NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF CIVIL ENGINEERING
MASTER OF SCIENCE

ANALYSIS AND DESIGN OF EARTHQUAKE RESISTANT STRUCTURES

MASTER THESIS
A plasticity model for the one dimensional

soil response analysis

Anthi Maria

Diploma in Civil Engineering, N.T.U.A.

Supervised by: Associate Professor Nikos Gerolymos

June 2017






EONIKO METXOBIO ITOAYTEXNEIO
2XOAH ITOAITIKON MHXANIKQN
AIATMHMATIKO [TPOT'PAMMA METAIITYXIAKQN XIIOYAQN

AOMOXTATIKOX ZXEAIAZMOX KAI ANAAYXZH TQON KATAXKEYQN

METAIITYXIAKH EPI'AXIA

IIpocopoimpa TAUGTIKNG CUUTEPLPOPAS VIO TNV LOVOILAGTATY)
avaAvoTN E00PIKNG ATOKPLONG

AvOn Mapia

Authopatovyog [oMmtikdg Mnyoavikdg, E.MLIIL.

Emplencwv: Avori. KaOnyntng Nikog ['epolouog

Iovviog 2017






Ilpoieyoueva

Oa nlelda va ekppaow TIC ELALKPLVEIC LOU EUXAPLOTIEC, O OAoUC doou¢ ouveBaAdav, aueoa n
EUUEDO, OTNV MPOOTAVELN LUOU QUTH.

Zekwvwvrac, Ba n¥eda va euyaplotiow tov avanAnpwtn) kadnyntn k. Niko lepoAuuo, yia thv
moAutiun BonUewa kat ti¢ ouuBouldéc tou. H kadodbnynon kat n umootnpién tou ntav
QVEKTIUNTEC, QITO TNV apxn) TwV ormoudwV LoU UEXPL Kot onuepa. To madoc kot 0 evouoLlaoUog
TOU yla TNV SOUAELG KoL TNV ETTLOTAUN UE EVETIVEXV TIOVTH KAl UETETPETIAV TNV EKTTAUULOEUTIKN
Stadikaoia os eva euyaptoto taéidl. Oa NdeAa va ToU EKPPAoW TNV EVYVWUOOUVN LUOU YLO TOV
QTTEPLOPLOTO XPOVO Kol EVEPYELA TTOU LUoU SIETETE yia TNV UETAO00N TWV AOTEIPEUTWY YVWOEWV
ToU oA KoL TG ayamnng tou yla tnv motiun. H ouvepyaoia pall tou e ekave mAouoLOTePN
Oxt Lovo o€ yvwoels, aAda kat oe nGkec apxec kat afiec.

16taitepeg euyapiotiec, opeidw otnv Mavaywwta ToaotomoUAou mou ntav mpoduun va Lou
UETAOWOEL TIC YVWOELS TNG Kt vor e ouuBouldeet. H Souldewd tng umnpée mtryn eumveuonc kait
kivntpo yla uéva.

Oa ndsAa emniong va euxaplotnow toU¢ KatAoU¢ @iloucg kot ouvabdeéApouc KeAAu Kouvidkn,
Kwvotavtivo KaraoakaAn kat Mavaywwtn Toapradn mou unnpéav ouvodountdpol o€ autnv thv
mopeia Twv SU0 ETWV TOU UeTamTuylakoU aAdd kat ti¢ BaAla Zwvtavou, Xapa KaAoyepdkn,
Anéda Kpnurévn kat Naowa Koubdouvda mou ocuvéBaAdav otnv mpayuatomoinon tou oKomou
autoU €ite puéow ¢ ndikng vmootnpiéng, eite uéow tng avrallayric andPewv eni tou
ETTLOTNUOVLKOU.

Tédog, Ja ndeda va euyxaplotriow TNV OLKOYEVELX LOU YL TNV QUEPLOTN urmootrplén Kot
evlappuvon touc o€ kade pou BhRua kat tdlaitepa touc yoveic pou, Zrnupo kat Zwlw, Toug mtLo
onuavtikoug avipwrouc atn {wh pou. Xwpic avtouc tinota dev da rtav duvarto.






NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF CIVIL ENGINEERING

MASTER OF SCIENCE
ANALYSIS AND DESIGN OF EARTHQUAKE RESISTANT STRUCTURES

S
i
o
&
a
>
C

A plasticity model for the one dimensional
soil response analysis

Master Thesis
Anthi Maria

ABSTRACT

A plasticity model is presented for the non-linear ground response analysis of layered sites. The
model is the one-dimensional version of that recently proposed by Tasiopoulou and Gerolymos
(2016) for sand behavior, designated as TA-GER sand model. Critical state compatibility for
monotonic and cyclic loading, anisotropic plastic flow rule and Bouc-Wen motivated hardening
law are among the key-features of the developed 1D model, offering considerable flexibility in
representing complex patterns of cyclic behavior such as stiffness decay and increase in
strength due to build-up of pore-water pressure. Implemented through an explicit finite—
difference algorithm into an in-house computer code which performs integration of the wave
equations to obtain the nonlinear response of layered soil deposits, the model is first calibrated
to match published experimental shear modulus and damping curves and is then validated
against results from two wave-propagation codes available in literature
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MNpooopoiwpa MAACTIKAG cUUTNEPLPOPAS YLa TNV povodilaotatn avaiuon
€dadkng anokpLong

MetamtuyLakn epyacia
AvOn Mapia

MEPIAHWH

AvVOnTUOOETOL £Va TIPOCOUOIWHA TIAAOTIKAC OUMMEPLPOPAC Yo TN N YPOMULKA
avaAuon €6adikng amokplong MOAUCTPWIWY OXNUATIOMWY. TO HOVTEAO QmOTEAEL TN
povodiaotatn €kdoon Tou HoviéAou Ta-Ger ywa appwdn €dadn, mou mpotadnke
npoodata anod toug TaolomoUAou Kot FepoAupo (2016). EEExovta XapaKTNPLOTLKA TOU
HOVTEAOU armotedolv n ouppatotnta pe tnv Bewpla Kplowwng Kataotaonc yla
LOVOTOVLKA KOl OVOKUKALKY pOPTLON, O QVLOOTPOTILKOG TAQOTIKOG VOUOC PONG KoL O
EUMVEUOUEVOC amod tou¢ Bouc — Wen vOHOG KpATUVONG, TIPOOhEPOVTOC AfLOCUELWTN
gvell&ia oTNV avanmapAaoTacn cUVOETWY UNXAVIOUWY AVOKUKALKAG CUUIEPLPOPAS OTIWG
N Helwon tng duokapPilog Kol N anwAeLa TNG avtoxng AOyw aVAMTUENG UTEPTILECEWY
nopwv. To MOVIEAO elodyetal o€ €vav alyoplBuo emiluong aupeong pebodou
TeENepAoUEVWY Sladopwy, TTou MpayUatomnolel oAokAnpwaon tng dtadopikng e€lowong
dladoong KUMOTOG, Yyl TN KN YPAUULK amoKpLon TOAUCTPWIWY €8adpLkwv
OXNUOTIWOUWY KAl oTnv ouvéxela Poabuovopeitat Pdacel Twv  SNUOCLEUUEVWV
TELPAUOTIKWY KAUTTUAWY HELWONG TOU PETPOU SLATUNoNG Kal avénong tng anocBeonc.
TENOG, TO HOVTEAO eTKUpwveTal cUpdPwva pe amoteAéopata SU0 €VOANAKTIKWY

HeBOSwWV MPoPAedng TG andkplong oe Sladoon SLaTunTikou KUPATOG, SlabBéoiuwy otn
BBAloypadia.






EXTENDED ABSTRACT

INTRODUCTION

Several constitutive models and numerical codes have been proposed over the last decades for
1D seismic response analysis of horizontally layered soils subjected to vertically-polarized S
waves. In general, they can be categorized into three major groups: (a) The equivalent linear
viscoelastic models (e.g. [1], [2]), (b) the nonlinear hysteretic (or phenomenological) models
(e.g. [3], [4], [5]), and (c) the plasticity-based models (e.g. [6], [7])

Equivalent linear models are the most popular owing to their computational convenience and
simplicity. Their main limitations include their inability to efficiently predict the behavior of a
nonlinear system under strong ground motions where large cyclic shear strains dominate the
response and the violation of the principle of physical causality [8]. Well identified features of
cyclic soil behavior, such as: densification, cyclic mobility, stiffness decay and loss of strength
due to pore pressure generation, asymmetric response with loading direction are inherently
impossible to be reproduced.

Hysteretic models are plausible alternatives to plasticity-based models, but, while capable of
overcoming most of the aforementioned limitations, the calibration process is often an arduous
task in which the physical meaning of the model parameters is often jeopardized in favour of
case-specific accuracy. The absence of a physical law for relating volumetric with shear strains is
the main source of this drawback.

Present work presents a downscale version of the recently developed plasticity-based model by
Tasiopoulou and Gerolymos for sand behavior [9], [10]. A methodology for the calibration of
the model parameters is developed, so that the constitutive stress—strain loops are consistent
with experimental shear modulus and damping curves available in the literature. The finite
difference wave-propagation code, into which the aforementioned model was implemented, is
validated through comparison with results from the equivalent-linear code STRATA [2] and the
nonlinear hysteretic code NL-DYAS [4], [5].

BRIEF MODEL DESCRIPTION

Tasiopoulou and Gerolymos [9], [10] developed a new plasticity-based model for sand behavior
formulated in the 6-dimenional stress-strain space. In the present work, a 2-dimensional (in p-q
space) version of the model is presented for the 1D seismic response analysis of layered soils.



According to this version, the incremental stress-strain relationship is given in the following
matrix form:
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in which K and G are the elastic (small strain) bulk modulus and shear modulus respectively, d is

the ratio of the plastic volumetric strain increment dep P, over the plastic deviatoric strain
increment deqp and is based on Rowe’s dilatancy theory as it depends on the distance of the

current stress ratio g/p from the phase transformation line M, and M is the failure stress ratio

representing the ultimate strength. Parameter ,is a hysteretic dimensionless quantity that

provides the loading and unloading rule and is a function of the Bouc—Wen parameter ¢, while
the exponent n controls the rate of transition from the elastic state to the perfectly plastic one.
Finally, n is inserted as a multiplier of the hardening elastoplastic matrix expressing the
dissipated hysteretic energy. It is expressed in a ductility based form, as it is a function of u
which is a reference ductility defined in terms of shear strain, as follows:

where s; and s, are model parameters. Indicative model predictions for characteristic values of
the aforementioned parameters, for monotonic and cyclic drained shear tests will emphasize
progressing stiffening and evolution to the critical state as loading cycles accumulate and
densification builds up. Monotonic and cyclic element tests also depict the evolution of the
phase transformation and the ultimate strength parameters M,: and Ms, from their initial
values to their critical state value My, in a large strain.



PARAMETERS CALIBRATION

To determine the parameters of the model Gmax is first obtained (e.g., from resonant column
tests, crosshole / downhole tests, etc.); then, the parameters n, s;, and s; must be assessed.
The calibration is based on matching some established experimental G : y and § : y curves from
the literature. To this end, the Lavenberg—Marquardt optimization procedure is used, available
in mathematical code MATLAB. Two published families of G : y, € : y curves have been utilized:
(a) the Vucetic & Dobry curves for sand [11] and (b) the pressure (o’0)-dependent curves of
Darendeli et al. [12].

Starting from the Vucetic & Dobry (1991) curves, the agreement between computed and
experimental curves is quite satisfactory. Small discrepancies are observed for small strain
levels.

Darendeli et al. [12] recommended a new family of normalized shear modulus and material

damping curves, as functions of plasticity index and mean effective stress. Four confining
pressures (o', =25, 100, 400, 1600 kPa) are examined herein. The set of calibrated parameters

is unique for each family of curves and there is no need for recalibration to account for
different values of mean confining pressure.

COMPARISON WITH OTHER METHODS

The 2-dimensional version of the TA-GER sand model [9], [10] is implemented into a computer
code which uses the explicit finite-difference technique to integrate the equations of motion for
the nonlinear one-dimensional ground response analysis of layered sites.

The effectiveness of the proposed model is checked against the hysteretic model by Gerolymos
and Gazetas [4] implemented in the finite difference code NL-DYAS ([4], [5]).

To compare NL-DYAS with TA-GER, a 30-m deep dense sand profile with density p = 2.1 Mg/m3,
constant with depth, and a certain shear wave velocity distribution is excited at its base and its
response is calculated.

A strong motion, the JMA 090 record from the Kobe (1995) earthquake and a moderate one
from Kalamata 1986 earthquake are used as excitations at the base of the soil column. We
consider the sand to behave according to the Derendeli curves.

To serve as a yardstick, an equivalent linear soil response analysis was also carried out with the
use of code STRATA [2] — one of the current state-of-practice soil amplification codes.

The results of the three analyses (TA—GER, NL-DYAS, STRATA) in terms of the acceleration time
histories at the ground surface, the distributions with depth of the peak values of acceleration,
displacement, shear strain, and shear stress, the stress—strain hysteresis loops of the two
nonlinear models at the depth of 5m and 15m and the corresponding acceleration response
spectra will raise the following conclusions:



e For the moderate excitation, all three codes (and corresponding soil models) predict
similar response in terms of distributions with depth and quite similar acceleration time
histories, with STRATA exhibiting slightly higher amplitudes.

e Regarding the strong seismic excitation, a fairly similar response is predicted by the two
non-linear models. On the other hand, STRATA significantly exaggerates the long-period
pulses, while it depresses the high-frequency components — a performance within
expectations, as such “depression” of high frequencies has been already noted in the
literature (e.g. [13], [14], [15], [16]). The response acceleration spectra from the three
codes reinforce this conclusion: whereas the two inelastic soil models produce almost
identical spectra, the equivalent-linear analysis, having filtered-out the short-period
components, underpredicts the spectral values for periods less than 0.45 sec. It is worth
mentioning that an improved equivalent-linear method that avoids the overdamping of
high frequencies has been developed by Assimaki and Kausel [14]. Such overdamping
stems from the facts that damping is a function of strain amplitude and that high
frequencies are usually associated with small amplitudes of motion; thus, these
components experience substantially less damping than the dominant frequencies and
are artificially suppressed when hysteretic damping is taken as constant. The
overestimation of the long period spectral accelerations by the equivalent linear method
is due to resonance phenomena that take place in a linear analysis. Such phenomena
phenomena cannot be developed when nonlinearity is accounted for, as the shear
modulus, therefore the natural periods of soil, are not fixed but change over time.

e The distributions with depth of the peak values of acceleration, shear stress, and
horizontal displacement computed with the two nonlinear models for the JMA 090
record are in well agreement, considerably deviating from those of the equivalent linear
method. The similarity between the t — y diagrams of TA-GER and NL-DYAS analyses is
evident for the moderate motion. There are sharp differences for the strong seismic
excitation, however, with the TA-GER model predicting broader hysteresis loops that are
more regular in shape.

CONCLUSIONS

A plasticity-based model implemented into a finite differences computer code was presented
and found capable of predicting efficiently the 1D nonlinear site response. The model is a
simplified version of that originally proposed by Tasiopoulou and Gerolymos [9], [10]. The few
model parameters were calibrated against experimental results in terms of the shear modulus
reduction and damping ratio increase curves available in the literature. The capability of the
model in simulating the nonlinear response of horizontally layered deposits was checked
through comparison with two codes available in the literature: NL-DYAS and STRATA. While the
three codes exhibited similar results for the moderate seismic excitation case, validating the
proposed plasticity-based model, the equivalent linear method fails to yield satisfactory results
for the strong motion case, significantly underestimating the high-frequency components of the
ground response and overestimating the low-frequency ones.
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Chapter 1
Subject of study and literature review

1.1 Scope

The scope of the Thesis is to develop a two — dimensional model, deriving from a plasticity
based three — dimensional constitutive model, that can conduct one — dimensional ground
response analyses of horizontally layered soils subjected to vertically-polarized S waves. It is
aimed that the proposed model can be used in practice for relevant geotechnical problems. In
this line of thought, calibration of the constitutive relationship parameters according to
experimental data and validation against relevant methods for predicting ground response in
seismic shaking is intended in order to enhance the reliability and applicability of the model.

1.2 Layout

Dynamic soil response

The dynamic response of a soil element under cyclic loading is characterized by the hysteretic
loop that connects the stress with the strain.

Numerous constitutive models have been developed lately for the representation of the soil
cyclic response. The complexity of these models is usually strongly associated to the range of
their applicability. A broad categorization of the soil models could be the following:

e viscoelastic models
e hysteretic or non — linear cyclic models
e plasticity theory based models

When the shear strain amplitude that seismic loading imposes is around 10 to 10~ cyclic soil
response is adequately described by the classical theory of linear viscoelasticity. For these small
strains soil response is almost elastic and is characterized by small hysteretic damping, which
influences, however, the response. The main defect of these models is the correlation between
the damping (and the shear modulus in a Maxwell type model) and the frequency. This has not
been ascertained by laboratory tests, which converge that soil damping and stiffness are
practically independent of the imposed rate of deformation.
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The range of application of the viscoelastic models is extended in the study of the cyclic soil
response in medium strains around 10# to 103, through the usage of the equivalent — liner
analysis methods. In these strain amplitudes the influence of loading cycles in mechanical soil
properties is adequately described by only two parameters: the secant shear modulus and the
damping.

For strain amplitudes greater than 107 soil properties are conspicuously affected by the strain
amplitude as well as by the number of loading cycles and more general by the exact
relationship between the stress and the strain. Viscoelasticity theory is incapable of describing
complex non — linear characteristics of cyclic soil response, such as stiffness degradation and
loose of strength with the loading cycles, irregular response depending on loading direction,
residual strain etc.

Aiming at the realistic soil response analysis in large strains, a bunch of in — elastic (hysteretic)
models has been developed. In almost every proposed hysteretic model for describing the
stress — strain relationship Masing ‘s unloading — reloading rule is being utilized. This criterion
was proposed in 1926 for the representation of metals cyclic response. Despite of being
incapable of realistically representing the diverse soil response in loading — unloading, it is being
widely used in geotechnical earthquake engineering thanks to its simplicity.

A considerable drawback of the non — linear cyclic (hysteretic) models nis their difficulty in
representing the response under a big number of stress paths. The overcome this problem a
number of constitutive models based in plasticity theory has been developed

Advanced constitutive modeling

The most accurate and general methods for representation of soil behavior are based on
advanced constitutive models that use basic principles of mechanics to describe observed soil
behavior for (a) general initial stress conditions, (b) a wide variety of stress paths, (c) rotating
principal axes, (d) cyclic or monotonic loading, (e) high or low strain rates and (f) drained or
undrained conditions.

Such models generally require a yield surface that describes the limiting stress conditions for
which elastic behavior is observed, a hardening law that describes changes in the size and
shape of the yield surface as plastic deformation occurs, and a flow rule that relates increments
of plastic strain to increments of stress. The Cam — Clay (Roscoe and Schofield, 1963) and
modified Cam — Clay (Roscoe and Burland, 1968) models were among the first of this type.
Improvements in the prediction of shear strains have resulted from the use of multiple nested
yield loci within the yield surface (Mroz, 1967; Prevost, 1977) and the development of bounding
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surface models (Dafalias and Popov, 1979) which incorporate a smooth transition from elastic
to plastic behavior.

Although advanced constitutive models allow considerable flexibility and generality in modeling
the response of soils to cyclic loading, their description usually requires many more parameters
than equivalent linear models or cyclic non linear models. Evaluation of these parameters can
be difficult, and the parameters obtained from one type of test can be different from those
obtained from another. Additionally, the development of plasticity based models is mainly
based on the depiction of the soil response under static loading. Their competency in dynamic
conditions is not yet equally satisfactory. Although the use of advanced constitutive models will
undoubtedly increase, these practical problems have, to date, limited their use in geotechnical
earthquake engineering practice.

A hierarchy of models are available for characterization of the stress — strain behavior of
cyclically loaded soils. The models range considerably in complexity and accuracy; a model that
is appropriate for one type of problem may not be appropriate for another. No single stress —
strain model is appropriate for all problems. Selection of a stress — strain model requires careful
consideration of the problem to which it is to be applied, recognition of the assumptions and
limitations of the available models, and a good understanding of how the model is used in all
required analyses.

1.3 Monotonic and cyclic behavior of sand

The behavior of sand has been extensively studied in literature both experimentally and
theoretically. Experimental observations provided an insight on the behavioral trends and
mechanisms developed under various loading conditions. These observations constituted the
basis upon which Critical State Theory by Roscoe et al. (1958) and Schofield and Wroth (1968)
was formulated, aiming to accommodate and interpret the basic behavioral characteristics of
sand. In the following, a review of the most characteristic aspects of sand response is held
within the framework of Critical State Theory.

Monotonic behavior of sand

After numerous experimental observations, it has become common knowledge that sand tends
to undergo shear-induced volume change until a critical state is reached, upon which shearing
occurs with no volumetric change. Whether shearing tends to develop positive (contraction) or
negative (dilation) volume change depends on the initial state of the material relative to the
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critical state which is a function of the relative density and the confining pressure. The critical
state is defined by a surface formed in e-p-q space, which is projected as a line (CSL) in the e-p
and g-p planes; e being the void ratio, q the deviatoric stress and p being the mean effective
stress. Critical state is considered to be unique for each type of sand. Figure 1.1 illustrates the
critical state line (CSL) in e-p plane. Initial loose states, located at the right-hand side of CSL,
exhibit contractive behavior which is reflected through reduction of: (i) void ratio, e, in case of
drained p-constant loading and (ii) mean effective stress, p, in case of undrained loading, until
CSL is reached. Dense states, located at the left-hand side, initially exhibit contractive response
until phase transformation line (PTL) is reached. Thereafter, dilative response dominates which
is interpreted as increase of: (i) void ratio, e, in case of drained p-constant loading and (ii) mean
effective stress, p, in case of undrained loading, until CSL is reached.

This kind of behavior is confirmed experimentally, as shown in Figure 1.2(a). As the initial void
ratio increases for a given initial confining pressure, the response tends to be more contractive.
In terms of stress-strain curves, a hardening type of response is observed which becomes more
intense as the initial void ratio increases. It should be noticed that the void ratio reaches
practically the same residual value, known as critical void ratio, irrespectively of the initial
value, as it is predicted by the Critical State Theory. It is also worth mentioning that critical state
is also reached in p-g space at large strains, as shown by Figure 1.2(b). The stress ratio q/p
reaches a unique residual critical stress ratio, irrespectively of the initial conditions.

Apart from the dependency of sand response on the initial void ratio (or initial relative density,
Dr), Figure 1.3 demonstrates the impact of initial confining pressure, p. For a given initial
relative density, the response becomes more dilative as initial confining pressure decreases. In
stress-strain terms, the effect of dilatancy is exhibited by an increase in maximum obtained
strength followed by strain softening.

The tendency of positive (dilatancy) or negative (contraction) volumetric change in case of
drained loading conditions is expressed through increase or reduction of mean effective stress,
respectively, in case of undrained loading, as characteristically shown in Figure 1.4.
Experimental results of Figure 1.5 illustrate the behavioral trend under undrained conditions for
various initial relative densities and confining pressures. All the evolving stress paths in p-q
space converge to the critical state line, which works as a failure envelope, until the ultimate
critical stress state is reached.

So far, it has been shown that the behavior of sand is dependent on the relative position of its
initial state, in terms of initial density and means effective stress, to the critical state line in e-p
plane. However, experimental results depicted in Figure 1.6 indicate dependency on the loading
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direction, for a given initial state. Despite the given constant distance between initial state and
CSL in e-p space, sand exhibits contractive behavior in case of triaxial extension loading, while
its response is dilative under triaxial compression loading. This behavioral diversity is attributed
to stress-induced anisotropy

Cyclic Behavior of Sand

Cyclic behavior of sand presents certain differentiations when compared to the monotonic
response, which cannot be fully accommodated by the strictly defined Critical State framework.
For example, experiments confirm that irrespectively of the initial state relative to the CSL in e-
p space, sand exhibits only contractive behavior, in accumulative terms, tending to reach the
densest possible configuration, defined by minimum void ratio, emin, under drained conditions,
or reach zero values of mean effective stress under undrained conditions, as shown in Figure
1.7. The first tendency leads to densification and increase in strength/stiffness, known as cyclic
hardening, (Figures 1.8-1.10), while the latter one is associated with cyclic mobility and
liguefaction effects (Figure 1.11(a)). It should be mentioned, though, that the critical state
concept applies in p-g space, where the critical stress ratio is reached at large strains, after a
sufficient number of cycles, irrespectively of the drainage conditions.

In other words, the dependency of sand behavior on the initial state relative to CSL in e-p space
is not reflected in the same way as in case of monotonic loading, where it determines whether
the response will be dilative or contractive. In case of cyclic loading, the above mentioned
dependency determines the number of loading cycles needed to achieve either: (i) e = emin
(drained conditions) or (ii) p = 0 (undrained conditions). The correlation between number of
cycles and initial relative density is shown in Figures 1.10 and 1.11(b).
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Chapter 2
Downgrade of the 3D constitutive model
Tager for sand in triaxial space

2.1 Introduction

Performance based analysis is increasingly gaining ground in daily practice against conventional
pseudostatic analysis. The necessity of developing economically efficient solutions without
jeopardizing safety, is the main reason for this drastic change in the way we you used to design
our structures.

However, the effectiveness of a performance based design approach strongly hinges on the
ability of the utilized numerical tool to realistically calculate the soil and structural
displacements for a wide range of loading paths and initial conditions. Apparently, the
constitutive modeling of soil behavior plays a decisive role on this. The behavioral diversity of
sand for different loading (drained /undrained, monotonic/cyclic), initial stress and fabric
conditions, renders its modeling a difficult and challenging task. The suitability of the used
constitutive model is evaluated by its capability to capture the trends across all these conditions
without recalibration of its parameters for each specific case, but also by its simplicity. Too
many parameters might increase the versatility of the model at the risk, however, of losing its
physical meaning.

In the last three decades, many constitutive models for sand have been proposed, each with
varying degree of accuracy and applicability (a brief discussion about this was made in Ch. 1).
The most promising ones are plasticity-based and incorporate the effective stress and critical
state concepts (e.g. Ishihara and Towhata, 1980; Cubrinovski and Ishihara, 2000; Dafalias and
Manzari, 2004; Park and Byrne, 2004; Boulanger et al., 2011).

In this paragraph, a brief reference to the constitutive model for sand Ta-Ger will be made, as it
was published by Panagiota Tasiopoulou and Nikos Gerolymos in 2016. This constitutive model,
formed in multiaxial space was based on a new theoretical framework that combines features
of perfect elastoplasticity and Bouc-Wen type hardening plasticity. It adopts an open-end, cone-
type bounding surface with the elastic region being trivialized to a single point, coupling perfect
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elastoplasticity with pre-failure smooth hysteresis. This alternative plasticity formulation
exhibits critical state compatibility for monotonic and cyclic loading and uniqueness of its
parameters for a given type of sand, irrespective of loading conditions. It aims to provide a
continuous function between an input (displacement, strain etc.), and an output (force, stress
etc.), for nonlinear, hysteresis systems, by defining a continuous expression of an elastoplastic
matrix, connecting the strain with the stress. Using a new plastic flow rule based on a revision
of Rowe’s dilatancy theory (1962), it is versatile enough to account for anisotropic distribution
of the dilatancy to the plastic strain increments as well as densification due to cyclic loading.
The Drucker-Prager failure envelope is used as bounding surface, but modifications can be
easily implemented to account for Lode angle dependency. The combined influence of density
and confining stress on the response is efficiently taken into account through the critical state
approach. Among the other benefits is the ability of the model to realistically reproduce
complex patterns of monotonic and cyclic behavior such as hysteretic response, dilation,
contraction, loss of strength and cyclic mobility in undrained monotonic and cyclic loading,
respectively.

The aforementioned constitutive model for sand was downscaled to p-g space and
reformulated in a way that hysteretic loops and densification can be predicted for an input
strain time history. In what follows, the formulation and some of the key parameters of the
model, accounting for drained conditions, are presented.

2.2 Model Concept and Parameters

An alternative plasticity concept

Classic elastoplasticity framework imposes that the elasto-plastic matrix is given by:
-1
ep _pely _ T e T e
E? = E [1 D, (P ECD,) D E]

in which ®f and ®g account for the gradient to the failure surface and plastic flow rule,
respectively:
of

b, =—
I~ 90
dg

b, =—
9 Jdo

For a perfectly plastic material, the yield surface is fixed in stress space, and therefore plastic
deformation occurs only when the stress path moves on the yield surface. The plastic strain
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increment is obtained from the flow rule that is assumed to imply normality to the plastic
potential function g, according to the above formulation.

In the present modified elasto — plasticity framework hardening and hysteretic behavior is
introduced by inserting the matrices H and n:

E,°P = E¢(I— BH)n

The terms in matrix H are functions of the dimensionless hardening parameter ¢, which is
inspired by the Bouc-Wen smooth hysteresis model Bouc (1971) and its extended versions
(Wen, 1976 ; Gerolymos and Gazetas, 2005), and n (Gerolymos and Gazetas, 2005; Drosos et
al., 2012) accounts for stiffness degradation by modifying the shape and size of the hysteretic
loops according to the amplitude of the deviatoric strain g . Finally, B is the abbreviation of the
right-hand side term inside the parentheses of the formulation of the classic elasto — plastic
matrix:

B=®, (cIJfTE"’cbg)_1 @"E°

Elastic Parameters

In order to form the elastic matrix E€, it is necessary to define the elastic shear modulus G and
the elastic bulk modulus K which are expressed as functions of the mean effective stress and
the relative soil density using Seed and Idriss published experimental data and Souliotis and
Gerolymos curve fitting, as follows:

p m
Grx = 1592,6 * py * DOS46% 4 (p—) and K=¢G

in which:

pa is the atmospheric pressure
Dro is the initial soil relative density
m is a dimensionless parameter determining the rate of variation of G and K with p.
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The elastic bulk modulus K, is considered to be equal to Gmax, assuming a Poisson ratio of
v=0.15 which is typical for relatively uniform sands at confining pressures greater than 50 KPa
(e.g. Gu and Yang, 2013).

The elastic matrix in triaxial space is given by:

E“%§ &]

since the deviatoric, dq , and mean effective, dp , stress increments are calculated using the
elastic deviatoric and volumetric strain increments, in respect:

dp = Kde,°

dq = 3Gde,°

Yield surface

The model incorporates the Drucker-Prager failure envelope as the bounding surface:

f=q—Msp=0

in which, Ms is the ultimate strength line in g-p space. This equation implies the following
consistency condition at failure:

Thus the hardening parameter , is defined as:

26
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q

{ —
Mgp

The hardening parameter, {, is bounded, strictly obtaining values within the range [0, 1]. At
reversal points, Cis transformed to Ca , according to:

_ C_Cp

= 15,

which Tp is the maximum value of T at the previous reversal (pivot) point. Hence, hardening

parameter {a becomes equal to 0 at the occurrence of loading reversal, indicating elastic
response at the beginning of unloading/reloading.

The hardening matrix H, for monotonic loading, is defined as:

i=[C 8

where n is an exponential parameter which “controls” the rate of transition from the elastic

state to the perfectly plastic one (Gerolymos and Gazetas, 2005). For cycling loading parameter
Ca is used for the formation of the plastic matrix

27
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Flow rule

The stress-dilatancy relationship, adopted by the model, is based on Rowe’s dilatancy theory
(Rowe 1962). Dilatancy, defined as the ratio of the plastic volumetric strain increment, dspp
over the plastic deviatoric strain increment, depqdepends on the distance of the current stress
ratio, g /p ={ M from the phase transformation line, My, as follows:

P (M |q|)—R (M, — {M,)
ddgqp d pt p d pt S

Parameter R is given by:
Rd — e_a(Dr_Dro)

Where Dr is the current relative density, Dro is the initial relative density and a is a constant.
Evidently, increase of Dr causes decrease of parameter Rd and subsequent decrease of quantity
d, resulting in densification for the case of a drained cyclic simple shear element test. Influence
of parameter a in densification line for various relative densities is depicted in Fig. 3.1.

Modified hardening elasto — plastic matrix

The modified elastoplastic matrix is calculated according to the above mentioned:

[ ~K*Myd —3KGd 1

en | —KM.d + 3G —KM.d + 3G |

Tl —3KGM, 9G? |

| ¢t 36— <
—KM.d + 3G —KM.d + 3G

The only difference between the modified elastoplastic matrix, E,°”, and the elastoplastic
matrix, E,°P, resulting from elastic-perfectly plastic formulation is attributed to the
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introduction of hardening parameter {n, which provides a smooth hysteretic interpolation,
Bouc-Wen motivated, between elastic and perfect plastic stress states.

If matrix n, which consists of only diagonal terms:

_[n O
"_077]

is incorporated into the E}, °? formulation, then the elastoplastic matrix is modified as:

[ —K*Md 3KGd 1
|K — " "o
. —KM.d + 3G —KM.d + 3G
Eh p = T]I I
| —3KGM, 92 |
| ¢ 36— &
—KM.d + 3G —KM.d + 3G

Parameter n

Parameter n is inserted as a multiplier of the hardening elastoplastic matrix.n expresses the
dissipated hysteretic energy and it affects the expansion of the stress — strain loop. It is
expressed in a ductility based form as it is a function of pu which is a reference ductility defined
in terms of shear strain at the most current stress reversal, at the maximum attained shear
strain before the start of the current unloading or reloading cycle:

S1

77=51+usz

Figs. 3.2 and 3.3 illustrate the influence of parameters s; and s, in the shear modulus reduction
and damping curves.

Critical state concept

The essence of the critical state concept is that no change in volume occurs when the current
stress state reaches the critical state, while the shear deformation continuously increases. In
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order to achieve this kind of performance upon critical state, both the phase transformation
line, Mp: and the ultimate strength line, Ms, should evolve in p-q space converging to the critical
state line, M and producing zero plastic volumetric change when Mp: = Ms = Mcs. The evolution
of the ultimate strength line is expressed as a function of the cumulative total deviatoric strain,

Z|d£q|:
M = Mg + [Mgy, + (Mg — Msp)e—clzldgq| — M) =13l deg]

where My is an initial value of the ultimate strength, and M, is @ maximum value that can be
potentially reached depending on the model parameter ci. The phase transformation line
evolves according to following expression:

My, = M5 + (Mpto - ]\/Ics)e_czmdgq|

p

in which Mpo is the initial value of My , c2 is a model parameter and Z|d8q| expresses the
accumulation of total deviatoric strain increments. The influence of parameters c¢; and ¢z is
illustrated in Figs. 3.4 and 3.5. in terms of shear stress, volumetric strain and evolution of My
and M; for a monotonic shear test. In case of cyclic drained loading, slower evolution of phase
transformation line towards critical state leads to less accumulation of volumetric strain for a
certain number of cycles, due to generation of greater “uplift” of the ep-eq curve, close to the
reversal points.

2.3 Model Performance

Simulation of drained behavior of sand under monotonic and cyclic loading have been
performed in p-q space. Simulation is strain controlled; thus, the applied deviatoric strain
increment deq is considered known and the mean effective stress, p, is assumed constant, so
that dp = 0 . The 2x2 matrix connecting the strain with the stress increments is formed as
follows:
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where :

=16 L
dq C Dllde,

Ak ~K*Md
B —KM.d + 3G ¢

5 3KGd
- —KM.d + 3G

. —3KGM,
~ —KM.d + 3G

n

D =3G o¢” n
B —KMd + 36°

The deviatoric stress increment, dg, is calculated as

BC
dq = (—7+ D) deg

and the volumetric strain increment, dep, is obtained by:

B
dep = _ZldSQ|
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The results are afterwards transformed in terms of shear stress and shear strain.

Regarding the monotonic loading, three different relative densities were examined under the
same mean effective stress and also three different mean effective stresses were examined for
the same initial relative density. Results are depicted in Fig. 3.6-3.9 in terms of shear stress,
volumetric strain, void ratio, boundary line Ms, phase transformation line M,: and the evolution
of the last two parameters vs the stress state line g/p. The evolution of the friction angle with
shear strain along with its maximum value ¢pea, its initial value ¢so and its critical state value
des are also presented in Fig. 3.10.

The evolution of phase transformation and ultimate strength lines with strain, demonstrate
that both lines reach the critical state line at large strains. Moreover, it is worth noting that for
loose sands the phase transformation line is initially located above the ultimate strength line in
p-q space and vice versa for denser sands. This is attributed to the more contractive behavior
which leads them directly to the critical state with no phase transformation (Yoshimine and
Ishihara, 1998). The opposite behavior is observed for denser sand crossing the phase
transformation line (contractive response) before “moving” towards the critical state (dilative
response). The same remarks can be made for the sands under a small mean effective stress
and sands under a heavy mean effective stress, which correspond to denser and looser sands
respectively. As expected, ultimate strength line is never exceeded from the stress state line
g/p either for dense or loose sands.

Cyclic drained shear tests were also carried out (Fig. 3.11 — 3.16.) and three different relative
densities were examined under the same mean effective stress for three different levels of
mean effective stress. Cyclic drained shear tests will emphasize progressive stiffening as loading
cycles accumulate and densification builds up. Maximum attained shear stress is, as expected,
greater for denser sands and those under a big mean effective stress. It is worth noting, that in
the volumetric strain figure the distance between two consecutive loading cycles becomes
smaller as loading cycles accumulate, proceeding to the critical state, as is also pointed by the
coincidence of Mp: and M with their critical state value Mcs. The shape of the densification line
is indicative to a more dilative behavior for denser sands and sands under small mean effective
stresses.
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Figure 3.1: (a) Volumetric strain for cyclic drained shear test in respect of shear strain for
different values of the exponent a for three relative densities Dr=20%, Dr=50% and Dr=80%
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Figure 3.3: Shear modulus reduction and damping curves for various values of the s1
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Figure 3.6: (a) Shear stress, (b) volumetric strain, (c) void ratio, (d) boundary line Ms and (e)
phase transformation line Mpt for a monotonic shear test for three relative densities Dr=20%,
Dr-50% and Dr=80% for mean effective stress p=500KPa.
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evolution of the stress state line q/p with shear strain for three relative densities Dr=20%, Dr-
50% and Dr=80% for mean effective stress p=500KPa for a drained monotonic shear test
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Figure 3.11: (a) Stress-strain hysteretic loops (b) Evolution of Mp: and Ms parameters along with
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative
density Dro=20% and mean effective stress p=200KPa for a cyclic drained shear test
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density Dro=50% and mean effective stress p=200KPa for a cyclic drained shear test
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their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative
density Dro=80% and mean effective stress p=200KPa for a cyclic drained shear test
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Figure 3.15: (a) Stress-strain hysteretic loops (b) Evolution of Mp: and Ms parameters along with

their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative
density Dro=50% and mean effective stress p=500KPa for a cyclic drained shear test
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Figure 3.16: (a) Stress-strain hysteretic loops (b) Evolution of Mp: and Ms parameters along with
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative
density Dro=80% and mean effective stress p=500KPa for a cyclic drained shear test
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Figure 3.17: (a) Stress-strain hysteretic loops (b) Evolution of Mp: and Ms parameters along with
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative
density Dro=20% and mean effective stress p=1000KPa for a cyclic drained shear test
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Figure 3.18: (a) Stress-strain hysteretic loops (b) Evolution of Mp: and Ms parameters along with
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative
density Dro=50% and mean effective stress p=1000KPa for a cyclic drained shear test
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Figure 3.19: (a) Stress-strain hysteretic loops (b) Evolution of Mp: and Ms parameters along with
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative
density Dro=80% and mean effective stress p=1000KPa for a cyclic drained shear test
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Chapter 3
Model parameters calibration against
literature curves

3.1 Laboratory and in situ tests

In order to calibrate Viscoelastic and hysteretic models it is necessary to define the initial shear
modulus. This is accomplished through:

e laboratory tests
e insitu tests
e empirical relationships available in literature

Resonance tests are representative of the first category. Through resonance tests the initial
shear modulus (which is defined as the initial shear modulus in small strains, y < 10°) can be
calculated, as well as the hysteretic damping ratios and the secant shear modulus as a function
of the strain amplitude. The reliability of each one of the types of resonance tests in defining
the initial shear modulus is associated with the soil specimen quality. An alternative laboratory
test (which is interesting but not widespread) is the one that uses piezoelectric sensors
(transmitter and receiver) in appropriate positions around the specimen. The estimation of
Gmax is accomplished through the measurement of the arrival time of the shear wave in the
receiver. The main drawback of this test is that it does not provide any information about the
developed shear strains.

Crosshole and downhole tests are the best in situ geotechnical tests in order to calculate the
shear wave propagation velocity. (through soil) in small strains and therefore the initial shear
modulus.

It is well known that in large strains cyclic soil response can not be accurately described with
the use of only two parameters (Gsec and £). The knowledge of the hysteretic shear stress —
strain relationship is a prerequisite. Its approach is achieved in the laboratory through the
conduction of cyclic loading tests. Through these tests one can define the monotonic loading
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curve and the loading — unloading — reloading rule that define the calibration of a hysteretic
model. The most remarkable cyclic tests are:

e the triaxial test
e the simple shear test
e the torsional test

The applicability if the aforementioned tests is related to the initial loading conditions of the
soil that we aim to analyze its dynamic response, as well as to the deformation due to the
imposed loading. Thus, the cyclic simple shear test for example, is one of the most
representative for modeling of the behavior of soil subjected to seismic loading, but only when
soil — structure interaction is absent. The cyclic response of a soil element close to a pile
subjected to an axial oscillation, is correctly approached through a simple shear test. On the
contrary, the response of the same soil element is better described through a triaxial test when
the pile oscillates horizontally.

3.2 Shear modulus and damping curves

Model calibration through the hysteretic loops extracted from laboratory tests is not usually
implemented, since laboratory data are either not enough for the description of the soil
characteristics, or they are not adequate. Empirical relationships for the shear modulus and the
hysteretic damping ratio consist an alternative way for calibration.

Shear Modulus

Laboratory tests have shown that soil stiffness is influenced by cyclic amplitude, void ratio,
mean principal effective stress, plasticity index, over — consolidation ratio and number of
loading cycles. The secant shear modulus of an element of soil varies with cyclic shear strain
amplitude. At low strain amplitudes, the secant shear modulus is high, but it decreases as the
strain amplitude increases. The locus of points corresponding to the tips of hysteresis loops of
various cyclic strain amplitudes is called a backbone (or skeleton) curve (Fig. 3.1a); its slope at
the origin (zero cyclic strain amplitude) represents the largest value of the shear modulus,
Gmax. At greater cyclic strain amplitudes, the modulus ratio Gsec / Gmax drops to values less
than 1. Characterization of the stiffness of an element of soil therefore requires consideration
of both Gmax and the manner in which the modulus ratio G / Gmax varies with cyclic strain
amplitude and other parameters. The variation of the modulus ratio with shear strain is
described graphically by a modulus reduction curve (Fig. 3.1b). The modulus reduction curve
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presents the same information as the backbone curve; either one can be determined from the
other.

Maximum Shear Modulus, Gmax
Since most seismic geophysical tests induce shear strains lower than about 3x10* %, the
measured shear wave velocities can be used to compute Gmax as :

— 2
Gmax - ,0 vS

The use of measured shear wave velocities is generally the most reliable means of evaluating
the in situ value of Gmax for a particular soil deposit, and seismic geophysical tests are
commonly used for that purpose. Care must be taken in the interpretation of shear wave
velocity, particularly at sites with anisotropic stress conditions, which can cause measured
shear wave velocities to vary with the direction of wave propagation and particle movement
(Roesler 1979; Stokoe et al., 1985; Yan and Byrne, 1991).

When shear wave velocity measurements are not available, Gmax can be estimated in several
different ways. Laboratory test data suggest that the maximum shear modulus can be
expressed as

Gmax = 625 F(e) (OCR)*pg* ™ (am)"

where F(e) is a function of the void ratio, OCR the over consolidation ratio, k an over
consolidation ratio exponent (Table 3.1), 6’'m the mean principal effective stress, n a stress
exponent, and pa is atmospheric pressure in the same units as o’m and Gmax. Hardin (1978)
proposed that F(e)=1/(0.3+0.7e?), while Jamiolkowski et al. (1991) suggested that F(e)= 1/e'/3.
The stress exponent is often taken as n=0.5 but can be computed for individual soils from the
results of laboratory tests at different effective confining pressures. It should be apparent that
Gmax, pa, and om’ must be expressed in the same units. The above equation can also be used
to adjust measured Gmax values to represent conditions that are different (e.g., increased
effective stresses) from those at which the measurements were made.

Other empirical relationships have been proposed for specific soil types. The maximum shear
modulus of sand, for example, is often estimated as:



Master Thesis: A plasticity model for the one dimensional soil response analysis

Gmax = 1OOOKZ,max (0-1,11)0'5

Where K2,max is determined from the void ratio or relative density (Table 3.2) and om’ is in
Ib/ft?> (Seed and Idris, 1970). Field tests have consistently shown that shear wave velocities of
gravels are significantly higher than those of sands, indicating that Gmax of gravel is higher than
that of sand. K2,max values for gravels are typically in the range 80 to 180 (Seed et al., 1984). For
fine — grained soils, preliminary estimates of the maximum shear modulus can be obtained
from plasticity index, overconsolidation ratio and undrained strength (Table 3.3). Because
undrained strengths are highly variable and because shear moduli and undrained strengths vary
differently= with effective confining pressure, these results must be used carefully.

The maximum shear modulus can also be estimated from in situ test parameters. A number of
empirical relationships between Gmax and various in situ test parameters have been
developed. The inherent difficulty of correlating a small strain parameter such as Gmax with
penetration parameters that relate to much larger strains is evident from the scatter in the data
on which they are based and from the variability of the results obtained by different
investigators. As such, the usefulness of such correlations is currently limited to preliminary
estimates of Gmax.

However, the application of in situ testing to geotechnical earthquake engineering problems is
only in its early stages, and significant advances can be expected as additional data become
available.

Evaluation of shear modulus can be complicated by rate and time effects (Anderson and
Woods, 1975, 1976; Anderson and Stokoe, 1978; Isenhower and Stokoe, 1981). Rate effects can
cause Gmax to increase with increasing soil plasticity. Rate effects can be significant when
comparing Gmax values obtained from field shear wave velocity measurements (usually made
with the use of impulsive disturbances which produce relatively high frequencies) with values
obtained from laboratory tests. The shear wave velocity and hence Gmax, increases
approximately linearly with the logarithm of time past the end of primary consolidation to an
extent that cannot be attributed solely to the effects of secondary compression. The change of
stiffness with time can be described by

AGpmax = Ng(Gmax)1000
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where AG,, ., is the increase in G,,,, over one log cycle of time and (G4x)1000 1S the value of
Gnmax at the time of 1000 min past the end of primary consolidation. N; increases with
increasing plasticity index Pl and decreases with increasing OCR (Kokushu et al., 1982). For
normally consolidated clays, N; can be estimated from the relationship

N; ~ 0.027VPI

Anderson and Woods (1975) showed that some of the discrepancy between G,,,, values from
field and laboratory tests could be explained by time effects, and that N; could be used to
correct the G,,,, values from laboratory tests to better represent6 actual in situ conditions.

Modulus reduction G/Gmax

In the early years of geotechnical earthquake engineering, the modulus reduction behaviors of
coarse — and fine — grained soils were treated separately (e.g., Seed and Idriss, 1970). Recent
research, however, has revealed a gradual transition between the modulus reduction behavior
of nonplastic coarse — grained soil and plastic fine — grained soil.

Zen et al., (1978) and Kokushu et al., (1982) first noted the influence of soil plasticity on the
shape of the modulus reduction curve; the shear modulus of highly plastic soils was observed to
degrade more slowly with shear strain than did low — plasticity soils. After reviewing
experimental results from a broad range of materials, Dobry and Vucetic (1987) and Sun et al.
(1988) concluded that the shape of the modulus reduction curve is influenced more by the
plasticity index than by the void ratio and presented curves of the type shown in Fig. 3.2.a.
These curves show that the linear cyclic threshold shear strain, vtl, is greater for highly plastic
soils than for soils of low plasticity. This characteristic is extremely important; It can strongly
influence the manner in which a soil deposit will amplify or attenuate earthquake motions. The
PI=0 modulus reduction curve from Fig. 3.2.a. is very similar to the average modulus reduction
curve that was commonly used for sands (Seed and Idriss, 1970) when coarse — and fine —
grained soils were treated separately. This similarity suggests that the modulus reduction
curves of Fig. 3.2.a. may be applicable to both fine — and coarse — grained soils (this conclusion
should be confirmed for individual coarse — grained soils, particularly those that could exhibit
aging or cementation effects). The difficulty of testing very large specimens has precluded the
widespread testing of gravelly soils in the laboratory, but available test data indicate that the
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average modulus reduction curve for gravel is similar to, though slightly flatter than, that of
sand (Seed et al., 1986; Yasuda and Matsumoto, 1993).

Modulus redaction behavior is also influenced by effective confining pressures, particularly for
soils of low plasticity (lwasaki et al., 1978; Kokoshu, 1980). The linear cyclic threshold shear
strain yit , is greater at high effective confining pressures than at low effective confining
pressures. The effect of effective confining pressure and plasticity index on modulus reduction
behavior were combined by Ishibashi and Zhang (1993) in the form

= Ky, PI)(op)™rP07me

Gmax

where

0.000102 + n(PI))0'492]}

K(y,PI) =0.5 {1 + tanh [ln ( »

0.000556\ %
m(y, PI) —mgy = 0.27241 — tanh |In (T) exp(—0.0145PI13)

{ 0.0 for PI =0
n(PI) = 3.37x 10~6p1404 for0 < PI < 15
{7.0 x10~7p[to76 for 15 < PI <70
2.7 x10~°>prt115 for PI > 70

The effect of confining pressure on modulus reduction behavior of low — and high — plasticity
soils is illustrated in Fig. 3.3 a.

In 2001, Darendeli et al. developed a new family of normalized modulus reduction and material
damping curves. Their study focused on developing the empirical framework that can be used
to generate normalized modulus reduction and material damping curves. This framework is
composed of simple equations, which incorporate the key parameters that control nonlinear
soil behavior. The effects of various parameters (such as confining pressure and soil plasticity)
on dynamic soil properties were evaluated and quantified within this framework. The
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normalized curves for modulus reduction are presented in Figure 3.4.a. for a non plastic soil for
various confining pressures.

Damping Ratio

Theoretically, no hysteretic dissipation of energy takes place at strains below the linear cyclic
threshold shear strain. Experimental evidence, however, shows that some energy is dissipated
even at very low strain levels (the mechanism is not well understood), so the damping ratio is
never zero. Above the threshold strain, the breadth of the hysteresis loops exhibited by a
cyclically loaded soil increase with increasing cyclic strain amplitude, which indicates that the
damping ratio increases with increasing strain amplitude.

Just as modulus reduction behavior is influenced by plasticity characteristics, so is damping
behavior (Kokushu et al., 1982);Dobry and Vucetic, 1987; Sun et al., 1988). Damping ratios of
highly plastic soils are lower than those of low plasticity soils at the same cyclic strain amplitude
(Fig. 3.2.b.). The Pl damping curve from Fig. 3.2.b., is nearly identical to the average damping
curve that was used for coarse — grained soils when they were treated separately from fine —
grained soils. This similarity suggests that the damping curves of Fig. 3.2.b. can be applied for
both fine — and coarse — grained soils. The damping behavior of gravel is very similar to that of
sand (Seed et al., 1984).

Damping behavior is also influenced by effective confining pressure, particularly for soils of low
plasticity. Ishibashi and Zhang (1993) developed an empirical expression for the damping ratio
of plastic and non plastic soils (Fig. 3.3.b.). Using the equation for modulus reduction G/Gmax,
the damping ratio is given by

£ =0.333

1+ exp(—0.0145P13) G \*
0.586( +1

— 1.547
: )

max Gmax

Material damping curves published by Darendeli et al., are presented in Figure 3.4.b. for various
confining pressures for a non plastic soil (PI=0).
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3.3 Calibration procedure

In order to fit the model with the literature shear modulus and damping curves (which were
discussed in the previous paragraph) a bunch of parameters are selected for calibration.

As it was mentioned in Cp. 2 , shear modulus is expressed as function of the mean effective
stress and the relative soil density using Seed and Idriss Published data and Souliotis and
Gerolymos curve fitting, as follows:

p m
Gmax = A *pg * D1966464 * (_)
Pa

where A is a constant that controls the initial stiffness. Its influence in the formulation of Gmax
is illustrated in Fig 3.5. and is the first parameter selected for calibration.

Then, the hysteretic parameter n that causes the stiffness degradation, and is a function of s;,
and s, must be assessed. n is activated after the end of the first monotonic (backbone) curve in
the unloading — reloading curves and affects the expansion of the hysteretic shear stress —
strain loop (Fig. 3.6).

Finally, exponent n which controls the rate of transition from the elastic state to the perfectly
plastic one, is the last parameter selected for calibration. High values of n lead to decupling
between elasticity and perfect plasticity (Fig. 3.7)

The calibration is then based on matching some established experimental G : y and € : y curves
from the literature. To this end, the Lavenberg—Marquardt optimization procedure is used,
available in mathematical code MATLAB. Two published families of G : v, € : y curves have been
utilized: (a) the Vucetic & Dobry curves for sand [11] and (b) the pressure (o’0)-dependent
curves of Darendeli et al. [12]. The values of the parameters A, s1, s and n for which curve
fitting was obtained, are shown in Table 3.4 for each one of the family curves.

Starting from the Vucetic & Dobry (1991) curves, the results of the calibration are illustrated in
Fig. 3.8. The PI=0 curve (which corresponds to sand) is being used herein for a confining
pressure of 100 KPa. The agreement between computed and experimental curves is quite
satisfactory. Small discrepancies are observed for small strain levels. The corresponding
hysteretic shear stress — strain loops are also depicted in Fig. 3.10.

Darendeli et al. [12] recommended a new family of normalized shear modulus and material
damping curves, as functions of plasticity index and mean effective stress. Four confining
pressures (o',= 25, 100, 400, 1600 kPa) are examined herein, for PI=0. Comparison of the

predicted with the experimental curves is depicted in Fig 3.9.
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Figure 3.1: Backbone curve showing typical variation of Gsec with shear strain

Plasticity Index k
0 0.00
20 0.18
40 0.30
60 0.41
80 0.48
=100 0.50

Table 3.1: Over consolidation Ratio Exponent, k
Source :After Hardin and Drnevich (1972b)
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e K2,max Dr(%) K2,max
0.4 70 30 34
0.5 60 40 40
0.6 51 45 43
0.7 44 60 52
0.8 39 75 59
0.9 34 90 70

Table 3.2: Estimation of K2,max
Source: Adapted from Seed and Idriss (1970)

Overconsolidation Ratio, OCR
Plasticity Index 1 2 5
15-20 1100 900 600
20-25 700 600 500
35-45 450 380 300

Table 3.3: Values of Gmax/Su
Source: After Weiler (1988)
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Figure 3.2: (a) Modulus reduction curves and (b) variation of damping ratio for fine- grained
soils of different plasticity. with cyclic shear strain amplitude
(After Vucetic and Dobry (1991). Effect of soil plasticity on cyclic resdponse. Journal of
Geotechnical engineering, Vol. 117, No. 1. Reprinted by permission of ASCE)
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Figure 3.3: Influence of mean effective confining pressure on (a) modulus reduction curves and
(b) variation of damping ratio for nonplastic (PI=0) soil with cyclic shear strain amplitude
(After Ishibashi and Zhang (1993)).
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Figure 3.4: Effect of mean effective stress on (a) normalized modulus reduction and (b) material

damping curves of a nonplastic soil

After: Mehmat Baris Darendeli, Doctor Of Philosophy, The University of Texas at Austin, August,

2001
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Figure 3.5: Influence of the parameter A in the monotonic stress - strain curve.
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Figure 3.6: Influence of the parameter n in the expansion of the hysteretic shear stress — strain
loop.
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Figure 3.7: Influence of the exponent n in the monotonic stress - strain curve.

A S1 S2 n
Vucetic et al. 5700 3.5 0.9 0.75
Darendeli et al. 5000 3.4 0.955 0.8

Table 3.4: Values of calibrated model parameters A, si1, s; and n according to Vucetic and
Dobry (1991) curves and according to Darendeli et al. (2001) curves
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Figure 3.8: Approximation of the Vucetic and Dobry (1991) shear modulus and damping curves
for sands (PI=0) of 100KPa confinement pressure. Published data is depicted with markers;
Model results with continuous lines.
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Figure 3.9: Approximation of the Darendeli et al. (2001) shear modulus and damping curves for
sands (PI=0) of various confinement pressure levels. Published data is depicted with markers;
Model results with continuous lines.
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Figure 3.10: Hysteretic shear — stress strain loops corresponding to the calibrated model against
Vucetic and Dobry (1991) shear modulus reduction and damping curves for the strain amplitudes

depicted with markers in Fig 3.8.
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Chapter 4
Numerical modelling of 1-Dimensional wave
propagation

4.1 Ground response analysis

One of the most important and most commonly encountered problems in geotechnical
earthquake engineering is the evaluation of ground response under earthquake loading.
Ground response analyses are used to predict ground surface motions for development of
design response spectra, to evaluate dynamic stresses and strain for evaluation of liquefaction
hazard and to determine the earthquake — induced forces that can lead to instability of earth
structures.

Despite the fact that seismic waves may travel through tens of kilometers of rock and often less
than 100 m of soil, the soil plays a very important role in determining the characteristics of the
ground surface motion. The influence of local soil conditions on the nature of earthquake
damage has been recognized for many years. Seismologists and geotechnical earthquake
engineers have worked toward the development of quantitative methods for predicting the
influence of local soil conditions on strong ground motion. Over the years, a number of
techniques have been developed for ground response analysis.

One of the most commonly used methods is a linear approach according to which transfer
functions can be used to compute the response of single-degree-of-freedom systems. For the
ground response problem, transfer functions can be used to express various response
parameters, such as displacement, velocity, acceleration, shear stress and shear strain to an
input motion parameter such as bedrock acceleration. Because it relies on the principle of
superposition, this approach is limited to the analysis of linear systems. Since the nonlinearity
of soil behavior is well known, the linear approach must be modified to provide reasonable
estimates of ground response for practical problems of interest. Non-linear behavior can be
approximated using an iterative procedure with equivalent linear soil properties. The
equivalent linear shear modules G, is generally taken as a secant shear modulus and the
equivalent linear damping ratio §, as the damping ratio that produces the same energy loss in a
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single cycle as the actual hysteresis loop. A known time history of bedrock (input) motion is
represented as a Fourier series, usually using the FFT. Each term in the Fourier series of the
input motion is then multiplied by the transfer function to produce the Fourier series of the of
the ground surface (output) motion. The ground surface (output) motion can then be expressed
in the time domain using the inverse FFT. Thus, the transfer function determines how each
frequency in the bedrock (input) motion is amplified, or deamplified, by the soil deposit.

Even though the process of iteration toward strain compatible soil properties allows non-linear
soil behavior to be approximated, it is important to remember that the response method is still
a linear method of analysis. The strain compatible soil properties are constant throughout the
duration of the earthquake, regardless of whether at a particular time are small or large. The
method is incapable of representing the changes in soil stiffness that actually occur during the
earthquake.

The equivalent linear analysis is generally more flexible than many non-linear analysis methods
and ground response is adequately approached (for a certain shear strain amplitude) with the
calibration of only two parameters. However, it appears considerable disadvantages:

e |t is incapable of describing basic cyclic soil behavior properties (e.g. shear modules
degradation, development-reallocation-reduction of the pore water pressure, residual
strains etc ).

e Using a reduced effective shear strain for the shear modules reduction and the damping
ratio increment, may lead to under-prediction of the stiffness and overestimation of the
hysteretic damping when the inflicted shear strains time history is close to a harmonic
one.

e Since soil properties are constant throughout each analysis step, the input ground
motion may be over-amplified due to a fictitious soil resonance of one or more
components of the input accelerogram. However, this is not happening in reality since
soil properties are constantly changing over time.

e The variation of the dynamic soil parameters on each analysis step is common for every
frequency component, regardless the corresponding strain amplitude. This results in
high frequencies “depression”, which are usually characterized by small amplitude, since
soil damping is overestimated for these components. This fictitious “depression” of the
high frequency components leads to considerable deviations on predicting seismic
response of deep soil deposits.

An alternative approach is to analyze the actual non-linear response of a soil deposit using
direct numerical integration in the time domain. By integrating the equation of motion in small
time steps, any linear or non-linear stress-strain model or advanced constitutive model can be
used. At the beginning of each time step, the stress-strain relationship is referred to obtain the
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appropriate soil properties to be used in that time step. By this method a non-linear inelastic
stress-strain relationship can be followed in a set of small incrementally linear steps.
The available non —linear analysis methods outclass the equivalent linear methods concerning
the cyclic soil response, however they suffer serious disadvantages:

e They over-predict hysteretic soil damping in great shear strains. The maximum
hysteretic damping ratio appears to be two times greater that the experimentally
measured one.

e They are not versatile in readjusting the hysteretic stress-strain loop shape, depending
on variation of the dynamic soil parameters.

e Their capability to approach the experimental data of cyclic soil test is limited.

At present, a great number of computer programs has been developed for non-linear one-
dimensional Seed (1978 ground response analysis such as DESPA-2 by Lee and Finn (1978),
MASH by Martin and), DYNA 1D by Prevost (1989), NONLI3 by Joyner (1977), TESS1 by Pyke
(1985), CHARSOIL by Streeter et al. (1973), CYCLIC 1D by Elgamal and DEEPSOIL by Hashash.

4.2 Mathematical framework

A number of techniques can be used to integrate the equations of motion. Of these, the explicit
finite difference technique is the most easily explained.

Consider the soil deposit of infinite lateral extent shown in Figure 4.1. If the soil layer is
subjected to horizontal motion at the bedrock level, the response will be governed by the
differential equation of the one —dimensional vertical shear wave propagation through a
continuum:

0%u _or N d93u
Pz = oz ' “az2ot

where u is soil displacement, T is shear stress and c is the viscoelastic constant, p is soil density,
z is depth from surface and t is time.

Finite difference method aims to approximate the values of the continuous function f (t, N) on
a set of discrete points in (t, N) plane. We divide the N-axis into equally spaced nodes at
distance AN apart, and, the t-axis into equally spaced nodes a distance At apart. Then (¢, N)
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plane becomes a mesh with mesh points on ( iAt, jAN). We are interested in the values of
f (t,N) at mesh points ( idt, jAN), denoted as f ;; = f (i4t, JAN).

The basic idea of FDM is to replace the partial derivatives by approximations obtained by Taylor
expansions near the point of interests. For example

of (&, N) . fE+AtL,N)—f (@ N) f(t+At,N)—f(tN)
gt a0 At N At

for small At using Taylor expansion at point (¢, N)

of (t,N)

™ At + 0((4¢t)?)

ft+4t,N) =f(,N) +
Then, the following three approximations to 1t order derivatives are formed (Fig. 4.2):

Of (LN) _ f(E+ALN)—F(L,N)

forward: o v + 0(4t)
backward: OrLN)  JON)- /(- AtN) + 0(A4t)

at At
central: Or (tN) fE+ALN)—f (- ALN) +0((4 t)z)

ot 24t

and for the 2"9 order derivatives a symmetric central-difference approximation is formed:

o’f(t,N) —2f(t,N) + f(t,N — AN)

PNE (AN)? +0((4N)*)

78



Chapter 4: Numerical modelling of 1-Dimensional wave propagation

Using Taylor's expansions for f(t,N + AN) and f(t,N — AN) around point (t, N) we derive
the finite difference approximations:

) of _ fivrj—fij of _ fij+1—fij
rwar rence: - —
forward difference 3t AL Yy N
backward difference: U o Lotz 9 o Lutim
at At oN AN
central difference: U o Lo lizyy I Ll
at 24t oN 24N

As to the second derivative, we have:

%f ~ fiv1,j=2fij+fi-1j and o%f ~ fijsr1—2fij+fij-1
at? At? ON?2 AN?

As with any integration problem the boundary conditions must be satisfied. Since the ground
surface is a free surface, 11=0, so

du(l,t)
dz 0

The boundary condition at the bottom of the soil deposit depends on the nature of the under-
lying bedrock. If the bedrock is rigid, its particle velocity 1, (t) = x4, , can be specified
directly as the input motion. If the bedrock is elastic, continuity of stresses requires that the
shear at the bottom of the soil layer 7y, be equal to the shear stress at the top of the rock
layer. Thus:

0%u _c du(N +1,t) duy(t)
dzot dt dt

T+t T C

Once the boundary conditions have been established, the integration calculations proceed from
the bottom to the top of the soil deposit in each time step, and step by step in time.
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If the soil deposit is initially at rest, then ;.o = 0 and 7;,-o = 0 for all i. We also need to
discretize the boundary and initial conditions accordingly.

Depending on which combination of schemes we use in discretizing the equations, we will have
explicit, implicit, or Crank-Nicolson methods.

According to the explicit method, the variables at the time i 4+ 1 are exclusively expressed using
the same variables at the time i. Thus, it outclasses numerous numerical methods for solving
differential equations systems, such as the implicit method, since the differencial equations
solution is being approached without the solution of an algebraic equations system in every
time step. However, despite being computationally simple, it appears a defect. Integration time
step At = k, must be multiple smaller than the respective space step 4z = h, for the algorithm
to converge. Space step h, should be very small as well, for the accuracy to be satisfactory.
Nevertheless, present-day computational progress renders explicit method one of the most
powerful tools for non-linear dynamic systems.

The integration progress can be summarized as follows:

1. At the beginning of each time step, the particle velocity u;, ,and total displacement u; .
,are known at each layer boundary.

2. The particle displacement profile is used to determine the shear strain y;, , within each
layer.

3. The stress-strain relationship (as it is presented in ch. 2) is used to determine the shear
stress, ;. , in each layer.

4. The input motion is used to determine the motion of the base of the soil layer at
time t + At.

5. The motion of each layer boundary at time t + At is calculated, working from bottom to
top. The progress is then repeated from step 1 to compute the response in the next
time step.

Although equivalent linear and non- linear methods are both used to solve one- dimensional
ground response analysis problems, their formulations and underlying assumptions are quite
different. Consequently, it is reasonable to expect to find some differences in their results.
Comparing the results of equivalent linear and non- linear ground response analysis the
following general conclusions can be extracted:

1. The inherent linearity of equivalent linear analyses can lead to spurious resonances (i.e.,
high levels of amplification that result from coincidence of a strong component of the
input motion with one of the natural frequencies of the equivalent linear soil deposit).
Since the stiffness of an actual noni- linear soil changes over the duration of a large
earthquake, such high amplification levels will not develop in the field.



Chapter 4: Numerical modelling of 1-Dimensional wave propagation

2. The use of an effective shear strain in an equivalent linear analysis can lead to an over-
softened and over- damped system when the peak shear strain is much larger than the
remainder of the shear strains, or to an under- softened, underdamped system when
the shear strain amplitude is nearly uniform.

3. Equivalent linear analyses can be much more efficient than non- linear analyses,
particularly when the input motion can be characterized with acceptable accuracy by a
small number of terms in a Fourier series. For example, most earthquakes contain
relatively little elastic wave energy at frequencies above 15 to 20 Hz. Consequently, the
response can usually be computed with reasonable accuracy by considering only the
frequencies below 15 to 20 Hz (or lower, in some cases0. As the power, speed and
accessibility of computers have increased in recent years, the practical significance of
differences in the efficiency of one- dimensional ground response analyses has
decreased substantially.

4. Non- linear methods can be formulated in terms of effective stresses to allow modeling
of the generation, redistribution and eventual dissipation of excess pore pressure during
and after earthquake shaking. Equivalent linear methods do not have this capability.

5. Non- linear methods require a reliable stress- strain or constitutive model. The
parameters that describe such models are not as well established as those of the
equivalent linear model.

6. Differences between the results of equivalent linear and non- linear analyses depend on
the degree of nonlinearity in the actual soil response. For problems where strain levels
remain low (stiff soil profiles and/or relatively weak motions), both analyses can
produce reasonable estimates of ground response. For problems involving high strain
levels, particularly problems in which the induced shear stresses approach the available
shear strength of the soil, nonlinear analyses are likely to provide reasonable results.

In summary, both equivalent linear and non-linear techniques can and have been used
successfully for one-dimensional ground response analysis. The use and interpretation of each
requires knowledge of their underlying assumptions, understanding of their operation, and
recognition of their limitations. Neither can be considered mathematically rigorous or precise,
yet the accuracy is not inconsistent with the variability in soil conditions, uncertainty in soil
properties, and scatter in the experimental data upon which many of their input parameters
are based.
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4.3 Comparison with other methods

The downgrated in p-q space version of the three dimensional constitutive sand model TA-GER
[9], [10], as it was described in chapter 2 is implemented into an inhouse computer code which
uses the explicit finite-difference technique to integrate the equations of motion for the
nonlinear one-dimensional ground response analysis of layered sites.The procedure is being
followed as it was described in the previous paragraph. In order to obtain the maximum
accuracy, integration time step At = k, must be multiple smaller than the respective space step
Az = hfor the algorithm to converge, thus k= 10“s and h=0.5m.

Using the finite difference approximation we derive the following expressions for the soil
velocity and acceleration respectively:

_ Wiy~ Ui
VT T e
_ Wiy 72U Uiy
a;j = k2

Soil response in each space node j and each time step i is expressed using the variables at the
previous time step., as follows:

k2
i) =5 (Tijar, = Tijo1) +

ck
ner (wijer = 2w + Uy jg = Uimg jog + 2o j = Uimyjan) + 2Up ) = Uimg

where:

U is the soil displacement

T is the shear stress

k is the integration time step
h is the integration space step

is the soil density =2 Mg/m3

~

C is the viscocity coefficient =50 KN*sec/ m?3

The boundary conditions impose that the shear stress at the top of the bedrock and therefore
the shear strain at the same position be equal to zero. The above constraint is expressed
through the equation:
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Uiz = Uj1

The boundary condition at the bottom of the soil deposit requires that the shear stress at the
top of the underlying bedrock be equal to the shear stress at the bottom of the soil and thus:

k c
Uip1,N+1 = 7 Tin+1 T (ui,N —UjN+1 — Ui-1,N T ui—l,N+1)
Crock Crock * h
+tug; —ugi-1

where:

Crock is the dashpot coefficient of the bedrock accounting for radiation damping and is taken
equal to 5000 KN*sec/ m3

ug isthe displacement imposed by the excitation

The initial conditions, e.g. zero initial displacement and zero initial velocity at the whole soil

column, should also be accounted and they are expressed in the well known finite difference
form as follows:

ul,j = 0
Up,j — Up,j

=0
k

The effectiveness of the proposed model is checked against the hysteretic model by Gerolymos
and Gazetas [4] implemented in the finite difference code NL-DYAS ([4], [5]). To serve as a
yardstick, an equivalent linear soil response analysis was also carried out with the use of code
STRATA [2] — one of the current state-of-practice soil amplification codes. The goal is twofold:
the validation between three different models, that represent three different schools and the
estimation of the range of applicability of each one of the tree methods, a plasticity based
model which is governed by an physical law for connecting the volumetric strain with the shear
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strain, a phenomenological model, which lucks a plastic flow rule and the equivalent linear
method.

To compare the aforementioned methods a 30-m deep dense sand profile with density p = 2.1
Mg/m3, constant with depth, and shear wave velocity distribution illustrated in Fig 4.3, is
excited at its base and its response is calculated.

In order to reveal the drawbacks of every method, two analyses with different excitations will
be carried out. A strong motion, the JMA 090 record from the Kobe (1995) earthquake and a
moderate one from Kalamata 1986 earthquake are used as excitations at the base of the soil
column. We consider the sand to behave according to the Derendeli curves.

The results of the three analyses (TA—GER, NL-DYAS, STRATA) are portrayed in terms of : (a) the
distributions with depth of the peak values of acceleration, displacement, shear strain, and
shear stress (Figs 4.4 and 4.5), (b) the acceleration time histories at the ground surface (Figs 4.6
and 4.8), (c) the stress—strain hysteresis loops of the two nonlinear models at the depth of 5m
and 15m (Figs 4.10 and 4.11), and (d) the corresponding acceleration response spectra (Figs
4.12 and 4.13). The following remarks can be made:

e Results corresponding to Kalamata 1986 medium intensity excitation are very similar for
all the three methods in terms of distributions with depth and quite similar acceleration
time histories, with STRATA exhibiting slightly higher amplitudes. The predicted
accelerations at the surface are:

» Tager: 0.51g and -0.48g maximum and minimum acceleration the surface
» NL-Dyas: 0.50g and -0.48g maximum and minimum acceleration the surface
» Strata: 0.57g and -0.50 g maximum and minimum acceleration the surface

for 0.23g and 0.24g excitation accelerations respectively.

Accelerations spectra at the surface are also in well agreement denoting that the
equivalent linear method is sufficiently adequate and provides reliable results for
excitations in this level of intensity. The consistency of predictions indicates also that
the plasticity based method Tager is correctly validated.

The similarity between the shear stress — strain diagrams of TA-GER and NL-DYAS
analyses is evident for this motion. Slight differences are within expectations.

e Regarding the strong seismic excitation, a fairly similar response is predicted by the two
non-linear models, considerably deviating from strata predictions. In terms of
distributions with depth the equivalent linear method under — predicts the maximum
displacement. Differences exist also between the two non — linear methods, especially in
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terms of maximum strain with depth but are less intense and are completely eliminated
in terms of acceleration time histories at the surface:

» Tager :0.85g and -0.72g maximum and minimum acceleration at the surface
» NL-Dyas: 0.86g and -0.73g maximum and minimum acceleration at the surface
» Strata: 1.39g and -0.97g maximum and minimum acceleration at the surface

for 0.60g -0.45g excitation accelerations respectively.

In terms of acceleration spectra at the surface STRATA significantly exaggerates the
long-period pulses, while it depresses the high-frequency components — a performance
within expectations, as such “depression” of high frequencies has been already noted in
the literature (e.g. [13], [14], [15], [16]). The response acceleration spectra from the
three codes reinforce this conclusion: whereas the two inelastic soil models produce
almost identical spectra, the equivalent-linear analysis, having filtered-out the short-
period components, underpredicts the spectral values for periods less than 0.45 sec. It is
worth mentioning that an improved equivalent-linear method that avoids the
overdamping of high frequencies has been developed by Assimaki and Kausel [14]. Such
overdamping stems from the facts that damping is a function of strain amplitude and
that high frequencies are usually associated with small amplitudes of motion; thus,
these components experience substantially less damping than the dominant frequencies
and are artificially suppressed when hysteretic damping is taken as constant. The
overestimation of the long period spectral accelerations by the equivalent linear method
is due to resonance phenomena that take place in a linear analysis. Such phenomena
phenomena cannot be developed when nonlinearity is accounted for, as the shear
modulus, therefore the natural periods of soil, are not fixed but change over time.

There are sharp differences between the hysteretic shear stress — stain loops, for the
two non - linear models for z=5m and z=15m, with Tager predicting higher values of
shear strain, but this deviation is expected, considering that the models exhibit
differences and loops are very sensitive. However, the TA-GER model predicts broader
hysteresis loops that are more regular in shape.
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Figure 4.1: (a) Uniform soil deposit of infinite lateral extent overlying bedrock (b) discretization
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Figure 4.2: Forward, central and backward derivatives approximation
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Figure 4.3: Shear modulus and shear wave velocity distribution with depth for the 30m deep soil
profile
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Figure 4.4: Distributions with depth of the peak values of acceleration, displacement, shear
strain, and shear stress. Shaking with Kalamata 1986 record
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Figure 4.6: Comparison of acceleration time histories at the surface computed with the three models.
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Figure 4.7: Acceleration time history for the common base excitation of with Kalamata 1986 record
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Figure 4.8: Comparison of acceleration time histories at the surface computed with the three models.
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Figure 4.9: Acceleration time history for the common base excitation of with Kobe JMA 090 1995 record
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Figure 4.10: Comparison of stress — strain loops computed with Ta- Ger and NL — DYAS at z=15m
and z=5m. Shaking with Kalamata 1986 record
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Figure 4.11: Comparison of stress — strain loops computed with Ta- Ger and NL — DYAS at z=15m and
z=5m. Shaking with Kobe JMA 090 1995 record
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Figure 4.12: (a) Acceleration response spectra at the surface calculated with the three models
and (b) common base acceleration spectra. Shaking with Kalamata 1986 record
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Figure 4.13: (a) Acceleration response spectra at the surface calculated with the three models
and (b) common base acceleration spectra. Shaking with Kobe JMA 090 1995 record
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Chapter 5
Conclusions

5.1 Conclusions

A recently proposed by Tasiopoulou and Gerolymos constitutive model for sand, was
downscaled from the three dimensional space ( 6 stresses and 6 strains) to the two dimensional
space (2 stresses and 2 strains). The model is based on a modified elastoplasticity scheme and
founded on the effective stress and critical state concepts. The constitutive formulation
combines features of classical elastoplasticity with a hardening law and an unloading-reloading
rule of the Bouc-Wen type. The model performance was demonstrated through a series of
simulations on drained condition with monotonic and cyclic loading. It was shown that the
model is capable of reproducing the basic aspects of sand behavior, such as, hysteretic loops,
progressing stiffening, densification, etc.

Afterwards, the capability of the model on fitting the experimental shear modulus reduction
and damping curves was tested. Two families of published experimental data were utilized,
those proposed by Vucetic and Dobry (1991) and those proposed by Darendeli et al. (2001).
Only four model parameters were selected for calibration. Curve fitting revealed that values of
the parameters selected for calibration are unique for every mean effective stress level, for
each one of the family curves, i.e. there is no need to recalibrate the model parameters to
account for different values of p.

The model is finally implemented into a finite differences in - house computer code. The
equations of motion, the boundary conditions and the initial conditions were approached using
the explicit finite difference method technique. The model was validated against two different
methods established in literature, a non — linear method that utilizes a hysteretic
(phenomenological) model and the well - known equivalent linear method. Validation proved
the model capable of predicting efficiently the 1D nonlinear site response. The capability of the
model in simulating the nonlinear response of horizontally layered deposits was checked
testing a 30 m deep dense sand profile to two different levels of seismic excitation on its base, a
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moderate and a strong one. While the three codes exhibited similar results for the moderate
seismic excitation case, validating the proposed plasticity-based model, the equivalent linear
method fails to vyield satisfactory results for the strong motion case, significantly
underestimating the high-frequency components of the ground response and overestimating
the low-frequency ones. Thus, it is evident that equivalent linear method is incapable of
predicting accurate results when soil non linearity is dominant and should be used carefully
when simulating strong seismic excitations. On the contrary, the phenomenological hysteretic
non — linear method is in well agreement with the plasticity based non — linear method for both
the excitations. However, the lack of a physically motivated plastic flow rule for the connection
of the plastic volumetric strain with the plastic shear strain, that the phenomenological model
suffers from, leads to difficulties in extending the model to account for undrained conditions,
while plasticity based models are perfectly able to account for drained and undrained
conditions as well. Furthermore, phenomenological models can not be extended to three
dimensional space to predict system failure but are limited to soil element response and are
also incapable of simulating two face analyses. Thus, it is a worthly procedure to calibrate and
validate a plasticity based model even in the two — dimensional space since it is the first step for
more complex and sophisticated analyses that only this type of constitutive models can
provide.

5.2 Future work

The calibration of the model according to the published shear modulus reduction and damping
curves and its validation in predicting the one dimensional soil response was carried out only
for drained conditions in the present work. The next step, would be the implementation of the
same procedure to account for undrained conditions. The constitutive model should be
reformed and it’s ability to accurately predict pore pressure generation should be tested
against the experimental data for the cyclic liquefaction resistant ratio curves. Model is
potentially capable for simulating partially drained conditions as well.
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