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Περίληψη

Το πρόβλημα της Χρονομεταβαλλόμενης Βελτιστοποίησης σε Μητροειδή είναι μια γε-

νίκευση του κλασικού προβλήματος εύρεσης βάσης ελαχίστου κόστους. Προτάθηκε από τους

Gupta, Talwar και Wieder προκειμένου να μοντελοποιηθούν συστήματα τα οποία πρέπει να

διατηρούνται συνεχώς, ενώ τα κόστη μεταβάλλονται με την πάροδο του χρόνου. Καθώς ο

χρόνος περνάει, το κόστος των στοιχείων μπορεί να αλλάζει και αυτό οδηγεί σε ένα συμβιβα-

σμό μεταξύ της διατήρησης μιας βάσης χαμηλού κόστους και της ῾῾σταθερότητας᾿᾿ της λύσης.

Πιο συγκεκριμένα, η είσοδος είναι μια ακολουθία συναρτήσεων κόστους (μία για κάθε χρονική

στιγμή). Ενώ αλλάζουμε τη βάση από βήμα σε βήμα, επιβάλλουμε ένα επιπλέον ενιαίο κόστος

απόκτησης για κάθε τέτοια αλλαγή.

Στην παρούσα διπλωματική εργασία παρουσιάζουμε τον πρώτο ντετερμινιστικό rounding

αλγόριθμο, που πετυχαίνει O(log r)-προσέγγιση για το πρόβλημα, όπου r είναι ο βαθμός του

Μητροειδούς, και που εγγυάται σταθερή προσέγγιση στο κόστος κράτησης. Οι Gupta et al.

είχαν παρουσιάσει έναν τυχαιοκρατικό rounding αλγόριθμο που επίσης πετυχαίνει προσέγγιση

O(log r), αλλά αυτό ισχύει τόσο για το κόστος κράτησης όσο και για το κόστος απόκτησης.

Ο αλγόριθμος μας βασίζεται στην καλά κατανοητή δομή του πολυτόπου των ανεξαρτήτων

συνόλων και εισάγει μια νέα rounding τεχνική που ενδέχεται να είναι ανεξαρτήτου ενδιαφέρο-

ντος. Επιπλέον, παρέχουμε τις πρώτες αποδείξεις για integrality γραμμικών προγραμμάτων

για προβλήματα Χρονομεταβαλλόμενης Συνδυαστικής Βελτιστοποίησης. Συγκεκριμένα, δε-

ίχνουμε ότι το ΓΠ για τη Χρονομεταβαλλόμενη Βελτιστοποίηση σε Μητροειδή Διαμέρισης

είναι ακέραιο. Δείχνουμε, επίσης, οτι το ΓΠ για τη Χρονομεταβαλλόμενη Βελτιστοποίηση σε

Μητροειδή, για δύο χρονικές στιγμές, ακόμα και αν τα δύο Μητροειδή είναι διαφορετικά, είναι

ακέραιο.

Λέξεις Κλειδιά

Χρονομεταβαλλόμενη Συνδυαστική Βελτιστοποίηση, Μητροειδή, Συνδετικά Δέντρα, Προ-

σεγγιστικοί Αλγόριθμοι, Γραμμικός Προγραμματισμός
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Abstract

Multistage Matroid Optimization is a time-evolving generalization of the classical

minimum-weight base problem. It was proposed by Gupta, Talwar and Wieder to model

systems that need to be maintained continually while the underlying costs change over

time. In this time-evolving setting, the costs of the elements may change in each time

step and this leads to a trade-off between maintaining a low-cost base and the ”stability”

of the solution. More specifically, the input is a sequence of cost functions (one for each

time step); while we change the base from step to step, we incur an additional uniform

acquisition cost for every such change.

In this thesis we present the first deterministic LP rounding O(log r)-approximation

algorithm for the problem, where r is the rank of the matroid, that achieves constant

approximation at the holding cost. Gupta et al. had presented a randomized rounding

scheme that also achieves O(log r) approximation, but this holds for both the holding and

the acquisition cost. Our algorithm relies on the well understood structure of the indepen-

dent set polytope and introduces a novel rounding technique that might be of independent

interest. In addition, we provide the first proofs of integrality for linear programming re-

laxations for multistage combinatorial optimization problems. More specifically, we show

that the natural LP for the multistage partition matroid optimization problem is integral.

We also show integrality for the LP for the multistage matroid optimization, for two time

steps, even if the two matroids are different.

Keywords

Multistage Combinatorial Optimization, Matroids, Spanning Trees, Approximation

Algorithms, Linear Programming
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Introduction

In combinatorial optimization we have problems with constraints that model an appli-

cation frozen in one time step. However, in practice, one needs to solve instances of the

combinatorial optimization problem that changes over time. Of course, one can trivially

solve the problem independently in each time step. Nevertheless, changing the solution at

consecutive time steps, often costs a transition cost. Consider, for example, the problem

faced by a vendor who needs to get supply of an item from k different producers to meet

her demand. On any given day, she could get prices from each of the producers and pick

the k cheapest ones to buy from. As prices change, this set of the k cheapest producers

may change. However, there is a fixed cost to starting and/or ending a relationship with

any new producer. The goal of the vendor is to minimize the sum total of these two costs:

an ”acquisition cost” a(e) to be incurred each time she starts a new business relationship

with a producer, and a per period cost ct(e) of buying in period t from the each of the k

producers that she picks in this period, summed over T time periods. Observe that this

problem is an example of maintaining a base of a k-uniform matroid. Finding the optimal

solution is also trivial for matroids, since the greedy algorithm is optimal in this case. So,

it is natural to ask, whether it is also easy to solve the multistage problem for general

matroids. For example, one may want to maintain a spanning tree of a given graph at

each step, where the edge costs ct(e) change over time, and an acquisition cost of a(e) has

to be paid every time a new edge enters the spanning tree.

The multistage matroid optimization problem was introduced by Gupta, Talwar and

Wieder in [22]. The authors proved that when the acquisition costs are non-uniform, which

means that if we change different elements, we may pay different acquisition costs, then

the logarithmic approximation is optimal, unless P = NP . However, their reduction relies

heavily on the non-uniformity of the acquisition costs. For this reason, we work on the case

of uniform acquisition costs and we make a first step towards a constant approximation

algorithm, by presenting an algorithm that has constant approximation at the holding

cost and logarithmic approximation at the acquisition cost, a guarantee that the previous

algorithms did not have. Furthermore, in [22], Gupta et al. prove that the problem

restricted to partition matroids lies in P, even if the acquisition costs are non-uniform and

time-dependent. They also show the same thing for T=2, even if the two matroids are

different. We prove that the natural LPs for these problems are integral, presenting the

first integrality proofs for LP relaxations for multistage optimization problems.

1
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The time-evolving setting has also been applied to facility location problem. Eisenstat

et al. in [18] introduced two variants of the problem. In both variants, the acquisition (in

their paper they call it switching) cost is uniform and is payed when a client changes the

facility that she is connected to. The difference lies in the fact that in the first variant the

facilities do not change while in the second they can change. For both cases they present

an O(lognT) approximation algorithm, where n is the number of clients and T the number

of time steps. For the first case they show a matching lower bound, while for the second

case An et al. in [2] presented a 14-approximation algorithm.

All these raise a natural question as far as multistage combinatorial optimization is

concerned: if we have two combinatorial optimization problems A,B such that A is more

difficult than B, in the static case, and we know that in the multistage setting, A has

a constant approximation algorithm, is it the case that, in the multistage setting, B has

also a constant approximation algorithm? The answer is NO, since in [22] the authors

prove that ∀ǫ > 0 there is no O(n1−ǫ)-approximation algorithm for the multistage perfect

matching, which for T = 1 lies in P . So, if the problem A is the facility location which

is NP-hard and B is the min-cost perfect matching which belongs to P, then clearly the

above proposition is false.

Matroids

Matroid theory was introduced by Hassler Whitney (1935) [43] and it was also indepen-

dently discovered by Takeo Nakasawa. In his seminal paper, Whitney provided two axioms

for independence, and defined any structure adhering to these axioms to be ”matroids”.

His key observation was that these axioms provide an abstraction of ”independence” that

is common to both graphs and matrices. Because of this, many of the terms used in

matroid theory resemble the terms for their analogous concepts in linear algebra or graph

theory. In the 1950s W. T. Tutte became the foremost figure in matroid theory, a position

he retained for many years. His contributions were plentiful, including the characteri-

zation of binary, regular, and graphic matroids by excluded minors; the regular-matroid

representability theorem; the theory of chain groups and their matroids; and the tools

he used to prove many of his results, the ”Path theorem” and ”Homotopy theorem” [41].

Henry Crapo and Thomas Brylawski [8] generalized to matroids Tutte’s ”dichromate”, a

graphic polynomial now known as the Tutte polynomial. Their work has been followed by

a flood of papers.

Published in 1980, Paul Seymour’s decomposition theorem for regular matroids [38]

was the most significant and influential work of the late 1970s and the 1980s. Another

fundamental contribution, by Kahn and Kung [26], showed why projective geometries and

Dowling geometries play such an important role in matroid theory. By this time there

were many other important contributors, but one should not omit to mention Geoff Whit-

tle’s extension to ternary matroids of Tutte’s characterization of binary matroids that are

representable over the rationals [44], perhaps the biggest single contribution of the 1990s.



Contents 3

Around 2000, the Matroid Minors Project of Jim Geelen, Gerards, Whittle, and others,

which attempts to duplicate for matroids, that are representable over a finite field, the

success of the Robertson–Seymour Graph Minors Project, has produced substantial ad-

vances in the structure theory of matroids. Many others have also contributed to that part

of matroid theory, which is currently flourishing. For a detailed and compact presentation

of matroid theory, we refer the reader to [36].

Edmonds in [17],[16] was the first who showed a polyhedral characterization of the

independent set polytope. Optimizing a linear function subject to matroid constraint can

be solved greedily, but what if we have a submodular function? Submodular maximization

generalizes many fundamental problems in discrete optimization, including Max-Cut in

directed/undirected graphs, maximum coverage, maximum facility location and marketing

over social networks. Thus, because of its importance, this question has been extensively

studied recently and there have been wonderful results in the area. We refer the interested

reader to [11],[40],[10].

Related Work

Along with the work of Gupta et al. [22] and [2] et al., our work is related to several

lines of research. In the online case, The MMM problem is also a special case of classical

Metrical Task Systems [7]; see [1], [5] for more recent work. The best approximations for

metrical task systems are poly-logarithmic in the size of the metric space. In our case

the metric space is specified by the total number of bases of the matroid which is often

exponential, so these algorithms only give a trivial approximation. In trying to unify online

learning and competitive analysis, Buchbinder et al. [9] consider a problem on matroids

very similar to ours. In their model all acquisition costs are the same and they work with

fractional bases instead of integral ones. They give an O(logn)-competitive algorithm

to solve the fractional online LP with uniform acquisition costs (among other unrelated

results). In dynamic Steiner tree maintenance [21],[32],[24], the goal is to maintain an

approximately optimal Steiner tree for a varying instance (where terminals are added)

while changing few edges at each time step. In dynamic load balancing [19],[3] one has to

maintain a good scheduling solution while moving a small number of jobs around.

In the offline case, Shachnai et al. [39] consider “reoptimization” problems: given

a starting solution and a new instance, they want to balance the transition cost and

the cost on the new instance. This is a two-timestep version of our problem, and the

short time horizon raises a very different set of issues (since the output solution does

not need to itself hedge against possible subsequent futures). They consider a number

of optimization/scheduling problems in their framework. There is also work on “leasing”

problems [4],[34],[33]: these are optimization problems where elements can be obtained for

an interval of any length, where the cost is concave in the lengths; the instance changes

at each timestep. The main differences are that the solution only needs to be feasible at

each timestep (i.e., the holding costs are {0,∞}), and that any element can be leased for
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any length ℓ of time starting at any timestep for a cost that depends only on ℓ, which

gives these problems a lot of uniformity. In turn, these leasing problems are related to

“buy-at-bulk” problems.

Chapters Overview

The problem that we deal with in this thesis is NP-hard and the standard approach in

these cases is the design of approximation algorithms. At the same time, the approximation

algorithms that we present are mostly based on linear programming. That’s why, in

Chapter 1, we introduce the reader to the basic LP-based techniques for approximating

hard problems, via the example of Set Cover. We present a deterministic and a randomized

rounding algorithm and we analyze the natural greedy algorithm using dual-fitting. After,

we present some basic facts about linear programming that we will continuously invoke

throughout this thesis. We outline the important Rank Lemma and other properties about

extreme point solutions. We also discuss the polynomial time solvability of linear programs

using the separation oracle.

In Chapter 2 we introduce the reader to the concept of matroids. We discuss why they

constitute an important combinatorial abstraction and we present the basic properties

and definitions. We show why the greedy algorithm works in the min-weight base problem

and then we highlight the structure of the independent set polytope. Using this struc-

ture and an iterative rounding algorithm, we show that the linear program for matroid

intersection is integral. Finally, we show how an extension of these techniques yields a

(k − 1)−approximation algorithm for the k-matroid intersection problem.

In Chapter 3 we present some positive and negative results on the Multistage Ma-

troid Maintainance problem, shown in [22]. First, we show how the extension of Kruskal’s

algorithm in this time-evolving setting, analyzed through dual-fitting, gives a logT approx-

imation algorithm (T: number of timesteps). Then, we present a randomized rounding

algorithm, which uses independent sampling in each timestep, but the randomness is

shared between the timesteps. This is an O(log rT )-approximation algorithm and can be

modified to give an O(log r amax
amin

) approximation guarantee (r: rank of the matroid, amax,

amin: the maximum and minimum acquisition costs respectively). After, we present an

exact reduction from Set Cover, which shows that the logarithmic approximation is opti-

mal. Continuing with the negative results, we show that MMM with different matroids is

NP-hard to approximate better than a factor of Ω(T ) as long as T ≥ 3. Finally, we discuss

the perfect matching maintainance problem and we show that, surprisingly, the hardness

drastically increases: for any constant ǫ > 0, there is no O(n1−ǫ)-approximation.

Chapter 4 contains our research work. First, we show the the linear program for the

MMM for partition matroids is integral, even in the case of time-dependent switching costs.

Second, we prove integrality for the MMM for T=2, even when the matroids are different.

Third, having observed that the reduction from set cover relies on the non-uniformity of the

acquisition cost, Gupta et al. [22] asked whether there is a sublogarithmic approximation
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algorithm for the restriction to instances with uniform switching costs. We make a first

step towards a positive answer, by presenting a deterministic algorithm with constant

approximation at the holding cost and O(log r) at the acquisition cost.





Chapter 1

Introduction to Approximation

Algorithms

The complexity class P contains the set of problems that can be solved in polynomial

time. From a theoretical viewpoint, this describes the class of tractable problems, that

is, problems that can be solved efficiently. The class NP is the set of problems that can

be solved in non-deterministic polynomial time, or equivalently, problems for which a so-

lution can be verified in polynomial time. NP contains many interesting problems that

often arise in practice, but there is good reason to believe P 6= NP. That is, it is unlikely

that there exist algorithms to solve NP optimization problems efficiently, and so we often

resort to heuristic methods to solve these problems. Heuristic approaches include back-

track search and its variants, mathematical programming methods, local seach, genetic

algorithms, tabu search, simulated annealing etc. Some methods are guaranteed to find

an optimal solution, though they may take exponential time; others are guaranteed to run

in polynomial time, though they may not return an optimal solution. Approximation al-

gorithms fall in the latter category; however, though they do not find an optimal solution,

we can give guarantees on the quality of the solution found.

Definition 1. An α-approximation algorithm for an optimization problem is a polynomial

time algorithm that for all instances of the problem produces a solution whose value is

within a factor of α of the value of an optimal solution.

In this chapter we give a very brief overview of the basic techniques for designing

approximation algorithms, based on linear programming. Our presentation is based on

[45] and [42], where one can find a thorough presentation of the subject.

1.1 A linear programming formulation for the Set Cover

problem

Definition 2. In the Set Cover problem, we are given a ground set of elements E =

{e1, ..., en}, some subsets of those elements S1, S2, ..., Sm where each Sj ⊆ E, and a non-

7



8 Chapter 1. Introduction to Approximation Algorithms

negative weight wj ≥ 0 for each subset Sj. The goal is to find a minimum-weight collection

of subsets that covers all of E; that is, we wish to find an I ⊆ [m] that minimizes
∑

j∈I wj

subject to ∪j∈ISj = E. If wj = 1 for each subset j, the problem is called the unweighted

set cover problem.

Observe that the Set Cover generalizes vertex cover. To see that the vertex cover

problem is a special case of the set cover problem, for any instance of the vertex cover

problem, create an instance of the set cover problem in which the ground set is the set of

edges, and a subset Si of weight wi is created for each vertex i ∈ V containing the edges

incident to i. It is not difficult to see that for any vertex cover C, there is a set cover I =

C of the same weight, and vice versa.

In this thesis, linear programming plays a central role in the design and analysis of

approximation algorithms. Many of the techniques that we will use, are based on the

theory of integer and linear programming in one way or another. Here we will give a very

brief introduction to the area in the context of the set cover problem. For a much more in

depth analysis of linear programming we refer the reader to [28]. Each linear program or

integer program is formulated in terms of some number of decision variables that represent

some sort of decision that needs to be made. The variables are constrained by a number

of linear inequalities and equalities called constraints. Any assignment of real numbers

to the variables such that all of the constraints are satisfied is called a feasible solution.

In the case of the set cover problem, we need to decide which subsets Sj to use in the

solution. We create a decision variable xj to represent this choice. In this case we would

like xj to be 1 if the set Sj is included in the solution, and 0 otherwise. Thus, we introduce

constraints xj ≤ 1 for all subsets Sj , and xj ≥ 0 for all subsets Sj . This is not sufficient

to guarantee that xj ∈ {0, 1}, so we will formulate the problem as an integer program

to exclude fractional solutions (that is, nonintegral solutions); in this case, we are also

allowed to constrain the decision variables to be integers. Requiring xj to be integer along

with the constraints xj ≥ 0 and xj ≤ 1 is sufficient to guarantee that xj ∈ {0, 1}. We also

want to make sure that any feasible solution corresponds to a set cover, so we introduce

additional constraints. In order to ensure that every element ei is covered, it must be the

case that at least one of the subsets Sj containing ei is selected. This will be the case if

∑

j:ei∈Sj

xj ≥ 1

for each ei, i = 1, ..., n.

In addition to the constraints, linear and integer programs are defined by a linear

function of the decision variables called the objective function. The linear or integer

program seeks to find a feasible solution that either maximizes or minimizes this objective

function. Such a solution is called an optimal solution. The value of the objective function

for a particular feasible solution is called the value of that solution. The value of the

objective function for an optimal solution is called the value of the linear (or integer)

program. We say we solve the linear program if we find an optimal solution. In the
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case of the set cover problem, we want to find a set cover of minimum weight. Given the

decision variables xj and constraints described above, the weight of a set cover given the xj

variables is
∑m

j=1wjxj . Thus, the objective function of the integer program is
∑m

j=1wjxj ,

and we wish to minimize this function. Integer and linear programs are usually written in

a compact form stating first the objective function and then the constraints. Given the

discussion above, the problem of finding a

minimum-weight set cover is equivalent to the following integer program:

maximize

m
∑

j=1

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, ..., n

xj ∈ {0, 1}, j = 1, ...,m

(1.1)

Let Z∗
IP denote the optimum value of this integer program for a given instance of the

set cover problem. Since the integer program exactly models the problem, we have that

Z∗
IP = OPT where OPT is the value of an optimum solution to the set cover problem. In

general, integer programs cannot be solved in polynomial time. This is clear because the

set cover problem is NP-hard, so solving the integer program above for any set cover input

in polynomial time would imply that P = NP . However, linear programs are polynomial-time

solvable. In linear programs we are not allowed to require that decision variables are integers.

Nevertheless, linear programs are still extremely useful: even in cases such as the set cover

problem, we are still able to derive useful information from linear programs. For instance, if

we replace the constraints xj ∈ {0, 1} with the constraints xj ≥ 0, we obtain the following

linear program, which can be solved in polynomial time:

maximize
m
∑

j=1

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, ..., n

xj ≥ 0, j = 1, ...,m

(1.2)

It is easy to see that the linear program (1.2) is a relaxation of the original integer program.

By this we mean two things: first, every feasible solution for the original integer program (1.1)

is feasible for this linear program; and second, the value of any feasible solution for the integer

program has the same value in the linear program. m. Let Z∗
LP denote the optimum value

of this linear program. Any optimal solution to the integer program is feasible for the linear

program and has value Z∗
IP . Thus, any optimal solution to the linear program will have value

Z∗
LP ≤ Z∗

IP = OPT , since this minimization linear program finds a feasible solution of lowest

possible value.

In the following sections, we will give some examples of how the linear programming relax-

ation can be used to derive approximation algorithms for the set cover problem. Because we

will frequently be referring to linear programs and linear programming, we will often abbrevi-
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ate these terms by the acronym LP. Similarly, IP stands for either integer program or integer

programming.

1.2 Deterministic Rounding

Suppose that we solve the linear programming relaxation of the set cover problem. Let x∗

denote an optimal solution to the LP. How then can we recover a solution to the set cover

problem? Here is a very easy way to obtain a solution: given the LP solution x∗, we include

subset Sj in our solution if and only if x∗j ≥ 1/f , where f is the maximum number of sets in

which any element appears. More formally, let fi = |{j : ei ∈ Sj}| be the number of sets in

which element ei appears, i = 1, ..., n; then f = maxi∈[n]fi. Let I denote the indices j of the

subsets in this solution. In effect, we round the fractional solution x∗ to an integer solution x̂

by setting x̂j = 1, if x∗j ≥ 1/f , and x̂j = 0 otherwise. We shall see that it is straightforward

to prove that x̂ is a feasible solution to the integer program, and I indeed indexes a set cover.

Lemma 1.2.1. The collection of subsets Sj, j ∈ I, is a set cover.

Proof. Consider the solution specified by the lemma, and call an element ei covered if this

solution contains some subset containing ei. We show that each element ei is covered.

Because the optimal solution x∗ is a feasible solution to the linear program, we know that
∑

j:ei∈Sj
x∗j ≥ 1 for element ei. By the definition of fi and of f, there are fi ≤ f terms in

the sum, so at least one term must be at least 1/f. Thus, for some j such that ei ∈ Sj ,

x∗j ≥ 1/f . Therefore, j ∈ I, and element ei is covered.

Lemma 1.2.2. The rounding algorithm is an f -approximation algorithm for the set cover

problem.

Proof. It is clear that the algorithm runs in polynomial time. By our construction, 1 ≤ fx∗j
for each j ∈ I. From this, and the fact that each term fwjx

∗
j is nonnegative for j = 1, ...,m,

we see that

∑

j∈I
wj ≤

m
∑

j=1

wj(fx
∗
j ) = fZ∗

LP ≤ fOPT

In the special case of the vertex cover problem, fi = 2 for each vertex i ∈ V , since each edge

is incident to exactly two vertices. Thus, the rounding algorithm gives a 2− approximation

algorithm for the vertex cover problem.

Observe that that if
Z∗
IP

Z∗
LP

is very large, then we cannot hope for a good rounding algorithm.

That’s why we introduce the notion of integrality gap.

Definition 3. The integrality gap of an integer program is the worst-case ratio over all

instances of the problem of value of an optimal solution to the integer programming for-

mulation to value of an optimal solution to its linear programming relaxation.
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We present an example of bounding the integrality gap of an integer program. Consider

the case of the unweighted vertex cover IP, as a special case of the set cover IP. Now consider

the instance of the complete graph with n vertices, Kn. Clearly, the optimal solution of the

integer program in n-1. However, at the LP, by setting all variables to 1
2 , we satisfy all the

constraints and the value of the objective function is n
2 . Since n−1

n/2 → 2, the integrality gap

is at least two. Since now, as we proved,
Z∗
IP

Z∗
LP
≤ 2, we conclude that the integrality gap is

exactly 2 for this IP for the vertex cover and that there is no hope to design a better rounding

algorithm than the 2− approximation algorithm that we already presented.

1.3 Duality

Often it will be useful to consider the dual of the linear programming relaxation of a given

problem. Again, we will give a very brief introduction to the concept of the dual of a linear

program. To begin, we suppose that each element ei is charged some nonnegative price yi ≥ 0

for its coverage by a set cover. Intuitively, it might be the case that some elements can be

covered with low-weight subsets, while other elements might require high-weight subsets to

cover them; we would like to be able to capture this distinction by charging low prices to the

former and high prices to the latter. In order for the prices to be reasonable, it cannot be the

case that the sum of the prices of elements in a subset Sj is more than the weight of the set,

since we are able to cover all of those elements by paying weight wj . Thus, for each subset

Sj we have the following limit on the prices:

∑

i:ei∈Sj

yi ≤ wj

We can find the highest total price that the elements can be charged by the following linear

program:

maximize
n
∑

i=1

yi

subject to
∑

i:ei∈Sj

yi ≤ wj , j = 1, ...,m

yi ≥ 0, i = 1, ..., n

(1.3)

This linear program is the dual linear program of the set cover linear programming relaxation

(1.2). We can in general derive a dual linear program for any given linear program, but we will

not go into the details of how to do so; see [28]. If we derive a dual for a given linear program,

the given program is sometimes called the primal linear program. For instance, the original

linear programming relaxation (1.2) of the set cover problem is the primal linear program of

the dual (1.3). Notice that this dual has a variable yi for each constraint of the primal linear

program (that is, for the constraint
∑

j:ei∈Sj
xj ≥ 1) (1), and has a constraint for each variable

xj of the primal. This is true of dual linear programs in general.

Dual linear programs have a number of very interesting and useful properties. For example,

let x be any feasible solution to the set cover linear programming relaxation, and let y be any
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feasible set of prices (that is, any feasible solution to the dual linear program). Then consider

the value of the dual solution y:

n
∑

i=1

yi ≤
n
∑

i=1

yi
∑

j:ei∈Sj

xj =
m
∑

j=1

xj
∑

i:ei∈Sj

yi ≤
m
∑

j=1

wjxj

where in the first step we use the constraints of the primal program, in the second step we

reverse the sums and in the third step we use the constraints of the dual program. So, any

feasible solution to the dual linear program has a value no greater than any feasible solution to

the primal linear program. In particular, any feasible solution to the dual linear program has

a value no greater than the optimal solution to the primal linear program, so for any feasible

y,
∑n

i=1 yi ≤ Z∗
LP . This is called the weak duality property of linear programs. Since we

previously argued that Z∗
LP ≤ OPT , we have that for any feasible y,

∑n
i=1 yi ≤ OPT . This

is a very useful property that will help us in designing approximation algorithms.

Additionally, there is a quite amazing strong duality property of linear programs. Strong

duality states that as long as there exist feasible solutions to both the primal and dual linear

programs, their optimal values are equal. Thus, if x∗ is an optimal solution to the set cover

linear programming relaxation, and y∗ is an optimal solution to the dual linear program, then

n
∑

i=1

y∗i =
m
∑

j=1

wjx
∗
j

1.4 The Greedy Algorithm and the Dual-Fitting technique

The greedy strategy applies naturally to the set cover problem: iteratively pick the most

cost-effective set and remove the covered elements, until all elements are covered. Let C be the

set of elements already covered at the beginning of an iteration. During this iteration, define

the cost-effectiveness of a set S to be the average weight at which it covers new elements, i.e.,

w(S)/|S \ C|. Define the price of an element to be the average cost at which it is covered.

Equivalently, when a set S is picked, we can think of its cost being distributed equally among

the new elements covered, to set their prices.

Algorithm 1 Greedy set cover algorithm

C ← ∅.
while C 6= E do

Find the most cost-effective set in the current iteration, say S.

Let α = w(S)
|S\C| , i.e., the cost-effectiveness of S.

Pick S, and for each e ∈ S \ C, set price(e) = α.

C ← C ∪ S

output the picked sets

We analyze the greedy algorithm via a method called dual-fitting The method of dual

fitting can be described as follows, assuming a minimization problem: The basic algorithm is
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combinatorial – in the case of set cover it is in fact the simple greedy algorithm. Using the

linear programming relaxation of the problem and its dual, one shows that the primal integral

solution found by the algorithm is fully paid for by the dual computed; however, the dual is

infeasible. By fully paid for we mean that the objective function value of the primal solution

found is at most the objective function value of the dual computed. The main step in the

analysis consists of dividing the dual by a suitable factor and showing that the shrunk dual is

feasible, i.e., it fits into the given instance. The shrunk dual is then a lower bound on OPT,

and the factor is the approximation guarantee of the algorithm. Now, we apply this method to

set cover. The greedy algorithm defines dual variables price(e), for each element, e. Observe

that the cover picked by the algorithm is fully payed for by this dual solution. However, in

general, this dual solution is not feasible. We will show below that if this dual is shrunk by a

factor of Hn =
∑n

i=1
1
i , it fits into the given set cover instance, i.e., no set is overpacked. For

each element e define, ye =
price(e)

Hn
.

Lemma 1.4.1. The vector y defined above is a feasible solution for the dual program.

Proof. We need to show that no set is overpacked by the solution y . Consider a set Sj
consisting of k elements. Number the elements in the order in which they are covered by

the algorithm, breaking ties arbitrarily, say e1, ..., ek.

Consider the iteration in which the algorithm covers element ei. At this point, Sj

contains at least k − i+ 1 uncovered elements. Thus, in this iteration, Sj itself can cover

ei at an average cost of at most
wj

k−i+1 . Since the algorithm chose the most cost-effective

set in this iteration, price(ei) ≤ wj

k−i+1 . Thus,

yei ≤
1

Hn

wj

k − i+ 1

Summing over all the elements of Sj :

k
∑

i=1

yei ≤
1

Hn
wj

k
∑

i=1

1

k − i+ 1
=

Hk

Hn
wj ≤ wj

Therefore, Sj is not overpacked.

Lemma 1.4.2. The approximation guarantee of the g reedy set c over algo- rithm is Hn.

Proof. The cost of the set cover picked is

∑

e∈E
price(e) = Hn

n
∑

i=1

yei ≤ HnOPT

The last inequality follows from the fact that y is dual feasible.

1.5 A Randomized Rounding algorithm

In this section, we consider one final technique for devising an approximation algorithm for

the set cover problem. Although the algorithm is slower and has no better guarantee than the
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greedy algorithm of the previous section, we include it here because it introduces the notion

of using randomization in approximation algorithms.

The algorithm will solve a linear programming relaxation for the set cover problem, and then

round the fractional solution to an integral solution. Rather than doing so deterministically,

however, the algorithm will do so randomly using a technique called randomized rounding .

Let x∗ be an optimal solution to the LP relaxation. We would like to round fractional values

of x∗ to either 0 or 1 in such a way that we obtain a solution x̂ to the integer programming

formulation of the set cover problem without increasing the cost too much. The central idea

of randomized rounding is that we interpret the fractional value x∗j as the probability that x̂j

should be set to 1. Thus, each subset Sj is included in our solution with probability x∗j , where

these m events (that Sj is included in our solution) are independent random events.

Let Xj be a random variable that is 1 if subset Sj is included in the solution, and 0

otherwise. Then the expected value of the solution is

E[
m
∑

j=1

wjXj ] =

m
∑

j=1

wjPr(Xj = 1) =

m
∑

j=1

wjx
∗
j = Z∗

LP

or just the value of the linear programming relaxation, which is no more than OPT! As

we will see, however, it is quite likely that the solution is not a set cover. Nevertheless, this

illustrates why randomized rounding can provide such good approximation algorithms in some

cases.

Let us now calculate the probability that a given element ei is not covered by this procedure.

This is the probability that none of the subsets containing ei are included in the solution, or

∏

j:ei∈Sj

(1− x∗j ) ≤
∏

j:ei∈Sj

e−x∗
j = e−

∑
j:ei∈Sjx

∗
j ≤ e−1

where the first step follows the inequality ex ≥ 1 + x, ∀x ∈ R and the last step follows

from the fact that
∑

j : ei ∈ Sjx
∗
j ≥ 1. However, we would like this probability to be much

smaller, in order to be very very likely to end up with a set cover. In fact, we can achieve

such a bound in the following way. Fix a constant c ≥ 2. For each subset Sj , we imagine a

coin that comes up heads with probability x∗j , and we flip the coin c lnn times. If it comes

up heads in any of the clnn trials, we include Sj in our solution, otherwise not. Thus, the

probability that Sj is not included is (1− x∗j )
clnn. Furthermore

Pr[ei is not covered] =
∏

(1− x∗j )
clnn = e−clnn

∑
j:ei∈Sjx

∗
j ≤ e−clnn =

1

nc

Thus, from the union bound we have that

Pr[some ei is not covered i = 1, ..., n] ≤ 1

nc−1

We now need to prove only that the algorithm has a good expected value given that it

produces a set cover.

Theorem 1.5.1. The algorithm is a randomized O(lnn) -approximation algorithm that

produces a set cover with high probability.
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Proof. If Xj is a random variable that is 1 if the subset Sj is included in the solution,

and 0 otherwise, from the union bound, Pr(Xj = 1) ≤ clnnx∗j . Thus, the expected value

of the random procedure is E[
∑m

j=1wjXj ] ≤ clnn
∑m

j=1wjx
∗
j = clnnZ∗

LP However, we

would like to bound the expected value of the solution given that a set cover is produced.

Let F be the event that the solution obtained by the procedure is a feasible set cover,

and let F̄ be the complement of this event. We know from the previous discussion that

Pr(F ) ≥ 1− 1
nc−1 . Hence, since

∑m
j=1wjXj is a non-negative random variable,

E[
m
∑

j=1

wjXj | F ] ≤ 1

Pr(F )
E[

m
∑

j=1

wjXj ] ≤
clnnZ∗

LP

1− 1
nc−1

≤ 2clnnZ∗
LP

for n ≥ 2 and c ≥ 2.

1.6 Basic facts about Linear Programming

In this section we discuss linear programming and we present, without proof, basic facts

about extreme point solutions to linear programs that are necessary in order to keep up with

the topics that we analyze in this thesis. We then briefly discuss solution methods for linear

programs, particularly stating the sufficiency of finding a separation oracle for the program to

be able to solve it. Excellent introductory textbooks in this area are [28], [6].

Linear Programming

Using matrix notation, a linear program is expressed as follows:

maximize cTx

subject to Ax ≥ b

x ≥ 0

If x satises Ax ≥ b, x ≥ 0, then x is a feasible solution. If there exists a feasible solution to

the linear program, it is feasible; otherwise it is infeasible. An optimal solution x∗ is a feasible

solution such that cTx∗ = min{cTx s.t. Ax ≥ b, x ≥ 0}. The linear program is unbounded

(from below) if ∀λ ∈ R, there exists feasible x such that cTx < λ. There are different forms in

which a linear program can be represented. However, all these forms are equivalent to the form

we consider above and can be converted into one another by simple linear transformations, see

[28].

Extreme Point Solutions to Linear Programs

Definition 4. Let P = {x : Ax = b, x ≥ 0} ⊆ Rn. Then x ∈ Rn is an extreme point

solution of P if there does not exist a non-zero vector y ∈ Rn such that x+ y, x− y ∈ P .

Pictorially extreme point solutions are the corner points of the set of feasible solutions.

The following basic result shows that there is always an optimal extreme point solution to

bounded linear programs.
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Lemma 1.6.1. Let P = {x : Ax = b, x ≥ 0} ⊆ Rn and assume that the optimum value

min{cTx s.t. x ∈ P} is finite. Then for any feasible solution x ∈ P , there exists an

extreme point solution x′ ∈ P with cTx′ ≤ cTx.

We now proceed with another characterization of the extreme point solutions. A subset of

columns B of the constraint matrix A is called a basis if the matrix of columns corresponding

to B, i.e. AB, is invertible. A solution x is called basic if and only if there is a basis B such that

xj = 0 if j /∈ B and xB = A−1
B b. If in addition to being basic, it is also feasible, i.e., A−1

B b ≥ 0,

it is called a basic feasible solution for short. The correspondence between bases and basic

feasible solutions is not one to one. Indeed there can be many bases which correspond to

the same basic feasible solution. The next theorem shows the equivalence of extreme point

solutions and basic feasible solutions.

Theorem 1.6.2. Let A be a m × n matrix with full row rank. Then every feasible x to

P = {x : Ax = b, x ≥ 0} is a basic feasible solution if and only if x is an extreme point

solution.

The following Rank Lemma is an important ingredient in the correctness proofs of almost

all iterative algorithms in this thesis.

Lemma 1.6.3. (Rank Lemma) Let P = {x : Ax = b, x ≥ 0} and let x be an extreme

point solution of P such that xi > 0 for each i. Then the number of variables is equal to

the number of linearly independent constraints of A, i.e. the rank of A.

Finally, we present the definition of the integral polytope:

Definition 5. Let P be a polytope and let x be an extreme point solution of P then x is

integral if each coordinate of x is an integer. The polytope P is called integral if every

extreme point of P is integral.

Algorithms for Linear Programming

The simplex algorithm solves linear programs to get a basic feasible optimal solution. It

works by starting at any basic feasible solution and moving to a neighboring basic feasible

solution which improves the objective function. The convexity of the linear program ensures

that once the simplex algorithm ends at a local optimum basic feasible point, it has achieved

the global optimum as well. Many variants of the simplex algorithm have been considered,

each defined by which neighboring basic feasible solution to move in case there are more than

one improving basic feasible points in the neighborhood. Although the simplex algorithm works

efficiently in practice, there are examples where each variant of the simplex algorithm runs in

exponential time. Again, for more details, see e.g. [36]. Polynomial-time algorithms for solving

linear programs fall in two categories: ellipsoid algorithms [30] and interior point algorithms

[29].
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Theorem 1.6.4. There is an algorithm which returns an optimal extreme point solution

to a linear program. Moreover, the running time of the algorithm is polynomial in the size

of the linear program.

In this thesis, we will also encounter linear programs where the number of constraints is

exponential in the size of the problem (e.g., in the maximum-weight independent set problem

in chapter 2) and it is not obvious that one can enumerate them, let alone solve them in

polynomial time. We use the notion of separation to show that many exponentially sized linear

programs can be solved in polynomial time.

Definition 6. Given x∗ ∈ Rn and a polytope P = {x : Ax = b, x ≥ 0}, the separation

problem is the decision problem whether x∗ ∈ P . The solution of the separation problem

is the answer to the membership problem and in case x∗ /∈ P , it should return a valid

constraint Aix ≥ bi for P which is violated by x∗, i.e., Aix
∗ < bi.

The following theorem of Grotschel, Lóvasz and Schrijver [20] shows that polynomial time

separability is equivalent to polynomial time solvability of a linear program; we state it in a

form that is convenient for combinatorial optimization problems. The basis of this equivalence

is the ellipsoid algorithm.

Theorem 1.6.5. Given a full-dimensional polytope P and a polynomial-time separation

oracle for P, one can find an optimal extreme point solution to a linear objective function

over P (assuming it is bounded) via the Ellipsoid algorithm that uses a polynomial number

of operations and calls to the separation oracle.

Clearly, one can solve the separation problem by checking each constraint but for problems

where the number of constraints is exponential in size such a method is too slow. In this

thesis, as we consider LP formulations with an exponential number of constraints, we will

often provide efficient separation oracles showing that the linear program for the problem is

solvable in polynomial time.





Chapter 2

Matroids and the Iterative

Method

Matroids were introduced by Whitney in 1935 to try to capture abstractly the essence of

dependence. Whitney’s definition embraces a surprising diversity of combinatorial structures,

like spanning trees. After introducing matroids and stating some basic properties, we address

the two most important polynomial-time solvable problems in this formalism: that of finding

a maximum weight basis and of finding a maximum weight common independent set of two

matroids (the so-called two-matroid intersection problem). We show integral characterizations

for both problems by exploiting the structure of the extreme points of the corresponding LP’s.

Finally, by using a method called ”iterative rounding”, we present a (k − 1)-approximation

algorithm for the unweighted k matroid intersection problem: finding a maximum cardinality

common independent set in k matroids defined on the same ground set. The work of Jack

Edmonds [17],[15] first showed the polyhedral characterization results presented in this chapter.

2.1 Preliminaries

Definition 7. A pairM = (S, I) is a matroid if I is a nonempty collection of subsets of

S with the following properties:

1. ∅ ∈ I

2. A ∈ I and B ⊆ A ⇒ B ∈ I

3. A,B ∈ I and |A| > |B| ⇒ ∃x ∈ B \A such that A ∪ {x} ∈ I

S is called the ground set of the matroidM. A set A ⊆ S is called independent if A ∈ I
else it is called dependent. A maximal set A ∈ I is called a basis of M. Observe that Property

3 implies that all bases have the the same cardinality.

19
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Examples of Matroids

1. Graphic Matroid: Given an undirected graph G = (V,E), the graphic matroid of G is

defined asMG = (E, IG) where IG = {F ⊆ E |F contains no cycles}.

2. Uniform Matroid: Given a set S and an integer k ≥ 0, the uniform matroid of rank k

is defined asMk
S = (S, Ik) where Ik = {T ⊆ S : |T | ≤ k}.

3. Partition Matroid: Let S1, S2, ..., Sn be a partition of S and k1, k2, ..., kn be nonnega-

tive integers. Let I = {T ⊆ S : |T ∩ Si| ≤ ki for all 1 ≤ i ≤ n}.

4. Linear Matroid: Let A be an m × n matrix and S = {1, ..., n}. For any 1 ≤ i ≤ n,

let Ai denote the ith-column of A. The linear matroid over matrix A is defined as

MA = (S, IA) where IA = {T ⊆ S : Ai for i ∈ T are linearly independent}.

5. Matroid Restriction: Let M = (S, I) be a matroid and T ⊆ S. Then the matroid

restriction of M to the set T is the matroid MT = (T, IT ) where IT = {R : R ∈
I, R ⊆ T}.

Let’s check that the Graphic Matroid is indeed a matroid. First of all, the independent

sets are all the forests. The empty set is a forest and if we remove edges from a forest it

remains a forest. It remains to check the third property. So, let F1, F2 ⊆ E with |F1| > |F2|
and let’s suppose that ∀e ∈ F1 : F2 ∪ {e} is not a forest. For this to happen, it must be the

case that all the edges of F1 lie inside the connected components of F2 and thus F2 has less

connected components than F1, contradiction. It is similarly straightforward to show that the

other examples are also matroids.

Base, Circuit, Rank, Span

LetM = (S, I) be a matroid. In the following lines, for a subset A of S and a x ∈ S we

write A+ x for A ∪ {x} and A− x for A \ {x}.

Definition 8. A set X ∈ S such that X /∈ I is called a dependent set ofM.

Definition 9. A loop is an element x ∈ S such that {x} is dependent. Notice that a loop

cannot appear in any sets in I.

Definition 10. A base is an inclusion wise maximal set in I.

Proposition 2.1.0.1. If B and B̂ are bases ofM then |B| = |B̂|.

The proof is straightforward from the third matroid property. Notice that the notion of

base here is similar to that of a basis in linear algebra.

Lemma 2.1.1. Let B and B̂ be two different bases ofM. Let x ∈ B̂ \B, then ∃y ∈ B \ B̂
such that B̂ − x+ y is a base ofM.
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Proof. Since B̂ − x ∈ I, |B̂ − x| < |B|, then ∃y ∈ B \ B̂ such that B̂ − x + y ∈ I. Since

|B̂ − x+ y| = |B|, B̂ − x+ y is a base.

Definition 11. Given M = (S, I) and Ŝ ⊆ S, B̂ is a base for Ŝ if B̂ is a base of M̂,

where M̂, is a restriction ofM to Ŝ.

Proposition 2.1.1.1. Given M = (S, I), let B be a base for X. Then for any Y ⊇ X,

there exists a base B̂ for Y that contains B.

Proof. Notice that B is independent in the restriction of M to Y (henceforth independent

in Y ). Let B̂ be the maximal independent set in Y that contains B. Since all maximal

independent sets have same size, B̂ is a base of Y .

Definition 12. GivenM = (S, I), a circuit is a minimal dependent set (i.e., an inclusion

wise minimal set in 2S \ I). Thus, if C is a circuit then ∀x ∈ C : C − x ∈ I.

The definition of a circuit is related to graph theory in the following sense: if M is the

graphic matroid of a graph G, then the circuits of M are the cycles of G. Single element

circuits of a matroid are loops. If M is a graphic matroid of a graph G, then the set of loops

of M is precisely the set of loops of G.

Definition 13. Given a matroid M = (S, I), the rank function rM : 2S → N of the

matroidM is defined as rM(T ) = max{|U | : U ⊆ T and U ∈ I}.

So, r(A) is the cardinality of the bases of A. We will drop the subscriptM from the rank

function rM when the matroidM is clear from the context. Observe that A ∈ I if and only

if r(A) = |A|. Also, a property of the rank function of matroids is that it belongs to a very

important family of set functions, the submodular functions. In mathematics, a submodular

set function (also known as a submodular function) is a set function whose value, informally,

has the property that the difference in the incremental value of the function that a single

element makes when added to an input set decreases as the size of the input set increases.

We proceed with the formal definition.

Definition 14. If S is a finite set, a submodular function is a set function f : 2S → R,

which satisfies one of the following equivalent definitions

1. For every X,Y ⊆ S with X ⊆ Y and every x ∈ S \ Y, x ∈ S \ Y we have that

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

2. For every S, T ⊆ S we have that f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

For the proof of the equivalence, we refer the reader to [37]. A special class of the sub-

modular functions are the modular functions, which satisfy property 2 in the above definition

with equality, i.e, For every S, T ⊆ S we have that f(S) + f(T ) = f(S ∪ T ) + f(S ∩ T ). It

is easy to see that the indicator function is modular.

Lemma 2.1.2. Let r be the rank function of matroidM = (S, I). Then r is submodular.
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Proof. We will use the first definition of submodularity. Observe that the differences that

we have to compare are 0 or 1. Now, let’s suppose that r(Y ∪{x})−r(Y ) = 1. Every base

B of Y+x contains x. Let B̂ be a base of X. Since X ⊆ Y + x, from Proposition 2.1.1.1,

there exists a base B of Y+x such that B ⊇ B̂. Then B̂ + x is independent, implying

rM(X + x)− rM(X) = 1 as B̂ + x is a base in X+x.

Exactly as in the case of linear matroids, we define the span of a subset of the ground set:

Definition 15. Let M = (S, I) be a matroid. For any X ⊆ S, the span of X, denoted

by spanM(X), is defined as spanM(X) = {y : y ∈ S and rM(X + y) = rM(X)}. A set

X ⊆ S is spanning if spanM(X) = S.

For more properties of bases, rank, span and circuits, we refer the reader to [37].

We now define two important operations on matroids.

Definition 16. (Deletion) Given a matroid M = (S, I) and x ∈ S we define M\ x =

(S − x, I1), where I1 = {T − x : T ∈ I} to be the matroid obtained by deleting x from

M. The rank function ofM\ x, denoted by r1, is related to the rank function r ofM by

the formula r1(T ) = r(T ) for T ⊆ S − x.

Definition 17. (Contraction) Given a matroidM = (S, I) and x ∈ S we defineM/x =

(S−x, I2) as the matroid obtained by contracting x inM, where I2 = {T ⊆ S−x : T+x ∈
I}, if {x} is independent, and I2 = I if {x} is dependent. The rank function of M/x,

denoted by r2, is related to the rank function ofM by the formula r2(T ) = r(T+x)−r({x})
for T ⊆ S − x. Note that if {x} is dependent, thenM/x =M\ x.

2.2 Maximum Weight Independent Set

Matroids have some important algorithmic properties, the simplest one being that the

problem of determining the maximum weight independent set in a matroid can be solved using

a greedy algorithm. The maximum weight independent set problem is stated as follows: Given

M = (S, I) and w : S → R, output

max
X∈I

w(X)

However, before presenting the algorithm, we have to clarify the computational model on

which we are working. More specifically, if the matroid was given to us through a list containing

all its independent sets, then our input could be exponential in |S|. Instead we resort to one

of the following two oracles in order to efficiently solve optimization problems:

• An independence oracle that given A ⊆ S, returns whether A ∈ I or not.

• A rank oracle that given A ⊆ S, returns rM (A).
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Algorithm 2 The Greedy Algorithm

Remove fromM all the elements that have negative weight.

Let S = {e1, e2, ..., en} such that w(e1) ≥ w(e2) ≥, , ,≥ w(en) ≥ 0

X ← ∅
for i=1,...,n do

if (X + ei) ∈ I then X ← X + ei

output X

These two oracles are equivalent in the sense that one can be recovered from the other in

polynomial time. Given one of these two oracles, we have the greedy algorithm Algorithm 1

that computes the max-weight independent set:

This algorithm is often called Kruskal’s algorithm because it is exactly the Kruskal’s algo-

rithm in the case of Graphical Matroids for w ≥ 0 (max-weight spanning tree).

Theorem 2.2.1. The Greedy Algorithm correctly solves the Maximum Weight Independent

Set problem.

Proof. Without loss of generality, we consider the case of nonnegative weights, as it holds

for the matroid after removing the elements with negative weight (the optimal solution

does not contain them due to the second matroid property). Let M = (S, I) be the

matroid that we have at the second step of the algorithm and the weight function on it

w ≥ 0. Clearly the optimal solution is a base. Call an independent set Y greedy if it

is contained in a maximum-weight basis. It suffices to show that if Y is greedy, and x

is an element in S \ Y such that Y + x ∈ I and such that w(x) is as large as possible,

then Y+x is greedy. As Y is greedy, there exists a maximum-weight basis B ⊇ Y . If

x ∈ B then Y+x is greedy again. If x /∈ B, then there exists a basis B̂ containing Y+x

and contained in B+x (this basis is produced by repeatedly applying the third matroid

property). B̂ = B− x̂+x for some x̂ ∈ B \Y . As w(x) is chosen maximum, w(x) ≥ w(x̂).

Hence w(B̂) ≥ w(B), and therefore B̂ is a maximum-weight basis. So Y+x is greedy.

We should also note that we can adapt the greedy algorithm to solve the maximum weight

base problem by making all weights non-negative by adding a large constant to each of the

weights. Thus max-weight base problem, and equivalently min-weight base problem can be

solved (by taking the weights to be the negative of the costs).

2.3 Matroid Polytope

We begin by giving a linear programming formulation for the problem maximum-weight

independent set problem. Let xe denote the indicator variable for element e, with the intent

that xe = 1 if e is in the solution and 0 otherwise. We obtain the following linear programming

relaxation LPmat(M) after relaxing the integrality constraints on the variables x. In the

following we use the shorthand x(T ) for
∑

e∈T xe for any T ⊆ S.
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maximize
∑

e

wexe

subject to x(T ) ≤ r(T ), ∀T ⊆ S
xe ≥ 0, ∀e ∈ S

The constraints of the LPmat are exponential in the size of the ground set. Thus, in order

to solve it via the ellipsoid method, we want a separation oracle that takes a vector y ∈ R|S|

and outputs either that y is a feasible solution of the LP or a constraint that is violated by y.

First of all, we can easily test for non-negativity. To test the second group of constraints, let’s

define f : 2S → R such that:

f(T ) = r(T )− x(T )

So, for the separation oracle, it suffices to find a subset of S that minimizes f and check

whether the minimum is non-negative. If it is not, it returns the constraint corresponding to

the minimizer of f. Observe, that since r(T) is a submodular function and x(T) is a modular

function, f is submodular. So, we can use an algorithm for minimizing a submodular function,

see [37]. However, there is a more efficient algorithm for separating over this LP given by

Cunningham, see [37] for details.

For a set T ⊆ S, let χ(T ) denote the characteristic vector in R|S| that has a 1 corresponding

to each element e ∈ T and 0 otherwise. Now, the constraints of the above LP form a polytope.

What we are going to show in this section is that this polytope is integral, i.e, all its extreme

points have integer coordinates. What is the implication of such a theorem? Let’s take a

feasible integral solution x of this LP. From the nonnegativity constraints and the constraints

on the singletons we have that x ∈ {0, 1}|S|. So, x = χ(A) for some A ⊆ S. Since x is

feasible, |A| = x(A) ≤ r(A) ⇒ x(S) = x(A) = r(A), so x is the characteristic vector of

the independent set A ∈ I. Notice that for every A ∈ I we can set the weights such that A

is the unique max-weight independent set (set weight 1 for all its elements and -1 all other

weights). Summarizing, we have that each extreme point is the characteristic vector of an

independent set and each independent set can be the unique optimal integral solution for

some weight function. Thus, the extreme points are exactly all the characteristic vectors of

the independent sets of S. In other words, the above inequalities form the convex hull of the

indicator vectors of the independent sets ofM!

The Uncrossing Technique and Characterization of Extreme Points

Now, we analyze the extreme point solutions of the LPmat. Recall that an extreme point

solution is the unique solution defined by n linearly independent tight inequalities, where

n = |S| is the number of variables in the linear program. There are exponentially many

inequalities in the LPmat and an extreme point solution may satisfy many inequalities as

equalities. To analyze an extreme point solution, an important step is to find a ”good” set of

tight inequalities defining it. If there is an element e with xe = 0, this element can be removed

from the matroid without affecting the feasibility and the objective value. So henceforth

assume every element has xe > 0.
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Given an extreme point solution x to LPmat let F = {T ⊆ S : x(T ) = r(T )} be the set

of tight constraints. We first show that F is closed under intersection and union.

Lemma 2.3.1. If U, V ∈ F , then both U ∪ V and U ∩ V are in F . Furthermore,

χ(U) + χ(V ) = χ(U ∪ V ) + χ(U ∩ V )

.

Proof.

r(U)+ r(V ) = x(U)+x(V ) = x(U ∪V )+x(U ∩V ) ≤ r(U ∪V )+ r(U ∩V ) ≤ r(U)+ r(V )

The first equality is by the fact that U, V ∈ F . The second equality follows from the fact

that x(T) is modular. The third inequality follows from the constraints of the LPmat(M).

The last equality is because of the submodularity of the rank function r.

Now, let’s proceed with a set family with a very ”friendly” structure:

Definition 18. (Chain) A subset L ⊆ 2S is a chain if

A ∈ L, B ∈ L ⇒ A ⊆ B or B ⊆ A

We now present an uncrossing argument that, using lemma 2.3.1, shows that the linearly

independent set of tight constraints can be chosen to form a chain (remember that all xe > 0

without loss of generality). If A is a family of subsets of S, we denote by span(A) the vector

space generated by the set of vectors {χ(T ) | T ∈ A}.

Lemma 2.3.2. If L is a maximal chain subfamily of F , then span(L) = span(F).

Proof. Suppose, by way of contradiction, that L is a maximal chain of F but span(L) ⊂
span(F). For any A ⊆ S such that A /∈ L, define intersect(A,L) to be the number of

sets in L which intersect A, i.e. intersect(A,L) = |{T ∈ L | T \A 6= ∅, A \ T 6= ∅}|. Since
span(L) ⊂ span(F), there exists a set A with χ(A) /∈ span(L). Choose the one with the

minimum intersect(A,L). Since L is a maximal chain, we distinguish two cases for A.

First, let’s suppose that A∩C = ∅, ∀C ∈ L. Let C be the inclusion-wise maximum set of L.
Observe that using lemma 2.3.1 we have that C∪A ∈ F and since A 6= ∅ (χ(A) /∈ span(L))
we have that C ∪A ⊃ A. Thus, the chain is not maximal, contradiction. The other case is

that intersect(A,L) ≥ 1. Let T be a set in L which intersects A: T\A 6= ∅, A\T 6= ∅ . Since
A, T ∈ F , by Lemma 2.3.1, both A∩T and A∪T are in F . Also, both intersect(A∩T,L)
and intersect(A ∪ T,L) are smaller than intersect(A,L), which will be proved next in

Proposition 2.3.2.1. Hence, by the minimality of intersect(A,L), both A ∩ T and A ∪ T

are in span(L). By Lemma 2.3.1, χ(A) + χ(T ) = χ(A∪ T ) + χ(A∩ T ). Since χ(A∪ T ) +
χ(A ∩ T ) are in span(L) and T ∈ L, the above equation implies that χ(A) ∈ span(L), a
contradiction. It remains to prove Proposition 2.3.2.1
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Proposition 2.3.2.1. Let A be a set that intersects T ∈ L. Then intersect(A∩T,L) and
intersect(A ∪ T,L) are smaller than intersect(A,L).

Proof. Since L is a chain, for a set R ∈ L with R 6= T , R does not intersect T. So,

whenever R intersects A ∩ T or A ∪ T , R also intersects A. Also, T intersects A but not

A ∩ T or A ∪ T . Therefore, intersect(A ∪ T,L) and intersect(A ∩ T,L) are smaller than

intersect(A,L).

This completes the proof of Lemma 2.3.2. Based on this and the Rank Lemma we can

now proceed to the characterization of the extreme points of LPmat.

Lemma 2.3.3. Let x be any extreme point solution to LPmat(M) with xe > 0 for each

element e ∈ S. Then there exists a chain L such that

1. x(T ) = r(T ) for each T ⊆ L

2. The vectors in {χ(T ) : T ∈ L} are linearly independent.

3. |L| = |S|

Now that we have this structural lemma, we can prove the main theorem of this section:

Theorem 2.3.4. The optimal solution of the LPmat(M) is integral.

Proof. Let x be the optimal solution. As we have already mentioned, if we remove from

M all the elements with xe = 0 and take the LPmat for the new matroid, the optimal

solution at the remaining variables will stay invariant and it is easy to see that it will

be an extreme point. So if we prove the integrality for the new LP, we proved it for the

initial. Thus, without loss of generality, we can assume that xe > 0, ∀e ∈ S.
Let’s suppose that there exists an element e∗ ∈ S such that xe∗ ∈ (0, 1) (observe that

the constraints on singletons impose xe ≤ 1 for all the elements e). Now, we proceed with

a ”token argument”. We assign one token for each element e ∈ S, for a total of |S| tokens.
We will redistribute the tokens so that each set in L will receive one token and there are

some extra token left. This implies that |L| < |S|, contradicting lemma 2.3.3.

To redistribute the tokens, each element gives its token to the smallest set of the chain

L that contains it. Let’s take two consecutive sets of the chain: A ⊆ B. Their constraints

are tight, so:

x(A) = r(A) and x(B) = r(B) ⇒ x(B)− x(A) = r(B)− r(A)

But, r(B) − r(A) is an integer and x(B) − x(A) ≥ 0. Also, if x(B) − x(A) = 0, since

A ⊆ B, we have that A=B (xe > 0 for all e), which is impossible because of the linear

independence. Hence x(A) − x(B) ≥ 1. Also, if C is the inclusion-wise minimum set of

the chain, C 6= ∅ because of the linear independence and thus x(C) = r(C) ≥ 1. So, each

set of the chain L gets at least one token. Let’s focus on the set that takes the token of

e*. If there is no such set we are done. Otherwise, since 0 < xe∗ < 1, this set receives at

least two tokens.
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This shows that the LPmat(M) is an exact formulation of the max-weight independent

set problem.

Theorem 2.3.5. The extreme point solutions of LPmat(M) are the independent sets of

matroidM.

2.4 Matroid Intersection

Given matroids M1 = (S, I1) and M2 = (S, I2) and a weight function w : S → R, the

maximum weight two matroid intersection problem is to find a set T ⊆ S of maximum weight

which is independent in bothM1 andM2, i.e, T is a maximizer of

maxT⊆S, T∈I1∩I2w(T )

where w(T ) =
∑

e∈T we. We refer to the two matroid intersection problem as matroid

intersection. This problem generalizes many important problems, including the maximum

weight matching in bipartite graphs and maximum weight arborescence problem.

Examples of Matroid Intersection

1. Matchings in Bipartite graph: Given a bipartite graph G = (A ∪ B,E), let MA =

(E, I1) be a partition matroid on E where I1 = {F ⊆ E | dF (v) ≤ 1, ∀v ∈ A}.
Similarly, letMB = (E, I2) be a partition matroid on E where I2 = {F ⊆ E | dF (v) ≤
1, ∀v ∈ B}. Observe that T ∈ I1 ∩ I2 if and only if T is a matching in G. Hence,

finding a maximum weight matching in G is equivalent to finding a maximum weight

independent set in the intersection of matroidsMA andMB.

2. Arborescence: Given a directed graph D = (V,A) and a root vertex r ∈ V , an r-

arborescence is a subgraph of D so that there is a directed path from r to every vertex in

V \{r}. The minimum arborescence problem is to find an r-arborescence with minimum

total cost. LetM1 = (A, I1) be the graphic matroid on the underlying undirected graph

of D (where we ignore arc directions). LetM2 = (A, I2) be the partition matroid where

I2 = {B ⊆ A : dinB (v) ≤ 1, ∀v ∈ D \ {r} and dinB (r) = 0}. Observe that B is a

common basis in I1 and I2 if and only if B is an arborescence rooted at r.

For the Matroid Intersection problem, there exists a polynomial time algorithm that com-

putes the max-weight common independent set. However, for the purposes of this thesis, we

will present an LP-based algorithm.

Linear Programming Relaxation

We now give a linear programming formulation for finding a maximum weight common

independent set in the intersection of two matroids. Let xe denote the indicator variable for
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element, with xe = 1 if e is in the common independent set and 0 otherwise. We obtain the fol-

lowing linear programming relaxation LPint(M1,M2) after relaxing the integrality constraints

on the variables x. Here ri(T ) denotes the rank of the set T in the matroidMi.

maximize
∑

e

wexe

subject to x(T ) ≤ r1(T ), ∀T ⊆ S
x(T ) ≤ r2(T ), ∀T ⊆ S
xe ≥ 0, ∀e ∈ S

Solving the linear program. To get a separation oracle can be implemented if we are given

as input independence oracles for each of the matroids M1 and M2, by using the work of

Cunningham [37] as before, or any algorithm for minimizing submodular functions.

Characterization of Extreme Point Solutions

We now give a characterization of extreme points of the linear program LPint(M1,M2)

by showing that the independent set of tight constraints can be chosen to form a union of two

chains. The proof is quite straightforward and uses the characterization of tight inequalities

for the max-weight independent set problem.

Given an extreme point solution x to LPint(M1,M2) let F1 = {T ⊆ S : x(T ) = r1(T )}
and F2 = {T ⊆ S : x(T ) = r2(T )} be the set of tight constraints.

Lemma 2.4.1. There exist two chains C1 and C2 such that span(C1∪C2) = span(F1∪F2)

and constraints in sets C1 and C2 are linearly independent.

Proof. Applying Lemma 2.3.2 to families F1 and F2 separately, we obtain two chains

Ĉ1 and Ĉ2 such that span(Ĉ1) = span(F1) and span(Ĉ2) = span(F2). Now, picking a

maximal independent family from Ĉ1 ∪ Ĉ2 gives us the desired chains.

Thus, from the Rank Lemma:

Lemma 2.4.2. Let x be any extreme point solution to LPint(M1,M2) with xe > 0 for

each element e ∈ S. Then there exist two chains C1 and C2 such that

1. x(T ) = ri(T ) for each T ⊆ Ci for i = {1, 2}.

2. The vectors in {χ(T ) : T ∈ C1} ∪ {χ(T ) : T ∈ C2} are linearly independent.

3. |C1|+ |C2| = |§e|.

Iterative Algorithm

We now give an iterative algorithm which constructs an integral solution from the linear

program and shows that the linear programming formulation is integral.
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Algorithm 3 Iterative Matroid Intersection Algorithm

I ← ∅.
while S 6= ∅ do

Find an optimal extreme point solution x to LPint(M1,M2). Delete from both

matroids every element e ∈ S with xe = 0.

If there is an element e with xe = 1, then update I ← I ∪ {e},M1 ←M1/e,M2 ←
M2/e.

return I.

Correctness and Optimality

First of all, we show that the algorithm will terminate:

Lemma 2.4.3. For any extreme point solution x to LPint(M1,M2) with xe > 0 for every

element e, there exists an element e with xe = 1.

Proof. Suppose for a contradiction 0 < xe < 1 for each e ∈ S. Then the number of

variables is exactly |S|. By Lemma 2.4.2, we obtain two chains C1, C2 defing x. We now

show a contradiction to the fact that |S| = |C1| + |C2| by a counting argument. We give

two tokens to each element in S for a total of 2|S| tokens. Now, we collect two tokens

for each member of C1, C2 and an extra token showing the contradiction. This is done as

follows. Each element e assigns one token to the smallest set Ti ∈ Ci such that e ∈ T i

for i = {1, 2}. We now claim that each set in C1 ∪ C2 obtains at least two tokens. The

argument is identical for sets in C1, C2. Let T ∈ C1 and R be the largest set in C1 such

that R ⊆ T . Now, we have x(T ) = r1(T ) and x(R) = r1(R). Subtracting, we obtain

x(T \ R) = r1(T ) − r1(R). If T \ R = ∅ then T = R and we have a contradiction to the

linear independence of the constraints. Also, since x(T \ R) is an integer and 0 < xe < 1

for all e, we have that |T \ R| ≥ 2. Thus, T receives one token for each element in T \ R
for a total of at least two tokens. Therefore, every set in C1 ∪ C2 receives at least two

tokens. Now, we show that there is at least one extra token. First of all, if an element

does not belong to any set of a specific chain, then its corresponding token goes nowhere

and we are done. So, it must be the case that the maximal element of each chain contains

all the elements, which means that S belongs to both, contradiction because of the linear

independence.

Theorem 2.4.4. The optimal solution of the LPint(M1,M2) is integral.

Proof. This is proved by induction on the number of iterations of the algorithm. The

base case is trivial to verify. LetM1 = (S, I1),M2 = (S, I2) denote the matroids in the

current iteration and x the optimal LP solution. If the algorithm finds an element e with

xe = 0 we remove e from both matroids. Observe that x restricted to S − e, say x’, is a

feasible solution to LPint(M1− e,M2− e). This is easily checked using the rank function

of Mi − e which is identical to the rank function ofMi on the sets not containing e, for
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i = 1, 2. By induction, we find a common independent set I ofM1 − e,M2 − e of weight

at least
∑

e′∈S−ew(e
′)x′(e′). Observe that I is also a common independent set ofM1,M2

and costs at least
∑

e′∈S−ew(e
′)x′(e′) =

∑

e∈S w(e)x(e). Hence, the induction claim is

true in this case.

Now, suppose the algorithm selects an element e with xe = 1. Then the algorithm

updates the matroids M1,M2 to M1/e, M2/e and I to I + e. Let r1 denote the rank

function ofM1 and r′1 denote the rank function ofM1/e. We now claim that x restricted

to S − e, say x’, is a feasible solution to LPmat(M1/e). For any set T ⊆ S − e, we have

x′(T ) = x(T + e) − xe = x(T + e) − 1 ≤ r1(T + e) − 1 = r′1(T ). With exactly the same

argument we have that x restricted to S−e, say x’, is a feasible solution to LPmat(M2/e).

Thus, it is a feasible solution to LPint(M1/e,M2/e). By the induction hypothesis, we

obtain an independent set I’ of M/e of weight at least w · x′. Then I ′ + e is a common

independent set ofM1,M2 of weight at least w · x′ +we = w · x as required. This shows

that the algorithm returns a maximum weight common independent set ofM1,M2.

It is easy to see that the above theorem shows that the LPint(M1,M2) is an exact

formulation of the maximum-weight matroid intersection problem.

Theorem 2.4.5. The extreme point solutions of LPint(M1,M2) correspond to indepen-

dent sets in the intersection ofM1 andM2.

2.5 k Matroid Intersection via Iterative Rounding

Given k matroids M1 = (S, I1), M2 = (S, I2), ...,Mk = (S, Ik) on the same ground

set S, the maximum k matroid intersection problem is to find a set T ⊆ S of maximum

cardinality which is independent in all matroidsM1,M2, ...,Mk. If someones tries to extend

the integrality proof for three matroids will fail and there is a reason behind this:

Theorem 2.5.1. Three Matroid Intersection is NP-hard.

Proof. We use a reduction from the Hamiltonian path problem in directed graphs. Given

a directed graph G with n vertices, and specified nodes s and t, the Hamiltonian path

problem is the problem of determining whether there exists a simple path of length n-1

that starts at s and ends at t. It may be assumed without loss of generality that s has

no incoming edges and t has no outgoing edges. Then, a Hamiltonian path exists if and

only if there is a set of n-1 elements in the intersection of three matroids on the edge set

of the graph: two partition matroids ensuring that the in-degree and out-degree of the

selected edge set are both at most one, and the graphic matroid of the undirected graph

formed by forgetting the edge orientations in G, ensuring that the selected edge set has

no cycles.

So, it is reasonable to seek for approximation algorithms for th k Matroid Intersection

problem. We will present a 2-approximation algorithm for this problem when k=3, which
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is easily generalized to a (k − 1)−approximation algorithm for the k Matroid Intersection

problem. For now, we have k=3. The technique that we use is called ”Iterative Rounding”

and was introduced by Jain in [25] describing a 2-approximation algorithm for a large class

of minimum-cost network design problems in undirected networks. For a very detailed and

compact presentation of the power of this method see [31]. The general idea, applied to our

framework is the following: using the structure of the optimal extreme point, prove that there

is a variable with value greater or equal to 1/2 add that element to the solution, remove it

from the matroid and recurse on the residual problem.

Linear Programming Relaxation

The linear programming relaxation, denoted by LP3int(M1,M2,M3), for three-matroid

intersection is a natural extension of LPint(M1,M2) for two-matroid intersection. Notice

that we only consider the unweighted problem where we = 1 for all e ∈ S.

maximize
∑

e

xe

subject to x(T ) ≤ r1(T ), ∀T ⊆ S
x(T ) ≤ r2(T ), ∀T ⊆ S
x(T ) ≤ r3(T ), ∀T ⊆ S
xe ≥ 0, ∀e ∈ S

There is an efficient separation oracle for this exponential-size linear program, as in the

case for two-matroid intersection. As for the structure of the extreme point solutions its proof

follows the same lines as the proof of Lemma 2.4.2 for two-matroid intersection.

Characterization of Extreme Point Solutions

Lemma 2.5.2. Let x be any extreme point solution to LP3int(M1,M2,M3) with xe > 0

for each element e ∈ S. Then there exist three chains C1, C2, C3 such that

1. x(T ) = ri(T ) for each T ⊆ Ci for i = {1, 2, 3}.

2. The vectors in {χ(T ) : T ∈ C1}∪{χ(T ) : T ∈ C2}∪{χ(T ) : T ∈ C3} are linearly

independent.

3. |C1|+ |C2|+ |C3| = |S|.
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Iterative Algorithm

Algorithm 4 Iterative Three Matroid Intersection Algorithm

I ← ∅.
while S 6= ∅ do

Find an optimal extreme point solution x to LP3int(M1,M2,M3). Delete from all

three matroids every element e ∈ S with xe = 0.

If there is an element e with xe ≥ 1/2, then update I ← I∪{e},M1 ←M1/e,M2 ←
M2/e,M3 ←M3/e.

return I.

Correctness and Performance Guarantee

We first show that the iterative algorithm makes progress in each iteration. We then show

that the algorithm returns a 2-approximate solution assuming it makes progress in each step.

Lemma 2.5.3. For any extreme point solution x to LP3int(M1,M2,M3) with xe > 0 for

every element e, there exists an element e with xe ≥ 1/2.

Proof. Suppose for a contradiction 0 < xe < 1/2 for each e ∈ S. Then the number of

variables is exactly |S|. By Lemma 2.5.2, we obtain three chains C1, C2, C3 defing x. We

now show a contradiction to the fact that |S| = |C1|+ |C2|+ |C3| by a counting argument.

We give three tokens to each element in S for a total of 3|S| tokens. Now, we collect

three tokens for each member of C1, C2, C3 and an extra token showing the contradiction.

This is done as follows. Each element e assigns one token to the smallest set Ti ∈ Ci such

that e ∈ T i for i = {1, 2, 3}. We now claim that each set in C1 ∪ C2 ∪ C3 obtains at

least three tokens. The argument is identical for sets in C1, C2, C3. Let T ∈ C1 and R be

the largest set in C1 such that R ⊆ T . Now, we have x(T ) = r1(T ) and x(R) = r1(R).

Subtracting, we obtain x(T \ R) = r1(T ) − r1(R). If T \ R = ∅ then T = R and we

have a contradiction to the linear independence of the constraints. Also, since x(T \ R)

is an integer and 0 < xe < 1/2 for all e, we have that |T \ R| ≥ 3. Thus, T receives one

token for each element in T \ R for a total of at least three tokens. Therefore, every set

in C1 ∪ C2 ∪ C3 receives at least three tokens. Now, we show that there is at least one

extra token. First of all, if an element does not belong to any set of a specific chain, then

its corresponding token goes nowhere and we are done. So, it must be the case that the

maximal element of each chain contains all the elements, which means that S belongs to

all three chains, contradiction because of the linear independence.

Theorem 2.5.4. The iterative algorithm returns a 2-approximate solution to the maxi-

mum three-matroid intersection problem in polynomial time.

Proof. This is proved by induction on the number of iterations of the algorithm. The

base case is trivial to verify. Let M1 = (S, I1), M2 = (S, I2), M3 = (S, I3) denote the



2.5 k Matroid Intersection via Iterative Rounding 33

matroids in the current iteration and x the optimal LP solution. If the algorithm finds

an element e with xe = 0 we remove e from all the matroids. Observe that x restricted

to S − e, say x’, is a feasible solution to LP3int(M1 − e,M2 − e,M3 − e). This is easily

checked using the rank function of Mi − e which is identical to the rank function ofMi

on the sets not containing e, for all i. By induction, we find a common independent set

I of M1 − e, M2 − e, M3 − e of weight at least
∑

e′∈S−e x
′(e′). Observe that I is also a

common independent set ofM1,M2,M3 and costs at least x′(S − e) = x(S). Hence, the
induction claim is true in this case.

We focus on the case when the algorithm selects an element e with xe ≥ 1/2. In

this case the algorithm updates the matroid Mi to Mi/e and I to I + e. Let w(x) be

the objective value of the solution x in the current iteration. To prove the performance

guarantee, it suffices to prove that there is a feasible solution in the next iteration with

objective value at least w(x) − 2. Since we add one element to I and the objective value

decreases by at most two, by a standard inductive argument we can prove that the returned

independent set has size at least half the objective value of LP3int(M1,M2,M3), and thus

the theorem follows.

To prove the claim, we need to demonstrate a feasible solution in the next iteration with

objective value at least w(x)−2, after we select the element e and update the matroidsMi

toMi/e. Consider the solution x restricted to S−e, denoted by x’. Note that x’ has objec-

tive value w(x)−xe, but it may not be a feasible solution to LP3int(M1/e,M2/e,M3/e),

the linear program in the next iteration. In the next paragraph we will show how to mod-

ify x’ to satisfy all the constraints defined by matroid Mi/e, by decreasing the objective

value by at most 1−xe. By performing this modification to each of the three matroids, we

will have a feasible solution to LP3int(M1/e,M2/e,M3/e) with objective value at least

w(x)− xe − 3(1− xe) = w(x)− 3 + 2xe ≥ w(x)− 2 since xe ≥ 1/2 , as desired.

It remains to show how to modify the solution x’ to satisfy all the constraints defined

by Mi/e, while decreasing the objective value by at most 1 − xe. Since x is a feasible

solution to LP3int(M1,M2,M3), it is obviously a feasible solution to LPmat(Mi), the

independent set polytope of matroidMi. Since the independent set polytope of a matroid

is integral, the solution x can be written as a convex combination of independent sets

in Mi, i.e. x =
∑N

j=1 λjχ(Ij) for some N where λj ≥ 0, ∀j, ∑N
j=1 λj = 1 and Ij is an

independent set of Mi for each j. Assume that e /∈ Ij for j = 1, ..., N ′ and e ∈ Ij for

N ′ < j ≤ N . Then by definition
∑N ′

j=1 λj = 1 − xe. For each 1 ≤ j ≤ N ′, let fj 6= e be

an element in the unique circuit (if exists) in Ij + e. Since Ij − e + fj is an independent

set inMi, it follows by definition that Ij − fj is an independent set inMi/e. Similarly,

Ij − e is an independent set in Mi/e for N ′ < j ≤ N . Thus

x∗ = λ1χ(I1 − f1) + ...+ λN ′χ(IN ′ − fN ′) + λN ′+1χ(IN ′+1 − e) + ...+ λNχ(IN − e)

is a feasible solution to LPmat(Mi/e), since it is a convex combination of independent

sets in Mi/e. Furthermore w(x∗) ≥ w(x′) −∑N ′

j=1 λj = w(x′) − (1 − xe), proving the

theorem.





Chapter 3

Multistage Matroid Maintainance

3.1 Preliminaries

Having built the required background on matroids, linear programming and on basic round-

ing techniques, we can now formally define the Multistage Matroid Maintainance (MMM)

problem. The results we discuss in this part were presented in the work of Gupta et al.

”Changing bases: Multistage optimization for matroids and matchings” [22].

Definition 19. An instance of the Multistage Matroid Maintenance (MMM) problem

consists of a matroid M = (E, I), with r(E) = r, an acquisition cost a(e) ≥ 0 for each

e ∈ E, and for every time step t ∈ [T ] and element e ∈ E, a holding cost ct(e) ≥ 0. The

goal is to find bases {Bt ∈ I}t∈[T ] to minimize

∑

t

(ct(Bt) + a(Bt \Bt−1))

where we define B0 := ∅.

In the case of T=1, optimizing over the bases of the matroid is equivalent to optimizing

over its spanning sets. Indeed, if the optimal solution is a spanning set, we can start removing

appropriate elements, without reducing the rank, until we end up with a basis, which will not

have greater cost than the initial. However, does this equivalence hold for general T? We will

show that it does. But first, lets define the Multistage Spanning set Maintenance (MSM)

problem.

Definition 20. An instance of the Multistage Spanning set Maintenance (MSM) problem

consists of a matroid M = (E, I), r(E) = r, an acquisition cost a(e) ≥ 0 for each e ∈ E,

and for every time step t ∈ [T ] and element e ∈ E, a holding cost ct(e) ≥ 0. The goal is

to find spanning sets {St ⊆ E}t∈[T ] to minimize

∑

t

(ct(St) + a(St \ St−1)) (1)

35
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where we define S0 := ∅.

The following lemma shows the equivalence of maintaining bases and spanning sets. It is

proven in [22] and here we provide an alternative proof.

Lemma 3.1.1. Every feasible solution for MSM can be transformed, in polynomial time,

into a feasible solution for MMM, without increasing the total cost.

Proof. Let S1, ...ST be a feasible solution for MSM. If all these sets are bases then we are

done. Otherwise, let i be the minimum moment such that Si is not a base. Let C be

a circuit in Si. Since C * Si−1 (remember that S0 := ∅ and the definition of i), there

is an element e ∈ C \ Si−1. We remove e from Si and Si remains a spanning set. All

these procedures can be implemented in polynomial time (see chapter 2). The holding

cost won’t increase, since ct(e) ≥ 0. The acquisition cost won’t increase since e ∈ Si \Si−1

and a(e) ≥ 0. Thus, the new solution has lower or equal cost and is feasible for MSM.

We iterate on the above process until all Si become bases. Since in each iteration,
∑

t |St|
decreases by 1, the algorithm will terminate in polynomial time.

Corollary 3.1.1.1. For matroids, the optimal solutions to MSM and MMM have the same

costs.

3.2 The Greedy Algorithm

Our first attempt to solve the problem is to extend Kruskal’s algorithm, which provides the

optimal solution for T=1. For this reason, we use a result of Wolsey.

Theorem. (Wolsey [46]) We consider the problem min{∑j∈S wj : f(S) = f(N), S ⊆
N}, where f is a nondecreasing submodular function on a finite set N. When f is integer val-

ued and f(∅) = 0, the greedy heuristic solution has approximation ratio H(maxj∈Nz({j})),
where H(k) =

∑k
i=1

1
i .

However, in order to apply the greedy algorithm to our setting, we need to appropriately

define the ground set, the weight function and the submodular function, in order to incorporate

the acquisition costs to the weights. The idea is that we will no longer choose an element for a

specific time step, but we will choose an edge for a specific interval that we want the element

to be alive. More specifically, we make the following reduction: We will have T matroids

M1 = (Eint, I1),M2 = (Eint, I2), ...,MT = (Eint, IT ). The common ground set will be

Eint = {(e, [l, r]) | e ∈ E, 1 ≤ l ≤ r ≤ T}

the element x=(e, [l,r]) represents that the element e is alive for the interval Ix = [l, r]. For an

element x, when we will want to refer to e we will write x.e and for the interval we will write

Ix. The weight function will be

w((e, [l, r])) = a(e) +
r

∑

t=l

ct(e)
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since we purchase the element e at time l and we keep it for the time interval [l,r]. As for the

independent sets:

S ∈ It ⇔ ∀x ∈ S : t ∈ Ix, {x.e | x ∈ S} ∈ I and ∄ x1, x2 ∈ S : x1 6= x2, x1.e = x2.e

The nondecreasing submodular function is

f(S) =
∑

t

rt(S)

since the sum of nondrecreasing submodular functions (the ranks) is a nondrecreasing sub-

modular function.

It is easy to observe that MSM is equivalent to

min{w(S) | f(S) = f(Eint), S ⊆ Eint}

Thus, from [46], the greedy algorithm described in chapter 2 is an

H(maxx∈Eint(f({x})− f(∅))) = H(T ) = O(log T )−approximation algorithm. In [22] Gupta

et al. provide an alternative dual fitting proof from scratch. We will present the analysis, but

first lets see what the greedy algorithm does at our problem:

We consider the interval view of the problem. Given a current subset A ⊆ Eint, the benefit

of adding an element x to A is

benA(x) =
∑

t

(rt(A ∪ {x})− rt(A)) =
∑

t∈Ix
(rt(A ∪ {x})− rt(A))

Initially A = ∅ and the greedy algorithm iteratively picks an element x ∈ Eint \A maximizing

benA(x)/w(x) and adds x to A. This is done until f(A) = f(Eint) = rT , where r = rM(E).

In other words, at the end, A induces a spanning set for each time step.

We analyze the algorithm through dual fitting. For this reason, we introduce the LP1 with

the following variables:

• yx, x ∈ Eint indicating whether we take element x or not

• zxt, x ∈ Eint, t ∈ Ix

minimize
∑

x∈Eint

w(x)yx

subject to ~zt ∈ PB(Mext), ∀t ∈ [T ]

zxt ≤ yx, ∀x ∈ Eint, ∀t ∈ Ix

yx ≥ 0, ∀x ∈ Eint

whereMext is the natural extension of the initial matroidM on the new ground set Eint, where

all the elements x=(e,[l,r]) associated with the same e are parallel to each other. PB(Mext)

is the base polytope ofMext, which lies in R|Eint|. As for the coordinates of the vector ~zt:
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zt(x) =

{

zxt if t ∈ Ix

0 otherwise

Using Lagrangian variables bxt ≥ 0 for each x and t ∈ Ix, we write the LP2 which outputs

a lower bound for the LP1:

minimize
∑

x∈Eint

w(x)yx +
∑

x,t∈Ix
bxt(zxt − yx)

subject to ~zt ∈ PB(Mext), ∀t ∈ [T ]

yx ≥ 0, ∀x ∈ Eint

The objective function of LP2 is equal to

∑

x∈Eint

(w(x)−
∑

t∈Ix
bxt)yx +

∑

x,t∈Ix
bxtzxt

The optimal value of the LP2 is a lower bound for the optimal value of LP1 for every choice of

nonnegative bxt. In particular, if we choose these Lagrangian variables to satisfy the constraints:

w(x)−
∑

t∈Ix
bxt ≥ 0, ∀x ∈ Eint

then clearly, the LP2 will set all yx to zero. In this case, LP2 takes the form:

minimize
∑

x,t∈Ix
bxtzxt

subject to ~zt ∈ PB(Mext), ∀t ∈ [T ]

but in this case
∑

x: t∈Ix
bxtzxt subject to ~zt ∈ PB(Mext)

can be minimized independently for each t. Due to the integrality of the matroid base polytope,

the optimal value of LP2, under the aforementioned choice of bet will be

∑

t

mwb({bxt}x: t∈Ix)

where for a fixed t, we remove from Mext all these x that t /∈ Ix, we put weight bxt to the

remaining x and mwb({bxt}x: t∈Ix) is the minimum weight base. We choose the best lower

bound, LP3, for LP1, which is:

minimize
∑

t

mwb({bxt}x: t∈Ix)

subject to
∑

t∈Ix
bxt ≤ w(x), ∀x ∈ Eint

bxt ≥ 0, ∀x ∈ Eint, ∀t ∈ Ix

The analysis follows the dual fitting proofs of [13, 35]
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Theorem 3.2.1. The greedy algorithm outputs an O(log|Imax|)−approximation to MSM,

where |Imax| is the length of the longest interval that an element is alive for. Hence, it

gives an O(logT )−approximation.

Proof. First of all, the matroid that we study in this proof isMext. For a subset A of Eint,

we write At = {x ∈ A| t ∈ Ix}. For the proof, consider some point in the run of the greedy

algorithm where a set A ⊆ Eint of elements has been picked. We show a nonnegative

setting of duals bxt such that

• The objective value of LP3 (dual value) equals the current objective value of LP1

(primal value) w(A) and

• ∑

t∈Ix bxt ≤ O(log|Ix|)w(x), ∀x ∈ Eint

It is useful to maintain, for each time t, a minimum weight base Bt of the subset span(A
t)∩

Et
int according to weights {bxt}x∈Et

int
. We start with bxt = 0, At = Bt = ∅, for all t, which

satisfies the above properties.

Suppose that until some step these properties hold and we have collected the set A.

we now pick x maximizing benA(x)/w(x) and get new set C := A ∪ {x}. Call a time

step t “interesting” if r(Ct) = r(Xt) + 1. There are benA(x) interesting time steps.

Now, we need to update the duals. For each interesting t and for each y ∈ (span(Ct) ∩
Et

int) \ (span(At) ∩ Et
int) update byt ← w(x)/benA(x). Note that the element x itself

satisfies the condition of being in (span(Ct) ∩ Et
int) \ (span(At) ∩ Et

int) for precisely the

interesting time steps, and hence
∑

t:interesting bxt = benA(x)w(x)/benA(x) = w(x). In all

the noninteresting time steps the min-weight bases remains invariant. In an interesting

time step t, consider the min-weight base Bt (of the previous step). The elements in

(span(Ct)∩Et
int)\ (span(At)∩Et

int) increased the rank by one, in time t, and they all got

the same weight, which due to the greedy criterion have bigger byt than all the previous

elements. Thus, the Kruskal’s algorithm will choose the base B′
t ← Bt + x for every

interesting time step t. Thus, the first property inductively holds. It remains to show the

second one:

Let’s focus on an element y ∈ Eint. Initially all byt are zero and the greedy decides

whether it will add y to the solution based on w(y)/benA(y) for a current solution A and

if it updates a byt then its value will be lower or equal to w(y)/benA(y) and benA(y) will

be decreased. Thus, at the end of the algorithm:

∑

t∈Iy
byt ≤ w(y)(

1

Iy
+

1

Iy − 1
+ ...+ 1) = O(log|Iy|)w(y), ∀y ∈ Eint

and each element can only be alive for all T time steps. From the standard dual fitting

argument, we have that the greedy algorithm is an O(logT )−approximation algorithm.
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3.3 The Randomized Rounding Algorithm

In [22], Gupta et al. also present an O(log(rT ))−randomized rounding approximation

algorithm for the MMM. First of all, we write the natural extension of the classical Matroid

LP:

minimize
∑

t,e

ct(e)zt(e) +
∑

t,e

a(e)yt(e)

subject to ~zt ∈ PB(M), ∀t ∈ [T ]

yt(e) ≥ zt(e)− zt−1(e), ∀e ∈ E, ∀t ∈ [T ]

yt(e), zt(e) ≥ 0, ∀e ∈ E, ∀t ∈ [T ]

Whenever we mention an LP in this section, we will mean the above LP. Let OPT= (~yt, ~zt)t∈[T ]

be the optimal solution for the above LP. Observe that in the above constraints, ~z0 is included,

but it is not given to the LP as a variable but as an identically zero vector. Also observe that

yt(e) = max(zt(e)− zt−1(e), 0), ∀t, e.
Let’s fix some t. Then, ~zt induces probabilities of selection for each element is E. Based

on these probabilities, we act like we did for the set cover in chapter 1. Initially St = ∅. We

add to St, independently, each element e, with probability zt(e). However, if we do this, there

is a considerable probability that the r(St) < r. Thus, we iterate this experiment and after

a logarithmic number of steps, St will be a spanning set with high probability. However, this

sampling procedure it is done dependently between consecutive time steps, in order to achieve

low acquisition cost. This is achieved through shared randomness. At the end, if S1, ..., ST

are not spanning sets, then produce a solution greedily, which is at most T times the optimal.

Since this happens with low probability, the expected cost is not large. Finally, from lemma

3.1.1, we can transform these T spanning sets into T bases, without increasing the total cost.

The algorithm goes as follows:

Algorithm 5 Randomized Rounding

1: Solve the LP and get the (~yt, ~zt)t∈[T ]

2: L = 8(2 +
√
3)ln(rT )

3: For each e ∈ E choose independent τe ∼ U [0, 1/L]

4: For each t, define Ŝt = {e ∈ E | zt(e) ≥ τe}
5: If all Ŝt have full rank, convert them to a solution for MMM at no extra cost and

return (Ŝ1, ..., ŜT ).

6: For each i, produce Si through Kruskal’s algorithm, with weights (a(e)+ci(e))e∈E and

return (S1, ..., ST ).

Let w(OPT ) be the cost of the optimal solution of the LP and let w(S) be the cost of

the output of the algorithm (where S can be either (Ŝ1, ..., ŜT ) or (S1, ..., ST )).

First of all, we must settle that, with high probability, Ŝ1, ..., ŜT will have full rank.

Lemma 3.3.1. For a fractional base z ∈ PB(M), let R(z) be the set obtained by picking

each element e ∈ E independently with probability ze. Then E[r(R(z))] ≥ r(1− 1/e).



3.3 The Randomized Rounding Algorithm 41

Proof. We use the results of Chekuri et al. [12] on so-called contention resolution schemes.

In their paper, for a matroid M, they give a randomized procedure πz that takes the

random set R(z) and outputs an independent set πz(R(z)) in M, such that πz(R(z)) ⊆
R(z), and for each element e in the support of z, Pr[e ∈ πz(R(z)) | e ∈ R(z)] ≥ 1 − 1/e.

Thus, we get:

E[r(R(z))] ≥ E[r(πz(R(z)))] =
∑

supp(z)

Pr[e ∈ πz(R(z))] ≥

∑

supp(z)

Pr[e ∈ πz(R(z)) | e ∈ R(z)]Pr[e ∈ R(z)] ≥
∑

supp(z)

(1− 1/e)ze = r(1− 1/e)

The first inequality used the fact that πz(R(z)) ⊆ R(z), the following equality used that

πz(R(z)) is independent with probability 1, the second inequality used the property of the

CR scheme, and the final equality used the fact that z was a fractional base.

Corollary 3.3.1.1. R(z) has rank at least r/2 with probability at least 1− 2/e > 1/4

Proof. Apply reverse Markov inequality for the random variable r(R(z)) ≤ r

Lemma 3.3.2. For any fixed t ∈ [T ], the set Ŝt has full rank with probability at least

1− 1/(rT )2

Proof. The algorithm produces the set Ŝt by threshold rounding of the fractional base

zt ∈ PB(M). Instead, consider taking L different sets T1, ..., TL, where each set is produced

independently, by including each element e independently with probability zt(e). The final

set will be T = ∪Li=1Ti. We proceed with the following stochastic domination claim:

Claim 3.3.3. Pr[r(Ŝt) = r] ≥ Pr[r(T ) = r]

Proof. It suffices to prove that for each e ∈ E, Pr[e ∈ T ] ≤ Pr[e ∈ Ŝt] and the claim

will follow from the standard stochastic domination argument. He have that Pr[e /∈ T ] =

(1 − zt(e))
L. We also have that Pr[e /∈ Ŝt] = max(0,

1
L
−zt(e)

1
L

) = max(0, 1 − Lzt(e)) and

since zt(e) ∈ [0, 1], the inequality follows from Bernoulli’s inequality.

So, it suffices to give a lower bound on the probability that T has full rank. For this, we

use Corollary 3.3.1.1: the set T1 has rank at least r/2 with probability at least 1/4. Now,

focusing on the matroid M′ = M/span(T1) which say has rank r’, the same argument

says thst the set T2 has rank r’/2 with probability at least 1/4 etc. Proceeding in this

way, the probability that the rank of T is less than r is at most the probability that we

see fewer than log2r heads in L = 8(2 +
√
3)ln(rT ) flips of a coin of bias 1/4. We bound

this probability using the following Chernoff bound:

Proposition 3.3.3.1. Let X1, ..., Xn be independent Bernoulli variables such that for

each i, Pr[xi] ≥ p. Let X =
∑n

i=1Xi and mp = µ ≤ E[X]. Then, for 0 < δ < 1:

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2
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In our case, n = L = 8(2+
√
3)ln(rT ), X1, ..., XL are the coin flips, p = 1/4, µ = L/4.

We set δ = 1− 1
2+

√
3
. So, by applying the Chernoff bound, we get:

Pr[X ≤ 1

2 +
√
3
8(2+

√
3)ln(rT )/4] = Pr[X ≤ 2ln(rT )] ≤ e

−(1− 1
2+

√
3
)28(2+

√
3)ln(rT )/8

=
1

(rT )2

But,

Pr[X ≤ log2r] ≤ Pr[X ≤ 2ln(rT )] ≤ 1

(rT )2

Thus, Pr[r(Ŝt) < r] ≤ Pr[r(T ) < r] ≤ 1
(rT )2

Now it is time to prove the main theorem:

Theorem 3.3.4. E[w(S)] ≤ O(log(rT ))w(OPT )

Proof. First of all, by the union bound, the probability that all Ŝi have full rank is at least

1 − 1
Tr2

. Let w(Ŝ1, ..., ŜT ) be the total cost of Ŝ1, ..., ŜT . Notice that {Si}i∈[T ] may not

be a feasible solution. However, these sets can be plugged into the objective function of

MSM and the result is this cost. Let F be the event that all Ŝi have full rank and F c its

complement..

E[w(S)] = E[w(Ŝ1, ..., ŜT ) | F ]Pr[F ]+w(S1, ..., ST )Pr[F c] ≤= E[w(Ŝ1, ..., ŜT )]+w(S1, ..., ST )
1

Tr2

It remains to bound E[w(Ŝ1, ..., ŜT )] and w(S1, ..., ST ).

• For a fixed t, since Pr[e ∈ Ŝt] = min{Lzt(e), 1},

E[ct(Ŝt)] =
∑

e

ct(e)Pr[e ∈ Ŝt] ≤ L
∑

e

ct(e)zt(e) (3.1)

Moreover, e ∈ Ŝt \ Ŝt−1 exactly when τe satisfies zt−1(e) < τe < zt(e), which happens

with probability at most

max{zt(e)− zt−1(e), 0}
1
L

≤ Lyt(e).

Thus,

E[a(Ŝt \ Ŝt−1)] =
∑

e

a(e)Pr[e ∈ Ŝt \ Ŝt−1] =≤ L
∑

e

a(e)yt(e) (3.2)

From 3.1, 3.2 and summing over all t, we get:

E[w(Ŝ1, ..., ŜT )] ≤ Lw(OPT )

• It is easy to see that w(S1, ..., ST ) ≤ Tw(OPT ). Indeed,

w(S1, ..., ST ) ≤
∑

t

(ct(St) + a(St)) =
∑

t

(ct + a)(St)
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because, by rebuying an element that we already have, we increase the cost. Now,

let’s fix a t ∈ [T ] and let’s go to the initial LP and remove all the constraints

that impose that ~zt is a fractional base, except the one corresponding at time t.

Since yt(e) = max(zt(e) − zt−1(e), 0) and PB(M) is integral, the optimal value

of the objective function of this reduced LP will be exactly the outcome of the

Kruskal’s algorithm for the matroid M with weights given by the function a + ct,

which is exactly (ct + a)(St). This reduced LP, was produced by removing some

constraints of the initial, thus the optimal value of the objective did not increase.

So, (ct + a)(St) ≤ w(OPT ). Summing over all t we get the desired result.

Summarizing,

E[w(S)] ≤ E[w(Ŝ1, ..., ŜT )]+w(S1, ..., ST )
1

Tr2
≤ Lw(OPT )+Tw(OPT )

1

Tr2
= O(log(rT ))w(OPT )

However, the dependence of T at the approximation ratio can be avoided. More specifi-

cally, by slightly modifying the randomized rounding algorithm, Gupta et al. in [22] achieve

approximation ratio O(amax
amin

logr). Observe that in case where the acquisition costs are uni-

form, this yields an O(logr)−approximation algorithm. But, when this is not the case, can we

avoid both the dependence on T and on amax
amin

? Can we hope for a O(logr)−approximation

algorithm for the MMM? If the algorithm is based on the LP of this section, the answer is no.

In [22], the authors show that the O(min{logT, log amax
amin
}) term in our rounding algorithm is

unavoidable. This is a graphical matroid instance, with n (even) vertices and m edges. logT

and log amax
amin

are θn, m = θn2 and the linear program has the aforementioned gap.

Lemma 3.3.5. The LP has an Ω(min{logT, log amax
amin
}) integrality gap.

This means that if the aspect ratio of the acquisition costs is not bounded, the linear

program has a logT gap, even when T is exponentially larger than r.

Proof. This is a graphical matroid instance, with n (even) vertices and m edges. logT

and log amax
amin

are θn, m = θn2 and the linear program has the aforementioned gap. The

set of vertices is {v0, v1, ..., vn} and T=
(

n
n
2

)

. The edges (v0, vi) for i ∈ [n] have acquisition

cost a(v0, vi) = 1 and holding cost ct(v0, vi) = 0 for all t. The edges (vi, vj) for i, j ∈ [n]

have acquisition cost 1
nT and have holding cost determined as follows: we find a bijection

between the set [T] and the set of partitions (Ut, Vt) of {v1, ..., vn} with each of Ut and Vt

having size n
2 . In time step t, all edges inside Ut and Vt have holding cost 0 and all the

edges in the set E(Ut, Vt) have holding cost ∞.

First of all, a feasible integral solution has cost at least n/2+1. Indeed, let’s suppose

that there is a feasible solution, that uses at most n/2 edges of the type (v0, vi) (otherwise

the acquisition cost is at least n/2+1). At some time step t, all these edges belong to the

set E({v0}, Ut) ∪ E({v0}, Vt). Thus, since the solution cannot include, at time t, edges
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with holding cost∞, δ(Vt) or δ(Ut) is empty at time t, contradiction. Thus, every feasible

integral solution has cost Ω(n).

Finally, we show that on this instance, the LP, has a feasible solution of cost O(1). We

set zt(v0, vi) = 2/n for all i ∈ [n] and t ∈ [T ]. For all the other edges e, if at time step t

they have zero holding cost, we set zt(e) = 4/n.

Proposition 3.3.5.1. zt is in the spanning tree polytope for all t ∈ [T ].

Proof. We will perform a random experiment which outputs a spanning tree for the time

step t. Take uniformly at random a spanning tree TUt from the clique Ut, a spanning tree

TVt from the clique Vt, one edge from E(v0,∪
n
2
i=1vi) and one edge from E(v0,∪ni=n

2
+1vi).

Now, let’s see with what probability we take each edge to the random tree. An edge

(v0, vi) is taken with probability 1/(n/2) = 2/n for each i ∈ [n]. Each of the others, by

symmetry, are taken with probability n/2−1
n/2(n/2−1)

2

= 4/n. So, there is a probability measure

over the characteristic vectors of spanning trees for time t such that the expected vector

is zt. But, the expected vector is given by a convex combination, corresponding to this

probability measure. The proposition follows.

Finally, the total acquisition cost is at most 2
nn+ Tn2 4

n
1
nT = O(1). The holding costs

payed are zero. Thus the LP has a feasible fractional solution with total cost O(1). The

claim follows (remember that log
(

n
n
2

)

=Θ(n)).

3.4 Hardness results

In the previous sections, we showed how to approximate the optimal solution of MSM and

MMM up to a logarithmic factor. The algorithms used were quite similar with the corresponding

ones for the set cover problem (the greedy and the randomized rounding). For the set cover, the

logarithmic approximation ratio is optimal, unless P = NP , see [14]. Is this a coincidence?

Maybe there is another more convoluted way to approximate sublogarithmically these two

problems. The following theorem, proved in [22] shows that this is not possible, unless P =

NP .

Theorem 3.4.1. The MSM and MMM problems are NP − hard to approximate better

than Ω(min{logr, logT}) even for graphical matroids.

Proof. We give a reduction from Set Cover to the MSM problem for graphical matroids.

Given an instance (U ,F) of set cover, with m = |F| sets and n = |U| elements and

m = poly(n) (the set cover restricted to these instances cannot be approximated better

than Ω(logn)). We construct a graph as follows. There is a special vertex r, and m set

vertices (with vertices si for each set Si ∈ F). There are m edges ei := (r, si) which all

have acquisition cost a(ei) = 1 and holding cost ct(ei) = 0, for all t. Taking these edges

at some time step encodes whether we take a set to our solution or not. What remains

to do is to force the optimal solution to obtain edges that encode a set cover. We have
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to do with spanning trees, so our only ”weapon” is the connectivity requirement. More

specifically, all other edges will be short-term and will have zero acquisition cost. There

are T time steps. In time step j ∈ [n], define subset Fj := {si | uj ∈ Si} to be vertices

corresponding to sets containing element uj ∈ U . In this specific time step, we have the

edges that make Fi a clique and all edges (r, y) for y ∈ F̄j := {si | uj /∈ Si}. All these

edges have zero acquisition cost a(e), and are only alive at time j (which can be done by

using infinite weights during the other time steps).

Now, let O be the cardinality of the optimal set cover. The cost of any solution for

MSM (or MMM) is greater or equal to O. Indeed, in time step j, there must be an edge

connecting r with some vetrex in Fj . At the same time, there is a solution to MSM (and

to MMM) that has cost exactly O. Let Si1 , ..., SiO be the optimal set cover. At first, we

maintain all edges (r, sik), k=1,...,O, for all time steps, paying only acquisition cost O.

We can now add edges for free and ensure connectivity at all time steps. In particular, at

time step j we buy all the edges that are alive at this time step. The graph is connected

at time j, because at this time, there exists an edge between r and a point in Fj , say sik ,

all the other vertices in Fj are connected through the clique with sik and all the vertices

in F̄j are connected with r through the other free edges. Thus, our reduction is strict.

Finally, the number of time periods is T = n, and the rank of the matroid is m = poly(n)

for these hard instances. This gives us the claimed hardness.

Someone may wonder why we do not discuss the generalized version of MMM, where the

matroid changes over time. The reason is that this problem is really hard, as the following

theorem, proved in [22] indicates.

Theorem 3.4.2. The MMM problem with different matroids is NP-hard to approximate

better than a factor of Ω(T ), even for partition matroids and zero holding costs, as long

as T ≥ 3.

Proof. The reduction is from 3D-Matching (3DM). An instance of 3DM has three sets X,

Y, Z of equal size |X| = |Y | = |Z| = k, and a set of hyperedges E ⊆ X ×Y ×Z. The goal

is to choose a set of disjoint hyperedgesM ⊆ E such that |M | = k. 3DM is APX-hard,

see [27]. This means that there is a constant ǫ > 0 such that there is no polynomial time

algorithm that can decide whether there is a matching of size k or all matchings have

cardinality less than or equal to (1− ǫ)k, unless P=NP.

First, consider the instance of MMMwith three timesteps T = 3. The universe elements

correspond to the hyperedges. For t = 1, create a partition with k parts, with hyperedges

sharing a vertex in X falling in the same part.The matroid M1 is now to choose a set of

elements with at most one element in each part. For t = 2, the partition now corresponds

to hyperedges that share a vertex in Y , and for t = 3, hyperedges that share a vertex in

Z. Set the acquisition costs a(e) = 1 for all hyperedges.

Now, since 3DM is APX-hard, there is a constant ǫ > 0 such that there is no

ǫ−approximation algorithm for 3DM, unless P=NP. Now, let’s consider two cases:
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• There is a matching of size k. Observe that this happens exactly when the optimal

cost of MMM is k. Indeed, to take the first base, you need to pay acquisition cost

k. The cost is exactly k when no new element is taken to build the other two bases.

Thus, from the definition of the three matroids, the optimal solution has cost k if

and only if there is a perfect 3DM.

• All matchings have cardinality less than or equal to (1 − ǫ)k. In this case, the

optimal solution for MMM will have cost at least (1+ ǫ)k. Indeed, let’s consider the

optimal solution for this instance of MMM. From the definition of the 3 matroids,

we have that the elements that belong the intersection of the 3 bases correspond

to a matching and thus are less than or equal to (1 − ǫ)k. Now the elements that

belong to the first base but not at all three bases are at least ǫk and since all bases

have cardinality k, when an element is dropped, another is bought. Thus, there is

an extra ǫk acquisition cost that has to be added at the initial cost k.

Now, by repeating the above matroid triple in time, we can extend the initial gap.

More specifically, at time t ∈ [T ] we will have the matroid Mtmod3+1. In the first case

(”yes” case) the optimal solution for MMM pays cost exactly k. In the second case (”no”

case) the optimal solution for MMM pays an additional ǫk acquisition cost every 3 time

steps. Thus, the overall cost will be (1 + Tǫ)k. From the APX-hardness, there cannot be

an (1 + Tǫ)− approximationalgorithm for MMM, unless P=NP. The claim follows from

the fact tha ǫ is a constant.

Notice that the time-varying MSM problem does admit an O(log rT ) approximation, as

the randomized rounding (or the greedy algorithm) shows. However, the equivalence of MMM

and MSM does not go through when the matroids change over time! The restriction that the

matroids vary over time is essential for the NP-hardness, since if the partition matroid is the

same for all times, the complexity of the problem drops radically, as we will show at the next

chapter.

3.5 Perfect Matching Maintenance

In this section we study the Perfect Matching Maintenance (PMM) problem:

Definition 21. An instance of the Perfect Matching Maintenance (PMM) consists of a

graph G(V,E), n = |V |, m = |E|, an acquisition cost g ≥ 0 for each e ∈ E, and for every

time step t ∈ [T ] and edge e ∈ E, a holding cost ct(e) ≥ 0. The goal is to find perfect

matchings {Pt}t∈[T ] to minimize

∑

t

(ct(Pt) + g|Pt \ Pt−1|)

where we define P1 \ P0 := ∅.
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Observe that for the PMM we consider uniform acquisition costs, similarly to the case

of the Dynamic Facility Location problem, see [18], [2]. For T=1 dynamic facility location

is NP-hard and for general T it can be approximated with a constant factor, see [2]. For

T=1, perfect matching maintenance is in P. Is this an indication that the problem can be

approximated with a constant factor or even better for general T? In this section we will show

that the answer is no, by presenting results proven in [22].

First of all, let’s study the natural LP relaxation:

minimize
∑

t,e

ct(e)zt(e) + g
∑

t,e

yt(e)

subject to ~zt ∈ PM(G), ∀t ∈ [T ]

yt(e) ≥ zt(e)− zt−1(e), ∀e ∈ E, ∀t ∈ [T ]

yt(e), zt(e) ≥ 0, ∀e ∈ E, ∀t ∈ [T ]

The polytope PM(G) is the perfect matching polytope for G (its vertices are exactly the

indicator vectors of the perfect matchings of G), see [37]. Observe that in the above constraints,

~z0 is included, but it is not given to the LP as a variable but as an identically zero vector.

Lemma 3.5.1. The LP for the PMM has Ω(n) integrality gap.

Proof. The integrality gap instance has four time steps, g=1 and the edge set is indicated

in the figure below:

We say that an edge at time t is alive if ct(e) = 0, otherwise we say that e is not alive at

time t and then ct(e) =∞. For each time step we write which edges are not alive:

t=1: (a,p), (a,q), (b,q), (b,r)

t=2: (a,b), (p,q), (a,q), (b,r)

t=3: (a,p), (a,q), (b,q), (b,r)

t=4: (a,b), (q,r), (a,p), (b,q)

Observe that at each time step the alive edges for an even cycle or a union of even cycles,

thus the fractional solution ~zt = (1/2, ..., 1/2) is feasible for all t. The total cost is the

total fractional acquisition cost , which is O(1).

Now, let’s take an integral feasible solution. Consider the perfect matching at time

t = 1, which must consist of matchings on both the cycles. (Moreover, the matching in

time 3 must be the same, else we would change Ω(n) edges). Suppose this matching uses

exactly one edge from (a,b) and (p,q). Then when we drop the edges (a,b), (p,q) and add
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in (a,p), (b,q), we get a cycle on 4n vertices, but to get a perfect matching on this in time

2 we need to change Ω(n) edges. Else the matching uses exactly one edge from (a,b) and

(q,r), in which case going from time 3 to time 4 requires Ω(n) changes. Thus, the total

cost of every integral feasible solution is Ω(n). The lemma follows. We should note that

we would also have integrality gap Ω(n) if we kept only the time steps t=2 and t=4 (in

that case T=2).

Observe that a crucial propery that is used in order to prove the integrality gap is that

the optimal solution of the PMM is highly unstable at small changes of the alive edges. Note

that this does not hold at matroids, where if an element stops being alive, we can exchange

it with another one. Another way to see this is that in the matroid base polytope, the

neighboring vertices correspond to bases whose difference has cardinality 1. This definitely

does not hold for the perfect matching polytope (take the one for the C2n). This property

will be exploited to show the following hardness result for PMM:

Theorem 3.5.2. For any ǫ > 0, there is no O(N1−ǫ−polynomial time approximation

algorithm for PMM, unless P=NP, where N is the number of vertices in the graph. This

holds even when the holding costs are in {0,∞}, acquisition costs are 1 for all edges, and

the number of time steps is a constant.

Proof. The proof is via reduction from 3-coloring. In 3-coloring, we have three colors, say

red, blue, green and the question is whether we can color the vertices of the graph with

these colors such that no two vertices that are connected with an edge share the same

color. We assume we are given an instance of 3-coloring G = (V,E) where the maximum

degree of G is constant. It is known that the 3-coloring problem is still NP-hard for graphs

with bounded degree, see [23]. At the beginning we consider T = 2|E|. We construct a

gadget Xu for each vertex u ∈ V , as in the figure below:

More specifically, in each gadget Xu:

• There are two cycles of length 3ℓ, where ℓ is odd. The first cycle (say C1
u) has three

distinguished vertices u1R, u
1
G, u

1
B at distance ℓ from each other. The second cycle

(say C2
u) has similar distinguished vertices u2R, u

2
G, u

2
B at distance ℓ from each other.

• There are three more “interface” vertices uR, uG, uB. Vertex uR is connected to u1R
and to u2R, similarly for uG and uB.
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• There is a special “switch” vertex su, which is connected to all three of {uR, uG, uB}.
Call these edges the switch edges.

Due to the two odd cycles, every perfect matching in Xu has the structure that one of

the interface vertices is matched to some vertex in C1
u, another to a vertex in C2

u and the

third to the switch su. The subscript of the vertex that is matched to su encodes the color

assigned to vertex u.

At every odd time step t ∈ [T ], the only allowed edges are those within the gadgets

Xu{u ∈ V } : i.e., all the holding costs for edges within the gadgets is zero, and all edges

between gadgets have holding costs ∞. This is called the “steady state”.

We make a bijection between the even time steps and the edge set E. At every even time

step t, we move into a “test state”, which intuitively tests whether the corresponding edge

satisfies the color constraint. We do this as follows. Say that the edge corresponding

at time t is the (u, v). At time t, the switch edges in Xu, Xv become unavailable (have

infinite holding costs). Moreover, now we allow some edges that go between Xu and Xv,

namely the edge (su, sv), and the edges (ui, vj) for i, j ∈ {R,G,B} and i 6= j. Note that

any perfect matching on the vertices of Xu∪Xv which only uses the available edges would

have to match (su, sv) and one interface vertex of Xu must be matched to one interface

vertex of Xv. Moreover, by the structure of the allowed edges, the colors of these vertices

must differ. (The other two interface vertices in each gadget must still be matched to their

odd cycles to get a perfect matching.) The transition of the alive edges from time t-1 to

time t is indicated in the figure below:

Suppose the graph G was indeed 3-colorable, say X : V ← {R,G,B} is the proper

coloring. In the steady states, we choose a perfect matching within each gadget Xu so

that (su, uX(u)) is matched. In the test state 2t, corresponding to the edge (u, v), we

match (su, sv) and (uX(u), vX(v)). Since the coloring X was a proper coloring, these edges

are present and this is a valid perfect matching using only the edges allowed in this test

state. Note that the only changes between time 2t-1 and 2t were to replace the matching

edges (su, uX(u)) and (sv, vX(v)) by (su, sv) and (uX(u), vX(v)) respectively. Hence the total

acquisition cost incurred at time 2t is 2, and the same acquisition cost is incurred at time

2t + 1 to revert to the steady state. Hence the total acquisition cost, summed over all the

time steps, is 4|E|.
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Suppose that G is not 3 colorable. Let’s fix a feasible solution of PMM: {Pt}t∈[T ]. For

a cycle Cj
u, j ∈ {1, 2} we define rt(C

j
u) to be the vertex that belongs to Cj

u and at time t

it is matched outside of it (remember that for each time step this vertex is unique). If for

any Cj
u, rt(C

j
u) 6= r1(C

j
u), for some t, then it is easy to observe that the solution has to pay

Ω(ℓ) acquisition cost. Since G is not 3-colorable, looking the feasible solution at the first

time step, we can find two gadgets Xu, Xv such that (u, v) ∈ E and (su, ux), (sv, vx) ∈ P1,

x ∈ {R,G,B}. Now, let’s look at Pt, where t is the time where edge (u, v) is tested. Since

(ux, vx) is not alive at time t (actually it is never alive), rt(C
j
u) 6= r1(C

j
u). Thus, the total

cost of an feasible solution of PMM has cost Ω(ℓ). Set ℓ = n
1
ǫ
−1.

The vertex set for the PMM has cardinality N = Θ(nℓ) = Θ(n
1
ǫ ). Thus, if G is 3-

colorable, then the optimal solution of PMM has cost O(4|E|) = O(n) = O(N ǫ) (constant

degree) and if G is not 3-colorable, then the optimal solution of PMM has cost Ω(ell) =

Ω(N1−ǫ). This gap proves the theorem for general T. To show it for constant T, we can

parallelize the above procedure. More specifically, since the graph has bounded degree,

we can partition the edges of G into a constant number of matchings M1,M2, ...,Mk for

some k = O(1) (using Vizing’s theorem). Hence, at time step 2t, we test the edges of the

matching Mt. The number of time steps now is T = 2k, which is a constant.



Chapter 4

MMM in special cases

In this chapter, we present our contribution to the MMM problem. First of all, the

reduction and the integrality gap instance presented in Chapter 3 are for the case of the

graphic matroid. So, in this chapter, we study the LP for the case of the partition matroid

in the more general case of time-changing acquisition costs and we prove that it is integral.

Second, in Chapter 3 we saw that if the matroids change over time, the problem is hard,

even for T=3. Here we show that the LP is integral for T=2, even for different matroids.

Finally, the straightforward and direct reduction from set cover for MMM indicates that

we cannot do anything better than a simple logarithmic approximation algorithm. So, as in

[12], we consider the case where the acquisition costs are uniform. For this very interesting

special case, we present an algorithm that has constant approximation at the holding cost

and logarithmic approximation at the acquisition cost.

4.1 Integral LP formulations

In [22], the authors present exact polynomial time algorithms for the case of MMM

for partition matroids and for T=2. Here we prove the integrality of the LP in these two

cases.

4.1.1 Partition Matroids

The LP that we used for MMM, in the case of partition matroids takes the following

form:

minimize
T
∑

t=1

∑

e∈S
ct(e)zt(e) +

T
∑

t=2

∑

e∈S
at(e)yt(e)

subject to zt(Si) = ki, ∀i ∈ [n], t ∈ [T ]

yt(e) ≥ zt(e)− zt−1(e), ∀e ∈ S, t = 2, ..., T

0 ≤ zt(e) ≤ 1, ∀e ∈ S, ∀t ∈ [T ]

yt(e) ≥ 0, ∀e ∈ S, t = 2, ..., T

51
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Note that in this case we allow the acquisition cost to be time dependent. We should make

a technical note that the acquisition cost a1(B1 \B0) = a1(B1) is integrated in the holding

cost c1. Second, it is easy to observe that for each Si the problem is solved independently.

Thus, it suffices to show the integrality of the LP for the Uniform Matroid. So, for the

rest of the section, we will refer to the following LP:

minimize

T
∑

t=1

∑

e∈S
ct(e)yt(e) +

T
∑

t=2

∑

e∈S
at(e)zt(e)

subject to zt(S) = k, ∀t ∈ [T ]

yt(e) ≥ zt(e)− zt−1(e), ∀e ∈ S, t = 2, ..., T

0 ≤ zt(e) ≤ 1, ∀e ∈ S, ∀t ∈ [T ]

yt(e) ≥ 0, ∀e ∈ S, t = 2, ..., T

Let {zt(e), yt(e)}t,e be an extreme point solution of the LP. Note that yt(e) = max(zt(e)−
zt−1(e), 0), ∀ e ∈ S, t ≥ 2 (1). Indeed, if this is not the case, since the constraints force

yt(e) to be greater or equal to max(0, zt(e) − zt−1(e)) and this is the only constraint to

yt(e), for suciently small ǫ > 0, without changing the other variables, if we subtract ǫ

from yt(e) the solution is still feasible. Obviously, if we add ǫ to yt(e) the solution is still

feasible. Hence, {zt(e), yt(e)}t,e can be written as a convex combination of two feasible

solutions of the LP, contradiction.

We will prove that {zt(e), yt(e)}t,e has integral entries. Because of (1) it suffices to

prove that {zt(e)}t,e has integral entries. Let’s suppose that this is not the case, i.e ∃(e, t) ∈
S×[T ] such that 0 < zt(e) < 1. Let Ft = {e ∈ S : 0 < zt(e) < 1}, Ot = {e ∈ S : zt(e) = 1}
and Zt = {e ∈ S : zt(e) = 0}. Clearly, ∪tFt 6= ∅. We will show that {zt(e), yt(e)}t,e can be

written as convex combination of two feasible solutions of the LP, which is a contradiction.

We will say, that two sets T1, T2 ⊆ S × [T ], T1 ∩ T2 = ∅, enable a feasible perturbation

of {zt(e), yt(e)}t,e if ∃ǫ > 0 such that

1. {z′t(e), y′t(e)}t,e and {z′′t (e), y′′t (e)}t,e are feasible solutions for the LP, where

z′t(e) =











zt(e) + ǫ if (e, t) ∈ T1

zt(e)− ǫ if (e, t) ∈ T2

zt(e) otherwise

z′′t (e) =











zt(e)− ǫ if (e, t) ∈ T1

zt(e) + ǫ if (e, t) ∈ T2

zt(e) otherwise

and y′t(e) = max(z′t(e)− z′t−1(e), 0), ∀ e ∈ S, t ≥ 2, y′′t (e) = max(z′′t (e)− z′′t−1(e), 0),

∀ e ∈ S, t ≥ 2
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2. For all e ∈ S, t ≥ 2: zt(e) − zt−1(e), z
′
t(e) − z′t−1(e), z

′′
t (e) − z′′t−1(e) have all the

same sign (+,0,-).

Observe that in this case, zt(e) =
z′t(e)+z′′t (e)

2 ∀e, t (2). Now take one e ∈ S and one

T ∈ {2, ..., T}. If yt(e) = 0, then zt(e) − zt−1(e) ≤ 0, thus,from the second property,

y′t(e) = y′′t (e) = 0. Else, yt(e) = zt(e) − zt−1(e) > 0 ⇒ z′t(e) − z′t−1(e) > 0 and z′′t (e) −
z′′t−1(e) > 0. Hence, y′t(e) = z′t(e)− z′t−1(e) and y′′t (e) = z′′t (e)− z′′t−1(e). So, from (2) we

have that yt(e) =
y′t(e)+y′′t (e)

2 . Thus, {zt(e), yt(e)}t,e can be written as a convex combination

of {z′t(e), y′t(e)}t,e and {z′′t (e), y′′t (e)}t,e.
We will show that we can find two sets T1, T2 ⊆ S × [T ], T1 ∩ T2 = ∅, that enable a

feasible perturbation of {zt(e), yt(e)}t,e.
Now, for each (e, t) ∈ S × [T ], let Ie,t = [t1, t2] where

t1 = min{t′ : 1 ≤ t′ ≤ t, zt′(e) = zt′+1(e) = ... = zt(e)}
t2 = max{t′ : t ≤ t′ ≤ T, zt(e) = zt+1(e) = ... = zt′(e)}

We will refer to t1 as Ie,t.ℓ and to t2 as Ie,t.r.

Now, given T1, T2 ⊆ S × [T ], T1 ∩ T2 = ∅ such that

(e, t) ∈ Ti ⇒ ∪t′∈Ie,t(e, t′) ⊆ Ti, ∀i ∈ {1, 2} (3)

we claim that ∃ ǫ > 0 such that the second property (the one with the signs) holds.

Indeed, consider an e ∈ S and a t ≥ 2 and let’s focus on zt(e)−zt−1(e). If zt(e)−zt−1(e) =

0, then from (3) we have that either both (e, t), (e, t − 1) ∈ Ti or none of them does, for

i = 1, 2. Now, for

ǫ =
1

2
mine,t: zt(e)−zt−1(e) 6=0{|zt(e)− zt−1(e)|}

property 2 holds.

Let

tstart = min{t ∈ [T ]| Ft 6= ∅}
tend = max{t ≥ tstart| ∃e1, e2 ∈ Ft : e1 6= e2 and Ie1,t.r = Ie2,t.r = t}

tstart is the first moment that we see fractional values and tend is the first moment that

two fractional equality intervals end simoultaneously.

Proposition 4.1.0.1. tend is well-defined.

Proof. First, notice that if Ft 6= ∅, then since zt(S) = k, there exist at least two different

elements e1, e2 ∈ S such that zt(e1), zt(e2) are fractional. Let A = {t ≥ tstart| Ft = ∅}. If
A = ∅, then ∃e1, e2 ∈ FT : e1 6= e2 and Ie1,T .r = Ie2,T .r = T . Else, if t∗ is the minimum

element of A, then ∃e1, e2 ∈ Ft∗−1 : e1 6= e2 and Ie1,t∗−1.r = Ie2,t∗−1.r = t∗ − 1.
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For t ∈ [T − 1], let c(t) = {e ∈ Ft| zt(e) 6= zt+1(e)} and observe that

|c(t)| ≤ 1, ∀t ∈ [tstart, tend)

For each t ∈ [tstart, tend) such that |c(t)| = 1, let c(t) = {e(t)}. For such a time t, we

have that:

zt(S) = zt+1(S) = k ⇔
|Ot|+ zt(Ft \ {e(t)}) + zt(e(t)) = |Ot+1 \ {e(t)}|+ zt+1(Ft+1 \ {e(t)}) + zt+1(e(t)) = k ⇒
zt+1(Ft+1 \ {e(t)}) + zt+1(e(t))− zt(Ft \ {e(t)})− zt(e(t)) ∈ Z⇒
zt+1((Ft+1 \ Ft) \ {e(t)}) + (zt+1(e(t))− zt(e(t))) ∈ Z (4)

Where the last step holds because c(t) = {e(t)}. But, 0 ≤ zt+1(e(t)) ≤ 1, 0 < zt(e(t)) <

1, zt+1(e(t)) 6= zt(e(t)). So, 0 < |zt+1(e(t))−zt(e(t))| < 1 and from (4): zt+1((Ft+1 \Ft)\
{e(t)}) 6= 0, i.e (Ft+1 \Ft) \ {e(t)} 6= ∅. Since e(t) ∈ Ft, (S \Ft)∩Ft+1 6= ∅. Observe that

Ie,t+1.ℓ = t+1, ∀e ∈ (S\Ft)∩Ft+1. Now, we define a function f, which maps element-time

interval tuples to element-time interval tuples, its domain is {(e, Ie,t)| t ∈ (tstart, tend], e ∈
((S \ Ft) ∪ {e(t)}) ∩ Ft+1} and

f(e, Ie,t+1) = (e(t), Ie(t),t)

which actually says that e(t) is ”responsible” for the fractionality of e at time t+1.

Now, observe that ∀t ∈ [tstart, tend) and ∀e ∈ Ft+1 there are two possibilities:

1. Ie,t = Ie,t+1 or

2. f(e, Ie,t+1) = (e(t), Ie(t),t)

Corollary 4.1.0.1. ∀(e, t) ∈ S × [T ], such that e ∈ Ft, Ie,t ⊆ (tstart, tend], if Ie,t.ℓ = t′,

then f(e, Ie,t) = (e(t′ − 1), Ie(t′−1),t′−1).

We will now construct two lists of element-interval tuples, L1, L2, using the following

algorithm:

where e1 and e2 are the ones from the definition of tend.

Lemma 4.1.1. The following statements are true:

1. The algorithm is well-defined.

2. I1, I2 ⊆ [tstart, tend] in the course of the algorithm.

3. For each iteration, e ∈ FI1.ℓ and e′ ∈ FI1.ℓ.

Proof. The proof is by induction on the number of iterations of the algorithm. The base

case follows from the definitions of tstart, tend. Now, let suppose that I1, I2 enter the while

loop at some iteration, i.e I1.ℓ 6= I2.ℓ. At this iteration, the corresponding elements are
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1: L1, L2 ← ∅
2: I1 ← Ie1,tend

3: I2 ← Ie2,tend

4: e← e1

5: e′ ← e2

6: while I1.ℓ 6= I2.ℓ do

7: if I1.ℓ > I2.ℓ then

8: L1 ← L1 ∪ (e, I1)

9: (e, I1)← f(I1)

10: else

11: L2 ← L2 ∪ (e′, I2)

12: (e′, I2)← f(I2)

13: return L1, L2

e,e’. From the induction hypothesis, we have that e ∈ FI1.ℓ and e′ ∈ FI1.ℓ. We consider

the case, where I2.ℓ > I1.ℓ, the other case is proved via the same argument. I2.ℓ ≥
tstart+1, i.e I2 ⊆ (tstart, tend] and thus, from corollary 4.1.0.1: f(e′, I2) is well-defined and

f(e′, I2) = (e(t∗− 1), Ie(t∗−1),t∗−1), where t
∗ = I2.ℓ. We also have that e(t∗− 1) ∈ Ft∗−1 ⇒

Ie(t∗−1),t∗−1 ⊆ [tstart, tend], from the definition of tstart.

From the definition of f we have that at each iteration, we add at one of the lists

an interval which ends where the last interval added to this list beginns. Since I1, I2 ⊆
[tstart, tend] in the course of the algorithm, we have that the algorithm will terminate. The

algorithm ends with some I1, I2. Let talg = I1.ℓ = I2.ℓ

Lemma 4.1.2. ∀t ∈ [talg, tend], there exists an iteration of the algorithm, where the inter-

vals are I1, I2, the elements are e,e’ and t ∈ I1 ∩ I2 and e 6= e′.

Proof. For t = tend, the lemma holds from the definition of tend. Let’s suppose that the

lemma is not true for some t ∈ [talg, tend] and let t∗ be the maximum such t. Thus, at

some time during the course of the algorithm, we have intervals I1, I2, elements e,e’ and

t+1 ∈ I1 ∩ I2 and e 6= e′. If I1.ℓ = I2.ℓ = talg, then [talg, t+1] ⊆ I1 ∩ I2 contradiction. So,

let’s suppose that I1.ℓ > I2.ℓ (for the other case the contradiction is derived via the same

argument). Obviously, t /∈ I1 ∩ I2. Let I ′1 be the update of I1. So, t = I1.ℓ − 1 = I ′1.r.

Since I2.r ≥ I1.ℓ (they have nonempty intersection) and I2.ℓ ≤ I1.ℓ − 1, we have that

t ∈ I ′1∩I2. The fact that I ′1 ends at time I1.ℓ−1, I2 ends after time I1.ℓ−1 and t ∈ I ′1∩I2
indicates that I ′1 and I2 do not correspond to the same element, i.e. e(I1.ℓ − 1) 6= e′,

contradiction.

Let T1 = ∪(e,I)∈L1
∪t∈I (e, t) and T2 = ∪(e,I)∈L2

∪t∈I (e, t) (5). From lemma 4.1.2 and

from the fact that each list is a list of consecutive intervals, we have that T1 ∩ T2 = ∅.

Theorem 4.1.3. T1,T2 enable a feasible perturbation of the extreme point.
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Proof. First of all, from the property 3 of lemma 4.1.1, we have that each zt(e), (e, t) ∈
T1∪T2 is fractional. Thus, ǫ can be chosen to be sufficiently small, so that the constraints

0 ≤ z′t(e) ≤ 1, 0 ≤ z′′t (e) ≤ 1 are satisfied ∀e ∈ S, t ∈ [T ]. Each list is a list of consec-

utive intervals, so lemma 4.1.2. indicates that for a specific time step, we either have no

perturbation or two perturbations, which are eliminated in the sum. More specifically,

z′t(S) = z′′t (S) = k, ∀e ∈ S, t ∈ [T ]. Thus, the first property of the feasible perturbation is

satisfied. Also, T1, T2 are a union of maximal equality intervals, see (5). Hence, they sat-

isfy (3) and as we have proved, this implies that the property 2 of the feasible perturbation

is satisfied.

The fact that an extreme point of a polytope cannot be written as a convex combination

of other points of the polytope gives as the main theorem:

Theorem 4.1.4. The natural LP for MMM, for the case of Partition Matroids is integral.

4.1.2 T=2

Here, we prove that the LP formulation of a generalization of MMM for T=2 is integral.

We call this generalization Partial Zero Switch MMM and we define it below:

Definition 22. A T = 2 instance of the Partial Zero Switch Multistage Matroid Mainte-

nance problem consists of two matroidsM1 = (S1, I1),M2 = (S2, I2), a set A ⊆ S1 ∩S2,
an acquisition cost a(e) ≥ 0 for each e ∈ S1 ∪ S2, and two holding cost functions c1(e),

e ∈ S1 and c2(e), e ∈ S2. The goal is to find bases B1 ∈ I1 and B2 ∈ I2 such that

((B1 \B2) ∪ (B2 \B1)) ∩A = ∅ and minimize

c1(B1) + c2(B2) + a(B2 \B1)

The set A is called zero switch set. and we say that the two bases respect A.

Why this is a generalization of MMM? Again here, the acquisition cost a(B1 \ B0) =

a(B1) is integrated in the holding cost c1. Also, in MMM we have a common matroid for

all time steps. Plus, in MMM, A = ∅. Finally, for technical reasons we have removed the

non-negativity constraint of the holding costs from the definition.

Now, let’s see what is this set A. The set A, given in the input, imposes the constraint

that each of its elements is either taken to both bases or to none of them. It’s time to write

down the LP formulation. The variables-vectors of the LP will be z ∈ R|A|, z1 ∈ R|S1\A|,

z2 ∈ R|S2\A|, y ∈ R|(S1∩S2)\A|. We refer to this formulation as LPpzs(M1,M2, A).
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minimize
∑

e∈A
(c1(e) + c2(e))z(e) +

∑

e∈S1\A
c1(e)z1(e) +

∑

e∈S2\A
c2(e)z2(e)+

∑

e∈(S1∩S2)\A
a(e)y(e) +

∑

e∈S2\S1

a(e)z2(e)

subject to z1(T \A) + z(T ∩A) ≤ r1(T ), ∀T ⊆ S1
z1(S1 \A) + z(A) = r1(S1)
z2(T \A) + z(T ∩A) ≤ r2(T ), ∀T ⊆ S2
z2(S2 \A) + z(A) = r2(S2)
y(e) ≥ z2(e)− z1(e), ∀e ∈ (S1 ∩ S2) \A
z(e) ≥ 0, ∀e ∈ A

z1(e) ≥ 0, ∀e ∈ S1 \A
z2(e) ≥ 0, ∀e ∈ S2 \A
y(e) ≥ 0, ∀e ∈ (S1 ∪ S2) \A

(4.1)

To get a separation oracle, given as input independence oracles for each of the matroids,

we can use the work of Cunningham [37] or any algorithm for minimizing submodular

functions.

Characterization of Extreme Point Solutions

We now give a characterization of extreme points of the linear program by showing

that the independent set of tight constraints that gives the coordinates of an extreme point,

except of these that belong to y, can be chosen to form a union of two chains. The proof is

quite straightforward and uses the characterization of tight inequalities for the max-weight

independent set problem.

Given an extreme point solution (z, z1, z2, y) to LPpzs(M1,M2, A), let F1 = {T ⊆
S1 : z1(T \A)+ z(T ∩A) = r1(T )} and F2 = {T ⊆ S2 : z2(T \A)+ z(T ∩A) = r2(T )}.

Lemma 4.1.5. There exist two chains C1 ⊆ 2S1 and C2 ⊆ 2S2 such that span(C1∪C2) =

span(F1 ∪ F2) and constraints in sets C1 and C2 are linearly independent.

Proof. Applying Lemma 2.3.2 to families F1 and F2 separately, we obtain two chains

Ĉ1 and Ĉ2 such that span(Ĉ1) = span(F1) and span(Ĉ2) = span(F2). Now, picking a

maximal independent family from Ĉ1 ∪ Ĉ2 gives us the desired chains.

Notice that the number of variables is |S1|+|S2|+|S1∩S2|−2|A|. So, the characteristic
vectors of the constraints have this dimension. For T ⊆ S1, let χ1(T ) be the characteristic

vector of the constraint z1(T \ A) + z(T ∩ A) ≤ r1(T ). For T ⊆ S2, let χ2(T ) be the

characteristic vector of the constraint z2(T \A) + z(T ∩A) ≤ r2(T ).



58 Chapter 4. MMM in special cases

Lemma 4.1.6. Let (z, z1, z2, y) be any extreme point solution to LPpzs(M1,M2, A) such

that (z, z1, z2) has positive entries and ∄e ∈ (S1∩S2) \A : z1(e) = z2(e). Then there exist

two chains C1 and C2 such that

1. zi(T \A) + z(T ∩A) = ri(T ) for each T ⊆ Ci, for i = {1, 2}.

2. The vectors in {χ1(T ) : T ∈ C1} ∪ {χ2(T ) : T ∈ C2} are linearly independent.

3. |C1|+ |C2| = |S1|+ |S2| − |A|.

Proof. The basic feasible solution is produced by a system of linear equations. The equa-

tions that come from the matroid constraints can be chosen to have the structure given

at lemma 4.1.5. The remaining equations come from the inequalities y(e) ≥ z2(e)− z1(e)

and y(e) ≥ 0, ∀e ∈ (S1 ∪S2) \A. But since ∄e ∈ (S1 ∩S2) \A : z1(e) = z2(e), at most one

of these inequalities, for each e ∈ (S1 ∩S2) \A is equality. Thus, to compute z, z1, z2 from

this system of linear equations, we only need the equations that come from the matroid

constraints, i.e from the chains. The lemma follows.

Iterative Algorithm

We now give an iterative algorithm which constructs an integral solution from the linear

program and shows that the linear programming formulation is integral. Notice that this

algorithm is different from these presented at chapter two, because, except of the matroids

and the bases, it also updates the costs. This is reasonable, because if there is an element

e ∈ (S1 ∩ S2) \ A with z2(e) = 1 6= z1(e) and we contract e at M1, we have to pass the

information at the residual problem, that this elemt is already taken, see Algorithm 5.

Correctness and Optimality

Now, we show that in each iteration there will be at least one realizable condition, i.e

the algorithm will terminate:

Lemma 4.1.7. For any extreme point solution (z, z1, z2, y) to LPpzs(M1,M2, A) such

that (z, z1, z2) has positive entries and ∄e ∈ (S1 ∩ S2) \ A : z1(e) = z2(e), either there

exists an element e ∈ A with ze = 1 or an element e ∈ S1 \A with z1(e) = 1 or an element

e ∈ S2 \A with z2(e) = 1.

Proof. Suppose for a contradiction 0 < z(e) < 1 for each e ∈ A and 0 < z1(e) < 1

for each e ∈ S1 \ A and 0 < z2(e) < 1 for each e ∈ S2 \ A (1). By Lemma 4.1.6, we

obtain two chains C1, C2 defining z, z1, z2. We now show a contradiction to the fact that

|C1|+ |C2| = |S1|+ |S2|− |A| by a counting argument. We give two tokens to each element

in S1 ∩ S2 and one token to each element in (S2 ∪ S2) \ (S1 ∩ S2) for a total of |S1|+ |S2|
tokens. Now, we distribute these tokens to the sets of the two chains. This is done as

follows. Each element assigns one token to the smallest set Ti ∈ Ci such that e ∈ T i

for i = {1, 2}. We now claim that each set in C1 ∪ C2 obtains at least two tokens. The
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Algorithm 6 Iterative Algorithm for Partial Zero Switch Multistage Matroid Mainte-

nance for T=2

B1 ← ∅, B2 ← ∅.
while S1 ∪ S2 6= ∅ do

Find an optimal extreme point solution (z, z1, z2, y) to LPpzs(M1,M2, A).

If there is an e ∈ (S1 ∩ S2) \A with z1(e) = z2(e), then update A← A ∪ {e}.
Else if there is an e ∈ A with z(e) = 0, delete it from both matroids and from A.

Else if there is an e ∈ S1 \A with z1(e) = 0, delete it fromM1.

Else if there is an e ∈ S2 \A with z2(e) = 0, delete it fromM2.

Else if there is an e ∈ A with z(e) = 1, then update B1 ← B1 ∪ {e}, B2 ← B2 ∪ {e},
M1 ←M1/e,M2 ←M2/e, A← A \ {e}.

Else if there is an e ∈ S1\A with z1(e) = 1, then update B1 ← B1∪{e},M1 ←M1/e

and if also e ∈ S2 then set a(e)← 0.

Else if there is an e ∈ S2\A with z2(e) = 1, then update B2 ← B2∪{e},M2 ←M2/e

and if also e ∈ S1 then set c1(e)← c1(e)− a(e).

return B1, B2.

argument is identical for sets in C1, C2. Let T ∈ C1 and R be the largest set in C1 such

that R ⊆ T . Now, we have z1(T \A)+z(T ∩A) = r1(T ) and z1(R\A)+z(R∩A) = r1(R).

Subtracting, we obtain z1((T \R) \A)+ z((T \R)∩A) = r1(T )− r1(R). If T \R = ∅ then
T = R and we have a contradiction to the linear independence of the constraints. Also,

r1(T )− r1(R) is an integer, so z1((T \R) \A)+ z((T \R)∩A) is an integer and from (1),

we have that |T \R| ≥ 2. Thus, T receives one token for each element in T \R for a total

of at least two tokens. Therefore, every set in C1 ∪ C2 receives at least two tokens. The

distributed tokens were |S1|+ |S2| and from lemma 4.1.6 the received tokens are at least

2(|S1|+ |S2| − |A|). So,

|S1|+ |S2| ≥ 2(|S1|+ |S2| − |A|)⇒ 2|A| ≥ |S1|+ |S2| ⇒ A = S1 = S2

Thus, each element gave two tokens and each set must have received exactly two tokens.

Now, we show that there is at least one extra token which is a contradiction. First of

all, if an element does not belong to any set of a specific chain, then its corresponding

token goes nowhere and we are done. So, it must be the case that the maximal set of each

chain contains all the elements, which means that S1 = S2 = A belongs to both chains,

contradiction because of the linear independence.

We should note that if (z, z1, z2, y) is an extreme point of LPpzs(M1,M2, A), then

y(e) = max(0, z2(e)−z1(e)) for all e ∈ (S1∩S2)\A (2) and the argument is the same as

the one we presented for the case of partition matroids. Now, the main theorem is proved

via the standard induction argument. However, because of the many cases, the proof is

lengthy and we present it in detail for completeness.
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Theorem 4.1.8. The optimal solution of the LPpzs(M1,M2, A) is integral

Proof. This is proved by induction on the number of iterations of the algorithm. The base

case is trivial to verify. LetM1 = (S1, I1),M2 = (S, I2), A denote the matroids and the

zero switch set in the current iteration and (z, z1, z2, y) the optimal LP solution.

If there is an element e∗ ∈ (S1 ∩S2) \A with z1(e
∗) = z2(e

∗) then from (2), y(e∗) = 0.

So, if we add to the LP the additional constraints z1(e
∗) = z2(e

∗) and y(e∗) = 0, the

optimal solution does not change. This new LP is equivalent to LPpzs(M1,M2, A +

e∗). This is the LP that the algorithm solves at the next iteration. From the induction

hypothesis, we will find bases B1, B2 of M1,M2 that respect A + e∗ and are optimal

solution for LPpzs(M1,M2, A+e∗). Thus, because of the aforementioned equivalence and

the fact that B1, B2 respect A, they are optimal solution for LPpzs(M1,M2, A)

Else if there is an element e∗ ∈ A with z(e∗) = 0, then if we add to the LP the additional

constraint z(e∗) = 0, the optimal solution does not change. This new LP is equivalent to

LPpzs(M1 − e∗,M2 − e∗, A − e∗). This is the LP that the algorithm solves at the next

iteration. From the induction hypothesis, we will find bases B1, B2 ofM1 − e∗,M2 − e∗

that respect A−e∗ and are optimal solution for LPpzs(M1−e∗,M2−e∗, A−e∗). Observe

that these are also bases of M1,M2 respectively and respect A. Hence, because of the

eqivalence, they are optimal solution for LPpzs(M1,M2, A).

Else if there is an element e∗ ∈ S1 \ A with z1(e
∗) = 0, we distinguish two cases.

First case: e∗ ∈ (S1 ∩ S2) \ A. Then, from (2), y(e∗) = z2(e
∗). So, adding to the LP,

the constraints z1(e
∗) = 0 and y(e∗) = z2(e

∗), the optimal solution does not change.

This new LP is equivalent to LPpzs(M1 − e∗,M2, A). This is the LP that the algorithm

solves at the next iteration. From the induction hypothesis, we will find bases B1, B2 of

M1−e∗,M2 that respect A and are optimal solution for LPpzs(M1−e∗,M2, A). Observe

that B1 is a base ofM1. Hence, because of the eqivalence, they are optimal solution for

LPpzs(M1,M2, A). Second case: e∗ ∈ S1\S2. Adding to the LP, the constraint z1(e
∗) = 0

the optimal solution does not change. This new LP is equivalent to LPpzs(M1−e∗,M2, A)

and we proceed as before.

Else if there is an element e∗ ∈ S2 \A with z2(e
∗) = 0, we again distinguish two cases.

First case: e∗ ∈ (S1 ∩ S2) \ A. Then, from (2), y(e∗) = 0. So, adding to the LP, the

constraints z1(e
∗) = 0 and y(e∗) = 0, the optimal solution does not change. This new LP

is equivalent to LPpzs(M1,M2 − e∗, A) and we proceed as in the case z1(e
∗) = 0 (and for

the second case too).

Else if there is an element e∗ ∈ A with z(e∗) = 1, then if we add to the LP the

additional constraint z(e∗) = 1, the optimal solution does not change. This new LP is
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equivalent to the LP:

minimize (c1(e
∗) + c2(e

∗)) +
∑

e∈A−e∗

(c1(e) + c2(e))z(e) +
∑

e∈S1\A
c1(e)z1(e) +

∑

e∈S2\A
c2(e)z2(e)+

∑

e∈(S1∩S2)\A
a(e)y(e) +

∑

e∈S2\S1

a(e)z2(e)

subject to (z′, z1, z2, y) is a feasible solution of LPpzs(M1/e
∗,M2/e

∗, A− e∗)
(4.2)

where z’ is the restriction of z to A−e∗. But the objective function of this LP is the objec-

tive funtion of LPpzs(M1/e
∗,M2/e

∗, A−e∗) plus (c1(e∗)+c2(e
∗)). But, LPpzs(M1/e

∗,M2/e
∗, A−

e∗) is the LP that the algorithm solves at the next iteration. From the induction hypothe-

sis, we will find bases B1, B2 ofM1/e
∗,M2/e

∗ that respect A−e and are optimal solution

for LPpzs(M1/e
∗,M2/e

∗, A− e∗). B1 + e∗, B2 + e∗ are bases ofM1,M2, respect A and

have cost the optimal cost of LPpzs(M1/e
∗,M2/e

∗, A− e∗) plus (c1(e∗) + c2(e
∗)). Thus,

they are optimal solution for LPpzs(M1,M2, A).

Else if there is an element e∗ ∈ S1 \A with z1(e
∗) = 1, then we distinguish two cases.

First case: e∗ ∈ S2. Then, e∗ ∈ (S1 ∩ S2) \ A and from (2), y(e∗) = 0. So, adding to the

LP the constraints z1(e
∗) = 1, y(e∗) = 0, the optimal solution does not change. This new

LP is equivalent to the LP:

minimize c1(e
∗) +

∑

e∈A
(c1(e) + c2(e))z(e) +

∑

e∈(S1−e∗)\A
c1(e)z1(e) +

∑

e∈S2\A
c2(e)z2(e)+

∑

e∈((S1∩S2)−e∗)\A
a(e)y(e) +

∑

e∈S2\S1

a(e)z2(e)

subject to (z, z′1, z2, y
′) is a feasible solution of LPpzs(M1/e

∗,M2, A)

(4.3)

where z′1 is the restriction of z1 to (S1 \ A) − e∗ and y’ is the restriction of y to ((S1 ∩
S2)− e∗) \A. But the objective function of this LP is c1(e

∗) plus the objective funtion of

LPpzs(M1/e
∗,M2, A) where a(e

∗) is updated to zero, say LP1. But, LP1 is the LP that the

algorithm solves at the next iteration. From the induction hypothesis, we will find bases

B1, B2 ofM1/e
∗,M2 that respect A and are optimal solution for LP1. B1 + e∗ is a basis

ofM1, B1+e∗ and B2 respect A and have cost the optimal cost of LP1 plus c1(e
∗). Thus,

from the aforementioned equivalence, they are optimal solution for LPpzs(M1,M2, A).

Second case: e∗ /∈ S2. Then adding to the LP the constraint z1(e
∗) = 1, the optimal

solution does not change. This new LP is equivalent to the LP:

minimize c1(e
∗) +

∑

e∈A
(c1(e) + c2(e))z(e) +

∑

e∈(S1−e∗)\A
c1(e)z1(e) +

∑

e∈S2\A
c2(e)z2(e)+

∑

e∈(S1∩S2)\A
a(e)y(e) +

∑

e∈S2\S1

a(e)z2(e)

subject to (z, z′1, z2, y) is a feasible solution of LPpzs(M1/e
∗,M2, A).

(4.4)
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where z′1 is defined as before. But the objective function of this LP is c1(e
∗) plus the

objective funtion of LPpzs(M1/e
∗,M2, A), which is the LP that the algorithm solves at

the next iteration. Using the induction hypothesis, we proceed as before.

Else if there is an element e∗ ∈ S2 \ A with z2(e
∗) = 1, then we again distinguish two

cases. First case: e∗ ∈ S1. Then, e∗ ∈ (S1 ∩ S2) \A and from (2), y(e∗) = 1− z1(e
∗). So,

adding to the LP the constraints z2(e
∗) = 1, y(e∗) = 1− z1(e

∗), the optimal solution does

not change. This new LP is equivalent to the LP:

minimize c2(e
∗) +

∑

e∈A
(c1(e) + c2(e))z(e) +

∑

e∈S1\A
c1(e)z1(e) +

∑

e∈(S2−e∗)\A
c2(e)z2(e)+

∑

e∈((S1∩S2)−e∗)\A
a(e)y(e) + a(e∗)(1− z1(e

∗)) +
∑

e∈S2\S1

a(e)z2(e)

subject to (z, z1, z
′
2, y

′) is a feasible solution of LPpzs(M1,M2/e
∗, A)

(4.5)

where z′2 is the restriction of z2 to (S2 \A)−e∗ and y’ is the restriction of y to ((S1∩S2)−
e∗) \A. But the objective function of this LP is equal to c2(e

∗) plus the objective funtion

of LPpzs(M1,M2/e
∗, A) where c1(e

∗) is updated to c1(e
∗)− a(e∗), say LP2. But, LP2 is

the LP that the algorithm solves at the next iteration. From the induction hypothesis,

we will find bases B1, B2 ofM1,M2/e
∗ that respect A and are optimal solution for LP2.

B2 + e∗ is a basis ofM2, B1 and B2/e
∗ respect A and have cost at most the optimal cost

of LP2 plus c2(e
∗) + a(e∗). Thus, from the aforementioned equivalence, they are optimal

solution for LPpzs(M1,M2, A). Second case: e∗ /∈ S1. For this case the induction is

proved exactly as in the case where z1(e
∗) = 1 and e∗ /∈ S2.

4.2 Uniform switching costs: Division into ”epochs” and an

Iterative Rounding algorithm

We have seen that the logarithmic approximation is optimal for MMM. However, the

reduction from set cover and the integrality gap instance rely heavily on the fact that the el-

ements may have different acquisition costs. Thus, it is reasonable to ask whether the case

of uniform acquisition costs is hard and whether there are sub-logarithmic approximations

for it, as in the case of Dynamic Facility Location, see [12]. The MMM with uniform ac-

quisition costs can be proven to be APX−hard for the case of graphical matroids [Fotakis,

Lampis, Paschos, Plevrakis ’17]. In this thesis, we make a first step towards a constant

approximation algorithm, by presenting an algorithm that has constant approximation at

the holding cost and logarithmic approximation at the acquisition cost.

The LP is the same as in the general case, presented at chapter 3, but here all the

acquisition costs are equal to g. We call this LP: LPMMM (M, [1, T ]).
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minimize
∑

t,e

ct(e)zt(e) + g
∑

t,e

yt(e)

subject to ~zt ∈ PB(M), ∀t ∈ [T ]

yt(e) ≥ zt(e)− zt−1(e), ∀e ∈ E, ∀t ∈ [T ]

yt(e), zt(e) ≥ 0, ∀e ∈ E, ∀t ∈ [T ]

Let (z∗t (e), y
∗
t (e))e,t be the optimal LP solution. First of all, as we have seen in the

algorithms in chapter 3, if T is very big, then the approximation ratio is unsatisfactory.

However, let’s suppose that (z∗t (e), y
∗
t (e))e,t has payed acquisition cost gr/2 in the time

interval [1,t’]. In this case, if we make independent rounding of the fractional solution

at the intervals [1,t’],[t’+1,T], the acquisition cost at time t’+1 will be at most gr, so it

can be charged at the acquisition cost that (z∗t (e), y
∗
t (e))e,t has payed during [1,t’], i.e we

lose at most a constant factor at the acquisition cost. Based on this idea, we present a

process that takes as input (zt, yt)t∈[t1,t2], a feasible solution of the LPMMM (M, [t1, t2]),

1 ≤ t1 ≤ t2 ≤ T , which is the restriction of the LPMMM (M, [1, T ]) at the interval [t1, t2].

This process outputs a division of [t1, t2] into ”epochs” and a vector wi for each ”epoch” i.

Algorithm 7 Division into epochs of (zt, yt)t∈[t1,t2], for matroidM
r = rM(S)
j = 1

s = t1

for t = t1 to t2 do

bt(e) = mins≤u≤tzu(e)

if bt(S) < r
2 then

epochj = [s, t− 1]

wj = bt−1

s = t

j ++

return {epochi, wi}ji=1

Observe that wi is the ”fractional intersection” of {zt}t∈epochi
. Now, suppose we want

to round (zt, yt)t∈[t1,t2], which has acquisition cost γ. It is easy to see that if we make

the rounding independently in each epoch and after we concatenate the solutions, this

concatenation will cost at most 2γ at the acquisition cost. So now it remains to round each

epoch. Let’s focus on a specific epoch, say epoch i. From construction, wi(S) ≥ rM(S)/2.
Hence, {zt}t∈epochi

have a lot in common. More specifically, as we will show, there exists a

set A ⊆ S, such that |A| = Ω(rM(S)) and if the entries of wi that correspond to elements

of A are multiplied by at most a constant factor, the restriction of wi in the set A becomes

a vector that lies inside the base polytope of the restriction of M in the set A. Also, this

set A can be computed in polynomial time. To compute it, first consider the following LP,
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that takes as input a matroid and a vector w ∈ PI(M) and outputs a vector x ∈ PI(M)

maximize x(S)
subject to x(T ) ≤ r(T ), ∀T ⊆ S

0 ≤ x(e) ≤ αwi(e), ∀e ∈ E

for some parameter α > 2 that we will fix later. We call this linear program LPextr(M, w),

because it will help us extract the set A. Let x be the optimal solution of LPextr(M, w).

From lemma 2.3.1 there is a unique inclusion wise maximum tight set of x, say Cx ⊆ S.
Let r = rM(S).

Lemma 4.2.1. If w(S) ≥ r
β , for a β > 0, then r(Cx) ≥ r

β
α−β
α−1 .

Proof. From lemma 2.3.1 every element that belongs to some tight set of x also belongs

in Cx. Thus, because of the objective, x(e) = αw(e), ∀e ∈ S \ Cx (otherwise we could

increase x(e) without violating any constraint).

We have that

r ≥ x(S \ Cx) + x(Cx) (1)

w(S \ Cx) + w(Cx) ≥
r

β
(2)

x(S \ Cx) = αw(S \ Cx) (3)

w(Cx) ≤ r(Cx) (4)

x(Cx) = r(Cx) (5)

(1) holds since x ∈ PI(M). (2) holds by assumption. (3) is implied by the observation

at the beginning of the proof. (4) holds, since w ∈ PI(M). (5) holds by definition. From

(1),(3),(5) we get that:

r ≥ αw(S \ Cx) + r(Cx)⇒
r − r(Cx)

α
≥ w(S \ Cx) (6)

From (2), (4) we get that:

w(S \ Cx) ≥
r

β
− r(Cx) (7)

From (6), (7) we get that:

r − r(Cx)

α
≥ r

β
− r(Cx)⇒

(1− 1

α
)r(Cx) ≥

r

β
− r

α
⇒

r(Cx) ≥
r

β

α− β

α− 1
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Algorithm 8 Computation of Cx

A← ∅
while minT⊆S(r(T )− x(T )) = 0 do

T ∗ ← argminT⊆S(r(T )− x(T ))

A← A ∪ T ∗

M←M/T ∗

x← restriction of x in S \ T ∗

return A

The algorithm uses an algorithm that minimizes submodular functions (see [37]) as

oracle, takes as input the x ∈ PI(M) and outputs Cx in polynomial time.

Lemma 4.2.2. The algorithm outputs Cx.

Proof. Let x,M at some iteration of the algorithm such that x ∈ PI(M). Let r be the

rank function ofM. Also, let T be a tight set of x and T ∗ be its maximum tight set. Now

take M′ =M/T with rank function r’ and x′ be the restriction of x at S \ T . We have

that for each A ⊆ S \ T ∗ we have

x′(A) ≤ r′(A)⇔ x(A ∪ T )− x(T ) ≤ r(A ∪ T )− r(T )⇔ x(A ∪ T ) ≤ r(A ∪ T )

Thus, x′ ∈ PI(M/T ) and A is a tight set of x’ iff T ∪ A is a tight set of x. Hence,

T ∗ \ T is the maximum tight set of x’. The lemma follows.

Now, since wi ∈ PI(M) and wi(S) ≥ r/2, by solving the LPextr(M, wi) for α = 3, we

get the optimal solution xi and thus we have the following corollary:

Corollary 4.2.2.1. r(Cxi) ≥ r
4 and Cxi can be computed in polynomial time.

Now, for t ∈ epochi, let

ẑt(e) =

{

xi(e) if e ∈ Cx

zt(e) otherwise

From lemma 1.1, {ẑt}t∈epochi
, restricted in Cxi, are all fractional bases ofM restricted

in Cxi. Also {ẑt}t∈epochi
are all in the spanning set polytope, see [37]. Now, let Hi be

the minimum weight basis ofM restricted in Cxi with weight function
∑

t∈epochi
ct. For

t ∈ epochi, let

z̃t(e) =

{

1{e ∈ Hi} if e ∈ Cxi

zt(e) otherwise

We have that

∑

t∈epochi

∑

e∈Cxi

ct(e)z̃t(e) ≤
∑

t∈epochi

∑

e∈Cxi

ct(e)ẑt(e) ≤ 3
∑

t∈epochi

∑

e∈Cxi

ct(e)wi(e) ≤ 3
∑

t∈epochi

∑

e∈Cxi

ct(e)zt(e)
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Also, the acquisition cost of {z̃t}t∈epochi
is lower or equal to that of {zt}t∈epochi

. What we

want now is to transform {z̃t}t∈epochi
into a fractional base of M (remove the fractional

circuits) without changing anything inside Cx and without increasing neither the variables

nor the acquisition cost.

From now on, if z ∈ PB(M), then Fz = {χ(T ) : T ⊆ S and z(T ) = r(T )}, i.e Fz is

the set of characteristic vectors of the tight sets of z. Before we proceed, we should note

that one of the most important matroid properties is the ability to move from one base to

another by replacing elements, one by one, in the base with others outside of it so that the

whole time we maintain a base. Is this possible if we want to move from a fractional base

to another? Towards answering this question we first introduce a very useful definition.

Definition 23. Let z ∈ PB(M), e ∈ S. We define mtsz(e) to be the smallest set T ⊆ S
such that e ∈ T and χ(T ) ∈ Fz, that is, T is the minimum tight set that contains e. When

z is clear from context we will simply write mts(e).

We remark that mts(e) always exists, since S itself is tight, and it is always unique,

because of lemma 2.3.1. Also note that if z(e) = 1 then mts(e) = e. Also observe that

∀e′ ∈ mts(e)−e, z(e′) > 0, from the definition of mts(e) and the monotonicity of the rank

function. The reason that we present this definition is that the elements of mts(e)− e are

the ones that we can decrease, at least slightly, in order to increase z(e) while remaining

inside PB(M), i.e while maintaining a fractional base. This is shown rigorously via the

following proposition.

Proposition 4.2.2.1. Let e′ ∈ mts(e) − e, where z(e) < 1 and e is not a loop. If we

start increasing z(e) and decreasing z(e′) with the same constant rate, then z(e) remains

feasible until e’ is no longer in mts(e).

Proof. Let mts(e) be the minimum tight set of e before we make any changes. Observe

that since z(e) < 1 and e is not a loop, mts(e) 6= {e}. At the beginning, all elements

of mts(e), except of e (maybe), correspond to positive entries of z. Now, let’s fix an

element e′ ∈ mts(e). At the beginning, from definition: ∀T : χ(T ) ∈ Fz and e ∈ T ⇒
mts(e) ⊆ T ⇒ e′ ∈ T . Hence, since we make the two changes at the same rate, all the

tight sets remain tight. Thus, this process will stop at the moment when at least one of

these happens: z(e) becomes 1 or z(e′) becomes 0 or a set T ∗ such that e ∈ T ∗, e′ /∈ T ∗

becomes tight. Let mts′(e) be the minimum tight set of e at that moment. In the first

case, mts′(e) = {e} ⊆ mts(e) − e′. In the second case, mts′(e) ⊆ mts(e) − e′. In the

the third case, from lemma 2.3.1, mts′(e) ⊆ T ∗ ∩mts(e) ⊆ mts(e) − e′. The proposition

follows.

Now, we return to the question of how to transform {z̃t}t∈epochi
into a fractional base

of M without changing anything inside Cx and without increasing neither the variables

nor the acquisition cost. For the next lemma we write mtst(e) instead of mtszt(e), for

e ∈ S, t ∈ epochi.
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Lemma 4.2.3. Let {xt}t ∈ I, where I is a time interval, be a feasible solution of the

LPMMM (M, I). Let e ∈ S and e is not a loop. There is a {x′t}t∈I such that:

x′t(e) = 1, ∀t ∈ I,

x′t(e1) ≤ xt(e1), ∀t ∈ I, ∀e1 6= e

and the acquisition cost of {x′t}t∈I is not bigger than that of {xt}t∈I .

Proof. First, let’s prove the follwing proposition (notation: for the restriction of a vector

v on a subset A of the elements, we write ~v(A)):

Proposition 4.2.3.1. Let {xt}t ∈ I is a feasible solution of the LPMMM (M, I) and t is

a time step such that t, t + 1 ∈ I and ~xt(mtst(e)) 6= ~xt+1(mtst(e)), where by mtst(e), we

mean mtsxt(e). Then, ∃e′ ∈ S, e′ 6= e and either

e′ ∈ mtst(e) and xt(e
′) > xt+1(e

′) or e′ ∈ mtst+1(e) and xt+1(e
′) > xt(e

′)

Proof. Suppose xt(e) ≤ xt+1(e) (for the other case the argument is identical). Clearly,

xt(mtst(e)) = r(mtst(e)) and xt+1(mtst(e)) ≤ r(mtst(e)) ⇒ xt(mtst(e) − e) + xt(e) ≥
xt+1(mtst(e) − e) + xt+1(e). Thus, the proposition follows from the hypothesis and our

assumption.

Now, we are ready to construct {x′t}t∈I , from {xt}t ∈ I. While ∃t ∈ I such that

~xt(mtst(e)) 6= ~xt+1(mtst(e)) (which implies that not both xt(e), xt+1(e) are equal to one),

then from proposition 4.2.3.1, ∃e′ ∈ mtst(e), e
′ 6= e, such that xt(e

′) > xt+1(e
′) or ∃e′ ∈

mtst+1(e) such that xt+1(e
′) > xt(e

′). Let’s say that the first case occurs. In this case we

change xt (otherwise we do the same thing but we change xt+1). We start increasing xt(e)

and decreasing xt(e
′) at the same constant rate until either the mtst(e) becomes smaller

or xt(e
′) = xt+1(e

′) (as long as neither of the two happens, the solution remains feasible

as proposition 4.2.2.1 indicates).

Clearly, when this first phase finishes, the mtst(e) will be the same at all time steps.

Now, we simultaneously change all {xt}t ∈ I: while not all xt(e) = 1, we find an e’ such

that mtst(e
′) > 0, ∀t ∈ I and we start increasing xt(e) and decreasing xt(e

′) at the same

rate, ∀t ∈ I, until the mtst(e) becomes smaller (again until this happens, the solution

remains feasible). It is easy to see that the two phases will terminate after a finite number

of steps. At the end, the vector has the properties of the lemma.

Corollary 4.2.3.1. For each i, there is a {z′t}t∈epochi
such that:

z′t(e) = 1{e ∈ Hi}, ∀e ∈ Cxi , t ∈ epochi

z′t(e) ≤ zt(e), ∀e ∈ S \ Cxi , t ∈ epochi

and the acquisition cost of {z′t}t∈epochi
in S \ Cxi is not bigger than that of {zt}t∈epochi

in

S \ Cxi.
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Proof. For each i, let Hi = {ei1, ..., eik}. We iteratively use lemma 4.2.3.1, for I = epochi,

initial solution the {zt}t∈epochi
and initial matroid theM, for each eij , j=1,...,k. Once we

apply this lemma for element eij , we update M ← M/eij , we restrict all {zt}t∈epochi
in

S − eij and reapply the lemma for eij+1 etc.

Now, note that since for each epoch i, there is such a {z′t}t∈epochi
, it can be computed

in polynomial time via the LPMMM (M/Cxi , epochi) with the additional constraints:

z′t(e) ≤ zt(e), ∀e ∈ S \ Cxi , t ∈ epochi

All this analysis yields the following theorem:

Theorem 4.2.4. There is a polynomial time algorithm that takes as input a matroid

M = (S, I), r = rM(S), a time interval [t1, t2] and a {zt}t∈[t1,t2] ∈ PB(M, [t1, t2]), and

outputs

1. A division of [t1, t2] into disjoint epochs [f0, f1], [f1 + 1, f2], ..., [fk−1 + 1, fk] (f0 =

t1, fk = t2), such that for all i = 1, ..., k−1, {zt}t∈[t1,t2] ∈ PB(M, [t1, t2]) has at least

r/2 acquisition cost inside each [fi−1, fi + 1].

2. An Hi ∈ I such that |Hi| ≥ r/4, i = 1, ..., k.

3. {z′t}t∈epochi
∈ PB(M/Hi, epochi), i = 1, ..., k.

We also have that

∑

t∈epochi

wt(Hi) ≤ 3
∑

t∈epochi

∑

e∈span(Hi)

wt(e)zt(e), for all i = 1, ..., k

z′t(e) ≤ zt(e), for all t ∈ epochi, e ∈ S \ span(Hi), i = 1, ..., k

and finally, the acquisition cost of {z′t(e)}t∈epochi,e∈S\span(Hi) is not greater than the ac-

quisition cost of {zt(e)}t∈epochi,e∈S\span(Hi). We refer to this algorithm as F(M, [t1, t2], {zt}t∈[t1,t2]).

Now it is clear to see how the main algorithm will be:

Algorithm 9 Algorithm for MMM with uniform acquisition costs

Bt ← ∅, t = 1, ..., T

Solve LPMMM (M, [1, T ]) and get the optimal solution {zt}t∈[1,T ].

run A(M, [1, T ], {zt}t∈[1,T ]).

return B1, ..., BT

where A(M, [t1, t2], {zt}t∈[t1,t2]) is presented below:
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Algorithm 10 A(M, [t1, t2], {zt}t∈[t1,t2])
if rM(S) = 0, then return

run F(M, [t1, t2], {zt}t∈[t1,t2]) and get the epochs (suppose they are k) {epochi}ki=1,

{Hi}ki=1, {{z′t(e)}t∈epochi,e∈S\span(Hi)}ki=1

for each t ∈ [t1, t2] find i ∈ [k] such that t ∈ epochi and update Bt ← Bt ∪Hi

for each i = 1, ..., k run A(M/Hi, epochi, {z′t}t∈epochi
)

Performance Guarantee

Theorem 4.2.5. If {zt}t∈[1,T ] is the optimal solution of LPMMM (M, [1, T ]) and B1, B2, ..., BT

is the output of the algorithm then all of the outputed sets are bases ofM and

T
∑

t=1

wt(Bt) ≤ 3

T
∑

t=1

∑

e∈S
wt(e)zt(e)

and
T
∑

t=2

|Bt \Bt−1| = O(log r)

T
∑

t=2

∑

e∈S
max(zt(e)− zt−1(e), 0)

Proof. Let’s say that at the beginning of the algorithm {z′t}t∈[T ] = {zt}t∈[T ]. Now, let’s

consider {xt}t∈[T ] which is modified during the course of the algorithm and gradually

becomes integral. More specifically,

xt(e) = 1{e ∈ Bt}, ∀e ∈ span(Bt), t ∈ [T ]

and

xt(e) = z′t(e), ∀e ∈ S \ span(Bt), t ∈ [T ]

from the property 3, of theorem 4.2.4, when the algorithm terminates, {xt}t∈[T ] is

integral and it is the collection of the characteristic vectors of B1, B2, ..., BT . From the

property 2 and 3 of the theorem 4.2.4 xt ∈ PB(M), ∀t ∈ [T ] always during the course of

the algorithm. Thus, since due to the property 2 of the theorem 4.2.4 the algorithm will

terminate (in polynomial time), the returned B1, ..., BT are all bases ofM.

Now, we argue for the approximation on the holding cost. We actually prove that

during the course of the algorithm:

∑

t∈[T ]

∑

e∈span(Bt)

wt(e)xt(e) ≤ 3
∑

t∈[T ]

∑

e∈span(Bt)

wt(e)zt(e) (1)

and

xt(e) ≤ zt(e), ∀e ∈ S \ span(Bt), t ∈ [T ] (2)

(2) follows directly from theorem 4.2.4. Before we present the proof of (1), notice

that the algorithm constructs an ”interval tree”, where the root is [1,T] and each node’s

children are the epochs that the algorithm constructs for this interval.
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We will prove (1) via induction on the number of updates made at the collection

of {Bt}t∈[T ]. The base case is trivial to verify (remember that at the beginning of the

algorithm {z′t}t∈[T ] = {zt}t∈[T ]). Now, focus on some time that the algorithm updates Bt,

by adding to it some set H. This update was made during some call of A. When this call

took place, t belonged to some ”leaf” of the current ”interval tree”, say I. The algorithm

runs F(M \ Bt, I, {z′t(e)}e∈M/span(Bt),t∈I). The interval I is devided into epochs (these

are added, conceptually, as children of I at the interval tree) and suppose epochi is the

epoch that contains t. So, along with Bt are updated all {Bt′}t′∈epochi
and H = Hi which

is independent set ofM/Bt. Now, from theorem 4.2.4, for matroidM/span(Bt), interval

I and {z′t(e)}e∈M/span(Bt),t∈I ∈ PB(M/span(Bt)),

∑

t∈epochi

wt(Hi) ≤ 3
∑

t∈epochi

∑

e∈spanM/Bt
(Hi)

wt(e)xt(e)

so, from (2):
∑

t∈epochi

wt(Hi) ≤ 3
∑

t∈epochi

∑

e∈spanM/Bt
(Hi)

wt(e)zt(e) (3)

Now, Bt′ ← Bt′ ∪ Hi, for all t’ in epochi. Thus, after the update, the lefthand and

the righthand side of (3) are parts of the lefthand and righthand side of (1), respectively.

Now, since this part of the lefthandside of (1) of is modified only once during the algorithm

(because after this, in epochi, Hi is contracted fromM/Bt) and since the epochs partition

I, when the updates of this call of F finish, (1) will still hold. The claim follows.

It remains to show the approximation at the acquisition cost. What we are going

to show is that if we have a {zt}t∈[t1,t2] : zt ∈ PB(M), ∀t ∈ [t1, t2], a matroid M and

we set Bt1 , Bt1+1, ..., Bt2 ← ∅ and then run A(M, [t1, t2], {zt}t∈[t1,t2]) which produces,

conceptually, an interval tree T with height h(T) and root [t1, t2], then the acquisi-

tion cost of the returned Bt1 , Bt1+1, ..., Bt2 is at most 2h(T )g
∑t2

t=t1+1

∑

e∈S max(zt(e) −
zt−1(e), 0). The proof is by induction on h(T). The base case h(T)=0 is trivial. From

the way that the epochs are constructed, even if at the borders of epoch1, ..., epochk,

the returned integral solution changes entirely, the switching cost payed there is at most

2g
∑t2

t=t1+1

∑

e∈S max(zt(e)− zt−1(e), 0). The property 2 of theorem 4.2.4 and the induc-

tion hypothesis complete the induction. So, if T ∗ is the tree-interval of the algorithm that

we run to solve the problem, then from property 2 of theorem 4.2.4, h(T ∗) = O(log r) and

we are done.
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Κεφάλαιο 1

Εισαγωγή

Στη συνδυαστική βελτιστοποίηση έχουμε προβλήματα που μοντελοποιούν χρονικά στατι-

κές εφαρμογές. Ωστόσο, στην πράξη χρειάζεται να λυθούν στιγμιότυπα του συνδυαστικού

προβλήματος βελτιστοποίησης ενώ αυτό αλλάζει με την πάροδο του χρόνου. Φυσικά, μπο-

ρεί κανείς να λύσει το πρόβλημα ανεξάρτητα σε κάθε βήμα του χρόνου. Παρ΄ όλα αυτά, η

αλλαγή της λύσης σε διαδοχικά βήματα χρόνου συχνά κοστίζει ένα κόστος μετάβασης.

Σκεφτείτε, για παράδειγμα, το πρόβλημα που αντιμετωπίζει ένας πωλητής που χρειάζεται να

προμηθευτεί ένα προϊόν από k διαφορετικούς παραγωγούς για να ικανοποιήσει τη ζήτηση. Σε

μια δεδομένη ημέρα, θα μπορούσε να πάρει τιμές από κάθε έναν από τους παραγωγούς και

να επιλέξει τους k φθηνότερους. Καθώς οι τιμές αλλάζουν, αυτό το σύνολο των k φθηνότε-

ρων παραγωγών ενδέχεται να αλλάξει. Ωστόσο, υπάρχει ενα σταθερό κόστος για την έναρξη

ή/και τη λήξη μιας σχέσης με κάθε νέο παραγωγό. Ο στόχος του πωλητή είναι να ελαχι-

στοποιήσει το άθροισμα των δύο αυτών κοστών: το κόστος απόκτησης a(e) που πληρώνεται

κάθε φορά που ξεκινά μια σχέση με τον παραγωγό e και ένα κόστος κράτησης ανά περίοδο

ct(e) που πληρώνεται για να γίνει η αγορά τη στιγμή t από τον παραγωγό e, αθροιζόμενα

στις Τ περιόδους. Παρατηρήστε ότι αυτό το πρόβλημα είναι ένα παράδειγμα διατήρησης μιας

βάσης ενός k-ομοιόμορφου Matroid. Η εύρεση της βέλτιστης λύσης είναι επίσης τετριμμένη

για matroids, δεδομένου ότι ο άπληστος αλγόριθμος είναι ο βέλτιστος στην περίπτωση αυ-

τή. ΄Ετσι, είναι φυσικό να αναρωτηθούμε αν είναι επίσης εύκολο να λυθεί το πρόβλημα στην

χρονομεταβαλλόμενή του γενίκευση για γενικά matroids. Για παράδειγμα, μπορεί να θέλουμε

να διατηρήσουμε ένα δένδρο που συνδέει ένα δεδομένο γράφημα και σε κάθε βήμα, η ακμή e

κοστίζει ct(e) και ένα κόστος απόκτησης a(e) πρέπει να πληρώνεται κάθε φορά που μια νέα

ακμή e εισέρχεται στο δέντρο.

Το πρόβλημα της Χρονομεταβαλλόμενης Βελτιστοποίησης σε Μητροειδή (ΜΜΜ) ορίστη-

κε από τους Gupta, Talwar και Wieder [13]. Οι συγγραφείς απέδειξαν ότι όταν το κόστος

απόκτησης είναι μη ομοιόμορφο, που σημαίνει ότι αν αλλάξουμε διαφορετικά στοιχεία, εν-

δέχεται να πληρώσουμε διαφορετικό κόστος απόκτησης, τότε η λογαριθμική προσέγγιση είναι

βέλτιστη, εκτός εάν P = NP . Ωστόσο, η αναγωγή, που παρουσιάζουν, βασίζεται σε μεγάλο

βαθμό στην ανομοιομορφία των κοστών απόκτησης. Για το λόγο αυτό, επικεντρωνόμαστε

στην περίπτωση ενιαίου κόστους απόκτησης και κάνουμε ένα πρώτο βήμα προς έναν αλγόριθ-

1
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μο σταθερής προσέγγισης, παρουσιάζοντας έναν αλγόριθμο που έχει σταθερή προσέγγιση στο

κόστος κράτησης και λογαριθμική προσέγγιση στο κόστος απόκτησης, μια εγγύηση που οι

προηγούμενοι αλγόριθμοι δεν είχαν. Επιπλέον, στο [13], οι Gupta et al. αποδεικνύουν ότι το

πρόβλημα στην περίπτωση που έχουμε matroid διαμέρισης βρίσκεται στο P, ακόμη και αν το

κόστος απόκτησης δεν είναι ομοιόμορφο και εξαρτάται από το χρόνο. Παρουσιάζουν επίσης

το ίδιο αποτέλεσμα για την περίπτωση Τ = 2, ακόμη και αν τα δύο matroids είναι διαφορετικά.

Αποδεικνύουμε ότι τα φυσικά LP για αυτά τα προβλήματα είναι ακέραια, παρουσιάζοντας τις

πρώτες αποδείξεις integrality για LP για προβλήματα χρονομεταβαλλόμενης βελτιστοποίησης.

Μαζί με το έργο των Gupta et al. [13], η εργασία σχετίζεται με διάφορες γραμμές έρευνας.

Στην online περίπτωση, το πρόβλημα ΜΜΜ είναι επίσης μια ειδική περίπτωση του κλασσικού

προβλήματος Metrical Task Systems [6], [1], [5]. Προσπαθώντας να ενοποιήσουν την θεωρία

μάθησης και την ανταγωνιστική ανάλυση, οι Buchbinder et al. [7] μελέτησαν ένα πρόβλημα

πολύ παρόμοιο με το δικό μας. Στη δυναμική συντήρηση δέντρων Steiner [12], [15], [14], ο

στόχος είναι να διατηρηθεί ένα σχεδόν βέλτιστο Steiner δέντρο σε κάθε χρονική στιγμή (όπου

προστίθενται τερματικά) ενώ αλλάζουν μερικές ακμές σε κάθε χρονικό βήμα. Στη δυναμική

εξισορρόπηση φορτίου [11], [3] πρέπει να διατηρηθεί μια καλή λύση ενώ μετακινείτε ένας μικρός

αριθμός εργασιών.

Στην offline περίπτωση, οι Shachnai et al. [18] μελετούν προβλήματα ¨επαναβελτιστοπο-

ίησης¨: δεδομένης μιας αρχικής λύσης και μιας νέας στιγμής, θέλουν να εξισορροπήσουν το

κόστος μετάβασης και το κόστος στη νέα περίπτωση. Επίσης έχει γίνει αρκετή έρευνα σχετικά

με τα προβλήματα δανεισμού [4], [17], [16]: αυτά είναι προβλήματα βελτιστοποίησης όπου τα

στοιχεία μπορούν να λαμβάνονται για ένα διάστημα οποιουδήποτε μήκους, όπου το κόστος

είναι κοίλο στα μήκη.

1.1 Προσεγγιστικοί αλγόριθμοι

Η κλάση πολυπλοκότητας P περιέχει το σύνολο των προβλημάτων που μπορούν να λυθο-

ύν σε πολυωνυμικό χρόνο. Από θεωρητική άποψη, αυτό περιγράφει την κλάση των ¨εύκολων

προβλημάτων¨, δηλαδή τα προβλήματα που μπορούν να λυθούν αποδοτικά. Η κλάση NP είναι

το σύνολο των προβλημάτων που μπορούν να λυθούν με μη ντετερμινιστικό τρόπο σε πο-

λυωνυμικό χρόνο ή ισοδύναμα, τα προβλήματα για τα οποία μια λύση μπορεί να επαληθευτεί

οτι είναι σωστή σε πολυωνυμικό χρόνο. Το NP περιέχει πολλά ενδιαφέροντα προβλήματα

που συχνά προκύπτουν στην πράξη, αλλά υπάρχει καλός λόγος να πιστεύουμε οτι P 6= NP.

Δηλαδή, δε φαίνεται να είναι πιθανή η ύπαρξη αλγορίθμων για την αποδοτική επίλυση NP

προβλημάτων βελτιστοποίησης. Γι΄ αυτό συχνά καταφεύγουμε σε ευρυστικές μεθόδους για

την επίλυση αυτών των προβλημάτων. Κάποιες ευρυστικές μέθοδοι καταφέρνουν να βρούν μια

βέλτιστη λύση, αν και μπορεί να πάρει εκθετικό χρόνο για να συμβεί αυτό. ΄Αλλες τρέχουν

πάντα σε πολυωνυμικό χρόνο, αν και μπορεί να μην επιστρέψουν μια βέλτιστη λύση. Οι Προ-

σεγγιστικοί Αλγόριθμοι εμπίπτουν στην τελευταία κατηγορία. Ωστόσο, αν και δεν βρίσκουν

μια βέλτιστη λύση, εγγυώνται την ποιότητα της λύσης που επιστρέψανε.
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Ορισμός 1.1. ΄Ενας α-προσεγγιστικός αλγόριθμος για ένα πρόβλημα βελτιστοποίησης είναι

ένας πολυωνυμικός αλγόριθμος που για όλα τα στιγμιότυπα του προβλήματος παράγει μια λύση

της οποίας η αντικειμενική τιμή απέχει το πολύ κατά έναν παράγοντα α απο την αντικειμενική

τιμή μιάς βέλτιστης λύσης.

1.2 Βασικές Τεχνικές Σχεδίασης Προσεγγιστικών Αλ-

γορίθμων

Σε αυτό το κεφάλαιο δίνουμε μια πολύ σύντομη επισκόπηση των βασικών τεχνικών για

το σχεδιασμό προσεγγιστικών αλγορίθμων, βασισμένες στον Γραμμικό Προγραμματισμό. Η

παρουσίασή μας βασίζεται στα βιβλία [20] και [19], όπου μπορεί κανείς να βρει μια λεπτομερή

παρουσίαση του θέματος.

Για την παρουσίαση αυτή, θα βασιστούμε σε ένα παράδειγμα δύσκολου προβλήματος συν-

δυαστικής βελτιστοποίησης, το Set Cover.

Ορισμός 1.2. Στο πρόβλημα Set Cover, δίνεται ένα σύνολο στοιχείων E = {e1, ..., en},

μερικά υποσύνολα αυτών των στοιχείων S1, S2, ..., Sm όπου κάθε Sj ⊆ E και ένα μη αρνητικό

βάρος wj ≥ 0, για κάθε υποσύνολο Sj . Ο στόχος είναι να βρεθεί μια συλλογή των υποσυ-

νόλων, ελάχιστου βάρους, που να καλύπτει το σύνολο E . Δηλαδή, θέλουμε να βρούμε ένα

I ⊆ [m] που ελαχιστοποιεί το
∑

j∈I wj με ∪j∈ISj = E .

Ενα γραμμικό πρόγραμμα για το Set Cover είναι το εξής:

maximize
m∑

j=1

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, ..., n

xj ≥ 0, j = 1, ...,m

(1.1)

Το Set Cover είναι NP-hard και γι΄ αυτό σχεδιάζουμε προσεγγιστικούς αλγορίθμους για

την επίλυσή του. Οι βασικές τεχνικές σχεδίασης, που χρησιμοποιούμε σε αυτήν την εργασία,

εφαρμοζόμενες στο Set Cover είναι οι εξής:

1. Deterministic Rounding: ΄Εχοντας λύσει το LP, επιλέγουμε όλα τα σύνολα j για

το οποία ισχύει xj ≥ 1/f , όπου f = maxe∈E |j ∈ [m] : e ∈ Sj |. Αποδεικνύεται οτι ο

αλγόριθμος είναι f -προσεγγιστικός.

2. Randomized Rounding: ΄Εχοντας λύσει το LP, επιλέγουμε ένα σύνολο j με πιθα-

νότητα xj . Επαναλαμβάνουμε το πείραμα 2 lnn φορές και επιλέγουμε ένα σύνολο αν

αυτό επιλέχθηκε σε κάποιο απ΄ τα πειράματα. Ο αλγόριθμος επιστρέφει εφικτή λύση με

μεγάλη πιθανότητα και αν αυτό συμβεί, είναι O(log n)-προσεγγιστικός.

3. Greedy Algorithm: Ο αλγόριθμος διατηρεί μια συλλογή I ⊆ {S1, ..., Sm} και σε

κάθε επανάληψη προσθέτει στο I το σύνολο με το ελάχιστο
wj

|Sj\I|
. Ενας τρόπος να α-

ποδειχθεί οτι ο αλγόριθμος είναι O(log n)-προσεγγιστικός είναι η μέθοδος Dual-Fitting.





Κεφάλαιο 2

Μητροειδή

Τα Μητροειδή (Matroids) μελετήθηκαν πρώτη φορά από τονWhitney το 1935 και έχουν

στόχο να συλλάβουν αφηρημένα την έννοια της εξάρτησης. Ο ορισμός τουWhitney γενικεύει

μια εκπληκτική ποικιλία συνδυαστικών δομών, όπως τα συνδετικά δέντρα.

Ορισμός 2.3. Ενα ζευγάρι M = (S, I) είναι Matroid αν I είναι μια μή κενή συλλογή

υποσυνόλων του S που ικανοποιεί τις ακόλουθες ιδιότητες:

1. ∅ ∈ I

2. A ∈ I και B ⊆ A ⇒ B ∈ I

3. A,B ∈ I και |A| > |B| ⇒ ∃x ∈ B \A τέτοιο ώστε A ∪ {x} ∈ I

Ενα σύνολο A ⊆ S θα λέγεται ανεξάρτητο αν A ∈ I, αλλιώς θα λέγεται εξαρτημένο. ΄Ενα

μεγιστικό σύνολο A ∈ I θα λέγεται βάση του M. Επίσης, για κάθε υποσύνολο A του S

ορίζουμε r(A) = maxB⊆A: B∈I |B|.

Βασικά αποτελέσματα

Αν τα στοιχεία του S έχουν βάρη τότε υπάρχει άπληστος αλγόριθμος που υπολογίζει μια

βάση μέγιστου βάρους. Επίσης, υπάρχει πολυωνυμικός αλγόριθμος για τον υπολογισμό ενός

μεγίστου βάρους κοινού ανεξάρτητου συνόλου δύο Matroids (το λεγόμενο πρόβλημα two

Matroid Intersection). Επιπλέον, τα δύο κλασικά γραμμικά προγράμματα για τα δύο αυτά

προβλήματα επιστρέφουν πάντα ακέραια λύση. Τέλος, το πρόβλημα k Matroid Intersection:

εύρεση κοινού ανεξάρτητου συνόλου k Μητροειδών, με μέγιστο πληθάριθμο είναι NP-hard, για

k ≥ 3. Ωστόσο, χρησιμοποιώντας μια μέθοδο που ονομάζεται ”iterative rounding”, μπορεί

να σχεδιαστεί αλγόριθμος προσέγγισης (k − 1). Το έργο του Jack Edmonds [9], [8] έδειξε

τα προαναφερθέντα αποτελέσματα.
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Κεφάλαιο 3

Χρονομεταβαλλόμενη

Βελτιστοποίηση σε Μητροειδή

Μπορούμε τώρα να ορίσουμε το πρόβλημα της Χρονομεταβαλλόμενης Βελτιστοποίησης

σε Μητροειδή (ΜΜΜ). Τα αποτελέσματα που μελετάμε στο κεφάλαιο αυτό παρουσιάστηκαν

στη δημοσίευση των Gupta, Talwar, Wieder ”Changing bases: Multistage optimization for

matroids and matchings” [13].

Ορισμός 3.4. ΄Ενα στιγμιότυπο του προβλήματος ΜΜΜ αποτελείται από έναmatroid M =

(E, I), με r(E) = r, ένα κόστος a(e) ≥ 0 για κάθε e ∈ E και για κάθε βήμα t ∈ [T ], το κόστος

κράτησης ct(e) ≥ 0. Ο στόχος είναι να βρεθούν βάσεις {Bt ∈ I}t∈[T ] για να ελαχιστοποιηθεί

το

∑

t

(ct(Bt) + a(Bt \Bt−1))

όπου ορίζουμε B0 := ∅.

Κύρια Αποτελέσματα

Αρχικά, στο [13] οι συγγραφείς παρουσιάζουν κάποια θετικά και αρνητικά αποτελέσμα-

τα στο πρόβλημα ΜΜΜ. Πρώτον, αποδεικνύουν πώς η επέκταση του άπληστου αλγορίθμου

για το πρόβλημα της βάσης μεγίστου βάρους, σε αυτή τη χρονικά εξελισσόμενη γενίκευση,

που αναλύεται μέσω Dual-Fitting, δίνει έναν αλγόριθμο προσέγγισης log T . Στη συνέχεια,

παρουσιάζουν έναν randomized rounding αλγόριθμο, ο οποίος κάνει randomized rounding

σε κάθε χρονική στιγμή, αλλά η τυχαιότητα μοιράζεται μεταξύ όλων των χρονικών στιγμών.

Ο αλγόριθμος πετυχαίνει προσέγγιση O(log rT ) και μπορεί να τροποποιηθεί για να δώσει

προσέγγιση O(log r amax

amin
) (amax, amin: το μέγιστο και το ελάχιστο κόστος απόκτησης α-

ντίστοιχα). Επιπρόσθετα, δείχνουν μια ακριβή αναγωγή από το Set Cover, η οποία δείχνει

ότι η λογαριθμική προσέγγιση είναι βέλτιστη. Συνεχίζοντας με τα αρνητικά αποτελέσματα,

δείχνουν ότι είναι NP-hard να προσεγγίσουμε καλύτερα από Ω(T ) το ΜΜΜ με διαφορετικά

matroids αν T ≥ 3. Τέλος, αποδεικνύουν οτι στο πρόβλημα της Χρονομεταβαλλόμενης Βελ-

7
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τιστοποίησης, στην περίπτωση των Perfect Matchings, η δυσκολία αυξάνεται κατά πολύ: για

κάθε σταθερό ǫ > 0, δεν υπάρχει δυνατότητα προσέγγισης O(n1−ǫ).



Κεφάλαιο 4

ΜΜΜ σε ειδικές περιπτώσεις

4.1 Ομοοιόμορφα Κόστη Απόκτησης

΄Οπως είπαμε, στη γενική περίπτωση η λογαριθμική προσέγγιση είναι βέλτιστη. Γι΄ αυτό

το λόγο, στην ενότητα αυτή, μελετάμε το ΜΜΜ, στην περίπτωση που τα κόστος απόκτησης

είναι το ίδιο για όλα τα στοιχεία. Για απλότητα της παρουσίασης, θα ασχοληθούμε με το

πρόβλημα της Χρονομεταβαλλόμενης Βελτιστοποίησης σε Συνδετικά Δέντρα (MSTM), το

οποίο παρ΄όλο που είναι ειδική περίπτωση του ΜΜΜ, περιλαμβάνει όλες τις δυσκολίες του και

όσες αποδείξεις και αλγορίθμους παρουσιάζουμε μπορούν να γενικευτούν για το ΜΜΜ. Το

συγκεκριμένο πρόβλημα, για ομοιόμορφα κόστη, είναι APX-hard [Fotakis, Lampis, Paschos,

Plevrakis ’17]. Σε ό,τι αφορά το αλγοριθμικό κομμάτι, ο Randomized Rounding αλγόριθ-

μος πετυχαίνει O(log n) προσέγγιση στο κόστος απόκτησης και O(log n) προσέγγιση στο

κόστος κράτησης. Επίσης αξίζει να σημειωθεί οτι όλοι οι αλγόριθμοι που έχουν παρουσια-

στεί μέχρι στιγμής για προβλήματα Χρονομεταβαλλόμενης Βελτιστοποίησης και βασίζονται σε

Γραμμικά Προγράμματα κάνουν Randomized Rounding [10],[13],[2]. Σε αυτή τη διπλωματική

παρουσιάζουμε τον πρώτο αλγόριθμο που κάνει Deterministic Rounding για ένα πρόβλημα

Χρονομεταβαλλόμενης Βελτιστοποίησης, εν προκειμένω το MSTM και πετυχαίνει O(log n)

προσέγγιση στο κόστος απόκτησης και 3 προσέγγιση στο κόστος κράτησης. Αρχικά, ξεκινάμε

με τον ορισμό του προβλήματος:

Ορισμός 4.5. ΄Ενα στιγμιότυπο του προβλήματος MSTM αποτελείται από έναν γράφο

G = (V,E), ένα κόστος απόκτησης g ≥ 0 και για κάθε βήμα t ∈ [T ], το κόστος κράτησης

ct(e) ≥ 0. Ο στόχος είναι να βρεθούν συνδετικά δέντρα {Tt}t∈[T ] για να ελαχιστοποιηθεί το

∑

t

(ct(Tt) + g|Tt \ Tt−1|)

Πρέπει να σημειωθεί οτι μπορούμε να θεωρήσουμε, χωρίς βλάβη της γενικότητας οτι τη

χρονική στιγμή t = 1 δεν πληρόνουμε τίποτα για την απόκτηση των ακμών του T1, αφου

μπορούμε να ενσωματώσουμε αυτά τα κόστη στο c1: c1(e)← c1(e)+g, ∀e ∈ E. Συνεχίζουμε

9
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με την αναφορά κάποιων βασικών γνώσεων πάνω στο πολύτοπο των δασών και στο πολύτοπο

των συνδετικών δέντρων ενός γράφου.

Κλασματικά Δάση και Κλασματικά Συνδετικά Δέντρα

Το Γραμμικό Πρόγραμμα για το πρόβλημα του συνδετικού δέντρου ελαχίστου κόστους

είναι το ακόλουθο:

minimize
∑

e∈E

c(e)x(e)

subject to x(E) = n− 1

x(E(S)) ≤ |S| − 1, ∀S ⊆ V

x(e) ≥ 0, ∀e ∈ E

Ο Edmonds έδειξε στο [8] οτι αυτό το LP ειναι ακέραιο.

΄Εστω G = (V,E) και x ∈ R
|E|
+ .

• Θα λέμε οτι το x είναι κλασματικό συνδετικό δέντρο αν και μόνο αν

x(E(S)) ≤ |S| − 1, ∀S ⊆ V και x(E) = n− 1.

• Θα λέμε οτι το x είναι κλασματικό δάσος αν και μόνο αν x(E(S)) ≤ |S| − 1,

∀S ⊆ V .

• Θα λέμε οτι το x έχει έναν κλασματικό κύκλο αν και μόνο αν το x δεν είναι

κλασματικό δάσος.

΄Εστω οτι το x είναι ένα κλασματικό δέντρο του G.

• Θα λέμε οτι το S ⊆ V είναι σύνολο ισότητας στο x αν και μόνο αν x(E(S)) = |S|−1.

Σε αυτήν την περίπτωση θα λέμε οτι το x είναι κλασματικά συνδεδεμένο στο S.

• ΄Εστω F το σύνολο των συνόλων ισότητας του x. Στο [8] αποδεικνύεται οτι τα μεγιστι-

κά, ως προς την διάταξη που ορίζει το ⊆, σύνολα του F είναι ξένα μεταξύ τους, όπως

φαίνεται στο παρακάτω παράδειγμα.

Ονομάζουμε αυτά τα σύνολα κλασματικά συνεκτικές συνιστώσες του x.
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Το Γραμμικό Πρόγραμμα

Το ακόλουθο LP επεκτείνει το γραμμικό πρόγραμμα για το συνδετικό δέντρο ελαχίστου

κόστους, στη χρονομεταβαλλόμενη γενίκευση (MSTM) που μελετάμε.

minimize
∑

t

∑

e

ct(e)xt(e) + g
∑

t

∑

e

yt(e)

subject to xt(E) = n− 1, ∀t

xt(E(S)) ≤ |S| − 1, ∀S ⊆ V, ∀t

xt(e) ≥ 0, ∀e ∈ E, ∀t

yt(e) ≥ xt(e)− xt−1(e), ∀e ∈ E, ∀t

yt(e) ≥ 0, ∀e ∈ E, ∀t

Παρατηρείστε οτι αν {xt, yt}t η βέλτιστη λύση του LP , χωρίς βλάβη της γενικότητας

έχουμε: yt(e) = max(xt(e)− xt−1(e), 0) ∀t, e. Ο αλγόριθμος αποτελείται απο 4 βήματα.

Χωρισμός σε εποχές

Αρχικά, λύνουμε το LP το οποίο μας επιστρέφει Τ κλασματικά συνδετικά δέντρα x1, x2, ..., xT .

Θέτουμε z1t (e) = min1≤t′≤txt′(e). ΄Εστω t1 το μέγιστο t τέτοιο ώστε z1t (E) =
∑

e z
1
t (e) ≥

n−1
2 . Ορίζουμε σαν πρώτη εποχή, το διάστημα [1, t1]. Παρατηρείστε οτι μέσα σε αυτό το

διάστημα, η λύση x1, ..., xt1 πληρώνει κόστος απόκτησης τουλάχιστον g
n−1
2 . Στη συνέχεια,

θέτουμε z2t (e) = mint1+1≤t′≤txt′(e). ΄Εστω t2 το μέγιστο t τέτοιο ώστε z2t (E) =
∑

e z
2
t (e) ≥

n−1
2 . Ορίζουμε σαν δεύτερη εποχή, το διάστημα [t1 + 1, t2]. Μέσα σε αυτό το διάστημα, η

λύση xt1+1, ..., xt2 πληρώνει κόστος απόκτησης τουλάχιστον g
n−1
2 . Συνεχίζουμε με τον ίδιο

τρόπο έως ότου χωρίσουμε όλο το [1, T ] σε εποχές. Ακολουθεί ένα παράδειγμα της παραπάνω

διαδικάσιας (Τ=13).

x1 x2 x3 x4
︸ ︷︷ ︸

epoch1

x5 x6 x7
︸ ︷︷ ︸

epoch2

x8 x9 x10 x11 x12
︸ ︷︷ ︸

epoch3

x13
︸︷︷︸

epoch4

Συνεπακόλουθα, άμα κάνουμε rounding ανεξάρτητα σε κάθε εποχή, τότε χάνουμε

το πολύ έναν παράγοντα 2 στο κόστος απόκτησης.

Rounding

Μπορούμε να επικεντρωθούμε πλέον μόνο στην πρώτη εποχή [1, t1] (για τις υπόλοιπες

κάνουμε τα ίδια, ανεξάρτητα). Ορίζουμε z(e) = z1(e), ∀e. Παρατηρείστε οτι το z είναι

κλασματικό δάσος. Επίσης το γεγονός οτι z(E) ≥ n−1
2 δείχνει οτι τα κλασματικά συνδετικά

δέντρα x1, ..., xt1 δε διαφέρουν πολύ. Προσέξτε οτι αν ήταν ίδια (z(E) = n − 1) τότε το

rounding θα ήταν τετριμμένο, καθώς για κάθε χρονική στιγμή του [1, t1] θα επιλέγαμε το

συνδετικό δέντρο ελαχίστου κόστους, οπου η συνάρτηση κόστους θα ήταν η c =
∑

t∈[1,t1]
ct.

Επίσης, αν κάποιο S ⊆ V το S είναι σύνολο ισότητας για το z, τότε τα x1, ..., xt1 θα ήταν ίδια

μέσα στο S και κλασματικά συνδεδεμένα μέσα σε αυτό. ΄Αρα, υπολογίζοντας το συνδετικό

δέντρο ελαχίστου κόστους T μέσα στο S, με συνάρτηση κόστους c =
∑

t∈[1,t1]
ct και
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θέτοντας xi(e) = 1{e ∈ T }, ∀i ∈ [1, t1], e ∈ S δεν αυξάνεται το κόστος. Βέβαια, δεν υπάρχει

κάποιος λόγος να έχει το z κάποιο σύνολο ισότητας. Ωστόσο, δεδομένου οτι z(E) ≥ n−1
2

φαντάζει λογικό να έχει ένα σύνολο που έιναι ῾῾σχεδόν σύνολο ισότητας᾿᾿, με την

έννοια οτι αν αυξήσουμε λίγο τις μεταβλητές ακμών που βρίσκονται στο εσωτερικό αυτού

του συνόλου, θα το κάνουμε σύνολο ισότητας. Για να πετύχουμε κάτι τέτοιο χρησιμοποιούμε

το ακόλουθο γραμμικό πρόγραμμα:

maximize
∑

e∈E

znew(e)

subject to znew(E(S)) ≤ |S| − 1, ∀S ⊆ V

0 ≤ znew(e) ≤ 3z(e), ∀e ∈ E

΄Εστω znew η βέλτιστη λύση του παραπάνω LP. Εκ κατασκευής, το znew είναι κλασματικό

δάσος. ΄Εστω S1, ..., Sk ⊆ V οι κλασματικά συνεκτικές συνιστώσες του. Αποδεικνύεται οτι

k∑

i=1

(|Si| − 1) ≥
n− 1

4
(1)

΄Εστω Π = ∪ki=1E(Si) (πράσινες ακμές). Αλλάζουμε όλα τα {xt(e)}t∈[1,t1],e∈Π ώς εξής:

xt(e) ← znew(e), ∀e ∈ Π. Εκ κατασκευής του znew, με αυτήν την αλλαγή χάνουμε το πολύ

έναν παράγοντα 3 στο κόστος κράτησης και το κόστος απόκτησης ενδέχεται να μειώθηκε κι

όλας στο εσωτερικό του [1, t1]. Τώρα όμως, μέσα σε κάθε ένα απο τα S1, ..., Sk, τα x1, ..., xt1
είναι ίδια και κλασματικώς συνδεδεμένα! ΄Αρα βρισκόμαστε στην ειδική περίπτωση που το

rounding (μέσα στα Si) είναι τετριμμένο. Πιο συγκεκριμένα, αν Hi είναι το συνδετικό δέντρο

ελαχίστου κόστους μέσα στο Si, με συνάρτηση κόστους c =
∑t1

t=1 ct, τότε θέτοντας για κάθε

i:

xt(e)← 1{e ∈ Hi}, ∀e ∈ E(Si), ∀t ∈ [1, t1]

δεν αυξάνεται κανένα κόστος. Το παρακάτω σχήμα δείχνει τη μορφή του ενός απο τα xi

μετά τις αλλαγές που κάναμε. Οι κύκλοι είναι τα Si και οι πράσινες ακμές είναι τα στοιχεία του

Π. Στις πράσινες ακμές, μετά τις αλλαγές που κάναμε, τα xi είναι ακέραια και ταυτίζονται. Στις

κόκκινες ακμές ενδεχομένως να είναι κλασματικά και διαφορετικά μεταξύ τους. Το σύνολο των

κόκκινων ακμών θα το γράφουμε Κ (κόκκινες).
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Αφαίρεση κλασματικών κύκλων

Παρ΄ όλο που καταφέραμε να κάνουμε round μεγάλο κομμάτι των x1, ..., xt1 , τα τελευταία

έχουν πλέον κλασματικούς κύκλους που πρέπει να αφαιρεθούν χωρίς να αυξηθεί το κόστος.

Αυτό το πετυχαίνουμε με το ακόλουθο λήμμα:

Λήμμα 4.1. Μόνο μειώνοντας μεταβλητές {xt(e): e ∈ K, t ∈ [1, t1]}, μπορούμε να κάνουμε

τα x1, ..., xt1 κλασματικά συνδετικά δέντρα, χωρίς να αυξήσουμε το κόστος απόκτησης.

Για την απόδειξη του λήμματος αυτού χρειαζόμαστε μία έννοια ανταλλαξιμότητας ακμών

στην κλασματική περίπτωση. Πιό συγκεκριμένα, αν μια ακμή δεν ανήκει σε ένα ακέραιο

δέντρο, τότε οι ακμές που ανήκουν στο μονοπάτι του δέντρου που ενώνει τα άκρα της είναι

ανταλλάξιμες με αυτή. Χρειαζόμαστε μια τέτοια έννοια στην περίπτωση των κλασματικών

συνδετικών δέντρων, την οποία την ονομάζουμε ¨κλασματική ανταλλαξιμότητα¨. ΄Απαξ και

εισάγουμε αυτήν την έννοια, η απόδειξη του λήμματος 4.1 είναι ευθύγραμμη. Ας επικέντρω-

θούμε λοιπόν σε ένα κλασματικά συνδετικό δέντρο, το x1. ΄Εστω μια ακμή e της οποίας

θέλουμε να αυξήσουμε τη μεταβλητή, x1(e) < 1. Ο λόγος που δε μπορούμε να κάνου-

με κάτι τέτοιο χωρίς να παραβιάσουμε τους περιορισμούς που καθιστούν το x1 κλασματικά

συνδετικό δέντρο είναι η ύπαρξη περιορισμών που αντιστοιχούν σε σύνολα ισότητας. ΄Εστω

F = {S ⊆ V : x1(E(S)) = |S| − 1}. Στο [8] αποδεικνύεται οτι

A,B ∈ F και A ∩B 6= ∅ ⇒ A ∩B ∈ F

Αυτό σημαίνει οτι υπάρχει ένα σύνολο ακμών που ονομάζουμε mts(e), το οποίο περιέχει

τη e και για κάθε σύνολο ακμών S που περιέχει την e ισχύει οτι mts(e) ⊆ S. Ο λόγος που

αυτό ισχύει συνοψίζεται στο ακόλουθο σχήμα οπου οι κύκλοι αποτελούν σύνολα ισότητας για

το x1 που περιέχουν την e.

εφόσον x1(mts(e)) = |mts(e)| − 1 και x1(e) < 1, υπάρχει e′ ∈ mts(e) με x1(e′) > 0. Εξ

ορισμού, αν A ∈ F και e ∈ A, τότε e′ ∈ A. Για το λόγο αυτό μπορούμε να αρχίσουμε να

αυξάνουμε το x1(e) και να μειώνουμε το x1(e
′) με τον ίδιο ρυθμό, έως ότου προστεθεί νέο

σύνολο στο F .
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Σύνθλιψη και Αναδρομή

Πλέον τα x1, ..., xT είναι κλασματικά συνδετικά δέντρα. Συνθλίβουμε όλες τις πράσινες

ακμές που ανήκουν στα xt, t ∈ [1, t1] και έτσι προκύπτουν τα x′1, ..., x
′
t1
που είναι κλασματικά

συνδετικά δέντρα του G/ ∪i Si. Τώρα, επαναλαμβάνουμε όλη τη διαδικασία (χωρισμός σε

εποχές κλπ) πάνω στα x′1, ..., x
′
t1
.

Λόγος Προσέγγισης

Εκ κατασκευής:

∑

t∈[1,t1]

k∑

i=1

ct(Hi) ≤ 3
∑

t∈[1,t1]

∑

e∈Π

ct(e)xt(e)

Ταυτόχρονα, όλες οι μεταβλητές που αντιστοιχούν σε κόκκινες ακμές μειώθηκαν ή έμειναν

ίδιες. Συνεπώς, επαγωγικά, έχουμε προσέγγιση 3 στο κόστος κράτησης της x1, ..., xT .

Το ακόλουθο δέντρο δείχνει ένα παράδειγμα εκτέλεσης του αλγορίθμου.

Στην αρχή, το LP επιστρέφει τα {x0i }
13
i=1. Στη συνέχεια, χωρίζουμε το χρόνο σε 4

εποχές και πληρώνουμε το ¨τίμημα του ανεξάρτητου rounding¨, που είναι το πολύ 2a.c(x)

(a.c(x): το κόστος απόκτησης που πληρώνει η {x0i }
13
i=1). Τρέχουμε τα βήματα του αλγορίθμου

όπως τα εξηγήσαμε πρίν και σε κάθε εποχή [t, t′] παίρνουμε τα νέα κλασματικά συνδετικά

δέντρα {x1i }
t′

i=t πάνω στις αντίστοιχες κόκκινες ακμές. Παρατηρείστε οτι στην τελευταία

εποχή κάνουμε κατευθείαν όλο το rounding αφού έχουμε μόνο ένα κλασματικά συνδετικό

δέντρο (περίπτωση z(E) = n − 1). Λόγω του οτι στο στάδιο αφαίρεσης των κλασματικών

κύκλων δεν αυξήσαμε το κόστος απόκτησης, σε κάθε επίπεδο του δέντρου πληρώνουμε το

πολύ 2a.c(x) για κόστος απόκτησης. Συνεπώς, το κόστος απόκτησης της λύσης {Ti}13i=1 είναι

το πολύ 2a.c(x) επί το ύψος του δέντρου εκτέλεσης του αλγορίθμου. Λόγω (1) το ύψος αυτό

είναι O(log n). Εν τέλει έχουμε προσέγγιση 3 στο κόστος κράτησης και προσέγγιση O(log n)

στο κόστος απόκτησης.
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4.2 Ακέραια ΓΠ για ειδικές περιπτώσεις του ΜΜΜ

Σε αυτήν την ενότητα παρουσιάζουμε δύο ακόμα αποτελέσματα αυτής της διπλωματικής.

Δείχνουμε οτι τα ΓΠ για την ειδική περίπτωση του ΜΜΜ, όπου τα Μητροειδή είναι Μητροειδή

Διαμέρισης, και για την περίπτωση Τ=2, είναι ακέραια.

Χρονομεταβαλλόμενη Βελτιστοποίηση σε Μητροειδή Διαμέρισης

Ενα είδος μητροειδούς είναι τα Μητροειδή Διαμέρισης:

Ορισμός 4.6. Μητροειδές Διαμέρισης: ΄Εστω ένα σύνολο S και S1, S2, ..., Sn μία

διαμέριση του S και k1, k2, ..., kn μη αρνητικοί ακέραιοι. ΄Εστω I = {T ⊆ S : |T ∩ Si| ≤

ki, ∀i ∈ [n]}.

Παρατηρείστε οτι για να λυθεί το πρόβλημα της Χρονομομεταβαλλόμενης Βελτιστοποίησης

σε Μητροειδή Διαμέρισης, αρκεί να λυθεί για n = 1. Το ΓΠ γι΄ αυτό το πρόβλημα έχει την

εξής μορφή:

minimize
T∑

t=1

∑

e∈S

ct(e)yt(e) +
T∑

t=2

∑

e∈S

at(e)zt(e)

subject to zt(S) = k, ∀t ∈ [T ]

yt(e) ≥ zt(e)− zt−1(e), ∀e ∈ S, t = 2, ..., T

0 ≤ zt(e) ≤ 1, ∀e ∈ S, ∀t ∈ [T ]

yt(e) ≥ 0, ∀e ∈ S, t = 2, ..., T

Παρατηρείστε οτι επιτρέπουμε τα κόστη απόκτησης να εξαρτώνται απο το χρόνο. Στο [13],

οι συγγραφείς δείχνουν οτι αυτό το πρόβλημα είναι στο P. Εμείς δείχνουμε το εξής θεώρημα:

Θεώρημα 4.1. Το Γραμμικό Πρόγραμμα για το πρόβλημα της Χρονομομεταβαλλόμενης

Βελτιστοποίησης σε Μητροειδή Διαμέρισης είναι ακέραιο.

Τ=2

Στην περίπτωση του MSTM, οπου Τ=2, το ΓΠ παίρνει την εξής μορφή:

minimize
∑

e

c1(e)x1(e) +
∑

e

c2(e)x2(e) +
∑

e

a(e)y(e)

subject to xt(E) = n− 1, ∀t ∈ {1, 2}

xt(E(S)) ≤ |S| − 1, ∀S ⊆ V, ∀t ∈ {1, 2}

xt(e) ≥ 0, ∀e ∈ E, ∀t ∈ {1, 2}

y(e) ≥ x2(e)− x1(e), ∀e ∈ E

y(e) ≥ 0, ∀e ∈ E,

Στο [13], οι συγγραφείς δείχνουν οτι αυτό το πρόβλημα είναι στο P. Εμείς δείχνουμε το

εξής θεώρημα:
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Θεώρημα 4.2. Το Γραμμικό Πρόγραμμα για το πρόβλημα της Χρονομομεταβαλλόμενης

Βελτιστοποίησης σε Συνδετικά Δέντρα, με Τ=2, είναι ακέραιο.

Για την ακρίβεια δείχνουμε οτι αυτό ισχύει στην περίπτωση που έχουμε δύο Μητροειδή

και αυτά μπορεί να είναι διαφορετικά.
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