

Εθνικό Μετσοβίο Πολύτεχνειο Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Συστηματών Μεταδόσης Πληροφορίας και Τεχνολογίας Υλικών

Συγκριτική αξιολόγηση αλγορίθμων εκτίμησης κίνησης ως προς την ικανότητα διάκρισης διαφορετικών τύπων αθηρωματικών αλλοιώσεων από απεικονιστικές καταγραφές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σωτήριος Κ. Γκερνάνης

Επιβλέπων : Κωνσταντίνα Σ. Νικήτα Καθηγήτρια Ε.Μ.Π.

Αθήνα, Ιούνιος 2017

Εθνικό Μετσοβίο Πολύτεχνειο Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Συστηματών Μεταδόσης Πληροφορίας και Τεχνολογίας Υλικών

Συγκριτική αξιολόγηση αλγορίθμων εκτίμησης κίνησης ως προς την ικανότητα διάκρισης διαφορετικών τύπων αθηρωματικών αλλοιώσεων από απεικονιστικές καταγραφές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σωτήριος Κ. Γκερνάνης

Επιβλέπων : Κωνσταντίνα Σ. Νικήτα Καθηγήτρια Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 19^η Ιουνίου 2017.

.....

.....

Κωνσταντίνα Νικήτα Καθηγήτρια Ε.Μ.Π. Διονύσιος-Δημήτριος Κουτσούρης Καθηγητής Ε.Μ.Π Ανδρέας Σταφυλοπάτης Καθηγητής Ε.Μ.Π

Αθήνα, Ιούνιος 2017

.....

Σωτήριος Κ. Γκερνάνης

Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Σωτήριος Γκερνάνης 2017. Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Περιεχόμενα

E	ΥΧΑΡΙΣΤΙΕΣ	i			
П	ΕΡΙΛΗΨΗ	ii			
A	BSTRACT	iii			
1	1 Εισαγωγή				
	1.1 Δoμ	ιικά και λειτουργικά χαρακτηριστικά της καρωτίδας			
	1.1.1	Δομικά χαρακτηριστικά2			
	1.1.2	Μηχανικές Ιδιότητες3			
	1.2 Aθr	ηρωμάτωση4			
	1.3 Aσ	3εστοποίηση7			
	1.3.1	Ασβεστοποίηση Καρωτιδικού Αρτηριακού Τοιχώματος			
	1.4 Απε	εικόνιση με Υπερήχους7			
	1.4.1	Αρχή ΛειτουργίαςΑπεικόνισης με Υπερήχους8			
	1.4.2	Μέθοδοι απεικόνισης υπερήχων10			
	1.5 Επι	σκόπηση μελετών ανάλυσης κίνησης της καρωτίδας			
	1.5.1	Παράγοντες κινητικότητας στα τοιχώματα των αρτηριών			
	1.5.2	Πίνακας ερευνών, μελετών12			
	1.6 Σко	πός της Διπλωματικής Εργασίας21			
2	Υλικό κα	αι Μέθοδοι			
	2.1 Ιατρ	οικά Δεδομένα			
	2.1.1	Ασθενείς			
	2.1.2	Ακολουθίες εικόνων υπερήχων24			
	2.1.3	Ελαστογραφίες26			
	2.2 Mε	θοδολογία ανάλυσης κίνησης εικόνων υπερήχων			
	2.2.1 τετραγώ	Οπτική Ροή με χρήση περιορισμού του σφάλματος των ελαχίστων υνων με βάρη			
	2.2.2	Στατιστική Ανάλυση Spearman29			
	2.3 Παρ	οουσίαση χρησιμοποιούμενων αλγορίθμων			
	2.3.1	Προτεινόμενη μεθοδολογία			

	2.3.2		Αλγόριθμος Αρχείων Δεδομένων Video31
	2.3.3 A		ΑλγόριθμοςΑνάλυσης Κίνησης44
	2.3.4 Εκτέλεση Αλγόριθ		Εκτέλεση Αλγόριθμου Ανάλυσης Κίνησης47
3	Аπ	οτελέσ	ματα48
	3.1	Στατι	στική Ανάλυση Χαρακτηριστικών Κίνησης49
	3.2	Σύγκ	ριση με μέθοδο block matching54
	3.3	Δείκτ	ες Κίνησης
4	Συ	μπεράα	σματα59
	4.1	Περια	ορισμοί τρέχουσας εργασίας60
	4.2	Σχολι	ασμός Αποτελεσμάτων60
	4.3	Εξαγα	ωγή Συμπερασμάτων66
	4.4	Μελλ	\οντικές Ενέργειες67
5	Πα	ραρτήι	ματα69
	5.1	Αλγό	ριθμος createNewMat69
	5.2	Αλγό	ριθμος CarotidAnalysis75
	5.3	Αλγό	ριθμος στατιστικής ανάλυσης Statistics.m76
	5.4	Δείκτ	ες κίνησης77
6	Βιβ	<u></u> Βλιογρα	ι φία115

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω θερμά την καθηγήτρια Κωνσταντίνα Νικήτα για την εμπιστοσύνη που μου έδειξε καθώς και για τη δυνατότητα που μου έδωσε να εκπονήσω την παρούσα διπλωματική εργασία κάτω από την καθοδήγηση της στο Εργαστήριο Βιοϊατρικών Προσομοιώσεων και Απεικονιστικής Τεχνολογίας.

Επιπρόσθετα θα ήθελα να εκφράσω τις ευχαριστίες μου στη Σπυρέτα Γολεμάτη και την Μόνικα Ξενικού για τη διάθεση που επέδειξαν, το χρόνο που αφιέρωσαν και τις γνώσεις που μου μετέδωσαν κατά την προσπάθεια μου.

Ευχαριστώ πολύ επίσης τον Ανδρεάδη Ιωάννη και τη Μόνικα Ξενικού για τη βοήθεια τους καθώς και τον ιατρό Γιώργο Χαραλαμπόπουλο για την παροχή των ιατρικών δεδομένων.

Τέλος, θα ήθελα να ευχαριστήσω τους φίλους μου και κυρίως την οικογένεια μου για την αμέριστη στήριξη τους σε κάθε μου βήμα.

Σωτήρης Γκερνάνης

ΠΕΡΙΛΗΨΗ

Η ανάλυση της κίνησης του αρτηριακού καρωτιδικού τοιχώματος, με τη χρήση αλγορίθμων ανάλυσης κίνησης σε ακολουθίες εικόνων υπερήχων Β-σάρωσης, έχει συμβάλει στη κατανόηση των δομικών και μηχανικών ιδιοτήτων του. Σύμφωνα με μελέτες που έχουν γίνει στην ανάλυση κίνησης έχει διαπιστωθεί ότι πολλοί δείκτες κίνησης, οι οποίοι εξάγονται από τους εν λόγω αλγορίθμους, μπορούν να χρησιμοποιηθούν για τη μελέτη και το χαρακτηρισμό των αθηρωματικών πλακών, βοηθώντας με τον τρόπο αυτό στην αξιολόγηση της σοβαρότητας της νόσου.

Στην παρούσα διπλωματική εργασία σκοπός ήταν να μελετηθεί το κατά πόσο οι δείκτες κίνησης του αρτηριακού καρωτιδικού τοιχώματος, συσχετίζονται με το αν η αθηρωματική πλάκα είναι ασβεστοποιημένη ή μη.

Στη μελέτη αυτή χρησιμοποιήθηκε ο αλγόριθμος ανάλυσης κίνησης, ο οποίος βασίζεται στη μέθοδο οπτικής ροής με έλεγχο ελαχίστων τετραγώνων με βάρη. Ο αλγόριθμος αυτός εφαρμόστηκε σε 18 ασθενείς, οι οποίοι έπασχαν από αθηρωμάτωση στην καρωτιδική αρτηρία.

Στο αρχικό στάδιο της μελέτης αυτής δημιουργήθηκαν τα αρχεία δεδομένων που αντιστοιχούν στις ακολουθίες εικόνων, οι οποίες υπήρχαν διαθέσιμες για κάθε ασθενή. Αυτά τα αρχεία δεδομένων μαζί με τις αντίστοιχες ακολουθίες εικόνων, χρησιμοποιήθηκαν σαν είσοδοι στον αλγόριθμο κίνησης οπτικής ροής με έλεγχο ελαχίστων τετραγώνων με βάρη. Με τον αλγόριθμο υπολογίσθηκαν οι δείκτες κίνησης των αθηρωματικών πλακών και των τοιχωμάτων της καρωτιδικής αρτηρίας.

Στην συνέχεια, πραγματοποιήθηκε στατιστική ανάλυση των δεικτών κίνησης, χρησιμοποιώντας το συντελεστή συσχέτισης Spearman, για την εύρεση συσχέτισης των δεικτών κίνησης με το αν είναι η αθηρωματική πλάκα ασβεστοποιημένη ή μη.

Το τελικό συμπέρασμα από τα αποτελέσματα αυτής της διπλωματικής εργασίας είναι ότι ορισμένοι δείκτες κίνησης παρουσιάζουν συσχέτιση με το αν η αθηρωματική πλάκα είναι ασβεστοποιημένη ή όχι, αφήνοντας ανοιχτό το ενδεχόμενο να μπορούν να χρησιμοποιηθούν οι δείκτες αυτοί για τον προσδιορισμό των αθηρωματικών πλακών σε ασβεστοποιημένες ή μη.

Επίσης, έγινε σύγκριση αυτών των δεικτών κίνησης με τους δείκτες κίνησης που έδωσε σαν αποτέλεσμα ο αλγόριθμος ανάλυσης κίνησης με την τεχνική ταύτισης περιοχών από άλλη μελέτη.

Τα αποτελέσματα αυτής της διπλωματικής εργασίας δείχνουν ότι θα πρέπει να γίνουν επιπλέον μελέτες πάνω στο αντικείμενο, χρησιμοποιώντας και άλλους αλγορίθμους ανάλυσης κίνησης, καθώς και χρήση μεγαλύτερου δείγματος μελέτης για την εξαγωγή ασφαλέστερων αποτελεσμάτων.

Λέξεις κλειδιά

Καρωτιδική αθηρωμάτωση, Ταξινόμηση ασβεστοποιημένων πλακών και μη, Δείκτες κίνησης, αλγόριθμοι ανάλυσης κίνησης, σύγκριση αλγορίθμων ανάλυσης κίνησης

ABSTRACT

Study of the carotid arterial wall motion using motion estimation algorithms in B-mode ultrasound videos, has contributed in the understanding of its structural and mechanical properties. According to studies which have been conducted, it has been supported that many motion indexes, which are calculated from the aforementioned algorithms, can be used in the study and characterization of the plaques, helping this way in the assessment of the severity of the disease.

The purpose of this thesis was to study the possible connection between the motion indexes of the carotid arterial wall and the characterization of the plaque as calcified or uncalcified.

For this study the algorithm of motion estimation that was used was based in the method of weighted least squares optical flow. This algorithm was applied to 18 patients who were suffering from atherosclerosis in the carotid artery.

Firstly, the data files which correspond to the videos of the patients were created. These files along with the corresponded videos were used as inputs to the algorithm, with which the motion indices of the carotid wall and the plaques were calculated.

A statistical analysis was performed to the calculated motion indices, by using the Spearman correlation coefficient, in order to find the correlation between each motion index with the characterization of the plaque as calcified or uncalcified.

The results of the statistical analysis had pointed that there may be a correlation between specific motion indices and the characterization of the plaque as calcified or uncalcified, leaving open the possibility of these indices to be used for determining whether a plaque is calcified or uncalcified.

Furthermore, the results of the statistical analysis were compared with those of another study where the motion indices were calculated using motion estimation algorithm based on the block matching technique.

Finally it is recommended that further studies must be made on the matter by using additional motion estimation algorithms and in a larger data sample in order to have more conclusive results.

Key words

Carotid atherosclerosis, Classification of calcified and non-calcified atherosclerotic plaques, Motion Indices, Motion analysis algorithms, Comparison of motion analysis algorithms

Ευρετήριο Εικόνων
Εικόνα 1:Αρτηρίες του λαιμού2
Εικόνα 2: Δομή Τοιχώματος Καρωτίδων3
Εικόνα 3: Αθηρωματική πλάκα στην καρωτίδα4
Εικόνα 4: Βήματα στην εξέλιξη της αθηρωμάτωσης στα αγγεία
Εικόνα 5: Ρήξη αθηρωματικής πλάκας και δημιουργία εμβολής
Εικόνα 6: Χρήση υπερήχων για την απεικόνιση της καρωτίδας
Εικόνα 7: Στοιχεία Μετατροπέα Υπερήχων9
Εικόνα 8: Γραμμικός μετατροπέας υπερήχων10
Εικόνα 9: Διάγραμμα ροής προτεινόμενης μεθοδολογίας
Εικόνα 10: Επιλογή του πρώτου σημείου για την ακτινική ανάλυση της εικόνας, το οποίο βρίσκεται στο ύψος του αριθμού 132
Εικόνα 11:Επιλογή του δεύτερου σημείου για την ακτινική ανάλυση της εικόνας, το οποίο βρίσκεται στο ύψος του αριθμού 2
Εικόνα 12:Επιλογή του πρώτου σημείου για τηδιαμήκη ανάλυση της εικόνας, το οποίο βρίσκεται στο αριστερό όριο της εικόνας
Εικόνα 13:Επιλογή του δεύτερου σημείου για τη διαμήκη ανάλυση της εικόνας, το οποίο βρίσκεται στο δεξιό όριο της εικόνας
Εικόνα 14:Το παράθυρο που εμφανίζεται ζητάει από τον χρήστη να σημειώσει το όριο ολόκληρης της αθηρωματικής πλάκας
Εικόνα 15:Επιλογή των σημείων που καθορίζουν το όριο ολόκληρης της αθηρωματικής πλάκας
Εικόνα 16:Εικόνα ελαστογραφίας που έστειλε ο ιατρός και με βάση την οποία πρέπει να σχεδιαστούν τα όρια της αθηρωματικής πλάκας
Εικόνα 17:Ζητείται από το χρήστη να επιλέξει το PTS όριο της αθηρωματικής πλάκας 36
Εικόνα 18:Επιλογή του PTS ορίου της αθηρωματικής πλάκας
Εικόνα 19:Ζητείται από το χρήστη να επιλέξει το PBS όριο της αθηρωματικής πλάκας 37
Εικόνα 20:Επιλογή του PBS ορίου της αθηρωματικής πλάκας
Εικόνα 21:Ζητείται από το χρήστη η επιλογή σημείων του AWL
Εικόνα 22:Επιλογή σημείων του AWL

Εικόνα 24:Επιλογή σημείων του PWL40
Εικόνα 25:Ζητείται από το χρήστη να επιλέξει μία περιοχή αίματος
Εικόνα 26:Επιλογή περιοχής αίματος41
Εικόνα 27:Ζητείται από το χρήστη να εισάγει μία περιοχή του adventitia
Εικόνα 28:Επιλογή περιοχής του adventitia42
Εικόνα 29:Το παράθυρο που εμφανίζεται ζητάει από τον χρήστη να σημειώσει το όριο ολόκληρης της δεύτερης (άνω) αθηρωματικής πλάκας σε περίπτωση που αυτή υπάρχει.43
Εικόνα 30:Απεικόνιση των αθηρωματικών πλακών, των PTS και PBS αυτών, καθώς και του άνω και κάτω υγιούς τοιχώματος της καρωτίδας43

Εικόνα 31: Αλγόριθμος ανάλυσης κίνησης	
--	--

ΕΥΡΕΤΗΡΙΟ ΠΙΝΑΚΩΝ

Πίνακας 1: Έρευνες και μελέτες της κίνησης	των τοιχωμάτων της	; καρωτιδικής αρτηρίας. 12
--	--------------------	----------------------------

Πίνακας 2: Στοιχεία Videos Ασθενών	25
Πίνακας 3: Ελαστογραφίες	26
Πίνακας 4:Χαρακτηριστικά Κίνησης	

Πίνακας 7:Οι δείκτες κίνησης με τιμή ρ>0,5 για p<0,0557

Πίνακας 8: Δείκτες κυματομορφών κίνησης ως προς το πλήθος των εικονοστοιχείων για τα εικονοστοιχεία ολόκληρης της αθηρωματικής πλάκας που παρουσιάζουν αρνητικούς και θετικούς συντελεστές συσχέτισης61

Πίνακας 9: Δείκτες κίνησης για τα εικονοστοιχεία της πάνω επιφάνειας της πλάκας όπου αφορούν τη μετατόπιση και την ταχύτητα......63

Πίνακας 11: Δείκτες κίνησης που αντικατοπτρίζουν την κίνηση, ταχύτητα και μετατόπιση για τα εικονοστοιχεία του οπίσθιου υγιούς τμήματος του αρτηριακού τοιχώματος...........65

Τίνακας 12 Δείκτες Κίνησης77

1 Εισαγωγή

Σε αυτό το εισαγωγικό κεφάλαιο γίνεται μια σύντομη αναφορά στη δομή και τη λειτουργία της καρωτιδικής αρτηρίας, καθώς και στα μηχανικά φαινόμενα του αρτηριακού τοιχώματος. Πιο συγκεκριμένα, αρχικά γίνεται μια περιεκτική και σύντομη περιγραφή των ανατομικών χαρακτηριστικών της καρωτίδας και της φυσιολογίας αυτής. Ακολουθεί η παρουσίαση της σοβαρής αρτηριακής πάθησης την οποία και εξετάζουμε στην παρούσα διπλωματική εργασία, της αθηρωμάτωσης. Εν συνεχεία, γίνεται μια σύντομη αναφορά στη διαφορά των ασβεστοποιημένων και μη ασβεστοποιημένων αθηρωματικών πλακών. Επίσης, γίνεται μια συνοπτική παρουσίαση των βασικών αρχών της απεικόνισης με υπερήχους καθώς και προηγούμενες μελέτες υπολογιστικής ανάλυσης της κίνησης του αρτηριακού τοιχώματος της καρωτίδας. Στο τέλος του κεφαλαίου περιγράφεται ο σκοπός της διπλωματικής εργασίας.

1.1 Δομικά και λειτουργικά χαρακτηριστικά της καρωτίδας

1.1.1 Δομικά χαρακτηριστικά

Η κοινή καρωτιδική αρτηρία είναι μια από τις βασικές αρτηρίες του ανθρώπινου σώματος. Υπάρχουν δύο κοινές καρωτίδες στο ανθρώπινο σώμα, μία για το αριστερό και μία για το δεξιό μέρος του σώματος οι οποίες ακολουθούν την ίδια ακριβώς πορεία με μόνη διαφορά τα σημεία εκκίνησής τους[1]. Οι κοινές καρωτιδικές αρτηρίες (δεξιά και αριστερή) είναι αρτηρίες που τροφοδοτούν το κεφάλι και το λαιμό με οξυγονωμένο αίμα. Η αριστερή κοινή καρωτίδα ξεκινάει από το αορτικό τόξο στη θωρακική περιοχή και η κοινή καρωτίδα, που βρίσκεται στο δεξιό μέρος του ανθρώπινου σώματος, ξεκινάει από το λαιμό και πιο συγκεκριμένα από τη βραγχιοεγκεφαλική αρτηρία. Κάθε κοινή καρωτίδα χωρίζεται σε δύο διακλαδώσεις, την έσω (εσωτερική) και την έξω (εξωτερική) καρωτίδα (Εικόνα 1). Η έξω καρωτίδα τροφοδοτεί με αίμα το λαιμό, το φάρυγγα, το λάρυγγα, την κάτω σιαγόνα και το πρόσωπο. Η έσω καρωτίδα εισέρχεται στην κρανιακή χώρα και τροφοδοτεί με αίμα τον εγκέφαλο, τα μάτια, τα αυτιά και το εσωτερικό τμήμα της μύτης.

Εικόνα 1:Αρτηρίες του λαιμού.

Η κοινή καρωτίδα που φαίνεται στο σχήμα χωρίζεται σε εσωτερική και εξωτερική καρωτίδα.

Το τοίχωμα της καρωτίδας αποτελείται από τρία διακριτά ομόκεντρα στρώματα. Το εσωτερικό στρώμα ονομάζεται έσω χιτώνας (tunica intima), το μεσαίο στρώμα καλείται μέσος χιτώνας (tunica media) και το εξωτερικό στρώμα καλείται έξω χιτώνας (tunica adventitia ή tunica externa).

Ο έσω χιτώνας αποτελεί το εσωτερικό στρώμα του καρωτιδικού τοιχώματος και αποτελείται από ένα στρώμα ενδοθηλιακών κυττάρων, από ένα στρώμα συνεκτικού ιστού και από τη λεπτή βασική μεμβράνη (basal lamina)[1].Τα κύτταρα του ενδοθηλίου έρχονται σε άμεση επαφή με τη ροή του αίματος και συνδέονται με μια σειρά κυτταρικών συνδέσμων δημιουργώντας με τον τρόπο αυτό ένα εμπόδιο μεταξύ της επιφάνειας του αυλού της αρτηρίας και του υποενδοθηλιακού χώρου του αρτηριακού τοιχώματος.

Ο μέσος χιτώνας αποτελείται από λεία μυϊκά κύτταρα και από συνεκτικό ιστό ελαστίνης και κολλαγόνου. Ο μέσος χιτώνας διαδραματίζει το μεγαλύτερο ρόλο, σε ότι αφορά τη μηχανική συμπεριφορά του τοιχώματος, σε σχέση με τα άλλα στρώματα[2].

Ο έξω χιτώνας αποτελείται κυρίως από ίνες κολλαγόνου μαζί με ελαστίνη, νεύρα και ινοπλάστες. Οι ίνες κολλαγόνου είναι πιο εύκαμπτες από το μέσω χιτώνα, επιτρέποντας έτσι στην αρτηρία να κάμπτεται αποτρέποντας τη διεύρυνση του αγγείου εξαιτίας της πίεσης της ροής του αίματος. Τελικά, ο έξω χιτώνας αποτελεί ένα προστατευτικό περίβλημα για το αγγείο[2].

Τέλος, ο διαχωρισμός μεταξύ των τριών αυτών στρωμάτων γίνεται από δύο ομόκεντρα στρώματα ελαστίνης. Το πρώτο είναι το εσωτερικό ελαστικό έλασμα (internal elastic lamina), που διαχωρίζει τον έσω από τον μέσο χιτώνα, και το δεύτερο είναι το εξωτερικό ελαστικό έλασμα (external elastic amina), το οποίο διαχωρίζει το μέσο από τον έξω χιτώνα (Εικόνα 2).

Εικόνα 2: Δομή Τοιχώματος Καρωτίδων

1.1.2 Μηχανικές Ιδιότητες

Το αγγειακό τοίχωμα όλων των αρτηριών βρίσκεται σε μία διαρκή κίνηση, η οποία προκαλείται από την πίεση του αίματος, τη ροή του αίματος και από την κίνηση των περιβαλλόντων μυϊκών ιστών. Αυτές οι πιέσεις προκαλούν παραμορφώσεις στο αρτηριακό τοίχωμα και αυτό έχει ως αποτέλεσμα τη μετατόπιση του αρτηριακού τοιχώματος στην ακτινική, την περιφερική και τη διαμήκη κατεύθυνση[3].

Σημαντικά μηχανικά χαρακτηριστικά των αγγείων, είναι πρώτον ότι το αγγειακό τοίχωμα είναι πιο εύκαμπτο στην ακτινική διεύθυνση σε σχέση με τη διαμήκη και την περιφερική, δεύτερον, ότι η ελαστικότητα των τοιχωμάτων είναι μη γραμμική και μειώνεται καθώς αυξάνονται οι πιέσεις και τρίτον, ότι με την παρουσία αθηρωματικών πλακών αυξάνεται η ακαμψία όταν μεγαλώνουν οι πιέσεις[4].

1.2 Αθηρωμάτωση

Η αθηρωμάτωση είναι μια κυρίαρχη εκφυλιστική νόσος, κατά την οποία το πάχος του αρτηριακού τοιχώματος αυξάνεται λόγω εναποθέσεων λίπους, χοληστερόλης, κυτταρικών υπολειμμάτων, ασβεστίου και ινώδους ιστού σταδιακά, τα οποία συσσωρεύονται στο εσωτερικό των τοιχωμάτων της καρωτιδικής αρτηρίας, προκαλώντας στένωση ή/και απόφραξη του αυλού της αρτηρίας (Εικόνα 3).

Εικόνα 3: Αθηρωματική πλάκα στην καρωτίδα

Όσον αφορά την εξέλιξη της νόσου, αυτή αρχικά εμφανίζεται όταν συσσωρεύονται λιπίδια αρχικά στον έσω χιτώνα. Στη συνέχεια, με την επιπλέον εναπόθεση λιπιδίων, χοληστερόλης, κυτταρικών αποβλήτων και ασβεστίου, αρχίζει ο σχηματισμός της αθηρωματικής πλάκας, η οποία επεκτείνεται στο μέσο και στον έξω χιτώνα. Η αύξηση του μεγέθους της αθηρωματικής πλάκας οδηγεί σε στένωση του αυλού της αρτηρίας και μείωση της ελαστικότητας του αρτηριακού τοιχώματος.

Οι παράγοντες που επηρεάζουν το σχηματισμό αθηρωματικής πλάκας στις αρτηρίες είναι τα επίπεδα χοληστερόλης στο αίμα (υψηλή LDL χοληστερόλη και χαμηλή HDL χοληστερόλη), η υψηλή πίεση αίματος, το κάπνισμα, η κληρονομικότητα, η ηλικία, το φύλο, η διατροφή, η παχυσαρκία, η έλλειψη σωματικής άσκησης, η διατροφή, ο διαβήτης, κ.α.[5].

Η αθηροσκλήρωση πιστεύεται ότι ξεκινάει από την είσοδο σωματιδίων LDL χοληστερόλης στον έσω χιτώνα, τα οποία παγιδεύονται εκεί και στη συνέχεια, υπό συγκεκριμένες μεταβολικές συνθήκες, οξειδώνονται.

Σε μελέτες που έχουν πραγματοποιηθεί[6], [7] έχει παρατηρηθεί ότι υπάρχουν σημαντικοί μηχανικοί παράγοντες που συμβάλουν στο σχηματισμό αθηρωματικής πλάκας, με σημαντικότερο ρόλο να διαδραματίζουν οι διατμητικές τάσεις και ο χρόνος παραμονής των διαφόρων σωματιδίων στο αρτηριακό τοίχωμα. Το αποτέλεσμα αυτών των παραγόντων είναι ο πιο εύκολος σχηματισμός αθηρωματικής πλάκας στις περιοχές διαχωρισμού των αρτηριών, όπως στην περίπτωση της καρωτιδικής αρτηρίας, όπου

υπάρχει αυξημένη πιθανότητα εμφάνισης αθηρωμάτωσης στο σημείο διαχωρισμού σε έσω και έξω καρωτίδας. Βέβαια, στις μελέτες που έχουν εκπονηθεί οι απόψεις διίστανται, καθώς ορισμένοι μελετητές θεωρούν ότι η ύπαρξη υψηλών διατμητικών τάσεων ευνοεί το σχηματισμό αθηρωματικής πλάκας[8], [9], ενώ άλλοι υποστηρίζουν ότι οι χαμηλότερες διατμητικές τάσεις υποβοηθούν το σχηματισμό αθηρωματικών πλακών [10].

Η ανάπτυξη των αθηροσκληρυντικών αλλοιώσεων στις ανθρώπινες αρτηρίες μπορεί να θεωρηθεί ως τροποποιημένη μορφή χρόνιας φλεγμονής[11]. Το αρχικό γεγονός – κλειδί φαίνεται να αποτελεί η βλάβη των ενδοθηλιακών κυττάρων. Η ακριβής φύση της βλάβης είναι άγνωστη προς το παρόν αλλά σίγουρα καταλήγει στην έκφραση μορίων όπως τα ICAM-1 και VCAM στην επιφάνεια των κυττάρων που διαμεσολαβούν στην προσκόλληση των λευκοκυττάρων. Εν συνεχεία μονοκύτταρα προσελκύονται υπενδοθηλιακά όπου διαφοροποιούνται σε μακροφάγα. Αυτά ενδοκυτταρώνουν τροποποιημένες μορφές LDL μέσω των κατάλληλων υποδοχέων και σχηματίζουν τα αφρώδη κύτταρα, το «σήμα κατατεθέν» των λιπωδών γραμμώσεων. Οι βλάβες εξελίσσονται σε ινολιπώδεις πλάκες οι οποίες περιέχουν μεγάλο αριθμό μακροφάγων και CD4+ Τ κυττάρων ενώ ταυτόχρονα παρατηρείται μετανάστευση και πολλαπλασιασμός λείων μυϊκών κυττάρων. Στις ανθρώπινες αρτηρίες αυτές οι ινολιπώδεις πλάκες μεταπίπτουν σε σύνθετες αθηροσκληρυντικές αλλοιώσεις οι οποίες είναι ευάλωτες σε ρήξη (Εικόνα 4)[11].

Εικόνα 4: Βήματα στην εξέλιξη της αθηρωμάτωσης στα αγγεία

Η εμφάνιση αθηρωματικών πλακών στις καρωτίδες προκαλούν στένωση του αυλού της καρωτίδας ή ακόμα και πλήρη απόφραξη αυτής. Αυτό έχει σαν αποτέλεσμα να μειώνεται η ροή του αίματος προς τον εγκέφαλο. Ωστόσο, μία τοπική στένωση των καρωτίδων μπορεί να μη δημιουργεί πρόβλημα στη λειτουργία του εγκεφάλου. Το μεγάλο πρόβλημα έγκειται στο ότι οι αθηρωματικές πλάκες, ακόμα και αυτές που παρουσιάζουν μικρού βαθμού στένωση της αρτηρίας, μπορούν να υποστούν ρήξη δημιουργώντας θρόμβους, οι οποίοι με τη σειρά τους ακολουθούν τη ροή του αίματος, φράσσοντας αρτηρίες του εγκεφάλου και προκαλώντας ισχαιμικά εγκεφαλικά επεισόδια, αμαύρωση ή άλλα νευρολογικά συμπτώματα[13].Το γεγονός αυτό δείχνει ότι ορισμένες αθηρωματικές πλάκες, ηκόμα και ευάλωτες στο να υποστούν ρήξη, με συνέπεια να δημιουργήσουν θρόμβωση στις αρτηρίες[14](Εικόνα 5).

Εικόνα 5: Ρήξη αθηρωματικής πλάκας και δημιουργία εμβολής

Η πλειοψηφία των εγκεφαλικών επεισοδίων, τα οποία οδηγούν στο θάνατο ή σε αναπηρία, παγκοσμίως, οφείλονται στην ύπαρξη αθηρωματικών πλακών στις καρωτίδες. Το 20% με 30% των εγκεφαλικών επεισοδίων πιστεύεται ότι προκαλείται από εμβολή που οφείλεται στην παρουσία αθηρωμάτωσης στην καρωτίδα[15].

Για τη θεραπεία που θα ακολουθηθεί σε περιπτώσεις αθηροσκλήρωσης στις καρωτιδικές αρτηρίες, δηλαδή αν θα χορηγηθεί φαρμακευτική αγωγή και ειδική διατροφή ή θα αντιμετωπιστεί επεμβατικά, λαμβάνονται υπόψη ο βαθμός της στένωσης και το ιστορικό καρδιαγγειακών παθήσεων του ασθενούς. Ωστόσο, επειδή τα δεδομένα αυτά έχει αποδειχθεί ότι δεν επαρκούν για τη λήψη μιας τέτοια απόφασης, τελικά, η θεραπεία της συγκεκριμένης πάθησης επιφέρει μεγάλους κινδύνους στους ασθενείς και μεγάλο κόστος για τον ατομικό και τον κρατικό προϋπολογισμό.

Σε μία μελέτη που αφορά το ιατρικό σύστημα των Ηνωμένων Πολιτειών της Αμερικής, υπολογίζεται ότι οι εγχειρίσεις στις καρωτίδες, οι οποίες πραγματοποιούνται σε ασθενείς που θα μπορούσαν να θεραπευτούν με φαρμακευτική αγωγή, επιφέρει στους ιατρικούς οργανισμούς κόστη ύψους 2 δισεκατομμυρίων δολαρίων ετησίως[16], καθώς τα εγκεφαλικά επεισόδια παραμένουν η τρίτη συνηθέστερη αιτία θανάτου μετά τα καρδιακά επεισόδια και τον καρκίνο. Επομένως, αναμφισβήτητα υπάρχει η ανάγκη καλύτερης αναγνώρισης των ασθενών με ασταθείς αθηρωματικές πλάκες, οι οποίοι χρήζουν εγχειρητικής αντιμετώπισης για την αποφυγή εγκεφαλικών επεισοδίων, και να αποφεύγονται οι επικίνδυνες αυτές επεμβάσεις σε ασθενείς με σταθερές αθηρωματικές πλάκες.

Για το σκοπό αυτό, τα τελευταία χρόνια οι έρευνες έχουν επικεντρωθεί στην εξαγωγή νέων δεικτών μέσω και της ανάλυσης εικόνων για το χαρακτηρισμό της σταθερότητας των αθηρωματικών πλακών[17]. Μεγάλη έμφαση έχει δοθεί στις καρωτιδικές αρτηρίες, λόγω της συχνότητας της πάθησης της αθηροσκλήρωσης σε αυτές, και για το λόγο αυτό δίνεται μεγάλη σημασία σε μεθοδολογίες ανάλυσης κίνησης σε αυτές, μέσω εικόνων υπερήχων. Η ανάλυση κίνησης μπορεί να παρέχει πληροφορίες για τη κίνηση και τις δυναμικές ιδιότητες των τοιχωμάτων της αρτηρίας, οι οποίες με τη σειρά τους μπορεί να συνδέονται με την ευαισθησία των αθηρωματικών πλακών.

1.3 Ασβεστοποίηση

Η ανώμαλη επικάθιση αλάτων ασβεστίου στις αθηρωματικές πλάκες των καρωτίδων μπορεί να προκαλέσει την ασβεστοποίηση τους (αθηροσκλήρωση). Η ασβεστοποίηση μπορεί να δημιουργηθεί από ανεπάρκεια βιταμίνης Κ2 ή από μικρή απορρόφηση ασβεστίου από τον οργανισμό λόγω υψηλής σχέσης ασβεστίου/βιταμίνης D. Λήψη υπερβολικής ποσότητας Βιταμίνης D μπορεί να προκαλέσει περίσσεια ασβεστίου, η οποία αν συνοδεύεται και από έλλειψη βιταμίνης Κ μπορεί να προκαλέσει ασβεστοποίηση της αθηρωματικής πλάκας των καρωτίδων[18]. Η ασβεστοποίηση είναι μια διαδικασία που εμφανίζεται κατά κύριο λόγο στο σχηματισμό των οστών, ωστόσο οι εναποθέσεις ασβεστίου μπορούν να πραγματοποιηθούν και σε μαλακούς ιστούς, όπως οι αρτηρίες, οι καρδιακές βαλβίδες, οι χόνδροι των αρθρώσεων, και αλλού.

1.3.1 Ασβεστοποίηση Καρωτιδικού Αρτηριακού Τοιχώματος

Η αθηρωματική πλάκα, η οποία είναι υπεύθυνη για τις καρδιακές προσβολές και τα ισχαιμικά εγκεφαλικά, μεγαλώνει μέσα στα τοιχώματα των αρτηριών εξαιτίας της χοληστερίνης που εναποτίθεται και της αντίδρασης του ανοσοποιητικού συστήματος που δημιουργεί φλεγμονή. Η τελευταία αντίδραση του σώματος σ' αυτή την διαδικασία είναι η εναπόθεση ασβεστίου στην αθηρωματική πλάκα, η λεγόμενη ασβεστοποίηση (calcification). Το ασβέστιο κάνει τις αρτηρίες σκληρές και αυξάνει κατά πολύ τον κίνδυνο ενός εμφράγματος ή εγκεφαλικού επεισοδίου.

Τις τελευταίες δεκαετίες, οι ερευνητές έχουν εντοπίσει ότι οι ασβεστώσεις των αρτηριών αποτελούν ένα σημαντικό και ανεξάρτητο παράγοντα κινδύνου για έμφραγμα και ισχαιμικό εγκεφαλικό.

Μία πρόσφατη μελέτη Αμερικανών επιστημόνων που δημοσιεύθηκε στην Ευρωπαϊκή Επιθεώρηση Καρδιάς (EHJ) δείχνει ότι οι παραδοσιακοί παράγοντες κινδύνου για καρδιοαγγειακά επεισόδια, όπως η αρτηριακή πίεση και η χοληστερίνη δεν αρκούν για την αξιολόγηση της πιθανότητας εμφάνισης καρδιακής προσβολής ή ισχαιμικού εγκεφαλικού επεισοδίου. Ένας ακόμη καλύτερος δείκτης κινδύνου είναι η μέτρηση του συσσωρευμένου ασβεστίου στις αρτηρίες. Ενδέχεται, όσοι έχουν ελάχιστο ή καθόλου ασβέστιο στα εσωτερικά τοιχώματα των αρτηριών τους, να μην εμφανίσουν έμφραγμα ή εγκεφαλικό έστω κι αν έχουν υψηλή αρτηριακή πίεση ή αυξημένη χοληστερίνη. Αντίθετα, άτομα με χαμηλή αρτηριακή πίεση και μειωμένη χοληστερίνη μπορεί να έχουν αυξημένο κίνδυνο να εκδηλώσουν έμφραγμα και ισχαιμικό εγκεφαλικό επειδή διαθέτουν προχωρημένη ασβέστωση στις αρτηρίες τους. Η μελέτη πραγματοποιήθηκε από ερευνητές του Πανεπιστημίου Johns Hopkins, του Brigham and Women's hospital και άλλων νοσηλευτικών κέντρων στις ΗΠΑ και έδειξε ότι ένας στους έξι εθελοντές που θεωρούνταν χαμηλού κινδύνου επειδή είχαν χαμηλή αρτηριακή πίεση και μειωμένη χοληστερίνη, διέτρεχαν στην πραγματικότητα υψηλό κίνδυνο για έμφραγμα επειδή είχαν αυξημένο ασβέστιο στα τοιχώματα των αρτηριών τους [19].

1.4 Απεικόνιση με Υπερήχους

Τα αγγειακά εγκεφαλικά επεισόδια αποτελούν διεθνώς μία από τις συχνότερες αιτίες θανάτου και αναπηρίας στις αναπτυγμένες χώρες. Από τα ισχαιμικά εγκεφαλικά επεισόδια, το 80% αυτών οφείλεται σε έμφραξη, από εμβολή αθηρωματικού θρόμβου, η οποία προκαλείται από αθηρωματικές πλάκες στο διαχωρισμό της καρωτίδας σε έσω και έξω καρωτίδα[20], [21].Το γεγονός αυτό υποδεικνύει την κρισιμότητα του να γίνεται έγκαιρα η διάγνωση ύπαρξης καρωτιδικής αθηρωμάτωσης και στη συνέχεια η έγκυρη αξιολόγησή της ως σταθερής ή ασταθούς.

Για την εκτίμηση της στένωσης στις καρωτιδικές αρτηρίες χρησιμοποιείται ευρέως η αγγειογραφία με καθετήρα, ωστόσο, είναι υπαρκτός ο κίνδυνος για την υγεία των ασθενών, λόγω της ιοντίζουσας ακτινοβολίας και της επεμβατικότητας της εξέτασης. Για τον λόγο αυτό, η απεικόνιση της καρωτιδικής αρτηρίας με τη χρήση υπερήχων έχει καθιερωθεί για τη διάγνωση της αθηροσκλήρωσης, καθώς αποτελεί μια μη-επεμβατική μέθοδο για την εκτίμηση του ποσοστού της στένωσης, καθώς και για την απεικόνιση της μορφολογίας των αθηρωματικών πλακών[15].

Εικόνα 6: Χρήση υπερήχων για την απεικόνιση της καρωτίδας

Η υπερηχοτομογραφία για την απεικόνιση της καρωτιδικής αθηροσκλήρωσης έχει το πλεονέκτημα ότι είναι μία μη επεμβατική μέθοδος. Επίσης, λόγω του ότι δεν χρησιμοποιεί ιοντίζουσα ακτινοβολία δε δημιουργεί παρενέργειες στον ασθενή, χρειάζεται για την εκτέλεσή της απλό εξοπλισμό σε σχέση με άλλες τεχνικές και έχει μικρότερο κόστος. Επιπλέον, αποτελεί μία εύκολη και γρήγορη εξέταση προσφέροντας παράλληλα δυναμική απεικόνιση των οργάνων-ιστών του σώματος. Ωστόσο, τα μειονεκτήματα που παρουσιάζει αυτή η μέθοδος απεικόνισης είναι ότι απαιτείται εξειδίκευση και εμπειρία από τον χειριστή του μηχανήματος καθώς είναι πιθανή η εισαγωγή θορύβου και σκίασης στην απεικόνιση.

1.4.1 Αρχή Λειτουργίας Απεικόνισης με Υπερήχους

Η απεικόνιση των καρωτίδων με τεχνολογία υπερήχων χρησιμοποιείται ευρέως στη διάγνωση της αθηρωμάτωσης. Η απεικόνιση αυτή βασίζεται στην αλληλεπίδραση υπερήχων με βιολογικούς ιστούς και έχει συμβάλει στην εκτίμηση παραμέτρων στις οποίες βασίζεται η διάκριση των ασθενών που πρέπει να υποβληθούν σε χειρουργική επέμβαση, όπως ο βαθμός της στένωσης και η ηχογένεια της αθηρωματικής πλάκας[22].

Η απεικόνιση με χρήση υπερήχων βασίζεται στη μέτρηση της αντήχησης από ένα μέσο όταν στέλνουμε σε αυτό ένα ακουστικό κύμα με τη χρήση μιας διάταξης υπερήχων. Η διάταξη υπερήχων βασίζεται στο πιεζοηλεκτρικό φαινόμενο, κατά το οποίο, με τη χρήση κρυστάλλων γίνεται η μετατροπή της μηχανικής ενέργειας σε ηλεκτρική και το αντίστροφο.

Η διεργασίαμετατροπής της μηχανικής ενέργειας σε ηλεκτρική και αντίστροφα λαμβάνει χώρα στον μετατροπέα υπερήχων. Ο μετατροπέας όταν δέχεται την εφαρμογή ρεύματος, παράγει ένα ακουστικό κύμα, καθώς το υλικό από το οποίο είναι φτιαγμένος ο μετατροπέας αρχίζει και δονείται. Το αντίστροφο συμβαίνει όταν μια τάση παράγεται κατά μήκος των στοιχειωδών κυψελών του μετατροπέα εξαιτίας ηχητικών πιέσεων[23].

Εικόνα 7: Στοιχεία Μετατροπέα Υπερήχων

Τα είδη των μετατροπέων που υπάρχουν είναι δύο. Το πρώτο είναι ο μηχανικός μετατροπέας, ο οποίος περιστρέφεται με μεγάλη ταχύτητα και συλλέγει σήματα κάθε φορά που αντικρίζει ένα παράθυρο στη διεύθυνση του σώματος και χρησιμοποιείται για σάρωση τομών του σώματος. Το δεύτερο είδος μετατροπέα είναι ο πολλαπλός μετατροπέας, ο οποίος με τη σειρά του διακρίνεται στον πολλαπλό γραμμικό μετατροπέα και το μη-γραμμικό μετατροπέα. Στην περίπτωση απεικόνισης της καρωτίδας χρησιμοποιούνται γραμμικές συστοιχίες μετατροπέων, που συνήθως αποτελούνται από τουλάχιστον 128 πιεζοηλεκτρικά στοιχεία[24]. Στην περίπτωση των γραμμικών μετατροπέων οι στοιχειώδεις κυψέλες διεγείρονται ηλεκτρονικά σε ομάδες με τη βοήθεια ηλεκτρονικών διακοπτών. Τα στοιχεία της πρώτης ομάδας διεγείρονται ταυτόχρονα και δημιουργούν μια δέσμη. Όλες οι ανακλάσεις που συλέγονται απο αυτή την ομάδα απεικονίζονται στην πρώτη γραμμή της εικόνας. Στις συνέχεια διεγείρονται σειριακά οι επόμενες ομάδες, σαρώνοντας με αυτόν τον τρόπο μία τομή. Τελικά η ολοκλήρωση της εικόνας πραγματοποιείται όταν διεγερούν όλες οι ομάδες των κυψελών[25].

Εικόνα 8: Γραμμικός μετατροπέας υπερήχων

Η απεικόνιση με χρήση υπερήχων πραγματοποιείται με την εκπομπή ηχητικών παλμών από τον πιεζοηλεκτρικό μετατροπέα, οι οποίοι παλμοί αφού ενισχυθούν κατάλληλα εισέρχονται στο σώμα και φτάνουν μέχρι την περιοχή που μας ενδιαφέρει να μελετήσουμε. Ο ηχητικός παλμός κάθε φορά που προσπίπτει σε ιστούς με διαφορετική ακουστική εμπέδηση ανακλάται μερικώς, ενώ το υπόλοιπο μέρος του απορροφάται από τους ιστούς. Ο ανακλώμενος ηχητικός παλμός συλλαμβάνεται από τα στοιχεία του μετατροπέα και αυτή η λαμβανόμενη ακουστική πίεση μετατρέπεται σε ηλεκτρικό σήμα. Η χρονική καθυστέρηση μεταξύ της εκπομπής του παλμού και της λήψης της ανακλώμενης ενέργειας βοηθάει στον υπολογισμό του βάθους της ανακλαστικής επιφάνειας. Επίσης, το πλάτος και η φάση της ανακλασθείσας δέσμης παρέχουν την πληροφορία για τον τύπο της ανακλαστικής επιφάνειας[25]. Στο σημείο αυτό χρειάζεται να αναφέρουμε ότι οι συχνότητες των αρχικών ηχητικών κυμάτων που εκπέμπονται από τον μετατροπέα στην κλινική πράξη, για την περίπτωση της μελέτης της καρωτίδας, κυμαίνονται από 2 έως 10 MHz.

1.4.2 Μέθοδοι απεικόνισης υπερήχων

Υπάρχουν τρία είδη τεχνικών απεικόνισης υπερήχων, οι οποίες διακρίνονται βάσει του τρόπου απεικόνισης. Αυτές είναι η A-mode, η B-mode και η M-mode απεικόνιση.

Στην τεχνική Α-σάρωσης (A-mode) η απεικόνιση των εικόνων μας δίνει πληροφορίες για το βάθος διείσδυσης, το οποίο αντιπροσωπεύεται από τον άξονα x του παλμογράφου, και το πλάτος της ανακλασθείσας δέσμης, το οποίο απεικονίζεται στον άξονα y. Η τεχνική αυτή έχει περιορισμένη χρήση και χρησιμοποιείται κυρίως για τη μέτρηση βασικών ανατομικών χαρακτηριστικών με γραμμικές διαστάσεις[23].

Στην τεχνική M-σάρωσης (M-mode)είναι εφικτή η γραφική καταγραφή της κίνησης δομών στην κατεύθυνση της ηχητικής δέσμης. Το βάθος εισχώρησης της δέσμης αντιπροσωπεύεται από την κάθετη ακτίνα και το πλάτος της αντήχησης από ένα σημείο κατάλληλης φωτεινότητας. Η κάθετη ακτίνα της σάρωσης μετακινείται οριζόντια με σταθερή ταχύτητα. Αυτό έχει σαν αποτέλεσμα τα ακίνητα δομικά χαρακτηριστικά του ασθενούς να προκαλούν ανακλάσεις στη δέσμη στο ίδιο σημείο, ενώ οι κινούμενες δομές να παράγουν ένα γράφημα της κίνησής τους[23]. Η τεχνική Β-σάρωσης (B-mode) είναι η πιο διαδεδομένη για τη δισδιάστατη απεικόνιση ιστών του σώματος και είναι η τεχνική που χρησιμοποιήθηκε στην παρούσα μελέτη για τη διεξαγωγή της, καθώς αποτελεί την πλέον καθιερωμένη μέθοδο απεικόνισης της καρωτίδας και πιθανών αλλοιώσεών της[26]. Στη μέθοδο αυτή το πλάτος της αντήχησης αντιπροσωπεύεται από ένα σημείο ανάλογης φωτεινότητας ή απόχρωσης του γκρι (gray scale display) στην αντίστοιχη γεωμετρική του θέση, με αποτέλεσμα την απεικόνιση μιας τομής του σώματος[60].

1.5 Επισκόπηση μελετών ανάλυσης κίνησης της καρωτίδας

1.5.1 Παράγοντες κινητικότητας στα τοιχώματα των αρτηριών

Η πίεση της ροής του αίματος προκαλεί πιέσεις (stresses) στα τοιχώματα της αρτηρίας κατά την ακτινική κατεύθυνση, επίσης, προκαλεί ελαστικές πιέσεις κατά τη διαμήκη κατεύθυνση και στις περιμετρικές κατευθύνσεις, οδηγώντας στην επιμήκυνση των ιστών. Επιπλέον, η ροή του αίματος προκαλεί πιέσεις εφαπτόμενες στο αρτηριακό τοίχωμα και στο ενδοθήλιο.

Ακόμα, η κίνηση του τοιχώματος των αρτηριών προέρχεται από τους ιστούς που περιβάλουν την αρτηρία, καθώς η κίνηση του σώματος προκαλεί κίνηση στους ιστούς που περιβάλουν την αρτηρία και αυτή η κίνηση μεταφέρεται στο αρτηριακό τοίχωμα [27].

1.5.2 Πίνακας ερευνών, μελετών

Πίνακας 1: Έρευνες και μελέτες της κίνησης των τοιχωμάτων της καρωτιδικής αρτηρίας

A/A	B.A.	Συγγραφείς Έτος	Αντικείμενο Μελέτης	Μεθοδολογία	Αποτελέσματα
1	[28]	Cinthio et al. 2006	10 υγιή άτομα (6 άντρες και 4 γυναίκες)	Τεχνική ταύτισης περιοχών (Block-matching technique)	 Υπολογίστηκαν η διαμήκης και ακτινική κίνηση των τοιχωμάτων των αρτηριών. Παρουσιάστηκε διαμήκης κίνηση της ίδιας τάξης μεγέθους με την ακτινική των αρτηριών.
2	[22]	Golemati et al. 2003	 Για τον υπολογισμό της κίνησης του αρτηριακού τοιχώματος σε σχέση με τους περιβάλλοντες ιστούς: 5 αλληλουχίες εικόνων από υγιή άτομα 3 αλληλουχίες εικόνων από άτομα με αθηρωματική πλάκα στο οπίσθιο αρτηριακό τοίχωμα Για τον υπολογισμό της κίνησης του υγιούς καρωτιδικού τοιχώματος: 5 νεαρά άτομα (ηλικίας 25 έως 32 ετών, με μέσο όρο ηλικίας 29,4 έτη, από τα 	Τεχνική ταύτισης περιοχών (Block-matching technique)	 Για υπολογισμούς σε περιοχή του τοιχώματος το βέλτιστο μέγεθοςROI είναι 3.2 x 2.5 mm² και για ιχνηλάτηση εντός των ιστώντο βέλτιστο ROI είναι 6.3 x 2.5mm². Για την εκτίμηση της κίνησης του τοιχώματος σχετικά με τον ιστό η αξονική και η ακτινική μετατόπιση μειωνόταν όσο αυξανόταν η απόσταση από το τοίχωμα. Η μείωση της διακύμανσης από το αρτηριακό τοίχωμα προς τον ιστό ήταν πιο απότομη στην αξονική κατεύθυνση. Οι συντελεστές συσχέτισης ήταν υψηλοί στη διεπιφάνεια τοιχώματος-αυλού και έτειναν να μειώνονται όσο μεγάλωνε η απόσταση από το τοίχωμα. Για την κίνηση του καρωτιδικού αρτηριακού τοιχώματος στα υγιή άτομα οι συντελεστές συσχέτισης ήταν υψηλότεροι για περιοχές του οπίσθιου τοιχώματος. Τα πλάτη των ακτινικών

A/A B.A	. Συγγραφείς Έτος	Αντικείμενο Μελέτης	Μεθοδολογία	Αποτελέσματα
		οποία υπήρχε μία γυναίκα) 2) 4 άτομα μεγαλύτερης ηλικίας (ηλικίας 44 έως 73 ετών, με μέσο όρο ηλικίας 64 έτη, από τα οποία υπήρχαν 3 γυναίκες) Για τη μελέτη της αξονικής και της ακτινικής μετατόπισης περιοχών του εμπρόσθιου και οπίσθιου τοιχώματος σε αλληλουχίες εικόνων ατόμων με αθηρωματική πλάκα: 1) 11 συμπτωματικούς ασθενείς (ηλικιών 50 έως 85 ετών με μέσω όρο ηλικίας 67,9 έτη) 2) 9 ασυμπτωματικούς ασθενείς (ηλικιών 52 έως 90 ετών με μέσο όρο ηλικίας 66,7 έτη)		μετατοπίσεων του εμπρόσθιου τοιχώματος δεν διέφεραν στατιστικά από αυτά του οπίσθιου τοιχώματος. 4. Στο δείγμα των υγιών ατόμων η μέση σχετική αξονική μετατόπιση μεταξύ δύο περιοχών του οπίσθιου τοιχώματος ήταν σημαντικά μικρότερη από τη μέση σχετική αξονική μετατόπιση μεταξύ περιοχών των αντίθετων τοιχωμάτων.

A/A	B.A.	Συγγραφείς Έτος	Αντικείμενο Μελέτης	Μεθοδολογία	Αποτελέσματα
3	[29]	Mokhtari et al. 2006	 60 υγιή άτομα 41 άτομα με μερική στένωση (<40%) 44 άτομα με σοβαρή (μεγάλη) στένωση (>40%) 	Μέθοδος οπτικής ροής σε έγχρωμες εικόνες Doppler και υπερήχους Β-σάρωσης	 Υπολογίστηκε το μέτρο πίεσης-τάσης, η διατασιμότητα και η συμμόρφωση της δεξιάς κοινής καρωτιδικής αρτηρίας. Υπολογίστηκαν δείκτες δυσκαμψίας, καθώς και οι διαφορές στη διάμετρο και στο σημείο της διακλάδωσης της κοινής καρωτίδας σε έσω και έξω.
4	[27]	Golemati et al. 2012	 5 νεαρών (ηλικίας 25-32) και ηλικιωμένων (ηλικίας 44-73), υγιών, ατόμων 11 ασθενών με συμπτωματική αθηρωματική πλάκα (ηλικίας 50-85 ετών με ποσοστό στένωσης 50- 90%) 9 ασθενών με ασυμπτωματική αθηρωματική πλάκα (ηλικίας 52-90 ετών με ποσοστό στένωσης 50- 85%) 	 Οπτική Ροή Οπτική ροή με χρήση μεθόδου ελαχίστων τετραγώνων Αλγόριθμος ταύτισης περιοχών ΑΒΜΜ Στις δοκιμές σε εικόνων υπερήχων από πραγματικές μετρήσεις, χρησιμοποιήθηκε η μέθοδος οπτικής ροής με χρήση μεθόδου ελαχίστων τετραγώνων 	 Ημέθοδος με καλύτερα και ταχύτερα αποτελέσματα η οπτική ροή ελαχίστων τετραγώνων. Μεγαλύτερη διαμήκης κίνηση παρουσιάστηκε στους νεαρούς οργανισμούς απ' ότι στους γηραιότερους. Η συμπτωματική αθηρωματική πλάκα παρουσιάζει στοιχεία μαλθακότητας και ευμεταβλητότητας.

A/A	B.A.	Συγγραφείς Έτος	Αντικείμενο Μελέτης	Μεθοδολογία	Αποτελέσματα
5	[30]	Guillaume Zahnd et al. 2011	 26 νεαρά υγιή άτομα (10 άντρες και 16 γυναίκες ηλικιών 19 έως 54-μέση ηλικία 25,7 ± 9,0 έτη) 26 γηραιότερα διαβητικά άτομα (16 άντρες και 10 γυναίκες, ηλικιών 39 έως 73 – μέση ηλικία 57,7 ± 9,2 έτη) 	Αλγόριθμος ταύτισης περιοχών (δικός τους): CAROLAB	 Στους γηραιότερους και διαβητικούς ασθενείς, οι μεταβολές στην κίνηση της αρτηρίας ήταν μικρότερες (μεταβολή διαμέτρου: 37%, διαμήκης μεταβολή στο πάνω τοίχωμα της αρτηρίας: 46%, διαμήκης μεταβολή στο κάτω τοίχωμα της αρτηρίας: 27% σε σχέση με τους νεότερα, υγιή άτομα.
6	[31]	Gastounioti et al. 2013	40 άτομα: 1) 12 υγιή άτομα, πέντε ηλικίας (25-32 ετών) και τέσσερα (44-73 ετών), χωρίς αθηροσκλήρωσης 2) 31 ασθενείς με αρτηριοσκλήρωση (50- 90% στένωση, 50-90 ετών). Από αυτούς: i. οι 12 με καρδιαγγειακά γεγονότα ("συμπτωματικοί") ii. οι 19 δεν είχαν	Μέθοδος προσαρμοστικής ταύτισης περιοχών	 Παρουσιάστηκαν διαφορές μεταξύ των συμπτωματικών και ασυμπτωματικών ασθενών. Εμφανίστηκε μείωση 39% και 31% στην αξονική και διαμήκη κίνηση, αντίστοιχα, του οπίσθιου έσω-χιτώνα (posterior wall- lumen) για τους συμπτωματικούς ασθενείς, 37% μεγαλύτερη κινητικότητα της πλάκας και 50% μεγαλύτερη κινητικότητα μεταξύ του πάνω και κάτω μέρους της αθηρωματικής πλάκας. Τα γηραιότερα άτομα παρουσίασαν 27% μεγαλύτερη δυσκαμψία στην ακτινική κίνηση, σε σχέση με τα νεότερα άτομα, μικρότερη ακτινική κίνηση του PWL (οπίσθιο μέρος έσω- χιτώνα) κατά 40% και μεγαλύτερη ανομοιογένεια στην ακτινική κίνηση μέσα στο

A/A	B.A.	Συγγραφείς Έτος	Αντικείμενο Μελέτης	Μεθοδολογία	Αποτελέσματα
			παρουσιάσει νευρολογικά συμπτώματα μέσα σε έξι μήνες πριν από την εξέταση.		PWL κατά 50%. Επίσης, η ακτινική δυσκαμψία ήταν αρκετά υψηλότερη στους ασθενείς.
7	[32]	Sara Svedlund et al. 2011	 59 ποντίκια 20 άνθρωποι 10 ασθενείς με αθηρωματική πλάκα στην κοινή καρωτιδική αρτηρία 10 υγιείς 	Λογισμικό απεικόνισης του διανύσματος της ταχύτητας (Vevostrain)	 Η μικρή διαμήκης μετατόπιση (tLoD) είναι στενά συνδεδεμένη με αυξημένη αθηρωματικής πλάκα τόσο στα ποντίκια όσο και σε ανθρώπους.
8	[33]	Sara Svedlund et al. 2011	 16 υγιή άτομα (μέσος όρος ηλικίας 25,4 ± 5,1 ετών) 16 ασθενείς με εξακριβωμένη αθηροσκληρωτική, στεφανιαία αρτηριακή νόσο (μέσος όρος ηλικίας 68,5 ± 6,3 ετών) 	Λογισμικό Απεικόνισης Διανύσματος Ταχύτητας (Velocity Vector Imaging-VVI)	 Η συνολική διαμήκης μετατόπιση (tLoD) είναι μετρήσιμη με τη χρήση τεχνικής VVI. Η διαμήκης κίνηση στην κοινή καρωτιδική αρτηρία, είναι ίδιας τάξης μεγέθους στους υγιείς εξεταζόμενους, τόσο στο μακρινό όσο και στο κοντινό τοίχωμα. Οι ασθενείς με στεφανιαία αρτηριακή νόσο εμφάνισαν αρκετά μικρότερη διαμήκη μετατόπιση σε σχέση με τους υγιείς.

A/A	B.A.	Συγγραφείς Έτος	Αντικείμενο Μελέτης	Μεθοδολογία	Αποτελέσματα
9	[34]	Effat Soleimani et al. 2011	10 υγιείς άντρες (ηλικίας 41 ± 2 ετών) χωρίς ιστορικό καρδιαγγειακής νόσου, υπέρτασης και διαβήτη.	 αλγόριθμου ταύτισης περιοχών αλγορίθμων μέγιστης κλίσης 	 Υπολογίστηκαν οι τιμές της ακτινικής μετατόπισης χρησιμοποιώντας τους δύο αλγόριθμους. Η μέγιστη και η μέση τιμή της ακτινικής μετατόπισης χρησιμοποιώντας τον αλγόριθμο ταύτισης περιοχών είναι 0.06 και 0.04 mmμεγαλύτερες, αντίστοιχα, σε σχέση με τις τιμές που λήφθηκαν από τον αλγόριθμο μέγιστης κλίσης. Ο συντελεστής διακύμανσης για την αρτηριακή μετατόπιση στον αλγόριθμο ταύτισης περιοχών και στον αλγόριθμο μέγιστης κλίσης. Εμφανίστηκε υψηλή συσχέτιση μεταξύ της ακτινικής μετατόπισης του Ρearson. Οι ακτινικές μετατοπίσεις στην δεξιά κοινή καρωτιδική αρτηρία που μετρήθηκαν από τον αλγόριθμο συσχέτισης του Ρεαγο.

Η κίνηση του τοιχώματος της καρωτιδικής αρτηρίας είναι σημαντική, καθώς βοηθάει στην ποσοτικοποίηση της αρτηριακής ελαστικότητας και της ικανότητας αυτής να συσπάται. Η κίνηση του τοιχώματος της αρτηρίας μπορεί να υπολογιστεί με αλγόριθμους ανάλυσης κίνησης από εικόνες υπερήχων Β-σάρωσης[27].Η ανάλυση εικόνων υπερήχων αποτελεί μια πιο αποτελεσματική τεχνική για την μελέτη της κίνησης στα αρτηριακά τοιχώματα, σε σχέση με τις τεχνικές Doppler, καθώς μπορούν να δώσουν αποτελέσματα, τόσο για την κατεύθυνση της κίνησης, όσο και το μέγεθος αυτής [22]. Ωστόσο, η διαμήκης κίνηση του άρτηριακού τοιχώματος δεν είχε διερευνηθεί εκτενώς στο παρελθόν, λόγω του ότι θεωρούταν αμελητέα σε σχέση με την κατακόρυφη κίνηση του τοιχώματος (διάμετρος της αρτηρίας) και ότι οφειλόταν στην κίνηση του διαφράγματος κατά τη διαδικασία της παρατηρήθηκε η διαμήκης κίνηση του συμπλέγματος έσω και μέσου χιτώνα, της περιοχής του έξω χιτώνα και των τριγύρω ιστών [28].

Για τον υπολογισμό της κίνησης των τοιχωμάτων των αρτηριών και κυρίως των καρωτίδων έχουν χρησιμοποιηθεί αρκετές μέθοδοι ανάλυσης κίνησης. Μία από τις κυριότερες μεθόδους είναι η χρησιμοποίηση της block-matching technique (τεχνική ταύτισης περιοχών). Αυτή η μέθοδος έχει χρησιμοποιηθεί εκτενώς για τον υπολογισμό της κίνησης των αρτηριακών τοιχωμάτων και των αθηρωματικών πλακών σε αρκετές μελέτες που έχουν πραγματοποιηθεί.

Ένα μείζον θέμα για τον αλγόριθμο ταύτισης περιοχών είναι η βέλτιστη επιλογή μεγέθους και σχήματος της περιοχής ενδιαφέροντος (ROI) που θα χρησιμοποιηθεί στον αλγόριθμο καθώς μία μεγάλη περιοχή ενδιαφέροντος αποτρέπει τον υπολογισμό σχετικών κινήσεων σε γειτονικές περιοχές, ενώ μία πολύ μικρή περιοχή ενδιαφέροντος περιέχει περιορισμένη πληροφορία για την ανάλυση της συσχέτισης και άρα δύναται να οδηγήσει σε αναξιόπιστη μελέτη κίνησης [7], [35]. Παρατηρήθηκε ότι για υπολογισμούς σε περιοχή του τοιχώματος το βέλτιστο μέγεθος της περιοχής ενδιαφέροντος (ROI) είναι 3.2 x 2.5 mm² και για ιχνηλάτηση εντός των ιστών το βέλτιστο ROI είναι 6.3 x 2.5 mm²[22].

Χρησιμοποιώντας αυτές τις περιοχές ενδιαφέροντος καθώς και μελετώντας άλλα μεγέθη για αυτές παρατηρήθηκε, όσον αφορά την κίνηση του αρτηριακού τοιχώματος σχετικά με τον ιστό, ότι η αξονική και η ακτινική μετατόπιση μειωνόταν όσο αυξανόταν η απόσταση από το τοίχωμα. Η μείωση της διακύμανσης από το αρτηριακό τοίχωμα προς τον ιστό ήταν πιο απότομη στην αξονική κατεύθυνση. Επίσης, οι συντελεστές συσχέτισης ήταν υψηλοί στη διεπιφάνεια τοιχώματος-αυλού και έτειναν να μειώνονται όσο μεγάλωνε η απόσταση από το τοίχωμα. Για την κίνηση του καρωτιδικού αρτηριακού τοιχώματος σε υγιή άτομα υπολογίστηκε ότι οι συντελεστές συσχέτισης είναι υψηλότεροι για περιοχές του οπίσθιου τοιχώματος, καθώς επίσης, ότι τα πλάτη των ακτινικών μετατοπίσεων του εμπρόσθιου τοιχώματος δεν διέφεραν στατιστικά από αυτά του οπίσθιου τοιχώματος. Επιπλέον, σε μελέτη υγιών ατόμων παρουσιάστηκε ότι η μέση σχετική αξονική μετατόπιση μεταξύ δύο περιοχών του οπίσθιου τοιχώματος ήταν σημαντικά μικρότερη από τη μέση σχετική αξονική μετατόπιση μεταξύ περιοχών των αντίθετων τοιχωμάτων[22].

Η μέθοδος ταύτισης περιοχών χρησιμοποιήθηκε για τη μελέτη της διαμήκους κίνησης των αρτηριακών τοιχωμάτων. Με δοκιμές που πραγματοποιήθηκαν στην κοινή καρωτιδική

αρτηρία, στην κοιλιακή αρτηρία, στη βραχιόνιο αρτηρία και στην ιγνυακή αρτηρία διαπιστώθηκε ότι η διαμήκης κίνηση των τοιχωμάτων των αρτηριών είναι υπαρκτή και ότι είναι της ίδιας τάξης μεγέθους με την ακτινική κίνηση της αρτηρίας. Αυτό οδηγεί στην υπόθεση ότι η διαμήκης κίνηση των αρτηριών μπορεί να συνδέεται στενά με τις ασθένειες των ανευρυσμάτων, καθώς μακροχρόνιες κυκλικές καταπονήσεις εξασθενούν τους διάφορους ιστούς, όπως τα τοιχώματα των αρτηριών, και τα κάνουν πιο επιρρεπή, πράγμα που μπορεί να οδηγήσει στην καταστροφή τους [28].

Σε μελέτες που πραγματοποιήθηκαν, χρησιμοποιώντας τη μέθοδο ταύτισης περιοχών, σε δείγμα υγιών ατόμων και ασθενών με μερική και σοβαρή στένωση, διαπιστώθηκε ότι εμφανίζεται μεγάλη διαφοροποίηση στους ασθενείς με μερική και σοβαρή στένωση, όσον αφορά τις μεταβολές στη διάμετρο και στις σχετικές αλλαγές των διακλαδώσεων της καρωτιδικής αρτηρίας. Τα αποτελέσματα ήταν ότι υπολογίστηκε το μέτρο πίεσης-τάσης, η διατασιμότητα και η συμμόρφωση της δεξιάς κοινής καρωτιδικής αρτηρίας. Υπολογίστηκε η μείωση της διαμέτρου και οι διαφορές της συστολικής και διαστολικής διαμέτρου που πάσχουν από στένωση της αρτηρίας, κάτι το οποίο οφείλεται στην αύξηση του πάχους του αρτηριακού τοιχώματος και στις αλλαγές της αναλογίας κολλαγόνου και ελαστίνης, γεγονός το οποίο είναι άρρηκτα συνδεδεμένο με την αθηροσκλήρωση, όπως, επίσης και η μείωση της αρτηριακής καταπόνησης. Οι μηχανικές ιδιότητες της δεξιάς κοινής καρωτίδας έδειξαν ότι το ελαστικό μέτρο πίεσης-τάσης και η δυσκαμψία (stiffness) αυξάνουν με τη στένωση, ενώ η διατασιμότητα (distensibility) και η συμμόρφωση (compliance) μειώνονται με τη στένωση. Οι δείκτες δυσκαμψίας φανέρωσαν μεγάλες διαφορές μεταξύ υγιών ατόμων και ασθενών με σοβαρή στένωση, ενώ δεν υπήρξε αξιοσημείωτη διαφορά ανάμεσα στους ασθενείς με μέτρια στένωση και τους υγιείς[29].

Για την περαιτέρω βελτίωση του αλγορίθμου ταύτισης περιοχών έχουν μελετηθεί μεθοδολογίες προσαρμοστικού αλγορίθμου ταύτισης διάφορες περιοχών, χρησιμοποιώντας ανανέωση της περιοχής αναφοράς. Οι τέσσερις αυτές μεθοδολογίες είναι, η ανανέωση με χρήση μιας εικόνας (Single-frame update strategy - ABM_{SE}), η ανανέωση με χρήση πολλαπλών εικόνων (Multi frame update strategy - ABM_{MF}) [39], [40], [41], η ανανέωση με χρήση φίλτρου πεπερασμένης κρουστικής απόκρισης (FIR filtering update strategy - ABM_{FIRF}) και η ανανέωση με χρήση φίλτρου Kalman (Kalman filtering update strategy - ABM_{KF}) [42]. Οι αλγόριθμοι ταύτισης περιοχών και προσαρμοστικής ταύτισης περιοχών εφαρμόστηκαν στο Mat lab[30]. Η μελέτη των παραπάνω μεθόδων πραγματοποιήθηκε Insilco [43], [44] σε έξι ακολουθίες εικόνων υπερήχων Β-σάρωσης, μέσω υπολογιστή, οι οποίες αφορούν τρείς καρδιακούς κύκλους μη αθηροσκληρωτικού αρτηριακού τοιχώματος το οποίο πλαίσιο εργασία εμπλουτίστηκε από ακόμα επτά ακολουθίες εικόνων, των τριών καρδιακών κύκλων, τρείς χωρίς θόρυβο και τέσσερις με θόρυβο. Επίσης, εφαρμόστηκε In vivo σε σαράντα άτομα.

Τα αποτελέσματα από τις μεθόδους αυτές έδειξαν ότι όλοι οι αλγόριθμοι είχαν δυσκολία στο να ανιχνεύσουν την κίνηση των στόχων με μεταβλητή εμφάνιση και ειδικότερα όταν αυτό οφείλεται σε παρεμβολές θορύβου. Από τα πειράματα που διενεργήθηκαν, ορισμένοι δείκτες εμφανίστηκαν υποψήφιοι ως πιθανοί δείκτες κινδύνου για την καρωτιδική αθηροσκλήρωση και ο αλγόριθμος που χρησιμοποιήθηκε ήταν ο ABM_{FIRF}. Πιο συγκεκριμένα, παρουσιάστηκαν σημαντικές διαφορές μεταξύ των συμπτωματικών και ασυμπτωματικών ασθενών. Παρατηρήθηκε μείωση 39% και 31% στην αξονική και διαμήκη κίνηση, αντίστοιχα, του πίσω έσω-χιτώνα (posterior wall-lumen) για τους συμπτωματικούς ασθενείς, 37% μεγαλύτερη κινητικότητα της πλάκας και 50% μεγαλύτερη κινητικότητα μεταξύ του πάνω και κάτω μέρους της αθηρωματικής πλάκας. Επιπλέον, παρουσιάστηκαν ενδιαφέροντα ευρήματα για τα υγιή άτομα, καθώς τα γηραιότερα άτομα παρουσίασαν 27% μεγαλύτερη δυσκαμψία στην ακτινική κίνηση, σε σχέση με τα νεότερα άτομα, μικρότερη ακτινική κίνηση του PWL (πίσω μέρος έσω-χιτώνα) κατά 40% και μεγαλύτερη ανομοιογένεια στην ακτινική κίνηση μέσα στο PWL κατά 50%. Επίσης, η ακτινική δυσκαμψία ήταν αρκετά υψηλότερη στους ασθενείς. Τέλος, δύο εν δυνάμει δείκτες κινδύνου, RMA_{PWL}και LMA_{PWL}, ήταν περίπου στις ίδιες τιμές για τα υγιή, μεγαλύτερα σε ηλικία, άτομα και για τους συμπτωματικούς ασθενείς, ενώ στατιστικά διέφεραν από τους ασυμπτωματικούς ασθενείς[31].

Επιπλέον μελέτη, χρησιμοποιώντας τη μέθοδο ταύτισης περιοχών, πραγματοποιήθηκε και σε δείγμα διαβητικών ασθενών και συγκρίθηκε με υγιή άτομα, από τους Guillaume Zahndetal. το 2011 [30], όπου χρησιμοποιήθηκε το CAROLAB, ένα πρόγραμμα κατασκευασμένο σε περιβάλλον Matlab. Σε μερικές σύγχρονες μεθόδους έχει προταθεί η χρησιμοποίηση παραθύρων kernel μεγέθους 3.2 X 2.5 mm²[22][22] και αρκετά μικρότερο μεγέθους 0.1 X 0.1 mm²[28][28], όμως στη συγκεκριμένη μελέτη προτάθηκε η χρησιμοποίηση kernel 1.5 X 0.3 mm², που αποτελεί μια ενδιάμεση κατάσταση. Διάφοροι παράμετροι της κίνησης της αρτηρίας μετρήθηκαν, όπως η μεταβολή της διαμέτρου της αρτηρίας και η διαμήκης κίνηση στο πάνω και στο κάτω τοίχωμα της αρτηρίας, κατά τη διάρκεια ενός καρδιακού κύκλου. Τελικά τα αποτελέσματα της έρευνας ήταν ότι στους γηραιότερους και διαβητικούς ασθενείς, οι μεταβολής στην κίνηση της αρτηρίας ήταν μικρότερες (μεταβολή διαμέτρου: 37%, διαμήκης μεταβολή στο πάνω τοίχωμα της αρτηρίας: 27% σε σχέση με τα νεότερα, υγιή άτομα.

Εκτός των μεθόδων ταύτισης περιοχών έχουν χρησιμοποιηθεί και αλγόριθμοι οπτικής ροής για την ανάλυση της κίνησης του αρτηριακού τοιχώματος καθώς και τεχνικές απεικόνισης του διανύσματος ταχύτητας (Vevostrain).

Σε μελέτη που πραγματοποιήθηκε [27] χρησιμοποιήθηκαν τέσσερις τεχνικές ανάλυσης κίνησης με, αλγόριθμο οπτικής ροής με τη μέθοδο των Horn&Schunk, μέθοδος οπτικής ροής των ελαχίστων τετραγώνων με βάρη [36], [37], [38], τον αλγόριθμο ταύτισης περιοχών και με το μοντέλο Affine Block Motion Model (ABMM), σε δισδιάστατες εικόνες υπερήχων Β-σάρωσης. Παρατηρήθηκε ότι τη μεγαλύτερη ακρίβεια εμφάνισε η μέθοδος οπτικής ροής με χρήση ελαχίστων τετραγώνων. Επίσης, η συγκεκριμένη μέθοδος παρουσιάστηκε ότι ήταν ταχύτερη στους υπολογισμούς σε σχέση με την ABMM, η οποία ήταν και αυτή αρκετά ακριβής. Το συμπέρασμα ήταν ότι στα νεαρά υγιή άτομα υπήρχε μεγαλύτερη ακτινική συμπίεση της καρωτίδας, απ' ότι στα γηραιότερα, γεγονός το οποίο οφείλεται στη μειωμένη ελαστικότητα των τοιχωμάτων των αρτηριών που παρατηρείται με το πέρας των χρόνων (μειωμένη ελαστικότητα στις μεγαλύτερες ηλικίες). Επιπρόσθετα, η ακτινική και διαμήκης κίνηση στις καρωτίδες δεν είναι συνεχώς συγχρονισμένη. Ακόμα, η διαμήκης κίνηση δείχνει μικρότερο εύρος σε σχέση με την ακτινική και άρα μικρότερη μετατόπιση. Ένα ενδιαφέρον εύρημα ήταν ότι στους ασθενείς με συμπτωματική αθηρωματική πλάκα, παρατηρήθηκε συμπίεση της πλάκας κατά τη συστολή και επέκταση αυτής κατά τη διαστολή της αρτηρίας, γεγονός που δείχνει ότι η συμπτωματική αθηρωματική πλάκα είναι ευμετάβλητη. Τελικά συμπεραίνεται ότι για τον υπολογισμό της κίνησης στις αρτηρίες και οι τέσσερις αλγόριθμοι παρουσίασαν μειωμένη απόδοση στις

εικόνες, στις οποίες υπήρχε θόρυβος. Ωστόσο, ο αλγόριθμος οπτικής ροής ελαχίστων τετραγώνων παρουσίασε τα καλύτερα αποτελέσματα. Αντίστοιχο συμπέρασμα εξήχθηκε και από τη μελέτη των της Gastounioti et al. το 2013 [31], όπου από όλους τους αλγόριθμους τη μεγαλύτερη ακρίβεια, για την εξέταση ακολουθιών εικόνων χωρίς θόρυβο, παρουσίασε ο ABM_{FIRF}, ωστόσο σε εικόνες με θόρυβο, η πιο ακριβής μέθοδος ήταν αυτή της οπτικής ροής (OF_{LK(WLS)}).

Σύγκριση μεταξύ του αλγόριθμου ταύτισης περιοχών και αλγορίθμων μέγιστης κλίσης, για την εκτίμηση της κίνησης του τοιχώματος της καρωτιδικής αρτηρίας μέσω συνεχόμενων εικόνων υπερήχων πραγματοποιήθηκε από τους Effat Soleimani et al. το 2011 [34], όπου και οι δύο αλγόριθμοι παρουσίασαν συμφωνία στην κυματομορφή της ακτινικής μετατόπισης. Η στατιστική ανάλυση δεν έδειξε διαφορές μεταξύ των δύο μεθόδων που χρησιμοποιήθηκαν. Ο συντελεστής διακύμανσης για την αρτηριακή μετατόπιση στον αλγόριθμο ταύτισης περιοχών και στον αλγόριθμο μέγιστης κλίσης ήταν 0.47% και 0.04% αντίστοιχα. Η συσχέτιση μεταξύ των τιμών της ανάλυσης ταύτισης περιοχών και μεθόδου μέγιστης κλίσης αξιολογήθηκαν από την ανάλυση συσχέτισης του Pearson. Επίσης, σύμφωνα με τη γραμμική ανάλυση παλινδρόμησης (linear regression analysis), οι ακτινικές μετατοπίσεις στην δεξιά κοινή καρωτιδική αρτηρία που μετρήθηκαν από τον αλγόριθμο ταύτισης περιοχών ήταν συσχετισμένες σε υψηλό βαθμό σε σχέση με τις ακτινικές μετατοπίσεις που μετρήθηκαν από τον αλγόριθμο μέγιστης κλίσης.

Τέλος, πρέπει να γίνει αναφορά σε τεχνικές Απεικόνισης Διανύσματος Ταχύτητας (Velocity Vector Imaging-VVI) οι οποίες μπορούν να χρησιμοποιηθούν για την εκτίμηση της διαμήκους κίνησης του τοιχώματος της κοινής καρωτιδικής αρτηρίας. Παρατηρήθηκε ότι η διαμήκης μετατόπιση της κοινής καρωτιδικής αρτηρίας είναι μετρήσιμη στα ποντίκια με αθηροσκλήρωση. Μικρή διαμήκης μετατόπιση (tLoD) είναι στενά συνδεδεμένη με αυξημένο φορτίο αθηρωματικής πλάκας τόσο στα ποντίκια όσο και σε ανθρώπους σύμφωνα με τη μελέτη των Sara Svedlund et al. το 2011 [32].

Περαιτέρω μελέτη χρησιμοποιώντας το λογισμικό Απεικόνισης Διανύσματος Ταχύτητας (Velocity Vector Imaging-VVI) πραγματοποιήθηκε από τους ίδιους μελετητές, σε δείγμα υγιών ατόμων και ασθενών με εξακριβωμένη αθηροσκληρωτική, στεφανιαία αρτηριακή νόσο. Αυτή η μελέτη έδειξε ότι η συνολική διαμήκης μετατόπιση (tLoD) είναι μετρήσιμη με τη χρήση τεχνικής VVI, με αποδεκτή ακρίβεια. Επιπλέον, τα αποτελέσματα έδειξαν ότι η διαμήκης κίνηση στην κοινή καρωτιδική αρτηρία, είναι ίδιας τάξης μεγέθους στους υγιείς εξεταζόμενους, τόσο στο πρόσθιο όσο και στο οπίσθιο τοίχωμα. Επίσης, οι ασθενείς με στεφανιαία αρτηριακή νόσο εμφάνισαν αρκετά μικρότερη διαμήκη μετατόπιση σε σχέση με τους υγιείς. Επίσης, παρατηρήθηκε ότι στους ασθενείς με στεφανιαία αρτηριακή νόσο, η διαμήκης κίνηση του τοιχώματος είναι αρκετά μειωμένη σε σχέση με τους υγιείς εθελοντές [33].

1.6 Σκοπός της Διπλωματικής Εργασίας

Σκοπός της παρούσας διπλωματικής εργασίας είναι η εξέταση της ύπαρξης τυχόν συσχέτισης των δεικτών της κίνησης της καρωτιδικής αρτηρίας με το αν οι αθηρωματικές πλάκες είναι ασβεστοποιημένες και μη.

Η εξαγωγή των δεικτών κίνησης πραγματοποιήθηκε χρησιμοποιώντας αλγόριθμο ανάλυσης κίνησης με την μέθοδο οπτικής ροής με χρήση περιορισμού του σφάλματος των ελαχίστων τετραγώνων με βάρη.

Έγινε προσπάθεια να παρατηρήσουμε τις ποιοτικές διαφορές που παρουσιάζονται στους βασικούς δείκτες της κίνησης των δύο τύπων αθηρωματικών πλακών με βάση τα αποτελέσματα της στατιστικής ανάλυσης σε ένα σύνολο 18 ασθενών.

Έγινε επίσης σύγκριση των αποτελεσμάτων της ανάλυσης με αποτελέσματα άλλης ανάλυσης για τα οποία είχε χρησιμοποιηθεί αλγόριθμος ανάλυσης κίνησης με την τεχνική ταύτισης περιοχών.

2 Υλικό και Μέθοδοι

Στο κεφάλαιο αυτό γίνεται μία σύντομη παρουσίαση της θεωρίας του αλγόριθμου οπτικής ροής, της στατιστικής ανάλυσης των αποτελεσμάτων και αναφορά στα ιατρικά δεδομένα που χρησιμοποιήθηκαν στην μελέτη. Επίσης, γίνεται μία αναλυτική παράθεση των αλγορίθμων που χρησιμοποιήθηκαν στα πλαίσια της μελέτης αυτής και αναλύονται οι αλγόριθμοι που χρησιμοποιήθηκαν και οι αλλαγές οι οποίες έγιναν στους αλγόριθμους αυτούς.

2.1 Ιατρικά Δεδομένα

2.1.1 Ασθενείς

Για τη διεξαγωγή της μελέτης που πραγματοποιήσαμε εφαρμόσαμε τον αλγόριθμο οπτικής ροής για την ανάλυση της κίνησης σε ακολουθίες εικόνων υπερήχων Β- modeασθενών με αθηρωμάτωση.

Χρησιμοποιήθηκαν δεδομένα από υπερηχογραφήματα καρωτίδων 18 ασθενών του νοσοκομείου Ερυθρός Σταυρός. Τα δεδομένα περιλάμβαναν επιπλέον και ελαστογραφίες για κάθε αθηρωματική πλάκα ξεχωριστά, στις οποίες ο ιατρός είχε σημειώσει τα όρια των πλακών. Επίσης για κάθε ασθενή υπήρχε και ένα πλήθος ακολουθιών εικόνων υπερήχων της περιοχής ενδιαφέροντος.

Τα στοιχεία αφορούσαν τέσσερεις (4) γυναίκες και δέκα τέσσερεις (14) άνδρες οι οποίοι παρουσίαζαν στένωση καρωτίδων από 65% έως και 99%. Η ηλικίες των ασθενών ήταν από 56 έως και 86 ετών. Ο Μέσος Όρος ηλικίας των γυναικών ήταν 65,25 ετών και ο αντίστοιχος των ανδρών 70,71 ετών (συνολικός Μέσος Όρος ηλικίας 69,5 με τυπική απόκλιση 79,47).

Έντεκα από τους ασθενείς είχαν από μία αθηρωματική πλάκα και οι λοιποί επτά από δύο αθηρωματικές πλάκες. Τρείς από τους ασθενείς είχαν μη ασβεστοποιημένες (uncalcified) πλάκες, έντεκα είχαν ασβεστοποιημένες (calcified) πλάκες και οι υπόλοιποι τέσσερεις είχαν μία ασβεστοποιημένη και μία μη ασβεστοποιημένη αθηρωματική πλάκα.

2.1.2 Ακολουθίες εικόνων υπερήχων

Για κάθε ασθενή υπήρχαν διαθέσιμα ένα πλήθος ακολουθιών εικόνων υπερήχων B-mode (B-mode videos). Τα videos αυτά χρησιμοποιήθηκαν σαν στοιχεία αλγορίθμων, οι οποίοι παρουσιάζονται αναλυτικά σε επόμενο εδάφιο. Η πρώτη εικόνα κάθε video χρησιμοποιήθηκε για να υπολογιστεί η ανάλυση της εικόνας με βάση τον αλγόριθμο που παρουσιάζεται στο Παράρτημα 5.1. Επίσης το ίδιο αυτόframeχρησιμοποιήθηκε για να καθοριστούν χειροκίνητα το όρια της πλάκας, τα άνω και κάτω υγιή τοιχώματα της καρωτίδας και ο καθορισμός μίας περιοχής του αυλού.

Σε κάθε ένα από τα προς ανάλυση videosαπεικονίζεται η κοινή καρωτίδα σε διαφορετικές λήψεις και με διαφορετική ανάλυση. Στην παρούσα μελέτη αναλύθηκαν όλα τα videosκαι εφαρμόστηκε ο αλγόριθμος ανάλυσης κίνησης, βασισμένος στη μέθοδο οπτικής ροής, σε όλες τις ακολουθίες με σκοπό να έχουμε όσο το δυνατόν πληρέστερα και πιο ακριβή αποτελέσματα για τον κάθε ασθενή, όσον αφορά την εξαγωγή των δεικτών κίνησης από τον αλγόριθμο οπτικής ροής.

Ο [Πίνακας 2] περιλαμβάνει αναλυτικά τα στοιχεία που αφορούν τα διαθέσιμα videos ανά ασθενή, το πλήθος αθηρωματικών πλακών ανά ασθενή, την θέση της κάθε πλάκας (άνω ή κάτω) και τον χαρακτηρισμό αν η κάθε πλάκα είναι ασβεστοποιημένη ή μη ασβεστοποιημένη.
Ασθενής	Πλήθος πλακών	Πλήθος Αρχείων VIDEO	ΗΛΙΚΙΑ	ΒΑΘΜΟΣ ΣΤΕΝΩΣΗΣ (%)	ΑΝΩ/ΚΑΤΩ ΠΛΑΚΑ	Ασβεστοποιημένη/Μη Ασβεστοποιημένη
1	1	6	60	90	ΚΑΤΩ	Ασβεστοποιημένη
2	1	6	66	65	ΑΝΩ	Ασβεστοποιημένη
2	2	2	56	60.65	ΑΝΩ	Ασβεστοποιημένη
5	2	5	50	00-05	ΚΑΤΩ	Ασβεστοποιημένη
4	1	5	57	90	ΚΑΤΩ	Ασβεστοποιημένη
	2	0	82	80	ΑΝΩ	Ασβεστοποιημένη
5	2	5	02	80	ΚΑΤΩ	Ασβεστοποιημένη
6	1	4	75	70	ΚΑΤΩ	Ασβεστοποιημένη
7	2	Л	61	70_75	ΑΝΩ	Μη Ασβεστοποιημένη
,	2	4	01	70-75	ΚΑΤΩ	Ασβεστοποιημένη
8	1	1	76	75	ΚΑΤΩ	Μη Ασβεστοποιημένη
9	1	5	68	60-65	ΚΑΤΩ	Μη Ασβεστοποιημένη
10	2	Л	86	96	ΑΝΩ	Μη Ασβεστοποιημένη
10	2	4	80	50	ΚΑΤΩ	Ασβεστοποιημένη
11	2	1	84	70	ΑΝΩ	Ασβεστοποιημένη
11	2	Ĩ	04	70	ΚΑΤΩ	Μη Ασβεστοποιημένη
12	2	Л	69	95-99	ΑΝΩ	Ασβεστοποιημένη
12	2	4	09	55-55	ΚΑΤΩ	Ασβεστοποιημένη
13	1	1	65	80	ΑΝΩ	Ασβεστοποιημένη
14	1	3	68	80	ΚΑΤΩ	Ασβεστοποιημένη
15	1	2	79	70	ΚΑΤΩ	Ασβεστοποιημένη
16	2	5	70	65-70	ΑΝΩ	Ασβεστοποιημένη
			,,,		ΚΑΤΩ	Μη Ασβεστοποιημένη
17	1	6	69	80-85	ΚΑΤΩ	Ασβεστοποιημένη
18	1	5	60	90	ΚΑΤΩ	Μη Ασβεστοποιημένη

Πίνακας 2: Στοιχεία Videos Ασθενών

2.1.3 Ελαστογραφίες

Σε κάθε ελαστογραφία διαθέσιμη για κάθε ασθενή ο ιατρός είχε σημειώσει τα όρια των αντιστοίχων πλακών, όπως επίσης και ένα τμήμα του υγιούς ιστού. Με βάση τα υποσημειωμένα από τον ιατρό όρια των πλακών επάνω στην ελαστογραφία, έγινε χειροκίνητα ο καθορισμός των ορίων των ορίων των αντίστοιχων πλακών στην πρώτη εικόνα του κάθενideo, μέσω του αλγόριθμου που παρουσιάζεται στο Παράρτημα 5.1, όπως παρουσιάζεται σε επόμενο εδάφιο.

Ο [Πίνακας 3] περιλαμβάνει αναλυτικά τις ελαστογραφίες που χρησιμοποιήθηκαν στην μελέτη:

Ασθενής	Πλήθος	ΑΝΩ/ΚΑΤΩ
	Ελαστογραφιών	ΠΛΑΚΑ
1	1	ΚΑΤΩ
2	1	ANΩ
	2	ΑΝΩ
3	Z	ΚΑΤΩ
4	1	ΚΑΤΩ
	2	ΑΝΩ
5	Z	ΚΑΤΩ
6	1	ΚΑΤΩ
	2	ΑΝΩ
7	Z	ΚΑΤΩ
8	1	ΚΑΤΩ
9	1	ΚΑΤΩ
	2	ΑΝΩ
10	Z	ΚΑΤΩ
	2	ΑΝΩ
11	Z	ΚΑΤΩ
	2	ΑΝΩ
12	Z	ΚΑΤΩ
13	1	ANΩ
14	1	ΚΑΤΩ
15	1	ΚΑΤΩ
	2	ΑΝΩ
16	Z	ΚΑΤΩ
17	1	ΚΑΤΩ
18	1	ΚΑΤΩ

Πίνακας 3: Ελαστογραφίες

2.2 Μεθοδολογία ανάλυσης κίνησης εικόνων υπερήχων

2.2.1 Οπτική Ροή με χρήση περιορισμού του σφάλματος των ελαχίστων τετραγώνων με βάρη

Όταν αντικείμενα απεικονίζονται μέσω κάμερας (ή και από τον ανθρώπινο αμφιβληστροειδή χιτώνα), η οποία έχει σχετική κίνηση με τα αντικείμενα, η φαινομενική κίνηση των προτύπων φωτεινότητας αντιστοιχεί σε μία δισδιάστατη απεικόνιση ενός πεδίου διανυσμάτων ταχύτητας, το οποίο ονομάζουμε οπτική ροή.

Έστω ότι έχουμε το τρισδιάστατο πεδίο εικόνας *Ι(x,y,t)*, το οποίο αντιπροσωπεύει το χωροχρονικό μοτίβο της φωτεινότητας που σχηματίζεται στο επίπεδο απεικόνισης από την απεικόνιση ορισμένων κινούμενων αντικειμένων. Η τρισδιάστατη κίνηση των αντικειμένων, η οποία απεικονίζεται, παράγει μία δισδιάστατη κίνηση των αντίβων φωτεινότητας στο επίπεδο απεικόνισης. Αυτή η φαινομενική δισδιάστατη κίνηση ονομάζεται οπτική ροή.

Σε κάποια δεδομένη χρονική στιγμή *t*, θεωρούμε τη φωτεινότητα *l(x,y,t)* σε κάθε εικονοστοιχείο *(x,y)*, η οποία είναι η προβολή ενός σημείου της επιφάνειας του αντικειμένου *P*. Για ένα μικρό χρονικό διάστημα Δ*t* και για μικρά διανύσματα ταχυτήτων, η προβολή του ίδιου αυτού σημείου *P* θα έχει μετατοπισθεί σε ένα διπλανό εικονοστοιχείο *(x+Δx,y+Δy)*. Θεωρώντας ότι αυτές οι μικρές χωροχρονικές μετατοπίσεις θα προκαλούν ίδιες τιμές φωτεινότητας στα δύο αυτά εικονοστοιχεία, λαμβάνουμε

$$I(x + \Delta x, y + \Delta y, t + \Delta t) \approx I(x, y, t)$$

Αν η συνάρτηση απεικόνισης είναι ομαλή, τότε μπορούμε να θεωρήσουμε την επέκταση της σειράς Taylor πρώτου βαθμού γύρω από το σημείο (*x*,*y*,*t*):

$$I(x + \Delta x, y + \Delta y, t + \Delta t) \approx I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t$$

Εάν συνδυάσουμε τις δύο παραπάνω εξισώσεις, λάβουμε το όριο $\Delta t \rightarrow 0$ και ορίσουμε τις μεταβλητές της οπτικής ροής (δισδιάστατα διανύσματα ταχύτητας) ως

$$u riangleq rac{dx}{dt}, v riangleq rac{dy}{dt}$$

τότε λαμβάνουμε την εξίσωση

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$

η οποία είναι γνωστή ως περιορισμός οπτικής ροής. Είναι ισοδύναμη με την απαίτηση dl/dt=0.

Τον περιορισμό αυτό στο δισδιάστατο διάνυσμα ταχύτητας (*u,v*) μπορούμε να το γράψουμε και ως

$$\nabla I \,.\, (u,v) = -\frac{\partial I}{\partial t}$$

Για να μπορέσει να πραγματοποιηθεί ο υπολογισμός της οπτικής ροής χρειάζονται περιορισμοί στην κλίση της οπτικής ροής και στην ομαλότητα των διανυσμάτων ταχύτητας. Ο περιορισμός της ομαλότητα των διανυσμάτων ταχύτητας επιζητεί ότι η ενέργεια των παραγώγων της εικόνας είναι ελάχιστη[45].

Συνδυάζοντας τους δύο αυτούς περιορισμούς λαμβάνουμε το πρόβλημα βελτιστοποίησης, όπου το βέλτιστο διάνυσμα ταχύτητας ελαχιστοποιεί τη συνάρτηση

$$J(u,v) = \iint (I_x u + I_y v + I_t)^2 dx dy + \lambda \iint \left\{ \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 \right\} dx dy$$

όπου λ είναι η παράμετρος κανονικοποίησης, η οποία καθορίζει την επίδραση του περιορισμού ομαλότητας, I_x , I_y και I_t είναι οι χωρικές και χρονική παράγωγοι της φωτεινότητας της εικόνας και οι όροι $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$ και $\frac{\partial v}{\partial y}$ είναι οι χωρικές παράγωγοι των διανυσμάτων ταχύτητας.

Η παραπάνω μέθοδος υπολογισμού της οπτικής ροής περιγράφηκε και αναπτύχθηκε από τους Horn και Schunk [46].

Στην παρούσα μελέτη χρησιμοποιήθηκε μία διαφορετική μέθοδος υπολογισμού της οπτικής ροής η οποία βασίζεται στη μέθοδο Lucas_Kanade [47].

Ένας συνηθισμένος τρόπος για τον περιορισμό του διανύσματος της ταχύτητας είναι η χρησιμοποίηση περιορισμών της κλίσης από γειτονικά εικονοστοιχεία, θεωρώντας ότι έχουν το ίδιο δισδιάστατο διάνυσμα ταχύτητας. Στην πραγματικότητα είναι πιθανό να μην υπάρχει ούτε ένα διάνυσμα ταχύτητας με την ίδια τιμή που ταυτόχρονα ικανοποιεί όλα τα γειτονικά εικονοστοιχεία, για το λόγο αυτό αναζητείται το διάνυσμα ταχύτητας που ελαχιστοποιεί τα σφάλματα των περιορισμών αυτών. Ο εκτιμητής ελαχίστων τετραγώνων που ελαχιστοποιεί τα τετραγωνικά σφάλματα είναι

$$E(u) = \sum_{X} g(\mathbf{x}) * [\mathbf{u} * \nabla I(\mathbf{x}, t) + I_t(\mathbf{x}, t)]^2$$

όπου *g(x)* είναι η δισδιάστατη συνάρτηση Gauss με βάρη, η οποία χρησιμοποιείται για την ενίσχυση των περιορισμών στο κέντρο της περιοχής και άρα αυξάνει την επιρροή τους.

2.2.2 Στατιστική Ανάλυση Spearman

Στη στατιστική ανάλυση ο συντελεστής συσχέτισης Spearman είναι ένα μη παραμετρικό μέτρο της στατιστικής εξάρτησης μεταξύ δύο κατανομών-μεταβλητών. Με τη χρήση του συντελεστή συσχέτισης Spearman αξιολογούμε το πόσο καλά μπορεί να περιγραφεί η σχέση μεταξύ δύο μεταβλητών χρησιμοποιώντας μία μονότονη συνάρτηση.

Ο συντελεστής συσχέτισης Spearman ορίζεται όπως ο συντελεστής συσχέτισης Pearson μεταξύ των μεταβλητών κατάταξης.

Ο συντελεστής συσχέτισης Pearson ορίζεται ως:

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} = \frac{E[XY] - E[X]E[Y]}{\sqrt{E[X^2] - E[X]^2}\sqrt{E[Y^2] - E[Y]^2}}$$

Όταν οι ηπρώτες βαθμολογίες X_i , Y_i μετατρέπονται σε κατατάξεις x_i , y_i , τότε το ρ είναι ο συντελεστής Spearmanκαι υπολογίζεται από τη σχέση:

$$\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}$$

Ο συντελεστής συσχέτισης Spearman λαμβάνει τιμές $-1 \le \rho \le 1$. Όταν ο συντελεστής συσχέτισης Spearmanέχει τιμή Ο τότε οι δύο κατανομές δεν συσχετίζονται μεταξύ τους. Στις περιπτώσεις που ο συντελεστής συσχέτισης είναι διάφορος του Ο, τότε αυτό υποδεικνύει ότι ενδεχομένως να υπάρχει συσχέτιση μεταξύ των δύο κατανομών και όσο μεγαλύτερη είναι η απόλυτη τιμή του συντελεστή, τόσο ισχυρότερη είναι η συσχέτισή τους[48].

Όταν ο συντελεστής συσχέτισης Spearman έχει θετικό πρόσημο, αυτό υποδεικνύει ότι όταν μεγαλώνει η μεταβλητή *X*, τότε μεγαλώνει και η μεταβλητή *Y*, ενώ όταν έχει αρνητικό πρόσημο, όταν μεγαλώνει η μεταβλητή *X*, τότε μικραίνει η μεταβλητή *Y*.

Ένα επιπλέον μέτρο της στατιστικής ανάλυσης Spearman που βοηθάει στην αξιολόγηση της στατιστικής εξάρτησης μεταξύ δύο κατανομών είναι ο συντελεστής προσδιορισμού και ο οποίος είναι ο τετραγωνισμένος συντελεστής συσχέτισης Spearman ρ^2 . Ο συντελεστής προσδιορισμού ορίζει το ποσοστό της διακύμανσης του κατά πόσο βρίσκονται σε συσχέτιση δύο μεταβλητές[58].

Στη στατιστική ανάλυση των αποτελεσμάτων μίας μελέτης, πέρα από το βαθμό συσχέτισης που υπολογίζουμε να βρούμε, είναι επιτακτική η ανάγκη να γνωρίζουμε το κατά πόσο μπορούμε να εμπιστευτούμε τα αποτελέσματα που εξήχθησαν από τους υπολογισμούς. Για το σκοπό αυτό χρησιμοποιείται η τιμή *p*, η οποία ορίζεται ως η πιθανότητα να λάβουμε ένα αποτέλεσμα ίσο ή "πιο ακραίο" σε σχέση με το αποτέλεσμα που παρατηρήθηκε στην πραγματικότητα, θεωρώντας ότι η μηδενική υπόθεση είναι αληθής.

Στην παρούσα μελέτη θεωρήσαμε ότι ασφαλή και αποδεκτά αποτελέσματα είναι εκείνα που η τιμή του *p* είναι μικρότερη από επίπεδο σημαντικότητας (significance level) α=0.05, όπως υποδεικνύεται από τη διεθνή βιβλιογραφία[49].

2.3 Παρουσίαση χρησιμοποιούμενων αλγορίθμων

2.3.1 Προτεινόμενη μεθοδολογία

Στη συγκεκριμένη έρευνα η διαδικασία που ακολουθήθηκε για την εξαγωγή των αποτελεσμάτων παρουσιάζεται σχηματικά στην (Εικόνα 9).

Εικόνα 9: Διάγραμμα ροής προτεινόμενης μεθοδολογίας

Το πρώτο βήμα ήταν να δημιουργηθούν τα αρχεία δεδομένων όλων των video των ασθενών, τα οποία περιέχουν πληροφορίες σχετικά με την ανάλυση, τη μέγιστη και ελάχιστη φωτεινότητα, των ορίων των αθηρωματικών πλακών, τον αριθμό αθηρωματικών πλακών, τα όρια του άνω και κάτω υγιούς τοιχώματος της καρωτίδας, την περιοχή του αίματος και την περιοχή του έξω χιτώνα (adventitia), καθώς και το πλήθος των εικόνων του εκάστοτενideo και τον ορισμό της πρώτης και της τελευταίας εικόνας του video. Τα αρχεία αυτά, που αφορούν το κάθε video και την κάθε αθηρωματική πλάκα του κάθε ασθενή εξάγονται από αλγόριθμο, ο οποίος θα αναλυθεί σε επόμενο εδάφιο.

Στη συνέχεια εκτελέστηκε ο αλγόριθμος ανάλυσης κίνησης, χρησιμοποιώντας ως εισόδους τα video των ασθενών και τα αντίστοιχα αρχεία δεδομένων για την εξαγωγή των δεικτών κίνησης. Η διαδικασία αυτή ακολουθήθηκε για κάθε video ασθενή, για όλους τους ασθενείς.

Αφού εξήχθησαν οι δείκτες κίνησης όλων των video, δημιουργήθηκε ένα αρχείο το οποίο περιείχε τα αποτελέσματα της εκτέλεσης του αλγορίθμου κίνησης. Χρησιμοποιώντας το δημιουργημένο αρχείο πραγματοποιήθηκε στατιστική ανάλυση για όλους τους δείκτες κίνησης, με σκοπό να ευρεθεί πιθανόν συσχέτιση των δεικτών κίνησης και του χαρακτηρισμού των αθηρωματικών πλακών ως ασβεστοποιημένες. Τα τελικά αποτελέσματα παρουσιάζονται στο κεφάλαιο 3 της παρούσας εργασίας.

2.3.2 Αλγόριθμος Αρχείων Δεδομένων Video

Σε προηγούμενα εδάφια έγιναν συνεχείς αναφορές στα αρχεία, τα οποία χρησιμοποιήθηκαν για τον υπολογισμό των δεικτών κίνησης μέσω του αλγόριθμου ανάλυσης κίνησης.

Τα αρχεία αυτά διαθέτουν στοιχεία για το κάθε videoτου κάθε ασθενή και αποτελούν μια από τις δύο απαραίτητες εισόδους του αλγορίθμου ανάλυσης κίνησης. Πιο συγκεκριμένα σε αυτά τα αρχεία υπάρχουν οι πληροφορίες για το συνολικό όριο των αθηρωματικών πλακών, το πάνω όριο της αθηρωματικής πλάκας (δηλαδή το όριο της αθηρωματικής πλάκας που βρίσκεται σε επαφή με το αίμα και είναι προς την πλευρά του αυλού της καρωτίδας), το κάτω όριο της αθηρωματικής πλάκας (το οποίο, δηλαδή, βρίσκεται προς την μεριά του τοιχώματος της καρωτίδας), μία γραμμή οριοθέτησης του πάνω υγιούς τοιχώματος, μία γραμμή οριοθέτησης του κάτω υγιούς τοιχώματος, η ανάλυση της αλληλουχίας των εικόνων του video κατά τη διαμήκη διεύθυνση και κατά την ακτινική διεύθυνση, ο αριθμός των αθηρωματικών πλακών που απεικονίζονται στο νideουπερήχων, καθώς και η επισήμανση της πρώτης και της τελευταίας εικόνας της αλληλουχίας των εικόνων που θα χρησιμοποιήσουμε στην ανάλυση κίνησης.

Για να είναι εφικτή η ανάλυση κίνησης σε όλα τα video που υπάρχουν διαθέσιμα και για όλους τους ασθενείς, είναι απαραίτητο να εξαχθούν τα αντίστοιχα αρχεία όλων των videoκαι για όλους τους ασθενείς ξεχωριστά και αυτό γιατί κάθε video είχε διαφορετική ανάλυση, είχε ληφθεί ενδεχομένως από διαφορετική γωνία λήψης και υπό διαφορετικές συνθήκες.

Ο αλγόριθμος που χρησιμοποιήθηκε για την εξαγωγή των εν λόγω αρχείων αρχικά δέχεται σαν είσοδο τονideoτο οποίο θέλουμε να επεξεργαστούμε. Στη συνέχεια ο χρήστης πληκτρολογεί την επιλογή του πρώτου frame της ακολουθίας των εικόνων του video το οποίο θέλουμε να χρησιμοποιήσουμε για την εξαγωγή του αντίστοιχου αρχείου, ως απάντηση στην ερώτηση που δίνει ο αλγόριθμος:

What is the first frame?

Με τον ίδιο τρόπο ο χρήστης εισάγει το τελευταίο frame της ακολουθίας των εικόνων που θα χρησιμοποιηθούν για την εξαγωγή του αρχείου, πληκτρολογώντας το επιθυμητό frameως απάντηση στην ερώτηση που θέτει το πρόγραμμα:

What is the last frame?

Το επόμενο βήμα του αλγόριθμου πρέπει να είναι ο υπολογισμός της ακτινικής και διαμήκους ανάλυσης της εικόνας, ωστόσο ο αρχικός αλγόριθμος δεν είχε αυτή τη δυνατότητα και για το λόγο αυτό χρησιμοποιήσαμε έναν διαφορετικό αλγόριθμο για τη συγκεκριμένη διεργασία. Ο αλγόριθμος αυτός ενσωματώθηκε στον προαναφερθέντα αλγόριθμο, αμέσως μετά από την επιλογή του τελευταίου frameαπό τον χρήστη.

Στη συνέχεια ο αρχικός αλγόριθμος ανοίγει σε ένα διαδραστικό παράθυρο το πρώτο frameτου προς ανάλυση video με σκοπό να υπολογίσει τη διαμήκη και την ακτινική ανάλυση (resolution) της εικόνας.

Σε αυτό το βήμα ο χρήστης πρέπει να επιλέξει τέσσερα σημεία της εικόνας με βάση τα οποία θα υπολογιστεί η ανάλυση της εικόνας. Η επιλογή των σημείων γίνεται από τον χρήστη. Οι δύο πρώτες επιλογές αφορούν την ακτινική ανάλυση της εικόνας και επιλέγονται όπως φαίνεται στην (Εικόνα 10).

Εικόνα 10: Επιλογή του πρώτου σημείου για την ακτινική ανάλυση της εικόνας, το οποίο βρίσκεται στο ύψος του αριθμού 1.

Στη συνέχεια γίνεται η επιλογή του δεύτερου σημείου που αφορά στην ακτινική ανάλυση της εικόνας. Το δεύτερο σημείο λαμβάνεται στο ύψος όπου βρίσκεται ο αριθμός 2, ο οποίος φαίνεται στο δεξιό μέρος της εικόνας υπερήχου. Το σημείο μπορούμε να το επιλέξουμε οπουδήποτε κατά τον οριζόντιο άξονα, καθώς αυτό που ενδιαφέρει για τον υπολογισμό της ακτινικής ανάλυσης είναι το ύψος του σημείου (Εικόνα 11).

Εικόνα 11:Επιλογή του δεύτερου σημείου για την ακτινική ανάλυση της εικόνας, το οποίο βρίσκεται στο ύψος του αριθμού 2.

Στη συνέχεια γίνεται η επιλογή του τρίτου σημείου, το οποίο αφορά την διαμήκη ανάλυση της εικόνας. Το πρώτο σημείο που αφορά τη διαμήκη ανάλυση της εικόνας και το οποίο είναι το τρίτο σε σειρά, επιλέγεται στο αριστερό όριο της εικόνας της εικόνας του υπέρηχου. Το ύψος στο οποίο θα παρθεί το σημείο δεν μας ενδιαφέρει, καθώς για τον υπολογισμό της διαμήκους ανάλυσης της εικόνας αυτό που ενδιαφέρει είναι το πλάτος της εικόνας (Εικόνα 12).

Εικόνα 12:Επιλογή του πρώτου σημείου για τη διαμήκη ανάλυση της εικόνας, το οποίο βρίσκεται στο αριστερό όριο της εικόνας.

Το τέταρτο και τελευταίο σημείο που επιλέγει ο χρήστης είναι το δεύτερο που χρειάζεται για τον υπολογισμό της διαμήκους ανάλυσης της εικόνας και επιλέγεται στο δεξιό άκρο της εικόνας του υπέρηχου. Το ύψος στο οποίο θα παρθεί το σημείο δεν μας ενδιαφέρει, καθώς για τον υπολογισμό της διαμήκους ανάλυσης της εικόνας αυτό που ενδιαφέρει είναι το πλάτος της εικόνας (Εικόνα 13).

Εικόνα 13:Επιλογή του δεύτερου σημείου για τη διαμήκη ανάλυση της εικόνας, το οποίο βρίσκεται στο δεξιό όριο της εικόνας.

Αφού ο χρήστης επιλέξει τα τέσσερα αυτά σημεία που χρειάζονται για τον υπολογισμό της ανάλυσης της εικόνας, ο αλγόριθμος υπολογίζει τη διαμήκη ανάλυση της εικόνας.

Στη συνέχεια το πρόγραμμα ζητάει από τον χρήστη να εισάγει χειροκίνητα πρώτα την τιμή της ακτινικής ανάλυσης της εικόνας, η οποία υπολογίστηκε από το πρόγραμμα προηγουμένως, ως απάντηση στην ερώτηση:

What is the radial image resolution?

Ύστερα από αυτό ο χρήστης πρέπει να πληκτρολογήσει την τιμή της διαμήκους ανάλυσης της εικόνας, η οποία υπολογίστηκε από το πρόγραμμα νωρίτερα, ως απάντηση στην ερώτηση:

What is the longitudinal image resolution?

Στη συνέχεια ο αλγόριθμος ζητάει από το χρήστη να πληκτρολογήσει τον αριθμό των αθηρωματικών πλακών που υπάρχουν στο προς ανάλυση videoτου ασθενούς, ως απάντηση στην ερώτηση:

How many plaques?

Αφού ο χρήστης πληκτρολογήσει τον αριθμό των αθηρωματικών πλακών, ανοίγει ένα διαδραστικό παράθυρο, όπου υπάρχει το πρώτο frame της αλληλουχίας εικόνων του προς ανάλυση video, πάνω στο οποίο πρέπει να σημειωθούν τα όρια των αθηρωματικών πλακών, το πάνω όριο της αθηρωματικής πλάκας, το κάτω όριο της αθηρωματικής πλάκας, μία ενδεικτική γραμμή του ορίου του πάνω υγιούς τοιχώματος της καρωτίδας, μία περιοχή του αυλού της καρωτίδας, όπου υπάρχει αίμα και μία μικρή περιοχή του έξω χιτώνα(adventitia)του υγιούς τοιχώματος.

Πιο συγκεκριμένα, το επόμενο βήμα στον αλγόριθμο είναι που ζητάει από το χρήστη να σημειώσει το όριο ολόκληρης της αθηρωματικής πλάκας, μέσω ενός παραθύρου (Εικόνα 14).

Εικόνα 14:Το παράθυρο που εμφανίζεται ζητάει από τον χρήστη να σημειώσει το όριο ολόκληρης της αθηρωματικής πλάκας

Το όριο ολόκληρης της αθηρωματικής πλάκας επιλέγεται χειροκίνητα από το χρήστη. Ο χρήστης θα πρέπει να επιλέξει αρκετά συνεχόμενα σημεία, προσέχοντας πάντα να ακολουθεί μία φορά, είτε δεξιόστροφη είτε αριστερόστροφη, και ελέγχοντας να μην υπάρχουν κενά στα σημεία επιλογής, δηλαδή οι κύκλοι που σχηματίζονται να συμπίπτουν ο επόμενος με τον προηγούμενο, έτσι ώστε να σχηματιστεί σωστά το όριο της αθηρωματικής πλάκας χωρίς κενά (Εικόνα 15).

Στο σημείο αυτό πρέπει να σημειωθεί ότι τα όρια των αθηρωματικών πλακών δεν πρέπει να λαμβάνονται αυθαίρετα από τον χρήστη, ούτε με βάση την κρίση του και σύμφωνα με το πού νομίζει ότι υπάρχει αθηρωματική πλάκα, αλλά θα πρέπει να ακολουθούνται όσο πιο πιστά γίνεται τα όρια των αθηρωματικών πλακών που έχει σημειώσει ο ιατρός στις αντίστοιχες ελαστογραφίες για τον κάθε ασθενή(Εικόνα 16).

Εικόνα 15:Επιλογή των σημείων που καθορίζουν το όριο ολόκληρης της αθηρωματικής πλάκας.

Εικόνα 16:Εικόνα ελαστογραφίας που έστειλε ο ιατρός και με βάση την οποία πρέπει να σχεδιαστούν τα όρια της αθηρωματικής πλάκας.

Με την ολοκλήρωση του ορίου ολόκληρης της αθηρωματικής πλάκας, ζητείται από τον χρήστη να σχεδιάσει το PTS όριο της αθηρωματικής πλάκας, δηλαδή το όριο της αθηρωματικής πλάκας που βρίσκεται προς τη μεριά του αυλού της καρωτίδας (Εικόνα 17).

Εικόνα 17:Ζητείται από το χρήστη να επιλέξει το PTS όριο της αθηρωματικής πλάκας.

Η επιλογή του ορίου αυτού γίνεται όπως και προηγουμένως. Ο χρήστης επιλέγει τα σημεία, προσέχοντας πάντα να μην υπάρχουν κενά μεταξύ των σημείων που επιλέγονται (Εικόνα 18).

Εικόνα 18:Επιλογή του PTS ορίου της αθηρωματικής πλάκας.

Στη συνέχεια ζητείται από τον χρήστη να σχεδιάσει το PBS όριο της αθηρωματικής πλάκας, δηλαδή το όριο της αθηρωματικής πλάκας που βρίσκεται προς τη μεριά του τοιχώματος της καρωτίδας (Εικόνα 19).

Εικόνα 19:Ζητείται από το χρήστη να επιλέξει το PBS όριο της αθηρωματικής πλάκας.

Η επιλογή του ορίου αυτού γίνεται όπως και προηγουμένως. Ο χρήστης επιλέγει τα σημεία, προσέχοντας πάντα να μην υπάρχουν κενά μεταξύ των σημείων που επιλέγονται. Θα πρέπει επίσης να προσέχει να χρησιμοποιεί την ίδια φορά που χρησιμοποιούσε και στα προηγούμενα βήματα για την επιλογή των σημείων του ορίου της αθηρωματικής πλάκας (Εικόνα 20).

Εικόνα 20:Επιλογή του PBS ορίου της αθηρωματικής πλάκας.

Στο σημείο αυτό αφού έχουν ολοκληρωθεί τα όρια ολόκληρης της αθηρωματικής πλάκας, του PTS και του PBS, θα πρέπει να επιλέξουμε σημεία του άνω και κάτω υγιούς τοιχώματος της καρωτίδας, καθώς τα δεδομένα αυτά διαδραματίζουν σπουδαίο ρόλο στον υπολογισμό των δεικτών κίνησης.

Ωστόσο, ο αρχικός αλγόριθμος, δεν είχε τη δυνατότητα επιλογής των σημείων του άνω (anterior) και κάτω (posterior) υγιούς τοιχώματος της καρωτίδας. Για το λόγο αυτό προστέθηκε στον αλγόριθμο ένα τμήμα κώδικα που επιτρέπει τη διαδικασία επιλογής των σημείων αυτών.

Κατά την εκτέλεση του αλγορίθμου ζητείται από το χρήστη να επιλέξει σημεία του ορίου του πάνω υγιούς τοιχώματος, δηλαδή ζητείται να γίνει επιλογή σημείων του AWL(Εικόνα 21). Ο χρήστης επιλέγει τα σημεία αυτά και προσέχοντας να μην υπάρχουν κενά μεταξύ του επόμενου με το προηγούμενο σημείο (Εικόνα 22).

Εικόνα 21:Ζητείται από το χρήστη η επιλογή σημείων του AWL.

Εικόνα 22:Επιλογή σημείων του AWL.

Στη συνέχεια ζητείται από το χρήστη να επιλέξει σημεία του ορίου του κάτω υγιούς τοιχώματος, δηλαδή ζητείται να γίνει επιλογή σημείων του PWL(Εικόνα 23). Ο χρήστης επιλέγει τα σημεία αυτά χειροκίνητα προσέχοντας να μην υπάρχουν κενά μεταξύ του επόμενου με το προηγούμενο σημείο (Εικόνα 24).

Εικόνα 23:Ζητείται από το χρήστη η επιλογή σημείων του PWL.

Εικόνα 24:Επιλογή σημείων του PWL.

Η παραπάνω διαδικασία ακολουθείται για την πρώτη αθηρωματική πλάκα που υπάρχει στην εικόνα υπερήχου που αναλύεται. Σε περίπτωση που υπάρχει μόνο μία αθηρωματική πλάκα και όταν ερωτείται ο χρήστης για τον αριθμό των αθηρωματικών πλακών πληκτρολογήσει 1, τότε η διαδικασία από το σημείο αυτό και μετά ακολουθεί τα παρακάτω βήματα.

Ζητείται από το χρήστη, μέσω ενός παραθύρου που ανοίγει, να επιλεχθεί μία περιοχή του αυλού, όπου ρέει αίμα και δεν υπάρχει αθηρωματική πλάκα (Εικόνα 25).

Εικόνα 25:Ζητείται από το χρήστη να επιλέξει μία περιοχή αίματος.

Η επιλογή της περιοχής όπου υπάρχει αίμα, θα πρέπει να γίνει με μεγάλη προσοχή, έτσι ώστε να μην συμπεριληφθεί στην περιοχή αυτή κάποιο τμήμα της αθηρωματικής πλάκας ή ακόμα και του τοιχώματος της καρωτίδας (Εικόνα 26).

Εικόνα 26:Επιλογή περιοχής αίματος.

Στη συνέχεια ζητείται από το χρήστη να επιλέξει μία περιοχή του έξω χιτώνα (adventitia) του υγιούς τοιχώματος της καρωτίδας (Εικόνα 27).

Εικόνα 27:Ζητείται από το χρήστη να εισάγει μία περιοχή του adventitia.

Η περιοχή του adventitiaτου υγιούς τοιχώματος της καρωτίδας, συνήθως εμφανίζεται στις εικόνες υπέρηχου ως το πιο φωτεινό τμήμα του υγιούς τοιχώματος, ωστόσο, σε αρκετές περιπτώσεις οι υπολογισμοί που γίνονται από τον αλγόριθμο κίνησης και χρησιμοποιούν τα δεδομένα που λαμβάνει ο αλγόριθμος από την περιοχή του adventitia, μπορεί να παρουσιάσουν σφάλμα, αν είναι πολύ μικρή η επιλογή της περιοχής. Στην περίπτωση αυτή το πρόβλημα μπορεί να διορθωθεί αν ο χρήστης επιλέξει μία μεγαλύτερη περιοχή του τοιχώματος, η οποία ωστόσο δεν θα περιλαμβάνει τμήματα αθηρωματικής πλάκας ή τμήματα του αυλού της καρωτίδας, όπου ρέει το αίμα (Εικόνα 28).

Εικόνα 28:Επιλογή περιοχής του adventitia.

Αφού τελειώσει και η επιλογή της περιοχής του adventitia, ο αλγόριθμος φτάνει στο τελευταίο βήμα, το οποίο είναι να ζητήσει από το χρήστη μία ονομασία για το αρχείο δεδομένων το οποίο θα δημιουργηθεί με τη φράση:

give a patient ID

στην οποία ο χρήστης θα πρέπει να δώσει την ονομασία που θέλει σε εισαγωγικά για να αναγνωριστούν από τον αλγόριθμο ως σειρά γραμμάτων (string), π.χ.'case6b_input'.

Με το τελευταίο αυτό βήμα ολοκληρώνεται η δημιουργία του επιθυμητού αρχείου, το οποίο διαθέτει τα δεδομένα που χρειάζεται ο αλγόριθμος κίνησης για την ανάλυσης της αλληλουχίας των εικόνων υπερήχων.

Ο αλγόριθμος μπορεί να χρησιμοποιηθεί και για δύο και τρείς αθηρωματικές πλάκες. Σε περίπτωση που υπάρχουν δύο αθηρωματικές πλάκες και ο χρήστης επιλέξει αριθμό αθηρωματικών πλακών 2, τότε πριν από την επιλογή της περιοχής του αίματος και την περιοχή του adventitia, ζητείται από τον χρήστη να επιλέξει σημεία για το όριο ολόκληρης της δεύτερης αθηρωματικής πλάκας, η οποία στην περίπτωση που φαίνεται στις παρακάτω εικόνες, είναι αθηρωματική πλάκα στο άνω τοίχωμα του καρωτιδικού αρτηριακού τοιχώματος (Εικόνα 29).

Εικόνα 29:Το παράθυρο που εμφανίζεται ζητάει από τον χρήστη να σημειώσει το όριο ολόκληρης της δεύτερης (άνω) αθηρωματικής πλάκας σε περίπτωση που αυτή υπάρχει.

Σε περίπτωση που στην ακολουθία εικόνων υπερήχων απεικονίζονται δύο ή/και τρείς αθηρωματικές πλάκες, ο αλγόριθμος καθοδηγεί το χρήστη με τα ίδια βήματα όπως παρουσιάστηκαν και παραπάνω για τη μία αθηρωματική πλάκα.

Τελικά τα δεδομένα που εξάγονται από τον αλγόριθμο μπορούν να απεικονιστούν πάνω σε μία εικόνα υπέρηχου όπως φαίνεται και στην παρακάτω εικόνα (Εικόνα 30).

Εικόνα 30:Απεικόνιση των αθηρωματικών πλακών, των PTS και PBS αυτών, καθώς και του άνω και κάτω υγιούς τοιχώματος της καρωτίδας

2.3.3 Αλγόριθμος Ανάλυσης Κίνησης

Για την εξαγωγή των δεικτών κίνησης χρησιμοποιήθηκε αλγόριθμος, ο οποίος βασίζεται στη μέθοδο οπτικής ροής με έλεγχο ελαχίστων τετραγώνων με βάρη.

Ο αλγόριθμος που παρουσιάζεται στην (Εικόνα 31) αποτελεί μια τροποποίηση του αρχικού αλγόριθμου με σκοπό να αυτοματοποιηθεί η διαδικασία υπολογισμού των δεικτών κίνησης από ένα αρχικό σύνολο αρχείων video.

Αρχικά ο αλγόριθμος δέχεται ως είσοδο το αρχείο που μας είχε αποσταλεί από τον εξειδικευμένο ιατρό και στο οποίο αναγράφονταν οι ονομασίες των video των ασθενών, τα στοιχεία των ασθενών, οι ονομασίες των αρχείων ελαστογραφιών, ο χαρακτηρισμός των αθηρωματικών πλακών σε ασβεστοποιημένες ή μη ασβεστοποιημένες, καθώς και οι ονομασίες των αρχείων δεδομένων των αντίστοιχων video.

Η πρώτη διεργασία του αλγόριθμου είναι η δημιουργία ενός νέου αρχείου, το οποίο μπορεί να χρησιμοποιηθεί από το προγραμματιστικό περιβάλλον του Matlab και στο οποίο υπάρχει συμπυκνωμένη η πληροφορία που χρειάζεται ο αλγόριθμος για την εξαγωγή των δεικτών κίνησης.

Εν συνεχεία, με τη χρήση του κάθε video και με το αντίστοιχο αρχείο δεδομένων δημιουργείται ένα αρχείο του video, το οποίο περιέχει τα frames και την ανάλυση αυτών, που θα χρησιμοποιηθούν για τον υπολογισμό των δεικτών κίνησης.

Χρησιμοποιώντας το δημιουργημένο αρχείο και το αρχείο δεδομένων του video, υπολογίζονται οι περιοχές ενδιαφέροντος και εκτελείται ο αλγόριθμος οπτικής ροής με έλεγχο ελαχίστων τετραγώνων με βάρη. Τα αποτελέσματα του αλγόριθμου δίνουν τις μετατοπίσεις των εικονοστοιχείων της αλληλουχίας εικόνων του video.

Εικόνα 31: Αλγόριθμος ανάλυσης κίνησης

Οι αξονικές μετατοπίσεις που εξήχθησαν από την εκτέλεση του αλγορίθμου οπτικής ροής μαζί με το αρχείο δεδομένων του video του ασθενή χρησιμοποιούνται για να εντοπιστούν οι συστολές και οι διαστολές που παρουσιάζονται στην αλληλουχία εικόνων του video.

Χρησιμοποιώντας τις συστολές και διαστολές που εντοπίστηκαν, τις αξονικές και διαμήκεις μετατοπίσεις που υπολογίστηκαν από τον αλγόριθμο οπτικής ροής και το

αρχείο δεδομένων του video, υπολογίζονται οι δείκτες κίνησης. Οι 528 πρώτοι δείκτες κίνησης αφορούν τα εικονοστοιχεία ολόκληρης της αθηρωματικής πλάκας, οι επόμενοι 336 δείκτες αφορούν τα εικονοστοιχεία των πάνω και κάτω ορίων της αθηρωματικής πλάκας, οι 28 δείκτες που ακολουθούν παρουσιάζουν τη σχετική κίνηση μεταξύ της αθηρωματικής πλάκας και του υγιούς τοιχώματος και οι τελευταίοι 343 δείκτες κίνησης αφορούν τα εικονοστοιχεία των τηραίτας και οι τελευταίοι 343 δείκτες κίνησης αφορούν τα εικονοστοιχεία των του τοιχώματος.

Η διαδικασία εξαγωγής των δεικτών κίνησης επαναλαμβάνεται για κάθε video και για κάθε ασθενή.

Στο τέλος της εκτέλεσης του αλγορίθμου κίνησης δημιουργείται ένα αρχείο, το οποίο περιέχει τα αποτελέσματα του αλγορίθμου όλων των video, όλων των ασθενών και το οποίο χρησιμοποιείται στη συνέχεια για τη στατιστική ανάλυση.

Στο σημείο αυτό πρέπει να επισημάνουμε ότι κατά τη διάρκεια της εξαγωγής των μετρήσεων προέκυπταν σφάλματα στον υπολογισμό των τιμών από τον αλγόριθμο. Παρατηρήθηκε ότι το συγκεκριμένο πρόβλημα παρουσιαζόταν κυρίως στα video, τα οποία είχαν λίγα frames και σε εκείνα που παρουσίαζαν πολύ μικρή κίνηση και μεταβολή στα τοιχώματα των πλακών και του υγιούς τοιχώματος κατά τη διάρκεια του καρδιακού κύκλου και για όσο διήρκεσε η λήψη του video υπερήχων.

Για την αντιμετώπιση αυτού του προβλήματος αρχικά δοκιμάστηκε να προσεγγιστούν τα όρια των αθηρωματικών πλακών όσο πιο πιστά γινόταν σύμφωνα τις ελαστογραφίες που είχε αποστείλει ο ιατρός, καθώς και τα όρια του άνω και κάτω υγιούς τοιχώματος και του adventitia. Έγιναν αρκετές δοκιμές στην εξαγωγή των αρχείων με το αποτέλεσμα να είναι συνεχώς το ίδιο.

Αυτό μας οδήγησε στο συμπέρασμα ότι για να μπορέσει ο αλγόριθμος ανάλυσης της κίνησης να εξάγει σωστά και επαρκή αποτελέσματα, θα πρέπει τα video που χρησιμοποιούνται να έχουν αρκετή διάρκεια και κατ' επέκταση frames ώστε να πραγματοποιούνται σωστά οι υπολογισμοί. Αναλύοντας τα video διαπιστώθηκε ότι το πρόβλημα παρουσιαζόταν σε αυτά που απεικονίζουν μόνο έναν καρδιακό παλμό και στα οποία η κίνηση του παλμού φαινόταν να μην ήταν ολοκληρωμένη (λιγότερο από έναν παλμό). Επομένως, για την ασφαλή εξαγωγή αποτελεσμάτων είναι επιθυμητό τα video υπερήχων να απεικονίζουν τουλάχιστον δύο καρδιακούς παλμούς.

2.3.4 Εκτέλεση Αλγόριθμου Ανάλυσης Κίνησης

Παρόλο που ο αλγόριθμος δημιουργίας δεδομένων έχει τη δυνατότητα να εξάγει αρχεία, τα οποία να περιέχουν δεδομένα για δύο ή ακόμα και τρείς αθηρωματικές πλάκες για μία εικόνα υπέρηχου, αρκεί να υπάρχουν περισσότερες από μία αθηρωματικές πλάκες και να έχει νόημα να ακολουθήσουμε αυτή τη διαδικασία, στη συγκεκριμένη μελέτη θεωρήσαμε ότι υπάρχει μόνο μία αθηρωματική πλάκα ανά video. Δηλαδή, λάβαμε ως ξεχωριστή περίπτωση κάθε αθηρωματική πλάκα.

Όσον αφορά την εκτέλεση του αλγόριθμου ανάλυσης κίνησης, όπως αναφέραμε σε προηγούμενο κεφάλαιο, ο αλγόριθμος αυτός χρησιμοποιεί ως εισόδους το αρχείο δεδομένων που δημιουργήθηκε από τον αλγόριθμο δημιουργίας δεδομένων και το αντίστοιχο video του ασθενούς.

Με την εκτέλεση του αλγόριθμου ανάλυσης κίνησης για κάθε αθηρωματική πλάκα ξεχωριστά και για κάθε video του κάθε ασθενή, εξάγονται οι αντίστοιχοι δείκτες κίνησης.

Ο αλγόριθμος υπολογίζει τα αποτελέσματα για όλα τα videos όλων των ασθενών και δημιουργεί ένα αρχείο. Αναλυτικά οι δείκτες κίνησης παρουσιάζονται στο Παράρτημα 5.3.

3 Αποτελέσματα

Στο κεφάλαιο αυτό παρουσιάζονται τα αποτελέσματα της εφαρμογής του αλγόριθμου κίνησης στα δεδομένα της εργασίας αυτής και τα χαρακτηριστικά κίνησης. Ακολούθως αναφέρονται οι δείκτες κίνησης που εξάγονται από την στατιστική ανάλυση των χαρακτηριστικών.

3.1 Στατιστική Ανάλυση Χαρακτηριστικών Κίνησης

Με την εκτέλεση του αλγόριθμου ανάλυσης κίνησης εξάγονται τα αποτελέσματα για όλους τους δείκτες όλων των αθηρωματικών πλακών που αντιστοιχούν στους υπό εξέταση ασθενείς.

Στη συνέχεια με την εκτέλεση του αλγόριθμου στατιστικής ανάλυσης εξάγονται, για όλους τους δείκτες κίνησης, ο συντελεστής συσχέτισης Spearman *ρ* και η τιμή του *p* έτσι ώστε να καταδειχθεί το κατά πόσο υπάρχει συσχετισμός των δεικτών αυτών με το είδος της υπό εξέταση αθηρωματικής πλάκας (αν είναι ασβεστοποιημένη ή μη ασβεστοποιημένη).

Η τιμή του p έχει καθοριστεί να είναι μικρότερη από το επίπεδο σημαντικότητας α=0,05 (δηλαδή η πιθανότητα στατιστικού λάθους να είναι μικρότερη από 5%)[48], [49].

Ο συντελεστής συσχέτισης ρ λαμβάνει τιμές από 1 έως -1 όπου το 1 και το -1 αποτελούν το αποτέλεσμα απόλυτης συσχέτισης (προς την ίδια κατεύθυνση: θετική συσχέτιση, σε αντίθετες κατευθύνσεις: αρνητική συσχέτιση).

Η τιμή του *p* υπολογίζεται για 1235 χαρακτηριστικά κίνησης και δεδομένου ότι τα χαρακτηριστικά με τις χαμηλότερες p-value παρουσιάζουν την καλύτερη ικανότητα διάκρισης, αποφασίστηκε να επιλεχθούν όσα χαρακτηριστικά είχαν p-value<0.05 (5%). Ο [Πίνακας 4] παρουσιάζει τους 68 δείκτες κίνησης οι οποίοι επιλέχθηκαν, συνοδευόμενοι από την p-value που υπολογίστηκε για αυτούς.

Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	ρ
Εικονοστοιχεία ολόκληρης πλάκας	Μέγιστη τιμή	Διάμεσος	Γωνία ταχύτητας	0,012755	-0,50043
Εικονοστοιχεία ολόκληρης πλάκας	Μέση τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	0,025907	-0,44475
Εικονοστοιχεία ολόκληρης πλάκας	Μέση τιμή	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	0,025907	-0,44475
Εικονοστοιχεία ολόκληρης πλάκας	Μέση τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,036573	-0,42004
Εικονοστοιχεία ολόκληρης πλάκας	Τυπική απόκλιση	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,043080	-0,40769
Εικονοστοιχεία ολόκληρης πλάκας	Διάμεσος	Τυπική απόκλιση	Ακτινική ταχύτητα	0,014736	-0,48181

Πίνακας 4:Χαρακτηριστικά Κίνησης

Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	ρ
Εικονοστοιχεία ολόκληρης πλάκας	Διάμεσος	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	0,021606	-0,45710
Εικονοστοιχεία ολόκληρης πλάκας	Διάμεσος	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,030873	-0,43240
Εικονοστοιχεία ολόκληρης πλάκας	Λοξότητα	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,021606	0,45710
Εικονοστοιχεία ολόκληρης πλάκας	Λοξότητα	Τυπική απόκλιση	Εύρος ακτινικής κίνησης	0,030873	0,43240
Εικονοστοιχεία ολόκληρης πλάκας	Κύρτωση	Τυπική απόκλιση	Εύρος ακτινικής κίνησης	0,017903	0,46946
Εικονοστοιχεία ολόκληρης πλάκας	Εντροπία	Διάμεσος	Συνισταμένη ταχύτητα	0,012044	0,49417
Εικονοστοιχεία ολόκληρης πλάκας	Εντροπία	Τυπική απόκλιση	Ακτινική ταχύτητα	0,030873	0,43240
Εικονοστοιχεία ολόκληρης πλάκας	Αντίθεση (0 ⁰)	Διάμεσος	Συνισταμένη ταχύτητα	0,012044	0,49417
Εικονοστοιχεία ολόκληρης πλάκας	Ενέργεια (0 ⁰)	Διάμεσος	Συνισταμένη ταχύτητα	0,025907	-0,44475
Εικονοστοιχεία ολόκληρης πλάκας	Ομοιογένεια (0 ⁰)	Διάμεσος	Συνισταμένη ταχύτητα	0,014736	-0,48181
Εικονοστοιχεία ολόκληρης πλάκας	Αντίθεση (45 ^o)	Διάμεσος	Συνισταμένη ταχύτητα	0,012044	0,49417
Εικονοστοιχεία ολόκληρης πλάκας	Ενέργεια (45°)	Διάμεσος	Συνισταμένη ταχύτητα	0,025907	-0,44475
Εικονοστοιχεία ολόκληρης πλάκας	Ομοιογένεια (45°)	Διάμεσος	Συνισταμένη ταχύτητα	0,030873	-0,43240
Εικονοστοιχεία ολόκληρης πλάκας	Αντίθεση (90 ^o)	Διάμεσος	Συνισταμένη ταχύτητα	0,012044	0,49417
Εικονοστοιχεία ολόκληρης πλάκας	Ενέργεια (90°)	Διάμεσος	Συνισταμένη ταχύτητα	0,025907	-0,44475
Εικονοστοιχεία ολόκληρης πλάκας	Ομοιογένεια (90°)	Διάμεσος	Συνισταμένη ταχύτητα	0,030873	-0,43240

Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	ρ
Εικονοστοιχεία ολόκληρης πλάκας	Αντίθεση (135°)	Διάμεσος	Συνισταμένη ταχύτητα	0,012044	0,49417
Εικονοστοιχεία ολόκληρης πλάκας	Συσχέτιση (135°)	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,030873	-0,43240
Εικονοστοιχεία ολόκληρης πλάκας	Ενέργεια (135°)	Διάμεσος	Συνισταμένη ταχύτητα	0,025907	-0,44475
Εικονοστοιχεία ολόκληρης πλάκας	Ομοιογένεια (135°)	Διάμεσος	Συνισταμένη ταχύτητα	0,025907	-0,44475
Πάνω επιφάνεια πλάκας	Ελάχιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,036573	-0,42004
Πάνω επιφάνεια πλάκας	Μέγιστη τιμή	Διάμεσος	Γωνία ταχύτητας	0,007969	-0,52824
Πάνω επιφάνεια πλάκας	Τυπική απόκλιση	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,043080	-0,40769
Πάνω επιφάνεια πλάκας	Κύρτωση	Διάμεσος	Αξονική ταχύτητα	0,025907	-0,44475
Πάνω επιφάνεια πλάκας	Κύρτωση	Διάμεσος	Απόλυτη διαμήκης ταχύτητα	0,017903	-0,46946
Πάνω επιφάνεια πλάκας	Κύρτωση	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,004978	-0,54358
Πάνω επιφάνεια πλάκας	Κύρτωση	Διάμεσος	Συνισταμένη ταχύτητα	0,002340	-0,58065
Πάνω επιφάνεια πλάκας	Κύρτωση	Τυπική απόκλιση	Γωνία εύρους κίνησης	0,036573	0,42004
Πάνω επιφάνεια πλάκας	Ελάχιστη τιμή	Τυπική απόκλιση	Εύρος διαμήκους κίνησης	0,043080	-0,40769
Πάνω επιφάνεια πλάκας	Λοξότητα	Τυπική απόκλιση	D-T-S αξονική μετατόπιση	0,025907	0,44475
Πάνω επιφάνεια πλάκας	Κύρτωση	Διάμεσος	Αξονική ταχύτητα	0,036573	-0,42004
Πάνω επιφάνεια πλάκας	Κύρτωση	Τυπική απόκλιση	Γωνία ταχύτητας	0,012755	-0,50043

Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	ρ
Επάνω/κάτω επιφάνειες πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας	Μέγιστη τιμή	Τυπική απόκλιση	RSI (μεταξύ κάτω επιφάνειας πλάκας και υγιούς τμήματος γειτονικού της πλάκας)	0,030873	-0,43240
Επάνω/κάτω επιφάνειες πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας	Μέση τιμή	Τυπική απόκλιση	RSI (μεταξύ κάτω επιφάνειας πλάκας και υγιούς τμήματος γειτονικού της πλάκας)	0,021606	-0,4571
Επάνω/κάτω επιφάνειες πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας	Τυπική απόκλιση	Τυπική απόκλιση	RSI (μεταξύ κάτω επιφάνειας πλάκας και υγιούς τμήματος γειτονικού της πλάκας)	0,030873	-0,4324
Επάνω/κάτω επιφάνειες πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας	Λοξότητα	Τυπική απόκλιση	RSI (μεταξύ κάτω επιφάνειας πλάκας και υγιούς τμήματος γειτονικού της πλάκας)	0,043080	-0,40769
Επάνω/κάτω επιφάνειες πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας	Κύρτωση	Τυπική απόκλιση	RSI (μεταξύ κάτω επιφάνειας πλάκας και υγιούς τμήματος γειτονικού της πλάκας)	0,04308	-0,40769
Οπίσθια και εμπρόσθια υγιή τμήματα	Λοξότητα	Τυπική απόκλιση	RSI (μεταξύ οπίσθιων και εμπρόσθιων υγιών τμημάτων)	0,004545	0,548279
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,017903	-0,46946
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Διάμεσος	Συνισταμένη ταχύτητα	0,004978	-0,54358
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	0,043080	-0,40769
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Τυπική απόκλιση	Εύρος ακτινικής κίνησης	0,025907	-0,44475
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,001784	-0,59300
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Τυπική απόκλιση	D-T-S συνισταμένη μετατόπιση	0,001784	-0,59300
Οπίσθιο υγιές τμήμα	Μέγιστη τιμή	Διάμεσος	Αξονική ταχύτητα	0,001344	-0,60535

Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	ρ
Οπίσθιο υγιές τμήμα	Μέγιστη τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,014736	-0,48181
Οπίσθιο υγιές τμήμα	Μέγιστη τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	0,021606	-0,45710
Οπίσθιο υγιές τμήμα	Μέγιστη τιμή	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	0,036573	-0,42004
Οπίσθιο υγιές τμήμα	Μέγιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,014736	-0,48181
Οπίσθιο υγιές τμήμα	Μέση τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,012044	-0,49417
Οπίσθιο υγιές τμήμα	Μέση τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	0,009773	-0,50652
Οπίσθιο υγιές τμήμα	Μέση τιμή	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	0,036573	-0,42004
Οπίσθιο υγιές τμήμα	Μέση τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,009773	-0,50652
Οπίσθιο υγιές τμήμα	Τυπική απόκλιση	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,014736	-0,48181
Οπίσθιο υγιές τμήμα	Τυπική απόκλιση	Τυπική απόκλιση	Ακτινική ταχύτητα	0,000737	-0,63006
Οπίσθιο υγιές τμήμα	Τυπική απόκλιση	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	0,004978	-0,54358
Οπίσθιο υγιές τμήμα	Διάμεσος	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,014736	-0,48181
Οπίσθιο υγιές τμήμα	Διάμεσος	Τυπική απόκλιση	Ακτινική ταχύτητα	0,012044	-0,49417
Οπίσθιο υγιές τμήμα	Διάμεσος	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	0,036573	-0,42004
Οπίσθιο υγιές τμήμα	Διάμεσος	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,006285	-0,53123
Οπίσθιο υγιές τμήμα	Διάμεσος	Τυπική απόκλιση	Ολική D-T-S μετατόπιση	0,036573	-0,42004
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,043080	-0,40769

Σύμφωνα με τη στατιστική ανάλυσηSpearmanόπως αυτή παρουσιάστηκε στο Κεφάλαιο 2,ένας μεγάλος αριθμός δεικτών κίνησης έχει τιμήp-valueμεγαλύτερη από 5%. Η τιμή αυτή μας ορίζει ότι δεν μπορούμε να τους λάβουμε υπόψη μας καθώς εμπεριέχουν μεγάλη πιθανότητα υπολογιστικού σφάλματος. Οπότε τα αποτελέσματα αυτών των δεικτών δεν μπορούν να χρησιμοποιηθούν για να καθορίσουν το αν μια πλάκα είναι ασβεστοποιημένη.

Παρατηρούμε λοιπόν ότι από τους 1235 δείκτες κίνησης που αναλύθηκαν, μόνο οι 68 δείκτες που περιλαμβάνονται στον [Πίνακας 4] παρουσιάζουν μια μικρή γραμμική

συσχέτιση μεταξύ αυτών και του αν είναι ασβεστοποιημένες ή μη ασβεστοποιημένες οι αθηρωματικές πλάκες.

3.2 Σύγκριση με μέθοδο block matching

Εδώ πρέπει να αναφέρουμε ότι αν και οι απόλυτες τιμές ρ της στατιστικής ανάλυσης Spearman για τους εν λόγω δείκτες δεν είναι αρκετά υψηλές, το μικρό μέγεθος του στατιστικού δείγματος που χρησιμοποιήθηκε μας επιτρέπει να αποδεχθούμε ότι οι δείκτες αυτοί παρουσιάζουν ενδείξεις ύπαρξης συσχέτισης.

Τα αποτελέσματα που εξήχθησαν, συγκριθήκαν με τα αποτελέσματα πρόσφατης έρευνας[59].Στη μελέτη αυτή χρησιμοποιήθηκε αλγόριθμος ανάλυσης κίνησης με τη μέθοδο ταύτισης περιοχών (Block matching technique) για την εξαγωγή των χαρακτηριστικών κίνησης και στη συνέχεια εφαρμόστηκαν ως μέθοδοι επιλογής χαρακτηριστικών το κριτήριο του Fischer (Fischer Discriminate Ratio - FDR) και το στατιστικό κριτήριο Wilcoxon Rank-Sum Test (WRS).

Στη εν λόγω έρευνα, η εφαρμογή του κριτηρίου του Fischer έδωσε αποτελέσματα για την τιμή fdr των χαρακτηριστικών κίνησης και επιλέχθηκαν 40 από αυτά τα χαρακτηριστικά, τα οποία είχαν την υψηλότερη τιμή fdr. Με δεδομένο ότι τα χαρακτηριστικά με υψηλότερες τιμές fdr παρουσιάζουν την καλύτερη ικανότητα διάκρισης, ελέγχθηκε αν υπάρχουν κοινά χαρακτηριστικά κίνησης ανάμεσα στην παρούσα και στην προαναφερθείσα εργασία.

Παρατηρήθηκε ότι υπάρχουν 8 χαρακτηριστικά κίνησης, τα οποία στην παρούσα μελέτη έχουν p-value μικρότερη από 0,05 και έχουν υψηλή τιμή fdr όπως αυτά υπολογίστηκαν από τον αλγόριθμο ταύτισης περιοχών στην έρευνα που έγινε αναφορά προηγουμένως [Πίνακας 5].

Χαρακτηριστικά κίνησης						
Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	fdr	
Εικονοστοιχεία ολόκληρης πλάκας	Συσχέτιση (135°)	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,030873	0,4588	
Πάνω επιφάνεια πλάκας	Μέγιστη τιμή	Διάμεσος	Γωνία ταχύτητας	0,007969	0,2589	
Επάνω/κάτω επιφάνειες πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας	Μέση τιμή	Τυπική απόκλιση	RSI (μεταξύ κάτω επιφάνειας πλάκας και υγιούς τμήματος γειτονικού της πλάκας)	0,021606	0,2295	
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Διάμεσος	Συνισταμένη ταχύτητα	0,004978	0,2095	
Οπίσθιο υγιές τμήμα	Μέγιστη τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,014736	0,2027	

Χαρακτηριστικά κίνησης							
Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	fdr		
Οπίσθιο υγιές τμήμα	Μέση τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,012044	0,2009		
Οπίσθιο υγιές τμήμα	Τυπική απόκλιση	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,014736	0,2163		
Οπίσθιο υγιές τμήμα	Διάμεσος	Τυπική απόκλιση	Ακτινική ταχύτητα	0,012044	0,3207		

Πίνακας 5: Χαρακτηριστικά κίνησης που εξήχθησαν από αλγόριθμο ανάλυσης κίνησης με τη μέθοδο οπτικής ροής και έχουν p-value<0,05 και τα οποία έχουν υψηλή τιμή fdr,όπως αυτή υπολογίστηκε από αλγόριθμο κίνησης με μέθοδο ταύτισης περιοχών

Όσον αφορά τη μέθοδο του στατιστικού κριτηρίου Wilcoxon Rank-Sum Test (WRS), αυτό ελέγχει εάν ισχύει η υπόθεση ότι δύο σύνολα δειγμάτων προέρχονται από κατανομές με ίσες διαμέσους. Η τιμή της p-value που υπολογίζεται εκφράζει την πιθανότητα αυτή η υπόθεση να είναι αληθής. Μικρές τιμές της p-value αντιστοιχούν σε ισχυρή δυνατότητα διάκρισης. Στην προαναφερθείσα μελέτη [59], παρουσιάστηκαν 18 χαρακτηριστικά κίνησης τα οποία είχαν τιμή p-value<0,05. Χρησιμοποιώντας αυτά τα χαρακτηριστικά διερευνήθηκε η ύπαρξη κοινών χαρακτηριστικών κίνησης με αυτά που εξήχθησαν στην παρούσα μελέτη, τα οποία υπολογίστηκαν χρησιμοποιώντας αλγόριθμο κίνησης βασισμένο στη μέθοδο οπτικής ροής. Τα 2 χαρακτηριστικά κίνησης που ήταν κοινά και στις δύο μελέτες παρουσιάζονται στον [Πίνακας 6]

Πίνακας 6: Χαρακτηριστικά κίνησης που εξήχθησαν από αλγόριθμο ανάλυσης κίνησης με τη μέθοδο οπτικής ροής και έχουν p-value<0,05 και τα οποία έχουν p-value<0,05 σύμφωνα με το WRS, όπως αυτά υπολογίστηκαν από αλγόριθμο κίνησης με μέθοδο ταύτισης περιοχών

Χαρακτηριστικά κίνησης					p-value αλγορίθμων κίνησης	
Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	Οπτική ροή	Ταύτισης περιοχών	
Εικονοστοιχεία ολόκληρης πλάκας	Συσχέτιση (135°)	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,030873	0,0262	
Επάνω/κάτω επιφάνειες πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας	Κύρτωση	Τυπική απόκλιση	RSI (μεταξύ κάτω επιφάνειας πλάκας και υγιούς τμήματος γειτονικού της πλάκας)	0,04308	0,0309	

Σύμφωνα με τις παρατηρήσεις αυτές και λαμβάνοντας υπόψη το γεγονός ότι τα αποτελέσματα της παρούσας και της προαναφερθείσας μελέτης εξήχθησαν από αλγόριθμους κίνησης βασισμένους σε διαφορετικές μεθόδους, οδηγούμαστε στο συμπέρασμα ότι οι δείκτες κίνησης που αναγράφονται στον [Πίνακας 5] και στον [Πίνακας 6] παρουσιάζουν υψηλή ικανότητα διάκρισης και ενδεχομένως να μπορούν να χρησιμοποιηθούν ως κριτήρια διάκρισης των αθηρωματικών πλακών σε ασβεστοποιημένες και μη ασβεστοποιημένες [Πίνακας 5].

3.3 Δείκτες Κίνησης

Από τους δείκτες κίνησης αυτούς που παρουσίασαν τιμή *p* μικρότερη από 0,05 και περιλαμβάνονται στον [Πίνακας 4], επιλέχθηκαν αυτοί που είχαν απόλυτη τιμή του συντελεστή συσχέτισης Spearman p μεγαλύτερη από 0,5 και άρα παρουσιάζουν την μεγαλύτερη συσχέτιση. Οι δείκτες αυτοί παρουσιάζονται στον [Πίνακας 7].

Περιοχή ενδιαφέροντος	Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	р	ρ
Εικονοστοιχεία ολόκληρης πλάκας	Μέγιστη τιμή	Διάμεσος	Γωνία ταχύτητας	0,012755	-0,50043
Πάνω επιφάνεια πλάκας	Μέγιστη τιμή	Διάμεσος	Γωνία ταχύτητας	0,007969	-0,52824
Πάνω επιφάνεια πλάκας	Κύρτωση	Διάμεσος	Απόλυτη ακτινική ταχύτητα	0,004978	-0,54358
Πάνω επιφάνεια πλάκας	Κύρτωση	Διάμεσος	Συνισταμένη ταχύτητα	0,002340	-0,58065
Πάνω επιφάνεια πλάκας	Κύρτωση	Τυπική απόκλιση	Γωνία ταχύτητας	0,012755	-0,50043
Οπίσθια και εμπρόσθια υγιή τμήματα	Λοξότητα	Τυπική απόκλιση	RSI (μεταξύ οπίσθιων και εμπρόσθιων υγιών τμημάτων)	0,004545	0,548279
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Διάμεσος	Συνισταμένη ταχύτητα	0,004978	-0,54358
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,001784	-0,59300
Οπίσθιο υγιές τμήμα	Ελάχιστη τιμή	Τυπική απόκλιση	D-T-S συνισταμένη μετατόπιση	0,001784	-0,59300
Οπίσθιο υγιές τμήμα	Μέγιστη τιμή	Διάμεσος	Αξονική ταχύτητας	0,001344	-0,60535
Οπίσθιο υγιές τμήμα	Μέση τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	0,009773	-0,50652
Οπίσθιο υγιές τμήμα	Μέση τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,009773	-0,50652
Οπίσθιο υγιές τμήμα	Τυπική απόκλιση	Τυπική απόκλιση	Ακτινική ταχύτητα	0,000737	-0,63006
Οπίσθιο υγιές τμήμα	Τυπική απόκλιση	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	0,004978	-0,54358
Οπίσθιο υγιές τμήμα	Διάμεσος	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	0,006285	-0,53123

Πίνακας	7.Οι δείκτ	ες κίνησης	ιε τιμή	n > 0.5	//α n<0.05
invanas	7.01 OCINI		$\mu c \iota \mu \eta$	pr 0,5	riu p <0,05

Από τον [Πίνακας 7] παρατηρούμε ότι από όλους τους δείκτες, αυτοί που παρουσιάζουν τη μεγαλύτερη συσχέτιση αφορούν εικονοστοιχεία στο οπίσθιο υγιές τμήμα της καρωτιδικής αρτηρίας, την πάνω επιφάνεια της αθηρωματικής πλάκας και την κάτω επιφάνεια της αθηρωματικής πλάκας

Επίσης, παρατηρούμε ότι το μεγαλύτερο πλήθος των δεικτών παρουσιάζει αρνητική συσχέτιση και μόνον ένας παρουσιάζει θετική.

4 Συμπεράσματα

Στο κεφάλαιο αυτό γίνεται αναφορά στα αποτελέσματα που εξήχθησαν από την εκτέλεση του αλγορίθμου της ανάλυσης κίνησης και από την ακόλουθη στατιστική ανάλυση. Επίσης, αναφέρονται τα συμπεράσματα που προκύπτουν από τα αποτελέσματα της μελέτης, τόσο για τα αποτελέσματα που λήφθηκαν για τους δείκτες κίνησης που αφορούν την κίνηση, τη μετατόπιση και την ταχύτητα των εικονοστοιχείων για κάθε περιοχή ενδιαφέροντος, όσο και για όλους τους πιθανούς δείκτες που εξήχθησαν ως πιθανοί για το χαρακτηρισμό μίας αθηρωματικής πλάκας ως ασβεστοποιημένης ή μη ασβεστοποιημένης. Επίσης, επισημαίνονται ορισμένες σημειώσεις σχετικά με πιθανές μελλοντικές επεκτάσεις της εργασίας.

4.1 Περιορισμοί τρέχουσας εργασίας

Αν και ο αλγόριθμος ανάλυσης κίνησης δίνει καλά αποτελέσματα, η χρήση του είναι δύσκολη λόγω της ανάγκης χειροκίνητου καθορισμού των ορίων των αθηρωματικών πλακών.

Πρέπει να σημειωθεί ότι τα αποτελέσματα της μελέτης βασίστηκαν στον χειροκίνητο καθορισμό των ορίων των αθηρωματικών πλακών με βάση τις επισημασμένες από εξειδικευμένο ιατρό ελαστογραφίες. Ο χειροκίνητος αυτός καθορισμός περιλαμβάνει κάποια πιθανότητα σφάλματος από λάθος του χρήστη, το οποίο σφάλμα ενδεχομένως να επηρεάζει τα αποτελέσματα που εξήχθησαν από τον αλγόριθμο κίνησης.

Επιπλέον, πρέπει να αναφερθεί ότι τα αποτελέσματα που εξήχθησαν από τη στατιστική ανάλυση παρουσιάζουν μικρό συντελεστή συσχέτισης. Ωστόσο σε ένα σύστημα όπως είναι η καρωτιδική αρτηρία, όπου η μορφολογία αλλάζει από ασθενή σε ασθενή, οι συντελεστές συσχέτισης που λήφθηκαν μπορούν να θεωρηθούν επαρκείς για την εξαγωγή συμπερασμάτων σε ότι αφορά τα μεγέθη κίνησης των διαφορετικών αθηρωματικών πλακών και το χαρακτηρισμό αυτών σε ασβεστοποιημένες ή μη ασβεστοποιημένες.

4.2 Σχολιασμός Αποτελεσμάτων

Σύμφωνα με τα αποτελέσματα που εξήχθησαν από την παρούσα μελέτη και την εκτέλεση του αλγορίθμου κίνησης, προκύπτει ότι από τους 1235 δείκτες κίνησης, που εξήχθησαν από την εκτέλεση του αλγορίθμου κίνησης, οι 68 παρουσιάζουν συσχέτιση σχετικά με τον αν είναι ασβεστοποιημένη ή μη ασβεστοποιημένη η αθηρωματική πλάκα. Λαμβάνουμε υπόψη τους 68 δείκτες κίνησης που παρουσιάζονται στον [Πίνακας 4], καθώς αυτοί έχουν τιμή p-valueμικρότερη από 5% που έχουμε θεωρήσει ως ποσοστό σημαντικότητας.

Αν και το ποσοστό συσχέτισης που παρατηρείται είναι σχετικά μικρό, παρόλα αυτά μπορούμε να θεωρήσουμε, λόγω του μικρού εξεταζομένου δείγματος και των σφαλμάτων που προκύπτουν από τα δεδομένα της εκτέλεσης του αλγόριθμου κίνησης, ως ικανοποιητικό για την εξαγωγή συμπερασμάτων.

Σύμφωνα με τα αποτελέσματα που λάβαμε από την εκτέλεση του αλγορίθμου κίνησης, αλλά και από τα αποτελέσματα της στατιστικής ανάλυσης που πραγματοποιήθηκε σε αυτά, παρατηρούμε ότι για ορισμένους δείκτες ο συντελεστής συσχέτισης *p* είναι θετικός και για άλλους αρνητικός. Θετικός συντελεστής συσχέτισης σημαίνει ότι όταν αυξάνεται η μία μεταβλητή αυξάνεται και η άλλη, ενώ αρνητικός ότι όταν αυξάνεται η μία μεταβλητή η άλλη μειώνεται. Στην περίπτωση της ανάλυσής μας, η μία μεταβλητή που χρησιμοποιούμε είναι τα κατά πόσο είναι οι αθηρωματικές πλάκες ασβεστοποιημένες ή μη ασβεστοποιημένες. Έχοντας αποδώσει στις ασβεστοποιημένες πλάκες την τιμή 0 και την τιμή 1 στις μη ασβεστοποιημένες πλάκες οδηγούμαστε στο συμπέρασμα ότι όταν ένας συντελεστής συσχέτισης είναι θετικός τότε θα πρέπει η μη ασβεστοποιημένη πλάκα να έχει μεγαλύτερη τιμή (κατά απόλυτη τιμή) δείκτη κίνησης σε σχέση με την ασβεστοποιημένι ότι ο συγκεκριμένος δείκτης κίνησης είναι μεγαλύτερος (κατά απόλυτη τιμή) όταν η αθηρωματική πλάκα είναι ασβεστοποιημένη.
Λαμβάνοντας υπόψη τα παραπάνω και αναλύοντας τα αποτελέσματα της στατιστικής ανάλυσης που φαίνονται στους [Πίνακας 4] και [Πίνακας 7] μπορούμε να εξάγουμε ορισμένα συμπεράσματα σχετικά με τα κινηματικά χαρακτηριστικά των ασβεστοποιημένων πλακών έναντι των μη ασβεστοποιημένων.

Παρατηρώντας τα αποτελέσματα της ανάλυσης κίνησης για τα εικονοστοιχεία ολόκληρης της αθηρωματικής πλάκας παρατηρούμε ότι η μέγιστη τιμή, η μέση τιμή, η τυπική απόκλιση, η διάμεσος, η ενέργεια (0°), η ομοιογένεια (0°), η ενέργεια (45°), η ομοιογένεια (45°),η ενέργεια (90°), η ομοιογένεια (90°), ηενέργεια (135°), η ομοιογένεια (135°) και η συσχέτιση (135°) των κυματομορφών κίνησης ως προς το πλήθος των εικονοστοιχείων έχουν αρνητικό συντελεστή συσχέτισης και άρα οι τιμές αυτών των δεικτών κίνησης είναι μεγαλύτερες για τις ασβεστοποιημένες αθηρωματικές πλάκες σε σχέση με τις μη ασβεστοποιημένες. Αντίθετα, η λοξότητα, η κύρτωση, η εντροπία, η αντίθεση (0°), η αντίθεση (45°), η αντίθεση (90°) και η αντίθεση (135°) των κυματομορφών κίνησης ως προς το πλήθος των εικονοστοιχείων έχουν θετικό συντελεστή συσχέτισης και επομένως, οι τιμές αυτών των δεικτών κίνησης είναι μεγαλύτερες για τις μη ασβεστοποιημένες πλάκες σε σχέση με τις ασβεστοποιημένες [Πίνακας 8].

Πίνακας 8: Δείκτες κυματομορφών κίνησης ως προς το πλήθος των εικονοστοιχείων για τα εικονοστοιχεία ολόκληρης της αθηρωματικής πλάκας που παρουσιάζουν αρνητικούς και θετικούς συντελεστές συσχέτισης

Δείκτες κυματομορφών κίνησης ως προς το πλήθος των εικονοστοιχείων	Συντελεστής συσχέτισης	Ασβεστοποιημένες πλάκες
 μέγιστη τιμή μέση τιμή τυπική απόκλιση διάμεσος ενέργεια (0°) ομοιογένεια (0°) ενέργεια (45°) ομοιογένεια (45°) ενέργεια (90°) ενέργεια (90°) ενέργεια (135°) ομοιογένεια (135°) συσχέτιση (135°) 	Αρνητικός	Μεγαλύτερες τιμές
 Λοξότητα Κύρτωση Εντροπία αντίθεση (0°) αντίθεση (45°) αντίθεση (90°) αντίθεση (135°) 	Θετικός	Μικρότερες Τιμές

Αντίστοιχα αν λάβουμε ως περιοχή ενδιαφέροντος τα εικονοστοιχεία της πάνω επιφάνειας της αθηρωματικής πλάκας παρατηρούμε ότι οι μοναδικές κυματομορφές κίνησης που έχουν θετικό συντελεστή συσχέτισης *p* είναι η κύρτωση (ως προς το πλήθος των εικονοστοιχείων) της τυπικής απόκλισης (ως προς το χρόνο για κάθε καρδιακό κύκλο)

της γωνίας του εύρους της κίνησης, καθώς και η λοξότητα (ως προς το πλήθος των εικονοστοιχείων) της τυπικής απόκλισης (ως προς το χρόνο για κάθε καρδιακό κύκλο) της D-T-S αξονικής μετατόπισης. Άρα, για αυτές τις δύο κυματομορφές κίνησης βγάζουμε το συμπέρασμα ότι έχουν μεγαλύτερη τιμή όταν είναι μη ασβεστοποιημένη η αθηρωματική πλάκα σε σχέση με το αν ήταν ασβεστοποιημένη.

Όσον αφορά την περιοχή ενδιαφέροντος μεταξύ των επάνω/κάτω επιφανειών πλάκας και υγιούς τμήματος του τοιχώματος γειτονικά της πλάκας παρατηρούμε ότι όλοι οι δείκτες κίνησης, τους οποίους μπορούμε να λάβουμε υπόψη μας στα αποτελέσματα, έχουν αρνητικό συντελεστή συσχέτισης και άρα έχουμε μεγαλύτερες τιμές για ασβεστοποιημένη αθηρωματική πλάκα σε σχέση με τη μη ασβεστοποιημένη.

Ένας ακόμα δείκτης κίνησης που μπορούμε να λάβουμε υπόψη μας αφορά την περιοχή ενδιαφέροντος για τα οπίσθια και εμπρόσθια υγιή τμήματα της καρωτιδικής αρτηρίας και αναφέρεται στη λοξότητα (ως προς το πλήθος των εικονοστοιχείων) της τυπικής απόκλισης (ως προς το χρόνο για κάθε καρδιακό κύκλο) της ακτινικής παραμόρφωσης (RSI). Ο συντελεστής συσχέτισης αυτού του δείκτη είναι θετικός και άρα συμπεραίνουμε ότι η τυπική απόκλιση της λοξότητας της ακτινικής παραμόρφωσης η αθηρωματική πλάκα είναι μη ασβεστοποιημένη.

Η τελευταία περιοχή ενδιαφέροντος για την οποία μπορούμε να λάβουμε υπόψη τα αποτελέσματα της στατιστικής ανάλυσης αφορά το οπίσθιο υγιές τμήμα του αρτηριακού τοιχώματος της καρωτίδας. Για αυτή την περιοχή ενδιαφέροντος όλες οι κυματομορφές κίνησης παρουσιάζουν αρνητικό συντελεστή συσχέτισης και άρα οι μεγαλύτερες τιμές (κατά απόλυτη τιμή) παρατηρούνται σε ασβεστοποιημένες αθηρωματικές πλάκες.

Τέλος, θα πρέπει να αναφερθούμε συγκεκριμένα στα μεγέθη των κυματομορφών κίνησης μέσω των οποίων μπορούμε εμπειρικά να αντιληφθούμε την κίνηση ενός σώματος. Τέτοια μεγέθη είναι η μέση, η μέγιστη και η ελάχιστη τιμή, η διάμεσος και η τυπική απόκλιση της μετατόπισης, της κίνησης της ταχύτητας των εικονοστοιχείων, στην εκάστοτε περιοχή ενδιαφέροντος.

Για τα εικονοστοιχεία ολόκληρης της αθηρωματικής πλάκας παρατηρούμε ότι τα συγκεκριμένα μεγέθη (για όσα μπορούμε να λάβουμε υπόψη μας από τη στατιστική ανάλυση) της γωνίας ταχύτητας, της ακτινικής ταχύτητας, της απόλυτης ακτινικής ταχύτητας και της απόλυτης D-T-Sακτινικής μετατόπισης έχουν αρνητικό συντελεστή συσχέτισης και άρα έχουν μεγαλύτερες απόλυτες τιμές για ασβεστοποιημένες αθηρωματικές πλάκες. Από αυτό συμπεραίνουμε ότι στα εικονοστοιχεία των ασβεστοποιημένων αθηρωματικών πλακών παρουσιάζεται μία αυξημένη κινητικότητα σε σχέση με τις μη ασβεστοποιημένες.

Για τα εικονοστοιχεία της πάνω επιφάνειας της πλάκας η ελάχιστη τιμή (ως προς το πλήθος των εικονοστοιχείων) της τυπικής απόκλισης (ως προς το χρόνο για κάθε καρδιακό κύκλο) της απόλυτης D-T-S ακτινικής μετατόπισης, η μέγιστη τιμή της διαμέσου της γωνίας ταχύτητας και η τυπική απόκλιση της τυπικής απόκλισης της απόλυτης D-T-S ακτινική μετατόπισης, η μέγιστη τιμή της διαμέσου της γωνίας ταχύτητας και η τυπική απόκλιση της τυπικής απόκλισης και η ελάχιστη Σ-T-S ακτινική της τυπικής απόκλισης της απόλυτης D-T-S ακτινική της τυπικής απόκλισης της απόλυτης D-T-S ακτινική της τυπικής απόκλισης του εύρους της διαμήκους κίνησης και επομένως, έχουν μεγαλύτερη τιμή για ασβεστοποιημένες αθηρωματικές πλάκες [Πίνακας 9].

Πίνακας 9: Δείκτες κίνησης για τα εικονοστοιχεία της πάνω επιφάνειας της πλάκας όπου αφορούν τη μετατόπιση και την ταχύτητα

Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	Συντελεστής συσχέτισης	Ασβεστοποιημένες πλάκες
Ελάχιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Μέγιστη τιμή	Διάμεσος	Γωνία ταχύτητας	Αρνητικός	Μεγαλύτερες τιμές
Τυπική απόκλιση	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Ελάχιστη τιμή	Τυπική απόκλιση	Εύρος διαμήκους κίνησης	Αρνητικός	Μεγαλύτερες τιμές

Επιπλέον, η μέγιστη τιμή, η μέση τιμή και η τυπική απόκλιση (ως προς το πλήθος των εικονοστοιχείων) της τυπικής απόκλισης (ως προς το χρόνο για κάθε καρδιακό κύκλο) της ακτινικής παραμόρφωσης (RSI) μεταξύ της κάτω επιφάνειας της πλάκας και του υγιούς τμήματος γειτονικά της πλάκας, έχουν αρνητικό συντελεστή συσχέτισης και άρα μεγαλύτερη απόλυτη τιμή για τις ασβεστοποιημένες αθηρωματικές πλάκες. Αυτό μας οδηγεί στο συμπέρασμα ότι υπάρχει μεγαλύτερη παραμόρφωση και ενδεχομένως κινητικότητα μεταξύ του υγιούς ιστού και της κάτω επιφάνειας της αθηρωματικής πλάκας [Πίνακας 10].

Πίνακας 10:Δείκτες κίνησης μεταξύ της κάτω επιφάνειας της πλάκας και του υγιούς τμήματος γειτονικά της πλάκας όπου αφορούν τη μετατόπιση και την ταχύτητα

Ως προς το πλήθος των εικονοστοιχείων ή των ζευγών εικονοστοιχείων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	Συντελεστής συσχέτισης	Ασβεστοποιημένες πλάκες
Μέγιστη τιμή	Τυπική απόκλιση	RSI (μεταξύ πλάκας στην κάτω επιφάνεια και υγιούς τμήματος γειτονικού της πλάκας)	Αρνητικός	Μεγαλύτερες τιμές
Μέση τιμή Τυπική απόκλιση		RSI (μεταξύ πλάκας στην κάτω επιφάνεια και υγιούς τμήματος γειτονικού της πλάκας)	Αρνητικός	Μεγαλύτερες τιμές
Τυπική απόκλιση	Τυπική απόκλιση	RSI (μεταξύ πλάκας στην κάτω επιφάνεια και υγιούς τμήματος γειτονικού της πλάκας)	Αρνητικός	Μεγαλύτερες τιμές

Στον [Πίνακας 11] περιλαμβάνονται οι δείκτες κίνησης που αντικατοπτρίζουν την κίνηση, ταχύτητα και μετατόπιση για τα εικονοστοιχεία του οπίσθιου υγιούς τμήματος του αρτηριακού τοιχώματος.

Παρατηρούμε ότι η ελάχιστη τιμή (ως προς το πλήθος των εικονοστοιχείων) της διαμέσου (ως προς το χρόνο για κάθε καρδιακό κύκλο) της απόλυτης ακτινικής ταχύτητας και της συνισταμένης ταχύτητας έχουν αρνητικό συντελεστή συσχέτισης και επομένως μεγαλύτερες τιμές παρουσιάζονται στις ασβεστοποιημένες πλάκες.

Για την ελάχιστη τιμή (ως προς το πλήθος των εικονοστοιχείων), οι τυπικές αποκλίσεις της ακτινικής ταχύτητας, του εύρους ακτινικής κίνησης, της απόλυτης D-T-Sακτινικής μετατόπισης και της D-T-Sσυνισταμένης μετατόπισης, έχουν αρνητικό συντελεστή συσχέτισης και επομένως, μεγαλύτερες τιμές για τις ασβεστοποιημένες αθηρωματικές πλάκες.

Η μέγιστη τιμή των διαμέσων της αξονικής ταχύτητας και της απόλυτης ακτινικής ταχύτητας έχουν και αυτές οι κυματομορφές κίνησης αρνητικό συντελεστή συσχέτισης και κατ' επέκταση μεγαλύτερες τιμές στις ασβεστοποιημένες αθηρωματικές πλάκες.

Οι μέγιστες τιμές των τυπικών αποκλίσεων της ακτινικής ταχύτητας, της απόλυτης ακτινικής ταχύτητας και της απόλυτης D-T-S μετατόπισης παρουσιάζουν και αυτές με τη σειρά τους αρνητικό συντελεστή συσχέτισης και άρα μεγαλύτερες τιμές στις ασβεστοποιημένες πλάκες. Το ίδιο συμβαίνει και με τη μέση τιμή της διαμέσου της απόλυτης ακτινικής ταχύτηταςΠίνακας 11.

Αντίστοιχα και οι μέσες τιμές των τυπικών αποκλίσεων της ακτινικής ταχύτητας, της απόλυτης ακτινικής ταχύτητας και της απόλυτης D-T-S ακτινικής μετατόπισης παρουσιάζουν αρνητικό συντελεστή συσχέτισης και επομένως, μεγαλύτερες τιμές στις ασβεστοποιημένες αθηρωματικές πλάκες.

Το ίδιο παρατηρείται και στην τυπική απόκλιση της διαμέσου της απόλυτης ακτινικής ταχύτητας, αλλά και στις τυπικές αποκλίσεις (ως προς το πλήθος των εικονοστοιχείων) των τυπικών αποκλίσεων (ως προς το χρόνο, για κάθε καρδιακό κύκλο) της ακτινικής ταχύτητας και της απόλυτης ακτινικής ταχύτητας.

Επίσης, αρνητικοί συντελεστές συσχέτισης παρατηρούνται στη διάμεσο (ως προς το πλήθος των εικονοστοιχείων) της διαμέσου (ως προς το χρόνο, για κάθε καρδιακό κύκλο) της απόλυτης ακτινικής ταχύτητας, καθώς και στις διαμέσους των τυπικών αποκλίσεων της ακτινικής ταχύτητας, της απόλυτης ακτινικής ταχύτητας, της απόλυτης ακτινικής ταχύτητας, μετατόπισης και της ολικής D-T-S μετατόπισης.

Τέλος, αρνητικός συντελεστής συσχέτισης παρατηρείται και για την ελάχιστη τιμή της τυπικής απόκλισης της απόλυτης D-T-S ακτινικής μετατόπισης.

Πίνακας 11: Δείκτες κίνησης που αντικατοπτρίζουν την κίνηση, ταχύτητα και μετατόπιση για τα εικονοστοιχεία του οπίσθιου υγιούς τμήματος του αρτηριακού τοιχώματος

Ως προς το πλήθος των εικονοστοιχεί ων ή των ζευγών εικονοστοιχεί ων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	Συντελεστής συσχέτισης	Ασβεστοποιημένες πλάκες
Ελάχιστη τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Ελάχιστη τιμή	Διάμεσος	Συνισταμένη ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Ελάχιστη τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Ελάχιστη τιμή	Τυπική απόκλιση	Εύρος ακτινικής κίνησης	Αρνητικός	Μεγαλύτερες τιμές
Ελάχιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Ελάχιστη τιμή	Τυπική απόκλιση	D-T-S συνισταμένη μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Μέγιστη τιμή	Διάμεσος	Αξονική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Μέγιστη τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Μέγιστη τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Μέγιστη τιμή	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Μέγιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Μέση τιμή	Διάμεσος	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Μέση τιμή	Τυπική απόκλιση	Ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Μέση τιμή	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Μέση τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Τυπική απόκλιση	Διάμεσος	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές

Ως προς το πλήθος των εικονοστοιχεί ων ή των ζευγών εικονοστοιχεί ων	Ως προς το χρόνο για κάθε καρδιακό κύκλο	Κυματομορφές κίνησης για τα εικονοστοιχεία (pixels)	Συντελεστής συσχέτισης	Ασβεστοποιημένες πλάκες
Τυπική απόκλιση	Τυπική απόκλιση	Ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Τυπική απόκλιση	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Διάμεσος	Διάμεσος	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Διάμεσος	Τυπική απόκλιση	Ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Διάμεσος	Τυπική απόκλιση	Απόλυτη ακτινική ταχύτητα	Αρνητικός	Μεγαλύτερες τιμές
Διάμεσος	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Διάμεσος	Τυπική απόκλιση	Ολική D-T-S μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές
Ελάχιστη τιμή	Τυπική απόκλιση	Απόλυτη D-T-S ακτινική μετατόπιση	Αρνητικός	Μεγαλύτερες τιμές

Από τα παραπάνω παρατηρούμε ότι, όσον αφορά τμήματα του οπίσθιου υγιούς αρτηριακού τοιχώματος, στις περιπτώσεις που η αθηρωματική πλάκα είναι ασβεστοποιημένη η ακτινική ταχύτητα και η ακτινική μετατόπιση είναι μεγαλύτερες σε σχέση με τις περιπτώσεις των μη ασβεστοποιημένων αθηρωματικών πλακών.

4.3 Εξαγωγή Συμπερασμάτων

Παρατηρώντας και αναλύοντας τα video υπερήχων, διαπιστώθηκε ότι παρουσιάζονταν προβλήματα σε αυτά που απεικονίζουν μόνο έναν καρδιακό παλμό και σε ορισμένα στα οποία η κίνηση του παλμού φαινόταν να μην ήταν ολόκληρη (λιγότερο από έναν παλμό).

Δοκιμές και διορθώσεις μας οδήγησαν στο συμπέρασμα ότι για να μπορέσει ο αλγόριθμος ανάλυσης της κίνησης να εξάγει σωστά και επαρκή αποτελέσματα, θα πρέπει τα videoπου χρησιμοποιούνται να έχουν αρκετή διάρκεια και κατ' επέκταση frames ώστε να πραγματοποιούνται σωστά οι υπολογισμοί.

Επομένως, συμπεραίνεται ότι για την εξαγωγή αποτελεσμάτων χρησιμοποιώντας αλγόριθμο ανάλυσης κίνησης, ο οποίος χρησιμοποιεί μέθοδο οπτικής ροής με έλεγχο ελαχίστων τετραγώνων με βάρη, πρέπει το video υπερήχων να έχει διάρκεια τουλάχιστον δύο πλήρων καρδιακών παλμών.

Με βάση την στατιστική ανάλυση των αποτελεσμάτων, βρέθηκαν 68 δείκτες κίνησης οι οποίοι έχουν υψηλή απόλυτη τιμή του ρ και p<0,05. Στους δείκτες αυτούς, ο συντελεστής συσχέτισης είναι σχετικά χαμηλός, ωστόσο σε ένα σύστημα όπως είναι το αρτηριακό τοίχωμα των καρωτίδων όπου υπάρχει μεγάλη ποικιλομορφία, αλλά και λόγω των μεθόδων παρατήρησης που διαθέτουμε, όπως είναι οι υπέρηχοι Β-σάρωσης, στις εικόνες των οποίων εμπεριέχεται υψηλό ποσοστό θορύβου και κατ' επέκταση σφάλματος στους υπολογισμούς (και λόγω της τεχνικής απεικόνισης και λόγω σφάλματος που οφείλεται στον χειριστή του μηχανήματος υπερήχων, αλλά και λόγω εξωγενών παραγόντων), εξήχθηκε ο [Πίνακας 7], ο οποίος αποτελείται από του δείκτες κίνησης που παρουσίασαν το μεγαλύτερο συντελεστή συσχέτισης (επιλέχθηκε ρ>0,5) και για p<0,05.

Σύμφωνα με τις παραπάνω παρατηρήσεις μπορούμε να οδηγηθούμε στο συμπέρασμα ότι οι δείκτες που παρουσιάστηκαν μπορούν να χρησιμοποιηθούν για να καθορίσουν αν μία αθηρωματική πλάκα είναι ασβεστοποιημένη ή μη ασβεστοποιημένη, ανάλογα με τις τιμές των δεικτών κίνησης αυτών, που εξάγονται από την ανάλυση κίνησης. Όσον αφορά τις διαφορές που παρουσιάζουν στην κίνησή τους οι ασβεστοποιημένες αθηρωματικές πλάκες σε σχέση με τις ασβεστοποιημένες, παρατηρούμε ότι υπάρχει μεγαλύτερη κινητικότητα στα τμήματα της ίδιας της αθηρωματικής πλάκας, καθώς επίσης και μεταξύ σημείων της αθηρωματικής πλάκας και τμημάτων του υγιούς ιστού στις περιπτώσεις που η αθηρωματική πλάκα είναι ασβεστοποιημένη. Το γεγονός αυτό μπορεί να οδηγήσει στο συμπέρασμα ότι οι ασβεστοποιημένες πλάκες λόγω της αυξημένης αυτής κινητικότητάς τους μπορεί να είναι πιο επιρρεπείς σε τυχόν ρήξη του αρτηριακού τοιχώματος δημιουργώντας, ενδεχομένως, εμβολές στον ασθενή.

4.4 Μελλοντικές Ενέργειες

Από τα αποτελέσματα που εξήχθησαν από την ανάλυση κίνησης του αρτηριακού τοιχώματος και των αθηρωματικών πλακών, καθώς και από τη στατιστική ανάλυση που διενεργήθηκε σε αυτά διαπιστώθηκε ότι διαφαίνεται να υπάρχει συσχέτιση των δεικτών κίνησης με το αν είναι ασβεστοποιημένη ή μη ασβεστοποιημένη η αθηρωματική πλάκα. Επίσης, αν λάβουμε υπόψη μας το συμπέρασμα που προέκυψε ότι οι ασβεστοποιημένες αθηρωματικές πλάκες εμφανίζουν μία αυξημένη κινητικότητα, η οποία ενδεχομένως να είναι επικίνδυνη για την υγεία του ασθενή, τότε αντιλαμβανόμαστε ότι είναι σημαντικό να μπορεί να καθοριστεί το κατά πόσο μία αθηρωματική είναι ασβεστοποιημένη ή μη ασβεστοποιημένη.

Ένα από τα σημαντικότερα προβλήματα που παρουσιάστηκαν κατά τη διενέργεια της μελέτης ήταν το σφάλμα που υπεισέρχεται στους υπολογισμούς της ανάλυσης κίνησης από το χειροκίνητο καθορισμό των ορίων των αθηρωματικών πλακών, του οπίσθιου και εμπρόσθιου τμήματος του υγιούς αρτηριακού τοιχώματος. Για τη μείωση της επίδρασης του σφάλματος που εισέρχεται στους υπολογισμούς από το χρήστη που ορίζει τα όρια αυτά, θα μπορούσε να ερευνηθεί, σε μεταγενέστερο στάδιο, πιθανότητα ανάπτυξης λογισμικού αυτόματου καθορισμού των ορίων αυτών, με σκοπό την καλύτερη επεξεργασία των εικόνων υπερήχων των ασθενών. Μία τέτοια έρευνα θα μπορούσε να βοηθήσει σημαντικά στη μελέτη των αθηρωματικών πλακών και στη διάγνωση της βαρύτητας και επικινδυνότητας της ασθένειας με μη επεμβατικό τρόπο.

Σε μεταγενέστερο στάδιο θα μπορούσε να γίνει ανάλυση αποτελεσμάτων και από άλλους αλγόριθμους κίνησης (για τα ίδια δεδομένα) και να ελεγχθεί κατά πόσον υπάρχει συσχέτιση μεταξύ των αποτελεσμάτων των διαφόρων αλγορίθμων. Σκοπός είναι να διαφανεί το κατά πόσον υπάρχουν κάποιοι κοινοί δείκτες οι οποίοι συσχετίζονται με το αν η υπό εξέταση αθηρωματική πλάκα είναι ασβεστοποιημένη ή μη.

Με βάση τα στατιστικά αποτελέσματα που υπολογίστηκαν για τους δείκτες αυτούς, φαίνεται ότι υπάρχει συσχέτιση των δεικτών κίνησης που εξήχθησαν από την παρούσα μελέτη με το αν η υπό εξέταση αθηρωματική πλάκα είναι ασβεστοποιημένη ή μη. Για την εξαγωγή όμως ασφαλέστερων και ακριβέστερων αποτελεσμάτων, προτείνεται η ανάλυση και μελέτη δεδομένων από μεγαλύτερο δείγμα ασθενών. Επιπλέον, η μελέτη σε μεγαλύτερο δείγμα ασθενών θα μπορούσε να βοηθήσει στο να ερευνηθεί το κατά πόσο μπορεί να βρεθεί μία τιμή ή ένα εύρος τιμών των δεικτών κίνησης, οι οποίες θα μπορούσαν να οδηγήσουν στον άμεσο χαρακτηρισμό των αθηρωματικών πλακών.

5 Παραρτήματα

5.1 Αλγόριθμος createNewMat

%% a script to create new matfiles

```
clear all; close all; clc;
%% 1. load the video
name = F22F52JQ';
I=dicomread(name);
size(I)
%% 2. decide on frame1 and last frame (are there any artifacts?)
prompt = 'What is the 1st frame? ';
frame1 = input(prompt)
img=im2double(rgb2gray(I(:,:,:,frame1)));
prompt = 'What is the last frame? ';
lastframe = input(prompt)
%% 3. Image resolution
% nameMat = 'case1a input.mat';
nameVideo = 'F22F52JQ';
% load (nameMat);
clear resLong;
clear resRad;
[I,resTemp] = videoDicom2framesMat(nameVideo, frame1, lastframe);
|7 = |(:,:,1);
imwrite(I7,'im35.tif');
temp=imread('im35.tif');
figure, imshow(temp);
[xi,yi,but] = ginput(4);
resRad=(yi(2)-yi(1))/10
resLong=(xi(4)-xi(3))/40
% save('case35a_input.mat','resRad','-append');
% save('case35a input.mat','resLong','-append');
```

%% Υπολογισμός της διαμήκους και ακτινικής ανάλυσης της εικόνας

```
prompt = 'What is the radial image resolution? ';
resRad = input(prompt)
```

```
prompt = 'What is the longitudinal image resolution? ';
resLong = input(prompt)
```

```
%% 4. How many plaques will be annotated?
```

```
prompt = 'How many plaques?';
Nplaques = input(prompt)
```

```
%% 5. interactively contouring the ROIs figure; imshow(img,[]);hold on;
```

helpdlg('Select the whole boundary of the plaque. Left mouse button picks points. Right mouse button picks last point.')

```
hold on;
xy = [];
n = 0;
but = 1;
while but == 1
  [xi,yi,but] = ginput(1);
  plot(xi,yi,'wo')
  n = n+1;
  xy(:,n) = [xi;yi];
end
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
plot(round(xys(1,:)),round(xys(2,:)),'w-')
plaque1=round(xys);
clear xys;
```

helpdlg('Select PTS of the white plaque. Left mouse button picks points. Right mouse button picks last point.') hold on;

```
xy = [];
n = 0;
% Loop, picking up the points.
but = 1;
while but == 1
  [xi,yi,but] = ginput(1);
  plot(xi,yi,'ro')
  n = n+1;
  xy(:,n) = [xi;yi];
end
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
% Plot the interpolated curve.
```

```
plot(round(xys(1,:)),round(xys(2,:)),'w-')
PTS1=round(xys);
clear xys;
helpdlg('Select PBS of the white plaque. Left mouse button picks points. Right mouse
button picks last point.')
hold on;
xy = [];
n = 0;
% Loop, picking up the points.
but = 1;
while but == 1
  [xi,yi,but] = ginput(1);
  plot(xi,yi,'ro')
  n = n+1;
  xy(:,n) = [xi;yi];
end
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
% Plot the interpolated curve.
plot(round(xys(1,:)),round(xys(2,:)),'w-')
PBS1=round(xys);
clear xys;
%% Επιλογή του άνω και κάτω υγιούς τοιχώματος της καρωτίδας
helpdlg('SelectAWL. Left mouse button picks points. Right mouse button picks last point.')
hold on;
xy = [];
n = 0;
% Loop, picking up the points.
but = 1;
while but == 1
  [xi,yi,but] = ginput(1);
  plot(xi,yi,'yo')
  n = n+1;
  xy(:,n) = [xi;yi];
end
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
% Plot the interpolated curve.
plot(round(xys(1,:)),round(xys(2,:)),'w-')
ant_WL=round(xys);
clear xys;
```

helpdlg('Select PWL. Left mouse button picks points. Right mouse button picks last point.')

```
hold on;
xy = [];
n = 0;
% Loop, picking up the points.
but = 1;
while but == 1
  [xi,yi,but] = ginput(1);
  plot(xi,yi,'yo')
  n = n+1;
  xy(:,n) = [xi;yi];
end
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
% Plot the interpolated curve.
plot(round(xys(1,:)),round(xys(2,:)),'w-')
post WL=round(xys);
clear xys;
if (Nplaques>=2)
  helpdlg('Select the whole boundary of the 2nd plaque. Left mouse button picks points.
Right mouse button picks last point.')
  hold on;
  xy = [];
  n = 0;
  but = 1;
while but == 1
    [xi,yi,but] = ginput(1);
    plot(xi,yi,'ro')
    n = n+1;
    xy(:,n) = [xi;yi];
end
  t = 1:n;
  ts = 1: 0.1: n;
  xys = spline(t,xy,ts);
  plot(round(xys(1,:)),round(xys(2,:)),'r-')
  plaque2=round(xys);
  clear xys;
  helpdlg('Select PTS of the 2nd (red) plaque. Left mouse button picks points. Right mouse
button picks last point.')
```

```
hold on;
xy = [];
n = 0;
% Loop, picking up the points.
but = 1;
while but == 1
```

```
[xi,yi,but] = ginput(1);
    plot(xi,yi,'yo')
    n = n+1;
    xy(:,n) = [xi;yi];
end
  t = 1:n;
  ts = 1: 0.1: n;
  xys = spline(t,xy,ts);
% Plot the interpolated curve.
  plot(round(xys(1,:)),round(xys(2,:)),'r-')
  PTS2=round(xys);
  clear xys;
  helpdlg('Select PBS of the 2nd (red) plaque. Left mouse button picks points. Right mouse
button picks last point.')
  hold on;
  xy = [];
  n = 0;
% Loop, picking up the points.
  but = 1;
while but == 1
    [xi,yi,but] = ginput(1);
plot(xi,yi,'yo')
    n = n+1;
    xy(:,n) = [xi;yi];
end
  t = 1:n;
  ts = 1: 0.1: n;
```

```
xys = spline(t,xy,ts);
% Plot the interpolated curve.
plot(round(xys(1,:)),round(xys(2,:)),'r-')
PBS2=round(xys);
clear xys;
```

end

```
if (Nplaques==3)
```

helpdlg('Select the whole boundary of the 3rd plaque. Left mouse button picks points. Right mouse button picks last point.')

```
hold on;
xy = [];
n = 0;
but = 1;
while but == 1
[xi,yi,but] = ginput(1);
plot(xi,yi,'go')
n = n+1;
```

```
xy(:,n) = [xi;yi];
end
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);
plot(round(xys(1,:)),round(xys(2,:)),'g-')
plaque3=round(xys);
clear xys;
```

helpdlg('Select PTS of the 3rd (green) plaque. Left mouse button picks points. Right mouse button picks last point.')

```
hold on;
    xy = [];
    n = 0;
% Loop, picking up the points.
    but = 1;
while but == 1
       [xi,yi,but] = ginput(1);
       plot(xi,yi,'yo')
       n = n+1;
xy(:,n) = [xi;yi];
end
    t = 1:n;
    ts = 1: 0.1: n;
    xys = spline(t,xy,ts);
% Plot the interpolated curve.
    plot(round(xys(1,:)),round(xys(2,:)),'g-')
PTS3=round(xys);
    clear xys;
    helpdlg('Select PBS of the 3rd (green) plaque. Left mouse button picks points. Right
mouse button picks last point.')
    hold on;
    xy = [];
    n = 0;
% Loop, picking up the points.
but = 1;
while but == 1
       [xi,yi,but] = ginput(1);
      plot(xi,yi,'yo')
n = n+1;
      xy(:,n) = [xi;yi];
end
    t = 1:n;
    ts = 1: 0.1: n;
    xys = spline(t,xy,ts);
% Plot the interpolated curve.
    plot(round(xys(1,:)),round(xys(2,:)),'g-')
```

```
%% 6. GSM blood and adv
helpdlg('Select a region of blood')
blood = imcrop(img);
GSMblood = median(blood(:));
GSMblood = round(GSMblood*255);
helpdlg('Select a region of adventitia')
adv = imcrop(img);
GSMadv = median(adv(:));
GSMadv = round(GSMadv*255);
close all;
%% 7. patient and exam IDs
prompt = 'give a patient ID ';
ID = input(prompt)
%% 8. save
if Nplaques==1
  save ([ID '.mat'],'frame1', 'lastframe', 'Nplaques', 'resRad', 'resLong','GSMblood',
'GSMadv','plaque1','PTS1','PBS1','ant_WL','post_WL');
end
if Nplaques==2
 save ([ID '.mat'], 'frame1', 'lastframe', 'Nplaques', 'resRad', 'resLong', 'GSMblood',
'GSMadv','plaque1','PTS1','PBS1','plaque2','PTS2','PBS2');
end
if Nplaques==3
  save ([ID '.mat'], 'frame1', 'lastframe', 'Nplaques', 'resRad', 'resLong', 'GSMblood',
'GSMadv', 'plaque1', 'PTS1', 'PBS1', 'plaque2', 'PTS2', 'PBS2', 'plaque3', 'PTS3', 'PBS3');
end
```

5.2 Αλγόριθμος CarotidAnalysis

clear all; close all; clc;

PBS3=round(xys);

clear xys;

end

```
[NUMERIC,TXT,RAW]=xlsread('C:\Carotid Analysis\Red Cross
Data.xlsx','YYNOAIKAAEAOMENA','b4:ab113');
```

arxeia_video=cell(2,2);

for i=1:size(RAW,1)

```
T=strcmp(RAW{i,size(RAW,2)},'NO VIDEO');
    arxeia video{i,1}=RAW{i,2};
    arxeia video{i,2}=RAW{i,size(RAW,2)};
for i=1:110
  nameMat=arxeia video{i,1};
if isempty(nameMat)==0
    nameMat=[nameMat '.mat'];
    load (nameMat);
    nameVideo=arxeia video{i,2};
    [I,resTemp] = videoDicom2framesMat(nameVideo, frame1, lastframe);
    [Y dis,X dis,Y dis wp,X dis wp,ROIs,ROIs wp] = MotionEstimation(nameMat,I);
    [systoles, diastoles] = CCpoints(nameMat,X_dis);
    motionFeatures=
motionAnalysis(Y_dis,X_dis,Y_dis_wp,X_dis_wp,nameMat,systoles,diastoles,I(:,:,1),resTem
```

```
clear all; close all; clc;
```

Book(i,:)=motionFeatures;

xlswrite('Book1.xlsx',Book,1,'c2');

Book(i,:)=zeros(1,size(Book,1));

if T==0

end end

p);

else

end end

```
results_MF=xlsread('MF_results_v1.xlsx','MF_results_average','b2:aup105');
i=0;
j=1;
k=1;
pinakas(j,:)=results_MF(i+1,:);
for i=1:size(results MF,1)-1
if results MF(i+1,1)==results MF(i,1)
    j=j+1;
    pinakas(j,:)=results_MF(i+1,:);
else
    MF results(k,:)=nanmean(pinakas,1);
    clear pinakas
    j=1;
    k=k+1;
    pinakas(j,:)=results MF(i+1,:);
```

5.3 Αλγόριθμος στατιστικής ανάλυσης Statistics.m

end end MF_results(k,:)=mean(pinakas,1); i=0; for i=2:size(MF_results,2) H(i-1)=kstest(MF_results(:,i)); end y=[]; i=0; for i=2:(size(MF_results,2)-1) if H(i-1)==1 [y(1,i-1),y(2,i-1)]=corr(MF_results(:,i),MF_results(:,size(MF_results,2)), 'type', 'Spearman', 'rows', 'pairwise'); else [y(1,i-1),y(2,i-1)]=corr(MF_results(:,i),MF_results(:,size(MF_results,2)), 'type', 'Pearson', 'rows', 'pairwise'); end end

xlswrite('MF_Statistics.xlsx',y,'Statistics_avg','b2');

5.4 Δείκτες κίνησης

Στον ακόλουθο πίνακα αναφέρονται όλοι οι δείκτες κίνησης:

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
		pixels)		
1	pixels of the whole plaque	min	median	longitudinal velocity
2	pixels of the whole plaque	min	median	radial velocity
3	pixels of the whole plaque	min	median	absolute longitudinal velocity
4	pixels of the whole plaque	min	median	absolute radial velocity
5	pixels of the whole plaque	min	median	total velocity
6	pixels of the whole plaque	min	median	velocity angle
7	pixels of the whole plaque	min	std	longitudinal velocity
8	pixels of the whole plaque	min	std	radial velocity
9	pixels of the whole plaque	min	std	absolute longitudinal velocity
10	pixels of the whole plaque	min	std	absolute radial velocity
11	pixels of the whole plaque	min	std	total velocity
12	pixels of the whole plaque	min	std	velocity angle
13	pixels of the whole plaque	min	std	longitudinal motion amplitude
14	pixels of the whole plaque	min	std	radial motion amplitude
15	pixels of the whole plaque	min	std	total motion amplitude
16	pixels of the whole plaque	min	std	amplitude angle

	ROI	Operator over space	Operator over time	Measure
		pixels)	in each cardiac cycle	
17	pixels of the whole plaque	min	std	longitudinal D-T-S displacement
18	pixels of the whole plaque	min	std	radial D-T-S displacement
19	pixels of the whole plaque	min	std	absolute longitudinal D-T-S displacement
20	pixels of the whole plaque	min	std	absolute radial D-T-S displacement
21	pixels of the whole plaque	min	std	total D-T-S displacement
22	pixels of the whole plaque	min	std	D-T-S displacement angle
23	pixels of the whole plaque	max	median	longitudinal velocity
24	pixels of the whole plaque	max	median	radial velocity
25	pixels of the whole plaque	max	median	absolute longitudinal velocity
26	pixels of the whole plaque	max	median	absolute radial velocity
27	pixels of the whole plaque	max	median	total velocity
28	pixels of the whole plaque	max	median	velocity angle
29	pixels of the whole plaque	max	std	longitudinal velocity
30	pixels of the whole plaque	max	std	radial velocity
31	pixels of the whole plaque	max	std	absolute longitudinal velocity
32	pixels of the whole plaque	max	std	absolute radial velocity
33	pixels of the whole plaque	max	std	total velocity
34	pixels of the whole plaque	max	std	velocity angle
35	pixels of the whole plaque	max	std	longitudinal motion amplitude
36	pixels of the whole plaque	max	std	radial motion amplitude
37	pixels of the whole plaque	max	std	total motion amplitude
38	pixels of the whole plaque	max	std	amplitude angle
39	pixels of the whole plaque	max	std	longitudinal D-T-S displacement
40	pixels of the whole plaque	max	std	radial D-T-S displacement
41	pixels of the whole plaque	max	std	absolute longitudinal D-T-S displacement
42	pixels of the whole plaque	max	std	absolute radial D-T-S displacement
43	pixels of the whole plaque	max	std	total D-T-S displacement
44	pixels of the whole plaque	max	std	D-T-S displacement angle
45	pixels of the whole plaque	mean	median	longitudinal velocity
46	pixels of the whole plaque	mean	median	radial velocity
47	pixels of the whole plaque	mean	median	absolute longitudinal velocity
48	pixels of the whole plaque	mean	median	absolute radial velocity
49	pixels of the whole plaque	mean	median	total velocity
50	pixels of the whole plaque	mean	median	velocity angle
51	pixels of the whole plaque	mean	std	longitudinal velocity
52	pixels of the whole plaque	mean	std	radial velocity
53	pixels of the whole plaque	mean	std	absolute longitudinal velocity

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
54	pixels of the whole plaque	mean	std	absolute radial velocity
55	pixels of the whole plaque	mean	std	total velocity
56	pixels of the whole plaque	mean	std	velocity angle
57	pixels of the whole plaque	mean	std	longitudinal motion amplitude
58	pixels of the whole plaque	mean	std	radial motion amplitude
59	pixels of the whole plaque	mean	std	total motion amplitude
60	pixels of the whole plaque	mean	std	amplitude angle
61	pixels of the whole plaque	mean	std	longitudinal D-T-S displacement
62	pixels of the whole plaque	mean	std	radial D-T-S displacement
63	pixels of the whole plaque	mean	std	absolute longitudinal D-T-S displacement
64	pixels of the whole plaque	mean	std	absolute radial D-T-S
65	nivels of the whole plaque	moan	std	displacement
66	pixels of the whole plaque	mean	std	D-T-S displacement angle
67	pixels of the whole plaque	std	median	
68	pixels of the whole plaque	std	median	
69	pixels of the whole plaque	std	median	absolute longitudinal velocity
70	pixels of the whole plaque	std	median	absolute radial velocity
70	pixels of the whole plaque	std	median	
71	pixels of the whole plaque	std	median	velocity angle
72	pixels of the whole plaque	std	std	longitudinal velocity
73	nixels of the whole plaque	std	std	radial velocity
75	nixels of the whole plaque	std	std	absolute longitudinal velocity
76	nixels of the whole plaque	std	std	absolute radial velocity
70	nixels of the whole plaque	std	std	total velocity
78	pixels of the whole plaque	std	std	velocity angle
79	pixels of the whole plaque	std	std	longitudinal motion amplitude
80	pixels of the whole plaque	std	std	radial motion amplitude
81	pixels of the whole plaque	std	std	total motion amplitude
82	pixels of the whole plaque	std	std	amplitude angle
83	pixels of the whole plaque	std	std	longitudinal D-T-S
				displacement
84	pixels of the whole plaque	std	std	radial D-T-S displacement
85	pixels of the whole plaque	std	std	absolute longitudinal D-T-S displacement
86	pixels of the whole plaque	std	std	absolute radial D-T-S displacement
87	pixels of the whole plaque	std	std	total D-T-S displacement
88	pixels of the whole plaque	std	std	D-T-S displacement angle
89	pixels of the whole plaque	median	median	longitudinal velocity
90	pixels of the whole plaque	median	median	radial velocity

	ROI	Operator over space (pixels or pairs of pixels)	Operator over time in each cardiac cycle	Measure
91	pixels of the whole plaque	median	median	absolute longitudinal velocity
92	pixels of the whole plaque	median	median	absolute radial velocity
93	pixels of the whole plaque	median	median	total velocity
94	pixels of the whole plaque	median	median	velocity angle
95	pixels of the whole plaque	median	std	longitudinal velocity
96	pixels of the whole plaque	median	std	radial velocity
97	pixels of the whole plaque	median	std	absolute longitudinal velocity
98	pixels of the whole plaque	median	std	absolute radial velocity
99	pixels of the whole plaque	median	std	total velocity
100	pixels of the whole plaque	median	std	velocity angle
101	pixels of the whole plaque	median	std	longitudinal motion amplitude
102	pixels of the whole plaque	median	std	radial motion amplitude
103	pixels of the whole plaque	median	std	total motion amplitude
104	pixels of the whole plaque	median	std	amplitude angle
105	pixels of the whole plaque	median	std	longitudinal D-T-S displacement
106	pixels of the whole plaque	median	std	radial D-T-S displacement
107	pixels of the whole plaque	median	std	absolute longitudinal D-T-S displacement
108	pixels of the whole plaque	median	std	absolute radial D-T-S displacement
109	pixels of the whole plaque	median	std	total D-T-S displacement
110	pixels of the whole plaque	median	std	D-T-S displacement angle
111	pixels of the whole plaque	skewness	median	longitudinal velocity
112	pixels of the whole plaque	skewness	median	radial velocity
113	pixels of the whole plaque	skewness	median	absolute longitudinal velocity
114	pixels of the whole plaque	skewness	median	absolute radial velocity
115	pixels of the whole plaque	skewness	median	total velocity
116	pixels of the whole plaque	skewness	median	velocity angle
117	pixels of the whole plaque	skewness	std	longitudinal velocity
118	pixels of the whole plaque	skewness	std	radial velocity
119	pixels of the whole plaque	skewness	std	absolute longitudinal velocity
120	pixels of the whole plaque	skewness	std	absolute radial velocity
121	pixels of the whole plaque	skewness	std	total velocity
122	pixels of the whole plaque	skewness	std	velocity angle
123	pixels of the whole plaque	skewness	std	longitudinal motion amplitude
124	pixels of the whole plaque	skewness	std	radial motion amplitude
125	pixels of the whole plaque	skewness	std	total motion amplitude
126	pixels of the whole plaque	skewness	std	amplitude angle
127	pixels of the whole plaque	skewness	std	longitudinal D-T-S displacement
128	pixels of the whole plaque	skewness	std	radial D-T-S displacement

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
		pixels)		
129	pixels of the whole plaque	skewness	std	absolute longitudinal D-T-S displacement
130	pixels of the whole plaque	skewness	std	absolute radial D-T-S displacement
131	pixels of the whole plaque	skewness	std	total D-T-S displacement
132	pixels of the whole plaque	skewness	std	D-T-S displacement angle
133	pixels of the whole plaque	kurtosis	median	longitudinal velocity
134	pixels of the whole plaque	kurtosis	median	radial velocity
135	pixels of the whole plaque	kurtosis	median	absolute longitudinal velocity
136	pixels of the whole plaque	kurtosis	median	absolute radial velocity
137	pixels of the whole plaque	kurtosis	median	total velocity
138	pixels of the whole plaque	kurtosis	median	velocity angle
139	pixels of the whole plaque	kurtosis	std	longitudinal velocity
140	pixels of the whole plaque	kurtosis	std	radial velocity
141	pixels of the whole plaque	kurtosis	std	absolute longitudinal velocity
142	pixels of the whole plaque	kurtosis	std	absolute radial velocity
143	pixels of the whole plaque	kurtosis	std	total velocity
144	pixels of the whole plaque	kurtosis	std	velocity angle
145	pixels of the whole plaque	kurtosis	std	longitudinal motion amplitude
146	pixels of the whole plaque	kurtosis	std	radial motion amplitude
147	pixels of the whole plaque	kurtosis	std	total motion amplitude
148	pixels of the whole plaque	kurtosis	std	amplitude angle
149	pixels of the whole plaque	kurtosis	std	longitudinal D-T-S displacement
150	pixels of the whole plaque	kurtosis	std	radial D-T-S displacement
151	pixels of the whole plaque	kurtosis	std	absolute longitudinal D-T-S displacement
152	pixels of the whole plaque	kurtosis	std	absolute radial D-T-S displacement
153	pixels of the whole plaque	kurtosis	std	total D-T-S displacement
154	pixels of the whole plaque	kurtosis	std	D-T-S displacement angle
155	pixels of the whole plaque	entropy	median	longitudinal velocity
156	pixels of the whole plaque	entropy	median	radial velocity
157	pixels of the whole plaque	entropy	median	absolute longitudinal velocity
158	pixels of the whole plaque	entropy	median	absolute radial velocity
159	pixels of the whole plaque	entropy	median	total velocity
160	pixels of the whole plaque	entropy	median	velocity angle
161	pixels of the whole plaque	entropy	std	longitudinal velocity
162	pixels of the whole plaque	entropy	std	radial velocity
163	pixels of the whole plaque	entropy	std	absolute longitudinal velocity
164	pixels of the whole plaque	entropy	std	absolute radial velocity
165	pixels of the whole plaque	entropy	std	total velocity

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
166	pixels of the whole plaque	entropy	std	velocity angle
167	pixels of the whole plaque	entropy	std	longitudinal motion amplitude
168	pixels of the whole plaque	entropy	std	radial motion amplitude
169	pixels of the whole plaque	entropy	std	total motion amplitude
170	pixels of the whole plaque	entropy	std	amplitude angle
171	pixels of the whole plaque	entropy	std	longitudinal D-T-S displacement
172	pixels of the whole plaque	entropy	std	radial D-T-S displacement
173	pixels of the whole plaque	entropy	std	absolute longitudinal D-T-S displacement
174	pixels of the whole plaque	entropy	std	absolute radial D-T-S displacement
175	pixels of the whole plaque	entropy	std	total D-T-S displacement
176	pixels of the whole plaque	entropy	std	D-T-S displacement angle
177	pixels of the whole plaque	contrast (0 degrees)	median	longitudinal velocity
178	pixels of the whole plaque	contrast (0 degrees)	median	radial velocity
179	pixels of the whole plaque	contrast (0 degrees)	median	absolute longitudinal velocity
180	pixels of the whole plaque	contrast (0 degrees)	median	absolute radial velocity
181	pixels of the whole plaque	contrast (0 degrees)	median	total velocity
182	pixels of the whole plaque	contrast (0 degrees)	median	velocity angle
183	pixels of the whole plaque	contrast (0 degrees)	std	longitudinal velocity
184	pixels of the whole plaque	contrast (0 degrees)	std	radial velocity
185	pixels of the whole plaque	contrast (0 degrees)	std	absolute longitudinal velocity
186	pixels of the whole plaque	contrast (0 degrees)	std	absolute radial velocity
187	pixels of the whole plaque	contrast (0 degrees)	std	total velocity
188	pixels of the whole plaque	contrast (0 degrees)	std	velocity angle
189	pixels of the whole plaque	contrast (0 degrees)	std	longitudinal motion amplitude
190	pixels of the whole plaque	contrast (0 degrees)	std	radial motion amplitude
191	pixels of the whole plaque	contrast (0 degrees)	std	total motion amplitude
192	pixels of the whole plaque	contrast (0 degrees)	std	amplitude angle
193	pixels of the whole plaque	contrast (0 degrees)	std	longitudinal D-T-S displacement
194	pixels of the whole plaque	contrast (0 degrees)	std	radial D-T-S displacement
195	pixels of the whole plaque	contrast (0 degrees)	std	absolute longitudinal D-T-S displacement
196	pixels of the whole plaque	contrast (0 degrees)	std	absolute radial D-T-S displacement
197	pixels of the whole plaque	contrast (0 degrees)	std	total D-T-S displacement
198	pixels of the whole plaque	contrast (0 degrees)	std	D-T-S displacement angle
199	pixels of the whole plaque	correlation (0 degrees)	median	longitudinal velocity
200	pixels of the whole plaque	correlation (0 degrees)	median	radial velocity
201	pixels of the whole plaque	correlation (0	median	absolute longitudinal velocity

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of	in each cardiac cycle	
		degrees)		
202	nivels of the whole plaque	correlation (0	median	absolute radial velocity
202	pixels of the whole plaque	degrees)	median	
203	pixels of the whole plaque	correlation (0	median	total velocity
		degrees)		
204	pixels of the whole plaque	correlation (0	median	velocity angle
205	nixels of the whole plaque	correlation (0	std	longitudinal velocity
205	pixels of the whole plaque	degrees)	50	
206	pixels of the whole plaque	correlation (0	std	radial velocity
		degrees)		
207	pixels of the whole plaque	correlation (0	std	absolute longitudinal velocity
200		degrees)		
208	pixels of the whole plaque		sta	absolute radial velocity
209	pixels of the whole plague	correlation (0	std	total velocity
		degrees)		
210	pixels of the whole plaque	correlation (0	std	velocity angle
		degrees)		
211	pixels of the whole plaque	correlation (0	sta	longitudinal motion amplitude
212	pixels of the whole plaque	correlation (0	std	radial motion amplitude
	pixels of the whole picque	degrees)	500	
213	pixels of the whole plaque	correlation (0	std	total motion amplitude
		degrees)		
214	pixels of the whole plaque	correlation (0	std	amplitude angle
215	nixels of the whole plaque	correlation (0	std	longitudinal D-T-S
	pixels of the whole picque	degrees)	500	displacement
216	pixels of the whole plaque	correlation (0	std	radial D-T-S displacement
		degrees)		
217	pixels of the whole plaque	correlation (0	std	absolute longitudinal D-T-S
218	nixels of the whole plaque	correlation (0	std	absolute radial D-T-S
210	pixels of the whole plaque	degrees)	50	displacement
219	pixels of the whole plaque	correlation (0	std	total D-T-S displacement
		degrees)		
220	pixels of the whole plaque	correlation (0	std	D-T-S displacement angle
221	nixels of the whole plaque	degrees)	median	longitudinal velocity
221	pixels of the whole plaque	energy (0 degrees)	median	radial velocity
222	pixels of the whole plaque	energy (O degrees)		
223	pixels of the whole plaque	energy (0 degrees)	median	absolute longitudinal velocity
224	pixels of the whole plaque	energy (0 degrees)	median	absolute radial velocity
225	pixels of the whole plaque	energy (0 degrees)	median	total velocity
226	pixels of the whole plaque	energy (0 degrees)	median	velocity angle
227	pixels of the whole plaque	energy (0 degrees)	std	longitudinal velocity
228	pixels of the whole plaque	energy (0 degrees)	std	radial velocity
229	pixels of the whole plaque	energy (0 degrees)	std	absolute longitudinal velocity
230	pixels of the whole plaque	energy (0 degrees)	std	absolute radial velocity

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
231	pixels of the whole plaque	energy (0 degrees)	std	total velocity
232	pixels of the whole plaque	energy (0 degrees)	std	velocity angle
233	pixels of the whole plaque	energy (0 degrees)	std	longitudinal motion amplitude
234	pixels of the whole plaque	energy (0 degrees)	std	radial motion amplitude
235	pixels of the whole plaque	energy (0 degrees)	std	total motion amplitude
236	pixels of the whole plaque	energy (0 degrees)	std	amplitude angle
237	pixels of the whole plaque	energy (0 degrees)	std	longitudinal D-T-S displacement
238	pixels of the whole plaque	energy (0 degrees)	std	radial D-T-S displacement
239	pixels of the whole plaque	energy (0 degrees)	std	absolute longitudinal D-T-S displacement
240	pixels of the whole plaque	energy (0 degrees)	std	absolute radial D-T-S displacement
241	pixels of the whole plaque	energy (0 degrees)	std	total D-T-S displacement
242	pixels of the whole plaque	energy (0 degrees)	std	D-T-S displacement angle
243	pixels of the whole plaque	homogeneity (0 degrees)	median	longitudinal velocity
244	pixels of the whole plaque	homogeneity (0 degrees)	median	radial velocity
245	pixels of the whole plaque	homogeneity (0 degrees)	median	absolute longitudinal velocity
246	pixels of the whole plaque	homogeneity (0 degrees)	median	absolute radial velocity
247	pixels of the whole plaque	homogeneity (0 degrees)	median	total velocity
248	pixels of the whole plaque	homogeneity (0 degrees)	median	velocity angle
249	pixels of the whole plaque	homogeneity (0 degrees)	std	longitudinal velocity
250	pixels of the whole plaque	homogeneity (0 degrees)	std	radial velocity
251	pixels of the whole plaque	homogeneity (0 degrees)	std	absolute longitudinal velocity
252	pixels of the whole plaque	homogeneity (0 degrees)	std	absolute radial velocity
253	pixels of the whole plaque	homogeneity (0 degrees)	std	total velocity
254	pixels of the whole plaque	homogeneity (0 degrees)	std	velocity angle
255	pixels of the whole plaque	homogeneity (0 degrees)	std	longitudinal motion amplitude
256	pixels of the whole plaque	homogeneity (0 degrees)	std	radial motion amplitude
257	pixels of the whole plaque	homogeneity (0 degrees)	std	total motion amplitude
258	pixels of the whole plaque	homogeneity (0 degrees)	std	amplitude angle
259	pixels of the whole plaque	homogeneity (0 degrees)	std	longitudinal D-T-S displacement

[BOI	Operator over space	Operator over time	Measure
		(pixels or pairs of	in each cardiac cycle	incusure
		pixels)	-	
260	pixels of the whole plaque	homogeneity (0 degrees)	std	radial D-T-S displacement
261	pixels of the whole plaque	homogeneity (0 degrees)	std	absolute longitudinal D-T-S displacement
262	pixels of the whole plaque	homogeneity (0 degrees)	std	absolute radial D-T-S displacement
263	pixels of the whole plaque	homogeneity (0 degrees)	std	total D-T-S displacement
264	pixels of the whole plaque	homogeneity (0 degrees)	std	D-T-S displacement angle
265	pixels of the whole plaque	contrast (45 degrees)	median	longitudinal velocity
266	pixels of the whole plaque	contrast (45 degrees)	median	radial velocity
267	pixels of the whole plaque	contrast (45 degrees)	median	absolute longitudinal velocity
268	pixels of the whole plaque	contrast (45 degrees)	median	absolute radial velocity
269	pixels of the whole plaque	contrast (45 degrees)	median	total velocity
270	pixels of the whole plaque	contrast (45 degrees)	median	velocity angle
271	pixels of the whole plaque	contrast (45 degrees)	std	longitudinal velocity
272	pixels of the whole plaque	contrast (45 degrees)	std	radial velocity
273	pixels of the whole plaque	contrast (45 degrees)	std	absolute longitudinal velocity
274	pixels of the whole plaque	contrast (45 degrees)	std	absolute radial velocity
275	pixels of the whole plaque	contrast (45 degrees)	std	total velocity
276	pixels of the whole plaque	contrast (45 degrees)	std	velocity angle
277	pixels of the whole plaque	contrast (45 degrees)	std	longitudinal motion amplitude
278	pixels of the whole plaque	contrast (45 degrees)	std	radial motion amplitude
279	pixels of the whole plaque	contrast (45 degrees)	std	total motion amplitude
280	pixels of the whole plaque	contrast (45 degrees)	std	amplitude angle
281	pixels of the whole plaque	contrast (45 degrees)	std	longitudinal D-T-S displacement
282	pixels of the whole plaque	contrast (45 degrees)	std	radial D-T-S displacement
283	pixels of the whole plaque	contrast (45 degrees)	std	absolute longitudinal D-T-S displacement
284	pixels of the whole plaque	contrast (45 degrees)	std	absolute radial D-T-S displacement
285	pixels of the whole plaque	contrast (45 degrees)	std	total D-T-S displacement
286	pixels of the whole plaque	contrast (45 degrees)	std	D-T-S displacement angle
287	pixels of the whole plaque	correlation (45	median	longitudinal velocity
288	pixels of the whole plaque	correlation (45 degrees)	median	radial velocity
289	pixels of the whole plaque	correlation (45 degrees)	median	absolute longitudinal velocity
290	pixels of the whole plaque	correlation (45 degrees)	median	absolute radial velocity
291	pixels of the whole plaque	correlation (45 degrees)	median	total velocity
292	pixels of the whole plaque	correlation (45 degrees)	median	velocity angle

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
		pixels)		
293	pixels of the whole plaque	correlation (45 degrees)	std	longitudinal velocity
294	pixels of the whole plaque	correlation (45 degrees)	std	radial velocity
295	pixels of the whole plaque	correlation (45	std	absolute longitudinal velocity
296	pixels of the whole plaque	correlation (45	std	absolute radial velocity
297	pixels of the whole plaque	correlation (45 degrees)	std	total velocity
298	pixels of the whole plaque	correlation (45 degrees)	std	velocity angle
299	pixels of the whole plaque	correlation (45 degrees)	std	longitudinal motion amplitude
300	pixels of the whole plaque	correlation (45 degrees)	std	radial motion amplitude
301	pixels of the whole plaque	correlation (45 degrees)	std	total motion amplitude
302	pixels of the whole plaque	correlation (45 degrees)	std	amplitude angle
303	pixels of the whole plaque	correlation (45 degrees)	std	longitudinal D-T-S displacement
304	pixels of the whole plaque	correlation (45 degrees)	std	radial D-T-S displacement
305	pixels of the whole plaque	correlation (45 degrees)	std	absolute longitudinal D-T-S displacement
306	pixels of the whole plaque	correlation (45 degrees)	std	absolute radial D-T-S displacement
307	pixels of the whole plaque	correlation (45 degrees)	std	total D-T-S displacement
308	pixels of the whole plaque	correlation (45 degrees)	std	D-T-S displacement angle
309	pixels of the whole plaque	energy (45 degrees)	median	longitudinal velocity
310	pixels of the whole plaque	energy (45 degrees)	median	radial velocity
311	pixels of the whole plaque	energy (45 degrees)	median	absolute longitudinal velocity
312	pixels of the whole plaque	energy (45 degrees)	median	absolute radial velocity
313	pixels of the whole plaque	energy (45 degrees)	median	total velocity
314	pixels of the whole plaque	energy (45 degrees)	median	velocity angle
315	pixels of the whole plaque	energy (45 degrees)	std	longitudinal velocity
316	pixels of the whole plaque	energy (45 degrees)	std	radial velocity
317	pixels of the whole plaque	energy (45 degrees)	std	absolute longitudinal velocity
318	pixels of the whole plaque	energy (45 degrees)	std	absolute radial velocity
319	pixels of the whole plaque	energy (45 degrees)	std	total velocity
320	pixels of the whole plaque	energy (45 degrees)	std	velocity angle
321	pixels of the whole plaque	energy (45 degrees)	std	longitudinal motion amplitude
322	pixels of the whole plaque	energy (45 degrees)	std	radial motion amplitude
323	pixels of the whole plaque	energy (45 degrees)	std	total motion amplitude

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
324	pixels of the whole plaque	energy (45 degrees)	std	amplitude angle
325	pixels of the whole plaque	energy (45 degrees)	std	longitudinal D-T-S displacement
326	pixels of the whole plaque	energy (45 degrees)	std	radial D-T-S displacement
327	pixels of the whole plaque	energy (45 degrees)	std	absolute longitudinal D-T-S displacement
328	pixels of the whole plaque	energy (45 degrees)	std	absolute radial D-T-S displacement
329	pixels of the whole plaque	energy (45 degrees)	std	total D-T-S displacement
330	pixels of the whole plaque	energy (45 degrees)	std	D-T-S displacement angle
331	pixels of the whole plaque	homogeneity (45 degrees)	median	longitudinal velocity
332	pixels of the whole plaque	homogeneity (45 degrees)	median	radial velocity
333	pixels of the whole plaque	homogeneity (45 degrees)	median	absolute longitudinal velocity
334	pixels of the whole plaque	homogeneity (45 degrees)	median	absolute radial velocity
335	pixels of the whole plaque	homogeneity (45 degrees)	median	total velocity
336	pixels of the whole plaque	homogeneity (45 degrees)	median	velocity angle
337	pixels of the whole plaque	homogeneity (45 degrees)	std	longitudinal velocity
338	pixels of the whole plaque	homogeneity (45 degrees)	std	radial velocity
339	pixels of the whole plaque	homogeneity (45 degrees)	std	absolute longitudinal velocity
340	pixels of the whole plaque	homogeneity (45 degrees)	std	absolute radial velocity
341	pixels of the whole plaque	homogeneity (45 degrees)	std	total velocity
342	pixels of the whole plaque	homogeneity (45 degrees)	std	velocity angle
343	pixels of the whole plaque	homogeneity (45 degrees)	std	longitudinal motion amplitude
344	pixels of the whole plaque	homogeneity (45 degrees)	std	radial motion amplitude
345	pixels of the whole plaque	homogeneity (45 degrees)	std	total motion amplitude
346	pixels of the whole plaque	homogeneity (45 degrees)	std	amplitude angle
347	pixels of the whole plaque	homogeneity (45 degrees)	std	longitudinal D-T-S displacement
348	pixels of the whole plaque	homogeneity (45 degrees)	std	radial D-T-S displacement
349	pixels of the whole plaque	homogeneity (45 degrees)	std	absolute longitudinal D-T-S displacement
350	pixels of the whole plaque	homogeneity (45 degrees)	std	absolute radial D-T-S displacement
351	pixels of the whole plaque	homogeneity (45	std	total D-T-S displacement

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of	in each cardiac cycle	
		pixels)		
		degrees)		
352	pixels of the whole plaque	degrees)	sta	D-I-S displacement angle
353	pixels of the whole plaque	contrast (90 degrees)	median	longitudinal velocity
354	pixels of the whole plaque	contrast (90 degrees)	median	radial velocity
355	pixels of the whole plaque	contrast (90 degrees)	median	absolute longitudinal velocity
356	pixels of the whole plaque	contrast (90 degrees)	median	absolute radial velocity
357	pixels of the whole plaque	contrast (90 degrees)	median	total velocity
358	pixels of the whole plaque	contrast (90 degrees)	median	velocity angle
359	pixels of the whole plaque	contrast (90 degrees)	std	longitudinal velocity
360	pixels of the whole plaque	contrast (90 degrees)	std	radial velocity
361	pixels of the whole plaque	contrast (90 degrees)	std	absolute longitudinal velocity
362	pixels of the whole plaque	contrast (90 degrees)	std	absolute radial velocity
363	pixels of the whole plaque	contrast (90 degrees)	std	total velocity
364	pixels of the whole plaque	contrast (90 degrees)	std	velocity angle
365	pixels of the whole plaque	contrast (90 degrees)	std	longitudinal motion amplitude
366	pixels of the whole plaque	contrast (90 degrees)	std	radial motion amplitude
367	pixels of the whole plaque	contrast (90 degrees)	std	total motion amplitude
368	pixels of the whole plaque	contrast (90 degrees)	std	amplitude angle
369	pixels of the whole plaque	contrast (90 degrees)	std	longitudinal D-T-S
				displacement
370	pixels of the whole plaque	contrast (90 degrees)	std	radial D-T-S displacement
371	pixels of the whole plaque	contrast (90 degrees)	std	absolute longitudinal D-T-S displacement
372	pixels of the whole plaque	contrast (90 degrees)	std	absolute radial D-T-S displacement
373	pixels of the whole plaque	contrast (90 degrees)	std	total D-T-S displacement
374	pixels of the whole plaque	contrast (90 degrees)	std	D-T-S displacement angle
375	pixels of the whole plaque	correlation (90	median	longitudinal velocity
376	pixels of the whole plaque	correlation (90	median	radial velocity
377	pixels of the whole plaque	correlation (90	median	absolute longitudinal velocity
370	nivels of the whole plaque	degrees)	modian	abcoluto radial volocity
570	pixels of the whole plaque	degrees)	meulan	
379	pixels of the whole plaque	correlation (90	median	total velocity
200	nivels of the whole plaque	degrees)	modian	volocity angle
500	pixels of the whole plaque	degrees)		
381	pixels of the whole plaque	correlation (90	std	longitudinal velocity
		degrees)		
382	pixels of the whole plaque	correlation (90 degrees)	std	radial velocity
383	pixels of the whole plaque	correlation (90 degrees)	std	absolute longitudinal velocity

	ROI	Operator over space	Operator over time	Measure
		pixels)		
384	pixels of the whole plaque	correlation (90 degrees)	std	absolute radial velocity
385	pixels of the whole plaque	correlation (90 degrees)	std	total velocity
386	pixels of the whole plaque	correlation (90	std	velocity angle
387	pixels of the whole plaque	correlation (90	std	longitudinal motion amplitude
388	pixels of the whole plaque	correlation (90	std	radial motion amplitude
389	pixels of the whole plaque	correlation (90	std	total motion amplitude
390	pixels of the whole plaque	correlation (90 degrees)	std	amplitude angle
391	pixels of the whole plaque	correlation (90 degrees)	std	longitudinal D-T-S displacement
392	pixels of the whole plaque	correlation (90 degrees)	std	radial D-T-S displacement
393	pixels of the whole plaque	correlation (90 degrees)	std	absolute longitudinal D-T-S displacement
394	pixels of the whole plaque	correlation (90 degrees)	std	absolute radial D-T-S displacement
395	pixels of the whole plaque	correlation (90 degrees)	std	total D-T-S displacement
396	pixels of the whole plaque	correlation (90 degrees)	std	D-T-S displacement angle
397	pixels of the whole plaque	energy (90 degrees)	median	longitudinal velocity
398	pixels of the whole plaque	energy (90 degrees)	median	radial velocity
399	pixels of the whole plaque	energy (90 degrees)	median	absolute longitudinal velocity
400	pixels of the whole plaque	energy (90 degrees)	median	absolute radial velocity
401	pixels of the whole plaque	energy (90 degrees)	median	total velocity
402	pixels of the whole plaque	energy (90 degrees)	median	velocity angle
403	pixels of the whole plaque	energy (90 degrees)	std	longitudinal velocity
404	pixels of the whole plaque	energy (90 degrees)	std	radial velocity
405	pixels of the whole plaque	energy (90 degrees)	std	absolute longitudinal velocity
406	pixels of the whole plaque	energy (90 degrees)	std	absolute radial velocity
407	pixels of the whole plaque	energy (90 degrees)	std	total velocity
408	pixels of the whole plaque	energy (90 degrees)	std	velocity angle
409	pixels of the whole plaque	energy (90 degrees)	std	longitudinal motion amplitude
410	pixels of the whole plaque	energy (90 degrees)	std	radial motion amplitude
411	pixels of the whole plaque	energy (90 degrees)	std	total motion amplitude
412	pixels of the whole plaque	energy (90 degrees)	std	amplitude angle
413	pixels of the whole plaque	energy (90 degrees)	std	longitudinal D-T-S displacement
414	pixels of the whole plaque	energy (90 degrees)	std	radial D-T-S displacement
415	pixels of the whole plaque	energy (90 degrees)	std	absolute longitudinal D-T-S displacement

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
416	pixels of the whole plaque	energy (90 degrees)	std	absolute radial D-T-S displacement
417	pixels of the whole plaque	energy (90 degrees)	std	total D-T-S displacement
418	pixels of the whole plaque	energy (90 degrees)	std	D-T-S displacement angle
419	pixels of the whole plaque	homogeneity (90 degrees)	median	longitudinal velocity
420	pixels of the whole plaque	homogeneity (90 degrees)	median	radial velocity
421	pixels of the whole plaque	homogeneity (90 degrees)	median	absolute longitudinal velocity
422	pixels of the whole plaque	homogeneity (90 degrees)	median	absolute radial velocity
423	pixels of the whole plaque	homogeneity (90 degrees)	median	total velocity
424	pixels of the whole plaque	homogeneity (90 degrees)	median	velocity angle
425	pixels of the whole plaque	homogeneity (90 degrees)	std	longitudinal velocity
426	pixels of the whole plaque	homogeneity (90 degrees)	std	radial velocity
427	pixels of the whole plaque	homogeneity (90 degrees)	std	absolute longitudinal velocity
428	pixels of the whole plaque	homogeneity (90 degrees)	std	absolute radial velocity
429	pixels of the whole plaque	homogeneity (90 degrees)	std	total velocity
430	pixels of the whole plaque	homogeneity (90 degrees)	std	velocity angle
431	pixels of the whole plaque	homogeneity (90 degrees)	std	longitudinal motion amplitude
432	pixels of the whole plaque	homogeneity (90 degrees)	std	radial motion amplitude
433	pixels of the whole plaque	homogeneity (90 degrees)	std	total motion amplitude
434	pixels of the whole plaque	homogeneity (90 degrees)	std	amplitude angle
435	pixels of the whole plaque	homogeneity (90 degrees)	std	longitudinal D-T-S displacement
436	pixels of the whole plaque	homogeneity (90 degrees)	std	radial D-T-S displacement
437	pixels of the whole plaque	homogeneity (90 degrees)	std	absolute longitudinal D-T-S displacement
438	pixels of the whole plaque	homogeneity (90 degrees)	std	absolute radial D-T-S displacement
439	pixels of the whole plaque	homogeneity (90 degrees)	std	total D-T-S displacement
440	pixels of the whole plaque	homogeneity (90 degrees)	std	D-T-S displacement angle
441	pixels of the whole plaque	contrast (135 degrees)	median	longitudinal velocity
442	pixels of the whole plaque	contrast (135 degrees)	median	radial velocity

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
443	pixels of the whole plaque	contrast (135 degrees)	median	absolute longitudinal velocity
444	pixels of the whole plaque	contrast (135 degrees)	median	absolute radial velocity
445	pixels of the whole plaque	contrast (135 degrees)	median	total velocity
446	pixels of the whole plaque	contrast (135 degrees)	median	velocity angle
447	pixels of the whole plaque	contrast (135 degrees)	std	longitudinal velocity
448	pixels of the whole plaque	contrast (135 degrees)	std	radial velocity
449	pixels of the whole plaque	contrast (135 degrees)	std	absolute longitudinal velocity
450	pixels of the whole plaque	contrast (135 degrees)	std	absolute radial velocity
451	pixels of the whole plaque	contrast (135 degrees)	std	total velocity
452	pixels of the whole plaque	contrast (135 degrees)	std	velocity angle
453	pixels of the whole plaque	contrast (135 degrees)	std	longitudinal motion amplitude
454	pixels of the whole plaque	contrast (135 degrees)	std	radial motion amplitude
455	pixels of the whole plaque	contrast (135 degrees)	std	total motion amplitude
456	pixels of the whole plaque	contrast (135 degrees)	std	amplitude angle
457	pixels of the whole plaque	contrast (135 degrees)	std	longitudinal D-T-S displacement
458	pixels of the whole plaque	contrast (135 degrees)	std	radial D-T-S displacement
459	pixels of the whole plaque	contrast (135 degrees)	std	absolute longitudinal D-T-S displacement
460	pixels of the whole plaque	contrast (135 degrees)	std	absolute radial D-T-S displacement
461	pixels of the whole plaque	contrast (135 degrees)	std	total D-T-S displacement
462	pixels of the whole plaque	contrast (135 degrees)	std	D-T-S displacement angle
463	pixels of the whole plaque	correlation (135 degrees)	median	longitudinal velocity
464	pixels of the whole plaque	correlation (135 degrees)	median	radial velocity
465	pixels of the whole plaque	correlation (135 degrees)	median	absolute longitudinal velocity
466	pixels of the whole plaque	correlation (135 degrees)	median	absolute radial velocity
467	pixels of the whole plaque	correlation (135 degrees)	median	total velocity
468	pixels of the whole plaque	correlation (135 degrees)	median	velocity angle

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
469	pixels of the whole plaque	correlation (135 degrees)	std	longitudinal velocity
470	pixels of the whole plaque	correlation (135 degrees)	std	radial velocity
471	pixels of the whole plaque	correlation (135 degrees)	std	absolute longitudinal velocity
472	pixels of the whole plaque	correlation (135 degrees)	std	absolute radial velocity
473	pixels of the whole plaque	correlation (135 degrees)	std	total velocity
474	pixels of the whole plaque	correlation (135 degrees)	std	velocity angle
475	pixels of the whole plaque	correlation (135 degrees)	std	longitudinal motion amplitude
476	pixels of the whole plaque	correlation (135 degrees)	std	radial motion amplitude
477	pixels of the whole plaque	correlation (135 degrees)	std	total motion amplitude
478	pixels of the whole plaque	correlation (135 degrees)	std	amplitude angle
479	pixels of the whole plaque	correlation (135 degrees)	std	longitudinal D-T-S displacement
480	pixels of the whole plaque	correlation (135 degrees)	std	radial D-T-S displacement
481	pixels of the whole plaque	correlation (135 degrees)	std	absolute longitudinal D-T-S displacement
482	pixels of the whole plaque	correlation (135 degrees)	std	absolute radial D-T-S displacement
483	pixels of the whole plaque	correlation (135 degrees)	std	total D-T-S displacement
484	pixels of the whole plaque	correlation (135 degrees)	std	D-T-S displacement angle
485	pixels of the whole plaque	energy (135 degrees)	median	longitudinal velocity
486	pixels of the whole plaque	energy (135 degrees)	median	radial velocity
487	pixels of the whole plaque	energy (135 degrees)	median	absolute longitudinal velocity
488	pixels of the whole plaque	energy (135 degrees)	median	absolute radial velocity
489	pixels of the whole plaque	energy (135 degrees)	median	total velocity
490	pixels of the whole plaque	energy (135 degrees)	median	velocity angle
491	pixels of the whole plaque	energy (135 degrees)	std	longitudinal velocity
492	pixels of the whole plaque	energy (135 degrees)	std	radial velocity
493	pixels of the whole plaque	energy (135 degrees)	std	absolute longitudinal velocity
494	pixels of the whole plaque	energy (135 degrees)	std	absolute radial velocity
495	pixels of the whole plaque	energy (135 degrees)	std	total velocity
496	pixels of the whole plaque	energy (135 degrees)	std	velocity angle
497	pixels of the whole plaque	energy (135 degrees)	std	longitudinal motion amplitude
498	pixels of the whole plaque	energy (135 degrees)	std	radial motion amplitude
499	pixels of the whole plaque	energy (135 degrees)	std	total motion amplitude

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
500	pixels of the whole plaque	energy (135 degrees)	std	amplitude angle
501	pixels of the whole plaque	energy (135 degrees)	std	longitudinal D-T-S displacement
502	pixels of the whole plaque	energy (135 degrees)	std	radial D-T-S displacement
503	pixels of the whole plaque	energy (135 degrees)	std	absolute longitudinal D-T-S displacement
504	pixels of the whole plaque	energy (135 degrees)	std	absolute radial D-T-S displacement
505	pixels of the whole plaque	energy (135 degrees)	std	total D-T-S displacement
506	pixels of the whole plaque	energy (135 degrees)	std	D-T-S displacement angle
507	pixels of the whole plaque	homogeneity (135 degrees)	median	longitudinal velocity
508	pixels of the whole plaque	homogeneity (135 degrees)	median	radial velocity
509	pixels of the whole plaque	homogeneity (135 degrees)	median	absolute longitudinal velocity
510	pixels of the whole plaque	homogeneity (135 degrees)	median	absolute radial velocity
511	pixels of the whole plaque	homogeneity (135 degrees)	median	total velocity
512	pixels of the whole plaque	homogeneity (135 degrees)	median	velocity angle
513	pixels of the whole plaque	homogeneity (135 degrees)	std	longitudinal velocity
514	pixels of the whole plaque	homogeneity (135 degrees)	std	radial velocity
515	pixels of the whole plaque	homogeneity (135 degrees)	std	absolute longitudinal velocity
516	pixels of the whole plaque	homogeneity (135 degrees)	std	absolute radial velocity
517	pixels of the whole plaque	homogeneity (135 degrees)	std	total velocity
518	pixels of the whole plaque	homogeneity (135 degrees)	std	velocity angle
519	pixels of the whole plaque	homogeneity (135 degrees)	std	longitudinal motion amplitude
520	pixels of the whole plaque	homogeneity (135 degrees)	std	radial motion amplitude
521	pixels of the whole plaque	homogeneity (135 degrees)	std	total motion amplitude
522	pixels of the whole plaque	homogeneity (135 degrees)	std	amplitude angle
523	pixels of the whole plaque	homogeneity (135 degrees)	std	longitudinal D-T-S displacement
524	pixels of the whole plaque	homogeneity (135 degrees)	std	radial D-T-S displacement
525	pixels of the whole plaque	homogeneity (135 degrees)	std	absolute longitudinal D-T-S displacement
526	pixels of the whole plaque	homogeneity (135 degrees)	std	absolute radial D-T-S displacement
527	pixels of the whole plaque	homogeneity (135	std	total D-T-S displacement

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
		degrees)		
528	pixels of the whole plaque	homogeneity (135 degrees)	std	D-T-S displacement angle
529	plaque top and bottom surfaces	min	std	LSI (plaque top surface)
530	plaque top and bottom surfaces	min	std	RSI (between plaque top and bottom surfaces)
531	plaque top and bottom surfaces	min	std	RSSI (plaque top surface)
532	plaque top and bottom surfaces	min	std	LSSI (between plaque top and bottom surfaces)
533	plaque top and bottom surfaces	max	std	LSI (plaque top surface)
534	plaque top and bottom surfaces	max	std	RSI (between plaque top and bottom surfaces)
535	plaque top and bottom surfaces	max	std	RSSI (plaque top surface)
536	plaque top and bottom surfaces	max	std	LSSI (between plaque top and bottom surfaces)
537	plaque top and bottom surfaces	mean	std	LSI (plaque top surface)
538	plaque top and bottom surfaces	mean	std	RSI (between plaque top and bottom surfaces)
539	plaque top and bottom surfaces	mean	std	RSSI (plaque top surface)
540	plaque top and bottom surfaces	mean	std	LSSI (between plaque top and bottom surfaces)
541	plaque top and bottom surfaces	std	std	LSI (plaque top surface)
542	plaque top and bottom surfaces	std	std	RSI (between plaque top and bottom surfaces)
543	plaque top and bottom surfaces	std	std	RSSI (plaque top surface)
544	plaque top and bottom surfaces	std	std	LSSI (between plaque top and bottom surfaces)
545	plaque top and bottom surfaces	median	std	LSI (plaque top surface)
546	plaque top and bottom surfaces	median	std	RSI (between plaque top and bottom surfaces)
547	plaque top and bottom surfaces	median	std	RSSI (plaque top surface)
548	plaque top and bottom surfaces	median	std	LSSI (between plaque top and bottom surfaces)
549	plaque top and bottom surfaces	skewness	std	LSI (plaque top surface)
550	plaque top and bottom surfaces	skewness	std	RSI (between plaque top and bottom surfaces)
551	plaque top and bottom surfaces	skewness	std	RSSI (plaque top surface)
552	plaque top and bottom surfaces	skewness	std	LSSI (between plaque top and bottom surfaces)
553	plaque top and bottom	kurtosis	std	LSI (plaque top surface)

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
	surfaces			
554	plaque top and bottom surfaces	kurtosis	std	RSI (between plaque top and bottom surfaces)
555	plaque top and bottom surfaces	kurtosis	std	RSSI (plaque top surface)
556	plaque top and bottom surfaces	kurtosis	std	LSSI (between plaque top and bottom surfaces)
557	plaque top surface	min	median	longitudinal velocity
558	plaque top surface	min	median	radial velocity
559	plaque top surface	min	median	absolute longitudinal velocity
560	plaque top surface	min	median	absolute radial velocity
561	plaque top surface	min	median	total velocity
562	plaque top surface	min	median	velocity angle
563	plaque top surface	min	std	longitudinal velocity
564	plaque top surface	min	std	radial velocity
565	plaque top surface	min	std	absolute longitudinal velocity
566	plaque top surface	min	std	absolute radial velocity
567	plaque top surface	min	std	total velocity
568	plaque top surface	min	std	velocity angle
569	plaque top surface	min	std	longitudinal motion amplitude
570	plaque top surface	min	std	radial motion amplitude
571	plaque top surface	min	std	total motion amplitude
572	plaque top surface	min	std	amplitude angle
573	plaque top surface	min	std	longitudinal D-T-S displacement
574	plaque top surface	min	std	radial D-T-S displacement
575	plaque top surface	min	std	absolute longitudinal D-T-S displacement
576	plaque top surface	min	std	absolute radial D-T-S displacement
577	plaque top surface	min	std	total D-T-S displacement
578	plaque top surface	min	std	D-T-S displacement angle
579	plaque top surface	max	median	longitudinal velocity
580	plaque top surface	max	median	radial velocity
581	plaque top surface	max	median	absolute longitudinal velocity
582	plaque top surface	max	median	absolute radial velocity
583	plaque top surface	max	median	total velocity
584	plaque top surface	max	median	velocity angle
585	plaque top surface	max	std	longitudinal velocity
586	plaque top surface	max	std	radial velocity
587	plaque top surface	max	std	absolute longitudinal velocity
588	plaque top surface	max	std	absolute radial velocity
589	plaque top surface	max	std	total velocity

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
590	plaque top surface	max	std	velocity angle
591	plaque top surface	max	std	longitudinal motion amplitude
592	plaque top surface	max	std	radial motion amplitude
593	plaque top surface	max	std	total motion amplitude
594	plaque top surface	max	std	amplitude angle
595	plaque top surface	max	std	longitudinal D-T-S displacement
596	plaque top surface	max	std	radial D-T-S displacement
597	plaque top surface	max	std	absolute longitudinal D-T-S displacement
598	plaque top surface	max	std	absolute radial D-T-S displacement
599	plaque top surface	max	std	total D-T-S displacement
600	plaque top surface	max	std	D-T-S displacement angle
601	plaque top surface	mean	median	longitudinal velocity
602	plaque top surface	mean	median	radial velocity
603	plaque top surface	mean	median	absolute longitudinal velocity
604	plaque top surface	mean	median	absolute radial velocity
605	plaque top surface	mean	median	total velocity
606	plaque top surface	mean	median	velocity angle
607	plaque top surface	mean	std	longitudinal velocity
608	plaque top surface	mean	std	radial velocity
609	plaque top surface	mean	std	absolute longitudinal velocity
610	plaque top surface	mean	std	absolute radial velocity
611	plaque top surface	mean	std	total velocity
612	plaque top surface	mean	std	velocity angle
613	plaque top surface	mean	std	longitudinal motion amplitude
614	plaque top surface	mean	std	radial motion amplitude
615	plaque top surface	mean	std	total motion amplitude
616	plaque top surface	mean	std	amplitude angle
617	plaque top surface	mean	std	longitudinal D-T-S displacement
618	plaque top surface	mean	std	radial D-T-S displacement
619	plaque top surface	mean	std	absolute longitudinal D-T-S displacement
620	plaque top surface	mean	std	absolute radial D-T-S displacement
621	plaque top surface	mean	std	total D-T-S displacement
622	plaque top surface	mean	std	D-T-S displacement angle
623	plaque top surface	std	median	longitudinal velocity
624	plaque top surface	std	median	radial velocity
625	plaque top surface	std	median	absolute longitudinal velocity
626	plaque top surface	std	median	absolute radial velocity
	ROI	Operator over space	Operator over time	Measure
-----	--------------------	--------------------------------	-----------------------	---
		(pixels or pairs of nixels)	in each cardiac cycle	
627	plaque top surface	std	median	total velocity
628	plaque top surface	std	median	velocity angle
629	plaque top surface	std	std	longitudinal velocity
630	plaque top surface	std	std	radial velocity
631	plaque top surface	std	std	absolute longitudinal velocity
632	plaque top surface	std	std	absolute radial velocity
633	plaque top surface	std	std	total velocity
634	plaque top surface	std	std	velocity angle
635	plaque top surface	std	std	longitudinal motion amplitude
636	plaque top surface	std	std	radial motion amplitude
637	plaque top surface	std	std	total motion amplitude
638	plaque top surface	std	std	amplitude angle
639	plaque top surface	std	std	longitudinal D-T-S displacement
640	plaque top surface	std	std	radial D-T-S displacement
641	plaque top surface	std	std	absolute longitudinal D-T-S displacement
642	plaque top surface	std	std	absolute radial D-T-S displacement
643	plaque top surface	std	std	total D-T-S displacement
644	plaque top surface	std	std	D-T-S displacement angle
645	plaque top surface	median	median	longitudinal velocity
646	plaque top surface	median	median	radial velocity
647	plaque top surface	median	median	absolute longitudinal velocity
648	plaque top surface	median	median	absolute radial velocity
649	plaque top surface	median	median	total velocity
650	plaque top surface	median	median	velocity angle
651	plaque top surface	median	std	longitudinal velocity
652	plaque top surface	median	std	radial velocity
653	plaque top surface	median	std	absolute longitudinal velocity
654	plaque top surface	median	std	absolute radial velocity
655	plaque top surface	median	std	total velocity
656	plaque top surface	median	std	velocity angle
657	plaque top surface	median	std	longitudinal motion amplitude
658	plaque top surface	median	std	radial motion amplitude
659	plaque top surface	median	std	total motion amplitude
660	plaque top surface	median	std	amplitude angle
661	plaque top surface	median	std	longitudinal D-T-S
662	plaque top surface	median	std	radial D-T-S displacement
663	plaque top surface	median	std	absolute longitudinal D-T-S displacement

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
664	plaque top surface	median	std	absolute radial D-T-S displacement
665	plaque top surface	median	std	total D-T-S displacement
666	plaque top surface	median	std	D-T-S displacement angle
667	plaque top surface	skewness	median	longitudinal velocity
668	plaque top surface	skewness	median	radial velocity
669	plaque top surface	skewness	median	absolute longitudinal velocity
670	plaque top surface	skewness	median	absolute radial velocity
671	plaque top surface	skewness	median	total velocity
672	plaque top surface	skewness	median	velocity angle
673	plaque top surface	skewness	std	longitudinal velocity
674	plaque top surface	skewness	std	radial velocity
675	plaque top surface	skewness	std	absolute longitudinal velocity
676	plaque top surface	skewness	std	absolute radial velocity
677	plaque top surface	skewness	std	total velocity
678	plaque top surface	skewness	std	velocity angle
679	plaque top surface	skewness	std	longitudinal motion amplitude
680	plaque top surface	skewness	std	radial motion amplitude
681	plaque top surface	skewness	std	total motion amplitude
682	plaque top surface	skewness	std	amplitude angle
683	plaque top surface	skewness	std	longitudinal D-T-S displacement
684	plaque top surface	skewness	std	radial D-T-S displacement
685	plaque top surface	skewness	std	absolute longitudinal D-T-S displacement
686	plaque top surface	skewness	std	absolute radial D-T-S displacement
687	plaque top surface	skewness	std	total D-T-S displacement
688	plaque top surface	skewness	std	D-T-S displacement angle
689	plaque top surface	kurtosis	median	longitudinal velocity
690	plaque top surface	kurtosis	median	radial velocity
691	plaque top surface	kurtosis	median	absolute longitudinal velocity
692	plaque top surface	kurtosis	median	absolute radial velocity
693	plaque top surface	kurtosis	median	total velocity
694	plaque top surface	kurtosis	median	velocity angle
695	plaque top surface	kurtosis	std	longitudinal velocity
696	plaque top surface	kurtosis	std	radial velocity
697	plaque top surface	kurtosis	std	absolute longitudinal velocity
698	plaque top surface	kurtosis	std	absolute radial velocity
699	plaque top surface	kurtosis	std	total velocity
700	plaque top surface	kurtosis	std	velocity angle
701	plaque top surface	kurtosis	std	longitudinal motion amplitude

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
		pixels)		
702	plaque top surface	kurtosis	std	radial motion amplitude
703	plaque top surface	kurtosis	std	total motion amplitude
704	plaque top surface	kurtosis	std	amplitude angle
705	plaque top surface	kurtosis	std	longitudinal D-T-S
706	plaque top surface	kurtosis	std	radial D-T-S displacement
707	plaque top surface	kurtosis	std	absolute longitudinal D-T-S
				displacement
708	plaque top surface	kurtosis	std	absolute radial D-T-S
709	plaque ton surface	kurtosis	std	displacement
705	plaque top surface	kurtosis	std	D-T-S displacement angle
710		min	median	
712	plaque bottom surface	min	median	
712	plaque bottom surface	min	median	absolute longitudinal velocity
715		min	median	absolute rodial valueity
714	plaque bottom surface		meulan	
715	plaque bottom surface	min	median	
716	plaque bottom surface	min	median	
/1/	plaque bottom surface	min	std	longitudinal velocity
718	plaque bottom surface	min	std	radial velocity
719	plaque bottom surface	min	std	absolute longitudinal velocity
720	plaque bottom surface	min	std	absolute radial velocity
721	plaque bottom surface	min	std	total velocity
722	plaque bottom surface	min	std	velocity angle
723	plaque bottom surface	min	std	longitudinal motion amplitude
724	plaque bottom surface	min	std	radial motion amplitude
725	plaque bottom surface	min	std	total motion amplitude
726	plaque bottom surface	min	std	amplitude angle
727	plaque bottom surface	min	std	longitudinal D-T-S displacement
728	plaque bottom surface	min	std	radial D-T-S displacement
729	plaque bottom surface	min	std	absolute longitudinal D-T-S displacement
730	plaque bottom surface	min	std	absolute radial D-T-S displacement
731	plaque bottom surface	min	std	total D-T-S displacement
732	plaque bottom surface	min	std	D-T-S displacement angle
733	plaque bottom surface	max	median	longitudinal velocity
734	plaque bottom surface	max	median	radial velocity
735	plaque bottom surface	max	median	absolute longitudinal velocity
736	plaque bottom surface	max	median	absolute radial velocity
737	plaque bottom surface	max	median	total velocity
738	plaque bottom surface	max	median	velocity angle

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
739	plaque bottom surface	max	std	longitudinal velocity
740	plaque bottom surface	max	std	radial velocity
741	plaque bottom surface	max	std	absolute longitudinal velocity
742	plaque bottom surface	max	std	absolute radial velocity
743	plaque bottom surface	max	std	total velocity
744	plaque bottom surface	max	std	velocity angle
745	plaque bottom surface	max	std	longitudinal motion amplitude
746	plaque bottom surface	max	std	radial motion amplitude
747	plaque bottom surface	max	std	total motion amplitude
748	plaque bottom surface	max	std	amplitude angle
749	plaque bottom surface	max	std	longitudinal D-T-S displacement
750	plaque bottom surface	max	std	radial D-T-S displacement
751	plaque bottom surface	max	std	absolute longitudinal D-T-S displacement
752	plaque bottom surface	max	std	absolute radial D-T-S displacement
753	plaque bottom surface	max	std	total D-T-S displacement
754	plaque bottom surface	max	std	D-T-S displacement angle
755	plaque bottom surface	mean	median	longitudinal velocity
756	plaque bottom surface	mean	median	radial velocity
757	plaque bottom surface	mean	median	absolute longitudinal velocity
758	plaque bottom surface	mean	median	absolute radial velocity
759	plaque bottom surface	mean	median	total velocity
760	plaque bottom surface	mean	median	velocity angle
761	plaque bottom surface	mean	std	longitudinal velocity
762	plaque bottom surface	mean	std	radial velocity
763	plaque bottom surface	mean	std	absolute longitudinal velocity
764	plaque bottom surface	mean	std	absolute radial velocity
765	plaque bottom surface	mean	std	total velocity
766	plaque bottom surface	mean	std	velocity angle
767	plaque bottom surface	mean	std	longitudinal motion amplitude
768	plaque bottom surface	mean	std	radial motion amplitude
769	plaque bottom surface	mean	std	total motion amplitude
770	plaque bottom surface	mean	std	amplitude angle
771	plaque bottom surface	mean	std	longitudinal D-T-S displacement
772	plaque bottom surface	mean	std	radial D-T-S displacement
773	plaque bottom surface	mean	std	absolute longitudinal D-T-S displacement
774	plaque bottom surface	mean	std	absolute radial D-T-S displacement
775	plaque bottom surface	mean	std	total D-T-S displacement

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
776	plaque bottom surface	mean	std	D-T-S displacement angle
777	plaque bottom surface	std	median	longitudinal velocity
778	plaque bottom surface	std	median	radial velocity
779	plaque bottom surface	std	median	absolute longitudinal velocity
780	plaque bottom surface	std	median	absolute radial velocity
781	plaque bottom surface	std	median	total velocity
782	plaque bottom surface	std	median	velocity angle
783	plaque bottom surface	std	std	longitudinal velocity
784	plaque bottom surface	std	std	radial velocity
785	plaque bottom surface	std	std	absolute longitudinal velocity
786	plaque bottom surface	std	std	absolute radial velocity
787	plaque bottom surface	std	std	total velocity
788	plaque bottom surface	std	std	velocity angle
789	plaque bottom surface	std	std	longitudinal motion amplitude
790	plaque bottom surface	std	std	radial motion amplitude
791	plaque bottom surface	std	std	total motion amplitude
792	plaque bottom surface	std	std	amplitude angle
793	plaque bottom surface	std	std	longitudinal D-T-S
794	plaque bottom surface	std	std	radial D-T-S displacement
795	plaque bottom surface	std	std	absolute longitudinal D-T-S
				displacement
796	plaque bottom surface	std	std	absolute radial D-T-S
797	plaque bottom surface	std	std	total D-T-S displacement
798	plaque bottom surface	std	std	D-T-S displacement angle
799	plaque bottom surface	median	median	longitudinal velocity
800	plaque bottom surface	median	median	radial velocity
801	plaque bottom surface	median	median	absolute longitudinal velocity
802	plaque bottom surface	median	median	absolute radial velocity
803	plaque bottom surface	median	median	total velocity
804	plaque bottom surface	median	median	velocity angle
805	plaque bottom surface	median	std	longitudinal velocity
806	plaque bottom surface	median	std	radial velocity
807	plaque bottom surface	median	std	absolute longitudinal velocity
808	plaque bottom surface	median	std	absolute radial velocity
809	plaque bottom surface	median	std	total velocity
810	plaque bottom surface	median	std	velocity angle
811	plaque bottom surface	median	std	longitudinal motion amplitude
812	plaque bottom surface	median	std	radial motion amplitude
813	plaque bottom surface	median	std	total motion amplitude

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
814	plaque bottom surface	median	std	amplitude angle
815	plaque bottom surface	median	std	longitudinal D-T-S displacement
816	plaque bottom surface	median	std	radial D-T-S displacement
817	plaque bottom surface	median	std	absolute longitudinal D-T-S displacement
818	plaque bottom surface	median	std	absolute radial D-T-S displacement
819	plaque bottom surface	median	std	total D-T-S displacement
820	plaque bottom surface	median	std	D-T-S displacement angle
821	plaque bottom surface	skewness	median	longitudinal velocity
822	plaque bottom surface	skewness	median	radial velocity
823	plaque bottom surface	skewness	median	absolute longitudinal velocity
824	plaque bottom surface	skewness	median	absolute radial velocity
825	plaque bottom surface	skewness	median	total velocity
826	plaque bottom surface	skewness	median	velocity angle
827	plaque bottom surface	skewness	std	longitudinal velocity
828	plaque bottom surface	skewness	std	radial velocity
829	plaque bottom surface	skewness	std	absolute longitudinal velocity
830	plaque bottom surface	skewness	std	absolute radial velocity
831	plaque bottom surface	skewness	std	total velocity
832	plaque bottom surface	skewness	std	velocity angle
833	plaque bottom surface	skewness	std	longitudinal motion amplitude
834	plaque bottom surface	skewness	std	radial motion amplitude
835	plaque bottom surface	skewness	std	total motion amplitude
836	plaque bottom surface	skewness	std	amplitude angle
837	plaque bottom surface	skewness	std	longitudinal D-T-S displacement
838	plaque bottom surface	skewness	std	radial D-T-S displacement
839	plaque bottom surface	skewness	std	absolute longitudinal D-T-S displacement
840	plaque bottom surface	skewness	std	absolute radial D-T-S displacement
841	plaque bottom surface	skewness	std	total D-T-S displacement
842	plaque bottom surface	skewness	std	D-T-S displacement angle
843	plaque bottom surface	kurtosis	median	longitudinal velocity
844	plaque bottom surface	kurtosis	median	radial velocity
845	plaque bottom surface	kurtosis	median	absolute longitudinal velocity
846	plaque bottom surface	kurtosis	median	absolute radial velocity
847	plaque bottom surface	kurtosis	median	total velocity
848	plaque bottom surface	kurtosis	median	velocity angle
849	plaque bottom surface	kurtosis	std	longitudinal velocity
850	plaque bottom surface	kurtosis	std	radial velocity

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
851	plaque bottom surface	kurtosis	std	absolute longitudinal velocity
852	plaque bottom surface	kurtosis	std	absolute radial velocity
853	plaque bottom surface	kurtosis	std	total velocity
854	plaque bottom surface	kurtosis	std	velocity angle
855	plaque bottom surface	kurtosis	std	longitudinal motion amplitude
856	plaque bottom surface	kurtosis	std	radial motion amplitude
857	plaque bottom surface	kurtosis	std	total motion amplitude
858	plague bottom surface	kurtosis	std	amplitude angle
859	plaque bottom surface	kurtosis	std	longitudinal D-T-S
	r - 1			displacement
860	plaque bottom surface	kurtosis	std	radial D-T-S displacement
861	plaque bottom surface	kurtosis	std	absolute longitudinal D-T-S
962	nlagua battam surfaca	kurtosis	std	displacement
802	plaque bottom surface	KULUSIS	stu	displacement
863	plaque bottom surface	kurtosis	std	total D-T-S displacement
864	plaque bottom surface	kurtosis	std	D-T-S displacement angle
865	plaque top/bottom surfaces	min	std	LSI (between plaque top
	and healthy part of the wall			surface and healthy part
	adjacent to the plaque			adjacent to the plaque)
866	plaque top/bottom surfaces	min	std	LSI (between plaque bottom
	and healthy part of the wall			surface and healthy part
967	adjacent to the plaque	min	ctd	adjacent to the plaque
007	and healthy part of the wall		siu	surface and healthy part
	adjacent to the plaque			adjacent to the plaque)
868	plague top/bottom surfaces	min	std	RSI (between plaque bottom
	and healthy part of the wall			surface and healthy part
	adjacent to the plaque			adjacent to the plaque)
869	plaque top/bottom surfaces	max	std	LSI (between plaque top
	and healthy part of the wall			surface and healthy part
	adjacent to the plaque			adjacent to the plaque)
870	plaque top/bottom surfaces	max	std	LSI (between plaque bottom
	and healthy part of the wall			surface and healthy part
071	plaque ten /bettem surfaces	may	std	RSI (botwoon plaque top
0/1	and healthy part of the wall	IIIdA	510	surface and healthy part
	adjacent to the plaque			adjacent to the plaque)
872	plague top/bottom surfaces	max	std	RSI (between plague bottom
	and healthy part of the wall	-		surface and healthy part
	adjacent to the plaque			adjacent to the plaque)
873	plaque top/bottom surfaces	mean	std	LSI (between plaque top
	and healthy part of the wall			surface and healthy part
	adjacent to the plaque			adjacent to the plaque)
874	plaque top/bottom surfaces	mean	std	LSI (between plaque bottom
	and healthy part of the wall			surface and healthy part
075	aujacent to the plaque	moon	std	aujacent to the plaque)
0/5	and healthy part of the wall	Incall	510	surface and healthy part

(pixels)in each cardiac cycleadjacent to the plaqueadjacent to the plaque)876plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque877plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque810plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque811plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque812plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque813plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque814plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque815plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque816plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque817plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque818plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque819plaque top/bottom surfaces and		ROI	Operator over space	Operator over time	Measure
adjacent to the plaque adjacent to the plaque 876 plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque Std RSI (between plaque bottom surface and healthy part adjacent to the plaque 877 plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque std std Std 878 healthy part of the wall adjacent to the plaque std Std Std 878 plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque std Std Std 879 plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque std Std Std 879 plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque std			(pixels or pairs of pixels)	in each cardiac cycle	
876plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdStdStdStd877plaque top/bottom surfaces adjacent to the plaquestdStdStdStdStd878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdStdStdStd879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueStdStdStdStd879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueStdStdStdStd879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueStdStdStdStd880plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque881plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesufface and healthy part adjacent to the plaque884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesufface and healthy part adjacent to the plaque885 <td< th=""><th></th><th>adjacent to the plaque</th><th></th><th></th><th>adjacent to the plaque)</th></td<>		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wallsurface and healthy part adjacent to the plaque877plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque top surface and healthy part adjacent to the plaque878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdStdLSI (between plaque bottom surface and healthy part adjacent to the plaque879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdStdRSI (between plaque bottom surface and healthy part adjacent to the plaque880plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque)881plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdLSI (between plaque top882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdLSI (between plaque top883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdSI (between plaque top884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top884plaque top	876	plaque top/bottom surfaces	mean	std	RSI (between plaque bottom
adjacent to the plaqueadjacent to the plaque877plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdstd878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdstd879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdstd879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque)870plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque880plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdSI (between plaque bottom surface and healthy part adjacent to the plaque881plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdLSI (between plaque top882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top885plaque top/bottom surfaces and healthy part of the		and healthy part of the wall			surface and healthy part
877plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdStdLSI (between plaque bottom adjacent to the plaque)878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdstdRSI (between plaque bottom surface and healthy part adjacent to the plaque880plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque880plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque881plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdLSI (between plaque bottom surface and healthy part adjacent to the plaque883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy pa		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wallsurface and healthy part of the walladjacent to the plaqueadjacent to the plaque878plaque top/bottom surfacesstdstdLSI (between plaque bottomand healthy part of the walladjacent to the plaqueadjacent to the plaqueadjacent to the plaque879plaque top/bottom surfacesstdstdRSI (between plaque topadjacent to the plaqueadjacent to the plaqueadjacent to the plaqueadjacent to the plaque880plaque top/bottom surfacesstdstdRSI (between plaque topadjacent to the plaqueadjacent to the plaqueadjacent to the plaqueadjacent to the plaque881plaque top/bottom surfacesmedianstdLSI (between plaque bottomadjacent to the plaquemedianstdLSI (between plaque bottomadjacent to the plaqueadjacent to the plaqueadjacent to the plaque882plaque top/bottom surfacesmedianstdLSI (between plaque topadjacent to the plaqueadjacent to the plaque883plaque top/bottom surfacesmedianstdRSI (between plaque topadjacent to the plaquestdStdStdSti (between plaque topadjacent to the plaqueadjacent to the plaquestdSti (between	877	plaque top/bottom surfaces	std	std	LSI (between plaque top
adjacent to the plaqueadjacent to the plaque878plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdStdStdStd879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRS1 (between plaque top/ surface and healthy part adjacent to the plaque880plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRS1 (between plaque bottom surface and healthy part adjacent to the plaque881plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdSS1 (between plaque top surface and healthy part of the wall adjacent to the plaque882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLS1 (between plaque top surface and healthy part of the wall adjacent to the plaque884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRS1 (between plaque top884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRS1 (between plaque top885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRS1 (between plaque top886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdSS1 (between plaque top886plaque top/bottom surfaces and healthy part of the wall adjacent to the		and healthy part of the wall			surface and healthy part
878 and healthy part of the wall adjacent to the plaquestdLSI (between plaque tothy part adjacent to the plaque)879plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdStd <td< th=""><th></th><th>adjacent to the plaque</th><th></th><th></th><th>adjacent to the plaque)</th></td<>		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wallsurface and healthy partadjacent to the plaqueadjacent to the plaque top879plaque top/bottom surfacesstdand healthy part of the walladjacent to the plaqueadjacent to the plaqueadjacent to the plaque880plaque top/bottom surfacesstdadjacent to the plaquestd881plaque top/bottom surfacesmedianadjacent to the plaquestd881plaque top/bottom surfacesmedianadjacent to the plaquestd882plaque top/bottom surfacesmedianadjacent to the plaquestdadjacent to the plaqueadjacent to the plaque)adjacent to the plaquestdadjacent to the plaqueadjacent to the plaque)adjacent to the plaquestdadjacent to the plaqueadjacent to the plaque)adjacent to the plaquestdadjacent to the plaqueadjacent to the plaque)adjacent to the plaquesurface and healthy partadjacent to the plaquesurface and healthy partadjacent to the plaqueskewnessstdSti (between plaque top/bottomadjacent to the plaqueadjacent to the p	878	plaque top/bottom surfaces	std	std	LSI (between plaque bottom
adjacent to the plaqueadjacent to the plaque879plaque top/bottom surfacesstdRSI (between plaque topadjacent to the plaqueadjacent to the plaqueadjacent to the plaque880plaque top/bottom surfacesstdstdRSI (between plaque bottomadjacent to the plaqueadjacent to the plaqueadjacent to the plaqueadjacent to the plaque881plaque top/bottom surfacesmedianstdLSI (between plaque topadjacent to the plaqueadjacent to the plaqueadjacent to the plaqueadjacent to the plaque882plaque top/bottom surfacesmedianstdLSI (between plaque bottomadjacent to the plaqueadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaque884plaque top/bottom surfacesskewnessstdLSI (between plaque top885plaque top/bottom surfacesskewnessstdLSI (between plaque top886plaque top/bottom surfacesskewnessstdLSI (between plaque top88		and healthy part of the wall			surface and healthy part
879plaque top/bottom surfacesstdstdRSI (between plaque top surface and healthy part adjacent to the plaque)880plaque top/bottom surfacesstdstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)881plaque top/bottom surfacesmedianstdRSI (between plaque top surface and healthy part adjacent to the plaque)882plaque top/bottom surfacesmedianstdLSI (between plaque top surface and healthy part adjacent to the plaque)882plaque top/bottom surfacesmedianstdLSI (between plaque top surface and healthy part adjacent to the plaque)883plaque top/bottom surfacesmedianstdRSI (between plaque top surface and healthy part adjacent to the plaque)884plaque top/bottom surfacesmedianstdRSI (between plaque top surface and healthy part adjacent to the plaque)885plaque top/bottom surfacesmedianstdRSI (between plaque top surface and healthy part adjacent to the plaque)885plaque top/bottom surfacesskewnessstdLSI (between plaque top surface and healthy part adjacent to the plaque)886plaque top/bottom surfacesskewnessstdLSI (between plaque top surface and healthy part adjacent to the plaque)887plaque top/bottom surfacesskewnessstdLSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfacesskewnessstdLSI (between plaque)886plaque to		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wallsurface and healthy part adjacent to the plaque880plaque top/bottom surfaces and healthy part of the wallstdstd881plaque top/bottom surfaces and healthy part of the wallstdstd881plaque top/bottom surfaces and healthy part of the wallmedianstd882plaque top/bottom surfaces and healthy part of the wallmedianstd883plaque top/bottom surfaces and healthy part of the wallmedianstd884plaque top/bottom surfaces and healthy part of the wallmedianstd883plaque top/bottom surfaces and healthy part of the wallmedianstd884plaque top/bottom surfaces and healthy part of the wallmedianstd885plaque top/bottom surfaces and healthy part of the wallmedianstd886plaque top/bottom surfaces and healthy part of the wallstdRSI (between plaque top surface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque888plaque top/bottom surfaces and he	879	plaque top/bottom surfaces	std	std	RSI (between plaque top
adjacent to the plaqueadjacent to the plaque880plaque top/bottom surfacesstdstdRSI (between plaque bottomadjacent to the plaqueadjacent to the plaque)adjacent to the plaque)adjacent to the plaque)881plaque top/bottom surfacesmedianstdLSI (between plaque topadjacent to the plaqueadjacent to the plaque)adjacent to the plaque)adjacent to the plaque)882plaque top/bottom surfacesmedianstdLSI (between plaque bottomadjacent to the plaqueadjacent to the plaque)adjacent to the plaque)adjacent to the plaque)883plaque top/bottom surfacesmedianstdRSI (between plaque top)884plaque top/bottom surfacesmedianstdRSI (between plaque top)884plaque top/bottom surfacesmedianstdRSI (between plaque top)884plaque top/bottom surfacesmedianstdRSI (between plaque top)885plaque top/bottom surfacesmedianstdRSI (between plaque top)886plaque top/bottom surfacesskewnessstdLSI (between plaque top)887plaque top/bottom surfacesskewnessstdLSI (between plaque top)888plaque top/bottom surfacesskewnessstdLSI (between plaque top)887plaque top/bottom surfacesskewnessstdLSI (between plaque top)888plaque top/bottom surfacesskewnessstdLSI (between plaque top)886plaque top/bottom sur		and healthy part of the wall			surface and healthy part
880plaque top/bottom surfacesstdstdKil (between plaque bottomadjacent to the plaqueadjacent to the plaqueadjacent to the plaqueadjacent to the plaque881plaque top/bottom surfacesmedianstdLSI (between plaque topadjacent to the plaqueadjacent to the plaqueadjacent to the plaqueadjacent to the plaque882plaque top/bottom surfacesmedianstdLSI (between plaque bottomadjacent to the plaquemedianstdSI (between plaque bottomadjacent to the plaquemedianstdRSI (between plaque top883plaque top/bottom surfacesmedianstdRSI (between plaque topadjacent to the plaquemedianstdRSI (between plaque topadjacent to the plaquemedianstdRSI (between plaque topadjacent to the plaquemedianstdRSI (between plaque topadjacent to the plaquemedianstdSI (between plaque topadjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaquesurface and healthy partadjacent to the plaque886plaque top/bottom surfacesskewnessstdLSI (between plaque topadjacent to the plaquesurface and healthy partadjacent to the plaque887plaque top/bottom surfacesskewnessstdSI (between plaque top888plaque top/bottom surfacesskewness </th <th></th> <th>adjacent to the plaque</th> <th></th> <th></th> <th>adjacent to the plaque)</th>		adjacent to the plaque			adjacent to the plaque)
and nearthy part of the wallsurface and nearthy partadjacent to the plaqueadjacent to the plaque)881plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque)882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstd883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemediansurface and healthy part adjacent to the plaque)883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top surfaces and healthy part adjacent to the plaque884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemediansurface and healthy part adjacent to the plaque885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of t	880	plaque top/bottom surfaces	std	std	RSI (between plaque bottom
adjacent to the plaqueadjacent to the plaque881plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque top)882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque bottom883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque bottom883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque bottom885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque bottom886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom899plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy part890plaque top/bottom surfaces and healthy part of the wall 		and healthy part of the wall			surface and healthy part
and healthy part of the wall adjacent to the plaquemedianstdStdStd StdStd Std	001	adjacent to the plaque	madian	sta	adjacent to the plaque
adjacent to the plaqueSurface and healthy part882plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque bottom surface and healthy part adjacent to the plaque)883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top surface and healthy part adjacent to the plaque)884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque)886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top891plaque top/bottom surfaces and healthy part of the wall <br< th=""><th>166</th><th>and healthy part of the wall</th><th>median</th><th>sta</th><th>LSI (between plaque top</th></br<>	166	and healthy part of the wall	median	sta	LSI (between plaque top
882 adjacent to the plaquemedianstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)883 adjacent to the plaquemedianstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)884 adjacent to the plaquemedianstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)884 adjacent to the plaquemedianstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)885 ad healthy part of the wall adjacent to the plaquemedianstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)886 and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)886 and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)886 and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)887 adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)888 adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889 adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889 adjacent to the plaqueskewness <th></th> <th>adjacent to the plaque</th> <th></th> <th></th> <th>adjacent to the plaque)</th>		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaquestdStdEX (between plaque bottom adjacent to the plaque)883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top surface and healthy part adjacent to the plaque)884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque bottom surface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque bottom surface and healthy part adjacent to the plaqu	883	plaque top/bottom surfaces	median	ctd	ISI (between plaque bottom
adjacent to the plaqueadjacent to the plaque)883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top surface and healthy part adjacent to the plaque)884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque bottom surface and healthy part adjacent to the plaque885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdStdLSI (between plaque bottom surface and healthy part adjacent to the plaque886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque890plaque top/bottom surfaces and healthy part of the wall<	002	and healthy part of the wall	median	Stu	surface and healthy part
883plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top surface and healthy part adjacent to the plaque884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque top885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top891plaque		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaquemedianstatsurface and healthy part adjacent to the plaque)884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top surface and healthy part adjacent to the plaque)886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdSI (between plaque top889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquesurface and healthy partsurface and healthy partadjacent to the plaquesurfac	883	plaque top/bottom surfaces	median	std	RSI (between plaque top
adjacent to the plaqueadjacent to the plaque)884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque)885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top surface and healthy part886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosis </th <th></th> <th>and healthy part of the wall</th> <th></th> <th></th> <th>surface and healthy part</th>		and healthy part of the wall			surface and healthy part
884plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquemedianstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (be		adjacent to the plaque			adjacent to the plague)
and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top surface and healthy part adjacent to the plaque)886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstd <th>884</th> <th>plague top/bottom surfaces</th> <th>median</th> <th>std</th> <th>RSI (between plague bottom</th>	884	plague top/bottom surfaces	median	std	RSI (between plague bottom
adjacent to the plaqueadjacent to the plaque)885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top surface and healthy part adjacent to the plaque)886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosiss		and healthy part of the wall			surface and healthy part
885plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque top surface and healthy part adjacent to the plaque)886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque top887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between pla		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque)886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy pa	885	plaque top/bottom surfaces	skewness	std	LSI (between plaque top
adjacent to the plaqueadjacent to the plaque)886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque top889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque top890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top893plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top894plaque top/bottom surfaces and heal		and healthy part of the wall			surface and healthy part
886plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacen		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top893plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top894plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top895plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque	886	plaque top/bottom surfaces	skewness	std	LSI (between plaque bottom
adjacent to the plaqueadjacent to the plaque)887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top893plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top894plaque top/bottom surfaces and healthy part of the wall		and healthy part of the wall			surface and healthy part
887plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque top surface and healthy part adjacent to the plaque)888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)892plaque top/bottom		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom892plaque top/bottom surfaces and healthy part of th	887	plaque top/bottom surfaces	skewness	std	RSI (between plaque top
adjacent to the plaqueadjacent to the plaque888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part <th></th> <th>and healthy part of the wall</th> <th></th> <th></th> <th>surface and healthy part</th>		and healthy part of the wall			surface and healthy part
888plaque top/bottom surfaces and healthy part of the wall adjacent to the plaqueskewnessstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque top surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)	888	plaque top/bottom surfaces	skewness	std	RSI (between plaque bottom
adjacent to the plaqueadjacent to the plaque)889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part		and healthy part of the wall			surface and healthy part
889plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque top surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque bottom surface and healthy part adjacent to the plaque)		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaquesurface and healthy part adjacent to the plaque)890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque bottom surface and healthy part	889	plaque top/bottom surfaces	kurtosis	std	LSI (between plaque top
890plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdLSI (between plaque bottom surface and healthy part adjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquekurtosisstdRSI (between plaque top surface and healthy part adjacent to the plaque)		and healthy part of the wall			surface and healthy part
890plaque top/bottom surfaceskurtosisstdLSI (between plaque bottomand healthy part of the wall adjacent to the plaqueadjacent to the plaqueadjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestdRSI (between plaque top surface and healthy part adjacent to the plaque)892plaque top/bottom surfaces and healthy part of the wallkurtosisstdRSI (between plaque bottom surface and healthy part	800	adjacent to the plaque	kurtosis	std	LSI (botwoon plaque bottom
adjacent to the plaquesurface and healthy partadjacent to the plaqueadjacent to the plaque)891plaque top/bottom surfaces and healthy part of the wall adjacent to the plaquestd892plaque top/bottom surfaces and healthy part of the wallstd892plaque top/bottom surfaces and healthy part of the wallstd892plaque top/bottom surfaces and healthy part of the wallstd892plaque top/bottom surfaces and healthy part of the wallstd893plaque top/bottom surfaces and healthy part of the wall	890	and healthy part of the wall	KULLOSIS	sta	LSI (between plaque bottom
891 plaque top/bottom surfaces and healthy part of the wall adjacent to the plaque kurtosis std RSI (between plaque top surface and healthy part adjacent to the plaque) 892 plaque top/bottom surfaces and healthy part of the wall kurtosis std RSI (between plaque top surface and healthy part adjacent to the plaque)		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall adjacent to the plaque std hist (between plaque top) 892 plaque top/bottom surfaces and healthy part of the wall std RSI (between plaque bottom surface and healthy part	891	plaque top/bottom surfaces	kurtosis	std	RSI (between plaque top
adjacent to the plaque adjacent to the plaque) 892 plaque top/bottom surfaces and healthy part of the wall	551	and healthy nart of the wall			surface and healthy part
892 plaque top/bottom surfaces and healthy part of the wall kurtosis std RSI (between plaque bottom surface and healthy part		adjacent to the plaque			adjacent to the plaque)
and healthy part of the wall surface and healthy part	892	plaque top/bottom surfaces	kurtosis	std	RSI (between plaque bottom
		and healthy part of the wall			surface and healthy part
adjacent to the plaque		adjacent to the plaque			adjacent to the plaque)

	ROI	Operator over space (pixels or pairs of pixels)	Operator over time in each cardiac cycle	Measure
893	posterior and anterior healthy parts	min	std	LSI (posterior healthy part)
894	posterior and anterior healthy parts	min	std	LSI (anterior healthy part)
895	posterior and anterior healthy parts	min	std	RSI (between posterior and anterior healthy parts)
896	posterior and anterior healthy parts	min	std	RSSI (posterior healthy part)
897	posterior and anterior healthy parts	min	std	RSSI (anterior healthy part)
898	posterior and anterior healthy parts	max	std	LSI (posterior healthy part)
899	posterior and anterior healthy parts	max	std	LSI (anterior healthy part)
900	posterior and anterior healthy parts	max	std	RSI (between posterior and anterior healthy parts)
901	posterior and anterior healthy parts	max	std	RSSI (posterior healthy part)
902	posterior and anterior healthy parts	max	std	RSSI (anterior healthy part)
903	posterior and anterior healthy parts	mean	std	LSI (posterior healthy part)
904	posterior and anterior healthy parts	mean	std	LSI (anterior healthy part)
905	posterior and anterior healthy parts	mean	std	RSI (between posterior and anterior healthy parts)
906	posterior and anterior healthy parts	mean	std	RSSI (posterior healthy part)
907	posterior and anterior healthy parts	mean	std	RSSI (anterior healthy part)
908	posterior and anterior healthy parts	std	std	LSI (posterior healthy part)
909	posterior and anterior healthy parts	std	std	LSI (anterior healthy part)
910	posterior and anterior healthy parts	std	std	RSI (between posterior and anterior healthy parts)
911	posterior and anterior healthy parts	std	std	RSSI (posterior healthy part)
912	posterior and anterior healthy parts	std	std	RSSI (anterior healthy part)
913	posterior and anterior healthy parts	median	std	LSI (posterior healthy part)
914	posterior and anterior healthy parts	median	std	LSI (anterior healthy part)
915	posterior and anterior healthy parts	median	std	RSI (between posterior and anterior healthy parts)
916	posterior and anterior healthy parts	median	std	RSSI (posterior healthy part)
917	posterior and anterior healthy parts	median	std	RSSI (anterior healthy part)
918	posterior and anterior healthy parts	skewness	std	LSI (posterior healthy part)

	ROI	Operator over space (pixels or pairs of pixels)	Operator over time in each cardiac cycle	Measure
919	posterior and anterior healthy parts	skewness	std	LSI (anterior healthy part)
920	posterior and anterior healthy parts	skewness	std	RSI (between posterior and anterior healthy parts)
921	posterior and anterior healthy parts	skewness	std	RSSI (posterior healthy part)
922	posterior and anterior healthy parts	skewness	std	RSSI (anterior healthy part)
923	posterior and anterior healthy parts	kurtosis	std	LSI (posterior healthy part)
924	posterior and anterior healthy parts	kurtosis	std	LSI (anterior healthy part)
925	posterior and anterior healthy parts	kurtosis	std	RSI (between posterior and anterior healthy parts)
926	posterior and anterior healthy parts	kurtosis	std	RSSI (posterior healthy part)
927	posterior and anterior healthy parts	kurtosis	std	RSSI (anterior healthy part)
928	posterior healthy part	min	median	longitudinal velocity
929	posterior healthy part	min	median	radial velocity
930	posterior healthy part	min	median	absolute longitudinal velocity
931	posterior healthy part	min	median	absolute radial velocity
932	posterior healthy part	min	median	total velocity
933	posterior healthy part	min	median	velocity angle
934	posterior healthy part	min	std	longitudinal velocity
935	posterior healthy part	min	std	radial velocity
936	posterior healthy part	min	std	absolute longitudinal velocity
937	posterior healthy part	min	std	absolute radial velocity
938	posterior healthy part	min	std	total velocity
939	posterior healthy part	min	std	velocity angle
940	posterior healthy part	min	std	longitudinal motion amplitude
941	posterior healthy part	min	std	radial motion amplitude
942	posterior healthy part	min	std	total motion amplitude
943	posterior healthy part	min	std	amplitude angle
944	posterior healthy part	min	std	longitudinal D-T-S displacement
945	posterior healthy part	min	std	radial D-T-S displacement
946	posterior healthy part	min	std	absolute longitudinal D-T-S displacement
947	posterior healthy part	min	std	absolute radial D-T-S displacement
948	posterior healthy part	min	std	total D-T-S displacement
949	posterior healthy part	min	std	D-T-S displacement angle
950	posterior healthy part	max	median	longitudinal velocity
951	posterior healthy part	max	median	radial velocity
952	posterior healthy part	max	median	absolute longitudinal velocity

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
052	postorior boolthy part	pixels)	modian	
955	posterior healthy part	max	median	
954	posterior healthy part	max	median	
955	posterior healthy part	max	ated	
950	posterior healthy part	max	stu	
957	posterior healthy part	max	stu	
958	posterior nealthy part	max	sta	absolute longitudinal velocity
959	posterior nealthy part	max	sta	absolute radial velocity
960	posterior healthy part	max	std	total velocity
961	posterior healthy part	max	std	velocity angle
962	posterior healthy part	max	std	longitudinal motion amplitude
963	posterior healthy part	max	std	radial motion amplitude
964	posterior healthy part	max	std	total motion amplitude
965	posterior healthy part	max	std	amplitude angle
966	posterior healthy part	max	std	longitudinal D-T-S displacement
967	posterior healthy part	max	std	radial D-T-S displacement
968	posterior healthy part	max	std	absolute longitudinal D-T-S displacement
969	posterior healthy part	max	std	absolute radial D-T-S displacement
970	posterior healthy part	max	std	total D-T-S displacement
971	posterior healthy part	max	std	D-T-S displacement angle
972	posterior healthy part	mean	median	longitudinal velocity
973	posterior healthy part	mean	median	radial velocity
974	posterior healthy part	mean	median	absolute longitudinal velocity
975	posterior healthy part	mean	median	absolute radial velocity
976	posterior healthy part	mean	median	total velocity
977	posterior healthy part	mean	median	velocity angle
978	posterior healthy part	mean	std	longitudinal velocity
979	posterior healthy part	mean	std	radial velocity
980	posterior healthy part	mean	std	absolute longitudinal velocity
981	posterior healthy part	mean	std	absolute radial velocity
982	posterior healthy part	mean	std	total velocity
983	posterior healthy part	mean	std	velocity angle
984	posterior healthy part	mean	std	longitudinal motion amplitude
985	posterior healthy part	mean	std	radial motion amplitude
986	posterior healthy part	mean	std	total motion amplitude
987	posterior healthy part	mean	std	amplitude angle
988	posterior healthy part	mean	std	longitudinal D-T-S displacement
989	posterior healthy part	mean	std	radial D-T-S displacement
990	posterior healthy part	mean	std	absolute longitudinal D-T-S

	ROI	Operator over space (pixels or pairs of pixels)	Operator over time in each cardiac cycle	Measure
		. ,		displacement
991	posterior healthy part	mean	std	absolute radial D-T-S displacement
992	posterior healthy part	mean	std	total D-T-S displacement
993	posterior healthy part	mean	std	D-T-S displacement angle
994	posterior healthy part	std	median	longitudinal velocity
995	posterior healthy part	std	median	radial velocity
996	posterior healthy part	std	median	absolute longitudinal velocity
997	posterior healthy part	std	median	absolute radial velocity
998	posterior healthy part	std	median	total velocity
999	posterior healthy part	std	median	velocity angle
1000	posterior healthy part	std	std	longitudinal velocity
1001	posterior healthy part	std	std	radial velocity
1002	posterior healthy part	std	std	absolute longitudinal velocity
1003	posterior healthy part	std	std	absolute radial velocity
1004	posterior healthy part	std	std	total velocity
1005	posterior healthy part	std	std	velocity angle
1006	posterior healthy part	std	std	longitudinal motion amplitude
1007	posterior healthy part	std	std	radial motion amplitude
1008	posterior healthy part	std	std	total motion amplitude
1009	posterior healthy part	std	std	amplitude angle
1010	posterior healthy part	std	std	longitudinal D-T-S displacement
1011	posterior healthy part	std	std	radial D-T-S displacement
1012	posterior healthy part	std	std	absolute longitudinal D-T-S displacement
1013	posterior healthy part	std	std	absolute radial D-T-S displacement
1014	posterior healthy part	std	std	total D-T-S displacement
1015	posterior healthy part	std	std	D-T-S displacement angle
1016	posterior healthy part	median	median	longitudinal velocity
1017	posterior healthy part	median	median	radial velocity
1018	posterior healthy part	median	median	absolute longitudinal velocity
1019	posterior healthy part	median	median	absolute radial velocity
1020	posterior healthy part	median	median	total velocity
1021	posterior healthy part	median	median	velocity angle
1022	posterior healthy part	median	std	longitudinal velocity
1023	posterior healthy part	median	std	radial velocity
1024	posterior healthy part	median	std	absolute longitudinal velocity
1025	posterior healthy part	median	std	absolute radial velocity
1026	posterior healthy part	median	std	total velocity
1027	posterior healthy part	median	std	velocity angle

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
1029	postorior boolthy port	pixels)	std	longitudinal motion amplitudo
1020	posterior healthy part	median	stu	radial motion amplitude
1029	posterior healthy part	median	stu	
1030	posterior nealthy part	median	std	total motion amplitude
1031	posterior nealthy part	median	std	amplitude angle
1032	posterior healthy part	median	sta	longitudinal D-1-S displacement
1033	posterior healthy part	median	std	radial D-T-S displacement
1034	posterior healthy part	median	std	absolute longitudinal D-T-S displacement
1035	posterior healthy part	median	std	absolute radial D-T-S displacement
1036	posterior healthy part	median	std	total D-T-S displacement
1037	posterior healthy part	median	std	D-T-S displacement angle
1038	posterior healthy part	skewness	median	longitudinal velocity
1039	posterior healthy part	skewness	median	radial velocity
1040	posterior healthy part	skewness	median	absolute longitudinal velocity
1041	posterior healthy part	skewness	median	absolute radial velocity
1042	posterior healthy part	skewness	median	total velocity
1043	posterior healthy part	skewness	median	velocity angle
1044	posterior healthy part	skewness	std	longitudinal velocity
1045	posterior healthy part	skewness	std	radial velocity
1046	posterior healthy part	skewness	std	absolute longitudinal velocity
1047	posterior healthy part	skewness	std	absolute radial velocity
1048	posterior healthy part	skewness	std	total velocity
1049	posterior healthy part	skewness	std	velocity angle
1050	posterior healthy part	skewness	std	longitudinal motion amplitude
1051	posterior healthy part	skewness	std	radial motion amplitude
1052	posterior healthy part	skewness	std	total motion amplitude
1053	posterior healthy part	skewness	std	amplitude angle
1054	posterior healthy part	skewness	std	longitudinal D-T-S displacement
1055	posterior healthy part	skewness	std	radial D-T-S displacement
1056	posterior healthy part	skewness	std	absolute longitudinal D-T-S displacement
1057	posterior healthy part	skewness	std	absolute radial D-T-S displacement
1058	posterior healthy part	skewness	std	total D-T-S displacement
1059	posterior healthy part	skewness	std	D-T-S displacement angle
1060	posterior healthy part	kurtosis	median	longitudinal velocity
1061	posterior healthy part	kurtosis	median	radial velocity
1062	posterior healthy part	kurtosis	median	absolute longitudinal velocity
1063	posterior healthy part	kurtosis	median	absolute radial velocity
1064	posterior healthy part	kurtosis	median	total velocity

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
1065	posterior healthy part	kurtosis	median	velocity angle
1066	posterior healthy part	kurtosis	std	longitudinal velocity
1067	posterior healthy part	kurtosis	std	radial velocity
1068	posterior healthy part	kurtosis	std	absolute longitudinal velocity
1069	posterior healthy part	kurtosis	std	absolute radial velocity
1070	posterior healthy part	kurtosis	std	total velocity
1071	posterior healthy part	kurtosis	std	velocity angle
1072	posterior healthy part	kurtosis	std	longitudinal motion amplitude
1073	posterior healthy part	kurtosis	std	radial motion amplitude
1074	posterior healthy part	kurtosis	std	total motion amplitude
1075	posterior healthy part	kurtosis	std	amplitude angle
1076	posterior healthy part	kurtosis	std	longitudinal D-T-S
				displacement
1077	posterior healthy part	kurtosis	std	radial D-T-S displacement
1078	posterior healthy part	kurtosis	std	absolute longitudinal D-T-S displacement
1079	posterior healthy part	kurtosis	std	absolute radial D-T-S
1080	posterior healthy part	kurtosis	std	total D-T-S displacement
1081	posterior healthy part	kurtosis	std	D-T-S displacement angle
1082	posterior healthy part	min	median	longitudinal velocity
1083	posterior healthy part	min	median	radial velocity
1084	posterior healthy part	min	median	absolute longitudinal velocity
1085	posterior healthy part	min	median	absolute radial velocity
1086	posterior healthy part	min	median	total velocity
1087	posterior healthy part	min	median	velocity angle
1088	posterior healthy part	min	std	longitudinal velocity
1089	posterior healthy part	min	std	radial velocity
1090	posterior healthy part	min	std	absolute longitudinal velocity
1091	posterior healthy part	min	std	absolute radial velocity
1092	posterior healthy part	min	std	total velocity
1093	posterior healthy part	min	std	velocity angle
1094	posterior healthy part	min	std	longitudinal motion amplitude
1095	posterior healthy part	min	std	radial motion amplitude
1096	posterior healthy part	min	std	total motion amplitude
1097	posterior healthy part	min	std	amplitude angle
1098	posterior healthy part	min	std	longitudinal D-T-S displacement
1099	posterior healthy part	min	std	radial D-T-S displacement
1100	posterior healthy part	min	std	absolute longitudinal D-T-S displacement
1101	posterior healthy part	min	std	absolute radial D-T-S displacement

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
		pixels)		
1102	posterior healthy part	min	std	total D-T-S displacement
1103	posterior healthy part	min	std	D-T-S displacement angle
1104	posterior healthy part	max	median	longitudinal velocity
1105	posterior healthy part	max	median	radial velocity
1106	posterior healthy part	max	median	absolute longitudinal velocity
1107	posterior healthy part	max	median	absolute radial velocity
1108	posterior healthy part	max	median	total velocity
1109	posterior healthy part	max	median	velocity angle
1110	posterior healthy part	max	std	longitudinal velocity
1111	posterior healthy part	max	std	radial velocity
1112	posterior healthy part	max	std	absolute longitudinal velocity
1113	posterior healthy part	max	std	absolute radial velocity
1114	posterior healthy part	max	std	total velocity
1115	posterior healthy part	max	std	velocity angle
1116	posterior healthy part	max	std	longitudinal motion amplitude
1117	posterior healthy part	max	std	radial motion amplitude
1118	posterior healthy part	max	std	total motion amplitude
1119	posterior healthy part	max	std	amplitude angle
1120	posterior healthy part	max	std	longitudinal D-T-S displacement
1121	posterior healthy part	max	std	radial D-T-S displacement
1122	posterior healthy part	max	std	absolute longitudinal D-T-S
1123	posterior healthy part	max	std	absolute radial D-T-S
1124	posterior healthy part	max	std	total D-T-S displacement
1125	posterior healthy part	max	std	D-T-S displacement angle
1126	posterior healthy part	mean	median	longitudinal velocity
1127	posterior healthy part	mean	median	radial velocity
1128	posterior healthy part	mean	median	absolute longitudinal velocity
1129	posterior healthy part	mean	median	absolute radial velocity
1130	posterior healthy part	mean	median	total velocity
1131	posterior healthy part	mean	median	velocity angle
1132	posterior healthy part	mean	std	longitudinal velocity
1133	posterior healthy part	mean	std	radial velocity
1134	posterior healthy part	mean	std	absolute longitudinal velocity
1135	posterior healthy part	mean	std	absolute radial velocity
1136	posterior healthy part	mean	std	total velocity
1137	posterior healthy part	mean	std	velocity angle
1138	posterior healthy part	mean	std	longitudinal motion amplitude
1139	posterior healthy part	mean	std	radial motion amplitude

	ROI	Operator over space	Operator over time	Measure
		(pixels or pairs of pixels)	in each cardiac cycle	
1140	posterior healthy part	mean	std	total motion amplitude
1141	posterior healthy part	mean	std	amplitude angle
1142	posterior healthy part	mean	std	longitudinal D-T-S displacement
1143	posterior healthy part	mean	std	radial D-T-S displacement
1144	posterior healthy part	mean	std	absolute longitudinal D-T-S displacement
1145	posterior healthy part	mean	std	absolute radial D-T-S displacement
1146	posterior healthy part	mean	std	total D-T-S displacement
1147	posterior healthy part	mean	std	D-T-S displacement angle
1148	posterior healthy part	std	median	longitudinal velocity
1149	posterior healthy part	std	median	radial velocity
1150	posterior healthy part	std	median	absolute longitudinal velocity
1151	posterior healthy part	std	median	absolute radial velocity
1152	posterior healthy part	std	median	total velocity
1153	posterior healthy part	std	median	velocity angle
1154	posterior healthy part	std	std	longitudinal velocity
1155	posterior healthy part	std	std	radial velocity
1156	posterior healthy part	std	std	absolute longitudinal velocity
1157	posterior healthy part	std	std	absolute radial velocity
1158	posterior healthy part	std	std	total velocity
1159	posterior healthy part	std	std	velocity angle
1160	posterior healthy part	std	std	longitudinal motion amplitude
1161	posterior healthy part	std	std	radial motion amplitude
1162	posterior healthy part	std	std	total motion amplitude
1163	posterior healthy part	std	std	amplitude angle
1164	posterior healthy part	std	std	longitudinal D-T-S displacement
1165	posterior healthy part	std	std	radial D-T-S displacement
1166	posterior healthy part	std	std	absolute longitudinal D-T-S displacement
1167	posterior healthy part	std	std	absolute radial D-T-S displacement
1168	posterior healthy part	std	std	total D-T-S displacement
1169	posterior healthy part	std	std	D-T-S displacement angle
1170	posterior healthy part	median	median	longitudinal velocity
1171	posterior healthy part	median	median	radial velocity
1172	posterior healthy part	median	median	absolute longitudinal velocity
1173	posterior healthy part	median	median	absolute radial velocity
1174	posterior healthy part	median	median	total velocity
1175	posterior healthy part	median	median	velocity angle
1176	posterior healthy part	median	std	longitudinal velocity

	ROI	Operator over space (pixels or pairs of	Operator over time in each cardiac cycle	Measure
1177	posterior healthy part	median	std	radial velocity
1178	posterior healthy part	median	std	absolute longitudinal velocity
1179	posterior healthy part	median	std	absolute radial velocity
1180	posterior healthy part	median	std	total velocity
1181	posterior healthy part	median	std	velocity angle
1182	posterior healthy part	median	std	longitudinal motion amplitude
1183	posterior healthy part	median	std	radial motion amplitude
1184	posterior healthy part	median	std	total motion amplitude
1185	posterior healthy part	median	std	amplitude angle
1186	posterior healthy part	median	std	longitudinal D-T-S
				displacement
1187	posterior healthy part	median	std	radial D-T-S displacement
1188	posterior healthy part	median	std	absolute longitudinal D-T-S displacement
1189	posterior healthy part	median	std	absolute radial D-T-S displacement
1190	posterior healthy part	median	std	total D-T-S displacement
1191	posterior healthy part	median	std	D-T-S displacement angle
1192	posterior healthy part	skewness	median	longitudinal velocity
1193	posterior healthy part	skewness	median	radial velocity
1194	posterior healthy part	skewness	median	absolute longitudinal velocity
1195	posterior healthy part	skewness	median	absolute radial velocity
1196	posterior healthy part	skewness	median	total velocity
1197	posterior healthy part	skewness	median	velocity angle
1198	posterior healthy part	skewness	std	longitudinal velocity
1199	posterior healthy part	skewness	std	radial velocity
1200	posterior healthy part	skewness	std	absolute longitudinal velocity
1201	posterior healthy part	skewness	std	absolute radial velocity
1202	posterior healthy part	skewness	std	total velocity
1203	posterior healthy part	skewness	std	velocity angle
1204	posterior healthy part	skewness	std	longitudinal motion amplitude
1205	posterior healthy part	skewness	std	radial motion amplitude
1206	posterior healthy part	skewness	std	total motion amplitude
1207	posterior healthy part	skewness	std	amplitude angle
1208	posterior healthy part	skewness	std	longitudinal D-T-S displacement
1209	posterior healthy part	skewness	std	radial D-T-S displacement
1210	posterior healthy part	skewness	std	absolute longitudinal D-T-S displacement
1211	posterior healthy part	skewness	std	absolute radial D-T-S displacement
1212	posterior healthy part	skewness	std	total D-T-S displacement
1213	posterior healthy part	skewness	std	D-T-S displacement angle

	ROI	Operator over space (pixels or pairs of pixels)	Operator over time in each cardiac cycle	Measure
1214	posterior healthy part	kurtosis	median	longitudinal velocity
1215	posterior healthy part	kurtosis	median	radial velocity
1216	posterior healthy part	kurtosis	median	absolute longitudinal velocity
1217	posterior healthy part	kurtosis	median	absolute radial velocity
1218	posterior healthy part	kurtosis	median	total velocity
1219	posterior healthy part	kurtosis	median	velocity angle
1220	posterior healthy part	kurtosis	std	longitudinal velocity
1221	posterior healthy part	kurtosis	std	radial velocity
1222	posterior healthy part	kurtosis	std	absolute longitudinal velocity
1223	posterior healthy part	kurtosis	std	absolute radial velocity
1224	posterior healthy part	kurtosis	std	total velocity
1225	posterior healthy part	kurtosis	std	velocity angle
1226	posterior healthy part	kurtosis	std	longitudinal motion amplitude
1227	posterior healthy part	kurtosis	std	radial motion amplitude
1228	posterior healthy part	kurtosis	std	total motion amplitude
1229	posterior healthy part	kurtosis	std	amplitude angle
1230	posterior healthy part	kurtosis	std	longitudinal D-T-S displacement
1231	posterior healthy part	kurtosis	std	radial D-T-S displacement
1232	posterior healthy part	kurtosis	std	absolute longitudinal D-T-S displacement
1233	posterior healthy part	kurtosis	std	absolute radial D-T-S displacement
1234	posterior healthy part	kurtosis	std	total D-T-S displacement
1235	posterior healthy part	kurtosis	std	D-T-S displacement angle

6 Βιβλιογραφία

- [1] Martini F. "Blood vessels and circulation. in Fundamentals of Anatomy and Physiology." Prentice Hall Inc., New Jersey, 1995; 717-777
- [2] Στοΐτσης Γ. "Υπολογιστική επεξεργασία και ανάλυση ακολουθιών εικόνων υπερήχων της καρωτίδας: Συσχέτιση με τη μηχανική συμπεριφορά του αρτηριακού τοιχώματος." Διδακτορική Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών, Αθήνα, Νοέμβριος 2007
- [3] Γούσιας Ι. "Ανάλυση της υφής αθηρωματικής πλάκας καρωτίδας από εικόνες υπερήχων β-σάρωσης." Εθνικό Μετσόβιο Πολυτεχνείο, Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών, Αθήνα, Φεβρουάριος 2003; 12-23
- [4] Dobrin B. "Mechanical properties of arteries." Physiol Rev. 1978; 58: 397-460
- [5] http://www.news-medical.net/health/Risk-Factors-for-Atherosclerosis-(Greek).aspx
- [6] Golemati S, Gastounioti A, Tsiaparas N, and Nikita K. "Bilateral asymmetry in ultrasound-image-based mechanical and textural features in subjects with asymptomatic carotid artery disease." IEEE-EMBS International Conferences on Biomedical and Health Informatics (BHI), Valencia, Spain, 2014
- [7] Golemati S, Lehareas S, Tsiaparas N, Nikita K, Chatziioannou A, Perrea D. "Ultrasoundimage-based texture variability along the carotid artery wall in asymptomatic subjects with low and high stenosis degrees: unveiling morphological phenomena of the vulnerable tissue ." International Congress on Ultrasonics (ICU Metz.), 2015; 1208-1211
- [8] Thubrikar M, Robicsek F. "Pressure-induced arterial wall stress and atherosclerosis." The Annals of Thoracic Surgery, June 1995; 59(6): 1594-1603
- [9] Thubrikar M, Roskelley S, Eppink R. "Study of the stress concentration in the wall of the bovine coronary arterial branch." Journal of Biomechanics, 1990; 23(1): 15-26
- [10] Jiang Y, Kohara K, Hiwada K. "Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients." Hypertens Res. PubMed PMID: 10515443, September 1999
- [11] Libby P., Ridker P., Maseri A., "Inflammation in atherosclerosis." Clinical Cardiology: New Frontiers, 2002
- [12] Andrew L., and, Greaves D. "Atherosclerosis: role of chemokines and macrophages." Expert Reviews in Molecular Medicine, 2001; 3(25)
- [13] Κρεμαστινός Δ. "http://www.iatronet.gr/ygeia/kardiologia/article/12039/oikarwtides-kai-oi-stenwseis-toys.html"

- [14] Mughal M., Khan M., De Marco K., Majid A., Shamoun F., and Abela G. "Symptomatic and asymptomatic carotid artery plaque." Expert Review of Cardiovascular Therapy, 2011; 9(10)
- [15] Wilhjelm J, Gronholdt M, Wiebe B. "Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: Correlation with visual classification and histological examination." IEEE Transactions on Medical Imaging, 1998; 17(6): 910-922
- [16] Ross N. "The time to rethink management strategies in asymptomatic carotid artery disease." Nature Reviews Cardiology 9, 2012; 116-124
- [17] Nikita K. "Atherosclerosis: the evolving role of vascular image analysis." Computerized Medical Imaging and Graphics. 2013; 37(1): 1–3
- [18] Miller J. "Cardiovascular calcification: Orbicular origins." Nature Materials 12, 2013; 476–478
- [19] iatrica.gr. http://iatrica.gr/el/articles/3712-e-asbestose-ton-arterion-deikteskindunou-gia-emphragma-kai-egkephaliko
- [20] Johnson M, Wilkinson I, Wattam J, Venables G, Griffiths P. "Comparison of Doppler ultrasound, magnetic resonance angiographic techniques and catheter angiography in evaluation of carotid stenosis." Clinical Radiology, 2000; 55(12): 912-920
- [21] Cohn J. "New approaches to screening for vascular and cardiac risk." American Journal of Hypertension, 2001; 218 220
- [22] Golemati S, Sassano A, Lever M, Bharath A, Dhanjil S, Nicolaides A. "Carotid artery wall motion estimated from B-mode ultrasound using region tracking and blockmatching." Ultrasound in Medicine & Biology, 2003; 29(3)
- [23] Κουτσούρης Δ., Νικήτα Κ., Παυλόπουλος Σ. "Ιατρικά Απεικονιστικά Συστήματα." Εκδόσεις Τζιόλα, 2004
- [24] Hykes D, Hedrick W, Starchman D. "Ultrasound Physics and Instrumentation." Churchill Livingstone, New York, Edinburgh, London and Melbourne, 1985
- [25] Fish P. "Physics and instrumentation of medical ultrasound." John Wiley & Sons, 1990
- [26] Ibanez B, Badimon J, Garcia J. "Diagnosis of atherosclerosis by imaging." The American Journal of Medicine, 2009; 122(1): 15-25
- [27] Golemati S, Stoitsis J, Gastounioti A, Dimopoulos A, Koropouli V, and Nikita K. "Comparison of Block Matching and Differential Methods for Motion Analysis of the Carotid Artery Wall From Ultrasound Images." IEEE Transactions on Information Technology in Biomedicine, 2012; 16(5): 852-858

- [28] Cinthio M, Ahlgren A, Bergkvist J, Jansson T, Person H, and Lindstrom K. "Longitudinal movements and resulting shear strain of the arterial wall." American Physiological Society 2006; 394-402
- [29] Mokhtari-Dizaji M, Montazari M, and Saberi H. "Differentiation of mild and severe stenosis with motion estimation in ultrasound images." World Federation for Ultrasound in Medicine & Biology, 2006
- [30] Zahnd G, Boussel L, Marion A, Durand M, Moulin P, Serusclat A and Vray D. "Measurement of two-dimensional movement parameters of the carotid artery wall for early detection of arteriosclerosis: A preliminary clinical study." World Federation for Ultrasound in Medicine & Biology, 2011;37(9):1421-9
- [31] Gastounioti A, Golemati S, Stoitsis J and Nikita K. "Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application." Physics in Medicine and Biology, 2013; 8647–8661
- [32] Svedlund S, Gana Li-Ming. "Longitudinal common carotid artery wall motion is associated with plaque burden in man and mouse." Elsevier Ireland Ltd., 2011
- [33] Svedlund S, Gana Li-Ming. "Longitudinal wall motion of the common carotid artery can be assessed by velocity vector imaging." Clin Physiol Funct Imaging, 2011 31(1): 32–38.
- [34] Soleimani E, Mokhtari Dizaji M, Saberi H. "Carotid Artery Wall Motion Estimation from Consecutive Ultrasonic Images: Comparison between Block-Matching and Maximum-Gradient Algorithms." The Journal of Tehran University Heart Center, 2011 6(2): 72–78.
- [35] Golemati S, Stoitsis J, Perakis D, Varela E, Alexandridou A, Davos C, Nikita K. "Carotid artery motion estimation from sequences of B-mode ultrasound images: effect of scanner settings and image normalization." IEEE Transactions on Instrumentation and Measurement., 2009; 58:2102-2112.
- [36] Apostolakis I, Golemati S, Gastounioti A, Nikita K. "Ultrasound-image-based displacement and strain maps of the human carotid artery using weighted-leastsquares optical flow." IEEE International Conference on Imaging Systems and Techniques. Manchester, United Kingdom, 2012
- [37] Gastounioti A, Golemati S, Tsiaparas N, Stoitsis J, Nikita K. "Multiscale approach for weighted least-squares optical flow for estimating arterial wall displacements." 10th IEEE International Workshop on Biomedical Engineering (10th BioEng), Kos Island, Greece, 2011
- [38] Gastounioti A, Tsiaparas N, Golemati S, Stoitsis J, Nikita K. "Affine optical flow combined with multiscale image analysis for motion estimation of the arterial wall from B-mode ultrasound." 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'11). Boston, USA, 2011;2011:559-62.

- [39] Gastounioti A, Golemati S, Nikita K. "Computerized analysis of ultrasound images: potential associations between texture and motion properties of the diseased arterial wall." IEEE International Ultrasonics Symposium. Dresden, German, 2012
- [40] Gastounioti A, Golemati S, Tsiaparas N, Nikita K. "Multiscale block matching for carotid artery wall motion estimation from B-mode ultrasound." 7th GRACM International Congress on Computational Mechanics. Athens, Greece, 2011
- [41] Tsiaparas N., Gastounioti A., Golemati S., and Nikita K. "Multiscale motion analysis of the carotid artery wall from B-mode ultrasound: investigating the optimal wavelet parameterization." 13th IEEE International Conference on BioInformatics and BioEngineering (BIBE 2013), 2013
- [42] Gastounioti A, Golemati S, Stoitsis J, Nikita K. "Kalman-Filter-Based Block Matching for Arterial Wall Motion Estimation from B-Mode Ultrasound." IEEE International Conference on Imaging Systems and Techniques. Thessaloniki, Greece, 2010
- [43] Gastounioti A, Douma S, Kolias V, and Nikita K. "A toolbox for in silico evaluation of motion estimators for the arterial wall." 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014
- [44] Gastounioti A, Kolias V, Golemati S, Tsiaparas N, Matsakou A, Stoitsis J et al. "CAROTID – A web-based platform for optimal personalized management of atherosclerotic patients" Computer Methods and Programs in Biomedicine. Elsevier Ireland Ltd., 2014;114(2):183-93
- [45] Μαραγκός Π. "Όραση Υπολογιστών" Εθνικό Μετσόβιο Πολυτεχνείο, Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών, 2005, Κεφ. 15
- [46] Horn B. and Schunk B. "Determining optical flow" Artificial Intelligence, 1981; 17(1-3): 185–203
- [47] Kanade T., Lucas B. "An iterative image registration technique with an application to stereo vision." Proceedings of the 1981 DARPA Image Understanding Workshop, April 1981; 121-130
- [48] Γαλάνης Π. "Στατιστικές μέθοδοι ανάλυσης δεδομένων" Αρχεία Ελληνικής Ιατρικής, 2009; 26(5): 699-711.
- [49] Μοσχονάς Σ. "Εισαγωγή στην Κοινωνιογλωσσολογία Σημειώσεις Στατιστικής" Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
- [50] Gastounioti A, Makrodimitris S, Golemati S, Kadoglou N, Liapis C and Nikita K. "A Novel Computerized Tool to Stratify Risk in Carotid Atherosclerosis Using Kinematic Features of the Arterial Wall." IEEE Journal of Biomedical and Health Informatics, 2014; 19(3):1137-45.
- [51] Golemati S, Apostolakis I, Gastounioti A, Tsiaparas N, Nikita K. "Using optical flow and multiscale image analysis to produce displacement and strain maps of the healthy

and diseased arterial wall." RSNA 98th Scientific Assembly and Annual Meeting. Chicago, Illinois, USA, 2012

- [52] Golemati S., Lehareas S., Tsiaparas N. N., Gastounioti A., Chatziioannou A., Nikita K. S., Perrea D. N. "Toward recognizing the vulnerable asymptomatic atheromatous plaque from B-mode ultrasound: the importance of the morphology of the plaque shoulder." Ultrasonics Symposium IUS, 2014
- [53] Kolias V, Stamou G, Golemati S, Stoitsis J, Gkekas C, Liapis C, and Nikita K. "A semantically-aided architecture for a web-based monitoring system for carotid atherosclerosis." IEEE Engineering in Medicine and Biology Conference 2015. Milan, Italy, 2015 Aug;2015:1373-6
- [54] Matsakou A, Golemati S, Stoitsis J, Nikita K. "Automated detection of the carotid artery wall in longitudinal B-Mode images using active contours initialized by the Hough transform." 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC'11. Boston, USA, 2011 ;2011:571-4.
- [55] Matsakou A, Tsiaparas N, Golemati S, Nikita K. "." 9th IEEE International Symposium on Biomedical Imaging ISBI 2012. Barcelona, Spain, 2012
- [56] Tsiaparas N, Golemati S, Andreadis I, Stoitsis J, Valavanis I, Nikita K. " Comparison of multi resolution features for texture classification of carotid atherosclerosis from Bmode ultrasound." IEEE Transactions on Information Technology in Biomedicine, 2011; 15(1):130-7.
- [57] Tsiaparas N, Golemati S, Stoitsis S, Nikita K. "Discrete Wavelet Transform vs. Wavelet Packets for Texture Analysis of Ultrasound Images of Carotid Atherosclerosis." 9th International Conference on Information Technology and Applications in Biomedicine-ITAB 2009. Larnaca, Cyprus, 2009
- [58] Rummel, J. "Understanding Correlation" Department of Political Science, University of Hawaii, 1976
- [59] Ασιμομήτης Γ. "Ανάπτυξη συστήματος υποστήριξης διάγνωσης καρωτιδικής αθηρωμάτωσης μέσω ταξινόμησης ασβεστοποιημένων και μη ασβεστοποιημένων αθηρωματικών πλακών - ολοκληρωμένη διαδικτυακή πλατφόρμα."Εθνικό Μετσόβιο Πολυτεχνείο, Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών, Οκτώβριος 2015; 37-57
- [60] S Golemati, A Gastounioti, KS Nikita, "Toward novel noninvasive and low-cost markers for predicting strokes in asymptomatic carotid atherosclerosis: the role of ultrasound image analysis" IEEE Transactions on Biomedical Engineering 60 (3), 652-658