EONIKO METZOBIO IIOAYTEXNEIO
2XOAH HAEKTPOAOTI'QON MHXANIKON KAI MHXANIKQN YIIOAOT'IETON
TOMEAZX TEXNOAOTIAX IIAHPO®OPIKHE KAI YTIOAOTIETON

loT System Development and Implementation for

ECG Signal Analysis and Visualization

AITIAQMATIKH EPT'AXIA

Mnakorag lodvvng

Emprénov : Anuntplog Zobvtpng
Avaminpotc Kadnynmge E.M.IL.

AbMva, Tobviog 2017

EONIKO METZOBIO IIOAYTEXNEIO
2XOAH HAEKTPOAOTI'QON MHXANIKON KAI MHXANIKQN YIIOAOT'IETON
TOMEAZX TEXNOAOTIAX IIAHPO®OPIKHE KAI YTIOAOTIETON

loT System Development and Implementation for

ECG Signal Analysis and Visualization

AITIAQMATIKH EPT'AXIA

Mnakorag lodvvng

Emprénov : Anuitplog Zodvrpng
Avaminpotc Kadnynmge E.M.IT.

EykpiOnke amd v tpuern egetaotikn emtponn v 191 Iovviov 2017.

Anptprog Zobvtpng Kuopd IMexpeviin I'empyrog Matodmovriog
Avoaminpotig Kabnynmce E.M.IL Koabnynmg E.M.IL. Avominpotg Kadnynme E.M.IL

Abnva, Iovviog 2017

Mmnaxorag Iodvvng

Amhopotovyoc Hiektpoddyog Mnyavikog kot Mnyavikog Yroroyiotov E.M.IL.

Copyright © MrokoAag Imdvvng, 2017.

Me gm@Oroén Toavtog dikaudpartoc. All rights reserved.

Amayopevetal avTypaen, omofnkKevon Kot SloVOouUn TNG mopovcos EPYNciag, €&
OAOKANPOL 1 TUNHOTOC OVTNG, Yo EUTOPKO okomd. Emtpénetor m avatvmwon,
amofNKEVOT KoL OLVOUY Y10 GKOTO U1 KEPOOGKOMIKO, EKTALOEVTIKNG 1| EPEVVNTIKNG
@OONG, VO TNV TPOVTOOEST VL AVOPEPETAL 1 TTNYN TPOEAEVOTG KOl VO Sl TN pEiTaL TO
wapov unvopa. Epotipoata mov a@opodv T xpnon e epyaciog Yo KEPOOGKOTIKO
oKOTO TIPEMEL VoL ameLBVVOVTOL TPOS TOV GLYYpaPEA. O ATOYELS KOl TOL GUUTEPAGLOTO
OV TEPEYOVTOL GE ALTO TO £YYPOPO EKPPALOVV TOV GUYYPAPLN Kol OEV TPEMEL VAL
epunvevdel 6t1 avtimpoowmevovy TS emionueg 0écelg tov EOvikod Metoofiov

[ToAvteyveiov.

Abstract

The purpose of this diploma thesis is the design, development and implementation of
an end-to-end ECG analysis and visualization 10T system using market ready
technologies that can be used in real life medical applications and scenarios. For the
development of the system we chose technologies and frameworks by taking account
factors like cost, support, platform portability, backwards compatibility with older
versions of software and hardware, power consumption, computational and networking
load. The system consists of three main parts, the first part is the embedded Linux based
application which reads the ECG signal and transmits it via classic or low energy
Bluetooth to a smartphone or tablet. The second part is the android application that
receives the ECG signal, stores it on the device, visualizes it (real-time visualization
support on BLE connections) and sends it as a http packet through internet to the server
for database storing. The last part is the webservice that runs on the server, its task is to
receive the packet from the android app, evaluate that the packet has the right format
and connect to the database to insert or update the record. The performance of every
part of the system was validated by experimental evaluation of trade-offs that affect the
run-time operation of all sub-systems, thus leading to the optimum configuration of the

complete system.

KeyWO rds: ECG analysis, Internet of Things (10T), Android, Bluetooth, Databases,

Embedded Systems, Smartphone, Tablet, Wearable Devices

Ieptinyn

O okomdg avTHg TG OMAMUATIKNG €ivan 0 oyedlacuds, N avdmtuén kol 1 vAoroinon
evog 10T cuoTUATOC Yo TNV AVAALGT] KOl OTTTIKOTOINGT NAEKTPOKAPILOKOD CTUATOC
YPNOUYLOTOIDVTAG EUTOPIKES TEYVOAOYiEC TO omoio pmopel vo ypnotpomombei oe
TPOYUATIKEG 10TPIKEG €Papproyés. o v avidmtuén Tov GLGTNUATOG EMAEENLE
texvoloyiec kot dopég Aaupdvovioag vroyy moapdyovieg OTmMG KOGTOG, LIOSTNPIEN,
ovUPaTOTNTO PE TOAOTEPEG EKOOGELS AOYIGLIKOD KO DAIKOV, KOTOVAAMGT) EVEPYELOG,
VTOAOYIOTIKO KOt €MKOWOVIOKO @optio. To cvotuo amotekeite amd tpion KLPimG
TUNUATA, TO TPDTO TUALA EIVOL 1] EVOOUATOUEVT E@apuoyn o€ Linux n omoia diaPfdlet
TO MAEKTPOKOPOIKO GO KOl TO HETAOIOEL HECH KAUGGIKOD 1 YOUNANG EVEPYELOG
Bluetooth o smartphone 7 tablet. To devtepo tunua ivar 1 epappoyn o€ android n
omoia d€XETAL TO NAEKTPOKAPIIOKO G, TO OTOONKEDEL GTIV GLGKELT, TO OTTIKOTOLEL
(n omttiKOTOINGN GE TPOYUATIKO YPOVO Voot pilete o€ cuvdéoelc BLE), kot 1o otélvel
cav makéto http péow Internet otov server ywa omofnkevon otnv Paon dedopévmv. To
TeEleVTOio TUN O Elvor To Web Service to omoio Tpéyel 6Tov Server, 1 SovVAELd ToL 071010V
gtvon va Aafet to makéto and v epoppoyn o€ android, va eléyEet av 1o TakETO £xEt
TNV COGOTH HopPomoinon kot vo cuvdebel pe tnv Pdorn dedopévav ylo va e16dyet 1 va
avavemcel Vv gyypaen. H emidoon kdbe tpuqpotog tov cvotiuatog eAéyyOnke
TOIPVOVTOG TEWPALATIKES LETPNGELS TOV dAPOP®V TP yOvT®V ov ennpedlovv tnv
Agrtovpyio TOV VTOGLOTNUATOV KATO TNV SLAPKELN AEITOVPYEING DOTE VO EYOVUE 1oL

TANPT KOl GUVOALKY] EKTIUNOT TG AELTOVPYIOG TOL GUGTHATOG.

Aééslg-K)»aé‘nd: Avédivon niextpokapdiokod onpotog, Internet of Things (1oT),

Android, Bluetooth, Bdaoeig dedopévov, Evoopatopéve cvotiuata, Smartphone,

Tablet, ®opetég cuokevEC

Acknowledgments

I would like to express my sincere thanks to Professor Dimitrios Soudris for giving me
his trust and the opportunity to carry out my diploma thesis under his supervision. His
guidance and teachings provided me with the skills and the motivation to accomplish
this work. |1 am also grateful to my supervisor Vasileios Tsoutsouras for his guidance
and support. | would also like to thank him for the continuous productive and smooth
cooperation throughout the conduction of this thesis. Lastly, | would like to give my
most sincere thanks to my family for their unexhausted encouragement and enormous
support they showed me in achieving my goals. Without their assistance and love the

challenges in my life would seem unbearable.

Iepreyopeva

EXTeTapévn TLEPIAMWN ..o 11
BIUBTOOTN ... 13
HapovGIaoT] TOU ZUGTHOTOG ... ceeieiiiiiiiiieiie et 14

Bluetooth Eg@appoyn mapakorovOnong HKI kov peragopds dedopévev

BOAOLOPEVI] GTO LANUXovviiiiiiiiiii i 15
EQ@oproyt) ANAIOIdccoiiiiieciee et nne s 17
RESTTUI WED SEIVICE ..o 18
TIEIPOPOTUCE ATTOTEAEGLITOL ...ttt snee s 19
YUuTEPAGNOTA KOl TPOTAGELS Y10, REAAOVTIIKT] EPEVV ... 25

10

Extetopévn Hepiinyn

O oKomdg VTG TG SIMAMUATIKNG Elval 0 GXEOIACUOG, 1| AVATTLEN Kot 1) LAOTOIN oM
€VOG GLGTNUOTOG Y10 TNV OVAALGT KOl OTTIKOTTOINGT NAEKTPOKOPIIOKOD GNUOTOG LE
dvvatotreg 10T. Xpnowomomoape TeXVOAOYieC Ol OMOIEC HmOPOLV Vi
YPNOUOTOUNOOVV GE TPAYLOATIKES LULTPIKES EQAPLLOYES Kot £x0VV V10OETN Ol amd TOAAEG
EUTOPIKES ETAPETLEG KO OPYAVIGLOVS Y10 TNV AVATTLEN GLGTNUATOV EVPELNG KALLOKOC.
[Mapaxdto mapovcialovtor o1 Pacikéc 10€eg Kot pebodoroyieg mov ypnoipomodnkoy
Y. TOV GYeSOOUO TOL GULGTHHOTOC, TO EMUEPOVS LIOGLGTHLOTO OTO TO ONoio
amoteleitol KabmOG Kol TO OMOTEAEGULOTO TOV TEPAUATIKOV HETPCEDMY TOL TO
APOPOVYV MGTE VO EYOVLE U0 TANPT EIKOVO Y10l TNV AELTOVPYIN KO TNV GUUTEPLPOPA
TOV GLGTNHOTOG LOG.

Mia amd T1g peyaAdteEpeg mPOKANGELS TOV TTPEMEL Vo EemepAGOVLE GNLEPQL KO
070 £YYOG LEALOV elvar 1) dpapatiKy avénon tov KOGTOVS TNG VYELOVOUIKNG Ttepifaiyng
oe moykoouo KAipaxo. ‘Evag amd tovg Pacikods mapdyovieg mov TPOKOAOLY TNV
avENOM TOL KOGTOVG TNG VYEWOVOKNG TtepiBaiyng elvar n avdykn ToapoakoAovOnong
TV ac0evdv 1060 Katd T ddpketo g Oepaneing Tovg 660 kot petd. Me tnv mpdodo
™G TEYVOAOYIOG UTOPOVUE VA OVOTTUEOVHE KOl VO DAOTOW|COVUE GLGKEVEG TOL
UTOpOLV va TopakoAovBoLV pe emituyio kol pe pEYAAn axpifeia Ta mEPLGGOTEPQ
avOpomva PLoA0YIKE GNHOTO YPNCLOTOIDOVTOS EVEOUATOUEVOVS 0eONTIPES, EXOVV
dVVATOTNTEG SLOGVVIESNG GTO O1001KTLO, HTOPOVV VO, AEITOLPYOVV Y1 UVEG AOY® TNG
YOUNANG KOTavAA®ONG evEPYElag, &ivol IKPEG Kol OPKETA EAOPPLEG (OTE Vo
TomofeTOVVTOL GTO VOPAOTIVO OO EDKOAN Y®PIg VO TPOKAAOVY EVOYANON Kot EXOVV
YOUNAO KOGTOG Tapay®wyNs. AVTEG OL POPETES WUTPIKEG GVOKEVEG OIvVETAL VO €fvor M
Abom Yo vo GTARATNCEL 1] VO TEPLOPLOTEL 1 Gvod0G TOL KOGTOVLG TNG VYELOVOUIKTG
nepifaiync.

Ta mopomdveo pmopodv va eQopUOCTOVV e gvupeion KAlpako xdpn otnv
avamTuén ko taydton dudoon tov Internet of Things (10T). Tevikd, To IoT eivon pa
EVVOl0. TOL OVOPEPETAL OTN SLOUGVVOEST KAOMUEPIVOV OVTIKEUEVOV OTMG OKIOKES
OLOKEVEG, OYNUATO, KTiplto Kot dAAo avtikeipeva mov Onfétovv evompatopéva
NAEKTPOVIKE KUKADUATO, TPEYOVV KATOL0 AOYIGHKO, 0leONTHPES 1| TNV dvvaTdTNTA VO
OLVOEOVTOL GE OTKTLOL KOl EMTPEMEL GE OLTA TO AVTIKEILEVA VO GUAAEYOLV Kol Vo
avtoAddocovy dedopéva . Ot apyés tov IoT pumopovv va epoaprosTovV G€ EPAPUOYES
HIKPNG KAIHOKOG, 0TS TOV OVTOUATIGHO €VOG GMITION, 1 GE HEYAAN KOl TOADTAOKN
épya OTmG 1M TaPUKOAOVON O™ Kol 1] StaXElPIoT) OAOKANPOL TOL GUGTHUATOS LETAPOPAS
N evepyelakng davouns pag moAng. ‘Eva amd ta peyoldtepa LEIOVEKTAOTO TOV
TAMNTIEL TNV ovTayovieTiKOTTo Tov mtpoidvtov [oT eivon n €ddewyn mpotimov,
TPOTOKOAL®V Kot TAOGimV ov PBonbovv kot emtaybhvouy To GYedOGUO Kol TNV
avAmTLEN TETOLMY EQUPLOYDV, 0 AOYOS Y10 TOV 0TToio cupPaivel avtd eivan Ot TéToteg
EQUPUOYES OmOTEAOVVTAL OO TOAAEG ETEPOYEVEIG GLOKEVEC TOL TOPAYOVTIOL OO
SLUPOPETIKOVG KATACKEVAOTES, OTOV 0 KABE Evag ypnolomolel To d1kd ToL AOYIGHUKO
Kol eQapprolet Ta d1kd Tov TPOHTLTO, ETGL 01 GYEOIAUCTES KOl O1 TPOYPOUUOTIOTES QVTAOV

11

TOV CLGTNUATOV TPEMEL VO fPOVV ATOTEAEGULATIKOVS TPOTOVG Kot AVGELS Y10 VO TIG
KAVOLV VO ETIKOV®VOUV HETAED TOVE 68 £val Koo dikTvo. Onmg éxovpe mpoavagépet
10 IoT yopaxtnpiletor amd TO. ETEPOYEVN YOPOKINPIOTIKA TOL, OVTO KAVEL TN
oNuovpyio LaG apYITEKTOVIKNG ¢ PACNC YO0 TNV AVATTUEN EQPAPLOYDV TPOYLOTIKA
dvokoAn. H mpocéyyion mov @aivetor mo eAmdopdpo Ko mpoteivetor elvarl m
OPYLITEKTOVIKY] TPOGaVATOAMSUEVT oTig vanpecieg (SOA). H apyttektovikn avt opilet
TE60EPO EMIMENQ TOL OTTOLOL PaivovTal otV eKOvVa 1.

Sensing Layer Network Layer Service Layer Interface Layer
RFID Tags
m Service Service .

o Social Business Logic Implementation Buls Application
Intelligent Sensors WSNs Network - J’ Frontend
- Service N —_—
RFID Readers Division) B Contract

\0 Data Sensing Cloud Sif —

Placquisition Internetwork ! AL EN }
WSNs Protocols) Integration ‘f‘ Interfaces
("] 3 —)
Q WLAN Mobile *\ Service N Repository Application
Network iti APl
BLE Devices 4 A L M
Blostooth

40

Ewova 1: [Ipocavatolopévn oTig vanpesieg apyttekToviky yo TNy avantoén loT
GUOTNULATOV.

Onwg avagépape 10 cOHOTNHO TOV GYEdcaUE EKPETOALEDETAL Kot a&lomotel
TNV aVAALGT TOV NAEKTPOKaPIOKOL ofuatos. 'Eva niektpokapdtoypdonpe n HKIT
Kataypaesl v MAekTpikn dpactnpdtra otnv Kapdd. To onua HKI mapdyston
KaOdG 0 kapdloKOG HVUG GLOTATE AGY® TNG OVTIOPUGNS TOL OTNV MAEKTPIKN
OTOTOAMOTG TOV HVTKOV KLTTAPMOV Kol KOTAypAeeTol amd NAEKTpOdto Tomodetnéva
010 copa Tov acBevoc. To HKT givor éva amd ta mo yproyta kot gOnva tect mov
YPNOLOTOLOVVTOL Y10l TNV TPOTUPYIKT SLAyvecT TG mabnong tov achevr|. Qotoc0, N
ocwot epunveia kot dSyvomon tov HKI amaitel xpodvo ko epmetpia amd tov Oepdmovia
ywtpd. Muw Abom ywoo TV OVTILETOTICY, OVTOV TOL TPOPANUATOg €lvar 1
avtoparonoinon g avdivong HKI pe m Ponfeia vrodoyiotikdv cuokevmv. [ToAloi
EPELVNTEC €YOVV OVOTTTOEEL OAYOPIOHOVG pnyovikng pdbnong ot omoiot pe v
KATAAANAN EKTTOOEVOT UTOPOVV TOAD YP1YOpO Kot LE LEYAAN akpifeia vo evToTiGovV
avopoiies kot tpofAnuata oto HKIT pe amotéleopo va £xouv v OuvVaTOTNTO KOO
KOl VO S10y VOGOV TOV acBevi| ympic VoL amonteiton pUGIKY| Tapovsio TOL Y Tpov.

12

([Heartbeat | [Heartbeat [[Feature) ox
P T >{ Filtering 4 -) - i - Classification
\ . Detection L Segmentation J { Extraction J)

Ewova 2: Awdypoppo avaivong HKT .

Bluetooth

H actOppot teyvoroyio Bluetooth givar éva chotua entkovoviag pikphg eppéretog
7OV TTPOOPILETOL VO OVTIKOTAGTNOEL TOL KAAMOLO TOL GLVOEOLV POPNTEG N oTafEPES
NAEKTPOVIKEG GUOKEVEG, avamTLYOINKE apylKd ©C acVPUATN EVOAAAKTIKY] ADGT oTa
KaAdd dedopévev twv Bupav RS-232. H tpoddnon, n avémtuén kot 1 dayeipion
tov Bluetooth yiveror amd v Opdda Ewdikod Evdweépovtog Bluetooth (SIG). H
teyrvoloyia pmopel va viomonbel e dvo popeéc: Basic Rate (BR) pe v mpoarpetikn
duvvatodtto EDR (Enhanced Data Rate) kot youning evépyswog (LE). Zopeova pe tic
TpodaypapEg Tov SIG, 01 KOTAGKELOGTEG WTOPOVY VO EVOMUATMOGOVY TNV (o 1 Kot
T1G 500 HOPPEG BTIG GLGKEVES TOVS, OAAG LdVo pia pmopei vo lvar evepyn kot dStobéotun
v ovvdeon avd mhoa otiyur. To cvomua BR / EDR emikevipoveton mepiocdtepo
oV tohTNTO Kot T dtaKivinon tov dedopévav eved to cvotua LE emikevipoveton
OTN YOUNAOTEPT KATOVAAMOT KATA TNV LETOPOPA OEOOUEVOV ALY KOt OGO TO GUGTILLOL
Bploketor 6e avopovr], TN WKPOTEPN TOALTAOKOTNTO KOl TO YOUNAOTEPO KOGTOG
kataokevng and to BR/EDR. H teyvoloyia Bluetooth ypnoytomoteitar 16m evpémg wg
TEYVOLOYLO KOTOGKEVTG SIKTVMV Y10, TNV EMKOWVOViD LETAE) GLOKELDV GE EQPUPLOYES
IoT, kaBdg £xet opiopéva Pactkd TAEOVEKTALOTO G GUYKPION e AAAES TEXVOLOYIES.
To Bluetooth BonBa v avantuén epappoydv daympilovtag ta younidtepa enineda
TOV TPOTOKOAAOV OO TOV TPOYPOUUATIGTY], dNUovpyel avtd 10 eminedo apaipeons
YPNOLOTOIDVTAS Ta amokoAlovpeve Tpogil. Ta wpopid tov Bluetooth kabopilovv Tig
amottoOUEVEG Asttovpyieg kat Tig puOuicelg ke otpdpatog tov cuotiuatog Bluetooth
amd 10 QLGOS (padoPwvikd) eminedo péxpt 10 L2CAP, xabopilovv emiong
CLUUTEPLPOPE TV EPOPUOYOV Kol TN popen odedopévov. H doun mov elvan
TPOGOVOTOAICUEVT] OTIS VLANPECIEG TOV LYNAOTEP®V EMTEOWV NG TEXVOAOYiNG
Bluetooth tnv kabiotd 1davikn yia thv eveoudtmor g oty (SOA) apyItekToviKn yia
v avantuén cvotnpdtov [oT.

13

Mapoveiacn Tov TveTipatog

To cVvomua mov avarTOHEAE KOl EPOPUOCALE GE VT TN OIMAMUOTIKY OTOTEAEITOL
amo tpio drakprrd pépn. To mpdTo PEPOG ivar 1 epappoyn mov Paciletar oty BlueZ
stack tov Linux kot ypnoipuedel og onpeio 16660v TOL GLGTHKATOC. XKOTOG TOV Eivot
va dtoPalel v €ic0d0 amd To NAEKTPOSIA TOV TOTOHETOVVTAL GTO GO TOL AGHEVOVG
Kot va petadioet Tig petpnoelg péow Bluetooth oty epappoyn Android. H epappoyn
Android amoteAei t0 dgVTEPO KOUUATL TOL GLOTHROTOS. Mmopel va Aettovpyel og
omoladnmote cvokevy (smartphone, tablet k.Am.) mov ypnoyomotel to Android ¢
Aertovpykd cvotnua kot owbétel o povado Bluetooth. H epapuoyn extelel o
oelpd Asrtovpyldv. Apykd, AapPdaver to ofuo HKIT mov €xer kataypagel kot to
amoOnkevel og Eva apyelo KEWEVOL Yo LETAYEVESTEPT (PNOTN, KOOGS peTadideTon TO
ONULO, 0 YPNOTNG UTOPEL VOl OEL TOV TOAUS GE TPAYLATIKO XPOVO YEpN GTIC SUVATOTITES
SUVOIKNG oYedlAoNG TNG EQOPLOYNG. META TNV OAOKANP®GN TNG LETAOOGNS Kot 0OV
amofnkKevoel T OEO0UEVE GTN GLGKELT], UTOPOVUE Vo EMAEEOLUE VO avOIEOVILE TO
apyelo KeWWévoL yo va eEETAGOVUE TIG LETPTOELS, VO GYEOIAGOVLE OAOKANPO TO G|
HKI 7 va 1o aveBdcovpue ot Baon dedopévov pécm tov Atadiktoov og popen JSSON.
Mo vo emkovovicovpe He TNV OMOLOKPUGHEV PAon dedopévmv, avamtiae To
Tpito HEPOG TOV CLOTANATOG pag TToL givor Eva Web service. To web service viomoteitot
og servlet Tov Tpéyetl o€ omotodnTote Web container. ‘Exovpe avamtoéel 800 KAAGELS
Yo TV 60vdeon pe Tig Pdoelg dedopévmv, pa yio v MongoDB kot pia yio tn fdon
dedopévav MySQL. To web service Aappdver arthogic HTTP mov mepiéyovv apyeia
JSON, petd v avaivon kot v a&loldynon tovg cuvdéetat pe T Pdon dedopévmv
yio v oamodnkevon tov dedouévav oty emBount popen. ‘Eva oynue mwov
TEPLYPAPEL OMOKANPO TO GVGTNIA LE TIG OAANAETIOPACELS LETAED TV TUNUATOV KABDG
Kol pHepikeg Paocikég dopés, PipAodnkeg Ko epyareio mov ypnoyoromOnKay yo tnv
avamtuén kdbe pepovopévov TUNUATOS dtvete otnv eikova 3. Ta tov TpoTapyko
OYEJOGO TOV GLOGTNUATOC Kol KATd TNV avdmtuér tov, Aapope cofapd vroyn ta
TAEOVEKTNHATO T TO HelovekTHUoate KAOe teyvoloylog kot TG Pooikés apyég
OYEOOGUOD 7OV TEPLYPAYOLE TOPATAVE Yio. TNV TOPAYOYN EVOG EVPMCTOL
GULGTNLOTOG OV UTOPEL VO IKOVOTIOGEL TIG OVAYKES Kot Vo, EEMEPAGEL TIC SOVCKOMEC
GTNV VAOTTOINGT KOl AELTOVPYiQ GE TPOYLOTIKA 10TPIKA GEVAPLA XPTIONG.

14

Server

DATABASE

A 4

Apache Tomcat Web Container

REST WEBSERVICE

MongoDB Connector

MySQL Connector

Created with Maven Build Tool

JAVAX API for Serviet Impementation
Jackson API for JSON Object Mapping

HTTP Requests

ANDROID APPLICATION

Classic & LE Bluetooth Support

GPS Coordinates Acquisition through Google Play API
Android Plot Library for Dynamic Plotting ofthe ECG

Apache HttpClient API for Communication with Web Container
JSON Java API for JSON File Parsing

A

Server/Client Role

LINUX APPLICATION

Bluez Stack
QT Bluetooth Library for BLE implementation
Classic & LE Bluetooth Support

Ewéva 3: Awdypappio Tov GuvoAKoD GUGTHLOTOG.

Bluetooth E@appoynq mapaxoiovOnong HKI kot
ocoopévav Baciopévn oto Linux

NRETAPOPAS

H gpappoyn ot anoteAdel 10 TP®OTO KOUUATL TOV GUGTHUATOG KOl £XEL TNV OLVATOTNTO
va ovvoéetan pe Classic 1 LE Bluetooth. T v petagopd pe to khaoowd Bluetooth
ypnowonomoape v BlueZ stack tov Linux yw v avamtvuén g epoppoyng ce
yhoooo C. H BlueZ eivaw n emionun otoifa tov Bluetooth mpwtokdAlov yio 10
Aertovpykd cvotnua Linux kot eivar éva and to PaciKd VIOGVGTALATO TOL TLPT VAL
Kké0e dwavoung. o v avémtvuén g epoapproyng xpPNooTomaoae Ty ékdoon 5.37

15

¢ otoifac. H otoifa BlueZ viomolel vymAdtepa TpmTOKOALN LETAPOPAS OEOOUEVOV
tov Bluetooth (RFCOMM, OBEX, A2DP «k.Am.), eykobiotd kot owotnpel tovg
dwakopotéc SDP 1 GATT 6mov amoBnikevovtol TANpoQopleg OYETIKA [LE TIG LN PEGIES
Kol to. Tpogik mwov vmootnpilovtor amd ™ ovokevn. Kotd tov oyedacpd g
EQOUPUOYNG OMOPUGICAUE VO YPNOLUOTOcoVE T0 TPoPik SPP €101 dote ot dvo
OLOKEVEG VO, EMKOVAOVOLV HEG® TOL TP®TOoKOAAOL RFCOMM, oniadn to moakéta
dedoUéVDY Vo HETadIOOVTAL HE TN GEPA TOL OTOCTEAAOVTOL GTOV EAEYKTN] TOL
Bluetooth, axéun kot av ararteiton ovapetdooon. H emkovaovio pécm tov KAAGGTIKOV
Bluetooth yiveton pe sockets. Apyikd n epopproy” Hog yayvet yuo. GALEG GLOKEVES Kot
ouvvdéetan pe tov SDP server kdbs cuokevng yia va det av vrootnpilel 1o SPP wpoeiA.
Ortav Bpet por katdAAnAn ocvokevn avoiyel €va Socket kot otédvel to dedouéva
Kavovtag yprion g ovvaptmong write() g otoifoc. AQov TELEIOGEL N HETAOOGT, 1
obvdeon Khgivel kKolmvrtag tv cvvaptnon close() pe 6ptopa to socket mov eiye avoi&et
LLE TNV GLGKELN).

o v obdvdeon péow Bluetooth Low Energy ypnowomomoaps v
BipAtoBnkn Bluetooth tng Qt n omoia eivor ypappévn oe C++. H avantuén epappoymv
Bluetooth LE axoiovbei éva dapopetikd povtélo mpoypappotiopod amd to Classic
Bluetooth. 10 BLE, vrdpyet povo éva mpotdéxorro emkowvmviag mov ovopdletol
npotokolo Attribute (ATT), étol ol GLOKELEG emkowvmvoOV pe Pdon To
armokahoOueva attributes. Ta attributes sivaw eyypagéc og évav peydio mivako mwov
dnuovpyeiton Ko amobnkevetar oe ke cvokevn younAng evépyelag Bluetooth,
UTTOPOVV VO AVaYyVOPLGTOVV Kot VoL Tpocmelafodv e povadikd yio to kabéva UUIDS.
I"o va yivel wo edkolo o€ pia epapuoyn va ypnopuonotel to Bluetooth Low Energy n
otoifa mpochitel Eva emmAéov eninedo mave and to mpwtdkoiro ATT, 10 eminedo
avtd etvar 1o Tpoid Generic Attribute (GATT). To mpogid avtd ypnoipomotel ta
amokaAovuevo characteristics g avtikeipevo mov vAomowohv v Pacikr doun
OEOUEVOV TOV TPOTOKOALOV Kot TEPIAAPEVOVY OYL LOVO TO OEGOUEVO TTOV TTPETEL VAL
AVTOALAGGOVTOL GALG KO TAPOQOpPiES Yia avtd T dedopéva. Ta characteristics siva
avVTIKEIEVO VYNAOTEPOL EMTESOV TTOV PETAPPALOVTUL O OpAdES TOAMAaTAGY attribute
yopnAdtepov emmédov. H epappoyn pog dtopnpilet tig vanpeoieg ko to Tpopil mov
vrootnpilet pe v pébodo startAdvertising(). Otav po Guckevn 1 omoia WayveL TV
VINPEGIO TOV TPOCOEPEL 1| EPAPUOYT| LOG TNV EVIOTIGEL dNpoVPYel avTOUATO Lo
ovvdeon kat To. dedopéva tov HKI otélvovton pe v pébodo writeCharacteristic().
Otav 1 GAAN cuokevn AdPet Ta dedopéEVa OV YPEALETAL ATOGVVIEETOL KOL 1] EPAPLOYN
pog ocvveyilet va dtapnuilet Tig vANPESiEg NG MOTE VO LTOPOVV BALEG GUOKEVES VL
ovvoebovv.

16

Bluetooth and Bluetooth low energy

Application Application
J \ J
Profile Profile
J .
GATT/ATT RFCOMM
g B 4 I
L2CAP L2CAP
S ————————— VRN e z-- HCl
{) I X
Link Layer Link Manager
- > - =),
PHY PHY
Bluetooth low energy “Classic” Bluetooth

Ewoéva 4: Z0ykpion g epapyiog g otoifag tmv dvo Bluetooth.

Eg@appoyn Android

To Aertovpykd ovotnua Android €xst v dikid tov otoifo yio to Bluetooth mov
ovopaletar Bluedroid. v epapuoyn mov avantoéope o ypnotng emiéyst av Oa
ovvdebel pe KAaoo1Ko 1 e yaumAng kotoviiwong Bluetooth. ' va cuvdebodpue pe to
Khaoowkd Bluetooth ypnowporotovpe v pnébodo mov pag mapéyetor and v otoifa.
listenUsingInsecureRfcommWithServiceRecord() yio vo ekkivijcovie Tov Server dote
vo. apyicovpe va. deyopaote ocvuvoioels. Kot €dd 1 emkowvovia yivetanw pécm socket
ondte kKohovpe Tig uebddove read() kou close() yo va dwfdocovue dedopéva M va
KAgioovpe v ovvdeon avtiotoya. O mpoypoappatiopdg e cvvdeons LE sivon Afyo
mo mepimdokog. Kdbe Aettovpyioa BLE mpoxoairel pio emavaxinon, n omoio ektedeitan
oe &va Eexmplotd vipa mov Tpéxel 610 voPabpo. Ot emavaxAncelg umopovv va
ovpPovv omotedNTOTE KABMG 1 €QUPLOYT EKTEAEITOL KOt aLTO £mpeme vo To Adfovpe
oYM KOTd TNV avamTuén ¢ epappoyne. o va ekkiviijoovpe Pl GOVOEST UE TNV
GAAN ocvokevn dnuovpyovue €va avtikeipevo g kAdong BluetoothGatt 1o omoio
avaiapPaver v emwowvovio pe tov GATT server tng GaAAng ocvokevng. o va
dwPdoovpe ta dedopéva ypnoiporolovpe v péBodo readCharacteristic() n onoia av
etvar emtuyelc mpoxkodel pia emavakinon v onoia mpémetl va dwuyeptotovpe. Otav
OAOKANPADOGOVLE TNV HETOPOPA TV dedopévav KAetvovpe Ty ohHvOEsT KOADVTOG TNV
uébodo close() oto avrikeipevo BluetoothGatt mov eiyape dnuovpynoet. Eniong, 1
EPAPLOYN HOG EXEL OLVATOTNTES Y10 CTOTIKT AAAG KoL Yo SuvakY| oxediaor tov HKT

17

ofuotog. I'a va to methyovue avtd kbvaue xpnon g PPprodrkng Android Plot mov
&xel avamtuydel Yo avTd TOV 6KOTO.

Téhog, n epappoyn cvvBétet HT TP moakéta ta omoia mepiéyovv Tig mAnpopopieg
v tov acBevi poali pe ta dedopéva tov HKI oe popen JSON apyeiov kot to
amooTEALEL HEGM S10SIKTVOV 6TO WeD Service mov £yovpe avomtHEet.

RESTful Web Service

"Eva web service givat puo vanpesio mov Tpoc@EPETOL 0o Uio NAEKTPOVIKT] GUGKEL
oe GAAeG GLOKEVEG OV emkolvvovy peta&d tovg péom tov World Wide Web. H
ocvvnbéotepn ypnon Tov €ival M TOPOYN EVOC OVTIIKEWUEVOSTPAPOVS SLOSIKTLAKOD
nePIPAALOVTOG G€ vl SloKopoT PAoNG dedOoUEVODV KOl GLuYvE cuvovaleTal Le pio
EPAPLLOYTN Y10 KIVITA TTOL TTapEXEL i Ypaptkn| dtemaen otov ypnotn. H RESTful eivou
Lo apyITEKTOVIKT 1oL Kobopilel Tpdmovg yio T dnuovpyio Web service mov pmopovv
VO YEPLOTOVV QUVOIKG KOl €TEPOYEVN] Oedopéva ympic auoTnNPovg Kot KoAd
kafopiopévoug kavoveg emkovoviag 1 mpowtokoAra. Ta ovotiuato REST
OTOGKOTOVV ~ GTn ypnyopn omddoon, v oSomotioc Kol TNV - IKOvOTHTO
emovaypnopomoinong otoyyeimv ta omoio. umopovv va petafdAilovior Kot vo
evnuepmvovtol Yopic va ennpedlovy 10 GUGTNUO GTO GUVOAD TOV.

Anovpyfoope to Web Service tov GueTHUATOS XPNCIUOTOIOVTAS T0 Java
Servlet APL. 'Eva Java servlet ivai éva mpoypappa Java Tov enekteivel T SuvatoTnTeg
evog dlokopiot. Mropovpe va kdvovpe override tic pebodovg doGet (), doPost (),
doPut (), doDelete () mov mapéyovion and to Servlet API yuo va mbdoovpe ta HTTP
OTAHOTO Ko VO T Olarxelptotodpe. Avtég ot péhodot exteAovvtal Katd T SdpKewd
Aertovpyeiag ™G vanpeciog, omodte Otav to Web service AdPer éva aitnuo,
dnovpyeitan £va, véo vijua yia T ekTéLEoT TG avtiotoryng nebddov. Ta web service
dwvépovton kot gykabiotavion oe popen ovumiecuévav mokétov WAR. T v
OAANAeTiOpao Kol TNV o0vOeEon UE TIS PACGES OEOOUEVAOV YPTCLUOTON|CAUE TO
wpdypappa odnynons g MongoDB kot oo API tov mpoypdappoatog odnynong JDBC
ywo. tnv MySQL. I'a kd0e mapoinebeioa aitnor, to Web service mpénetl vo amoondost
to ogdopéva o JSON popon kot va to yeprotel mpoypappotiotikd. o va
pumopécovpe vo to kdvovpe avtd, kobopicoape po kAdon JsonObject yio va
XOPTOYPAPNCOVUE T OgdopEVa 6e avthyv. [0 TV avdAvon kot yoptoypdenon Tov
apyeiov ypnoponomoaue tnyv Piiodnkn Jackson.

18

Hewpopotikd Aroteréopato.

Apyika eEetdoape tov KAaowo cvvdespo Bluetooth. Metpricope v kabvotépnon
TOV TTOKETOV LTOAOYILOVTAG TN YPOVIKT JaPopd LETOED 000 dadoyIKAOV ANPBEvVTmV
TOKETOV.

Classic Mean Packet Delay (secs)

0,0045
0,004

0,0035
0,003

0,0025

0,002 M
0,0015

0,001

Packet Delay(s)

0,0005

0 1 1 Wall 3 3 Wall 6 6 Wall

Distance(m)

Ewova 5: Méon kaBvotépnon tov takétov pe ovvdeon Classic Bluetooth.

AxolovOnoape po0 EAAPPAOS OOPOPETIKN TPOGEYYION YO TOV VLITOAOYICUO 1TNG
kaBuoTéPNOoNG TOL TMOKETOL Yoo TNV EmKOwmVia younAng evépyeag Bluetooth.
Xpnowonomoape Tic mpodlaypagés tov mpoeih GATT, étor perpriicape v
kabvotépnon petalhd tov aitmoeov avayvoons GATT tov meldtn ko Tov
aravtnoewv avdyvoons GATT tov dokoUIoTY| Yo TOV VTOAOYIGUO TS KaBLoTEPNONG.

19

BLE Mean Packet Delay (secs)
0,7

0,5
0,4

0,3

Packet Delay(m)

0,2 1

0,1

0 1 1 Wall 3 3 wall 6 6 Wall
Distance(m)

Ewova 6: Méon kabvotépnon tov tokétov pe ovvdeon LE Bluetooth.

Oélape va viomotoovpe Vv Bluetooth epappoyn mopakorovdnong HKI' og puo
apaypotikn 10T mAatedppa dote va BydAovie GOUTEPAGLOTA Y10 TIG AELTOVPYIKES TNG
ATOITAOELS O€ EMEEEPYAOTIKN 10YV. XT0 TANIG10 0VTO EMAEEQLE VO, VAOTOMGOVLE TNV
gpappoyn oty mhoteoppo Raspberry Pi 3 model B.

CPU Utilization During Data Tranfer

0 Packet Transfer Packet Transfer
1

100
80

60

Utilization (%)

40

20

o O O O O O O O O O O O O 0O O 0O 0O O o o o o o o
o O O O O O O O O O O O OO0 OO0 0O OO0 OO o o o
O m N OO O N O NN < d 01 AN OO MO < o 0 wn N O
N ™M 00 00 OO O & = N N MO < 1D N O 0 O O O «+ N
— A AN NN AN AN NN AN AN N NN o;O N oOom

Simulation Elapsed Time(ms)
Idle Time

Ewova 6: A&onoinon CPU kot v petagopd dedouévaov LE Bluetooth.

20

33600
34300

CPU Utilization During Data Transfer

Packet Transfer Pack?TrQs‘fer
120 /\
100

X 80
5
= 60
@
N
=
5 40
20
0
O 000000 Q0 O\ O 0O 0000000000000 Q0 Q0 Q9
© OO0 9O OO O o o\o O Q0000000000000 Q Qoo
O 0¥ © I N O O 0 O I NO®XOIFTAONVOI VO KO F A
0 00 O O 1 &N AN ™M O N 00 0O OO d AN N I 1D O IN 0 0 O O
D B B B B | A A A A AN AN AN AN AN AN NN NN AN NN om

Idle Time Simulation Elapsed Time(ms)

Ewova 7: A&omoinon CPU katd v petagopd dedouévov Classic Bluetooth.

Metpricaple €miong T0 PELLLO TOV KOTOVOAMDVETAL OO TV TAATQOPLO LEG® TG BOpag
USB ypnopomoinvtog Evay KotdAinio tposappoyéa USB yia va AdBovpe o
EKTIUMON Y10 TNV KOTOVAA®OT TNG EQApUOYNS pog. H katavdilmon pedpatog uropei
vo vtoloyiotel pe Tov Tomo P =V * L

Power Consumption (mW)
2650

2600

2550

2500
2450
2400
2350
2300
2250

Idle Classic Scanning Classic Transfer LE Advertising LE Transfer

Ewoéva 8: Katovdimon oyvoc.

21

32000
32800
33600
34400

To Android Studio mpoceéper e celpd amd epyaieia yo TV TopoKorovOnon TV
oLVoEdEIEVOV cuoKevdv, TN ypnon s CPU kot g GPU,) dayeipion pviung kot
™ YPNoN TOL OIKTVOVL VM €KTEAEITOL ot EQOPUOYN. XPNOLLOTOMGOUE OVTH TO
gpyoreia Yoo v TopaKoAoVONGOLLE TO TOGO TOV TOPOV TOV ATOITOVVTOL OO TNV
EPAPLLOYT LLOC, DOTE VO LTOPOVLE VO EEAYOVLLE XPTOLLLO. CUUTEPAGLLOTO GYETIKAL LLE TN

Aertovpyio TNG.
Whenoy [| Mg 7 byl
B8 ’
e BOANR)
e B et aon
000M
0 10s 16s M %] ¥ 4 L]]] s Infs In10s Intds
i 1197 tid
oy . Data Transfer
oS Connection Event
D iy
4004 \ l I Kemel D3 Y)
0\00 LN A B TR T IR NN T AN T TN OO N Y T T PR A TNV |
A’ B 1 fi 0] s () () 4 4 fs By nts ms o mis
Application Start
Ewdva 9: Xprion g CPU ko Memory yio odvdeon Classic Bluetooth.
Wheroy I @ 7 tii
008
e foRug
hae [T
000
0§] 1] 16s s % s ki 4 4 s 5 Inls Infs In s Intls
o 197 b
- Scanning ~ Connection Event Data Trancfer

iy 1 B by
400% / { IKemelle
1 f " s

W}* L s | LU T A0 L L) ot e o 7 T S [PR o 71 o

T T S T PP e, T B) P T S o
s ki 4 4 s 5 s Inds im0 s

Application Start

Ewova 10: Xprion g CPU kot Memory yu ohvdeon LE Bluetooth.

22

Télog tectdpope to Web service tov cvotiuatog toco pe Ty MySQL 660 kat pe tnv
MongoDB yua va cuykpivovpe Tv amdo061 T0Vg Kot T0c0 KaAd cuvepyaletal 1) kdbe
Qo He TO VTOAOWTO GUGTNUO. XTO TEWPAUOTO UETPNOAUE TO YPOVIKO OdoTnUe G
YMOGTA TOL OEVTEPOAENTOV TTOV EIVOL ATOPOLTNTO Y10 TNV EICAYMOYT 1] TNV EVIULEPOOT
Hag eyypaong evog acbevoie otn o dedopuévay.

I ED)

42,44

INSERT M INSERT with connection pool INSERT as batch with connection pool

Ewova 11: [epopatikd amoterécpata yio. Insert oty MySQL.

10085,56

n
2
w
S
=

UPDATE B UPDATE with connection pool UPDATE as batch with connection pool

Ewova 12: Tepapotikd amoteléopata yio Update otnv MySQL.

23

TIME(MS)
(o]

MySQL select 1 out of 100 MySQL select 1 out of 100 with connection pool

Ewoéva 13: TTepapatikd amotedéopata yuo Select otnv MySQL.

MongoDB

30,98

I ED)

100 PATIENTS

INSERT mUPDATE m MongoDB select 1 out of 100 M MongoDB select 1 out of 100 with indexing

Ewova 14: [Tepopatikd amoterécpata yio v MongoDB.

24

YopunePAopNoTo KOl TPOTAGELS Y10 LEAAOVTIKY] £PEVVA,

e oUTN TN SWTAOUOTIKY GYEOAGALE, AVATTOEAUE KOl VAOTON|CAIE GE U0, TAATEOPLLOL
[oT éva mAnpw¢ Aettovpyikd cvotnua mopakorovdnone HKI. Me m owelaymyn
SOKIUADV KOl TNV OTOKTNOY TEPUUATIKOV OEGOUEVOV UTOPEGAUE VO AELOAOYNGOVUE
mmpwg to cvotnuo. To Classic Bluetooth cuvictdton yioo otabepés cvokevic pe
oLveYN TOPOYN PEVUATOS, OPOL TPOKAAESE DENCT TG KATOVAAMGNG EVEPYELNS KOTA
10% mepinov oto Raspberry Pi 1 yio Teputdoelg xpnong mTov GUVETAYOVTOL GUVEXT
ToPOaKOAOVON O TOALUTA®Y acOeEVOV TOLTOXPOVA GE UEYOADTEPEG OMOGTAGES. To
Bluetooth Low Energy eivor mo xotdAAnAo 7y i QOpNT] GULOKELN UE
TEPLOPICUEVOVG EVEPYELONKOVS TOPOVLS TOL AELTOVPYEL TOAD KOVIQ OTN GLOKELN
Android. Xvykpivovtog Tig fdoelg dedopévav emré€ape v MongoDB ¢ kaAdtepn
AOom emedn NTov ToAD ypnyopdtepn otV amobnkevon apyeimv xwpig mepaITEP®
Bedtudoelg otov KOOWKa. AvifETms, EMPENE Vo APLEPMGOVUE TOAD YPOVO KOTE TNV
ddpketo ¢ avamTuéng tov Web service yio va feltidcovpe v anddoorn e MySQL
KoL 0KOUT Kot TOTE Ol YPOVOL EICAYOYNG TOV SEGOUEVMV NTOV TTO aPYOl GE GUYKPLOT
pe avtovg g MongoDB.

[Taporo mov ot NoSQL Bdoeig dedopévmv KMULOK®VOLY TOAD €UKOAN KOt
UTOPOVV VO YEPLGTOVV SUVALUIKE SEQOUEVO, 1| OPYLTEKTOVIKY TOVG OEV EMITPEMEL TNV
TOPOVGIOCT) TOV GYECEMV LETOED TV dedopévav. Avtég ot Bhoelg dedopuévav glvar
KOTAAANAES Y10 VO AetTovp YoV mapdAiniao pe Web services yia ypryyoprn e&vampémon
TeEMOTOV, KaODg Exovv oyxedlooTel Yo vo, Aettovpyoldv amoteheouatikd oe clusters
Yopig Vv avaykn akpiPov viAwkov. Ilpoteivovpe po eméktacn 6To GUGTNUO TOV
KOAVOTTEL TNV avAykn onpovpyiog oyéoewv HETaED TV dedopévov. To eKTETAUEVO
ovomua Oa éxel Baoeic dedopévaov NoSQL mov Oa ypnoipevovv wg caches yia
dedopéva Tov mpoomeAdLovTal TOAD GUYVEA Kol ToL UmopovV va BpioKovtol Kot vo
oLVVINPOVVTAL OO LELOVOUEVE VOGOKOUEID. XTO OVMDTOTO EMITEOO TOV GLGTNUATOS Oa
vrdpyer poe Paon dedopévov SQL pe éva koatdAinio oynua mov o pmopel va
ovoyetilel ta dedopéva Tov Exovv aroktndel omd ta pepovopéva vosoxkopeio. Ta dvo
emineda Bo cuvoLovtal pe Eva GVGTNA dloEiPIoNS oL ol LETAPEPEL ATOTEAEGLLOTIKA
ta dgdopéva peta&d toug. To mpotevdpevo chotnpa prnopet vo Aettovpyet mapdAinio
LE TO GUOTNUO. TOV TOPOVGLAGOUE GE VTN TN OWAMUATIKY] Yopig va ypetdleTon
OAAOYEG 1) ETOVOCYESIOGLO TOV TUNUAT®V TOV.

To Aertovpywkd ovommuo Android dev €yer tpoémO dlayeipiong ko
YPOVOTPOYPULUATIGHLOD EVIOADY TOV amocTéAAOVTAL oTov eAeykty BLE amd o
epapuoyr. H avémruén evog této10v O10EPIGTI-YPOVOTPOYPOULOTIOT LWITOPEL Vo
evioyvoel Tig 10T dvvatdtnteg ™¢ epappoyne pog. Emiong, Ba ivor modv yproipo ya
K& aAAN epappoyn mov ypnoonotei to BLE. EmmAéov, o Ul ¢ epappoyng pmopel
va BeATimBel mepotTéPm Yo va YIVEL TO IAIKO TTPOG TO XPNOTN.

25

Contents

INEFOAUCTION ... e bbb 29
1.1 Wearable MediCal DEVICES..........ccccuiiiiiieie et 29
1.2 Internet Of THINGS ...ccviiieie e 31
L3 ECG ANAIYSIS ..ottt 35

Background and related WOrKcccceiveiiii i 38
2.1 Bluetooth for 10T network implementationccocveeieieienenenseeee, 38
2.2 MediCal DatabaSes.cceuiiieiieie ettt 42
2.3 Medical Application Development with Android...........ccccooeveiiieniniinieeen, 43

SYSTEM OVEIVIBW ...ttt bbbttt 46
3.1 Linux Based ECG Monitor and Data Transfer Bluetooth Application.............. 48

3.1.1 BlueZ Stack - Classic Bluetooth Developmentcccooviiiiiiineneneiceeie 48
3.1.2 Qt Bluetooth API - BLE DeVelopmMENT.........cccoviiierieieieisesee e 52
3.2 ANroid APPHCALION.......cviiiiicie e 57
3.3 RESTful web service and MoNgoDB ..ot 66

SYSEM EVAIUALION........coiiiiiice e 71

4.1 Bluetooth Data Transfer Testing ReSUILScooviirieieiiicieeee, 71
4.1.1 Packet Delay RESUILSc.ccviiiieiieieie e 71
4.1.2 10T IMPIEMENTATION ..o 74

4.2 Android Application Profiling ..., 77

4.3 Database COMPATTSON.........ciiiuiriiieieieieie ettt sttt sttt 80
4.3.1 MySQL TeStiNg RESUILScuveieiieciie ettt 80
4.3.2 MoONQODB TeStING RESUILSecvveeieiiicieie st 82

(@07 0] 11 5] o] o OSSR 83
5.1 SUMMIAIY ..ottt e b e e b e et e e e et e e e aseeeanees 83
5.2 FULUIE WOTK ..ottt et 84

5.2.1 Database Extension System for Further Statistical Analysis...........cccccceveivvrrennne. 84
5.2.2 Android Application IMProveMENTcceeiiieiire e 85

26

List of Figures

1.1: Example of a wearable medical device functionality [5].......ccccccooveiiiiiieiiiiiic e 30
1.2: 10T growth through time [24].cceeoieieee et 31
1.3: Service oriented architecture for 10T [4]. ..o 34
1.4 ECG WAVES [L4]. 1ottt ettt et 35
1.5: ECG intervals and SEgMENtS [14].....ccoiiieiieieiiiiesesie et 36
1.6: ECG analysis FIOW [13].ccviiiiiiiiie s 37
2.1: Bluetooth host and controller combinations [L11].........ccocoeieieiiiiiiiiniine e 38
2.2: BIUEtoOoth Profiles [11].coeeiiiiiiieieee e 39
2.3: Key generation hierarchy [L1]. ...cccoooooieeiiiisiesie e 41
2.4: Cost-benefit analysis in L000USS [L0]. ...cooveeriririiirieiieesieenie s 42
2.5: Application developing process fIOW [12].ccooviiiiiiieiicice e 44
3.1 SYSIEM OVEIVIBW. .eiviiieiticic ettt ettt sttt e st e e st e e te e besbeeseestesaeesbesbeeneesteanaeeeas 47
3.2: BlueZ stack architeCture [26].ccccvveiiiiiieie sttt 48
3.3: Code Segment for DeVICe SCANNING.ccviieiieiiiie e sre e sresraesae s 50
3.4: Code Segment for Connecting t0 SDP SEIVEL.ccccveieie i e 50
3.5: Code Segment for SDP Record Searching.cccccevveeeiieiesieeie e sre s sre e 51
3.6: Code Segment for Sending Data to the Bluetooth Server.ccocoviiicieiiecciecieees 52
3.7: Comparison between Classic and Low Energy Bluetooth hierarchy [17].ccccccevni. 54
3.8: Code Segment for Characteristic Creation and Advertising.cccccevvvvevieiveieieeiennens 56
3.9: Code Segment for Updating Characteristic Data.cccccceveviiiieveieiiec e 57
3.10: ACLIVity LITECYCIE [15]. ...eiieiiieiiiiieiieieieee et 58
3.11: Application’s ManifeSt File. ... 59
3.12: ApPlication’s Start SCIEEM.eeviriieiiitiiieie sttt ne s 60
3.14: BLE Callback IMELNOUS.cocvviiiiii ittt sttt s 62
3.15: JSON file format eXample [25].ooeiieieieiiiieree e 65
3.16: Code Segment for POST Request EXECULION.cccoiirieriiieiiiciise e 65
3.17: Servlet LifeCYCIe [18]. ..ot 67
I R MY L=t T a1 I T =TSR 68
3.19: JSON ODJECE ClASS. ...evvieiieiiiieete ettt 69
3.20: JsonObject Mapping Code SEgMENT.ooiiiiiie e 69
4.1: Bluetooth Classic Packet Delay Mean Value............ccooieiiiiiiiiiee e 72
4.2: Bluetooth Low Energy Packet Delay Mean Value. ..o, 73
4.3: Advertising CPU ULHIZAtION.cooeeiii i 75
4.4: Low Energy Data Transfer CPU Utilization..............oviiiiiiiiiiiiiiiiiiiii, 75

27

file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291041
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291042
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291043
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291044
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291045
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291046
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291047
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291048
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291049
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291050
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291051
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291052
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291053
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291054
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291055
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291056
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291057
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291058
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291059
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291060
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291061
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291062
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291063
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291064
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291065
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291066
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291067
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291068
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291069
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291070
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291071
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291072
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291073

4.5: Scanning CPU ULHHZATION.c.ooiiiiiiiceeee e 76

4.6: Classic Data Transfer CPU ULHHZAtION.ocveiiviiiiiie ettt 76
4.7: Raspberry POWEr CONSUMPLION.oiiiiiiriieeisese e 77
4.8: BLE CPU and Memory UtHHZatioN.ccooeiiiiininise e 78
4.9: Bluetooth Classic CPU and Memory UtIlization.ccccoceeveveiieie i 79
4,107 BLE GPU ULHIZATION. 1.vvveiiitiiie ittt ettt e ettt e st te e s st teessnaeeessnseeessraeeessareeeessns 80
4.11: MySQL INSERT TSt RESUILS.veiviiiieiiecieee ettt sttt 81
4.12: MySQL UPDATE TeSt RESUILS. ...ccvviiieiiecieee ettt 81
4.13: MySQL SELECT TeSt RESUILS.ecvriiieiieciece ettt 82
4.14: MoNQGODB TESt RESUILS.eeviiiieiicie ettt s te e 82
5.1: Proposed SyStem HIBIarCNY.cccciiiiiiiieie sttt sttt 85

28

file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291074
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291075
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291076
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291077
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291078
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291079
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291080
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291081
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291082
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291083
file:///C:/Users/John/Desktop/Thesis.docx%23_Toc485291084

CHAPTER 1

Introduction

The purpose of this diploma thesis is the design, development and implementation of
an ECG analysis and visualization system with 10T capabilities that can be used in real
life medical applications and scenarios. In this scope, technologies and frameworks that
are used widely in real life applications and are adopted by the industry were chosen.

We present the system we design and evaluate its individual parts in the next chapters.

In chapter 1, an introduction is made, covering the three broader and more
general technological and research fields that are connected with the development of
our system. Chapter 2 is an overview and summary of the technologies, architectures
and practices that were used during the development and implementation. Its purpose
is to make the reader familiar with some basic concepts so he can understand with
greater ease the design choices we made. In Chapter 3 we demonstrate the complete
system that we aim to develop along with the designing of its individual components.
Chapter 4 is about system evaluation and profiling, furthermore we analyze the reasons
behind every design choice we made using data we acquired from testing and
experimentation with the system. In the final chapter we summarize our conclusions
and we propose directions and ideas for further development and improvement of the

system we presented in this thesis.

1.1 Wearable Medical Devices

One of the greatest challenges we have to overcome nowadays and in the near future is
the dramatically increase of healthcare cost in a global scale. Many countries,
companies, researchers and engineers are working in finding ways to successfully
address the problem. One of the key factors that cause the rise of the healthcare cost is
the need for monitoring the patients both during their treatment and after. Another way
to further reduce the cost is to shift public health policies away from reactive models of

29

healthcare to preventative ones, that means we need to find ways of monitoring
individuals before they get sick and have the need to visit their doctor or get admitted
to the hospital. Fortunately, with the advancement of technology we are able to develop
and implement devices that can successfully and accurately monitor most of human bio
signals by using embedded sensors, connect to the Internet through Wi-Fi or mobile
communication networks (3G/4G), can operate for months because of their low energy
consumption, are small and light enough to be attached to a person without causing
discomfort and they have low production cost. These wearable medical devices seem
to be the solution to stop healthcare cost from rising. They still need more improvement
and more time to overcome the design challenges that arise but with proper funding and
research from public sector, private companies and universities they can change the
way we practice medicine in the future and also create new markets and great

investment opportunities.

Application Development Graphical User Interface

Embedded Signal ;', 3

Processing (

Sensor
Platform

Low power radios Low power radios
streaming data for signals broadcasted
from kinematic data
$ensors on
arms and legs : Q‘m

over radio

Physiological Data ECG

Data Storage and Kinematic Data

Figure 1.1: Example of a wearable medical device functionality [5].

30

1.2 Internet of Things

Generally speaking, loT is a concept that refers to the networked interconnection of
everyday objects such as physical devices, vehicles, buildings, and other items
embedded with electronics, software, sensors, actuators, and network connectivity that
enable these objects to collect and exchange data. 10T principles can be applied from
small scale applications like home automation to large and complex projects like
monitoring and management of a city’s whole transportation or energy distribution
system. Advances in 10T development and implementation have created a tremendous
number of novel applications and many companies have rushed to get involved by
designing and distributing their own loT devices and platforms or embedding them into
existing products. In addition, many companies have integrated I0T systems into their
manufacturing process because of their ability to enable rapid manufacturing of new
products, dynamic response to product demands, and real-time optimization of
manufacturing production and supply chain networks, by networking machinery,
sensors and control systems together. Also, the need to process great amounts of data
in such fast paced environments has caused great investments and advancements in Big
Data analytics field.

Despite its rapid growth and expansion there are some difficulties and
challenges that slow its adaptation, by causing numerus practical problems to 10T
application development and implementation, that need to be addressed. One of the
greatest drawbacks that decrease the competiveness of 10T products is the lack of
standards, protocols and frameworks that assist and accelerate the design and
development of 10T applications, the reason for this is that such applications consists
of many heterogeneous devices which are produced by different vendors, may run
unique software and implement their own standards so developers have to find efficient
ways and solutions to make them communicate with each other in a common network,
also many countries have their own regulations for wireless communications which

makes the defining of a network standard even more difficult.

31

GROWTH IN THE INTERNET OF THINGS

BILLIONS OF DEVICES
50

loT
INCEPTION ;

1992 1996 2000 2004 2008 2012 2016 2020

Figure 1.2: 10T growth through time [16].

Another challenge is security and privacy of the data that is being transmitted. Many
applications have to exchange information that is sensitive to individuals, companies,
professionals and concern personal, medical, financial, investment and industrial data
that is crucial to the smooth, safe, and successful operation of industrial production
process, transportation, product and service distribution, financial or trade deals and
medical treatment. In addition, the need for new state legislations and rules that
guarantee privacy and free access to the flow of information for the public, arises.
Furthermore, concerns have been raised that the Internet of things is being developed
rapidly without appropriate consideration of the profound security challenges involved
and the regulatory changes that might be necessary. In particular, as the Internet of
things spreads widely, cyber-attacks are likely to become an increasingly physical
rather than simply virtual threat. There are three main problems that need to be
addressed by developers and manufacturers, in order to ensure privacy and security,
that are being highlighted by the report [7].

32

e User consent: It is about acquiring the required level of permission from
the users who are affected by the devices or services. New technologies,
that request consent from users in an efficient and effective manner, must
be developed due to the fact that users have limited time and technical
knowledge to engage in the process.

e Control, Customization, and Freedom of Choice: The data owner must
have full control on his data, allowing the users to delete or move data
from one service provider to another at any time and be able to choose
their own hardware devices and software components from different
vendors to build their smart environment. Also, users must retain their
right to revoke or change any consent they have given in the past at any
time.

e Anonymity: Network communication devices typically have MAC
addresses that can be used to trace back the data communication paths so
user location can be easily tracked as a consequent. As a result, new
technologies such as Tor(torproject.org) must be developed in order to secure

privacy.

The need to uniquely address the huge number of “things” in an IoT application is a
great design challenge and is causing lots of problems to the developer. Technologies
and protocols like IPv4 and Auto-ID center doesn’t seem to solve the problem
adequately. Fortunately, the combination of URI framework and the IPv6 protocol that
many new devices support is proving to be the final solution to the problem. IPv6 is
more suitable than IPv4 because it uses a 128-bit address naming instead of 32-bit, so
it can identify 212 unique devices. IPv6 provides other technical benefits in addition to
a larger addressing space. In particular, it permits hierarchical address allocation
methods that facilitate route aggregation across the Internet, and thus limit the

expansion of routing tables so it improves networking performance between devices.

As it has been stated before 10T is defined by its heterogenic nature, that makes
creating an architecture as base for developing applications really challenging. The
approach that seems more promising and is proposed is that of a service-oriented
architecture(SOA) [4]. The implementation of such a SOA is based on four discrete and

inter-connected layers which can be summarized as follows:

33

Sensing layer: All sensors that are integrated into the devices hardware
which are used to measure real world quantities and status changes that are
important for the application’s function.

Network layer: This layer contains all the necessary network interfaces and
protocols that are needed for supporting connections among the devices, both
wired or wireless and manages network traffic.

Service layer: Its purpose is to create, sustain and support services that are
needed by higher level applications and users.

Interface layer: In order to use an object oriented model for the development
of higher level applications a separation between these applications and the
rest lower level architecture is needed. In that scope we create this layer that
contains methods, APIs and frameworks that are used for the interaction with

lower level layers.

Sensing Layer Network Layer Service Layer Interface Layer
RFID Tags
@) Service Service =
0 Socal BusnessLOBC molementation g 3| P10
Intelligent Sensors WSNs Network o r Frontend
= Service
N o /—>‘
RFID Readers Division P Contract
* Data Sensing Cloud ‘T
Acquisition Internetwork o vice |yl
WSNs Protocols | Integration | —P Interfaces
‘ "
Q) WA Mobile senice | Repositony | eppication
A Network Composition "L A

BLE Devices L]
Blostooth
40

Figure 1.3: Service oriented architecture for 10T [4].

To successfully implement the proposed architecture, we must have the capability to

quickly track and identify every object and service in the 10T system. The technique of

assigned unique identity to an object is called a universal unique identifier (UUID).

Fortunately, many wireless technologies, like Bluetooth, and commercial devices that

are sold in the market are already making use of it. Furthermore, a universally accepted

34

and well defined service layer, that contains APIs and protocols to support higher
application functions or features, is crucial for the successful implementation of such a

system.

1.3 ECG Analysis

An electrocardiogram or ECG, records electrical activity in the heart. The ECG signal
is produced as cardiac muscle contracts in response to electrical depolarization of the
muscle cells and is recorded by electrodes placed on a patient’s body. ECG is one of
the most useful and inexpensive test in emergency medicine, also is crucial for making
the diagnosis of cardiac ischemia. An ECG waveform consists of five waves and six
intervals and segments, all of them are needed for an accurate analysis and

interpretation. The waves, intervals and segments are presented in the figures below.

QRS Complex: represents
ventriculardepolarization

R Wave: the initial
positive deflection

e

P Wave: represents
atrial depolarization

T T T — S Wave: the negative
Y AN RSN deflection following

/ the R wave
T Wave: represents

ventricularrepolarization

Q Wave: the first downward
wave of the QRS complex
(the Q wave is often absent)

Figure 1.4: ECG waves [14].

35

e PR Interval: From the start of the P wave to the start of the QRS complex.

e PR Segment: From the end of the P wave to the start of the QRS complex

e JPoint: The junction between the QRS complex and the ST segment

e QT Interval: From the start of the QRS complex to the end of the T wave

e QRS Interval: From the start to the end of the QRS complex

e ST Segment: From the end of the QRS complex (J point) to the start of the T
wave

PRS t
e ST Segment

/

4—o—b—¢

rrrrrrrrrrr

el 4
| |

R
—— QRS Interval

b o
T
i
R R

N
P
A

PR Interval J Point QT Interval

Figure 1.5: ECG intervals and segments [14].

It is obvious that to analyze an ECG signal even an experienced doctor needs a
considerable amount of time, just to monitor and diagnose a single patient. That means
hospitals have to hire more personnel to be able to operate emergency rooms or ICUs,
as a result the operating costs increase, if the hospital is understaffed, the delay for a
doctor to diagnose or monitor can be fatal for patients receiving treatment. A solution
to address this problem is to automate ECG analysis with the aid of computational
devices. Many researchers have developed machine learning algorithms that implement

support vector machines (SVM) to analyze data and recognize patterns. By giving an

36

SVM sets of training examples it can build statistical models to classify newer inputs
into categories, with enough training we can achieve almost 100% accuracy in
diagnosing ECG anomalies or faults. Also an important advantage of SVMs is that they
can be trained prior to real life operation which means they can be deployed in a short
amount of time and analyze ECG with maximum accuracy from the moment they are
assigned to a patient. Combining the SVM and loT technologies together we can
introduce new automated ways of patient monitoring and diagnosing in a very large
scale. We have the capability to deploy many SVM devices designed as modules of 0T
systems in ICUs and emergency rooms in order to eliminate the need for continuous

human supervision of every individual patient.

- - ~

[) [Heartbeat | [Heartbeat)| [Feature | o
P T - Filtering H 7 } . > F # Classification
) Detection) Segmentation | | Extraction)

Figure 1.6: ECG analysis flow [13].

Furthermore, wearable medical devices have the features and capabilities, as we have
mention before, to implement such SVMs and connect to networks. In addition, because
of their low cost supplying every person with such a device is possible, in that way
medical services can monitor, diagnose or administer treatment to patients without the
need for hospital admission, it is also a very efficient and automated way to collect a
huge amount of medical data. As a result, healthcare services reduce operating costs
and can statistical analyze their data with greater accuracy because of the significant
larger sample. The greatest challenge would be to develop a secure and robust network

for these devices to communicate with each other and with medical servers.

37

CHAPTER 2

Background and related work

2.1 Bluetooth for 10T network implementation

Bluetooth wireless technology is a short-range communications system intended to
replace the cables connecting portable or fixed electronic devices, it was originally
developed as a wireless alternative to RS-232 data cables and point-to-point audio.
Bluetooth is managed and directed by the Bluetooth Special Interest Group (SIG), its
key features are robustness, low power consumption, and low cost, there are also many
optional features that can be omitted or implemented according to the design goals of
different vendors allowing product differentiation. The technology can be implemented
into two forms: Basic Rate (BR) with the optional Enhanced Data Rate (EDR) feature
and Low Energy (LE). According to SIG specifications vendors can integrate one of
the forms or both in their devices but only one can be active and available for connection

at any time. The BR/EDR system is focused more on speed and data throughput as it

n
L Host Host Host

BR/EDR LE BR/EDR LE AMP BR/EDR LE
Controller | Controller Controller | Controller Controller Controller | Controller

Figure 2.1: Bluetooth host and controller combinations [11].

AMP
Controllers

N

38

theoretically achieves 2.1 Mb/s transmission rate (with EDR enabled) whereas LE

system is focused on lower current consumption, lower complexity and lower cost than

BR/EDR. The core system morphology of both BR/EDR and LE is the same, it consists

of a Host and one or more Controllers. A Host is a logical entity defined as all of the

layers below the non-core profiles and above the Host Controller Interface (HCI).

Bluetooth is already widely utilized as the network building technology for

communication between devices in 10T applications, as it has some key advantages

compared to other technologies like ZigBee or Z-Wave:

Adaptation and support: Almost all vendors worldwide are producing devices
and applications that use Bluetooth for short-range connectivity and have been
doing so for many years. Also, due to the wide use of the technology developers
have accumulate a lot of experience working with the protocols and features so
the process of designing and implementing new devices or applications is faster
and easier. Furthermore, producers can have the support and the technical
expertise of a big consortium (SIG), whose sole purpose is to promote the
technology, during the development of their products and have access to
resources that accelerate that development.

Low cost: Because of the wide adaptation, chips implementing the technology
are very cheap as they are massively produced. In addition, techniques like
firmware and software reuse accelerate the development process and in result
reduce the cost of new product creation.

High level architecture: We have highlighted before that the proposed way to
develop an 10T system is to use a service oriented architecture because of the
heterogenic sensors and devices that need to communicate. Bluetooth assists
application development by separating the lower levels of the protocol from the
programmer, it creates this abstraction level by utilizing the so called profiles.
Bluetooth profiles define the required functions and features of each layer in the
Bluetooth system from the physical (radio) layer to L2CAP, they also define
application behavior and data format. Collections of profiles are called services.
If two devices comply with all the requirements of a profile, then application
interoperability is enabled between them. In addition, Bluetooth modules (both
BR/EDR and LE) implement and operate service discovery (SDP) and general

39

attribute (GATT) servers. Other devices connect to these servers to search for
available services or exchange and set connection parameters to comply with
supported profiles. As a result, every application that runs on a device can
connect through Bluetooth just by searching for compatible services without the
need to have additional information about the other device’s hardware or
software structure, it only has to comply with the service’s profiles. The service
oriented structure of Bluetooth’s higher levels makes it an ideal technology for
integration into the service oriented architecture of 10T systems [4].

Bluetooth Profiles

Bluetooth Protocol Layers

Figure 2.2: Bluetooth profiles [11].

Security and privacy: For real life 10T applications security of the data that is
being exchanged and privacy of the users is a really important aspect [7]. It is
imperative for developers to take them into account when designing an
application. Bluetooth utilizes built-in features and techniques to ensure that, so
it assist developers to reduce design time. The Bluetooth security model
includes five distinct security features: pairing, bonding, device authentication,
encryption and message integrity. The model keeps updating and improving in

every new version of Bluetooth core specifications, from version 4.0 onwards a

40

whole new security model for BLE that is based on previous model but with

many extra features that also ensure user privacy.

LE Legacy Pairing

LE Secure
Connections Pairing

BR/EDR Secure
Connections Pairing

LTK from
LE Legacy Pairing

TK Mrand Srand DHKey N1 N2 BD_ADDRm BD_ADDRs
i L i l i l BR/EDR Secure
Connections
| s1(AES-128) f5(AES-CMAC-128)
LE STK BR/EDR
- legacy LE LTK “tmp1” Link Key “tmp2”
k. h 4 “' h 4 +
LE key ‘ hB(AES-CMAC-128) ‘ ‘ hB(AES-CMAC-128) |
distribution: - -
LTK. EDIV, RAND, ILK lebr” ILTK brie’
IRK, CSRK L 4 v v ¥

‘ hE6(AES-CMAC-128) ‘

‘ h&{AES-CMAC-128) |

BR/EDR Link Key
h

‘ BR/EDR Link Key ‘

LTK

| LE key distribution IRK, CSRK

Stored
Long Term Key

Figure 2.3: Key generation hierarchy [11].

Bluetooth LE supports a feature that reduces the ability to track a LE device

over a period of time by changing the Bluetooth device address on a frequent

basis. This feature is not used in discovery mode but in connection mode or

during connection procedures. Private addresses can be resolved by the

controller or by the host, when resolution is performed exclusively in the host,

a device experience increased power consumption because device filtering must

be disabled, so in general it is not a good practice to exclude controller from

address resolving.

41

2.2 Medical Databases

Adoption of Electronic Medical Records (EMR) by hospitals and medical practitioners

can have a huge impact and greatly reduce healthcare cost, minimize medical errors,

and generally improve health [10]. EMR systems have computer databases as their core

and are designed or expanded by taking account the features, specifications and

limitations of them. Also, with EMR healthcare administrators are given the capability

to collect geospatial data about patients so they can conduct deeper statistical analysis

on patient demographics and the geographic characteristics of deceases.

Item 2006 (0) 2007 (1) 2008 (2) 2009 (3) 2010 (4) 2011 (5) 2012 (6) 2013 (7) Total
Cost
System costs
System infrastructure 1,241 98 93 88 84 1,604 (10.0)
System application 1,006 1,274 315 192 188 184 179 174 3,512 (21.9)
Office supply 306 286 105 102 98 95 91 1,084 (6.7)
Sub-total 2,554 1,560 315 296 388 375 363 348 6,199 (38.6)
Induced costs
Paper-charts scan 724 519 1,243 (7.7)
MTs support 166 1,186 1,107 1,118 1,185 1,313 1,255 1,281 8,612 (53.6)
Sub-total 166 1,186 1,831 1,636 1,185 I;313 1,255 1,281 9,854 (61.4)
Total PV of annual costs 2,720 2,746 2,146 1,934 1,573 1,687 1,618 1,630 16,054 (100.0)
Benefit
Cost reductions
Supplies for paper-charts 11 52 258 100 248 91 231 3 1,076 (5.5)
Chart storage space 14 145 142 139 135 129 703 (3.6)
Chart management FTE 180 782 799 847 816 807 4,231 (21.5)
Clerks decreased 165 165 165 165 165 164 990 (5.0)
Supplies for MDIS 7 67 78 415 168 165 161 155 944 (4.8)
Sub-total 18 120 695 1,335 1,522 1,408 1,507 1,339 7,945 (40.4)
Additional revenues
From remodeling storage 17 26 35 25 21 125 (0.6)
From temporary storage 261 300 280 275 269 262 1,646 (8.4)
From MT support 551 1,411 1,421 2,747 1,928 1,899 9,956 (50.6)
Sub-total 811 1,728 1,727 3,056 2,223 2,182 11,727 (59.6)
Total PV of annual benefits 18 120 1,506 3,063 3,249 4,465 3,731 3,521 19,672 (100.0)
Accumulated NPV (2,702) (5,329) (5,969) (4,839) (3,163) (385) 1,726 3,617
Benefit-cost ratio 123
Discounted payback period 6.18

Figure 2.4: Cost-benefit analysis in 2000US$ [10].

In order to assist adoption and development of EMR systems the computer database

(Clinical repository) at their core must fulfill certain design requirements and have

42

certain capabilities. These databases need to have a data model to define its functional
requirements and to produce a formal description, a schema of all the data generated in
the enterprise and how it was all related, and a database structural design to define its
technical requirements [1]. Furthermore, for a design to be considered successful the
database must be able to provide rapid retrieval of data for individual patients, and to
have the capability to adapt to changing information needs of growth and new
technology. Object-oriented and no-SQL databases seem to have an advantage in
fulfilling these requirements as they are far more scalable and support dynamic data
schemas, allowing the storing of heterogeneous medical information [1]. These
databases are often integrated into already existing or new systems that have parts
which need to communicate with them, so they must be able to cooperate with the
various subsystems and also be operationally and structurally independent of all the
other subsystems and application programs. With this flexibility, different parts can be
upgraded or replaced at any time and simultaneously keep the whole system
operational. The unbreakable continuous operation of a system is imperative for a
medical application who has to serve a large number of patients. Privacy of patient data
is also important and the database together with the system must be secure enough to
ensure there will be no leak of information at any point no matter what technical

difficulties arise or who will try to gain access to the stored data [7].

2.3 Medical Application Development with Android

App development starts with a clear understanding of what the medical app needs to
do, for whom, and the environment it needs to operate in. Hardware and device
specifications must also be considered while developing, for example smartphone users
need faster acquisition of data and more compact design of user interface than tablet or
desktop users [12]. Android is a mobile OS that was designed to assist application
development by giving access to many APIs, architectures and frameworks to
programmers and testers. In addition, Google support and services like google maps,
gmail, google plus and chrome integration with the operating system are really

beneficial for the developer and especially useful to medical applications. The ability

43

to configure every subsystem or configuration of the device can be beneficial to the

programmer.

Functionality? Data flows?
Public Patient Involvement?
USE CASES.

Commercialisation route? Data
& Device Security? Medical
Device?

Early functions /user interface /
website framework

Mocked up prototype screens
permitting user interaction
feedback

API Usage, App Store
optimisation?

Linking mobile app into existing
or new ICT infrastructure. |
nteroperability?

Figure 2.5: Application developing process flow [12].

This flexibility leads to product differentiation cause each vendor customize the
operating system for his own devices, so to be sure that an application operates and
behaves as it was designed on every device, developers need to conduct more extensive
testing by running it on at least one device from each vendor. When reliability is

4

D

concerned, Android is not the best solution as the system freeze and crush when
multiple applications or heavy computational loads are running. Developers need to

optimize and test their code in order to minimize that risk [2].

45

CHAPTER 3

System Overview

The system we developed and implemented in this thesis consists of three discrete parts.
The first part is the Linux based application and it serves as the system’s entry point.
Its task is to read the input from the electrodes (Voltage in millivolt scale) that are
placed onto the patient’s body and transmit the measurements through Bluetooth to the
Android application. This application is the second part of the system. It can run on any
device (smartphone, tablet etc.) that utilize Android as operating system and has a
Bluetooth module. The application performs a number of tasks. Firstly, it receives the
ECG signal that has been captured and stores it in a text file for later use, as the signal
is being transmitted the user can see the pulse in real time thanks to dynamic plotting
capabilities of the app. After the transmission is completed and the data stored on the
device, we can choose to open the text file to review the measurements, plot the whole
ECG signal or upload it on the database through the Internet in JSON format. In order
to communicate with the remote database, we developed the third part of our system
which is a web service. The web service is implemented as a servlet running in any web
container with connectors to the database. We have developed two connectors, one for
the MongoDB and one for the MySQL database, the connector for MySQL works with
any SQL database with a matching schema like the one we used simply by loading the
appropriate driver for the target database. The web service receives HTTP requests that
contain JSON files, after parsing and evaluating them it connects to the database for
storing the data in the desired format. A graph that describes the whole system with the
interactions between the parts as well as some key frameworks, libraries and tools used

for the development of each individual part follows:

46

DATABASE

A4
Apache Tomcat Web Container

Server REST WEBSERVICE

MongoDB Connector

MySQL Connector

Created with Maven Build Tool

JAVAX API for Servlet Impementation
Jackson API for JSON Object Mapping

HTTP Requests

ANDROID APPLICATION

Classic & LE Bluetooth Support

GPS Coordinates Acquisition through Google Play API
Android Plot Library for Dynamic Plotting of the ECG

Apache HttpClient API for Communication with Web Container

JSON Java API for JSON File Parsing
A

Server/Client Role

LINUX APPLICATION

Bluez Stack
QT Bluetooth Library for BLE implementation
Classic & LE Bluetooth Support

Figure 3.1: System Overview.

For the primary design of the system and during its development we took under serious
consideration the advantages or the disadvantages of each technology and the key
design principles that were described in the previous two chapters to produce a robust
system that can satisfy the needs and overcome the implementation difficulties of the

deployment and operation in real life medical scenarios.

47

3.1 Linux Based ECG Monitor and Data Transfer Bluetooth
Application

3.1.1 BlueZ Stack - Classic Bluetooth Development

BlueZ is the official Bluetooth protocol stack for Linux operating system and is one of
the basic sub-systems of every distribution’s kernel, so it is installed as part of it by
default. For the development we used BlueZ version 5.37. BlueZ stack includes
software implementations of higher Bluetooth transfer protocols (RFCOMM, OBEX,
A2DP etc.), sets up and maintains the SDP or GATT servers where information about
services and profiles supported by the device is stored, creates two interfaces between
user space programs and applications and the Bluetooth hardware controller’s firmware
that communicates with the operating system in kernel space, also the stack includes C
libraries containing functions that are needed for the development of Bluetooth
programs or applications. The first interface is L2CAP socket, it operates as a

multiplexer for higher level protocols.

User Space

Kemel Space

Figure 3.2: BlueZ stack architecture [26].

48

Every high level protocol has predetermined parameter values and options (enable or
disable packet retransmission, MTU size, order of packets to be transferred etc.), in
order to use such a protocol, the developer can open an L2CAP socket and pass the
desired protocol as a parameter, then the interface automatically sets up the proper
command packets, that contain values and enable or disable features according to
protocol specifications and sends them to the hardware controller for execution. The
second interface is the HCI socket, by opening that socket the developer can directly
send commands to the hardware controller in order to directly program it. This interface
gives the ability to the programmer to create his own transfer protocols or change the

parameters of the existing ones according to the application’s needs.

In this thesis we developed the Classic Bluetooth client by utilizing only the
stack’s libraries and functions. In this operation mode the ECG device operates as a
client and the Android device as a server. We designed the application running on the
ECG device to be able to connect with any device so instead of hard coding a known
MAC address into the application we make use of the SDP server feature. Furthermore,
we decided to use the SPP profile so the two devices communicate over the RFCOMM
protocol, that means data packets are transmitted in the order they were send to the
Bluetooth controller even if retransmission is needed. This adds a small delay in data
exchange because every packet has to wait for the previous packets to be delivered first
but it ensures data consistency and eliminates the need for packet ordering in server
side so makes the development of the server application less complex. The server
device opens an RFCOMM socket and adds a record containing the SPP profile into its
SDP server. The client application calls the hci get route () function to geta
route to the Bluetooth hardware then it opens an HCI socket by calling the
hci open dev () function and passing the route to the hardware as argument, with
the socket open the client can send commands directly to the Bluetooth controller. Now
that it can communicate with the Bluetooth hardware the client scans for available
devices and every time it finds one sends a request to receive the SDP server’s records
hosted on the device, then it searches them for the desired profile. The code for device
scanning and record searching is shown in figures 3.3, 3.4, 3.5. As we have mentioned
before every profile has a unique UUID, so the client searches for a matching UUID in

the records.

49

printf{"Scanning ...\n"}:

info = HULL;

num rsp = O;

flags = 0O;

length = 3; /* ~10 seconds */

num rsp = hel inguiry({dev id, length, num rsp, NULL, &info, flags):
if (num rsp < 0) {

perror("Inguiry failed™):
exit(_):
}
Figure 3.3: Code Segment for Device Scanning.
session = 0; retries = 0;

while(!=se=s=zion) {
gession = =dp connect(BDADDE ANY, &(info+i)->bdaddr, SDP_RETRY IF BUSY);
if(seszion) break:;
if{errno = EALEEADY && retries < 5} {

perror{"Eetrying”
retries++;
sleep(l)
continne;

}

break;

}

if { ses=zion = NHUOLL)} {
perror("Can’ I
free(info):
continme;

it
()

Figure 3.4: Code Segment for Connecting to SDP Server.

The UUIDs are 128-bit numbers but if they describe services or profiles that are defined
by the official Bluetooth specifications we can refer to them by using only 16 or 32-
bits, so we have added these two cases, without any further actions, in our code where
we parse the UUIDs from the records for future use.

50

foundit =

responses =
for (; r; r = r-»next) {
responsestt;
rec = (sdp_record t¥) r->data;
zdp list_t *proto list;
I get a list of the protocol seguences
if(=dp get accesz protos(rec, &proto list) = Y {
zdp list t *p = proto list;
go through each protocol sequence
for{ ! p ! p = p->next)} {
2dp list t *pds = (sdp_list t¥*)p->data;
// go through each protocol list of the protocol segquence
for{ ; pds ; pds = pds->next)} {
/{ check the protocol attributes
zdp data t *d = (=dp data t¥)pds->data;
int proto =
for{ : d; d = d-»>next } {
switch({ d-»>dcd) {
case SDP _UUID16:
case SDP _UUID3Z:
case SDP UUID1ZE:
proto = sdp uwid to proto(&d->val.uuid);
break;
case SDPF UINTE:
if{ proto = RFCOMM UUID) {
printf("rfcomm channel: %d\n",d-»val.int8):
loco_channel = d->»>val.int8;
foundit =
}
break;
1
1
}
sdp list free((sdp list t#)p->data,)i
}
2dp list free(proto list, i
}
if (loco_channel > 0)
break;
1

Figure 3.5: Code Segment for SDP Record Searching.

After the client finds a suitable device it opens a blocking socket by passing the server’s
address and the communication protocol as arguments and then use the write ()
function to transfer the data. This function returns 0 if it was executed successfully or

-1 if it failed for some reason. When the transfer is completed we close the socket and
end the connection by calling the c1ose () function. It is safe to conclude that classic

Bluetooth communication is very similar to simple TCP networking from the

programmer’s view. The code in figure 3.6 demonstrates the above.

51

status = connect (s, (struct sockaddr *)&loc addr, sizeof(loc addr)):
if({ status < oA
perror{"uh oh");

printf {"Sending file:%=\n",argv[1]):

status = write(s, argv[l], strlen{argv[l]}}:

ztatus = write(=z, "'\n", I

int j = 0;

do {

J++:

if (J==)

{ S/nanosleep (&tim, &tim2) ;
status = write(s, strings[j], strlen{strings[j]}):
printf {("Wrote line: %d , %d bytes\n", j, =status);
printf{"data: %=z “n",string=s[j]l}):

telse

i
ztatus = -1;

1
} while (status > }4
close (s} ;
2dp record free(rec):

Figure 3.6: Code Segment for Sending Data to the Bluetooth Server.

When the connection with the server is terminated the client has the option to stop
running or initiate a new search to find and connect with a different device, so we can

use the same monitoring device as client to send ECG data to multiple Android devices.

3.1.2 Qt Bluetooth API - BLE Development

Bluetooth low energy application development follows a different programming model
than Classic Bluetooth. In BLE, there is only one communication protocol called
Attribute (ATT) protocol, so devices communicate with the so called attributes.
Attributes are records in a big table that is created and stored in every Bluetooth Low
energy device, they can be identified with unique UUIDs and hold discrete values that
represent data and are associated with various attribute types defined by SIG
specifications, properties, read or write permissions and a handle, they can be accessed

by other devices with read or write requests. The protocol is based on the server-client

52

model, the communication involves the exchange of read or write responses and

requests, also the protocol defines four operations that can be performed by both roles:

e READ: A read request is send from the client to read the value of an attribute.
The server sends a read response containing the value if the client has the
appropriate permissions.

e WRITE: The client sends a write request containing the new value, if he has
sufficient permissions and the value has proper format the server updates the
attribute and sends a write response that the operation was successful.

e NOTIFY: One of the two communication partners sends a notification that an
attribute has changed. The other partner can send a read request to get the new
attribute value or can ignore the notification. Notifications are a really simply
way to give the developer more control over the power consumption of his
application’s code.

e INDICATE: This action is used when a serious change has happened to an
attribute that is crucial for the link to be sustained between the two devices, so
the other device has to take action. Indications can’t be ignored so the device
that sends them stops any further communication until a read request, for that
attribute, is received. Indications are very helpful when a patch to the code has
been applied to either device and the other needs to conform with new

specifications in order to communicate properly.

In order to make it easier for an application to use Bluetooth Low Energy the stack adds
one more level above the ATT protocol, this level is the Generic Attribute (GATT)
profile. The Generic Attribute Profile (GATT) defines a service framework using the
Attribute Protocol. This framework defines procedures and formats of services and their
characteristics. The procedures defined include discovering, reading, writing, notifying
and indicating characteristics, as well as configuring the broadcast of characteristics.
The profile uses the so called characteristics as its basic data structure objects that hold
not only the data that has to be exchanged but also information about that data. The
entities holding information about the data are called descriptors and they have their
own UUIDs for referencing. Characteristics are higher level objects that are translated
into lower level groups of multiple attributes. Every service or profile created by the

53

developer is an extension of the GATT profile and it is advisable to conform with it, as
it would make development much more complex and applications from other
developers who want to connect will need to have the exact specifications to establish
a link. The Bluetooth stack creates and operates a GATT server, just like the SDP
server, that stores supported services and profiles, other devices connect to this server
to search its records for UUIDs that match with profiles they want to use. It is obvious
that because of the programming model followed by Low Energy Bluetooth an object
oriented programming language can make development simpler and the generated code

will have better flow.

Bluetooth and Bluetooth low energy

4 N\ s \
Application Application
\. J \ J
R 4 N
Profile Profile
o
GATT/ATT RFCOMM
N
L2CAP L2CAP
i ————————————— . gy ————- e HCI
s) G h
Link Layer Link Manager
PHY PHY
Bluetooth low energy “Classic” Bluetooth

Figure 3.7: Comparison between Classic and Low Energy Bluetooth hierarchy [25].

Furthermore, the BlueZ stack version that was used during the development of the
application does not fully support BLE’s features like GATT server or certain profiles.
These features are characterized as experimental so in order to use them we had to edit
the Bluetooth daemon configuration file and add the -E switch. So every time the

operating system boots and executes the configuration file to initialize the daemon these

54

features are enabled automatically. Also, there was almost no documentation for these
features and very limited functions or tools to add and edit profiles or server operations
to assist the developer. To address all these problems, we decided to use the Qt
Bluetooth API version 5.7 written in C++. Qt library and the Qt Creator IDE is
distributed by Qt company under GPL, LGPL or even commercial licensing if the need
arises for future closed source code application development. In addition, the library is
cross-platform and can run on Linux, Windows, MAC operating systems and even on
embedded Linux distributions, that makes our application more versatile as it can be
ported to almost every device very easily. The library also contains classes, features
and even an editor for Graphical User Interface (GUI) creation that synergize with the
backend logic without the need for complex interfaces to be developed in order to
exchange data and edit its format for display. This is useful for future expansion of the
application if it is running on devices with monitors to make interaction with the user

easier and more direct.

Now the ECG monitor device takes the role of the server and the Android device
is the client. We made this change to take advantage of BLE’s low power consumption
in idle and advertising modes. The server device exposes the heart rate characteristic
that contains the ECG measurement data to scanning devices that are interested to read
it. When a client device makes a connection, the server sends them notifications
whenever a new measurement or some change to the characteristic has occurred. We
decided to send notifications instead of read or write requests because the client has the
option to ignore them so the two devices do not engage in any communication, that
exchanges even a small amount of data, to further conserve power on both devices. The
application first instantiates and passes the desired values to the characteristic objects,
these values set up the characteristic type, read-write permissions, data format and size,
then it sets up the advertising object for that characteristic and commands the Bluetooth
controller to start advertising it, the code is demonstrated in figure 3.8. The
characteristic we created has the SIG defined “Heart Rate Measurement” UUID, has
one descriptor that enables notifications and is given the Notify and Read properties,
that means it can cause notifications and the data it holds can be read from other devices.
These values are passed to the characteristic object with setUuid() and
setProperties () methods. The data type and size is defined with the

setValue () method.

55

cout<<"Setting up characteristic data\n";
QFlags<QLowEnergyCharacteristic: :PropertyType> Properties;
Properties.setFlag(QLowEnergyCharacteristic: :Notify);
Properties.setFlag(QLowEnsrgyCharacteristic: :Read) ;
QLowEnergyCharacteristicData charData;

charData.setUuid (QBluetoothUuid: :HzartRateMeasurement) ;
charData.setValue (QByteArray(Z, 0));
charData,setProperties (Properties) ;

//Adding descriptor to characteristic
QLowEnergyDescriptorData clientConfig(QBluetoothUuid::ClientCharacteristicConfiguration,
QByteArray(z, 0));

charData.addDescriptor (clientConfiqg) ;

cout<<"Setting up Service data"<<"\n";

QLowEnergyServiceData serviceData;

serviceData.setType (QLowEnergySsrviceData: :ServiceTypePrimary) ;
serviceData.setUuid(QBluetoothUuid: :HeartRate);
serviceData.addCharacteristic(charData);

QLowEnergyAdvertisingData advertisingData;
advertisingData.setDiscoverability(QLowEnergyAdvertisingData::DiscoverabilityGeneral) ;
advertisingData.setIncludePowerLevel (true) ;

advertisingData.setLocalName ("HeartRateserver”);

advertisingData.setServices (QList<QBluetoothUuid>() << QBlustoothUuid::HeartRate);

cout«<"Advertising..."«<"\n";

const QScopedPointer<QLowEnergyController> leController (QLowEnsrgyController::createPeripheral());

const QScopedPointer<QLowEnergyService> service(leController->»addService(serviceData));

leController-»startAdvertising (QLowEnergyAdvertisingParameters(), advertisingData,
advertisingData) ;

Figure 3.8: Code Segment for Characteristic Creation and Advertising.

For the advertising we set up the advertising data object by making it discoverable with
the setDiscoverability () method and adding our service to the service list with
the setServices () method, then we create one pointer to the Bluetooth controller
and a pointer to the service we want to advertise in order to send it to the controller after
that we simply send the command to the controller to start advertise our service with
the startAdvertising () method. To notify the other device that a new
measurement has occurred in order for it to read it we firstly get a reference to the
characteristic object from the service list and then we «call the
writeCharacteristic () method to update the data, writing the characteristic

automatically causes notification to the other device.

56

QLowknergyCharacteristic characteristic = service-deharacteristic(QBlustoothUuid: :HeartRateMeasurement);
Q ASSERT (characteristic.isValid());

service-»writeCharacteristic(characteristic, value,

QLowEnerqyService: WritefithoutResponse) ; //Causes notification,

Figure 3.9: Code Segment for Updating Characteristic Data.

3.2 Android Application

Every Android application can be built by using four main components that are defined

and implemented by the android SDK. These components are:

e Activities: Activities represent the application’s screens, they manage and
support the user interface and provide basic means for user interaction. They
run always on the main application thread (Ul thread) and are the basic blocks
for application development. The entry point of an application is always an
activity. Every Activity has a life cycle that is shown in figure 3.10.

e Services: Services are used to handle long running operations associated with
an activity. They run on the background on separate threads (not on Ul thread)
and they continue to operate even when the activity is not on the screen.

e Broadcast Receivers: They handle the communication between the operating
system and the application or between applications. They intercept signals and
messages called Intents and initiate actions associated with them.

e Content Providers: This component supplies data from one application to
others on request. Such requests are handled by the methods of the
ContentResolver class. They are used mostly when applications need to

communicate with a database.

57

Activity
launched

-

= onCreate()

v

onStart()

0

User navigates
onResume()

to the activity

I"f App process x"'l I-"' Activity
I\ killed j,- \ running _
‘x_—li__,.-

Another activity comes

nto the foreground

v

onPausel()

The activity is
no longer visible

v

onStopi()
I

Apps with higher priority
nesd memory

.. - y

- onRestart()

I

-

User returns
1o the activity

I

User navigates
to the activity

J

The activity is finishing or
being destroyed by the system

v

onDestroy()

v

[Activity
shut down
b

»

Figure 3.10: Activity Lifecycle [15].

The application we developed has seven activities for interaction with the user. We used
the official Android Studio IDE for the development and we have set the minimum
SDK version to 18 and the target SDK is version 24, this means that our application is
compatible with every device running Android 4.3 (Jelly Bean) up to 7.1.1 (Nougat).
Version 18 is the minimum Android version that supports BLE. Android was originally

using BlueZ stack but since version 4.2 it changed to Bluedroid, a stack developed by

58

Broadcom. With this change android dropped the support of all Bluetooth transmission
protocols except RFCOMM. Every application project has a manifest xml file in which
permissions for access to device’s hardware systems and application’s activities must
be stated and defined. Without the manifest file the project cannot be built. Before we
can start developing we have to compose the application’s manifest file with all the
activities and the permissions we need. We declare permissions with the <user-

permission> tag and activities with the <activity> tag.

k?xml version="1.0" encoding="utf-8" 2>
<manifest xmlns:android="http://schemas.android.com/apk/res/android”
package="com.diploma.john.medicalapp">

<uses-permizsion android:name="android.permiszion.BLUETOOTH" />
<uses-permission andreoid:name="android.permizsion.BLUETOOTH ADMIN" />
<uzez-permizsion android:name="android.permizsion.ACCESS FINE LOCATION" />
<uses-permission android:name="android.permizsion.ACCESS COARSE LOCATION" />
<uses-permizsion android:name="android.permiz=zion.INTERNET" />

e he ¥ rlass

<us=es-feature
android:name="android.hardware.bluetooth le"

android: required="falze" />

<application
android:allowBackup="trues"
android:icon="Enipnap/ic launcher"
android: label="Medical App"
android: supportsRtl="trues"
android: theme="Eztyle/AppThens . NoActionBar"»

<activity android:name=".Mainfctivity">
<intent-filter>
<action android:name="android.intent.action.MATH" (/>
<category android:name="android.intent.category . LAUNCHER" />
</intent-filter>
<jfactivity>

<activity android:name=".Server Activity" />
<activity android:name=".Files" />
<activity android:name=".options" />
<activity android:name=".Display Data" />
<activity android:name=".Plotting" />
<activity android:name=".LEConnectionInit" />
<activity android:name=".BLEConnection" />
</application>

</manifest>

Figure 3.11: Application’s Manifest file.

59

The first screen of our application is defined by the MainActivity class which extends
the android AppCompatActivity class. Every activity class has seven methods, as
shown in figure 3.10, that we need to override in order to write our own code that
implements the application logic. The recommended practice is to put all the code
associated with the user interface inside the onCreate () method because it is the
first method to run when the activity is created, so adding graphical elements into the
interface at a later time can disorient the user and cause the application to crush. We
have follow this practice in every activity we created. From the start screen the user can
enable the device’s Bluetooth and choose if he wants to connect with another device or
browse the ECG signal files stored in the device. To pass from one activity to the other
we send intents that contain the class that defines the activity and the operating system
creates it. To connect with other devices, the user must press the user button and then

choose if he wants to start a Classic or Low Energy Bluetooth connection.

[

Figure 3.12: Application’s Start Screen.

60

In order to speed up the Bluetooth development and keep the code as less complex as
possible we created the BTSupportMethods class to act as a library containing methods
for some basic operations that we use repeatedly during the development. First we need
to create an object reference to the device’s Bluetooth adapter, this is possible with the
getDefaultAdapter () method provided by the android API. To create a Classic
Bluetooth server using the RFCOMM protocol and register our service’s UUID to the
SDP records to expose it to other devices scanning for our service, we use the
listenUsingInsecureRfcommWithServiceRecord () method of the
newly created adapter object, this method returns a BluetoothServerSocket object. With
this method there is no need for a four-digit PIN code to achieve pairing between the
devices. Although it is more secure, we chose to not use a PIN code because the client
device may not have a screen or an input method for the user to enter the code. By
calling the accept () method of the BluetoothServerSocket object we get a
BluetoothSocket object, with this object we can communicate with the other device to
exchange data. As long as we keep the BluetoothServerSocket open and we accept
connections we can communicate with multiple devices simultaneously. Every time we

accept a connection we start a new thread to handle the communication.

try |

W TT ie Fha mrn e

tnp = myAdapter.listenUsingInsecureRfcommiWithServiceRecord ("myService”,

UUID. fromString ("00001101-0000-1000-8000-0080569L34fb")) //Standsrd serial

String Channel = tmp.to3tring():;

Log.d("SEEVERCONNECT", Channel);
} catch (I0Exception e) |

Log. d{"SEEVERCONNECT", "Could not get a BluetocothServerScocket:" + e.toString()):;
}

oy ServerSocket = tmp;

BluetocothSocket socket = null;
try |
socket = myServerSocket.accept();
Log. d({"SEEVERCONNECT", "Connection Accepted:");
} catch (I0Exception e) {
Log.d({"SERVERCONNECT", "Could not accept connection:" + e.todtring()):
1

Log.d({"SEEVERCONNECT", "How managing Connection:");

ManageConnection (socket) ;

Figure 3.13: Classic Bluetooth Server Code Segment.

61

The ManageConnection () is a method we created to read the data from the

Bluetooth socket and store it in a text file in the device.

The Low Energy connection programming is a little more complex. As we
mentioned before in the Low Energy communication our application operates as a client
so it has to scan for the available devices first and then initiate a connection with them.
The available devices are presented in a list to the user. When a list item containing a
device is pressed a connection with that device initiates. Every BLE operation causes a
callback, that runs in a separated background thread, if it is completed successfully, the
callbacks can happen anytime as the application is running so we had to take that into
consideration during the development. The methods we had to override in order to

handle the callbacks are shown in figure 3.14.

private final BluetcothGattlallback mGattCallback = new BlustocothGattCallbkack() {

i0verride

public void onConnecticndtatelhange (BluetoothGatt gatt, int status, int newState) [...}
i0verride
public void onServicesDiscovered(BluetoothGatt gatt, int status) {...}
i0verride
public void onCharacteristicWrite (BluetocothGatt gatt,
BluetoothGattCharacteristic characteristic, int status)

£ T - Ae
gUwverriqae

public woid onCharacteristicChanged (BlustoothGatt gatt,
BluetoothGattCharacteristic characteristic) {...}
i0verride
public wvoid ocnDeacriptorWrite (BluetocothGatt gatt,
BluetoothGattDescriptor descriptor, int status) {...}

f0verride

public woid onCharacteristicRead (BluetocothGatt gatt,
BluetoothGattCharacteristic characteristic, int atatus) {...}

I

Figure 3.14: BLE Callback Methods.

The Android operating system has a major drawback, there is no implementation of a

scheduler to store and manage the application’s requests to the Bluetooth Low Energy

62

adapter. This means that if two operations that need access to the adapter are executed
in a sequence the second will almost always fail. One solution to this problem is to
insert a long enough delay between those two operations to be sure that both will be
executed. The difficult thing is to determine a proper delay time that will be long enough
for every operation to be completed before another initiates and will not waste system
resources for too long. We decided to implement another solution. We used boolean
variables as locks to create a state machine that does not allow an operation to initiate
while another is still accessing the adapter. The above solutions work and can manage
just one connection in an efficient and simple manner, unfortunately the problem
persists when we have multiple connections simultaneously. When we establish a
connection with the ECG monitor device we send a request to receive its GATT records
to find the desired service and retrieve the characteristic associated with the
measurement data. After finding the characteristic we write to the descriptor with
00002902-0000-1000-8000-00805f9b34fb UUID code the value 1 in order to enable
notifications. This descriptor is defined by the Bluetooth specifications and it has the
same UUID in every device. The monitor device sends notifications that the
characteristic data has changed. The application read the new ECG value and stores it
in a text file. When transmission is over we call the close () method of the

BluetoothGatt object which represents the GATT server connection.

The application also supports dynamic and static plotting of the ECG signal. To
graphically present the ECG data we used the Androidplot library version 0.9.8. The
static plotting is handled by the plotting activity we created. We add to the activity’s
layout.xml file a XYPIlot element defined by the library and we present the data on it
by using the appropriate methods provided by the library. The dynamic plotting is
handled by the BLEConnection activity in a similar way, the key difference is that we
represent our data with an ArrayList object that change in size, we use the
HISTORY_SIZE variable to set a maximum size for the object and we call the
redraw () method to re-render the plot with the new data every time we read a new

value from the characteristic.

The last feature of our application that connects and feeds the input of the third
part of our system is the data uploading to a remote server through the internet. The
user has the option to upload the measurement file to a database on demand. We

communicate with the server by using the HTTP protocol. The protocol complies to

63

request-response model and defines four methods for manipulating and accesing data

on the server. These methods are:

e GET: This method is used usually from the client to retrieve a presentation of
the data stored in the server. A GET request should have no other effects on the
stored data, there are other methods used to manipulate it.

e POST: The POST method requests that the server accept the entity enclosed in
the request. This method should be used when we want to store data or other
resources to the server.

e PUT: The PUT method requests that the enclosed entity be stored under the
supplied URI, if the URI already exists it should be updated with the new entity.

e DELETE: The DELETE method is used to delete the specified resource or data

from the server.

We used the Apache HttpClient API version 4.5.2 to implement the lower level http
client needed to send the requests and receive the responses to and from the server. We
decided to send the patient and ECG data in a JavaScript Object Notation (JSON) file
format. A JSON file stores the data in a key: value format, also it is basically a text file
so it can be sent from the client to server easily, consuming very little bandwidth
compared to an XML file and can be parsed by any programming language without
complex procedures. Another advantage is that it can be manipulated as a JavaScript
object directly without any need for conversion, that is really helpful in the rapid
development of data presentation forms and websites that the end user can navigate to
manipulate and interact with the data. In our system this format synergizes very well
with the database we chose because MongoDB stores the data in BSON format that is
almost identical to JSON. Our application creates a JSON file with the id, longitude,
latitude and points keys for data mapping.

64

{"employees™:[
{ "firstName":"John", "lastName":"Doe" },
{ "firstName":"Anna", "lastName":"Smith" },
{ "firstName":"Peter"”, "lastName":"Jones" }

13

Figure 3.15: JSON file format example [19].

We also used the Google play-services API version 9.6.1 to expose our application to
Google’s Location API for patient’s coordinates acquisition in order to store them in
the database. By having geospatial information, we can conduct deeper statistical
analysis on the collected data from multiple patients or hospitals and connect deceases
to geographic locations and monitor their evolution through time. In addition, by
creating and connecting to a Google API client we can take advantage of many APIs
that can be useful for future feature development to make the application more versatile.
To initiate a connection with our remote server we first create a HttpClient object with
the DefaultHttpClient () constructor. In order to store data to the database we
have to send a POST request to the server, so we create a post object passing the server’s
URL string to its constructor and adding our JSON file to the request’s body with the
setEntity () method, finally we make the client to execute the request with the
execute () method and then wait for a response from the server. If the server sends

the code 200 the transaction was successful.

String URLString = "http://nickey432.microlab.ntua.gr:8080/MedicalDBWebservice/update"”;
HttpClient client = new DefaultHttpClient();
HttpPost post = new HttpPost (URLString);
post.setEntity(se);
response = client.execute (post);

Figure 3.16: Code Segment for POST Request Execution.

65

3.3 RESTful web service and MongoDB

A web service is a service offered by an electronic device to other devices that
communicate with each other via the World Wide Web. The most common use for a
web service is to provide an object-oriented web-based interface to a database server
and is often combined with a mobile application that provides a graphical interface to
the user. We developed a RESTful web service to receive and manage the database
transactions of our system. RESTful is an architecture that defines ways to create web
services that can handle dynamic and heterogeneous data formats without strict and
well specified communication rules or protocols. REST systems aim for fast
performance, reliability, and the ability to grow, by re-using components that can be
managed and updated without affecting the system as a whole, even while it is running.
We created the system’s web service using the Java Servlet API. A Java servlet is a
Java program that extends the capabilities of a server. The servlet technology
specifications are defined by Oracle. Servlets have a well-defined lifecycle from the
moment they are loaded till they are destroyed. This cycle has three stages, the
initialization stage which contains operations that need to be done before the servlet
starts accepting requests (e.g. database connector initialization), the service stage this
is where the main servlet logic and the database transactions are taking place and lastly
the destroy stage, at this stage the servlet should free any resources it had bind, destroy
unused objects and close connections with the databases. We can override the methods
doGet(), doPost(), doPut(), doDelete() provided by the Servlet API to intercept HTTP

requests and manage them.

66

Java virtual machine Serviet

init()
=D

Cor?g ir?er @ el

destroy()

Requests to the servlet container

Web Server

Figure 3.17: Servlet Lifecycle [23].

These methods are executed during the service stage, so when our web service receives
a request a new thread is spawned to run the respective method. All the spawned threads
end their lifecycle after a response to the client has been sent. Every servlet application
must be deployed to a web container. A web container specifies a runtime environment
in order to load and create servlet instances, it is also responsible for managing the
lifecycle of servlets, mapping a URL to a particular servlet, manage request and
response objects. For the deployment of our web service we used the very well
documented and popular open source Tomcat Server 8, provided by the Apache
Foundation, as a web container. Web services are distributed and deployed in
compressed WAR packages. These packages are basically ZIP files that contain Java
classes, a mandatory web.xml file and various resources. The web file is needed by the
web container in order to load the servlets and map URLSs to them, it can also contain
commands for the container to use certain resources, interfere with the servlet lifecycle

or establish routes between the servlets for communication inside the container.

67

<?xml verszion="1.0" encoding="UTF-8"732>
<web-app Zmlns="http://=mlns.Jjop.org/xml,/ns/javase"
xmlns:xsi="http:/ www.w3.org,/2001,/¥MLSchema-instance"
¥x31i:schemalocation="http://mmln=. jop.org/xml /ns/javace
http://xmlns.jcp.org/xml/ns/javase/web-app 3 1.x=sd"
verzion="3.1">

vdisplay-names>Medical Application</displav-names>

<resource-ref>
<description>Connection Pool</descriptions
<res-ref-name>jdbc/ecg database</res-ref-name>
<res-typesjavax.sql.DataSonrce</res-type>
<res-auth>Container</res-auth>

</resource-ref>

<zervlet>
fzerviet-namserMedicalServliet</serviet—nams>
<sexrvlet-class>WebService . MainServlet</servliet-class>
vload-on-startup>l</load-on-startupr

“/zervliecs>

<servliet-mappings
cservliet-namesrMedicalServliet</servliet—nams>
furl-patterns/greeting< /url-pattern>
surl-pattern>/opdate</url-pattern>
</ servliet-mapping>
{fweb—a;p}

Figure 3.18: Web.xml File.

The resources inside the WAR package can be anything that the web service needs to
operate, images, css, html or other files generated by other individual programs, URLS

and even whole libraries and APIs.

Our web service creates and initiates the database connectors in the init ()
method when it is loaded to Tomcat. We created two connector classes one for the
MongoDB and one for the MySQL database, in order to compare them and to make the
system compatible with SQL databases too. For the connector and database interaction
development we used the MongoDB Driver and the MySQL JDBC Driver APIs. For
every received request the web service has to extract the JSON data and handle it
programmatically. To be able to do this we defined a JsonObject class in order to map
the data to it. For the parsing and mapping of the file we used the Jackson API version
2.7.4.

68

getLongitude ()

getLatitude ()

puble> getPointa()

Figure 3.20: JsonObject Mapping Code Segment.

Another part of the web service is the module DBActions, this module contains two
classes that define methods we developed in order to implement database transactions.
The module can be extended in the future by adding classes that define methods for
other databases. When we extract the data from a POST request we call the
InsertDoctoMongoDB () or the InserttoMySQL () method. These methods
check if the patient’s id already exists in the database, if it does then we simply update

the patient’s record with the new data, if the patient does not exist in the database we

69

create a new record to insert him. All these happen inside the overridden doPost ()
servlet method. We have also overridden the doGet () method to intercept GET

requests in order to execute simple queries on the database and then display the result

records on a browser screen.

70

CHAPTER 4

System Evaluation

4.1 Bluetooth Data Transfer Testing Results

In order to produce safe and useful conclusions about Bluetooth performance we
decided to evaluate two major aspects that critically affect device communications,
power consumption and packet delay. All the tests were conducted by sending 1000
values or around 11KB of ECG data from the monitor device, running our Linux
application, to the Android device. Since Android version 4.4 the operating system has
a packet sniffing feature in order to help developers with application debugging, to
enable this feature we selected Settings—> Developer Options—>Enable Bluetooth HCI
snoop log on the Android device. Unfortunately, not every manufacturer or device
model implements this feature, so this approach might not be successful on every
device. For the Bluetooth link packet data collection, we enabled the hci log file on the
Android device and imported the file into Wireshark for display and further editing.
Wireshark is a packet analyzer program. After filtering out any unnecessary packet
information we extracted the log into CSV format file and imported it to Microsoft
EXCEL for statistical analysis.

4.1.1 Packet Delay Results

First we tested the Classic Bluetooth link. We measured packet delay by
calculating the time difference between two successive received packets. If the first
packet was received at t,qcreer time and the second at t,qckee2 time, then the delay
between those packets is tyeiay = tpacket2 — tpacker1- BY calculating the times using

this formula for all the received packets we can find the mean value and the standard

71

deviation of the delay. The formulas for mean value and standard deviation calculation

are:

— 1
¢ F=1INax (4.1)

¢ Su= [AENG6 -2 (42)

Where N is the sample size. In our experiments N=1000 packets.

We repeat the test and every time we change the distance between the two devices both

in open space and with a wall between them.

Classic Mean Packet Delay (secs)

0,0045
0,004
0,0035
0,003
0,0025
0,002 ./‘——‘\,/\—_‘
0,0015

0,001

Packet Delay(s)

0,0005

0 1 1 Wall 3 3 wall 6 6 Wall

Distance(m)

Figure 4.1: Bluetooth Classic Packet Delay Mean Value.

We followed a slightly different approach in calculating packet delay for the Bluetooth
Low Energy communication. We took advantage of the GATT profile’s specifications,
so we measured the delay between the client’s GATT read requests and the server’s
GATT read responses. Let t,.qqyese b€ the time client sends the request and tresponse

the time it receives the server’s response, then the delay is calculated from the formula

72

taelay = tresponse — trequest- We used the formulas 4.1,4.2 again to calculate the mean
value and the standard deviation of packet delay and followed the same testing
procedure as in Bluetooth Classic communication. Like before the sample size for our

experiment is N=1000 packets. Figures 4.3,4.4 shows the experimental results:

BLE Mean Packet Delay (secs)

o o o o
IS [o ~

Packet Delay(m)
o
w

o
N

o
i

0 1 1 Wall 3 3 wall 6 6 Wall
Distance(m)

Figure 4.2: Bluetooth Low Energy Packet Delay Mean Value.

In order to simulate real life operation conditions, all the experiments were conducted
in a non-isolated environment with Wi-Fi networks present, so interference from Wi-

Fi signals was taken into account and is represented in the measurements.

73

4.1.2 10T Implementation

In this scope we chose to implement the Bluetooth monitor application on the Raspberry
Pi 3 model B. The platform is built around the Broadcom BCM2387 chipset and its
technical specifications are:

e Processor: 1.2GHz Quad-Core ARM Cortex-A53.

e GPU: Dual Core VideoCore IV Multimedia Co-Processor.

e Memory: 1GB LPDDR2.

e GPIO Connector: 40-pin 2.54 mm (100 mil) expansion header: 2x20 strip
Providing 27 GPIO pins as well as +3.3 V, +5 V and GND supply lines.

e Networking: 802.11 b/g/n Wireless LAN and Bluetooth 4.1 (Bluetooth Classic
and LE), 10/100 BaseT Ethernet.

e Dimensions: 85 x 56 x 17mm.

The platform boots from an SD card running any compatible version of the Linux
operating system or Windows 10 IoT. We used the Raspbian Jessie Lite version 4.4 as
operating system. The Lite distribution has no graphical interface so it needs less
storage space on the SD card and utilizes less system resources, as a result OS power
consumption is minimal. In order to make the BLE part of our application to operate
on the board we cross-compiled the Qt library using the gcc-4.7-linaro-rpi-gnueabihf
cross-compiler. We also configured the Qt Creator to be able to compile and deploy our
project directly on the board, so we managed to create a fully functional toolchain with
an IDE for developing and debugging applications on the Raspberry Pi 3 board. We
used the top Linux command in 100 milliseconds interval to measure the CPU
utilization of our application. First we test the BLE part of the application. Figures
4.5,4.6 show the results.

74

Utilization (%)

Utilization (%)

CPU Utilization During Advertising

120 Adverising Windows

100

80

60

40

20

120

100

80

60

40

20

Scan Response
, A A A
O O O O O O O O O O 0O 0O 0O 0O 0O 0O 00O o0 oo oo o o o o go o O
O O O O O O O O O O O O O O 0O OO0 OO OO OO OO O o o o o O O
< 0N OO S 0N OO S 0N OO S AN OO S 0NN OV O S\ o O <
T H AN NANOOND T T NDND O O O NMNOWOOWOWO O OO — N N
H' D T B I B I o |
Simulation Elapsed Time(ms) Idle Tl'm.e Between
Advertising Intervals
Figure 4.3: Advertising CPU Utilization.
CPU Utilization During Data Tranfer
Packet Transfer Packet Transfer
o o O O O O O 0O O O O 0O O 0O 0O 0O 0O O O O OO o o o o o
o O O O O O 0O O O OO 0O 0O 0O 0O 00O OO OO OO o OoO O o
o oM N OO O M O N < 4 0N AN O O MO < 001N AN O OUm
N ™M 0 00 O O " =" N MM N < 1D D OO0 W O O O N AN M <
- - T "1 N AN AN AN ANAN AN AN NN NN NN OOO OO N N N o

Y N\

Simulation Elapsed Time(ms)

Figure 4.4: Low Energy Data Transfer CPU Utilization.

75

Figures 4.7,4.8 show the testing results for Classic Bluetooth when we transfer the data
as a stream without any delay intervals.

CPU Utilization During Scanning
Device Inquiry and Page
Requests Transmitions

120
Scanning Window
100

80

60

Utilization (%)

40

Idle Time Between
20

Scan eQals
)\ / :

QO O O O O OO O O O OO O O O O O O O O O OO OO O O O L
CESL,LLLELLLEL LS LLELLLELLL PSP S
PO TR R A AR AV AT o0 o 0 8 Y TN @ @AV AT AD

Simulation Elapsed Time(ms)

Figure 4.5: Scanning CPU Utilization.

CPU Utilization During Data Transfer

190 Packet Transfer Packet Transfer
100
— 80
X
5
S 60
©
N
=
40
20
0
O O O OO 0O o O o (=] O O OO OO0 OO0 O0DO0DO0DO0O0OO0DO0DO0DO0O0O0OO0OO0O OO OO o o
O O O OO0 OO oo O OO0 0O 0000000000000 O0OO0O0O0O0OOoOOoO o
ON < d 01N AN OMm < 400 N ANOOLOMONNS TS0 N ANOOWLOUMONS 0 !N AN O
00 00O OO -HdH NN < O NMNOOOODOOODOdT AN AN NI TN OWOMNOOODOODOO AdAd N mM
e R IR B B e B | ™ " A AN AN AN AN AN AN AN AN AN AN AN AN NN DD N N M

Idle Time Simulation Elapsed Time(ms)

Figure 4.6: Classic Data Transfer CPU Utilization.

76

We also measured the current consumed by the board from the USB port by using a
USB test adapter in order to get an estimation for the power consumption of our
application. The board operates at a constant 4,98 V voltage. Let | to be the current
drawn from the USB port, so the power consumption can be calculated by the formula
P=Vxl.

Power Consumption (mW)

2650
2600

2550

2500
2450
2400
2350
2300
2250

Idle Classic Scanning Classic Transfer LE Advertising LE Transfer

Figure 4.7: Raspberry Power Consumption.

4.2 Android Application Profiling

Android Studio offers a range of tools to track connected devices CPU and GPU
utilization, memory management and network usage while an application is running.
We used these tools to monitor the amount of resources needed by our application to
be able to extract useful conclusions about its operation. We tested the BLE connection
first. Figure 4.8 shows the CPU and memory utilization. From 13 seconds to 21 seconds
the application is scanning for Bluetooth devices. There is a rise in CPU usage that is
caused by the frequency hopping algorithm of the Bluetooth adapter. At 24 seconds
we have a connection event and after that the device receives data. During the

77

connection event there is a spike in CPU utilization because the application exchanges
information with the remote device in order to set up a connection link between them.
When the connection is established the operating system allocates more memory to the
application in order to receive the data. This allocation is represented in the memory
graph in Figure 4.8 at 25 seconds just when the connection is established. The arrows

on the Figures show these points of interest.

MVenoy [® M@ ?

B10M8

1800M8 | |

000 M

05 B 105 15 05 205 s s s 4 505 L 1m0s mbs 1m10s 1m 165
o 119 ? . .
- Scanning Connection Event Data Tranfer
8000% 1
ams| (\ / {
A '*, — T
1m 16

0.00 L) LS R B A T PRI R e ’l AT R I i T T e T e P e /R T | PP T . et) L S e P | PR o S o e P, I TR IV T i) PR T
fs B 10 15 As 2% s s s #s 805 8 1n0s Infs 1 105
Application Start

Figure 4.8: BLE CPU and Memory Utilization.

The Classic connection results are shown at Figure 4.9. At 6 seconds the application
initiates the server, represented by the small spike in CPU usage and starts to listen for
connections, while listening CPU usage is almost 0%. At 35 seconds the connection is
established, after that data transfer commences. During the transmission CPU
utilization reaches up to 10%.

78

Fee 1252 M)

&8 2

I et o

N uwpoy
Biipny

Py s

Wiy [M@ 7 byl
B

’ Free (304 NB)
I it 0

160048

000 Mg
0 1 16 s i s ki s s s L] Im0s Inds Inis Ints

[l ||©? bl

iy Data Transfer

S Connection Event
N iy

0% Binpny

00 2 =1
Application Start

] 1 15 s 2% 30s B s 4s §0s 8 Inls inds 1n 105 In 16

Figure 4.9: Bluetooth Classic CPU and Memory Utilization.

In figure 4.10 we can see the GPU utilization during the ECG dynamic plotting during
data transfer. The plotting starts at 18 seconds, before that the small spikes represent
the activity’s UI screen creation. The spikes represent the time needed to complete
graphical processes during dynamic plotting in order for the operating system to render

and update the screen.

M Gru n ? +t 42
G7.00ms 7
43,00 ms 1 . Execute [0,05 ms]
. Process (8,45 ms]
2400 ms . Prepare [4,55 ms)
. Diraw 60,48 ms]
0,00 ms—

20s 283 30s 38s 40z 455

Figure 4.10: BLE GPU Utilization.

79

4.3 Database Comparison

We test the system’s web service with both MySQL and MongoDB in order to compare
their performance and how well its of them synergizes with the rest of the system. For
the MySQL database we use a schema with two tables, one for the patients information
and one that holds every patient’s ECG data. The Patients table has the columns
ID,Longitude and Latitude. The ECG table has the columns ID and Vals. The ID
column in both tables contains the patients unique ids. Because of the No-SQL
database’s ability to handle dynamic data there was no need to define any schema in
MongoDB. In order to test the databases we sent POST requests to the web servide and
inside the JSON file we added the “db” key that selects a database. We measured how
much time in milliseconds is needed to insert or update one patient’s record into the
database. All the tests have been conducted by using a laptop equipped with 2,6GHz
Intel i7 6700HQ CPU, 8GB DDR4 RAM and SSD hard disk drive as server.

4.3.1 MySQL Testing Results

For all the experiments we used the ID column as index. We tried different
configurations in order to improve performance. First we tested the database with just
the indexing, then we enabled the web container’s connection pooling feature that
creates and manages database connections and distributes them to the clients. Lastly,
we improved our code by sending all the INSERT and UPDATE commands as batch.
That practically means that we do not commit any changes to the database until all the

write commands have been completed.

80

IVED)
N
()]
o
o

42,44

INSERT | INSERT with connection pool INSERT as batch with connection pool

Figure 4.11: MySQL INSERT Test Results.

10085,56

)
S
w 6000
S
=

m UPDATE B UPDATE with connection pool UPDATE as batch with connection pool

Figure 4.12: MySQL UPDATE Test Results.

We also measured the time needed to retrieve one patient from the database. We queried
the database with the patient’s ID in order to join the two tables to retrieve all the

information.

81

w
=
o 8
S
=

MySQL select 1 out of 100 MySQL select 1 out of 100 with connection pool

Figure 4.13: MySQL SELECT Test Results.

4.3.2 MongoDB Testing Results

We conducted the same tests for the MongoDB. One difference is that connection
pooling is enabled by default and is managed directly by the database instead of the
web container, as a result the throughput and speed of the connection manager is a lot
better compared to MySQL. We used again the patients’ IDs as index and took no

actions for further performance improvement.

MongoDB

30,98
]

IED)
N N N N NN
A U0 O N 00 O

100 PATIENTS

INSERT ®m UPDATE ® MongoDB select 1 out of 100 B MongoDB select 1 out of 100 with indexing

Figure 4.14: MongoDB Test Results.

82

CHAPTER 5

Conclusion

5.1 Summary

In this thesis we designed, developed and implemented onto an IoT platform a fully
functional ECG monitoring system that can operate from the individual patient data
acquisition level up to the remote data storing into a central medical database level. By
conducting tests and acquiring experimental data we were able to fully evaluate the
system and to find solutions to different use case scenarios. When we compared the
resource utilization, packet delay and the power consumption results we reached the
conclusion that Bluetooth Low Energy is better suited for a wearable device with
limited power resources that operates in close range with the android device. Classic
Bluetooth is recommended for stationary devices with constant power supply, it caused
almost 10% power consumption rise on the Raspberry Pi, or for use cases that involve
continuous monitoring of multiple patients at the same time over larger distances, so it
would be more useful in hospitals in order to monitor patients in treatment rooms or
ICUs 24 hours a day. For the database comparison we chose MongoDB as a better
solution because it was a lot faster at storing records without any code improvements
whereas we needed to devote a lot of development time in improving MySQL’s
performance and even then insert times were still slower compared to MongoDB’s. Also
disabling the write commit until all the write operations where finished can cause performance
drops for clients who request data acquisition operations because the database lock will be held
for longer periods of time. MySQL was a little faster in retrieving records but it had to
join only two tables. If the database grows, so it will contain more tables the retrieving
performance will drop significantly. In the next chapter we propose a system extension

that makes use of SQL databases.

83

5.2 Future Work

5.2.1 Database Extension System for Further Statistical Analysis

Although NoSQL databases are very scalable and can handle dynamic data their
architecture lacks in representing relations between the data. These databases are
suitable to operate alongside web services for fast client serving as they are designed to
run efficiently on clusters with no need for expensive hardware. We propose an
extension to the system that answers the need to establish relations between the data.
Medical applications need to connect ECG, EEG, blood pressure and many more
human bio signal data with deceases and patient’s history to statistically analyze them
and reach to conclusions with greater accuracy by taking account as many factors are
available.

The extended system will have NoSQL databases serve as caches for data that
are accessed very frequently and can be located and maintained by individual hospitals.
Every hospital will be able to store its patients’ data in their own database for quick
access. At the top level of the system there will be an SQL database with a proper
schema that can relate the data acquired by the individual hospitals in order to be
analyzed by researchers and can be located in a research center. The two levels will be
connected by a manager that will transfer data between them efficiently. This system
can achieve two things. Firstly, it improves medical data analysis by adding a relational
architecture to data storing. Secondly, the two levels will serve as backup in case one
of the databases lose some or all of its records, they will be able to retrieve them from
the other level. Lastly, the proposed system can operate alongside the system we

presented in this thesis without the need for changes or any redesigning of its parts.

84

SaAL Database

-
walal

Database Manager

5 N |
n n .
[| -

NoSdlL Databases

Figure 5.1: Proposed System Hierarchy.

5.2.2 Android Application Improvement

As we have stated before the Android OS does not have a way to manage and schedule
commands send to the BLE controller by an application. The development of such
manager-scheduler can enhance the IoT capabilities of our application. Also it will be
very useful for every application that uses BLE. In addition, the application’s Ul can

be further improved to become more user friendly.

85

References

Books, Articles & Guides:

[1]

[2]

[3]

[4]

[5]

[6]

Collen, Morris F. 2012. Computer Medical Databases. 1st ed. London:
Springer-Verlag London Ltd.

Hareva, David, Clarissa Wijaya, Samuel Lukas, and Hendra Tjahyadi. 2014.
"Developing Healthcare Apps On Different Mobile Phone Platform".
International Journal Of Information Technology & Computer Science 17 (1):
15-20.

Hillestad, R., J. Bigelow, A. Bower, F. Girosi, R. Meili, R. Scoville, and R.
Taylor. 2005. "Can Electronic Medical Record Systems Transform Health
Care? Potential Health Benefits, Savings, And Costs". Health Affairs 24 (5):
1103-1117. doi:10.1377/hlthaff.24.5.1103.

Li, Shancang, Li Da Xu, and Shanshan Zhao. 2014. "The Internet Of Things: A
Survey". Information Systems Frontiers 17 (2): 243-259. doi:10.1007/s10796-
014-9492-7.

McGrath, Michael J, and Cliodhna Ni Scanaill. 2013. Sensor Technologies. 1st
ed. Berkeley, CA: Apress.

Meyfroidt, Geert, Fabian Giiiza, Jan Ramon, and Maurice Bruynooghe. 2009.
"Machine Learning Techniques To Examine Large Patient Databases". Best
Practice & Research Clinical Anaesthesiology 23 (1): 127-143.
d0i:10.1016/j.bpa.2008.09.003.

86

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Perera, Charith, Rajiv Ranjan, Lizhe Wang, Samee U. Khan, and Albert Y.
Zomaya. 2015. "Big Data Privacy In The Internet Of Things Era". IT
Professional 17 (3): 32-39. doi:10.1109/mitp.2015.34.

Vermesan, Ovidiu, and Peter Friess. 2014. Internet Of Things Applications -
From Research And Innovation To Market Deployment. 1st ed. Aalborg: River

Publishers.

Weber, Rolf H, and Romana Weber. 2014. Internet Of Things. 1st ed. Berlin:
Springer Berlin.

Choi, Jong Soo, Woo Baik Lee, and Poong-Lyul Rhee. 2013. "Cost-Benefit
Analysis Of Electronic Medical Record System At A Tertiary Care Hospital".
Healthcare Informatics Research 19 (3): 205. doi:10.4258/hir.2013.19.3.205.

Bluetooth Core Specification Version 4.2, Bluetooth SIG, 2014.

App Development: An NHS Guide for Developing Mobile Healthcare
Applications, NHS, 2014.

Azariadi, D., Tsoutsouras, V., Xydis, S., & Soudris, D. (2016, May). ECG
signal analysis and arrhythmia detection on loT wearable medical devices. In
Modern Circuits and Systems Technologies (MOCAST), 2016 5th International
Conference on (pp. 1-4). IEEE.

Web Resources:

[14]

Analysis and Interpretation of the Electrocardiogram. Meds.queensu.ca.

Retrieved from https://meds.queensu.ca/central/assets/modules/ts-ecg/

87

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Android, I. Introduction to Android | Android Developers.

Developer.android.com. Retrieved from https://developer.android.com/guide/

Behind The Numbers: Growth in the Internet of Things. Ncta.com. Retrieved 5
January 2017, from https://www.ncta.com/platform/broadband-

internet/behind-the-numbers-growth-in-the-internet-of-things/

Developer Tools & Resources | Bluetooth Technology Website. Bluetooth.com.
Retrieved 25 May 2016, from https://www.bluetooth.com/develop-with-

bluetooth/developer-resources-tools

Java MongoDB Driver. Docs.mongodb.com. Retrieved 3 July 2016, from

https://docs.mongodb.com/ecosystem/drivers/java/

JSON vs XML. Wa3schools.com. Retrieved 23 August 2016, from

https://www.w3schools.com/js/js_json_xml.asp

MySQL Connector/J 5.1 Developer Guide. Dev.mysql.com. Retrieved 2
November 2016, from https://dev.mysqgl.com/doc/connector-j/5.1/en/

Path to Internet Enabled BLE. (2014). Thevoidptr.wordpress.com. Retrieved 17
September 2016, from https://thevoidptr.wordpress.com/tag/6lowpan/

Raspberry Pi Documentation. Raspberrypi.org. Retrieved 8 December 2016,

from https://www.raspberrypi.org/documentation/

Servlets Tutorial. www.tutorialspoint.com. Retrieved 27 June 2016, from

https://www.tutorialspoint.com/servlets/

The future is written with Qt: Cross-platform software development for
embedded & desktop. Qt. Retrieved 4 July 2016, from https://www.qt.io/

88

[25] Three flavors of Bluetooth: Which one to choose? (2013). Edn.com. Retrieved

from http://www.edn.com/Home/PrintView?contentltem|d=4405960

[26] Tutorials - Nordic Developer Zone. Devzone.nordicsemi.com. Retrieved 17
April 2016, from https://devzone.nordicsemi.com/tutorials/17/

89

