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Εκτίμηση Κατάστασης ενός Τετράτροχου Ρομπότ 

 Ασημένια Ζ. Λαϊνά 

 

Περίληψη 

Σκοπός αυτής της διπλωματικής είναι η εκτίμηση κατάστασης ενός τετράτροχου skid-

steering ρομπότ με τη χρήση complementary filters. Η εκτίμηση της κατάστασης 

επιτυγχάνεται με τη ταυτόχρονη χρήση και τον κατάλληλο συνδιασμό μετρήσεων που 

λαμβάνονται από τους αισθητήρες που είναι τοποθετημένοι στο ρομπότ. Οι αισθητήρες 

αυτοί περιλαμβάνουν ένα IMU (Inertial Measurement Unit), GPS (Global Positioning 

System) και οδομετρία. Η συνδιασμένη χρήση των αισθητήρων με τη μέθοδο των 

complementary filters δεν απαιτεί μεγάλη επεξεργαστική ισχύ και οι υπολογισμοί 

πραγματοποιούνται πιο γρήγορα, παρέχοντας συχνότητα εκτίμησης της κατάστασης του 

ρομπότ ίση με αυτή του πιο γρήγορου αισθητήρα που είναι εγκατεστημένος σε αυτό. Το 

ρομπότ που χρησιμοποιήθηκε για την πραγματοποίση αυτής της διπλωματικής είναι 

σχεδιασμένο για χρήση σε εξωτερικό περιβάλλον και ελέγχεται με τηλεχειριστήριο.  

Η συνδιασμένη χρήση των αισθητήρων επιτυγχάνεται με τη χρήση πρώτου βαθμού 

complementary filters για την εκτίμηση της θέσης και δευτέρου βαθμού για την εκτίμηση 

της ταχύτητας του ρομπότ. Η μέθοδος αυτή χρησιμοποιεί τον προσανατολισμό και τις 

επιταχύνσεις που λαμβάνονται από το IMU ως είσοδο του συστήματος και εξάγει τη θέση 

και την ταχύτητα του ρομπόρ στο τρισδιάστατο τοπικό σύστημα αξόνων του ρομπότ.  

Πολλά πειράματα διεξάχθηκαν για την επιβεβαίωση της κατάλληλης διαμόρφωσης του 

συστήματος, καθώς επίσης και της αποδοτικότητας της χρήσης complementary filters. Τα 

αποτελέσματα εκτίμησης της ταχύτητας είναι αρκετά καλά και αυτά της εκτιμήσης της 

θέσης ικανοποιητικά, λαμβάνοντας υπόψιν ότι υπάρχει μόνο ένας αισθητήρας που δίνει την 

απόλυτη θέση του ρομπότ με ακρίβεια τριών (3) μέτρων. 
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State Estimation of a Skid-Steering Mobile Robot using 

Complementary Filters 

Asimenia Z. Laina 

 

Abstract 

The objective of this thesis is to estimate the state of a skid-steering mobile robot using 

complementary filters. The state estimation is achieved through fusing appropriately the 

measurements received from the sensors attached to the robot. The sensors include an 

Inertial Measurement Unit (IMU), a Global Positioning System (GPS) and the odometry. 

The sensor fusion using complementary filters is computationally simple and as such fast, 

providing at the same time estimation frequency equal to the fastest sensor used. This 

robot is aimed to be used in an outdoor uneven environment and is controlled by a 

joystick. 

The sensor fusion is achieved by using first order complementary filters for the estimation 

of position and second-order complementary filters for the estimation of velocity. The 

fusion uses the orientation and the acceleration obtained from the IMU as an input and 

outputs the position and the velocity of the mobile robot in the three dimensions on the 

robot’s local frame.  

Many experiments were conducted to validate the appropriate configuration of the system 

as well as, the effectiveness of the sensor fusion using complementary filters. The results 

of the velocity estimation are really good and those of the position estimation are 

promising, considering there is only one sensor providing the absolute position with a 

minimum accuracy of three (3) meters (depending on the surroundings). 
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1 INTRODUCTION 

The word robot was introduced in 1920 in a play by Karel Capek called R.U.U., or 

Rossum’s Universal Robots. Robot comes from the Czech word robota, meaning forced 

labour or drudgery. In the play human-like mechanical creatures produced in Rossum’s 

factory are docile slaves. The robots were presented to have the same figure as humans 

but worked tirelessly. However, it wasn’t until the World War II that the first attempt to 

create wirelessly controlled mechanism of radioactive material happened. In 1961 it was 

also the first time when the notion of programming of a robot was introduced. In 1962 a 

robot was developed by Ernst with force sensors capable of storing boxes making it the 

first robot ever made to work in an unstructured environment. In 1973 the first robot’s 

programming language was developed at Stanford University called WAVE. Through the 

years the requirements expected from robots were increased, especially from the industry, 

leading to improvements on the performance of them. During the nineties a huge 

progress concerning the development of robots occurred, especially in the sections of 

control algorithms, route planning and use of sensors. After that point, many robots were 

built; methods were improved leading to the current state. Robotics, as we know it today 

faces rapid changes, while there is a constant request for better, more accurate, more 

reliable and more capable robotic systems.[1] 

A mobile robot is an automatic machine that is capable of movement in a given 

environment.[6] Mobile robots can be “autonomous” which means they are capable of 

navigating in an uncontrolled environment without the need for physical or electro-

mechanical guidance devices.[2] Mobile robots are usually divided into two categories of 

legged and wheeled robots.  

Techniques used for position determination of wheeled mobile robots (or simply, mobile 

robots) are classified into two main groups: relative positioning (position and orientation 

will be determined using relative sensors) and absolute positioning (techniques are 

referred to the methods utilizing a reference for position determination).[3]  

Calculating position from wheel rotations using the encoders attached to the robot’s 

wheels is called odometry. Although odometry is the first and most fundamental approach 

for position determination, due to inherent errors, it is not an accurate method.[3] That is 

one of the reasons why it is so important to fuse data from other sensors in a robust way. 

In most cases Kalman filter or a derivation of Kalman filter, such as Indirect Kalman filter 

(IKF), Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) have been used 

to integrate the information, but more methods are available depending on the 

application; one of them being Complementary filters which were actually developed well 

before Kalman filters. 
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1.1 PROBLEM STATEMENT 

The following diploma thesis presents a method on how to estimate the state of a skid-

steering mobile robot using complementary filters. The main reason that led to choosing 

this method is the recent paper from Panos Marantos, Yannis Koveos, and Kostas J. 

Kyriakopoulos, “UAV State Estimation using Adaptive Complementary Filters”[34], in which 

are presented the satisfying and encouraging results of the complementary filters when 

used for the state estimation of UAVs (Unmanned Aerial Vehicles). Another reason is that 

there isn't a lot of research regarding the use of complementary filters in such kinds of 

problems, although it is a method well-known for several years. The challenge of state 

estimation is to minimize the errors occurring from the sensors and, fuse measurements 

in a way that exploits the best features each one has to offer. At the same time it is 

important to have an estimation frequency as high as the fastest sensor attached to the 

system. 

 

(a) SUMMIT XL HL, Robotnik[37] 

 

(b) XBOT, DRONYX
[38]

 

FIGURE 1: DIFFERENT SKID-STEERING MOBILE ROBOTS 

1.2 SIGNIFICANCE 

In a world where the demands for better, more accurate, more autonomous, more capable 

robots are increasing daily, the significance of estimating the state of them is apparent. 

The robots must be in a position to answer the question “Where am I?” and perform a 

series of tasks depending on the answer. In order for them to be implemented in our 

lifestyles safely, the answer to this question should be accurate enough to eliminate 

accidents occurred because of their interaction with either humans or the environment. In 

this thesis a way of estimating the state of a mobile robot is presented. There are many 

other approaches to this problem and possibly more will pop up in the next years, but the 

implementation of each method should always take into consideration the kind of 

problem we are trying to solve and the system the mobile robot will function in. In 

modern applications, GPS, IMU and odometry won’t be enough to provide an accurate 

state estimation and they are usually used along with other sensors and methods to 

improve the accuracy of the estimation. 
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1.3 SIMILAR WORK 

There is usually a lot of research when it comes to sensor fusion from GPS and IMU 

sensors for the estimation of the absolute position of a robot. To improve position 

estimations, and at the same time maintain a low cost, it is important to combine 

information from different low-cost sensors using sensor fusion technology instead of 

using highly accurate but expensive GPS receivers, which would still suffer from 

limitations such as the inability of acquiring measurements in e.g. a tunnel.[13] One of the 

most common sensor fusion applications are the different kinds of Kalman filters. Some 

information is following in order to understand how this method works. 

1.3.1 KALMAN FILTERS 

“The Kalman filter in its various forms is clearly established as a fundamental tool for 

analyzing and solving a broad class of estimation problems.” Leonard McGee and Stanley 

Schmidt 

The Kalman filter enables estimation of past, present and future states of linear systems by 

using measurements in a fashion that minimizes the least mean squared error. There are, 

however, many systems that are nonlinear and in those cases Extended Kalman filter is 

used, in which the system is linearized around a working point.[13] 

The Kalman filter is a recursive algorithm for estimating states in a system utilizing two 

sorts of information, measurements from relevant sensors and the mathematical model of 

the system. In the following lines is presented briefly the Kalman filter. 

The Kalman filter operates by propagating the mean and covariance of the state through 

time. Suppose we have a linear discrete-time system given as follows: 

𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 

 

(1-1) 

 

The noise processes {𝑤𝑘} and {𝑣𝑘} are white, zero-mean, uncorrelated and have known 

covariance matrices. 

Our goal is to estimate the state 𝑥𝑘 based on our knowledge of the system dynamics and 

the availability of the noisy measurements {𝑦𝑘}. If we have all of the measurements up to 

and including time 𝑘 available for use in our estimate of 𝑥𝑘, then we can form an a 

posteriori estimate, �̂�𝑘
+. If we have all of the measurements before time k available for use 

in our estimate of 𝑥𝑘, then we can form an a priori estimate, �̂�𝑘
−. 

It is important to note that �̂�𝑘
− and �̂�𝑘

+ are both estimates of the same quantity, 𝑥𝑘.  
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However, �̂�𝑘
− is our estimate of 𝑥𝑘 before the measurement 𝑦𝑘 is taken into account, and 

�̂�𝑘
+ is our estimate of 𝑥𝑘 after the measurement 𝑦𝑘 is taken into account. 

Since we don’t have any measurements available to estimate 𝑥0, it is reasonable to form 

the �̂�0
+ as the expected value of the initial state 𝑥0: 

�̂�0
+ = 𝐸(𝑥0) (1-2) 

We also use the term 𝑃𝑘 to denote the covariance of the estimation error. 

 

FIGURE 2: TIMELINE SHOWING A PRIORI AND A POSTERIORI STATE ESTIMATES AND 

ESTIMATION-ERROR COVARIANCES.
[7]  

We begin the estimation process with �̂�0
+, our best estimate of the initial state 𝑥0, and the 

use of the equation which shows how the mean of 𝑥 propagates with time. 

�̂�1
− = 𝐹0 �̂�0

+ + 𝐺0𝑢0 (1-3) 

In its general form, 

�̂�𝑘
− = 𝐹𝑘−1�̂�𝑘−1

+ + 𝐺𝑘−1𝑢𝑘−1 (1-4) 

Where, 𝐹𝑘 = 𝑒𝐴𝛥𝑡  and 𝐺𝑘 = ∫ 𝑒𝐴(𝑡𝑘+1−𝜏)𝐵(𝜏)𝑑𝜏
𝑡𝑘−1

𝑡𝑘
, and 𝑃 the covariance of the state 

estimation error, is also being renewed as follows: 

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄𝑘−1 (1-5) 

Where, 𝑄𝑘−1 = ∫ 𝑒𝐴(𝑡𝑘−𝜏)𝑄𝑐(𝜏)𝑒𝐴𝑇(𝑡𝑘−𝜏)𝑑𝜏
𝑡𝑘

𝑡𝑘−1
 and 𝑄𝑐 is the covariance of a continuous-time 

white noise. For small values, 𝑄𝑘−1 ≈ 𝑄𝑐(𝑡𝑘)𝛥𝑡 . We have derived the time-update 

equations for �̂� and 𝑃 and as such, the estimate of a constant 𝑥 is computed (the estimate 

changes depending on the availability of the measurement 𝑦𝑘): 
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𝐾𝑘 = 𝑃𝑘−1𝐻𝑘
𝑇(𝐾𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1 

= 𝑃𝑘𝐻𝑘
𝑇𝑅𝑘

−1 

�̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�𝑘−1) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

= (𝑃𝑘−1
−1 + 𝐻𝑘

𝑇𝑅𝑘
−1𝐻𝑘)−1 

= (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1 

(1-6) 

Where, �̂�𝑘−1 and 𝑃𝑘−1 are the estimate and its covariance before the measurement 𝑦𝑘 is 

processed, and �̂�𝑘 and 𝑃𝑘  are the estimate and its covariance after the measurement 𝑦𝑘 is 

processed. Replacing in equation (1-6) �̂�𝑘−1  with �̂�𝑘
− , 𝑃𝑘−1  with 𝑃𝑘

− , �̂�𝑘  with �̂�𝑘
+  and 𝑃𝑘 

with 𝑃𝑘
+, we obtain the measurement update equations [7]:  

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐾𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1 

= 𝑃𝑘
+𝐻𝑘

𝑇𝑅𝑘
−1 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�𝑘
−) 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

= [(𝑃𝑘
−)−1 + 𝐻𝑘

𝑇𝑅𝑘
−1𝐻𝑘]−1 

= (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− 

(1-7) 

To sum up, the Kalman filter algorithm is explained in words. Firstly, at 𝑡0 the Kalman 

filter is provided with an initial estimate including its uncertainty (covariance matrix). 

Next, based on the mathematical model and the initial estimate a new estimate at 𝑡1 is 

predicted. The uncertainty of the predicted estimate is calculated based on initial 

uncertainty and the process noise. At 𝑡1 we also have obtained measurements from the 

sensors which give us new information about the states. Based on the accuracy of the 

measurements (measurement noise) and the uncertainty in the predicted estimate, the 

two sources of information are weighed and a new updated estimate valid at 𝑡1  is 

calculated. The uncertainty of this estimate is also calculated. The algorithm continues for 

𝑡𝑖+1 predicting the new estimate as before, but based on 𝑡𝑖 estimate.  

This is the basic form of a Kalman filter. There are various others depending on the kind 

of problem we wish to solve, such as generalised forms and nonlinear ones. Some of them 

include the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) which are 

commonly used in robotics.  

For more information, one could study the following references: [7], [8], [9]. 

As you may have noticed, the main disadvantage that arises when using Kalman filters is 

the computational complexity of this method. For this reason, another method is 

presented and applied in this thesis using complementary filters. 
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1.3.2  COMPLEMENTARY FILTERS 

A simple estimation technique that is often used in the flight control industry to combine 

measurements is the complementary filter. This filter is actually a steady-state Kalman 

filter, also known as Wiener filter. The complementary filter users do not consider any 

statistical description for the noise corrupting the signals, and their filter is obtained by a 

simple analysis in the frequency domain. 

The Wiener filter solution to this class of multiple-input estimation problems appeared in 

the literature well before Kalman published his classic paper.[10] 

A basic figure of complementary filter is shown below, where 𝑥  and 𝑦  are noisy 

measurements of some signal  𝑧 , and �̂�  is the estimate of 𝑧  produced by the filter. 

Assuming that the noise of measurement 𝑦 is mostly high frequency and the noise of 

measurement 𝑥 is mostly low frequency, then a low pass filter 𝐺(𝑠) can be made to filter 

out the high-frequency noise in 𝑦. If 𝐺(𝑠) is low-pass, [1 − 𝐺(𝑠)] is the complement 

filtering out the low-frequency noise in 𝑥. 

 

 

FIGURE 3: BASIC COMPLEMENTARY FILTER. IF G(S) IS A LOW-PASS FILTER, 1-G(S) IS A HIGH-PASS 

FILTER.
[10]

 

At this point, it should be noted that complementary filters can be used for more than just 

two measurements, in which case the gains, that measurements are multiplied with, 

should sum up to no more than one.  

A good research on Kalman and complementary filters that focuses on how someone 

could understand their use is the following: “Integrated Navigation Systems and Kalman 

Filtering: A Perspective”, from R. G. Brown.[11] 

Below, follows different research studies on the estimation of the position and the 

orientation of a mobile robot. 

1.3.3  STATE ESTIMATION OF A MOBILE ROBOT 

As mentioned earlier, the primary method of estimating the state of a mobile robot is 

Kalman filter. In the work published from Slawomir Romaniuk and Zdzislaw Gosiewski, 

“Kalman Filter Realization for Orientation and Position Estimation on Dedicated Processor” 
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one can see the implementation of this method. The measurements are obtained from an 

inertial measurement unit (IMU) and a Global Positioning System (GPS). At first, the 

measurements from the magnetometer, the accelerometer and the gyroscope are filtered 

in order to obtain the orientation of the robot and then, using the orientation and the 

accelerations, all measurements are transferred to a common reference system, where 

along with the data obtained from the GPS they are all filtered in order to estimate the 

position. Next, you can see the flow diagrams: 

 

FIGURE 4: INFORMATION FLOW FOR ORIENTATION.
[12] 

 

FIGURE 5: INFORMATION FLOW FOR POSITION ESTIMATION.
[12] 

The main advantage of this approach is achieving higher update frequency rated at about 

50Hz (depending on the IMU frequency), which in comparison with 1Hz, characteristic to 

used GPS receiver, is great enhancement.[12] 

There are a lot more different methods of implementing Kalman filter, such as “loosely 

coupling methods”. In a paper though, it is mentioned that “tighter coupling methods 
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should be used for better results.[17] On the other hand, the use of ultra-tight coupling 

methods is really difficult to approach and are characterised by computational complexity 

when compared to loosly coupling.[18] 

In order to improve the results obtained, another research paper suggests the use of 

optical system in combination with a map.[14] This method of sensor fusion was developed 

and tested, showing that the position estimation is possible even when only two satellites 

are available. It should be noted though, that accuracy had a range from one (1) to ten 

(10) meters depending on which satellites couples were available.[15] 

Another paper[16] suggests the use of a gyroscope, odometry and a map for the better 

estimation of the absolute position of a robot, approach that has been implemented to 

self-driving cars from Audi and Alfa Romeo.[16] 

There is quite a lot of research when it comes to methods of improving the estimation of 

position and orientation of a robot in external environments using many other different 

methods such as rule or fuzzy-based fusion which are implemented along with Kalman 

filters.[19] Other methods include, lane tracking[20],[21],[22] , map matching[23],[24] , traffic sign 

localisation[25], [26] , Simultaneous Localisation and Mapping (SLAM)[28], [29] and INS/GPS as 

mentioned before. 

While there are a lot of research papers when it comes to applications of Kalman filters, 

when it comes to applications of complementary filters the literature is quite limited. 

Some of them are presented below.  

Firstly, the paper from Douglas Guimarães Macharet et al., “Mobile Robot Localization in 

Outdoor Environments using Complementary Filtering”, should be mentioned. In this 

particular research the use of complementary filters is suggested for outdoors applications, 

mostly because the position there should be estimated in three dimensions making the 

use of Kalman filters quite computationally complicated. Consequently, their goal was to 

find an appropriate model for robotic systems that includes sensors and motors, but is 

quite quick at start up and easy to calculate. The use of complementary filters was selected 

because of having low computational cost, faster dynamic responses and simple 

adjustment of the parameters of the algorithm. However, in this paper the main objective 

is on estimating the orientation of the robot and not its position. This article presents a 

localization system for mobile robots based on the complementary filtering technique to 

estimate the localization and orientation, through the fusion of data from IMU, GPS and 

compass. The results obtained through this system are compared positively with those 

obtained using more complex and time consuming classic techniques.[27] 

A similar article that studies the use of complementary filters for the estimation of 

position and orientation is the following: “Adaptive complementary filtering algorithm for 

mobile robot localization”, from Armando Alves Neto et al.. For the experimental 

confirmation of the results, the Pioneer 3-AT is being used. It should also be noted that 
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the results were quite satisfying and really close to those that came up from the 

implementation of more complex techniques such as the UKF.[30] 

1.4 EXPECTED OUTCOME (WHAT WE DO-RECONSIDER TITLE) 

In this Diploma thesis a way of estimating the state of the mobile robot Pioneer 2-AT is 

presented using complementary filters. The state is being estimated in the three 

dimensions and the approach used is similar to the one presented in the article, “UAV 

State Estimation using Adaptive Complementary Filters”, from Panos Marantos et al. [34]. 

The robot is equipped with sensors such as GPS and IMU and with the velocity 

measurements obtained from odometry the data are used to estimate the position and 

velocity of the mobile robot. The estimation is achieved by a GPS/INS filter using 

complementary filters. The robot should be able to know where it is at each given 

moment when moving in an outdoor environment, where GPS signal is available.  

Many experiments were conducted in order to confirm the right configuration of the 

system as well as to evaluate the results of the filter. 

1.5 STRUCTURE  

This diploma thesis is divided into 6 chapters: 

Chapter 2: In this chapter the problem is stated and the setup is presented along with the 

details concerning the sensors used. 

Chapter 3: In this chapter the approach of solution is presented and explained in detail. 

Model and sensors are fused to give the estimation of the state of the skid-steering mobile 

robot. 

Chapter 4: In this chapter the different experiments conducted to validate the correct 

setup of the system and the sensor fusion results are presented. Discussion and 

conclusions on the results is also provided.  

Chapter 5: In this chapter issues for further research and improvements are given. 

Chapter 6: In this chapter the function prototyping is explained, ways to use the robot are 

presented and common troubleshooting is presented. 

 

 



22 
 

2 TECHNICAL PROBLEM STATEMENT 

2.1 SETUP 

The robot used for the modeling of the system is the Pioneer 2-AT, which is property of 

the Control Systems Lab of the School of Mechanical Engineering, NTUA.  

Pioneer is a family of mobile robots, both two-wheel and four-wheel drive. All are 

intelligent mobile robots, whose client-server architecture was originally developed by 

Kurt Konolige, Ph.D., of SRI International, Inc. and Stanford University. 

ActivMedia’s robots are truly intelligent, off-the-shelf mobile platforms, containing all of 

the basic components for sensing and navigation in a real-world environment, including 

battery power, drive motors and wheels, position-speed encoders and integrated sensors.  

Pioneer 2-AT is a four-wheel drive, skid-steering mobile robot (SSMR) introduced for 

operation in uneven indoor and outdoor environments, including loose, rough terrain. 

Each side of the Pioneer AT is electronically and physically linked for evenly applied 

translational and rotational power and speeds.[5] As such, the two wheels of each side have 

the same angular velocity at any given moment. One of the motors from each side is 

equipped with a quadrature encoder with a resolution of 100 pulses per revolution.  

The robot is equipped with a 20-MHz Siemens 88C166-based microcontroller, with 

independent motor-power and sonar microcontroller boards. Pioneer 2-AT also comes 

with a stall-detection system and inflatable pneumatic tires with metal wheels for much 

more robust operation in rough terrain, as well as the ability to carry nearly 30 kilograms 

(66lbs) of payload and climb a 60-percent grade. The maximum speed of the mobile robot 

is 0.8m/s.[5]  

 

FIGURE 6: PIONEER 2-AT SKID STEERING MOBILE ROBOT.
[5]
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The robot is programmed in the Robot Operating System (ROS). It can be functioned 

either through ROS environment or manually using a joystick or by sending commands 

directly to it. 

ROS 

ROS is a meta-operating system created by Willow Garage, which provides not only an 

interface to the sensors and actuators attached to a robot, but allows the implementation 

of commonly used functionalities such as message passing between processes and package 

management.[4] It is a collection of tools, libraries, and conventions that aim to simplify 

the task of creating complex and robust robot behavior across a wide variety of robotic 

platforms.[31] The communication with the sensors and actuators is carried out through an 

IP network. ROS works under a client/server architecture, where one or more robots, with 

a set of attached sensors and actuators, upload a service to enable a communication 

channel between a remote client and the sensors. The client program can run on any 

computer that has a network connection to the robot or team of robots.[4] 

The setup of the robot includes the sensors and also a joystick which was used to control 

the motion of the robot. The IMU attached to the robot is the MTi-G from the Xsens 

Technologies B.V which also incorporates a GPS sensor.  

Following, in Figure 7 one can see the setup of the mobile robot. 

 

 

FIGURE 7: SETUP OF THE MOBILE ROBOT. 
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The microprocessor can be seen attached to the middle of the robot and then the joystick 

used to control the robot, as well as the IMU connected to the satellites receiver. The MTi-

G was positioned at the front of the mobile robot along its 𝑦 axis close to the center of 

gravity in order to avoid any centripetal acceleration as an effect of the rotations of the 

vehicle but at the same time be far enough of the robot’s motors to remain uninfluenced 

of the magnetic forces. 

In addition, every time the robot boots it creates a Wi-Fi hotspot in which one can 

connect, access and control it. 

As mentioned before the mobile robot used to conduct the sensor fusion is a skid-steering 

one and as such a mathematical model of a 4-wheel SSMR is presented below. At this 

point we should mention that the following work was produced by Krzysztof Kozłowski 

and published under the name “Modelling and Control of a 4-wheel skid-steering mobile 

robot”.[33] 

The steering of an SSMR is achieved by differentially driving wheel pairs on each side of 

the robot. Although the steering scheme yields some mechanical benefits, the control of 

an SSMR is a challenging task because the wheels must skid laterally to follow a curved 

path.  

Because of lateral skidding, velocity constraints occurring in SSMRs are quite different 

from the ones met in other mobile platforms where wheels are not supposed to skid. This 

implies that the control of this robot at the kinematic level only is not sufficient and, in 

general, demands the use of a properly designed control algorithm at the dynamic level, 

too.  

2.2 MODEL 

Here follows a mathematical description of an SSMR moving on a planar surface. 

To consider the kinematic model of an SSMR, it is assumed that the robot is placed on a 

plane surface with the inertial orthonormal basis (𝑋𝑔, 𝑌𝑔, 𝑍𝑔), see Figure 8. A local 

coordinate frame denoted by (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙) is assigned to the robot at its center of mass 

(COM). According to Figure 8, the coordinates of COM in the inertial frame can be 

written as 𝐶𝑂𝑀 = (𝑋, 𝑌, 𝑍). Since in this work the plane motion is considered only, the 𝑍-

coordinate of COM is constant(𝑍 = 𝑐𝑜𝑛𝑠𝑡).  

[�̇�
�̇�

] = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑣𝑥

𝑣𝑦
] 

(2-1) 

 

Where �̇�, �̇� denote the velocities, 𝜃 is the orientation of the robot and 𝑣 = [𝑣𝑥 𝑣𝑦 0] is 

the vector of linear velocity expressed in the local frame. Also, because of the planar 

motion one can write �̇� = 𝜔. 
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FIGURE 8: SSMR IN THE INERTIAL FRAME.
[33]

 

In this description it is also considered a simplified case of the SSMR movement for which 

the longitudinal slip between the wheels and the surface can be neglected and thus: 

𝑣𝑖𝑥 = 𝑟𝑖𝜔𝑖 (2-2) 

Where, 𝑣𝑖𝑥 is the longitudinal component of the total velocity vector 𝑣𝑖 of the 𝑖 − 𝑡ℎ wheel 

expressed in the local frame and 𝑟𝑖 denotes the so-called effective rolling radius of that 

wheel. It is also assumed that the effective radius 𝑟𝑖 = 𝑟 for each wheel. 

𝜔𝑤 = [
𝜔𝐿

𝜔𝑅
] =

1

𝑟
[
𝑣𝐿

𝑣𝑅
] 

(2-3) 

 

Where 𝜔𝐿, 𝜔𝑅 are the angular velocities of the left and right wheels respectively and 𝑣𝐿 

and 𝑣𝑅 denote the longitudinal coordinates of the left and right wheel velocities. 

 

[
𝑣𝑥

𝜔
] = 𝑟 [

𝜔𝐿 + 𝜔𝑅

2
−𝜔𝐿 + 𝜔𝑅

2𝑐

] (2-4) 

 

Where 𝜔, is the angular velocity. 

In Figure 9 a simplified scheme of the drive on the right side of the robot is depicted. 
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FIGURE 9: DRIVE SYSTEM ON THE RIGHT SIDE OF THE VEHICLE.[33] 

2.3 SENSORS 

In this section the technical data of the sensors used are being presented.  

2.3.1 IMU 

The main disadvantage IMUs are facing is that both gyroscope's and accelerometer’s 

measurements drift over time infinitely. That's why we use a sensor fusion in order to 

improve this error that increases over time and obtain a more accurate estimation of the 

state of the robot.  

As mentioned earlier, the IMU is the MTi-G sensor from Xsens, it is compact, lightweight 

and is an integrated GPS and MEMS Inertial Measurement Unit with a Navigation and 

Attitude and Heading Reference System processor. The IMU attached to it is working at a 

frequency of 100Hz. The device is configurable and has many settings and properties such 

as, different output modes of the measurements and manual calibration capabilities. 

 

FIGURE 10: MTI-G XSENS SENSOR.
[35]
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2.3.2 GPS 

On the GPS side of the MTi-G, the internal low‐power signal processor runs a real‐time 

Xsens Kalman Filter (XKF) providing inertial enhanced 3D position and velocity estimates. 

The MTi‐G also provides drift‐free, GPS enhanced, 3D orientation estimates, as well as 

calibrated 3D acceleration, 3D rate of turn, 3D earth‐magnetic field data and static 

pressure (barometer).[32] However, it should be noted that for our application the Xsens 

Kalman Filter was disabled and raw GPS data were acquired in order to feed the 

complementary filter.  

The GPS provides the absolute position of it, as well as the velocity in the three 

dimensions at a frequency of 10𝐻𝑧. The minimum error of this GPS in the 𝑥 and 𝑦 

direction is 3  meters but, depending on the place and the surroundings it could 

sometimes reach 11 meters. When it comes to the altitude the error is even more making 

the GPS unreliable to use. This could be solved by also obtaining the pressure 

measurements of the IMU and fuse them with the altitude measurements of the GPS in 

order to improve the 𝑧 axis accuracy. In this thesis, only the GPS’s altitude measurements 

are taken into account. The antenna used for the GPS capabilities of the MTi-G was 

provided by the Control Systems Laboratory (CSL) instead of the one provided by the 

supplier of the sensor, in order to improve the reception between the buildings where 

some of the experiments took place. 

 
FIGURE 11: GPS ANTENNA PROVIDED FROM THE CSL. 

We should also mention that despite the fact that, the GPS is the only sensor that 

measures the absolute position and velocity, the need of a sensor fusion scheme arises 

because of the low update rate, lack of accuracy, introduced lag especially in velocity 

measurements and possible loss of signal.[34] 
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2.3.3 ODOMETRY 

The robot has an optical Quadrature Encoder which is used to translate the angular 

position or movement into analog or digital signal. It produces two rectangular pulses 

with a phase difference of 90°. The robot is also equipped with an Odroid U2 computer 

with 1.7GHz computational power and 2GB of RAM. It is capable of performing the 

communication between the micro-controller and at the same time, communicating with 

another computer connected to the network. The robot has a PI control and has been 

programmed to perform the calculations it needs at specific time intervals. The encoder of 

the robot has a resolution of 100 [
𝑐𝑙𝑖𝑐𝑘𝑠

𝑟𝑒𝑣
]. The robot is equipped with a speed reducer and 

has a reduction ratio of 𝑛𝑝𝑢𝑙𝑙𝑒𝑦 =
25

20
= 1.25. As such the maximum angular speed of the 

motor is: 

𝜔𝑚𝑜𝑡𝑜𝑟 =
𝑣𝑚𝑎𝑥

𝑟
∙ 𝑛 ∙ 𝑛𝑝𝑢𝑙𝑙𝑒𝑦 = 590.09 [

𝑟𝑎𝑑

𝑠
] (2-5) 

 

The maximum frequency of the pulses is: 

𝑓𝑚𝑎𝑥 =
𝜔𝑚𝑜𝑡𝑜𝑟

2𝜋
𝑒𝑛𝑐𝑟𝑒𝑠 = 9391.85[𝐻𝑧] (2-6) 

The controller of the robot can handle this frequency without any issues. 

Having presented the kinematic model of the mobile robot and the sensors attached to it, 

we should also mention what are the inputs and outputs of our system when estimating 

the state of the robot. 

2.4 SYSTEM’S INPUTS/OUTPUTS 

The system’s inputs are the orientation, the angular velocity and the acceleration in three 

dimensions of the robot as obtained from the IMU attached to it. The system’s outputs, as 

obtained from the sensor fusion, are the position of the robot and the linear velocities in 

the three dimensions 𝑥𝑦𝑧 of the robot’s local frame. The state estimation package for the 

2at mobile robot prints and updates the following values: 

Orientation 𝑝ℎ𝑖, 𝑡ℎ𝑒𝑡𝑎, 𝑝𝑠𝑖 (obtained directly from the IMU) 

Position 𝑥, 𝑦, 𝑧 (obtained from the sensor fusion) 

Velocity 𝑢, 𝑣, 𝑤 (obtained from the sensor fusion) 

  

In the next chapter, the way the sensor fusion was applied will be presented and analysed. 
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3 APPROACH OF SOLUTION 

In this chapter we address the complete state estimation problem of a skid-steering 

mobile robot, while using the low-cost sensors presented before with bias variations and 

higher levels of noise. The estimation of the position and the velocity is achieved by 

complementary filters combining the various sensors.  

The frame in which the sensor fusion takes place is the mobile’s local frame expressed in 

the North East Down (NED) coordinates. All measurements received from the sensors are 

expressed in this frame before any other calculations are performed. 

 

FIGURE 12: LOCAL NED FRAME OF SSMR. 

The preparation of the measurements is presented below, data are transferred to the 

appropriate frame and then, the sensor fusion process is presented and analysed. 

3.1 GPS 

It should be mentioned that the MTi-G has a built in Kalman filter to fuse the 

measurements from the IMU and the GPS, which was disabled in order to receive the raw 

GPS data that are needed for our application. The MTi-G was configured in a way that 

provides us with the raw GPS measurements. 

GPS position values are obtained in Latitude (𝜑), Longitude (𝜆) and Altitude (ℎ), then 

transferred into the Earth Centered Frame (ECEF - Earth-Centered Earth-Fixed) and 

finally transferred into the robot's NED frame. The 𝑥, 𝑦, 𝑧 axes of the robot will match the 

local NED axes. The longitude measures the rotational angle (ranging from −180° to 180°) 

between the Prime Meridian and the measured point. The latitude measures the angle 

(ranging from −90° to 90°) between the equatorial plane and the normal of the reference 

𝑦𝑁𝐸𝐷 

𝑥𝑁𝐸𝐷 

𝑧𝑁𝐸𝐷 
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ellipsoid that passes through the measured point. The height (or altitude) is the local 

vertical distance between the measured point and the reference ellipsoid. This is the 

Geodetic Coordinate System.  

The ECEF coordinate system rotates with the earth around its spin axis. As such, a fixed 

point on the earth surface has a fixed set of coordinates. The origin and axes of the ECEF 

coordinate system are defined as follows: 

 The origin is located at the center of the Earth. 

 The 𝑍 − 𝑎𝑥𝑖𝑠 is along the spin axis of the earth, pointing to the north pole. 

 The 𝑋 − 𝑎𝑥𝑖𝑠 intersects the sphere of the earth at 0° latitude and 0° longitude. 

 The 𝑌 − 𝑎𝑥𝑖𝑠 is orthogonal to the 𝑍 − and 𝑋 − 𝑎𝑥𝑒𝑠  with the usual right-hand 

rule.[40]  

The NED frame is defined as follows: the “North” axis points North in the local meridian 

direction and the “East” axis points East in the local parallel direction. 

These directions span a Cartesian plane on the Local Tangent Plane (LTP). The final, 

“Down” axis is perpendicular to the other two axes and points towards the Earth, to 

complete a right-handed coordinate system. Note that the “Down” axis doesn’t point to 

the center of the Earth, but is defined by the other two axes and its direction depends on 

the latitude and longitude of the origin of the NED frame.  

The origin of the NED frame is fixed in ECEF coordinates.[41] It can be chosen arbitrarily at 

a point on the surface at the operational site of the robot.  

 

FIGURE 13: EARTH CENTERED, EARTH FIXED COORDINATES IN RELATION TO LATITUDE AND 

LONGITUDE.[39]  
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FIGURE 14: NED FRAME. 

Below, is presented the process of the aforementioned transformations. 

The earth centered coordinates are obtained as follows: 

𝑥𝑒𝑐𝑒𝑓 = (
𝑅𝑒𝑎

√1 − 𝑓2 sin2(𝑙𝑎𝑡)
+ 𝑎𝑙𝑡) cos(𝑙𝑎𝑡) cos(𝑙𝑜𝑛) 

𝑦𝑒𝑐𝑒𝑓 = (
𝑅𝑒𝑎

√1 − 𝑓2 sin2(𝑙𝑎𝑡)
+ 𝑎𝑙𝑡) cos(𝑙𝑎𝑡) sin(𝑙𝑜𝑛) 

𝑧𝑒𝑐𝑒𝑓 = (
(1 − 𝑓2)𝑅𝑒𝑎

√1 − 𝑓2 sin2(𝑙𝑎𝑡)
+ 𝑎𝑙𝑡) sin(𝑙𝑎𝑡) 

(3-1) 

 

Where, 𝑅𝑒𝑎 = 6378137𝑚 is the semi-major axis of earth and, 𝑓 = 0.003352810664747 is 

the earth flattening, 𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡 are latitude, longitude and altitude respectively.  

Now, from the ECEF we can transfer the coordinates to the robot’s local NED: 

𝑥 = −𝑠𝑖𝑛 (𝑙𝑎𝑡) cos(𝑙𝑜𝑛) (𝑥𝑒𝑐𝑒𝑓 − 𝑥𝑒𝑐𝑒𝑓,0)

− sin(𝑙𝑎𝑡) sin(𝑙𝑜𝑛)(𝑦𝑒𝑐𝑒𝑓 − 𝑦𝑒𝑐𝑒𝑓,0)

+ cos(𝑙𝑎𝑡)(𝑧𝑒𝑐𝑒𝑓 − 𝑧𝑒𝑐𝑒𝑓,0) 

𝑦 = − sin(𝑙𝑜𝑛) (𝑥𝑒𝑐𝑒𝑓 − 𝑥𝑒𝑐𝑒𝑓,0) + cos(𝑙𝑜𝑛)(𝑦𝑒𝑐𝑒𝑓 − 𝑦𝑒𝑐𝑒𝑓,0) 

𝑧 = − cos(𝑙𝑎𝑡) cos(𝑙𝑜𝑛) (𝑥𝑒𝑐𝑒𝑓 − 𝑥𝑒𝑐𝑒𝑓,0)

− cos(𝑙𝑎𝑡) sin(𝑙𝑜𝑛) (𝑦𝑒𝑐𝑒𝑓 − 𝑦𝑒𝑐𝑒𝑓,0)

− sin(𝑙𝑎𝑡) (𝑧𝑒𝑐𝑒𝑓 − 𝑧𝑒𝑐𝑒𝑓,0) 

(3-2) 

Having obtained the position on the NED frame of the robot, the GPS data are ready to be 

used in the sensor fusion process. 
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3.2 IMU 

The IMU is providing the orientation of the robot as long as the acceleration and the 

angular velocity of it in three dimensions, all being used as inputs. The orientation of the 

robot is obtained in quaternions and is then translated into Euler angles, which are easier 

to be used when the application is a mobile robot. The IMU is located at the front of the 

robot and the data are obtained at the NED frame of the sensor, so the measurements 

received are being transferred to the NED frame at the robot's center of mass. 

The quaternions are translated into Euler angles: 

𝜑 = tan−1 (2
𝑞0𝑞1 + 𝑞2𝑞3

1 − 2(𝑞1
2 + 𝑞2

2)
) 

𝜃 =  sin−1(2(𝑞0𝑞2 − 𝑞3𝑞1)) 

𝜓 = tan−1 (2
𝑞0𝑞3 + 𝑞1𝑞2

1 − 2(𝑞2
2 + 𝑞3

2)
) 

(3-3)[35] 

The acceleration is being transferred to the body frame as follows: 

𝑟𝑖𝑚𝑢 = (0.212, 0.0, 0.0), is the position of the IMU in relation to the robot’s center of mass. 

𝑎 = 𝑎 + 𝜔 × (𝜔 × 𝑟𝑖𝑚𝑢), acceleration transferred to body frame. 

The acceleration in the 𝑧 direction (gravity), after the first iteration is being calculated as 

the mean value of the previous ones, providing better accuracy. 

Lastly, first position is set as the reference point, and the route of the robot is expressed in 

relation to the first point.  

3.3 ODOMETRY 

The encoders of the robot are providing measurements of angular velocity of the left and 

right wheels and encoder measurements for left and right wheels as well. Following are 

the equations being used to translate those measurements into the angular velocity of the 

robot and the orientation of it. The velocities obtained from odometry are used along with 

those from GPS for the 𝑥 direction. 

𝑅 = 0.11𝑚, measured radius of robot’s tires. 

𝑑 = 0.1905 ∙ 1.63𝑚, geometric characteristic of skid-steering mobile robots, as presented 

in figure 15. 

𝑒𝑛𝑐𝑟𝑒𝑠 = 8187.5  

𝑙𝑜𝑜𝑝𝑡𝑖𝑚𝑒 = 15 ∙ 10−3𝑠  
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The right and left angular velocities are calculated through the encoders’ measurements: 

𝜔𝐿 =
2𝜋 (

𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝐿

𝑒𝑛𝑐𝑟𝑒𝑠 )

𝑙𝑜𝑜𝑝𝑡𝑖𝑚𝑒
 

𝜔𝑅 =
2𝜋 (

𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑅

𝑒𝑛𝑐𝑟𝑒𝑠 )

𝑙𝑜𝑜𝑝𝑡𝑖𝑚𝑒
 

The angular velocity of the mobile robot: 𝜔 = −
(𝜔𝑅−𝜔𝐿)∙𝑅

2∙𝑑
 

The linear velocity of the mobile robot: 𝑢 =
(𝜔𝑅+𝜔𝐿)∙𝑅

2
 

In the state estimation code it has also been implemented a way of calculating the robot’s 

position using the odometry but this way has not being used in the state estimation, as it 

would add more errors to the calculation.  

 

 

 

3.4 SENSOR FUSION 

Having transferred all the measurements into a common coordinate frame we are ready to 

implement the sensor fusion in order to estimate the state of the robot. As mentioned to a 

previous chapter the method used is complementary filters. 

FIGURE 15: WHEEL VELOCITIES 
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An observer fusing the data obtained from the different sources using complementary 

filters is a good approach to the state estimation problem. In a later step this approach 

would be also helpful in the use of a controller for the robot. 

The observer used is based on the “UAV State Estimation using Adaptive Complementary 

Filters”[34] reference, and is estimating the translational velocity and accelerometer biases 

using second-order complementary filters and first order for the position estimation. This 

is implemented by fusing the GPS, the IMU and the odometry. Below follows the GPS/INS 

observer: 

�̂�𝑁
𝑘 = �̂�𝑁

𝑘− + 𝑘𝑔𝑝𝑠
𝑝𝑁

(𝑝𝑁
𝑔𝑝𝑠,𝑘

− �̂�𝑁
𝑘−) 

�̂�𝐸
𝑘 = �̂�𝐸

𝑘− + 𝑘𝑔𝑝𝑠
𝑝𝐸

(𝑝𝐸
𝑔𝑝𝑠,𝑘

− �̂�𝐸
𝑘−) 

�̂�𝐷
𝑘 = �̂�𝐷

𝑘− + 𝑘𝑔𝑝𝑠
𝑝𝐷

(𝑝𝐷
𝑔𝑝𝑠,𝑘

− �̂�𝐷
𝑘−) 

�̂�𝐼
𝑘 = �̂�𝐼

𝑘 + 𝑲𝑔𝑝𝑠
𝑣 (𝑣𝐼

𝑔𝑝𝑠,𝑘
− �̂�𝐼

𝑘) 

�̂�𝑎,𝐼
𝑘 = �̂�𝑎,𝐼

𝑘− − 𝑲𝑔𝑝𝑠
𝑎 (𝑣𝐼

𝑔𝑝𝑠,𝑘
− �̂�𝐼

𝑘) 

(3-4) 

Where, �̂�𝐼
𝑘− = �̂�𝐼

𝑘−1 + 𝛥𝑡�̂�𝐼
𝑘−1, �̂�𝐼

𝑘− = �̂�𝐼
𝑘−1 + 𝛥𝑡(�̂�𝑘−1

𝑇 𝑎𝐵
𝑦,𝑘−1

+ 𝑔 − �̂�𝑎,𝐼
𝑘−1) and �̂�𝑎,𝐼

𝑘− = �̂�𝑎,𝐼
𝑘−1 are 

the priori estimation of the state 𝑥, 𝑘𝑔𝑝𝑠
𝑝𝑁  and 𝑘𝑔𝑝𝑠

𝑝𝐸  are positive gains derived from the 

selected low-pass cut-off frequencies of the GPS position measurements. 𝑲𝑔𝑝𝑠
𝑣 , 𝑲𝑔𝑝𝑠

𝑎  are 

positive diagonal matrices which are derived from the selected high-pass cut-off 

frequencies and damping factors of the vehicle acceleration.  

It should be noted that, if there is no GPS available, the MTi‐G cannot make a reliable 

estimation of position or velocity. In a different approach it could be chosen to estimate 

the 𝑥𝑦 position and the 𝑢 velocity using the odometry, but in this thesis this wasn’t chosen 

because it would add extra errors to the estimation, as the position estimation suffers 

from many errors. Though, as mentioned in the 3.3 Odometry section above, the code has 

been implemented in the state_estimation_2at.py file for future reference and/or use. First, 

in order to estimate the position, the velocity has to be integrated and then, calculate the 

new position based on the previous one, meaning the errors are magnified from the one 

time step to the next one. 

3.5 S/W ENGINEERING 

In this chapter the function coded and used in the ROS package to estimate the state of 

the mobile robot is presented and explained in detail.  

In the previous chapters a presentation of how the measurements were handled before 

being used in the state estimation was made, and a brief explanation of the 
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complementary equations that were used was also described. Here, a more detailed 

explanation of the code and the function StateEstimation will be presented and explained. 

Firstly, the necessary initial values are being defined. For the first measurement the biases 

are set to zero and the state estimation takes place using only the odometry measurement 

for the velocity (GPS signal not still available) and the position is forced to zero. In this 

last case it is assumed that the robot is stationary when the first state estimation is being 

made. Though, it should be noted that in the code has also been implemented a way of 

using the GPS values right from the start, but in that case it would be safer to use a delay 

before calculating the first estimation, as it might take a while for the GPS to find satellites 

and give the first measurements. 

Having initialised, time and first position then the state estimation function can use the 

previous measurements to estimate and approximate more accurately the mobile’s state. 

For the orientation, as mentioned earlier, only the IMU measurements are being used. The 

first Euler angles are also initialised and then subtracted from any other measurement so 

as to give the change of orientation comparing to the initial state. 

Lastly, in case of the GPS losing its signal, a message is presented to the user informing of 

this situation. The estimation of the velocity then takes into consideration only the 

velocity obtained from the odometry. The estimation of the position only takes into 

consideration the a priori estimation which is based in the robot’s kinematic model. 
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4 RESULTS 

In this section, a summary of the experiments and the results is going to be presented as 

long as the different scenarios that were taken into consideration and the check tests that 

were performed in order to ensure that all the data received were accurate and that 

sensors were tuned in the right way. There were performed many tests and experiments 

but only the main ones will be extensively presented and the rest will be mentioned in 

short. Some of the experiments were performed outdoors when GPS data were needed and 

some were conducted indoors for the check and regulation of the rest of the sensors and 

hardware. 

4.1 EXPERIMENTAL SETUP 

In the different experiments performed, when control of motion for the robot was needed, 

the joystick was used. When it came to the indoors ones all sensors except the GPS were 

up and running and for the outdoor, all sensors were active. The indoors experiments 

were performed in the Control Systems Laboratory, while the outdoors were performed in 

different places around the university campus depending on the purpose of the 

experiment and will be specified later on. 

The purpose of the first test that was conducted was to identify that everything is working 

properly. In this test it was made clear that the way one can connect to the robot wasn’t 

practical and as such the robot was programmed to create its own Wi-Fi hotspot upon 

booting making it easy for the handler to connect and control. One more test was also 

conducted to check the behavior of the joystick. It seemed that the response of it was 

quite aggressive and the gains were readjusted to help the control of the robot’s 

movement become smoother. 

Other tests that were performed indoors included checking the accuracy of the 

orientation data and how they might be influenced by the IMU being positioned near the 

motors of the robot.  

Firstly, the robot was turned off and positioned in a known direction. Only the IMU was 

working at this point and the values of the quaternions were obtained. As a next step, the 

robot was turned on but stationary at the same orientation and the same measurements of 

the IMU were recorded. Lastly, the robot was moving in the direction of the orientation 

specified in order to ensure that at worst case scenario (full power of motors) the 

influence of the magnets to the  IMU was negligible. These actions were repeated several 

times to ensure that many data were available to reach a safe conclusion. After obtaining 

all the measurements, the data were compared and there was no more than 3 degrees 

difference with the motors on and running. That ensured the right set up of the IMU on 

the robot.  
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The next step was to ensure the accuracy of the orientation obtained from the IMU, 

because this was the only sensor providing measurements of orientation. There were 

performed many in place rotations around the robot’s axis and checked with pre-specified 

points to make sure the rotations were properly measured. The results were really good 

and there was no need for any further checking of the orientation of the robot. 

There were conducted two more experiments with all the systems up and running, the 

purpose of the first one was mostly to check that all the transformations used in the filter 

were correct and to also get an approximate estimation of how well the filter works. The 

second one was a ground-truth experiment.  

The two aforementioned experiments will be presented in detail below. 

4.2 VERIFICATION OF SYSTEM SETUP AND SENSOR FUSION 

BEHAVIOUR 

4.2.1 SCENARIO 

The first scenario was conducted on the parking space of the School of Mechanical 

Engineering. The path was drawn on the ground using chalk and measured with a 

measurement tape. The sensors were given time firstly, to heat up and secondly, in order 

for the GPS to find the satellites and reduce its error at 3 meters. The robot was controlled 

through the joystick over the path twice to check the data it was giving us. The main 

reason for this experiment was to check that the transformations used to transfer all 

measurements to body frame were correctly coded and calculated.  

4.2.2 RESULTS 

In the next figure one can see how the path looked like. The shape is like a flag in order to 

force the robot to turn 90 degrees each time and as such have a clear understanding of 

how the measurements should look like. Following one can see, the velocities: 



38 
 

 
FIGURE 16: VELOCITY MEASUREMENTS AND VELOCITY ESTIMATION. 

Forward and backward movements seem to be correctly aligned. In the cases where one 

can see that GPS and odometry measurements are in an opposite direction coincide with 

the case where the accuracy of the GPS is really bad and the filter recognizes that and uses 

only the odometry measurements for this period of time. In the following picture one can 

note this behavior.  

 
FIGURE 17: FILTER BEHAVIOR UNDER BAD GPS ACCURACY. 
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One more interesting observation in this velocities graph is the fact that the filter can 

really well calculate the zero velocities, where the GPS usually gives really inaccurate 

measurements. The orange line is the odometry measurement which we know is 

completely accurate at zero velocities, and it is noticed that the estimated (filtered) 

velocity is around zero as well (blue line).  

 
FIGURE 18: FILTER BEHAVIOR ON ZERO VELOCITY. 

In the following graphs is presented the position of the robot. 
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FIGURE 19: GPS AND ESTIMATED ROUTE OF THE ROBOT 

The drawn route was as presented below: 

 
FIGURE 20: DRAWN ROUTE OF EXPERIMENT 
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The experiment was successful since everything was configured correctly, but it can be seen 

that the GPS has big inaccuracies leading to not that accurate results. One more thing that was 

noticed and will be apparent in the Ground Truth experiment is the fact that the robot isn’t 

following the joystick commands as smooth as it should leading to a difficult control of its route.  

4.3 GROUND TRUTH 

4.3.1 SCENARIO 

The last experiment performed was the one to decide the overall accuracy of the sensor 

fusion. It should be noted that the 3 meters accuracy could not be reduced as this is the 

accuracy of the only sensor providing the absolute position. The reason sensor fusion is 

used is only in order to minimize the errors of the different sensors, such as drift or non-

zero velocity provided by the GPS as explained earlier.  

The experiment took place at the university’s gym court. The terrain is rough consisting of 

soil and small rocks. This potentially increases the difficulty for the robot to be driven and 

the skid-steering phenomena. The experiment setup was consisted of 24 checkpoints as 

displayed below. The route designed for the robot to follow is a parallelogram of the 

following dimensions, 28𝑚 × 12𝑚 . Checkpoints (1)  through (4), (6)  through (16)  and 

(18)  to (24)  are positioned in 3  meters linear distance between them, while 

checkpoints (4)  through (6)  and (16)  through (18)  are positioned in 5  meters linear 

distance between them. The distance between those points was chosen to be at least the 

minimum accuracy of the GPS. The robot was controlled through the joystick and the 

experiment was recorded by a camera attached to a drone.  

 
FIGURE 21: SETUP OF EXPERIMENT. THE DRONE RECORDING THE EXPERIMENT CAN BE SEEN AS A 

SHADOW IN THE PICUTRE. PIONEER 2AT AND TWO CHECKPOINTS CAN ALSO BE SEEN. 
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The Pioneer 2-AT was driven from the one checkpoint to the next, making a stop to each 

one. The reason why, this way was chosen to perform the experiment is because that way 

we could check during the post process where the robot is, as the velocity obtained from 

the odometry would be zero.  

Before the experiment started, it was given some time to the sensors to heat up and to the 

GPS to find the satellites and reduce its error at four (4) meters. 

 
FIGURE 22: SENSORS BEING PREPARED, ROBOT DRIVEN TO ITS START POINT. 

 
FIGURE 23: SETUP OF EXPERIMENT, WHERE SOME CHECKPOINTS ARE VISIBLE. 
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FIGURE 24: CAMPUS'S GYM COURT WHERE THE EXPERIMENT TOOK PLACE. 

4.3.2 RESULTS 

 
FIGURE 25: ROUTE OF THE ROBOT, AS MEASURED FROM THE GPS AND AS CALCULATED USING 

COMPLEMENTARY FILTERS. 

As mentioned earlier the robot couldn’t be properly controlled using the joystick. As a result, 

when someone is looking at the position graph and has in mind the rectangular setup of the 

route might come to the conclusion that the state estimation is quite inaccurate. The fact is that 
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the robot was actually following this weird non linear path, as it was unable due to its PID 

control to follow the commands properly. Sometimes though, the GPS inaccuracy was increased 

to 8 meters and in these cases as can be seen in the video the robot was kept stationary longer 

to reduce the error. 

 
FIGURE 26: VELOCITY OF THE ROBOT, AS MEASURED FROM THE GPS, THE ODOMETRY AND AS 

CALCULATED FROM THE SENSOR FUSION. 

In this experiment the velocity seems to be more inaccurate and the truth is that on the 

surroundings where the experiment took place the GPS was suffering from big errors. In the 

post process the gains were changed to see whether better results could be achieved but it only 

made the results worse. Though, the zero value of the velocity is still really well estimated from 

the sensor fusion. 

It becomes obvious that the setup of the robot and sensors being used need to be changed or 

improved. In a different application maybe the estimation of the position could also take into 

consideration the odometry. Lastly, GPS sensors have also been improved in the last years 

providing better accuracy, but they still remain inaccurate depending the application they are 

going to be used.  

There are many ways this method could be improved and many of them were presented in the 

introduction of this thesis. The use of complementary filters though seems to give a good 

estimation without the complexity of using Kalman filters. 
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4.4 DISCUSSION 

Having performed the Ground truth test a few things became obvious. It is important to 

take into consideration the facts the led to the previously presented results. Firstly, the 

robot wasn’t able to be controlled properly during the experiments leading to misleading 

assumptions of the estimation being inaccurate. The estimation seems to be giving really 

good results, and this can be clearly seen in the velocity graphs. When it comes to position 

estimation, the only sensor that measures absolute position is the GPS which is known to 

have at least 3 meters inaccuracy and this cannot be avoided unless a more accurate 

sensor is used for absolute position measurements. It is important to keep this in mind 

while evaluating the results. 
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5 ISSUES FOR FURTHER RESEARCH 

Until this point it should be clear that without a more accurate sensor we wouldn’t be able 

to achieve more accurate results. The main advantage of the proposed method is the 

reduction of the computational complexity of the overall system, which enables increasing 

the sampling frequency of the measurements with a consequent improvement in the 

accuracy of the estimates. Another, advantage is that drift can be also measured and 

estimated minimizing the errors in the 𝑦 direction.  

When it comes to estimating the position 𝑧 direction, the GPS suffers from large amount 

of errors. In that case a pressure measurement fused with the GPS measurement would 

result in a better estimation of altitude. 

The sensor fusion process could also be adjusted to provide state estimation, even when 

no GPS data are available using the other sensors attached to the robot. Furthermore, an 

adaptive process could be implemented in the case which the GPS error is really big. The 

gains could be readjusted to take into consideration mainly the IMU and odometer data. 

Finally, sensor fusion using complementary filters for improving absolute position 

estimates using GPS, IMU and odometry is not sufficient to provide a robust and accurate 

system for automotive applications. In cases where the accuracy is of the essence, other 

methods should be used in conjunction with this one, such as lane tracking, and traffic 

sign localization together with map matching. There is a lot of research on these methods 

and many references can also be found in the introduction of this thesis, or in the 

bibliography section. 
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6 APPENDIX 

6.1 FUNCTION PROTOTYPING 

In this section the functions used in the file mobile_state will be explained. 

In the main code the appropriate initialization of the variables is defined and the node 

needed for ROS is created. ROS is subscribing to the sensors’ topics and the 

StateEstimation message is printed. 

There are different functions for the different sensors, where the appropriate calculations 

are taking place. Those functions are: 

 callback_odom 

 callback_gps 

 callback_imu 

Every callback handles the measurements by transferring them to the appropriate frame, 

or expressing them in a different way.  

In the odom callback the angular and linear velocity is being calculated from the encoders 

and the appropriate calculations for estimating the position using the odometry is coded, 

while not used for the sensor fusion. 

In the GPS callback, the latitude, longitude and altitude obtained from the sensor are 

translated in terms of 𝑥, 𝑦, 𝑧 in the body frame. (The first positioned is supposed to be the 

(0,0,0). 

In the IMU callback the quaternions are being expressed in Euler angles, the acceleration 

is transferred to the body frame and lastly the first angles are saved as a reference. 

In the llatoecef function, the transformation from latitude, longitude and altitude to the 

Earth Center Frame is taking place and feeded into the lla2xyz functions which transfers 

this to the robot’s 𝑥𝑦𝑧 frame. 

In the R_bf2ned function, the transfer from the North-East-Down frame to the body frame 

is calculated. 

Lastly, the StateEstimation function is performing the estimation using the calculated and 

transferred values from the previous functions and the complementary filters to publish 

the state of the robot. 
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6.2 USE OF THE ROBOT 

Before one is able to use the sensors attached to the robot and the state estimation 

resulting from the sensor fusion, the appropriate ROS packages must be installed 

(assuming that ROS is already installed on the PC).  

Firstly, the installation of the rosserial package is necessary typing the following 

commands: 

$ sudo apt-get update 

$ sudo apt –get install rosserial 

$ sudo apt-get install rosserial-arduino 

 

arduino_mr 

In order for ROS to be able to send messages to the robot, the arduino_mr package, 

which includes the messages, must be installed. All is needed is for the folder to be copied 

in the folder ~catkin_ws/src and the run the following command: 

$ catkin_make 

While the system is at the ~/catkin_ws/ directory. 

 

Odometry 

In the same way the odometry folder is also copied in the directory ~catkin_ws/src and 

the following command should be run: 

$ catkin_make 

 

Joy_to_arduino 

For the joystick to work, the installation of the following packages is needed: 

$ rosdep install joy 

$ rosmake joy 

For information on how to configure the joystick (if further configuration is needed) 

please refer to the [36] reference.  

The appropriate privileges must be assigned to the joystick in order for it to work: 

$ sudo chmod a+rw /dev/input/jsX 

The joystick is ready to be used. Last step is to copy the folder joy_to_arduino in the 

directory ~/catkin_ws/src and run the command: 

$ catkin_make 
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If a different method of sending messages to the robot is needed, instead of the joystick, 

please refer to reference [36]. 

 

Delete ROS libraries 

For the arduino_mr package to be used the following steps should be followed: 

Deleting, if existing, the folder: 

~sketchbook/libraries/ros_lib 

And running the command: 

$ rm –rf ~/sketchbook/libraries/ros_lib 

$ rosrun rosserial_arduino make_libraries.py ~/sketchbook/libraries/ 

The last command should be run in order for the appropriate ROS libraries to be created.  

 

Arduino Libraries 

Two more libraries are necessary, the PWM and the PID_motor. Copy the two respective 

folders in the directory ~/sketchbook/libraries/. 

 

Using the Robot 

In order to be able to use the robot and control it using the joystick, the following 

procedure should be followed: 

1. Connect to the robot: 

a. Boot the robot. 

b. Connect to its Wi-Fi, which is listed under the name pioneer using the code: 

pioneer123. 

c. Through the terminal access control of the robot using ssh command 

ssh -X linaro@10.10.0.1 inserting the code linaro when prompted. 

d. Run roscore. 

e. Launch the file atx2_architecture.launch located in the following package 

arduino_mr, which initiates the required files to control the robot. 

f. Launch the file all_to_joy.launch from the package 

state_estimeation_u_comp_filters, which allows all processes to run and the 

user to control the robot through the joystick.  

2. The state estimation of the robot is being published to the message mobile_state.  

a. The state estimation can be run as follows:  
$ rosrun state_estimeation_u_comp_filters 

state_estimation_2at.py 
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Observing the messages being published 

For accessing any topic, run: 

$ rostopic echo <topic_name> 

The list of open topics is viewed by: 

$ rostopic list 

The topic’s messages can be viewed by: 

$ rostopic info <topic> 

For info on each topic’s message: 

$ rosmsg show <topic name> 

6.3 TROUBLESHOOTING 

 ARM Computer: In case the Arduino isn’t communicating with the PC equipped 

with an ARM processor (e.g. Odroid, Raspberry Pi,…) the rosserial-arduino package 

may not work properly. In that case install the following package: 

$ cd ~/catkin_ws/src/ 

$ git clone https://github.com/chuck-h/rosserial.git 

$ cd .. 

$ catkin_make 

$ catkin_make install 

$ source catkin_ws/install/setup.bash 

 In order for the command catkin_make to run properly one should always run it 

from the ~/catkin_ws directory. 

 roscore must always be running before any action is taken considering the ROS 

environment.  

 It may happen that the raw GPS data won’t be published. In that case the user 

should reconfigure the xsens to print the raw data, because it might have lost its 

configurations. 

 If any communication issues occur between the robot and the PC, run the following 

command on the robot’s terminal: 

$ export LC_ALL=C 
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