beam element further and broaden its applications,

» Placement of diaphragms can be investigated in order to conduct optimization

analysis regarding their spacing and positions and

» Different constitutive relations for the materials which may compose the cross

section of the beam (e.g. orthotropic composites, shape memory alloys) can be
explored.
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A.1 The Analog Equation Method for ordinary differential equations

A.1.1 Basic concepts of the Analog Equation Method
The main concept of the Analog Equation Method can be mathematically
represented as follows: Consider the boundary value problem

Nu)=g(x), xe€Q (A.1.1a)

Bu)=g(x), xel'=0Q (A.1.1b)

where N( ), B( ) are linear or nonlinear differential operators with constant or

variable coefficients, g(x) is a source density or an external loading function of known

distribution and u(x)is the sought solution of the problem. Consider N *( )being a

linear or nonlinear differential operator of the same order with N . By applying this
operator to the solution of the problem u(x), we are able to formulate the following

equation
N*w)=qg(x), xeQ (A.1.2)

where ¢(x) is an unknown source density function. Equation (A.1.2) is called analog
equation of the initial problem and in combination with the boundary conditions
(A.1.1b) yields the solution of the original problem, provided that a proper source
density function ¢(x) is first determined. The establishment of this function, which
hereinafter will be referred to as fictitious source, density function or fictitious load, is
one of the essential features of AEM. The implementation of the method leads to the
numerical establishment of fictitious load g(x) in Q, through the solution of a system
of linear or nonlinear algebraic equations. The boundary value problem defined by
analog equation (A.1.2) and boundary condition (A.l1.1b) is called equivalent or
substitute problem. It is noted that the analog equation is defined by a differential
operator of the same order with that of the initial problem (A.1.1a) in order for the
substitute problem to be subjected to the same number of boundary conditions as well
as to ensure the continuity of the solution and its derivatives up to the order of the

initial operator N ( ) (Babouskos, 2011). Finally, it is noted that AEM can be easily

employed for the solution of boundary value problems with more than one unknown
functions u(x) by formulating equation (A.1.2) for each one of the unknowns.

A.1.2 AEM for ordinary differential equations of the 4™ order
Consider the one-dimensional boundary value problem
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b

2 3 4
NLM(X), du(x) d "‘(2’“) d ”(;‘),d ”Ef)]=g(x), xe(0,L) (A.1.32)
dx dx dx dx

d d* d?
oyuu(x) + B, [u(x), b;ix), di(zx), dig’“)}zag, x=0,L (A.1.3b)
du(x) du(x) d*u(x)
B + 5B, {M(X),?’ 2 J=ﬁ3’ x=0,L (A.1.3¢)

where N ( ) are linear or nonlinear 4™ order differential operators, Bl( ) Bz( ) are
linear or nonlinear 3" and 2™ order one-dimensional operators, respectively,
a;, B, (i=1,2,3)are functions specified at x=0,L, g(x) is a known source denstity
function defined at (0,L)and u(x)is the sought solution of the problem, having
continuous derivatives up to the 4™ order in (0,L) and up to the 3" order at x=0, L.

According to the analog equation principle, the substitute problem is also of fourth
order, thus the following equation can be formulated, as the simplest analog equation
with known fundamental solution

4
d ”Elx) —g(x) xe(0,L) (A.1.4)

dx

From a physical point of view, equation (A.1.4) describes the flexural response of
a beam according to classical (Euler-Bernoulli) beam theory with stiffness EI =1,
under the action of a distributed loading ¢(x). According to section A.l.1, equation
(A.1.4) indicates that the solution of the original problem (A.1.3a) could be obtained as
the solution of this equation subjected to the same boundary conditions (A.1.3b,c),
provided that the fictitious loading ¢(x) will be first determined. This can be

accomplished as following: The weak form of the analog equation is written as

d* . a4* . )
ﬁ)[ db;gx)_q(x)} (x,§)dx=0= If dL;E*X)M (x,&E)dx — ij(x)u (5, E)dx =0 (A.1.5)

where " (x,&) is a trial function in the sense of Galerkin weighted residuals approach.
In order to apply a BEM procedure, the fundamental solution of the one-dimensional
Laplace operator is adopted as a trial u”(x,&) function, which is a partial solution of

the differential equation
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d'u'(x&) _

y S(x=¢) (A.1.6)

dx

where o( x—¢& ) is the Dirac’s function in one dimension (Katsikadelis, 2002a). The

fundamental solution u” (x, &) is obtained as (Sapountzakis and Katsikadelis 2000)

. I
. (x,§)=El3(2+|p|3—3|p|2) (A17)

with p=r/l, r=x—¢ being the distance between £ and x, where x is a constant
source point while & runs through the interval [0, L]. By applying sequential

integrations by parts in the first integral equation (A.1.5), substituting equations (A.1.4)
and (A.1.7) and exploiting the property of the Dirac’s function, yields

w(©)= [ Ay(x. &g
L (A.1.8)

= Aq(x, SHu(x)
0

du(x) d*u(x) du(x)
A4(X,§)7—A3(X,f) 2 +A(x,) .

where A;(r) (i=1...4) are the kernels (derivatives of u”(x, &) ), defined as

A5 E) =% =%sgn p (A.19)
Az(x,.»;)zdzL(z’“@z—%l(l—|p|) (A.1.9b)
N L (A.1.90)
Ay, ) =" (x, &) =$l3(2+|p|3 ~3)f’) (A.1.9d)

with sgn( )being the signum function, defined as

+1, r>0

sgn(r):{_1 <0 (A.1.10)

for r =0, signum function is not defined.
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Relation (A.1.8) constitutes the integral representation of the solution as a
function of the fictitious load and boundary quantities. Particularly, if g(x) and all
du(x) d*u(x) d’u(x)

T dd
can be calculated at any internal point of the bar. Differentiating (A.1.8), the
expressions for the derivatives of u(&) can be derived

boundary values (u(x) J at the bar ends 0,L are known, u(&)

d L
;‘f) = [ A )i
3 i (A.1.11a)
[Ag( O M@ LA 5)61”(”}
0
d*u(&) d3u(x) d*u(x) -
= [ Ay, @q(x)dx{Az( B L PR RS } (A.1.11b)
d&? x|
3 3
L ‘f Ay(x, Hg(xd {—A( 54 ”(X)} (A.Lllc)
a3 .
where
anxe (A.1.12a)
dé
dA,(x,
il_(gf):_,\l(x,g) (A.1.12b)
dA(x,
dA(x,
2(;6 S) Ay &) (A.1.12d)

Eqgns. (A.1.8) and (A.1.11) written for the boundary points x =0, L constitute a

system of four simultaneous integral equations, which are given in matrix form below
[Ey Huy Y +[Exp Huy } ={T5} (A.1.13)

where
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N
. quF]]
Jo Asxgogoax| |77
F F .. K
L Zq'Fz' 11 I IV || D
Ay(x, &) g(x)dx — 1))
(Ty) = IOL 4oL _ 11:’1 _ I;m 11222 II::2N 5{2 (A.1.14)
A3(x,8p)q(x)dx F, . SR
'[OL jzz‘;qj 3 Fyy Fpoooo Fyy | lan
[y AsCegpaod| |y
2.49iF;
=l
r || duw|  du
) =155 ; u(0) (A.1.15)
dx ‘xzo dx ‘x:O X |—o
r | du| | du)
{u}' = 3 > | u(0) (A.1.16)
dx ‘sz dx ‘sz dx x=L
Ay(0,8)) —A5(0,5)  A(0,5)  —(A(0,5)+1D)
[Ey]= A4(0.8) —A3(0,51)  Ay(0.5;) —A(0,57) (A.117)
A3 (09 50) _AZ (O’ 50) Al (09 50) +1 0
A3(0,8) —Ay(0.8)  A(0.8) 0
Ay (L&) A3(L,Sy)  —Ay(L.&)) A(L, &)
(Ex]- -Ag(L, &) A5(L.S) —A(LS) A(LSp)-1 (ALI8)
-A3(L, &) Ay(L. &)  —A(L,&)) 0
—A3(L,&) Ap(L, &) —(A(L.&p)—1) 0

where N is the number of discretization elements. The interval (0, L) is divided into
N elements employing the constant element assumption for the fictitious load g(x)

which is considered constant in each element and equal to its value at mid-point.
Then, the boundary conditions (A.1.3b,c) are formulated in matrix form as
follows

LE  Hu }+[Ep Huy } ={D, } (A.1.19)

where [E|;], [E},] are 4X4 known coefficient matrices and {D;} is 4X1 known

coefficient vector.
Combining eqns. (A.1.13) and (A.1.19), the following is derived
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o (R o

[Ey] [Exn]] (s} {15}

where [E] is a square 8X8 matrix, {O}T:{O 0 0 0} and {u},{D},{T}are 8XI

vectors.
Combining eqn. (A.1.14) and (A.1.20) and the vector {7’} can be written as

follows

{T}= [_[[(;32]}{61} —(T}=[F]{q} (A.1.21)

where [0] 1s the 4XN zero matrix and [F ] is the 8XN matrix. Substituting eqn. (A.1.21)
into eqn. (A.1.20), the following relation is derived

[E]{u} = (D} +[F]{a} > {u} =[E]" (D} +[E] ' [F}{a) (A.1.22)

Subsequently, applying the integral representations (A.1.8) and (A.1.11) at the N
collocation points, the following relations are derived

{U}=[Al{q}+[C{u} (A.1.232)
(U} =[ANq}+[C{u} (A.1.23b)
{U"=[A"{q} +[C"H{u} (A.1.23¢)
(U™ =[A"{q}+[C"N{u} (A.1.23d)

where U,U'\U",U" are the vectors containing the values of the solution and its
derivatives (u(x),u'(x),u"(x),u"(x)) at collocation points. The coefficients of the NXN
square matrices [A],[A'],[A"],[A™] are given by the analytical or the numerical

solution of the following integrals

A= Ay(xE)q(x)dx (A.1.242)

A== Ay(xn&)q(x)dx (A.1.24b)



280

A= jrj Ay (x,E)q(x)dx

A" =— Ir,. Ay (x, E)g(x)dx

The NX8 [C],[C',[C"],[C"'] matrices are given below
A4(0,8)  —A3(0,5)  A,(0,5) —-A(0,5)
[C] — : : . :

A40,86) —A30,8) A(0,5) —A(0,8p)
| —ALLE)  A(L&) —AyL&)  A(LE)
| : . : .
|

—Ny (L&) A3(L,Sp) —A (L&) A(L,Sp)
-7A3(0,8)  A(0.5) -A(0,5) O

[c]{ : : : :
~A5(0,8) A5(0.£) —A(0.&) 0O
| A(LéE) —AyLE) A(LE) O

| As(L&E) —Ay(LE) A(LE) O

Ay (0.8) —A0,5) 0 O —Ay L&) A(LE) 0 0

[c"]= S

Ay(0.8) —A0,8) 0 O —Ax (L&) A(LE) 0 0

A (0,6) 0 0 O A(LE) 0 0 0
. : . 0| . .

[C"]= : Do
~A(0,5) 0 0 0 A(LE) 0 0 0

and their coefficients are calculated with the aid of eqns. (A.1.9).
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(A.1.24¢)

(A.1.24d)

(A.1.25a)

(A.1.25b)

(A.1.25¢)

(A.1.25d)

Substituting eqn. (A.1.22) into eqns. (A.1.23), the following are derived

{UY=[Bl{q}+{R}
{U'}=[Bl{q}+{R'}

U} =18 g} +{R")

(A.1.26a)

(A.1.26b)

(A.1.26¢)
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{U"}=[B"{q}+{R"} (A.1.26d)

where the square matrices NXN can be determined from the following relations

[8]=|[A]+[c][E] " [F]] (A.1.27a)
(8= [AT+[C (e [F]] (A.1.27b)
[B)=| [+ [ [E] " [F]] (A.1.27¢)
[8"]=|[A")+[c)[E] ' [F]] (A.1.27d)

and the NX1 vectors {R},{R'},{R"},{R"} are given as follows

(Ry=[C][E] ' {D} (A.1.282)

(R} =[C'|[E] " {D} (A.1.28b)
{R"y=[C"][E] " {D} (A.1.28¢)
{R"y=[c"|[E] " {D} (A.1.28d)

It should be noted here that in case of homogenous boundary conditions (o3 = 3 =0)

at the ends of the interval, the {R} {R '},{R"}, {R "'} vectors become equal to zero.

The final step of the AEM is the application of the governing equation of the
initial problem (A.1.3a) at the N internal nodal points and subsequently the substitution
of the values of the field function u(x) and its derivative at the N internal nodal points
according to equations (A.1.23). From the definition of the analog equation (A.1.4) it is
apparent that the values of forth derivative of u(x) at the nodal points equals to the

corresponding values of the fictitious load vector g(x) .

A.1.3 AEM special case for ordinary differential equations of the 2" order
AEM for 2™ order ordinary differential equations is a special case of the previous
formulation. Consider the one-dimensional boundary value problem
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2
[ . du(x) d u(x)jzg(x)’ xe(0.L) (A.1.292)
71u(x)+72F1(u(x) ”(x)j—y3, x=0,L (A.1.29b)
x

where N( ) are linear or nonlinear 2" order differential operators, I'; () are linear or

nonlinear 1% order one-dimensional operators, respectively, y; (i =1,2,3)are functions
specified at x=0,L, g(x) is a known source denstity function defined at (0,L) and
u(x) is the sought solution of the problem, having continuous derivatives up to the 2™
order in (0,L) and up to the 1* order at x=0,L. According to the analog equation

principle, the substitute problem is also of second order, thus the following equation
can be formulated, as the simplest analog equation with known fundamental solution

2
d ”(2’“) =g(x) xe(0,L) (A.1.30)

According to section A.l.1, equation (A.1.30) indicates that the solution of the
original problem (A.1.29a) could be obtained as the solution of this equation subjected
to the same boundary conditions (A.1.29b), provided that the fictitious loading ¢g(x)
will be first determined. This can be accomplished as following: The weak form of the
analog equation is written as

2
J.L(ddb;(x)_ (x )}‘ (x,$)dx =0= J‘ ddu(x) U (x, E)dx— J- OO (x, E)dlx = 0

(A.1.31)

where u”(x,£) is a trial function in the sense of Galerkin weighted residuals approach.
In order to apply a BEM procedure, the fundamental solution of the one-dimensional
Laplace operator is adopted as a trial u”(x,&) function, which is a partial solution of
the differential equation

d’u’(x,¢)

y el =S(x—¢) (A.1.32)
X

where o(x—¢& ) is the Dirac’s function in one dimension (Katsikadelis, 2002a). The

fundamental solution u” (x, &) is obtained as (Sapountzakis and Katsikadelis 2000)
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* 1
u (x,é‘):5|r| (A.1.33)

With r=x—-¢ being the distance between & and x, where x is a constant source
point while & runs through the interval [(), L]. By applying sequential integrations by

parts in the first integral equation (A.1.31), substituting equations (A.1.30) and (A.1.33)
and exploiting the property of the Dirac’s function, yields

L

- A (x, §)u(x)} (A.1.34)

0

u(@= [ At ec)CI(X)dX—[Az( oo

where A;(r) (i=1,2) are the kernels (derivatives of u'(x, &) ), defined as

A(x, &) = du'(x,8) _1 —senr (A.1.352)
dc 2
\ 1
Ay(x,&)=u"(x,) = E|r| (A.1.35b)

with sgn( )being the signum function, defined as in (A.1.10).

Relation (A.1.34) constitutes the integral representation of the solution as a
function of the fictitious load and boundary quantities. Particularly, if g(x) and all

u(x)

boundary values (u(x) J at the bar ends 0, L are known, u(&) can be calculated

at any internal point of the bar. Differentiating (A.1.34), the expressions for the
derivative of u(&) can be derived

L) [P Ay §)q(x>dx{—A (x,8) d”(x)} (A.1.36)
dé 0
where
dh (x.8) _ (A.1.37a)
dé
dAyx0) A (x.8) (A.1.37b)
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Eqns. (A.1.34) and (A.1.36) written for the boundary points x =0, L constitute a

system of two simultaneous integral equations, which are given in matrix form below

where
i q
L q F1 . 1
Ay (x, &) q(x)dx ~ =]
(T} = - j()L 2 (X, 60 _ ]1;1 :{::11 ?2 ?N} q:z (A.1.39)
fo Aaeépatods| (S R 2 )
j=1 N
{u)' = {d“(x) u(O)} (A.1.40)
dx x=0
()1 = {d“(x) u(L)} (A.1.41)
dx x=L
[EZI] _ A2 (09 50) _(A1 (O’ 50) +1)} (A142)
_Az (07 §L) _Al (Oa é:L)
[E ]=__A2(L’§0) A](L’éo) :|
2L AALE) (A(LE)-D
(A.1.43)

where N is the number of discretization elements. The interval (0, L) is divided into
N elements employing the constant element assumption for the fictitious load ¢(x)

which is considered constant in each element and equal to its value at mid-point (Fig.
A.1.1). When ¢(x) is approximated with quadratic elements (Fig. A.1.2), three

collocation points are used for each discretization element.
Then, the boundary conditions (A.1.29b) are formulated in matrix form as
follows

LE; Wy} +[Ep H{uy ) ={D;} (A.1.44)

where [Ej;], [Ej,] are 2X2 known coefficient matrices and {D;} is 2X1 known

coefficient vector.
Combining eqns. (A.1.39) and (A.1.44), the following is derived
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{[Eu] [Elz]H{ul}} _ {{Dl }}+{ {0} } S[E](u = {D} +{T) (A.1.45)

[Ey] [En]|liu}] 10} [T}

where [E] is a square 4X4 matrix, {0}T = {0 0} and {u},{D},{T}are 4X1 vectors.
Combining eqn. (A.1.30) and (A.1.45) and the vector {T'} can be written as

follows

(T} = {_[[(I)Jz]}{q} —>{T}y=[F]{q) (A.1.46)

where [0] 1s the 2XN zero matrix and [F ] is the 2XN matrix. Substituting eqn. (A.1.46)

into eqn. (A.1.45), the relation (A.1.22) can be similarly be derived.
Subsequently, applying the integral representations (A.1.34) and (A.1.37) at the N
collocation points or 3XN in case of quadratic elements, the following relations are

derived
{U}=[Al{q}+[Cl{u} (A.1.47a)
{UY=[ANq}+[C1{u} (A.1.47b)

where U,U" are the vectors containing the values of the solution and its derivatives  (
u(x),u'(x)) at collocation points. The coefficients of the NXN or (3XN)X(3XN), in
case of quadratic elements, square matrices [A],[A'] are given by the analytical or the

numerical solution of the following integrals

A= Ay(x&)g(0dx (A.1.48a)

Al=— jr A (6 &)q(x)dx (A.1.48b)

The NX4 [C],[C'],[C"],[C"'] matrices are given below

Ay 0.8 —A0.8)] —ALE) AL
: : : : (A.1.49)

[€]=

Ay(0.8) —AO0.5)] —Ax(L.&) A(L.&L)
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-A0.8) 0 A(LE) O
c]= o0 : o (A.1.49b)

—A(0,4) O A((LE) 0

and their coefficients are calculated with the aid of eqns. (A.1.35).
Substituting eqn. (A.1.45) into eqns. (A.1.47), the following are derived

{U}=[Bl{q}+{R} (A.1.50a)
{UY=[BNq}+{R'} (A.1.50b)

where the square matrices NXN or (3XN)X(3XN), in case of quadratic elements, can be
determined from the following relations

[8]=|[A]+[C][E]"[F]] (A.151a)
(8= [AT+[C[E]"[F]] (A.151b)
and the NX1 vectors {R},{R'} are given as follows

(Ry=[C][E] ' {D} (A.1.52a)
(R} =[C'|[E] "{D} (A.1.52b)

It should be noted here that in case of homogenous boundary conditions (a3 = 5 =0)
at the ends of the interval, the {R},{R'} vectors become equal to zero.

The final step of the AEM is the application of the governing equation of the
initial problem (A.1.29a) at the N or 3XN, in case of quadratic elements, internal nodal
points and subsequently the substitution of the values of the field function u(x) and its
derivative at the N internal nodal points according to equations (A.1.47). From the
definition of the analog equation (A.1.30) it is apparent that the values of forth
derivative of u(x) at the nodal points equals to the corresponding values of the

fictitious load vector g(x).
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T q(x)-Real curve

~_,

3

~ X=L
£o=0 \:\—\‘ Constant Element I &=L

Constant ElementT;

= & Collocationpoints

Length L

Fig. A.1.1: Representation of fictitious load q(x) for constant discretization elements
and collocation points for a kinematical component.

q(x)/l\ 2 q?.-—ﬂli—ﬂlg..__ﬂ@ q(x)-Real curve |
i e | ‘T\‘\ ] !
.q/ | : | |
| | T
; : ! ! L
| [ ' ' | |
i | (k2-k1)/2 : : : :
. | JARNER N [ I \
| | X - | | l |
X [ ! ' ' I
1 2 3 ! |
X=i x=L
§o=0 +k1(£1 )} e J Quadratic Element r §i=L
| x X _-X
: Xr-ﬁfgxr.z-lx,-i)/Z —> \ Quadratic Element T,
xf1+k2(xf2—xflj_> &, Collocation points
Xy —=
Length L

Fig. A.1.2: Representation of fictitious load q(x) for quadratic discretization
elements and collocation points for a kinematical component.
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A.2 Isogeometric Analysis’s tools (B-splines and NURBS)

A.2.1Basic concept of the Isogeometric analysis

The term “Isogeometric” refers to the coincidence of the geometric model, which
is built in a CAD environment, and the design model (i.e. the FEM or AEM model)
used in order to perform the strain-stress analysis. In traditional FEM or AEM analysis,
the design and geometric models never coincide due to the fact that even though they
are both representations of a true object, they rely on different basis functions. This, in
turn, produces concerns related to accuracy in the computations, particularly for curved
structures. Additionally, if NURBS are used as basis functions, their smoothness is also
inherited by the FEM (Chiozzi, Malagt, Tralli and Cazzani, 2015) or the AEM model.
This is particularly important because it allows the circumvention of certain serious
difficulties in developing the numerical model (e.g. advanced beams in which, except
for bending, shear and torsion, higher order phenomena must be considered making the
mesh processing more complicated). Moreover, as the shape functions are
approximated better, the error affecting its derivatives becomes smaller. This is
important especially in FEM models because stress fields are not the primary solution
variables, but need to be computed by differentiating displacements through post-
processing techniques. Thus, smoother displacement fields ensure a more accurate
approximation of the stresses. This is not an aspect to be considered in the AEM
models due to the fact that fictitious loads, which are the highest derivatives of the
unknowns, are at first calculated.

A.2.2 B-splines’ basis functions and curves

Description of the model’s geometry in commercial CAD packages is based on
B-splines and NURBS. Particularly, NURBS basis functions are built on B-splines
basis functions, which are piecewise polynomial functions defined by a sequence of

—

coordinates ::{51,52,....;‘” +p +1}’ also known as the knot vector, where the knots

& e [0,1] are points in a parametric domain, in which p and n denote the polynomial

order and the total number of basis functions, respectively. The distance between two
consecutive knots is named knot span and represents the equivalent of the element
domain in traditional finite element. In addition to this, knots represent the collocation
points in the AEM. Once the order of the basis functions and the knot vector are
known, the ith B-spline basis function of p-degree, N. (&), can be computed by means
of the Cox-de Boor recursion formula (Piegel and Tiller, 1997) as

1 f&E<E<&i+1

Noo(e) = N (A2.12)
0 otherwise

Nov® = —2=5 N o2 PEIE e p>1 (A.2.1b)

Ei+p—C&i Ei+p+1—Ci+l
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These basis functions are piecewise polynomials, which form a basis for the
vector space and multiplied by the control points give the representation of the B-spline
curve.

Considering the interval [O, 1], which contains the bar element with length equal
to unity, with & € [0,1] and applying eqn. (A.2.1b), the following basis functions are

derived for the quadratic B-spline

-0 1- (1-&?% if0<E<l
Nyr(&)==—Ny, +—=N,, = (A.2.22)
0200 -0 { 0 otherwise
-0 1- 2&(1- fO<E<1
Nl,z(@):—g N1,1+—§N2,1= si-¢) ¥ ? (A.2.2b)
1- 1-0 0 otherwise
-0 1- 2 ifo<kE<l
Ny, (@)= é—Nz,l +—§N3,1 e 7 é' (A.2.2¢)
I- I-1 0 otherwise

where Nyi,Ny;,N,; and N3, are calculated from eqns. (A.2.1). Thus, the quadratic
B-spline curve is defined by

2
C(&) =) N (&P, (A.2.3)

i=0

where P, are the control points £y, P, and P, . Substituting eqns. (A.2.2) to eqn. (A.2.3),
the expression for the fictitious load g(x) in the AEM is derived as

q(x) = Py—2xPy + x* By + 2xP, - 2x*P, + x*P, (A.2.4)

Three equidistant collocation points have been used, which are presented in the
same figure with the control points (Fig. A.2.1).

The same process, as described above, has been followed when substituting with
the polynomial representation of cubic or quartic B-splines with uniform knot vectors.
Considering the cubic B-spline, the expression of the fictitious load g(x) is derived as

(L-x)° +3x(L—x)2 »

3x2(L—x) X
q(x) = R +
r I

A

P, (A.2.5)

where P are the control points iy, P, P, and Pj. If four equidistant collocation points

for discretization are employed, the control polygon of the fictitious load curve and the
collocation points are presented in Fig. A.2.2 for a kinematical component of the beam
theories presented in this PhD thesis.
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4>I)(il=lf4 J

Xi2=1/2

ol Xi3=1/2

Fig. A.2.1: Bar element, representation of fictitious load q(x) for quadratic B-spline,
control and collocation points.

Fig. A.2.2: Representation of fictitious load q(x) for the cubic B-spline, control and
collocation points for the kinematical component i (the control polygon
is presented in dashed line).

Similarly, the expression for the fictitious load g(x) for the quartic B-spline is derived
as

(L-x)* 4x(L—x)> » +6x2(L—x)2 . +4x3(L—x) x4

g(x) = P+ P+ P (A.2.6)
r ! 7 I

where P, are the control points £y, B, P, P and Pj.

A.2.3 Refinement procedures
The control polygon, which is a set of control points, represents a piecewise
linear approximation to the B-spline curve mentioned above. This approximation can
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be improved by: (i) generating a refinement of this set of points with the addition of
new points, (ii) knot insertion or (iii) degree elevation. The last technique of elevating
the degree results in the cubic and quartic B-spline curves mentioned earlier.

To begin with, the refinement of the quadratic B-spline curve is examined
according to the works of Kenneth (2000), Chaikin (1974) and Reisenfeld (1975). The
initial curve is defined by the control polygon given in Fig. A.2.3a (same as in Fig.
A.2.1). Then, employing Chaikin’s method, the control points of the refined curve are
given in Fig. A.2.3b and can be positioned i.e. at the ¥4 and 3 of the initial lines of the
control polygon. So, given a control polygon, a refinement of this set of points can be
generated by constructing new points along each edge of the original polygon at a
distance of %4 and 3 between the endpoints of the edge. This can be represented in
matrix form as

2R+ R
51 4 4
R 310),0 (3 1
Al 130 ; At (A.2.7)

=2 | = 2.

p| 40 31 h 3pilp
pl 01 3 4" 4
-3 31

~h+7A

L4 4

Py

q(€)

(a) (b)
Fig. A.2.3: Quadratic uniform B-spline curve defined by the control polygon {PO,
Pl, P2} (a) and refined curve of quadratic B-spline (b).

This process is then continued until a refinement is reached that accurately
represents the curve to a desired resolution. In other words, in the limit, the sequence of
control points generated by the refinement procedure converges to a quadratic uniform
B-spline curve. In order to express the fictitious load with respect to the new control
points, eqn. (A.2.7) is simplified and the control points of the initial polygon are

expressed with respect to the new ones (Pol,Pll,Pz1 and P3] ). The same procedure is

repeated for the new set of control points derived, exploiting again eqn. (A.2.7).
In addition to the above mentioned, the improvement of the accuracy of the
results can be improved by employing knot insertion. The knot vector earlier described
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is now enriched with the addition of new knots. The N;, ((1—5)2,25(1—5),52)
restricted to the interval & € [O,l] are the quadratic Bernstein polynomials. For this

reason, the B-spline representation, described previously, with a knot vector of the
form =={0,0,0,1,1,1} (p+1 multiplicity of knots) is a generalization of the Bézier
representation. A new knot vector is now specified and a new set of B-spline basis
functions is computed. The knot vector determines completely the functions N; (&) .

Thus, considering the knot vector (addition of 3 new knots)

U =1{0,0,0, L1} or

NIH

3

ol
4’
61 = G=%=16=15=1) (A2.8)

3
4
1 1
U:{‘fo— 052:0’5321,54:5,

the zero-, first- and second- degree basis functions are computed below. Thus,
according to eqns. (A.2.1), the following basis functions are derived

Noo(&)=N;(5)=0 (A.2.92)

Ny o(&) = ! UCO<§<_ (A.2.9b)
0 otherwise

N3(&) = : lf = §< 2 (A.2.9¢)
0 otherwzse

Noo@=1| ' 15584 (A2.90)
0 otherwzse

Nsp(&) = : lf =6<l (A.2.9¢)
0 otherWlse

N (&) =N70(5)=0 (A.2.91)

Ny 1(&)==—Ny, +;0N1,0 =0 (A.2.9¢)
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1

—— 1
-0 s 1-4& if0<E<—
Ny @) =220N e, = 1T T0sE<g
0-0 1 _
4 0 0 otherwise

. 1
4 if0sg<s

-0 27 ¢ 1 1
NZJ(é:):f—NZ,O_'_%—lN&O: 2—4§ l‘fzga<5
Z_ E_Z 0 otherwise

4 -1 iflSE_,<l

1 3 4 2

T4y L4t R
N3i(€) =7 Nag+ 35— Nap=1| 3-45 if S<E<
E_Z Z_E 0 otherwise

1 3

45 -2 if —<E&E<—

1 d f2 5 4
2 1- L3

Nyt (&)= %1\]4,0+ §N5,0= 4-4¢ le§§<1

o 1_7

4 2 4 0 otherwise

é‘j 1-¢ 4e-3 if <z
NSl(é:): 3N50+1_1N6,0: 4

1-— 0 otherwise

e0y Latt, _lfa-a0? irose<s
0-0

——0 0 otherwise
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(A.2.9h)

(A.2.9i)

(A.2.9)

(A.2.9k)

(A.2.91)

(A.2.9m)

(A.2.9n)
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Ns5,(&) = Nsj+—=Ng; =

Appendix A.2

| 4§—I6§2+(%—2§)4§ ifO£§<i
_ ¢ 1 1 1
Nia () = 1—_0N1,1 +3 ~ Nop=1|  G-20@-48) i 7<E<S | (A290)
4 2 0 otherwise
2 . 1
8& ifO<E<—
3 4
TN VA SV | PYPSRPE EPYARNS B
2,2 _1_0 2,1 é_l 31— ) 4— )
2 4 4 3 1 3
G-20)(-49) if 5<E<s
(A.2.9p)
1
f—z 1—
N32(§)=3 1N31+ 1N41—
4 4 2
e~ Lyae- fi<e<t A2.9
2 4772 (A-2.99)
1 1 3
= (25—E)(3—45)+(2—2§)(4§—2) lf5S§<Z
(2-28)(4-48) if%s&d
1
2 L
Ny,(6)= 1N41+ 3N51—
1 3
(2&-D(4&-2) if 5 <E< 2 (A.2.91)
—1| @e-nUE-Hra-do@s-y i I<e<
0 otherwise
-2 @e-3? ifS<e<l
4 —< v5= (A.2.95)

4

0 otherwise J}
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1 1-
N (&) z%Nm +£N7,1 =0 (A.2.9¢t)

and the corresponding quadratic b-spline curve, which is defined by eqn. (A.2.3), is
expressed as

n
C(é:) = ZNI,Z(g)B = NO,ZR) + N1,2P1 + N2,2P2 + N3’2[§ + N4’2P4 + N5’2[)5 (A2 10)
i=0

Similar procedure can be followed for the knot insertion in cubic and quartic B-splines
earlier described.

A.2.4FEM and NURBS

In order to discretize ordinary differential equations with FEM, the sought
solution of the problem is approximated by means of polynomial interpolating
functions of p-degree as extensively is described by Onate (2009) and Papadrakakis
(2001). Considering beam elements, substituting the displacement approximation for
each discretization element (N in total), the equilibrium equations in terms of the nodal
displacements of the finite element mesh can be expressed. Paricularly, the main steps
of the FEM algorithm are as follows:

1. Selection of the polynomial degree of the basis functions for each displacement
and for each discretization element.

2. Determination of the geometric constants and loads of the beam.

3. Definition of the geometry meshes and index matrices for each displacement
considered in the beam model.

4. Evaluation of the Gauss Points in the physical space and their Jacobians. This can
be performed by using the Gauss quadrature rule. In order to compute Gauss base
points and weight factors an algorithm has been employed according to Davis
and Rabinowitz (1975).

5. Element and global stiffness and mass matrices’ initialization.

6. Evaluation of stiffness and mass matrices in a double loop with respect to the
number of elements and the number of gauss points. Derivation of global
stiffness and mass matrices by assembling the contributions from the individual
elements.

7. Elimination of constrained degrees of freedom (DOF) in the final assembled
system employing Lagrange multipliers’ method.

8. Global equilibrium equations and solution of the problem.

9. Post-processing in order to evaluate displacements and reaction forces in local
and global system at the points where the solution is plotted.

As a next step in discretizing the differential equations of the problem, p-degree
NURBS interpolating functions can be employed for the representation of the
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displacement field. In this case, curve C given in eqn. (A.2.3) has a p-degree NURBS
representation defined by

Ci(&) =2 R, (O (A-2.11)
i=1

where P, are the control points employed for each kinematical component and

R; p(f) , which are the NURBS basis functions, can be expressed as

N; ,(O)w;

DN, (Ew,
i=1

R, (&)= (A2.12)

where N; (&) are given in eqns. (A.2.1) and w; (€ll) are weights related to the ith

control point and increase the capabilities of the B-splines interpolation (Hughes et al.,
2009). NURBS share many properties with B-spline basis functions (Piegl and Tiller
1997). Among these, they are all nonnegative, they have a compact support, and build a
partition of unity. It should be noted that if all weights are equal, then
Rl-’p(é:) = Nl-’p (&) and curve C is a B-spline curve.

The main idea of the Isogeometric approach is to describe the geometry of the
problem by NURBS interpolation exactly and to use the same interpolating basis to
represent the generalized displacements. The main steps of the IGA algorithm, when
NURBS are integrated in FEM, are similar to those presented for FEM. However,
regarding the step 3, there is no need for index matrices and the geometry is defined by
an initial control polygon which results in an initial NURBS structure. Afterwards,
during pre-processing, one or more meshes are defined for the different kinematical
components based on the initial NURBS structure while knot insertion, degree
elevation or k-refinement can be employed in order to refine the initial structure
directly on these meshes. In addition to these, step 4 is altered here due to the fact that
Gauss points and the corresponding Jacobians are evaluated in parametrical and
physical space together with the values of the basis functions, their derivatives and the
radius of curvature directly on the meshes. Thus, post-processing (step 9) becomes
easier and no need for additional loops and calculations of basis functions are
demanded.

In case of a curved geometry the following relations need to be employed

J=S'=«/X'2+Y'2 (A.2.13)

J

_ A2.14
| X'Y"-X"Y ( )
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where ( )' the derivatives with respect to &, S the arc length of the beam with one

plane of curvature, R the radius of curvature of the beam and X, Y the coordinates on
the plane of curvature.

In case of NURBS integration in the AEM, the differences in the algorithm
regarding steps 3, 4 and 9 previously mentioned apply here, too. However, two
different double loops need to be performed when numerical integration is applied with
respect to elements and gauss points in order to evaluate [A],[A'],[A"],[A"] and [F ]

matrices of the AEM. The rest of the procedure followed in the AEM is the same.
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