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Mepiinym

H 0swpla Kplowng Kataotaong (OKK) elvat kuplapyn otov topéa g ESagounyxavikng
KOl 0TNV KOLVOTNTA TIOU XOXOAEITAL PHE TA KOKKWEN LVALKE, 161 atmd TNV BepeAiwon g
Tpwv amod 60 xpovia. AToTeAEl TO KUPLO TMAXIOLO Yl TA TEPLOOOTEPA KATAOTATIKA
TIPOCOUOLW AT TWV KOKKWOWV Kl E8APIKWV VAIK®WV KaBw¢ TpoAETEL TNV Kploun kat
otaBepn kataotaon (critical and steady state) otnv omola TA VAIKA AUTA PTAVOUV HETA
AT EKTETAUEVT] TIAPAUOPPWOT, KATA TN Stdpkela @optiong toug. H Bdon g OKK
oLVTIBeTAL ATIO SUO LKAVEG KL AvaYKALEG CUVONKES yla TNV ETITEVEN KaL Slatripnon g
KPLOLUNG KATAOTAONG, [LE TNV TIPWTN VA TIPOoSLopilel TOV ATOKAIVOVTA AOY0 TACEWV WG
otaBepA TOU VAIKOV KoL TNV Se0TeP Vo 0pilel Tov SelkTn TOPWV WG LOVASIKY) CUVAPTN O
™G ootpoTiknG Taons. H OKK vmoBétel 6TL 0 quTiv TNV 0pLOKT] KATAGTAOT) TO VALKO
Sev SlaBEtel onpavTiky eowTePikn Sopun, kKabwg dev avagépetal kabBoAov oe auth.
MoAataita, oUYXpPOVeES £PEVVEG VTTOGTNPL(OVY OTL pia EEAPETIKA LOYVPN AVICOTPOTILO
evumapyel Katd v KK, Adyw ™G TpooavatoAlopévnG E0wTEPLKNG SOUNG TOV, KoL EMISPA
OTUAVTIKA GT) CUUTIEPLPOPA TOV VALKOV.

H Swatpfn eival kuplwg emikevipwuévn otnv Soun TwV KOKKWOWV VAIK®OV Kol
OUYKEKPLUEVA, TWV YEWUVALKWV. AV KL 1] E6WTEPLKN Soun Touv e8a@oug (fabric) amoteAel
v amO TA TAEOV OMNUAVTIKA XOPAKTINPLOTIKA Yl TNV MNXOVIKY OTOKPLOYN TOV,
EKTETAUEVT EpEVVa YUPW aATIO TO B ep@avileTal LOALS TIG TEAELTAIEG BUO SEKNETIES.
To £8aog, TapoTL amoTeAel KOKKWSEG VALKO, 0TV £peuva kal oTnv TTPasn ouvvnBiletal
Vo TIPOCOUOLWVETAL Kol va e€etaletal pe Baon TG Bewpieg ovveyxovs pécov. Avtd
onuaivel 6TL 1 ECWTEPLKT SoUT TOV, Kal ELSIKA 0 TIPOCAVATOALOUOS QUTHG, IOV EMIOPA
ONUAVTIKA OTNV HAKPOOKOTIKY] ATIOKPLOT) TOU €8d@oug, v Aapufdavetal vmoym, 1 o€
KATIOLEG TIEPLTITWOELG AapUBaveTal VTTOYT AAAG XL ETAPKWG.

O TPOCAVATOALOUOG TNG EO0WTEPLKNG SopnG kKat 1 ox€on NG HE TNV UNYXAVIKN
OUUTIEPLPOPA TNG GAUMOV EU@AVIIETAL TOCO ONUAVTIKY, WOTE €8W KAl 5 ypovia €xel
mpotadel pia véa Bewpia, N Oewpila Avicotpomikis Kpiowng Katdotaong (0AKK), 1
omoia tpomomotel v apxikr OKK mpocBetovtag pia emmAEov cUVON KN OXETIKY UE TNV
E0WTEPLKN SOUT TOL VALKOV KaL TNV KATEVLOUVON POPTIONG WG Eva ATTaPALTNTO BNUA, YiA
va yiveln Bewpla mAnpne. H OAKK éxel xpnopomomBel pe peydin emtuyio wg éva yeviko
TAQIOL0 KATACTATIKWV TIPOCOUOLWHUATWY KoL 1) TIPOoONKN NG OLUVONKNG E0WTEPLKNG
doung oto mAaioco TG OAKK 6idel sveAdlia kol Slaitepeg SuvatdOTNTEG OTA
TPOCOUOLWUATA TOV TN XPNOLHOTIOVUV. ‘Opwe, TAPOAN TNV auinuévn akpifela kat
EPUAPUOCIHOTNTA TNG, N VEX auTth Bewpla dev €xel amodeyBel OTL LOYVEL AUTOVOUA WG
Bewpla péxpt onpepa. H attia eivat 6TL TOAD €181KEG TIEPAUATIKEG GUVONKEG TIPETEL VO
OLVTPEXOLY, WOTE va pUmopel va efetaotel Kata moécov 1 avagpepopevn OAKK eival
amapaitnto cuumAnpwpa g OKK, kabwg og TuTikég cLVONKES POPTLONG (TT.X. KAQGIKN)
TpLaéovikn @option) n OKK eppavidetal mAnpng Kat n emMMAEOV GLUVONKN IKAVOTIOLE(TAL
TauTO)pOova LE TIG Svo TipoavaepBeioes apxlkeg kKAaookeg cuvOnkeg g OKK. Opwg,
Yl SLL@OPETIKES Kol TILO GUVOETES, AAAA (PUOIKEG KAl CUXVA EUPAVI{OUEVEG SLASPOUES



@OpTIONG (TL.X. OTPOPT TWV KUPIWV aOVWwV TwV TACEWV), Elval TToA) §UokoAo va eAeyxOel
edv oL ouvONkeg TG OKK eival TANpELS, e TNV EVVOLX TOU oV €lVaL AVAYKOLEG KL LKAVEG.

Yt mapovoa épesuva xpnoomomnke n MeBodog Awakpltwyv Itoyelwv (MALX), pla
ovyxpovn uéBodog pe v omola Pmopel va TPOoOUOLWOEL Eva KOKKWEEG VAIKO GTNV
Stakplty tou @uon. IpaypatomomOnkav KAoTopa aplOunTIKA TEPARATH TPLOV
otadiwv @opTionG (Tplwv @doewv) oe 500 KL TPELS SLACTACELS e T oTola atoSelyOnke
o0tLn OKK elvat mpaypatt un mAnpng.

To aplBuntko delypa éptaoce apykd otnv Kpiown Kataotaon (KK) kata ™ @don 1 kat
Katomwy emPBANOnke n oTpo@n TWV KLUPLWV agdvwyv (KA) g tdong, Swxtnpwvtag
oTaOEPES TIG KUPLEG TIUES TWV TACEWV KATA TN @daon 2. H otpoen twv KA mpokdieoe
petwon tov Selktn mOPpWV KA, Katd cuvemela, eykataiewym tng KK, mapa to yeyovog ott
oL 8o ouvvOnkes ™ ¢ OKK tkavoTmotlovvtav katd v évapén e Stadikaciag. H mpocpata
npotabeioa OAKK Bgpamedel avty v atédela g OKK cupmAnpwvovtag tig Vo
oLvvONKeEG pe pila TplTn, 1 oMol OYETICETAL E TNV KPIOLUT KATAGTACT TNG AVICOTPOTIOG
™m¢ Soung. Auti 1 Tpitn cuvBN kN TapafLaletal amo Ty otpoEn Twv KA Twv tdoewv kal
umopel va e&nynoetl v mpoava@epOeioa pelwon Tov SeKTN TOPWV KAL EMOUEVWS TNV
amopdkpuvon amd tnv KK.

Mua emimA€ov Tpltn @A&oT, TapOUoLa [E TNV APXLK TPLAEOVIKT] AKTIVIKY Sladpour) Twv
Tdoewv ™G @aong 1, epapuoletal oto Selypa oe Siagopa otadla TG @Aong 2.
Tuumepaivetal 0TL o Selktng TOPWV ASLAUPLERITNTA EMOTPEPEL GTNV Kplowun Twun padi
LLE TOV ATIOKAIVOVTA AOY0 TAGEWV, 0 0TIO(0G, POV PTACEL Pia LEYLOT TIUTY, ETMOTPEPEL
Kal QuTtog otnVv kplown twun tov. H OAKK pmopet emiong va eEnynoel v amokplon tov
Selypatog kata tm 6e0TEPN KAL TNV TPITN QACT POPTIONG, TA XUPAKTINPLOTIKA TWV
OTo{WV 8&V UTTOPOVUV VA AVTILETWTILOTOVV amo TV KAaoolkn OKK, mov dev Aapufdvel
VTOYM ™V avIeoTpoTia TNG Soung. AUTEG OL PACELS POPTIONG £XOVV EPAPUOOCTEL Kal
UTOPOUV Vo oLYkplBoUV oe 2 Kal 3 SLKOTACELS, TIAPEXOVTAG TOLOTIKA TOUG (510Ug
UNXAVIOHOVUG, eV 1) 3A avAAVoT TTHPEXEL ETIONG ATTOTEAECTUATA TTOCOTIKA OCUYKPIOIA PE
TPAYUATIKEG AULUOVG.

ZUUTEPACUATIKA, LETA ATIO TO APLOUNTIKO TElpapa IOV TpaypatomomOnke ue T MAZL,
oL Tpelg ouvvOnkes tng OAKK kpivovtal avaykaleg kal IKAVEG Yl TNV EMITEVEN Kol
Stampnon ¢ KK. EmmAéov emPeBawnvetar n  eykupotnta TNG TPOCGOHETNG
TpoTeEWOUEVNG oLVON KNGS Kot 1) OAKK amodeikvietal mo akppng kat mAnpngs Bewplia yia
™V TEPLypa@n Kat v TPoRAEYN TNG YEVIKNG CUUTIEPLPOPAS TOV ESAPOVCG.
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Evxaplotieg

Oa NBeda va ek@PAow TNV EVYVWHOOVVT OV G€ OAOUG 060UG GUVERXAQV pEe SLAPOPOUG

TPOTIOVG, OAQ AUTA T XPOVLY, YL VA OAOKANpwBOel ) TTapovoa epyaacia.

Katapxds 8a 6eda va evxapiomow eykapdiwg tov emPAémovta kabnynt) lwavvn
Aa@alld, yia T ocvveyn] vmootptél] Touv Kot v kabodnynon kKatd tn Stdpkela g
SI8aKTOPIKNG pHov SLaTpfng, aAAd kKat yia TV evkatpia va Ste§aydyw Epsuva padi Tov.
Agv Ba pmopovoa va eATI{w o€ Evav KaAUTEPO EMIPBAETOVTA, TOGO ATO TNV TAELPA TNG
EMOTNHOVIKNG aploTelag, 600 kal amd v amoymn tou xapaktipa. Evyaplotw emiong
Tov kabnynt lNwpyo MmovkofdAa mov v pe aveKTiUNTOS SAOKAAOG Kal @IA0G 8w
KOl TTOAAQ XpOVLQ, ATIO TO TPOTITUXLAKO Uov SimAwpa. Ot EIAKPLVEIS EvYXaPLOTIEG oV Kol
otov kKaBnynt AxyAéa IMamadnuntpiov, yia v TOA) TApAYwYLKI] CLUVEPYATIX TIOU
ELYOE KAL TA EEALPETIKA OXOALX KOl TIPOTACELS TOV. ETtiong, evxaplotw 81attépws Tov
kaBnynt Cino Viggiani ylx tnv gumvevoTik Tapovcia Tou Kol T OXOALX TOU KoL Yo

™mv kabnyntpla Mapiva [Mavtalidov ya tnv kaBodnynon .

ETumpoofétwe euxaplot®w moAv tov Ap. MavwAn Baipaktdapn ywa tn cuveyn mapovcio
TOVU, TI TAPATNPNOEL, TA OYXOALA KAl TIG TPOTACELS TOU KAl YEVIKOTEPA YLX TNV

eCALPETIKI) oLVEPYATIX IOV ELXALE.

0w va EKPPAC® TNV EKTIUNOT MOV OTNV EPEVUVNTIKN OUASA TOVL gpyaoTtnpiov Twv
YeWOAK®WV Kat TV opada tov SOMEF. ISiutépwg guyaplotw tov AAEEavSpo kal tov
Niko, Tov Kwota kat tnv Mupoivn yla 0AeG TIG OTLYHES epyaoiag kal SlaokESaONG OV
mepaoape pali, kot tov I'dvvn yia ™ @lia Tou Kal T cuvSpoun Tou Ta TeAevTala
xpovia. ToAV evyaplot®w TOUG @iAovs pou Kol Wiaitepa toug Ilétpo, Kupldaxo,
[Mavaywwtn, Qodwpr), kat ZwThpn, yw@ OAeg TIG oTiyués mov mepdoape poli. 'Eva
Slaitepo evYapPLOTWw oToV SACKAAO pov NG Kibapag Morten kat otnv Tiva Kol 6Tov
AnpMTpn Yo TV VTTOGTNPLEY TOUG.

Avuto to €pyo Sev Ba eixe vAomomOel xwpig TNV LVTIOGTNPLEN TWV YOVEWV OV, GTOUG
omoiovg a&ileL emiong va amodoBovv gvonua yix avtd to emitevypa. Toug evxaploTw
yw@ 0An toug Tn @povtida, T TpoomAbeleg, TNV EUTVELON KoL TNV €vOAppuLvoT).
ETumA€ov, euxaplotw amd kapSLag Tn yLayLd Hov, TNV adeA@r] Hov Kol TOV a8eAPO LOV.
TéAog, evxaplotw v EAlva ywax v ayamn tng, TtV N aAAd Kol TPAKTIKY

VOO TN PLEN TNG, KAL TN ZAAAV TIOV £KaVE TNV KABE HEpA KAAVTEPT).
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1. Elcaywyn

1. Elocaywyn

To €8a@og eival éva KOKK®WOEG VAIKO 18laitepou evila@EéPovTog, To omolo, SeSopuévng
NG ELPAVIOTG TOV OTNV EMIPAveLx NG I'ng, £xel ovouaotel «to déppa s I'ne» (Miller,
1953). To £€8a@og elval KUPLOAEKTIKA 1] fdom K&Be BriHaTog pag, amoteAel To BepeALo
™G oVYXPOVNGS avOPWTIVNG {wN G Kal, EMOUEVWG, Sikalwg amodidetal WSiaitepn onpacia
0TI CUUTIEPLPOPA TOV. ZUVIOTA £V KPIOLLO VALKO YLA TNV KATAOKELT, TNV €§0puEn, TIg
KATOALOONOELS KL YEVIKA VIt oX€BOV OAEG TIG TITUXEG TNG CUYXPOVNG UTTOSOUNG KL TG
OWKOVOULKNG avamtuéng EmmAéov yxpnowevel w¢g Pdon BOegpeAdlwong yux Tig
TIEPLOCOTEPEG KATAOKEVEG, ATMOTEAEL TO MEPPBAAAOV YIX TIG EMPAVEIAKEG Kl Pabiég
e€opvgelg Kal lval To KUPLO SOpIKO VALKO Yl UTTOSOMES, OTIWG SPOHOVG KAl PPAYUATA.
To A€oV onUaVTIKO Elval OTL TA ESAPIKA VAIKA elval 0€ TIOAAEG TIEPITITWOELS TA KPloLua
altin yla aotoxieg HEYAANG KAIHOKAG KOl OVTIOTOLXEG KATAOTPOPES, OTWG UEYAAES
KATOALOONOELS Kal aoTo)ieg emywudtwy. Elval {wTikng onuaciag yior v avAamtuén
Kal, ouxva, Ty emtiiwon twv avBpwmwy, N BEATIwoT TG Katavonong Kal s akpL3oig
TPOPBAEYN G TNG UNXAVIKTG CUUTIEPLPOPAS TOV ESAPOUG.

Opdono otV avAALoT Kal TPOCOUOLWON TNG UNYXAVIKNG CUUTIEPLPOPAS TOU £5APOUG,
vtmpée 1 dnuovpyla g Oewpiag Kplowng Kataotaong - OKK (Critical State Theory).
Ot Roscoe, Schofield kat Wroth (1958) kat ot Schofield kat Wroth (1968) mpotewvav éva
YEVIKO TAaIOL0 PE EPappoyn TO00 o€ apyidoug, 600 Kol o€ AUpous (ot Vo KUpLoL TUTIOL
E8APIKWV VAIKWV), YLt TNV €UOTAON KATACTACT TOU QUTEG EMITUYXAVOUV HUETA ATO
«eTaPKN Slatunon». Autd 1o TAalolo €xel VTAPEEL KUplAPXO Yl TOV TOHEX TNG
UNXAVIKNG TOU £5AQOVG KL EQAPUOTETAL PE ETLTUXIA HEXPL OUEPX TOGO GTNV EPELVA,
000 kal otnVv Tpaktikn. EmmpooBétwes n OKK Bploketal otov mupniva g mAELOVOTNTAG
TWV KATHKOTOATIKWV TPOCOUOIWHUATWY TOU EISIKEVOVTUL O KOKKWON VAKA (TX.,
Vermeer, 1978, Jeremic, Runesson & Sture, 1999, Dafalias, Papadimitriou & Li, 2004,
Taiebat & Dafalias, 2008). Avta ta Tpocopolwpata Bacilovtal Kupiwg oTig Bewpleg
TOU GUVEXOUG HECOV, EVIOXVUUEVEG [E XAPAKTNPLOTIKA OTIWG 1) €EAPTNON TNG EMUPAVELXG
Stappong amd v VSPOOTATIK TACN, M SLVATOTNTA TAACTIKOV OYKOUETPLKWV
TAPALOPPWOEWY KAL 1] SLAOTOAKOTNTA, TA OTIolX ATOTEAOVV PACIKEG LOOTNTEG TWV

eSAPWV.
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1. Elcaywyn

‘Eva oMUavTiko Kal evEeXoUEVwS BACIKO GTOLYELD TNG CUUTIEPLPOPAS TOU E5APOUG, IOV
€CETALETAL EVPEWG GTNV AVAAVOT] KAL GTNV TIPOCOUOIWON TNG UNYAVIKNG XTTOKPLONG TOU
e8A@oUG POALS TIG TeAevTaieg SVo Sekaeties, elvat n Soun (fabric) Tov e8a@ovg. Akoun
KOl oV TO £€5QPOG TIPOCOUOLWVETAL PE BAon TI Bewpleg TOL cLVEYXOVG PHEGOV, Elval Eva
Slakpltd péco, kat Stabétel eowtepikny Sour 1 omola kKaBopilel, pE ATOPACLOTIKO
TPOTIO, TNV HAKPOOKOTIKY ATOKPLoN Tov. O TPOCAVATOALOHUOG TNG ECWTEPLKNG Soung
Tov £8a@oug, 1 omola edw Ba amodidetat povo pe tov 6po doun (fabric), mpoodiopiletat
KUPIWG Ao TO OXNUA TWV KOKK®WV, TO SIKTUO TWV EMAP®V HETAED TWV CWUATISIWY,
KaBwG Kol amd TN YXWPKN KATAVOU] TwV Kevwv. [Iponypeva KoTaoTaTIKA
TPOCOUOLWUATA €XOVV EVOWHATWOEL TN SOUN KAl Tn €X0UV oLPTEPAGPeL o €va
ouvvexes mpooopoiwpa (Li & Dafalias, 2002, Muhunthan, Chameau & Masad, 1996,
Muhunthan & Chameau 1997, Papadimitriou, Li & Dafalias, 2012).

H Soun kat n oxéon tng pe Tn UnYoviky amoxkplon TG AUUov eival TOOO GNUOVTIKY,
woTte ol Li & Dafalias (2012) mpotewvav pa véa Bewplia, TNV Oewpla AVIGOTPOTIKNG
Kpiowng Kataotaong - ©AKK (Anisotropic Critical State Theory) ywa tnVv tpomoTmoinon
™m¢ kAaowkng OKK mpooBetovtag pa mapauetpo mov oxetiletal pe ™ Sour). IMapodro
mov 11 OAKK €xel e@appootel pe emTuyxia WG MTAAIOLO0 KATACTATIKWV TIPOGOUOLWUATWY,
uexpL twpa dev £xel amodelyOel wg pia avtovoun Bewpio. H mpoodnkn pag mapapétpou
Soung oto mAaioo g OAKK mapexel Eexwploteég SuVATOTNTES OTA TTPOCOUOLWHUATA
Tov ™V &@apuolovv, aAdd 1 Beswpla aut) kabBoavty, dev vmootnpiletal ovte
StaPevdetal péow MEPARATWY. AUTO cupfaivel SLOTL amaTtoUvVTAL EOIKEG GUVONKES,
woTe va eAeyxBel eqv elval amapaitnn 1 tpomomoinon s OKK, n omola woyel wg €xel
OTI§ TUTILKEG KATAOTACELS YL TIS OTOIEG KL TMPOTAONKE (T.X. KAXOWKN TPLAEOVIKN
ovutieon). QoToO00, Yot SIAPOPETIKEG KL TILO GVVOETEG SLASPOUEG TATEWY, TIOV CUXVA
en@avifovtal otn QLo (TL.X. 6TPOPT TWV KUpLwV aOVWV TwV TAGEWV) SV Elval CAQPES

eav oL ouvOnkes T OKK eival AN peLs.

'EVaG amtd TOUG OTUAVTIKOTEPOUS GTOXOVUG AUTHG NG SLatpLPng NTav va Tapdoyel Eva
Telpapa mov Ba PTopovoe va eMAVGEL LTV TNV ap@BoAila pe oploTikd TpoTo. M
teTolx Sokiurn Ba Snulovpyovoe Tig TpoumobEnelg VTO TIG oTtoleg Ba e€etalovtav T6o0
N OKK, 6co kat n OAKK. Auto to €8iko Telpapa €xel Bpebdel dtL elval n oTpoPn TWV
KUpLwv aOvwv Tou Tavuot) Twv tdoewv otnv Kplown Katdotaon (KK)Siatnpwvrtag

TAPAAANAQ TIG KUPLEG TIUEG TWV TACEWV OTADEPES,.
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1. Elcaywyn

AOYw ™G SUGKOALXG VAOTIOMOTG TNG TTPOTELVOUEVTG SLASIKAGIAG OE PUOIKA TIELPAUATA,
aAAG Kat emeldn ) Sour Tov e8Aa@oug eivat TToA) SVOKOAO akoun va UETPNBel o€ avTd,
xpnowotmowmbnke n MéBodog Alakpitwv Ztolyeiwv (MAX), wote va Tipocopolwbolv ta
TePLypa@oOpeEva Telpapata. Avty 1 aplOuntikny uébodog €xel e@apuootel oTn
Fewpnyxavikn omd to 1979 (Cundall & Strack, 1979), aAA& oavamtOxOnke kot
xpnowomomtnke evpéws ta teAsvtala 20 xpovia. To kuplapyo TAEOVEKTNUA TNG Elvatl
OTL amoteAel €vav TPOTO MPOCOUOIWONG KOKKWSOUG HEGOU Kal TNG SLHKPLTHG TOU
@OoNG, xwplg va xpewaletal va xpnowomomBet n mapadoxn €vog HAKPOOGKOTILKOU
TPOCOUOLWUATOG. AUTO ETILTPETEL TNV AVAAVOT TNG WKPOSOUNG TOU €8 @IKOV VALKOU,
TIPOKELUEVOL VO TTPOKVYPOUV ATIOTEAECUATA OYXETIKA [E TN UNYXAVIKI) CUUTIEPLPOPE TOU
KOl VO EMAVECETACTOUV Ol VUTOBECELS TTIOU XPTOLUOTIOLOVVTAL OO TH KATACTATIKA
Tpocopolwpata. To pelovékmmua g MAZ eivat 0TL, KabBws aoyoAElTAl LE TA OTEPEQ
oWUATISIL TOV SLakpLToy PECOV KAl TIG GAANAETISPAcEl HeTaEV TOUG, elval €Tl TOV
TAPOVTOG ASVVATO VU EPAPUOOCTEL PE HEYGAO aplBUd KOKKWVY, T.X. 060UG Ba vTTpXAV OF

TPOLAUATA CLVOPLAKWY CLVONKWDV.

Extevéotepn avaAuomn OXETIKN HE TIG SUVATOTNTEG TOCOTIKOTIOMONS TG Soung Oa
TPAYUATOTOMOEl 0TV eMOUEVT evOTNnTA. Katomiv Ba mapovolaotel n Oswpia Kpiowng
Kataotaong, evw 1 Oswpia Avicotpomikns Kplowng Kataotaong Ba mapacyel to
KV TPO KAl TO TAXIOL0 YlX T TEEPAUATA KAL TNV AVAAUCT TIOU AKOAOVOEL TN cuvéxEla
Ba mpaypatomomnBel To SISLACTATO KAVOTOUO aplOunTIKO Telpapa péow ™G MAZX.
Avt 1 2A avamapAoTAcT TOU KOKK®WO0UG VALKOU €xel amodelyOel eEapeTikd Xpnoun,
KUPLWG YLoL TNV EVKOAOTEPN - € cUYKpPLoM UE TNV 3A - EpUNVELX TWV ATIOTEAECUATWVY Kal
™V TaxVTNTA TG avaAvong. To ev Adyw aplOunTtiko meipapa Baciletal otV oTpoEn
TwV Kuplwv afdvwv Twv tacewv. H avaAvon autol Tou €KoviKoU TEPAPATOS Ba
amokaAVYPeL Ty un mAnpotta g OKK kot v Bepameia mov umopel va poo@Epel N
OAKK. EmmAéov, Ba akoAovBnoeL pia LOVOTOVIKT) AKTLVIKT) (POPTLON, LETA TNV QPACT TNG
oTPOPN G TWV Kupiwv afovwy, 1) omola Ba amodel€el TNV YEVIKT] LoV TOV QALVOUEVOL TNG
KK. EmumAgov, a@ov mapovoiactel to (610 apl®untikd meipapa oe 3 Slaotdoelg, Ha
e€eTaoB0oVV €V cuVTOUIX OL OHOLOTNTES KaL OL SLAUPOPESG TWV ATIOTEAECUATWY Yl 2 Kol 3
Staotdoelg. H ovvektipnon g tpltng Sidotaong Snupovpyel meEPLOPLONOVS OTN
Stadikaoia, aAdd Ta amotedéopata Ba emPBefaiwoovv v avemapkela g OKK. Ztnv

EQPUPLOYN TWV ELKOVIKWV TEPAUATWY EEMEPACTNKAV OPKETEG TEXVIKEG SUOKOAlEG
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2. H 8opn| tou edapoug

SNULOVPYWVTAG VEEG SUVATOTNTEG TNV €@apuoyn TG MAE, kupiwg oTnVv Teploxn g

KK. TéAog, Ba e€axBoUv Ta KUpLX CUUTIEPACUATA.
2. H Soun Tov edagoug

To €8a@og eival éva TOAVPACIKO KOKKWEEG VALKO, TO O0TIOl0 amoTeAEITAL A0 0TEPEOVG
KOkkoUG Kat kevd. Ta ocwpatidia amoteloVv ) oTEPER PAOT TOU €5APOVG, EVW TO
VTIOAOLTIO HEPOG Elval TA KEVE, TA 0Tola UTTOPOVV Vo EUTIEPLEXOLVV VYPA 1 agpla. 'Etol, Ta
KEVA UTTOPOUV ETIONG VA XWPLOTOVV o€ SV0 VTO-QACELG: TNV UYP1 KAl TNV aépla. Xe
ouvn 01 €8d@n To VYPO elval vepd KAl TO AEPLO ElvVaL ATIAOG ATHOCPALPLKOG AEPAS, OAAQ
UTTOPEL VA TTAPOVCLAGTOVUV KL GAAX VYPA 1] aKOUN Kal agpla (T.x. AdSL, vypa& amoBAnTa

1N Sto&eidio Tov avBpaka).

EKTOG amd TOV TOAVQPAGIKO XUPAKTNPA TWV £6A@®V, HLX GAAN GNUAVTIKY TITUXN UE
ONUAVTIKY ETSpAOT, EBIKA GTNV AVICOTPOTIN UNYAVIKY) CUUTIEPLPOPQ, ELVAL ) XWPLKY)
KATAVOUT TWV CTEPEWV KAL O TIPOCAVATOALGUOG TOUG KABWE KAL 1] XWPLKN KATAVOUT Kol
0 TIPOCAVATOALOUOG KAL TWV OXETIKWV kKevwv. O 6pog Soun (fabric) xpnowomoteitatl, yia
Vo TEPLYPAYEL TN OUVOALKY XWPLKN KOl YEWUETPIKY SLAUOPp@WOoT TwV E8APIKWOV

otolyeiwv (Brewer, 1964, Oda, 1972a).

Tpla eival Ta Baoikd €81 Sopung Tov E8APOVG: 0 TPOCAVATOALOUOG TWV KLUPLWV afdvwv
TWV KOKKWV HE BAOT TO GYNUA TOUG, O TIPOCAVATOALOUOG TWV SIAVUCUATWY TOV glval
KAOETA OTIG SlEMa@EG PETAE) TWV OTEPEWV CWUHATISIWV KAl 1) KATHVOUN KL O
TPOCAVATOALOUOG TwV Kevwv. Kal ta tpla autd €idn Bewpovvtal onuavTiKd ylx T
YEVIKI] CUUTIEPLPOPA EVOG KOKKWSOUG VALKOU. TNV Ttapovoa Siepevvnon Ba eetaobel
Kuplwg N doun pe Baon ta Stavdopata Stema@wyv, evw Yy 2A Ba eetacBel kat o
TPOCAVATOALOUOG TWV KEVWV TOU VALKOV. T CUVEXELX 0PI{OVTAL CUVOTITIKA KL T TPlX
elén Sopng ya v avaAvomn Twv Back®V EVVOLWV Tow AT TOUG 0PLOHOVS NUTOVE Kol

yla TV TANPOTNTA THG TAPovsiaong.

Ot KOkKoL Tov €8d@OoLG Sev elvat oUTe o@ALPIKOl oUTE EAAEWPOELSELS, poAaTavTa gival
Suvato va kaboplotel £vag kUPLog agovag yla To oxnua toug. I'a Stdpopa, akavoviota
oxnuata (0mwg oto Zynua 1) €vag kvpLog, PEYLOTOG afovag, UToPEl va VTTOAOYLOTEL
Aapfavovtag vTOYN TOV TPOCAVATOALGUO TOU KOKKOU. XTn ouvéxela opifovtal dUo

povadiaia Staviopata otov kUplo afova (Zynupa 1), mou eival XapaKTINPLOTIKA TOU
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2. H 8opn| tou edapoug

TPOCAVATOALGHOV TwV KOKKwV (n,,—n ). Me Bdon avtd ta Stavbopata, 1 Sopn Tov
OXETICETAL LE TOV TTPOGAVATOALGHO AUTOV TOV EVOG cwHATIS0V «p» loovTAL ue n, ®n ,
0mov T0 ® ovpPoAilel TO TAVUOTIKG Ywouevo Kat povo to n, (xwpis to —n,)

xpnowomoteitat. Edv xpnowomomBouv kat ta §Vo Staviopata, TPETEL VX EQAPUOOTEL
ovvtedeot§ 0.5 UTTPOOTA ATO TO TAVVOTIKO YLVOpEVO, amodiSovtag akplBws to (8lo
amotéAeopa. Ta YAPAKTNPLOTIKA aQuUTA SLVOOUATO HTOPOUV va avaAvBovv o€
KAPTEOLAVO OVOTNHX AOVWV OTOTE KAl VA TTOGOTIKOTIOLOOUV TOCO QUTE, 0G0 KL TO

TOVUOTIKO TOUG YLVOUEVO.

IxMua 1: Atevbopata ylo Thv Teptypa@n 6 Sopuig TwV KOKKwS®Y VAIK®V: N, Y1 TOV

TPOCAVATOAOHO TWV KOKK®WVY, N YLot Tot KABETa SlavopaTa SLETOQ®V

['a éva detypa €8&@ovug, 0 TAVUOTNG ECWTEPLKNG SOUNG YIX TOV TIPOCAVATOALOHUO TWV
ocwpatidiov oplletal wg To ABPOloHA OAWV TWV TAVUOTIKWV YIWVOUEVWV OAWV TwWV

KOKKWV Tou e8d@ovg (Oda, 1982, Satake, 1982, Kanatani, 1984):
1 @
kp kp
G, :N_kzln” ®n, (1)

n, elvat ta Stavdopata mov 0pifouvv Tov TPOcavVATOAGHO TG SOUNG TwV KOKKWY, &
£lvaL TO TAVVOTIKOG YIVOUEVO, e D evvoelTal 1) ABpoton o€ GAOUG TOUG KOKKOUG, TO k,
xapaxtnpifel tov k, k0kko, kat N, elvat 0 ovvoAKOG aplBuOG TwV KOKKWSEWV
owpaTISiwv 0To Selypa. L& TOAAEG TIEPLTTTWOELS TO ATIOKAIVOV HEPOG TOU TAVUGTN TNG
Sdoung eivar to mALov evllagépov, bedopévou OTL eival amaAdayuévo omd TO
VSPOOTATIKO OTOLXEID KL TAPEXEL TNV ONUAVTIKY OOWUIKY ovicoTpoTia. AUTOG O
ATOKAIV®WV TAVUOTNG TTPOKUTITEL 0€ 2A WG:

1. 13 1
“I=—>"ny ®n -1 (2)

F =G, —
p p 2 Np o

Ye pla 3A kataotaon o cuvteAeot G 1/2 Ba mpemel va avtikataotadel pe 1/3.
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2. H 8opn| tou edapoug

1o S8ldoTato Xwpo o TavuoTtig Soung £xel SVo Pabuovg eAevBepiag, Sedopévou Tov
OTL £xeL undevikd {xvog €& oplopov (1) edv agopa tov mANpn tavvot G, povadiaio
(XvoG). ZUVETWG 1 E0WTEPLKN AVIOOTPOTIX TNG Soung Umopel va TocOoTIKOTOOEL
Xpnotpotolwvtag povo I Sa@opd twv Vo kuvpiwv Twwv (a,=F,-F,;) kat pia
YWVi, T.Y. EKTEQEPACUEVN HECW EVOG XUPAKTINPLOTIKOU afova (T.X. TOL opllovtiov
dgova) kat g Katevbhuvong TG PEYLOTNS KOPLAG Tdong (6,). AuTdg 0 TPOTIOG 0PLOROV
™G EVTAONG TNG AVICOTPOTILAG TNG Soung elvat ouvnONG otnv avaivon pe ™ MAZ (Fu &
Dafalias, 2011a; Yishmiri & Soga, 2011). Emmpoobétwg autn n €vtaor amodelkvieTal

OTL €lval TOLOTIKA KOl TOOOTIKA TouToéonun pe to péTpo (1 vopupa) TOU TAVLOTH
F =~trF? =\/§|F,|=\/§|E,|=(1/\/E)|F, —F,,|. Te 3A, n vopua Touv TAVVOTY Elval o TAEov
KATAAANAOG TPOTOG Yl TNV TOOOTIKOTOMNGON TNG €vtacng tng avicotpomias (Li &

Dafalias, 2012).

'Evag GAA0G TPOTIOG YLK TOV 0PLOUO TNG Soung e Bdon Tn OTEPER PAON Elval HECW TOV
emméSov mov kabopilel TV kKatevBuvon ™G Stemaeng (Stavdopata Siema@wv). Autd
To emimedo (1 ypapun o€ 2A) oplletal wg eKE(VO IOV SIEPXETAL ATIO TO OTUELD SLETAPNS
S5U0 KOKK®WV Kol elval QATTOUEVO OTA CWHATIOIA TTOV €pxovTal oe ema@t). Kabeta o€
auTO To emimedo (1] Ypopun), Kat He apxrn To onuelo Siemang, opifovtal SVo povadiaia

Stavuopata, Ta omola ovopalovrtal Kabeta Stavuopata Stemagng (Zxnua 1).

Me Baom autov TOV 0pLoHO TOU EMMESOV SLETAPTG KAL TWV SLIAVUCUATWY SIETAPNG O

Tavuo TG Soung umopel va oplotel wg (0da, 1982, Satake, 1982, Kanatani, 1984):

1 &
GczF n‘ ®n* 3)
¢ k.=1

omov G, elvat o TavuoTig Soung yia Ta Staviopata SIETAPNG, TO VTTOYEYPappEvO “c

7 7 7 1A 7 k
dnAwvel 0tL xpnopomotlovvtat Ta Stavdopata Stema@ng (contact normal vectors), ne
elvat to povadiaio kaBeto Stdvuopa ov TepLypa@eL T Sopn yia v k, th Siemagpn Kot
To Y. evvoel v dBpoion ot OAeg TS emaés N, TOU UTAPXOUV HETAED TWV N,
KOKKWV.

‘Eva dAA0 0VoL00TIKO oTOoLXE(D Yia TN SOUT) TWV KOKKWOWV HEGWV EIVaL 1) KATOVOUT] Kal

0 TPOCAVATOALOUOG TWV KEVWV. H TTOCOTIKOTIOMON TWV XUPAKTNPLOTIKWV TWV KEVWV
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2. H 8opn| tou edapoug

elval xata Baon mOAU SLH@OPETIKY] ATO TNV TEPLYPAPT] TNG OTEPEAS QAONG. AUTO
ovpfaivel Adyw Twv BepeAlwdwnv Sta@opwv petall Twv V0 Eacewv. O KEVOS XWPOG
oplleTal amlws ws 0 XwPOog oV Sev MANPOUTAL LE OTEPER oWHATISIA. AUTO 08NYel o€
Sta@opa (NTNUATA YLK TNV TIEPLYPAPN TWV KEVWYV, OTIWG TO UM KUPTO Kol LSLOPop@o
OXNHA TOUG KOl 1] CLVEXNS Kal Tuxaia eEEALEN TOU KEVOU Xwpov, xwpig Tpokaboplopéva
oxnuata. EmmAéov ta keva petadl Twv KOKKWV, e8lkd o€ 3  Sl00TACEL,
aAAnAoouvdéovtal, £TOL WOTE OTNV TPAEN Vo VTTAPXEL HOVO €va eviaio Kevo, 1 Alya
peydAa. ‘OAa QUTA TA XXPAKTNPLOTIKA KABLGTOUV TNV €V A0y @PAGCT TIOAU SLLQOPETIKT,
000V a@opa ot Soun NG, Ao Tov oTEPEO XwpPO. [Tap'oAa auTd elval TPo@AVES Kal EXeL
ava@epOel (Li & Li, 2009, Theocharis et al., 2014, Fu & Dafalias, 2015) 6Tt kata ™ doun
TOUG T KEVA KL TX OTEPEX CLUVEEOVTAL, OTIWG AVAUEVETAL, KL ETILITAEOV cLOXETI{OVTAL
ToooTIKG. Ev ouvrtopia, yla va TOOOTIKOTOWGOUUE TN Soun TWV KEVWY, OAX TA
XAPAKTNPLOTIKA TOUG £XOVV onpacia - OTIwS To uEyeBog, To oXMUA KL 1) CUVOECIUOTTA
TWV KEVWV - VW YLA TA OTEPER €lval ATTAOVOTEPO VA EGTIACEL KAVEIG HOVO OTO oYX

TWV CWUATISIwV 1 oTa Slaviopata SIETAPTS.

e pla mpooc@at Snpoocievon (Theocharis et al, 2017b, vmd €€étaon) efetdobnke
OLOTNUATIKA pla eE0XwG Sladedopévn HEB0SOG yla TNV TTOCOTIKOTON O TG S0UNG TWV
KEVOV: 1 UEBOBOG avAAvomG TWV KEVWV HE TAPAAANAES YpAUUES oapwons. Ta
ATOTEAECUATA TNG AVAALONG QUTHG TEPAXpdvouy TV amodeldn (He avaAvTIKO Kol
aplOuNTikd TPOTOo) VTAPENG TMPORANUATWY GTOUG HEXPL TWPA OPLOUOVS TIOU EXOUV
xpnowomowmBel pe Bdon avtiv T HEBOSO, €V TAPOUCLACTNKAV Kol SV0 VEES
EVAAAAKTIKEG AVOELG YLIA VAV TILO (PUGOLKO KAl 0pBS 0plopd TOL TavuoTh SOUTG.

TUYKEKPLUEVQ, PUE LK OXETIKA QAT TPOTOTO(NOT TOU apXIKOU 0PLOHOV, OTWG auTOG
806nke amd touvg Oda et al. (1985), opiletal évag véog Tavuotng Soung pe Baon
HEB0S0 TTHPAAANAWY YPAUUWY CAPWOTG TIOU UTIOPEL VX TIOGOTIKOTIOMOEL EMAPKWS TNV

aVIooTPOTILQL:

Nﬁ
1 6=90° 6=90° Zlig
Gi":Z > In’en’ L= > 1% 19:’;\,1—9 yw 17 > "cut off" Ty (4)

0=—90° 0=—90"

6mou NY eivau To povadiaio Stdvuopa KAt PNKoG TNG EKACTOTE YpapLp1|S TIov BpiokeTal

umé ywvia 8, to N’ ®n? ypnowomoteital Y To TavueTikd Yvopevo Tov N’ pe tov
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£auTO Tov, 0 1Y yapaxtmpilel To prKkog i katd ™ ywvia 8, o N’ eivat o aplBuég Twv

INKOV TV kevodv 17 yia kéBe yovia 8, to 17 elvat To péoo pfrog 6Awv Twv unkov Tmv
6=90°

KEVOV Y1 TN kaBe yovia B kar L= )" 1 eivai to dBpotopa 6Awv Tov pEcwy KoY
6=-90°

1? yio 6Aeg TIG ywvieg 8, evd 1 dBpotomn AapBavel xdpo o€ TPOKAOOPLOPEVA SLACTIHATA

Tov 0 péoa otov xwpo [-90°,90°]. O péoog dpog Twv unkmv 17 Tapéyel ™V onpavTiky

avicotpotiat Twv Tavvot®wv N’ @n’kat 1 otatioTiky katavopu Tou kabopilel Tov

TPOCAVATOALOPO TNG Soprg. ZTnv mepimtwon mov to |7 eival {co yur k&be 8, O
amaAewpbel amod tov aplduntn kat Tov mapavopaotn ¢ EE. (4), kai, oAokAnpwvovtag
yla kaBe 6 mpoxvTTEL 0 HLoOG povadiaiog tavuotis (1/2)l mov oyxetietal pe mANpwg
LOOTPOTILKY Soun.

'Evag aAA0G, VEOG 0pLopOG evOg TavuoT e T uéBodo ypaupwy cdpwong, 0 0moiog
ATOSEIKVVETAL KOl UTOG ATIOTEAECUATIKOG OTI) HETPTOT AVICOTPOTIAG TWV KEVWOV Kol

mpotelvetal amo toug Theocharis et al. (2017b) eivau:

s (S
i

6=-90" \_i=1

G =;HZ%O NZH‘I“ n’®n’ (5)
v2 0=90° [Na J i

Ta cOpfoAa mapapévouv (Sla OTwWE KAt TPy, L& AUTNV TNV TEPITTWOT], TO CTATIOTIKO
Bapog Tou TavuoT) Soung, oL XapaAKTNPIleL TNV AVICOTPOTIIX TNG SOUNG TWV KEVWYV,
glval TO TETPAYWVO TOU HUNKOUG TWV UNKWV TWV KEVWV, 0€ avTtiBeon pe TOug
TPONYOUUEVOUG OPLOHOVG, OTIOU XPMOLUOTIOLE(TaL TO (8o TO MNKOG. Ap@OTEPOL OL
TAPATIAVW VEOSHLOVPYNOEVTEG TaVUOTEG Soung kevwy, oTig eilowoels (4) kat (5),
UTTOPOUV VA TIOCOTIKOTIOMOOUV EMAPKWS TNV QAVICOTPOTI TwV KEVWV Kal Ba
EPUPLOCTOVV OTI CUVEXELX YLK TNV TTOGOTIKOTO(M O™ TNG SOUNG TwV KEVWV o€ 2A péow
aplOUNTIK®V Tepapdtwy MAL. Ymoypapuuiletal 0TL oL TAPAAANAES YPAUUES CAPWNOG
e@appolovtal oe 6A0 To Selypa Kat OxL LOVO O€ Ui AVTITTPOCWTEVTIKN TIEPLOXT], OTIWG

o€ GAAeg uebodovc.
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3. H Oewpia Kpiowng Katdotaong kat n kAnpovoutd g
3. H Qewpla Kplowung Katdotaong kat 1 KANpovouLd t™g

3.1 H kAaowkn Pswpia Kplowung Katdotaoncg

H évvowa ¢ Kplowng Kataotaong (KK) €xet etoaxbel amd toug Roscoe, Schofield &
Wroth (1958) kat and toug Schofield & Wroth (1968) oto €pyo-o0pbdonud Toug TpLv amd
ULoo mepLmov atwva. 0L CLYYPAPEIS TNV TIEPLYPAPOVV WG: «T) YEVIKN LEEQX OTL TO £80OG
Kol GAAX KOKKWOT VAIKE, oV TIAPAUOPPWVOVTAL CUVEXWG UEXPL VU PEOVV WG PEVOTO
TPIPBNG, B eloéABouv oe pia kKaAd kabBoplopévn kploun kataotoon mov kabopiletal
and dvo eflowoelg» (Schofield & Wroth, 1968 - Evotnta 1.8 , ZeA. 12). Autég ot dvo
eCLOWOELS AVAPEPOVTAL OTIS HUKPOOKOTILKEG LSLOTNTEG TOU VAIKOU Kol opllovtal HE
Baom Ti§ TAoELS KAt TOV OYKO.

Katapyds eivat onpavtiko va Eexwpioovpe v Bewpia Kplowng Kataotaong amo to
avtiotoyo @awopevo. H Kpiown Katdotaon (KK) avagépetal otnv katdotaon twv
KOKKWOWV VAIK®OV OTIOU TO VAIKO oLVEXIEL VA TTAPAUOPQPOVETAL CUVEXWG SLATUNTIKA,
EVW Ol TACELS KAl 0 OYKOG TOV Tapapévouy otabepd. H avaAvtikn ék@pacn autng g

KATAOTAGCTG CUVETWG TTPOKVTITEL WG:

p=0, g=0, ¢,=0, £ #0 (6)

o0mov g elvaim amokAivovoa taom, p elvaln vEPOOTATIKY TAON, &, ELVALT) OYKOUETPLKN
TpOTN Kt ¢, elval  amokAivovoa Tpomn, N povn N omola e&edicoetar otnv KK. H
VTEPTIOEUEVT TEAEIQ TIAVW ATIO TIG TTAPAUETPOUS UTTOSNAWVEL TNV UEPLKT) TIAPAYWYO UE
TO XpOVvo.

Ot Roscoe, Schofield & Wroth (1958) kat Schofield & Wroth (1968) mepiéypapav to
@EALVOUEVO OAAQ TIPOTELVAY £TIioNG Kal pia Oewpia Baoiopévn otnv KK. Avti 1 Bewpla
VTIOSNAWVEL OTL 1 KPIOLUN KATAOTAON UTOPEL Vo OPLOTEL pNTA& amd §Yo cLVONKEG, oL
oToieg elval Ikavég Kal avaykaies yia va emitevydel kat va Statnpndel n KK. Avtég ot

Svo eflowoels kaboploTnKay KATAPXAS GTOV TPLAEOVIKO XWPO KAl GTNV apXLKI] TOUG
LOP Y] EKQEPACTNKAV WG:

q=Mp; T'=v+Alnp (7)
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3. H Oewpia Kpiowng Katdotaong kat n kAnpovoutd g

o0mov TaAL g elvaln amokAivovoa taom, p elvat 1 VSPOOTATIKY TAGCT, V €lval 0 £161KOG

O0YkoG Tou VAKoU, M, T' kat A elvat 180T TEG TOU €8x PIKOV VAKOV. To TTpwTOo UEPOG
™ e€lowong (7) avagépetal o€ Taoelg kal TpokVTTEL OTL oTnVv KK 1 amokAivovoa kat n
USPOCTATIKY) TAOT OXETI(OVTAL YPAUULKA HECW ULAG OTADEPAS, IOV EEAPTATAL LOVO ATIO
TO VAWKO. To Sevtepo pépog g €&, (7) vmayopevel OTL 0 €181KOG OYKOG, 0 0Ttol0G Elval o
OUVOALKOG OYKOG IOV KaTaAapfavetal amd povadlaio 0YKo 0TEPEWV KOKKWV, LELWVETL
YPauUkd kaBwg av§dvetal o AoydplOpog tng vdpooTATIKNG TieonG, evw To Selypa

Bpiloketal mavta otnv KK. Ta 800 pepn g e&lowong (7) mapovotalovtal ToloTIKA 0TO

Iynuo 2.
Deh Spesifc
A vo ‘rme
# Critical
Fea—" states
Critical
‘Dry’ states
- Pressure 3~ pressure
(o) (B)

Iynpa 2: Kpiown Katdotaon oOpgwva pe tig EE (6): (o) n amokAivovoa o€ oxéomn pe
™V vdpootatikn Taom (B) o e81k6G GYKOG G€ oXEON UE TNV USPOOTATIKY TAOT
(Schofield & Wroth, 1968 - Evotnta 1.8, oeA. 12)

H Kplown Kataotaon dev ival amlwg pa otabept) KATAoTAOT 0TV oTtola (pBavel Eva
KOKKWOEG VALKO UTIO kAol WSLaitepn Stadikacio @OpTIONG, 0AAG ATOTEAEL PIX YEVIKN
"Baon ava@opds” yx autd To €i80g VAIKWYV. L& omolodnmote Sedopévo Selypa e5d@oug
TO gpwTNHa elval eav elval "Yadapotepo” 1 "mukvotepo” amd v KK. "XaAapdtepn”
elval 1 KATAGTAON KATA TNV oTola, VO THPAUOPPWOT, TO VAIKO Ba cupmukvwbel, o
e81KOG OykoG Tou Ba pewwBel, SnA. Ba onuelwdel peiwon TwV Kevwv HETAED TOU
povadiaiov 6ykov TwV KOKKwV Kal avagépetal ws "Yypn (Wet)" oto Zx. 2(f). Ao v
GAAn mAgvpda mn "mukvotepn” eival 1 avtiBetn katdotoon otnv omoia To Selypa Oa
Staotodel, SnAadn n mapapdpewon Ba mpokaAéoel avinon tou eldtkol OyYkKov. AuTth
etvarn "Enpn (Dry)" mepoxn oto Zx. 2(B). Elvaw mAgov oca@eg 6t n KK dev eivat amiwg
Ho otabepr) KATAoTooT, AAAA Eva TIOAD OMUOVTIKO KAL LoYUPO TTAQIGLO TTOV VTIAYOPEVEL

TNV CUUTEPLPOPA TOU €8G@OUG. AUTH 1 CUUTIEPLPOPA, aTOTEAEl TN BAom ywa TV
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3. H Oewpia Kpiowng Katdotaong kat n kAnpovoutd g

avamtuin g Oewplag Kpiowng Kataotaong (OKK), éva onpavtikd emitevypa tmg
ESa@ounyavikrg.

Mia axoun cuviOnG popen Twv cuvBnkwv t¢ OKK eivain e&ng:

n=%=m =M, e=e,=é (p) 8)

omov o 1 €lvat To oVPPoAO Yl TOV amokAlvovta Adyo tacswv (deviatoric stress ratio)
Kot 77, ywa Tov amokAivovta Adyo tacewv otnv KK, €€ oplopov (cog pe M. O Seiktng

mopwv (M Adyog kevwv - void ratio) (e=1+v) avtikaBlotd Tov €81KO OYKO, KaBwG
£xouv oxéom éva mpog éva, kat loovtal pe e, otnv KK. To é,(p) xpnowomoteitat yia va
vToypappiosl 6tL o deiktng mopwv otnv KK eEaptatat povo amoé v vdpooTatikn Tao.
H oxéomn petadd g vSPoOoTATIKNG TAOTG KAl TOV SelkTn TOPWV ATOTEAEL TNV TTPOLOAT
™m¢ emupavelag s KK oto ywpo e—p kat edw avagépetar wg Tpapun Kpilowng
Kataotaong (I'KK).

3.2 Epwtnuata oxetika ue ™ Oswpia Kpiowung Katdotaong

Q¢ Kuplapyo emitevyua Tou emoTnUovikoy mediov 1 OKK €xel mpooeAkloel évtovn
kpLtikn. Elval onuavtikd va €youpe Kata vou OTL, T oTiyu Tov avantuyxdnke n OKK,
Sev uTMpxe Tapopolx TETOLX Bewpia Kol OTL I EMOTHUN TNG YEWUNXAVIKNG BplokdTav
oTa MPWTA ™G otadia. Katdémyv ¢ eloaywyns g Opwg, €xouv eyepBel apketd
OXETIKA {NTNHaTA, ESIKA SeS0UEVOU OTL TTpOKELTAL Yia pLa Bewpla Baclopévn Kuplwg oe
TEPAUATIKA ATOTEAECUATA, XWPIS oxupd BewpnTikd vofabpo. Ta Vo onpavTiKa
NTNHATA TTOV £X0VV TTPOCEAKVOEL TNV TIPOGOXT] TNG EPELVAG TA TEAELTALX XPOVIX E(VALT)
pnovadikotnta ¢ KK kat ot ikavég kat avaykaieg ouvbnkeg emitevéng g (Poulos,
1981, Chu, 1995, Riemer & Seed, 1997, Mooney, Finno & Viggiani, 1998, Li & Dafalias,
2012, Zhao & Guo, 2013).

3.2.1 Etvawn Kpiown Katdotaon povadikn;

H povadikotnta 1 0xL tg OKK ouvdéetal kupiwg pe v Fpapun Kplowng Kataotaong
(F’KK). Elvat mAéov yevikwg amoSeKTO OTL 1) TN TOU ATOKAIVOVTA AOYOU TWV TACEWV
q/p omv KK, eivar povadikny (my., Mooney et al, 1998). To mpofAnua g
povadikotntag tg KK €xel StepeuvnBei, xwpig va €xel emitevxBel MANPNG Kol cagng
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3. H Oewpia Kpiowng Katdotaong kat n kAnpovoutd g

KataAnén. IMoAAQ mpakTikd mpoPfAnHata Teplopi{ouv HEXPL OTIYUNG TA EPYACTNPLAKA
ATOTEAEOUATA, OTWG T AVATTUEN STUNTIKOV {WVWOV TAPAUOPPWOTNG, TEPLOYXWV
OTEVWONG SLATOUWY Kol GAAWVY 1] OUOLOUOPPWY TIAPAUOPPWOEWY, UE ATIOTEAECUA 1)
KK va punv pmopel va emitevxBel oe 6A0 1o Selypa kol €tol povo Alya Selypata va

@Tdvouv opolopop@a otnv KK.

H Mé6o8og twv Aakprtwv Ztoelwv (MALX) (Cundall & Strack, 1979) elvat €va véo,
eEATILE0OPO, aPlOUNTIKO epYaAEl0 TIOU TTAPEXEL ATAVTNOELS 0 aUTO TO Ted(o. AuTti 1
aplOun Tk pEB0S0G pumopel v e@apprdceL SLAPOPEG CLUVOPLAKES CUVOTKES Kol GUVONKES
@OpTIONG, KAl va SWOEL UETPNOELS O OTOLNSNTOTE TEPLOXN TWV SEYUATWV TOU
XPNOLOTOMONKAY, £TCL WOTE TA TIPAKTIKA TIPOPANUATA TWV QPUOIK®V TEPAUATWY VI
umopovv va EemepaotoLv. H épeuva pe ™ MAZ €xel 181 Swoel TEloTIKEG amodel€els yia
™ povadikomrta ¢ KK kat Ti¢ mapapéTpoug mov 1 HovadikotnTa auty Umopel va
ovvenayetat (Rothenburg & Kruyt, 2004, Sitharam & Vinod, 2008, Fu & Dafalias, 2011b,
Yang & Luo, 2015, Yang & Wu, 2016).

3.2.2 Eivat ot ouvOnkeg ¢ OKK tkaveg kol avaykaleg;

Metd v mapovoiaon ™ kVuplag €vvolag tng OKK, ot Schofield & Wroth (1968)
TEPLYPAPOULV pe peyaAVTEPN akpifela ™ cupmepipopd otnv KK. Ztnv evotnta 6.8, oeA.
104-105, n KK opiletat wg: "[...] N xatdotaon Tov VAIKOU Tov pEEL WG LVYPO TPLPNG oF
otaBepo €81KO OYKO, TOTE KAl LOVO TOTE, OTAV 1 ATMOTEAECUATIKY] VEPOOTATIKN TIieoT P
Kal 1 amokAivovoa Tdomn q wavotmowovv [.]" €dw Tig EE (8). Aut n umdBeon
VTIOSNAWVEL 0a@PWS OTL oL oLVONKeES (8) TEPLYPAPOUVV TIG IKAVEG KOl OVAYKALES
OLVONKEG, Yl v 0pLOTEL 1) Kplowun katdotaon. H umtdéBeon autr) cuvdéeTal Tpo@avwg
KAl LE TO {NTNUA TNG LovVASIKOTNTAG TIOV TEPLYPAPETAL TIapaTidvw. To TANPES oVVOA0
TWV KATAOTATIK®WV UETAfANTwV Tov Ba opilav pe akpifeia tnv povadiky KK, B«
kaBopLlav emiong TIS IKAVEG Kol avaykaieg ouvOnkes. Avta ta Vo (NTHUATA, oV Kal

oxetilovtal ca@wg, Sev elvat To (6o TPORANuA.
3.3 Oswpla Avicotpomikric Kplowung Kataotaong

Mia amo T Baokég mapadoxég tng OKK ntav 1 pikpn onuacio tng e0wTEPLKNG SOUNG
tov edd@ovg otnv KK. Onmwg dMnAwoav pntd: «Oa aoxoAnBoVUE PE TIG LOOTPOTILKES

UNXAVIKEG LELOTNTEG TOV VALKOV, SLHITEPA TOV AVAUOYXAEVHEVOL E6AQOVG TTOV OTEPELTAL
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3. H Oewpia Kpiowng Katdotaong kat n kAnpovoutd g

Sdoune» (Schofield & Wroth (1968) - Tunua 1.9, oeA. 14). Auto avtikatonTpileTal oTnVv
EE. (8) amd to yeyovog OTL xpnollomoleital o Seiktng mopwy, aAdd Kapio mocodTTa
OXETIKT UE TN Sour). AUTI 1] GUYKEKPLUEVT VTIOOEGT), LOAOVOTL (CWE NTAV APXLIKWS AOYLIKT)
N aKoOun Kat avaykaia, yix va otkodoun0el to mpotumo g OKK ekelvn tnv emox), €xet

mpooeAkvoel coBapn kpitikn (Li & Dafalias, 2012, Dafalias, 2016).

Ta teAsvtala 20 xpovia, apkeTtd Hikpodoulkd otolxela amodeikvuouy otL otnv KK n
Soun mapovotdlel évtovn avicotpomia (m.x. Masson & Martinez, 2001, Li & Li, 2000, Fu
& Dafalias, 2011b, Theocharis et al., 2017a). Ztn ovyxpovn €peuva €xeL KATAOTEL
mpo@aves 0tL 11 KK @épet kdmowa e€aptnon amd tn doun, pa emmAéov HeTafANTI) TTOL
avadelkvueTal WG avaykalotnta. H emppon ¢ Soung oty avicoTpoTiki) @UOT TG
Kployng Katdotaong kot 1 Hovadikotntda g, £xel BaBLEG CUVETELEG YA TNV KAOOAIKA

amodektn) OKK (Seed et al., 2003).

‘Etol ot Li & Dafalias (2012) Snuovpynoav tnv BOswpia Avicotpomikng Kpilowng
Kataotaong - OAKK, 6mou 1 Soun| eival pla Tpdohetn Kataotatiky HeTaAnTh. Auti
Bewpla SlaTLTTWONKE Yl KOKKWON VAIKA w¢ éva Yevikd mAaiolo, xwpig va amottel
OUYKEKPLUEVO TIPOCOUOIWUA, KOL XPNOWUOTIOLEITAL HECH OTO EVPUTEPO TEeSIO TNG
EAAOTOTANOTIKOTNTAG, aKpLBWS oTo (6o vevpa pe t OKK. Ztov mupnva tg OAKK
elvat n doun, N omola ekppaletal péow TG MetaBfAnmig Avicotpotiag Aoung - MAA

(Fabric Anisotropy Variable) mov opiletat wg:
A=F:n=Fn_:n=FN (9)

o0mov A eivaw n MetafAntnig AvicotpoTiag Aopng, Feivat o amokAlvwv tavuotig Soung
o omolog pmopel va avaAvBel oe voppa (F) kot €vav povadlaiag-voprag TavuoTh

Katevbuvong n,, n eivat o povadiaiog TavuoTig TG KateLBLVVONG TNG POPTLONG, TO
BaOpwTo6 peyebog N =n, :n TMOCOTIKOTIOLEL TN OXETIKN kateVBuvon Twv F kat n, pe v

AVW-KATW TeAelo va SNAWVEL TO [XVOG TOV YIVOUEVOU TwV SV0 TIPOCKEILEVWY TAVUOTWV.
[a Vv mapoloa e@apuoyn, aAAd Kol w¢ YEVIKN opx, N KatevbBuvon @opTiong n
EMAEYETAL CUYYPUWUIKY] TTAVTA UE TOV QTMOKAIVOVTH TAVUOTH TOU TMAXOTIKOU pubpov
TAPALOPPWOoNG. Autni 1 €MAOYN AlpeL TNV AVAYKN O TAVUOTIG AUTOG VX OXETIOTEL e
KATIOlO OUYKEKPLUEVO TIPOCOUOlwUA. ZUVETIWS 1) MetafAntng Avicotpotiag Aopng

TIOCOTLKOTIOLEL TN Sopun o€ OPoUG EvtaonG, aAAd Kol 6 OPOUG OXETIKNG KaTevBuvoNG pe
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3. H Oewpia Kpiowng Katdotaong kat n kAnpovoutd g

™ @option. H évtaon g Soung F opiletal wg To HETPO TOU TAVLOTH Sopng,

KOVOVIKOTIOHEVO PE TNV Tiun Tov oty KK.

H €&éAi&n g F pmopel va petpnBel pe ™ MAE, pe faon tov oplopd g Soung, evw pia
ovvexng eElowon eEEAENG Tpotabnke amd tovug Li & Dafalias (2012) mov Baciotnkav o€
mapatnpnoelg tng MAZX. Ilponyovpeveg épevveg MAX (Li and Li, 2009, Fu and Dafalias,
2011b) €youv Oei&el 01, kabBwg efeAiooeTal o TAVVOTNG SOUNG ME TNV TAAOCTIKN

TPALOPPWOT, N KatevBuvon Tov N, Telvel va vbuypappotel e To N kat yivetatl
ovyypautkn otnv KK (edv 8ev éxel 16n yivel), evw n vopua F, teivel mpog to 1 otnv KK.
Yvvenwg, oty KK éyovpe: N=N_=n,:n=n:n=1 (Sedopévwv Twv povadiaiwv n, xat
n), F=1 kxat F=F =n. Qg ek tovtov, Baci{opevol otov opiopd tov A omv EE. (9),
émetat 1 Tpltn ovvBnkn g OAKK, A=A =1. [IAfov oL véeg ouvBnkeg yia tnv AOKK

sivat
n=n.=(q/p).=M, e=e,=e (p), A=A =1 (10)

Me Bdom KoL TNV TAPATIAV®W avAAVOT| Yivetal ocagég 0Tl 1 MetafAnTg Avicotpotiag
Aopng Aappavel kat apvnTikéG TIUES, pe Baon to N mou aAAd&lel mpOONUO TL.X. OTNV
mepimtwon Tplaovikov e@eAkvopov. EmmAéov, 1 MAA umopel va AdBel Tipuég kat

UEYQAAVTEPEG TOU 1, OTAV TO HETPO TNG AVICOTPOTILAS TNG SOUNS YiveL peyaAvtepo tou 1.
3.4 H mAnpotnta ¢ OKK kai n eykvpotnta thg OAKK

Evwo 1 MetaBfAnmg Avicotpotiag Aoung elvat TOAV YpNOUN OTNV KATOOCTOTIKY)
TPOCOUOIWON, Yl VX ATTOSEEEL TNV AvAYKALOTNTA TNG WG L EMITTAEOV, TPITN avaykaia
ouvvOnkn KK mov vrtetoépyetal otis EE. (8), mpémel kaveic va eival oe B€on va Sei€el 0Ty,
av IKavoTomBovv oL TPpwTEG SV0 KAAGIKEG oLVONKEG aAAG OxL 1) Tpitn, TOTE Sev umopel
va emtevyBel KK. Méxpt oTiyung, HeE TNV €KTEAEON TPOGOUOLWOEWV MAX €xel
mapatnpndel 6T, 6tav mAnpovvtal ot V0 TMPWTEG TPOVTODETELS, 1 TPITN GUVONKNY
iKavoToleltat TTavtote Tavtoxpova (Fu kat Dafalias, 2011b). Zuvemwg Sev €xel kKataoTel
Suvato va dnuovpynBel pa epintwon 6mov ot S0 TPWTEG CUVONKES ETITUYXAVOVTOL
XwpIg 1 Tpitn va emitevyBel tawtdypova. ‘ETol, Ba pmopovoe Kavel§ va CUUTIEPAVEL OTL T
Tpltn mMpolMOBeon elval amAws €va POAKO CUUTANPWUA, TO oTolo cvpPaivel

Tautoxpova pe TIs Vo mpwteG ovuvOnkes otnv KK, aAda Sev pmopel va otabel oto
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3. H Oewpia Kpiowng Katdotaong kat n kAnpovoutd g

EMIMESO PG aTAPALTNTNG KAl aveEAPTNTNG TPLTNG TTPOUTOBEOT G Yl TNV ELPAVIOT) TNG

KK.

Avagépetat Aotmov To akOA0VO0 VONTIKO TEIPAUA KL 1] OYXETIKN EPWTNOT: €va Selypa
edapoug @optifetal oe TplaEovikn ovuTieon €wg O0Tov @Bacel otnv Kplown
Katdotaon, ©&mAadn otmv katdotaon otnv omold avamTtUOCETAL  GUVEXTG
TAPALOPPWOT VO oTtaBepég Taoelg xwplg petafoAn oykov. Evw Bpiloketal otnv KK,
eMPBAAAETAL OTPOPN TWV KUPLwV agovwy (KA) tng Tdong, Le TIg KUPLEG TILES TNG TAONG
va Statnpovvtal otabepeg. To epwtnua mov TiBetal elvat: Ba ocuveyioel To Selypa va

Bploketar otv KK 1 oxy;

To mpotewvopevo melpapa, O6TOLV 1 OTPOEN TWV KLplwv afdvwv NG TaomG cupPaivel
otV KK, Statnpwvtag mapdAAnAa Tig KOPLEG TIHESG TNG TAOTG, Elval akpLB®E To TElpapa
IOV ATIALTEITAL YL TNV KATAPYXAS OVTILETWTILON TwV {NTNUATWVY TOU TEONKAV oTNV
TponyoUuevn Ttapaypa@o. To apxiko epwtnua ival av to delypa Ba e€akoAovBovoe va
etvat omv KK 1} 01, 6tav emBarietal tétola otpo@t). E@ocov 1 cuvOnkn tou kpicipuov
Abyov tdoewv (7=1,=M) 8ev Ba aAAdEeL yioo oTaBepég TIPEG KUPLWV TACEWV KAL O
Selktng mMOpwv Pploketal 16N oV TLr kpioung kataotaong (e=e, ) ylx to SeSopévo
p TOU Tapapevel emiong (1o, av ot kKAaoikeg ouvOnkes g OKK mov Sidovtat and tig
eflowoels (8) elvar emapkels ylx v KK, tote 10 Selypa mpemel va mapapeivet otnv KK
KATA TN SLAPKELX TNG OTPOPNG TWV KLUPIwV afdvwv TAONG KAl KATA GUVETELN, OEV

TPETEL vV TTapatnpnOel kapio aAdayn Tov Seiktn TOPwV.

Q01600, €AV KATIOLOG HETPA [t aAAayn) TOL Seiktn TOpwv Oty Eekva 1 otpoen] KA,
auTo onuaivel 0tTL ot EE. (8) elvat avaykaieg, aAdd oL ikavég yia ) Statrpnon g KK
Kal emopévwg 1 kAaotkn OKK eivatl eAAMT¢. ZTnVv TEPITTWwoTn auTV KATL AAAO TIPETEL VA
ovufaivel kata T StapKela aUTNGS TNG Sladlkaciag TTov LETAKLVEL TO Selypa pakpld amo
™mv KK. Zoppwva pe v OAKK autd to "katl dAA0" oxetiletal pe tnv mapafiaon g
TpltNG, oxeTWOUEYNS e TN Sour), ouvOnkng otis EE. (10). Ztpon twv kupilwv afdvwv
TNG TAONG KAL CUVAPEIS TAPATNPNOELS £xoUV 1161 Ttapovoiaotel pe ) MAZ (.. Li kat
Yu, 2010, Tong et al, 2014), 0cAA& TO XAPAKTNPLOTIKO YVWOPLOUA TNG TIAPOVCAS EPYATIAG
elvat 6TL autn 1 otpoen Eekva amd v KK, melpapa mov Sev emetevydn moté mpv. Tnv
TAPATIAVW AVAAVOT) OXETIKA e TO {TNUa TG MANpOTNTAg 1 0xt TS OKK, kabwg kat
™V MPOTAON Yl éva Tielpapa MAE pe evaAdayn Twv Kuplwv aidvwy TwV TAGEWY 0TIV
KK yia emifefaiwon 1 dpvnon ¢ mAnpotntag g OKK kat yia emikpwon g avaykng
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4. AplOuntikd melpapata 2A pe tn MAZ- H amdédei&n g un minpotrtag g OKK katn Oepameia g

eloaywyns s OAKK, mpwtoavépepe xal emeEepydotnke, o€ vmobetikn fdon o Dafalias
(2016). ‘Evag amd Toug KUPLOUG GTOXOUS TOV TIPOVTOG €PYOU ELval 1) TIPAYUATOTIOMON

QUTNG TN G VTIOBETIKN G TPOTACTG.

4. AplBuntika mepapata 2A pe T MAX- H amodelén g
un mAnpotntag s OKK katn Bepameia g

['la ) Sidldotatn Tpooopoiwon AU TG TNG EVOTNTAG VTIAPXOLV LOVO §U0 KUPLEG TATELS
kat tpomég: o,(i=1,2) xat g(i=1,2). Ot Sla€ovikég €KPPACELS TwV TPLAEOVIKWG
OPLOUEVWV apXLKE Tapapétpwy, p (vdpootatikn mieom), q (amoxAivovoa tdom), &,
(oyxopetpuar) Tpomn) kat &, (amokAivovoa tpom) opilovtar we: p=1/2(o, +0,),

q=0,—-0,, & =& +&, Ku gq=1/2(51—52). OL TIPOCOHOLWOELS TWV TEPAUATWV

Tpaypatomombnkav pue to Aoylopuikd PFC 2D v4.0© (Itasca, 2013; Cundall and Strack,
1979) kat ol TAPAUETPOL TIOU XpnolpomomOnkav meptypagovtal otov Ilivaka 1. Ot
TEXVIKEG AETMTOMEPELEG Kol TA TPOPANUaTA TOU ETpeme va AvBolv, wWoTeE Vo
TPAYUATOTOMOEL 1] TTAPoVo A AVAAVOT EIVAL ONUAVTIKA KAl AVOHAUTIKA TEPLYPAQOVTAL
TéPpa amd v Tapovoa epyacia kat oto Theocharis et al. (2017a), aAAd& to KUpLO

EVOLAPEPOV EOTIALETAL OTA ATIOTEAEGUATA, TA OTIOLX KL TTAPOVCLAOVTAL TP AKATW.

Ymoypappiletal 6t n SiStaotatn avdAvon mov akoAovbel amoteAel kabapr avaivon 2
Slaotdoewy Kal 0xL avdAvon emimedng evtaong N emimedng mapapdp@wong. Adyw
aUTOV, Ol TIHEG TWV SLXPOPWV TEPAUETPWV (T.X. TOU SelkTn TMOPWV) SeV elval OYETIKES

LLE TIG AVTIOTOLYES TIUEG TOUG 0€ 3A Kal UTTopovV Vo GLYKPLOOUV IE QUTEG LOVO TIOLOTIKA.
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4. AplOuntikd elpapata 2A pe tn MAZ- H amdédei&n g un minpottag g OKK katn Oepameia g

AplBuog KOKKWV 20,000
Méon aktiva k6kkov (m) 0.001
Luvtedeotg opotopop@iag (Cu = deo/d10);rmin (m); rmax (m) | 1.8 ; 0.0005 ; 0.0015
[TA&Tog ToL Setypatog ektog emmeSov (t) (m) 1
Axktiva kKuKALKoU Sokipiov (m) 0.165
Iootpomikn kat peon mieon (kPa) 200
[Tukvétnta kOkkwv (kg/m3) 1000
k, (N/m) 5x108
ks / k, (N/m) 1
YuvteAeotg TppN¢ (disk-disk; disk-boundary disk) 0.5; 0.0
Aobyog amooPeong 0.7

Mivakag 1: 5§10t TeG TV KOKKWV Kal ToL §oKiiov yia ta 2A melpauata MAZ

4.1 Makpookomika AToteAéouata
®ddom 1: Ax€ovikn @option péxpt v KK

H Swaovikn @option epappdotnke avgdvovtag t BATIKY, KUpLa Tdon o, KaT& ToVv
KOTAKOPLUPO GEova Kol LELWVOVTAG LOOTIOoA TNV €AGXLOTN KUpLA TAOM o0, KATA TOV
optgovtio d&ova. g ek TovTov mpokUTTEL Ao, =—A0, >0. KabBwg ot katevBUvoelg Twv

KUpIlwV TAcEwV Tapapévouy otabepéc Katd Tn SLApKeELR TG PAons auTrg, éva medio
TOAXUTNTWVY HE OTAOEPEG KATEVOVVOELS EQAPUOGTNKE GTOVG GLUVOPLAKOUG KOKKoULG. H
LOKPOOKOTILKY) GUUTIEPLPOPA TOU APYLKWS GTPOYYLAOU SElYHaTOS TAPOoUoLAleETAlL OTO
Iynua 3 (o kot B) pe padpeg YPOUPES KAl EL@OVICEL pior TUTILKY CLUUTIEPLPOPG AdYOL
TAOEWV KAl OYKOUETPLKNG TIAPAPOPPWONG Yl xodapd €8da@n. To aplOuntikd Selypa
@tavel oty KK mepimov oto 10% ™G afovikig Tapapdp@mons KATd ToV KATaKOPU@O
(v) aova, evad oL UTTOAOYLOUOL GUVEXLOAV HEXPL T) TIAPAUOPPWOT QUTH VA PTACEL GTO
30%, kabws 0 A0yoG TaoewVv kal 0 Seiktng mMopwv Satnpnoav Tis Teg s KK toug,

Aadn n=n,=M~0.57 ka e=e, =€ (200kPa)~0.23.
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4. AplOuntikd elpapata 2A pe tn MAZ- H amdédei&n g un minpottag g OKK katn Oepameia g
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0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

€ €

axial axial

Iynua 3: Ala€ovikn @OpTion evos xadapol KOKKOSEoUG LAKOV: (o) amtokAivwv Adyog

Tdoewv 7 Kat () Selktng TOPpWV e, o€ OXEOT LLE TNV KATAKOPUPT aEOVIKT] TPOT €&,

axial
ddom 2: Ztpoen Twv Kuplwv afdvwv Twv Tdoewv

H otpoen twv kuplwv afovwv twv tacewv, Slatnpwviag Tig KUPLEG TIUES o, T,
otaBepég, emPAnOnke oto OSelypa, otav autd E@tace 10 20% TNG AOVIKNG
TAPALOPPWONG KATA TN @don 1, evw Bplokdtav adiapeiofntnta otnv KK. H otpopn
Kuplwv agdvwv TocotikomomOnke péow ¢ ywviag € mov oxnpatifel o agovag mg o,
HE TOV Katakopu@o afova, kat 1 omola avéavetat kata 180° yiax k&Be AN pn oTpOo@N.
To ZxNpa 4 Selyvel oxnuatikda v Stadpopr} Twv TACEWV TTOL aKoAovBeital amd Ty o,
e v (o, -0,)/2. H xdbe Bnuatwr avdnon tdong elvar epamtopeviky otnv

TEPLPEPELX TOV KVUKAOV pe otabepn aktiva (o, —o,) /2.

KaBwg to Setypa Bpioketal otnv KK, omov q/p=M , emaxorovbel 6Tl 1 aktiva tov
KkUkAov elvar ton pe (1/2)Mp. H ywvia mov oxnuartilelt n axtiva pe tov dfova
(0,,—04)/2 wobtaw pe 26,. O ogpPounyaviopog mov xpnotpomoridnke otnv MAZ

opllel To KATAAANAO TES(O TAYXVTITWV TWV CUVOPLAK®DV KOKKWYV, WOTE VU ETLTEVYOEL M)
oTPOPN KLplwV afdVwV TwV TAGEWYV, EAEYXOVTAG TNV TEPLOSIKN LETAPBOAT TWV TAGEWV

o

xx’

O

10y OTWG @aivetal oto IxNpua 5(a), pe Tig 0pBEg tdoels va petafdArovtan pe

SUMTAAC L GLYVOTNTA ATIO TIG SLATUNTIKEG.
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4. AplOuntika elpapata 2A pe tn MAZ- H andédei&n g un minpotmrtag g OKK katn Oepameia g

O, 4

b augnon Taong

onueio TAcEwv

(0,,-0,,)/2

Iynua 4: Amelkovion g SLadpopns Twv TACEWV Yo 0TPOPT TwV KUpiwV afdvwv Twv

TAOEWV KATA TN PACT 2 KAL OXNUATIKA TIAPOVGILAOT) TWV TACEWV

350

a
300 (@) Oyy Oxx
250
© 200
o
X< 150
w
2 100 —0,
S 50
o
50}
-100 . 4
0 25 5 75 10 125 15 0 25 5 75 10 125 15
ApIBu6G KUKAWV GTPOPNG ApIBu6G KUKAWY OTPOPAG

Iynua 5: (a) Metafoln twv tdoewv kat (B) Tov Seiktn TOPWV KL TNG OYKOUETPLKNG
TPOTMG HE BACT) TOUG KUKAOUG GTPOPTG TWV KUPLWV aEOVWV TWV TACEWV OT QAN

@opTIONG 2

To Zxnua 5(B) amoteAel éva oynua-kAeldi. Aelyvel peiwon Tov Selktn MOPWV KAl TNG
aVTIOTOL(NG OYKOUETPLKNG TPOTNG KATA TN Stapkela g otpo@ns tTwv KA. O Seiktng
TOPWV LELWVETAL CUVEXWG, KUKAO ILE TOV KUKAO, attd TV apxkn Tiun e, =0.23 tov otnv
KK, o pla tiun mepimov e=0.188 1 omola avtiotoiyel o€ pia oykopetpikn tpotm 3.4%
amdé v apxn NG SevTePNS @daong, Palvovtag He HEWOVUEVO PLUBUO TPOG TN
otabepomoinon peTd amd 15 kKUKAOUG. AUTO TO ATIOTEAECUN EVOWUATWVEL VA TIOAV
ONUAVTIKO CUUTEPACUA: 1) APXLKN HElwoT Tou Selktn Topwv amd v Tt ¢ KK, ano
™MV apxn TS OTPOPNG TwV Kupiwv afdvwv elvat 1 ONUAVTIKY] TAPATPN O TIOoU
ATOSEIKVVEL TN U1 TMANPOTNTA TwV KAaokwv cuvOnkwv ™¢ KK. H véa OAKK pmopel va
TeplypaPel kal va €ENYNOEL TNV TOPATIAV®W CUUTEPLPOPQ, UE Bdorm TNV TPty TWV

ouvvOnkwv G EE. (11), 0Ttwg Ba eyl mapakdtw.
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4. AplOuntikd elpapata 2A pe tn MAZ- H amdédei&n g un minpottag g OKK katn Oepameia g

ddon 3: Ala€ovikn POPTION HETA TNV OTPOPN TWV KLUPIWV afOVwV TwV

TACEWV KL ETMIOKOTIOT OAWV TWV PACEWYV

H @option g tpitng @haong elvat mapouold HE QUTHV NG TPWTNG, AAAX
TEPLOTPAPPEVT KaTa pia yovia 6 tou dfova TG o, e fAoT TOV KATAKOPUPO dgova,
OTIOV KOl OTAUATNOE 1| TPONYOUHEVT] @&oT. O OKOTIOG QUTNG TNG AKTIVIKNG POPTLONG
elval n Stepedivnomn NG AmOKPLoNG TNG TAONG Kol TOL Selktn TMOPwV, 0 oTolog elXe
HelwBel kKatd TV TPoNyoLUEVT Ao, Kal 1 egetaomn eav 1 KK Ba Eavaemiteuybel kat
Tw¢. Me 0TOX0 Va glval Suvath pia EMOKOTNOTN OANG TNG CUUTIEPLPOPAS ATIO TNV ApXN,
Ta QmoTeEAéopata TNnG TPltng @aong Oa TmapovclaoToUV TAPUAANAX UE T
ATOTEAEGUATA TWV GVO TIPOTYOUUEVWY OE KOWVA SLaypapupata, ota ZX. 6 kat 7, yio §vo

enoyés ywviag 6 . T v eviaia mapovoiaon Ba xpnowomowmBel n wodvvaun
aBpolotky amokAivovoa Tpotre,, = Imdt, HE e, TNV amokAivovoa TpoT o€ 2
Slaotdoels. e OAa auTA T Staypdppata n @aorn 1 TapovoldleTal e YKPL avolXTo, 1
@G0 2 PE Havpo Kalm @aomn 3 He yKpL oKoUpo.

Ta Zxquata 6(a) ko 7(a) Sefxvouv T Sadpour) Twv TaoEwvV 0TO XWPO T, Kol
(0, —0.)/2, 0TwG KaL 0To ZxNua 4, yi 0AES TG @aoels, 1 tpity y 6, = 210° kau 0°
petd amd 10 kOkAoug avtiotolyws. H aktiva pe ykpt avolyto, o pavpog KUKAOG Kal 1)
YKPL aKTIVA €KTOG TOU KUKAOV, KaBw¢ kat 1 opdda onpeiwv otnv KK avtikatomtpilovv
(onpa v wTtopla TG TAoNG ot KaBepld amd Tig @daoels. H aktvikny €€wbev tou
KUKAOU Tdom (avemaiotntn oto Zx. 6(a) aAAd ep@avns oto Xx. 7(a)) mepLypAa@EL TNV
av&Nomn Tou AOYOU TACEWV OTNV apxN ™S TPITNG @AoNG, OTMWG @EAVETAL KAl 0TA
emaxkoAovba Xy. 6(f) kat 7(B).

Ta Zx. 6(B) xou 7(B) mapovotdgouv v petafoAr) tov Adyov tdong n=q/p e my e,
UE TI AVAUEVOUEVEG SLAKVUAVOELS AOYw NG MAZX kAl O0TIS TPES PATELS. AVeEEapTTwS
™G TWNG TS 6, 0to TéAog T Pdong 2 0 Adyog tdoswv 7 elvat loog pe avtdév g KK M,
OAAG AUECG PHETA TNV EVOPEN TNG TPLTNG AN ep@avileTal adinon Tng TIUNG Tov 77
Tavw amd to M (apxn Twv ykpLypapuwv ota Zx. 6(B) kat 7(B)), pe v avénon avt va
elval e§exOVIWG ONUAVTIKY UETA ATO TNV TLO €VTOVI] CUUTUKVWOT OTNV TEPITTWOT)
6 =0° petd amd 10 KUKAOUG KL KATOTILV 0 AOYOG TACEWV TEQPTEL KXl TIAPAUEVEL OTNV

Twn =M.
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4. AplOuntikd elpapata 2A pe tn MAZ- H amdédei&n g un minpotmrtag g OKK katn Bepameia g
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4. AplOuntikd elpapata 2A pe tn MAZ- H amdédei&n g un minpottag g OKK katn Oepameia g

Tédog ta Zxnpata 6(y) kat 7(y) mapovotalovv tnv HeTaB0AN TOL Seiktn TTOpwV KABOAN
TN SLApKELX TNG POPTLONG TWV TPLWV QACEWYV, LE TNV TPLTN QAOT YU TIG EMAOYEG TWV
6_= 210° kat 0° petd and 10 kvkAovg avtiotoiyws. H Bacwkn mapatrpnon mapapével
KOl TIAAL 1) SPOPATIKY PElwOT) TOV SelkTn TTOPpWV KATA TN SLapKela TG SeVTEPNS PAOTG.
‘Eva TOAU evSla@épov véo otolyelo SiSeTal amo v Tpitn @aon @OpTIoNG: o SelkTng
TOpwWV EMOTPEPEL otV TN Tov otnv KK kat mapapével ekel, SnAadn n pelwon tov
Selktn MOpwWV N oTola TTapaTNPNONKE KATA TN SEVTEPT PACT EXEL AVTIOTPAPEL TANPWG
Kal QUTO cVUPALIVEL AVEEAPTNTA TWV KUKAWY QOPTLONG TIOU TIPONYNONKAY, TWV TIUWV

™G 6, Kat tov e, . Xe ovvduacpd pe to 0Tt =M vrodniwvetar 6t n KK éxet

amokotaotadel.

4.2 E&MEn tne dounc kata T OSlapkela TOU 24 TEPAUATOC TNG
MAX

Méxpig €6w Ta amotedéopata TOL APOUNTIKOV TEePAPATOG amédelav v Ui
TANPOTTA ™G KAaokng OKK Seiyvovtag 6Tl ot Vo kAaoikég ouvOnkeg ¢ EE. (9) Sev
elvat waves wote va Statnpndel n KK. Eivar dpwg onupavtikd va mpotabel kat pio
evaAAakTikn Bewpla,  omola Ba pmopel pe TANPOTNTA VA TIEPLYPAYPEL TX ATIOTEAEOUATA
auta. 'OTwg NoN avaeépnke, avtr eival 1 OAKK twv Li & Dafalias (2012) kat to véo
otolyelo elvat 0 poAog TG Soung Tov vAkov otnv KK. Zuvenwe n e€€AEn g Soung kot
oL T06OTNTES ToL oxeTilovtal pe tnv OAKK Ba tapovcsiactolv 6 Qutod TO TUNUA, OF
eviaia Slaypapupata, opoiws OTwe TNV TPONYOUUEVT] EVOTNTA, KOAOLOWVTAG KAl TNV
(Sl xpwpatikn cvppaon.

0 tavvotg douns F katapyxds moootikomomOnke peow ¢ EE. (3) ywx ta Stavdopata

Stema@wv kokkwv. O F katomy avaivetal péow §Vo Babpwtwv peyebwv: ™ vopua
tou F mov §idetau wg: F=W=x/§|ﬂ|=x/§|ﬂ,|=(l/ﬁ)|ﬂ —F,,| Kat T SLpopd Twv
YWVIOV Taong - Soung (€ —6,) mov petpdel ) Swapopa G ywviag 6, mov opiletal
HEOW TNG HEYLOTNG KUpLaG Soung F,, amd ) ywvia 6 _tov agova g o, (Zx. 4.3) pe
AVA@POPA KAL YL TS U0 YWVIEG TOV KATAKOPUPO Agova y.

Zta Zynpata 8(a) kat 9(a) mapovoidlovtat Ta Staypappata yio ta F kot 6 —6, wo

Yot TIG TPELG PAacelg, N tpitn ywx 6 = 2100 kot 0° petd 10 kvkAovg avtiotoyxa. To F
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4. AplOuntikd elpapata 2A pe tn MAZ- H amdédei&n g un minpottag g OKK katn Oepameia g

avgdvetal ano to pndsv oty Ty tov otv KK (F =1) katd tn @don 1, 0mwg
QVATITUCOETAL 1) AVICOTPOTIA TNG Sopung, mapapével (oo pe 1 katd ) Sldpkelx ™g
SevTepnS PAoNG, TapoAo Tov To VAKO eykataAeimel v KK 0wg @aivetal amo 1
uelwon tov Seiktn MOPWV Kal PETA amo pia Spapatikny avinon mavw amo to 1 oy
apxn g TPl @aong, emotpépel otnv T g KK, F, =1. Xto (8o oynpa n Stapopd
6 —0, Tapapével, Katd HECO O0po PNSEV KATA TN SLAPKEW THG TPWTNG PAONG HE
KATIOLEG SLAKVHAVOELS aTEO -3° EwG 3° A0Yw TNG aoTaBovg Katdotaong Tov Selypatog, To
omoio BplokeTal o€ EAPETIKA YAAXPT KATACTAGCT), EVW KATA TNV TPLTN @don 1 Stapopd

6, —0, elvar paxTikd pndév xwpig Stakvpavoelg (Adyw TUKVOTEPNG KATAGTAOT).

1.5¢ 151
1 |- Ao e L i -
F [ A [
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of () 15F (B)
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Iynua 8: Alaypaupata ToocoTTWwV SoUN§ KATd TV TPLYACIKT OPTLOT UE TNV Ao 3
yw 8, =210°:(a) Fxaw 8 -6, (B)A=Fn,:n xauw N=n,:n

15¢
1|+ o =
F f
0.5 3 @don 1 0.5 @aon 1
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(@) s (8)
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Tynua 9: Alaypaupuata TocoTHTWY S0UNG KATA TNV TPLPAGIKT @OPTLOT UE TV p&omn 3
ywx 6, =0° petd and 10 koxAovg: (a) Frat 8. -6, (B)A=Fn,:n xaut N=n,:n
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4. AplOuntikd elpapata 2A pe tn MAZ- H amdédei&n g un minpottag g OKK katn Oepameia g

Katd ™ Sudpkeia g devtepng @paong n Stagopa 6 —6, kupaivetar petagd 30 ko 8°
Kot ylx Tig §vo mepimtwoelg yoviag 6, . H adgnon amd 00 (katd péco 6po ot @don 1)
Aapfavel xwpa pHe pio apKETA YP1YOPT LETAPBOAT HECA OTO TTPWTO TETAPTO TOV TIPWTOV
KUKAOU NG SeVTEPNG PAONG, VW £TOL oLPPBAlVEL KAl OTNV AVTIOTPOPT TNG, ATO TN
@b&on 2 omv 3. H ev A0yw avdlvomn katadelkviel OTL 11 Tdon Kot 1 doun eival
OLYYPAULKES KATA TIG @aoelg 1 kat 3, evwy otn §e0TEPT Ao yupillouvv TauTdXpOVA, LE
TOUG KUpLoUG G&oveg tng Soung va akoAovBolv autolG TG Tdong pe kabuotépnon
niepimov 6, — 6, =5° xatda péoo opo.

[Tapopola ATTOTEAETHATA YIA TIG TACELS KL YL TN SOUT KATA TNV OTPOP TWV KUPLwV
a&ovwv gxovv Tapovolaoctel ot PLPAoypa@ia, yia 24, aAAd xwpis va EeKvovv amo TV
KK. Auti n SltagopoTtoinon Opws elval OV amoTEAEL TNV TAEOV ONUAVTIKY Sla@opd
otV mapovoa epyacia. Edikwg otoug Li & Yu (2010) kat Fu & Dafalias (2015) n
gvtaon g doung,  omola opiletat wg o, = J2F, TIOAPAPEVEL KATA TTPOCEYYLOT oTabepn
KOTA TN oTpo@, eve 1 Stapopd 6 — 6, kupaivetat amd —4° £wg 8° ko amd 5° £wg 8° yla
TIG SV0 TTPOAVAPEPOUEVEG EPYACLES, TTOAV KOVTA OTA TTAPOVTA EVPTLATAL.

Ta Zx. 8(B) kat 9(B) mapovoialovv ta Staypdppata twv N kot A KATA TIG TPELG PACELG
@optiong, N tplt oe 6, = 210° kat 0° petd and 10 kOkAovg, avtiotoiyws. Kata tig
@aoelg 1 kat3 N=1, evo katd t deVtepn @aon to N kupaivetal mepimov oto 0.8. Me
Baon v EE. (3.5) mpokvmtet N=n,:n=cos2p pe ¢=60, -0, 1 ywvia PETAE) TwV
KatevbUvoewv Twv N kat F (H€ow tou N, ), EKTEQPACUEVO PHECW TNG SLAPOPAS TWV
yoviov 6, xa 0, . Tuvends, 6, —0, =(1/2)cos™ N To omoio katadiyet o 6, —6, =0
yia N=1 xatd t1§ @doelg 1 kat 3 vmodnAwvovtag cuyypaukotnta Twv F kot n, kat
6, —6.=18° ywx N=0.8, mepimov, katd T @daon 2, vTtodNAWVoOVTaG OTL 0L KUpLOL GEOVES
touv F akoAovBovv pe pia Stagopa @daong 18° autols Tou N KATA TNV OTPOPT TWV
afovwyv ™G Taong. Zuvdualovtag TNV TPONYOVHEVN TTAPATHPN O, OTL KATA TN @Aon 2
6. —0. =5 xatd péco opo, axoAovbel otL O, -6, =18°-5°=13°, dnAadn ot kvplot
d€oveg ™G Tdong akoAovBolv pe pia Stagpopd @dons 13° toug kHploug GEoves Tov n
KOTA TNV 0TPOPN TWV a&OVWV TOU SEVTEPOV.

Yuvoyifovtag katd Tig @doelg 1 kat 3 ot kupiot afoveg g Taomg Tov F kat tov n elvat

OVYYPOAULKEG, UE ATTOTOUN METAPOAN TIPOG KAl attd TN SEVTEPT PAON KATA TNV OTola oL
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5. AplOunTikd elpdpata 3A ue  MAZ

KUploL agoveg Tou F akoAouBolv autolg Tng Tdong pe pia Stagopa @dong 5°, evw ot
KUpLotL &€oveg TG TAOoM G akoAovBoUV auToUG Tou N pe Staopa edong 13°, evw 6Aa Ta
Cevyapla oTpé@ovtal TaVToXPOVWS. Ymoypapplletal 0Ty, v yla TV TTOCOTIKOTON oM
™G SounG Tov VALKOU xpnotpotomBel n Sourn Twv kevwv (Léow Twv g§lomoewy 4 1 Kat
5) avtl ™G Soung TV SLtVUOUATWY SLETAPNG, TIOLOTIKA TA ATTOTEAETUATA TTAPAUEVOLV
(St H pévn ovolaotikn Sta@opa EyKeLTaL 6TnV PEYAAVTEPT KABUGTEPT 0T GTPOPNG TWV
Kuplwv afovwv G SOUNG TWV KEVWV € OXEON HE AUTH TWV SLAVUOUATWY SLETTAPTG.
Tuvenwg, v AapBavape vToYn oTNV oTPOPN TWV Kuplwv afdvwy Kol auTovg NG
Soung Twv kevwv, autol Ba épyovtav teAgutaiol pe Stapopd mepimov 6° amod Toug
KUpLovg a&oveg NG SopNg TWV SLAVUOUATWVY SLETTAPNG.

Me Bdaon tnv mapamdvw avdAvorn oTo TEAOG Twv @acewv 1 kat 3 1 MetafAntig
Aviootporiag Aoprig A=4, =1, katd péoov 0po e MIKPEG SLAKVUAVOELG, OTIWG £TTOMG
KOl TILEG TOV AGYOU TACEWV KAl TOU SelKTn MOPpwV €xouv pTacel og avtég TG KK, Zy.
6(b kat c), 7(b kat ¢). Katd ™ devtepn @dom mpokumtel 0TLA=0.8<1 ywx ta Zx. 8(b)
kat 9(b), evw katd v mpwn mepiodo ™G @aong 3 A=1.1>1 (Zx. 8(b)), kat
A=1.25>1 (Zx. 9(b)), xata péoov 6po. Kabwg A=FN amo6 v EE. (9), n e€€Adn tov A
elval oAV xovtd oto N otav F~1 katd péco 0po 0To TEAOG NG PAaong 1, kata

SLapKela TNG PAONG 2 Kol TEAOG KOVTA 0TO TEAOG TNG TPITNG domg.
5. AplOuntika melpdpata 3A pe  MAX

Katomw tng vAomoinong tou emBuuntov e18ikoy aplOunTikov TEPAUATOG o€ 24,
TPAYUATOTONONKE 1) EMEKTAOT T™NG HEBASOL KaL 1) e@apuoyn Tov kat o€ 3A. ‘Eva evAoyo
EPWTNHA B NTAV TIOLX 1) AVAYKI EMEKTACTG TWV OTMOTEAECUATWVY TOU €Youv 1Nom
emitevxOel Kal, EMMALOV, YT VX TTApovcLAlovTal €V YEVEL ATOTEAETHATA 0 2A, avti
Kkatevbelav n avdAvon va paypatomoleital oe 3A. ETo Se0TEPO EPpWTNUA OL AGYOL YlA
Ta 2A amoteAéopata oxetTi(ovtal Kuplwg pe 6V0 Paoikols TTAPAYOVTEG: TN ONUAVTIKNY
Slaopa g 6povG VTTOAOYLOTIKOU XpOVoL (YU auTtov Tov Adyo T Aoylopikd 2A MAX
XpnowomolovvTal akopa, guputepa amod ta 3A) KoL TNV €VKOAATEPN gpunveia TwV
amoteAeopdtwv oe 2A. 'ETol, 0 TEPMTWOEL OTOUL TO EMITPEMEL 1 PUOLKN
TPAYUATIKOTNTA, Ol 2A amAOTOW0ELG UTTOPOVV VA TAPEXOVV TOUG UNYXAVIGHOUG TIOU
TEPLYPAPOVV SLAPOPA PUOIKA PALVOLEVA LLE TTOAV WIKPOTEPO KOOTOG. EMimAgov ta 2A

QATOTEAECPATA TIAPOVOLALOVTAL ATIAWG € Eva eTiTtES0 (SUVANELS, ToXVTNTESG KATL.). AuTh)
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N GUEOT ATIEIKOVION TWV TANPOQPOPLWV SIVEL pLa TTANPESTEPT KAl ATTAOVCTEPT ELKOVA
Yl TOUG UMY AVIGHOUG, IOV, TIOAAEG (PO pPES, Elval adVaTo va amelkovioTel o€ 3A.

H 2A MAZX éxeL amodelyOel emapkn§ o€ ApKETA TTPOPBANUATA KL XPT|CLUOTIOLEITAL OT)LEPA
ektevwG. Katd ta teAevtaia € ta 2A amotedéopata eival otabepd TEPLOCOTEPA ATIO
auta Twv 3A. Tlap’ 6Aa avtd n avéAvon 2A mpo@avwg Sev Stabétel tnv 31 Sldotaon Kot
QUTOUATH VTTOSNAWVETAL OTL OTOLOSNTOTE amoTéAeoua eival Kabapd molotiko. Ta
OUUTIEPACHATA TIOV €EAYOVTAL ATO TIG 2A UTTOPOVV VA EKTIUNO0UV HOVO TOLOTIKA ATTO
ATOYT UNXAVIOUWV KAL EVVOLWYV, OL OTIOLEG HEPLKES (POPEG TIPETEL VA ETILRERatwBoVV Kot
o€ TpELS Saotaoels. Ot 2A avaAVoELG HTTIOPOUV VU ATIOTEAECOVV UL EEALPETIKT Bdom eTtl
TNG OTO(AG 0TI CUVEXELX VX EKTEAEGOOVV KAl Vo eppUnvevBolv euKOAOTEPA QUTA TwV 3A
ue ™ Bonbela TG 2A amelkdvionG. ATALTETAL HEYGAT TTIPOCOXT) OTAV XPNOLLOTIOLOVVTAL
amoteAéopata 2A xwpis eméktaon oe 3A. [loooTikd, oe 34, ot I8LOTNTEG TNG Ha&lag, ol
TLUEG TOV SEIKTN KEVWV KaAL TOV HEGOU OPOU TWV EMAPWV AVA CWUATIS0, AVAPEVETAL VA
elvat oAU Staopetikol amo Ti§ 2A. Emopévwe np avaivon 3A mpoTtelveTat va akoAovBel
TIAVTOTE OTIOLASNTIOTE ONUAVTIKA OTMOTEAECUATA, OTIWG 1) ATEAELA ULOG OTNUAVTIKNG
Bewplag, ov eEdyovtal amd 2A. ‘Eva emmAéov k€pdog o€ aQuTnV TNV TEPITTWON elval 1)
oVYKpPLOT TNG ouxva e@appolopevng 2A MAZ, pe ta amoteAéopata oe 3A, oe éva
OMUAVTIKO TEipapa.

Av xal ol €vvoleg Kal Ol apYEG Yl TIG TAPOVOEG TELPAUATIKEG Sladlkaoles Kol T
QVOUEVOLEVN QTOTEAECUATA TAV TOLOTIKA Ta (Sla OTwg otig 24, 1 €€€taon ™G 3ng
Stdotaong Snuovpynoe MOAAEG TIPAKTIKEG TPOokKANoels. Katapxag n amekovion twv
ATOTEAECUATWY Elval O SVOKOAT KAl O€ TOAAEG TIEPITITWOEL UTTOPEL VA TIPOKAAETEL
oVYXUOT], TAPA CAPTVELQX.

ETumpooBétwg évag emimAgov dEovag onpaivel Tpla ETUTAEOV GTOLYEL OGOV APOPA TOUG
- OUUUETPLKOVG — TavuoTEG Sevutepns taéng (tdaom, tpomn kot doun). ‘Etol vmapyxouv
TPELS KUPLEG TIUEG KOL TPELS KUPLEG LOLOKATELOVVOELS, 1| Kabepla €k TwV OTolwv
XPEWAETAL TOVAGYXLOTOV SV0 TTAPAUETPOUG, YIA Vo 0pLoTeL (Tr.x. SU0 YwVIES, WG TTPOG TIG
O@ALPLKEG CUVTETAYUEVEG). 'Opws Kat TAAL pmopel va xpnowomomBel povo pia vopua
yla TV ToooTIKOTOo(Mom NG €vtaocng tov tavuotn (BA. Li & Dafalias, 2012). EmumAéov n
EQPUPUOYN €VOG TESIOU TAYLTNTWV ETL TWV OUVOPLAKWY KOKKWV OTNV YEVIKN
TePIMTWON, OMWG e@appdoTnke otTig 2A, Mpooébeoe onpavTiky moAvmAokotnta. Ot
TEXVIKEG NG EQAPUOYNG TwV e8lkwv peBOSwv mov yxpnowomombnkay oT1o

TIPOTNYOUHEVO KEPAANLO, YIA TNV 2A TIEPIMITWOT), XPELAOTNKE VX EMEKTABOVV TANPWS OE
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3A.

Ol TPEIS TEPAUATIKEG PACELS TIOU EPUAPUOCTNKAV KOL GTNV TEPIMTWON QUTHV NTAV:
@aon 1 tpaovikn @opTion, @aom 2 oTpo@n Twv KUpLwv aidovwyv (KA) ¢ tdong otnv
kplown katdotaon (KK) kat @daon 3 aktwikny @option (Slov TUTIOU PE TO APYLKO
Tplagovikd @optio TG @aong 1. Ta amoteAéopata avapévovtav va €lval TOLOTIKA
mapopola. I'a tig 3 Staotdoelg, dTov To Telpapa EAafe xwpa, oL TPELG KUPLEG TAOELS KAL

tpomég etvat o,(i=1,2,3) kot g(i=1,2,3). Ou mapapetpot p (v8pootatikn tdon), q

(amokAivovoa taon), ¢, (oykopetpn tpomm) kat &, (amokAivovoa tpot) opifovtal wg

p=1/3(c,+0,+0;), q:\/((01—0'2)2+(0'2—03)2+(0'1—03)2)/2 , &, =& +&,+& Kl

g, =2/3\/((<91 —52)2+(52 —6‘3)24-(81 —53)2)/2.

5.1 Makpookomika Amotedéouata

Ta onuavtikéTEpa ovumeEpAoUATA ATO To 2A EKOVIKA TEPAUATA, SNAadn 1 un
mAnpoémta ¢ OKK kat n vmoompien g OAKK twv Li & Dafalias (2012),
vTooTnPlfovTal aKOUN TEPLOOOTEPO ATO TA ATOTEAETHATA 0TI 3A. Ot (5ol unxaviopot
amokaAUTTovTal oty eykataAewPn ¢ KK kata ™ Sidpkela g oTpo@ns TwVv KLupiwv
afOvwyv Twv Tacewv Tov kablota v kAaocwkn OKK atelr). Emmpoobétwg otnv
UOKPOOKOTILKY] KOL ULKPOOGKOTILKT] AVAAUOT LoXVOUV TIAPOUOLA TIOLOTIKA CUUTIEPAO AT
oTIS 2 Kat oTIS 3 Staotaoels. [pokeltal Kupiws yla TI§ OHOLOTNTES TWV EQAPUOYWV 2A
kat 3A g MAE, TOU EMIKUPWVOUV TA TPONYOUUEVA OCUUTEPACUATA, KABWG TaA
OUUTIEPACLATA UTA NTAV KUPLWE EVVOLOAOYLKIG LOPPTG.

To 3A melpapa MAZ kat 1 emakoAovOn avAAvoT ATTOKAAV YAV OT|UAVTIKEG OLLOLOTITEG LUE
HLOKPOOKOTIKA XTOTEAECUATA ATIO (PUOLKA TIELPAUATA KOl AAAEG AETITOPEPELEG, TIOV TO
2A 8gv pmopovoe va cuAAGBel pe akpifela. H tpradovikn Stadikacio tng @daong 1 €xel
L LOKPOOKOTILKI] OTIOKPLOT] TIOU €(vatl TOAD PEAALOTIKN TAPOVGLALOVTAG SLOCTOAN
UETA ATl apPYLKN, WIKPT) CUCGTOAN, Kol Ol TIHEG TTOU AQUPBAvoVTAL Yl TIS TTAPAUETPOVS
KPLoUNG Kataotaong elvat oAV KOVTd oe ekelveg yla mpaypatikés appovs. ‘Etol ta
ATOTEAECPATA ELVAL TTOCOTIKA CUYKPIOLUA KAl PHE QUTA TWV PUOLK®OV TELPALATWVY HE

Tapopolx VAka (Zxnua 10).
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ddomn 1: Tpragovikn @option pexpt v KK

16 0.71 -2.5
0.7
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© 0.68

0.67

0.66

) S N E R oesb——1 o 1.1,y
0 01 02 0.3 04 0 0.1 0.2 0.3 0.4

() Eavil (B) €
Iynua 10: MakpooKOTIKY CUUTIEPLPOPA TNG TPLAEOVIKNS pOpTIoNnS (@don 1) (a) Adyog

Tdoewv 1 Kat () Selktng MOPpWV e, PE TNV KATaKOpLEN ASOVIKY| TPOT| &

axial
ddom 2: Ztpoen Twv Kuplwv afOVwV TwV TAoEWV

H €€€A1En Tov Selktn TOPWV KATA TN SLAPKELX TNG PAOTG 2 EXEL CAPT] TAOT YLt GUGTOAY),
QAAG pE oca@Elg, HKPOTEPES TEPLOSOUG SlaotoAng (Zxnua 11), OTMwG oe PUOKA
TELPAUATA, YEYOVOGS IOV eV epavioTnke 0TI 2A. EMmpoobEéTws 11 cuoTOAN TG PAONS
2 mpaypatomomnke o peydro Babud katd ) Sdpkelr TwV SV0 APXIKWOV KUKAWV
OTPOPNG, KABWG 0T CUVEXELX 1) OYKOUETPLKI] TPOTI] NTAV OTUAVTIKA WIKPOTEPT OE
OX€0TM HE TN oLVOALKY). H GUVOALIKY] OYKOUETPLKT] aAAQyT TNG Ao 2 @ailveTal va eivat
UEYQAVTEPT ATO O,TL O€ PUOLKA TEPANATA UE AP0, YTTApXouv Sld@opol Adyol Tov Ba
UTTOPOVCoaY VA LVTOOTNPIEOUV aUTEG TIG SLa@opEg, oAAG Ba xpelaldTtav TEPALTEPW

Epeuva yLa TN AN PN Stevkpivion autoL Tov {NTNUATOG.

ddon 3: Tplagovikn @OpTION HETE TN OTPOPN TWV KUPIwV afdvwv TwV

TACEWYV KAL ETLOKOTINOT) OAWV TWV PACEWV

EmumAgov n @don 3 amokaAvmtel v emotpo@n oty KK, kdtw amd tnv (Sta Ty tov
Selktn MOPWV KL TOU AGYOU TACEWYV, OTWG eTioNG TTPpoTddnke o 2A. AvegaptnTa amd
TOV TIPOCAVATOAIOUO TNG TPLAEOVIKNG (POPTILONG, Yl TNV (Sl VSpooTATIKY Tieon, TO
VAWKO Ba emiotpéPel oty (Sl KK, 0Twg avapevotav. Auto To CUUTEPAGUA VTTOG TN PLlEL
™mv aveaptnoia ¢ KK ot Swadpoun @oéptiong kabwg, akdun kat av 1 evéiapeon
@d&om 2 avaykdlel to Selypa va egykatodeiper v KK, 1o vAkd efaxkorovBel va

avayvwpilet v dta (Zxnua 12).
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Iynua 11: (a)Metafolr] twv tdoswv kat (b) petaBoAn tov Seiktn TOPWV KAt TG

OYKOUETPIKNG TPOTMG, LE TOV APLOUO TwV KUKAWV @OpTIonG (@don 2)
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Imupa 12: Auypdppota katd v Tpupactkn @option ya 8 =90° petd anod 1 kokio:

(@) 0 Adyog tdoewv q/ p kai (B) o Seiktng MOpwv e pe v €,

5.2 EEEMEN ¢ doung kata T Siapkela Tov 34 TEPAUATOC TNG
MAX

H avdAvorn ™ Souns e Tppacikis Stadikaoiag o€ 3A AmOKAAVTITEL TAPOUOLEG TACELS
ue Ti§ 2A (Zymua 13). Kabws ta Babuwtd pey£dn mov xpnopomotoVvtat otnv OAKK Sev
efaptwvtal amd Ti§ Staotdoel (N Babpwt voppa elval KAVOVIKOTIOWUEVT], WOTE VA
@tdoel oto 1 omv KK, o oxetikdg mpooavatoAlopog g Soung kot touv pubuov
TAQOTIKN G TTHPAPOPPWOoNG KupaiveTal amd 1 €wg -1) §ev udpyoLV SLAPOPEG OTLG TLUES

QUTEG KaBauTEG.
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15¢

12°F
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6°F
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0ok

-30 :

-6° TR

Iynua 13: Alypdupata ToocoTiTwv SoU¢ KATA TNV TPLPACIKY @OPTLOT UE TNV Q4o
3yw 6 =90° peta anod 1 kokAo: (a) F xaw 8 -6, (B)A=Fn,:n kat N=n, :n

MoAatavta ot @d&om 2 n votépnon HeTadd TwV KUplwv KatevBuvoewv ™G Soung Kot
™G TAoNS elval mpo@avws peyadtepn o€ 3A amo 6,TL o€ 24, evw To (810 oupPaivel kat
pe tov pubud mAaotikng TpotmG. Kot mdAL, O0mwg kot otig 24, 0 puBudg TMAACTIKNG
TPOTMNG OTPEPETAL TIPWTOG, EVW 1 TAON akoAouBel kat 1 Sopn épyetal tedevtain. Ot

SLaopég PeTad TOUG VL CAPWG LEYAAVTEPES.

g

e

[ ) —
~

L
I2 %3 4 5
Ap1Bu6G KUKAWY OTPOPRG ApIBUOG KUKAWY OTPOPAG

RN
1

Iynua 14: Aypdupata ToocotTwy Soung katd v §0tepn povo @don, os oxéon ue

ToV apopd Twv KOKAwv otpo@ns: (a) F kot 6 -0, (B)A=Fn,:n xat N=n,:n.

O OXETIKOG TIPOCAVATOALOUOG HETAEY TOU pLOUOV TAQOTIKNG TPOTHG TNG Soung Tov
ToooTiKoToLelTal amd to N kvpaivetat amod 1 €wg 0 (pe to undév va onuaivel 6TL ot 500
TAVUOTEG elval KABETOL LETAEY TOUG) KL TIAPOVCLALEL OAPEIS TAAAVTWOELS OE OYEON UE
TOUG KUKAOUG oTpo@NG (ZxNua 14). AuTég ol TAAAVTWOELS Sev elval Tuxaiog B6pufog kat
@alvovtal va akoAovBolv TG UeTAPOAEG TOL Selktn TMOPWV QMO GUOTOAN TIPOG

StaotoAn. Tétolov eldoug TAAAVTWOELS elYav EP@PAVIOTEL €TTIONG OTIG 24, XAAG OL TIHES
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mov éAafav exkel (amod 0,8 éwg 0,5) dev emeéTpePav va KATAYPAQPOUV HE CAPNVELQ,

dedopévou Touv aplBunTikov Bopuvov TG avaivong.
6. ZUUTTEPAC LT

To €161k aplOUNTIKO TTEPARX TTOV TIPAYUATOTIOMONKE KUl TAPOVCLAGTNKE OE AUTI TNV
epyacia, oe 2 kal 3 Saotdoelg, ixe wg Evavopa to yeyovog otL n OKK Bepediwbnke
eMelPel pag mapapéTpou SoUNG, XAPAKTINPLOTIKO TOL £xeL KOsl cofapd Kata TO
mapeABov. Zuykekpipéva 1 OAKK twv Li & Dafalias (2012) ap@ioftnoe Ti§ KAXGOIKESG
ouvvOnkes g OKK mpoteivovtag pia emmAéov mpolTOOeoT, TTaApEXOVTAG TO KIVTPO YL

TNV POV TEPANATIKY Stadikacia.

Q¢ ATMOTEAECUA TO €V AOYW TEPAPA TPOEKLVYPE WG AVAYKALOTNTA, TPOKEUEVOU VA
ovykplBoUv ot SVo Bewpieg kal oL LVTOBEGELS TOUG, OL oToieg eival BepeAlwdoug
onuaciag ywr TOUG TOUEIS TWV KOKKWOWV VAIKKWV KOl TNG €6a@OUNXAVIKNG.
[Ipaypatomombnke pla Tprpacikn Tmepapatiky Swadikacia oe 2A kat 34,
xpnowomolwvtag T MAZ. Avtiy 1 aplOuntikny péBodog Ntav Kat 0 Hovog TPOTIOGS yia Vo
TPAYLATOTONo0VE TNV emBuunty Sadikaocia, kabw¢ oL @uolkol Teploplopol
KaBLoTOUV €va TETOLO PUOLKO TElpapa oAV SVokoAo, £ws kal aduvato. H vAomoinon
TWV TPLOV PACEWV TIOU EXEL EQAPUOOTEL 0 KUKALKA (o€ 2A) kol o o@alpika (oe 3A)
Slakpltd otolyela amokaALPE SLAPOPEG TTUXEG TWV YXAPAKTNPLOTIKWOV TOU UALKOU
OXETIKA WPE TNV ATMOKPLOT VOGS KOKKWO0UG Selypatog, el8ikd oto kabeotws Kplowng
Kataotaong, ta omola elvat eEalpeTikd evila@EpPovTa Kal oNUAVTIKA. XN Sladikacia
vAomonong autol TOU TEPAUATOS EMAVONKAV  SlA@opa  TEXVIKA {NTNUOTH

efedlooovtag v mbavn xpron s MAZ, eldika otnv meploxn g KK.

Kata ) Sudpkela g kOpLag, SEUTEPNS PAONG, TPAYUATOTOWONKE GTPOPT] TWV KUPLWV
atovwv (KA) tng tdong, Statnpwvtag Tig kKOpleg TIEG mov kabopiomkav amd v KK,
ua Stadpoun @oOpTiong Tov Sev eixe emitevxOel oTE TPV, Auth N Sladpour] TACEWY
mapafiace pdévo v Tpitn ovvONkn mov oxetiletat pe t Soun otnv EE (11).
OLVEXELX TTHPATNPNONKE Hlo SPpapaTikY Pelwon Tov deiktn TOpwv, o€ avtiBeon pe 4,TL
npoePAeme n kAaoowkn OKK. H KK eykatadei@pbnke oxedov dpeoa, dtav ot kOplot a§oveg
NG TAONG ATEKALVAV ATO TNV ApX LK SLALOP@WaCT) TOU TPLAEOVIKOU OPTIOV TNG PAoNS
1, TapdAo mov 0 Adyog TdoewV Kat 0 eiktng mOpwv Bpilokovtav otig TipéS 6 KK, kain

vdpootatikny tdon SiatnpnOnke otabepn. ‘Etol n tpitn mpotewvdpevn ocuvOnKn Tng
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OAKK mpokUTTEL WG avaykaia TTpocONkn oTIS TPWTEG SV0 GUVONKEG KAt oL TPELS padl

elval A0V LKaVES Kal avaykaies yia v emitevén e KK.

EmumpooOeta pe T @OpTION TNG PAOTG 3 HLX AKTLVIKY OpTLoN TPLagovikoy TUTIOU oV
TPAYLATOTONONKE HETA TN @AON 2, TApATNPNOnke OTL TO VAIKO, UTO TNV (Sl
vdpootatikny mieon Oa @Odoel avaueiBora otnv St KK, o6tav mAnpovvtat ot
anapaitnteg ovuvOnkes. O delkng MoOpwv avekappe oty Ty tov Vv KK pe aueco
TPOTIO, EVW 0 A0Y0G TAGEWV aLENONKE o€ Pl PLEYLOTT TN, AOYW TNG CUUTTUKVWONG TIOU
ONUELWONKE KATA TN SLAPKELA TNG PAONG 2, KAL 0TI CUVEXELX ETTECE KAL TIAAL GTNV TLUN

Tov otnv KK.

H pakpooxotikn amokplon tov Selypatog cupmAnpwOnke amd v mapatnipnon tmeg
eCEAMENG TG Soung kal AAAeg Tapapétpoug mov opilovtal amd tn OAKK, dnAadn
vopua NG Sopng, TOV OXETIKO TPOCAVATOALOHO NG KatevBuvong @optiong (mov
opiletal pe Baon to pLOUO TMAACTIKNG TPOTMG) Kal ™G Soung kat v MetafAnt)
Avicotpotiag Aoung (MAA). H Soun tou e8d@oug €xel ToooTikomol0el kKuplws péow
TWV KADETWV SLVUOUATWY TWV SIETAPWY TWV OCWUATISIWY, OUWS KAl 1| XP1oT NG
Soung TwV KEVWV OTNV ToPoUoH TEPIMTwOoN J8&v avapéveTtal va oAAAEEL T

ATOTEAEGUATA OVOLWS WG, OTIWG ATOSE(XONKE KL OTIS avaAVCELS 2A.

Kata ) Siapkela g @dong 1 kat ¢ @aons 3 To akTikd @opTio Tplafovikov TUTov,
N Taom, o pvBudg TPoTMG Kal 1 Sopn €yvav CUYYPOUIKA HE TOUG KABETOUG Kol
opl{OVTLOVG GEOVEG, eV 0 AOYOG TAoMG auénbnke KaL 1 avicoTpoTia TG Soung €ywve
Loxvpotepn. Ta MO ONUAVTIKAE EVAL TA ATTOTEAECUATA TNG PAOCTG 2, OTIOV OL TLUES YL
TOV AO0Y0 TAOEWV KAl Tn vopua ™G Soung mapépswvav otabepés. ‘ETol ol kupleg
KATEVOUVOELS TWV TAVUOTWV ATEKTNOoNV 8laitepn onuacia, Kabws oL evtacels Sev
aAagav. H kateBuvon touv puBpov MAAOTIKNG TPOTMG (VAL 1) TTPWTY) IOV CGTPEPETAL,
akoAovBel | Taon kat 1 doun PBploketal teAsvtala. H ywviakn votépnon NTav yevika
UEYQAVUTEPN UETAEY TOU PpLOUOV TAACTIKNG TPOTMG KAl TNG TAONG Ao O, TL UETALD TNG

T&oMG Kol ™G Sour.

[Saitepn épaom §60nKe 0TO OXETIKO TTIPOCAVATOALGHO pLOUOY TPOTMG - SOUNG, KAL WG
mapapetpog G OAKK. H votépnon petadd twv katevBuvoswv oavtwv twv 600
TAVUOTWV PAIVETAL VO TOAAVTWVETAL, £TOL WOTE VA TEVOLV Va (VAL CUYYPAUIKAE OTNV
apxn Kol otn HEon KABe KUKAOL 0TPOPNG, eV TEVOUV Vo avEAavouv T Sl@opda PAaong

HETAEL TWV oNUelwV aUTWV. AUTN 1) TTHPATIPNOT OXETIETAL KL PE TNV TTAPATNPOVUEVT
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OUOTOAN-0LACTOAN TOU SelkTn MOPWV KATA TN SLAPKELX TNG TEPLOTPOPNS Twv KA.
ETumAgoy, petd amd apketolG KUKAOUG, 0 SelkTng mMoOpwv otabepomombnke oe pa
EAAYLOTN TWN. AUTEG OL TAPATNPNOELS CUUPWVOUV HOKPOOKOTIIKA HE TIOPATNPTOELS

ATIO PUOIKA TEPAPATA, AKOUT Kal av Ta TeAevTaia dev Eekivinoav atnv KK.

TéAog, vimpée N Suvatdéta va ouykplBel to (Slo melpapa o 2 kot 3 SLAOTACEL,
efetalovtag £€tol €av ol 2A Ba apkovoav Yl va agloAoynBolv TANPWS TA PALVOUEVA
Tov Teptypda@ovtat. H mepintwon 2A mapovoiace cwoTA TOUG YEVIKOUG UNXAVIOUOVS
KOl TIG £VVOLEG ATIVTWVTAG 0TO KUPLO EPWTNUA, OUWG ONUAVTIKEG AETITOUEPELES, OTIWG 1)
OTUAVTIKY) CUCGTOAN TOU SElyUATOG KATA TNV OTPOEN TWV Kuplwv afdvwv g Tdong
OTOUG aPXLKOUG 2 KUKAOUG, Ol TAAXVTWOELS TOV SE(KTN TOPWV KL Ol TAAAVTWOELS TNG

MetaBAnmg Avicotpotmiag Aoung, elxav kpu@tel o€ 24, evw Eywvav epgaveis oe 3A.
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Abstract

Critical State Theory (CST) has been the dominant paradigm of a constitutive framework
in the soil mechanics and granular material community, since its creation 60 years ago. It
is the main framework for most constitutive models concerning granular media, and
predicts the steady state that granular materials will reach after extensive deformation
during “continued shearing”. This state will be called henceforth Critical State (CS). CST
implicitly assumes that, at that state, the material has no important fabric, because it
makes no reference to it; however, recent research suggests that a particular strong
anisotropic internal structure exists and meaningfully impacts soil’s behavior.

This work is primarily focused on the fabric of granular materials and, in particular, soil.
Although soil’s internal structure, which we have come to call soil fabric, appears to be a
key element in determining soil behavior, it started being widely researched only during
the past two decades. Even though soil is a discrete medium, both in research and in
practice, soil is usually modeled and analyzed based on continuum theories. This means
that its internal grain structure, which determines soil’s macroscopic response in a
crucial way, either is not accounted for, or it is represented by macroscopic internal
variables of a continuous nature.

Fabric and its relation to the mechanical response of sand was shown to be so vital, that
5 years ago a new theory has been presented (Anisotropic Critical State Theory - ACST)
enhancing the classical CST by adding a fabric-related parameter, as a necessary step
towards rendering the theory complete by incorporating in its premises the role of fabric.
ACST has been successfully applied as a framework for constitutive modeling, and the
addition of fabric in the ACST framework indeed adds great simulative capabilities to the
models using it. Nevertheless, despite its increased accuracy and applicability, the
necessity of this new theory as an enhancement of the classical CST had not yet been
proved, until today. The reason for this is that very special experimental conditions must
apply in order to test if the aforementioned modification of CST is necessary, since, in a
simple, typical situation (e.g. classical triaxial compression load) CST appears to be
complete. However, for different, more complex, but still natural and frequently
occurring loading paths (e.g. stress principal axes rotation) it is very difficult to assess

whether CST conditions are complete.



In this work, Discrete Element Method (DEM) was used, a modern numerical method that
can simulate a granular material at its discrete nature. Through a novel numerical
experimental procedure, we conducted very specific 2-dimensional and 3-dimensional
virtual experiments, and succeeded to prove that CST is indeed incomplete. The virtual
sample was first brought to CS, and then stress Principal Axes (PA) rotation was imposed,
keeping stress principal values fixed. The rotation induced void ratio reduction, thus,
abandonment of CS, despite the fact the two CST conditions were satisfied at the initiation
of the rotation process, since stress principal values were fixed and void ratio was at its
critical state value. The recently proposed Anisotropic Critical State Theory (ACST)
remedies this incompleteness of CST by enhancing its two conditions by a third one,
related to the critical value of fabric anisotropy. This third condition is violated by the
stress PA rotation and can explain the aforementioned void ratio reduction.

An extra third phase, similar to the initial triaxial radial path of phase 1, is applied to the
sample at various stages of phase 2. It is concluded that the void ratio undoubtedly
rebounds to its CS value, along with the stress ratio which reaches a peak value and then,
also falls to its CS value. ACST can also explain the response of the sample during the
second and the third loading phases, features that classical CST cannot address, since it
lacks fabric anisotropy consideration. These loading phases have been implemented and
compared in 2 and 3 dimensions, providing qualitatively the same mechanisms while the
3D analysis also provides results quantitatively comparable with real sands.

In conclusion, after the numerical experiment realized with the DEM, the three conditions
of ACST are shown to be both necessary and sufficient for reaching and maintaining CS.
In addition, the extra fabric condition proposed by ACST is verified, and ACST is proved

to be a more complete and accurate theory for describing and predicting soil’s behavior.
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Chapter 1: Introduction

Chapter 1: Introduction

From the morning coffee and corn flakes to rice and nuts, from pharmaceuticals to
agricultural fertilizers and cosmetics powders, we encounter, consume, and use granular
materials numerous times every day. Indeed, granular materials are the most frequently
occurring solid-state kinds of matter in nature. Sand and snow are also natural granular
materials of great importance, as they are involved in major natural disasters and other
potentially catastrophic events. All these seemingly very different forms of granular
media have many common characteristics, which arise from the fact that they consist of
solid grains that interact primarily with each other. Larger grains compose, in principle,
non-cohesive materials (e.g. sand) while, as the grains tend to be smaller (e.g. less than
0.01mm), they also tend to be more cohesive (e.g. clay soil); the latter kind are often
referred to as powders.

Granular media are a special case of matter. Though they are a collection of solid grains
and only Newton laws and classical mechanics are needed to describe their mechanics,
as an assembly they behave differently than solids, liquids or gases. They can flow like a
fluid in an hourglass but they stand like a solid on a pile. They present a mixed behavior
based on several factors such as the presence or absence of water, applied forces,
boundary conditions etc.; under that perspective, they constitute a complex system
rather than a single material. Their complex behavior along with their recurring
appearance have attracted great research interest. Note that the grains in granular
materials, such as soils and powders, are not extremely small (e.g. less than 1pum) and
thus, no small-scale phenomena, such as thermal fluctuations or Brownian motions,
occur. It is important to underline that various communities (e.g. soil mechanics,
geotechnics, granular physics, powder technology) have worked throughout the years on
granular materials but from different perspectives. Efforts have been made during the
last 30 years to create a more multidisciplinary approach and unify the concepts and
ideas employed in the discourse on granular materials.

Soil is itself a granular material of special interest, which, given its appearance at the
earth’s crust, has been called “the skin of the earth” (Miller, 1953). Since soil is literally
the basis of our every step, it is indeed the foundation for modern human life; thus, we

need to understand it especially well. Soil is a critical material for construction, mining,
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Chapter 1: Introduction

landslides, and in general for almost every aspect of modern infrastructure and economic
growth. Soil serves as the foundation for most constructions, it constitutes the
environment for surface and deep mining, and it is the main construction material for
infrastructures, such as roads and dams. Most importantly, soil materials are in many
cases the critical culprits for large-scale failures and corresponding catastrophes (e.g. Fig
1.1), such as massive landslides, structural collapse, embankment failures, to name only
a few. It is critical for the growth and, oftentimes, survival of human beings, that we

become better at understanding and accurately predicting soil behavior.

Fig. 1.1. Massive landslide failure in Nova Friburgo, 130 km north of Rio de Janeiro,

Brazil, on January 13, 2011 (Shana Reis/AFP/Getty Images)

Soil mechanics was founded as a modern science at the beginning of 20t century.
However, earlier contributions came from scientists and engineers on the more general
framework of granular materials, unraveling fundamental aspects. Charles-Augustin
Coulomb introduced friction as an element for the interactions between the grains (1773,
1781), Osborne Reynolds described dilation scientifically (1885, 1886) and James Clerk
Maxwell had recognized the “memory effects” of granular media that he called “historical
element” (Darwin, 1883). Making these general features more practical and adding to the
soil mechanics knowledge, major contributions to earth-pressure theories, were made by
Miiller-Breslau (1906), Franzius, (1927), Krey (1936), Terzaghi (1925), and Frohlich

(1934); the father of soil mechanics is considered to be Karl von Terzaghi with his book
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Chapter 1: Introduction

“Erdbaumechanik auf Bodenphysikalischer Grundlage”, that was published in 1925. After
these initial efforts, there has been great progress, specifically during the past 60 years,
in the development of experimental, theoretical, and numerical tools that bring a new
insight to granular media and geotechnics. Nevertheless, despite the considerable
development and research that has been conducted until now, soil mechanics and

geotechnical engineering are still considered to be mostly an empirical scientific field.

a3

Fig. 1.2. Mohr-Coulomb failure surface in principal stress space

As far as the field of design in geotechnical engineering is concerned, the evolution of
computational power and numerical techniques of the second half of 20th century, gave
the capability to the geotechnical engineer and researcher to use complex methods and
better predict the mechanical response of a soil mass, and consequently of the related
soil-structure interaction. There has always been a need to better understand soils, to
create constitutive models that can simulate their behavior and to be able to design and
predict the soil’s mechanical response for all the conditions and applications of
engineering purpose. It is important to mention that in the development process of
constitutive models, one numerical method, Finite Element Method (FEM), has played a
significant role. Through FEM, it is possible to apply even the most complex constitutive
models and evaluate the response of a continuum medium that behaves in this way; this
provides the considerable power to evaluate, as well as, to use in practice any model to
predict the behavior of a soil mass. In brief, FEM made all the complex constitutive models
(considerably more complex than the very simple Mohr-Coulomb), and the complex
geometries and conditions (i.e. cases that are almost impossible to manipulate by hand)

applicable, with only a computational cost continuously reduced.

B-3



Chapter 1: Introduction

The first and most well-established law used for soils is the Mohr-Coulomb (Coulomb,
1776), a simple failure criterion that applies to materials where larger compressive, as
opposed to tensile, strength is observed (Fig. 1.2); this criterion enhanced with an elastic-
perfectly plastic response is the basic model, broadly applied even today, in geotechnics.
More advanced constitutive models specialized for soils were proposed years later, to
better describe their key features, such as the Drucker-Prager (Drucker & Prager, 1952),
the Cam-Clay (Roscoe, Schofield& Wroth, 1958), and the modified Cam-Clay (Roscoe &
Burland, 1968; (Fig. 1.3). Furthermore, several models have been proposed during the
past decades for soils, that are adopting different modeling views (e.g. hypoelasticity,
hyperelasticity, viscoelasticity, plasticity, viscoplasticity) trying to describe, as fully and

accurately as possible, soil's mechanical behavior.

A Critical State Line

'dry side' ' g 'wet side'

K{°-line

-~ '
Pe P

Fig. 1.3. Yield surface of the modified cam-clay model on p'-q plane

A milestone in the soil modeling has been the creation of the Critical State Theory (CST)
or Critical State Soil Mechanics (CSSM) framework. Roscoe, Schofield and Wroth (1958)
and Schofield and Wroth (1968) proposed a concise framework for the steady state
condition reached after sufficient shearing for both clays and sands. This framework has
been a central paradigm for the soil mechanics field and stands mostly successfully.
Subsequently, CST is at the core of the clear majority of constitutive models specialized
for sands and clays (the two major types of soil materials) (e.g. Vermeer, 1978; Manzari
& Dafalias, 1997; Jeremic, Runesson & Sture, 1999; Dafalias, Papadimitriou & Li, 2004;
Taiebat & Dafalias, 2008). These models are predominantly based on continuum theories
of elasto-plastic materials and have been enhanced with pressure-dependent yielding,

the possibility of plastic volume change, and dilatancy, which are key properties of soils.
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The constitutive models focus on the macroscopic behavior of the soil mass, given that
this macroscopic response best describes the consequences, i.e. failure and settlements.
Nevertheless, it has been repeatedly stated that the structure of the grains of the soil and
its micromechanical response are of importance for soil mechanics. Researching the
granular media in its grain structure is the area where soil mechanics clearly overlaps
other granular sciences. Features such as the packing properties, force distribution, local
arrangements, instabilities, particles’ shape, and many others that are important and
emerge in the micromechanical analysis of granular structures, have been examined. This
micromechanical analysis appears necessary to understand the nature of soils; in this
vein, researchers have incorporated elements from the microstructure into the
macroscopic behavior.

One such important and possibly key element of the soil behavior, widely considered in
soil analysis and modeling during the past two decades, is the fabric of the soil. Even if
soil is modeled based on continuum theories, it is a discrete medium, which indicates that
it has an internal structure that determines in a crucial way its macroscopic response.
Fabric can be defined as the internal structure of the soil, determined mainly by the shape
and the contact network of particles, as well as, by the spatial distribution of voids.
Advanced models have tried to incorporate fabric to simulate the structure of this
discrete medium, and include it in a continuum model (Muhunthan, Chameau & Masad,
1996; Muhunthan & Chameau 1997; Li & Dafalias, 2002; Dafalias, Papadimitriou & Li,
2004; Li & Dafalias, 2012).

The types of soil fabric used in constitutive models according to the existing literature,
are related to the particles’ orientation, i.e. the way in which the major or minor axis of
the grains is oriented (Fig. 1.4(a)), to the contact normal vectors fabric, i.e. the way in
which the normal vectors of the contact planes are oriented (Fig. 1.4(b)), and to the void
fabric, which refers to the spatial distribution of voids (Fig. 1.4(c)). These three types of
fabric manifestation appear to be the most important expressions of soil structure. These
three distinct types of fabric have been used separately in most of the existing literature,
even if, due to the nature of the material and the definition of each fabric type, they seem
to be qualitatively and quantitatively related. So far, little research exists comparing the

types of fabric in a way that would reveal any possible relation between them.
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(a)

(c)

Fig. 1.4. (a) Fabric particle orientation defined by the unit vector n, (b) Fabric contact

normal defined by the unit vector n_ (c) void space

Fabric and its relation to the mechanical response of sand is so significant, that Li &
Dafalias (2012) presented a theory (Anisotropic Critical State Theory - ACST) that
extends the classical CST by adding a fabric-related parameter, considering this addition
necessary to render the theory complete. Although ACST has been successfully applied as
a framework for constitutive modeling, it has not up to this point been proven that
distinctively has a “reason d’etre” far and beyond the classical CST that modified. The
addition of fabric in the ACST framework provides great power to the models
implementing it, but the theory per se has not been supported or disproved through
experiments. Special conditions must apply to check if the modification of CST is
necessary, as in the typical situations on which CST was built (e.g. classical triaxial
compression experiment), is stands complete. However, for different and more complex
loading paths that often appear in nature (e.g. stress principal axes rotation) it is not clear
if CST conditions are complete and sufficient to guarantee reaching and maintaining
Critical Sate (CS).

A major purpose of this thesis has been to produce an experiment that could resolve this

ambiguity in a clear fashion. Such a test would create the conditions under which CST and
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ACST could be challenged. This special experiment has been found to be the stress
principal axes rotation, while keeping the principal stress values constant while being at
Critical State (CS). Although at first glance this does not appear to be a very difficult
experiment, it had not yet been done in the literature and its difficulties will be revealed
and discussed in the sequel.

Due to the difficulty of the realization of the proposed procedure in physical experiments,
that will be analyzed later, and since soil’s fabric is very difficult to be measured in such
experiments, the Discrete Element Method (DEM) has been used (Fig. 1.5) to model the
experiments described. This numerical method has been applied in geomechanics since
1979 (Cundall & Strack., 1979), but it has been widely used and developed during the
past 20 years. Its unique advantage, is that it constitutes a way of simulating a granular
medium and its discrete nature, without needing to use a macroscopic constitutive model,
in the absence of a continuum medium. This allows for analyzing a soil mass in its
microstructural form in order to get results about the mechanical behavior under several
conditions, and to reexamine the assumptions that are used by constitutive models. A
disadvantage of DEM is that, as it deals with the solid particles of the discrete medium
and the interactions between them, it is yet impossible to apply it on as many grains as
there would be in boundary value problems; the computational cost would be unbearable
for today’s standards.

Hence, since it is not possible to use DEM to simulate a whole solid mass as is presented
in real practice, DEM models include as many grains as possible (depending on the
computational capabilities of the user) to deduce meaningful results for the mechanisms
of soil response. Still, it has been proven many times that the number of particles used for
simple experiments suffice to adequately capture the response of the granular materials
simulated. Thus, DEM is the appropriate method to measure and describe the fabric
evolution for a soil sample in a detailed manner, both qualitatively and quantitatively; it
is a very useful tool that can produce results repeatedly, easily, quickly, and in a cost-
effective way.

It is important to note that real experiments are irreplaceable, as the physical reality
exists only there, without any simulation assumptions. All three types of fabric mentioned
above (particle orientation, contact normal and void) could be quantified in physical
experiments, e.g. using X-Ray capabilities. Furthermore, although the contact normal

fabric is the most usual among constitutive modeling and will be primarily used herein,
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itis the fabric that is the most difficult to define and measure physically. This type of fabric
is based on the identification of the contact points and the definition of the contact
tangent plane and the contact normal plane. This task may be an easy one for numerical
experiments, where the geometry of the sample is fully predefined, but it is a difficult task
for physical experiments (Jaquet, Ando, Viggiani& Talbot, 2013; Ando, Viggiani, Hall &
Desrues, 2013).

(al

Fig. 1.5. (a) Initial condition for a 2D virtual experiment in vertical compression test in

DEM simulation with the software PFC 2D® and (b) a part of this sample zoomed in

(forces are with black and their width is proportional to the force’s intensity)

More discussion on the fabric quantification possibilities will take place in the next
Chapter (Chapter 2), and an extensive description of the ways in which fabric is quantified
in general in granular mechanics will follow. Detailed analysis of the three fabric types
will be given; furthermore, a new perspective based on existing scan line methods that
are used to measure void fabric will be presented alongside a modified and a novel
definition for void fabric quantification. In Chapter 3, Critical State Theory will be
presented and Anisotropic Critical State Theory will provide the motive and the
framework for the experiments and the analysis that follow. At Chapter 4, the 2D
innovative virtual experiment by means of DEM will take place; this 2D representation of
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granular material has been proven extremely useful for its easier - compared to 3D -
interpretation and other advantages. The 2D experiment is founded on the stress
Principal Axes rotation (named PA rotation). The analysis of this virtual experiment will
reveal the incompleteness of CST and the remedy that ACST can provide. In addition,
subsequent monotonic loading after the stress PA rotation phase will prove the very
strong CS framework assumption. In Chapter 5, a similar experiment, as in 2D, will take
place but in 3D; the 3 dimensions create some limitations on the procedure, but in
principle this will also verify the incompleteness of CST. In implementing the 2D and 3D
virtual experiments numerous technical difficulties have been overcome, creating new
potential in load application procedures in DEM. Finally, the major conclusions will be

drawn in Chapter 6.
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Chapter 2: Fabric of granular media

2.1. The soil fabric

Soil is a multiphase granular material consisting of solid grains and voids. Particles
constitute the solid phase of the soil mass, while the remaining part is the voids, which
can be filled with liquid or gas. Thus, voids can be also separated into two sub-phases: the
liquid and the gas phase. Usually in soil mechanics, the liquid is water and the gas is air,
but other liquids or even gases can be present (e.g. oil or liquid wastes).

The typical phase diagram for soils is presented in Fig. 2.1 and subsequently solid, liquid
and gas phases are defined; each phase is characterized by its mass and volume,
properties that determine the corresponding density. General macroscopic parameters
that are used to represent the relation between solid and void phase are porosity

n=V /V andvoid ratio e=V, /V_=n/(1-n), where V, is the volume of the voids, V, is
the volume of the solids, and V' =V_+V, is the total volume. These parameters define a

straightforward way to quantify the relation between the solids and the voids and can be
additionally used to characterize the soil's density. Notice that Fig. 2.1 provides the basic
information about the phases of the medium, but does not describe the texture of each

phase or how these phases interact with each other.
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Fig. 2.1. (a) A random distribution of soil's phases and (b) the "phase diagram" of soils
(Kavvadas, 2007)

Besides the multiphase character of the soils, another important aspect with a significant

effect, especially on the anisotropic mechanical behavior, is the spatial distribution of the
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solids and the associated voids. The term fabric is used to describe this texture, the overall

spatial and geometric configuration of the soil elements (Brewer, 1964; Oda, 1972a).
2.1.1. Fabric’s importance in soil mechanics

Fabric is known as an important determinant of the mechanical response of soils,
especially their anisotropic behavior (Casagrande and Carrillo 1944; Arthur and Menzies
1972; Miura, Miura & Toki, 1986; Tatsuoka et al., 1986; Nakata et al., 1998). Some of the
most profound experiments in this vein, that are briefly analyzed here to reveal fabric’s
importance to its full extend, are the experiments of Yoshimine, Ishihara & Vargas (1998);
the authors conducted some undrained shear loading experiments on samples of

Toyoura sand in a torsional apparatus.
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Fig. 2.2. Undrained response of sand samples loaded along different principal stress

directions (Yoshimine et al., 1998)

Different values of the stress ratio b (b=(o,-0;)/(0, —0,)) and different orientations

of the principal stress directions were applied to examine the response of non-cohesive
soils; the results are represented in Fig. 2.2. The first column (left) shows the results
concerning different stress ratio b values; different b values lead to triaxial extension or

compression. The second column shows the results for constant h=0.5 and different
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orientation of the principal stress directions; the direction is defined based on the angle
a (see Fig. 2.2). The results presented in the first column of Fig. 2.2 are very much
indicative of the great differences between the loading conditions of triaxial compression
and extension for soils.

The figures of the second column of Fig. 2.2 present the significant importance of fabric,
i.e. for different values of angle «, signifying different orientation of the principal stress
axis, great differences in the response of the sample are observed. If we assume, as in the
experiments, the same loading history, and consider only the different orientation of
principal stress, the results diverge significantly. This is an indicative example of the
fabric influence on the mechanical response of soil materials. The way the loading
direction is oriented with respect to the fabric orientation (e.g. the particles' orientation
principal axis) leads to significant differences in the final output. Another important
conclusion that could be deducted from these experiments is that the Critical State (CS)
conditions seem dependent on the fabric anisotropy and, specifically, on the relative

position of the principal stress axis with respect to the orientation of fabric.

2.1.2. Fabric elements

Oda (1972a and 1972b), Satake (1982) and Kanatani (1984) were the first to understand
and underline the importance of soil fabric and to initiate micromechanical research on
the subject. Oda, Nemat-Nasser & Konishi (1985) and Satake (1992) suggested that the
three important micromechanical fabric elements for the macromechanical behavior of
the granular materials are the solid particles’ orientation, the interparticle contacts, and
the corresponding voids.

The particles, if they are non-spherical, as is almost always the case, have an axis of
preferred orientation; this orientation can be defined either by the major axis in case of
oval particles of rice-type, or by the minor axis when the particles tend to have a more
platy type, such as lentils. The distribution of the preferred orientation of the grains is an
essential element concerning the fabric of granular materials. In the case of pluviation
under gravity of elongated grains without cohesion, the final sample would present an
anisotropic particles’ orientation distribution, with the major axis of the particles being
parallel to the bedding plane (Fig. 2.3) and the minor axis being vertical to the bedding

plane. This procedure, very usual in nature, would set the particles’ orientation fabric (p-
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fabric) to be significantly anisotropic at the very initial state of the material. P-fabric has
been used extensively in the past for its simple interpretation, its intuitive nature (Oda,
1972a; Satake, 1982; Oda & Iwashita, 1999) and because it is the main element
responsible for inherent fabric, i.e. anisotropy created during pluviation under gravity
procedures. Nevertheless, it lacks considerable information on the sample’s condition,
since the particles’ orientation is purely geometrical and not related with any
macroscopic entities (such as stresses or strains). It remains however a very important
element of fabric and it appears to be important for the anisotropic strength of soils (Fu

& Dafalias, 2011a; Tong et al., 2014b).

SRR 4 Na-— N — - .
USRS e T : ' | e 7
Pt ey g

(a) e (b) oy s

Fig. 2.3. (a) Part of a sample created with pluviation under gravity (Fu & Dafalias,

2011b) and (b) distribution of particle orientation at the end of the pluviation on a polar

histogram

Of particular importance for the soil mass are the interparticle contacts, since the forces
of the granular medium are transferred through these contacts (Fig. 2.4). The forces’
transmission creates chains (force chains) that necessarily pass from the contacts and
represent directly the forces’ directions. The distribution of the contacts, of the vectors
that describe the contacts, and the distribution of the force chains, define a type of contact
based fabric. The simplest form of this fabric type is contact normal vector fabric and is
defined based only on the unit vectors of each contact that originate from the contact and
are vertical to the line (in 2D) or plane (in 3D) that passes through the contact and is

tangent to the grains.
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This fabric type is extremely popular due to its close relation with the forces, the force
chains and the stresses, and the advantages that result from such fabric description
(Thorton, 2000; Radjai & Azéma, 2009; Cambou, Jean & Radjai, 2009; Yishmiri & Soga,
2010; Azéma & Radjai, 2011; Li & Yu, 2013; Fu & Dafalias, 2015). In addition, this contact
normal fabric (c-fabric), despite being in close association with the forces, it is only
geometrically defined, and does not include forces per se, as is also the p-fabric. In the
same example with pluviation under gravity conditions, as described for the p-fabric, the
contacts are obviously preferring vertical alignment, as the main force transfer is made
in the vertical direction. This is in accordance with the previous comment about p-fabric;
as the particles are oriented horizontally, they contact each other primarily in the vertical

direction (parallel to the minor axis of the particles) and less in the horizontal direction.

Fig. 2.4. Sample with circular particles pluviated under gravity; forces are with black

and their width is proportional to the force’s intensity

Finally, a very important element for the soil fabric are the voids between the particles;
the void fabric is especially known to affect the hydraulic properties of porous materials.
Obviously, the void space is in continuous interaction with the solid mass, as particle
movements appear directly related to changes of voids. This means that change in the

particles’ orientation and contacts (i.e. the important fabric elements of the solid phase)
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are directly reflected on the voids, at least from a physical point of view. As the solids and
the voids are supplementary, the solid fabric elements and the void fabric elements are
already related in a qualitative way.

Several different methods have been proposed to measure the fabric with respect to the
voids (Oda et al., 1985; Konishi & Naruse, 1988; Muhunthan, Chameau & Masad, 1996;
Kuo, Frost & Chameau, 1998; Kuhn, 1999; Li & Li 2009; Ghedia & O’Sullivan, 2012),
because the voids are not easily defined in such a precise way as the solid elements.
Different measuring approaches can possibly capture the same characteristics of the void
space, with each one having its own advantages and disadvantages. More on this subject
will be discussed in the sequel, where an existing void fabric measurement method will
be reviewed and modified. Although void fabric is acknowledged to be of importance and
is known to be related to the solid phase, the exact relationship between void and solid
fabric has just started to attract greater research interest (Li & Li, 2009; Fu & Dafalias,
2011b; Theocharis et al., 2015; Fu & Dafalias, 2015).

Summarizing the above statements, soils consist of non-spherical, random-shaped solid
particles that have a characteristic statistical distribution of the fabric quantities
described above, which, along with the void space created between the solids, affect the
mechanical response of the soil medium. The quantitative definitions of fabric that will
be discussed in the rest of this chapter are a way to define the distributions so that the
microstructure of the material and the important fabric elements described above, can

be quantitatively considered for its response.

2.2. The soil fabric tensor

The most effective and physical way to describe fabric, is through the statistical
distribution of the orientation of the different microstructural vector-like entities, based
on the analysis of the fabric elements, such as particles’ long axes, inter-particle contact
normal directions, and void directions expressed by properly defined void vectors. Such
fabric-related vectors are then used to define corresponding fabric tensors, which
constitute the analytical means to express and quantify fabric and fabric anisotropy.

The most straightforward example that illustrates the simplicity and effectiveness of such
a fabric tensor is the case of a 2-dimensional soil analysis; if a second order fabric tensor

is used, then three characteristics of the fabric tensor are obtained, two principal values
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and the principal angle. These properties schematically define an ellipse that shows most
effectively the vectors’ distribution through the major and the minor axis, and the angle
of rotation of the ellipse. Tensors of higher ranks can be used for a more detailed analysis
but for most applications, and for the sake of simplicity, a second order tensor is usually
employed.

The fabric tensor seems to play an increasingly important role in constitutive modeling.
It is a concise and physical way to thoroughly introduce the fabric into advanced
constitutive models. Many researchers have tried to introduce the fabric as an extra
variable in a soil constitutive model. Simple models incorporate only the initial state of
fabric (Oda & Nakayama, 1989; Dafalias, Papadimitriou & Li, 2004); more advanced
models try to introduce a fabric tensor evolution with respect to the properties of the
model and the simulation (Li & Dafalias, 2012; Gao et al., 2014). In any case, the fabric
parameters are becoming important for the constitutive definitions as the models
attempt to describe more complex soil behavior.

The fabric feature of the soils seems to be of even greater importance when considering
the Critical State Soil Mechanics (CSSM) framework. Recent advances show that CSSM
lacks consideration of a fabric parameter (Li & Dafalias, 2012); this issue will be further
discussed in Chapter 3. To fulfill the fabric quantification, it is fundamental to define a soil
fabric tensor that can capture the macroscopic mechanical anisotropy and - at the same

time - be representative of the material’s microstructure.
2.2.1. Fabric based on the solid phase

2.2.1.1. Particle orientation

Soil particles are neither spherical nor ellipsoidal in shape, but it is still possible to define
a major axis for their shape. For several grain shapes (such as in Fig. 2.5) a major axis can
be calculated, considering the orientation of the soil grain.

Two unit vectors (n,,—n ) are then defined on the major axis (Fig 2.5), that are

characteristic of the orientation of the grain. Based on these vectors, the particle

“«_n

orientation fabric of this one particle “p” equals n, ®n, where ® is the tensor product
and only n, (without —n, ) is used. If both vectors are used, a factor 0.5 must be applied

in front of the tensor product, yielding the exact same result.
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Fig. 2.5. Vectors that describe the microstructure of granular materials: np for particle

orientation, nc for contact normal

For a soil sample, the fabric tensor for particle orientation is defined as the sum of all the

tensor products of all the soil grains (Oda, 1982; Satake, 1982; Kanatani, 1984):
1
kp kp
Gp:N—an ®np (2.1)
p k,=1

n, are the particle orientation vectors which describe the fabric, ® is the tensor product,
> implies the summation over all the particles, k, denotes the k,th particle,and N, is

the total number of the granular particles of the sample. In many cases, the deviatoric
part of the fabric tensor is the most interesting part, given that it is free of the hydrostatic
component and provides the very important fabric anisotropy. This deviatoric part is

then defined in a 2D setting as:

1, 1&g oop 1
F,=G,—~I=—> n’®n; —=I (2.2)
2 N,& 2

For a 3D setting, the coefficient 1/2 in front the identity tensor I should be substituted
with 1/3.
In 2D space, the fabric tensor has two degrees of freedom, being traceless by definition

(or having unit trace in the case of G, ). Thus, the intensity of fabric anisotropy can be
quantified using only the difference of the two principal values (a,=F, —F,,) and the

principal direction, expressed by the angle between one characteristic axis (e.g. the

horizontal) and the major principal direction (&,). This fabric intensity is very usual in

DEM fabric analysis (Fu & Dafalias, 2011a; Yishmiri & Soga, 2011). Additionally, this

fabric intensity proves to be qualitatively identical to the norm of the tensor
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F =trF* =2|F|=V2|F,|=(1/~/2)|F, ~ F,|. Nevertheless, in 3D and in any general

situation, the norm of the fabric tensor serves better to quantify the intensity of the
anisotropy (Li & Dafalias, 2012).
In matrix notation, the vectors can be written explicitly in 3D and in Cartesian coordinates

as:

. Thus, the tensor product for the vector n, of the particle k, and then for

N, particles, after the summation over all the particles, results to a tensor:

k, k k, k k, k

P 1p"p PP PP

1 N, 1 N, nplnpl npl”pZ nplan

k k k, k k, k

— p P — PP PP
Gp - N Z“p ®np N 2 Non, N (2-3)

p kp=1 p kp=1 . k, k

tric n‘n?

symme aTL5

Fig. 2.6. Analysis of a vector in 3D in spherical coordinates

If the vectors are analysed in spherical coordinates, based on the angle ¢ and @ (Fig. 2.6),
then:
sinfcos g

n =| cosfsing (2.4)

p
cosd
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From (2.3) and (2.4) the p-fabric tensor for spherical coordinates can be easily quantified

as:

1 &

— kP kP —

G”__N E n, ®np =
p k,=1

. k k . k k, . k . k k k
, sin® @ cos® " sin’@7 cosp " sing”  sin@” cos@ cosp” | (2.5)
1 : k. K .k k, .k
—> sin” " sin’ ¢ sin@"” cos@" sing
N, o

. k
symmetric cos’ 6"

2.2.1.2. Contact normal vectors

Another way to define fabric based on the solid phase is through the plane that defines
the direction of the contact (contact normal fabric). This plane (or line in 2D) is defined
as the one passing through the contact point and being tangent to the particles in contact.

Vertical on this plane (or line) initiating from the contact point, two unit vectors n_ and
—n_ are defined, called contact normal vectors (Fig. 2.5).

Based on this definition of contact normal plane and of contact normal vectors, the fabric
tensor for contact normal vectors (c-fabric) can be defined as (Oda, 1982; Satake, 1982;
Kanatani, 1984):

NL'
G, =iZn’;c ®n’ (2.6)
N, i3

where G, is the fabric tensor for contact normal vectors, the subscript “c ” denotes that

the fabric quantification considers the contact normal vectors, n* is the unit contact

4

normal vector which describes the fabric for the k th contact, and z implies the
summation over all the contacts N, that exist between the N, particles.

Following the same steps as in 2.1.1, the c-fabric tensor in spherical coordinates yields
the expression:
G :iinkf ®n* =
c N, & p p
sin® 0% cos’ " sin® 0" cosp* sinp®  sinf“ cos@* cosp' ) (2.7)

c

sin® 8 sin’ g sin@" cos@* sin g’

Mz

1
N, =
¢ e symmetric cos® 0"
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where @ and ¢ are the spherical coordinates of vector n_ (Fig. 2.6).

2.2.2. Fabric based on the void phase

Another essential element for the fabric of granular media is the distribution and
orientation of the voids. The quantification of the voids’ characteristics is, in principle,
very different from the description of the solid phase. This happens due to the
fundamental differences between the two phases; the void space is solely the space not
filled by solid particles. This leads to several issues for the void description, such as the
non-convex and peculiar shape of the voids, and the continuous and random evolution of
the void space, without any predefined shapes. Additionally, voids between grains,
especially in 3D, are interconnected, such that in practice only one, or few, major voids
exist. All these characteristics make the void phase very different in terms of fabric than
the solid space. Nevertheless, it is obvious and it has been reported (Li & Li, 2009;
Theocharis et al,, 2015; Fu & Dafalias, 2015) that void and solid fabric are connected, as
expected, and even quantitatively correlated. In brief, to quantify the void fabric all
characteristics - such as size, shape, and connectivity of the voids - matter, while for the
solids it is easier to distinguish only the shape of the particles or the connectivity of the

contact normal vectors.
2.2.2.1. Void fabric methods

Due to its peculiar nature, void fabric has invited the application of several methods from
different perspectives. Nevertheless, most methods are based on one of two primary
concepts: One set of methods involves the use of lines (scan-lines) which scan the sample
or a Representative Volume (RV) and quantify the solid and void segments; these will be
called scan line methods (Oda et al., 1985; Kuo, Frost & Chameau, 1998; Ghedia &
O’Sullivan, 2012). Another set of approaches uses graphs created through tessellation
methods so that the granular assembly is replaced with a geometrical system; these are
named here as tessellation methods (Kuhn, 1999; Li & Li, 2009).

Tessellation methods manage to produce a pure geometrical system based on a granular
specimen, on which the mathematical modelling of a sample is possible (Bagi, 1996). The
final system can vary based on the assumptions made and the aim of the tessellation; in

principle, there are void cells that characterize the voids, based on the arrangement of
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the related particles (e.g. Fig. 2.7(a)) and there can also exist solid cells that describe the
particles. Usually, dual systems are created that account for both solids and voids; the
most common such system is the Voronoi-Delaunay tessellation, where the one part
describes the solids and the second part the voids (Fig. 2.7(b)). Notice that these
geometrical structures have a deep theoretical background and are not aimed only at
quantifying void fabric, but also at describing the internal structure of a granular medium
in general; e.g. based on these structures, the tessellations strains on the granular
medium can be defined (Satake, 1976; Satake, 1983; Bagi, 1996; Oda & Iwashita, 1999).
Nevertheless, the void part of such a system is ideal for quantifying void fabric and has
been used for this reason (Konishi & Naruse, 1988; Kuhn, 1999, Fu & Dafalias, 2015).
More advanced tessellations (e.g. Li & Li, 2009) create more sophisticated mixed cells
using the center of the grains and the contact points, so that each cell can be used for
stress, strain and fabric determination. However, if someone wishes to focus solely on the

void fabric, simpler schemes can provide sufficient information.

Fig. 2.7. (a) Branch vectors (1) and normal to the void cell vectors (b ) defined based

on ith (loop) void cell (Kuhn, 1999), (b) Voronoi-Delaunay tessellation (dots are the

centers of the grains, triangles represent the voids and polygons the solids)

2.2.2.2. A modified and a novel scan line definitions

Oda et al. (1985) underlined the importance of voids and of void fabric anisotropy for
granular materials, and provided the initial scan line concept and definition. The principal
concept and the main parameters are presented schematically in Fig. 2.8. The sample of
a granular material is scanned with parallel lines at inclination 6, maintaining a fixed
distance “d” between neighboring lines; the scanning is repeated for small intervals of 6

between limits covering the whole sample. The line segments defined between grain
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boundaries during scanning can be characterized either as voids or as solids and, thus,
the measured void length segments (1”) can adequately quantify the voids of the media.

The lengths of these void segments, along with the corresponding unit vectors at
inclination 0, determine the basic void vectors that are used for defining the
corresponding scan line void fabric tensor. Oda et al. (1985) introduced the method in its
most simplified way, by applying it directly onto snapshots of small-scale physical
experiments. Ghedia and O'Sullivan (2012) presented advanced methods applying a scan
line approach to digital images obtained from small-scale physical experiments and 2D

DEM specimens.

Void space
Solid particles

Fig. 2.8. Scan line concept and main parameters

The scan line idea is straightforward for both 2D and 3D analyses and has been
implemented in several fields of research (Biscarini et al., 1997; Kahl et al.,, 2013),
including geomechanics (Oda et al, 1985; Ghedia & O’Sullivan, 2012). It is important to
emphasize the crucial operational difference between the scan line method and all other
approaches in determining a fabric tensor: in the former case the measurements are
made for all 8’s (in practical terms at many discrete intervals of 8) and then are combined
to obtain the value of a tensor, while in all other cases the measured quantities, e.g.
contact normal distribution orientations, are fixed and measured once. Notice that while
the scan line approach employed in this work uses a series of parallel scanning lines in
different orientations, another type of “scan line method” exists, which introduces only
one scan line that emanates from a point inside a representative volume in various
orientations (Kuo, Frost & Chameau, 1998; Pietruszczak & Krucinski, 1998); hence, itis a

different concept than the one discussed here.
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Scan line is a rather simplified method that has so far been performed on images, a great
advantage in the case of experimental measurements. Literature combining DEM
experiments and the scan line method includes one case (Ghedia & O’Sullivan, 2012)
where the method was applied to digital images obtained from DEM experiments. Scan
line approaches have been systematically implemented and analyzed on precise data
from computational experiments, e.g. Discrete Element Method (DEM), in a recent work
by the author (Theocharis et al.,, 2017b). It is concluded that the application of existing
scan line void fabric tensor definitions on DEM data, fails to provide compatible results
with those produced using images, due to an inherent shortcoming of the original
definition which has been proved analytically and numerically. To overcome this
deficiency, Theocharis et al. (2017b), proposed, on the one hand, a modification of the
original definition of the scan line void fabric tensor by introducing the concept of a “cut
off” characteristic length, and, on the other hand, a novel void scan line fabric tensor
definition based on the squared lengths of void scan line segments, for which
comparisons were made among themselves and contact normal fabric tensors.

The primary outcomes of that research include the proof of the shortcomings of the scan
line methods defined so far, and a proposition of two alternatives for a more concise scan
line fabric tensor. The original scan line definition by Oda et al. (1985) is:

ot _ 412 0 000 1
Vi =4= > I'n’®n —ZI (2.8)

#=-90°
where n’ is the unit vector along all scan line void vectors inclined at a specific angle 9,

I is the identity tensor, n’ ®n’ represents the tensor product of n’ by itself, I is the
6=90°

mean length of scan line segments for each angle &,and L= Z I° is the sum of all mean
9=—-90°

lengths 1 over all ¢, where the summation is executed in predefined intervals of &

within the angular domain [-90°,90°]. The mean length of the scan lines 1 provides the

all-important weight of the tensors n’ ®n’ and its orientation distribution characterizes

the anisotropy. In case I is equal for all 8, it will be eliminated from the numerator and

the denominator of Eq. (2.8), emerging from the fact that L is a summation over all [,

and, by using integration over 0 to accurately express the ensuing summation of n’ ®n’
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one obtains from Eq. (2.8) the half identity tensor (1/2)l, corresponding to perfectly

isotropic fabric.
The problem with this definition, as a similar and even more severe issue stands for the
definition of Ghedia & O’Sullivan (2012), is that when the parallel scanning lines are too

close (distance d — 0), void segment lengths multiplied by the scanning distance d can

be related to void areas. As a result, the final weight of the tensor becomes equal to the

inverse 1/ N, of the total number of void scan line segments for each angle 6, thus not

depending at all on the lengths of the void segments or the mean void length. This renders
that scan line approach incapable of measuring the void anisotropy by means of DEM, as
the very many small void segments interfere with the important - in terms of length - void
segments, and the method results into obtaining a constantly isotropic fabric. The reader
is referred to Appendix for a detailed proof of this conclusion. In real experiments these
graphical scan line approaches are effective in detecting void fabric anisotropy because
image analysis and other processes, by default, ignore many small segments for void
anisotropy quantification (e.g. even in digital images, the size of the pixel constitutes the
minimum void segment length that is taken in to account, while all void segments smaller
than this are by default excluded from the calculation).

By simply modifying the original definition of Eq. (2.8) to neglect the void segments that
are smaller than a characteristic minimum length (“cut off”), a void fabric tensor based

on the scan line method that can adequately quantify fabric anisotropy is defined:

N9
6=90° 0=90° Zlig
> rn’en’ L= > 1% 19=% for I’ > "cut off" value  (2.9)
0

1
" 0
L 6=—90° =-90°

co __
G =

The same symbols as in Eq. (2.8) are used and I’ is the length of an i, void scan line

segment along angle 6.

As analyzed in the previous section, the original definition of the scan line fabric tensor,
with the mean length of the void segments being the all-important statistical weight, has
the inherent shortcoming of elimination of any void vector length at the end; in particular
the fact that void segment lengths multiplied by the scanning distance d can be related
to void areas, is at the heart of the eventual length elimination and its substitution by
1/ N? as the corresponding weighting factor; the remedy of this shortcoming was the use

of the “cut off” approach (Eq. 2.9). Based on this observation, a novel, very simple, more
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physical and straightforward definition of a scan line void fabric tensor, that can
overcome the shortcoming without the use of any “cut off” concept, is proposed. The
proposition is based not on unit vectors along void segments weighted by the segments’
length, but on not unit void vectors defined along void segments and having norm equal
to the segments’ length. Thus, the squared length (instead of length) of a void segment
enters the definition of the void fabric tensor as the weighting factor of each n’ ®n’,
which cannot be eliminated by its connection to void surface area elements. One then can

proceed in a step-by-step construction of the new void scan line fabric tensor as follows.

0

Define the i, void vector along 8 by v’ =1°n’ where recall that 1/ is the length and n’

the unit vector of the i,, void scan line segment along angle 6. The crucial point is now the
- . 2
definition of the i, void tensor along 6 by fi'g = Vf ®Vi‘9 = Ii‘9 n’ ®n’, where the squared

2
length |’ naturally appears as the weighting factor of this tensor. The next steps are
straightforward and consistent with the concept of scan line approach, namely one first
considers the combined effect of all void segments for a given 6, and then combines such

effects for all 0’ s. Hence, for a given 8 the summation over i of all fig yields the tensor
N€
g’ =Q_I7")n” ®n’, with the sum of the squared lengths along 6 being the weighting

factor of g, and subsequently the summations of g over all 8, normalized by the sum

of their weighting factors, yields the sought new scan line void fabric tensor as:

1 6=90° [ N ,
sz = W Z [Zlig Jng ® ne (210)
z [Z 1;92]9—900 i=1

9=—90" \_i=1
In this case, the weight of the fabric tensor, characterizing the distribution of the void
orientations, is the square of the length of the void segments. This tensor appears to
sufficiently quantify the void fabric anisotropy with or without the use of the cut off. Both
of the above newly defined fabric tensors in Egs. (2.9) and (2.10) can capture the void
characteristic that would be expected from a fabric tensor and will be applied in the

sequel for quantifying void fabric in 2D via DEM virtual experiments.
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2.3. Fabric in biaxial and triaxial loading paths and stress
principal axes rotation; experiments and the Discrete

Element Method

This section is dedicated to the overview of the evolution of fabric elements and fabric
anisotropy during typical loading paths that will be implemented in the next chapters.
The experimental possibilities for quantifying the micromechanical property of fabric
have been, in principle, dependent on, and hence also limited by, the numerical
capabilities; initially material of the 2-dimensional kind has been used, such as
photoelastic rods and schneebeli cylinders, as these materials are visually accessible due
to their 2D nature and thus allow one to see and study fabric. Moreover, in 3D specimens,
cutting out sections of the original samples was the only way to access the internal
micromechanical characteristics (Oda, 1972a; Al-Shibli, Macari, & Sture, 1996; Frost &
Kuo, 1996). The sample was “frozen” with resin or other material, and then slices were
cut out of it. Those 2D slices were again visually accessible and with some basic image
analysis, measurements were taken on the fabric properties.

These initial efforts and their conclusions were in many ways uncertain. More advanced
experimental techniques, that have been used for the analysis of the texture of granular
media in general, include x-ray radiography (Arthur & Dunstan, 1969a and 1969b;
Nemat-Nasser & Okada, 2001), electrical conductivity and resistivity (Dafalias &
Arulanandan, 1978; Dafalias & Arulanandan, 1979; Arulanandan & Dafalias, 1979),
magnetic resonance imaging (Ng, Aube & Altobelli, 1997; Ng, Hu & Altobelli, 2006), laser-
aided tomography, (Konagai et al., 1992; Konagai & Rangelow, 1994; Matsushima et al.,
2003), and X-ray computed tomography (Desrues et al.,, 1996). X-ray CT seems to be a
promising experimental tool (Latiere & Mazerolle, 1987; Colliat-Dangus, Desrues &
Foray, 1988; Raynaud et al., 1989) that has become popular in experimental investigation
of granular materials (Desrues et al., 1996; Chang, Matsushima & Li, 2003; Aste et al,,
2004; Aste, 2005; Alshibli & Alramahi, 2006; Desrues, Viggiani & Besuelle, 2010) and will
possibly answer questions and unravel mysteries on the fabric regime on real soils.
Until then, DEM is the major tool that provides results and mechanisms on the fabric
response. Recent research has made several steps towards revealing the physical

response of fabric through common and well-analysed loading paths. Furthermore, CS
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and fabric has become one of the most popular topics in fabric analysis; fabric has been
shown to be strongly anisotropic in Critical State (CS) as will be further analysed in
Chapter 3. An increasing number of analyses confirm this result, as the interest is now
focused on whether the CS value of this fabric anisotropy, usually calculated in DEM from
c-fabric, is unique, or whether it is dependent on parameters of the experiments.
Research so far supports the unique-value assumption (Fu & Dafalias, 2011b; Zhu et al,
2016; Yang & Wu, 2016) and renders CS fabric anisotropy pertinent only to the shear
mode or Lode angle.

Before fabric reaches CS, where fabric is strongly anisotropic, the evolution of fabric is
still under research, and is based on the original conditions and the loading path. In
experiments, fabric tensor is difficult to calculate because of measurement uncertainties;
furthermore, fabric evolution during an experiment demands for the calculation of the
fabric in several steps. This is an ongoing work for the X-ray CT method combined with
advanced image analysis; recent works are now pointing in this direction (Hall et al,,
2010; Fonseca et al., 2012; Ando et al., 2013; Jaquet et al., 2013; Taylor, O’Sullivan & Sim,
2015; Fonseca et al.,, 2016).

2.3.1. Biaxial shear

The clear majority of the results existing on fabric measurements are for triaxial and
biaxial experiments; 2-dimensional experiments that simulate the triaxial load paths will
here be called biaxial experiments for our purposes. In general, the vertical stress is
increased as the horizontal is either constant or decreases to maintain constant
hydrostatic pressure; the vertical loads are usually applied through boundaries that are
not allowed to deform (rigid), while the lateral pressure can be applied though rigid or
flexible boundaries. For stress loading conditions, a servomechanism is usually
implemented to control the boundaries’ velocity.

2D biaxial experiments have been popular as the results from a 2D experiment - at least
fabric-wise - are visually accessible and easily interpretable, while for the 3D soils, fabric
is extremely difficult to measure. 2D biaxial physical experiments have taken place in the
past on photoelastic rods (Drescher & De Jong, 1972; Oda & Konishi, 1974), and, more
recently, in schneebeli materials (Calvetti, Combe & Lanier, 1997); these materials have

the advantage that they do not simulate plane-strain or plane-stress conditions, but
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rather constitute a pure 2D case. Additionally, 2D numerical simulation that would
produce qualitatively similar results with 2D experiments, are extremely faster than the
3D, and the results are again more readily interpretable with the aid of the visual
simplicity.

Oda (1972a, 1972b, 1988, 1999) has made measurements of fabric on real 2D
experiments by taking snapshots of the biaxial and applying several fabric methods for
all types of fabric. These results are not very coherent due to the very difficult
measurement conditions, but are the first attempts to measure fabric in a real
experiment. More recently Calvetti et al. (1997) made some fabric-type measurements
on schneebeli rods using more sophisticated apparatus (see Joer et al., 1992).

Most results for fabric measurements come from DEM analysis, that is based on the 2D
biaxial type presented for experiments with rods. While in physical experiments the most
common fabric type is the p-fabric followed by the void fabric, named v-fabric, in DEM
measurements the most common one is c-fabric. In experiments the orientation of the
particles is clearly visible; furthermore, the experimental materials are sometimes
designed to provide clear particle orientation, while voids are accessible through
snapshots of the procedure. On the other hand, contact normal vectors have been almost
impossible to measure so far, but, as they are closely related to chain forces and stresses,
they have been extensively analyzed through numerical methods.

From all this experience - experimental and mainly DEM - the tendencies of the fabric are
clear: during the biaxial loading the particles orient themselves parallel to the horizontal
plane, i.e. perpendicular to the vertical loading axis, and contact normal vectors build a
very strong preference parallel to the loading axis, and the voids follow the contact
normal vectors in tending to align vertically (e.g. Fu & Dafalias, 2011b; Li, Yu & Li, 2011;
Tong, Zhang & Zhou, 2013); they all reach a relatively strong anisotropy as the biaxial
loading proceeds. This is also intuitive; as the load increases, the particles tend to obtain
a more "stable" position. The principal axes of the fabric tensor of all three types always
align with the stress principal axes (vertical and horizontal), even if at the beginning of
the tests they might appear slightly non-coaxial.

It is important to distinguish the two cases of initially isotropic and initially anisotropic
specimens, i.e. of samples created with pluviation under gravity (inherent fabric). Both
types appear to reach a final strong anisotropy, but their evolution might appear slightly

different (Wang et al.,, 2017). Additionally, the fabric of the dense specimens, follows the
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stress ratio curve, i.e. fabric anisotropy stronger than the CS can be reached, and then,
following the softening of the material reach the final CS value, which will be lower than
the peak. In the case of loose specimens, fabric anisotropy monotonically evolves towards
CS. The case of localization in shear bands (e.g. Vardoulakis, 1980) has also been studied
in terms of fabric, but not in the same depth. Similar conclusions seem to apply, but only
for the area inside the shear band where CS is reached (Fu & Dafalias, 2011b; Zhu et al,,
2016). The part of the specimen outside the shear band is not as active and has a different

fabric anisotropy.

2.3.2. Triaxial Shear

Typical triaxial experiments are most common in soil mechanics practice. They have also
been used extensively for fabric analysis as they are well-analyzed in many respects. They
are very similar to biaxial experiments with respect to soil response, and fabric response
is, in principle, extremely similar between 2D and 3D. As mentioned above, slices from
triaxial specimens have been used to quantify the fabric; resin has been used to “freeze”
the samples, cut out slices, and then use these slices to make 2D fabric measurements.
These results were the first hints on the discussion on how fabric looks like, and how it
evolves in real soils. Modern techniques, predominately X-ray CT with advanced image
analysis, could capture the micromechanical response of a soil under triaxial loading;
however, few results exist on the evolution of the fabric elements using these techniques,
as these techniques are very costly and are now being developed. For these reasons, DEM
is still the main method used to extract conclusions on the mechanisms underlying fabric
behavior.

The general trends concerning fabric evolution during typical triaxial experiments (and
virtual experiments) are qualitatively the same with those in 2D. The response of the
fabric elements (p-fabric, c-fabric and v-fabric) and the anisotropy of each one of them
follows the same evolution as in 2D. The same observations are also valid when
considering the application of p-fabric and v-fabric primarily in physical experiments and
c-fabric in DEM. The bridge between these distinct types of fabric is still at an early stage
of investigation; little research appears on this (Li & Li, 2009; Fu & Dafalias, 2011b; Fu &

Dafalias, 2015; Theocharis et al,, 2015), although it seems very important in revealing the
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full picture of the micromechanical behavior and its relation to the macromechanical

response.
2.3.3. Stress principal axes rotation

The rotation of the principal axes of stress with constant principal stress values is one of
two cases called rotational shear (Wang, Dafalias & Shen, 1990); the other case is the
variation of principal stress values with fixed stress axes, such that the stress orbit in -
plane is circular, but we will only deal with the first one here. Under this loading path, the
principal values of stress are held constant while only its principal axes rotate. This
loading path is usually applied in physical experiments through the hollow cylinder
apparatus; results from stress PA rotation have been reported for several years in the
literature, as this specific type of cyclic stress rotation is an important feature for failures
(e.g. Ishihara & Towhata, 1983).

Several drained (Miura et al., 1986; Symes, Gens & Hight, 1988; Wijewickreme & Vaid,
1993; Tong et al., 2010) and undrained experiments (Ishihara & Yamazaki, 1984; Symes,
Gens & Hight, 1984; Nakata et al., 1998; Yang, Li & Yang, 2007; Chen & Kutter, 2009) have
been conducted. Results mostly focus on the evolution of strains, the accumulation of
volumetric strain, and the non-coaxiality between the directions of stain increment and
stress. The microscopic evaluation of this type of loading appears to be of interest, since
the constant change of the principal axes of stress force the principal axes of strain and
fabric to follow those of stress. This is fundamentally different from the previous loading
paths, where the principal axes of stress remained fixed and those of strain fabric were
always aligned with them.

Microscopic analysis of stress PA rotation has gained attention in the past years due to
the obvious non-coaxiality between the stress and the strain during the loading. Besides
this feature, fabric results have been reported that show the c-fabric and the void fabric
to follow the rotation of the stress principal axes with a delay of a small angle, while its
intensity seems to remain constant (Li & Yu, 2010; Fu & Dafalias, 2015). To the contrary
the p-fabric for relatively elongated particles seems to resist extensive rotation when the
stress PA rotate. Only through DEM it has been possible to assess this evolution of fabric
during stress PA rotation. That provides a starting point for investigating fabric under the

stress PA rotation; this loading path had not been applied in Critical State conditions until
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in a recently published work by the author (Theocharis et al., 2017a), and the results
seems to be of profound importance for the Critical State Theory. This subject will be

analyzed in depth in the next chapters.
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3.1. Classical Critical State Theory

The Critical State (CS) concept and the Critical State Theory (CST) have been introduced
by Roscoe, Schofield & Wroth (1958) and by Schofield & Wroth (1968), in their landmark
work more than half a century ago. The authors describe the CS as: “the concept that soil
and other granular materials, if continuously distorted until they flow as a frictional fluid,
will come into a well-defined critical state determined by two equations” (Schofield &
Wroth, 1968 - Section 1.8, p. 12). These two equations refer to the macroscopic properties
of the geomaterial, and are defined based on the stress and the volume. It follows, that
when a granular medium is “distorted”, i.e. extremely deformed under a load of some

kind, it will reach a well-defined steady state.
3.1.1. The phenomenon of Critical State

The Critical State can be described as the state where a granular material keeps
deforming in shear, at constant stress and volume. The analytical expression of this state
then reads:

p=0, ¢=0, ¢,=0, ¢ =0 (3.1)
where q is the deviatoric stress, p is the hydrostatic stress, ¢, the volumetric strain and
&, is the deviatoric strain, the only macroscopic quantity evolving in CS; the superposed

dot implies the material time derivative. The above Eq. (3.1) declares that when being at
CS, the stress as well as the volumetric strain are constant with time.

Eq. (3.1) uses only the most important macroscopic variables of the state, i.e. the stress
and the volume. Someone could introduce the very general case of CS, where all state
variables relevant to a granular assembly would be unchangeable with time. That means

if the state of the material is represented by means of a set of state variables q =[q1,q2,...]

, scalar or tensor-valued, the analytical expression of the critical state event is given by:

q=0 (3.2)
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Although Eq. (3.2) looks as a more complete definition for CS, in practice it may often be
found that many variables have insignificant effect on critical states and that first order
dependence of critical state on effective stress and volumetric packing may be sufficient.
It is important to underline here that the CS is not an instantaneous event but a steady
state; this is also clearly stated by Eq. (3.1) as the stress and the volume are declared

constant with the evolution of time.

3.1.2. Critical State Theory (CST)

Roscoe, Schofield & Wroth (1958) and Schofield & Wroth (1968) described the
phenomenon but also proposed a theory based on CS, which will be called the Critical
State Theory (CST). This theory suggests two conditions, which are necessary and
sufficient for CS to be reached and maintained. These two conditions are expressed by
equations that were primarily defined in the triaxial space and in their original form they
read:
q=Mp; ['=v+Alnp (3.3)

where q is the deviatoric stress, p is the hydrostatic stress, v is the specific volume of
the material,and M, I' and A are soil material properties. The first part of Eq. (3.3) refers

to stress quantities and declares that when being at CS, the deviatoric and the hydrostatic
stress are linearly related through M, a constant dependent only on the material. The
second part of Eq. (3.3) dictates that the specific volume v, which is the volume occupied
by a unit volume of solid particles, depends uniquely on the hydrostatic pressure p at CS
and decreases linearly as the logarithm of the hydrostatic pressure increases, while the
sample always stays in CS. The two parts of Eq. (3.3) are qualitatively presented in Fig.
3.1.

The Critical State is not just a steady state that a granular material reaches under some
particular loading procedure, but is a general “base of reference” for this kind of material.
At any given soil sample, the question for the soil is whether it is “looser” or “denser” than
the Critical State. “Looser” is the condition in which, under deformation, the material will
eventually densify, its specific volume will decrease, i.e. decrease of the voids between
the unit volume of grains will occur till reaching CS, and is referred to as ‘Wet’ in Fig.
3.1(b). On the other hand, “denser” is the opposite state, in which the sample will

eventually dilate, i.e. the deformation will cause increase of specific volume till reaching
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CS, possibly preceded by a small contraction; this is the ‘Dry’ area of Fig. 3.1(b). It is now
clear that the Critical State is not merely a steady state, but a very important and powerful
concept that dictates the response of the soil. This response constitutes the basis for the
development of Critical State Theory (CST) or of the Critical State Soil Mechanics (CSSM)

framework, a major achievement in soil mechanics.

Deviator ;
stress Specific

1 volume

A

# Critical
—states

Critical

states
‘Dry’

(a) ~me- DrESSUre (b) - Dressure

Fig. 3.1. Critical State after Eq. (2.1): (a) deviatoric vs hydrostatic pressure and (b)
specific volume vs hydrostatic pressure (Schofield & Wroth, 1968 - Section 1.8, p. 12)

Another very common way to express CST is through the stress ratio and the void ratio;
this is the most usable form in geotechnics and geotechnical engineering. Stress ratio is
the ratio of the deviatoric stress over the hydrostatic stress; it is important to soil
materials, as they are significantly pressure-dependent, and this ratio normalizes each
stress condition with the important hydrostatic pressure. The void ratio is simply the
volume of the voids over the volume of the solid grain for a representative volume of the
granular medium, and is widely used in the place of the specific volume. Porosity, defined
as the volume of the voids over the total volume of the representative volume, can be used
interchangeably. All the volume quantities mentioned above are completely dependent

variables and their relations are summarized in Table 3.1.

Porosity N Void ratio € Specific volume V
Porosity N 1 e/(l+e) @-v)/v
Void ratio € n/(1—n) 1 v—1
Specific volume V 1/(1—n) 1+e 1

Volumetric strain

g, = _(Vﬁn _Vini)/vim (nini o nfin) / (1_nfin) (eini _efin)/(1+eini) (Vini _Vfin)/vini

Table 3.1. Relations between volumetric-type quantities.
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For the stress ratio and the void ratio parameters, Eq. (3.3) reads:
_ q =n =M: —p —p
77_;_775 — 4 e_ec_ec(p) (34)

Where 77 signifies the stress ratio, and 7, the Critical State ratio, which is by definition
equal to M. Void ratio (e) is equal to e, at CS; e_.(p) is used to underline that the CS void

ratio is only dependent on the hydrostatic pressure. Egs. (3.4) define a line in e-q-p space,
called the Critical State Line (CSL). Often, however, it is the projection of this line on the
e-p space, namely the second of Egs. (3.4), that is called the CSL; we will adhere to this
name here.

Egs. (3.1), (3.3) and (3.4) are written in a form based on p and g, the deviatoric and

hydrostatic stress. Initially, these parameters were only defined in classical triaxial space.

Nevertheless, the generalization from triaxial to multiaxial space can easily be made. For

example, in eq. (3.4) for multi-axial loading, one could substitute /(3/2)s:s for g in the
expression 77:g , where s is the deviatoric part of the stress tensor, and renders M a

function of the Lode angle determined by the shearing mode.
3.1.3. Critical State Theory in Experiments

The creation and foundation of CST has been based on experiments on reconstructed
Weald clay (Roscoe, Schofield & Wroth, 1958), where the phenomenon has been
systematically recorded. However, the CST, its principles and concepts, have then been
extended to all granular media, i.e. cohesive materials, such as clays and non-cohesive
materials, such as sands. Nevertheless, we must distinguish the results that will be
presented, as these two material types exhibit two distinct responses. They may both
come under the same CS framework, but the way they get there and the details are
profoundly different, due to their fundamental structural differences. This section does
not intend to give an extensive overview of the literature, but rather to briefly underline

in principle, the sound base of CST and its relation to experimental results.
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3.1.3.1. Critical State for Clays

Roscoe, Schofield & Roth (1968) gathered data for several drained and undrained triaxial
compression tests on reconstituted Weald clay. Additional results have been presented
in a concise way in Atkinson & Bransby (1978) and in Wood (1991). The data presented
in Fig. 3.2 are for undrained tests and in Fig. 3.3 for drained, as they appear in Wood
(1991), and support very well the Critical State Theory for clays. It is clear that during CS,
the relation between p and q is linear, and that the volumetric strain in CS is dependent
onlyon p.

During the triaxial experimental procedure, non-uniformities (such as shear bands) are
very likely to develop. Thus, for the data presented, results of samples that developed
such non-uniformities during loading, like heavy consolidated clays, were neglected; CS
is then obvious for the points of all the experiments considered. From these figures, one
can calculate the constants of Eq. (3.3) for this particular clay: M=0.872, I'=2.072 and
A =0.091. It is important to notice that the clay material reaches the same Critical State

under drained and undrained conditions.
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Fig. 3.2. Final points of triaxial undrained test on Weald clay (white circles are for
normally consolidated and black for overconsolidated samples) (a) deviatoric vs
hydrostatic pressure and (b) specific volume vs hydrostatic pressure (from Wood,

1991; after Roscoe et al,, 1958)
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Fig. 3.3. Final points of triaxial drained test on Weald clay (white circles are for
normally consolidated and black for overconsolidated samples) (a) deviatoric vs
hydrostatic pressure and (b) specific volume vs hydrostatic pressure (from Wood,

1991; after Roscoe et al., 1958)

3.1.3.2. Critical State for Sands

For non-cohesive soils, it is more difficult to describe a definite CS experimentally, due to
different failure modes, mainly shear bands, non-uniformities and instabilities during
their loading procedure. Nevertheless, efforts support that CS is most likely the
framework for these materials too. The steady state reached at large axial strains for a
non-cohesive granular medium, is independent of the initial density (or void ratio) as
shown in Fig. 3.4(a), for drained triaxial tests. When shear bands form, CS appears to be
reached inside the shear band (Fig, 3.4(b)) where the deformation is localized. This
implies that each material has a unique set of parameters that describe this state,
independently of its initial condition and the loading procedure.

In addition, this steady state works again as a borderline, which defines if the material
will dilate or compress. If the material is in denser state than the CS (‘Dry’), it tends to
increase its specific volume and dilate, while in looser conditions (‘Wet’) the opposite
happens. It is now obvious that this steady state observed for sands, presents exactly the
same properties as for clays, and is thus called Critical State. Experimental results, such
as those for Chattahoochee sand (Vesic & Clough, 1968) presented in Wood (1991) (Fig.
3.5) are difficult to obtain due to the problems mentioned above, but still strongly support

the CS concept.
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Fig. 3.4. (a) Specific volume vs shear strain for simple shear tests on 1mm diameter
steel balls with normal stress 138kPa (from Wood, 1991; after Wroth, 1958) and (b)
void ratio vs shear strain measured in shear band with different initial void ratio and
fabric anisotropy for 2D DEM results of direct shear and elongated particles (Fu &
Dafalias, 2011b)

Since this work focuses on the Critical State of sands, from this point on, the main focus
will be given only on the Critical State of non-cohesive granular materials. Nevertheless,
it is important to notice that CST is a unified theory for both clays and sands; although it
had been primarily developed for clays, nowadays it is broadly accepted and extremely

popular for sands as well.
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Fig. 3.5. End points of triaxial compression with constant mean effective stress (black
circle for dense and white for loose samples): (a) deviatoric vs hydrostatic pressure and
(b) specific volume vs hydrostatic pressure (Wood, 1991; data from Vesic & Clough,
1968)
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3.1.4. Critical State in constitutive modelling

Critical State Theory, except from its value in understanding the response of granular
materials as they approach CS failure, has been a very successful framework for
constitutive modelling. Initially, Schofield & Wroth (1968) used the CST as a framework
for a simple elastoplastic model named cam clay model. Roscoe & Burland (1968)
modified the yield surface of the cam clay model and created the modified cam clay. These
models have set a path for elastoplastic models within the CS framework.

Onwards, Critical State has been extremely popular and many models have been
developed in the field of geotechnics and geomechanics within the CS framework
throughout the years after its initial introduction (Scott, 1985; Gens and Potts, 1988;
Jefferies, 1993; Wheeler and Sivakumar, 1995; Yu, 1998; Li and Dafalias, 2000; Lade,
2005; Wan, Pinheiro & Guo, 2011; Li and Dafalias, 2012; Zhao and Guo, 2013; Gao et al.,
2014). For the past 50 years, soil constitutive modeling has flourished within CST, up to
the point that constitutive models which do not fall into this framework are difficult to be
accepted and are rarely used. Thus, CST is of great importance, not only for the
understanding of the physical phenomena of granular materials, but also for their

modeling and practical application.
3.1.5. Issues in Critical State Theory

As a theory-paradigm for the field, Critical State has attracted considerable criticism. It is
important to keep in mind that, at the time CST was developed, no such theory was in
place and the field of geomechanics was at its very preliminary stages. From that
perspective, it was good practice to make simplified assumptions - without
oversimplifying - given the restrictions in measurements and the limited amount of
knowledge and experimental results at the time. Until its introduction though, several
issues concerning CST have been raised, especially given that it is a theory initially based
mainly on experimental results, without strong theoretical proof. The two major issues
that have attracted research attention in recent years are the uniqueness of the Critical
State Line, and the necessary and sufficient conditions for reaching and maintaining CS
on it (Poulos, 1981; Chu, 1995; Riemer & Seed, 1997; Mooney, Finno & Viggiani, 1998; Li
& Dafalias, 2012; Zhao & Guo, 2013).
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3.1.5.1. Is Critical State Unique?

The uniqueness or not of CS is mostly attached to the CSLin e—p space, i.e. to the unique
value of void ratio (or specific volume) under a specific p, independently of the initial

state and loading procedure; it seems now generally accepted that critical stress state is
unique (e.g. Mooney et al., 1998). This problem has been researched, without a complete
and definite proof yet to be attained. Many practical problems limit laboratory results so
far: the development of shear bands, necking, and other non-uniformities, create a non-
homogenous condition, as a result of which CS cannot be attained at the whole sample,
and so only few specimens can truly reach CS. Varied and mixed boundary conditions
(rigid walls, flexible membranes) make the situation complex in analysis; triaxial
extension needs extremely large deformation to reach CS. All these complications
compose a very difficult environment to create a variety of samples and situations where
CS is measured in practice, and to result to a systematic analysis of this state.
Nevertheless, some laboratory results indicate that CSL could be dependent on factors
such as the stress path, the Lode angle, and the fabric of the samples (Vaid, Chung &
Kuerbis, 1990; Mooney et al., 1998; Zhao & Guo, 2013). That means that CS may be unique
only under restrictions, which would add a modification to the original CST or even some
extra variables to the Critical State equations.

Discrete Element Method (DEM) (Cundall & Strack, 1979) is a rather new, promising,
numerical tool that provides some answers in that vein. DEM will be discussed more in
the next chapters; at this point, it is enough to mention that this numerical tool can apply
many virtual loading conditions and give precise measurements in any area of the
samples used, so that practical problems of real experiments, such as the creation of shear
bands, could be overpassed. DEM research has already given convincing evidence of the
uniqueness of CSL and the parameters this involves (Rothenburg & Kruyt, 2004; Sitharam
& Vinod, 2008; Fu & Dafalias, 2011b; Yang & Luo, 2015; Yang & Wu, 2016).

3.1.5.2. Are Critical State conditions necessary and sufficient?

After presenting the principal concept of the CST, Schofield & Wroth (1968) describe in a
more precise way the Critical State behavior. In section 6.8, p. 104-105, the CS is defined:
“[...] ideal material that flows as a frictional fluid at constant specific volume, when and

only when, the effective spherical pressure p and axial-deviator stress q satisfy [...]”
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herein, the Eq. (3.4). This assumption clearly suggests that Eq. (3.4) describe conditions
necessary and sufficient (“when and only when”) to define the Critical State.

This assumption is obviously also connected with the issue of uniqueness described
above. The complete set of state variables that would precisely define the Critical State
would also define the necessary and sufficient conditions for it. These two issues,
although clearly related, are not the same problem; this difference may become apparent
when it comes to constitutive modelling. In constitutive modelling one can have several
CSLs depending on several parameters that could affect them. This means that multiple
CSLs exist depending on some parameter (in Dafalias, Papadimitriou & Li (2004), this
parameter was fabric). Although this perspective of CS does not provide uniqueness, the

conditions met for each case are necessary and sufficient to reach CS.

3.2. Anisotropic Critical State Theory (ACST)

One of the basic assumptions of CST, has been the fact that, Schofield & Wroth (1968), in
their effort to simplify their framework, have neglected the significance of the internal
texture of the soil. As they explicitly assumed: “We will be concerned with isotropic
mechanical properties of soil-material, particularly remoulded soil which lacks fabric.”
(Schofield & Wroth (1968) - Section 1.9, p. 14). This is represented in Eq. (3.4) by the fact
that only void ratio is used, but no fabric-related quantity. This particular assumption,
although it may have been reasonable or even necessary in order to build the paradigm
of CST at the time, has attracted constructive criticism (Li & Dafalias, 2012; Dafalias,
2016).

Until recently, it seemed unclear whether the assumption for an isotropic fabric in CS was
correct. Wood explicitly states (D.M. Wood, 2004 - section 2.6.1, p.86): “The exact nature
of the fabric of the soil at a critical state is not clear”. The isotropic nature of the fabric in
CS, gave plausible grounds for keeping Critical State independent of the fabric. Although
good reasons supported the anisotropic fabric in Critical State (Oda 1972a, 1972b), the
dispute had begun. One easily can question the validity of this CS assumption, given that
the soil response closely before reaching critical state has been repeatedly shown to be
highly anisotropic (Nakata et al. 1998; Yoshimine et al. 1998; Oda & Iwashita, 1999)
because of the fabric elements described in Chapter 2; thus, it would be unreasonable to

assume that by reaching CS this rather strong anisotropy disappears.
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During the last 20 years, several micro-structural pieces of evidence invariably show that
in CS conditions fabric is anisotropic, and furthermore, strongly anisotropic (e.g. Masson
& Martinez, 2001; Li & Li, 2009; Fu & Dafalias, 2011b). Hence, even though the
quantifying element of fabric may change, the principle that fabric is anisotropic seems
now evident. In contemporary research, it has become obvious that Critical State
possesses some dependence on fabric, an extra variable that emerges as a necessity to
this state. Thus, fabric actually seems of great importance for the CSSM framework; it has
been stated that such influence of fabric in CST would be very important: “The influence
of fabric on the anisotropic nature of Critical State and the uniqueness of CSL has
profound implications for the universally accepted CSSM theory” (Seed et al., 2003).
Furthermore, Li & Dafalias (2012) suggested that the fabric parameter was missing from
the classical CST and proposed an enriched theory that incorporates the fabric and its
anisotropic critical state condition. If fabric is indeed such a missing link, then the
classical CST conditions expressed from Eq. (3.4) would be rendered necessary but not
sufficient, and the CSL would not be unique but dependent on the fabric anisotropy.
Notice that the stress ratio remains independent of fabric anisotropy and only CSL seems
to be fabric-dependent, a conclusion that some existing research also supports (Alarcon
& Leonards, 1988; Dennis, 1988; DeGregorio, 1990; Mooney et al., 1998).

Thus, Li & Dafalias (2012) created the Anisotropic Critical State Theory (ACST), where
the fabric is an added state parameter. This theory was formulated for granular materials
as a general constitutive framework in a continuum approach, unrelated to any particular
model, and lies within the broader rate-independent elastoplasticity field, exactly in the
same spirit as the CST. At the core of ACST is fabric effect, which is expressed through the
Fabric Anisotropy Variable (FAV) defined as:

A=F:n=Fn;:n=FN (3.5)
where A is the FAV; Fis the deviatoric fabric tensor (see also Chapter 2) that can be
analyzed in norm (F) and a unit-norm direction tensor n;; n is the unit-norm loading

direction tensor; scalar N =n, :n measures the relative orientation of F and n with the

colon symbol (:) implying the trace of the product of the two adjacent tensors. In principle
and for our purposes, the loading direction n is chosen along the deviatoric plastic strain
rate tensor; this choice eliminates the need to associate it with specific models with yield

and loading surfaces. Thus, the FAV quantifies fabric in terms of intensity and in terms of
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its relative orientation with respect to the loading. The fabric intensity F is defined as
the norm of the fabric tensor, normalized with it CS value. The evolution of F can be
monitored in DEM based on its definition (see Chapter 2), while a continuum rate
equation of its evolution has been suggested in Li and Dafalias (2012) motivated by DEM
observations. If Fis going to be used as an internal dissipative evolving variable in a
continuum theory, it must be referred to a per unit volume measure to accommodate
thermodynamic dissipation requirements, as elaborated extensively in a recent work by Li and
Dafalias (2015).

Previous DEM studies (Liand Li, 2009; Fu and Dafalias, 2011b) have indicated that, as the

fabric tensor evolves during plastic deformation, its direction n, tends to align with n
and becomes identical to it at CS (if it is not already equal to it), while the norm F,
normalized with regards to the Lode angle 8, of F, defined by cos36, = x/gtrni, tends
towards 1 at CS. Consequently at CS one has N=N_,=n,:n=n:n=1 (given the unit-
norm property of both n,; and n), F=1 and F=F. =n; hence, based on the definition
of A in Eq. (3.5), the third CS condition A=A, =1 follows. Thus, one can now write the

three necessary and sufficient conditions of ACST for reaching and maintaining CS as:
n=n.=(q/p).=M; e=e =¢(p); A=A =1 (3.6)

The usefulness of ACST as a framework for constitutive modeling requires a few extra
steps that address the dilatancy of granular assemblies accounting for the effect of fabric

anisotropy. The state parameter y=e—e,_, introduced by Been & Jefferies (1985),
determines the contracting (y >0) or dilating ( <0) state of a sample under shear, but

does not account for fabric effects, as shown in a series of experiments by Yoshimine et al.
(1998) (see also Chapter 2, section 1.2). The ACST introduces a very simple extension to the

notion of the state parameter  in order to incorporate the effect of fabric, by defining a
Dilatancy State Parameter (DSP) ¢ intermsof i and A as:

F=e—e,=y—¢,(e,p)(A-1) (3.7)
with é,(e,p) an appropriate positive scalar-valued function of e, p (in the simplest case
a constant). The £ determines in e —p space the so-called Dilatancy State Line (DSL), with
e, the void ratio on it at the current p. The ¢ delineates between contractive (¢ >0) and

dilative (£ < 0) states under shear, as i did in classical CST.AtCS A=A, =1 according to the
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third of Egs. (3.6), and it follows from Eq. (3.7) that { =y, e, =e, and DSL = CSL. In essence,

¢ substitutes for y in all constitutive features that depend on y/, and together with A

incorporate, in a simple and straightforward way, the effect of fabric anisotropy in CST. Use of
ACST as a constitutive framework has been shown to produce very good results in simulating
granular response with strong fabric anisotropy (Li and Dafalias, 2012; Gao et al, 2014;

Papadimitriou et al, 2015).
3.3. CST completeness and the validity of ACST

While the notion of the FAV A has been very useful in constitutive modeling, to prove its
necessity as a third CS condition entering Egs. (3.6) one must be able to show that if the
first two classical conditions are satisfied but not the third one, then CS cannot be reached
and maintained. So far, by performing DEM simulations it has been observed that, when

the first two conditions were met, the third condition A=A4 =1 was always met

concurrently and CS occurred (Fu and Dafalias, 2011b); and it had not been possible to
generate a case where the first two conditions were reached without the third one also
being reached simultaneously. Thus, one could conclude that the third condition is only a
convenient supplement, which happens concurrently with the first two conditions at CS,
but cannot be raised to the status of a necessary and independent third condition for CS
to occur.

However, there is a way to counter argue this conclusion. So far, the DEM simulations
started from an initial state where none of the three conditions were satisfied, while when
CS was reached, all three were concurrently met. However, one can consider the exact
opposite scheme of action in terms of initial state, namely starting from a CS, where all
three conditions are satisfied, and modifying only the third condition so that it is violated
in order to see if CS is maintained. If it is maintained, then the third condition is not a
necessary addition to the first two, but only a convenient supplement in some cases. On
the other hand, if CS is not maintained, then CST is incomplete and an extra condition
must be added as a necessary, independent condition for CS, rendering all three
conditions necessary and sufficient.

This being stated, the following thought experiment and related question is worth
considering: a soil sample is loaded in triaxial compression until it reaches Critical State

(CS), namely the state at which continuous deviatoric strain develops under fixed stresses
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with no volume change. While being at CS, stress Principal Axes (PA) rotation is imposed,
with the principal stress values kept fixed. The question that arises is: will the sample
continue being at CS or not?

The thought experiment proposed, where the PA of stress rotate at CS while keeping the
stress principal values constant, is exactly the experiment needed to address the issues
raised in the preceding paragraph. The original question was whether the sample would
continue being at CS or not when such rotation is imposed. Since the critical stress ratio

condition (77 =7, =M ) will not change for fixed principal stress values, and the void ratio
is already at critical state value (e=e_) for the given p that also remains same, if the

classical CST conditions given by Egs. (3.4) are sufficient for CS, then the sample must
remain at CS during the rotation of stress PA and, accordingly, no void ratio change must
be observed.

However, if one measures a void ratio change when stress PA rotation initiates, this
means that Eqgs. (3.4) are necessary but not sufficient to maintain CS and, therefore,
classical CST is incomplete. In this case, something else must be happening during this
process that moves the sample away from CS against the premises of classical CST.
According to ACST this “something else” is related to the violation of the third, fabric-

related, condition A=A, =1 in Eqgs (3.6); how it is related, will be explained after the

results of the stress PA rotation at CS are presented. Rotations of PA of stress and related
observations on deformation characteristics have been presented before using DEM (e.g.
Li and Yu, 2010; Tong et al, 2014a), but the distinguishing feature of the present work is
that such rotation initiates at CS, a numerical experiment never attempted before.

The foregoing analysis on the issue of completeness or not of CST, as well as, the
suggestion for a DEM experiment with rotation of the PA of stress at CS to confirm or deny
such completeness and to validate the necessity for introducing ACST, were recently
elaborated on a hypothetical basis by Dafalias (2016); one of the main objectives of the

present work is the realization of this hypothetical proposal.
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Chapter 4: 2D DEM virtual experiments - Proof of
incompleteness of Critical State Theory and its

Remedy

4.1. Introduction

Following the previous chapter's analysis on the incompleteness of Critical State Theory
(CST), the importance of the proposed DEM experiment becomes evident. A question
arises as to why such results had not yet appeared in the literature. Though physical
experiments with stress principal axes rotation have been conducted (e.g. Miura et al.,
1986; Tong et al., 2010), none has been presented initiating at Critical State (CS). In
addition, though few 2D DEM virtual experiments do exist in stress PA rotation (Li & Yu,
2010; Tong et al, 2014a; Fu & Dafalias, 2015), there exist none in the CS. This happens
mainly due to systematic issues that arise when a soil sample is under CS conditions; as
suggested in Chapter 3, during CS the stress ratio and the volumetric strain are constant
while the deviatoric strain is the only one evolving. That means that, by definition the
sample is uncontrollable in terms of stress, as a slight increase would theoretically create
infinite deviatoric strain. Furthermore, the successful access of CS is difficult, as discussed
before, due to the occurrence of shear bands and other non-uniformities.

Consider that the successful realization of the described experimental procedures means
that, not only the sample should reach CS, but also it should be in a condition to be loaded
with stress PA rotation. The procedure presented below has been a systematic try to solve
these problems and access the experiment in pursue. In succeeding the two phases
(biaxial loading and stress PA rotation) another, third phase has been added for reasons
that will become clear in the sequel. For the 2D setting, where the numerical experiments
of this chapter will take place, only two principal stress and strain components exist,

o,(i=1,2) and ¢,(i=1,2); the biaxial counterparts of the originally defined in triaxial
variables p (hydrostatic pressure), g (deviatoric stress), ¢, (volumetric strain) and &,
(deviatoric strain) are defined as p=1/2(o,+0,), q=0,-0, , & =¢ +¢&, and
&, =1/2(g1 —52).

B-47



Chapter 4: 2D DEM virtual experiments — Proof of incompleteness of Critical State Theory and its Remedy

4.2. Implementation issues

The 2D DEM analysis was executed using PFC 2D v4.0© (Itasca, 2013; Cundall and Strack,
1979). The virtual experiment presented herein employed circular particles (disks),
whose properties are outlined in Table 4.1. The local damping ratio and the loading rate
were determined through a sensitivity analysis to ensure quasi-static conditions and
negligible effects on the final results. In particular, the value of the damping ratio 0.7 of
type local, given in Table 4.1, is typical for biaxial experiments, in order to sufficiently
dissipate the energy of the system, whereas the loading rate was controlled using two
different approaches: (1) the inertial number, (Radjai & Dubois, 2011; Szarf et al, 2011),
having a maximum value in the order of 10-5, and (2) the maximum unbalanced force ratio
(defined as the maximum ratio of mean unbalanced force over the mean contact force)
measured in the order of 10-# (Ai et al, 2013). Calculations were carried within a circular
Representative Volume (RV), shown in black in Fig. 4.1(a), while circular volumes
concentric with the RV and shown with light gray shade, are used to monitor and validate
the results inside the main RV and, thus, ensure homogeneity of the samples.
Compressive stresses and strains are considered positive according to the usual soil

mechanics convention.

.
®) \\&AJ/

Fig. 4.1. (a) Configuration of particles for initially circular sample, its REV in black and

(@)

concentric circles in gray where results were monitored (b) Velocity field applied at the

boundary particles to achieve the stress changes Ao, and Ao, as shown

Common practice for boundary conditions in 2D virtual DEM experiments employs either

rigid walls for strain-controlled experiments (e.g. Li & Li, 2009), or particle-defined

B-48



Chapter 4: 2D DEM virtual experiments — Proof of incompleteness of Critical State Theory and its Remedy

membranes simulating flexible walls (e.g. Fu & Dafalias, 2015). However, here the strain-
controlled boundary of the sample is formed using boundary particles on which a velocity
field is applied using a servomechanism (e.g. Calvetti, 2008; Huang et al., 2014). This
servomechanism controls the convergence of the stress state in the RV to a specified
stress state. Fig. 4.1(b) illustrates the application of a velocity field shown by vectors
applied on the boundary particles of the sample, to implement a desired loading that

consists of a vertical compressive stress increase Ao, (>0) and a horizontal stress
decrease Ao, (<0); the directions of velocities vary progressively from vertical to

horizontal in order to reflect the foregoing loading.

Number of grains 20,000
Average grain radius (m) 0.001
coefficient of uniformity (Cu = deo/d10); rmin (m); rmax (m) | 1.8; 0.0005; 0.0015
Out of plane length of the grain assembly (t) (m) 1
Radius of circular specimen (m) 0.165
I[sotropic and mean pressure (kPa) 200
k. (N/m) 5x108
k, /k, (N/m) 1
Surface friction (disk-disk; disk-boundary disk) 0.5; 0.0
Damping ratio 0.7

Table 4.1 Particles properties for 2D DEM experiments

The use of the boundary particles allows imposing stress PA rotation on a virtual DEM
sample by directly rotating the applied velocity field. This choice facilitates the
development of stress PA rotation at a high stress ratio, particularly when reaching CS.
Based on theoretical considerations stress-controlled methods (e.g. Tong et al., 2014a)
can hardly control the deformation of the sample when reaching CS; additionally, strain-
controlled boundaries using rectangular or polygonal-shaped rigid elastic walls (e.g. Li et
al, 2013) may induce arching when significant strains of the samples are considered.

The strain rate calculation (actually the rate of deformation as the symmetric part of the

velocity gradient) is based on a best-fit approach already implemented in PFC 2D v.4.0,
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which provides the strain rate tensor at every time-step of the simulation inside the RV
(Liao, 1997; ITASCA, 2008). As already stated, the stress PA rotation is achieved by
adjusting iteratively a velocity field applied to the boundary particles, for the resulting
stress state in the RV to converge with the desired stress state with rotated PA. This
convergence process is repeated for each increment of the stress PA rotation, lasts
multiple time-steps and induces variability (of numerical nature) to the related strain
rate values. Hence, a proper averaging procedure over multiple time-steps (during each
convergence process) is considered to obtain the strain rate tensor.

The randomness of the grains’ creation inside the initially circular sample led to an
initially isotropic fabric. This isotropic fabric was sustained to a large extend, after
isotropic compression with mean stress p=200kPa was applied to the virtual soil
specimen. Subsequently a three-phase loading sequence was applied to the sample

whose response is described in the following.

4.3. Macroscopic results

4.3.1. Phase 1: Biaxial loading till CS

Biaxial loading was applied by increasing the compressive major principal stress ¢, along
the vertical y-axis and decreasing by an equal amount the minor principal stress o, along
the horizontal x-axis, keeping p constant; hence, with reference to Fig. 4.1(b) one has
Ao, =-Ac,>0. Because the direction of the principal stresses remained constant

throughout the test, a velocity field with fixed directions was applied at the boundary
particles. The macroscopic response of the initially circular sample is presented in Figs.
4.2(a and b) with black lines, and exhibits a typical stress-strain and volumetric response
for initially loose granular samples. The virtual sample reached CS at around 10% of axial
(compressive) strain along the y-axis, and calculations continued all the way to 30%

strain, while the stress and void ratios maintained their CS values of 7=7$7_=M~0.57
and e=e,=¢,(200kPa)~0.23. In order to avoid bias due to initial sample shape and

boundary conditions, the same kind of loading was also applied to an elliptical sample
with boundary particles, and a rectangular sample with rigid walls; both samples with

ratio of major (vertical) to minor (horizontal) axis equal to 2, using the same parameters
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of Table 4.1. The results are included in Figs. 4.2(a and b) as lines with different shades

of gray and show similar response, thus, validating non-existence of bias.
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[ (a 3 b
X 0.24 (b)
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P boundary particles o o2k boundary particles
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Fig. 4.2. Effect of initial geometry and boundary conditions on the macroscopic

response of phase 1 biaxial tests on an initially loose sample: (a) stress ratio 77 and (b)

void ratio e, versus vertical axial strain ¢

axial

4.3.2. Phase 2: Stress PA rotation

Rotation of stress principal axes (PA) keeping the principal stress values o, o, constant

was imposed on the specimen, when it reached 20% axial strain during Phase 1 loading,

while being undoubtedly at critical state (CS). The stress PA rotation is quantified by the
varying angle € of o, axis with respect to the vertical y-axis, which increases by 180°
for each full cycle of rotation. Fig. 4.3 shows schematically the stress path followed during
the stress PA rotation in the o, versus (o, — 0o, )/2 stress space, which is tangential to
the circumference of a circle with constant radius equal to (o, —o,) /2. Since the sample
is at CS where q/p=M , it follows that the radius also equals (1/2)Mp (recall definition

of g, p in 2D after section 4.1). The angle of the radius with the (o, —0,,)/2 axis equals

26._.

The small inserts show the orientation of the stress components in real space. The DEM
servomechanism defines the appropriate rotating velocity field applied at the boundary

particles, to obtain the stress PA rotation by controlling the periodical variation of the
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stress components o,,, 0,0, as shown in Fig. 4.4(a), with the normal stresses at double
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Fig. 4.3. lllustration of stress path in the shown stress space for rotation of stress PA

during phase 2 loading and schematic presentation of stress components in real space

Fig. 4.4(b) is a key figure; it shows a reduction of the void ratio and associated volumetric
strain during the stress PA rotation. The void ratio decreased continuously, cycle after

cycle from its critical state value e =0.23, to a value close to e=0.188, which

corresponds to a volumetric contraction strain of 3.4% from initiation of PA rotation, at
a decreasing rate heading towards stabilization after 15 cycles. This result embodies a
most important conclusion: the initial reduction of void ratio from its CS value at the very
start of the PA rotation is the key observation that invalidates the completeness of classical
CST conditions in Eq. (3.4). The reason why this is the case was fully explained at the end
of Chapter 3, particularly in the subsection entitled “3.3 CST completeness and the
validity of ACST”, and will not be repeated here. It suffices to say that at the end of phase
1 loading where CS was reached and just before initiation of the stress PA rotation with
fixed principal stress values, the two CS conditions of Eq. (3.4) were satisfied, and yet CS
was abandoned at the initiation of the rotation. It will be shown that the new ACST can

explain the foregoing response, based on the third CS condition on fabric of Eq. (3.6).
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Fig. 4.4. (a) Variation of stress components and (b) Variation of void ratio and

volumetric strain, with cycles of stress PA rotation during phase 2 loading

4.3.3. Phase 3: Biaxial loading after stress PA rotation and overview

of all phases

Phase 3 loading imposed biaxial loading as in phase 1, but “rotated” by an angle 6_of o,

axis with respect to the vertical y-axis, where the preceding stress PA rotation stopped at
the end of phase 2. The purpose of this radial loading is to investigate what happens with
the stress ratio and the void ratio, which was reduced during the preceding stress PA
rotation, and to examine if CS is reached again and how. To examine the effect of the angle
of the preceding rotation on the response, two different radial loading paths were

performed at angles 6_ of 210° (30° after 1 full circle) and 0° after 10 full cycles (of 180°
each).

With the objective of having an overview of the response from the beginning, the results
of phase 3 loading will be presented together with the results of the previous two phases

in common plots of Figs. 4.5 and 4.6 for the aforementioned two choices of &,
respectively. For a unified representation of all test results, the equivalent cumulative

deviatoric strain measure e, =J‘4/(1/2)e'1.je'ijdt, with e; the deviatoric strain in two

dimensions, is used as a reference strain for the whole experiment, initiating after the

application of isotropic compression p=200kPa. In all these plots, the part for phase 1

will be denoted by light gray, for phase 2 by black and for phase 3 by darker gray.
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Fig. 4.5. Plots during the full three-phase

loading sequence with phase 3 at
6 =210°: (a) the stress path (b) the
stress ratio q/pversus e, (c) the void

ratio e versus e,
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Recall that the initiation of phase 2 took place at an intermediate stage of phase 1 at axial

strain ¢

axial

=20%; thus, the initiation points of the black plots of phase 2 will appear at

such intermediate points of the light gray color plots of phase 1, accounting for the fact

e,, substitutes for ¢,,, used in phase 1. Phase 3 darker-gray plots will continue directly

after the black plots of phase 2.

Figs. 4.5(a) and 4.6(a) show the stress path in the o, versus (o, — o, )/2 stress space as

presented in Fig. 4.3 during all three phases, the third one for 6 =210° and 0° (after 10

cycles), respectively. Recall that at CS the radius of the circular stress path equals
(1/2)Mp; the DEM calculation of the critical stress ratio yields (q/p). =7, =M =0.57,
thus, with p=200kPa the value of the radius is 57kPa. The light-gray radius, black
circumference and gray line radial segments outwards the circumference, as well as
corresponding cluster of points at CS, vividly represent the stress history during each one
of the three phases, correspondingly. The outwards radial segments (imperceptible in
Fig. 4.5(a) but clearly visible in Fig. 4.6(a)) describe the increase of stress ratio at the
initiation of phase 3, as clearly seen in the subsequent Figs. 4.5(b) and 4.6(b). Fluctuations
in regard to shapes of line segments and circumference are due to numerical effects of
the servomechanism, which controls stress evolution via velocity field on the boundary
particles.

Figs. 4.5(b) and 4.6(b) show the variation of stress ratio 7=q / p with e, , with expected

eq
fluctuations inherent to DEM, during all three phases (large-scale difference in the
horizontal e, axis). The overlapping of the black lines with the light gray ones reflects
the aforementioned fact that phase 2 (black lines) begun at an intermediate point of
phase 1 (light-gray lines). Regardless of the 6_ value at the end of phase 2 loading, the
stress ratio 77 is equal to its critical state value M, but immediately upon initiation of
phase 3 loading there is an increase of 17 above M (beginning of gray lines in Figs. 4.5(b)
and 4.6(b)), with such an increase being significantly more pronounced after the more
extensive densification in the case of 8_=0° following 10 cycles, and then falls back and
stays at =M.

Finally, Figs. 4.5(c) and 4.6(c) present the variation of the void ratio during the full

loading sequence for the choices of angle 6, equal to 210° and 0° following 10 cycles,

B-55



Chapter 4: 2D DEM virtual experiments — Proof of incompleteness of Critical State Theory and its Remedy

respectively. The main observation is again the reduction of the void ratio during stress
PA rotation shown by the black lines, quite more pronounced in Fig. 4.6(c) than 4.5(c). In
particular, at the very beginning of phase 2 the same argument used in conjunction with
Fig. 4.4(b), apply to deny completeness of classical CS conditions of Eq. (3.4). One very
interesting new piece of information is provided by phase 3 loading: the void ratio
rebounds to its critical state value and stays there, i.e. the volume reduction observed
during the preceding stress PA rotation is reversed in full, and this happens regardless of

the preceding cycles, the associated values of ¢, and the resulted e, ; in conjunction with

n=M this implies that CS has been restored.

Fig. 4.7. Sample with boundary particles and contact forces at (a) end of isotropic

compression; (b) end of Phase 1 (sample at CS); (c) Phase 2 after

stress PA rotation € =90°; (d) Phase 3 for stress PA rotation 6 =210°

Finally, no shear bands or other inhomogeneity were observed for all samples and
loading procedures in this work. Fig. 4.7 presents the deformed samples and the contact
forces in specific loading instances: (1) the end of isotropic compression [Fig. 4.7(a)], (2)

the end of Phase 1 when the sample is at CS [Fig. 4.7(b)], (3) during Phase 2 and in
particular for 8, =90° [Fig. 7(c)], and (4) during Phase 3 at 6 =120° [Fig. 4.7(d)]; the
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thickness of the line segments along contact forces corresponds, as usual, to the
magnitude of those forces, and the same scale is used in all subfigures. The observed
spatial distribution of the contact forces’ network attests to the homogeneity of stresses

in all loading phases.
4.4. Fabric evolution during the 2D DEM experiment

So far, the results of the DEM experiment proved the incompleteness of classical CST, by
showing the insufficiency of the two classical CS conditions of Egs. (3.4) to maintain CS.
It is important to propose an alternative theory that will be complete and able to explain
and incorporate such results. As already mentioned this alternative theory appears to be
the ACST by Li and Dafalias (2012) outlined earlier, and the novel element of its
foundation is the role of fabric at CS. Thus, the evolution of the fabric and quantities
relevant to ACST during the foregoing experiment will be briefly presented in this section
and illustrated in common plots for all three phases of loading following the same color
scheme of light-gray, black and darker-gray for phases 1, 2, and 3, correspondingly. For
clarity, the plots for phase 1 will be shown till 20% axial strain when the transition to
phase 2 takes place, unlike in previous figures where the phase 1 plots continued all the

way to 30% strain.
4.4.1. Contact normal fabric

The fabric tensor F is firstly calculated by Eq. (2.6), for contact normal fabric. The F will

be quantified by two entities: its norm F given by
F=tF = V2|F|=+2|F,|=(1/V2)|F,~F,| and the stress-fabric angle lag 6,6,
measuring the difference of the angle 8, of its eigenvector with the major principal value
F,, from the angle 6 of the o, axis (see Fig. 4.3), with both angles in reference to the

vertical y-axis. The loading direction n has been defined after Eq. (3.5).

Figs. 4.8(a) and 4.9(a) show the plots of F and €, —6, during all three phases, the third

one at 8, =210° and 0° (after 10 cycles), respectively. The F increases from zero to its
CS value F, =1 during phase 1 as fabric anisotropy develops, stays equal to 1 during

phase 2 (within the expected DEM fluctuations) despite the fact the material abandons
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CS as shown in Figs. 4.5(c) and 4.6(c) by the reduction of void ratio from its CS value, and
then after a rather dramatic initial increase above 1 at the initiation of phase 3, it falls

back to its CS value F, =1. Just a reminder that the value of F is normalized by its CS

value, that is why F, =1 its actual calculated value at CSis F, =0.085.
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Fig. 4.8. Plots of contact normal fabric entities during the full three-phase loading

sequence with phase 3atf =210°: (a) Fand 6, -6, (b)) A=Fn,:n and N=n,:n

On the same figures the @ -6, remains at an average value of 0° during the biaxial

loadings of phases 1 and 3; during phase 1 there are some fluctuations between —3° and

3° because the sample is quite loose and has a more unstable evolving granular structure,

while during phase 3 _—6, is almost zero with no fluctuations (denser sample). During

phase 2 the 7 fluctuates between 3° and 8° or both cases of @_; its increase from M (on

average during phase 1) occurs by a rather fast transition within the first quarter of the
first cycle of phase 2 (Fig. 4.10a), and so does its reversal back to 0° at the transition from
phase 2 to 3. The foregoing discussion shows that the PA of the fabric tensor are coaxial
with the PA of the stress tensor during phases 1 and 3, while during phase 2 the two pairs
of PA rotate together, with the PA of fabric following those of stress with a phase lag of
about 8, —6, =5° on average.

While the PA of stress can change abruptly by the investigator, those of fabric tensor
evolve progressively since the directions of inter-granular normal vectors cannot change

abruptly; here, however, the stress direction does not change abruptly but progressively
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when the PA begin to rotate from their orientation at the end of phase 1, and they are
followed by the PA of fabric tensor with a constant phase lag on average. Similar results
for stress and fabric PA rotation have been presented in the literature but not initiating
at CS, such initiation being the most important differentiating feature the present work.

Particularly in Li & Yu (2010) and Fu & Dafalias (2015) the fabric anisotropy intensity,

defined by «, =2F, remains approximately fixed during the rotation, while 6 -6,

fluctuates from —4° to 8° and from 5° to 8° for the foregoing two references,

respectively, very close to the present findings.
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Fig. 4.9. Plots of contact normal fabric entities during the full three-phase loading
sequence with phase 3 at 8, =0° after 10 cycles: (a) Fand 8, -6, (b) A=Fn, :n and

N=n,:n

Fig. 4.8(b) and 4.9(b) show the plots of N and A during all three phases, the third one at

6_=210° and 0° (after 10 cycles), respectively. During phases 1 and 3 N =1,while
during phase 2, N fluctuates around 0.8. Based on Eq. (3.5) one has N=n, :n=cos2¢
with ¢ =6 —6, the angle between the directions of n and F (via n, ), expressed by the
difference of the angles €, and 6, of their major PA with respect to the vertical y-axis.
Therefore 6, — 8, =(1/2)cos™ N whichyields 8, —6, =0 for N=1 during phases 1 and
3 implying coaxiality of Fand n, and 8,—6, =18° for N=0.8, approximately, during

phase 2, implying the PA of F follow by an angle lag of 18° those of n during the rotation
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of the PA of stress. Recalling that during phase 2 one has 8, -6, =5" on average, it
follows that 6, —8_=18° -5°=13°, i.e. the PA of stress follow by an angle lag of about
13° the PA of n during the rotation of the former. In summary during phases 1 and 3 the
PA of stress, Fand n are all coaxial, with fast transition to and from phase 2 (Fig 4.10b)
during which the PA of F follow the PA of stress by an angle lag of 5°, while the PA of

stress in turn follow the PA of n by an angle lag of 13°, as all three pairs of PA rotate

simultaneously.
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Fig. 4.10. The first cycle of Phase 2, showing the fast transition from Phase 1 during the

first quarter; Plots of fabric entities: (a) Fand 8 -6, ,(b)A=Fn,:n and N=n,:n

Based on the preceding summary, the FAV A=A =1, on average, at the end of phases 1

and 3, where CS is established since the critical stress ratio and void ratio are reached as
seen in Figs. 4.5(b and c), 4.6(b and c). During phase 2 one has A=0.8<1 for both Fig.
4.8(b) and 4.9(b), while during the first part of phase 3 A=1.1>1for Fig. 4.8(b), and
A=1.25>1 for Fig. 4.9(b), on average. Since A=FN from Eq. (3.5), the plot of A is very
close to N when F~=1 on average at the end of phase 1, during phase 2 and finally
towards the end of phase 3. These observations about the values of A and F during the
three-phase loading will be instrumental in interpreting the response based on the

premises of ACST in the sequel.
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4.4.1. Void scan line fabric

The same fabric analysis has been conducted for the void fabric as for the contact normal
fabric. Both equations defined in Chapter 2 for the scan line void fabric have been used
for the quantification of void fabric; Eq. (2.9) for the modified classical scan line and Eq.
(2.10) with the novel squared length scan line tensor. For both cases the “cut off” has been
defined as the minimum radius of the smallest grain for the uniform distribution of the
grains. The results are presented in the exact same form as for the contact normal fabric

in Figs. 410 and 4.11, for F and 6 —6,, and N and A during all three phases,

respectively, the third one only at €_=0° (after 10 cycles). It appears that qualitatively,

the use of the void fabric in lieu of the contact normal, justifies a similar conclusion. In
general, the response of the void fabric is the same as that of the contact normal, but the
scan line void fabric presents, in principle, more fluctuations. This observation could be
expected given the completely different definitional approach between, on the one hand,
the extremely accurate definition of contact normal fabric in DEM, and, the more “rough”
and experimental-type definition of the scan line void fabric on the other.

In Figs 4.11(a) and 4.12(a) the norm of the fabric tensor F' appears to be constant, on
average, as is the contact normal fabric norm, though with significant fluctuations around
its average value. Still, there is no tendency for the norm to increase or decrease. In

addition, the difference of the fabric angle with respect to the stress principal angle
6_—06, has a change from 8° to 20° for classical scan line and 0° to 15° for the squared

scan line. This result, including the aforementioned fluctuations, reveals that the void
fabric rotates with more delay than the contact normal fabric. This reveals an expected

feature of the void fabric; the contact normal vectors, as they follow the evolution of
stresses very closely, have a slight delay from the stresses (5° on average) while the void

fabric delays even more (12° for the classical scan line and 8° for the squared length).
Voids need more time to evolve after the contact normal vectors have evolved, given that
they need the grains to rotate and change position. This could be considered an advantage
of the scan line method in properly quantifying the voids, as contact-based void fabric
tensors would probably provide an evolution more similar to the contact normal fabric

(see also Fu & Dafalias, 2015).
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Fig. 4.11. Plots of fabric entities during the full three-phase loading sequence, for scan
line void fabric, with phase 3 at 8, =0° after 10 cycles: (a) Fand 8, -6, (b) A=Fn, :n

and N=n,:n

In Figs 4.11(b) and 4.12(b) the evolution of the N leads to the same conclusions, i.e. the
greater delay of the void fabric, this time with respect to the strain rate, along with greater
fluctuations than the contact normal fabric. In addition, the evolution of A supports the
same comments as in the prequel for the contact normal fabric. In summary, the scan line
void fabric supports the qualitative results of the contact normal fabric and could be used
interchangeably in the foregoing interpretation of the results.

Closing this section, it should be mentioned that, in order to exclude bias of the results
due to various levels of pressure and strain at the end of phase 1, or due to the initial
circular shape of the sample, the same numerical experiment was performed for different

p values on circular samples and after axial strains of 4%, 8% and 13% for phase 1

(different stress ratio), and on elliptical samples after axial strains of 15%, 17%, 19% and
20% for phase 1 (again different stress ratio). With small variations, the results were the

same as the ones for circular sample at p=200kPa after axial strain of 20% before the

initiation of phase 2.
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Fig. 4.12. Plots of fabric entities during the full three-phase loading sequence, for

squared scan line void fabric, with phase 3 at@_ =0° after 10 cycles: (a) Fand 6 -0, (b)

A=Fn,:n and N=n,:n

4.5. Explanation of DEM experiment results by ACST

The foregoing experimental-numerical DEM results on the reduction of void ratio at the
initiation of the stress PA rotation, while classical CS conditions expressed by Egs. (3.4)
were satisfied, constitute a clear counterexample to their completeness, and show that
classical CS conditions may be necessary but not sufficient to maintain CS. However, it is
important, not only to conclude that CST is incomplete, but to also see if the proposed
ACST can explain these results during phase 2, as well as, the additional ones during
phases 1 and 3. The task of the present section is to argue that this is indeed the case.

In very simple terms the essence of ACST is, on one hand, the introduction of the third condition

in Egs. (3.6) (i.e. the satisfaction of A=A =1 by the FAV A) and on the other hand the
definition of the DSP ¢ interms of A in Eq. (3.7) as the quantity that signifies dilative response
if negative, and contractive if positive. In other words, the ¢ in ACST plays the role that the
state parameter i played in CST, and brings the effect of fabric anisotropy via A into dilation.

Therefore, it was suggested that a constitutive model constructed within the framework of CST,

can be incorporated within ACST, simply by replacing ¢ for v wherever the latter appeared

in the model.

Such a constitutive model with explicit dependence on y was introduced by Manzari and
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Dafalias (1997), and modified by Li and Dafalias (2000) and Dafalias and Manzari (2004).
Restricting description to triaxial space for simplicity (there is of course generalization to
multiaxial space in the foregoing references), the dilatancy D (ratio of plastic volumetric to

plastic deviatoric strain rate) and plastic modulus K, were given by:
D=d(M‘ -n) (4.1a)

K,=h(M"-n) (4.1b)

with d and h positive model parameters and where the dilatancy stress ratio M* (better
known as the phase transformation line) and the bounding or peak stress-ratio M
depend on y according to M?=Me™ and M"=Me™, respectively, with m and n
positive model constants; at CS when y =0 it follows that M?=M" =M. As mentioned
above these constitutive features that satisfy CST as functions of /, can instead satisfy
ACST by simply substituting ¢ for i/ and obtaining:

M =Me™ (4.2a)

M’ =Me™ > (4.2 b)
with dilatancy D and plastic modulus K, given always by Egs. (4.1). One key observation
is that by introducing ¢ into Eqgs. (4.1a) and (4.2b), one takes the bold step of introducing

fabric anisotropy via A (see eq. (3.7)) into dilatancy and hardening response, a step that
has been shown to be of great simulative value. In Eq. (4.2b) a small modification was made

compared to the suggestion in Li and Dafalias (2012), namely the <—{ > was used instead of
—¢ in the expression for M, following the original proposition in Manzari and Dafalias

(1997) to use < —y > instead of —y for M”, thus, always maintaining M” > M for any sign of
¢ in Eq. (4.2b) based on the action of the Macaulay brackets < >; the reason for this
modification will become evident in the sequel.

The best way to confirm that ACST can predict the response during the 3-phase loading
sequence is to relate such response for the two choices of 6_ as illustrated in Figs. 4.5 and 4.6
for the stress-strain relations, to the fabric evolution shown in Figs. 4.8 and 4.9, respectively,
via the constitutive equations of ACST. It will be seen that Egs. 3.7, 4.1 and 4.2 sulffice to explain
the observed response during the 3-phase loading within ACST. Please note the very large

difference in the scale of the e,, on the horizontal axes for the two choices of 6, that has a
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strong effect on the way plots appear. To avoid repetition, the previously presented

descriptions of Figs. 4.5, 4.6, 4.8 and 4.9 will be considered known.
4.5.1. Phase 1

During phase 1 loading of the rather loose sample, there is coaxiality of stress, F and n, thus

N=n,:n=1, and simultaneously F and A progressively approach their CS values of 1
as n— M. It follows from Eq. (3.7) that eventually { =y =0, therefore, Egs. (4.2) yield
n—>M‘=M" =M. Consequently, it follows from Eqs. (4.1) that D=0 and K, =0, leading

to zero volumetric and continuously accumulating shear strain, respectively; thus, CS is

straightforwardly obtained.
4.5.2. Phase 2

During phase 2 loading when the stress PA begin to rotate, the most important event is
the non-coaxiality of the PA of F and n, which results in the key observation that

A=FN=N=n,:n=0.8<1 given that F=1. Consequently, the third condition of Eq.

(3.6) is violated and according to ACST the sample must abandon CS. Indeed, with A<1
and y =0 at the initiation of PA rotation (recall the sample is at CS then where =0 and

n=M), Eq. (3.7) yields ¢ >0. Therefore, M’ = Me™ >M from Eq. (4.2a) and with =M
, Eq. (4.1a) yields D=d(M? —n)=d(M?—M)>0 which implies volume reduction; hence,
the void ratio reduction shown in Figs. 4.5(c) and 4.6(c). The classical CST would have
used y =0 instead of ¢ >0 in Egs. (4.2), thus, M' =M and, with =M, Eq.(4.1a) would
have yielded D=0; accordingly, no volume reduction would begin at the initiation of PA

rotation and CS would have been maintained, contrary to the DEM results. As the rotation

of stress PA continues, progressive reduction of volume and void ratio occurs because ¢

continues to be positive as A<1; hence, M?>M and D>0, butata reducing pace. This

is because the reduction of void ratio from its CS value induces a y =e—e_ <0, which
when inserted in Eq.(3.7) progressively diminishes the positive value of £ that tends

towards 0, thus, M —M and D0, arresting volume reduction; reference to Fig.

4.4(b) confirms it. In parallel observe that with {>0=<—-¢{ >=0. Thus, Eq. (4.2b) yields
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M’ =M and with n=M Eq. (4.1b) yields K, =0 (perfect plastic response). Had one not

introduced the Macaulay brackets in Eq. (4.2b), ¢ >0 would have induced M’ <M, and
from Eq. (4.1b) it concludes that K =h(M" —n)=h(M’—M)<0, which implies softening.
Also 77 must have been reduced from its value M, an event that is not, and cannot be,

observed during the DEM simulation since the principal stress values are kept fixed.

Hence, the use of <> in Eq. (4.2b) is justified according to the original proposition by

Manzari and Dafalias (1997).
4.5.3. Phase 3

When phase 3 loading begins, first n becomes coaxial with the stress to induce biaxial
radial loading, and then F evolves and becomes coaxial with n and stress, as seen from
6_—0. going to zero quite fast in Figs. 4.8(a) and 4.9(a) during the transition from phase
2 to phase 3. Hence, coaxiality between F and n resumes as shown by N=n,:n=1 in
Figs. 4.8(b) and 4.9(b). Since F'=1, one also has A=FN =1, and with y =e—e_<0 from

the previous phase, Eq. (3.7) yields £ <0. Consequently, it follows from Eq. (4.2) that

M? <M and M” > M, hence, with 7=M one has from Eq. (4.1) that D <0, thus, dilation,
and K, >0, implying hardening. This is exactly what is observed as phase 3 starts in Figs.
4.5(c) and 4.6(c) with an abrupt increase of void ratio, and in Figs. 4.5(b) and 4.6(b) with
a sharp increase of stress ratio 77 above M as it tends towards MP > M ; both dilation and

hardening are more intense for Fig. 4.6 since the sample has reduced its volume more
than once in Fig. 4.5, due to larger number of cycles of PA rotation.

The theoretical explanation of the continuation of phase 3 loading requires an equation
of evolution of the fabric tensor norm F that is shown to increase above 1 in Figs. 4.8(b)
and 4.9(b) before it falls back to 1. Such an equation was given in Li and Dafalias (2012)
but it has not been investigated extensively and, moreover, is not within the goals of this
work to address. It suffices to consider the consequences of the increase of F above 1;

with N=1 due to coaxiality, F>1 results into A=FN=F >1; thus, with y=e—e, <0

Eq. (3.7) yields an even more negative value of { that maintains M*<M and M’ >M,

thus, D<0 and Kp >0 and therefore, dilation and hardening continue, v becomes less
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negative, and so does ¢ . As a result, M’ decreases towards M, while the increasing 7
eventually exceeds the decreasing M causing K, <0 from Eq. (4.1b). Softening thus

occurs, as manifested by the falling value of 7 in Figs. 4.5(b) and 4.6(b) until it reaches

M. F and A return to their CS values of 1, as shown at the end of phase 3 in Figs. 4.8(b)
and 4.9(b), and the void ratio returns to its CS value by fully recovering its reduction

during phase 2 loading (Figs. 4.5(c) and 4.6(c)) with ¢ =y =0 from Eq. (3.7). Thus, CS is

reached again.

The explanation of the DEM results by ACST in this section is not a simulation by a
constitutive model nor was it intended to be, since no full constitutive formulation is
provided. Egs. (3.6) and (3.7) are fundamental equations of ACST and together with the
generic constitutive Egs. (4.1) and (4.2), can be incorporated within various specific
constitutive modeling approaches one might choose within ACST. Nevertheless, it will be
a challenge to simulate by a constitutive model, the various response characteristics

observed during the 3 phases of the DEM experiment.
4.6. Conclusions

The main task of this chapter was two-fold: on the one hand to prove that the classical
Critical State Theory (CST) is incomplete because its two conditions on critical values of
stress ratio and void ratio are necessary but not sufficient for CS to occur and be
maintained, and, on the other hand, to offer a remedy for this incompleteness by
employing the recently proposed Anisotropic Critical State Theory (ACST) by Li and
Dafalias (2012), which addresses the role of fabric at CS. The novelty of ACST is the
introduction of the third condition in Egs. (3) on the critical state value of Fabric
Anisotropy Variable (FAV), that, together with the first two on stress and void ratios, are
necessary and sufficient for CS to occur. The ACST was proposed several years ago, and
its benefits have been confirmed by the simulative success of constitutive models within
its framework. However, one fundamental theoretical point was missing: its main
novelty, namely the third condition of Egs. (3) on FAV, was always reached concurrently
with the first two, thus, the question as to whether this third condition on the fabric is an
independent and necessary addition or merely a convenient and useful supplement to the

first two remained an-answered. It was possible to obtain an answer by following the
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methodology suggested by Dafalias (2016), according to which, instead of trying in vain
to reach the first two conditions without the occurrence of the third in order to test its
role, one can start from CS, where all three conditions are satisfied, and then simply
violate the third one only.

This was achieved by imposing a rotation of the principal axes (PA) of stress at CS,
keeping the principal stress values fixed in a virtual experiment by means of DEM, which
violated only the fabric-related third condition in Eq. (3.6). A dramatic reduction of void
ratio was then observed, contrary to what would be expected by the classical CST.
According to CST, since both classical CS conditions on stress and void ratios were
satisfied at the initiation of such stress PA rotation, no void ratio change should have
occurred. From this it follows that classical CST is incomplete, since its two conditions are
necessary but not sufficient to maintain CS, while the third condition proposed by ACST
becomes a necessary addition to the first two, and all three are both necessary and
sufficient for CS. Furthermore, the 3-phase loading sequence, with phase 2 being the one
where the stress PA rotate, provided additional information. In particular, the CS
resumed during phase 3, when radial loading was applied again by total rebound of void
ratio to its CS value, and similarly for the fabric related variable A and the stress ratio,
which, after an initial increase, both decreased to their CS values (Figs. 4.5(b), 4.6(b),
4.8(b) and 4.9(b)).

The foregoing results of the virtual DEM experiment would suffice to show that CST is
incomplete, but equally important is that ACST can predict the aforementioned behavior
throughout the 3-phase loading by accounting for the effects of evolution of the fabric
tensor norm and “direction”, all possible to evaluate within the DEM analysis. The
prediction was based on the new fabric-related condition on FAV in Egs. (3.6), in
conjunction with the introduction of the Dilatancy State Parameter (DSP) defined in Eq.

(3.7) in terms of A and the well-known State Parameter i/, as well as some generic

constitutive ingredients for the dilatancy and the plastic modulus within ACST. Thus,
ACST offers a remedy for the incompleteness of CST and, furthermore its structure can
predict the DEM response while CST fails to do so.

It is true that CST and its two conditions given by Eq. (3.4) were developed based on
monotonic triaxial loading with fixed principal stress directions, and then extended to
general stress space (Appendix C in Schofield and Wroth, 1968). However, all

considerations of CST as a framework for various constitutive modeling approaches
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presume that CST and its conditions given by Eq. (3.4) are valid for all loading paths that
may include change of principal stress directions; otherwise CST would not be an
appropriate constitutive framework for general loading. In this case, the conditions
expressed by Eq. (3.4) are considered necessary when CS occurs, while their sufficiency, while
assumed, has never been demonstrated (Schofield and Wroth, 1968). It is within this
enlarged perception for the applicability of CST under general loading that the present
work was able to prove the incompleteness of CST, and the insufficiency of Eq. (3.4) for
defining CS, as well as to offer a remedy by proving the ACST, with its three necessary and

sufficient conditions.

B-69



B-70



Chapter 5: 3D DEM virtual experiments

Chapter 5: 3D DEM virtual experiments

5.1. Introduction

In this chapter, the 2D virtual experiment of Chapter 2 will be extended in 3D. One would
ask why is it necessary to extend the results already obtained in 2D in 3D, or,
alternatively, why was it worth obtaining results in 2D at all in the first place, instead of
examining the phenomenon directly in 3D. On the second question, the reasons for 2D
results are mainly related to two key factors: the significant difference in terms of running
time, as 2D analysis is vastly more rapid (and so the 2D DEM software are still more
broadly used than 3D), as well as, the more straightforward interpretation of the 2D
results. The 2D DEM simulations have considerably reduced computational times with
respect to their 3D counterparts; this is due to the fewer degrees of freedom for each
particle in 2D, the more difficult 3D rigid body dynamics, and the greater number of
contacts per particle in 3D. Thus, in cases where physical reality allows it, 2D
simplifications can elucidate the mechanisms that underline several physical phenomena,
at considerably lower cost. In addition, 2D results can be represented on a plane (chain
forces, velocities etc.), and this direct visualization of information enables valuable
insight to mechanisms that are often impossible to visualize in 3D.

2D DEM has proved to be an adequate tool for approaching several problems (e.g. Fu &
Dafalias, 2011a; Fu & Dafalias, 2011b; Tong et al.,, 2014a; Tong et al. 2014b), and is
currently used extensively; for this reason, during the past years, 2D results have been
consistently more than 3D. Nevertheless, 2D analysis obviously lacks the 3rd dimension,
which implies that any 2D result is purely qualitative. Therefore, conclusions extracted
from 2D can be only qualitatively assessed in terms of mechanisms and concepts, and this
sometimes means that such results should be re-established in 3 dimensions. In such
cases, even though the 2D analysis is incomplete, it can form a great basis on which the
3D results can be built and interpreted, with the aid of 2D visualization; great caution is
needed when 2D results are used without 3D extension. Quantitatively, in 3D, mass
properties, the values of void ratios and coordination number (average number of
contacts per particle) are expected to be very different, as well as, extra arching
possibilities that are attached to the 3rd dimension. Thus, 3D analysis should follow any

important results extracted from 2D, such as the incompleteness of a theory. An
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additional gain of this step is the comparison of the frequently applied 2D DEM with the
3D results, on an important experiment.

Although the concepts and principles for the present experimental procedures were
similar as in 2D, the consideration of the 3rd dimension posed many practical challenges.
At first, visualization of the results is more difficult and, in many cases, might create more
confusion than clarity. In addition, one extra axis means three additional components in
terms of the - symmetrical - second order tensors (stress, strain rate and fabric). Thus,
there exist three principal values and three related principal eigenvectors that need at
least two parameters in order to be defined (e.g. two angles in terms of spherical
coordinates); still only one norm can be used to quantify the intensity of the tensor (see
also Li & Dafalias, 2012). Furthermore, the implementation of a boundary velocity field,
as was implemented in 2D, added important complexity to the existing models and
algorithms. The technical details of the application of practically all the special methods
that were used in the 2D case, as described in the previous chapter, were extended in 3D;
the concepts built in 2D had significantly paved the way towards this extension.

The three experimental phases applied in this case were: phase 1 a triaxial load, phase 2
the stress Principal Axes (PA) rotation in Critical State (CS), and phase 3 a radial load,
similar to the initial triaxial load of phase 1. The results were expected to be qualitatively
similar with those obtained in 2D. Physical experimental results appear in literature
where a stress PA rotation had been applied, only before CS (e.g. Miura et al., 1986; Tong
et al, 2010), and can be compared with our 3D DEM virtual experiment. Only one
publication exists on 3D DEM that includes stress PA rotation before Critical State (Yang,
Li & Yu, 2015). This makes obvious the novel nature of the results that will be presented
in the sequel, along with the totally new concept of stress PA rotation in 3D and in CS. For
the 3D setting, where the numerical experiments presented in this chapter took place, the

three principal stress and strain components are o,(i=1,2,3) and ¢,(i=1,2,3); the
variables p (hydrostatic pressure), g (deviatoric stress), ¢, (volumetric strain), and ¢,

(deviatoric strain) are defined as p=1/3(o,+0,+0,),

q=\/((01—02)2+(0'2—0'3)2+(c71—03)2)/2, £ =& +& +&, and

g, :2/3\/((51 —52)2 +(g2 —6‘3)2 +(g1 —53)2)/2.
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5.2. Implementation issues

Most of the implementation issues are very similar, at least conceptually, with the 2D
implementation; chapter 4, section 2 is the main reference for the following analysis. For
the realization of the numerical experiment, PFC 3D v5.0 was used (Itasca, 2015). This
numerical code is the closest possible to the 2D presented in the previous chapter, to
ensure that no great software differences affect the results from 2D to 3D. Itisa DEM code
applying the molecular dynamics method, with very similar numerical methodologies as
in the 2D version, extended in 3D (Itasca, 2015). The particles were spherical in shape
and their properties are outlined in Table 5.1. The same analysis as in 2D was needed for
the damping coefficient (type local with damping ratio value 0.7), the inertial number and
the mechanical ratio. The inertial number is defined slightly differently due to the third
dimension (Radjai & Dubois, 2011) but again must be less than 10->. Compressive stresses
and strains are considered positive according to the soil mechanics convention.

The 2D success on the boundary type implementation led the way for imposing the 3D
boundary conditions. A 3D velocity field, that must consider the three principal axes and
the targeted stresses, was applied on boundary particles. A servomechanism controlled
the intensity of the velocity field based on the measured stresses in a spherical RV
containing approximately 1,600 particles (Fig. 5.1(a)); this RV is used for all the measured
quantities and concentric spherical RVs were used to validate the main one and to ensure
homogeneity of the sample during all types of loading. Fig. 5.1(b) illustrates the
application of the velocity field to the boundary particles of the sample to implement a
desired triaxial type loading that consists of a vertical compressive stress increase

Ao, (>0) and a horizontal stress decrease in both x and y axes Ao, =A0c,(<0); the

directions of velocities vary progressively from vertical to horizontal to reflect the
foregoing loading. Notice that the two horizontal stresses were defined as equal; this is
not a prerequisite for the successful application of the boundary velocities but was used
for simplicity, and on the basis of the usual triaxial experimental procedure. It is though

possible to apply any three different stress increments.
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Fig. 5.1. (a) Configuration of particles for initially ellipsoidal sample and its RV in black;
the particles are presented partially transparent: light-grey are the particles inside the
sample, darker-grey the boundary particles (b) Velocity field applied at the boundary

particles to achieve the stress changes Ao,, Ao, and Ao, as shown

The stresses and strains were calculated according to the same concept as in 2D; the
stresses are based on the typical DEM formula that has been derived rigorously for quasi-
static granular materials (Love, 1927; Weber, 1966; Goddard, 1977; Christoffersen et al.,
1981; Rothenburg and Selvadurai, 1981). The strains were calculated through a best-fit
approach (Liao, 1997; ITASCA, 2008). The final strain rate calculation (equal to the rate
of deformation as the symmetric part of the velocity gradient) is based on a proper
averaging procedure over multiple time-steps, similarly as in 2D. An initially isotropic
fabric was created by random grain creation inside an initial, elliptical in shape, sample;
the isotropic compression produced insignificant changes to this isotropic fabric. The
elliptical shape of the sample supported the homogeneity through the isotropic
compression procedure; thus, the samples reached the end of this preliminary phase as
homogeneous as possible and with isotropic fabric. The 3-phase loading was then applied
and its response is described in the sequel.

A literature review reveals that different DEM parameters can produce similar response
for the triaxial experiment and that the full calibration of a DEM sample is not necessarily
a one to one relation. Nevertheless, some general guidelines follow, concerning the
importance of each DEM simulation parameter, with focus on the present loading paths.
In principle, the choice of the boundaries can support or discourage the creation of a

shear band; e.g. flexible boundaries clearly favor the creation of shear bands, and so are
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rejected by default. Particles’ shape has been chosen to be spherical for simplicity, as the
special experiment presented through phase 2 and phase 3 is completely new, and effects
such as particles’ shape and initial inherent fabric should be added at future steps. With
spherical particles, only contact normal fabric and void fabric exist, which promotes
simplicity in the fabric analysis. The simple shape of the particles, which is in contrast

with real soils, is mainly balanced with the values for the friction and the rolling friction

coefficients.
Number of grains 35,840
Average grain radius (m) 0.0009
coefficient of uniformity (Cu = deo/d10); rmin (mm); rmax (mm) 1.9;0.12; 0.6
Elliptical specimen’s half axes z - y - x (m) 0.02-0.0134-0.0134
Isotropic and mean pressure (kPa) 200
Particles’ density (kg/m3) 2600
k., (N/m) 105
k, /k, (N/m) 0.25
Friction coefficient
0.3; 0.0
(sphere-sphere; sphere-boundary sphere)
Rolling friction coefficient
0.3; 0.0
(sphere-sphere; sphere-boundary sphere)
Damping ratio 0.7

Table 5.1. Particles properties for 3D DEM experiments

Micromechanical stiffness (normal stiffness k, and tangential stiffness k) and friction

(surface friction with or without added rolling resistance and rolling friction coefficient)
are the main parameters calibrated that define the material. The normal stiffness is
mostly important for the stress-strain curve while the tangential stiffness is important
for the initial, linear part; for that reason, no particular attention needed to be paid in the
tangential stiffness for our analysis, as we are mostly focused on CS, i.e. large deformation.
Rolling friction can account for the simplified shape of the particles along with any surface

irregularities of the grains; it appears that rolling friction along with friction can create a
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rather realistic response in terms of the evolution of stress and void ratio. Both friction
coefficients have a significant influence on the peak and post peak response of the stress.
The damping definition is a critical issue, as the energy dissipated from friction is very
insignificant compared to the real energy consumption. The typical damping for quasi-
static conditions is of type “local”, i.e. applied as an extra force on each particle and is
proportional to the acceleration. This type of damping is appropriate for our analysis, as
only acceleration motion is damped, while any steady-state motion remains unaffected
(Itasca, 2008). Finally, particles’ density was equal to 2600kg/m3, a typical value for soil

particles.

5.3. Macroscopic results

5.3.1. Phase 1: Triaxial loading until CS

Phase 1 is a triaxial type loading and was applied through the increase of the vertical

stress Ao, and the decrease of the two horizontal stresses Ao, and Ac,, so that the
hydrostatic pressure p (p:1/3(o-1 +0, +0'3)) remained constant. Notice that these

three stresses (the vertical and the two horizontal) are also the principal ones and that

the horizontal ones are defined to be equal (Ac,=Ac;) throughout the phase 1

procedure, as in a classical triaxial test. As a result, all the stress changes were defined
through one variable change, i.e. Ac,=A0,=3/2p—-1/2A0,, as p always equals

200kPa.

The stress increments were applied through a servomechanism based on the main RV
(Fig. 5.1(a)). The macroscopic evolution (stress and void ratio) of phase 1 is presented in
Fig. 5.2; the stress ratio (Fig. 5.2(a)) reaches a peak value at approximately 8% of vertical
axial strain and then presents a softening behavior until 25% of axial strain, when it
reaches its CS value, M ~1.1. The stress ratio softening is not monotonic but fluctuations
appear which are not considered to be important for the uniformity or the homogeneity
of the sample.

The specimen has been checked and does not present one persistent shear band but
rather some smaller non-uniformities develop and vanish due to the velocity controlled
boundary particles. That implies that in total, the sample remains homogeneous and the

measurements obtained are valid for the whole specimen. In addition, the void ratio (Fig.
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5.2(b)) presents in principle a dilative response. Initially there is a slight volumetric
compression of 0.5% until approximately 7% of axial strain, and then the dilative
behavior of the material takes over. The value of the axial strain is not atypical for the
peak strength to take place; literature of experiments and DEM analysis show that in 3D
this peak is expected to be somewhere between 2% and 10% of axial strain (Oda 1972a;
Oda, 1972c; Belheine et al.,, 2009; Carraro et al., 2009; Yang & Wu, 2016). The continuing
dilation until CS, reaches a total volumetric strain of 1.75% and the critical void ratio

becomes e=e, =¢,(200kPa)~0.70.

1.6 0.71 25
i 0.7 -2
415
1 0.69 |
=41 R
® 0.68 { =
—{-05 wg
0.67 1
04F B
0.66 dos
0 Il I Il I Il I Il 0.65 1 I 1 I 1 I 1 1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
(a) € axial (b) €axial

Fig. 5.2. The macroscopic response of phase 1 triaxial test on an initially medium dense

sample: (a) stress ratio7 and (b) void ratio e, versus vertical (z-axis) axial strain &

axial

This behavior is not atypical for a medium loose - medium dense specimen, governed by
its dilative response. The key factors here are the homogeneity of the sample that remains
until CS, so that phase 2 can take place, and the realistic response of the granular material.
The spherical particles, along with the distribution chosen and the initial void ratio are
close to real sub-rounded sands, such as Ottawa sand. The parameters described in Table
5.1 are chosen in order for the material to be quantitatively close to reality and not only
qualitatively similar. Under that perspective, the results and the governing mechanisms
can be evaluated in a more realistic framework and can be further used for quantitative
comparisons with real sands.

Standard Ottawa sand, Ottawa ASTM 20-30, Ottawa F-110 and other similar sands, have
distributions very close to the one used in this work (e.g. Salgado, Bandini & Karim, 2000;
Santamarina & Cho, 2001; Cole, 2014). In addition, the critical state void ratio (
e.(200kPa)~0.70) has the same value as measured in Santamarina & Cho (2000). The
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total volumetric strain (1.75%) and its evolution is also quantitatively in the order
expected for a triaxial test and a sand with such characteristics (e.g. Oda, 1972c; Salgado
et al., 2000; Carraro, Prezzi & Salgado, 2009). The critical stress ratio (M ~1.1) is close
to the range reported for Ottawa sand in Carraro et al. (2009) and Salgado et al. (2000)
where it takes values from 1.15 to 1.25. Toyoura sand is another type of sand frequently
used for triaxial experiments, and is more angular with respect to Ottawa, but with
similar distribution (e.g. Verdugo & Ishihara, 1996). This sand provides slightly larger

critical stress ratio (M ~1.25) and critical state void ratio (€,(200kPa)~0.85) (Dafalias

et al.,, 2004; Yoshimine, Ishihara & Vargas, 1998; Yoshimine & Ishihara, 1998); this could
be attributed mainly to the different shape of the particles of this sand. It becomes
obvious that the results obtained from our simulation lie within the normal quantitative
results for real sands. A full calibration procedure has not taken place as the exact

recreation of a particular sand’s response is not in the scope of this work.

Kozicki,
Cil & Tejchman Calvetti Kozicki & | Gu, Huang | Yang, Li
Alshibli & (2008) Tejchman & Qian & Yu
(2014). Miihlhaus (2011) (2014) (2015)
(2014)
Boundary Flex. Flex. Rigid Rigid Rigid Rigid
type walls walls walls walls
Pz;ﬁ:}:)l(eas spheres spheres spheres spheres spheres | spheres
2.5 105- 7.5
k. (N 6 ~ 5 4 5
»(N/m) | 210 310 42105 106107 210 10
k. /k
S/ n 0.5 0.25 0.25 0.3 1 1
(N/m)
Eriction 0.26 various | 0.32-0.35 | 0.3-0.8 0.5 0.5
coefficient
Rolling o
friction 0 0 Inh1b1lted various 0 0
. rotation
coefficient
Damping | /5 various 0.7 0.3 0.7 0.7
ratio
Particles’
density 920 N/A N/A 2600 N/A N/A
(kg/m3)

Table 5.2. Particles properties for 3D DEM triaxial experiments in literature

From the DEM perspective, the parameters used for the simulation (Table 5.1) are also

typical, for this quasi-static type simulation. Several 3D DEM virtual experiments exist
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that simulate the triaxial loading test. Some of them use membrane - type boundaries to
better simulate the physical triaxial experiment (Cheung & O’Sullivan, 2008; Cil &
Alshibli, 2014; Kozicki, Tejchman & Miihlhaus, 2014) or periodic boundaries (Sitharam &
Vinod, 2009), while most implement rigid walls (Ng, T. T., 2009; Belheine et al., 2009;
Widulinski, Kozicki, & Tejchman, 2009; Yan & Dong, 2011; Yimsiri & Soga, 2011; Lee,
Hashash & Nezami, 2012; Guo & Zhao, 2013; Gu, Huang & Qian, 2014; Li & Yu, 2014);
none of them uses the special boundary particles implemented herein. Parameters of
simulations that implemented similar micromechanical and DEM concepts for triaxial
load in the literature, are summarized in Table 5.2; thus, it becomes clear that the

parameters of this implementation lie within the usual values of the existing literature.

5.3.2. Phase 2: Stress PA rotation in CS

After the triaxial type load of phase 1, a 2nd phase was applied for the stress Principal Axes
(PA) rotation, while keeping the principal stress values fixed. Phase 1 was stopped at 30%
of axial strain where it is clearly in CS (see Figure 5.2); at the end of phase 1 the three
principal axes were fixed on the two horizontals (x, y) and the vertical (z) axes due to the
triaxial concept. We initially needed to define the way that the PA of stress would rotate;
in general, the choice of the potential PA rotation of stress is restricted only by the
principal axes at the end of the triaxial load and in case of symmetry (as the case of
triaxial) an infinite number of equivalent PA rotations of stress can take place. In this
work, the simplest case was chosen and so the stress principal axes rotation took place
on the x - z plane, on which the two principal axes were rotating, while the third principal

axis (y - axis) remained fixed.

As a result, the stress value on the y axis remained constant and equal to the minor
principal value it had at the end of phase 1, and thus the shear stresses that are out of x-z
plane remain equal to zero. Infinite combinations are possible for the evolution of the
stresses defined on the x-y-z axes based on the stress PA rotation load path and the
principal stress values but we chose the simplest one for theoretical and practical
reasons. The numerical scheme that was implemented, is capable of any of these infinite
rotations in any planes, should the generalization of the procedures is needed for some

future purpose.

B-79



Chapter 5: 3D DEM virtual experiments

All three principal stress values were kept constant throughout the procedure. As a result
of all the above, the stress PA rotation can be easily overviewed as in Fig. 5.3, which is
practically the same as Fig. 4.3, with one change from the y-axis in 2D to the z-axis for 3D;
the out of x-z plane principal stress, parallel to the y axis, remains constant in value and
in orientation and the extra shear stresses equal to zero. These simplifications create an
experimental environment which represents the simplest extension of the 2D virtual
experiment; under that perspective, the results and conclusions can be more easily

compared between the 3D and the 2D cases.
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Fig. 5.3. lllustration of stress path in the shown stress space for rotation of stress PA

during phase 2 loading and schematic presentation of stress components in real space

The application of the PA rotation is based on the rotation of the applied velocity field.
The results from the second phase are presented in Fig. 5.4 in terms of stress components
and volumetric strain; the similarities with the 2D case are profound (see also Fig. 4.4).

As the rotation takes place on the x - z plane, the o, and the o,, are the two normal
stresses who change their values continuously along with the shear o, in order for the
o, and the o, to remain constant. Additionally, the two out of plane shear stresses

(O-xy'

0,,) are practically zero and the third principal stress, which is along the y axis
(o0, =0,) remains approximately constant (Fig. 5.4(a)). The measured stress

components confirm that the stress PA rotation has been successfully applied to the
sample. The results of Fig. 5.4(a) are exactly similar with those of Fig 4.4(a), with the

addition of the extra stress components of the third dimension, which are constant.
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The volumetric strain that corresponds to the PA rotation (Fig. 5.4(b)) presents many
similarities with the 2D response, but also some important differences. The main message
extracted from the 2D case concerning the incompleteness of CST stands totally
supported by the 3D results. Qualitatively, the general trend is profoundly compressive,
while the compression of the sample continues until it reaches a void ratio minimum.
Interestingly, the 3D sample needs half the number of rotation cycles of the 2D to reach
the minimum PA rotation value. This relates to another major difference: in the 3D case
2/3 of the volumetric strain change happened during the first 2 cycles, and only 1/3
happened at the next 3 cycles; this reveals that the major part of the compression due to
the PA rotation takes place at the very beginning of the phase, while a second smoother
and smaller part of the volumetric strain change takes place later. A totally different trend
was revealed at the 2D case (Fig. 4.4(b)) where the volumetric change was smooth and
the change of the slope of the volumetric evolution was progressively decreased until the
reach of the minimum void ratio. This difference is attributed to the increased degree of

freedom of motion of particles in 3D.
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Fig. 5.4. (a) Variation of stress components and (b) Variation of void ratio and

volumetric strain, with number of cycles of stress PA rotation during phase 2 loading

In addition, the evolution of the volumetric strain in 3D presents great dilation between
rotation cycles, a phenomenon not observed during the 2D where the dilation was minor.
Dilation with maximum value of 0.5% of volumetric strain, can be clearly observed at the
middle of the 1st cycle and in the beginning of all the other cycles (2n until 6t). It is
noticed that the servo-control of the stress is possible to have affected these results, in
terms of their appearance with respect to the rotation cycles, given that the volumetric

strain is a purely geometrical measurement and thus, directly affected by the precise
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loading boundary conditions. Finally, quantitatively, the 3D void ratio and its change are,
as expected due to the different dimensions, larger and very different from the 2D void
ratio and the total volumetric strain at the end of the PA rotation is almost double from
the 2D. Again, as in the 2D case, most important for the goals of this investigation is the
dramatic contraction at the very initiation of the stress PA rotation while the two classical
CST condition hold true, and accordingly one would have expected no change of the void
ratio. This expectation is proven to be entirely inaccurate, thus, showing the lack of
sufficiency of the two classical CST conditions to maintain CS.

It should be mentioned that similar DEM results with the present ones were shown in
Tong et al. (2014), but with two major differences. Firstly, the DEM code there was 2D
and second, the stress PA rotation begun at a state quite before CS, since the goal there
was not to disprove the insufficiency of the CST to maintain CS in such type of loading.
Several physical experiments exist with results discussing stress PA rotation, but only
before CS. The comparison of our results with these physical experiments is informative
and is done with extreme caution, due to all the reasons discussed in the prequel.
Additionally, there are several differences attributed to alterations in the rotation
procedure and the properties of the materials used in experiments; we focus only on the
comparison for the volumetric strain which is the main parameter of interest.
Qualitatively, all results from stress PA rotation present the same trend towards
volumetric compression with small periods of dilation. Tong et al. (2010) have done an
extensive experimental program on PA rotation before CS for various loading
parameters, focusing mainly on the importance of the intermediate stress (Fig. 5.5). The
results, reveal very similar trends with Fig. 5.4; a great part of the compression takes
place during the first and the second cycle, while afterwards follows a smooth evolution

of the volumetric strain until reaching a minimum void ratio.
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Fig. 5.5 Volumetric strain evolution for stress PA rotation in physical experiments; from

Tong et al., 2010

The maximum number of cycles needed to reach the final void ratio value varies, but
ranges from 10 to 20 cycles; this is not very different from the 7 cycles we needed to reach
minimum void ratio. A periodic change between dilation and compression appears, with
compression being the general trend, that our simulation has also revealed. The values of
the volumetric strain are larger in our case but this can be attributed to the larger
hydrostatic value that appears to importantly affect the volumetric strain (series III vs
series IV) and the fact that our sample is in CS condition. The exact same observation
stands for the results of Miura et al. (1986) (Fig. 5.6) Vaid et al. (1990) showed that
monotonic compression without dilation happened for half a cycle while Wijewickreme
and Vaid (1993) have reached with Ottawa sand (ASTM-C-109) volumetric strain 0.9%
for half a cycle of rotation, quantitatively very similar to ours. Other physical experiments
with stress PA rotation have not completed many cycles to be comparable with the

present results and many are difficult to use due to very different properties.
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Fig. 5.6. Volumetric strain evolution for stress PA rotation in physical experiment; from

Tong et al., 2014a; after Miura et al., 1986

5.3.3. Phase 3: Triaxial loading after stress PA rotation and overview

of all phases

A phase 3 followed phase 2 of stress PA rotation, to check for the response of the sample
in a similar fashion as done in 2D. This third phase consists of a triaxial type loading
similar as in phase 1, but rotated by an angle 6_ of the o, axis with respect to the vertical

y-axis, where the preceding stress PA rotation stopped. For a unified representation of all

test results, the equivalent cumulative deviatoric strain measure e, = _L 2/ 3)é,é,dt with

e; the deviatoric strain in three dimensions, is used as a reference strain for the whole
experiment, as also happened in 2D, initiating after the application of isotropic
compression p=200kPa. In all these plots, the part for phase 1 will be denoted by light
gray, for phase 2 by black. Recall that the initiation of phase 2 took place at an
intermediate stage of phase 1 at axial strain ¢,,, =30%, thus, the initiation points of the
black plots of phase 2 will appear at such intermediate points of the light gray color plots
of phase 1, accounting for the fact e,, substitutes for ¢,,, used in phase 1. Phase 3 plots
will continue directly after the black plots of phase 2.

Phase 3 has started from several intermediate points of phase 2; in Fig. 5.7 are presented
the results for phase 3 at 6, =90°, at 6 =0° after 1 cycle, at 8, =90° after 1 cycle and
after 2 cycles. The main deformation as also the main volumetric strain changes has taken
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place during these initial two cycles of rotation and thus, the results for phase 3 starting
in these cycles are representative. Very large deformation of the sample has taken place
after the 2 cycles, which implies extra difficulties to run phase 3, without any gain in the

interpretation of the results.
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Fig. 5.7. Plots during the full three-phase loading sequence with phase 3 at , =90°, at
6_=0°after 1 cycle and after 2 cycles: (a) the stress path (b) the stress ratio q/p

versus e, (c) the void ratio e versus e,

From Fig. 5.7(b), it is concluded that the macroscopic response when phase 3 is started

on half cycles (i.e. 6, =90° and same after 1 cycle) is better, due to the deformation of the

sample. When phase 1 stopped, the sample was nearly a spherical sample, as was
intended from the initial ellipsoidal shape configuration of the specimen (Fig. 5.8(a)). As
the PA of stress rotated on the x-z plane, the sample was majorly deformed in the out of
plane y-axis, in order for the y stress to remain constant and principal (Fig.5.8(b));
additionally, the deformation on the z axis was larger than the one on the x axis, since at
the beginning and the end of each rotation cycle the major principal value lies on this axis.
The limitations presented on the deformation arise due to the existence of the third
dimension; in the 2D case this limitation did not exist, since the particles could not move

out of the 2D plane. From these observations, it is concluded that the best loading angle

to proceed with the phase 3 load, would be the with 8, =90°.

At the end of phase 1, the two horizontal normal stresses were equal and equal to the
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minor principal stress o, =0, =0, while the vertical stress was the major one o,, =0,

When the stress PA rotation takes place on the x-z plane, the major and the minor

principal values change their respective axes, from z to x and back. As a result, when

phase 2 is stopped at 8, =90° (halfcycle), o, isequal to the major principal stress value
due to the PA rotation, while o, =0, are equal to the minor principal value and the
loading is triaxial compression with the major stress increment (Ao, ) lying on the x axis

while the two minor on the y and z axes.

z
z

< ’

X X

(a) (b)

Fig. 5.8. Deformed sample(a) when phase 1 triaxial load is stopped and (b) when phase
2 loading ends; the spherical RV is in black, the particles are presented partially
transparent: light-grey are the particles inside the sample, darker-grey the boundary

particles

Nevertheless, from all the results in Fig. 5.7 it can be easily concluded that, as the triaxial-
type loading of phase 1 is repeated after phase 2 (through phase 3), and after the sample

has abandoned CS, the sample returns to the same CS. Notice that pressure p does not
change during all the three-phase procedure, and thus critical void ratio e_, which is a
unique function of p , remains the same for the whole experiment, from the beginning
till the end. For 68, =90° both after 0 and 1 cycle of rotation void ratio clearly returns to

its CS value while the stress ratio reaches a peak and then also fall to its CS value.
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Fig. 5.9. Plots during the full three-phase loading sequence with phase 3 at 8, =90°
after 1 cycle: (a) the stress path (b) the stress ratio q/p versus e, (c) the void ratio e

Versus e,

For 6_=0° after 1 and 2 cycles the results are not similarly clear, due to the deformation
of the sample (Fig. 5.7). For 8_=0° after 1 cycle the void ratio does not reach the CS value

due to extreme deformation before this, but it has a tendency towards the CS; for 8, =0°

after 2 cycles the void ratio reaches CS with some fluctuations. The stress ratio for all
cases reaches a peak value, very similar to the one for phase 1, and then falls on CS.

The primary results for the foregoing analysis are provided for an angle of rotation of the
stresses €_=90°; this is dictated by the deformation pattern of the sample during phase
2 as discussed. The results presented in Fig. 5.9 are for all three loading phases, with

phase 3 initiating at 8, =90° after one cycle of PA rotation. The response is qualitatively
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the same as in 2D; the specimen was in a denser state than the CS and as a result the void
ratio (Fig. 5.9(c)) evolves in dilation, with a quick pace, until it reaches its CS value while
the stress ratio (Fig. 5.9(b)) is increased to its peak value and then falls back to its CS
value. The 3D results come to confirm the 2D simulations that have produced,

qualitatively the same trends.
5.4. Fabric evolution during the 3D DEM experiment

Following the analysis of the macroscopic results, the incompleteness of the CST is again
undoubtedly confirmed, on this chapter with a 3D virtual experiment. The results of Fig.
5.9. leave no room for doubt on the Critical State conditions that are clearly reached at
the end of both radial monotonic loadings, in phase 1 and 3, and the abandonment of the
CS during the non-radial monotonic loading of phase 2. The classical CST conditions are
obviously necessary for CS to be attained but are proved not to be sufficient, as in phase
2 they are not enough for the sample to stay in CS. The ACST, as a major motivation of this
work, is again examined in the sequel of this section. The fabric analysis follows the same
principles as in the 2D experiments, with the addition of the extra fabric components of
the third dimension.

Fabric during the 3-phase loading has been quantified by the means of contact normal
vectors and the results presented in the following are all based on contact normal fabric.
The analysis can be easily extended from 2D to 3D, as the parameters of ACST, i.e. the
fabric norm ( F ), the coaxiality quantification of the fabric and the loading direction (N )
and the Fabric Anisotropy Variable ( A) are all scalar values that are calculated in 3D in
the same way as in 2D (see also Eq. 3.5). The second order tensors measured in the 3D
case for fabric and loading direction (in terms of plastic strain rate) produce no extra
information in that vein. The only clear difference concerns the evaluation of the non

coaxiality of stress and fabric (angle lag 6_—6, in 2D); in 3D, the second order tensors

have three principal axes, that translates into two angles needed to characterize the axes
orientation, e.g. in spherical coordinates.

Nevertheless, the approach we decided that simplified the stress PA rotation, i.e. keeping
the intermediate principal stress on the y-axis principal and constant in value, simplifies
also this analysis, without loss of generality, as the same analysis could be made during

any stress path like the one of phase 2, with the proper transformation of the tensors.
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Given that the intermediate principal axis is fixed on the y axis, the intermediate principal
axis of strain and fabric is also fixed on the same axis. This observation was confirmed by
the calculation of the principal eigenvectors of the stress, strain and fabric tensors during
the stress PA rotation and simplifies the analysis as only the angle difference that lies on
the plane x-z, where the PA rotation takes place. As a result, only one angle can be used
for stress and for fabric, the angle on the x-z plane that is defined from the vertical, z axis.
Thus, the results presented in Fig. 5.10 have the same axes as in Fig. 4.8 and Fig. 4.9 for
the 2D case. In Fig. 5.10(a) are presented the fabric norm (upper diagram) that is
normalized with its CS value and the angle lag of fabric and stress (lower diagram), on
the x-z plane where the stress PA rotation took place. In Fig. 5.10(b) are the relative
orientation of fabric and loading direction (N )(lower diagram) and the FAV (upper
diagram), which is the combination of the two plots for the norm F and the relative
orientation N. For the uniform presentation of the three phases, the total equivalent
plastic strain is again used. These are the figures used in the following analysis and they

will not be repeated for clarity.
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Fig. 5.10. Plots of fabric entities during the full three-phase loading sequence with
phase 3 at 8, =90°after 1 cycle: (a) Fand 6, -6, (b) A=Fn,:n and N=n,:n

During the triaxial load of phase 1, the fabricnorm F, following the evolution of the stress
ratio, reaches a peak value 1.3 times greater that its CS value and after 0.4 of equivalent
strain, falls to its CS value. The fabric, the strain and the stress tensor are all coaxial during

phase 1. The FAV, following the norm reaches a value greater than 1 ( A~1.3), and when
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CS conditions are reached, it falls back to 1 meeting the two classical CS conditions
concurrently. This is the expected evolution for such a triaxial experiment, for a medium
dense sample that presents dilation and peak stress ratio larger than its CS stress ratio.

When phase 2 initiates, the three tensors become non-coaxial very rapidly. Fabric follows

the rotation of stress with an angle lag that fluctuates from 4° to 9°; this is very similar
with the angle lag presented for the 2D simulation. The norm of the fabric during phase
2 remains constant on average and the relative orientation N becomes less than 1. On
the 3D results, N cannot be directly related to an angle between the strain and the stress
tensor, but when N =1 the two tensors are coaxial while when N <1 the two tensors have
some lag. The FAV has the same evolution as N, as the fabric norm is constant; thus A<1
and the third of the conditions of the ACST (Eq. 3.6) is violated. This results in the
abandonment of the CS as it is measured in the void ratio (Fig. 5.4(b)).

Although the CS condition have been abandoned, after the radial monotonic loading
phase 3 they are quickly restored. The relative orientation N returns to 1 and the stress
and strain rate to coaxiality very rapidly, while the fabric requires more time in order to
become coaxial with the stress. This appears because the fabric norm F again reaches
the same peak value 1.3 before it falls back to 1 and this evolution delays the reorientation
of the fabric on the, fixed on phase 3, stress axes. In summary during phases 1 and 3 the

PA of stress, F and n are all coaxial, with fast transition to and from phase 2 during which

the PA of F follow the PA of stress by an angle lag of 4° to 9°, and all three pairs of PA
rotate simultaneously.

Additionally, it is of importance to examine the second phase alone, to analyze the
evolution of the ACST parameters with respect to the cycles of rotation. In Fig. 5.11 the
same parameters as in Fig. 5.10 are presented only for the second phase and with respect
to the cycles of stress PA rotation. From Fig. 5.11(b) it can be concluded that the fabric -
plastic strain rate relative orientation N (relative orientation of fabric and plastic strain
rate in 3D, expressed through the trace of the product of the two tensors) presents

oscillations which are not random nor just noise of the DEM.
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Fig. 5.11. Plots of fabric entities during the whole phase 2 loading with respect to the

number of rotation cycles: (a) F and 6_ -6, (b) A=Fn,:n and N=n;:n

Similarly with the evolution of the void ratio, at the beginning but also at the middle of
each cycle, N becomes equal to 0.9 while in between these areas it becomes very smaller
than 1 and close to zero (even slightly negative). These oscillations have physically
occurred and declare that fabric and plastic strain rate do have a non-coaxiality that is
not constant but oscillates with respect to the stress PA rotation cycles. One very possible
and natural reason for this behavior, that appears in this experiment and would

distinguish these two direction (i.e. 4, =0° and 6, =90°) are the principal directions of

fabric, which initially is strongly anisotropic (due to being in CS) and its axes are fixed
and aligned with those of stress and strain rate in vertical and horizontal direction. As a
result, fabric appears to “go quicker” and catch up with the plastic strain rate when

approaching these special directions, while it “stays behind” when deviating from them.

5.5. Analysis of non coaxiality angle between unit fabric

direction and unit plastic strain direction in 3D

5.5.1. Angle derivation from the eigenvectors

We define ¢ as the angle lag between the unit plastic strain rate principal axes and the

unit fabric principal axes that lie on the x-z plane, i.e. the rotation plane of the stress PA
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rotation. This is the only existing angle between the principal axes of these two tensors
in 2D, butin 3D is the angle on the rotation plane, which is directly related to the 2D case.
To directly calculate this angle, the principal axes of the two tensors that lie on the x-z
plane are needed. We plot in Fig. 5.12 and Fig. 5.13 the components of the unit fabric
direction tensor and of the unit plastic strain rate direction tensor. Based on these
components we can conclude that the two principal axes lie on the x-z plane while one
principal axis is constantly parallel to the y axis; these results are also supported by the

calculation of the principal values and the relevant eigenvectors (not presented here).
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Fig. 5.12. Fabric tensor’s (a) normal and (b) shear components
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Fig. 5.13. Plastic strain rate tensor’s (a) normal and (b) shear components

Thus, the procedure to calculate ¢ is as follows: the eigenvectors of the unit fabric
direction tensor and of the unit plastic strain rate direction tensor are calculated; the

eigenvector that relates to the major principal value and lies always on the x-z plane is
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chosen for each tensor and its angle with respect to the vertical axis is calculated. These

angles are presented in Fig. 5.14(a) where 6, is the angle for the unit plastic strain rate
and 6 for the unit fabric tensor; finally, the difference between these two angles, which
is the angle ¢ =6, — 6, is calculated. This calculated ¢ is presented in Fig. 5.14(b).

We can mostly focus on the evolution of ¢ after cycle 4, as at these cycles the entities have
been mostly stabilized for phase 2. It is accepted that the initial 1-3 cycles are transition
cycles and thus the results for fabric and strain rate are more difficult to interpret and

more difficult to use; still they show the same tendencies but with more fluctuations and
more noise. It can be concluded that the angle ¢ has an average value of 20° but oscillates

+10° degrees around that value.
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Fig. 5.14. (a)The angle of the major principal axis for the unit fabric direction tensor
and the unit plastic strain rate direction tensor with respect to the vertical axis and (b)

angle ¢ based on the eigenvectors of the two tensors

This same angle ¢ is presented for the 2D case in Fig. 5.15 for comparison. The average
value is again approximately 20° but the oscillations are + 5° degrees and are not as clear

as for 3D; this small value for the oscillations in 2D could not easily be determined
whether it represents noise or not, but as the same behavior is observed in 3D, then the

same conclusion can be derived.
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Fig. 5.15. Angle ¢ of the 2D DEM virtual experiment
5.5.2. Indirect angle derivation from N

The angle ¢ could also be derived indirectly through N . The following analysis has as
ultimate purpose to relate N =n. :n with ¢; under this approach it will be possible to
reveal the mechanisms of the evolution of N in 3D. Recall that in 2D, N can be directly
related to ¢ as N =c0s(2¢), but this is not the case in 3D, as will be proved.

The unit fabric tensor direction can be expressed on its principal axes by its three

principal values as:

n,, 0 O
Nne={ 0 n, O (5.1)
0 nF3

Also, the unit plastic strain rate tensor direction can be expressed on the same axes, the
principal axes of the fabric tensor. Remember that for the phase 2 of loading, i.e. the stress
PA rotation, the intermediate principal axis of the stress tensor, related with the second

principal value o,, remains fixed on the y axis and that the PA rotation takes place only
on the x-z plane and the other two principal axes, related to o, and o, are always on the

x-z plane. Thus, we conclude that also for the unit plastic strain rate tensor and for the
fabric tensor, the second principal axis remains fixed on the y axis, as the whole scheme
of PA rotation takes place on x-z plane; this is also based on the analysis of the

components of the two tensors and of their eigenvectors, as discussed in the prequel and

in Figs. 5.12 and 5.13.
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As a result, we can now express the unit plastic strain rate components with a constant
second principal axis (but not necessarily constant second principal value); based on the
angle difference ¢, which is the angle between the principal axes of the unit plastic strain

rate and the fabric on the x-z plane, on the eigenvectors of the fabric tensor that yields:

n 0 O cosp 0 sing)n O O0)cose 0 -sing
n=Q| 0 n, 0|Q"=] O 1 0 0 n O 0 1 0 |=
0 0 n —sing 0 cosp/{l 0 O n,){sing O cosg
2 i 2 . . . (5.2)
ncos‘g+n,sinp 0 (—n +n,)cosgsing n 0 n,
= 0 n, 0 =0 n O
(—n,+n,)cospsing 0  n cos’ g+n,sin® o n, 0 n,
cosp 0 sing
whereQ= 0 1 0 is the rotation matrix for rotation only on the x-z plane,
—sing 0 cose

and ¢ is the angle on the x-z rotation plane between the principal axes of the two tensors.
Notice that the second principal value n, is not affected by the rotation angle lag between

unit plastic strain rate and fabric, as assumed.

Thus, N, written on the principal axes on the fabric, becomes:

n, 0 O0)3n O
N=n.:n=trace|| 0 n.,, O || 0 n, O [|=ngn+n,Nn,+nNn =
0 0 ngjin, O

=

(5.3)
2 ‘2
= (N Ng; +N3NE5) COS™ o+ (NN 5 + NN, ) SN @ + NNy

The part n.,n, +n.,n, is equal to what would be derived by a 2D analysis on the x-z plane
where the eigenvectors of n;,n,,n.;, N, alllie, but it cannot be written similarly as for the

2D case (as €0s2¢). This happens because the equations of the tensors’ properties are

different for 2D and 3D and there are the components along the y axis which add the last
term in the last member of Eq. (5.3).
In 2D we would have only two principal values for the fabric and the unit plastic strain

n+n,=0 Ng, +Ne, =0
rate tensor: and =n,n,=*2/2 ,n,,n., =+2/2
n +n;, =1 ng, +ng, =1
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In 3D, we have three principal values and thus:
n+n,+n,=0

S (5.4a)

n +n;+n; =1

Nep+Nep + N3 =0

and (5.4b)

2 2 2
nFl + nFZ + nF3 _1
as both unit fabric and unit plastic strain rate tensors are traceless and unit-norm.

Furthermore, if we proceed on the 3D, after Eq. (5.4a) it results that:

n,=-n—n,

N, =—Ngy —Ney
and Eq. (5.3) then easily becomes:
N = (n,n., +nn.,)(L+cos® ) + (nNg; +nyng, ) (L+sin® @) (5.5)
Focus now only on one of the two tensors, the unit plastic strain rate. By using Eq. (5.4a)
we can express everything based on n,, because the eigenvector that is related with n,
and n, is constant and parallel to the y axis for the whole phase 2. Thus:

n+n,+n,=0 n, =-n,—n, n =-n,—n,
2 2 2 = 2 2 2 = 2 2 (56)
n +n,+n; =1 (-n,—n,)"+n,+n; =1/ 2n;+2n,n,+2n,-1=0

Now, solving 2n’ +2n,n, +2n; —-1=0 for n, (n, is considered known):

A=4n?—-4.2.(2n; -1)=4n; -16n +8=8-12n? , and so:

a _-2n,+8-12n;  -2n,+,/4(2-3n}) -2n,+2,2-3n] —n,+2-3n]
- 2:2 - 2.2 - 2:2 - 2

3

Thus:
-n, +./2-3n° -n, +./2-3n°
—n, +./2—3n? n,=—2 2 n,=—2 2
n3= 2 2 2 - 3 2 — 3 2
2 _ 2
n=-n,—n, n :—_ﬂZi 2-3n, —2n2 :—I’l2+ V2_3n2
' 2 2 ! 2
And so finally:
-n i,/2—3n -n —,/2—3n
n=—-Y—% and = 2 o (5.7)

The conclusion of Eq. (5.7) stands the same for n;, n-, and n.,.

B-96



Chapter 5: 3D DEM virtual experiments

Check that for Eq. (5.7):

n,+n, =-n,

n’+ni=1-n’

Also check that in triaxial compression and extension, which is by definition an
axisymmetric loading: n, = J2/3 & n,=n,= ~1/+/6 and n = 213 & n,=n, —1/+/6,
respectively.

Now remember the equation (5.5) for N and based on (5.7) we find that:

NN, | J2-3n22-3n¢,
2 2

Mgy +NyNe5 = (5.8)

e, 2-3n7y2-3nZ,
2 2

nN-, + NN, = =N" (5.9)

(check also that nng, +n,n-, +n N, +nN:; =n,N, as it should be).

Finally, by replacing (5.8), (5.9) in (5.5) we end up with an equation for N that contains
only the angle ¢ and the principal values for the unit plastic strain rate and the fabric

tensors which lie on the y axis (the principal value n, and n_,):

N =N ‘(1+cos? @) + N "(1+sin? @) = N+ 2N "+ (N '= N ") cos? ¢ (5.10a)
2-3n%,/2-3n2
N = efle2 +*/ yJ2-an;, (5.10b)
2 2
2 2
N My _ 230 230, (5.100)
2 2
Also based on (5.10a):
N =N"+2N"+(N'=N")cos? p=>cos? = (N —N'=2N")/ (N'=N ") =
p=acos({(N=N'=2N")/ (N=N")) (5.10d)

It was not necessary to derive the intermediate Eq. (5.5) for N in order to obtain Egs. (10);
the initial Eq. (5.3) of N could also be directly used, but for clarity we derived Eq. (5.5)
that is similar to the initial form of Eq. (5.10a). This equation is based only on the
assumption that the second eigenvector for both the unit plastic strain rate tensor and
the fabric tensor lie on the same axis. In our case, this axis is the y axis while the rotation
of the eigenvectors 1 and 3 takes place on the x-z plane.

From the DEM analysis, we can measure n, and n.,, and resultin a relation only between

N and ¢. The three principal values of the fabric are presented in Fig. 5.16. As expected
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from the triaxial load of phase 1, when stress PA rotation initiates the fabric major

principal value is equal to V2/3 (~0.8146) while the two minors are equal to -1/ J6 (
~—0.4073 ); this occurs as these three value must satisfy Eq. (5.4a) and (5.4b).

1.2

04

0

unit fabric

-0.8+

ol b v 4]
0 1 2 3 4 5 6 7
Number of rotation cycles

Fig. 5.16. Fabric tensor’s principal values

[tis important to notice here the theoretical importance of the equations (5.4a) and (5.4b)

on the evolution of these principal values. It is interesting to relate n, and n, with n, so
that based on the value of n,, which is obviously the more stable in value in Fig. 5, the

other two are analytically calculated. For this purpose, the solving procedure is the same
as for Egs. (5.6) and (5.7) because of the symmetry of Eq. (5.4a) and these relations then
yield:

(5.11)

It results that the values of n,n, and n, are related in such a way that only one of them

needs to be defined and then the other two are analytically calculated. Based on Eq. (5.11)

we can assume N, which is the major principal value and is the more stable in terms of
DEM measurements, and calculate the other two. If n, fluctuates even slightly from its

value, then the other two deviates a lot from their respected values. In Fig. 5.17 the

allowed values of n;,n, and n,are presented which satisfy Eq. (5.11), when n, varies

from +/2/3 (this is the maximum allowed value for n,) to 0.79; n, is assumed to have
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always the positive sign in Eq. (5.11) without loss of generality). The horizontal axis of

Fig. 5.17 is just measuring the number of values and is not of importance.
1.2

o
o

o
~

=]

principal values
>
N
>
w

|

-0.8

Fig. 5.17. The allowed combinations between the principal values of the tensors based

on Eq. (5.4a); n, varies from /2/3 ~0.8146 to 0.79

Based on this discussion, the principal values for the unit fabric tensor are considered
constant for phase 2 and they are calculated to fit the evolution presented in Fig. 5.16:

N;, =0.80; n.,=-0.2586; Ne, =—0.5414 (5.12)
For the calculation of these values, n_, is primarily estimated from the DEM
measurements and then n_, and n, are calculated based on Eq. 5.11. The fit of these

values with the measured DEM values is presented in Fig. 5.18.
1

0.5

unit fabric

0.5

A

1 i 1 i 1 i 1 i 1 i 1 i 1
o 1 2 3 4 5 6 7
Number of rotation cycles

Fig. 5.18. Fabric tensor’s principal values and their chosen constant values
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The evolution of the unit plastic strain rate appears different than the one for the fabric

and due to the more extreme fluctuations, it is more difficult to interpret it. From Fig.
5.13(a) when the stress PA rotation initiates n, =+/2/3 and n,, =n, = —1/\/6 similarly

to the fabric normal components, as it is expected. From the shear components, Fig.
5.13(b), it is concluded that the only shear unit plastic strain rate component lies on the
x-z plane and that the axis y is principal axis for the unit plastic strain rate.

After having confirmed the basic assumption, we procced to Fig. 5.19 to observe the

principal values of the unit plastic strain rate tensor. The value of n, should be decided

to be used with Eq. (5.10) and Eq. (5.12) for the calculation of ¢. Again Eq. (5.11) are used

for the relation among the three principal values.

o
o)

o
~

unit plastic strain rate
. S
iN o

o
™
I

1 i 1 i 1 i 1 i 1 i 1 i 1
1 2 3 4 5 6 7
Number of rotation cycles

-
N

o

Fig. 5.19. Unit plastic strain rate tensor’s principal values

After Fig. 5.19 two cases have been examined for the evolution of the principal values of
the unit plastic strain rate; for the first case, the principal values have a constant value
throughout phase 2 while for the second case an evolution is decided. These two cases

and their results now follow.

5.5.2.1. Case 1: constant n, value

Based on Fig. 5.19 three constant principal values for phase 2 are calculated to fit the
respected evolution. Thus:

n=075;  n,=-0.0955; n, =—0.6545 (5.13)
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These values are based on the estimation of n, from the DEM measurements and then
Ng, and n_, are calculated based on Eq. 5.11; though this is the main procedure, all three

principal values must fit well with their DEM measurements. The fit for these principal

values of the unit plastic strain rate is presented in Fig. 5.20(a).

1.2 — 0.3
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@ Number of rotation cycles (b) Number of rotation cycles

Fig. 5.20. (a) Unit plastic strain rate principal values along with their constant values
chosen for phase 2 (b) strain evolution of the sample on y axis based on constant

n, =—0.0955

That approach produces increase of strain in the y axis, which is the one parallel to the

eigenvector of n,. This happens because the value for the n, corresponds to a value for
the plastic strain rate de, through the norm of the plastic strain rate tensor. That leads to

an evolution for de, that produces strain on the y axis, as was observed in the experiment,

because: e, :J-de2 =constant=e . The results of the Fig. 5.20(b) are based on the

constant value of n, multiplied with the norm of the plastic strain rate tensor; this would
introduce n, -norm(de) = de, and this suggests that we get the increase of strain on the y

axis. This evolution is qualitatively consistent with the observed evolution of the strain
on the y axis, where the second principal value lies during the stress PA rotation on the

DEM sample.
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Based on Egs. (5.10), (5.12) and (5.13), (n, =—0.0955 and n_, =-0.2586 ) the following

calculations yield the relation between N and angle ¢:

N'=0.9544 and N"=-0.9297

N =-0.905+1.8838cos’ ¢ (5.14)
and
¢ = acos(/(N +0.905)/1.8838 | (5.15)

This equation directly connects N and ¢, and based on the calculated N Fig. 5.21(a)
follows. Fig. 5.22(b) is the angle ¢ measured from the eigenvectors of the two tensors
presented for comparison (same as Fig. 5.14(b)). A good agreement is presented between

these two methods for ¢ calculation.
7 70

60—

50

40

30

¢ (degrees)
¢ (degrees)

20

10

O 1 i 1 i 1 i 1 i 1 i 1 i 1 O 1 i 1 i 1 i 1 i 1 i 1 i 1
0o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
(a) Number of rotation cycles (b) Number of rotation cycles

Fig. 5.21. (a) Angle lag ¢ on x-z plane based on N and constant n, =-0.0955 and (b) ¢

calculated from eigenvectors, versus the number of rotation cycles

5.5.2.2. Case 2: evolving n,

On this case, the principal values of the unit plastic strain rate tensor are considered
evolving during phase 2, i.e. stress PA rotation. A trigonometric evolution is chosen to
describe the unit plastic strain rate principal values; the results are presented in Fig. 5.22.

For the equation of n, it is necessary to introduce the angle of the stress rotation on the

x-z plane @_, and so:
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n, =—1/(2+/6) -1/ (2+/6) cos(26.) (5.16)

The other two equations for n, and n, are directly calculated based on Eq. (5.7). This fit

is presented in Fig. 5.22(a). Based on Eq. (5.16) we can now calculate similarly as for case

1 the evolution of the strain e, ; the results are presented in Fig. 5.22(b).

1.2 S S — 0.3
Q 08\_/5\_/5\/;\/5\_/;\/5\/ I~
- ' ' ' ' ' '
(U - ' ' ' ' ' '
= AL
S04 _
= A 0.2
b -
o 2
L o i
3
5" 0.1k
c
S - L
1.2 1 i 1 i 1 i 1 i 1 i 1 i 1 0 YR I N U NI N
o 1 2 3 4 5 6 7 o 1t 2 3 4 5 6 7
(@) Number of rotation cycles (b) Number of rotation cycles

Fig. 5.22. (a) The trigonometric fits on the evolution of unit plastic strain rate tensor’s

principal values and (b) strain evolution of the sample on y axis based on evolving n,

Based on Eq. (5.10), (5.12) and (5.16) (n,=-1/(2/6)—1/(2+/6)cos(26,) and

ng, =—0.2586 ), the following calculations yield the relation between N and angle ¢:

N' = 0.0264(1+c0s(26, )) +0.6624,/1.833 - 0.25c0s(26, ) — 0.1667 cos? (26, )

N "=0.0264(1+cos(26,)) — 0.6624\/1.833 —0.25¢0s(26,) —0.1667 cos®(26,)

20| [(N-0.0792(1-+c05(26,) + 0.6624./1.833-0.25¢05(26, ) —0.1667 c0s?(26),))
¢ =
(1.3248,/1.833-0.25¢0s(26),) —0.1667 cos?(26),))

(5.17)
This leads to an equation that directly connects N and ¢, and based on the calculated N,
Fig. 5.23(a) follows. Fig. 5.35(b) presents angle ¢ calculated by the eigenvectors of the
two tensors (same as Fig. 5.12(b)) and is used for comparison. Again, a good agreement

is presented between these two methods of calculation of ¢.
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Fig. 5.23. (a) Angle lag ¢ on x-z plane based on N and evolving
n,=-1/ (2\/6) -1/ (2\/6) cos(26,) and (b) ¢ calculated from eigenvectors, versus the

number of rotation cycles
5.6. Discussion

Up to this point, it has become clear that the conditions of CST for reaching and
maintaining CS (Eq. 3.4) are incomplete, in the sense that they are necessary but not
sufficient. The ACST is a theory that has come to fill this incompleteness with one extra
condition, elegantly defined by Eq. (3.6). Besides the Critical State conditions per se, ACST
has come to propose some scalar values that can explain and quantify in a physical way
the possible reasons for dilation-contraction response, i.e. the void ratio evolution,
through the dilatancy defined in section 4.5, as well as for the hardening and softening of
the material, through the plastic modulus. The equations for the dilatancy as well as for

the plastic modulus are repeated here:

D=d(M‘ -n) (4.1a)
K,=h(M"-n) (4.1b)
M?=Me™ (4.2a)
M’ =Me" <~ (4.2b)

In the heart of ACST is the FAV A, which incorporates two elements: the fabric anisotropy
intensity and the relative orientation between the fabric and the loading direction

(quantified as the plastic strain rate direction). Another parameter, is the Dilatancy State
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Parameter (DSP) - £ (see also Eq. 3.7 and Chapter 3, section 2) the equation of which is
repeated here for simplicity:
S=e—e,=y—¢,(e,p)(A-1) (3.7)

with é,(e,p) an appropriate positive scalar-valued function of e, p (in the simplest case
a constant). This parameter has been used in section 4.5 for the explanation of the results
of the 2D DEM virtual experiments within the ACST. Eq. (3.7) physically suggests that
dilation-compression is related through ¢ to the density state of the sample with respect
to its CS value (through w ), and to the fabric in term of intensity (norm) and relative
direction, of fabric, with respect to the loading (herein plastic strain rate) via A. This
would be intuitive and natural as previous researchers have qualitatively suggested
similar explanations (e.g. Tong et al, 2010) for the void ratio evolution. From an
experiment as the one practiced herein, it is possible to extract all the information
concerning A, y but the term ¢é,(e,p) is unknown. The calibration of this parameter
would require more than the results obtained in this work, as the direct evolution of the
void ratio is based on the dilatancy D, which has also a second parameter for calibration,
the parameter m (see Eq. 4.1a and 4.2a).

Still, it is possible to assume a constant value for the é,(e,p) and calculate the evolution
of ¢, mainly during phase 2, which has been the non-typical loading phase. On this
discussion, the results from phase 1 and phase 2 are presented on Fig. 5.24(a) for three
different constant values of éA: 0.1, 0.35 and 1. The results are all plotted versus the
equivalent strain for uniform presentation of the two phases; from bottom to top the
constant e, value increases. For all the plots, the vertical grey zones mark the areas
where dilation takes place while the white zones where compression happens; these

zones are not calculated but merely concluded from the void ratio evolution.

On Fig. 5.24(b) are presented the void ratio, the state parameter  and the FAV for the

same phases (phase 1 and phase 2). On the bottom diagram lies the evolution of A, the

same as presented in Figs. 5.10 and 5.11. Above the FAV 4, is the state parameter i ; it
becomes clear that the evolution of  is exactly the same as for the void ratio as y is

merely the difference of the void ratio with its CS value, that is constant for the whole

experiment (given the constant p). Asaresult, i totally follows the evolution of the void
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ratio and is constantly negative; this state parameter can only declare where the sample
stands with respect to the CSL.
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Fig. 5.24. (a) Dilatancy State Parameter for three values of the function e, (b) void ratio
and plots of entities related to ACST (FAV A, state parameter i ) during the loading

sequence of phase 1 and phase 2 for; the grey zones define the area where dilation

appears
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5.6. Conclusions

In this chapter, the 2D virtual experiment presented in the previous one has been
extended in 3 dimensions. Though the implementation was very similar conceptually, the
practical application per se has been different and several technical issues had to be
solved. The results were expected to be qualitatively similar to those from the 2D, but
also different due to the extra dimension. Besides the very interesting and important
conclusions from the results of this virtual experiment, this has been also an opportunity
to compare 2D and 3D DEM; most of the times only the one of the two approaches is used
(usually only 2D without 3D) and so, with these results some conclusions can be drawn
also on the differences that the addition of the (real) third dimension might carry.

At first, the major conclusions drawn from the 2D virtual experiments, i.e. the
incompleteness of the CST and the support of this by the proposed remedy of Li and
Dafalias (2012), are even more supported by the 3D results. The same mechanisms are
revealed in the abandonment of the CSL during the stress PA rotation that render the
classical CST incomplete. Additionally, similar general trends from 2 to 3 dimensions
apply in the macroscopic and microscopic analysis. These are mostly the similarities of
2D and 3D DEM applications, that primarily validate the conclusions of Chapter 4, as these
conclusions were of conceptual form.

Furthermore, the 3D DEM experiment and the subsequent analysis, revealed significant
similarities with macroscopic results from physical experiments and other details, that
the 2D DEM could not capture accurately. The triaxial procedure of phase 1 has a
macroscopic response that is very realistic, presenting dilation and a small softening, and
the values obtained for the Critical State parameters are very close to those of real sands.
Thus, the results are quantitatively comparable to those of physical experiments with
similar materials. The void ratio evolution during phase 2 has the clear tendency for
overall contraction but with clear phases of, smaller in intensity, dilation, as in physical
experiments, a fact that did not appear in 2D. Additionally, the contraction of phase 2 was
mostly realized during the two initial cycles of rotation, as the rest of the rotation was
significant less in overall volumetric change. The overall volumetric change of phase 2
seems to be greater than in experiments with sands; still reasons appear that could

support these differences but further research could be needed to clarify this issue.
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Moreover, phase 3 reveals the return to the CS, under the same p value, as was also

suggested in 2D. Clearly, no matter where is the orientation of the triaxial loading, for the
same hydrostatic pressure, the material will return to the same CS, as expected. This
conclusion supports the independence of the CS on the loading path, as even if the
intermediate phase 2 forces the sample to abandon CS, the material still recognizes the
same CS.

The fabric analysis of the 3-phase procedure reveals similar trends with the 2D ones. As
the scalar values used in ACST are not dimension dependent (fabric norm is normalized
to go to 1 in CS, relative orientation of fabric and plastic strain rate varies from 1 to -1
accounting for coaxiality) there are no difference in these values. Though, in phase 2, the
lag between the fabric and the stress is obviously larger in 3D than in 2D and the same
happens for the plastic strain rate. Again, as in 2D, the plastic strain rate is the first to
rotate, while the stress follows and the fabric comes last; the lags though between them
are clearly larger. The relative orientation between fabric and plastic strain rate
quantified by N, goes from 1 to 0 (0 meaning conceptually that the two are perpendicular
to each other), and presents clear oscillations with respect to the cycles of rotation; these
oscillations appear to follow nicely the void ratio variations from contraction to dilation.
The oscillations of N have appeared also in 2D, but the values that N obtained there
(from 0.8 to 0.5) did not allow to be definite about their appearance given the numerical
noise of the analysis.

By analyzing N it has been revealed that the evolution of the non-coaxiality angle
between the unit fabric direction and the unit plastic strain rate direction tensors defined
on the rotation plane, does not present great differences with respect to the 2D case. The
different evolution presented for N in 3D is due to the different form this takes and not
on major differences on the angle lag ¢. The calculation of this angle ¢ based on N has
initiated a discussion on the evolution of the principal values of the unit fabric and the
unit plastic strain rate tensors. Based on this, it can be concluded that these principal
values evolve differently during stress PA rotation than in triaxial loading.

Finally, a brief but very interesting discussion on the Dilatancy State Parameter (DSP -
) of Li & Dafalias (2012) supports the fact that, this parameter is related to the evolution
of the void ratio. Furthermore, the dilative or contractive response of a material to a
certain loading, appears to be directly related with the DSP, which is based on the state
parameter i that declares the relation of the sample’s condition with CS and the FAV A
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which in terms is a function of the relative orientation of plastic strain rate and fabric
anisotropy and of fabric intensity. This parameter seems like an elegant way to include in

one the CS (with y ), the fabric anisotropy intensity (with norm F) and the loading

direction (in terms of plastic strain rate) through its relationship with the fabric direction
(with N).
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Chapter 6: Conclusions

6.1. Summary - Conclusions

Critical State Soil Mechanics has been a framework-paradigm for the mechanical
response of granular materials and soil mechanics since its introduction six decades ago.
Two analytical conditions were explicitly proposed for reaching and maintaining Critical
State (CS), those of Eq. (3.4), that refer to the stresses and the volumetric strain; they
constitute the basis for Critical State Theory (CST) and have since been considered
necessary and sufficient for reaching and maintaining CS. The special virtual experiment
that has been realized and presented in this work, in 2 and 3 dimensions, has been
inspired by the fact that CST lacks a fabric parameter, a feature that has been
constructively criticized in the past. In particular, the Anisotropic Critical State Theory
(ACST) of Li & Dafalias (2012) has challenged the completeness (in the sense of being
necessary and sufficient) of the classical conditions put forth by CST, by proposing an
extra, third condition, providing the motivation for the present experimental procedure.
It should be mentioned that this third condition was originally introduced in order to
address a strongly anisotropic response, rather than to show the incompleteness of CST
as it is done in this work and in a recent publication by Theocharis et al (2017a). The
aforementioned experiment was conceived, in order to compare the two theories and
their assumptions, which are of fundamental nature for the fields of granular material
and soil mechanics.

A three-phase experimental procedure took place in 2D and 3D using the Discrete
Element Method (DEM). The first phase consisted of a constant-p biaxial (in 2D) or
triaxial (in 3D) compression; the second phase applied the stress principal axes rotation
with fixed principal stress values initiating at Critical State, and constituted the most
important part of the procedure; the third phase was the resumption of the initial biaxial
or triaxial compression loading for several orientations of the principal stress axes. The
use of DEM has been the only way to conduct the desirable procedure, as physical
limitations make such an experiment very difficult, if not impossible, to realize in the
physical world. The three-phase loading that has been applied on circular (in 2D) and
spherical (in 3D) discrete elements, revealed several aspects of the materials’

characteristics concerning the response of a granular sample, especially at the regime of
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Critical State, which are of extremely interesting and important nature. In the process of
realizing this virtual experiment, several technical issues have been resolved, evolving
and expanding the potential use of DEM, especially near the CS.

During the key phase 2 of the virtual experiment, a stress principal axes (PA) rotation
took place, keeping the principal stress values fixed and initiating at CS, a loading path
that has never been attempted before. This path violated only the fabric-related third
condition, the new ACST condition, while keeping the two classical CST conditions
satisfied at the initiation of rotation. A dramatic reduction of void ratio was then
observed, contrary to what would be expected based on classical CST; CS was abandoned
almost instantaneously when the principal axes of stress deviated from the initial
configuration of the phase 1 triaxial load, even though the stress ratio and the void ratio
were in their CS values and the hydrostatic stress was kept constant. It follows that
classical CST is incomplete because its two conditions are necessary but not sufficient to
maintain CS, and an addition to Eq. (3.4) is necessary; thus, the third condition of ACST is
added to the first two CST conditions and all three are then both necessary and sufficient
for CS to be reached and maintained.

During phase 3 loading, a radial loading of triaxial type was applied after phase 2 and the
material reached the same CS when the necessary conditions were met. The void ratio
rebounded to its CS value in a direct way, while the stress ratio increased to a peak value,
due to the densification that took place during phase 2, and, afterwards, fell back to its CS
value.

The macroscopic results in general agree well with observations from physical
experiments where same stress paths were applied, even though, on this work, the stress
PA rotation initiated at CS. Additional fabric insight has been given to these macroscopic
results, due to the DEM flexibility. Along with the macroscopic response of the sample,
the fabric evolution has also been monitored through a fabric tensor. In particular, we
have used the fabric parameters defined within ACST, i.e. the fabric norm F, the relative
orientation of fabric and loading direction (defined in terms of plastic strain rate), the
Fabric Anisotropy Variable (FAV) A and the Dilatancy State Parameter ¢ . The fabric of
the granular samples has been quantified primarily through the contact normal fabric;
additionally, only for the 2D case, the scan line method has been implemented for
measuring void fabric. The void scan line fabric tensor definitions used herein include

crucial modifications and improvements with respect to previous work on the scan line
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method. It can be concluded that, at least in the context of this work, the contact normal
and the void scan line fabric led to very similar results.

Most interesting are the results of phase 2, stress PA rotation initiating at CS, considering
the changes of the principal axes of the stress, the plastic strain rate and the fabric. On the
2D DEM virtual experiment, the results presented a fast transition from phase 1 and

phase 3 to and from phase 2, during which the PA of fabric follow the PA of stress by an
angle lag of 5° on average, while the PA of stress in turn follow the PA of plastic strain

rate by an angle lag of 13°, as all three pairs of PA rotate almost simultaneously. On the
3D case, we observe the same fast transition to and from phase 2 while the plastic strain
rate, stress and fabric tensors rotate following the same sequence as in 2D. However, on
3D it became obvious that the three tensors do no keep a constant lag while rotating, but
oscillate significantly. The angle lag was in general greater between the rotating
directions of the plastic strain rate and the stress, than those of the stress and the fabric.
Focus has been given on the plastic strain rate - fabric relative orientation, through N .
The lag between these two quantities appears to oscillate in such a fashion that plastic
strain rate and fabric tend to be coaxial at the beginning and in the middle of each rotation
cycle, while they tend to be strongly non-coaxial in between. This observation can be
related to the oscillations of contraction-dilation of the void ratio during the stress PA
rotation.

Finally, valuable information was obtained by comparing the same experiment in 2 and
3 dimensions, thus examining if the 2D analysis could suffice and fully evaluate the
phenomena described. On one side, the 2D DEM virtual experiment correctly captured
the general mechanisms and concepts, correctly answering the principal question of
whether CST was incomplete and whether ACST could be an accurate remedy. On the
other side, vital details, such as the significant contraction of the sample during the first
2 cycles of the stress PA rotation, the oscillations of contraction-dilation of the void ratio

and the oscillations of the FAV A, have been obscured in 2D, while plainly revealed in 3D.
6.2. Discussion - Further research

This work answered some important questions, yet other queries exist that require
further research. At first, there are two major effects that could be added to the analysis

in order to solidify the results. The one is the shape of the particles, which in this work
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were circular in shape in 2D and spherical in 3D; changes of the particles’ shape have
been shown to play a key role in granular materials’ response. Although such an
alteration in the analysis is not expected to modify the primary conclusions of this work,
it would be necessary to validate them and to examine any differences that might occur
in the results. Additionally, we assumed an initially isotropic fabric for all the samples;
this could be changed so that the specimen is initially anisotropic, as in cases of pluviation
under gravity. It is quite possible that such a variation would not affect results at CS, but
it would be important to analyze the response of the sample before the CS and during
phase 2 and 3 where the material has abandoned CS, and thus such a difference on the
initial conditions may affect the details of the response.

Another crucial issue that arises and is at the heart of ACST, and any other fabric-related
analysis, is which type of fabric and which fabric tensor would be most efficient in order
to explain and quantify the material’s mechanical response. Due to the nature of circular
and spherical particles, only contact normal and void fabric exists. These two fabric types
appear to be directly related with respect to this type of particles and can possibly be
used interchangeably, thus being of no major importance which one of the two is
implemented. However, when elongated particles are used, all three fabric elements
appear to play a vital role to a specimen’s response. In this regime, of elongated or
irregular particles, more research is needed concerning the fabric elements, their
relations, and their importance to the material’s mechanical response.

Furthermore, in this work only the 2D scan line method has been used, as a relevant 3D
method is not yet completely developed. Such a 3D scan line method should be
implemented, following the path that has been paved by this research in 2D. This would
provide a proper way to measure the void fabric in 3 dimensions; 3D methods for void
fabric are especially needed for physical experiments where the quantification of contact
normal is difficult and still seems uncertain. With such tools, it becomes possible to
quantify fabric and all of its elements, in simulations and in real materials.

Finally, it is worth noting that one could argue on the way of remedying the
incompleteness of CST, and examine the possibility of adding an alternative third
condition in order to create the necessary and sufficient conditions for reaching and
maintaining CS. Specifically, since this incompleteness is related to the lack of a condition
that corresponds to the CS feature of a constant deviatoric strain rate direction, another

possible third condition could be one that would not allow any change in the direction of
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the plastic strain rate. If this demand for fixed plastic strain rate directions could be
formulated by means of an adequate mathematical expression, then this new set of
conditions would also be necessary and sufficient. However, the fact that such fixity of
strain rate direction must be defined in regard to the sample (e.g. one could superpose a
rigid body rotation to the whole sample and change the strain rate direction, but not
intrinsically), leaves no much room for a third condition much different than the one
proposed in ACST. Nevertheless, ACST provides a framework that, not only remedies the
CST, but also introduces the concept of fabric and of anisotropy in several aspects of the
material’s mechanical response, thus providing a more complete overall framework for

modeling and understanding the mechanical behavior of granular materials.
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Appendix
Scan line void fabric tensor definitions and their

shortcomings

1. Scan line void fabric tensor in existing literature

The following definitions and notations are introduced, where the notations may differ

from those of the original contributions we refer to, in order to unify the presentation: 1

is the length of an i, void scan line segment along angle 8; N is the total number of scan
NH
line segments at an angle 6; L, = Zlf is the sum of all void scan line segments | along

i=1
6=90°
6; 1 =L"/ N’ is the mean length of scan line segments for each angle 8; L= Y_ 17 isthe
6=-90°
sum of all mean lengths 19 over all 8, where the summation is executed in predefined
intervals of © within the angular domain [-90°,90°]; and N" denotes the total number of
voids. A summation over 6, in the limit of very small intervals of 6, is equivalent to
integration over 0 in the chosen angular domain since the original scan line void
definitions in Oda et al. (1985) were given in terms of integrals. Therefore, an
appropriately dense set of intervals of 8 should be chosen when summation is executed,

in order to approach the result of integration. Different angular domains than the chosen
[-90°,90°] may be considered, as long as they cover all directions 8 within a sample, such
as [0°,180°] or [0°,360°], with no loss of the essence of final conclusion in this work.

Void fabric is quantified using a corresponding scan line void fabric tensor based on all
void segments in all directions; the original definition of this void fabric tensor was

proposed by Oda et al (1985) for 2D and reads:
6=90°
v°da=4[1 I"n‘9®n‘9—%lj (1)

6=—90°

where n? is the unit vector along all scan line void vectors inclined at a specific angle 6,

| is the identity tensor and N’ ®n’ represents the tensor product of n’ by itself. Same
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Eq. (1) with % substituting for % in front of the identity tensor was used in Kuo et al.
(1998).
Ghedia and O’Sullivan (2012) modified the first part in parentheses of Eq. (1) to define a

scan line void fabric tensor by:

1 6=90° _
v==> 1n"®n’ (2)
L 0=—90°

Where 1?=L%/N" is the mean total length of voids along 8 per void and acts as the

weighting factor for the tensors n’ ®n’ (contrast this to 1° =L’/ N’ entering Eq. (1)).
Notice than unlike usual definitions, the L does not equal the sum of the weighting factors
17 in Eq. (2).

We will adopt only the first part in parentheses of Eq. (1), as is, for scan line void fabric
tensor definition, which is very similar and compatible to existing definitions for other
types of solid phase fabric tensors, as well as for a more recent but different void phase

fabric tensor definition by Fu and Dafalias (2015), and reads:
1 6=90°
G, == > I'n®n’ (3)
6=-90°
Hence, the mean length of the scan lines 1? for each angle 6, provides the weight of the
tensors N’ ®n’ and its orientation distribution characterizes the anisotropy. In case 1°
is equal for all 6, it will be eliminated from numerator and denominator of Eq. (3),
emerging from the fact that L is a summation over all 1?, and by using integration over 0

to express accurately the ensuing summation of n’ ®n?, one obtains from Eq. (3) the half

identity tensor (1/2)l corresponding to perfectly isotropic fabric.

2. Analytical proof of shortcomings of existing scan line void fabric

tensors

The definitions of Egs. (1) and (3), based on weights related to lengths of void vectors (or
void segments), gives rise to an important implication that leads to an inherent
shortcoming regarding the accurate quantification of void fabric anisotropy; an even
greater shortcoming applies to the definition by Eq. (2). These shortcomings will be
proved in the sequel by analytical means; 2D conditions are assumed, but the conclusion

applies as well to 3D.
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When the assumed fixed distance d between pairs of parallel scan lines multiplies a scan

line segment |’, it yields the differential area element 5A, =1’d of the total void surface
area A, in 2D. Based on the previous definitions, it follows by summation over all i’s for a

given 6, and in the limit case as d — 0 and N’ — o, that:

N/ N’

A =Y 6A, =D 17d =Ld = N“1°d = constant (4)
i=1 i=1
6=90° 6=90°
With 1°d =A, /N’ from Eq. (4), it follows that Ld= ) I’d=A, > (1/N,). Thus,
6=-90° 6=-90°

multiplication of numerator and denominator of Eq. (3) by d and use of the foregoing

expressions for 1°d and Ld, eliminates the common factor A, yielding the expression:

1 0=90° 1 ) )
G,=—— D N7 ) en (5)

Z ( 1 ja—goo
0=—90° Ng

Surprisingly any notion of void length disappears from the form of Eq. (5), despite the
fact the void fabric tensor was defined in Egs. (1) and (3) on the basis of void length

segments. Instead, the weighting factors of the tensors n’ ®n’ are limited to the inverse
1/ N, of the total number of the void scan line segments for each angle 8, and do not
depend on the lengths of the void segments or the mean void length. However, there is an
indirect and subtle connection between void length segments and N?, because the latter
implies a certain orientation arrangement of the long and short axes of voids. This
happens for example simply because one needs a greater number N’ to cover the same
surface void area A, if scan lines at a fixed distance d cross the voids along their short
axes than along their long axes. The appearance of 1/N, constitutes a serious

shortcoming concerning the quantification of fabric anisotropy (Theocharis et al., 2017b).

In regard to the definition of Eq. (2) an even more serious shortcoming appears. Recalling
that 1?=L1L"/N" (N'is the total number of voids), 1°=L?/N? and 1°d=A /N’, it
follows that 1°d =(N?/N")I’d = A'/N,. In the following derivation, the distance d is

assumed to be small enough so that the number of voids crossed during scanning in any

orientation 0 is the same and equal to the total number of voids N". Multiplication now

of numerator and denominator of Eq. (2) by d and use of the foregoing expression for
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6=90°
I°d and the previous expression Ld = A Z (1/N,), eliminates the common factor A,
0=-90°

6=90° -
and yields the expression V=~ [ NY > %J % |, where the half identity tensor (1/2)I
o

=-90°

appeared by integration over 8 as shown after Eq. (3) for the case of same |? for all 6; the
symbol =~ is used instead of = to simply express the approximation of the summation over
0 to the implied accurate integration. The result implies that V is always an isotropic
tensor, a serious drawback of Eq. (2) that is intended to measure anisotropy.

The exact same conclusion and shortcoming of the foregoing definition of void fabric
tensor can be reached for a three-dimensional sample. In this case, the scan lines are
positioned at equal distance among themselves in three dimensions, which implies that
each line can be considered as the axis of a rectangular prism with area a normal to the
scan line. If the length of all scan lines in a given angle 0 is multiplied by the area aand
the limit is taken as the number of scan lines tends to infinity while a tends to zero, the

result of the product is the void volume V, of the sample in lieu of the void surface area
A, in two dimensions, which is of course the same for every orientation 0. In analytical
terms it implies an equation equivalent to Eq. (4) in 3D, where V, substitutes for A, and

a for d, while the summation will take place over a spherical stereo-angular domain in
3D instead of a planar angular domain in 2D. Thus, what follows afterwards is the same
as in two dimensions and the corresponding equation to Eq. (5) will be identical in form

with aforementioned differences for 3D, as compared to 2D.
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