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Abstract 

Quadruped animals have been on the side of man for thousands of years, providing various valuable 

services, such as fast and reliable transportation through difficult terrain, tracking and rescuing victims 

of natural disasters or protection of man and his property. Quadrupeds move with great agility in 

domestic or rugged terrain, exploiting isolated footholds to ensure stability of movement. In the last 

decade, the impressive evolution in the field of articulated robots has lead researchers to recognize the 

potential benefits of constructing quadruped robots; robots that could offer many of the services 

quadruped animals do and even more. Although wheeled or tracked systems are alternatives widely 

used for terrestrial locomotion, their inability to ensure traction in difficult terrain (steep inclinations or 

loose grounds), has intensified the interest of researchers in their legged counterparts. 

To this day, many impressive quadruped robots have been constructed; robots that can run fast, 

jump over obstacles, carry heavy loads, climb stairs or jump over fences, walk on ice. These 

achievements depend strongly on empirical data gained from systematic hardware experimentation 

and meticulous control strategies. Nevertheless, as the nature of the quadruped locomotion is highly 

challenging, it still remains unclear how the morphology of the robot - and expecially that of the legs - 

can affect its performance. For this reason, many of the existing leg design approaches are not 

systematic. Many research teams mimic the leg morphologies found in nature. However, the actuation 

systems of animals and the tasks they undertake are much different than these of the robots. Other 

teams base their design efforts on kinematic performance criteria. Quadrupedal locomotion however is 

a highly dynamic phenomenon, with alternating load phases and significant accelerations required from 

the actuating systems. A few teams use sophisticated robot descriptions and control strategies, but 

their approaches are so complicated that only a few leg design alternatives can be evaluated. 

In this thesis, a systematic methodology is devised aiming to determine the proper leg attributes 

that maximize the running performance of the NTUA Laelaps quadruped robot. The proposed method 

takes into account the robot’s mass and inertia, the desired leg architecture and leg material properties, 

the available actuation system, certain terrain properties and the gait in which the robot shall move. 

Through a three stage parametric search, the optimal leg morphology is found (length of leg segments 

and leg compliance) for achieving maximum velocity of locomotion, subjected to actuation and material 

strength constraints. For the optimal leg morphology, control indications for achieving maximum running 

velocity are also found, related with the positions of the footfalls, the apex of the robot’s trajectory and 

the stride period. 

The method is applied with alternative gaits and leg joint configurations as inputs and the optimal 

solutions found for each case are compared. The results are validated using models and controller 

independent to the method . For the gait and joint configuration that enhances the running performance 

of the robot further tests are conducted, to determine which of the available motors should be acting on 

which actuated joint. Moreover, the effect of supplementary reduction ratios in the running performance 

of the robot is studied. Finally, a tipover stability criterion is introduced and conditions are found for the 

robot to run in maximum velocity, withstanding terrain perturbations in the frontal plane of movement. 
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Περίληψη 

Τα τετράποδα ζώα βρίσκονται στο πλευρό του ανθρώπου εδώ και χιλιάδες χρόνια, προσφέροντας του 

πολύτιμες υπηρεσίες όπως τη γρήγορη και αξιόπιστη μεταφορά σε δύσκολα εδάφη, τον εντοπισμό και 

διάσωση θυμάτων σε φυσικές καταστροφές ή την προστασία αυτού και της περιουσίας του. Τα 

τετράποδα κινούνται με μεγάλη ευκολία στο φυσικό ή σε ανθρώπινα διαμορφωμένο περιβάλλον, 

εξασφαλίζοντας ευστάθεια στην κίνηση τους μέσω μεμονωμένων πατημάτων. Την τελευταία δεκαετία, 

η εντυπωσιακή πρόοδος στον κλάδο των αρθρωτών ρομπότ, οδήγησε την επιστημονική κοινότητα να 

αναγνωρίσει τα οφέλη που τα τετράποδα ρομπότ δυνητικά μπορούν να προσφέρουν στον άνθρωπο· 

οφέλη πιθανώς πολύ μεγαλύτερα από αυτά που τα ζώα μπορούν να του παρέχουν. Αν και τα 

τροχοφόρα ή ερπυστριοφόρα οχήματα είναι ευρέως χρησιμοποιούμενες εναλλακτικές λύσεις στη 

χερσαία μετακίνηση, η αδυναμία τους να διασφαλίσουν πρόσφυση σε δύσκολο έδαφος (απότομες 

κλίσεις ή σαθρή γεωλογία) εντατικοποίησε το ενδιαφέρον των ερευνητών στα τετράποδα ανάλογα τους. 

Μέχρι σήμερα, πολλά εντυπωσιακά τετράποδα ρομπότ έχουν κατασκευαστεί· ρομπότ τα οποία 

τρέχουν σε υψηλές ταχύτητες, υπερπηδούν εμπόδια, μεταφέρουν βαριά φορτία, σκαρφαλώνουν σε 

σκάλες ή πηδούν πάνω από φράχτες και διατηρούν την ευστάθεια τους στον πάγο. Πολλά από αυτά 

τα κατορθώματα οφείλονται σε εμπειρικά δεδομένα λόγω συστηματικού πειραματισμού και σε 

προσεχτικά σχεδιασμένες στρατηγικές ελέγχου. Παρόλα αυτά, καθώς η τετράποδη κίνηση ενέχει εκ 

φύσεως πολλές προκλήσεις, παραμένει αβέβαιο πώς η μορφολογία του ρομπότ - και ιδιαίτερα των 

ποδιών του - μπορεί να επηρεάσει τις επιδόσεις του. Έτσι, πολλές από τις υπάρχουσες προσεγγίσεις 

σχεδιασμού ποδιών παραμένουν μη συστηματικές. Πολλές ερευνητικές ομάδες μιμούνται τις 

μορφολογίες ποδιών που απαντώνται στη φύση. Ωστόσο, τα ζώα ούτε διαθέτουν τους ίδιους 

επενεργητές με τα ρομπότ, αλλά ούτε και απαραιτήτως καταπιάνονται με τα ίδια καθήκοντα. Άλλες 

ομάδες βασίζουν τις σχεδιαστικές τους προσπάθειες σε κριτήρια κινηματικής, παρά το γεγονός ότι η 

τετράποδη κίνηση είναι εντόνως δυναμική, με απότομες αλλαγές στο φορτίο και υψηλές απαιτήσεις 

επιτάχυνσης στους επενεργητές. Αν και ορισμένες άλλες προσεγγίσεις περιλαμβάνουν περίπλοκα 

μοντέλα ρομπότ και ελεγκτές στη διαδικασία σχεδιασμού, οι προσεγγίσεις τους είναι τόσο σύνθετες που 

επιτρέπουν τη σύγκριση και αξιολόγιση περιορισμένων εναλλακτικών μορφολογιών ποδιών. 

Στην παρούσα διπλωματική εργασία, προτείνεται μια συστηματική μεθοδολογία σχεδιασμού 

ποδιών τετράποδων ρομπότ, με στόχο την αναγνώριση εκείνων των στοιχείων σχεδιασμού που θα 

βελτιστοποιήσουν την επίδοση τρεξίματος του τετράποδου Λαίλαψ του ΕΜΠ. Η προτεινόμενη μέθοδος 

λαμβάνει υπόψιν τη μάζα και την αδράνεια του ρομπότ, την επιθυμητή δομή του ποδιού και τις ιδιότητες 

των υλικών του, το διαθέσιμο σύστημα επενέργησης, εκτιμώμενες ιδιότητες εδάφους και τoν τύπο 

βαδίσματος με το οποίο το ρομπότ μετακινείται. Μέσω μιας παραμετρικής αναζήτησης τριών σταδίων, 

καθορίζεται η βέλτιστη μορφολογία ποδιών (μήκη τμημάτων ποδιού και ελαστικότητα ποδιού) για 

επίτευξη μέγιστης ταχύτητας κίνησης υπο τους υπάρχοντες περιορισμούς επενέργησης και αντοχής 

υλικών. Για τη βέλτιστη μορφολογία ποδιών, βρίσκονται επιπλέον ενδείξεις ελέγχου, συσχετιζόμενες με 

την τοποθέτηση των ποδιών στο έδαφος, το άνω σημείο της θέσης του σώματος του ρομπότ και τη 

περίοδο δρασκελισμού, ώστε το ρομπότ να τρέχει με τη μέγιστη δυνατή ταχύτητα.  
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Η μέθοδος εφαρμόζεται για διαφορετικά βαδίσματα και διαμορφώσεις αρθρώσεων γονάτου και οι 

βέλτιστες λύσεις για κάθε περίπτωση υποβάλλονται σε σύγκριση. Τα αποτελέσματα επαληθεύονται 

χρησιμοποιώντας μοντέλα και ελεκτή ανεξάρτητα της μεθόδου. Για το βάδισμα και τη διαμόρφωση 

αρθρώσεων που μπορεί να επιτύχει τη μέγιστη ταχύτητα, εξετάζεται επιπλέον σε ποια άρθρωση πρέπει 

να επιδρά ο καθένας από τους διαθέσιμους επενεργητές ώστε να βελτιωθεί περαιτέρω η επίδοση 

τρεξίματος του ρομπότ. Εξετάζεται δε και ο ρόλος της επιπλέον μείωσης στους κινητήρες. Τέλος, 

εισάγοντας ένα κριτήριο ευστάθειας έναντι ανατροπής, αναγνωρίζονται οι συνθήκες ώστε το ρομπότ να 

τρέχει στη μέγιστη ταχύτητα έχoντας τη δυνατότητα να αντισταθεί σε διαταραζές εδάφους στο μετωπιαίο 

επίπεδο κίνησης. 
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j   subscript denoting the j -th joint, where {1,2}j  for the hip and knee joints respectively 

J  Jacobian matrix of the quadruped robot’s system 

k   stiffness of the compliant distal leg segment 

gk   ground stiffness of Hunt - Crossley contact model 

pk   P term gain of P-V controller for trotting 

vk   V term gain of P-V controller for trotting 

K  stiffness matrix of the quadruped robot’s system 

TK   torque constant of a DC motor 

KB   knee pointing backward leg configuration 

KF   knee pointing forward leg configuration 

1l   length of the proximal leg segment of any leg 

20l   free length of the compliant distal leg segment 

2,il   length of the distal compliant leg segment of the i -th leg 

1cml   distance between the hip joint and the CoM of the proximal leg segment 

2,cm il  distance between the knee joint and the CoM of the distal leg segment of the i -th leg 

2 ,h t il  hip to toe distance of the i -th leg 

maxl  maximum hip to toe distance of any leg observed in one stride period T   

lb   (as a subscript) lower bound 

L   Lagrangian  

LISL   long inequally segmented leg 

m   total quadruped robot mass  

1m   mass of the proximal leg segment 

2m  mass of the distal leg segment 

bm   quadruped robot body mass 

1jm   mass of the hip joint 

2jm   mass of the knee joint 

1lm   mass of the proximal tubular leg segment 

2lm  mass of the distal tubular leg segment 

sm   spring mass 

tm   toe mass 

M  mass matrix of the quadruped robot’s system 

n   n -th discrete time step, [0, ]nt T , [1, ]n N   

tn   transmission ratio of the gearbox of a DC motor 
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jn   transmission ratio of the gearbox of a DC motor actuating on the j -th leg joint 

,j en   supplementary transmission ratio at the exit of the motor’s gearbox 

N  number of discrete time instants in the duration of a stride period T   

O   the origin (0,0)   

P   power from actuation torques and external forces pumped into the quadruped robot’s system 

thP   thermal losses power on the field windings of a DC motor 

q  quadruped robot state vector 

Cq  vector of CoM position and pitch, [ ]C x y q  

iq  vector of joint variables of the i -th leg 

ir  vector connecting the CoM position ( , )x y  with the position of the toe during stance phase  

fs  safety factor 

,c uS  ultimate compressive strength of the leg segments’ material 

SESL  short equally segmented leg 

SLIP   spring loaded inverted pendulum 

t   time 

,mf it  time instant of midflight of the i -th leg 

,td it  time instant of touch down of the i -th leg 

, %td it  time instant of touch down of the i -th leg, expressed as a percentage of the stride period T   

,to it  time instant of take off of the i -th leg 

, %to it  time instant of take off of the i -th leg, expressed as a percentage of the stride period T  

T   stride period 

eT   period in which the elliptical toe trajectory is traversed 

nT   free oscillation period of a system consisting of two springs in parallel and a mass 

LT   kinetic energy of the quadruped robot 

eu  threshold velocity for which toe to ground slippage occurs 

su  Stribeck velocity 

ub   (as a subscript) upper bound 

LU   potential energy of the quadruped robot 

v   mean quadruped robot velocity during the stride 

w   half hip separation distance in the frontal plane 

x   abscissa of the robot body CoM 

1,ix   abscissa of the CoM of the proximal leg segment 

2,ix   abscissa of the CoM of the distal leg segment 

ix   abscissa of the footfall of the i -th leg 

,i esx   optimal footfall abscissas at the end of the exhaustive search of Stage 1 

,i esx  optimal footfall abscissas at the end of the interior point optimization scheme of Stage 1 

,h ix   abscissa of the hip joint of the i -th leg 

,hr ix   relative hip to toe abscissa of the i -th leg 



 
16/142 

,t ix   abscissa of the toe of the i -th leg 

y   ordinate of the robot body CoM 

1,iy   ordinate of the CoM of the proximal leg segment 

2,iy   ordinate of the CoM of the distal leg segment 

,h iy  ordinate of the hip joint of the i -th leg 

,hr iy   relative hip to toe ordinate of the i -th leg 

iy   ordinate of the footfall of the i -th leg, ordinate of the ground level 

,t iy   ordinate of the toe of the i -th leg 
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1 Introduction 

1.1 Motivation 

During the last years, research in the field of terrestrial locomotion has focused in the opportunities 

offered by legged robots, mainly for two reasons. On one hand, legged robots pose great advantages 

in comparison to wheeled or tracked systems [1]. While the latter only have access to less than half of 

the Earth’s land, legged systems can also adapt to uneven or rugged terrain, by utilizing active 

suspension and isolated footholds, with minimum impact to soil or vegetation, much as most animals 

do. Having that in mind, legged robots can come in use in many of man’s endeavors, such as in rescue 

or exploration missions in hazardous or until now inaccessible areas. On the other hand, since Raibert 

built the Quadruped in 1990 - one of the first robots that could efficiently move and perform gaits similar 

to quadruped mammals - it became clear that complex legged locomotion was far from unachievable 

[2]. Raibert’s Quadruped opened the way for the creation of many dynamically stable legged robots that 

appeared next, by providing important insights for design, modeling and control. 

Since then, a combination of animal studies with breakthroughs in design and control has led to 

an overall progress in legged locomotion. Recent impressive results, both in academia and industry, 

showed that legged robots can run really fast (Boston Dynamics Cheetah reached an in lab record 

velocity of approximately 13 m/s, [3]), perform agile jumps while running (The MIT Cheetah II can jump 

over obstacles up to 80% of its leg length while running at 2.5 m/s, [4]), turn and perform complex gaits 

on inclined terrain, or maintain stability while on ice (Boston Dynamics Spot and WildCat, [5] - [6]), cross 

rugged terrain and perform stunts, (RHEX can perform flips, operate on both of its sides, climb stairs, 

jump across gaps and is waterproof [7]), climb walls and trees (RiSE Climbing Robot [8]). 

Despite the great progress in legged locomotion, many design issues still remain to be addressed, 

that concern stability, energy efficiency and high performance. While several legged robots, have 

achieved energy efficiency comparable to this of animals (iSprawl [9], MIT Cheetah robot [10]), their 

performance is still inferior when compared with the animals’ incredible capabilities. For instance, no 

existing legged robot can compete the cheetah’s (Acinonyx jubatus) acceleration or maximum speed 

(29 m/s), or the mountain goat’s (Oreamnos americanus) and Nubian ibex’s (Capra nubiana) agility in 

climbing steep rocky mountain sides.  

The ever existing limitations of hardware in comparison to biology (control, actuation, materials), 

motivates the robotics community to continue searching towards smart design solutions that can 

enhance further quadrupedal locomotion. One of the most challenging structural parts for quadruped 

robots has proved to be the mean of interaction with the tranversed terrain, i. e. the leg. During 

quadrupedal locomotion, legs have to consistently endure shock loads from the ground and are the 

means through which the actuators provide energy to the system. Intrigued by the challenging nature 

of legs, in the current thesis an appropriate leg design is sought, that can enhance the  performance of 

the quadruped platform NTUA Laelaps in one of its most basic functions, running. Ιn more detail, an 

optimization - based method is proposed that given the running task and the actuation constraints, 
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provides as outputs optimal dimensions and compliance for the leg, so that the robot can reach 

maximum horizontal velocity. 

1.2 Literature review 

Many efforts have been made in the direction of leg design for quadruped robots. The main points of 

interest in designing robot legs seem to be leg segmentation, leg segment proportions, leg 

configuration, leg compliance scheme, actuation and construction materials. In the following review, 

representative examples of surveys, methods, design choices and implementations on the above 

issues are presented, in order to understand former work done, draw design principles and suggest 

improvements. 

The term leg segmentation refers to the number of joints and links from which the leg is composed, 

see Figure 1-1. The simplest case is that of the prismatic leg. This leg consists of an actuated rotary 

hip joint and a flexible prismatic joint. Such legs where utilized in early quadruped robots, as the 

Quadruped and the Scout II [11] robots, see Figure 1-2. While these legs pose great advantages when 

it comes to energy efficiency as they exploit passive dynamics, [12], [13], their main disadvantage is 

their difficulty in creating adequate toe to ground clearance, especially at high speeds. An alternative to 

prismatic legs is the segmented or the articulated leg. Two-segment legs are employed by most 

quadruped robots of Boston Dynamics, and also by StarlETH, [14] and HyQ, [15] quadruped robots, 

see Figure 1-3. As described in [16], two-segment legs in comparison with prismatic compliant legs 

provide self-stable running for a greater range of forward running velocities and promote stability against 

perturbations in the angle of attack of the leg and the apex height of the robot. Witte et. al. [17]- [18] 

suggested that for a three-segment leg model applied in small mammals, the most proximal and distal 

segments are held nearly in parallel most of the time during the contact of the leg with the ground, a 

behavior described as “pantograph behavior”. Inspired maybe by similar works in biology, MIT Cheetah 

II and the Cheetah Cub [19] robots have three-segment “pantograph” legs. Lately, five bar legs have 

appeared as in the case of the Super Mini Cheetah [20], ATRIAS [21] and MiniTaur [22] robots. As 

described in [23], five bar legs, driven by two motors in parallel, pose an advantage when it comes to 

force application, because both motors contribute in retraction or protraction of the leg, exerting 

opposing torques. On the other hand, to swing the leg when the robot walks or runs, both motors move 

in the same direction, causing one to produce positive and the other negative work, with energy cycling 

between two motors. As a result, energy is repeatedly lost in the transmissions. In a comparison 

conducted in [22], it was shown that symmetric five bar legs have improved performance when it comes 

to manipulability measures, [24]. 
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Figure 1-1. Alternative quadruped robot legs. 

 
 

 

Figure 1-2. Left to right, the Quadruped, [25] and Scout II, [26] quadruped robots. 

 
 

 

Figure 1-3. Left to right, the StarlETH, [14] and HyQ, [15] quadruped robots. 
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Leg proportioning refers to the relative length of the leg segments with respect to the total leg 

length. Many teams have chosen leg lengths and their proportions based on biological data. The 

proportions of the Cheetah Cub robot leg were taken similar to those of small cat like animals (felidae), 

from data presented in [27]. The HyQ team decided on their robot’s leg length, based on observations 

from dog and horse breeders, [28]. To their words in [15], [comparing body length with leg length], “A 

square shape seems to be a good compromise between agility, endurance and strength to carry loads.” 

The proportions of the leg were taken equal for the sake of simplicity. The leg segment lengths of 

ScarlETH, the monopod predecessor of StarlETH quadruped, were chosen to be equal. The only 

explanation found in published work for this choice is that, “With segment lengths of 0.2 m the final 

prototype is compact, lightweight and can thus be handled safely by a single person, yet is strong 

enough to carry various sensor units.“, [29] and also referring to StarlETH this time, “With a body length 

of about 0.5m, segment lengths of 0.2m, and a total weight of 23kg, this robot has roughly the overall 

dimension of a medium-sized dog”, [14]. Other teams have devised different methods to determine the 

leg length of their quadruped robot. Chatzakos investigated the role of leg length (prismatic legs) in the 

specific resistance of locomotion (a metric of consumed power for running in a particular speed) for the 

bounding gait, [30]. The MIT Cheetah team, decided upon fixed leg proportions, but adjusted the 

shoulder height based on a force map method, in which the leg was decoupled from the body, [31]. The 

proportions of the five bar leg of the Super Mini Cheetah, where selected taking into account the desired 

leg workspace and a Jacobean based estimation of the necessary ground forces for running, [20]. The 

proportions and leg length of the MiniTaur, were chosen to optimize proprioceptive sensitivity, force 

production and thermal cost of force (Jacobian based manipulability metrics), in a wide portion of a 

selected workspace. Also in this case, the leg was optimized decoupled from the body.  

With the term leg configuration, we refer mainly to the orientation of the leg segments in the leg 

chain, see Figure 1-4. Some works have been published on optimum leg configuration, mainly for two-

segment and three-segment legs. For trotting robots with two-segment legs, it was suggested that the 

orientation of the knee joints of the front and the back legs inwards improves self-stability by reducing 

pitching moments [32], [33]. With the consensus used, the knee joint is the rotary joint connecting the 

proximal to the body leg segment, with the distal to the body leg segment, for the two-segment leg.  

Furthermore, in [34] again for a trotting gait, it was observed that centrosymmetric joint configurations 

(both knee joints pointing inward or outward) are beneficial for slippery terrain and can improve stability. 

Apart from reduced pitching angles, elbow and knee joint inwards orientation, is considered to result in 

smaller roll angles during trotting, [35]. In [36] knee forward and knee backward configurations (pointing 

backward or forward with respect to the direction of the motion) of a free falling two-segment planar leg 

model were compared, with criterion the impact losses during collision with the ground. The paper 

concluded in favor of the knee backward configuration. Based on findings from [33], [34] the HyQ team 

decided on a knee inward or X configuration (knee of hind leg pointing forward, knee of front leg pointing 

backward) as in Figure 1-3. The StarlETH team on the other hand, due to lack of experimental evidence 

was not convinced on the validity and generality of the above results and conclusions, as to their words 
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“To our best knowledge, experimental studies with a sophisticated platform are still missing”, [14]. That 

led the team to decide upon a modular leg design, so that every leg can be placed in any of the two 

possible configurations. For the three-segment leg model, the configuration is based on biological data 

collected utilizing cineradiography on therian mammals. A detailed review is presented in [37]. While 

the legs of therian mammals consist of many segments and joints, it is suggested that only three 

segments per leg contribute mainly to the kinematics of the forward progression, the thigh, shank and 

a third element that consists of the foot and toes for the hind leg and the scapula, upper arm and a third 

segment that consists of the lower arm and the hand for the front leg, see Figure 1-5. The Cheetah Cub 

and MIT Cheetah II have legs with the shoulder/knee joint pointing forward and the ankle/elbow joint 

pointing backward, see Figure 1-6. Finally, to the best of our best knowledge, five bar leg configurations 

are mainly found in a joint outwards configuration to avoid collision while the legs are compressed, see 

Figure 1-7.  

two-segment leg
knee forward

two-segment leg
knee backward

“pantograph” leg
popular leg

configuration

direction
of motion

“pantograph” leg
alternative leg
configuration  

Figure 1-4. Leg configurations of the two-segment and the “pantograph” leg. 

 

 

Figure 1-5. Representative leg configuration for therian mammals. Image originally shown in 
[37].  
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Figure 1-6. From left to right, the Cheetah Cub [38] and MIT Cheetah II [39] quadruped robots.  

 

 

Figure 1-7. From left to right, Super Mini Cheetah, [40] and MiniTaur, [41] robots. 

Early studies in legged locomotion [42] - [43], revealed the elastic behavior of legs. As every leg 

contacts the ground, it gets compressed and decompressed similar to simple spring mass oscillators. 

Today, the issue of elasticity/compliance in legs is dealt mainly with two different approaches; either by 

utilizing passive elements (springs) in the leg structure or by active compliance control of the actuators, 

[44]. The first approach poses the advantage that part of the necessary energy for locomotion, is stored 

as elastic potential energy in the system and is recirculated as passive elements compress and 

decompress, thus reducing the energy requirements of actuation. Furthermore, passive elements also 

act as shock absorbers during leg collision with the ground, protecting the actuation and transmission 

mechanisms. On the downside, passive elements introduce passive dynamics and low-frequency 

resonant modes into the system and therefore have to be tuned for a certain task. The second approach 

overcomes this obstacle, as the damping and the stiffness of the legs joints are determined by software. 

As a result, the compliance of the leg can be tuned for different tasks, restricted only by the actuators 

specifications. Nevertheless, the energy consumption in this approach is increased, as the necessary 

energy for the locomotive task is provided exclusively by the actuators. Moreover, it is reported that 

active compliance control in high speeds can only be achieved with actuators with low transmission 

ratios, as high transmission ratios increase the actuators passive impedance and backdriveability is 

reduced [45]. The HyQ, MIT Cheetah II, Super Mini Cheetah and MiniTaur quadruped robots have 
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actively compliant legs. Quadruped robots such as Quadruped, Scout II, StarlETH and Cheetah Cub 

on the other hand utilize passive elements in their leg structure. 

The most common approaches in the application of passive compliance, are series elastic 

actuation (SEA) and parallel elastic actuation (PEA), see Figure 1-8. Actuation in series with a spring 

offers the following advantages: it increases actuation shock tolerance, provides torque-force tracking 

capabilities and reduces mechanical impedance, making possible to achieve force control on actuators 

with sifnificant transmission ratios, and absorbs power during stance phase, releasing it later in the 

stride cycle, [46]. Actuator inertia is suggested to not add to the joint inertia during collision (elastic 

energy is stored at the elastic element in series instead), and thus does not contribute to the collision 

losses. Nevertheless, SEA affects the response of the leg. High leg stiffness on low robot speeds, 

produces high roll and pitch movements that destabilize the quadruped, while low leg stiffness 

combined with high speeds causes legs to collapse, [19]. This creates the need for variable stiffness 

SEAs, which are rather complex and massive [47] - [48] for use on electrically actuated legs, where 

inertia should be reduced as possible. Solutions have been sought in nonlinear rubber springs, but 

while they reduce bulkiness, they introduce significant hysteresis, [49]. Promising also seems the use 

of revolute spiral leaf springs as series elastic feet [50], although they need position regulation and are 

rather heavy. Springs in parallel with actuation (PEA) are mainly used to cover actuation insufficiencies, 

as spring torques add to the actuator torques. However, the springs counteract actuators during spring 

excitation. Solutions have been sought by introducing mechanisms that unlatch the springs in parallel, 

in cases where they counteract actuation work, [51]. Folkertsma et al, examining the impact that parallel 

elastic elements would have on the MIT Cheetah leg, showed through simulation that they could lead 

to overall power reduction up to 50%, [52]. A comparison conducted between SEA and PEA applied to 

an electrically actuated monopod hopper [53], showed that the monopod hopping with SEA, needed 

less positive actuator work and had smaller electrical losses than one hopping with PEA.  

base

Actuation

actuated link

base

Actuation

actuated link

SEAPEA  

Figure 1-8. Abstract depiction of Parallel Elastic Actuation (PEA) and Series Elastic 
Actuation (SEA). 
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Apart from compliance, actuation is also a matter of great interest. The main approaches for 

actuating quadruped robots are hydraulic and electric actuation. Among the advantages of the electric 

motors in comparison with hydraulic actuators are their ease and accuracy of control, their low cost and 

the variety of available sizes and specifications, [15]. Their main drawback is presented to be the small 

torque they can produce in comparison with their size and weight, a trait that makes necessary the 

introduction of high reduction ratios through gearboxes. Reduction gears introduce undesired friction 

and increase the actuators’ passive impedance that makes the motors non-backdrivable. State of the 

art solutions have been proposed by the MIT Cheetah and the ANYmal teams. The MIT Cheetah team 

studied and optimized the role of the gap radius in electromagnetic motors resulting in the construction 

of a low transmission high torque motor, [45]. The ANYmal team based on the actuation architecture of 

StarlETH, created the ANYdrive compact series elastic motors, [54]. On the other hand, as described 

in [54], hydraulic actuators have by nature high power and torque density and show great robustness 

against impulsive loads. In the case of autonomous robots, it is important that power supply and 

actuators can be compactly mounted on the robot. Electric motors can be supplied with power by 

batteries, while the hydraulic actuators need a pump to provide pressure to the hydraulic oil and an 

electric motor/battery setup or an internal combustion engine/fuel tank setup to supply the necessary 

power to the pump. As a result, for hydraulically actuated robots scalability is a great challenge. To this 

day, compact hydraulically actuated  quadruped robots, as Spot or WildCat, are rather large, heavy and 

noisy [55] - [56]. The rest hydraulically actuated robots, as HyQ and its successor HyQ2Max [57] rely 

on off board supply. 

Finally, the materials used in the construction of robotic legs are presented. Robotic legs should 

be lightweight so that fast swinging can be achieved. The inertial properties of the leg are also 

associated with impact losses during collision with the ground, as suggested in [10], [58]. On the other 

hand, the materials used in the construction of the leg should be strong enough to withstand the 

impulsive forces of ground contact, [59]. To deal with the trade-off of high strength and low mass/inertia 

various materials are being used. The legs of the StarlETH quadruped are made from high tensile 

aluminum, [14]. The ANYmal robot has legs made from carbon fiber and aluminum, [54]. Carbon fiber 

tubes were used in the legs of the ATRIAS robot, [23]. The legs of MIT Cheetah were constructed by a 

custom made composite material, consisting of a polyurethate foam core and a polyurethane casting 

resin shell, [60]. HyQ and HyQ2Max legs were constructed by aerospace type aluminium and steel 

alloys, [15], [57]. In smaller robots, such as Super Mini Cheetah, where strength requirements are not 

so strict, 3D printed ABS is used, [20]. 

1.3 Thesis Outline 

In the following chapters, the approach adopted in this thesis regarding the appropriate leg design for 

high speed quadruped robots is presented. Along with the first introductory chapter, where the 

motivation of this work and previous work is discussed, the thesis is structured in six chapters.  
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In the second chapter, the descriptions used for the modelling of the physical system are 

presented. These refer to the gaits adopted for quadrupedal locomotion, the interaction of the 

quadruped robot with the traversed terrain, the profile of the forces exerted from the ground to the legs, 

the leg architecture and the quadruped robot. Moreover, the constraints incurred from the actuation 

system and the selected leg materials are described. 

In the third chapter, the devised leg design methodology is described. The inputs, the outputs and 

the three parametric search stages of the method are explained. In the first stage the optimal footfalls 

and robot CoM trajectories for the motion of the quadruped are found. The description of the second 

stage follows, where permissible leg morphologies are found that satisfy actuation and leg material 

constraints. The third (outer) stage is explained, a stage where the parametric space of running task 

related parameters is spaned. 

In the fourth chapter, the method is implemented for different gaits and leg configurations. The 

effect of these aspects in the maximum achievable velocity of locomotion is investigated. For the set of 

optimal parameters corresponding to the gait and leg configuration maximizing velocity of motion the 

results are validated, using independent to the method models and controller. 

In the fifth chapter, the method is applied to yield the optimal gait and leg configuration for the 

existing actuation system of the NTUA Laelaps quadruped robot. Cases are studied regarding to which 

motor should act on which joint. A tipover stability criterion is presented and optimal solutions for three 

dimensional stable movement are presented. Furthermore, the role of supplementary motor reduction 

is investigated in the ability of the robot to run faster. 

In the last chapter, the conclusions of the thesis are summarized and future work is suggested. 
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2 Physical system Equation Chapter 2 Section 1 

2.1 Introduction 

In this chapter, the necessary theory to understand the developed method is presented. Firstly, the 

reader becomes familiar with the running task and its properties. Next, since legged locomotion requires 

interaction with the ground, a proper leg - ground force interaction model is proposed. Existing leg 

architectures are compared and a proper conceptual design for the running task is selected. With the 

conceptual leg architecture available, the extensive quadruped robot model is introduced and its 

equations of motion (EoM) are derived. A simplified centroidal dynamics analog of the extensive model 

is also presented. The simplicity introduced from the centroidal dynamics description is necessary for 

optimizing the running task. For this description, necessary conditions for steady state running are 

explained and applied. Closing the chapter, the inverse kinematics relating the quadruped robot center 

of mass (CoM) and the toes of each leg are presented, and the running task is seen from the scope of 

leg joint space. Finally, the actuation constraints are presented and related with the joint space task of 

running.  

2.2 The running task  

The task of quadrupedal locomotion can be approached from two different scopes. The scope of each 

leg and that of the quadruped robot as a system. From the scope of the leg, the locomotion task consists 

of successive stance and flight phases. During the stance phase, the end effector of the leg remains in 

contact with the ground, as the leg pushes the body forward. The flight phase begins when the leg takes 

off from the ground. After take off, the leg shortens creating a clearance necessary to avoid collision 

with the ground and the leg is protracted forward. At the end of the flight phase, the leg once again 

comes into position to attack the ground, see Figure 2-1. Positions 0p   to 4p  correspond to leg touch 

down, midstance, take off, midflight and second touch down. The second touchdown denotes the 

completion of the stride circle. In steady state locomotion, the stride is a periodic phenomenon with 

period, T . The ratio of the time st   a leg is in contact with the ground in a stride (stance phase 

duration) over the stride period is called duty factor ( DF ) of the leg, 

 stDF
T


    (2-1) 

For a multi legged system, the temporal/local sequence in which the legs touch the ground 

determines the chosen gait for locomotion. To visualize the sequence of leg contact, gait graphs are 

drawn that depict the time a leg spends in contact with the ground, over the stride period, see Figure 

2-2. Legs are named with a two letter abbreviation after their Hind-Front and Right-Left position. For 

instance, we refer to the hind left leg with the abbreviation HL. Mammals utilize different gaits for forward 

movement, depending on the species and the velocity of movement, [61]. In small to medium velocities, 

bounding, pacing and trotting gaits are common. For greater speeds, rotary and transverse gallop are 

utilized, [62] - [63]. A more detailed description of various quadrupedal gaits with their spatial/temporal 

properties is provided in [64]. 
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Figure 2-1. Stance and flight phase of a simple prismatic leg.  
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Figure 2-2. (a) Front, hind, left and right leg consensus. (b) to (f) Gait graphs of bounding, 
pacing, trotting, rotary and transverse galloping gaits. 
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Gaits can be further distinguished into statically and dynamically stable, [42]. If during a stable gait, 

there are at least three contact points between the legged system and the ground, then a support 

polygon is created from the points of contact. If the projection of the CoM of the legged system is 

situated into the support polygon then we refer to the gait as statically stable. If the projection of the 

CoM is not situated into the support polygon or no support polygon can be drawn (less than three 

contact points) then we refer to the gait as dynamically stable. 

Legged locomotion is a three dimensional phenomenon, that takes place in the sagittal, transverse 

and frontal plane, see Figure 2-3. In this work though, we will be studying quadrupedal movement 

without turning (no yaw). Furthermore, proper gaits out of the aforementioned can be selected, for which 

the movement in the frontal plate (roll) is insignificant in comparison with the movement in the sagittal 

plane (pitch). For these gaits, the dynamics of the robot’s forward locomotion are much simpler, as they 

are expressed exclusively in the sagittal plane. Such a requirement can be satisfied if during stance 

phase one left and one right leg are in contact with the ground simultaneously, as in the case of the 

bounding and the trotting gaits, see Figure 2-2 (b), (d). In the bounding gait, both front or both hind legs 

are in contact with the ground simultaneously. In the trotting gait, a pair of diagonal legs (HL-FR pair or 

HR-FL pair) are in contact with the ground at the same time. 

As locomotive speed increases, a legged system transits from walking to running. Transition from 

walking to running seems to be coupled with a decrease in DF. It is suggested that walks have a duty 

factor greater than 0.5 per leg, while runs have a duty factor smaller than 0.5 per leg, [64]. As a result, 

there exist phases in running where no leg is in contact with the ground, the so called full flight or ballistic 

phases, see Figure 2-2 (e) and (f). Other researchers have supported that using DF as a criterion for 

transition from walking to running is unsafe, [65]. To their opinion, a safer criterion is the position of the 

CoM of the system at the moment of midstance. If at midstance the CoM is situated at its highest, then 

walking is performed. If, on the other hand, at midstance the CoM is situated at its lowest, then running 

is observed. In this work, running is defined using the midstance CoM position criterion. 

 

Figure 2-3. Sagittal, frontal and transverse planes. 
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2.3 Interaction with the ground 

As explained in the previous section, the locomotive task is a sequence of leg stance and flight phases. 

In this section, we focus on the leg - ground interaction during the stance phase. Every time a leg 

touches the ground, forces are applied from the ground to the leg. The ground forces are manipulated 

by the legged system, in order to support its weight, stabilize its pitching movement and push itself 

forward. 

The ground forces that are of importance for sagittal plane movement are the horizontal force ,x iF  

and the vertical force 
,y iF   exerted to the i -th leg in contact with the ground, for {1,2,3,4}i . Subscript 

1i   corresponds to HL leg, 2i   to FL leg, 3i   to FR leg and, 4i   to HR leg. As contact events 

have very short duration, the nature of the ground forces is impulsive. That is supported from 

experimental data taken from running quadruped mammals, [59], [63] and running quadruped robots, 

[45], [60], [19]. The great applicability of the Spring Loaded Inverted Pendulum (SLIP) model, [42], is 

partly owed to its ability to accurately predict the form and magnitude of the ground forces applied to 

compliant legs. In all these works, the vertical force has a profile similar to a sinusoidal impulse, while 

the horizontal force has a decelerating - accelerating role, see Figure 2-4.  

 

Figure 2-4. Evolution of ground forces with time for a single leg. (a) Measured forces from 
running dogs, [59] (b) measured forces applied on a leg of the MIT Cheetah, [60], (c) forces from 
a SLIP leg based quadruped model, [66]. 

For this reason, the ground forces were modeled in the form of sinusoidal functions. With the 

assumption that ground forces are equally distributed to all legs, the vertical force exerted to the i -th 

leg is described as a sinusoidal function with argument lying in [0, π] (half sine impulse), 

 
, ,max , ,( ) s ( )  iny i y y i y iF t F t     (2-2) 

and the horizontal force as a sinusoidal function with its argument lying in [π, 3π] and two times greater 

circular frequency compared to that of the vertical force, 

 
, ,max , ,

, ,

( ) sin( ),

2

x i x x i x i

x i y i

F t F t 

 

 


  (2-3) 

If the i -th leg touches down at the time instant ,td it  and takes off at ,to it , with the duration of the stance 

being for all legs equal to st , then the phase differences and circular frequencies of the sinusoidal 

ground forces can be found with respect to ,td it , ,to it , st . Applying boundary conditions for the 

horizontal force ,x iF , 
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Solving the system of eqs. (2-4), 
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Boundary conditions are also applied for the vertical force 
,y iF , 
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  (2-7) 

Solving the system of eqs. (2-7), 
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  (2-9) 

Employing the standard Coulomb friction model, for a leg to remain in contact with the ground without 

slipping, (2-10) must hold, where   is the Coulomb friction coefficient. For (2-10) to hold throughout 

the stride period, an upper bound (subscript ub) (2-11) is set for the horizontal force amplitude,  

 
, ,( ) ( )x i y iF t F t   (2-10) 

 ,max ,x x ubF F   (2-11) 

Introducing the parameter ,fxa  inequality (2-11) is expressed in the form of an equation, 

 
,max , , [0,1]x fx x ub fxF a F a    (2-12) 

2.4 Leg architecture 

As it became obvious in Section 1.2, various leg architectures are being used in literature for quadruped 

robots, each posing its own advantages and disadvantages. Before the leg architecture is decided, 

proper requirements should be set for the different parts of the legs: the joints and the links. Since the 

purpose of this work is to enhance the performance of the quadruped robot Laelaps in running, the 

parts of the leg should be strong enough to withstand the impulsive ground forces during stance phase, 

yet lightweight so that the leg inertia remains low and high accelerations can be achieved during leg 

swing in stance phase without much effort from actuation.   

The leg joints are the elements through which the different links of the leg interact. From an abstract 

point of view, joints that are used for the cooperation of two links consist of three parts. One part where 

the first link is secured, a second one where the second link is secured and an intermediate part 

responsible for the non frictional cooperation of the other two parts, usually in the form of a bearing. For 

the three parts of the joint to cooperate without undesired oscillations and friction, they should have 

proper morphological and dimensional precision. If the desired cooperation is established, the materials 

of the cooperating parts should be robust (non-compliant) enough for the quality of the cooperation to 

remain intact after many cycles of use. A class of materials that satisfy these requirements of strength 
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and robustness, can be machined to the necessary precision, but are also lightweight enough for 

application in robotic legs is the aerospace aluminium alloys class. A representative example for this 

class of alloys is the 7075-T6 aluminium alloy, the properties of which are to be used for estimating the 

mass of the joints in this work, see Table 2-1. 

The links of the leg determine the proportions and the total leg length. The links of the legs, apart 

from strong and lightweight, should also be easily interchangeable, so that the results proposed in 

theory and simulation can be tested in hardware without much reconstructing effort. Standardized 

products that meet the above requirements are carbon fiber tubes. Carbon fiber tubes are of low cost 

and available in many different standard sizes and with alternative specifications. Successive tube sizes 

can be used one inside the other to achieve the desired strength. The remaining hollow space on the 

inside can accommodate returning cables from sensors and encoders, leading to compact solutions. 

For all the above reasons, the geometry and properties of carbon tubes are to be used for estimating 

the mass and introduce strength constraints in the models to follow. The strength and density values of 

the carbon fiber tubes of Table 2-1 were experimentally specified, see Appendix A. 

As the joints are the most heavy parts of the leg mechanism, the least number of joints should be 

selected that accommodate the needs of the leg. Among the alternative leg architectures (Figure 1-1), 

articulated legs pose an advantage in comparison with prismatic legs, when it comes to ground 

clearance. From the articulated legs, the most lightweight solution is the two-segment leg, as it consists 

of the least number of joints. Electric direct current (DC) motors are used for actuation, as it’s been 

observed from literature that electrically actuated robots are lighter, more easily scalable and less noisy 

than their hydraulic analogues. Both electric motors necessary for the actuation of the two-segment leg 

are mounted on the robot’s body (base), to make the legs lighter.  A prismatic compliant joint is added 

at the most distal leg segment, to protect the mechanical parts (motors, transmissions, etc.) from the 

impulsive forces of ground interaction.  In this way, the safety of the mechanical parts of both actuated 

joints is ensured, to the expense of the mass of the compliant element, see Figure 2-5. 

 

 

Table 2-1. Materials used for modeling the structural parts of the legs and their properties. 

Leg structural part Material density  

[kg/m3] 

yield strength 

[MPa] 

joints 7075-T6  2810 430 

links carbon fiber tubes 1466 200 
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Figure 2-5. Abstract depiction of the two-segment leg selected architecture interacting with 
the ground. 

2.5 Quadruped robot dynamics 

Based on the leg architecture proposed in the previous section, a quadruped robot model for movement 

in the sagittal plane is introduced, see Figure 2-6. The position of the body CoM is situated at ( , )x y

with respect to the origin O. The pitch angle of the body is described by the variable  . Each leg has 

three joints; a rotary hip joint which position is described by variable 1,i ,  a rotary knee joint with 

respective variable 2,i  and a passive compliant prismatic joint related with joint variable 2,il . Note that 

lines (δ), (ε) are parallel and at an angle  , so that joint angles 1,i , 2,i  are angles relative to the body. 

The joints described by 1,i  and 2,i  are actuated with the torques 1,i , 2,i . The interaction of the i -th 

leg with the ground is modeled with the use of the ground forces. When the i -th leg is in contact with 

the ground, the sinusoidal ground forces (2-2), (2-3) are exerted to the end effector of the leg (toe). In 

such a manner, the state vector necessary to describe the system is written as, 

 1,1 2,1 2,1 1,4 2,4 2,4 1,2 2,2 2,2 1,3 2,3 2,3

T

x y l l l l           q   (2-13) 
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Figure 2-6. Quadrupedal robot model. 

The robot body has mass bm  and inertia bI  and the distance of any hip joint from the CoM of the 

robot body is .d The body is considered rectangular, with length a  and height b . In this way the 

moment of inertia of the body is calculated as, 
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2 21

( )
12

b bI m a b    (2-14) 

The model of the i -th leg consists of two segments. The proximal to the body segment has length 1l , 

inertia 1I  and mass 1m  at distance 1cml from the hip joint. The distal to the body segment is compliant 

with stiffness k , free length 20l , inertia 2,iI  and mass 2m  at distance 2,cm il  from the knee joint. Note 

that the leg specific index i  is used for properties that vary among different legs for the same time 

instant. All leg segments are considered tubular, with outer diameter outd , inner diameter ind  and 

density  , see Figure 2-7. The mass of the proximal link 1m  consists of half the hip joint mass 
1 / 2jm  

and half the knee joint mass 
2 / 2jm  and the mass of the tubular link 1lm , 
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The mass of the distal link 2m  consists of half the knee joint mass 
2 / 2jm , the spring mass sm , the toe 

mass tm  and the mass of the tubular link 2lm , 

 

2

2 2

2 2

2 20

2

4

j

s l t

out in
l

m
m m m m

d d
m l

   




  (2-16) 
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Figure 2-7. Inertial properties of lumped model. 

From the distribution of the masses along every link, the distance of the CoM of the first link from the 

hip joint 1cml  and that of the CoM of the second link from the knee joint 2,cm il  are calculated as, 
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   (2-17) 
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The moments of inertia with respect to the CoM of the tubular leg segments are calculated as, 
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12
I m l   (2-19) 
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The actuators are modeled as DC motors with transmission ratio 
jn   and rotor inertia 

rjI  (j=1, 2) and 

they are considered to be mounted on the body to make the legs lighter.  

Having explicitly determined the state variables q  and the dynamical properties of the system, we 

proceed to formulate the system’s EoM, following the Euler - Lagrange formulation. From forward 

kinematics, the positions of the lumped masses are related to the state variables. The absolute 

coordinates of the hind hip joints ( {1,4})i  are, 

 , cos( )h ix x d     (2-21) 

 , sin( )h iy y d     (2-22) 

The absolute coordinates of the front hip joints ( {2,3})i  are,  

 , cos( )h ix x d     (2-23) 

 , sin( )h iy y d     (2-24) 

The CoM of the proximal leg segment of any leg is situated at 1, 1,( , )i ix y , where 

 1, , 1 1,sin( )i h i cm ix x l       (2-25) 

 1, , 1 1,cos( )i h i cm iy y l       (2-26) 

The CoM of the distal leg segment of any leg is situated at 2, 2,( , )i ix y , where 

 2, , 1 1, 2, 2,sin( ) sin( )i h i i cm i ix x l l          (2-27) 

 2, , 1 1, 2, 2,cos( ) cos( )i h i i cm i iy y l l          (2-28) 

The position of the toe for any leg is described by, 

 , , 1 1, 2, 2,sin( ) sin( )t i h i i i ix x l l          (2-29) 

 , , 1 1, 2, 2,cos( ) cos( )t i h i i i iy y l l          (2-30) 

Then the kinetic energy of the system is written in the form, 
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The potential energy of the system is calculated as, 
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where g  is the gravitational acceleration and 
2,il  is the deformation of the passive element defined 

as, 

 
2, 2, 20i il l l     (2-33) 

The Lagrangian is calculated from the difference of the kinetic and the potential energy, 

 
L LL T U    (2-34) 
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The power from actuation torques and external forces are expressed in the form,  
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i

P c F x F y   
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        (2-35) 

where 
ic  is a variable equal to 1 when the i -th leg is in contact with the ground, and 0 otherwise, 
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 (2-36) 

The EoM are then calculated from Equation (2-37),  

 
d L L P
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   q q q
  (2-37) 

Finally, following the Euler - Lagrange formulation the EoM are written as, 

 [ ]T T   Mq Cq Kq J F 0 τ   (2-38) 

where M   is the mass matrix of the system, C   is the centrifugal/Coriolis terms matrix, K  is the 

stiffness matrix, J  is the Jacobian matrix of the legs, F  is the vector of the external forces and τ  is the 

actuation torques vector consisting of the hip and knee actuation torques 1,i , 2,i  respectively. 

2.6 Simplified centroidal dynamics  

With the centroidal dynamics approach, the dynamics of the system are projected to its CoM, see Figure 

2-8. This approach introduces great simplicity, as for the description of the system only the position of 

the CoM, the orientation of the system and the position of the footfalls during locomotion are needed. 

As the centroidal dynamics of the system are much simpler, the role of the ground forces and position 

of footfalls in the periodicity of the movement gets explicit, and by tuning these parameters it is easy to 

regulate the trajectory of the CoM of the robot.  
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Figure 2-8. Centroidal dynamics model and its properties. 

In the literature, this approach has been used for CoM trajectory optimization and postural balance 

control of humanoid [67], [68] and quadruped robots [69]. In the case of humanoid robots, much of the 

robot’s mass is concentrated at its limbs (arms, legs). Therefore, the posture of the limbs affects 

significantly the position of the CoM of the system. On the other hand, in the case of performance 

quadruped robots, the legs are lightweight in comparison with the main body. As a result, change of 

posture of the legs during locomotion does not significantly affect the position of the CoM of the system, 

and thus the formulation of the centroidal dynamics is simplified, [69]. With such an approach, the CoM 
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of the quadruped robot coincides with the CoM of the quadruped robot’s main body at every time instant, 

the mass m  of the centroidal model is equal to the total mass of the quadruped robot and the inertia of 

the centroidal model I  is approximately constant and equal to that of the quadruped robot’s main body, 

 
1, 2,( ),b i i b

i

m m m m I I      (2-39) 

The system is described by the position of the CoM ( , )x y  and the pitch angle  . With such generalized 

coordinates, the EoM of the centroidal model are expressed in the form, 

 /xx F m     (2-40) 

 /yy F m g     (2-41) 

 /      (2-42) 

where xF , 
yF  are the total forces and   is the total torque acting on the CoM due to interaction with 

the ground defined as, 

 
,x i x i
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where the variable ic  denotes when the i -th leg leg comes in contact with the ground, see (2-36), ir  is 

the vector connecting the CoM position ( , )x y  with the position of the toe during stance phase ( , ),i ix y

iF  is the vector of the horizontal and vertical forces ,x iF , 
,y iF   exerted on the i -th toe  and 0iy   with 

the assumption that locomotion takes place on even terrain, see Figure 2-8. 

To move periodically in the y  and   directions with a steady net horizontal velocity ( x direction), 

the robot should have no net acceleration in any direction in one stride circle. This can be expressed in 

terms of total forces and torques from ground interaction, in the form of Equations (2-46)-(2-48): 
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Combining Equations (2-3), (2-36) and (2-43), it becomes obvious that Equation (2-46) is satisfied by 

the definition of the horizontal force, 
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For the vertical direction, from Equations (2-2), (2-8), (2-36), (2-44),  and taking into account (2-50), 
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  (2-50) 

Equation (2-47) is written in the form,  
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From which, 
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Taking also into account Equation (2-1), the amplitude of the half sine vertical force is expressed as, 

 ,max
8

y

mg
F
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
   (2-53) 

Equation (2-47) is only a necessary condition for periodical movement. In order to ensure that the robot 

moves periodically in a stride circle, also a supplementary condition is introduced, which requires that 

the CoM of the robot body at the start of the stride is at apex, 

 (0) 0y    (2-54) 

As a result, with zero initial vertical velocity (2-54) and no net acceleration in the y  direction (2-47), 

periodicity in the y  direction in one stride is ensured, 

 (0) ( ) 0y y T    (2-55) 

 (0) ( )y y T   (2-56) 

Finally, to ensure periodical movement in the  direction in one stride, we demand conditions (2-57), 

(2-58)  to hold. 

 (0) ( )     (2-57) 

 (0) ( )     (2-58) 

From Equation (2-45), it is clear that the coordinates of the footfalls are crucial for the satisfaction of 

Equations (2-57), (2-58). Note that if this pair of equations is satisfied, no net acceleration in the   

direction exists and thus Equation (2-48) also holds. 

2.7 Inverse kinematics 

Although the centroidal dynamics introduce great simplicity, they provide no information on the leg joint 

variables during locomotion, see (2-40)-(2-42). Nevertheless, with the assumption that the CoM of the 

quadruped robot, coincides with the CoM of the robot’s main body, by knowing the full geometry of the 

robot between it’s CoM and the toes and also the position of the toes, the leg joint variables can be 

related with the variables of the CoM, through inverse kinematics. 

The positions of the hind and front hip joints are related to the position and orientation of the robot’s 

body through Equations (2-21)-(2-24). For each leg the position of its toe is related to the position of its 

hip through Equations (2-29), (2-30). Let ,hr ix , ,hr iy  be the relative hip to toe coordinates defined as, 

  , , ,hr i h i t ix x x     (2-59) 

 , , ,hr i h i t iy y y    (2-60) 

then by replacing Equations (2-59), (2-60) in Equations (2-29), (2-30), 

 , 2, 2,i 1 1,sin( ) sin( )hr i i ix l l          (2-61) 

 , 2, 2, 1 1,cos( ) cos( )hr i i i iy l l         (2-62) 

Squaring, 

 
2 2

, 2, 2, 1 1,sin( ) sin( )hr i i i ix l l                (2-63) 
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2 2

, 2, 2, 1 1,cos( ) cos( )hr i i i iy l l               (2-64) 

Adding (2-63), (2-64) we result in, 

 2 2 2 2

, , 2, , 2, 2, , 2, 2, 12 sin( ) 2 cos( )hr i hr i i hr i i i hr i i ix y l x l y l l            (2-65) 

 

2 2 2 2

1 , , 2,

, 2, , 2,

2,

sin( ) cos( )
2

hr i hr i i

hr i i hr i i

i

l x y l
x y

l
   

  
      (2-66) 

 , 2, , 2, ,sin( ) cos( )hr i i hr i i hr ix y a         (2-67) 

where ,hr ia  is defined as, 

 

2 2 2 2

1 , , 2,

,

2,

 
2

hr i hr i i

hr i

i

l x y l
a

l

  
   (2-68) 

Let 2,i  be, 

 2, 2,i i      (2-69) 

Then from trigonometry, 

 

2,

2,
2,2

2 tan
2sin

1 tan
2

i

i
i










  (2-70) 

 

2,2

2,
2,2

1 tan
2cos

1 tan
2

i

i
i












  (2-71) 

Replacing (2-69)-(2-71) in (2-67), 

 
2, 2,2

, , , , ,( ) tan 2 tan 0
2 2

i i

hr i hr i hr i hr i hr iy a x y a
 

       (2-72) 

Solving this second order polynomial w.r.t. 2,tan( / 2)i , 

 

2 2 2 2 2 2

, , , , , , , ,2,

, , , ,

2 4 4 4
tan

2 2( ) ( )

hr i hr i hr i hr i hr i hr i hr i hr ii

hr i hr i hr i hr i

x x y a x x y a

y a y a

        
 

 
  (2-73) 

where 

 2 2 2

, , , 0hr i hr i hr ix y a     (2-74) 

Replacing (2-69) in (2-73) and solving w.r.t. variable 2,i , 

 
2 2 2

2, , , , , , ,2atan 2 ,i hr i hr i hr i hr i hr i hr ix x y a y a        
 

  (2-75) 

Note that the solution with the positive sign corresponds to the knee backward configuration and that 

with negative sign to a knee forward configuration. Solving Equations (2-61), (2-62) w.r.t variable 1, ,i  

 1, , 2, 2, , 2, 2,atan 2 sin( ), cos( )i hr i i i hr i i ix l y l                (2-76) 

Inequality (2-74) ensures that the toe remains in the workspace of the leg with segment lengths 1 ,l  2, .il  

Substituting (2-68) in (2-74) and factoring we obtain, 

 
2 2 2 2 2 2

, , 1 2, , , 1 2,( ) ( ) ( ) 0hr i hr i i hr i hr i ix y l l x y l l                (2-77) 

Solving inequality (2-77), we obtain the pair of inequalities (2-78), which describe the workspace of the 

leg as a bounded annular area, with inner radius 1 2,| |il l  and outer radius 1 2,il l . 
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2 2 2 2

1 2, , , 1 2,

2 2

1 2, , , 1 2,

( ) ( )

| |

i hr i hr i i

i hr i hr i i

l l x y l l

l l x y l l

    

    
  (2-78) 

From the inverse kinematics Equations (2-75), (2-76), the joint angles 1, 2,,i i   are related through the 

instantaneous leg geometry 1l , 2,il  to hip to toe relative coordinates. Thus, even though the centroidal 

dynamics are described only by the position of the CoM and the orientation of the robot’s body, through 

inverse kinematics, also information regarding the leg joint variables during locomotion becomes 

available, if the position of the toes at every time instant is given. 

2.8 Hardware constraints 

To further approach reality the physical system described in the previous sections is subject to realistic 

hardware constraints. The hardware constraints presented here are divided in leg strength constraints 

and in actuation constraints. Leg strength constraints refer to the constraints in  strength introduced by 

the material and the geometry of the tubular leg segments. Given a material for the leg segments, the 

leg strength constraints determine the permissible leg segment length and cross-sectional area.  

Actuation constraints, on the other hand, are related to the thermal constraints of DC motors and 

strength constraints of their gearbox. Actuation constraints are expressed in terms of maximum values 

for the actuation torques and angular velocities, which must not be exceeded to avoid damage in the 

actuation system. 

The leg segments are stressed during stance phase, when the impulsive ground forces are exerted 

to the leg. Ground forces have a compressive component acting on the longitudinal direction of each 

leg segment lF  and a shear/bending component acting on the direction vertical to the leg segment .vF  

Those two components are found by projecting the ground forces on the directions collinear to each leg 

segment l̂ , and vertical to each leg segment v̂ , see Figure 2-9. With the assumption that the weight 

of the leg segments are insignificant in comparison to the ground forces, the forces applied on the 

proximal leg segment are approximately the same with the forces applied to the toe and equal to , ,x iF

,y iF . 

θ+θ
2,i

l
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θ+θ1,i

F
y,i

F
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Fx,i

F
y,i
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2,i

l v

^
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^
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Figure 2-9. Positive directions l̂ , v̂  and the forces applied on the leg segments. 
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Projecting the ground forces on the l̂  and v̂  directions for the proximal to the body leg segment, 

 
,1, , 1, , 1,sin( ) cos( )l i x i i y i iF F F          (2-79) 

 
,1, , 1, , 1,cos( ) sin( )v i x i i y i iF F F          (2-80) 

and for the distal leg segment, 

  
,2, , 2, , 2,sin( ) cos( )l i x i i y i iF F F         (2-81) 

 
,2, , 2, , 2,cos( ) sin( )v i x i i y i iF F F          (2-82) 

Let A , aI   be the cross-sectional area and the second moment of area of the tubular leg segments 

defined as, 

 
2 2( )

4
out inA d d


    (2-83) 

 
4 4( )

64
a out inI d d


    (2-84) 

Then the compressive stress c , the shear stress s  and the bending stress b  on the j -th leg 

segment {1,2}j of the i -th leg {1,2,3,4}i  are found by Equations (2-85)-(2-87). 

 
, ,

, ,

l j i

c j i

F

A
    (2-85) 

 
, ,

, ,

v j i

s j i

F

A
    (2-86) 

 
, ,

, ,
2

b j i out
b j i

a

M d

I
    (2-87) 

 where 
, ,b j iM  is the bending moment of the vertical to the j -th leg segment force component 

, , ,v j iF  

 
, , , , ,b j i v j i j iM F l   (2-88) 

The equivalent normal stress on the cross-sectional area of each leg segment is: 

 , , , , , ,n j i c j i b j i      (2-89) 

To respect the strength constraints of the tubular leg segments, the equivalent normal and shear 

stresses should be less or equal to the permissible values of the material, 

 

,

, ,

,

, ,

c u

n j i

f

s u

s j i
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








  (2-90) 

where ,c uS ,  ,s u  are the ultimate compressive and shear strengths of the material of the leg segments 

and 
fs  is a user defined safety factor. 

The constraints of the actuating DC motors are divided in thermal and strength constraints. To 

better understand the purpose of these constraints, the basic principles of DC motors are explained 

briefly. The torque of a DC motor m   is directly analogous to the intensity of the current ai   on its field 

windings [70], 

 m T aK i    (2-91) 

where TK  is the torque constant. The power of the thermal losses on the field windings thP  is 

analogous to the square of the current 
2

ai , 

 
2

th aP i R    (2-92) 
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where R  is the resistance of the field windings. As thermal losses increase, so does the temperature 

of the field windings. To protect the circuit of the DC motor from overheating, maximum permissible 

continuous and short term values for the current are introduced, ,a cti  and ,a sti , corresponding to 

maximum permissible continuous and short term torques ,m ct   and , ,m st th , 

 
, ,ai ct T a ctK i    (2-93) 

 
, ,ai st T a stK i    (2-94) 

To increase the output torque of a DC motor without increasing the current on its windings reduction 

mechanisms such as gearboxes are used. The reduction mechanism, reduces the output angular 

velocity of the motor tn  times (reduction ratio) and since the total power of the DC motor is constant, 

the output torque is increased correspondingly by tn  times, see Equations (2-95)-(2-97). 

 
, , /m out m in tn    (2-95) 

 , ,m out t m inn    (2-96) 

 
, , , ,m m out m out m in m inP        (2-97) 

Nevertheless, the reduction mechanism consists of mechanical parts (bearings, gears) that should be 

protected from overstressing. Therefore, maximum permissible output torques and angular velocities 

are set for the exit of the gearbox max  and max . As a result, a total maximum short term torque should 

be allowed at the exit of the reduction, so that the DC motors system is protected from overheating and 

overstressing,  

 
, maxmin( , )

ast t i stn     (2-98) 

The permissible continuous torque is also calculated at the exit of the reduction, 

 
,act t i ctn    (2-99) 

By applying these upper bound values to the torques and angular velocities of the quadruped robot’s 

leg joints, 

 

, max,

, ,

, ,

, [0, ]

, [0, ]

rms( ) , [0, ]

j i j

j i st j

j i ct j

t T

t T

t T

 

 

 

 

 

 

  (2-100) 

where  

 
2 2 2

, , ,1 , ,2 , ,

1
rms( ) ( ... )j i j i j i j i N

N
         (2-101) 

and N  is the number of sampling points of the torque 
,j i   in the duration of a stride period T . 

By defining the hardware constraints, (2-90) and (2-100), the description of the physical system is 

concluded. The gaits, leg architecture, dynamics, inverse kinematics and constraints applying to the 

quadruped robot presented in this chapter, are to be used in the development of the leg design method 

presented in the next chapter. 
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3 Optimal Leg Design Method Equation Chapter 3 Section 1 

3.1 Overview 

Given some overall specifications for the quadruped robot’s inertial properties the purpose of the 

developed method is to determine optimal leg properties (leg segment lengths, configuration, leg 

segment cross sectional area and passive element stiffness) coupled with optimal gait properties (gait, 

stride period, CoM apex running height and amplitude of horizontal ground forces), in order to achieve 

maximum horizontal velocity. The method consists of one outer and two inner stages. 

 At the beginning of the method the gait is defined by determining the time instants of touch down 

,td it  and take off ,to it  of every leg. Furthermore, the initial conditions of the motion (0),x (0),y (0),

(0) are set. These values are provided as inputs to the following stages. In the Outer Stage the gait 

parameter space is spanned in the form of an exhaustive search and alternative gait parameters (0),x

(0),y ,fxa T  are provided as inputs to the first and second inner stages.  

In the first inner stage (Stage 1), using the centroidal dynamics of the robot, optimal footfalls ix  

are sought through exhaustive search and optimization, which achieve periodical  movement in one 

stride for the robot’s CoM and minimization of the hip joint torques necessary to withstand the vertical 

ground forces exerted on each leg. Stage 1 provides as outputs the optimal footfalls ix  and the 

optimized CoM trajectory of the robot, which are used as inputs to the second inner stage.  
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Figure 3-1. Flow chart indicating the discrete stages of the leg design method. 

The main operation conducted in the second inner stage (Stage 2) is to exhaustively search the 

leg parameters 1 ,l 20l , k , ind , outd  for which the hardware constraints are respected. At the beginning 

of Stage 2, a trajectory is determined for the toe of each leg to follow during flight phase. Thus, with the 

position of the toe and that of the CoM determined throughout the stride, given the robot’s geometry, 

the leg joint trajectories can be calculated throughout the stride, using inverse kinematics. The joint 
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trajectories are found for alternative leg parameters, and through the dynamics of the quadruped robot 

the joint torques are calculated and the actuation constraints are evaluated. From the posture of each 

leg and the forces exerted from the ground, the stresses applied on the cross sectional area of each 

leg segment are calculated and subjected to the strength constaints incurred by the material of the leg 

segments. If both actuation and strength constraints are satisfied, then the set of leg parameters 1 ,l

20 ,l ,k ,ind outd  and the corresponding gait parameters (0),x (0),y ,fxa T  that satisfy the constraints 

are saved. This procedure is repeated until the whole leg parameter space is spanned, concluding thus 

Stage 2.  

When the whole gait parameter space is spanned, the outer stage comes to an end. From the 

saved parameters that satisfy the hardware constraints, those with which the robot could run with 

maximum velocity, is the set of optimum parameters. 

3.2 Initialization  

At the beginning of the method, the model properties, the initial conditions and the gait are defined. The 

parameters intended for initialization and their respective description are presented in Table 3-1. Those 

parameters determine the systems specifications and remain constant throughout the execution of the 

algorithm. Note that the time instants defining the touch down and take off of each leg, (thus defining 

the gait) are expressed as a percentage of the period, 

 

,

,

,

,

% 100%

% 100%

td i

td i

to i

to i

t
t

T

t
t

T





  (3-1) 

As a result, each time the period T  takes a value in the following outer stage, Equations (3-1) are 

solved to ,td it , , .to it  

Table 3-1. Parameters and initial conditions determined in the initialization stage. 

Parameter Decription Parameter Description 

m [kg] overall mass of the robot eb [m] maximum leg clearance 

d [m] half hip separation distance   Coulomb friction coefficient 

g [m/s2] gravitational acceleration in   transmission ratio of the motor 

acting on the j -th joint 

a [m] height of the robot body ,r jI  [kg m2] rotor inertia of the motor acting on 

the j -th joint 

b [m] length of the robot body ,ct j
 
[N/m] max permissible short term torque 

on the j -th joint 

I  [kg m2] overall inertia of the robot ,ct j  [N/m] max permissible continuous torque 

on the j -th joint 

   [kg/m2] density of the leg segment’s 

material 

max, j [rad/s] max permissible continuous  

angular velocity on the j -th joint 
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Parameter Decription Parameter Description 

,c uS [MPa] compressive strength ,td it % touch down time instant of the i -th 

leg, as a percentage of the period 

,s u [MPa] shear strength ,to it  % take off time instant of the i -th leg, 

as a percentage of the period 

fs   safety factor (0)x  [m] initial horizontal position of CoM 

1jm  [kg] mass of hip joint (0)y  [m/s] initial vertical velocity of CoM 

2jm  [kg] mass of knee joint (0)  [rad] initial pitch angle of centroidal 

model 

sm  [kg] spring mass (0)  [rad/s] initial pitch rate of centroidal model 

tm  [kg] toe mass   

3.3 Outer stage 

In the outer stage of the method, an exhaustive search takes place spanning the space of the gait 

parameters (0),x (0),y ,fxa T . These parameters are provided as inputs to Stage 1 and Stage 2. The 

exhaustive search taking place at this stage is shown in the form of pseudocode in Figure 3-2. The 

subscripts ,lb ub  correspond to the lower and upper bounds determining the parameter space in which 

the parameters were sought. At the end of every inner loop of this stage the sets of gait parameters 

(0),x (0),y ,fxa T that satisfy the hardware constraints, and the corresponding sets of leg parameters 

1 ,l  20 ,l  ,k  ,ind  ,outd  found in Stage 2, which satisfy the hardware constraints are saved. Note that for 

the same set of gait parameters, alternative sets of leg parameters may satisfy the constraints. The 

outer stage is concluded when the whole gait parameter space has been spanned. 

for T=Tlb:dT:Tub

for afx=afx,lb:dafx:afx,ub

for y(0)=y(0)lb:dy(0):y(0)ub

Stage 1

end

end

for x(0)=x(0)lb:dx(0):x(0)ub

. . ..

end

end

.
x(0), y(0), a

fx
, T, l

1
, l
20
, k, d

in
, d
out

Save parameters

for which constraints (2-90), (2-100)
are respected

Stage 2

Outer Stage

 

Figure 3-2. Pseudocode showing the exhaustive search conducted in the Outer Stage. 
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3.4 Stage 1: CoM trajectory and footfall optimization 

 In this stage, the positions of the legs’ footfalls are sought which optimize the trajectory of the robot’s 

CoM, so that its movement is periodical in one stride and the hip torques necessary to withstand the  

ground forces are minimized. The optimization procedure that takes place in this stage consists of two 

steps. It starts with an exhaustive search step that narrows down the parameter space in which the 

optimal values of ix  lie. An optimization step follows, where the optimal values ix  are found with fine 

accuracy in the narrow parameter space of the previous step. If a single step gradient based 

optimization was used instead of this two step approach, the algorithm would most probably converge 

to a local optimum. In the remaining section, the role of the footfalls in the movement of the quadruped 

robot is explained, the optimization problem is formulated and the two step optimization procedure is 

thoroughly explained.  

Since the locomotion of the robot takes place in even terrain ( 0),iy   the position of each footfall 

is determined exclusively from its abscissa ix . The role of the position of the footfalls is twofold. On the 

one hand, it regulates the pitch and pitch rate of the centroidal model, see (2-42), (2-45). On the other 

hand, its distance from the respective hip determines the magnitude of the necessary torque to 

withstand the vertical ground forces. An example is depicted in Figure 3-3, where for the same vertical 

force ,1yF  and traversed distance during stance x , footfall 1x  constantly has a shorter moment arm 

with respect to the hip joint than footfall 
'

1x , thus resulting to smaller hip torques for the same ground 

force. 

x1

xδx x+δx

Fy,1 Fy,1

x1
'

xh,i

 

Figure 3-3. Alternative footfalls 1,x  
'

1x  for the same traversed distance x  and vertical force 

,1.yF    

With the twofold role of the footfalls ix  in mind, we proceed to find the optimal values ,i ox  which 

meet the following requirements; periodicity of movement in the  direction and minimization of the 

horizontal moment arms from the respective hip joints at every time instant. To meet these requirement 

a minimization problem is formulated,  

 
,

,
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1 2 3 ,

1

min ( ) (0) ( ) (0)
to i

td ii

t

h i i
tx

i

Q w w w x x dt   


          (3-2) 

where 1,w  2 ,w  3w  are the weighing factors of the optimized terms. The first two weighing factors 1,w   

2 ,w  are selected so that the first two terms are of approximately the same magnitude and the third 

weighing factor 3w  is determined through trial and error. By minimizing the first two terms, we ensure 
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that periodicity conditions in the   direction (2-57), (2-58) hold. The minimization of the third term 

ensures that the horizontal moment arms of the vertical force ,y iF  from the hip joint at every time instant 

are minimized, thus also minimizing the necessary hip joint torques. Note that the component of the 

horizontal force ,x iF  and the vertical moment arm ,h i iy y  is not included in the hip joint torques, as 

the vertical position of the hip joint ,h iy  depends on the height of running (0)y  which is optimized in the 

Outer Stage. 

In the first step of the optimization procedure, an exhaustive search is conducted to narrow down 

the parameter space in which the optimal footfall abscissas ix  lie. At every loop of the exhaustive 

search, the EoM of the centroidal dynamics (2-40)-(2-42) are solved, the position of the hip joints is 

calculated from Equations (2-21)-(2-24) and the objective function is evaluated. At the end of the 

exhaustive search ( )es  a crude estimation of the optimal footfalls ,i esx  is available. As this step 

preceeds the optimization step, the requirement of this step is not accuracy but speed of solution. To 

achieve this requirement the following measures are proposed.  The footfall abscissas ix  are sought in 

a vicinity of the corresponding hip joints at the time instant of touch down , ,( )h i td ix t , defined using the 

half hip separation distance ,d  

 , , , ,[ ( ) / 2, ( ) 2 ]i h i td i h i td ix x t d x t d     (3-3) 

with discretization step idx . Note that this interval is set through trial and error, so that no optimal value 

,i esx  is truncated by its upper and lower bounds. At every loop of the exhaustive search, the EoM of the 

centroidal dynamics are solved numerically using three point finite difference expressions for N = 100 

integration points in the time interval [0, ].T  A pseudocode example for the case of the trotting gait of 

Figure 2-2 (d) is displayed in Figure 3-4. In this example, the leg pair {1, 3} is in contact with the ground 

for the first half of the period ( 1:50),n   succeeded by the leg pair {2, 4} for the second half of the 

period ( 51:100).n   In the beginning of the exhaustive search, given the initial position of the CoM 

(1)x  the abscissas of the hip joints ,1(1),hx  ,3 (1)hx  are calculated from (2-21)-(2-24). Values are set for 

1,x  3x  in (3-3) and the centroidal dynamics EoM (2-40)-(2-42) are solved for the first half of the period. 

The supplementary hip joint abscissas ,2 (50)hx , ,4 (50)hx  are calculated from the position of the CoM 

at the end of the first half of the period (50)x , the boundaries of the intervals (3-3) are found, values 

are set for 2 ,x  4x  and the EoM of the centroidal dynamics are solved until the end of the period. Having 

solved the centroidal EoM in one period for the candidate abscissas 1,x 2 ,x 3 ,x 4x , the objective 

function value is calculated from Equation (3-2), and is evaluated. At the end of the exhaustive search, 

a crude estimation of the minimum value of the objective function and the footfall abscissas ,i esx  

corresponding to the minimum value of the objective function are found. 

The values of the footfalls ,i esx  found in the first step of Stage 1, are used as initial values for the 

optimization taking place in the second step of Stage 1. The upper and lower bounds in which the 

optimal leg abscissas are sought are defined with respect to the discretization step idx  of the preceding 

exhaustive search as, 

 , ,[ , ]i i es i i es ix x dx x dx     (3-4) 
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minQ=1000;

for x1=xh,1(1)-d/2:dx1:xh,1(1)+3*d/2

for x3=xh,3(1)-d/2:dx3:xh,3(1)+3*d/2

for n=1:50
calculate F

x
, F
y
, τ

θ
(2-42)-(2-44)

solve EoM (2-39)-(2-41)
end

for x2=xh,2(1)-d/2:dx2:xh,2(1)+3*d/2

for x4=xh,4(1)-d/2:dx4:xh,4(1)+3*d/2

for n=51:100
calculate F

x
, F
y
, τ

θ
(2-42)-(2-44)

solve EoM (2-39)-(2-41)
end

calculate the objective function Q (3-2)

if Q<minQ

save Q as minQ
save currently optimum abscissas as xi,es

end

end
end

end
end

Stage 1/Step 1

 

Figure 3-4. Pseudocode of the exhaustive search in the first step of Stage 1. 

The minimization problem (3-2) is solved using the default interior point algorithm of the fmincon 

MATLAB function. At every loop of the optimization process, for the candidate footfall abscissas ix  the 

EoM of the centroidal dynamics (2-40)-(2-42) are solved with fine absolute error tolerance 1e-6, using 

the ode45 solver of MATLAB, based on the Runge-Kutta 45 integration method. The value of the 

objective function is calculated and evaluated. At the end of the optimization process, the optimal values 

,i ox  that minimize the objective function (3-2) are provided as outputs. 

Using the optimal footfall abscissas ,i ox  the EoM of the centroidal dynamics are solved for one 

more time. The EoM at this point are solved with the fixed step MATLAB function ode3, based on the 

Runge-Kutta algorithm of third order, for N =1000 integration points to achieve the desired accuracy of 

results. The choice of a fixed step integration algorithm is convenient for two reasons. On one hand, 

each row of the solution vectors is intuitively related with its corresponding time instance in the stride. 

For instance, for the trotting gait of Figure 2-2 (d), it is easy to understand that the solution at the 250th 

time instant, corresponds to the 25% of the period, where legs HL, FR are at midstance and legs FL, 

HR are at midflight. On the other hand, the use of a fixed step integration algorithm facilitates the use 

of the MATLAB functions used in the next stage that need fixed step vectors as inputs.  

For the robot to safely remain away from the ground throughout the stride, a maximum permissible 

pitch constraint is introduced in the form of inequality (3-5).  

 max

max
max maxsin( ) cos( )

2 2 2

ya b
y




      (3-5) 

This constraint ensures that the lowest part of the robot body at maximum pitch, is not situated lower 

than half the vertical distance of the CoM from the ground at max pitch, see Figure 3-5. If constraint 
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(3-5) is satisfied, the external forces , ,x iF ,y iF   and the optimized CoM trajectories [ ],C x yq ,Cq Cq   

at discrete time instants [0, ],nt T {1,2,...,1000}n  are saved for use in Stage 2.  

O
x

y
θ

y|θmax

θ
max θmax

lowest
point

y|θmax
2

 

Figure 3-5. Position of the lowest part of the robot body at max pitch in comparison with half 
the vertical distance of the CoM from the ground. 

3.5 Stage 2: Spanning the leg parameter space 

In the second stage of the method, alternative leg geometries are tested for use in the robot. The 

optimized CoM trajectory ,Cq ,Cq ,Cq  the footfall abscissas ,i ox  and the ground forces , ,x iF ,y iF

corresponding to gait parameters (0),x (0),y ,fxa T  are provided as inputs. The position of the toe of 

each leg during its stance phase is determined from the pair ,( ,0)i ox . To fully define the trajectory of 

the toes during the whole stride, a hybrid elliptical/cubic polynomial trajectory for the toes is adopted 

throughout flight phase. The position of the hip joints throughout the stride are found by inserting the 

position of the CoM ,Cq in Equations (2-21)-(2-24). Given the position of the hip joint , ,( , )h i h ix y  and 

that of the toe of each leg , ,( , )t i t ix y  at discrete time instants nt , for alternative leg segment lengths and 

spring stiffnesses 1 ,l 20 ,l ,k  from inverse kinematics (2-75), (2-76) and the equation of the ideal spring, 

the leg joint variables 1, ,i 2, ,i 2,il  are found at every time instant [0, ], {1, 2,..., 1000}nt T n  . By 

numerically differentiating the vector of leg joint variables 1, 2, 2,[ ],i i i il q the vectors of leg joint 

velocities iq  and accelerations iq  are found. For each set of 1 ,l 20 ,l ,k  corresponding to leg postures 

,iq the ground forces , ,x iF ,y iF  are projected on the leg segments (Equations (2-79)-(2-82)) and for 

alternative leg segment diameters ,in outd d  strength constraints (2-90) are tested. Every permissible set 

of 1 ,l 20 ,l ,k ,ind outd  is inserted in the EoM of the quadruped robot (2-38), along with the ground forces 

, ,x iF ,y iF the CoM trajectory ,Cq ,Cq ,Cq the joint trajectories ,iq ,iq iq  and the model parameters, 

and the EoM (2-38) are solved to the leg joint torques ,j i . The angular velocities ,j i  and torques ,j i  

are subjected to actuation constraints (2-100). If actuation constraints are also satisfied then the set of 

leg parameters 1 ,l 20 ,l ,k ,ind outd  is saved. After the whole leg parameter space is spanned, Stage 2 

is terminated and all the permissible sets of 1 ,l 20 ,l ,k ,ind outd , corresponding to each set of gait 

parameters (0),x (0),y ,fxa T  are saved. In the following analysis each of the above steps is described 

in detail. 
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Stage 2 is structured in the form of an exhaustive search for the leg parameters 1 ,l 20 ,l .k  From 

the optimized positions of the robot’s CoM Cq , corresponding to footfalls ,( , )i o ix y  and the positions of 

the hip joints (2-21)-(2-24), the hip to toe distance of every leg during stance phase is determined, 

 
2 2

2 , , ,( ) ( )h t i h i i h i il x x y y      (3-6) 

The upper bound of each leg’s workspace (inequalities (2-78)) is the maximum value of 2 ,h t il . As all 

legs have the same leg segment lengths 1 ,l 20l and compliance k , the maximum value of 2 ,h t il  for every 

leg i  and time instant nt  determines the minimum permissible total leg length 1 2,il l , 

 
1 2, max

max 2 ,

( ) ,

max[max( )]
n

i n

h t i
i t

l l t l

l l

 


  (3-7) 

If the intervals in which 1 ,l 20l are sought are set in the form, 

 
1 1, 1,

20 20, 20,

[ , ]

[ , ]

lb ub

lb ub

l l l

l l l




  (3-8) 

many of the candidate solution combinations that lay near the lower bounds of the search do not satisfy 

inequality (3-7) and are rejected making the exhaustive search algorithm slow and counterproductive. 

On the other hand, candidate solutions near 1, ,lbl 20,lbl  should not be excluded from the search, as 

perhaps inequality (3-7) is satisfied for candidate combinations in vicinities of pairs 1, 20,( , )lb ubl l  or 

1, 20,( , )ub lbl l . An example is presented to better understand the disadvantage of formulation (3-8). Let’s 

suppose that  

 

max

1

20

0.5

[0.1 ,0.5 ]

[0.1 ,0.5 ]

l m

l m m

l m m







  (3-9) 

It is clear that many of the combinations near the lower bounds of 1 ,l 20l  do not satisfy (3-7) and should 

be rejected. Nevertheless, combinations of 1 20( , )l l  in vicinities of (0.1,0.5)  or (0.5,0.1)  respect (3-7) 

and therefore truncation of the lower bounds of the search intervals is not justified. To overcome this 

obstacle, the exhaustive search problem is reformed by introducing the   parameter, as shown in 

(3-10). 

 

1 1, max 20,

20 max 1

[ , ]

[1, ]

lb lb

ub

l l l l

l l l



 



 



 

  (3-10) 

 As the distal leg segment with free length 20l  is compliant, the formulation (3-10) does not necessarily 

guarantee that (3-7) is respected if 1 . Nevertheless, the number of the rejected combinations 

1 20( , )l l  of (3-10) is particularly smaller than that of (3-8), and thus the speed of the exhaustive search 

algorithm is significantly improved. 

In every inner loop of the exhaustive search, the leg joint trajectories are found from the optimized 

CoM trajectory, given the robot’s geometry. The positions of the hips , ,( , )h i h ix y  and the toes 

, , ,( , ) ( ,0)t i t i i ox y x  during stance phase,  are available at every time instant nt  from Stage 1. As the 

distal leg segment is compliant, the leg geometry changes throughout stance phase. To predict the 

deflection of the spring throughout stance the ideal spring equation is introduced, 

 , 2, 20( )s i iF k l l    (3-11) 
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As the toe remains in contact with the ground throughout stance,   

 , ,2,s i l iF F   (3-12) 

Then from Equations (2-81), (3-11), (3-12) the length of the compliant leg segment is found at every 

time instant, 

 2, 20 , 2, , 2,

1
l sin( ) cos( )i x i i y i il F F

k
            (3-13) 

Combining the inverse kinematics Equations (2-75), (2-76) with (3-13), the leg joint variables 1, ,i 2, ,i

2,il   are found at every time instant throughout the stance phase of each leg, , ,[ , ]n td i to it t t . By 

numerically differentiating the leg joint variables, the joint velocities 1, ,i 2, ,i
2,il  and accelerations 1, ,i

2, ,i
2,il  are found during stance phase. For first order and second order differentiation the MATLAB 

functions gradient and del2 were used.  At this point the knee joint is checked to not collide with the 

ground through stance phase, expressed in the form of an inequality, 

 2,min 90 5
n

o o

i
t

        (3-14) 

where 2,90o

i    is the absolute angle of the distal leg segment from the ground, see Figure 3-6. If 

inequality (3-14) is respected, then we proceed to calculate the leg joint trajectories throughout flight 

phase. If not, the current combination of the exhaustive search 1 ,l 20, ,il k is rejected and the procedure 

is repeated for the next combination of 1 ,l 20, ,il k provided from the exhaustive search algorithm. 
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Figure 3-6. Trigonometry for the distal leg segment. 

Throughout the flight phase, a mechanical stop is considered to keep the length of the distal leg 

segment constant, 

 2, 20 , ,, [ , ]i n to i td il l t t t T     (3-15) 

The requirement for each leg during flight phase is to avoid collision with the ground by creating the 

necessary toe to ground clearance, following a first order continuous trajectory; non-continuous angular 

velocities would require infinite torques. Inspired by control schemes in which the reference toe 

trajectory during flight is an ellipse [71], a hybrid cubic polynomial - elliptical flight phase trajectory is 

selected. The cubic polynomial part ensures continuity for angular velocities, and the elliptical part 

provides realistic boundary conditions at midflight.  
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Having found the leg joint trajectories during the preceding stance phase from ,td it  to ,to it , and 

because the stride is a periodical phenomenon, the joint angles and angular velocities at the beginning  

,to it  and the end of the flight phase ,td it T   are available, 

 

1, , 1, , 1, ,

1, , 1, , 1, ,

2, , 2, , 2, ,

2, , 2, , 2, ,

( ), ( T) ( )

( ), ( T) ( )

( ), ( T) ( )

( ), ( T) ( )

i to i i td i i td i

i to i i td i i td i

i to i i td i i td i

i to i i td i i td i

t t t

t t t

t t t

t t t

  

  

  

  

 

 

 

 

  (3-16) 

At midflight ,mf it  the toe is considered to be at the apex of an elliptical trajectory, described by Equations 

(3-17), (3-18), 

 , , ,cos( )e i c i e e e ix x a t      (3-17) 

 e, , ,sin( )i c i e e e iy y b t      (3-18) 

where , ,( , )c i c ix y  are the coordinates of the center of the ellipse, ea  and eb  are the semi-axes of the 

ellipse, e  the circular frequency in which the ellipse is traversed and ,e i the phase difference that 

determines the starting point on the ellipse. The center of the ellipse is situated at ground level, at 

distance ea  from the footfall of the preceding stance phase, 

 , , ,( , ) ( ( ) ,0)c i c i i to i ex y x t a    (3-19) 

In one stride, the horizontal distance traversed from the CoM of the robot and each toe are the same 

and equal to ( ) (0),x T x  see Figure 3-7. The horizontal ellipse semi axis is equal to half that distance, 

 ( ( ) (0)) / 2ea x T x    (3-20) 

and the vertical semi axis eb  is equal to maximum desired clearance from the ground. The ellipse is 

traversed in the counter clockwise direction with a circular frequency e  defined in (3-21), 

 
2 2

2( ) (1 )
e

e sT T t T DF

  



     

 
  (3-21) 

where eT  is the period in which the ellipse is traversed. From the value of the argument ,e e it   at 

the time instant of take off the phase difference is found, 
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  (3-22) 
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Figure 3-7. The elliptical flight phase trajectory and its properties. 

From inverse kinematics (2-75), (2-76) and the relative position of the hip joints (2-21)-(2-24) to the 

position of the toes during flight phase (3-17), (3-18), the leg joint angles 1 , ,e i 2 ,e i  of the elliptical 
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trajectory are found. By numerically differentiating 1 , ,e i 2 , ,e i the joint angular velocities 1 , ,e i 2 ,e i  are 

found. Because the joint angular velocities at take off and touch down of the elliptical trajectory are not 

continuous, to introduce first order continuity only the values of joint variables and their corresponding 

angular velocities at midflight are kept,  

 
1, , 1 , , 1, , 1 , ,

2, , 2 , , 2, , 2 , ,

( ) ( ), ( ) ( )

( ) ( ), ( ) ( )

i mf i e i mf i i mf i e i mf i

i mf i e i mf i i mf i e i mf i

t t t t

t t t t

   

   

 

 
  (3-23) 

and the states at touch down, midflight and take off (3-16), (3-23) are interpolated using cubic 

polynomials which can ensure first order continuity. One cubic polynomial is used from take off to 

midflight, 
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  (3-24) 

 and another from midflight to touch down, 
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  (3-25) 

By applying boundary conditions at take off, midflight and touch down (3-16), (3-23), the coefficients of 

the polynomials in (3-24), (3-25) are found. By differentiating the angular velocities, the joint 

accelerations with time are found too, 

 
, 1 1 , ,

, 2 2 , ,

6 2 , [ , ]

6 2 , [ , ]

j i to i mf i
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   
  (3-26) 

As it can be seen for the example of a leg with 1 0.32ml   and 20 0.3ml   (Figure 3-8), the non-

continuities observed in the hip joint angular velocity with the elliptical toe trajectory are eliminated with 

the hybrid elliptical - cubic polynomial approach. 
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Figure 3-8. Examples of the (a) evolution of hip angular velocity with time and the (b) toe 
path, for elliptical and hybrid toe trajectories. 
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At the end of the procedure described above, the vectors of leg joint variables 1, 2, 2,[ ],i i i il q  

joint velocities iq  and accelerations iq  are available throughout the stride. After the leg joint 

trajectories are found, hardware constraints (2-90), (2-100) are checked. From the posture of each leg 

during stance phase found in iq , the ground forces applied on the toes , ,x iF ,y iF  and Equations (2-79)

-(2-82), the longitudinal and vertical forces exerted on the leg segments are calculated, , , ,l j iF  , , .v j iF  

Alternative combinations of ,ind outd  for standard carbon tubes are tested, giving priority to those with 

thinner cross sectional area, resulting in lighter leg segments. For every option of  ,ind outd  the stresses 

on the leg segments are calculated (2-85)-(2-87) and are subjected to strength constraints (2-90). If 

strength constraints are respected, the combination of ,ind outd  is accepted, otherwise we proceed to 

a combination resulting to a thicker cross sectional area, until strength constraints (2-90) are respected. 

The set of leg parameters 1 ,l 20 ,l ,k ,ind outd and the corresponding leg joint trajectories ,iq ,iq iq  

and CoM trajectories ,Cq ,Cq Cq are replaced in the EoM of the quadruped (2-38), from which the 

vector of the necessary actuation torques τ  for the locomotion of the robot in one stride are calculated. 

For every actuated joint of every leg, the actuation torques ,j i  found in τ  and the angular velocities 

,j i  found in ,iq  are subjected to the actuation constraints (2-100). If the actuation constraints are 

respected, then the combination of parameters 1 ,l 20 ,l ,k ,ind outd  is saved. At the end of the exhaustive 

search of the leg parameters, all the persmissible sets of 1 ,l 20 ,l ,k ,ind outd  corresponding to the 

current set of gait parameters (0),x (0),y ,fxa T are saved and the Stage 2 of the method exits to the 

Outer Stage. 

3.6 Concluding the method 

The method concludes after exiting the Outer Stage. At the end of the method, all sets of gait 

parameters (0),x (0),y ,fxa T  and their corresponding permissible sets of leg parameters 1 ,l 20 ,l ,k

,ind outd  are saved. In this way, trends of every parameter can be drawn with increasing horizontal CoM 

velocity (0),x and the effect of every parameter in (0)x  can be studied. The set of gait parameters and 

the corresponding set or sets of leg parameters for which maximum velocity (0)x  is achieved are 

considered the optimal solutions of this method. 
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4 Results Equation Chapter 4 Section 1 

4.1 Introduction 

The proposed leg design methodology is applied in this chapter for two alternative running gaits, 

bounding and trotting, and two alternative knee configurations, the knee backward (KB) and the knee 

forward (KF) configuration for the same model parameters. Two identical motors are acting on the hip 

and the knee joint of each leg. The purpose of this chapter is to find out which gait, knee configuration,  

leg and gait parameters result in the fastest locomotion velocity for a robot of the overall mass and 

inertia of NTUA Laelaps, while respecting constraints (2-90), (2-100).  For each case, the evolution of 

the permissible gait and leg parameters with horizontal CoM velocity is presented and studied. The 

optimal leg and gait parameters for which maximum velocity is achieved are found and the locomotion 

of the robot with these optimal sets is presented. The optimal results for alternative gaits and knee 

configurations are compared, and the combination of gait, knee configuration, gait parameters and leg 

parameters for which the maximum horizontal velocity is reached is found. This overall optimal solution 

is evaluated using an independent to the method quadruped model including damping, a realistic 

ground model and a P-V controller. 

4.2 System parameters 

In this section, the values of the system’s parameters for which the method is applied are presented. 

These parameters are used for both gaits and knee configurations. The overall mass and geometry 

properties are taken similar to these found in the current version of the Laelaps quadruped, see Table 

4-1. The density of the leg segments is taken similar to those of carbon fiber tubes and the masses of 

the leg joints and the toes are estimated based on the density of the alluminium alloy 7075-T6. For the 

application in this chapter, both DC motors acting on the leg joints are the same and their properties 

correspond to Maxxon’s DC motor RE 50 200W, with a reduction ratio of 53:1 and supply voltage 60 V.  

Table 4-1. Values of system parameters. 

Parameter Value Parameter Value 

m  [kg] 42.0 eb [m]  0.05 

d  [m] 0.30 g   [m/s2] 9.81 

a  [m] 0.15   0.65 

b  [m] 1.00 ,c uS  [MPa] 200.00 

I  [kg m2] 3.58 fs   3.00 

  [102 kg/m2] 14.66 jn  53.00 

1jm  [kg] 0.40 ,r jI [10-5 kg m2] 5.42  

2jm  [kg] 0.40 ,st j  [N/m] 45.00 

sm  [kg] 0.17 ,ct j [N/m] 14.96 

tm  [kg] 0.10 max, j [rad/s] 11.21 
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From preliminary runs of the method, the shear stresses on the leg segments were found to be 

insignificant in comparison with the normal stresses, therefore the shear component of (2-90) is omitted. 

The alternative inner and outer diameters for which the strength of the tubular segments was tested, 

were taken from standard carbon fiber tube sizes, see Table 4-2. 

Table 4-2. Candidate sizes of carbon fiber tubes. 

a/a ind [mm] outd [mm] 

1 23 25 

2 26 28 

3 28 30 

4 26 30 

4.3 The bounding gait 

The method was firstly applied for the bounding gait of Figure 4-1. The initial conditions were taken as 

(0) 1m,x  (0) 0m/sy   and (0) 0rad  . The initial pitch rate of the bounding gait is crucial for the 

stability of the movement, [72]. In this approach the initial pitching rate (0) is found from the maximum 

pitch angle of the body max ,  

 max

2
(0)

T


    (4-1) 

where the maximum accepted pitch angle of the body was taken as max 10 /180 rad.   

0 50% 100%

HL

FL

FR

HR

(% stride)

ttd,i% tto,i%

0 50

0 50

50 100

50 100

 

Figure 4-1. Gait graph of the bounding gait and respective time instants of touch down and 
take off as a percentage of the stride period. 

The bounds in which the gait and leg parameters were sought and the respective discretization steps 

are summarized in Table 4-3. Note that these bounds were set through trial and error to avoid truncating 

any of the optimal solutions in maximum speed. The reader is reminded that the upper bounds of leg 

parameters 1 ,l  20l  are set by introducing the parameter ,  see (3-10). 

For bounding with increasing horizontal velocity (0)x  from 0.20 m/s to 1 m/s, the permissible 

combinations of gait and leg parameters for which constraints (2-90), (2-100) were valid decreased until 

convergence, see Figure 4-2. The maximum horizontal velocity reached for the knee backward (KB) 

configuration was 0.48 m/s, whereas for the knee forward (KF) configuration was 0.54 m/s. The 



 
56/142 

parameters for which the maximum velocities were reached are shown in Table 4-4. For the optimal 

parameters for both configurations, the resulting bounding movement is shown in Figure 4-3 and the 

corresponding to the motion CoM trajectories are shown in Figure 4-4. It is obvious that the movement 

in the y  and   directions is periodical in one stride and that the robot runs with a steady net horizontal  

velocity ( x  direction), as predicted from the form of the horizontal and vertical forces , ,x iF ,y iF  and the 

optimization of the objective function (3-2). 

 

Table 4-3. Bounds and discretization steps of the parametric search for the bounding gait. 

Parameter Lower Bound Upper Bound Discr. Step 

(0)x [m/s] 0.20 1.00 variable 

(0)y [m]  0.45 0.85 0.05 

fxa   0.00 0.60 0.10 

T  [s] 0.20 0.60 0.05 

k  [N/m] 1250 5000 1250 

   1.00 1.10 0.025 

1l [m]  0.10 max 20,lbl l   0.01 

20l [m]  0.10 max 1,lbl l   0.01 
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Figure 4-2. Evolution of parameters with horizontal bounding velocity for the knee backward 
(KB) and the knee forward (KF) configurations. 
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Table 4-4. Optimal parameters for maximum bounding velocity per configuration. 

Config. (0) [m]y  fxa   [s]T   [m]1l   [m]20l   [N / m]k   [mm]ind   [mm]outd  

KB 0.55 0.10 0.30 0.36 0.23 3750 26 28 

KF 0.50 0.10 0.30 0.30 0.24 3750 26 28 

 

0% 25% 50% 75% 100%

time [% stride]

0% 25% 50% 75% 100%

time [% stride]
(a)

(b)  

Figure 4-3. Snapshots of the quadruped’s bounding motion for the optimal solutions in the 
(a) KB and the (b) KF configurations. 

 

1

1.1

1.2

0.45

0.5

0.55

.

KB Bound

KF Bound

0.45

0.5

0.55

-0.2

0

0.2

.

0 50 100

time [% stride]

-0.2

0

0.2

0 50 100

time [% stride]

-5

0

5

.

 

Figure 4-4. Robot body CoM trajectories for bounding with the optimal solutions in the KB 
and KF configurations. 

It can be observed that for the KB and KF configurations, the proximal leg segment of the optimal 

legs is slightly larger than the distal, and the total length of both segments does not exceed the hip to 
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hip distance 2 0.6md  . For both knee configurations, the reason for which the robot cannot run any 

faster with the bounding gait is the violation of the max continuous torque constraint of (2-100); in the 

KB configuration this happens firstly for the torque of the hip joints of the front legs ( 1,2 , 1,3 ) and for 

the KF configuration for the torque of the knee joints of the front legs (
2,2
,
2,3

). For the KB configuration 

in maximum speed (0.48 m/s), 
1,2

 is increased mainly during the flight phase ( 1,2rms( ) 14.96 Nm  ), 

see Figure 4-5 (a). That is probably due to the reduced stride period (0.3 s) in which the max velocity 

is achieved and the increased output rotor inertia (
2

,~ n j r jI ) due to the high transmission ratio ( 53jn 

) of the motor; the leg joint should accelerate and decelerate a significant inertia in a short time. A further 

increase in the horizontal velocity (see direction of arrows) leads to an overall increase in torque 

requirement, thus exceeding the maximum permissible continuous torque. For the case of the KF 

configuration in maximum speed (0.54 m/s), more demanding in torque 2,2  seems to be the stance 

phase ( 2,2rms( ) 14.93Nm  ), see Figure 4-5 (b). This is assumed to happen, due to the infavorable 

direction of the ground force exerted on the toe of the leg (Figure 4-3 at 75% of the stride). Also in this 

case, a further increase in horizontal velocity leads to an increase in torque requirement throughout the 

stride, due to which the max continuous permissible torque constraint is violated. 
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Figure 4-5. Effect of velocity increase on 2,1τ  and 2,2τ ; the colored area indicates the stance 

phase of each leg. 

4.4 The trotting gait 

The leg design methodology was also applied for the trotting gait depicted in Figure 4-6. The initial 

conditions for locomotion with the trotting gait were taken as (0) 1m,x  (0) 0m/s,y   (0) 0rad.   In 

contrast with the bounding gait, the pitching rate for locomotion with trotting remains relatively small 

[73], therefore the initial pitching rate for trotting was taken as (0) 0rad/s.   
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Figure 4-6. Gait graph of the trotting gait and respective touch down and take off time 
instants as a percentage of the stride period. 

The bounds of the parametric search conducted for the trotting gait were set through trial and error 

as shown in Table 4-5, ensuring that the optimal parameters found were not truncated by them. The 

discretization step for every parameter was chosen taking into account the magnitude of every 

parameter and the trade off between a rich parametric space and the duration of solution of the 

parametric search problem. 

Table 4-5. Bounds and discretization steps of the parametric search for the trotting gait. 

Parameter Lower Bound Upper Bound Discr. Step 

(0)x [m/s] 1.00 3.00 variable 

(0)y [m]  0.55 1.30 0.05 

fxa   0.10 0.70 0.10 

T  [s] 0.35 0.75 0.05 

k  [N/m] 1250 7500 1250 

   1.000 1.100 0.025 

1l [m]  0.10 max 20,lbl l   0.01 

20l [m]  0.10 max 1,lbl l   0.01 

The evolution of the permissible gait and leg parameters with increasing horizontal speed is shown 

in Figure 4-7. The serrated shape of the convergence curves indicates that some solution sets available 

in greater velocities do not respect some of the actuation constraints in lower velocities, for instance 

see Figure 4-7 for (0) 2.50m/sx   and (0) 2.51m/sx  . It was discovered that the actuation constraint 

that is marginally violated at 2.50 m/s is that of the continuous joint torque, due to a less favorable 

placement of the leg on the ground during stance phase, see Figure 4-8. Nevertheless, this serrated 

convergence behavior poses no problem as solution sets than are marginally acceptable in lower 

velocities, significantly bias actuation constraints in maximum horizontal velocities. 

The maximum velocity reached for trotting while respecting constraints (2-90), (2-100), was 2.90 

m/s for the knee backward configuration and 2.94 m/s for the knee forward configuration. The optimal 

parameters for which maximum velocities were reached for both configurations are shown in Table 4-6. 

The resulting trotting movement of the quadruped robot with the optimal sets of parameters for both 
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knee configurations is shown in Figure 4-9. In both cases, the robot trots periodically ( ,y   directions)  

with a steady overall horizontal velocity ( x  direction), see  Figure 4-10.  
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Figure 4-7. Evolution of parameters with horizontal trotting velocity for the knee backward 
(KB) and the knee forward (KF) configurations. 
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Figure 4-8. Knee torque requirement of a front left leg candidate solution at two successive 
running velocities. 
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The great difference between the maximum velocity in the bounding and the trotting gait is probably 

due to the much greater pitch observed in the former, compare pitch in figures Figure 4-4, Figure 4-10. 

With increased body pitch, the legs in contact with the ground receive the ground forces in a more 

crouched position, resulting in greater moment arms and joint torque requirements. Furthermore, the 

robot moves faster with a trotting rather with a bounding gait, as the passive dynamics of its body 

facilitate gaits with small pitch ratio. Chatzakos studied in [74] the role of the dimensionless body inertia 

* ,I  

 
*

2

b

b

I
I

m d
   (4-2) 

in the pitching rate of movement. He concluded that for 
* 1I  , the robot body rotates more easily than 

it translates, facilitating movements with large pitch ratios, as bounding. If on the other hand 
* 1I  , the 

translational movement of the robot body prevails over rotational, therefore gaits with small pitch ratio, 

as pronking or trotting, are more favorable. In the case studied here 
* 1I , thus to achieve the large 

pitch ratios necessary for the bounding gait, excessive effort from the legs’ motors is required. 

 
 

Table 4-6. Optimal parameters for maximum trotting velocity per configuration. 

Config. (0) [m]y  fxa   [s]T   [m]1l   [m]20l   [N / m]k   [mm]ind   [mm]outd  

KB 1.20 0.40 0.60 0.20 1.10 2500 23 25 

KF 1.25 0.40 0.60 0.20 1.16 2500 23 25 
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Figure 4-9. Snapshots of the quadruped’s trotting motion for the optimal solutions in the (a) 
KB and the (b) KF configuration. 
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Figure 4-10. Robot body CoM trajectories for trotting with the optimal solutions in the KB and 
KF configurations. 

The optimal leg solutions for both configurations have a really short proximal leg segment and a 

long distal leg segment with a soft spring, so that the total leg length is larger than twice the hip to hip 

distance, 2·2 1.2d m . With these legs, during stance most of the leg deflection is undertaken by the 

passive element, allowing the robot to withstand ground forces in a near singular configuration.  Having 

long legs, the quadruped can cover a larger distance in one stride, even for a large stride period. The 

short proximal leg segment keeps the heavy knee joint close to the robot body, thus reducing the total 

inertia of an overall long leg. Furthermore, having a small proximal segment 1l   and a long distal leg 

segment 20l , 1 20l l , the hip motor actuates on the total leg length 1 20 20l l l   and the knee motor 

acts on the segment with length 20l . As a result, the acceleration/deceleration of approximately the total 

leg is equally distributed to both motors.  Nevertheless, the proximal leg segment can’t get too small, 

or else it will be impossible for the leg’s toe to create the desired clearance from the ground.  

In any knee configuration, if the robot tries to trot in an even greater horizontal velocity, the max 

continuous torque constraint is violated. For the case of the KB configuration, this firstly happens as 

velocity increases at the hip joint of the HL leg (torque 1,1 ). At maximum horizontal velocity (2.90 m/s), 

the hip joint torque requirement is already demanding ( 1,1rms( ) 14.95 Nm  ), mainly due to the task of 

swinging a long leg, see Figure 4-11 (a). By further increasing the forward velocity, the overall torque 

1,1( )rms   exceeds the permissible continuous torque value. For the KF configuration, the max 

permissible continuous torque constraint is firstly violated at the knee joint of the hind left leg (torque 

2,1 ) . At maximum horizontal velocity, the knee joint torque requires much torque to support the long 

distal segment 20l  during the stance phase and to swing it during the flight phase ( 2,1rms( ) 14.92 Nm 
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), see Figure 4-11 (b). With increasing horizontal velocity, a torque increase mainly throughout stance 

phase leads to a non permissible 2,1rms( ) . 
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Figure 4-11. Effect of velocity increase on torques 1,1τ  and 2,1τ . 

4.5 Comparison with the popular equally segmented leg 

So far, the optimal parameters that achieve the overall maximum horizontal velocity are these of the 

trotting gait in a KF configuration, see Table 4-6. The legs to achieve this velocity are long 1 20( 4 ),l l d   

with a short proximal leg segment, a long distal leg segment 1 20( )l l and a soft spring. This leg 

structure is much different that the current most popular two-segment leg solution used by the current 

version of NTUA Laelaps, the StarlETH, the HyQ and many of Boston Dynamics’ robots; an equally 

segmented leg ( 1 20l l ), with its total leg length being approximately equal to the hip to hip distance (

1 20 2l l d  ). In this Section, these two leg structures are evaluated using literature elements and 

results of the proposed method. 

There are some advantages of having an equally two-segment leg with a total length of 

1 20 2l l d  . Firstly, by equal segmentation ( 1 20l l ) the workspace of the leg is maximized. By 

substituting in (2-78) 1 2,il l l   the workspace is expanded from an annular to a circular area with 

radius 2 ,l thus maximizing the workspace. This property is usefull for robots targeted to perform stunts 

like moving with crouched legs under obstacles or evaluating alternative control schemes, where the 

clearance of the leg is not predetermined. Secondly, for an equally segmented two-segment leg the 

manipulability ellipsoid is maximized, [75]. The manipulability ellipsoid is a Jacobian based measure of 

manibulability, traditionally used for design and motion planning of manipulators. It shows the area in 

which the end effector (toe) can move with specific velocities or exert specific forces, with unit leg joint 

angular velocities or torques respectively. Furthermore, having a total leg length approximately equal 

to the hip to hip distance instead of a much larger leg improves stability against perturbations; given a 
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force perturbation on its body, it is much easier for a top heavy robot to collapse than for one with short 

legs. 

Although the equally segmented leg poses some advantages that justify its use by many research 

teams, the proposed method and results focus on the ability of a quadruped robot to run fast given 

certain actuation constraints; to achieve this, it may be required for the workspace or the manipulability 

of the leg to be reduced. To prove this, the set of parameters most close to the popular equally 

segmented leg that could achieve maximum velocity while respecting constraints (2-90), (2-100) is 

brought forward, see Table 4-7.  

Table 4-7. Set of parameters maximizing the performance of the equally segmented leg. 

Config. (0) [m]y  fxa   [s]T   [m]1l   [m]20l   [N / m]k   [mm]ind   [mm]outd  

KF 0.55 0.60 0.60 0.32 0.33 2500 23 25 

The maximum velocity that can be achieved with this leg by trotting in the KF configuration is 

(0) 2.03m/sx  , approximately 0.9m/s  less than that achieved with the optimal KF leg solution found 

in Section 4.4. This probably happens for two reasons. Firstly, the torque requirement is more equally 

distributed to the hip and the knee joint motors of the long inequally segmented leg (LISL), than to the 

short equally segmented leg (SESL). As explained in Section 4.4, if 1 20l l then both motors cooperate 

to accelerate and decelerate the total leg. If  1 20l l on the other hand, the hip motor acts on the whole 

leg length 1 20l l , while the knee motor acts on the distal leg segment 20l . As a result, it is expected 

the hip joint motor of the SESL leg to be more loaded than the knee joint motor. Indeed, at maximum 

velocity (0) 2.03m/s,x   the rms torque value of the HL SESL leg hip joint motor in one stride was found 

to be larger 1,1(rms( ) 14.90 Nm)   than the rms torque value of the knee joint 2,1(rms( ) 12.92 Nm) 

at the same time. As expected, the rms torque values were more equally distributed to the leg joints of 

LISL, i.e. 1,1rms( ) 14.53Nm  for the hip and 2,1rms( ) 14.92 Nm   for the knee joint at maximum 

velocity (0) 2.94m/s.x   Secondly, longer legs result in longer stride length  . As a result, for the same 

period T , the mean velocity /v T  is expected to be larger. We assume that for both leg solutions 

LISL and SESL, the robot ran with the same period (T 0.6s)  and the same leg stiffness 

( 2500 N/m)k   to exploit passive dynamics throughout stance phase. Indeed, for two legs in contact 

with the ground in each stance phase the quadruped robot can be simplified in a system of a mass 

42kgm   and two springs in parallel 2 5000 N/m.tk k   Then the free oscillation period of the 

system is found as, 

 2 0.58sn

t

m
T

k
    (4-3) 

which is really close to the value of the stride period, 0.6s.T    

4.6 Results in a nutshell 

In this chapter, the leg design methodology was implemented for a robot with the body inertial 

characteristics of NTUA Laelaps, two identical DC motors acting on the hip and the knee joints of each 
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leg, for legs either in the KB or in the KF configuration, both for the bounding and the trotting gaits. The 

results showed that the quadruped robot could run faster with the trotting gait, with long legs that have 

a much shorter proximal leg segment in comparison with the distal leg segment. Furthermore it was 

shown that with this long leg the robot could move faster by trotting in comparison with the popular two-

segment leg that has a total length approximately equal to the hip separation and segments of equal 

length. In all cases, the reason the robot could not move any faster was the violation of the maximum 

continuous torque constraint. To facilitate comparison, the results for each case are summarized in 

Table 4-8. 

Table 4-8. Optimal leg attributes and max rms joint torque requirement for achieving the 
maximum velocity in every examined case. 

Gait Leg 

Config. 

l1 

[m] 

l20 

[m] 

1 20( )

2

l + l

d
  

k 

[N/m] 

,
,

j i
j i

max(rms( ))τ  

[Nm] 

max( (0))x  

[m/s] 

Bound KB 0.36 0.23 0.98 3750 14.96 0.48 

Bound KF 0.30 0.24 0.90 3750 14.93 0.54 

Trot KB 0.2 1.10 2.17 2500 14.95 2.90 

Trot KF 0.2 1.16 2.27 2500 14.92 2.94 

Trot KF 0.32 0.33 1.08 2500 14.90 2.03 

4.7 Validation of the optimal leg 

The leg design method and its results presented in the previous sections are based upon certain 

assumptions, concerning the profile of the ground forces and the extent to which the CoM of the system 

is affected by the movement of the legs. The optimal legs were found for ideal passive elements with 

no damping and for steady state running without net acceleration in each stride. The long size of the 

optimal leg for the trotting gait, results in a top heavy design that causes stability concerns. To this end, 

an independent to the proposed method validation strategy is considered necessary for the validation 

of the results. The proposed validation strategy consists of more realistic physical descriptions for the 

quadruped robot and the ground, and a control scheme for quadrupedal trotting. The leg evaluated is 

the  optimal leg for trotting in the KF configuration, for which the overall maximum running velocity  of

2.94m/s  is achieved.  

The physical description of the quadruped robot was modified to also include damping b  in the 

prismatic compliant elements. The interaction of the leg with the ground was modeled as a point contact. 

Each time the toe of a leg collides with the ground a normal and a frictional contact force are exerted to 

the toe of the leg. The normal component of the ground force nF  is described by the continuous, non - 

sticking Hunt - Crossley impact model [76], [77], 

 n g y g y yF k b        (4-4) 

where y  and y  are the local identation of the ground and its rate respectively, 1.5   is the Hertzian 

coefficient for non-adhesive contact, gk  is the ground stiffness coefficient depending on the materials 

in contact and gb  is the ground damping coefficient calculated as a function of stiffness, 
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 1.5g a gb c k   (4-5) 

The frictional force component consists of a static friction term and an exponential term describing the 

friction - velocity curve when slippage occurs [78], 

 
/

sgn( ) ,

sgn( ) ( ( )e ),t s

t n t e

t x u

t n c c t e

x F x u
F

x F x u



  


 
 

   

  (4-6) 

where c  is the kinetic friction coefficient,   is the static friction coefficient, tx  is the tangential to the 

toe velocity, su  is the Stribeck velocity, nF  the normal force of the Hunt - Crossley impact model and 

eu  is the toe velocity threshold for which slippage occurs. Trotting was accomplished by applying to the 

system a P-V control scheme with an elliptical reference toe trajectory, [71]. 

The trotting experiment was conducted on stiff ground with 400,000 N/m,gk    

120,000 Ns/mgb  , [79]. The spring damping coefficient was considered equal to 0.3Ns/mlb  . The 

kinematic friction coefficient was set to 0.8c  , the static coefficient to 0.65  , the threshold velocity 

to 
310 m/seu   and the Stribeck velocity to 

210 m/s.su   By properly tuning the gains of the controller 

,pk
vk  to initial values and gradually increasing pk , a stable accelerating movement was achieved with 

the optimal leg in the KF configuration 1( 0.2 m,l   20 1.16m,l  2500k  N/m) , see Figure 4-12. 

 

Figure 4-12. Top to bottom: Evolution of robot forward velocity, HR leg joint torques and 
angular velocities with time for the validation experiment of the optimal leg; the gray 

backround denotes stance phases. 

The optimal leg solution performed well in this realistic trotting experiment, as the robot succeeded 

in running stably (without collapsing), while respecting the max short term torque constraint 

,( 45N/m, 1,2)st j j   for any joint motor of all legs for the total duration of the experiment. The 

maximum angular velocity constraint max,( 11.21rad/s, 1,2)j j   was also respected for the whole 
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duration of the experiment for the knee joint motor and up to a forward velocity of approximately 2m/s  

for the hip joint. Depending on the values of ( , )p vk k  the toe in flight phase performed an ellipsoid like 

movement with clearance larger than that in the application of Section 4.4  ( 0.05m)eb  , thus probably 

leading to an increase in hip joint angular velocity requirement for lower forward velocity. Finally, due 

to the incurred losses in the leg springs and the ground and the accelerating movement of the robot, 

the rms torque requirement was increased for most motors.  
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5 Case studies aimed to improve the running 
performance of NTUA Laelaps Equation Chapter 5 Section 1 

5.1 Introduction 

In the previous chapter general results where presented concerning the optimal gait and leg 

configuration and the respective gait and leg parameters for which maximum locomotion velocity could 

be reached. For convenience two  identical motors were considered to act on the actuated joints of 

each leg. The overall maximum horizontal velocity was reached for the trotting gait in the KF 

configuration. In this chapter, using this gait and knee configuration, we aim to find out the optimal leg 

and gait parameters for maximum locomotion velocity, focusing on the existing actuation system of the 

NTUA Laelaps quadruped. This consists of two different DC motors, a brushed and a brushless, each 

introducing its own actuation constraints, see Table 5-1. By investigating alternative scenarios in which 

the brushed and the brushless motors act on the hip and the knee joints alternately, the motor - leg joint 

correspondence is figured out for maximizing the quadruped robot’s running performance. As the NTUA 

Laelaps is not only intended for sagittal plane running (e.g. on a treadmill, where the rolling motion is 

fixed), a stability criterion is introduced for movement in the frontal plane and optimal results respecting 

this criterion are presented. Finally, the role of a supplementary reduction ratio is studied in the running 

performance of the NTUA Laelaps. 

Table 5-1. Properties of the available NTUA Laelaps motors. 

Type Rotor inertia  

[kg m2] 

Reduction 

ratio 

Max cont. 

torque 

[N m] 

Max short 

term torque 

[N m] 

Max angular 

velocity 

[rad/s] 

RE 50 200 W 

(Brushed) 

542·10-7 53:1 14.96 45 11.21 

RE 45 250 W 

(Brushless) 

209·10-7 43:1 10.6 28 14.66 

5.2 Brushed motor acting on the hip joint 

In the first case study, the brushed motor is considered acting on the hip joint and the brushless motor 

on the knee joint. This scenario is introduced to the physical system description, by tuning properly the 

corresponding actuation related parameters, see Table 5-2. The rest of the model parameters and the 

initial conditions for the simulations conducted in this section remain the same as in Section 4.4. 

Table 5-2. Actuation parameters for the motors acting on the hip and knee joints. 

j  r, jI [kg m2] jn  ct,jτ  [N m] st, jτ [N m] max,jθ  [rad/s] 

1 542·10-7 53 14.96 45 11.21 

2 209·10-7 43 10.6 28 14.66 
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The boundaries of the parametric search were also in this case properly tuned in order to avoid 

truncation of an optimal set of solutions. Apart from the boundaries displayed in Table 5-3, the rest were 

kept the same as those presented in Table 4-5. 

Table 5-3. Tuned boundaries for the parametric search of Section 5.2. 

Parameter Lower Bound Upper Bound Discr. Step 

(0)x [m/s] 2.00 2.80 variable 

(0)y [m]  0.8 1.30 0.05 

k  [N/m] 1250 5000 1250 

The maximum velocity for which constraints (2-90), (2-100) were respected is 2.585 m/s for the 

leg and gait parameters shown in Table 5-4. In maximum velocity, the angular velocity of the hip joints 

is considerably increased, reaching 95.46 % of the permissible at the hip joint of the FR leg. The rms 

torque of the knee joints is also close to the permissible continuous torque, with a value of 98.63 % of 

the permissible observed in the knee joint of the FL leg. If the horizontal velocity is further increased, 

the maximum continuous torque constraint is violated for the knee joint of the FL leg, due to a torque 

requirement increase oberverd mainly during the stance phase of the leg, see Figure 5-1. 

Table 5-4. Set of optimal parameters for maximum velocity trotting for the brushed motor 
acting on the hip joint. 

Config. (0) [m]y  fxa   [s]T   [m]1l   [m]20l   [N / m]k   [mm]ind   [mm]outd  

KF 1.15 0.40 0.65 0.18 1.07 2500 23 25 

 

0 10 20 30 40 50 60 70 80 90 100

time [% stride]

-15

-10

-5

0

5

10

15

20

25

x(0)=2.585 m/s

x(0)=2.586 m/s
.

.

30

-20

-25

-30

28 Nm

-28 Nm

10.6 Nm

rms(τ
2,2
) > τ

ct,2

|τ2,2| > τst,2

τct,2

 

 Figure 5-1. Effect of velocity increase on hip joint torque 2,2τ .  
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The observed increased requirement of the hip joints for angular velocity and the knee joints for rms 

torque for legs in the KF configuration is consistent with the results presented in Sections 4.3 - 4.4; in 

these cases also, max velocity running in the KF configuration required higher rms torque on the knee 

joints. This observation comes in contradiction with the brushed motor actuating the hip joint. The 

brushed motor provides higher continuous and short term torque than the brushless, and lower angular 

velocity, see Table 5-1. Consequently, there is a strong indication that by alterating the position of the 

brushed and the brushless motors, the robot may achieve an even greater horizontal velocity. This 

assumption is checked in the following section. 

5.3 Brushed motor acting on the knee joint 

The brushed motor in this case is considered acting on the knee joint and the brussless motor on the 

hip joint. This is introduced in the description of the physical system by changing the actuation 

parameters accordingly, see Table 5-5. The parametric set boundaries that were tuned differently in 

comparison with Table 4-5 are presented in Table 5-6. 

Table 5-5. Actuation parameters for the motors acting on the hip and knee joints. 

j  r, jI [kg m2] jn  ct,jτ  [N m] st, jτ [N m] max,jθ  [rad/s] 

1 209·10-7 43 10.6 28 14.66 

2 542·10-7 53 14.96 45 11.21 

Table 5-6. Tuned boundaries for the parametric search of Section 5.3. 

Parameter Lower Bound Upper Bound Discr. Step 

(0)x [m/s] 2.00 3.60 variable 

(0)y [m]  0.90 1.40 0.05 

T  [s] 0.45 0.90 0.05 

k  [N/m] 1250 5000 1250 

   1.000 1.125 0.025 

The maximum horizontal velocity achieved is 3.039 m/s, greater than the one achieved in the case 

in which the brushed motor was acting on the hip joint, as expected from the discussion in the previous 

section. The set of optimal leg and gait parameters for which the maximum velocity is reached is shown 

in Table 5-7. In maximum trotting velocity, the requirement for hip joint angular velocity is significantly 

increased, reaching a fraction of 98.02 % the maximum permissible angular velocity max,2  for the hip 

joint of the FR leg. The requirement in knee joint rms torque is even more considerable, being at 99.79% 

of the maximum continuous permissible torque ,2ct  for the knee joint of the FL leg. If the robot runs at 

a larger horizontal velocity, the maximum continuous torque constraint is violated for the motor actuating 

on the FL knee joint, due to an increase in torque requirement during stance phase, see Figure 5-2. 
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Table 5-7. Set of optimal parameters for maximum velocity trotting for the brushed motor 
acting on the hip joint. 

Config. (0) [m]y  fxa   [s]T   [m]1l   [m]20l   [N / m]k   [mm]ind   [mm]outd  

KF 1.25 0.40 0.6 0.14 1.21 2500 23 25 
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 Figure 5-2. Effect of velocity increase on hip joint torque 2,2τ .  

5.4 Extending stability in the frontal plane 

All the optimal solutions for performance trotting presented so far consist of long legs 1 20( 4 )l l d  . 

Large horizontal velocities can be achieved with long legs, as with these large stride length is achieved. 

Although long legs introduce top heaviness to the system of the quadruped robot, in Section 4.7 it was 

shown that with an appropriate control scheme, dynamic stability can be achieved even for top heavy 

robots, for sagittal plane trotting (planar movement). This ensures that the quadruped robot will be able 

to achieve performance trotting, given that the rolling motion of its body is insignificant, as for instance 

in the case where the robot runs on a treadmill with a mechanism fixing its rolling motion (e.g. a boom 

or a x-y-θ stage). In the literature, the fastest running performances of quadruped robots have been 

achieved for in - lab treadmill running, see Figure 5-3. Nevertheless, there are many examples of robots 

that have succeeded in no roll treadmill running but have failed in out of laboratory running (an example 

of the FastRunner robot is shown in [80]); this is probably due to frontal plane instability. Top heavy 

robot designs amplify frontal plane instability, as small perturbating forces on the robot’s body result in 

large tipover moments due to the high position of the CoM. In the following analysis, the relationship 
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between the robot’s CoM height and the tipover stability is studied in the frontal plane, utilizing standard 

tipover stability principles introduced in [81]. By assuming a perturbation force and for the geometry of 

the NTUA Laelaps, the maximum permissible height of running is obtained. Introducing this constraint 

in the method, the optimal parameters are found, for which the robot runs in maximum velocity in the 

sagittal plane, while on the same time tipover stability is ensured in the frontal plane. 

 

Figure 5-3. Snapshots of the (a) MIT Cheetah and (b) Boston Dynamics’ Cheetah robots high 
speed running on treadmills (videos available in [82], [83]) ; the red arrows indicate support 

mechanisms that fix rolling motion. 

For the quadruped robot depicted in Figure 5-4 (a), let totF  be the total force exerted on the CoM 

of the robot, (AC) be the line segment connecting the toe of the left leg with the CoM of the robot, 1  

be the angle between the total force vector and (AC) and 1d  be the moment arm between the total 

force and the toe - ground contact point A. Then, as long as 1 0   stability from tipover is ensured. If 

on the other hand 1 0  , the moment of the force totF  with respect to the contact point A tends to tip 

the robot in the counterclockwise direction. We assume that the total force totF , consists of a horizontal 

perturbation force component pF  and the robot’s weight component ,wF see Figure 5-4 (b). We also 

assume that a local perturbation in the terrain’s geometry creates a small slope corresponding to  .  

Let y  be the distance of the robot’s CoM from the ground and w  be the half hip separation in the frontal 

plane. Then from Figure 5-4 (b), 
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By demanding that 1 0  then from (5-3), 
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Solving Equation (5-4) to ,y   
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Figure 5-4. (a) Total force applied on the CoM of the quadruped robot in the frontal plane and 
(b) Correlation of the robot’s geometry with the forces exerted on its CoM. 

 
1/ tan(tan ( ) )

p

w

F
y w

F


    (5-5) 

Equation (5-5) states that to achieve tipover stability in the frontal plane, the CoM height of the 

robot y  should be upperly bound, depending on the frontal plane half hip separation distance w  of the 

robot, the robot’s weight wF , the perturbation force pF  and the slope of the terrain .   

Assuming a perturbation force of 10 % the robot’s body weight and a local terrain slope of 5o
, for 

the frontal half hip separation distance of NTUA Laelaps 0.15mw  , the permissible CoM heights in 

which the robot should run to avoid tipover instabilities should be less or equal than 0.8 m. For the 

actuation system of Table 5-5 and tuning properly the upper and lower bounds of the parametric search 

(Table 5-8), optimal parameters are sought for trotting in maximum velocity, for a maximum running 

height of 0.8 m. The maximum velocity that can be achieved by trotting in this state is 2.817 m/s for the 

parameters shown in Table 5-9. The resulting leg morphology and motion of the robot in one stride is 

shown in Figure 5-5. Although the maxiumum velocity achieved is 0.22 m/s (~7%) less than the velocity 

achieved with the leg of Section 5.3, with the much shorter leg (40 % shorter) tipover stability is ensured 

in the frontal plane.  

Table 5-8. Upper and lower bounds of parametric search of Section 5.4. 

Parameter Lower Bound Upper Bound Discr. Step 

(0)x [m/s] 2.00 2.90 variable 

(0)y [m]  0.5 0.8 0.05 

T  [s] 0.35 0.85 0.05 

k [N/m] 1250 5000 1250 

   1.000 1.125 0.025 
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Table 5-9. Optimall parameters for maximum velocity trotting, for (0) 0.8m.y   

Config. (0) [m]y  fxa   [s]T   [m]1l   [m]20l   [N / m]k   [mm]ind   [mm]outd  

KF 0.7 0.60 0.55 0.20 0.61 2500 23 25 

 

0% 25% 50% 75% 100%

[% stride]  

Figure 5-5. Snapshots of the trotting quadruped robot with the optimal legs for tipover 
stability in the frontal plane. 

In maximum velocity, the maximum rms torque requirement of the hip joints is at 93.07 % of the 

maximum permissible continuous hip torque and the maximum rms torque of the knee joints is at 98.52 

% of the maximum permissible continuous knee torque. The requirement in hip joint angular velocity is 

also increased, with a maximum observed reaching 99.40 % of the maximum permissible. A further 

increase in horizontal velocity cannot be achieved with the optimal leg solution, as the required increase 

in stride length results in footfalls out of the leg’s workspace. 

5.5 Introducing a supplementary reduction ratio 

For many of the evaluated sets of solutions of the previous sections, a higher value of horizontal velocity 

could not be reached without violating some of the actuation constraints. In this section, it is investigated 

if by tuning any of the reduction ratios ,jn  the running velocity of the quadruped robot could be further 

increased. The issue is not straightforward, as by introducing a supplementary reduction ratio ,j en  (for 

instance using a belt transmission mechanism) to the gearbox reduction ratio jn  (resulting in a total 

reduction of ,j e jn n ), the maximum permissible torques and angular velocity and the rotor inertia scale 

as, 

 
, , ,

, , ,

ct j j e ct j

st j j e st j
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 
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 
  (5-6) 

 max, max, ,/j j j en     (5-7) 

 
2 2

, , ,( )r j j e j r jI n n I    (5-8) 

Note that while torques are multiplied by ,j en , the rotor inertia is multiplied by 
2

,j en . As the motion 

studied is highly dynamic with significant joint angular acceleration and rotor inertia at the exit of the 

gearbox 
2

, 1 2( 43, 53)j r jn I n n  , a potential increase in torque constraints by ,j en  may lead to an overall 

increase in torque requirement that scales by 
2

,j en , hence leading to a decrease in the performance of 

the robot. To investigate the role of a supplementary reduction ratio in the maximum running velocity of 

the robot, two experiments are conducted. Firstly, for the parameter space of Section 5.4, a 
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supplementary reduction ratio of (48 : 26)   is introduced in both motors, to evaluate the hypothesis that 

an extra reduction ratio worsens the maximum achievable velocity of the robot. Note that (48 : 26)  is 

the extra reduction ratio the previous version of the NTUA Laelaps quadruped had for every actuating 

motor. Then to determine if the increase or the decrease of the reduction ratio leads to a better running 

velocity, various combinations of supplementary reductions are sought, with , 1j en   or ,0 1j en  for 

the parameter space of Section 5.4. 

With a supplementary reduction ratio of (48 : 26)  introduced to both motors, the resulting actuation 

parameters are shown in Table 5-10.  The maximum velocity that could be reached was 2.083 m/s for  

 the parameter set shown in Table 5-11. For a larger velocity, both the continuous torque and the 

maximum angular velocity constraints at the knee joints were violated. This is due to the increase of 

torque requirement due to the increased rotor inertia and the decrease of the maximum angular velocity 

constraint, incurred by the supplementary reduction ratio (48 : 26).  

Table 5-10. Actuation parameters at the exit of the extra reduction with , (48 : 26).j en   

j  
r, jI [kg m2] 

ct,jτ  [N m] 
st, jτ [N m] 

max,jθ  [rad/s] 

1 386·10-7 19.56 51.69 7.94 

2 1001·10-7 27.62 83.08 6.07 

Table 5-11. Set of optimal parameters for , (48 : 26).j en   

Config. (0) [m]y  fxa   [s]T   [m]1l   [m]20l   [N / m]k   [mm]ind   [mm]outd  

KF 0.80 0.40 0.60 0.27 0.65 2500 23 25 

The non linear dependence of the rotor’s inertia in the exit of the extra reduction 
r, jI , on the extra 

reduction ratio , ,j en creates the need for a more systematic approach. To better understand the 

relationship between the extra reduction ratio ,j en  and the maximum achievable horizontal velocity, the 

method was implemented for various reduction ratios in the vicinity of the nominal reduction ( , 1,j en 

1 43,n  2 53n  ). The candidate values for 1,en  were taken in the interval {0.6,0.8,0.9,1.0,1.2}  and 

those for 2,en  in the interval {0.8,1.0,1.2}.  The maximum velocities found for each of the above 15 

combinations and the corresponding optimal set of parameters are shown in Table 5-12.  

It is obvious that the maximum achievable velocity is found for the sets of 1, 2,( , ) (0.8,1)e en n   or 

(0.9,1)  or (1,1) , see also Figure 5-6. For combinations of extra reduction ratios near 1, 1.2en   or 

2, 1.2en  , robot velocities less than 2.760 m/s  could be achieved, with the minimum value found (

2.760 m/s ) for 1, 2,( , )e en n  (1.2,0.8).  For combinations of smaller reduction ratios, velocities from 

2.756  to 2.817 m/s  could be achieved. 

The results from this parametric search provide strong indications that maximum velocities can be 

achieved for total reduction ratios for the motors acting on the hip and the knee joints respectively, 

  1, 1 (0.90 0.15)43 38.70 6.45en n       (5-9) 

 2, 2 (1.00 0.05)53 53 2.65en n       (5-10) 
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In any case, the reduction ratios of the actuating motors should not further increase, as this would 

drastically limit the maximum horizontal velocity the quadruped robot could reach. 

Table 5-12. Optimal set of parameters and velocity for various combinations of , .1,e 2,en n  

a / a   1,en   2,en  max( )

[m / s]

x
 

(0)

[m]

y
 fxa  

[s]

T
 

[m]

1l  
[m]

20l
 

[N / m]

k
 

[mm]

ind
 

[mm]

outd
 

1 0.6 0.8 2.775 0.70 0.6 0.55 0.11 0.70 2500 23 25 

2 0.6 1.0 2.775 0.70 0.6 0.55 0.11 0.70 2500 23 25 

3 0.6 1.2 2.737 0.70 0.6 0.55 0.12 0.69 2500 23 25 

4 0.8 0.8 2.756 0.70 0.6 0.55 0.13 0.68 2500 23 25 

5 0.8 1.0 2.817 0.70 0.6 0.55 0.15 0.66 2500 23 25 

6 0.8 1.2 2.748 0.70 0.6 0.55 0.13 0.68 2500 23 25 

7 0.9 0.8 2.761 0.70 0.6 0.55 0.16 0.65 2500 23 25 

8 0.9 1.0 2.817 0.70 0.6 0.55 0.18 0.63 2500 23 25 

9 0.9 1.2 2.755 0.70 0.6 0.55 0.16 0.65 2500 23 25 

10 1.0 0.8 2.749 0.70 0.6 0.55 0.18 0.63 2500 23 25 

11 1.0 1.0 2.817 0.70 0.6 0.55 0.20 0.61 2500 23 25 

12 1.0 1.2 2.658 0.80 0.7 0.80 0.17 0.84 1250 23 25 

13 1.2 0.8 2.616 0.65 0.6 0.55 0.27 0.49 2500 23 25 

14 1.2 1.0 2.716 0.70 0.8 0.80 0.23 0.68 1250 23 25 

15 1.2 1.2 2.735 0.75 0.8 0.85 0.22 0.74 1250 26 28 

 

 

Figure 5-6. Maximum horizontal velocity as a function of the extra reduction ratios 1,en , 2,en . 
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6 Conclusions and Future Work  

6.1 Conclusions 

The work conducted in this thesis was inspired by the potential of the quadruped robots to improve the 

life quality in modern societies. Their great advantage in rugged terrain compared to wheeled or tracked 

vehicles, could be exploited in saving human lives in search and rescue missions or improve productivity 

and safety in agricultural or industrial environment. Due to the challenging nature of the quadrupedal 

locomotion, many issues concerning the design of the quadruped robot and escpecially the leg design 

are still considered unresolved in existing research literature.  

In an effort to enrich current research, a leg design methodology was devised intended to improve 

and maximize the running performance of a quadruped. The proposed leg design methodology, took 

into account the estimated mass and inertia of the robot, the candidate leg architecture (3 dof leg), the 

desired materials for the leg components, the available actuation system and and estimated terrain 

parameters and provided design (leg parameters) and control (gait parameters) indications for 

maximizing running performance.  

Utilizing this method, for robot parameters close to these of the NTUA Laelaps, the running 

performance of the robot for alternative gaits, knee configurations, acting joints for the available motors, 

and reduction ratios was optimized and the various results were compared. Although the robot physical 

descriptions used were expressed in the sagittal plane, introducing a frontal plane tipover stability 

criterion, solutions were also found capable for fast, stable motion against terrain or force perturbations 

in the frontal plane. To understand to which end the proposed results are reasonable, a set of optimal 

solutions was evaluated in an independent platform consisting of more realistic physical descriptions 

and controllers and the robot’s running performance was validated. 

The results showed that for the NTUA Laelaps robot body and actuation system, the maximum 

running performance could be achieved with the trotting gait for legs in the knee forward configuration. 

For this gait and configuration, it was found which of the two available motors should actuate on which 

leg joint, thus succeeding a maximum running velocity of 3.039 m/s. Making reasonable assumptions 

for perturbations in the terrain’s slope and for external perturbation forces and by demanding frontal 

plane stability, the robot was proposed to run with a 40% shorter leg, reducing thus the maximum 

running velocity only by 7%. Investigating the effect of introducing a supplementary reduction ratio, the 

reduction ratio combinations that maximized running velocity were found and it was concluded that by 

further increasing the motors’ reduction ratios, the running performance of the robot is more probable 

to deteriorate.  

The previous version of the NTUA Laelaps has legs with equal segments and with a total length 

equal to the hip separation distance, made of duralumin and steel components. The actuators system 

is so arranged, that the brushed DC motor acts on the hip joint and the brushless on the knee joint, both 

having an additional reduction ratio of (48:26). The results of this thesis indicated that by altering some 

of the attributes of the existing system the running performance of the robot can be drastically increased. 
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To achieve a large running velocity the robot should move with a trotting gait instead of a bounding gait. 

The duralumin and steel components should be replaced by carbon fiber tubes where possible to 

reduce the leg weight and inertia. The total leg length should be greater than the hip separation distance 

to achieve a larger stride length but in the same time adequately short to facilitate frontal plane stability. 

The proximal to the body leg segment should be shorter to the distal leg segment for a better distribution 

of the torque requirement between the hip and the knee joint. Morever, it was shown that with the 

brushed motor acting on the knee joint and the brushless on the hip joint the robot can move faster in 

comparison with the existing arrangement. Finally, the supplementary reduction ratio should be kept 

close to one, as for a larger reduction ratio the rotor inertia and the torque requirement increase to a 

much larger scale than the maximum permissible torque. 

6.2 Future work 

In the presented thesis a leg design methodology was devised that given the inertial properties of the 

robot, the leg architecture and leg materials, the running gait, ground properties and the actuation 

system, optimized the running performance of the robot by proper selection of certain leg parameters 

(length, proportions, cross sectional area and stiffness) and gait parameters (foot placement, CoM 

height of running, amplitude of horizontal force, stride period). Future work can focus on studying the 

effect that alternative inputs can have on the robot performance predicted by the employed method and 

on further validating the results through leg construction and experimentation. If the results are 

experimentally validated, the method could be extended also to other tasks instead of running through 

substraction. 

An interesting issue related to the inputs of the method is the DF of the selected gaits. For a running 

velocity greater than a threshold, quadrupedal animals chose to run in gaits with full flight phases, i.e. 

phases where no leg is in contact with the ground (DF<0.5). For instance, cheetahs and dogs run in 

maximum speed in duty factors less than 0.2 [63]. For the results presented in this thesis, at least two 

legs are in contact with the ground at every time instant (DF=0.5). By further decreasing the DF of each 

leg during the gait, the magnitude of the sinusoidal impulsive force exerted on each leg would increase 

(see eq. (2-53)), and so would the cumulative time the leg spends in flight. As a result, the leg joint 

torque requirements during stance phase would increase, but the required accelerations, angular 

velocities and torques throughout flight phase would probably decrease (same joint trajectories during 

full flight for longer flight phase duration). This could potentially lead to a better distribution of joint torque 

requirements throughout the stride, leading to a better running performance. Another opportunity 

presented by full flight phases is the disengagement of the stride length from the leg length. This 

attribute could probably help offset the trade-off between sagittal plane tipover stability and maximum 

running velocity. 

Another issue that should be addressed is the costruction of the legs. The leg joints should be 

properly designed to withstand the exerted stresses, while respecting the weight budget set in this 

thesis. Carbon fiber tubes with the desired density and inner diameter/outer diameter combination 
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should be used, and the leg segment lengths should be taken as prescribed by the results of this thesis. 

A proper mechanism for the prismatic degree of freedom should be considered, that can accommodate 

the compression spring of the desired stiffness. Kevlar ropes could be used as a leightweight solution 

to transmit power from the motor to the knee joint. If a belt transmission mechanism is used for power 

transmission between the motors and the joints, the optimal combinations of extra transmission ratios 

,j en  should be taken into consideration. 

After the legs are constructed, they should be mounted on the robot’s body and running 

experiments should be conducted. The control scheme utilized for the running task should take into 

consideration the proposed gait, apex running height (0)y  and positioning of the robot’s legs ix  

resulting in the desired stride length  , leg clearance eb  and stride period T . By conducting running 

experiments, the gaps between methodology and hardware results should be identified, which may lead 

in re-designing loops. Another proposition for experimental future work, would be to run in a terrain with 

perturbations in the frontal plane and measure through toe mounted sensors, the total perturbation force 

pF  exerted on the robot. This could lead to a more realistic correlation of terrain incurred perturbations 

with maximum permissible running height (0)y  for tipover stability in the frontal plane. 

Finally, after the results of the method are experimentally validated, the leg design method could 

also be applied through abstraction for other tasks, e.g. stair climbing. Although many changes would 

be necessary (description of the terrain, stability consitions, performance criteria), the basic structure 

of the method would remain intact. An input stage where the robot and actuation properties, the terrain, 

the task and the footfall sequence to achieve it would be defined; a first stage, where the CoM trajectory 

of the robot will be optimized based on some performance criterion, a second stage that finds 

permissible leg solutions, where the joint trajectories are determined and constraints (actuation, 

strength) are evaluated and a final stage where alternative parameters are provided as inputs in the 

other two stages, and the optimal set of solutions for the performance criterion are determined. 
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Appendix A - Carbon tube propertiesEquation Chapter 8 Section 1 

Available carbon fiber tube suppliers provide only approximate values for the density and the strength 

of their products, without certification. This motivated the author to purchase representative carbon tube 

samples and subject them to direct measurements and tests. The density of the specimens was 

calculated from their measured mass and volume and their ultimate strength in compression and 

bending was figured out by conducting appropriate compression and three point bending tests. 

Two specimens were sampled from a carbon fiber tube with inner diameter 18ind mm , outer 

diameter 20outd mm  and total length 1000 .m  The specimens were cut from the tube with sawing, 

and the specimen intended for the compression test was also subjected to turning, to ensure uniform 

contact of the specimen with the compression plates. The length of the compression specimen was 

taken equal to 61.4cl mm , to ensure that the ratio / 3c outl d  is small enough to avoid buckling  

during the compression test. The length of the bending specimen was taken equal to 240bl mm , 

resulting in a length to outer diameter ratio  / 12b outl d  . The length of the bending specimen should 

be adequately long in comparison with its outer diameter to ensure that bending (and not compression 

or shear) is the main cause of stress. In literature [84], a typical satisfactory length to outer diameter 

ratio for bending of composite tubes is / 8b outl d  . The mass of the compression specimen was 

measured as 0.056cm kg  and that of the bending specimen as 0.022bm kg . The density of the 

specimens was calculated as, 

 
2 2

,

( ) / 4

sp

sp out in

m

V

V l d d







 

  (A-1) 

where ,spm  spl  is the mass and the length of the specimens. By replacing the masses, the lengths and 

the diameters of the specimens in Equations (A-1), the density of the carbon fiber composite was found 

as, 
31466 / .kg m    

The universal testing system Instron 4482 was used for the compression and the bending, see 

Figure A-1 (a). The experimental setup for the compression tests consisted of two compression plates, 

Figure A-1 (b) and that for the three point bending test consisted of two support pins and a punch, see 

Figure A-1 (c). The curvature radii of the supports and the punch were proper ( 10 )cr mm  to avoid 

local overstressing and denting of the subjects. The support span (distance between support pins) was 

taken equal to 200mm  to avoid slippage of the specimen during bending. The compression experiment 

was conducted for a constant compression velocity of 6 / secmm  and the bending experiment for a 

constant punch velocity of 1 / minmm . Load and deflection were recorded throughout the experiments 

and the results were presented in respective graphs, see Figure A-2. 

From the maximum measured loads and the geometry of the carbon fiber tubes, the compression 

and bending strengths ,cS bS  were calculated as, 
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 where ,maxcF  is the maximum recorded compressive load, A  is the cross sectional area of the carbon 

fiber tubes, ,maxbF  is the maximum recorded bending load, sl  is the support span length and aI  is the 

area moment of inertia of the carbon fiber tubes. For ,max 11705NcF  and ,max 650 NbF   the  

compressive and bending strengths were found as, c 200MPaS   and 240MPabS  . The maximum 

permissible normal stress value was taken as the minimum of the two, 

 , min( , ) 200MPac u c bS S S    (A-3) 

 

 

Figure A-1. (a) Instron 4482 testing system and experimental setups for (b) compression and 
(c) three point bending. 
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Figure A-2.  Load - deflection diagrams for the (a) compression and (b) three point bending 
tests. 
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Appendix B - Codes in Matlab 

Appendix B is intended to explain to the reader the main scripts and functions written and used by the 

author as the algorithmic implementation of the leg design method presented in the dissertation. The 

purpose of thoroughly explaining the codes is twofold; in case of interest, the reader should be able to 

reproduce the results of the method and use the codes provided for their own research interests. A list 

of the written and used function and scripts with a short description is provided below (Figure B-1): 

 Main_vx000.m: The algorithmic implementation of the leg design method presented in Figure 

3-1, corresponding to a running velocity vx ( (0)x ). This script is intended to be run in parallel 

for different velocities. To run multible of these scripts in parallel, rename the script accordingly 

to the input velocity. For instance, for the velocities vx=2.50 m/s and vx=2.80 m/s, create two 

copies named Main_vx250.m and Main_vx280.m, change the respective velocities inputs and 

run the scripts in two different MATLAB windows. The output of this script is the PSC.mat matrix 

containing the permissible leg and gait parameter solutions to run in the desired velocities and 

indicators if the solutions are truncated by the parameter search boundaries. At the end of this 

script PSC.mat matrix is saved in the workspace folder as PSC_vx000.mat. 

 PostProcessing.m: Loads one of the optimal solutions sets saved in the matrix PSC_vx000.mat 

and calculates the robot CoM and leg joint trajectories, the joint torques and stresses exerted 

on the tubular leg segments. The user can chose to display an animation of the robot running, 

plot the joint torques and angular velocities to compare them with the actuation constraints or 

plot the stresses applied on the tubular leg segments. 

 c_i.m: Has as output the value of the variable ic  (see eq. (8-1)) 

 

Main_vx000.m

c_i.m

Force.m

Torque.m

ObjFun.m

ode3.m

OptLegs.m

InvKinH.m

InvKinF.m

Torques.m

cubic_correction.m

check_strength.m

cubic_correction.m

c_i.m

Force.m

Torque.m

AnimationFull.m

Animation.m

PlotTorquesNRadPerSec.m

PlotStress.m

arrow.mPostProcessing.m

(A)

(A)

OdeFun.m

 

Figure B-1. Tree diagram showing the functions called from the two main scripts, 
Main_vx000.m and PostProcessing.m. 
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 Force.m: Provides as output the horizontal and vertical forces exerted on the CoM of the robot 

at every time instant, see eq. (2-43), (8-2). 

 Torque.m: Calculates the total torque exerted on the robot body w.r.t its CoM, see eq. (2-45). 

 ObjFun.m: Finds the value of the objective function (3-2) for a set of candidate footfalls ix . 

 ode3.m: A mathworks community function, implementation of the Runge - Kutta (3rd order) 

method with a fixed integration step. 

 OdeFun.m: Provides as output the right hand side of the differential Equations system (2-40)-

(2-42) at every time instant. 

 OptLegs.m: Most of the leg parameter search of Stage 2 is conducted in OptLegs.m, having as 

outputs the leg parameters 1 ,l 20 ,l k  that satisfy actuation constraints (2-100). 

 InvKinH.m: Returns as output the leg joint trajectories of the hind legs, corresponding to a hybrid 

elliptical - cubic polynomial flight phase toe trajectory, see Section 2.7. 

 InvKinF.m: Returns as output the leg joint trajectories of the hind legs, corresponding to a hybrid 

elliptical - cubic polynomial flight phase toe trajectory, see Section 2.7. 

 cubic_correction.m: Takes as input the leg joint trajectories corresponding to an elliptical toe 

flight phase trajectory, and gives as output the joint trajectories corresponding to a hybrid 

elliptical - cubic polynomial flight phase toe trajectory, see conditions (3-16), (3-23) and 

polynomials (3-24), (3-25) 

 Torques.m: Given the leg joint trajectories and dynamics of the quadruped robot the leg joint 

torques are calculated, eq. (2-38). 

 check_strength.m: For alternative user provided sets of ,ind outd  (see Table 4-2) the strength 

of the tubular leg segments is evaluated,  see inequalities (2-90). 

 Animation.m: Given the CoM trajectories and the footfalls of the quadruped robot, an animation 

is displayed, showing the motion of the centroidal model. 

 AnimationFull.m: Given the CoM and leg joint trajectories of the quadruped robot, an animation 

is displayed, showing the motion of the quadruped robot. 

 arrow.m: A mathworks community function, used to plot the vectors of the ground forces with 

time. 

 PlotTorquesNRadPerSec.m: The joint torques and angular velocities are expressed as a 

percentage of the corresponfing maximum permissible values and plotted vs. time in figures. 

 PlotStress.m: Calculates (eq. (2-85)-(2-87)) and plots the stresses on the tubular leg segments, 

comparing them with the material’s strength. 

 

In the following sections, the written scripts and functions are presented in detail with helpful comments 

that guide the reader. 
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Main_vx000.m 

%-------------------------------------------------------------------------% 
%---------------------------- Main_vx000.m -------------------------------% 
%-------------------------------------------------------------------------% 
% This script searches for the leg and gait parameters for which hardware 
% constraints are respected, while the robot runs in a user specified 
% velocity. Create multible versions of this script with different names to 
% run simulations with different velocities vx parallely. The output of 
% this script is the matrix PSC which contains all the permissible leg and 
% gait parameters for a running velocity vx and indeces warning the user if 
% an upper or lower boundary has been reached. 

  
clc 
clear 
tic 

  
%-------------------------- ROBOT PROPERTIES -----------------------------% 
% The legs' properties are set in Torques.m 
% The legs' strength is set in check_strength.m 
m=42; 
d=0.3; 
g=9.81; 
a=1; 
b=0.15; 
I=1/12*m*(a^2+b^2); 
%-------------------------------------------------------------------------% 
%------------------ GROUND FORCE RELATED PARAMETERS ----------------------% 
fs=2; 
mi=0.65; 
%-------------------------------------------------------------------------% 
%--------------------------- GROUND LOCATION -----------------------------% 
% Set desired clearance from the ground in InvKinHL.m, InvKinFL.m 
yg=0; 
%-------------------------------------------------------------------------% 
%----------------------- ACTUATOR SPECIFICATIONS -------------------------% 
% Specify rotor inertias and reduction ratios in Torques.m 
% The values below are torques and ang. velocities after reduction. 
tau2maxst=45; 
tau2maxct=14.96; 
th2dmax=11.21; 
tau1maxst=45; 
tau1maxct=14.96; 
th1dmax=11.21; 
%-------------------------------------------------------------------------% 
%----------------------- TEMPORAL GAIT PARAMETERS ------------------------% 
% HL-->1, FL-->2, FR-->3, HR-->4, tti=[t_td_i%, t_to_i%] 
tt1=[0,50]; 
tt2=[50,100]; 
tt3=[0,50]; 
tt4=[50,100]; 
t21=tt2(1); 
t22=tt2(2); 
dfi=-t21*pi/(t22-t21); 

  
% The code parts and scripts affected if gait is changed are: 
% - Main_vx000.m, lines 134-228. 
% - check_strength.m, CheckStrength.m replace (1:500), (501:1000) with the  
% proper indeces for each leg's stance and flight. 
% - cubic_correction.m replace the proper values to j0, jm, jf, t0, tm, tf, 
% replace (1:500), (501:1000) with the proper indeces for each leg's stance 
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% midflight and flight. 
% - Force.m, replace properly the arguments fi1x, fi1y and the phase 
% differences dfix, dfiy. 
% - InvKinFL.m, InvKinHL.m, reset wtri, fitri, replace (1:500), (501:1000)  
% with the proper indeces for each leg's stance and flight. 
% - PostProcessing.m, lines 58-65, 116-210 
%-------------------------------------------------------------------------% 
%------------------------- LOWER & UPPER BOUNDS --------------------------% 
% The upper and lower bounds for the leg parametric search of Stage 2 are 
% set in OptLegs.m 
afxlb=0.1; 
afxub=0.7; 
Tlb=0.35; 
Tub=0.75; 
y0lb=0.55; 
y0ub=1.1; 
%-------------------------------------------------------------------------% 
%----------------------- DESIRED INITIAL CONDITIONS ----------------------% 
x0=1; 
yd0=0;   % do not change yd0=0, method assumes appex as initial position. 
th0=0;    
thd0=0; 
%-------------------------------------------------------------------------% 
%-------------------- PARAMETRIC SEARCH OUTER STAGE ----------------------% 
oc=0; 
vx=0.5;   % change velocity manually, vx=xd0 

  
for T=Tlb:0.05:Tub 

  
for afx=afxlb:0.1:afxub 

  
for y0=y0lb:0.05:y0ub 

  
%------------------------ PARAMETER BOUND FLAGS --------------------------% 
% Reconsider boundaries of parameter search if flags are equal to 1 at PSC. 
bfafx=0; 
bfT=0; 
bfy0=0; 
bfx1=0; 
bfx2=0; 
bfx3=0; 
bfx4=0; 
%-------------------------------------------------------------------------%   
%----------------------- PARAMETRIC SEARCH STAGE 1 -----------------------% 
%---------------------- FOOTFALL EXHAUSTIVE SEARCH -----------------------% 
% initialization 

  
dx=0.03; 
n=100; 
dt=T/(n-1); 
minfpth=1e6; 

  
t=zeros(n,1); 
x=zeros(n,1); 
xd=zeros(n,1); 
xdd=zeros(n,1); 
y=zeros(n,1); 
yd=zeros(n,1); 
ydd=zeros(n,1); 
fx=zeros(n,1); 
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fy=zeros(n,1); 
tau=zeros(n,1); 
th=zeros(n,1); 
thd=zeros(n,1); 
thdd=zeros(n,1); 

  

  
t(1)=0; 
t(2)=dt; 

  
x(1)=x0; 
xd(1)=vx; 
xd(2)=vx; 
x(2)=x(1)+dt*xd(2); 

  
y(1)=y0; 
y(2)=y0; 
yd(1)=yd0; 
yd(2)=yd0; 

  
th(1)=th0; 
th(2)=th0; 
thd(1)=thd0; 
thd(2)=thd0; 

  
% footfals xi exhaustive search 
for x1=x(1)-d*cos(th(1)):dx:x(1)-d*cos(th(1))+2*d 
    for x3=x(1)+d*cos(th(1)):dx:x(1)+d*cos(th(1))+2*d 

         
        x2=0; 
        x4=0; 

         
        for j=1:3 
            [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 
            [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,mi,m,g,fs); 
            [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),y(j),fxj,fyj); 
            fx(j)=fxj; 
            fy(j)=fyj; 
            tau(j)=tauj; 
        end 

         
        for j=3:tt1(2)*n/100 
            t(j)=t(j-1)+dt; 
            [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 
            [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,mi,m,g,fs); 
            xdd(j)=1/m*(fxj); 
            xd(j)=1/3*(2*dt*xdd(j)+4*xd(j-1)-xd(j-2)); 
            x(j)=dt^2*xdd(j)+2*x(j-1)-x(j-2); 
            ydd(j)=1/m*(fyj-m*g); 
            yd(j)=1/3*(2*dt*ydd(j)+4*yd(j-1)-yd(j-2)); 
            y(j)=dt^2*ydd(j)+2*y(j-1)-y(j-2); 
            [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),y(j),fxj,fyj); 
            thdd(j)=1/I*(tauj); 
            thd(j)=1/3*(2*dt*thdd(j)+4*thd(j-1)-thd(j-2)); 
            th(j)=dt^2*thdd(j)+2*th(j-1)-th(j-2); 
            fx(j)=fxj; 
            fy(j)=fyj; 
            tau(j)=tauj; 
        end 
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        j12=j; 

         
        for x2=x(j12)+d*cos(th(j12)):dx:x(j12)+d*cos(th(j12))+2*d 
            for x4=x(j12)-d*cos(th(j12)):dx:x(j12)-d*cos(th(j12))+2*d 

                 
                for j=j12+1:tt2(2)*n/100 
                    t(j)=t(j-1)+dt; 
                    [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 
                    [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,... 
                        mi,m,g,fs); 
                    xdd(j)=1/m*(fxj); 
                    xd(j)=1/3*(2*dt*xdd(j)+4*xd(j-1)-xd(j-2)); 
                    x(j)=dt^2*xdd(j)+2*x(j-1)-x(j-2); 
                    ydd(j)=1/m*(fyj-m*g); 
                    yd(j)=1/3*(2*dt*ydd(j)+4*yd(j-1)-yd(j-2)); 
                    y(j)=dt^2*ydd(j)+2*y(j-1)-y(j-2); 
                    [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),... 
                        y(j),fxj,fyj); 
                    thdd(j)=1/I*(tauj); 
                    thd(j)=1/3*(2*dt*thdd(j)+4*thd(j-1)-thd(j-2)); 
                    th(j)=dt^2*thdd(j)+2*th(j-1)-th(j-2); 
                    fx(j)=fxj; 
                    fy(j)=fyj; 
                    tau(j)=tauj; 
                end 

                 
                i11=round(tt1(1)*n/100+1); 
                i12=round(tt1(2)*n/100); 
                i21=round(tt2(1)*n/100+1); 
                i22=round(tt2(2)*n/100); 
                i31=round(tt3(1)*n/100+1); 
                i32=round(tt3(2)*n/100); 
                i41=round(tt4(1)*n/100+1); 
                i42=round(tt4(2)*n/100); 

                 
                I1=dt*trapz(abs(x1-x(i11:i12)+d*cos(th(i11:i12)))); 
                I2=dt*trapz(abs(x2-x(i21:i22)-d*cos(th(i21:i22)))); 
                I3=dt*trapz(abs(x3-x(i31:i32)-d*cos(th(i31:i32)))); 
                I4=dt*trapz(abs(x4-x(i41:i42)+d*cos(th(i41:i42)))); 

                 
                % objective function 
                fpth=abs(th(n)-th(1))*100+10*abs(thd(n)-thd(1))+... 
                    10*(I1+I2+I3+I4); 
                % if the weighing factors or the form of the objective 
                % function is changed here, it should also be changed in 
                % ObjFun.m 

                 
                if fpth<minfpth 
                    minfpth=fpth; 
                    x1o=x1; 
                    x2o=x2; 
                    x3o=x3; 
                    x4o=x4; 
                    xo=x; 
                    yo=y; 
                    tho=th; 
                    tauo=tau; 
                    fxo=fx; 
                    fyo=fy; 
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                end 
            end 
        end 
    end 
end 
%-------------------------------------------------------------------------%    
%------------------------ FOOTFALL OPTIMISATION --------------------------% 
% xff = [x1 x2 x3 x4]' 
dx=0.05; 
x1lb=x1o-dx; 
x1ub=x1o+dx; 
x2lb=x2o-dx; 
x2ub=x2o+dx; 
x3lb=x3o-dx; 
x3ub=x3o+dx; 
x4lb=x4o-dx; 
x4ub=x4o+dx; 

  
lb=[x1lb x2lb x3lb x4lb]; 
ub=[x1ub x2ub x3ub x4ub]; 

  
xff0=[x1o x2o x3o x4o]; 

  
opt=optimset('Display', 'off'); 
[xff,fval,exitflag]=fmincon(@(xff)ObjFun(xff,m,I,g,x0,vx,y0,yd0,th0,... 
    thd0,yg,tt1,tt2,tt3,tt4,T,dfi,afx,mi,fs,d),xff0,[],[],[],[],lb,... 
    ub,[],opt); 

  
x1=xff(1); 
x2=xff(2); 
x3=xff(3); 
x4=xff(4); 

  
% check if upper or lower bounds truncate solutions 
if x1<=xo(1)-d*cos(tho(1))||x1>=xo(1)-d*cos(tho(1))+2*d 
    bfx1=1; 
end 
if x2<=xo(j12)+d*cos(tho(j12))||x2>=xo(j12)+d*cos(tho(j12))+2*d 
    bfx2=1; 
end 
if x3<=xo(1)+d*cos(tho(1))||x3>=xo(1)+d*cos(tho(1))+2*d 
    bfx3=1; 
end 
if x4<=xo(j12)-d*cos(tho(j12))||x4>=xo(j12)-d*cos(tho(j12))+2*d 
    bfx4=1; 
end 

         
%-------------------------------------------------------------------------%     
%--------------- CoM TRAJECTORY WITH OPTIMAL FOOTFALLS -------------------% 
n=1000; 
dt=T/(n-1); 
t=linspace(0,T,n); 
q0=[x0 vx y0 yd0 th0 thd0]; 
q=ode3(@(t,q)OdeFun(t,q,m,g,I,x1,x2,x3,x4,yg,tt1,tt2,tt3,tt4,T,dfi,... 
    afx,mi,fs),t,q0); 

  
x=q(:,1); 
xd=q(:,2); 
y=q(:,3); 
yd=q(:,4); 
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th=q(:,5); 
thd=q(:,6); 
n=length(t); 

  
fx=zeros(n,1); 
fy=zeros(n,1); 
tau=zeros(n,1); 
xdd=zeros(n,1); 
ydd=zeros(n,1); 
thdd=zeros(n,1); 

  
for j=1:n 
    [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 

     
    [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,mi,m,g,fs); 
    [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),y(j),fxj,fyj); 

     
    fx(j)=fxj; 
    fy(j)=fyj; 
    tau(j)=tauj; 

     
    xdd(j)=1/m*fx(j); 
    ydd(j)=1/m*(fy(j)-m*g); 
    thdd(j)=1/I*tau(j); 
end 
%-------------------------------------------------------------------------% 
%------------------- MAXIMUM PERMISSIBLE PITCH ---------------------------% 
[maxabsth,ithm]=max(abs(th)); 
if a/2*sin(maxabsth)+b/2*cos(maxabsth)<=(y(ithm)-yg)/2&&maxabsth<=15*pi/180 

  
%----------------------- PARAMETRIC SEARCH STAGE 2 -----------------------% 
%------------------ LEG PROPERTIES EXHAUSTIVE SEARCH ---------------------% 

  
% if flagl==0 then actuation constraints are not respected.  
[l1,l20,k,flagl,flags,bfeps]=OptLegs(t,x,xd,xdd,y,yd,ydd,th,... 
    thd,thdd,tt1,tt2,tt3,tt4,x1,x2,x3,x4,yg,fx,fy,d,g,... 
    tau1maxst,tau1maxct,th1dmax,tau2maxst,tau2maxct,th2dmax,T); 

  
%-------------------------------------------------------------------------% 
%------------------------ SAVE RESULTS IN PSC.m --------------------------% 
% if flagl==1 actuation constraints are respected 
% if flags==0 strength constraints are respected 
if flagl==1 

     
    pt=length(l1); 

     
    parameters=zeros(pt,13); 

     
    parameters(1:pt,1)=vx; 
    parameters(1:pt,2)=afx; 
    parameters(1:pt,3)=T; 
    parameters(1:pt,4)=y0; 

  
    % check if upper or lower bounds exclude solutions 
    if afx==afxub||afx==afxlb 
        bfafx=1; 
    end 
    if T==Tub||T==Tlb 
        bfT=1; 
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    end 
    if y0==y0ub||y0==y0lb 
        bfy0=1; 
    end 

     
    parameters(1:pt,8)=bfafx; 
    parameters(1:pt,9)=bfT; 
    parameters(1:pt,10)=bfy0; 
    parameters(1:pt,11)=bfx1+bfx2+bfx3+bfx4; 

     
    for pc=1:pt 
        parameters(pc,5)=l1(pc); 
        parameters(pc,6)=l20(pc); 
        parameters(pc,7)=k(pc); 
        parameters(pc,12)=bfeps(pc); 
        parameters(pc,13)=flags(pc); 
    end 

      

     
    oc=oc+1; 
    if oc==1 
        PSC=parameters; 
    else 
        PSC=[PSC;parameters]; 
    end 

     
    disp('Solution found') 
else 
    disp('Contstraints can not be satisfied') 
end 
%-------------------------------------------------------------------------% 
end 
%-------------------------------------------------------------------------% 
disp('iii') 
toc 
end 
disp('ii') 
toc 
end 
disp('i') 
toc 
end 
%-------------------------------------------------------------------------% 

  
save('PSC_vx000.mat','PSC') 
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PostProcessing.m 

%-------------------------------------------------------------------------% 
%-------------------------- PostProcessing.m -----------------------------% 
%-------------------------------------------------------------------------% 
% Run the PostProcessing.m script after the Main_vx000.m and if at least a 
% PSC.mat matrix is available. PostProcessing.m loads the set of optimal 
% solutions located on the no-th row of the PSC.mat and calculates the CoM 
% and joint trajectories, joint torques and stresses on the leg segments,  
% data that are not saved in the PSC.mat matrix. At the end of the script  
% an animation of the robot's movement is displayed, plots of the leg joint 
% torques and angular velocities and plots of the stresses on the tubular 
% leg segments. 

  
clc 
clear 
tic 

  
% load saved PSC matrix 
load('PSC_vx000.mat') 
no=1; 

  
%-------------------------------- INPUTS ---------------------------------% 
vx=PSC(no,1); 
afx=PSC(no,2);  
T=PSC(no,3); 
y0=PSC(no,4);  
l1=PSC(no,5);  
l20=PSC(no,6);  
k=PSC(no,7);  
%-------------------------------------------------------------------------% 
%-------------------------- ROBOT PROPERTIES -----------------------------% 
% The legs' properties are set in Torques.m 
% The legs' strength is set in check_strength.m 
m=42; 
d=0.3; 
g=9.81; 
a=1; 
b=0.15; 
I=1/12*m*(a^2+b^2); 
%-------------------------------------------------------------------------% 
%------------------ GROUND FORCE RELATED PARAMETERS ----------------------% 
fs=2; 
mi=0.65; 
%-------------------------------------------------------------------------% 
%--------------------------- GROUND LOCATION -----------------------------% 
% Set desired clearance from the ground in InvKinHL.m, InvKinFL.m 
yg=0; 
%-------------------------------------------------------------------------% 
%----------------------- ACTUATOR SPECIFICATIONS -------------------------% 
% Specify rotor inertias and reduction ratios in Torques.m 
% The values below are torques and ang. velocities after reduction. 
tau2maxst=45; 
tau2maxct=14.96; 
th2dmax=11.21; 
tau1maxst=45; 
tau1maxct=14.96; 
th1dmax=11.21; 
%-------------------------------------------------------------------------% 
%----------------------- TEMPORAL GAIT PARAMETERS ------------------------% 
% HL-->1, FL-->2, FR-->3, HR-->4, tti=[t_td_i%, t_to_i%] 
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tt1=[0,50]; 
tt2=[50,100]; 
tt3=[0,50]; 
tt4=[50,100]; 
t21=tt2(1); 
t22=tt2(2); 
dfi=-t21*pi/(t22-t21); 
%-------------------------------------------------------------------------% 
%----------------------- DESIRED INITIAL CONDITIONS ----------------------% 
x0=1; 
yd0=0;   % do not change yd0=0, method assumes appex as initial position. 
th0=0;    
thd0=0; 
%-------------------------------------------------------------------------% 
%----------------------- PARAMETRIC SEARCH STAGE 1 -----------------------% 
%---------------------- FOOTFALL EXHAUSTIVE SEARCH -----------------------% 
% initialization 

  
dx=0.03; 
n=100; 
dt=T/(n-1); 
minfpth=1e6; 

  
t=zeros(n,1); 
x=zeros(n,1); 
xd=zeros(n,1); 
xdd=zeros(n,1); 
y=zeros(n,1); 
yd=zeros(n,1); 
ydd=zeros(n,1); 
fx=zeros(n,1); 
fy=zeros(n,1); 
tau=zeros(n,1); 
th=zeros(n,1); 
thd=zeros(n,1); 
thdd=zeros(n,1); 

  

  
t(1)=0; 
t(2)=dt; 

  
x(1)=x0; 
xd(1)=vx; 
xd(2)=vx; 
x(2)=x(1)+dt*xd(2); 

  
y(1)=y0; 
y(2)=y0; 
yd(1)=yd0; 
yd(2)=yd0; 

  
th(1)=th0; 
th(2)=th0; 
thd(1)=thd0; 
thd(2)=thd0; 

  
% footfals xi exhaustive search 
for x1=x(1)-d*cos(th(1)):dx:x(1)-d*cos(th(1))+2*d 
    for x3=x(1)+d*cos(th(1)):dx:x(1)+d*cos(th(1))+2*d 
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        x2=0; 
        x4=0; 

         
        for j=1:3 
            [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 
            [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,mi,m,g,fs); 
            [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),y(j),fxj,fyj); 
            fx(j)=fxj; 
            fy(j)=fyj; 
            tau(j)=tauj; 
        end 

         
        for j=3:tt1(2)*n/100 
            t(j)=t(j-1)+dt; 
            [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 
            [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,mi,m,g,fs); 
            xdd(j)=1/m*(fxj); 
            xd(j)=1/3*(2*dt*xdd(j)+4*xd(j-1)-xd(j-2)); 
            x(j)=dt^2*xdd(j)+2*x(j-1)-x(j-2); 
            ydd(j)=1/m*(fyj-m*g); 
            yd(j)=1/3*(2*dt*ydd(j)+4*yd(j-1)-yd(j-2)); 
            y(j)=dt^2*ydd(j)+2*y(j-1)-y(j-2); 
            [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),y(j),fxj,fyj); 
            thdd(j)=1/I*(tauj); 
            thd(j)=1/3*(2*dt*thdd(j)+4*thd(j-1)-thd(j-2)); 
            th(j)=dt^2*thdd(j)+2*th(j-1)-th(j-2); 
            fx(j)=fxj; 
            fy(j)=fyj; 
            tau(j)=tauj; 
        end 

         
        j12=j; 

         
        for x2=x(j12)+d*cos(th(j12)):dx:x(j12)+d*cos(th(j12))+2*d 
            for x4=x(j12)-d*cos(th(j12)):dx:x(j12)-d*cos(th(j12))+2*d 

                 
                for j=j12+1:tt2(2)*n/100 
                    t(j)=t(j-1)+dt; 
                    [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 
                    [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,... 
                        mi,m,g,fs); 
                    xdd(j)=1/m*(fxj); 
                    xd(j)=1/3*(2*dt*xdd(j)+4*xd(j-1)-xd(j-2)); 
                    x(j)=dt^2*xdd(j)+2*x(j-1)-x(j-2); 
                    ydd(j)=1/m*(fyj-m*g); 
                    yd(j)=1/3*(2*dt*ydd(j)+4*yd(j-1)-yd(j-2)); 
                    y(j)=dt^2*ydd(j)+2*y(j-1)-y(j-2); 
                    [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),... 
                        y(j),fxj,fyj); 
                    thdd(j)=1/I*(tauj); 
                    thd(j)=1/3*(2*dt*thdd(j)+4*thd(j-1)-thd(j-2)); 
                    th(j)=dt^2*thdd(j)+2*th(j-1)-th(j-2); 
                    fx(j)=fxj; 
                    fy(j)=fyj; 
                    tau(j)=tauj; 
                end 

                 
                i11=round(tt1(1)*n/100+1); 
                i12=round(tt1(2)*n/100); 
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                i21=round(tt2(1)*n/100+1); 
                i22=round(tt2(2)*n/100); 
                i31=round(tt3(1)*n/100+1); 
                i32=round(tt3(2)*n/100); 
                i41=round(tt4(1)*n/100+1); 
                i42=round(tt4(2)*n/100); 

                 
                I1=dt*trapz(abs(x1-x(i11:i12)+d*cos(th(i11:i12)))); 
                I2=dt*trapz(abs(x2-x(i21:i22)-d*cos(th(i21:i22)))); 
                I3=dt*trapz(abs(x3-x(i31:i32)-d*cos(th(i31:i32)))); 
                I4=dt*trapz(abs(x4-x(i41:i42)+d*cos(th(i41:i42)))); 

                 
                % objective function 
                fpth=abs(th(n)-th(1))*100+10*abs(thd(n)-thd(1))+... 
                    10*(I1+I2+I3+I4); 

                 
                if fpth<minfpth 
                    minfpth=fpth; 
                    x1o=x1; 
                    x2o=x2; 
                    x3o=x3; 
                    x4o=x4; 
                    xo=x; 
                    yo=y; 
                    tho=th; 
                    tauo=tau; 
                    fxo=fx; 
                    fyo=fy; 
                end 
            end 
        end 
    end 
end 
%-------------------------------------------------------------------------%    
%------------------------ FOOTFALL OPTIMISATION --------------------------% 
% xff = [x1 x2 x3 x4]' 
dx=0.05; 
x1lb=x1o-dx; 
x1ub=x1o+dx; 
x2lb=x2o-dx; 
x2ub=x2o+dx; 
x3lb=x3o-dx; 
x3ub=x3o+dx; 
x4lb=x4o-dx; 
x4ub=x4o+dx; 

  
lb=[x1lb x2lb x3lb x4lb]; 
ub=[x1ub x2ub x3ub x4ub]; 

  
xff0=[x1o x2o x3o x4o]; 

  
opt=optimset('Display', 'off'); 
[xff,fval,exitflag]=fmincon(@(xff)ObjFun(xff,m,I,g,x0,vx,y0,yd0,th0,... 
    thd0,yg,tt1,tt2,tt3,tt4,T,dfi,afx,mi,fs,d),xff0,[],[],[],[],lb,... 
    ub,[],opt); 

  
x1=xff(1); 
x2=xff(2); 
x3=xff(3); 
x4=xff(4);       
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%-------------------------------------------------------------------------%     
%--------------- CoM TRAJECTORY WITH OPTIMAL FOOTFALLS -------------------% 
n=1000; 
dt=T/(n-1); 
t=linspace(0,T,n); 
q0=[x0 vx y0 yd0 th0 thd0]; 
q=ode3(@(t,q)OdeFun(t,q,m,g,I,x1,x2,x3,x4,yg,tt1,tt2,tt3,tt4,T,dfi,... 
    afx,mi,fs),t,q0); 

  
x=q(:,1); 
xd=q(:,2); 
y=q(:,3); 
yd=q(:,4); 
th=q(:,5); 
thd=q(:,6); 
n=length(t); 

  
fx=zeros(n,1); 
fy=zeros(n,1); 
tau=zeros(n,1); 
xdd=zeros(n,1); 
ydd=zeros(n,1); 
thdd=zeros(n,1); 

  
for j=1:n 
    [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 

     
    [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,mi,m,g,fs); 
    [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),y(j),fxj,fyj); 

     
    fx(j)=fxj; 
    fy(j)=fyj; 
    tau(j)=tauj; 

     
    xdd(j)=1/m*fx(j); 
    ydd(j)=1/m*(fy(j)-m*g); 
    thdd(j)=1/I*tau(j); 
end 
%-------------------------------------------------------------------------% 
%------------------- MAXIMUM PERMISSIBLE PITCH ---------------------------% 
[maxabsth,ithm]=max(abs(th)); 
if a/2*sin(maxabsth)+b/2*cos(maxabsth)<=(y(ithm)-yg)/2&&maxabsth<=15*pi/180 

     
%---------------------- LEG JOINT TRAJECTORIES ---------------------------% 
% calculate joint trajectories from Inverse Kinematics 
l1h1=l1; 
l20h1=l20; 
kh1=k; 
leg=1; 
[qjh1,qjdh1,qjddh1,flag1] = InvKinH(l1h1,l20h1,kh1,t,x,y,th,thd,thdd,... 
    tt1,x1,yg,fx,fy,d,leg); 

  
l1h4=l1; 
l20h4=l20; 
kh4=k; 
leg=4; 
[qjh4,qjdh4,qjddh4,flag4] = InvKinH(l1h4,l20h4,kh4,t,x,y,th,thd,thdd,... 
    tt4,x4,yg,fx,fy,d,leg); 
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l1f2=l1; 
l20f2=l20; 
kf2=k; 
leg=2; 
[qjf2,qjdf2,qjddf2,flag2] = InvKinF(l1f2,l20f2,kf2,t,x,y,th,thd,thdd,... 
    tt2,x2,yg,fx,fy,d,leg); 

  
l1f3=l1; 
l20f3=l20; 
kf3=k; 
leg=3; 
[qjf3,qjdf3,qjddf3,flag3] = InvKinF(l1f3,l20f3,kf3,t,x,y,th,thd,thdd,... 
    tt3,x3,yg,fx,fy,d,leg); 

  
% if leg collisions are avoided and toe remains in the workspace of the leg 
% then flagi=0 
if flag1==0&&flag2==0&&flag3==0&&flag4==0 

  
% leg joint trajectories calculation 
thh1=qjh1(:,1); 
th1h1=qjh1(:,2); 
th2h1=qjh1(:,3); 
l2h1=qjh1(:,4); 
thdh1=qjdh1(:,1); 
th1dh1=qjdh1(:,2); 
th2dh1=qjdh1(:,3); 
l2dh1=qjdh1(:,4); 
thddh1=qjddh1(:,1); 
th1ddh1=qjddh1(:,2); 
th2ddh1=qjddh1(:,3); 
l2ddh1=qjddh1(:,4); 

  
thf2=qjf2(:,1); 
th1f2=qjf2(:,2); 
th2f2=qjf2(:,3); 
l2f2=qjf2(:,4); 
thdf2=qjdf2(:,1); 
th1df2=qjdf2(:,2); 
th2df2=qjdf2(:,3); 
l2df2=qjdf2(:,4); 
thddf2=qjddf2(:,1); 
th1ddf2=qjddf2(:,2); 
th2ddf2=qjddf2(:,3); 
l2ddf2=qjddf2(:,4); 

  
thf3=qjf3(:,1); 
th1f3=qjf3(:,2); 
th2f3=qjf3(:,3); 
l2f3=qjf3(:,4); 
thdf3=qjdf3(:,1); 
th1df3=qjdf3(:,2); 
th2df3=qjdf3(:,3); 
l2df3=qjdf3(:,4); 
thddf3=qjddf3(:,1); 
th1ddf3=qjddf3(:,2); 
th2ddf3=qjddf3(:,3); 
l2ddf3=qjddf3(:,4); 

  
thh4=qjh4(:,1); 
th1h4=qjh4(:,2); 



 
103/142 

th2h4=qjh4(:,3); 
l2h4=qjh4(:,4); 
thdh4=qjdh4(:,1); 
th1dh4=qjdh4(:,2); 
th2dh4=qjdh4(:,3); 
l2dh4=qjdh4(:,4); 
thddh4=qjddh4(:,1); 
th1ddh4=qjddh4(:,2); 
th2ddh4=qjddh4(:,3); 
l2ddh4=qjddh4(:,4); 

  
% leg joint torque calculation 
[torque1h1,torque2h1,torque1h4,torque2h4,torque1f2,torque2f2,... 
torque1f3,torque2f3,flags] = Torques(xd,xdd,yd,ydd,th,thd,thdd,th1h1,... 
    th1dh1,th1ddh1,l1h1,th2h1,th2dh1,th2ddh1,l2h1,l2dh1,l2ddh1,th1h4,... 
    th1dh4,th1ddh4,l1h4,th2h4,th2dh4,th2ddh4,l2h4,l2dh4,l2ddh4,th1f2,... 
    th1df2,th1ddf2,l1f2,th2f2,th2df2,th2ddf2,l2f2,l2df2,l2ddf2,th1f3,... 
    th1df3,th1ddf3,l1f3,th2f3,th2df3,th2ddf3,l2f3,l2df3,l2ddf3,g,d,... 
    tt1,tt2,tt3,tt4,t,T,fx,fy); 

  
trq11rms=rms(torque1h1); 
trq21rms=rms(torque2h1); 
trq13rms=rms(torque1f3); 
trq23rms=rms(torque2f3); 

  
trq14rms=rms(torque1h4); 
trq24rms=rms(torque2h4); 
trq12rms=rms(torque1f2); 
trq22rms=rms(torque2f2); 

  
% stress calculation 
[din,dout,flag] = check_strength(fx,fy,th,th1h1,l1h1,th2h1,l2h1... 
    ,th1f2,l1f2,th2f2,l2f2,th1f3,l1f3,th2f3,l2f3,th1h4,l1h4,th2h4,l2h4); 
%-------------------------------------------------------------------------% 
%------------------------------- ANIMATIONS ------------------------------% 
%Animation % centroidal expression 
AnimationFull % full robot  
%-------------------------------------------------------------------------% 
%------------------ JOINT TORQUE/ANG. VELOCITY PLOTS ---------------------% 
PlotTorquesNRadPerSec 
%-------------------------------------------------------------------------% 
%----------------------- LEG SEGMENT STRESS PLOTS ------------------------% 
PlotStress 
%-------------------------------------------------------------------------% 
end 
end 
%-------------------------------------------------------------------------% 
toc 
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c_i.m 

function [c1,c2,c3,c4] = c_i(tt1,tt2,tt3,tt4,t,T) 
%C_I produces the gait graph constants c1, c2, c3 ,c4. The input vectors 
%tti include the touchdown and take off times as a percentage of the stride 
%cyrcle. For instance tt1=[0,25] means that the leg 1 touches the ground at 
%the 0% of the cyrcle and takes off at 25% of the stride cyrcle. 

  
%------------- LEG 1 --------------% 
if length(tt1)==2 
    t11=tt1(1)/100*T; 
    t12=tt1(2)/100*T; 
    if t>=t11&&t<=t12 
        c1=1; 
    else 
        c1=0; 
    end 
end 

  
%------------- LEG 2 --------------% 
if length(tt2)==2 
    t21=tt2(1)/100*T; 
    t22=tt2(2)/100*T; 
    if t>=t21&&t<=t22 
        c2=1; 
    else 
        c2=0; 
    end 
end 

  
%------------- LEG 3 --------------% 
if length(tt3)==2 
    t31=tt3(1)/100*T; 
    t32=tt3(2)/100*T; 
    if t>=t31&&t<=t32 
        c3=1; 
    else 
        c3=0; 
    end 
end 

  
%------------- LEG 4 --------------% 
if length(tt4)==2 
    t41=tt4(1)/100*T; 
    t42=tt4(2)/100*T; 
    if t>=t41&&t<=t42 
        c4=1; 
    else 
        c4=0; 
    end 
end 

  
end 
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Force.m 

function [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,tj,T,mi,m,g,fs) 
%FORCE takes as input the gait parameters ci, the times of touch down and 
%lift off tt1 of the first leg as a percentage of the gait period T, the 
%footfall phase difference dfi, the horizontal force size factor afx, 
%the current time tj, coulomb friction coeefficient mi, the mass of the 
%robot m, gravitational acceleration g and horizontal force scenario fs 
%(fs=1 or fs=2) and returns the forces fxj, fyj exerted to the CoM of the 
%legged robot. 

  
if length(tt1)==2 
    t11=tt1(1)/100*T; 
    t12=tt1(2)/100*T; 
    wy=pi/(t12-t11); 
    fi1y=-wy*t11; 
    dfl=(t12-t11)/T; 
    fymax=pi*m*g/8/dfl; 
    dfiy=dfi; 
    fy1=fymax*sin(wy*tj+fi1y); 
    fy2=fymax*sin(wy*tj+fi1y+dfiy); 
    fy3=fymax*sin(wy*tj+fi1y+2*dfiy); 
    fy4=fymax*sin(wy*tj+fi1y+3*dfiy); 
    fyj=c1*fy1+c2*fy2+c3*fy3+c4*fy4; 

     
    if fs==1 
        % CASE 1: fxi is a sinusoidal impulse 
        fx1=afx*mi*fy1; 
        fx2=-afx*mi*fy2; 
        fx3=-afx*mi*fy3; 
        fx4=afx*mi*fy4; 
        fxj=c1*fx1+c2*fx2+c3*fx3+c4*fx4; 
    end 
    if fs==2 
        % CASE 2: fxi is sinusoidal decelerating-accelerating 
        wx=2*wy; 
        fi1x=pi-wx*t11; 
        dfix=2*dfiy; 
        fxub=mi*fymax*sin(pi/8+3*pi/80); 
        fxmax=afx*fxub; 
        fx1=fxmax*sin(wx*tj+fi1x); 
        fx2=fxmax*sin(wx*tj+fi1x+dfix); 
        fx3=fxmax*sin(wx*tj+fi1x+2*dfix); 
        fx4=fxmax*sin(wx*tj+fi1x+3*dfix); 
        fxj=c1*fx1+c2*fx2+c3*fx3+c4*fx4; 
    end 
end 

     
end 

  

 

 

 

 

 

 

 



 
106/142 

Torque.m 

function [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,xj,yj,fxj,fyj) 
%TORQUE takes as input the gait parameters ci, the coordinates of the 
%footfalls (xi,yg),position xj, yj of the CoM, and current exerted forces 
%from the ground fxj, fyj and produces the total torque exerted on the 
%robot w.r.t CoM. 

     
    tau1=(x1-xj)*fyj-(yg-yj)*fxj; 
    tau2=(x2-xj)*fyj-(yg-yj)*fxj; 
    tau3=(x3-xj)*fyj-(yg-yj)*fxj; 
    tau4=(x4-xj)*fyj-(yg-yj)*fxj; 
    tauj=c1*tau1+c2*tau2+c3*tau3+c4*tau4; 

     
end 

 

ObjFun.m 

function fpth = ObjFun(xff,m,I,g,x0,vx,y0,yd0,th0,thd0,... 
    yg,tt1,tt2,tt3,tt4,T,dfi,afx,mi,fs,d) 
%OBJFUN calculates the objective function value for the optimization of the 
%footfalls xi and the centroidal CoM trajectory. 

  
x1=xff(1); 
x2=xff(2); 
x3=xff(3); 
x4=xff(4); 

  
tspan=[0 T]; 
q0=[x0 vx y0 yd0 th0 thd0]; 
options=odeset('AbsTol',1e-6); 
[t,q]=ode45(@(t,q)OdeFun(t,q,m,g,I,x1,x2,x3,x4,yg,tt1,tt2,tt3,tt4,T,... 
    dfi,afx,mi,fs),tspan,q0,options); 

  
x=q(:,1); 
y=q(:,3); 
th=q(:,5); 
thd=q(:,6); 
n=length(t); 
dt=T/(n-1); 

  
fx=zeros(n,1); 
fy=zeros(n,1); 
tau=zeros(n,1); 
for j=1:n 
    [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 
    [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t(j),T,mi,m,g,fs); 
    [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x(j),y(j),fxj,fyj); 

     
    fx(j)=fxj; 
    fy(j)=fyj; 
    tau(j)=tauj; 
end 

  
i11=round(tt1(1)*n/100+1); 
i12=round(tt1(2)*n/100); 
i21=round(tt2(1)*n/100+1); 
i22=round(tt2(2)*n/100); 
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i31=round(tt3(1)*n/100+1); 
i32=round(tt3(2)*n/100); 
i41=round(tt4(1)*n/100+1); 
i42=round(tt4(2)*n/100); 

  
I1=dt*trapz(abs(x1-x(i11:i12)+d*cos(th(i11:i12)))); 
I2=dt*trapz(abs(x2-x(i21:i22)-d*cos(th(i21:i22)))); 
I3=dt*trapz(abs(x3-x(i31:i32)-d*cos(th(i31:i32)))); 
I4=dt*trapz(abs(x4-x(i41:i42)+d*cos(th(i41:i42)))); 

                 
fpth=abs(th(n)-th(1))*100+10*abs(thd(n)-thd(1))+10*(I1+I2+I3+I4); 

  
end 

 

OdeFun.m 

function qd = OdeFun(t,q,m,g,I,x1,x2,x3,x4,yg,tt1,tt2,tt3,tt4,T,dfi,... 
    afx,mi,fs) 
%ODEFUN provides the rhs of the Centroidal Dynamics EoM 

  

     
    [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t,T); 

  
    [fxj,fyj] = Force(c1,c2,c3,c4,tt1,dfi,afx,t,T,mi,m,g,fs); 

  
    x=q(1); 
    y=q(3); 

     
    [tauj] = Torque(c1,c2,c3,c4,x1,x2,x3,x4,yg,x,y,fxj,fyj); 

     
    qd(1,1)=q(2); 
    qd(2,1)=1/m*(fxj); 
    qd(3,1)=q(4); 
    qd(4,1)=1/m*(fyj-m*g); 
    qd(5,1)=q(6); 
    qd(6,1)=1/I*(tauj); 

  
end 

 

OptLegs.m 

function [l1o,l20o,ko,flagl,flagsm,bfeps] 

=OptLegs(t,x,xd,xdd,y,yd,ydd,th,... 
    thd,thdd,tt1,tt2,tt3,tt4,x1,x2,x3,x4,yg,fx,fy,d,g,... 
    tau1maxst,tau1maxct,th1dmax,tau2maxst,tau2maxct,th2dmax,T) 
%OPTLEGS finds all permissible leg segment lengths and spring stiffnesses 

%for which the actuation constraints are satisfied. 

  
n=length(x); 

  
xh1=x(tt1(1)*n/100+1:tt1(2)*n/100)-x1; 
yh1=y(tt1(1)*n/100+1:tt1(2)*n/100)-yg; 
thh1=th(tt1(1)*n/100+1:tt1(2)*n/100); 
nh1=length(xh1); 
xsh1=xh1(1:nh1)-d*cos(thh1(1:nh1)); 
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ysh1=yh1(1:nh1)-d*sin(thh1(1:nh1)); 
lh2t_h1=sqrt(xsh1.^2+ysh1.^2); 

  
xf2=x(tt2(1)*n/100+1:tt2(2)*n/100)-x2; 
yf2=y(tt2(1)*n/100+1:tt2(2)*n/100)-yg; 
thf2=th(tt2(1)*n/100+1:tt2(2)*n/100); 
nf2=length(xf2); 
xsf2=xf2(1:nf2)+d*cos(thf2(1:nf2)); 
ysf2=yf2(1:nf2)+d*sin(thf2(1:nf2)); 
lh2t_f2=sqrt(xsf2.^2+ysf2.^2); 

  
xf3=x(tt3(1)*n/100+1:tt3(2)*n/100)-x3; 
yf3=y(tt3(1)*n/100+1:tt3(2)*n/100)-yg; 
thf3=th(tt3(1)*n/100+1:tt3(2)*n/100); 
nf3=length(xf3); 
xsf3=xf3(1:nf3)+d*cos(thf3(1:nf3)); 
ysf3=yf3(1:nf3)+d*sin(thf3(1:nf3)); 
lh2t_f3=sqrt(xsf3.^2+ysf3.^2); 

  
xh4=x(tt4(1)*n/100+1:tt4(2)*n/100)-x4; 
yh4=y(tt4(1)*n/100+1:tt4(2)*n/100)-yg; 
thh4=th(tt4(1)*n/100+1:tt4(2)*n/100); 
nh4=length(xh4); 
xsh4=xh4(1:nh4)-d*cos(thh4(1:nh4)); 
ysh4=yh4(1:nh4)-d*sin(thh4(1:nh4)); 
lh2t_h4=sqrt(xsh4.^2+ysh4.^2); 

  
l_min=max([max(lh2t_f2),max(lh2t_f3),max(lh2t_h1),max(lh2t_h4)]); 

  
flagl=0; 
ic=0; 
epsub=1.1; 

  
for k=1250:1250:5000 
    for eps=1:0.025:epsub 
        for l1=0.1:0.01:l_min*eps-0.1 
            l20=(l_min*eps-l1)/1; 

             
            [qjh1,qjdh1,qjddh1,flag1] = 

InvKinH(l1,l20,k,t,x,y,th,thd,thdd,... 
    tt1,x1,yg,fx,fy,d,1); 
            [qjh4,qjdh4,qjddh4,flag4] = 

InvKinH(l1,l20,k,t,x,y,th,thd,thdd,... 
    tt4,x4,yg,fx,fy,d,4); 
            [qjf2,qjdf2,qjddf2,flag2] = 

InvKinF(l1,l20,k,t,x,y,th,thd,thdd,... 
    tt2,x2,yg,fx,fy,d,2); 
            [qjf3,qjdf3,qjddf3,flag3] = 

InvKinF(l1,l20,k,t,x,y,th,thd,thdd,... 
    tt3,x3,yg,fx,fy,d,3); 

             
            if flag1==0&&flag2==0&&flag3==0&&flag4==0 

                 
                l1h1=l1; 
                th1h1=qjh1(:,2); 
                th2h1=qjh1(:,3); 
                l2h1=qjh1(:,4); 
                th1dh1=qjdh1(:,2); 
                th2dh1=qjdh1(:,3); 
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                l2dh1=qjdh1(:,4); 
                th1ddh1=qjddh1(:,2); 
                th2ddh1=qjddh1(:,3); 
                l2ddh1=qjddh1(:,4); 

  
                l1f2=l1; 
                th1f2=qjf2(:,2); 
                th2f2=qjf2(:,3); 
                l2f2=qjf2(:,4); 
                th1df2=qjdf2(:,2); 
                th2df2=qjdf2(:,3); 
                l2df2=qjdf2(:,4); 
                th1ddf2=qjddf2(:,2); 
                th2ddf2=qjddf2(:,3); 
                l2ddf2=qjddf2(:,4); 

  
                l1f3=l1; 
                th1f3=qjf3(:,2); 
                th2f3=qjf3(:,3); 
                l2f3=qjf3(:,4); 
                th1df3=qjdf3(:,2); 
                th2df3=qjdf3(:,3); 
                l2df3=qjdf3(:,4); 
                th1ddf3=qjddf3(:,2); 
                th2ddf3=qjddf3(:,3); 
                l2ddf3=qjddf3(:,4); 

  
                l1h4=l1; 
                th1h4=qjh4(:,2); 
                th2h4=qjh4(:,3); 
                l2h4=qjh4(:,4); 
                th1dh4=qjdh4(:,2); 
                th2dh4=qjdh4(:,3); 
                l2dh4=qjdh4(:,4); 
                th1ddh4=qjddh4(:,2); 
                th2ddh4=qjddh4(:,3); 
                l2ddh4=qjddh4(:,4); 

  
                

[torque1h1,torque2h1,torque1h4,torque2h4,torque1f2,torque2f2,... 
                    torque1f3,torque2f3,flags] = 

Torques(xd,xdd,yd,ydd,th,thd,thdd,th1h1,... 

th1dh1,th1ddh1,l1h1,th2h1,th2dh1,th2ddh1,l2h1,l2dh1,l2ddh1,th1h4,... 
th1dh4,th1ddh4,l1h4,th2h4,th2dh4,th2ddh4,l2h4,l2dh4,l2ddh4,th1f2,... 
th1df2,th1ddf2,l1f2,th2f2,th2df2,th2ddf2,l2f2,l2df2,l2ddf2,th1f3,... 
th1df3,th1ddf3,l1f3,th2f3,th2df3,th2ddf3,l2f3,l2df3,l2ddf3,g,d,... 
                    tt1,tt2,tt3,tt4,t,T,fx,fy); 

                 
                ct1f2st=max(abs(torque1f2))/tau1maxst; 
                ct1f2ct=rms(torque1f2)/tau1maxct; 
                cth1df2=max(abs(th1df2))/th1dmax; 
                ct2f2st=max(abs(torque2f2))/tau2maxst; 
                ct2f2ct=rms(torque2f2)/tau2maxct; 
                cth2df2=max(abs(th2df2))/th2dmax; 

                 
                ct1f3st=max(abs(torque1f3))/tau1maxst; 
                ct1f3ct=rms(torque1f3)/tau1maxct; 
                cth1df3=max(abs(th1df3))/th1dmax; 
                ct2f3st=max(abs(torque2f3))/tau2maxst; 
                ct2f3ct=rms(torque2f3)/tau2maxct; 
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                cth2df3=max(abs(th2df3))/th2dmax; 

                 
                if 

ct1f2st<=1&&cth1df2<=1&&ct2f2st<=1&&cth2df2<=1&&ct1f3st<=1&&... 
                        cth1df3<=1&&ct2f3st<=1&&cth2df3<=1&&ct1f2ct<=1&&... 
                        ct2f2ct<=1&&ct1f3ct<=1&&ct2f3ct<=1 
                    acsf=1; 
                else 
                    acsf=0; 
                end 

                 
                ct1h1st=max(abs(torque1h1))/tau1maxst; 
                ct1h1ct=rms(torque1h1)/tau1maxct; 
                cth1dh1=max(abs(th1dh1))/th1dmax; 
                ct2h1st=max(abs(torque2h1))/tau2maxst; 
                ct2h1ct=rms(torque2h1)/tau2maxct; 
                cth2dh1=max(abs(th2dh1))/th2dmax; 

                 
                ct1h4st=max(abs(torque1h4))/tau1maxst; 
                ct1h4ct=rms(torque1h4)/tau1maxct; 
                cth1dh4=max(abs(th1dh4))/th1dmax; 
                ct2h4st=max(abs(torque2h4))/tau2maxst; 
                ct2h4ct=rms(torque2h4)/tau2maxct; 
                cth2dh4=max(abs(th2dh4))/th2dmax; 

                 
                if 

ct1h1st<=1&&cth1dh1<=1&&ct2h1st<=1&&cth2dh1<=1&&ct1h4st<=1&&... 
                        cth1dh4<=1&&ct2h4st<=1&&cth2dh4<=1&&ct1h1ct<=1&&... 
                        ct2h1ct<=1&&ct1h4ct<=1&&ct2h4ct<=1 
                    acsh=1; 
                else 
                    acsh=0; 
                end 

                 
                if acsf==1&&acsh==1 
                    ic=ic+1; 
                    l1o(ic,1)=l1; 
                    l20o(ic,1)=l20; 
                    ko(ic,1)=k; 
                    flagsm(ic,1)=flags; 
                    flagl=1; 

                     
                    if eps==1||eps==epsub 
                        bfeps(ic,1)=1; 
                    else 
                        bfeps(ic,1)=0; 
                    end 

                     
                end   
            end 
        end 
    end 
end 

  
if flagl==0 
    l1o=0; 
    l20o=0; 
    ko=0; 
    bfeps=0; 
    flagsm=5; 
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end 

  
end 

 

 

InvKinH.m 

function [qjh,qjdh,qjddh,flag] = InvKinH(l1h,l20h,kh,t,x,y,th,thd,thdd,... 
    tti,xi,yg,fx,fy,d,leg) 
%InvKinH Calculates the joint trajectories of a hind leg given the link 
%lengths l1h, l20h and distal limb stiffness kh and the body trajectory x, 
%y, th, the ground forces fx, fy, the half hip separation distance d and 
%the leg {1,4}. 

  
n=length(x); 
T=t(n); 
dt=t(2)-t(1); 
xh=x-xi; 
yh=y-yg; 
thh=th; 
thdh=thd; 
thddh=thdd; 
fxh=fx/2; 
fyh=fy/2; 

  
xsh=xh-d*cos(thh); 
ysh=yh-d*sin(thh); 
th1h=zeros(n,1); 
th2h=zeros(n,1); 
l2h=zeros(n,1); 

  
xhh=x-d*cos(th); 
yhh=y-d*sin(th); 

  
sng=0; % if sng=1 toe is out of leg's workspace 
clsn=0; 
flag=0; 

  
l2h(tti(1)*n/100+1)=l20h; 
%------------------- ELLIPTICAL TRAJECTORY PROPERTIES --------------------% 
if leg==1 
    atr1=(max(x)-min(x))/2; 
    btr1=0.05; %change clearance value here 
    xc1=xi+atr1; 
    yc1=yg; 
    wtr1=-pi/(T-tti(2)/100*T); 
    fitr1=pi*T/(T-tti(2)/100*T); 
    xtr1=transpose(xc1+atr1*cos(wtr1.*t+fitr1)); 
    ytr1=transpose(yc1+btr1*sin(wtr1.*t+fitr1)); 
    xssph=xhh-xtr1; 
    yssph=yhh-ytr1; 
end 
if leg==4 
    atr4=(max(x)-min(x))/2; 
    btr4=0.05; %change clearance value here 
    xc4=xi-atr4; 
    yc4=yg; 
    wtr4=-pi/(tti(1)/100*T-0); 
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    fitr4=pi; 
    xtr4=transpose(xc4+atr4*cos(wtr4.*t+fitr4)); 
    ytr4=transpose(yc4+btr4*sin(wtr4.*t+fitr4)); 
    xssph=xhh-xtr4; 
    yssph=yhh-ytr4; 
end 
%-------------------------------------------------------------------------% 
for j=1:n 
%--------------- STANCE PHASE INVERSE KINEMATICS (ELLIPSE) ---------------% 
    if j>tti(1)*n/100&&j<=tti(2)*n/100 
        ah=(l1h^2-xsh(j)^2-ysh(j)^2-l2h(j)^2)/2/l2h(j); 

         
        if xsh(j)^2+ysh(j)^2-ah^2>0 
            th2h(j)=2*atan2(-xsh(j)-sqrt(xsh(j)^2+ysh(j)^2-ah^2),ysh(j)-... 
                ah)-thh(j); %change sign before sqrt to change configurati- 
            %on: '-' corresponds to KF, '+' corresponds to KB 

             
            th2h(j)=mod(th2h(j),2*pi); 
            th2h(j)=th2h(j)-(th2h(j)>3*pi/2)*2*pi; 

             
            th1h(j)=atan2(-xsh(j)-l2h(j)*sin(thh(j)+th2h(j)),ysh(j)-... 
                l2h(j)*cos(thh(j)+th2h(j)))-thh(j); 

             
            if j<tti(2)*n/100 
                l2h(j+1)=l20h+(fxh(j)*sin(thh(j)+th2h(j))-fyh(j)*... 
                    cos(thh(j)+th2h(j)))/kh; 
            end 
        else 
            sng=1; 
        end 
%-------------------------------------------------------------------------%  
    else 
%-------------------- FLIGHT PHASE INVERSE KINEMATICS --------------------% 
        l2h(j)=l20h; 
        ar=(l1h^2-xssph(j)^2-yssph(j)^2-l2h(j)^2)/2/l2h(j); 
        if xssph(j)^2+yssph(j)^2-ar^2>0 
            th2h(j)=2*atan2(-xssph(j)-sqrt(xssph(j)^2+yssph(j)^2-ar^2),... 
                yssph(j)-ar)-th(j); %change sign before sqrt to change 
            %configuration: '-' corresponds to KF, '+' corresponds to KB 
            th2h(j)=mod(th2h(j),2*pi); 
            th2h(j)=th2h(j)-(th2h(j)>3*pi/2)*2*pi; 

             
            th1h(j)=atan2(-xssph(j)-l2h(j)*sin(th(j)+th2h(j)),yssph(j)-... 
                l2h(j)*cos(th(j)+th2h(j)))-th(j); 
        else 
            sng=1; 
        end 
%-------------------------------------------------------------------------% 
    end 
end 

  

  
%------------ CHECK COLISION OF THE KNEE JOINT WITH THE GROUND -----------% 
if min(th2h+thh+pi/2)<5*pi/180  
    clsn=1; 
end 
%-------------------------------------------------------------------------% 
if sng==0&&clsn==0 
%-------------------- ACCUMULATE JOINT TRAJECTORIES ----------------------% 
    th2dh=[gradient(th2h(1:500),dt);gradient(th2h(501:1000),dt)]; 
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    th1dh=[gradient(th1h(1:500),dt);gradient(th1h(501:1000),dt)]; 
    l2dh=[gradient(l2h(1:500),dt);gradient(l2h(501:1000),dt)]; 
    th1dh(1:3)=interp1([4 5 6 7 8],th1dh(4:8),[1 2 3],'pchip'); 
    th2dh(1:3)=interp1([4 5 6 7 8],th2dh(4:8),[1 2 3],'pchip'); 
    l2dh(1:3)=interp1([4 5 6 7 8],l2dh(4:8),[1 2 3],'pchip'); 
    th1dh(501:503)=interp1(504:508,th1dh(504:508),501:503,'pchip'); 
    th2dh(501:503)=interp1(504:508,th2dh(504:508),501:503,'pchip'); 
    l2dh(501:503)=interp1(504:508,l2dh(504:508),501:503,'pchip'); 
    l2ddh=4*[del2(l2h(1:500),t(1:500));del2(l2h(501:1000),t(501:1000))]; 
    l2ddh(1:3)=interp1([4 5 6 7 8],l2ddh(4:8),[1 2 3],'pchip'); 
    l2ddh(501:503)=interp1(504:508,l2ddh(504:508),501:503,'pchip'); 
%-------------------------------------------------------------------------% 
%---------------------- CUBIC POLYNOMIAL CORRECTION ----------------------%     
% after cubic correction the toe trajectory is hybrid cubic/elliptic. 
    [th1c,th2c,th1dc,th2dc,th1ddc,th2ddc] = cubic_correction(t,th1h,... 
    th2h,th1dh,th2dh,leg); 

  
    qjh=[thh,th1c,th2c,l2h]; 
    qjdh=[thdh,th1dc,th2dc,l2dh]; 
    qjddh=[thddh,th1ddc,th2ddc,l2ddh]; 
%-------------------------------------------------------------------------% 
else 
    flag=1; 
    th1dh=zeros(n,1); 
    th2dh=zeros(n,1); 
    l2dh=zeros(n,1); 
    th1ddh=zeros(n,1); 
    th2ddh=zeros(n,1); 
    l2ddh=zeros(n,1); 
    qjh=[thh,th1h,th2h,l2h]; 
    qjdh=[thdh,th1dh,th2dh,l2dh]; 
    qjddh=[thddh,th1ddh,th2ddh,l2ddh]; 
end 

  
end 

  

 

InvKinF.m 

function [qjf,qjdf,qjddf,flag] = InvKinF(l1f,l20f,kf,t,x,y,th,thd,thdd,... 
    tti,xi,yg,fx,fy,d,leg) 
%INVKINF Calculates the joint trajectory of the front leg given the link 
%lengths l1f, l20f and distal limb stiffness kf and the body trajectory x, 
%y, th, the ground forces fx, fy, the half hip separation distance d and 
%the leg {2,3}. 

  
n=length(x); 
T=t(n); 
dt=t(2)-t(1); 
xf=x-xi; 
yf=y-yg; 
thf=th; 
thdf=thd; 
thddf=thdd; 
fxf=fx/2; 
fyf=fy/2; 

  
xsf=xf+d*cos(thf); 
ysf=yf+d*sin(thf); 
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th1f=zeros(n,1); 
th2f=zeros(n,1); 
l2f=zeros(n,1); 

  
xhf=x+d*cos(th); 
yhf=y+d*sin(th); 

  
sng=0; % if sng=1 toe is out of leg's workspace 
clsn=0; 
flag=0; 

  
l2f(tti(1)*n/100+1)=l20f; 
%------------------- ELLIPTICAL TRAJECTORY PROPERTIES --------------------% 
if leg==2 
    atr2=(max(x)-min(x))/2; 
    btr2=0.05; %change clearance value here 
    xc2=xi-atr2; 
    yc2=yg; 
    wtr2=-pi/(tti(1)/100*T-0); 
    fitr2=pi; 
    xtr2=transpose(xc2+atr2*cos(wtr2.*t+fitr2)); 
    ytr2=transpose(yc2+btr2*sin(wtr2.*t+fitr2)); 
    xsspf=xhf-xtr2; 
    ysspf=yhf-ytr2; 
end 
if leg==3 
    atr3=(max(x)-min(x))/2; 
    btr3=0.05; %change clearance value here 
    xc3=xi+atr3; 
    yc3=yg; 
    wtr3=-pi/(T-tti(2)/100*T); 
    fitr3=pi*T/(T-tti(2)/100*T); 
    xtr3=transpose(xc3+atr3*cos(wtr3.*t+fitr3)); 
    ytr3=transpose(yc3+btr3*sin(wtr3.*t+fitr3)); 
    xsspf=xhf-xtr3; 
    ysspf=yhf-ytr3; 
end 
%-------------------------------------------------------------------------% 
for j=1:n 
%-------------------- STANCE PHASE INVERSE KINEMATICS --------------------%     
    if j>tti(1)*n/100&&j<=tti(2)*n/100 

         
        af=(l1f^2-xsf(j)^2-ysf(j)^2-l2f(j)^2)/2/l2f(j); 

         
        if xsf(j)^2+ysf(j)^2-af^2>0 
            th2f(j)=2*atan2(-xsf(j)-sqrt(xsf(j)^2+ysf(j)^2-af^2),... 
                ysf(j)-af)-thf(j); %change sign before sqrt to change 

configurati- 
            %on: '-' corresponds to KF, '+' corresponds to KB 
            th2f(j)=mod(th2f(j),2*pi); 
            th2f(j)=th2f(j)-(th2f(j)>3*pi/2)*2*pi; 
            th1f(j)=atan2(-xsf(j)-l2f(j)*sin(thf(j)+th2f(j)),ysf(j)-... 
                l2f(j)*cos(thf(j)+th2f(j)))-thf(j); 

             
            if j<tti(2)*n/100 
                l2f(j+1)=l20f+(fxf(j)*sin(thf(j)+th2f(j))-fyf(j)*... 
                    cos(thf(j)+th2f(j)))/kf; 
            end 
        else 
            sng=1; 
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        end 
%-------------------------------------------------------------------------% 
    else 
%--------------- FLIGHT PHASE INVERSE KINEMATICS (ELLIPSE) ---------------% 
        l2f(j)=l20f; 
        ar=(l1f^2-xsspf(j)^2-ysspf(j)^2-l2f(j)^2)/2/l2f(j); 
        if xsspf(j)^2+ysspf(j)^2-ar^2>0 
            th2f(j)=2*atan2(-xsspf(j)-sqrt(xsspf(j)^2+ysspf(j)^2-ar^2),... 
                ysspf(j)-ar)-th(j); %change sign before sqrt to change 
            %configuration: '-' corresponds to KF, '+' corresponds to KB 
            th2f(j)=mod(th2f(j),2*pi); 
            th2f(j)=th2f(j)-(th2f(j)>3*pi/2)*2*pi; 

             
            th1f(j)=atan2(-xsspf(j)-l2f(j)*sin(thf(j)+th2f(j)),ysspf(j)-... 
                l2f(j)*cos(thf(j)+th2f(j)))-thf(j); 
        else 
            sng=1; 
        end 
%-------------------------------------------------------------------------%         
    end 
end 
%------------ CHECK COLISION OF THE KNEE JOINT WITH THE GROUND -----------% 
if min(th2f+thf+pi/2)<5*pi/180 
    clsn=1; 
end 
%-------------------------------------------------------------------------% 
if sng==0&&clsn==0 
%-------------------- ACCUMULATE JOINT TRAJECTORIES ----------------------% 
    th2df=[gradient(th2f(1:500),dt);gradient(th2f(501:1000),dt)]; 
    th1df=[gradient(th1f(1:500),dt);gradient(th1f(501:1000),dt)]; 
    l2df=[gradient(l2f(1:500),dt);gradient(l2f(501:1000),dt)]; 
    th1df(1:3)=interp1([4 5 6 7 8],th1df(4:8),[1 2 3],'pchip'); 
    th2df(1:3)=interp1([4 5 6 7 8],th2df(4:8),[1 2 3],'pchip'); 
    l2df(1:3)=interp1([4 5 6 7 8],l2df(4:8),[1 2 3],'pchip'); 
    th1df(501:503)=interp1(504:508,th1df(504:508),501:503,'pchip'); 
    th2df(501:503)=interp1(504:508,th2df(504:508),501:503,'pchip'); 
    l2df(501:503)=interp1(504:508,l2df(504:508),501:503,'pchip'); 
    l2ddf=4*[del2(l2f(1:500),t(1:500));del2(l2f(501:1000),t(501:1000))]; 
    l2ddf(1:3)=interp1([4 5 6 7 8],l2ddf(4:8),[1 2 3],'pchip'); 
    l2ddf(501:503)=interp1(504:508,l2ddf(504:508),501:503,'pchip'); 
%-------------------------------------------------------------------------% 
%---------------------- CUBIC POLYNOMIAL CORRECTION ----------------------%     
% after cubic correction the toe trajectory is hybrid cubic/elliptic. 
    [th1c,th2c,th1dc,th2dc,th1ddc,th2ddc] = cubic_correction(t,th1f,... 
        th2f,th1df,th2df,leg); 

  
    qjf=[thf,th1c,th2c,l2f]; 
    qjdf=[thdf,th1dc,th2dc,l2df]; 
    qjddf=[thddf,th1ddc,th2ddc,l2ddf]; 
%-------------------------------------------------------------------------%    
else 
    flag=1; 
    th1df=zeros(n,1); 
    th2df=zeros(n,1); 
    l2df=zeros(n,1); 
    th1ddf=zeros(n,1); 
    th2ddf=zeros(n,1); 
    l2ddf=zeros(n,1); 
    qjf=[thf,th1f,th2f,l2f]; 
    qjdf=[thdf,th1df,th2df,l2df]; 
    qjddf=[thddf,th1ddf,th2ddf,l2ddf]; 
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end 

  
end 

  

 

cubic_correction.m 

function [th1c,th2c,th1dc,th2dc,th1ddc,th2ddc] = cubic_correction(t,th1,... 
    th2,th1d,th2d,leg) 
%CUBIC_CORRECTION takes as input the joint trajectories of the elliptical 
%flight phase and returns cubic polynomial, continuous leg joint 
%trajectories. 

  
if leg==1||leg==3 
    j0=500; 
    jm=750; 
    jf=1; 
    t0=t(j0); % time of take off 
    tm=t(jm); % time of mid flight 
    tf=t(jf+999); % time of touch down ending flight phase 

     
    % The boundary conditions are expressed in the form  
    % Ap1*cff1=[th1(j0);th1d(j0);th1(jm);th1d(jm)]; 
    % where Ap1 contains the terms of the polynomials t^p and cff1 contains 
    % the coefficients of the polynomials a1, b1, c1, d1. 
    % Then cff1=InvAp1*[th1(j0);th1d(j0);th1(jm);th1d(jm)]; 

     
    InvAp1=[((-2).*t0+2.*tm).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+( ... 
  -4).*t0.*tm.^3+tm.^4).^(-1),(t0.^2+(-2).*t0.*tm+tm.^2).*( ... 
  t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4) ... 
  .^(-1),(2.*t0+(-2).*tm).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.* ... 
  tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),(t0.^2+(-2).*t0.*tm+ ... 
  tm.^2).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.* ... 
  tm.^3+tm.^4).^(-1);(3.*t0.^2+(-3).*tm.^2).*(t0.^4+(-4).* ... 
  t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),((-1) ... 
  .*t0.^3+3.*t0.*tm.^2+(-2).*tm.^3).*(t0.^4+(-4).*t0.^3.*tm+ ... 
  6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),((-3).*t0.^2+ ... 
  3.*tm.^2).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.* ... 
  tm.^3+tm.^4).^(-1),((-2).*t0.^3+3.*t0.^2.*tm+(-1).*tm.^3).*( ... 
  t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4) ... 
  .^(-1);((-6).*t0.^2.*tm+6.*t0.*tm.^2).*(t0.^4+(-4).*t0.^3.* ... 
  tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),(2.*t0.^3.* ... 
  tm+(-3).*t0.^2.*tm.^2+tm.^4).*(t0.^4+(-4).*t0.^3.*tm+6.* ... 
  t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),(6.*t0.^2.*tm+(-6) ... 
  .*t0.*tm.^2).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).* ... 
  t0.*tm.^3+tm.^4).^(-1),(t0.^4+(-3).*t0.^2.*tm.^2+2.*t0.* ... 
  tm.^3).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.* ... 
  tm.^3+tm.^4).^(-1);(3.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).* ... 
  (t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+ ... 
  tm.^4).^(-1),(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).* ... 
  t0.*tm.^3+tm.^4).^(-1).*((-1).*t0.^3.*tm.^2+2.*t0.^2.*tm.^3+ ... 
  (-1).*t0.*tm.^4),(t0.^4+(-4).*t0.^3.*tm+3.*t0.^2.*tm.^2).*( ... 
  t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4) ... 
  .^(-1),((-1).*t0.^4.*tm+2.*t0.^3.*tm.^2+(-1).*t0.^2.*tm.^3) ... 
  .*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+ ... 
  tm.^4).^(-1)]; 

  
InvAp2=[(2.*tf+(-2).*tm).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+( ... 
  -4).*tf.*tm.^3+tm.^4).^(-1),(tf.^2+(-2).*tf.*tm+tm.^2).*( ... 
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  tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4) ... 
  .^(-1),((-2).*tf+2.*tm).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.* ... 
  tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),(tf.^2+(-2).*tf.*tm+ ... 
  tm.^2).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1);((-3).*tf.^2+3.*tm.^2).*(tf.^4+(-4).* ... 
  tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),((-2) ... 
  .*tf.^3+3.*tf.^2.*tm+(-1).*tm.^3).*(tf.^4+(-4).*tf.^3.*tm+ ... 
  6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),(3.*tf.^2+(-3) ... 
  .*tm.^2).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1),((-1).*tf.^3+3.*tf.*tm.^2+(-2).*tm.^3).*( ... 
  tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4) ... 
  .^(-1);(6.*tf.^2.*tm+(-6).*tf.*tm.^2).*(tf.^4+(-4).*tf.^3.* ... 
  tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),(tf.^4+(-3) ... 
  .*tf.^2.*tm.^2+2.*tf.*tm.^3).*(tf.^4+(-4).*tf.^3.*tm+6.* ... 
  tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),((-6).*tf.^2.*tm+ ... 
  6.*tf.*tm.^2).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).* ... 
  tf.*tm.^3+tm.^4).^(-1),(2.*tf.^3.*tm+(-3).*tf.^2.*tm.^2+ ... 
  tm.^4).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1);(tf.^4+(-4).*tf.^3.*tm+3.*tf.^2.*tm.^2).* ... 
  (tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+ ... 
  tm.^4).^(-1),((-1).*tf.^4.*tm+2.*tf.^3.*tm.^2+(-1).*tf.^2.* ... 
  tm.^3).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1),(3.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).* ... 
  (tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+ ... 
  tm.^4).^(-1),(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).* ... 
  tf.*tm.^3+tm.^4).^(-1).*((-1).*tf.^3.*tm.^2+2.*tf.^2.*tm.^3+ ... 
  (-1).*tf.*tm.^4)]; 

  
  cff1=InvAp1*[th1(j0);th1d(j0);th1(jm);th1d(jm)]; 
  cff2=InvAp1*[th2(j0);th2d(j0);th2(jm);th2d(jm)]; 

   
  cff3=InvAp2*[th1(jm);th1d(jm);th1(jf);th1d(jf)]; 
  cff4=InvAp2*[th2(jm);th2d(jm);th2(jf);th2d(jf)]; 

   
  a1=cff1(1); 
  b1=cff1(2); 
  c1=cff1(3); 
  d1=cff1(4); 

   
  a2=cff2(1); 
  b2=cff2(2); 
  c2=cff2(3); 
  d2=cff2(4); 

   
  a3=cff3(1); 
  b3=cff3(2); 
  c3=cff3(3); 
  d3=cff3(4); 

   
  a4=cff4(1); 
  b4=cff4(2); 
  c4=cff4(3); 
  d4=cff4(4); 

  
  th1c=th1; 
  th2c=th2; 

  
  for j=j0+1:jm 
      th1c(j)=a1*t(j)^3+b1*t(j)^2+c1*t(j)+d1; 
      th2c(j)=a2*t(j)^3+b2*t(j)^2+c2*t(j)+d2; 
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  end 
  for j=jm+1:jf+999 
      th1c(j)=a3*t(j)^3+b3*t(j)^2+c3*t(j)+d3; 
      th2c(j)=a4*t(j)^3+b4*t(j)^2+c4*t(j)+d4; 
  end 

   
  dt=t(2)-t(1); 
  th2dc=[gradient(th2c(1:500),dt);gradient(th2c(501:1000),dt)]; 
  th2dc(1:3)=interp1([4 5 6 7 8],th2dc(4:8),[1 2 3],'pchip'); 
  th2dc(501:503)=interp1(504:508,th2dc(504:508),501:503,'pchip'); 

   
  th1dc=[gradient(th1c(1:500),dt);gradient(th1c(501:1000),dt)]; 
  th1dc(1:3)=interp1([4 5 6 7 8],th1dc(4:8),[1 2 3],'pchip'); 
  th1dc(501:503)=interp1(504:508,th1dc(504:508),501:503,'pchip'); 

   
  th2ddc=4*[del2(th2c(1:500),t(1:500));del2(th2c(501:1000),t(501:1000))]; 
  th2ddc(1:3)=interp1([4 5 6 7 8],th2ddc(4:8),[1 2 3],'pchip'); 
  th2ddc(501:503)=interp1(504:508,th2ddc(504:508),501:503,'pchip'); 

   
  th1ddc=4*[del2(th1c(1:500),t(1:500));del2(th1c(501:1000),t(501:1000))]; 
  th1ddc(1:3)=interp1([4 5 6 7 8],th1ddc(4:8),[1 2 3],'pchip'); 
  th1ddc(501:503)=interp1(504:508,th1ddc(504:508),501:503,'pchip'); 

   
end 

  
if leg==2||leg==4 
    j0=1000; 
    jm=250; 
    jf=501; 
    t0=t(j0-999); % time of take off 
    tm=t(jm);     % time of mid flight 
    tf=t(jf);     % time of touch down ending flight phase 

     
    InvAp1=[((-2).*t0+2.*tm).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+( ... 
  -4).*t0.*tm.^3+tm.^4).^(-1),(t0.^2+(-2).*t0.*tm+tm.^2).*( ... 
  t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4) ... 
  .^(-1),(2.*t0+(-2).*tm).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.* ... 
  tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),(t0.^2+(-2).*t0.*tm+ ... 
  tm.^2).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.* ... 
  tm.^3+tm.^4).^(-1);(3.*t0.^2+(-3).*tm.^2).*(t0.^4+(-4).* ... 
  t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),((-1) ... 
  .*t0.^3+3.*t0.*tm.^2+(-2).*tm.^3).*(t0.^4+(-4).*t0.^3.*tm+ ... 
  6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),((-3).*t0.^2+ ... 
  3.*tm.^2).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.* ... 
  tm.^3+tm.^4).^(-1),((-2).*t0.^3+3.*t0.^2.*tm+(-1).*tm.^3).*( ... 
  t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4) ... 
  .^(-1);((-6).*t0.^2.*tm+6.*t0.*tm.^2).*(t0.^4+(-4).*t0.^3.* ... 
  tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),(2.*t0.^3.* ... 
  tm+(-3).*t0.^2.*tm.^2+tm.^4).*(t0.^4+(-4).*t0.^3.*tm+6.* ... 
  t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).^(-1),(6.*t0.^2.*tm+(-6) ... 
  .*t0.*tm.^2).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).* ... 
  t0.*tm.^3+tm.^4).^(-1),(t0.^4+(-3).*t0.^2.*tm.^2+2.*t0.* ... 
  tm.^3).*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.* ... 
  tm.^3+tm.^4).^(-1);(3.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4).* ... 
  (t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+ ... 
  tm.^4).^(-1),(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).* ... 
  t0.*tm.^3+tm.^4).^(-1).*((-1).*t0.^3.*tm.^2+2.*t0.^2.*tm.^3+ ... 
  (-1).*t0.*tm.^4),(t0.^4+(-4).*t0.^3.*tm+3.*t0.^2.*tm.^2).*( ... 
  t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+tm.^4) ... 
  .^(-1),((-1).*t0.^4.*tm+2.*t0.^3.*tm.^2+(-1).*t0.^2.*tm.^3) ... 
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  .*(t0.^4+(-4).*t0.^3.*tm+6.*t0.^2.*tm.^2+(-4).*t0.*tm.^3+ ... 
  tm.^4).^(-1)]; 

  
InvAp2=[(2.*tf+(-2).*tm).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+( ... 
  -4).*tf.*tm.^3+tm.^4).^(-1),(tf.^2+(-2).*tf.*tm+tm.^2).*( ... 
  tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4) ... 
  .^(-1),((-2).*tf+2.*tm).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.* ... 
  tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),(tf.^2+(-2).*tf.*tm+ ... 
  tm.^2).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1);((-3).*tf.^2+3.*tm.^2).*(tf.^4+(-4).* ... 
  tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),((-2) ... 
  .*tf.^3+3.*tf.^2.*tm+(-1).*tm.^3).*(tf.^4+(-4).*tf.^3.*tm+ ... 
  6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),(3.*tf.^2+(-3) ... 
  .*tm.^2).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1),((-1).*tf.^3+3.*tf.*tm.^2+(-2).*tm.^3).*( ... 
  tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4) ... 
  .^(-1);(6.*tf.^2.*tm+(-6).*tf.*tm.^2).*(tf.^4+(-4).*tf.^3.* ... 
  tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),(tf.^4+(-3) ... 
  .*tf.^2.*tm.^2+2.*tf.*tm.^3).*(tf.^4+(-4).*tf.^3.*tm+6.* ... 
  tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).^(-1),((-6).*tf.^2.*tm+ ... 
  6.*tf.*tm.^2).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).* ... 
  tf.*tm.^3+tm.^4).^(-1),(2.*tf.^3.*tm+(-3).*tf.^2.*tm.^2+ ... 
  tm.^4).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1);(tf.^4+(-4).*tf.^3.*tm+3.*tf.^2.*tm.^2).* ... 
  (tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+ ... 
  tm.^4).^(-1),((-1).*tf.^4.*tm+2.*tf.^3.*tm.^2+(-1).*tf.^2.* ... 
  tm.^3).*(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.* ... 
  tm.^3+tm.^4).^(-1),(3.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+tm.^4).* ... 
  (tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).*tf.*tm.^3+ ... 
  tm.^4).^(-1),(tf.^4+(-4).*tf.^3.*tm+6.*tf.^2.*tm.^2+(-4).* ... 
  tf.*tm.^3+tm.^4).^(-1).*((-1).*tf.^3.*tm.^2+2.*tf.^2.*tm.^3+ ... 
  (-1).*tf.*tm.^4)]; 

  
  cff1=InvAp1*[th1(j0);th1d(j0);th1(jm);th1d(jm)]; 
  cff2=InvAp1*[th2(j0);th2d(j0);th2(jm);th2d(jm)]; 

   
  cff3=InvAp2*[th1(jm);th1d(jm);th1(jf);th1d(jf)]; 
  cff4=InvAp2*[th2(jm);th2d(jm);th2(jf);th2d(jf)]; 

   
  a1=cff1(1); 
  b1=cff1(2); 
  c1=cff1(3); 
  d1=cff1(4); 

   
  a2=cff2(1); 
  b2=cff2(2); 
  c2=cff2(3); 
  d2=cff2(4); 

   
  a3=cff3(1); 
  b3=cff3(2); 
  c3=cff3(3); 
  d3=cff3(4); 

   
  a4=cff4(1); 
  b4=cff4(2); 
  c4=cff4(3); 
  d4=cff4(4); 

  
  th1c=th1; 
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  th2c=th2; 

  
  for j=j0-999:jm 
      th1c(j)=a1*t(j)^3+b1*t(j)^2+c1*t(j)+d1; 
      th2c(j)=a2*t(j)^3+b2*t(j)^2+c2*t(j)+d2; 
  end 
  for j=jm+1:jf-1 
      th1c(j)=a3*t(j)^3+b3*t(j)^2+c3*t(j)+d3; 
      th2c(j)=a4*t(j)^3+b4*t(j)^2+c4*t(j)+d4; 
  end 

   
  dt=t(2)-t(1); 
  th2dc=[gradient(th2c(1:500),dt);gradient(th2c(501:1000),dt)]; 
  th2dc(1:3)=interp1([4 5 6 7 8],th2dc(4:8),[1 2 3],'pchip'); 
  th2dc(501:503)=interp1(504:508,th2dc(504:508),501:503,'pchip'); 

   
  th1dc=[gradient(th1c(1:500),dt);gradient(th1c(501:1000),dt)]; 
  th1dc(1:3)=interp1([4 5 6 7 8],th1dc(4:8),[1 2 3],'pchip'); 
  th1dc(501:503)=interp1(504:508,th1dc(504:508),501:503,'pchip'); 

   
  th2ddc=4*[del2(th2c(1:500),t(1:500));del2(th2c(501:1000),t(501:1000))]; 
  th2ddc(1:3)=interp1([4 5 6 7 8],th2ddc(4:8),[1 2 3],'pchip'); 
  th2ddc(501:503)=interp1(504:508,th2ddc(504:508),501:503,'pchip'); 

   
  th1ddc=4*[del2(th1c(1:500),t(1:500));del2(th1c(501:1000),t(501:1000))]; 
  th1ddc(1:3)=interp1([4 5 6 7 8],th1ddc(4:8),[1 2 3],'pchip'); 
  th1ddc(501:503)=interp1(504:508,th1ddc(504:508),501:503,'pchip'); 

       
end 

  

  
end 
  

 

 

Torques.m 

function [torque1h1,torque2h1,torque1h4,torque2h4,torque1f2,torque2f2,... 
torque1f3,torque2f3,flag] = Torques(xd,xdd,yd,ydd,th,thd,thdd,th1h1,... 
    th1dh1,th1ddh1,l1h1,th2h1,th2dh1,th2ddh1,l2h1,l2dh1,l2ddh1,th1h4,... 
    th1dh4,th1ddh4,l1h4,th2h4,th2dh4,th2ddh4,l2h4,l2dh4,l2ddh4,th1f2,... 
    th1df2,th1ddf2,l1f2,th2f2,th2df2,th2ddf2,l2f2,l2df2,l2ddf2,th1f3,... 
    th1df3,th1ddf3,l1f3,th2f3,th2df3,th2ddf3,l2f3,l2df3,l2ddf3,g,d,... 
    tt1,tt2,tt3,tt4,t,T,fx,fy) 

  
%TORQUES calculates the required joint torques, taking in account the full  
%quadruped dynamics and the joint trajectories. 

  
%-------------------------- ACTUATOR PROPERTIES --------------------------% 
% rotor inertia before reduction 
Ir1=542*10^(-7); 
Ir2=542*10^(-7); 
% reduction ratios 
n1=53; 
n2=53; 
%-------------------------------------------------------------------------% 
%------------------------- CARBON TUBE PROPERTIES ------------------------% 
dens=1466; 
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[din,dout,flag] = check_strength(fx,fy,th,th1h1,l1h1,th2h1,l2h1... 
    ,th1f2,l1f2,th2f2,l2f2,th1f3,l1f3,th2f3,l2f3,th1h4,l1h4,th2h4,l2h4); 
A=pi*(dout^2-din^2)/4; 
%-------------------------------------------------------------------------% 
%---------------------- LEG LUMPED MASS PROPERTIES -----------------------% 
mj1=0.4; % hip joint mass 
mj2=0.4; % knee joint mass 
mt=0.1;  % toe mass 
ms=0.17; % spring mass 
%-------------------------------------------------------------------------% 
%------------------ LEG INERTIAL PROPERTIES CALCULATION ------------------% 
% LEG 1 PROPERTIES 
mr1h1=dens*A*l1h1; 
l20h1=l2h1(1); 
mr2h1=dens*A*l20h1; 
m1h1=mj1/2+mr1h1+mj2/2; 
m2h1=mj2/2+ms+mr2h1+mt; 
lcm1h1=(mr1h1*l1h1/2+mj2/2*l1h1)/m1h1; 
I1h1=1/12*m1h1*l1h1^2+Ir1*n1^2; 
I2h1=1/12*m2h1*l2h1.^2+Ir2*n2^2; 

  
% LEG 4 PROPERTIES 
mr1h4=dens*A*l1h4; 
l20h4=l2h4(1); 
mr2h4=dens*A*l20h4; 
m1h4=mj1/2+mr1h4+mj2/2; 
m2h4=mj2/2+ms+mr2h4+mt; 
lcm1h4=(mr1h4*l1h4/2+mj2/2*l1h4)/m1h4; 
I1h4=1/12*m1h4*l1h4^2+Ir1*n1^2; 
I2h4=1/12*m2h4*l2h4.^2+Ir2*n2^2; 

  
% LEG 2 PROPERTIES 
mr1f2=dens*A*l1f2; 
l20f2=l2f2(1); 
mr2f2=dens*A*l20f2; 
m1f2=mj1/2+mr1f2+mj2/2; 
m2f2=mj2/2+ms+mr2f2+mt; 
lcm1f2=(mr1f2*l1f2/2+mj2/2*l1f2)/m1f2; 
I1f2=1/12*m1f2*l1f2^2+Ir1*n1^2; 
I2f2=1/12*m2f2*l2f2.^2+Ir2*n2^2; 

  
% LEG 3 PROPERTIES 
mr1f3=dens*A*l1f3; 
l20f3=l2f3(1); 
mr2f3=dens*A*l20f3; 
m1f3=mj1/2+mr1f3+mj2/2; 
m2f3=mj2/2+ms+mr2f3+mt; 
lcm1f3=(mr1f3*l1f3/2+mj2/2*l1f3)/m1f3; 
I1f3=1/12*m1f3*l1f3^2+Ir1*n1^2; 
I2f3=1/12*m2f3*l2f3.^2+Ir2*n2^2; 
%-------------------------------------------------------------------------% 
%------------------------- FORCES FROM THE GROUND ------------------------% 
% total forces on the CoM are shared from the two legs in phase. 
fx1=fx/2; 
fy1=fy/2; 
fx2=fx/2; 
fy2=fy/2; 
fx3=fx/2; 
fy3=fy/2; 
fx4=fx/2; 
fy4=fy/2; 
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%-------------------------------------------------------------------------% 
%--------------------------- LEG JOINT TORQUES ---------------------------% 
% The leg joint torques as calculated from the full robot dynamics 
n=length(th); 
torque1h1=zeros(n,1); 
torque2h1=zeros(n,1); 
torque1h4=zeros(n,1); 
torque2h4=zeros(n,1); 
torque1f2=zeros(n,1); 
torque2f2=zeros(n,1); 
torque1f3=zeros(n,1); 
torque2f3=zeros(n,1); 

  
for j=1:n 

     
    [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(j),T); 

     
torque1h1(j)=(-0.1E1).*c1.*l1h1.*cos(th(j)+th1h1(j)).*fx1(j)+g.*... 
    (0.1E1.*lcm1h1.*m1h1+0.1E1.*l1h1.*m2h1).*sin(th(j)+th1h1(j))+( ... 
  -0.1E1).*c1.*l1h1.*fy1(j).*sin(th(j)+th1h1(j))+(-0.5E0).* ... 
  l1h1.*mr2h1.*l2ddh1(j).*sin(th1h1(j)+(-1).*th2h1(j))+( ... 
  -0.25E0).*l1h1.*ms.*l2ddh1(j).*sin(th1h1(j)+(-1).*th2h1(j))+ ... 
  (-0.1E1).*l1h1.*mt.*l2ddh1(j).*sin(th1h1(j)+(-1).*th2h1(j))+ ... 
  0.1E1.*I1h1.*th1ddh1(j)+0.1E1.*lcm1h1.^2.*m1h1.*th1ddh1(j)+ ... 
  0.1E1.*l1h1.^2.*m2h1.*th1ddh1(j)+0.5E0.*l1h1.*mr2h1.*cos( ... 
  th1h1(j)+(-1).*th2h1(j)).*l2h1(j).*th2ddh1(j)+0.25E0.*l1h1.* ... 
  ms.*cos(th1h1(j)+(-1).*th2h1(j)).*l2h1(j).*th2ddh1(j)+ ... 
  0.1E1.*l1h1.*mt.*cos(th1h1(j)+(-1).*th2h1(j)).*l2h1(j).* ... 
  th2ddh1(j)+0.1E1.*l1h1.*mr2h1.*cos(th1h1(j)+(-1).*th2h1(j)) ... 
  .*l2dh1(j).*th2dh1(j)+0.5E0.*l1h1.*ms.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*l2dh1(j).*th2dh1(j)+0.2E1.*l1h1.*mt.*cos(th1h1(j) ... 
  +(-1).*th2h1(j)).*l2dh1(j).*th2dh1(j)+0.5E0.*l1h1.*mr2h1.* ... 
  l2h1(j).*sin(th1h1(j)+(-1).*th2h1(j)).*th2dh1(j).^2+0.25E0.* ... 
  l1h1.*ms.*l2h1(j).*sin(th1h1(j)+(-1).*th2h1(j)).*th2dh1(j) ... 
  .^2+0.1E1.*l1h1.*mt.*l2h1(j).*sin(th1h1(j)+(-1).*th2h1(j)).* ... 
  th2dh1(j).^2+0.1E1.*l1h1.*mr2h1.*cos(th1h1(j)+(-1).*th2h1(j) ... 
  ).*l2dh1(j).*thd(j)+0.5E0.*l1h1.*ms.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*l2dh1(j).*thd(j)+0.2E1.*l1h1.*mt.*cos(th1h1(j)+( ... 
  -1).*th2h1(j)).*l2dh1(j).*thd(j)+0.1E1.*l1h1.*mr2h1.*l2h1(j) ... 
  .*sin(th1h1(j)+(-1).*th2h1(j)).*th2dh1(j).*thd(j)+0.5E0.* ... 
  l1h1.*ms.*l2h1(j).*sin(th1h1(j)+(-1).*th2h1(j)).*th2dh1(j).* ... 
  thd(j)+0.2E1.*l1h1.*mt.*l2h1(j).*sin(th1h1(j)+(-1).*th2h1(j) ... 
  ).*th2dh1(j).*thd(j)+0.1E1.*d.*lcm1h1.*m1h1.*cos(th1h1(j)).* ... 
  thd(j).^2+0.1E1.*d.*l1h1.*m2h1.*cos(th1h1(j)).*thd(j).^2+ ... 
  0.5E0.*l1h1.*mr2h1.*l2h1(j).*sin(th1h1(j)+(-1).*th2h1(j)).* ... 
  thd(j).^2+0.25E0.*l1h1.*ms.*l2h1(j).*sin(th1h1(j)+(-1).* ... 
  th2h1(j)).*thd(j).^2+0.1E1.*l1h1.*mt.*l2h1(j).*sin(th1h1(j)+ ... 
  (-1).*th2h1(j)).*thd(j).^2+0.1E1.*lcm1h1.^2.*m1h1.*thdd(j)+ ... 
  0.1E1.*l1h1.^2.*m2h1.*thdd(j)+0.5E0.*l1h1.*mr2h1.*cos(th1h1( ... 
  j)+(-1).*th2h1(j)).*l2h1(j).*thdd(j)+0.25E0.*l1h1.*ms.*cos( ... 
  th1h1(j)+(-1).*th2h1(j)).*l2h1(j).*thdd(j)+0.1E1.*l1h1.*mt.* ... 
  cos(th1h1(j)+(-1).*th2h1(j)).*l2h1(j).*thdd(j)+(-0.1E1).*d.* ... 
  lcm1h1.*m1h1.*sin(th1h1(j)).*thdd(j)+(-0.1E1).*d.*l1h1.* ... 
  m2h1.*sin(th1h1(j)).*thdd(j)+0.1E1.*lcm1h1.*m1h1.*cos(th(j)+ ... 
  th1h1(j)).*xdd(j)+0.1E1.*l1h1.*m2h1.*cos(th(j)+th1h1(j)).* ... 
  xdd(j)+(0.1E1.*lcm1h1.*m1h1+0.1E1.*l1h1.*m2h1).*sin(th(j)+ ... 
  th1h1(j)).*ydd(j); 

  

  
torque2h1(j)=m2h1.^(-1).*((-0.1E1).*c1.*m2h1.*cos(th(j)+th2h1(j)).*... 
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    fx1(j).*l2h1(j)+0.1E1.*m2h1.*I2h1(j).*th2ddh1(j)+(0.25E0.* ... 
  mr2h1.^2+0.25E0.*mr2h1.*ms+0.625E-1.*ms.^2+0.1E1.*mr2h1.*mt+ ... 
  0.5E0.*ms.*mt+0.1E1.*mt.^2).*l2h1(j).^2.*(th2ddh1(j)+thdd(j) ... 
  )+l2h1(j).*((-0.1E1).*c1.*m2h1.*fy1(j).*sin(th(j)+th2h1(j))+ ... 
  (0.5E0.*mr2h1.^2+0.5E0.*mr2h1.*ms+0.125E0.*ms.^2+0.2E1.* ... 
  mr2h1.*mt+0.1E1.*ms.*mt+0.2E1.*mt.^2).*l2dh1(j).*(th2dh1(j)+ ... 
  thd(j))+m2h1.*(g.*(0.5E0.*mr2h1+0.25E0.*ms+0.1E1.*mt).*sin( ... 
  th(j)+th2h1(j))+0.5E0.*l1h1.*mr2h1.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*th1ddh1(j)+0.25E0.*l1h1.*ms.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*th1ddh1(j)+0.1E1.*l1h1.*mt.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*th1ddh1(j)+l1h1.*((-0.5E0).*mr2h1+(-0.25E0).*ms+( ... 
  -0.1E1).*mt).*sin(th1h1(j)+(-1).*th2h1(j)).*th1dh1(j).^2+ ... 
  l1h1.*((-0.1E1).*mr2h1+(-0.5E0).*ms+(-0.2E1).*mt).*sin( ... 
  th1h1(j)+(-1).*th2h1(j)).*th1dh1(j).*thd(j)+(d.*(0.5E0.* ... 
  mr2h1+0.25E0.*ms+0.1E1.*mt).*cos(th2h1(j))+l1h1.*((-0.5E0).* ... 
  mr2h1+(-0.25E0).*ms+(-0.1E1).*mt).*sin(th1h1(j)+(-1).*th2h1( ... 
  j))).*thd(j).^2+0.5E0.*l1h1.*mr2h1.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*thdd(j)+0.25E0.*l1h1.*ms.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*thdd(j)+0.1E1.*l1h1.*mt.*cos(th1h1(j)+(-1).* ... 
  th2h1(j)).*thdd(j)+(-0.5E0).*d.*mr2h1.*sin(th2h1(j)).*thdd( ... 
  j)+(-0.25E0).*d.*ms.*sin(th2h1(j)).*thdd(j)+(-0.1E1).*d.* ... 
  mt.*sin(th2h1(j)).*thdd(j)+0.5E0.*mr2h1.*cos(th(j)+th2h1(j)) ... 
  .*xdd(j)+0.25E0.*ms.*cos(th(j)+th2h1(j)).*xdd(j)+0.1E1.*mt.* ... 
  cos(th(j)+th2h1(j)).*xdd(j)+0.5E0.*mr2h1.*sin(th(j)+th2h1(j) ... 
  ).*ydd(j)+0.25E0.*ms.*sin(th(j)+th2h1(j)).*ydd(j)+0.1E1.* ... 
  mt.*sin(th(j)+th2h1(j)).*ydd(j)))); 

  

  
torque1h4(j)=(-0.1E1).*c4.*l1h4.*cos(th(j)+th1h4(j)).*fx4(j)+g.*... 
    (0.1E1.*lcm1h4.*m1h4+0.1E1.*l1h4.*m2h4).*sin(th(j)+th1h4(j))+( ... 
  -0.1E1).*c4.*l1h4.*fy4(j).*sin(th(j)+th1h4(j))+(-0.5E0).* ... 
  l1h4.*mr2h4.*l2ddh4(j).*sin(th1h4(j)+(-1).*th2h4(j))+( ... 
  -0.25E0).*l1h4.*ms.*l2ddh4(j).*sin(th1h4(j)+(-1).*th2h4(j))+ ... 
  (-0.1E1).*l1h4.*mt.*l2ddh4(j).*sin(th1h4(j)+(-1).*th2h4(j))+ ... 
  0.1E1.*I1h4.*th1ddh4(j)+0.1E1.*lcm1h4.^2.*m1h4.*th1ddh4(j)+ ... 
  0.1E1.*l1h4.^2.*m2h4.*th1ddh4(j)+0.5E0.*l1h4.*mr2h4.*cos( ... 
  th1h4(j)+(-1).*th2h4(j)).*l2h4(j).*th2ddh4(j)+0.25E0.*l1h4.* ... 
  ms.*cos(th1h4(j)+(-1).*th2h4(j)).*l2h4(j).*th2ddh4(j)+ ... 
  0.1E1.*l1h4.*mt.*cos(th1h4(j)+(-1).*th2h4(j)).*l2h4(j).* ... 
  th2ddh4(j)+0.1E1.*l1h4.*mr2h4.*cos(th1h4(j)+(-1).*th2h4(j)) ... 
  .*l2dh4(j).*th2dh4(j)+0.5E0.*l1h4.*ms.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*l2dh4(j).*th2dh4(j)+0.2E1.*l1h4.*mt.*cos(th1h4(j) ... 
  +(-1).*th2h4(j)).*l2dh4(j).*th2dh4(j)+0.5E0.*l1h4.*mr2h4.* ... 
  l2h4(j).*sin(th1h4(j)+(-1).*th2h4(j)).*th2dh4(j).^2+0.25E0.* ... 
  l1h4.*ms.*l2h4(j).*sin(th1h4(j)+(-1).*th2h4(j)).*th2dh4(j) ... 
  .^2+0.1E1.*l1h4.*mt.*l2h4(j).*sin(th1h4(j)+(-1).*th2h4(j)).* ... 
  th2dh4(j).^2+0.1E1.*l1h4.*mr2h4.*cos(th1h4(j)+(-1).*th2h4(j) ... 
  ).*l2dh4(j).*thd(j)+0.5E0.*l1h4.*ms.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*l2dh4(j).*thd(j)+0.2E1.*l1h4.*mt.*cos(th1h4(j)+( ... 
  -1).*th2h4(j)).*l2dh4(j).*thd(j)+0.1E1.*l1h4.*mr2h4.*l2h4(j) ... 
  .*sin(th1h4(j)+(-1).*th2h4(j)).*th2dh4(j).*thd(j)+0.5E0.* ... 
  l1h4.*ms.*l2h4(j).*sin(th1h4(j)+(-1).*th2h4(j)).*th2dh4(j).* ... 
  thd(j)+0.2E1.*l1h4.*mt.*l2h4(j).*sin(th1h4(j)+(-1).*th2h4(j) ... 
  ).*th2dh4(j).*thd(j)+0.1E1.*d.*lcm1h4.*m1h4.*cos(th1h4(j)).* ... 
  thd(j).^2+0.1E1.*d.*l1h4.*m2h4.*cos(th1h4(j)).*thd(j).^2+ ... 
  0.5E0.*l1h4.*mr2h4.*l2h4(j).*sin(th1h4(j)+(-1).*th2h4(j)).* ... 
  thd(j).^2+0.25E0.*l1h4.*ms.*l2h4(j).*sin(th1h4(j)+(-1).* ... 
  th2h4(j)).*thd(j).^2+0.1E1.*l1h4.*mt.*l2h4(j).*sin(th1h4(j)+ ... 
  (-1).*th2h4(j)).*thd(j).^2+0.1E1.*lcm1h4.^2.*m1h4.*thdd(j)+ ... 
  0.1E1.*l1h4.^2.*m2h4.*thdd(j)+0.5E0.*l1h4.*mr2h4.*cos(th1h4( ... 
  j)+(-1).*th2h4(j)).*l2h4(j).*thdd(j)+0.25E0.*l1h4.*ms.*cos( ... 
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  th1h4(j)+(-1).*th2h4(j)).*l2h4(j).*thdd(j)+0.1E1.*l1h4.*mt.* ... 
  cos(th1h4(j)+(-1).*th2h4(j)).*l2h4(j).*thdd(j)+(-0.1E1).*d.* ... 
  lcm1h4.*m1h4.*sin(th1h4(j)).*thdd(j)+(-0.1E1).*d.*l1h4.* ... 
  m2h4.*sin(th1h4(j)).*thdd(j)+0.1E1.*lcm1h4.*m1h4.*cos(th(j)+ ... 
  th1h4(j)).*xdd(j)+0.1E1.*l1h4.*m2h4.*cos(th(j)+th1h4(j)).* ... 
  xdd(j)+(0.1E1.*lcm1h4.*m1h4+0.1E1.*l1h4.*m2h4).*sin(th(j)+ ... 
  th1h4(j)).*ydd(j); 

  

  
torque2h4(j)=m2h4.^(-1).*((-0.1E1).*c4.*m2h4.*cos(th(j)+th2h4(j)).*... 
    fx4(j).*l2h4(j)+0.1E1.*m2h4.*I2h4(j).*th2ddh4(j)+(0.25E0.* ... 
  mr2h4.^2+0.25E0.*mr2h4.*ms+0.625E-1.*ms.^2+0.1E1.*mr2h4.*mt+ ... 
  0.5E0.*ms.*mt+0.1E1.*mt.^2).*l2h4(j).^2.*(th2ddh4(j)+thdd(j) ... 
  )+l2h4(j).*((-0.1E1).*c4.*m2h4.*fy4(j).*sin(th(j)+th2h4(j))+ ... 
  (0.5E0.*mr2h4.^2+0.5E0.*mr2h4.*ms+0.125E0.*ms.^2+0.2E1.* ... 
  mr2h4.*mt+0.1E1.*ms.*mt+0.2E1.*mt.^2).*l2dh4(j).*(th2dh4(j)+ ... 
  thd(j))+m2h4.*(g.*(0.5E0.*mr2h4+0.25E0.*ms+0.1E1.*mt).*sin( ... 
  th(j)+th2h4(j))+0.5E0.*l1h4.*mr2h4.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*th1ddh4(j)+0.25E0.*l1h4.*ms.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*th1ddh4(j)+0.1E1.*l1h4.*mt.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*th1ddh4(j)+l1h4.*((-0.5E0).*mr2h4+(-0.25E0).*ms+( ... 
  -0.1E1).*mt).*sin(th1h4(j)+(-1).*th2h4(j)).*th1dh4(j).^2+ ... 
  l1h4.*((-0.1E1).*mr2h4+(-0.5E0).*ms+(-0.2E1).*mt).*sin( ... 
  th1h4(j)+(-1).*th2h4(j)).*th1dh4(j).*thd(j)+(d.*(0.5E0.* ... 
  mr2h4+0.25E0.*ms+0.1E1.*mt).*cos(th2h4(j))+l1h4.*((-0.5E0).* ... 
  mr2h4+(-0.25E0).*ms+(-0.1E1).*mt).*sin(th1h4(j)+(-1).*th2h4( ... 
  j))).*thd(j).^2+0.5E0.*l1h4.*mr2h4.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*thdd(j)+0.25E0.*l1h4.*ms.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*thdd(j)+0.1E1.*l1h4.*mt.*cos(th1h4(j)+(-1).* ... 
  th2h4(j)).*thdd(j)+(-0.5E0).*d.*mr2h4.*sin(th2h4(j)).*thdd( ... 
  j)+(-0.25E0).*d.*ms.*sin(th2h4(j)).*thdd(j)+(-0.1E1).*d.* ... 
  mt.*sin(th2h4(j)).*thdd(j)+0.5E0.*mr2h4.*cos(th(j)+th2h4(j)) ... 
  .*xdd(j)+0.25E0.*ms.*cos(th(j)+th2h4(j)).*xdd(j)+0.1E1.*mt.* ... 
  cos(th(j)+th2h4(j)).*xdd(j)+0.5E0.*mr2h4.*sin(th(j)+th2h4(j) ... 
  ).*ydd(j)+0.25E0.*ms.*sin(th(j)+th2h4(j)).*ydd(j)+0.1E1.* ... 
  mt.*sin(th(j)+th2h4(j)).*ydd(j)))); 

  

  
torque1f2(j)=(-0.1E1).*c2.*l1f2.*cos(th(j)+th1f2(j)).*fx2(j)+g.*... 
    (0.1E1.*lcm1f2.*m1f2+0.1E1.*l1f2.*m2f2).*sin(th(j)+th1f2(j))+( ... 
  -0.1E1).*c2.*l1f2.*fy2(j).*sin(th(j)+th1f2(j))+(-0.5E0).* ... 
  l1f2.*mr2f2.*l2ddf2(j).*sin(th1f2(j)+(-1).*th2f2(j))+( ... 
  -0.25E0).*l1f2.*ms.*l2ddf2(j).*sin(th1f2(j)+(-1).*th2f2(j))+ ... 
  (-0.1E1).*l1f2.*mt.*l2ddf2(j).*sin(th1f2(j)+(-1).*th2f2(j))+ ... 
  0.1E1.*I1f2.*th1ddf2(j)+0.1E1.*lcm1f2.^2.*m1f2.*th1ddf2(j)+ ... 
  0.1E1.*l1f2.^2.*m2f2.*th1ddf2(j)+0.5E0.*l1f2.*mr2f2.*cos( ... 
  th1f2(j)+(-1).*th2f2(j)).*l2f2(j).*th2ddf2(j)+0.25E0.*l1f2.* ... 
  ms.*cos(th1f2(j)+(-1).*th2f2(j)).*l2f2(j).*th2ddf2(j)+ ... 
  0.1E1.*l1f2.*mt.*cos(th1f2(j)+(-1).*th2f2(j)).*l2f2(j).* ... 
  th2ddf2(j)+0.1E1.*l1f2.*mr2f2.*cos(th1f2(j)+(-1).*th2f2(j)) ... 
  .*l2df2(j).*th2df2(j)+0.5E0.*l1f2.*ms.*cos(th1f2(j)+(-1).* ... 
  th2f2(j)).*l2df2(j).*th2df2(j)+0.2E1.*l1f2.*mt.*cos(th1f2(j) ... 
  +(-1).*th2f2(j)).*l2df2(j).*th2df2(j)+0.5E0.*l1f2.*mr2f2.* ... 
  l2f2(j).*sin(th1f2(j)+(-1).*th2f2(j)).*th2df2(j).^2+0.25E0.* ... 
  l1f2.*ms.*l2f2(j).*sin(th1f2(j)+(-1).*th2f2(j)).*th2df2(j) ... 
  .^2+0.1E1.*l1f2.*mt.*l2f2(j).*sin(th1f2(j)+(-1).*th2f2(j)).* ... 
  th2df2(j).^2+0.1E1.*l1f2.*mr2f2.*cos(th1f2(j)+(-1).*th2f2(j) ... 
  ).*l2df2(j).*thd(j)+0.5E0.*l1f2.*ms.*cos(th1f2(j)+(-1).* ... 
  th2f2(j)).*l2df2(j).*thd(j)+0.2E1.*l1f2.*mt.*cos(th1f2(j)+( ... 
  -1).*th2f2(j)).*l2df2(j).*thd(j)+0.1E1.*l1f2.*mr2f2.*l2f2(j) ... 
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  .*sin(th1f2(j)+(-1).*th2f2(j)).*th2df2(j).*thd(j)+0.5E0.* ... 
  l1f2.*ms.*l2f2(j).*sin(th1f2(j)+(-1).*th2f2(j)).*th2df2(j).* ... 
  thd(j)+0.2E1.*l1f2.*mt.*l2f2(j).*sin(th1f2(j)+(-1).*th2f2(j) ... 
  ).*th2df2(j).*thd(j)+(-0.1E1).*d.*lcm1f2.*m1f2.*cos(th1f2(j) ... 
  ).*thd(j).^2+(-0.1E1).*d.*l1f2.*m2f2.*cos(th1f2(j)).*thd(j) ... 
  .^2+0.5E0.*l1f2.*mr2f2.*l2f2(j).*sin(th1f2(j)+(-1).*th2f2(j) ... 
  ).*thd(j).^2+0.25E0.*l1f2.*ms.*l2f2(j).*sin(th1f2(j)+(-1).* ... 
  th2f2(j)).*thd(j).^2+0.1E1.*l1f2.*mt.*l2f2(j).*sin(th1f2(j)+ ... 
  (-1).*th2f2(j)).*thd(j).^2+0.1E1.*lcm1f2.^2.*m1f2.*thdd(j)+ ... 
  0.1E1.*l1f2.^2.*m2f2.*thdd(j)+0.5E0.*l1f2.*mr2f2.*cos(th1f2( ... 
  j)+(-1).*th2f2(j)).*l2f2(j).*thdd(j)+0.25E0.*l1f2.*ms.*cos( ... 
  th1f2(j)+(-1).*th2f2(j)).*l2f2(j).*thdd(j)+0.1E1.*l1f2.*mt.* ... 
  cos(th1f2(j)+(-1).*th2f2(j)).*l2f2(j).*thdd(j)+0.1E1.*d.* ... 
  lcm1f2.*m1f2.*sin(th1f2(j)).*thdd(j)+0.1E1.*d.*l1f2.*m2f2.* ... 
  sin(th1f2(j)).*thdd(j)+0.1E1.*lcm1f2.*m1f2.*cos(th(j)+th1f2( ... 
  j)).*xdd(j)+0.1E1.*l1f2.*m2f2.*cos(th(j)+th1f2(j)).*xdd(j)+( ... 
  0.1E1.*lcm1f2.*m1f2+0.1E1.*l1f2.*m2f2).*sin(th(j)+th1f2(j)) ... 
  .*ydd(j); 

  

  
torque2f2(j)=m2f2.^(-1).*((-0.1E1).*c2.*m2f2.*cos(th(j)+th2f2(j)).*... 
    fx2(j).*l2f2(j)+0.1E1.*m2f2.*I2f2(j).*th2ddf2(j)+(0.25E0.* ... 
  mr2f2.^2+0.25E0.*mr2f2.*ms+0.625E-1.*ms.^2+0.1E1.*mr2f2.*mt+ ... 
  0.5E0.*ms.*mt+0.1E1.*mt.^2).*l2f2(j).^2.*(th2ddf2(j)+thdd(j) ... 
  )+l2f2(j).*((-0.1E1).*c2.*m2f2.*fy2(j).*sin(th(j)+th2f2(j))+ ... 
  (0.5E0.*mr2f2.^2+0.5E0.*mr2f2.*ms+0.125E0.*ms.^2+0.2E1.* ... 
  mr2f2.*mt+0.1E1.*ms.*mt+0.2E1.*mt.^2).*l2df2(j).*(th2df2(j)+ ... 
  thd(j))+m2f2.*(g.*(0.5E0.*mr2f2+0.25E0.*ms+0.1E1.*mt).*sin( ... 
  th(j)+th2f2(j))+0.5E0.*l1f2.*mr2f2.*cos(th1f2(j)+(-1).* ... 
  th2f2(j)).*th1ddf2(j)+0.25E0.*l1f2.*ms.*cos(th1f2(j)+(-1).* ... 
  th2f2(j)).*th1ddf2(j)+0.1E1.*l1f2.*mt.*cos(th1f2(j)+(-1).* ... 
  th2f2(j)).*th1ddf2(j)+l1f2.*((-0.5E0).*mr2f2+(-0.25E0).*ms+( ... 
  -0.1E1).*mt).*sin(th1f2(j)+(-1).*th2f2(j)).*th1df2(j).^2+ ... 
  l1f2.*((-0.1E1).*mr2f2+(-0.5E0).*ms+(-0.2E1).*mt).*sin( ... 
  th1f2(j)+(-1).*th2f2(j)).*th1df2(j).*thd(j)+((-0.5E0).* ... 
  mr2f2+(-0.25E0).*ms+(-0.1E1).*mt).*(d.*cos(th2f2(j))+l1f2.* ... 
  sin(th1f2(j)+(-1).*th2f2(j))).*thd(j).^2+0.5E0.*l1f2.* ... 
  mr2f2.*cos(th1f2(j)+(-1).*th2f2(j)).*thdd(j)+0.25E0.*l1f2.* ... 
  ms.*cos(th1f2(j)+(-1).*th2f2(j)).*thdd(j)+0.1E1.*l1f2.*mt.* ... 
  cos(th1f2(j)+(-1).*th2f2(j)).*thdd(j)+0.5E0.*d.*mr2f2.*sin( ... 
  th2f2(j)).*thdd(j)+0.25E0.*d.*ms.*sin(th2f2(j)).*thdd(j)+ ... 
  0.1E1.*d.*mt.*sin(th2f2(j)).*thdd(j)+0.5E0.*mr2f2.*cos(th(j) ... 
  +th2f2(j)).*xdd(j)+0.25E0.*ms.*cos(th(j)+th2f2(j)).*xdd(j)+ ... 
  0.1E1.*mt.*cos(th(j)+th2f2(j)).*xdd(j)+0.5E0.*mr2f2.*sin(th( ... 
  j)+th2f2(j)).*ydd(j)+0.25E0.*ms.*sin(th(j)+th2f2(j)).*ydd(j) ... 
  +0.1E1.*mt.*sin(th(j)+th2f2(j)).*ydd(j)))); 

  

  
torque1f3(j)=(-0.1E1).*c3.*l1f3.*cos(th(j)+th1f3(j)).*fx3(j)+g.*... 
    (0.1E1.*lcm1f3.*m1f3+0.1E1.*l1f3.*m2f3).*sin(th(j)+th1f3(j))+( ... 
  -0.1E1).*c3.*l1f3.*fy3(j).*sin(th(j)+th1f3(j))+(-0.5E0).* ... 
  l1f3.*mr2f3.*l2ddf3(j).*sin(th1f3(j)+(-1).*th2f3(j))+( ... 
  -0.25E0).*l1f3.*ms.*l2ddf3(j).*sin(th1f3(j)+(-1).*th2f3(j))+ ... 
  (-0.1E1).*l1f3.*mt.*l2ddf3(j).*sin(th1f3(j)+(-1).*th2f3(j))+ ... 
  0.1E1.*I1f3.*th1ddf3(j)+0.1E1.*lcm1f3.^2.*m1f3.*th1ddf3(j)+ ... 
  0.1E1.*l1f3.^2.*m2f3.*th1ddf3(j)+0.5E0.*l1f3.*mr2f3.*cos( ... 
  th1f3(j)+(-1).*th2f3(j)).*l2f3(j).*th2ddf3(j)+0.25E0.*l1f3.* ... 
  ms.*cos(th1f3(j)+(-1).*th2f3(j)).*l2f3(j).*th2ddf3(j)+ ... 
  0.1E1.*l1f3.*mt.*cos(th1f3(j)+(-1).*th2f3(j)).*l2f3(j).* ... 
  th2ddf3(j)+0.1E1.*l1f3.*mr2f3.*cos(th1f3(j)+(-1).*th2f3(j)) ... 
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  .*l2df3(j).*th2df3(j)+0.5E0.*l1f3.*ms.*cos(th1f3(j)+(-1).* ... 
  th2f3(j)).*l2df3(j).*th2df3(j)+0.2E1.*l1f3.*mt.*cos(th1f3(j) ... 
  +(-1).*th2f3(j)).*l2df3(j).*th2df3(j)+0.5E0.*l1f3.*mr2f3.* ... 
  l2f3(j).*sin(th1f3(j)+(-1).*th2f3(j)).*th2df3(j).^2+0.25E0.* ... 
  l1f3.*ms.*l2f3(j).*sin(th1f3(j)+(-1).*th2f3(j)).*th2df3(j) ... 
  .^2+0.1E1.*l1f3.*mt.*l2f3(j).*sin(th1f3(j)+(-1).*th2f3(j)).* ... 
  th2df3(j).^2+0.1E1.*l1f3.*mr2f3.*cos(th1f3(j)+(-1).*th2f3(j) ... 
  ).*l2df3(j).*thd(j)+0.5E0.*l1f3.*ms.*cos(th1f3(j)+(-1).* ... 
  th2f3(j)).*l2df3(j).*thd(j)+0.2E1.*l1f3.*mt.*cos(th1f3(j)+( ... 
  -1).*th2f3(j)).*l2df3(j).*thd(j)+0.1E1.*l1f3.*mr2f3.*l2f3(j) ... 
  .*sin(th1f3(j)+(-1).*th2f3(j)).*th2df3(j).*thd(j)+0.5E0.* ... 
  l1f3.*ms.*l2f3(j).*sin(th1f3(j)+(-1).*th2f3(j)).*th2df3(j).* ... 
  thd(j)+0.2E1.*l1f3.*mt.*l2f3(j).*sin(th1f3(j)+(-1).*th2f3(j) ... 
  ).*th2df3(j).*thd(j)+(-0.1E1).*d.*lcm1f3.*m1f3.*cos(th1f3(j) ... 
  ).*thd(j).^2+(-0.1E1).*d.*l1f3.*m2f3.*cos(th1f3(j)).*thd(j) ... 
  .^2+0.5E0.*l1f3.*mr2f3.*l2f3(j).*sin(th1f3(j)+(-1).*th2f3(j) ... 
  ).*thd(j).^2+0.25E0.*l1f3.*ms.*l2f3(j).*sin(th1f3(j)+(-1).* ... 
  th2f3(j)).*thd(j).^2+0.1E1.*l1f3.*mt.*l2f3(j).*sin(th1f3(j)+ ... 
  (-1).*th2f3(j)).*thd(j).^2+0.1E1.*lcm1f3.^2.*m1f3.*thdd(j)+ ... 
  0.1E1.*l1f3.^2.*m2f3.*thdd(j)+0.5E0.*l1f3.*mr2f3.*cos(th1f3( ... 
  j)+(-1).*th2f3(j)).*l2f3(j).*thdd(j)+0.25E0.*l1f3.*ms.*cos( ... 
  th1f3(j)+(-1).*th2f3(j)).*l2f3(j).*thdd(j)+0.1E1.*l1f3.*mt.* ... 
  cos(th1f3(j)+(-1).*th2f3(j)).*l2f3(j).*thdd(j)+0.1E1.*d.* ... 
  lcm1f3.*m1f3.*sin(th1f3(j)).*thdd(j)+0.1E1.*d.*l1f3.*m2f3.* ... 
  sin(th1f3(j)).*thdd(j)+0.1E1.*lcm1f3.*m1f3.*cos(th(j)+th1f3( ... 
  j)).*xdd(j)+0.1E1.*l1f3.*m2f3.*cos(th(j)+th1f3(j)).*xdd(j)+( ... 
  0.1E1.*lcm1f3.*m1f3+0.1E1.*l1f3.*m2f3).*sin(th(j)+th1f3(j)) ... 
  .*ydd(j); 

  
torque2f3(j)=m2f3.^(-1).*((-0.1E1).*c3.*m2f3.*cos(th(j)+th2f3(j)).*... 
    fx3(j).*l2f3(j)+0.1E1.*m2f3.*I2f3(j).*th2ddf3(j)+(0.25E0.* ... 
  mr2f3.^2+0.25E0.*mr2f3.*ms+0.625E-1.*ms.^2+0.1E1.*mr2f3.*mt+ ... 
  0.5E0.*ms.*mt+0.1E1.*mt.^2).*l2f3(j).^2.*(th2ddf3(j)+thdd(j) ... 
  )+l2f3(j).*((-0.1E1).*c3.*m2f3.*fy3(j).*sin(th(j)+th2f3(j))+ ... 
  (0.5E0.*mr2f3.^2+0.5E0.*mr2f3.*ms+0.125E0.*ms.^2+0.2E1.* ... 
  mr2f3.*mt+0.1E1.*ms.*mt+0.2E1.*mt.^2).*l2df3(j).*(th2df3(j)+ ... 
  thd(j))+m2f3.*(g.*(0.5E0.*mr2f3+0.25E0.*ms+0.1E1.*mt).*sin( ... 
  th(j)+th2f3(j))+0.5E0.*l1f3.*mr2f3.*cos(th1f3(j)+(-1).* ... 
  th2f3(j)).*th1ddf3(j)+0.25E0.*l1f3.*ms.*cos(th1f3(j)+(-1).* ... 
  th2f3(j)).*th1ddf3(j)+0.1E1.*l1f3.*mt.*cos(th1f3(j)+(-1).* ... 
  th2f3(j)).*th1ddf3(j)+l1f3.*((-0.5E0).*mr2f3+(-0.25E0).*ms+( ... 
  -0.1E1).*mt).*sin(th1f3(j)+(-1).*th2f3(j)).*th1df3(j).^2+ ... 
  l1f3.*((-0.1E1).*mr2f3+(-0.5E0).*ms+(-0.2E1).*mt).*sin( ... 
  th1f3(j)+(-1).*th2f3(j)).*th1df3(j).*thd(j)+((-0.5E0).* ... 
  mr2f3+(-0.25E0).*ms+(-0.1E1).*mt).*(d.*cos(th2f3(j))+l1f3.* ... 
  sin(th1f3(j)+(-1).*th2f3(j))).*thd(j).^2+0.5E0.*l1f3.* ... 
  mr2f3.*cos(th1f3(j)+(-1).*th2f3(j)).*thdd(j)+0.25E0.*l1f3.* ... 
  ms.*cos(th1f3(j)+(-1).*th2f3(j)).*thdd(j)+0.1E1.*l1f3.*mt.* ... 
  cos(th1f3(j)+(-1).*th2f3(j)).*thdd(j)+0.5E0.*d.*mr2f3.*sin( ... 
  th2f3(j)).*thdd(j)+0.25E0.*d.*ms.*sin(th2f3(j)).*thdd(j)+ ... 
  0.1E1.*d.*mt.*sin(th2f3(j)).*thdd(j)+0.5E0.*mr2f3.*cos(th(j) ... 
  +th2f3(j)).*xdd(j)+0.25E0.*ms.*cos(th(j)+th2f3(j)).*xdd(j)+ ... 
  0.1E1.*mt.*cos(th(j)+th2f3(j)).*xdd(j)+0.5E0.*mr2f3.*sin(th( ... 
  j)+th2f3(j)).*ydd(j)+0.25E0.*ms.*sin(th(j)+th2f3(j)).*ydd(j) ... 
  +0.1E1.*mt.*sin(th(j)+th2f3(j)).*ydd(j)))); 

  

  
end 
%-------------------------------------------------------------------------% 
end 



 
127/142 

check_strength.m 

function [din,dout,flag] = check_strength(fx,fy,th,th1h1,l1h1,th2h1,l2h1... 
    ,th1f2,l1f2,th2f2,l2f2,th1f3,l1f3,th2f3,l2f3,th1h4,l1h4,th2h4,l2h4) 
%CHECK_STRENGTH takes as inputs the forces from the ground, the leg 
%segment lengths and the joint trajectories and returns as output the inner 
%and outer diameters of the tubular links if material strength is respected 
%(flag==0). Four alternative ID/OD options should be provided from the 
%user. If strength constraints are not valid for all of four alternatives, 
%(flag==1), the user should provide ID/OD with thicker cross-sectional 
%areas. 

  
flag=1; 
%------------------------------- OPTION 1 --------------------------------% 
din_c=0.023; 
dout_c=0.025; 

  
A=pi*(dout_c^2-din_c^2)/4; 
strength=200; 

  
ft21=fx(1:500)/2.*cos(th(1:500)+th2h1(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th2h1(1:500)); 
fl21=fx(1:500)/2.*sin(th(1:500)+th2h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2h1(1:500)); 
M21=ft21.*l2h1(1:500); 
I21=pi*(dout_c^4-din_c^4)/64; 
sb21=M21/I21*dout_c/2/10^6; 
sc21=fl21/A/10^6; 
ss21=ft21/A/10^6; 

  
ft11=fx(1:500)/2.*cos(th(1:500)+th1h1(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th1h1(1:500)); 
fl11=fx(1:500)/2.*sin(th(1:500)+th1h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1h1(1:500)); 
M11=ft11.*l1h1; 
I11=pi*(dout_c^4-din_c^4)/64; 
sb11=M11/I11*dout_c/2/10^6; 
sc11=fl11/A/10^6; 
ss11=ft11/A/10^6; 

  
ft22=fx(501:1000)/2.*cos(th(501:1000)+th2f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th2f2(501:1000)); 
fl22=fx(501:1000)/2.*sin(th(501:1000)+th2f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2f2(501:1000)); 
M22=ft22.*l2f2(501:1000); 
I22=pi*(dout_c^4-din_c^4)/64; 
sb22=M22/I22*dout_c/2/10^6; 
sc22=fl22/A/10^6; 
ss22=ft22/A/10^6; 

  
ft12=fx(501:1000)/2.*cos(th(501:1000)+th1f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1f2(501:1000)); 
fl12=fx(501:1000)/2.*sin(th(501:1000)+th1f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1f2(501:1000)); 
M12=ft12.*l1f2; 
I12=pi*(dout_c^4-din_c^4)/64; 
sb12=M12/I12*dout_c/2/10^6; 
sc12=fl12/A/10^6; 
ss12=ft12/A/10^6; 

  



 
128/142 

ft23=fx(1:500)/2.*cos(th(1:500)+th2f3(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th2f3(1:500)); 
fl23=fx(1:500)/2.*sin(th(1:500)+th2f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2f3(1:500)); 
M23=ft23.*l2f3(1:500); 
I23=pi*(dout_c^4-din_c^4)/64; 
sb23=M23/I23*dout_c/2/10^6; 
sc23=fl23/A/10^6; 
ss23=ft23/A/10^6; 

  
ft13=fx(1:500)/2.*cos(th(1:500)+th1f3(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th1f3(1:500)); 
fl13=fx(1:500)/2.*sin(th(1:500)+th1f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1f3(1:500)); 
M13=ft13.*l1f3; 
I13=pi*(dout_c^4-din_c^4)/64; 
sb13=M13/I13*dout_c/2/10^6; 
sc13=fl13/A/10^6; 
ss13=ft13/A/10^6; 

  
ft24=fx(501:1000)/2.*cos(th(501:1000)+th2h4(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th2h4(501:1000)); 
fl24=fx(501:1000)/2.*sin(th(501:1000)+th2h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2h4(501:1000)); 
M24=ft24.*l2h4(501:1000); 
I24=pi*(dout_c^4-din_c^4)/64; 
sb24=M24/I24*dout_c/2/10^6; 
sc24=fl24/A/10^6; 
ss24=ft24/A/10^6; 

  
ft14=fx(501:1000)/2.*cos(th(501:1000)+th1h4(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1h4(501:1000)); 
fl14=fx(501:1000)/2.*sin(th(501:1000)+th1h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1h4(501:1000)); 
M14=ft14.*l1h4; 
I14=pi*(dout_c^4-din_c^4)/64; 
sb14=M14/I14*dout_c/2/10^6; 
sc14=fl14/A/10^6; 
ss14=ft14/A/10^6; 

  
if strength/max(abs(sb21)+abs(sc21))>=3&&strength/max(abs(sb11)+... 
        abs(sc11))>=3&&strength/max(abs(sb22)+abs(sc22))>=3&&strength/... 
        max(abs(sb12)+abs(sc12))>=3&&strength/max(abs(sb23)+abs(sc23))>=... 
        3&&strength/max(abs(sb13)+abs(sc13))>=3&&strength/max(abs(sb24)+... 
        abs(sc24))>=3&&strength/max(abs(sb14)+abs(sc14))>=3 

     
    din=din_c; 
    dout=dout_c; 
    flag=0; 
end 
%-------------------------------------------------------------------------% 
%------------------------------- OPTION 2 --------------------------------% 
if flag==1 
din_c=0.026; 
dout_c=0.028; 

  
A=pi*(dout_c^2-din_c^2)/4; 
strength=200; 

  
ft21=fx(1:500)/2.*cos(th(1:500)+th2h1(1:500))+fy(1:500)/2.*... 
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    sin(th(1:500)+th2h1(1:500)); 
fl21=fx(1:500)/2.*sin(th(1:500)+th2h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2h1(1:500)); 
M21=ft21.*l2h1(1:500); 
I21=pi*(dout_c^4-din_c^4)/64; 
sb21=M21/I21*dout_c/2/10^6; 
sc21=fl21/A/10^6; 
ss21=ft21/A/10^6; 

  
ft11=fx(1:500)/2.*cos(th(1:500)+th1h1(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th1h1(1:500)); 
fl11=fx(1:500)/2.*sin(th(1:500)+th1h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1h1(1:500)); 
M11=ft11.*l1h1; 
I11=pi*(dout_c^4-din_c^4)/64; 
sb11=M11/I11*dout_c/2/10^6; 
sc11=fl11/A/10^6; 
ss11=ft11/A/10^6; 

  
ft22=fx(501:1000)/2.*cos(th(501:1000)+th2f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th2f2(501:1000)); 
fl22=fx(501:1000)/2.*sin(th(501:1000)+th2f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2f2(501:1000)); 
M22=ft22.*l2f2(501:1000); 
I22=pi*(dout_c^4-din_c^4)/64; 
sb22=M22/I22*dout_c/2/10^6; 
sc22=fl22/A/10^6; 
ss22=ft22/A/10^6; 

  
ft12=fx(501:1000)/2.*cos(th(501:1000)+th1f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1f2(501:1000)); 
fl12=fx(501:1000)/2.*sin(th(501:1000)+th1f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1f2(501:1000)); 
M12=ft12.*l1f2; 
I12=pi*(dout_c^4-din_c^4)/64; 
sb12=M12/I12*dout_c/2/10^6; 
sc12=fl12/A/10^6; 
ss12=ft12/A/10^6; 

  
ft23=fx(1:500)/2.*cos(th(1:500)+th2f3(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th2f3(1:500)); 
fl23=fx(1:500)/2.*sin(th(1:500)+th2f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2f3(1:500)); 
M23=ft23.*l2f3(1:500); 
I23=pi*(dout_c^4-din_c^4)/64; 
sb23=M23/I23*dout_c/2/10^6; 
sc23=fl23/A/10^6; 
ss23=ft23/A/10^6; 

  
ft13=fx(1:500)/2.*cos(th(1:500)+th1f3(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th1f3(1:500)); 
fl13=fx(1:500)/2.*sin(th(1:500)+th1f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1f3(1:500)); 
M13=ft13.*l1f3; 
I13=pi*(dout_c^4-din_c^4)/64; 
sb13=M13/I13*dout_c/2/10^6; 
sc13=fl13/A/10^6; 
ss13=ft13/A/10^6; 

  
ft24=fx(501:1000)/2.*cos(th(501:1000)+th2h4(501:1000))+fy(501:1000)/2.*... 
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    sin(th(501:1000)+th2h4(501:1000)); 
fl24=fx(501:1000)/2.*sin(th(501:1000)+th2h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2h4(501:1000)); 
M24=ft24.*l2h4(501:1000); 
I24=pi*(dout_c^4-din_c^4)/64; 
sb24=M24/I24*dout_c/2/10^6; 
sc24=fl24/A/10^6; 
ss24=ft24/A/10^6; 

  
ft14=fx(501:1000)/2.*cos(th(501:1000)+th1h4(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1h4(501:1000)); 
fl14=fx(501:1000)/2.*sin(th(501:1000)+th1h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1h4(501:1000)); 
M14=ft14.*l1h4; 
I14=pi*(dout_c^4-din_c^4)/64; 
sb14=M14/I14*dout_c/2/10^6; 
sc14=fl14/A/10^6; 
ss14=ft14/A/10^6; 

  
if strength/max(abs(sb21)+abs(sc21))>=3&&strength/max(abs(sb11)+... 
        abs(sc11))>=3&&strength/max(abs(sb22)+abs(sc22))>=3&&strength/... 
        max(abs(sb12)+abs(sc12))>=3&&strength/max(abs(sb23)+abs(sc23))>=... 
        3&&strength/max(abs(sb13)+abs(sc13))>=3&&strength/max(abs(sb24)+... 
        abs(sc24))>=3&&strength/max(abs(sb14)+abs(sc14))>=3 

     
    din=din_c; 
    dout=dout_c; 
    flag=0; 
end 

  
end 
%-------------------------------------------------------------------------% 
%------------------------------- OPTION 3 --------------------------------% 
if flag==1 
din_c=0.028; 
dout_c=0.03; 

  
A=pi*(dout_c^2-din_c^2)/4; 
strength=200; 

  
ft21=fx(1:500)/2.*cos(th(1:500)+th2h1(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th2h1(1:500)); 
fl21=fx(1:500)/2.*sin(th(1:500)+th2h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2h1(1:500)); 
M21=ft21.*l2h1(1:500); 
I21=pi*(dout_c^4-din_c^4)/64; 
sb21=M21/I21*dout_c/2/10^6; 
sc21=fl21/A/10^6; 
ss21=ft21/A/10^6; 

  
ft11=fx(1:500)/2.*cos(th(1:500)+th1h1(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th1h1(1:500)); 
fl11=fx(1:500)/2.*sin(th(1:500)+th1h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1h1(1:500)); 
M11=ft11.*l1h1; 
I11=pi*(dout_c^4-din_c^4)/64; 
sb11=M11/I11*dout_c/2/10^6; 
sc11=fl11/A/10^6; 
ss11=ft11/A/10^6; 
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ft22=fx(501:1000)/2.*cos(th(501:1000)+th2f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th2f2(501:1000)); 
fl22=fx(501:1000)/2.*sin(th(501:1000)+th2f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2f2(501:1000)); 
M22=ft22.*l2f2(501:1000); 
I22=pi*(dout_c^4-din_c^4)/64; 
sb22=M22/I22*dout_c/2/10^6; 
sc22=fl22/A/10^6; 
ss22=ft22/A/10^6; 

  
ft12=fx(501:1000)/2.*cos(th(501:1000)+th1f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1f2(501:1000)); 
fl12=fx(501:1000)/2.*sin(th(501:1000)+th1f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1f2(501:1000)); 
M12=ft12.*l1f2; 
I12=pi*(dout_c^4-din_c^4)/64; 
sb12=M12/I12*dout_c/2/10^6; 
sc12=fl12/A/10^6; 
ss12=ft12/A/10^6; 

  
ft23=fx(1:500)/2.*cos(th(1:500)+th2f3(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th2f3(1:500)); 
fl23=fx(1:500)/2.*sin(th(1:500)+th2f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2f3(1:500)); 
M23=ft23.*l2f3(1:500); 
I23=pi*(dout_c^4-din_c^4)/64; 
sb23=M23/I23*dout_c/2/10^6; 
sc23=fl23/A/10^6; 
ss23=ft23/A/10^6; 

  
ft13=fx(1:500)/2.*cos(th(1:500)+th1f3(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th1f3(1:500)); 
fl13=fx(1:500)/2.*sin(th(1:500)+th1f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1f3(1:500)); 
M13=ft13.*l1f3; 
I13=pi*(dout_c^4-din_c^4)/64; 
sb13=M13/I13*dout_c/2/10^6; 
sc13=fl13/A/10^6; 
ss13=ft13/A/10^6; 

  
ft24=fx(501:1000)/2.*cos(th(501:1000)+th2h4(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th2h4(501:1000)); 
fl24=fx(501:1000)/2.*sin(th(501:1000)+th2h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2h4(501:1000)); 
M24=ft24.*l2h4(501:1000); 
I24=pi*(dout_c^4-din_c^4)/64; 
sb24=M24/I24*dout_c/2/10^6; 
sc24=fl24/A/10^6; 
ss24=ft24/A/10^6; 

  
ft14=fx(501:1000)/2.*cos(th(501:1000)+th1h4(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1h4(501:1000)); 
fl14=fx(501:1000)/2.*sin(th(501:1000)+th1h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1h4(501:1000)); 
M14=ft14.*l1h4; 
I14=pi*(dout_c^4-din_c^4)/64; 
sb14=M14/I14*dout_c/2/10^6; 
sc14=fl14/A/10^6; 
ss14=ft14/A/10^6; 
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if strength/max(abs(sb21)+abs(sc21))>=3&&strength/max(abs(sb11)+... 
        abs(sc11))>=3&&strength/max(abs(sb22)+abs(sc22))>=3&&... 
        strength/max(abs(sb12)+abs(sc12))>=3&&strength/max(abs(sb23)... 
        +abs(sc23))>=3&&strength/max(abs(sb13)+abs(sc13))>=3&&... 
        strength/max(abs(sb24)+abs(sc24))>=3&&strength/max(abs(sb14)+... 
        abs(sc14))>=3 

     
    din=din_c; 
    dout=dout_c; 
    flag=0; 
end 

  
end 
%-------------------------------------------------------------------------% 
%------------------------------- OPTION 4 --------------------------------% 
if flag==1 
    din_c=0.026; 
    dout_c=0.03; 

     
    A=pi*(dout_c^2-din_c^2)/4; 
    strength=200; 

     
    ft21=fx(1:500)/2.*cos(th(1:500)+th2h1(1:500))+fy(1:500)/2.*... 
        sin(th(1:500)+th2h1(1:500)); 
    fl21=fx(1:500)/2.*sin(th(1:500)+th2h1(1:500))-fy(1:500)/2.*... 
        cos(th(1:500)+th2h1(1:500)); 
    M21=ft21.*l2h1(1:500); 
    I21=pi*(dout_c^4-din_c^4)/64; 
    sb21=M21/I21*dout_c/2/10^6; 
    sc21=fl21/A/10^6; 
    ss21=ft21/A/10^6; 

     
    ft11=fx(1:500)/2.*cos(th(1:500)+th1h1(1:500))+fy(1:500)/2.*... 
        sin(th(1:500)+th1h1(1:500)); 
    fl11=fx(1:500)/2.*sin(th(1:500)+th1h1(1:500))-fy(1:500)/2.*... 
        cos(th(1:500)+th1h1(1:500)); 
    M11=ft11.*l1h1; 
    I11=pi*(dout_c^4-din_c^4)/64; 
    sb11=M11/I11*dout_c/2/10^6; 
    sc11=fl11/A/10^6; 
    ss11=ft11/A/10^6; 

     
    ft22=fx(501:1000)/2.*cos(th(501:1000)+th2f2(501:1000))+... 
        fy(501:1000)/2.*sin(th(501:1000)+th2f2(501:1000)); 
    fl22=fx(501:1000)/2.*sin(th(501:1000)+th2f2(501:1000))-... 
        fy(501:1000)/2.*cos(th(501:1000)+th2f2(501:1000)); 
    M22=ft22.*l2f2(501:1000); 
    I22=pi*(dout_c^4-din_c^4)/64; 
    sb22=M22/I22*dout_c/2/10^6; 
    sc22=fl22/A/10^6; 
    ss22=ft22/A/10^6; 

     
    ft12=fx(501:1000)/2.*cos(th(501:1000)+th1f2(501:1000))+... 
        fy(501:1000)/2.*sin(th(501:1000)+th1f2(501:1000)); 
    fl12=fx(501:1000)/2.*sin(th(501:1000)+th1f2(501:1000))-... 
        fy(501:1000)/2.*cos(th(501:1000)+th1f2(501:1000)); 
    M12=ft12.*l1f2; 
    I12=pi*(dout_c^4-din_c^4)/64; 
    sb12=M12/I12*dout_c/2/10^6; 
    sc12=fl12/A/10^6; 
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    ss12=ft12/A/10^6; 

     
    ft23=fx(1:500)/2.*cos(th(1:500)+th2f3(1:500))+fy(1:500)/2.*... 
        sin(th(1:500)+th2f3(1:500)); 
    fl23=fx(1:500)/2.*sin(th(1:500)+th2f3(1:500))-fy(1:500)/2.*... 
        cos(th(1:500)+th2f3(1:500)); 
    M23=ft23.*l2f3(1:500); 
    I23=pi*(dout_c^4-din_c^4)/64; 
    sb23=M23/I23*dout_c/2/10^6; 
    sc23=fl23/A/10^6; 
    ss23=ft23/A/10^6; 

     
    ft13=fx(1:500)/2.*cos(th(1:500)+th1f3(1:500))+fy(1:500)/2.*... 
        sin(th(1:500)+th1f3(1:500)); 
    fl13=fx(1:500)/2.*sin(th(1:500)+th1f3(1:500))-fy(1:500)/2.*... 
        cos(th(1:500)+th1f3(1:500)); 
    M13=ft13.*l1f3; 
    I13=pi*(dout_c^4-din_c^4)/64; 
    sb13=M13/I13*dout_c/2/10^6; 
    sc13=fl13/A/10^6; 
    ss13=ft13/A/10^6; 

     
    ft24=fx(501:1000)/2.*cos(th(501:1000)+th2h4(501:1000))+... 
        fy(501:1000)/2.*sin(th(501:1000)+th2h4(501:1000)); 
    fl24=fx(501:1000)/2.*sin(th(501:1000)+th2h4(501:1000))-... 
        fy(501:1000)/2.*cos(th(501:1000)+th2h4(501:1000)); 
    M24=ft24.*l2h4(501:1000); 
    I24=pi*(dout_c^4-din_c^4)/64; 
    sb24=M24/I24*dout_c/2/10^6; 
    sc24=fl24/A/10^6; 
    ss24=ft24/A/10^6; 

     
    ft14=fx(501:1000)/2.*cos(th(501:1000)+th1h4(501:1000))+... 
        fy(501:1000)/2.*sin(th(501:1000)+th1h4(501:1000)); 
    fl14=fx(501:1000)/2.*sin(th(501:1000)+th1h4(501:1000))-... 
        fy(501:1000)/2.*cos(th(501:1000)+th1h4(501:1000)); 
    M14=ft14.*l1h4; 
    I14=pi*(dout_c^4-din_c^4)/64; 
    sb14=M14/I14*dout_c/2/10^6; 
    sc14=fl14/A/10^6; 
    ss14=ft14/A/10^6; 

     
    if strength/max(abs(sb21)+abs(sc21))>=3&&strength/max(abs(sb11)+... 
            abs(sc11))>=3&&strength/max(abs(sb22)+abs(sc22))>=3&&... 
            strength/max(abs(sb12)+abs(sc12))>=3&&... 
            strength/max(abs(sb23)+abs(sc23))>=3&&... 
            strength/max(abs(sb13)+abs(sc13))>=3&&... 
            strength/max(abs(sb24)+abs(sc24))>=3&&... 
            strength/max(abs(sb14)+abs(sc14))>=3 

         
        din=din_c; 
        dout=dout_c; 
        flag=0; 
%-------------------------------------------------------------------------% 
    else 
        din=din_c; 
        dout=dout_c; 
    end 
end  
end 
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 Animation.m 

%-------------------------------------------------------------------------% 
%----------------------------- Animation.m -------------------------------% 
%-------------------------------------------------------------------------% 
% Produces an animation of the centroidal robot running for the duration of 
% one stride. Run after PostProcessing.m. 

  
f1 = figure(1); 
clf(f1); 

  
a=1; 
b=0.15; 
step=10; 

  
% Stop button to stop animation 
stop = uicontrol('style','toggle','string','stop','background','white'); 

  
for i = 1:step:n-1 

     
    % If stop button is unpressed 
    if get(stop,'value')==0 

         
        % Background color (in+out plot) 
        whitebg([1 1 1]) 

         
        % Plot Center of Mass 
        plot(x(i),y(i),'o','MarkerSize',10) 
        hold on 
        grid on 

         
        % Plot body circumference 
        xe1=x(i)+a/2*cos(th(i))+b/2*sin(th(i)); 
        ye1=y(i)+a/2*sin(th(i))-b/2*cos(th(i)); 
        xe2=x(i)+a/2*cos(th(i))-b/2*sin(th(i)); 
        ye2=y(i)+a/2*sin(th(i))+b/2*cos(th(i)); 
        xe3=x(i)-a/2*cos(th(i))-b/2*sin(th(i)); 
        ye3=y(i)-a/2*sin(th(i))+b/2*cos(th(i)); 
        xe4=x(i)-a/2*cos(th(i))+b/2*sin(th(i)); 
        ye4=y(i)-a/2*sin(th(i))-b/2*cos(th(i)); 

         
        xcmf=[xe1;xe2;xe3;xe4;xe1]; 
        ycmf=[ye1;ye2;ye3;ye4;ye1]; 

         
        plot(xcmf,ycmf,'k') 

         
        % Location of hips 
        xh=x(i)-d*cos(th(i)); 
        yh=y(i)-d*sin(th(i)); 
        xf=x(i)+d*cos(th(i)); 
        yf=y(i)+d*sin(th(i)); 

         
        % Plot footfalls, CoM to toe and hip to toe lines.          
        [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(i),T); 
        if c1==1 
            plot(xh,yh,'bo','Markersize',5) 
            plot([x(i) x1],[y(i) yg],':k') 
            plot([x1 xh],[yg yh],'b') 
        end 
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        if c2==1 
            plot(xf,yf,'ro','Markersize',5) 
            plot([x(i) x2],[y(i) yg],':k') 
            plot([x2 xf],[yg yf],'r') 
        end 
        if c3==1 
            plot(xf,yf,'co','Markersize',5) 
            plot([x(i) x3],[y(i) yg],':k') 
            plot([x3 xf],[yg yf],'c') 
        end 
        if c4==1 
            plot(xh,yh,'mo','Markersize',5) 
            plot([x(i) x4],[y(i) yg],':k') 
            plot([x4 xh],[yg yh],'m') 
        end 

         
        % Plot ground 
        plot([x(i)-1 x(i)+1],[yg yg],'Color',[0.5 0.5 0.5],'LineWidth',1) 

         
        % Moving axis 
        axis equal 
        axis([x(i)-1 x(i)+1 yg-0.1 1.4]) 

         
        drawnow 
        hold off 

         

         
        % Break if Stop button is pressed 
    elseif get(stop,'value')==1 
        break 
    end 
%     hold off 
end 

  
% Turn the stop button into close button 
set(stop,'style','pushbutton','string','close','callback','close(gcf)'); 

 

 

AnimationFull.m 

%-------------------------------------------------------------------------% 
%--------------------------- AnimationFull.m -----------------------------% 
%-------------------------------------------------------------------------% 
% Produces an animation of the quadruped robot running for the duration of 
% one stride. Run after PostProcessing.m. 

  

  
f2 = figure(2); 
clf(f2); 

  
step=10; 

  
% Stop button to stop animation 
stop = uicontrol('style','toggle','string','stop','background','white'); 

  
% Equally distributed forces 
fxi=fx/2; 
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fyi=fy/2; 
mafyi=max(abs(fyi)); 

  
for i = 1:step:n-1 

     
    % If stop button is unpressed 
    if get(stop,'value')==0 

         
        % Background color (in+out plot) 
        whitebg([1 1 1]) 

         
        % Plot Center of Mass 
        plot(x(i),y(i),'o','MarkerSize',10) 
        hold on 
        grid on 

         
        % Plot body circumferencei 
        xe1=x(i)+a/2*cos(th(i))+b/2*sin(th(i)); 
        ye1=y(i)+a/2*sin(th(i))-b/2*cos(th(i)); 
        xe2=x(i)+a/2*cos(th(i))-b/2*sin(th(i)); 
        ye2=y(i)+a/2*sin(th(i))+b/2*cos(th(i)); 
        xe3=x(i)-a/2*cos(th(i))-b/2*sin(th(i)); 
        ye3=y(i)-a/2*sin(th(i))+b/2*cos(th(i)); 
        xe4=x(i)-a/2*cos(th(i))+b/2*sin(th(i)); 
        ye4=y(i)-a/2*sin(th(i))-b/2*cos(th(i)); 

         
        xcmf=[xe1;xe2;xe3;xe4;xe1]; 
        ycmf=[ye1;ye2;ye3;ye4;ye1]; 

         
        plot(xcmf,ycmf,'k') 

         
        % Location of hips 
        xh=x(i)-d*cos(th(i)); 
        yh=y(i)-d*sin(th(i)); 
        xf=x(i)+d*cos(th(i)); 
        yf=y(i)+d*sin(th(i)); 

         
        % Plot legs 
        [c1,c2,c3,c4]=c_i(tt1,tt2,tt3,tt4,t(i),T); 

         
        % leg 1  
        xk1=xh+l1h1*sin(thh1(i)+th1h1(i)); 
        yk1=yh-l1h1*cos(thh1(i)+th1h1(i)); 
        xft1=xk1+l2h1(i)*sin(thh1(i)+th2h1(i)); 
        yft1=yk1-l2h1(i)*cos(thh1(i)+th2h1(i)); 
        plot(xh,yh,'bo','Markersize',5) 
        plot([xft1 xh],[yft1 yh],':b') 
        plot([xft1 xk1 xh],[yft1 yk1 yh],'b') 

         
        % leg 2 
        xk2=xf+l1f2*sin(thf2(i)+th1f2(i)); 
        yk2=yf-l1f2*cos(thf2(i)+th1f2(i)); 
        xft2=xk2+l2f2(i)*sin(thf2(i)+th2f2(i)); 
        yft2=yk2-l2f2(i)*cos(thf2(i)+th2f2(i)); 
        plot(xf,yf,'ro','Markersize',5) 
        plot([xft2 xf],[yft2 yf],':r') 
        plot([xft2 xk2 xf],[yft2 yk2 yf],'r') 

         
        % leg 3 
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        xk3=xf+l1f3*sin(thf3(i)+th1f3(i)); 
        yk3=yf-l1f3*cos(thf3(i)+th1f3(i)); 
        xft3=xk3+l2f3(i)*sin(thf3(i)+th2f3(i)); 
        yft3=yk3-l2f3(i)*cos(thf3(i)+th2f3(i)); 
        plot(xf,yf,'co','Markersize',5) 
        plot([xft3 xf],[yft3 yf],':c') 
        plot([xft3 xk3 xf],[yft3 yk3 yf],'c') 

         
        % leg 4 
        xk4=xh+l1h4*sin(thh4(i)+th1h4(i)); 
        yk4=yh-l1h4*cos(thh4(i)+th1h4(i)); 
        xft4=xk4+l2h4(i)*sin(thh4(i)+th2h4(i)); 
        yft4=yk4-l2h4(i)*cos(thh4(i)+th2h4(i)); 
        plot(xh,yh,'mo','Markersize',5) 
        plot([xft4 xh],[yft4 yh],':m') 
        plot([xft4 xk4 xh],[yft4 yk4 yh],'m') 

        
        % Plot ground 
        plot([x(i)-1 x(i)+1],[yg yg],'Color',[0.5 0.5 0.5],'LineWidth',1) 

         
        % Moving axis 
        axis equal 
        axis([x(i)-1 x(i)+1 yg-0.1 yg+1.4]) 

         
        % Plot Ground Force Vector 
        if c1==1 
            xf1=xft1+0.2*fxi(i)/mafyi; 
            yf1=yft1+0.2*fyi(i)/mafyi; 
            arrow([xft1,yft1],[xf1,yf1]) 
        end 
        if c2==1 
            xf2=xft2+0.2*fxi(i)/mafyi; 
            yf2=yft2+0.2*fyi(i)/mafyi; 
            arrow([xft2,yft2],[xf2,yf2]) 
        end 
        if c3==1 
            xf3=xft3+0.2*fxi(i)/mafyi; 
            yf3=yft3+0.2*fyi(i)/mafyi; 
            arrow([xft3,yft3],[xf3,yf3]) 
        end 
        if c4==1 
            xf4=xft4+0.2*fxi(i)/mafyi; 
            yf4=yft4+0.2*fyi(i)/mafyi; 
            arrow([xft4,yft4],[xf4,yf4]) 
        end 

         
        drawnow 
        hold off 

         

         
        % Break if Stop button is pressed 
    elseif get(stop,'value')==1 
        break 
    end 
%     hold off 
end 

  
% Turn the stop button into close button 
set(stop,'style','pushbutton','string','close','callback','close(gcf)'); 
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PlotTorqueNRadPerSec.m 

%-------------------------------------------------------------------------% 
%------------------------ PlotTorquesNRadPerSec.m ------------------------% 
%-------------------------------------------------------------------------% 
% Plots joint torques and leg joint angular velocities with time for all 
% legs and calculates and displays rms torques. Max values per joint are 
% also calculated and displayed. All variables are expressed as a percenta- 
% ge of the corresponding constraint. Run after PostProcessing.m 

  
% torque_ji^*=torque_ji/taujmaxst 
% thjdi*=thjdi/thjdmax 

  
%-------------------------- short term torques ---------------------------% 
figure(3) 
plot(t/T*100,torque1h1/tau1maxst) 
hold on 
grid on 
plot(t/T*100,torque2h1/tau2maxst) 
plot(t/T*100,torque1h4/tau1maxst) 
plot(t/T*100,torque2h4/tau2maxst) 
title('Torques On Hind Leg Joints') 
legend('torque_1_,_1^*','torque_2_,_1^*','torque_1_,_4^*','torque_2_,_4^*') 
xlabel('time[% stride]') 
hold off 

  
figure(4) 
plot(t/T*100,torque1f2/tau1maxst) 
hold on 
grid on 
plot(t/T*100,torque2f2/tau2maxst) 
plot(t/T*100,torque1f3/tau1maxst) 
plot(t/T*100,torque2f3/tau2maxst) 
title('Torques On Front Leg Joints') 
legend('torque_1_,_2^*','torque_2_,_2^*','torque_1_,_3^*','torque_2_,_3^*') 
xlabel('time[% stride]') 
hold off 
%-------------------------------------------------------------------------% 
%-------------------------- angular velocities ---------------------------% 
figure(5) 
plot(t/T*100,th1dh1/th1dmax) 
hold on 
grid on 
plot(t/T*100,th2dh1/th2dmax) 
plot(t/T*100,th1dh4/th1dmax) 
plot(t/T*100,th2dh4/th2dmax) 
title('Angular velocities On Hind Leg Joints') 
legend('thd_1_,_1^*','thd_2_,_1^*','thd_1_,_4^*','thd_2_,_4^*') 
xlabel('time[% stride]') 
hold off 

  
figure(6) 
plot(t/T*100,th1df2/th1dmax) 
hold on 
grid on 
plot(t/T*100,th2df2/th2dmax) 
plot(t/T*100,th1df3/th1dmax) 
plot(t/T*100,th2df3/th2dmax) 
title('Angular velocities On Front Leg Joints') 
legend('thd_1_,_2^*','thd_2_,_2^*','thd_1_,_3^*','thd_2_,_3^*') 
xlabel('time[% stride]') 
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hold off 
%-------------------------------------------------------------------------% 
%------------------------------ rms torques ------------------------------% 
ind11=rms(torque1h1)/tau1maxct; 
ind21=rms(torque2h1)/tau2maxct; 
ind12=rms(torque1f2)/tau1maxct; 
ind22=rms(torque2f2)/tau2maxct; 
ind13=rms(torque1f3)/tau1maxct; 
ind23=rms(torque2f3)/tau2maxct; 
ind14=rms(torque1h4)/tau1maxct; 
ind24=rms(torque2h4)/tau2maxct; 
%-------------------------------------------------------------------------% 
%------------------------- max values per joint --------------------------% 
mxthdhip=max(abs([th1dh1;th1df2;th1df3;th1dh4]))/th1dmax 

  
mxthdkn=max(abs([th2dh1;th2df2;th2df3;th2dh4]))/th2dmax 

  
mxsttauhip=max(abs([torque1h1;torque1f2;torque1f3;torque1h4]))/tau1maxst 

  
mxsttaukn=max(abs([torque2h1;torque2f2;torque2f3;torque2h4]))/tau2maxst 

  
mxcttauhip=max([rms(torque1h1);rms(torque1f2);rms(torque1f3);... 
    rms(torque1h4)])/tau1maxct 

  
mxcttaukn=max([rms(torque2h1);rms(torque2f2);rms(torque2f3);... 
    rms(torque2h4)])/tau2maxct 
%-------------------------------------------------------------------------% 

 

PlotStress.m 

%-------------------------------------------------------------------------% 
%----------------------------- PlotStress.m ------------------------------% 
%-------------------------------------------------------------------------% 
% Displays in graphs the absolute stresses exerted on the tubular leg 
% segments and compares them to the strength of the material. 

  
A=pi*(dout^2-din^2)/4; 
strength(1:500)=200; 

  
%------------------------------- LEG 1 -----------------------------------% 
%--- link 2 ---% 
figure(7) 
subplot(1,2,2) 
ft21=fx(1:500)/2.*cos(th(1:500)+th2h1(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th2h1(1:500)); 
fl21=fx(1:500)/2.*sin(th(1:500)+th2h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2h1(1:500)); 
M21=ft21.*l2h1(1:500); 
I21=pi*(dout^4-din^4)/64; 
sb21=M21/I21*dout/2/10^6; 
sc21=fl21/A/10^6; 
ss21=ft21/A/10^6; 
plot(t(1:500),abs(sb21)) 
hold on 
grid on 
plot(t(1:500),abs(sc21)) 
plot(t(1:500),abs(ss21)) 
plot(t(1:500),strength,'--') 
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legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('HL Leg, Segment 2') 
hold off 

  
%--- link 1 ---% 
subplot(1,2,1) 
ft11=fx(1:500)/2.*cos(th(1:500)+th1h1(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th1h1(1:500)); 
fl11=fx(1:500)/2.*sin(th(1:500)+th1h1(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1h1(1:500)); 
M11=ft11.*l1h1; 
I11=pi*(dout^4-din^4)/64; 
sb11=M11/I11*dout/2/10^6; 
sc11=fl11/A/10^6; 
ss11=ft11/A/10^6; 
plot(t(1:500),abs(sb11)) 
hold on 
grid on 
plot(t(1:500),abs(sc11)) 
plot(t(1:500),abs(ss11)) 
plot(t(1:500),strength,'--') 
legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('HL Leg, Segment 1') 
hold off 
%-------------------------------------------------------------------------% 
%------------------------------- LEG 2 -----------------------------------% 
%--- link 2 ---% 
figure(8) 
subplot(1,2,2) 
ft22=fx(501:1000)/2.*cos(th(501:1000)+th2f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th2f2(501:1000)); 
fl22=fx(501:1000)/2.*sin(th(501:1000)+th2f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2f2(501:1000)); 
M22=ft22.*l2f2(501:1000); 
I22=pi*(dout^4-din^4)/64; 
sb22=M22/I22*dout/2/10^6; 
sc22=fl22/A/10^6; 
ss22=ft22/A/10^6; 
plot(t(501:1000),abs(sb22)) 
hold on 
grid on 
plot(t(501:1000),abs(sc22)) 
plot(t(501:1000),abs(ss22)) 
plot(t(501:1000),strength,'--') 
legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('FL Leg, Segment 2') 
hold off 

  
%--- link 1 ---% 
subplot(1,2,1) 
ft12=fx(501:1000)/2.*cos(th(501:1000)+th1f2(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1f2(501:1000)); 
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fl12=fx(501:1000)/2.*sin(th(501:1000)+th1f2(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1f2(501:1000)); 
M12=ft12.*l1f2; 
I12=pi*(dout^4-din^4)/64; 
sb12=M12/I12*dout/2/10^6; 
sc12=fl12/A/10^6; 
ss12=ft12/A/10^6; 
plot(t(501:1000),abs(sb12)) 
hold on 
grid on 
plot(t(501:1000),abs(sc12)) 
plot(t(501:1000),abs(ss12)) 
plot(t(501:1000),strength,'--') 
legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('FL Leg, Segment 1') 
hold off 
%-------------------------------------------------------------------------% 
%------------------------------- LEG 3 -----------------------------------% 
%--- link 2 ---% 
figure(9) 
subplot(1,2,2) 
ft23=fx(1:500)/2.*cos(th(1:500)+th2f3(1:500))+fy(1:500)/2.*... 
    sin(th(1:500)+th2f3(1:500)); 
fl23=fx(1:500)/2.*sin(th(1:500)+th2f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th2f3(1:500)); 
M23=ft23.*l2f3(1:500); 
I23=pi*(dout^4-din^4)/64; 
sb23=M23/I23*dout/2/10^6; 
sc23=fl23/A/10^6; 
ss23=ft23/A/10^6; 
plot(t(1:500),abs(sb23)) 
hold on 
grid on 
plot(t(1:500),abs(sc23)) 
plot(t(1:500),abs(ss23)) 
plot(t(1:500),strength,'--') 
legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('FR Leg, Segment 2') 
hold off 

  
%--- link 1 ---% 
subplot(1,2,1) 
ft13=fx(1:500)/2.*cos(th(1:500)+th1f3(1:500))+fy(1:500)/2.*... 
sin(th(1:500)+th1f3(1:500)); 
fl13=fx(1:500)/2.*sin(th(1:500)+th1f3(1:500))-fy(1:500)/2.*... 
    cos(th(1:500)+th1f3(1:500)); 
M13=ft13.*l1f3; 
I13=pi*(dout^4-din^4)/64; 
sb13=M13/I13*dout/2/10^6; 
sc13=fl13/A/10^6; 
ss13=ft13/A/10^6; 
plot(t(1:500),abs(sb13)) 
hold on 
grid on 
plot(t(1:500),abs(sc13)) 
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plot(t(1:500),abs(ss13)) 
plot(t(1:500),strength,'--') 
legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('FR Leg, Segment 1') 
hold off 
%-------------------------------------------------------------------------% 
%------------------------------- LEG 4 -----------------------------------% 
%--- link 2 ---% 
figure(10) 
subplot(1,2,2) 
ft24=fx(501:1000)/2.*cos(th(501:1000)+th2h4(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th2h4(501:1000)); 
fl24=fx(501:1000)/2.*sin(th(501:1000)+th2h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th2h4(501:1000)); 
M24=ft24.*l2h4(501:1000); 
I24=pi*(dout^4-din^4)/64; 
sb24=M24/I24*dout/2/10^6; 
sc24=fl24/A/10^6; 
ss24=ft24/A/10^6; 
plot(t(501:1000),abs(sb24)) 
hold on 
grid on 
plot(t(501:1000),abs(sc24)) 
plot(t(501:1000),abs(ss24)) 
plot(t(501:1000),strength,'--') 
legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('HR Leg, Segment 2') 
hold off 

  
%--- link 1 ---% 
subplot(1,2,1) 
ft14=fx(501:1000)/2.*cos(th(501:1000)+th1h4(501:1000))+fy(501:1000)/2.*... 
    sin(th(501:1000)+th1h4(501:1000)); 
fl14=fx(501:1000)/2.*sin(th(501:1000)+th1h4(501:1000))-fy(501:1000)/2.*... 
    cos(th(501:1000)+th1h4(501:1000)); 
M14=ft14.*l1h4; 
I14=pi*(dout^4-din^4)/64; 
sb14=M14/I14*dout/2/10^6; 
sc14=fl14/A/10^6; 
ss14=ft14/A/10^6; 
plot(t(501:1000),abs(sb14)) 
hold on 
grid on 
plot(t(501:1000),abs(sc14)) 
plot(t(501:1000),abs(ss14)) 
plot(t(501:1000),strength,'--') 
legend('bending','compresive','shear','bending strength','Location','best') 
xlabel('time [s]') 
ylabel('stress [MPa]') 
ylim([0,220]) 
title('HR Leg, Segment 1') 
hold off 
%-------------------------------------------------------------------------% 

 


