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ǼεĲİθάμ Πİλέζβοβ 

ΓİθδεİυηΫθβ Θİπλέα        
Ǽυγτΰλαηηβμ εαδ Καηπτζβμ ǻκεκτ       

ηİ ΙıκΰİπηİĲλδεά ΑθΪζυıβ 

I. Ǽδıαΰπΰά ǼεĲİθκτμ Πİλέζβοβμ 

΢Ĳβ įδαĲλδίά αυĲά įδİλİυθΪĲαδ εαδ İπδζτİĲαδ ıİδλΪ πλκίζβηΪĲπθ ηΫıπ  Ĳβμ  
αθΪπĲυιβμ İιİζδΰηΫθπθ πλκıκηκδπηΪĲπθ İυγτΰλαηηβμ εαδ εαηπτζβμ įκεκτ. Πδκ 
ıυΰεİελδηΫθα, αθĲδηİĲππέακθĲαδ Ĳα πλκίζάηαĲα αθκηκδσηκλφβμ ıĲλΫοβμ, 
ΰİθδεİυηΫθβμ ıĲλΫίζπıβμ ζσΰπ  įδΪĲηβıβμ εαδ ıĲλΫοβμ (ηΫıπ Ĳπθ κπκέπθ ηİζİĲΪĲαδ 
Ĳκ φαδθσηİθκ Ĳβμ įδαĲηβĲδεάμ υıĲΫλβıβμ), įδαıĲλΫίζπıβμ (παλαησλφπıβ Ĳπθ 
įδαĲκηυθ Ĳβμ įκεκτ ıĲκ İπέπİįσ Ĳκυμ) εαγυμ εαδ Ĳκ πλσίζβηα Ĳβμ įυθαηδεάμ 
αθΪζυıβμ İυγτΰλαηηπθ εαδ εαηπτζπθ įκευθ. Ǿ αθĲδηİĲυπδıβ Ĳπθ πλκίζβηΪĲπθ 
αυĲυθ ίαıέαİĲαδ ıĲβ ΰİθδεİυηΫθβ įδαĲτππıβ εαδθκĲσηπθ γİπλδυθ įκεκτ (Generalized 

Beam Theories - GBT), ηİ Ĳδμ κπκέİμ Ĳκ πİįέκ ηİĲαĲκπέıİπθ εαδ κδ ıυθδıĲυıİμ Ĳπθ 
ĲαθυıĲυθ παλαησλφπıβμ εαδ ĲΪıβμ įδαĲυπυθκθĲαδ πμ ΰλαηηδεκέ ıυθįυαıηκέ 
ΰδθκηΫθπθ ηκθκįδΪıĲαĲπθ εαδ įδįδΪıĲαĲπθ ıυθαλĲάıİπθ. 

Ǿ αθαζυĲδεά ζτıβ Ĳπθ ηκθκįδΪıĲαĲπθ εαδ įδįδΪıĲαĲπθ πλκίζβηΪĲπθ 
ıυθκλδαευθ εαδ αλξδευθ-ıυθκλδαευθ Ĳδηυθ πκυ ηκλφυθκθĲαδ İθ ΰΫθİδ įİθ İέθαδ 
İφδεĲά. Ωμ İε ĲκτĲκυ, Ĳα πλκίζάηαĲα αυĲΪ İπδζτκθĲαδ αλδγηβĲδεΪ İφαλησακθĲαμ Ĳβ 
ΜΫγκįκ ΢υθκλδαευθ ΢Ĳκδξİέπθ (Boundary Element Method - BEM), Ĳβ ΜΫγκįκ 
ǹθαζκΰδεάμ Ǽιέıπıβμ (Analog Equation Method - AEM), β κπκέα απκĲİζİέ İιΫζδιβ Ĳβμ 
BEM, εαγυμ εαδ Ĳβ ΜΫγκįκ ΠİπİλαıηΫθπθ ΢Ĳκδξİέπθ (Finite Element Method - 

FEM). Όıκθ αφκλΪ ıĲβθ İπέζυıβ ηκθκįδΪıĲαĲπθ πλκίζβηΪĲπθ, κδ αλδγηβĲδεΫμ 
ηΫγκįκδ πκυ ξλβıδηκπκδoτθĲαδ (AEM εαδ FEM) ıυθįυΪακθĲαδ ηİ İλΰαζİέα Ĳβμ 
ΙıκΰİπηİĲλδεάμ ǹθΪζυıβμ (Isogeometric Analysis - IGA) υıĲİ θα İπδĲİυξγİέ ηέα 
πλκıΫΰΰδıβ ηİ ξαηβζσĲİλκ υπκζκΰδıĲδεσ εσıĲκμ εαγυμ εαδ πδκ įδαįλαıĲδεά ηİĲαιτ 
αθΪζυıβμ εαδ ΰİπηİĲλέαμ πκυ γα İπδĲυΰξΪθİδ πδκ αιδσπδıĲα απκĲİζΫıηαĲα 
πİλδκλέακθĲαμ Ĳκ ıφΪζηα πκυ πβΰΪαİδ απσ Ĳβθ πλκıΫΰΰδıβ Ĳβμ ΰİπηİĲλέαμ. 
΢υΰεİελδηΫθα, κδ παλαηİĲλδεΫμ εαηπτζİμ B-splines εαδ NURBS (Non-Uniform 

Rational B-Splines) πκυ Ϋξκυθ υδκγİĲάıİδ Ĳα ζκΰδıηδεΪ παεΫĲα ηκθĲİζκπκέβıβμ ηİ 
υπκζκΰδıĲά (Computer-Aided Design - CAD) İφαλησακθĲαδ ıĲβθ παλκτıα įδαĲλδίά. 
Μİ ίΪıβ Ĳδμ αθαπĲυξγİέıİμ αθαζυĲδεΫμ εαδ αλδγηβĲδεΫμ įδαįδεαıέİμ ıυθĲΪııκθĲαδ 
εαδθκĲσηα πλκΰλΪηηαĲα βζİεĲλκθδεκτ υπκζκΰδıĲά ΰδα Ĳβθ αθΪζυıβ ĲλδıįδΪıĲαĲπθ 
İυγτΰλαηηπθ εαδ εαηπυζσΰλαηηπθ λαίįπĲυθ φκλΫπθ.  

ΚΪγİ ετλδκ εİφΪζαδκ Ĳβμ įδαĲλδίάμ απκĲİζİέĲαδ απσ Ĳβθ İδıαΰπΰά, Ĳβ įδαĲτππıβ 
Ĳκυ πλκίζάηαĲκμ, Ĳβθ αλδγηβĲδεά İπέζυıβ, αθĲδπλκıππİυĲδεΪ αλδγηβĲδεΪ 
παλαįİέΰηαĲα εαδ Ĳα ıυηπİλΪıηαĲα. ΢Ĳβθ İδıαΰπΰά εΪγİ ετλδκυ εİφαζαέκυ πİλδΫξİĲαδ 
β ίδίζδκΰλαφδεά İπδıεσπβıβ Ĳκυ İλİυθβĲδεκτ Ϋλΰκυ (State of the Art) Ĳκυ αθĲέıĲκδξκυ 
İιİĲαασηİθκυ πλκίζάηαĲκμ εαδ παλκυıδΪακθĲαδ Ĳα πλπĲσĲυπα ıξİĲδεΪ ıĲκδξİέα Ĳβμ 
İλΰαıέαμ. ΣΫζκμ, ıĲκ Ĳİζδεσ εİφΪζαδκ παλκυıδΪακθĲαδ Ĳα ıυηπİλΪıηαĲα εαδ πλκĲΪıİδμ 
ΰδα ηİζζκθĲδεά Ϋλİυθα. 
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΢Ĳα πλκαθαφİλγΫθĲα πλκίζάηαĲα β ΰİθδεİυηΫθβ ıĲλΫίζπıβ ζσΰπ įδΪĲηβıβμ εαδ 
ıĲλΫοβμ ζαηίΪθİĲαδ υπσοβ ηΫıπ Ĳβμ İδıαΰπΰάμ ıĲκ πİįέκ ηİĲαĲκπέıİπθ İυγτΰλαηηβμ 
ά εαηπτζβμ įκεκτ πλσıγİĲπθ ίαγηυθ İζİυγİλέαμ πκυ ıυθδıĲκτθ αθİιΪλĲβĲİμ 
παλαηΫĲλκυμ ıĲλΫίζπıβμ. Ǿ İπδλλκά Ĳβμ įδαıĲλΫίζπıβμ ζαηίΪθİĲαδ υπσοβ ηΫıπ Ĳβμ 
İδıαΰπΰάμ θΫπθ ίαγηυθ İζİυγİλέαμ πκυ ıυθδıĲκτθ παλαηΫĲλκυμ παλαησλφπıβμ Ĳβμ 
įδαĲκηάμ, İθυ ıĲβθ παλκτıα αθΪζυıβ β İπδλλκά Ĳκυ ζσΰκυ Poisson ζαηίΪθİĲαδ υπσοβ 
Ĳσıκ ıĲβθ παλαησλφπıβ Ĳβμ įδαĲκηάμ σıκ εαδ ıĲβθ εαγκζδεά αθΪζυıβ Ĳβμ įκεκτ. Οδ 
πμ Ϊθπ ίαγηκέ İζİυγİλέαμ İδıΪΰκθĲαδ ıĲκ πλκĲİδθσηİθκ ıĲκδξİέκ įκεκτ ıĲα πζαέıδα 
ζκΰδıηδεκτ ηİ ίΪıβ Ĳβ ΜΫγκįκ Άηİıβμ ΢ĲδίαλσĲβĲαμ ΰδα Ĳβθ αθΪζυıβ ĲλδıįδΪıĲαĲπθ 
λαίįπĲυθ İυγτΰλαηηπθ εαδ εαηπτζπθ φκλΫπθ. Όıκθ αφκλΪ ıĲβθ αθΪζυıβ εαηπτζπθ 
įκευθ, ζαηίΪθİĲαδ υπσοβ β  πζάλβμ αζζβζİπέįλαıβ Ĳπθ φαδθκηΫθπθ Ĳβμ ıĲλΫοβμ, Ĳβμ 
ıĲλΫίζπıβμ εαδ Ĳβμ įδαıĲλΫίζπıβμ ıİ ıυθįυαıησ ηİ Ĳβθ İπδλλκά Ĳβμ εαηπυζσĲβĲαμ. 
Σα İλΰαζİέα Ĳβμ ΙıκΰİπηİĲλδεάμ αθΪζυıβμ ξλβıδηκπκδκτθĲαδ πμ ıυθαλĲάıİδμ ΰδα Ĳβθ 
αθαπαλΪıĲαıβ Ĳσıκ Ĳβμ ΰİπηİĲλέαμ Ĳβμ įκεκτ σıκ εαδ Ĳβθ παλİηίκζά Ĳπθ ΪΰθπıĲπθ 
εδθβηαĲδευθ πκıκĲάĲπθ. ǺΪıİδ Ĳπθ αθαζυĲδευθ εαδ αλδγηβĲδευθ įδαįδεαıδυθ πκυ 
αθαπĲτııκθĲαδ ıĲβθ İλΰαıέα αυĲά ıυθĲΪξγβεİ πζάγκμ πλκΰλαηηΪĲπθ βζİεĲλκθδεκτ 
υπκζκΰδıĲά, ηİ Ĳβ ίκάγİδα Ĳπθ κπκέπθ ηİζİĲάγβεαθ αθĲδπλκıππİυĲδεΪ αλδγηβĲδεΪ 
παλαįİέΰηαĲα δįδαέĲİλκυ γİπλβĲδεκτ εαδ πλαεĲδεκτ İθįδαφΫλκθĲκμ, Ĳα κπκέα 
εαĲαįİδεθτκυθ Ĳβθ απκĲİζİıηαĲδεσĲβĲα εαδ Ĳκ İτλκμ İφαληκΰάμ Ĳπθ πλκĲİδθσηİθπθ 
ηİγσįπθ. Ǿ αελέίİδα εαδ αιδκπδıĲέα Ĳπθ ζβφγΫθĲπθ απκĲİζİıηΪĲπθ İπδίİίαδυθİĲαδ ηİ 
υπΪλξκυıİμ αθαζυĲδεΫμ εαδ αλδγηβĲδεΫμ ζτıİδμ, πİδλαηαĲδεΪ απκĲİζΫıηαĲα, εαγυμ εαδ 
ηİ πλκıκηκδυηαĲα ıĲİλİυθ (İιαİįλδευθ ά ĲİĲλαİįλδευθ), εİζυφπĲυθ 
(ĲİĲλαπζİυλδευθ) εαδ λαίįπĲυθ πİπİλαıηΫθπθ ıĲκδξİέπθ İηπκλδευθ παεΫĲπθ 
ζκΰδıηδεκτ. ΤπκζκΰέακθĲαδ σζα Ĳα İθĲαĲδεΪ, παλαηκλφπıδαεΪ εαδ εδθβηαĲδεΪ ηİΰΫγβ 
Ĳκυ εΪγİ πλκίζάηαĲκμ.  

Σκ İλİυθβĲδεσ Ϋλΰκ πκυ παλκυıδΪαİĲαδ ıĲβθ παλκτıα įδįαεĲκλδεά įδαĲλδίά 
γİπλİέĲαδ πλπĲσĲυπκ εαδ Ĳα ετλδα ξαλαεĲβλδıĲδεΪ Ĳκυ ıυθκοέακθĲαδ πμ İιάμ: 

1. Σκ πλκĲİδθσηİθκ ηκθĲΫζκ İέθαδ εαĲΪζζβζκ ΰδα Ĳβθ πζάλβ αθΪζυıβ 
ĲλδıįδΪıĲαĲβμ πλδıηαĲδεάμ εαηπτζβμ įκεκτ Ĳυξκτıαμ įδαĲκηάμ ηİ Ϋθα İπέπİįκ 
ıĲαγİλάμ εαηπυζσĲβĲαμ ζαηίΪθκθĲαμ υπσοβ Ĳβθ İπδλλκά Ĳβμ ıĲλΫίζπıβμ, Ĳβμ 
įδαıĲλΫίζπıβμ, Ĳκυ ζσΰκυ Ĳκυ Poisson εαδ Ĳβμ εαηπυζσĲβĲαμ Ĳσıκ ıĲκ ıĲαĲδεσ 
σıκ εαδ ıĲκ įυθαηδεσ πλσίζβηα. 

2. Ǿ πλκĲİδθσηİθβ įκεσμ (εαηπτζβ ά εαδ İυγτΰλαηηβ) υπκίΪζζİĲαδα ıĲδμ πζΫκθ 
ΰİθδεΫμ ıυθγάεİμ φσλĲδıβμ εαδ ıĲάλδιβμ. 

3. Ǿ αλδγηβĲδεά İπέζυıβ Ĳπθ İιİζδΰηΫθπθ γİπλδυθ įκεκτ εαδ β İφαληκΰά Ĳκυμ ıİ 
İυγτΰλαηηİμ εαδ εαηπτζİμ įκεκτμ ίαıέαİĲαδ ıİ İλΰαζİέα Ĳβμ ΙıκΰİπηİĲλδεάμ 
αθΪζυıβμ (B-splines, NURBS) πλκıφΫλκθĲαμ Ĳβ įυθαĲσĲβĲα İθıπηΪĲπıβμ Ĳκυ 
ıξİįδαıĲδεκτ ηκθĲΫζκυ ıĲβθ αθΪζυıβ.  

4. Ǿ αθΪζυıβ Ĳβμ įδαĲκηάμ ίαıέαİĲαδ ıİ Ϋθα İπαθαζβπĲδεσ ıξάηα δıκλλκπέαμ 
ıυθįυαıηΫθκ ηİ Ĳβθ δįδκηκλφδεά αθΪζυıά Ĳβμ πκυ Ϋξİδ πμ απκĲΫζİıηα Ĳβ 
ηİέπıβ Ĳκυ υπκζκΰδıĲδεκτ εσıĲκυμ εαδ Ĳβμ πκζυπζκεσĲβĲαμ ıυΰλεέθκθĲαμ ηİ 
Ĳβθ αλξδεά δįδκηκλφδεά αθΪζυıβ πκυ αθαφΫλİĲαδ ıĲβ ίδίζδκΰλαφέα. ΢Ĳβθ 
παλκτıα įδαησλφπıβ κ ξλάıĲβμ ηπκλİέ θα κλέıİδ Ĳκθ αλδγησ Ĳπθ δįδκηκλφυθ 
πκυ ξλİδΪακθĲαδ ıĲβθ αθΪζυıβ ΰδα θα İπδĲİυξγİέ β İπδγυηβĲά αελέίİδα εαγυμ, 
İπέıβμ, εαδ Ĳβθ εαηπυζσĲβĲα Ĳβμ įκεκτ.  

5. Σκ πλκĲİδθσηİθκ ηκθĲΫζκ İπδĲλΫπİδ ηİ İυεκζέα αζζαΰΫμ ıĲβ ΰİπηİĲλέα, ıĲδμ 
ıυθγάεİμ φσλĲδıβμ εαδ ıĲάλδιβμ εαγυμ εαδ ıĲβ įδαελδĲκπκέβıβ πκυ 
ξλβıδηκπκδİέĲαδ ıĲβθ αθΪζυıβ įİįκηΫθκυ σĲδ σζİμ κδ įδαφκλκπκδάıİδμ ΰέθκθĲαδ 
απİυγİέαμ ıĲβθ εαηπτζβ ΰİπηİĲλέα Ĳβμ įκεκτ. Μİ αυĲσ Ĳκθ Ĳλσπκ įέθİĲαδ β 
įυθαĲσĲβĲα İτεκζπθ εαδ ΰλάΰκλπθ παλαηİĲλδευθ αθαζτıİπθ (ıυΰελέθκθĲαμ ηİ 
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ηκθĲΫζα ĲλδıįδΪıĲαĲπθ ĲİĲλαİįλδευθ ά εİζυφπĲυθ ıĲκδξİέπθ) πκυ İέθαδ 
δįδαέĲİλα ıβηαθĲδεά ıİ πλαεĲδεΫμ İφαληκΰΫμ, σππμ ıİ ηκθĲΫζα εαηπτζπθ 
įκευθ ıĲβ ΰİφυλκπκδέα. 

6. Ǿ ξλάıβ İλΰαζİέπθ Ĳβμ ΙıκΰİπηİĲλδεάμ αθΪζυıβμ ıĲβθ ǹθαζκΰδεά İιέıπıβ 
ıυθĲİζİέ ıĲβθ İπέĲİυιβ Ĳβμ İπδγυηβĲάμ αελέίİδαμ Ĳπθ απκĲİζİıηΪĲπθ ηİ πκζτ 
ηδελσĲİλκ υπκζκΰδıĲδεσ εσıĲκμ (σππμ αλξδεΪ ıυθΫίβ εαδ ηİ Ĳβ ηΫγκįκ 
πİπİλαıηΫθπθ ıĲκδξİέπθ).  

7. ΜΫıπ Ĳπθ πλκĲİδθσηİθπθ ηκθĲΫζπθ įκεκτ İπδĲυΰξΪθİĲαδ β αιδκζσΰβıβ 
εαθκθδıηυθ πκυ εαγκλέακυθ Ĳβ ηΫΰδıĲβ απσıĲαıβ İθįδΪηİıπθ įδαφλαΰηΪĲπθ 
ΰδα Ĳβθ απκφυΰά Ĳβμ įδαıĲλΫίζπıβμ. ǹιέαİδ θα ıβηİδπγİέ σĲδ κδ εαθκθδıηκέ 
ηπκλİέ İέĲİ θα κįβΰάıκυθ ıİ İπδıφαζİέμ İέĲİ ıİ αθĲδκδεκθδηδεΫμ ζτıİδμ 
įİįκηΫθκυ σĲδ įİ ζαηίΪθκυθ υπσοβ σζİμ Ĳδμ απαδĲκτηİθİμ παλαηΫĲλκυμ Ĳκυ 
İεΪıĲκĲİ πλκίζάηαĲκμ.   

II. ΚİφΪζαδκ 1: Ǽδıαΰπΰά 

Ǿ İδıαΰπΰά Ĳβμ įδαĲλδίάμ (1κ
 εİφΪζαδκ) İέθαδ αφδİλπηΫθβ ıĲκ αθĲδεİέηİθκ, ıĲκ 

εέθβĲλκ, ıĲβ įδΪλγλπıβ εαδ ıĲδμ πλπĲκĲυπέİμ Ĳβμ İλΰαıέαμ. ΠαλΪζζβζα, ΰέθİĲαδ 
ıτθĲκηβ αθαφκλΪ ıĲβθ άįβ υπΪλξκυıα İλİυθβĲδεά İλΰαıέα ıξİĲδεΪ ηİ Ĳβθ İδıαΰπΰά 
Ĳπθ φαδθκηΫθπθ Ĳβμ ıĲλΫίζπıβμ εαδ Ĳβμ įδαıĲλΫίζπıβμ ıĲβθ αθΪζυıβ Ĳπθ 
εαηπζτζπθ įκευθ, εαγυμ εαδ ıĲβθ αθαΰεαδσĲβĲα Ĳβμ İδıαΰπΰάμ Ĳπθ λαίįπĲυθ 
φκλΫπθ εαδ Ĳβμ ΙıκΰİπηİĲλδεάμ ǹθΪζυıβμ ıĲα ıτΰξλκθα ηκθĲΫζα İυγτΰλαηηπθ εαδ 
εαηπτζπθ įκευθ.  

III. ΚİφΪζαδκ 2: B-splines įİυĲΫλκυ ίαγηκτ ıĲβθ Αθκηκδσηκλφβ 
ıĲλΫοβ įκευθ  
΢Ĳκ 2

κ
 εİφΪζαδκ παλκυıδΪαİĲαδ Ĳκ πλσίζβηα αθκηκδσηκλφβμ ıĲλΫοβμ 

İυγτΰλαηηπθ κηκΰİθυθ įκευθ Ĳυξκτıαμ įδαĲκηάμ, υπσ Ĳδμ πζΫκθ ΰİθδεΫμ ıυθκλδαεΫμ 
ıυθγάεİμ, υπκίαζζσηİθπθ ıİ Ĳυξκτıα ıĲλİπĲδεά φσλĲδıβ ( )t tm m x (΢ξάηα 2.1). Σκ 
πλσίζβηα Ĳβμ įκεκτ πİλδΰλΪφİĲαδ απσ ηκθκįδΪıĲαĲκ πλσίζβηα ıυθκλδαευθ Ĳδηυθ εαδ 
ΰδα Ĳκ ıεκπσ αυĲσ ξλβıδηκπκδİέĲαδ β įδαφκλδεά İιέıπıβ ĲΫĲαλĲβμ ĲΪιβμ πκυ İπδζτİĲαδ 
πμ πλκμ Ĳβ ıĲλİπĲδεά ΰπθέα Ĳβμ įδαĲκηάμ: 

 
4 2

4 2

( ) ( )x x
S t t

d x d x
EC GI m

dx dx

 
                         εαĲΪ ηάεκμ      (2.1a) 

 

1 2 3( )x tx M      ,     1 2 3b

d
M

dx

        ıĲα Ϊελα 0,x l       (2.2a,b) 

 

Όπκυ E , G   İέθαδ Ĳα ηΫĲλα İζαıĲδεσĲβĲαμ εαδ įδΪĲηβıβμ Ĳκυ δıσĲλκπκυ υζδεκτ 
Ĳβμ įκεκτ, SC , tI  İέθαδ κδ ıĲαγİλΫμ ıĲλΫίζπıβμ (ΰθπıĲά πμ wI ) εαδ ıĲλΫοβμ, 

( ) /xd x dx  İέθαδ κ λυγησμ ηİĲαίκζάμ Ĳβμ ıĲλİπĲδεάμ ΰπθέαμ Ĳβμ įκεκτ ( )x x εαĲΪ Ĳκ 

ηάεκμ Ĳβμ, tM , bM  İέθαδ κδ λκπΫμ ıĲλΫοβμ εαδ ıĲλΫίζπıβμ ıĲα Ϊελα Ĳβμ įκεκτ εαδ  

ia , i  İέθαδ ıυθαλĲάıİδμ πκυ ηİĲαίΪζζκθĲαδ εαĲΪζζβζα υıĲİ θα ηπκλİέ θα 
πλκıįδκλδıĲİέ εΪγİ πδγαθά ıυθγάεβ ıĲάλδιβμ (π.ξ. ΰδα παεĲπηΫθκ Ϊελκ δıξτİδ 

1 1 1a   , 2 3 2 3 0a a      ), αθĲέıĲκδξα. 
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yz

L 

b=L 

a=0 

 t tm m x  

x

 

(a) 

 

(b) 

Σχάηα 2.1.  ΠλδıηαĲδεά įκεσμ υπκίαζζσηİθβ ıİ ıĲλİπĲδεά φσλĲδıβ (α) ηİ Ĳυχκτıα 
įδαĲκηά πκυ εαĲαζαηίΪθİδ Ĳκ įδįδΪıĲαĲκ χωλέκ   (b). 

 

Ǿ αλδγηβĲδεά İπέζυıβ Ĳκυ πλκίζάηαĲκμ ΰέθİĲαδ ηİ ξλάıβ Ĳβμ Μİγσįκυ 
΢υθκλδαευθ ΢Ĳκδξİέπθ (πλσίζβηα įδαĲκηάμ) εαδ Ĳβμ Μİγσįκυ ǹθαζκΰδεάμ İιέıπıβμ- 

ǹǼΜ (πλσίζβηα įκεκτ: 
4

4

( )
( )xd x

q x
dx


 , σπκυ ( )q x  İέθαδ Ĳα δįİαĲΪ φκλĲέα). Σκ 

πλσίζβηα Ĳβμ įδαĲκηάμ ıυθέıĲαĲαδ ıĲκθ υπκζκΰδıησ Ĳπθ ıĲαγİλυθ ıĲλΫοβμ εαδ 
ıĲλΫίζπıβμ (Sapountzakis εαδ Mokos, 2003; Sapountzakis, 2000): 

 

2P
S SC d


                  

2 2
P P
S S

tI y z y z d
z y

 


  
        
                           (2.3a,b) 

 

Όπκυ ( , )P
S y z  İέθαδ β πλπĲκΰİθάμ ıυθΪλĲβıβ ıĲλΫίζπıβμ πμ πλκμ Ĳκ εΫθĲλκ 

įδΪĲηβıβμ Ĳβμ įκεκτ πκυ υπκζκΰέαİĲαδ απσ εαĲΪζζβζα įδαηκλφπηΫθκ πλσίζβηα 
ıυθκλδαευθ Ĳδηυθ.  

Σα δįİαĲΪ φκλĲέα πκυ υπκζκΰέακθĲαδ ηΫıπ Ĳβμ ηİγσįκυ Ĳβμ ǹθαζκΰδεάμ 
İιέıπıβμ (Katsikadelis, 2002b) εαδ απκĲİζκτθ Ĳβθ ĲΫĲαλĲβ παλΪΰπΰκ Ĳκυ αΰθυıĲκυ 
ηİΰΫγκυμ Ĳκυ πλκίζάηαĲκμ (ıĲλİπĲδεά ΰπθέα ıĲβθ πλκεİδηΫθβ), πλκıİΰΰέακθĲαδ ηİ B-



ΓİθδεİυηΫθβ Θİπλέα Ǽυγτΰλαηηβμ εαδ Καηπτζβμ ǻκεκτ ηİ ΙıκΰİπηİĲλδεά ǹθΪζυıβ 17 

 

splines įİυĲΫλκυ ίαγηκτ πκυ İδıΪΰκθĲαδ ıĲδμ κζκεζβλπĲδεΫμ παλαıĲΪıİδμ Ĳβμ 
πλκαθαφİλγİέıαμ αλδγηβĲδεάμ ηİγσįκυ εαδ β İπέζυıβ Ĳπθ κπκέπθ ΰέθİĲαδ İέĲİ 
αθαζυĲδεΪ İέĲİ αλδγηβĲδεΪ (ΠαλαλĲάηαĲα ǹ.1 εαδ ǹ.2). ǼπκηΫθπμ, κδ ηβĲλπδεΫμ 
İεφλΪıİδμ Ĳβμ ǹǼΜ ΰδα Ĳβ ıĲλİπĲδεά ΰπθέα εαδ Ĳδμ παλαΰυΰκυμ Ĳβμ ΰλΪφκθĲαδ 
ıυθαλĲάıİδ Ĳπθ ıβηİέπθ İζΫΰξκυ (control points P) πκυ πİλδΰλΪφκυθ Ĳκ B-spline 

(ΠαλΪλĲβηα ǹ.2), Ĳπθ ηβĲλυπθ Ĳβμ ǹǼΜ ([A], [C]) εαδ Ĳπθ Ĳδηυθ Ĳβμ ıĲλİπĲδεάμ 
ΰπθέαμ εαδ Ĳπθ παλαΰυΰπθ Ĳβμ ıĲα Ϊελα Ĳβμ įκεκτ (įδΪθυıηα   ): 

 

   { } [ ] [ ]A P C                                                                                                  (2.4a) 

 

   { '} [ '] [ ']A P C                                                                                              (2.4b) 

 

   { ''} [ ''] [ '']A P C                                                                                            (2.4c) 

 

   { '''} [ '''] [ ''']A P C                                                                                          (2.4d) 

 

ΠαλΪζζβζα, İφαλησαİĲαδ β ηΫγκįκμ Ĳβμ İδıαΰπΰάμ İπδπζΫκθ ıβηİέπθ Ĳαιδγİıέαμ 
(knot insertion) ıĲκ įδΪθυıηα πκυ πİλδΰλΪφİδ Ĳβ ίΪıβ Ĳβμ δıκΰİπηİĲλδεάμ εαηπτζβμ 
Ĳπθ B-splines (knot vector) ηİ ıεκπσ Ĳβ ίİζĲέπıβ Ĳβμ αελέίİδαμ Ĳβμ ηİγσįκυ εαδ Ĳβ 
ηİέπıβ Ĳκυ υπκζκΰδıĲδεκτ εσıĲκυμ (ΠαλΪλĲβηα ǹ.2).  

ΜΫıπ Ĳβμ İθ ζσΰπ γİπλέαμ αθαζτκθĲαδ παλαįİέΰηαĲα δįδαέĲİλκυ πλαεĲδεκτ 
İθįδαφΫλκθĲκμ σπκυ πλαΰηαĲκπκδİέĲαδ β ηİζΫĲβ Ĳκυ φαδθκηΫθκυ Ĳβμ αθαηκδσηκλφβμ 
ıĲλΫοβμ ΰδα įδΪφκλİμ įδαĲκηΫμ εαδ İιİĲΪακθĲαδ Ĳα κφΫζβ απσ Ĳβ ξλάıβ İλΰαζİέπθ Ĳβμ 
ΙıκΰİπηİĲλδεάμ ǹθΪζυıβμ ıĲβθ παλκτıα αλδγηβĲδεά πλκıΫΰΰδıβ εαγυμ εαδ Ĳκ πυμ 
İπβλİΪαİĲαδ β αελέίİδα αθΪζκΰα Ĳκθ Ĳτπκ Ĳβμ įδαĲκηάμ ΰδα Ĳκ İθ ζσΰπ πλσίζβηα. 
΢υΰεİελδηΫθα ΰδα ζσΰκυμ ıτΰελδıβμ ηİζİĲυθĲαδ ĲΫııİλδμ έįδİμ αηφέπαεĲİμ įκεκέ İθσμ 
ηΫĲλκυ ΰδα κηκδσηκλφα εαĲαθİηβηΫθβ ıĲλİπĲδεά φσλĲδıβ 1 /tm kNm m  αζζΪ ΰδα 
įδαφκλİĲδεά įδαĲκηά (΢ξάηα 2.2). Σκ υζδεσ Ĳπθ įκευθ İέθαδ ξΪζυίαμ ( 2.1 8E E kPa , 

0.3v  ). Οδ ΰİπηİĲλδεΫμ ıĲαγİλΫμ Ĳπθ įδαĲκηυθ İέθαδ: (α) 46,846tI cm , 

612746SC cm  ΰδα Ĳβθ IPE, (ί) 8 43,049 10tI m
  , 

12 634,95 10SC m
   ΰδα Ĳβθ Σ, 

(ΰ) 8 48,3903 10tI m
  , 

10 61,1937 10SC m
   ΰδα Ĳβθ L εαδ (į) 8 42,010 10tI m

 
12 6590,10 10SC m
   ΰδα Ĳβθ UPE.  

΢Ĳκυμ πέθαεİμ πκυ αεκζκυγκτθ įέθκθĲαδ κδ ĲδηΫμ Ĳπθ ıĲλİπĲδευθ ΰπθδυθ εαδ Ĳπθ 
παλαΰυΰπθ Ĳκυμ ΰδα įδΪφκλİμ γΫıİδμ εαĲΪ ηάεκμ Ĳπθ įκευθ ηİ įδαĲκηΫμ  IPE εαδ T 

(παλσηκδα ıφΪζηαĲα παλαĲβλκτθĲαδ ΰδα Ĳδμ UPE εαδ L, αθĲέıĲκδξα) υπκζκΰδıηΫθİμ ΰδα 
Ĳβθ πλπĲσĲυπβ ǹǼΜ, Ĳβθ ǹǼΜ ηİ B-splines (ǹǼΜ-BS) εαδ Ĳβθ αθαζυĲδεά ζτıβ 

(Analytical Solution). ΢Ĳδμ πİλδπĲυıİδμ (ί) εαδ (ΰ) ξλİδΪıĲβεİ θα ΰέθİδ β İδıαΰπΰά 
İπδπζΫκθ ıβηİέπθ Ĳαιδγİıέαμ (CP) ΰδα θα İπδĲυξγİέ β İπδγυηβĲά αελέίİδα (ηΫξλδ 12 
CP). Γδα Ĳβθ İπέĲİυιβ παλσηκδπθ ıφαζηΪĲπθ απαδĲİέĲαδ ΰİθδεΪ ĲİĲλαπζΪıδκμ αλδγησμ 
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ıĲκδξİέπθ įδαελδĲκπκέβıβμ (NP) ΰδα Ĳβθ πλπĲσĲυπβ ǹǼΜ. ΣΫζκμ, ıĲκ ΢ξάηα 2.3 
απİδεκθέαİĲαδ β εαĲαθκηά Ĳπθ δįİαĲυθ φκλĲδυθ εαĲΪ Ĳκ ηάεκμ Ĳβμ įκεκτ. Όππμ İέθαδ 
φαθİλσ απσ Ĳβ ηκλφά Ĳπθ εαĲαθκηυθ, Ĳα δįİαĲΪ φκλĲέα Ĳπθ įδαĲκηυθ IPE εαδ UPE 

πλκıİΰΰέακθĲαδ ηİ αελέίİδα απσ B-splines įİυĲΫλκυ ίαγηκτ İθυ Ĳπθ įδαĲκηυθ T εαδ L 

φΪδθİĲαδ θα ξλİδΪακθĲαδ B-splines αθυĲİλκυ ίαγηκτ ΰδα θα πλκıİΰΰδıĲκτθ. ǹυĲσ 
κφİέζİĲαδ ıĲβ ıĲαγİλΪ ıĲλΫίζπıβμ, β κπκέα İέθαδ πκζτ ηİΰαζτĲİλβ ΰδα Ĳδμ įδαĲκηΫμ 
IPE εαδ UPE.  

 

 

                                 (α)                                                             (ί) 

 

                                           (ΰ)                                                         (į) 

      Σχάηα 2.2. Χαζτίįδθİμ įδαĲκηΫμ. 

 

ǹπσ Ĳδμ αλδγηβĲδεΫμ αθαζτıİδμ Ĳπθ πλκαθαφİλσηİθπθ įκευθ, πλκετπĲİδ σĲδ ΰδα 
εΪπκδİμ įδαĲκηΫμ Ĳα B-splines įİυĲΫλκυ ίαγηκτ ηπκλκτθ θα įυıκυθ πκζτ αελδίά 
απκĲİζΫıηαĲα ξπλέμ Ĳβθ πτεθπıβ Ĳβμ įδαελδĲκπκέβıβμ. ǼπδπζΫκθ, κδ ıĲαγİλΫμ Ĳβμ 
įδαĲκηάμ εαδ ευλέπμ β ıĲαγİλΪ ıĲλΫίζπıβμ İπβλİΪακυθ αθαζκΰδεΪ Ĳα πλκετπĲκθĲα 
ıφΪζηαĲα įİέξθκθĲαμ ΫĲıδ σĲδ β ηΫγκįκμ παλκυıδΪαİδ ıĲαγİλσĲβĲα εαδ αελέίİδα. 
ΣΫζκμ, Ĳκ υπκζκΰδıĲδεσ εσıĲκμ Ĳβμ AEM-BS İέθαδ ηδελσĲİλκ απσ Ĳβθ αλξδεά ǹǼΜ. 
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 AEM (3 NP) 
(1) 

AEM-BS  

(3 CP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1 / 4)x  5,284Ǽ-04 5,225Ǽ-04 5,226Ǽ-04 1,10 0,022 

(1 / 2)x  9,350Ǽ-04 9,251Ǽ-04 9,251Ǽ-04 1,05 0,00 

' (1 / 4)x  2,800Ǽ-03 2,800Ǽ-03 2,800Ǽ-03 0,00 0,00 

' (1 / 2)x  0,000 0,000 6,210Ǽ-08 0,00 0,00 

'' (1 / 4)x  -3,800Ǽ-03 -3,800Ǽ-03 -3,800Ǽ-03 0,00 0,00 

'' (1 / 2)x  -1,480Ǽ-02 -1,470Ǽ-02 -1,470Ǽ-02 0,68 0,00 

'''(1 / 4)x  -8,929Ǽ-02 -8,770 Ǽ-02 -8,770 Ǽ-02 1,81 0,00 

'''(1 / 2)x  0,000 0,000 -1,800Ǽ-06 0,00 0,00 

''''(1/ 4)x  3,659Ǽ-01 3,657Ǽ-01 3,657Ǽ-01 0,05 0,00 

''''(1/ 2)x  3,433 Ǽ-01 3,433 Ǽ-01 3,433 Ǽ-01 0,00 0,00 

Πέθαεαμ 2.1. ΢ĲλİπĲδεΫμ ΰπθέİμ εαδ παλΪΰπΰκέ Ĳκυμ ΰδα Ĳβ įκεσ ηİ įδαĲκηά IPE. 

 

 AEM-BS  
(12 CP) 

(1) 

AEM  

(12 NP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1 / 8)x  1,220E-02 1,240E-02 1,220E-02 0,00 1,613 

' (1 / 8)x  1,318E-01 1,311E-01 1,317E-01 0,076 0,456 

' (3 /16)x  1,206E-01 1,154E-01 1,204E-01 0,166 4,153 

'' (1 / 8)x  -2,890E-02 -5,650E-02 -2,930E-02 1,365 48,14 

'' (3 /16)x  -2,908E-01 -2,767E-01 -2,862E-01 1,582 3,320 

'''(1/16)x  -22,249 -27,881 -21,682 2,548 22,23 

'''(1 / 8)x  -6,745 -7,005 -6,901 2,265 1,479 

''''(1/ 8)x  126,545 117,293 126,407 0,109 7,225 

''''(3 /16)x  38,665 43,400 40,232 3,895 7,300 

Πέθαεαμ 2.2. ΢ĲλİπĲδεΫμ ΰπθέİμ εαδ παλΪΰπΰκέ Ĳκυμ ΰδα Ĳβ įκεσ ηİ įδαĲκηά Σ. 
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Σχάηα 2.3. Αελδίİέμ εαηπτζİμ δįİαĲυθ φκλĲέωθ 
4 4( ) ( ) /xq x d θ x dx  πκυ 

χλβıδηκπκδκτθĲαδ ıĲβθ ΑǼΜ εαĲΪ ηάεκμ Ĳωθ IPE200, UPE100, T-

įδαĲκηάμ εαδ L-įδαĲκηάμ įκευθ. 

 

IV. ΚİφΪζαδκ 3: ΣĲαĲδεά εαδ ǻυθαηδεά ΑθΪζυıβ ΓİθδεİυηΫθβμ 
ΣĲλΫίζπıβμ Ǽυγτΰλαηηπθ ǻκευθ ηİ ΙıκΰİπηİĲλδεΫμ Μİγσįκυμ  

΢Ĳκ 3
κ
 εİφΪζαδκ παλκυıδΪαİĲαδ Ĳκ πλσίζβηα ΰİθδεİυηΫθβμ ıĲλΫίζπıβμ 

κηκΰİθυθ įκευθ Ĳυξκτıαμ įδαĲκηάμ υπσ Ĳδμ πζΫκθ ΰİθδεΫμ ıυθκλδαεΫμ ıυθγάεİμ, 
υπκίαζζσηİθπθ ıİ Ĳυξκτıα İιπĲİλδεά φσλĲδıβ (αικθδεά: ( )x xp p X , εαηπĲδεά:

( )
y y

p p x , ( )z zp p x , ( )Y Ym m x , ( )Z Zm m x , ( )P P
CY CY

m m x
 


 
εαδ ( )P P

CZ CZ

m m x
 

 , 

ıĲλİπĲδεά: ( )t tm m x , ( )P P
S S

m m x
 
  εαδ ( )S S

S S

m m x
 
 - ΢ξάηα 3.1). Ǿ αθΪζυıβ ıĲκ 

εİφΪζαδκ αυĲσ İπİεĲİέθİĲαδ πλκεİδηΫθκυ θα εαζτοİδ İεĲσμ απσ Ĳκ πλσίζβηα ıĲλΫοβμ 
εαδ Ĳκ πλσίζβηα Ĳβμ εΪηοβμ (ζαηίΪθκθĲαδ υπσοβ Ĳα φαδθσηİθα εαδ Ĳβμ ıĲλİπĲδεάμ 
εαδ Ĳβμ εαηπĲδεάμ įδαĲηβĲδεάμ υıĲΫλβıβμ). Σκ κδπθİέ ıĲαĲδεσ πİįέκ ηİĲαĲκπέıİπθ 
εαγκλέαİĲαδ πμ İιάμ: 

 

     , , , , , , , , ,P S
u x y z t u x y z t u x y z t    

         , , , , ,P
Y Z x S

έ

u x t x t Z x t Y x t y z

 

         
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           , , , , , ,P P S
Y CY Z CZ x S

έ

x t y z x t y z x t y z

 

                                            (3.1a) 

 

     , , , , ,xv x y z t v x t z x t        , , , , ,xw x y z t w x t y x t                 (3.1b,c) 

 

 

Σχάηα 3.1.  ΠλδıηαĲδεά įκεσμ ΰİθδεİυηΫθβμ φσλĲδıβμ εαδ Ĳυχκτıαμ įδαĲκηάμ. 
 

Όπκυ u , v , w  İέθαδ β įδαηάεβμ εαδ κδ εΪγİĲİμ ηİĲαĲκπέıİδμ Ĳβμ įκεκτ πμ πλκμ 

Ĳκ Sxyz ıτıĲβηα αισθπθ ( S İέθαδ Ĳκ εΫθĲλκ įδΪĲηβıβμ); P
u , 

S
u  İέθαδ β πλπĲκΰİθάμ 

εαδ β įİυĲİλκΰİθάμ įδαηάεβμ ηİĲαĲσπδıβ, αθĲέıĲκδξα.  ,v x t ,  ,w x t  İέθαδ κδ εΪγİĲİμ 

ηİĲαĲκπέıİδμ εαĲΪ Ĳκυμ Ϊικθİμ Y , Z , αθĲέıĲκδξα, İθυ  ,u x t  İέθαδ β ηΫıβ αικθδεά 

ηİĲαĲσπδıβ Ĳβμ įδαĲκηάμ ıİ ıυΰεİελδηΫθβ ξλκθδεά ıĲδΰηά.  ,x x t  İέθαδ β ıĲλİπĲδεά 

ΰπθέα εαγυμ  ,Z x t ,  ,Y x t
 

İέθαδ κδ ΰπθέİμ ıĲλκφάμ εαĲΪ Ĳκυμ Ϊικθİμ Y , Z , 

αθĲέıĲκδξα, ıİ ıυΰεİελδηΫθβ ξλκθδεά ıĲδΰηά.  ,x x t ,  ,x x t  İέθαδ κδ αθİιΪλĲβĲİμ 

παλΪηİĲλκδ ıĲλΫίζπıβμ ζσΰπ πλπĲκΰİθκτμ εαδ įİυĲİλκΰİθκτμ ıĲλΫοβμ, İθυ  ,Y x t , 

 ,Z x t  İέθαδ κδ αθİιΪλĲβĲİμ παλΪηİĲλκδ ıĲλΫίζπıβμ ζσΰπ εΪηοβμ ıİ ıυΰεİελδηΫθβ 

ξλκθδεά ıĲδΰηά;  ,P
S y z ,  ,S

S y z İέθαδ β πλπĲκΰİθάμ εαδ įİυĲİλκΰİθάμ ıυθαλĲάıİδμ 
ıĲλΫίζπıβμ ζσΰπ ıĲλΫοβμ (ıυθαλĲάıİδμ ıξάηαĲκμ Ĳβμ įδαĲκηάμ) πμ πλκμ Ĳκ εΫθĲλκ 

įδΪĲηβıβμ, İθυ  ,P
CY y z ,  ,P

CZ y z  İέθαδ κδ πλπĲκΰİθİέμ ıυθαλĲάıİδμ ıĲλΫίζπıβμ 
ζσΰπ εΪηοβμ πμ πλκμ Ĳκ εΫθĲλκ ίΪλκυμ.  

΢Ĳκ İθ ζσΰπ εİφΪζαδκ İφαλησαİĲαδ İπέıβμ εαδ įδαįδεαıέα įδσλγπıβμ Ĳκυ 
Ĳαıδεκτ πİįέκυ Ĳβμ įκεκτ (Dikaros εαδ Sapountzakis, 2014) πλκεİδηΫθκυ θα αυιβγİέ β 
αελέίİδα υπκζκΰδıηκτ εδθβηαĲδευθ εαδ İθĲαĲδευθ ηİΰİγυθ, απκφİτΰκθĲαμ Ĳβθ ατιβıβ 
Ĳκυ αλδγηκτ Ĳπθ İηπζİεσηİθπθ ίαγηυθ İζİυγİλέαμ. Γδα Ĳκθ υπκζκΰδıησ Ĳπθ ıξİĲδευθ 
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ıυθαλĲάıİπθ ıĲλΫίζπıβμ įδαĲυπυθκθĲαδ πλκίζάηαĲα ıυθκλδαευθ Ĳδηυθ ıĲκ İπέπİįκ 
Ĳβμ įδαĲκηάμ ηİ ξλάıβ Ĳβμ İιέıπıβμ įδαηάεκυμ Ĳκπδεάμ δıκλλκπέαμ Ĳβμ γİπλέαμ 
ĲλδıįδΪıĲαĲβμ İζαıĲδεσĲβĲαμ.  

ǹφκτ εαγκλδıĲκτθ κδ αθİιΪλĲβĲİμ ΰİθδεİυηΫθİμ παλαηκλφυıİδμ  R   πμ ,xu ,
 

,Y x , ,Z x , ,x x , ,Y x , ,Z x , ,x x , ,
P
x x x  , ,

S
x x x x    , ,

T
x x x x x      , 

,
P
Y x Zv   , ,

S
Y Z x Zv     , ,

P
Z x Yw   , ,

S
Z Y x Yw     , εαδ κδ 

αθĲέıĲκδξİμ ĲΪıİδμ R
 

, ξλβıδηκπκδυθĲαμ Ĳβθ Ϋεφλαıβ 

 T T
R R R R RL

1 / 2 C dx W         Ĳκυ įδαφκλδεκτ ζκΰδıηκτ ηπκλκτθ θα 

πλκıįδκλδıĲκτθ κδ įδαφκλδεΫμ İιδıυıİδμ δıκλλκπέαμ Ĳβμ įκεκτ. C

 

İέθαδ κ ĲαθυıĲάμ 
İζαıĲδεσĲβĲαμ εαδ W İέθαδ Ĳκ Ϋλΰκ εαĲαθİηβηΫθπθ φκλĲέπθ. ΣΫζκμ, πλκıĲέγİθĲαδ κδ 

αįλαθİδαεκέ σλκδ   T
R,tt R,ttL

1 / 2u Mu dx  υıĲİ θα εαγκλδıĲκτθ κδ İιδıυıİδμ εέθβıİδμ 

Ĳβμ įκεκτ πμ πλκμ Ĳα εδθβηαĲδεΪ ηİΰΫγβ. M  İέθαδ Ĳκ ĲλδıįδΪıĲαĲκ ηβĲλυκ ηΪααμ εαδ 
Ru  İέθαδ κδ ΰİθδεİυηΫθİμ ηİĲαĲκπέıİδμ (İι. 3.1). ǼπκηΫθπμ, εαγκλέακθĲαδ κδ 

ΰİθδεİυηΫθİμ İιδıυıİδμ ĲαζΪθĲπıβμ Ĳβμ įκεκτ  σππμ ıĲβ įβηκıέİυıβ Ĳπθ Dikaros et 

al. (2016). Ǽθ ıυθİξİέα, įδαĲυπυθκθĲαδ įΫεα πλκίζάηαĲα αλξδευθ-ıυθκλδαευθ Ĳδηυθ 
πμ πλκμ Ĳα εδθβηαĲδεΪ ηİΰΫγβ Ĳβμ įκεκτ, β İπέζυıβ Ĳπθ κπκέπθ įέįİδ σζα Ĳα 
παλαηκλφπıδαεΪ εαδ İθĲαĲδεΪ ηİΰΫγβ πκυ İέθαδ απαλαέĲβĲα εαĲΪ Ĳβθ αθΪζυıβ 
λαίįπĲυθ φκλΫπθ. ΢Ĳβθ πλκεİδηΫθβ ξλβıδηκπκδκτθĲαδ įδαφκλδεΫμ İιδıυıİδμ įİυĲΫλαμ 
ĲΪιβμ. ΠαλΪζζβζα, įδαĲυπυθκθĲαδ Ĳα ηβĲλυα įυıεαηοέαμ εαδ ηΪααμ εαδ İπδζτİĲαδ Ĳκ 
πλσίζβηα δįδκĲδηυθ Ĳβμ įκεκτ.  

Σα πμ Ϊθπ πλκίζάηαĲα ıυθκλδαευθ Ĳδηυθ πλκıİΰΰέακθĲαδ αλδγηβĲδεΪ ηİ ξλάıβ 
Ĳβμ Μİγσįκυ ΢υθκλδαευθ ΢Ĳκδξİέπθ (πλσίζβηα įδαĲκηάμ) εαδ Ĳβμ Μİγσįκυ 
ǹθαζκΰδεάμ İιέıπıβμ-ǹǼΜ (πλσίζβηα įκεκτ) ηİ B-splines ά ηİ εζαııδεΪ ıĲκδξİέα 
įİυĲΫλκυ ίαγηκτ. Οıκθ αφκλΪ Ĳκ πλσίζβηα İζİτγİλβμ ĲαζΪθĲπıβμ Ĳβμ įκεκτ, İεĲσμ 
απσ Ĳβ ηΫγκįκ Ĳβμ ǹθαζκΰδεάμ İιέıπıβμ, ξλβıδηκπκδİέĲαδ εαδ β ηΫγκįκμ Ĳπθ 
ΠİπİλαıηΫθπθ ıĲκδξİέπθ İέĲİ ıĲβθ εζαııδεά Ĳβμ ηκλφά İέĲİ ηİ NURBS. ΜΫıπ Ĳβμ İθ 
ζσΰπ γİπλέαμ αθαζτκθĲαδ παλαįİέΰηαĲα δįδαέĲİλκυ γİπλβĲδεκτ εαδ πλαεĲδεκτ 
İθįδαφΫλκθĲκμ σπκυ πλαΰηαĲκπκδİέĲαδ β ηİζΫĲβ Ĳκυ φαδθκηΫθκυ Ĳβμ įδαĲηβĲδεάμ 
υıĲΫλβıβμ (ζσΰπ εΪηοβμ εαδ ıĲλΫοβμ) εαδ ıĲβ ıĲαĲδεά İπέζυıβ εαδ ıĲβθ İζİτγİλβ 
ĲαζΪθĲπıβ Ĳβμ įκεκτ, İθυ β αελέίİδα Ĳβμ πλκĲİδθσηİθβμ ηİγσįκυ įδαπδıĲυθİĲαδ ηΫıπ 
ıυΰελέıİπθ ηİ υπΪλξκυıİμ αθαζυĲδεΫμ εαδ αλδγηβĲδεΫμ ζτıİδμ, πİδλαηαĲδεΪ 
απκĲİζΫıηαĲα, εαγυμ εαδ ηİ πλκıκηκδυηαĲα ıĲİλİυθ εαδ εİζυφπĲυθ πİπİλαıηΫθπθ 
ıĲκδξİέπθ. 

΢υΰεİελδηΫθα, ηİζİĲΪĲαδ ηέα ξαζτίįδθβ ( 2.1 8E E kPa , 0.3v  ) įκεσμ Ĳλδυθ 
ηΫĲλπθ ıυηπαΰκτμ κλγκΰπθδεάμ įδαĲκηάμ  ( 0.5 , 0.2h m b m  ) ΰδα įδΪφκλİμ 
ıυθγάεİμ ıĲάλδιβμ εαδ φσλĲδıβμ ( 250 /zp kN m  ά 100 /tm kNm m ). Οδ įδαφκλΫμ 
πκυ πλκετπĲκυθ ıĲδμ εαĲαθκηΫμ ίτγδıβμ Ĳκυ πλκĲİδθσηİθκυ ηκθĲΫζκυ įκεκτ απσ Ĳβθ 
εζαııδεά Euler-Bernoulli įκεσ İέθαδ αιδκıβηİέπĲİμ. ΓİθδεΪ, σĲαθ ξλβıδηκπκδκτθĲαδ B-

splines κδ εαĲαθκηΫμ πλκıİΰΰέακθĲαδ ηİ ηİΰΪζβ αελέίİδα ηİ πκζτ ζδΰσĲİλα ıĲκδξİέα 
įδαελδĲκπκέβıβμ ıİ ıτΰελδıβ ηİ Ĳβθ αλξδεά ǹǼΜ. ΢Ĳβ ıυθΫξİδα ηİζİĲυθĲαδ Ĳλİδμ 
πλσίκζκδ ηİ įδαφκλİĲδεΫμ įδαĲκηΫμ (İέĲİ κλγκΰπθδεά εζİδıĲά İέĲİ αθκδξĲά) εαδ ΰέθκθĲαδ 
ıυΰελέıİδμ Ĳπθ εδθβηαĲδευθ ηİΰİγυθ, Ĳβμ įδλλκπάμ εαδ Ĳβμ κλγάμ įδαηάεκυμ ĲΪıβμ 
ηİĲαιτ Ĳκυ  πλκĲİδθσηİθκυ ηκθĲΫζκυ ηİ  B-splines, Ĳκυ  ηκθĲΫζκυ Ĳβμ πλκβΰκτηİθβμ  
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Σχάηα 3.2. ΠαλΪηİĲλκμ ıĲλΫίζωıβμ  x x  εαĲΪ ηάεκμ įκεκτ ηİ εζİδıĲά 

κλγκΰωθδεά įδαĲκηά ΰδα εαĲαθİηβηΫθβ ıĲλİπĲδεά φσλĲδıβ 
610 /xm Nm m . 

 

 

( )x rad  

at x=L 

' ( / )x rad m

or




 

at x=L 

( / )x rad m  

at x=L 

Bimoment  

(N/m
2
) 

at x=0 

Saint-Venant Model -0.103 - - - 

Vlasov Model -0.045 -0.012 - -18.33E-06 

FEM- Benscoter Model -0.045 -0.011 - -18.17E-06 

AEM (50 NP) -0.050 -0.009 -0.010 -16.75E-06 

AEM (Quadratic B-spline) -0.039 -0.006 -0.006 -13.48E-06 

AEM (Cubic B-spline) -0.061 -0.013 -0.014 -18.29E-06 

AEM (Quartic B-spline) -0.046 -0.008 -0.008 -15.50E-06 

Classical Nonuniform Torsion 

Solution-CNT (AEM-BS) -0.043 -0.011 - -19.13E-06 

Πέθαεαμ 3.1. ǻκεσμ αθκδεĲάμ įδαĲκηάμ ΰδα εαĲαθİηβηΫθβ ıĲλİπĲδεά φσλĲδıβ. 
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İθσĲβĲαμ (εζαııδεά γİπλέα αθκηκδσηκλφβμ ıĲλΫοβμ- CNT), Ĳκυ Vlasov ηκθĲΫζκυ, Ĳκυ 
ηκθĲΫζκυ Saint-Venant εαδ Ĳκυ ηκθĲΫζκυ Benscoter (Shakourzadeh et al., 1995). 

ǼθįİδεĲδεΪ απκĲİζΫıηαĲα παλκυıδΪακθĲαδ ıĲκ ΢ξάηα 3.2 εαδ ıĲκθ Πέθαεα 3.1. ΣΫζκμ 
ηİζİĲΪĲαδ πλσίκζκμ įΫεα ηΫĲλπθ εδίκĲκİδįκτμ įδαĲκηάμ. ΓİθδεΪ, B-splines ĲλέĲκυ 
ίαγηκτ ηπκλκτθ θα įυıκυθ απκĲİζΫıηαĲα ηİ υοβζά αελέίİδα ηİ αλεİĲΪ ηδελσĲİλκ 
εσıĲκμ απσ Ĳβθ αλξδεά ǹǼΜ. Ǿ γİπλέα įκεκτ Ĳβμ πλκβΰκτηİθβμ İθσĲβĲαμ (CNT) įİθ 
εαĲαφΫλθİδ θα İεĲδηάıİδ ηİ αελέίİδα Ĳβθ κλγά ĲΪıβ εαδ Ĳβ įδλλκπά ζσΰπ Ĳβμ 
γİυλβıβμ σĲδ  

'
x x  . Σκ έįδκ ıυηίαέθİδ εαδ ηİ Ĳβ γİπλέα Vlasov. Σκ ηκθĲΫζκ 

Benscoter įέθİδ αελδίά απκĲİζΫıηαĲα ıĲβθ πİλέπĲπıβ ıĲλİπĲδευθ φκλĲέπθ.  
Γδα Ĳβ ηİζΫĲβ Ĳβμ πλκĲİδθσηİθβμ ηİγσįκυ σıκθ αφκλΪ Ĳκ įυθαηδεσ πλσίζβηα, 

αλξδεα ηİζİĲΪĲαδ β αικθδεά İζİτγİλβ ĲαζΪθĲπıβ įκεκτ (ıαθ İδįδεά πİλέπĲπıβ Ĳκυ 
ΰİθδεİυηΫθκυ πλκίζάηαĲκμ) ηİ ηκθαįδαέα ξαλαεĲβλδıĲδεΪ ΰδα ζσΰκυμ ıτΰελδıβμ 
(Hughes et al., 2009) εαδ εαĲαλĲέαİĲαδ εαθκθδεκπκδβηΫθκ φΪıηα δįδκıυξθκĲάĲπθ 
(΢ξάηα 3.3α). Παλσηκδκ φΪıηα įβηδκυλΰİέĲαδ εαδ ΰδα Ĳβθ πİλέπĲπıβ İζΫυγİλβμ 
ıĲλİπĲδεάμ ĲαζΪθĲπıβμ (ıαθ İδįδεά πİλέπĲπıβ Ĳκυ ΰİθδεİυηΫθκυ πλκίζάηαĲκμ). Ǿ 
ηΫγκįκμ ηİ NURBS įέθİδ Ĳα αελδίΫıĲİλα απκĲİζΫıηαĲα İθυ β ǹǼΜ παλκυıδΪαİδ πκζτ 
ηδελσĲİλκ Ϊζηα (ıφΪζηα ά «γσλυίκ») ıİ ıξΫıβ ηİ Ĳβθ FEM įέθκθĲαμ αλεİĲΪ πδκ 
κηαζΪ φΪıηαĲα. Οδ υπκζκΰδıĲδεκέ ξλσθκδ ΰδα Ĳδμ įδΪφκλİμ αλδγηβĲδεΫμ ηİγσįκυμ 
αυιΪθκθĲαδ İεγİĲδεΪ (΢ξάηα 3.3ί) ηİ Ĳβθ ατιβıβ Ĳπθ ίαγηυθ İζİυγİλέαμ Ĳκυ 
πλκίζάηαĲκμ (1 ίαγησμ ıĲβθ πλυĲβ πİλέπĲπıβ, 2 ıĲβ įΫυĲİλβ εαδ 10 ıĲκ ΰİθδεİυηΫθκ 
πλσίζβηα). ΓİθδεΪ β ǹǼΜ παλκυıδΪαİδ ηδελσĲİλκυμ ξλσθκμ απσ Ĳδμ Ϊζζİμ ηİγσįκυμ. 
ΣΫζκμ, απσ Ĳα įδΪΰλαηηαĲα ıτΰεζδıβμ πκυ įβηδκυλΰκτθĲαδ ΰδα Ĳδμ πλυĲİμ 
δįδκıυξθσĲβĲİμ Ĳκυ ΰİθδεİυηΫθκυ πλκίζάηαĲκμ πλκίσζκυ įΫεα ηΫĲλπθ ηİ εδίπĲκİδįά 
įδαĲκηά İέθαδ φαθİλά β ατιβıβ (εζέıβ) εαγυμ αυιΪθİĲαδ κ ίαγησμ Ĳπθ NURBS πκυ 
İθıπηαĲυθκθĲαδ ıĲβθ ǹǼΜ. 

    

               (α)                                                              (ί) 
Σχάηα 3.3. (α) ΚαθκθδεκπκδβηΫθκ φΪıηα δįδκıυχθκĲάĲωθ αικθδεάμ ĲαζΪθĲωıβμ 

αηφέπαεĲβμ įκεκτ ΰδα FEM, IGA εαδ AEM. (ί) ΥπκζκΰδıĲδεσμ χλσθκμ 
αλδγηβĲδευθ ηİγσįωθ ΰδα αυιαθσηİθκυμ ίαγηκτμ İζİυγİλέαμ.  
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V. ΚİφΪζαδκ 4: ΣĲαĲδεά εαδ ǻυθαηδεά ΑθΪζυıβ ΓİθδεİυηΫθβμ 
ΣĲλΫίζπıβμ Καηπτζπθ ǻκευθ ηİ ΙıκΰİπηİĲλδεΫμ Μİγσįκυμ  

΢Ĳκ 4
κ
 εİφΪζαδκ παλκυıδΪαİĲαδ Ĳκ πλσίζβηα ΰİθδεİυηΫθβμ ıĲλΫίζπıβμ 

κηκΰİθυθ εαηπτζπθ įκευθ Ĳυξκτıαμ įδαĲκηάμ υπσ Ĳδμ πζΫκθ ΰİθδεΫμ ıυθκλδαεΫμ 
ıυθγάεİμ, υπκίαζζσηİθπθ ıİ Ĳυξκτıα İιπĲİλδεά φσλĲδıβ (αικθδεά, εαηπĲδεά, 
ıĲλİπĲδεά- ΢ξάηα 4.1).  

 

 

Σχάηα 4.1. ΠλδıηαĲδεά εαηπτζβ įκεσμ Ĳυχκτıαμ įδαĲκηάμ πκυ εαĲαζαηίΪθİδ Ĳκ 
χωλέκ   υπσ ΰİθδεİυηΫθβ φσλĲδıβ.  

 

Ǿ αθΪζυıβ ıĲκ εİφΪζαδκ αυĲσ İπİεĲİέθİĲαδ πλκεİδηΫθκυ θα ζβφγİέ υπσοβ Ĳκ 
φαδθσηİθκ Ĳβμ įδαĲηβĲδεάμ υıĲΫλβıβμ (ζσΰπ įδΪĲηβıβμ εαδ ıĲλΫοβμ) ıĲβθ İπέζυıβ 
εαηπυζσΰλαηηπθ λαίįπĲυθ φκλΫπθ ηİ Ϋθα İπέπİįκ εαηπυζσĲβĲαμ εαγυμ εαδ β 
αζζβζİπέįλαıβ Ĳπθ αικθδευθ, εαηπĲδευθ εαδ ıĲλİπĲδευθ παλαηκλφυıİπθ ζσΰπ 
αυĲάμ Ĳβμ εαηπυζσĲβĲαμ. Οδ ΰİθδεİυηΫθİμ παλαηκλφυıİδμ R  İέθαδ: ,xu ,

 ,Y x , ,Z x , 

,x x , ,Y x , ,Z x , ,x x , ,
P Z
x x x

R

   , ,
S P Z
x x x x x x

R

         , 

,
T S Z
x x x x x x x

R

           , ,
P
Y x Zv   , ,

S
Y Z x Zv     , 

,
P
Z x Y

u
w

R
      εαδ  ,

S
Z Y x Y

u
w

R
      . ǺΪıİδ Ĳπθ ηİΰİγυθ πκυ αυĲΫμ 

İηπİλδΫξκυθ įδαĲυπυθκθĲαδ κδ παλαηκλφυıİδμ εαδ ĲΪıİδμ Ĳβμ εαηπτζβμ įκεκτ (ηİ
2

1 ( )
R Z Z

e R
R Z R R

       
) πκυ ΰδα ıυθĲκηέα įέθκθĲαδ ıİ ηβĲλπδεά ηκλφά πμ İιάμ:  

 

 
1 0 0 0

1 0 1 0 0 0 0 0 0 0 ( )

0 0 1 0 0 0 0 0 0

P P P S
S CY CZ SZ Y

Aux z e R

y

    
 

  
 
 

                                            (4.1a) 
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 
, , , ,

, , , ,

1
0 ( ) 0 ( ) 0 0 0 0 0 0

( ) ( ) ( ) ( )1
2 ( ) 0 ( ) 1 ( ) 0 0

0 0 0 0 1 0

P P P P
S CY CZ S

P P P P
S y CY y CZ y S y

P P P P
S z CY z CZ z S z

z
e R e R

R R

e R e R e R e RZ Y
Aux e R e R e R R R R R

R R R

   

   

   

  
 
 
    
    
 
 
  

                                                                                                                             

                                                                                                                         (4.1b) 

 

   ,1 2xAux u Aux u                                                                                             (4.1c) 

 

     ,1 2xC Aux u C Aux u                                                                                  (4.1d) 

  

Όππμ εαδ ıĲκ πλκβΰκτηİθκ εİφΪζαδκ, İφαλησαİĲαδ İπέıβμ β įδαįδεαıέα 
įδσλγπıβμ Ĳκυ Ĳαıδεκτ πİįέκυ Ĳβμ įκεκτ ηİ παλσηκδκ Ĳλσπκ. Γδα Ĳκθ υπκζκΰδıησ Ĳπθ 
ıξİĲδευθ ıυθαλĲάıİπθ ıĲλΫίζπıβμ įδαĲυπυθκθĲαδ πλκίζάηαĲα ıυθκλδαευθ Ĳδηυθ 
ıĲκ İπέπİįκ Ĳβμ įδαĲκηάμ ηİ ξλάıβ Ĳβμ İιέıπıβμ įδαηάεκυμ Ĳκπδεάμ δıκλλκπέαμ Ĳβμ 
γİπλέαμ ĲλδıįδΪıĲαĲβμ İζαıĲδεσĲβĲαμ.  

Ǽθ ıυθİξİέα, įδαĲυπυθκθĲαδ įΫεα πλκίζάηαĲα αλξδευθ-ıυθκλδαευθ Ĳδηυθ πμ 
πλκμ Ĳα εδθβηαĲδεΪ ηİΰΫγβ Ĳβμ įκεκτ, β İπέζυıβ Ĳπθ κπκέπθ įέįİδ σζα Ĳα 
παλαηκλφπıδαεΪ εαδ İθĲαĲδεΪ ηİΰΫγβ πκυ İέθαδ απαλαέĲβĲα εαĲΪ Ĳβθ αθΪζυıβ 
εαηπτζπθ λαίįπĲυθ φκλΫπθ. ΢Ĳβθ πλκεİδηΫθβ ξλβıδηκπκδκτθĲαδ įδαφκλδεΫμ 
İιδıυıİδμ įİυĲΫλαμ ĲΪιβμ ΰδα Ĳβθ πİλδΰλαφά Ĳβμ ıĲαĲδεάμ εαδ įυθαηδεάμ ıυηπİλδφκλΪμ 
Ĳβμ εαηπτζβμ įκεκτ. ΠαλΪζζβζα, įδαĲυπυθκθĲαδ Ĳα ηβĲλυα įυıεαηοέαμ                       

(            , ,

0

1
1 2 1 2

( )

L
T TT T

x xU u Aux u Aux C Aux u C Aux u d dx
e R

  


     ) εαδ 

ηΪααμ (        mass , ,

0 0

1
1 1

( )

L L
TT T

tt t ttW u Aux Aux u d dx U u m u dx
e R

    


      ) 

εαδ İπδζτİĲαδ Ĳκ πλσίζβηα δįδκĲδηυθ Ĳβμ įκεκτ.  
Σα πμ Ϊθπ πλκίζάηαĲα ıυθκλδαευθ Ĳδηυθ İπδζτκθĲαδ αλδγηβĲδεΪ ηİ ξλάıβ Ĳβμ 

Μİγσįκυ ΢υθκλδαευθ ΢Ĳκδξİέπθ (πλσίζβηα įδαĲκηάμ) εαδ Ĳβμ Μİγσįκυ ǹθαζκΰδεάμ 
İιέıπıβμ (πλσίζβηα įκεκτ) ηİ B-splines ά ηİ εζαııδεΪ ıĲκδξİέα įİυĲΫλκυ ίαγηκτ. 
ǼεĲσμ απσ Ĳβ ηΫγκįκ Ĳβμ ǹθαζκΰδεάμ İιέıπıβμ, ΰδα Ĳκ εαĲΪ ηάεκμ πλσίζβηα Ĳβμ 
įκεκτ ξλβıδηκπκδİέĲαδ εαδ β ηΫγκįκμ Ĳπθ ΠİπİλαıηΫθπθ ıĲκδξİέπθ İέĲİ ıĲβθ 
εζαııδεά Ĳβμ ηκλφά İέĲİ ıİ ıυθįυαıησ ηİ NURBS (αλξδεσ πκζτΰπθκ İζΫΰξκυ

( , , , )i i i ix y z w : ( R , 0, 0, 1), ( cos
2

R
   
 

, sin
2

R
 
 
 

, 0, cos
2

 
 
 

), (  cosR  ,  sinR  , 

0, 1). Γδα Ĳβ ξλκθδεά κζκεζάλπıβ Ĳκυ πλκίζάηαĲκμ ξλβıδηκπκδİέĲαδ β ηΫγκįκμ 
Newmark. ΜΫıπ Ĳβμ İθ ζσΰπ γİπλέαμ αθαζτκθĲαδ παλαįİέΰηαĲα δįδαέĲİλκυ 
γİπλβĲδεκτ εαδ πλαεĲδεκτ İθįδαφΫλκθĲκμ σπκυ πλαΰηαĲκπκδİέĲαδ β ηİζΫĲβ Ĳκυ 
φαδθκηΫθκυ Ĳβμ įδαĲηβĲδεάμ υıĲΫλβıβμ (ζσΰπ εΪηοβμ εαδ ıĲλΫοβμ) ıĲβ ıĲαĲδεά εαδ 
įυθαηδεά İπέζυıβ Ĳβμ εαηπτζβμ įκεκτ, İθυ β αελέίİδα Ĳβμ πλκĲİδθσηİθβμ ηİγσįκυ 
įδαπδıĲυθİĲαδ ηΫıπ ıυΰελέıİπθ ηİ υπΪλξκυıİμ αθαζυĲδεΫμ εαδ αλδγηβĲδεΫμ ζτıİδμ, 
εαγυμ εαδ ηİ πλκıκηκδυηαĲα ıĲİλİυθ εαδ εİζυφπĲυθ πİπİλαıηΫθπθ ıĲκδξİέπθ.  

΢υΰεİελδηΫθα, ηİζİĲΪĲαδ πλσίκζκμ ηİ įδπζΪ ıυηηİĲλδεά αθκδεĲά įδαĲκηά υπσ 
ıυΰεİθĲλπηΫθκ εαĲαεσλυφκ ά ıĲλİπĲδεσ φκλĲέκ ıĲκ Ϊελκ εαδ Ĳα απκĲİζΫıηαĲα απσ 
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Ĳβθ αθΪζυıβ Ĳκυ πλκĲİδθσηİθκυ ηκθĲΫζκυ İέθαδ παλσηκδα ηİ αυĲΪ ĲλδıįδΪıĲαĲπθ 
ηκθĲΫζπθ ηİ πİπİλαıηΫθα ıĲκδξİέα İέĲİ ΰδα ηİĲαεδθάıİδμ İέĲİ ΰδα ĲΪıİδμ. Ǿ έįδα įκεσμ 
αζζΪ απσ įδαφκλİĲδεσ υζδεσ ηİζİĲΪĲαδ ıİ İζİτγİλβ ĲαζΪθĲπıβ ( 24 7E E N cm  , 

22 7G E N cm  , 2 4
0.025N sec / m  , 300L cm  εαδ 190.58R cm ). ΢Ĳκθ Πέθαεα 

4.1 įέθκθĲαδ κδ πλυĲİμ πΫθĲİ δįδκıυξθσĲβĲİμ ΰδα įδΪφκλİμ αλδγηβĲδεΫμ ηİγσįκυμ εαδ 
ηκθĲΫζα. Ǿ αθΪζυıβ ηİ NURBS įέθİδ απκĲİζΫıηαĲα εκθĲΪ ıĲκ ηκθĲΫζκ ηİ 
ĲλδıįδΪıĲαĲα πİπİλαıηΫθα ıĲκδξİέα (FEMsolid) ηİ ıφΪζηαĲα ηδελσĲİλα απσ 5% εαδ 
ΰδα πκζτ ζέΰα ıĲκδξİέα. Σκ Timoshenko εαηπτζκ ıĲκδξİέκ įκεκτ įέθİδ ζαθγαıηΫθİμ 
ĲδηΫμ ΰδα Ĳδμ įτκ ĲİζİυĲαέİμ δįδκıυξθσĲβĲİμ (πκυ ευλδαλξİέ β ıĲλΫοβ) įİįκηΫθκυ σĲδ įİ 
ζαηίΪθİδ υπσοβ Ĳβ ıĲλΫίζπıβ. ΢Ĳκθ Πέθαεα 4.2 įέθκθĲαδ κδ πΫθĲİ πλυĲİμ 
δįδκıυξθσĲβĲİμ ΰδα ηκθκıυηηİĲλδεά αθκδεĲά įδαĲκηά ( 24 7E E N cm  , 

22 7G E N cm  , 2 4
0.785N sec / m  , 100L cm  εαδ 63.66R cm ). ΢İ αυĲά Ĳβθ 

πİλέπĲπıβ παλσζκ πκυ Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ įέθİδ αελδίά απκĲİζΫıηαĲα, Ĳκ 
αθĲέıĲκδξκ Timoshenko παλκυıδΪαİδ ıβηαθĲδεΪ ıφΪζηαĲα ıξİįσθ ΰδα σζİμ Ĳδμ 
δįδκηκλφΫμ İπİδįά Ĳα φαδθσηİθα ıĲλΫίζπıβμ ΰέθκθĲαδ İθĲκθσĲİλα. ΣΫζκμ, ıĲκ ΢ξάηα 
4.2α υπκζκΰέαİĲαδ β εΪγİĲβ ıĲκ İπέπİįκ Ĳβμ εαηπυζσĲβĲαμ ηİĲαĲσπδıβ Ĳκυ İζİτγİλκυ 
Ϊελκυ Ĳβμ ĲİζİυĲαέαμ įκεκτ ΰδα φκλĲέκ 5000ZP N   (εİθĲλδεσ ıĲκ Ϊελκ) πκυ 
αυιΪθİĲαδ ıĲα πλυĲα 0.05 įİυĲİλσζİπĲα εαδ ıĲβ ıυθΫξİδα ηΫθİδ ıĲαγİλσ. 
ΠαλαĲβλİέĲαδ δεαθκπκδβĲδεά ıτΰεζδıβ ηİĲαιτ Ĳπθ απκĲİζİıηΪĲπθ Ĳπθ ηİγσįπθ.  

 

ǹ/ǹ 
B-splines 

AEM 

FEMsolid 

(13000) 

FEM 

Timoshenko 

beam 

5 cubic 

NURBS 

10cubic 

NURBS 

1 0.0881 0.1028 0.0944 0.0950 0.1120 

2 0.4551 0.5205 0.6214 0.5230 0.5260 

3 0.8790 0.9868 0.9871 1.0502 1.1042 

4 1.5998 1.7888 4.5459 1.7552 1.8002 

5 3.2555 3.6631 4.7959 3.4500 3.6723 

Πέθαεαμ 4.1. ΙįδκıυξθσĲβĲİμ εαηπτζκυ πλκίσζκυ ηİ įδπζΪ ıυηηİĲλδεά αθκδεĲά 
įδαĲκηά. 

 

ǹ/ǹ 
FEMsolid 

(4000) 

FEM Curved 

beam 

5 cubic  

NURBS 
Στπκμ Ιįδκηκλφάμ 

1 0.2824 0.1788 0.2942 
1

β
 δįδκηκλφά εαĲαεσλυφβμ 

ηİĲαĲσπδıβμ 

2 1.3623 1.1794 1.4211 
1

β
 δįδκηκλφά πζİυλδεάμ 

ηİĲαĲσπδıβμ 

3 2.2615 4.1602 2.2205 
2

β
 δįδκηκλφά εαĲαεσλυφβμ 

ηİĲαĲσπδıβμ 

4 5.7508 6.4632 5.9612 1
β
 ıĲλİπĲδεά δįδκηκλφά 

5 6.3241 31.211 6.3709 2
β
 ıĲλİπĲδεά δįδκηκλφά 

Πέθαεαμ 4.2. ΙįδκıυξθσĲβĲİμ εαηπτζκυ πλκίσζκυ ηİ  ηκθκıυηηİĲλδεά αθκδεĲά 
įδαĲκηά. 

 

΢Ĳκ ıξάηα 4.2ί įέθİĲαδ β ηİĲαĲσπδıβ Ĳκυ İζİτγİλκυ Ϊελκυ πλκίσζκυ ηİ 
αıτηηİĲλβ įδαĲκηά ΰδα εİθĲλδεΪ İπδίαζζσηİθκ ıĲκ Ϊελκ ıυΰεİθĲλπηΫθκ φκλĲέκ ηİ 
ıεκπσ θα εαĲαįİδξγİέ β ηİέπıβ Ĳβμ αελέίİδαμ Ĳκυ ηκθĲΫζκυ įκεκτ Timoshenko (ηπζİ) 
ıİ ıξΫıβ ηİ Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ (εσεεδθκ) εαδ Ĳκ FEMsolid ηκθĲΫζκ (ηατλκ).  
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                                       (α)                                                           (ί) 

Σχάηα 4.2. (α)ΚΪγİĲβ ηİĲαĲσπδıβ Ĳκυ İζΫυγİλκυ Ϊελκυ εαηπτζκυ πλκίσζκυ ηİ 
ηκθκıυηηİĲλδεά įδαĲκηά ΰδα φκλĲέκ πκυ αıεİέĲαδ ηİ Ĳκ χλσθκ. 
(ί)ΚΪγİĲβ ηİĲαĲσπδıβ Ĳκυ Ϊελκυ πλκίσζκυ αıτηηİĲλβμ įδαĲκηάμ ΰδα 
ıĲαĲδεσ φκλĲέκ.  

 

΢Ĳβ ıυθΫξİδα ηİζİĲΪĲαδ πλσίκζκμ ( 24 7E E kN m  , 22 7G E kN m  , 10L m 
, 6.366R m  ) ηİ ηκθκıυηηİĲλδεά εδίπĲκİδįά įδαĲκηά ( / 0.02t d   εαδ / 0.1d L   

σπκυ t=πΪξκμ εαδ d=τοκμ). ΢Ĳκ ΢ξάηα 4.3 įέθκθĲαδ κδ εαĲαθκηΫμ Ĳβμ εαηπĲδεάμ λκπάμ, 
Ĳβμ ıυθκζδεάμ ıĲλİπĲδεάμ λκπάμ εαδ Ĳβμ ıυθκζδεάμ įδλλκπάμ (ζσΰπ πλπĲκΰİθκτμ εαδ 
įİυĲİλκΰİθκτμ ıĲλΫίζπıβμ) εαĲΪ Ĳκ ηάεκμ Ĳβμ įκεκτ ΰδα ΫεεİθĲλκ φκλĲέκ 

1000ZP kN  . Όıκθ αφκλΪ Ĳβθ εαηπĲδεά λκπά (αλδıĲİλΪ), įέθκθĲαδ Ĳα απκĲİζΫıηαĲα  
 

 
 

Σχάηα 4.3. ΚαĲαθκηά εαηπĲδεάμ λκπάμ (αλδıĲİλΪ), ıĲλİπĲδεάμ λκπάμ εαδ įδλλκπάμ 
(įİιδΪ) εαĲΪ ηάεκμ Ĳβμ εαηπτζβμ įκεκτ χωλέμ ηİĲΪ-İπİιİλΰαıέα Ĳωθ 
απκĲİζİıηΪĲωθ ΰδα Ĳβ ηΫγκįκ ηİ NURBS (ά ηİ πİλαδĲΫλω İπİιİλΰαıέα ΰδα 
Ĳα FEM εαδ ΑǼΜ ıĲκδχİέα įκεκτ χωλέμ NURBS). 

 

ΰδα Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ ηİ NURBS, ǹǼΜ ξπλέμ NURBS (ηİ εζαııδεΪ ıĲκδξİέα 
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įİυĲΫλκυ ίαγηκτ) εαδ ΰδα Ĳκ Timoshenko ıĲκδξİέκ įκεκτ ξπλέμ NURBS. Σα įτκ 
ĲİζİυĲαέα Ϋξκυθ υπκıĲİέ İπİιİλΰαıέα ΰδα θα απκĲυππγκτθ πΪθπ ıĲβθ εαηπτζβ 
ΰİπηİĲλέα. ΣΫζκμ, ıĲα įİιδΪ Ĳκυ έįδκυ ıξάηαĲκμ απκĲυπυθİĲαδ β ıυθκζδεά įδλλκπά 
Χ10 εαδ β ıυθκζδεά ıĲλİπĲδεά λκπά. ΢Ĳκ Ϊελκ β įδλλκπά İέθαδ Ĳκ 10% πİλέπκυ Ĳβμ 
ıĲλİπĲδεάμ λκπάμ įİįκηΫθκυ σĲδ β πλπĲκΰİθάμ ıĲλİπĲδεά ıĲαγİλΪ Ĳβμ įδαĲκηάμ İέθαδ 
πκζτ ηİΰαζτĲİλβ απσ Ĳβ ıĲαγİλΪ πλπĲκΰİθκτμ ıĲλΫίζπıβμ.  

Παλσηκδα ηİ Ĳβθ πλκβΰκτηİθβ πİλέπĲπıβ įέθκθĲαδ ıĲκ ΢ξάηα 4.4 (αλδıĲİλΪ) κδ 
εαĲαθκηΫμ Ĳβμ εΪγİĲβμ ıĲκ İπέπİįκ Ĳβμ εαηπυζσĲβĲαμ ηİĲαĲσπδıβμ ΰδα Ĳκ 
πλκĲİδθσηİθκ ηκθĲΫζκ ηİ εαδ ξπλέμ NURBS εαγυμ εαδ Ĳκ FEMsolid. Ǿ įδαĲκηά İέθαδ 

ηκθκıυηηİĲλδεά εδίπĲκİδįάμ ( 23 7E E kN m  , 21.5 7G E kN m  , 40L m  , 

25.465R m  , / 0.086t d  , / 0.086d L   εαδ 10000ZP kN  ). Σα απκĲİζΫıηαĲα ηİ 
NURBS įέθκυθ ıπıĲΪ Ĳβθ εαĲαθκηά Ĳπθ ηİĲαĲκπέıİπθ ξπλέμ πİλαδĲΫλπ İπİιİλΰαıέα 
Ĳπθ απκĲİζİıηΪĲπθ İθυ κδ ηΫγκįκδ ξπλέμ NURBS ξλİδΪακθĲαδ İπİιİλΰαıέα ΰδα θα 
απκĲυπυıκυθ ıπıĲΪ Ĳδμ εαηπτζİμ παλσζκ πκυ įέθκυθ ıπıĲά ηΫΰδıĲβ ηİĲαĲσπδıβ. ΢Ĳκ 

 

  

 
 

Σχάηα 4.4. ΚαĲαθκηά εΪγİĲβμ ηİĲαĲσπδıβμ (αλδıĲİλΪ), ıĲλİπĲδευθ λκπυθ (ıυθκζδεάμ, 
πλωĲκΰİθκτμ εαδ įİυĲİλκΰİθκτμ) εαδ įδλλκπάμ (įİιδΪ) εαĲΪ ηάεκμ Ĳβμ 
εαηπτζβμ įκεκτ χωλέμ ηİĲΪ-İπİιİλΰαıέα Ĳωθ απκĲİζİıηΪĲωθ ΰδα Ĳβ ηΫγκįκ 
ηİ NURBS (ά ηİ πİλαδĲΫλω İπİιİλΰαıέα ΰδα Ĳα FEM εαδ ΑǼΜ ıĲκδχİέα 
įκεκτ χωλέμ NURBS). 

 

έįδκ ıξάηα (įİιδΪ) įέθκθĲαδ κδ εαĲαθκηΫμ Ĳβμ įδλλκπάμ εαδ Ĳπθ ıĲλİπĲδευθ λκπυθ 
(ıυθκζδεάμ, πλπĲκΰİθκτμ εαδ įİυĲİλκΰİθκτμ). Ǽέθαδ φαθİλσ σĲδ β ıυθκζδεά įδλλκπά 
Ϋξİδ παλσηκδκ ηΫΰİγκμ ηİ Ĳβ ıĲλİπĲδεά λκπά įδσĲδ β ıĲαγİλΪ πλπĲκΰİθκτμ ıĲλΫίζπıβμ 
Ĳβμ įδαĲκηάμ İέθαδ ηİΰαζτĲİλβ απσ Ĳβθ πλπĲκΰİθά ıĲλİπĲδεά ıĲαγİλΪ Ĳβμ.   

ΣΫζκμ, ηİζİĲΪĲαδ ηέα αηφέπαεĲβ εαηπτζβ įκεσμ ηİ ηκθκıυηηİĲλδεά εδίκĲκİδįά 
įδαĲκηά ( 23.25 7E E kN m  , 0.1667  , 33L m  , 100R m  , 3

2.5t / m  ,

/ 0.1t d   εαδ / 0.065d L  ) ΰδα įυθαηδεσ φκλĲέκ ηİĲαίαζζσηİθκ ıτηφπθα ηİ Ĳβθ 
βηδĲκθκİδįά ıυθΪλĲβıβ 100cos(2 )ZP t kN  ıĲκ ηΫıκ Ĳκυ ηάεκυμ. ΢Ĳκ ΢ξάηα 4.4 
įέθİĲαδ β įυθαηδεά απσελδıβ įδαφκλİĲδευθ ηκθĲΫζπθ εαδ ηİγσįπθ πμ πλκμ Ĳβ 
ηİĲαĲσπδıβ ıĲκ ηΫıκ Ĳκυ ηάεκυμ. Σκ πλκĲİδθσηİθκ ηκθĲΫζκ İέθαδ εκθĲΪ ηİ Ĳκ 
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FEMsolid ηİ Ϋθα įδΪφλαΰηα (β ĲκπκγΫĲβıβ Ĳκυ įδαφλΪΰηαĲκμ İιβΰİέĲαδ ıĲκ 6Ο
 

εİφΪζαδκ) įİįκηΫθκυ σĲδ įİ ζαηίΪθİδ υπσοβ Ĳβ įδαıĲλΫίζπıβ Ĳβμ įδαĲκηάμ. 
ΠαλΪζζβζα įİθ παλαĲβλκτθĲαδ ĲαζαθĲυıİδμ ıĲβθ αλξά, σππμ ıĲκ Solid45 (ANSYS) 

ηκθĲΫζκ ΰδαĲέ įİ ζαηίΪθİĲαδ υπσοβ β απσıίİıβ ξπλέμ σηπμ θα ηİδυθİĲαδ β αελέίİδα.  

     
 

  Σχάηα 4.5. ǻυθαηδεά απσελδıβ ωμ πλκμ Ĳβθ εΪγİĲβ ηİĲαĲσπδıβ ΰδα αηφέπαεĲβ įκεσ  
ηκθκıυηηİĲλδεάμ εδίκĲκİδįκτμ įδαĲκηάμ υπσ βηδĲκθκİδįΫμ 
ηİĲαίαζζσηİθκ φκλĲέκ . 

 

VI. ΚİφΪζαδκ 5: ΑθΪζυıβ ΓİθδεİυηΫθβμ ǻδαıĲλΫίζπıβμ 
Ǽυγτΰλαηηπθ εαδ Καηπτζπθ ǻκευθ ηİ ΙıκΰİπηİĲλδεΫμ 
Μİγσįκυμ  
΢Ĳκ 5κ

 εİφΪζαδκ παλκυıδΪαİĲαδ Ĳκ πλσίζβηα Ĳβμ ΰİθδεİυηΫθβμ ıĲλΫίζπıβμ εαδ 
įδαıĲλΫίζπıβμ ıτηηδεĲπθ İυγτΰλαηηπθ εαδ εαηπτζπθ įκευθ Ĳυξκτıαμ įδαĲκηάμ υπσ 
Ĳδμ πζΫκθ ΰİθδεΫμ ıυθκλδαεΫμ ıυθγάεİμ, υπκίαζζσηİθπθ ıİ Ĳυξκτıα İιπĲİλδεά 
φσλĲδıβ. ΢Ĳκ παλσθ εİφΪζαδκ β παλαηκλφπıδησĲβĲα Ĳβμ įδαĲκηάμ ζαηίΪθİĲαδ υπσοβ 
ηΫıπ įδαĲτππıβμ εαĲΪζζβζκυ İπαθαζβπĲδεκτ ıυıĲάηαĲκμ İιδıυıİπθ δıκλλκπέαμ Ĳκ 
κπκέκ πλκετπĲİδ ηİ Ĳβ ίκάγİδα Ĳπθ İιδıυıİπθ Ĳκπδεάμ δıκλλκπέαμ Ĳβμ ĲλδıįδΪıĲαĲβμ 
γİπλέαμ İζαıĲδεσĲβĲαμ ıİ ıυθįυαıησ ηİ Ĳβθ δįδκηκλφδεά αθΪζυıβ Ĳβμ įδαĲκηάμ. Ǿ 
αζζβζİπέįλαıβ ηİĲαιτ ıĲλΫοβμ, ıĲλΫίζπıβμ εαδ įδαıĲλΫίζπıβμ ζαηίΪθκθĲαδ υπσοβ 
ıĲβ įδαĲτππıβ Ĳκυ πλκίζάηαĲκμ ıυθκλδαευθ Ĳδηυθ Ĳβμ įδαĲκηάμ ıİ ıυθįυαıησ ηİ Ĳβθ 
İπέįλαıβ Ĳβμ εαηπυζσĲβĲαμ ıĲβθ πİλέπĲπıβ εαηπτζβμ įκεκτ.  

Σκ πİįέκ Ĳπθ ηİĲαĲκπέıİπθ įδαηκλφυθİĲαδ πμ Ĳκ Ϊγλκδıηα Ĳβμ εέθβıβμ ıĲİλİκτ 
ıυηαĲκμ (Saint Venant-SV) εαδ Ĳβμ İπδλλκάμ Ĳπθ ıĲβλέιİπθ (Residual-R) πμ İιάμ: 
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Όπκυ u , v , w   İέθαδ β αικθδεά, β εΪγİĲβ εαδ β αεĲδθδεά ηİĲαĲσπδıβ Ĳυξαέκυ ıβηİέκυ 

Ĳβμ įκεκτ πμ πλκμ Ĳκ Sxyz , αθĲέıĲκδξα.  ( , )W y z  İέθαδ κδ ıυθαλĲάıİδμ ıĲλΫίζπıβμ, 

( , )DY y z  εαδ ( , )DZ y z  İέθαδ κδ ıυθαλĲάıİδμ įδαıĲλΫίζπıβμ Ĳβμ įδαĲκηάμ (ıİ Ϋθα 
įδΪθυıηα ( , )D y z ) İθυ ( )x  İέθαδ ηέα ıυθΪλĲβıβ πκυ πİλδΰλΪφİδ Ĳβ ηİέπıβ Ĳβμ 

ΫθĲαıάμ Ĳκυμ εαĲΪ Ĳκ ηάεκμ Ĳβμ įκεκτ ( ( ) cx
x e  ) . Σα υπσζκδπα İέθαδ αθĲέıĲκδξα ηİ 

Ĳδμ πλκβΰκτηİθİμ İθσĲβĲİμ. Οδ εδθάıİδμ ıĲİλİκτ ıυηαĲκμ πİλδΰλΪφκθĲαδ ηİ 

ζİπĲκηΫλİδα ıĲβ įβηκıέİυıβ Ĳπθ Kang εαδ Yoo (1994), ηİ sin ,cos 1x x x     εαδ 
Ĳκυμ σλκυμ αθυĲİλβμ ĲΪιβμ θα αΰθκκτθĲαδ ıİ αυĲά Ĳβ ηİζΫĲβ.  

ǹφκτ κλδıĲκτθ κδ παλαηκλφυıİδμ εαδ κδ ĲΪıİδμ İιαδĲέαμ Ĳβμ İπέįλαıβμ Ĳπθ 
ıĲβλέιİπθ εαδ İφαλησακθĲαμ Ĳδμ İιδıυıİδμ Ĳκπδεάμ δıκλλκπέαμ Ĳβμ ĲλδıįδΪıĲαĲβμ 
İζαıĲδεσĲβĲαμ παλΪζζβζα ηİ Ĳβ ıξΫıβ  / 2m m m m        (ıτηίκζα ΰδα Ĳκ ζσΰκ 
Poisson εαδ Ĳδμ Lame παλαηΫĲλκυμ), įδαηκλφυθİĲαδ Ĳκ πλσίζβηα ıυθκλδαευθ Ĳδηυθ 
Ĳβμ įδαĲκηάμ πμ İιάμ: 
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ηααέ ηİ Ĳδμ αθĲέıĲκδξİμ ıυθκλδαεΫμ ıυθγάεİμ πκυ παλαζİέπκθĲαδ İįυ ξΪλβθ ıυθĲκηέαμ. 
Όπκυ  / 1e

m m m     İέθαδ κ İθİλΰσμ ζσΰκμ Poisson εαδ /m m refg   , 

/m m refg     İέθαδ İζαıĲδεΫμ ıĲαγİλΫμ πμ πλκμ Ĳκ ref  πκυ İέθαδ Ĳκ ηΫĲλκ įδΪĲηβıβμ 
Ĳκυ υζδεκτ αθαφκλΪμ. ΧλβıδηκπκδυθĲαμ εαĲΪζζβζβ įδαελδĲκπκέβıβ, Ĳκ παλαπΪθπ 
ıυαİυΰηΫθκ πλσίζβηα įδαηκλφυθİĲαδ ıİ Ϋθα πλσίζβηα δįδκĲδηυθ 2

AF c BF  ηİ c  θα 
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İέθαδ κδ δįδκĲδηΫμ εαδ  TF W DY DZ  Ĳα δįδκįδαθτıηαĲα. Σκ İπαθαζβπĲδεσ ıξάηα 
δıκλλκπέαμ, πκυ πİλδΰλΪφİĲαδ ıĲδμ įβηκıδİτıİδμ Ĳπθ Ferradi et al. (2013) εαδ Dikaros 

εαδ Sapountzakis (2014), ξλβıδηκπκδİέĲαδ Ϋπμ σĲκυ θα İπδĲİυξγİέ Ϋθαμ δεαθκπκδβĲδεσμ 
αλδγησμ δįδκηκλφυθ πκυ γα πİλδΰλΪφİδ ηİ αελέίİδα Ĳδμ ıυθαλĲάıİδμ ıĲλΫίζπıβμ ηİ Ĳδμ 
αθĲέıĲκδξİμ ıυθαλĲάıİδμ įδαıĲλΫίζπıβμ. Γδα Ĳβθ αλξδεκπκέβıβ αυĲάμ Ĳβμ įδαįδεαıέαμ 
ξλβıδηκπκδκτθĲαδ κδ εδθάıİδμ ıĲİλİκτ ıυηαĲκμ πμ αλξδεΫμ δįδκηκλλφΫμ εαδ ıĲβ 
ıυθΫξİδα ΰδα Ĳβθ απκεαĲΪıĲαıβ Ĳβμ δıκλλκπέαμ πλκıįδκλέακθĲαδ κδ įİυĲİλİτκυıİμ 
δįδκηκλφΫμ ıĲλΫίζπıβμ εαδ įδαıĲλΫίζπıβμ. ΈĲıδ ıυθİξέαİĲαδ β įδαįδεαıέα ηΫξλδ θα 
υπΪλξİδ ıτΰεζδıβ πλκμ Ĳκ αελδίΫμ ıξάηα Ĳπθ ıυθαλĲάıİπθ Ĳβμ įδαĲκηάμ. ΢İ εΪγİ 
ίάηα İεĲİζİέĲαδ εαθκθδεκπκέβıβ Ĳπθ İεΪıĲκĲİ δįδκηκλφυθ.  

ǹφκτ πλκıįδκλδıĲκτθ κδ ıυθαλĲάıİδμ ıξάηαĲκμ, κδ ηİĲαĲκπέıİδμ ζαηίΪθκθĲαμ 
ηΫξλδ εαδ įİυĲİλκΰİθİέμ δįδκηκλφΫμ ηπκλκτθ θα ΰλαφκτθ αθαζυĲδεΪ πμ İιάμ: 
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ΠαλΪζζβζα, įέθİĲαδ β įυθαĲσĲβĲα ıĲκ ξλάıĲβ θα ζΪίİδ υπσοβ παλαπΪθπ αλδγησ 
δįδκηκλφυθ ıĲΫίζπıβμ εαδ įδαıĲλΫίζπıβμ υıĲİ θα İπδĲİυξγİέ β İπδγυηβĲά αελέίİδα 
Ĳκυ πλκίζάηαĲκμ. ΢Ĳβ ıυθΫξİδα, İδıΪΰκθĲαδ θΫκδ ίαγηκέ İζİυγİλέαμ ΰδα Ĳβθ εαγκζδεά 
αθΪζυıβ Ĳβμ εαηπτζβμ įκεκτ, κδ κπκέκδ ıυθδıĲκτθ αθİιΪλĲβĲİμ παλαηΫĲλκυμ Ĳπθ 
πλκαθαφİλγΫθĲπθ φαδθκηΫθπθ αθυĲİλβμ ĲΪιβμ (  x x ,  x x   Y x ,  Z x , 

 Y x ,  Z x ΰδα Ĳβ įδαıĲλΫίζπıβ ζσΰπ πλπĲκΰİθκτμ εαδ įİυĲİλκΰİθκτμ ıĲλΫοβμ 
εαδ εΪηοβμ). ΈĲıδ, įδαĲυπυθκθĲαδ İέĲİ įİεαΫιδ İέĲİ İέεκıδ įτκ πλκίζάηαĲα 
ıυθκλδαευθ Ĳδηυθ (ηİ įυθαĲσĲβĲα εαδ πİλδııσĲİλπθ αθΪζκΰα Ĳκθ αλδγησ φαδθκηΫθπθ 
αθυĲİλβμ ĲΪιβμ πκυ ζαηίΪθκθĲαδ υπσοβ) πμ πλκμ Ĳα εδθβηαĲδεΪ ηİΰΫγβ Ĳβμ įκεκτ, β 
İπέζυıβ Ĳπθ κπκέπθ įέįİδ σζα Ĳα παλαηκλφπıδαεΪ εαδ İθĲαĲδεΪ ηİΰΫγβ πκυ İέθαδ 
απαλαέĲβĲα εαĲΪ Ĳβθ αθΪζυıβ λαίįπĲυθ φκλΫπθ. ΢Ĳκ İθ ζσΰπ εİφΪζαδκ ζαηίΪθİĲαδ 
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İπέıβμ υπσοβ εαδ β İπδλλκά Ĳκυ ζσΰκυ Poisson Ĳσıκ ıĲβθ παλαησλφπıβ Ĳβμ įδαĲκηάμ 
σıκ εαδ ıĲβθ εαγκζδεά αθΪζυıβ Ĳβμ įκεκτ. Οδ παλαηκλφυıİδμ Ĳβμ εαηπτζβμ įκεκτ 
įδαηκλφυθκθĲαδ πμ İιάμ: 
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                         (5.4a) 
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             (5.4b) 

 

σπκυ 
R

R Y
 ĲέγİĲαδ πμ ( )e R  εαδ İέθαδ ΰδα θα ζΪίİδ υπσοβ Ĳβθ İπδλλκά Ĳβμ 

εαηπυζσĲβĲαμ. ΈĲıδ ΰλΪφκθĲαμ ıİ ηβĲλπδεά ηκλφά παλαηκλφυıİδμ-ĲΪıİδμ εαδ 
İφαλησακθĲαμ Ĳβθ αλξά įυθαĲυθ Ϋλΰπθ įδαĲυπυθκθĲαδ Ĳα ηβĲλυα įυıεαηοέαμ: 
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   ,1 2xAux u Aux u                           (5.5c) 
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     ,1 2xC Aux u C Aux u                           (5.5d) 

 

           

 

     

, ,

0

, 22 , 12 , , 21 11

0

22 , 12 21 , 11 22 , 21
0

0

1
1 2 1 2

( )

țαĲȐ παȡȐȖονĲİȢ

L
T TT T

x x

L
T T T T
x x x x

L
L

T T
xx x x

U u Aux u Aux C Aux u C Aux u d dx
e R

U u k u u k u u k u u k u dx

U u k u k k u k u dx u k u k u

  

    

  



    

     

         

 





              

  (5.5e) 
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Όπκυ k11, k12, k21 εαδ k22 (16X16 ά 22Χ22 εĲζ) πİλδΫξκυθ Ĳδμ ΰİπηİĲλδεΫμ ıĲαγİλΫμ Ĳβμ 
įδαĲκηάμ ζαηίΪθκθĲαμ υπσοβ Ĳβ ıĲλΫίζπıβ, Ĳβ įδαıĲλΫίζπıβ εαδ Ĳκ ζσΰκ Poisson 

İέĲİ ıİ İυγτΰλαηηκ İέĲİ ıİ εαηπτζκ įκεΪλδ: 
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         

11 12

21 22

1 1
1 1 , 1 2

( ) ( )

1 1
2 1 , 2 2

( ) ( )

m m

m m

T T

T T

k Aux C Aux d k Aux C Aux d
e R e R

k Aux C Aux d k Aux C Aux d
e R e R

 

 

   

   

 

 
 (5.6) 

 

Σκ Ϋλΰκ Ĳπθ İιπĲİλδευθ φκλĲέπθ υπκζκΰέαİĲαδ πμ İιάμ: 
 

 
1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

P P P S
S CY CZ S

P P P S S S
S CY CZ S CY CZ

P P P S S S
S CY CZ S CY CZ

Z Y

Aux z v v v v v v

y w w w w w w

    
 
  
 
  

   (5.7a) 

 

     
0 0

T

L
L

T TT T

u p

W u Aux t dx u Aux t d



  


 
   

  
                                     (5.7b) 

 

Όπκυ t Ĳα įδαθτıηαĲα εαĲİτγυθıβμ Ĳβμ παλΪπζİυλβμ İπδφΪθİδαμ εαδ p Ĳα İιπĲİλδεΪ 
φκλĲέα Ĳβμ įκεκτ.  

ΛαηίΪθκθĲαμ υπσοβ εαδ Ĳκυμ αįλαθİδαεκτμ σλκυμ, υπκζκΰέαİĲαδ Ĳκ ηβĲλυκ 
ηΪααμ: 

 

       mass , mass ,

0 0

1

( )

L L
TT T

tt l ttW u Aux Aux u d dx W u m u dx
e R

    


         (5.7) 
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ΈĲıδ įδαηκλφυθκθĲαδ κδ İιδıυıİδμ εέθβıβμ Ĳβμ İυγτΰλαηηβμ ά Ĳβμ εαηπτζβμ įκεκτ 
ηααέ ηİ Ĳδμ ıυθκλδαεΫμ εαδ αλξδεΫμ ıυθγάεİμ.  

Σα πμ Ϊθπ πλκίζάηαĲα ıυθκλδαευθ Ĳδηυθ İπδζτκθĲαδ αλδγηβĲδεΪ ηİ Ĳβ ξλάıβ 
Ĳβμ Μİγσįκυ ΢υθκλδαευθ ΢Ĳκδξİέπθ (πλσίζβηα įδαĲκηάμ) εαδ Ĳβμ Μİγσįκυ 
ǹθαζκΰδεάμ İιέıπıβμ (πλσίζβηα įκεκτ) İέĲİ ıĲβθ αλξδεά Ĳβμ ηκλφά İέĲİ ηİ B-splines 

εαδ NURBS. ǼεĲσμ απσ Ĳβ ηΫγκįκ Ĳβμ ǹθαζκΰδεάμ İιέıπıβμ, ΰδα Ĳκ εαĲΪ ηάεκμ 
πλσίζβηα Ĳβμ įκεκτ ξλβıδηκπκδİέĲαδ εαδ β ηΫγκįκμ Ĳπθ ΠİπİλαıηΫθπθ ıĲκδξİέπθ ıİ 
ıυθįυαıησ ηİ NURBS. ΜΫıπ Ĳβμ İθ ζσΰπ γİπλέαμ αθαζτκθĲαδ παλαįİέΰηαĲα 
δįδαέĲİλκυ γİπλβĲδεκτ εαδ πλαεĲδεκτ İθįδαφΫλκθĲκμ σπκυ πλαΰηαĲκπκδİέĲαδ β ηİζΫĲβ 
Ĳκυ φαδθκηΫθκυ Ĳβμ įδαıĲλΫίζπıβμ ζσΰπ εΪηοβμ εαδ ıĲλΫοβμ, İθυ β αελέίİδα Ĳβμ 
πλκĲİδθσηİθβμ ηİγσįκυ įδαπδıĲυθİĲαδ ηΫıπ ıυΰελέıİπθ ηİ πλκıκηκδυηαĲα ıĲİλİυθ 
εαδ εİζυφπĲυθ πİπİλαıηΫθπθ ıĲκδξİέπθ İηπκλδεκτ ζκΰδıηδεκτ.  

ǹλξδεΪ ηİζİĲΪĲαδ ηέα İυγτΰλαηηβ įκεσμ ηİ ıυηπαΰά κλγκΰπθδεά įδαĲκηά ΰδα 
įδαφκλİĲδεΪ υζδεΪ υıĲİ θα İπδευλπγİέ β ηΫγκįκμ εαδ θα İιİĲαıĲİέ β İπδλλκά Ĳκυ 
ζσΰκυ Poisson. ΢Ĳβ ıυθΫξİδα ηİζİĲΪĲαδ Ϋθαμ εαηπτζκμ πλσίκζκμ ηİ įδπζΪ ıυηηİĲλδεά 
įδαĲκηά ( 0.636R m , 1L m , / 0.048t d  , / 0.035d L  ) ΰδα ΫεεİθĲλκ φκλĲέκ 5 kN 

ıĲκ Ϊελκ. ΢Ĳκ ΢ξάηα 5.1 įέθİĲαδ β εαĲαθκηά Ĳβμ ıυθκζδεάμ ηİĲαĲσπδıβμ εαδ ıĲκ 
΢ξάηα 5.2 Ĳβμ κλγάμ ĲΪıβμ εαĲΪ Ĳκθ įδαηάεβ Ϊικθα ΰδα Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ ηİ 
B-splines εαδ Ĳκ ĲλδıįδΪıĲαĲκ ηκθĲΫζκ FEMsolid. Σα απκĲİζΫıηαĲα İέθαδ παλσηκδα.  

 

         
 

Σχάηα 5.1. Συθκζδεά ηİĲαĲσπδıβ ΰδα (a) 3D solid FEM ηκθĲΫζκ ηİ 7875 
ĲİĲλαπζİυλδεΪ ıĲκδχİέα εαδ (b) πλκĲİδθσηİθκ (AEM ηİ 10 ευίδεΪ B-

splines ά 100 ıĲαγİλΪ ıĲκδχİέα) ΰδα Ĳβθ  I-ıχάηαĲκμ įδαĲκηά.   
 

ΠαλΪζζβζα ıĲκ ΢ξάηα 5.3 įέθκθĲαδ κδ εαĲαθκηΫμ Ĳπθ εδθβηαĲδευθ ηİΰİγυθ πκυ 
αφκλκτθ ıĲβθ πλπĲκΰİθά ıĲλΫοβ, ıĲλΫίζπıβ εαδ įδαıĲλΫίζπıβ ΰδα ζσΰκυμ ıτΰελδıβμ 
εαδ ΰδα θα εαĲαįİδξγİέ β İεγİĲδεά ηİέπıβ ΰδα Ĳα įτκ ĲİζİυĲαέα ηİΰΫγβ. Όππμ İέθαδ 
φαθİλσ, β įδαıĲλΫίζπıβ İέθαδ αıάηαθĲβ ΰδα Ĳβ ıυΰεİελδηΫθβ įδαĲκηά ıİ ıτΰελδıβ ηİ 
Ĳβ ıĲλΫίζπıβ. ǹυĲσ İέθαδ αθαηİθσηİθκ ΰδαĲέ πλσεİδĲαδ ΰδα αθκδεĲά įδαĲκηά. 
ΠαλΪζζβζα Ĳκ ηΫΰİγκμ Ĳβμ ıĲλΫίζπıβμ İέθαδ ıβηαθĲδεσ ıİ ηİΰΪζβ ΫεĲαıβ εαĲΪ Ĳκ 
ηάεκμ. Σα παλαπΪθπ įδαπδıĲυθκθĲαδ απσ Ĳα αθĲέıĲκδξα ηİΰΫγβ Ĳπθ λκπυθ ıĲκθ 
Πέθαεα 5.1. H λκπά ζσΰπ πλπĲκΰİθκτμ įδαıĲλΫίζπıβμ απσ ıĲλΫοβ İέθαδ αıάηαθĲβ ıİ 
ıξΫıβ ηİ Ĳβ įδλλκπά ζσΰπ πλπĲκΰİθκτμ ıĲλΫίζπıβμ απσ ıĲλΫοβ. Σκ  έįδκ δıξτİδ εαδ 
ΰδα Ĳβ įİυĲİλκΰİθά įδλλκπά ζσΰπ ıĲλΫίζπıβμ απσ  ıĲλΫοβ (αυĲσ ıβηαέθİδ σĲδ Ĳκ πİįέκ 
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ηİĲαĲκπέıİπθ πκυ πİλδΰλΪφβεİ πλκβΰκυηΫθπμ İέθαδ αλεİĲσ ΰδα θα İπδĲİυξγİέ β 
İπδγυηβĲά αελέίİδα).  
 

 
 

Σχάηα 5.2. Ολγά ĲΪıβ xx  ΰδα (a) 3D solid FEM ηκθĲΫζκ ηİ 7875 ĲİĲλαπζİυλδεΪ 
ıĲκδχİέα εαδ (b) πλκĲİδθσηİθκ (AEM ηİ 10 ευίδεΪ B-splines ά 100 
ıĲαγİλΪ ıĲκδχİέα) ΰδα Ĳβθ  I-ıχάηαĲκμ įδαĲκηά. 

 

 
 

Σχάηα 5.3. ΚδθβηαĲδεΪ ηİΰΫγβ  x x ,  x x εαδ  x x Ĳβμ εαηπτζβμ įκεκτ I-

ıχάηαĲκμ ΰδα Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ ηİ NURBS 3
κυ

 ίαγηκτ. 
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AEM 

10 cubic  

B-splines 

 

 

FEM  

Solid 

7875 

 

( )w m  at x=L -12.8713 -12.5466 

( )x rad  at x=L 0.2083 0.19702 

( )Y rad  at x=L 0.3274 0.3158 

max

2
( )xz

kN

m
  at  

x=1/4L 

120.25 111.02 

max

2
( )xy

kN

m
  at  

x=1/4L 

115.23 109.80 

( )YM kNm  at x=0 330.81 325.05 

( )tM kNm  at x=0 323.01 318.31 

2( )P
S

M kNm  at x=0 3401.49 - 

2( )S
S

M kNm  at x=0 36.46 - 

2( )P
DxM kNm  at x=0 16.25 - 

Πέθαεαμ 5.1. ΜİĲαεδθάıİδμ, ηΫΰδıĲİμ ĲΪıİδμ εαδ λκπΫμ ΰδα Ĳβθ εαηπτζβ įκεσ Ι- 
ıξάηαĲκμ ΰδα Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ εαδ Ĳκ αθĲέıĲκδξκ FEMsolid. 

 

΢Ĳβ ıυθΫξİδα ηİζİĲΪĲαδ πλσίκζκμ εκέζβμ κλγκΰπθδεάμ įδαĲκηάμ 5.0X3.5 m ηİ 
πΪξκμ ĲκδξπηΪĲπθ 0.30 m ( 23 7E E kN m  , 21.5 7G E kN m  , 0  , / 0.085t d  , 

/ 0.087d L  ), ηάεκμ Ĳσικυ 40 m εαδ 25.465R m . ΢Ĳκ ΢ξάηα 5.4 įέθİĲαδ β εαĲαθκηά 
Ĳβμ ηΫΰδıĲβμ ηİĲαĲσπδıβμ ΰδα Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ εαδ Ĳκ FEMsolid ηκθĲΫζκ. ΢Ĳκ 
΢ξάηα 5.5 įέθκθĲαδ κδ κλγΫμ ĲΪıİδμ εαĲΪ Χ (ǹ) εαδ ǽ (Ǻ) ΰδα Ĳα έįδα ηκθĲΫζα. Σα 
απκĲİζΫıηαĲα İέθαδ παλσηκδα ηİ Ĳδμ ηΫΰδıĲİμ ĲδηΫμ ıξİįσθ θα ıυηπέπĲκυθ. ΢Ĳκθ 
Πέθαεα 5.2 παλκυıδΪακθĲαδ εαδ κδ ηΫΰδıĲİμ ĲδηΫμ Ĳπθ įδαĲηβĲδευθ ĲΪıİπθ πκυ İέθαδ ıİ 
ıυηφπθέα ΰδα Ĳα įτκ ηκθĲΫζα. Ǽįυ αιέαİδ θα ıβηİδπγİέ σĲδ İθ αθĲδγΫıİδ ηİ Ĳβθ 
πλκβΰκτηİθβ αθκδεĲά įδαĲκηά, β įδλλκπά ζσΰπ πλπĲκΰİθκτμ įδαıĲλΫίζπıβμ απσ 
ıĲλΫοβ İέθαδ įİεαπζΪıδα Ĳβμ αθĲέıĲκδξβμ λκπάμ ζσΰπ ıĲλΫίζπıβμ. Οδ αθĲέıĲκδξİμ 
įİυĲİλκΰİθİέμ įδλλκπΫμ İέθαδ αλεİĲΪ ηδελσĲİλİμ. ǹυĲσ ıβηαέθİδ σĲδ Ĳκ πİįέκ 
ηİĲαĲκπέıİπθ πκυ ζαηίΪθİδ ηΫξλδ εαδ įİυĲİλκΰİθİέμ δįδκηκλφΫμ Ĳβμ įδαĲκηάμ İέθαδ 
αλεİĲσ ΰδα θα İπδĲİυξγİέ β İπδγυηβĲά αελέίİδα.  ΣΫζκμ, ıĲκθ Πέθαεα 5.3 ΰέθİĲαδ ηδα 
παλαηİĲλδεά ηİζΫĲβ Ĳβμ İπδλλκάμ Ĳβμ εαηπυζσĲβĲαμ ıĲκ ηΫΰİγκμ Ĳβμ εαηπĲδεάμ, 
ıĲλİπĲδεάμ εαδ ζσΰπ įδαıĲλΫίζπıβμ απσ πλπĲκΰİθά ıĲλΫοβ λκπάμ. Γδ’ αυĲσ Ĳκ ıεκπσ 
εαĲαλĲέακθĲαδ κδ ηİĲαιτ Ĳκυμ ζσΰκδ. Καγυμ ζκδπσθ αυιΪθİĲαδ β εαηπυζσĲβĲα εαδ εαĲΪ 
ıυθΫπİδα β ıĲλİπĲδεά λκπά, παλαĲβλİέĲαδ ατιβıβ Ĳκυ ζσΰκυ Ĳβμ λκπάμ įδαıĲλΫίζπıβμ 

Pz eccentric 

Lateral 

Loading 
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πλκμ Ĳβθ εαηπĲδεά λκπά. ǹτĲκμ κ ζσΰκμ İπκηΫθπμ απκĲİζİέ Ϋθα įİέεĲβ Ĳβμ İπδλλκάμ 
Ĳβμ įδαıĲλΫίζπıβμ ıĲβ ıυηπİλδφκλΪ Ĳβμ εαηπτζβμ įκεκτ. ΠαλΪζζβζα, κ ζσΰκμ Ĳβμ 
λκπάμ įδαıĲλΫίζπıβμ πλκμ Ĳβ ıĲλİπĲδεά λκπά ευηαέθİĲαδ įδαφκλİĲδεΪ ηİ Ĳβθ ατιβıβ 
Ĳβμ εαηπυζσĲβĲαμ. ǹλξδεΪ αυιΪθİĲαδ απσĲκηα ΰδα ηδελά εαηπυζσĲβĲα εαδ ıĲβ 
ıυθΫξİδα ηİδυθİĲαδ İζΪξδıĲα ΰδα εΪγİ ηέα ατιβıβ Ĳβμ εαηπυζσĲβĲαμ.  ǹυĲσ įİέξθİδ Ĳβθ 
αıĲΪγİδα πκυ įβηδκυλΰİέ β απσεζδıβ Ĳκυ įδαηάεβ Ϊικθα απσ Ĳβθ İυγİέα αεσηα εαδ αθ 
İέθαδ ηδελά.  
 

 
 

Σχάηα 5.4. Συθκζδεά ηİĲαĲσπδıβ ΰδα (a) 3D solid FEM ηκθĲΫζκ ηİ 2880 
ĲİĲλαπζİυλδεΪ ıĲκδχİέα εαδ (b) πλκĲİδθσηİθκ (AEM ηİ 10 ευίδεΪ B-

splines ά 80 ıĲαγİλΪ ıĲκδχİέα) ΰδα Ĳβθ εδίωĲκİδįά įδαĲκηά.     
 

 

 

 

(A)                                                         (B) 
 

Σχάηα 5.5. ΟλγΫμ ĲΪıİδμ xx (A) εαδ zz  (B) ΰδα (a) 3D solid FEM ηκθĲΫζκ ηİ 2880 
ĲİĲλαπζİυλδεΪ ıĲκδχİέα εαδ (b) πλκĲİδθσηİθκ (AEM ηİ 10 ευίδεΪ B-

splines ά 80 ıĲαγİλΪ ıĲκδχİέα) ΰδα Ĳβθ εδίωĲκİδįά įδαĲκηά.     
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ΟȡșοȖωȞȚțή țȚȕωτοİȚįήȢ įȚατοȝή 

    AEM 

10 cubic  

B-splines 

     FEM  

Solid 

2880/ 

FEM  

plate 960 

 

( )w m  at x=L 0.4266 0.4316 

( )x rad  at x=L 0.0100 0.0112 

( )Y rad  at x=L -0.0131 -0.0137 

max

2
( )xz

kN

m
  at x=0 21532 

20539  

(solid 

model) 

max

2
( )xy

kN

m
  at x=0 12602 

11502 

(solid 

model) 

( )YM kNm  at x=0 -139691 -139824 

( )tM kNm  at x=0 127100 127324 

2( )P
S

M kNm  at x=0 -6930.56 - 

2( )S
S

M kNm  at x=0 -1838.93 - 

2( )P
DxM kNm  at x=0 610306 - 

 
2( )S

DxM kNm  at x=0 -1999.04  

Πέθαεαμ 5.2. ΜİĲαεδθάıİδμ, ηΫΰδıĲİμ ĲΪıİδμ εαδ λκπΫμ ΰδα Ĳβθ εδίπĲκİδįά εαηπτζβ 
įκεσ ΰδα Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ εαδ Ĳκ αθĲέıĲκδξκ FEMsolid. 

 

ΟȡșοȖωȞȚțή țȚȕωτοİȚįήȢ įȚατοȝή 

 
P
Dx

Y

M

M
 

at x=0 

 
P
Dx

t

M

M
 

at x=0 

 

Y

t

M

M
 

at x=0 

 

R=∞ 0.178 2.844 15.952 

R=76.394m 1.141 5.579 4.891 

R=50.930m 1.835 5.276 2.875 

R=38.197m 2.581 5.101 1.976 

R=25.465m 4.365 4.807 1.101 

Πέθαεαμ 5.3. Λσΰκδ λκπυθ ΰδα įδαφκλİĲδεΫμ εαηπυζσĲβĲİμ Ĳβμ įκεκτ εδίπĲκİδįκτμ 
įδαĲκηάμ.  

Pz = 

5000kN 

eccentric 

Lateral 

Loading 

Pz eccentric 

Lateral 

Loading 
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΢Ĳβ ıυθΫξİδα ηİζİĲΪĲαδ παλσηκδκμ πλσίκζκμ ηİ Ĳκθ πλκβΰκτηİθκ ηİ Ĳβθ αθκδεĲά 
įδαĲκηά αζζΪ ΰδα ηκθκıυηηİĲλδεά įδαĲκηά αυĲά Ĳβ φκλΪ ( / 0.049t d  , / 0.055d L  ). 

΢Ĳβ ıυΰεİελδηΫθβ πİλέπĲπıβ εαĲαįİδεθτİĲαδ κ λσζκμ Ĳκυ İπδπΫįκυ φσλĲδıβμ ıĲβθ 
αθΪπĲυιβ Ĳπθ φαδθκηΫθπθ αθπĲΫλαμ ĲΪιβμ. ΢υΰεİελδηΫθα, σĲαθ Ĳκ φκλĲέκ αıεİέĲαδ 
παλΪζζβζα ηİ Ĳκθ Ϊικθα ıυηηİĲλέαμ įİθ αθαπĲτııκθĲαδ ηİΰΪζİμ ĲδηΫμ λκπυθ εαδ 
ĲΪıİπθ αθυĲİλβμ ĲΪιβμ ıİ ıτΰελδıβ ηİ Ĳβθ αθĲέγİĲβ πİλέπĲπıβ İέĲİ ΰδα εİθĲλδεΪ 
İπδίαζζσηİθκ φκλĲέκ İέĲİ ΫεεİθĲλα. ΠαλΪζζβζα, ıĲβθ πİλέπĲπıβ πκυ αθαπĲτııκθĲαδ 
ηİΰΪζİμ ıĲλİίζυıİδμ, β ξλάıβ İθσμ πİįέκυ ηİĲαĲκπέıİπθ εαδ ηİ ĲλδĲκΰİθİέμ 
ıυθαλĲάıİδμ ıĲλΫίζπıβμ αυιΪθİδ Ĳβθ αελέίİδα εαĲΪ Ϋθα ηδελσ πκıκıĲσ. ǹτĲκ Ĳκ 
πκıκıĲσ γα άĲαθ αεσηα ηİΰαζτĲİλκ αθ β įδαĲκηά άĲαθ αεσηα πδκ ζİπĲσĲκδξβ.  

Ǿ İπσηİθβ εαηπτζβ įκεσμ πκυ ηİζİĲΪĲαδ İέθαδ ηİ εδίπĲκİδįά įδαĲκηά                   

( 23 7E E kN m  , 21.5 7G E kN m  , 0  , / 0.086t d  , / 0.086d L  , 40L m  , 

25.465R m  ) υπσ εİθĲλδεσ φκλĲέκ 10000ZP kN   ıĲκ İζİτγİλκ Ϊελκ. ΢Ĳκ ΢ξάηα 
5.6 įέθκθĲαδ κδ εαĲαθκηΫμ Ĳπθ εδθβηαĲδευθ ηİΰİγυθ πκυ αφκλκτθ ıĲβθ πλπĲκΰİθά 
ıĲλΫοβ, ıĲλΫίζπıβ εαδ įδαıĲλΫίζπıβ ΰδα ζσΰκυμ ıτΰελδıβμ ηİ Ĳα αθĲέıĲκδξα ηİΰΫγβ 
Ĳβμ αθκδεĲάμ įδαĲκηάμ εαδ ΰδα θα εαĲαįİδξγİέ β İεγİĲδεά ηİέπıβ ΰδα Ĳα įτκ ĲİζİυĲαέα 
ηİΰΫγβ. Ǽįυ κδ παλΪηİĲλκδ ıĲλΫίζπıβμ εαδ įδαıĲλΫίζπıβμ Ϋξκυθ παλσηκδİμ 
εαĲαθκηΫμ παλΪ Ĳκ įδαφκλİĲδεσ ηΫΰİγκμ εαδ β παλΪηİĲλκμ ıĲλΫίζπıβμ įİθ İεĲİέθİĲαδ 
Ĳσıκ ıİ ΫθĲαıβ εαĲΪ Ĳκ ηάεκμ σıκ πλκβΰκυηΫθπμ (αθκδεĲά įδαĲκηά).   

 

   
 

Σχάηα 5.6. ΚδθβηαĲδεΪ ηİΰΫγβ  x x ,  x x  εαδ  x x Ĳβμ εαηπτζβμ įκεκτ 

εδίωĲκİδįκτμ ıχάηαĲκμ ΰδα Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ ηİ NURBS 3
κυ

 

ίαγηκτ. 

 

΢Ĳκθ Πέθαεα 5.4 ΰέθİĲαδ ıτΰελδıβ Ĳκυ πλκĲİδθσηİθκυ ηκθĲΫζκυ, Ĳκ κπκέκ İέθαδ ıİ 
ıυηφπθέα  ηİ Ĳκ  FEMsolid, ηİ Ĳκ  ηκθĲΫζκ  Ĳβμ  πλκβΰκτηİθβμ  İθσĲβĲαμ  ξπλέμ Ĳβθ  
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AEM 

10 cubic  

B-splines 

 

 

FEM  

Solid 

2714 

 

 

 

AEM 

50 quad. 

GWCB 

 

 

Timoshenko 

FEM 

beam 

 

( )w m  at x=L 0.3744 0.3547 0.3202 0.3238 

( )x rad  at x=L 0.0092 0.0087 0.0067 0.0067 

( )Y rad  at x=L -0.0120 -0.0115 -0.0104 -0.0106 

max

2
( )xx

kN

m
  at x=0 40254 38230 27633 28782 

max

2
( )xy

kN

m
  at x=0 24135 23085 16940 3714 

( )YM kNm  at x=0 -254316 -254647 -254820 -254648 

( )tM kNm  at x=0 -253683 -254647 -254700 -254648 

2( )P
S

M kNm  at x=0 -342533 - -244940 0 

2( )S
S

M kNm  at x=0 36612 - 30717 0 

2( )P
DxM kNm  at x=0 -366072 - - - 

 
2( )S

DxM kNm  at x=0 4127  - - 

Πέθαεαμ 5.4. ΜİĲαεδθάıİδμ, ηΫΰδıĲİμ ĲΪıİδμ εαδ λκπΫμ ΰδα Ĳβθ εδίπĲκİδįά εαηπτζβ 
įκεσ ΰδα įδΪφκλα ηκθĲΫζα. 

 

įδαıĲλΫίζπıβ εαδ Ĳκ Timoshenko εαηπτζκ ıĲκδξİέκ įκεκτ. ǹιέαİδ θα ıβηİδπγİέ σĲδ β 
λκπά ζσΰπ πλπĲκΰİθκτμ ıĲλΫίζπıβμ İέθαδ ηİΰαζτĲİλβ ΰδα Ĳκ παλσθ πλκĲİδθσηİθκ 
ηκθĲΫζκ ıİ ıξΫıβ ηİ αυĲά πκυ υπκζκΰέαİĲαδ απσ Ĳκ ηκθĲΫζκ Ĳβμ πλκβΰκτηİθβμ 
İθσĲβĲαμ. ΠαλΪζζβζα, Ĳκ Timoshenko ıĲκδξİέκ įκεκτ υπκİεĲδηΪ ıβηαθĲδεΪ Ĳδμ ĲΪıİδμ 

(δįδαέĲİλα Ĳβ įδαĲηβĲδεά) εαγυμ įİ ζαηίΪθİδ υπσοβ κτĲİ ıĲλΫίζπıβ κτĲİ 
įδαıĲλΫίζπıβ. ΣΫζκμ, İέθαδ φαθİλσ σĲδ β įδαıĲλΫίζπıβ İέθαδ παλσηκδα ıİ ηΫΰİγκμ ηİ 
Ĳβθ αθĲέıĲκδξβ ıĲλΫίζπıβ ζσΰπ ıĲλΫοβμ εαδ ηΪζδıĲα ζέΰκ ηİΰαζτĲİλβ ΰδα Ĳβ 
ıυΰεİελδηΫθβ įδαĲκηά.  

Ǿ ĲİζİυĲαέα įκεσμ πκυ ηİζİĲΪĲαδ İέθαδ Ϋθαμ πλσίκζκμ εδίπĲκİδįκτμ įδαĲκηάμ       
( 23.25 7E E kN m  , 21.39 7G E kN m  , 100R m  ,  0.1667  , / 0.1t d  , 

/ 0.065d L  ) ηİ ηάεκμ Ĳσικυ 33 m υπσ εαĲαεσλυφκ εİθĲλδεσ φκλĲέκ 5000 kN. Ǿ έįδα 
įδαĲκηά ηİζİĲΪĲαδ εαδ ıαθ ıτηηδεĲβ ηİ įδαφκλİĲδεσ υζδεσ ησθκ ıĲκ Ϊθπ ĲκέξπηΪ Ĳβμ    
( 24 7E E kN m  , 22 7G E kN m  , 0  ). ΢Ĳκθ Πέθαεα 5.5 İέθαδ φαθΫλκ ππμ 
ηİδυθİĲαδ β İπδλλκά Ĳβμ įδαıĲλΫίζπıβμ εαδ ıĲδμ ĲΪıİδμ εαδ ıĲδμ λκπΫμ ıĲβθ πİλέπĲπıβ 

Pz =1000kN 

eccentric 

Lateral 

Loading 
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πκυ Ĳκ Ϊθπ Ĳκέξπηα (ηααέ ηİ Ĳα πĲİλτΰδα) Ĳβμ įδαĲκηάμ εαĲαıεİυαıĲİέ απσ υζδεσ 
ηİΰαζτĲİλβμ įυıεαηοέαμ. Σκ απκĲΫζİıηα įİθ İέθαδ Ĳκ έįδκ αθ ίΪζκυηİ ıİ Ϊζζα 
ĲκδξυηαĲα πδκ δıξυλσ υζδεσ ΰδαĲέ ΰδα Ĳβ ıυΰεİελδηΫθβ φσλĲδıβ (πκυ İέθαδ εαδ ıυξθά 
ıĲβ ΰİφυλκπκδέα) Ĳκ Ϊθπ Ĳκέξπηα αθγέıĲαĲαδ πİλδııσĲİλκ ηΫıπ εΪηοβμ İθυ Ĳα 
πĲİλτΰδα πκυ ζİδĲκυλΰκτθ ıαθ πλσίκζκδ εαδ παλκυıδΪακυθ ηİΰΪζİμ ηİĲαĲκπέıİδμ γα 
ΰέθκυθ πδκ ΪεαηπĲα. ΢υΰελδĲδεΪ ηİ Ĳβθ πλκβΰκτηİθβ εδίπĲκİδįά įδαĲκηά, αιέαİδ θα 
ıβηİδπγİέ σĲδ ıĲβθ πλκεİδηΫθβ πİλέπĲπıβ κδ ζσΰκδ Ĳπθ λκπυθ įİέξθκυθ σĲδ β 
ıυΰεİελδηΫθβ įκεσμ αθγέıĲαĲαδ πİλδııσĲİλκ ηΫıπ εαηπĲδευθ ηβξαθδıηυθ εαδ σĲδ β 
įδαıĲλΫίζπıβ ζσΰπ ıĲλΫοβμ πκυ αθαπĲτııİĲαδ İέθαδ ηδελσĲİλβ ıİ πκıκıĲσ εαĲΪ Ĳκ 
άηδıυ ıİ ıξΫıβ ηİ πλδθ. Ǽπέıβμ, σıκθ αφκλΪ Ĳκ αθĲέıĲκδξκ İυγτΰλαηηκ įκεΪλδ, αιέαİδ 
θα ıβηİδπγİέ σĲδ β įδαıĲλΫίζπıβ πκυ αθαπĲτııİĲαδ κφİέζİĲαδ ıĲβθ εΪηοβ εαδ σξδ ıĲβ 
ıĲλΫοβ. Σκ έįδκ δıξτİδ εαδ ΰδα Ĳβ ıĲλΫίζπıβ.  

 

 

R=100 

     AEM 

10 cubic 

b-splines 

 

    R=100 

    FEM 

Solid 

6600 

 

R=∞ 

AEM 

100  

constant 

 

R=100 

     AEM 

10 cubic 

b-splines 

ıτηηδεĲβ 

 

( )w m  at x=L 0.4001 0.3899 0.3914 0.2616 

( )x rad  at x=L 0.0039 0.0038 0 0.0019 

( )Y rad  at x=L -0.0170 -0.0169 0.0174 -0.0116 

max

2
( )xx

kN

m
  at x=0 52456 51825 52122 21151 

max

2
( )xy

kN

m
  at x=0 8425 7721 3992 3791 

( )YM kNm  at x=0 -161723 -162023 -162115 -161642 

( )tM kNm  at x=0 26929 26969 0 26916 

2( )P
S

M kNm  at x=0 18463 - 0 9152 

2( )P
CY

M kNm  at x=0 -3408 - -3357.5 -11338 

2( )S
S

M kNm  at x=0 -6198 - 0 -3130 

2
, ( )P

Dx yM kNm  at x=0 
62817 (x) 

1571 (y) 
- 

0 (x) 

1144.57 (y) 

20418 (x) 

245 (y) 

 
2

, ( )S
Dx yM kNm  at x=0 

-952.89 (x) 

-1403 (y) 
- 

0(x) 

-1072 (y) 

1691.09 (x) 

-262 (y) 

Πέθαεαμ 5.5. ΜİĲαεδθάıİδμ, ηΫΰδıĲİμ ĲΪıİδμ εαδ λκπΫμ ΰδα Ĳβθ εδίπĲκİδįά εαηπτζβ 
įκεσ ΰδα įδΪφκλα ηκθĲΫζα. 

 

Pz Lateral 

Loading  
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΢Ĳκθ Πέθαεα 5.6 παλκυıδΪακθĲαδ κδ δįδκıυξθσĲβĲİμ ΰδα Ĳβθ πλκαθαφİλσηİθβ 
κηκΰİθά įδαĲκηά ηİ 2 4

2.5kN sec / m  . Οδ ĲδηΫμ πκυ πλκετπĲκυθ απσ Ĳβθ İφαληκΰά 
Ĳκυ πλκĲİδθσηİθκυ ηκθĲΫζκυ ΰδα Ĳβθ αηφέπαεĲβ įκεσ İέθαδ ΰİθδεΪ πδκ εκθĲΪ ıĲδμ ĲδηΫμ 
Ĳκυ FEMsolid ξπλέμ įδΪφλαΰηα İθυ ΰδα αλεİĲΫμ ĲδηΫμ Ĳα įτκ solid ηκθĲΫζα įέθκυθ 

παλσηκδİμ ĲδηΫμ. ΓİθδεΪ ευλδαλξκτθ κδ δįδκηκλφΫμ ζσΰπ ηİĲαεδθάıİπθ (İεĲσμ 
ıĲλİπĲδεάμ) πμ πκıκıĲσ Ĳβμ ıυθκζδεάμ απσελδıβμ πκυ įέθİĲαδ απσ Ĳδμ 8 πλυĲİμ 
δįδκηκλφΫμ. ǹιέαİδ θα ıβηİδπγİέ σĲδ κδ αθĲέıĲκδξİμ ĲδηΫμ Ĳκυ πλκίσζκυ İέθαδ εαĲΪ πκζτ 
ηİδπηΫθİμ. ǹυĲσ ıυηίαέθİδ İπİδįά ıĲκθ πλσίκζκ (ζσΰπ Ĳβμ İπδλλκάμ Ĳπθ ıυθγβευθ 
ıĲάλδιβμ) Ĳα φαδθσηİθα ıĲλΫίζπıβμ εαδ įδαıĲλΫίζπıβμ İέθαδ πκζτ İθĲκθσĲİλα.  

 

ǹ/ǹ 

FEMsolid 

6600 

NO Diaph. 

(πλσίκζκμ) 

FEMsolid 

6600 

NO Diaph. 

(αηφέπαεĲβ) 

FEMsolid 

6600  

1 Diaph. 

(αηφέπαεĲβ) 

10 cubic 

NURBS 

(αηφέπαεĲβ) 

Στπκμ 
δįδκηκλφάμ 

 

1 1.725 9.328 9.414 9.470 

1
β
 δįδκηκλφά 

εαĲαεσλυφβμ 
ηİĲαĲσπδıβμ 

2 4.065 17.099 19.230 16.887 

1
β
 δįδκηκλφά 

πζİυλδεάμ 

ηİĲαĲσπδıβμ 

3 9.084 20.495 21.160 21.154 
1

β
 δįδκηκλφά 
ıĲλΫοβμ 

4 10.183 21.174 22.126 21.949 

2
β
 δįδκηκλφά 

εαĲαεσλυφβμ 
ηİĲαĲσπδıβμ 

5 19.191 27.898 35.428 26.003 

2
β
 δįδκηκλφά 

πζİυλδεάμ 
ηİĲαĲσπδıβμ 

6 22.321 31.948 36.230 32.789 

3
β
 δįδκηκλφά 

εαĲαεσλυφβμ 
ηİĲαĲσπδıβμ 

7 21.649 43.247 42.768 44.500 
2

β
 δįδκηκλφά 
ıĲλΫοβμ 

8 29.165 47.490 47.013 49.602 
3

β
 δįδκηκλφά 
ıĲλΫοβμ 

Πέθαεαμ 5.6. ΙįδκıυξθσĲβĲİμ εαηπτζβμ įκεκτ εδίπĲκİδįκτμ įδαĲκηάμ (αηφέπαεĲβ ά 
πλσίκζκμ). 

 

VII. ΚİφΪζαδκ 6: Ǽφαληκΰά Καθκθδıηυθ ΰδα ǼθįδΪηİıα 
ǻδαφλΪΰηαĲα εαδ Αιδκζσΰβıβ Ĳπθ įδαĲΪιİυθ Ĳκυμ  

΢Ĳκ 6
κ
 εİφΪζαδκ Ĳα ηκθĲΫζα πκυ αθαπĲτξγβεαθ ıĲα εİφΪζαδα 4 εαδ 5 

ξλβıδηκπκδκτθĲαδ ıİ ıυθįυαıησ ηİ Ĳβ ΜΫγκįκ Άηİıβμ ΢ĲδίαλσĲβĲαμ ΰδα Ĳβ 
įδαησλφπıβ Ĳπθ Ĳκπδευθ εαδ εαγκζδευθ ηβĲλυπθ įυıεαηοέαμ İυγτΰλαηηβμ ά 
εαηπτζβμ įκεκτ. ǼπδπλσıγİĲα, παλκυıδΪακθĲαδ κδ πδκ ıυξθΪ ξλβıδηκπκδκτηİθİμ 
įδαĲΪιİδμ εαθκθδıηυθ πκυ εαγκλέακυθ Ĳκθ αλδγησ εαδ Ĳβ ηΫΰδıĲβ απσıĲαıβ 
ĲκπκγΫĲβıβμ İθįδΪηİıπθ įδαφλαΰηΪĲπθ ΰδα Ĳβθ απκφυΰά Ĳκυ φαδθκηΫθκυ Ĳβμ 
įδαıĲλΫίζπıβμ Ĳπθ įδαĲκηυθ.  
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΢τηφπθα ηİ Ĳκθ εαθκθδıησ AASHTO (American Association of State Highway 

and Transportation Officials- 1993) κδ įδαĲΪιİδμ ΰδα εαηπτζİμ ΰΫφυλİμ 

αυĲκεδθβĲσįλκηπθ εαγκλέακυθ Ĳβ ηΫΰδıĲβ απσıĲαıβ İθįδΪηİıπθ įδαφλαΰηΪĲπθ DL  

πμ  
 

1/2

25
200 7500

D

R
L L ft

L

    
                                                                        (6.1) 

 

ΫĲıδ υıĲİ β κλγά ĲΪıβ įδαıĲλΫίζπıβμ ζσΰπ πλπĲκΰİθκτμ ıĲλΫοβμ θα İέθαδ ıĲκ 10% 
Ĳβμ κλγάμ ĲΪıβμ ζσΰπ εαηοβμ εαδ β κλγά ĲΪıβ ΰδα Ĳβθ εΪγİĲβ εΪηοβ θα İέθαδ 137.3 

Mpa ά εαδ ζδΰσĲİλκ. 
ΠαλΪζζβζα, κ εαθκθδıησμ HEPCJ (Hanshin Expressway Public Corporation of 

Japan- 1988) πκυ παλΫξİδ Ĳδμ įδαĲΪιİδμ ΰδα Ĳκ ıξİįδαıησ εαηπτζπθ ΰİφυλυθ, 
πλκıįδκλέαİδ Ĳβθ πλκαθαφİλσηİθβ ηΫΰδıĲβ απσıĲαıβ DL  ıİ ıξΫıβ ηİ Ĳβθ αθĲέıĲκδξβ 
απσıĲαıβ ΰδα İυγτΰλαηηβ įκεσ DSL  πκζζαπζαıδαıηΫθβ ηİ Ϋθα ηİδπĲδεσ ıυθĲİζİıĲά 

 , L   πμ İιάμ 

 

 ,D DSL L L                                                                                                   (6.2) 

 

σπκυ 

 

6 60

(0.14 2.4) 60 160

20 160

DS

m for L m

L L m for m L m

m for L m

 
   
 

                                                  (6.3) 

 
1 60

, ( 60)
1 60 200

100 2

for L m

L L
for m L m

  


  
  



                                      (6.4) 

 

ηİ   θα İέθαδ β ΰπθέα Ĳκυ Ĳσικυ πκυ ıξβηαĲέαİδ β εαηπτζβ įκεσμ. Οδ įδαĲΪιİδμ αυĲΫμ 
ıĲκξİτκυθ θα πİλδκλέıκυθ Ĳκ αθĲέıĲκδξκ πκıκıĲσ πκυ πλκαθαφΫλγβεİ ıĲκ 5% εαδ Ĳβθ 
Ĳδηά πζİυλδεάμ κλγάμ ĲΪıβμ ıĲα 4.90 Mpa ά εαδ ζδΰσĲİλκ.  

΢Ĳβ ıυθΫξİδα αυĲΫμ κδ įδαĲΪιİδμ İφαλησακθĲαδ ıİ ηκθĲΫζα įκευθ απσ λαίįπĲΪ 
(εİφΪζαδα 4 εαδ 5), ıĲİλİΪ εαδ εİζυφπĲΪ ıĲκδξİέα ηİ ıεκπσ Ĳβ ıτΰελδıβ Ĳπθ 
απκĲİζİıηΪĲπθ ıİ İυγτΰλαηηİμ εαδ εαηπτζİμ įκεκτμ εαγυμ εαδ Ĳβθ αιδκζσΰβıβ Ĳπθ 
įδαĲΪιİπθ αυĲυθ. Σα παλαįİέΰηαĲα πκυ αθαζτκθĲαδ İέθαδ ευλέπμ πλαεĲδεκτ 
İθįδαφΫλκθĲκμ εαδ αφκλκτθ εδίπĲκİδįİέμ įδαĲκηΫμ σπκυ Ĳα φαδθσηİθα Ĳβμ 
įδαıĲλΫίζπıβμ Ϋξκυθ δįδαέĲİλβ ıβηαıέα εαδ β ξλάıβ įδαφλαΰηΪĲπθ εαγέıĲαĲαδ 
αθαΰεαέα. Σα απκĲİζΫıηαĲα εαδ κδ παλαηİĲλδεΫμ ıυΰελέıİδμ πκυ įδİθİλΰκτθĲαδ 
εαĲαįİδεθτκυθ Ĳβ ıβηαıέα Ĳβμ γİυλβıβμ Ĳκυ ıξάηαĲκμ, Ĳκυ ζσΰκυ Ĳπθ įδαıĲΪıİπθ 
Ĳβμ įδαĲκηάμ, Ĳκυ ηάεκυμ, Ĳβμ εαηπυζσĲβĲαμ εαδ Ĳπθ ıυθγβευθ ıĲάλδιβμ İυγτΰλαηηβμ 
ά εαηπτζβμ įκεκτ πμ παλαηΫĲλκυμ ıĲβ ηİζΫĲβ πλκıįδκλδıηκτ Ĳκυ αλδγηκτ εαδ Ĳβμ 
απσıĲαıβμ Ĳπθ įδαφλαΰηΪĲπθ εαĲΪ ηάεκμ Ĳβμ įκεκτ εαγυμ įİ ζαηίΪθκθĲαδ σζİμ 
υπσοβ απσ Ĳδμ įδαĲΪιİδμ Ĳπθ εαθκθδıηυθ. 
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΢υΰεİελδηΫθα, ηİζİĲΪĲαδ β κλγκΰπθδεά εδίπĲκİδįάμ įδαĲκηά Ĳβμ πλβΰκτηİθβμ 
İθσĲβĲαμ. ΢τηφπθα ηİ Ĳκθ AASHTO πλΫπİδ θα ξλβıδηκπκδβγκτθ 6 İθįδΪηİıα 
įδαφλΪΰηαĲα ıĲβθ πİλέπĲπıβ εαηπτζβμ įκεκτ İθυ ıτηφπθα ηİ Ĳκθ HEPCJ İέĲİ ΰδα 
İυγτΰλαηηβ İέĲİ ΰδα εαηπτζβ įκεσ πλΫπİδ θα ξλβıδηκπκδβγκτθ 7. ΩıĲσıκ 
İφαλησακθĲαμ Ĳκ πλκĲİδθσηİθκ ηκθĲΫζκ εαδ ıυΰελέθκθĲαμ ηİĲαĲκπέıİδμ εαδ ĲΪıİδμ ΰδα 
πİλδπĲυıİδμ ηİ ζδΰσĲİλα įδαφλΪΰηαĲα πλκετπĲİδ σĲδ ıĲβθ πİλέπĲπıβ İυγτΰλαηηβμ 
įκεκτ 1 ηİ 2 įδαφλΪΰηαĲα İέθαδ αλεİĲΪ ΰδα θα πİλδκλέıκυθ Ĳβ įδαıĲλΫίζπıβ. ΢Ĳβθ 
πİλέπĲπıβ Ĳβμ εαηπτζβμ įκεκτ įİθ δıξτİδ Ĳκ έįδκ. Καγυμ αυιΪθİĲαδ κ αλδγησμ Ĳπθ 
įδαφλαΰηΪĲπθ įİθ παλαĲβλİέĲαδ įδαφκλΪ ıĲδμ ĲΪıİδμ ηİĲΪ Ĳβθ ĲκπκγΫĲβıβ 4 
įδαφλαΰηΪĲπθ. ΟπσĲİ įİθ ξλİδΪακθĲαδ 7 αζζΪ 4 ıİ αυĲά Ĳβθ πİλέπĲπıβ. Παλσηκδα 
ıυηπİλΪıηαĲα πλκετπĲκυθ ıĲβθ πİλέπĲπıβ γİυλβıβμ Ĳπθ δįδκıυξθκĲάĲπθ ΰδα 

2 4
2.5kN sec / m   Ĳβμ İυγτΰλαηηβμ ά Ĳβμ εαηπτζβμ įκεκτ (Πέθαεαμ 6.1). Ǽέθαδ 

φαθİλσ σĲδ ıξİįσθ σζİμ κδ δįδκıυξθσĲβĲİμ İέθαδ παλσηκδİμ İέĲİ ΰδα 4 İέĲİ ΰδα 7 
įδαφλΪΰηαĲα İθυ ıĲβθ πİλέπĲπıβ Ĳκυ 1 (πλκĲİδθσηİθκ ηκθĲΫζκ) ά εαθİθσμ 
įδαφλΪΰηαĲκμ κδ δįδκıυξθσĲβĲİμ įδαφΫλκυθ, İδįδεΪ ΰδα Ĳδμ δįδκηκλφΫμ ηİ υπİλίκζδεά 
įδαıĲλΫίζπıβ.ǹυĲσ ıβηαέθİδ σĲδ ξλİδΪακθĲαδ ıέΰκυλα πİλδııσĲİλα Ĳκυ 1 įδαφλΪΰηαĲα 
σππμ άĲαθ αθαηİθσηİθκ. Όıκθ αφκλΪ Ĳκ İυγτΰλαηηκ ηκθĲİζσ β ıİδλΪ Ĳπθ δįδκηκλφυθ 
αζζΪαİδ εαγυμ εαδ β ıπκυįαδσĲβĲα Ĳβμ ıĲλΫίζπıβμ ıİ αυĲΫμ.  
 

ǹ/ǹ 

FEMsolid 

2880 

NO Diaph. 

FEMsolid 

2880 

7 (4) 

Diaphs. 

FEMsolid 

2880 NO 

Diaph. 

(straight) 

10 cubic B-

splines 

in AEM  

(1 Diaph.) 

Στπκμ  
Ιįδκηκλφάμ 

 

1 1.605 
1.726 

(1.707) 
1.630 1.611 

1
β
 δįδκηκλφά 

εαĲαεσλυφβμ ηİĲαĲσπδıβμ 
(αıάηαθĲβ ıĲλΫίζπıβ) 

2 2.221 
2.261 

(2.238) 
2.168 2.155 

1
β δįδκηκλφά πζİυλδεάμ 

ηİĲαĲσπδıβμ 

(αıάηαθĲβ ıĲλΫίζπıβ) 

3 7.038 
7.329 

(7.242) 
9.167 7.063 

2
β δįδκηκλφά 

εαĲαεσλυφβμ ηİĲαĲσπδıβμ 
(ıβηαθĲδεά ıĲλΫίζπıβ) 

4 9.440 
9.626 

(9.530) 
12.099 9.296 

2
β δįδκηκλφά πζİυλδεάμ 

ηİĲαĲσπδıβμ (ıβηαθĲδεά 
ıĲλΫίζπıβ) 

5 14.455 
16.108 

(15.875) 
12.791 14.795 

1
β δįδκηκλφά ıĲλΫοβμ 

(ıβηαθĲδεά ıĲλΫίζπıβ) 

6 19.131 
22.770 

(22.087) 
21.591 20.552 

3
β
 δįδκηκλφά 

εαĲαεσλυφβμ ηİĲαĲσπδıβμ 

(υπİλίκζδεά ıĲλΫίζπıβ) 

7 23.306 
32.479 

(32.000) 
29.194 22.961 

3
β
 δįδκηκλφά πζİυλδεάμ 

ηİĲαĲσπδıβμ 

(υπİλίκζδεά ıĲλΫίζπıβ) 

8 23.478 
41.895 

(36.422) 
22.848 25.312 

2
β δįδκηκλφά ıĲλΫοβμ 

(υπİλίκζδεά ıĲλΫίζπıβ) 

Πέθαεαμ 6.1. ΙįδκıυξθσĲβĲİμ εαηπτζβμ ά İυγτΰλαηηβμ įκεκτ ηİ κλγκΰπθδεά 
εδίπĲκİδįά įδαĲκηά.  
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΢Ĳβ ıυθΫξİδα ηİζİĲΪĲαδ εαηπτζβ įκεσμ πκζτ ζİπĲσĲκδξβμ εδίπĲκİδįκτμ įδαĲκηάμ 
( 24 7E E kN m  , 22 7G E kN m  , 10L m  , 2 4

7.85kN sec / m  , 6.366R m  ,

/ 0.02t d  ,   / 0 .d L  ) υπσ ΫεεİθĲλκ εαĲαεσλυφκ φκλĲέκ 1000ZP kN  ıĲκ 
İζİτγİλκ Ϊελκ. ΢τηφπθα ηİ Ĳκυμ εαθκθδıηκτμ απαδĲκτθĲαδ 2 įδαφλΪΰηαĲα İέĲİ ıĲβθ 
εαηπτζβ įκεσ İέĲİ ıĲβθ İυγτΰλαηηβ. ΢Ĳβ įİτĲİλβ πİλέπĲπıβ απσ ıυΰελέıİδμ Ĳκυ 
πλκĲİδθσηİθκυ ηκθĲİζκτ ηİ Ĳκ FEMsolid ηİ įτκ įδαφλΪΰηαĲα πλκΫευοİ σĲδ Ĳα 2 
πζβλκτθ Ĳκυμ πİλδκλδıηκτμ. ΩıĲσıκ ıĲβθ πİλέπĲπıβ Ĳβμ εαηπτζβμ įκεκτ κδ 
εαθκθδıηκέ κįβΰκτθ ıİ İπδıφαζά απκĲİζΫıηαĲα İδįδεΪ ıĲβθ πλκεİδηΫθβ πİλέπĲπıβ 
πκζτ ζİπĲσĲκδξβμ įδαĲκηάμ εαδ ηİΰΪζβμ εαηπυζσĲβĲαμ Ĳβμ įκεκτ. ΢Ĳκ ΢ξάηα 6.1 İέθαδ 
φαθİλσ σĲδ ηİ 13 įδαφλΪΰηαĲα πİλδκλέαİĲαδ β ΫθĲαıβ Ĳβμ įδαıĲλΫίζπıβμ εαĲΪ Ĳκ 
ηάεκμ Ĳβμ įκεκτ ıİ ıξΫıβ ηİ Ĳβθ πİλέπĲπıβ 1 įδαφλΪΰηαĲκμ. 

 

   
(a) 

   
(ί) 

 

Σχάηα 6.1. ΠαλαηκλφωηΫθκμ φκλΫαμ ηκθĲΫζωθ ıĲκ FEMAP ηİ 10976 ĲİĲλαπζİυλδεΪ 
ĲλδıįδΪıĲαĲα ıĲκδχİέα ΰδα (a) 13 ά  (ί) 1 įδαφλΪΰηαĲα. 

 

ΠαλΪζζβζα ıĲκθ Πέθαεα 6.2 įέθκθĲαδ Ĳα εδθβηαĲδεΪ ηİΰΫγβ ΰδα įδΪφκλα ηκθĲΫζα 
ηİ įδαφκλİĲδεΫμ įδαĲΪιİδμ įδαφλαΰηΪĲπθ. Ǽέθαδ φαθİλσ σĲδ πδκ εκθĲΪ ıĲκ ηκθĲΫζκ πκυ 
αθαπĲτξγβεİ ıİ πλκβΰκτηİθβ İθσĲβĲα εαδ įİ ζαηίΪθİδ υπσοβ Ĳβ įδαıĲλΫίζπıβ İέθαδ 
Ĳα FEM ηκθĲΫζα ηİ 13 įδαφλΪΰηαĲα. Σα ηκθĲΫζα ηİ 2 įδαφλΪΰηαĲα (ıτηφπθα ηİ Ĳκυμ 
εαθκθδıηκτμ) įέθκυθ ηİΰαζτĲİλİμ ηİĲαεδθάıİδμ. ǼπδπζΫκθ, απσ Ĳκθ Πέθαεα 6.3 İέθαδ 
φαθİλσ σĲδ κδ δįδκıυξθσĲβĲİμ Ĳκυ ηκθĲΫζκυ ηİ 13 įδαφλΪΰηαĲα εαδ δįδαέĲİλα κδ 
αθυĲİλİμ, σπκυ β įδαıĲλΫίζπıβ ΰέθİĲαδ πδκ ΫθĲκθβ, İέθαδ πδκ εκθĲΪ ıĲκ πλκĲİδθσηİθκ 
ηκθĲΫζκ ξπλδμ įδαφλΪΰηαĲα (πλκβΰκτηİθβ İθσĲβĲα). ǹπσ Ĳα παλαπΪθπ πλκετπĲİδ σĲδ 



ΓİθδεİυηΫθβ Θİπλέα Ǽυγτΰλαηηβμ εαδ Καηπτζβμ ǻκεκτ ηİ ΙıκΰİπηİĲλδεά ǹθΪζυıβ 47 

 

ıİ αυĲά Ĳβθ πİλέπĲπıβ κδ εαθκθδıηκέ κįβΰκτθ ıİ ηέα İπδıφαζά ζυıβ ΰδαĲέ πλΫπİδ θα 
ζβφγκτθ υπσοβ εαδ Ϊζζİμ παλΪηİĲλκδ Ĳκυ πλκίζάηαĲκμ.   
 

 

( )v m  at 

x=L 

( )x rad  

at 

x=L 

( )Z rad  

at 

x=L 

 4 cubic NURBS 

(Ch. 4-NO dist.) 0.4879 -0.0202 -0.0742 

FEMplate 

13 Diaph. 0.4701 -0.0231 -0.0691 

FEMplate 

2 Diaph. 0.5516 -0.0290 -0.0812 

FEMplate 

1 Diaph. 0.9748 -0.0951 -0.1470 

FEMsolid 

13 Diaph. 0.4647 -0.0229 -0.0685 

FEMsolid 

2 Diaph. 0.5346 -0.0279 -0.0790 

8 cubic NURBS 

(Ch. 5-1 Diaph.) 0.7844 -0.0650 -0.1110 

FEMsolid 

1 Diaph. 0.8215 -0.0726 -0.1235 

Πέθαεαμ  6.2. ΚδθβηαĲδεΪ ηİΰΫγβ ΰδα įδΪφκλα ηκθĲΫζα ηİ ά ξπλδμ įδαφλΪΰηαĲα ΰδα 
εαηπτζβ įκεσ ηİ ζİπĲσĲκδξβ εδίπĲκİδįά įδαĲκηά.  

 

Mode 

Number 

FEMsolid 

1 Diaph. 

FEMsolid 

2 Diaph. 

FEMsolid 

13 Diaph. 

10cubic 

NURBS  

(Ch.4-NO dist.) 

1 0.1172 0.1416 0.1548 0.1317 

2 0.2556 0.2615 0.2704 0.2191 

7 0.3262 0.3644 1.0436 1.1042 

8 0.3562 0.3799 1.4233 1.2311 

9 0.4022 0.4761 1.5021 1.3345 

Πέθαεαμ 6.3. ΙįδκıυξθσĲβĲİμ ΰδα Ĳκ ηκθĲΫζκ įκεκτ Ĳκυ ΢ξάηαĲκμ 6.1. 
 

Σα παλαπΪθπ İπδίİίαδυθκθĲαδ πδκ ıυθκπĲδεΪ ıĲκθ Πέθαεα 6.4 σπκυ 
εαĲαλĲέακθĲαδ κδ απκεζέıİδμ Ĳκυ ηκθĲΫζκυ πκυ αθαπĲτξγβεİ ξπλέμ įδαıĲλΫίζπıβ απσ 
Ĳκ ηκθĲΫζκ ηİ įτκ įδαφλΪΰηαĲα ίΪıβ Ĳπθ εαθκθδıηυθ ΰδα įδαφκλİĲδεΫμ αεĲέθİμ 
εαηπυζσĲβĲαμ. Ǿ παλαηİĲλδεά αθΪζυıβ εαγέıĲαĲαδ δįδαέĲİλα İτεκζβ ηİ Ĳβ ξλάıβ Ĳβμ 
ΙıκΰİπηİĲλδεάμ αθΪζυıβμ ıĲκ λαίįπĲσ ηκθĲΫζκ. ǹιέαİδ θα ıβηİδπγİέ σĲδ εαγυμ 
αυιΪθİĲαδ β αεĲέθα εαηπυζσĲβĲαμ κδ απκεζέıİδμ ηİΰαζυθκυθ εαδ αυĲσ įİέξθİδ σĲδ Ĳα 2 
įδαφλΪΰηαĲα įİθ αλεκτθ πζΫκθ ΰδα θα πİλδκλέıκυθ Ĳβ įδαıĲλΫίζπıβ πκυ ΰέθİĲαδ 
İθĲκθσĲİλβ ηİ Ĳβθ ατιβıβ Ĳβμ εαηπυζσĲβĲαμ.  

΢Ĳβ ıυθΫξİδα ηİζİĲΪĲαδ εαηπτζβ įκεσμ ηİ εδίπĲκİδįά įδαĲκηά Ĳλαπİακİδįκτμ 
ıξάηαĲκμ ( 23 7E E kN m  , 21.5 7G E kN m  , 40L m  , 25.465R m  , 

Pǽ Lateral 

Loading 
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/ 0.086t d  ,   / 0 . 0 8d L  ) ΰδα εİθĲλδεσ εαĲαεσλυφκ φκλĲέκ 10000ZP kN  ıĲκ 
İζİτγİλκ Ϊελκ. ΢Ĳκθ Πέθαεα 6.4 įέθκθĲαδ Ĳα εδθβηαĲδεΪ ηİΰΫγβ ΰδα įδΪφκλα ηκθĲΫζα 
ηİ įδαφκλİĲδεσ αλδγησ įδαφλαΰηΪĲπθ. ΢τηφπθα ηİ Ĳκυμ εαθκθδıηκτμ ξλİδΪαİĲαδ θα  
 

 

(%)v  at 

x=L 

(%)x  at 

x=L 

(%)Z  at 

x=L 

 R=∞ 0.00 0.64 0.00 

R=28.65m 1.09 1.41 1.06 

R=12.73m 3.03 3.40 1.91 

R=6.37m 8.73 27.60 6.08 

Πέθαεαμ 6.4. ǹπσεζδıβ πλκĲİδθσηİθκυ ηκθĲΫζκυ ξπλέμ įδαıĲλΫίζπıβ απσ Ĳκ ηκθĲΫζκ 
ηİ 2 įδαφλΪΰηαĲα (ίΪıβ Ĳπθ εαθκθδıηυθ) ΰδα įδαφκλİĲδεΪ R.  

 

 

at ( )v m  

x=L 

( )x rad  at 

x=L 

( )Z rad  

at 

x=L 

 

4 cubic NURBS 

(Ch. 4-NO dist.) 0.3197 -0.007029 -0.0104 

FEMsolid  

1 Diaph. 0.3547 -0.00867 -0.0115 

FEMsolid 

7 Diaph. 0.2914 -0.00756 -0.0090 

FEMsolid 

16 Diaph. 0.2746 -0.00778 -0.0081 

FEMsolid  

2 Diaph. 0.3256 -0.00782 -0.0103 

FEMsolid  

4 Diaph. 0.3021 -0.00753 -0.0094 

Πέθαεαμ 6.5. ΚδθβηαĲδεΪ ηİΰΫγβ ΰδα įδΪφκλα ηκθĲΫζα ηİ ά ξπλδμ įδαφλΪΰηαĲα ΰδα 
εαηπτζβ įκεσ ηİ εδίπĲκİδįά įδαĲκηά. 

 

ξλβıδηκπκδβγκτθ 6 ά 7 įδαφλΪΰηαĲα ΰδα Ĳβθ απκφυΰά Ĳβμ įδαıĲλΫίζπıβμ. ǹπσ Ĳα 
απκĲİζΫıηαĲα ıĲκθ πέθαεα πıĲσıκ φαέθİĲαδ σĲδ Ĳα ηκθĲΫζα ηİ 2 εαδ 4 įδαφλΪΰηαĲα 
İέθαδ εκθĲΪ ıĲκ πλκĲİδθσηİθκ εαηπτζκ ıĲκδξİέκ πλκβΰκτηİθβμ İθσĲβĲαμ πκυ įİ 

ζαηίΪθİδ υπσοβ Ĳβ įδαıĲλΫίζπıβ. ΠαλΪζζβζα ηİĲαιτ Ĳπθ ηκθĲΫζπθ ηİ 4 εαδ 7 
įδαφλΪΰηαĲα υπΪλξİδ ηδελά įδαφκλΪ. Σκ έįδκ ıυηπΫλαıηα πλκΫευοİ εαδ απσ Ĳκθ 

Pǽ Lateral 

Loading 

Pǽ Lateral 

Loading 
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υπκζκΰδıησ Ĳπθ ĲΪıİπθ  zz  εαδ yy . ΢Ĳβθ πİλέπĲπıβ Ĳπθ 2 įδαφλαΰηΪĲπθ κδ ĲΪıİδμ 
İέθαδ ΰİθδεΪ πδκ εκθĲΪ ıİ ηΫΰİγκμ ηİ αυĲΫμ Ĳκυ ηκθĲΫζκυ ηİ 4 įδαφλΪΰηαĲα απσ σĲδ ηİ 
αυĲΫμ Ĳκυ ηκθĲΫζκυ ηİ 1. Όζα αυĲΪ εαγδıĲκτθ Ĳα 6 ά 7 įδαφλΪΰηαĲα πκυ απαδĲκτθ κδ 
εαθκθδıηκέ αθĲδκδεκθκηδεά ζτıβ εαδ ηβ αθαΰεαέα ΰδα Ĳβ ıυΰεİελδηΫθβ įδαĲκηά εαδ 
įκεσ. ΘİπλυθĲαμ Ĳδμ δįδκıυξθσĲβĲİμ Ĳβμ įκεκτ (Πέθαεαμ 6.6), İέθαδ φαθİλσ σĲδ Ĳκ 
ηκθĲΫζκ ηİ 16 įδαφλΪΰηαĲα İπδφΫλİδ ηδελΫμ įδαφκλκπκδάıİδμ εαδ ευλέπμ ΰδα Ĳδμ 
δįδκηκλφΫμ 8, 9 εαδ 10 πκυ İέθαδ αλεİĲΪ εκθĲΪ ıĲκ πλκĲİδθσηİθκ ηκθĲΫζκ ξπλέμ 
įδαıĲλΫίζπıβ. Όıκθ αφκλΪ Ĳδμ υπσζκδπİμ δįδκıυξθσĲβĲİμ κδ ĲδηΫμ İέθαδ ΰİθδεΪ 
παλσηκδİμ.  

 

Α/Α 
FEMsolid 

1 Diaph. 

FEMsolid 

16 Diaph. 

cubic 

NURBS (Ch. 4-

NO dist.) 

1 0.0488 0.0541 0.0412 

2 0.1408 0.1457 0.1203 

3 0.1905 0.2208 0.2501 

4 0.3002 0.3885 0.3200 

5 0.4643 0.5033 0.4452 

6 0.5309 0.6481 0.6465 

7 0.6299 0.8718 0.7046 

8 0.6797 1.0252 0.9412 

9 0.7125 1.1320 1.1889 

10 0.7361 1.4439 1.3252 

Πέθαεαμ 6.6. ΙįδκıυξθσĲβĲİμ ΰδα ηκθĲΫζκ εαηπτζβμ įκεκτ ηİ εδίπĲκİδįά įδαĲκηά 
Ĳλαπİακİδįκτμ ıξάηαĲκμ.  

 

Σİζσμ, ηİζİĲΪĲαδ εαηπτζβ įκεσμ İέĲİ πμ πλσίκζκμ İέĲİ πμ αηφέπαεĲβ ηİ 
εδίπĲκİδįά įδαĲκηά ( 23.25 7E E kN m  , 21.39 7G E kN m  , 100R m  ,  

0.1667  , / 0.1t d  ,   / 0.065d L  ) εαδ ηİ ηάεκμ Ĳσικυ 33 m. ǹıεİέĲαδ ΫεεİθĲλκ 
εαĲαεσλυφκ φκλĲέκ 3000ZP kN  . ΢τηφπθα ηİ Ĳκυμ εαθκθδıηκτμ ξλİδΪακθĲαδ İέĲİ 5 
(AASHTO) İέĲİ 6 (HEPCJ) įδαφλΪΰηαĲα ΰδα Ĳκθ πİλδκλδıησ Ĳβμ įδαıĲλΫίζπıβμ. ΢Ĳα 
΢ξάηαĲα 6.2 εαδ 6.3 įέθκθĲαδ κδ απκεζέıİδμ ıĲα εδθβηαĲδεΪ ηİΰΫγβ εαδ Ĳδμ ηΫΰδıĲİμ 

ĲΪıİδμ (κλγά εαδ įδαĲηβĲδεά) Ĳκυ πλκĲİδθσηİθκυ ηκθĲΫζκυ ηİ įδΪφκλα įδαφλΪΰηαĲα 
απσ Ĳκ FEMsolid ηκθĲΫζκ ξπλέμ įδαφλΪΰηαĲα. Όıκθ αφκλΪ ıĲκ ηκθĲΫζκ πλκίσζκυ 
İέθαδ αλξδεΪ φαθİλσ σĲδ κδ απκεζέıİδμ ΰδα Ĳδμ ηΫΰδıĲİμ ĲΪıİδμ įİ ηİĲαίΪζζκθĲαδ ΰδα 
παλαπΪθπ απσ 4 įδαφλΪΰηαĲα. ΠαλΪζζβζα σıκθ αφκλΪ ıĲα εδθβηαĲδεΪ ηİΰΫγβ, 
παλαĲβλİέĲαδ ηδα απσĲκηβ ατιβıβ Ĳβμ απσεζδıβμ ıĲβθ πİλέπĲπıβ Ĳκυ 1 įδαφλΪΰηαĲκμ 
εαδ ıĲβ ıυθΫξİδα ΰİθδεΪ ηδελσĲİλİμ ηİĲαίκζΫμ. ΢ξİĲδεΪ ηİ Ĳβθ απσεζδıβ Ĳβμ  
ıĲλİπĲδεάμ ΰπθέαμ, θαδ ηİθ αυιΪθİĲαδ αζζΪ Ĳκ ηΫΰİγκμ αυĲσ εαγİαυĲσ Ĳβμ ΰπθέαμ İέθαδ 
ηδελσ ıİ ıξΫıβ ηİ Ĳα Ϊζζα εδθβηαĲδεΪ ηİΰΫγβ. ΢Ĳβθ πλκεİδηΫθβ πİλέπĲπıβ φαέθİĲαδ 
σĲδ κδ εαθκθδıηκέ πλκίζΫπκυθ Ϋθαθ αλδγησ įδαφλαΰηΪĲπθ πκυ πλκμ Ĳβ ηİλδΪ Ĳβμ 
αıφΪζİδαμ ηπκλİέ θα γİπλβγİέ αθαΰεαέκμ εαδ įİθ κįβΰİέ ıİ αθĲδκδεκθκηδεά ζτıβ. 
Όıκθ αφκλΪ σηπμ ıĲκ ηκθĲΫζκ Ĳβμ αηφέπαεĲβμ įκεκτ, κδ ηΫΰδıĲİμ ĲΪıİδμ 
ηİĲαίΪζζκθĲαδ İζΪξδıĲα ηİ Ĳβθ ατιβıβ Ĳπθ įδαφλαΰηΪĲπθ, İδįδεΪ ηİĲΪ Ĳα 3 
įδαφλΪΰηαĲα. Οδ ηİĲαεδθάıİδμ αυιΪθκθĲαδ ıυθİξυμ ηİ Ĳβθ ατιβıβ Ĳπθ įδαφλαΰηΪĲπθ 
ζσΰπ Ĳβμ įδαφκλκπκέβıβμ ıĲδμ ıĲβλέιİδμ αζζΪ Ĳκ ηİΰİγσμ Ĳκυμ İέθαδ πκζτ ηδελσĲİλκ ıİ 
ıξΫıβ ηİ Ĳβθ πλκβΰκτηİθβ πİλέπĲπıβ ıĲάλδιβμ. Ǽįυ φαέθİĲαδ κδ εαθκθδıηκέ θα 
κįβΰκτθ ıİ αθĲδκδεκθκηδεά ζτıβ įİįκηΫθκυ σĲδ απσ Ĳδμ ĲİζδεΫμ ıυΰελέıİδμ Ĳπθ ĲΪıİπθ 
1-2 įδαφλΪΰηαĲα αλεκτθ ΰδα θα πİλδκλέıκυθ Ĳβ įδαıĲλΫίζπıβ. ǹυĲσ ıυηίαέθİδ ΰδαĲέ κδ 
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εαθκθδıηκέ įİθ ζαηίΪθκυθ υπσοβ Ĳδμ ıυθγάεİμ Ĳβμ įκεκτ εαδ αθĲδηİĲππέακυθ πλσίκζκ 
εαδ αηφέπαεĲβ ηİ Ĳκθ έįδκ Ĳλσπκ. 

 

     
 

  Σχάηα 6.2. ǻδαφκλΫμ απσ Ĳκ ηκθĲΫζκ ηİ ĲλδıįδΪıĲαĲα πİπİλαıηΫθα ıĲκδχİέα χωλέμ 
įδαφλΪΰηαĲα ΰδα πλσίκζκ.  

 

     
 

  Σχάηα 6.3. ǻδαφκλΫμ απσ Ĳκ ηκθĲΫζκ ηİ ĲλδıįδΪıĲαĲα πİπİλαıηΫθα ıĲκδχİέα χωλέμ 
įδαφλΪΰηαĲα ΰδα αηφέπαεĲβ. 



ΓİθδεİυηΫθβ Θİπλέα Ǽυγτΰλαηηβμ εαδ Καηπτζβμ ǻκεκτ ηİ ΙıκΰİπηİĲλδεά ǹθΪζυıβ 51 

 

VIII. ΚİφΪζαδκ 7: ΣυηπİλΪıηαĲα  

ΣΫζκμ ıĲκ 7κ
 εİφΪζαδκ ıυθκοέακθĲαδ Ĳα ıυηπİλΪıηαĲα πκυ πλκΫευοαθ απσ Ĳβθ 

παλκτıα İλİυθβĲδεά ıυηίκζά εαδ παλκυıδΪακθĲαδ εαĲİυγτθıİδμ ΰδα ηİζζκθĲδεά 
Ϋλİυθα. 

΢υΰεİελδηΫθα, ζαηίΪθκθĲαμ υπσοβ σĲδ κδ ίαıδεΫμ εαδθκĲκηέİμ Ĳβμ παλκτıαμ 
įδαĲλδίάμ ıυθέıĲαθĲαδ ıĲβθ İθıπηΪĲπıβ Ĳπθ İλΰαζİέπθ Ĳβμ ΙıκΰİπηİĲλδεάμ 
αθΪζυıβμ- IGA (B-splines εαδ NURBS) Ĳσıκ ıĲβθ ǹǼΜ σıκ εαδ ıĲβθ αθΪζυıβ İθσμ 
θΫκυ ıĲκδξİέκυ εαηπτζβμ įκεκτ FEM πκυ ζαηίΪθİδ υπσοβ Ĳβ ΰİθδεİυηΫθβ ıĲλΫίζπıβ 
εαδ įδαıĲλΫίζπıβ, ηπκλκτθ θα İιαξγκτθ ıυθκπĲδεΪ Ĳα παλαεΪĲπ ıυηπİλΪıηαĲα: 

1. Ǿ ξλάıβ Ĳπθ B-splines εαδ NURBS İπδĲυΰξΪθİδ αελδίά απκĲİζΫıηαĲα ηİ 
ηδελσĲİλκ υπκζκΰδıĲδεσ εσıĲκμ Ĳσıκ ıĲκ ıĲαĲδεσ σıκ εαδ ıĲκ įυθαηδεσ 
πλσίζβηα İυγτΰλαηηβμ ά εαηπτζβμ įκεκτ ξπλέμ αθΪΰεβ ΰδα δįδαέĲİλβ 
ηİĲΫπİδĲα İπİιİλΰαıέα Ĳπθ απκĲİζİıηΪĲπθ. ΠαλΪζζβζα, ίİζĲδυθκθĲαδ κδ 
λυγηκέ ıτΰεζδıβμ πκυ Ϋξİδ δįδαέĲİλβ ıβηαıέα ıĲβθ πİλέπĲπıβ πκυ β 
γİπλέα Ĳβμ įκεκτ ΰİθδεİτİĲαδ εαδ İθĲΪııκθĲαδ πκζζκέ ίαγηκέ İζİυγİλέαμ. 

2. ΢Ĳα πλκίζάηαĲα πκυ ηİζİĲυθĲαδ ıĲβθ παλκτıα įδαĲλδίά įδαπδıĲυθİĲαδ 
σĲδ B-splines ά NURBS 3

κυ
 ίαγηκτ ηπκλκτθ θα įυıκυθ πκζτ αελδίά 

απκĲİζΫıηαĲα ηİ ά εαδ ξπλέμ İπδπζΫκθ ıβηİέα Ĳαιδγİıέαμ. ΩıĲσıκ, 
İπİδįά κ ίαγησμ Ĳπθ εαηπτζπθ αυĲυθ εαδ εαĲΪ ıυθİπİδα β αελέίİδα Ĳβμ 
ηİγσįκυ ηπκλİέ θα İπβλİΪακθĲαδ απσ ıυΰεİελδηΫθİμ ıĲαγİλΫμ Ĳβμ 
įδαĲκηάμ ıİ εαπκδİμ πİλδπĲυıİδμ ıυθέıĲαĲαδ β ατιβıβ Ĳκυ ίαγηκτ. 

3. Ǿ CNT απκĲυΰξΪθİδ θα πλκίζΫοİδ ηİ Ĳβθ İπδγυηβĲά αελέίİδα Ĳδμ ĲΪıİδμ 
εαδ Ĳδμ λκπΫμ ζσΰπ πλπĲκΰİθκτμ ıĲλΫίζπıβμ. Σα απκĲİζΫıηαĲα πκυ įέθİδ 
İέθαδ παλσηκδα ηİ αυĲΪ Ĳβμ γİπλέαμ Vlasov. Παλσηκδα ıυηπİλΪıηαĲα 
δıξτκυθ ΰδα Ĳβ γİπλέα Saint Venant ıİ ıξΫıβ ηİ Ĳβ ıĲλΫοβ εαδ Ĳβ γİπλέα 
Euler-Bernoulli ıİ ıξΫıβ ηİ Ĳβθ εΪηοβ.  

4. Σκ Timoshenko ıĲκδξİέκ įκεκτ (πκυ ευλέπμ ξλβıδηκπκİέĲαδ ıİ İηπκλδεΪ 
πλκΰλΪηηαĲα) įİθ πλκίζΫπİδ ηİ αελέίİδα ĲδηΫμ δįδκıυξθκĲάĲπθ 
ζİπĲσĲκδξπθ αθκδξĲυθ ά εζİδıĲυθ įδαĲκηυθ αεκηΪ εαδ įδπζΪ 
ıυηηİĲλδευθ. ΠαλΪζζβζα, ıĲβθ πİλέπĲπıβ εδίπĲκİδįυθ įδαĲκηυθ κδ 
ĲΪıİδμ υπκİεĲδηυθĲαδ. 

5. Ǿ ατιβıβ Ĳβμ εαηπυζσĲβĲαμ ıυθĲİζİέ ıĲβθ ατιβıβ Ĳκυ ηİΰΫγκυμ Ĳπθ 
φαδθκηΫθπθ ıĲλΫίζπıβμ εαδ įδαıĲλΫίζπıβμ εαδ εαĲΪ ıυθΫπİδα İπδįλΪ 
εαδ ıĲκ ıĲαĲδεσ εαδ Ĳκ įυθαηδεσ πλσίζβηα.   

6. Σα φαδθσηİθα ıĲλΫίζπıβμ ıĲδμ αθκδεĲΫμ įδαĲκηΫμ εαδ įδαıĲλΫίζπıβμ 
ıĲδμ εζİδıĲΫμ κįβΰκτθ ıĲβ ηİέπıβ Ĳπθ δįδκıυξθκĲάĲπθ εαδ δįδαέĲİλα Ĳπθ 
αθυĲİλπθ ıĲβθ πλυĲβ πİλέπĲπıβ. 

7. Οδ παλαηİĲλδεΫμ αθαζτıİδμ ıİ εαηπτζİμ įκεκτμ İεĲİζκτθĲαδ ηİ 
ηİΰαζτĲİλβ İυεκζέα ζσΰπ Ĳβμ ξλάıβμ İλΰαζİέπθ πκυ απİδεκθέακυθ 
απİυγİέαμ Ĳβ ΰİπηİĲλέα.  

8. Οδ εαθκθδıηκέ ΰδα Ĳβθ πλσίζİοβ Ĳβμ ηΫΰδıĲβμ απσıĲαıβμ İθįδΪηİıπθ 

įδαφλαΰηΪĲπθ ηπκλİέ θα κįβΰάıκυθ İέĲİ ıİ İπδıφαζİέμ İέĲİ ıİ 
αθĲδκδεκθκηδεΫμ ζτıİδμ ΰδαĲέ įİ ζαηίΪθκυθ υπσοβ σζİμ Ĳδμ παλαηΫĲλκυμ 
Ĳκυ πλκίζάηαĲκμ. 
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Chapter 1 

Introduction 

1.1 Motivation of doctoral thesis 

Warping and distortion in curved structural members 

It is well known, that in case of a beam under torsional loading where the 

longitudinal displacements that create warping are restrained due to boundary 

conditions (e.g. restrained warping due to frontal diaphragm or forked support), the 

arising torsional moment is nonuniform and normal stresses arise. These are 

proportional to warping and therefore vary along the length of the beam under 

consideration. In this case the arising problem is that of the “nonuniform torsion”. This 

problem has been extensively examined in the literature. In an analogy with 

Timoshenko beam theory, when shear deformation is of importance, the so-called 

Secondary Torsional Shear Deformation Effect (STSDE) has to be taken into account 

as well. Moreover, the additional secondary torsional warping due to STSDE can cause 

similar effects with shear lag in flexure, i.e. a modification of the initial normal stress 

distribution. Thus, the influence of shear lag phenomenon due to both flexure and 

torsion, which is not constant along the beam length, should also be considered. 

In the majority of works made in recent years, the effects of nonuniform shear 

warping distribution or, in other words, shear lag phenomenon in flexure, have not been 

extensively considered in the dynamic problems of beams by the inclusion of the 

corresponding inertia effects. The same case holds for the problem of torsion. Even 

though nonuniform torsion has been examined in the literature, the STSDE and the 

corresponding inertia effects, in analogy to the shear lag in flexure, has not yet been 

investigated in torsional vibration analysis of beams. Thus, the analyses of beam 

models with warping effects in the dynamic problem could be used in a broad range of 

structural applications, such as automobile, aircraft frames, decks of bridges (under 

traffic and earthquake loading), high-rise buildings (under blast and wind loading), as 

well as optics, electromagnetics and acoustics, where high frequencies are more 

important. 

Comparing to straight beam formulations, the behavior exhibited by curved 

beams is far more complex regarding twist deformations. It is well known, that in case 

of a horizontally curved beam under transverse loading not only vertical displacement 

but twist deformation with respect to its longitudinal axis arises as well and this cannot 

be captured by traditional Euler-Bernoulli or Timoshenko beam elements. Even though 

the formulation remains simple, it fails to capture higher order phenomena such as 

“shear lag”, which are associated with a significant modification of normal stress 

distribution due to nonuniform shear warping. Similar considerations with the ones 

made for flexure could be also adopted for the torsional problem, which is also should 



64 Chapter 1 

 

be encountered in the analysis of curved-in-plan beams. Regarding curved beam 

formulations, a series of straight-line segments is generally used in practice in order to 

approximate the curved geometry. This approximation causes an additional problem 

that is the transmission of warping, which in general is not taken into account in the 

analysis of complex structures. For example, an analysis of the cross section of a bridge 

should be performed in the transverse direction in order to account for warping. Thin-

walled straight or curved structures having open or closed cross-section, which are 

widely used in bridge engineering due to their large bending and torsional rigidities as 

well as their low self-weight, suffer from these effects. Hence a realistic estimation of 

stress state employing conventional beam elements becomes difficult, since generally 

commercial programs consider six degrees of freedom (DOFs) at each node of a 

member of a spatial frame, ignoring in this way all the warping effects due to 

corresponding warping restraint. Therefore, it can be concluded that in order to 

accurately estimate and assess the actual stress state of a spatial framed structure more 

rigorous analyses need to be performed. The early curved beam models that have been 

formulated are either restricted to the analysis of only the beam behavior in the plane of 

curvature or do not take into account secondary shear deformation effect caused by 

nonuniform warping, while other efforts consider only doubly symmetric cross 

sections. In general, even in recent or past years, although the planar problem has been 

extensively studied, comparatively little work has been done concerning the general 

three dimensional, non-planar, or coupled lateral-torsional responses of curved beams.  

When compared to the effort involved in static analysis, there has not been much 

effort put into the dynamic analysis of curved box girder bridges. The geometric 

complexities and the spatial coupling effect between bending and torsion make the 

analysis of curved bridges difficult. Bridge design codes usually provide guidance for 
the dynamic analysis of straight bridges (dynamic amplification factor, natural 
frequencies, modelling of vehicles, placement of diaphragms etc.). These design 

recommendations have been used by some designers for curved bridges, even though 

some researches carried out revealed that need to be reviewed. When bridges are 

curved, different kinds of loads can cause lateral bending and torsional modes of 

vibration in addition to the common longitudinal or flexural modes of vibration and so 
there are still many possible as well as crucial problems to be investigated regarding the 

dynamic response, for example, forced vibration due to moving loads and earthquake, 

vehicle-bridge coupling vibration, and wind-induced vibration.  

In-plane deformations, such as distortion, occurring when thin-walled sections 

undergo bending and torsional deformations can considerably weaken the flexural and 

torsional stiffness of thin-walled beams. Regarding horizontally curved beams 

subjected to vertical or radial loads, they inherently exhibit a more complex behavior 

comparing to straight formulations due to the fact that the effects of primary and 

secondary torsion are always coupled to those of bending and cross section distortion 

either for centered or eccentric loads. Even though distortion is larger in magnitude 

near the beam’s ends, it does not remain local (exponentially decays away from the 

support) and thus it should be considered over the entire domain of the beam to account 

for its stiffness-weakening effect. In practice distortion is prevented through the 
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placement of diaphragms in the cross section plane. Regarding the distortional analysis 

related to the intermediate diaphragms, which is more important for box girders, the 

number of studies is quite limited. The study related to the distortional analysis of box 

girders was initiated by Dabrowski (1968) who first formulated the distortional 
phenomenon of box members with a symmetric cross section. Later and more recently, 

other research efforts were undertaken regarding the distortional analysis of the 

structures to give design guidelines on the intermediate diaphragms. However, in most 

of these studies, the placement of diaphragms was not related whether to dynamic 

property analysis or dynamic response analysis. In addition to these, elastic constraints 

cannot be accommodated and due to other assumptions made these proposals lack of 

generality. Finally, guide specifications for horizontally curved highway bridges do not 

take into account the boundary conditions and the cross section directly for the 

specification of the maximum spacing of the intermediate diaphragms through their 

approximating formulae. 

Importance of beam models 

In engineering practice the analysis of beam structural members, which have a 

longitudinal dimension significantly larger than the cross sectional ones, is frequently 

encountered. However, refined models either straight or curved with shell or solid 

elements are widely used in structures, such as for example the deck of a bridge with a 

thin-walled cross section, for stress or strain analysis. The analysis of such members 

employing the so-called “Higher-Order Beam Theories” is of increased interest due to 

their important advantages over more elaborate approaches based on shell or solid 

finite elements, which are mainly incorporated in commercial software. More 

specifically 

• A Beam formulation reduces significantly modeling effort (solid models require 

cumbersome post- and pre-processing even in relatively simple cases). The design of 

box-shaped thin-walled cross sections, the placement of supports, diaphragms and 

loads, the additional calculations needed in order to derive cross sections’ rotations and 

further manipulations to extract stress values at specific points of solid elements can be 

very time consuming.  

• It permits isolation of structural phenomena and results interpretation contrary 

to the reduced oversight of the 3-D Finite Element (FEM) models (quantities such as 

rotation, warping parameter, distortional effects, stress resultants etc. are also evaluated 

in contrast to solid model which yields only translations and stress components). 

• It allows straightforward model handling (support modeling and external 

loading are easily applied). 

• Midline of shell and plate models becomes difficult to be designed for different 

thicknesses of the same cross section, while midline models exhibit difficulty in 

capturing warping accurately. 

• The investigation of various shell/plate or solid models in order to conduct 

convergence studies and control membrane and shear locking phenomena becomes 

time-consuming and multiple models need to be created. 
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• It avoids difficulties in discretizing a complex structure, while the resulting 

increased number of DOFs of the 3-D models leads to severe or unrealistic 

computational time. 

• It avoids difficulties in discretizing a structure including thin-walled members 

(shear-, membrane-locking phenomena). 

• It facilitates parametric analyses (solid modeling often requires construction of 

multiple models).  

• It does not require shape functions for the kinematical components; hence the 

minimum number of elements can be employed, while the accuracy of function 

derivatives is not compromised. 

• Beam models allow the use of different numerical tools (i.e. Isogeometric 

analysis- IGA, boundary element methods- BEM etc.) for the 2-D cross sectional and 

the 1-D longitudinal analysis which could be more effective in one case or the other 

and, thus, leading to an optimum approximating computational procedure.  

Evolution of beam theories and state of the art 

Over the past decades, classical beam theories based on specific assumptions fail 

to describe accurately the structural behavior of beam elements, especially in more 

complex formulations such as in curved geometries. Among these theories, that of 

Saint-Venant (SV) still plays a crucial role due to the fact that the analysis reduces to 

the evaluation of warping and distortional functions over the cross sectional domain. 

However, this solution is exact for the uniform warping of a beam (warping/distortional 

deformations are not restrained). Towards improving SV theory, several researchers 

investigated the so-called SV’s principle (stated by Love, 1944) as well as the SV’s 

end-effects in order to derive a more general formulation of beams’ kinematics. In most 

of these studies, the solution is obtained as the sum of the SV’S solution and the 

residual displacements corresponding to the end-effects. Vlasov (1961) presented the 

Thin Tube Theory (TTT) and treated different cross section types as special cases of 

this general theory. Dabrowski (1968) elaborated Vlasov’s theory and introduced 

distortional behavior of box girders with a symmetric cross section. His model 

introduces the distortion angle as the single degree of freedom which measures the 

magnitude of the cross-sectional distortion. Schardt (1989, 1994) developed an 

advanced formulation known as Generalized Beam Theory (GBT) which is a 

generalization of the classical Vlasov beam theory in order to incorporate flexural and 

torsional distortional effects. A distinguishing feature of GBT stems from the general 

character of its cross sectional analysis which enables the determination of cross-

section deformation modes as well as their categorization to global, distortional or local 

ones. Further developments of GBT avoid some of its cumbersome procedures through 

eigenvalue cross sectional analysis. These approaches are employed nowadays by 

several researchers. Towards solving the problem for arbitrarily shaped homogeneous 

or composite cross sections, El Fatmi and Ghazouani (2011) presented a higher order 

composite beam theory (denoted HOCBT) that starts from the exact expression of SV’s 

solution and introduces in- and out-of-plane independent warping parameters for 

symmetric orthotropic cross sections with the ability to extended it for arbitrary ones. 
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However, in-plane warpings are only due to the flexural and axial deformation modes 

and, thus, it could be stated that this research effort studies Poisson ratio effects rather 

than distortional effects. Ferradi and Cespedes (2014) presented the formulation of a 

3D beam element solving an eigenvalue problem for the distortional behavior of the 

cross section (in-plane problem) and computing warping functions separately by using 

an iterative equilibrium scheme. However, to the authors’ knowledge, there are no 

research efforts that introduce a unified distortional and warping eigenvalue analysis of 

arbitrarily shaped cross sections to the analysis of curved beams.   

Introduction to Isogeometric Analysis 

During the last decades the significant development of both software and 

hardware has made possible various novel approaches to architectural form and design. 

Rapid advances in CAD (Computer-Aided Design) technology have enabled architects 

and engineers to overcome traditional design limits and transform any imaginable 

shape into a persuasive building. The major stages of this new design trend (Free Form 

Design – FFD) involve parametric modeling, interactive structural analysis and shape 

optimization, which can be performed through a variety of computational tools 

available to the design teams. 

When it comes to engineering projects consisting of conventional structural 

elements such as columns, beams and slabs, the behavior of which is easily understood 

and assessed, the engineer is capable of giving direct feedback to the architect by using 

well established methods and rules. However, these traditional practices cannot be 

always applied on complex geometrical configurations. It is often difficult to 

understand and interpret in advance the structural behavior of such three dimensional 

layouts. Consequently, this difficulty gives rise to an iterative and time consuming 

process of geometric design, modeling and simulation, analysis and checking, which 

often limits the efficiency of structural design and does not necessarily lead to reliable 

results. This raised the need for better interoperability between software packages used 

by architectural and structural teams, as well as improved reliability of structural 

analysis and design tools. Recent attempts towards exploiting the potential of 

parametric design in combination with finite element analysis (FEA) software led to the 

development of tools for free-form geometric design based on mechanical principles 

(“physically-based modelling”), where material and mechanical properties are ascribed 

to surfaces so that the geometry may be freely deformed by the designer to the desired 

configuration. This mechanical approach to geometrical modelling leads to acceleration 

of the process and to the possibility of performing more iterations of a structural 

solution in order to yield the optimum result. 

The connection of the geometric model to the structural one through conventional 

Finite Element representations sets restrictions on the level of interaction between the 

stages of structural analysis and design, on the computational time and in some cases 

on the accuracy of the results. These deficiencies were initially reported during the 

analysis and design of various mechanical, naval and aeronautical applications, where 

the creation of an appropriate “simulation-specific” geometry is important, and set the 

base of a new perspective which requires focusing on a single geometric model, which 
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can be utilized directly as an analysis model. Consequently, a change from classical 

FEA to an analysis procedure based on CAD representations is required. This concept 

is referred to as Isogeometric Analysis and it was introduced by Hughes et al. (2009). 

According to this novel approach, the structure is discretized exploiting its intrinsic 

computer-aided geometric definition. Thus, a more interactive approach between 

geometry and analysis is possible and more accurate results are obtained by 

diminishing the geometry approximation error. 

Nevertheless, even though Isogeometric analysis has been successfully applied in 

shell problems and could provide solutions to structural engineering problems arising 

from the use of free-form shell surfaces, limited work seems to exist concerning 

Isogeometric analysis of three dimensional curvilinear beams. The majority of 

contemporary free-form projects, apart from complex surfaces, comprise curvilinear 

grids or stiffener nets. These beam members are an important ingredient for the 

structural integrity of such constructions. Finite beam elements are an effective and 

convenient means of analysis of such structures, combining ease of application and 

interpretation of results with low computational cost. Moreover, up-to-date regulations 

are based on quantities such as stress resultants, which are readily determined only 

through beam elements. However, in most cases of FFD process, it is difficult to 

incorporate the inherent curvature of the beams into the structural model (since usually 

straight beam FE are used) and cumbersome procedures need to be applied in order to 

refine the element mesh and capture satisfactorily the curved geometry with straight 

elements. These procedures inhibit an interactive structural analysis to be performed in 

an automated manner. Hence, it can be concluded that beam elements should be 

combined with Isogeometric analysis in order to serve as a useful tool in modern 

analysis projects. 

1.2 Objectives and novelties of doctoral thesis 

Having established the motivation and the state of the art behind the subject of 

the present doctoral thesis, the prime objective can be founded, which is to formulate 

curved beam models enhanced with the capability to take into account shear 

deformation, generalized warping (shear lag effect) as well as cross sectional distortion. 

By employing these models it is intended to highlight all the above structural 

phenomena and their importance in beams’ analysis. Another major objective is to 

incorporate the Isogeometric Analysis in the numerical methods traditionally employed 

in order to increase the level of accuracy with less computational effort. For this 

purpose, the main idea of the Isogeometric approach has been applied. This consists of 

describing the geometry of the problem by B-splines or Non-Uniform Rational B-

splines (NURBS) interpolation exactly and using the same interpolating basis to 

represent the kinematical components of the proposed curved beam model.  

The accuracy and reliability of the obtained results have been verified through 

comparisons with results obtained by the implementation of the Finite Element Method 

(FEM) employing beam, solid (quadrilateral or triangular) or plate elements in 

commercial software package, as well as with available analytical solutions and 

experimental data. In addition to these, design guidelines for specifying the maximum 
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spacing of intermediate diaphragms have been applied to the aforementioned solid 

models and compared to the proposed one. 

In the present doctoral thesis the Boundary Element Method (BEM) is employed 

for the solution of two-dimensional problems on the cross sectional domain, while the 

Analog Equation Method (AEM), which is considered an advancement to classical 

BEM, and Finite Element Method (FEM) are employed for the solution of one-

dimensional problems along the beam length. Isogeometric tools have been integrated 

in both of the previous numerical approached and their advantages have been 

highlighted.  

The research work presented herein is considered original and its essential 

features and novel aspects are summarized as follows: 

 

i. The proposed formulation is capable of the complete analysis of spatial curved 

beams of arbitrary closed or open cross section with one plane of constant 

curvature (either small or great) considering flexural-torsional shear lag effects 

and transverse loading to the plane of curvature (as is usually the case in 

practice). The necessity to include nonuniform warping and STSD effects in the 

dynamic analysis of curved bridge decks is demonstrated. 

ii. The developed beam formulation is capable of the static and dynamic analysis of 

spatial straight or curved beams of arbitrary closed or open and thin- or thick-

cross section considering distortional effects and Poisson ratio. The necessity to 

include them in the analysis of beams is demonstrated. 

iii. The straight or curved beam is subjected to arbitrary external loading including 

warping and distortional moments and is supported by the most general boundary 

conditions including elastic support or restraint. 

iv. The numerical solution of advanced beam theories and its application to the 

analysis of straight or horizontally curved beams is based on B-splines and 

NURBS (Isogeometric Analysis) offering the advantage of integrated computer 

aided design (CAD) in the analysis.  

v. The cross sectional analysis is based on an iterative equilibrium scheme which 

results in a numerical procedure with less computational effort and complexity 

comparing to traditional eigenvalue analysis reported in the literature for similar 

problems. Particularly, modes attributed to different structural phenomena can be 

separated directly and make the supervision of the results easier. In addition to 

this, the data post-processing and the iterative procedure become faster due to the 

fact that warping and distortional functions are calculated separately. 

vi. The accuracy level of the numerical method proposed can be decided by the user 

by setting the desirable number of the modes taken into account and, thus, 

increasing the number of higher modes added in the final solution. 

vii. The developed beam formulation reduces significantly modelling effort due to 

the fact that there is no need for pre-processing in order to define geometry, 

which is an important issue even in simple curved beams. Moreover, it allows 

straightforward model handling (boundary conditions, external loading are easily 

modelled) compared with three-dimensional solid curved beam models. 
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viii. The use of NURBS in AEM results in drastically improved accuracy in spectral 

calculations over the original AEM, as it is the case also with traditional FEM, 

while AEM gives highly accurate results either original or combined with IGA 

tools comparing to corresponding FEM formulations. 

ix. The assessment of the design guidelines which specify the maximum spacing of 

intermediate diaphragms through comparisons of the proposed curved model to 

the corresponding solid or plate ones and some parametric studies is a first step 

towards suggesting further provisions and limitations on the application of these 

regulations. 

1.3 Outline of doctoral thesis 

The present doctoral thesis is organized in seven chapters and two appendices. 

Each one of the chapters 2 to 6 consists of an introduction containing the necessary 

literature review of the corresponding problem, the statement of the problem, the 

numerical solution, a number of representative numerical examples and finally some 

concluding remarks. In the final chapter, the main conclusions drawn within the present 

doctoral thesis are summarized, while suggestions and goals for future research are 

proposed. The appendices include additional information necessary to understand the 

basic characteristics and some technical aspects of the numerical techniques employed 

in the present doctoral thesis. 

In Chapter 2, the Analog Equation Method (AEM), a boundary element based 

method, is employed for the nonuniform torsional problem of bars of arbitrary constant 

cross section, considering a quadratic B-spline approximation for the fictitious loads of 

a substitute problem. The fictitious loads are established using a BEM-based technique 

and the solution of the original problem is obtained from the integral representation of 

the solution of the substitute problem. The bar is subjected to arbitrarily distributed 

twisting moments along its length, while its edges are subjected to the most general 

torsional (twisting and warping) boundary conditions. The problem is numerically 

solved introducing a quadratic B-spline function for the fictitious load in the integral 

representations of the aforementioned technique. Numerical results are worked out to 

illustrate the method, designate its efficiency, accuracy and computational cost, as well 

as verify its integrity comparing with the results of analytical solutions. In addition to 

this, refinement procedures have been employed in some of the numerical examples in 

order to investigate their efficiency in increasing accuracy. Knot insertion, which is one 

of these, is proved to be very beneficial in refining the B-spline curve and increasing 

the accuracy. 

In Chapter 3, the Analog Equation Method (AEM), a boundary element based 

method, is employed for the analysis of a homogenous beam element of arbitrary cross 

section (thin- or thick- walled) taking into account nonuniform warping and shear 

deformation effects (shear lag due to both flexure and torsion), considering B-splines 

for the approximation of the fictitious loads. The Isogeometric tools, either integrated 

in FEM or AEM, are employed for the vibration analysis of this element, too. The 

beam is subjected to the combined action of arbitrarily distributed or concentrated axial 

and transverse loading, as well as to bending, twisting and warping moments. Its edges 
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are subjected to the most general boundary conditions, including also elastic support. 

Nonuniform warping distributions are taken into account by employing four 

independent warping parameters multiplying a shear warping function in each direction 

and two torsional warping functions, which are obtained by solving corresponding 

boundary value problems, formulated exploiting the longitudinal local equilibrium 

equation. By employing a distributed mass model system accounting for longitudinal, 

transverse, rotatory, torsional and warping inertia, ten boundary value problems with 

respect to the variable along the beam time-dependent one dimensional kinematical 

components are formulated. The numerical solution or the spectrum analysis of the 

aforementioned problems is performed through IGA, FEM and AEM, leading to a 

system of second-order differential equations, which are quasi-static and solved for the 

static and free vibration case, formulating a generalized eigenvalue problem. 

In Chapter 4, the static and dynamic generalized warping problem of horizontally 

curved beams of arbitrary cross section, loading and boundary conditions is presented. 

The proposed beam element possesses ten degrees of freedom (DOFs) per node in 

order to account for out-of-plane nonuniform warping due to both flexure and torsion 

(shear lag due to both flexure and torsion). This element can be employed in the 

analysis of curved bridge decks of open or closed (box-shaped) cross section. Great 

curvature can be considered in order to formulate the expressions of normal and shear 

strains. Thus, the sectorial properties related to the thickness-curvature effect, which 

need to be considered in cases of large subtended angle and small radius, are included 

in this study. The numerical solution of the problem is obtained by Isogeometric tools, 

either integrated in FEM or AEM. When pure AEM is considered, constant or 

quadratic elements are employed in order to represent the fictitious loading. The curved 

structure (e.g. bridge deck) is subjected to the combined action of arbitrarily distributed 

or concentrated axial and transverse loading, as well as to bending, twisting and 

warping moments. Its edges are subjected to the most general loading and boundary 

conditions, including also elastic support, as in the previous chapter. Finally, by 

employing a distributed mass model system, ten boundary value problems are 

formulated similarly to the previous chapter. Free vibration characteristics and 

responses of the stress resultants and displacements to static and moving loading have 

been studied. The warping functions and the geometric constants including the 

additional ones due to warping are evaluated employing a pure BEM approach. The 

results obtained from the beam element are compared to those obtained from finite 3D 

solutions and other research efforts. Numerical examples are presented to illustrate the 

efficiency and the accuracy of this formulation. 

In Chapter 5, the static and vibration analysis of straight or horizontally curved 

beams of arbitrary cross section, loading and boundary conditions including 

generalized cross sectional warping and distortional effects due to both flexure and 

torsion is presented. The aim of this Chapter is to propose a new formulation by 

enriching the beam’s kinematics both with out-of- and in-plane deformation modes 

and, thus, take into account both cross section’s warping and distortion in the final 1D 

analysis of curved members, towards developing GBT further for curved geometries 

while employing independent warping parameters, which are commonly used in Higher 
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Order Beam Theories (HOBT). A coupled two-dimensional boundary value problem is 

formulated, with or without considering Poisson ratio for the 2D cross section’s domain 

together with the corresponding boundary conditions. Applying a proper discretization 

scheme for the cross section, the above mentioned problem will lead to the formulation 

of an eigenvalue problem which the eigenvalues and the corresponding eigenvectors, 

for a desired number of modes, can be extracted from.  The obtained set of modes 

contains axial, flexural and torsional modes in order of significance without distinction 

between them. To avoid the additional effort needed in order to recognize the most 

significant modes, an iterative local equilibrium scheme is adopted until the error due 

to residual terms becomes minimal. Together with the warping functions calculated 

first, the corresponding distortional ones are also obtained and recursively modify the 

warping functions due to their coupling. With all these additional modes, the beams’ 
kinematics is enriched and capable of describing accurately the displacement and stress 

distribution in the beam. The functions derived are evaluated employing two 

dimensional BEM. A set of boundary value problems are formulated with respect to the 

unknown kinematical components (displacements, rotations and independent 

parameters), the number of which is defined by the user depending on the accuracy of 

the results. This linear system is solved using Isogeometric tools, either integrated in in 

FEM or AEM. The results obtained from the beam element are compared to those 

obtained from finite 3D solutions and other research efforts. Numerical examples are 

presented to illustrate the efficiency and the accuracy of this formulation as well as to 

provide rules of thumb regarding the consideration of distortion and the number of 

modes needed.  

In Chapter 6, the beam formulations presented in Chapters 4 and 5 are employed 

together with design guidelines which specify the maximum spacing of intermediate 

diaphragms in order to prevent from excessive distortional effects in cross section’s 

plane. These provisions are combined to FEM solid or plate/shell models and through 

the comparisons of the results, the solutions provided by the guidelines are assessed 

with respect to strength of the models against distortion. For this purpose, various box-

shaped cross sections and diaphragmatic arrangements have been examined for both 

the static and dynamic case.  

In Chapter 7, the main conclusions drawn in this doctoral thesis are summarized 

and the key features and novelties of the developed formulations are highlighted. 

Moreover, directions for further research are suggested. 

The present doctoral thesis contains also two appendices. In Appendix A.1, the 

main concept of the Analog Equation Method is presented regarding the solution 

ordinary differential equations of 2
nd

 and 4
th

 order. Finally, in Appendix A.2, the 

structure of B-splines and NURBS is described together with the procedure followed in 

order to integrate them in FEM and AEM numerical approximations.  

In closing, it is worth here mentioning that the outcome of the conducted research 

activity presented in this doctoral thesis has been published in international journals 

and international conferences. These publications are cited at each corresponding 

chapter. 
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Chapter 2 

Quadratic B-splines for the 

Nonuniform Torsional Problem of Bars 

2.1 Introduction 

It is well known, that in case of a beam under torsional loading where the 

longitudinal displacements that create warping are restrained due to boundary 

conditions (e.g. restrained warping due to frontal diaphragm or forked support), the 

arising torsional moment is nonuniform and normal stresses arise. These are 

proportional to warping and therefore vary along the length of the bar. In this case the 

arising problem is that of the nonuniform torsion and it has been solved by various 

numerical methods (Eisenberger, 1995; Sapountzakis, 2000; Mokos, 2007). Apart from 

research efforts in which bars are idealized with computationally demanding three 

dimensional or shell elements, several researchers proposed specialized beam elements 

to analyze bars under nonuniform torsion. Due to the mathematical complexity of the 

problem, the existing analytical solutions are limited to symmetric cross-sections of 

simple geometry, loading and boundary conditions (Friemann, 1993; Ramm and 

Hofmann, 1995). Moreover, the finite element method (Gruttmann et al., 1998), the 

differential quadrature element method (Chen, 1998) and a modified Fourier series 

method (Kim and Su, 1997) have also been used for the analysis of the nonuniform 

torsional problem, in the case the geometry of the cross section, its boundary conditions 

or its loading are not simple. 

In general, Boundary Element Methods (BEM) (Katsikadelis, 2002a) have been 

only sparsely used for problems of torsion and warping. These implement integral 

equations and are the most contemporary numerical methods for solving boundary 

value problems. A BEM approach uses in-line elements for discretization, instead of 

area elements used in Finite Element Methods or Finite Different Methods leading to a 

small number of elements required to achieve high accuracy. Remodeling to reflect 

design changes becomes simpler. However, BEM, such as other numerical methods, is 

not free of drawbacks. Particularly, application of BEM requires the so-called 

fundamental solution. A promising technique that overcomes these drawbacks is the 

Analog Equation Method, developed by Katsikadelis (2002b, 1994). 

AEM constitutes a numerical method for solving linear and nonlinear boundary 

value problems (elliptical, parabolic and hyperbolic) with linear or nonlinear boundary 

conditions. This method is based on BEM while improves it and eliminates its 

drawbacks. According to AEM, the real problem, which is described by a differential 

operator not reversed in practice, is transformed to an equal problem which is described 

by a linear differential operator of the same order with known fundamental solution and 
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integral representation. In the substitute problem, the geometry of the space under 

consideration and boundary conditions are preserved, while the non-homogenous terms 

of the linear operator stand for fictitious loads. Fictitious loads are computed through 

the numerical implementation of AEM, which leads to a system of linear or nonlinear 

algebraic equations.  

In this chapter, quadratic B-splines are integrated in the AEM in order to study 

their advantages over the traditional AEM and investigate their main features related to 

the analysis of bars. B-splines have been only sparsely used in finite element analyses 

(FEM) and boundary element methods (BEM). However, lately integrated computer 

aided design (CAD) and finite element analyses (FEA) using B-splines gained greater 

insight with the introduction of NURBS (Non-Uniform Rational B-splines) by Hughes 

et al. (2009). Thus, an introduction of B-splines in a BE-based numerical technique is a 

natural starting point for the introduction of Isogeometric Analysis in the numerical 

solution of advanced beam theories with BEM either straight (Chapter 3) or curved 

(Chapters 4, 5 and 6). AEM is presented in a general form for one-dimensional 

boundary value problems described by fourth-order differential equations, such as the 

nonuniform torsional problem of a homogeneous isotropic bar, which is reduced to 

solving the fourth-order differential equation with respect to the angle of twist of the 

cross section. The bar is subjected to an arbitrarily distributed twisting moment while 

its edges are restrained by the most general linear torsional boundary conditions. The 

essential features and novel aspects of the present formulation of AEM compared with 

previous ones are summarized as follows: 

 

i. The method used is based on quadratic B-splines, that is piecewise quadratic 

polynomials with C1 continuity (lowest-degree polynomial representing a planar 

curve), and a collocation discretization methodology with the points of a uniform 

partition being the collocation points.  The most important property of B-splines 

in general is that both continuity and local controllability can be achieved by their 

use. Local controllability in simple words is the ability of B-splines to change 

only a portion of a curve when a single point is moved. 

ii. The introduction of the quadratic B-spline to replace the approximation of 

fictitious loads with constant values and its integration to the expressions of the 

AEM technique improves accuracy and reduces nodal points required for 

discretization. Unknown values of the problem are reduced, too. 

iii. The dimensions of matrices used for the numerical implementation of AEM 

become smaller and less algebraic equations are required to compute fictitious 

loads. 

iv. The employed B-spline is a special class of B-splines called uniform quadratic B-

spline. As the name implies, parametric quadratic polynomials are used on a 

uniform knot sequence, which is called the knot vector, composed of successive 

integers equally spaced (linear elements of the same length used for 

discretization). Three control points have been used to represent the B-spline 

which is the minimum number that can be used for a quadratic B-spline (Jüttler, 



Quadratic B-Splines for the Nonuniform Torsional Problem of Bars 77 

 

2013; Piegel and Tiller, 1997; Rogers, 2001). The computation of fictitious loads 

at collocation points depends now on the calculation of the three control points. 

2.2 Statement of the problem 

Consider a prismatic bar of length l with a cross section of arbitrary shape, 

occupying the two dimensional multiply connected region   of the yz  plane bounded 

by the K+1 curves 0 1 2, , ,..., K     as shown in Fig.1. 

When the bar is subjected to the arbitrarily distributed twisting moment 

( )t tm m x  its angle of twist is governed by the following boundary value problem 

(Sapountzakis and Mokos, 2003; Sapountzakis, 2000) 

 

4 2

4 2

( ) ( )x x
S t t

d x d x
EC GI m

dx dx

 
                         along the bar      (2.1a) 

 

1 2 3( )x tx M      ,     1 2 3b

d
M

dx

        at the bar ends 0,x l       (2.2a,b) 

   

yz

L 

b=L 

a=0 

 t tm m x  

x

 

(a) 

 

(b) 

Figure 2.1.  Prismatic bar subjected to a twisting moment (a) with a cross section of   

arbitrary shape occupying the two dimensional region   (b). 
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where  E , G   are the modulus of elasticity and the shear modulus of the isotropic 

material of the bar, while SC , tI  are the warping and torsion constants of the bar’s 

cross section, respectively. Moreover,  ( ) /xd x dx  denotes the rate of change of the 

angle of twist  ( )x x  and it can be regarded to the torsional curvature, while tM , bM

are the twisting and warping moments due to the torsional curvature at the boundary of 

the bar, respectively.  

The boundary conditions (2.2a,b) are the most general linear torsional boundary 

conditions for the bar problem, including also the elastic support. It is apparent that all 

types of the conventional torsional boundary conditions (clamped, simply supported, 

free or guided edge) can be derived from these equations by specifying appropriately 

the functions ia  and i  (e.g. for a clamped edge it is 1 1 1a   , 

2 3 2 3 0a a      ). 

The solution of the boundary value problem given from eqns. (2.1), (2.2a,b), 

which represents the nonuniform torsional problem of bars presumes the evaluation of 

the warping and torsion constants SC , tI , respectively, which are given as 

(Sapountzakis and Mokos, 2003; Sapountzakis, 2000) 

 

2P
S SC d


                  

2 2
P P
S S

tI y z y z d
z y

 


  
        
                           (2.3a,b) 

 

where ( , )P
S y z  is the primary warping function with respect to the shear center S of 

the cross section of the bar, which can be established by solving independently the 

Neumann problem 

 

2 0P
S    in                                                                                                           (2.4) 

 

P
S

y zzn yn
n




    on                                                                                                (2.5) 

 

where 2 2 2 2 2/ /y z       is the Laplace operator; / n   denotes the directional 

derivative normal to the boundary   and yn , zn  the direction cosines.  

2.3 Numerical Solution-Integral Representations 

The evaluation of the angle of twist ( )x x  is accomplished using AEM 

(Katsikadelis, 2002b). According to this method, for the function ( )x x , which is four 

times continuously differentiable along the bar and three times continuously 

differentiable at the bar ends, the following relation is valid 
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4

4

( )
( )xd x

q x
dx


                                                                                                            (2.6) 

 

where ( )q x  is the fictitious load. 

The fundamental solution of eqn. (2.6), also known as the fundamental solution 

of the flexural beam, is a partial solution of the differential equation (A.1.6) given in 

the Appendix A.1, where instead of ( , )u x 
 now  ( , )x x 

 is applied. Employing this 

fundamental solution, the integral representation of the angle of twist is obtained as in 

eqn. (A.1.8) and by its differentiation, the expressions for the derivatives of ( )x   can 

be derived as in eqns. (A.1.11).  

The introduction of a B-spline in the above mentioned expressions can now be 

done by substituting ( )q x  with the polynomial representation of a quadratic B-spline 

with a uniform knot vector. According to the Appendix A.2, the i
th

 B-spline basis 

functions of p-degree and the fictitious load curve for a quadratic B-spline are defined. 

For the sake of convenience (simplify this initial approach of fictitious load using a 

quadratic B-spline in AEM, make the comparison with the AEM using constant values 

of fictitious loads easier and the results more obvious) and without any loss of the 

general character of the method, in the following analysis the length of the bar is 

considered to be equal to unity. 

Now  ( )q x , which is given in eqn. (A.2.4), is substituted in eqn. (A.1.14) and the 

vector { }T  can be written as follows 

 

 
      

2

0
{ } { }T P T F P

F

 
    

                                                                            (2.7) 

 

where  P  is the 3X1 vector containing the control points (   0 1 2P P P P
 ). 

Subsequently, applying the integral representations (A.1.8) and (A.1.11) at the 

collocation points presented in Fig. A.2.1, the following relations are derived, similarly 

to eqns. (A.1.23) 

 

   { } [ ] [ ]A P C                                                                                               (2.8a) 

 

   { '} [ '] [ ']A P C                                                                                           (2.8b) 

 

   { ''} [ ''] [ '']A P C                                                                                         (2.8c) 

 

   { '''} [ '''] [ ''']A P C                                                                                          (2.8d) 

 

where ( , ', '', ''')     are the vectors containing the values of the angle of twist and its 
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derivatives ( ' '' '''( ( ), ( ), ( ), ( ))x x x xx x x x    ) at collocation points with respect to the 

control points. The coefficients of the 3X3 square matrices [ ],[ '],[ ''],[ ''']A A A A  (eqns. 

(A.1.24)) are also given with respect to the vector of the control points. Afterwards, 

employing eqns. (A.1.25)-(A.1.28), eqn. (2.1a) yields the following linear system of 

equations   

 

 0 0 1 2( [ ][ ] [ ][ '']) { } [ ]{ ''}S t t tE C A G I B P P P m G I R
                                        (2.9) 

 

which gives the values of the control points 0P , 1P  and 2P  instead of the values of ( )q x

at collocation points as in the original AEM. The diagonal matrix 0[ ]A contains the 

values of basis functions 0,1N , 1,2N  and 2,2N  given in eqns. (A.2.2) for X=Xi1, Xi2 and 

Xi3 shown in Fig. A.2.1. Matrices [ ],[ '],[ ''],[ ''']A A A A , [ ]F and [ ],[ '],[ ''],[ ''']B B B B as 

they have been formed after substitution of B-splines in the relevant integrals are 3X3, 

8X3 and 3x3, respectively. The vector of control points substitutes the fictitious load 

vector of the original AEM. Matrices [ ]SC  and [ ]tI are diagonal with 2X2 dimensions 

and their values depend on the cross section geometry and primary warping function.  

2.4 Refinement procedures 

These procedures have been described in the Appendix A.2. A new set of control points 

is derived in eqn. (A.2.7) in order to refine the quadratic B-spline curve of the fictitious 

load (see Fig. A.2.3). The knot vector examined previously in order to determine the 

AEM technique by using a B-spline fictitious load is now enriched with the addition of 

new knots (eqns. (A.2.8)). In order to approximate the curve of fictitious load i.e. in the 

interval [0, ¼), the basis functions given by the expressions (A.2.9n-A.2.9p) have been 

substituted in eqn. (A.2.10) and the following expression is obtained 

 

2 2
0 1 2

1
( ) (1 4 ) 6 (1 4 ) 8 , 0

4
q P P P if                                                   (2.10) 

 

The same procedure is followed in order to derive the expression of the B-spline curve 

for the rest of the intervals with respect to the other control points. It should be noted 

that the basis functions ( 2(1 4 ) , 6 (1 4 )  , 28 ) employed in eqn. (2.10) differ 

from those extracted from eqn. (A.2.4) ( 2(1 ) , 2 (1 )  , 2 ). Therefore, the arising 

results (and obviously their accuracy compared to the exact solution) are expected to 

differ when employing the fictitious load given by eqn. (A.2.4) or by eqn. (2.10). 

2.5 Numerical examples 

In order to examine the advantages attained by the use of quadratic B-splines as 

an approximation of the fictitious loading in the AEM technique (instead of constant 

values in the original AEM) in terms of accuracy and computational cost, computer 
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programs have been written and representative examples have been studied. The 

numerical results have been obtained employing up to 44 nodal points (NP) in the 

original AEM (AEM) or 12 collocation points (CP) in the B-spline AEM (AEM-BS) 

and up to 400 boundary elements depending on the cross section type (cross sectional 

discretization in order to evaluate warping and torsion constants). However it is noted 

that in most of the treated examples higher accuracy could be also achieved with 

coarser discretization.  

2.5.1 Doubly Symmetric I-section 

In the first example, a clamped steel ( 2.1 8E E kPa , 0.3v  ) bar of length 

L=1m, of a rolled doubly symmetric I-section IPE-200 (
46,846tI cm , 

612746SC cm , 
2max 47,50P

S cm   according to Kraus and Kindmann, 2009), 

loaded along its length by a uniformly distributed twisting moment 1 /tm kNm m  has 

been studied (Fig. 2.2). Three cases are examined, namely i) three discretization 

elements employing original AEM technique, ii) three collocation points employing 

AEM-BS and iii) the analytical (exact) solution employing Maple programming 

(Maplesoft, 2008).  

 

 

(a) 

 

(b) 

      Figure 2.2. Steel IPE cross section (a) of the clamped bar of example 1(b). 

1L m  
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In Table 2.1 the values of the angle of twist and its derivatives at the three 

collocation points (Fig. A.2.1) are presented and compared for the three 

aforementioned cases, noting that the values of the fourth derivative are the values of 

the fictitious load ( )q x . From this table, it is observed that the discrepancies between 

the aforementioned two numerical cases and the analytic one are negligible. Moreover, 

the computational cost is almost the same for both of the numerical methods and thus, 

there is no need of any refinement for increased accuracy or decreased computational 

cost. 

 

 AEM (3 NP) 
(1) 

AEM-BS (3 CP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1 / 4)x  5,284Ε-04 5,225Ε-04 5,226Ε-04 1,10 0,022 

(1 / 2)x  9,350Ε-04 9,251Ε-04 9,251Ε-04 1,05 0,00 

' (1 / 4)x  2,800Ε-03 2,800Ε-03 2,800Ε-03 0,00 0,00 

' (1 / 2)x  0,000 0,000 6,210Ε-08 0,00 0,00 

'' (1 / 4)x  -3,800Ε-03 -3,800Ε-03 -3,800Ε-03 0,00 0,00 

'' (1 / 2)x  -1,480Ε-02 -1,470Ε-02 -1,470Ε-02 0,68 0,00 

'''(1 / 4)x  -8,929Ε-02 -8,770 Ε-02 -8,770 Ε-02 1,81 0,00 

'''(1 / 2)x  0,000 0,000 -1,800Ε-06 0,00 0,00 

''''(1/ 4)x  3,659Ε-01 3,657Ε-01 3,657Ε-01 0,05 0,00 

''''(1/ 2)x  3,433 Ε-01 3,433 Ε-01 3,433 Ε-01 0,00 0,00 

 

Table 2.1. Angle of twist x  (rad) and its derivatives at various positions for the bar 

element of example 1. 

2.5.2 Example 2: Monosymmetric T-section 

A clamped steel ( 2.1 8E E kPa , 0.3v  ) bar of length L=1m, of rolled 

symmetric T-section (
8 43,049 10tI m
  , 

12 634,95 10SC m
   according to 

Sapountzakis and Dikaros, 2010), loaded along its length by a uniformly distributed 

twisting moment 1 /tm kNm m  has been studied (Fig. 2.3). Four cases are examined, 

namely i) three discretization elements employing original AEM technique, ii) three 

collocation points employing AEM-BS, iii) refinement techniques for AEM-BS and iv) 

the analytical solution of the fourth order differential equation.  

In Fig. 2.4 the angle of twist ( )xθ x  along the bar length and in Table 2.2 ( )xθ x  

and  its derivatives  at the  three  collocation points (Fig. A.2.1)  are presented for the 
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(a) 

 

(b) 

     Figure 2.3. Steel IPE cross section (a) of the clamped bar of example 1(b). 

 

aforementioned cases i), ii) and iv). From this table and figure, it is obvious that the 

discrepancies in ( )xθ x , 
' ( )xθ x  and 

'' ( )xθ x  between the analytical solution and the 

obtained results employing AEM-BS are quite small compared with the ones obtained 

employing the original AEM. Moreover, the errors arising from the use of the AEM 

with three discretization elements are not acceptable since they reach in general the 

order of 40%. However, for higher order derivatives (third and fourth), the results are 

inaccurate for both methods. Thus, refinement procedures, described in section 2.4, will 

be implemented in order to gain more accurate results. 

Refinements of the results are attempted by employing eqn. (A.2.7) in order to 

define new control polygons (by adding successively control points) for the B-spline 

curve. The new control points are proved to be redundant due to the fact that the 

quadratic B-spline curve is explicitly defined by three control points. It would be 

beneficial to add control points through an  iterative procedure  (as in Chaikin, 1974) 

when it is aimed to approximate a target B-spline curve, possibly, of a complex shape 

and with more segments. In our case there is only one segment of the curve spanning 

the whole bar along its length. 
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          Figure 2.4.  Angles of twist ( )xθ x  of the bar of example 2. 

 

Thus, in our case, control point insertion should be combined with knot insertion 

in order to express the same curve using the same degree. This operation of knot 

insertion is described in Section 2.4 and the basis functions are specified over the [0, ¼) 

interval of the knot vector. In order to express the segment of the B-spline curve over 

this interval, three new control points are used. Then, three collocation points are 

employed in order to compile the results for three different positions along the first 

quarter of the bar’s length.  In Table 2.3, the angle of twist ( )xθ x and its derivatives are 

presented at the three collocation points (L/16, L/8 and 3L/16) in the first quarter of the 

bar’s length for the aforementioned cases i), ii) and iv). From this table, the values 

derived employing AEM-BS (employing eqn. (2.10)) are almost the same as those of 

the exact solution and the errors are quite small for higher order derivatives. Only the 

value of the third derivative at 3 /16x L introduces a relatively large error (around 

13%) when  employing  AEM-BS. Thus, more  collocation  points  could  be  used  to 

eliminate also this error. Comparing to the values derived by using the original AEM, it 

is  concluded  that some of  the results are  not  accurate and  the  errors  can be large,  

especially for the values of higher order derivatives, for this number of discretization 

elements. Thus, in Table 2.4 the results obtained when employing 44 discretization 

elements-nodes for the AEM, 12 collocation points for the AEM-BS and the exact 

solution are compiled.  
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 AEM (3 NP) 
(1) 

AEM-BS (3 CP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1 / 4)x  3,780E-02 2,900E-02 2,710E-02 28,30 6,55 

(1 / 2)x  5,870E-02 4,020E-02 3,970E-02 38,22 5,71 

' (1 / 4)x  1,645E-01 1,009E-01 9,940E-02 39,57 1,49 

' (1 / 2)x  0,000 0,000 -2,000E-06 0,00 0,00 

'' (1 / 4)x  -1,881E-01 -3,227E-01 -3,679E-01 41,74 12,29 

'' (1 / 2)x  -4,725E-01 -4,125E-01 -4,053E-01 14,22 1,74 

'''(1 / 4)x  -2,495 -1,973 -6,990E-01 71,98 64,57 

'''(1 / 2)x  0,000 0,000 6,410E-08 0,00 0,00 

''''(1/ 4)x  19,820 27,691 12,806 35,39 53,75 

''''(1/ 2)x  -22,278 -2,114 2,628E-01 98,82 87,57 
 

Table 2.2. Angle of twist x  (rad) and its derivatives at various positions of the bar 

element of example 2. 

 

To conclude with, it is noted that errors of the same and in general quite small 

magnitude are obtained when employing in the AEM-BS around the one fourth of the 

number of nodes used in the original AEM, as collocation points along the length of the 

bar. This means that the computational cost when employing AEM-BS is much less 

than that of the original AEM in order to achieve the same or higher level of accuracy.  

2.5.3 Example 3: Unequal Legged Angle 

A clamped steel ( 2.1 8E E kPa , 0.3v  ) bar of length L=1m, of the unequal 

legged angle steel cross section (
8 48,3903 10tI m
   and 

10 61,1937 10SC m
  , 

according to Sapountzakis and Dikaros, 2010), loaded along the length by a uniformly 

distributed twisting moment 1 /tm kNm m  has been studied (Fig. 2.5). Four cases are 

examined, namely i) three discretization elements employing original AEM technique, 

ii) three collocation points employing AEM-BS, iii) refinement techniques for AEM-

BS and iv) the analytical solution of the fourth order differential equation.  

In Table 2.5 the angle of twist and its derivatives at three collocation points (Fig. 

A.2.1) are presented for the aforementioned cases i), ii) and iv). From this table, it is 

obvious that the discrepancies in ( )xθ x , 
' ( )xθ x  and 

'' ( )xθ x  between the analytical 

solution and the obtained results  employing  AEM-BS are quite small compared with  
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  AEM-BS  
(12 CP) 

(1) 

AEM  

(12 NP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1/16)x  4,300E-03 4,600E-03 4,300E-03 0,00 6,522 

(1 / 8)x  1,220E-02 1,240E-02 1,220E-02 0,00 1,613 

(3 /16)x  2,020E-02 2,040E-02 2,020E-02 0,00 0,980 

' (1/16)x  1,131E-01 1,197E-01 1,130E-01 0,088 5,514 

' (1 / 8)x  1,318E-01 1,311E-01 1,317E-01 0,076 0,456 

' (3 /16)x  1,206E-01 1,154E-01 1,204E-01 0,166 4,153 

'' (1/16)x  7,879E-01 7,840E-01 7,776E-01 1,307 0,816 

'' (1 / 8)x  -2,890E-02 -5,650E-02 -2,930E-02 1,365 48,14 

'' (3 /16)x  -2,908E-01 -2,767E-01 -2,862E-01 1,582 3,320 

'''(1/16)x  -22,249 -27,881 -21,682 2,548 22,23 

'''(1 / 8)x  -6,745 -7,005 -6,901 2,265 1,479 

'''(3 /16)x  -2,522 -1,033 -2,196 12,930 52,97 

''''(1/16)x  400,623 399,301 397,164 0,863 0,535 

''''(1 / 8)x  126,545 117,293 126,407 0,109 7,225 

''''(3 /16)x  38,665 43,400 40,232 3,895 7,300 

 

Table 2.3. Angle of twist x  (rad) and its derivatives for the bar element of example 2, 

employing knot insertion. 

 

the ones obtained when employing the original AEM. Moreover, the errors arising from 

the use of the AEM with three discretization elements are not acceptable since they 

reach the order of 45%. However, the results are inaccurate for higher order derivatives 

(third and fourth) for both methods. Thus, the refinement procedure of knot insertion, 

which is described in section 2.4 and has already been implemented in the previous 

example of T-section, will be also here employed in order to achieve more accurate 

results (Table 2.6). 

 As it is obvious in Table 2.6, the values derived when employing AEM-BS are 

almost the same as those of the  analytical  solution and  the errors are quite small for  
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 AEM-BS  
(12 CP) 

(1) 

AEM (44 NP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1/16)x  4,300E-03 4,300E-03 4,300E-03 0,00 0,00 

(1 / 8)x  1,220E-02 1,230E-02 1,220E-02 0,00 0,813 

(3 /16)x  2,020E-02 2,02E-02 2,02E-02 0,00 0,00 

' (1/16)x  1,131E-01 1,132E-01 1,130E-01 0,088 0,177 

' (1 / 8)x  1,318E-01 1,317E-01 1,317E-01 0,076 0,00 

' (3 /16)x  1,206E-01 1,202E-01 1,204E-01 0,166 0,166 

'' (1/16)x  7,879E-01 7,753E-01 7,776E-01 1,307 0,296 

'' (1 / 8)x  -2,890E-02 -3,120E-02 -2,930E-02 1,365 6,090 

'' (3 /16)x  -2,908E-01 -2,861E-01 -2,862E-01 1,582 0,0350 

'''(1/16)x  -22,249 -21,916 -21,682 2,548 1,066 

'''(1 / 8)x  -6,745 -6,926 -6,901 2,265 0,362 

'''(3 /16)x  -2,522 -2,169 -2,196 12,960 1,252 

''''(1/16)x  400,623 396,388 397,164 0,863 0,195 

''''(1 / 8)x  126,545 125,800 126,407 0,109 0,480 

''''(3 /16)x  38,665 40,262 40,232 3,895 0,0745 

 

Table 2.4. Angle of twist x  (rad) and its derivatives for the bar element of example 2, 

employing knot insertion and increasing nodal points. 

 

 higher order derivatives, which was not possible before refinement. Only the value of 

the third derivative at 3 /16x L introduces a relatively large error (around 8%) when 

employing AEM-BS. Thus, more collocation points could be used to eliminate also this 

error. Comparing to the values derived when using the original AEM, it is concluded 

that some of the results are not accurate and the errors can be large, especially for the 

values of the second order derivative and on, for this number of discretization elements.  

In Table 2.7 the results obtained when employing 44 discretization elements-

nodes for the AEM, 12 collocation points for the AEM-BS and the exact solution are 

compiled. 
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(a) 

 

(b) 

Figure 2.5. Steel unequal legged angle cross section (a) of the clamped bar (b) 

studied in example 3. 

 

To conclude with, it is noted that errors of the same and in general quite small 

magnitude are obtained when employing in the AEM-BS around the one fourth of the 

number of nodes used in the original AEM, as collocation points along the length of the 

bar. This means that the computational cost when employing AEM-BS is much less 

than that of the original AEM in order to achieve the same or higher level of accuracy. 

2.5.4 Example 4: UPE-100  

A clamped steel ( 2.1 8E E kPa , 0.3v  ) bar of length L=1m, of the UPE-100 

steel cross section (
8 42,010 10tI m
   and 

12 6590,10 10SC m
  , according to 

Kraus, 2005), loaded along the length by a uniform twisting moment 1 /tm kNm m  

has been studied (Fig. 2.6). Four cases are examined, namely i) three discretization 

elements employing original AEM technique, ii) three collocation points employing 

AEM-BS, iii) refinement techniques for AEM-BS and iv) the analytical solution of the 

fourth order differential equation.  

In Table 2.8 the angle of twist and its derivatives at three collocation points (Fig. 

A.2.1) are  presented for the  aforementioned cases i), ii) and iv). From this table, it is 

1L m  
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 AEM (3 NP) 
(1) 

AEM-BS (3 CP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1 / 4)x  1,200E-02 1,02E-02 9,420E-03 27,11 7,65 

(1 / 2)x  2,020E-02 1,420E-02 1,396E-02 30,69 1,41 

' (1 / 4)x  4,930E-02 3,600E-02 3,600E-02 37,20 0,00 

' (1 / 2)x  0,00 0,00 2,000E-07 0,00 0,00 

'' (1 / 4)x  -6,770E-02 -1,120E-01 -1,277E-01 46,90 12,29 

'' (1 / 2)x  -1,724E-01 -1,494E-01 -1,469E-01 14,79 1,60 

'''(1 / 4)x  -9,820E-01 -7,202E-01 -3,270E-01 66,70 54,60 

'''(1 / 2)x  0,000 0,000 -1,170E-08 0,00 0,00 

''''(1/ 4)x  6,981 9,610 5,380 22,93 44,02 

''''(1/ 2)x  -6,720 -4,841E-01 1,764E-01 97,38 63,56 

 

Table 2.5. Angle of twist x  (rad) and its derivatives at various positions for the bar 

element of example 3. 

 

obvious that the errors arising in the evaluation of ( )xθ x  and its derivatives are in 

general varying from 0% to around 10%. For the AEM-BS the errors are very small (0-

1%) and values are quite close to those derived by the analytical solution of the 

problem. Moreover, the errors arising from the use of the AEM when employing three 

discretization elements are not acceptable since they reach the order of 10% while for 

the AEM-BS the results are very accurate and actually there is no need for any 

refinement. However, the refinement procedure of knot insertion, which is described in 

section 2.4 and has already been implemented in previous examples, will be employed 

in order for the results to be comparable (Table 2.9). 

To conclude with, it should be noted that the results obtained by employing the 

two methods, are both highly accurate for the cross section shown in Fig. 2.6 when 

refinement procedures are employed. Particularly, the AEM-BS almost coincides with 

the exact solution and, with the same computational cost, the original AEM gives 

highly accurate results with small errors, which vary from 0,01% to almost 1%. In 

order to eliminate errors in the original AEM and achieve the same accuracy as that of 

the AEM-BS, discretization elements should be increased and, thus, the computational 

cost will be increased, as was the case in previous examples.  

The cross sections of bars studied in this chapter are open-shaped thin-walled 

cross sections of similar dimensions in order to be able to draw conclusions and make 
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 AEM-BS  
(12 CP) 

(1) 

AEM (12 NP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1/16)x  1,400E-03 1,500E-03 1,400E-03 0,00 6,667 

(1 / 8)x  4,200E-03 4,200E-03 4,200E-03 0,00 0,00 

(3 /16)x  7,000E-03 7,000E-03 7,000E-03 0,00 0,00 

' (1/16)x  3,820E-02 3,990E-02 3,820E-02 0,00 4,261 

' (1 / 8)x  4,590E-02 4,570E-02 4,590E-02 0,00 0,436 

' (3 /16)x  4,280E-02 4,150E-02 4,270E-02 0,234 2,810 

'' (1/16)x  2,890E-01 2,876E-01 2,870E-01 0,692 0,209 

'' (1 / 8)x  7,900E-03 6,000E-04 7,800E-03 1,266 92,31 

'' (3 /16)x  -9,310E-02 -8,910E-02 -9,200E-02 1,182 3,152 

'''(1/16)x  -7,266 -8,776 -7,138 1,763 18,66 

'''(1 / 8)x  -2,518 -2,619 -2,554 1,405 2,489 

'''(3 /16)x  -9,981E-01 -4,343E-01 -9,140E-01 8,426 52,48 

''''(1/16)x  118,007 117,653 117,360 0,549 0,249 

''''(1 / 8)x  42,032 40,042 41,998 0,081 4,657 

''''(3 /16)x  14,727 15,810 15,030 2,016 4,935 

 

Table 2.6. Angle of twist x  (rad) and its derivatives for the bar element of example 3, 

employing knot insertion. 

 

comparisons affected only by the properties of the cross section geometry related to  

nonuniform  torsion  ( tI  and SC )  and  not by other  secondary effects  (i.e. secondary  

torsional  moment  deformation  effects  which are  important to  closed-shape hollow 

section bars, according to: Sapountzakis and Mokos, 2003; Mokos, 2007). An 

interesting aspect to note is that the cross sections having two parallel flanges (i.e. 

example 1-IPE200 and 4-UPE100) give accurate results, as shown in Tables 2.1 and 

2.8, without any need for refinement. Particularly, the results obtained when employing 

the AEM-BS almost coincide with the results of the exact solution and the errors 

introduced in the evaluation of the angle of twist and its derivatives are mainly equal to 

zero for the IPE200 and UPE100 (in general zero for the corresponding with respect to  



Quadratic B-Splines for the Nonuniform Torsional Problem of Bars 91 

 

 

 AEM-BS  
(12 CP) 

(1) 

AEM (44 NP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1/16)x  1,400E-03 1,400E-03 1,400E-03 0,00 0,00 

(1 / 8)x  4,200E-03 4,200E-03 4,200E-03 0,00 0,00 

(3 /16)x  7,000E-03 7,000E-03 7,000E-03 0,00 0,00 

' (1/16)x  3,820E-02 3,820E-02 3,820E-02 0,00 0,00 

' (1 / 8)x  4,590E-02 4,590E-02 4,590E-02 0,00 0,00 

' (3 /16)x  4,280E-02 4,270E-02 4,270E-02 0,234 0,00 

'' (1/16)x  2,890E-01 2,860E-01 2,870E-01 0,692 0,348 

'' (1 / 8)x  7,900E-03 6,500E-03 7,800E-01 1,266 16,667 

'' (3 /16)x  -9,310E-02 -9,200E-02 -9,200E-02 1,182 0,00 

'''(1/16)x  -7,266 -7,201 -7,138 1,763 0,879 

'''(1 / 8)x  -2,518 -2,575 -2,554 1,405 0,800 

'''(3 /16)x  -9,981E-01 -9,072E-01 -9,140E-01 8,426 0,744 

''''(1/16)x  118,007 117,209 117,360 0,549 0,129 

''''(1 / 8)x  42,032 41,655 41,998 0,081 0,816 

''''(3 /16)x  14,727 15,033 15,030 2,016 0,018 

 

Table 2.7. Angle of twist x  (rad) and its derivatives for the bar element of example 3, 

employing knot insertion and increasing nodal points. 

 

height UPE200, which has a torsional constant four times larger than UPE100 and a 

warping constant two times larger). This happens due to the fact that the AEM is a 

numerical method with its accuracy based on the approximation of the fictitious load, 

which is the unknown of the fourth order differential equation considered in the 

nonuniform problem of torsion (fourth order derivative of the angle of twist). Then, the 

rest values (angle of twist and the lower order derivatives) are obtained with respect to 

the values derived for this load, as it is explained in Section 2.2 of this chapter. 

As shown in Fig. 2.7, the curves formed to represent the fictitious load given by 

the analytical solution are closely related to parabolas for the bars with IPE and UPE 

cross sections. This means that a  quadratic  B-spline is an accurate approximation of 
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(a) 

 

(b) 

   Figure 2.6. Steel cross section (a) of the clamped bar (b) studied in example 4. 

 

 AEM-BS (3 CP) 
(1) 

AEM (3 NP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

 (1)-(3) 
Error % 

(2)-(3) 

(1 / 4)x  9,100E-03 9,600E-03 9,100E-03 0,00 5,556 

(1 / 2)x  1,580E-03 1,670E-02 1,580E-03 0,00 5,952 

' (1 / 4)x  4,680E-02 5,000E-02 4,690E-02 0,213 6,654 

' (1 / 2)x  0,000 0,000 -7,600E-10 0,00 0,00 

'' (1 / 4)x  -7,590E-02 -8,320E-02 -7,670E-02 1,043 8,505 

'' (1 / 2)x  -2,408E-01 -2,514E-01 -2,409E-01 0,0415 4,177 

'''(1 / 4)x  -1,409 -1,549 -1,403 0,419 10,435 

'''(1 / 2)x  0,000 0,000 0,00 0,00 0,00 

''''(1/ 4)x  7,075 7,129 7,065 0,134 0,900 

''''(1/ 2)x  4,915 5,051 4,913 0,045 2,800 

 

Table 2.8. Angle of twist x  (rad) and its derivatives at various positions for the bar 

element of example 4. 

1L m  

h=10,0cm 

b=5,5cm 

tw=0,45cm 

tf=0,75cm 

r=1,0cm 

E=2,1E8 

v=0,3 
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 AEM-BS  
(12 CP) 

(1) 

AEM (12 NP) 
(2) 

Analytical  
Solution  

(3) 

Error % 

(1)-(3) 
Error % 

 (2)-(3) 

(1/16)x  9,000E-04 9,000E-04 9,000E-04 0,00 0,00 

(1 / 8)x  3,200E-03 3,200E-03 3,200E-03 0,00 0,00 

(3 /16)x  6,100E-03 6,100E-03 6,100E-03 0,00 0,00 

' (1/16)x  2,770E-02 2,770E-02 2,770E-02 0,00 0,00 

' (1 / 8)x  4,300E-02 4,300E-02 4,300E-02 0,00 0,00 

' (3 /16)x  4,870E-02 4,870E-02 4,870E-02 0,00 0,00 

'' (1/16)x  3,361E-01 3,359E-01 3,361E-01 0,00 0,06 

'' (1 / 8)x  1,609E-01 1,608E-01 1,609E-01 0,00 0,06 

'' (3 /16)x  2,560E-02 2,580E-02 2,560E-02 0,00 0,775 

'''(1/16)x  -3,168 -3,197 -3,167 0,006 0,941 

'''(1 / 8)x  -2,462 -2,471 -2,463 0,00 0,350 

'''(3 /16)x  -1,884 -1,893 -1,884 0,011 0,444 

''''(1/16)x  12,472 12,471 12,472 0,002 0,010 

''''(1 / 8)x  10,177 10,176 10,177 0,001 0,038 

''''(3 /16)x  8,405 8,407 8,405 0,00 0,023 

 

Table 2.9. Angle of twist x  (rad) and its derivatives for the bar element of example 4, 

employing knot insertion. 

 

this curve, which spans the whole length of the bar preserving its shape. However, in 

the same figure, it is can be observed that there is a minimum plateau in the curves of 

fictitious loads of the T-shaped and L-shaped cross section bars between 0,3m and 

0,7m along the length of the bar. Thus, the quadratic B-spline is not a very accurate 

approximation of the fictitious load for these cases of cross section due to the fact that 

the curve representing the fictitious load is more complex now. This is obvious from 

the results compiled in Tables 2.2 and 2.5, where the errors introduced, especially for 

higher order derivatives, are very large.  
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2.6 Concluding Remarks 

In this chapter, a BEM based technique, called AEM, is developed for the 

nonuniform torsion of bars of open-shaped thin-walled cross sections. A quadratic B-

spline curve is introduced for the representation of the fictitious load in order to 

implement an Isogeometric method for the numerical simulation of this particular 

problem described above. The main conclusions that can be drawn from this 

investigation are 

 

 

Figure 2.7.  Exact curves representing the fictitious load  
4 4( ) ( ) /xq x d θ x dx

considered in AEM along the length of IPE200, UPE100, T-section 

and L-section bars. 

 

i. In some cases, highly accurate and stable results can in general be obtained using 

a quadratic B-spline curve without the need for any refinement. 

ii. Different section properties affect the errors (especially the warping constant) in a 

proportionate way giving positive perspectives about the stability and accuracy of 

the methods described in this chapter. 

iii. The curve used to represent the fictitious load also affects the accuracy of the 

method and this might cause the necessity of knot insertion or degree elevation 

for the B-spline curve. 
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iv. The computational cost is much less using a quadratic B-spline due to the fact 

that the number of the unknowns is restricted to the number of the control points 

which depend on the order of the B-spline used. 

v. In order to obtain errors closer to the AEM-BS and values closer to those of the 

analytical solution, quadruple collocation points should be employed as nodes in 

the original AEM. 

  



96 Chapter 2 

 

 

 



 

 

Chapter 3 

 

 

 

  



  

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

Generalized static and dynamic 

warping analysis of Straight Beams by 

Isogeometric Methods 

3.1 Introduction 

The problem of nonuniform torsion (Chapter 2) has been extensively examined in 

the literature. In an analogy with Timoshenko beam theory, when shear deformation is 

of importance, the so-called Secondary Torsional Shear Deformation Effect (STSDE) 

(Mokos and Sapountzakis, 2011; Tsipiras and Sapountzakis, 2012) has to be taken into 

account as well. Moreover, the additional secondary torsional warping due to STSDE 

can cause similar effects with shear lag in flexure (Moffatt and Dowling, 1975; Luo 

and Li, 2000; Luo, Tang and Li, 2003; Malcolm and Redwood, 1970), i.e. a 

modification of the initial normal stress distribution. Thus, the influence of shear lag 

phenomenon due to both flexure and torsion, which is not constant along the beam 

length, should also be considered. It is noted that due to the complicated nature of 

torsion, simplified concepts employed in up-to-date regulations, such as “effective 

width”, cannot be applied to take into account this behaviour.  

In the majority of works made in recent years, the effects of nonuniform shear 

warping distribution or, in other words, shear lag phenomenon in flexure, have not been 

extensively considered in the dynamic problems of beams by the inclusion of the 

corresponding inertia effects (Dikaros et al., 2016). The same case holds for the 

problem of torsion (Dikaros et al., 2016; Sapountzakis et al., 2016). Even though 

nonuniform torsion has been examined in the literature (Sapountzakis and Mokos, 

2003; Vlasov, 1963; Zhang and Chen, 1991), the STSDE and the corresponding inertia 

effects, in analogy to the shear lag in flexure, has not yet been investigated in torsional 

vibration analysis of beams. Thus, the beam element formulations employed in studies 

of Dikaros et al. (2016) and Sapountzakis et al. (2016) consider the above mentioned 

warping effects in the dynamic problem. These beam models could be used in a broad 

range of structural applications, such as automobile, aircraft frames, decks of bridges 

(under traffic and earthquake loading), high-rise buildings (under blast and wind 

loading), as well as optics, electromagnetics and acoustics, where high frequencies are 

more important. 

In order to numerically account for the above mentioned phenomena, Boundary 

Element Methods (BEM) (Dikaros et al., 2016; Katsikadelis, 2002a; Sapountzakis et 

al., 2016) have in general been used. The additional geometric constants due to warping 

and the elementary ones are evaluated employing a pure BEM approach, which uses in-
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line elements for discretization of the cross section’s boundary, instead of area 

elements used for cross section’s domain in Finite Element Methods (FEM), leading to 

a small number of elements required achieving high accuracy, while remodeling to 

reflect design changes becomes simpler. In addition to this, although the FEM 

computes accurately the field functions, which are the unknowns of the problem, it is 

ineffective in determining their derivatives. However, BEM, such as other numerical 

methods, is not free of drawbacks. Particularly, application of BEM requires the so-

called fundamental solution, as also mentioned in previous chapter. A promising 

technique that overcomes these drawbacks is the Analog Equation Method (AEM), 

developed by Katsikadelis (1994, 2002b). This method is employed in order to derive 

the stiffness and mass matrices (and, thus, the spectrum of frequencies) formulated 

according to ten boundary value problems with respect to the displacement and rotation 

components and the independent warping parameters which describe the beam 

behavior (Dikaros and Sapountzakis, 2014). A fundamental solution is used for a 

reduced differential operator (where a fundamental solution exists) and any possible 

remainder of the differential equation is taken into account as fictitious loading 

(different for each kinematical component), while preserving the geometry of the space 

under consideration and the boundary conditions (Fotiu and Irschik, 1989; Fotiu, 

Irschik and Ziegler, 1987; Irschik and Ziegler, 1998). 

The introduction of Isogeometric Analysis (IGA) in the AEM technique 

employed for the generalized static and dynamic warping analysis of beams is for the 

first time demonstrated in the literature. The introduction of B-splines, as an initial 

research step towards the employment of NURBS, in the AEM technique has only been 

examined in the work of Sapountzakis and Tsiptsis (2014), presented in chapter 2, for 

the nonuniform torsional static problem of bars. During past years, in order to increase 

the accuracy, NURBS basis functions were used in the eigenvalue analysis of elastic 

rods subjected to longitudinal vibrations and Euler-Bernoulli beams subjected to 

transverse vibrations (Hughes, 2009). In that study, the properties of smooth NURBS 

functions are examined and, for a given spectrum of frequencies (given number of 

degrees of freedom and bandwidth) the improved accuracy in spectral calculations over 

classical finite elements analysis is demonstrated. Recently, novel Isogeometric tools 

were used in FEM for the vibration analysis of straight nonlinear Euler–Bernoulli beam 

(Weeger et al., 2013). In addition to this, NURBS were also used for the representation 

of the geometry and solution fields of wind turbine blades (Bazilevs et al., 2011). 

Moreover, Isogeometric collocation methods were employed for the Timoshenko beam 

problem in order to avoid shear locking (Auricchio et al., 2012; Beirão da Veiga et al., 

2012; Echter and Bischoff, 2010). In addition to this, improvement of Isogeometric 

collocation methods regarding convergence rates has been done by using 

superconvergent points (Anitescu, Jia, Jessica Zhang and Rabczuka, 2015). In a recent 

software lab project, an Euler-Bernoulli beam was formulated by using B-Splines and 

compared to the classical FEM with Hermitian polynomials (Tanyildiz and Özcan, 

2010). The results showed clearly that Isogeometric analysis with p-refinement feature 

is far more effective than classical FEM with Hermitian polynomials for a Bernoulli 

beam. Except for beams, a NURBS-based Isogeometric approach, where the same 
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shape functions are used to describe the field variables as the geometry of the domain, 

is employed for static, free vibration, and buckling analysis of laminated composite 

Reissner-Mindlin plate structures (Chien et al., 2012). Isogeometric tools have also 

been used in thin shell analysis with excellent performance (Nguyen-Thanh, Kiendl, 

Nguyen-Xuan, Wüchner, Bletzinger, Bazilevs and Rabczuk, 2011; Nguyen-Thanh, 

Valizadeh, Nguyen, Nguyen-Xuan, Zhuang, Areias, Zi, Bazilevs, De Lorenzis and 

Rabczuk, 2015). 

In this chapter, the ten boundary value problems that have been formulated in the 

work of Dikaros and Sapountzakis (2014) with respect to the displacement and rotation 

components as well as to the independent warping parameters are solved using the 

AEM with the aid of Isogeometric Analysis (IGA). B-splines are employed in order to 

represent the fictitious loading. This is the first research step towards formulating 

curved beam elements subjected to arbitrary loading and boundary conditions. 

Additionally, Isogeometric analysis’ tools are also applied in the general element 

formulation for the dynamic nonuniform warping analysis of beams of arbitrary cross 

section, taking into account shear lag effects due to both flexure and torsion, as 
presented in Dikaros et al. (2016). Without loss of generality, only free vibrations have 

been examined due to the fact that the calculation of natural frequencies and the 

spectrum analysis are of main interest. Nonuniform warping effects are taken into 

account by using four independent warping parameters which are multiplied to the 

shear warping function in each direction and to two torsional warping functions 

(primary and secondary). By employing a distributed mass model system accounting 

for all of the different inertia, ten second-order differential equations and the 

corresponding boundary conditions have been formed with respect to the displacement 

components and the independent warping parameters. These equations describe the 

problem and are solved as quasi-static (time variable is a parameter) either using the 

analog equation method (AEM), or the finite element method (FEM) combined with 

Isogeometric analysis. Isogeometric tools (B-splines and NURBS) are employed for the 

representation of the basis functions and the fictitious loads of the FEM and AEM 

formulations, respectively, for the ten different kinematical components. The warping 

functions, the additional geometric constants due to warping, and the elementary ones 

are evaluated with a pure BEM approach (Dikaros and Sapountzakis, 2014), i.e., only 

boundary discretization of the cross section is used. The geometric constants are 

considered equal to unity in some of the examples for comparison and simplicity 

reasons. Static problem is actually a special case of the dynamic one and is examined 

separately.  

The new computational tool will overcome the drawbacks of AEM related to 

geometry issues. Particularly, the cumbersome procedures need to be applied in order 

to refine the element mesh and capture satisfactorily the three dimensional curved 

geometry with straight beam Finite Elements, which are usually used in practice. This 

approximation causes an additional problem that is the transmission of warping, which 

in general is not taken into account in the analysis of complex structures. For example, 

an analysis of the cross section of a bridge should be performed in the transverse 

direction in order to account for warping. Thus, the next research step is the 
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employment of Isogeometric tools (B-splines, NURBS etc.) in the order to capture the 

exact geometry of the beam elements. This allows for an interactive structural analysis 

to be performed in an automated manner and without the need for an analysis in the 

transverse direction. Hence, it can be concluded that beam elements should be 

combined with Isogeometric analysis in order to serve as a useful tool in modern 

analysis projects (i.e. curved bridges of closed shape sections).  

The essential features and novel aspects of the formulation described in this 

Chapter compared with the corresponding previous ones are summarized as follows: 

 

i. The proposed formulation is suitable for the investigation of flexural and 

torsional shear lag effects in beams of arbitrary closed or open cross sections. 

ii. The method used is based on Isogeometric tools such as B-splines and NURBS. 

These tools have mainly been employed in finite element analyses (FEM) and 

only sparsely in boundary element methods (BEM), especially in vibration 

problems of beams.  Thus, an introduction of B-splines and NURBS in a BEM-

based numerical technique is a natural starting point for the introduction of 

Isogeometric Analysis in the numerical solution of advanced beam theories with 

BEM and its extension to curved beam elements (Chapter 4). 

iii. As also mentioned in the novelties of the previous Chapter and being of more 

importance here due to the number of equations that describe the problem (ten), 

the dimensions of matrices used for the numerical implementation of AEM 

become smaller. This results in easier data management and reduction of 

computational effort. 

iv. Comparing to previous formulation, results have also been obtained for cubic or 

quartic B-splines employing four or five control points for the representation of 

the fictitious load, respectively. Therefore, except for knot insertion, a kind of 

degree elevation has also been investigated known as the k-refinement procedure.  

v. The use of NURBS in AEM results in drastically improved accuracy in spectral 

calculations over the original AEM, as it is the case with FEM, while AEM gives 

highly accurate results either original or combined with IGA tools comparing to 

corresponding FEM formulations.  

vi. Comparisons with traditional models, which account for nonuniform torsion, 

have been made in order to indicate the range of their application as well as the 

obtained level of accuracy.   

3.2 Statement of the problem 

Consider a prismatic beam of length L , of arbitrarily shaped cross section, that 

can surround a finite number of inclusions. The material, occupying the region   of 

the yz  plane (Fig. 3.1) is assumed homogeneous, isotropic and linearly elastic with 

modulus of elasticity E , shear modulus G  and Poisson ratio  . However, the 

formulation can be easily expanded for composite cross sections.  

Let also the boundary of the region   be denoted by  . This boundary curve is 

piecewise smooth, i.e. it may have a finite number of corners. In Fig. 3.1, CXYZ  is the 
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principal bending coordinate system through the cross section’s centroid C , while 
C

y  

C
z , are its coordinates with respect to Sxyz  system through the cross section’s center 

of twist S . The beam is subjected to the combined action of arbitrarily distributed or 

concentrated, time-dependent in the dynamic case, axial loading ( )
x x

p p X  along X

direction, transverse loading ( )
y y

p p x
 
and ( )

z z
p p x  along the y , z  directions, 

respectively, twisting moments ( )
t t

m m x  along x  direction, bending moments 

( )
Y Y

m m x , ( )
Z Z

m m x , along Y , Z  directions, respectively, as well as warping 

moments ( )P P
S S

m m x
 
 , ( )S S

S S

m m x
 
 , ( )P P

CY CY

m m x
 


 
and ( )P P

CZ CZ

m m x
 

  (Fig. 3.1) 

which are defined in the work of Dikaros and Sapountzakis (2014). 

 

 
(a) 

 
(b) 

Figure 3.1.  Prismatic beam under axial-flexural-torsional loading (b) of an 

arbitrary homogenous cross section occupying the two dimensional 

region   (a). 

 

Under the action of the aforementioned general loading and of possible restraints, 

the beam is leaded to flexural, axial and/or torsional vibrations. In order to take into 

account the warping rates of change per unit length of the beam at any time instant, 
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which are responsible for shear lag effects due to both flexure and torsion, four 

additional time-dependent degrees of freedom (warping parameters), namely  ,Y x t , 

 ,Z x t ,  ,x x t ,  ,x x t , are employed as in Dikaros et al. (2016). These additional 

parameters multiply a shear warping function in each direction (  ,P
CY y z ,  ,P

CZ y z ) 

and two torsional warping functions (  ,P
S y z ,  ,S

S y z ), respectively. It is worth 

here noting that the shear stresses generated by the above displacement considerations 

exhibit an inconsistency concerning the non-vanishing of tractions on the lateral 

surface of the beam. This inconsistency may be responsible for non-negligible errors in 

estimated normal stress values and thus in the present study it is removed by 

performing a suitable shear stress correction, which is discussed in detail in Dikaros 

and Sapountzakis (2014).  

Within the context of the above considerations, the displacement components of 

an arbitrary point of the beam at an arbitrary time instant are given as 

 

     , , , , , , , , ,P S
u x y z t u x y z t u x y z t    

         
primary

, , , , ,P
Y Z x Su x t x t Z x t Y x t y z         

           
secondary

, , , , , ,P P S
Y CY Z CZ x Sx t y z x t y z x t y z                                            (3.1a) 

 

     , , , , ,xv x y z t v x t z x t        , , , , ,xw x y z t w x t y x t                 (3.1b,c) 

 

where u , v , w  are the axial and transverse beam displacement components with 

respect to the Sxyz  system of axes; P
u , S

u  denote the primary and secondary 

longitudinal displacements, respectively. Moreover,  ,v x t ,  ,w x t
 

describe the 

vertical and lateral deflection of the centre of twist, while  ,u x t  denotes the “average” 

axial displacement of the cross section.  ,x x t  is the (total) angle of twist;
 

 ,Z x t , 

 ,Y x t
 
are the angles of rotation due to bending about the centroidal Y , Z  axes, 

respectively;  ,x x t ,  ,x x t
 
are the independent warping parameters introduced to 

describe the nonuniform distribution of primary and secondary torsional warping, while 

 ,Y x t ,  ,Z x t  are the independent warping parameters introduced to describe the 

nonuniform distribution of primary warping due to shear;  ,P
S y z ,  ,S

S y z  are the 

primary and secondary torsional warping functions with respect to the centre of twist, 
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while  ,P
CY y z ,  ,P

CZ y z
 
are the primary shear warping functions with respect to the 

centroid. Finally, it holds that CZ z z  , CY y y  . 

Substituting eqns. (3.1) into the well-known three dimensional linear strain-

displacement relations, and employing the Hooke’s stress-strain law, the non-vanishing 

components of the Cauchy stress tensor are obtained. The correction of stress 

components, due to the inconsistency mentioned previously, is performed without 

increasing the number of global kinematical unknowns, following the analysis 

presented in Dikaros et al. (2016) as well as in Dikaros and Sapountzakis (2014). To 

this end, three additional warping functions  ,S
CY y z ,  ,S

CZ y z ,  ,T
S y z

 
are 

introduced in the expressions of stresses.  

Defining the independent geometric (derived from displacements) generalized 

strains R  as ,xu ,
 ,Y x , ,Z x , ,x x , ,Y x , ,Z x , ,x x , ,

P
x x x  , ,

S
x x x x    , 

,
T
x x x x x      , ,

P
Y x Zv   , ,

S
Y Z x Zv     , ,

P
Z x Yw    and 

,
S
Z Y x Yw     , deriving the stress resultants R

 

after establishing the stress 

components, substituting the generalized strains and stress resultants in the two field 

variational principle  T T
R R R R RL

1 / 2 C dx W         and following standard 

arguments in the calculus of variations, results in the governing differential equations 

of equilibrium of the beam problem.

 

C

 

is the spatial elasticity tensor (containing i.e. 

cross section rigidities) and W is the external work for distributed or end loads. Finally, 

in order to derive the differential equations of motion with respect to the kinematical 

components, the terms of inertia contributions  T
R,tt R,ttL

1 / 2u Mu dx  have to be added 

in the previous and constitutive equations to be employed. M

 

is the spatial mass matrix 

and Ru  are the generalized displacements (kinematical components) previously 

described. Thus, the generalized vibrational beam behaviour is described by the 

following differential equations (Dikaros et al., 2016)  

 
*

, ,

inertial contribution

xx tt xE Au u p                                                                                  (3.2a) 

 

     , , , , ,S S S T
CZ S CZ S

P S S
Y Y xx Z x Y Z x x x x xxG A A v GA G D D             

 , , ,

inertial contribution

S T
CZ S

x x tt C x tt yGD A v z p                                                     (3.2b) 

 

     , , , , ,S S S T
CY S CY S

P S S
Z Z xx Y x Z Y x x x x xxG A A w GA G D D             

 , , ,

inertial contribution

S T
CY S

x x tt C x tt zGD A w y p                                                     (3.2c) 



106 Chapter 3 

 

     *
, , ,S S S T

CZ S CZ S

P S S
ZZ xx Y Y x Z Y Z x x xE I G A A v GA G D D                

,

inertial contribution

S T
CZ S

x ZZ Z tt ZGD I m                                                         (3.2d) 

 

     *
, , ,S S S T

CY S CY S

P S S
YY Y xx Z Z x Y Z Y x x xE I G A A w GA G D D               

,

inertial contribution

S T
CY S

x YY Y tt YGD I m                                                          (3.2e) 

 

   , , ,
P S T S T T
t t t x xx t t x x t x xG I I I G I I GI        

    , , ,S S S T S S S T
CZ S CZ S CY S CY S

Z x xx Z xG D D v G D D              

   , , , , , ,

inertial contribution

Y x xx Y x C tt C tt p x tt tw A z v y w I m                            (3.2f) 

 

   *
, , , ,P P P P P S

CZ S CZ CZ CZ S

S
x xx Z xx x xx Y Z x ZE I I I GA v               

  ,S S S T S T
CZ S CZ S CZ S

x x x xG D D GD           

 , , ,

inertial contribution

P P P S P P P
CZ S CZ S CZ CZ CZ

x tt x tt Z ttI I I m                                             (3.2g) 

 

   , , , ,P P P P P S
CY S CY CY CY S

S
x xx Y xx x xx Z Y x YE I I I GA w               

  ,S S S T S T
CY S CY S CY S

x x x xG D D GD           

 , , ,

inertial contribution

P P P S P P P
CY S CY S CY CY CY

x tt x tt Y ttI I I m                                             (3.2h) 

 

    *
, , , ,P P P P P P

S S CY S CZ S

S T T
x xx Y xx Z xx t t x x x t xE I I I G I I GI                 

    ,S S S T S S S T
CZ S CZ S CY S CY S

Z x ZG D D v G D D              

   , , , ,

inertial contribution

P P P P P P P
S S CY S CZ S S

Y x Y x tt Y tt Z ttw I I I m                           (3.2i) 

 

   *
, , , ,P S P S S S

CY S CZ S S S

T
Y xx Z xx x xx t x x x xE I I I GI                

   , ,S T S T
CZ S CY S

Z x Z Y x YGD v GD w            

 , , ,

inertial contribution

S S SP S P S
S S SCY S CZ S

x tt Y tt Z ttI I I m
 

     
                                           (3.2j) 
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These governing differential equations are subjected to the initial conditions  

( 0,x L ) given below (eqns. (3.3a)-(3.3t)) together with the corresponding boundary 

conditions of the problem, which are described by the following eqns. (3.4a)-(3.4j) at 

the beam ends 0,x L ,  

 

   0,0 u x u x                         , 0,,0t tu x u x                                                    (3.3a,b) 

 

   0,0 v x v x                         , 0,,0t tv x v x                                                    (3.3c,d) 

 

   0,0 w x w x                       , 0,,0t tw x w x                                                    (3.3e,f) 

 

   0,0Z Zx x                     , 0,,0Z t Z tx x                                                 (3.3g,h) 

 

   0,0Y Yx x                      , 0,,0Y t Y tx x                                                   (3.3i,j) 

 

   0,0 x xx x                      , 0,,0x t x tx x                                                   (3.3k,l) 

 

   0,0Z Zx x                     , 0,,0Z t Z tx x                                               (3.3m,n) 

 

   0,0Y Zx x                     , 0,,0Y t Y tx x                                                 (3.3o,p) 

 

   0,0x xx x                      , 0,,0x t x tx x                                                  (3.3q,r) 

 

   0,0x xx x                       , 0,,0x t x tx x                                                   (3.3s,t) 

 

 

1 2 3ba u N                                    (3.4a) 

 

1 2 3byv V     1 2 3bzw V                                 (3.4b,c) 

 

1 2 3Z bZM      1 2 3Y bYM                                  (3.4d,e) 

 

1 2 3P
CZ

Z b
M      1 2 3P

CY
Y b

M                                    (3.4f,g) 

 

1 2 3x btM      1 2 3P
S

x b
M       1 2 3S

S
x b

M                 (3.4h,i,j) 

 



108 Chapter 3 

 

where the reaction forces bN , P S
by y yV Q Q  , P S

bz z zV Q Q  , bZM , bYM , P
CYb

M  , 

P
CZb

M  , P S T
bt t t tM M M M   , P

Sb
M  , S

Sb
M    

are given by the following relations in 

terms of the kinematical components as 

 

ref ,b xN E Au
          ref ,bY YY Y xM E I 

          ref ,bZ ZZ Z xM E I                    (3.5a,b,c) 

 

 ref , , ,P P P P P P P
S S S CY S CZ S

x x Y x Z xb
M E I I I                                                            (3.5d) 

 

 ref , , ,S P S P S S S
S CY S CZ S S S

Y x Z x x xb
M E I I I                                                             (3.5e) 

 

 ref , , ,P P P P P P S
CY CY S CY CY CY S

x x Y x x xb
M E I I I                                                          (3.5f) 

 

 ref , , ,P P P P P P S
CZ CZ S CZ CZ CZ S

x x Z x x xb
M E I I I                                                          (3.5g) 

 

ref P P
CZ CZ

P P
y YQ G D  

    
 ref S S S S S T

CZ CZ CZ S CZ S

S S S T
y Y x xQ G D D D          

  
      (3.5h,i) 

 

ref P P
CY CY

P P
z ZQ G D  

   
 ref S S S S S T

CY CY CY S CY S

S S S T
z Z x xQ G D D D          

  
       (3.5j,k) 

 

ref ,
P P
t t x xM G I 

          ref S S S S S S
S S CZ S CY S

S S S S
t x Y ZM G D D D          

 
        (3.5l,m) 

 

 ref T T S T S T
S S CZ S CY S

T T S S
t x Y ZM G D D D                                                              (3.5n) 

 

The quantities iiGD  ( , P P
CY CZi ) multiplying P

Z  and P
Y  respectively, 

correspond to the shear rigidities of Timoshenko beam theory. Thus, the simplified 

notation P
iGA  ( ,i Z Y ) could be adopted for these quantities. Similarly, iiGD               

( , S S
CY CZi ) refer to the secondary shear rigidities due to nonuniform shear warping 

and can be denoted as S
iGA  ( ,i Z Y ). Finally, iiGD  ( , S T

S Si ) refer to the 

secondary (Tsipiras and Sapountzakis, 2012) and tertiary torsional rigidities and can be 

also denoted as ref
S
tG I , ref

T
tG I , respectively.  

The evaluation of the above mentioned rigidities presumes the establishment of 

the warping functions due to shear P
CY , P

CZ , S
CY , S

CZ
 and due to torsion P

S , S
S

, T
S , which is presented in detail in Dikaros and Sapountzakis (2014). The warping 
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functions in each direction are considered to be independent. This means that when 

bending is considered, pure axial and torsional are excluded. Local equilibrium 

equation in the longitudinal direction can be written as follows 

 

     
, , ,

, ,, , ,

0

0

xx x xy y xz z

P P P P
ref Y ref Z CY y ref Z CY z

y y z
E Z G G

  

  

   

    
                                      (3.6) 

 

recalling eqns. (3.5b), (3.5j) and , 0P
bY x Z YM Q m     eqn. (3.6) can be written as  

 

 ,
, ,

2 2 2

0

0

bY x P P P
ref Z CY yy CY zz

YY

P P
P P P P PZ Z YY

ref Z ref Z CY CY CYP
YY YY Z

M
Z G

I

A A I
G Z G Z Z

I I A



 

    

            

         (3.7) 

 

where P PYY
CY CYP

Z

I

A
    . Following this concept, the rest of the warping functions can 

also be established.  

Finally, , , , , , , , ,k k k k k k k k k k                    ( 1,2,3k  ) are functions specified 

at the boundaries of the beam ( 0,x L ). The boundary conditions (3.4) are the most 

general boundary conditions for the problem at hand, including also the elastic support. 

It is apparent that all types of the conventional boundary conditions (clamped, simply 

supported, free or guided edge) can be derived from these equations by specifying 

appropriately these functions (e.g. for a clamped edge it is 

1 1 1 1 1 1 1 1 1 1 1                    ,  2 3 2 3 2 3 2             

3 2 3 2 3 2 3 2 3 2 3 0                      ).  

3.3 Numerical Solution with AEM-Integral Representations 

According to the precedent analysis, the axial-flexural-torsional static and 

dynamic analysis of beams of arbitrary cross section including generalized warping 

effects reduces in establishing the components  ,u x t ,  ,v x t ,  ,w x t ,  ,x x t , 

 ,Z x t ,  ,Y x t ,  ,x x t ,  ,Y x t ,  ,Z x t  and  ,x x t  having continuous 

derivatives up to the second order with respect to x  at the interval  0, l  and up to the 

first order at 0,x L  and for the dynamic problem up to the second order with respect 

to t , satisfying the initial-boundary value problem described by the coupled governing 

differential equations along the beam, the initial conditions and the boundary 

conditions at the beam ends 0,x L  given in the previous section. 

Eqns. (3.2), (3.3) and (3.4) can be solved using the Analog Equation Method. 

According to this method, let  ,u x t ,  ,v x t ,  ,w x t ,  ,x x t ,  ,Z x t ,  ,Y x t , 
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 ,x x t ,  ,Y x t ,  ,Z x t  and  ,x x t  be the sought solutions of the 

aforementioned problem. Setting as    1 , ,u x t u x t ,    2 , ,u x t v x t , 

   3 , ,u x t w x t ,    4 , ,xu x t x t ,    5 , ,Yu x t x t ,    6 , ,Zu x t x t , 

   7 , ,xu x t x t     8 , ,Yu x t x t ,    9 , ,Zu x t x t  and    10 , ,xu x t x t  and 

differentiating with respect to x  these functions two times, respectively, yields 

 

 
2

2

( , )
, , 1,...,10)i

i

d u x t
q x t i

dx
                                                                               (3.8) 

 

where ( )q x  is the fictitious load. 

Eqns. (3.8) are quasi-static, i.e. the time variable appears as a parameter and they 

indicate that the solution of eqns. (3.2), (3.3) and (3.4) can be established by solving 

eqns. (3.8) under the same boundary conditions, provided that the fictitious load 

distributions  ,iq x t  ( 1,...,10i  ) are first established (Appendix A.1). These 

distributions can be determined using AEM. The fundamental solution of eqn. (3.8) is a 

partial solution of the differential equation (A.1.32) given in the Appendix A.1, where 

instead of ( , )u x  . Employing this fundamental solution, the integral representations 

of the kinematical components are obtained as in eqn. (A.1.34) and by its 

differentiation, the expressions for their first derivative can be derived as in eqn. 

(A.1.36).  

The introduction of B-splines or NURBS in the above mentioned expressions can 

now be done by substituting ( , )iq x t  with the polynomial representation of a quadratic 

B-spline or NURBS with a uniform knot vector Ξ with  0,1i   (Appendix A.2), 

which is the parameter space similar to the classic FE subdivision. The first and last 

knot values are repeated depending on the B-spline degree p  and their multiplicity is 

usually  1p  . In one dimension, basis functions formed are interpolatory at the ends 

of the parameter space interval (knot vector with multiplicities). However, nonuniform 

knot vectors and repeated knots can also be used with NURBS. According to Piegel 

and Tiller (1997), the NURBS basis functions can be expressed in terms of B-splines 

basis defined in the Appendix A.2 by the Cox-De Boor recursive formula.  

Now  ( , )iq x t , which is given in eqn. (A.2.30), is substituted in eqn. (A.1.39) and 

the vector { }T  can be written as follows 

 

 
      

2

0
{ } { }T P T F P

F

 
    

                                                                            (3.9) 

 

where  P  is the 3X1 vector containing the control points (   0 1 2P P P P
 ) for a 

quadratic B-spline. Subsequently, applying the integral representations (A.1.34) and 
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(A.1.36) at the collocation points presented in Fig. A.2.1, the following relations are 

derived, similarly to eqns. (A.1.47) 

 

   { } [ ] [ ]i i iU A P C u                                                                                           (3.10a) 

 

   ' '{ } [ ] [ ']i i iU A P C u                                                                                         (3.10b) 

 

where '( , )i iU U  are the vectors containing the values of different kinematical 

components and their first derivative at internal collocation points with respect to the 

control points. The coefficients of the 3X3 square matrices [ ],[ ']A A  (eqns. (A.1.48)) 

are also given with respect to the vector of the control points for each kinematical 

component. For the rest of the AEM matrices, eqns. (A.1.49)-(A.1.52) are employed.  

Then, the stiffness and mass matrices of the beam element which behavior is 

described by eqns. (3.2) can be calculated. These equations in matrix form are given as 

 

     { } { }t i t i tm U k U p                                                                                          (3.11) 

 

 tm , tk  are the generalized mass and stiffness matrices, respectively.  tp  is the 

load vector which is equal to  0  for the free vibration case examined in this chapter. 

Static problem can be derived as a special case of this relation. Thus,  D  vector is 

equal to  0 . { }iU  is the vector containing the second derivatives of the different 

kinematical components with respect to time (in static case  { } 0iU  )  while { }iU  is 

the generalized unknown vector containing { }iU  and '{ }iU  vectors. Thus, eqn. (3.11) 

can be re-written as follows 

 

         [ ] [ ] 0t t t tm B q k B q                                                                                  (3.12) 

 

where  tq  and  tq  are the values of the control points when AEM is combined with 

B-splines or NURBS while [ ]B  contains the  B and  'B matrices. It should be noted 

here that  tq  and  tq  no longer stand for fictitious loads, as in the original form of 

AEM, but for control points, the number of which depends on the B-spline’s or 

NURBS’s structure.  

Regarding the dynamic problem, the interest is in the natural frequencies and 

modes in which the beam vibrates for the different motions. These are obtained by 

separation of variables and  ,iu x t  is assumed to have the form 

 

   , i t
i iu x t u x e

                                                                                                   (3.13) 
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where  iu x  is a function of only the spatial variable x , while 1i   , and   is the 

natural frequency. Inserting (13) into (11) (thus, into (12)) and dividing by the common 

exponential term results in the following typical generalized eigenvalue problem 

 

      2 0t t ik m u                                                                                              (3.14) 

 

which can be tackled through any solver. 

The same process, as described above, has been followed when substituting   with 

the polynomial representation of cubic or quartic B-splines and NURBS with uniform 

knot vectors (Appendix A.2). 

The rest of the AEM equations are formulated as previously described for the 

quadratic B-spline. The diagonal matrix 0[ ]A  is also determined and contains the 

values of basis functions , ( 1... 2... )i jN i n and j p   for the n different collocation 

points and different p-degree B-spline cases. This matrix is employed in order to 

discretize the second order terms (actually the ( , )iq x t ) of the governing differential 

equations (for lower order terms the matrices in eqns. (A.1.51) and (A.1.52) are 

employed). Then,  tm , tk  are formulated and eqn. (3.14) is solved. The natural 

frequencies are finally obtained. Matrices [ , ']A A , [ ]F and [ , ']B B  as they have been 

formed after the integration of quadratic B-splines in the relevant integrals are 30X30, 

40X30 and 30X30, respectively. Similarly the same matrices are 40X40, 40X40 and 

40X40, respectively, in the case of cubic B-splines. The vector (4X10)X1 of the control 

points substitutes the fictitious load vector of the original AEM. In the same way, eqns. 

(3.2) yield a linear system of equations which gives the values of the control points 0iP ,

1iP , 2iP , 3iP and 4iP , instead of the values of the quartic ( )iq x  at collocation points. The 

diagonal matrix 0[ ]A  contains now the values of basis functions 0,4N , 1,4N , 2,4N , 3,4N

and 4,4N  for the five collocation points. Finally, in case of a quartic B-splines, matrices 

[ , ']A A , [ ]F and [ , ']B B  are 50X50, 40X50 and 50X50, respectively. The dimension of 

the new control point vector is (5X10)X1. 

3.4 Numerical Solution with FEM and NURBS 

Instead of B-splines, NURBS curves in terms of B-spline basis functions can be 

employed either in FEM or AEM. The description of the numerical procedures is given 

in the Appendix A.2.  

In this chapter, the geometry of the beam is described by a NURBS structure with 

initial control points given by the following spatial coordinates ( , , , )i i i ix y z w : (0, 0, 0, 

1), (
2

L
, 0, 0, 1), ( L , 0, 0, 1), and the straight beam geometry is obtained in this way. 

 tm , tk  matrices can finally be obtained following the procedures described in 

section A.2.4 of the Appendix A.2.  



Generalized static and dynamic warping analysis of Straight Beams with Isogeometric Methods 113 

 

It is important to note here that regarding pre-processing (geometry, materials, 

cross-sectional constants, definition of the initial NURBS’ structure and meshes for the 

different unknowns), there are no important differences between the AEM and FEM 

with NURBS integrated. However, during processing more matrices with smaller 

dimensions (depending on the number of the unknowns) need to be assembled and 

handled in the iterative loops of the FEM comparing to the AEM in order to derive 

global stiffness and mass matrices (this is due to the different discretizing procedure of 

the differential equations). Thus, even though final AEM stiffness and mass matrices 

are larger in dimensions, computational effort is similar for both FEM and AEM with 

NURBS. In addition to this, accuracy of the results becomes higher for the AEM due to 

the fact that the second order derivatives of the unknowns (fictitious loads) are 

approximated in the AEM technique with NURBS (see in the dynamic examples’ 
section where comparisons are provided). Finally, post-processing becomes easier 

when employing AEM due to the fact that the derivatives of the unknowns have been 

calculated during processing. 

3.5 Numerical examples 

On the basis of the numerical procedures presented in the previous sections, 

computer programs have been written and representative examples have been studied. 

AEM (either in its original form or with Isogeometric tools integrated), FEM and IGA 

have been employed and compared with respect to computational effort and accuracy 

in the evaluation of different quantities either for the static or the dynamic case. It 

should be noted here that the same hardware and software have been used in order to 

obtain the numerical results. 

Regarding the static problem, the numerical results have been obtained 

employing up to 400 nodal points (NP) in the original AEM with constant values for 

the fictitious loads. Then, the results when employing collocation points (CP) in the B-

spline AEM (Quadratic, Cubic and Quartic B-spline AEM) and nodal points in the 

original AEM are compared with the previous ones as well as, with the results obtained 

by the application of the Finite Element Method  (FEM) employing either beam, shell 

or solid elements (FEMAP, 2010). In some of the examples, the obtained results have 

been compared with the corresponding values derived by the Euler-Bernoulli, Vlasov 

thin-walled and classical nonuniform torsion (CNT) (Sapountzakis and Tsiptsis, 2014) 

beam theories. In the classical nonuniform torsion theory, described in Chapter 2, AEM 

is employed in order to solve the fourth-order differential equation with respect to the 

angle of twist of the cross section. In addition to these, up to 400 boundary elements 

depending on the cross section type (cross sectional discretization) have been employed 

in order to evaluate the geometric constants. 

Regarding the dynamic problem, natural frequencies and spectrum analysis for 

the free vibration problem of beams (frequently encountered in structures) including 

warping effects are examined. Except for constant (AEM), quadratic elements have 

been also used in the AEM technique (AEM 2nd). The “AEM 2nd”, which is mainly 

used in this work, has been described in Appendix A.1. In addition to this, a 
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commercial FEM package with solid and shell modelling capabilities (FEMAP, 2010) 

is employed to compare and verify the results of the proposed method. 

3.5.1 Static Case 

Example 1: Beam of Rectangular cross section subjected to uniformly 

distributed transverse or torsional loading 

In the first example, a steel ( 2.1 8E E kPa , 0.3v  ) beam of rectangular cross 

section ( 0.5 , 0.2h m b m  ) with its edges subjected to various boundary conditions 

(fixed-fixed, fixed-free, fixed-pinned) and of length 3L m  has been studied. The 

beam is loaded along its length by a uniformly distributed either transverse load 

250 /zp kN m  or twisting moment 100 /tm kNm m . In Table 3.1 the geometric 

constants of the beam are presented. 

 

21.0000 01A E m    

67.9582 07S S
S S

I E m      

48.3333 05ZZI E m    
50.0000 00P P

CY S

I E m     

48.3333 03YYI E m    
51.5127 15P S

CY S

I E m      

49.9153 05P P
CY CY

I E m      28.3218 02P
YA E m    

27.8539 03S
ZA E m  

 

43.1227 04P
tI E m    

46.7341 03S
tI E m  

 

49.6591 05T
tI E m    

31.3327 12S S
CY S

D E m    
 

38.0228 12S T
CY S

D E m      
50.0000 00P S

CZ S

I E m   
 

50.0000 00P P
CZ S

I E m   
 

49.6854 07P P
CZ CZ

I E m      28.3331 02P
ZA E m    

30.0000 00S S
CZ S

D E m   
 

31.1313 15S T
CZ S

D E m      

66.6430 06P P
S S

I E m      28.1575 04S
YA E m    

              Table 3.1. Geometric constants of the beam of example 1. 

 

In Table 3.2 the kinematical components along the beam length with fixed end 

conditions are presented for i) three elements employing original AEM technique 

(AEM3),  ii) three collocation points employing AEM with quadratic B-spline  and iii) 

400 elements employing original AEM technique (AEM400). From this table, it is 

obvious that in general the discrepancies between the AEM400 and the obtained results 

employing a quadratic B-spline are quite small compared with the ones obtained when 

employing the AEM3. However, a finer discretization is needed. Additionally, in 

Figures 3.2, 3.3 and 3.4 the deflection ( )w x  along the beam length with various 

boundary conditions is presented for i) 201 discretization elements employing original 
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AEM (400 NP) 
(1) 

AEM-BS (3 CP) 
(2) 

 
AEM(3 NP) 

 (3) 
Error % 

(1)-(2) 
Error % 

 (1)-(3) 

' (0.50)w  -6.645E-05 -6.644E-05 -4.220E-05 0.01 36.49 

' (1.50)w  0.000E-00 0.000E-00 0.000E-00 0.00 0.00 

(0.50)y  2.987E-05 2.977E-05 1.890E-05 0.33 36.72 

(1.50)y  0.000E-00 0.000E-00 0.000E-00 0.00 0.00 

' (0.50)y  1.697E-05 1.785E-05 1.512E-05 5.18 10.90 

' (1.50)y  -5.357E-05 -5.357E-05 -3.024E-05 0.00 43.55 

(0.50)y  -3.306E-05 -3.168E-05 -2.012E-05 4.17 39.14 

(1.50)y  0.000E-00 0.000E-00 0.000E-00 0.00 0.00 

' (0.50)y  -1.681E-05 -1.700E-05 -1.610E-05 1.12 4.22 

' (1.50)y  3.693E-05 3.703E-05 3.219E-05 0.27 12.83 

(0.50)wq  1.843E-05 1.445E-05 1.743E-05 21.59 5.43 

(1.50)wq  9.069E-05 9.243E-05 6.696E-05 1.91 26.16 

(0.50)
y

q  -1.419E-04 -1.428E-04 -9.074E-05 0.63 36.05 

(1.50)
y

q  0.000E-00 0.000E-00 0.000E-00 0.00 0.00 

(0.50)
y

q  1.073E-04 1.220E-04 9.659E-05 12.05 9.98 

(1.50)
y

q  0.000E-00 0.000E-00 0.000E-00 0.00 0.00 

 

Table 3.2. Kinematical components and their derivatives of the rectangular cross 

section beam of example 1 for uniformly distributed transverse loading and 

fixed edges. 

 

AEM technique (AEM 201 Elements), ii) three collocation points employing AEM 

with quadratic B-spline (AEM Quadratic B-spline), iii) four collocation points 

employing AEM with cubic B-spline (AEM Cubic B-spline), iv) Euler-Bernoulli 

solution and v) FEM solution using quadrilateral solid finite elements (810 elements) in 

FEMAP (2010). From these figures, the validity of the present results can be 
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confirmed, since their convergence to the ones retrieved from the solid model is 

remarkable. It can also be observed that the AEM with the quadratic B-spline gives 

satisfactory results for all different cases of boundary conditions. The results derived 

from the AEM with the cubic B-spline almost coincide with the ones of the FEM 

model solution. The deflections derived by the Euler-Bernoulli solution are quite 

smaller. 

 

 
 

Figure 3.2. Deflection ( )w x  along the length of the clamped beam of example 1 for 

uniformly distributed transverse loading. 

 

Finally, the beam is studied for three different boundary conditions with respect 

to the evaluation of the angle of twist   along its length due to distributed twisting 

moment. Four cases are examined, namely i) 201 discretization elements employing 

original AEM technique (AEM 201 Elements), ii) three collocation points employing 

AEM with quadratic B-spline (AEM Quadratic B-spline), iii) four collocation points 

employing AEM with cubic B-spline (AEM Cubic B-spline), iv) classical nonuniform 

torsion solution (CNT) and v) (only for the fixed-pinned case) five collocation points 

employing AEM with quartic B-spline (AEM Quartic B-spline). In Figures 3.5, 3.6 and 

3.7 the angle of twist  x x  along the beam length is presented for the aforementioned 

cases. From these figures, it is obvious that the convergence of the CNT results to the 

ones retrieved from the  AEM  with 201 elements of  the present study is  remarkable. 
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Figure 3.3. Deflection ( )w x  along the length of the cantilever beam of example 1 

for uniformly distributed transverse loading. 

 

 
 

Figure 3.4.  Deflection ( )w x  along the length of the beam of example 1 with one 

edge pinned for uniformly distributed transverse loading.  



118 Chapter 3 

 

It can also be observed that the AEM with either the quadratic or the cubic B-spline 

gives satisfactory results for all different cases of boundary conditions. The errors 

comparing to the original AEM with 201 constant elements are ranging from 1 to 10% 

for the cases of the two fixed support and the fixed-pinned support. In the last case a 

quartic B-spline is employed and the results derived from the AEM almost coincide 

with the ones of the original one. Regarding the cantilever beam, the errors are larger 

for both the quadratic and the cubic B-spline AEM ranging from 10-20%. An 

improvement in the results around 5% is achieved by the employment of the cubic B-

spline. However, a finer discretization should be adopted and a knot insertion 

refinement procedure should be implemented. 

 

 

 
Figure 3.5.  Angle of twist  x x  along the length of the clamped beam of example    

1 for uniformly distributed twisting moment. 

 

Example 2: Cantilever beams of various cross sections 

In this example, in order to further investigate the employment of B-splines in the 

AEM and validate their efficiency, three cantilever beams of different lengths and cross 

sections are examined (Fig. 3.8). The first beam has a thin-walled rectangular cross 

section ( 2.0 8E E kPa  and 0.77 8G E kPa ) and is subjected to a uniformly 

distributed twisting moment 610 /xm Nm m . The second one has a channel section     

( 2.0 8E E kPa  and 0.77 8G E kPa ) and is subjected to a uniformly distributed 

twisting moment 64.07 10 /xm Nm m  , while the third beam has a box shaped cross 
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Figure 3.6. Angle of twist  x x  along the length of the cantilever beam of example 

1 for uniformly distributed twisting moment. 

 

 
 

Figure 3.7. Angle of twist  x x  along the length of the beam of example 1 with one 

edge pinned for uniformly distributed twisting moment. 
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 (a) 

 (b) 

 (c) 
 

                         Figure 3.8. Cantilever beams of example 2. 

 

section ( 2.0 8E E kPa  and 0.77 8G E kPa ) and is subjected to a concentrated 

torsional moment 100tM kNm  at its free end. The geometric constants of these cross 

sections are shown in Tables 3.3, 3.4 and 3.5, respectively. The above described beams 

have also been analyzed in the study of Shakourzadeh, Guo and Batoz (1995) and 

numerical results for comparison reasons have been retrieved. In that paper, a finite 

element is formulated for the torsional problem of thin-walled beams. The element is 

based on Benscoter’s beam theory (1954), which is validated for open and closed cross 

sections. 
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        Tables 3.3, 3.4.  Geometric constants of the beams in Figs. 3.8a,b. 

 

In Figures 3.9, 3.10 and 3.11, the angle of twist  x x , the warping parameter 

 x x and the bimoment  P
s

M x  
along the length of the first beam (Fig. 3.8a) are 

presented for i) 60 discretization elements employing original AEM technique (AEM 

60 NP), ii) three collocation points employing AEM with quadratic B-spline (Quadratic  
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               Table 3.5. Geometric constants of the beam in Fig. 3.8c. 

 

 
Figure 3.9. Angle of twist  x x  along the length of the beam of example 2 shown 

in Fig. 3.8a. 

 

B-spline AEM), iii) four collocation points employing AEM with cubic B-spline 

(Cubic B-spline AEM), iv) Vlasov model solution (Roark and Young, 1975), v) FEM  
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Figure 3.10. Warping  x x  along the length of the beam of example 2 shown in 

Fig. 3.8a. 

 

 
 

Figure 3.11. Bimoment due to primary warping along the length of the beam of 

example 2 shown in Fig. 3.8a. 
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solution (Benscoter model) and vi) classical nonuniform torsion solution (CNT) 

(analogous to ' ( )x x ). 

In Table 3.6, the values of the angle of twist  x x , the warping parameter 

 x x and the bimoment  P
s

M x at the free end of the second beam (Fig. 3.8b) are 

compiled for i) 50 discretization elements employing original AEM technique (AEM 

50 NP), ii) three collocation points employing AEM with quadratic B-spline (Quadratic 

B-spline AEM), iii) four collocation points employing AEM with cubic B-spline 

(Cubic B-spline AEM), iv) five collocation points employing AEM with quartic B-

spline (Quartic B-spline AEM) v) Vlasov model solution (Roark and Young, 1975), vi) 

Saint-Venant Model (Roark and Young, 1975), vii) FEM solution (Benscoter model) 

and viii) classical nonuniform torsion solution with quadratic B-spline representation of 

the fictitious load in the fourth order differential equation (AEM-BS).  

In Figures 3.12 and 3.13, the angle of twist  x x and the warping parameter 

 x x
 
along the length of the third beam are presented for i) 60 discretization elements 

employing original AEM technique (AEM 60 NP), ii) four collocation points 

employing AEM with cubic B-spline (Cubic B-spline AEM), iii) Vlasov model 

solution (Roark and Young, 1975), iv) FEM solution (Benscoter model), v) classical 

nonuniform torsion solution (CNT) and vi) Shell model of 154 quadrilateral shell 

elements as described in the work of Shakourzadeh, Guo and Batoz (1995). 

Additionally, in Figure 3.14, the axial stress as stated in the work of  Shakourzadeh, 

Guo and Batoz (1995) in eqn. 30 is presented for i) four collocation points employing 

AEM with cubic B-spline (Cubic B-spline AEM), ii) Vlasov model solution (Roark and 

Young, 1975), iii) FEM solution (Benscoter model) and iv) Shell model of 154 

quadrilateral shell elements as described in the work of Shakourzadeh, Guo and Batoz 

(1995). 

As can be seen in Fig. 3.9, the results obtained by the AEM of the present study, 

as well as the AEM with quadratic and cubic B-splines, differ from the corresponding 

values  derived by  the Benscoter’s  model solution and  CNT solution,  which almost 

coincide. This difference is around 5% and, thus, the influence of the secondary 

warping can be important for a beam with closed cross section. Regarding Vlasov’s 

model solution, the values of the angles of twist are smaller than the corresponding 

values given by the AEM with the cubic B-splines by around 15% or more. 

From Fig. 3.10, it is obvious that the results of AEM and cubic B-spline  AEM 

are quite close to the Benscoter’s model solution with deviations around 5%. Cubic B-

splines give more accurate results than quadratic B-splines with respect to the 

evaluation of the warping parameter. It can also be observed that Vlasov’s model and 

CNT solution give much different results than the other numerical approximations. 

Regarding the evaluation of the bimoment, similar comments can be made as it is 

obvious from Fig. 3.11.   

According to the results compiled in Table 3.6 for the beam with the channel 

cross section, it can be observed that the maximum values of the angle of twist obtained 
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( )x rad  

at x=L 

' ( / )x rad m

or




 

at x=L 

( / )x rad m  

at x=L 

Bimoment  
(N/m

2
) 

at x=0 

Saint-Venant Model -0.103 - - - 

Vlasov Model -0.045 -0.012 - -18.33E-06 

FEM- Benscoter Model -0.045 -0.011 - -18.17E-06 

AEM (50 NP) -0.050 -0.009 -0.010 -16.75E-06 

AEM (Quadratic B-spline) -0.039 -0.006 -0.006 -13.48E-06 

AEM (Cubic B-spline) -0.061 -0.013 -0.014 -18.29E-06 

AEM (Quartic B-spline) -0.046 -0.008 -0.008 -15.50E-06 

Classical Nonuniform Torsion 
Solution (AEM-BS) -0.043 -0.011 - -19.13E-06 

Table 3.6. Comparison between different methods for the beam in Fig. 3.8b. 

 

by the solutions of the present methods AEM and AEM with quadratic or cubic B-

splines  differ from the Vlasov’s and Benscoter’s models by 12% to 35%. However, the 

results obtained when employing a quartic B-spline are in good agreement with the 

Benscoter’s model regarding the angle of twist and with the original AEM regarding 

warping parameter and bimoment. It should be noted that the bimoments calculated for 

the presented methods are only due to the primary torsional warping.  

Regarding the box beam shown in Fig. 3.8c, the numerical results are given in 

Figs. 3.12-3.14 and compared with the results of the shell model. These comparisons 

show that the numerical values obtained by the presented methods almost coincide with 

the results of the shell and Benscoter’s models. Particularly, the employment of a cubic  

B-spline in the AEM gives highly accurate results with respect to the axial stress 

estimation. However, Vlasov’s and CNT models lead to important errors. 

Example 3: Cantilever Beam of Monosymmetric box-shaped cross section 

In the last example, a cantilever beam of a monosymmetric box-shaped cross 

section, as this is shown in Fig. 3.15, ( 7 24 10E kN m   , 7 22 10G kN m   , 

10L m  ) under a concentrated load 1000zP kN   eccentrically applied at its tip cross 

section, is examined. In Table 3.7 the geometric constants of the cross section are 

presented as computed in the work of Dikaros and Sapountzakis (2014) employing pure 

BEM.  The  aforementioned load case has also been analyzed by  Ferradi et al. (2013)  
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Figure 3.12. Angle of twist  x x  along the length of the beam of example 2 shown 

in Fig. 3.8c. 

 

 
Figure 3.13. Warping  x x  along the length of the beam of example 2 shown in 

Fig. 3.8c. 
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Figure 3.14. Axial stress due to primary warping along the length of the beam of 

example 2 shown in Fig. 3.8c. 

 

and in this study proper adjustments have been made so as to account for different 

coordinate systems. 

In Figs. 3.16-3.18 values of the kinematical components  ( )w x ,  x x   and 

 Y x   are, respectively,  presented and compared to the ones  obtained  from the  

FEM  beam  model  presented in  the  study of  Ferradi et al. (2013).  From  all  of  the  

 

 
 

Figure 3.15. Cross section of example 3. 

 

aforementioned figures it can be easily observed that the present results and the 

corresponding ones of the FEM model presented in Ferradi et al. (2013) are in excellent 
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agreement. Regarding the AEM with the B-splines, it should be noted that the AEM 

with cubic and quartic B-splines coincide with the original AEM of the present study 

either with constant or linear elements (Dikaros and Sapountzakis, 2014). It is also 

obvious that the AEM with the quadratic B-spline gives slightly different results from 

the ones of the aforementioned models. 
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               Table 3.7. Geometric constants of the beam in Fig. 3.15. 

 
In the same figures, the maximum values are also presented for all of the models 

studied. An improvement in the results is achieved by the employment of the quartic B-

spline. However, the AEM with the cubic B-spline gives highly accurate results with a 

much smaller computational effort comparing to the original AEM.  

In Fig. 3.19 a model of the beam implemented in FEMAP (2010) employing 

FEM quadrilateral solid elements is shown. In the same figure the total deflection is 

also recorded. Regarding the aforementioned kinematical components, their values 

almost coincide with the corresponding ones obtained by the use of the cubic B-spline 

in the AEM without any need for refinement. It is worth here noting that in order to 

obtain the distributions of the kinematical components from the solid model, rigid 

diaphragms were placed in regular distances, permitting the measurement of rotation 

angles and translations of the reference nodes. The existence of diaphragms also 

ensured the absence of local distortional phenomena of the cross sectional profiles. In 

order to compare the computational effort for the different numerical models, the 

computational times have been recorded. Particularly, the real computational time for 

the analysis of the solid model in FEMAP (2010) is 5.3 seconds, 0.5 second for the 

analysis when employing the AEM with cubic B-spline, 2.8 seconds for the AEM with  
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Figure 3.16. Deflection ( ) /10w x  along the length of the beam of example 3. 

 

 
 

Figure 3.17. Angle of twist  x x  along the length of the beam of example 3. 
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Figure 3.18. Angle of twist  Y x  along the length of the beam of example 3. 

 

 
 

Figure 3.19. Model in FEMAP (2010) employing 780 quadrilateral solid finite 

elements. Deflection ( )w x  is displayed along the length of the beam 

of  example 3. 

 

200 constant elements and 1 second for the CNT. It should be noted here that all the 

analyses have been carried out in the same computer, without any effort for 

optimization, the run times mentioned consist of times for the assembly as well as the 

solution and the languages used were VBA (Visual Basic for Applications) and Matlab 

tool.   However,  other aspects should  also been  considered  in order to  estimate the  
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Figure 3.20.  Primary axial stress due to bending about the centroidal axis Y and    

primary torsional warping at left upper joint of example’s 3 beam. 

 

 
 
Figure 3.21. Bimoment due to primary warping along the length of the beam of 

example 3. 
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computational effort needed with respect to the accuracy of the results, as it is 

mentioned in Chapter 2. 

In Fig. 3.20, the values of the axial stress due to bending and primary warping 

obtained along the length of the beam when employing either original AEM or AEM 

with B-splines are shown and compared to the ones obtained from the FEM beam 

model shown in Fig. 3.19. Moreover, in Fig. 3.21, the values of bimoment due to 

primary warping are displayed when employing original AEM with 200 NP, AEM with 

cubic B-spline, either having 4 control points along the whole length of the beam or 

more after knot insertion (Appendix A.2), and CNT with 201 NP. It is obvious that the 

results obtained by the use of CNT are inaccurate, especially for the first quarter of the 

length of the beam, due to the fact that the primary warping is not accurately estimated. 

In addition to this, the results coincide with the original AEM, which has been 

validated through comparisons with solid models and it is considered accurate, when 

employing knot insertion for the cubic B-spline. The need for knot insertion becomes 

imperative due to the fact that the cubic B-spline with 4 control points fails to describe 

accurately the distribution of bimoment due to primary warping along the length of the 

beam with arising errors being around 20%. Degree elevation (with quartic B-spline) 

improves the accuracy of the results by around 10%. 

3.5.2 Dynamic Case 

Example 4: Spectra of natural frequencies and Computational times 

In the fourth example, two simple special cases of the problem described by eqns. 

(3.2) have been studied for simplicity and comparison reasons aiming to verify the 

proposed numerical method (AEM with constant or quadratic elements in its original 

form) and demonstrate its efficiency comparing to other methods.  

The first one is the eigenproblem representing the free longitudinal vibration of a 

beam fixed at both ends described by elastodynamic eqn. (3.2a), considering xp 0 . 

The beam is assumed to move only in the longitudinal direction. The characteristics of 

the beam ( *
E E, A  and  ) are considered equal to 1 as in §5.1.2. of Hughes et al. 

(2009). Then, eqn. (3.2a) can be written in matrix form according to AEM as follows 

 

     xxB q E q 0, q( x,t ) u,                                                                            (3.15) 

 

which is subjected to the initial conditions (3.3a,b) and the corresponding boundary 

conditions (3.4a) (  0,x l ) with 1 2 31, 0a     . The analytical solution of the free 

axial vibration problem can be obtained as n n , for n 1,...,    . Computer 

programs have been written in order to solve eqn. (3.15) of AEM and the 

elastodynamic eqn. (3.2a) either employing classical 0
C -continuous quadratic FEs or 

1
C -continuous quadratic NURBS functions. The quality of the numerical methods 

employed is assessed by comparing the ratio of the numerically computed frequencies 

with the analytical result. FEs and NURBS solutions are identical to those presented by 
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Hughes et al. (2009). However, in this study AEM (in its original form) results have 

been added and compared with respect to computational time and effort. The analyses 

were carried out employing 1000 degrees of freedom (dofs) for all of the numerical 

methods for comparison reasons.  

In Fig. 3.22 the normalized natural frequency results (ratio of the numerical 

solution to the analytical one) versus the ratio of the mode number n to the total number  

 

 
 
Figure 3.22. Normalized discrete spectra of natural frequencies employing FEM, 

IGA and AEM for the free axial vibration of a fixed beam. 

 

of dofs (N≈1000) has been plotted. According to Hughes et al. (2009) and from Fig. 

3.22, it is obvious that NURBS functions exhibit a better behavior comparing to FEs 

and AEM with constant or quadratic elements. In the case of piecewise linear FEs, loss 

in accuracy of the results exhibits a highly increasing rate over the most of the 

spectrum. Thus, quadratic FEs need to be employed. In this case, the finite element 

results depict the so-called acoustical branch for n/N < 0.5 and an optical branch for 

n/N > 0.5 (Hughes et al., 2009). This branching is due to the fact that each basis 

function is associated with each node, as with the piecewise linear basis, and in this 

case there are two distinct types of functions: those associated with the end-point nodes 

at element boundaries, and those corresponding to mid-point nodes on element 

interiors. The same case is for the AEM with quadratic elements but without 

significantly increasing loss of accuracy, as it is the case in quadratic FEM. However, 

the influence of branching is much smaller in this case and this is attributed to the AEM 
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matrices constructed (eqns. (A.1.48) and (A.1.51) of the Appendix A.1) which are the 

results of sequential integrations by parts employing all discretization elements for each 

data entry associated with each collocation point (named the pole in BEM). This is the 

reason why matrices in AEM, which is BEM-based, are fully populated and not 

diagonal like in FEM. Alternatively, the quadratic NURBS basis functions, and thus 

differential equations of the algebraic system, are all identical, and no such branching 

takes place. Finally, AEM with constant elements gives highly accurate results (5% 

error comparing to NURBS) and no branching takes place. The values of 

computational time needed in order to calculate the numerical frequencies are compiled 

in Table 3.8. All of the numerical methods demand a computational time of the same 

order of magnitude.  

 

Numerical method (1000 dofs) 
Computational time 

(seconds) 

Quadratic FEM 11.42 

Quadratic NURBS 11.18 

Linear FEM/NURBS 12.37 

Constant AEM 10.27 

Quadratic AEM 10.46 

Table 3.8. Computational time of free axial vibration analysis for the numerical 

methods presented in Fig. 3.22 (one kinematical component). 

 

The second special case of the eqns. (3.2) studied is the eigenproblem of the free 

torsional vibration considering STSDE and  P
S

tm m 0  . The beam is subjected only 

to torsion and warping. The characteristics of the beam ( * P
tE E, A, I ,

P P
S S

S
t pI , I , I   and  ) are considered equal to 1 for simplicity. Then, eqns. (3.2f) and 

(3.2i) can be written as 

 

 P S S
P x,tt t t x,xx t x,xI G I I GI 0                                                                     (3.16a) 

 

 P P P P
S S S S

S
x,tt x,xx t x x,xI EI GI 0                                                               (3.16b) 

 

while boundary conditions remain the same as stated in eqns. (3.3k, l), (3.3q, r), (3.4f) 

and (3.4i) with 

 

 P S P S
bt t t t x,x t x x,xM M M GI GI                                                              (3.17a) 

 

P P P
S S S

x,xb
M EI                                                                                                    (3.17b) 
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and 1 2 3 1 2 31, 0, 1, 0.            

Finally, eqns. (3.16) can be written in matrix form according to AEM as 

 

 
P P P P
S S S S

P P
S S

P P
S S

P 111 P 112 1

121 122 2

P S S S
t t t 221 t 222 1

S S S S
2t 121 t 211 t 122 t 212

S
P 11 t 22

S S
12 t 12 t 21

I b I b q

I b I b q

G I I GI b GI b q

qGI b GI b EI GI b GI b

I r GI r

I r GI r GI r

   

 

 

 
 





   
   

   
                
   

 
1 x,xx 2 x,xx

0
,q ( x,t ) ,q ( x,t )

0
 

     
 

                (3.18) 

 

where ijr ,i, j 1,2   are the values compiled in  R  and  R'  (eqns. (A.1.52) of the 

Appendix A.1),  which are equal to zero for homogenous boundary conditions, while   

ijkb ,i, j,k 1,2  are the values in  B  and  'B  (eqns. (A.1.51) of the Appendix A.1). 

Thus, the numerical solution employing AEM with constant or quadratic elements can 

be obtained. Due to the fact that it is quite cumbersome to derive the analytical 

solution, normalization has been done with respect to the results of AEM with 2000 

constant elements (4000 dofs for two kinematical components) which in fact are quite 

close to the corresponding ones obtained by the analysis of a solid FEM model, as it is 

also implied in the examples of Dikaros et al. (2016) (88 elements per meter of length 

used in the AEM give discrepancies less or around 1% comparing to solid FEM 

models).  Comparisons have been made between AEM, FEM and NURBS solutions for 

different orders and number of elements (i.e. “FEM500 2nd” means 500 quadratic 

FEs).  

 In Fig. 3.23, as in Fig. 3.22, the normalized natural frequency results (ratio of the 

numerical solution to the “approximate” analytical one given by AEM) versus the ratio 

of the mode number n to the total number of dofs (N≈1000) has been plotted. The 
branching mentioned in Fig. 3.22 for quadratic FEM is again obvious in Fig. 3.23 for 

“FEM500 2nd” with the jump displaced in n/N ≈ 0.85. This implies higher accuracy 
comparing to the previous example due to the larger number of dofs (2002 dofs). The 

same case is for the AEM with quadratic elements and for the same number of dofs but 

with a much smaller influence of the branching in the accuracy of the results. It should 

be noted here that quadratic AEM spectrum exhibits two small jumps at n/N ≈ 0.55 and 
n/N ≈ 0.80 due to the fact that there are two kinematical components in this case. Two 

jumps are also depicted for the case of “FEM300 2nd” where the total number of dofs 

is 1202. The increasing loss in accuracy is conspicuous. More accurate results are 

obtained by “NURBS500 2nd”, “FEM1000 1st” and “AEM1000”. It should be noted 

here that there is a “knee” at n/N ≈ 0.85 for the “NURBS500 2nd” and a steep decrease 

in accuracy after this point. A similar “knee” can be observed in “AEM500” at n/N ≈ 
0.80 but with a smaller decrease in  accuracy after this point.  Highly accurate results  
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Figure 3.23. Normalized discrete spectra of natural frequencies employing FEM, 

IGA and AEM for the free torsional vibration with STSDE of a fixed 

beam. 

 

Numerical method (≈2000 dofs) Computational time 

(seconds) 

FEM500 2nd 44.91 

NURBS1000 2nd 43.19 

FEM1000 1st 52.94 

AEM1000 31.45 

AEM333 2nd 31.90 

Table 3.9. Computational time of free torsional vibration analysis for the numerical 

methods presented in Fig. 3.23 (two kinematical components). 

 

(maximum discrepancy 2.5% at n/N=1.00 and less than 0.5% for 0<n/N<0.90) and 

smooth spectrum curves have been achieved by “NURBS1000 2nd” and “AEM333 

2nd” which employ around 2000 dofs. The values of computational time needed in 

order to calculate the numerical frequencies are compiled in Table 3.9. All of the 

numerical methods demand a computational time of the same order of magnitude. 

However, comparing with the time in the previous case of one kinematical component, 

the increase is smaller for the AEM technique than that of the other methods examined. 
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Similar plots of spectra can be derived for free transverse or bending vibrations as 

well as for the generalized vibration case presented in this chapter. Regarding accuracy 

and computational effort of the different methods studied, conclusions are similar to the 

previous cases studied. In Fig. 3.24, computational time of various numerical methods 

versus dofs for different problems derived from the general one described by eqns. 

(3.2) has been plotted. It is obvious that the rate of change while number of dofs 

increases is steeper for FEM with quadratic elements and quadratic NURBS comparing 

with AEM, either with constant or quadratic elements which computational time is 

similar for. The same case is for FEM with linear elements but with larger 

computational time comparing to all other methods. Thus, AEM technique seems to be  

 

 
 
Figure 3.24. Computational time of different numerical methods for increasing 

number of dofs. 

 

computationally more efficient as the number of the unknowns increases comparing to 

all other methods. Finally, it should be noted here that the number of dofs is selected to 

be the same for all of the numerical methods employed and large enough in order to 

adequately describe the whole frequency spectrum that each method produces. 

 

Example 5: Eigenfrequencies and convergence rates 

In the fifth example, the free torsional vibration of two steel ( E 210GPa , 

G 80.8GPa , 2 4
8.002kN sec / m  ) bars of different lengths and cross sections, 

clamped at both ends have been studied. Particularly, the eigenproblem described by 
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eqns. (3.16) has been solved and the first four eigenfrequencies have been obtained 

employing different numerical methods. Fig. 3.25 shows the properties of the models 

created. B-splines have been employed in AEM for the representation of the fictitious 

load, as earlier described. Comparisons have been made with the results of FEM solid 

models (Sapountzakis et al., 2016) and AEM with quadratic elements in order to verify 

the proposed formulation and demonstrate the improvement of the original AEM when 

comparing to the AEM with B-splines. 

 

     

 

    

  

  
  

  

 

 

  
 

  

 

 

 

 

    

 

L=5,0m 

end 1 end 2 

   

 

L=6,4m 

end 1 end 2 

 

 

Figure 3.24. Cross sections of bars of example 5 along with their lengths and 

boundary conditions 

 

Results have been compiled in Table 3.10 for the two cross section cases. It is 

obvious that in general more discretization elements need to be employed for the case 

of the cruciform cross section especially for higher frequencies. However, AEM with 

quartic B-splines improves the results for both cross sections with only 10 dofs 

(actually is the same to one discretization element) and without the need of knot 

insertion only for the rectangular cross section comparing to FEM solid and AEM with 

quadratic elements (300x3=900 dofs). Accurate results for the cruciform case (errors 

less than 5%) can be achieved by inserting 2 more knots (4 dofs more). AEM with 

cubic B-splines gives accurate results for rectangular cross section while knot insertion 

needs to be employed in the cruciform section case in order to obtain the first three 

modes. To obtain accurate values 8 new knots need to be inserted (16 additional dofs). 

This could be explained considering the fact that a quartic B-spline can simulate better 

the eigenmode of the cruciform cross section than the cubic one. Moreover, this cross 

section is very thin-walled (thickness/width <<0.1 and height/length <<0.1) and 

extremely suffers from out-of-plane warping (very low warping rigidity, 

( )P P
S S

P S T
S t t t tC I I I I I      ). It should be noted here that the rest of the cross 

sections employed in this example have in general much higher warping rigidities          
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( P P
S S

S tC I I   ) as well as much higher height to length ratio due to the fact that 

these are more frequently encountered in structural engineering practice. These 

limitations could be used as a rule of thumb in choosing the least number of elements 

and the optimum order of the approximation curve in order to achieve the maximum 

accuracy when the proposed method is employed. However, if the two ratios mentioned 

above become much lower than that of the cruciform cross section, it might be 

necessary to employ more elaborate beam theories or even solid models. 
 

 

  
  

  

  
  

  

 

cruciform 

section 

Mode 
Number 

3d FEM 
(278000 
3d 6edral 

quad) 

AEM 
(300 

quadratic 
elements) 

AEM  
Cubic B-
splines 

(20 dofs) 

AEM 
quartic 

B-splines 
(10 dofs) 

 Hz Errors (%) 

1 11.07 4.91 9.05 9.34 

2 22.16 4.85 8.18 11.79 

3 33.28 4.77 9.83 4.69 

4 44.48 4.59 31.52 16.02 

  
 

  

 

 

 

rectangular 

section 

Mode 
Number 

3d FEM 
(40960 

3d 6edral 
quad) 

AEM (50 
quadratic 
elements) 

AEM  
Cubic B-
splines 
(8 dofs) 

AEM 
quartic 

B-splines 
(10 dofs) 

 Hz Errors (%) 

1 193.07 0.32 1.04 0.38 

2 389.16 0.61 0.02 0.25 

3 590.27 0.95 9.39 0.49 

4 797.14 1.25 2.82 6.52 

Table 3.10. Eigenfrequencies and errors for the free torsional vibration problem of the 

beams shown in Fig.3.24. 

 

In Fig. 3.25 the numerical errors versus the discretization quadratic elements 

employed in AEM have been plotted for the cruciform section case. The method 

converges in a high rate when the elements employed are increased up to 100, which is 

almost the first one third of the elements used in order to obtain the maximum accuracy 

(or the minimum error taken less than 5%). AEM with cubic B-splines fails to capture 

the eigenfrequencies of the third and fourth modes without knot insertion (8 dofs). 

When knot insertion is employed (20 dofs) only the fourth eigenfrequency cannot be 

accurately evaluated. The large difference in errors after knot insertion implies high 

convergence rate for the AEM with cubic B-splines.   

Two cases of the free generalized vibration problem (eqns. (3.2)) have been 

studied in the second example, too. The first case is a steel ( E 210GPa , 
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G 80.8GPa , 2 4
7.85kN sec / m  ) beam of a HEB500 cross section, as shown in 

Fig. 3.26a  and  Dikaros et al. (2016),  of length  2.5L m   clamped at both ends.  The 

 

 
Figure 3.25. Convergence rate of the AEM with quadratic elements for the 

cruciform cross section of example 5. 

 

second one is a steel ( E 40GPa , G 20GPa , 2 4
7.85kN sec / m  ) cantilever beam 

of a box-shaped cross section, as shown in Fig. 3.26b, of length L 10m . Fig. 3.26 

shows also the properties of the aforementioned cross sections. B-splines have been 

employed in AEM for the representation of the fictitious load, as earlier described. 

Comparisons have been made with the results of FEM solid models and AEM with 

quadratic elements. 

Results have been compiled in Table 3.11 for the two cross sections. Highly 

accurate results have been obtained when employing either cubic or quartic B-splines 

in the AEM technique for both cases examined. In addition to this, there is no need for 

knot insertion. Discrepancies from solid model are in general smaller in the first case of 

the HEB section keeping the same dofs number. 

Finally, the convergence of the proposed formulation is studied with respect to 

the eigenfrequencies of the box-shaped cross section described above. For this purpose,  

the log-log scale plots have been created for increasing number of elements and 

different numerical methods, namely original AEM with quadratic elements 

(“AEM2nd”) and AEM with NURBS, of up to the fifth order, integrated 

(“AEMNURB2nd”, “AEMNURB3rd”, “AEMNURB4th” and “AEMNURB5th”). It 
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can be concluded that the convergence rate is improved when employing NURBS in 

the AEM technique and the order is increased for few elements.   
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Fig. 3.26. Cross sections of bars of example 5 along with their cross section 

properties. 

 

3.6 Concluding Remarks 

In this chapter, a BE based technique, called AEM either in its original form or 

combined with Isogeometric tools is developed and studied for the generalized static 

and free vibration problem considering warping effects of arbitrarily shaped cross 

section beams supported by general boundary conditions. Quadratic, cubic and quartic 

B-spline curves are introduced for the representation of the fictitious load in order to 

implement an Isogeometric method for the numerical simulation of the static problem 

described above. Special cases of the general vibration problem have also been 

examined in order to compare the results of IGA with those of AEM and FEM. The 

main conclusions that can be drawn from this investigation are: 

 

I. Regarding the static problem 

i. In most cases, highly accurate and stable results can in general be obtained by 

using a quadratic B-spline curve without the need for any refinement. However, 

in some cases a finer discretization is needed. In cases where shear lag effects are 
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not negligible, a cubic or a quartic B-spline representation of the fictitious load 

gives more accurate results (i.e. box-shaped cross sections).  
 

 

300mm   

28mm   

14.5mm   

54mm   

HEB500 

section 

Mode 
Number 

3d FEM 
(24300 3d 

6edral 
quad) 

AEM (30 
quadratic 
elements) 

AEM  
Cubic B-
splines (8 

dofs) 

AEM 
quartic B-

splines 
(10 dofs) 

 Hz Errors (%) 

1 203.11 0.02 0.80 0.03 

2 238.33 0.05 1.78 0.37 

3 415.93 0.01 0.14 0.06 

4 473.25 0.02 1.52 1.84 

Box-shaped 

section 

Mode 
Number 

3d FEM 
(780 3d 
6edral 
quad) 

AEM (30 
quadratic 
elements) 

AEM  
Cubic B-
splines (8 

dofs) 

AEM 
quartic B-

splines 
(10 dofs) 

 Hz Errors (%) 

1 0.85 4.33 3.65 4.31 

2 1.32 1.10 1.20 1.10 

3 1.99 0.65 1.99 1.98 

4 3.01 2.65 3.81 3.56 

Table 3.11. Eigenfrequencies and errors for the free generalized vibration problem of 

the beams with cross sections shown in Fig.3.26. 

 

ii. CNT fails to give accurate results in the evaluation of primary warping 

distribution and axial stresses or bimoments due to primary warping in the case of 

closed cross sections. Results are quite close to those obtained by employing the 

Vlasov model. The same case is for the Saint Venant model regarding torsion and 

the Euler-Bernoulli model regarding bending.  

iii. A FEM element formulation based on Benscoter’s beam theory (1954) gives 

highly accurate results only in the case of torsional loading and it is used to 

validate and compare with the results obtained by the application of the present 

method.  

iv. The computational effort is much less using B-splines due to the fact that the 

number of the unknowns is restricted to the number of the control points which 

depends on the order of the B-spline used.  

v. A cubic B-spline is proposed in order to improve the accuracy of AEM and 

simultaneously reduce the computational effort for this particular application due 

to the fact that its application makes possible to accurately describe the behavior 

of a beam subjected to the most general loading and boundary conditions by the 

least computational cost comparing to all other methods mentioned in this paper. 
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st
 Mode) 

 
(2

nd
 Mode) 

 
(3

rd
 Mode) 

 
(4

th
 Mode) 

 

Fig. 3.27.  Comparison of eigenfrequencies’ convergence on log-log scale plots for the 

first four modes of the box-shaped beam of example 5. 

 

II. Regarding the dynamic problem 

i. AEM technique with constant elements exhibits no branching in the normalized 

frequency spectrum, as it is the case in quadratic FEM elements, while it 

maintains accuracy in the results of high frequencies. Quadratic elements in AEM 

depict a branch with much smaller impact than FEM, while they improve the 

accuracy comparing to AEM with constant elements.  

ii. Computational time becomes smaller for the AEM technique as the number of 

dofs increases comparing both to FEs and NURBS. However, the most accurate 

results can be obtained for the whole spectrum of frequencies when employing 

NURBS.  

iii. Convergence rate of AEM with constant or quadratic elements can be improved 

when B-splines or NURBS are used for the representation of the fictitious loads. 

This would make it possible to obtain the desired level of accuracy without 

increasing discretization elements in a disproportionate way. 

iv. In cases of very thin-walled beams, which are susceptible to warping and 

torsional phenomena, more elements need to be used for the AEM technique with 

constant or quadratic elements. Quartic and cubic B-splines with or without knot 
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insertion can help to reduce number of unknowns drastically while keep the 

accuracy on a high level. 
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Chapter 4 

Generalized static and dynamic 

warping analysis of Curved Beams by 

Isogeometric Methods 

4.1 Introduction 

Comparing to straight beam formulations, the behavior exhibited by curved 

beams is far more complex regarding twist deformations. It is well known, that in case 

of a horizontally curved beam under transverse loading not only vertical displacement 

but twist deformation with respect to its longitudinal axis arises as well and this cannot 

be captured by traditional Euler-Bernoulli or Timoshenko beam elements. Both of these 

theories maintain the assumption that cross sections remain plane after deformation. 

Even though the formulation remains simple, it fails to capture higher order phenomena 

such as “shear lag”, which are associated with a significant modification of normal 

stress distribution due to nonuniform shear warping (Dikaros and Sapountzakis, 2014). 

This phenomenon has been reported long ago (Reissner, 1946; Malcolm and Redwood, 

1970; Moffatt and Dowling, 1975;) in many structural members such as beams of box-

shaped cross sections, folded structural members or beams of materials weak in shear. 

In up-to-date regulations, shear lag effect in flexure is considered in the analysis by the 

“effective breadth” concept (Eurocode 3, Part 1.5, 2004; Eurocode 4, Part 1.1, 2004; 

Eurocode 3, Part 2, 2004). However, this simplifying approach may fail to capture 

satisfactorily the actual structural behavior of the member, since the influence of shear 

lag phenomenon is not constant along the beam length, while apart from the 

geometrical configuration of the cross section it depends also on the type of loading (Ie 

and Kosmatka, 1992; Katsikadelis and Sapountzakis, 2002). Similar considerations 

with the ones made for flexure could be also adopted for the torsional problem, which 

is also encountered in the analysis of curved-in-plan beams. In the case of torsional 

loading where the longitudinal displacements that create warping are restrained due to 

boundary conditions, the arising torsional moment is nonuniform, as mentioned in 

Chapter 3. The aforementioned prevention of warping leads to the development of 

normal stresses, which are proportional to warping and therefore vary along the length 

of the bar (nonuniform torsion). Considering the above, the influence of shear lag 

phenomenon due to both flexure and torsion, which is not constant along the beam 

length, should be also considered for curved geometries. These problems have been 

extensively examined in the literature but mainly for straight beams. Regarding curved 

beam formulations, a series of straight-line segments is generally used in practice in 

order to approximate the curved geometry though ignoring warping transmission 
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between these segments, as mentioned in Chapter 3. Vlasov (1961) presented a solution 

for curved beams with open arbitrary cross sections. Then, Dabrowski (1965) gave an 

analysis for closed box-shaped cross sections. Having in mind the above, it is easily 

concluded that the influence of shear lag phenomenon due to both flexure and torsion, 

which is not constant along the beam length, should be also considered for curved 

geometries. The early curved beam models that have been formulated are either 

restricted to the analysis of only the beam behavior in the plane of curvature (Zhu et al., 

2010; Cazzani et al., 2014; Cazzazi et al., 2016) or do not take into account secondary 

shear deformation effect caused by nonuniform warping (Heins and Spates, 1970; Luo 

and Li 2000; Luu et al., 2015), while other efforts consider only doubly symmetric 

cross sections (Koo and Cheung, 1989; Zhu et al., 2016). In general, even in recent or 

past years, although the planar problem has been extensively studied, comparatively 

little work has been done concerning the general three dimensional, non-planar, or 

coupled lateral-torsional responses of curved beams (Yoo, 1979; Rosen and 

Abromovich, 1984; Koo and Cheung, 1989, Gendy and Saleeb, 1992; Zhu et al, 2010).  

The above described effects may become substantial in complex structural forms 

comprising box-shaped homogeneous or composite cross sections, curved members, 

short spans or arbitrary loading. Thin-walled straight or curved structures having open 

or closed cross-section, which are widely used in bridge engineering due to their large 

bending and torsional rigidities as well as their low self-weight, suffer from these 

effects. Hence a realistic estimation of stress state employing conventional beam 

elements becomes difficult, since generally commercial programs consider six degrees 

of freedom (DOFs) at each node of a member of a spatial frame, ignoring in this way 

all the warping effects due to corresponding warping restraint (Murín, 1998; Murín, 

1999; Murín, and Kutiš, 2002). Therefore, it can be concluded that in order to 

accurately estimate and assess the actual stress state of a spatial framed structure more 

rigorous analyses need to be performed. Even though refined models based on 

shell/plate or solid finite elements provide the means to perform such analyses, the 

inclusion of nonuniform warping effects in straight or curved beam elements based on 

so-called “Higher Order Beam Theories” (El Fatmi, and Ghazouani, 2011; Ghazouani, 

and El Fatmi, 2011; Sapountzakis, and Tsiptsis, 2015) is of increased interest due to 

their important advantages over more elaborate approaches such as traditional solid and 

plate models. More specifically 

• A Beam formulation reduces significantly modeling effort (solid models require 

cumbersome post- and pre-processing even in relatively simple cases). 

• It permits isolation of structural phenomena and results interpretation contrary 

to the reduced oversight of the 3-D Finite Element (FEM) models (quantities such as 

rotation, warping parameter, stress resultants etc. are also evaluated in contrast to solid 

model which yields only translations and stress components). 

• It allows straightforward model handling (support modeling and external 

loading are easily applied). 

• It avoids difficulties in discretizing a complex structure, while the resulting 

increased number of DOFs of the 3-D models leads to severe or unrealistic 

computational time. 
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• It avoids difficulties in discretizing a structure including thin-walled members 

(shear-, membrane-locking phenomena). 

• It facilitates parametric analyses (solid modeling often requires construction of 

multiple models).  

• It does not require shape functions for the kinematical components; hence the 

minimum number of elements can be employed, while the accuracy of function 

derivatives is not compromised. 

• The use of shell or plate elements cannot give accurate results since warping of 

the walls of a cross section cannot be taken into account (midline model). 

When compared to the effort involved in static analysis, there has not been much 

effort put into the dynamic analysis of curved box girder bridges (Heins, and Sahin, 

1979). The geometric complexities and the spatial coupling effect between bending and 

torsion make the analysis of curved bridges difficult. Bridge design codes usually 

provide guidance for the dynamic analysis of straight bridges (dynamic amplification 
factor, natural frequencies, modelling of vehicles, placement of diaphragms etc.). These 

design recommendations have been used by some designers for curved bridges, even 

though some researches carried out (Cantieni, 1983; Ontario Highway Bridge Design 

Code, 1983; Billing and Green, 1984) revealed that need to be reviewed. When bridges 

are curved, different kinds of loads can cause lateral bending and torsional modes of 

vibration in addition to the common longitudinal or flexural modes of vibration and so 
there are still many possible as well as crucial problems to be investigated regarding the 

dynamic response, for example, forced vibration due to moving loads and earthquake, 

vehicle-bridge coupling vibration, and wind-induced vibration (Shi et al., 2009; Huang 

et al., 2012; Dimitrakopoulos and Zeng, 2015; Jun et al. 2014). Some research efforts 

analyzed out-of-plane vibrations of beams either with uniform or varying cross section 

and curvature (Huang et al., 2000; Tüfekçi, and Doğruer, 2006). In other studies, the 
dynamic responses of thin-walled curved box girder bridges due to truck loading have 

been investigated. The curved box girder bridges has been numerically modelled using 

finite elements which take into account the torsional warping, distortion and 
distortional warping (Huang et al., 1998; Nallasivam et al., 2007). Finally, to the 

authors’ knowledge, the effects on linear and nonlinear vibrational responses of 

translational and rotational springs at the ends of a beam have mainly been investigated 

for straight geometry formulations (Wattanasakulpong and Chaikittiratana, 2014). In 

addition to this, most of the previous models have been formulated for specific type of 

loading and cross section either considering or not some higher order phenomena. 

In this chapter, the static and dynamic generalized warping problem of 

horizontally curved beams of arbitrary cross section, loading and boundary conditions 

is presented. The proposed beam element possesses ten degrees of freedom (DOFs) per 

node in order to account for out-of-plane nonuniform warping due to both flexure and 

torsion (shear lag due to both flexure and torsion). This element can be employed in the 

analysis of curved bridge decks of open or closed (box-shaped) cross section. Except 

for these effects, curvature influences also the internal forces and deformations of the 

curved continuous beam, even for dead loading, due to the fact that the curved beam 

produces coupling between axial force, bending moments and torque, leading to the 
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development of both angle of twist and displacement in the radial direction.  Great 

curvature can be considered in order to formulate the expressions of normal and shear 

strains. Thus, the sectorial properties related to the thickness-curvature effect, which 

need to be considered in cases of large subtended angle and small radius, are included 

in this study. The numerical solution of the problem is obtained by Isogeometric tools, 

either integrated in the Finite Element Method (FEM) (Hughes et al., 2009) or in a 

Boundary Element based Method (BEM) called Analog Equation Method (AEM) 

(Katsikadelis, 1994 and 2002b). When pure AEM is considered, constant or quadratic 

elements are employed in order to represent the fictitious loading. To the authors’ 
knowledge Isogeometric analysis (IGA) is for the first time employed in the static and 

dynamic design of curved beams with higher order beam theories, especially combined 

with a BEM-based method. The developed horizontally curved model takes into 

account simultaneously in and out of the curvature’s plane flexure, extension and 

torsion and permits the investigation of their coupling. The structure (e.g. bridge deck) 

is subjected to the combined action of arbitrarily distributed or concentrated axial and 

transverse loading, as well as to bending, twisting and warping moments. Its edges are 

subjected to the most general loading and boundary conditions, including also elastic 

support. The displacements of an arbitrary point of the cross section is obtained as the 

sum of  the St. Venant solution combined with residual displacements due to end-

effects (Pai, 2014) which are responsible for the generation of self-equilibrating stress 

distributions (Reagan and Pilkey, 2002). These additional displacements are written as 

a sum of two-dimensional functions (out-of-plane warping functions) multiplied by 

independent parameters expressing their longitudinal intensity (El Fatmi and 

Ghazouani, 2011; Ghazouani and El Fatmi, 2011). Particularly, nonuniform warping 

distributions are taken into account by employing four independent warping parameters 

multiplying a shear warping function in each direction and two torsional warping 

functions, which are obtained by solving corresponding boundary value problems, 

formulated exploiting the longitudinal local equilibrium equation (Sapountzakis and 

Tsiptsis, 2015). Finally, by employing a distributed mass model system accounting for 

longitudinal, transverse, rotatory, torsional and warping inertia, ten boundary value 

problems, described by second-order differential equations, with respect to the variable 

along the beam, time-dependent and one-dimensional kinematical components are 

formulated. Free vibration characteristics and responses of the stress resultants and 

displacements to static and moving loading have been studied. The warping functions 

and the geometric constants including the additional ones due to warping are evaluated 

employing a pure BEM approach. It should be noted here that the sectorial properties 

related to the thickness-curvature effect need to be considered in cases of large 

subtended angle and small radius due to the fact that the arising differences become 

considerable (Kim and Kim, 2005). 

The essential features and novel aspects of the formulation described in this 

Chapter compared with previous ones are summarized as follows: 

 

i. The proposed formulation is capable of the complete analysis of spatial curved 

beams of arbitrary closed or open cross section with one plane of constant 
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curvature (either small or great) considering flexural-torsional shear lag effects 

and transverse loading to the plane of curvature (as is usually the case in 

practice). The necessity to include nonuniform warping and STSD effects in the 

dynamic analysis of curved bridge decks is demonstrated.   

ii. The developed beam formulation reduces significantly modelling effort due to 

the fact that there is no need for pre-processing in order to define geometry, 

which is an important issue even in simple curved beams. Moreover, it allows 

straightforward model handling (boundary conditions, external loading are easily 

modelled) compared with three-dimensional solid curved beam models. 

iii. It avoids difficulties in discretizing a structure including thin-walled members 

(shear-locking, membrane-locking phenomena).  

iv. A BEM based technique is for the first time used in the generalized analysis of 

curved beams. 

v. The numerical solution of advanced beam theories and its application to the 

analysis of horizontally curved beams is based on B-splines (for straight beam 

formulations see: Sapountzakis and Tsiptsis, 2014; Sapountzakis and Tsiptsis, 

2017) and NURBS (Isogeometric Analysis) offering the advantage of integrated 

computer aided design (CAD) in the analysis (Koo et al., 2013). In addition to 

this, the order of the basis functions can be defined by the user. 

Numerical examples are worked out to illustrate the method, designate its 

efficiency, accuracy and computational cost, as well as verify its integrity comparing 

with the results of traditional methods used for the analysis of beams. NURBS and B-

splines of various degrees have been employed. Knot insertion and degree elevation are 

proved to be very beneficial in refining the B-spline curve and increasing the accuracy 

(Hughes et al., 2009).  

4.2 Statement of the problem 

4.2.1 Curved beam model and generalized warping  

A prismatic curved beam element of arc length L  with an arbitrarily shaped cross 

section of homogenous, isotropic and linearly elastic material with modulus of 

elasticity E  and shear modulus G , occupying the region   of the yz  plane (Fig. 4.1a) 

is considered in Fig. 4.1b. The boundary of the region   is denoted by  . This 

boundary curve is piecewise smooth (i.e. it may have a finite number of corners) and 

contains a finite number of inclusions. In Fig. 4.1 CXYZ  is the principal bending 

coordinate system through the cross section’s centroid C  (considered as the flexural 

system with no lack of accuracy), while Cy , Cz   are its coordinates with respect to  

Sxyz  reference coordinate system through the cross section’s shear center S . It holds 

that Cy y Y   and Cz z Z  . The initial radius of curvature, which is considered 

constant in one plane, is denoted by R  and can be parallel either to Z  or to Y  axis 

depending on the system of axis considered (Fig. 4.1a). The beam element is subjected 

to the combined action of arbitrarily distributed or concentrated axial loading 

( )x xp p X  along X  direction, transverse loading ( )y yp p x  and ( )z zp p x  along 
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the y , z  directions, respectively, twisting moments ( )x xm m x  along x  direction, 

bending moments ( )Y Ym m x , ( )Z Zm m x   along  Z , Y   directions, respectively, as 

well as to warping moments (bimoments)  ( )P P
x x

m m x  , ( )P P
Y Y

m m x  , 

( )P P
Z Z

m m x   and ( )S S
x x

m m x   (Fig. 4.1b) (Sapountzakis and Tsiptsis, 2015). 

 

 

(a) 

 

(b) 

Figure 4.1. Prismatic curved beam under axial-flexural-torsional loading (b) of an 

arbitrary homogenous cross section occupying the two dimensional 

region   (a) 

 

Under the action of the aforementioned arbitrary external loading and of 

possible restraints, the beam member is leaded to nonuniform flexure and/or 

nonuniform torsion. It is well-known that the bending moment at a beam cross 
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section represents the distribution of normal stresses due to bending (primary normal 

stresses P
xx ). It is important to notice here that comparing to straight beam 

formulation, the normal stress distribution is no more linear and follows a hyperbolic 

function (Fig. 4.2). Due to the aforementioned bending moment variation along the 

beam length (nonuniform bending and in a similar way for nonunifrom torsion), 

shear stresses arise on horizontal sections of an  infinitesimal curved  beam  element 

(Fig. 4.3),  equilibrating  the  variation  of  normal  stresses due to bending. Cauchy 

 

 

Figure 4.2. Primary stress distribution of infinitesimal curved beam element due to 

initial curvature. 
 

 

Figure 4.3. Primary stress of infinitesimal curved beam element and additional 

terms due to curvature effect. “Perturbed” straight beam formulation. 

 

principle dictates that corresponding shear stresses arise on the plane of the cross 

section as well. If the assumption that plane sections remain plane after deformation 

(Euler-Bernoulli or Timoshenko beam theories) is maintained, the arising shear stresses 
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obtain a uniform distribution over the section (Dikaros, and Sapountzakis, 2014). 

However, this distribution violates local equilibrium since the requirement of vanishing 

tractions xn  on the lateral surface of the beam is not satisfied. Thus, the 

aforementioned shear stresses exhibit a nonuniform distribution over the cross section’s 

domain so that both local equilibrium and vanishing tractions xn  on the lateral surface 

of the beam are satisfied. These nonuniform shear stresses will be referred to as 

primary (or St.Venant) shear stresses ( P
xy , P

xz ) and lead the cross section to warp. 

Furthermore, due to the nonuniform character of this warping along the beam length a 

secondary normal stress distribution   S
xx  is developed. This normal stress distribution 

is responsible for the well-known shear lag phenomenon and it is taken into account by 

employing an independent warping parameter multiplying the warping function, which 

depends on the cross sectional configuration. The nonuniform distribution of secondary 

normal stresses   S
xx  along the length of the beam results in the development of 

secondary shear stresses S
xy , S

xz , which equilibrate the variation of S
xx  at an 

infinitesimal beam element. However, the secondary shear stress distribution arising 

from the use of the aforementioned independent warping parameter fails to fulfill the 

zero-traction condition on the lateral surface of the beam. In order to remove this 

inconsistency, a shear stress correction is performed modifying the stress field by 

adding an additional warping function to “correct” S
xy , S

xz , according to Dikaros and 

Sapountzakis (2014). The above remarks are also valid for the problem of nonuniform 

torsion taking into account secondary torsional shear deformation effect – STSDE 

(Mokos, and Sapountzakis, 2011; Tsipiras, and Sapountzakis, 2012; Dikaros, and 

Sapountzakis, 2014). In the following analysis, in order to take into account torsional 

shear lag effects as well, the normal stress distribution due to secondary torsional 

warping  
S
S   is also taken into account (secondary warping normal stress 

S
xx ). This 

distribution is equilibrated by corresponding tertiary shear stresses T
xy , T

xz  which, 

similarly with the case of shear lag analysis in flexure, require a correction. In the 

present analysis this is achieved by adding an additional torsional warping function. 

Within the above described rationale, in order to take into account nonuniform 

flexural and torsional warping (including shear lag effect due to both flexure and 

torsion), in the study of the aforementioned element at each node of the element ends, 

four additional degrees of freedom are added to the well-known six DOFs of the 

classical three-dimensional frame element. The additional DOFs include four 

independent parameters, namely Y , Z , x , x , multiplying a shear warping 

function in each direction and two torsional warping functions, respectively. These 

DOFs describe the “intensities” of the corresponding cross sectional warpings along the 

beam length, while these warpings are defined by the corresponding warping function  

(P
Y , P

Z , P
x ,  S

x ), depending only on the cross sectional configuration. Thus, the 

“actual” deformed configurations of the cross section due to primary (in each direction) 
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shear and primary, secondary torsional warpings are given as     , ,P
Y Yx t y z  , 

   , ,P
Z Zx t y z  ,     , ,P

x xx t y z   and     , ,S
x xx t y z   at any time instant and 

position along the beam longitudinal axis, respectively. Moreover, additional terms are 

added due to curvature effect (Fig. 4.3) and the curved beam can be treated as a 

“perturbed” straight beam avoiding a more refined treatment, which would be more 

beneficial to geometries with large curvatures. Force F in Fig. 4.3 stands in general for 

any additional vector (even displacement or strain) that will be added as a result of the 

differential geometry. Finally, the corresponding stress resultants of the aforementioned 

additional DOFs are the warping moments P
Y

M , P
Z

M , P
x

M , S
x

M  (bimoments) along 

the beam length, arising from corresponding normal stress distributions. These 

bimoments due to the aforementioned warpings constitute additional “higher order” 

stress resultants, which are considered in the nonuniform shear and torsion theories. 

Within the context of the above considerations, the displacement components of 

an arbitrary point of the beam at an arbitrary time instant are given as 

 

     , , , , , , , , ,P S
u x y z t u x y z t u x y z t    

     , , ,Y Z

rigid body movement

u x t x t Z x t Y    

               , , , , , , , ,P P P S
x S Y CY Z CZ x S

out-of - plane warping

x t y z x t y z x t y z x t y z                  (4.1a) 

 

     , , , , ,x

rigid body movement

v x y z t v x t z x t        , , , , ,x

rigid body movement

w x y z t w x t y x t                 (4.1b,c) 

 

where u , v , w  are the axial and transverse beam displacement components with 

respect to the Sxyz  system of axes; 
P

u , 
S

u  denote the primary and secondary 

longitudinal displacements (given in Chapter 3), respectively. Moreover,  ,v x t , 

 ,w x t
 
describe the vertical and lateral deflection of the centre of twist, while  ,u x t  

denotes the “average” axial displacement of the cross section.  ,x x t  is the (total) 

angle of twist;
 

 ,Z x t ,  ,Y x t
 
are the angles of rotation due to bending about the 

centroidal Y , Z  axes, respectively;  ,x x t ,  ,x x t
 
are the independent warping 

parameters introduced to describe the nonuniform distribution of primary and 

secondary torsional warping, while  ,Y x t ,  ,Z x t  are the independent warping 

parameters introduced to describe the nonuniform distribution of primary warping due 

to shear.  
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After establishing the displacement field, the strain-displacement relations will be 

used for the curved beam element. The general shell theory for cylindrical shells 

(Sanders, 1963) can also explain the occurrence of additional terms. More specifically, 

the additional terms due to curvature regarding the axial strain  xx  are 
w

R
 (which 

stands for the increase in length due to the radial displacement w   according to 

Timoshenko and Woinowsky-Krieger (1959), when R  is parallel to Z ) and x

R


  

(which is the decrease in the bending curvature with respect to Z  axis, when R  is 

parallel to Z ). Thus, assuming 1
Z

R
  (Gendy and Saleeb, 1992) and approximating    

2

1 ( )
R Z Z

e R
R Z R R

       
 for the strain in the tangential direction in cylindrical 

coordinates, the axial strain-displacement relation is given as 

 

2

, , , , ,

primary

1 ( ) Px
xx x x Y x Z x x x S

w Z Z w
u u Z Y

R R R R R


    


                                

 

 
2

, , ,

secondary

1P P S
Y x CY Z x CZ x x S

Z Z

R R
     


             



                                                         (4.2) 

 

According to the shear components of strain 

 

   
2 2

, , , , ,1 1xy x y x x x y

Z Z Z Z
v u v z u

R R R R
 

                             
            (4.3a) 

 

2 2

, , , , ,1 1xz x z x x x z

u Z Z u Z Z
w u w y u

R R R R R R
 

                                           
     (4.3b) 

 

Defining the independent geometric (derived from displacements) generalized 

strains R  as ,xu ,
 ,Y x , ,Z x , ,x x , ,Y x , ,Z x , ,x x , ,

P Z
x x x

R

   , 

,
S P Z
x x x x x x

R

         , ,
T S Z
x x x x x x x

R

           , ,
P
Y x Zv   , 

,
S
Y Z x Zv     , ,

P
Z x Y

u
w

R
     and ,

S
Z Y x Y

u
w

R
      , and neglecting 

Z

R
 

effect for shear strains (viewed as higher order term by itself), the shear strain-

displacement relations are given as 
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      , , , , ,

primary

P P P P P P
xy Z y CY y Y y CZ y x S y

m m m
Z Y z                            

 

          , , , , ,

tertiarysecondary

S P S P S P S T S
Z CY y Y CZ y x S y S y x S y

m m m m m
                     

            (4.4a) 

 

      , , , , ,

primary

P P P P P P
xz Z z CY z Y z CZ z x S z

m m m
Z Y y                           

 

          , , , , ,

tertiarysecondary

S P S P S P S T S
Z CY z Y CZ z x S z S z x S z

m m m m m
                     

                  (4.4b) 

 

It is worth here noting that the term Z

R


 has been added to the primary shear 

strain due to torsion P
x  according to the concept presented in Fig. 4.3. Additionally, 

the primary transverse shear strain P
Z  due to flexure in XZ plane (which is the plane of 

curvature) can be defined if the equations of general shell theory (Sanders, 1963) are 

employed and considering that the Kirchhoff hypothesis is not valid ( ,x Yw  ). On the 

contrary, the primary transverse shear strain P
Y  due to flexure in XY plane is not 

affected by the curvature. The above mentioned expressions of shear strains are also 

analytically derived according to the refined theory of thick cylindrical shells presented 

in (Voyiadjis and Karamanlidis, 1990).  

Employing the Hooke’s stress-strain law, the resulting components of the Cauchy 

stress tensor can be obtained after substituting the components of the strain tensor 

given in eqns. (4.2, 4.4) as 

 

, , , ,

primary

( ) Px
xx xx x Y x Z x x x S

w
E E u Z Y

R R


     


          
  


 

 
2

, , ,

secondary

1P P S
Y x CY Z x CZ x x S

Z Z
E

R R
     


             



                                                   (4.5a) 

 

      , , , , ,

primary

P P P P P P
xy xy Z y CY y Y y CZ y x S y

m m m
G G Z Y z                              
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          , , , , ,

tertiarysecondary

S P S P S P S T S
Z CY y Y CZ y x S y S y x S y

m m m m m
G G                     

        (4.5b) 

 

      , , , , ,

primary

P P P P P P
xz xz Z z CY z Y z CZ z x S z

m m m
G G Z Y y                             

 

          , , , , ,

tertiarysecondary

S P S P S P S T S
Z CY z Y CZ z x S z S z x S z

m m m m m
G G                     

           (4.5c) 

 

where  
,i

 denotes differentiation with respect to i . However, as stated above, attention 

should be paid to the fact that the terms ,
S P
Z CY iG  , ,

S P
Y CZ iG  , ,

T S
x S iG   ( ,i y z ) are 

not capable of representing an acceptable shear stress distribution, leading to violation 

of the longitudinal local equilibrium equation and the corresponding zero-traction 

condition on the lateral surface of the beam. Thus, a correction of stress components is 

performed without increasing the number of global kinematical unknowns. Three 

additional warping functions  ,S
CY y z ,  ,S

CZ y z ,  ,T
S y z  are introduced in 

expressions (4.5b, c) and the components of the Cauchy stress tensor in the region   

are modified as 

 

  , , ,

primary

P P P P P P
xy Z CY y Y CZ y x S yG z            

 , , , ,

tertiarysecondary

S S S S S S T T
Z CY y Y CZ y x S y x S yG G                                                                (4.6a) 

 

 , , ,

primary

P P P P P P
xz Z CY z Y CZ z x S zG y               

 , , , ,

tertiarysecondary

S S S S S S T T
Z CY z Y CZ z x S z x S zG G                                                                            (4.6b) 

 

where, according to Dikaros, and Sapountzakis (2014), 

 

P P
CY CYZ     

S P S
CY CY CY                                                                   (4.7a,b) 

 

P P
CZ CZY     

S P S
CZ CZ CZ                                                                   (4.7c,d) 
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S P S
S S S                  T S T

S S S                                                                        (4.7e,f) 

 

In order to establish the differential equations of equilibrium based on the corrected 

shear stresses (eqns. (4.6)), the principle of virtual work 

 

int extW W                                                                                                                                      (4.8) 

 

is employed, where 

 int dxx xx xy xy xz xzV
W V                                                                                    (4.9) 

 

 ext Lat
dx y zW t u t v t w F                                                                                           (4.10) 

 

In the above equations,     denotes virtual quantities; xt , yt , zt  are the components 

of the traction vector applied on the lateral surface of the beam including the end cross 

sections, denoted by F  and V  is the volume of the beam. 

The geometric constants of the beam are obtained by the following definitions 

 

dA


    dYS Z


        dZS Y


                                                   (4.11a,b,c) 

 

2 dYYI Z


             
2 dZZI Y


      dYZI YZ


                          (4.11d,e,f) 

 

  d , , , ,P P P S
i S CY CZ SS i i    


                                                                         (4.11g) 

 

   d , , , , , , ,P P P S
ij S CY CZ SI i j i j y z    


                                                 (4.11h) 

 

    d , , , , , , ,P P P S
ij S CY CZ SD i j i j y z    


                                         (4.11i) 

 

 2 2
, , dP P P

t S y S zI y z z y 


                                                                          (4.11j) 

 

where    
, ,y zy z

    i i  is the gradient operator and yi , zi  the unit vectors along y , 

z  axes, respectively. The quantities P P
Ci Ci

I   ( ,i Y Z ) correspond to the shear warping 

constants, while P P
S S

I  , S S
S S

I   are the primary and secondary torsional warping 

constants, respectively. It should be noted that P P
S S

I   constant coincides with the 

warping constant SC  of nonuniform torsion beam theory. Employing definitions in 
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eqns. (4.11), having in mind that CXYZ  is the centroidal principal bending coordinate 

system, that S  is the center of twist of the cross section and exploiting the 

orthogonality conditions of the warping functions, the following relations are obtained 

 

0P P P S
S CY CZ S

Y ZS S S S S S                                                                             (4.12a) 

 

0P P P P S S P S
CZ S S S S S SCY

YZ Y Z Y Z Y Z
I I I I I I I I                                               (4.12b) 

 

0P S P S S T
CY CY CZ CZ S S

D D D                                                                            (4.12c) 

 

The stress resultants of the beam are defined as 

 

dxxN 


                                                                                                          (4.13a) 

 

dY xxM Z


                     dZ xxM Y


                                                 (4.13b,c) 

 

dP
S

P
xx SM  


                  dS

S

S
xx SM  


                                              (4.13d,e) 

 

dP
CY

P
xx CYM  


                dP

CZ

P
xx CZM  


                                            (4.13f,g) 

 

 , , dP P P
y xy CZ y xz CZ zQ  


             , , dS S S

y xy CZ y xz CZ zQ  


          (4.13h,i) 

 

 , , dP P P
z xy CY y xz CY zQ  


             , , dS S S

z xy CY y xz CY zQ  


          (4.13j,k) 

 

   , , dP P P
t xy S y xz S zM z y   


                                                                  (4.13l) 

 

 , , dS S S
t xy S y xz S zM  


              , , dT T T

t xy S y xz S zM  


              (4.13m,n) 

 

where iM  ( ,i Y Z  ) are the bending moments and iM  ( , , ,P S P P
S S CY CZi     ) are the 

warping moments (bimoments). 
j

iQ  ( ,i y z ,j P S ) are the primary and secondary 

parts of total shear forces  iQ  ( ,i y z ). It is noted that the secondary shear forces are 

also referred to as bishear stress resultants since they equilibrate the corresponding 

warping moments (bimoments). Similarly, 
j

tM  ( , ,j P S T  ) are the primary, 

secondary and tertiary parts of total twisting moment tM .  
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Employing eqns. (4.5a), (4.6a,b), (4.11), (4.12) and (4.13), the expressions of the 

stress resultants in terms of the kinematical components are obtained as 

 

, ,
, ,2

2
xx xYY

x Y xx

u ww EI
N EA u

R R R R
                                                                 (4.14a) 

 

,Y YY Y xM EI                                                                                                         (4.14b) 

 

,
x

Z ZZ Z xM EI
R

   
                                                                                           (4.14c) 

 

 , , ,P P P P P P P
S S S CY S CZ S

x x Y x Z xM E I I I                                                                   (4.14d) 

 

 , , ,S P S P S S S
S CY S CZ S S S

Y x Z x x xM E I I I                                                                    (4.14e) 

 

 , , ,P P P P P P S
CY CY S CY CY CY S

x x Y x x xM E I I I                                                                 (4.14f) 

 

 , , ,P P P P P P S
CZ CZ S CZ CZ CZ S

x x Z x x xM E I I I                                                                 (4.14g) 

 

P P
CZ CZ

P P
y YQ GD                                                                                                    (4.14h) 

 

 S S S S S T
CZ CZ CZ S CZ S

S S S T
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P P
CY CY

P P
z ZQ GD                                                                                                     (4.14j) 

 

 S S S S S T
CY CY CY S CY S

S S S T
z Z x xQ G D D D                                                              (4.14k) 

 

,
P P P P Z
t t x t x xM GI GI

R

     
                                                                             (4.14l) 

 

 S S S S S S
S S CZ S CY S

S S S S
t x Y ZM G D D D                                                              (4.14m) 

 

 T T S T S T
S S CZ S CY S

T T S S
t x Y ZM G D D D                                                                (4.14n) 
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The quantities iiGD  ( , P P
CY CZi ) multiplying 

P
Y  and 

P
Z  respectively, 

correspond to the shear rigidities of Timoshenko beam theory. Thus, the simplified 

notation 
P
iGA  ( ,i Y Z ) could be adopted for these quantities. Similarly, iiGD              

( , S S
CY CZi ) refer to the secondary shear rigidities due to nonuniform shear warping 

and can be denoted as 
S
iGA  ( ,i Y Z ). Finally, iiGD  ( , S T

S Si ) refer to the 

secondary and tertiary torsional rigidities and can be also denoted as 
S
tGI , 

T
tGI , 

respectively. In what follows, in order to maintain the compatibility with classical 

notations, the above simplified symbols will be employed. 

Using the expressions of the strain components (eqns. (4.2, 4.4)), the definitions 

of the stresses and applying the principle of virtual work or any other variational 

principle following standard arguments in the calculus of variations, the governing 

differential equations for the curved beam in terms of the kinematical components can 

be derived. Thus, the local stiffness matrix  tk of the spatial curved beam can be 

evaluated after solving the system of the linear equations. 
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             (4.15a) 
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 
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p

RR R
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    
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   , ,S S S T
CY S CY S

S T Z
Y x Y t t x x x

G u G
D D w I I

R R R R

      
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              ,
T P Z
t x t x x Z

G G
I I m

R R R
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 , , , ,P P P P P S
CY S CY CY CY S

S
x xx Y xx x xx Z Y x Y

u
E I I I GA w

R                  
 

  ,S S S T S T P
CY S CY S CY S CY

Z
x x x xG D D GD m

R 
       

       
                 (4.15g) 
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Substituting eqns. (4.14) to eqns. (4.15), the differential equations of equilibrium 

of the beam are derived as 
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,
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t x t

M
M m

R
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,S S

S S

T
tx

M M m                                                (4.16i,j) 

 

where the externally applied loads are related to the components of the traction vector 

applied on the lateral surface of the beam xt , yt , zt  as 

 

  d , , ,i ip x t s i x y z


                                                                                        (4.17a) 

 

  dt z ym x t y t z s


                                                                                            (4.17b) 

 

  dY xm x t Z s


                             dZ xm x t Y s


                                         (4.17c,d) 

 

    d , , , ,P P P S
i x S CY CZ Sm x t i s i    


                                                                  (4.17e) 

 

The above differential equations (eqns. (4.15)) are subjected to the corresponding 

boundary conditions of the problem at hand, which are given as in eqns. (3.4) of 

chapter 3.  

If a curved beam as the one already described on a system of axis shown in Fig. 

4.4 is now considered, without neglecting the effect 
Z

R
 for shear strains and writing the 

equations in matrix form, the stiffness matrix can be derived as presented in short 

below:  
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                                                                                                                                               (4.18b) 

 

   ,1 2xAux u Aux u                                                                                                             (4.18c) 

 

     ,1 2xC Aux u C Aux u                                                                                              (4.18d) 

 

 

Figure. 4.4. Prismatic curved beam under axial-flexural-torsional loading of an   

arbitrary homogenous cross section. 
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  11 12

21 22
l

k k
k
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 
  
 

                                                                                                                        (4.18f) 

 

where [Aux1], [Aux2] are auxiliary matrices to express strains ε in matrix form,  
1

( )
d dx dV

e R
   is the differential volume of the curved beam for constant radius of 

curvature, [C] is the elasticity matrix employed to derive stresses σ, δU  is the virtual 

strain energy and k11, k12, k21 and k22 are 10X10 coefficient matrices containing the 

geometric properties of the cross section. These are calculated as follows 
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                                                                                                                                                             (4.19) 

From eqn. (4.18e) after integrating by parts, it holds that 

 

22 , 21xNQM k u k u                                                                                                                     (4.20) 

 

where NQM is the vector of the stress resultants at the beam’s ends. 

4.2.2 Curved beam model and Equations of Motion 

In order to derive the differential equations of motion with respect to the 

kinematical components, the terms of inertia contributions 

 mass , , , dtt tt ttV
W u u v v w w V        have to be added in the previous and 

constitutive equations should be employed.   is the density of the material and , ,u v w   

are the generalized displacements as previously described. Thus, the spatial mass 

matrix  tm  can finally be derived. This is given in matrix form as follows 

 

       mass , ,

0 0

1
1 1

( )

L L
TT T

tt t ttW u Aux Aux u d dx U u m u dx
e R

    


            (4.21) 

 

The generalized vibrational beam behavior is described by the differential 

equations given below. Unlike the stiffness matrix and mass matrix of structure, it is 

not necessary to construct the global damping matrix from the element damping matrix 

by assembling technique and thus no damping matrix of element is needed to be 

derived. Much commercial software employs Rayleigh damping which is a linear 
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combination of mass matrix and stiffness matrix. For the proposed curved beam 

formulation damping is neglected. 
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Except for the boundary conditions there are also the initial conditions at beam’s 

ends similar to those defined in eqns. (3.3) of Chapter 3. 

After establishing the stiffness and mass matrices of the spatial curved beam 

element the equation of motion in matrix form can be given as follows 

 

     { } { }t i t i tm U k U p                                                                                                           (4.23) 

 

where  tm ,  tk  are the generalized mass and stiffness matrices, respectively.  tp  is 

the load vector which is equal to  0  for the free vibration case. { }iU  is the vector 

containing the second derivatives of the different kinematical components with respect 

to time while { }iU  is the generalized unknown vector containing the values of the 

kinematical components and their first derivatives, which will be evaluated 

numerically. 

The natural frequencies and modes in which the beam vibrates for the different 

motions can be obtained by separation of variables and  ,iu x t  is assumed to have the 

form given in eqn. (3.13). Finally, the typical generalized eigenvalue problem 

described by eqn. (3.14) is formulated and solved.   

4.3 Numerical Solution with AEM combined to IGA 

According to the precedent analysis, the axial-flexural-torsional static and 

dynamic analysis of curved beams of arbitrary cross section including generalized 

warping effects reduces in establishing the components  ,u x t ,  ,v x t ,  ,w x t , 

 ,x x t ,  ,Z x t ,  ,Y x t ,  ,x x t ,  ,Y x t ,  ,Z x t  and  ,x x t  having 

continuous derivatives up to the second order with respect to x  at the interval  0, L  

and up to the first order at 0,x L  and for the dynamic problem up to the second order 

with respect to t , satisfying the initial-boundary value problem described by the 

coupled governing differential equations along the beam, the initial conditions and the 

boundary conditions at the beam ends 0,x L  given in the previous section. The 

problem is solved using the Analog Equation Method in a similar way as the one 

described in detail in Chapter 3.  

4.4 Numerical Solution with FEM and NURBS 

Instead of B-splines, NURBS curves in terms of B-spline basis functions can be 

employed either in FEM or AEM. The description of the numerical procedures is given 

in the Appendix A.2.  

In this chapter, the geometry of the beam is described by a NURBS structure 

(Appendix A.2) with initial control points given by the following spatial coordinates 

( , , , )i i i ix y z w : ( R , 0, 0, 1), ( cos
2

R
   
 

, sin
2

R
 
 
 

, 0, cos
2

 
 
 

), (  cosR  ,  sinR  , 

0, 1), and the arc which describes the longitudinal axis of the curved beam is obtained 
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in this way. iw  ( ) are weights of the control polygon which defines the arc and is   

the angle formed by the arc at the center of the circle that it is a part of. However, any 

curve can be represented with the aid of NURBS. The aforementioned polygon will be 

later refined as new knots will be inserted and degree will be elevated in order to 

achieve more accurate results.  tm , tk  matrices can finally be obtained following the 

procedures described in section A.2.4 of the Appendix A.2.  

4.5 Numerical examples 

In order to validate the proposed formulation of the curved beam element 

described above in static or dynamic analysis and examine the advantages attained by 

the use of the numerical methods proposed in terms of simplicity, accuracy and 

computational effort, computer programs have been written and representative 

examples have been studied. The numerical results have been obtained employing 

NURBS, beam Finite Elements (FEs) and constant or quadratic elements for the 

representation of the AEM fictitious loads. Then, the results are compared to those 

obtained by the application of the Finite Element Method (FEM) employing beam, 

solid (quadrilateral or triangular) or plate/shell elements. The computer software 

FEMAP (2010) has been used for this purpose. In addition to these, up to 800 boundary 

elements depending on the cross section type (cross sectional discretization) have been 

employed in order to evaluate the geometric constants with BEM. Domain 

discretization has been performed with BEM in some cases, too. Finally, the Newmark 

time integration scheme (Bathe, 1996) is employed for the dynamic analysis.  

4.5.1 Doubly Symmetric Cross Section (I-shaped) 

In the first example, a cantilever beam ( 7.3 11E E kPa , 2.8 11G E kPa ) of a 

doubly symmetric I-shaped cross section (Fig. 4.5) is examined. It is subjected to either 

a concentrated radial force 10zP N  applied at the centroid of its free end or a 

torsional moment 10tM Nm  applied at the same position. Its length is 300 cm and  

 

 
 

Figure 4.5. Cross section of example 4.5.1. 

 

the radius of curvature is 190.58 cm. In Table 4.1 the geometric constants of the beam 

are presented. 

This beam has also been analyzed in the study of Kim et al. (2004) as a thin-

walled beam employing a finite element solution. In this latter analysis only a primary 

warping parameter due to torsion (  x x ) is taken into account, neglecting primary 
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warping due to shear (  Y x ,  Z x ) and, thus, shear lag effect due to shear. In 

addition to this, secondary warping parameter due to torsion (  x x ), which accounts 

for shear lag effect due to torsion, is neglected, too. In Table 4.2 the values of the 

kinematical components  u x ,  w x  and  Y x  for the radial force at the free edge of 

the beam are presented for i) 200 constant elements employing the AEM (AEMconst), 

ii) 200 quadratic elements employing AEM (AEMquad), iii) 13027 quadrilateral solid 

elements in FEMAP (2010) (FEMsolid) and iv) 4320 shell elements mentioned in Kim 

et al. (2004) (FEMshell). In the same table the values of the kinematical components
 

 v x ,  x x  and  Z x  for the torsional moment at the free edge of the first beam are 

also presented. In addition to this, the values of normal stresses xx
  

at the upper and 

lower tips of the cross section are shown at the mid span of the beam for the solid and 

shell models as well as  for the  AEMquad.  Finally, normal  stresses  xx   and  shear 
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I cm    24.85212071E+00P
YA cm  

26.21759591E-01S
ZA cm
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tI cm
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CY S

D cm  
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51.62507369E-11P S
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CZ CZ
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                     Table 4.1. Geometric constants of the beam of example 4.5.1. 

 

stresses xy
 
at the upper and lower tips of the cross section are shown at the fixed end 

of the beam for the solid and the AEMquad models. It is obvious that in both load cases 

the results of this study for either kinematical components or stresses almost coincide 

with those of the solid model (discrepancies 3-4%), while shell elements give less 

accurate results by 2% to almost 6%. 

The same beam model has also been examined for the dynamic case of the 

proposed beam element with the following characteristics: 24 7E E N cm  , 

22 7G E N cm  , 2 4
0.025N sec / m  , 300L cm  and 190.58R cm . In Fig. 4.6 a  
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( )u cm  

at x=L 

 

( )w cm  

at x=L 

 

( )Y rad  

at x=L 

 

AEMconst -4.3490 6.8226 -0.0454 

AEMquad -4.3135 6.7684 -0.0450 

FEMsolid -4.3105 6.7715 -0.0450 

FEMshell -4.0930 6.4290 -0.0431 

 

 ( )v cm  

at x=L 

( )x rad  

at x=L 

( )Z rad  

at x=L 

AEMconst 2.3250 0.0894 0.0445 

AEMquad 2.3300 0.0873 0.0435 

FEMsolid 2.3413 0.0879 0.0432 

FEMshell 2.4710 0.0897 0.0452 

 Values at 

Mid span 

xx  (N/cm2) at 

Z=4.75cm 

xx  (N/cm2) at  

Z=-4.75cm 

AEMquad  -58.47  59.68 

FEMsolid -59.58 62.21 

FEMshell -56.66 58.92 

 Values at 

Fixed end 

xx  (N/cm2) at 

Z=4.75cm 

xx  (N/cm2) at  

Z=-4.75cm 

AEMquad -89.68  91.89  

FEMsolid -90.78 94.95 

 
Values at 

Fixed end 
xy  (N/cm2) at 

Z=4.75cm 

xy  (N/cm2) at  

Z=-4.75cm 

AEMquad 10.30 -11.02 

FEMsolid 10.82 -11.56 
 

         Table 4.2. Kinematical components and stresses  of the beam of Fig. 4.5 for 

 various load cases. 

 

Pz Radial 

Loading 

Pz Radial 

Loading 

Mt Torsional 

Moment 

tip 

Pz Radial 

Loading 

Pz Radial 

Loading 

tip 
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Figure 4.6. Model in FEMAP employing 13000 quadrilateral solid finite elements 

for example 4.5.1. 

 

model of the beam implemented in FEMAP (2010) employing 13000 FEM 

quadrilateral solid elements is shown. 

In Table 4.3 the values of different eigenfrequencies have been compiled for i) 

the proposed curved beam elements with quartic B-splines in AEM (analytically 

integrated), ii) 13000  quadrilateral  solid elements  (FEMAP, 2010), iii)  FEM curved 

beam elements (FEMAP, 2010), iv) the proposed curved beam elements with 5 cubic 

NURBS in FEM and v) the proposed curved beam elements with 10 cubic NURBS in 

FEM. Analysis with cubic NURBS gives results quite close to the solid model with 

errors around 5% for the first five eigenfrequencies. The same case is for the FEM 

curved beam elements (Timoshenko beam element) with respect to the first three 

modes while there is a significant loss in accuracy for the rest two. In addition to these,  

the errors between the two approximations with NURBS are in general less than 5%   

and  this  implies high  convergence rate of the  method  employed as well as  better 

accuracy for higher frequencies. Finally, regarding the B-spline solution in the AEM, 

errors become larger (around 10%) but still valid if the fact that only 5 control points  

employed with the quartic B-spline is considered. 

 

Mode 

Number 

B-splines 

AEM 

FEMsolid 

(13000) 

FEM 

Curved beam 

5 cubic 

NURBS 

10cubic 

NURBS 

1 0.0881 0.1028 0.0944 0.0950 0.1120 

2 0.4551 0.5205 0.6214 0.5230 0.5260 

3 0.8790 0.9868 0.9871 1.0502 1.1042 

4 1.5998 1.7888 4.5459 1.7552 1.8002 

5 3.2555 3.6631 4.7959 3.4500 3.6723 

                   Table 4.3. Eigenfrequencies of the beam of Fig. 4.5. 

 

In Fig. 4.7 the first four modes are presented for the proposed beam formulation 

with 50 quadratic elements in AEM and for the solid model (Fig. 4.6). The initial 

geometry is also displayed in the figure. Highly accurate results have been obtained 
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comparing to the solid model results. It is worth here noting the importance of torsion 

in the dynamic response of the curved beam due to the open shape of the cross section. 

  

  

1. First mode of Vertical displacement 2. First mode of Torsion 

 
 

3. First mode of Lateral displacement 4. Second mode of Torsion 

 

Figure 4.7. First four eigenvectors for the model of Fig. 4.6 (Proposed formulation 

with AEM  in red line, solid model in black and initial curved geometry in 

purple line). 

4.5.2 C-shaped cross sections either Monosymmetric or Non-symmetric 

In the second example, two cantilever beams are examined. The first one has a 

monosymmetric (Fig. 4.8) cross section ( 7.3 11E E kPa , 2.8 11G E kPa ) and is 

subjected to a concentrated radial 10zP N  or vertical 10yP N  force applied at the 

centroid of its free end. Its length is 100 cm and the radius of curvature is 63.66 cm. 

The second beam has a non-symmetric (Fig. 4.9) cross section ( 2.07 8E E kPa , 

8.27 7G E kPa ) and is subjected to a concentrated radial force 0.8zP KN  applied at 

the centroid of its free end. Its length is 14.36m and the radius of curvature 9.14m. 

 

 
 

Figure 4.8. Monosymmetric cross section of example 4.5.2. 

 

The geometric constants of the aforementioned cross sections are shown in 

Tables 4.4 and 4.5, respectively. Similarly to the previous I-shaped cross section, the 



Generalized static and dynamic warping analysis of Curved Beams by Isogeometric Methods 175 

 

monosymmetric C-shaped cross section of this example is also examined in Kim et al. 

(2004) as a thin-walled beam employing a finite element solution.  

 

 
 

Figure 4.9. Non-symmetric cross section of example 4.5.2. 
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Table 4.4. Geometric constants of the Monosymmetric cross section of example 4.5.2. 

 

In Table 4.6 the values of the kinematical components  u x ,  w x  and  Y x  

for the radial force at the free edge of the monosymmetric beam are presented for i) 200 

constant elements employing AEM (AEMconst), ii) 50 quadratic elements employing 

AEM (AEMquad), iii) 4033 quadrilateral solid elements in FEMAP (2010) (FEMsolid)   

and  iv)  the approximate  “analytical”  solution  mentioned  in  Kim et al. (2004), 

considering only primary warping and ignoring shear lag effects. In the same table the  
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Table 4.5. Geometric constants of the Non-symmetric cross section of example 4.5.2. 

 

 

 

 

( )u cm  

at x=L 

 

 

( )w cm  

at x=L 

 

 

( )Y rad  

at x=L 

 

AEMconst -0.1426 0.2228 -0.00418 

AEMquad -0.1426 0.2228 -0.00417 

FEMsolid -0.1462 0.2168 -0.00418 

Approximate -0.1306 0.2062 -0.00411 

 

 ( )v cm  

at x=L 

( )x rad  

at x=L 

( )Z rad  

at x=L 

AEMconst 9.3503 0.2128 0.2500 

AEMquad 9.4134 0.2133 0.2505 

FEMsolid 9.9442 0.2086 0.2348 

Approximate - - - 

   Table 4.6. Kinematical components of the beam of Fig. 4.8 for various load cases. 

Pz Radial 

Loading 

Py Lateral 

Loading 
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values of the kinematical components
 
 v x ,  x x  and  Z x  for the lateral force at 

the free edge of the second beam are also presented. From this table, it is obvious that 

in general the discrepancies between the AEM and the solid model are quite small 

(variation of errors from 0 to 5%). It is also important to mention that the use of 

quadratic elements reduces the computational effort of the AEM. However, 

computational time remains small either for constant or quadratic elements compared  

with solid model. More specifically, the required computational time calculated for the 

same hardware was 3 seconds for the AEMquad (50 elements), 17 seconds for the 

AEMconst  (200 elements) and  30 seconds for  the  FEMsolid  (4033 solid elements) 

model, without considering the time needed for modeling.  

In Fig. 4.10 the models in  FEMAP (2010) are  presented for both  load cases. It 

is worth  here noting  that the  results for the case of  the radial force derived from the 

analytical solution (Kim et al., 2004) show larger discrepancies from the solid model 

compared to those of the proposed model with the values of the kinematical 

components being smaller. This is due to the fact that the displacements    x x ,  

 Y x ,  Z x  and   x x  are ignored in the aforementioned solution. These 

additional degrees of freedom are taken into account in this study and they should be 

considered especially in the case of the lateral force applied on the vertical axis, which 

is not the axis of symmetry. 

In Table 4.7 the values of the kinematical components  u x ,  w x ,  Y x , 

 v x ,  x x  and  Z x  for the radial force at the free edge of the non-symmetric 

beam are presented for i) curved beam elements in FEMAP (2010) (FEMbeam), ii) 150 

quadratic elements employing AEM technique (AEMquad) and iii) 5474 quadrilateral  

solid elements in FEMAP (2010) (FEMsolid). In the same table the value of normal 

stress at the tip of the cross section is presented at the mid span of the beam for the 

FEMsolid and the AEMquad models. It is obvious that the AEMquad model (errors 3-

12%) gives a better prediction of the beam’s behavior regarding the displacements and 

the normal stress (due to the consideration of secondary effects) than the FEMbeam 

model (errors 17-55%) either in the plane of the curvature or in the lateral plane. It is 

worth here noting that for comparison reasons and in order to moderate distortional 

phenomena two diaphragms have been employed in the solid model, namely one at the 

mid span and one at the free edge of the beam. Regarding the normal stress, the error 

between the AEMquad  and the  FEMsolid models is around  10%.  

In  Figs. 4.11a and 4.11b the  FEMbeam and the FEMsolid models are presented 

in order to demonstrate the dissimilar deformed shapes, while in Fig. 4.11c the free end 

positions at deformed state of the aforementioned methods are shown demonstrating 

the good agreement between AEMquad and FEMsolid models. 

 The beam model with the monosymmetric cross section has also been examined 

for the dynamic case of the proposed beam element with the following characteristics: 

24 7E E N cm  , 22 7G E N cm  , 2 4
0.785N sec / m  , 100L cm  and 
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63.66R cm . The same FEMsolid (Fig. 4.10) model previously described has been 

employed here, too.  

 

                 
(a) 

 

  
(b) 

 

Figure 4.10. Deformed shapes of solid models for the beam of Fig. 4.8 (a) for radial  

force and (b) for lateral force. (Z axis of the model corresponds to Y of 

this study and X axis of the model to Z of this study). 

 

In Table 4.8 the values of different eigenfrequencies have been compiled for i) 

4033  quadrilateral solid elements (FEMAP, 2010), ii) FEM curved beam elements -

FEMbeam (FEMAP, 2010)  and iii) the proposed curved beam elements with 5 cubic 

NURBS in FEM. In addition to this, the description of the predominant modes has been 

noted. Regarding the results of the proposed formulation, it should be noted that errors 

are less than 5% comparing to the FEM solid model.  

As it is the case in the previous example of the I-shaped cross section, torsional 

modes again dominate over bending ones (for 2
nd

 mode of vertical displacement torsion 

is excessive) in the dynamic response of this curved structure due to the open shape of 
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the cross section which implies low torsional rigidity. It should also be noted here that 

the accuracy of the FEM curved beam approximation is less than the previous case, 

which was for doubly symmetric cross section, due to the fact that the neutral axis 

offsets from the shear center as well as warping are not accounted for. 

 

 

( )u m  

at x=L 

( )w m  

at x=L 

( )Y rad  

at x=L 

 

FEMbeam  -0.0036 0.0057 -0.0008 

AEMquad -0.0051 0.0086 -0.0012 

FEMsolid  -0.0060 0.0097 -0.0013 

 ( )v m  

at x=L 

( )x rad  

at x=L 

( )Z rad  

at x=L 

FEMbeam  0.0229 0.0098 0.0062 

AEMquad 0.0115 0.0084 0.0043 

FEMsolid  0.0100 0.0081 0.0038 

 
xx  (N/cm2) at Z=0.30cm 

(near mid span) 

AEMquad 4916.22 

FEMsolid  5475.41 

Table 4.7. Kinematical components and normal stress of the beam of Fig. 4.9 for radial 

concentrated force. 

 

Finally, considering the curved beam model of Fig. 4.10b and a vertical load 

5000ZP N     applied gradually for the first 0.05 seconds at the centroid of the free 

end, the dynamic response is examined.  

In Fig. 4.12 the out of the curvature plane displacement is plotted for a time 

interval of 3 seconds as well as the static response to show the dynamic amplification at 

each time. The time function that multiplies the load is also displayed. It is obvious that 

the proposed model employing cubic NURBS is quite close to the solid model 

response. The amplification factor of the transient response is equal to 1.98 for a 

system’s period T=0.28 seconds (first mode) at time t=1.8 seconds where the maximum 

value of vertical displacement occurs as shown in Fig. 4.12. 

 

Tip 

Pz Radial 

Loading 

applied at C 
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(a) 

 

  
(b) 

 

 
(c) 

Fig.4.11. Deformed shapes of the non-symmetric beam for radial force employing 

FEM beam elements (a) and FEM solid elements (b) (axes have been 

taken in a different way compared with the beam formulation of this 

study). Free end position at deformed state for the various methods (c).   

4.5.3 Box-shaped Monosymmetric cross sections  

In the third example, three box-shaped cross sections are examined for various 

beam models with respect to loading, boundary conditions and geometry.  

The first beam has the box-shaped cross section shown in Fig. 3.15 of Chapter 

3 and  exhibits the same  geometric constants as those compiled in  Table 3.7 of the  
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Mode 

Number 

FEMsolid 

(4000) 

FEM Curved 

beam 

5 cubic  

NURBS 
Type of mode 

1 0.2824 0.1788 0.2942 
1

st
 mode of Vertical 

displacement 

2 1.3623 1.1794 1.4211 
1

st
 mode of Lateral 

displacement 

3 2.2615 4.1602 2.2205 
2

nd
 mode of Vertical 

displacement  

4 5.7508 6.4632 5.9612 1
st
 mode of Torsion 

5 6.3241 31.211 6.3709 2
nd

 mode of Torsion 

                  Table 4.8. Eigenfrequencies of the beam of Fig. 4.8. 

 

 
 

Figure 4.12. Out-plane displacement at the tip of the curved beam model shown in 

Fig. 4.10b for gradually applied dynamic loading. 

 

same Chapter. The curved beam model examined at first has the following 

characteristics: 24 7E E kN m  , 22 7G E kN m  , 10L m  , 6.366R m  . It is 

subjected to a concentrated load either 1000zP kN 
 
or  1000yP kN  eccentrically 

applied at its free end. This cross section is thin-walled and it holds that / 0.02t d   

and / 0.1d L   (t=thickness and d=height or width). This implies that significant 

distortional phenomena will arise.  
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In Table 4.9 the values of the kinematical components  v x ,  x x  and  Y x  for the 

lateral force yP
 
at the free edge of the beam are presented for i) curved beam elements 

in FEMAP (2010) (FEMbeam), ii)  100 quadratic elements employing  AEM  

technique (AEMquad), iii) 10976 quadrilateral solid elements in FEMAP (2010) 

(FEMsolid) (the deformed shape of the solid model for this load case is shown in Fig. 

4.13).  

In the same table the values of the kinematical components  v x ,  x x ,    

 Y x ,  u x ,  w x  and  Z x  for the radial force zP
 
at the free edge of beam are 

also presented. In the first case, the AEMquad gives results closer to the solid model 

(errors 5-7%) than the FEMbeam model (errors 8-12%). It is worth here noting that 

diaphragms  in  the plane of the cross section have been employed along the length of  

 

 

 

 

( )v m  

at x=L 

 

 

( )x rad  

at x=L 

 

 

( )Y rad  

at x=L 

 

FEMbeam -0.5150 0.0276 0.0752 

AEMquad -0.4961 0.0297 0.0719 

FEMsolid -0.4734 0.0315 0.0666 

 

 ( )u m  

at x=L 

( )w m  

at x=L 

( )Y rad  

at x=L 

FEMbeam 0.0593 0.0930 -0.0173 

AEMquad -0.0616 0.0945 -0.0183 

FEMsolid -0.0604 0.0947 -0.0183 

 ( )v m  

at x=L 

( )x rad  

at x=L 

( )Z rad  

at x=L 

FEMbeam 0.0059 -0.0062 -0.0013 

AEMquad 0.0059 -0.0060 -0.0013 

FEMsolid 0.0054 -0.0055 -0.0014 

Table 4.9. Kinematical components of a curved beam with the cross section shown in 

Fig. 3.15 for various load cases. 

Py Lateral 

Loading 

Pz Radial 

Loading 
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the beam in the solid model in order to reduce the impact of distortion and to obtain 

comparable results. The optimum number of these diaphragms will be investigated in 

Chapter 6. In this case case the discrepancies in the results are similar to those of the 

first load case with the FEMbeam model showing larger errors than the AEMquad for 

the  u x ,  w x  and  Y x  displacements, which are in the plane of the curvature. 

 

   
 

Figure 4.13. Deformed shape of the solid model of a curved beam with the box-

shaped cross section shown in Fig. 3.15 of Chapter 3 for lateral force 

employing FEM solid elements (axes have been taken in a different 

way comparing to the beam formulation of this study). 

 

Some aspects of numerical procedure employed are examined in the following. 

Particularly, in Fig. 4.14 the distribution of the vertical deflection  v x  for the 

concentrated load 1000yP kN   in the vertical direction eccentrically applied this time 

at its free end. Curved beam elements proposed can accurately give the maximum 

deflection of the beam model under consideration. However, the distribution along the 

X axis of the arc in plan can satisfactorily be described only by the NURBS 

approximation of the proposed beam model due to the fact that the same NURBS 

functions, as for the representation of the kinematical components, have been used to 

describe the geometry of the curved beam and no post-processing computations need to 

be done as in FEM beam elements (after solving the problem values have to be 

compiled as vectors and be analyzed on the curve). The discrepancies arising between 

the NURBS’ model and the solid one are probably due to the number of the 

diaphragms used in order to derive the values of  v x and their positions along the 

length, which make the solid model stiffer than it should be. Another reason might be 

the shear locking phenomenon. 
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Figure 4.14.  v x distributions derived from the analysis of solid and curved beam 

models of the cross section shown in Fig. 3.15. 

 

Additionally, the free vibration problem of the aforementioned curved beam has 

been studied and the values of different eigenfrequencies have been compiled in Table 

4.10 for different models. It is obvious that the analysis employing the proposed curved 

beam formulation with NURBS approximation is closer to the FEM solid model with 

13 diaphragms while the eigenfrequencies of the solid model with 1 diaphragm are 

quite smaller. However, the diaphragmatic model seems to be stiffer than the proposed 

model especially for higher eigenfrequencies. It is also worth noting that convergence 

is obtained with few beam elements when NURBS are employed. 

 

Mode 

Number 

FEMsolid 

1 Diaph. 

FEMsolid 

13 Diaph. 

4 cubic 

NURBS 

10cubic 

NURBS 

1 0.1172 0.1548 0.1317 0.1317 

2 0.2556 0.2704 0.2191 0.2191 

7 0.3262 1.0436 1.1045 1.1042 

8 0.3562 1.4233 1.2313 1.2311 

9 0.4022 1.5021 - 1.3345 

                Table 4.10. Eigenfrequencies of the beam of Fig. 4.13. 
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In Fig. 4.15 the bending moment distribution is plotted for different methods 

employing either the proposed beam elements or the ones used in commercial software  

 

        
 

Figure 4.15.  ZM x  distributions derived from the analysis of curved beam models 

with a box-shaped cross section (Fig. 3.15) and printed directly along 

with the curved model. 

 

(Timoshenko beam elements). The proposed method is validated. It is worth noting 

here that when employing NURBS there is no need for post processing of data in order 

to derive stresses and stress resultants as it is the case in FEM. This is due to the fact 

that the same basis functions are used for the representation of geometry and 

kinematical components. Thus, the matter is just to derive deformations and their first 

derivative employing the same NURBS structure for specific locations along the curve 

of the beam. In addition to this, when employing AEM much more discretization 

elements need to be used for the same accuracy level. 

In Fig. 4.16 the torsional moment and bimoment distributions are plotted 

employing the analysis of the proposed beam model with NURBS on the curved model 

directly without any post-processing. Considering commercial FEM beam elements 

secondary Torsional moments and bimoments are not considered. However, the 

magnitude of bimoment near the fixed support is around 10% of the total Torsional 

moment and should be indeed considered in the analysis. In addition to this, secondary 

Torsional moment varies from 15 (near support) to 0% of the total Torsional moment 

and should also be considered. 
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Figure 4.16. Torsional Moment and Bimoment distributions derived from the 

analysis of the proposed curved beam model with a box-shaped cross 

section (Fig. 3.15) and printed directly along with the curved model. 

 

Finally, in Fig. 4.17 the dynamic response of the curved cantilever beam 

previously described is plotted in terms of the tip deflection out of the curvature plane. 

The eigenfrequency of the first mode is 49.08 rad/sec (T=0.0204 seconds). A static load   

2000yP kN   applied at the centroid of the free end has been dynamically applied in 

three different ways, namely suddenly applied for 0.025 seconds, gradually applied for 

the first 0.005 seconds and gradually applied for 0.015 seconds. It is obvious that the 

amplification is less severe for the last case due to the fact that the load rise is more 

gradual. This is equal to 1.3 while for the case of the suddenly applied load is equal to 

1.95. Regarding the other case of gradually applied load but with a shorter rise time, the 

amplification factor is equal to 1.83. Considering a straight beam of the same length 

and loading, the amplification factor for the case of transient response is equal to 1.98. 

The second beam has a box-shaped cross section shown in Fig. 4.18 and the 

geometric constants compiled in Table 4.11. The curved beam model examined at first 

has the following characteristics: 23 7E E kN m  , 21.5 7G E kN m  , 40L m  , 

25.465R m  . It is subjected to a concentrated load either 600yP kN 
 
eccentrically 

applied as shown in Fig. 4.18. This cross section is thin-walled as the previous cross 

section considered in this example and it holds that / 0.086t d   and / 0.086d L  . 
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Figure 4.17. Deflection at the tip of the curved cantilever beam shown in Fig. 4.13 

for different cases of dynamic loading. 

 

       
 

  Figure 4.18. Box-shaped cross section of the beam of example 4.5.3. 

 

In Table 4.12, the values of the kinematical components  v x ,  x x  and 

 Y x  for the lateral force yP
 
at the midspan of the beam and for fixed end conditions 

are presented for i) curved beam elements in FEMAP (2010) (FEMbeam), ii) 100  

quadratic  elements employing  AEM technique (AEMquad), iii) 2714 quadrilateral 

solid elements  in FEMAP (2010) (FEMsolid) (the deformed shape of the solid model 

is given in Fig. 4.19).  As it can be easily verified, the  AEMquad model gives results in 
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general closer to the solid one. However, it should be noted that no diaphragms in the 

plane of the cross section have been employed in the solid model due to the fact that 

this procedure becomes computationally inefficient regarding the obtained level of 

accuracy and cumbersome for this particular cross section.  

 

21.1280E+01A m  

61.42222320E+01S S
S S

I m    

41.69887612E+02YYI m  
5-2.81492352E+00P P

CZ S

I m    

41.90664591E+01ZZI m  
53.96237278E+00P S

CZ S

I m    

43.35829281E+00P P
CZ CZ

I m    22.60795231E+00P
ZA m  

27.69037695E-01S
YA m

 

44.24643347E+01P
tI m

 
42.70455808E+01S

tI m
 

41.21016082E+00T
tI m

 
32.62674568E-01S S

CZ S

D m  
 

33.63838338E-01S T
CZ S

D m  
 

56.20215034E-13P S
CY S

I m  
 

5-1.28945357E-13P P
CY S

I m  
 

41.20295288E+00P P
CY CY

I m    26.75899175E+00P
YA m  

31.17081534E-13S S
CY S

D m  
 

32.75075432E-14S T
CY S

D m  
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S S

I m    22.97414035E-01S
ZA m  

Table 4.11. Geometric constants of the box-shaped cross section shown in Fig. 4.18. 

 

 

 

 

 

( )v m  

at x=L 

 

 

 

( )x rad  

at x=L 

 

 

 

( )Y rad  

at x=L 

 

FEMbeam  -5.57E-4 1.81E-5 -1.81E-5 

AEMquad -5.63E-4 2.25E-5 -2.23E-5 

FEMsolid -5.60E-4 2.14E-5 -2.17E-5 

Table 4.12. Kinematical components of a curved beam with the cross section shown in 

Fig. 4.18 for vertical load and fixed end conditions. 

 

The same cross section is employed for a beam model of the same length and 

material with 3
2.5t / m  . This is examined either as cantilever (similar to Fig. 4.20) 

or clamped (Fig. 4.19) for the dynamic case of the proposed beam element.  

Py Vertical 

Loading 

(eccentrically 

applied) 
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  Figure 4.19. Deformed shape of the solid models of the beam with the cross section 

shown in Fig. 4.18 for vertical force employing FEM solid elements 

(axes have been taken in a different way comparing to the beam 

formulation of this study). 

 

   
 

  Figure 4.20. Deformed shape of model in FEMAP employing 2714 quadrilateral 

solid finite elements for the beam of the box-shaped cross section 

shown in Fig. 4.18. 

 

The eigenfrequencies either for cantilever or clamped beam are compiled in 

Table 4.13 for the proposed formulation and the solid model. Comparing the values 

between models, it should be noted that errors are similar for both cases of boundary 

conditions and around 5% in general. However, some errors are 6-8% and this might be 

attributed to the selection of the right frequencies from the solid model (to those exactly 

corresponding to the proposed model) which has thousands of nodes to account for.  
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Mode 

Number 

Cantilever Clamped 

10cubic 

NURBS 

FEMsolid 

(2714) 

10 cubic  

NURBS 

FEMsolid 

(2714) 

1 0.0489 0.0488 0.2512 0.2306 

2 0.1305 0.1408 0.5020 0.5252 

3 0.2015 0.1905 0.7212 0.7547 

4 0.2992 0.3002 0.7965 0.8111 

5 0.4410 0.4644 0.9421 0.9120 

Table 4.13. Eigenfrequencies of the beam with cross section shown in Fig. 4.18 either 

cantilever or clamped. 

 

Finally, for comparison reasons to the open shape cross sections of previous 

examples, the predominant eigenvectors are presented in Fig. 4.21. The first three and 

the fifth modes are given. The fifth is the first mode for torsion while the previous ones 

are either displacement or bending modes due to the fact that box-shaped cross section 

exhibit high torsional rigidity. 

In order to further validate the proposed formulation the aforementioned box-

shaped cross section is employed for the beam model presented in Fig. 4.20.  This has 

the same properties as those previously mentioned and it is subjected to a concentrated 

load 10000yP kN   concentrically applied. 

In Table 4.14 the values of the kinematical components  v x ,  x x  and  Z x  

for the vertical force yP  concentrically applied at the free edge of the beam are  

presented  for  i) the  proposed curved beam elements with  NURBS (cubic),  ii) 2714  

 

 

 

1. First mode of Vertical displacement 2. First mode of Lateral displacement 

 

 

3. First mode of Vertical Bending 5. First mode of Torsion 

 

Figure 4.21. Eigenvectors for the model of Fig. 4.20 (Proposed formulation with AEM 

                    in red line, solid model in black and initial curved geometry in purple line 

or purple point). 

 

quadrilateral solid elements with 2 diaphragms in FEMAP (2010) (FEMsolid 2 Diaph.) 

and iii) 40 quadratic elements  in the  AEM technique (AEM 40 quad.). After trying 
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different diaphragmatic arrangements, this one showed results closer to the proposed 

formulation. However, the placement of intermediate diaphragms for this particular 

case will be discussed in Chapter 6. Both analyses employing the beam formulation 

proposed give accurate results comparing to FEM solid model with the one diaphragm 

used in order to apply load concentrically (FEMsolid). However, the analysis with 

NURBS exhibits less computational cost due to the coarser discretization needed. 

 

 

( )v m  at 

x=L 

( )x rad  at 

x=L 

( )Z rad  

at 

x=L 

 

4 cubic  

NURBS 0.3197 -0.007029 -0.0104 

FEMsolid  

2 Diaph. 0.3256 -0.00782 -0.0103 

AEM 40 quad. 0.3197 -0.07020 -0.0104 

Table 4.14. Kinematical components of the beam of Fig. 4.20 for vertical load. 

 

Similarly to previous box-shaped cross section, in Fig. 4.22 the distribution of the 

vertical deflection  v x  along the x axis of the curved in plan geometry for the 

concentrated load in the vertical direction mentioned previously. As it is the case in the 

previous example, curved beam elements proposed can accurately give the maximum 

deflection of the beam model under consideration. It is worth noting here that the 

approximation of the  v x  distribution when employing quadratic elements in the 

AEM technique exhibits a stiffer behavior comparing to NURBS approximation.   

In Fig. 4.23 the distribution of total, primary and secondary Torsional moments  

are plotted along the length of the curved beam for the concentrated load in the vertical 

direction. In addition to this, the bimoment distribution has also been plotted. It is 

worth noting here that Torsion and Warping are of the same order of magnitude near 

the support for this specific cross section (this was not the case in the previous box-

shaped cross section). Thus, Warping effect will cause important discrepancies between 

the commercial FEM beam elements and the one proposed in this study. Secondary 

Torsional moment has a considerable value near support, too. 

Considering the curved beam of Fig. 4.19 with fixed end supports and a load   

20000yP kN   applied at the centroid of the mid span, the amplification factor of the 

transient response for is equal to 1.90 for a system’s period T=0.127 seconds (first 

mode) at time t=0.0675 seconds. 

The last beam has a box-shaped cross section shown in Fig. 4.24 and the 

geometric constants compiled in Table 4.15. The curved beam model examined at first 

Py Lateral 

Loading 
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Figure 4.22.  v x distributions derived from the analysis of solid and curved beam 

models of the cross section shown in Fig. 4.18. 

 

has the following characteristics: 23.25 7E E kN m  , 0.1667  , 33L m  , 

100R m   and 3
2.5t / m  . It is examined as clamped for the dynamic problem. This 

cross section is also thin-walled and it holds that / 0.1t d   and / 0.065d L  . 

In Table 4.16 the eigenfrequencies are compiled for three different cases, namely 

proposed formulation, solid model with one diaphragm at midspan (FEMAP, 2010) and 

solid model without diaphragm (ANSYS-SOLID45) (Wang et al., 2016). The 

reasoning behind the placement of one diaphragm is in detail explained in Chapter 6. It 

is important to note that damping is considered in the last case. The eigenfrequencies of 

the proposed curved beam formulation are quite close to both solid models for the first 

five modes but they are closer to the solid model of ANSYS after the fifth mode. Thus, 

damping does not seem to significantly affect the results of the proposed beam model.  

Finally, in Fig. 4.25 the dynamic response is obtained for the cases previously 

mentioned plus the solid model without diaphragm created with FEMAP (2010) for 

comparison reasons. The models are subjected to a vertical cosine load applied at 

midspan. It is worth noting that damping is obvious through the oscillations present at 

the solid model with damping (ANSYS - SOLID45) at the initial phase of its transient 

response. The rest of the models exhibit in general a steady state response.  However, 

this does not  affect significantly the results when  comparing the maximum values of  
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Figure 4.23. Torsional Moments and Bimoment distributions derived from the 

analysis of the proposed curved beam model of Fig. 4.20 and printed 

directly along with the curved model. 

 

 

   
 

  Figure 4.24. Box-shaped cross section of a beam of example 4.5.3. 

 

displacement between the solid models without diaphragm. The proposed formulation 

seems to be closer to the solid model with 1 diaphragm and exhibits a quite smooth 

behavior following the application of the load due to the absence of damping. 

4.6 Concluding Remarks 

In this chapter, the AEM, a BEM based technique is applied for the static and 

dynamic analysis of curved homogeneous beams considering nonuniform warping 
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effects. The presented  formulation  is  based  on  advanced  beam  elements  taking  

into  account  secondary  torsional  shear deformation effect and  shear lag effect due to 
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Table 4.15. Geometric constants of the box-shaped cross section shown in Fig. 4.24. 

 

Mode  

Number 

FEMsolid 

1 Diaph. 

Solid45 

no Diaph. 

cubic 

NURBS 

Type of the predominant 

modes 

1 
9.72  

(1.73)* 

9.67  

(1.22)* 
9.55 

First mode of vertical 

displacement 

2 
19.21  

(0.65) 

19.47  

(0.70) 
19.33 First mode of lateral bending 

3 
21.58  

(4.62) 

21.66  

(4.97) 
20.58 First mode of torsion 

4 
22.75  

(1.11) 

22.98  

(2.10) 
22.49 

Second mode of vertical 

displacement 

5 
33.59  

(13.74) 

36.57  

(4.48) 
38.21  

6 
37.10  

(7.93) 

38.67  

(3.55) 
40.04  

7 
44.16  

(3.50) 

43.74  

(2.57) 
42.61  

8 
47.68  

(11.84) 

51.39  

(3.78) 
53.33  

Table 4.16. Eigenfrequencies of the clamped beam with cross section shown in Fig. 

4.24. *() difference between the corresponding solid model and the proposed 

beam model (cubic NURBS) 

 

both  shear and  torsion. The importance of  the  proposed  beam element is highlighted  
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when  considering  the advantages of  beam models  compared with solid ones, as it is 

mentioned in the introduction. Thus, the main purpose is for the beam formulation to 

remain simple and with the least number of degrees of freedom needed to describe its 

     
 

  Figure 4.25. Dynamic response of the clamped beam with the cross section shown 

in Fig, 4.24 for vertical cosine load. 

 

behavior accurately (distortional effects and local buckling phenomena increase 

significantly the dimension of the problem). Quadratic and constant discretization 

elements have been employed in the AEM technique. In addition to this, Isogeometric 

tools integrated in FEM and AEM are also applied for the analysis. NURBS structures 

give another important advantage over solid models, especially with curved geometries, 

due to the fact that they do not require cumbersome pre- and post-processing while 

integrate curved geometry in the analysis employing the same shape functions. 

Moreover, creation of coarse models with quadrilateral solid elements and diaphragms 

is very time-consuming.  

NURBS have been employed in combination with FEM or AEM beam elements 

and compared to FEM models employing quadrilateral or triangular solid elements or 

curved beam elements. Some of the results have also been compared to the results of 

FEM plate/shell models. The main conclusions that can be drawn from this 

investigation are: 
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i. Highly accurate results can in general be obtained using quadratic elements in the 

AEM technique.  

ii. FEM models employing curved beam elements give less accurate results due to 

the ignorance of generalized warping and STSDE effects, showing quite different 

deformed shapes than solid and AEMquad models especially in the case of non-

symmetric cross section beams. Moreover, AEMquad model gives a good 

prediction of normal and shear stresses compared to the solid one. 

iii. AEMquad models give more accurate results than models with shell elements 

especially in cases where the warping of the walls of a cross section is important 

(shear lag due to shear and torsion). 

iv. Highly accurate results can in general be obtained using B-splines in the AEM 

technique as well as NURBS in FEM beam formulations for the static and 

dynamic analysis of the proposed beam element. Computational effort, including 

post-processing of the results, is significantly reduced by the use of NURBS 

comparing to FEM beam and solid models. Employment of NURBS either in 

FEM or in AEM results in higher convergence rates and highly accurate results 

with few elements. In addition to this, NURBS give more accurate values for 

higher frequencies comparing to traditional FEM beam elements 

v. FEM curved beam formulations based on Timoshenko beam theory exhibit a 

significant loss in accuracy for higher frequencies even for doubly symmetric 

cross sections. Thus, warping effects need to be taken into account in the 

dynamic analysis.  

vi. Displacement and bending modes dominate over the torsional ones when 

considering box-shaped cross sections due to higher torsional rigidities 

comparing to the open shape cross sections. 

vii. Amplification factors of the dynamic response of a curved beam either for 

suddenly or gradually applied force are similar to those of straight beam 

formulations. The consideration of damping does not alter the response in a 

significant way for the cases examined.  

viii. The magnitude of bimoment is in general not negligible comparing to the total 

Torsional moment and both moments can also be of the same order of magnitude 

as in the example 4.5.3 (cross section of Fig. 4.18). In addition to this, secondary 

Torsional moments can be significant and should also be considered in the 

analysis. These higher order additional stress resultants can now be integrated in 

the analysis’ results and plotted in alignment with the curved geometry due to the 

use of Isogeometric analysis.  
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Chapter 5 

Generalized distortional analysis of 

Straight and Curved beams by 

Isogeometric Methods 

5.1 Introduction 

In engineering practice the analysis of beam structural members, which have a 

longitudinal dimension significantly larger than the cross sectional ones, is frequently 

encountered. However, refined models either straight or curved with shell or solid 

elements are widely used in structures, such as for example the deck of a bridge with a 

thin-walled cross section, for stress or strain analysis. The analysis of such members 

employing the so-called “Higher-Order Beam Theories” (Ferradi et al., 2013; Ferradi, 

and Cespedes, 2014; El Fatmi, and Ghazouani, 2011) is of increased interest due to 

their important advantages over more elaborate approaches based on shell or solid 

finite elements (Sapountzakis and Tsiptsis, 2015), which are mainly incorporated in 

commercial software. These advantages of beam models or disadvantages of the other 

approximations have already been mentioned in the introduction of Chapter 4. 

Particularly, the design of box-shaped thin-walled cross sections, the placement of 

supports, diaphragms and loads, the additional calculations needed in order to derive 

cross sections’ rotations and further manipulations to extract stress values at specific 

points of solid elements can also be added to explain more precisely the imperative 

need for advanced beam elements. In addition to these, midline of shell and plate 

models becomes difficult to be designed for different thicknesses of the same cross 

section, while midline models exhibit difficulty in capturing warping accurately. 

Moreover, the investigation of various shell/plate or solid models in order to conduct 

convergence studies and control membrane and shear locking phenomena becomes 

time-consuming and multiple models need to be created. Distortional effects can be 

isolated and further investigated for each model. Finally, beam models allow the use 

of different numerical tools (i.e. Isogeometric analysis- IGA, boundary element 

methods- BEM etc.) for the 2-D cross sectional and the 1-D longitudinal analysis 

which could be more effective in one case or the other and, thus, leading to an 

optimum approximating computational procedure.  

 The evaluation of the cross sectional properties, which are finally incorporated 

in the one-dimensional beam analysis, is associated with the accuracy of the model 

regarding the cross sectional behavior. Over the past decades, classical beam theories 

based on specific assumptions fail to describe accurately the structural behavior of 

beam elements, especially in more complex formulations such as in curved 
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geometries. Among these theories, that of Saint-Venant (SV) still plays a crucial role 

due to the fact that the analysis reduces to the evaluation of warping and distortional 

functions over the cross sectional domain. However, this solution is exact for the 

uniform warping of a beam (warping/distortional deformations are not restrained). 

Towards improving SV theory, several researchers investigated the so-called SV’s 

principle (stated by Love, 1944) as well as the SV’s end-effects in order to derive a 

more general formulation of beams’ kinematics. Bauchau (1985) proposed an 

approach that consists in improving the SV solution by adding a new set of 

orthonormal eigenwarpings to the uniform ones, derived from energy principles in 

order to formulate the governing equations. In most of these studies, the solution is 

obtained as the sum of the SV’S solution and the residual displacements corresponding 

to the end-effects, as it will be later explained. 

In the majority of past research works, thin-walled cross sections have been 

studied due to their low self-weight comparing to solid ones and, thus, their use in 

practice. In-plane deformations, such as distortion, occurring when thin-walled 

sections undergo bending and torsional deformations can considerably weaken the 

flexural and torsional stiffness of thin-walled beams. Even though distortion is larger 

in magnitude near the beam’s ends, it does not remain local (exponentially decays 

away from the support) and thus it should be considered over the entire domain of the 

beam to account for its stiffness-weakening effect. Vlasov (1961) presented the Thin 

Tube Theory (TTT) and treated different cross section types as special cases of this 

general theory. Kollbrunner and Basler (1969) and Heilig (1971) were later 

reformulated TTT for multi-cell boxes with arbitrary cross sections. Kristek (1970) 

obtained analytical solution for simple practical cases and separated the analysis of 

transverse distortion from that of torsion with longitudinal warping employing the 

superposition principle. Wright et al. (1968) studied the distortional warping response 

of single-cell box girders with longitudinally and transversely stiffened plates 

employing the beam on elastic foundation (BEF) analogy. Steinle (1970) tackled the 

torsional distortion problem and introduced distortional stress resultants in the 

analysis. Kollbrunner and Hajdin (1975) dealt with the extension of the beam theory of 

prismatic folded structures to include the deformation of the cross section for open and 

closed cross sections including warping. Other research efforts later expanded TTT 

considering only box-shaped cross sections (single- or multi-cell) and, thus, being not 

general (Kermani and Waldron, 1993; Kim and Kim, 1999a; Park et al., 2003; Park et 

al., 2005b; Razaqpur and Li, 1991; Osadebe and Chidolue, 2012). Schardt (1989, 

1994) developed an advanced formulation known as Generalized Beam Theory (GBT) 

which is a generalization of the classical Vlasov beam theory in order to incorporate 

flexural and torsional distortional effects. A distinguishing feature of GBT stems from 

the general character of its cross sectional analysis which enables the determination of 

cross-section deformation modes as well as their categorization to global, distortional 

or local ones. Further developments of GBT avoid some of its cumbersome procedures 

through eigenvalue cross sectional analysis (Ranzi and Luongo, 2011; Jönsson, 1999; 

Jönsson and Andreassen, 2011; Andreassen and Jönsson, 2012a, 2012b, 2013). These 

approaches are employed nowadays by several researchers. Camotim, Silvestre and 
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co-researchers expanded the method to cover a variety of cross sections, orthotropic 

materials, as well as geometrically nonlinear and inelastic problems (Silvestre and 

Camotim, 2010; Camotim and Dinis, 2011; Dinis and Camotim, 2011, Gonçalves and 

Camotim, 2015). Towards solving the problem for arbitrarily shaped homogeneous or 

composite cross sections, El Fatmi and Ghazouani (2011) presented a higher order 

composite beam theory (denoted HOCBT) that starts from the exact expression of 

SV’s solution and introduces in- and out-of-plane independent warping parameters for 

symmetric orthotropic cross sections with the ability to extended it for arbitrary ones. 

However, in-plane warpings are only due to the flexural and axial deformation modes 

and, thus, it could be stated that this research effort studies Poisson ratio effects rather 

than distortional effects. Ferradi and Cespedes (2014) presented the formulation of a 

3D beam element solving an eigenvalue problem for the distortional behavior of the 

cross section (in-plane problem) and computing warping functions separately by using 

an iterative equilibrium scheme. Genoese, Genoese et al. (2014) developed a beam 

model with arbitrary cross section taking into account warping and distortion with 

their evaluation being based on the solution of the 3D elasticity problem for bodies 

loaded only on the terminal bases and a semi-analytic finite element formulation. 

Finally, Dikaros and Sapountzakis (2016) presented a general boundary element 

formulation for the analysis of composite beams of arbitrary cross section taking into 

account the influence of generalized cross sectional warping and distortion due to both 

flexure and torsion. In this proposal, distortional and warping functions are evaluated 

by the same eigenvalue problem and in order of importance. 

Regarding horizontally curved beams subjected to vertical or radial loads, they 

inherently exhibit a more complex behavior comparing to straight formulations due to 

the fact that the effects of primary and secondary torsion are always coupled to those 

of bending and cross section distortion either for centered or eccentric loads. 

Dabrowski (1968) elaborated Vlasov’s theory and introduced distortional behavior of 

box girders with a symmetric cross section. His model introduces the distortion angle 

as the single degree of freedom which measures the magnitude of the cross-sectional 

distortion. Bazant and Nimeiri (1974) proposed the skew-ended finite element in order 

to implement the theory of non-uniform torsion for straight or curved thin-walled cross 

sections. Oleinik and Heins (1975), and Heins and Oleinik (1976) employing Vlasov’s 

and Dabrowski’s theories studied the structural behavior of curved box girders. In-

plane deformations were approximated using a differential equation which was solved 

employing the finite difference method. In addition to this, Martin and Heins (1978) 

expanded Dabrowski’s equation, which predicts the cross-sectional deformations, so 

that the angular deformations induced at given points along an I-girder curved bridge 

can be calculated. Zhang and Lyons (1984a, 1984b) employed Dabrowski’s theory 

combined with Finite element method to develop a multi-cell box element for the 

analysis of curved bridges. Nakai and Yoo (1988) presented an extended study on the 

analysis and design of curved steel bridges. Razaqpur and Li (1994) extended their 

previous theory to curved thin-walled box beams. Petrov and Geradin (1998) 

employing the same concept with El Fatmi and Ghazouani (2011) for straight beams 

formulated a theory for curved and pre-twisted beams of arbitrary homogeneous cross 
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sections, covering geometrically nonlinear range as well. Kim and Kim (2002) 

developed a theory for thin-walled curved beams of rectangular cross section by 

extending the theory developed earlier for straight beams taking into account warping 

and distortional deformations. Park et al. (2005a) expanded their previous work 

(2005b), which was limited to straight box girder bridges, to curved formulations. 

They developed a curved box beam element which was employed in order to develop 

design charts for adequate spacing of the intermediate diaphragms of curved bridges. 

Flexural and torsional displacement functions have been based on those proposed for 

doubly symmetric cross section by Kang and Yoo (1994) while distortional functions 

have been derived for a mono-symmetric cross section (Park et al, 2003). Despite the 

practical interest of their study, their proposal cannot accommodate elastic constraints 

and due to other assumptions made lacks of generality. In other research efforts, the 

vibration problems of thin-walled curved box girder bridges due to moving loads have 

been investigated. The curved box girder bridges have been numerically modelled 

using finite elements which take into account the torsional warping, distortion and 
distortional warping (Huang, 2001; Yang et al., 2001; Nallasivam et al., 2007). Other 

recent research efforts as the following ones mainly constitute design guides with new 

formulae for specific practical cases rather than a generalized theory for the analysis of 

curved beams. Particularly, in the study of Zhang et al. (2015), a curved girder is 

simplified to straight one by using the M/r method and calculation formulae for 

determining the required diaphragm spacing are obtained by regression analyses. 

Towards establishing a more general theory, Arici and Granata (2016) employed the 

Hamiltonian Structural Analysis Method for the analysis of straight and curved thin-

walled structures on elastic foundation extending the so-called GBT. To the authors’ 
knowledge, there are no research efforts that introduce a unified distortional and 

warping eigenvalue analysis of arbitrarily shaped cross sections to the analysis of 

curved beams.  

As far as the free vibration and dynamic response is concerned, it has been 

noticed in studies of the last decades, mainly for straight beam formulations, that the 

thin-walled members’ behavior can be highly affected by cross section’s in-plane 

(distortion) deformations. There are a number of investigations with various 

approaches in order to determine the cross sectional deformations which are either 

restricted to quadrilateral cross sections (Kim and Kim, 1999a,b) or to the evaluation 

of two distortional modes that are roughly approximated by cubic polynomials (Kim 

and Kim, 2000). Thin-walled closed piecewise straight beams with angled joints were 

also studied by Jang and Kim (2009), but arbitrarily shaped sections were not 

investigated. More recently, Petrolo et al. (2012) as well as Carrera and Varello (2012) 

developed a beam formulation which can be exploited for the analyses of compact, 

thin-walled structures and bridge-like cross-sections. However, this approach is only 

capable of handling problems that involve a limited range of deformation types due to 

the fact that the displacement field, which is based on, is not formulated in the most 

general way. In addition to these, Jang et al. (2012) and Bebiano et al. (2013) 

developed more refined beam models with open- or closed-shaped cross section for 

the vibration problem. However, their cross sectional analyses are based on beam-
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frame and plate models for the discretization of the cross section. However, these 

approaches depend on the section’s shape, the nodal topology and the number of 

intermediate nodes employed which make the procedure cumbersome while 

deformation mode selection becomes important for the analysis. Regarding vibration 

analysis of curved beams including distortional effects, few research efforts have taken 

into account the complete coupling of torsion, warping, and distortion deformations 

together with the curvature effect. Zhu et al. (2016) provided a dynamic theory for the 

spatial vibration analysis of horizontally curved thin-walled rectangular box-shaped 

beams based on the displacement fields proposed by Kim and Kim (1999a). Thus, to 

the authors’ knowledge, there is no study on the vibration problem of curved beams 

with arbitrary cross section including in- and out-of-plane deformations. 

In modern regulations and design specifications, the importance of torsional and 

distortional effects in stress or strain analysis of structural members is recognized. 

Particularly, in sub-sections 6.2.7.1 and 6.2.7.2 of EN 1993-2, Eurocode 3: Design of 

steel structures - Part 2: Steel bridges, regarding torsion, the designer is obliged to 

keep the distortional stresses under a specific limiting value or follow some general 

design rules in case of neglecting distortion. These are presented in clauses (1)-(9) of 

section 6.2.7, regarding torsion, of EN 1993-1-1, Eurocode 3: Design of steel 

structures - Part 1-1: General rules and rules for buildings. Nevertheless, no guidelines 

and specific modelling methodologies offered for the aforementioned effects. It should 

also be noted that most of the provisions of Eurocode 3 regarding torsion are valid 

only when distortional deformation can be neglected. The same case is when the 

stability of uniform members is checked as it is mentioned in clause (1) of section 

6.3.3 of EN 1993-1-1. Distortional buckling is encountered in EN 1993-1-3, Eurocode 

3 - Design of steel structures - Part 1-3: General rules - Supplementary rules for cold-

formed member and sheeting, and EN 1993-1-4, Eurocode 3 - Design of steel 

structures - Part 1-4: General rules - Supplementary rules for stainless steels. It is 

taken into account through reduction factors or special arrangements in order to 

prevent distortion. In addition to these, distortional effect is also suggested be taken 

into account during the design of unreinforced joints (Section 7.5.2.1(7) of EN 1993-

1-8, Eurocode 3: Design of steel structures - Part 1-8: Design of joints) to prevent 

chord distortional failure and the evaluation of nominal stresses from fatigue actions 

(Section 4(1) of EN 1993-1-9, Eurocode 3: Design of steel structures - Part 1-9: 

Fatigue). Regarding design of aluminum structures (Eurocode 9: Design of aluminum 

structures - Part 1-1: General structural rules and Part 1-3: Structures susceptible to 

fatigue), some general rules account for distortion and distortional buckling without 

any specific guidance.  

In this study, the static and dynamic analysis of straight or horizontally curved 

beams of arbitrary cross section, loading and boundary conditions including 

generalized cross sectional warping and distortional effects due to both flexure and 

torsion is presented. The aim of this Chapter is to propose a new formulation by 

enriching the beam’s kinematics both with out-of- and in-plane deformation modes 

and, thus, take into account both cross section’s warping and distortion in the final 1D 

analysis of curved members, towards developing GBT further for curved geometries 
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while employing independent warping parameters, which are commonly used in 

Higher Order Beam Theories (HOBT). The approximating methods and schemes 

proposed by Dikaros and Sapountzakis (2014, 2016) are employed and extended in 

this study.  Adopting the concept of end-effects and their exponential decay away from 

the support (El Fatmi and Ghazouani, 2011), appropriate residual strains are added to 

those corresponding to rigid body movements.  Further, applying Hooke’s stress-strain 

law and employing the equilibrium equations of 3D elasticity, a system of partial 

differential equations can be derived for each material over the 2D cross section’s 

domain together with the corresponding boundary conditions. Consequently, a coupled 

two-dimensional boundary value problem is formulated, with or without considering 

Poisson ratio. Applying a proper discretization scheme for the cross section, the above 

mentioned problem will lead to the formulation of an eigenvalue problem which the 

eigenvalues and the corresponding eigenvectors, for a desired number of modes, can 

be extracted from.  The obtained set of modes contains axial, flexural and torsional 

modes in order of significance without distinction between them. To avoid the 

additional effort needed in order to recognize the most significant modes, the iterative 

local equilibrium scheme described in the work of Dikaros and Sapountzakis (2014) is 

adopted until the error due to residual terms becomes minimal. The above scheme is 

initialized by employing a pre-assumed vector which corresponds to rigid body 

movements of the cross section (the so-called central solution). Together with the 

warping functions calculated first, the corresponding distortional ones are also 

obtained and recursively modify the warping functions due to their coupling. With all 

these additional modes, the beams’ kinematics is enriched and capable of describing 

accurately the displacement and stress distribution in the beam. The functions derived 

are evaluated employing 2D BEM (Katsikadelis, 2002a). The coefficient matrices 

containing the geometric and mass properties of the cross section can now be 

calculated, as it will be later explained. Thus, a set of boundary value problems are 

formulated with respect to the unknown kinematical components (displacements, 

rotations and independent parameters) for each time instant, the number of which is 

defined by the user depending on the accuracy of the results. This linear system is 

solved using Isogeometric tools, either integrated in the Finite Element Method (FEM) 

(Hughes, Cottrell, and Bazilevs, 2009) or in the Analog Equation Method (AEM) 

(Katsikadelis, 2002b), which is BEM based. Employing the principal of virtual work 

the new equilibrium equations are derived. Additionally, by employing a distributed 

mass model system accounting for longitudinal, transverse, rotatory, torsional, 

warping and distortional inertia, free vibration characteristics and responses of the 

stress resultants and displacements to static and moving loading can be evaluated. The 

results obtained from the beam element will be compared to those obtained from finite 

3D solutions and other research efforts. Numerical examples are presented to illustrate 

the efficiency and the accuracy of this formulation as well as to provide rules of thumb 

regarding the consideration of distortion and the number of modes needed. To the 

authors’ knowledge, the numerical procedures previously mentioned have not been 

reported in the literature for the analysis of straight or curved beams including 

distortional effects. 
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The essential features and novel aspects of the formulation that will be presented 

in the following compared with previous ones are summarized as follows. 

 

i. The developed beam formulation is capable of the static and dynamic analysis of 

spatial straight or curved beams of arbitrary composite cross section with one 

plane of constant curvature considering warping and distortional effects (in 

addition to the previous formulations) that are introduced in the same boundary 

value problem which describes the cross section’s deformations.  

ii. The cross sectional analysis is based on an iterative equilibrium scheme which 

results in a numerical procedure with less computational effort and complexity 

comparing to traditional eigenvalue analysis reported in the literature for similar 

problems. Particularly, modes attributed to different structural phenomena can 

be separated directly and make the supervision of the results easier. In addition 

to this, the data post-processing and the iterative procedure become faster due to 

the fact that warping and distortional functions are calculated separately. 

iii. The accuracy level of the numerical method proposed can be decided by the user 

by setting the desirable number of the modes taken into account and, thus, 

increasing the number of higher modes added in the final solution. 

iv. As also mentioned in Chapter 4, the numerical solution of the straight or curved 

advanced beam is based on B-splines (Sapountzakis, and Tsiptsis, 2014; 

Sapountzakis, and Tsiptsis, 2017) and NURBS (Isogeometric Analysis) offering 

the advantage of integrating computer aided design (CAD) in the analysis.  

v. The straight or curved beam is subjected to arbitrary external loading including 

warping and distortional moments and is supported by the most general 

boundary conditions including elastic support or restraint. 

vi. The proposed method employs a BEM approach which requires only boundary 

discretization for the cross sectional analysis with line or parabolic elements 

instead of area elements of the FEM solutions, which require the whole cross 

section to be discretized into triangular or quadrilateral area elements. 

5.2 Statement of the problem 

Let us consider a straight or curved prismatic element (Fig. 4.4 of Chapter 4) of 

length L  with an arbitrarily shaped composite cross section of m  homogenous, 

isotropic and linearly elastic materials with modulus of elasticity mE , shear modulus 

mG  and and Poisson ratio m , occupying the region m  of the yz  plane with finite 

number of inclusions (Fig. 5.1). Let also the boundaries of the regions m  be denoted 

by m . This boundary curve is piecewise smooth, i.e. it may have a finite number of 

corners. In Fig. 5.1 CXYZ  is the principal bending coordinate system through the cross 

section’s centroid C , while  Cy ,  Cz  are its coordinates with respect to Sxyz  

reference coordinate system through the cross section’s shear center S . It holds that 

Cy y Y   and Cz z Z  . The initial radius of curvature, denoted by R  is 
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considered constant and it is parallel to Y  axis. The displacement vector   , ,u x y z   of 

an arbitrary point of the cross section is obtained as the sum of SV solution vector 

corresponding to the rigid body motion combined with a residual (index R) 

displacement vector due to end-effects which are responsible for the generation of 

self-equilibrating stress distributions: 

 

           
1

out-of-plane warping

, , , , , , ( ) ( , )
m
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Y Z i i

i
rigid body movement

u x y z u x y z u x y z u x x Z x Y x W y z  


                

                                                                                                                                                           (5.1a) 
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w x y z w x y z w x y z w x y x x DZ y z 

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Figure 5.1. Arbitrary composite cross section of m homogenous materials 

occupying the two dimensional region . 

 

where  
, j

 is for differentiation with respect to j, i is the number of higher order cross 

sectional functions considered, u , v , w   are the axial, transverse and radial beam 

displacement components with respect to the Sxyz  system of axes, respectively,  

( , )W y z  is the warping function, ( , )DY y z and ( , )DZ y z  are the distortional functions 
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of the in-plane deformation mode ( , )D y z  while ( )x  is a function describing the 

decay of deformation along beam length. Moreover,  v x  and  w x   describe the 

deflection of the centre of twist S , while  u x  denotes the “average” axial 

displacement of the cross section.  x x is the angle of twist due to torsion, while 

 Y x  and  Z x  are the angles of rotation due to bending about the centroidal Y , 

Z  axes, respectively.The derivation of rigid body motions is in more detail explained 

in the work of Kang and Yoo (1994), while sin ,cos 1x x x     assumption is 

adopted and higher order terms are neglected in this study. Considering the fact that 

end-effects decay exponentially away from the support, ( ) cx
x e   where c  is a 

constant to be specified. However, different expressions of this parameter have also 

been adopted in other research efforts (i.e. polynomials of various degrees). 

After establishing the displacement field, the strain components for mth material 

due to end-effects can be computed as 

 

      ,,
, ,R

xx xx mm m
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Employing the well-known stress-strain constitutive relationship for elastic 

media and isotropic solid, the stress components of the mth material are as follows in 

matrix form  
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where  , , ,i j x y z ,    [ ] xx yy zzm m
tr         and ,m m   are the two Láme 

parameters of the mth material. In case poisson ratio 0m  , 0   and 2mE  . 

Employing local equilibrium equations of three-dimensional elasticity considering 

body forces to be absent, substituting stress components (eq. (5.3)) and the exponential 

function ( )x , the following system of partial differential equations can be derived for 

the mth material as 
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Thus, the following equations need to be satisfied 
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Together with the following boundary conditions 
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Employing the relation  / 2m m m m        and expanding the stresses in 

the above boundary conditions, the following boundary value problem is formulated 
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where  / 1e
m m m     is the effective Poisson ratio while /m m refg   , 

/m m refg     are weighted elastic constants with respect to ref  which is the shear 

modulus of reference material. If a plane stress assumption is employed, 
e
m   is 

substituted by m . When 0m   it holds that /m m refg E E  , 0mg
  , with refE  

being the elastic modulus of reference material, and the aforementioned boundary 

value problem is simplified. Therefore, employing a proper discretization for the cross 

section, the above coupled boundary value problem (eqs. (5.7)) will lead to the 

formulation of a generalized eigenvalue problem of the form 
2

AF c BF where ,A B  

are known coefficient matrices, c  is the eigenvalue and  TF W DY DZ  is the 

eigenvector of the problem. The solution of eigenvalue problem yields a set of 

eigenvalues together with the corresponding eigenvectors which constitute a basis of 

cross sectional deformation modes suitable for distortional analysis of beams. 

As mentioned earlier, the iterative equilibrium scheme described by Ferradi, 

Cespedes and Arquier (2013) as well as Dikaros and Sapountzakis (2014) is employed 

here until a sufficient number of modes is obtained to represent accurately the non-

uniform warping effects and the corresponding distortional ones. In order to initialize 

the above stated boundary value problem, the rigid body movements of the cross 

section are employed. These correspond to SV flexural and torsional warping modes. 

Afterwards, in order to restore equilibrium the secondary warping modes are 

determined together with their corresponding distortional ones. Following this concept, 

the iterative procedure is formulated converging to the exact shape of the warping in a 

section. Each functional vector 1iF  has to fulfil the orthogonality condition with 

respect to the functions iF  corresponding to the previous set of modes. Knowing that 

each mode is computed with respect to 
2
ic , it follows that 

 

2

2

1

m

m

i

i

i i
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F F d
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                                                                                                                           (5.8) 

 

After the evaluation of this constant, the normalized 
2

1 1i i iF c F  can be established 

and the functions can be obtained. 

Within the context of the above considerations and considering up to secondary 

warping as well as distortional displacements, which are actually the independent 

parameters, the enriched kinematics of an arbitrary point of the beam for mth material 

at any time instant is given as 
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where 
P

u , 
S

u , denote the primary and secondary longitudinal displacements, 

respectively.  x x ,  x x  are the independent warping parameters introduced to 

describe the nonuniform distribution of primary and secondary torsional warping, 

while  Y x ,  Z x  are the independent warping parameters introduced to describe 

the nonuniform distribution of primary warping due to shear. Similarly,  x x , 

 x x  are the independent distortional parameters introduced to describe the 

nonuniform distribution of primary and secondary distortion due to torsion, while 

 Y x ,  Z x ,  Y x ,  Z x  are the independent distortional parameters 

introduced to describe the nonuniform distribution of primary and secondary distortion 

due to flexure. All these parameters are multiplied by the corresponding warping and 

distortional functions which are components of the ( , )W y z  and ( , )D y z vectors 

derived by the solution of the coupled boundary value problem stated in eqs. (5.7). In 

eqs. (5.9), 16 degrees of freedom have been employed in 3D space. These activate 12 

cross sectional deformation modes, namely rigid (4), primary (4) and secondary 

motions (4), including extension.  

If tertiary displacements have to be employed for accuracy reasons, the beam’s 

kinematics is enriched further as follows:  
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In this case 22 degrees of freedom have been employed in order to describe the 

beam’s behavior. The additional 6 degrees, namely  Y x ,  Z x ,  x x ,  x x , 

 Y x  and  Z x , account for 3 tertiary warping and 3 tertiary distortional effects, 

respectively. These activate 4 additional cross sectional deformation modes including 

extension. The enrichment of the beam’s kinematics can be done automatically by 

increasing the number of modes, which are an input value for the boundary value 

problem to be solved. This results in the evaluation of additional cross sectional 

operators which will be employed in the analysis of the beam model, after establishing 

the strain components as it will be described in the following.  

After establishing the displacement field, the linear strain-displacement relations 

in the system ( , , )x y z  can be written as follows  

 

, , ,, ,xx x yy y zz z

v R
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where 
R

R Y
 is set as ( )e R  in the following and introduces the thickness-curvature 

effect of the curved beam.  

Employing the expressions of the displacement components (eqs. (5.9)), the 

strains and stresses can be computed. Applying the principle of virtual work or any 

other variational principle following standard arguments in the calculus of variations, 

the governing differential equations for the beam in terms of the kinematical 

components can be derived. Thus, the local stiffness matrix  lk  of the spatial curved 

beam can be evaluated after solving a system of linear equations. Finally, the matrix 

form of stiffness matrix is derived as follows 

 

 

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ( )

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P P P S
S CY CZ S

P P P S S S
S CY CZ S CY CZ

P P P S S S
S CY CZ S CY CZ

Z Y

Aux e R
z v v v v v v

y w w w w w w

    
 
 
 
 
 
 
 
 
 

 (5.12a) 

 

 

, , , ,

, , , ,

1
0 ( ) 0 ( ) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2 ...( ) ( ) ( ) ( )1
( ) 0 0 0 ( ) 1 ( )

0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

P P P S
S CY CZ S

P P P S
S y CY y CZ y S y

P P P S
S z CY z CZ z S z

z
e R e R

R R

Aux e R e R e R e RZ Y
e R e R e R R R R R

R R R

   

   

   

 





  
    





 

                                                     , , , , , ,

, , , , , ,

, , , , , ,

, , , , ,

( ) ( ) ( ) ( ) ( ) ( )

...
0 0 0 0 0 0

0 0 0 0 0 0

P P P S S S
S CY CZ S CY CZ

P P P S S S
S y CY y CZ y S y CY y CZ y

P P P S S S
S z CY z CZ z S z CY z CZ z

P P P S S
S y CY y CZ y S y CY y CZ

P P P S S
S z CY z CZ z S z CY z

v v v v v v
e R e R e R e R e R e R

R R R R R R

v v v v v v

w w w w w w

w w w w w w

v v v v v     ,

S
y

S
CZ zv













 

                     

                                                                                                                                (5.12b) 

 

 

   ,1 2xAux u Aux u                          (5.12c) 
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     ,1 2xC Aux u C Aux u                          (5.12d) 
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where [Aux1], [Aux2] are auxiliary matrices to express strains İ in matrix form, 

1

( )
d dx dV

e R
   is the differential volume of the curved beam for constant radius of 

curvature, [C] is the elasticity matrix employed to derive stresses σ, įU  is the virtual 

strain energy and k11, k12, k21 and k22 are 16X16 coefficient matrices containing the 

geometric properties of the cross section. These are calculated as follows 
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From eq. (5.12e) after integrating by parts, it holds that  

 

22 , 21xNQM k u k u   (5.14) 

 

where NQM is the vector of the stress resultants at the beam’s ends. 

Moreover, the external work can be derived as follows. Employing the auxiliary 

matrix related to coefficients of the displacements’ field 
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and, then, substituting in the expression of virtual work, it holds that 
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

  


 
   

  
                                   (5.15b) 

 

where  t  is the traction vector applied on the lateral surface of the beam including the 

end cross sections and p is the external load vector of the beam.  

Combining eqs. (5.12e) with (5.15b), the expression of the variational total 

potential energy can be evaluated and, thus,  the governing differential equations of the 

problem can be obtained together with the boundary conditions as 

 

 22 , 12 21 , 11xx xk u k k u k u p      (5.16a) 

 

1 2 3u NQM     (5.16b) 

 

where i  are diagonal matrices and vector containing known coefficients according to 

the boundary conditions of the beam (i.e. for clamped end 1 1   and  2 3 0   ). 

Employing the expressions of the displacement components in eqs. (5.10), the 

cross sectional operators (eqs. (5.13)) and the governing differential equations of the 

curved beam can be obtained in a similar way when tertiary or higher warping and 

distortional effects are considered. 

In order to derive the differential equations of motion with respect to the 

kinematical components, the terms of inertia contributions  

 mass , , , dtt tt ttV
W u u v v w w V        (with 

1

( )
dV d dx

e R
  ) have to be added in 

the previous (eqns. 5.12e and 5.15b) and constitutive equations should be employed.   

is the density of the material and , ,u v w  are the generalized displacements as 

previously described. Thus, the local spatial mass coefficient matrix  lm  can finally 

be derived. This can be extracted in matrix form from the following expression 

 

       mass , mass ,

0 0

1

( )

L L
TT T

tt l ttW u Aux Aux u d dx W u m u dx
e R

    


       (5.17) 

 

with [Aux] given in eqn. (5.15a), u  representing the total displacement and  lm  being 

a 16X16 coefficient matrix when displacements of eqns. (5.9) are employed.  

Except for the boundary conditions there are also the initial conditions at

 0,x L  similar to those defined in eqns. (3.3) of Chapter 3. After establishing the 

stiffness and mass matrices of the spatial curved beam element the equation of motion 

in matrix form can be given as in eqn. (4.23).  

The natural frequencies and modes in which the beam vibrates for the different 
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motions (including also distortional ones) can be obtained by separation of variables 

and  ,iu x t   is assumed to have the form given in eqn. (3.13). Finally, the typical 

generalized eigenvalue problem described by eqn. (3.14) is formulated and solved.   

5.3 Numerical Solution for the Cross Sectional analysis 

The evaluation of the warping and distortional functions is accomplished by 

solving the problems described by eqns. (5.7). Warping functions  W  and their 

derivatives are at first computed by solving eqns. (5.7a,b). Afterwards, these values are 

inserted as generalized body forces in eqns. (5.7c-f) which are solved as a 2D elasticity 

problem in order to obtain distortional functions D . The solution of the problem is 

accomplished employing BEM within the context of the method of subdomains and 

BEM for Navier operator (Katsikadelis 2002a; Beer et al. 2008). Afterwards, the 

values are normalized through the constant 
2
ic  , as earlier described, and the procedure 

is repeated for the desired number of modes. Finally, the functions calculated are 

employed in order to obtain the cross sectional operation factors given in eqns. (5.13) 

as well as mass operation factors derived by eqn. (5.17). These are used as input 

values together with the elasticity and function matrices to solve the curved beam 

model with the methods described below. 

5.4 Numerical Solution with AEM and NURBS 

According to the precedent analysis, the static and vibration analysis of straight 

or curved beams of arbitrary cross section including generalized warping and 

distortional effects reduces in establishing the components the kinematical 

components iu  (either of those in eqns. (5.9) or (5.10)) having continuous derivatives 

up to the second order with respect to x  at the interval  0, L , up to the first order at 

0,x L , and for the dynamic problem up to the second order with respect to time t, 

satisfying the initial-boundary value problem described by the coupled governing 

differential equations of equilibrium in eqns. (5.16a)  along the beam and the boundary 

conditions in eqns. (5.16b) at the beam ends, at 0,x L  as well as the initial 

conditions similar to eqns. (3.3). The problem is solved using the Analog Equation 

Method in a similar way as the one described in detail in Chapter 3.  

However, some differences arise here due to the nature of the problem stated. 

The number of the kinematical components depends on the number of modes 

employed, as it is obvious from eqns. (5.9) and (5.10).  

Eqns. (A.1.34) and (A.1.36)  of  the Appendix A.1 written for the boundary 

points constitute a system of four simultaneous integral equations, while the boundary 

conditions in eqns. (5.16b) are formulated in matrix form giving four more equations. 

Combining the aforementioned equations, the system (A.1.45) is derived initially for 

the case described in eqns. (5.9). For this problem, [ ]E  becomes a 64X64 square 

matrix, { }iu ,{ }D ,{ }iT  64X1 vectors, 11[ ]E , 12[ ]E   32X32 known coefficient matrices 



Generalized distortional analysis of Straight and Curved beams by Isogeometric Methods 217 

 

and 1{ }D  known 32X1 coefficient vector with their dimensions depending on the 

number of modes employed and all explained in the Appendix A.1. 

Particularly in this study,  11[ ]E ,  12[ ]E  are calculated writing eqn. (5.16b) in the 

following matrix relations 

 

 
 

0 0
10 20 21 20 22 , 30

1 2 21 2 22 , 3

[ ] [ ] 0

[ ] [ ]

x

L L
L L L x L

k u k u for x

k u k u for x L

   

   

   

   
                                       (5.17a,b) 

 

and iterating over the number of boundary conditions, which is 16 for each end in this 

case. [ ], , 1,2ijk i j    are the geometric constant matrices given in eqn. (5.13) and 

inserted as input in the beam analysis for each discretization element. 

Thus, the following system is derived 

 

                  1 1
i i i iE u D F P u E D E F P

                                              (5.18) 

 

where iP  are the control points if the fictitious load of AEM is represented by B-

splines or NURBS.  

After calculating the rest of the AEM matrices as described in the Appendix A.1, 

the element cross sectional operators are assigned to each discretization element in 

order to calculate the stiffness matrix of the beam element employing eqn. (5.16a) 

transformed into matrix form as follows as well as the mass matrix calculated as 

follows 

 

         22 12 21 11'K K K K B K B                                                                             (5.19) 

 

    lM M B                                                                                                                          (5.20) 

 

where 11 12 21 22[ ],[ ],[ ],[ ]K K K K  and  lM  are the geometric and mass constant 

(16XNdof) X (16XNdof) matrices formulated for all of the discretization elements 

through an iterative procedure with  Ndof  being their number. The stiffness and mass 

matrices are formulated either with respect to the values of the fictitious loads in the 

case of the original AEM or the control points when B-splines are integrated in the 

AEM. 

Additionally, substituting eqns. (A.1.50) of Appendix A.1 into eqn. (5.16a), the 

load vector applied is written as follows in matrix form 

 

          12 21 11'P p K K R K R                                                                              (5.20) 
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where  p  is a load vector containing the load values along the beam either 

concentrated or uniformly distributed.    

Finally, the global equation system can be formulated and the unknowns can be 

evaluated. The result is not the displacement vector as in traditional Finite Element 

(FE) Method (FEM) but it is either the fictitious load, which represents the second 

derivative of the kinematical components, or the control points. Employing eqns. 

(A.1.50), the kinematical components and their first derivatives can eventually be 

obtained.  These are employed as input values together with the function matrices in a 

post-processing procedure in order to derive the total displacements, stresses and stress 

resultants along the curved geometry. 

Instead of B-splines, NURBS curves in terms of B-spline basis functions can be 

employed either in FEM or AEM. The description of the numerical procedures is 

given in the Appendix A.2. In this chapter, the geometry of the beam is described as in 

Chapter 4. After establishing the kinematical components and their derivatives, total 

displacements can directly be plotted on the curved geometry. Finally, stresses and 

stress resultants can also be derived without the need for excessive post-processing.  

Regarding the vibration analysis, the Newmark time integration scheme (Bathe, 

1996), which is widely used in structural dynamics, can be employed, as in the 

previous chapter. The equation of motion can be expressed at time t+Dt and the step-

by-step solution can be computed.  

5.5 Numerical examples 

In order to validate the proposed formulation of the straight or curved beam 

element described above, investigate the importance of curvature in distortional 

analysis as well as of distortion in the free vibrational characteristics of a beam and 

examine the advantages attained by the use of the methods proposed in terms of 

simplicity, accuracy and computational effort, computer programs have been written 

and various straight and curved beam models have been studied. The numerical results 

have been obtained employing NURBS in FEM and constant elements or B-splines for 

the representation of the AEM fictitious loads. All the algorithms formulated take as 

input the geometric and mass constant matrices obtained by the cross sectional 

analysis, which was earlier described.  Then, the results are compared to those 

obtained by the application of the Finite Element Method (FEM) employing beam, 

solid (quadrilateral) or plate elements. The computer software FEMAP (2010) has 

been used for this purpose.  

Different FEM models have been created with various discretization elements 

and with or without Poisson ratio considered. Various cross sections and beam models 

with different  /t d  and /d L  ratios ( t ,  d and L   are the thickness, width and length 

of the straight or curved close- or open-shaped cross section beam model) have been 

employed in order to estimate the magnitude of distortional effects and the number of 

modes needed in order to derive accurate results. In addition to these, up to 1000 

boundary elements depending on the cross section type (cross sectional discretization) 

have been employed in order to evaluate the cross sectional operators and functions. 
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5.5.1 Doubly Symmetric cross sections 

In this example, in order to validate the proposed formulation and investigate the 

importance of distortion, Poisson ratio and curvature in the analysis of straight or 

curved beam models as well as the number of modes needed , the static problems of 

straight or curved cantilever beams with doubly symmetric cross sections (solid, open 

or closed) are examined.  

The first beam model under consideration has a solid rectangular cross section 

20X50 cm and a length of 3 m. Two different materials are considered with or without 

Poisson ratio, namely 235000E kN m  , 0.2 / 0   and  22.1 8E E kN m  , 

0.3 / 0  . For the first material, the beam is subjected to an eccentrically applied load 

of 1 kN at its tip cross section which results in a twisting moment of 0.2 kNm.  

In Fig. 5.2 the total translation contours are presented for the three dimensional 

(3D) FEM model (810 quadrilateral solid elements) and the one proposed (AEM with 

50 constant elements) considering Poisson ratio. When employing cubic B-splines the 

same tip displacements are derived with just 8 collocation points (two spline curves) 

and the computational cost is significantly reduced.  

 

         
 

Figure 5.2. Total translation contours of 3D solid FEM model with 810 

quadrilateral elements (above) and the proposed one (AEM with 50 

constant elements) for rectangular cross section.   

 

In Fig. 5.3 the normal stress xx contours are displayed for the same cases.  It is 

obvious that the two models coincide. The displacement field considered is the one 

described in eqns. (5.9).  It is found that  there is no need to consider additional modes.  

It is also concluded that this particular cross section does not suffer excessively from 

distortional effects due to the fact that the distortional moments derived from the 

proposed model are insignificant. Thus, Poisson effects can be isolated and studied. 

Considering 3D FEM models, it is quite difficult to deduce that distortion is not of 

importance due to the fact that different structural phenomena cannot be isolated. 

Different models with various diaphragmatic arrangements have to be considered and 
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compared in order to come to the same conclusion. Special attention should be paid 

when too many diaphragms have been used due to shear locking phenomena that make 

the model falsely stiffer. 

 
 

 
 

Figure 5.3. Normal stress xx  contours of 3D solid FEM model with 810 

quadrilateral elements (above) and the proposed one (AEM with 50 

constant elements) for rectangular cross section.   

 

In Fig. 5.4 the stress contours derived by the proposed formulation are displayed 

with or without (indices with 0) considering Poisson ratio. It is depicted visually that 

xy  and xz  intensity is less in the case of zero Poisson ratio. It should also be noted 

that the magnitude of yy  and zz  (0-2.5 kN/m
2
) normal stresses is almost insignificant 

in the same case comparing to the one of 0.2  (85-95 kN/m
2
). Normal stress xx  is 

less by almost 6% in the zero Poisson ratio case (≈380 kN/m
2
) and shear stress yz is 

insignificant in both cases.  

In Fig. 5.5 the stress contours at the support are presented for 22.1 8E E kN m 

and 0.3 / 0  . Similarly to the previous material case xy  and xz  stresses are smaller 

by around 60% as well as yy  and zz  normal stresses are insignificant in the case of 

zero Poisson ratio. Normal stress xx  is less by almost 9% when Poisson ratio is zero 

and shear stress yz is insignificant in both cases. 

The  second  beam model under  consideration has the  I-shaped  cross  section  

( 273000E kN m  , 228000G kN m  , 0.3  , / 0.048t d  , / 0.035d L  ) shown 

in Fig. 5.6 and a length of 3 m. It is subjected to a concentrated force of 10 kN  at its  

free end  eccentrically applied. The displacement field considered is the one described 
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Figure 5.4. Stress contours derived by the proposed formulation with or without 

(indices with 0) taking into account Poisson ratio for the rectangular 

cross section.  

 

          
 

Figure 5.5. Stress contours for the rectangular cross section cross section at 

support with or without (indices with 0) taking into account Poisson 

ratio.  

ıxx 

ıxx0 ıyy0 ızz0 

Ĳxy0 Ĳxz0 Ĳyz0 

Ĳxy Ĳxz Ĳyz 
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Figure 5.6. Normal stress xx  contour and deformed view of I-shaped cross 

section under eccentric loading straight beam and corresponding 

curved geometry (plan view).    

 

in eqns. (5.10). In contrast to the previous cross section, yy  and zz  normal stresses 

differ from xx  by around 40% and are of importance in this case due to the fact that 

warping and distortional effects arise. However, higher order warping effects are more 

significant. In addition to this, xy  and xz  stresses are much larger than the previous 

case with respect to the magnitude of normal stresses. 

The same I-shaped cross section shown in Fig. 5.6 is examined as curved with  

0.636R m  and an arc length of 1 m ( / 0.105d L  ), as shown in the same figure. It is 

subjected to a concentrated force of 5 kN at its free end eccentrically applied. The 

displacement field considered is the one described in eqns. (5.9).  

In Fig. 5.7 the total translation contours are presented for the 3D FEM model 

(7875 quadrilateral solid elements) and the one proposed (AEM with 10 cubic splines 

or 100 constant elements).  

In Fig. 5.8 the normal stress xx  contours are displayed for the same cases. It is 

obvious that the models  are  in coincidence  while  the use of cubic B-splines 

significantly reduces the number of discretization elements for the same level of 

accuracy.  

In Fig. 5.9 the distributions along the length of the kinematical components 

 x x ,  x x  and  x x are displayed in order to investigate the order of their 

magnitude along the length and compare them to each other. FEM with NURBS are 

employed for this purpose. The exponential decay of the primary warping and 

distortional parameters is illustrated. However, distortion decays faster than warping. 
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Figure 5.7. Total translation contours of (a) 3D solid FEM model with 7875 

quadrilateral elements and (b) the proposed one (AEM with 10 cubic 

splines or 100 constant elements) for the I-shaped cross section.   

 

 

 
 

Figure 5.8. Normal stress xx  contours for (a) 3D solid FEM model with 7875 

quadrilateral elements and (b) the one proposed with 10 cubic splines 

or 100 constant elements in AEM for the I-shaped cross section. 
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Figure 5.9. Kinematical components  x x ,  x x and  x x of the I-shaped 

cross section curved beam derived by the proposed formulation with 

cubic NURBS. 

 

In Table 5.1 the values of different kinematical components, shear stresses and 

higher order moments are compiled for the proposed beam formulation and compared 

to the FEM solid model when it is possible. It should be noted here that primary 

warping moment is almost ten times larger than twisting and bending moments while 

the primary distortional moment due to torsion is much lower. These quantities cannot 

be obtained directly by the FEM solid model. Shear stresses are much lower than 

normal stress xx . In addition to these, secondary warping and distortional moments 

are much lower than the primary ones. Thus, there is no need to consider additional 

higher modes in the analysis.  

Fig. 5.10 shows the normalized displacements with respect to FEM solid results 

at the free end of the beam. The proposed solution using either a cubic (4 collocation 

points) or a quartic (5 collocation points) give highly accurate results (errors 0-10%). 

The convergence rate increases further as knots are inserted after the degree elevation 

(k-refinement). Quadratic B-splines give inaccurate results when the least number of  



Generalized distortional analysis of Straight and Curved beams by Isogeometric Methods 225 

 

 

 

 

AEM 

10 cubic  

B-splines 

 

 

FEM  

Solid 

7875 

 

( )w m  at x=L -12.8713 -12.5466 

( )x rad  at x=L 0.2083 0.19702 

( )Y rad  at x=L 0.3274 0.3158 

max

2
( )xz

kN

m
  at  

x=1/4L 

120.25 111.02 

max

2
( )xy

kN

m
  at  

x=1/4L 

115.23 109.80 

( )YM kNm  at x=0 330.81 325.05 

( )tM kNm  at x=0 323.01 318.31 

2( )P
S

M kNm  at x=0 3401.49 - 

2( )S
S

M kNm  at x=0 36.46 - 

2( )P
DxM kNm  at x=0 16.25 - 

Table 5.1. Kinematical components, Shear stresses and Stress resultants of the I 

                     -shaped cross section curved beam. 

 

collocation points is employed. When employing knot insertion for the cubic B-spline 

(24 collocation points) the results almost coincide to FEM solid solution. Finally, 

considering the same cross section but with an arc length of 3 m, similar conclusions 

have been drawn. 

The third cantilever beam model studied has a rectangular box-shaped cross 

section 5.0X3.5 m with plate thickness 0.30 m ( 23 7E E kN m  , 21.5 7G E kN m  , 

0  , / 0.085t d  , / 0.087d L  ) and length 40 m. Its cross section and curved 

geometry are shown in Fig. 5.11.  In Table 5.2 the values of the kinematical 

components  w x ,  x x  and  Y x  at  x L  for a vertical force 5000ZP kN

eccentrically applied at the free edge of the beam are presented for i) proposed curved 

beam elements with 5 NURBS (cubic) and 1 diaphragm at the free end, ii) 100 

constant elements in the AEM technique, iii) 960 plate elements in  FEMAP with 1 

diaphragm at the free end  (FEMplate960), iv) 2880 quadrilateral solid elements with  

Pz eccentric 

Lateral 

Loading 
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Figure 5.10. Convergence of normalized displacements at the free end of the I-

shaped cross section curved beam. 

 

     
 

Figure 5.11.Rectangular box-shaped cross section, applied vertical load at the free 

end and corresponding curved geometry (plan view). 

 

1 diaphragm in FEMAP (FEMsolid2880), v) 5760 quadrilateral solid elements with 1 

diaphragm in FEMAP (FEMsolid5760) and vi) 2880 quadrilateral solid elements 

without any diaphragm in FEMAP (FEMsolid2880). All of the results are in 

coincidence. It should be noted here the great reduction in discretization elements 

when employing NURBS comparing to all other solutions.  

In Fig. 5.12 the normal stress contours are displayed for the 3D solid FEM model 

(2880 elements) and the proposed formulation with cubic B-splines in the AEM.  It is 

obvious that the two models coincide. After evaluating the stress resultants, it should 

be  noted that  primary  distortional moment  due to torsion is highly important while  
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( )w m  

at x=L 

 

 

( )x rad  

at x=L 

 

 

( )Y rad  

at x=L 

 5 cubic NURBS 0.4042 0.0019 -0.0149 

 

AEM100  

constant 0.4039 0.0019 -0.0149 

FEMplate960 

1 Diaph. 0.4094 0.0018 -0.0150 

FEMsolid2880  

1 Diaph. 0.4069 0.0018 -0.0149 

FEMsolid5760  

1 Diaph. 0.4070 0.0018 -0.0149 

FEMsolid2880  

NO Diaph. 0.4168 varies -0.0150 

Table 5.2. Kinematical components of the doubly symmetric box-shaped cross section 

straight beam. 

 

 
 

Figure 5.12. Normal stress xx  contours for 3D solid FEM model with 2880 

quadrilateral elements (above) and the one proposed with 10 cubic 

splines in AEM for the doubly symmetric box-shaped cross section 

straight beam.  

 

secondary and tertiary higher order resultants are insignificant. Thus, the displacement 

field described by eqns. (5.9) exhibits an accurate behavior. 

Pz =4000kN 

eccentric 

Lateral 

Loading 
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The same box-shaped cross section beam shown in Fig. 5.11 is examined as 

curved with 25.465R m  and an arc length of 40 m. The displacement field 

considered is the one described in eqns. (5.9). In Table 5.3 the values of different 

kinematical components, shear stresses and higher order moments are compiled for the 

proposed beam formulation subjected to a concentrated force of 5000 kN at its free end 

eccentrically  applied  (Fig. 5.11).  The  results  are compared to the  3D  FEM  model  

 

 

 

 

AEM 

10 cubic  

B-splines 

 

 

FEM  

Solid 

2880/ 

FEM  

plate 960 

 

( )w m  at x=L 0.4266 0.4316 

( )x rad  at x=L 0.0100 0.0112 

( )Y rad  at x=L -0.0131 -0.0137 

max

2
( )xz

kN

m
  at x=0 21532 

20539  

(solid 

model) 

max

2
( )xy

kN

m
  at x=0 12602 

11502 

(solid 

model) 

( )YM kNm  at x=0 -139691 -139824 

( )tM kNm  at x=0 127100 127324 

2( )P
S

M kNm  at x=0 -6930.56 - 

2( )S
S

M kNm  at x=0 -1838.93 - 

2( )P
DxM kNm  at x=0 610306 - 

 
2( )S

DxM kNm  at x=0 -1999.04  

Table 5.3. Kinematical components, Shear stresses and Stress resultants of the doubly 

symmetric box-shaped cross section curved beam. 

 

(2880 quadrilateral solid elements) or the equivalent plate model (960 plate elements) 

when it is possible. In contrast to the previous open shaped cross section, primary 

distortional moment due to torsion is around four times larger than the bending 

moment while warping moments are insignificant. Secondary distortional moment is 

Pz = 

5000kN 

eccentric 

Lateral 

Loading 
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not of importance and, thus, there is no need to consider additional modes in the 

analysis. In addition to these, shear stresses are larger than the previous case (I-shaped) 

comparing to the normal stress xx . 

In Fig. 5.13 the total translation contours are presented for the FEM solid model 

and the one proposed (AEM with 10 cubic splines or 80 constant elements). In Fig. 

5.14 the normal stresses xx and zz  contours are displayed for the same cases. It 

should be noted here that in this case normal stresses zz  and yy are of more 

importance comparing to the previous cross section and exhibit large magnitude 

comparing to normal stress xx .  

 

 
 

Figure 5.13. Total translation contours of (a) 3D solid FEM model with 2880 

quadrilateral elements and (b) the proposed one (AEM with 10 cubic 

splines or 80 constant elements) for the doubly symmetric box-

shaped cross section curved beam.   
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(A) 

 

(B) 
 

Figure 5.14. Normal stress xx (A) and zz  (B) contours (a) for 3D solid FEM   

model with 2880 quadrilateral elements and (b) the one proposed with 

10 cubic splines in AEM or 80 constant elements in AEM for the 

doubly symmetric box-shaped cross section curved beam. 
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Finally, in Table 5.4 three different ratios of moments have been compiled for 

various curvatures while length remains the same. The corresponding control polygons 

are shown in Fig. 5.15 together with the various weights, which is the only parameter 

that has to be changed during the beam’s analysis. It is important to notice that as the  

 

 

 
P
Dx

Y

M

M
 

at x=0 

 
P
Dx

t

M

M
 

at x=0 

 

Y

t

M

M
 

at x=0 

 

R=∞ 0.178 2.844 15.952 

R=76.394m 1.141 5.579 4.891 

R=50.930m 1.835 5.276 2.875 

R=38.197m 2.581 5.101 1.976 

R=25.465m 4.365 4.807 1.101 

Table 5.4. Moments’ ratios for different radii of curvature obtained by the proposed 

model for the doubly symmetric box-shaped cross section curved beam. 

 

 
 

Figure 5.15. Different curved geometries derived by the corresponding control 

polygons by changing only one weight while length is the same. 

Pz eccentric 

Lateral 

Loading 
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curvature increases  the  

P
Dx

Y

M

M
  ratio  becomes  larger  and, thus,  distortional  effects  

become more significant. On the other hand, the Y

t

M

M
 ratio becomes smaller as it was 

expected due to the curved geometry and the 

P
Dx

t

M

M
 ratio, even though it is initially 

increased with the increase of curvature, afterwards slightly reduces in magnitude due 

to the fact that distortion is steadily important comparing to all other quantities. It 

seems that a critical value of curvature exists at which distortional effects become 

much larger.  

5.5.2 Monosymmetric cross sections 

In this example, in order to in order to further validate the proposed formulation 

and investigate the importance of distortion and curved geometry in the analysis of 

beam models as well as the number of modes needed, the static problems of three 

curved cantilever beams with monosymmetric cross sections (open or closed) are 

examined. 

A cantilever beam of a monosymmetric C-shaped cross section                                       

( 273000E kN m  , 228000G kN m  , 0.3  , / 0.049t d  , / 0.055d L  ) and 

length of 1 m under a concentrated load 100YP kN   concentrically applied, as this is 

shown in Fig. 5.16, is examined. The total translation contour and the deformed shape 

are also presented in Fig. 5.16.  

 

 
 

Figure 5.16. Total translation contours by the proposed solution for the analysis of 

the C-shaped cross section straight beam and its cross section with 

the load applied eccentrically (black arrow).   
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AEM 

5 cubic  

B-splines 

 

 

FEM  

  Solid 

5100 

 

( )v m  at x=L 3.3922 3.4437 

( )x rad  at x=L 0.3076 0.3015 

( )Z rad  at x=L 0.0508 0.0511 

( )w m  at x=L 2.3705 2.4661 

2( )P
S

M kNm  at x=0 5459.8 - 

2( )P
DzM kNm  at x=0 1916.7 - 

Table 5.5. Kinematical components and Stress resultants for the monosymmetric C-

shaped cross section straight beam. 

 

In Table 5.5 the most significant kinematical components have been compiled 

for the AEM with cubic B-splines and the FEM solid model along with the values of 

the primary warping moment due to torsion, which is around 60% of the bending 

moment, and the primary distortional moment due to bending with respect to Z axis, 

which is around 20% of the bending moment.  It is important to note here that 

secondary warping and distortion are also significant. Thus, the displacement field 

suggested to be employed for this case is the one described by eqns. (5.10). However, 

only tertiary warping is of some importance while tertiary distortion vanishes.   

 The same C-shaped cross section shown in Fig. 5.16 is examined as curved with 

0.636R m  and an arc length of 1 m. This beam model is examined for four different 

load cases, namely concentrically or eccentrically applied radial (parallel to axis of 

symmetry) and vertical loads, and results are compared to the FEM solid model (4000 

quadrilateral solid elements). The proposed formulation is initially accomplished with 

10 cubic B-splines in the AEM and the displacement field described by eqns. (5.9).  

In Table 5.6 the maximum values of the total displacement, the normal stress 

xx ,  the shear stress xy ,  the primary warping moment P
S

M , the secondary warping 

moment S
S

M  and the  distortional moment 
P
DxM  due to torsion are compiled  for the 

various  load cases. It should be noted here that when the load is applied radially either  

concentrically or eccentrically the warping and distortional moments are much lower 

than the case of the vertically applied load which results in significant primary and 

secondary warping effects. This indicates that additional modes need to be employed. 

Py =100kN 

eccentric 

Lateral 

Loading 
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AEM 10 cubic 

B-splines 

(FEM  solid 

4000)  

 

 

 

 

 

 

 

 

max ( )totalu m   

at x=L 

0.127  

(0.128) 

4.85  

(5.45) 

5.01  

(5.99) 

0.31  

(0.284) 

max

2
( )xx

kN

m
   

at x=0 

17.92  

(18.63) 

203.01  

(247.1) 

217.31  

(260.2) 

20.67  

(22.56) 

max

2
( )xz

kN

m
   

at x=0 

4.23  

(3.75) 

44.75  

(38.68) 

 48.1  

(42.44) 

5.25  

(4.81) 

2( )P
S

M kNm  

 at x=0 

0 5923.16 6591.31 229.68 

2( )S
S

M kNm   

at x=0 

0 1289.18 1171.38 -40.5 

2( )P
DxM kNm  

 at x=0 
-2.3 32.79  34.51  -2.41 

Table 5.6. Total displacement, stresses and higher order Moments of the C-shaped 

cross section curved beam for various load cases. 

 

Thus, in Table 5.7 the values of the same quantities are compiled for the proposed 

formulation employing either 12 or 16 modes. It is important to note that errors 

regarding total displacement and stresses are reduced from around 12% (12 modes) to 

less than 5% (16 modes) comparing to FEM solid model. 

 Finally, in Table 5.8 the first five eigenfrequencies are compiled for the curved                

( 0.636R m , 2 4
0.785N sec / m  ) C-shaped cross section when employing a FEM 

solid model without diaphragms (NO Diaph.) and the proposed beam formulation with 

cubic NURBS as well as for the corresponding straight beam element (second column 

of the Table 5.8) with FEM solid elements without the use of any diaphragms. It is 

obvious that the values obtained by the proposed beam formulation are in well 

coincidence with those of the FEM solid solution without any diaphragms. Comparing 

to the straight beam formulation, the behavior of the beam is different. The first mode 

exhibits a much lower eigenfrequency for the curved beam model. In general, modes 

of vertical displacement in curved arrangement are coupled with torsional modes. 

Particularly, the 4
th

 mode of the straight beam is pure torsional, while all of the vertical 

modes of the curved beam exhibit torsional displacements, too. It should also be noted 
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that after the 3
rd

 mode, the eigenfrequencies of the straight beam are lower than those 

of the curved model, which seems to be stiffer.  

 

AEM 10 cubic 

B-splines 

(FEM  solid 

4000) 

 

12 modes 

 

16 modes 

max ( )totalu m   

at x=L 

5.01  

(5.99) 

5.87  

(5.99) 

max

2
( )xx

kN

m
   

at x=0 

217.31  

(260.2) 

252.01 

(260.2) 

max

2
( )xz

kN

m
   

at x=0 

 48.1  

(42.44) 

43.8  

(42.44) 

2( )P
S

M kNm  

 at x=0 

6591.31 7413.57 

2( )S
S

M kNm   

at x=0 

1171.38 1286.02 

2( )P
DxM kNm  

 at x=0 
34.51  32.03 

Table 5.7. Total displacement, stresses and higher order Moments of the C-shaped 

cross section curved beam for 12 or 16 modes. 

 

Mode 

Number 

FEMsolid  

NO Diaph. 

FEMsolid 

NO Diaph. 

(straight) 

10 cubic  

NURBS 

Type of mode 

 

1 0.341 0.630 0.355 
1

st
 mode of Vertical 

displacement 

2 1.843 1.749 1.849 
1

st
 mode of Lateral 

displacement 

3 2.506 2.712 2.581 

2
nd

 mode of Vertical 

displacement 

(excessive Torsion) 
4 7.244 3.288 6.626 1

st
 mode of Torsion 

5 7.908 5.990 8.376 2
nd

 mode of Torsion 

 Table 5.8. Eigenfrequencies for the monosymmetric C-shaped cross section curved or 

straight beam. 
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The second beam model examined is an initially straight cantilever beam of a 

trapezoidal box-shaped cross section ( 23 7E E kN m  , 21.5 7G E kN m  , 0  , 

/ 0.086t d  , / 0.086d L  ) and length of 40 m under a concentrated load 

10000ZP kN   eccentrically applied at its free end, as it is shown in Fig. 5.17. The 

total translation contour and the deformed shape are also presented in Fig.5.17.  

 

 
 

Figure 5.17. Total translation contours and Deformed shape of the monosymmetric 

box-shaped trapezoidal cross section straight beam derived by the 

proposed solution (FEM with NURBS).   

 

In Table 5.9 the values of the kinematical components  w x ,  x x  and  Y x  

for the vertical force ZP eccentrically applied at the free edge of the beam are 

presented for i) proposed beam elements with NURBS (5 cubic), ii) proposed beam 

elements with NURBS (10 cubic), iii) 1840 quadrilateral solid elements in FEMAP 

(FEMsolid1840), iv) 2320 quadrilateral solid elements in FEMAP (FEMsolid2320), 

and v) 4320  quadrilateral  solid elements in FEMAP (FEMsolid4320).  It seems that 

high convergence rates can be achieved with few NURBS comparing to FEM solid 

elements. 

In Fig. 5.18 the normal stress xx  contours are displayed for the 3D solid FEM 

model (2320 elements) and the proposed formulation with constant elements in the 

AEM.  It is obvious that the two models are in well coincidence. After evaluating the 

stress resultants, it is important to note that bimoments and distortional moments due 

to torsion are of high importance for this cross section. In addition to this, tertiary 

distortion is also of some importance. However, the displacement field described by 

eqns. (5.9) results in quite accurate results (up to secondary higher order phenomena 

have been considered).  
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( )w m  

at x=L 

 

 

( )x rad  

at x=L 

 

 

( )Y rad  

at x=L 

 

5 cubic NURBS 0.3790 0.0025 -0.0139 

10 cubic NURBS 0.3818 0.0025 -0.0140 

FEMsolid1840 

1 Diaph.  0.3823 0.0024 -0.0140 

FEMsolid2320 

1 Diaph. 0.3825 0.0024 -0.0140 

FEMsolid4320 

1 Diaph. 0.3827 0.0024 -0.0140 

Table 5.9. Kinematical components of the monosymmetric box-shaped trapezoidal 

cross section straight beam. 

 

          

 
 

Figure 5.18. Normal stress xx  contours for 3D solid FEM model with 2320 

quadrilateral elements (on the left) and the one proposed with AEM (100 

constant elements) for the monosymmetric box-shaped trapezoidal cross 

section straight beam. 

 

The same box-shaped cross section shown in Fig. 5.17 is examined as curved 

with 25.465R m   and an arc length of 40 m. The second cross section is subjected to 

a vertical  concentrated  load 10000ZP kN   concentrically applied at its free end. In 

Py 

=10000kN 

eccentric 

Lateral 

Loading 
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Fig. 5.19 the kinematical components  x x ,  x x  and  x x are displayed in order 

to investigate the order of their magnitude and compare them to each other. FEM with 

NURBS are employed for this purpose. Comparing to the  x x  and  x x

distributions of the I-shaped cross section of the previous example (Fig. 5.9), the 

corresponding ones in this case exhibit a more similar (to each other) distribution 

along the length even though they differ in order of magnitude.  

 

   
 

Figure 5.19. Kinematical components  x x ,  x x and  x x of for the 

monosymmetric box-shaped trapezoidal cross section curved beam 

with cubic NURBS. 

 

In Table 5.10 the values of different kinematical components, stresses and higher 

order moments are compiled for the proposed beam formulation, the 3D FEM model 

(2714 quadrilateral solid elements) when it is possible, the Generalized Warping 

Curved Beam (GWCB) formulation (Chapter 4) and the traditional Timoshenko beam 

element. It is worth noting here that, comparing to the rectangular box-shaped cross 

section (doubly symmetric), the 

P
Dx

Y

M

M
 ratio is much lower while primary warping and 

distortional moments are of the same order of magnitude in this case (compare to 
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Table 5.3 values). The reasons for these are the difference in the cross section shape 

and the larger overall volume of this beam. Warping moments are much lower when 

distortion is not considered in the formulation. Shear stress of Timoshenko beam 

element is significantly less than the other cases.  

 

 

 

 

AEM 

10 cubic  

B-splines 

 

 

FEM  

Solid 

2714 

 

 

 

AEM 

50 quad. 

GWCB 

 

 

Timoshenko 

FEM 

beam 

 

( )w m  at x=L 0.3744 0.3547 0.3202 0.3238 

( )x rad  at x=L 0.0092 0.0087 0.0067 0.0067 

( )Y rad  at x=L -0.0120 -0.0115 -0.0104 -0.0106 

max

2
( )xx

kN

m
  at x=0 40254 38230 27633 28782 

max

2
( )xy

kN

m
  at x=0 24135 23085 16940 3714 

( )YM kNm  at x=0 -254316 -254647 -254820 -254648 

( )tM kNm  at x=0 -253683 -254647 -254700 -254648 

2( )P
S

M kNm  at x=0 -342533 - -244940 0 

2( )S
S

M kNm  at x=0 36612 - 30717 0 

2( )P
DxM kNm  at x=0 -366072 - - - 

 
2( )S

DxM kNm  at x=0 4127  - - 

Table 5.10. Kinematical components, Shear stresses and Stress resultants of the 

monosymmetric box-shaped trapezoidal cross section curved beam. 

 

As the last case studied in this example, a third box-shaped cross section, as 

shown in Fig. 4.24, ( 23.25 7E E kN m  , 21.39 7G E kN m  , 100R m  ,  

0.1667  , / 0.1t d  , / 0.065d L  ) of an arc length of 33 m is subjected to a 

vertical concentrated load 5000 kN concentrically applied at its free end. This beam is 

also examined with the same plan view and cross section shape as previously but with 

a different material for its upper plate (composite cross section), namely 

7 2
1 4 10E kN m   , 

7 2
1 2 10G kN m   , 1 0  , as shown in Fig. 5.20 (grey color). 

Pz =1000kN 

eccentric 

Lateral 

Loading 
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In Table 5.11 the values of different kinematical components, stresses and higher 

order moments are compiled for the proposed beam formulation either curved (R) or 

 

 

R=100 

     AEM 

10 cubic 

B-splines 

 

    R=100 

    FEM 

Solid 

6600 

 

R=∞ 

AEM 

100  

constant 

 

R=100 

       AEM 

10 cubic 

b-splines 

composite 

 

( )w m  at x=L 0.4001 0.3899 0.3914 0.2616 

( )x rad  at x=L 0.0039 0.0038 0 0.0019 

( )Y rad  at x=L -0.0170 -0.0169 -0.0174 -0.0116 

max

2
( )xx

kN

m
  at x=0 52456 51825 52122 21151 

max

2
( )xy

kN

m
  at x=0 8425 7721 3992 3791 

( )YM kNm  at x=0 -161723 -162023 -162115 -161642 

( )tM kNm  at x=0 26929 26969 0 26916 

2( )P
S

M kNm  at x=0 18463 - 0 9152 

2( )P
CY

M kNm  at x=0 -3408 - -3357.5 -11338 

2( )S
S

M kNm  at x=0 -6198 - 0 -3130 

2
, ( )P

Dx yM kNm  at x=0 
62817 (x) 

1571 (y) 
- 

0 (x) 

1144.57 (y) 

20418 (x) 

245 (y) 

 
2

, ( )S
Dx yM kNm  at x=0 

-952.89 (x) 

-1403 (y) 
- 

0(x) 

-1072 (y) 

1691.09 (x) 

-262 (y) 

Table 5.11. Kinematical components, Shear stresses and Stress resultants of the 

monosymmetric box-shaped cross section straight or curved beam. 

   
 

  Figure 5.20. Box-shaped cross section of the composite beam of example 5.5.2. 

Pz =5000κΝ 

Lateral 

Loading 
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straight (R=∞) and the 3D FEM model (6600 quadrilateral solid elements) when it is 

possible. Additionally, the corresponding values derived by the analysis of the 

composite cross section showed in Fig. 5.20 have been compiled for comparison 

reasons. It should be noted here that the curved beam exhibits larger distortional 

effects due to torsion comparing to the straight formulation for which warping and 

distortional effects due to bending are of importance. Curvature alters significantly the 

contribution of beam’s resisting mechanisms and makes it more vulnerable to higher 

phenomena triggered by the arising torsion. However, comparing to the previous box-

shaped cross sections, the ratio 

P
Dx

Y

M

M
 is much lower and the beam resists to loading 

mainly through bending. Considering the corresponding beam element with composite 

section, it should be noted that its performance is significantly improved through the 

use of a material with higher stiffness at its upper plate. This becomes obvious through 

the reduction in stresses and higher order moments due to torsion by more than 50%. 

However, the primary warping moment due to bending is quite high but still much less 

than the distortional one (and more desirable than the corresponding quantities due to 

torsion which causes more brittle failures comparing to bending).     

Finally, in Table 5.12 the first eight eigenfrequencies are compiled for the curved                 

Mode 

Number 

FEMsolid 

6600 

NO Diaph. 

(cantilever) 

FEMsolid 

6600 

NO Diaph. 

(clamped) 

FEMsolid 

6600  

1 Diaph. 

(clamped) 

10 cubic 

NURBS 

(clamped) 

Type of mode 

 

1 1.725 9.328 9.414 9.470 

1
st
 mode of 

Vertical 

displacement 

2 4.065 17.099 19.230 16.887 

1
st
 mode of 

Lateral 

displacement 

3 9.084 20.495 21.160 21.154 
1

st
 mode of  

Torsion  

4 10.183 21.174 22.126 21.949 

2
nd

 mode of 

Vertical 

displacement 

5 19.191 27.898 35.428 26.003 

2
nd

 mode of 

Lateral 

displacement  

6 22.321 31.948 36.230 32.789 

3
rd

 mode of 

Vertical 

displacement 

7 21.649 43.247 42.768 44.500 
2

nd
 mode of 

Torsion  

8 29.165 47.490 47.013 49.602 
3

rd
 mode of 

Torsion 

Table 5.12. Eigenfrequencies for the monosymmetric box-shaped cross section curved 

beam (clamped or cantilever). 
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( 100R m ,
2 4

2.5kN sec / m  ) monosymmetric box-shaped cross section previously 

described when employing FEM solid models with 1 or without diaphragms (NO 

Diaph.) and the proposed beam formulation with cubic NURBS. Both clamped and 

cantilever beam models have been studied for the FEM solid model without 

diaphragms (NO Diaph.). It is obvious that the values obtained by the proposed beam 

formulation are in well coincidence with those of the FEM solid solution without any 

diaphragms and the accuracy is improved comparing to the corresponding values 

compiled in Table 4.16 (where distortional effects had not been considered). The 

placement of the diaphragm at the midpoint of the curved length (forth column of the 

Table 5.12) results in a slight increase of the eigenfrequencies of the first four modes 

and a significant increase for the 5
th

 and 6
th

 modes. In addition to these, comparing to 

the cantilevered model, the behavior of the beam is much different. All of the 

eigenfrequencies are decreased while the order of significance is altered for the 6
th

 and 

7
th

 modes. In general distortional effects are of more importance for most of the modes 

(3
rd

 to 8
th

) and torsional modes become more significant comparing to the clamped 

beam model. It should also be noted here that the procedure of finding the modes of 

the cantilever beam corresponding to the same ones of the clamped beam is quite 

cumbersome due to the fact that many local vibrational modes arise in the FEM solid 

model. 

5.6 Concluding Remarks 

In this chapter, the generalized warping and distortional analysis of straight and 

curved beams is mainly examined. An iterative equilibrium scheme combined with 

traditional eigenvalue analysis has been developed in order to derive the cross 

section’s modes that dominate and, thus, permit the isolation of structural phenomena. 

Various shapes of open or closed cross sections have been considered. Boundary 

Element Method has been employed for this purpose. Additionally, Isogeometric tools 

(b-splines and NURBS) integrated in FEM and AEM are applied for the longitudinal 

analysis of beams allowing for straightforward model handling (i.e. curvature can be 

easily changed) and reducing significantly computational cost (especially when 

additional higher order phenomena need to be accounted for). The presented 

formulation is based on an enriched kinematic field (eqns. (5.9) and (5.10)) taking into 

account primary, secondary and tertiary higher order phenomena due to both bending 

and torsion. The importance of the proposed formulation is highlighted when 

considering the advantages of curved beam models compared to solid and plate ones 

either for static or free vibrational case. Modelling effort can be significantly reduced 

(solid models require cumbersome post- and pre-processing even in relatively simple 

cases) and parametric analyses can be facilitated (construction of multiple solid 

models is quite cumbersome, especially for complex geometries). Moreover, the FEM 

beam elements commonly employed in commercial software can be inaccurate.  Thus, 

the main purpose of this beam formulation is to remain simple and with the least 

number of degrees of freedom needed to describe its behavior accurately. The main 

conclusions that can be drawn from this investigation are: 
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i. Highly accurate results can be obtained using B-splines in the AEM technique as 

well as NURBS in FE beam formulations for the static analysis of the proposed 

beam elements. Computational cost and post-processing of the results is 

significantly reduced by the use of NURBS comparing to FEM plate and solid 

models. Employment of  NURBS in FEM and B-splines in AEM with or without 

knot insertion results in higher convergence rates, too.  

ii. Poisson effects are in general not negligible even if distortion is not of 

importance as it is shown for the solid rectangular cross section of the example 

5.5.1. In addition to this, it seems that when material constants are larger, 

Poisson ratio affects the magnitude of stresses more. 

iii. In general, open shaped cross sections suffer more from warping while close 

ones from distortion. The consideration of up to secondary higher order 

phenomena (eqns. (5.9)) is generally accurate. However, in some cases of very 

thin-walled cross sections either open or closed shaped, tertiary phenomena 

might need to be considered. As a rule of thumb in choosing the least number of 

modes in order to achieve the maximum accuracy when the proposed method is 

employed, the limitations / 0.05t d   and / 0.05d L    can be applied. 

iv. Monossymetric and, thus, asymmetric cross sections are more susceptible to 

higher order phenomena due to this inherent property of their shape, as it can be 

shown from example 5.5.2 comparing to example 5.5.1.  

v. Increase in curvature causes increase in the distortion due to torsion for thin-

walled box-shaped cross sections. Cross sections with cantilever plates at both 

sides undergo less severe distortional effects due to the fact that bending 

resisting mechanisms become of importance, too. 

vi. Direction and position of loads can play a significant role in the behavior of 

curved beams with monossymetric and, thus, asymmetric cross sections due to 

the fact that the development of higher order warping (in open sections) or 

distortional (in close shaped) phenomena can be significantly altered. 

vii. The ratios of distortional and warping moments to the bending ones can be 

indicative of the curved beam’s behavior and offers an additional insight into the 

resisting mechanisms that dominate.  

viii. The distortion of thin-walled box-shaped beams contributes significantly to 

lowering the natural frequency of torsional and bending vibration modes. 

Therefore, distortional effects must be considered in order to predict the dynamic 

behavior of beams accurately. 

ix. Composite cross sections can be easily handled with the proposed BEM 

approach due to the fact that only boundary discretization is required. 

Additionally, changes in the arrangement of materials can be easily integrated in 

the model and significantly improve the resistance of the curved beams against 

warping and distortion. 

x. Curved geometry alters the dynamic behavior of beam models with open or 

closed-shaped cross section and not necessarily in the same way.  
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xi. The procedure of identifying the type of higher modes becomes quite 

cumbersome, especially for FEM solid models, thus, making comparisons of the 

results to other models time-consuming and uncertain.  
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Chapter 6 

Application of Diaphragms’ 
Guidelines and Assessment 

6.1 Introduction 

Regarding the distortional analysis related to the intermediate diaphragms, which 

is more important for box girders, the number of researches is quite limited. The study 

related to the distortional analysis of box girders was initiated by Dabrowski (1968) 

who first formulated the distortional phenomenon of box members with a symmetric 
cross section. Later and more recently, other research efforts were undertaken 

regarding the distortional analysis of the structures to give design guidelines on the 

intermediate diaphragms. Sakai and Nagai (1981), and Nakai and Murayama (1981) 

presented several results on the design procedures of the intermediate diaphragms for 

curved girders and noted that these play a very important role in moderating 

distortional warping of girders. Yabuki and Arizumi (1989) employing BEF analogy 

for distortion proposed spacing provisions which can be utilized for steel-plated 

intermediate diaphragms. More recently, Park et al. (2003 and 2005a) developed a 

straight and a curved box, respectively, beam finite element having nine degrees of 
freedom per node in order to propose tentative design charts for adequate maximum 

spacing of intermediate diaphragms. As mentioned in Chapter 5, their proposal lacks of 

generality. Yoo et al. (2015) applied the concept of the BEF analogy for the analysis of 

distortional stresses of horizontally curved box-girders. The proposed procedure is 

capable of handling simple or continuous single cell box girders (or separated multi-

cell box girders) with rigid or deformable interior diaphragms or cross-frames. 

However, in most of these studies, the placement of diaphragms was not related 

whether to dynamic property analysis or dynamic response analysis.  

Up to the 1980s the design of a bridge structure was based on static analysis, 

corrected by a dynamic amplification factor (as also mentioned in Chapter 4) which is 

based on the first natural frequency. An extensive effort was made by Hamed and 

Frosting (2005) to introduce the effects of warping and distortion of bridge cross-

sections. An analytical model is developed in their works where the bridge is idealized 

as being made of panels which behave as plates in the transversal direction and as 

Euler–Bernoulli beams in the longitudinal direction (Petrolo et al., 2012). Special 

attention is paid for distortion by the following bridge design specifications. The Guide 

Specifications for Horizontally Curved Highway Bridges by the American Association 

of State Highway and Transportation Officials – AASHTO (1993) specify the 

maximum spacing of the intermediate diaphragms through an approximate formula as 

well as the ratio of distortional and bending normal stresses. The Hanshin Expressway 
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Public Corporation of Japan provides the Guidelines for the Design of Horizontally 

Curved Girder Bridges – HEPCJ (1988) specifying the maximum spacing of the 

intermediate diaphragms in curved box girder with respect to that in straight box 

girders multiplied by a reduction factor. It should be noted here that the boundary 

conditions and the cross section shape are not taken into account directly for both 

specifications. 

In this chapter, the beam models presented in Chapters 4 and 5 are mainly 

employed either in static or dynamic case. The numerical solutions of the problems are 

similar to previous chapters, too. Additionally, solid or shell/plate Finite Element 

models are employed and the bridges’ design specifications mentioned above are 

applied in order to compare the results and assess the provisions. The cross sections 

can be considered not deformable in their plane through the presence of a sufficient 

number of diaphragms along the straight or curved beam, preventing distortion. The 

design guidelines related to the intermediate diaphragms have been provided to prevent 

from excessive distortional warping in the longitudinal direction and transverse 

bending deformation along the cross section perimeter. Thus, fixed values of the stress 

ratio of the distortional warping normal stress to the bending normal stress are used. 

Moreover, having in mind that a rigid diaphragm is usually placed in the sections over 

each support, both the angle of twist and warping are prevented at these places 

(bimoment has nonzero values at the support sections).  

The assessment of the design guidelines which specify the maximum spacing of 

intermediate diaphragms through comparisons of the proposed curved models to the 

corresponding solid or shell/plate ones and some parametric studies is a first step 

towards suggesting further provisions and limitations on the application of these 

regulations.  

Numerical examples are worked out to evaluate the formulated models, provide 

comparable results and assess the efficiency of design guidelines with respect to 

accuracy and cost. For this purpose, various models of straight or curved beams with 

various arrangements of diaphragms, boundary conditions, geometric properties and 

loads have been developed. 

6.2 Statement of the problem-Specifications 

The problem of prismatic straight or curved beam models of homogenous or 

composite arbitrary cross section has already been stated in Chapters 3, 4 and 5. 

Nonuniform warping and/or distortion distributions can be considered by employing 

independent parameters, which are the higher degrees of freedom (DOFs), multiplying 

corresponding warping/distortion modes as this is already described. Thus, the 

generalized nodal displacement vector in the local coordinate system can be written for 

both ends of the beam. Its dimension depends on the number of higher cross sectional 

modes considered. Similarly, higher-order stress resultants arise and these constitute 

additional generalized forces acting at the nodes of straight or curved beam elements. 

The standard Direct Stiffness Method (DSM) can be employed in order to formulate 

the local stiffness matrix of the 3-dimensional beam. Afterwards, the global stiffness 

and force matrices can be derived by multiplying the local ones with the well-known 
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rotation matrix of spatial frames. Regarding warping and distortional DOFs, the 

transformation procedure needs special treatment in case of non-aligned members 

without any diaphragms. In addition to this, adjacent curved beam elements need 

special care when there is full warping and distortional continuity. Particularly, 

approximate modelling techniques at joints need to be adopted and general assumptions 

to be made (Jang et al., 2008; Jang and Kim, 2010). However, the cases considered in 

this chapter aim mainly to provide results for comparison with models formulated when 

the guidelines are applied. Thus, the study of the warping and distortion transmissions 

between adjacent elements is not within the scope of this chapter.   

The placement of diaphragms along the length of the beam-like frame which 

consists of adjacent aligned beam elements or along the beam model has been done 

according to the following guidelines. The Guide Specifications for Horizontally 

Curved Highway Bridges by the American Association of State Highway and 

Transportation Officials – AASHTO (1993) specify the maximum spacing of the 

intermediate diaphragms DL  as   

 

1/2
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    
                                                                        (6.1) 

 

where L and R denote the span length and radius of curvature in feet, respectively. This 

provision meets the requirement that the distortional normal stress (it is meant due to 

torsion) is limited within 10% of the bending normal stress and the transverse bending 

normal stress is limited to 137.3 MPa or lower. 

In addition to this, the Hanshin Expressway Public Corporation of Japan provides 

the Guidelines for the Design of Horizontally Curved Girder Bridges – HEPCJ (1988) 

specifying the maximum spacing of the intermediate diaphragms in curved box girder 

with respect to that in straight box girders multiplied by a reduction factor, which is 

equal to unity for a span length less than 60 m. In those guidelines, design criteria for 

the spacing of the intermediate diaphragms are specified so that the distortional normal 

stress (due to torsion) is limited within 5% of the bending normal stress. In addition to 

this, the transverse bending normal stress due to distortion should be limited to about 

4.90 MPa or lower. To account for these restrictions, the guidelines specify the 

maximum spacing of the intermediate diaphragms in curved box girder bridges as 
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with DSL ,  , L  and   being the spacing of the intermediate diaphragms in straight 

box girder bridges (in m), the reduction factor and the angle formed by the arc at the 

center of the circle that it is a part of (in rad), respectively. 

6.3 Numerical Solution 

B-splines and NURBS curves in terms of B-spline basis functions can be 

employed either in FEM or AEM. The description of the numerical procedures is given 

in the Appendix A.2.  

The local stiffness matrices of the elements are computed numerically by 

applying either the Analog Equation Method (AEM) (Katsikadelis, 1994 and 2002b) or 

the Finite Element Method (FEM) with Isogeometric tools. Warping and distortion 

functions as well as geometric constants are evaluated employing a 2-D BEM 

approach, as described in previous chapters.  

6.4 Numerical examples 

The computer programs that have already been written are employed and 

compared to FEM solid (quadrilateral or triangular) or plate/shell elements (FEMAP, 

2010). Either the static or dynamic problem is examined. Design guidelines for 

specifying the maximum spacing of intermediate diaphragms have been applied to the 

aforementioned solid models and compared to the proposed one with or without taking 

into account distortional effects. Four different examples of thin-walled box-shaped 

cross sections, which mainly suffer from distortion, with different geometric ratios 

have been examined. According to thin-walled theory, the upper bounds of these ratios 

are / 0.1t d   and / 0.1d L  , where  t , d  and L  are the thickness, width and length 

of the straight or curved box-shaped cross section, respectively. 

6.4.1 Box-shaped Doubly Symmetric cross section ( / 0.085t d  , / 0.087d L  ) 

The first beam has the doubly symmetric box-shaped cross section shown in Fig. 

5.11 of Chapter 5. It is examined either as curved beam with an arc length of 40 m or 

straight one of the same length.  

According to the provisions of AASHTO, 6 intermediate diaphragms need to be 

placed along the curved beam length at equal distances in order to prevent excessive 

distortion. Additionally, 7 diaphragms have to be employed for the same purpose either 

in curved or straight beam formulation according to HEPCJ guidelines. Some 

comments should be made here with respect to the results of the previous chapter. 

Regarding the values compiled in Table 5.2 for the straight beam formulation, it should 

be noted that when employing 2 diaphragms the kinematical components at the free 

end are almost the same with those in the case of 1 diaphragm for all of the methods 

employed, thus, indicating the absence of excessive distortional phenomena for this 
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cross section. This is verified when stress values are considered. Significant normal 

zz  and yy  as well as shear stresses arise only when no diaphragms exist in the 

model. This implies that only 1 diaphragm needs to be employed in order to prevent 

distortion instead of the 7 diaphragms required according to HEPCJ. This is also 

verified when considering the dynamic case ( 2 4
2.5kN sec / m  ) with a transient 

vertical load  5000ZP kN applied eccentrically for 3 seconds at the free end. In Fig. 

6.1, the response of the beam for the vertical displacement is displayed for three cases, 

namely models with 2, 4 and without diaphragms, showing that no important 

differences arise. However, in the case of the same cross section with curved 

configuration (Table 5.3 and Fig. 5.13), kinematical components are significantly 

decreased when employing 7 diaphragms. In addition to this, in the case of the 2-

diaphragmatic arrangement, yy  remains significant comparing to the model with 6 or 

7 diaphragms (quadruple in magnitude). When employing 4 diaphragms, the values of 

stresses are closer to the arrangement with 7 diaphragms and much lower than the cases 

of 1 or 2 diaphragms. Therefore, it seems to be more cost-effective to use fewer 

diaphragms than those required by the provisions with respect to safety.  

In Table 6.1 the first eight eigenfrequencies are compiled for the curved                

( 25.465R m , 2 4
2.5kN sec / m  ) rectangular box-shaped cross section when 

employing FEM solid models with 7 or without diaphragms (NO Diaph.) and the 

proposed beam formulation with cubic B-splines in AEM as well as for the 

corresponding straight beam element (forth column of the Table 6.1) with FEM solid 

elements without the use of any diaphragms. It is obvious that the values obtained by 

the proposed beam formulation are in well coincidence with those of the FEM solid 

solution without any diaphragms. The placement of diaphragms results in a slight 

increase of the eigenfrequencies of the first four modes and a significant increase for 

the rest four modes due to the fact that distortion becomes more important as indicated 

from the description of the modes (last column of the Table 6.1). In addition to these, 

comparing to the straight beam formulation, the behavior of the beam is different. The 

first two modes exhibit similar eigenfrequencies for both the curved and straight model. 

Regarding the rest of the modes, significant discrepancies can be noticed either in the 

values of the eigenfrequencies or in the order of modes’ significance. Particularly, it 

seems that torsional modes (5
th

 and 7
th

 for the straight beam) are more of importance in 

the straight beam model comparing to bending modes due to the lower value of the 5
th

 

eigenfrequency and the altered order of significance between the 7
th

 and 8
th

 modes. To 

conclude with, fewer diaphragms can be employed in terms of safety (suggested value 

is 4) due to the fact that in common practice (as in bridge deck design) the first 3-5 

eigenfrequencies, which are not highly affected when comparing arrangements with 4 

and 7 diaphragms,  are commonly employed in order to derive design quantities. This is 

also verified when considering the dynamic case of the same transient load studied for 

the corresponding straight beam, as mentioned in the previous paragraph. In Fig. 6.2 

the response of the beam for the vertical displacement is displayed for the same three  
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Figure 6.1. Response of the straight beam with box-shaped cross section for 

different diaphragmatic arrangements under transient load. 

 

   
 

Figure 6.2. Response of the curved beam with box-shaped cross section for different 

diaphragmatic arrangements under transient load. 
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cases (in order to compare them), showing that the employment of 2 or 4 diaphragms 

results in the reduction of displacements comparing to the non-diaphragmatic model.   

6.4.2 Box-shaped Monosymmetric cross section ( / 0.02t d  ,   / 0.1d L  ) 

The box-shaped cross section shown in Fig. 3.15 of Chapter 3 with the geometric 

constants compiled in Table 3.7 of the same chapter is examined here. This cross  

 

Mode 

Number 

FEMsolid 

2880 

NO Diaph. 

FEMsolid 

2880 

7 (4) 

Diaphs. 

FEMsolid 

2880 NO 

Diaph. 

(straight) 

10 cubic B-

splines 

in AEM  

(1 Diaph.) 

Type of mode 

 

1 1.605 
1.726 

(1.707) 
1.630 1.611 

1
st
 mode of 

Vertical 

displacement 

(insignificant 

distortion) 

2 2.221 
2.261 

(2.238) 
2.168 2.155 

1
st
 mode of Lateral 

displacement 

(insignificant 

distortion) 

3 7.038 
7.329 

(7.242) 
9.167 7.063 

2
nd

 mode of 

Vertical 

displacement 

(significant 

distortion) 

4 9.440 
9.626 

(9.530) 
12.099 9.296 

2
nd

 mode of 

Lateral 

displacement 

(significant 

distortion) 

5 14.455 
16.108 

(15.875) 
12.791 14.795 

1
st
 mode of 

Torsion 

(significant 

distortion) 

6 19.131 
22.770 

(22.087) 
21.591 20.552 

3
rd

 mode of 

Vertical 

displacement 

(excessive 

distortion) 

7 23.306 
32.479 

(32.000) 
29.194 22.961 

3
rd

 mode of 

Lateral 

displacement 

(excessive 

distortion) 

8 23.478 
41.895 

(36.422) 
22.848 25.312 

2
nd

 mode of 

Torsion (excessive 

distortion) 

Table 6.1. Eigenfrequencies for the doubly symmetric box-shaped cross section curved 

or straight beam. 
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section is employed for the beam model described in the example 4.5.3 of Chapter 4      

( 24 7E E kN m  , 22 7G E kN m  , 10L m  , 2 4
7.85kN sec / m   6.366R m   or 

R    for the straight formulation).   

The straight beam under a concentrated load 1000yP kN   in the vertical 

direction eccentrically applied at its free end (similarly to the example 3 of Chapter 3) 

is examined at first in order to investigate the provisions of the guidelines related to the 

spacing of intermediate diaphragms. In Fig. 6.3 a model of the beam implemented in 

FEMAP (2010) employing FEM quadrilateral solid elements is shown. In the same 

figure the total deflection is also recorded.  It is worth here noting that in order to 

obtain the distributions of the kinematical components and stress resultants from the 

solid model, rigid diaphragms have to be placed in regular distances (20 in total), 

permitting the measurement of rotation angles and translations of the reference nodes.  

 

   
 

Figure 6.3. Model in FEMAP employing 780 quadrilateral solid finite elements. 

Deflection is displayed along the length of the beam. 

 

The existence of diaphragms ensured the absence of local distortional phenomena of 

the cross sectional profiles. According to the HEPCJ, Fig. 6.4a shows the deformed 

shape and total translation of the beam displayed in Fig. 6.3 employing 2 diaphragms 

(one at midspan and one at the free edge) while Fig. 6.4b is the same but without the 

employment of any diaphragms. Results of models displayed in Figs. 6.3 and 6.4a, 

which are similar to each other, almost coincide with the results obtained by the 

proposed beam formulation of Chapter 4. However, it is obvious from Fig. 6.4b that the 

absence of diaphragms leads to a larger total translation by 18% due to the 

development of distortional effects. In addition to this, the same behavior to the model 

of Fig. 6.4b is predicted by the proposed formulation of Chapter 5. Thus, HEPCJ 

requires a reasonable number of diaphragms for this particular case. This can be 

validated when values of stresses are evaluated.  

Afterwards, the same beam, as previously described, is considered curved having 

the same length and radius of curvature 6.366R m   forming an arc of 90° angle in top 
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view. In Fig. 6.5 two models of the beam implemented in FEMAP (2010) employing 

FEM quadrilateral solid elements are shown. The difference between the two models is 

in the use of diaphragms in the cross section plane. In the first one 13 diaphragms have 

been employed while in the second model only one. The beams are subjected to a 

vertical concentrated load  1000yP kN   applied at the centroid of their free end cross 

sections this time. In the same figure the total deflections are also recorded. It is worth 

here noting that the placement of the rigid diaphragms along the length of the curved 

beam becomes quite cumbersome due to the complexity of the solid model.  

 

  (a) 

  (b) 
 

Figure 6.4. Deformed shapes and total vertical translation of the beam with the box-

shaped cross section of Fig. 3.15 (a) for 2 diaphragms and (b) without 

diaphragms. 

 

In addition to this, much more quadrilateral solid elements have been employed 

comparing to the straight beam formulation (Fig. 6.3) for accuracy reasons. Comparing 

the deformed shapes of the beams, it is obvious that the existence of diaphragms 

ensures indeed the absence of local distortional phenomena of the cross sectional 

profiles along the arc length while the total maximum translation is reduced by 46%. 

Due to the very thin-walled structure of the cross section, a plate model in FEMAP 
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(2010) has also been employed for comparison reasons with the solid model and in 

order to detect any possible locking phenomena present. 

In Table 6.2 the values of the kinematical components  v x ,  x x  and  Z x

for the vertical force yP  concentrically applied at the free edge of the beam are 

presented for i) proposed curved beam model of Chapter 4 with cubic NURBS (Ch. 4-

NO dist.), ii) 1500 quadrilateral plate elements with 13 diaphragms (FEMplate 13 

Diaph.), iii) 1500 quadrilateral plate elements with 1 diaphragm (FEMplate 1 Diaph.), 

iv) 1500 quadrilateral  plate  elements with  2  diaphragms  (FEMplate 2 Diaph.)  

according to  guidelines  previously mentioned, v)  10976  quadrilateral solid elements 

  

   
(a) 

   
(b) 

 

Figure 6.5. Deformed shapes of models in FEMAP employing 10976 quadrilateral 

solid finite elements and (a) 13 diaphragms or (b) one diaphragm. 

 

with 13 diaphragms in FEMAP (2010) (FEMsolid 13 Diaph.), vi) 10976 quadrilateral 

solid elements with 2 diaphragms in FEMAP (2010) (FEMsolid 2 Diaph.) according to 

guidelines previously mentioned, vii) proposed curved beam model of Chapter 5 with 

cubic NURBS (Ch. 5-1 Diaph.) and viii) 10976 quadrilateral solid elements with one 

diaphragm in FEMAP (2010) (FEMsolid 1 Diaph.). Analysis with cubic NURBS in the 
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model of Chapter 4 gives results closer to the solid model with diaphragms, as it is 

expected, while model of Chapter 5 is closer to solid model with 1 diaphragm due to 

the arising distortional effects. The results obtained by the analysis of the solid model 

with diaphragms almost agree with those obtained by the plate model with diaphragms 

(discrepancies around 1%). However, it is important to notice that the results obtained 

by the respective models with only 1 diaphragm differ from each other (discrepancies 

vary from 15 to 23%). The solid model seems to be stiffer than the plate one while the 

different displacement values are exclusively related to distortional phenomena (mainly 

attributed to torsion) since the corresponding models with diaphragms (no distortion) 

show the same level of accuracy. Moreover, regarding the proposed model of Chapter 5 

additional higher modes need to be employed in the displacement field due to the very  

 

 

( )v m  at 

x=L 

( )x rad  

at 

x=L 

( )Z rad  

at 

x=L 

 4 cubic NURBS 

(Ch. 4-NO dist.) 0.4879 -0.0202 -0.0742 

FEMplate 

13 Diaph. 0.4701 -0.0231 -0.0691 

FEMplate 

2 Diaph. 0.5516 -0.0290 -0.0812 

FEMplate 1 Diaph. 0.9748 -0.0951 -0.1470 

FEMsolid 

13 Diaph. 0.4647 -0.0229 -0.0685 

FEMsolid 

2 Diaph. 0.5346 -0.0279 -0.0790 

8 cubic NURBS 

(Ch. 5-1 Diaph.) 0.7844 -0.0650 -0.111 

FEMsolid 1 Diaph. 0.8215 -0.0726 -0.1235 

Table 6.2. Kinematical components of a curved beam with the cross section shown in 

Fig. 3.15 for vertical load and various numerical models. 

 

thin-walled nature of this cross section. It is worth here noting that if diaphragms are 

placed in the solid model according to the guidelines (2 diaph. case), the vertical 

translation is more than the proposed formulation of Chapter 4 (Ch. 4-NO dist.) by 

8.7%. Additionally, the angle of twist is increased by 25% and the angle of rotation due 

to bending by 6%. Discrepancies are slightly larger comparing to the corresponding 

plate model. This proposed curved beam element is obviously stricter regarding the 

placement of diaphragms in terms of safety against distortional effects comparing to 

solid and plate models. This implies the use of more diaphragms comparing to those 

specified by the guidelines. Additionally, comparing stresses between different solid 

Py Lateral 

Loading 
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models, it is proved that the normal stress due to distortion is more than the specified 

10% of the normal stress due to bending for the 2 diaph. model. 

A parametric study considering different radii of curvature for the same beam 

length and cross section has been conducted and different models have been examined. 

In Table 6.3 the discrepancies between the proposed curved beam formulation of 

Chapter 4 (Ch. 4-NO dist.) and the model with the diaphragmatic arrangement 

according to the guidelines have been compiled (FEMsolid 2Diaph.). It is evident that 

as the curvature of the beam (1/ R ) becomes greater, the “error” of the specified 

diaphragmatic model becomes larger in an exponential rate and this rate seems to be 

greater for torsion. In addition to these, considering the solid model with no 

diaphragms and comparing to the other models, it seems that distortional effects are of 

more importance for large curvatures and a more refined treatment should be 

considered. It should also be noted that that the high ratios of the dimensions to 

thickness of the cross section’s walls is also an important factor, especially for torsion. 

 

 

(%)v  at 

x=L 

(%)x  at 

x=L 

(%)Z  at 

x=L 

 R=∞ 0.00 0.64 0.00 

R=28.65m 1.09 1.41 1.06 

R=12.73m 3.03 3.40 1.91 

R=6.37m 8.73 27.60 6.08 

Table 6.3. Discrepancies (%) in kinematical components’ values for different radii of 

curvature between the proposed model and those according to guidelines. 

 

Considering the free vibration problem of the aforementioned curved beam, the 

Table 4.10 is recalled. In addition to the values compiled in that Table, the 

eigenfrequencies for the 2-diaphragmatic case have been added for comparison reasons 

in Table 6.4. Comparing the values of higher models with 1 or 2 diaphragms, it is 

obvious that are closer to each other than in comparison with the values of the solid 

model with 13 diaphragms or the proposed formulation of Chapter 4 (Ch. 4-NO dist.).  

 

Mode 

Number 

FEMsolid 

1 Diaph. 

FEMsolid 

2 Diaph. 

FEMsolid 

13 Diaph. 

10cubic 

NURBS  

(Ch.4-NO dist.) 

1 0.1172 0.1416 0.1548 0.1317 

2 0.2556 0.2615 0.2704 0.2191 

7 0.3262 0.3644 1.0436 1.1042 

8 0.3562 0.3799 1.4233 1.2311 

9 0.4022 0.4761 1.5021 1.3345 

                 Table 6.4. Eigenfrequencies of the beam of Fig. 6.5. 

Py Lateral 

Loading 
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6.4.3 Box-shaped Monosymmetric cross section ( / 0.086t d  ,   / 0.086d L  ) 

This beam has the box-shaped cross section shown in Fig. 4.18 and the geometric 

constants compiled in Table 4.11. Its dimensions to thickness ratios are almost the 

same with the doubly symmetric box-shaped cross section of example 6.4.1 for 

comparison reasons. Similarly to that case, either 6 or 7 intermediate diaphragms are 

required to be employed in order to prevent distortion according to AASHTO or 

HEPCJ, respectively. The curved beam model examined has the following 

characteristics: 23 7E E kN m  , 21.5 7G E kN m  , 40L m  , 25.465R m  . It is 

subjected to a concentrated load either 10000yP kN   
concentrically applied at its free 

end.  

Additionally to Tables 4.14 and 5.10, in Table 6.5 the values of the kinematical 

components  v x ,  x x  and  Z x  for the vertical force yP  concentrically applied 

at the free edge of the beam are presented for i) proposed curved beam model of 

Chapter 4 with cubic NURBS (Ch. 4-NO dist.), ii) 2714 quadrilateral solid elements 

with 1 diaphragm in FEMAP (2010) (FEMsolid), iii) 2714 quadrilateral solid elements 

with 16 diaphragms in FEMAP (2010) for comparison reasons (FEMsolid 16 Diaph.), 

iv) 2714 quadrilateral solid elements with 7 diaphragms according to guidelines of  

HEPCJ (1988) in  FEMAP (2010)  (FEMsolid 7 Diaph.), v) 2714 quadrilateral solid 

elements with 2 diaphragms for comparison reasons in  FEMAP (2010)  (FEMsolid 2 

Diaph.) and vi) 2714 quadrilateral solid elements with 4 diaphragms for comparison 

reasons in  FEMAP (2010)  (FEMsolid 4 Diaph.). 

 

 

at ( )v m  

x=L 

( )x rad  at 

x=L 

( )Z rad  

at 

x=L 

 

4 cubic NURBS 

(Ch. 4-NO dist.) 0.3197 -0.007029 -0.0104 

FEMsolid  

1 Diaph. 0.3547 -0.00867 -0.0115 

FEMsolid 

7 Diaph. 0.2914 -0.00756 -0.0090 

FEMsolid 

16 Diaph. 0.2746 -0.00778 -0.0081 

FEMsolid  

2 Diaph. 0.3256 -0.00782 -0.0103 

FEMsolid  

4 Diaph. 0.3021 -0.00753 -0.0094 

 Table 6.5. Kinematical components of the beam of Fig. 4.20 for vertical load. 

 

Py Lateral 

Loading 
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It is worth nothing here that when using 16 diaphragms, the vertical displacement 

is reduced by 23% while the angle of twist and rotation due to bending are reduced by 

10% and 30%, respectively, comparing to the arrangement with 1 diaphragm. The 

differences in the corresponding values of the models with 2 and 4 diaphragms from 

those of the model with 1 diaphragm are larger in a disproportionate way when 

comparing the corresponding values of the same models to those of the model with 7 

diaphragms. In addition to this, the proposed formulation gives results closer to the 

solid model with two diaphragms. Regarding the values of stresses, the discrepancies in 

shear stresses between models with 2, 4 and 7 diaphragms are not of much importance 

in comparison with those in normal stresses. However, regarding normal stresses zz  

and yy , slightly different values arise for models with 4 and 7 diaphragms. 

Additionally, the 2-diaphragmatic model exhibits stresses closer to the model with 4 

diaphragms than that with 1 diaphragm. These imply that distortional effects are not of 

the same importance as considered in the guidelines and the use of the numbers of 

diaphragms specified make the solid model stiffer than it should be in real resulting in 

uneconomic design practices for a case like this one. 

Moreover, the free vibration problem is studied and the ten first eigenfrequencies 

are evaluated and compiled in Table 6.6 for the solid models and the proposed one in 

Chapter 4 (Ch. 4- NO dist.) analyzed employing NURBS. The values of the proposed 

formulation are closer to the solid model with 1 or 16 diaphragms for the first five 

eigenfrequencies and closer to the solid one with 16 diaphragms for the last three. 

However, regarding the design quantities, the first eigenfrequencies are of main 

interest. Thus, it is implied that distortion can be prevented with few number of 

diaphragms.  

 

Mode Number 
FEMsolid 

1 Diaph. 

FEMsolid 

16 Diaph. 

cubic 

NURBS (Ch. 4-

NO dist.) 

1 0.0488 0.0541 0.0412 

2 0.1408 0.1457 0.1203 

3 0.1905 0.2208 0.2501 

4 0.3002 0.3885 0.3200 

5 0.4643 0.5033 0.4452 

6 0.5309 0.6481 0.6465 

7 0.6299 0.8718 0.7046 

8 0.6797 1.0252 0.9412 

9 0.7125 1.1320 1.1889 

10 0.7361 1.4439 1.3252 

Table 6.6. Eigenfrequencies of the beam of Fig. 4.20. 

6.4.4 Box-shaped Monosymmetric cross section ( / 0.1t d  ,   / 0.065d L  ) 

The box-shaped cross section shown in Fig. 4.24 with the geometric constants 

compiled in Table 4.15. The curved beam model considered in Chapters 4 and 5 is 

examined either as cantilever of clamped for the static problem.  
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According to guidelines previously mentioned regarding the placement of 

intermediate diaphragms, either 5 (AASHTO, 1993) or 6 (HEPCJ, 1988) diaphragms 

should be at least employed in order to fulfill limitations. Considering a cantilever 

beam, as the less favorable case in terms of boundary conditions, under a concentrated 

load 3000yP kN   eccentrically applied at its free end, several diaphragmatic 

arrangements have been performed. The distributions of the main displacements and 

the maximum stresses arising have been illustrated in Fig. 6.6. 

 

     
 

  Figure 6.6. Discrepancies from solid model without diaphragms for a cantilever 

beam with the cross section shown in Fig. 4.24. 

 

The proposed formulation in Chapter 4 with NURBS coincides with the FEM 

model of 6600 triangular solid elements and one rigid diaphragm created with FEMAP 

(2010) (errors around 0% for displacements and stress resultants). The discrepancies 

between the proposed formulation and the solid model without any diaphragms are 

quite small (less than 5%) and only for the angle of twist the difference becomes larger 

(8.6 %). This implies that the distortion is not of much importance for this cross section 

and this structural arrangement. Regarding the maximum normal and maximum shear 

stresses, it seems that after the placement of 4 diaphragms not much difference takes 

place and even for less than 4 diaphragms the “errors” arising are around 5%. Thus, 
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guidelines might lead to cost ineffective solutions for this particular curved beam 

element. 

In addition to these, the clamped model of the same beam is considered in Fig. 

6.7. Similarly to the previous case of the cantilever beam, the proposed formulation 

agrees to the solid model with one diaphragm. The discrepancies between the models 

become larger for displacements as the number of diaphragms increases comparing to 

the previous case of the cantilever beam. However, stresses, which are of more 

importance in this case due to the fact that the magnitude of displacements is quite low, 

are almost unaffected by the placement of diaphragms. Thus, it seems that boundary 

conditions need to be considered in the specification of diaphragms. 

 

     
 

  Figure 6.7. Discrepancies from solid model without diaphragms for a clamped 

beam with the cross section shown in Fig. 4.24. 

 

Referring back to Fig. 4.25 of Chapter 4, it should be noted that the placement of 

the diaphragm in the solid model of FEMAP (2010) causes the reduction of the vertical 

displacement throughout the application of the dynamic load. The proposed 

formulation of Chapter 4 which does not considers distortion is closer to this model 

implying again that much less diaphragms (possibly only 1 instead of 5 or 6) than those 

specified are adequate to prevent distortional effects.  
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6.5 Concluding Remarks 

In this chapter, the proposed formulations of previous chapters are employed for 

the static and dynamic analysis of straight or curved beams together with FEM solid 

models in order to further highlight their importance when considering the advantages 

of beam models compared with solid ones and assess the design guidelines regarding 

the placement of intermediate diaphragms to prevent distortion. Results have been 

obtained after placing intermediate diaphragms in the solid models according to 

guidelines of (AASHTO, 1993) and (HEPCJ, 1988). The main conclusions that can be 

drawn from this investigation are: 

i. Regarding very thin-walled structures with / 0.05t d   (example 6.4.2), 

guidelines for spacing of diaphragms to prevent distortional effects seem to lead 

to more unsafe solutions when curved beams are considered due to the higher 

magnitude of warping and mainly the distortional one. In such cases the 

magnitude of the curvature is of importance.  

ii. In structures with higher thickness to width ratios (examples 6.4.1, 6.4.3 and 

6.4.4), it seems that the guidelines applied in this study might give uneconomic 

solutions in order to moderate distortional effects, especially for curved 

geometries. 

iii. The specification of the maximum spacing of intermediate diaphragms should be 

encountered as a multi-parameter problem considering cross sectional geometry 

together with the plan view dimensions and boundary conditions.  

iv. The use of diaphragms seems to moderate the dynamic load impact on the 

structure. 

Finally, material of the beam is also important and its influence on the number of 

diaphragms needs to be further investigated as structures of different materials are 

treated differently in practice (i.e. steel or concrete bridge decks).  
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Chapter 7 

Concluding Remarks 

1.1 Conclusions of the conducted research and discussion 

In this doctoral thesis, a series of problems concerning the development of 

advanced curved beam theories have been studied and solved. The main issues 

addressed are the following: 

 Generalized warping (including shear lag effects due to flexure and torsion) of 

curved beams,  

 Distortional analysis of curved beams by taking into account Poisson ratio 

influence,  

 Application of the Isogeometric Analysis to the advanced beam theories proposed 

and 

 Application of the design guidelines which specify the maximum spacing of 

intermediate diaphragms and assessment through comparisons of the proposed 

curved model to the corresponding solid or plate ones. 

For the solution of the examined problems, innovative methods have been 

applied based on Isogeometric tools (B-splines and NURBS) either integrated in FEM 

or AEM. The main conclusions and aspects of discussion that can be drawn from this 

doctoral thesis are: 

i. Highly accurate results can in general be obtained using B-splines in the AEM 

technique as well as NURBS in FE beam formulations for the static and dynamic 

analysis of the proposed beam elements. Computational cost and post-processing 

of the results is significantly reduced by the use of NURBS comparing to FEM 

plate and solid models. Employment of  NURBS in FEM and B-splines in AEM 

with or without knot insertion results in higher convergence rates, too.  

ii. The curve used to approximate the fictitious load affects the accuracy of the 

method and this might cause the necessity of knot insertion or degree elevation 

when employing B-splines or NURBS in the AEM. Different section properties 

(especially the warping constant) affect the order of the B-splines and NURBS 

that have to be employed. In order to obtain errors closer to the AEM with 

Isogeometric tools and values closer to those of the analytical solution, quadruple 

collocation points should be employed as nodes in the original AEM. 

iii. Classical Nonuniform Torsion theory fails to give accurate results in the 

evaluation of primary warping distribution and axial stresses or bimoments due to 

primary warping in the case of closed cross sections. Results are quite close to 

those obtained when employing the Vlasov model. The same case is for the Saint 

Venant model regarding torsion and the Euler-Bernoulli model regarding 

bending.  
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iv. AEM technique with constant elements exhibits no branching in a normalized 

frequency spectrum, as it is the case in quadratic FEM elements, while it 

maintains accuracy in the results of high frequencies. Quadratic elements in AEM 

depict a branch with much smaller impact than FEM, while they improve the 

accuracy comparing to AEM with constant elements. 

v. Regarding the generalized dynamic problem of beams,  in cases of very thin-

walled beams, which are susceptible to warping and torsional phenomena, more 

elements need to be used for the AEM technique with constant or quadratic 

elements. Quartic and cubic B-splines with or without knot insertion can help to 

reduce number of unknowns drastically while keep the accuracy on a high level. 

vi. Regarding generalized curved beam analysis, the magnitude of Bimoment is in 

general not negligible comparing to the total Torsional Moment and both 

moments can also be of the same order of magnitude depending on the cross 

section. In addition to this, secondary Torsional Moments can be significant and 

should also be considered in the analysis. These higher order additional stress 

resultants can now be integrated in the analysis’ results and plotted in alignment 

with the curved geometry due to the use of Isogeometric tools. 

vii. FEM curved beam formulations based on Timoshenko beam theory exhibit a 

significant loss in accuracy for higher frequencies even for doubly symmetric 

cross sections. Thus, warping effects need to be taken into account in the 

dynamic analysis.  

viii. Displacement and bending modes dominate over the torsional ones when 

considering box-shaped cross sections due to higher torsional rigidities 

comparing to the open shape cross sections. 

ix. Regarding very thin-walled structures, guidelines for spacing of diaphragms to 

prevent distortional effects seem to lead to more unsafe solutions when curved 

beams are considered due to the high level of warping and mainly the distortional 

one. In such cases the magnitude of the curvature is of importance. However, in 

stiffer structures with higher thickness to width ratios, it seems that the guidelines 

applied might give uneconomic solutions in order to moderate distortional 

effects. Thus, the specification of the maximum spacing of intermediate 

diaphragms should be encountered as a multi-parameter problem considering 

cross sectional geometry together with the plan view dimensions. 

x. Poisson effects are in general not negligible even if distortion is not of 

importance. In addition to this, it seems that when material constants are larger, 

Poisson ratio affects the magnitude of stresses more. 

xi. In general, open shaped cross sections suffer more from warping while close ones 

from distortion. The consideration of up to secondary higher order phenomena is 

generally accurate. However, in some cases of very thin-walled cross sections 

either open or closed shaped, tertiary phenomena might need to be considered. As 

a rule of thumb in choosing the least number of modes in order to achieve the 

maximum accuracy when the proposed method is employed, some limitations   

have been provided. 
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xii. Increase in curvature causes increase in the distortion due to torsion for thin-

walled box-shaped cross sections. Cross sections with cantilever plates at one 

side undergo less severe distortional effects due to the fact that bending resisting 

mechanisms are of importance, too.  

xiii. The ratios of distortional and warping Moments to the bending ones can be 

indicative of the behavior of the curved beam and offer an additional insight into 

the resisting mechanisms that dominate.  

xiv. Monossymetric cross sections are more susceptible to higher order phenomena 

due to this inherent property of their shape.  

xv. Composite cross sections of optimal material placement can significantly reduce 

stresses and, thus, reduce the number of intermediate diaphragms needed to 

moderate distortional effects.  

1.2 Suggestions for future research 

This doctoral thesis is a contribution to the advanced structural analysis of spatial 

curved beam elements of arbitrary cross section with the aid of Isogeometric tools. In 

what follows suggestions that will expand and further improve the presented work are 

proposed. More specifically 

 Generalized warping and distortional effects can be incorporated in the 

geometrically nonlinear analysis of curved beams,  

 Dynamic distortional analysis of curved beams can be conducted with the aid of 

Isogeometric tools, 

 Curvature in two planes can be introduced in order to develop the proposed 

curved beam element further and broaden its applications, 

 Placement of diaphragms can be investigated in order to conduct optimization 

analysis regarding their spacing and positions and  

  Different constitutive relations for the materials which may compose the cross 

section of the beam (e.g. orthotropic composites, shape memory alloys) can be 

explored. 
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A.1 The Analog Equation Method for ordinary differential equations 

A.1.1  Basic concepts of the Analog Equation Method 

The main concept of the Analog Equation Method can be mathematically 

represented as follows: Consider the boundary value problem 

  

( ) ( )N u g x ,  x                                                                                             (A.1.1a) 

 

( ) ( )B u g x ,  x                                                                                  (A.1.1b) 

 

where  N ,  B   are linear or nonlinear differential operators with constant or 

variable coefficients, ( )g x  is a source density or an external loading function of known 

distribution and ( )u x is the sought solution of the problem. Consider  N


being a 

linear or nonlinear differential operator of the same order with N . By applying this 

operator to the solution of the problem ( )u x , we are able to formulate the following 

equation 

 

( ) ( )N u q x
  ,  x                                                                                               (A.1.2) 

 

where ( )q x  is an unknown source density function. Equation (A.1.2) is called analog 

equation of the initial problem and in combination with the boundary conditions 

(A.1.1b) yields the solution of the original problem, provided that a proper source 

density function ( )q x  is first determined. The establishment of this function, which 

hereinafter will be referred to as fictitious source, density function or fictitious load, is 

one of the essential features of AEM. The implementation of the method leads to the 

numerical establishment of fictitious load ( )q x  in  , through the solution of a system 

of linear or nonlinear algebraic equations. The boundary value problem defined by 

analog equation (A.1.2) and boundary condition (A.1.1b) is called equivalent or 

substitute problem. It is noted that the analog equation is defined by a differential 

operator of the same order with that of the initial problem (A.1.1a) in order for the 

substitute problem to be subjected to the same number of boundary conditions as well 

as to ensure the continuity of the solution and its derivatives up to the order of the 

initial operator  N  (Babouskos, 2011). Finally, it is noted that AEM can be easily 

employed for the solution of boundary value problems with more than one unknown 

functions ( )u x  by formulating equation (A.1.2) for each one of the unknowns. 

A.1.2  AEM for ordinary differential equations of the 4
th

 order 

Consider the one-dimensional boundary value problem 
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2 3 4

2 3 4

( ) ( ) ( ) ( )
( ), , , , ( )

du x d u x d u x d u x
N u x g x

dx dx dx dx

 
  

 
,  (0, )x L                     (A.1.3a) 

 

2 3

1 2 1 32 3

( ) ( ) ( )
( ) ( ), , ,

du x d u x d u x
u x B u x

dx dx dx
  

 
   

 
,  0,x L                     (A.1.3b) 

 

2

1 2 2 32

( ) ( ) ( )
( ), ,

du x du x d u x
B u x

dx dx dx
  

 
   

 
,  0,x L                                 (A.1.3c) 

 

where  N  are linear or nonlinear 4
th

 order differential operators,  1B ,  2B  are 

linear or nonlinear 3
rd

 and 2
nd

 order one-dimensional operators, respectively, 

, ( 1,2,3)i i i   are functions specified at 0,x L , ( )g x  is a known source denstity 

function defined at (0, )L and ( )u x is the sought solution of the problem, having 

continuous derivatives up to the 4
th

 order in (0, )L  and up to the 3
rd

 order at 0,x L . 

According to the analog equation principle, the substitute problem is also of fourth 

order, thus the following equation can be formulated, as the simplest analog equation 

with known fundamental solution 

 

4

4

( )
( )

d u x
q x

dx
      (0, )x L                                                                                      (A.1.4) 

 

From a physical point of view, equation (A.1.4) describes the flexural response of 

a beam according to classical (Euler-Bernoulli) beam theory with stiffness 1EI  , 

under the action of a distributed loading ( )q x . According to section A.1.1, equation 

(A.1.4) indicates that the solution of the original problem (A.1.3a) could be obtained as 

the solution of this equation subjected to the same boundary conditions (A.1.3b,c), 

provided that the fictitious loading ( )q x  will be first determined. This can be 

accomplished as following: The weak form of the analog equation is written as  

 

4 4
0 0 0

4 4

( ) ( )
( ) ( , ) 0 ( , ) ( ) ( , ) 0

L L L

d u x d u x
q x u x dx u x dx q x u x dx

dx dx
     

      
 

    (A.1.5) 

 

where ( , )u x 
 is a trial function in the sense of Galerkin weighted residuals approach. 

In order to apply a BEM procedure, the fundamental solution of the one-dimensional 

Laplace operator is adopted as a trial ( , )u x 
 function, which is a partial solution of 

the differential equation 
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4

4

d u ( x, )
( x )

dx

  


                                                                                              (A.1.6) 

 

where ( x )   is the Dirac’s function in one dimension (Katsikadelis, 2002a). The 

fundamental solution ( , )u x 
is obtained as (Sapountzakis and Katsikadelis 2000) 

 

 3 231
u ( x, ) l 2 3

12
                                                                                 (A.1.7) 

 

with /r l  , r x    being the distance between   and x , where x  is a constant 

source point while   runs through the interval  0, L . By applying sequential 

integrations by parts in the first integral equation (A.1.5), substituting equations (A.1.4) 

and (A.1.7) and exploiting the property of the Dirac’s function, yields 

 

40

3 2

4 3 2 13 2

0

( ) ( , ) ( )

( ) ( ) ( )
( , ) ( , ) ( , ) ( , ) ( )

L

L

u x q x dx

d u x d u x du x
x x x x u x

dxdx dx

 

   

  

 
    
  


                 (A.1.8) 

 

where ( ) ( 1...4)i r i   are the kernels (derivatives of ( , )u x 
), defined as 

 

3

1 3

( , ) 1
( , ) sgn

2

d u x
x

dx

 


                                                                               (A.1.9a) 

 

2

2 2

( , ) 1
( , ) (1 )

2

d u x
x l

dx

 


                                                                         (A.1.9b) 

 

2
3

( , ) 1
( , ) ( 2)

4

d u x
x l

dx

  


                                                                    (A.1.9c) 

 

 3 23
4

1
( , ) ( , ) 2 3

12
x u x l                                                                 (A.1.9d) 

 

with  sgn being the signum function, defined as  

 

 
1, 0

sgn
1, 0

r
r

r

 
  

                                                                                            (A.1.10) 

 

for 0r  , signum function is not defined. 
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Relation (A.1.8) constitutes the integral representation of the solution as a 

function of the fictitious load and boundary quantities. Particularly, if ( )q x  and all 

boundary values 
2 3

2 3

( ) ( ) ( )
( ), , ,

du x d u x d u x
u x

dx dx dx

 
  
 

 at the bar ends 0, L  are known, ( )u 

can be calculated at any internal point of the bar. Differentiating (A.1.8), the 

expressions for the derivatives of ( )u   can be derived 

 

30

3 2

3 2 13 2

0

( )
( , ) ( )

( ) ( ) ( )
( , ) ( , ) ( , )

L

L

du
x q x dx

d

d u x d u x du x
x x x

dxdx dx

 


  

   

 
   
  


                                   (A.1.11a) 

 

2 3 2

2 2 12 3 20
0

( ) ( ) ( )
( , ) ( ) ( , ) ( , )

L
Ld u d u x d u x

x q x dx x x
d dx dx
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

 
     

  
                 (A.1.11b) 

 

3 3

1 13 30
0

( ) ( )
( , ) ( ) ( , )

L
Ld u d u x

x q x dx x
d dx
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

 
     

  
                                          (A.1.11c) 

 

where 

 

1( , )
0

d x

d





                                                                                                       (A.1.12a) 

 

2
1

( , )
( , )

d x
x

d

 



                                                                                          (A.1.12b) 

 

3
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( , )
( , )

d x
x

d







                                                                                         (A.1.12c) 

 

4
3

( , )
( , )

d x
x

d

 



                                                                                         (A.1.12d) 

 

Eqns. (A.1.8) and (A.1.11) written for the boundary points 0,x L  constitute a 

system of four simultaneous integral equations, which are given in matrix form below 

 

21 1 22 2 2[ ]{ } [ ]{ } { }E u E u T                                                                                   (A.1.13) 

 

where 
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 (A.1.14) 
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    
  

                                        (A.1.15) 
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    
  

                                      (A.1.16) 
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                      (A.1.17) 
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4 3 2 1
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                    (A.1.18) 

 

where N  is the number of discretization elements. The interval (0, )L  is divided into

N  elements employing the constant element assumption for the fictitious load ( )q x  

which is considered constant in each element and equal to its value at mid-point. 

Then, the boundary conditions (A.1.3b,c) are formulated in matrix form as 

follows 

 

11 1 12 2 1[ ]{ } [ ]{ } { }E u E u D                                                                                   (A.1.19) 

 

where 11[ ]E , 12[ ]E  are 4X4 known coefficient matrices and 1{ }D  is 4X1 known 

coefficient vector. 

Combining eqns. (A.1.13) and (A.1.19), the following is derived 
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   
          11 12 1 1

21 22 2 2

{ } {0}{ }

{ } { }{0}

E E u D
E u D T

E E u T

      
          
     

                        (A.1.20) 

 

where [ ]E  is a square 8X8 matrix,  {0} 0 0 0 0   and { }u ,{ }D ,{ }T are 8X1 

vectors. 

Combining eqn. (A.1.14) and (A.1.20) and the vector { }T  can be written as 

follows 

 

 
      

2

0
{ } { }T q T F q

F

 
    

                                                                       (A.1.21) 

 

where  0 is the 4XN zero matrix and  F is the 8XN matrix. Substituting eqn. (A.1.21) 

into eqn. (A.1.20), the following relation is derived 

 

                  1 1
E u D F q u E D E F q

                                        (A.1.22) 

 

Subsequently, applying the integral representations (A.1.8) and (A.1.11) at the N 

collocation points, the following relations are derived 

 

   { } [ ] [ ]U A q C u                                                                                           (A.1.23a) 

 

   { '} [ '] [ ']U A q C u                                                                                       (A.1.23b) 

 

   { ''} [ ''] [ '']U A q C u                                                                                      (A.1.23c) 

 

   { '''} [ '''] [ ''']U A q C u                                                                                    (A.1.23d) 

 

where , ', '', '''U U U U  are the vectors containing the values of the solution and its 

derivatives ( ( ), '( ), ''( ), ''( )u x u x u x u x ) at collocation points. The coefficients of the NXN 

square matrices  [ ],[ '],[ ''],[ ''']A A A A  are given by the analytical or the numerical 

solution of the following integrals 

 

4( , ) ( )
j

iA x q x dx


                                                                                        (A.1.24a) 

 

3' ( , ) ( )
j

iA x q x dx


                                                                                     (A.1.24b) 
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2'' ( , ) ( )
j

iA x q x dx


                                                                                      (A.1.24c) 

 

1''' ( , ) ( )
j

iA x q x dx


                                                                                    (A.1.24d) 

 

 The NX8 [ ],[ '],[ ''],[ ''']C C C C  matrices are given below 
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                        (A.1.25a) 
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                                       (A.1.25b) 
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            (A.1.25c) 
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L
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   
   
   

                                        (A.1.25d) 

 

and their coefficients are calculated with the aid of eqns. (A.1.9). 

Substituting eqn. (A.1.22) into eqns. (A.1.23), the following are derived 

 

   { } [ ]U B q R                                                                                                (A.1.26a) 

 

   { '} [ '] 'U B q R                                                                                            (A.1.26b) 

 

   { ''} [ ''] ''U B q R                                                                                           (A.1.26c) 
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   { '''} [ '''] '''U B q R                                                                                         (A.1.26d) 

 

where the square matrices NXN can be determined from the following relations 

 

        1
B A C E F

  
 

                                                                                 (A.1.27a) 

 

        1
' ' 'B A C E F

  
 

                                                                             (A.1.27b) 

 

        1
'' '' ''B A C E F

  
 

                                                                            (A.1.27c) 

 

        1
''' ''' '''B A C E F

  
 

                                                                         (A.1.27d) 

 

and the NX1 vectors        , ' , '' , '''R R R R   are given as follows 

 

    1
{ }R C E D

                                                                                           (A.1.28a) 

 

    1
{ '} 'R C E D

                                                                                          (A.1.28b) 

 

    1
{ ''} ''R C E D

                                                                                          (A.1.28c) 

 

    1
{ '''} '''R C E D

                                                                                        (A.1.28d) 

 

It should be noted here that in case of homogenous boundary conditions ( 3 3 0   ) 

at the ends of the interval, the        , ' , '' , '''R R R R  vectors become equal to zero.  

The final step of the AEM is the application of the governing equation of the 

initial problem (A.1.3a) at the N internal nodal points and subsequently the substitution 

of the values of the field function ( )u x  and its derivative at the N internal nodal points 

according to equations (A.1.23). From the definition of the analog equation (A.1.4) it is 

apparent that the values of forth derivative of ( )u x  at the nodal points equals to the 

corresponding values of the fictitious load vector ( )q x . 

A.1.3  AEM special case for ordinary differential equations of the 2
nd

 order 

AEM for 2
nd

 order ordinary differential equations is a special case of the previous 

formulation. Consider the one-dimensional boundary value problem 
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2

2

( ) ( )
( ), , ( )

du x d u x
N u x g x

dx dx

 
  

 
,  (0, )x L                                                       (A.1.29a) 

 

1 2 1 3

( )
( ) ( ),

du x
u x u x

dx
      

 
,  0,x L                                                       (A.1.29b) 

 

where  N  are linear or nonlinear 2
nd

 order differential operators,  1  are linear or 

nonlinear 1
st
 order one-dimensional operators, respectively, ( 1,2,3)i i  are functions 

specified at 0,x L , ( )g x  is a known source denstity function defined at (0, )L  and 

( )u x is the sought solution of the problem, having continuous derivatives up to the 2
nd

 

order in (0, )L  and up to the 1
st
 order at 0,x L . According to the analog equation 

principle, the substitute problem is also of second order, thus the following equation 

can be formulated, as the simplest analog equation with known fundamental solution 

 

2

2

( )
( )

d u x
q x

dx
      (0, )x L                                                                                    (A.1.30) 

 

According to section A.1.1, equation (A.1.30) indicates that the solution of the 

original problem (A.1.29a) could be obtained as the solution of this equation subjected 

to the same boundary conditions (A.1.29b), provided that the fictitious loading ( )q x  

will be first determined. This can be accomplished as following: The weak form of the 

analog equation is written as  

 

2 2
0 0 0

2 2

( ) ( )
( ) ( , ) 0 ( , ) ( ) ( , ) 0

L L L

d u x d u x
q x u x dx u x dx q x u x dx

dx dx
     

      
 

                                                                                                                                

                                                                                                                               (A.1.31) 

 

where ( , )u x 
 is a trial function in the sense of Galerkin weighted residuals approach. 

In order to apply a BEM procedure, the fundamental solution of the one-dimensional 

Laplace operator is adopted as a trial ( , )u x 
 function, which is a partial solution of 

the differential equation 

 

2

2

d u ( x, )
( x )

dx

  


                                                                                            (A.1.32) 

 

where ( x )   is the Dirac’s function in one dimension (Katsikadelis, 2002a). The 

fundamental solution ( , )u x 
is obtained as (Sapountzakis and Katsikadelis 2000) 
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1
u ( x, ) r

2
                                                                                                        (A.1.33) 

 

With r x    being the distance between   and x , where x  is a constant source 

point while   runs through the interval  0, L . By applying sequential integrations by 

parts in the first integral equation (A.1.31), substituting equations (A.1.30) and (A.1.33) 

and exploiting the property of the Dirac’s function, yields 

 

2 2 10
0

( )
( ) ( , ) ( ) ( , ) ( , ) ( )

L
L du x

u x q x dx x x u x
dx

                                         (A.1.34) 

 

where ( ) ( 1,2)i r i   are the kernels (derivatives of ( , )u x 
), defined as 

 

1

( , ) 1
( , ) sgn

2

du x
x r

dx




                                                                                (A.1.35a) 

 

2

1
( , ) ( , )

2
x u x r                                                                                       (A.1.35b) 

 

with  sgn being the signum function, defined as in (A.1.10).  

Relation (A.1.34) constitutes the integral representation of the solution as a 

function of the fictitious load and boundary quantities. Particularly, if ( )q x  and all 

boundary values 
( )

( ),
du x

u x
dx

 
 
 

 at the bar ends 0, L  are known, ( )u  can be calculated 

at any internal point of the bar. Differentiating (A.1.34), the expressions for the 

derivative of ( )u   can be derived 

 

1 10
0

( ) ( )
( , ) ( ) ( , )

L
Ldu du x

x q x dx x
dxd
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

                                                       (A.1.36) 

 

where 

 

1( , )
0

d x

d





                                                                                                       (A.1.37a) 

 

2
1

( , )
( , )

d x
x

d

 



                                                                                          (A.1.37b) 
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Eqns. (A.1.34) and (A.1.36) written for the boundary points 0,x L  constitute a 

system of two simultaneous integral equations, which are given in matrix form below 

 

21 1 22 2 2[ ]{ } [ ]{ } { }E u E u T                                                                                   (A.1.38) 

 

where 

1
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
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                        
             



 
(A.1.39) 

 

1
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du x
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 
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                                                                                   (A.1.40) 
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du x
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dx 

 
  
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                                                                                 (A.1.41) 
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    
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                                                                    (A.1.42) 

 

  2 0 1 0
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( , ) ( ( , ) 1)
L L
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E
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 
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  
     

                                                                   

(A.1.43) 

 

where N  is the number of discretization elements. The interval (0, )L  is divided into

N  elements employing the constant element assumption for the fictitious load ( )q x  

which is considered constant in each element and equal to its value at mid-point (Fig. 

A.1.1). When ( )q x  is approximated with quadratic elements (Fig. A.1.2), three 

collocation points are used for each discretization element. 

Then, the boundary conditions (A.1.29b) are formulated in matrix form as 

follows 

 

11 1 12 2 1[ ]{ } [ ]{ } { }E u E u D                                                                                   (A.1.44) 

 

where 11[ ]E , 12[ ]E  are 2X2 known coefficient matrices and 1{ }D  is 2X1 known 

coefficient vector. 

Combining eqns. (A.1.39) and (A.1.44), the following is derived 

 



 The Analog Equation Method for ordinary differential equations 285 

 

   
          11 12 1 1

21 22 2 2

{ } {0}{ }

{ } { }{0}

E E u D
E u D T

E E u T

      
          
     

                        (A.1.45) 

 

where [ ]E  is a square 4X4 matrix,  {0} 0 0   and { }u ,{ }D ,{ }T are 4X1 vectors. 

Combining eqn. (A.1.30) and (A.1.45) and the vector { }T  can be written as 

follows 

 

 
      

2

0
{ } { }T q T F q

F

 
    

                                                                       (A.1.46) 

 

where  0 is the 2XN zero matrix and  F is the 2XN matrix. Substituting eqn. (A.1.46) 

into eqn. (A.1.45), the relation (A.1.22) can be similarly be derived. 

Subsequently, applying the integral representations (A.1.34) and (A.1.37) at the N 

collocation points or 3XN in case of quadratic elements, the following relations are 

derived 

 

   { } [ ] [ ]U A q C u                                                                                           (A.1.47a) 

 

   { '} [ '] [ ']U A q C u                                                                                       (A.1.47b) 

 

where , 'U U  are the vectors containing the values of the solution and its derivatives     (

( ), '( )u x u x ) at collocation points. The coefficients of the NXN or (3XN)X(3XN), in 

case of quadratic elements, square matrices  [ ],[ ']A A  are given by the analytical or the 

numerical solution of the following integrals 

 

2( , ) ( )
j

iA x q x dx
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                                                                                        (A.1.48a) 

 

1' ( , ) ( )
j

iA x q x dx


                                                                                      (A.1.48b) 

 

 The NX4 [ ],[ '],[ ''],[ ''']C C C C  matrices are given below 

 

 
2 1 1 1 2 1 1 1

2 1 2 1

(0, ) (0, ) ( , ) ( , )

(0, ) (0, ) ( , ) ( , )L L L L

L L

C

L L

   

   

    
   
     

                                     (A.1.49a)                          
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1 1 1 1
'

1 1

(0, ) 0 ( , ) 0

0 0

(0, ) 0 ( , ) 0L L

L

C

L

 

 

   
      
   

                                                               (A.1.49b)                                      

 

and their coefficients are calculated with the aid of eqns. (A.1.35). 

Substituting eqn. (A.1.45) into eqns. (A.1.47), the following are derived 

 

   { } [ ]U B q R                                                                                                (A.1.50a) 

 

   { '} [ '] 'U B q R                                                                                            (A.1.50b) 

 

where the square matrices NXN or (3XN)X(3XN), in case of quadratic elements, can be 

determined from the following relations 

 

        1
B A C E F

  
 

                                                                                 (A.1.51a) 

 

        1
' ' 'B A C E F

  
 

                                                                             (A.1.51b) 

 

and the NX1 vectors    , 'R R   are given as follows 

 

    1
{ }R C E D

                                                                                             (A.1.52a) 

 

    1
{ '} 'R C E D

                                                                                           (A.1.52b) 

 

It should be noted here that in case of homogenous boundary conditions ( 3 3 0   ) 

at the ends of the interval, the    , 'R R  vectors become equal to zero.  

The final step of the AEM is the application of the governing equation of the 

initial problem (A.1.29a) at the N or 3XN, in case of quadratic elements, internal nodal 

points and subsequently the substitution of the values of the field function ( )u x  and its 

derivative at the N internal nodal points according to equations (A.1.47). From the 

definition of the analog equation (A.1.30) it is apparent that the values of forth 

derivative of ( )u x  at the nodal points equals to the corresponding values of the 

fictitious load vector ( )q x . 
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Fig. A.1.1: Representation of fictitious load q(x) for constant discretization elements 

and collocation points for a kinematical component. 

 

 

Fig. A.1.2: Representation of fictitious load q(x) for quadratic discretization 

elements and collocation points for a kinematical component. 
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A.2 Isogeometric Analysis’s tools (B-splines and NURBS) 

A.2.1 Basic concept of the Isogeometric analysis 

The term “Isogeometric” refers to the coincidence of the geometric model, which 

is built in a CAD environment, and the design model (i.e. the FEM or AEM model) 

used in order to perform the strain-stress analysis. In traditional FEM or AEM analysis, 

the design and geometric models never coincide due to the fact that even though they 

are both representations of a true object, they rely on different basis functions. This, in 

turn, produces concerns related to accuracy in the computations, particularly for curved 

structures. Additionally, if NURBS are used as basis functions, their smoothness is also 

inherited by the FEM (Chiozzi, Malagù, Tralli and Cazzani, 2015) or the AEM model. 

This is particularly important because it allows the circumvention of certain serious 

difficulties in developing the numerical model (e.g. advanced beams in which, except 

for bending, shear and torsion, higher order phenomena must be considered making the 

mesh processing more complicated). Moreover, as the shape functions are 

approximated better, the error affecting its derivatives becomes smaller. This is 

important especially in FEM models because stress fields are not the primary solution 

variables, but need to be computed by differentiating displacements through post-

processing techniques. Thus, smoother displacement fields ensure a more accurate 

approximation of the stresses. This is not an aspect to be considered in the AEM 

models due to the fact that fictitious loads, which are the highest derivatives of the 

unknowns, are at first calculated.  

A.2.2  B-splines’ basis functions and curves 

Description of the model’s geometry in commercial CAD packages is based on 

B-splines and NURBS. Particularly, NURBS basis functions are built on B-splines 

basis functions, which are piecewise polynomial functions defined by a sequence of 

coordinates  1 2 1, ,... n p      , also known as the knot vector, where the knots 

 0,1i   are points in a parametric domain, in which p and n denote the polynomial 

order and the total number of basis functions, respectively. The distance between two 

consecutive knots is named knot span and represents the equivalent of the element 

domain in traditional finite element. In addition to this, knots represent the collocation 

points in the AEM. Once the order of the basis functions and the knot vector are 

known, the i
th

 B-spline basis function of p-degree, , ( )i pN  , can be computed by means 

of the Cox-de Boor recursion formula (Piegel and Tiller, 1997) as 

  

, 0

1
( )

1
, 0

0
i

i iif
N p

otherwise




      
   

  
                                                       (A.2.1a) 

 

, , 1 1, 1

1
( ) ( ) ( )

1 1
, 1i p i p i p

i i p

i p i i p i
N N N p  

 
   

   

    
 
     

                    (A.2.1b) 
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These basis functions are piecewise polynomials, which form a basis for the 

vector space and multiplied by the control points give the representation of the B-spline 

curve.  

Considering the interval  0,1 , which contains the bar element with length equal 

to unity, with  0,1i   and applying eqn. (A.2.1b), the following basis functions are 

derived for the quadratic B-spline 

 

2

( )0,2 0,1 1,1

0 1 (1 ) 0 1

0 0 1 0 0

if
N N N

otherwise

  


                   
                       (A.2.2a) 

 

( )1,2 1,1 2,1

0 1 2 (1 ) 0 1

1 0 1 0 0

if
N N N

otherwise

   


                   
                       (A.2.2b) 

 

2

( )2,2 2,1 3,1

0 1 0 1

1 0 1 1 0

if
N N N

otherwise

  


                  
                                   (A.2.2c) 

 

where 0,1N , 1,1N , 2,1N  and 3,1N  are calculated from eqns. (A.2.1). Thus, the quadratic 

B-spline curve is defined by 

 
2

,2

0

( ) ( )i i

i

C N P 


                                                                                                (A.2.3) 

 

where iP  are the control points 0P , 1P  and 2P . Substituting eqns. (A.2.2) to eqn. (A.2.3), 

the expression for the fictitious load ( )q x  in the AEM is derived as 

 
2 2 2

0 0 0 1 1 2( ) 2 2 2q x P xP x P xP x P x P                                                             (A.2.4) 

 

Three equidistant collocation points have been used, which are presented in the 

same figure with the control points (Fig. A.2.1). 

The same process, as described above, has been followed when substituting   with 

the polynomial representation of cubic or quartic B-splines with uniform knot vectors. 

Considering the cubic B-spline, the expression of the fictitious load ( )q x   is derived as 

 
3 2 2 3

0 1 2 33 3 3 3

( ) 3 ( ) 3 ( )
( )

L x x L x x L x x
q x P P P P

L L L L

  
                                          (A.2.5) 

 

where iP  are the control points 0P , 1P , 2P  and 3P . If four equidistant collocation points 

for discretization are employed, the control polygon of the fictitious load curve and the 

collocation points are presented in Fig. A.2.2 for a kinematical component of the beam 

theories presented in this PhD thesis. 
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Fig. A.2.1: Bar element, representation of fictitious load q(x) for quadratic B-spline, 

control and collocation points. 

 

 

Fig. A.2.2: Representation of fictitious load q(x) for the cubic B-spline, control and   

collocation points for the kinematical component i (the control polygon 

is presented in dashed line). 

 

Similarly, the expression for the fictitious load ( )q x  for the quartic B-spline is derived 

as 

 
4 3 2 2 3 4

0 1 2 3 44 4 4 4 4

( ) 4 ( ) 6 ( ) 4 ( )
( )

L x x L x x L x x L x x
q x P P P P P

L L L L L

   
               (A.2.6) 

 

where iP  are the control points 0P , 1P , 2P , 3P  and 4P . 

A.2.3 Refinement procedures  

The control polygon, which is a set of control points, represents a piecewise 

linear approximation to the B-spline curve mentioned above. This approximation can 
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be improved by: (i) generating a refinement of this set of points with the addition of 

new points, (ii) knot insertion or (iii) degree elevation. The last technique of elevating 

the degree results in the cubic and quartic B-spline curves mentioned earlier. 

 To begin with, the refinement of the quadratic B-spline curve is examined 

according to the works of Kenneth (2000), Chaikin (1974) and Reisenfeld (1975). The 

initial curve is defined by the control polygon given in Fig. A.2.3a (same as in Fig. 

A.2.1). Then, employing Chaikin’s method, the control points of the refined curve are 

given in Fig. A.2.3b and can be positioned i.e. at the ¼ and ¾ of the initial lines of the 

control polygon. So, given a control polygon, a refinement of this set of points can be 

generated by constructing new points along each edge of the original polygon at a 

distance of ¼ and ¾ between the endpoints of the edge. This can be represented in 

matrix form as  

 

0 1
1
0

01 1 0
1

11
2

1 21
1
3

1 1

3 1

4 4
3 1 0 3 1

1 3 01 4 4

0 3 1 3 14

4 40 1 3

3 1

4 4

P P

P
P P P

P
P

P P PP

P

P P

  
                                   

  

                                                                (A.2.7) 

 

  
(a) (b) 

Fig. A.2.3: Quadratic uniform B-spline curve defined by the control polygon {P0, 

P1, P2} (a) and refined curve of quadratic B-spline (b). 

 

This process is then continued until a refinement is reached that accurately 

represents the curve to a desired resolution. In other words, in the limit, the sequence of 

control points generated by the refinement procedure converges to a quadratic uniform 

B-spline curve. In order to express the fictitious load with respect to the new control 

points, eqn. (A.2.7) is simplified and the control points of the initial polygon are 

expressed with respect to the new ones (
0

1 1 1
1 2, ,P P P  and 

1
3P ). The same procedure is 

repeated for the new set of control points derived, exploiting again eqn. (A.2.7).   

In addition to the above mentioned, the improvement of the accuracy of the 

results can be improved by employing knot insertion. The knot vector earlier described 
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is now enriched with the addition of new knots. The ,2iN  ( 2 2(1 ) ,2 (1 ),     ) 

restricted to the interval  0,1i   are the quadratic Bernstein polynomials. For this 

reason, the B-spline representation, described previously, with a knot vector of the 

form {0,0,0,1,1,1}   (p+1 multiplicity of knots) is a generalization of the Bézier 

representation. A new knot vector is now specified and a new set of B-spline basis 

functions is computed. The knot vector determines completely the functions , ( )i pN  . 

Thus, considering the knot vector (addition of 3 new knots)   

 

1 1 3
{0,0,0, , , ,1,1,1}

4 2 4
U     or                 

0 1 2 3 4 5 6 7 8

1 1 3
{ 0, 0, 0, , , , 1, 1, 1}

4 2 4
U                                     (A.2.8) 

 

the zero-, first- and second- degree basis functions are computed below. Thus, 

according to eqns. (A.2.1), the following basis functions are derived 

 

0,0 1,0( ) ( ) 0N N                                                                                      (A.2.9a) 

 

2,0

1
1

( ) 4

0

if
N

otherwise


             

                                                                       (A.2.9b) 

 

3,0

1 1
1

( ) 4 2

0

if
N

otherwise


             

                                                                       (A.2.9c) 

 

4,0

1 3
1

( ) 2 4

0

if
N

otherwise


             

                                                                       (A.2.9d) 

 

5,0

3
1

( ) 4

0

if
N

otherwise


             

                                                                       (A.2.9e) 

 

6,0 7,0( ) ( ) 0N N                                                                                      (A.2.9f) 

 

0,1 0,0 1,0

0 0
( ) 0

0 0 0 0
N N N

   
  

 
                                                           (A.2.9g) 
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1,1 1,0 2,0

1 1
1 40 4( ) 4

10 0
0 0

4

if
N N N

otherwise

 
                    

                       (A.2.9h) 

 

2,1 2,0 3,0

1
4

41
0 1 12( ) 2 4

1 1 1 4 2
0

4 2 4 0

if

N N N if

otherwise


 

       
                       

                        (A.2.9i) 

 

3,1 3,0 4,0

1 1
4 1

4 21 3
1 34 4( ) 3 4

1 1 3 1 2 4

2 4 4 2 0

if

N N N if

otherwise


 

 

        
                        

                        (A.2.9j) 

 

4,1 4,0 5,0

1 3
4 2

2 41
1 32( ) 4 4

3 1 3 4
1

4 2 4 0

if

N N N if

otherwise


  

        
                        

                       (A.2.9k) 

 

5,1 5,0 6,0

3 3
4 314( ) 4

3 1 1
1 0

4

if
N N N

otherwise

 
                    

                        (A.2.9l) 

 

6,1 6,0 7,0

1 1
( ) 0

1 1 1 1
N N N

   
  

 
                                                          (A.2.9m) 

 

2

0,2 0,1 1,0

1 1
(1 4 )0 4( ) 4

10 0
0 0

4

if
N N N

otherwise

 
                    

                       (A.2.9n) 
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2

1,2 1,1 2,1

1 1
4 16 ( 2 )4

2 41
0 1 1 14( ) ( 2 )(2 4 )

1 1 2 4 2
0 0

4 2 0

if

N N N if

otherwise

   
  

          
                        

 (A.2.9o) 

 

2

2,2 2,1 3,1

1
8 0

43
0 3 1 14( ) 2 (2 4 ) ( 2 )(4 1)

1 3 1 2 4 2
0

2 4 4 3 1 3
( 2 )(3 4 )
2 2 4

if

N N N if

if


    

 

       
                               

                            (A.2.9p) 

 

3,2 3,1 4,1

1
14( )

3 1 1
1

4 4 2

1 1 1
(2 )(4 1)

2 4 2

1 1 3
(2 )(3 4 ) (2 2 )(4 2)

2 2 4

3
(2 2 )(4 4 )

4

N N N

if

if

if

 

 

   

 

 
  

 

         
  
                         

                                    (A.2.9q) 

 

4,2 4,1 5,1

1
12( )

1 3
1 1

2 4

1 3
(2 1)(4 2)

2 4

3
(2 1)(4 4) (4 4 )(4 3)

4

0

N N N

if

if

otherwise

 

 

   

 
  

 

         
  
                    

                                      (A.2.9r) 

 

2

5,2 5,1 6,1

3 3
(4 3) 114( ) 4

3 1 11 0
4

if
N N N

otherwise

 
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and the corresponding quadratic b-spline curve, which is defined by eqn. (A.2.3), is 

expressed as   

 

,2 0,2 0 1,2 1 2,2 2 3,2 3 4,2 4 5,2 5

0

( ) ( )
n

i i

i

C N P N P N P N P N P N P N P 


                (A.2.10) 

 

Similar procedure can be followed for the knot insertion in cubic and quartic B-splines 

earlier described.  

A.2.4 FEM and NURBS  

In order to discretize ordinary differential equations with FEM, the sought 

solution of the problem
 

is approximated by means of polynomial interpolating 

functions of p-degree as extensively is described by Onate (2009) and Papadrakakis 

(2001). Considering beam elements, substituting the displacement approximation for 

each discretization element (N in total), the equilibrium equations in terms of the nodal 

displacements of the finite element mesh can be expressed. Paricularly, the main steps 

of the FEM algorithm are as follows: 

 

1. Selection of the polynomial degree of the basis functions for each displacement 

and for each discretization element. 

2. Determination of the geometric constants and loads of the beam. 

3. Definition of the geometry meshes and index matrices for each displacement 

considered in the beam model. 

4. Evaluation of the Gauss Points in the physical space and their Jacobians. This can 

be performed by using the Gauss quadrature rule. In order to compute Gauss base 

points and weight factors an algorithm has been employed according to Davis 

and Rabinowitz (1975).  

5. Element and global stiffness and mass matrices’ initialization. 

6. Evaluation of stiffness and mass matrices in a double loop with respect to the 

number of elements and the number of gauss points. Derivation of global 

stiffness and mass matrices by assembling the contributions from the individual 

elements.  

7. Elimination of constrained degrees of freedom (DOF) in the final assembled 

system employing Lagrange multipliers’ method.  

8. Global equilibrium equations and solution of the problem. 

9. Post-processing in order to evaluate displacements and reaction forces in local 

and global system at the points where the solution is plotted.  

 

As a next step in discretizing the differential equations of the problem, p-degree 

NURBS interpolating functions can be employed for the representation of the 
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displacement field. In this case, curve C given in eqn. (A.2.3) has a p-degree NURBS 

representation defined by  

 

,

1

( ) ( )
n

i i p ii

i

C R P 


                                                                                             (A.2.11) 

 

where iiP  are the control points employed for each kinematical component and 

, ( )i pR  , which are the NURBS basis functions, can be expressed as 
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                                                                                        (A.2.12) 

 

where , ( )i pN   are given in eqns. (A.2.1) and iw  ( ) are weights related to the ith 

control point and increase the capabilities of the B-splines interpolation (Hughes et al., 

2009). NURBS share many properties with B-spline basis functions (Piegl and Tiller 

1997). Among these, they are all nonnegative, they have a compact support, and build a 

partition of unity. It should be noted that if all weights are equal, then 

, ,( ) ( )i p i pR N   and curve C is a B-spline curve. 

The main idea of the Isogeometric approach is to describe the geometry of the 

problem by NURBS interpolation exactly and to use the same interpolating basis to 

represent the generalized displacements. The main steps of the IGA algorithm, when 

NURBS are integrated in FEM, are similar to those presented for FEM. However, 

regarding the step 3, there is no need for index matrices and the geometry is defined by 

an initial control polygon which results in an initial NURBS structure. Afterwards, 

during pre-processing, one or more meshes are defined for the different kinematical 

components based on the initial NURBS structure while knot insertion, degree 

elevation or k-refinement can be employed in order to refine the initial structure 

directly on these meshes. In addition to these, step 4 is altered here due to the fact that 

Gauss points and the corresponding Jacobians are evaluated in parametrical and 

physical space together with the values of the basis functions, their derivatives and the 

radius of curvature directly on the meshes. Thus, post-processing (step 9) becomes 

easier and no need for additional loops and calculations of basis functions are 

demanded.  

In case of a curved geometry the following relations need to be employed 

  

2 2' ' 'J S X Y                                                                                                (A.2.13) 

 

' '' '' '

J
R

X Y X Y



                                                                                                (A.2.14) 
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where   '  the derivatives with respect to ξ, S the arc length of the beam with one 

plane of curvature, R the radius of curvature of the beam and X, Y the coordinates on 

the plane of curvature.  

In case of NURBS integration in the AEM, the differences in the algorithm 

regarding steps 3, 4 and 9 previously mentioned apply here, too. However, two 

different double loops need to be performed when numerical integration is applied with 

respect to elements and gauss points in order to evaluate [ ],[ '],[ ''],[ ''']A A A A  and  F  

matrices of the AEM. The rest of the procedure followed in the AEM is the same.  
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