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Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκ-

λήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση

και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την

προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να

απευθύνονται προς τον συγγραφέα.

Η έγκριση της διδακτορικής διατριβής από την Σχολή Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών του Ε. Μ. Πολυτεχνείου δεν υποδηλώνει αποδοχή των γνωμών

του συγγραφέα (Ν. 5343/1932, ΄Αρθρο 202). Οι απόψεις και τα συμπεράσματα που

περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί

ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.
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ABSTRACT

With the proliferation of the Internet as the primary medium for data publishing
and information exchange, we have seen an explosion in the amount of online content
available on the Web. Thus, in addition to professionally-produced material being
o�ered free on the Internet, the public has also been allowed, indeed encouraged,
making its content available online to everyone. The volumes of such User-Generated
Content (UGC) are already staggering and constantly growing. Our goal has to be to
take advantage of this data explosion, which applied to the spatial domain translates
to massively collecting and sharing knowledge to ultimately digitize the world. User-
generated geospatial content is also commonly referred to as Volunteered Geographic
Information (VGI). There are several forms of VGI. In the current thesis, we will
work on VGI from textual and GPS data.

Subsumed under VGI, non-expert users have been providing a wealth of quanti-
tative geospatial data online. With spatial reasoning being a basic form of human
cognition, narratives expressing geospatial experiences, e.g., travel blogs, would pro-
vide an even bigger source of geospatial data. Textual narratives typically contain
qualitative data in the form of objects and spatial relationships. One of the main
scopes of this thesis is (i) to extract these relationships from user-generated texts,
(ii) to quantify them and (iii) to reason about object locations based only on this
qualitative data.

Moreover, with the extracted and modeled spatial relations and by employing
Bayesian inference, we obtain probabilistic measures of spatial connectedness of PoIs
according to the crowd. Applying this measure to the corresponding road network,
we obtain an altered cost function which does not exclusively rely on distance, and
enriches an actual road networks taking crowdsourced spatial relations into account.
With this we aim at obtaining paths that do not only minimize distance but also
lead through more popular areas using knowledge generated by users.

The last objective of this thesis, is to introduce the problem of continuous and
non-continuous monitoring of nearest trajectories based on GPS data. In contrast
to other similar approaches, we are interested in monitoring moving objects taking
into account at each timestamp not only their current positions but their recent
trajectory in a de�ned time window. We �rst describe generic baseline algorithms for
this problem, which applies for any aggregate function used to compute trajectory
distances between objects, and without any restrictions on the movement of the
objects. Using this as a framework, we continue to derive optimized algorithm
for the cases where the distance between two moving objects in a time window is
determined by their maximum or minimum distance in all contained timestamps.
Furthermore, we propose additional optimizations for the case that an upper bound
on the velocities of the objects exists.

Key words: User generated content, spatial relations, probabilistic modeling,
location estimation, popular path computation, trajectory mining, knn
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ΠΕΡΙΛΗΨΗ

Με την εξάπλωση του Διαδικτύου ως το κύριο μέσο για τη δημοσίευση στοιχείων

και την ανταλλαγή πληροφοριών, έχουμε δει μια έκρηξη στον όγκο του περιεχομέ-

νου που είναι διαθέσιμο στο διαδίκτυο. ΄Ετσι, εκτός από επαγγελματικό περιεχόμενο

που είναι διαθέσιμο στο διαδίκτυο, το κοινό έχει επίσης τη δυνατότητα, να καθιστά

το περιεχόμενό του διαθέσιμο σε όλους. Οι όγκοι της εν λόγω πληροφορίας από

τους χρήστες είναι συνεχώς αυξανόμενοι. Στόχος μας πρέπει να είναι να επωφελ-

ηθούμε από αυτή την έκρηξη των δεδομένων, η οποία εφαρμοζόμενη στο γεοχωρικό

πεδίο μεταφράζεται στη μαζική τη συλλογή και την ανταλλαγή γνώσης για την ψη-

φιοποίηση του κόσμου. Το περιεχόμενο που δημιουργείται από χρήστες στο γεωχωρικό

πεδίο επίσης, αναφέρεται και ως εθελοντική γεωγραφική πληροφορία. Η εθελοντική

γεωχωρική πληροφορία μπορεί να εμπεριέχεται σε πολλύς τύπους δεδομένων. Στην

παρούσα διατριβή, θα ασχοληθούμε με γεωχωρική πληροφορία από δεδομένα κειμένου

και από δεδομένα πλοήγησης.

Υπό τον όρο εθελοντική γεωγραφική πληροφορία, μη εξειδικευμένοι χρήστες παρέχουν

έναν πλούτο ποσοτικών γεωχωρικών δεδομένων στο διαδίκτυο. Με τη χωρική συλλο-

γιστική να είναι μια βασική μορφή της ανθρώπινης νόησης, αφηγήσεις που εκφράζουν

γεωχωρικών εμπειρίες, π.χ., ταξιδιωτικά ιστολόγια, παρέχουν μια ακόμη μεγαλύτερη

πηγή γεωχωρικών δεδομένων. Οι κειμενικές αφηγήσεις συνήθως περιέχουν ποιοτικά

δεδομένα με τη μορφή χωρικών αντικειμένων και χωρικών σχέσεων. ΄Ενας από τους

βασικούς στόχους της παρούσας διατριβής είναι (1) για να εξαγάγουμε τις σχέσεις

αυτές από κείμενα που δημιουργούνται από χρήστες, (2) να τις ποσοτικοποιήσουμε και

(3) και να βγάλουμε συμπεράσματα για τις θέσεις αντικειμένων στο χώρο βασιζόμενοι

μόνο σε αυτά τα ποιοτικά δεδομένα.

΄Ενας επιπλέον στόχος της παρούσας διατριβής, είναι η χρησιμοποίηση των εξαγό-

μενων και ποσοτικά μοντελοποιημένων χωρικων σχέσεων σε συνδυασμό με πιθανοτική

θεωρία, και την εφαρμογή τους για την επίλυση του προβλήματος του δημοφιλούς

μονοπατιού. Συγκεκριμένα, χρησιμοποιούμε την χωρική πληροφορία που παράγεται από

χρήστες και με αυτό στοχεύουμε στην απόκτηση μονοπατιών που δεν ελαχιστοποιούν

μόνο την απόσταση, αλλά επίσης οδηγούν σε πιο δημοφιλείς περιοχές χρησιμοποιώντας

γνώσης που παράγεται από τους ίδιους τους χρήστες.

Ο τελευταίος στόχος της παρούσας διπλωματικής εργασίας, είναι να εισάγει το

πρόβλημα της παρακολούθησης πλησιέστερων τροχιών με βάση δεδομένα πλοήγησης.

Μελετούμε το πρόβλημα αυτό στη συνεχή και στη μή συνεχή περίπτωση. Παρουσιά-

ζουμε αρχικά γενικούς και βασικούς αλγόριθμους για το πρόβλημα αυτό, και στην

συνέχεια προτείνουμε επιπλέον βελτιστοποιήσεις με ακριβής και προσεγγιστικούς αλ-

γορίθμους χρησιμοποιώντας πολλών τύπων χαρακτηριστικά.
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Chapter 1

Introduction

1.1 Prologue

With the proliferation of the Internet as the primary medium for data publishing
and information exchange, we have seen an explosion in the amount of online content
available on the Web. Thus, in addition to professionally-produced material being
o�ered free on the Internet, the public has also been allowed, indeed encouraged,
making its content available online to everyone. The volumes of such User-Generated
Content (UGC) are already staggering and constantly growing.

In this dissertation, our goal is to take advantage of this data explosion, which ap-
plied to the spatial domain translates to massively collecting and sharing knowledge
to ultimately digitize the world. User-generated geospatial content is also commonly
referred to as Volunteered Geographic Information (VGI). Subsumed under the term
VGI, non-expert users have been providing a wealth of qualitative and qualitative
geospatial data online.

With spatial reasoning being a basic form of human cognition, narratives ex-
pressing geospatial experiences, e.g., travel blogs, social media etc., would provide
an even bigger source of geospatial data. Use generated texts typically contain
qualitative data in the form of objects and spatial relationships. One of the main
objectives of this thesis is to extract this geospatial information, model it under a
probabilistic framework and utilize these models in order to solve real world prob-
lems. More speci�cally, we propose some new algorithms for on location estimation
of unknown Points-of-interest (POIs) which is divided in three steps: i we extract
spatial relationships from user-generated texts, (ii) we quantify them and (iii) we
reason about object locations based only on this qualitative data.

The second objective of this dissertation is to provide new approaches for the
popular path Computation problem. Moving to this direction, we employ extracted
and modeled spatial relations and by Bayesian inference, we obtain probabilistic
measures of spatial connectedness of PoIs according to the crowd. Applying this
measure to the corresponding road network, we propose an approach that enriches
an actual road networks taking crowdsourced spatial relations into account. With
this we aim at obtaining paths that do not only minimize distance but also lead
through more popular areas using knowledge generated by users.

Finally, the last objective of this thesis, is the analysis of UGC in the form
of GPS traces. Towards this research direction, we propose some algorithms on
the problems of non-continuous and continuously monitoring of nearest trajectories
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based on GPS data. In contrast to other similar approaches, we are interested in
monitoring moving objects taking into account at each timestamp not only their
current positions but their recent trajectory in a de�ned time window.

1.2 Contribution

The contribution of this dissertation may be divided into four major sections. We
will describe each of these sections brie�y along with the individual scienti�c con-
tributions per section:

1.2.1 Mining and Modeling Geospatial Data

Our �rst contribution includes an e�cient approach to mine geospatial content,
i.e., spatial relations, from user generated texts and a novel probabilistic method to
model qualitative spatial relations under a quantitative probabilistic framework.

Speci�cally, we choose travel blogs as a potentially rich geospatial data source
and we use Natural Language Processing (NLP) algorithms and tools in order to
extract spatial relations. Obtaining qualitative spatial relations from text involves
the detection of (i) spatial objects, i.e., Points-of-Interest (POIs) or toponyms, and
(ii) spatial relationships linking the POIs. Our approach involves geoparsing, i.e.,
the detection of candidate phrases, and geocoding, i.e., linking parts of phrase/to-
ponym to actual coordinate information. The proposed approach achieves notable
accuracy even with noisy crowdsourced data.

Continuing, we model the extracted spatial relations under a probabilistic frame-
work. Statistical models are often used to represent observations in terms of random
variables. These models can then be used for estimation, description, and prediction
based on basic probability theory. To increase the usefulness of qualitative spatial
data it needs to be quanti�ed, i.e., translating expressions such as �near� to actual
distances. In our approach, we model a spatial relation between two POIs Pu, Pv in
terms of distance and orientation. Our proposal is to use probabilistic modeling for
this task, which includes the selection and extraction of respective features (distance
and direction), as well as the methods to train and optimize the probabilistic model.
Our work on mining and modeling geospatial knowledge from user generated textual
data is presented in [SPK13] and [SPKS15].

1.2.2 Location Estimation

As we mentioned before, user-contributed content has bene�ted many scienti�c dis-
ciplines by providing a wealth of new data sources. However, the broad mass of users
are much more comfortable generating qualitative information: People typically do
not use coordinates to describe their spatial experiences (trips, etc.), but rely on
qualitative concepts in the form of toponyms (landmarks) and spatial relationships
(near, next, north of etc.). Thus, exploiting qualitative geospatial data is much more
challenging as a geospatial data source.

Towards the second contribution of this dissertation, we consider supervised
learning methods for quantifying qualitative data in order to solve the location es-
timation problem. Speci�cally, we want to estimate the position of unknown POIs
in space based on their spatial relations with other known POIs. This is a very



important research area for two reasons: Firstly, the inherited noise in user gener-
ated content makes every geospatial problem and especially the location estimation
problem quite challenging and important. Though, handling uncertainty in the
geospatial domain should be thoroughly investigated. The second and most impor-
tant motive is the fact that there are a lot of POIs with unknown coordinates. Most
well known gazetteers contain about 10 million known POIs and �POIs generation�,
i.e, new POIs, on the web is a dynamic phenomenon. Consequently, we should
provide approaches which can handle uncertainty and provide accurate estimates of
POIs positions in space. Our work on the location estimation problem is presented
in [SPKS15].

1.2.3 Popular Path Computation

Directions and paths, as commonly provided by navigation systems, are usually
derived considering absolute metrics, e.g., �nding the shortest or the fastest path
within an underlying road network. With the aid of Volunteered Geographic Infor-
mation (VGI), i.e., geo-spatial information contained in user generated content, we
aim at obtaining paths that do not only minimize distance but also lead through
more popular areas. Based on the importance of landmarks in Geographic Informa-
tion Science and in human cognition, we employ the extracted and probabilistically
modeled spatial relations from our previous contributions in order to solve the pop-
ular path computation problem.

The major challenge in this contribution is, (i) the extraction of crowdsourced
geo-spatial information from textual data as explained before and, (ii) the enrich-
ment of an existing road network with this information. The enriched road network
is subsequently used to provide paths between a given start and target that satisfy
the claim of higher popularity. Our work on the location estimation problem is
presented in [SSJ+14], [JFS+15], [SSJ+15], [SJZ+15].

1.2.4 Mining GPS Data

Except textual data, GPS data are considered as a very rich source of UGC. Nowa-
days, massive amounts of tracking data for various types of moving objects, in-
cluding vehicles, humans and animals, are becoming available. Analyzing this type
of spatio-temporal data is crucial for discovering movement patterns, understand-
ing and forecasting behaviors, and developing novel applications and services. One
problem of particular interest is �nding objects that move close together with a
certain object during some periods of time.

In this dissertation, we focus on �nding the k-nearest moving neighbors for a
given query object and time interval. We attack the k-nearest moving neighbors for
both the non-continuous and continuous query cases. For the non-continuous case,
we formulate the problem, using a similarity function that takes into consideration
both the proximity and the direction of the trajectories, and we propose some e�-
cient exact and approximate algorithms. Our contribution is presented in [SSV13].
For the continuous case, we provide some baseline algorithms which apply for any
aggregate function used to compute trajectory distances between objects and we con-
tinue and derive some optimized algorithms for the cases where the distance between
two moving objects in a time window is determined by their maximum or minimum



distance in all contained timestamps and for the case that an upper bound on the
velocities of the objects exists. Our on the continuous k-nearest moving neighbors
problem is presented in [SSS14].

1.3 Outline

The outline of this work is as follows. Chapter 2 describes our contribution on
mining spatial relations from user generated textual data and our probabilistic ap-
proach for modeling spatial relations. Chapter 3 describes our approach on the
location estimation problem with extended real world and synthetic data experi-
ments. Chapter 4 describes our contributions on the popular path computation
problem. Moreover, we provide details about to demo implementations for the com-
putation of popular paths on road networks. Chapter 5 describes our contributions
on the non-continuous and continuous k-nearest moving neighbors problem. Finally,
Chapter 6 of this dissertation provides conclusions and directions for future work.



Chapter 2

Mining and Modeling Geospatial

Data

2.1 Mining Geospatial Information from UGC

2.1.1 Preliminaries

This chapter describes the processing tools and steps of our approach for spatial
relation extraction from user generated texts.

In this work, we choose travel blogs as a potentially rich geospatial data source.
This selection is based on the fact that people tend to describe their experiences in
relation to their location, which results in �spatial narratives�. To gather such data,
we use classical Web crawling techniques [DP10] and compile a database1 consisting
of 250,000 texts, obtained from 20 travel blogs.

Obtaining qualitative spatial relations from text involves the detection of (i) spa-
tial objects, i.e., Points-of-Interest (POIs) or toponyms, and (ii) spatial relationships
linking the POIs. Our approach involves geoparsing, i.e., the detection of candidate
phrases, and geocoding, i.e., linking parts of phrase/toponym to actual coordinate
information.

Information Extraction (IE) is an important task in natural language processing,
with many practical applications. It involves the analysis of text documents, with
the aim of identifying particular types of entities and relations among them. Reliably
extracting relations between entities in natural-language documents is still a di�cult,
unsolved problem especially when we are looking for spatial relations speci�cally.
Its inherent di�culty is compounded by the emergence of new application domains,
with new types of narrative that challenge systems developed for other, well-studied
domains.

Traditionally, IE systems have been trained to recognize names of people, or-
ganizations, locations and semantic relations between them. The �rst and maybe
most important part of this thesis, is the design and implementation of a system
which extracts a speci�c type or relations between entities in textual data, namely
spatial relations.

1Available upon request.
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2.1.2 Related Work

The extraction of qualitative spatial data from texts requires the utilization of e�-
cient NLP tools to automatically extract and map phrases to spatial relations. In
the past, extraction of semantic relations between entities in texts is developed in
[BM06], [FSE11], [AB09], [MSB13] and [ZAR02], while extraction of spatial rela-
tions (mostly topological relations) between entities in texts and web documents is
analyzed in [KVOM11], [Yua11], [LIR+12], [ZZDZ11] and [WKB14].

In more detail, kernel methods, based mainly on a generalization of subsequence
kernels for semantic relation extraction between entities in natural language text are
developed in [ZAR02] and [BM06]. In [Yua11] a kernel based approach applied to
Support Vector Machines (SVMs) is used to extract spatial relations from free text
for spatial reasoning. SVM based extraction of spatial relations in text is addressed
in [ZZDZ11], where the authors investigate the extraction of spatial relations based
only on SVM models. The authors in [KVOM11] report on a novel task of spatial
role labeling in natural language text. They propose machine learning methods to
extract spatial roles and their relations. More speci�cally, they use a probabilistic
approach by training Conditional Random Fields (CRFs), which is a special case of
Markov Random Fields, in order to achieve spatial information extraction. Finally,
extracting semantic relations from natural language text using dependency grammar
patterns are addressed in [AB09]. The authors present Wanderlust, an algorithm
that automatically extracts semantic relations from natural language text by using
deep linguistic patterns.

While the above works constitute a good match in our developments for spatial
relationship extraction from texts, we intentionally designed our specialized qual-
itative spatial data mechanism that better �ts into the particularity, e.g., noisy
crowdsourced data, of the relation extraction part of our problem. Our spatial re-
lation extraction approach is based on the Natural Language Processing Toolkit
(NLTK) which is presented in [LB02].

2.1.3 Contribution

Using the NLTK, which is a leading platform to analyze raw natural language data,
we managed to extract 500,000 POIs from the text corpus. For the geocoding of
the POIs, we rely on the GeoNames geographical gazetteer data, which covers all
countries and contains over ten million place names and their coordinates. This pro-
cedure associates (whenever possible) geographic coordinates with POIs found in the
travel blogs, using string matching based on the Levenshtein string distance metric
[Hir97]. Using the GeoNames gazetteer, we managed to geocode about 480,000 out
of the 500,000 extracted POIs.

The next step is the extraction of qualitative spatial relationships from text,
which is a hard NLP problem. REVERB [FSE11] and EXEMPLAR [MSB13] are
the state of the art available software tools for the extraction of semantic relations
between identi�ed entities in texts. However, they are generic NLP tools, not de-
signed for spatial relations speci�cally. Moreover, we empirically observed that they
perform poorly in several cases, when applied with a noisy crowdsourced dataset.

To this end, we design a more specialized spatial relation extraction algorithm,
based on NLTK [LB02] components and prede�ned strings and syntactical patterns.
Speci�cally, we de�ne a set of language expressions, typically used to express a



spatial relation in combination with a set of syntactical rules. It turns out that the
use of both syntactical and string matching reduces the number of false positives
considerably. As an example, consider the following phrase. �Deutsche Bank

invested 10 million dollars in Brazil.�. Here, a simple string matching solution
would extract a triplet of the form (Deutche Bank, in, Brazil), which is a false
positive. In our approach, the use of prede�ned syntactical patterns avoids this
kind of mistakes. On the other hand, for the phrase �Deutsche Bank invested 10
million dollars in Rio de Janeiro, which is �in Brazil.� our algorithm would
extract a triplet of the form (Rio de Janeiro, in, Brazil) which is a true positive.

Before we describe the architecture of our relation extraction approach, Table 2.1
shows indicative empirical results on a small dataset of 300 annotated crowdsourced
spatial relations. Both our method and EXEMPLAR perform better than REVERB
in terms of precision and recall. While our NLTK approach seems to have a slightly
lower precision than EXEMPLAR [MSB13], it achieves a higher recall, where the
fraction of extracted relations relevant to the query is larger.

Table 2.1: Precision and recall for three di�erent spatial relation extraction approaches.

Method Precision Recall

EXEMPLAR [MSB13] 0.7 0.4

REVERB [FSE11] 0.1 0.4

NLTK [LB02] 0.6 0.82

2.1.3.1 Proposed scheme for relation extraction

The RELEX (Relation Extraction) algorithm (Algorithm 1), describes the architec-
ture of the proposed information extraction system. Initially, the raw text document
is segmented into sentences (Step 3). Each sentence is further subdivided (tokenized)
into words and tagged as part-of-speech (Steps 5-6). Name entities (POIs) are iden-
ti�ed (Step 7). We typically look for relations between speci�ed types of named
entities, which in NLTK are Organizations, Locations, Facilities and Geo-Political
Entities (GPEs). In sequence, in case there are two or more name entities in the
sentence, we check if any of the prede�ned syntactical patterns applies between the
recognized name entity pairs (Step 12). If so, we use regular expressions to de-
termine the speci�c instance of the observed spatial relation from our prede�ned
spatial relation pattern list (Step 14). If there is a string pattern match, we record
the extracted triplet (Steps 15-18). Thus, the search for spatial relations in texts
results into a set of triplets O of the form (Pu, Ro, Pv), where Pu and Pv are named
entities of the required types and Ro is the observed spatial relation that intervenes
between Pu and Pv.

A relation extraction example is shown in Figure 2.1. Here, sentence �Boston is
near New York� is analyzed as explained, and two named entities are identi�ed as
GPEs.

We �rst check the syntax and the fact that the pattern �GPE - 3rd person
verbal phrase (VBZ) - preposition/subordinating conjunction (IN) - GPE� exists in
our set of prede�ned spatial relation patterns. Performing string matching on the
intermediate chunks (�near�) results in the triplet (New York, Near, Boston).



ALGORITHM 1: RELEX - Spatial Relation Extraction
Input: A database of texts T , a set of syntactical patterns A, a set of

spatial relation string patterns R
Output: A set of triplets O of the form (Pu, Ro, Pv) where Pu 6= Pv and

Ro ∈ R
1 begin

2 Load syntactical A and string B patterns

3 foreach text t ∈ T do

4 Extract sentences from t into set S
5 foreach sentence s ∈ S do

6 Token s using NLTK
7 PosTag s using NLTK
8 Identify name entities using NLTK
9 if two or more name entities in s then
10 Extract POI pairs in P
11 foreach p ∈ P do

12 pA ← Extract syntactical pattern of p
13 if pA ∈ A then

14 pR ← Extract string pattern of p
15 if pR ∈ R then

16 Pu ← p(1)
17 Pv ← p(2)
18 Ro ← pR
19 O.PushTriplet(Pu, Ro, Pv)

20 end

21 end

22 end

23 end

24 end

25 end

26 return O

27 end

Figure 2.1: Example of a parsed sentence syntactic tree.



2.1.3.2 Spatial relation data

Applying Algorithm 1, we extracted 500,000 triplets from our 250,000 travel blog
text corpus. Figure 2.2, shows small samples of Spatial Relationship Graphs, i.e.,
spatial graphs in which nodes represent POIs and edges label spatial relationships
existing between them. The graphs visualize samples of the spatial relationship data
collected for the cities of London, New York, Paris and Beijing respectively.

These four cases, going gradually from sparse to very dense spatial relation data,
will be our main datasets during the experimental evaluation of the proposed ap-
proach.
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Figure 2.2: Small samples of spatial relationship graphs of (a) London (b) New York (c)

Paris and (d) Beijing respectively.



2.2 Modeling Spatial Relations

2.2.1 Preliminaries

Statistical models are often used to represent observations in terms of random vari-
ables. These models can then be used for estimation, description, and prediction
based on basic probability theory. To increase the usefulness of qualitative spatial
data it needs to be quanti�ed, i.e., translating expressions such as �near� to ac-
tual distances. This chapter, presents a model for representing spatial relationships.
In our approach, we model a spatial relation between two POIs Pu, Pv in terms
of distance and orientation. Our proposal is to use probabilistic modeling for this
task, which includes the selection and extraction of respective features (distance and
direction), as well as the methods to train and optimize the probabilistic model.

Our analysis below includes, (i) feature extraction, (ii) an analysis of the prob-
abilistic mixture models we employ for the quantitative representation of spatial
relations and, (iii) a greedy learning algorithm for model parameter estimation.
Overall, this section describes a method that trains probabilistic models for quanti-
�ed spatial estimates of crowdsourced spatial relationships.

2.2.2 Related Work

The majority of works related to qualitative approaches for spatial information rep-
resentation considers spatial relations. One popular spatial classi�cation is con-
structed by topological relations (e.g., disjoint, overlap), direction relations (e.g.,
North, South), ordinal relations (e.g., inside, contain), and distance relations (e.g.,
far, near). The authors in [Ege89, EH90, ES93, KEG93] present formal methods
for qualitative representation of spatial relationships based on mathematical the-
ories of order. Their applicability on spatial database systems and some key-role
technical concepts are coherently discussed in [G�94, PTS94, PSTE95]. Qualitative
representation of spatial knowledge is discussed in [FGG+99, KSF+03, PS94]. The
authors identify the common concepts of the qualitative representation and process-
ing of spatial knowledge. They compare the representational properties of di�erent
systems and outline the computational tasks involved in relation-based spatial in-
formation processing. They also describe symbolic spatial indexes, relation-based
structures that combine several ideas in spatial knowledge representation.

Recent research on quantitative representation of spatial knowledge has been
conducted in relation to situational awareness systems, robotics, and image pro-
cessing. Modeling uncertain spatial information for situational awareness systems is
discussed in [KMM+06] and [MKM08]. The authors propose a Bayesian probabilis-
tic approach to model and represent uncertain event locations described by human
reporters in the form of free text. Estimation of uncertain spatial relationships in
robotics is addressed in [SSC90]. A probabilistic algorithm for the estimation of dis-
tributions over geographic locations is proposed in [HE08] where a data-driven scene
matching approach is used in order to estimate geographic information based on im-
ages. Finally, image similarity based on quantitative spatial relationship modeling
is addressed in [WM03].



2.2.3 Contribution

2.2.3.1 Feature Extraction

In this contribution, we will model spatial relations based on distance and orienta-
tion features between POIs. Assuming a projected (Cartesian) coordinate system,
the distance is computed as the Euclidean metric between the two respective coor-
dinates, while the orientation is established as the counterclockwise rotation of the
x-axis, centered at Pv, to point Pu.

For a concise and consistent mathematical formalization, consider that, for each
instance of each relation, we create a two-dimensional Spatial Feature Vector X =
(Xd, Xo)

ᵀ where Xd denotes the distance and Xo denotes the orientation between
Pu and Pv. Several instances of a spatial relation lead to a set of two-dimensional
spatial feature vectors which we denote as X = {X1, X2, . . . , Xn}. Each spatial
feature vector set will be used to train one probabilistic model for each spatial
relation.

An example of the feature extraction procedure is illustrated in Figure 2.3, where
four instances of spatial relation Near are used in order to create the respective set of
spatial feature vectors Xnear = {[Xd1, Xo1]

ᵀ, [Xd2, Xo2]
ᵀ, [Xd3, Xo3]

ᵀ, [Xd4, Xo4]
ᵀ}. In

this scenario, PV = {A,D,E,G} is the set of reference points and PU = {B,C, F,H}
is the set of points described based on the reference points.

y

x

A

B

C

D F

G

H

E

Xo1

Xo2

Xo3

Xo4

Xd1

Xd2

Xd3

Xd4

Figure 2.3: Distance and orientation feature extraction procedure. In this case B is near

A, C is near D, F is near E and H is near G.

2.2.3.2 Probabilistic Modeling of Spatial Relations

The next step is the mapping of the data to pre-selected probability density functions
(PDFs).

Given the training data, e.g., a set of spatial feature vectors X for each spatial
relation, we �t a Gaussian Mixture model (GMM) for each one of these relations.
The intuition is that people use spatial relation phrases in a di�erent manner and
to describe di�erent POI positions. This results in multi-component distributions



of the features. Figure 2.4, illustrates a representative PDF example of distance
and orientation features for spatial relation �South�, which strengthens further our
intuition.

Figure 2.4: Distance and orientation features for spatial relation South with the respective

PDF.

Moreover, in [LB99] it is shown that for any heterogeneous mutli-dimensional
data that originates from an arbitrary PDF p(·), there exists a sequence of �nite
mixtures pk(x) =

∑k
i=1wig(x; θi) that achieves Kullback-Leibler (KL) divergence

D(p||pk)−D(p||gp) ≤ O(1/k)

for any gp =
∫
g(x; θ)P (dθ), i.e., one can achieve a good approximation with rate

O(1/k) by using a k-component mixture of g(x; ·). Furthermore, this bound is
achievable by employing a greedy training scheme [LB99].

Finally, GMMs have been extensively used in many classi�cation and general
machine learning problems (cf. [Bis06] and [DHS01]). They are very well known
for (i) their formality, as they build on the formal probability theory, (ii) their
practicality, as they have been implemented several times in practice, (iii) their
generality, as they are capable of handling many di�erent types of uncertainty, and
(iv) their e�ectiveness.

In general, a GMM is a weighted sum of M component Gaussian densities as
p(x|λ) =

∑M
i=1wig(x;µi,Σi), where x is a d-dimensional data vector (in our case

d = 2), wi are the mixture weights, and g(x;µi,Σi) is a Gaussian density function
with mean vector µi ∈ Rd and covariance matrix Σi ∈ Rd×d. To fully characterize
f , one requires the mean vectors, the covariance matrices and the mixture weights.
These parameters are collectively represented in λ = {wi, µi,Σi} for i = 1, . . . ,M .

In our setting, each spatial relation is modeled by a 2-dimensional GMM, trained
on each relation's spatial feature vector set. We assert that distance and orienta-
tion features are informative enough to model spatial relationships in a Cartesian
context. For the parameter estimation of each Gaussian component of each GMM,
we use Expectation Maximization (EM) (cf. [DLR77]). EM enables us to update
the parameters of a given M-component mixture with respect to a feature vector



set X = {X1, . . . , Xn} with 1 ≤ j ≤ n and all Xj ∈ Rd, such that the log-likelihood
Equation 2.1 increases with each re-estimation step, i.e., EM re-estimates model
parameters λ until L convergence.

L =
n∑
j=1

log(p(Xj|λ)) (2.1)

The updates for the parameters of a GMM can be accomplished by iterative
application of the following equations for all components i ∈ {1, ...,M}

P (i|Xj) =
wig(Xj;λi)

p(Xj|λ)
(2.2)

wi =
n∑
j=1

P (i|Xj)

n
(2.3)

µi =
n∑
j=1

P (i|Xj)Xj

nwi
(2.4)

Σi =
n∑
j=1

P (i|Xj)(Xj − µi)(Xj − µi)ᵀ

nwi
(2.5)

The EM algorithm is not guaranteed to lead us to the solution yielding maximum
log-likelihood on X among all maxima of the log-likelihood. Nevertheless, using the
EM algorithm, if we are �close� to the global optimum (maximum) of the parameter
space, then it is very likely we can obtain the globally optimal solution.

At this point, we highlight that the proposed scheme is distribution independent.
With the necessary tweaks, one can transform the schema to use mixtures of any
distribution type and such a selection is user-de�ned. However, its application would
be much harder in practice. We use mixtures of pdfs, since it was shown [LB99]
that densities of heterogeneous and noisy data, such as our case of crowdsourced
data, can be approximated by a sequence of �nite mixtures. We particularly use
GMMs due to their simplicity and their generally low classi�cation errors. Although
proven to be not always the optimal choice, the results we obtain, and which we will
thoroughly analyze in Section 5.2.4, encourage their use in practice. Thus, GMMs
provide a challenging baseline for potentially better mixture models to be explored
in future work.

2.2.3.3 Model Optimization

A main issue in probabilistic modeling with mixtures is that a prede�ned number of
components is neither a dynamic nor an e�cient and robust approach. The optimal
number of components should thus be decided based on each dataset. Here, we em-
ploy a greedy learning approach to dynamically estimate the number of components
in a GMM, as presented in [VVK03]. This approach, builds the mixture component
in an e�cient way by starting from an one-component GMM, whose parameters are
trivially computed by using EM, and then employing the following two basic steps
until a stopping criterion is met:



1. Insert a new component in the mixture

2. Apply EM until the log-likelihood L or the parameters of the GMM converge
(cf. Section 2.2.3.2)

The stopping criterion can either be a maximum pre-selected number of compo-
nents, or it can be any other model selection criterion. In our case the algorithm
stops if the maximum number of components is reached, or if the new model's log-
likelihood L+ 1 is less or equal to the log-likelihood L of the previous model, after
introducing a new component.

The greedy learning procedure can be summarized in Algorithm 2. For each
spatial feature vector, we estimate the parameters and the log-likelihood of an one-
component model (Steps 4-5). In sequence, we �nd a new component and add it to
the previous mixture (Steps 7-8). Then, we re-estimate the model parameters and
log-likelihood (Steps 9-10) until we reach the desiderata described above. The crucial
step of this algorithm is the search for a new component (Step 7). Several approaches
exist for this issue: One is to consider a number of candidates equal to the number
of feature vectors but it is identi�ed that such strategy would be rather expensive.
The approach followed in this work is to pick an optimal number of candidate
components. More speci�cally, for each insertion problem in a k-component mixture,
the dataset X̂ is partitioned in k disjoint subsets and a �xed number m of candidate
components is generated per existing mixture component, e.g., for a k-component
mixture k × m candidate components are generated. In our experiments we used
m = 10. Finally, using the EM algorithm, we pick the candidate component that
maximizes the log-likelihood L+ 1 when mixed into the previous mixture pM(X|λ).
The running time in order to learn a k-component GMM given n points is O(nk2).

The optimized GMM approach allows us to generate probabilistic models that
quantify spatial relationships based on their observed use in textual narratives.

2.2.4 Similarity Between Quantitative Spatial Relationships

In many probabilistic classi�cation problems several metrics have been proposed to
compute a distance measurement between di�erent classes as a means to compare
them. Measuring distance between converged PDFs which model di�erent classes
(spatial relationships in our case) is a measure of similarity between them. In our
contribution, we use Kullback-Leibler (KL) divergence [KL51] as such a distance
metric.

There are two main reasons for checking similarity between quanti�ed spatial
relations. Firstly, we want to observe the changes for each GMM as we increase the
maximum number of Gaussian components during the training procedure. Secondly,
we use KL divergence to measure the similarity between spatial relationships that
tend to follow similar patterns, e.g., Near & NextTo, In & On.

KL divergence is a similarity measure between two probability distributions.
So, let F1(x) and F2(x) be two probability distributions (GMMs in our case). By
de�nition, the KL distance D(F1(x)||F2(x)) between F1(x) and F2(x) is given as
follows.

D(F1(x)||F2(x)) =

∫
F1(x) log

{
F1(x)
F2(x)

}
dx (2.6)



ALGORITHM 2: Optimized GMM Training

Input: A set of spatial feature vectors X̂ , a maximum number of
components inMC

Output: A set of trained GMMs Ĝ
1 begin

2 M ← 1

3 foreach X ∈ X̂ do

4 pM(X|λ)← Estimate 1-component model parameters using EM
5 LM ← Calculate 1-component model log-likelihood
6 while M ≤MC do

7 g(X ;λ∗)← Optimal new component for (pM(X|λ))
8 pM+1(X|λ)← Combine model pM(X|λ) and component

g(X ;λ∗) in a new model
9 pM+1(X|λ)← Estimate new model parameters using EM
10 LM+1 ← Calculate new model log-likelihood
11 if LM+1 ≤ LM then

12 Ĝ.PushGMM(pM(X|λ))
13 Terminate()

14 else

15 M ←M + 1
16 end

17 end

18 Ĝ.PushGMM(pM(X|λ))

19 end

20 return Ĝ
21 end

The KL divergence is always nonnegative and it is zero only when the two distri-
butions are identical. Additionally KL divergence is not symmetric, i.e., D(F1(x)||F2(x)) 6=
D(F2(x)||F1(x)). It is common to encounter the symmetric version of the KL di-
vergence between F1(x) and F2(x)) as

Dsym(F1(x)||F2(x)) =
D(F1(x)||F2(x)) +D(F2(x)||F1(x))

2
(2.7)

In this work, we use the symmetric KL divergence in order to measure the
similarity between GMMs.

2.2.5 Experimentation

The scope of this section is to assess the quantitative representation of qualitative
geospatial data by means of probability distributions (GMMs). For this purpose,
we investigate a set of spatial relationships for a speci�c geographic area (London).
In terms of experiments, we compute probabilistic representations of spatial rela-
tionships by considering distance and orientation as dependent but, uncorrelated
features (case one) and as correlated features (case two).



We visualize the results of the trained models and compare them to check if
they intuitively perform well, e.g., they return visually reasonable results. In ad-
dition, we measure the KL divergence for spatial relationships between a baseline
one-component model and the maximum number of Gaussian components model.
Finally, based on visualization and KL divergence, we assess the informativeness and
e�ciency of distance and orientation features for quantitative modeling of spatial
relations and observe how much di�erent spatial relations may behave in a similar
way.

2.2.5.1 Experimental Setup

The choice of an appropriate dataset is crucial in our experimentation. As mentioned
is Section 2.1.3.2, the density of POIs is very high in urban regions. We decided to
use data from such a dense region to �nd meaningful as well as consistent spatial
relationships. We retrieved data for a bounding box that contains the greater area of
London, UK. In this preprocessing step, we parsed our travel blog data (120k texts)
set and retrieved sentences containing at least two POIs and whose coordinates
are within the bounding box of Latitude [51◦, 52◦] and longitude [−1◦, 1◦]. This
resulted in 12k sentences. Using human annotation, we extracted instances of the
eight most frequent spatial relations including North, South, East, West, Near, In,
On, NextTo. This means also that in our travel blog dataset, people tend to use
a mixture of directional, topology and vague metrical relations in order to describe
POI locations. From this data, distance and orientation features where extracted as
described in Section 2.1.3.2.

Next, we employ the greedy EM algorithm to train bivariate GMMs based on
the extracted distance and orientation features for each spatial relationship. The
results are PDFs for each spatial relationship that, as the initial outset suggests, can
be used to estimate the unknown position of spatial objects.

Our approach has been implemented in Matlab and all the experiments were
conducted on an Intel(R) Core(TM) i5-2400 CPU at 3.10GHz with 8GB of RAM,
running Ubuntu Linux 11.10.

2.2.5.2 Visualization of Quantitative Spatial Relations

The most important means of assessing the result is to visualize the quanti�ed spatial
relations. We divided the London bounding box to �lter the input data by means
of a 50 × 50 spatial grid. Each grid cell corresponds to a 4.4km × 2.2km spatial
extent (Longitude, Latitude). Given two spatial objects and the known location at
the center of the grid, we plot for each grid cell the positional probability of the
unknown location, i.e., how likely it would be for the unknown spatial object to be
located in a speci�c grid cell. Using a heat map, warmer colors (red) indicate higher
probabilities.

Figure 2.5 shows four spatial relationships modeled as one-component GMMs,
with distance and orientation considered as uncorrelated random variables.

The proposed modeling based on distance and orientation features performs es-
pecially well in some of the cases. More speci�cally, for the cases of North (cf.
Figure 2.2.5.2), South (cf. Figure 2.2.5.2) and Near (cf. Figure 2.2.5.2) the pro-
posed model returns high probabilities in the expected regions. On the other hand,
the case of In (cf. Figure 2.2.5.2) seems to include a lot of statistical noise due to
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Figure 2.5: Probabilistic heat maps for four basic spatial relationships: 1-Component

Gaussian Mixture Models for the uncorrelated distance and orientation case. All �gures

illustrate the case where a POI is conntected with the center of the grid, with the respective

spatial relation.

the general uncertain nature of user generated content. For example, high distance
and orientation variance values for the cases of On and In are caused by the the
fact that most of the sentences that contain these spatial relations are of the form
POI in London and POI on river Thames.

2.2.5.3 Optimal Number of Gaussian Components

An important parameter when generating GMMs is the maximum number of Gaus-
sian components. Such a limit is simply a stop criterion in the GMM training
process and does not mean that the �nal component will converge to this upper
limit, e.g., it might already converge to a lower number of components. Figure 2.6
illustrates the case of spatial relation North. The heat maps of Figures 2.2.5.3 and
2.2.5.3 show the cases of a maximum of 1 Gaussian components per mixture when
distance and orientation are considered as uncorrelated and correlated, respectively.
The heat maps of Figures 2.2.5.3 and 2.2.5.3 show the cases of a maximum of 5
Gaussian components per mixture, when distance and orientation are considered as



uncorrelated and correlated, respectively.
For both uncorrelated and correlated cases, Figures 2.2.5.3 and 2.2.5.3 show that

by stepwise increasing the maximum number of Gaussian components, high proba-
bilities tend to accumulate in fragmented small regions. The reason is that higher
number of mixtures per GMM leads to components that are converging on their pa-
rameters (mean, covariance, component weight) based on more dense regions of the
dataset, e.g., regions with more data samples will become dominant components.
The weight of such dominant components (it is denoted as w in previous Section)
is higher than the weight of other components in the �nal GMM. This results in
fragmented high probability regions in the �nal heat maps.
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Figure 2.6: Probabilistic heat maps for North: (a), (b) show correlated and uncorrelated

distance and orientation case for a max of 1 Gaussian component per GMM while (c), (d)

show correlated and uncorrelated distance and orientation case for a max of 5 Gaussian

components per GMM.

As a result of this phenomenon, a major question is to the best approach to
decide about the number of components per GMM. From an intuitive point of view,
a smaller number of Gaussian components performs better as it preserves spatial
generality, i.e., trends. However, as high probability regions are larger, they might
result in ine�cient location prediction tasks. From a statistical point of view, a



high number of mixture components results in more accurate probabilistic models
and better classi�cation performance in most of the cases. Unfortunately, the latter
approach leads to sparse and small, high probability regions, which could be charac-
terized as biased to the speci�c characteristics of the geographic region from where
the dataset is taken (London in our case).

In Figures 2.2.5.3 and 2.2.5.3, we depict the average log-likelihood, e.g., we es-
timated parameters and log-likelihoods for each spatial relation model running the
greedy learning algorithm 100 times per maximum component step and stepwise in-
creasing the maximum Gaussian components per GMM. Figures 2.2.5.3 and 2.2.5.3
show the cases of correlated and uncorrelated distance and orientation random vari-
ables, respectively. In both cases, most of the spatial relation models converge on
a high number of components, i.e., 16-17. Only spatial relations Near and NextTo
converge on a smaller number of components. This means that statistically, most of
the spatial relationships should be modeled with an upper limit of Gaussian compo-
nents close to 16 or 17. In practice, this will result in fragmented spatial probabilities
(heat maps) as outlined above.

Concluding, we realize that based on the log-likelihood measurements, there are
statistically correct and sometimes optimal solutions for deciding the number of
components. The di�cult part in our case is the balance between statistical and
intuitive robustness.

Based on a user generated dataset, we believe that GMMs with a number of com-
ponents between 1 and 10 are statistically correct (but not optimal) and intuitively
e�cient to model spatial relations.

2.2.5.4 Correlated vs. Uncorrelated Feature Vectors

Correlation between distance and orientation is another important issue when train-
ing GMMs. Literature suggests that most of the classi�cation approaches perform
better when probabilistic models are trained taking into consideration the correla-
tion between random variables. In our work, visualization shows that there is a
high correlation between distance and orientation for some but not all cases. Fig-
ure 2.6 illustrates the case of North. For the heat maps shown in Figures 2.2.5.3 and
2.2.5.3, distance and orientation are considered uncorrelated, for Figures 2.2.5.3 and
2.2.5.3, they are considered as correlated random variables. Intuition suggests that
we can not guarantee that the correlated case performs better, even if we are sure
that distance and orientation are correlated. The North case should result in high
probabilities for the top part of the grid as it should be the case for all directional
relations. However, based on visual results and heat maps for all modeled spatial
relations, we observe that distance and orientation seem to be less correlated for
the cases of In (cf. Figure 2.2.5.2) and On, and tend to have zero correlation, e.g.,
region around the center of the grid with almost equal probabilities, for the cases of
Near (cf. Figure 2.2.5.2) and NextTo. As expected, this leads as to the conclusion
that some spatial relations are independent of orientation, e.g., only distance could
model them e�ciently. This also means that distance and orientation should be
modeled as independent random variables.

Summing up, based on user-generated content, we believe that directional rela-
tions like North should be modeled taking correlation between distance and orien-
tation into consideration. On the other hand, topological relations such as In and
metric relations like Near tend to be independent of orientation, which means that
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Figure 2.7: (a), (b) Average log-likelihood vs maximum number of Gaussian components

for correlated and uncorrelated distance and orientation case respectively. (c), (d) Average

KL divergence between the baseline 1-component GMM and the �nal converged GMM after

each step of increasing the maximum number of components for correlated and uncorrelated

distance and orientation case respectively. (e), (f) Average KL diverge between spatial

relationship pairs �In-On� and �Near-Nextto� for correlated and uncorrelated distance and

orientation case respectively.



correlation between distance and orientation should not be taken into consideration
during modeling.

2.2.6 Similarity Between Quanti�ed Spatial Relations

Besides a visual inspection, it is important to have a quality metric to assess the
probabilistic spatial relation quanti�cation. We use Kullback-Leibler (KL) diver-
gence (i) to assess the similarity between converged GMMs of the same relation and
(ii) to measure the similarity between some spatial relationships that tend to follow
similar patterns.

Figures 2.2.5.3 and 2.2.5.3 illustrate the KL divergence between the baseline 1-
component GMM and the �nal converged GMM after each step of increasing the
maximum number of components for correlated and uncorrelated cases, respectively.
Most of the models tend to diverge from the baseline model as we increase the
maximum number of components. Only the models for Near and NextTo have low
and zero distance from their baseline model. This matches the corresponding log-
likelihoods illustrated in Figures 2.2.5.3 and 2.2.5.3, which remain almost stable.
In these examples, with a small number of Gaussian components for Near and one
Gaussian component for NextTo the log-likelihoods remains stable.

Finally, Figures 2.2.5.3 and 2.2.5.3 show that spatial relation pairs Near-NextTo
and On-In exhibit similar characteristics. To assess this similarity, we measured
the KL divergence for all cases of their models. The aforementioned �gures show
that the pair On-In seems to diverge as we increase the number of components for
both correlated and uncorrelated cases. However, the pair Near-NextTo exhibits low
values of KL divergence for all cases. This leads to the conclusion that people use
more than one language expression to describe the same spatial relation. For our
examples, this means that we could merge the cases of Near and NextTo into one
probabilistic model.





Chapter 3

Location Estimation

3.1 Preliminaries

O�-the-shelf geospatial information services are typically based on quantitative,
coordinate-based data: maps are generated to answer geospatial questions such
as �Where is the Monastiraki Metro Station (Athens)", based on their accurate de-
scriptive information; i.e., if such information appears in the pre-compiled database,
this implies we know�within some accuracy�the coordinates of the Monastiraki
Metro Station. Such geospatial information services have been proved to be ex-
tremely useful tools across many disciplines, from natural research management to
transportation planning and from public information services to forest types map-
ping.

One of the reasons for their success is the accuracy of information provided:
built by a community of mappers that contribute and maintain geospatial data,
they provide precise answers to geographic queries based on coordinate information.
However, the generation, process and preservation of such quantitative data is cost-
and time-ine�ective: While technology has helped to facilitate such geospatial data
collection (e.g., all smart phones are equipped with GPS positioning sensors), yet
authoring quantitative data requires constant supervision and control in order to
preserve a quality of service.

On the other hand, user-contributed content has bene�ted many scienti�c disci-
plines by providing a wealth of new data sources. However, the broad mass of users
are much more comfortable generating qualitative information: People typically do
not use coordinates to describe their spatial experiences (trips, etc.), but rely on
qualitative concepts in the form of toponyms (landmarks) and spatial relationships
(near, next, north of etc.). Thus, exploiting qualitative geospatial data is much more
challenging as a geospatial data source.

In this paper, we consider supervised learning methods for quantifying qualitative
data in order to solve the following problem:

Problem: Given a set of objects PV with a-priori known coordinates in space, a set
of objects PU whose exact positions are unknown and a set of prede�ned spatial rela-
tionships R between PU and PV objects, �nd probabilistic estimates for the positions
of PU objects in space.

To provide some intuition, consider the following narrative: �The best pita place
is next to the Monastiraki Metro Station in Athens.� One of the challenges here is
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the uncertainty associated with this sentence: The same concept (�next to�) might
be interpreted di�erently by the various users. For example, it is apparent that the
relation �next to� might not imply any orientation (i.e., �west to�, �east to�, etc.).
Nevertheless, given a prede�ned grid of points over and around the Monastiraki
Metro station, we desire to associate probabilities to each location on the grid as
candidate positions of the best pita place. The probabilities assigned are drawn
according to probabilistic models, trained and learned using narratives including
�next to� relation in a region relatively close to the point of interest (POI). I.e.,
we want to quantify what people imply when they say �next to�. Being able to do
so, might allow us to actually discover the �best pita place in Athens�; see Figure
3.1 for a toy example explanation. Eventually, by collecting more observations that
mention the �best pita place in Athens� using qualitative spatial information, we
will be able to re�ne the unknown location and, thus, locate places that otherwise
could not be geocoded.

A

Figure 3.1: Here, point A corresponds to known POI in downtown, New York, and the

arrows on the prede�ned grid locations correspond to probabilities of spots being the �best

restaurant near to� point A, as learned from training on a corpus of data. The higher the

arrow, the higher the probability the location of interest lies at the corresponding grid point.

Our aim is to locate the best restaurant from such probability measures on a �ne grid of

the space.

From the above discussion, it is obvious that the problem at hand contains high
uncertainty, especially when the source of spatial information is user-contributed.
Our approach follows a probabilistic path, where we quantify qualitative relations
as probability measures. Using textual narratives, we �rst learn spatial relation
models between known POIs: i.e., focused over a prede�ned region of interest (i.e.,
Athens) and given POI pairs with known locations and linked together by a speci�c
spatial relationship, we train the corresponding spatial relation pdf, as presented
in 4.3.2, comprised of distance and orientation. To do so, a greedy Expectation
Maximization-based (EM) algorithm is used. The trained probabilistic models can
then be used for location estimation tasks.

Given a speci�c spatial relation instance of the form (Pu, Ro, Pv) and by employ-
ing the trained model for spatial relation Ro, we can associate positional probabilities
for each point on the discretized space. These positional probabilities are then used
to �triangulate� the positions of unknown POI locations. The more observations we
have with respect to an unknown location, the more precise we will be in unknown
POI's localization. Actual location estimation experiments using textual narratives



from travel blogs, establish the validity and quality of the proposed approach.

Our contributions can be summarized as follows:

(i) We employ a natural language processing (NLP) tool based approach that
automatically extracts qualitative VGI (POIs and spatial relations) crawled
from travel blogs as presented in Chapter 2.

(ii) We quantify qualitative spatial relations using a probabilistic path as presented
in our previous work (c.f. [SPK13]) as presented in Chapter 2.

(iii) We propose a grid based algorithm which performs location estimation based
on the aforementioned probabilistic models for spatial relations.

(iv) We evaluate our location prediction algorithm with extended experiments on
both synthetic and real world location prediction scenarios.

3.2 Related Work

Work relevant to this part of the dissertation includes: (i) location estimation of
multimedia data and Twitter users and (ii) location estimation of unknown points
of interest from textual data.

3.2.1 Location Estimation of Multimedia Data and Twitter
Users

[FVD10] is one of the �rst attempts for multimodal location estimation on videos
where visual, acoustic and textual information is combined in order to declare where
a video was recorded. Furthermore, [CLE+13] extends this work where the authors
study human performance as baseline for location estimation for three di�erent
combinations of modalities (audio only, audio + video, audio + video + textual
metadata) and compares it with the machine algorithm's performance in [FVD10];
the study demonstrates cases when humans could e�ectively identify audio cue for
estimating video's location when the machine algorithm failed. [KSC+13] combines
the data from the visual and textual modalities with external geographical knowl-
edge bases by building a hierarchical model that combines data-driven and semantic
methods to group visual and textual features together within geographical regions.
As a result, the proposed method successfully located 40% of the videos in the
MediaEval 2010 Placing Task test set within a radius of 100m.

From a di�erent perspective, the authors in [CCL10] consider geo-location predic-
tion from Twitter data. In particular, the authors propose a probability framework
to estimate city-level location of a Twitter user based on tweet content. According
to their results, about half of the Twitter users can be placed within 100 miles of
their true locations. Following this line of work, the authors in [CLEL12] propose to
model the spatial usage of a word as a Gaussian mixture model; an approach that
is also followed in our work. Content-based machine learning techniques for Twit-
ter user localization are presented in [JPS13], while the authors in [HCB12] and
[HCB14] study the location estimation problem which is based on the automatic



identi�cation of location indicative words: that is words that implicitly or explicitly
encode an association with a particular location.

We highlight that, while the above approaches study a similar problem to ours,
they do not handle scenarios where the observations contain POIs with positions
not stored in a geographical database. In stark contrast, our approach can further
improve upon the papers above by providing probabilistic location estimates for
POIs observed for the �rst time.

3.2.2 Location Estimation of Unknown Points of Interest

While the present paper was written, we became aware of independent recent works
on location estimation of points of interest that are not stored in any geographical
database. Speci�cally, the authors in [MGM14] and [MRANIG14] propose an unsu-
pervised geocoding algorithm which employs clustering techniques in order to esti-
mate a spatial footprint of toponyms not found in gazetteers. The authors evaluate
their approach with a corpus of real hiking descriptions in three di�erent languages.
Yet, there is an important di�erence with our setting: the authors assume that
there is no uncertainty included in human descriptions, a rather strong assumption
for real applications. In particular, they consider the hiking descriptions as a-priori
100% correct and they provide a heuristic solution based on prede�ned patterns and
categories of spatial relationships. We believe that our approach, i.e., probabilis-
tic modeling of spatial relationships, is considered as an important complementary
feature in such scenarios that can e�ectively handle the uncertainty contained in
user generated texts and further improve other proposed approaches for location
prediction of unknown POIs.

3.3 Contribution

Spatial relationships are essentially observations between spatial objects. Having
quanti�ed them allows us to reason about locations. Our goal now is to show
how such probabilistic models can be employed in location estimation scenarios.
Unknown locations can be estimated by fusing spatial relationship observations to
known POIs (landmarks). The QLEST (Qualitative Location Estimation) algorithm
(Algorithm 3) details our location estimation method for a given set of unknown
POIs PU and a given set of triplets T of the form (Pu, Ro, Pv) (where Pv is a known
landmark POI) about each POI in PU . QLEST is a grid based approach, where
given a prede�ned grid of points over and around a landmark POI Pv, we desire
to associate probabilities to each vertex on the grid as candidate positions of the
unknown POI Pu. The probabilities assigned are drawn according to probabilistic
models, trained and learned as described in Section 4.3.2. Finally, all the assigned
probabilities are aggregated in order to de�ne the overall probability of each grid
cell.

Speci�cally, the �rst step is to discretize space by partitioning it with respect to
grid vertices (landmarks) (Step 2). For example, for a grid dimensionality GD = 15,
we have 15×15 = 225 grid vertices and 14×14 = 196 grid cells (regions). For each
unknown POI Pu , we load the respective triplets T of the form (Pu, Ro, Pv) (Step
5).



ALGORITHM 3: QLEST - Qualitative Location Estimation

Input: A set of trained GMMs Ĝ, a bounding box BB, grid dimensionality
in GD, a set PU of POIs to locate, a set PV of landmark POIs PV ,
and a set T T of sets T , i.e., T ⊂ T T , of triplets (Pu, Ro, Pv)

Output: Estimation accuracy A
1 begin

2 GV ← Calculate grid vertices for BB based on GD
3 InTopK← 0
4 foreach Pu ∈ PU do

5 T ← Load all triplets for PoI Pu from T T
6 Indx1← 0
7 foreach tu ∈ T do

8 Ĝ ′ ← Load GMM for spatial relation Ro of triplet tu
9 Indx2← 0
10 foreach gv ∈ GV do
11 VL(Indx1,Indx2)← Calculate each gv vertex's likelihood

with Pv of triplet tu as reference point, given model Ĝ ′

12 Indx2← Indx2 + 1

13 end

14 Indx1← Indx1 + 1

15 end

16 FVL ← Sum and normalize each vertex's likelihoods in VL
17 RL ← Calculate each region's likelihood using FVL
18 if Pu in K highest probability RL then
19 InTopK← InTopK + 1
20 end

21 end

22 A ← Percent(InTopK)
23 return A
24 end

Continuing, for each triplet tu we load the GMM relationship model Ĝ ′
which

corresponds to spatial relation Ro (Steps 7-8). Then, the selected relationship model
Ĝ ′

is used to assign positional probabilities to each vertex (landmark) gv of the grid,
using Pv of triplet tu as a reference point (Steps 10-13). In this way, we update the
likelihoods of all vertices in the grid. All likelihoods are stored in matrix VL (Step
11). Finally, all likelihoods per vertex are summed up and normalized in FVL (Step
16) and a probability is assigned to each grid cell (region) RL (Step 17). The overall
likelihood of a grid cell is calculated as the mean value of the likelihoods of its four
vertices. In a �nal step, we keep track of how many times the region that contains
the unknown point is ranked among the k-highest (Top-k) probable regions (Steps
18-20). This allows us to measure the estimation accuracy of the proposed approach
(Step 22).

The presented QLEST method, which fuses (spatial relationship) observations to
estimate unknown point locations, will be used in the following experimental section



in the context of synthetic and real-world location estimation scenarios.

3.4 Experimentation

To assess the quality of the probabilistic spatial modeling and location estimation
approach, we perform the following extensive experimentation using synthetic and
real-world location estimation scenarios. All text processing has been implemented
in Python, while the relationship modeling and location estimation methods where
implemented in Matlab.

3.4.1 Location Estimation for Synthetic Scenarios

In order to provide some baseline results, we de�ne a 1-component baseline (BSL)
model (which is a GMM model p(x|λ) =

∑M
i=1wig(x;µi,Σi) with M = 1), and an

optimized model (OPT), trained as described in Section 2.2.3.3 and using Algo-
rithm 2.

For the synthetic location estimation scenarios, we have to generate POIs and
spatial relations that connect them with known landmarks. Therefore, we follow a
similar path as in Algorithm 3. Firstly, we discretize space by partitioning it with
respect to grid vertices (GV), which will be used as landmarks, and we generate a
random point (Pu). Continuing, for each grid vertex (gv ∈ GV) we pick the spatial
relationship GMM (Ĝ ′

) that maximizes the likelihood�in terms of probability�
of Pu. Under a mathematical formalization this means that Ĝ ′

is picked as Ĝ ′ ←
arg max

g∈Ĝ
P (Pu|g, gv), where Ĝ is again a set of trained spatial relation GMMs. Thus,

for each random point Pu we generate equal number of triplets of the form (Pu, Ro,
Pv) with the number of grid vertices with Pv being always a grid vertex.

Following this procedure, we generate 1000 location prediction scenarios for each
of our four datasets. Figure 3.2 illustrates the approach by means of the (very
challenging) example of Beijing. The light gray colored grid cell in Figure 3.4.1
illustrates the region in which a random point was generated. Figure 3.4.1 shows
the assigned probabilities of each region after a full run of Algorithm 3. We observe
that our approach assigns the highest probability to a location by using only spatial
relationships extracted with respect to the landmarks in the region. Figure 3.4.1
illustrates the monitoring of the log-likelihood of the random point region as we
sequentially visit each vertex (landmark) in the grid. Starting from the lower left
grid vertex (Ĝ ′

model 1) and proceeding row-wise until the upper right vertex (Ĝ ′

model 225), the log-likelihood increases as we move closer to the desired region and
decreases when moving away. Figure 3.4.1 points out the �ve highest likelihoods of
the random point region and Figure 3.4.1 the locations of these vertices (landmarks)
in the grid along with the model's textual description. This analysis approach should
be considered also a qualitative accuracy assessment. Most of the models selected are
qualitatively correct and express a real spatial relation between each corresponding
vertex and the random point.

Additionally, we consider the cases in which the randomly generated point's
region is among the Top-k predicted regions with k = {1, 5, 10, 20}, respectively.
The prediction accuracy results are shown in Figure 3.3. The results show the
superior performance of the OPT model. Additionally, Table 3.1 shows the actual
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Figure 3.2: A location estimation scenario: (a) the region in which a random point has

been generated, (b) the probability of each region after a full run of Algorithm 3 is shown

using heatmap colors, (c) the log-Likelihood of the random point's region as we traverse

from one vertex (landmark) to the other, (d) an enlarged portion of (c) with the �ve highest

likelihood peaks, and (e) the 20 best vertex-models, with the 5 best vertex-models emphasized

in red (peaks in (d)).



prediction accuracy improvement for the OPT model. In some cases (indicated in
bold) the prediction accuracy improvement is equal to or greater than 30%.
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Figure 3.3: Location prediction accuracy. (a) Illustrates the prediction accuracy of the

BSL model for K values 1, 5, 10, 20 respectively. (b) Illustrates the prediction accuracy of

the OPT model for K values 1, 5, 10, 20 respectively.

Finally, we measure the percentage of selected models Ĝ ′
that are qualitatively

correct, i.e., they reveal a true spatial relation between a vertex and a random point.
Figure 3.4 shows the percentage correct models Ĝ ′

. The percentage of OPT model
is quite higher than that of the BSL model and Table 3.2 shows this improvement in
relative terms. In some cases (indicated in bold) the qualitative accuracy improve-
ment is more than 10%.

To visualize the actual models and the respective probabilities they assign to



Table 3.1: Prediction accuracy improvement when the optimized model (OPT) is used

instead of the BSL model.

Improvement per Top-k case

Dataset k = 1 k = 5 k = 10 k = 20

London +34% +40% +16% +15%

New York +50% +53% +51% +50%

Paris +21% +27% +30% +29%

Beijing +24% +16% +16% +15%
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Figure 3.4: Percentage of correct spatial relation models.

Table 3.2: Qualitative accuracy improvement when the optimized model (OPT) is used

instead of the BSL model.

Dataset Improvement

London +8%

New York +11%

Paris +13%

Beijing +9%

partitioned space, Figure 3.5 depicts three instances of spatial relations, with the
center of the grid denoting a reference (landmark) point. The spatial extent of
relations (a) �Near�, (b) �At� and (c) �West� when searching for an unknown point
that is spatially related to the center of the grid. The examples have been derived
from the New York, London, and Beijing datasets. The concentration of measures
around qualitatively correct regions is a further indication for the correctness of our
models.



(a) Near the grid center

(b) At the grid center

(c) West of grid center

Figure 3.5: Spatial extension of spatial relationships - probabilities of speci�c spatial re-

lationships (Near, At, West) relating vertices to the center grid cell.



3.4.2 Location Estimation for Real-world Scenarios

The ultimate goal of this work is to train probabilistic models for spatial relationships
so as to provide location estimation, e.g., �nding the �best pita place in Greece�,
based on hints in the form of qualitative spatial relationships discovered in textual
narratives. This is a potentially important method, as it provides a solution to the
geocoding problem that exists for user-contributed data on the Web, i.e., there is a
myriad of mentioned POIs whose coordinates do not exist in any gazetteer.

In addressing this challenge, we present extensive location estimation experi-
ments on 3,000 real world scenarios extracted from all four datasets as they were
presented in the Section 3.4.1. (about 800 real scenarios per region). We extract
3,000 POIs (considered as unknown) whose locations are given in (spatial) relation
to known POIs. Note that these cases have not been used in the training phase.
The experiments will also show the impact of the number of components per spa-
tial relationship model on the quality of the location estimation outcome, e.g., the
performance improvement when using the OPT instead of the BSL model. The
spatial relation fusion procedure in the real-world scenarios is the same as presented
in Algorithm 3, with the di�erence that the reference landmarks are real POIs (not
grid vertices) extracted from textual narratives, and that we use the observed, in
text, spatial relation model instead of the selected model Ĝ ′

.

3.4.2.1 Naïve Method

The �rst experiment estimates the location of an unknown POI using BSL and OPT
models and compares the result to the mean location of all referenced POIs. The
results for all four datasets are given in Figure 3.4.2.1. The one-component BSL
model provides better location estimation (center of spatial probability density)
when compared to to the mean location. It is closer to the actual POI's location in
56%, 57%, 70% and 80% of the cases, for the datasets of London, New York, Paris
and Beijing, respectively. Using the OPT model improves the result further by 12%,
20%, 16% and 10% for each dataset, respectively. For the cases in which the mean
location is closer to the unknown POI location than the center of spatial probability
density, Figure 3.4.2.1 shows the actual di�erences in percent (of the distance of the
mean location). The results show that while not outperforming the mean location
for a small number of cases, the spatial probabilities in any event come close. Overall
the results show that for scenarios with good data coverage such as Beijing (many
spatial relationships extracted from texts), the spatial probabilities almost always
(> 90%) outperform a naïve method, and even if they do not, they produce almost
identical results.

3.4.2.2 Location Estimates

Having established the validity of our approach, we want to measure the distance
of the estimated to the actual POI location. Table 3.3 illustrates the percentage of
location estimation scenarios for each of the de�ned distance buckets (0-2km, 2-4km,
4-6km, 6-8km. > 8km) for both methods and all four datasets. The more results
fall into the short distance buckets, the better the estimation for the speci�c case.
Again, an improvement of the result quality can be observed when contrasting the
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Figure 3.6: Location prediction accuracy. (a) Percentage of real scenarios - center of

spatial probability density closer than the mean location of referenced POIs. (b) Di�erence

in percentage of the distance of the mean location - mean location closer than the center of

spatial probability density.

BSL and OPT methods, as with the latter, the shorter distance percentage increases.
Speci�cally, for the case of London and New York there is an increase (indicated in
bold) in the �rst (0-2 km) and third (4-6km) bucket percentages, while for the Paris
and Beijing datasets there is an increase in the �rst (0-2 km) and second (2-4km)
distance buckets. This means that by using the OPT method, we obtain preciser
location estimates.

Assuming a perfect method, all results would be in the �rst bucket. The case of
Beijing comes close to this ambition as 29% and 35% (64% total) of the estimates



Table 3.3: Prediction accuracy in terms of estimated distance from the unknown POI

location.

Dataset

London New York Paris Beijing

Distance BSL OPT BSL OPT BSL OPT BSL OPT

0-2 km 8% 11% 14% 24% 10% 12% 21% 29%
2-4 km 36% 33% 43% 33% 30% 33% 22% 35%
4-6 km 30% 31% 21% 30% 37% 35% 39% 21%
6-8 km 17% 16% 15% 9% 16% 15% 13% 11%
> 8 km 9% 9% 7% 4% 7% 5% 5% 4%

are within 2km and 4km of the actual location, respectively.

3.4.2.3 Case Studies

To illustrate the impact of the number of observations on the result quality, we vi-
sualize four concrete location estimation scenarios (one for each dataset) by, in each
case, progressively increasing the number of observations (spatial relationships).
Figure 3.7 illustrates the aforementioned scenarios. Figures 3.7(a), (b) and (c) illus-
trate an unknown POI (red star) in the greater area of London, whose position is
described in relation to known POIs (black stars) using a total number of 15 spatial
relations. Figure 3.4.2.3 shows the contours of the spatial probability distribution
when only using a randomly selected 50% of the observations, while Figure 3.4.2.3
shows the �nal distribution considering all spatial relations. Finally, Figure 3.4.2.3 is
a closeup of Figure 3.4.2.3 with a GoogleMaps basemap overlay. In a similar fashion,
Figure 3.7 shows the results for New York, Beijing and Paris, with a total number
of 20, 70 and 200 spatial relations being used in each case, respectively. These re-
sults demonstrate the considerable prediction accuracy. Especially the estimates for
Beijing (see Figures 3.4.2.3, 3.4.2.3, 3.4.2.3) and Paris (see Figures 3.4.2.3, 3.4.2.3,
3.4.2.3) clearly pinpoint the unknown POI location. What is further encouraging is
that even for the cases of London (see Figures 3.4.2.3, 3.4.2.3, 3.4.2.3) and New York
(see Figures 3.4.2.3, 3.4.2.3, 3.4.2.3), for which the number of relations is small, the
proposed approach works reasonably well.

As expected, the prediction accuracy increases with the number of observations
(models) considered. This is con�rmed by the mass of the probability moving closer
to the unknown POI location when increasing the number of observations from a
randomly selected 50% (Figure 3.7 1st column) to 100% (Figure 3.7 2nd column).
This e�ect is observed for all four cases. Table 3.4 shows the actual distances between
the centers of the spatial probability distributions and the actual POI locations as
we increase the percentage of spatial relations considered in our estimate.

The results show that as we increase the number of relations considered, we
achieve more accurate estimates. The improvement is considerable for all cases, with
Beijing and Paris bene�tting most and achieving distances of < 2km (indicated in
bold in Table 3.4). Moreover, although the estimation quality (accuracy as well as
precision) increases with the number of observations, nevertheless, even in the case
of a small number of available observations, we can rely on the crowd as a data
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Figure 3.7: Real world location estimation scenarios - Rows 1 to 4 are scenarios for Lon-

don, New York, Beijing, and Paris - Columns 1-3 shows results for 50% , 100% and 100%

(on Google Maps) of the observations (discovered relations) considered in the estimation.



Table 3.4: Distance between the center of the spatial probability distribution and the un-

known POI.

Percentage of relations considered

Dataset 10% 50% 100%

London 15.3km 7.9km 7.7km

New York 16.2km 11.9km 11.1km

Beijing 14.4km 8.6km 1.2km

Paris 8.7km 1.6km 0.8km

source for location estimation.
Overall, we can conclude that the proposed modeling using GMMs optimized

by the greedy EM algorithm presented in Section 2.2.3.3 can e�ciently handle the
uncertainty introduced by user-contributed qualitative geospatial data. In combi-
nation with information extraction techniques, it provides us with the non-trivial
means of textual narrative-based location estimation.





Chapter 4

Popular Path Computation

Directions and paths, as commonly provided by navigation systems, are usually
derived considering absolute metrics, e.g., �nding the shortest or the fastest path
within an underlying road network. With the aid of Volunteered Geographic Infor-
mation (VGI), i.e., geo-spatial information contained in user generated content, we
aim at obtaining paths that do not only minimize distance but also lead through
more popular areas. Based on the importance of landmarks in Geographic Infor-
mation Science and in human cognition, we extract a certain kind of VGI, namely
spatial relations that de�ne closeness (nearby, next to) between pairs of points of in-
terest (POIs), and quantify them following a probabilistic framework. Subsequently,
using Bayesian inference we obtain a crowd-based closeness con�dence score be-
tween pairs of PoIs. We apply this measure to the corresponding road network
based on an altered cost function which does not exclusively rely on distance but
also takes crowdsourced geo-spatial information into account. Finally, we propose
two routing algorithms on the enriched road network. To evaluate our approach, we
use Flickr photo data as a ground truth for popularity. Our experimental results �
based on real world datasets � show that the paths computed w.r.t. our alternative
cost function yield competitive solutions in terms of path length while also providing
more �popular� paths, making routing easier and more informative for the user.

4.1 Preliminaries

User generated content has bene�ted many scienti�c disciplines by providing a
wealth of new data. Technological progress, especially smartphones and GPS re-
ceivers, has facilitated contributing to the plethora of available information. Open-
StreetMap constitutes the standard example and reference in the area of VGI. Au-
thoring geo-spatial information typically implies coordinate-based, quantitative data.
Contributing quantitative data requires specialized applications (often part of social
media platforms) and/or specialized knowledge, as is the case with OpenStreetMap
(OSM).

The broad mass of users contributing content, however, are much more com-
fortable using qualitative information. People typically do not use geo-coordinates
to describe their spatial motion, for instance when traveling or roaming. Instead,
they use qualitative information in the form of toponyms (landmarks) and spatial
relationships (�near�, �next to�, �close by�, etc.). Hence, there is an abundance of
geo-spatial information (freely) available on the Internet, e.g., in travel blogs, largely
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unused. In contrast to quantitative information, which is mathematically measur-
able, qualitative information is based on personal cognition. Therefore, accumulated
and processed qualitative information may better represent human way of thinking.

This is of particular interest when considering the �routing problem� (equivalent
to �path computation�). Traditional routing queries use directions from systems that
only take inherent cost measure of the underlying road network into account, e.g.,
distance or travel time. In human interaction, such information is usually enhanced
with qualitative information (e.g. �the street next to the church�, �the bridge north
of the Ei�el tower�). Combining traditional routing algorithms with crowdsourced
geo-spatial references we aim to more properly represent human perception while
keeping it mathematically measurable.

In [RW14], the authors analyze the important role of landmarks for the repre-
sentation of geographic space in human mind, i.e., people tend to describe their
position in space based on landmarks and relations between them. Based on this
fact, in this work, we enrich a road network with information about spatial relations
between pairs of Points of Interest (POI) extracted from user generated data (travel-
blog data). Using these relations, we obtain routes that are easier to interpret and
follow, possibly rather resembling a route that a person would provide.

Figure 4.1: Shortest (continuous) and alternative paths (dot dashed and dotted) alongside

POIs in the city of Paris. This result is an output of some of the algorithms presented in

this dissertation.

As an example, consider the routing scenario in Figure 4.1 which is set in the
city of Paris, France. The continuous line represents the conventional shortest path
from starting point �Gare du Nord� to the target at �Quai de la Rapée� while the
dot dashed and dotted lines represent alternative paths computed by the algorithms
introduced in this paper. The triangles in this example denote touristic landmarks
and sights. For instance, the dot dashed path on the bottom right passing recogniz-
able locations such as �Place de la République�, �Cirque d'hiver� and �la Bastille�, as
proposed by our algorithms, is considerably easier to describe and follow, and might
yield more interesting sights for tourists than the shortest path.



The major challenge in this contribution is the extraction of crowdsourced geo-
spatial information from textual data and the enrichment of an existing road network
with this information. The enriched road network is subsequently used to provide
paths between a given start and target that satisfy the claim of higher popularity
(which is formally introduced in Section 4.3.3), while only incurring a minor addi-
tional spatial distance. In addition to this main application, we note that our tech-
niques can furthermore be used to automatically provide interesting tourist routes
in any place where information about POIs is available. The transition from tex-
tual information to routing in networks is not at all straightforward, therefore we
employ and develop various methods from di�erent angles of computing science. To
summarize, our contributions are as follows:

• We �rst mine VGI from user generated texts, by employing Natural Language
Processing (NLP) methods in order to determine spatial entities (POIs) and
spatial relations between them (Chapter 2).

• Due to the inherent uncertainty of crowdsourced data, we employ probability
distributions to quantitatively model spatial relations mined from the text
(Chapter 2).

• We propose a Bayesian inference-based transition from the modeled spatial
relations to spatial closeness con�dence measurements according to the crowd
(Section 4.6.1.6).

• We de�ne a new cost criterion which is used to enrich an underlying road net-
work with the aforementioned con�dence measurements based on the Djikstra
shortest path algorithm (Section 4.3.3.2).

• We optimize the Dikstra based enrichment approach with a skyline-based road
network enrichment approach (Section 4.3.3.4).

• Finally, we propose two algorithms which use the enriched road network to
compute actual paths (see Section 4.4).

4.2 Related Work

Research areas relevant to this work include: (i) qualitative routing and (ii) mining
of semantic information from moving object trajectories and trajectory enrichment
with extracted semantic information. In what follows, we discuss previous work in
both of these areas.

While �nding shortest paths in road networks is a thoroughly explored research
area, qualitative routing has hardly been explored. Nevertheless, providing mean-
ingful routing directions in road networks is a research topic of great importance.
In various real world scenarios, the shortest path may not be the ideal choice for
providing directions in written or spoken form, for instance when in an unfamiliar
neighborhood, or in cases of emergency. Rather, it is often more preferable to of-
fer �simple� directions that are easy to memorize, explain, understand and follow.
However, there exist cases where the simplest route is considerably longer than the
shortest. The authors in [SB13] and [WR11] try to tackle the problem of e�cient
routing by using cost functions that trade o� between minimizing the length of a



provided path while also minimizing the number of turns on the provided path.
The major shortcoming of these approaches is that they focus almost exclusively on
road network data without taking into account any kind of qualitative information,
i.e., information coming from the user. Opposed to that, we try to approach the
problem of e�cient routing by integrating spatial knowledge coming from the crowd
thus enriching an actual road network.

The discovery of semantic places through the analysis of raw trajectory data
has been investigated thorougly over the course of the last years. The authors
in [LCC12], [YCP+11], [PBKA08] and [And13], provide solutions for the seman-
tic place recognition problem and categorize the extracted POIs into pre-de�ned
types. Moreover, the concept of �semantic behavior� has recently been introduced.
This refers to the use of semantic abstractions of the raw mobility data, including
not only geometric patterns but also knowledge extracted jointly from the mobility
data as well as the underlying geographic and application domains in order to un-
derstand the actual behaviour of moving users. Several approaches like [ABK+07],
[PSR+13], [SP11], [YCP+13], [SP11] and [YSC+10] have been introduced the last
decade. The core contribution of these articles lies in the development of a semantic
approach that progressively transforms the raw mobility data into semantic trajec-
tories enriched with POIs, segmentations and annotations. Finally, a recent work,
[FSSR13], can extract and transform the aforementioned semantic information into
a text description in the form of a diary. The major drawback of these approaches
is that they do not intergrate the extracted semantic information into the road net-
work. Instead, they use the extracted information only on speci�c trajectories. In
our contribution, we analyze crowdsourced data in order to extract semantic spatial
information and intergrate it into an actual road network. This will enable us to
provide routes that are near-optimal w.r.t. distance while spatially more popular
according to the crowd.

4.3 Contribution

This section highlights our approach on qualitative data extraction from texts and
presents a probabilistic approach for representing spatial relationships based on dis-
tance and orientation features. Key ingredients of our approach are NLP methods
for information extraction from texts and algorithms that train probabilistic mod-
els, which are required due to the inherent uncertainty of crowdsourced data. Our
discussion below includes a short description of NLP tools we use to extract spatial
relations between POIs, the features we used to model spatial relations as proba-
bility distributions, and a short analysis of the modeling approach used in [SPK13].
These models are necessary to assess the quality of spatial relations extracted from
text which will be used in Section 4.3.3.2 for the enrichment of the underlying road
network.

4.3.1 Spatial Relation Extraction from Texts

Here we follow the same path as described in Chapter 2. We choose travel blogs as
a rich source for (crowdsourced) geo-spatial data. This selection is based on the fact
that people tend to describe their experiences in relation to their trips and places
they have visited, which results in �spatial� narratives. To gather such data, we



use classical Web crawling techniques and compile a database consisting of 250,000
texts, obtained from 20 travel blogs.

Obtaining qualitative spatial relations from text involves the detection of (i)
POIs (or toponyms) and (ii) spatial relationships linking the POIs. The employed
approach involves geoparsing, i.e., the detection of candidate phrases, and geocoding,
i.e., linking the phrases to actual coordinate information.

For the relation extraction task we follow the approach used in [SPKS15] where
a Natural Language Processing Toolkit (NLTK) (cf. [LB02]) based spatial relation
extraction approach is presented. NLTK is a leading platform for analyzing raw
natural language data. The search for spatial relations in texts results into triplets
of the form (Pi, Rk, Pj), where Pi and Pj are named entities (landmarks) and Rk

is the spatial relation that intervenes between Pi and Pj. Following this path, we
managed to extract 500,000 POIs from the aforementioned travel blog text corpus.
For the geocoding of the POIs, we rely on the GeoNames1 geographical gazetteer
data, which contains over ten million POI names worldwide and their coordinates.
This procedure associates (whenever possible) POIs found in the travel blogs with
geo coordinates. Using the GeoNames gazetteer we were able to geocode about
480,000 out of the 500,000 extracted POIs and to end up with about 600,000 triplets
of the form (Pi, Rk, Pj) worldwide.

For our experiments we want to focus on regions with high triplet density in
order the get meaningful results. Therefore, we focus on the cities of Paris and New
York. The triplets we extracted for these two cities de�ne a what we call Spatial
Relationship Graph, i.e., a spatial graph in which nodes represent POIs and edges
are spatial relationships between them. Let us point out that for the scope of this
work, i.e., a combination of short and enriched routes, we only consider distance and
topological relations that denote closeness (near, close, next to, at, in etc). The use
of relations that denote direction, e.g., north, south, east etc., or remoteness, e.g.,
away from, far etc., is an open direction for future work.

4.3.2 Modeling Spatial Relations

4.3.2.1 Feature Extraction

In order to train probabilistic models, we need informative features. We model
each spatial relation in terms of distance and orientation as presented in [SPK13].
Therefore, we extract occurrences of a spatial relation (such as �near�) from travel
blogs. For each occurrence, we create a two-dimensional spatial feature vector
D = (Dd, Do)

ᵀ where Dd denotes the distance and Do denotes the orientation be-
tween Pi and Pj. Speci�cally, assuming a projected (Cartesian) coordinate system,
the distance between two POIs Pi and Pj is computed as the Euclidean metric
between the two respective coordinates. The orientation is established as the coun-
terclockwise rotation of the x-axis, centered at point Pj, to point Pi. This way, we
end up with a set of two-dimensional feature vectors Drel = {D1, D2, . . . , Dn} for
each spatial relation. We will use the set of two-dimensional feature vectors in order
to train a probabilistic model for each spatial relation.

1http://www.geonames.org/



4.3.2.2 Probabilistic Modeling

As described in [SPK13] and Chapter 2, by using a set of two-dimensional feature
vectors for each spatial relation such as �near� or �into�, we can train Gaussian
Mixture Models (GMMs), which have been extensively used in many classi�cation
and general machine learning problems ([Bis06]).

In general, a GMM is a weighted sum of M -component Gaussian densities as
p(d|λ) =

∑M
i=1wig(d;µi,Σi) where d is a l-dimensional data vector (in our case

l = 2), wi are the mixture weights, and g(d;µi,Σi) is a Gaussian density function
with mean vector µi ∈ Rl and covariance matrix Σi ∈ Rl×l. To fully characterize the
probability density function p(d|λ), one requires the mean vectors, the covariance
matrices and the mixture weights. These parameters are collectively represented in
λ = {wi, µi,Σi} for i = 1, . . . ,M .

Let R = {R1, . . . , Rn} denote the set of all spatial relations that we take into
account. In our setting, each relation Rk is modeled under a probabilistic framework
by a 2-dimensional GMM, trained on each relation's set of two-dimensional feature
vectors Drel. For the parameter estimation of each Gaussian component of each
GMM, we use Expectation Maximization (EM) ([DLR77]). EM enables us to update
the parameters of a given M-component mixture with respect to a feature vector set
Drel = {D1, . . . , Dm} with 1 ≤ j ≤ m and all Dj ∈ Rl, such that the log-likelihood
L =

∑m
j=1 log(p(Dj|λ)) increases with each re-estimation step, i.e., EM re-estimates

model parameters λ until convergence. Further details on modeling spatial relations
under a probabilistic framework are given in [SPK13].

This procedure results in a trained GMM of the form pk(D|λ), for each spatial
relation Rk, 1 ≤ k ≤ n. Given a distance and orientation vector, we can use this
model to estimate the probability that a particular relation exists. Based on this
information, by bayesian inference we derive a closeness score for pairs of POIs. This
procedure is described in the next section.

4.3.3 Road Network Enrichment

In this section, we describe our approach to enrich an actual road network with
crowdsourced geo-spatial information. Our discussion below includes a description
of how we transform a Spatial Relationship Graph, as presented in Section 4.3.1, into
a weighted graph, and how we use the edge weights of the weighted graph in order
to modify the edge costs of a real road network.

4.3.3.1 From Relationship to Weighted Graphs

As presented in Section 4.6.1.3, the spatial relation extraction procedure results in
a relationship graph between POIs. A simple example of such a graph is shown in
Figure 4.2. In general, let P = {P1, . . . , Pm} denote the set of nodes representing
the POIs, and let R = {R1, . . . , Rn} denote the pre-de�ned set of spatial closeness
relations, represented by spatial NLP expressions like �next to� or �close by�.

Furthermore, let Ri,j ⊆ R denote the set of relations extracted from the text
between two distinct nodes Pi and Pj. Note that Rk denotes an abstract relation,
while Ri,j denotes a set of occurrences of relations between a pair of nodes. Let Di,j

denote the spatial feature vector (distance and orientation), between two distinct
POIs Pi and Pj (as presented in Section 4.3.2.1). Finally, let D :=

⋃
i 6=j∧Ri,j 6=∅Di,j



denote the set of all spatial feature vectors between all pairs of POIs which have
non-empty sets of relations.

P1 P2

P3P4

R1,2(W1,2)

R1,3(W1,3)
R2,3(W2,3)

R3,4(W3,4)

R4,1(W4,1)

R4,3(W4,3)

Figure 4.2: Simple relationship graph. Nodes represent POIs and each edge represents

the set of relations Ri,jthrough which its adjacent nodes Pi and Pj are connected. Each of

these sets is mapped onto the closeness score Wi,j, turning the relationship into a weighted

graph.

We want to estimate the posterior probability of a class Rk ∈ Ri,j based on
the spatial feature data Di,j between two POIs Pi and Pj. This is given by Equa-
tion 4.1. Here, p(Di,j|Rk) denotes the likelihood of Di,j given relation Rk based on
the trained GMM (presented as p(D|λ) Section 4.3.2.2), while P (Rk) denotes the
prior probability of relation Rk given only the observed relations Ri,j.

P (Rk|Di,j) =
p(Di,j|Rk)P (Rk)
n∑
l=1

p(Di,j|Rl)P (Rl)
(4.1)

In a traditional classi�cation problem the spatial relation Rk between a pair of
POIs would be classi�ed to the spatial relation model with the highest posterior.
In contrast to this approach, we consider each posterior probability P (Rk|Di,j) as a
measure of con�dence of the existence of relation Rk between Pi and Pj. Remember
that all the relations we consider re�ect terms of spatial closeness. We combine all
these posteriors into one measure which we refer to as closeness score Wi,j of the
pair of POIs Pi and Pj, de�ned in Equation 4.2.

Wi,j =
1

|R|
·
|Ri,j |∑
i=1

P (Rk|Di,j)

maxk{P (Rk|D)}
(4.2)

Here, we sum all the posteriors P (Rk|Di,j) normalized by the maximum posterior
of each relation in the relationship graph and we normalize the summation by the
total number of spatial relations in the relationship graph. This is done for all pairs
Pi, Pj where Ri,j 6= ∅. We refer to these pairs as close since at least one of our
relations re�ecting closeness exists. As is illustrated in Figure 4.2, assigning the
respective weights Wi,j to the edges of the relationship graph, we obtain a weighted
graph. Note that Wi,j ∈ [0, 1] but typically 0 < Wi,j � 1. In Section 5.2.4 the
in�uence of Wi,j on the results is examined, in particular, di�erent scalings are
tested. In this weighted relationship graph, denoted by H∗, there exists a vertex for



each POI and an edge (Pi, Pj) (equipped with weightsWi,j and Euclidean distances
dij) for each pair of POIs Pi, Pj that are close in the above sense (Ri,j 6= ∅).

4.3.3.2 From Weighted Graphs to Road Network Enrichment

Now that we have extracted and statistically condensed the crowdsourced data into
a closeness score, we need to apply the obtained closeness scores to the underlying
network. We have investigated several strategies and have decided upon a com-
promise between simplicity and e�ectiveness. We will present two road network
enrichment approaches and we propose two algorithms on routing with enriched
graphs. The �rst enrichment approach, also analyzed in our previous work in [?], is
based on Djikstra shortest path computation while the second is based on Skyline
path computation.

Initially, let G = (V,E, d) denote the graph representing the underlying road
network, i.e., the vertices v ∈ V correspond to crossroads, dead ends, etc., the edges
e ∈ E = V × V represent roads connecting vertices. Furthermore, let d : E → R+

0

denote the function which maps every edge onto its distance. We assume that
P ⊆ V , i.e., each POI is also a vertex in the graph. This is only a minor constraint
since we can easily map each POI to the nearest node of the graph or introduce
pseudo-nodes. Our two enrichment methods are described below.

4.3.3.3 Djikstra Shortest Path Approach

For each pair of spatially connected POIs, Pi, Pj, we compute the shortest path
connecting Pi and Pj in G, which we denote by r(i, j). We then de�ne a new cost
function c : E → R+

0 which modi�es the previous cost d(e) of an edge as follows:

c(e) = d(e) ·
∏

e∈r(i,j)

(1− αWi,j) (4.3)

where e ∈ r(i, j) i� e is an edge within the shortest path from Pi to Pj and
where α ∈ [0, 1] is a weight scaling factor to control the balance between the spatial
distance d(e) and the modi�cation caused by the closeness score Wi,j. In the case
of α = 0, we obtain the unadapted edge weight c(e) = d(e). Summarizing, the more
shortest paths between POI pairs run through e, the lower its adjusted cost c(e).
The reason for enriching the shortest paths is that they represent the most intuitive
connections between any two points in a road network.

We now de�ne the enriched graph G∗ = (V,E, c). It consists of the original
vertices and edges and is equipped with the new cost function which implies the re-
weighting of edges. Any path computation algorithm in G∗(e.g. a Dijkstra search)
therefore favors edges which are part of shortest paths between POIs which are close
according to the crowd. When computing the cost of a path on G∗, as before, we
sum the respective edge weights which now di�er from the original edge weights
(due to the altered cost function). We refer to this procedure of incorporating the
crowdsourced information and the respective graph as D-enrich.

4.3.3.4 Path Skyline Approach

One shortcoming of D-enrich is the assumption that the crowd unanimously favors
exactly one path to connect a pair of POIs Pi and Pj, namely the shortest path.



Especially in multicriteria networks which comprise of a set of cost criteria, e.g.,
travel time, energy consumption, road tolls, optimality is usually de�ned as a per-
sonal trade-o� between the given criteria. For example: How much additional time
has to be spent to avoid a toll road? However, de�ning this trade-o� numerically
as a vector of preferences is not reasonable, and even if it would be, �nding the
personally preferred trade-o�s for all users is in general not possible. Therefore, the
best practice is to present a set of alternative paths to the user. The most estab-
lished and very comprehensive set of alternative paths is the so-called path skyline
[?]. This set contains all paths which are non-dominated in the following sense: The
cost vector u dominates a cost vector v, denoted u ≺dom v, if u has a smaller cost
value than v in at least one dimension i and v does not have a smaller cost value
than u in any dimension j. Hence, the path skyline comprises all path which are
optimal under some monotone combination function of the cost criteria. Hence, the
path skyline contains all optimal paths for all possible trade-o�s between the cost
criteria.

To enrich our road network, we compute the path skyline (w.r.t. distance and
travel time) as proposed in [SJSK] between each pair of spatially connected POIs Pi
and Pj in G, denoted by s(i, j). Although the paths contained in s(i, j) di�er from
one another, they often share some edges. Simply following each path for enrichment
might unnecessarily favor edges contained in many skyline paths. Therefore, we
adjust the weights of edges independent of the number of skyline paths in which
they occur. Let Si,j ⊂ E denote the set of all distinct edges which are part of at
least one skyline path from Pi to Pj. Analogously to D-enrich, we de�ne the cost
function c : E → R+

0 to modify the original cost d(e) of an edge, as before. While
the adjusted cost function is the same as before (see Equation 4.3), the set of edges
with adjusted costs is a superset, i.e., Si,j ⊇ r(i, j).

We now de�ne the enriched graph G∗∗ = (V,E, c). It consists of the original
vertices and edges equipped with the altered cost function re�ecting a re-weighting
of edges contained in skyline paths. Any path computation algorithm in G∗∗(e.g.
a Dijkstra search) therefore favors edges which are part of the Skyline paths be-
tween POIs which are close according to the crowd. We refer to this procedure of
incorporating the crowdsourced information and the respective graph as S-enrich.

4.3.3.5 In�uence of Adjusted Costs

In order to measure the in�uence of the adjusted cost values along a computed path
p = (e1, . . . , er) on an enriched graph (G∗or G∗∗), we introduce the enrichment ratio
(ER) function er.

er(p) =
1

d(p)

r∑
i=1

c(ei) (4.4)

Here, d(·) and c(·) are as in the previous two sections. By normalizing with the
total length of the path, we are able to compare the spatial connectivity of paths
independent of length as well as start and target nodes. Here, a lower ratio implies
higher closeness score values along the edges of the path. If none of the edges of a
path is part of any shortest or skyline path between POIs, its enrichment ratio is 1,
while the (highly unlikely) optimal enrichment ratio is 0. On the enriched graphs
G∗ and G∗∗ we may now de�ne our path computation algorithms.



4.4 Path Computation on Enriched Graphs

Now that we have a measure quantifying the enrichment of a path, we investigate the
e�ect of D-enrich and S-enrich on the actual path computation. For this purpose,
we present two approaches which make use of the enriched network and the weighted
relationship graph H∗ (Section 4.6.1.6). Continuing, they are compared to the
conventional shortest paths within the original graph, as obtained with Dijkstra's
algorithm, which we denote by Dij-G.

Note that for the evaluation procedure, all paths in this paper are computed
by Dijkstra's algorithm because our main focus is not the routing itself but the
incorporation of textual information into existing road networks. If desired, speed-
up techniques, such as preprocessing steps and/or other search algorithms, could
easily be employed.

Our �rst approach, given start and target nodes, it executes a Dijkstra search in
the enriched road network graph G∗ or G∗∗ w.r.t. the adjusted cost function. De-
pending on the enrichment used, D-enrich or S-enrich, we refer to the �rst algorithm
as Dij-G∗or Dij-G∗∗, respectively.

Our second approach, uses the enriched road network graphs G∗ or G∗∗ as well
as the weighted relationship graph H∗. Given start and target nodes within the
enriched graph (G∗or G∗∗), entry and exit nodes within H∗ are determined. Subse-
quently, we route within H∗, i.e., from POI to POI, again using Dijkstra's algorithm.
Depending on the enrichment used, D-enrich or S-enrich, we refer to the second ap-
proach we want to present as Dij-H∗or Dij-H∗∗, respectively. Note that in both cases
we use the same graph H∗, but we refer to the S-enrich case as Dij-H∗∗ in order to
di�erentiate the two methods.

All our approaches return paths connecting start and target. But while Dij-
G computes the shortest path in the original graph G, all the approaches compute
the shortest paths in the enriched graphs w.r.t. the adjusted cost function c. By
construction of c, it favors edges which are part of the Dijkstra shortest paths or the
skyline paths, between close POIs. Dij-H∗ and Dij-H∗∗ in contrast, do not only favor
these edges, but are restricted to them. Having found entry and exit nodes within
H∗, Dij-H∗ and Dij-H∗∗ hop from POI to POI in direction of the target. Hence, Dij-
G, Dij-G∗, Dij-G∗∗, Dij-H∗, Dij-H∗∗ in that order, represent an increasing binding
to the extracted relations. Dij-G is not bound to the relations at all, while Dij-G∗

and Dij-G∗∗ (by the adjusted cost function) favors �relation-edges�, and Dij-H∗ and
Dij-H∗∗ are strictly bound to the relations and the graph formed by them.

Let us formalize Dij-H∗ (Dij-H∗∗ can be formalized in the same way). Given start
and target node in G∗ (or G∗∗ for the Dij-H∗∗ case), it �rst determines the so-called
entry and exit nodes to and from H∗. However, to exclude POIs which would imply
a signi�cant detour, we restrict the set of valid POIs, i.e., we restrict the search
to a subgraph of H∗, denoted as h∗. Figure 4.3 illustrates our computationally
inexpensive implementation of a query ellipse that allows for some deviation in the
middle of the path as well as for minor initial and �nal detours.

The pseudo-code for the second approach is given in Algorithm 4. Here, we
present only the Dij-H∗case, since Dij-H∗∗ works in the same way by utilizing the
G∗∗ graph. After selecting the valid set of POIs (Step 2), entry and exit nodes to and
from H∗ are determined, i.e., the closest POIs to start and target node, respectively
(Steps 4 and 5).



ALGORITHM 4: Dij-H∗

Input: Enriched Graph G∗, Spatial Relationaship Graph H∗, start s,
target t

Output: Path p between s and t

1 begin

2 h∗ ← subgraph of H∗ in bounding ellipse
3 p← empty path

4 Pentry ← select POI P ∈ h∗ closest to s
5 Pexit ← select POI P ∈ h∗ closest to t
6 ph ← Dijkstra(h∗, Pentry, Pexit)

7 predecessor← s
8 foreach POI P on path ph do
9 v ← select node v ∈ G∗ representing P
10 p.Append(Dijkstra(G∗, predecessor, v))
11 predecessor← v

12 end

13 p.Append(Dijkstra(G∗, last, t))

14 return p

15 end

Start End

1.4 d
1.6 d

d

Figure 4.3: Restriction of relationship graph H∗ to a subgraph h∗, in order to avoid

implausible detours. The green dots represent POIs, i.e., nodes of H∗ which are also in

h∗, the blue ones are left out.

Entry and exist nodes connect the road network G∗ to the relationship graph
H∗. Subsequently, the shortest path in h∗ from entry to exit node is computed using
Dijkstra's algorithm w.r.t. the Euclidean distance (Step 5). Note that a shortest
path within H∗ is a sequence of POIs. We therefore map this sequence onto G∗ by
computing the shortest paths between the consecutive pairs of POIs in G∗ w.r.t. the
adjusted cost function (Step 8). Also, we compute the shortest paths in G∗ from
start to entry node and exit to target node. Concatenating these paths (start to



entry, POI to POI, exit to target), we return a full path.

4.5 Experimentation

In this section, we want to investigate the e�ect and impact of the network en-
richment. We compare the results of the conventional Dijkstra search, Dij-G, to
the results of Dij-G∗and Dij-H∗, which use the Djikstra shortest path enriched (D-
enrich) graph G∗, and the results of Dij-G∗∗and Dij-H∗∗, which use the skyline path
enriched (S-enrich) graph G∗∗. All approaches are evaluated on real world datasets.
Besides comparing the computed path w.r.t. their enrichment ratio (ER) and length
(as presented in Section 4.3.3.2), we introduce a measure of popularity based on
Flickr data, which is explained in the following section. All the text processing
parts were implemented in Python while modeling parts were implemented in Mat-
lab. Network enrichment and path computation tasks were conducted using the
Java-based MARiO Framework [GKRS] on an Intel(R) Core(TM) i7-3770 CPU at
3.40GHz and 32 GB RAM running Linux (64 bit).

4.5.1 Enrichment Ratio, Distance and Popularity Evaluation

Our experiments are set in two cities, Paris and New York. These regions have
comparatively high density of spatial relations, Flickr photo data, and OSM data,
which accounts for an exact representation of the road networks. As mentioned
before, we compare the output of Dij-G, Dij-G∗, Dij-H∗, Dij-G∗∗and Dij-H∗∗ w.r.t.
to the paths they return, more precisely, w.r.t. ER and length of these paths. Since
ER is a measure introduced in this paper, we use Flickr data as an independent
ground truth. We are aware that to cognitive aspects (like the importance of sights
or the value of landmarks) there is no absolute truth. However, in order to be able
to draw comparisons, we presume that if the dataset is large enough, the bias can
be neglected. We use a geotagged Flickr photo dataset, provided by the authors
in [MSWHD], to assign a number of photos to each vertex of the underlying road
network. The number of Flickr photos assigned to each vertex is referred to popu-
larity. In our settings, every photo which is within the 20-meter radius of a vertex,
contributes to the popularity of that vertex. The popularity of a path is computed
by summation of all popularity values along this path.

The sizes of the weighted relationship graphs H∗, road network and Flickr photo
data for both cities are shown in Table 4.1. Regarding the weighted relationship
graphs, we provide the number of unique POI pairs extracted from the travel blog
corpus and the number of spatial (closeness) relations extracted between them, as
was presented in Section 4.6.1.3. Regarding Flickr data, we provide the total number
of geotagged photos in each city and the maximum number of photos assigned to
one vertex of the road network. Finally, regarding the road network, we provide the
total number of edges and vertices. Note that although the datasets di�er in terms
of density (w.r.t. to relations and Flickr photos), our algorithms provide similar
results.

We present two experimental settings: In Setting (i) we examine the in�uence
of di�erent scalings of the closeness score Wi,j in terms of enrichment ratio, path
length increase (distance) and popularity. Setting (ii) investigates the in�uence of
the path length, i.e., the distance between start and target is varied, again in terms



Table 4.1: Statistics for the weighted relationship graphs, Flickr datsets and road networks

of Paris and New York respectively.

Rel. Graph (H∗) Flickr Road Net. (G)

Data # Pairs # Relations # Photos # Photos per Vertex # Vertices # Edges

Paris 400 2000 400K 100 550K 300K

NY 300 1500 90K 200 220K 120K

of enrichment ratio, path length increase (distance) and popularity. In both settings
we present the ER performance of the algorithms separately from their performance
in terms of distance and popularity as ER is a measure that mainly proves that
our network enrichment approach works properly, i.e., ER should increase with the
increase of the in�uence of Wi,j on the network and the increase of the path length.
Hence, based on our own measure (ER) we validate that the proposed approach
works properly.

In Setting (i), for 100 randomly chosen pairs of start and target nodes the respec-
tive shortest paths within the actual road network are computed using Dijkstra's
algorithm, Dij-G. Continuing, for the same start and target pairs, we run Dij-G∗,
Dij-H∗, Dij-G∗∗ and Dij-H∗∗. Subsequently, for each pair the di�erence w.r.t. ER,
distance and popularity is computed, and �nally averaged out over all pairs. We
require the distance between start and target nodes to be at least 30% and at most
50% of the Euclidean extent of the network (approximately 6km to 10km), in order
to exclude paths which start and end in the outskirts of the city (where there are
few to no POIs). Figure 4.4 ((a), (c)) show the in�uence of the weight scaling factor
Wi,j on ER for the datasets of Paris and New York respectively. As we increase
Wi,j, we observe an increase of ER for all four cases in comparison to Dij-G in both
datasets. For the Paris dataset, the increase in ER is in the range of 80% to 250%
for the Dij-G∗ and Dij-G∗∗, with the latter performing better, and in the range of
250% to 620% for Dij-H∗ and Dij-H∗∗ with the latter performing better. For the
New York dataset, the increase in ER is in the range of 20% to 80% for the Dij-G∗

and Dij-G∗∗ , with the latter performing better, and in the range of 80% to 150%
for Dij-H∗ and Dij-H∗∗ , with the latter performing better.

Moreover, the �rst column of Figure 4.5 and Figure 4.6 ((a), (c)) shows the
in�uence of weight scaling factor Wi,j on distance and popularity. As we increase
Wi,j from 0.2 to 1.0, we observe an increase of distance and popularity for both all
cases in comparison to Dij-G in both datasets. The increase among all datasets, in
terms of path length is in the range of 3% to 16% for Dij-G∗ and Dij-G∗∗ , and in the
range of 7% to 38% for Dij-H∗ and Dij-H∗∗. Additionally, the increase in popularity
is in the range of 30% to 120% for Dij-G∗ and Dij-G∗∗, and in the range of 40% to
160% for Dij-H∗and Dij-H∗∗.

It is clear that Dij-G∗ and Dij-G∗∗always perform better than Dij-H∗ and Dij-
H∗∗ in terms of path length increase, but Dij-H∗ and Dij-H∗∗ perform always better
in terms of ER and popularity. This is because Dij-H∗ and Dij-H∗∗route directly
through the POIs, causing greater detours, but passing along highly weighted parts
of the enriched graphs (G∗ or G∗∗), which mostly coincide with dense Flickr regions.
Moreover, it is clear that S-enrich always performs better than D-enrich, in terms of
ER and popularity with a very short increase, of about 2− 3% in path length. This
validates that skyline enrichment provides competitive paths in terms of distance
(minor increase) and popularity (signi�cant increase).
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Figure 4.4: (a), (b) show ER increase for algorithms Dij-G∗ and Dij-H∗for Paris dataset
for Settings i and ii respectively. (c), (d) show ER increase for algorithms Dij-G∗ and

Dij-H∗for New York dataset for Settings i and ii respectively.

Continuing, in Setting (ii) we vary the distance of start and target relative to
the extent of the whole network. We consider �ve di�erent distance brackets of
shortest path in the original graph G, the �rst one ranging from 10% to 20%, the
last one ranging from 50% to 60% of the extent of the whole network. For 100
randomly chosen pairs of start and target nodes (within the respective distance
bracket) paths with Dij-G , Dij-G∗ , Dij-G∗∗ , Dij-H∗ and Dij-H∗∗ are computed. As
before, for each pair the di�erence w.r.t. ER, distance and popularity is computed
and averaged out over all pairs. Figure 4.4 ((b), (d)) show the increase of ER as
we proceed through the distance brackets for both datasets. The second column
of Figure 4.5 and Figure 4.6 ((b), (d)) show the results in terms of distance and
popularity increase. As we proceed through the distance brackets, we observe an
increase of the distance and popularity for all cases in comparison to Dij-G in both
datasets. The increase among all datasets, in terms of path length, is in the range
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Figure 4.5: (a), (c) show Distance and Flickr popularity increase for algorithms Dij-G∗

and Dij-H∗ for Paris dataset for experimental Setting i. (b), (d) show Distance and Flickr

popularity increase for algorithms Dij-G∗ and Dij-H∗ for Paris dataset for experimental

Setting ii.

of 3% to 18% for Dij-G∗ and Dij-G∗∗, and in the range of 5% to 30% for Dij-H∗ and
Dij-H∗∗. Finally, the increase in terms of popularity is in the range of 10% to 70% for
Dij-G∗ and Dij-G∗∗, and in the range of 30% to 140% for Dij-H∗ and Dij-H∗∗. As in
our previous experimental setting, it is clear that Dij-G∗ and Dij-H∗ always perform
slightly better (only 2-3%) in terms of path length increase, while Dij-G∗∗and Dij-H∗

always outperform Dij-G∗ and Dij-H∗in terms of enrichment ratio and popularity.
This underlines the validaty of S-enrich, as it provides signi�cantly more popular
paths while only incurring minor detours (2− 3% in terms of path length).

Here, we may conclude that both D-enrich and S-enrich approaches show con-
vincing results.Both cases yield signi�cant increase in terms of ER as well as in
terms of the independent Flickr-based measure popularity, while increasing path
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Figure 4.6: (a), (c) show Distance and Flickr popularity increase for algorithms Dij-

G∗ and Dij-H∗ for New York dataset for experimental Setting i. (b), (d) show Distance

and Flickr popularity increase for algorithms Dij-G∗ and Dij-H∗ for New York dataset for

experimental Setting ii.

length only slightly. In the best case, ER increase amounts to almost 700% while
popularity increase amounts to almost 160% increase (in comparison to the con-
ventional shortest paths, as computed by Dij-G ), while the worst case increase in
path length is about 38% with most cases being less than 10%. Overall, D-enrich
works slightly (2-3%) better in terms of path length while the S-enrich is always
signi�cantly better (more than 10% in most of the cases) in terms of popularity
scores. Consequently, we can claim that spatial relations, extracted from crowd-
sourced information, can indeed be used to enrich actual road networks and de�ne
an alternative kind of routing which re�ects what people perceive as �close�.

Finally, Figure 4.7 illustrates the trade-o� (mean distance and popularity in-
crease overall experiments) that we take by deviating from the shortest path in



(a) Setting i

(b) Setting ii

Figure 4.7: Trade-o� between distance and popularity increase of paths.

order to obtain more interesting paths. This �gure shows the relative increase in
distance and popularity of the paths returned by our proposed approaches, com-
pared to the baseline approach Dij-G. Here, we use letter D to refer to the distance
increase while we use letter P to refer to popularity increase. For both datasets, we
can observe that by road network enrichment we can obtain a signi�cant increase in
popularity of up to 120% for the meager price of no more than 25% additional dis-
tance incurred in both experimental settings. With the proposed S-enrich approach
we achieve to signi�cantly increase popularity while keeping the distance increase
almost in the same levels with the D-enrich approach.



4.6 Demonstrations

In this part of the dissertation, we present two systems that compute popular paths
based on the previously explained algorithms. Both of them use variations of the
enrichment approaches presented before while in the same time they combine sev-
eral kinds of user generated content during path computation. Both approaches
are mainly based on skyline path computation and implemented under the Mario
framework (c.f. [GKRS]).

4.6.1 A Framework for Computation of Popular Paths from
Crowdsourced Data

Directions and paths, as commonly provided by route guidance systems, are usually
derived considering absolute metrics, e.g., �nding the shortest path within the un-
derlying road network. This demo presents a framework which uses crowdsourced
geospatial data to obtain paths that do not only minimize travel time but also guide
users along popular points of interest (POIs). By analyzing textual travel blog data
and Flickr data, we de�ne a measure for popularity of POIs. This measure is used
as an additional cost criterion in the underlying road network graph. Furthermore,
we propose an approach to reduce the problem of �nding paths which maximize
popularity while minimizing travel time to the computation of bicriterion pareto
optimal paths. The presented framework allows users to specify origin and destina-
tion within a road network, returning the set of pareto optimal paths or a subset
thereof if a desired number of POIs along the path has been speci�ed. Each of
the returned routes is enriched with representative Flickr images and textual infor-
mation from travel blogs. The framework and its results show that the computed
paths yield competitive solutions in terms of travel time while also providing more
�popular� paths, making routing easier and more informative for the user.

4.6.1.1 Preliminaries

User-generated content has bene�ted many scienti�c disciplines by providing a
wealth of new data. The proliferation of smartphones and GPS receivers has facili-
tated contributing to the plethora of available information. OpenStreetMap (OSM)
constitutes the standard example in the area of volunteered geographic information.
Authoring geospatial information typically implies coordinate-based, quantitative
data. Contributing quantitative data requires specialized applications (often part of
social media platforms) and/or specialized knowledge, as is the case with OSM.

The majority of users contributing content, however, are much more comfortable
using qualitative information. People usually do not use geographical coordinates
to describe their favorite places or their spatial motion. Instead, it is more com-
mon for people to rely on adjectives (such as �great� or �cool�) to describe their
liking relative to certain points of interest (POIs). Hence, there is an abundance
of largely unused geospatial information (freely) available on the internet, e.g., in
travel blogs. In contrast to quantitative information, which is mathematically mea-
surable (although sometimes �awed by measurement errors), qualitative information
is based on personal cognition. Therefore, accumulated and processed qualitative
information may better represent the human way of thinking and feeling.



This is of particular interest when considering the routing problem, i.e., compu-
tation of paths in road networks. Traditional routing algorithms only take the struc-
ture of the underlying road network into account, for instance, in order to compute
shortest or fastest paths, i.e., optimizing w.r.t. inherently quantitative measures.
However, in real life, users may be willing to �nd a trade-o� between quantitative
measures and qualitative bene�t. For example:

• a tourist may be willing to take a detour in order to maximize the number and
popularity of POIs on their way to the hotel,

• a commuter driving to work may prefer a slight detour if it yields a signi�cantly
nicer route,

• a dog walker might want to avoid busy and big roads altogether and favor
recreational walks along landmarks and parks.

There is some existing work in this �eld, although most papers focus on providing
paths which are easier to memorize, describe, and follow. For example, the authors of
[SB13], [DK], and [WR11] try to tackle the problem by introducing cost criteria that
allow for a trade-o� between minimizing the length of a path while also minimizing
the complexity in terms of instructions or turns along the path. The approach most
similar to the one presented in this work is [QSA], which proposes a method for
computing beautiful paths, as the authors phrase it. However, in order to quantify
quality, the authors rely on explicit statements about the beauty of speci�c locations,
obtained from a platform which collects user opinions on photos of speci�c locations.
In contrast, we propose to mine this kind of information from crowdsourced data.
This approach has the crucial advantage that it is scalable as the used information
is already available. Having local expert users rate photos one by one, however, can
hardly be extended to a global scale.

There are two general problems concerning the computation of qualitative paths.
First, quality is not easily quanti�ed. Second, the trade-o� between quantitative
measure and qualitative bene�t is subjective and unknown to the framework. This
work attempts to close this gap, by quantifying the quality of a POI by mining
crowdsourced (or user-generated) data, yielding a popularity estimation. This esti-
mation is then applied to the underlying road network as an additional cost crite-
rion. Consequently, we obtain a multicriterion graph representing a road network
(although for reasons of simplicity we focus on the bicriterion case in our demonstra-
tion). Given user input of start and target within the road network, we incorporate
state-of-the-art algorithms ([SJSK], [KRS]) to e�ciently compute all pareto optimal
paths. Thus, the framework returns all paths between start and target which are
optimal under some monotonic function, i.e., the results generated by our frame-
work re�ect all practical user preferences. These routes are furthermore enhanced
by images and text. The data �ow is illustrated in Figure 4.8.

The challenge of this work is to extract the crowdsourced information (from
di�erent sources) and use it to enrich an existing road network. This enriched
road network is subsequently used to provide paths that satisfy the claim of high
popularity (formally introduced in the next Section) while only incurring minor
additional travel time.



Figure 4.8: Data �ow chart of the framework, illustrating the data sources as well as the

data processing.

4.6.1.2 Contribution

In this section we describe the di�erent steps for enriching a road network with
crowdsourced geospatial information. First, we describe the sources of information
and the respective extraction process. Next, we describe our approach to quantify-
ing quality, i.e., the explicit computation of our measure for popularity estimation.
Finally, we discuss our computational methods for path skylines.

4.6.1.3 Quantifying Popularity of Points of Interest

In this work, again we choose travel blogs and image datasets as a rich source
for crowdsourced geospatial data. This selection is based on the fact that people
tend to describe, mention, and photograph POIs that they like or �nd particularly
interesting.

4.6.1.4 Extracting Popularity Information from Text

In a travel blog, tourists express their experiences in relation to journeys taken and
places visited. Therefore, places are often associated with qualitative adjectives
such as �beatiful�,�interesting�, and �cool�. To gather such data, we use classical
web-crawling techniques and compile a database consisting of 250,000 texts, ob-
tained from travel blogs as presented in [SSJ+]. Extracting qualitative information
from text involves the detection of POIs which are mentioned in positive context.
The employed approach involves geoparsing, i.e., the detection of candidate phrases
containing references to POIs, geocoding, i.e., linking the POIs to geo-coordinates,
and sentiment analysis, i.e., the evaluation of such phrases w.r.t. their connotation.
Using the Natural Language Processing Toolkit (NLTK), a leading platform for an-
alyzing raw natural language data, we managed to extract 500,000 POIs from the
text corpus.



For geocoding, we rely on the GeoNames2 geographical gazetteer database which
contains over eight million POI names and their coordinates worldwide. Whenever
possible, POIs extracted from the text corpus are mapped onto geo coordinates.
This procedure was successful for 96% of the POIs.

Having identi�ed and geocoded the POIs, the next step is determining the POIs
mentioned in positive context. Sentiment analysis, also referred to as opinion mining,
is a Natural Language Processing (NLP) problem, which has been thouroughly
studied [LB02]; existing tools perform well on any kind of data. For a given POI
p and every phrase mentioning p, the NLTK sentiment analysis provides a score
from 0 to 1, re�ecting negative to positive context. These scores are then averaged,
providing a travel blog popularity score txt(p) ∈ [0, 1] for every POI p.

4.6.1.5 Extracting Popularity Information from Images

For Flickr image data, we use the geotagged dataset provided by the authors in
[MSWHD] and employ a straightforward popularity estimation approach. We as-
sume a linear correlation between the number of Flickr images in the vicinity of a
POI and its popularity within the Flickr community, and we assume this popularity
to be an estimation of its general popularity. Thus, for each POI, we aggregate
the number of Flickr images within an ε-range (we use ε = 100m and Euclidean
distance) of the POI. Let np denote the number of Flickr images in the ε-range of
POI p, and let N := maxnp denote the maximum number Flickr images associated
with any POI. Then im(p) := np/N ∈ [0, 1] de�nes the image popularity score.

4.6.1.6 Popularity Graph Enrichment

In a next step, we want to enrich the underlying road network with a combination
of both popularity scores. We investigated several strategies and decided upon a
compromise between simplicity and e�ectiveness. Remember that we are interested
in paths which provide a trade-o� between a quantitative measure (in this case,
travel time) and popularity scores. The main challenge is the fact that popularity
is a gain, not a cost. Thus, naïve path �nding algorithms, which are designed to
minimize cost criteria, are not applicable. The �most popular� path would be the
solution to the Traveling Salesman Problem among all POIs with a popularity gain
> 0. Therefore, rather than considering vertex-associated gain, we transform the
score values into edge-associated costs. We now describe this procedure in detail.

Let G = (V,E, t) denote the graph representing the underlying road network,
i.e., the vertices v ∈ V correspond to crossroads, dead ends, etc., the edges E 3
e = (u, v) ∈ V × V represent roads connecting distinct vertices. Furthermore, let
t : E → R+

0 denote the function which maps every edge onto its travel time. We refer
to the graph G as road network graph. A set of consecutive, acyclic, and mutually
di�erent edges is referred to as a path. Obviously, the function t naturally extends to
any path r, as t(r) is de�ned as the summed travel time of its edges. Note that our
framework and its theoretical background may equally be applied to any other cost
criteria (and combinations thereof). However, for reasons of simplicity, we restrict
ourselves to travel time as it is probably the most essential criterion for inner city
travel.

2http://www.geonames.org/



Let P denote the set of all POIs. We assume that P ⊆ V , i.e., each POI is also
a vertex in the graph. This assumption comes without loss of generality, as we can
easily map each POI to the nearest node of the graph or introduce pseudo-nodes.
Also, let p̂(v) := τ · im(v) + (1− τ) · txt(v) denote the popularity score for a vertex
v ∈ V . p̂(v) is zero if v is not a POI.

Now, we transform this vertex-associated gain into an edge-associated cost. For
each edge (u, v) = e ∈ E, we de�ne the popularity cost p(e) as follows

p(e) := φ(p̂(u)+p̂(v))/t(e)

where φ ∈]0, 1[ is a scaling parameter. Intuitively, p(e) equals 1, if e connects two
vertices u and v with popularity score 0. For high popularity scores per distance
of e, p(e) approaches 0. Also, p(e) considers the travel time of edge e, such that
edges with high travel time require a higher popularity score to maintain the same
p(e). If a given road network graph G is enriched with a popularity cost criterion
p, we refer to G′ = (V,E, t, p) as the enriched (road network) graph. Thus, in an
enriched graph, every path r is assigned a two-dimensional cost vector, (t(r), p(r))
comprising the summed travel time and popularity costs of its edges.

4.6.1.7 Bi-Attribute Skyline Computation

As motivated in the introduction, di�erent users may have di�erent prioritization
of the given cost criteria. In our case, depending on the type of user (e.g., tourist,
dog walker, commuter), travel time is weighed against estimated popularity. Thus,
we argue that without any speci�c knowledge of a user's preferences, we cannot
guarantee any path to be optimal to the user. Therefore, we propose to return a set
of alternative paths to the user, such that each alternative is pareto optimal w.r.t.
to the quantitative and qualitative measures.

Given start and target nodes s, t ∈ V in an enriched road network graph, the set of
pareto optimal paths consists of all paths r between s and t which are non-dominated
in the following sense: For each r there exists no other path r′ (between s and t) with
lower travel time and lower popularity cost, i.e., @ r′ : t(r′) < t(r) ∧ p(r′) < p(r).

This de�nition is, of course, a special case of the general de�nition of multi-
criterion pareto optimality. To �nd all Pareto Optimal Popular Paths, we use the
framwork for Multi-Attribute Routing in OpenStreetMap (MARiO) [GKRS], where
the popularity cost, as de�ned above, is incorporated as a new cost criterion.

4.6.1.8 k-Constrained Pareto Optimal Popular Paths

A problem with pareto optimal path computation is the often extensive number of
results. Especially in inner city road networks, there exist an abundance of di�erent
routing possibilities, each resulting in a slightly di�erent cost vector. As the number
of pareto optimal paths is generally unrestricted, we propose to limit the result set
in order to improve usability. Also, the POIs along a path may be interpreted as
path descriptors. Therefore, it may be of interest to the user to explicitly specify
the number of �popular waypoints� along their desired path. Hence, we introduce
the k-constrained pareto optimal popular paths. Choosing an appropriate k for a
speci�c search task depends on the distance of start and target. Experimentally,
a value between 3 and 6 has proven reasonable. [k-Constrained (Pareto Optimal)



Popular Paths] Given an integer k as well as start and target nodes s, t ∈ V an
enriched road network graph, the set of k-constrained pareto optimal popular paths
consists of all popular paths that visit at least k POIs. If a path encounters more
than k POIs, it is easy to determine the k most popular POIs (simply by comparing
scores). Thus, a path which �ts the desired parameter is obtained and returned
to the user. Concludingly, by returning the k-constrained pareto optimal popular
paths, we provide the user with a selection of non-dominated paths which typically
encounter highly signi�cant POIs within the respective query city.

The demonstrated framework enables users to validate that the notion of popu-
larity de�ned in this paper indeed coincides with the general intuition. The result
paths returned to the user yield competitive solutions in terms of travel time while
passing POIs perceived as signi�cant, appealing, and/or recognizable. Hence, we
solve the proclaimed task of providing �more popular� paths to the user. The two
supported query types are described in Section 4.6.1.9. For both queries, the result
paths are presented as a list, each with its associated costs, as well as visualized on
a map relying on Google Maps. When selecting a path, the user is provided with a),
selected images associated with POIs on the respective path, and b), selected travel
blog entries referring to POIs on the respective path. Of course, the availibility
of such images and text is dependent on the crowdsourced data and can therefore
not be guaranteed. Some features of our framework are shown in Figure 4.10. Fig-
ure 4.6.2.4 depicts the main view of the framework which allows one to browse the
pareto optimal bicriterion paths w.r.t. user-speci�ed start and target nodes. The
lower left corner shows a visualization of these paths, the so-called path skyline,
where each path is represented by its two-dimensional cost vector. The list on the
left allows to select a speci�c path which is then displayed on the map with a list
of its respective POIs, as in Figure 4.6.2.4. As mentioned before, for each POI,
additional information can be displayed. Figure 4.6.2.4 shows this information for
the famous brewery Hofbräuhaus in Munich, Germany.

4.6.1.9 Supported Queries

Our framework supports two di�erent queries. The main task featured in the demon-
stration is the popular path query : Given start and target locations within a road
network, our framework provides the user with the set of pareto optimal paths w.r.t.
to travel time and the popularity cost. The second query allows to constrain the
number of desired POIs along the path, the k-constrained popular path query. It
returns all pareto optimal paths which visit at least k POIs and presents their k
most popular POIs to the user. Obviously, the result set of a k-constrained popular
path query is a subset of the result set of a popular path query with the same input.
Note, however, that while the popular path query always returns at least one result,
the same does not hold for the k-constrained query.

4.6.1.10 Extendability

The developed framework has been built to allow easy extension and further imple-
mentation, for instance: (i) Other geospatial sources of crowdsourced data in order
to measure the popularity of a POI, such as social check-in data, trajectory data, or
other sources of textual data such as news articles can easily be incorporated. Cur-
rently, Flickr image data und textual travel blogs are supported. (ii) Further scoring



(a) Illustration of a Bicriterion Path Skyline

(b) Detailed Path Information

(c) Detailed POI Information

Figure 4.9: Functionality of the presented framework.

functions which map additional data to popularity scores can be added and the ex-
isting may be replaced. Currently, the functions presented in Section 4.6.1.4 and



Section 4.6.1.5 are used. (iii) The graph enrichment function which maps scores
of POIs to edge-associated costs is easily interchangeable. Currently, the enrich-
ment function of Section 4.6.1.6 is used. (iv) Di�erent path skyline computation
algorithms may be incorporated. Currently, the framework relies on algorithms
implemented in the the MARiO framework [GKRS].

4.6.2 Tourismo: User Preference Driven Touristic (Trip) Search
Engine

In this demonstration we re-visit the problem of �nding an optimal route from loca-
tion A to B. Currently, navigation systems compute shortest, fastest, most economic
routes or any combination thereof. More often than not users want to consider �soft�
qualitative metrics such as popularity, scenic value, and general appeal of a route.
Routing algorithms have not (yet) been able to appreciate, measure, and evaluate
such qualitative measures. Given the emergence of user-generated content, data ex-
ists that records user preference. This work exploits user-generated data, including
image data, text data and trajectory data, to estimate the attractiveness of parts of
the spatial network in relation to a particular user. We enrich the spatial network
dataset by quantitative scores re�ecting qualitative attractiveness. These scores are
derived from a user-speci�c self-assessment (�On vacation I am interested in: fam-
ily entertainment, cultural activities, exotic food�) and the selection of a respective
subset of existing POIs. Using the enriched network, our demonstrator allows to
perform a bicriterion optimal path search, which optimizes both travel time as well
as the attractiveness of the route. Users will be able to choose from a whole skyline
of alternative routes based on their preference. A chosen route will also be illustrated
using user-generated data, such as images, textual narrative, and trajectories, i.e.,
data that showcase attractiveness and hopefully lead to a perfect trip.

4.6.2.1 Preliminaries

Nowadays, social networks are a great source of rich geo-spatial data. Almost every
social network allows users to incorporate geo-social features into their data stream.
The di�erent features include, amongst others, geo-tagged pictures (e.g. Flickr),
geo-descriptive text (e.g. travel blogs), and tracked movement (e.g., runners' tra-
jectories). For this demo, we rely on all these kinds of user-generated data to de�ne
attractiveness on a real world road network. Our aim is to re�ect human fondness
according to the crowd by using qualitative information and making it measurable.
We present Tourismo, a tourist search engine, which computes attractive paths along
points of interest (POIs), tailored to the interest of the user issuing the query. Based
on this enriched spatial network, which has information about the attractiveness of
locations, we aim at answering attractive path queries. Currently, navigation sys-
tems, i.e., machines, perform this task for us, computing routes such as the shortest
route, the fastest route, the most economic route [AJTY13], or some combination
of such quantitative measure on a spatial network [GKRS]. In all of these cases, the
employed algorithms optimize cost measures inherent in the underlying road net-
work. What is rarely re�ected, however, is user preference on subjective measures,
such as attractiveness and interestingness of a route. Often users are willing to take a
suboptimal detour, a deviation from quantitative optimality (shortest, fastest, etc.),



in order to improve the quality of their route. In order to see more attractions, for
instance, a tourist may be willing to take a moderate detour from a fast, but not
very attractive, highway.

How can we measure a subjective concept of �quality�? How to measure at-
tractive, scenic, recreative routes? As machines are not (yet) capable to re�ect
this concept, we rely on the crowd to answer this question, i.e., we propose to use
crowdsourced data to estimate the attractiveness of an area. Relying on di�erent
datasets, image data (from Flickr3), textual narratives (from travel blogs), and tra-
jectory data (from Endomondo 4), we investigate the applicability of di�erent data
sources as cost measures for the underlying road network. More precisely, we enrich
the road network by quantitative scores of qualitative statements as follows:
• areas having a large density of Flickr images indicate a particularly attractive
area, increasing the attractiveness score;

• locations mentioned in the positive context of travel blogs increase attractive-
ness scores;

• routes commonly used by other users are also considered more attractive.
Furthermore, we incorporate meta-information from OpenStreetMap5, in or-

der to categorize POIs and, using the aforementioned popoularity score, propose
routes according to the user's preferences and the fondness of the crowd. Tourismo
presents solutions to enrich the underlying road network using the aforementioned
data sources. We show an initial approach to map these attractiveness scores to a
cost measure, which allows one to apply existing routing algorithms which aim at
minimizing edge-labeled cost metrics. We apply an adapted algorithm for bicriterion
pareto-optimal route search, to �nd paths which are optimal in both travel time and
attractiveness. Our framework allows to specify origin and destination, computes
and displays the skyline of pareto-optimal paths. Furthermore, the reasons for at-
tractiveness of each path are illustrated: Flickr images along the way, travel blog
entries mentioning locations on the way, and historical trajectories which share the
same route. Our demonstrator, which we would like to present to the community at
SSTD'15, is an extension of a demonstrator that we recently presented at ICDE'15
[JFS+15].6 The new demonstrator has two major features: First, our demonstration
allows to specify the interest of a user, thus allowing to return routes that contain
POIs which are of particular interest to the user issuing the query. Second, this
version allows to consider a third type of data to enrich the underlying road net-
work with attractiveness information: In addition to geotagged images, and texts
containing geospatial references, we allow to learn attractiveness from an existing
base of historic trajectory data.

4.6.2.2 State of the Art

Recently, a lot of interesting research has been done in the context of �nding scenic,
interesting or popular routes. The �rst set of related work focuses on providing

3www.�ickr.com
4www.endomondo.com
5www.openstreetmap.org
6Since the ICDE proceedings are not publicly accessible at this time, we have attached the

demonstration proposal at the end of this submission. Clearly, this footnote and the attached
paper will be removed for a potential camera ready.



paths which are easier to memorize, describe, and follow. For example, the authors
of [SB13], [DK], and [WR11] try to tackle the problem by introducing cost criteria
that allow for a trade-o� between minimizing the length of a path while also mini-
mizing the complexity in terms of instructions or turns along the path. Furthermore,
an existing research direction covers the problem of de�ning tourist routes, which
maximize the subset of a set of pre-de�ned POIs which can be visited in a tourist
tour that has a time-constraint [GAL+10, GKMP14]. In these works, the set of in-
teresting POIs is given, and the main conceptual contribution of is to automatically
extract interesting locations, as well as a quantitative estimate of the popularity of
this location from a variety of data sources.

The approach most similar to the one presented in this work is [QSA], which
proposes a method for computing beautiful paths, as the authors phrase it. However,
in order to quantify quality, the authors rely on explicit statements about the beauty
of speci�c locations, obtained from a crowd-sourcing platform which collects user
opinions on photos of speci�c locations. In contrast, we propose to mine this kind of
information from existing crowd-sourced data, which does not require any monetary
investment to aquire. Thus our approach has the crucial advantage that it is scalable
as the used data is already available globally available, while having local expert
users rate photos one by one can hardly be extended to a global scale.

Another important research direction is the stitching existing trajectories in or-
der to obtain new trajectories which guarantee that each sub-trajectory is used by
other users, and is thus, �popular� following the de�nition [CSZ11] of Chen et al.
This, however, only re�ects a notion common usage, not taking into account, why a
speci�c sub-trajectory has been favored. For instance, when mining trajectories of
commuters, the fastest path is most likely to be chosen by most users. Hence, we
propose mining trajectories speci�c to recreational use and merging this information
with the attractiveness scores we derive from other user-generated data sources.

4.6.2.3 Features

The main feature of this demonstrator is the estimation of attractiveness from text,
image, and trajectory data. Details covering text and image data can be found
in [JFS+15]. In this section, we brie�y describe how we enrich the underlying road
network using historical trajectory data. For our demonstrator, we use trajectories of
walkers, runners and bikers that have uploaded their workouts to Endomondo. Our
dataset contains eight million trajectories, which are located all around the world,
but have a strong regional focus in Northern Europe. To match each of the GPS
trajectories, we apply state-of-the-art map matching techniques, similar to those
presented in [NK09]. In a �rst step, we perform a basic enrichment: For each edge
e of the spatial network, we count the number tra(e) of historical trajectories that
contain this edge. This count can be used as an indication of attractiveness of an
edge, following the assumption that runners are, in average, more likely to choose
a particularly nice running trail. As mentioned before, following the techniques
proposed in [JFS+15], we obtain a road network having a attractiveness score derived
from Flickr image data and travel blog text data. On top of that, we add the
trajectory attractiveness tra(e), by introducing a new user-speci�c weighting factor
which is omitted here for reasons of brevity. Relying on the enriched road network,
Tourismo supports bicriterion pareto-optimal path queries.

Additionally, Tourismo features category-speci�c path queries. If the user chooses



to specify his personal touristic interests, they can choose one or more options
from a list containing outdoor activities, cultural sightseeing, culinary interest, and
more. In order to provide paths which ful�ll these requirements, we mine the meta-
information provided by OSM. Thanks to a very active community, OSM data con-
tains well-tended information about POIs, that is named, categorized, and subcate-
gorized. For instance, the meta-categories �food� and �tourist� contain subcategories
�bar�, �restaurant�, �fastfood� and �monument�, �museum�, �archeological�, respec-
tively. Mapping these categories onto the options of user-preferences, we are able to
�lter POIs which correlate to the particular interest of the user. When querying a
route with a speci�c set of interests, the user is provided a number of pareto-optimal
paths, guiding him along POIs tailored to his preference.

4.6.2.4 Framework Description

The demonstrated framework allows users to validate that the notion of attractive-
ness de�ned in this paper indeed coincides with the general intuition. The result
paths returned to the user yield competitive solutions in terms of travel time while
passing POIs perceived as signi�cant, appealing, and/or recognizable. Hence, we
solve the proclaimed task of providing �more attractive� paths to the user. Using
OpenStreetMap as a road network, our demonstrator visualizes a map relying on
Google Maps. Upon selecting an origin and a destination location on the map, the
user is presented with the skyline view as shown in Figure 4.10 (a). In this view, the
route skyline is presented to the user, i.e., the set of routes which are pareto-optimal
in terms of both popularity and travel time. For each such route, the corresponding
travel times are shown in a table in the lower left corner of Figure 4.10 (a). These
routes are sorted by both popularity and travel time, which is equivalent by de�ni-
tion of pareto-optimality, i.e., there exists no two routes A, B in the route skyline
such that A is both faster and more popular than B. Using this table, the user can
select a route which corresponds to the user's preference between travel time and
popularity, yielding the route view shown in Figure 4.10 (b). For the selected route
A, this view shows the most popular points of interest on A.

Once a point of interest is selected, the sources of popularity of this POI are
shown as in Figure 4.10 (c). For this purpose, Figure 4.10 (c) shows all the pictures
relevant for the selected POI, i.e., the set of images having a su�ciently low distance.
The bottom-left corner shows all travel blog entries where this entry was mentioned
in a positive context. Finally, the lower left corner shows a heatmap derived from
all trajectories that share the same trajectory. During the demonstration, users will
be able to specify start and target locations (and, if desired, speci�c categories of
interest) on the presented web interface, e.g., their home and their o�ce. Upon
being presented with the popular path skyline, the users may browse di�erent paths
and inspect the POIs as well as the additional crowd-sourced information, including
the images of PoIs on the route, travel blog entries mentioning POIs on the route,
and a heat-map of trajectories covering the route.



(a) Bicriterion Path Skyline

(b) Detailed Path Information

(c) Detailed information about selected PoI

Figure 4.10: Functionality of the presented framework.





Chapter 5

Mining GPS Data

5.1 Non-Continuous Monitoring of KNN Trajecto-

ries

Nowadays, massive amounts of tracking data for various types of moving objects,
including vehicles, humans and animals, are becoming available. Analyzing this type
of spatio-temporal data is crucial for discovering movement patterns, understanding
and forecasting behaviors, and developing novel applications and services. One
problem of particular interest is �nding objects that move close together with a
certain object during some periods of time. In this part of the disseration, we focus
on �nding the k-nearest moving neighbors for a given query object and time interval.
We formulate the problem, using a similarity function that takes into consideration
both the proximity and the direction of the trajectories, and we �rstly present an
exact algorithm. Then, we focus on approximate algorithms in order to reduce the
execution time, investigating two directions. The �rst employs line simpli�cation
to approximate the compared trajectories, thus reducing the calculations needed to
identify the nearest neighbors. The second relies on estimates of prior probabilities
derived from trajectory distributions and attempts to achieve a faster approximation
of the k-nearest neighbors. A detailed experimental evaluation of the aforementioned
algorithms on three real-world datasets is �nally presented in order to verify their
e�ciency and accuracy.

5.1.1 Preliminaries

During the last years there has been a notable increase in the popularity and perva-
siveness of positioning technologies (GPS-equipped devices, GSM localization, Wi-
Fi, Bluetooth, RFID, etc.). This has made possible the collection of massive amounts
of tracking data for various types of moving objects, including vehicles, humans and
animals. Analyzing this kind of spatio-temporal data enables the discovery of useful
movement patterns, which makes possible to understand and forecast behaviors and
to develop novel applications and services.

To this direction, a lot of e�orts have focused on mining moving object trajec-
tories [GLW08]. Of particular interest is the task of �nding objects that move close
together in both space and time. This is usually addressed by searching for clus-
ters of objects that move together for su�ciently long periods of time. Di�erent
variations, such as �ocks [GvK06b, VBT09a], convoys [JYZ+08a, JSZ08], moving
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clusters [KMB05a, WLH06] and swarms [LDHK10a], have been studied. Their dif-
ferences lie on how the clusters are de�ned and on whether the objects stay together
for consecutive time periods. Other works have focused on mining hidden periodic
patterns in the movement behavior of objects [CMC07, LDH+10], detecting interac-
tions (e.g., an object following another) [GLW08, AGLW08], �nding outliers [LHL08]
or making predictions [MPTG09].

In this part of the disseration, we are interested in �nding the nearest objects that
move close together with a given query object, within a query time window. The
query object may be an actual moving object among those in the dataset or a virtual
object describing a desired movement. The former case is useful, for example, for
characterizing and classifying the behavior of the query object based on the type of
its identi�ed closest neighbors or for using these neighbors to make predictions and
recommendations. In the latter case, one could specify a movement of interest and
then search for those objects that most closely resemble it. Potential applications
include recommending sites and events to travelers with similar behavior, tracing
the spread of an infectious disease in �ocks of animals, etc.

Existing approaches in the literature for k-nearest neighbor or similar types of
queries on moving objects, typically focus on the continuous case (e.g., [GBX10a,
GLC+07b, GLC+07a]). These queries maintain, for each time point in the query
interval, the set of k-nearest neighbors to the query object, which may be either
static or also moving. However, this level of granularity is often too �ne-grained.
Indeed, if the k-nearest neighbors of the query object change very frequently, this
results in a high number of objects that need to be monitored. Hence, a subsequent
mining step is then needed to identify the truly interesting ones among them. Here,
we focus on the non-continuous case. The query is executed once for the given time
interval and it returns an overall set of k-nearest neighbors for the whole duration
speci�ed.

The movement of an object is tracked by recording its location at various points
in time. The trajectory of the object is then constructed by means of (typically
linear) interpolation between the recorded positions, resulting in a series of line
segments. Comparing two objects is done by comparing their traversed line segments
along the time dimension. Considering the whole segments, instead of simply their
endpoints, captures the objects' movement more accurately as it takes direction also
into account.

Performing an exhaustive search to �nd the k-nearest neighbors of the query
object in the requested time window is not e�cient. In this part of the dissera-
tion, we �rstly describe an optimized exact algorithm that speeds up the search by
maintaining a priority queue. This restricts the examination to the most promising
candidates, allowing the search to terminate earlier. Then, we turn to approximate
algorithms, investigating two directions. The �rst relies on a line simpli�cation al-
gorithm to approximate each trajectory with just a few line segments, reducing the
number of calculations. The second pre-computes probability density functions of
trajectory line segments and utilizes them to estimate, at query time, prior proba-
bilities of moving objects being close to the query point.

The main contributions of this part of the disseration are summarized below.

• We formulate the problem of �nding the k-nearest moving neighbors of a
moving query point within a given time interval.



• We present an exact algorithm using a priority queue to compute the k-NNs
more e�ciently and progressively.

• We combine the exact algorithm with a line simpli�cation process to allow for
faster computation of an approximate set of k-NNs.

• We derive a second approximate algorithm by incorporating the estimation
of prior probabilities of trajectory line segments being close to the respective
query line segments. This provides an alternative method for accelerating the
identi�cation of the k-NNs.

• We conduct a detailed experimental evaluation of the proposed algorithms to
test both their e�ciency and accuracy on real-world trajectory datasets.

5.1.2 Related Work

In the following, we review related work on trajectory similarity, moving object
clusters, and k-nearest neighbor queries on moving objects.

5.1.2.1 Trajectory Similarity

Many approaches for de�ning similarity measures for trajectories are derived from
corresponding techniques in time series analysis or from the concept of edit distance.
Dynamic Time Warping (DTW) [BC96] is a method for �nding the optimal match
between two sequences with potentially di�erent length. A similarity function based
on the notion of the Longest Common Subsequence (LCSS), a variation of the edit
distance, is proposed in [VGK02b]. The basic idea is to match two sequences by
allowing them to stretch, without rearranging the sequence of the elements but
allowing some elements to be unmatched. The Edit Distance on Real sequence
(EDR) [CÖO05a] measures the similarity between two trajectories also based on
edit distance on strings. It quantizes the distance between a pair of elements to
two values to reduce noise e�ects, and it then seeks the minimum number of edit
operations required to change one trajectory to another. These approaches aim at
providing a higher degree of �exibility, e.g. to cope with varying length and speed
or unmatched parts, which however is not the goal in our case.

Most typical approaches model trajectories as sequences of line segments, ignor-
ing the time dimension, and compare them based on their shape. Such shape-based
similarity queries for trajectory databases have been studied in [YAS03a]. Trajec-
tories are modeled as directed lines in space, and their similarity is de�ned as the
Euclidean distance between directed discrete lines. One Way Distance [LS08] also
compares the spatial shapes of trajectories without taking time information into ac-
count. A trajectory is represented as a sequence of line segments, and the distance
from a trajectory T1 to a trajectory T2 is de�ned as the integral of the distance
from points of T1 to T2 divided by the length of T1. Similarity measures for tra-
jectories that take also the time into account have been proposed in [FGT07] and
[PKM+07b].

Since it is not our goal in this work to propose a new similarity measure for com-
paring trajectories, we have adopted the approach used in [LHW07a]. Trajectories
are represented as sequences of line segments. The distance function between two



line segments comprises three components: the perpendicular distance, the paral-
lel distance and the angle distance, thus taking both proximity and direction into
account. The time parameter is considered by comparing line segments between
matching time intervals.

5.1.2.2 Moving Object Groups

Several works have studied the problem of �nding groups of objects that move to-
gether. Various de�nitions have been proposed for capturing variants of this notion,
introducing also e�cient mining algorithms to detect them.

The concept of �ocks of moving objects is formalized and investigated in [GvK06b,
VBT09a]. Consider a set of trajectories of objects in the plane, where each trajectory
consists of a sequence of line segments. A �ock is de�ned as a group containing at
least m objects, for which there exists a time interval comprising at least k consecu-
tive time points, so that for each point in this interval there exists a disk of radius at
most r containing all them objects. Convoys [JYZ+08a, JSZ08] are de�ned similarly
to �ocks. The di�erence is that the objects belong to density-connected clusters,
w.r.t. to a distance threshold e, instead of being contained in a disk of radius r.
This allows for arbitrary shapes while still enforcing proximity.

Some other variants employ more �exible de�nitions. A moving object clus-
ter [KMB05a] is a sequence of spatial clusters appearing during consecutive time
points, such that the portion of common objects in any two consecutive clusters is
above a given threshold θ. This allows for some members of the cluster to change
during time. Group patterns [WLH06] and swarms [LDHK10a] detect objects that
move close together for su�ciently large periods of time but not necessarily within
a single, consecutive time interval. This permits some objects to leave the group
temporarily.

Despite the similarities, these works detect groups of objects that move together,
while we are interested in �nding the k-nearest neighbors of a given moving object.

5.1.2.3 k-NN Queries on Moving Objects

Di�erent types of k-NN queries over historical trajectories of moving objects are
studied in [FGPT07a]. Queries are distinguished according to two factors: (a)
whether the query object is stationary or moving and (b) whether the query is
evaluated on a non-continuous or continuous fashion, thus resulting in four di�erent
types of nearest neighbor queries. In the non-continuous case, a single result set
is computed for the whole query interval, considering the lowest distance between
objects during it. In the continuous case, the result set is updated for each point
in time in the speci�ed interval. For example, for the 1-NN case, the stationary,
non-continuous query returns the object that came closer to a given point Q within
a time interval T , while the moving, continuous query reports, for each time snap-
shot within T , the object which is closer to the current location of the moving query
object.

The continuous k-NN query in [GBX10a] returns all the objects which, at some
point in time within the speci�ed query time interval, belong to the k closest objects
to the query object. The trajectories are indexed using a 3D-R-tree and a �lter-
and-re�ne strategy is employed. R-tree-like structures are also used in [GLC+07b,
GLC+07a] for processing historical continuous k-nearest neighbor queries. Other



works have focused on processing k-NN queries on moving objects with uncer-
tainty [HLL09, TTC+11], as well as on reverse nearest neighbor queries [LC09,
CZLZ12].

In this work, we are interested in the non-continuous case, but based on a total
score computed over the whole query interval. Moreover, we are interested in both
exact and approximate solutions.

5.1.3 Problem De�nition

Let D be a database containing N moving object trajectories. Similar to other
approaches in the literature (e.g. [PKM+07b]), linear interpolation between sampled
locations is assumed and the trajectory Ti of a moving object Oi is represented as a
sequence of 3D line segments, where each endpoint pj is a triple (tj, xj, yj) denoting
the location of object Oi at time tj.

The spatio-temporal similarity of two trajectories is derived by aggregating the
distances of their respective line segments between the corresponding timestamps.
Assume a line segment Li, with endpoints pi, pi+1, and a line segment Lj, with
endpoints pj, pj+1. Also, let p′j and p′j+1 denote the projection of pj and pj+1 on
Li, respectively, and θ the angle between Li and Lj. We use the distance function
de�ned in [LHW07a], which is composed of three components:

• the perpendicular distance, de�ned as:

d⊥ =
||pj − p′j||2 + ||pj+1 − p′j+1||2

||pj − p′j||+ ||pj+1 − p′j+1||
(5.1)

• the parallel distance, de�ned as:

d‖ = min(||pi − p′j||, ||pi+1 − p′j+1||) (5.2)

• and the angle distance, de�ned as:

dθ = ||Lj|| · sin(θ) (5.3)

The distance between Li and Lj is then computed as the weighted sum of the above
three terms:

Dist(Li, Lj) = w⊥ · d⊥ + w‖ · d‖ + wθ · dθ (5.4)

The advantage of using this distance function instead of simply computing the Eu-
clidean distance of the endpoints of the segments is that it takes into account not
only proximity but also di�erences in length and orientation. In our experiments,
we have weighted these factors equally.

Furthermore, to obtain a normalized similarity value in [0, 1], we de�ne the
similarity between two line segments Li and Lj as:

Sim(Li, Lj) =
1

1 +Dist(Li, Lj)
(5.5)



Given a time interval [ts, te] and two trajectories Ti and Tj de�ned in this interval,
we can now de�ne their similarity as the average similarity of their respective line
segments, i.e.

Sim(Ti, Tj, s, e) =
e−1∑
c=s

Sim(Lci , L
c
j)

e− s
(5.6)

where Lci is the line segment of trajectory Ti between timestamps tc and tc+1.

Problem Statement. Assume a set of trajectories D, a query trajectory Tq and a
query time interval [ts, te]. The k-nearest moving neighbors of Tq during [ts, te] is a
subset Dk of D with size k, such that: ∀Ti ∈ Dk,∀Tj ∈ D \Dk : Sim(Ti, Tq, s, e) ≥
Sim(Tj, Tq, s, e).

5.1.4 Computing Nearest Moving Neighbors

In this section we introduce our algorithms for solving the k-nearest moving neigh-
bors problem de�ned above. We start by describing an exact k-NN algorithm, which
computes the distances between the line segments of the query trajectory and those
of other trajectories in the database, maintaining a priority queue to progressively
identify and report the k-NNs. Then, we devise two approximate algorithms that
signi�cantly reduce the execution time while still approximating the set of k-NNs
with su�cient accuracy.

5.1.5 Exact Algorithm

Finding the k-nearest moving neighbors of a moving query object in a given time
window can be considered as a rank aggregation problem [FLN03]. For each pair of
consecutive timestamps in the query time interval, the moving objects are sorted ac-
cording to the distance of their corresponding line segment to the query line segment;
then, the lists are aggregated to produce the overall k-nearest neighbors. However,
this is ine�cient, as it compares the whole trajectories of all objects to the query
trajectory. Instead, our goal is to identify some promising candidates and focus the
search on them so that it can terminate earlier.

For this purpose, we use the algorithm outlined in Algorithm 5. The idea is to
maintain an upper and lower bound of the similarity of each object to the query.
Every time the actual similarity of a line segment is computed, these bounds are
updated accordingly, until the k objects with the highest similarity can be safely
determined.

More speci�cally, the algorithm proceeds as follows. First, it computes the simi-
larity of the objects to the query for the �rst pair of timestamps in the query interval
(line 7). Based on this, it initializes the lower and upper bounds of the similarity
(lines 5�8) and it organizes the objects in a priority queue according to the upper
bound of their similarity (line 10). For each object, it also maintains a counter
denoting the last timestamp that has been examined (line 9). Then, it retrieves the
�rst object from the queue (line 13). It �nds its line segment corresponding to the
next timestamp that has not been examined, and it computes the similarity to its
respective line segment of the query trajectory (line 16). Based on that, it updates
the similarity bounds of this object to the query (line 17), and it reinserts it to the



priority queue, updating also the counter (lines 18�19). Once an object is retrieved
from the queue for which the lower bound of the similarity is greater than or equal
to the upper bound of the next object in the queue, this object is added to the
output (line 14). The process is repeated until k objects have been returned.

ALGORITHM 5: Exact computation of k-nearest moving neighbors
Input: A database of trajectories D, a query trajectory Q, a query

time interval [ts, te]
Output: The k-nearest moving neighbors Dk

1 begin

2 Dk ← ∅
3 H ← ∅ /* priority queue */

4 foreach P ∈ D do

5 sim−p ← 0

6 sim+
p ← 1

7 r ← Sim(Lsq, L
s
p)

8 UpdateBounds(P, r)
9 tp ← s+ 1
10 H ← insert P in descending order of sim+

p

11 end

12 while |Dk| < k do
13 P ← H[0]
14 if sim−p ≥ sim+

H[1] then Dk ← add P

15 else

16 r ← Sim(L
tp
q , L

tp
p )

17 UpdateBounds(P, r)
18 tp ← tp + 1
19 H ← insert P in descending order of sim+

p

20 end

21 end

22 return Dk

23 end

24 Function UpdateBounds(P , r)
25 begin

26 sim−p ← sim−p + r
e−s

27 sim+
p ← sim+

p − 1−r
e−s

28 end

Algorithm 5 correctly identi�es the k-nearest moving neighbors; moreover, it does
so progressively1. Indeed, each time an object is popped from the queue, examined

1If it is not required to return the k-NNs in the correct order, it is possible to further speedup
the process by replacing H[1] with H[k - |Dk|] in line 14.



and re-inserted, the bounds of its similarity are re�ned. In the worst case, all its
line segments will be examined, and then both bounds will converge to the exact
value of the similarity. Given that the objects are sorted in descending order of the
upper bound of their similarity, if the lower bound of the top object is higher than
the upper bound of the next, it can be safely returned.

Notice that a spatio-temporal index, such as an STR-tree or a TB-tree [PJT00a],
can be used to e�ciently retrieve from the database those (sub-)trajectories with
line segments contained in the time interval speci�ed by the query. Once this set
of candidates is loaded, the algorithm described above is executed to compute the
k-nearest neighbors. The reason that we cannot rely solely on the index to perform
a k-NN search is twofold. First, the distance function between line segments is a
composite one, involving both Euclidean distances between points and angle dis-
tances, hence the standard MBR-based pruning is not suitable. Second, the set of
k-nearest neighbors is not monotonic, i.e., an object that belongs to the k-NN set
for a time interval [ti, tj] may not belong to the k-NN set of any time interval [ti′ , tj′ ],
i < i′ < j′ < j; hence, one cannot, for example, retrieve the k-NN set for each line
segment in the query interval and then use only those to �nd the overall k-NNs.

5.1.6 Approximate Algorithm Using Line Simpli�cation

The exact algorithm presented above may still require a large number of iterations,
since it needs to compute the similarity between a large number of line segments.
This is especially true when the query time interval becomes larger. In fact, in the
worst case, i.e. when the bounds don't allow for early pruning, it needs to iterate
over all the line segments of the trajectory within the query interval, in order to
determine the exact value of the similarity.

An alternative approach to overcome this drawback is to approximate each tra-
jectory with a simpli�ed version. This introduces some error due to the approxima-
tion, but it can signi�cantly reduce the number of line segments to be examined,
thus allowing a trade-o� between accuracy and e�ciency. This approach works par-
ticularly well when the movement of an object is not characterized by frequent and
abrupt changes in direction.

Several techniques exist in the literature for line simpli�cation [SC06]. In our ap-
proach, we use the sleeve-�tting polyline simpli�cation algorithm described in [ZS97],
which has been shown to be time e�cient while still achieving high accuracy. The
basic idea of this technique is to cover the whole trajectory by �tting consecutive
points into maximum sleeves, i.e. rectangular strips in 2D of width 2 · ε, where ε
is an error tolerance parameter. Then, the center-line of each sleeve o�ers a one-
segment approximation to the sub-trajectory of the original trajectory comprising
all the consecutive points inside that sleeve. An example is shown in Figure 5.1,
where a trajectory <p1, p2, p3, p4, p5, p6, p7> is simpli�ed to <p1, p5, p7>.

The approximate algorithm, outlined in Algorithm 6, �rstly applies the sim-
pli�cation technique described above to produce a simpli�ed version of the query
trajectory (line 2). Subsequently, it only considers for each object the timestamps
in the simpli�ed version of the query trajectory (lines 3�7). Finally, it executes the
exact algorithm on these simpli�ed trajectories (line 8).

Notice that the line simpli�cation step is applied only to the query trajectory
and not to all examined trajectories. The reason for this is that, when comparing



Figure 5.1: Illustration of sleeve-�tting polyline simpli�cation.

ALGORITHM 6: Approximate computation of k-nearest moving
neighbors using line simpli�cation

Input: A database of trajectories D, a query trajectory Q, a query
time interval [ts, te]

Output: Approximate set of k-nearest moving neighbors D′k
1 begin

2 Q′ ← SleeveF ittingApproximation(Q)
3 D′ ← ∅
4 foreach P ∈ D do

5 P ′ ← P [t ∈ Q′]
6 D′ ← P ′

7 end

8 D′k ← ExactKNN(D′, Q′, [ts, te])

9 return D′k
10 end

two trajectories, we want to compare line segments between matching timestamps.
Hence, we retain as reference the timestamps in the simpli�ed version of the query.
Instead, if the approximation was performed in both trajectories, the timestamps in
the resulting simpli�ed versions would not match (in the general case). This would
incur an additional overhead for ��lling in� the missing points in each trajectory in
order to match each other's timestamps.

5.1.7 Approximate Algorithm Using Prior Probability Accel-
eration

Next, we examine a di�erent direction for reducing the execution time of the ex-
act k-nearest moving neighbors algorithm. The main idea is to adopt some basic
aspects of Bayesian probability theory and to use prior probabilistic knowledge on
trajectory data, in order to accelerate the approximation of the k-nearest neighbors.
In Bayesian decision theory, the prior of an uncertain variable refers to the probabil-
ity distribution that expresses the uncertainty about it before examining the actual
data. It is a concept widely used in many classi�cation and other machine learning
problems.

To this end, we employ a pre-processing step to compute the parameters of



probability density functions of the trajectory line segments. Then, at query time,
we use them to estimate the prior probability of a line segment of a moving object
being close to the corresponding query line segment. The exact algorithm is adapted
to use these priors in order to boost its convergence to an approximate set of k-NNs.
Hence, this is a hybrid approach, combining a deterministic part, i.e. the similarity
between line segments derived through a set of Euclidean distances between their
endpoints, and a probabilistic part.

For the computation of the aforementioned prior probabilities, we need to make
an assumption about the probabilistic model we will use, in order to estimate the
degree of �similarity� (prior probability of a moving object being close to the query
object) between moving objects. In this contribution, we have assumed that the
distribution of line segments w.r.t. the corresponding in time line segment of a
query trajectory, can be described by a Gaussian distribution. The Gaussian density
function g(x;µ,Σ) of x, which is a d-dimensional data vector, with mean vector
µ ∈ Rd and a covariance matrix Σ ∈ Rd×d, is de�ned as follows:

g(x;µ,Σ) = (2π)−
d
2 × det (Σ)−

1
2×

exp (−1

2
(x− µ)ᵀΣ−1(x− µ))

(5.7)

In our case, we calculate bivariate Gaussian probability density functions, as we
are dealing with 2-dimensional points. Hence, x is a 2 × 1 vector and Σ is a 2 × 2
positive de�nite matrix. In the pre-processing step, we compute the parameters
µ and Σ of a Gaussian distribution for each line segment of a trajectory. More
precisely, the computation is done on the midpoints of the line segments. The
process is outlined in Algorithm 7. Let L denote the midpoint of a line segment
L. For each line segment L between timestamps ti and ti+1, �rst the parameter µ
is set to its midpoint (line 4). Then, the algorithm constructs a set M containing
the midpoints of all other line segments of other trajectories between the same
timestamps ti and ti+1 (lines 5�8). Finally, the Gaussian covariance matrix Σ is
calculated on µ and M (line 9). Notice that, due to the low dimensionality of our
problem, this pre-processing procedure has very low execution time.

An example is illustrated in Figure 5.2. Figure 12 plots the midpoints of the line
segments for a selected pair of timestamps ti, ti+1. Figure 12 shows the calculated
Gaussian distribution of the midpoints of a selected pair of timestamps with the
Gaussian mean set to the marked as square midpoint in Figure 12.

At query time, the process of �nding the k-nearest neighbors follows the same
steps as the exact algorithm outlined in Algorithm 5. The di�erence here lies in
how the similarity bounds are updated when a line segment of a moving object is
examined, i.e. in the method UpdateBounds. In this case, the prior probability of
the examined line segment being close to the query line segment is calculated using
Equation 5.7. Then, it is used as a scaling factor for the similarity bounds. The
modi�ed version of the method UpdateBounds is shown in Algorithm 8.

5.1.8 Experimentation

This section describes our experimental setup and presents the results of our evalu-
ation. The performance of our algorithms is investigated on a set of three real-world



ALGORITHM 7: Computing line segment distributions
Input: A database of trajectories D
Output: Probability distribution parameters for each line segment

1 begin

2 foreach P ∈ D do

3 foreach L ∈ P do

4 L.µ← L /* the midpoint of L */

5 M ← ∅
6 foreach P ′ ∈ D do

7 M ← add L′ /* the line segment of P ′ between
the same timestamps as L */

8 end

9 L.Σ← CovEst(L.µ,M)

10 end

11 end

12 end

ALGORITHM 8: Modi�ed UpdateBounds with priors

1 Function UpdateBounds(P , r, L
tp
q , L

tp
p )

2 begin

3 prior ← g(L
tp
p ;L

tp
q .µ, L

tp
q .Σ)

4 sim−p ← prior × (sim−p + r
e−s)

5 sim+
p ← prior × (sim+

p − 1−r
e−s )

6 end

trajectory datasets. We conduct a detailed experimental evaluation, measuring both
the e�ciency of the algorithms, in terms of execution time, and the accuracy of the
approximate algorithms w.r.t. the exact algorithm, in terms of recall and Spearman
distance. The purpose is to examine the e�ect of two parameters: the number k of
nearest neighbors to be retrieved, and the width of the time interval indicated in
the query. In the following, we present the datasets used, the evaluation measures,
and the experimental results.

5.1.8.1 Datasets

We have conducted our experiments using three real-world datasets of trajectories,
referred hereafter as T-drive, Ships, and Athens vehicles. These datasets cover a
variety of cases regarding the shapes of trajectories. For example, in the T-drive
dataset, the shape of the trajectories exhibits a relatively high regularity due to the
grid-like structure of the underlying road network. At the other end, the Athens
road network is highly irregular, resulting in a trajectory dataset with high heading
variance. Finally, the ships trajectory dataset comprises relatively long trajectories
with medium degree of variations.

Notice that a typical issue in trajectory datasets is the (often high) variation of
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Figure 5.2: Example of line segment midpoints with the associated distribution centered

around a line segment midpoint (square).

the sampling rate. This is a problem caused, for example, by low GPS signal strength
or by the fact that the users often tend to switch on and o� their GPS devices several
times during the day (e.g., to save battery or due to privacy concerns). To overcome
this problem, we perform a pre-processing of the datasets which involves two main
actions: (a) we employ linear interpolation to create records for the location of each
object for �xed time intervals (in particular, every 30 seconds); (b) whenever the
timespan between two consecutive traces of an object exceeds a speci�ed threshold
(we used 120 seconds), we split the trajectory to two separate sub-trajectories.

Below we describe in more detail the characteristics of the aforementioned datasets.

5.1.8.2 T-Drive Trajectory Dataset

This dataset comprises GPS tracking data from taxis moving in the area of Bei-
jing [YZXS11, YZZ+10]. We used a total of 1, 023, 924 trajectories from 569 taxis



recorded in the period 2/2/2008 � 4/2/2008. On average, each trajectory comprises
3, 016 line segments. A plot is shown in Figure 5.1.8.4.

5.1.8.3 Ship Trajectory Dataset

This dataset comprises GPS tracking data from ships moving in the Aegean Sea2. We
used a total of 986, 275 trajectories from 887 ships recorded in the period 31/12/2008
� 02/01/2009. On average, each trajectory comprises 1, 100 line segments. A plot
is shown in Figure 5.1.8.4.

5.1.8.4 Athens Vehicles Trajectory Dataset

This dataset comprises GPS tracking data from vehicles moving in the area of
Athens, recorded in the context of the SimpleFleet project3. We have used a total
of 667, 421 trajectories from 2, 497 vehicles recorded on 01/10/2012. On average,
each trajectory comprises 156 line segments. A plot is shown in Figure 5.1.8.4.

(a) T-Drive (b) Ships

(c) Athens vehicles

Figure 5.3: Plots of trajectory datasets used for the experimental evaluation.

5.1.8.5 Evaluation Measures

The conducted experimental evaluation focuses on two aspects. The �rst is to assess
the e�ciency of the exact and the approximate algorithms by measuring the exe-

2http://www.chorochronos.org/?q=node/8
3http://www.simple�eet.eu/



cution time for the datasets described above. All the algorithms were implemented
in Java and the experiments were executed on an Intel(R) Core(TM) i5-2400 CPU
at 3.10GHz with 8GB of RAM, running Ubuntu 12.04 LTS. The trajectories were
stored in a PostGIS database.

The second aspect is to examine the accuracy of the approximate algorithms
w.r.t. the exact algorithm. A simple and most typically used measure for this
purpose is recall. In information retrieval tasks, recall measures the portion of
relevant items that have been retrieved by the algorithm. In our case, if Dk denotes
the actual set of k-NNs and D′k the one returned by an approximate algorithm, then

Recall =
Dk ∩D′k

k
(5.8)

Notice that, since both sets have the same size k, in this case this also corresponds
to precision, which measures the portion of retrieved items that are relevant.

However, recall takes into consideration only the overlap of the two k-NN lists,
ignoring their ordering. Although this may be su�cient for some mining tasks,
there are also many cases where the ordering is important. To measure this, we use
Spearman's footrule distance [KG90], which is often used for comparing di�erent
rankings. More speci�cally, we use the version proposed in [FKS03], which also
deals with cases where each of the ranked lists may contain objects not appearing
in the other. Using the same notation as above for Dk and D′k, this measure is
computed as:

F (Dk, D
′
k) =

∑
i∈Dk

|rank(i,Dk)− rank(i,D′k)|

(k + 1)× k
(5.9)

where rank(i,D) = |D|+1 if i 6∈ D. Thus, F (Dk, D
′
k) = 0 when the two ranked lists

are identical, i.e. contain the same objects with the same order, while F (Dk, D
′
k) = 1

when the two ranked lists contain completely di�erent objects.

5.1.8.6 Results

In the following, we present the results of the evaluation. We measure the execution
time and accuracy of the algorithms, examining the e�ect of two parameters: (i) the
number k of nearest neighbors, and (ii) the width of the query time window. For
the former, we vary k from 10 to 50 with step 10, using a default query window of
90 minutes; for the latter, we vary the width of the query window from 30 minutes
to 150 with step 30, using as default k = 30.

Moreover, for the line simpli�cation step used in Algorithm 6, we set the error
parameter to ε = 0.001. The number of line segments in the simpli�ed trajectories
is in the order of 20% of the original ones for the T-drive dataset, 5% for the ships
dataset, and 35% for the Athens dataset.

Each experiment has been repeated for 10 randomly selected queries, and the
average results are reported.

5.1.8.7 Execution time

Figure 5.4 shows how the execution time of the three algorithms varies w.r.t. the
number of k-nearest neighbors and the width of the query time interval, for the



T-Drive, Ships and Athens vehicles datasets respectively.
In all cases, the two approximate algorithms perform much faster than the exact

algorithm, especially as the query time window becomes larger. This is justi�ed
by the fact that as the query time window grows, the exact algorithm needs to
iterate over a larger number of line segments, while the approximate algorithms still
terminate earlier, thus are a�ected less.

Both approximate algorithms exhibit very low execution times in all experiments,
without being a�ected much by the various parameters. This especially holds for
the approximate algorithm based on probabilistic priors, since scaling the similarity
bounds with these priors leads to a faster convergence, i.e. earlier termination.
The execution time of the approximate algorithm based on line simpli�cation is
higher due to the sleeve �tting simpli�cation applied to approximate the query
trajectory. The di�erence is higher for the ships and Athens vehicles datasets, where
the trajectories are relatively more irregular compared to the T-drive dataset.

5.1.8.8 Accuracy

Figure 5.5 shows how the accuracy of the approximate algorithms varies w.r.t. the
number of k-nearest neighbors and the width of the query time interval, for each of
the three datasets.

Overall, the approximate algorithm based on line simpli�cation achieves quite
high accuracy in all cases, with a recall exceeding 0.8 in most cases, and a Spearman
distance below 0.2. In contrast, the accuracy of the approximate algorithm based
on probabilistic priors varies in di�erent cases. In particular, it appears to be less
e�ective for the ships and Athens vehicles datasets, having low recall and high
Spearman distance. However, its accuracy improves for the T-drive dataset, reaching
a recall of 0.8.

This behavior is attributed to the following. As explained in Section 5.1.3, the
similarity measure used for comparing trajectories takes into consideration both
proximity (perpendicular and parallel distance) and direction (angle distance). When
dealing with irregular trajectory data, we end up with distributions with high val-
ues of variance and low correlation between their variables (i.e., high probability of
error). Scaling the similarity with such prior probabilities results in boosting the
convergence of the similarity bounds with high probability of error. This means
that trajectories starting with an erroneously estimated high similarity value (e.g.
for their �rst few line segments) will converge very fast, introducing false positives
to the �nal set of k-NNs.

Consequently, the accuracy of the approximate algorithm based on probabilistic
priors drops when dealing with cases where several line segments are located close to
each other but are heading to di�erent directions. This phenomenon appears less in
the T-drive dataset. This dataset comprises trajectories of taxis moving in the road
network of Beijing, which has a relatively regular, grid-like structure. In contrast,
in the ships dataset, it is more frequent to have ships moving in the same area but
in di�erent directions, thus the accuracy of the algorithm reduces. Similarly, in
the Athens vehicles dataset, this phenomenon is again prominent due to the highly
irregular structure of the Athens road network, which explains the low accuracy in
this case.



10 15 20 25 30 35 40 45 50
0

5

10

15

20

Number of K Nearest Neighbors

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

 

 

Exact
Line Simplification
Probabilistic Priors

(a) T-Drive

10 15 20 25 30 35 40 45 50
0

5

10

15

20

Number of K Nearest Neighbors

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

 

 

Exact
Line Simplification
Probabilistic Priors

(b) Ships

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Number of K Nearest Neighbors

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

 

 

Exact
Line Simplification
Probabilistic Priors

(c) Athens vehicles

20 40 60 80 100 120 140 160
0

5

10

15

20

25

Query Time Interval (min)

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

 

 

Exact
Line Simplification
Probabilistic Priors

(d) T-Drive

20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

Query Time Interval (min)

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

 

 

Exact
Line Simplification
Probabilistic Priors

(e) Ships

20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

Query Time Interval (min)

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

 

 

Exact
Line Simplification
Probabilistic Priors

(f) Athens vehicles

Figure 5.4: Execution time vs k (a, b, c). Execution time vs query time interval (d, e, f).
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Figure 5.5: Recall vs k (a, b, c) and query time interval (d, e, f). Spearman Distance vs

k (g, h, i) and query time interval (j, k, l).

5.2 Continuous Monitoring of KNN Trajectories

Analyzing tracking data of various types of moving objects is an interesting research
problem with numerous real-world applications. Several works have focused on con-



tinuously monitoring the nearest neighbors of a moving object, while others have
proposed similarity measures for �nding similar trajectories in databases containing
historical tracking data. In this work, we introduce the problem of continuously
monitoring nearest trajectories. In contrast to other similar approaches, we are in-
terested in monitoring moving objects taking into account at each timestamp not
only their current positions but their recent trajectory in a de�ned time window.
We �rst describe a generic baseline algorithm for this problem, which applies for
any aggregate function used to compute trajectory distances between objects, and
without any restrictions on the movement of the objects. Using this as a frame-
work, we continue to derive an optimized algorithm for the cases where the distance
between two moving objects in a time window is determined by their maximum or
minimum distance in all contained timestamps. Furthermore, we propose additional
optimizations for the case that an upper bound on the velocities of the objects ex-
ists. Finally, we evaluate the e�ciency of our proposed algorithms by conducting
experiments on three real-world datasets.

5.2.1 Preliminaries

The increasingly widespread use of GPS enabled devices and other positioning tech-
nologies has made possible the tracking and monitoring of various types of moving
objects, such as cars, people or animals. This has consequently lead to the study
of a broad range of queries in a multitude of settings and applications. Retrieving
objects whose motion is �similar� to that of a target query object is one of the most
basic and useful analytical queries. In the literature, two important types of such
moving object similarity queries have been proposed, the Nearest Neighbor (NN)
and the Nearest Trajectory (NT), also known as trajectory similarity, queries. Both
types de�ne a similarity (or equivalently a distance) metric between moving objects,
and return the top-k most similar (or equivalently least distant) objects with respect
to a speci�ed moving query object. The distinguishing characteristic is the de�ni-
tion of the metric. Generally speaking, NN queries, e.g., [FGPT07b, GBX10b], are
concerned with the distance between individual locations of moving objects, i.e., at
some particular time instance, whereas NT queries, e.g., [PKM+07a, SSV13] take
into account the distance between the trajectories of moving objects, i.e., for the
sequence of locations over a time interval.

Both query types have been extensively studied for historical data, which can be
stored on disk and indexed by specialized data structures. To the best of our knowl-
edge, however, only NN queries have been considered in a continuous monitoring
setting, where new object locations continuously arrive, and the result must be ac-
cordingly updated. This work introduces and studies Continuous Nearest Trajectory
(CNT) queries. Given a trajectory distance, i.e., a metric aggregating individual lo-
cation distances within a speci�ed time window, a CNT query continuously returns
the set of k objects that have the smallest trajectory distance to a given query object.
CNT queries are a natural extension of both continuous NN queries, in the sense
that the recent trajectory (and not only the last location) of objects is considered,
as well as of historical NT queries, in that the result is computed and maintained
in real-time.

We note that existing approaches do not extend for CNT queries. This is obvious
for methods designed for historical data, as they take advantage of specialized index



structures (which are not suitable for highly dynamic streaming data), and have the
entire trajectory completely known upfront. Moreover, algorithms for continuous
NN queries cannot be adapted for CNT. The main reason being that these methods
assume that either the objects [BPPP08] or the query [YPK05, XMA05, MPH05] is
stationary, and de�ne validity or in�uence spatial regions, which guarantee that the
result will not change as long as the query object remains inside the region, in the
former case, or that objects do not cross the region, in the latter case. Note that
the latter methods can handle moving queries but only by treating them as new
queries. This means that previous computations are no longer useful and the result
needs to be computed from scratch, a scenario which is only tolerable when the
query object changes location infrequently. Therefore, a validity/in�uence region-
based approach is not possible for CNT queries, where both the query object and
the other objects move continuously and freely. However, we show that, in a speci�c
setting (concerning the de�nition of the trajectory distance and assuming maximum
velocities), it is possible to determine the minimum expected time when a moving
object can in�uence the result.

There are some other works dealing with di�erent types of continuous queries
on moving objects, which however do not extend for CNT queries either. In a set-
ting similar to ours, [BT08] de�nes a trajectory distance metric, and continuously
computes the spatiotemporal trajectory join, i.e., determines pairs of objects whose
trajectory distance does not exceed a given threshold. In other words, the underly-
ing computation is answering a range query under a hard threshold, which is always
easier to process as the search space is restricted. In contrast, the k-th trajectory
distance in CNT queries is not known beforehand and can be arbitrarily high, mak-
ing the methods of [BT08] inapplicable for CNT queries. Another work [VBT09b]
proposes an online method to determine groups of objects that move close together,
i.e., within a disk of a given radius. In their problem, only the distance between
individual locations is taken into account and the threshold is also hard, making
their ideas not suitable for CNT queries.

Given these observations, we propose a generic baseline algorithm, termed BSL,
for processing CNT queries. This approach makes no assumptions regarding the
underlying trajectory distance function or the movement of the objects. Thus, it
serves as a framework for adapting and optimizing algorithms to more speci�c cases.

Building upon this, we derive an optimized algorithm, called XTR, for the cases
where the trajectory distance between two moving objects is de�ned based on the
extrema (maximum or minimum) of individual location distances. The maximum-
de�ned CNT query establishes a distance guarantee that spans the time window
within which trajectories are examined, and can be used, for example, to determine
how far the nearest objects have strayed. The minimum-de�ned CNT query de-
termines objects that have come close to the query at any time during the recent
past, and can be thought of as a continuous NN query with �memory�. On the other
hand, using both the minimum and the maximum location distances, gives a more
informative description of the movement of an object, as it determines the tightest
annulus (donut) around the query that contains the object's trajectory.

Moreover, we study the aforementioned case when a global maximum velocity
for the objects is known. This is a reasonable assumption given that most moving
objects have upper bounds on their attainable velocities. For this particular set-
ting, we introduce the HRZ algorithm, which computes distance bounds in order to



determine the earliest possible time, termed horizon, when an object may in�uence
the result.

Our main contributions can be summarized as follows:

• We introduce and formally de�ne the problem of continuously monitoring the
objects with the k-nearest trajectories to a given query object, where trajectory
distances take into consideration the objects' recent locations.

• We present a generic baseline algorithm (BSL) for the problem, which de�nes
the types of events and operations needed for the computation.

• We propose the XTR algorithm optimized for the case when the trajectory
distance is determined by the maximum or minimum individual location dis-
tance between objects. We also discuss some other related trajectory distance
de�nitions.

• We present the HRZ algorithm that introduces further optimizations assuming
that the moving objects have bounded velocities.

• We experimentally evaluate the proposed algorithms using real-world datasets.

5.2.2 Related Work

We discuss various types of queries for moving objects, distinguishing between NN
variants in Section 5.2.2.1 and NT methods in Section 5.2.2.2.

5.2.2.1 NN Queries on Moving Objects

Given a (stationary) query object location and a set of (stationary) object locations,
the k-Nearest Neighbor (NN) query retrieves the k objects which are closer to the
query location. There are many di�erent ways to extend the NN query for moving
objects during some time interval, evident by the rich bibliography on the subject.

A �rst classi�cation is based on where the interval of interest lies with respect to
the current time. If it is in the past, the queries are termed historical, as they concern
stored trajectory data. If the interval is placed in the future, the queries are further
classi�ed into predictive, when it can be assumed that objects move in a known
manner (i.e., with constant velocity, or along a line) and thus their future locations
can be extrapolated, or monitoring, when no assumptions are made on the moving
patterns and thus location updates are issued. Processing historical and predictive
NN queries is generally less challenging compared to monitoring queries, because the
former essentially have at query time the entire trajectories of the moving objects.

The second classi�cation is based on the semantic of the NN query during an
interval. A snapshot NN query reports the objects that are closest to the query
object at any time instance within the interval; e.g., �nd the object that comes
closest to some location within the next 10 minutes. A continuous NN query reports
the objects that are closest to the query object at every time instance within the
interval; e.g., report the objects that were at some time closest to the query object
during the past 10 minutes. Note that in the data stream literature, the term
continuous (or long standing) query [BW01] refers to the case when the result of a
query must be continuously updated as streaming tuples arrive; in the context of



NN queries, these requirements essentially correspond to the continuous monitoring
NN query.

Regarding predictive queries, [KGT99] presents a dual plane method for predic-
tive snapshot NN queries, in the case that all objects move in 1-D space, or are
restricted to move within the same segment (i.e., road). [TP02] studies continuous
predictive variants for various spatial queries, including NN, and describe a method
to return the initial result and its validity period (i.e., the time at which the result
will change). [GZC+11] studies continuous predictive NN queries assuming that
only the query is moving along a line, while all other objects are stationary. [ISS03]
and [BJKx06] also deal with continuous predictive NN queries, but they are able
to handle updates on the motion patterns of objects, without computing the result
from scratch.

For continuous monitoring NN queries, [SR01] and [BPPP08] handle the case
when only the query object is moving. The former retrievesm > k nearest neighbors
hoping that the result at a future time is among these m objects, provided that the
query does not move much. The latter returns a Voronoi-based validity region
such that the result does not change as long as the query remains within the region.
[YPK05], [XMA05] and [MPH05] present incremental grid-based methods for general
continuous monitoring NN queries, i.e., when all objects move in a non-predictive
manner; the last two works feature shared execution techniques to handle multiple
NN queries.

In the case of historical trajectory data, R-tree based trajectory indices (e.g.,
3D R-tree [VTS98], TB-tree [PJT00b]) are typically used to expedite the NN query
processing. [GLC+06] handles historical snapshot NN queries, while [FGPT07b],
[GBX10b] process historical continuous NN queries.

Another line of work concerns NN queries over uncertain data. For example,
[TTD+09] processes continuous monitoring NN queries for objects with uncertain
locations. [HLL08] handles continuous predictive NN queries with updates for ob-
jects with uncertain locations and speeds. [NZE+13] deal with historical snapshot
and continuous NN queries for objects with uncertain locations.

Finally, there has been some interest on identifying groups of moving objects,
such as moving object clusters [KMB05b], �ocks [GvK06a, VBT09b], convoys [JYZ+08b],
and swarms [LDHK10b]. Generally speaking, these groups consist of objects that
are close to each other (e.g., within a disk of a given radius) at each time instant.
These methods however cannot be used for processing CNT queries.

5.2.2.2 Nearest Trajectories

There exist many approaches for de�ning distance (or similarity) metrics for trajec-
tories. All of them also propose methods to identify the most similar trajectory to
a given query trajectory, which can be extended to retrieve the top-k similar ones,
but their techniques only operate on historical data. A useful survey on the topic is
included in [PKM+07a].

While the Euclidean distance (or some other Lp norm) is typically used to quan-
tify closeness of two locations, the extension for the case of multiple locations within
trajectories is not straightforward. In addition, a trajectory distance must take into
account the temporal aspect of the locations. [YAS03b] de�nes the trajectory dis-
tance as the L2 norm of individual Euclidean location distances, after re-sampling



the trajectories to account for di�erent reporting intervals. [LS05] ignores the tempo-
ral dimension and de�nes spatial trajectory distance as the average of the Euclidean
distances computed between a location in one trajectory and its closest location in
the other (termed the one way distance).

The previous trajectory distances can be computed in linear time with respect
to the trajectory length. On the other hand, there exist more complex metrics,
inspired from sequence similarity measures, that require quadratic time. [VGK02a]
uses the Longest Common Subsequence (LCSS) similarity measure, an edit distance
variant, that allows the matching of locations that are close in space at di�erent time
instants, provided that they are not far in time, and also allows for locations to be
unmatched, e.g., accounting thus for location imprecisions or small deviations. In a
similar manner, [COO05b] de�nes the Edit Distance on Real Sequence (EDR) that
captures the minimum number of edit operations (insert, delete, replace locations)
necessary to transform one trajectory into the other.

An approach for �nding historical top-k similar trajectories is presented in [SSV13].
The basic algorithm prioritizes object examination aiming to avoid distance compu-
tations for objects not in the result. In addition, approximate techniques are also
presented.

Another related problem is trajectory clustering, where the goal is to group
trajectories based on a trajectory distance metric. For this problem, however, the
basic underlying operation is typically a range query (retrieve trajectories within
a given distance threshold) rather than a top-k similarity query. For example, in
[LHW07b] the goal is to partition historical trajectories into sub-trajectories and
then group them to construct dense clusters according to a metric that composes a
perpendicular, a parallel, and an angle distance.

To the best of our knowledge, continuous monitoring of top-k similar trajecto-
ries has not been addressed in the past. The only work that handles continuous
monitoring of a trajectory de�ned query is [BT08], which deals with spatiotemporal
trajectory joins. The underlying trajectory distance metric is the maximum among
all Euclidean location distances, and the goal is to �nd pairs of trajectories that
are within a given trajectory distance threshold. That is the core query is a range
rather than a top-k similarity query. Therefore, their approach is not applicable to
our problem.

5.2.3 Contribution

5.2.3.1 Problem De�nition

Consider a set O of moving objects, whose locations are continuously monitored and
reported at �xed discrete times, called timestamps. Location updates have the form
< o, t, x, y >, meaning that object o at timestamp t is at location o[t] = (x, y). We
assume that updates always arrive in increasing order of their timestamps, but we
do not assume that for each timestamp updates are received for all objects.

We denote as T (o) the set of timestamps at which updates for o were received.
For simplicity and without loss of generality we assume that for any timestamp t′

for which no update for o was received, i.e. t′ 6∈ T (o), the location of o is the same
as its last reported location, i.e. o[t′] = o[t], where t ∈ T (o) is the latest timestamp
before t′. Essentially, this corresponds to assuming that object o has not moved



during time [t′, t]; making other assumptions can also be handled accordingly, e.g.,
by issuing arti�cial updates for the objects based on inferred locations.

De�nition 5.2.1. The location distance between two objects o and o′ at timestamp
t is given by the Euclidean metric, i.e.,

d(o, o′, t) =
√

(x− x′)2 + (y − y′)2.

where o[t] = (x, y) and o′[t] = (x′, y′) are the respective (reported or extrapolated)
locations of o and o′ at t.

The above de�nition measures the distance between two objects at a single times-
tamp. However, we are interested in comparing the recent trajectories of the objects,
hence their distances over a series of consecutive timestamps within a speci�ed time
window. For this purpose, we introduce the following de�nition.

De�nition 5.2.2. Given two objects o and o′, a time window w, and an aggregate
function G, the trajectory distance of o and o′ is de�ned by applying G on the location
distances of o and o′ at each timestamp within the time window of length w ending
at timestamp t:

D(o, o′, t, w,G) = Gτ∈[t−w,t]d(o, o′, τ).

Function G can be any aggregate function, e.g., minimum, maximum, average,
among others.

We now formally de�ne the problem of continuously reporting the objects with
the k-nearest trajectories to a moving query object.

Problem Statement. The Continuous Nearest Trajectory (CNT) query< O, q, T , k, w,G >,
where O is a set of moving objects, q ∈ O a query object, and T a series of con-
secutive future timestamps, returns for each timestamp t ∈ T the k objects in O
that have the smallest trajectory distance to q w.r.t. the time window w and the
aggregate function G, i.e., ∀t ∈ T it returns a subset Ok ⊆ O of size k, such that
∀o ∈ Ok, o

′ ∈ O \Ok:

D(q, o, t, w,G) ≤ D(q, o′, t, w,G).

5.2.3.2 Baseline for CNT

We �rst describe a generic baseline (BSL) method for answering continuous nearest
trajectory queries. BSL operates under any aggregate function G and follows an
event driven process, where the events to be handled are speci�ed below:

• Query location updates (QUpd). This is an update < q, t, x, y > to the loca-
tion of the query object q, specifying its new location (x, y) for the current
timestamp t. This may result in changes in the trajectory distances of the
objects, and subsequently changes in the current set of nearest trajectories
(NTs). When objects are allowed to move arbitrarily, their new distances to
the new query location have to be computed, and the new aggregate distances
and NTs have to be evaluated.



• Object location updates (OUpd). This is an update < o, t, x, y > to the location
of an object o, specifying its new location (x, y) for the current timestamp t.
As a result, the current location distance of the object to the query has to be
evaluated, which may a�ect its trajectory distance within the window w. If
this changes, it may in turn a�ect the inclusion or not of the object in the
result set. In addition, the system needs to remember to purge this location
distance when it becomes obsolete, i.e., concerns a location outside the window.
Therefore, it generates a corresponding expiration event that will be triggered
at timestamp t+ w as described next.

• Object distance expiration (OExp). Unlike QUpd and OUpd , which are events
received by the external environment, OExp events are generated and triggered
by the system as part of handling OUpd events. OExp events have the form
< o, t >, and mean that a location distance for object o is set to expire
at timestamp t (this location distance was computed for a location update
received at timestamp t− w). Similarly to a location update, such a removal
may a�ect the trajectory distance of the object, and consequently its inclusion
in the set of NTs.

In the following, we describe in detail how BSL handles the above events to evaluate
a CNT query.

BSL makes use of the following in-memory data structures. For the query, it only
stores its latest location q.loc. For each object, it stores its latest location o.loc, as
well as a list o.hist of location distances and their corresponding timestamps, ordered
by time. In addition, it uses an event queue Q to store and process OExp location
distance expiration events, i.e., for removing distances for timestamps outside the
time window w. An OExp event < o, t > means that at time t, BSL needs to purge
an expired distance for object o. This is the least recent location distance in the
list o.hist. Events in Q are inserted and processed in a FIFO manner, i.e. they are
ordered by time. Finally, BSL maintains a results list R of size k, where each entry
corresponds to an object and its trajectory distance, updated at every timestamp.
Any object that does not appear in the list at time t has trajectory distance not less
than the largest trajectory distance in R.

Algorithm 9 shows the pseudocode for BSL. Since this is a continuous query, BSL
executes in a loop for every timestamp t ∈ T (line 1), i.e. as long as the query is
standing, and at each iteration it reports the current result set R (line 17). The
input at each timestamp is the set of QUpd , OUpd , and OExp events that have been
received for processing. Based on these events, BSL determines the set of a�ected
objects OA that require processing at this timestamp (line 2). Note that the set
OA contains not only objects that have received location updates, but also objects
for which an expiration event was triggered, or, in the case of a query update, all
objects.

If the query object has moved to a new location, then q.loc is updated and new
object distances need to be computed (lines 3�5). Otherwise, only those objects
for which an update or expiration happened are marked for processing (lines 6�
8). Subsequently, each a�ected object o ∈ OA is processed (lines 9�17). First, the
procedure BSL_ProcessObject is invoked (line 10), which updates o.loc and o.hist
accordingly, and recomputes the object's location distance and trajectory distance
(see Algorithm 10 below). Then, BSL checks if the returned trajectory distance has



ALGORITHM 9: BSL

1 foreach t ∈ T do

2 OA ← ∅ // the set of a�ected objects at t
3 if QUpd then

4 q.loc← (xq, yq) // update q's current location
5 OA ← O // mark all objects for processing
6 else

7 foreach OUpd and OExp do
8 OA ← OA ∪ o // add the referred object in OA

9 end

10 end

11 foreach o ∈ OA do

12 Do ← BSL_ProcessObject(o)
13 if Do has changed then
14 if o in the results R then

15 update o's entry in R
16 else if Do smaller than the trajectory distance of R's last

entry then
17 delete R's last entry
18 insert an entry for o in R
19 end

20 end

21 end

22 report t, R

23 end

changed (line 11). If so, then the result set R may need updating. In particular, if
o was in the result, then its entry in R must be updated (lines 12�13) with the new
trajectory distance. Otherwise, if the new trajectory distance is smaller than any
trajectory distance in R, this means that o should be (tentatively) inserted in R,
evicting the last entry (lines 14�16).

We next describe the procedure BSL_ProcessObject, shown in Algorithm 10,
in more detail. If an expiration event has occurred for o, then the expired location
distance is removed from o.hist (lines 1�2). If the object's location has changed,
o.loc is updated (line 4). The new location distance of o is computed and added to
the history (lines 5�6). Moreover a corresponding expiration event is added in Q
(line 7). Finally, the new trajectory distance for o is computed and returned (lines
8�9).

5.2.3.3 Extrema-de�ned CNT

In the following, we assume that the aggregate function G de�ning the trajectory
distance is max or min over location distances, or, more generally, any other function
taking as input only the extrema (max, min) location distances. In these instances,
the trajectory distance is determined by one (or two) location distances within the
time window. Note, however, that these location distances may change over time,
as new locations arrive and old ones expire. Nonetheless, we show that processing



ALGORITHM 10: BSL_ProcessObject

1 if OExp event for o was triggered then
2 remove the expired location distance from o.hist
3 end

4 if QUpd or OUpd event for o was received then
5 update o.loc, if changed
6 compute new location distance d
7 add d to o.hist
8 create OExp event for o at timestamp t+ w

9 end

10 update trajectory distance Do

11 return Do

of extrema-de�ned CNT queries can be streamlined. We �rst start our discussion
considering the case of the max function; the case of min can be handled in a similar
manner, and is hence omitted. We then discuss the necessary changes to process
CNT queries for any extrema-de�ned aggregate function.

When the aggregate function G is max, the trajectory distance of an object o is
determined by the largest location distance within the time window w. In that case,
we show that it is possible to discard some location distances which cannot in�uence
the trajectory distance during their lifespan. Based on this observation, we describe
the Extrema (XTR) algorithm, which is based on the BSL framework but reduces
the number of location distances stored per object, and, consequently, the number
of events generated and processed. The key observation of XTR is captured by the
following lemma.

Lemma 5.2.1. Given an object o, where d < d′ are two location distances at times-
tamps t < t′ for t′−t ≤ w, the location distance d does not contribute to the trajectory
distance of o for any timestamp after t′.

Proof. Location distance d is valid, i.e., may contribute to the trajectory distance,
during its lifespan ending at timestamp t + w. During the time interval [t′, t + w],
location distance d′ is also valid and greater, and thus dominates d. As a result, the
trajectory distance, i.e., the maximum location distance, must be at least d′ > d.

The XTR algorithm uses the same data structures and variables as BSL and
performs the same main operations described in Algorithm 9. However, XTR di�ers
from BSL in the way it processes objects. In particular, we discern the following
main di�erences. First, XTR only keeps the non-dominated location distances in
o.hist, as Lemma 5.2.1 suggests. Second, at any time t, the event queue Q contains
only a single entry per object o, and its semantics can be viewed di�erently: it now
schedules trajectory distance recomputations rather than location expirations. By
purging a priori those earlier location distances that are smaller than d, XTR avoids
unnecessary triggering of the corresponding OExp events, thus avoiding unnecessary
processing of objects whose trajectory distance cannot yet change.

The processing for an object o in XTR is handled by the procedure XTR_ProcessObject
outlined in Algorithm 11. Its �rst tasks, removing expired location distances, up-
dating the object's location, and recomputing the object's location distance to the



query, are identical to BSL's (lines 1�6). In addition, based on Lemma 5.2.1, XTR
removes any location distances less than d from o.hist (line 7). Let t′ be the earliest
timestamp that remains (line 8). XTR inserts in Q an event to expire the location
distance at t′, if no event for o in Q already exists, otherwise it resets the scheduled
time of the existing event (lines 9�12). This event essentially schedules the next
trajectory distance recomputation necessary for o (assuming that the trajectory dis-
tance is not a�ected by newer location updates until then). Finally, the trajectory
distance is set to the earliest location distance and returned (line 13).

ALGORITHM 11: XTR_ProcessObject

1 if OExp event for o was triggered then
2 remove the expired location distance from o.hist
3 end

4 if QUpd or OUpd event for o was received then
5 update o.loc, if changed
6 compute new location distance d
7 add d to o.hist
8 remove from o.hist all location distances less than d
9 t′ ← the earliest timestamp in o.hist
10 if Q contains OExp event for o then
11 update OExp's time to t′ + w
12 else

13 insert in Q the event < o, t′ + w >
14 end

15 end

16 return Do ← earliest location distance in o.hist

We now discuss the general case where the aggregate function G is some function
over the extrema (min and max) location distances. One example of such a function
is the average of the minimum and maximum location distances recorded for an
object within the current time window. Recall that Lemma 5.2.1 identi�es location
distances which are irrelevant for the max case; an analogous lemma holds for the
min case. Therefore, when both the max and the min location distance contribute
to the trajectory distance, we can discard location distances which are irrelevant for
both extrema cases. Following this observation, we propose the following changes
to the XTR_ProcessObject algorithm. For each object o, we maintain its minimum
and maximum location distances for the current time window, denoted as o.min
and o.max, respectively, i.e. o.min = min{o.hist} and o.max = max{o.hist}. In
addition, we keep a time marker tm which is the earliest timestamp of either o.min
or o.max. In the event queue Q, we still need to keep only one entry for each
object o, set to < o, tm + w >, to trigger a reevaluation of its trajectory distance
when either o.min or o.max expires. Moreover, the early removal of unnecessary
entries in o.hist is now done as follows. When o.min or o.max changes, and tm is
set accordingly, we remove all entries from o.hist with timestamp earlier than tm.
The reason for this is that for any location distance d with timestamp t < tm it
holds that o.min < d < o.max (otherwise, d would be the current min or max) and
d cannot become a future o.min or o.max since it expires before them.



5.2.3.4 Exploiting Bounded Velocities for Extrema-de�ned CNT

This section considers extrema-de�ned trajectory distances and assumes that there
exists a global upper bound vmax on the velocity of a moving object4. Under this
realistic assumption, we show that it is possible to derive a more e�cient algorithm
than XTR for processing CNT queries. The proposed Horizon (HRZ) algorithm takes
advantage of the velocity bound to further reduce the number of location updates
that need to be processed. Similar to Section 5.2.3.3, we assume that the trajectory
distance is the maximum location distance within the time window; the case of min
is similar, while the more general case of extrema-de�ned functions can be handled
in a straightforward manner.

The basic idea behind HRZ is the following. For ease of exposition, assume k = 1
and consider two objects o and o′. Let D[t] and D

′
[t] denote, respectively, a lower

and an upper bound on the trajectory distances of o and o′ to the query q at time
t. Clearly, if D[t] > D

′
[t] for any timestamp t within a time interval, then o cannot

be in the result during that interval. Hence, in Section 5.2.3.5, we derive lower
and upper bounds on trajectory distances. Then, in Section 5.2.3.6, we discuss the
computation of the time horizon, which determines a time interval during which a
particular object may not be a result. Finally, in Section 5.2.3.7, we put our ideas
together and present the HRZ algorithm.

5.2.3.5 Bounds on Trajectory Distances

Let t be the current timestamp, and consider an object o for which the most recent
location distance is d received at timestamp td ≤ t, and its current trajectory dis-
tance is D ≥ d, valid since timestamp tD ≤ td. A lower bound for the trajectory
distance of o at any future timestamp t′ > t can be computed assuming that ob-
ject o moves at maximum velocity vmax towards the query q, while q also moves at
maximum velocity vmax towards o. As a result, since the last known update at td,
the location distance of o to q is decreasing at a maximum rate of 2vmax. Notice
however that this will a�ect its trajectory distance only after both D and d have
expired. The trajectory distance in this setting is clearly a lower bound for the
trajectory distance of o for any possible motion of o and q. Thus, we derive the
following lemma.

Lemma 5.2.2. Given an object o at current timestamp t, with latest location dis-
tance d at timestamp td ≤ t and current trajectory distance D ≥ d valid since
tD ≤ td, its trajectory distance for any future timestamp t′ ≥ t is lower bounded by
the function:

Do[t
′] =


D if t ≤ t′ ≤ tD + w

d if tD+w<t′≤ td+w

max{d−2vmax · (t′−td), 0} if t′ > td + w.

Proof. First, observe that at time t the history of the object (i.e., during the time
interval [t − w, t]) certainly contains a location distance with value D at time tD
(determining the current trajectory distance) and another with value d at time td. It

4Note that the extension to di�ering maximum velocities across objects is straightforward and
thus omitted.



may also contain other location distances, which however must have values between
d and D. Consequently, it is easy to see that the lemma holds for the �rst two
clauses.

Regarding the third clause, we need to show that for any future timestamp t′ > t,
the lower bound holds. Consider the location distances valid during the future time
window [t′ − w, t′]; recall that location distance d is no longer valid. Let dm be
the largest valid location distance with timestamp tm ∈ [t′ − w, t′]. Therefore, the
trajectory distance at time t′ is de�ned as dm. Due to the bound on the velocity of
objects, it holds that any object, o or the query q, from timestamp td (of o's known
location update in the past) up to timestamp tm cannot have traveled a distance
greater than vmax · (tm − td). As a result, the location distance of o cannot have
decreased more than 2vmax · (tm − td) (but not become less than zero), which is
the case that o and q travel towards one another (and travel together once they
reach each other). Therefore, the location distance at tm cannot be less than dm ≥
d − 2vmax · (tm − td), and is also greater than zero. Since tm ≤ t′, the lower bound
holds.

In a similar way, we can also derive an upper bound for the trajectory distance
of o in a future timestamp t′. This can be computed assuming that object o moves
at maximum velocity vmax away from the query q, while also q moves at maximum
velocity vmax away from o. As a result, since the last known update at td, the
location distance of o to q is increasing at a rate of 2vmax. Again, any updates will
come into e�ect only as long as there exists no previous value that is still valid and
greater. The trajectory distance in this setting is clearly an upper bound for the
trajectory distance of o for any possible motion of o and q. Thus, we derive the
following lemma.

Lemma 5.2.3. Given an object o at timestamp t, with latest location distance d
at timestamp td ≤ t and current trajectory distance D ≥ d valid since tD ≤ td, its
trajectory distance for any future timestamp t′ ≥ t is upper bounded by the function:

Do[t
′] =

{
max{D, d+ 2vmax · (t′ − td)} if t ≤ t′ ≤ tD + w

d+ 2vmax · (t′ − td) if t′ > tD + w.

Proof. Consider the �rst clause, and a timestamp t′ ∈ [t, tD +w]; the corresponding
time window is [t′−w, t′] and D is still valid. Let dm denote the largest valid location
distance with timestamp tm ∈ [t′−w, t′]. Trivially, if dm isD, the upper bound holds.
Assume otherwise, i.e., dm > D. Using similar reasoning as in Lemma 5.2.2, the
location distance of o from timestamp td up to timestamp tm cannot have increased
more than 2vmax · (tm − td). Therefore, dm ≤ d + 2vmax · (tm − td), and the upper
bound also holds for this case because tm ≤ t′. The second clause is proved in a
similar way, given that D has now expired.

5.2.3.6 Time Horizon of Objects

We now proceed to derive the minimum time required for an object o 6∈ R to enter
the result set. We refer to this as the time horizon of an object, corresponding to
the earliest time for which the object's trajectory distance may become equal to (or
less than) the trajectory distance of some object in R. Using Lemmas 5.2.2 and
5.2.3, the time horizon is formally de�ned as follows.



De�nition 5.2.3. Given the current result set R at timestamp t, the time horizon
th for an object o 6∈ R is de�ned as the earliest possible time that the trajectory
distance of o becomes lower than that of any object in R, i.e.:

th = min{t′ ≥ t | ∃o′ ∈ R : Do[t
′] ≤ Do′ [t

′]}

An important remark regarding the previous de�nition is that it does not su�ce
to just consider the trajectory distance upper bound of the k-th object in R. As
location updates may not occur at all timestamps, it is possible for two objects
oi, oj ∈ R with trajectory distances Di < Dj to have at some future timestamp t′

upper trajectory bounds such thatDi[t
′] > Dj[t

′]. This can occur, for example, when
the objects' last location distances and timestamps satisfy the conditions di > dj
and ti < tj.

As a result, computing the time horizon for an object requires considering the
trajectory distance upper bounds for all objects in R, which is time consuming given
that the time horizon needs to be computed at each timestamp for each a�ected
object not in the result set. We thus propose an alternative method for determining
the time horizon. The key idea is the following lemma, which derives a single upper
bound on the trajectory distance of any object in the result set R.

Lemma 5.2.4. Consider a set of objects R at current timestamp t, where, for the i-
th object, di denotes its latest location distance at timestamp tid and D

i ≥ di denotes
its current trajectory distance valid since timestamp tiD ≤ tid. De�ne object o+ ∈ R
to be the one with the largest trajectory distance, and object o∗ ∈ R to be the one
that can have the largest possible location distance at current timestamp t, i.e.,

o+ = argmax
oi∈R

Di and o∗ = argmax
oi∈R

(
di + 2vmax · (t− tid)

)
.

Then, the trajectory distance of any object in R for any future timestamp t′ ≥ t is
upper bounded by the function:

DR[t′] =

{
max{D+, d∗+2vmax · (t′−t∗)} if t ≤ t′ ≤ t+w

d∗ + 2vmax · (t′ − t∗) if t′ > t+ w,

where D+ is the trajectory distance of o+, and d∗ is the latest location distance of
o∗ computed at timestamp t∗.

Proof. It su�ces to show that the upper bound on the trajectory distance of each
object in R according to Lemma 5.2.3 is always (i.e., for any t′ > t) not greater
than the upper bound provided by this lemma. Consider an object oi ∈ R and its
trajectory distance upper bound:

Di[t′] =

{
max{Di, di+2vmax · (t′−tid)} if t≤ t′≤ tiD + w

di + 2vmax · (t′ − tid) if t′ > tiD + w.

First note that tiD < t, and consider a future timestamp t′ during the time
interval [t, tiD + w]. Comparing the �rst clause of the two bounds, we can see that
D+ ≥ Di from the de�nition of object o+. On the other hand, from the de�nition
of o∗ we derive that d∗+ 2vmax · (t− t∗) ≥ di + 2vmax · (t− tid). Adding 2vmax · (t′− t)
to both sides of the inequality, we derive that the lemma holds.



Next, consider a future timestamp t′ during the time interval [tiD + w, t + w],
and compare the second clause of Di[t′] to the �rst clause of DR[t′]. With similar
reasoning as before, we have that d∗+2vmax ·(t′− t∗) ≥ di+2vmax ·(t− tid), and since
the �rst clause of DR[t′] is always greater than the left-hand side of the inequality,
the lemma holds.

In the case of a future timestamp t′ > t + w, when the second clauses of the
bounds apply, it is easy to see, using similar reasoning as before, that the lemma
holds.

Using the bound on the trajectory distance of any object in R, it is possible to
e�ciently compute a timestamp that never overestimates the time horizon, as the
next lemma suggests.

Lemma 5.2.5. Given the current result set R at timestamp t, the time horizon th
for an object o 6∈ R is not less than the following value:

th ≥ min{t′ ≥ t | Do[t
′] ≤ DR[t′]}.

Proof. Denote as A the set from De�nition 5.2.3, i.e., A = {t′ ≥ t | ∃o′ ∈ R : Do[t
′] ≤

Do′ [t
′]}, and as B the set from this lemma, i.e., B = {t′ ≥ t | Do[t

′] ≤ DR[t′]}. We
claim that B ⊆ A to prove the lemma. Since it holds that DR[t′] ≥ Do′ [t

′] for any
o′ ∈ R from Lemma 5.2.4, the condition of set B is harder to satisfy than that of A,
and thus the claim B ⊆ A holds.

Lemma 5.2.5 suggests that we can compute, in constant time, a timestamp not
greater than the time horizon as the solution of the equation Do[t

′] = DR[t′]. Hence-
forth, to simplify the presentation of HRZ, whenever we refer to the time horizon th
or its computation, we mean the solution of this equation instead of De�nition 5.2.3.

5.2.3.7 The HRZ Algorithm

Having a method to compute the time horizon of an object, we next detail the HRZ
algorithm, highlighting its di�erences with respect to XTR. The data structures and
variables that HRZ uses are as in XTR, with the exception that for each object HRZ
additionally stores its time horizon th indicating the time after which the object
may appear in the result set R. The computation of th is based on Lemma 5.2.5.
The HRZ algorithm takes advantage of the time horizon to reduce the number of
events processed as follows. At any timestamp before th − w, HRZ ignores updates
for the particular object. During the time interval [th − w, th], HRZ only stores the
locations and location distances, since these are necessary to compute the trajectory
distance at time th. However, it does not compute the trajectory distance, since it
is guaranteed to be greater than those in R, and it does not add any events in Q.
After the time horizon th, HRZ operates similar to XTR.

Algorithm 12 shows the pseudocode for HRZ. The main di�erence from BSL

and XTR is that it handles the processing of a�ected objects in two phases. In
the �rst phase (lines 9�11), HRZ considers only objects that are in R, i.e., objects
that were reported as results in the previous timestamp. For these objects, the
processing (handled by HRZ_ProcessObject) is essentially identical to XTR, as we
later explain. Once processing is completed, the object's entry in R is updated if its
trajectory distance changed.



ALGORITHM 12: HRZ

1 foreach t ∈ T do

2 OA ← ∅ // the set of objects marked for processing at t
3 if QUpd then

4 q.loc← (xq, yq) // update q's current location
5 OA ← O // mark all objects for processing
6 else

7 foreach OUpd and OExp do
8 OA ← OA ∪ o // add the referred object in OA

9 end

10 end

11 foreach o ∈ OA ∩R do

12 Do ← HRZ_ProcessObject(o)
13 update o's entry in R
14 end

15 identify objects o+ and o∗ in R // from Lemma 5.2.4
16 foreach o ∈ OA \R do

17 if t < o.th − w then continue

18 Do ← HRZ_ProcessObject(o)
19 if Do smaller than the trajectory distance of R's last entry

then

20 delete R's last entry
21 insert an entry for o in R
22 end

23 end

24 report t, R

25 end

Between the �rst and second phase, HRZ scans all objects in R, and determines
objects o+ and o∗ as de�ned in Lemma 5.2.4 (line 12). Then, during the second
phase (lines 13�18), HRZ considers the remaining a�ected objects, i.e., not in R. If
the current time is more than w timestamps before the time horizon o.th of an object
o, HRZ essentially ignores o (line 14). For each other a�ected object, its processing
(handled by HRZ_ProcessObject at line 15) di�ers signi�cantly from XTR. Once
it concludes, HRZ checks whether the object should be included in the result set R
provided that its trajectory distance has su�ciently decreased (lines 16�18).

We next describe the HRZ_ProcessObject procedure, shown in Algorithm 13.
As in XTR, the procedure removes expired location distances if an event from Q
was triggered (lines 1�2). The main operations of the procedure occur when either
an object or a query location update were received (lines 3�23). First, the object's
location is updated, if it changed, and its location distance is computed (lines 4�5). If
the object o under processing did not belong in the result at the previous timestamp
(line 6), the procedure computes the time horizon th by applying Lemma 5.2.5 (line
7); otherwise th is set to current time (line 8), meaning that object o may belong
in the result. Since the time horizon is now recalculated taking into account the
object's current location distance, it is necessary to check again if the object should
be ignored (line 9). If the check succeeds, all stored information for object o is



cleared, its entry in the event queue is removed and an in�nite trajectory distance
is returned (lines 10�12).

ALGORITHM 13: HRZ_ProcessObject

1 if OExp event for o was triggered then
2 remove the expired location distance from o.hist
3 end

4 if QUpd or OUpd event for o was received then
5 update o.loc, if changed
6 compute new location distance d
7 if o 6∈ R then

8 compute th
9 else th ← t
10 if t < th − w then

11 clear state of o
12 remove o's entry in Q
13 return Do ←∞
14 else

15 add d to o.hist
16 remove from o.hist all location distances less than d and with

timestamps before t− w
17 if t < th then
18 return Do ←∞
19 else

20 t′ ← the earliest timestamp in o.hist
21 if Q contains OExp event for o then
22 update OExp's time to t′ + w
23 else

24 insert in Q the event < o, t′ + w >
25 end

26 end

27 end

28 end

29 return Do ← earliest location distance in o.hist

In the following operations (lines 14�23), it holds that the current time is t ≥
th−w, hence HRZ needs to store locations and location distances. The object's cur-
rent location distance d is stored (line 14), and all location distances less than d are
removed (line 15) as in XTR. Subsequently, if the current time falls in the interval
[th−w, th] (line 16), �nding the actual trajectory distance during this interval is not
necessary, as the object is guaranteed to not be in the result set. Therefore, HRZ
simply returns an in�nite trajectory distance (line 17) and, to increase e�ciency,
it does not create a corresponding expiration event. A consequence is that at fu-
ture timestamps after the current time horizon, there may exist expired location
distances. Therefore, the procedure may also have to remove such distances (line
15). Otherwise, if the current time is not before the time horizon (line 18), the
processing is identical to XTR. That is, the earliest timestamp is identi�ed, and the
event queue is properly updated (lines 19�22). The last operation is to compute the



trajectory distance from the earliest location distance and return it (line 24). As a
�nal note, observe that if the object was not in the result at the previous timestamp,
its processing is identical to XTR, as its time horizon is set to current time (line 8).

5.2.4 Experimentation

To evaluate the e�ciency of the proposed algorithms for the continuous nearest tra-
jectories query, we conduct experiments using three real-world trajectory datasets.
In the following, we �rst present the datasets used for the evaluation and then we
report the results of our experiments.

5.2.4.1 Datasets

To cover a variety of cases regarding the shapes of trajectories, the type of the
objects, and the speed and type of movement, we use three di�erent real-world
datasets in our experiments. We refer to these datasets as Beijing taxis, Aegean
ships, and Athens vehicles. These datasets vary in their characteristics, ensuring
that our methods are robust across diverse settings. For example, in the Beijing
taxis dataset, the shape of the trajectories exhibits a relatively high regularity due to
the grid-like structure of the underlying road network. At the other end, the Athens
road network is highly irregular, resulting in diverse trajectories with constantly
varying headings. Finally, the Aegean ships trajectory dataset comprises relatively
long trajectories with medium degree of heading variations.

A typical issue in trajectory datasets is the often high variation of the sampling
rate, caused, for example, by weak GPS signal, or when the user manually switches
o� their personal tracking devices (e.g., to save battery or for privacy). In our
datasets, to reduce such gaps, when the time interval between two consecutive re-
ported locations exceeds a speci�ed threshold (set to 30 seconds) but is not greater
than a maximum threshold (set to 120 seconds), we use linear interpolation to create
intermediate location updates.

We next detail the used datasets.

• Beijing taxis. These trajectories are from the T-Drive trajectory dataset,
which contains GPS tracking data from taxis moving in the area of Bei-
jing [YZXS11, YZZ+10]. A total of 1,023,924 trajectories are used. These
trajectories belong to a total of 569 taxis recorded in the period 2/2/2008 �
4/2/2008. Each trajectory comprises on average 3,017 points (i.e. location
updates).

• Aegean ships. This dataset contains GPS tracking data from ships moving in
the Aegean sea5. A total of 986,275 trajectories are used, obtained from 887
ships in the period 31/12/2008 � 02/01/2009. On average, each trajectory
comprises 1,101 points.

• Athens vehicles. This dataset contains GPS tracking data from vehicles moving
in the area of Athens, recorded in the context of the SimpleFleet project6.
667,421 trajectories are used, coming from 2,497 vehicles on 01/10/2012. Each
trajectory comprises 157 points on average.

5http://www.chorochronos.org/?q=node/8
6http://www.simple�eet.eu/



5.2.4.2 Results

The goal of the experimental evaluation is to study the e�ciency of the proposed
algorithms, and in particular to compare the speedup achieved by the XTR and
HRZ algorithms with respect to the more generic baseline BSL algorithm. For this
purpose, we conduct a series of experiments, using the datasets previously described.
The trajectory distance metric used in all experiments is the maximum of all valid
location distances. We note that the performance of BSL is identical for all metrics,
as the method is distance agnostic. On the other hand, XTR and HRZ have roughly
the same performance for any extremum-de�ned trajectory distance metrics.

The main performance metric is the total execution time, i.e., the time spent
processing a CNT query over its entire lifespan. To better investigate the perfor-
mance gains of XTR and HRZ with respect to BSL, we also report their relative
improvement in execution time, and the percentage of events (location updates and
expirations) that they process compared to BSL. The investigated parameters af-
fecting the performance of the algorithms is the number k of nearest trajectories
requested, the size w of the time window, and the number |O| of objects. In all
settings, the reported performance metrics (time and number of events) are the av-
erage of 10 executions involving randomly selected query objects. The answer to a
CNT query is calculated at each timestamp that an update or an expiration event
occurs.

5.2.4.3 Varying the number of nearest trajectories

In this experiment, we measure the total execution time of each of the three al-
gorithms with respect to the number k of nearest trajectories returned. The total
monitoring time T is set to 60 minutes, and the size w of the time window for keeping
each object's history is set to 5 minutes. The results are presented in Figure 5.6.

The �rst important observation is that for all datasets, the execution times of
both XTR and HRZ are signi�cantly lower than for BSL, clearly showing in practice
the e�ectiveness of the corresponding optimizations for these cases. Furthermore,
HRZ has also a clear bene�t over XTR. The di�erences are more pronounced in the
Beijing taxis dataset, which shows that, due to the regularity in the movement of ob-
jects imposed by the underlying grid-like structure of the Beijing road network, more
e�ective pruning of location updates and distance recomputations can be achieved.
In contrast, the di�erences become relatively smaller in Athens vehicles, where the
road network is less uniform.

A second observation is that for all algorithms the execution time increases with
k. This is expected since k regulates the size of the ordered list R that has to be
maintained by the algorithm at each timestamp. However, this increase is lower for
XTR and, even more so for HRZ, which is an additional evidence that XTR and HRZ
need to process fewer events, and hence perform fewer lookup and sort operations
on R.

5.2.4.4 Varying the size of the time window

In the next experiment, we compare the execution time of the three algorithms with
respect to the window size w during which the past location distances of an object
remain valid and contribute to the trajectory distance. As previously, the total
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Figure 5.6: Execution time of BSL, XTR and HRZ w.r.t. the number k of nearest trajec-

tories returned at each timestamp.

monitoring time T was set to 60 minutes, and k was set to 10. To better illustrate
the improvement in execution time achieved by XTR and HRZ with respect to BSL,
we plot the speedup of XTR and HRZ compared to BSL. The results are shown in
Figure 5.7.

As illustrated, XTR shows a speedup of almost up to 5 times over BSL, while for
HRZ it is even higher, in the range of 15× to 22× for the �rst two datasets and 4× to
6× for the Athens vehicles. Notice that in this setting k = 10, so when these results
are considered in conjunction with those illustrated in Figure 5.6, these speedups
are expected to be increasingly higher for higher values of k.

Moreover, the speedup for both algorithms increases as the window size w in-
creases. This behavior is because XTR and HRZ only consider the maximum or
minimum value in each object's history, so the gain is higher for larger time win-
dows. The gain for HRZ is even higher as w increases, since HRZ is able to set time
horizons for objects later in the future, thus ignoring more location updates and
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Figure 5.7: Execution time speedup of XTR and HRZ compared to BSL w.r.t. the size w
of the time window.

further decreasing the total events to be handled.
To better illustrate the reduction of the number of events that XTR and HRZ

process, and how this is a�ected by the size of the time window, we also report the
number of events in the event queue Q that are created and processed by XTR and
HRZ with respect to those by BSL. The results are shown in Figure 5.8. Indeed,
the results are in agreement with those in Figure 5.7, showing that XTR needs to
process only about 30% of the events processed by BSL, while HRZ fewer than 5%.

5.2.4.5 Varying the number of objects

In the last set of experiments, we measure the performance of the algorithms with
respect to the number of objects. For this purpose, we create subsets of the original
datasets, containing a speci�c portion of randomly selected objects, and ran the
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Figure 5.8: Percentage of events handled by XTR and HRZ compared to BSL w.r.t. the

size w of the time window.

algorithms on these subsets. The other parameters are set to T = 60 minutes, k =
10, and w = 5 minutes. The results are plotted in Figure 5.9.

As expected, the execution time of all algorithms increases as the size of the
dataset increases. However, XTR and, especially, HRZ show better scalability. Es-
pecially HRZ for the cases of the Beijing taxis and the Aegean ships, where the
movement of the objects is relatively more regular, proves to be quite robust with
respect to the total number of objects, which veri�es that it can successfully avoid
unnecessary examinations of objects that cannot qualify as candidates for the result
set.
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Figure 5.9: Execution time of BSL, XTR and HRZ w.r.t. the size |O| of the dataset.





Chapter 6

Conclusions and Future Directions

In this dissertation we have covered a lot of ground. We presented our work on min-
ing and modeling geospatial knowledge from user generated content in the forms
of textual data. We employed the extracted and modeled VGI in order to solve
two signi�cant research problems, namely, the location estimation of unknown POIs
problem, and the popular path computation problem. Finally, we provided sev-
eral competitive algorithms which solve the KNN trajectory problem for both non-
continuous and continuous query cases. In the remainder of this chapter, we will
further brie�y summarize our contributions and we will identify potential extensions
of our results for future work.

6.1 Mining and Modeling Geospatial Data

The increase in available user-generated data provides a unique opportunity for the
generation of rich datasets in geographical information science. In this dissertation,
we provide and approach for the extraction of geospatial knowledge from user gener-
ated texts, and a quantitative approach for the representation of qualitative spatial
relations extracted from such data based on training probabilistic models. The pro-
posed scheme returns estimates of uncertain object locations based on distance and
orientation features as provided by human reporters in relation to known object lo-
cations. To achieve these desiderata, we propose a greedy learning algorithm based
on the Expectation Maximization (EM) framework to train probabilistic models
over spatial relationships; here, we restrict our attention on GMM models. The
proposed approach seems to be promising in terms of accurately capturing and rep-
resenting spatial relationships. Distance and orientation features tend to describe
all spatial relations that were extracted from user generated texts in an informative
way. Moreover, our probabilistic approach seems to be robust in handling any un-
certainties, which characterize observations in crowd-sourced text data. As a future
research direction, we already have been investigating new NLP techniques for the
optimization of automatic extraction of POIs and spatial relationship information
from texts. Moreover, we already investigate deep learning and advanced machine
learning methods in order to handle the inherent uncertainty in user generated con-
tent.
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6.2 Location Estimation

In this dissertation, our speci�c contribution is detecting spatial relationships in
textual narratives and using them to �triangulate� the position of unknown object
locations my employing probabilistic models and fusion algorithms. This is a �rst
step for solving the emerging geocoding problem on the Internet. We introduced
speci�c techniques for extracting spatial relations from textual narratives and use
a novel quantitative approach based on training probabilistic models for the rep-
resentation of spatial relations. Combining these models and interpreting them as
observations in a location fusion algorithm allows us to reason about unknown ob-
ject locations. The results show that �colloquial� location estimation facilitated by
crowdsourced geospatial narratives is a feasible approach.

Directions for future work include the optimization of the location fusion algo-
rithms in the direction of deep learning. Furthermore we will investigate the imple-
mentation of global prediction models, which could complement geocoding methods
in our increasingly non-cartesian world. Also, this will enable us to evaluate ad-
ditional probabilistic and deterministic modeling techniques and to develop more
e�cient text-to-map applications.

6.3 Popular Path Computation

In this dissertation, we presented new approaches to computing knowledge-enriched
paths within road networks. We incorporated novel methods to extract spatial
relations between pairs of Points of Interest such as �near� or �close by� from crowd-
sourced textual data, namely travel blogs. We quanti�ed the extracted relations
using probabilistic models to handle the inherent uncertainty of user-generated con-
tent. Based on these models, we proposed a new cost function to enrich real world
road networks, based on Djikstra and skyline path computation. The new cost
function re�ects the closeness aspect according to the crowd. In contrast to existing
approaches, we did not enrich previously computed paths with semantical informa-
tion, but the entire network. Continuingly, two routing algorithms were presented
taking this closeness aspect into account. Finally, we evaluated our ideas on two
real world road network datasets, i.e., Paris, France, and New York City, USA. We
used metadata from geotagged Flickr photos as a ground truth to support our initial
goal of providing more popular paths. All our approaches performed very well by
providing slightly longer paths but with signi�cantly higher values of popularity.

For future work, we are researching alternative methods for aggregating all cate-
gories of spatial relations. Furthermore, we would like to investigate ways to suggest
the popular path descriptions to the user based on the Points of Interest they will
encounter underway.

6.4 Mining GPS Data

6.4.1 Non-Continuous KNN Queries

E�cient spatio-temporal data analysis is crucial for exploiting the massive amounts
of spatio-temporal data that are becoming available in modern applications. In this



dissertation, we have addressed the problem of e�ciently identifying the k-nearest
neighbors of moving objects, taking into consideration proximity, direction and time.
Starting with an exact algorithm, we have investigated two approximate algorithms
which allow to faster identify an approximate set of k-NNs. The �rst employs
a line simpli�cation step to reduce the number of line segments to be examined
when comparing trajectories. The second accelerates the query execution time by
estimating prior probabilities based on pre-computed probability density functions
of the trajectory line segments. Our experimental evaluation, conducted on three
real-world datasets, has shown that these algorithms provide a favorable trade-o�
between execution time and accuracy for various cases.

Our current and future work focuses on combining deterministic and proba-
bilistic machine learning techniques to achieve additional improvements in terms of
accuracy, as well as extending these techniques to address other related problems in
mining moving object trajectories.

6.4.2 Continuous KNN Queries

In the last part of this dissertation, we introduced and studied the problem of con-
tinuously reporting moving objects with similar recent trajectories to a given query
object. This problem extends the case of continuous nearest neighbor monitoring
and of discovering similar trajectories in historical data. We proposed a generic
baseline method that operates for any aggregate trajectory distance metric; the ex-
tension to other metrics is left as future work. Then we turned our attention to
instances where the distance between the trajectories of two objects is determined
by the extrema (minimum and maximum) of their individual location distances. For
these instances, we described two more e�cient algorithms, with the latter taking
into account a given bound on the velocities of objects. Our experimental study on
real-world datasets showed that our methods exhibit up to 22 times performance
gain compared to the baseline.

Our current and future work focuses on combining our current algorithms with
e�cient index data structures in order to optimize in terms of search speed and
accuracy.
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