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Abstract

Multistage Matroid Optimization is a time-evolving generalization of the classical
minimum-weight base problem. It was proposed by Gupta, Talwar and Wieder to model
systems that need to be maintained continually while the underlying costs change over
time. In this time-evolving setting, the costs of the elements may change in each time
step and this leads to a trade-off between maintaining a low-cost base and the ”stability”
of the solution. More specifically, the input is a sequence of cost functions (one for each
time step); while we change the base from step to step, we incur an additional uniform
acquisition cost for every such change.

In this thesis we present the first deterministic LP rounding O(log r)-approximation
algorithm for the problem, where r is the rank of the matroid, that achieves constant
approximation at the holding cost. Gupta et al. had presented a randomized rounding
scheme that also achieves O(logr) approximation, but this holds for both the holding and
the acquisition cost. Our algorithm relies on the well understood structure of the indepen-
dent set polytope and introduces a novel rounding technique that might be of independent
interest. In addition, we provide the first proofs of integrality for linear programming re-
laxations for multistage combinatorial optimization problems. More specifically, we show
that the natural LP for the multistage partition matroid optimization problem is integral.
We also show integrality for the LP for the multistage matroid optimization, for two time

steps, even if the two matroids are different.

Keywords

Multistage Combinatorial Optimization, Matroids, Spanning Trees, Approximation

Algorithms, Linear Programming
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Introduction

In combinatorial optimization we have problems with constraints that model an appli-
cation frozen in one time step. However, in practice, one needs to solve instances of the
combinatorial optimization problem that changes over time. Of course, one can trivially
solve the problem independently in each time step. Nevertheless, changing the solution at
consecutive time steps, often costs a transition cost. Consider, for example, the problem
faced by a vendor who needs to get supply of an item from k different producers to meet
her demand. On any given day, she could get prices from each of the producers and pick
the k cheapest ones to buy from. As prices change, this set of the k cheapest producers
may change. However, there is a fixed cost to starting and/or ending a relationship with
any new producer. The goal of the vendor is to minimize the sum total of these two costs:
an ”acquisition cost” a(e) to be incurred each time she starts a new business relationship
with a producer, and a per period cost ¢;(e) of buying in period t from the each of the k
producers that she picks in this period, summed over T time periods. Observe that this
problem is an example of maintaining a base of a k-uniform matroid. Finding the optimal
solution is also trivial for matroids, since the greedy algorithm is optimal in this case. So,
it is natural to ask, whether it is also easy to solve the multistage problem for general
matroids. For example, one may want to maintain a spanning tree of a given graph at
each step, where the edge costs ¢;(e) change over time, and an acquisition cost of a(e) has

to be paid every time a new edge enters the spanning tree.

The multistage matroid optimization problem was introduced by Gupta, Talwar and
Wieder in [22]. The authors proved that when the acquisition costs are non-uniform, which
means that if we change different elements, we may pay different acquisition costs, then
the logarithmic approximation is optimal, unless P = N P. However, their reduction relies
heavily on the non-uniformity of the acquisition costs. For this reason, we work on the case
of uniform acquisition costs and we make a first step towards a constant approximation
algorithm, by presenting an algorithm that has constant approximation at the holding
cost and logarithmic approximation at the acquisition cost, a guarantee that the previous
algorithms did not have. Furthermore, in [22], Gupta et al. prove that the problem
restricted to partition matroids lies in P, even if the acquisition costs are non-uniform and
time-dependent. They also show the same thing for T=2, even if the two matroids are
different. We prove that the natural LPs for these problems are integral, presenting the

first integrality proofs for LP relaxations for multistage optimization problems.
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The time-evolving setting has also been applied to facility location problem. Eisenstat
et al. in [18] introduced two variants of the problem. In both variants, the acquisition (in
their paper they call it switching) cost is uniform and is payed when a client changes the
facility that she is connected to. The difference lies in the fact that in the first variant the
facilities do not change while in the second they can change. For both cases they present
an O(lognT) approximation algorithm, where n is the number of clients and T the number
of time steps. For the first case they show a matching lower bound, while for the second
case An et al. in [2] presented a 14-approximation algorithm.

All these raise a natural question as far as multistage combinatorial optimization is
concerned: if we have two combinatorial optimization problems A,B such that A is more
difficult than B, in the static case, and we know that in the multistage setting, A has
a constant approximation algorithm, is it the case that, in the multistage setting, B has
also a constant approximation algorithm? The answer is NO, since in [22] the authors
prove that Ve > 0 there is no O(n!~¢)-approximation algorithm for the multistage perfect
matching, which for 7' =1 lies in P. So, if the problem A is the facility location which
is NP-hard and B is the min-cost perfect matching which belongs to P, then clearly the

above proposition is false.

Matroids

Matroid theory was introduced by Hassler Whitney (1935) [43] and it was also indepen-
dently discovered by Takeo Nakasawa. In his seminal paper, Whitney provided two axioms
for independence, and defined any structure adhering to these axioms to be ”matroids”.
His key observation was that these axioms provide an abstraction of ”independence” that
is common to both graphs and matrices. Because of this, many of the terms used in
matroid theory resemble the terms for their analogous concepts in linear algebra or graph
theory. In the 1950s W. T. Tutte became the foremost figure in matroid theory, a position
he retained for many years. His contributions were plentiful, including the characteri-
zation of binary, regular, and graphic matroids by excluded minors; the regular-matroid
representability theorem; the theory of chain groups and their matroids; and the tools
he used to prove many of his results, the ”Path theorem” and ”"Homotopy theorem” [41].
Henry Crapo and Thomas Brylawski [8] generalized to matroids Tutte’s ”dichromate”, a
graphic polynomial now known as the Tutte polynomial. Their work has been followed by
a flood of papers.

Published in 1980, Paul Seymour’s decomposition theorem for regular matroids [3§]
was the most significant and influential work of the late 1970s and the 1980s. Another
fundamental contribution, by Kahn and Kung [26], showed why projective geometries and
Dowling geometries play such an important role in matroid theory. By this time there
were many other important contributors, but one should not omit to mention Geoff Whit-
tle’s extension to ternary matroids of Tutte’s characterization of binary matroids that are

representable over the rationals [44], perhaps the biggest single contribution of the 1990s.
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Around 2000, the Matroid Minors Project of Jim Geelen, Gerards, Whittle, and others,
which attempts to duplicate for matroids, that are representable over a finite field, the
success of the Robertson—Seymour Graph Minors Project, has produced substantial ad-
vances in the structure theory of matroids. Many others have also contributed to that part
of matroid theory, which is currently flourishing. For a detailed and compact presentation

of matroid theory, we refer the reader to [36].

Edmonds in [17],[16] was the first who showed a polyhedral characterization of the
independent set polytope. Optimizing a linear function subject to matroid constraint can
be solved greedily, but what if we have a submodular function? Submodular maximization
generalizes many fundamental problems in discrete optimization, including Max-Cut in
directed /undirected graphs, maximum coverage, maximum facility location and marketing
over social networks. Thus, because of its importance, this question has been extensively
studied recently and there have been wonderful results in the area. We refer the interested
reader to [11],[40],[10].

Related Work

Along with the work of Gupta et al. [22] and [2] et al., our work is related to several
lines of research. In the online case, The MMM problem is also a special case of classical
Metrical Task Systems [7]; see [1], [5] for more recent work. The best approximations for
metrical task systems are poly-logarithmic in the size of the metric space. In our case
the metric space is specified by the total number of bases of the matroid which is often
exponential, so these algorithms only give a trivial approximation. In trying to unify online
learning and competitive analysis, Buchbinder et al. [9] consider a problem on matroids
very similar to ours. In their model all acquisition costs are the same and they work with
fractional bases instead of integral ones. They give an O(logn)-competitive algorithm
to solve the fractional online LP with uniform acquisition costs (among other unrelated
results). In dynamic Steiner tree maintenance [21],[32],[24], the goal is to maintain an
approximately optimal Steiner tree for a varying instance (where terminals are added)
while changing few edges at each time step. In dynamic load balancing [19],[3] one has to
maintain a good scheduling solution while moving a small number of jobs around.

In the offline case, Shachnai et al. [39] consider “reoptimization” problems: given
a starting solution and a new instance, they want to balance the transition cost and
the cost on the new instance. This is a two-timestep version of our problem, and the
short time horizon raises a very different set of issues (since the output solution does
not need to itself hedge against possible subsequent futures). They consider a number
of optimization/scheduling problems in their framework. There is also work on “leasing”
problems [4],[34],[33]: these are optimization problems where elements can be obtained for
an interval of any length, where the cost is concave in the lengths; the instance changes
at each timestep. The main differences are that the solution only needs to be feasible at

each timestep (i.e., the holding costs are {0,00}), and that any element can be leased for
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any length ¢ of time starting at any timestep for a cost that depends only on ¢, which
gives these problems a lot of uniformity. In turn, these leasing problems are related to

“buy-at-bulk” problems.

Chapters Overview

The problem that we deal with in this thesis is NP-hard and the standard approach in
these cases is the design of approximation algorithms. At the same time, the approximation
algorithms that we present are mostly based on linear programming. That’s why, in
Chapter 1, we introduce the reader to the basic LP-based techniques for approximating
hard problems, via the example of Set Cover. We present a deterministic and a randomized
rounding algorithm and we analyze the natural greedy algorithm using dual-fitting. After,
we present some basic facts about linear programming that we will continuously invoke
throughout this thesis. We outline the important Rank Lemma and other properties about
extreme point solutions. We also discuss the polynomial time solvability of linear programs
using the separation oracle.

In Chapter 2 we introduce the reader to the concept of matroids. We discuss why they
constitute an important combinatorial abstraction and we present the basic properties
and definitions. We show why the greedy algorithm works in the min-weight base problem
and then we highlight the structure of the independent set polytope. Using this struc-
ture and an iterative rounding algorithm, we show that the linear program for matroid
intersection is integral. Finally, we show how an extension of these techniques yields a
(k — 1)—approximation algorithm for the k-matroid intersection problem.

In Chapter 3 we present some positive and negative results on the Multistage Ma-
troid Maintainance problem, shown in [22]. First, we show how the extension of Kruskal’s
algorithm in this time-evolving setting, analyzed through dual-fitting, gives a logT approx-
imation algorithm (T: number of timesteps). Then, we present a randomized rounding
algorithm, which uses independent sampling in each timestep, but the randomness is
shared between the timesteps. This is an O(logrT')-approximation algorithm and can be
modified to give an O(log T%) approximation guarantee (r: rank of the matroid, amqz,
Amin: the maximum and minimum acquisition costs respectively). After, we present an
exact reduction from Set Cover, which shows that the logarithmic approximation is opti-
mal. Continuing with the negative results, we show that MMM with different matroids is
NP-hard to approximate better than a factor of Q(7') as long as T > 3. Finally, we discuss
the perfect matching maintainance problem and we show that, surprisingly, the hardness
drastically increases: for any constant e > 0, there is no O(n'~¢)-approximation.

Chapter 4 contains our research work. First, we show the the linear program for the
MMM for partition matroids is integral, even in the case of time-dependent switching costs.
Second, we prove integrality for the MMM for T=2, even when the matroids are different.
Third, having observed that the reduction from set cover relies on the non-uniformity of the

acquisition cost, Gupta et al. [22] asked whether there is a sublogarithmic approximation
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algorithm for the restriction to instances with uniform switching costs. We make a first
step towards a positive answer, by presenting a deterministic algorithm with constant

approximation at the holding cost and O(logr) at the acquisition cost.






Chapter 1

Introduction to Approximation

Algorithms

The complexity class P contains the set of problems that can be solved in polynomial
time. From a theoretical viewpoint, this describes the class of tractable problems, that
is, problems that can be solved efficiently. The class NP is the set of problems that can
be solved in non-deterministic polynomial time, or equivalently, problems for which a so-
lution can be verified in polynomial time. NP contains many interesting problems that
often arise in practice, but there is good reason to believe P = NP. That is, it is unlikely
that there exist algorithms to solve NP optimization problems efficiently, and so we often
resort to heuristic methods to solve these problems. Heuristic approaches include back-
track search and its variants, mathematical programming methods, local seach, genetic
algorithms, tabu search, simulated annealing etc. Some methods are guaranteed to find
an optimal solution, though they may take exponential time; others are guaranteed to run
in polynomial time, though they may not return an optimal solution. Approximation al-
gorithms fall in the latter category; however, though they do not find an optimal solution,

we can give guarantees on the quality of the solution found.

Definition 1. An a-approximation algorithm for an optimization problem is a polynomial
time algorithm that for all instances of the problem produces a solution whose value is

within a factor of o of the value of an optimal solution.

In this chapter we give a very brief overview of the basic techniques for designing
approximation algorithms, based on linear programming. Our presentation is based on

[45] and [42], where one can find a thorough presentation of the subject.

1.1 A linear programming formulation for the Set Cover

problem

Definition 2. In the Set Cover problem, we are given a ground set of elements £ =

{e1,...,en}, some subsets of those elements Sy, 52, ..., Sy, where each S; C £, and a non-

7
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negative weight w; > 0 for each subset S;. The goal is to find a minimum-weight collection
of subsets that covers all of €; that is, we wish to find an I C [m] that minimizes ;. w;
subject to UjerS; = €. If wj = 1 for each subset j, the problem is called the unweighted

set cover problem.

Observe that the Set Cover generalizes vertex cover. To see that the vertex cover
problem is a special case of the set cover problem, for any instance of the vertex cover
problem, create an instance of the set cover problem in which the ground set is the set of
edges, and a subset S; of weight w; is created for each vertex i € V' containing the edges
incident to i. It is not difficult to see that for any vertex cover C, there is a set cover I =
C of the same weight, and vice versa.

In this thesis, linear programming plays a central role in the design and analysis of
approximation algorithms. Many of the techniques that we will use, are based on the
theory of integer and linear programming in one way or another. Here we will give a very
brief introduction to the area in the context of the set cover problem. For a much more in
depth analysis of linear programming we refer the reader to [28]. Each linear program or
integer program is formulated in terms of some number of decision variables that represent
some sort of decision that needs to be made. The variables are constrained by a number
of linear inequalities and equalities called constraints. Any assignment of real numbers
to the variables such that all of the constraints are satisfied is called a feasible solution.
In the case of the set cover problem, we need to decide which subsets S; to use in the
solution. We create a decision variable z; to represent this choice. In this case we would
like x; to be 1 if the set S; is included in the solution, and 0 otherwise. Thus, we introduce
constraints z; < 1 for all subsets S; , and x; > 0 for all subsets S; . This is not sufficient
to guarantee that x; € {0,1}, so we will formulate the problem as an integer program
to exclude fractional solutions (that is, nonintegral solutions); in this case, we are also
allowed to constrain the decision variables to be integers. Requiring z; to be integer along
with the constraints z; > 0 and x; <1 is sufficient to guarantee that z; € {0,1}. We also
want to make sure that any feasible solution corresponds to a set cover, so we introduce
additional constraints. In order to ensure that every element e; is covered, it must be the

case that at least one of the subsets S; containing e; is selected. This will be the case if

Z ijI

j:e;€8;
foreach e;, i=1,...,n.

In addition to the constraints, linear and integer programs are defined by a linear
function of the decision variables called the objective function. The linear or integer
program seeks to find a feasible solution that either maximizes or minimizes this objective
function. Such a solution is called an optimal solution. The value of the objective function
for a particular feasible solution is called the value of that solution. The value of the
objective function for an optimal solution is called the value of the linear (or integer)

program. We say we solve the linear program if we find an optimal solution. In the
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case of the set cover problem, we want to find a set cover of minimum weight. Given the
decision variables z; and constraints described above, the weight of a set cover given the x;
variables is Z;”zl w;z;. Thus, the objective function of the integer program is E;nzl w;T;,
and we wish to minimize this function. Integer and linear programs are usually written in
a compact form stating first the objective function and then the constraints. Given the
discussion above, the problem of finding a

minimum-weight set cover is equivalent to the following integer program:

m
maximize g WiT;

j=1
subject to Z z;>1, i=1,..,n (L.1)
j:e; €S
zj €{0,1}, j=1,..m
Let Z7p denote the optimum value of this integer program for a given instance of the
set cover problem. Since the integer program exactly models the problem, we have that
Zip = OPT where OPT is the value of an optimum solution to the set cover problem. In
general, integer programs cannot be solved in polynomial time. This is clear because the
set cover problem is NP-hard, so solving the integer program above for any set cover input
in polynomial time would imply that P = N P. However, linear programs are polynomial-time
solvable. In linear programs we are not allowed to require that decision variables are integers.
Nevertheless, linear programs are still extremely useful: even in cases such as the set cover
problem, we are still able to derive useful information from linear programs. For instance, if
we replace the constraints z; € {0,1} with the constraints z; > 0, we obtain the following

linear program, which can be solved in polynomial time:

m
maximize E W;Tj

7j=1

subject to Z zj>1, i=1,...,n (1.2)
j:eiESj
IL‘J’ZO, jzl,...,m

It is easy to see that the linear program (1.2) is a relaxation of the original integer program.
By this we mean two things: first, every feasible solution for the original integer program (1.1)
is feasible for this linear program; and second, the value of any feasible solution for the integer
program has the same value in the linear program. m. Let Z7, denote the optimum value
of this linear program. Any optimal solution to the integer program is feasible for the linear
program and has value Z7,. Thus, any optimal solution to the linear program will have value
27 p < Zip = OPT, since this minimization linear program finds a feasible solution of lowest
possible value.

In the following sections, we will give some examples of how the linear programming relax-
ation can be used to derive approximation algorithms for the set cover problem. Because we

will frequently be referring to linear programs and linear programming, we will often abbrevi-
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ate these terms by the acronym LP. Similarly, IP stands for either integer program or integer

programming.

1.2 Deterministic Rounding

Suppose that we solve the linear programming relaxation of the set cover problem. Let z*
denote an optimal solution to the LP. How then can we recover a solution to the set cover
problem? Here is a very easy way to obtain a solution: given the LP solution x*, we include
subset S; in our solution if and only if :c;‘ > 1/f, where f is the maximum number of sets in
which any element appears. More formally, let f; = |{j : e; € S;}| be the number of sets in
which element e; appears, i = 1,...,n; then f = max;c[,) fi. Let | denote the indices j of the
subsets in this solution. In effect, we round the fractional solution z* to an integer solution &
by setting &; = 1, if m;‘ > 1/f, and &; = 0 otherwise. We shall see that it is straightforward

to prove that z is a feasible solution to the integer program, and | indeed indexes a set cover.
Lemma 1.2.1. The collection of subsets S;, j € 1, is a set cover.

Proof. Consider the solution specified by the lemma, and call an element e; covered if this
solution contains some subset containing e;. We show that each element e; is covered.
Because the optimal solution z* is a feasible solution to the linear program, we know that
> jieieS; z; > 1 for element e;. By the definition of f; and of f, there are f; < f terms in
the sum, so at least one term must be at least 1/f. Thus, for some j such that e; € S,

a:j > 1/f. Therefore, j € I, and element e; is covered. ]

Lemma 1.2.2. The rounding algorithm is an f-approzimation algorithm for the set cover

problem.

Proof. 1t is clear that the algorithm runs in polynomial time. By our construction, 1 < f:ztj-
for each j € I. From this, and the fact that each term fwj;z? is nonnegative for j =1, ..., m,

we see that

> w; <> wi(fa}) = fZip < fOPT
jel 7j=1
]

In the special case of the vertex cover problem, f; = 2 for each vertex i € V, since each edge
is incident to exactly two vertices. Thus, the rounding algorithm gives a 2 — approximation
algorithm for the vertex cover problem.

Observe that that if §£P is very large, then we cannot hope for a good rounding algorithm.
LP

That's why we introduce the notion of integrality gap.

Definition 3. The integrality gap of an integer program is the worst-case ratio over all
instances of the problem of value of an optimal solution to the integer programming for-

mulation to value of an optimal solution to its linear programming relaxation.
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We present an example of bounding the integrality gap of an integer program. Consider
the case of the unweighted vertex cover IP, as a special case of the set cover IP. Now consider
the instance of the complete graph with n vertices, K,,. Clearly, the optimal solution of the
integer program in n-1. However, at the LP, by setting all variables to % we satisfy all the

constraints and the value of the objective function is 5. Since 2—721 — 2, the integrality gap
. : z3 , : .
is at least two. Since now, as we proved, & < 2, we conclude that the integrality gap is

" Zip
exactly 2 for this IP for the vertex cover and that there is no hope to design a better rounding

algorithm than the 2 — approximation algorithm that we already presented.

1.3 Duality

Often it will be useful to consider the dual of the linear programming relaxation of a given
problem. Again, we will give a very brief introduction to the concept of the dual of a linear
program. To begin, we suppose that each element e; is charged some nonnegative price y; > 0
for its coverage by a set cover. Intuitively, it might be the case that some elements can be
covered with low-weight subsets, while other elements might require high-weight subsets to
cover them; we would like to be able to capture this distinction by charging low prices to the
former and high prices to the latter. In order for the prices to be reasonable, it cannot be the
case that the sum of the prices of elements in a subset S; is more than the weight of the set,
since we are able to cover all of those elements by paying weight w;. Thus, for each subset

S; we have the following limit on the prices:

Z yi < wj

i:eiESj
We can find the highest total price that the elements can be charged by the following linear
program:

n
maximize Zyl
i=1
subject to Z yi <wj, j=1,...m (1.3)
i:e; €85
y; >0, i=1,...,n
This linear program is the dual linear program of the set cover linear programming relaxation
(1.2). We can in general derive a dual linear program for any given linear program, but we will
not go into the details of how to do so; see [28]. If we derive a dual for a given linear program,
the given program is sometimes called the primal linear program. For instance, the original
linear programming relaxation (1.2) of the set cover problem is the primal linear program of
the dual (1.3). Notice that this dual has a variable y; for each constraint of the primal linear

program (that is, for the constraint xj > 1) (1), and has a constraint for each variable

j:e; €S
x;j of the primal. This is true of dual linear programs in general.
Dual linear programs have a number of very interesting and useful properties. For example,

let x be any feasible solution to the set cover linear programming relaxation, and let y be any
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feasible set of prices (that is, any feasible solution to the dual linear program). Then consider

the value of the dual solution y:

n n m m
Zyi < Zyi Z rj = 233]’ Z yi < ijwj
i=1 i=1  jie;€S; j=1  i:e;€8; j=1

where in the first step we use the constraints of the primal program, in the second step we
reverse the sums and in the third step we use the constraints of the dual program. So, any
feasible solution to the dual linear program has a value no greater than any feasible solution to
the primal linear program. In particular, any feasible solution to the dual linear program has
a value no greater than the optimal solution to the primal linear program, so for any feasible
Yo Y1 Yi < Zjp. This is called the weak duality property of linear programs. Since we
previously argued that Z7 , < OPT, we have that for any feasible y, > | v; < OPT. This
is a very useful property that will help us in designing approximation algorithms.

Additionally, there is a quite amazing strong duality property of linear programs. Strong
duality states that as long as there exist feasible solutions to both the primal and dual linear
programs, their optimal values are equal. Thus, if z* is an optimal solution to the set cover

linear programming relaxation, and y* is an optimal solution to the dual linear program, then

n m

D= i

i=1 j=1
1.4 The Greedy Algorithm and the Dual-Fitting technique

The greedy strategy applies naturally to the set cover problem: iteratively pick the most
cost-effective set and remove the covered elements, until all elements are covered. Let C be the
set of elements already covered at the beginning of an iteration. During this iteration, define
the cost-effectiveness of a set S to be the average weight at which it covers new elements, i.e.,
w(S)/|S \ C|. Define the price of an element to be the average cost at which it is covered.
Equivalently, when a set S is picked, we can think of its cost being distributed equally among

the new elements covered, to set their prices.

Algorithm 1 Greedy set cover algorithm
C « 0.
while C # £ do

Find the most cost-effective set in the current iteration, say S.

Let a = %, i.e., the cost-effectiveness of S.
Pick S, and for each e € S\ C, set price(e) = a.
C+~Cus

output the picked sets

We analyze the greedy algorithm via a method called dual-fitting The method of dual

fitting can be described as follows, assuming a minimization problem: The basic algorithm is
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combinatorial — in the case of set cover it is in fact the simple greedy algorithm. Using the
linear programming relaxation of the problem and its dual, one shows that the primal integral
solution found by the algorithm is fully paid for by the dual computed; however, the dual is
infeasible. By fully paid for we mean that the objective function value of the primal solution
found is at most the objective function value of the dual computed. The main step in the
analysis consists of dividing the dual by a suitable factor and showing that the shrunk dual is
feasible, i.e., it fits into the given instance. The shrunk dual is then a lower bound on OPT,
and the factor is the approximation guarantee of the algorithm. Now, we apply this method to
set cover. The greedy algorithm defines dual variables price(e), for each element, e. Observe
that the cover picked by the algorithm is fully payed for by this dual solution. However, in
general, this dual solution is not feasible. We will show below that if this dual is shrunk by a
factor of H,, = Z?Zl L it fits into the given set cover instance, i.e., no set is overpacked. For

?1
each element e define, y, = %e(e).
n

Lemma 1.4.1. The vector y defined above is a feasible solution for the dual program.

Proof. We need to show that no set is overpacked by the solution y . Consider a set S;
consisting of k elements. Number the elements in the order in which they are covered by
the algorithm, breaking ties arbitrarily, say ey, ..., ex.

Consider the iteration in which the algorithm covers element e;. At this point, S;

contains at least & — 4 4 1 uncovered elements. Thus, in this iteration, S; itself can cover

e; at an average cost of at most ]g_/u;]_i,_]_ Since the algorithm chose the most cost-effective
. . . . . w4
set in this iteration, price(e;) < =i~ Thus,
1 wj
Ye; S 77—
H,k—1+1
Summing over all the elements of Sj:
k k
1 1 Hy,
< —w; —_— = —w; < w,;
2 v < i, DD mH," ="
=1 =1
Therefore, S; is not overpacked. O

Lemma 1.4.2. The approximation guarantee of the g reedy set ¢ over algo- rithm is H,,.

Proof. The cost of the set cover picked is

n
me'ce(e) = H, Z Ye, < H,OPT

ecE =1
The last inequality follows from the fact that y is dual feasible. O

1.5 A Randomized Rounding algorithm

In this section, we consider one final technique for devising an approximation algorithm for

the set cover problem. Although the algorithm is slower and has no better guarantee than the
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greedy algorithm of the previous section, we include it here because it introduces the notion
of using randomization in approximation algorithms.

The algorithm will solve a linear programming relaxation for the set cover problem, and then
round the fractional solution to an integral solution. Rather than doing so deterministically,
however, the algorithm will do so randomly using a technique called randomized rounding .
Let z* be an optimal solution to the LP relaxation. We would like to round fractional values
of x* to either 0 or 1 in such a way that we obtain a solution Z to the integer programming
formulation of the set cover problem without increasing the cost too much. The central idea
of randomized rounding is that we interpret the fractional value 27 as the probability that z;
should be set to 1. Thus, each subset \S; is included in our solution with probability x; , where
these m events (that .S; is included in our solution) are independent random events.

Let X; be a random variable that is 1 if subset S; is included in the solution, and 0

otherwise. Then the expected value of the solution is
m m m
E[Z ijj] = ZQUJ'PT(XJ' = 1) = Z’wj:t;k = ZEP
j=1 j=1 j=1

or just the value of the linear programming relaxation, which is no more than OPT! As
we will see, however, it is quite likely that the solution is not a set cover. Nevertheless, this
illustrates why randomized rounding can provide such good approximation algorithms in some
cases.

Let us now calculate the probability that a given element e; is not covered by this procedure.
This is the probability that none of the subsets containing e; are included in the solution, or

1 _x* < efx;f — e*Zj:&;ESjiB; < 671
j = —_—

j:ei€S; jiei€S;
where the first step follows the inequality e > 1 + x,Vx € R and the last step follows
from the fact that Y j:e; € Sjx; > 1. However, we would like this probability to be much
smaller, in order to be very very likely to end up with a set cover. In fact, we can achieve
such a bound in the following way. Fix a constant ¢ > 2. For each subset S; , we imagine a
coin that comes up heads with probability z7 , and we flip the coin clnn times. If it comes
up heads in any of the clnn trials, we include S; in our solution, otherwise not. Thus, the

probability that S; is not included is (1 — x;f)d"". Furthermore

L _ *\cl __—cnn_ jie; €8x —cl _ 1
Prle; is not covered| = H(l — :cj)c nmo_ e D i < emlnn — —
Thus, from the union bound we have that

1

Pr[some e; is not covered i =1,...,n] < )
ne—

We now need to prove only that the algorithm has a good expected value given that it

produces a set cover.

Theorem 1.5.1. The algorithm is a randomized O(Inn) -approximation algorithm that

produces a set cover with high probability.
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Proof. If X; is a random variable that is 1 if the subset S; is included in the solution,

and 0 otherwise, from the union bound, Pr(X; =1) < clnnx;. Thus, the expected value
*
J
would like to bound the expected value of the solution given that a set cover is produced.

of the random procedure is E[3 7", w;X;] < clnny 7" wix} = clnnZ]p However, we
Let F be the event that the solution obtained by the procedure is a feasible set cover,
and let F be the complement of this event. We know from the previous discussion that

1 . m . . .
Pr(F) >1— . Hence, since } ", w; X is a non-negative random variable,

m m
1 cnnZzi N
E[Z wiX,| F] < Pr(F)E[Z wiX;] < 1_71{? < 2clnnZ} p
J=1 J=1 ne
for n > 2 and ¢ > 2. O

1.6 Basic facts about Linear Programming

In this section we discuss linear programming and we present, without proof, basic facts
about extreme point solutions to linear programs that are necessary in order to keep up with
the topics that we analyze in this thesis. We then briefly discuss solution methods for linear
programs, particularly stating the sufficiency of finding a separation oracle for the program to

be able to solve it. Excellent introductory textbooks in this area are [28], [6].

Linear Programming

Using matrix notation, a linear program is expressed as follows:

maximize clz
subject to Ax > b
x>0

If x satises Az > b,z > 0, then x is a feasible solution. If there exists a feasible solution to
the linear program, it is feasible; otherwise it is infeasible. An optimal solution x* is a feasible
solution such that cfz* = min{c’'z s.t. Az > b,x > 0}. The linear program is unbounded
(from below) if YA € R, there exists feasible x such that ¢/'z < \. There are different forms in
which a linear program can be represented. However, all these forms are equivalent to the form
we consider above and can be converted into one another by simple linear transformations, see
[28].

Extreme Point Solutions to Linear Programs

Definition 4. Let P = {z : Az = b,z > 0} C R". Then z € R" is an extreme point

solution of P if there does not exist a non-zero vector y € R™ such that x +y,z —y € P.

Pictorially extreme point solutions are the corner points of the set of feasible solutions.
The following basic result shows that there is always an optimal extreme point solution to

bounded linear programs.
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Lemma 1.6.1. Let P = {x : Av = b,x > 0} C R" and assume that the optimum value
min{c'z s.t. x € P} is finite. Then for any feasible solution x € P, there exists an

extreme point solution x’' € P with ¢z’ < ¢'x.

We now proceed with another characterization of the extreme point solutions. A subset of
columns B of the constraint matrix A is called a basis if the matrix of columns corresponding
to B, i.e. Ap, isinvertible. A solution x is called basic if and only if there is a basis B such that
zj=0ifj ¢ Band xp = Aglb. If in addition to being basic, it is also feasible, i.e., Aglb >0,
it is called a basic feasible solution for short. The correspondence between bases and basic
feasible solutions is not one to one. Indeed there can be many bases which correspond to
the same basic feasible solution. The next theorem shows the equivalence of extreme point
solutions and basic feasible solutions.

Theorem 1.6.2. Let A be a m x n matriz with full row rank. Then every feasible x to
P ={xz:Ax = b,x > 0} is a basic feasible solution if and only if x is an extreme point

solution.

The following Rank Lemma is an important ingredient in the correctness proofs of almost
all iterative algorithms in this thesis.

Lemma 1.6.3. (Rank Lemma) Let P = {z : Az = b,x > 0} and let = be an extreme
point solution of P such that x; > 0 for each i. Then the number of variables is equal to

the number of linearly independent constraints of A, i.e. the rank of A.
Finally, we present the definition of the integral polytope:

Definition 5. Let P be a polytope and let x be an extreme point solution of P then x is
integral if each coordinate of x is an integer. The polytope P is called integral if every

extreme point of P is integral.

Algorithms for Linear Programming

The simplex algorithm solves linear programs to get a basic feasible optimal solution. It
works by starting at any basic feasible solution and moving to a neighboring basic feasible
solution which improves the objective function. The convexity of the linear program ensures
that once the simplex algorithm ends at a local optimum basic feasible point, it has achieved
the global optimum as well. Many variants of the simplex algorithm have been considered,
each defined by which neighboring basic feasible solution to move in case there are more than
one improving basic feasible points in the neighborhood. Although the simplex algorithm works
efficiently in practice, there are examples where each variant of the simplex algorithm runs in
exponential time. Again, for more details, see e.g. [36]. Polynomial-time algorithms for solving
linear programs fall in two categories: ellipsoid algorithms [30] and interior point algorithms
[29].
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Theorem 1.6.4. There is an algorithm which returns an optimal extreme point solution
to a linear program. Moreover, the running time of the algorithm is polynomial in the size

of the linear program.

In this thesis, we will also encounter linear programs where the number of constraints is
exponential in the size of the problem (e.g., in the maximum-weight independent set problem
in chapter 2) and it is not obvious that one can enumerate them, let alone solve them in
polynomial time. We use the notion of separation to show that many exponentially sized linear

programs can be solved in polynomial time.

Definition 6. Given z* € R™ and a polytope P = {x : Ax = b,z > 0}, the separation
problem is the decision problem whether x* € P. The solution of the separation problem
is the answer to the membership problem and in case x* ¢ P, it should return a valid

constraint A;x > b; for P which is violated by =™, i.e., A;x* < b;.

The following theorem of Grotschel, Lévasz and Schrijver [20] shows that polynomial time
separability is equivalent to polynomial time solvability of a linear program; we state it in a
form that is convenient for combinatorial optimization problems. The basis of this equivalence
is the ellipsoid algorithm.

Theorem 1.6.5. Given a full-dimensional polytope P and a polynomial-time separation
oracle for P, one can find an optimal extreme point solution to a linear objective function
over P (assuming it is bounded) via the Ellipsoid algorithm that uses a polynomial number

of operations and calls to the separation oracle.

Clearly, one can solve the separation problem by checking each constraint but for problems
where the number of constraints is exponential in size such a method is too slow. In this
thesis, as we consider LP formulations with an exponential number of constraints, we will
often provide efficient separation oracles showing that the linear program for the problem is

solvable in polynomial time.






Chapter 2

Matroids and the Iterative
Method

Matroids were introduced by Whitney in 1935 to try to capture abstractly the essence of
dependence. Whitney's definition embraces a surprising diversity of combinatorial structures,
like spanning trees. After introducing matroids and stating some basic properties, we address
the two most important polynomial-time solvable problems in this formalism: that of finding
a maximum weight basis and of finding a maximum weight common independent set of two
matroids (the so-called two-matroid intersection problem). We show integral characterizations
for both problems by exploiting the structure of the extreme points of the corresponding LP's.
Finally, by using a method called "iterative rounding”, we present a (k — 1)-approximation
algorithm for the unweighted k matroid intersection problem: finding a maximum cardinality
common independent set in k matroids defined on the same ground set. The work of Jack
Edmonds [17],[15] first showed the polyhedral characterization results presented in this chapter.

2.1 Preliminaries

Definition 7. A pair M = (S,Z) is a matroid if T is a nonempty collection of subsets of
S with the following properties:

1. 0eZ

2 AeZand BCA=Bel

3. A,B€T and |A| > |B| = 3x € B\ A such that AU{z} €T

S is called the ground set of the matroid M. A set A C S is called independent if A € 7

else it is called dependent. A maximal set A € 7 is called a basis of M. Observe that Property

3 implies that all bases have the the same cardinality.

19
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Examples of Matroids

1. Graphic Matroid: Given an undirected graph G = (V, E), the graphic matroid of G is
defined as M¢ = (E,Zg) where Zg = {F C E |F contains no cycles}.

2. Uniform Matroid: Given a set S and an integer £ > 0, the uniform matroid of rank k
is defined as MK = (S,Z;) where T, = {T C S : |T| < k}.

3. Partition Matroid: Let 51, 59, ..., S, be a partition of S and k1, ko, ..., k,, be nonnega-
tive integers. Let Z={T CS: |[TNS;| <k; forall1l<i<n}.

4. Linear Matroid: Let A be an m x n matrix and § = {1,...,n}. Forany 1 <i <mn,
let A® denote the i'"-column of A. The linear matroid over matrix A is defined as
My = (8,Z4) where Ty = {T CS: A® for i T are linearly independent}.

5. Matroid Restriction: Let M = (S,Z) be a matroid and T C S. Then the matroid
restriction of M to the set T is the matroid My = (T,Zy) where Zr = {R : R €
I, RCT)

Let's check that the Graphic Matroid is indeed a matroid. First of all, the independent
sets are all the forests. The empty set is a forest and if we remove edges from a forest it
remains a forest. It remains to check the third property. So, let Fy, F, C E with |Fy| > |F3]
and let's suppose that Ve € F} : Fy U {e} is not a forest. For this to happen, it must be the
case that all the edges of Fi lie inside the connected components of F5 and thus F5 has less
connected components than Fp, contradiction. It is similarly straightforward to show that the
other examples are also matroids.

Base, Circuit, Rank, Span

Let M = (S,Z) be a matroid. In the following lines, for a subset A of S and a z € S we
write A+ x for AU {z} and A —z for A\ {z}.

Definition 8. A set X € S such that X ¢ T is called a dependent set of M.

Definition 9. A loop is an element x € S such that {z} is dependent. Notice that a loop

cannot appear in any sets in L.
Definition 10. A base is an inclusion wise maximal set in T.
Proposition 2.1.0.1. If B and B are bases of M then |B| = |B|.

The proof is straightforward from the third matroid property. Notice that the notion of
base here is similar to that of a basis in linear algebra.

Lemma 2.1.1. Let B and B be two different bases of M. Let x € B\B, then Jy € B\E
such that B — x +y is a base of M.
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Proof. Since B—x € I, |B — x| < |B|, then 3y € B\ B such that B — 2 +y € Z. Since
|B—x+y|=|B|, B—x+yis a base. O

Definition 11. Given M = (S,Z) and S C S, B is a base for S if B is a base of M,
where M, is a restriction of M to S.

Proposition 2.1.1.1. Given M = (S8,Z), let B be a base for X. Then for any Y O X,

there exists a base B for Y that contains B.

Proof. Notice that B is independent in the restriction of M to Y (henceforth independent
inY ). Let B be the maximal independent set in Y that contains B. Since all maximal

independent sets have same size, Bisabaseof Y . O

Definition 12. Given M = (S,7), a circuit is a minimal dependent set (i.e., an inclusion
wise minimal set in 2° \ T). Thus, if C is a circuit thenVx € C: C —x € T.

The definition of a circuit is related to graph theory in the following sense: if M is the
graphic matroid of a graph G, then the circuits of M are the cycles of G. Single element
circuits of a matroid are loops. If M is a graphic matroid of a graph G, then the set of loops

of M is precisely the set of loops of G.

Definition 13. Given a matroid M = (S,Z), the rank function r : 25 5 N of the
matroid M is defined as ryp(T) = maz{|U|: U CT and U € T}.

So, r(A) is the cardinality of the bases of A. We will drop the subscript M from the rank
function ra¢ when the matroid M is clear from the context. Observe that A € 7 if and only
if r(A) = |A|. Also, a property of the rank function of matroids is that it belongs to a very
important family of set functions, the submodular functions. In mathematics, a submodular
set function (also known as a submodular function) is a set function whose value, informally,
has the property that the difference in the incremental value of the function that a single
element makes when added to an input set decreases as the size of the input set increases.
We proceed with the formal definition.

Definition 14. If S is a finite set, a submodular function is a set function f : 25 — R,

which satisfies one of the following equivalent definitions

1. For every X, Y C S with X CY and every x € S\ Y,z € S\ Y we have that
fXU{z}) = f(X) = f(Y U{z}) — f(Y).

2. For every S,T C S we have that f(S)+ f(T) > f(SUT)+ f(SNT).

For the proof of the equivalence, we refer the reader to [37]. A special class of the sub-
modular functions are the modular functions, which satisfy property 2 in the above definition
with equality, i.e, For every S, T C S we have that f(S)+ f(T) = f(SUT)+ f(SNT). It

is easy to see that the indicator function is modular.

Lemma 2.1.2. Let r be the rank function of matroid M = (S,Z). Then r is submodular.
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Proof. We will use the first definition of submodularity. Observe that the differences that
we have to compare are 0 or 1. Now, let’s suppose that (Y U{z}) —r(Y) = 1. Every base
B of Y+x contains x. Let B be a base of X. Since X C Y + x, from Proposition 2.1.1.1,
there exists a base B of Y+x such that B O B. Then B + z is independent, implying
rm(X 4+ 2) —rpm(X) =1 as B+ z is a base in X+x. O

Exactly as in the case of linear matroids, we define the span of a subset of the ground set:

Definition 15. Let M = (S,Z) be a matroid. For any X C S, the span of X, denoted
by span(X), is defined as spanpm(X) ={y: y €S and rm(X +y) =rpm(X)}. A set
X C S is spanning if spanyp(X) = S.

For more properties of bases, rank, span and circuits, we refer the reader to [37].

We now define two important operations on matroids.

Definition 16. (Deletion) Given a matroid M = (S,Z) and x € S we define M\ z =
(S —z,1y), where Zy = {T —x : T € I} to be the matroid obtained by deleting = from
M. The rank function of M\ x, denoted by r1, is related to the rank function r of M by
the formula r(T) =r(T) for T C S — .

Definition 17. (Contraction) Given a matroid M = (S,Z) and x € S we define M /x =
(S—x,Z3) as the matroid obtained by contracting x in M, whereZy = {T C S—x : T+x €
T}, if {z} is independent, and o = T if {x} is dependent. The rank function of M/z,
denoted by 1, is related to the rank function of M by the formula ro(T) = r(T+z)—r({z})
for T C S —x. Note that if {x} is dependent, then M /x = M\ x.

2.2 Maximum Weight Independent Set

Matroids have some important algorithmic properties, the simplest one being that the
problem of determining the maximum weight independent set in a matroid can be solved using
a greedy algorithm. The maximum weight independent set problem is stated as follows: Given
M=(S8,7) and w: S = R, output

max w(X)
XeT

However, before presenting the algorithm, we have to clarify the computational model on
which we are working. More specifically, if the matroid was given to us through a list containing
all its independent sets, then our input could be exponential in |S|. Instead we resort to one

of the following two oracles in order to efficiently solve optimization problems:
e An independence oracle that given A C S, returns whether A € 7 or not.

e A rank oracle that given A C S, returns ry;(A).
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Algorithm 2 The Greedy Algorithm
Remove from M all the elements that have negative weight.
Let S = {ej, e, ..., e} such that w(e1) > w(e2) >,,,> w(e,) >0
X<« 0
for i=1,...,n do
if (X +e)€Zthen X+ X +e¢

output X

These two oracles are equivalent in the sense that one can be recovered from the other in
polynomial time. Given one of these two oracles, we have the greedy algorithm Algorithm 1
that computes the max-weight independent set:

This algorithm is often called Kruskal's algorithm because it is exactly the Kruskal's algo-

rithm in the case of Graphical Matroids for w > 0 (max-weight spanning tree).

Theorem 2.2.1. The Greedy Algorithm correctly solves the Maximum Weight Independent
Set problem.

Proof. Without loss of generality, we consider the case of nonnegative weights, as it holds
for the matroid after removing the elements with negative weight (the optimal solution
does not contain them due to the second matroid property). Let M = (S,Z) be the
matroid that we have at the second step of the algorithm and the weight function on it
w > 0. Clearly the optimal solution is a base. Call an independent set Y greedy if it
is contained in a maximum-weight basis. It suffices to show that if Y is greedy, and x
is an element in &\ 'Y such that Y + 2 € Z and such that w(x) is as large as possible,
then Y+x is greedy. As Y is greedy, there exists a maximum-weight basis B O Y. If
x € B then Y+x is greedy again. If x ¢ B, then there exists a basis B containing Y+x
and contained in B+x (this basis is produced by repeatedly applying the third matroid
property). B = B—&+x for some & € B\'Y . As w(x) is chosen maximum, w(z) > w().

Hence w(B) > w(B), and therefore B is a maximum-weight basis. So Y+x is greedy. [J

We should also note that we can adapt the greedy algorithm to solve the maximum weight
base problem by making all weights non-negative by adding a large constant to each of the
weights. Thus max-weight base problem, and equivalently min-weight base problem can be

solved (by taking the weights to be the negative of the costs).

2.3 Matroid Polytope

We begin by giving a linear programming formulation for the problem maximum-weight
independent set problem. Let z. denote the indicator variable for element e, with the intent
that z. = 1 if e is in the solution and 0 otherwise. We obtain the following linear programming
relaxation LP,,.:(M) after relaxing the integrality constraints on the variables x. In the
following we use the shorthand z(7") for ) .,z for any T C S.
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maximize E WeLe
e

subject to z(T) <r(T), VI'CS
Te >0, VeeS

The constraints of the LP,,,; are exponential in the size of the ground set. Thus, in order
to solve it via the ellipsoid method, we want a separation oracle that takes a vector y € RIS|
and outputs either that y is a feasible solution of the LP or a constraint that is violated by y.
First of all, we can easily test for non-negativity. To test the second group of constraints, let’s
define f: 25 — R such that:

F(T) = r(T) = 2(T)

So, for the separation oracle, it suffices to find a subset of S that minimizes f and check
whether the minimum is non-negative. If it is not, it returns the constraint corresponding to
the minimizer of f. Observe, that since r(T) is a submodular function and x(T) is a modular
function, f is submodular. So, we can use an algorithm for minimizing a submodular function,
see [37]. However, there is a more efficient algorithm for separating over this LP given by
Cunningham, see [37] for details.

Foraset T C S, let x(T') denote the characteristic vector in RIS! that has a 1 corresponding
to each element e € T and 0 otherwise. Now, the constraints of the above LP form a polytope.
What we are going to show in this section is that this polytope is integral, i.e, all its extreme
points have integer coordinates. What is the implication of such a theorem? Let's take a
feasible integral solution x of this LP. From the nonnegativity constraints and the constraints
on the singletons we have that = € {0,1}/S. So, # = x(A) for some A C S. Since x is
feasible, |A] = z(A) < r(A) = x(S) = xz(A) = r(A), so x is the characteristic vector of
the independent set A € Z. Notice that for every A € 7 we can set the weights such that A
is the unique max-weight independent set (set weight 1 for all its elements and -1 all other
weights). Summarizing, we have that each extreme point is the characteristic vector of an
independent set and each independent set can be the unique optimal integral solution for
some weight function. Thus, the extreme points are exactly all the characteristic vectors of
the independent sets of S. In other words, the above inequalities form the convex hull of the

indicator vectors of the independent sets of M!

The Uncrossing Technique and Characterization of Extreme Points

Now, we analyze the extreme point solutions of the LP,,,:. Recall that an extreme point
solution is the unique solution defined by n linearly independent tight inequalities, where
n = |S| is the number of variables in the linear program. There are exponentially many
inequalities in the LP,,, and an extreme point solution may satisfy many inequalities as
equalities. To analyze an extreme point solution, an important step is to find a "good” set of
tight inequalities defining it. If there is an element e with z, = 0, this element can be removed
from the matroid without affecting the feasibility and the objective value. So henceforth

assume every element has z, > 0.
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Given an extreme point solution x to LPy,q let F ={T'C S : z(T) =r(T)} be the set

of tight constraints. We first show that F is closed under intersection and union.

Lemma 2.3.1. IfU,V € F, then bothUUV and UNYV are in F. Furthermore,

X(WU) +x(V) =x(UUV)+x(UNYV)

Proof.
r(U)+r(V)=z(U)+z(V)=2z(UUV)+2z(UNV) <r(UUV)+r(UNV) <rU)+7r(V)

The first equality is by the fact that U,V € F. The second equality follows from the fact
that x(T) is modular. The third inequality follows from the constraints of the LPy,q:(M).

The last equality is because of the submodularity of the rank function r. O
Now, let's proceed with a set family with a very "friendly” structure:

Definition 18. (Chain) A subset £ C 25 is a chain if
Ae L, BeL=>ACBorBCA

We now present an uncrossing argument that, using lemma 2.3.1, shows that the linearly
independent set of tight constraints can be chosen to form a chain (remember that all z, > 0
without loss of generality). If A is a family of subsets of S, we denote by span(A) the vector
space generated by the set of vectors {x(T") | T € A}.

Lemma 2.3.2. If L is a mazimal chain subfamily of F, then span(L) = span(F).

Proof. Suppose, by way of contradiction, that £ is a maximal chain of F but span(L) C
span(F). For any A C § such that A ¢ L, define intersect(A, L) to be the number of
sets in £ which intersect A, i.e. intersect(A, L) =|{T € L| T\ A#0,A\T # (}|. Since
span(L) C span(F), there exists a set A with x(A) ¢ span(L). Choose the one with the
minimum intersect(A, L£). Since £ is a maximal chain, we distinguish two cases for A.
First, let’s suppose that ANC = ), VC € L. Let C be the inclusion-wise maximum set of L.
Observe that using lemma 2.3.1 we have that CUA € F and since A # 0 (x(A) ¢ span(L))
we have that CUA D A. Thus, the chain is not maximal, contradiction. The other case is
that intersect(A, £) > 1. Let T be a set in £ which intersects A: T\ A # (), A\T # 0 . Since
A,T € F, by Lemma 2.3.1, both ANT and AUT are in F. Also, both intersect(ANT, L)
and intersect(A U T, L) are smaller than intersect(A, L), which will be proved next in
Proposition 2.3.2.1. Hence, by the minimality of intersect(A, L), both ANT and AUT
are in span(L). By Lemma 2.3.1, x(A) + x(T) = x(AUT) + x(ANT). Since x(AUT) +
X(ANT) are in span(L) and T € L, the above equation implies that x(A) € span(L), a

contradiction. It remains to prove Proposition 2.3.2.1 0



26 Chapter 2. Matroids and the Iterative Method

Proposition 2.3.2.1. Let A be a set that intersects T € L. Then intersect(ANT, L) and
intersect(AUT, L) are smaller than intersect(A, L).

Proof. Since L is a chain, for a set R € £ with R # T, R does not intersect T. So,
whenever R intersects ANT or AUT, R also intersects A. Also, T intersects A but not
ANT or AUT. Therefore, intersect(AUT, L) and intersect(ANT, L) are smaller than
intersect(A, L). O

This completes the proof of Lemma 2.3.2. Based on this and the Rank Lemma we can

now proceed to the characterization of the extreme points of LP,,4;.

Lemma 2.3.3. Let z be any extreme point solution to LPp,q (M) with . > 0 for each
element e € S. Then there exists a chain L such that

1. (T) =r(T) for each T C L

2. The vectors in {x(T) : T € L} are linearly independent.

3. L] =1S]

Now that we have this structural lemma, we can prove the main theorem of this section:

Theorem 2.3.4. The optimal solution of the LPp,q(M) is integral.

Proof. Let x be the optimal solution. As we have already mentioned, if we remove from
M all the elements with z. = 0 and take the LP,,, for the new matroid, the optimal
solution at the remaining variables will stay invariant and it is easy to see that it will
be an extreme point. So if we prove the integrality for the new LP, we proved it for the
initial. Thus, without loss of generality, we can assume that x. > 0, Ve € S.

Let’s suppose that there exists an element e* € S such that z.- € (0,1) (observe that
the constraints on singletons impose z, < 1 for all the elements e). Now, we proceed with
a "token argument”. We assign one token for each element e € S, for a total of |S| tokens.
We will redistribute the tokens so that each set in £ will receive one token and there are
some extra token left. This implies that |£| < |S], contradicting lemma 2.3.3.

To redistribute the tokens, each element gives its token to the smallest set of the chain
L that contains it. Let’s take two consecutive sets of the chain: A C B. Their constraints

are tight, so:
z(A) =r(A) and x(B) =r(B) = z(B) —z(A) =r(B) —r(A)

But, 7(B) — r(A) is an integer and x(B) — z(A) > 0. Also, if 2(B) — z(A) = 0, since
A C B, we have that A=B (z. > 0 for all e), which is impossible because of the linear
independence. Hence z(A) — z(B) > 1. Also, if C is the inclusion-wise minimum set of
the chain, C' # () because of the linear independence and thus z(C') = 7(C') > 1. So, each
set of the chain £ gets at least one token. Let’s focus on the set that takes the token of
e*. If there is no such set we are done. Otherwise, since 0 < z., < 1, this set receives at

least two tokens. O
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This shows that the LP,,,;(M) is an exact formulation of the max-weight independent

set problem.

Theorem 2.3.5. The extreme point solutions of LPpq(M) are the independent sets of
matroid M.

2.4 Matroid Intersection

Given matroids M = (S,Z;) and Mz = (S,Z3) and a weight function w : S — R, the
maximum weight two matroid intersection problem is to find a set 7' C S of maximum weight

which is independent in both M7 and Mo, i.e, T is a maximizer of

maxrcs, Ter,nz,W(T)

where w(T') = 3 .pwe. We refer to the two matroid intersection problem as matroid
intersection. This problem generalizes many important problems, including the maximum

weight matching in bipartite graphs and maximum weight arborescence problem.

Examples of Matroid Intersection

1. Matchings in Bipartite graph: Given a bipartite graph G = (AU B, E), let M4 =
(E,Z1) be a partition matroid on E where Z; = {FF C E | dp(v) < 1, Yv € A}
Similarly, let Mp = (E,Z5) be a partition matroid on E where Iy = {F C E | dp(v) <
1, Vv € B}. Observe that T' € Z; NIy if and only if T is a matching in G. Hence,
finding a maximum weight matching in G is equivalent to finding a maximum weight

independent set in the intersection of matroids M4 and Mp.

2. Arborescence: Given a directed graph D = (V, A) and a root vertex r € V , an r-
arborescence is a subgraph of D so that there is a directed path from r to every vertex in
V' \{r}. The minimum arborescence problem is to find an r-arborescence with minimum
total cost. Let My = (A,Z;) be the graphic matroid on the underlying undirected graph
of D (where we ignore arc directions). Let My = (A, Z3) be the partition matroid where
o ={BCA: d¥{w) <1, Vv € D\ {r} and d%(r) = 0}. Observe that B is a
common basis in Z; and Z, if and only if B is an arborescence rooted at r.

For the Matroid Intersection problem, there exists a polynomial time algorithm that com-
putes the max-weight common independent set. However, for the purposes of this thesis, we

will present an LP-based algorithm.

Linear Programming Relaxation

We now give a linear programming formulation for finding a maximum weight common

independent set in the intersection of two matroids. Let z. denote the indicator variable for
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element, with z, = 1 if e is in the common independent set and 0 otherwise. We obtain the fol-
lowing linear programming relaxation L P;,:(M1, Ma) after relaxing the integrality constraints
on the variables x. Here 7;(T") denotes the rank of the set T in the matroid M;.

maximize E Wele
(&

subject to z(T) <r(T), VT CS
z(T) <ro(T), VI'CS
e >0, VeeS

Solving the linear program. To get a separation oracle can be implemented if we are given
as input independence oracles for each of the matroids M and Mo, by using the work of

Cunningham [37] as before, or any algorithm for minimizing submodular functions.

Characterization of Extreme Point Solutions

We now give a characterization of extreme points of the linear program LP;,; (M1, M>)
by showing that the independent set of tight constraints can be chosen to form a union of two
chains. The proof is quite straightforward and uses the characterization of tight inequalities
for the max-weight independent set problem.

Given an extreme point solution x to LP;,; (M1, Ma) let F1 = {T'C S : x(T) =r(T)}
and Fo ={T CS§ : z(T) =r2(T)} be the set of tight constraints.

Lemma 2.4.1. There exist two chains Cy and Cy such that span(C1UCs) = span(F1UF?)

and constraints in sets C1 and Cy are linearly independent.

Proof. Applying Lemma 2.3.2 to families F; and F»2 separately, we obtain two chains
C1 and Cy such that span(C1) = span(F1) and span(Cs) = span(Fz). Now, picking a

maximal independent family from CrUCs gives us the desired chains. O
Thus, from the Rank Lemma:

Lemma 2.4.2. Let x be any extreme point solution to L P (Mq, Ms) with x. > 0 for

each element e € S. Then there exist two chains C1 and Cy such that
1. (T) =ri(T) for each T C C; fori = {1,2}.
2. The vectors in {x(T) : T € C1} U{x(T) : T € Ca} are linearly independent.

3. |C1] + |Cs| = [§e].

Iterative Algorithm

We now give an iterative algorithm which constructs an integral solution from the linear

program and shows that the linear programming formulation is integral.
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Algorithm 3 Iterative Matroid Intersection Algorithm
I+ 0.
while S # () do
Find an optimal extreme point solution x to LPj,;(M1, Ms3). Delete from both

matroids every element e € § with x, = 0.
If there is an element e with z, = 1, then update I < I U{e}, M; + M/e, Ma +
May/e.

return I.

Correctness and Optimality

First of all, we show that the algorithm will terminate:

Lemma 2.4.3. For any extreme point solution z to LPj,(My, Ms) with . > 0 for every

element e, there exists an element e with x, = 1.

Proof. Suppose for a contradiction 0 < z, < 1 for each ¢ € S§. Then the number of
variables is exactly |S|. By Lemma 2.4.2, we obtain two chains C7,Cy defing x. We now
show a contradiction to the fact that |S| = |C1| + |C2| by a counting argument. We give
two tokens to each element in S for a total of 2|S| tokens. Now, we collect two tokens
for each member of C, Cs and an extra token showing the contradiction. This is done as
follows. Each element e assigns one token to the smallest set T; € C; such that e € T4
for i = {1,2}. We now claim that each set in C; U Cy obtains at least two tokens. The
argument is identical for sets in C1,Cs. Let T € C and R be the largest set in C} such
that R C T. Now, we have z(T) = r1(T) and z(R) = r1(R). Subtracting, we obtain
z(T\R) =r(T)—ri(R). If T\ R =0 then T = R and we have a contradiction to the
linear independence of the constraints. Also, since (7" \ R) is an integer and 0 < z, < 1
for all e, we have that |T'\ R| > 2. Thus, T receives one token for each element in 7'\ R
for a total of at least two tokens. Therefore, every set in C7 U Cy receives at least two
tokens. Now, we show that there is at least one extra token. First of all, if an element
does not belong to any set of a specific chain, then its corresponding token goes nowhere
and we are done. So, it must be the case that the maximal element of each chain contains
all the elements, which means that S belongs to both, contradiction because of the linear

independence. O
Theorem 2.4.4. The optimal solution of the L Py, (M1, Mz) is integral.

Proof. This is proved by induction on the number of iterations of the algorithm. The
base case is trivial to verify. Let M; = (S,Z;), M2 = (S,Z2) denote the matroids in the
current iteration and x the optimal LP solution. If the algorithm finds an element e with
ze = 0 we remove e from both matroids. Observe that x restricted to S — e, say x’, is a
feasible solution to LP;,;(Mj —e, Ms —e). This is easily checked using the rank function

of M; — e which is identical to the rank function ofM; on the sets not containing e, for
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i = 1,2. By induction, we find a common independent set I of My — e, Mg — e of weight
at least .., w(€')2'(e'). Observe that I is also a common independent set of My, My
and costs at least Y, .s_,w(e )2’ (') = > csw(e)z(e). Hence, the induction claim is
true in this case.

Now, suppose the algorithm selects an element e with z. = 1. Then the algorithm
updates the matroids My, My to M /e, Ms/e and I to I + e. Let r; denote the rank
function of M; and 7} denote the rank function of M;/e. We now claim that x restricted
to S — e, say x/, is a feasible solution to LP,.t(M;j/e). For any set T C S — e, we have
Z(T)=z(T+e)—xe=2(T+e)—1<ri(T+e)—1=r{(T). With exactly the same
argument we have that x restricted to S —e, say x’, is a feasible solution to LP,,.(Ma/e).
Thus, it is a feasible solution to LP;,;(M;i/e, Msy/e). By the induction hypothesis, we
obtain an independent set I of M /e of weight at least w - 2/. Then I’ 4+ e is a common
independent set of M7, My of weight at least w -2’ + w, = w - x as required. This shows

that the algorithm returns a maximum weight common independent set of My, Ms. [

It is easy to see that the above theorem shows that the LP;,;(M;i, Ms) is an exact

formulation of the maximum-weight matroid intersection problem.

Theorem 2.4.5. The extreme point solutions of LPj,.(My, Ms) correspond to indepen-
dent sets in the intersection of M1 and Ms.

2.5 k Matroid Intersection via Iterative Rounding

Given k matroids M; = (S,Z;), Ms = (S,Zs),..., My = (S,Z)) on the same ground
set S, the maximum k matroid intersection problem is to find a set 7" C S of maximum
cardinality which is independent in all matroids M1, Mo, ..., Mj. If someones tries to extend

the integrality proof for three matroids will fail and there is a reason behind this:
Theorem 2.5.1. Three Matroid Intersection s NP-hard.

Proof. We use a reduction from the Hamiltonian path problem in directed graphs. Given
a directed graph G with n vertices, and specified nodes s and t, the Hamiltonian path
problem is the problem of determining whether there exists a simple path of length n-1
that starts at s and ends at t. It may be assumed without loss of generality that s has
no incoming edges and t has no outgoing edges. Then, a Hamiltonian path exists if and
only if there is a set of n-1 elements in the intersection of three matroids on the edge set
of the graph: two partition matroids ensuring that the in-degree and out-degree of the
selected edge set are both at most one, and the graphic matroid of the undirected graph
formed by forgetting the edge orientations in G, ensuring that the selected edge set has

no cycles. O

So, it is reasonable to seek for approximation algorithms for th k Matroid Intersection

problem. We will present a 2-approximation algorithm for this problem when k=3, which
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is easily generalized to a (k — 1)—approximation algorithm for the k Matroid Intersection
problem. For now, we have k=3. The technique that we use is called " Iterative Rounding”
and was introduced by Jain in [25] describing a 2-approximation algorithm for a large class
of minimum-cost network design problems in undirected networks. For a very detailed and
compact presentation of the power of this method see [31]. The general idea, applied to our
framework is the following: using the structure of the optimal extreme point, prove that there
is a variable with value greater or equal to 1/2 add that element to the solution, remove it
from the matroid and recurse on the residual problem.

Linear Programming Relaxation

The linear programming relaxation, denoted by L Psjpni (M1, Mo, Ms3), for three-matroid
intersection is a natural extension of LP;,;(Mj, Ms) for two-matroid intersection. Notice

that we only consider the unweighted problem where w. =1 for all e € S.

maximize E Te
e

subject to z(T) <ri(T), VI'CS
x(T) <ro(T), VI'CS
x(T) <r3(T), VI'CS

e >0, VeeS

There is an efficient separation oracle for this exponential-size linear program, as in the
case for two-matroid intersection. As for the structure of the extreme point solutions its proof

follows the same lines as the proof of Lemma 2.4.2 for two-matroid intersection.

Characterization of Extreme Point Solutions

Lemma 2.5.2. Let z be any extreme point solution to LP3jn(Mq, Ma, M3) with x, > 0
for each element e € S. Then there exist three chains C1, Co, Cs such that

1. (T) = ri(T) for each T C C; fori={1,2,3}.

2. The vectors in {x(T) : T € C1}U{x(T) : T € Co}U{x(T) : T € Cs} are linearly

independent.

3. ’Cl‘ + ’CQ‘ + ’Cg‘ = ’S‘
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Iterative Algorithm

Algorithm 4 Iterative Three Matroid Intersection Algorithm
I+ 0.
while S # () do
Find an optimal extreme point solution x to LPsj(My, Ma, M3). Delete from all

three matroids every element e € S with z. = 0.
If there is an element e with 2, > 1/2, then update I + IU{e}, My < Mj/e, My +
MQ/@,M3 — M3/€.

return I.

Correctness and Performance Guarantee

We first show that the iterative algorithm makes progress in each iteration. We then show

that the algorithm returns a 2-approximate solution assuming it makes progress in each step.

Lemma 2.5.3. For any extreme point solution x to LP3n(My, Ma, M3) with x. > 0 for

every element e, there exists an element e with x. > 1/2.

Proof. Suppose for a contradiction 0 < x. < 1/2 for each e € §. Then the number of
variables is exactly |S|. By Lemma 2.5.2, we obtain three chains Cy, Cy, C3 defing x. We
now show a contradiction to the fact that |S| = |C1|+ |Ca| + |Cs| by a counting argument.
We give three tokens to each element in S for a total of 3|S| tokens. Now, we collect
three tokens for each member of C7, Cy, C3 and an extra token showing the contradiction.
This is done as follows. Each element e assigns one token to the smallest set T; € C; such
that e € T4 for i = {1,2,3}. We now claim that each set in C; U Cy U C3 obtains at
least three tokens. The argument is identical for sets in C1,Co,C5. Let T' € C; and R be
the largest set in C such that R C T. Now, we have z(T) = r(T) and z(R) = r1(R).
Subtracting, we obtain z(T' \ R) = r1(T) — ri(R). If T\ R = () then T = R and we
have a contradiction to the linear independence of the constraints. Also, since z(T"\ R)
is an integer and 0 < z, < 1/2 for all e, we have that |T'\ R| > 3. Thus, T receives one
token for each element in 7'\ R for a total of at least three tokens. Therefore, every set
in C7 U Cy U (5 receives at least three tokens. Now, we show that there is at least one
extra token. First of all, if an element does not belong to any set of a specific chain, then
its corresponding token goes nowhere and we are done. So, it must be the case that the
maximal element of each chain contains all the elements, which means that S belongs to

all three chains, contradiction because of the linear independence. ]

Theorem 2.5.4. The iterative algorithm returns a 2-approximate solution to the maxi-

mum three-matroid intersection problem in polynomial time.

Proof. This is proved by induction on the number of iterations of the algorithm. The
base case is trivial to verify. Let My = (S,Z;1), My = (S,Z2), M3 = (S,Z3) denote the
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matroids in the current iteration and x the optimal LP solution. If the algorithm finds
an element e with z. = 0 we remove e from all the matroids. Observe that x restricted
to S — e, say x, is a feasible solution to LPs;ni (M1 — e, Mo — e, M3 — e). This is easily
checked using the rank function of M; — e which is identical to the rank function ofM;
on the sets not containing e, for all :. By induction, we find a common independent set
I of My —e, Mz —e, M3 — e of weight at least ), .5_,2'(¢/). Observe that I is also a
common independent set of My, My, M3 and costs at least 2/(S —e) = 2(S). Hence, the
induction claim is true in this case.

We focus on the case when the algorithm selects an element e with z. > 1/2. In
this case the algorithm updates the matroid M; to M;/e and I to I + e. Let w(x) be
the objective value of the solution x in the current iteration. To prove the performance
guarantee, it suffices to prove that there is a feasible solution in the next iteration with
objective value at least w(x) — 2. Since we add one element to I and the objective value
decreases by at most two, by a standard inductive argument we can prove that the returned
independent set has size at least half the objective value of LPs;pnt(M1, Mg, M3), and thus
the theorem follows.

To prove the claim, we need to demonstrate a feasible solution in the next iteration with
objective value at least w(z)—2, after we select the element e and update the matroids M;
to M, /e. Consider the solution x restricted to S —e, denoted by x’. Note that x” has objec-
tive value w(z) — x., but it may not be a feasible solution to LPsint (M /e, Ma/e, M3/e),
the linear program in the next iteration. In the next paragraph we will show how to mod-
ify x’ to satisfy all the constraints defined by matroid M;/e, by decreasing the objective
value by at most 1 —x.. By performing this modification to each of the three matroids, we
will have a feasible solution to LP3;n.(M;/e, Ma/e, M3s/e) with objective value at least
w(z) —ze —3(1 — xe) = w(z) — 3+ 2z, > w(x) — 2 since x. > 1/2 , as desired.

It remains to show how to modify the solution x’ to satisfy all the constraints defined
by M;/e, while decreasing the objective value by at most 1 — x.. Since x is a feasible
solution to L Psini (M1, Ma, M3), it is obviously a feasible solution to LP,,.:(M;), the
independent set polytope of matroid M;. Since the independent set polytope of a matroid
is integral, the solution x can be written as a convex combination of independent sets
in M;, ie. x = Zévzl Ajx(;) for some N where A\; > 0, Vj, Zjvzl Aj =1 and I; is an
independent set of M; for each j. Assume that e ¢ I; for j = 1,..., N’ and e € I; for
N’ < j < N. Then by definition Z;V:ll Aj =1—uxz.. Foreachl<j <N let f; # e be
an element in the unique circuit (if exists) in I; + e. Since I; — e + f; is an independent
set in M;, it follows by definition that I; — f; is an independent set in M;/e. Similarly,
I; — e is an independent set in M;/e for N’ < j < N. Thus

= )\1)((]1 — fl) + ...+ )\N’X(IN’ — fN’) + )‘N’—HX(IN’—H — 6) + ...+ )\NX(IN — 6)
is a feasible solution to LPmat(M;/e), since it is a convex combination of independent
sets in M;/e. Furthermore w(z*) > w(z') — Z;V:/I Aj = w(z’) — (1 — z.), proving the

theorem. O






Chapter 3

Multistage Matroid Maintainance

3.1 Preliminaries

Having built the required background on matroids, linear programming and on basic round-
ing techniques, we can now formally define the Multistage Matroid Maintainance (MMM)
problem. The results we discuss in this part were presented in the work of Gupta et al.

" Changing bases: Multistage optimization for matroids and matchings” [22].

Definition 19. An instance of the Multistage Matroid Maintenance (MMM) problem
consists of a matroid # = (E,I), with r(E) = r, an acquisition cost a(e) > 0 for each
e € E, and for every time step t € [T] and element e € E, a holding cost c;(e) > 0. The
goal is to find bases { By € T}y to minimize

> (c(By) + (B \ Bi-1))

t
where we define By := ().

In the case of T=1, optimizing over the bases of the matroid is equivalent to optimizing
over its spanning sets. Indeed, if the optimal solution is a spanning set, we can start removing
appropriate elements, without reducing the rank, until we end up with a basis, which will not
have greater cost than the initial. However, does this equivalence hold for general T7? We will
show that it does. But first, lets define the Multistage Spanning set Maintenance (MSM)
problem.

Definition 20. An instance of the Multistage Spanning set Maintenance (MSM) problem
consists of a matroid # = (E,T), r(E) =r, an acquisition cost a(e) > 0 for each e € E,
and for every time step t € [T] and element e € E, a holding cost c;(e) > 0. The goal is
to find spanning sets {Sy C E}yerr) to minimize

> (cl(Se) +alSi\ Si-1) (1)

t

35
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where we define Sy := ().

The following lemma shows the equivalence of maintaining bases and spanning sets. It is

proven in [22] and here we provide an alternative proof.

Lemma 3.1.1. FEvery feasible solution for MSM can be transformed, in polynomial time,

into a feasible solution for MMM, without increasing the total cost.

Proof. Let S1,...S1 be a feasible solution for MSM. If all these sets are bases then we are
done. Otherwise, let i be the minimum moment such that S; is not a base. Let C be
a circuit in .S;. Since C 7¢_ Si—1 (remember that Sy := () and the definition of i), there
is an element e € C'\ S;_;. We remove e from S; and S; remains a spanning set. All
these procedures can be implemented in polynomial time (see chapter 2). The holding
cost won'’t increase, since c¢¢(e) > 0. The acquisition cost won’t increase since e € S; \ S;—1
and a(e) > 0. Thus, the new solution has lower or equal cost and is feasible for MSM.
We iterate on the above process until all S; become bases. Since in each iteration, ), | S|

decreases by 1, the algorithm will terminate in polynomial time. O

Corollary 3.1.1.1. For matroids, the optimal solutions to MSM and MMM have the same

costs.

3.2 The Greedy Algorithm

Our first attempt to solve the problem is to extend Kruskal's algorithm, which provides the

optimal solution for T=1. For this reason, we use a result of Wolsey.

Theorem. (Wolsey [46]) We consider the problem min{}_;cgwj = f(S) = f(N),S C
N}, where fis a nondecreasing submodular function on a finite set N. When f is integer val-
ued and f(0) = 0, the greedy heuristic solution has approzimation ratio H(mazjenz({j})),
where H (k) = Zle 1.

However, in order to apply the greedy algorithm to our setting, we need to appropriately
define the ground set, the weight function and the submodular function, in order to incorporate
the acquisition costs to the weights. The idea is that we will no longer choose an element for a
specific time step, but we will choose an edge for a specific interval that we want the element
to be alive. More specifically, we make the following reduction: We will have T matroids
My = (Eint, 1), Mo = (Eint, I2), ..., Mp = (Eint, Zr). The common ground set will be

Einy=A{(e,[l,r]) |ee B, 1<I<r<T}

the element x=(e, [I,r]) represents that the element e is alive for the interval I, = [l, r]. For an
element x, when we will want to refer to e we will write x.e and for the interval we will write

I,. The weight function will be

w((e, [1,7])) = ale) + ) eile)
t=1
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since we purchase the element e at time | and we keep it for the time interval [I,r]. As for the

independent sets:

Selye VoeS: tel, {ze|lxecSyeTand Pxi,00€S: 21 # 19, x1.6 =100

The nondecreasing submodular function is

7(8) = S mu(s)

since the sum of nondrecreasing submodular functions (the ranks) is a nondrecreasing sub-
modular function.

It is easy to observe that MSM is equivalent to
min{w(S) | f(S) = f(Eint), S C Eint}

Thus, from [46], the greedy algorithm described in chapter 2 is an
H(maxzep,,,(f{z}) — f(0))) = H(T) = O(log T')—approximation algorithm. In [22] Gupta
et al. provide an alternative dual fitting proof from scratch. We will present the analysis, but
first lets see what the greedy algorithm does at our problem:

We consider the interval view of the problem. Given a current subset A C Ej;,,;, the benefit

of adding an element x to A is

bena(z) = Y (r(AU{z}) = r(A)) = Y (r(AU{z}) —ri(4))
t tel,
Initially A = () and the greedy algorithm iteratively picks an element 2 € E;;,; \ A maximizing
bena(z)/w(x) and adds x to A. This is done until f(A) = f(Eint) = T, where r = rpq(E).
In other words, at the end, A induces a spanning set for each time step.
We analyze the algorithm through dual fitting. For this reason, we introduce the LP; with

the following variables:
® 1., x € Eyy indicating whether we take element x or not

® 2, T € By, t € 1,

minimize Z w(T)Yx
meEint
subject to 2z} € Pp(Mey), YVt e [T]

Zot < Yy Vo € By, Vtel,
Yz > 07 Vx € Eint

where M, is the natural extension of the initial matroid M on the new ground set E;,;, where
all the elements x=(e,[l,r]) associated with the same e are parallel to each other. Pp(M.y)

is the base polytope of M.z, which lies in RIZintl As for the coordinates of the vector Z;:
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0 otherwise

ot T tel,
Zt(x):{Zt e

Using Lagrangian variables b,; > 0 for each x and ¢t € I, we write the L P> which outputs
a lower bound for the LP;:

minimize Z w(z)ys + Z bt (Zat — Yz)
$€Emt x,tGIw
subject to  Z; € Pp(Mey), Vt e |[T]

Yz Z 07 Vx € Eint

The objective function of LP; is equal to

Z (U)(CE) - Z bzt)yl’ + Z bt 2zt

TEFE;nt tel, z,tel,

The optimal value of the LP; is a lower bound for the optimal value of LP; for every choice of

nonnegative b,:. In particular, if we choose these Lagrangian variables to satisfy the constraints:

U}(I‘) — Z ba:t 2 O, Vw S Eint
tel,

then clearly, the LP» will set all y, to zero. In this case, L P, takes the form:

minimize E bot 2ot

ztel,
subject to 2} € Pp(Meyt), Vte|[T]

but in this case
Z bytzet subject to zz € Pp(Megt)

x: tel,
can be minimized independently for each t. Due to the integrality of the matroid base polytope,

the optimal value of LP,, under the aforementioned choice of b.; will be
Z me({b:vt}z telm)
t

where for a fixed t, we remove from M., all these x that ¢ ¢ I, we put weight b,; to the
remaining x and mwb({byt}4: ter,) is the minimum weight base. We choose the best lower
bound, LPs, for LP;, which is:

minimize Z mwb({bxt }2: ter,)
t
subject to Z byt < w(z), Vo € Ejpy

tely
bet > O, Vo € Einta Vt € I,

The analysis follows the dual fitting proofs of [13, 35]
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Theorem 3.2.1. The greedy algorithm outputs an O(log|lmaes|)— approxzimation to MSM,
where |Lnaz| is the length of the longest interval that an element is alive for. Hence, it

gives an O(logT')— approzimation.

Proof. First of all, the matroid that we study in this proof is M,¢. For a subset A of E;;,
we write A' = {x € A|t € I,}. For the proof, consider some point in the run of the greedy
algorithm where a set A C FEj,; of elements has been picked. We show a nonnegative

setting of duals b,; such that

e The objective value of LP;s (dual value) equals the current objective value of LP;

(primal value) w(A) and
® > i, but < O(log|l:)w(z), Vo € Eipy

It is useful to maintain, for each time t, a minimum weight base B; of the subset span(A*)N
E! . according to weights {by},c Bt We start with by = 0, A; = B; = 0, for all t, which
satisfies the above properties.

Suppose that until some step these properties hold and we have collected the set A.
we now pick x maximizing ben4(x)/w(z) and get new set C := AU {z}. Call a time
step t “interesting” if 7(C?') = r(X;) + 1. There are ben4(z) interesting time steps.
Now, we need to update the duals. For each interesting t and for each y € (span(C*) N
E! )\ (span(AY) N E! ;) update by < w(z)/bena(x). Note that the element x itself
satisfies the condition of being in (span(C*) N Et )\ (span(A') N E!,,

int

) for precisely the
interesting time steps, and hence -, oresring Oot = bena(z)w(x)/bena(z) = w(z). In all
the noninteresting time steps the min-weight bases remains invariant. In an interesting
time step t, consider the min-weight base B, (of the previous step). The elements in
(span(CHYNEL )\ (span(AY)NE!

int ©.¢) increased the rank by one, in time t, and they all got

the same weight, which due to the greedy criterion have bigger b,; than all the previous
elements. Thus, the Kruskal’s algorithm will choose the base B; < B; + x for every
interesting time step t. Thus, the first property inductively holds. It remains to show the

second one:

Let’s focus on an element y € Ej,;. Initially all by are zero and the greedy decides
whether it will add y to the solution based on w(y)/ben 4(y) for a current solution A and
if it updates a by then its value will be lower or equal to w(y)/bena(y) and bena(y) will
be decreased. Thus, at the end of the algorithm:

1 1
> by S w5+ 7 o+ 1) = OllogllyJw(y), Yy € Eine
tel, Y v

and each element can only be alive for all T time steps. From the standard dual fitting

argument, we have that the greedy algorithm is an O(logT")—approximation algorithm. [
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3.3 The Randomized Rounding Algorithm

In [22], Gupta et al. also present an O(log(rT))—randomized rounding approximation
algorithm for the MMM. First of all, we write the natural extension of the classical Matroid
LP:

minimize Z ce(e)z(e) + Z a(e)y:(e)

t.e

subject to %z € Pp(M), Vte [T]
yi(e) > zi(e) — z-1(e), Vee B, Vte|[T]
yt(e)azt(e) > 07 Ve € Ea vt e [T]

Whenever we mention an LP in this section, we will mean the above LP. Let OPT= (y, 2t ):e[7)
be the optimal solution for the above LP. Observe that in the above constraints, zj is included,
but it is not given to the LP as a variable but as an identically zero vector. Also observe that
yt(e) = maz(z(e) — z—1(e),0), Vi, e.

Let's fix some t. Then, Z; induces probabilities of selection for each element is E. Based
on these probabilities, we act like we did for the set cover in chapter 1. Initially S; = (). We
add to Sy, independently, each element e, with probability z;(e). However, if we do this, there
is a considerable probability that the r(S;) < r. Thus, we iterate this experiment and after
a logarithmic number of steps, S; will be a spanning set with high probability. However, this
sampling procedure it is done dependently between consecutive time steps, in order to achieve
low acquisition cost. This is achieved through shared randomness. At the end, if Si,..., 57
are not spanning sets, then produce a solution greedily, which is at most T times the optimal.
Since this happens with low probability, the expected cost is not large. Finally, from lemma
3.1.1, we can transform these T spanning sets into T bases, without increasing the total cost.

The algorithm goes as follows:

Algorithm 5 Randomized Rounding
1: Solve the LP and get the (v, 2t )7
2: L =8(2+/3)In(rT)
3: For each e € E choose independent 7, ~ U|[0,1/L]
4
5

. For each t, define S; = {e€ E| z(e) > 7}

. If all S; have full rank, convert them to a solution for MMM at no extra cost and
return (S1, ..., S7).

6: For each i, produce S; through Kruskal’s algorithm, with weights (a(e)+¢;(e))eecr and
return (S, ..., S7).

Let w(OPT) be the cost of the optimal solution of the LP and let w(S) be the cost of
the output of the algorithm (where S can be either (51, ..., S7) or (51, ..., S7)).
First of all, we must settle that, with high probability, S, ..., Sp will have full rank.

Lemma 3.3.1. For a fractional base z € Pg(M), let R(z) be the set obtained by picking
each element e € E independently with probability z.. Then E[r(R(z))] > r(1 —1/e).
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Proof. We use the results of Chekuri et al. [12] on so-called contention resolution schemes.
In their paper, for a matroid M, they give a randomized procedure 7, that takes the
random set R(z) and outputs an independent set m,(R(z)) in M, such that m,(R(z)) C
R(z), and for each element e in the support of z, Prle € m,(R(2)) | e € R(z)] > 1 —1/e.
Thus, we get:

E[r(R(2))] > E[r(m.(R(2))] = Y Prle € m(R(2))] >
supp(z)
Z Prle e m,(R(z)) | e € R(2)|Prle € R(2)] > Z (I1-1/e)ze =1(1—1/e)
supp(z) supp(z)
The first inequality used the fact that m.(R(z)) C R(z), the following equality used that
7,(R(z)) is independent with probability 1, the second inequality used the property of the
CR scheme, and the final equality used the fact that z was a fractional base.
O

Corollary 3.3.1.1. R(z) has rank at least r/2 with probability at least 1 —2/e > 1/4

Proof. Apply reverse Markov inequality for the random variable r(R(z)) < r O

Lemma 3.3.2. For any fized t € [T], the set S, has full rank with probability at least
1—1/(rT)?

Proof. The algorithm produces the set S, by threshold rounding of the fractional base
zt € Pp(M). Instead, consider taking L different sets 17, ..., Tf, where each set is produced
independently, by including each element e independently with probability z;(e). The final

set will be T' = UlelTi. We proceed with the following stochastic domination claim:
Claim 3.3.3. Pr[r(S;) =r] > Prir(T) = 1]

Proof. Tt suffices to prove that for each e € E, Prle € T] < Prle € ;] and the claim
will follow from the standard stochastic domination argument. He have that Prle ¢ T] =
A L zi(e
(1 — z(e))F. We also have that Prle ¢ S;] = maz(0, Lft()) = max(0,1 — Lz(e)) and
L

since z(e) € [0, 1], the inequality follows from Bernoulli’s inequality. O

So, it suffices to give a lower bound on the probability that T has full rank. For this, we
use Corollary 3.3.1.1: the set 77 has rank at least r/2 with probability at least 1/4. Now,
focusing on the matroid M’ = M/span(Ty) which say has rank 1r’, the same argument
says thst the set Ty has rank r’/2 with probability at least 1/4 etc. Proceeding in this
way, the probability that the rank of T is less than r is at most the probability that we
see fewer than loger heads in L = 8(2 + v/3)in(rT) flips of a coin of bias 1/4. We bound
this probability using the following Chernoff bound:

Proposition 3.3.3.1. Let X1,..., X,, be independent Bernoulli variables such that for
each i, Pr(z;] > p. Let X =3 1" | X; and mp = p < E[X]. Then, for 0 <4 < 1:

PriX < (1—0)p] < e H0°/2
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In our case, n = L = 8(24v/3)in(rT), X1, ..., X1 are the coin flips, p = 1/4, u = L/4.
Weset § =1— 2+1 73 So, by applying the Chernoff bound, we get:

1 — (1= —1)28(2+/3)In(rT)/8 1
PrIX < o= 8(@VB)in(rT)/4) = PriX < 2in(rT)] < e TEYI G
But,
1
Pr(X <logor] < Pr[X <2in(rT)] < T
Thus, Pr[r(S‘t) <r] < Pr[r(T) <r] < — M

= (rT)?

Now it is time to prove the main theorem:
Theorem 3.3.4. E[w(S)] < O(log(rT))w(OPT)

Proof. First of all, by the union bound, the probability that all S; have full rank is at least
1 — 7. Let w(S1, ..., S7) be the total cost of Sy, ..., Sp. Notice that {Si}icpr) may not
be a feasible solution. However, these sets can be plugged into the objective function of
MSM and the result is this cost. Let F be the event that all Sl have full rank and F¢ its

complement..
E[’U)(S)] = E[U}(S}, '-'v‘S?T) | F]PT[F]+U](517 "'7ST)PT[FC] <= E[w(gla e S?T)]+w(sl’ "~7ST)
It remains to bound E[w(S), ..., S7)] and w(Sy, ..., St).

e For a fixed t, since Prle € S;] = min{Lz/e),1},

Ele(S)] =Y ale)Prie € S < LY ale)zle) (3.1)

e

Moreover, e € St\gt_l exactly when 7, satisfies z;_1(e) < 7. < z(e), which happens

with probability at most

max{z(e) ; z-1(¢), 0} < Ly(e).

L

Thus,
Ela(Si\ Si1)] = Z a(e)Prle € S;\ S;_1] =< L Z a(e)y:(e) (3.2)

e

From 3.1, 3.2 and summing over all t, we get:

E[w(Sh, ..., 57)] < Lw(OPT)
e It is easy to see that w(S1,...,S7) < Tw(OPT). Indeed,

w(S1, .., S1) <> (e(St) +a(S) = (e + a)(Sh)

t

1

"
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because, by rebuying an element that we already have, we increase the cost. Now,
let’s fix a t € [T] and let’s go to the initial LP and remove all the constraints
that impose that Z; is a fractional base, except the one corresponding at time t.
Since yi(e) = maz(z(e) — z—1(€e),0) and Pr(M) is integral, the optimal value
of the objective function of this reduced LP will be exactly the outcome of the
Kruskal’s algorithm for the matroid M with weights given by the function a + ¢,
which is exactly (¢; + a)(S;). This reduced LP, was produced by removing some
constraints of the initial, thus the optimal value of the objective did not increase.
So, (¢t + a)(St) < w(OPT). Summing over all t we get the desired result.

Summarizing,

E[w(S)] < E[w(Sy, ..., S7)]+w(St, ...,ST)% < Lw(OPT)—kTw(OPT)%

r2

O]

However, the dependence of T at the approximation ratio can be avoided. More specifi-
cally, by slightly modifying the randomized rounding algorithm, Gupta et al. in [22] achieve
approximation ratio O(%logr). Observe that in case where the acquisition costs are uni-
form, this yields an O(logr)—approximation algorithm. But, when this is not the case, can we
avoid both the dependence on T and on Z:ﬁ? Can we hope for a O(logr)—approximation
algorithm for the MMM? If the algorithm is based on the LP of this section, the answer is no.
In [22], the authors show that the O(min{logT,log¢™:}) term in our rounding algorithm is

unavoidable. This is a graphical matroid instance, with n (even) vertices and m edges. logT

and log% are On, m = On? and the linear program has the aforementioned gap.
Lemma 3.3.5. The LP has an Q(min{logT, log%}) integrality gap.

This means that if the aspect ratio of the acquisition costs is not bounded, the linear

program has a logT gap, even when T is exponentially larger than r.

Proof. This is a graphical matroid instance, with n (even) vertices and m edges. logT
and log% are On, m = On? and the linear program has the aforementioned gap. The
set of vertices is {vo, v1, ..., v, } and T:(g). The edges (vg, v;) for i € [n] have acquisition
cost a(vg,v;) = 1 and holding cost ¢;(vg,v;) = 0 for all t. The edges (v;,v;) for 4,5 € [n]
have acquisition cost % and have holding cost determined as follows: we find a bijection
between the set [T] and the set of partitions (Uy, V;) of {v1, ..., v,} with each of Uy and V;
having size 5. In time step t, all edges inside Uy and V; have holding cost 0 and all the
edges in the set E (U, Vi) have holding cost oo.

First of all, a feasible integral solution has cost at least n/2+1. Indeed, let’s suppose
that there is a feasible solution, that uses at most n/2 edges of the type (vo, v;) (otherwise
the acquisition cost is at least n/241). At some time step t, all these edges belong to the

set E({vo},Us) U E({vo}, Vi). Thus, since the solution cannot include, at time t, edges

= O(log(rT))w(OPT)
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with holding cost oo, §(V;) or 6(U;) is empty at time t, contradiction. Thus, every feasible
integral solution has cost £2(n).

Finally, we show that on this instance, the LP, has a feasible solution of cost O(1). We
set z¢(vo,v;) = 2/n for all i € [n] and ¢ € [T]. For all the other edges e, if at time step t

they have zero holding cost, we set z;(e) = 4/n.

Proposition 3.3.5.1. z; is in the spanning tree polytope for all t € [T).

Proof. We will perform a random experiment which outputs a spanning tree for the time
step t. Take uniformly at random a spanning tree Ty, from the clique Uy, a spanning tree
Ty, from the clique V4, one edge from E(vp, U?:ﬂ)i) and one edge from E(vo, U;‘:%Hvi).
Now, let’s see with what probability we take each edge to the random tree. An edge
(vo,v;) is taken with probability 1/(n/2) = 2/n for each i € [n]. Each of the others, by
symmetry, are taken with probability % = 4/n. So, there is a probability measure
over the characteristic vectors of spamning2 trees for time t such that the expected vector
is z;. But, the expected vector is given by a convex combination, corresponding to this

probability measure. The proposition follows. O

Finally, the total acquisition cost is at most %n + Tn2%$ = O(1). The holding costs

payed are zero. Thus the LP has a feasible fractional solution with total cost O(1). The
claim follows (remember that log(n)=6(n)). O
2

3.4 Hardness results

In the previous sections, we showed how to approximate the optimal solution of MSM and
MMM up to a logarithmic factor. The algorithms used were quite similar with the corresponding
ones for the set cover problem (the greedy and the randomized rounding). For the set cover, the
logarithmic approximation ratio is optimal, unless P = NP, see [14]. Is this a coincidence?
Maybe there is another more convoluted way to approximate sublogarithmically these two
problems. The following theorem, proved in [22] shows that this is not possible, unless P =
NP.

Theorem 3.4.1. The MSM and MMM problems are NP — hard to approximate better
than Q(min{logr,logT'}) even for graphical matroids.

Proof. We give a reduction from Set Cover to the MSM problem for graphical matroids.
Given an instance (U,F) of set cover, with m = |F| sets and n = |U| elements and
m = poly(n) (the set cover restricted to these instances cannot be approximated better
than Q(logn)). We construct a graph as follows. There is a special vertex r, and m set
vertices (with vertices s; for each set S; € F). There are m edges e; := (r,s;) which all
have acquisition cost a(e;) = 1 and holding cost ¢;(e;) = 0, for all t. Taking these edges
at some time step encodes whether we take a set to our solution or not. What remains

to do is to force the optimal solution to obtain edges that encode a set cover. We have
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to do with spanning trees, so our only "weapon” is the connectivity requirement. More
specifically, all other edges will be short-term and will have zero acquisition cost. There
are T time steps. In time step j € [n], define subset F; := {s; | u; € S;} to be vertices
corresponding to sets containing element u; € . In this specific time step, we have the
edges that make F; a clique and all edges (r,y) for y € F; := {s; | u; ¢ S;}. All these
edges have zero acquisition cost a(e), and are only alive at time j (which can be done by
using infinite weights during the other time steps).

Now, let O be the cardinality of the optimal set cover. The cost of any solution for
MSM (or MMM) is greater or equal to O. Indeed, in time step j, there must be an edge
connecting r with some vetrex in Fj. At the same time, there is a solution to MSM (and
to MMM) that has cost exactly O. Let S;,, ..., S;, be the optimal set cover. At first, we
maintain all edges (r,s;, ), k=1,...,0, for all time steps, paying only acquisition cost O.
We can now add edges for free and ensure connectivity at all time steps. In particular, at
time step j we buy all the edges that are alive at this time step. The graph is connected
at time j, because at this time, there exists an edge between r and a point in F}, say s;,,
all the other vertices in F} are connected through the clique with s;, and all the vertices
in F’j are connected with r through the other free edges. Thus, our reduction is strict.
Finally, the number of time periods is T = n, and the rank of the matroid is m = poly(n)
for these hard instances. This gives us the claimed hardness.

O

Someone may wonder why we do not discuss the generalized version of MMM, where the
matroid changes over time. The reason is that this problem is really hard, as the following

theorem, proved in [22] indicates.

Theorem 3.4.2. The MMM problem with different matroids is NP-hard to approximate
better than a factor of Q(T), even for partition matroids and zero holding costs, as long
asT > 3.

Proof. The reduction is from 3D-Matching (3DM). An instance of 3DM has three sets X,
Y, Z of equal size | X| = |Y| = |Z| =k, and a set of hyperedges F C X xY x Z. The goal
is to choose a set of disjoint hyperedgesM C E such that |M| = k. 3DM is APX-hard,
see [27]. This means that there is a constant € > 0 such that there is no polynomial time
algorithm that can decide whether there is a matching of size k or all matchings have
cardinality less than or equal to (1 — €)k, unless P=NP.

First, consider the instance of MMM with three timesteps T' = 3. The universe elements
correspond to the hyperedges. For t = 1, create a partition with k parts, with hyperedges
sharing a vertex in X falling in the same part.The matroid M; is now to choose a set of
elements with at most one element in each part. For t = 2, the partition now corresponds
to hyperedges that share a vertex in Y , and for t = 3, hyperedges that share a vertex in
Z. Set the acquisition costs a(e) = 1 for all hyperedges.

Now, since 3DM is APX-hard, there is a constant ¢ > 0 such that there is no

e—approximation algorithm for 3DM, unless P=NP. Now, let’s consider two cases:
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e There is a matching of size k. Observe that this happens exactly when the optimal
cost of MMM is k. Indeed, to take the first base, you need to pay acquisition cost
k. The cost is exactly k when no new element is taken to build the other two bases.
Thus, from the definition of the three matroids, the optimal solution has cost k if

and only if there is a perfect 3DM.

e All matchings have cardinality less than or equal to (1 — €)k. In this case, the
optimal solution for MMM will have cost at least (1+ ¢€)k. Indeed, let’s consider the
optimal solution for this instance of MMM. From the definition of the 3 matroids,
we have that the elements that belong the intersection of the 3 bases correspond
to a matching and thus are less than or equal to (1 — €)k. Now the elements that
belong to the first base but not at all three bases are at least ek and since all bases
have cardinality k, when an element is dropped, another is bought. Thus, there is

an extra ek acquisition cost that has to be added at the initial cost k.

Now, by repeating the above matroid triple in time, we can extend the initial gap.
More specifically, at time ¢ € [T] we will have the matroid Myegs+1. In the first case
("yes” case) the optimal solution for MMM pays cost exactly k. In the second case ("no”
case) the optimal solution for MMM pays an additional ek acquisition cost every 3 time
steps. Thus, the overall cost will be (1 + T'e)k. From the APX-hardness, there cannot be
an (14 Te) — approximationalgorithm for MMM, unless P=NP. The claim follows from
the fact tha € is a constant.

O]

Notice that the time-varying MSM problem does admit an O(logrT') approximation, as
the randomized rounding (or the greedy algorithm) shows. However, the equivalence of MMM
and MSM does not go through when the matroids change over time! The restriction that the
matroids vary over time is essential for the NP-hardness, since if the partition matroid is the
same for all times, the complexity of the problem drops radically, as we will show at the next
chapter.

3.5 Perfect Matching Maintenance

In this section we study the Perfect Matching Maintenance (PMM) problem:

Definition 21. An instance of the Perfect Matching Maintenance (PMM) consists of a
graph G(V, E), n = |V|, m = |E|, an acquisition cost g > 0 for each e € E, and for every
time step t € [T] and edge e € E, a holding cost ¢,(e) > 0. The goal is to find perfect

matchings { Pi}ye[r) to minimize

> (c(P) + glPi\ Piea)

t
where we define Py \ Py := 0.
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Observe that for the PMM we consider uniform acquisition costs, similarly to the case
of the Dynamic Facility Location problem, see [18], [2]. For T=1 dynamic facility location
is NP-hard and for general T it can be approximated with a constant factor, see [2]. For
T=1, perfect matching maintenance is in P. Is this an indication that the problem can be
approximated with a constant factor or even better for general T? In this section we will show
that the answer is no, by presenting results proven in [22].

First of all, let's study the natural LP relaxation:

minimize th(e)zt(e) + gZyt(e)

t,e s

subject to  z; € PM(G), Vte[T]
yi(e) > z(e) — z—1(e), Vee E, Vte[T]
s(e). () > 0, Ve € B, Vi e [T]

The polytope PM(G) is the perfect matching polytope for G (its vertices are exactly the
indicator vectors of the perfect matchings of G), see [37]. Observe that in the above constraints,

zp is included, but it is not given to the LP as a variable but as an identically zero vector.
Lemma 3.5.1. The LP for the PMM has 2(n) integrality gap.

Proof. The integrality gap instance has four time steps, g=1 and the edge set is indicated

in the figure below:

N

We say that an edge at time t is alive if ¢;(e) = 0, otherwise we say that e is not alive at

time t and then ¢;(e) = co. For each time step we write which edges are not alive:
t=1: (a,p), (a,a), (b,q), (b.r)

Observe that at each time step the alive edges for an even cycle or a union of even cycles,
thus the fractional solution 2; = (1/2,...,1/2) is feasible for all t. The total cost is the
total fractional acquisition cost , which is O(1).

Now, let’s take an integral feasible solution. Consider the perfect matching at time
t = 1, which must consist of matchings on both the cycles. (Moreover, the matching in
time 3 must be the same, else we would change 2(n) edges). Suppose this matching uses

exactly one edge from (a,b) and (p,q). Then when we drop the edges (a,b), (p,q) and add
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in (a,p), (b,q), we get a cycle on 4n vertices, but to get a perfect matching on this in time
2 we need to change Q(n) edges. Else the matching uses exactly one edge from (a,b) and
(q,r), in which case going from time 3 to time 4 requires 2(n) changes. Thus, the total
cost of every integral feasible solution is Q(n). The lemma follows. We should note that
we would also have integrality gap Q(n) if we kept only the time steps t=2 and t=4 (in
that case T=2).

O

Observe that a crucial propery that is used in order to prove the integrality gap is that
the optimal solution of the PMM is highly unstable at small changes of the alive edges. Note
that this does not hold at matroids, where if an element stops being alive, we can exchange
it with another one. Another way to see this is that in the matroid base polytope, the
neighboring vertices correspond to bases whose difference has cardinality 1. This definitely
does not hold for the perfect matching polytope (take the one for the Cay, ). This property
will be exploited to show the following hardness result for PMM:

Theorem 3.5.2. For any ¢ > 0, there is no O(N'~“—polynomial time approzimation
algorithm for PMM, unless P=NP, where N is the number of vertices in the graph. This
holds even when the holding costs are in {0,000}, acquisition costs are 1 for all edges, and

the number of time steps is a constant.

Proof. The proof is via reduction from 3-coloring. In 3-coloring, we have three colors, say
red, blue, green and the question is whether we can color the vertices of the graph with
these colors such that no two vertices that are connected with an edge share the same
color. We assume we are given an instance of 3-coloring G = (V, E') where the maximum
degree of G is constant. It is known that the 3-coloring problem is still NP-hard for graphs
with bounded degree, see [23]. At the beginning we consider T' = 2|E|. We construct a
gadget X, for each vertex u € V, as in the figure below:

More specifically, in each gadget X,,:

e There are two cycles of length 3¢, where /£ is odd. The first cycle (say C!) has three
distinguished vertices u}%,ué,u}g at distance ¢ from each other. The second cycle

(say C2) has similar distinguished vertices u%, u%, u% at distance ¢ from each other.

e There are three more “interface” vertices ug, ug,up. Vertex ug is connected to u}%

and to u2R, similarly for ug and ug.
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e There is a special “switch” vertex s,,, which is connected to all three of {ug, ug,up}.

Call these edges the switch edges.

Due to the two odd cycles, every perfect matching in X, has the structure that one of
the interface vertices is matched to some vertex in C., another to a vertex in C2 and the
third to the switch s,. The subscript of the vertex that is matched to s, encodes the color
assigned to vertex u.

At every odd time step ¢ € [T], the only allowed edges are those within the gadgets
Xuqu € V} @ ie., all the holding costs for edges within the gadgets is zero, and all edges
between gadgets have holding costs co. This is called the “steady state”.

We make a bijection between the even time steps and the edge set E. At every even time
step t, we move into a “test state”, which intuitively tests whether the corresponding edge
satisfies the color constraint. We do this as follows. Say that the edge corresponding
at time t is the (u,v). At time t, the switch edges in X,, X, become unavailable (have
infinite holding costs). Moreover, now we allow some edges that go between X, and X,,
namely the edge (sy,sy), and the edges (u;,v;) for i,j € {R,G, B} and i # j. Note that
any perfect matching on the vertices of X,, U X,, which only uses the available edges would
have to match (s,,s,) and one interface vertex of X, must be matched to one interface
vertex of X,. Moreover, by the structure of the allowed edges, the colors of these vertices
must differ. (The other two interface vertices in each gadget must still be matched to their
odd cycles to get a perfect matching.) The transition of the alive edges from time t-1 to

time t is indicated in the figure below:

L "H/:/ \:;:______
HHHH“T—""F ""“-'r"';.’f
ug U T4
Sy B

Suppose the graph G was indeed 3-colorable, say X : V <« {R,G, B} is the proper
coloring. In the steady states, we choose a perfect matching within each gadget X, so
that (su,ux(y)) is matched. In the test state 2t, corresponding to the edge (u,v), we
match (sy, sy) and (ux(y),v X(v)). Since the coloring X was a proper coloring, these edges
are present and this is a valid perfect matching using only the edges allowed in this test
state. Note that the only changes between time 2t-1 and 2t were to replace the matching
edges (Su, Ux(y)) and (Su, Vx(v)) DY (Su; Sv) and (ux (), Vx(v)) Tespectively. Hence the total
acquisition cost incurred at time 2t is 2, and the same acquisition cost is incurred at time
2t + 1 to revert to the steady state. Hence the total acquisition cost, summed over all the

time steps, is 4|E|.
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Suppose that G is not 3 colorable. Let’s fix a feasible solution of PMM: {P; };c(7]. For
a cycle Ci,j € {1,2} we define rt(C’i) to be the vertex that belongs to CY and at time t
it is matched outside of it (remember that for each time step this vertex is unique). If for
any CJ, rt(C{;) + rl(CZ), for some t, then it is easy to observe that the solution has to pay
Q(¢) acquisition cost. Since G is not 3-colorable, looking the feasible solution at the first
time step, we can find two gadgets X, X, such that (u,v) € E and (sy, uy), (8y,v5) € P,
x € {R,G, B}. Now, let’s look at P;, where t is the time where edge (u,v) is tested. Since
(ug,vy) is not alive at time t (actually it is never alive), r¢(C%) % r1(C%). Thus, the total
cost of an feasible solution of PMM has cost Q(¢). Set £ = nel.

The vertex set for the PMM has cardinality N = O(nf) = @(n%) Thus, if G is 3-
colorable, then the optimal solution of PMM has cost O(4|E|) = O(n) = O(N€) (constant
degree) and if G is not 3-colorable, then the optimal solution of PMM has cost Q(ell) =
Q(N'=¢). This gap proves the theorem for general T. To show it for constant T, we can
parallelize the above procedure. More specifically, since the graph has bounded degree,
we can partition the edges of G into a constant number of matchings M7, Ms, ..., M}, for
some k = O(1) (using Vizing’s theorem). Hence, at time step 2t, we test the edges of the

matching M;. The number of time steps now is T = 2k, which is a constant. O



Chapter 4
MMM in special cases

In this chapter, we present our contribution to the MMM problem. First of all, the
reduction and the integrality gap instance presented in Chapter 8 are for the case of the
graphic matroid. So, in this chapter, we study the LP for the case of the partition matroid
in the more general case of time-changing acquisition costs and we prove that it is integral.
Second, in Chapter 3 we saw that if the matroids change over time, the problem is hard,
even for T=38. Here we show that the LP is integral for T=2, even for different matroids.
Finally, the straightforward and direct reduction from set cover for MMM indicates that
we cannot do anything better than a simple logarithmic approrimation algorithm. So, as in
[12], we consider the case where the acquisition costs are uniform. For this very interesting
special case, we present an algorithm that has constant approximation at the holding cost

and logarithmic approxzimation at the acquisition cost.

4.1 Integral LP formulations

In [22], the authors present exact polynomial time algorithms for the case of MMM
for partition matroids and for T=2. Here we prove the integrality of the LP in these two

cases.

4.1.1 Partition Matroids

The LP that we used for MMM, in the case of partition matroids takes the following

form:

T T
minimize Z Z ce(e)z(e) + Z Z as(e)y(e)

t=1 e€S t=2 ecS
subject to  z(S;) = ki, Vi € [n], t € [T]
yi(e) > zi(e) — z—1(e), VeeS, t=2,..,T
0<z(e) <1, Yee S, Vte|[T]
y(e) >0, Yee S, t=2,..,T

o1
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Note that in this case we allow the acquisition cost to be time dependent. We should make
a technical note that the acquisition cost a1(B1\ By) = a1(B1) is integrated in the holding
cost ¢1. Second, it is easy to observe that for each S; the problem is solved independently.
Thus, it suffices to show the integrality of the LP for the Uniform Matroid. So, for the
rest of the section, we will refer to the following LP:

T T
minimize Z Z ce(e)ye(e) + Z Z at(e)ze(e)

t=1ecS t=2 ecS
subject to  z(S) =k, Vte [T

yi(e) > z(e) — z—1(e), VeeS, t=2,..,T
0<z(e) <1, YVeecS, VtelT]
y(e) >0, Yee S, t=2,..,T

Let {z(e), ye(€) }t.e be an extreme point solution of the LP. Note that y.(e) = max(z:(e)—
z-1(€),0), Ve €S, t >2 (1). Indeed, if this is not the case, since the constraints force
yi(e) to be greater or equal to max(0,zi(e) — z—1(e)) and this is the only constraint to
yi(e), for suciently small € > 0, without changing the other variables, if we subtract €
from y.(e) the solution is still feasible. Obviously, if we add € to y.(e) the solution is still
feasible. Hence, {z(€e),yt(€)}re can be written as a convexr combination of two feasible
solutions of the LP, contradiction.

We will prove that {z:(e),y(e)}re has integral entries. Because of (1) it suffices to
prove that {zi(e) }+e has integral entries. Let’s suppose that this is not the case, i.e (e, t) €
Sx[T] such that0 < z(e) < 1. Let F; ={e € S: 0 < z(e) <1}, 0, ={ee S: z(e) =1}
and Z; = {e € S : z(e) = 0}. Clearly, U Fy # 0. We will show that {z(e),y¢(€)}1e can be
written as convex combination of two feasible solutions of the LP, which is a contradiction.

We will say, that two sets T1, Ty C S X [T], Ty NTa = 0, enable a feasible perturbation
of {z(€),yi(e)}re if e > 0 such that

1. {z(e),yi(e) }re and {2/ (€),y)(e)}te are feasible solutions for the LP, where

zi(e) +e if (e,t) €Ty
zi(e) =< zi(e) —e if (e,t) €Ty

z(e) otherwise

zi(e) —e if (e,t) €Ty
zi(e) =1 z(e)+e if(et) €Ty

z(e) otherwise

and yy(e) = max(z;(e) —2,_1(e),0), Ve €S, t = 2, y(e) = max(z/(e) — z_4(€),0),
VeeS, t>2
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2. Foralle € S, t > 2: z(e) — z—1(e), z(e) — z,_1(e), z/'(e) — z{_1(e) have all the
same sign (+,0,-).

Observe that in this case, zi(e) = w Ve,t (2). Now take one e € S and one
T € {2,...,T}. If y(e) = 0, then z(e) — z—1(e) < 0, thus,from the second property,
yi(e) = y/(e) = 0. Else, yi(e) = z(e) — z—1(e) > 0 = zj(e) — z;_1(e) > 0 and z/(e) —
2y 1(e) > 0. Hence, y;(e) = z,(e) — z;_1(e) and y/(e) = z/'(e) — 2z, (e). So, from (2) we
have that y¢(e) = M Thus, {z(€),ye(e) }re can be written as a convex combination
of {zi(€),yi(e)}re and {2 (e), yi'(€)} -

We will show that we can find two sets Ty, Ty C S x [T, Ty N Ty, = (), that enable a
feasible perturbation of {zi(e),y(e)}t.e.

Now, for each (e, t) € S x [T, let Iy = [t1,t2] where

IN

ty=main{t': 1<t (e) = zpy1(e) = ... = z(e)}

t, Zt
to =max{t' : t <t' <T, z(e) = zy1(e

N—
I
Il

N
<X

—

o

SN—

—

We will refer to t1 as Il and to ta as Ie.7.
Now, given Ty, Ty C S x [T], Ty N Tz = 0 such that

(e,t) € Ty = Uper,,(e,t)) C Ty, Vi€ {1,2} (3)

we claim that 3 € > 0 such that the second property (the one with the signs) holds.
Indeed, consider ane € S and at > 2 and let’s focus on zi(e) —zi—1(e). If ze(e) —z—1(e) =
0, then from (8) we have that either both (e,t),(e,t — 1) € T; or none of them does, for
1=1,2. Now, for

1

€= imine,t: Zt(@)—Zt71(6)¢0{|Zt(e) —zi—1(e)[}

property 2 holds.
Let

tstart = mm{t S [T” F 7é @}
tend = max{t > tsqre| Je1,e2 € Fy: e1 # eg and Lo, p.r = Iy .r =t}

tstart 18 the first moment that we see fractional values and te,q is the first moment that

two fractional equality intervals end simoultaneously.
Proposition 4.1.0.1. t.,q is well-defined.

Proof. First, notice that if F; # (), then since z:(S) = k, there exist at least two different
elements ey, es € S such that z:(e1), z¢(e2) are fractional. Let A = {t > tgqre| Fr = 0}. If
A =, then Jej,ex € Fr: e1 # ey and I, 7.r = I, 7.r = T. Else, if t* is the minimum
element of A, then Jej,ea € Fix_1: e1 #ex and I, p»—1.7 = Loy 1.7 =% — 1. O
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Fort e [T —1], let c(t) = {e € Fy| z(e) # z+1(e)} and observe that

’C(t)’ S 17 Vt S [tstartatend)

For each t € [tstart, tend) such that |c(t)] = 1, let c(t) = {e(t)}. For such a time t, we
have that:

2(S)=z41(S) =k &

0] + ze(Fi \ {e(®)}) + zi(e(t)) =[O \ {eO} + 2e1 (Frn \ {e(t)}) + ze41(e(t)) = k =
21 (Frpa \ {e(D)}) + zep1(e(t) — 2e(Fr \ {e(t)}) — zi(e(t) € Z =

241 (Fia \ F2) \{e(®)}) + (z+1(e(t)) — z(e(t)) € Z (4)

Where the last step holds because c(t) = {e(t)}. But, 0 < zy1(e(t)) <1, 0 < z(e(t)) <
1, 21 (6(6) # 2(e(t)). 50,0 < 2011 (e(8) — 2(e(t)] < 1 and from (4): s (Fosr \ F)\
{e(®)}) #£0, i.e (Fiu1 \ Fy) \{e(t)} #0. Since e(t) € Fy, (S\ F) N Fy1 # 0. Observe that
Ieip10 =141, Ve € (S\ Fy)NFiy1. Now, we define a function f, which maps element-time
interval tuples to element-time interval tuples, its domain is {(e, Ict)| t € (tstart, tend), € €

(S\ F) U{e()}) N Fipa} and

fleIett1) = (e(t), Leqr),t)

which actually says that e(t) is "responsible” for the fractionality of e at time t+1.
Now, observe that ¥t € [tstart, tend) and Ve € Fyiq there are two possibilities:

1. Ieﬂg = Ie,t—i—l or

2. f(esLear1) = (e(t), Leqr)t)

Corollary 4.1.0.1. V(e,t) € S x [T, such that e € Fy, I.t C (tstart; tend|, if Ietl =
then f(e,Iey) = (e(t' — 1), Iepr—1)p—1)-

We will now construct two lists of element-interval tuples, L1, Lo, using the following
algorithm:

where e1 and ea are the ones from the definition of tepg.
Lemma 4.1.1. The following statements are true:

1. The algorithm is well-defined.

2. I, Iz C [tstart, tend] in the course of the algorithm.

3. For each iteration, e € Fr, o and € € Fy, 4.

Proof. The proof is by induction on the number of iterations of the algorithm. The base
case follows from the definitions of tsqrt, teng. Now, let suppose that Iy, Is enter the while

loop at some iteration, i.e I1.£ # I5.£. At this iteration, the corresponding elements are
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Li,Ly <0
I + Ielvtend
Io < Iey i,
e < €1
e — ey
while 1.4 # I5.¢ do
if I; .4 > I5.¢ then
Ly« LiU(e L)
(e;I1) <= f(I1)
else
Lo + Lo U (€, 1)
(€, 1) + f(I2)

13: return Ly, Lo

—_ = =
Mo 2

e,e’. From the induction hypothesis, we have that e € Fy, y and € € Fy, 4. We consider
the case, where Iy.f > I;.f, the other case is proved via the same argument. I5.f >
tstart + 1, 1.6 Io C (tstart, tena) and thus, from corollary 4.1.0.1: f(€, I3) is well-defined and
f(e/, L) = (e(t* —1), L= —1) 1), where t* = I.L. We also have that e(t* —1) € Fy» 1 =
Tet+—1),p+—1 C [tstart; tend), from the definition of ¢4t O

From the definition of f we have that at each iteration, we add at one of the lists
an interval which ends where the last interval added to this list beginns. Since Iy, 1s C
[tstarts tend] in the course of the algorithm, we have that the algorithm will terminate. The

algorithm ends with some Iy, Is. Let tyg = I1.£ = I2.4

Lemma 4.1.2. Vt € [tyg, tend, there exists an iteration of the algorithm, where the inter-

vals are Iy, I, the elements are e,e’ andt € Iy NIz and e # €.

Proof. For t = t.,q, the lemma holds from the definition of t¢.,4. Let’s suppose that the
lemma is not true for some t € [tyg,tena] and let t* be the maximum such ¢. Thus, at
some time during the course of the algorithm, we have intervals I, I, elements e,e’ and
t+lehhinlyande#é. If [1 .0 = Iyl = tgy, then [tyy,t+ 1] C Iy NI, contradiction. So,
let’s suppose that I1.0 > I5.¢ (for the other case the contradiction is derived via the same
argument). Obviously, ¢t ¢ Iy N Is. Let I} be the update of I. So, t = 1.6 — 1 = I].r.
Since Iy.r > I1.¢ (they have nonempty intersection) and .4 < I1.£ — 1, we have that
t € I' N Iy. The fact that I] ends at time I;.£— 1, Iy ends after time I1.£/—1 and t € I{ NIy
indicates that I and I do not correspond to the same element, i.e. e(l;.6 — 1) # €,

contradiction. O

Let Ty = Ute nyer, Yrer (e,t) and Ta = U ryer, Yter (e,t) (5). From lemma 4.1.2 and

from the fact that each list is a list of consecutive intervals, we have that Ty N Ty = (.

Theorem 4.1.3. 17,15 enable a feasible perturbation of the extreme point.
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Proof. First of all, from the property 3 of lemma 4.1.1, we have that each z:(e), (e, t) €
Ty UT,; is fractional. Thus, € can be chosen to be sufficiently small, so that the constraints
0 < z(e) <1,0 < z/(e) <1 are satisfied Ve € S,t € [T]. Each list is a list of consec-
utive intervals, so lemma 4.1.2. indicates that for a specific time step, we either have no
perturbation or two perturbations, which are eliminated in the sum. More specifically,
2j(8) = 2/ (S) = k, Ve € S,t € [T]. Thus, the first property of the feasible perturbation is
satisfied. Also, T1,T» are a union of maximal equality intervals, see (5). Hence, they sat-
isfy (3) and as we have proved, this implies that the property 2 of the feasible perturbation

is satisfied.

O

The fact that an extreme point of a polytope cannot be written as a convexr combination

of other points of the polytope gives as the main theorem:

Theorem 4.1.4. The natural LP for MMM, for the case of Partition Matroids is integral.

4.1.2 T=2

Here, we prove that the LP formulation of a generalization of MMM for T=2 is integral.
We call this generalization Partial Zero Switch MMM and we define it below:

Definition 22. A T = 2 instance of the Partial Zero Switch Multistage Matroid Mainte-
nance problem consists of two matroids My = (S1,71), Mo = (S2,13), a set A C S NSy,
an acquisition cost a(e) > 0 for each e € Sy U Sy, and two holding cost functions ci(e),
e € 81 and cx(e), e € Sa. The goal is to find bases By € I; and By € Iy such that
((B1\ B2) U (B2 \ By)) N A =10 and minimize

c1 (Bl) + CQ(BQ) + a,(B2 \ Bl)
The set A is called zero switch set. and we say that the two bases respect A.

Why this is a generalization of MMM? Again here, the acquisition cost a(By \ By) =
a(By) is integrated in the holding cost ¢1. Also, in MMM we have a common matroid for
all time steps. Plus, in MMM, A = (). Finally, for technical reasons we have removed the

non-negativity constraint of the holding costs from the definition.

Now, let’s see what is this set A. The set A, given in the input, imposes the constraint
that each of its elements is either taken to both bases or to none of them. It’s time to write
down the LP formulation. The variables-vectors of the LP will be z € RIAl, z; € RISNAI
29 € RISy € RISINSNAL We refer to this formulation as LP,,s(M1, M3, A).
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minimize Z(cl(e)+62(e))z(e)+ Z c1(e)z1(e) + Z ca(e)za(e)+

ecA ceS1\A c€Ss\A
Y. aleyle)+ Y ale)x(e)
e€(S1NS2)\A e€S2\S1
subject to 21 (T\ A)+2(TNA) <r(T), VI' C&
21(S1\ A) + 2(4) =ri(81)
2(T\ A) +2(TNA) < ry(T), VT C S, (4.1)
22(S2\ A) + 2(4) = 12(S52)

y(e) > za(e) — z1(e), Vee (S1NS2)\ A
z(e) >0, Yeec A

z1(e) >0, YVee S1\ A

29(€) >0, Vee S\ A

y(le) >0, Vee (S51US2)\ A

To get a separation oracle, given as input independence oracles for each of the matroids,
we can use the work of Cunningham [37] or any algorithm for minimizing submodular

functions.

Characterization of Extreme Point Solutions

We now give a characterization of extreme points of the linear program by showing
that the independent set of tight constraints that gives the coordinates of an extreme point,
except of these that belong to y, can be chosen to form a union of two chains. The proof is
quite straightforward and uses the characterization of tight inequalities for the max-weight
independent set problem.

Given an extreme point solution (z,z1,22,y) to LPy,s(M1, Ma, A), let F1 = {T C
St 21(T\NA)+2(TNA)=r(T)} and Fao={T C Sy : z(T\A)+z(T'NA) =ry(T)}.

Lemma 4.1.5. There exist two chains C1 C 251 and Cy C 252 such that span(C1UCy) =

span(F1 U Fa) and constraints in sets C1 and Cy are linearly independent.

Proof. Applying Lemma 2.3.2 to families F; and F» separately, we obtain two chains
C1 and Cy such that span(C1) = span(Fy) and span(Cs) = span(Fz). Now, picking a

maximal independent family from CruCs gives us the desired chains. O

Notice that the number of variables is |S1|+|Sa2|+|S1NS2| —2|Al. So, the characteristic
vectors of the constraints have this dimension. For T C Sy, let x1(T') be the characteristic
vector of the constraint z1(T' \ A) + z2(T'NA) < ri(T). For T C Sy, let x2(T) be the
characteristic vector of the constraint zo(T \ A) + z(T N A) < ro(T).



58 Chapter 4. MMM in special cases

Lemma 4.1.6. Let (2, 21, 22,y) be any extreme point solution to LPp,s(Mi, Ma, A) such
that (2,21, 22) has positive entries and fe € (S1NS2)\ A : 2z1(e) = z2(e). Then there exist
two chains C1 and Cy such that

1. z(T\A)+ z(TnA) =ri(T) for each T C C;, for i ={1,2}.
2. The vectors in {x1(T") : T € C1}U{x2(T) : T € Ca} are linearly independent.
3. [C1l +1Co| = [S1] + [S2] = |A].

Proof. The basic feasible solution is produced by a system of linear equations. The equa-
tions that come from the matroid constraints can be chosen to have the structure given
at lemma 4.1.5. The remaining equations come from the inequalities y(e) > za2(e) — z1(e)
and y(e) > 0, Ve € (S USz) \ A. But since fle € (51N S2)\ A : z1(e) = 2z2(e), at most one
of these inequalities, for each e € (S1NSy) \ A is equality. Thus, to compute z, 21, z9 from
this system of linear equations, we only need the equations that come from the matroid

constraints, i.e from the chains. The lemma follows. O

Iterative Algorithm

We now give an iterative algorithm which constructs an integral solution from the linear
program and shows that the linear programming formulation is integral. Notice that this
algorithm is different from these presented at chapter two, because, except of the matroids
and the bases, it also updates the costs. This is reasonable, because if there is an element
e € (51N8Sy) \ A with za(e) =1 # z1(e) and we contract e at My, we have to pass the

information at the residual problem, that this elemt is already taken, see Algorithm 5.

Correctness and Optimality

Now, we show that in each iteration there will be at least one realizable condition, i.e

the algorithm will terminate:

Lemma 4.1.7. For any extreme point solution (z,z1,22,y) to LPp,s(Mi, M2, A) such
that (z, 21, 22) has positive entries and Pe € (S1 N S2) \ A : z1(e) = z2(e), either there
exists an element e € A with ze =1 or an element e € S1 \ A with z1(e) =1 or an element

e € Sy \ A with za(e) = 1.

Proof. Suppose for a contradiction 0 < z(e) < 1 for each e € A and 0 < z1(e) < 1
for each e € S\ A and 0 < z3(e) < 1 for each e € So \ A (1). By Lemma 4.1.6, we
obtain two chains C,Cy defining z, z1, z0. We now show a contradiction to the fact that
|C1]|+|C2| = |S1]+|S2| — |A| by a counting argument. We give two tokens to each element
in 81 NSz and one token to each element in (Sy U S2) \ (81 N S2) for a total of |S1| + |Sa
tokens. Now, we distribute these tokens to the sets of the two chains. This is done as
follows. Each element assigns one token to the smallest set 1; € C; such that e € T%
for i = {1,2}. We now claim that each set in C1 U C obtains at least two tokens. The
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Algorithm 6 Iterative Algorithm for Partial Zero Switch Multistage Matroid Mainte-
nance for T=2
Bi <+ 0, By + 0.
while S; US; # 0 do
Find an optimal extreme point solution (z, 21, 22,y) to LP.s(Mi, M3, A).

If there is an e € (S1 N S2) \ A with z;(e) = 22(e), then update A < AU {e}.

Else if there is an e € A with z(e) = 0, delete it from both matroids and from A.

Else if there is an e € §1 \ A with z1(e) = 0, delete it from M;.

Else if there is an e € Sz \ A with 22(e) = 0, delete it from M.

Else if there is an e € A with z(e) = 1, then update By < By U{e}, By « By U{e},
My + ./\/ll/e,./\/lz — Mz/e, A+ A\{e}.

Else if there is an e € S1\ A with z1(e) = 1, then update By <+ ByU{e}, My < M, /e
and if also e € Sy then set a(e) 0.

Else if there is an e € Sy\ A with 29(e) = 1, then update By < BaU{e}, My + My /e
and if also e € S; then set ¢1(e) « c1(e) — a(e).

return By, Bs.

argument is identical for sets in C1,Cs. Let T € C and R be the largest set in C} such
that R C T. Now, we have z1(T'\ A)+z(TNA) =r(T) and z1(R\ A)+z(RNA) = r1(R).
Subtracting, we obtain z1((T'\ R)\ A) + z((T\ R)NA) = r(T) —ri(R). If T\ R = () then
T = R and we have a contradiction to the linear independence of the constraints. Also,
r1(T) —ri(R) is an integer, so z1 ((T'\ R) \ A) + z((T"\ R) N A) is an integer and from (1),
we have that |T'\ R| > 2. Thus, T receives one token for each element in 7"\ R for a total
of at least two tokens. Therefore, every set in C7 U Cy receives at least two tokens. The
distributed tokens were |Si| 4 |S2| and from lemma 4.1.6 the received tokens are at least
2(|S1] + [S2| = [A]). So,

|S1| + [S2| > 2(|S1] + [S2| — [A]) = 2[A] > [S1] + S| = A= 81 = S

Thus, each element gave two tokens and each set must have received exactly two tokens.
Now, we show that there is at least one extra token which is a contradiction. First of
all, if an element does not belong to any set of a specific chain, then its corresponding
token goes nowhere and we are done. So, it must be the case that the maximal set of each
chain contains all the elements, which means that S; = So = A belongs to both chains,

contradiction because of the linear independence. O

We should note that if (z,21,22,y) is an extreme point of LP,.s(My, Ma, A), then
y(e) = max(0, za(e) — z1(e)) for all e € (S1NS2)\ A (2) and the argument is the same as
the one we presented for the case of partition matroids. Now, the main theorem is proved
via the standard induction argument. Howewver, because of the many cases, the proof is

lengthy and we present it in detail for completeness.
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Theorem 4.1.8. The optimal solution of the LP,,s(My, Ma, A) is integral

Proof. This is proved by induction on the number of iterations of the algorithm. The base
case is trivial to verify. Let My = (S1,Z1), M2 = (S,Z2), A denote the matroids and the

zero switch set in the current iteration and (z, 21, z2,y) the optimal LP solution.

If there is an element e* € (S§;NS2) \ A with z1(e*) = z2(e*) then from (2), y(e*) = 0.
So, if we add to the LP the additional constraints zj(e*) = z2(e*) and y(e*) = 0, the
optimal solution does not change. This new LP is equivalent to LP,.s(Mj, Ma, A +
€*). This is the LP that the algorithm solves at the next iteration. From the induction
hypothesis, we will find bases By, By of M7, Ms that respect A + e* and are optimal
solution for LP,,s(M1, Mz, A+¢€*). Thus, because of the aforementioned equivalence and
the fact that B;, B respect A, they are optimal solution for LP,,s(M1, Mz, A)

Else if there is an element e* € A with z(e*) = 0, then if we add to the LP the additional
constraint z(e*) = 0, the optimal solution does not change. This new LP is equivalent to
LP,.s(Mi —e*, My — €e*, A — €*). This is the LP that the algorithm solves at the next
iteration. From the induction hypothesis, we will find bases Bi, By of M1 — e*, My — €*
that respect A—e* and are optimal solution for LP,.,(M; —e*, My —e*, A—e*). Observe
that these are also bases of My, My respectively and respect A. Hence, because of the

eqivalence, they are optimal solution for LP,.s(M1, M2, A).

Else if there is an element e* € S; \ A with z1(e*) = 0, we distinguish two cases.
First case: e* € (§1 NSy) \ A. Then, from (2), y(e*) = z2(e*). So, adding to the LP,
the constraints z1(e*) = 0 and y(e*) = 22(e*), the optimal solution does not change.
This new LP is equivalent to LP,.s(M; — e*, M2, A). This is the LP that the algorithm
solves at the next iteration. From the induction hypothesis, we will find bases By, By of
M —e*, My that respect A and are optimal solution for LP,,s(M; —e*, M2, A). Observe
that B is a base of M. Hence, because of the eqivalence, they are optimal solution for
LPy,s(Mi, Mz, A). Second case: e* € S;\S2. Adding to the LP, the constraint z;(e*) = 0
the optimal solution does not change. This new LP is equivalent to LP,,s(M;—e*, M, A)

and we proceed as before.

Else if there is an element e* € Sy \ A with z9(e*) = 0, we again distinguish two cases.
First case: e* € (S1 NS2) \ A. Then, from (2), y(e*) = 0. So, adding to the LP, the
constraints z1(e*) = 0 and y(e*) = 0, the optimal solution does not change. This new LP
is equivalent to LP,.s(M1, Mg —e*, A) and we proceed as in the case z1(e*) = 0 (and for

the second case t00).

Else if there is an element e* € A with z(e*) = 1, then if we add to the LP the

additional constraint z(e*) = 1, the optimal solution does not change. This new LP is
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equivalent to the LP:

minimize (ci(e*) + co(€¥)) + Z c1(e) + caoe )+ Z c1(e)z1(e) + Z co(e)za(e)+
ecA—e* e€eS1\A e€S\A
> e+ Y almnle)
66(81m$2)\A 6682\51

subject to (', z1,22,y) is a feasible solution of LP,.s(M/e*, Ma/e*, A — e*)

(4.2)
where z’ is the restriction of z to A —e*. But the objective function of this LP is the objec-
tive funtion of LP,,s(M1/e*, Ma/e*, A—e*) plus (c1(e*)+ca(e*)). But, LP,y.s(M;i/e*, My /e*, A—
e*) is the LP that the algorithm solves at the next iteration. From the induction hypothe-
sis, we will find bases By, Bg of Mj/e*, Mg /e* that respect A —e and are optimal solution
for LPy.s(M;i/e*, Ma/e*, A —e*). By + €*, By + €* are bases of M1, M, respect A and
have cost the optimal cost of LP,,s(M;/e*, Ma/e*, A —€*) plus (ci(e*) + c2(e*)). Thus,
they are optimal solution for LP,.;(M1, Ma, A).

Else if there is an element e* € S; \ A with z;(e*) = 1, then we distinguish two cases.
First case: e* € Sa. Then, e* € (51 NS2) \ A and from (2), y(e*) = 0. So, adding to the
LP the constraints z1(e*) = 1, y(e*) = 0, the optimal solution does not change. This new
LP is equivalent to the LP:

minimize )+ Z c1(e) + ca(e))z(e) + Z c1(e)zi(e) + Z ca(e)za(e)+

ecA e€(S1—ex)\A e€S\A
> ale)y(e) + Z a(e)z2(e)
e€((81NS2)—e*)\A e€S\S1

subject to (2, 21,22,Y) is a feasible solution of LP,.s(M;i/e*, Ma, A)

(4.3)
where z{ is the restriction of z; to (81 \ A) — e* and y’ is the restriction of y to ((S1 N
S2) — €*) \ A. But the objective function of this LP is ¢;(e*) plus the objective funtion of
LP,.s(M/e*, Mg, A) where a(e*) is updated to zero, say LP;. But, LP; is the LP that the
algorithm solves at the next iteration. From the induction hypothesis, we will find bases
Bi, By of M /e*, M that respect A and are optimal solution for LP;. Bj + e* is a basis
of My, By +e€* and By respect A and have cost the optimal cost of LP; plus c;i(e*). Thus,
from the aforementioned equivalence, they are optimal solution for LP,.s(M;j, Mg, A).
Second case: e* ¢ Sy. Then adding to the LP the constraint z;(e*) = 1, the optimal

solution does not change. This new LP is equivalent to the LP:

minimize e)+ > (ale) +eale)zle) + > ale)zle)+ Y. cae)zle)t
ecA e€(S1—ex)\A e€S\A
Z afe)y(e) + Z a(e)za(e)
e€(S1NS2)\A e€S\S1
subject to (2, 21,22,y) is a feasible solution of LP,,s(Mi/e*, Ma, A).
(4.4)
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where 2] is defined as before. But the objective function of this LP is ¢1(e*) plus the
objective funtion of LP,.s(Mj/e*, Ma, A), which is the LP that the algorithm solves at
the next iteration. Using the induction hypothesis, we proceed as before.

Else if there is an element e* € Sp \ A with z2(e*) = 1, then we again distinguish two
cases. First case: e* € §;. Then, e* € (51N S2) \ 4 and from (2), y(e*) =1 — z1(e*). So,
adding to the LP the constraints z9(e*) = 1, y(e*) = 1 — 2z1(e*), the optimal solution does
not change. This new LP is equivalent to the LP:

minimize  co(e*) + Z(cl(e) + ca(e))z(e) + Z c1(e)z1(e) + Z ca(e)za(e)+

ecA ecS1\A ec(S2—e*)\A
> a(e)y(e) +ale)(1—zi(e) + D ale)z(e)
ee((§1NS2)—e*)\A e€S2\S1

subject to (2, 21,25,Y) is a feasible solution of LP,.s(Mi, Ma/e*, A)

(4.5)
where 2} is the restriction of z to (Sz2\ A) —e* and y’ is the restriction of y to ((S1NSz2) —
e*) \ A. But the objective function of this LP is equal to ca(e*) plus the objective funtion
of LPy,s(My, Ma/e*, A) where ci(e*) is updated to ci(e*) — a(e*), say LP,. But, LP; is
the LP that the algorithm solves at the next iteration. From the induction hypothesis,
we will find bases By, By of M1, Ms/e* that respect A and are optimal solution for LP.
Bs + €* is a basis of My, By and Bsy/e* respect A and have cost at most the optimal cost
of LP, plus ca(e*) 4 a(e*). Thus, from the aforementioned equivalence, they are optimal
solution for LP,.s(Mi, Ma, A). Second case: e* ¢ S;. For this case the induction is

proved exactly as in the case where z1(e*) = 1 and e* ¢ Ss.

O]

4.2 Uniform switching costs: Division into ”epochs” and an

Iterative Rounding algorithm

We have seen that the logarithmic approximation is optimal for MMM. However, the
reduction from set cover and the integrality gap instance rely heavily on the fact that the el-
ements may have different acquisition costs. Thus, it is reasonable to ask whether the case
of uniform acquisition costs is hard and whether there are sub-logarithmic approzimations
for it, as in the case of Dynamic Facility Location, see [12]. The MMM with uniform ac-
quisition costs can be proven to be APX — hard for the case of graphical matroids [Fotakis,
Lampis, Paschos, Plevrakis ’17]. In this thesis, we make a first step towards a constant
approrimation algorithm, by presenting an algorithm that has constant approrimation at

the holding cost and logarithmic approxzimation at the acquisition cost.

The LP is the same as in the general case, presented at chapter 3, but here all the

acquisition costs are equal to g. We call this LP: LPyrpar (M, [1,T)).
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minimize Z ci(e)ze(e) + g Z ye(e)

t,e

subject to  zZ; € Pp(M), Vte|[T]
yi(e) > z(e) — z—1(e), Vee E, Vte [T
yi(e),z(e) >0, Yee E, Vte[T]

Let (z;(e),y;(e))es be the optimal LP solution. First of all, as we have seen in the
algorithms in chapter 8, if T is very big, then the approximation ratio is unsatisfactory.
However, let’s suppose that (zf(e),y;(€))er has payed acquisition cost gr/2 in the time
interval [1,t’]. In this case, if we make independent rounding of the fractional solution
at the intervals [1,t’],[t’+1,T], the acquisition cost at time t’+1 will be at most gr, so it
can be charged at the acquisition cost that (z;(e),y;(€))es has payed during [1,t], i.e we
lose at most a constant factor at the acquisition cost. Based on this idea, we present a
process that takes as input (zt,yt)te[tm], a feasible solution of the LPpryrar(M, [t1,12]),
1 <ty <ty <T, which is the restriction of the LPyprar(M,[1,T)) at the interval [t1,t2].

This process outputs a division of [t1,ta] into "epochs” and a vector w; for each ”epoch” i.

Algorithm 7 Division into epochs of (2%, y")icps, 1], for matroid M

r=rm(S)
j=1
S:tl

for t = t1 to t9 do
bi(e) = mins<y<izu(€)
if b;(S) < 5 then
epochj = [s,t — 1]
w; = bt—l
s=1t
j++

return {epoch;, w; }1_,

Observe that w; is the “fractional intersection” of {z }reepoch,- Now, suppose we want
to round (zt,yt)te[thw], which has acquisition cost vy. It is easy to see that if we make
the rounding independently in each epoch and after we concatenate the solutions, this
concatenation will cost at most 27y at the acquisition cost. So now it remains to round each
epoch. Let’s focus on a specific epoch, say epoch i. From construction, w;(S) > ram(S)/2.
Hence, {2t }ieepoch; have a lot in common. More specifically, as we will show, there exists a
set A C S, such that |A| = Q(rm(S)) and if the entries of w; that correspond to elements
of A are multiplied by at most a constant factor, the restriction of w; in the set A becomes
a vector that lies inside the base polytope of the restriction of M in the set A. Also, this

set A can be computed in polynomial time. To compute it, first consider the following LP,
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that takes as input a matroid and a vector w € Pr(M) and outputs a vector x € Pr(M)

mazimize x(S)
subject to x(T) <r(T),VI' CS
0 < z(e) < aw;i(e),Ve € E
for some parameter a > 2 that we will fix later. We call this linear program L Pey, (M, w),
because it will help us extract the set A. Let x be the optimal solution of LP.y,(M,w).

From lemma 2.3.1 there is a unique inclusion wise maximum tight set of x, say C, C S.
Let r = rp(S).

sy

Lemma 4.2.1. If w(S) > 5, for a 5> 0, then r(Cy) > %3:1'

Proof. From lemma 2.3.1 every element that belongs to some tight set of x also belongs
in C;. Thus, because of the objective, z(e) = aw(e), Ve € S\ Cy (otherwise we could
increase x(e) without violating any constraint).

We have that

r>xz(S\Cy)+z(Cy) (1)

w(S\ Cy) +w(Cy) > = (2)

™

2(S\ Cp) = aw(S\ Cy) (3)
w(Cy) < r(Cy) (4)
z(Cz) = 1(Cy) (5)

(1) holds since = € Pr(M). (2) holds by assumption. (3) is implied by the observation
at the beginning of the proof. (4) holds, since w € Pr(M). (5) holds by definition. From
(1),(3),(5) we get that:

r>aw(S\Cy) +r(Cy) =

reC) s s\ ) 6)
From (2), (4) we get that:
w(S\Cr) 2 5= r(C) (7)
From (6), (7) we get that:
r —;(Cx) > % () =
(1-r(C)z5-2=
roa—_p_
r(Cy) > B 1
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Algorithm 8 Computation of C,
A0
while minpcs(r(T) —x(T)) =0 do
T* < argminpcs(r(T) — x(T))
A+—AuT*
M — M/T*

x < restriction of x in S\ T

return A

The algorithm uses an algorithm that minimizes submodular functions (see [37]) as

oracle, takes as input the x € Pr(M) and outputs Cy in polynomial time.
Lemma 4.2.2. The algorithm outputs C.

Proof. Let x, M at some iteration of the algorithm such that = € P;(M). Let r be the
rank function of M. Also, let T be a tight set of x and T™ be its maximum tight set. Now
take M’ = M /T with rank function r’ and 2’ be the restriction of x at S\ 7. We have
that for each A C S\ T™ we have

2(A) <r'(A) & 2(AUT) —x(T) <r(AUT)—r(T) & 2(AUT) <r(AUT)

Thus, 2’ € P/(M/T) and A is a tight set of x” iff T U A is a tight set of x. Hence,
T*\ T is the maximum tight set of x’. The lemma follows.
O

Now, since w; € Pr(M) and w;(S) > r/2, by solving the LP.yy (M, w;) for o =3, we

get the optimal solution x; and thus we have the following corollary:

Corollary 4.2.2.1. r(Cy,) > 7 and Cy, can be computed in polynomial time.

Now, fort € epoch;, let
~ ;e ife € C
Zt(e) = { ( ) f T

zt(e) otherwise

From lemma 1.1, {Z}teepoch, , restricted in Cy,, are all fractional bases of M restricted
in Cg,. Also {Zt}icepoch; are all in the spanning set polytope, see [37]. Now, let H; be
the minimum weight basis of M restricted in C,, with weight function ZtEEpochi ct. For

t € epoch;, let

gt(e):{ 1{e € H;} ifecCy,

z(e) otherwise
We have that

Z Z ci(e)zi(e) < Z Z c(e)zi(e) < 3 Z Z ce(e)wi(e) <3 Z Z ce(e)ze(e)

t€epoch; e€Cly, t€epoch; e€Cy, t€epoch; e€Cy, t€epoch; e€Cy,
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Also, the acquisition cost of {Z;}icepoch, 15 lower or equal to that of {2z }icepoch,- What we
want now is to transform {Z;}ieepoch, into a fractional base of M (remove the fractional
circuits) without changing anything inside C, and without increasing neither the variables
nor the acquisition cost.

From now on, if z € Pg(M), then F, = {x(T): T C S and z(T) =r(T)}, i.e F. is
the set of characteristic vectors of the tight sets of z. Before we proceed, we should note
that one of the most important matroid properties is the ability to move from one base to
another by replacing elements, one by one, in the base with others outside of it so that the
whole time we maintain a base. Is this possible if we want to move from a fractional base

to another? Towards answering this question we first introduce a very useful definition.

Definition 23. Let z € Pp(M), e € S. We define mts,(e) to be the smallest set T C S
such that e € T and x(T') € F, that is, T is the minimum tight set that contains e. When

z is clear from context we will simply write mts(e).

We remark that mts(e) always exists, since S itself is tight, and it is always unique,
because of lemma 2.3.1. Also note that if z(e) = 1 then mts(e) = e. Also observe that
Ve € mts(e)—e, z(e') > 0, from the definition of mts(e) and the monotonicity of the rank
function. The reason that we present this definition is that the elements of mts(e) — e are
the ones that we can decrease, at least slightly, in order to increase z(e) while remaining
inside Pp(M), i.e while maintaining a fractional base. This is shown rigorously via the

following proposition.

Proposition 4.2.2.1. Let ¢’ € mts(e) — e, where z(e) < 1 and e is not a loop. If we
start increasing z(e) and decreasing z(€') with the same constant rate, then z(e) remains

feasible until e’ is no longer in mts(e).

Proof. Let mts(e) be the minimum tight set of e before we make any changes. Observe
that since z(e) < 1 and e is not a loop, mts(e) # {e}. At the beginning, all elements
of mts(e), except of e (maybe), correspond to positive entries of z. Now, let’s fix an
element €' € mts(e). At the beginning, from definition: VI': x(T) € F, and e € T =
mits(e) C T = ¢ € T. Hence, since we make the two changes at the same rate, all the
tight sets remain tight. Thus, this process will stop at the moment when at least one of
these happens: z(e) becomes 1 or z(¢’) becomes 0 or a set T such that e € T*, ¢’ ¢ T*
becomes tight. Let mts’(e) be the minimum tight set of e at that moment. In the first
case, mts'(e) = {e} C mts(e) —¢’. In the second case, mts'(e) C mts(e) —¢’. In the
the third case, from lemma 2.3.1, mts'(e) C T* N mts(e) C mts(e) — €. The proposition
follows. O

Now, we return to the question of how to transform {Z}icepoch; into a fractional base
of M without changing anything inside C, and without increasing neither the variables
nor the acquisition cost. For the next lemma we write mts(e) instead of mts,,(e), for

e €S8,t € epoch;.
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Lemma 4.2.3. Let {x:}+ € I, where I is a time interval, be a feasible solution of the
LPyy (M, T). Let e € S and e is not a loop. There is a {x}}er such that:

ri(e) =1Vt eI,
zi(e1) < ay(er),Vt € I,Vey # e
and the acquisition cost of {x}}tcr is not bigger than that of {xt}icr.

Proof. First, let’s prove the follwing proposition (notation: for the restriction of a vector

v on a subset A of the elements, we write ¥(A)):

Proposition 4.2.3.1. Let {x:}; € I is a feasible solution of the LPyrar(M,I) and t is
a time step such that t,t +1 € I and zi(mitsi(e)) # xii1(misi(e)), where by mts(e), we

mean mtsg, ). Then, 3¢’ € S, €’ # e and either

¢ € mtsi(e) and x(€') > x141(e) or € € mtsiii(e) and zp41(€') > x4(€)

Proof. Suppose x¢(e) < wyy1(e) (for the other case the argument is identical). Clearly,
xi(mitsi(e)) = r(mtsi(e)) and xiy1(misi(e)) < r(mtsi(e)) = xi(misi(e) — e) + xi(e) >
xiy1(mtsi(e) — e) + x¢y1(e). Thus, the proposition follows from the hypothesis and our

assumption. ]

Now, we are ready to construct {z}}ier, from {x:}; € I. While 3¢t € I such that
Ty(mtsy(e)) # xiy1(mtsi(e)) (which implies that not both x¢(e), z11(€e) are equal to one),
then from proposition 4.2.3.1, 3¢’ € mts,(e), € # e, such that x(¢/) > x441(e’) or Je’ €
mitsey1(e) such that xiyq(e”) > x4(e’). Let’s say that the first case occurs. In this case we
change x; (otherwise we do the same thing but we change z;41). We start increasing x;(e)
and decreasing z;(e’) at the same constant rate until either the mts;(e) becomes smaller
or z¢(e') = z41+1(€’) (as long as neither of the two happens, the solution remains feasible
as proposition 4.2.2.1 indicates).

Clearly, when this first phase finishes, the mts;(e) will be the same at all time steps.
Now, we simultaneously change all {x;}; € I: while not all x4(e) = 1, we find an €’ such
that mts;(¢/) > 0,Vt € I and we start increasing z;(e) and decreasing x;(¢’) at the same
rate, Vt € I, until the mts;(e) becomes smaller (again until this happens, the solution
remains feasible). It is easy to see that the two phases will terminate after a finite number
of steps. At the end, the vector has the properties of the lemma.

0

Corollary 4.2.3.1. For each i, there is a {z{}tcepoch; such that:
z,(e) = 1{e € H;},Ve € Cy,,t € epoch;

z(e) < z(e),Ve € S\ Cy,,t € epoch;

and the acquisition cost of {2} }tcepoch; in S\ Cy, is not bigger than that of {2 }cepoch; in

S\ Cy,.
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Proof. For each i, let H; = {el,...,e}}. We iteratively use lemma 4.2.3.1, for I = epoch;,
initial solution the {2;}ieepoch, and initial matroid the M, for each e;-, j=1,....k. Once we
apply this lemma for element e}, we update M + M/ eé, we restrict all {2 }rcepoch,; in

S — ¢} and reapply the lemma for €, etc. O

Now, note that since for each epoch i, there is such a {2} }tcepoch,, it can be computed

in polynomial time via the LPyrasp (M /Cy,, epoch;) with the additional constraints:
z(e) < zi(e),Ve € S\ Cy,, t € epoch;
All this analysis yields the following theorem:

Theorem 4.2.4. There is a polynomial time algorithm that takes as input a matroid
M = (8,1), r = rm(S), a time interval [t1,t2] and a {2t}ie, 1) € P(M, [t1,t2]), and

outputs

1. A division of [t1,ta] into disjoint epochs [fo, fi], [f1 + 1, fa], s [fi—1 + 1, f&] (fo =
t1, fr. = t2), such that for alli =1,....k =1, {2t }eps, 1,) € P(M, [t1,t2]) has at least
/2 acquisition cost inside each [fi—1, fi + 1].

2. An H; € T such that |H;| >r/4,i=1,...k.
3. {2 }teepoch; € Pe(M/H;, epoch;), i =1,.... k.
We also have that

Z wy(H;) <3 Z Z wy(e)zi(e), foralli=1,.. k

t€epoch; t€epoch; ecspan(H;)

z;(€) < z(e), for all t € epoch;,e € S\ span(H;),i=1,....k

and finally, the acquisition cost of {zz’g(e)}teepochi,ees\span(m) s not greater than the ac-

quisition cost of {2¢(€) }reepochs ecS\span(Hy)- We refer to this algorithm as F(M, [t1, ta], {2t et 1a))-

Now it 1s clear to see how the main algorithm will be:

Algorithm 9 Algorithm for MMM with uniform acquisition costs
B+ 0, t=1,...T
Solve L P (M, [1,T]) and get the optimal solution {2 }e1 7)-
run A(M, [1, T}, {z e, )-
return By, ..., By

where A(M, [t1,t2], {2t }ept 12)) 15 presented below:
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Algorithm 10 A(M, [t1,t2], {2t }reft, 10])
if ry1(S) = 0, then return
run F(M, [t1,t2], {2t b ety 1) and get the epochs (suppose they are k) {epoch;}r_,,
{Hi}1_1, {{21(€) Y eeepochs ces\span(ii) Y1
for each ¢ € [t1,to] find i € [k] such that ¢ € epoch; and update By < By U H;
for each i =1, ...,k run A(M/H;, epochi, {2} tcepoch,)

Performance Guarantee

Theorem 4.2.5. If {zt},c1,1) is the optimal solution of LPyna (M, [1,T]) and By, B, ..., Br
is the output of the algorithm then all of the outputed sets are bases of M and

T T
Z wy(By) <3 Z Z wy(e)z(e)
t=1

t=1 eeS
and
T T
Z |B; \ Bi—1| = O(logr) Z Z max(zi(e) — z—1(e), 0)
t=2 t=2 ecS
Proof. Let’s say that at the beginning of the algorithm {2{};cim) = {2t}eir). Now, let’s
consider {w;};c[r) which is modified during the course of the algorithm and gradually

becomes integral. More specifically,

zi(e) = 1{e € B}, Ve € span(By),t € [T]

and
xi(e) = z(e),Ve € S\ span(By),t € [T]

from the property 3, of theorem 4.2.4, when the algorithm terminates, {xt}te[T] is
integral and it is the collection of the characteristic vectors of By, Ba, ..., By. From the
property 2 and 3 of the theorem 4.2.4 z; € Pg(M), Vt € [T] always during the course of
the algorithm. Thus, since due to the property 2 of the theorem 4.2.4 the algorithm will
terminate (in polynomial time), the returned By, ..., By are all bases of M.

Now, we argue for the approximation on the holding cost. We actually prove that

during the course of the algorithm:

Z Z we(e)zi(e) < 3 Z Z we(e)ze(e) (1)

te[T] eespan(By) te[T) eespan(Bt)

and
zi(e) < z(e),Ve € S\ span(By),t € [T] (2)

(2) follows directly from theorem 4.2.4. Before we present the proof of (1), notice
that the algorithm constructs an ”interval tree”, where the root is [1,T] and each node’s

children are the epochs that the algorithm constructs for this interval.
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We will prove (1) via induction on the number of updates made at the collection
of {Bi}ierr)- The base case is trivial to verify (remember that at the beginning of the
algorithm {2} },cm) = {2t }1er))- Now, focus on some time that the algorithm updates By,
by adding to it some set H. This update was made during some call of .A. When this call
took place, t belonged to some "leaf” of the current ”interval tree”, say I. The algorithm
runs F(M \ By, I,{z(€)}eem/span(Be)ter)- The interval T is devided into epochs (these
are added, conceptually, as children of I at the interval tree) and suppose epoch; is the
epoch that contains t. So, along with B; are updated all {By }vcepocn, and H = H; which
is independent set of M /B;. Now, from theorem 4.2.4, for matroid M /span(B;), interval

I and {Zé(e)}eeM/span(Bt),tel € PB(M/Span<Bt>)7

ST ow(H) <30 Y Y. wile)wle)

teepoch; teepoch; e€span gy g, (Hi)
so, from (2):
> w(H) <3 ) > wi(e)z(e) (3)
teepoch; teepoch; e€span g, (Hi)

Now, By < By U H;, for all t’ in epoch;. Thus, after the update, the lefthand and
the righthand side of (3) are parts of the lefthand and righthand side of (1), respectively.
Now, since this part of the lefthandside of (1) of is modified only once during the algorithm
(because after this, in epoch;, H; is contracted from M /B;) and since the epochs partition
I, when the updates of this call of F finish, (1) will still hold. The claim follows.

It remains to show the approximation at the acquisition cost. What we are going
to show is that if we have a {2i}er, 1) * 2 € Pp(M), Vt € [t1,%2], a matroid M and
we set By, Bty t1,..., By, = 0 and then run A(M, [t1,t2], {2t }sept, 1,)) Which produces,
conceptually, an interval tree T with height h(T) and root [t1,t2], then the acquisi-
tion cost of the returned By, By, +1, ..., By, is at most 2h(T')g Z?:tlﬂ ces mazx(z(e) —
zt—1(e),0). The proof is by induction on h(T). The base case h(T)=0 is trivial. From
the way that the epochs are constructed, even if at the borders of epochy, ..., epochy,
the returned integral solution changes entirely, the switching cost payed there is at most
2g Z?:tﬁl Y ecs Mmax(zi(e) — zt—1(e),0). The property 2 of theorem 4.2.4 and the induc-
tion hypothesis complete the induction. So, if T* is the tree-interval of the algorithm that
we run to solve the problem, then from property 2 of theorem 4.2.4, h(T*) = O(logr) and

we are done. O
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Kegdhawo 1
Eiocoaywyn

Y1 ouvbuac T BeAtic Tonolnorn €youpe TEOBAAUNTA TOU LOVTIEAOTOLOUV YEOVIXE G TOTI-
xé¢ eappoyéc. lot6c0, oty mEdin yeetdleton vor Audoly oTIYUIOTUTIOL TOU GUVBLIG TIXOU
TeoPifuatoc BedtioTononong eved autd ahhdlel pe TNV Tdpodo tou yeovou. Puowxd, umo-
eel xavelg vo hooel To medBAnuo aveldptnta o xdde Bruc Tou ypovou. Ilag” dho autd, N
oAy ) Tng Abong o Bradoyd Brpata yedvou cuyvd xocTilel éva x6oTog ETAPAoNS.
Yxegteite, yio ToedderyUo, To TEOBANUL Tou avTeTwTilEl vag TWANTAC oL ypeetdleTal Vo
mpoundeutel €va TEOIOY amd k SlaopeTinolg Topaywyols Yia VoL Ixavorolhoet T (ATnor. e
Lo Bedouévn nuépa, Yo unopoloe Vo TdpeL TWES amd xdde €voy amd TOUS ooy wyols Xal
vo emAéel Toug k ginvotepous. Kaldde o twég ahhdlouy, autéd to ahvoro twv k @invote-
PWV TAPAY YOV EVOEYETOL Vo aAAGEEL. 20TOC0, uTdpyEL eV GToERG XOGTOC Yo TNV EVapdn
h/xon T MEN W oyéone pe xdde véo mapaynys. O otéyoc Tou TwANTH eivon var eloyt-
o TOTOLAoEL TO dYpotoUa TV 800 AUTHOV XOOTOV: TO KE0TOS andékTNong a(e) Tou TANEOVETOL
x30e Popd oL EEXWVA ULl OYEOT) UE TOV TAPAYWYO € Xou €val K6oTog KpdTnong avd Teplodo
ct(e) mou mAnpdveTow Yl var YIVEL 1) ayopd T oty ¢ and Tov mopaywyd e, oadpollbueva
otic T mepdooug. Iapatneriote 6Tl auTd TO TEOLBANUA slvon Evar TaEABELYUO DLUTHENONG IS
Bdong evoe k-opoldpopgpou Matroid. H elpeom tng BéATiotne Abong ebvan eniong tetpyupévn
vt matroids, dedopévou 6Tt 0 dminoTog ahyopriuog elvar o BEATIoTOC O0TNY TEPiNTWON AL-
. 'Etot, elvan puowxd va avapwtniolue av eivar enlong ebxolo va hudel to mpdBinua otnv
XEOVOUETOPBUANOUEVT Tou Yevixeuon yia Yevixd matroids. T'o mopdderyua, urmopel va Oérouue
VoL SLOTNEHOOUUE Eva BEVOPO TOU GUVOEEL €Vl BEGOUEVO YEdpNua xou ot xdde Briua, 1 oxur| e
xootiler ¢i(e) xou évo xbotog andxtnone ale) mpémel vor TAnpdveTar xdVe Qopd Tou Wi Véa
oY) € ELCEPYETAL OTO BEVTPO.

To npdPinua tne Xpovouetoorhduevne Behtiotonoinone oe Mntpoedry (MMM) opiotn-
xe and toug Gupta, Talwar xou Wieder [13]. Ou ouyypogelc anédeilav 6t 6tay 10 x60T0¢
amOXTNONG EVOL U1 OUOLOUOP®O, TOU ONUaivEL OTL v GAAIEOUUE BLOPORETING G TOLyEld, EV-
OEYETAL VO TANPWOOLUE BLAPORETING XOGTOC AMOXTNONG, TOTE 1) AoYapLduixy| TeOGEYYIoT Elvon
BérTiot, extoc edv P = NP. 61600, 1 avaywyn, tou nopouctdlouy, Pactletou oe Yeydro
Badud otny avopotopoppia Twv x00TOV anoxtnong. Lo to Adyo autd, emxevipwvOUacTE

oTNY TERIMTWOT eVIAfOL XOGTOUG ATOXTNONS XKoL XAVOUUE €V TEMTO Briuo Teog Evay alyopLd-

1



2 Kegatowo 1. Ewoaywyr)

wo otadepric Tpocéyyiong, napovaldloviag Evay olyoprduo tou €xel oTadept| TPOGEYYIOT| GTO
%00TOC xPATNoNG Xat Aoyaplduixy TEOGEYYION OTO XOOTOC AMOXTNONG, Wd EYYUNOT TOU OL
TponyoLuevol olyopripol Sev elyav. Emmiéov, oto [13], oo Gupta et al. anodewxviouy 61t to
TEOBANUN 0TV TEpInTwoT Tou €youpe matroid dpéplong PBeloxetar oto P, axdun xou av to
%00TOC AmMOXTNONG BeV €lvol OUOLOUoEPo xon e€opTdtar and To yeovo. Ilapovaidlouy eniong
70 (Bl anotéheoya Yo Ty Tepintwon T = 2, axdun xaw ov To 600 matroids elvan SlopopeTind.
Amodemvioupe 6Tl ot puowd LP yio autd tor mpofifuata eivon axépona, mapouctdlovtag Tic
TpwTeS anodellel integrality yia LP yia npoAfuata ypovouetaBorrouevng BeAtiotonoinong.

MoZ{ pe 1o épyo v Gupta et al. [13], n epyaocia oyetileton pe Sidpopes yoouués épeuvos.
Yty online mepintwon, 1o npdAnua MMM etvor enlong pio ety TeplmtTwoTn ToU XAAGGLXOU
npoPAfuatoc Metrical Task Systems [6], [1], [5]. ITpoomadmvtog vo evoroioouy Ty Yempla
udinone xou TV avtarywvioTx| avdivor, ot Buchbinder et al. [7] pehétnoav éva mpdPinua
TOA) TapoUoLo UE TO Bixd pog. Xtn duvauixr) ouvtienon dévtpwy Steiner [12], [15], [14], o
otyog eivon va dtatnendel évo oyedov BélTioTo Steiner dévtpo oe xdie ypovixr otryuy| (6mou
Tpootidevton TepuaTiXg) eve) oAGLouy peptxéc axuéc oe xde ypovixd Buc. Ltn Suvoguxy
e&looppodnnon goptiou [11], [3] npénet vo Swrtnendel pia xokh) Aoom eved petaxtveite évag uixpde
aptIUOC EQYACLOY.

Yy offline nepintwon, ot Shachnai et al. [18] pyehetolv mpofAiuata “enavofeltiotono-
nong™: Bedouévng wag apy e ADoNg xou Yiog VEog oTiyune, YERoLY v eELlC0PEOTHCOLY TO
%x6070¢ YETEPaone xan To xO00To¢ 6TN Véa tepintwon. Enlong €yet yiver apxety| épeuva oyeTind
e o tpofhuata daveopol [4], [17], [16]: autd eivon tpoBiAuata Bektiotonoinone 6mou ta
otolyela umopolv var AaufdvovTal yiar €vo BIUC TN OTOLOUBATOTE UAXOUS, OTOU TO XOGTOG

elvow xotho ota urfun.

1.1 IlpooceyyioTtixol ahyoprdpot

H »hdon nolumhoxdtnrag P nepiéyetl To ohvoho twv mpofAnudtwy tou unopodyv vo Auvdo-
OV 6€ TOALWVUIIXO YeOVo. ATo Vewpntiny| drodn, autd neprypdpel TNV xAdoT TwV EUXOAWY
TEOBANUAT®Y, dnAadY| Tar TeoBAruaTa Tou utopoLy va Audoly arodotxd. H xhdon NP eivon
70 GUVORO TWV TEOPBANUATLY TOU unopoly va Audo0v UE Ur VIETEPUIIOTIXO TEOTO OE TO-
AUWVUIIXO YEOVO 1) t1oBUVapa, Tor TRoBAAuaTa Yiar Tor omola gt Abor umopel var emohndeuTtel
oTL elvot owoTH o€ TOALLVLUIXO Yedvo. To NP mepiéyel ToMG evdlagpépovTta TeoBARuaTa
TIOL GUYVE TEOXVTTOLY GTNY TEALT), ahAd LUTdEYEL XohOS AdYog va o teboupe ott P # NP.
Anhady), 0e aiveton vor eivon mdavy) 1 Omapdn aiyopiluwy yio v anodotixy| enthuon NP
npofAnudtwy BeAtiotonoinong. I'V autd cuyvd xatagedyouue oe eupucTXéS peEddBOUS Yo
v eniivom auTtoy TV TpolAnudtny. Kdnoleg eupuotinég uétodol xatagépvouy va Bpoly uia
BérTioTn Ao, av xou umopel vor mdpel exdeTind ypovo yia va cuufel autd. ‘Aec Tpéyouv
TAVTOL GE TOAUWYUUIXO YEOVO, av xou UTopel var unv emio teédouy wa Bértiotn Abor. Ou Ilpo-
oeyylotxol Alyopriuotl eunintouy otnv teheutala xotnyoplo. Qotéc0, av xau dev Peloxouy

wa BErTio Ty AOoT), EYYLGVTOUL TNV TodTNTA TG AOONC TOU ETUC TEEYAVE.
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Oplopodcg 1.1. Evog a-mpoceyyloTindg olyoprduoc yio évo tpdBAnua BeAtiotonoinong etvou
€VOIC TOAUOVUULXOS ahY 0RO TTOL Yior OAOL Tal GTLYULOTUTIAL TOU TTROBAAUATOC ToRdyEL Wiot AUo)
TNC OTOLOG 1) VTLXELEVIXT| THLY) ATEYEL TO TOAD XOTA VALY TOREYOVTOL (v OO TNV AVTIXEWEVIXT

T wdc Bértiotng Adorg.

1.2 Boaowég Teyvixég Xyeodlaong llpooceyyiotixomy AA-
Yoelduwy

e auTo TO XEPdANO BivouUE Wiar TOAD GOVIOUN ETUOXOTNOT TV BUCIXMY TEXVIXOY Yo
TO OYEBLIOUO TPOCEYYLOTIXOY alyopiluwy, Bactouéves otov Ioopuixd Hpoypoupatiopns. H
nopoucioon pac Baoiletor otor BiBhior [20] xou [19], 6mou pmopel xavelc va Bpet pLor Aemtopepy
Tapouacioct Tou Véuatog.

Mo v mapovaciaon auth, Yo Paciotolue oe éva Topdderyua 500X0AOU TEOBAAUATOS GUV-

duacTxnc BehtioTonolnone, to Set Cover.

Opgwopde 1.2, Yto npdfBhnua Set Cover, diveton éva oUvoho otoyeiwv € = {e1,...,en},
HEEWE UTOGUVOAXL QUTOY TV GToyelwY S1, S2, ..., Sy, OmoL xdle S; C & xon éva un apvnTind
Bdpoc wj > 0, v xde unocvvoro Sj. O otodyo¢ ebvan va Beedel yia GUALOYY TwV UTOCL-
VOAwY, ehdytotou Bdpouc, mou va xoAUTTEL To oOvoho E£. Anhadt, Véloupe va Beoldue éva
I C [m] mou ehaytotonotel 10 Y

jer Wi Ue Uje]Sj =£.

Evo ypopuxd mpdypaupa yio to Set Cover eivon to e€c:

m
maximize ijxj
j=1
subject to Z r;>1, i=1,..,n (1.1)

z; >0, j=1,..m
To Set Cover eivar NP-hard xou yi" awtéd oyedidloupe npoceyylotxols alyopiduoug yo
v enthuon tou. Ot Bacuxée teyvinég oyedlaong, TouU YeNOWOTOOVUE OE AUTHY TNV EpYsid,

eqopuolopeveg oto Set Cover eivon ol e€rg:

1. Deterministic Rounding: 'Eyovtac Acel to LP, emAéyoupe dha ta clvora 7 yia
0 omola oyber x5 > 1/f, énou f = maxece |j € [m] : e € §j|. Anodevieton ot 0

ahyopriuoc elivon f-mpoceyYIoTIXOC.

2. Randomized Rounding: 'Eyovtac Aboel 1o LP, emAéyoupe éva obvoro j pe mdo-
votnta x5, Enavaioufdvouue to melpaua 2Inn @opéc xou emhéyouue €vor GUVOAO av
oawtod emhéydnxe oe xdnowo an’ to netpdpata. O olydpriuog emoTeépel e@uxth) Abon e

peydin mdavétnta xou av avtd cuufel, eivar O(logn)-tpooceyyotixdc.

3. Greedy Algorithm: O olyépduoc dwotneel wa cudhoyh I C {S1,...,Sn} xou oe
xde emovdAndm mpoovétel oTo I 10 GUVORO UE TO ENAYIGTO % Evog tpbénog va a-

rodewydel ot 0 akybprduoc eivon O(log n)-tpooceyyiotxde eivon n uédodoc Dual-Fitting.






Kegdhawo 2
Mntepoeion

To Mntpoedy| (Matroids) pehethinxay npddtn gopd and tov Whitney to 1935 xou €youv
oTdY0 vor cUAAGBoLY agpnenuéva Ty évvola Tne e€dptnong. O oplopdg tou Whitney yevixelet

HLoL EXTIANXTLXY TTOLXALOL GUVOLUGTIXWY BOUMY, OTWS TA GUVOETIXA DEVTEAL.

Opwopoe 2.3. Eva Levydpr M = (S,Z) eivor Matroid av Z elvon yior ufy xevr) culhoyn

UTOGUYOA®Y TOU S Tou xavoToLel TI axdAoudeg LWBLOTNTES:
1.0ez
2. AcTxuBCA=Bel
3. ABeZIxu|Al>|B|= 3z € B\ Atétow dote AU{z} €T

Eva oivoho A C S Yo héyeton aveldptnro av A € 7, adhuwdg o Aéyetan e€optnuévo. ‘Eva
peYlotixo oivoho A € T Vo Aéyeton Bdon tou M. Emnlong, yu xdde unocivoro A tou &

oplCoupe 7(A) = maxpca. per |B|.

Baowxd anoteAécpata

Av to otouyeio Tou S €youy Bden toTe UTdpyEL dAnoTog alyopLiuog Tou urtohoyilel ulo
Bdomn uéyiotou Bdpoug. Erniong, undpyel mohuwvuuixde alyoprduog yio Tov UTOAOYIOUS EVOS
peyiotou Bdpouc xowol aveZdptnrou cuvorou d0o Matroids (1o heydpevo medPinua two
Matroid Intersection). Emmhéov, ta 800 xhaowxd ypouuxd mpoypduuato yio to 000 autd
TpofAfuaTa EmoTEEQOLY TavTa axépona Abon. Télog, to mpdfinua k Matroid Intersection:
e0peom xovol aveZdptnTou cuvorou k Mntpoeldy, ue péyloto mhndderduo eivan NP-hard, yia
k > 3. Qotoc0, yenowonowwvtag po pédodo mou ovoudletar "iterative rounding”, unopel
va oyedotel olyopripoc mpooéyyone (k —1). To épyo tou Jack Edmonds [9], [8] édeile

Ta TEOAVAPERVIEVTU AMOTEAECUATAL.






Kegdhawo 3

XeovouetaSahAouevn
BeAtioctonolnorn ce Mntpoelon

MrnopoUue thpa va oplcoupe to TedBAnua tng Xpovouetoarhouevne Beltiotonoinong
oe Mntpoedry (MMM). To anotedéopato TOU UEAETIUE OTO XEPGAAO OUTO TUPOUCLACTNXAY
o1n onuoocicuon Twv Gupta, Talwar, Wieder ”Changing bases: Multistage optimization for

matroids and matchings” [13].

Oplowpodg 3.4. 'Eva otiywéturno tou mpofifuatoc MMM onotelelton and éva matroid .4 =
(E,Z),uer(E) =r, évaxdéotoc a(e) > 0y xdde e € E xou yio xdde PAuat € [T, o xbotog
xpdnone c(e) > 0. O otdyoc eivan va Bpedoly Baoeic { By € T yiot va ehayiotonoundet

TO

> (e(Bi) + a(Bi\ Bi-1))

t

émou opilovue By := ().

Kopia Anoteréopata

Apywd, oto [13] ou ouyypoageic mopouotdlovy xdmola YeTind xon opvNTXd anoTteéoud-
ta 070 neoBinua MMM. Ilp®tov, amodexviouy e 1 EMEXTACT TOU ATANGTOU ohyoplduou
yioo o TEoBAnua g Bdong ueyiotou Bdpoug, o auTh TN yEoVIXd EEENCCOUEVY) YEVIXEUOT),
mou avoAveton uéow Dual-Fitting, diver évav alyoprduo npocéyyiong logT'. Xtn cuvéyela,
napouctdlouv évay randomized rounding ohyodprduo, o onolog xdver randomized rounding
o€ xqe Ypovixr OTLYUr|, dhAd 1) TUYUOTNTA LOLRALETAL UETAZ) OAWY TWY YPOVIXDY CTLYUMY.
O olybpripog metuyaiver tpooéyyion O(logrT) xou pnopel vo tpomomomdel yio vo Swoet
npocéyyion O(log r‘;:”n—‘z) (@maz, Gmin: TO PEYIOTO XOU TO EAAYIOTO XOOGTOG OMOXTNONG O-
vilotoya). Emnpdoteta, delyvouv wo oaxpiny avaywyn ond to Set Cover, 1 omofo Selyvel
oTL 1 Aoyapuduix| Teooéyyiorn ebvar BEATIOT. Luveyiloviag Ue Ta opYNTIXd AmoTEAEOUATA,
detyvouv 6Tt eivar NP-hard va mpooceyyicouye xohbtepo and Q(T") to MMM pe Swpopetind
matroids av T" > 3. Télog, amodetxviouv ott 60 TEOBANU TNg Xpovouetofarrouevng Bea-

7
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Tiotonoinong, oty nepintwon twv Perfect Matchings, n Suoxolio avgdvetar xotd moAd: Yo

xde otadepd € > 0, dev undpyel duvatdtnta mpocéyylone O(nt=¢).



Kegpdhawo 4

MMM oce el0XEC TEQINTWOELS

4.1 Opooiopopya Kbéctn Andxinong

‘Onwe elmope, oty yevixy tepintwon 1 Aoyoprduxy| npocéyyion ebvar Bértiotn. I'V autd
T0 AOYO, 0TV eVOTNTA ATy, uehetdue To MMM, otny neplntworn mou To x6GTOS ATOATNONG
elvon To (Bl yioe OAa Tor otoyelon. T amhdTnTor g mapousiaong, Vo acyorndolue pe to
TedPBAnua e XpovopetaBariouevne Bedtiotonoinone oe Yuvdetxd Aévtpo (MSTM), to
omofo map'ého Tou elvan edxr tepinTwor Tou MMM, tepthaufBdver dheg Tic BuoxOMES TOU xou
6oeg amodeielc xan alyoplduouc Tapouctdlouue uropoLy v yevixeutolv yio to MMM. To
OLYXEXPWEVO TEOBANUA, Yo opolduoppa x6otr, etivan APX-hard [Fotakis, Lampis, Paschos,
Plevrakis "17]. e 6,1t agopd 10 akyoptduxd xopudtt, o Randomized Rounding ohyéprd-
uog metuyaiver O(logn) mpocéyyion oto x6atog andxtnong xa O(logn) npocéyylon oto
x6070¢ xpdtnone. Emnlong o&ilel va onueiwdel ot 6hol ol ahyodpriuotl mou €youv mopoucla-
otel uéypr otypurc v tpoPBAruatoa XpovouetaBorrouevne BeAtiotonoinong xau Bactlovtan oe
Tpouxd Ipoypdupata xdvouv Randomized Rounding [10],[13],[2]. Xe auth tn Simhoyatixy
Topouctdlouue Tov TE®MTo alybépriuo mou xdvel Deterministic Rounding yio éva mpoBinua
XpovopetaBorlopevne Behtiotonoinone, ev mpoxewéve to MSTM xou netuyaiver O(logn)
TPOGEYYLON 0TO XOGTOG AMOXTNONG Xt 3 TPOGEYYION GTO XOGTOS XPdTNoNe. Apyxd, Eextviye

UE TOV 0PLOHUO TOU TEOPBAAUATOS:

Opiopdg 4.5. 'Eva otiyyotuno tou mpofiiuoatoc MSTM anoteleiton amd €vav ypdpo
G = (V, E), éva xbotog andxtnong g > 0 xau yio xdde PrAua t € [T], to x60T0¢ xpdtnong

ct(e) > 0. O otdyog ebvor vo Bpedoly ouvdetind 8évtpa {Ti }er) Yio va edaytotonoindel to

> (e(T) + 91T\ Tial)

t

[Tpémer vo onuewndel otl umopolue vo Yewprooupe, Ywele BABN g yevxotntag ot T
Yeovixh otiypn t = 1 8ev mAnedvoupe TImoTa Ylol TV AmOXTNON TOV aXPOY Tou 71, apou

UTOPOUYE VAL EVOWUATOOOLUE auTd Tot X60TN 070 ¢1: ci(e) < ci(e)+g, Ve € E. Yuveyilouue

9
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UE TNV ovopopdt XATOLWY BaciXmY YVOOENY TEVL 0TO TOAITOTO TWV BUGKY X0l 0T0 TOAITOTO

TWVY CGLUVBETIXAY BEVTPWY EVOS YEAUPOU.

Khaopatixd Adon xar Khaopatixd Juvdetind Advipa

To lpapuixd IHpdypaupo yior 10 TEOBANUA TOU GUVOETIXOU GEVTEOU EAXYIOTOU XOGTOUC

elvar to axdAoudo:

minimize Zc(e):r(e)
eck

subject to z(E)=n—1
z(E(5)) <|S[ -1, VSCV
z(e) >0, Ve e E

O Edmonds ¢deiée oto [8] ott autd to LP evan axépoto.
'Eotw G = (V,E) xu x € R'f‘.

e Oa Aéyue 0Tl TO T elval XAACUATINO CUVOETIXO BEVTEO AV X0l UOVO oV
z(E(S)) <|S|—-1,VS CV xu x(F)=n—1.

e Oua Mye otl 10 T elvot XAACUATIXO ddoog av xou povo av z(E(S)) < |S] — 1,
VS CV.

e Ou Aue 0Tl TO & €Yel EVOV XAACUATIXG XOXAO oV o UOVO oV To = Oev elvan

XAACUOTING BACOC.
‘Eotw ott 10 2 elvon éva xhaouatixd 6évipo tou G.

e Oulépeottto S C V eivor ohvolo wodtrTag oto = av xou pévo av (E(S)) = |S|—1.

4 7 4 7. 2 2
Ye authy v Tepintwon Yo Aéye oTL To T elval XAACUATIXNE CUVOEBEUEVO GTO S.

e 'Eotw F 10 60voho TV GUVOAY 16OTNTOC TOU . LT0 8] amodetxviETaL OTL To UEYLOTL-
%4, we meog TN ddtadn mou opllel To C, chvoha tou F elvon Eéva puetall Toug, Omwg

(QOLVETOL OTO TOQOXATE) TOEABELYUAL.

Ovoudlouye autd Ta GOVORL XAACUATIXA CUVEXTIXEG CUVIOTWOES TOU .
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To I'papuixd ITpdypappa

To axdrovdo LP enextelvel T0 YRuUUIXO TEOYEAUUUO VLo TO GUVOETIXG 6EVTpo ehayloTou

x60T0UG, 011 Ypovopetaarhopevn yevixevon (MSTM) mou yeletdye.

minimize Z Z ci(e)xi(e) + g Z Z ye(e

subject to xt(E)—n—l, Vi

x(E(S)) <|S|—1, VSCV, Vt
t(e) >0, Vee E, Vt
(

(

8

yi(e) > ze(e) — x-1(e), Ve € B, Vt
(e) >0, Vee E, Vt

<

Hopotneeiote ot av {zs, Yt 1+ 1 BéRTIoT Moom tou LP, ywelc PAGBN e yevixdtntoc
éyoue: y(e) = maz(xi(e) — xi—1(e),0) Vt, e. O oalybdpriupog amoteheiton arno 4 Bructo.

Xwplopodc o enoYEg

Apyxd, ANovouye to LP 1o omolo pag emoteéget T xhaopotind cuvdetixd 6évtpa 1, T2, ...,

O¢toupe 2z} (e) = mini<p <y (€). Eote t; to péyoto t o0 dote 2} (E) = >, 2t (e) >

"T_l. Optloupe cav mpwtn emoyn, 1o ddotnua [1,4]. Iapatnpeeiote ot pécoz oE oUTO TO
oo Tnua, N AOoN 1, ..., Ty, TANEWVEL XOGTOG AMOXTNONG TOLUAdYIoTOV gle= 2 . XTn oLVEYEL,
Vétoupe 22(e) = ming, y1<v <1z (e). 'Botw ty 1o péyioto t tétow0 wote 22(E) = >, 22 (e) >
oL Opiloupe cov Sedtepn enoyh, to dbdotnua [t + 1,t0]. Mécoc OE QUTO TO OO TNUL, 1)
NOGT Xy 41, -y Tty TANPOVEL XOGTOC AMOXTNONG TOUAGYLOTOV go5=. Yuvey(louye ye Tov (Blo
TP6TO0 €wg 6TV Ywplooupe 6ho To [1,T] oe enoyéc. Axoloulel éva m(pcx?)ewpoz NG TOEATAVE

dadixdotag (T=13).

L1 X2 I3 T4 Ts Te L7 I8 L9 T10 L11 L12 L13
—_—— —— ~—

epoch1 epochsg epochs epochy

’ 4 4 . ’ 14 14 7 4
Yuvemoxdhouda, dua xdvoupe rounding avegdptnta o xdde enoyy|, 10T Ydvouue

TO TOAU €vay TopdyovTa 2 6TO XO0TOG AMOXTNOTNG.

Rounding

Mmnogotpe vo emixevipwdolue mhéov pévo oty mpodtn emoyy [1,61] (Y Tic utdloineg
xdvoupe Tt B, avegdptnTa). Opilouue z(e) = zl( ), Ve. Ilapoatnpeiote ot t0 2z elvon
xhaopatins ddooc. Eriong to yeyovée ot z(E) > 5L Sefyvel ot to xhaopoting cuvdeTind
dévtpa 1, ..., xy, Ot dpépouv mohl. Ilpocéite ot av Arav B (2(E) = n — 1) tdte 10
rounding Vo Atav tetpyuévo, xodog yia xdde ypovixr otiypr tou [1,1] Yo emhéyaue o
GUVBETING BEVTPO Ehoy{0TOU X6OTOUC, OOV 1) CUVAPTNON X6oTOUS Dot Ty 1) € = 3 epy 4 Ct-
Eniong, av xdmoto S C V 1o S eivar 6Uvolo 1o6TNTOC Yol TO 2, TOTE TA L1, ..., Ty, VoL HTAY (Blat
uéoa oto S xa xAACUUTIXG cLVOESEUEVL Uéoa oe auTd. ‘Apa, utohoyllovtog To GUVBETIXG

0évtpo ehaylotou xéotoug T pé€oa oTo S, Ue CLVEETNON XOOTOUS € = D icp 4] Ct KO

xXT.
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Vétovtoc xi(e) = 1{e € T}, Vi € [1,t1],e € S dev au&dvetar To x60T0¢. BéPana, Sev undpyet
xdmotog Ayog vor €yel To z xdmolo calvolo wotntac. 2otéco, dedouévou ot z(E) > an
povTtdler hoywd va €yel €val oUVOAO Tou Eval ToYESOY CUVOAO LeOTNTAS, UE TNV
évvola 0Tt av auENooLUE AYo TIC UETABANTEG oV Tou BploXovVTal GTO ECWTERLXO oUTOV
Tou GUVOLoL, Va To xdvoulue GUVOAo LWodTNTaC. ol var TeThyouue ATl TETOLo YEnoyLoToloUUE

70 a6 oV io YEaUUUIXO TEOYEUUUL

maximize Z Znew(€)
eckE
subject to  zpew(E(S)) <|S]—1, VSCV

0< Znew(e) < 3,2(6), Vee
'Eoto Znew 1 BEATIOTN AJoT Tou mapandve LP. Ex xataoxevic, 10 Zpew Elvor xhoopotind
0dcoc. 'Eotw S, ..., 5, TV oL xhoopotixd GUVEXTIXES CUVOTHOOES Tou. AmodeixvieTol OTL

k

Ssi-n=""1 )

=1

Eotw I = UF_E(S;) (mpdowvec oxpéc). Aldlouue dha 1o {me(e) bepi ) ecn G €€hc
z(e) < zZnew(e), Ve € II. Ex xotaoxeunic 10U Zpew, HE AUTAY TNV ahhoy) YEVOUUE TO TOAD
EVAY TUEAYOVTA 3 GTO XOOTOG XPATNONG Xl TO XOCTOC AMOXTNONG EVOEYETAUL VO UELWUTXE XL
6hag 0T0 eowTtePxd Tou [1, t1]. Topa dune, uéoa oe xde éva ano ta Sy, ..., Sk, To T1, ..., Tt,
elvon {Btor xan xhaopaTinde cuvoedeuéval ‘Apa Beloxduacte oTNY €W TERITTWOT ToL TO
rounding (uéoa oto ;) etvan tetpppévo. Ilo ouyxexpwéva, av H; eivor 1o ouvdetxd dévtpo
ehayioToL x6GTOUC PéGa 6TO S;, e GUVEETNOT XOOTOUC € = S 1L, ¢, ThTE DéTovTac Yia xdde

7

xi(e) < 1{e € H;}, Ve € E(S;), Vt € [1,11]

dev audvetan xavéva xo6otoc. To mopoxdte oyfua Setyvel T LopPy| Tou EVOS Amo Ta X
HETA Tic odharyég Tou xavape. Ot xUxdol elvon Tor S; xou Ol TEAGIVES OXUES Elvol ToL GTOLYEl TOU
I1. ¥ti¢ npdoiveg axpéc, UETE TIC AAAXYES TTIOU XAVAUE, To 2; ebvon oxépana xou TowTtilovTat. MTig

HOUAIWVES OUUES EVOEYOUEVIC VoL ElVOL XAACUOTLXG Xou SlopopeTxd hetadd Touc. To ahvoho twv

XOXUVWY axpodv Yo to yedgpouue K (xdxxvec).
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Agaipeon xXAACRATIXNDY KOXAWY

[Top” 6ho mou xatapépoue Vo xdvoupe round YEYIAO XOUUATL TWV T1, ..., Ty, , TO TEAELTALO
€y 0uv TAOV XAAoPATIXOUC XOXAOUC ToU TRETEL Vo aponpedoly ywelc vo augniel to xdoTog.

Autd to metuyalvoupe Ye To axdrouto Afuuas:

AAuppa 4.1. Mévo padvovtas petapAntés {xi(e): e € K, t € [1,t1]}, uropodue va kdvouvue

Ta 1, ..., Ty, KAaopatikd ouvdetikd 6évTpa, XwplS va avénoovpe to K6OTOS AmoKTNONS.

[t Ty anddeln tou AMupatog autol yeelalopaote Wia Evvolo avToAAAELUOTTAUC OXUWY
oty xhoopoatixy mepintworn. I cuyxexpiéva, av gl oxur| Oev avixel oe €va axépalo
0£VTPO, TOTE OL OXUEC TIOU OVAXOLY GTO JOVOTATL TOU OEVIPOU TOU EVOVEL TOL dXEa TNG elvon
ovToAAGEES Ue auTh. XpeelalOUaoTe Uiol TETOW EVVOLd OTNV TERITTWOT TWV XAUCUATIXDY
OUVOETIXWY 0EVTPWY, TNV omoio TNV ovoudlovye kAaouatikn avtaAda&udtna’. ‘Ana xou
ELOGYOLUE QUTAHY TNV €vvola, 1) anédelln tou Afupatog 4.1 etvan evdiypouun. Ag emxévipn-
Yolue ooy o €val *AACUATIXG CUVOETIXO 0EVTEO, To x1. ‘Eotw wo axun e tng onolog
Véhoupe vo aughoovue TN petaAnT, xi(e) < 1. O Adyog mou Be unopolue Vo xdvou-
HE %dTL TETOW Ywpelc Vo TopoBECOUUE TOUC TEQLOPLOUOUS oV XooTOOY TO T XAACUATIXS
CLVOETIXG O0€VTEO ebval 1) UToEET TEPLOPIOUMY TOU AVTIoToL 00V G GUVOAA tooTnTag. Eotw
F={SCV: z1(ES)) =|S|—1}. ¥to [8] anodexvieTtar ot

A BeFxu ANB#0)=ANBeF

Auté omnpaiver ot undpyet éva oUvolo axumy ou ovoudloupe mits(e), to onolo MEPLEYEL
™ e xou yio xdde olvolo axuwy S mou meptéyel Ty e toyvel ott mits(e) € S. O Adyog mou
auTO Loy Vel cuvoileTon oTo axdAouto Gy Rua OTOU oL XUXAOL ATOTENOUY GUVORY LOOTNTOG YL

TO X1 TOU TEPLEYOUY TNV e.

epdoov x1(mts(e)) = |mts(e)| — 1 xow x1(e) < 1, undpyet € € mts(e) pe z1(e’) > 0. EE
opopol, av A € F xau e € A, 16t € € A. T 10 héyo autd pnopolue vo. apyicoupe vo
avuZdvoupe to x1(e) xon vo pedvoupe to x1(€’) pe tov o pudud, éwe dtou Tpootedel véo

oVvolo oto F.
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LOVOALYT %o Avadpoun

[M\éov o o1, ..., o7 elvon xhaopaTnd cuvdeTXd BévTpa. XuvIABouue OAEC TIC TEACLVES

o€ Tou avixouy ota x¢, t € [1,t1] xou étol TpoxdTTOUY TA T, ..., T}, TOU Efvon XAACPOTING

1
ouvdeTd Bévtpa tou G/ U; S;. Tdpa, enavahopfdvouue 6hn tn Sabixacio (ywetouds oe
enoyéc xAT) Thvw OTaL X, ..., T, -

Adbyoc Ilpooceéyyiong

Ex xatooxeuric:

ca(H) <3 Y > ale)zle)

k
te[l,61] =1 te[l,t1] e€ll

Tautdyeova, OAEC oL UETUBANTES TTOU AVTIGTOLYOUV GE XOXXIVES AXUES UELOUMXOY 1| EUELVALY
(Bleg. MUVETOC, EMAYWYIXA, €YOUUE TPOGEYYLON 3 OTO XOGTOS XPATNONG TNG X1, ..., LT

To axdroudo déEvtpo delyvel Eva TapddeLryUo EXTEAEOTC TOU aAyoplduou.

000 0 2000 90 G0 o0 90 18 =00 0 -0
|X1 X2 X3 X4 X5 Xg X7 Xg Xg X9 X11 X12 X13|

2a.c(x)

| 1.1 1‘ 1.1 .1 .1 1 .1
Xl X3 X3 Xa X5 Xg IX7 Xg Xg X0 X11 X12| Tis

\ 2a.c(x)
[ ¢ ¢ %
/
\ l 2a.c(x)

= [ |

|T11 7-12|
0113

Yy apyh, to LP emotpéger ta {x7};2,. X ovvéyeln, yoplloupe to ypbvo oe 4

ETOYEC X0 TANEOVOLUE 1o “tiunua tou aveZdptnrou rounding”, mou eivor to TOAD 2a.c(x)

0113
i Ji=1

(a.c(x): 1o x6cT0C amdxTNnoNe Tou TANEWVeEL N {x ). Teéyoupe o Bripata Tou ahyopiduou
onwe o e€nyroape mplv xou oe xdde enoyy [t,t'] malpvouye o véo xhoopatind GUVOETIXG
Sévrpa {zl i, méve otic avtiotoyee xbwavee axpée.  Topatneeiote ot oty teheuToia
enoyn xdvouue xoatevdeioy 6ho to rounding ool €youue UOVO EVo XAACUATIXG GUVOETIXO
0évtpo (mepintwon z(E) = n —1). Abyw tou 0Tl 0T0 GTABI0 APUEPEOTC TWY XAACUATIXDVY
x0¥AwV Bev AUEACAUUE TO XOOTOC AMOXTNONG, O Xdie eMINESO TOL BEVTPOU TANEOVOUUE TO
TN 2a.¢(z) Yot x60TOC amdXTNONGS. LUVETMC, T xdoT0g amdxtnone tne Aong {T; zlil elvan
70 TON0 2a.c(z) eni To Vo Tou Bévtpou extéheonc tou akyopiduov. Adyw (1) to vog autd
etvar O(logn). Ev téhel éyoupe mpocéyyion 3 oto xdotog xpdtnong xou npocéyyion O(logn)

0TO XO0TOG AMOXTNOTG.
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4.2  Axépaua I'lT yia edixég nepintwoesig tou MMM

Ye authy TNV evOTNTa TaEouCLdlouUe 500 axOUo ATOTEAEGUOTO QUTAS TN BITAWUATIXAS.
Actyvoupe ott to ' yior v edinn nepintwon tou MMM, émou to Mntpoeidy| eivon Mntpoeldy

Awopéplong, xou yioo Ty tepintworn T=2, elvon axépoua.

Xpovopetafarrouevy Beltiotonoinor os Mntpoeidy Awopépiong
Eva efdog untpoetdoie etvon ta Mntpoeldr; Atapéptong:

Opiopdg 4.6. Mntpoerdég Arwapéprong: Eotw éva ovvodo S kar S1,Ss, ..., 5, uia
dapépion tov S kar ki, ka, ..., ky, un apvnukol axépaor. Eotw T ={T C S: |[T'NS;| <
ki, Vi € [n]}

Hapatneeiote ot yio v Audel to mpoBinua tne Xeovopouetoarhouevne Betiotonoinong
oe Mrntpoedr; Awpéplong, apxel vo Audel yioo n = 1. To T'll yi' autd 10 TEOBANU Exel TNV
eZnc popn:

minimize Z Z ce(e)ye(e) + Z Z a(e)z(e

t=1ecS t=2 ecS
subject to  z(S) =k, Vte [T
yi(e) > zi(e) — z—1(e), Vee S, t=2,..,T
0<z(e) <1, YVeeS, Vtell]
y(e) >0, Vee S, t=2,..,T

HopatnpeloTe 0Tt EMTEENOVUE To XOGOTN ATOXTNONS VoL EE0ETMVTAL Ao To Ypedvo. Lto [13],

oL ouyypageic detyvouv ot autd To TEdBAnUa eivan oto P. Eyeic detyvouue to €€rc Yedpnuo:

Ocwpnua 4.1. To I'paupnké Ilpdypapua ya to mpdPAnua tng Xpovopopetafarddpevng
BeAtnioronoinons oe Mntpoeidny Awapépions elvar aképaio.

T=2

Yy mepintwon tou MSTM, omouv T=2, to I'll naipver Ty €&rc popyr:

minimize g 01 xl + E C2 mg g
e

subject to z4(E) =n—1, Vt e {1,2}
z(E(S)) <|S]—1, VSCV, vte{l,2}
xi(e) >0, Ve € B, Vt € {1,2}
y(e) > za(e) — m(e), Ve € B

() >0, Vee E,

Yto [13], ot ouyypageic detyvouv ot awtd o mEdBhnua eivar oto P. Eyeic delyvouye 1o
e&hc Vewpnuo
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Ocvpnua 4.2. To I'pappuxé Hpdypaupa ya to npépAnua tng XpovopouetafaAldperng
BeAniotonoinong oe Xwvoetikd Aévpa, pe T=2, elvar axépaio.

oty axpBelor delyvouue ott autd oylel oty Tepintwon tou €youpe 600 MnTpoeldn

xa auTd umopet va elvon dlapopeTixd.
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