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Abstract

Quadruped animals have been on the side of man for thousands of years, providing various valuable
services, such as fast and reliable transportation through difficult terrain, tracking and rescuing victims
of natural disasters or protection of man and his property. Quadrupeds move with great agility in
domestic or rugged terrain, exploiting isolated footholds to ensure stability of movement. In the last
decade, the impressive evolution in the field of articulated robots has lead researchers to recognize the
potential benefits of constructing quadruped robots; robots that could offer many of the services
guadruped animals do and even more. Although wheeled or tracked systems are alternatives widely
used for terrestrial locomotion, their inability to ensure traction in difficult terrain (steep inclinations or
loose grounds), has intensified the interest of researchers in their legged counterparts.

To this day, many impressive quadruped robots have been constructed; robots that can run fast,
jump over obstacles, carry heavy loads, climb stairs or jump over fences, walk on ice. These
achievements depend strongly on empirical data gained from systematic hardware experimentation
and meticulous control strategies. Nevertheless, as the nature of the quadruped locomotion is highly
challenging, it still remains unclear how the morphology of the robot - and expecially that of the legs -
can affect its performance. For this reason, many of the existing leg design approaches are not
systematic. Many research teams mimic the leg morphologies found in nature. However, the actuation
systems of animals and the tasks they undertake are much different than these of the robots. Other
teams base their design efforts on kinematic performance criteria. Quadrupedal locomotion however is
a highly dynamic phenomenon, with alternating load phases and significant accelerations required from
the actuating systems. A few teams use sophisticated robot descriptions and control strategies, but
their approaches are so complicated that only a few leg design alternatives can be evaluated.

In this thesis, a systematic methodology is devised aiming to determine the proper leg attributes
that maximize the running performance of the NTUA Laelaps quadruped robot. The proposed method
takes into account the robot’s mass and inertia, the desired leg architecture and leg material properties,
the available actuation system, certain terrain properties and the gait in which the robot shall move.
Through a three stage parametric search, the optimal leg morphology is found (length of leg segments
and leg compliance) for achieving maximum velocity of locomotion, subjected to actuation and material
strength constraints. For the optimal leg morphology, control indications for achieving maximum running
velocity are also found, related with the positions of the footfalls, the apex of the robot’s trajectory and
the stride period.

The method is applied with alternative gaits and leg joint configurations as inputs and the optimal
solutions found for each case are compared. The results are validated using models and controller
independent to the method . For the gait and joint configuration that enhances the running performance
of the robot further tests are conducted, to determine which of the available motors should be acting on
which actuated joint. Moreover, the effect of supplementary reduction ratios in the running performance
of the robot is studied. Finally, a tipover stability criterion is introduced and conditions are found for the

robot to run in maximum velocity, withstanding terrain perturbations in the frontal plane of movement.
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MepiAnyn
Ta TeTpaTmoda {wa BpiokovTal aTo TTAEUPS TOU avBPwWTTOU £0W Kal XIAIADEG XpoVIa, TTPOCPEPOVTAS TOU
TTOAUTIUEG UTTNPETIEG OTTWG TN yPryopn Kal agIdTTiaTn JeTa@opd o€ SUOKOAQ 0A@N, TOV EVTOTTIONS Kal
O01dowon BUUATWY O€ QUOIKEG KATOOTPOMEG R TNV TTPOCTACIa autoU Kal Tng Teplouaiag Tou. Ta
TETPATTOdQ KIVOUVTAl PE PEYAAN €UKOAIO OTO QUOIKO R O0c avBpwTTIva OlapopPWHEVO TTEPIBAAAOY,
e€ao@aAiovTag euaTABEIO OTNV Kivnon TOUG HECW PEPOVWHEVWY TTATNUATWY. Tnv TeAeuTaia OekasTia,
N EVTUTTWOIAKK TTPG000G OTOV KAGOO TWV apBpwTwV pOUTIOT, 00YNOE TNV ETTIGTNMOVIKI KOIVOTNTA vVa
avayvwpioel Ta 0QEAN TTOU Ta TETPATTOOA POPTIOT duvNTIKA UTTOPOUV VA TTPOCPEPOUV OTOV AvBpwTTO:
o@éAN mMOavwg TTOAU peyaAUTepa atmd autd TTou Ta wa PTTopoUV va Tou TTapéxouv. Av Kal Ta
TPOX0POPA 1 EPTTUCTPIOPOPA OXAMOTA €ival EUPEWG XPNOIMOTTOIOUNEVEG EVAAAOKTIKEG AUCEISC OTn
XEpoaia peTakivnon, n aduvapia Toug va dilao@alicouv TTpOa@uon o€ OUCKOAO £5a®OG (ATTOTOUEG
KAio€Ig | 00Bpr| yewAoyia) EVIATIKOTIOINOE TO EVOIAQEPOV TWV EPEUVNTWYV OTA TETPATTOdA AVAAOYQ TOUG.

Méxpr onpepa, TTOAAG EVTUTTWOIOKE TETPATTOOO POMUTTOT £XOUV KATOOKEUQOTE- POUTIOT TA OTTOIa
TPEXOUV O€ UWNAEG TaXUTNTEG, UTTEPTTNOOUV €UTTOdIO, PETAPEPOUV Baplid QopTia, CKAPPAAWVOUV O€
OKAAEG 1] TTNOOUV TTAvw aTTd QPAXTES Kal dlatnpolv TNV eucTdBEIa TOug aTov TTAyo. MoAAG atrd auTd
Ta KaTopBwpuata o@eilovial ge eUTTEIPIKA Oedopéva Adyw CUCTNUATIKOU TTEIpAPATIOPOU Kal o€
TPOCEXTIKA OXEOIOONEVEG OTPATNYIKEG eAéyxou. MapdAa autd, KaBWG n TETPATTOON Kivnan eVvéEXEl €K
QUOEWG TTOANEG TTPOKAACEIG, TTAPOUEVEl ABEBAIO TTWG N HOPPOAOYIa TOU POUTTOT - Kal IBIAITEPA TWV
TTOdIWV TOU - UTTOPEI va eTTNpedoel TIG £MOG0EIG TOU. 'ETOI, TTOANEG aTTO TIG UTTAPXOUCEG TTPOCEYYIOEIG
oxedlaopou TTodIWV  TTAPOUEVOUV PR ouoTNUOTIKEG. TTOAAEG epeuvnTiKEG ONAdEG pipouvTal TIG
Hop@oAoyieg TTOdIWV TTOU aTTAVTWVTAI OTH @Uon. QoTtdéoo, Ta {wa ouTte dlaBétouv Toug idloug
ETTEVEPYNTEG PE T POMUTTOT, AAAG OUTE KAl OTTAPAITATWGS KaTatTidvovTal Pe Ta idla KaBrikovTa. AAAEG
ouadeg Bacifouv TIG OXEDIAOTIKEG TOUG TTPOCTTABEIEG O KPITAPIA KIVNPATIKAG, TTApd TO YEYOoVOGS OTI N
TETPATTOdN Kivnon eival eviovwg duVapIKr, YE atTéToPEG OANAYEG OTO QOPTIO Kal UWPNAEG OTTAITATEIG
EMTAXUVONG OTOUG ETTEVEPYNTEG. AV KAl OPICPEVEG AANAEG TTpoOEeyyioelg TTepIAauBdvouv TTeEpITTAOKA
MOVTEAD poUTTOT KAl EAEYKTEG OTN dladikacia oxedIaoPoU, Ol TTIPOOEYYIOEIG TOUG ival TGOO OUVOETEG TTOU
EMTPETTOUV TN GUYKPICHN Kal A&IOAOYION TTEPIOPIOUEVWY EVOAAOKTIKWYV JOPPOAOYIWV TTODIWV.

2TV Trapouca OITTAWMGTIKA €pyacia, TTPOTEIVETAI MIa ouoTnuaTIKh PeBodoAoyia oxediaouou
TTOSIWV TETPATTOOWY POUTTIOT, ME GTOXO TNV AvVAyVWEION EKEIVWY Twv OTOIXEiwv oxedlaouou TTou Ba
BeATioToTTOINOOULYV TNV £TTidOON TPEEiMATOG TOU TETPdTTOd0U AdiAay Tou EMI. H trpoTeivopevn pébodog
AapBavel uttdowiv Tn pada kai Ty adpdveia Tou POUTTOT, TRV TTIOUPNTH dour) Tou TTodI0U Kal TIG 1I810TNTEG
TWV UANKWV TOU, TO O108£01uo oUOTNUA ETTEVEPYNONG, EKTINWUEVES 110TNTEG £6A@OUG Kal Tov TUTTO
BadiopaTog pe TO OTT0I0 TO POUTTOT PETAKIVEITAL. MEOW pIAg TTAPAPETPIKAG avalAToNng TpIWV oTadiwy,
kaBopiletal n BEATIOTN pop@oAoyia TodIWY (UAKN THNUATWY TTodIoU Kal eAACTIKOTNTA TTodIoU) yid
eTiTEUEN PEYIOTNG TaXUTNTAG KivNONG UTTO TOUG UTTAPXOVTEG TTEPIOPICHOUG ETTEVEPYNONG Kal AVTOXAG
UAIKwV. [Na n BEATIOTN popgoAoyia TTodiwy, BpiokovTal eTTITTAEOV eVOEIEEIG EAEYXOU, OUOXETICOPEVEG UE
TNV TOTTOBETNON TWV TTOBIWY OTO £BAQPOG, TO AVW ONUEI0 TNG BEONG TOU CWHATOG TOU POPTIOT Kal TN

TEPIOd0 OPACKEAITHOU, WOTE TO POUTIOT va TPEXEI e TN MEYIOTN duvaTh TaxuTnTa.
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H péBodog epapudletal yia dIaPopeTIKG BadiopaTta Kal SIaPopPUOEIS apOpWOEwWY YOVATOU Kal Ol
BéATIOTEG AUOEIS yia KABe TepimTwon uttoBdAAovTal o€ ouykpion. Ta amoteAéoparta eTaAnBevovTal
XPNOIMOTTOIWVTAG JOVTEAQ Kal €AEKTH) aveEdptnTa TG pEBAdou. MNa 1o Badioya kal TN dlaudépPwon
apBpwOoEWV TTOU PTTOPEI va TTITUXEI TN PEYIOTN TaXUTNTA, £€eTACETAI ETTITTAEOV O€ TTOIO APOBPpWON TTPETTE
va €modpd o KaBévag atmd Toug SIaBECINOUG ETTEVEPYNTEG WOTE va BeATIWBET TTepaitépw n eTTidoon
TpeLipaTog Tou popTroT. EgeTdleTal O KAl 0 pOAOg TNG €mMITTAéOV pPEiwONG aToug KIVNTAPES. TEAOG,
€I0AYOVTAG £va KPITAPIO EUOTABEIAS EvavT avaTpoTig, avayvwpifovTtal ol CUVBARKES WOTE TO POUTTOT va
TPEXEI OTN PEYIOTN TaXUTNTA £XOVTAG T SuvVATOTNTA Va avTioTaBei o€ diatapalés e6APOUG OTO JETWTTIAIO

ETITTEdO Kivnong.
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Nomenclature

" angle between the total force exerted on the CoM and the CoM to toe vector
Vs angle between the total force exerted on the CoM and the robot weight vector
V. ground slope in the frontal plane
o, ground identation of Hunt - Crossley contact model
ot, stance phase duration
ol,, deformation of the spring of the i -th leg
£ a parameter determining the search interval of the leg space exhaustive search
0 robot body pitch angle
0, hip joint angle of the i-th leg
0, knee joint angle of the i-th leg
6.«  maximum pitch observed during the stride period
9max,j maximum permissible angular velocity of the DC motor acting on the j -th leg joint
A stride length
y7, Coulomb static friction coefficient
M, kinematic friction coefficient
v Hertzian contact coefficient
P density of the tubular leg segments
o, ;; bending stress applied on the j -th tubular leg segment of the i -th leg
o.;; compressive stress applied on the j -th tubular leg segment of the 1-th leg
T vector containing the actuation torques exerted on every joint of every leg
Ty actuation torque exerted on the hip joint of the i -th leg
Ty actuation torque exerted on the knee joint of the i -th leg
T, the sum of the torques acting on the CoM at every time instant
Tt maximum permissible continuous torque of the DC motor acting on the | -th leg joint
7, ;; shear stress applied on the j -th tubular leg segment of the i-th leg
Tsy ultimate shear strength of the leg segments’ material
o maximum permissible short term torque of the DC motor acting on the | -th leg joint
Do phase difference that determines the initial position of the toe on an elliptical toe trajectory
Oy phase difference of the horizontal sinusoidal ground force F;
?y i phase difference of the vertical sinusoidal ground force F;
o, circular frequency in which the elliptical toe trajectory is traversed
» circular frequency of the horizontal sinusoidal ground force F,;
i circular frequency of the vertical sinusoidal ground force F ;
a height of the rectangular robot body
a, horizontal semi-axis of the elliptical toe trajectory
ay, a parameter determining the size of F, ., a, €[0,]]

12/142



cross sectional area of the tubular leg segments

length of rectangular robot body

D'U>

damping of Hunt - Crossley ground model

b, vertical semi-axis of the elliptical toe trajectory, equal to the leg clearance

b, damping of the leg spring

C; a variable that denotes contact of the i -th leg with the ground, ¢, €{0,1}

C centrifugal - Coriolis terms matrix of the quadruped robot’s dynamics

CoM center of mass

d half hip separation distance in the sagittal plane

d, moment arm of the total force exerted on the robot’s CoM, w.r.t the toe - ground contact point

inner diameter of the tubular leg segments
outer diameter of the tubular leg segments
DC  direct current

DF duty factor

EOM equations of motion

F vector of the external forces applied to the quadruped robot’s system

F vector containing the horizontal and vertical force exerted on the i-th leg, F =[F,; Fyyi]T
F, normal Hunt - Crossley ground force

F.;; ground force component in the longitudinal to the j -th leg segment of the i -th leg direction
F, horizontal perturbation force in the frontal plane

K. force introduced by the deflection of the ideal spring of the i-th leg

F friction force

F.;i ground force component in the vertical to the j -th leg segment of the i -th leg direction
F, robot weight

F, sum of the horizontal forces acting on the CoM at every time instant

F horizontal component of the ground force exerted on the i-th leg

F.mx amplitude of the horizontal ground force

F.  upperboundof F ., for which no slippage occurs

F, sum of the vertical forces acting on the CoM at every time instant

F. vertical component of the ground force exerted on the i -th leg

F, e amplitude of the vertical ground force

FL front left

FR front right

HL  hind left

HR  hind right

[ subscript denoting the i-th leg of the robot, where ie{l,2,3,4}
[ intensity of the current on the field windings of a DC motor

| total quadruped robot inertia
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1 inertia of the proximal leg segment

1, inertia of the distal leg segment

| second moment of area of the tubular leg segments
I guadruped robot body inertia

I rotor inertia before gearbox reduction of the motor actuating on the j -th leg joint

J subscript denoting the | -th joint, where j €{1,2} for the hip and knee joints respectively
J Jacobian matrix of the quadruped robot’s system

k stiffness of the compliant distal leg segment

K, ground stiffness of Hunt - Crossley contact model

k, P term gain of P-V controller for trotting

K, V term gain of P-V controller for trotting

K stiffness matrix of the quadruped robot’s system

K, torque constant of a DC motor
KB  knee pointing backward leg configuration

KF knee pointing forward leg configuration

l, length of the proximal leg segment of any leg
L free length of the compliant distal leg segment
L length of the distal compliant leg segment of the i-th leg

distance between the hip joint and the CoM of the proximal leg segment

distance between the knee joint and the CoM of the distal leg segment of the 1-th leg
lho;  hip to toe distance of the i-th leg

I maximum hip to toe distance of any leg observed in one stride period T

Ib (as a subscript) lower bound

L Lagrangian

LISL long inequally segmented leg

m total quadruped robot mass

m, mass of the proximal leg segment
m, mass of the distal leg segment

m, guadruped robot body mass

m; mass of the hip joint

m mass of the knee joint

m,, mass of the proximal tubular leg segment

m, mass of the distal tubular leg segment

m spring mass
m, toe mass
M mass matrix of the quadruped robot’s system

=]

n-th discrete time step, t, €[0,T], ne[L,N]

transmission ratio of the gearbox of a DC motor

—
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transmission ratio of the gearbox of a DC motor actuating on the | -th leg joint
supplementary transmission ratio at the exit of the motor’s gearbox

number of discrete time instants in the duration of a stride period T

the origin (0,0)

power from actuation torques and external forces pumped into the quadruped robot’s system
thermal losses power on the field windings of a DC motor

guadruped robot state vector

vector of CoM position and pitch, g. =[xy €]

vector of joint variables of the i-th leg

vector connecting the CoM position (X, y) with the position of the toe during stance phase
safety factor

ultimate compressive strength of the leg segments’ material

short equally segmented leg

spring loaded inverted pendulum

time

time instant of midflight of the i-th leg

time instant of touch down of the i-th leg

time instant of touch down of the 1-th leg, expressed as a percentage of the stride period T
time instant of take off of the i-th leg

time instant of take off of the 1-th leg, expressed as a percentage of the stride period T
stride period

period in which the elliptical toe trajectory is traversed

free oscillation period of a system consisting of two springs in parallel and a mass
kinetic energy of the quadruped robot

threshold velocity for which toe to ground slippage occurs

Stribeck velocity

(as a subscript) upper bound

potential energy of the quadruped robot

mean quadruped robot velocity during the stride

half hip separation distance in the frontal plane

abscissa of the robot body CoM

abscissa of the CoM of the proximal leg segment

abscissa of the CoM of the distal leg segment

abscissa of the footfall of the i -th leg

optimal footfall abscissas at the end of the exhaustive search of Stage 1

optimal footfall abscissas at the end of the interior point optimization scheme of Stage 1
abscissa of the hip joint of the i-th leg

relative hip to toe abscissa of the i-th leg
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X abscissa of the toe of the i -th leg

y ordinate of the robot body CoM
Yii ordinate of the CoM of the proximal leg segment
Yoi ordinate of the CoM of the distal leg segment

Y,;  ordinate of the hip joint of the i-th leg

Yui  relative hip to toe ordinate of the i-th leg
Y; ordinate of the footfall of the i-th leg, ordinate of the ground level
Yei ordinate of the toe of the i-th leg
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1 Introduction

1.1 Motivation

During the last years, research in the field of terrestrial locomotion has focused in the opportunities
offered by legged robots, mainly for two reasons. On one hand, legged robots pose great advantages
in comparison to wheeled or tracked systems [1]. While the latter only have access to less than half of
the Earth’s land, legged systems can also adapt to uneven or rugged terrain, by utilizing active
suspension and isolated footholds, with minimum impact to soil or vegetation, much as most animals
do. Having that in mind, legged robots can come in use in many of man’s endeavors, such as in rescue
or exploration missions in hazardous or until now inaccessible areas. On the other hand, since Raibert
built the Quadruped in 1990 - one of the first robots that could efficiently move and perform gaits similar
to quadruped mammals - it became clear that complex legged locomotion was far from unachievable
[2]. Raibert’s Quadruped opened the way for the creation of many dynamically stable legged robots that
appeared next, by providing important insights for design, modeling and control.

Since then, a combination of animal studies with breakthroughs in design and control has led to
an overall progress in legged locomotion. Recent impressive results, both in academia and industry,
showed that legged robots can run really fast (Boston Dynamics Cheetah reached an in lab record
velocity of approximately 13 m/s, [3]), perform agile jumps while running (The MIT Cheetah Il can jump
over obstacles up to 80% of its leg length while running at 2.5 m/s, [4]), turn and perform complex gaits
on inclined terrain, or maintain stability while on ice (Boston Dynamics Spot and WildCat, [5] - [6]), cross
rugged terrain and perform stunts, (RHEX can perform flips, operate on both of its sides, climb stairs,
jump across gaps and is waterproof [7]), climb walls and trees (RiSE Climbing Robot [8]).

Despite the great progress in legged locomotion, many design issues still remain to be addressed,
that concern stability, energy efficiency and high performance. While several legged robots, have
achieved energy efficiency comparable to this of animals (iSprawl [9], MIT Cheetah robot [10]), their
performance is still inferior when compared with the animals’ incredible capabilities. For instance, no
existing legged robot can compete the cheetah’s (Acinonyx jubatus) acceleration or maximum speed
(29 m/s), or the mountain goat’'s (Oreamnos americanus) and Nubian ibex’s (Capra nubiana) agility in
climbing steep rocky mountain sides.

The ever existing limitations of hardware in comparison to biology (control, actuation, materials),
motivates the robotics community to continue searching towards smart design solutions that can
enhance further quadrupedal locomotion. One of the most challenging structural parts for quadruped
robots has proved to be the mean of interaction with the tranversed terrain, i. e. the leg. During
guadrupedal locomotion, legs have to consistently endure shock loads from the ground and are the
means through which the actuators provide energy to the system. Intrigued by the challenging nature
of legs, in the current thesis an appropriate leg design is sought, that can enhance the performance of
the quadruped platform NTUA Laelaps in one of its most basic functions, running. In more detail, an

optimization - based method is proposed that given the running task and the actuation constraints,
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provides as outputs optimal dimensions and compliance for the leg, so that the robot can reach

maximum horizontal velocity.

1.2 Literature review

Many efforts have been made in the direction of leg design for quadruped robots. The main points of
interest in designing robot legs seem to be leg segmentation, leg segment proportions, leg
configuration, leg compliance scheme, actuation and construction materials. In the following review,
representative examples of surveys, methods, design choices and implementations on the above
issues are presented, in order to understand former work done, draw design principles and suggest
improvements.

The term leg segmentation refers to the number of joints and links from which the leg is composed,
see Figure 1-1. The simplest case is that of the prismatic leg. This leg consists of an actuated rotary
hip joint and a flexible prismatic joint. Such legs where utilized in early quadruped robots, as the
Quadruped and the Scout Il [11] robots, see Figure 1-2. While these legs pose great advantages when
it comes to energy efficiency as they exploit passive dynamics, [12], [13], their main disadvantage is
their difficulty in creating adequate toe to ground clearance, especially at high speeds. An alternative to
prismatic legs is the segmented or the articulated leg. Two-segment legs are employed by most
guadruped robots of Boston Dynamics, and also by StarlETH, [14] and HyQ, [15] quadruped robots,
see Figure 1-3. As described in [16], two-segment legs in comparison with prismatic compliant legs
provide self-stable running for a greater range of forward running velocities and promote stability against
perturbations in the angle of attack of the leg and the apex height of the robot. Witte et. al. [17]- [18]
suggested that for a three-segment leg model applied in small mammals, the most proximal and distal
segments are held nearly in parallel most of the time during the contact of the leg with the ground, a
behavior described as “pantograph behavior”. Inspired maybe by similar works in biology, MIT Cheetah
Il and the Cheetah Cub [19] robots have three-segment “pantograph” legs. Lately, five bar legs have
appeared as in the case of the Super Mini Cheetah [20], ATRIAS [21] and MiniTaur [22] robots. As
described in [23], five bar legs, driven by two motors in parallel, pose an advantage when it comes to
force application, because both motors contribute in retraction or protraction of the leg, exerting
opposing torques. On the other hand, to swing the leg when the robot walks or runs, both motors move
in the same direction, causing one to produce positive and the other negative work, with energy cycling
between two motors. As a result, energy is repeatedly lost in the transmissions. In a comparison
conducted in [22], it was shown that symmetric five bar legs have improved performance when it comes

to manipulability measures, [24].
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) five bar
two-segment “pantograph” five bgr parallelogram
prismatic leg leg leg symmetric leg leg

Figure 1-1. Alternative quadruped robot legs.

Figure 1-2. Left to right, the Quadruped, [25] and Scout Il, [26] quadruped robots.

Figure 1-3. Left to right, the StarlETH, [14] and HyQ, [15] quadruped robots.
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Leg proportioning refers to the relative length of the leg segments with respect to the total leg
length. Many teams have chosen leg lengths and their proportions based on biological data. The
proportions of the Cheetah Cub robot leg were taken similar to those of small cat like animals (felidae),
from data presented in [27]. The HyQ team decided on their robot’s leg length, based on observations
from dog and horse breeders, [28]. To their words in [15], [comparing body length with leg length], “A
square shape seems to be a good compromise between agility, endurance and strength to carry loads.”
The proportions of the leg were taken equal for the sake of simplicity. The leg segment lengths of
ScarlETH, the monopod predecessor of StarlETH quadruped, were chosen to be equal. The only
explanation found in published work for this choice is that, “With segment lengths of 0.2 m the final
prototype is compact, lightweight and can thus be handled safely by a single person, yet is strong
enough to carry various sensor units.”, [29] and also referring to StarlETH this time, “With a body length
of about 0.5m, segment lengths of 0.2m, and a total weight of 23kg, this robot has roughly the overall
dimension of a medium-sized dog”, [14]. Other teams have devised different methods to determine the
leg length of their quadruped robot. Chatzakos investigated the role of leg length (prismatic legs) in the
specific resistance of locomotion (a metric of consumed power for running in a particular speed) for the
bounding gait, [30]. The MIT Cheetah team, decided upon fixed leg proportions, but adjusted the
shoulder height based on a force map method, in which the leg was decoupled from the body, [31]. The
proportions of the five bar leg of the Super Mini Cheetah, where selected taking into account the desired
leg workspace and a Jacobean based estimation of the necessary ground forces for running, [20]. The
proportions and leg length of the MiniTaur, were chosen to optimize proprioceptive sensitivity, force
production and thermal cost of force (Jacobian based manipulability metrics), in a wide portion of a
selected workspace. Also in this case, the leg was optimized decoupled from the body.

With the term leg configuration, we refer mainly to the orientation of the leg segments in the leg
chain, see Figure 1-4. Some works have been published on optimum leg configuration, mainly for two-
segment and three-segment legs. For trotting robots with two-segment legs, it was suggested that the
orientation of the knee joints of the front and the back legs inwards improves self-stability by reducing
pitching moments [32], [33]. With the consensus used, the knee joint is the rotary joint connecting the
proximal to the body leg segment, with the distal to the body leg segment, for the two-segment leg.
Furthermore, in [34] again for a trotting gait, it was observed that centrosymmetric joint configurations
(both knee joints pointing inward or outward) are beneficial for slippery terrain and can improve stability.
Apart from reduced pitching angles, elbow and knee joint inwards orientation, is considered to result in
smaller roll angles during trotting, [35]. In [36] knee forward and knee backward configurations (pointing
backward or forward with respect to the direction of the motion) of a free falling two-segment planar leg
model were compared, with criterion the impact losses during collision with the ground. The paper
concluded in favor of the knee backward configuration. Based on findings from [33], [34] the HyQ team
decided on a knee inward or X configuration (knee of hind leg pointing forward, knee of front leg pointing
backward) as in Figure 1-3. The StarlETH team on the other hand, due to lack of experimental evidence

was not convinced on the validity and generality of the above results and conclusions, as to their words
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“To our best knowledge, experimental studies with a sophisticated platform are still missing”, [14]. That
led the team to decide upon a modular leg design, so that every leg can be placed in any of the two
possible configurations. For the three-segment leg model, the configuration is based on biological data
collected utilizing cineradiography on therian mammals. A detailed review is presented in [37]. While
the legs of therian mammals consist of many segments and joints, it is suggested that only three
segments per leg contribute mainly to the kinematics of the forward progression, the thigh, shank and
a third element that consists of the foot and toes for the hind leg and the scapula, upper arm and a third
segment that consists of the lower arm and the hand for the front leg, see Figure 1-5. The Cheetah Cub
and MIT Cheetah Il have legs with the shoulder/knee joint pointing forward and the ankle/elbow joint
pointing backward, see Figure 1-6. Finally, to the best of our best knowledge, five bar leg configurations
are mainly found in a joint outwards configuration to avoid collision while the legs are compressed, see

Figure 1-7.

Y

4>
direction
of motion
two-segment leg two-segment leg “pantograph” leg “pantogrgph” leg
knee forward knee backward popular leg alternative leg

confiquration configuration

Figure 1-4. Leg configurations of the two-segment and the “pantograph” leg.
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Ankle joint
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Toes Hand (including toes)

Figure 1-5. Representative leg configuration for therian mammals. Image originally shown in
[37].
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Figure 1-6. From left to right, the Cheetah Cub [38] and MIT Cheetah Il [39] quadruped robots.

Figure 1-7. From left to right, Super Mini Cheetah, [40] and MiniTaur, [41] robots.

Early studies in legged locomotion [42] - [43], revealed the elastic behavior of legs. As every leg
contacts the ground, it gets compressed and decompressed similar to simple spring mass oscillators.
Today, the issue of elasticity/compliance in legs is dealt mainly with two different approaches; either by
utilizing passive elements (springs) in the leg structure or by active compliance control of the actuators,
[44]. The first approach poses the advantage that part of the necessary energy for locomotion, is stored
as elastic potential energy in the system and is recirculated as passive elements compress and
decompress, thus reducing the energy requirements of actuation. Furthermore, passive elements also
act as shock absorbers during leg collision with the ground, protecting the actuation and transmission
mechanisms. On the downside, passive elements introduce passive dynamics and low-frequency
resonant modes into the system and therefore have to be tuned for a certain task. The second approach
overcomes this obstacle, as the damping and the stiffness of the legs joints are determined by software.
As a result, the compliance of the leg can be tuned for different tasks, restricted only by the actuators
specifications. Nevertheless, the energy consumption in this approach is increased, as the necessary
energy for the locomotive task is provided exclusively by the actuators. Moreover, it is reported that
active compliance control in high speeds can only be achieved with actuators with low transmission
ratios, as high transmission ratios increase the actuators passive impedance and backdriveability is
reduced [45]. The HyQ, MIT Cheetah II, Super Mini Cheetah and MiniTaur quadruped robots have
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actively compliant legs. Quadruped robots such as Quadruped, Scout I, StarlETH and Cheetah Cub
on the other hand utilize passive elements in their leg structure.

The most common approaches in the application of passive compliance, are series elastic
actuation (SEA) and parallel elastic actuation (PEA), see Figure 1-8. Actuation in series with a spring
offers the following advantages: it increases actuation shock tolerance, provides torque-force tracking
capabilities and reduces mechanical impedance, making possible to achieve force control on actuators
with sifnificant transmission ratios, and absorbs power during stance phase, releasing it later in the
stride cycle, [46]. Actuator inertia is suggested to not add to the joint inertia during collision (elastic
energy is stored at the elastic element in series instead), and thus does not contribute to the collision
losses. Nevertheless, SEA affects the response of the leg. High leg stiffness on low robot speeds,
produces high roll and pitch movements that destabilize the quadruped, while low leg stiffness
combined with high speeds causes legs to collapse, [19]. This creates the need for variable stiffness
SEAs, which are rather complex and massive [47] - [48] for use on electrically actuated legs, where
inertia should be reduced as possible. Solutions have been sought in nonlinear rubber springs, but
while they reduce bulkiness, they introduce significant hysteresis, [49]. Promising also seems the use
of revolute spiral leaf springs as series elastic feet [50], although they need position regulation and are
rather heavy. Springs in parallel with actuation (PEA) are mainly used to cover actuation insufficiencies,
as spring torques add to the actuator torques. However, the springs counteract actuators during spring
excitation. Solutions have been sought by introducing mechanisms that unlatch the springs in parallel,
in cases where they counteract actuation work, [51]. Folkertsma et al, examining the impact that parallel
elastic elements would have on the MIT Cheetah leg, showed through simulation that they could lead
to overall power reduction up to 50%, [52]. A comparison conducted between SEA and PEA applied to
an electrically actuated monopod hopper [53], showed that the monopod hopping with SEA, needed

less positive actuator work and had smaller electrical losses than one hopping with PEA.

actuated link actuated link
Actuation
Actuation
base base
PEA SEA

Figure 1-8. Abstract depiction of Parallel Elastic Actuation (PEA) and Series Elastic
Actuation (SEA).
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Apart from compliance, actuation is also a matter of great interest. The main approaches for
actuating quadruped robots are hydraulic and electric actuation. Among the advantages of the electric
motors in comparison with hydraulic actuators are their ease and accuracy of control, their low cost and
the variety of available sizes and specifications, [15]. Their main drawback is presented to be the small
torque they can produce in comparison with their size and weight, a trait that makes necessary the
introduction of high reduction ratios through gearboxes. Reduction gears introduce undesired friction
and increase the actuators’ passive impedance that makes the motors non-backdrivable. State of the
art solutions have been proposed by the MIT Cheetah and the ANYmal teams. The MIT Cheetah team
studied and optimized the role of the gap radius in electromagnetic motors resulting in the construction
of a low transmission high torque motor, [45]. The ANYmal team based on the actuation architecture of
StarlETH, created the ANYdrive compact series elastic motors, [54]. On the other hand, as described
in [54], hydraulic actuators have by nature high power and torque density and show great robustness
against impulsive loads. In the case of autonomous robots, it is important that power supply and
actuators can be compactly mounted on the robot. Electric motors can be supplied with power by
batteries, while the hydraulic actuators need a pump to provide pressure to the hydraulic oil and an
electric motor/battery setup or an internal combustion engine/fuel tank setup to supply the necessary
power to the pump. As a result, for hydraulically actuated robots scalability is a great challenge. To this
day, compact hydraulically actuated quadruped robots, as Spot or WildCat, are rather large, heavy and
noisy [55] - [56]. The rest hydraulically actuated robots, as HyQ and its successor HyQ2Max [57] rely
on off board supply.

Finally, the materials used in the construction of robotic legs are presented. Robotic legs should
be lightweight so that fast swinging can be achieved. The inertial properties of the leg are also
associated with impact losses during collision with the ground, as suggested in [10], [58]. On the other
hand, the materials used in the construction of the leg should be strong enough to withstand the
impulsive forces of ground contact, [59]. To deal with the trade-off of high strength and low mass/inertia
various materials are being used. The legs of the StarlETH quadruped are made from high tensile
aluminum, [14]. The ANYmal robot has legs made from carbon fiber and aluminum, [54]. Carbon fiber
tubes were used in the legs of the ATRIAS robot, [23]. The legs of MIT Cheetah were constructed by a
custom made composite material, consisting of a polyurethate foam core and a polyurethane casting
resin shell, [60]. HyQ and HyQ2Max legs were constructed by aerospace type aluminium and steel
alloys, [15], [57]. In smaller robots, such as Super Mini Cheetah, where strength requirements are not
so strict, 3D printed ABS is used, [20].

1.3 Thesis Outline

In the following chapters, the approach adopted in this thesis regarding the appropriate leg design for
high speed quadruped robots is presented. Along with the first introductory chapter, where the

motivation of this work and previous work is discussed, the thesis is structured in six chapters.
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In the second chapter, the descriptions used for the modelling of the physical system are
presented. These refer to the gaits adopted for quadrupedal locomotion, the interaction of the
guadruped robot with the traversed terrain, the profile of the forces exerted from the ground to the legs,
the leg architecture and the quadruped robot. Moreover, the constraints incurred from the actuation
system and the selected leg materials are described.

In the third chapter, the devised leg design methodology is described. The inputs, the outputs and
the three parametric search stages of the method are explained. In the first stage the optimal footfalls
and robot CoM trajectories for the motion of the quadruped are found. The description of the second
stage follows, where permissible leg morphologies are found that satisfy actuation and leg material
constraints. The third (outer) stage is explained, a stage where the parametric space of running task
related parameters is spaned.

In the fourth chapter, the method is implemented for different gaits and leg configurations. The
effect of these aspects in the maximum achievable velocity of locomotion is investigated. For the set of
optimal parameters corresponding to the gait and leg configuration maximizing velocity of motion the
results are validated, using independent to the method models and controller.

In the fifth chapter, the method is applied to yield the optimal gait and leg configuration for the
existing actuation system of the NTUA Laelaps quadruped robot. Cases are studied regarding to which
motor should act on which joint. A tipover stability criterion is presented and optimal solutions for three
dimensional stable movement are presented. Furthermore, the role of supplementary motor reduction
is investigated in the ability of the robot to run faster.

In the last chapter, the conclusions of the thesis are summarized and future work is suggested.
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2 Physical system

2.1 Introduction

In this chapter, the necessary theory to understand the developed method is presented. Firstly, the
reader becomes familiar with the running task and its properties. Next, since legged locomotion requires
interaction with the ground, a proper leg - ground force interaction model is proposed. Existing leg
architectures are compared and a proper conceptual design for the running task is selected. With the
conceptual leg architecture available, the extensive quadruped robot model is introduced and its
equations of motion (EoM) are derived. A simplified centroidal dynamics analog of the extensive model
is also presented. The simplicity introduced from the centroidal dynamics description is necessary for
optimizing the running task. For this description, necessary conditions for steady state running are
explained and applied. Closing the chapter, the inverse kinematics relating the quadruped robot center
of mass (CoM) and the toes of each leg are presented, and the running task is seen from the scope of
leg joint space. Finally, the actuation constraints are presented and related with the joint space task of

running.

2.2 Therunning task

The task of quadrupedal locomotion can be approached from two different scopes. The scope of each
leg and that of the quadruped robot as a system. From the scope of the leg, the locomotion task consists
of successive stance and flight phases. During the stance phase, the end effector of the leg remains in
contact with the ground, as the leg pushes the body forward. The flight phase begins when the leg takes
off from the ground. After take off, the leg shortens creating a clearance necessary to avoid collision
with the ground and the leg is protracted forward. At the end of the flight phase, the leg once again
comes into position to attack the ground, see Figure 2-1. Positions p, to p, correspond to leg touch
down, midstance, take off, midflight and second touch down. The second touchdown denotes the
completion of the stride circle. In steady state locomotion, the stride is a periodic phenomenon with
period, T . The ratio of the time Jt; a leg is in contact with the ground in a stride (stance phase

duration) over the stride period is called duty factor ( DF ) of the leg,

st
DF == 21
T (2-1)

For a multi legged system, the temporal/local sequence in which the legs touch the ground
determines the chosen gait for locomotion. To visualize the sequence of leg contact, gait graphs are
drawn that depict the time a leg spends in contact with the ground, over the stride period, see Figure
2-2. Legs are named with a two letter abbreviation after their Hind-Front and Right-Left position. For
instance, we refer to the hind left leg with the abbreviation HL. Mammals utilize different gaits for forward
movement, depending on the species and the velocity of movement, [61]. In small to medium velocities,
bounding, pacing and trotting gaits are common. For greater speeds, rotary and transverse gallop are
utilized, [62] - [63]. A more detailed description of various quadrupedal gaits with their spatial/temporal

properties is provided in [64].
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Figure 2-1. Stance and flight phase of a simple prismatic leg.

HIND HL |
T
FLT [ Z
y HL FR+ L
}/]\x HR oL HR ]
FR 0 0.5T T
(@) (b)
HL ] HL A
FL % FL+ [
FR+ l/ FR |
HR+ L HRT |
0 0.5T T 0 0.5T T
(€) (d)
HLA ] HL+
FL+ r—1 FL+
FR+ A FR+ 1
HR _ L] HRT _ )
0 0.5T T 0 0.5T T
(e) (f

Figure 2-2. (a) Front, hind, left and right leg consensus. (b) to (f) Gait graphs of bounding,
pacing, trotting, rotary and transverse galloping gaits.
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Gaits can be further distinguished into statically and dynamically stable, [42]. If during a stable gait,
there are at least three contact points between the legged system and the ground, then a support
polygon is created from the points of contact. If the projection of the CoM of the legged system is
situated into the support polygon then we refer to the gait as statically stable. If the projection of the
CoM is not situated into the support polygon or no support polygon can be drawn (less than three
contact points) then we refer to the gait as dynamically stable.

Legged locomotion is a three dimensional phenomenon, that takes place in the sagittal, transverse
and frontal plane, see Figure 2-3. In this work though, we will be studying quadrupedal movement
without turning (no yaw). Furthermore, proper gaits out of the aforementioned can be selected, for which
the movement in the frontal plate (roll) is insignificant in comparison with the movement in the sagittal
plane (pitch). For these gaits, the dynamics of the robot’s forward locomotion are much simpler, as they
are expressed exclusively in the sagittal plane. Such a requirement can be satisfied if during stance
phase one left and one right leg are in contact with the ground simultaneously, as in the case of the
bounding and the trotting gaits, see Figure 2-2 (b), (d). In the bounding gait, both front or both hind legs
are in contact with the ground simultaneously. In the trotting gait, a pair of diagonal legs (HL-FR pair or
HR-FL pair) are in contact with the ground at the same time.

As locomotive speed increases, a legged system transits from walking to running. Transition from
walking to running seems to be coupled with a decrease in DF. It is suggested that walks have a duty
factor greater than 0.5 per leg, while runs have a duty factor smaller than 0.5 per leg, [64]. As a result,
there exist phases in running where no leg is in contact with the ground, the so called full flight or ballistic
phases, see Figure 2-2 (e) and (f). Other researchers have supported that using DF as a criterion for
transition from walking to running is unsafe, [65]. To their opinion, a safer criterion is the position of the
CoM of the system at the moment of midstance. If at midstance the CoM is situated at its highest, then
walking is performed. If, on the other hand, at midstance the CoM is situated at its lowest, then running

is observed. In this work, running is defined using the midstance CoM position criterion.
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Figure 2-3.  Sagittal, frontal and transverse planes.
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2.3 Interaction with the ground

As explained in the previous section, the locomotive task is a sequence of leg stance and flight phases.
In this section, we focus on the leg - ground interaction during the stance phase. Every time a leg
touches the ground, forces are applied from the ground to the leg. The ground forces are manipulated
by the legged system, in order to support its weight, stabilize its pitching movement and push itself
forward.

The ground forces that are of importance for sagittal plane movement are the horizontal force F,;
and the vertical force F, ; exerted to the i -th leg in contact with the ground, for i e{l,2,3,4}. Subscript
i =1 corresponds to HL leg, i=2 to FL leg, i=3 to FR leg and, i =4 to HR leg. As contact events
have very short duration, the nature of the ground forces is impulsive. That is supported from
experimental data taken from running quadruped mammals, [59], [63] and running quadruped robots,
[45], [60], [19]. The great applicability of the Spring Loaded Inverted Pendulum (SLIP) model, [42], is
partly owed to its ability to accurately predict the form and magnitude of the ground forces applied to
compliant legs. In all these works, the vertical force has a profile similar to a sinusoidal impulse, while

the horizontal force has a decelerating - accelerating role, see Figure 2-4.
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Figure 2-4. Evolution of ground forces with time for a single leg. (a) Measured forces from
running dogs, [59] (b) measured forces applied on aleg of the MIT Cheetah, [60], (c) forces from
a SLIP leg based quadruped model, [66].

For this reason, the ground forces were modeled in the form of sinusoidal functions. With the
assumption that ground forces are equally distributed to all legs, the vertical force exerted to the i-th
leg is described as a sinusoidal function with argument lying in [0, 1] (half sine impulse),

Fy’i (t)= Fy’max sin(a)y’it + (py'i) (2-2)
and the horizontal force as a sinusoidal function with its argument lying in [, 31] and two times greater

circular frequency compared to that of the vertical force,
Fx,i(t) = Fx Sin(a)x,it+¢)x,i)1

,; = 2a)y’i

e (2-3)
If the i-th leg touches down at the time instant t,,; and takes off at t, ; , with the duration of the stance
being for all legs equal to Jt, then the phase differences and circular frequencies of the sinusoidal
ground forces can be found with respect to t,;, t,;, ot . Applying boundary conditions for the

horizontal force F,;,

29/142



oty Q=7

(2-4)
a)x,itto,i + (Dx,i = 3”
Solving the system of egs. (2-4),
o, __ 2z _2m (2-5)
tro,i _ttd,i 5ts
7wty —3ty,) 7(t,; —3ty;)
¢X'i - to, ttd, — 1o, ttd, (2'6)
tto,i _ttd,i 5ts
Boundary conditions are also applied for the vertical force F ;,
oty +¢,; =0
ey (2-7)
a)y,itto,i + ¢y,i =7
Solving the system of egs. (2-7),
T w
0, =—=— (2-8)
g tto,i _ttd,i é‘ts
—7ty —7ty
q)y'i — td, — ttd, (2_9)
tto,i _ttd,i é‘ts

Employing the standard Coulomb friction model, for a leg to remain in contact with the ground without
slipping, (2-10) must hold, where u is the Coulomb friction coefficient. For (2-10) to hold throughout

the stride period, an upper bound (subscript ub) (2-11) is set for the horizontal force amplitude,

Foi®) < uF () (2-10)
Fx,max < Fx,ub (2'11)

Introducing the parameter a,,, inequality (2-11) is expressed in the form of an equation,
Fx,max = afx Fx,ub' a‘fx € [0’1] (2-12)

2.4  Leg architecture

As it became obvious in Section 1.2, various leg architectures are being used in literature for quadruped
robots, each posing its own advantages and disadvantages. Before the leg architecture is decided,
proper requirements should be set for the different parts of the legs: the joints and the links. Since the
purpose of this work is to enhance the performance of the quadruped robot Laelaps in running, the
parts of the leg should be strong enough to withstand the impulsive ground forces during stance phase,
yet lightweight so that the leg inertia remains low and high accelerations can be achieved during leg
swing in stance phase without much effort from actuation.

The leg joints are the elements through which the different links of the leg interact. From an abstract
point of view, joints that are used for the cooperation of two links consist of three parts. One part where
the first link is secured, a second one where the second link is secured and an intermediate part
responsible for the non frictional cooperation of the other two parts, usually in the form of a bearing. For
the three parts of the joint to cooperate without undesired oscillations and friction, they should have
proper morphological and dimensional precision. If the desired cooperation is established, the materials
of the cooperating parts should be robust (non-compliant) enough for the quality of the cooperation to

remain intact after many cycles of use. A class of materials that satisfy these requirements of strength
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and robustness, can be machined to the necessary precision, but are also lightweight enough for
application in robotic legs is the aerospace aluminium alloys class. A representative example for this
class of alloys is the 7075-T6 aluminium alloy, the properties of which are to be used for estimating the
mass of the joints in this work, see Table 2-1.

The links of the leg determine the proportions and the total leg length. The links of the legs, apart
from strong and lightweight, should also be easily interchangeable, so that the results proposed in
theory and simulation can be tested in hardware without much reconstructing effort. Standardized
products that meet the above requirements are carbon fiber tubes. Carbon fiber tubes are of low cost
and available in many different standard sizes and with alternative specifications. Successive tube sizes
can be used one inside the other to achieve the desired strength. The remaining hollow space on the
inside can accommodate returning cables from sensors and encoders, leading to compact solutions.
For all the above reasons, the geometry and properties of carbon tubes are to be used for estimating
the mass and introduce strength constraints in the models to follow. The strength and density values of
the carbon fiber tubes of Table 2-1 were experimentally specified, see Appendix A.

As the joints are the most heavy parts of the leg mechanism, the least number of joints should be
selected that accommodate the needs of the leg. Among the alternative leg architectures (Figure 1-1),
articulated legs pose an advantage in comparison with prismatic legs, when it comes to ground
clearance. From the articulated legs, the most lightweight solution is the two-segment leg, as it consists
of the least number of joints. Electric direct current (DC) motors are used for actuation, as it's been
observed from literature that electrically actuated robots are lighter, more easily scalable and less noisy
than their hydraulic analogues. Both electric motors necessary for the actuation of the two-segment leg
are mounted on the robot’s body (base), to make the legs lighter. A prismatic compliant joint is added
at the most distal leg segment, to protect the mechanical parts (motors, transmissions, etc.) from the
impulsive forces of ground interaction. In this way, the safety of the mechanical parts of both actuated

joints is ensured, to the expense of the mass of the compliant element, see Figure 2-5.

Table 2-1. Materials used for modeling the structural parts of the legs and their properties.

Leg structural part Material density yield strength
[kg/m?3] [MPa]
joints 7075-T6 2810 430
links carbon fiber tubes 1466 200
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Figure 2-5. Abstract depiction of the two-segment leg selected architecture interacting with
the ground.

2.5 Quadruped robot dynamics

Based on the leg architecture proposed in the previous section, a quadruped robot model for movement
in the sagittal plane is introduced, see Figure 2-6. The position of the body CoM is situated at (X, Y)
with respect to the origin O. The pitch angle of the body is described by the variable 6 . Each leg has
three joints; a rotary hip joint which position is described by variable &,;, a rotary knee joint with
respective variable 6,; and a passive compliant prismatic joint related with joint variable I2,i . Note that
lines (3), () are parallel and at an angle @, so that joint angles 6,;, 6,; are angles relative to the body.
The joints described by 6,; and 6,; are actuated with the torques 7,;, 7,;. The interaction of the i-th
leg with the ground is modeled with the use of the ground forces. When the i-th leg is in contact with
the ground, the sinusoidal ground forces (2-2), (2-3) are exerted to the end effector of the leg (toe). In
such a manner, the state vector necessary to describe the system is written as,

q :[X y o 91,1 92,1 |2,1 91,4 ‘92,4 I2,4 01,2 ‘92,2 Iz,z 91,3 ‘92,3 Iz,s]T (2-13)

Figure 2-6. Quadrupedal robot model.

The robot body has mass m, and inertia |, and the distance of any hip joint from the CoM of the
robot body is d.The body is considered rectangular, with length a and height b . In this way the

moment of inertia of the body is calculated as,

32/142



1
L, :Emb(az +b?) (2-14)

The model of the i-th leg consists of two segments. The proximal to the body segment has length |,

inertia 1, and mass m, at distance |, from the hip joint. The distal to the body segment is compliant

cml

with stiffness K , free length 1., inertia I,; and mass m, at distance | from the knee joint. Note

cm2,i

that the leg specific index i is used for properties that vary among different legs for the same time

instant. All leg segments are considered tubular, with outer diameter d ,, inner diameter d,, and

out ?

density p, see Figure 2-7. The mass of the proximal link m, consists of half the hip joint mass m;, /2

and half the knee joint mass m;, /2 and the mass of the tubular link m,,,

m. m.
meg M
g (2-15)

Zout ~ Tin |
1

my, = p7 4

The mass of the distal link m, consists of half the knee joint mass m;, / 2, the spring mass m,, the toe

mass M, and the mass of the tubular link m,,,

m;,
m, =—=+m +m, +m,
2

- (2-16)
m, = pr Om4 =y
b/2
d
d
m, my 1

Section A-A

out

Figure 2-7. Inertial properties of lumped model.

From the distribution of the masses along every link, the distance of the CoM of the first link from the

hip joint l.,, and that of the CoM of the second link from the knee joint | are calculated as,

m.
mlll—l+—’zl1
o2 2 @1

cml
ml

cm2,i
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s ot mtlz,i
lemai = m (2-18)
The moments of inertia with respect to the CoM of the tubular leg segments are calculated as,
1
I, = 5 m,? (2-19)
1
i = Ml (2-20)

The actuators are modeled as DC motors with transmission ratio n; and rotor inertia 1; (j=1, 2) and
they are considered to be mounted on the body to make the legs lighter.

Having explicitly determined the state variables ( and the dynamical properties of the system, we
proceed to formulate the system’s EoM, following the Euler - Lagrange formulation. From forward
kinematics, the positions of the lumped masses are related to the state variables. The absolute

coordinates of the hind hip joints (i e {1,4}) are,

X,; = X—dcos(d) (2-21)
Yhi =Y —dsin(0) (2-22)
The absolute coordinates of the front hip joints (i €{2,3}) are,
X,; = X+dcos(d) (2-23)
Yhi =Y +dsin(0) (2-24)
The CoM of the proximal leg segment of any leg is situated at (X;,Y,;), where
Xpi = Xpi I SIN(O + ‘91,i) (2-25)
Yii = Yhi —lom €OS(O+6;) (2-26)
The CoM of the distal leg segment of any leg is situated at (X,;,Y,;) , where
X =Xy +1,sin(@+6,;)+1,,;8in(@+6,;) (2-27)
Yoi = Yni —hcos(@+6;;) -1, cos(6 +6,;) (2-28)
The position of the toe for any leg is described by,
X;i =X, +1,sin(@+86,;)+1,;sin(0+6,;) (2-29)
Yei = Yni —hcos(@+6,;)—1,;cos(6+6,;) (2-30)

Then the kinetic energy of the system is written in the form,

1, ., 1 2. L1 5 1 .
T :E 1,0° +§mb(xz + y2)+2[§(|1 +n; Irl)elz,i +§m1(xl,i2 + yl,i2)+
i1

1 L (2-31)
+E(|2,i +n; Irz)ézz,i +§mz ().(z,i2 + y&,f)}
The potential energy of the system is calculated as,
2 1
U, =mgy+ Z[ml,igyl,i + M, 0¥, +5kf5l§,i} (2-32)
i=1

where § is the gravitational acceleration and &1, is the deformation of the passive element defined

as,
Ol =1 —ly (2-33)

The Lagrangian is calculated from the difference of the kinetic and the potential energy,
L=T, -U_ (2-34)

34/142



The power from actuation torques and external forces are expressed in the form,

4 . .
P= Z[Tl,ial,i + Tz,iez,i +G (Fx,ixt,i + Fy,iyl,i)] (2-35)
i=1
where ¢, is a variable equal to 1 when the I -th leg is in contact with the ground, and O otherwise,
L tety b,
¢ = [t o (2-36)

0, te[0,T] [ty ty; ]

The EoM are then calculated from Equation (2-37),

d(oL) oL _oP (237
dtlogq) oq aq
Finally, following the Euler - Lagrange formulation the EoM are written as,
Mg +Ca+Kg+J'F=[0 =] (2-38)

where M is the mass matrix of the system, C is the centrifugal/Coriolis terms matrix, K is the
stiffness matrix, J is the Jacobian matrix of the legs, F is the vector of the external forces and = is the

actuation torques vector consisting of the hip and knee actuation torques 7,;, 7,; respectively.

2.6 Simplified centroidal dynamics

With the centroidal dynamics approach, the dynamics of the system are projected to its CoM, see Figure
2-8. This approach introduces great simplicity, as for the description of the system only the position of
the CoM, the orientation of the system and the position of the footfalls during locomotion are needed.
As the centroidal dynamics of the system are much simpler, the role of the ground forces and position
of footfalls in the periodicity of the movement gets explicit, and by tuning these parameters it is easy to

regulate the trajectory of the CoM of the robot.

Figure 2-8. Centroidal dynamics model and its properties.

In the literature, this approach has been used for CoM trajectory optimization and postural balance
control of humanoid [67], [68] and quadruped robots [69]. In the case of humanoid robots, much of the
robot’'s mass is concentrated at its limbs (arms, legs). Therefore, the posture of the limbs affects
significantly the position of the CoM of the system. On the other hand, in the case of performance
guadruped robots, the legs are lightweight in comparison with the main body. As a result, change of
posture of the legs during locomotion does not significantly affect the position of the CoM of the system,

and thus the formulation of the centroidal dynamics is simplified, [69]. With such an approach, the CoM
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of the quadruped robot coincides with the CoM of the quadruped robot’s main body at every time instant,
the mass m of the centroidal model is equal to the total mass of the quadruped robot and the inertia of

the centroidal model | is approximately constant and equal to that of the quadruped robot’s main body,
m=m, + Y (m;+m,,), I =1, (2-39)

The system is described by the position of the CoM (X, y) and the pitch angle 6 . With such generalized

coordinates, the EoM of the centroidal model are expressed in the form,

X=F /m (2-40)
y=F /m-g (2-41)
O=1,11 (2-42)

where F,, F, are the total forces and 7, is the total torque acting on the CoM due to interaction with

the ground defined as,

F, ZC, i (2-43)
F, ch ¥ (2-44)
Tg = Zciri xF-z2= Zci [(Xi - X)Fy,i -y — y)Fx,i] (2-45)

where the variable ¢; denotes when the i -th leg leg comes in contact with the ground, see (2-36), r is
the vector connecting the CoM position (X, y) with the position of the toe during stance phase (X;,V;),

F, is the vector of the horizontal and vertical forces F,;, F,; exerted on the i-thtoe and Yy, =0 with

Y.
the assumption that locomotion takes place on even terrain, see Figure 2-8.

To move periodically in the Yy and @ directions with a steady net horizontal velocity ( x direction),
the robot should have no net acceleration in any direction in one stride circle. This can be expressed in

terms of total forces and torques from ground interaction, in the form of Equations (2-46)-(2-48):

[ Fdt=0 (2-46)
:
jo F,dt =mgT (2-47)
IOT 7,dt =0 (2-48)

Combining Equations (2-3), (2-36) and (2-43), it becomes obvious that Equation (2-46) is satisfied by

the definition of the horizontal force,

0.i . Fx max 7 i Fx max 7
.[OT detzzilj't:i Fmex SIN(@, 1+ 0, )d ==w—2jj sm(go)d(/)zw’—[—cos((/))E =0 (2-49)

X,i 1 X,i

For the vertical direction, from Equations (2-2), (2-8), (2-36), (2-44), and taking into account (2-50),
T . foi .
X[ csin(oyt+g,)dt = Z L 'sin(e,t +¢,)dt =

—Zj:d|: cos(a,;t+o, ;) }dt ZJ.{ COS((D)} o= (2-50)

y,|

8st,

1 e
= w—Z[—COS(@]o =—=

yi v

Equation (2-47) is written in the form,
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8ot

Fymax — =mMgT (2-51)
V4
From which,
zmgT
= 2-52
Y8t ( )
Taking also into account Equation (2-1), the amplitude of the half sine vertical force is expressed as,
zmg
= —- 2'53
ymex = GDF (2-53)

Equation (2-47) is only a necessary condition for periodical movement. In order to ensure that the robot
moves periodically in a stride circle, also a supplementary condition is introduced, which requires that

the CoM of the robot body at the start of the stride is at apex,
y(0)=0 (2-54)

As a result, with zero initial vertical velocity (2-54) and no net acceleration in the Y direction (2-47),

periodicity in the Y direction in one stride is ensured,
y(0)=y(T)=0 (2-55)
y(0)=y(T) (2-56)
Finally, to ensure periodical movement in the € direction in one stride, we demand conditions (2-57),

(2-58) to hold.
6(0) =6(T) (2-57)

0(0) = 6(T) (2-58)
From Equation (2-45), it is clear that the coordinates of the footfalls are crucial for the satisfaction of
Equations (2-57), (2-58). Note that if this pair of equations is satisfied, no net acceleration in the 6

direction exists and thus Equation (2-48) also holds.

2.7 Inverse kinematics

Although the centroidal dynamics introduce great simplicity, they provide no information on the leg joint
variables during locomotion, see (2-40)-(2-42). Nevertheless, with the assumption that the CoM of the
quadruped robot, coincides with the CoM of the robot’s main body, by knowing the full geometry of the
robot between it's CoM and the toes and also the position of the toes, the leg joint variables can be
related with the variables of the CoM, through inverse kinematics.

The positions of the hind and front hip joints are related to the position and orientation of the robot’s
body through Equations (2-21)-(2-24). For each leg the position of its toe is related to the position of its
hip through Equations (2-29), (2-30). Let X, ;, Y, ; be the relative hip to toe coordinates defined as,

Xori = Xni — X (2-59)
Yiri = Yni = Yii (2-60)
then by replacing Equations (2-59), (2-60) in Equations (2-29), (2-30),
Xyri + i SIN@+6,;) =1 sin(@+6,;) (2-61)
Yiri — 1, c0S(0+86,;)=1,cos(0+6,;) (2-62)
Squaring,
[Xyi 41,800+ 6,) ] =[-Lsin@+6,) (2-63)
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[ Vi =, €OS(0+ 6, )T =[1, cos(6 + 6, )T (2-64)

Adding (2-63), (2-64) we result in,

ler,i + yﬁr,i + |22,i + 2%, i1, 5IN(0 + 6,;) — 2y, 31, cos(0 + 6,;) = 17 (2-65)
. 17 =X s = Yors = b
Xo i SINO +0,,) = ¥y, COS(O +0,;) = : ol : : (2-66)
2,i
Xpe i SIN(O +6,;) = Yy €OS(O+6,;) =@y, ; (2-67)
where a, ; is defined as,
|2_X2 o 2 ) _IZ_
ahri — 1 hr,i yhr,l 2,i (2-68)
’ 21,
Let ¢,; be,
P =0+0,, (2-69)
Then from trigonometry,
2tan 72
sing,; = — 2 (2-70)
1+ tan? 721
2
1-tan? %21
COs gy, = ——2- (2-71)
1+ tan? P21
2
Replacing (2-69)-(2-71) in (2-67),
(yhr,i — 8 ) tan’ % + 2th,i tan % “ Yo T8 = 0 (2-72)
Solving this second order polynomial w.r.t. tan(e,; / 2),
i _2Xrii 4eri+4y2ri_4a2ri _Xrii eri+y2ri_a2ri
tan&Z hr. \/ hr. hr. hrio_ T \/h' . i (2-73)
2 2(Yhei — Qi) (Yori = @)
where
ler,i + yﬁr,i - alfr,i >0 (2'74)
Replacing (2-69) in (2-73) and solving w.r.t. variable 6, ;,
Hz,i = 2atan 2[_th,i * \/Xsr,i + yﬁr,i - aﬁr,i v Yhri ) J -0 (2-75)

Note that the solution with the positive sign corresponds to the knee backward configuration and that
with negative sign to a knee forward configuration. Solving Equations (2-61), (2-62) w.r.t variable 6, ;,
6, =atan2[ =X, ; —l,;SiN(0+6,;), Yo; —lp;COS(O+6,;) |- 0 (2-76)
Inequality (2-74) ensures that the toe remains in the workspace of the leg with segment lengths 1, |, ;.
Substituting (2-68) in (2-74) and factoring we obtain,
[ + Vo = (=) ][00+ Vi )+ (L +1,)° |20 (2-77)
Solving inequality (2-77), we obtain the pair of inequalities (2-78), which describe the workspace of the

leg as a bounded annular area, with inner radius [l, -1, ;| and outer radius I, +1,;.
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(I, - I2,i)2 < ler,i + yr?r,i <+ |2,i)2

2 2
=1, 1< N Xhei t Yhe <l +1,;

From the inverse kinematics Equations (2-75), (2-76), the joint angles &,;,6,; are related through the

(2-78)

instantaneous leg geometry |, , l,; to hip to toe relative coordinates. Thus, even though the centroidal
dynamics are described only by the position of the CoM and the orientation of the robot’s body, through
inverse kinematics, also information regarding the leg joint variables during locomotion becomes

available, if the position of the toes at every time instant is given.

2.8 Hardware constraints

To further approach reality the physical system described in the previous sections is subject to realistic
hardware constraints. The hardware constraints presented here are divided in leg strength constraints
and in actuation constraints. Leg strength constraints refer to the constraints in strength introduced by
the material and the geometry of the tubular leg segments. Given a material for the leg segments, the
leg strength constraints determine the permissible leg segment length and cross-sectional area.
Actuation constraints, on the other hand, are related to the thermal constraints of DC motors and
strength constraints of their gearbox. Actuation constraints are expressed in terms of maximum values
for the actuation torques and angular velocities, which must not be exceeded to avoid damage in the
actuation system.

The leg segments are stressed during stance phase, when the impulsive ground forces are exerted
to the leg. Ground forces have a compressive component acting on the longitudinal direction of each
leg segment F, and a shear/bending component acting on the direction vertical to the leg segment F,.
Those two components are found by projecting the ground forces on the directions collinear to each leg
segment f, and vertical to each leg segment V , see Figure 2-9. With the assumption that the weight
of the leg segments are insignificant in comparison to the ground forces, the forces applied on the
proximal leg segment are approximately the same with the forces applied to the toe and equal to F,;,
F

yi®

Figure 2-9. Positive directions f, V and the forces applied on the leg segments.
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Projecting the ground forces on the [ and V directions for the proximal to the body leg segment,

F. =F.sin(@+6,;)-F, cos(0+6,;) (2-79)
Faii=F,cos(@+6;)+F, sin(@+6;) (2-80)
and for the distal leg segment,
F.i=F.sin(@+6,,)-F, cos(@+6,,) (2-81)
F.i=F.cos(@+6,,)+F sin(@+0,,) (2-82)
Let A, I, be the cross-sectional area and the second moment of area of the tubular leg segments
defined as,
T
A=7 (05, —dy) (2-83)
T
| =57 o — ) (2-84)

Then the compressive stress o, the shear stress 7, and the bending stress g, on the j-th leg
segment j e{l,2}of the i-th leg ie{l,2,3,4} are found by Equations (2-85)-(2-87).

Copi = —F'Ki (2-85)
Fuji (2-86)
Ts,ii = -
A
M, d
Oy ji = I‘“’ = (2-87)

a

is the bending moment of the vertical to the ] -th leg segment force component F,

v, ji?
M, .. =F I (2-88)

Vv, it

where M, ;.

b,j,i
The equivalent normal stress on the cross-sectional area of each leg segment is:
Gl +[owsi] (2-89)

Oniji =

To respect the strength constraints of the tubular leg segments, the equivalent nhormal and shear
stresses should be less or equal to the permissible values of the material,

c,u

St

Onji =

(2-90)
r < Ts.u

where S 7., are the ultimate compressive and shear strengths of the material of the leg segments

cur Tsu
and s, is a user defined safety factor.

The constraints of the actuating DC motors are divided in thermal and strength constraints. To
better understand the purpose of these constraints, the basic principles of DC motors are explained
briefly. The torque of a DC motor 7,, is directly analogous to the intensity of the current i, on its field
windings [70],

7, =K, (2-91)
where K; is the torque constant. The power of the thermal losses on the field windings B, is
analogous to the square of the current ij ,

P, =i’R (2-92)

a
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where R is the resistance of the field windings. As thermal losses increase, so does the temperature
of the field windings. To protect the circuit of the DC motor from overheating, maximum permissible

continuous and short term values for the current are introduced, i, and i corresponding to

a,st ?
maximum permissible continuous and short term torques 7, ., and 7, g,
T = Kql (2-93)

(2-94)

act
Tist = K, o
To increase the output torque of a DC motor without increasing the current on its windings reduction
mechanisms such as gearboxes are used. The reduction mechanism, reduces the output angular
velocity of the motor n, times (reduction ratio) and since the total power of the DC motor is constant,

the output torque is increased correspondingly by n, times, see Equations (2-95)-(2-97).

Hm,out = ém,in /nt (2'95)
Tm,out = Iﬂ"rrm,in (2'96)
Pm = Tm,out ém,out = z-m,in H.m,in (2'97)

Nevertheless, the reduction mechanism consists of mechanical parts (bearings, gears) that should be
protected from overstressing. Therefore, maximum permissible output torques and angular velocities

are set for the exit of the gearbox r,,,, and émax . As a result, a total maximum short term torque should

max

be allowed at the exit of the reduction, so that the DC motors system is protected from overheating and

overstressing,

Ty =MIN(NT, o) Tray) (2-98)
The permissible continuous torque is also calculated at the exit of the reduction,
Ty =T (2-99)

By applying these upper bound values to the torques and angular velocities of the quadruped robot’s

leg joints,
0,; <Opj» t€[0,T]
7 <7y tel0,T] (2-100)
rms(z;;) <7, te[0, T]
where
rms(z;;) = \/% (5 +Th+ et Ty) (2-101)

and N is the number of sampling points of the torque 7;; inthe duration of a stride period T.

By defining the hardware constraints, (2-90) and (2-100), the description of the physical system is
concluded. The gaits, leg architecture, dynamics, inverse kinematics and constraints applying to the
guadruped robot presented in this chapter, are to be used in the development of the leg design method

presented in the next chapter.
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3  Optimal Leg Design Method

3.1 Overview

Given some overall specifications for the quadruped robot’s inertial properties the purpose of the
developed method is to determine optimal leg properties (leg segment lengths, configuration, leg
segment cross sectional area and passive element stiffness) coupled with optimal gait properties (gait,
stride period, CoM apex running height and amplitude of horizontal ground forces), in order to achieve
maximum horizontal velocity. The method consists of one outer and two inner stages.

At the beginning of the method the gait is defined by determining the time instants of touch down
t,; and take off t_; of every leg. Furthermore, the initial conditions of the motion x(0), y(0), 6(0),
9(0) are set. These values are provided as inputs to the following stages. In the Outer Stage the gait
parameter space is spanned in the form of an exhaustive search and alternative gait parameters X(0),
y(0), a,, T are provided as inputs to the first and second inner stages.

In the first inner stage (Stage 1), using the centroidal dynamics of the robot, optimal footfalls X;
are sought through exhaustive search and optimization, which achieve periodical movement in one
stride for the robot’s CoM and minimization of the hip joint torques necessary to withstand the vertical
ground forces exerted on each leg. Stage 1 provides as outputs the optimal footfalls X, and the

optimized CoM trajectory of the robot, which are used as inputs to the second inner stage.

defineinit. | r———— -
conditions
x(0), 1(0),

i
|
00y 00y
|
define gait| | | CoM
lar Lo :
|
|
|

trajectory
Centroidal——»

| initial g dynamics
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|
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Figure 3-1. Flow chart indicating the discrete stages of the leg design method.

The main operation conducted in the second inner stage (Stage 2) is to exhaustively search the

leg parameters |, 1,k ,d,, , d

In?

ot for which the hardware constraints are respected. At the beginning
of Stage 2, a trajectory is determined for the toe of each leg to follow during flight phase. Thus, with the
position of the toe and that of the CoM determined throughout the stride, given the robot’'s geometry,

the leg joint trajectories can be calculated throughout the stride, using inverse kinematics. The joint
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trajectories are found for alternative leg parameters, and through the dynamics of the quadruped robot
the joint torques are calculated and the actuation constraints are evaluated. From the posture of each
leg and the forces exerted from the ground, the stresses applied on the cross sectional area of each
leg segment are calculated and subjected to the strength constaints incurred by the material of the leg
segments. If both actuation and strength constraints are satisfied, then the set of leg parameters |,
I
are saved. This procedure is repeated until the whole leg parameter space is spanned, concluding thus
Stage 2.

. K, d,,, d,, and the corresponding gait parameters x(0), y(0), a,, T that satisfy the constraints

When the whole gait parameter space is spanned, the outer stage comes to an end. From the
saved parameters that satisfy the hardware constraints, those with which the robot could run with

maximum velocity, is the set of optimum parameters.

3.2 Initialization

At the beginning of the method, the model properties, the initial conditions and the gait are defined. The
parameters intended for initialization and their respective description are presented in Table 3-1. Those
parameters determine the systems specifications and remain constant throughout the execution of the
algorithm. Note that the time instants defining the touch down and take off of each leg, (thus defining

the gait) are expressed as a percentage of the period,

ty %= t#-"100%

) (3-1)
to; %= t%‘100%

As a result, each time the period T takes a value in the following outer stage, Equations (3-1) are

solvedto t;, t;.

Table 3-1. Parameters and initial conditions determined in the initialization stage.

Parameter Decription Parameter Description
m [kg] overall mass of the robot b, [m] maximum leg clearance
d [m] half hip separation distance M Coulomb friction coefficient
g [m/s?] gravitational acceleration n, transmission ratio of the motor

acting on the j -th joint

a[m] height of the robot body I, ; [kg m?] rotor inertia of the motor acting on

the 7 -th joint

b [m] length of the robot body Ty.j [N/m] max permissible short term torque

on the j-th joint

I [kg m?] overall inertia of the robot Te.j [N/m] max permissible continuous torque

onthe j-thjoint

o [kg/m?] density of the leg segment’s O ; [rad/s] max permissible continuous

material angular velocity on the j -th joint
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Parameter Decription Parameter Description

S.. [MPa] compressive strength Ly % touch down time instant of the i-th

leg, as a percentage of the period

7., [MPa] shear strength toi % take off time instant of the i -th leg,
as a percentage of the period
S, safety factor x(0) [m] initial horizontal position of CoM
m;, [ka] mass of hip joint y(0) [m/s] initial vertical velocity of CoM
m;, [kg] mass of knee joint 6(0) [rad] initial pitch angle of centroidal
model
m, [kg] spring mass 0(0) [rad/s] initial pitch rate of centroidal model
m, [kg] toe mass

3.3 Outer stage

In the outer stage of the method, an exhaustive search takes place spanning the space of the gait
parameters X(0), y(0), a,, T . These parameters are provided as inputs to Stage 1 and Stage 2. The
exhaustive search taking place at this stage is shown in the form of pseudocode in Figure 3-2. The
subscripts Ib, Ub correspond to the lower and upper bounds determining the parameter space in which
the parameters were sought. At the end of every inner loop of this stage the sets of gait parameters
X(0), y(0), a,, T that satisfy the hardware constraints, and the corresponding sets of leg parameters
I, Ly, K, d

i+ o, found in Stage 2, which satisfy the hardware constraints are saved. Note that for
the same set of gait parameters, alternative sets of leg parameters may satisfy the constraints. The

1

outer stage is concluded when the whole gait parameter space has been spanned.

Quter Stage
for x(0)=x(0),,:dx(0):X(0),,
for T=T:dT.T,
for afx:afx,lb:dafx:afx,ub
for y(0)=y(0),,:dy(0):y(0),;,
Stage 1
Stage 2

Save parameters
X0), X0), ag, Tl) Ly k. d,,
for which constraints (2-90), (2-100)
are respected

end
end
end
end

Figure 3-2. Pseudocode showing the exhaustive search conducted in the Outer Stage.
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3.4 Stage 1: CoM trajectory and footfall optimization

In this stage, the positions of the legs’ footfalls are sought which optimize the trajectory of the robot’s

CoM, so that its movement is periodical in one stride and the hip torques necessary to withstand the
ground forces are minimized. The optimization procedure that takes place in this stage consists of two
steps. It starts with an exhaustive search step that narrows down the parameter space in which the
optimal values of X; lie. An optimization step follows, where the optimal values X; are found with fine
accuracy in the narrow parameter space of the previous step. If a single step gradient based
optimization was used instead of this two step approach, the algorithm would most probably converge
to a local optimum. In the remaining section, the role of the footfalls in the movement of the quadruped
robot is explained, the optimization problem is formulated and the two step optimization procedure is
thoroughly explained.

Since the locomotion of the robot takes place in even terrain (y, =0), the position of each footfall
is determined exclusively from its abscissa X; . The role of the position of the footfalls is twofold. On the
one hand, it regulates the pitch and pitch rate of the centroidal model, see (2-42), (2-45). On the other
hand, its distance from the respective hip determines the magnitude of the necessary torque to
withstand the vertical ground forces. An example is depicted in Figure 3-3, where for the same vertical
force F,, and traversed distance during stance ox, footfall X, constantly has a shorter moment arm
with respect to the hip joint than footfall Xi, thus resulting to smaller hip torques for the same ground

force.

FyJ Fy,l
xl -x]

Figure 3-3.  Alternative footfalls X, X, for the same traversed distance 5x and vertical force
F

yl

With the twofold role of the footfalls X; in mind, we proceed to find the optimal values X; , which
meet the following requirements; periodicity of movement in the 8 direction and minimization of the
horizontal moment arms from the respective hip joints at every time instant. To meet these requirement

a minimization problem is formulated,

minQ = |9(1)~60)-+ . (1) - 6@+, 3 [

X5 — X[t (3-2)

where W, W,, W, are the weighing factors of the optimized terms. The first two weighing factors W,
W,, are selected so that the first two terms are of approximately the same magnitude and the third

weighing factor W, is determined through trial and error. By minimizing the first two terms, we ensure
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that periodicity conditions in the @ direction (2-57), (2-58) hold. The minimization of the third term
ensures that the horizontal moment arms of the vertical force Fy,i from the hip joint at every time instant
are minimized, thus also minimizing the necessary hip joint torques. Note that the component of the
horizontal force F ; and the vertical moment arm |yh'i - yi| is not included in the hip joint torques, as
the vertical position of the hip joint y, ; depends on the height of running y(0) which is optimized in the
Outer Stage.

In the first step of the optimization procedure, an exhaustive search is conducted to narrow down
the parameter space in which the optimal footfall abscissas X; lie. At every loop of the exhaustive
search, the EoM of the centroidal dynamics (2-40)-(2-42) are solved, the position of the hip joints is
calculated from Equations (2-21)-(2-24) and the objective function is evaluated. At the end of the
exhaustive search (es) a crude estimation of the optimal footfalls X . is available. As this step
preceeds the optimization step, the requirement of this step is not accuracy but speed of solution. To
achieve this requirement the following measures are proposed. The footfall abscissas X; are sought in
a vicinity of the corresponding hip joints at the time instant of touch down X, ; (t, ;) , defined using the
half hip separation distance d,

X €%, (ty;)—d /2, x,,;(ty;)+2d] (3-3)
with discretization step dx; . Note that this interval is set through trial and error, so that no optimal value
X; ¢ IS truncated by its upper and lower bounds. At every loop of the exhaustive search, the EoM of the
centroidal dynamics are solved numerically using three point finite difference expressions for N = 100
integration points in the time interval [0, T]. A pseudocode example for the case of the trotting gait of
Figure 2-2 (d) is displayed in Figure 3-4. In this example, the leg pair {1, 3} is in contact with the ground
for the first half of the period (n=1:50), succeeded by the leg pair {2, 4} for the second half of the
period (n=51:100). In the beginning of the exhaustive search, given the initial position of the CoM
X(1) the abscissas of the hip joints X, ,(1), X, ,(1) are calculated from (2-21)-(2-24). Values are set for
X, X; in (3-3) and the centroidal dynamics EoM (2-40)-(2-42) are solved for the first half of the period.
The supplementary hip joint abscissas X, ,(50), x,,(50) are calculated from the position of the CoM
at the end of the first half of the period x(50), the boundaries of the intervals (3-3) are found, values
are setfor X,, X, andthe EoM of the centroidal dynamics are solved until the end of the period. Having
solved the centroidal EoM in one period for the candidate abscissas X, X,, X;, X,, the objective
function value is calculated from Equation (3-2), and is evaluated. At the end of the exhaustive search,
a crude estimation of the minimum value of the objective function and the footfall abscissas X; .
corresponding to the minimum value of the objective function are found.

The values of the footfalls X; ., found in the first step of Stage 1, are used as initial values for the
optimization taking place in the second step of Stage 1. The upper and lower bounds in which the
optimal leg abscissas are sought are defined with respect to the discretization step dx; of the preceding
exhaustive search as,

X €[X o5 —AX;, X o +0X] (3-4)

1,es
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Stage 1/Step 1
minQ=1000;

for x,=x, , (1)-a/2:dx, :x;, , (1)+3*d/2
for xg=x;, 5(1)-d/2:dx;:xy 5(1)+3*d/2
for n=1:50
calculate F, F, 7, (2-42)-(2-44)

solve EoM (2-39)-(2-41)
end

for X,=x, o(1)-d/2:dx,xy o(1)+3*d/2
for x,=x;, 4(1)-d/2:dx,:x, ,(1)+3*d/2
for n=51:100
calculate F, F, 1, (2-42)-(2-44)

solve EoM (2-39)-(2-41)
end

calculate the objective function Q (3-2)

if Q<minQ
save Q as minQ
save currently optimum abscissas as X

end

end
end

end
end

Figure 3-4. Pseudocode of the exhaustive search in the first step of Stage 1.

The minimization problem (3-2) is solved using the default interior point algorithm of the fmincon
MATLAB function. At every loop of the optimization process, for the candidate footfall abscissas X; the
EoM of the centroidal dynamics (2-40)-(2-42) are solved with fine absolute error tolerance 1le-6, using
the ode45 solver of MATLAB, based on the Runge-Kutta 45 integration method. The value of the
objective function is calculated and evaluated. At the end of the optimization process, the optimal values
X, that minimize the objective function (3-2) are provided as outputs.

Using the optimal footfall abscissas X; , the EoM of the centroidal dynamics are solved for one
more time. The EoM at this point are solved with the fixed step MATLAB function ode 3, based on the
Runge-Kutta algorithm of third order, for N =1000 integration points to achieve the desired accuracy of
results. The choice of a fixed step integration algorithm is convenient for two reasons. On one hand,
each row of the solution vectors is intuitively related with its corresponding time instance in the stride.
For instance, for the trotting gait of Figure 2-2 (d), it is easy to understand that the solution at the 250"
time instant, corresponds to the 25% of the period, where legs HL, FR are at midstance and legs FL,
HR are at midflight. On the other hand, the use of a fixed step integration algorithm facilitates the use
of the MATLAB functions used in the next stage that need fixed step vectors as inputs.

For the robot to safely remain away from the ground throughout the stride, a maximum permissible

pitch constraint is introduced in the form of inequality (3-5).

a . b Yi,
——sin(@_..)——cos(@8_. ) > —= 3-5
Yy, =5 5IN(Gna) =5 €05(0r) = = (3-5)

This constraint ensures that the lowest part of the robot body at maximum pitch, is not situated lower

than half the vertical distance of the CoM from the ground at max pitch, see Figure 3-5. If constraint
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(3-5) is satisfied, the external forces F,;, F,; and the optimized CoM trajectories g, =[xy#], 4., G

at discrete time instants t, €[0,T], ne{L 2,...,1000} are saved for use in Stage 2.

lowest  —~,
point g

=

& y-al2-sin(®, )- Yo, .
y 0 i -b/2-cos(8,,,.) 2
(0]

Figure 3-5. Position of the lowest part of the robot body at max pitch in comparison with half
the vertical distance of the CoM from the ground.

3.5 Stage 2: Spanning the leg parameter space

In the second stage of the method, alternative leg geometries are tested for use in the robot. The
F i

corresponding to gait parameters X(0), y(0), a,,, T are provided as inputs. The position of the toe of

optimized CoM trajectory 4., (., (¢, the footfall abscissas X, and the ground forces F

X,i?

each leg during its stance phase is determined from the pair (x. .,0). To fully define the trajectory of

the toes during the whole stride, a hybrid elliptical/cubic polynomial trajectory for the toes is adopted
throughout flight phase. The position of the hip joints throughout the stride are found by inserting the
position of the CoM (., in Equations (2-21)-(2-24). Given the position of the hip joint (Xh,i,yh,i) and
that of the toe of each leg (X,;,Y,;) atdiscrete time instants t , for alternative leg segment lengths and
spring stiffnesses |, ,, kK, from inverse kinematics (2-75), (2-76) and the equation of the ideal spring,

the leg joint variables 6,;, 6,;, |,; are found at every time instant t, €[0,T],ne{l, 2,...,,1000}. By

Ji
numerically differentiating the vector of leg joint variables q; =[6,; 6,;1,;], the vectors of leg joint
velocities ¢; and accelerations §; are found. For each set of |, ,,, K, corresponding to leg postures
q;, the ground forces F;, Fyyi are projected on the leg segments (Equations (2-79)-(2-82)) and for
alternative leg segment diameters d,,,d,, strength constraints (2-90) are tested. Every permissible set
of I, 1y, k, d.,, d,, isinserted in the EoM of the quadruped robot (2-38), along with the ground forces
F..» F,ithe CoM trajectory q¢, Qc, ¢, the joint trajectories Q;, ¢;, ¢; and the model parameters,
and the EoM (2-38) are solved to the leg joint torques 7; ;. The angular velocities 6'?” and torques 7;;
are subjected to actuation constraints (2-100). If actuation constraints are also satisfied then the set of
leg parameters 1, l,,, k, d.., d_, is saved. After the whole leg parameter space is spanned, Stage 2

in?

is terminated and all the permissible sets of |, l,,, k, d,,, d

in? out *

corresponding to each set of gait
parameters X(0), y(0), a,, T are saved. In the following analysis each of the above steps is described

in detail.
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Stage 2 is structured in the form of an exhaustive search for the leg parameters |, l,,, k. From

the optimized positions of the robot’'s CoM (. , corresponding to footfalls (X;,,Y;) and the positions of

i,07

the hip joints (2-21)-(2-24), the hip to toe distance of every leg during stance phase is determined,
o = \/(Xh,i - Xi)2 +(Yni = Vi )’ (3-6)

The upper bound of each leg’'s workspace (inequalities (2-78)) is the maximum value of |, ;. As all

legs have the same leg segment lengths |,, |,, and compliance k , the maximum value of |, ; for every

leg i and time instant t, determines the minimum permissible total leg length |, +1,;,
L+1,,(t) =

max !

3-7
Imax = miax[rntaX(Ith,i )] ( )
If the intervals in which |, |, are sought are set in the form,
Lell, L,
1 [1,|b 1, b] (3-8)

Lo €[00 Lo ]
many of the candidate solution combinations that lay near the lower bounds of the search do not satisfy
inequality (3-7) and are rejected making the exhaustive search algorithm slow and counterproductive.
On the other hand, candidate solutions near |, l,,,, should not be excluded from the search, as
perhaps inequality (3-7) is satisfied for candidate combinations in vicinities of pairs (l,,,,l, ) or
(I, 120,5) - An example is presented to better understand the disadvantage of formulation (3-8). Let’s

suppose that
l.x =0.5m

I, €[0.1m,0.5m] (3-9)

l,, €[0.1m,0.5m]
Itis clear that many of the combinations near the lower bounds of |, l,, do not satisfy (3-7) and should
be rejected. Nevertheless, combinations of (l;,1,,) in vicinities of (0.1,0.5) or (0.5,0.1) respect (3-7)
and therefore truncation of the lower bounds of the search intervals is not justified. To overcome this
obstacle, the exhaustive search problem is reformed by introducing the & parameter, as shown in
(3-10).

el & e =]
celLe,l (3-10)
Ly =6l =1

As the distal leg segment with free length |,, is compliant, the formulation (3-10) does not necessarily
guarantee that (3-7) is respected if € =1. Nevertheless, the number of the rejected combinations
(1,,1,,) of (3-10) is particularly smaller than that of (3-8), and thus the speed of the exhaustive search
algorithm is significantly improved.

In every inner loop of the exhaustive search, the leg joint trajectories are found from the optimized
CoM trajectory, given the robot's geometry. The positions of the hips (X,;,Y,;) and the toes
(X.i» Yei) = (X ,,0) during stance phase, are available at every time instant t, from Stage 1. As the
distal leg segment is compliant, the leg geometry changes throughout stance phase. To predict the

deflection of the spring throughout stance the ideal spring equation is introduced,
Fs,i = k(lz,i _Izo) (3-11)
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As the toe remains in contact with the ground throughout stance,
Foi=F. (3-12)
Then from Equations (2-81), (3-11), (3-12) the length of the compliant leg segment is found at every

time instant,
1 .
L, =l + E[ FiSin(@+6,;)— F,; cos(6+06,) ] (3-13)

Combining the inverse kinematics Equations (2-75), (2-76) with (3-13), the leg joint variables &, ;, 6,;,
I,; are found at every time instant throughout the stance phase of each leg, t, €[t ;,t,;]. By
numerically differentiating the leg joint variables, the joint velocities 6.’1&, 6'2,“ |.2,i and accelerations él,i’
éz,i, i.2,i are found during stance phase. For first order and second order differentiation the MATLAB
functions gradient and del2 were used. At this point the knee joint is checked to not collide with the
ground through stance phase, expressed in the form of an inequality,

min[ 90° -[6+6,,||>5° (3-14)

where 90° —|6’+ 921i| is the absolute angle of the distal leg segment from the ground, see Figure 3-6. If
inequality (3-14) is respected, then we proceed to calculate the leg joint trajectories throughout flight
phase. If not, the current combination of the exhaustive search |, 1,5, k is rejected and the procedure

is repeated for the next combination of I, l,,;, k provided from the exhaustive search algorithm.

90°-|6+0,

]
,1

Figure 3-6. Trigonometry for the distal leg segment.

Throughout the flight phase, a mechanical stop is considered to keep the length of the distal leg
segment constant,
L=l t, ety ty; +T1 (3-15)
The requirement for each leg during flight phase is to avoid collision with the ground by creating the
necessary toe to ground clearance, following a first order continuous trajectory; non-continuous angular
velocities would require infinite torques. Inspired by control schemes in which the reference toe
trajectory during flight is an ellipse [71], a hybrid cubic polynomial - elliptical flight phase trajectory is
selected. The cubic polynomial part ensures continuity for angular velocities, and the elliptical part

provides realistic boundary conditions at midflight.

50/142



Having found the leg joint trajectories during the preceding stance phase from t;; to t;, and
because the stride is a periodical phenomenon, the joint angles and angular velocities at the beginning
t,; and the end of the flight phase t,; +T are available,

0 (to;), Oty +T)=6,(tg,)
él,i (to), él,i (ta, +T)= 91. (t,)
0,i(to:), 05ty +T)=6,,(ty;)
éz,i (to): 92,i (tg, +T) = éz,i (t,)

Atmidflight t ; ; the toe is considered to be at the apex of an elliptical trajectory, described by Equations
(3-17), (3-18),

(3-16)

Xi = X, +a,cos(at +¢,;) (3-17)

Yei = Yei + 0. sin(0,t + 9, ;) (3-18)

where (x;,Y,;) are the coordinates of the center of the ellipse, a, and b, are the semi-axes of the

ellipse, @, the circular frequency in which the ellipse is traversed and ¢, ; the phase difference that

determines the starting point on the ellipse. The center of the ellipse is situated at ground level, at
distance a, from the footfall of the preceding stance phase,

(Xc,i ) yc,i) = (Xi (tto,i) + aeio) (3-19)

In one stride, the horizontal distance traversed from the CoM of the robot and each toe are the same

and equal to x(T)—x(0), see Figure 3-7. The horizontal ellipse semi axis is equal to half that distance,

a, =(x(T)-x(0))/2 (3-20)

and the vertical semi axis b, is equal to maximum desired clearance from the ground. The ellipse is

traversed in the counter clockwise direction with a circular frequency @, defined in (3-21),
Z__ 2 m
¢ T 2(T -ot,) T(@—DF)

e

(3-21)

where T, is the period in which the ellipse is traversed. From the value of the argument ot +¢,; at
the time instant of take off the phase difference is found,

oty +o. =7

P =7 — 0Ly,

X(T)-x(0)

(3-22)

)
\(x(T), y(m)
direction

of motion
—>

x(T)-x(0)

Figure 3-7. The elliptical flight phase trajectory and its properties.

From inverse kinematics (2-75), (2-76) and the relative position of the hip joints (2-21)-(2-24) to the
position of the toes during flight phase (3-17), (3-18), the leg joint angles &, ;, 6,,; of the elliptical
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trajectory are found. By numerically differentiating 6, ;, 6,,;,the joint angular velocities 91 0,.; are

e,i’ e’

found. Because the joint angular velocities at take off and touch down of the elliptical trajectory are not
continuous, to introduce first order continuity only the values of joint variables and their corresponding
angular velocities at midflight are kept,

91,i (tmf,i) = ele,i (t ,i)’él,i (to ,i) = éle,i (t ,i)

92,i (tmf,i) = ‘92e,i (tmf,i)’ 92,i (to ,i) = éZe,i (tmf,i)

and the states at touch down, midflight and take off (3-16), (3-23) are interpolated using cubic

(3-23)

polynomials which can ensure first order continuity. One cubic polynomial is used from take off to
midflight,
0, = at’+bt*+ct+d,

. ytet .t ] (3-24)
_ 2 t0,i? "mf ,i
0,; =3t +2bt+c
and another from midflight to touch down,
6;; =a,t’ +bt’ +c,t+d,
' telty ity +T1 (3-25)

0, =3a,t’ + 2bt +c,
By applying boundary conditions at take off, midflight and touch down (3-16), (3-23), the coefficients of

the polynomials in (3-24), (3-25) are found. By differentiating the angular velocities, the joint

accelerations with time are found too,
0, =6at+2b,telt,; t;;]

0, =6a,t+2by, teft, .ty +T]

(3-26)

As it can be seen for the example of a leg with |, =0.32m and |, =0.3m (Figure 3-8), the non-
continuities observed in the hip joint angular velocity with the elliptical toe trajectory are eliminated with

the hybrid elliptical - cubic polynomial approach.

[ ]stance
: flight
— hybrid
‘ ‘ ‘ | | — — ellipse
0 0.1 0.2 0.3
time (s) @)
0.1 . : . . T T T

0.65 0.75 0.85 0.95
Xi1 (m)
(b)

Figure 3-8. Examples of the (a) evolution of hip angular velocity with time and the (b) toe
path, for elliptical and hybrid toe trajectories.
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At the end of the procedure described above, the vectors of leg joint variables q; =[6,; 6,;1,;],
joint velocities ¢, and accelerations ¢, are available throughout the stride. After the leg joint
trajectories are found, hardware constraints (2-90), (2-100) are checked. From the posture of each leg
F,; and Equations (2-79)
F

Vit

during stance phase found in g,, the ground forces applied on the toes F,

X,
-(2-82), the longitudinal and vertical forces exerted on the leg segments are calculated, F,,j,i,
Alternative combinations of d. , d

in? out

for standard carbon tubes are tested, giving priority to those with
d
on the leg segments are calculated (2-85)-(2-87) and are subjected to strength constraints (2-90). If
d
a combination resulting to a thicker cross sectional area, until strength constraints (2-90) are respected.
d
and CoM trajectories q., (., G are replaced in the EoM of the quadruped (2-38), from which the

thinner cross sectional area, resulting in lighter leg segments. For every option of d the stresses

in? “out

strength constraints are respected, the combination of d is accepted, otherwise we proceed to

in? “out

The set of leg parameters 1, 1,,, k, d and the corresponding leg joint trajectories ¢, ¢;, d;

in* Yout
vector of the necessary actuation torques 7 for the locomotion of the robot in one stride are calculated.
For every actuated joint of every leg, the actuation torques 7;; found in = and the angular velocities

6’” found in Q,, are subjected to the actuation constraints (2-100). If the actuation constraints are

respected, then the combination of parameters |, 1., k, d;,, d,, is saved. At the end of the exhaustive

in? out

search of the leg parameters, all the persmissible sets of |, L., k, d,,, d,, corresponding to the

current set of gait parameters x(0), y(0), a,, T are saved and the Stage 2 of the method exits to the

Outer Stage.

3.6 Concluding the method

The method concludes after exiting the Outer Stage. At the end of the method, all sets of gait
parameters X(0), y(0), a,, T and their corresponding permissible sets of leg parameters |, l,5, K,
d,,, d,, aresaved. In this way, trends of every parameter can be drawn with increasing horizontal CoM
velocity X(0), and the effect of every parameter in X(0) can be studied. The set of gait parameters and
the corresponding set or sets of leg parameters for which maximum velocity X(0) is achieved are

considered the optimal solutions of this method.
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4 Results

4.1 Introduction

The proposed leg design methodology is applied in this chapter for two alternative running gaits,
bounding and trotting, and two alternative knee configurations, the knee backward (KB) and the knee
forward (KF) configuration for the same model parameters. Two identical motors are acting on the hip
and the knee joint of each leg. The purpose of this chapter is to find out which gait, knee configuration,
leg and gait parameters result in the fastest locomotion velocity for a robot of the overall mass and
inertia of NTUA Laelaps, while respecting constraints (2-90), (2-100). For each case, the evolution of
the permissible gait and leg parameters with horizontal CoM velocity is presented and studied. The
optimal leg and gait parameters for which maximum velocity is achieved are found and the locomotion
of the robot with these optimal sets is presented. The optimal results for alternative gaits and knee
configurations are compared, and the combination of gait, knee configuration, gait parameters and leg
parameters for which the maximum horizontal velocity is reached is found. This overall optimal solution
is evaluated using an independent to the method quadruped model including damping, a realistic

ground model and a P-V controller.

4.2  System parameters

In this section, the values of the system’s parameters for which the method is applied are presented.
These parameters are used for both gaits and knee configurations. The overall mass and geometry
properties are taken similar to these found in the current version of the Laelaps quadruped, see Table
4-1. The density of the leg segments is taken similar to those of carbon fiber tubes and the masses of
the leg joints and the toes are estimated based on the density of the alluminium alloy 7075-T6. For the
application in this chapter, both DC motors acting on the leg joints are the same and their properties

correspond to Maxxon’s DC motor RE 50 200W, with a reduction ratio of 53:1 and supply voltage 60 V.

Table 4-1.  Values of system parameters.

Parameter Value Parameter Value
m [kg] 42.0 b, [m] 0.05

d [m] 0.30 g [m/s?] 9.81
a [m] 0.15 y7, 0.65

b [m] 1.00 S., [MPa] 200.00

I [kg m?] 3.58 S¢ 3.00
o [102 kg/m?] 14.66 n, 53.00
m;, [kg] 0.40 I, ;[10° kg m?] 5.42
m;, [kg] 0.40 Ty i [N/m] 45.00
m, [kg] 0.17 7y IN/m] 14.96
m, [kg] 0.10 O, [radl/s] 11.21
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From preliminary runs of the method, the shear stresses on the leg segments were found to be
insignificant in comparison with the normal stresses, therefore the shear component of (2-90) is omitted.
The alternative inner and outer diameters for which the strength of the tubular segments was tested,

were taken from standard carbon fiber tube sizes, see Table 4-2.

Table 4-2. Candidate sizes of carbon fiber tubes.

ala d;,[mm] d,y [mm]
1 23 25
2 26 28
3 28 30
4 26 30

4.3 The bounding gait

The method was firstly applied for the bounding gait of Figure 4-1. The initial conditions were taken as
X(0)=1m, y(0)=0m/s and 8(0) =0rad . The initial pitch rate of the bounding gait is crucial for the
stability of the movement, [72]. In this approach the initial pitching rate 9(0) is found from the maximum

pitch angle of the body 6,,,,

6(0) =2T—”emax (4-1)

where the maximum accepted pitch angle of the body was taken as 8., =107 /180 rad.

b 1o, %
HLE | o | 50
oFLT r 50 | 100
“FRY | 50 | 100
HRE ] o | s0
0 50% 100%

(% stride)

Figure 4-1.  Gait graph of the bounding gait and respective time instants of touch down and
take off as a percentage of the stride period.

The bounds in which the gait and leg parameters were sought and the respective discretization steps
are summarized in Table 4-3. Note that these bounds were set through trial and error to avoid truncating
any of the optimal solutions in maximum speed. The reader is reminded that the upper bounds of leg
parameters |, |l,, are set by introducing the parameter ¢, see (3-10).

For bounding with increasing horizontal velocity X(0) from 0.20 m/s to 1 m/s, the permissible
combinations of gait and leg parameters for which constraints (2-90), (2-100) were valid decreased until
convergence, see Figure 4-2. The maximum horizontal velocity reached for the knee backward (KB)

configuration was 0.48 m/s, whereas for the knee forward (KF) configuration was 0.54 m/s. The
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parameters for which the maximum velocities were reached are shown in Table 4-4. For the optimal
parameters for both configurations, the resulting bounding movement is shown in Figure 4-3 and the
corresponding to the motion CoM trajectories are shown in Figure 4-4. It is obvious that the movement
inthe y and @ directions is periodical in one stride and that the robot runs with a steady net horizontal

velocity (X direction), as predicted from the form of the horizontal and vertical forces F,;, F,; and the

X,

optimization of the objective function (3-2).

Table 4-3. Bounds and discretization steps of the parametric search for the bounding gait.

Parameter Lower Bound Upper Bound Discr. Step
X(0) [m/s] 0.20 1.00 variable
y(0) [m] 0.45 0.85 0.05

ag 0.00 0.60 0.10
T [s] 0.20 0.60 0.05
kK [N/m] 1250 5000 1250

g 1.00 1.10 0.025
[, [m] 0.10 &l = o 0.01
l,o [M] 0.10 o =l 0.01

1

g - —

P £ o5

< 0.6 ~ i i z z Z T

>\

0.4 0
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
0.6 T T T 5500

— — 5000
E = 4500

_ 04 pd

N < 4000

3500
0.2
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
0.3

= 035 A . 02
— e
~ 03 0.1

0
0.25
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
X(0) [m/s] X(0) [m/s]

Figure 4-2. Evolution of parameters with horizontal bounding velocity for the knee backward
(KB) and the knee forward (KF) configurations.
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Table 4-4.

Optimal parameters for maximum bounding velocity per configuration.

Config. y(O)[m] a, T[]  LIm]  T,[m] k[N/m] d,[mm] d,, [mm]
KB 0.55 010 030 036 0.23 3750 26 28
KF 0.50 010 030 030 0.24 3750 26 28

A

Int.

0%

25%

50%
time [% stride]
@

75%

100%

0%

25%

50%
time [% stride]
(b)

75%

100%

Figure 4-3. Snapshots of the quadruped’s bounding motion for the optimal solutions in the
(a) KB and the (b) KF configurations.
1.2 0.55
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'g KF Bound @‘
= 1.1 £05
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= \_/\/
1= 0.45
0.55 0.2
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E o5 £ O f !
EN = / \
= / \
0.45 -0.2
0.2 5
N
/ N e
=3 / \ E AN /
g of \\ /) g0 \\ g
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time [% stride] time [% stride]
Figure 4-4. Robot body CoM trajectories for bounding with the optimal solutions in the KB

and KF configurations.

It can be observed that for the KB and KF configurations, the proximal leg segment of the optimal

legs is slightly larger than the distal, and the total length of both segments does not exceed the hip to
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hip distance 2d =0.6m . For both knee configurations, the reason for which the robot cannot run any
faster with the bounding gait is the violation of the max continuous torque constraint of (2-100); in the
KB configuration this happens firstly for the torque of the hip joints of the front legs (7, ,, 7;,) and for

the KF configuration for the torque of the knee joints of the frontlegs (7, ,, 7, , ). For the KB configuration

227

in maximum speed (0.48 m/s), 7,, is increased mainly during the flight phase (rms(z,,) =14.96 Nm),

12
see Figure 4-5 (a). That is probably due to the reduced stride period (0.3 s) in which the max velocity
is achieved and the increased output rotor inertia ( ~ n? I,.;) due to the high transmission ratio (n; =53
) of the motor; the leg joint should accelerate and decelerate a significant inertia in a short time. A further
increase in the horizontal velocity (see direction of arrows) leads to an overall increase in torque
requirement, thus exceeding the maximum permissible continuous torque. For the case of the KF
configuration in maximum speed (0.54 m/s), more demanding in torque 7,, seems to be the stance
phase (rms(z,,) =14.93Nm), see Figure 4-5 (b). This is assumed to happen, due to the infavorable
direction of the ground force exerted on the toe of the leg (Figure 4-3 at 75% of the stride). Also in this
case, a further increase in horizontal velocity leads to an increase in torque requirement throughout the

stride, due to which the max continuous permissible torque constraint is violated.

KB Configuration KF Configuration
50 50
/
45 45 Nm
45 8 —(0)=0.48 m/s 40 L2 02l > Ty
40 = =X(0)=0.53 m/s S Tyn
%(0)=0.58 m/s
37 ) >t
30 F - - Tct,l
— 25} 14.96 Nm 4
€ (R VI, L L
Z 2fF rms(t, 5) > Ty
l:'
15 + A = - -
0 L
10 1
A /
[ |
5t X |
: 10 | — x(0)=0.54 m/s
or | = =X(0)=0.59 m/s
\ X(0)=0.64 m/s
_5 1 1 1 | I 1 1 1 | ) _20 I I I I I 1 I I I 1
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100

time [% stride] time [% stride]
(@) (b)

Figure 4-5.  Effect of velocity increase on 7,, and 7,,; the colored area indicates the stance
phase of each leg.

4.4  The trotting gait

The leg design methodology was also applied for the trotting gait depicted in Figure 4-6. The initial
conditions for locomotion with the trotting gait were taken as x(0) =1m, y(0)=0m/s, #(0)=0rad. In
contrast with the bounding gait, the pitching rate for locomotion with trotting remains relatively small

[73], therefore the initial pitching rate for trotting was taken as 6(0) = Orad/s.
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Figure 4-6. Gait graph of the trotting gait and respective touch down and take off time
instants as a percentage of the stride period.

The bounds of the parametric search conducted for the trotting gait were set through trial and error
as shown in Table 4-5, ensuring that the optimal parameters found were not truncated by them. The
discretization step for every parameter was chosen taking into account the magnitude of every
parameter and the trade off between a rich parametric space and the duration of solution of the

parametric search problem.

Table 4-5. Bounds and discretization steps of the parametric search for the trotting gait.

Parameter Lower Bound Upper Bound Discr. Step
X(0) [m/s] 1.00 3.00 variable

y(0) [m] 0.55 1.30 0.05
a, 0.10 0.70 0.10
T [s] 0.35 0.75 0.05
kK [N/m] 1250 7500 1250
& 1.000 1.100 0.025
1, [m] 0.10 &l = oo 0.01
|, [M] 0.10 o =l 0.01

The evolution of the permissible gait and leg parameters with increasing horizontal speed is shown
in Figure 4-7. The serrated shape of the convergence curves indicates that some solution sets available
in greater velocities do not respect some of the actuation constraints in lower velocities, for instance
see Figure 4-7 for X(0) =2.50m/s and x(0) =2.51m/s . It was discovered that the actuation constraint
that is marginally violated at 2.50 m/s is that of the continuous joint torque, due to a less favorable
placement of the leg on the ground during stance phase, see Figure 4-8. Nevertheless, this serrated
convergence behavior poses no problem as solution sets than are marginally acceptable in lower
velocities, significantly bias actuation constraints in maximum horizontal velocities.

The maximum velocity reached for trotting while respecting constraints (2-90), (2-100), was 2.90
m/s for the knee backward configuration and 2.94 m/s for the knee forward configuration. The optimal
parameters for which maximum velocities were reached for both configurations are shown in Table 4-6.

The resulting trotting movement of the quadruped robot with the optimal sets of parameters for both
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knee configurations is shown in Figure 4-9. In both cases, the robot trots periodically ( y, & directions)

with a steady overall horizontal velocity ( X direction), see Figure 4-10.
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~ s
0.4 0.2
1 15 2 2.5 1 15 2 2.5
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Figure 4-7. Evolution of parameters with horizontal trotting velocity for the knee backward
(KB) and the knee forward (KF) configurations.
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Figure 4-8. Knee torque requirement of a front left leg candidate solution at two successive
running velocities.
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The great difference between the maximum velocity in the bounding and the trotting gait is probably
due to the much greater pitch observed in the former, compare pitch in figures Figure 4-4, Figure 4-10.
With increased body pitch, the legs in contact with the ground receive the ground forces in a more
crouched position, resulting in greater moment arms and joint torque requirements. Furthermore, the
robot moves faster with a trotting rather with a bounding gait, as the passive dynamics of its body
facilitate gaits with small pitch ratio. Chatzakos studied in [74] the role of the dimensionless body inertia

*

I,
.,

I =
m,d?

(4-2)

in the pitching rate of movement. He concluded that for 1™ <1, the robot body rotates more easily than
it translates, facilitating movements with large pitch ratios, as bounding. If on the other hand 1" >1, the
translational movement of the robot body prevails over rotational, therefore gaits with small pitch ratio,
as pronking or trotting, are more favorable. In the case studied here 1" =1, thus to achieve the large

pitch ratios necessary for the bounding gait, excessive effort from the legs’ motors is required.

Table 4-6. Optimal parameters for maximum trotting velocity per configuration.

Config. y(0)[m]  a; T[s] l,[m]  l[m] K[N/m] dj[mm] d,,[mm]

KB 1.20 0.40 0.60 0.20 1.10 2500 23 25
KF 1.25 0.40 0.60 0.20 1.16 2500 23 25
0% 25% 50% 75% 100%
[% stride]
@
0% 25% 50% 75% 100%
[% stride]

(b)

Figure 4-9. Snapshots of the quadruped’s trotting motion for the optimal solutions in the (a)
KB and the (b) KF configuration.
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Figure 4-10. Robot body CoM trajectories for trotting with the optimal solutions in the KB and
KF configurations.

The optimal leg solutions for both configurations have a really short proximal leg segment and a
long distal leg segment with a soft spring, so that the total leg length is larger than twice the hip to hip
distance, 2-2d =1.2m. With these legs, during stance most of the leg deflection is undertaken by the
passive element, allowing the robot to withstand ground forces in a near singular configuration. Having
long legs, the quadruped can cover a larger distance in one stride, even for a large stride period. The
short proximal leg segment keeps the heavy knee joint close to the robot body, thus reducing the total
inertia of an overall long leg. Furthermore, having a small proximal segment |, and a long distal leg
segment l,,, |, <|,,, the hip motor actuates on the total leg length |, +1,, =1,, and the knee motor
acts on the segment with length 1,,. As a result, the acceleration/deceleration of approximately the total
leg is equally distributed to both motors. Nevertheless, the proximal leg segment can’t get too small,
or else it will be impossible for the leg’s toe to create the desired clearance from the ground.

In any knee configuration, if the robot tries to trot in an even greater horizontal velocity, the max
continuous torque constraint is violated. For the case of the KB configuration, this firstly happens as
velocity increases at the hip joint of the HL leg (torque z,, ). At maximum horizontal velocity (2.90 m/s),
the hip joint torque requirement is already demanding (rms(z,,) =14.95Nm), mainly due to the task of
swinging a long leg, see Figure 4-11 (a). By further increasing the forward velocity, the overall torque
rms(z,,) exceeds the permissible continuous torque value. For the KF configuration, the max
permissible continuous torque constraint is firstly violated at the knee joint of the hind left leg (torque
7,,) . At maximum horizontal velocity, the knee joint torque requires much torque to support the long

distal segment |,, during the stance phase and to swing it during the flight phase ( rms(z,,) =14.92Nm
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), see Figure 4-11 (b). With increasing horizontal velocity, a torque increase mainly throughout stance

phase leads to a non permissible rms(z,,).
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Figure 4-11. Effect of velocity increase on torques 7,, and 7,, .

45 Comparison with the popular equally segmented leg

So far, the optimal parameters that achieve the overall maximum horizontal velocity are these of the
trotting gait in a KF configuration, see Table 4-6. The legs to achieve this velocity are long (I, + 1, = 4d),
with a short proximal leg segment, a long distal leg segment (I, <«1,,) and a soft spring. This leg
structure is much different that the current most popular two-segment leg solution used by the current
version of NTUA Laelaps, the StarlETH, the HyQ and many of Boston Dynamics’ robots; an equally
segmented leg (I, =1,,), with its total leg length being approximately equal to the hip to hip distance (
|, +1,, =2d ). In this Section, these two leg structures are evaluated using literature elements and
results of the proposed method.

There are some advantages of having an equally two-segment leg with a total length of
I, +1,, =2d . Firstly, by equal segmentation (1, =1,,) the workspace of the leg is maximized. By
substituting in (2-78) I, =1,; =1 the workspace is expanded from an annular to a circular area with
radius 21, thus maximizing the workspace. This property is usefull for robots targeted to perform stunts
like moving with crouched legs under obstacles or evaluating alternative control schemes, where the
clearance of the leg is not predetermined. Secondly, for an equally segmented two-segment leg the
manipulability ellipsoid is maximized, [75]. The manipulability ellipsoid is a Jacobian based measure of
manibulability, traditionally used for design and motion planning of manipulators. It shows the area in
which the end effector (toe) can move with specific velocities or exert specific forces, with unit leg joint
angular velocities or torques respectively. Furthermore, having a total leg length approximately equal

to the hip to hip distance instead of a much larger leg improves stability against perturbations; given a
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force perturbation on its body, it is much easier for a top heavy robot to collapse than for one with short
legs.

Although the equally segmented leg poses some advantages that justify its use by many research
teams, the proposed method and results focus on the ability of a quadruped robot to run fast given
certain actuation constraints; to achieve this, it may be required for the workspace or the manipulability
of the leg to be reduced. To prove this, the set of parameters most close to the popular equally
segmented leg that could achieve maximum velocity while respecting constraints (2-90), (2-100) is

brought forward, see Table 4-7.

Table 4-7. Set of parameters maximizing the performance of the equally segmented leg.

Config.  y(0)[m] g, T [s] I, [m] lo[m]  Kk[N/m] d; [mm] d,, [mm]
KF 0.55 0.60 0.60 0.32 0.33 2500 23 25

The maximum velocity that can be achieved with this leg by trotting in the KF configuration is
X(0) =2.03m/s, approximately 0.9m/s less than that achieved with the optimal KF leg solution found
in Section 4.4. This probably happens for two reasons. Firstly, the torque requirement is more equally
distributed to the hip and the knee joint motors of the long inequally segmented leg (LISL), than to the
short equally segmented leg (SESL). As explained in Section 4.4, if |, < 1, then both motors cooperate
to accelerate and decelerate the total leg. If |, = 1,,0n the other hand, the hip motor acts on the whole
leg length |, +1,,, while the knee motor acts on the distal leg segment |,,. As a result, it is expected
the hip joint motor of the SESL leg to be more loaded than the knee joint motor. Indeed, at maximum
velocity X(0) = 2.03m/s, the rms torque value of the HL SESL leg hip joint motor in one stride was found
to be larger (rms(z,;) =14.90Nm) than the rms torque value of the knee joint (rms(z,,) =12.92Nm)
at the same time. As expected, the rms torque values were more equally distributed to the leg joints of
LISL, i.e. rms(z,;) =14.53Nm for the hip and rms(z,;) =14.92Nm for the knee joint at maximum
velocity X(0) =2.94m/s. Secondly, longer legs result in longer stride length 4 . As a result, for the same
period T , the mean velocity V=4 /T is expected to be larger. We assume that for both leg solutions
LISL and SESL, the robot ran with the same period (T =0.6s) and the same leg stiffness
(k = 2500 N/m) to exploit passive dynamics throughout stance phase. Indeed, for two legs in contact
with the ground in each stance phase the quadruped robot can be simplified in a system of a mass

m=42kg and two springs in parallel k, =2k =5000N/m. Then the free oscillation period of the

T, = Zﬂ\/g =0.58s (4-3)

which is really close to the value of the stride period, T =0.6s.

system is found as,

4.6 Results in a nutshell

In this chapter, the leg design methodology was implemented for a robot with the body inertial

characteristics of NTUA Laelaps, two identical DC motors acting on the hip and the knee joints of each
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leg, for legs either in the KB or in the KF configuration, both for the bounding and the trotting gaits. The
results showed that the quadruped robot could run faster with the trotting gait, with long legs that have
a much shorter proximal leg segment in comparison with the distal leg segment. Furthermore it was
shown that with this long leg the robot could move faster by trotting in comparison with the popular two-
segment leg that has a total length approximately equal to the hip separation and segments of equal
length. In all cases, the reason the robot could not move any faster was the violation of the maximum
continuous torque constraint. To facilitate comparison, the results for each case are summarized in

Table 4-8.

Table 4-8. Optimal leg attributes and max rms joint torque requirement for achieving the
maximum velocity in every examined case.

Gait Leg L, Ly (I, + 1) k max(rms(z;;))  max(x(0))
Config. [m] [m] 2d [N/m] ! [Nm] [m/s]
Bound KB 0.36 0.23 0.98 3750 14.96 0.48
Bound KF 0.30 0.24 0.90 3750 14.93 0.54
Trot KB 0.2 1.10 217 2500 14.95 2.90
Trot KF 0.2 1.16 2.27 2500 14.92 2.94
Trot KF 0.32 0.33 1.08 2500 14.90 2.03

4.7  Validation of the optimal leg

The leg design method and its results presented in the previous sections are based upon certain
assumptions, concerning the profile of the ground forces and the extent to which the CoM of the system
is affected by the movement of the legs. The optimal legs were found for ideal passive elements with
no damping and for steady state running without net acceleration in each stride. The long size of the
optimal leg for the trotting gait, results in a top heavy design that causes stability concerns. To this end,
an independent to the proposed method validation strategy is considered necessary for the validation
of the results. The proposed validation strategy consists of more realistic physical descriptions for the
guadruped robot and the ground, and a control scheme for quadrupedal trotting. The leg evaluated is
the optimal leg for trotting in the KF configuration, for which the overall maximum running velocity of
2.94m/s is achieved.

The physical description of the quadruped robot was modified to also include damping b in the
prismatic compliant elements. The interaction of the leg with the ground was modeled as a point contact.
Each time the toe of a leg collides with the ground a normal and a frictional contact force are exerted to
the toe of the leg. The normal component of the ground force F, is described by the continuous, non -
sticking Hunt - Crossley impact model [76], [77],

F,=k,5, +b,8,0, (4-4)
where §y and Sy are the local identation of the ground and its rate respectively, v =1.5 is the Hertzian
coefficient for non-adhesive contact, kg is the ground stiffness coefficient depending on the materials

in contact and bg is the ground damping coefficient calculated as a function of stiffness,
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b, =1.5¢,k, (4-5)

The frictional force component consists of a static friction term and an exponential term describing the
friction - velocity curve when slippage occurs [78],

B {—sgn(x)an, %] <u,

SR, G+ (=g )e ), x>,

where g, is the kinetic friction coefficient,  is the static friction coefficient, X, is the tangential to the

(4-6)

toe velocity, U is the Stribeck velocity, F, the normal force of the Hunt - Crossley impact model and
u, is the toe velocity threshold for which slippage occurs. Trotting was accomplished by applying to the
system a P-V control scheme with an elliptical reference toe trajectory, [71].

The trotting experiment was conducted on stiff ground with K, =400,000 N/m,
b, =120,000 Ns/m, [79]. The spring damping coefficient was considered equal to by =0.3Ns/m. The
kinematic friction coefficient was setto x, = 0.8, the static coefficientto x =0.65, the threshold velocity
to U, =10°m/s and the Stribeck velocity to u, =10~ m/s. By properly tuning the gains of the controller
kp, k, toinitial values and gradually increasing kp , a stable accelerating movement was achieved with

the optimal leg in the KF configuration (I, =0.2 m, l,, =1.16m, k =2500 N/m), see Figure 4-12.
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Figure 4-12. Top to bottom: Evolution of robot forward velocity, HR leg joint torques and
angular velocities with time for the validation experiment of the optimal leg; the gray
backround denotes stance phases.

The optimal leg solution performed well in this realistic trotting experiment, as the robot succeeded
in running stably (without collapsing), while respecting the max short term torque constraint
(z4,; =45N/m, j=1,2)for any joint motor of all legs for the total duration of the experiment. The

maximum angular velocity constraint (0 naxj =11.21rad/s, j=1,2) was also respected for the whole
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duration of the experiment for the knee joint motor and up to a forward velocity of approximately 2m/s
for the hip joint. Depending on the values of (k,,k,) the toe in flight phase performed an ellipsoid like
movement with clearance larger than that in the application of Section 4.4 (b, =0.05m) , thus probably
leading to an increase in hip joint angular velocity requirement for lower forward velocity. Finally, due
to the incurred losses in the leg springs and the ground and the accelerating movement of the robot,

the rms torque requirement was increased for most motors.
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5 Case studies aimed to improve the running
performance of NTUA Laelaps

51 Introduction

In the previous chapter general results where presented concerning the optimal gait and leg
configuration and the respective gait and leg parameters for which maximum locomotion velocity could
be reached. For convenience two identical motors were considered to act on the actuated joints of
each leg. The overall maximum horizontal velocity was reached for the trotting gait in the KF
configuration. In this chapter, using this gait and knee configuration, we aim to find out the optimal leg
and gait parameters for maximum locomotion velocity, focusing on the existing actuation system of the
NTUA Laelaps quadruped. This consists of two different DC motors, a brushed and a brushless, each
introducing its own actuation constraints, see Table 5-1. By investigating alternative scenarios in which
the brushed and the brushless motors act on the hip and the knee joints alternately, the motor - leg joint
correspondence is figured out for maximizing the quadruped robot’s running performance. As the NTUA
Laelaps is not only intended for sagittal plane running (e.g. on a treadmill, where the rolling motion is
fixed), a stability criterion is introduced for movement in the frontal plane and optimal results respecting
this criterion are presented. Finally, the role of a supplementary reduction ratio is studied in the running

performance of the NTUA Laelaps.

Table 5-1. Properties of the available NTUA Laelaps motors.

Type Rotor inertia Reduction Max cont. Max short Max angular
[kg m?] ratio torque term torque velocity
[N m] [N m] [rad/s]
RE 50 200 W 542-107 53:1 14.96 45 11.21
(Brushed)
RE 45 250 W 209-107 43:1 10.6 28 14.66

(Brushless)

5.2 Brushed motor acting on the hip joint

In the first case study, the brushed motor is considered acting on the hip joint and the brushless motor
on the knee joint. This scenario is introduced to the physical system description, by tuning properly the
corresponding actuation related parameters, see Table 5-2. The rest of the model parameters and the

initial conditions for the simulations conducted in this section remain the same as in Section 4.4.

Table 5-2. Actuation parameters for the motors acting on the hip and knee joints.

j I, [kg m?] n, T, [INm] 7, [N m] 0, [rad/s]
1 542.107 53 14.96 45 11.21
2 209-107 43 10.6 28 14.66
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The boundaries of the parametric search were also in this case properly tuned in order to avoid
truncation of an optimal set of solutions. Apart from the boundaries displayed in Table 5-3, the rest were

kept the same as those presented in Table 4-5.

Table 5-3. Tuned boundaries for the parametric search of Section 5.2.

Parameter Lower Bound Upper Bound Discr. Step
X(0) [m/s] 2.00 2.80 variable
y(0) [m] 0.8 1.30 0.05
k [N/m] 1250 5000 1250

The maximum velocity for which constraints (2-90), (2-100) were respected is 2.585 m/s for the
leg and gait parameters shown in Table 5-4. In maximum velocity, the angular velocity of the hip joints
is considerably increased, reaching 95.46 % of the permissible at the hip joint of the FR leg. The rms
torque of the knee joints is also close to the permissible continuous torque, with a value of 98.63 % of
the permissible observed in the knee joint of the FL leg. If the horizontal velocity is further increased,
the maximum continuous torque constraint is violated for the knee joint of the FL leg, due to a torque

requirement increase oberverd mainly during the stance phase of the leg, see Figure 5-1.

Table 5-4. Set of optimal parameters for maximum velocity trotting for the brushed motor
acting on the hip joint.

Config.  y(0)[m] ag T [s] I, [m] le[m]  K[N/m] d; [mm] d,, [mm]
KF 1.15 0.40 0.65 0.18 1.07 2500 23 25

30 ‘ I / 7

28 Nm

T, INM]

= x(0)=2.585 m/s
151 — —%(0)=2.586 m/s | |
20 7 |T2,2| >ty ||
25+ - = T .
-28 Nm
-30 f . ‘ ‘ ‘ ‘ 7

0 10 20 30 40 50 60 70 80 90 100
time [% stride]

Figure 5-1. Effect of velocity increase on hip joint torque 7,,.
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The observed increased requirement of the hip joints for angular velocity and the knee joints for rms
torque for legs in the KF configuration is consistent with the results presented in Sections 4.3 - 4.4; in
these cases also, max velocity running in the KF configuration required higher rms torque on the knee
joints. This observation comes in contradiction with the brushed motor actuating the hip joint. The
brushed motor provides higher continuous and short term torque than the brushless, and lower angular
velocity, see Table 5-1. Consequently, there is a strong indication that by alterating the position of the
brushed and the brushless motors, the robot may achieve an even greater horizontal velocity. This

assumption is checked in the following section.

5.3 Brushed motor acting on the knee joint

The brushed motor in this case is considered acting on the knee joint and the brussless motor on the
hip joint. This is introduced in the description of the physical system by changing the actuation
parameters accordingly, see Table 5-5. The parametric set boundaries that were tuned differently in

comparison with Table 4-5 are presented in Table 5-6.

Table 5-5. Actuation parameters for the motors acting on the hip and knee joints.

j I.;[kg m? n; Ty INm] 7y i [N m] 0, [rad/s]
1 209-107 43 10.6 28 14.66
2 542-107 53 14.96 45 11.21
Table 5-6. Tuned boundaries for the parametric search of Section 5.3.
Parameter Lower Bound Upper Bound Discr. Step
X(0) [m/s] 2.00 3.60 variable
y(0) [m] 0.90 1.40 0.05
T [s] 0.45 0.90 0.05
k [N/m] 1250 5000 1250
& 1.000 1.125 0.025

The maximum horizontal velocity achieved is 3.039 m/s, greater than the one achieved in the case
in which the brushed motor was acting on the hip joint, as expected from the discussion in the previous
section. The set of optimal leg and gait parameters for which the maximum velocity is reached is shown
in Table 5-7. In maximum trotting velocity, the requirement for hip joint angular velocity is significantly

increased, reaching a fraction of 98.02 % the maximum permissible angular velocity émax,z

for the hip
joint of the FR leg. The requirement in knee joint rms torque is even more considerable, being at 99.79%
of the maximum continuous permissible torque 7, for the knee joint of the FL leg. If the robot runs at
a larger horizontal velocity, the maximum continuous torque constraint is violated for the motor actuating

on the FL knee joint, due to an increase in torque requirement during stance phase, see Figure 5-2.
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Table 5-7. Set of optimal parameters for maximum velocity trotting for the brushed motor
acting on the hip joint.

Config. y(O)Im]  a, Tls]  LIm]  ly[m] Kk[N/m] dj[mm] d,, [mm]
KF 1.25 0.40 0.6 0.14 121 2500 23 25

OISR INID

40 - -

t,, INm]

— %(0)=3.039 m/s
30 F — — %(0)=3.040 m/s |
71 Mal>7y,
-40 - . __ =
-45 Nm ot,2

wol L LA

0 10 20 30 40 50 60 70 80 90 100
time [% stance]

Figure 5-2. Effect of velocity increase on hip joint torque z,,.

5.4 Extending stability in the frontal plane

All the optimal solutions for performance trotting presented so far consist of long legs (I, +1,, >4d).
Large horizontal velocities can be achieved with long legs, as with these large stride length is achieved.
Although long legs introduce top heaviness to the system of the quadruped robot, in Section 4.7 it was
shown that with an appropriate control scheme, dynamic stability can be achieved even for top heavy
robots, for sagittal plane trotting (planar movement). This ensures that the quadruped robot will be able
to achieve performance trotting, given that the rolling motion of its body is insignificant, as for instance
in the case where the robot runs on a treadmill with a mechanism fixing its rolling motion (e.g. a boom
or a x-y-8 stage). In the literature, the fastest running performances of quadruped robots have been
achieved for in - lab treadmill running, see Figure 5-3. Nevertheless, there are many examples of robots
that have succeeded in no roll treadmill running but have failed in out of laboratory running (an example
of the FastRunner robot is shown in [80]); this is probably due to frontal plane instability. Top heavy
robot designs amplify frontal plane instability, as small perturbating forces on the robot’s body result in

large tipover moments due to the high position of the CoM. In the following analysis, the relationship
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between the robot’s CoM height and the tipover stability is studied in the frontal plane, utilizing standard
tipover stability principles introduced in [81]. By assuming a perturbation force and for the geometry of
the NTUA Laelaps, the maximum permissible height of running is obtained. Introducing this constraint
in the method, the optimal parameters are found, for which the robot runs in maximum velocity in the

sagittal plane, while on the same time tipover stability is ensured in the frontal plane.

(b)

Figure 5-3. Snapshots of the (a) MIT Cheetah and (b) Boston Dynamics’ Cheetah robots high
speed running on treadmills (videos available in [82], [83]) ; the red arrows indicate support
mechanisms that fix rolling motion.

For the quadruped robot depicted in Figure 5-4 (a), let F, be the total force exerted on the CoM
of the robot, (AC) be the line segment connecting the toe of the left leg with the CoM of the robot, y,
be the angle between the total force vector and (AC) and d, be the moment arm between the total
force and the toe - ground contact point A. Then, as long as y, >0 stability from tipover is ensured. If
on the other hand y, <0, the moment of the force F,, with respect to the contact point A tends to tip
the robot in the counterclockwise direction. We assume that the total force F, , consists of a horizontal
perturbation force component Fp and the robot’s weight component F,, see Figure 5-4 (b). We also
assume that a local perturbation in the terrain’s geometry creates a small slope corresponding to y, .
Let y be the distance of the robot’s CoM from the ground and w be the half hip separation in the frontal

plane. Then from Figure 5-4 (b),

w
tan(y, +7, +7,) = v (5-1)

FP
tan(y,) ==~ (5-2)

w

Then solving (5-1), (5-2) to y,,
W
7 =tan 1(;)—72 ~ 7
(5-3)
v, = tan’l(i)
2 FW

By demanding that y, > 0then from (5-3),

F
tan™ (%) > tan™ (F—") +y, (5-)

w
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Solving Equation (5-4) to y,

(a) (b)

Figure 5-4. (a) Total force applied on the CoM of the quadruped robot in the frontal plane and
(b) Correlation of the robot’s geometry with the forces exerted on its CoM.

y<w/tan(tan™ (%) +7,) (5-5)

Equation (5-5) states that to achieve tipover stability in the frontal plane, the CoM height of the
robot Yy should be upperly bound, depending on the frontal plane half hip separation distance w of the
robot, the robot’s weight F, , the perturbation force F, and the slope of the terrain y,.

Assuming a perturbation force of 10 % the robot’s body weight and a local terrain slope of 5°, for
the frontal half hip separation distance of NTUA Laelaps w=0.15m, the permissible CoM heights in
which the robot should run to avoid tipover instabilities should be less or equal than 0.8 m. For the
actuation system of Table 5-5 and tuning properly the upper and lower bounds of the parametric search
(Table 5-8), optimal parameters are sought for trotting in maximum velocity, for a maximum running
height of 0.8 m. The maximum velocity that can be achieved by trotting in this state is 2.817 m/s for the
parameters shown in Table 5-9. The resulting leg morphology and motion of the robot in one stride is
shown in Figure 5-5. Although the maxiumum velocity achieved is 0.22 m/s (~7%) less than the velocity
achieved with the leg of Section 5.3, with the much shorter leg (40 % shorter) tipover stability is ensured

in the frontal plane.

Table 5-8. Upper and lower bounds of parametric search of Section 5.4.

Parameter Lower Bound Upper Bound Discr. Step
X(0) [m/s] 2.00 2.90 variable
y(0) [m] 0.5 0.8 0.05
T [s] 0.35 0.85 0.05
k [N/m] 1250 5000 1250
£ 1.000 1.125 0.025
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Table 5-9.  Optimall parameters for maximum velocity trotting, for y(0) <0.8m.
Tfs]  L[m] Iy[m] Kk[N/m] d[mm] d, [mm]
KF 0.7 0.60 0.55 0.20 0.61 2500 23 25

Config.  y(0)[m] a;

X

0% 25% 50% 75% 100%
[% stride]

Figure 5-5. Snapshots of the trotting quadruped robot with the optimal legs for tipover
stability in the frontal plane.

In maximum velocity, the maximum rms torque requirement of the hip joints is at 93.07 % of the
maximum permissible continuous hip torque and the maximum rms torque of the knee joints is at 98.52
% of the maximum permissible continuous knee torque. The requirement in hip joint angular velocity is
also increased, with a maximum observed reaching 99.40 % of the maximum permissible. A further
increase in horizontal velocity cannot be achieved with the optimal leg solution, as the required increase

in stride length results in footfalls out of the leg’s workspace.

5.5 Introducing a supplementary reduction ratio

For many of the evaluated sets of solutions of the previous sections, a higher value of horizontal velocity
could not be reached without violating some of the actuation constraints. In this section, it is investigated
if by tuning any of the reduction ratios n;, the running velocity of the quadruped robot could be further
increased. The issue is not straightforward, as by introducing a supplementary reduction ratio n;, (for
instance using a belt transmission mechanism) to the gearbox reduction ration; (resulting in a total

reduction of n;.n;), the maximum permissible torques and angular velocity and the rotor inertia scale

as,

!
Ty =N Ty
(ivJ Jerct] (5'6)
Tst,j = I’]j,ez—st,j

er:mx,j = Hmax,j /nj,e (5'7)

2 2
Ir',j:nj,e(njlr,j) (5-8)

Note that while torques are multiplied by n; ., the rotor inertia is multiplied by nie . As the motion

studied is highly dynamic with significant joint angular acceleration and rotor inertia at the exit of the
gearbox nj2 I, ; (n,=43,n,=53), apotential increase in torque constraints by n; . may lead to an overall

2
ie?

increase in torque requirement that scales by n? ., hence leading to a decrease in the performance of
the robot. To investigate the role of a supplementary reduction ratio in the maximum running velocity of

the robot, two experiments are conducted. Firstly, for the parameter space of Section 5.4, a
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supplementary reduction ratio of (48:26) is introduced in both motors, to evaluate the hypothesis that
an extra reduction ratio worsens the maximum achievable velocity of the robot. Note that (48:26) is
the extra reduction ratio the previous version of the NTUA Laelaps quadruped had for every actuating
motor. Then to determine if the increase or the decrease of the reduction ratio leads to a better running
velocity, various combinations of supplementary reductions are sought, with n; . >1 or 0<n;, <1for
the parameter space of Section 5.4.

With a supplementary reduction ratio of (48:26) introduced to both motors, the resulting actuation
parameters are shown in Table 5-10. The maximum velocity that could be reached was 2.083 m/s for
the parameter set shown in Table 5-11. For a larger velocity, both the continuous torque and the
maximum angular velocity constraints at the knee joints were violated. This is due to the increase of
torque requirement due to the increased rotor inertia and the decrease of the maximum angular velocity

constraint, incurred by the supplementary reduction ratio (48: 26).

Table 5-10. Actuation parameters at the exit of the extra reduction with n; . = (48:26).

j I, [kg m?] i [INm] 7. [Nm] 0. [rad/s]
1 386-107 19.56 51.69 7.94
2 1001-107 27.62 83.08 6.07

Table 5-11.  Set of optimal parameters for n; . =(48:26).

Config. y(O)[m]  a, T LIm]  lp[m] K[N/m] di,[mm] d,, [mm]
KF 0.80 040 060 027 0.65 2500 23 25

’
rj?

The non linear dependence of the rotor’s inertia in the exit of the extra reduction I, ., on the extra
reduction ratio n; ., creates the need for a more systematic approach. To better understand the
relationship between the extra reduction ratio n; , and the maximum achievable horizontal velocity, the
method was implemented for various reduction ratios in the vicinity of the nominal reduction (n;, =1,
n =43, n, =53). The candidate values for n, were taken in the interval {0.6,0.8,0.9,1.0,1.2} and
those for n,, in the interval {0.8,1.0,1.2}. The maximum velocities found for each of the above 15
combinations and the corresponding optimal set of parameters are shown in Table 5-12.

It is obvious that the maximum achievable velocity is found for the sets of (n,,n,.)=(0.8,1) or
(0.9,1) or (1,1), see also Figure 5-6. For combinations of extra reduction ratios near n,, =12 or
n,. =12, robot velocities less than 2.760 m/s could be achieved, with the minimum value found (
2.760 m/s ) for (n,,n,.)= (1.2,0.8). For combinations of smaller reduction ratios, velocities from
2.756 to 2.817m/s could be achieved.

The results from this parametric search provide strong indications that maximum velocities can be
achieved for total reduction ratios for the motors acting on the hip and the knee joints respectively,

nn =(0.90+0.15)43=38.70 +6.45 (5-9)

n,.n, =(1.00+£0.05)53=53+2.65 (5-10)
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In any case, the reduction ratios of the actuating motors should not further increase, as this would

drastically limit the maximum horizontal velocity the quadruped robot could reach.

Table 5-12.  Optimal set of parameters and velocity for various combinations of n,,n,..

ala nl,e nz,e max(x) y(O) afx T Il I20 k din dout
[m/s]  [m] [s1 [m] [m] [N/m] [mm] [mm]
1 06 0.8 2.775 0.70 06 055 011 0.70 2500 23 25
2 06 1.0 2.775 0.70 06 055 011 0.70 2500 23 25
3 06 1.2 2.737 0.70 06 055 012 0.69 2500 23 25
4 08 0.8 2.756 0.70 06 055 013 0.68 2500 23 25
5 0.8 1.0 2.817 0.70 06 055 015 0.66 2500 23 25
6 0.8 1.2 2.748 0.70 06 055 013 0.68 2500 23 25
7 09 0.8 2.761 0.70 06 055 016 0.65 2500 23 25
8 0.9 1.0 2.817 0.70 06 055 018 0.63 2500 23 25
9 0.9 1.2 2.755 0.70 06 055 016 0.65 2500 23 25
10 1.0 0.8 2.749 0.70 06 055 018 0.63 2500 23 25
11 1.0 1.0 2.817 0.70 06 055 020 061 2500 23 25
12 10 12 2.658 0.80 0.7 080 0.17 0.84 1250 23 25
13 12 0.8 2.616 0.65 06 055 0.27 049 2500 23 25
14 1.2 1.0 2.716 0.70 08 080 0.23 0.68 1250 23 25
15 1.2 1.2 2.735 0.75 08 085 022 0.74 1250 26 28
L - [m/s]
o 2.8
12.75

2.7

2.65

n1,e

Figure 5-6. Maximum horizontal velocity as a function of the extra reduction ratios n,,n, .
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6 Conclusions and Future Work

6.1 Conclusions

The work conducted in this thesis was inspired by the potential of the quadruped robots to improve the
life quality in modern societies. Their great advantage in rugged terrain compared to wheeled or tracked
vehicles, could be exploited in saving human lives in search and rescue missions or improve productivity
and safety in agricultural or industrial environment. Due to the challenging nature of the quadrupedal
locomotion, many issues concerning the design of the quadruped robot and escpecially the leg design
are still considered unresolved in existing research literature.

In an effort to enrich current research, a leg design methodology was devised intended to improve
and maximize the running performance of a quadruped. The proposed leg design methodology, took
into account the estimated mass and inertia of the robot, the candidate leg architecture (3 dof leg), the
desired materials for the leg components, the available actuation system and and estimated terrain
parameters and provided design (leg parameters) and control (gait parameters) indications for
maximizing running performance.

Utilizing this method, for robot parameters close to these of the NTUA Laelaps, the running
performance of the robot for alternative gaits, knee configurations, acting joints for the available motors,
and reduction ratios was optimized and the various results were compared. Although the robot physical
descriptions used were expressed in the sagittal plane, introducing a frontal plane tipover stability
criterion, solutions were also found capable for fast, stable motion against terrain or force perturbations
in the frontal plane. To understand to which end the proposed results are reasonable, a set of optimal
solutions was evaluated in an independent platform consisting of more realistic physical descriptions
and controllers and the robot’s running performance was validated.

The results showed that for the NTUA Laelaps robot body and actuation system, the maximum
running performance could be achieved with the trotting gait for legs in the knee forward configuration.
For this gait and configuration, it was found which of the two available motors should actuate on which
leg joint, thus succeeding a maximum running velocity of 3.039 m/s. Making reasonable assumptions
for perturbations in the terrain’s slope and for external perturbation forces and by demanding frontal
plane stability, the robot was proposed to run with a 40% shorter leg, reducing thus the maximum
running velocity only by 7%. Investigating the effect of introducing a supplementary reduction ratio, the
reduction ratio combinations that maximized running velocity were found and it was concluded that by
further increasing the motors’ reduction ratios, the running performance of the robot is more probable
to deteriorate.

The previous version of the NTUA Laelaps has legs with equal segments and with a total length
equal to the hip separation distance, made of duralumin and steel components. The actuators system
is so arranged, that the brushed DC motor acts on the hip joint and the brushless on the knee joint, both
having an additional reduction ratio of (48:26). The results of this thesis indicated that by altering some

of the attributes of the existing system the running performance of the robot can be drastically increased.
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To achieve a large running velocity the robot should move with a trotting gait instead of a bounding gait.
The duralumin and steel components should be replaced by carbon fiber tubes where possible to
reduce the leg weight and inertia. The total leg length should be greater than the hip separation distance
to achieve a larger stride length but in the same time adequately short to facilitate frontal plane stability.
The proximal to the body leg segment should be shorter to the distal leg segment for a better distribution
of the torque requirement between the hip and the knee joint. Morever, it was shown that with the
brushed motor acting on the knee joint and the brushless on the hip joint the robot can move faster in
comparison with the existing arrangement. Finally, the supplementary reduction ratio should be kept
close to one, as for a larger reduction ratio the rotor inertia and the torque requirement increase to a

much larger scale than the maximum permissible torque.

6.2 Future work

In the presented thesis a leg design methodology was devised that given the inertial properties of the
robot, the leg architecture and leg materials, the running gait, ground properties and the actuation
system, optimized the running performance of the robot by proper selection of certain leg parameters
(length, proportions, cross sectional area and stiffness) and gait parameters (foot placement, CoM
height of running, amplitude of horizontal force, stride period). Future work can focus on studying the
effect that alternative inputs can have on the robot performance predicted by the employed method and
on further validating the results through leg construction and experimentation. If the results are
experimentally validated, the method could be extended also to other tasks instead of running through
substraction.

An interesting issue related to the inputs of the method is the DF of the selected gaits. For a running
velocity greater than a threshold, quadrupedal animals chose to run in gaits with full flight phases, i.e.
phases where no leg is in contact with the ground (DF<0.5). For instance, cheetahs and dogs run in
maximum speed in duty factors less than 0.2 [63]. For the results presented in this thesis, at least two
legs are in contact with the ground at every time instant (DF=0.5). By further decreasing the DF of each
leg during the gait, the magnitude of the sinusoidal impulsive force exerted on each leg would increase
(see eg. (2-53)), and so would the cumulative time the leg spends in flight. As a result, the leg joint
torque requirements during stance phase would increase, but the required accelerations, angular
velocities and torques throughout flight phase would probably decrease (same joint trajectories during
full flight for longer flight phase duration). This could potentially lead to a better distribution of joint torque
requirements throughout the stride, leading to a better running performance. Another opportunity
presented by full flight phases is the disengagement of the stride length from the leg length. This
attribute could probably help offset the trade-off between sagittal plane tipover stability and maximum
running velocity.

Another issue that should be addressed is the costruction of the legs. The leg joints should be
properly designed to withstand the exerted stresses, while respecting the weight budget set in this

thesis. Carbon fiber tubes with the desired density and inner diameter/outer diameter combination

78/142



should be used, and the leg segment lengths should be taken as prescribed by the results of this thesis.
A proper mechanism for the prismatic degree of freedom should be considered, that can accommodate
the compression spring of the desired stiffness. Kevlar ropes could be used as a leightweight solution
to transmit power from the motor to the knee joint. If a belt transmission mechanism is used for power
transmission between the motors and the joints, the optimal combinations of extra transmission ratios
n;. should be taken into consideration.

After the legs are constructed, they should be mounted on the robot's body and running
experiments should be conducted. The control scheme utilized for the running task should take into
consideration the proposed gait, apex running height y(0) and positioning of the robot’s legs X
resulting in the desired stride length A4, leg clearance b, and stride period T . By conducting running
experiments, the gaps between methodology and hardware results should be identified, which may lead
in re-designing loops. Another proposition for experimental future work, would be to run in a terrain with
perturbations in the frontal plane and measure through toe mounted sensors, the total perturbation force
F, exerted on the robot. This could lead to a more realistic correlation of terrain incurred perturbations
with maximum permissible running height y(0) for tipover stability in the frontal plane.

Finally, after the results of the method are experimentally validated, the leg design method could
also be applied through abstraction for other tasks, e.g. stair climbing. Although many changes would
be necessary (description of the terrain, stability consitions, performance criteria), the basic structure
of the method would remain intact. An input stage where the robot and actuation properties, the terrain,
the task and the footfall sequence to achieve it would be defined; a first stage, where the CoM trajectory
of the robot will be optimized based on some performance criterion, a second stage that finds
permissible leg solutions, where the joint trajectories are determined and constraints (actuation,
strength) are evaluated and a final stage where alternative parameters are provided as inputs in the

other two stages, and the optimal set of solutions for the performance criterion are determined.
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Appendix A - Carbon tube properties

Available carbon fiber tube suppliers provide only approximate values for the density and the strength
of their products, without certification. This motivated the author to purchase representative carbon tube
samples and subject them to direct measurements and tests. The density of the specimens was
calculated from their measured mass and volume and their ultimate strength in compression and
bending was figured out by conducting appropriate compression and three point bending tests.

Two specimens were sampled from a carbon fiber tube with inner diameter d,, =18mm, outer
diameter d_, =20mm and total length 1000m. The specimens were cut from the tube with sawing,
and the specimen intended for the compression test was also subjected to turning, to ensure uniform
contact of the specimen with the compression plates. The length of the compression specimen was
taken equal to |, =61.4mm, to ensure that the ratio |. /d_, =3 is small enough to avoid buckling
during the compression test. The length of the bending specimen was taken equal to I, =240mm,
resulting in a length to outer diameter ratio 1, /d,, =12. The length of the bending specimen should
be adequately long in comparison with its outer diameter to ensure that bending (and not compression
or shear) is the main cause of stress. In literature [84], a typical satisfactory length to outer diameter
ratio for bending of composite tubes is |, /d_ , =8. The mass of the compression specimen was
measured as m, =0.056kg and that of the bending specimen as m, =0.022kg . The density of the
specimens was calculated as,

msn

PN (A-1)

V=1 z(d2, —d2)/ 4

out

where mg,, |Sp is the mass and the length of the specimens. By replacing the masses, the lengths and
the diameters of the specimens in Equations (A-1), the density of the carbon fiber composite was found
as, p=1466kg/m°,

The universal testing system Instron 4482 was used for the compression and the bending, see
Figure A-1 (a). The experimental setup for the compression tests consisted of two compression plates,
Figure A-1 (b) and that for the three point bending test consisted of two support pins and a punch, see
Figure A-1 (c). The curvature radii of the supports and the punch were proper (r, =10mm) to avoid
local overstressing and denting of the subjects. The support span (distance between support pins) was
taken equalto 200mm to avoid slippage of the specimen during bending. The compression experiment
was conducted for a constant compression velocity of 6mm/sec and the bending experiment for a
constant punch velocity of 1mm/min . Load and deflection were recorded throughout the experiments
and the results were presented in respective graphs, see Figure A-2.

From the maximum measured loads and the geometry of the carbon fiber tubes, the compression
and bending strengths S, S, were calculated as,

S.=F., /A

c C,max

M
Sb — b, max M’ M

b, max
l, 2

=F _1./2 (A-2)

b,max’s
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where F, .. is the maximum recorded compressive load, A is the cross sectional area of the carbon
fiber tubes, F . is the maximum recorded bending load, |, is the support span length and 1, is the
area moment of inertia of the carbon fiber tubes. For F _ =11705N and F ., =650N the

compressive and bending strengths were found as, S, =200MPa and S, = 240MPa . The maximum

permissible normal stress value was taken as the minimum of the two,
Scu =min(S,,S,) =200MPa (A-3)

(a)

Figure A-1. (a) Instron 4482 testing system and experimental setups for (b) compression and
(c) three point bending.
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Figure A-2. Load - deflection diagrams for the (a) compression and (b) three point bending
tests.
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Appendix B - Codes in Matlab

Appendix B is intended to explain to the reader the main scripts and functions written and used by the

author as the algorithmic implementation of the leg design method presented in the dissertation. The

purpose of thoroughly explaining the codes is twofold; in case of interest, the reader should be able to

reproduce the results of the method and use the codes provided for their own research interests. A list

of the written and used function and scripts with a short description is provided below (Figure B-1):

Main_vx000.m: The algorithmic implementation of the leg design method presented in Figure
3-1, corresponding to a running velocity vx ( X(0) ). This script is intended to be run in parallel
for different velocities. To run multible of these scripts in parallel, rename the script accordingly
to the input velocity. For instance, for the velocities vx=2.50 m/s and vx=2.80 m/s, create two
copies named Main_vx250.m and Main_vx280.m, change the respective velocities inputs and
run the scripts in two different MATLAB windows. The output of this script is the PSC.mat matrix
containing the permissible leg and gait parameter solutions to run in the desired velocities and
indicators if the solutions are truncated by the parameter search boundaries. At the end of this
script PSC.mat matrix is saved in the workspace folder as PSC_vx000.mat.
PostProcessing.m: Loads one of the optimal solutions sets saved in the matrix PSC_vx000.mat
and calculates the robot CoM and leg joint trajectories, the joint torques and stresses exerted
on the tubular leg segments. The user can chose to display an animation of the robot running,
plot the joint torques and angular velocities to compare them with the actuation constraints or
plot the stresses applied on the tubular leg segments.

c_i.m: Has as output the value of the variable C; (see eq. (8-1))

QY
I |
— C_i.m
— Force.m c_i.m
— Torque.m Force.m
Main_vx000.m —
— ObjFun.m Torque.m InvKinH.m — cubic_correction.m
— ode3.m — OdeFun.m InvKinF.m — cubic_correction.m
L OptLegs.m Torques.m — check_strength.m
— (A)
— Animation.m
PostProcessing.m —— AnimationFull.m — arrow.m
+— PlotTorquesNRadPerSec.m
— PlotStress.m

Figure B-1. Tree diagram showing the functions called from the two main scripts,
Main_vx000.m and PostProcessing.m.
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e Force.m: Provides as output the horizontal and vertical forces exerted on the CoM of the robot
at every time instant, see eq. (2-43), (8-2).

e Torque.m: Calculates the total torque exerted on the robot body w.r.t its CoM, see eq. (2-45).

e ObjFun.m: Finds the value of the objective function (3-2) for a set of candidate footfalls X;.

e o0de3.m: A mathworks community function, implementation of the Runge - Kutta (3 order)
method with a fixed integration step.

e OdeFun.m: Provides as output the right hand side of the differential Equations system (2-40)-
(2-42) at every time instant.

e OptLegs.m: Most of the leg parameter search of Stage 2 is conducted in OptLegs.m, having as
outputs the leg parameters |, l,;, k that satisfy actuation constraints (2-100).

¢ InvKinH.m: Returns as output the leg joint trajectories of the hind legs, corresponding to a hybrid
elliptical - cubic polynomial flight phase toe trajectory, see Section 2.7.

¢ InvKinF.m: Returns as output the leg joint trajectories of the hind legs, corresponding to a hybrid
elliptical - cubic polynomial flight phase toe trajectory, see Section 2.7.

e cubic_correction.m: Takes as input the leg joint trajectories corresponding to an elliptical toe
flight phase trajectory, and gives as output the joint trajectories corresponding to a hybrid
elliptical - cubic polynomial flight phase toe trajectory, see conditions (3-16), (3-23) and
polynomials (3-24), (3-25)

e Torques.m: Given the leg joint trajectories and dynamics of the quadruped robot the leg joint
torques are calculated, eq. (2-38).

o check_strength.m: For alternative user provided sets of d,, d,, (see Table 4-2) the strength

in
of the tubular leg segments is evaluated, see inequalities (2-90).

e Animation.m: Given the CoM trajectories and the footfalls of the quadruped robot, an animation
is displayed, showing the motion of the centroidal model.

e AnimationFull.m: Given the CoM and leg joint trajectories of the quadruped robot, an animation
is displayed, showing the motion of the quadruped robot.

e arrow.m: A mathworks community function, used to plot the vectors of the ground forces with
time.

e PlotTorquesNRadPerSec.m: The joint torques and angular velocities are expressed as a
percentage of the corresponfing maximum permissible values and plotted vs. time in figures.

e PlotStress.m: Calculates (eq. (2-85)-(2-87)) and plots the stresses on the tubular leg segments,

comparing them with the material’s strength.

In the following sections, the written scripts and functions are presented in detail with helpful comments

that guide the reader.
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Main_vx000.m

o o
ST Main vx000.m ------—-—-—--—-———"——"——"——"——"—\——\——— %
o T T T, T, T T T, T T T T T T T T T T T T T T T %

% This script searches for the leg and gait parameters for which hardware

% constraints are respected, while the robot runs in a user specified

% velocity. Create multible versions of this script with different names to
% run simulations with different velocities vx parallely. The output of

% this script is the matrix PSC which contains all the permissible leg and
% gait parameters for a running velocity vx and indeces warning the user if
% an upper or lower boundary has been reached.

R et ROBOT PROPERTIES —————————————m oo %
% The legs' properties are set in Torques.m
% The legs' strength is set in check strength.m

2

m=42;

d=0.3;

g=9.81;

a=1;

b=0.15;

I=1/12*m* (a”2+b"2) ;

o GROUND FORCE RELATED PARAMETERS —-—--—-——-———————————— 3
fs=2;

mi=0.65;

e GROUND LOCATION ——-————————————mmm oo 3
% Set desired clearance from the ground in InvKinHL.m, InvKinFL.m

yg=0;

e et e ACTUATOR SPECIFICATIONS —————=-————————————mo o 3

% Specify rotor inertias and reduction ratios in Torques.m

% The values below are torques and ang. velocities after reduction.
tau2maxst=45;

tauz2maxct=14.96;

th2dmax=11.21;

taulmaxst=45;

taulmaxct=14.96;

S © S

F—mm TEMPORAL GAIT PARAMETERS -—-—-——————-—————-—————————— %
$ HL-->1, FL-->2, FR-->3, HR-->4, tti=[t td i%, t to i%]

tt1=[0,50];

tt2=[50,100];

tt3=[0,50];

tt4=[50,100];

t21=tt2 (1) ;

t22=tt2(2) ;

dfi=-t21*pi/ (t22-t21);

oo

The code parts and scripts affected if gait is changed are:

- Main vx000.m, lines 134-228.

- check strength.m, CheckStrength.m replace (1:500), (501:1000) with the
proper indeces for each leg's stance and flight.

- cubic correction.m replace the proper values to jO, jm, jf, t0, tm, tf,
replace (1:500), (501:1000) with the proper indeces for each leg's stance

o° 0 o° oe

oo
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% midflight and flight.

% - Force.m, replace properly the arguments filx, fi
% differences dfix, dfiy.

% - InvKinFL.m, InvKinHL.m, reset wtri, fitri, repla
% with the proper indeces for each leg's stance and
% - PostProcessing.m, lines 58-65, 116-210
e e LOWER & UPPER BOUNDS —----
% The upper and lower bounds for the leg parametric
% set in OptLegs.m

afxlb=0.1;

afxub=0.7;

T1lb=0.35;

Tub=0.75;

y01b=0.55;

thd0=0;

G——m PARAMETRIC SEARCH OUTER STAGE
oc=0;

vx=0.5; % change velocity manually, vx=xdO0

for T=T1b:0.05:Tub
for afx=afxlb:0.1:afxub
for y0=y01lb:0.05:y0ub

mm PARAMETER BOUND FLAGS —----
% Reconsider boundaries of parameter search if flags
bfafx=0;

bfT=0;

bfy0=0;

bfx1=0;

bfx2=0;

e PARAMETRIC SEARCH STAGE 1 -
S ——— FOOTFALL EXHAUSTIVE SEARCH -
% initialization

dx=0.03;
n=100;

dt=T/ (n-1);
minfpth=1e6;

t=zeros(n,1);
x=zeros(n,1l);
xd=zeros (n,1);
xdd=zeros(n,1);
y=zeros(n,1l);
yd=zeros (n,1);
ydd=zeros(n, 1) ;
fx=zeros(n,1);
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fy=zeros(n,1);
tau=zeros(n,1);
th=zeros(n,1);
thd=zeros (n,1);
thdd=zeros(n,1);

x(1)=x0;
xd (1l)=vx;
xd (2)=vx;
x(2)

KKK
II‘~<‘~<

ydO

1
2
(
( ydo;

(1)=
(2)
yd (1
yd (2

~ — |

)y=th0;
)=thO0;
1)=thd0;
2)

1
2
(
(2)=thd0;

h(
h(
hd
hd

=x (1) +dt*xd (2) ;

% footfals xi exhaustive search

for x1=x(1)-d*cos(th(1l))

:dx:x (1) -d*cos (th(l))+2*d

for x3=x(1)+d*cos(th(l)) :dx:x(1)+d*cos (th(1l))+2*d

x2=0;
x4=0;

for §=1:3

[cl,c2,c3,cd]=
[£x],fy]]
[tau]j]
fx(J)=
fy(J)=
tau(j)=

end

for j=3:ttl (2

t(3)

xd (J)

i(ttl, tt2,te3,tt4,t(3),7T);

Force (cl,c2,c3,c4,ttl,dfi,afx,t(j),T,mi,m, g, fs);
Torque (cl,c2,c3,c4,x1,x2,x3,x4,v9,x(

) *n/100
=t (j-1)+dt;
[cl,c2,c3,c4d]=
[£xJ,fy]]
xdd ()

i(ttl,tt2,tt3,ttd,t(3),T);

Force (cl,c2,c3,c4,ttl,dfi,afx,t(j),T,mi,m, g, fs);
=1/m* (fx7) ;
=1/3% (2*dt*xdd () +4*xd (§-1) -xd (§-2) ) ;

x(3) dt 2*xdd (J)+2*x(3-1) -x(3-2);

ydd (7
vd (j
v (3)

[tauj]

thdd
thd (
th(j)
x(J)=
y (J)
tau(j
end

=fyj;

=1/m* (fyj-m*g) ;
1/3*(2*dt*ydd(j)+4*yd(j—l)—yd(j—Z));
=th2*ydd(j)+2*y(j—l)—y(j—Z);
Torque(cl,c2,c3,cd,x1,x2,x3,x4,y9,x(3),v(J),£x3,£fy3);
=1/I*(tauj);
1/3* (2*dt*thdd (j) +4*thd(j-1)-thd (jJ-2));
dt 2*thdd (j) +2*th(j-1)-th(j-2);
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312=3;

for x2=x(j12)+d*cos(th(j1l2)) :dx:x(jl2)+d*cos(th(jl2))+2*d
for x4=x(j12)-d*cos(th(j1l2)) :dx:x(jl2)-d*cos(th(jl2))+2*d

for

j=312+1:tt2(2)*n/100

t(j)=t(j-1)+dt;

[cl,c2,c3,cd4]=c_1i(ttl,tt2,tt3,ttd,t(]),T);

[fxj, fyj] = Force(cl,c2,c3,c4,ttl,dfi,afx,t(j),T, ...
mi,m,qg,fs);

xdd (3)=1/m* (fx73) ;
xd (§)=1/3* (2*dt*xdd () +4*xd (-1) -xd (§=2) ) ;
X (J)=dt"2*xdd () +2*x (J-1) -x(7-2) ;
ydd (3)=1/m* (fyj-m*g) ;
yd(j)=1/3*(2*dt*ydd (j) +4*yd (J-1)-yd(j-2));
y(J)=dt"2*ydd (j)+2*y(J-1)-y(3-2);
[tauj] = Torque(cl,c2,c3,cd,x1,x2,x3,x4,y9,x(J),...
y(3),fx3,£yJ);
thdd (j)=1/I* (tauj);
thd (j)=1/3* (2*dt*thdd (j) +4*thd (j-1) -thd (3-2)) ;
th(4)=dt~2*thdd (j) +2*th (§-1) -th (§-2) ;
fx(3)=£fx3;
fy(3)=fy3j;
tau(j)=tauj;
end
ill=round(ttl (1) *n/100+1) ;
il12=round (ttl (2)*n/100)
i21=round (tt2 (1) *n/100+1) ;
i22=round (tt2(2)*n/100)
i31l=round (tt3(1)*n/100+1) ;
132=round (tt3(2)*n/100)
id4l=round (tt4d (1) *n/100+1);
i42=round (tt4 (2) *n/100)
Il=dt*trapz(abs(x1-x(i11:112)+d*cos (th(ill:112))));
I2=dt*trapz(abs (x2-x(121:122)-d*cos (th(i21:122))));
I3=dt*trapz(abs (x3-x(131:132)-d*cos (th(i31:132))));
I4=dt*trapz(abs(x4-x(141:142)+d*cos (th(1i41:142))));

[

% objective function

fpth=abs (th(n)-th(1l))*100+10*abs (thd(n)-thd(1l))+

o° oe

oe

10% (T1+T2+T3+14);

if the weighing factors or the form of the objective
function is changed here, it should also be changed in
ObjFun.m

if fpth<minfpth

minfpth=fpth;
xlo=x1;
X20=X2;
x30=x3;
x4o0=x4;
XO=X;
yOo=Vy;
tho=th;
tauo=tau;
fxo=£fx;
fyo==fy;
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end
end
end
end
g FOOTFALL OPTIMISATION —————————————————————————— %
$ xff = [x1 x2 x3 x4]'
dx=0.05;

x1lb=xlo-dx;
x1lub=xlo+dx;
x21b=x20-dx;
x2ub=x20+dx;
x31b=x30-dx;
x3ub=x30+dx;
x41b=x40-dx;
x4ub=x40+dx;

1b=[x11lb x21b x31b x41b];
ub=[x1lub x2ub x3ub x4ub];

xffO0=[xlo x20 x30 x40];
opt=optimset ('Display', 'off');
[xff, fval,exitflag]l=fmincon (@ (xff)ObjFun (xff,m,I,qg,x0,vx,y0,yd0,tho, ...

thd0,yg, ttl, tt2,tt3,tt4,T,dfi,afx,mi, fs,d),x££0, ], [],[],[],1b, ...
ub, [],opt);

% check if upper or lower bounds truncate solutions

if xl<=xo0(1l)-d*cos(tho(l)) | |x1l>=x0(1l)-d*cos (tho(1l))+2*d
bfxl=1;

end

if x2<=x0(j12)+d*cos (tho (j12)) | |x2>=x0 (§12)+d*cos (tho (712))+2*d
bfx2=1;

end

if x3<=x0(1l)+d*cos(tho(l)) | |x3>=x0o(1l)+d*cos(tho(1l))+2*d
bfx3=1;

end

if x4<=x0(J12)-d*cos (tho(j12)) | |x4>=x0(jl2)-d*cos (tho(j12))+2*d
bfx4=1;

end

Yo CoM TRAJECTORY WITH OPTIMAL FOOTFALLS —————-———-—————————— 2

n=1000;

dt=T/ (n-1);

t=1linspace(0,T,n);

g0=[x0 vx y0 yd0O thO thd0];

g=ode3 (@ (t,gq) OdeFun(t,q,m,qg,I,x1,x2,x3,x4,yqg,ttl,tt2,tt3,tt4,T,dfi, ...
afx,mi,fs),t,q0);

)7
xd=q(:,2);
y=a(:,3);
yd=q(:,4);
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th=qg(:,5);
tha= q( 1 6);
n=length (t);
fx=zeros(n,1);
fy= zeros(n 1);
tau=zeros(n,1
, 1
, 1

’

I

xdd=zeros (n
ydd=zeros (n
thdd=zeros (n,

) ;
);
) ;
1);
for j=1l:n
[cl,c2,c3,cd4]=c_1i(ttl,tt2,tt3,ttd,t(]),T);

[fxj,fyj] = Force(cl,c2,c3,c4,ttl,dfi,afx,t(j),T,mi,m,qg,£fs);
[tauj] = Torque(cl,c2,c3,cd,x1,x2,x3,x4,vy9,x(J),yv(3),£x73,£fv3);

x(J)=£x3;
v(3)=£fyj;
tau(j)=tauj;

xdd (F)=1/m*fx (7

) ;
ydd (3)=1/m* (fy (J) -m*g) ;
thdd (§)=1/I*tau(j);
end
R e e T MAXIMUM PERMISSIBLE PITCH -—---—————————————————————— %

[maxabsth, ithm]=max (abs (th)) ;
if a/2*sin(maxabsth)+b/2*cos (maxabsth)<=(y (ithm)-yg)/2&&maxabsth<=15*pi/180

T PARAMETRIC SEARCH STAGE 2 -—--—--———————————————— %
e LEG PROPERTIES EXHAUSTIVE SEARCH —-——--————-——-———————- %

if flagl==0 then actuation constraints are not respected.

11,120,k,flagl, flags,bfeps]=0Optlegs (t, x,xd, xdd, vy, vd, ydd, th,
thd, thdd, ttl, tt2,tt3,tt4,x1,x2,x3,x4,vyq9, fx,fy,d,g,...
taulmaxst, taulmaxct, thldmax, tau2maxst, tau2maxct, th2dmax, T) ;

— oo

e e SAVE RESULTS IN PSC.m ————-————————————————————— 2
% 1f flagl==1 actuation constraints are respected

% 1f flags==0 strength constraints are respected

if flagl==

pt=length(11l);

parameters=zeros (pt, 13);

parameters (l:pt,1l)=vx;
parameters (l:pt, 2)=afx;
parameters (l:pt, 3)=T;

parameters (l:pt,4)=y0;

o)

% check if upper or lower bounds exclude solutions
if afx==afxub| |afx==afxlb

bfafx=1;

end

if T==Tub| |T==T1lb
bfT=1;
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end

if y0O==yOub||y0==y0lb
bfy0=1;

end

parameters (l:pt, 8)=bfafx;
parameters (l:pt, 9)=bfT;

parameters (l:pt,10)=bfy0;

parameters (l:pt,11)=bfxl+bfx2+bfx3+bfx4;

for pc=l:pt

parameters (pc, 5)=11 ( c);
parameters (pc, 6)=120 (pc) ;
parameters (pc, 7) =k (pc) ;
parameters (pc, 12)=bfeps (pc) ;
parameters (pc, 13)=flags (pc);
end
oc=oc+1;
if oc==
PSC=parameters;
else
PSC=[PSC;parameters];
end
disp('Solution found'")
else
disp('Contstraints can not be satisfied')
end
end
disp('iii")
toc
end
disp('ii")
toc
end
disp( )
toc
end

save ('PSC vx000.mat', "PSC")
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PostProcessing.m

o o
ST PostProcessing.m ——--——-——-——-————————————————————— %

o)
£< e}

% Run the PostProcessing.m script after the Main vx000.m and if at least a
% PSC.mat matrix is available. PostProcessing.m loads the set of optimal

% solutions located on the no-th row of the PSC.mat and calculates the CoM
% and joint trajectories, joint torques and stresses on the leg segments,

% data that are not saved in the PSC.mat matrix. At the end of the script

% an animation of the robot's movement is displayed, plots of the leg joint
% torques and angular velocities and plots of the stresses on the tubular

% leg segments.

clc
clear
tic

% load saved PSC matrix
load('PSC vx000.mat")
no=1;

vx=PSC(no,1);

afx=PSC (no, 2) ;

T=PSC (no, 3) ;

y0=PSC (no, 4) ;

11=PSC (no, 5);

120=PSC (no, 6) ;

k=PSC (no, 7) ;

mm ROBOT PROPERTIES --—————=—=—=—=————————————————— %
% The legs' properties are set in Torques.m

% The legs' strength is set in check strength.m

m=42;

d=0.3;

g=9.81;

a=1;

b=0.15;

I=1/12*m* (a"2+b"2);

F——— GROUND FORCE RELATED PARAMETERS -—-—-—----—--—-—-——————————— %
fs=2;

mi=0.65;

g — e GROUND LOCATION —-—-——————————————————————————— %
% Set desired clearance from the ground in InvKinHL.m, InvKinFL.m

yg=0;

§mmmmmm - ACTUATOR SPECIFICATIONS —————=-———-——————————— %

% Specify rotor inertias and reduction ratios in Torques.m

% The values below are torques and ang. velocities after reduction.
tauZmaxst=45;

tauZmaxct=14.96;

th2dmax=11.21;

taulmaxst=45;

taulmaxct=14.96;

thldmax=11.21;

f—— TEMPORAL GAIT PARAMETERS --—-——=—————————————————— %
$ HL-->1, FL-->2, FR-->3, HR-->4, tti=[t td i%, t to i%]

97/142



ttl=[0,501;
tt2=[50,1001;
tt3=[0,501;
tt4=[50,100];
t21=tt2(1);
t22=tt2(2);

% initialization

dx=0.03;
n=100;

dt=T/ (n-1) ;
minfpth=1le6;

t=zeros(n,1l);
x=zeros (n,1l);
xd=zeros (n,1);
xdd=zeros(n, 1) ;
y=zeros(n,1l);
yd=zeros(n,1);
ydd=zeros(n,1);
fx=zeros(n,1);
fy=zeros(n,1l);
tau=zeros(n,1l);
th=zeros(n,1);
thd=zeros (n,1);
thdd=zeros(n, 1) ;

t(1)=0;
t(2)=dt;
x(1)=x0;

y(1)=y0;
y(2)=y0;

yd (1)=yd0;
yd (2)=yd0;
th(1l)=tho0;
th(2)=tho0;
thd (1) =thd0;
thd (2)=thd0;

o)

PARAMETRIC SEARCH STAGE 1
FOOTFALL EXHAUSTIVE SEARCH

% footfals xi exhaustive search

for xl1=x(1)-d*cos(th(1l)) :dx:x(1l)-d*cos(th(l))+2*d
for x3=x(1)+d*cos(th(l)) :dx:x(1)+d*cos (th(1l))+2*d
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x2=0;
x4=0;

for j=1:3
[cl,c2,c3,cd4]=c_1i(ttl,tt2,tt3,tt4,t(3),T);

[fxj,fyj] = Force(cl,c2,c3,c4,ttl,dfi,afx,t(j),T,mi,m, g, fs);
[tauj] = Torque(cl,c2,c3,cd4,x1,x2,x3,x4,vy9,x(3),v(3),£fx73,£fv]3);

fx(j)=£fx7;

fy(3)=£fy3j;

tau (j)=tauj;
end

for §j=3:ttl(2)*n/100
t(J)=t(j-1)+dt;
[cl,c2,c3,cd4]=c_1i(ttl,tt2,tt3,ttd,t(]),T);

[ij,fyj] = Force(cl,c2,c3,c4,ttl,dfi,afx,t(j),T,mi,m,qg,fs);

xdd (F)=1/m* (£x73) ;

xd (j ) 1/3*(2*dt*xdd(j)+4*xd(j—l)—xd(j—Z));
x(§)=dt"2%xdd (§) +2*x (3-1) -x (§-2) ;

ydd(j =1/m* (fyj-m*qg) ;

yd () =1/3*(2*dt*ydd (j) +4*yd (j-1)-yd(3-2));

vy (J ) =dt"2*ydd () +2*y(j-1)-y(J-2);

[tauj] = Torque(cl,c2,c3,cd,x1,x2,x3,x4,y9,x(3),v(3),£x3,£v]);

thdd (3)=1/I* (tauj);
thd (j)=1/3* (2*dt*thdd (j)+4*thd (j-1) -thd (j-2)) ;
th(3)=dt”2*thdd (j)+2*th (j-1)-th (j-2) ;

fx(J)=£fx3;
fy(3)=fy3;
tau(j)=tauj;
end
312=73;

for x2=x(j12)+d*cos (th(j12)) :dx:x(312)+d*cos (th(jl2))+2*d
for x4=x(j12)-d*cos(th(j12)) :dx:x(312)-d*cos (th(jl2))+2*d

for j=j12+1:tt2(2)*n/100
t(J)=t(j-1)+dt;
[cl,c2,c3,cd4]=c 1i(ttl,tt2,tt3,tt4,t(]),T);

[fx],fy]j] = Force(cl,c2,c3,cd,ttl,dfi,afx,t(3),T,...

mi,m,g,fs);
xdd(j =1/m* (fx3j) ;
xd () =1/3*(2*dt*xdd (J) +4*xd (j-1)-xd (J-2)) ;
x(3) dt 2*xdd (J)+2*x(3-1)-x(3-2);
ydd (j)=1/m* (fyj-m*qg) ;
yd (3 1/3*(2*dt*ydd(j)+4*yd(j—l)—yd(j—2));
y(j)=th2*ydd(j)+2*y(j—1)—y(j—2);

[tauj] = Torque(cl,c2,c3,cd,x1,x2,x3,x4,y9,x(J),...

y(3),£x3,fy])
thdd (j)=1/I* (tauj) ;
thd (§)=1/3* (2*dt*thdd (j)+4*thd (j-1) -thd (7-2));

th(j)=dt”2*thdd (j)+2*th (j-1)-th (j-2) ;
fx(J)=£fx3j;

fy (3)=£fyJ;

tau(j)=tauj;

end

ill=round (ttl (1) *n/100+1);
il2=round (ttl (2)*n/100)
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tt2
tt2
tt3
tt3
tt4
tt4

i21l=round
i22=round
i31=round
i32=round
i4l=round
i42=round

*n/100+1) ;
*n/100) ;
*n/100+1) ;
*n/100) ;
*n/100+1) ;
*n/100) ;

—_— — — — — —

1
2
1
2
1
2

~ e~ o~~~ —~
~ e~ o~~~ —~

Il=dt*trapz(abs(x1-x(1i11:112)+d*cos(th(il11l:112))))

I2=dt*trapz(abs (x2-x(121:122)-d*cos (th(i21:122))));
( ( ( ) (th(131:132))))
( ( ( ) (th(141:142))))

t
t
I3=dt*trapz(abs (x3-x(131:132)-d*cos (t
I4=dt*trapz(abs(x4-x(141:142)+d*cos (t

o)

% objective function
fpth=abs (th(n)-th(1l))*100+10*abs (thd(n)-thd(1))+...
10* (I1+I2+I3+1I4);

if fpth<minfpth
minfpth=fpth;

xlo=x1;
X20=X2;
x30=x3;
x4o0=x4;
X0=X;
Yo=Y/
tho=th;
tauo=tau;
fxo=£fx;
fyo==fy;
end
end
end
end

end

g m FOOTFALL OPTIMISATION —-—-—-————""=""="="—"—"—"—"—"—"———~————— %

$ xff = [x1 x2 x3 x4]'

dx=0.05;

x1lb=xlo-dx;
x1lub=xlo+dx;
x21b=x20-dx;
x2ub=x20+dx;
x31lb=x30-dx;
x3ub=x30+dx;
x41b=x40-dx;
x4ub=x40+dx;

1lb=[x11lb x21b x31b x41b];
ub=[x1lub x2ub x3ub x4ub];

xff0=[xlo x20 x30 x40];
opt=optimset ('Display', 'off');
[xff,fval,exitflag]=fmincon (@ (xff)ObjFun(xff,m,I,qg,x0,vx,vy0,yd0,th0,...

thd0, yg,ttl, tt2,tt3,tt4,T,dfi,afx,mi, fs,d),x££0, [1, (1, (], [1,1b,...
ub, [],o0pt) ;
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e ———— CoM TRAJECTORY WITH OPTIMAL FOOTFALLS ---—-————————————-—-—-— %
n=1000
dt=T/ (n-1)

t=linspace (0, T,n);

qg0=[x0 vx y0 yd0O th0O thd0];

g=ode3 (@ (t,gq) OdeFun(t,q,m,qg,I,x1,x2,x3,x4,yg,ttl,tt2,tt3,tt4,T,dfi, ...
afx,mi, fs),t,q0);

x=q(:,1);
xd=q(:,2);
y=q(:,3);
yd=qg(:,4);
th=q(:,5);
thd=qg(:,6);
n=length(t);

fx=zeros(n,1);
fy= zeros(n 1);
tau=zeros(n,1
xdd=zeros (n, 1
ydd=zeros (n, 1
thdd=zeros (n,

’

);

);

);

1);

for j=1:n
[cl,c2,c3,cd4]=c_1i(ttl,tt2,tt3,ttd,t(]),T);

[fxj,fyj] = Force(cl,c2,c3,c4,ttl,dfi,afx,t(j),T,mi,m,g,£fs);
[tauj] = Torque(cl,c2,c3,cd,x1,x2,x3,x4,y9,x(J),yv(3),£fx3,£fvy]);

x(3)=£fx3;
v(3)=Ffyj;
tau(j):tauj;
xdd (F)=1/m*fx () ;
ydd (J)=1/m* (fy (J) -m*qg) ;
thdd (j)=1/I*tau(j);
end
R MAXIMUM PERMISSIBLE PITCH ——=——=-—-——=—=————————— %

[maxabsth, ithm]=max (abs (th)) ;
if a/2*sin(maxabsth)+b/2*cos (maxabsth)<=(y (ithm)-yg)/2&&maxabsth<=15*pi/180

F————— LEG JOINT TRAJECTORIES —-—-—-—-—-—-——-——-————————————————— %

% calculate joint trajectories from Inverse Kinematics

11lhl=11;

120h1=120;

khl=k;

leg=1;

[ajhl,gjdhl,gjddhl, flagl]
ttl,x1,vqg,fx,fy,d, leqg);

InvKinH (11h1,120h1, khl, t, x,y, th, thd, thdd,

11h4=11;

120h4=120;

khd=k;

leg=4;

[gjh4,gjdh4,gjddh4,flagd4] = InvKinH(11h4,120h4,kh4,t,x,vy,th,thd, thdd, ...
tt4d,x4,vyg,fx,fy,d, leqg);
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11f2=11;

120£2=120;

kf2=k;

leg=2;

[gijf2,9jdf2,gjddf2, flag2]
tt2,x2,yg9, fx, fy,d, leq);

InvKinF (11£f2,120f2,%kf2,t,x,y,th,thd, thdd, ...

11£3=11;

120£3=120;

kf3=k;

leg=3;

[qJ£3,9jdf3,gjddf3, flag3]
tt3,x3,y9,fx, fy,d, leq);

InvKinF (11£3,120£3,%kf3,t, x,vy, th, thd, thdd, ...

% 1f leg collisions are avoided and toe remains in the workspace of the leg
% then flagi=0

if flagl==0&&flag2==0&&flag3==0&6&flagd==

% leg joint trajectories calculation

thhl=gqjhl (:,1);
thlhl=gqjhl (:,2);
th2hl=gqjhl (:,3);
12hl=gjhl (:,4);
thdhl=gjdhl (:,1)
thldhl=gjdhl(:,2
th2dhl=gjdhl (:,3
12dhl=gjdhl (:,4);
thddhl=gjddhl (:,1
thlddhl=qgjddhl (:,
th2ddhl=gjddhl (:,
12ddhl=gjddhl (:,4);

thf2=qjf2(:,1);
thlf2=qjf2(:,2);
th2f2=qjf2(:,3);
12f2=qjf2(:,4
thdf2=qjdf2(:,1);
thldf2=qjdf2(:,2);
th2df2=qjdf2 (:, 3)
12df2=gjdf2(:,4);
thddf2=qjddf2(:,1);
thlddf2=qjddf2 (:,2);
th2ddf2=qjddf2 (:, 3)
12ddf2=qjddf2(:, 4);

~

2
3
)

’

’

’

thf3=gjf3(:,1
thlf3=gj£3(:,
th2£3=g3j£3(:,
12f3=gjf3(:,4
thdf3=gjdf3(:,1);
thldf3=qjd£f3(:,2);
th2df3=gqjd£f3(:,3)
12df£3=gjd£f3(:,4);
thddf3=qjdd£f3(:,1);
thlddf3=qgqjddf3(:,2);
th2ddf3=gjdd£f3(:, 3)
12ddf3=qjddf3(:,4);

);
) .

’

2
3
)

’

’

’

thh4=gjh4 (:,1);
thlh4=gjh4(:,2);
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th2h4=qjh4 (:,3);
12h4=gjh4 (:, 4)

thdh4=qjdh4 (:, 1) ;
thldh4=qjdh4 (:,2);
th2dh4=qjdh4 (:, 3)

12dh4=gjdh4 (:,4) ;
thddh4=qjddh4 (:, 1) ;
thlddh4=qjddh4 (:,2) ;
th2ddh4=qjddh4 (:, 3)

12ddh4=gjddh4 (:,4) ;

’

’

I

% leg joint torque calculation

[torquelhl, torque2hl, torquelhd, torque2h4, torquelf2, torque2f2, ...

torquelf3, torque2f3, flags] = Torques (xd, xdd, yd, ydd, th, thd, thdd, thlhl, ...
thldhl, thlddhl,11hl,th2hl, th2dhl, th2ddhl,12hl,12dhl,12ddhl, thlh4, ...
thldh4,thlddh4,11h4,th2h4, th2dh4, th2ddh4,12h4,12dh4,12ddh4,thlf2, ...
thldf2,thlddf2,11f2,th2f2,th2df2,th2ddf2,12£f2,12df2,12ddf2,thlf3, ...
thldf3,thlddf3,11£3,th2f3,th2df3,th2ddf3,12£3,12d£3,12ddf3,49,d, ...
ttl,tt2,tt3,tt4,t, T, fx, fy);

torquelhl) ;

trgllrms=rms )

torque2hl) ;
)
)

trg2lrms=rms
trgl3rms=rms
trg23rms=rms

’

torquelf3
torque2f3

’

—~ e~~~

trgld4rms=rms
trg24rms=rms
trgl2rms=rms
trg22rms=rms

torquelh4)
torque2hd) ;
torquelf?2);
torque2f?2)

’

—~ e~~~

’

% stress calculation

din,dout, flag] = check strength(fx, fy,th,thlhl,11hl,th2hl,12hl...
,thlf2,11£f2,th2£f2,12£2,th1£3,11£3,th2£f3,12£3,thlh4,11h4,th2h4,12h4);
G ANIMATIONS —-—-—————————————m—m oo 3

$Animation $ centroidal expression
AnimationFull % full robot

§mmmmmmm— - JOINT TORQUE/ANG. VELOCITY PLOTS -----———————————————- %
PlotTorquesNRadPerSec

§——mmm - LEG SEGMENT STRESS PLOTS ——-———-————————————————— %
PlotStress

end

end

toc
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c_i.m

function [cl,c2,c3,c4] = c_i(ttl,tt2,tt3,tt4,t,T)

%C_I produces the gait graph constants cl, c2, ¢3 ,c4. The input vectors
%$tti include the touchdown and take off times as a percentage of the stride
%cyrcle. For instance ttl=[0,25] means that the leg 1 touches the ground at
%$the 0% of the cyrcle and takes off at 25% of the stride cyrcle.

if length(ttl
tll=ttl( /100*T
tl12=ttl ( )/lOO*T
1if t>=tll&&t<=tl2
cl=1;
else

end

if length(tt2)=
t21=tt2( )/100*T
t22=tt2(2)/100*T;
if t>=t21&&t<=t22
c2=1;
else

end

if length(tt3)=
t31=tt3( )/100*T
£32=tt3(2)/100*T;
if t>—t31&&t< t£32

c3=1;
else
c3=0;
end
end
F———————————— IEG 4 —————————————— %
if length(tt4)=
tdl=tt4 (1 )/100*T

t42=tt4 (2)/100*T;

1if t>=tdlsst<=t42
c4d=1;

else

end
end

end
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Force.m

function [fxj,fyj] = Force(cl,c2,c3,c4,ttl,dfi,afx,tj,T,mi,m,g,fs)

SFORCE takes as input the gait parameters ci, the times of touch down and
$1ift off ttl of the first leg as a percentage of the gait period T, the
$footfall phase difference dfi, the horizontal force size factor afx,
%$the current time tj, coulomb friction coeefficient mi, the mass of the
%$robot m, gravitational acceleration g and horizontal force scenario fs

% (fs=1 or fs=2) and returns the forces fxj, fyj exerted to the CoM of the
%legged robot.

if length(ttl)==
tll=ttl(1)/100*T;
tl12=ttl(2)/100*T;
wy=pi/ (t12-t11);
fily=-wy*tll;
dfl=(t12-t11)/T;
fymax=pi*m*g/8/dfl;
dfiy=dfi;
fyl=fymax*sin (wy*tj+£fily);
fy2=fymax*sin(wy*tj+fily+dfiy);
fy3=fymax*sin(wy*tj+fily+2*dfiy);
fyd=fymax*sin(wy*tj+fily+3*dfiy);
fyj=cl*fyl+c2*fy2+c3*fy3+cd*fyd;

if fs==
% CASE 1: fxi is a sinusoidal impulse
fxl=afx*mi*fyl;
fx2=-afx*mi*fy2;
fx3=-afx*mi*fy3;
fxd=afx*mi*fy4;
fxj=cl*fxl+c2*fx2+c3*fx3+cd*fx4;
end
if fs==
% CASE 2: fxi is sinusoidal decelerating-accelerating
WX=2*WY;
filx=pi-wx*tll;
dfix=2*dfiy;
fxub=mi*fymax*sin (pi/8+3*pi/80) ;
fxmax=afx*fxub;
fxl=fxmax*sin (wx*tj+filx);
fx2=fxmax*sin (wx*tj+filx+dfix);
fx3=fxmax*sin (wx*tj+filx+2*dfix);
fxd=fxmax*sin (wx*tj+filx+3*dfix);
fxj=cl*fxl+c2*fx2+c3*fx3+cd*fx4;
end
end

end
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Torque.m

function [tauj] = Torque(cl,c2,c3,cd,x1,x2,x3,x4,v9,x],v3,fx3,fy])
$TORQUE takes as input the gait parameters ci, the coordinates of the
$footfalls (xi,yg),position xj, yj of the CoM, and current exerted forces
$from the ground fxj, fyj and produces the total torque exerted on the
srobot w.r.t CoM.

taul=(x1-x3) *fyj-(yg-yj) *£x3;
taul2=(x2-xj) *fyj-(yg-yj) *fx7j;
tau3d=(x3-x7j) *fyj-(yg-yj) *fx7;

taud=(x4-xj) *fyj- (yg-yJ) *£x3j;
tauj=cl*taul+c2*tau2+c3*tau3+cd*taud;

end

ObjFun.m

function fpth = ObjFun(xff,m,I,qg,x0,vx,y0,yd0,th0,thdo0,
yg,ttl,tt2,tt3,tt4,T,dfi,afx,mi, fs,d)

$OBJFUN calculates the objective function value for the optimization of the

$footfalls xi and the centroidal CoM trajectory.

tspan=[0 T];

g0=[x0 vx y0 yd0 thO thd0];

options=odeset ('AbsTol', le-6);

[t,gl=0ded5 (@ (t,q)OdeFun(t,q,m,qg,I,x1,x2,x3,x4,yg,ttl,tt2,tt3,ttd, T,
dfi,afx,mi, fs),tspan,qg0,options);

x=q(:,1);
y=q(:,3);
th=q(:,5
thd=q(:,
n=length
dt=T/ (n-1

’

)I
6);
(t) s
)I
fx=zeros(n,1);
fy= zeros(n 1)
tau=zeros (n,1
for j=1:n

[cl,c2,c3,cd]=c_i(ttl,tt2,tt3,tt4,t(3),T);

[fxj,fyj] = Force(cl,c2,c3,c4,ttl,dfi,afx,t(j),T,mi,m,qg,fs);

[ x (]

’

)i

tauj] = Torque(cl,c2,c3,c4,x1,x2,x3,x4,vg9,x(3),v(3),fx3,fy]);
x(J)=£x3;
v(3)=£fy3;
tau(j):tauj;
end
ill=round (ttl (1) *n/100+1);
il2=round (ttl (2)*n/100)
i21=round (tt2 (1) *n/100+1) ;
i22=round (tt2(2)*n/100)
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i31l=round (tt3(1)*n/100+1) ;

132=round (tt3(2)*n/100) ;

id4l=round(tt4d (1) *n/100+1) ;

i42=round (tt4 (2) *n/100) ;
Il=dt*trapz(abs(xl-x(1i11:112)+d*cos (th(ill:112))));
I2=dt*trapz(abs (x2-x(121:122)-d*cos (th(i21:122))));
I3=dt*trapz(abs (x3-x(131:132)-d*cos (th(i31:132))));
I4=dt*trapz(abs (x4-x(141:142)+d*cos (th(i41:142))));

fpth=abs (th(n)-th (1)) *100+10*abs (thd(n)-thd (1)) +10* (I1+I2+I3+1I4);

end

OdeFun.m

function gd = OdeFun(t,q,m,qg,I,x1,x2,x3,x4,yg,ttl,tt2,tt3,tt4,T,dfi, ...
afx,mi, £fs)
$ODEFUN provides the rhs of the Centroidal Dynamics EoM

[cl,c2,c3,cd4]=c_i(ttl,tt2,tt3,tt4,t,T);

[fxj,fy]j] = Force(cl,c2,c3,c4,ttl,dfi,afx,t,T,mi,m,qg,£fs);
x=q (1) ;
y=q(3);
[tauj] = Torque(cl,c2,c3,cd4,x1,x2,x3,x4,vy9,x,vy,Ex3,£fy]3);
gqd(1,1)=g(2);
qd(2,1)=1/m* (fx3j) ;
ad (3,1)=qg(4);
qd(4,1)=1/m* (fyj-m*qg) ;
gd(5,1)=g(6);
qd(6,1)=1/I*(tauj);
end
OptLegs.m

function [l11lo,1200, ko, flagl, flagsm,bfeps]
=Optlegs (t, x,xd,xdd, y,yd,ydd, th, ...
thd, thdd, ttl, tt2,tt3,tt4,x1,x2,x3,x4,vyq9, fx,fy,d,g,...
taulmaxst, taulmaxct, thldmax, tau2maxst, tau2maxct, th2dmax, T)
$OPTLEGS finds all permissible leg segment lengths and spring stiffnesses
$for which the actuation constraints are satisfied.

n=length (x) ;

xhl=x(ttl(1)*n/100+1:ttl1(2)*n/100)-x1;
yvhl=y (ttl(1)*n/100+1:ttl1(2)*n/100)-yg;
thhl=th(ttl (1)*n/100+1:ttl1(2)*n/100);
nhl=length (xhl);

xshl=xhl (1:nhl)-d*cos (thhl (1:nhl));
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yshl=yhl (1:nhl)-d*sin (thhl (1:nhl));
1h2t hl=sgrt (xshl.”2+yshl.2);

xf2=x(tt2(1)*n/100+1:tt2( )*n/lOO)—xZ;
yE2=y (tt2( *n/lOO+l tt2(2)*n/100) -yg;
thf2= th(tt2 )*n/100+1:tt2(2)*n/100)
nf2=length(xf2),

xsf2=xf2 (1:nf2)+d*cos (thf2(1:nf2));
ysf2=yf2 (1:nf2)+d*sin(thf2 (1:nf2));
1h2t f2=sqrt(xsf2.”2+ysf2.72);

xf3=x(tt3(1)*n/100+41:tt3(2)*n/100)-x3;
yi3= y(tt3 *n/lOO+l tt3( *n/lOO yg,
thf3=th (tt3(1)*n/100+1: tt3 ) *n/100)
nf3=length(xf3),

xsf3=xf3(1:nf3)+d*cos (thf3(1:nf3));
ysf3=y£f3(1l:nf3)+d*sin(thf3(1:nf3));
1lh2t f3=sqrt(xsf3."2+ysf3.72);

xhd4=x(ttd4 (1) *n/100+1:tt4(2)*n/100)-x4;
vhd=y (tt4 (1) *n/100+1:tt4 (2)*n/100) -yg;
thh4=th (tt4 (1) *n/100+1:tt4(2)*n/100)
nh4=1length (xh4) ;

xshd4=xh4 (1:nh4)-d*cos (thh4 (1:nh4));
yshd4=yh4 (1:nh4)-d*sin (thh4 (1:nh4));
1h2t h4=sqrt (xsh4.”2+ysh4."2);

1 min=max ([max (lh2t f2),max (1lh2t f3),max(1lh2t hl),max(lh2t h4)]);

flagl=0;
ic=0;
epsub=1.1;

for k=1250:1250:5000
for eps=1:0.025:epsub
for 11=0.1:0.01:1 min*eps-0.1
120=(1 min*eps-11)/1;

[gjhl,gjdhl,qgjddhl, flagl] =
InvKinH(11,120,k,t,x,y,th,thd, thdd,
ttl,x1,vyqg, fx,£fy,d,1);
[gjh4,qgjdh4,qgjddh4, flagd] =
InvKinH(11,120,%k,t,x,y,th,thd, thdd,
ttd,x4,y9,tx,fy,d,4);
[gjf2,q9jdf2,qgjddf2, flag2] =
InvKinF(11,120,k,t,x,y,th,thd, thdd,
tt2,x2,yg9,fx,fy,d,2);
[gJf3,9jdf3,qgjddf3,flag3] =
InvKinF (11,120,%k,t,x,y,th,thd, thdd,
tt3,x3, Y9, fx, fYI d,3);

if flagl==0&&flag2==0&6&flag3==0&&flagd==

11h1=11;
thlhl=gjhl(:,
th2hl=gjhl (:

)

r3)

12hl=qgjhl(:,4
(:
(:

2
31
)I

thldhl= qjdhl
th2dhl=qjdhl
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12dhl=gjdhl (:,4) ;

thlddhl=qjddhl (:,2
th2ddhl=qjddhl (:, 3
12ddhl=qjddhl (:,4) ;

) i
) 4

I

11£2=11;
thlf2=qjf2(:,
th2f2=qj£2 (:

2);

’3)1
12£2=q3£2(:,4);

thldf2= qjde(
th2df2=qidf2 (:,
12df2=qjdf2 (:,4
thlddf2=qjdd£f2 (:
th2ddf2=qjdd£f2 (:

ldef2=qjddf2(.,

11£3=11;
thlf3=qj£f3(:,
th2f3=qj£3(:

)I

r3)

12f3=qgjf3(:,4
(:
(:

2
3/
)I
thldf3= qjdf3
th2df3=qjdf3

12df3=qjdf3(:,4
(:
(:

4

2);
3);
) ’

thlddf3=qjddf3 (:,2);
th2ddf3=qjddf3 (:, 3);

ldef3=qjddf3(.,4);

11h4=11;
thlh4=gjh4 (:,
th2h4=qjh4 (:

)
r3)7
12h4=qgjhd (:,4
(:
(:

2
3)
)I
thldh4= qjdh4
th2dh4=qijdh4 (:,3) ;
12dh4=gjdh4 (: 4)
thlddh4= qjddh4( ,2);
th2ddh4=qjddh4 (:, 3) ;

12ddh4=qgjddh4 (:,4);

[torquelhl, torque2hl, torquelh4, torque2h4, torquelf2, torque2f?2,
torquelf3, torque2f3, flags] =

Torques (xd, xdd, yd, ydd, th, thd, thdd, thlhl,

thldhl, thlddhl,11hl, th2hl, th2dhl, th2ddhl, 12hl,12dhl, 12ddhl, thl1h4,

thldh4, thlddh4, 11h4, th2h4, th2dh4, th2ddh4, 12h4,12dh4,12ddh4, thl1f2, . ..

th1df2,thlddf2,11£2,th2f2, th2df2, th2ddf2,12£2,12d£2,12ddf2, th1£3,

thldf3, thlddf3,11£3,th2£3, th2df3,th2ddf3,12£3,12d£3,12ddf3,g,d, ...

ttl,tt2,tt3,tt4,t, T, £x, fy);

ctlf2st=max (abs (torquelf2))/taulmaxst;
ctlf2ct=rms (torquelf2) /taulmaxct;
cthldf2=max (abs (thldf2))/thldmax;
ct2f2st=max (abs (torque2f2))/tauZmaxst;
ct2f2ct=rms (torque2f2) /tauZmaxct;
cth2df2=max (abs (th2df2)) /th2dmax;

ctlf3st=max (abs (torquelf3))/taulmaxst;
ctlf3ct=rms (torquelf3) /taulmaxct;
cthldf3=max (abs (thldf3))/thldmax;
ct2f3st=max (abs (torque2£f3))/tau2maxst;
ct2f3ct=rms (torque2f3) /tauZmaxct;
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cth2df3=max (abs (th2df3)) /th2dmax;

if
ctlf2st<=1&&cthldf2<=1&&ct2f2st<=1&&cth2df2<=1&&ctl1f3st<=14&6&. ..

cthldf3<=l&&ct2f3st<=1&&cth2df3<=16&&ctlf2ct<=1&&. ..

ct2f2ct<=l&&ctlf3ct<=1&&ct2f3ct<=1
acsf=1;
else
acsft=0;
end

ctlhlst=max (abs (torquelhl))/taulmaxst;
ctlhlct=rms (torquelhl) /taulmaxct;
cthldhl=max (abs (thldhl))/thldmax;
ct2hlst=max (abs (torque2hl)) /tauZmaxst;
ct2hlct=rms (torque2hl) /tau2maxct;
cth2dhl=max (abs (th2dhl)) /th2dmax;

ctlh4st=max (abs (torquelhd)) /taulmaxst;
ctlhdct=rms (torquelhd) /taulmaxct;
cthldh4=max (abs (thldh4)) /thldmax;
ct2hdst=max (abs (torque2hd) ) /tauZmaxst;
ct2hdct=rms (torque2hd) /tauZmaxct;
cth2dh4=max (abs (th2dh4)) /th2dmax;

if
ctlhlst<=1l&&cthldhl<=1&&ct2hlst<=1&&cth2dhl<=1&&ctlhidst<=1&&. ..

cthldhi4<=1l&&ct2hdst<=1l&&cth2dh4<=1&&ctlhlct<=1&&. ..

ct2hlct<=l&&ctlhdct<=1l&&ct2hdct<=1
acsh=1;
else
acsh=0;
end

if acsf==l&&acsh==
ic=ic+1;
llo(ic,1)=11;
1200 (ic,1)=120;

ko (ic, 1) =k;
flagsm(ic,1l)=flags;
flagl=1;

if eps==1]| |eps==epsub
bfeps(ic,1)=1;
else
bfeps(ic,1)=0;
end

end
end
end
end
end

if flagl==
110=0;
1200=0;
ko=0;
bfeps=0;
flagsm=5;
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end

end

InvKinH.m
function [gjh,gjdh,gjddh,flag] = InvKinH(1l1lh,120h, kh,t,x,vy,th,thd,thdd, ...

tti,xi,vyg, fx,fy,d, leqg)

$InvKinH Calculates the joint trajectories of a hind leg given the link

%lengths 11h,

S
5Yr

120h and distal limb stiffness kh and the body trajectory x,

th, the ground forces fx, fy, the half hip separation distance d and
$the leg {1,4}.

n=length (x);
T=t (n);
dt=t (2)-t (1) ;
xh=x-x1;
yh=y-vg;

thh=

th;

thdh=thd;
thddh=thdd;

fxh=
fyh=

xsh=
ysh=

fx/2;
fy/2;

xh-d*cos (thh) ;
yh-d*sin(thh);

thlh=zeros(n,1);
th2h=zeros (n,1);

12h=

xhh=
yhh=

sng=

zeros(n,1);

x-d*cos (th) ;
y-d*sin (th) ;

0; % if sng=1 toe is out of leg's workspace

clsn=0;
flag=0;

12h (tti (1) *n/100+1)=120h;

———————————————— ELLIPTICAL TRAJECTORY PROPERTIES

if leg==

end

atrl=(max (x)-min(x))/2;

btrl1=0.05; %change clearance value here
xcl=xi+atrl;

ycl=yg;

wtrl=-pi/ (T-tti(2)/100*T);
fitrl=pi*T/(T-tti(2)/100*T);

xtrl=transpose (xcl+atrl*cos(wtrl.*t+fitrl));
ytrl=transpose (ycl+btrl*sin (wtrl.*t+fitrl));
xssph=xhh-xtrl;

yssph=yhh-ytrl;

if leg==

atrd=(max (x)-min(x))/2;

btr4=0.05; %change clearance value here
xcd=xi-atr4d;

ycd=yg;

wtrd=-pi/ (tti (1) /100*T-0);
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fitrd=pi;

xtrd=transpose (xcd+atrd*cos (wtrd.*t+fitrd));
ytrd=transpose (ycd+btrd*sin (wtrd.*t+fitrd));
xssph=xhh-xtr4;

yssph=yhh-ytr4;

e STANCE PHASE INVERSE KINEMATICS (ELLIPSE) —-—--——-——————=
if §>tti(1)*n/100&&j<=tti (2)*n/100
ah=(11h"2-xsh (§) *2-ysh(j) *2-12h(3) ~2) /2/12h (§) ;

if xsh(j)~2+ysh(j)~2-ah"2>0

th2h (j)=2*atan2 (-xsh (j) -sqgrt (xsh(j) *2+ysh(j) *2-ah"2),ysh(j)-...
ah)-thh(j); %change sign before sqgrt to change configurati-

%on: '=' corresponds to KF, '+' corresponds to KB

th2h () =mod (th2h (j), 2*pi) ;
th2h () =th2h (§) - (th2h (§) >3*pi/2) *2*pi;

thlh(j)=atan2 (-xsh(j)-12h(j) *sin (thh () +th2h(3)),ysh(§)-. ..
12h (j) *cos (thh (§) +th2h (3) ) ) -thh ()

’

if §<tti(2)*n/100
12h (3+1)=120h+ (£xh () *sin (thh () +th2h (3))-fyh(3) *. ..
cos (thh (j)+th2h(j))) /kh;

12h (3)=120h;
ar=(11h"2-xssph(j) "2-yssph(j) *2-12h (3)"2)/2/12h (j) ;
if xssph(j)"2+yssph(j)"2-ar"2>0
th2h (j)=2*atan2 (-xssph(j) -sgrt (xssph(j) "2+yssph (J) "2-ar"2), ...
yssph(j)-ar)-th(j); S%change sign before sqgrt to change
%$configuration: '-' corresponds to KF, '+' corresponds to KB
th2h (j)=mod (th2h (j),2*pi);
th2h (j)=th2h (j) - (th2h (j) >3*pi/2) *2*pi;

thlh (j)=atan2 (-xssph(j)-12h(j) *sin(th(j)+th2h(j)),yssph(j)-...
)

12h(j) *cos (th(j)+th2h (j)))-th(J);
else
sng=1;
end
end
end
Yo CHECK COLISION OF THE KNEE JOINT WITH THE GROUND -----—--———-
if min (th2h+thh+pi/2)<5*pi/180
clsn=1;
end
if sng==0&&clsn==
S ACCUMULATE JOINT TRAJECTORIES ——--——————————————————

th2dh=[gradient (th2h (1:500) ,dt) ;gradient (th2h (501:1000) ,dt) ];
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thldh=[gradient (thlh(1:500),dt) ;gradient (th1lh(501:1000),dt)1;
12dh=[gradient (12h(1:500) ,dt) ;gradient (12h (501:1000),dt) ],
thldh(1:3)=interpl([4 5 6 7 8],thldh(4:8),[1 2 3], 'pchip');
th2dh (1:3)=interpl ([4 5 6 7 8],th2dh(4:8),[1 2 3], 'pchip');
12dh(1:3)=interpl ([4 5 6 7 8],12dh(4:8),[1 2 31, 'pchip");

thldh (501:503)=interpl (504:508,thl1dh (504:508),501:503, "pchip');
th2dh (501:503)=interpl (504:508, th2dh (504:508),501:503, "pchip');
12dh (501:503)=interpl (504:508,12dh (504:508),501:503, "pchip');
12ddh=4*[del2 (12h (1:500),t(1:500));del2(12h(501:1000),t(501:1000))1];
12ddh (1:3)=interpl ([4 5 6 7 8],12ddh(4:8),[1 2 3], 'pchip');
12ddh (501:503)=interpl (504:508,12ddh (504:508),501:503, "pchip");

Y CUBIC POLYNOMIAL CORRECTION ——--———=-=———-————————— %
% after cubic correction the toe trajectory is hybrid cubic/elliptic.
[thlc, th2c, thldc, th2dc, thlddc, th2ddc] = cubic correction(t, thlh, ...

th2h, thldh, th2dh, leqg);

gjh=[thh, thlc, th2c,12h];
gjdh=[thdh, thldc, th2dc, 12dh];
gjddh=[thddh, thlddc, th2ddc, 12ddh] ;

e ————————————— e e e e e &

flag=1l;
thldh=zeros(n,1);
th2dh=zeros (n, 1) ;
12dh=zeros(n, 1) ;
thlddh=zeros(n,1);
th2ddh=zeros(n, 1) ;
12ddh=zeros (n,1);
gjh=[thh, thlh,th2h,12h];
gjdh=[thdh, thldh, th2dh,12dh];
gjddh=[thddh, thlddh, th2ddh, 12ddh];
end

end

InvKinF.m

function [qgjf,qgjdf,qgjddf,flag] = InvKinF(11f,120f,kf,t,x,vy,th,thd,thdd, ...
tti,xi,yg,fx,fy,d, leqg)

$INVKINF Calculates the joint trajectory of the front leg given the link

%$lengths 11f, 120f and distal limb stiffness kf and the body trajectory x,

%y, th, the ground forces fx, fy, the half hip separation distance d and

%the leg {2,3}.

n=length (x);
T=t (n) ;

dt=t (2)-t (1) ;
xf=x-x1i;
vi=y-vg;
thf=th;
thdf=thd;
thddf=thdd;
fxf=£fx/2;
fyf=£fy/2;

xsf=xf+d*cos (thf);
ysf=yf+d*sin (thf);
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thlf=zeros(n,1
th2f=zeros(n,1
12f=zeros(n,1);

) i
) i

I

xhf=x+d*cos (th) ;

yhf=y+d*sin(th) ;

sng=0; % 1if sng=1 toe is out of leg's workspace
clsn=0;

flag=0;

12f(tti(1)*n/100+1)=120f;
Fmm ELLIPTICAL TRAJECTORY PROPERTIES -—-—-—=-——————————————— %
if leg==
atr2=(max (x)-min(x))/2;
btr2=0.05; %change clearance value here
xc2=xi-atr2;
yc2=yg;
wtr2=-pi/ (tti(1)/100*T-0) ;
fitr2=pi;
xtr2=transpose (xc2+atr2*cos (wtr2.*t+fitr2));
ytr2=transpose (yc2+btr2*sin (wtr2.*t+fitr2));
xsspf=xhf-xtr2;
ysspf=yhf-ytr2;
end
if leg==
atr3=(max (x)-min(x))/2;
btr3=0.05; ochange clearance value here
xc3=xi+atr3;
yc3=yg;
wtr3=-pi/ (T-tti(2)/100*T);
fitr3=pi*T/ (T-tti(2)/100*T);
xtr3=transpose (xc3+atr3*cos (wtr3.*t+fitr3));
ytr3=transpose (yc3+btr3*sin(wtr3.*t+fitr3));
xsspf=xhf-xtr3;
ysspf=yhf-ytr3;

end
for j=1:n
G mmm STANCE PHASE INVERSE KINEMATICS —-——=-——————————————- %

if J>tti(1)*n/100&&j<=tti (2)*n/100
af=(11f"2-xsf(j)"2-ysf(3)"2-12f (] )/2/12£(3);
if xsf(j) " 2+ysf(j) " 2-af 2>0

th2f (j)=2*atan2 (-xsf (j) -sgrt (xsf (j) "2+ysf (j)~2-af"2),
ysf(j)-af)-thf(j); %change sign before sqgrt to change

configurati-
son: '-' corresponds to KF, '+' corresponds to KB
th2f (j)=mod (th2f (j),2*pi);
th2f (j)=th2f(j)-(th2f(j)>3*pi/2)*2*pi;
thlf (j)=atan2 (-xsf(j)-12f(j) *sin(thf(j)+th2f(j)),ysf(J) -
12f(3) *cos (thf (j)+th2f(j)))-thf(3j);

if j<tti(2)*n/100
12f(j+l)2120f+(fxf(') sin(thf(j)+th2f(j))—fyf(j)*
cos (thf (j)+th2f(3))) /k£f;
end
else
sng=1;
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Fm—mmm e ———— FLIGHT PHASE INVERSE KINEMATICS (ELLIPSE) -—-——-—-——-—--——————- %

12f(3)=120%;

ar=(11f"2-xsspf (j)"2-ysspf () "2-12f(J)"2)/2/12f(7);

if xsspf(j)"2+ysspf(j)"2-ar"2>0
th2f (j)=2*%atan2 (-xsspf (j) -sqgrt (xsspf (j) "2+ysspf (j) *2-ar"2), ...

ysspf (j)-ar)-th(j); %change sign before sgrt to change

$configuration: '-' corresponds to KF, '+' corresponds to KB
th2f (j)=mod (th2f (3),2*pi);
th2f (j)=th2f (j)-(th2f (j)>3*pi/2) *2*pi;

thlf (j)=atan2 (-xsspf(j)-12f(j)*sin(thf (J)+th2f(j)),ysspf(j)-...
)

12f(j) *cos (thf (j)+th2f(3))) -thf(3);
else
sng=1;
end
end
end
Fmmmm CHECK COLISION OF THE KNEE JOINT WITH THE GROUND ----------- %
if min (th2f+thf+pi/2)<5*pi/180
clsn=1;
end
if sng==0&&clsn==
§——mm——mm o ACCUMULATE JOINT TRAJECTORIES ——--—---—————————————— %

th2df=[gradient (th2f (1:500),dt) ;gradient (th2f(501:1000) ,dt) ]
thldf=[gradient (thl1f(1:500),dt) ;gradient (thl1lf (501:1000),dt)];
12df=[gradient (12£(1:500),dt) ;gradient (12f£(501:1000),dt) ];
thldf(1:3)=interpl([4 5 6 7 8],thldf(4:8),[1 2 3], 'pchip');
th2df (1:3)=interpl ([4 5 6 7 8],th2df(4:8),[1 2 3], 'pchip")
12df (1:3)=interpl([4 5 6 7 8],12df(4:8),[1 2 3], 'pchip");
thldf (501:503)=interpl (504:508, thl1df (504:508),501:503, "pchip');
th2df (501:503)=interpl (504:508, th2df (504:508),501:503, "pchip');

12df (501:503)=interpl (504:508,12df (504:508),501:503, "pchip"');
12ddf=4*[del2 (12£(1:500),t(1:500)),;del2(12£(501:1000),t(501:1000))1:
12ddf (1:3)=interpl([4 5 6 7 8],12ddf(4:8),[1 2 3], 'pchip");

12ddf (501:503)=interpl (504:508,12ddf (504:508),501:503, "pchip");

’

G CUBIC POLYNOMIAL CORRECTION —————————————————————— 2
% after cubic correction the toe trajectory is hybrid cubic/elliptic.
[thlc, th2c, thldc, th2dc, thlddc, th2ddec] = cubic correction(t, thlf, ...
th2f,thldf, th2df, leqg);

gjf=[thf, thlc, th2c,12£f];
gjdf=[thdf, thldc, th2dc,12df];
gjddf=[thddf, thlddc, th2ddc,12ddf];

flag=1;

thldf=zeros(n,1);
th2df=zeros(n,1);

l12df=zeros(n,1);
thlddf=zeros(n,1);
th2ddf=zeros(n, 1) ;
l12ddf=zeros(n,1);
qjf=[thf,thlf,th2f,12f];
qjdf=[thdf, thldf, th2df, 12df];
gjddf=[thddf, thlddf, th2ddf, 12ddf];
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end

end

cubic_correction.m

function [thlc, th2c,thldc,th2dc, thlddc,th2ddc] = cubic correction(t,thl, ...
th2,thld, th2d, leqg)

%$CUBIC CORRECTION takes as input the joint trajectories of the elliptical

%flighE phase and returns cubic polynomial, continuous leg Jjoint
Strajectories.

if leg==1]||leg==

30=500;

Jm=750;

jf=1;

t0=t (j0); % time of take off

tm=t (jm); % time of mid flight

tf=t (jJ£+999); % time of touch down ending flight phase

oe

The boundary conditions are expressed in the form

Apl*cffl=[thl (70);thld(j0);thl (jm);thld(jm)];

where Apl contains the terms of the polynomials t”"p and cffl contains
the coefficients of the polynomials al, bl, cl, dl.

Then cffl=InvApl*[thl(j0);thld(j0);thl (jm);thld(jm)];

o oo oe

oe

InvApl=[((-2) .*t0+2.*%tm) .* (£0."4+(-4) .*t0."3.*tm+6.*t0."2.*tm. "2+ (
-4) .*t0.*tm."3+tm."4) .* (-1), (£E0.72+(-2) .*£0.*tm+tm."2) . * ( ..
£0.%4+(-4) .*t0.73.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*tm."3+tm."4)
(1), (207204 (-2) LFtm) L F (20744 (—4) L *t0. 3. tmt6 . FE0 L N2 K
tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), (£t0.72+ (-2) .*t0.*tm+
tm.*2) .*(t0.74+(-4) .*t0."3.*tm+6.*t£0."2.*tm. "2+ (-4) .*t0.*
tm."3+tm."4) .~ (-1); (3.*t0.%2+(-3) .*tm."2) .* (£t0."4+(-4) .* ...
£t0.7"3.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), ((-1)
LFE0LA3+3.%t0.FtmL 24 (-2) L *tm. " 3) L * (E0. M4+ (-4) L *t0. 73 Ftmt
6.*t0.72.%tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), ((-3) .*t0."2+
3.*%tm."2) . * (£0.7%4+ (-4) .*t0."3.*tm+6.*£0.72.*tm. "2+ (-4) .*t0.*
tm.*3+tm."4) .~ (-1), ((=2) .*t0.73+3.*t0.72.*tm+ (-1) . *tm."3) . * (
£0.%4+(-4) .*t0.73.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*tm."3+tm."4)
(1) ((-6) 0.2 0% tmt 6. ¥t 0L Ftm. 7 2) L X (E0. N4+ (-4) L FE0. 3L
tmt6.*t0.%2.%tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), (2.*t0."3.*
tm+ (-3) .*t0."2.*tm."2+tm."4) . * (£t0."4+(-4) .*t0."3.*tm+6.* .
£t0.%2.%tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), (6.*t0."2.*tm+ (-6)
LFE0.*tm."2) L * (E0. 74+ (-4) L *t0." 3. tm+6. ¥ 20 "2 Em. M2+ (-4) LK
t0.*tm."3+tm."4) .~ (-1), (£t0.%4+ (=-3) .*t0.72.*tm."2+2.*t0.*
tm.*3) .*(t0.7%4+(-4) .*t0."3.*tm+t6.*t0.72.*tm. "2+ (-4) .*t0.*
tm.*3+tm.*4) .~ (-1); (3.*t0.72.*%tm. "2+ (-4) .*t0.*tm."3+tm."4) . *
(t0.74+(-4) .*t0."3.*tm+6.*t0.72.*tm. "2+ (-4) . *t0.*tm. "3+
tm.*4) .~ (-1), (£t0.74+(-4) .*t0."3.*tm+6.*t£0."2.*tm. "2+ (-4) . *
t0.*tm."3+tm."4) .~ (-1) .* ((-1) .*t0."3.*tm."2+2.*t0."2.*tm. "3+
(-1) .*t0.*tm."4), (£t0.74+(-4) .*t0."3.*tm+3.*t0.72.*tm."2) . * (
£t0.%4+(-4) .*t0.73.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*tm."3+tm."4)
(=1), ((-1) *E0. M Ftmt+2. %t 0.3 0 tm. M2+ (-1) L *E0. 20 FEm. 1 3)
(0,744 (-4) . *t0.7 3. *tm+6.*E0. 2. *tm. "2+ (-4) . * 0. *tm. "3+
tm."4) .~ (-1)];

InvAp2=[(2.*tf+(=-2) .*tm) . * (t£."4+ (-4) . *tf."3.*tm+6.*tf. 2. % tm. "2+ (
-4) . *tf.xtm. A 3+tm.M4) LN (-1), (L0024 (-2) JrtfLFtmttm. N 2) LK (
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tf. M+ (-4) Ftf 30 tmt6 . *tE 20 %tm. 2+ (—4) L xtf L *tm. " 3+tm. " 4)
(=1, ((m2) S22 %tm) LR (EEL N4+ (-4) Lt N3 ot R EE L N2 LK
tm. "2+ (-4) .*tf.*tm."3+tm."4) .~ (-1), (t£.72+ (-2) . *tf.*tm+
tm."2) .*(tf."4+(-4) . *tf. 3.7 tm+t6 . *EE. M2 % tmL "2+ (—4) L FEEL K
tm."3+tm."4) .M (=1); ((=3) .*tf."2+3.%tm."2) . * (tf."4+(-4) .~

tf. 30 tm+6.*tE. 2.0 %tm. "2+ (—4) c*tfLFtm. A 3+tm. N 4) LN (-1), ((=2)
FLEA3+3 0t 20t (-1) L Ftm. N 3) LK (B M4+ (-4) LRt N30 FEmt
6.*tf.72.%tm. "2+ (-4) .*tf.*tm."3+tm."4) .~ (-1), (3.*tf."2+(-3)
LFEm.M2) LR (tEL N4+ (-4) e N3 P Emt 6. FEE L2 EmL 24 (—4) LR EEL K
tm."3+tm."4) .~ (=1), ((=1) . *t£.7"3+3.*tf.*tm. "2+ (=2) .*tm."3) . *(
tf. M+ (-4) Ftf. 30 tmt6 . *tE 20 %tm. M2+ (—4) o xtf L *tm. N 3+tm. " 4)
(L) s (6t 20t (-6) LRt FEmL N 2) L X (EEL N4+ (-4) L FEE 3L
tm+6.*tf£.72.%tm. "2+ (-4) .*tf.*tm."3+tm."4) .~ (-1), (t£.74+ (-3)
SLEL 20 tm 242 e *tm N 3) LK (EEL M4+ (-4) L FEEL 3L FEmt6L *
tf."2.%tm. "2+ (-4) . *tf.*tm. " 3+tm.*4) .~ (-1), ((-6) .*tf."2.*tm+
6.*tf.*tm."2) .*(t£."4+(-4) . *t£."3.*tm+6.*tf."2.*tm. "2+ (-4) . *
tf.*tm."3+tm."4) .~ (-1), (2.*tE£."3.*tm+ (-3) . *tf.”2.*tm. "2+
tm.*4) . *(tf.%4+(-4) .30 tmt 6. FEEL N2 % tmL N2+ (—4) L FEEL K
tm.*3+tm."4) .~ (-1); (t£.74+(-4) . *tf. 3. tm+3.*t£. 2. %tm. " 2) . ¥
(t£.7M4+ (-4) . *tf."3.*tm+6.*t£."2.*tm. "2+ (-4) . *tf.*tm. "3+
tm.”4) .7 (=1), ((-1) . *tf. M. *tm+2.*t£. 3. *tm. "2+ (-1) . *tf."2.*
tm.”3) .*(t£.%4+ (-4) . *t£."3.*tm+6.*tf. 2. tm. "2+ (-4) . *tf.*
tm.*3+tm."4) .~ (-1), (3.*t£.72.%tm. "2+ (-4) .*tf.*tm."3+tm."4) . *
(tf£.74+(-4) . *tf."3.%tm+6.*t£. 2. %tm. "2+ (-4) . *tf.*tm. "3+
tm.”4) .~ (-1), (t£.7%4+ (-4) .*tL."3.*tm+6.*tf."2.*tm. "2+ (-4) . * .
tf.*tm."3+tm."4) .~ (-1) . * ((-1) .*tf£."3.*tm."24+42.*t£. 2. *tm. "3+
(-1) .*tf.*tm."4)];

cffl=InvApl*[thl (70);thld(j0);thl (jm);thld(jm)];
cff2=InvApl*[th2 (j0);th2d (30);th2 (jm);th2d (jm)];

cff3=InvAp2* [thl (jm);thld (jm);thl (3f);thld(3f)];
cff4=InvAp2*[th2 (jm) ; th2d (jm) ; th2 (F£) ; th2d (F£) 1;

’

al=cffl
bl=cffl
cl=cffl
dl=cffl

)
)7
).
)

(1
(2
(3 4
(4

’

a2=cff2
b2=cff2
c2=cff?2
d2=cff?2

)7
)
).
)

’

(1
(2
(3
(4);

’

a3=cff3
b3=cff3
c3=cff3
d3=cff3

(1)
(2);
(3) 7
(4);

’

ad=cff4 (

bd=cff4 (
( -
(

cd4=cffi4
d4=cff4

)

) ;
)
)
thlc=thl;
th2c=th2;

for j=j0+1:jm

thlc (J)=al*t (J) 3+bl*t (§) 2+cl*t (j)+dl;
th2c (§)=a2*t () ~3+b2*t (§) *2+c2*t (§) +d2;
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end
for j=jm+1:3£+999
thlc (J)=a3*t (j)"3+b3*t (j) "2+c3*t (J) +d3;
th2c (J)=ad*t (j) "3+b4*t (j) "2+cd*t (J)+d4;
end

dt=t (2) -t (1) ;

th2dc=[gradient (th2c (1:500) ,dt) ;gradient (th2c (501:1000) ,dt) ];
th2dc (1:3)=interpl ([4 5 6 7 8],th2dc(4:8),[1 2 3], 'pchip');
th2dc (501:503)=interpl (504:508, th2dc(504:508),501:503, "pchip'");

thldc=[gradient (thlc(1:500),dt) ;gradient (thlc (501:1000),dt)];
thldc(1:3)=interpl ([4 5 6 7 8],thldc(4:8),[1 2 3], 'pchip');
thldc (501:503)=interpl (504:508,th1ldc(504:508),501:503, "pchip'");

th2ddc=4*[del2 (th2c (1:500),t(1:500));del2(th2c(501:1000),t (501:1000))1;
th2ddc (1:3)=interpl ([4 5 6 7 8],th2ddc(4:8),[1 2 3], 'pchip');
th2ddc (501:503)=interpl (504:508, th2ddc (504:508),501:503, "pchip");

thlddc=4*[del2 (thlc (1:500),t(1:500));del2(thlc(501:1000),t(501:1000))1;
thlddc(1:3)=interpl ([4 5 6 7 8],thlddc(4:8),[1 2 31, 'pchip');
thlddc (501:503)=interpl (504:508,thlddc(504:508),501:503, "pochip");

end

if leg==2]||leg==

30=1000;

Jm=250;

J£=501;

t0=t (3J0-999); % time of take off

tm=t (jm) ; % time of mid flight

tf=t (3f); % time of touch down ending flight phase

InvApl=[((-2) .*t0+2.*%tm) . * (£0."4+(-4) . *t0."3.*tm+t6.*t0."2.*tm. "2+ (
-4) .*t0.*tm."3+tm."4) . (-1), (£0.724+(-2) . *t0.*tm+tm."2) . * (
t0.7%4+(-4) .*t0."3.*tm+t6.*t0.%2.*tm. "2+ (-4) .*t0.*tm."3+tm."4)
(1), (207804 (-2) LFtm) L F (20744 (-4) L *t0. 3. tmt6 . *E0 L N2 K
tm. 2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), (£t0.72+ (-2) .*t0.*tm+
tm.*2) .*(t0.74+(-4) .*t0."3.*tm+6.*t0.72.*tm. 2+ (-4) .*t0.*
tm.*3+tm."4) .~ (-1); (3.*£0.72+(-3) .*tm."2) .*(£0.%4+(-4) .* ...
£0.7"3.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), ((-1)
K0 A3+3.%t0.FtmL 24 (-2) L Ftm. " 3) L F (E0. M4+ (-4) L Ft0. 73 Ftmt
6.*t0.72.%tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), ((=3) .*t0."2+
3.%tm."2) .*(£0.74+ (-4) . *t0."3.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*
tm.*3+tm."4) .~ (-1), ((=2) .*t0.73+3.*t0.72.*tm+ (-1) . *tm."3) . * (
£0.%4+(-4) .*t0.73.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*tm."3+tm."4)
(1) ((-6) K0 2 0% tmt6 . ¥t 0L Ftm. 7 2) L X (E0. N4+ (-4) L FE0. 3L K
tmt6.*£0.%2.%tm. "2+ (-4) .*t0.*tm. " 3+tm."4) .~ (-1), (2.*t0."3.*
tmt (-3) .*t0.7%2.*tm."2+tm."4) .* (£t0."4+(-4) . *t0."3.*tm+6.*
£t0.%2.%tm. "2+ (-4) .*t0.*tm."3+tm."4) .~ (-1), (6.*t0."2.*tm+ (-6)
LFE0.*tm."2) L * (E0. 744 (-4) L *t0." 3. tm+6. ¥ 20 "2 ¥ Em. M2+ (-4) LK
t0.*tm."3+tm."4) .~ (-1), (£t0.%4+(=-3) .*t0.72.*tm."2+2.*t0.*
tm.*3) .*(t0.7%4+(-4) .*t0."3.*tm+t6.*t0."2.*tm. "2+ (-4) .*t0.*
tm."3+tm."4) .~ (1) ; (3.%t0.72.%tm. "2+ (-4) . *t0.*tm."3+tm."4) . *
(t0.74+(-4) .*t0.7"3.*tm+6.*t0.72.*tm. "2+ (-4) .*t0.*tm. "3+
tm.*4) .~ (-1), (£t0.74+(-4) .*t0."3.*tm+6.*t0."2.*tm. "2+ (-4) . *
t0.*tm."3+tm."4) .~ (-1) .* ((-1) .*t0."3.*tm."2+2.*t0.72.*tm. "3+
(-1) .*t0.*tm."4), (£t0.74+(-4) .*t0."3.*tm+3.*t0.72.*tm."2) . * (
0.4+ (-4) .*t0."3.*tm+6.*t0.72.*tm. "2+ (-4) . *t0.*tm."3+tm."4)
(=1), ((-1) *E0. M Ftmt+2. %t 0.3 0 tm. M2+ (-1) L *E0. 20 FEm. 7 3)
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LF(E0.M+ (-4) L *E0. 3. tm+6. ¥ E0. 20 tmL 2+ (—4) . * 0. *Em. 3+
tm.”4) .~ (=1)];

InvAp2=[(2.*tf+(=2) .*tm) . * (t£."4+(-4) . *tf."3.*tm+6.*tf. 2. % tm. "2+ (
-4) .*tf.xtm. N 3+tm.M4) LN (=1), (.24 (=2) JrtfLFtmttm. N 2) LK (
tf. M+ (-4) FtE 30 tmte . *tEL 2.0 tm. "2+ (-4) L *tfL*tm. " 3+tm. " 4)
(1), ((m2) JFEE+20%Em) L X (EEL N4+ (-4) Lt A3 rEmt6 L P EEL N2 LK
tm. "2+ (-4) .*tf.*tm."3+tm."4) .~ (-1), (t£.7°2+ (-2) .*tf.*tm+
tm."2) . *(tf. "4+ (-4) . *tf. 3. tmt6 . EE L2 tmL N2+ (—4) L KFtEL K
tm."3+tm."4) .M (=1); ((=3) .*tf."2+3.%tm."2) . * (tf."4+(-4) . *
tf.A3.tm+6. . *tE. 2. %tm. "2+ (—4) . *tfL*tm. " 3+tm. " 4) LN (-1), ((-2)
SLELA3+3 e 20 tmt (-1) L Ftm. N 3) LK (EEL M4+ (-4) L FEEL N3 FEmt
6.*tf."2.%tm. "2+ (-4) .*tf.*tm."3+tm."4) .~ (-1), (3.*tf."2+(-3)
FtmoN2) LR (tEL N4+ (-4) e 3 P Emt 6 P EE L N2 0 R emL 24 (—4) L FEEL K
tm."3+tm.*4) .~ (=-1), ((-1) . *t£.*"3+3.*tf.*tm. "2+ (-2) . *tm."3) . * (
tf. M+ (-4) FtE 30 tmte . *tEL 2.0 tm. "2+ (-4) . xtfL*tm. " 3+tm. " 4)
(=D)Lt 20 tmt (-6) LRt FEmL N 2) Lx (EEL N4+ (-4) L FEEL 3L
tm+6.*tf£.72.*%tm. "2+ (-4) . *tf.*tm."3+tm."4) .~ (-1), (££.74+(-3)
LKL 2.0 tmL 2420t EmL N 3) L X (EEL N4+ (-4) L FEE A3 X Emt 6L F
tf.h2.%tm. "2+ (-4) . *tf *tm. " 3+tm. " 4) LA (-1), ((-6) JFEfL 20 Emt
6.*tf.*tm."2) . ¥ (tf."4+(-4) . *tf. 3.7 tm+t6.*tE. 2. % tm. "2+ (—4) . *
tf.*tm."3+tm."4) .~ (-1), (2. *t£."3.*tm+ (-3) . *tf."2.*tm. "2+
tm."4) . *(t£."4+(-4) . *t£."3.*tm+6.*tf. 2. tm. "2+ (-4) . *tf.*
tm."3+tm."4) .~ (-1); (t£.7M4+ (-4) .*t£. " 3. *tm+3.*tf£."2.*tm."2) . *
(tf£.74+(-4) . *tf£."3.%tm+6.*t£. 2. %tm. "2+ (-4) . *tf.*tm." 3+
tm.*4) .~ (-1), ((-1) .*tf. "4 . *tm+2.*t£. 3. %tm. "2+ (-1) . *tE£."2.%
tm.*3) . *(tf."4+(-4) . *tf. 3.7 tmt 6. FEEL 20 % tmL 24 (—4) L FEEL K
tm.”3+tm."4) .~ (-1), (3.*tf."2.*tm. "2+ (-4) .*tf.*tm."3+tm."4) . *
(t£.%4+(-4) . *tf."3.*tm+6.*t£."2.*tm. "2+ (-4) . *tf.*tm. "3+
tm.*4) .~ (-1), (t£.74+(-4) .*tf."3.*tm+t6.*t£. 2. %tm. "2+ (-4) . *
tf.*tm."3+tm."4) .~ (1) . * ((-1) .*tE£. 3. tm. " 2+2.%tE£. 720 %tm. "~ 3+
(-1) .*tf.*tm."4)];

cffl1=InvApl*[thl (j0);thld(30);thl (jm);thld(jm)];
cff2=InvApl*[th2(30);th2d(30);th2 (jm);th2d (jm)];

cf£3=InvAp2*[thl (jm);thld (jm);thl (Ff);thld (Ff)];
cff4=InvAp2*[th2 (jm) ; th2d (jm) ; th2 (F£) ; th2d (F£) ];

al=cffl
bl=cffl
cl=cffl
dl=cffl

)7
)
) -
)

’

(1
(2
(3
(4);

’

a2=cff2
b2=cff2
c2=cff?2
d2=cff?2

1)
2);
3);
4y ;

(
(
(
( ’
a3=cff3(1
b3=cff3(2
c3=cff3(3

(4

)7
)7
)
).

’

d3=cff3

thlc=thl;
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th2c=th2;

for 3j=30-999:9m
thlc (J)=al*t (j)"3+bl*t(j)"2+cl*t (J)+dl;
th2c (J)=a2*t () "3+b2*t (j) "2+c2*t (J) +d2;
end
for j=jm+1:jf-1
thlc (J)=a3*t (j)"3+b3*t (j) "2+c3*t (J) +d3;
th2c (J)=ad*t () "3+b4d*t (j) "2+cd*t (J) +d4;
end

dt=t (2) -t (1) ;

th2dc=[gradient (th2c (1:500) ,dt) ;gradient (th2c (501:1000) ,dt) ];
th2dc (1:3)=interpl ([4 5 6 7 8],th2dc(4:8),[1 2 3], 'pchip');
th2dc (501:503)=interpl (504:508,th2dc(504:508),501:503, "pchip'");

thldc=[gradient (thlc(1:500),dt) ;gradient (thlc (501:1000),dt)];
thldc(1l:3)=interpl([4 5 6 7 8],thldc(4:8),[1 2 3], 'pchip');
thldc (501:503)=interpl (504:508,th1ldc(504:508),501:503, "pchip");

th2ddc=4*[del2 (th2c (1:500),t (1:500));del2 (th2c(501:1000),t(501:1000))1;
th2ddc (1:3)=interpl ([4 5 6 7 8],th2ddc(4:8),[1 2 31, 'pchip');
th2ddc (501:503)=interpl (504:508,th2ddc (504:508),501:503, "pchip");

thlddc=4*[del2 (thlc (1:500),t(1:500));del2(thlc(501:1000),t(501:1000))1;
thlddc(1:3)=interpl([4 5 6 7 8],thlddc(4:8),[1 2 31, 'pchip');
thlddc (501:503)=interpl (504:508,thlddc(504:508),501:503, "pchip");

end

end

Torques.m

function [torquelhl, torque2hl, torquelh4, torque2h4,torquelf2, torque2f?2, ...

torquelf3, torque2f3, flag] = Torques (xd,xdd, yd, ydd, th, thd, thdd, thlhl, ...
thldhl, thlddhl,11hl,th2hl,th2dhl,th2ddhl,12hl,12dhl,12ddhl,thlh4, ...
thldh4,thlddh4,11h4,th2h4,th2dh4,th2ddh4,12h4,12dh4,12ddh4,thlf2, ...
thldf2,thlddf2,11f2,th2f2,th2df2,th2ddf2,12f2,12df2,12ddf2,thlf3, ...
thldf3,thlddf3,11£3,th2£f3,th2df3,th2ddf3,12£3,12d£f3,12dd£f3,q9,d, ...
ttl, tt2,tt3,tt4,t,T, fx, fy)

$TORQUES calculates the required joint torques, taking in account the full
%$quadruped dynamics and the Jjoint trajectories.

R et ACTUATOR PROPERTIES ——————————————m— oo %
% rotor inertia before reduction

Ir1=542*10"(-7) ;

Ir2=542*10"(=-7);

[

% reduction ratios

dens=1466;
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[din,dout, flag] = check strength(fx, fy,th,thlhl,11hl, th2hl,12hl...
,thl1f2,11£2,th2f2,12£f2,th1£f3,11£3,th2£3,12£3,thlh4,11h4,th2h4,12h4);

A=pi* (dout”2-din"2)/4;

F———— LEG LUMPED MASS PROPERTIES -—-—-—-—-—--—-——————————————— %

mjl=0.4; % hip joint mass

mj2=0.4; % knee joint mass

mt=0.1; % toe mass

ms=0.17; % spring mass

e LEG INERTIAL PROPERTIES CALCULATION —-—-——-——--——-————- %

% LEG 1 PROPERTIES

mrlhl=dens*A*11hl;

120h1=12h1(1);

mr2hl=dens*A*120hl;
mlhl=mjl/2+mrlhl+mj2/2;
m2hl=mj2/2+ms+mr2hl+mt;
lemlhl=(mrlhl*11h1/24mj2/2*11h1) /mlhl;
I1hl1=1/12*m1h1*11h1"2+Irl1*nl"2;
I2h1=1/12*m2h1*12h1."2+Ir2*n2"2;

% LEG 4 PROPERTIES

mrlh4=dens*A*11h4;

120h4=12h4 (1) ;

mr2h4=dens*A*120h4;
mlh4=mjl/24+mrlh4+mj2/2;
m2h4=mj2/2+ms+mr2hd+mt;
lcmlh4=(mr1h4*11h4/24mj2/2*11h4) /mlh4;
I1h4=1/12*ml1h4*11h4"2+Irl1*nl"2;
I2h4=1/12*m2h4*12h4."24+Ir2*n2"2;

% LEG 2 PROPERTIES

mrlf2=dens*A*11£f2;

120£2=12£f2 (1) ;

mr2f2=dens*A*120£f2;
mlf2=mjl/2+mrlf2+mj2/2;
m2f2=mj2/2+ms+mr2f2+mt;
lemlf2=(mrl1f2*11£f2/24mj2/2*11£f2) /mlf2;
I1£f2=1/12*m1f2*11£f2"2+Ir1*nl"2;
I12f2=1/12*m2£f2*12f2."2+Ir2*n2"2;

% LEG 3 PROPERTIES

mrlf3=dens*A*11£3;

120£3=12£f3 (1) ;

mr2f3=dens*A*120£f3;
mlf3=mjl/2+mrlf3+mj2/2;
m2f3=mj2/2+ms+mr2f3+mt;
lemlf3=(mrl1f3*11£f3/24mj2/2*11£f3) /m1£f3;
I1£f3=1/12*ml1£3*11£3"2+Irl*nl"2;
I2f3=1/12*m2f3*12£3.72+Ir2*n2"2;

——m e FORCES FROM THE GROUND -—-—-=-=-—-=="="-"—"—"———————————— %
% total forces on the CoM are shared from the two legs in phase.

fxl=fx/2;

fyl=£fy/2;

fx2=fx/2;

fy2=£fy/2;

fx3=fx/2;

fy3=£fy/2;

fxd=£fx/2;

fyd=£fy/2;
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S LEG JOINT TORQUES ----=-—==—-——————————————————7 5
% The leg joint torques as calculated from the full robot dynamics

n=length (th);
torquelhl=zeros
torque2hl=zeros
torquelhd=zeros
torque2hd=zeros
torquelf2=zeros
torque2f2=zeros
torquelf3=zeros
torque2f3=zeros

4

~ o~~~ o~~~ —~

n
n
n
n
n
n
n
n

4
for j=1:n
[cl,c2,c3,cd4]=c_i(ttl,tt2,tt3,tt4,t(3),T);

torquelhl (§)=(-0.1E1) .*cl.*11hl.*cos (th(j)+thlhl(j)).*fx1(j)+g.*. ..
(0.1E1.*lcmlhl.*mlh1+0.1E1.*11h1l.*m2hl) .*sin (th(3)+thlhl (3))+(

-0.1E1) .*cl.*11hl.*fyl(j).*sin(th(j)+thlhl(j))+(-0.5E0).*
11hl.*mr2hl.*12ddhl (j).*sin (thlhl () +(-1).*th2hl (j))+(
-0.25E0) .*11h1l.*ms.*12ddhl (j) .*sin (thlhl (j)+(-1) .*th2hl (j))+
(-0.1E1) .*11h1l.*mt.*12ddhl () .*sin (thlhl (§)+(-1) .*th2hl (§))+
0.1E1.*Ilhl.*thlddhl (j)+0.1El.*lcmlhl.”2.*mlhl.*thlddhl (§)+
0.1E1.*11h1.72.*m2hl.*thlddhl (j)+0.5E0.*11h1l.*mr2hl.*cos (
thlhl (j)+(-1) .*th2h1(j)).*12h1(j).*th2ddhl (§)+0.25E0.*11hl.*
ms.*cos (thlhl () +(-1) .*th2h1(3)).*12h1 () .*th2ddhl (j)+
0.1E1.*11hl.*mt.*cos (thlhl (§)+(-1).*th2hl(j)).*12h1(j).*
th2ddhl (§)+0.1E1.*11hl.*mr2hl.*cos (thlhl (j)+ (-1) .*th2hl (j)
.*12dh1 () .*th2dhl () +0.5E0.*11hl.*ms.*cos (thlhl (§)+ (-1) .*
th2h1(§)).*12dhl (j) .*th2dhl (§)+0.2E1.*11hl.*mt.*cos (thlhl (
+(-1) .*th2hl (§)) .*12dhl (j) .*th2dhl () +0.5E0.*11hl.*mr2hl.*
12h1(§) .*sin(thlhl (§)+(-1) .*th2h1(j)).*th2dhl (j).~2+0.25E0.%*
11hl.*ms.*12h1(j).*sin (thlhl (§)+(-1).*th2hl (j)).*th2dhl (j)
.~2+40.1E1.*11hl.*mt.*12h1(j).*sin(thlhl (j)+(-1).*th2hl(j)).*
th2dhl () .~2+0.1E1.*11h1l.*mr2hl.*cos (thlhl () + (-1) .*th2hl (3)
) .*12dh1 (j) .*thd (§)+0.5E0.*11hl.*ms.*cos (thlhl () + (-1) .*
th2hl (j)).*12dhl (j) .*thd(§)+0.2E1.*11hl.*mt.*cos (thlhl () + (
-1).*th2hl (j)) .*12dhl (j) .*thd (§)+0.1E1.*11hl.*mr2hl.*12hl (j)
.*sin(thlhl (j)+(-1) .*th2h1(3)).*th2dhl (j).*thd(j)+0.5E0.*
11hl.*ms.*12h1(3).*sin(thlhl (3)+(-1).*th2hl(3)).*th2dhl (j).*
thd (§)+0.2E1.*11h1.*mt.*12h1 () .*sin (thlhl (§)+(-1) .*th2hl (J)
) .*th2dhl (§) .*thd (j)+0.1E1.*d.*1lcmlhl.*mlhl.*cos (thlhl (j)) .*
thd (j) .72+0.1E1.*d.*11hl.*m2hl.*cos (thlhl (j)).*thd (j)."2+
0.5E0.*11hl.*mr2hl.*12h1(j).*sin(thlhl (j)+(-1).*th2hl(j)).*
thd (3) .72+0.25E0.*11hl.*ms.*12h1 () .*sin (thlhl (§)+(-1) .*
th2h1(§)).*thd(j).~2+0.1EL.*11hl.*mt.*12h1 (3) .*sin (thlhl (§)+
(-1) .*th2h1(j)) .*thd(j) .~2+0.1E1l.*1lcmlhl. 2. *mlhl.*thdd () +
0.1E1.*11h1.72.*m2hl.*thdd(j)+0.5E0.*11hl.*mr2hl.*cos (thlhl (
3)+(=1) .*th2h1(j)).*12h1(j) .*thdd (j)+0.25E0.*11hl.*ms.*cos (
thlhl (§)+(-1) .*th2h1(j)).*12h1(j).*thdd(j§)+0.1E1.*11hl.*mt.*
cos (thlhl (§)+(-1).*th2hl (3)).*12h1(3).*thdd(j)+(-0.1E1) .*d.*
lemlhl.*mlhl.*sin(thlhl (§)) .*thdd(j)+(-0.1E1) .*d.*11hl.*
m2hl.*sin (thlhl(j)).*thdd (j)+0.1El.*lcmlhl.*mlhl.*cos (th(j)+
thlhl(3)).*xdd(j)+0.1E1.*11hl.*m2hl.*cos (th(j)+thlhl (§)).*
xdd (§) +(0.1E1.*lcmlhl.*mlh1+40.1E1.*11h1.*m2hl) .*sin (th (j)+
thlhl (3J)) .*ydd(3);

)

3)

torque2hl (j)=m2hl.”(-1) .*((-0.1E1) .*cl.*m2hl.*cos (th(j)+th2hl(j)).*...
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fx1(3).*12h1(j)+0.1E1.*m2h1.*I2h1 (J) .*th2ddhl (j)+(0.25E0.*
mr2hl.”24+0.25E0.*mr2hl.*ms+0.625E-1.*ms.”2+0.1El.*mr2hl. *mt+
0.5E0.*ms.*mt+0.1El.*mt.”2).*12h1(j) ."2.* (th2ddhl (7)+thdd (J)
)+12h1(j) .* ((=0.1E1) .*cl.*m2hl.*fyl(j).*sin(th(j)+th2hl (j))+
(0.5E0.*mr2hl.”2+0.5E0.*mr2hl.*ms+0.125E0.*ms."2+0.2E1.*
mr2hl.*mt+0.1El1.*ms.*mt+0.2E1l.*mt."2) .*12dhl (J) .* (th2dhl (j) +
thd (j))4+m2hl.* (g.* (0.5E0.*mr2h1+0.25E0.*ms+0.1E1l.*mt) . *sin (
th(j)+th2hl1(j))+0.5E0.*11hl.*mr2hl.*cos (thlhl (Jj)+(-1).*
th2hl (j)) .*thlddhl (j)+0.25E0.*11hl.*ms.*cos (thlhl (j)+(-1).%*
th2hl (J)) .*thlddhl (7)+0.1E1.*11hl.*mt.*cos (thlhl (J)+(-1).* ...
th2hl (J)) .*thlddhl (j)+11hl.* ((-0.5EQ) .*mr2hl+ (-0.25E0) . *ms+ (
-0.1E1) .*mt) . *sin(thlhl (j)+(-1) .*th2hl1 (J)) .*thldhl (j)."2+
11hl1.*((-0.1E1) .*mr2hl+(-0.5E0) .*ms+ (-0.2E1) .*mt) . *sin (
thlhl (j)+(-1) .*th2hl1(j)).*thldhl (j) .*thd(j)+(d.*(0.5E0.*
mr2hl+0.25E0.*ms+0.1E1l.*mt) . *cos (th2hl (7))+11hl.*((-0.5EQ0) .*
mr2hl+ (-0.25E0) . *ms+ (-0.1E1) .*mt) . *sin (thlhl (j)+(-1) .*th2hl (
3))) .*thd(j) .”"2+0.5E0.*11hl.*mr2hl.*cos (thlhl (j)+(-1).*
th2hl (3)) .*thdd (j7)+0.25E0.*11hl.*ms.*cos (thlhl (j)+(-1).*
th2hl (j)).*thdd(j)+0.1E1.*11hl.*mt.*cos (thlhl (J)+(-1).*
th2hl (3)) .*thdd (j)+(-0.5E0) . *d.*mr2hl.*sin (th2hl (j)) .*thdd(
3)+(-0.25E0) .*d.*ms.*sin (th2hl (j)) .*thdd(j)+(-0.1E1) . *d.*
mt.*sin(th2hl (J)) .*thdd (j)+0.5E0.*mr2hl.*cos (th(j)+th2hl (j))
.*xdd (j) +0.25E0. *ms . *cos (th (J)+th2hl1 (7)) .*xdd (j)+0.1E1l.*mt.*
cos (th(j)+th2hl (j3)) .*xdd () +0.5E0.*mr2hl.*sin (th(j)+th2hl (3)
) . *ydd (3)+0.25E0.*ms.*sin (th(j)+th2hl(j)) .*ydd(j)+0.1E1.*
mt.*sin (th(j)+th2hl (3)).*ydd (3))));

torquelh4 (§)=(-0.1E1) .*c4.*11h4.*cos (th(j)+thlhd (j)) .*fx4 () +g.*. ..
(0.1E1.*lcmlh4.*mlh4+40.1E1.*11h4.*m2h4) . *sin (th(3)+thlhd (3))+(

-0.1E1) .*c4.*11h4.*fy4 (j) .*sin(th(j)+thlh4 (j))+(-0.5E0) .*
11h4.*mr2h4.*12ddh4 (j) . *sin (thlh4 () + (1) .*th2h4 () ) + (
-0.25E0) .*11h4.*ms.*12ddh4 () . *sin (thlh4 (j) + (-1) . *th2h4 (§) ) +
(-0.1E1) .*11h4.*mt.*12ddh4 () .*sin (thlh4 () + (-1) .*th2h4 (§) )+
0.1E1.*I1h4.*th1ddh4 (§)+0.1E1.*1lcmlh4.”2.*mlh4.*thlddh4 (§)+
0.1E1.*11h4.72.*m2h4.*thlddh4 (j)+0.5E0.*11h4.*mr2h4.*cos (
thlh4 () +(-1) .*th2h4 (j)) .*12h4 (j) .*th2ddh4 (j) +0.25E0.*11h4 . *
ms.*cos (thlh4 (3)+(-1) .*th2h4 (3)) .*12h4 (j) .*th2ddh4 (7) +
0.1E1.*11h4.*mt.*cos (thlh4 (§)+(-1).*th2h4 (§)) .*12h4 (J) .*
th2ddh4 (§)+0.1E1.*11h4.*mr2h4 . *cos (thlh4 (3)+ (-1) . *th2h4 (j)
.*12dh4 (j) .*th2dh4 () +0.5E0.*11h4.*ms. *cos (thlh4 (§) + (-1) . *
th2h4 (3)) .*12dh4 (3) . *th2dh4 (§)+0.2EL1.*11h4. *mt. *cos (thlh4 (j)
+(-1) .*th2h4 (3)) .*12dh4 (J) . *th2dh4 (§)+0.5E0.*11h4 . *mr2hd . *
12h4 (§) .*sin (thlh4 () +(-1) .*th2h4 (3)) .*th2dh4 (§) . ~2+0.25E0. *
11h4.*ms.*12h4 (§) .*sin (thlh4 (§)+ (-1) .*th2h4 (3)) .*th2dh4 (3)
.~240.1E1.*11h4.*mt.*12h4 (j) .*sin (thlh4 (j)+ (-1) .*th2h4 (§)) .*
th2dh4 (§) .~2+0.1E1.*11h4.*mr2h4.*cos (thlh4 (§)+ (-1) . *th2h4 (j)
) .*12dh4 (§) . *thd (§)+0.5E0.*11h4.*ms.*cos (thlh4 () + (-1) .*
th2h4(§)) .*12dh4 (§) . *thd (§) +0.2E1.*11h4.*mt.*cos (thlh4 (3) + (
-1).*th2h4 (§)) .*12dh4 (§) .*thd (§)+0.1E1.*11h4.*mr2h4.*12h4 (J)
.*sin(thlh4 (j)+(-1) .*th2h4 (3)) .*th2dh4 (j) . *thd (j)+0.5E0. *
11h4.*ms.*12h4 (j) .*sin (thlh4 (§)+ (1) .*th2h4 (j)) .*th2dh4 (j) . *
thd (§)+0.2E1.*11h4.*mt.*12h4 (3) .*sin (thlh4 (3)+ (-1) .*th2h4 (3)
) .*th2dh4 (§) .*thd () +0.1E1.*d.*1lcmlh4.*mlh4.*cos (thlh4 (3)) .*
thd (j) .72+0.1E1.*d.*11h4.*m2h4.*cos (thlh4 (§)) .*thd (j) ."2+
0.5E0.*11h4.*mr2h4.*12h4 (j) .*sin (thlh4 (j)+(-1) .*th2h4 (j)) .*
thd(j) .~2+0.25E0.*11h4.*ms.*12h4 (§) . *sin (thlh4 (§)+(-1) .*
th2h4 (§)) .*thd (j) .~2+40.1E1.*11h4.*mt.*12h4 (J) . *sin (thlh4 (§)+
(-1) .*th2h4 (§)) .*thd (j) .~2+0.1E1l.*1lcmlh4.~2.*mlh4.*thdd (§) +
0.1E1.*11h4.72.*m2h4.*thdd (§)+0.5E0.*11h4.*mr2h4.*cos (thlh4 (
3)+(=1) .*th2h4 (j)) .*12h4 (j) .*thdd () +0.25E0.*11h4. *ms. *cos (

]
]

)
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thlh4 (3)+(-1) .*th2h4 (j)) .*12h4 (j) .*thdd(j)+0.1E1.*11h4.*mt.*
cos (thlh4 (j3)+(-1) .*th2h4(j)) .*12h4 (j) .*thdd(j)+(-0.1E1) .*d.*
lcmlh4.*mlh4.*sin(thlh4(j)) .*thdd(j)+(-0.1E1) .*d.*11h4.*
m2h4.*sin(thlh4(j)) .*thdd(j)+0.1El1.*1cmlh4.*mlh4.*cos (th(j)+
thlh4 (j)) .*xdd (j)+0.1E1.*11h4.*m2h4.*cos (th(j)+thlh4 (j)) .*
xdd (j)+(0.1E1.*1cmlh4.*ml1h4+0.1E1.*11h4.*m2h4) .*sin (th(j) +
thlh4(3)) .*ydd(3);

torque2h4 (j)=m2h4.” (-1) .*((-0.1E1) .*c4.*m2h4.*cos (th (j)+th2h4 (j)).*...

fx4(3).*12h4 (j)+0.1E1.*m2h4.*I2h4 (J) .*th2ddh4 () + (0.25E0.*
mr2h4.”2+0.25E0.*mr2h4.*ms+0.625E-1.*ms.”2+0.1El.*mr2h4. *mt+
0.5E0.*ms.*mt+0.1El.*mt.”2).*12h4 (j) ."2.* (th2ddh4 (7) +thdd (J)
)+12h4 (§) .* ((=0.1E1) .*c4.*m2h4.*fy4 (j) .*sin (th(j)+th2h4 () )+
(0.5E0.*mr2h4 .72+0.5E0.*mr2h4.*ms+0.125E0.*ms."2+0.2E1.*
mr2hd . *mt+0.1E1l.*ms.*mt+0.2E1l.*mt."2) .*12dh4 (j) .* (th2dh4 (j) +
thd (j))+m2h4.* (g.* (0.5E0.*mr2h4+0.25E0.*ms+0.1El.*mt) . *sin (
th(j)+th2h4 (j))+0.5E0.*11h4.*mr2h4.*cos (thlh4 () +(-1) .*
th2h4 (j)) .*thlddh4 () +0.25E0.*11h4.*ms.*cos (thlh4 (j)+(-1) .*
th2h4 (j)) .*thlddh4 (j)+0.1E1.*11h4.*mt.*cos (thlh4 (j)+(-1) .*
th2h4 (3)) .*thlddh4 (j)+11h4.* ((-0.5E0) .*mr2h4+ (-0.25E0) . *ms+ (
-0.1E1) .*mt) .*sin (thlh4 (j)+(-1) .*th2h4 (3)) .*thldh4 (3) ."2+
11h4.*((-0.1E1) .*mr2h4+ (-0.5E0) . *ms+ (-0.2E1) . *mt) . *sin(
thlh4 (j) +(-1) .*th2h4 (j)) .*thldh4 (j) .*thd(j) +(d.* (0.5E0.*
mr2h4+0.25E0.*ms+0.1E1l.*mt) . *cos (th2h4 (j))+11h4.* ((-0.5EQ) . *
mr2h4d+ (-0.25E0) . *ms+ (-0.1E1) .*mt) . *sin (thlh4 (j)+(-1) . *th2h4 (
3))) .*thd(j) .”"2+0.5E0.*11h4.*mr2h4.*cos (thlh4 (j)+(-1) .*
th2h4 (3)) .*thdd (j7)+0.25E0.*11h4.*ms.*cos (thlh4 (j)+(-1) .*
th2h4 (j)) .*thdd (§)+0.1E1.*11h4.*mt.*cos (thlh4 () + (-1) .*
th2h4 (3)) .*thdd (7)+ (-0.5E0) . *d.*mr2h4.*sin (th2h4 (J)) . *thdd(
3)+(-0.25E0) .*d.*ms.*sin (th2h4 (j)) .*thdd () +(-0.1E1) . *d.*
mt.*sin(th2h4 (j)) .*thdd (j)+0.5E0.*mr2h4.*cos (th(j)+th2hd (j))
.*xdd (j) +0.25E0. *ms . *cos (th () +th2h4 (7)) .*xdd (j)+0.1E1.*mt.*
cos (th (§)+th2h4 (§)) .*xdd (§) +0.5E0.*mr2h4. *sin (th () +th2h4 ()
) .*ydd (J)+0.25E0.*ms.*sin (th(J)+th2h4 (j)) .*ydd (j)+0.1E1.*
mt.*sin(th(j)+th2h4 (J)) .*ydd(j)))):

torquelf2 (§)=(-0.1E1l) .*c2.*11f2.*cos (th(j)+thlf2(j)).*Ex2 () +g.*. ..
(0.1E1.*lcmlf2.*mlf2+40.1E1.*11f2.*m2£f2) .*sin (th () +th1£f2 () )+ (
~0.1E1) .*c2.*11f2.*fy2 (j) .*sin(th(j)+thlf2(j))+(-0.5E0) .*
11£2.*mr2£2.*%12ddf2 (j) . *sin (th1£2 () + (1) . *th2£2 (3)) +( .
~0.25E0) .*11f2.*ms.*12ddf2 () .*sin (th1f2 (j)+(-1) . *th2£2 (j))
(-0.1E1) . *11f2.*mt.*12ddf2 () .*sin (th1f2 (j)+(-1) .*th2£f2(j))
0.1E1.*I1£f2.*th1ddf2(j)+0.1E1.*1lcmlf2.2.*mlf2.*th1ddf2 (§)+
0.1E1.*11£2.72.*m2£2.*th1ddf2 (§)+0.5E0.*11£2.*mr2£2. *cos (
thl1f2 (§)+(-1) .*th2f2(j)).*12£2(j) .*th2ddf2 (§)+0.25E0. *11£2.*
ms.*cos (thlf2(§)+(-1) .*th2£2(3)) .*12£2(j) . *th2ddf2 () +
0.1E1.*11£2.*mt.*cos (th1f2 (§)+(-1).*th2f2(3)).*12£2 () .*
th2ddf2 (§)+0.1E1.*11f2.*mr2£f2.*cos (th1f2 (j)+(-1) .*th2£2 (j)
.*¥12d£f2 () . *th2df2 () +0.5E0.*11f2. *ms. *cos (th1f2 (j) + (-1) . *
th2£2 () ) .*12df2(j) . *th2df2 (§)+0.2E1.*11£2.*mt. *cos (th1£2 (3)
+(=1) . *th2£2 (j)) .*12df2 (j) . *th2df2 () +0.5E0. *11f2. *mr2£2 . *
12£2(3) .*sin (th1£2 () +(-1) .*th2£f2(3)) .*th2df2(J) .~2+0.25E0.*
11£2.*ms.*12£2(5) .*sin (th1£2 (§)+(-1) .*th2£2(3)) .*th2df2 (J)
LA240.1E1.*11£2.*mt.*12£2 () . *sin (th1f2(j)+(-1) .*th2£2(j)) .*
th2df2 () .~2+0.1E1.*11£2.*mr2£2. *cos (th1£2 () + (1) . *th2£2 (3)
) .*12d£2(j) .*thd (§)+0.5E0.*11£2.*ms. *cos (th1£2 () +(-1) .*
th2£2 () ) .*12df2(j) .*thd (§)+0.2E1.*11£2.*mt. *cos (th1£2 (3) + (
-1) .*th2£f2(j)) .*12df2(j) .*thd (§)+0.1E1.*11£2.*mr2£2.*12£2 (j)

+
+

)
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.*sin(thlf2 (3)+(-1) .*th2f2(3)) .*th2df2(j) .*thd(j)+0.5E0.*
11f2.*ms.*12f2(j) . *sin(thlf2 () +(-1) .*th2f2(j)) .*th2df2(3j) .*
thd (§)+0.2E1.*11f2.*mt.*12£2 (J) . *sin (th1f2 () +(-1) .*th2£f2 (J)
) .*th2df2 (j) .*thd (§) +(-0.1E1) .*d.*1lcmlf2.*ml1f2.*cos (thl1f2 (J)
) .*thd(j3) ."2+(-0.1E1) .*d.*11f2.*m2f2.*cos (thlf2(j)) .*thd(3)
LN240.5E0.*%11f2 . *mr2f2.*%12£2(3) . *sin(thl1f2 (3)+(-1) .*th2f2 (3)
) .*thd(j3) ."2+0.25E0.*11f2.*ms.*12f2 () .*sin(thlf2(3)+(-1).*
th2£2(3)) .*thd(j) . 2+0.1E1.*11f2.*mt.*12f2 (j) . *sin (thl1f2 (j)+
(=1) .*th2f2(3)) .*thd(3) .72+0.1E1.*1cmlf2.72.*ml1f2.*thdd(j)+
0.1E1.*11f2.72.*m2f2.*thdd(j)+0.5E0.*11f2.*mr2f2.*cos (thlf2 (
J)+(=1) .*th2f2(j)) .*12f2(3) .*thdd () +0.25E0.*11f2.*ms. *cos (
thlf2(j)+(-1) .*th2f2(3)).*12f2(3) .*thdd(j)+0.1E1.*11f2.*mt.*
cos (th1f2 (3)+(-1).*th2f2(j)).*12£2(j).*thdd (j)+0.1E1.*d.*
lemlf2.*mlf2.*sin (th1f2(j)) .*thdd (j)+0.1E1.*d.*11f2.*m2f2.*
sin(thlf2(3)).*thdd(j)+0.1E1.*1cmlf2.*mlf2.*cos (th(j)+thlf2(
9)) .*xdd (§)+0.1E1.*11£2.*m2£2.*cos (th(§) +th1£2 (3)) . *xdd () + (
0.1E1.*1lcmlf2.*ml1f2+0.1E1.*11f2.*m2f2) .*sin(th(j)+thlf2(j))
L*ydd(3);

torque2f2 (j)=m2f2.7 (-1) .*((-0.1E1l) .*c2.*m2f2.*cos (th(j)+th2f2(3)).*...

fx2(3) .*12f2(§)+0.1E1.*m2£f2.*I2£f2(j) .*th2ddf2 (j)+(0.25E0.*
mr2f2.724+0.25E0.*mr2f2.*ms+0.625E-1.*ms . "24+0.1El.*mr2f2.*mt+
0.5E0.*ms.*mt+0.1E1l.*mt."2) .*12f2(3) ."2.* (th2ddf2 (j) +thdd (j)
)+12£2 () .* ((-0.1E1) .*c2.*m2f2.*fy2 (j) . *sin(th(j) +th2f2 (J))+
(0.5EQ0.*mr2f2.72+0.5E0.*mr2f2.*ms+0.125E0.*ms."2+0.2E1.*
mr2f2.*mt+0.1E1l.*ms.*mt+0.2E1l.*mt."2) .*12df2 (j) .* (th2df2 (j) +
thd (j))+m2f2.* (g.* (0.5E0.*mr2f2+0.25E0.*ms+0.1E1l.*mt) . *sin (
th(j)+th2f2(§))+0.5E0.*11£2.*mr2£2.*cos (th1£2 () +(-1) .*
th2f2(3)) .*thlddf2 (7)+0.25E0.*11f2.*ms.*cos (thl1f2 (J)+(-1).*
th2f2(3)).*thlddf2(j)+0.1E1.*11f2.*mt.*cos (thlf2 (J)+(-1).*
th2f2(3)) .*thlddf2 (j)+11£f2.*((-0.5E0) .*mr2f2+ (-0.25E0) . *ms+ (
-0.1E1) .*mt) . *sin(thlf2 (j3)+(-1) .*th2f2(j)) .*thldf2 (j) .2+
11f2.*((-0.1E1) .*mr2f2+ (-0.5E0) .*ms+ (-0.2E1) .*mt) . *sin(
thlf2 (j)+(-1) .*th2f2(3)) .*thldf2(j) .*thd(j)+((-0.5E0) .* .
mr2f2+(-0.25E0) . *ms+ (-0.1E1) .*mt) . * (d.*cos (th2f2 (7)) +11f2.*
sin(thlf2 (j)+(-1) .*th2f2(j))) .*thd(j) ."2+0.5E0.*11f2.*
mr2f2.*cos(thlf2(j)+(-1) .*th2f2(j)) .*thdd(j)+0.25E0.*11f2.*
ms.*cos (thlf2 (j)+(-1).*th2f2(j)) .*thdd(J)+0.1E1.*11f2.*mt.*
cos (thlf2 (J3)+(-1).*th2f2(j)).*thdd(j)+0.5E0.*d.*mr2f2.*sin (
th2f2(3)) .*thdd (7)+0.25E0.*d.*ms.*sin(th2f2 (j)) .*thdd (j) +
0.1E1.*d.*mt.*sin(th2f2(j)) .*thdd (7)+0.5E0.*mr2f2.*cos (th(j)
+th2f2(3)) .*xdd () +0.25E0.*ms.*cos (th(j)+th2f2(j)) .*xdd (J) +
0.1El.*mt.*cos (th(j)+th2f2(7J)) .*xdd(j)+0.5E0.*mr2f2.*sin (th (
3)+th2f2(3)) .*ydd (j)+0.25E0.*ms.*sin (th (J)+th2f2 (7)) .*ydd (j)
+0.1El.*mt.*sin(th (j)+th2f2(3)).*ydd(j))));

torquelf3 (§)=(-0.1E1) .*c3.*11f3.*cos (th(j)+thlf3(3)).*fx3(J)+g.*...
(0.1E1.*lcmlf3.*ml£3+40.1E1.*11£3.*m2£3) .*sin (th(3)+thl£3(3))+(

-0.1E1) .*c3.*11£3.*fy3(j) .*sin (th(j§)+thl£f3(j))+(-0.5E0) .*
11£3.*mr2£3.%12dd£3 () . *sin (th1£3 (3)+ (1) . *th2£3 (§) )+ (
-0.25E0) .*11£3.*ms.*12ddf3 () .*sin (th1£3 () +(-1) . *th2£3(j))+
(-0.1E1) .*11£3.*mt.*12ddf3 () .*sin (th1£3 (§)+(-1) .*th2£3 () )+
0.1E1.*I1£3.*th1ddf3(j)+0.1El.*lcmlf3.72.*mlf3.*thlddf3 (§)+
0.1E1.*11£3.72.*m2£3.*th1ddf3(j)+0.5E0.*11£3.*mr2£3.*cos (
thl1£3(§)+(-1) .*th2£3(3)).*12£3(j).*th2ddf3 (j)+0.25E0.*11£3.*
ms.*cos (th1£3(§)+(-1) .*th2£3(3)) .*12£3 () .*th2ddf3 () +
0.1E1.*11f3.*mt.*cos (thlf3 (§)+(-1) .*th2£3(j)) .*12£3(j) .*
th2dd£3 (§)+0.1EL.*11£3.*mr2£3.*cos (th1£3 () + (-1) . *th2£3(3))
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.*12df3(j) .*th2df3(§)+0.5E0.*11£3.*ms.*cos (th1£3 (§)+(-1) .*
th2£3(3)) .*12d£3 (3) . *th2df3 (§)+0.2EL.*11£3.*mt.*cos (th1£3 (j)
+(-1) .*th2£3(3)) .*12d£3 (3) . *th2d£3 () +0.5E0. *11£3. *mr2£3. *
12£3(3) .*sin (th1£3(3)+(-1) .*th2£3(j)) .*th2d£3(j) .~2+0.25E0. *
11£3.*ms.*12£3(5) .*sin (th1£3 (§)+(-1) .*th2£3(3)) . *th2d£3 (J)
LA2+40.1E1.*11£3.*mt.*12£3(J) . *sin (thl1£3 (§)+(-1) .*th2£3(J)) .*
th2d£3 () .~240.1E1.*11£3.*mr2£3.*cos (th1£3(3) +(-1) .*th2£3 (J)
) .*12d£3(3) .*thd () +0.5E0.*11£3.*ms.*cos (th1£3 (§)+(-1).*
th2£3(5)).*12d£3 () .*thd (§)+0.2E1.*11£3.*mt.*cos (th1£3 (J) +(
-1) .*th2£3(§)) .*12d£3(J) . *thd (§)+0.1EL.*11£3.*mr2£3.*12£3 ()
.*sin (thl1£3(§)+(-1).*th2£3(j)).*th2d£3(j).*thd(j)+0.5E0.*
11£3.%ms.*12£3(3) .*sin (th1£3 (§)+(-1) .*th2£3(3)) .*th2df3(j) . *
thd () +0.2E1.*11£3.*mt.*12£3(J) .*sin (th1£3(§)+ (-1) .*th2£3 (J)
) .*th2d£f3(3) .*thd (§)+(-0.1E1) .*d.*1lcml£f3.*ml£3.*cos (th1£3 (j)
) .*thd (j) .72+ (-0.1E1) .*d.*11£3.*m2£3.*cos (th1£3(j)) .*thd(j)
.A2+40.5E0.*11£3.*mr2£3.*12£3 (3) . *sin (th1£3(§)+(-1).*th2£3(j)
) .*thd (j) .~2+0.25E0.*11£3.*ms.*12£3 (§) . *sin (th1£3 (§)+(-1) .*
th2£3(5)).*thd(j) .~2+0.1E1.*11£3.*mt.*12£3(J) .*sin (thl£3(J)+
(-1) .*th2£3(j)) .*thd(j) .~2+0.1E1.*1lcmlf3.72.*ml£3.*thdd () +
0.1E1.*11£3.72.*m2f3.*thdd (j)+0.5E0.*11£f3.*mr2£3.*cos (th1£f3 (
9)+(-1) .*th2£3(3)) .*12£3(j) .*thdd (j) +0.25E0.*11£3. *ms. *cos (
th1£3 () +(-1) .*th2£3(3)) .*12£3 () .*thdd (j)+0.1EL.*11£3.*mt.*
cos (thlf3(3)+(-1) .*th2£3(3)) .*12£3(3) .*thdd (§) +0.1E1.*d.*
lemlf3.*mlf3.*sin (th1£3(3)) .*thdd(j)+0.1E1l.*d.*11£3.*m2£3.*
sin(thl1£3(3)).*thdd(3)+0.1E1.*1lcml£3.*ml£3.*cos (th(§)+thl£3(
9)) .*xdd (§)+0.1E1.*11£3.*m2£3.*cos (th (§) +th1£3(3)) . *xdd (J) + (
0.1E1l.*lcmlf3.*mlf3+0.1E1.*11£3.*m2£3) .*sin (th(j)+thl£3(j))
Lrydd(3) s

torque2f3(J)=m2f3."(-1) .*((-0.1E1) .*c3.*m2f3.*cos (th(J)+th2f3(3)).*...
fx3(3).*12f3(3)+0.1E1.*m2£f3.*I2£3(J) .*th2ddf3(7)+(0.25E0.*
mr2f3.724+40.25E0.*mr2£3.*ms+0.625E-1.*ms."2+0.1El.*mr2f3.*mt+
0.5E0.*ms.*mt+0.1E1l.*mt."2) .*12£f3(3) ."2.* (th2dd£f3 (j) +thdd (j)
)+12£3(3) .*((-0.1E1) .*c3.*m2f3.*fy3(j) . *sin(th(j)+th2£f3(3))+
(0.5E0.*mr2£3.72+0.5E0.*mr2£3.*ms+0.125E0.*ms."2+0.2E1.*
mr2f3.*mt+0.1E1.*ms.*mt+0.2E1l.*mt."2) .*12df3 () .* (th2df3(j) +
thd (7)) +m2£f3.*(g.* (0.5E0.*mr2£3+0.25E0.*ms+0.1E1l.*mt) . *sin (
th(j)+th2£f3(3))+0.5E0.*11f3.*mr2£f3.*cos (thlf3(j)+(-1).*
th2f3(3)) .*thl1ddf3(j)+0.25E0.*11£f3.*ms.*cos (thlf3(J)+(-1).*
th2f3(3)) .*thlddf3(j7)+0.1E1.*11f3.*mt.*cos (thlf3(j)+(-1).*
th2f3(j)) .*thlddf3(J)+11£f3.*((-0.5EQ) . *mr2£f3+ (-0.25E0) . *ms+ (
-0.1E1) .*mt) . *sin(thl1f3(j)+(-1) .*th2f3(J)) .*thldf3(3j) .2+
11£3.*%((-0.1E1) .*mr2f3+(-0.5E0) . *ms+ (-0.2E1) .*mt) . *sin(
thlf3(j)+(-1) .*th2£f3(j)) .*thldf3(j) .*thd(j)+((-0.5E0) .*
mr2f3+(-0.25E0) . *ms+ (-0.1E1) .*mt) . * (d.*cos (th2f3(j))+11£f3.*
sin (thl1f3(j)+(-1).*th2f3(j))) .*thd(j) ."2+0.5E0.*11£f3.*
mr2f3.*cos (thlf3(j)+(-1) .*th2f3(j)) .*thdd(j)+0.25E0.*11£f3.*
ms.*cos (thl1f3(j)+(-1) .*th2£f3(j)) .*thdd(3)+0.1E1.*11f3.*mt.*
cos (thlf3(3)+(-1).*th2f3(j)).*thdd(j)+0.5E0.*d.*mr2f3.*sin (
th2f3(3)) .*thdd(j)+0.25E0.*d.*ms.*sin(th2f3(j)) .*thdd (J) +
0.1E1.*d.*mt.*sin(th2f3(]J)) .*thdd(j)+0.5E0.*mr2f3.*cos (th(]j)
+th2f3(3)) .*xdd () +0.25E0.*ms.*cos (th(j)+th2f3(j)) .*xdd (J) +
0.1E1l.*mt.*cos (th(j)+th2£f3(7J)) .*xdd (7)+0.5E0.*mr2£f3.*sin (th (
3)+th2£3(3)) .*ydd (3)+0.25E0.*ms.*sin (th (J)+th2£f3 (7)) .*ydd (3)
+0.1El.*mt.*sin(th (j)+th2f3(J)).*ydd(3))));
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check_strength.m

function [din,dout, flag] = check strength(fx, fy,th,thlhl,11hl,th2hl,12hl...
,thlf2,11£2,th2f2,12f2,th1£3,11£3,th2£f3,12£3,thlh4,11h4,th2h4,12h4)
$CHECK STRENGTH takes as inputs the forces from the ground, the leg
%$segment lengths and the joint trajectories and returns as output the inner
%and outer diameters of the tubular links if material strength is respected
% (flag==0). Four alternative ID/OD options should be provided from the
Suser. If strength constraints are not valid for all of four alternatives,

% (flag==1), the user should provide ID/OD with thicker cross-sectional
%areas

flag=1l;

R e OPTION 1 —-——m oo %

din ¢=0.023;
dout ¢c=0.025;

A=pi* (dout c”2-din c”"2)/4;
strength=200;

ft21=fx (1:500) /2.*cos (th(1:500)+th2hl1 (1:500))+fy(1:500)/2.*...
sin(th(1:500)+th2h1(1:500));

f121=fx(1:500) /2.*sin(th(1:500)+th2h1 (1:500))-fy(1:500)/2.*...
cos (th(1:500)+th2hl1 (1:500));

M21=ft21.*12h1(1:500) ;

I21=pi* (dout c”4-din c"4)/64;

sb21=M21/I21*dout _c/2/1076;

sc21=f121/A/10"6;

ss21=ft21/A/10"6;

ftl1l=fx(1:500)/2.*cos (th(1:500)
sin(th(1:500)+thl1hl1 (1:500))

f111=£fx(1:500) /2.*sin(th(1:500)+th1h1 (1:500))-fy(1:500)/2.*...
cos (th(1:500)+thl1hl1(1:500))

Ml11l=ftl1l1l.*11hl;

Ill=pi* (dout c”4-din c"4)/64;

sbll= Mll/Ill*dout C/2/1O 6;

scll=f111/A/10"6;

ssll=ftl1/A/10"6;

+thlhl (1:500))+£fy(1:500)/2.*...

’

ft22=£fx(501:1000) /2.*cos (th(501:1000)
sin(th (501:1000)+th2£2(501:1000))

£122=£fx(501:1000) /2.*sin(th(501:1000)+th2£f2(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th2£2(501:1000))

M22=ft22.*12£2(501:1000) ;

I22=pi* (dout c”4-din c"4)/64;

sb22=M22/122*dout_c/2/1076;

sc22=£f122/A/10"6;

$s22=ft22/A/10"6;

+th2£2(501:1000) ) +£fy(501:1000)/2.*...

’

ft12=fx (501:1000) /2.*cos (th(501:1000)+th1f2(501:1000))+fy(501:1000)/2.*...
sin(th(501:1000)+th1£f2(501:1000)) ;

£f112=fx(501:1000) /2.*sin(th (501:1000)+th1£f2(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th1£f2(501:1000)) ;

M12=ftl1l2.*11£f2;

I12=pi* (dout c”4-din c"4)/64;

sbl2= M12/I12*dout c/2/1O 6;

scl2=f112/A/10"6;

ssl2=ftl12/A/10"6;
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ft23=fx(1:500)/2.*cos (th(1:500)+th2f3(1:500))+fy(1:500)/2.*...
sin(th(1:500)+th2f3(1:500)) ;

f123=fx(1:500) /2.*sin(th(1:500)+th2f3(1:500))-fy(1:500)/2.*...
cos (th(1:500)+th2£3(1:500)) ;

M23=ft23.*12£f3(1:500) ;

I23=pi* (dout c”"4-din c"4)/64;

sb23= M23/123*dout c/2/10%6;

sc23=f123/A/10"6;

ss23=ft23/A/1076;

ft13=£fx(1:500)/2.*cos (th(1:500)+thl1£3(1:500))+£fy(1:500)/2.*...
sin(th(1:500)+thl1£3(1:500))

£113=£fx(1:500)/2.*sin(th(1:500)+th1£3(1:500))-£fy(1:500)/2.*...
cos (th(1:500)+th1£3(1:500))

M13=ft13.*11£3;

I13=pi* (dout c”4-din c"4)/64;

sb13=M13/I13*dout c/2/10"6;

scl3=£f113/A/10"6;

ss13=£ft13/A/10"6;

’

ft24=£fx(501:1000) /2.*cos (th(501:1000)+th2h4 (501:1000))+£fy(501:1000)/2.*...
sin(th(501:1000)+th2h4 (501:1000)) ;

£f124=fx (501:1000) /2.*sin(th(501:1000)+th2h4(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th2h4 (501:1000)) ;

M24=ft24.*12h4 (501:1000) ;

124=pi*(dout_cA4—din_cA4)/64;

sb24=M24/IZ4*dout_c/2/lOA6;

sc24=f124/A/10"6;

ss24=ft24/A/10"6;

ft14=£fx(501:1000)/2.*cos (th(501:1000)
sin(th(501:1000)+th1h4 (501:1000))

£f114=fx (501:1000) /2.*sin(th(501:1000)+th1h4(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th1h4 (501:1000))

Ml4=ftl14.*11h4;

Il4=pi* (dout c”4-din c"4)/64;

sb14=M14/I14*dout c/2/10"6;

scld=£f114/A/10"6;

ssl4=ftl14/A/10"6;

+th1h4 (501:1000))+£fy(501:1000)/2.*...

’

if strength/max (abs (sb21l)+abs(sc2l))>=3&&strength/max (abs (sbll)+
abs (scll))>=3&&strength/max (abs (sb22) +abs (sc22))>=3&&strength/...
max (abs (sbl2)+abs (scl2))>=3&&strength/max (abs (sb23) +abs (sc23) ) >=
3&&strength/max (abs (sbl3)+abs (scl3))>=3&&strength/max (abs (sb24) +
abs (sc24))>=3&&strength/max (abs (sbl4)+abs (scl4))>=3

din=din_c;
dout=dout c;

flag=0;
end
s OPTION 2 —————mmmmmm e 5
if flag==

din c=0.026;
dout c¢c=0.028;

A=pi* (dout c”2-din c¢"2)/4
strength=200;

ft21=fx(1:500) /2.*cos (th(1:500)+th2h1 (1:500))+fy(1:500)/2.*...
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sin(th(1:500)+th2h1 (1:500)) ;

£f121=fx(1:500)/2.*sin(th(1:500)+th2h1 (1:500))-fy(1:500)/2.*...
cos (th(1:500)+th2h1(1:500)) ;

M21=ft21.*12h1(1:500);

I21=pi* (dout c”"4-din c"4)/64;

Sb2l:MZl/IZl*dout_C/Z/lOA6;

sc21=f121/A/10"6;

ss21=ft21/A/10"6;

ftl1ll=£fx(1:500)/2.*cos (th(1:500
sin(th(1:500)+thlhl1 (1:500)
£f111=£fx(1:500)/2.*sin(th(1:500
cos(th(1:500)+thlhl (1:500)
M11l=ftll.*11hl;
Ill=pi* (dout c”4-din c"4)/64;
sbll= Mll/Ill*dout C/2/10 6;
scll=f111/A/10"6;
ssll=ftl1/A/10"6;

+thlhl(l:500))+fy(l:500)/2.*...

thlhl(l:SOO))—fy(l:500)/2.*...

;

—_ — — —

ft22=fx(501:1000)/2.*cos (th(501:1000
sin(th(501:1000)+th2£f2(501:1000)

£122=fx(501:1000) /2.*sin(th(501:1000
cos (th(501:1000)+th2£f2(501:1000)

M22=ft22.*12£2(501:1000) ;

I22=pi* (dout c”4-din c"4)/64;

sb22=M22/I22*dout _c/2/10"6;

sc22=f122/A/10"6;

ss22=ft22/A/10"6;

—_— — — —

;

+th2f2(501:1000))+fy(501:1000)/2.*...

th2f2(501:lOOO))—fy(501:1000)/2.*...

ft12=£fx(501:1000) /2.*cos (th(501:1000)+th1£2(501:1000))+£fy(501:1000)/2.*...

(

sin(th(501:1000)+th1£f2(501:1000)

£f112=fx(501:1000) /2.*sin(th(501:1000
cos (th(501:1000)+th1£2(501:1000)

M12=£ft12.*11£f2;

I12=pi* (dout c”4-din c"4)/64;

sb12=M12/I12*dout c/2/1076;

scl2=f112/A/10"6;

ssl2=ftl12/A/10"6;

)
)7
)
)

’

ft23=fx(1:500)/2.*cos (th(1:500
sin(th(1:500)+th2£3(1:500)
£f123=fx(1:500) /2.*sin (th(1:500
cos (th(1:500)+th2£3(1:500)
M23=ft23.*12£3(1:500) ;
I23=pi* (dout c”4-din c"4)/64;
sb23=M23/I23*dout c/2/10"6;
sc23=£f123/A/10"6;
ss23=ft23/A/10"6;

+th2f3(l:500))+fy(1:500)/2.*...

th2f3(l:500))—fy(l:SOO)/Z.*...

7

—_ — — —

ft13=£fx(1:500) /2.*cos (th(1:500)
sin(th(1:500)+thl1£3(1:500))

£113=£fx(1:500)/2.*sin(th(1:500)+thl1£f3(1:500))-£fy(1:500)/2.*...
cos(th(1:500)+th1£3(1:500))

M13=ft13.*11£3;

I13=pi* (dout c”4-din c"4)/64;

sb13=M13/I13*dout c/2/10"6;

scl3=f113/A/10"6;

ss13=ft13/A/10"6;

+thl1£3(1:500))+£fy(1:500)/2.*...

’

+th1£2(501:1000))-£fy(501:1000)/2.*...

ft24=£x(501:1000) /2.*cos (th(501:1000) +th2h4 (501:1000) )+£fy(501:1000)/2.*...
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sin(th(501:1000)+th2h4 (501:1000)) ;

£124=fx (501:1000) /2.*sin(th(501:1000)+th2h4(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th2h4 (501:1000)) ;

M24=ft24.*12h4 (501:1000) ;

I24=pi* (dout c”"4-din c"4)/64;

sb24=M24/I24*dout_c/2/1076;

sc24=f124/A/10"6;

ss24=ft24/A/10"6;

ft14=fx (501:1000) /2.*cos (th(501:1000)+th1h4(501:1000))+fy(501:1000)/2.*...
sin(th(501:1000)+th1h4 (501:1000)) ;

£f114=fx (501:1000) /2.*sin(th(501:1000)+th1h4(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th1h4 (501:1000)) ;

M1l4=ftl1l4.*11h4;

Il4=pi* (dout c”4-din c"4)/64;

sbld= Ml4/Il4*dout C/2/10 6;

scl4=f114/A/10"6;

ss14=ft14/A/10"6;

if strength/max (abs (sb21l)+abs(sc2l))>=3&&strength/max (abs(sbll)+
abs (scll))>=3&&strength/max (abs (sb22) +abs (sc22))>=3&&strength/...
max (abs (sbl2) +abs (scl2))>=3&&strength/max (abs (sb23) +abs (sc23) ) >=
3&&strength/max (abs (sbl3)+abs (scl3))>=3&&strength/max (abs (sb24) +
abs (sc24))>=3&&strength/max (abs (sbl4) +abs (scl4))>=3

din=din_c;
dout=dout c;

flag=0;
end
end
R et OPTION 3 ————m— oo %
if flag==1

din ¢=0.028;
dout c¢c=0.03;

A=pi* (dout c”2-din c"2)/4
strength=200;

ft21=fx(1:500)/2.*cos (th(1:500
sin(th(1:500)+th2h1 (1:500)
f121=£fx(1:500) /2.*sin (th(1:500
cos (th(1:500)+th2h1(1:500)
M21=ft21.*12h1(1:500) ;
I21=pi* (dout c”4-din c"4)/64;
sb21=M21/I21*dout c/2/10"6;
sc21=f121/A/10"6;
ss21=ft21/A/10"6;

+th2h1(1:500))+fy(1:500)/2.*...

th2hl(l:500))—fy(l:SOO)/Z.*...

;

—_ — — —

ftll=£fx(1:500)/2.*cos (th(1:500)
sin(th(1:500)+thl1hl1 (1:500))

f111=fx(1:500)/2.*sin(th(1:500)+th1hl1(1:500))-fy(1:500)/2.*...
cos (th(1:500)+thl1hl1(1:500))

M11=ftl1l.*11hl;

Ill=pi* (dout c"4-din c"4)/64;

sbll= Mll/Ill*dout C/2/lO 6;

scll=f111/A/10"6;

ssll=ftl11/A/10"6;

+thlhl1(1:500))+£fy(1:500)/2.*...

’
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£f£22=£fx(501:1000) /2.*cos (th(501:1000)+th2£f2 (501:

£122=fx (501:1000)/2.*sin(th(501:1000
cos (th(501:1000)+th2£f2(501:1000)

M22=ft22.*12£f2(501:1000) ;

I22=pi* (dout c”"4-din c"4)/64;

sb22= M22/122*dout c/2/10%6;

sc22=f122/A/10"6;

ss22=ft22/A/10"6;

( )
sin (th(501:1000)+th2£2(501:1000)) ;

( )

)

I

f£12=£fx(501:1000) /2.*cos (th(501:1000)+th1£f2 (501:

(
sin(th(501:1000)+th1£2(501:1000)
(

)

)
£112=£x(501:1000) /2.*sin(th(501:1000)+th1£f2(501:

)

cos (th(501:1000)+thl1£f2(501:1000)
M12=ftl1l2.*11£f2;
I12=pi* (dout c”4-din c"4)/64;
sb12=M12/I12*dout c/2/1076;
scl2=f112/A/10"6;
ssl2=ft12/A/10"6;

’

ft23=fx(1:500) /2.*cos (th(1:500)+th2£3(1:500))+fy(1:500)/2.*...

£123=fx(1:500)/2.*sin(th(1:500
cos (th(1:500)+th2£3(1:500)
M23=ft23.*12£3(1:500) ;
123=pi*(dout_cA4—din_cA4)/64;
sb23=M23/I23*dout _c/2/10"6;
sc23=f123/A/10"6;
ss23=ft23/A/1076;

( )
sin(th(1:500)+th2£3(1:500));

( )

)

’

ft13=fx(1:500)/2.*cos (th(1:500
sin(th(1:500)+thl1£3(1:500)
£113=£x(1:500)/2.*sin(th(1:500
cos (th(1:500)+th1£3(1:500)
M13=ft13.*11£3;
I13=pi* (dout c”4-din c"4)/64;
sb13=M13/I13*dout c/2/1076;
scl3=£f113/A/10"6;
ss13=£ft13/A/10"6;

—_ — — —

7

ft24=£fx(501:1000) /2.*cos (th(501:1000
sin(th (501:1000)+th2h4 (501:1000)
(

)

)
£124=£fx%(501:1000) /2.*sin(th(501:1000)+th2h4 (501:

)

cos (th(501:1000)+th2h4 (501:1000)
M24=ft24.*12h4 (501:1000) ;
I24=pi* (dout c”4-din c”"4)/64;
sb24=M24/I24*dout _c/2/10"6;
sc24=£f124/A/10"6;
ss24=ft24/A/1076;

’

ft14=£fx(501:1000) /2.*cos (th(501:1000
sin(th(501:1000)+th1h4(501:1000)

£114=£fx(501:1000) /2.*sin(th(501:1000
cos (th(501:1000)+th1h4 (501:1000)

M14=ft14.*11h4;

Il4=pi* (dout c”4-din c"4)/64;

sbl4=M14/I14*dout _c/2/1076;

scl4=£f114/A/10"6;

ss14=ft14/A/10"6;

)
);
)
)

’
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+th2h4 (501:

+thlh4 (501:
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1000))
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1000) ) +£y (501

1000))

1000) ) +fy (501 :

1000))

1000) ) +fy (501 :

1000))

-fy (501:

+th2£3(1:500))-£fy(1:500)/2.*...
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if strength/max (abs (sb21l)+abs (sc2l))>=3&&strength/max (abs (sbll)+...
abs (scll))>=3&&strength/max (abs (sb22) +abs (sc22))>=3&&. . .
strength/max (abs (sbl12) +abs (scl2))>=3&&strength/max (abs (sb23) ...
+abs (sc23) ) >=3&&strength/max (abs (sbl3) +abs (scl3))>=3&&. ..
strength/max (abs (sb24) +abs (sc24))>=3&&strength/max (abs (sbl4)+...

abs(scld))>=3

din=din_c;
dout=dout c;
flag=0;

end

din ¢=0.026;
dout c=0.03;

A=pi* (dout c”2-din c”"2)/4;
strength=200;

ft21=£fx(1:500) /2.*cos (th(1:500
sin(th(1:500)+th2hl1(1:500)
£f121=fx(1:500)/2.*sin(th(1:500
cos (th(1:500)+th2hl1 (1:500)
M21=ft21.*12h1(1:500);
I21=pi* (dout c”4-din c”"4)/64;
sb21=M21/I21*dout c/2/1076;
sc21=f121/A/10"6;
ss21=ft21/A/10"6;

—_ — — ~—

+th2hl (1:

’

+th2hl (1:

’

ft11=£fx(1:500)/2.*cos (th(1:500)+thlhl (1

(
sin(th(1:500)+thlhl (1:500)
f111=£fx(1:500)/2.*sin(th(1:500
cos(th(1:500)+thlhl (1:500)
Ml11l=ftl1l1l.*11hl;
Ill=pi* (dout c”4-din c"4)/64;
Sbll=Mll/Ill*dout_c/2/lOA6;
scll=f111/A/10"6;
ssll=ftl1/A/10"6;

)
)
)
)

+thlhl (1:

’

500))+fy(1l:

500)) -fy (1

:500) ) +£y (1

500))-fy (1

500) /2.

f£22=£fx(501:1000) /2.*cos (th(501:1000) +th2£f2(501:1000)
fy(501:1000) /2.*sin(th(501:1000)+th2£2(501:1000))
£122=£fx(501:1000) /2.*sin(th(501:1000)+th2£f2(501:1000)
fy(501:1000) /2.*cos (th(501:1000)+th2£2(501:1000))

M22=ft22.*12£2(501:1000) ;
I22=pi* (dout c”4-din c”"4)/64;
sb22=M22/I22*dout_c/2/1076;
sc22=£f122/A/10"6;
$s22=ft22/A/10"6;

ft12=£fx(501:1000) /2.*cos (th(501:1000)+th1£f2(501:1000

£112=£fx(501:1000) /2.*sin(th(501:1000)+th1£f2(501:1000

)
fy(501:1000) /2.*sin(th(501:1000)+th1£2(501:1000))
)
)

fy (501:1000) /2.*cos (th(501:1000)+th1£f2(501:1000)

M12=ftl2.*11£f2;

I12=pi* (dout c”"4-din c"4)/64;
sb12=M12/I12%dout_c/2/10"6;
scl2=f112/A/10"6;
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ssl2=ftl12/A/10"6;

ft23=fx(1:500)/2.*cos (th(1:500)+th2f3(1:500))+fy(1:500)/2.*...
sin(th(1:500)+th2f3(1:500)) ;

£123=fx(1:500)/2.*sin(th(1:500)+th2f3(1:500))-fy(1:500)/2.*...
cos (th(1:500)+th2£f3(1:500)) ;

M23=ft23.*12£3(1:500) ;

I23=pi* (dout c”4-din c"4)/64;

sb23=M23/I23*dout _c/2/10"6;

sc23=f123/A/1076;

ss23=ft23/A/1076;

ft13=£fx(1:500)/2.*cos (th(1:500)+thl1£3(1:500))+£fy(1:500)/2.*...
sin(th(1:500)+thl1£3(1:500))

£113=£fx(1:500)/2.*sin(th(1:500)+th1£3(1:500))-£fy(1:500)/2.*...
cos (th(1:500)+th1£3(1:500))

M13=ft13.*11£3;

I13=pi* (dout c”4-din c"4)/64;

sb13=M13/I13%dout c/2/10°6;

scl3=£f113/A/10"6;

ss13=£ft13/A/10"6;

’

ft24=fx(501:1000)/2.*cos (th(501:1000)+th2h4 (501:1000
fy(501:1000)/2.*sin(th(501:1000)+th2h4 (501:1000)

£f124=£fx(501:1000)/2.*sin(th(501:1000)+th2h4 (501:1000
fy (501:1000) /2.*cos (th (501:1000)+th2h4 (501:1000)

M24=ft24.*12h4 (501:1000) ;

I24=pi* (dout c”4-din c"4)/64;

sb24=M24/I24*dout c/2/10"6;

sc24=f124/A/10"6;

ss24=ft24/A/10"6;

)+
) -

’

)
)7
)
)i

ft14=£fx(501:1000) /2.*cos (th(501:1000) +th1lh4 (501:1000

))+.
fy(501:1000)/2.*sin(th(501:1000)+th1h4(501:1000)) ;
)
)7

) =

’

£f114=fx (501:1000) /2.*sin(th(501:1000)+th1h4(501:1000
fy(501:1000)/2.*cos (th(501:1000)+th1h4 (501:1000)

M1l4=ft14.*11h4;

Il4=pi* (dout c”4-din c”"4)/64;

sb14=M14/T14*dout_c/2/10%6;

scl4=f114/A/10"6;

ssl4=ft14/A/10"6;

if strength/max (abs (sb21l)+abs (sc21))>=3&&strength/max (abs (sbll)+
abs(scll))>=3&&strength/max(abs(sb22)+abs(sc22))>=3&&...

strength/max (abs (sbl12) +abs (scl2))>=34&%.
strength/max (abs (sb23) +abs (sc23) ) >=34&%.
strength/max (abs (sb13) +abs (scl3))>=34&%.
strength/max(abs(sb24)+abs(ch4))> 3&&
strength/max (abs (sbl4) +abs (scl4d))>

din=din_c;
dout=dout c;
flag=0;

din=din_c;
dout=dout_c;
end
end
end
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Animation.m

]
bbb bbb bbb Animation.m ———---———---———--—— o %
S S
E] o

% Produces an animation of the centroidal robot running for the duration of
% one stride. Run after PostProcessing.m.

fl1 = figure(l);
clf (f1);

a=1;

b=0.15;

step=10;

% Stop button to stop animation

stop = uicontrol('style', 'toggle', 'string', 'stop', 'background', 'white');

for 1 = 1l:step:n-1

% If stop button is unpressed
if get(stop, 'value')==0

% Background color (in+out plot)
whitebg([1 1 17)

% Plot Center of Mass
plot(x(i),y(i),'o', "MarkerSize',10)
hold on

grid on

o)

% Plot body circumference

xel=x(i)+a/2*cos (th(i))+b/2*sin(th(i)) ;
yel=y(i)+a/2*sin(th(i))-b/2*cos(th(i));
xe2=x(i)+a/2*cos (th(i))-b/2*sin(th (1)) ;
ye2=y(i)+a/2*sin(th(i))+b/2*cos (th(i));
xe3=x(i)-a/2*cos (th(i))-b/2*sin(th(i));
ye3=y(i)-a/2*sin(th(i))+b/2*cos (th(i));
xed=x(i)-a/2*cos (th(i))+b/2*sin(th(i));
yed=y (i)-a/2*sin(th(i))-b/2*cos (th(i));

xcmf=[xel;xe2;xe3;xed;xel];
yemf=[yel;ye2;vye3;vyed;yel];

plot (xcmf,ycmf, "k')
% Location of hips
xh=x (1) -d*cos (th (i
yh=y (i) -d*sin
xf=x (1) +d*cos
yf=y (i) +d*sin

));
i));
i));
i));

’

—~ e~~~

th
th
th

% Plot footfalls, CoM to toe and hip to toe lines.
[cl,c2,c3,cd4]=c_1i(ttl,tt2,tt3,ttd,t(i),T);
if cl==
plot (xh,vyh, 'bo', '"Markersize',5)
plot ([x(i) x11,[y(i) ygl,':k")
plot ([x1 xh], [yg yh],'b")
end
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if c2==
plot (xf,yf, 'ro', 'Markersize',’)
plot ([x (1) x2],[y(i) ygl,':k")
plot ([x2 xf], [yg yfl,'r")

end

if c3==
plot (xf,yf, 'co', 'Markersize',’)
plot ([x (i) %3], [y (1) ygl,':k")
plot ([x3 xf], [yg yfl,'c")

end

if cé==
plot (xh, yh, 'mo', 'Markersize',5)
plot ([x (i) x4], [y (1) ygl,':k")
plot ([x4 xh], [yg yh],'m")

end

o)

% Plot ground

plot ([x(i)-1 x(i)+1]1,[yg ygl,'Color',[0.5 0.5 0.5], "Linewidth',1)
% Moving axis

axis equal

axis([x(1)-1 x(1i)+1 yg-0.1 1.47])

drawnow
hold off

o)

% Break if Stop button is pressed

elseif get(stop, 'value')==1
break
end
% hold off

end

o)

% Turn the stop button into close button
set (stop, 'style', 'pushbutton', 'string', 'close', 'callback', 'close(gcf) ") ;

AnimationFull.m

(6] [e]
e e AnimationFull.m - -———————-———"""""—"——————————— %
o o)
-2 o

% Produces an animation of the quadruped robot running for the duration of
% one stride. Run after PostProcessing.m.

f2 = figure(2);
clf(f2);

step=10;

% Stop button to stop animation

stop = uicontrol('style', 'toggle','string', 'stop', '"background', 'white');
% Equally distributed forces
fxi=fx/2;
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fyi=~fy/2;
mafyi=max (abs (fyi));

for i = l:step:n-1

% If stop button is unpressed
if get(stop, 'value')==

% Background color (in+out plot)
whitebg([1 1 17)

% Plot Center of Mass
plot(x(i),y(i),'o', "MarkerSize',10)
hold on

grid on

% Plot body circumferencei

xel=x(i)+a/2*cos (th(i))+b/2*sin(th(i)) ;
yel=y(i)+a/2*sin(th(i))-b/2*cos(th(i));
xe2=x(1)+a/2*cos (th(i))-b/2*sin(th (1)) ;
ye2=y(i)+a/2*sin(th(i))+b/2*cos (th(i));
xe3=x(i)-a/2*cos (th(i))-b/2*sin(th(i)) ;
ye3=y(i)-a/2*sin(th(i))+b/2*cos (th(i));
xed=x (1) -a/2*cos (th(i))+b/2*sin(th (1)) ;
yed=y (i)-a/2*sin(th(i))-b/2*cos(th(i));

xcmf=[xel;xe2;xe3;xed;xel];
yemf=[yel;ye2;vye3;vyed;yel];

plot (xcmf,ycmf, 'k'")

o)

% Location of hips

xh=x (1) -d*cos (th(i));
yh=y (i) -d*sin (th (i)) ;
xf=x (i) +d*cos (th(i)) ;
yE=y (1) +d*sin (th (1)) ;

% Plot legs
[cl,c2,c3,cd4]=c_1i(ttl,tt2,tt3,tt4,t(i),T);
3 leg 1

xkl=xh+1lhl*sin (thhl (i)+thlhl (1)) ;
ykl=yh-11hl*cos (thhl (i) +thlhl(i))
xftl=xk1+12hl1 (i) *sin(thhl (i) +th2hl(i));
yitl=ykl-12hl (i) *cos (thhl (i) +th2hl (1))
plot (xh, yh, 'bo', "Markersize',5)

plot ([xftl xh], [yftl yh],':b")

plot ([xftl xkl xh], [yvftl ykl yh],'b")

o)

3 leg 2

xk2=xf+11f2*sin (thf2 (i) +thlf2(i));
yk2=yf-11f2*cos (thf2 (i) +thlf2(i));
xft2=xk2+12f2 (1) *sin(thf2 (i) +th2f2(i));
yit2=yk2-12f2 (i) *cos (thf2 (i) +th2f2 (1)),
plot (xf,yf, 'ro', '"Markersize',5)

plot ([xft2 xf], [yft2 y£f],"':x")

plot ([xft2 xk2 xf], [vft2 yk2 yf],'r")

[

% leg 3
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xk3=xf+11f3*sin(thf3(i)+thlf3(i));
yk3=yf-11f3*cos (thf3 (i) +thlf3(i));
xft3=xk3+12f3 (i) *sin(thf3 (i) +th2f3(i));
yEft3=yk3-12f3 (1) *cos (thf3 (i) +th2£f3(i));
plot (xf,yf, 'co', '"Markersize',5)

i
i

plot ([xft3 xf], [yft3 yf]l,':c")
plot ([xft3 xk3 xf], [yft3 yk3 yfl,'c'")
% leg 4

xkd=xh+11h4*sin (thh4 (i)+thlh4 (i));
ykd=yh-11h4*cos (thh4 (i) +thlh4(i));
xftd=xk4+12h4 (i) *sin (thh4 (i) +th2h4 (i)) ;
yftd=yk4-12h4d (i) *cos (thhd (i) +th2hd (i) ) ;
plot (xh,yh, 'mo', '"Markersize',5)

plot ([xft4 xh]l, [yft4d vyh],':m")

plot ([xftd4 xk4 xh], [yftd yk4d yh],'m")

o)

% Plot ground

plot ([x(i)-1 x(i)+1]1,[yg ygl,'Color',[0.5 0.5 0.5], 'LinewWidth',1)
% Moving axis

axis equal

axis([x(i)-1 x(i)+1 yg-0.1 yg+1.4])

% Plot Ground Force Vector

if cl==
xfl=xft1+0.2*fxi (i) /mafyi;
yfl=yftl1+0.2*fyi (i) /mafyi;
arrow ([xftl,yftl], [xfl,yfl])

end

if c2==
xf2=xft2+0.2*fxi (i) /mafyi;
yf2=yft2+0.2*fyi (i) /mafyi;
arrow ([xft2,yft2], [xf2,yf2])

end

if c3==
xf3=xft3+0.2*fxi (i) /mafyi;
yE3=yft3+0.2*fyi (i) /mafyi;
arrow ([xft3,yft3], [x£f3,y£3])

end

if cd==
xfd=xft4+0.2*fxi (1) /mafyi;
yfad=yftd4+0.2*fyi (i) /mafyi;
arrow ([xft4,yftd], [xf4,yEd])

end

B b

P b

drawnow
hold off

[

% Break i1if Stop button is pressed
elseif get(stop, 'value')==1
break
end
S hold off
end

o)

% Turn the stop button into close button
set (stop, 'style', 'pushbutton', 'string', 'close', 'callback', 'close(gcf) ') ;
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PlotTorqueNRadPerSec.m

% Plots joint torques and leg joint angular velocities with time for all

% legs and calculates and displays rms torques.

Max values per Jjoint are

% also calculated and displayed. All variables are expressed as a percenta-

% ge of the corresponding constraint.

% torque ji“*=torque ji/taujmaxst
% thjdi*=thjdi/thjdmax

T e short term torques ----—--—---—--———-———————————— g

figure (3)

plot (£t/T*100, torquelhl/taulmaxst)
hold on

grid on

plot (£t/T*100, torque2hl/tau2maxst)
plot (£t/T*100, torquelhd/taulmaxst)
plot (£t/T*100, torque2h4d/tau2maxst)

title('Torques On Hind Leg Joints')

Run after PostProcessing.m

[

legend('torque 1 , 17*','torque 2 , 17*','torque 1 , 47*','torque 2 , 47*')

xlabel ('time[% stride]'")
hold off

figure (4)

plot (£/T*100, torquelf2/taulmaxst)
hold on

grid on

plot (£t/T*100,torque2f2/tau2maxst)
plot (£/T*100, torquelf3/taulmaxst)
plot (£/T*100, torque2f3/tau2maxst)

title('Torques On Front Leg Joints')
legend('torque 1 , 27*', 'torque 2 , 27*','torque 1 , 3"*','torque 2 , 37*')

xlabel ('time[% stride]'")
hold off

o)

figure (5)

plot (£/T*100, thldhl/thldmax)
hold on

grid on

plot (£/T*100, th2dhl/th2dmax)
plot (£t/T*100,thldh4/thldmax)
plot (£t/T*100,th2dh4/th2dmax)

title('Angular velocities On Hind Leg Joints"')
legend('thd 1 , 17*','thd 2 , 17*','thd 1 , 47*','thd 2 , 47*")

xlabel ("time[% stride]')
hold off

figure (6)

plot (£t/T*100,thldf2/thldmax)
hold on

grid on

plot (t/T*100, th2df2/th2dmax)
plot (t/T*100,thldf3/thldmax)
plot (t/T*100,th2df3/th2dmax)

title('Angular velocities On Front Leg Joints')
legend('thd 1 , 27*','thd 2 , 27*',"thd 1 , 37"*','thd 2 , 37*")

xlabel ('time[% stride]')

T angular velocities --------------—--————-——-————— g
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/taulmaxct;
/taul2maxct;
/taulmaxct;
/tau2maxct;
/taulmaxct;
/tau2maxct;
indl4=rms (torquelhd) /taulmaxct;
ind24=rms (torque2hd) /tauZmaxct;

indll=rms
ind21l=rms
indl2=rms
ind22=rms
indl3=rms
ind23=rms

torquelhl
torque2hl
torquelf2
torque2f2
torquelf3
torque2f3

~ o~~~ o~~~ —~
—_— — — — — — — —

g max values per joint ---—---------—--——-———————— g

mxthdhip=max (abs ([thldhl;thldf2;thldf3;thldh4]))/thldmax
mxthdkn=max (abs ([th2dhl; th2df2;th2df3;th2dh4])) /th2dmax
mxsttauhip=max (abs ([torquelhl;torquelf2;torquelf3;torquelhd]))/taulmaxst
mxsttaukn=max (abs ([torque2hl; torque2f2;torque2f3;torque2hd])) /tau2maxst

mxcttauhip=max ([rms (torquelhl) ; rms (torquelf?2) ;rms (torquelf3) ;...
rms (torquelhd) ]) /taulmaxct

mxcttaukn=max ([rms (torque2hl) ;rms (torque2f2) ; rms (torque2f3) ;...
rms (torque2hd) ]) /tauZmaxct

]
T PlotStress.m ———-———-———-———-—————————————————- %

% Displays in graphs the absolute stresses exerted on the tubular leg
% segments and compares them to the strength of the material.

A=pi* (dout”2-din"2)/4;
strength (1:500)=200;

e LEG 1 —————mm oo %
%$=-- link 2 ---%
figure (7)

subplot(1,2,2)

ft21=fx(1:500) /2.*cos (th(1:500)+th2h1 (1:500))+fy(1:500)/2.*...
sin(th(1:500)+th2h1(1:500)) ;

f121=fx(1:500)/2.*sin(th(1:500)+th2h1 (1:500))-fy(1:500)/2.*...
cos (th(1:500)+th2h1(1:500)) ;

M21=£ft21.*12h1(1:500) ;

I21=pi* (dout”~4-din"4) /64;

sb21=M21/I21*dout/2/107%6;

sc21=f121/A/10"6;

ss21=ft21/A/10"6;

plot (t(1:500),abs(sb21))

hold on

grid on

plot (t(1:500),abs(sc2l))

plot (t(1:500),abs(ss21))

plot (t(1:500),strength, '--")

139/142



legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', '"best')
xlabel ('time [s]'")

ylabel ('stress [MPa]'")

ylim([0,220])

title('HL Leg, Segment 2'")

hold off

%$=-- link 1 ---%
subplot(1,2,1)
ftl1l=fx(1:500)/2.*cos (th(1:500
sin(th(1:500)+th1hl1(1:500)
£f111=fx(1:500)/2.*sin(th(1:500
cos (th(1:500)+thlhl (1:500)
M11=ftll.*11hl;
Ill=pi* (dout”~4-din"4) /64;
sb11=M11/I11*dout/2/10"6;
scll=f111/A/10"6;
ssll=ftl1/A/10"6;
plot (t(1:500),abs (sbll))
hold on
grid on
plot (t(1:500),abs(scll))
plot (t(1:500),abs(ssll))
plot(t(1:500),strength, '--")
(
('

+th1h1(1:500))+fy(1:500)/2.*...

thlhl(l:500))—fy(l:500)/2.*...

;

—_ — — —

legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', '"best')
xlabel ('time [s]'")

ylabel ('stress [MPa]'")

ylim([0,220])

title('HL Leg, Segment 1'")

hold off

$-——- link 2 ---%
figure (8)
subplot(1,2,2)
ft22=fx (501:1000) /2.*cos (th(501:1000)+th2f2(501:1000))+fy(501:1000)/2.*...
sin(th (501:1000)+th2f2(501:1000))
£122=fx(501:1000) /2.*sin(th (501:1000)+th2£2(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th2£2(501:1000))
M22=£ft22.*12£f2(501:1000) ;
I22=pi* (dout”~4-din"4) /64;
sb22=M22/122*dout/2/10"6;
sc22=f122/A/1076;
ss822=ft22/A/10"6;
plot (£t (501:1000),abs (sb22))
hold on
grid on
plot (£t (501:1000),abs(sc22))
plot (£t (501:1000),abs(ss22))
plot (t(501:1000),strength, '--")
(
('

’

legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', "best')
xlabel ('time [s]'")

ylabel ('stress [MPa]')

ylim([0,220])

title('FL Leg, Segment 2'")

hold off

$--- link 1 ---%

subplot(1,2,1)

ft12=fx (501:1000) /2.*cos (th(501:1000)+th1f2(501:1000))+fy(501:1000)/2.*...
sin(th (501:1000)+th1£f2(501:1000)) ;
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£112=fx (501:1000) /2.*sin(th(501:1000)+th1£f2(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th1£f2(501:1000)) ;

M12=ftl12.*11£f2;

I12=pi* (dout”~4-din"4) /64;

sb12=M12/I12*dout/2/10%6;

scl2=f112/A/10"6;

ssl1l2=ftl12/A/1076;

plot (£t (501:1000),abs (sbl2))

hold on

grid on

plot (£t (501:1000),abs(scl?2))

plot (£t (501:1000),abs(ssl2))

plot (£t (501:1000),strength, '--")

legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', '"best')
xlabel ('time [s]'")

ylabel ('stress [MPa]')
ylim([0,220])

title('FL Leg, Segment 1'")
hold off

%$-—--— link 2 ---%

figure (9)

subplot(1,2,2)

ft23=fx(1:500) /2.*cos (th(1:500)+th2£3(1:500))+fy(1:500)/2.*...
sin(th(1:500)+th2£3(1:500)) ;

£123=fx(1:500) /2.*sin(th(1:500)+th2£3(1:500))-fy(1:500)/2.*...
cos (th(1:500)+th2f3(1:500)) ;

M23=£ft23.*12£3(1:500) ;

I23=pi* (dout”4-din"4) /64;

sb23=M23/I23*dout/2/10"%6;

sc23=f123/A/10"6;

ss23=ft23/A/1076;

plot (t(1:500),abs(sb23))

hold on

grid on

plot (t(1:500),abs(sc23))

plot (t(1:500),abs(ss23))

plot(t(1:500),strength, '--")

legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', '"best')
xlabel ('time [s]'")

ylabel ('stress [MPa]')
y1im([0,2201])

title('FR Leg, Segment 2'")
hold off

$——-- link 1 ---%

subplot(1l,2,1)

ft13=fx(1:500)/2.*cos (th(1:500)+th1£3(1:500))+fy(1:500)/2.*...

sin(th(1:500)+thl1£3(1:500)) ;

f113=fx(1:500)/2.*sin(th(1:500)+th1f3(1:500))-fy(1:500)/2.*...
cos (th(1:500)+thl1£3(1:500)) ;

M13=ft13.*11£3;

I13=pi* (dout”4-din"4) /64;

sb13=M13/I13*dout/2/10%6;

scl3=f113/A/10"6;

ssl13=ft13/A/10"6;

plot (t(1:500),abs(sbl3))

hold on

grid on

plot (t(1:500),abs(scl3))
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plot (t(1:500),abs(ssl1l3))

plot (t(1:500),strength, '--")

legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', "best')
xlabel ('time [s]'")

ylabel ('stress [MPal')
ylim([0,220])
title('FR Leg, Segment 1'")

hold off
e LEG 4 —————=—mmmmmmmmmmmmmmm e %
§--- link 2 ---%

figure (10)

subplot (1,2,2)

ft24=fx(501:1000)/2.*cos (th(501:1000)+th2h4 (501:1000))+fy(501:1000)/2.*...
sin(th(501:1000)+th2h4 (501:1000)) ;

£124=fx(501:1000) /2.*sin(th (501:1000)+th2h4 (501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th2h4 (501:1000)) ;

M24=ft24.*12h4 (501:1000) ;

I24=pi* (dout”~4-din"4) /64;

sb24=M24/124*dout/2/10"6;

sc24=f124/A/10"6;

ss24=ft24/A/10"6;

plot (£t (501:1000),abs (sb24))

’

hold on

grid on

plot (£ (501:1000),abs (sc24))

plot (£ (501:1000),abs (ss24))

plot (t(501:1000),strength, '--")

legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', "best')
xlabel ('time [s]'")

ylabel ('stress [MPa]')
y1lim([0,220])

title('HR Leg, Segment 2'")
hold off

%$--- link 1 ---%

subplot(1,2,1)

ft14=£fx(501:1000)/2.*cos (th(501:1000)+th1h4 (501:1000))+£fy(501:1000)/2.*...
sin(th (501:1000)+th1h4 (501:1000)) ;

£f114=fx (501:1000) /2.*sin(th(501:1000)+th1h4(501:1000))-fy(501:1000)/2.*...
cos (th(501:1000)+th1h4(501:1000)) ;

M14=ftl1l4.*11h4;

Il4=pi* (dout”~4-din"4) /64;

sb14=M14/I114*dout/2/10"6;

scl4=f114/A/10"6;

ssl4=ft14/A/1076;

plot (£t (501:1000),abs (sbl4))

hold on

grid on

plot (£t (501:1000),abs(scl4))

plot (£t (501:1000),abs(ssl4))

plot (t(501:1000),strength, '--")

legend ('bending', 'compresive', 'shear', 'bending strength', 'Location', 'best')

xlabel ('time [s]'")

ylabel ('stress [MPal]'")

ylim([0,220])

title('HR Leg, Segment 1'")

hold off
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