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A B S T R A C T 

 

A plasticity model is presented for the non-linear ground response analysis of layered sites. The 

model is the one-dimensional version of that recently proposed by Tasiopoulou and Gerolymos 

(2016) for sand behavior, designated as TA-GER sand model. Critical state compatibility for 

monotonic and cyclic loading, anisotropic plastic flow rule and Bouc-Wen motivated hardening 

law are among the key-features of the developed 1D model, offering considerable flexibility in 

representing complex patterns of cyclic behavior such as stiffness decay and increase in 

strength due to build-up of pore-water pressure. Implemented through an explicit finite–

difference algorithm into an in-house computer code which performs integration of the wave 

equations to obtain the nonlinear response of layered soil deposits, the model is first calibrated 

to match published experimental shear modulus and damping curves and is then validated 

against results from two wave-propagation codes available in literature 

. 
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 Π Ε Ρ Ι Λ Η Ψ Η 

 

Αναπτύσσεται ένα προσομοίωμα πλαστικής συμπεριφοράς για τη μη γραμμική 

ανάλυση εδαφικής απόκρισης πολύστρωτων σχηματισμών. Το μοντέλο αποτελεί τη 

μονοδιάστατη έκδοση του μοντέλου Ta-Ger για αμμώδη εδάφη, που προτάθηκε 

πρόσφατα από τους Τασιοπούλου και Γερόλυμο (2016). Εξέχοντα χαρακτηριστικά του 

μοντέλου αποτελούν η συμβατότητα με την θεωρία κρίσιμης κατάστασης για 

μονοτονική και ανακυκλική φόρτιση, ο ανισοτροπικός πλαστικός νόμος ροής και ο 

εμπνευσμένος από τους Bouc – Wen νόμος κράτυνσης, προσφέροντας αξιοσημείωτη 

ευελιξία στην αναπαράσταση σύνθετων μηχανισμών  ανακυκλικής συμπεριφοράς όπως 

η μείωση της δυσκαμψίας και η απώλεια της αντοχής λόγω ανάπτυξης υπερπιέσεων 

πόρων. Το μοντέλο εισάγεται σε έναν αλγόριθμο επίλυσης άμεσης μεθόδου 

πεπερασμένων διαφορών, που πραγματοποιεί ολοκλήρωση της διαφορικής εξίσωσης 

διάδοσης κύματος, για τη μη γραμμική απόκριση πολύστρωτων εδαφικών 

σχηματισμών και στην συνέχεια βαθμονομείται βάσει των δημοσιευμένων 

πειραματικών καμπυλών μείωσης του μέτρου διάτμησης και αύξησης της απόσβεσης. 

Τέλος, το μοντέλο επικυρώνεται σύμφωνα με αποτελέσματα δύο εναλλακτικών 

μεθόδων πρόβλεψης της απόκρισης σε διάδοση διατμητικού κύματος, διαθέσιμων στη 

βιβλιογραφία. 

 





 

EXTENDED ABSTRACT 

 

INTRODUCTION 

Several constitutive models and numerical codes have been proposed over the last decades for 

1D seismic response analysis of horizontally layered soils subjected to vertically-polarized S 

waves. In general, they can be categorized into three major groups: (a) The equivalent linear 

viscoelastic models (e.g. [1], [2]), (b) the nonlinear hysteretic (or phenomenological) models 

(e.g. [3], [4], [5]), and (c) the plasticity-based models (e.g. [6], [7]) 

Equivalent linear models are the most popular owing to their computational convenience and 

simplicity. Their main limitations include their inability to efficiently predict the behavior of a 

nonlinear system under strong ground motions where large cyclic shear strains dominate the 

response and the violation of the principle of physical causality [8]. Well identified features of 

cyclic soil behavior, such as: densification, cyclic mobility, stiffness decay and loss of strength 

due to pore pressure generation, asymmetric response with loading direction are inherently 

impossible to be reproduced. 

Hysteretic models are plausible alternatives to plasticity-based models, but, while capable of 

overcoming most of the aforementioned limitations, the calibration process is often an arduous 

task in which the physical meaning of the model parameters is often jeopardized in favour of 

case-specific accuracy. The absence of a physical law for relating volumetric with shear strains is 

the main source of this drawback.  

Present work presents a downscale version of the recently developed plasticity-based model by 

Tasiopoulou and Gerolymos for sand behavior [9], [10]. A methodology for the calibration of 

the model parameters is developed, so that the constitutive stress–strain loops are consistent 

with experimental shear modulus and damping curves available in the literature. The finite 

difference wave-propagation code, into which the aforementioned model was implemented, is 

validated through comparison with results from the equivalent-linear code STRATA [2] and the 

nonlinear hysteretic code NL-DYAS [4], [5].  

 

BRIEF MODEL DESCRIPTION 

Tasiopoulou and Gerolymos [9], [10] developed a new plasticity-based model for sand behavior 

formulated in the 6-dimenional stress-strain space. In the present work, a 2-dimensional (in p-q 

space) version of the model is presented for the 1D seismic response analysis of layered soils. 



 
 

According to this version, the incremental stress-strain relationship is given in the following 

matrix form: 
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in which K and G are the elastic (small strain) bulk modulus and shear modulus respectively, d is 

the ratio of the plastic volumetric strain increment pdε p, over the plastic deviatoric strain 

increment qdε p and is based on Rowe’s dilatancy theory as it depends on the distance of the 

current stress ratio q/p from the phase transformation line Mpt and Ms is the failure stress ratio 

representing the ultimate strength. Parameter aζ is a hysteretic dimensionless quantity that 

provides the loading and unloading rule and is a function of the Bouc–Wen parameter ζ, while 

the exponent n controls the rate of transition from the elastic state to the perfectly plastic one. 

Finally, η is inserted as a multiplier of the hardening elastoplastic matrix expressing the 

dissipated hysteretic energy. It is expressed in a ductility based form, as it is a function of μ 

which is a reference ductility defined in terms of shear strain, as follows: 
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where s1 and s2 are model parameters. Indicative model predictions for characteristic values of 

the aforementioned parameters, for monotonic and cyclic drained shear tests will emphasize 

progressing stiffening and evolution to the critical state as loading cycles accumulate and 

densification builds up. Monotonic and cyclic element tests also depict the evolution of the 

phase transformation and the ultimate strength parameters Mpt and Ms, from their initial 

values to their critical state value Msc, in a large strain.  

 

 

 



 
 

 
 

PARAMETERS CALIBRATION 

To determine the parameters of the model Gmax is first obtained (e.g., from resonant column 
tests, crosshole / downhole tests, etc.); then, the parameters n, s1 , and s2 must be assessed. 
The calibration is based on matching some established experimental G : γ and ξ : γ curves from 

the literature. To this end, the LavenbergMarquardt optimization procedure is used, available 
in mathematical code MATLAB. Two published families of G : γ , ξ : γ curves have been utilized: 
(a) the Vucetic & Dobry curves for sand [11] and (b) the pressure (σ’0)-dependent curves of 
Darendeli et al. [12]. 

Starting from the Vucetic & Dobry (1991) curves, the agreement between computed and 
experimental curves is quite satisfactory. Small discrepancies are observed for small strain 
levels. 

Darendeli et al. [12] recommended a new family of normalized shear modulus and material 
damping curves, as functions of plasticity index and mean effective stress. Four confining 

pressures ( 0' = 25, 100, 400, 1600 kPa) are examined herein. The set of calibrated parameters 

is unique for each family of curves and there is no need for recalibration to account for 
different values of mean confining pressure. 

 

COMPARISON WITH OTHER METHODS 

The 2-dimensional version of the TA-GER sand model [9], [10] is implemented into a computer 
code which uses the explicit finite-difference technique to integrate the equations of motion for 
the nonlinear one-dimensional ground response analysis of layered sites. 

The effectiveness of the proposed model is checked against the hysteretic model by Gerolymos 
and Gazetas [4] implemented in the finite difference code NL-DYAS ([4], [5]).  

To compare NL-DYAS with TA-GER, a 30-m deep dense sand profile with density ρ = 2.1 Mg/m3, 
constant with depth, and a certain shear wave velocity distribution is excited at its base and its 
response is calculated. 

A strong motion, the JMA 090 record from the Kobe (1995) earthquake and a moderate one 
from Kalamata 1986 earthquake are used as excitations at the base of the soil column. We 
consider the sand to behave according to the Derendeli curves. 

To serve as a yardstick, an equivalent linear soil response analysis was also carried out with the 
use of code STRATA [2] ― one of the current state-of-practice soil amplification codes.  

The results of the three analyses (TA–GER, NL-DYAS, STRATA) in terms of the acceleration time 

histories at the ground surface, the distributions with depth of the peak values of acceleration, 

displacement, shear strain, and shear stress, the stress–strain hysteresis loops of the two 

nonlinear models at the depth of 5m and 15m and the corresponding acceleration response 

spectra will raise the following conclusions: 

 



 
 

 For the moderate excitation, all three codes (and corresponding soil models) predict 
similar response in terms of distributions with depth and quite similar acceleration time 
histories, with STRATA exhibiting slightly higher amplitudes. 

 Regarding the strong seismic excitation, a fairly similar response is predicted by the two 
non-linear models. On the other hand, STRATA significantly exaggerates the long-period 
pulses, while it depresses the high-frequency components — a performance within 
expectations, as such “depression” of high frequencies has been already noted in the 
literature (e.g. [13], [14], [15], [16]). The response acceleration spectra from the three 
codes reinforce this conclusion: whereas the two inelastic soil models produce almost 
identical spectra, the equivalent-linear analysis, having filtered-out the short-period 
components, underpredicts the spectral values for periods less than 0.45 sec. It is worth 
mentioning that an improved equivalent-linear method that avoids the overdamping of 
high frequencies has been developed by Assimaki and Kausel [14]. Such overdamping 
stems from the facts that damping is a function of strain amplitude and that high 
frequencies are usually associated with small amplitudes of motion; thus, these 
components experience substantially less damping than the dominant frequencies and 
are artificially suppressed when hysteretic damping is taken as constant. The 
overestimation of the long period spectral accelerations by the equivalent linear method 
is due to resonance phenomena that take place in a linear analysis. Such phenomena 
phenomena cannot be developed when nonlinearity is accounted for, as the shear 
modulus, therefore the natural periods of soil, are not fixed but change over time. 

 The distributions with depth of the peak values of acceleration, shear stress, and 
horizontal displacement computed with the two nonlinear models for the JMA 090 
record are in well agreement, considerably deviating from those of the equivalent linear 
method. The similarity between the τ – γ diagrams of TA-GER and NL-DYAS analyses is 
evident for the moderate motion. There are sharp differences for the strong seismic 
excitation, however, with the TA-GER model predicting broader hysteresis loops that are 
more regular in shape. 

 

CONCLUSIONS  

A plasticity-based model implemented into a finite differences computer code was presented 
and found capable of predicting efficiently the 1D nonlinear site response. The model is a 
simplified version of that originally proposed by Tasiopoulou and Gerolymos [9], [10]. The few 
model parameters were calibrated against experimental results in terms of the shear modulus 
reduction and damping ratio increase curves available in the literature. The capability of the 
model in simulating the nonlinear response of horizontally layered deposits was checked 
through comparison with two codes available in the literature: NL-DYAS and STRATA. While the 
three codes exhibited similar results for the moderate seismic excitation case, validating the 
proposed plasticity-based model, the equivalent linear method fails to yield satisfactory results 
for the strong motion case, significantly underestimating the high-frequency components of the 
ground response and overestimating the low-frequency ones. 
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Chapter 1 

Subject of study and literature review 
 

1.1 Scope 

The scope of the Thesis is to develop a two – dimensional model, deriving from a plasticity 

based three – dimensional constitutive model, that can conduct one – dimensional ground 

response analyses of horizontally layered soils subjected to vertically-polarized S waves. It is 

aimed that the proposed model can be used in practice for relevant geotechnical problems. In 

this line of thought, calibration of the constitutive relationship parameters according to 

experimental data and validation against relevant methods for predicting ground response in 

seismic shaking is intended in order to enhance the reliability and applicability of the model. 

1.2 Layout 

Dynamic soil response 

The dynamic response of a soil element under cyclic loading is characterized by the hysteretic 

loop that connects the stress with the strain. 

Numerous constitutive models have been developed lately for the representation of the soil 

cyclic response. The complexity of these models is usually strongly associated to the range of 

their applicability. A broad categorization of the soil models could be the following: 

 viscoelastic models 

 hysteretic or non – linear cyclic models 

 plasticity theory based models 

When the shear strain amplitude that seismic loading imposes is around 10-4 to 10-5 cyclic soil 

response is adequately described by the classical theory of linear viscoelasticity. For these small 

strains soil response is almost elastic and is characterized by small hysteretic damping, which 

influences, however, the response. The main defect of these models is the correlation between 

the damping (and the shear modulus in a Maxwell type model) and the frequency. This has not 

been ascertained by laboratory tests, which converge that soil damping and stiffness are 

practically independent of the imposed rate of deformation.  
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The range of application of the viscoelastic models is extended in the study of the cyclic soil 

response in medium strains around 10-4 to 10-3, through the usage of the equivalent – liner 

analysis methods. In these strain amplitudes the influence of loading cycles in mechanical soil 

properties is adequately described by only two parameters: the secant shear modulus and the 

damping.  

For strain amplitudes greater than 10-3 soil properties are conspicuously affected by the strain 

amplitude as well as by the number of loading cycles and more general by the exact 

relationship between the stress and the strain. Viscoelasticity theory is incapable of describing 

complex non – linear characteristics of cyclic soil response, such as stiffness degradation and 

loose of strength with the loading cycles, irregular response depending on loading direction, 

residual strain etc. 

 

Aiming at the realistic soil response analysis in large strains, a bunch of in – elastic (hysteretic) 

models has been developed. In almost every proposed hysteretic model for describing the 

stress – strain relationship Masing ‘s unloading – reloading rule is being utilized. This criterion 

was proposed in 1926 for the representation of metals cyclic response. Despite of being 

incapable of realistically representing the diverse soil response in loading – unloading, it is being 

widely used in geotechnical earthquake engineering thanks to its simplicity.  

A considerable drawback of the non – linear cyclic (hysteretic) models nis their difficulty in 

representing the response under a big number of stress paths. The overcome this problem a 

number of constitutive models based in plasticity theory has been developed  

Advanced constitutive modeling 

The most accurate and general methods for representation of soil behavior are based on 

advanced constitutive models that use basic principles of mechanics to describe observed soil 

behavior for (a) general initial stress conditions, (b) a wide variety of stress paths, (c) rotating 

principal axes, (d) cyclic or monotonic loading, (e) high or low strain rates and (f) drained or 

undrained conditions.  

Such models generally require a yield surface that describes the limiting stress conditions for 

which elastic behavior is observed, a hardening law that describes changes in the size and 

shape of the yield surface as plastic deformation occurs, and a flow rule that relates increments 

of plastic strain to increments of stress. The Cam – Clay (Roscoe and Schofield, 1963) and 

modified Cam – Clay (Roscoe and Burland, 1968) models were among the first of this type. 

Improvements in the prediction of shear strains have resulted from the use of multiple nested 

yield loci within the yield surface (Mroz, 1967; Prevost, 1977) and the development of bounding 
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surface models (Dafalias and Popov, 1979) which incorporate a smooth transition from elastic 

to plastic behavior.  

Although advanced constitutive models allow considerable flexibility and generality in modeling 

the response of soils to cyclic loading, their description usually requires many more parameters 

than equivalent linear models or cyclic non linear models. Evaluation of these parameters can 

be difficult, and the parameters obtained from one type of test can be different from those 

obtained from another. Additionally, the development of plasticity based models is mainly 

based on the depiction of the soil response under static loading. Their competency in dynamic 

conditions is not yet equally satisfactory. Although the use of advanced constitutive models will 

undoubtedly increase, these practical problems have, to date, limited their use in geotechnical 

earthquake engineering practice. 

A hierarchy of models are available for characterization of the stress – strain behavior of 

cyclically loaded soils. The models range considerably in complexity and accuracy; a model that 

is appropriate for one type of problem may not be appropriate for another. No single stress – 

strain model is appropriate for all problems. Selection of a stress – strain model requires careful 

consideration of the problem to which it is to be applied, recognition of the assumptions and 

limitations of the available models, and a good understanding of how the model is used in all 

required analyses.  

 

1.3 Monotonic and cyclic behavior of sand 

The behavior of sand has been extensively studied in literature both experimentally and 

theoretically. Experimental observations provided an insight on the behavioral trends and 

mechanisms developed under various loading conditions. These observations constituted the 

basis upon which Critical State Theory by Roscoe et al. (1958) and Schofield and Wroth (1968) 

was formulated, aiming to accommodate and interpret the basic behavioral characteristics of 

sand. In the following, a review of the most characteristic aspects of sand response is held 

within the framework of Critical State Theory. 

 

Monotonic behavior of sand 

After numerous experimental observations, it has become common knowledge that sand tends 

to undergo shear-induced volume change until a critical state is reached, upon which shearing 

occurs with no volumetric change. Whether shearing tends to develop positive (contraction) or 

negative (dilation) volume change depends on the initial state of the material relative to the 
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critical state which is a function of the relative density and the confining pressure. The critical 

state is defined by a surface formed in e-p-q space, which is projected as a line (CSL) in the e-p 

and q-p planes; e being the void ratio, q the deviatoric stress and p being the mean effective 

stress. Critical state is considered to be unique for each type of sand. Figure 1.1 illustrates the 

critical state line (CSL) in e-p plane. Initial loose states, located at the right-hand side of CSL, 

exhibit contractive behavior which is reflected through reduction of: (i) void ratio, e, in case of 

drained p-constant loading and (ii) mean effective stress, p, in case of undrained loading, until 

CSL is reached. Dense states, located at the left-hand side, initially exhibit contractive response 

until phase transformation line (PTL) is reached. Thereafter, dilative response dominates which 

is interpreted as increase of: (i) void ratio, e, in case of drained p-constant loading and (ii) mean 

effective stress, p, in case of undrained loading, until CSL is reached. 

This kind of behavior is confirmed experimentally, as shown in Figure 1.2(a). As the initial void 

ratio increases for a given initial confining pressure, the response tends to be more contractive. 

In terms of stress-strain curves, a hardening type of response is observed which becomes more 

intense as the initial void ratio increases. It should be noticed that the void ratio reaches 

practically the same residual value, known as critical void ratio, irrespectively of the initial 

value, as it is predicted by the Critical State Theory. It is also worth mentioning that critical state 

is also reached in p-q space at large strains, as shown by Figure 1.2(b). The stress ratio q/p 

reaches a unique residual critical stress ratio, irrespectively of the initial conditions. 

 

Apart from the dependency of sand response on the initial void ratio (or initial relative density, 

Dr), Figure 1.3 demonstrates the impact of initial confining pressure, p. For a given initial 

relative density, the response becomes more dilative as initial confining pressure decreases. In 

stress-strain terms, the effect of dilatancy is exhibited by an increase in maximum obtained 

strength followed by strain softening. 

The tendency of positive (dilatancy) or negative (contraction) volumetric change in case of 

drained loading conditions is expressed through increase or reduction of mean effective stress, 

respectively, in case of undrained loading, as characteristically shown in Figure 1.4. 

Experimental results of Figure 1.5 illustrate the behavioral trend under undrained conditions for 

various initial relative densities and confining pressures. All the evolving stress paths in p-q 

space converge to the critical state line, which works as a failure envelope, until the ultimate 

critical stress state is reached. 

So far, it has been shown that the behavior of sand is dependent on the relative position of its 

initial state, in terms of initial density and means effective stress, to the critical state line in e-p 

plane. However, experimental results depicted in Figure 1.6 indicate dependency on the loading 
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direction, for a given initial state. Despite the given constant distance between initial state and 

CSL in e-p space, sand exhibits contractive behavior in case of triaxial extension loading, while 

its response is dilative under triaxial compression loading. This behavioral diversity is attributed 

to stress-induced anisotropy 

 

Cyclic Behavior of Sand 

Cyclic behavior of sand presents certain differentiations when compared to the monotonic 

response, which cannot be fully accommodated by the strictly defined Critical State framework. 

For example, experiments confirm that irrespectively of the initial state relative to the CSL in e-

p space, sand exhibits only contractive behavior, in accumulative terms, tending to reach the 

densest possible configuration, defined by minimum void ratio, emin, under drained conditions, 

or reach zero values of mean effective stress under undrained conditions, as shown in Figure 

1.7. The first tendency leads to densification and increase in strength/stiffness, known as cyclic 

hardening, (Figures 1.8-1.10), while the latter one is associated with cyclic mobility and 

liquefaction effects (Figure 1.11(a)). It should be mentioned, though, that the critical state 

concept applies in p-q space, where the critical stress ratio is reached at large strains, after a 

sufficient number of cycles, irrespectively of the drainage conditions. 

In other words, the dependency of sand behavior on the initial state relative to CSL in e-p space 

is not reflected in the same way as in case of monotonic loading, where it determines whether 

the response will be dilative or contractive. In case of cyclic loading, the above mentioned 

dependency determines the number of loading cycles needed to achieve either: (i) e = emin 

(drained conditions) or (ii) p = 0 (undrained conditions). The correlation between number of 

cycles and initial relative density is shown in Figures 1.10 and 1.11(b). 
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Figures 

 

Figure 1.1. Illustration of monotonic behavior of sand in e-p space, where e is the void ratio and 

p is the mean effective stress: (a) drained and (b) undrained conditions. 

 

Figure 1.2. Drained triaxial tests: (a) stress-strain curves and void ratio versus deviatoric stress, 

(b) stress ratio versus axial strain (Verdugo and Ishihara, 1996). 
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Figure 1.3. Drained triaxial compression tests on loose and dense sand specimens under a range 

of effective confining stresses (Lee and Seed, 1967). 

 

Figure 1.4. Influence of drainage conditions on sand response (Zhang et al., 1997). 
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Figure 1.5. Undrained triaxial compression tests on sand specimens of various initial relative 

densities under a range of effective consolidation stresses (Verdugo and Ishihara, 1996). 
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Figure 1.6. (a) Influence of loading direction on sand response (Yoshimine et al., 1998) and (b) 

how it can be predicted within the critical state framework. 

 

 

 

Figure 1.7. Illustration of cyclic behavior of sand in e-p space, where e is the void ratio and p is 

the mean effective stress: (a) drained and (b) undrained conditions. 
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Figure 1.8. Stress-strain curves (left) and volumetric strain versus shear strain for a medium 

dense sand specimen subjected to drained cyclic simple shear under constant strain amplitude 

(Shahnazari and Towhata, 2002). 

 

 

 

Figure 1.9. Volumetric strains in drained cyclic direct simple shear tests on clean sands (Duku et 

al. 2008): (a) Results from 16 sands at a relative density of about 60% with an overburden stress 

of 1.0 atm, and (b) Comparison of trends with earlier relationships by Silver and Seed (1971) for 

sands at relative densities of 45, 60, and 80%. 
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Figure 1.10. Stress-strain curves (left) and volumetric strain versus shear strain for a medium 

dense sand specimen subjected to drained cyclic simple shear under constant shear stress 

amplitude (Wahyudi et al., 2010). 

 

Figure 1.11. (a) Effective stress path and stress-strain hysteresis observed in a cyclic undrained 

torsional test (Zhang et al., 1997), (b) Cyclic stress ratio versus number of cycles required to 

cause 5% of DA axial strain for samples with relative density, Dr of 50%, 70% and 90% (Lombardi 

et al., 2014). 
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Chapter 2  

Downgrade of the 3D constitutive model 

Tager for sand in triaxial space 
 

2.1 Introduction  

Performance based analysis is increasingly gaining ground in daily practice against conventional 

pseudostatic analysis. The necessity of developing economically efficient solutions without 

jeopardizing safety, is the main reason for this drastic change in the way we you used to design 

our structures.  

However, the effectiveness of a performance based design approach strongly hinges on the 

ability of the utilized numerical tool to realistically calculate the soil and structural 

displacements for a wide range of loading paths and initial conditions. Apparently, the 

constitutive modeling of soil behavior plays a decisive role on this. The behavioral diversity of 

sand for different loading (drained /undrained, monotonic/cyclic), initial stress and fabric 

conditions, renders its modeling a difficult and challenging task. The suitability of the used 

constitutive model is evaluated by its capability to capture the trends across all these conditions 

without recalibration of its parameters for each specific case, but also by its simplicity. Too 

many parameters might increase the versatility of the model at the risk, however, of losing its 

physical meaning.  

In the last three decades, many constitutive models for sand have been proposed, each with 

varying degree of accuracy and applicability (a brief discussion about this was made in Ch. 1). 

The most promising ones are plasticity-based and incorporate the effective stress and critical 

state concepts (e.g. Ishihara and Towhata, 1980; Cubrinovski and Ishihara, 2000; Dafalias and 

Manzari, 2004; Park and Byrne, 2004; Boulanger et al., 2011).  

In this paragraph, a brief reference to the constitutive model for sand Ta-Ger will be made, as it 

was published by Panagiota Tasiopoulou and Nikos Gerolymos in 2016. This constitutive model, 

formed in multiaxial space was based on a new theoretical framework that combines features 

of perfect elastoplasticity and Bouc-Wen type hardening plasticity. It adopts an open-end, cone-

type bounding surface with the elastic region being trivialized to a single point, coupling perfect 
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elastoplasticity with pre-failure smooth hysteresis. This alternative plasticity formulation 

exhibits critical state compatibility for monotonic and cyclic loading and uniqueness of its 

parameters for a given type of sand, irrespective of loading conditions. It aims to provide a 

continuous function between an input (displacement, strain etc.), and an output (force, stress 

etc.), for nonlinear, hysteresis systems, by defining a continuous expression of an elastoplastic 

matrix, connecting the strain with the stress. Using a new plastic flow rule based on a revision 

of Rowe’s dilatancy theory (1962), it is versatile enough to account for anisotropic distribution 

of the dilatancy to the plastic strain increments as well as densification due to cyclic loading. 

The Drucker-Prager failure envelope is used as bounding surface, but modifications can be 

easily implemented to account for Lode angle dependency. The combined influence of density 

and confining stress on the response is efficiently taken into account through the critical state 

approach. Among the other benefits is the ability of the model to realistically reproduce 

complex patterns of monotonic and cyclic behavior such as hysteretic response, dilation, 

contraction, loss of strength and cyclic mobility in undrained monotonic and cyclic loading, 

respectively.  

The aforementioned constitutive model for sand was downscaled to p-q space and 

reformulated in a way that hysteretic loops and densification can be predicted for an input 

strain time history. In what follows, the formulation and some of the key parameters of the 

model, accounting for drained conditions, are presented.  

 

2.2 Model Concept and Parameters 

An alternative plasticity concept 

Classic elastoplasticity framework imposes that the elasto-plastic matrix is given by: 
 

𝑬𝒆𝒑 = 𝑬𝒆 [𝑰 − 𝜱𝒈(𝜱𝒇
𝑻𝑬𝒆𝜱𝒈)

−1
𝜱𝒇

𝑻𝑬𝒆] 

 
in which Φf and Φg account for the gradient to the failure surface and plastic flow rule, 
respectively: 

𝜱𝒇 =
𝜕𝑓

𝜕𝝈
 

 

𝜱𝒈 =
𝜕𝑔

𝜕𝝈
 

 
For a perfectly plastic material, the yield surface is fixed in stress space, and therefore plastic 
deformation occurs only when the stress path moves on the yield surface. The plastic strain 
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increment is obtained from the flow rule that is assumed to imply normality to the plastic 
potential function g, according to the above formulation. 
 
In the present modified elasto – plasticity framework hardening and hysteretic behavior is 
introduced by inserting the matrices H and η: 

 

𝜠𝒉
𝒆𝒑 = 𝑬𝒆(𝑰 − 𝑩𝑯)𝜼 

 

The terms in matrix H are functions of the dimensionless hardening parameter ζ, which is 

inspired by the Bouc-Wen smooth hysteresis model Bouc (1971) and its extended versions 

(Wen, 1976 ; Gerolymos and Gazetas, 2005), and η (Gerolymos and Gazetas, 2005; Drosos et 

al., 2012) accounts for stiffness degradation by modifying the shape and size of the hysteretic 

loops according to the amplitude of the deviatoric strain εq . Finally, B is the abbreviation of the 

right-hand side term inside the parentheses of the formulation of the classic elasto – plastic 

matrix: 

 

𝜝 = 𝜱𝒈 (𝜱𝒇
𝑻𝑬𝒆𝜱𝒈)

−1
𝜱𝒇

𝑻𝑬𝒆
 

 

Elastic Parameters 

In order to form the elastic matrix 𝑬𝒆 , it is necessary to define the elastic shear modulus G and 

the elastic bulk modulus K which are expressed as functions of the mean effective stress and 

the relative soil density using Seed and Idriss published experimental data and Souliotis and 

Gerolymos curve fitting, as follows: 

 

𝐺𝑚𝑎𝑥 = 1592,6 ∗ 𝑝𝑎 ∗ 𝐷𝑟𝑜
0.6464 ∗ (

𝑝

𝑝𝑎
)
𝑚

             and                𝐾 = 𝐺 

in which:  

pa is the atmospheric pressure 

Dro is the initial soil relative density 

m is a dimensionless parameter determining the rate of variation of G and K with p. 
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The elastic bulk modulus K, is considered to be equal to Gmax, assuming a Poisson ratio of 

ν=0.15 which is typical for relatively uniform sands at confining pressures greater than 50 KPa 

(e.g. Gu and Yang, 2013). 

The elastic matrix in triaxial space is given by: 

 

𝜠𝒆 = [
𝐾 0
0 3𝐺

] 

 

since the deviatoric, dq , and mean effective, dp , stress increments are calculated using the 

elastic deviatoric and volumetric strain increments, in respect: 

𝑑𝑝 = 𝐾𝑑𝜀𝑝
𝑒 

𝑑𝑞 = 3𝐺𝑑𝜀𝑞
𝑒  

 

Yield surface 

The model incorporates the Drucker-Prager failure envelope as the bounding surface: 

 

𝑓 = 𝑞 − 𝑀𝑠𝑝 = 0 

 

in which, Ms is the ultimate strength line in q-p space. This equation implies the following 

consistency condition at failure: 

 

𝑓 = 0 ↔
𝑞

𝑀𝑠𝑝
= 1 

 

Thus the hardening parameter ζ, is defined as: 
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𝜁 = |
𝑞

𝑀𝑠𝑝
| 

 

The hardening parameter, ζ, is bounded, strictly obtaining values within the range [0, 1]. At 

reversal points, ζ is transformed to ζα , according to: 

 

𝜁𝛼 = |
𝜁 − 𝜁𝑝

1 + |𝜁𝑝|
| 

 

which ζp is the maximum value of ζ at the previous reversal (pivot) point. Hence, hardening 

parameter ζα becomes equal to 0 at the occurrence of loading reversal, indicating elastic 

response at the beginning of unloading/reloading. 

The hardening matrix H, for monotonic loading, is defined as: 

 

𝐻 = [
𝜁𝑛 0

0 𝜁𝑛] 

 

where n is an exponential parameter which “controls” the rate of transition from the elastic 

state to the perfectly plastic one (Gerolymos and Gazetas, 2005). For cycling loading parameter 

ζα is used for the formation of the plastic matrix 

 

𝐻 = [
𝜁𝛼

𝑛 0

0 𝜁𝛼
𝑛] 
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Flow rule 

 

The stress-dilatancy relationship, adopted by the model, is based on Rowe’s dilatancy theory 

(Rowe 1962). Dilatancy, defined as the ratio of the plastic volumetric strain increment, 𝑑𝜀𝑝
𝑝 

over the plastic deviatoric strain increment, 𝑑𝜀𝑝
𝑞depends on the distance of the current stress 

ratio, q / p = ζ  Μs   from the phase transformation line, Mpt, as follows: 

 

𝑑 = 𝑅𝑑

𝑑𝜀𝑝
𝑝

𝑑𝜀𝑞
𝑝 = 𝑅𝑑 (𝑀𝑝𝑡 − |

𝑞

𝑝
|) =  𝑅𝑑(𝑀𝑝𝑡 − 𝜁𝛭𝑠) 

 

Parameter 𝑅𝑑  is given by: 

𝑅𝑑 = 𝑒−𝑎(𝐷𝑟−𝐷𝑟𝑜) 

Where Dr is the current relative density, Dro is the initial relative density and a is a constant. 

Evidently, increase of Dr causes decrease of parameter Rd and subsequent decrease of quantity 

d, resulting in densification for the case of a drained cyclic simple shear element test. Influence 

of parameter a in densification line for various relative densities is depicted in Fig. 3.1. 

 

Modified hardening elasto – plastic matrix 

The modified elastoplastic matrix is calculated according to the above mentioned: 

 

𝛦ℎ
𝑒𝑝 =

[
 
 
 
 𝐾 −

−𝐾2𝑀𝑠𝑑

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛

−3𝐾𝐺𝑑

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛

−3𝐾𝐺𝑀𝑠

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛 3𝐺 −

9𝐺2

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛

]
 
 
 
 

 

 

The only difference between the modified elastoplastic matrix, 𝛦ℎ
𝑒𝑝 , and the elastoplastic 

matrix, 𝛦ℎ
𝑒𝑝, resulting from elastic-perfectly plastic formulation is attributed to the 
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introduction of hardening parameter ζn, which provides a smooth hysteretic interpolation, 
Bouc-Wen motivated, between elastic and perfect plastic stress states. 
 

If matrix η, which consists of only diagonal terms: 

 

𝜼 = [
𝜂 0
0 𝜂

] 

 

is incorporated into the 𝛦ℎ
𝑒𝑝 formulation, then the elastoplastic matrix is modified as: 

 

𝛦ℎ
𝑒𝑝 = 𝜂

[
 
 
 
 𝐾 −

−𝐾2𝑀𝑠𝑑

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛

3𝐾𝐺𝑑

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛

−3𝐾𝐺𝑀𝑠

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛 3𝐺 −

9𝐺2

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛

]
 
 
 
 

 

 

Parameter η 

Parameter η is inserted as a multiplier of the hardening elastoplastic matrix.η expresses the 

dissipated hysteretic energy and it affects the expansion of the stress – strain loop. It is 

expressed in a ductility based form as it is a function of μ which is a reference ductility defined 

in terms of shear strain at the most current stress reversal, at the maximum attained shear 

strain before the start of the current unloading or reloading cycle: 

 

𝜂 =
𝑠1

𝑠1 + 𝜇 𝑠2
 

Figs. 3.2 and 3.3 illustrate the influence of parameters s1 and s2 in the shear modulus reduction 

and damping curves.  

Critical state concept 

The essence of the critical state concept is that no change in volume occurs when the current 

stress state reaches the critical state, while the shear deformation continuously increases. In 
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order to achieve this kind of performance upon critical state, both the phase transformation 

line, Mpt and the ultimate strength line, Ms, should evolve in p-q space converging to the critical 

state line, Mcs and producing zero plastic volumetric change when Mpt = Ms = Mcs. The evolution 

of the ultimate strength line is expressed as a function of the cumulative total deviatoric strain, 

∑|𝑑𝜀𝑞|: 

 

𝛭𝑠 = 𝑀𝑐𝑠 + [𝑀𝑠𝑝 + (𝑀𝑠0 − 𝑀𝑠𝑝)𝑒
−𝑐1 ∑|𝑑𝜀𝑞| − 𝑀𝑐𝑠]𝑒

−𝑐1 ∑|𝑑𝜀𝑞| 

 

where Ms0 is an initial value of the ultimate strength, and Msp is a maximum value that can be 

potentially reached depending on the model parameter c1. The phase transformation line 

evolves according to following expression: 

 

𝛭𝑝𝑡 = 𝑀𝑐𝑠 + (𝑀𝑝𝑡0 − 𝑀𝑐𝑠)𝑒
−𝑐2 ∑|𝑑𝜀𝑞| 

 

in which Mpt0 is the initial value of Mpt , c2 is a model parameter and ∑|𝑑𝜀𝑞| expresses the 

accumulation of total deviatoric strain increments. The influence of parameters c1 and c2 is 

illustrated in Figs. 3.4 and 3.5. in terms of shear stress, volumetric strain and evolution of Mpt 

and Ms for a monotonic shear test. In case of cyclic drained loading, slower evolution of phase 

transformation line towards critical state leads to less accumulation of volumetric strain for a 

certain number of cycles, due to generation of greater “uplift” of the ep-eq curve, close to the 

reversal points. 

 

 

2.3 Model Performance 
 

Simulation of drained behavior of sand under monotonic and cyclic loading have been 

performed in p-q space. Simulation is strain controlled; thus, the applied deviatoric strain 

increment dεq is considered known and the mean effective stress, p, is assumed constant, so 

that dp = 0 . The 2x2 matrix connecting the strain with the stress increments is formed as 

follows: 
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[
𝑑𝑝
𝑑𝑞

] = [
𝐴 𝐵
𝐶 𝐷

] [
𝑑𝜀𝑝

𝑑𝜀𝑞
] 

where : 

 

𝛢 = 𝐾 −
−𝐾2𝑀𝑠𝑑

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛 

 

𝛣 =
3𝐾𝐺𝑑

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛 

 

𝐶 =
−3𝐾𝐺𝑀𝑠

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛 

 

𝐷 = 3𝐺 −
9𝐺2

−𝐾𝑀𝑠𝑑 + 3𝐺
𝜁𝑛 

 

The deviatoric stress increment, dq, is calculated as 

 

𝑑𝑞 = (−
𝐵𝐶

𝐴
+ 𝐷)𝑑𝜀𝑞  

 

and the volumetric strain increment, dεp, is obtained by: 

 

𝑑𝑒𝑝 = −
𝐵

𝐴
|𝑑𝜀𝑞| 
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The results are afterwards transformed in terms of shear stress and shear strain.  

 

Regarding the monotonic loading, three different relative densities were examined under the 

same mean effective stress and also three different mean effective stresses were examined for 

the same initial relative density. Results are depicted in Fig. 3.6-3.9 in terms of shear stress, 

volumetric strain, void ratio, boundary line Ms, phase transformation line Mpt and the evolution 

of the last two parameters vs the stress state line q/p. The evolution of the friction angle with 

shear strain along with its maximum value φpeak, its initial value φs0 and its critical state value 

φcs  are also presented in Fig. 3.10. 

 

The evolution of phase transformation and ultimate strength lines with strain, demonstrate 

that both lines reach the critical state line at large strains. Moreover, it is worth noting that for 

loose sands the phase transformation line is initially located above the ultimate strength line in 

p-q space and vice versa for denser sands. This is attributed to the more contractive behavior 

which leads them directly to the critical state with no phase transformation (Yoshimine and 

Ishihara, 1998). The opposite behavior is observed for denser sand crossing the phase 

transformation line (contractive response) before “moving” towards the critical state (dilative 

response). The same remarks can be made for the sands under a small mean effective stress 

and sands under a heavy mean effective stress, which correspond to denser and looser sands 

respectively. As expected, ultimate strength line is never exceeded from the stress state line 

q/p either for dense or loose sands.  

 

Cyclic drained shear tests were also carried out (Fig. 3.11 – 3.16.) and three different relative 

densities were examined under the same mean effective stress for three different levels of 

mean effective stress. Cyclic drained shear tests will emphasize progressive stiffening as loading 

cycles accumulate and densification builds up. Maximum attained shear stress is, as expected, 

greater for denser sands and those under a big mean effective stress. It is worth noting, that in 

the volumetric strain figure the distance between two consecutive loading cycles becomes 

smaller as loading cycles accumulate, proceeding to the critical state, as is also pointed by the 

coincidence of Mpt and Ms with their critical state value Mcs. The shape of the densification line 

is indicative to a more dilative behavior for denser sands and sands under small mean effective 

stresses. 
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Figure 3.1: (a) Volumetric strain for cyclic drained shear test in respect of shear strain for 

different values of the exponent a for three relative densities Dr=20%, Dr=50% and Dr=80%  
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Figure 3.2: Shear modulus reduction and damping curves for various values of the s2 parameter 
for s1=3.4 
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Figure 3.3: Shear modulus reduction and damping curves for various values of the s1 
parameter for s2=0.955. 
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(a) (b) 

  

  
(c) (d) 

  

Figure 3.4: (a) Influence of the exponent c1 in a drained monotonic shear test in terms of (a) 
shear stress, (b) volumetric strain, (c) boundary line Ms and (d) phase transformation line with 

shear strain for c1 constant. 
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(a) (b) 

  

  
(c) (d) 

  

Figure 3.5: (a) Influence of the exponent c2 in a drained monotonic shear test in terms of (a) 
shear stress, (b) volumetric strain, (c) boundary line Ms and (d) phase transformation line with 

shear strain for c1 constant. 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 3.6: (a) Shear stress, (b) volumetric strain, (c) void ratio, (d) boundary line Ms and (e) 
phase transformation line Mpt for a monotonic shear test for three relative densities Dr=20%, 

Dr-50% and Dr=80% for mean effective stress p=500KPa. 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

  

Figure 3.7: (a) , (c), (e) Evolution of phase transformation line Mpt vs the evolution of the stress 
state line q/p with shear strain for three relative densities Dr=20%, Dr-50% and Dr=80% for 

mean effective stress p=500KPa and (b), (d) and (f) Evolution of boundary line Ms vs the 
evolution of the stress state line q/p with shear strain for three relative densities Dr=20%, Dr-

50% and Dr=80% for mean effective stress p=500KPa for a drained monotonic shear test 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 3.8: (a) Shear stress, (b) volumetric strain, (c) void ratio, (d) boundary line Ms and (e) 
phase transformation line Mpt for a drained monotonic shear test for three mean effective 

stresses p=1000KPa, p=500KPa and p=200KPa for a relative density Dr=40%. 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

  

Figure 3.9: (a) , (c), (e) Evolution of phase transformation line Mpt vs the evolution of the stress 
state line q/p with shear strain for three mean effective stresses p=1000KPa, p=500KPa and 

p=200KPa for a relative density Dr-40% and (b), (d) and (f) Evolution of boundary line Ms vs the 
evolution of the stress state line q/p with shear strain three mean effective stresses p=1000KPa, 

p=500KPa and p=200KPa for a relative density Dr-40% for a drained monotonic shear test 
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(a) 

 
 
 

 
(b) 

 
 
 

Figure 3.10: Evolution of friction angle with shear strain for a monotonic drained shear test 
along with its maximum value φpeak, its initial value φs0 and its critical state value φcs  for (a) 

initial Dr=20% and mean effective stress p=400KPa and (b) initial Dr=60% and mean effective 
stress p=400KPa 
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Dr=20%, p=200KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.11: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=20% and mean effective stress p=200KPa for a cyclic drained shear test 
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Dr=50%, p=200KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.12: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=50% and mean effective stress p=200KPa for a cyclic drained shear test 
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Dr=80%, p=200KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.13: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=80% and mean effective stress p=200KPa for a cyclic drained shear test 
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Dr=20%, p=500KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.14: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=20% and mean effective stress p=500KPa for a cyclic drained shear test 
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Dr=50%, p=500KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.15: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=50% and mean effective stress p=500KPa for a cyclic drained shear test 
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Dr=80%, p=500KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.16: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=80% and mean effective stress p=500KPa for a cyclic drained shear test 
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Dr=20%, p=1000KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.17: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=20% and mean effective stress p=1000KPa for a cyclic drained shear test 
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Dr=50%, p=1000KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.18: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=50% and mean effective stress p=1000KPa for a cyclic drained shear test 
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Dr=80%, p=1000KPa 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3.19: (a) Stress-strain hysteretic loops (b) Evolution of Mpt and Ms parameters along with 
their critical state value Mcs (c) Volumetric strain and (d) Relative density Dr for initial relative 

density Dr0=80% and mean effective stress p=1000KPa for a cyclic drained shear test 
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Chapter 3 

Model parameters calibration against 

literature curves 
 

3.1 Laboratory and in situ tests 
 

In order to calibrate Viscoelastic and hysteretic models it is necessary to define the initial shear 

modulus. This is accomplished through: 

 laboratory tests 

 in situ tests 

 empirical relationships available in literature 

Resonance tests are representative of the first category. Through resonance tests the initial 

shear modulus (which is defined as the initial shear modulus in small strains, γ ≤ 10-5) can be 

calculated, as well as the hysteretic damping ratios and the secant shear modulus as a function 

of the strain amplitude. The reliability of each one of the types of resonance tests in defining 

the initial shear modulus is associated with the soil specimen quality. An alternative laboratory 

test (which is interesting but not widespread) is the one that uses piezoelectric sensors 

(transmitter and receiver) in appropriate positions around the specimen. The estimation of 

Gmax is accomplished through the measurement of the arrival time of the shear wave in the 

receiver. The main drawback of this test is that it does not provide any information about the 

developed shear strains. 

Crosshole and downhole tests are the best in situ geotechnical tests in order to calculate the 

shear wave propagation velocity. (through soil) in small strains and therefore the initial shear 

modulus.  

It is well known that in large strains cyclic soil response can not be accurately described with 

the use of only two parameters (Gsec and ξ). The knowledge of the hysteretic shear stress – 

strain relationship is a prerequisite. Its approach is achieved in the laboratory through the 

conduction of cyclic loading tests. Through these tests one can define the monotonic loading 
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curve and the loading – unloading – reloading rule that define the calibration of a hysteretic 

model. The most remarkable cyclic tests are: 

 the triaxial test 

 the simple shear test 

 the torsional test 

The applicability if the aforementioned tests is related to the initial loading conditions of the 

soil that we aim to analyze its dynamic response, as well as to the deformation due to the 

imposed loading. Thus, the cyclic simple shear test for example, is one of the most 

representative for modeling of the behavior of soil subjected to seismic loading, but only when 

soil – structure interaction is absent. The cyclic response of a soil element close to a pile 

subjected to an axial oscillation, is correctly approached through a simple shear test. On the 

contrary, the response of the same soil element is better described through a triaxial test when 

the pile oscillates horizontally.  

 

3.2 Shear modulus and damping curves 
 

Model calibration through the hysteretic loops extracted from laboratory tests is not usually 

implemented, since laboratory data are either not enough for the description of the soil 

characteristics, or they are not adequate. Empirical relationships for the shear modulus and the 

hysteretic damping ratio consist an alternative way for calibration. 

Shear Modulus 

Laboratory tests have shown that soil stiffness is influenced by cyclic amplitude, void ratio, 

mean principal effective stress, plasticity index, over – consolidation ratio and number of 

loading cycles. The secant shear modulus of an element of soil varies with cyclic shear strain 

amplitude. At low strain amplitudes, the secant shear modulus is high, but it decreases as the 

strain amplitude increases. The locus of points corresponding to the tips of hysteresis loops of 

various cyclic strain amplitudes is called a backbone (or skeleton) curve (Fig. 3.1a); its slope at 

the origin (zero cyclic strain amplitude) represents the largest value of the shear modulus, 

Gmax. At greater cyclic strain amplitudes, the modulus ratio Gsec / Gmax drops to values less 

than 1. Characterization of the stiffness of an element of soil therefore requires consideration 

of both Gmax and the manner in which the modulus ratio G / Gmax varies with cyclic strain 

amplitude and other parameters. The variation of the modulus ratio with shear strain is 

described graphically by a modulus reduction curve (Fig. 3.1b). The modulus reduction curve 
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presents the same information as the backbone curve; either one can be determined from the 

other.  

 

Maximum Shear Modulus, Gmax 

Since most seismic geophysical tests induce shear strains lower than about 3x10-4 %, the 

measured shear wave velocities can be used to compute Gmax as : 

 

𝐺𝑚𝑎𝑥 = 𝜌 𝑣𝑠
2 

 

The use of measured shear wave velocities is generally the most reliable means of evaluating 

the in situ value of Gmax for a particular soil deposit, and seismic geophysical tests are 

commonly used for that purpose. Care must be taken in the interpretation of shear wave 

velocity, particularly at sites with anisotropic stress conditions, which can cause measured 

shear wave velocities to vary with the direction of wave propagation and particle movement 

(Roesler 1979; Stokoe et al., 1985; Yan and Byrne, 1991). 

When shear wave velocity measurements are not available, Gmax can be estimated in several 

different ways. Laboratory test data suggest that the maximum shear modulus can be 

expressed as  

𝐺𝑚𝑎𝑥 = 625 𝐹(𝑒) (𝑂𝐶𝑅)𝑘𝑝𝑎
1−𝑛(𝜎𝑚

′ )𝑛 

 

where F(e) is a function of the void ratio, OCR the over consolidation ratio, k an over 

consolidation ratio exponent (Table 3.1), σ’m the mean principal effective stress, n a stress 

exponent, and pa is atmospheric pressure in the same units as σ’m and Gmax. Hardin (1978) 

proposed that F(e)=1/(0.3+0.7e2), while Jamiolkowski et al. (1991) suggested that F(e)= 1/e1/3. 

The stress exponent is often taken as n=0.5 but can be computed for individual soils from the 

results of laboratory tests at different effective confining pressures. It should be apparent that 

Gmax, pa, and σm’ must be expressed in the same units. The above equation can also be used 

to adjust measured Gmax values to represent conditions that are different (e.g., increased 

effective stresses) from those at which the measurements were made.  

Other empirical relationships have been proposed for specific soil types. The maximum shear 

modulus of sand, for example, is often estimated as: 
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𝐺𝑚𝑎𝑥 = 1000𝐾2,𝑚𝑎𝑥(𝜎𝑚
′ )0.5 

 

Where K2,max is determined from the void ratio or relative density (Table 3.2) and σm’ is in 

lb/ft2 (Seed and Idris, 1970). Field tests have consistently shown that shear wave velocities of 

gravels are significantly higher than those of sands, indicating that Gmax of gravel is higher than 

that of sand. K2,max values for gravels are typically in the range 80 to 180 (Seed et al., 1984). For 

fine – grained soils, preliminary estimates of the maximum shear modulus can be obtained 

from plasticity index, overconsolidation ratio and undrained strength (Table 3.3). Because 

undrained strengths are highly variable and because shear moduli and undrained strengths vary 

differently= with effective confining pressure, these results must be used carefully.  

The maximum shear modulus can also be estimated from in situ test parameters. A number of 

empirical relationships between Gmax and various in situ test parameters have been 

developed. The inherent difficulty of correlating a small strain parameter such as Gmax with 

penetration parameters that relate to much larger strains is evident from the scatter in the data 

on which they are based and from the variability of the results obtained by different 

investigators. As such, the usefulness of such correlations is currently limited to preliminary 

estimates of Gmax.  

However, the application of in situ testing to geotechnical earthquake engineering problems is 

only in its early stages, and significant advances can be expected as additional data become 

available. 

Evaluation of shear modulus can be complicated by rate and time effects (Anderson and 

Woods, 1975, 1976; Anderson and Stokoe, 1978; Isenhower and Stokoe, 1981). Rate effects can 

cause Gmax to increase with increasing soil plasticity. Rate effects can be significant when 

comparing Gmax values obtained from field shear wave velocity measurements (usually made 

with the use of impulsive disturbances which produce relatively high frequencies) with values 

obtained from laboratory tests. The shear wave velocity and hence Gmax, increases 

approximately linearly with the logarithm of time past the end of primary consolidation to an 

extent that cannot be attributed solely to the effects of secondary compression. The change of 

stiffness with time can be described by  

 

𝛥𝐺𝑚𝑎𝑥 = 𝑁𝐺(𝐺𝑚𝑎𝑥)1000 
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where 𝛥𝐺𝑚𝑎𝑥 is the increase in 𝐺𝑚𝑎𝑥 over one log cycle of time and (𝐺𝑚𝑎𝑥)1000 is the value of  

𝐺𝑚𝑎𝑥  at the time of 1000 min past the end of primary consolidation. 𝑁𝐺 increases with 

increasing plasticity index PI and decreases with increasing OCR (Kokushu et al., 1982). For 

normally consolidated clays, 𝑁𝐺 can be estimated from the relationship  

 

𝑁𝐺 ≈ 0.027√𝑃𝐼 

 

Anderson and Woods (1975) showed that some of the discrepancy between 𝐺𝑚𝑎𝑥 values from 

field and laboratory tests could be explained by time effects, and that 𝑁𝐺 could be used to 

correct the 𝐺𝑚𝑎𝑥 values from laboratory tests to better represent6 actual in situ conditions.  

 

Modulus reduction G/Gmax 

 

In the early years of geotechnical earthquake engineering, the modulus reduction behaviors of 

coarse – and fine – grained soils were treated separately (e.g., Seed and Idriss, 1970). Recent 

research, however, has revealed a gradual transition between the modulus reduction behavior 

of nonplastic coarse – grained soil and plastic fine – grained soil.  

Zen et al., (1978) and Kokushu et al., (1982) first noted the influence of soil plasticity on the 

shape of the modulus reduction curve; the shear modulus of highly plastic soils was observed to 

degrade more slowly with shear strain than did low – plasticity soils. After reviewing 

experimental results from a broad range of materials, Dobry and Vucetic (1987) and Sun et al. 

(1988) concluded that the shape of the modulus reduction curve is influenced more by the 

plasticity index than by the void ratio and presented curves of the type shown in Fig. 3.2.a. 

These curves show that the linear cyclic threshold shear strain, γtl, is greater for highly plastic 

soils than for soils of low plasticity. This characteristic is extremely important; It can strongly 

influence the manner in which a soil deposit will amplify or attenuate earthquake motions. The 

PI=0 modulus reduction curve from Fig. 3.2.a. is very similar to the average modulus reduction 

curve that was commonly used for sands (Seed and Idriss, 1970) when coarse – and fine – 

grained soils were treated separately. This similarity suggests that the modulus reduction 

curves of Fig. 3.2.a. may be applicable to both fine – and coarse – grained soils (this conclusion 

should be confirmed for individual coarse – grained soils, particularly those that could exhibit 

aging or cementation effects). The difficulty of testing very large specimens has precluded the 

widespread testing of gravelly soils in the laboratory, but available test data indicate that the 
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average modulus reduction curve for gravel is similar to, though slightly flatter than, that of 

sand (Seed et al., 1986; Yasuda and Matsumoto, 1993). 

Modulus redaction behavior is also influenced by effective confining pressures, particularly for 

soils of low plasticity (Iwasaki et al., 1978; Kokoshu, 1980). The linear cyclic threshold shear 

strain γlt , is greater at high effective confining pressures than at low effective confining 

pressures. The effect of effective confining pressure and plasticity index on modulus reduction 

behavior were combined by Ishibashi and Zhang (1993) in the form  

𝐺

𝐺𝑚𝑎𝑥
= 𝐾(𝛾, 𝑃𝐼)(𝜎𝑚

′ )𝑚(𝛾𝑃𝐼)−𝑚0  

 

where   

𝐾(𝛾, 𝑃𝐼) = 0.5 {1 + 𝑡𝑎𝑛ℎ [𝑙𝑛 (
0.000102 + 𝑛(𝑃𝐼)

𝛾
)

0.492

]} 

 

𝑚(𝛾, 𝑃𝐼) − 𝑚0 = 0.272 {1 − 𝑡𝑎𝑛ℎ [𝑙𝑛 (
0.000556

𝛾
)

0.4

]} exp (−0.0145𝑃𝐼1.3) 

 

𝑛(𝑃𝐼) = {
{

0.0                                       for 𝑃𝐼 = 0
3.37𝑥 10−6𝑃𝐼1.404                      for 0 < 𝑃𝐼 ≤ 15

{7.0 𝑥10−7𝑃𝐼1.976                           for 15 < 𝑃𝐼 ≤ 70
2.7 𝑥10−5𝑃𝐼1.115                for 𝑃𝐼 > 70

 

 

The effect of confining pressure on modulus reduction behavior of low – and high – plasticity 

soils is illustrated in Fig. 3.3 a. 

In 2001, Darendeli et al. developed a new family of normalized modulus reduction and material 

damping curves. Their study focused on developing the empirical framework that can be used 

to generate normalized modulus reduction and material damping curves. This framework is 

composed of simple equations, which incorporate the key parameters that control nonlinear 

soil behavior. The effects of various parameters (such as confining pressure and soil plasticity) 

on dynamic soil properties were evaluated and quantified within this framework. The 
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normalized curves for modulus reduction are presented in Figure 3.4.a. for a non plastic soil for 

various confining pressures. 

 

 

Damping Ratio 

Theoretically, no hysteretic dissipation of energy takes place at strains below the linear cyclic 

threshold shear strain. Experimental evidence, however, shows that some energy is dissipated 

even at very low strain levels (the mechanism is not well understood), so the damping ratio is 

never zero. Above the threshold strain, the breadth of the hysteresis loops exhibited by a 

cyclically loaded soil increase with increasing cyclic strain amplitude, which indicates that the 

damping ratio increases with increasing strain amplitude.  

Just as modulus reduction behavior is influenced by plasticity characteristics, so is damping 

behavior (Kokushu et al., 1982);Dobry and Vucetic, 1987; Sun et al., 1988). Damping ratios of 

highly plastic soils are lower than those of low plasticity soils at the same cyclic strain amplitude 

(Fig. 3.2.b.). The PI damping curve from Fig. 3.2.b., is nearly identical to the average damping 

curve that was used for coarse – grained soils when they were treated separately from fine – 

grained soils. This similarity suggests that the damping curves of Fig. 3.2.b. can be applied for 

both fine – and coarse – grained soils. The damping behavior of gravel is very similar to that of 

sand (Seed et al., 1984).  

Damping behavior is also influenced by effective confining pressure, particularly for soils of low 

plasticity. Ishibashi and Zhang (1993) developed an empirical expression for the damping ratio 

of plastic and non plastic soils (Fig. 3.3.b.). Using the equation for modulus reduction G/Gmax , 

the damping ratio is given by  

𝜉 = 0.333
1 + exp (−0.0145𝑃𝐼1.3)

2
[0.586 (

𝐺

𝐺𝑚𝑎𝑥
)
2

− 1.547
𝐺

𝐺𝑚𝑎𝑥
+ 1] 

 

Material damping curves published by Darendeli et al., are presented in Figure 3.4.b. for various 

confining pressures for a non plastic soil (PI=0). 
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3.3 Calibration procedure 
 

In order to fit the model with the literature shear modulus and damping curves (which were 

discussed in the previous paragraph) a bunch of parameters are selected for calibration.  

As it was mentioned in Cp. 2 , shear modulus is expressed as function of the mean effective 

stress and the relative soil density using Seed and Idriss Published data and Souliotis and 

Gerolymos curve fitting, as follows: 

 

𝐺𝑚𝑎𝑥 = 𝐴 ∗ 𝑝𝑎 ∗ 𝐷𝑟𝑜
0.6464 ∗ (

𝑝

𝑝𝑎
)
𝑚

   

 

where A is a constant that controls the initial stiffness. Its influence in the formulation of Gmax 
is illustrated in Fig 3.5. and is the first parameter selected for calibration.  

Then, the hysteretic parameter η that causes the stiffness degradation, and is a function of s1 , 
and s2 must be assessed. η is activated after the end of the first monotonic (backbone) curve in 
the unloading – reloading curves and affects the expansion of the hysteretic shear stress – 
strain loop (Fig. 3.6). 

Finally, exponent n which controls the rate of transition from the elastic state to the perfectly 
plastic one, is the last parameter selected for calibration. High values of n lead to decupling 
between elasticity and perfect plasticity (Fig. 3.7) 

 

 The calibration is then based on matching some established experimental G : γ and ξ : γ curves 

from the literature. To this end, the LavenbergMarquardt optimization procedure is used, 
available in mathematical code MATLAB. Two published families of G : γ , ξ : γ curves have been 
utilized: (a) the Vucetic & Dobry curves for sand [11] and (b) the pressure (σ’0)-dependent 
curves of Darendeli et al. [12]. The values of the parameters A, s1, s2 and n for which curve 
fitting was obtained, are shown in Table 3.4 for each one of the family curves.  

Starting from the Vucetic & Dobry (1991) curves, the results of the calibration are illustrated in 
Fig. 3.8. The PI=0 curve (which corresponds to sand) is being used herein for a confining 
pressure of 100 KPa. The agreement between computed and experimental curves is quite 
satisfactory. Small discrepancies are observed for small strain levels. The corresponding 
hysteretic shear stress – strain loops are also depicted in Fig. 3.10. 

Darendeli et al. [12] recommended a new family of normalized shear modulus and material 
damping curves, as functions of plasticity index and mean effective stress. Four confining 

pressures ( 0' = 25, 100, 400, 1600 kPa) are examined herein, for PI=0. Comparison of the 

predicted with the experimental curves is depicted in Fig 3.9. 
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Figures 
 

 

 

  
(a) (b) 

  

Figure 3.1: Backbone curve showing typical variation of Gsec with shear strain 
 

 

 

Plasticity Index k 

0 0.00 
20 0.18 
40 0.30 
60 0.41 
80 0.48 

≥100 0.50 
 

Table  3.1: Over consolidation Ratio Exponent, k 

Source :After Hardin and Drnevich (1972b) 
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e K2,max Dr(%) K2,max 

0.4 70 30 34 
0.5 60 40 40 
0.6 51 45 43 
0.7 44 60 52 
0.8 39 75 59 
0.9 34 90 70 

 

Table  3.2: Estimation of K2,max 

Source: Adapted  from Seed and Idriss (1970) 

 

 

 

 

 Overconsolidation Ratio, OCR 
Plasticity Index 1 2 5 

15-20 1100 900 600 
20-25 700 600 500 
35-45 450 380 300 

 

Table  3.3: Values of Gmax/Su 

Source: After Weiler (1988) 
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Figure 3.2: (a) Modulus reduction curves and (b) variation of damping ratio for fine- grained 

soils of different plasticity. with cyclic shear strain amplitude 

(After Vucetic and Dobry (1991). Effect of soil plasticity on cyclic resdponse. Journal of 

Geotechnical engineering, Vol. 117, No. 1. Reprinted by permission of ASCE) 
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Figure 3.3: Influence of mean effective confining pressure on (a) modulus reduction curves and 

(b) variation of damping ratio for nonplastic (PI=0) soil with cyclic shear strain amplitude 

(After Ishibashi and Zhang (1993)). 
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Figure 3.4: Effect of mean effective stress on (a) normalized modulus reduction and (b) material 

damping curves of a nonplastic soil 

After: Mehmat Baris Darendeli, Doctor Of Philosophy, The University of Texas at Austin, August, 

2001 
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Figure 3.5: Influence of the parameter A in the monotonic stress - strain curve.  

 

 

 
Figure 3.6: Influence of the parameter η in the expansion of the hysteretic shear stress – strain 

loop.   
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Figure 3.7: Influence of the exponent n in the monotonic stress - strain curve. 

 

 

 

 

  A  S1 S2 n 

Vucetic et al. 5700 3.5 0.9 0.75 

Darendeli et al. 5000 3.4 0.955 0.8 

     
     

Table 3.4: Values of calibrated model parameters A, s1, s2 and n according to Vucetic and 
Dobry (1991) curves and according to Darendeli et al. (2001) curves 

 

 

 

 



Master Thesis: A plasticity model for the one dimensional soil response analysis 

 
70 

  

 
 
Figure 3.8: Approximation of the Vucetic and Dobry (1991) shear modulus and damping curves 

for sands (PI=0) of 100KPa confinement pressure. Published data is depicted with markers; 
Model results with continuous lines.  
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Figure 3.9: Approximation of the Darendeli et al. (2001) shear modulus and damping curves for 
sands (PI=0) of various confinement pressure levels. Published data is depicted with markers; 

Model results with continuous lines. 
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γ = 10-3 % γ = 3 x 10-3 % γ = 10-2 % 

   
γ = 3 x 10-2 % γ = 10-1 % γ = 3 x 10-1 % 

   
γ = 1 % γ = 3 % γ = 10 % 

   
   

Figure 3.10: Hysteretic shear – stress strain loops corresponding to the calibrated model against  
Vucetic and Dobry (1991) shear modulus reduction and damping curves for the strain amplitudes 

 depicted with markers in Fig 3.8. 
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Chapter 4  

Numerical modelling of 1-Dimensional wave 

propagation 
 

4.1 Ground response analysis 
 

One of the most important and most commonly encountered problems in geotechnical 

earthquake engineering is the evaluation of ground response under earthquake loading. 

Ground response analyses are used to predict ground surface motions for development of 

design response spectra, to evaluate dynamic stresses and strain for evaluation of liquefaction 

hazard and to determine the earthquake – induced forces that can lead to instability of earth 

structures. 

Despite the fact that seismic waves may travel through tens of kilometers of rock and often less 

than 100 m of soil, the soil plays a very important role in determining the characteristics of the 

ground surface motion. The influence of local soil conditions on the nature of earthquake 

damage has been recognized for many years. Seismologists and geotechnical earthquake 

engineers have worked toward the development of quantitative methods for predicting the 

influence of local soil conditions on strong ground motion. Over the years, a number of 

techniques have been developed for ground response analysis.  

One of the most commonly used methods is a linear approach according to which transfer 

functions can be used to compute the response of single-degree-of-freedom systems. For the 

ground response problem, transfer functions can be used to express various response 

parameters, such as displacement, velocity, acceleration, shear stress and shear strain to an 

input motion parameter such as bedrock acceleration. Because it relies on the principle of 

superposition, this approach is limited to the analysis of linear systems. Since the nonlinearity 

of soil behavior is well known, the linear approach must be modified to provide reasonable 

estimates of ground response for practical problems of interest. Non-linear behavior can be 

approximated using an iterative procedure with equivalent linear soil properties. The 

equivalent linear shear modules G, is generally taken as a secant shear modulus and the 

equivalent linear damping ratio ξ, as the damping ratio that produces the same energy loss in a 
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single cycle as the actual hysteresis loop. A known time history of bedrock (input) motion is 

represented as a Fourier series, usually using the FFT. Each term in the Fourier series of the 

input motion is then multiplied by the transfer function to produce the Fourier series of the of 

the ground surface (output) motion. The ground surface (output) motion can then be expressed 

in the time domain using the inverse FFT. Thus, the transfer function determines how each 

frequency in the bedrock (input) motion is amplified, or deamplified, by the soil deposit. 

Even though the process of iteration toward strain compatible soil properties allows non-linear 

soil behavior to be approximated, it is important to remember that the response method is still 

a linear method of analysis. The strain compatible soil properties are constant throughout the 

duration of the earthquake, regardless of whether at a particular time are small or large. The 

method is incapable of representing the changes in soil stiffness that actually occur during the 

earthquake. 

The equivalent linear analysis is generally more flexible than many non-linear analysis methods 

and ground response is adequately approached (for a certain shear strain amplitude) with the 

calibration of only two parameters. However, it appears considerable disadvantages: 

 It is incapable of describing basic cyclic soil behavior properties (e.g. shear modules 

degradation, development-reallocation-reduction of the pore water pressure, residual 

strains etc ). 

 Using a reduced effective shear strain for the shear modules reduction and the damping 

ratio increment, may lead to under-prediction of the stiffness and overestimation of the 

hysteretic damping when the inflicted shear strains time history is close to a harmonic 

one. 

 Since soil properties are constant throughout each analysis step, the input ground 

motion may be over-amplified due to a fictitious soil resonance of one or more 

components of the input accelerogram. However, this is not happening in reality since 

soil properties are constantly changing over time. 

 The variation of the dynamic soil parameters on each analysis step is common for every 

frequency component, regardless the corresponding strain amplitude. This results in 

high frequencies “depression”, which are usually characterized by small amplitude, since 

soil damping is overestimated for these components. This fictitious “depression” of the 

high frequency components leads to considerable deviations on predicting seismic 

response of deep soil deposits. 

 

An alternative approach is to analyze the actual non-linear response of a soil deposit using 

direct numerical integration in the time domain. By integrating the equation of motion in small 

time steps, any linear or non-linear stress-strain model or advanced constitutive model can be 

used. At the beginning of each time step, the stress-strain relationship is referred to obtain the 
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appropriate soil properties to be used in that time step. By this method a non-linear inelastic 

stress-strain relationship can be followed in a set of small incrementally linear steps. 

The available non –linear analysis methods outclass the equivalent linear methods concerning 

the cyclic soil response, however they suffer serious disadvantages: 

 

 They over-predict hysteretic soil damping in great shear strains. The maximum 

hysteretic damping ratio appears to be two times greater that the experimentally 

measured one. 

 They are not versatile in readjusting the hysteretic stress-strain loop shape, depending 

on variation of the dynamic soil parameters. 

 Their capability to approach the experimental data of cyclic soil test is limited. 

At present, a great number of computer programs has been developed for non-linear one-

dimensional Seed (1978 ground response analysis such as DESPA-2 by Lee and Finn (1978), 

MASH by Martin and), DYNA 1D by Prevost (1989), NONLI3 by Joyner (1977), TESS1 by Pyke 

(1985), CHARSOIL by Streeter et al. (1973), CYCLIC 1D by Elgamal and DEEPSOIL by Hashash. 

 

4.2 Mathematical framework 

 

A number of techniques can be used to integrate the equations of motion. Of these, the explicit 

finite difference technique is the most easily explained. 

Consider the soil deposit of infinite lateral extent shown in Figure 4.1. If the soil layer is 

subjected to horizontal motion at the bedrock level, the response will be governed by the 

differential equation of the one –dimensional vertical shear wave propagation through a 

continuum: 

 

𝜌
𝜕2𝑢

𝜕𝑡2 =
𝜕𝜏

𝜕𝑧
+ 𝑐

𝜕3𝑢

𝜕𝑧2𝜕𝑡
 

 

where u is soil displacement, τ is shear stress and c is the viscoelastic constant, ρ is soil density, 

z is depth from surface and t is time.  

Finite difference method aims to approximate the values of the continuous function 𝑓 (𝑡, 𝑁) on 

a set of discrete points in  (𝑡, 𝑁) plane. We divide the 𝑁-axis into equally spaced nodes at 

distance 𝛥𝑁 apart, and, the t-axis into equally spaced nodes a distance 𝛥𝑡 apart. Then (𝑡, 𝑁) 
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plane becomes a mesh with mesh points on ( 𝑖𝛥𝑡, 𝑗𝛥𝑁). We are interested in the values of 

𝑓 (𝑡, 𝑁) at mesh points ( 𝑖𝛥𝑡, 𝑗𝛥𝑁), denoted as  𝑓 𝑖,𝑗  = 𝑓 ( 𝑖𝛥𝑡, 𝑗𝛥𝑁). 

The basic idea of FDM is to replace the partial derivatives by approximations obtained by Taylor 

expansions near the point of interests. For example 

 

∂𝑓 (𝑡, 𝑁)

∂𝑡
= lim

𝛥𝑡→0

𝑓(𝑡 + 𝛥𝑡, 𝑁) − 𝑓 (𝑡, 𝑁)

𝛥𝑡
≈

𝑓(𝑡 + 𝛥𝑡,𝑁) − 𝑓 (𝑡, 𝑁)

𝛥𝑡
 

 

for small 𝛥𝑡 using Taylor expansion at point (𝑡,𝑁) 

 

𝑓(𝑡 + 𝛥𝑡, 𝑁) = 𝑓(𝑡, 𝑁) +
𝜕𝑓(𝑡, 𝑁)

𝜕𝑡
𝛥𝑡 + 𝑂((𝛥𝑡)2) 

 

Then, the following three approximations to 1st order derivatives are formed (Fig. 4.2): 

 

forward:               
∂𝑓 (𝑡,𝑁)

∂𝑡
≈

𝑓(𝑡+𝛥𝑡,𝑁)−𝑓(𝑡,𝑁)

𝛥𝑡
+ 𝑂(𝛥t) 

 

backward:           
∂𝑓 (𝑡,𝑁)

∂𝑡
≈

𝑓(𝑡,𝑁)−𝑓(𝑡−𝛥𝑡,𝑁)

𝛥𝑡
+ 𝑂(𝛥t) 

 

central:            
∂𝑓 (𝑡,𝑁)

∂𝑡
≈

𝑓(𝑡+𝛥𝑡,𝑁)−𝑓(𝑡−𝛥𝑡,𝑁)

2𝛥𝑡
+ 𝑂((𝛥𝑡)2) 

 

and for the 2nd order derivatives a symmetric central-difference approximation is formed: 

 

𝜕2𝑓(𝑡,𝑁)

𝜕𝑁2 ≈
−2𝑓(𝑡, 𝑁) + 𝑓(𝑡, 𝑁 − 𝛥𝛮)

(𝛥𝛮)2 + 𝛰((𝛥𝛮)2) 
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Using Taylor's expansions for 𝑓(𝑡, 𝑁 + 𝛥𝛮)  and 𝑓(𝑡, 𝑁 − 𝛥𝛮) around point (𝑡, 𝑁) we derive 

the finite difference approximations: 

 

forward difference:              
𝜕𝑓

𝜕𝑡
≈

𝑓𝑖+1,𝑗−𝑓𝑖,𝑗

𝛥𝑡
                          

𝜕𝑓

𝜕𝛮
≈

𝑓𝑖,𝑗+1−𝑓𝑖,𝑗

𝛥𝛮
 

 

backward difference:          
𝜕𝑓

𝜕𝑡
≈

𝑓𝑖,𝑗−𝑓𝑖−1,𝑗

𝛥𝑡
                       

𝜕𝑓

𝜕𝛮
≈

𝑓𝑖,𝑗−𝑓𝑖,𝑗−1

𝛥𝛮
 

 

central difference:               
𝜕𝑓

𝜕𝑡
≈

𝑓𝑖+1,𝑗−𝑓𝑖−1,𝑗

2𝛥𝑡
                      

𝜕𝑓

𝜕𝛮
≈

𝑓𝑖,𝑗+1−𝑓𝑖,𝑗−1

2𝛥𝛮
 

 

As to the second derivative, we have: 

𝜕2𝑓

𝜕𝑡2
≈

𝑓𝑖+1,𝑗−2𝑓𝑖,𝑗+𝑓𝑖−1,𝑗

𝛥𝑡2
       and      

𝜕2𝑓

𝜕𝑁2
≈

𝑓𝑖,𝑗+1−2𝑓𝑖,𝑗+𝑓𝑖,𝑗−1

𝛥𝑁2
 

 

As with any integration problem the boundary conditions must be satisfied. Since the ground 

surface is a free surface, τ1=0, so 

𝑑𝑢(1, 𝑡)

𝑑𝑧
= 0 

 

The boundary condition at the bottom of the soil deposit depends on the nature of the under-

lying bedrock. If the bedrock is rigid, its particle velocity 𝑢̇𝑏(𝑡) = 𝑢̇𝑁+1,𝑡  , can be specified 

directly as the input motion. If the bedrock is elastic, continuity of stresses requires that the 

shear at the bottom of the soil layer 𝜏𝛮+1,𝑡 , be equal to the shear stress at the top of the rock 

layer. Thus: 

𝜏𝛮+1,𝑡 + 𝑐
𝜕2𝑢

𝜕𝑧𝜕𝑡
= 𝐶 [

𝑑𝑢(𝑁 + 1, 𝑡)

𝑑𝑡
−

𝑑𝑢𝑔(𝑡)

𝑑𝑡
] 

 

Once the boundary conditions have been established, the integration calculations proceed from 

the bottom to the top of the soil deposit in each time step, and step by step in time.  
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If the soil deposit is initially at rest, then 𝑢̇𝑖,𝑡=0 = 0 and 𝜏𝑖,𝑡=0 = 0 for all 𝑖. We also need to 

discretize the boundary and initial conditions accordingly. 

Depending on which combination of schemes we use in discretizing the equations, we will have 

explicit, implicit, or Crank-Nicolson methods.  

According to the explicit method, the variables at the time 𝑖 + 1 are exclusively expressed using 

the same variables at the time 𝑖. Thus, it outclasses numerous numerical methods for solving 

differential equations systems, such as the implicit method, since the differencial equations 

solution is being approached without the solution of an algebraic equations system in every 

time step. However, despite being computationally simple, it appears a defect. Integration time 

step 𝛥𝑡 = 𝑘, must be multiple smaller than the respective space step 𝛥𝑧 = ℎ, for the algorithm 

to converge. Space step h, should be very small as well, for the accuracy to be satisfactory. 

Nevertheless, present-day computational progress renders explicit method one of the most 

powerful tools for non-linear dynamic systems. 

The integration progress can be summarized as follows: 

1. At the beginning of each time step, the particle velocity 𝑢𝑖,𝑡̇  ,and total displacement 𝑢𝑖,𝑡 

,are known at each layer boundary. 

2. The particle displacement profile is used to determine the shear strain 𝛾𝑖,𝑡  , within each 

layer. 

3. The stress-strain relationship (as it is presented in ch. 2) is used to determine the shear 

stress, 𝜏𝑖,𝑡  , in each layer. 

4. The input motion is used to determine the motion of the base of the soil layer at 

time 𝑡 + 𝛥𝑡. 

5. The motion of each layer boundary at time 𝑡 + 𝛥𝑡 is calculated, working from bottom to 

top. The progress is then repeated from step 1 to compute the response in the next 

time step. 

Although equivalent linear and non- linear methods are both used to solve one- dimensional 

ground response analysis problems, their formulations and underlying assumptions are quite 

different. Consequently, it is reasonable to expect to find some differences in their results.  

Comparing the results of equivalent linear and non- linear ground response analysis the 

following general conclusions can be extracted: 

1. The inherent linearity of equivalent linear analyses can lead to spurious resonances (i.e., 

high levels of amplification that result from coincidence of a strong component of the 

input motion with one of the natural frequencies of the equivalent linear soil deposit). 

Since the stiffness of an actual noni- linear soil changes over the duration of a large 

earthquake, such high amplification levels will not develop in the field. 
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2. The use of an effective shear strain in an equivalent linear analysis can lead to an over- 

softened and over- damped system when the peak shear strain is much larger than the 

remainder of the shear strains, or to an under- softened, underdamped system when 

the shear strain amplitude is nearly uniform. 

3. Equivalent linear analyses can be much more efficient than non- linear analyses, 

particularly  when the input motion can be characterized with acceptable accuracy by a 

small number of terms in a Fourier series. For example, most earthquakes contain 

relatively little elastic wave energy at frequencies above 15 to 20 Hz. Consequently, the 

response can usually be computed with reasonable accuracy by considering only the 

frequencies below 15 to 20 Hz (or lower, in some cases0. As the power, speed and 

accessibility of computers have increased in recent years, the practical significance of 

differences in the efficiency of one- dimensional ground response analyses has 

decreased substantially. 

4. Non- linear methods can be formulated in terms of effective stresses to allow modeling 

of the generation, redistribution and eventual dissipation of excess pore pressure during 

and after earthquake shaking. Equivalent linear methods do not have this capability.  

5. Non- linear methods require a reliable stress- strain or constitutive model. The 

parameters that describe such models are not as well established as those of the 

equivalent linear model.  

6. Differences between the results of equivalent linear and non- linear analyses depend on 

the degree of nonlinearity in the actual soil response. For problems where strain levels 

remain low (stiff soil profiles and/or relatively weak motions), both analyses can 

produce reasonable estimates of ground response. For problems involving high strain 

levels, particularly problems in which the induced shear stresses approach the available 

shear strength of the soil, nonlinear analyses are likely to provide reasonable results. 

In summary, both equivalent linear and non-linear techniques can and have been used 

successfully for one-dimensional ground response analysis. The use and interpretation of each 

requires knowledge of their underlying assumptions, understanding of their operation, and 

recognition of their limitations. Neither can be considered mathematically rigorous or precise, 

yet the accuracy is not inconsistent with the variability in soil conditions, uncertainty in soil 

properties, and scatter in the experimental data upon which many of their input parameters 

are based. 
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4.3 Comparison with other methods 
 

The downgrated in p-q space version of the three dimensional constitutive sand model TA-GER 
[9], [10], as it was described in chapter 2 is implemented into an inhouse computer code which 
uses the explicit finite-difference technique to integrate the equations of motion for the 
nonlinear one-dimensional ground response analysis of layered sites.The procedure is being 
followed as it was described in the previous paragraph. In order to obtain the maximum 
accuracy, integration time step 𝛥𝑡 = 𝑘, must be multiple smaller than the respective space step 
𝛥𝑧 = ℎ for the algorithm to converge, thus k= 10-4 s and h=0.5m. 

Using the finite difference approximation we derive the following expressions for the soil 
velocity and acceleration respectively: 

 

𝑣𝑖,𝑗 =
𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

𝑘
 

𝑎𝑖,𝑗 =
𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

𝑘2  

 

Soil response in each space node j and each time step i is expressed using the variables at the 
previous time step., as follows: 

 

𝑢𝑖+1,𝑗 =
𝑘2

2𝑟ℎ
(𝜏𝑖,𝑗+1, − 𝜏𝑖,𝑗−1) + 

𝑐𝑘

ℎ2𝑟
(𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1 − 𝑢𝑖−1,𝑗−1 + 2𝑢𝑖−1,𝑗 − 𝑢𝑖−1,𝑗+1) + 2𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗 

 

where: 

u    is the soil displacement 

τ    is the shear stress 

k    is the integration time step 

h    is the integration space step 

r    is the soil density  =2 Mg/m3 

c    is the viscocity coefficient =50 KN*sec/ m3 

 

The boundary conditions impose that the shear stress at the top of the bedrock and therefore 
the shear strain at the same position be equal to zero. The above constraint is expressed 
through the equation: 
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𝑢𝑖,2 = 𝑢𝑖,1 

 

The boundary condition at the bottom of the soil deposit requires that the shear stress at the 
top of the underlying bedrock be equal to the shear stress at the bottom of the soil and thus: 

 

 

 

𝑢𝑖+1,𝑁+1 =
𝑘

𝐶𝑟𝑜𝑐𝑘
𝜏𝑖,𝑁+1 +

𝑐

𝐶𝑟𝑜𝑐𝑘 ∗ ℎ
(𝑢𝑖,𝑁 − 𝑢𝑖,𝑁+1 − 𝑢𝑖−1,𝑁 + 𝑢𝑖−1,𝑁+1) 

+𝑢𝑔𝑖 − 𝑢𝑔𝑖−1 

 

where: 

Crock    is the dashpot coefficient of the bedrock accounting for radiation damping and is taken 

equal to 5000 KN*sec/ m3 

ug    is the displacement imposed by the excitation 

 

The initial conditions, e.g. zero initial displacement and zero initial velocity at the whole soil 
column, should also be accounted and they are expressed in the well known finite difference 
form as follows: 

 

𝑢1,𝑗 = 0 

𝑢0,𝑗 − 𝑢1,𝑗

𝑘
= 0 

 

The effectiveness of the proposed model is checked against the hysteretic model by Gerolymos 

and Gazetas [4] implemented in the finite difference code NL-DYAS ([4], [5]). To serve as a 

yardstick, an equivalent linear soil response analysis was also carried out with the use of code 

STRATA [2] ― one of the current state-of-practice soil amplification codes. The goal is twofold: 

the validation between three different models, that represent three different schools and the 

estimation of the range of applicability of each one of the tree methods, a plasticity based 

model which is governed by an physical law for connecting the volumetric strain with the shear 
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strain, a phenomenological model, which lucks a plastic flow rule and the equivalent linear 

method.  

To compare the aforementioned methods a 30-m deep dense sand profile with density ρ = 2.1 
Mg/m3, constant with depth, and shear wave velocity distribution illustrated in Fig 4.3, is 
excited at its base and its response is calculated. 

In order to reveal the drawbacks of every method, two analyses with different  excitations will 
be carried out. A strong motion, the JMA 090 record from the Kobe (1995) earthquake and a 
moderate one from Kalamata 1986 earthquake are used as excitations at the base of the soil 
column. We consider the sand to behave according to the Derendeli curves. 

 

The results of the three analyses (TA–GER, NL-DYAS, STRATA) are portrayed in terms of : (a) the 

distributions with depth of the peak values of acceleration, displacement, shear strain, and 

shear stress (Figs 4.4 and 4.5), (b) the acceleration time histories at the ground surface (Figs 4.6 

and 4.8), (c) the stress–strain hysteresis loops of the two nonlinear models at the depth of 5m 

and 15m (Figs 4.10 and 4.11), and (d) the corresponding acceleration response spectra (Figs 

4.12 and 4.13). The following remarks can be made: 

 

 Results corresponding to Kalamata 1986 medium intensity excitation are very similar for 
all the three methods in terms of distributions with depth and quite similar acceleration 
time histories, with STRATA exhibiting slightly higher amplitudes. The predicted 
accelerations at the surface are: 

 Tager: 0.51g and -0.48g maximum and minimum acceleration the surface 
 NL – Dyas: 0.50g and -0.48g maximum and minimum acceleration the surface 
 Strata: 0.57g and -0.50 g maximum and minimum acceleration the surface 

 
for 0.23g and 0.24g excitation accelerations respectively.  
 
Accelerations spectra at the surface are also in well agreement denoting that the 
equivalent linear method is sufficiently adequate and provides reliable results for 
excitations in this level of intensity. The consistency of predictions indicates also that 
the plasticity based method Tager is correctly validated.  
 
The similarity between the shear stress – strain diagrams of TA-GER and NL-DYAS 
analyses is evident for this motion. Slight differences are within expectations. 

 

 Regarding the strong seismic excitation, a fairly similar response is predicted by the two 
non-linear models, considerably deviating from strata predictions. In terms of 
distributions with depth the equivalent linear method under – predicts the maximum 
displacement. Differences exist also between the two non – linear methods, especially in 
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terms of maximum strain with depth but are less intense and are completely eliminated 
in terms of acceleration time histories at the surface: 
 
 Tager :0.85g and -0.72g maximum and minimum acceleration at the surface 
 NL – Dyas: 0.86g and -0.73g maximum and minimum acceleration at the surface 
 Strata: 1.39g and -0.97g maximum and minimum acceleration at the surface 

 
for 0.60g -0.45g excitation accelerations respectively.  
 
In terms of acceleration spectra at the surface STRATA significantly exaggerates the 
long-period pulses, while it depresses the high-frequency components — a performance 
within expectations, as such “depression” of high frequencies has been already noted in 
the literature (e.g. [13], [14], [15], [16]). The response acceleration spectra from the 
three codes reinforce this conclusion: whereas the two inelastic soil models produce 
almost identical spectra, the equivalent-linear analysis, having filtered-out the short-
period components, underpredicts the spectral values for periods less than 0.45 sec. It is 
worth mentioning that an improved equivalent-linear method that avoids the 
overdamping of high frequencies has been developed by Assimaki and Kausel [14]. Such 
overdamping stems from the facts that damping is a function of strain amplitude and 
that high frequencies are usually associated with small amplitudes of motion; thus, 
these components experience substantially less damping than the dominant frequencies 
and are artificially suppressed when hysteretic damping is taken as constant. The 
overestimation of the long period spectral accelerations by the equivalent linear method 
is due to resonance phenomena that take place in a linear analysis. Such phenomena 
phenomena cannot be developed when nonlinearity is accounted for, as the shear 
modulus, therefore the natural periods of soil, are not fixed but change over time. 
 
There are sharp differences between the hysteretic shear stress – stain loops, for the 
two non - linear models for z=5m and z=15m, with Tager predicting higher values of 
shear strain, but this deviation is expected, considering that the models exhibit 
differences and loops are very sensitive. However, the TA-GER model predicts broader 
hysteresis loops that are more regular in shape. 
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Figures 

 

 

Figure 4.1: (a) Uniform soil deposit of infinite lateral extent overlying bedrock (b) discretization 

of soil deposit into N sub-layers 

 

 

Figure 4.2: Forward, central and backward derivatives approximation 
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Figure 4.3: Shear modulus and shear wave velocity distribution with depth for the 30m deep soil 
profile 
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Figure 4.4: Distributions with depth of the peak values of acceleration, displacement, shear 

strain, and shear stress. Shaking with Kalamata 1986 record 
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Figure 4.5: Distributions with depth of the peak values of acceleration, shear stress, shear strain 

and displacement. Shaking with Kobe JMA 090 1995 record 
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Figure 4.6: Comparison of acceleration time histories at the surface computed with the three models. 

Shaking with Kalamata 1986 record 

 
Figure 4.7: Acceleration time history for the common base excitation of with Kalamata 1986 record 
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Figure 4.8: Comparison of acceleration time histories at the surface computed with the three models. 

Shaking with Kobe JMA 090 1995 record 
 

 
Figure 4.9: Acceleration time history for the common base excitation of with Kobe JMA 090 1995 record  
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Figure 4.10: Comparison of stress – strain loops computed with Ta- Ger and NL – DYAS at z=15m 
and z=5m. Shaking with Kalamata 1986 record 
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Figure 4.11: Comparison of stress – strain loops computed with Ta- Ger and NL – DYAS at z=15m and 
z=5m. Shaking with Kobe JMA 090 1995 record 
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(a) 

 
(b) 

 

Figure 4.12: (a) Acceleration response spectra at the surface calculated with the three models 
and (b) common base acceleration spectra. Shaking with Kalamata 1986 record 
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Figure 4.13: (a) Acceleration response spectra at the surface calculated with the three models 
and (b) common base acceleration spectra. Shaking with Kobe JMA 090 1995 record 
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Chapter 5 

Conclusions 
 

5.1 Conclusions 
 

A recently proposed by Tasiopoulou and Gerolymos constitutive model for sand, was 

downscaled from the three dimensional space ( 6 stresses and 6 strains) to the two dimensional 

space (2 stresses and 2 strains). The model is based on a modified elastoplasticity scheme and 

founded on the effective stress and critical state concepts. The constitutive formulation 

combines features of classical elastoplasticity with a hardening law and an unloading-reloading 

rule of the Bouc-Wen type. The model performance was demonstrated through a series of 

simulations on drained condition with monotonic and cyclic loading. It was shown that the 

model is capable of reproducing the basic aspects of sand behavior, such as, hysteretic loops, 

progressing stiffening, densification, etc. 

 

Afterwards, the capability of the model on fitting the experimental shear modulus reduction 

and damping curves was tested. Two families of published experimental data were utilized, 

those proposed by Vucetic and Dobry (1991) and those proposed by Darendeli et al. (2001). 

Only four model parameters were selected for calibration. Curve fitting revealed that values of 

the parameters selected for calibration are unique for every mean effective stress level, for 

each one of the family curves, i.e. there is no need to recalibrate the model parameters to 

account for different values of p. 

The model is finally implemented into a finite differences in - house computer code. The 

equations of motion, the boundary conditions and the initial conditions were approached using 

the explicit finite difference method technique. The model was validated against two different 

methods established in literature, a non – linear method that utilizes a hysteretic 

(phenomenological) model and the well - known equivalent linear method. Validation proved 

the model capable of predicting efficiently the 1D nonlinear site response. The capability of the 

model in simulating the nonlinear response of horizontally layered deposits was checked 

testing a 30 m deep dense sand profile to two different levels of seismic excitation on its base, a 
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moderate and a strong one. While the three codes exhibited similar results for the moderate 

seismic excitation case, validating the proposed plasticity-based model, the equivalent linear 

method fails to yield satisfactory results for the strong motion case, significantly 

underestimating the high-frequency components of the ground response and overestimating 

the low-frequency ones. Thus, it is evident that equivalent linear method is incapable of 

predicting accurate results when soil non linearity is dominant and should be used carefully 

when simulating strong seismic excitations. On the contrary, the phenomenological hysteretic 

non – linear method is in well agreement with the plasticity based non – linear method for both 

the excitations. However, the lack of a physically motivated plastic flow rule for the connection 

of the plastic volumetric strain with the plastic shear strain, that the phenomenological model 

suffers from, leads to difficulties in extending the model to account for undrained conditions, 

while plasticity based models are perfectly able to account for drained and undrained 

conditions as well. Furthermore, phenomenological models can not be extended to three 

dimensional space to predict system failure but are limited to soil element response and are  

also incapable of simulating two face analyses. Thus, it is a worthly procedure to calibrate and 

validate a plasticity based model even in the two – dimensional space since it is the first step for 

more complex and sophisticated analyses that only this type of constitutive models can 

provide.  

 

5.2 Future work 
 

The calibration of the model according to the published shear modulus reduction and damping 

curves and its validation in predicting the one dimensional soil response was carried out only 

for drained conditions in the present work. The next step, would be the implementation of the 

same procedure to account for undrained conditions. The constitutive model should be 

reformed and it’s ability to accurately predict pore pressure generation should be tested 

against the experimental data for the cyclic liquefaction resistant ratio curves. Model is 

potentially capable for simulating partially drained conditions as well.  
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