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Abstract 
Hydroelastic analysis represents a theory for calculating the responses of marine 
structures in a more accurate and realistic fashion since it integrates aspects of 
deformable body mechanics, namely elasticity theory, into classical ship and marine 
hydrodynamics. In that connection, it provides a powerful tool for the derivation of a 
unified, coupled system of responses, since the investigation of the hydrodynamic 
behavior of ships and other ocean structures is taking into account their 
mechanical/structural properties and in return a richer framework of analysis for 
strength aspects is provided to ocean engineers. One of the main aspects of this thesis 
is the assessment of the heave induced elastic deformations for an ocean going ship 
cruising at steady mean forward speed in heading (or following) seas. Symmetrical 
distortions (i.e. vertical bending) are triggered in specific frequencies called natural 
frequencies. Every structure can be modeled for an, up to some degree, elastic 
behavior and the associated flexibility is related to its structural characteristics. The 
latter define the natural frequencies of the structure. The eigenfrequencies of a marine 
structure may be met within the range of (encounter) frequencies on which the energy 
of a sea state is distributed, by means of wave energy spectrum. This may lead to 
critical conditions from the local and global strength point of view. In this work, we 
take advantage of the benefits of previously existed analytical theories in order to 
produce (linear) hydroelastic models applied to elongated (long and slender), 
monohull marine structures. First, the Euler – Bernoulli and Timoshenko beam 
models are used as main analytical tools for the “in vacuo’’, or “dry hull” analysis. 
Then by means of strip theory we employ a 2D potential flow theory in order to 
calculate the hydrodynamic and hydrostatic ship properties. Finally, the produced 
structure principal modes are imposed to the rigid ship motions producing the full set 
of equations which describe the ship responses to excitations due to harmonic waves. 
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Hydroelasticity is a discipline, within marine and ocean engineering science, which it 
integrates aspects of deformable body mechanics, namely elasticity theory, into 
classical ship and marine hydrodynamics, thus introducing elasticity into fluid-
structure interaction. Subsequently, wave loads and responses calculations for an 
ocean going vessel becomes more realistic. More specifically, since the action of the 
pressure field on the ship hull dynamically deforms the structure, the developed 
distortions modify the nearby flow field. Therefore, ocean going vessels, and marine 
structures exhibit properties, which must be determined through a combined/mixed 
modeling and design, i.e. using analytical and numerical tools stemming from both 
hydrodynamics/fluid mechanics and elasticity theory/mechanics of deformable 
bodies. Over the past years, hydroelasticity has proven to be of paramount importance 
for the design of a variety of marine structures, especially in the case of novel types, 
such as large vessels and VLFS, operating in the open seas. 

Concerning the water environment, the most common cause of the marine structure 
loads are the surface gravity waves. Among the latter, the wind waves are the result of 
the turbulent wind flow field acting over and on the sea water free surface. The 
geometrical characteristics of the wind waves vary according to their height and 
length due to the excitation of the turbulent air flow, the related energy transfer to the 
sea water and the duration of the subsequent sea state. In addition, modeling of wave 
propagation must be enhanced when different bathymetry bottoms and transient 
regions coexist, and solid bodies are present acting as obstacles modifying the flow 
field characteristics due to refraction/diffraction phenomena. 

Bodies floating or moving/travelling in a realistic sea water environment operate 
encountering sea waves, that is, under hydrodynamic loads/forces, which are the 
cause of body motions. Given the wide range of marine applications, several criteria 
have been developed in view to protecting and securing the operational capabilities 
and the safety of a ship starting from the early stages of its design. More specifically, 
ocean going vessels are designed taking into account several crucial factors, such as 
thrust efficiency, service speed attainment (both in calm and rough seas), seakeeping 
and maneuverability, cargo capacity, and hull structural strength, aiming to provide a 
sound design from different points of view, i.e., economic efficiency, ship’s and 
crew/passengers safety and environmental protection. Especially, hull strength 
calculations focus on the determination of global and local wave induced loads on 
hull structural elements. During initial design stages, global stress analysis treats the 
ship as a hull girder operating under the effect of wave induced bending moments. 
Further examination may focus on the endurance of the structure by means of local 
analysis and/or the determination of the ship stiffness. Finally, an important criterion 
in the power performance of the ship is the added resistance in waves caused by the 
motion of the ship in rough seas. Many tools have been created over the years and are 
still in the process of further development and enhancement, leading to the current-
state-of-the-art for the design of the ships taking hydroelastic phenomena into 
account. Amid others, Strip Theory, and Boundary Element Method, which lie in the 
core of the present thesis, as well as Computational Fluid Dynamics, and Finite 
Element Analysis, all contributing in the task of hydroelastic analysis.  
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Evolution of the Hydroelasticity theory  

The term “hydroelasticity” was first introduced in the technical terminology by Heller 
and Abramson in 1959 pinpointing in this way a theory equivalent to aeroelasticity, 
i.e., the combined action of air induced loads together with structural responses, for 
application in the analysis of marine structures. It was not until 1974 when the 
enlightening work of Bishop and Price embodied a full hydroelastic analysis together 
with applications to specific type of ships, see, Hirdaris, Temarel (2009) and Wu, Cui 
(2009). Bishop, Price (1974) presented a new theory prying the distortions of 
beamlike hulls under the influence of both regular and irregular sea waves, 
emphasizing mainly in the symmetric distortions (vertical bending) while the 
antisymmetric ones (coupling of vertical, horizontal and twisting) were in a more 
premature stage, for adequate tools did not existed by that time. In this early stage, the 
tools for attacking the hydroelasticity problem were confined within the limits of 2D 
linear potential flow and linear structural criteria. In that connection, the calculation of 
principal modes for the structure using “dry hull” (or “in vacuo”) analysis adopts 
formulations for modeling the monohull vessels as elastic deformable beams by 
means of Timoshenko beam model (Timoshenko Beam Theory - TBT) together with 
finite difference analysis. Another method for predicting the influence of the 
surrounding fluid on a structure was the coupled, fluid – structure, system known as 
“wet mode” analysis. The calculation of the fluid actions on the hull and thus the 
estimation of the hydrodynamic ship properties are treated by means of Strip Theory. 
Basic assumptions for applying strip theory techniques are: (i) the fluid is inviscid, (ii) 
incompressible, and (iii) homogeneous together with adequate (iv) boundary 
conditions. Hence, generalized forces, added masses and damping coefficients can be 
calculated using the strip formulation and this, in turn, reduces the complex 3D 
problem to an adequate number of simplified 2D problems alongships. Numerically 
accurate results were produced for ship properties of lower modes given several local 
cross section forms, exploiting the existing methods for the calculation of added mass 
and damping coefficients, see, e.g., the seminal work by Lewis (1989) and other 
authors as referred in Bishop, Price (1979).  

 
 

Fig. 01 Lewis forms (left) were employed to modify non – dimensionalized added 
mass in the vertical plane (right), from Lewis (1989). 
 
The incorporation of the dry hull analysis to the ship rigid responses resulted in a 
unified model to treat hydroelastic problems reduced in 2D. This model has been 
applied on a plethora of slender beamlike hulls, e.g. container ship, bulk carrier, naval 
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vessel travelling with different service speeds under the effect of sea waves of various 
headings. Later methods included full – scale measurements concerning the 
aforementioned commercial ships in order to test the validity of the developed 
models, see, Bishop et al. (1983), Bishop et al. (1985), Bishop et al. (1991). A 
demonstration of the unified solution for the two – dimensional problem is illustrated 
in the following figure. 
 

 
Fig. 02 2D hydroelasticity theory  

 
It was not until 1980s when the application of the aforementioned basic principles by 
Bishop,  Price was related to the development of a general and compact 3D theory for 
treat the problem of hydroelastic responses. The non – beamlike flexible marine 
structures were analyzed within the framework of linearity, see Bishop et al. (1986), 
Wu (1984), Price, Wu (1985). More specifically, exploitation of linearized boundary 
conditions on the mean free surface, on the mean hull surface and radiation conditions 
at infinity provided prerequisites for the derivation of a unique solution for the 
velocity potential of the flow field. In addition, structural linearities accounted for the 
assessment of the structural deformations on given/desired planes. Furthermore, based 
on the potential flow analysis simplifications, as adopted by Bishop, Price, were 
employed permitting the treatment of the fluid domain as of infinite depth, 
homogeneous, and inviscid with irrotational fluid motion. The abovementioned 
elements were embodied in a more advanced potential flow method, where panels of 
pulsating sources distribution placed over the vessel’s mean hull set the basis for the 
application of Boundary Element Method (BEM) technique. Additionally, benefits of 
the Finite Element modeling (including Timoshenko and plate theories) were 
exploited for the determination of the principal modes in the case of the 3D structural 
modes. For such a purpose, the boundary condition problem was treated on the basis 
of several existed theories, see, e.g., Wu, Price (1985) and Timman, Newman (1962) 
for the “special” case of symmetric bodies. The advances in hydroelastic theory, 
permitting for a more realistic and efficient modeling  of the related phenomena on 
marine structures, have contributed to the analysis method entitled “fluid – flexible 
structure interaction” and have paved the way to the development of design software 
appropriate to handle such problems. Over the last decades, investigations on different 
type of applications have been achieved using linear 3D modeling regarding 
commercial ships, such as large containers, bulks, and multihull ships. For instance, 
Price et al. (2002) have analyzed the dynamic behavior of a slender monohull vessel 
in oblique seas, and Hermundstad et al (1999) have examined the hydroelastic 
phenomena on a high speed catamaran; see, also, Hirdaris et al. (2003), Hirdaris et al 
(2006), Basaran et al. (2008). 

Dry Analysis  

Wet analysis 

Timoshenko beam 

Strip Theory 

Seakeeping 

Global dynamic loads 

preliminary 
design 
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Recent progress in the Hydroelastic models 

Together with the development of more complex hydroelastic models, during the 
design stage, marine structures grew in sizes. Typical example is the introduction of 
the so called Very Large Floating Structures (VLFS). The VLF structures during their 
operational life in the sea environment are characterized by large motions, introducing 
non – linear phenomena to spring responses due to the influence of the instantaneous 
wetted surface. These applications can preserve linear structural characteristics, while 
nonlinear eigenvalue formulations are required for calculating the modes involved in 
the responses. In both frameworks of 2D or 3D analysis, specific techniques should be 
applied to confront this additional complexity. Therefore, quadratic elements 
embedded in strip theory and formulations for second order generalized 
hydrodynamic forces have been considered, see, e.g., the works by Jensen, Dogliani 
(1996) and Wu et al. (1997). The development of models for such large structures is 
facing efficiency problems. However, solutions applied in the VLFS modeling have 
already reported via the works of Wang et al. (1997) and Price, Wu (1989). The 
former have introduced two techniques. The first technique involves the use of a 
specific criterion in order to eliminate the influence of the pulsating source type Green 
function and its derivatives to achieve better convergence. The second technique 
introduces the implementation of iterative sparse solvers for the linear system of 
equations on the 3D theory. Other applications, extending the enhancements above, 
have incorporated fluid viscous damping effects while producing time domain 
simulations for slamming phenomena of large marine structures operating in irregular 
head and oblique seas, see, e.g., Aksu (1993). Later trends in the hydroelastic 
modeling of marine structures have introduced structural non – linearities for a 
floating plate using a generalized time dependent non – linear exciting force, see, 
Chen et al. (2003) and Chen et al. (2006). In conclusion, over the last two decades 
great progress has been achieved in the modeling of marine structures permitting the 
prediction of responses for a variety of applications, and therefore, we refer to 
Senjanovic et al. (2009) for the importance of developing accurate 3D models in some 
modern design applications. 

 
Fig. 03  7800 TEU Container Ship, LOA=334 [m], B=42.8 [m], T=14.5 [m], 

∆FLD=135336 [t], from Senjanovic et al. (2010) 
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(a) 
 
 
 
 

 

 

Fig. 04 Determination of natural modes, given the lightweight condition displacement 
∆=33693 [t], by means of (a) 1D Finite element analysis   (b) 3D Finite element 
analysis, from Senjanovic et al. (2010) 

 
 

 

 

Fig. 05 Transfer functions of torsional (left) and horizontal bending (right) moment, 
β=120ο , U=25 [kn] , x= 155, 75 m from AP, from Senjanovic et al. (2010) 

Other marine structures for specific applications such as pipelines conveying fluids, 
floating airplane runways, floating bridges and multihulls, e.g., trimarans, are some of 
the most popular designing trends calling for three – dimensional (3D) techniques.  

ωe [rad/sec] ωe [rad/sec] 

RAO 
RAO 
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Fig. 06 VLFS: Mega – Float at Tokyo bay 

                 

Fig. 07 (a) Velocity flow domain of the current, effects of transient bottom (left) 
     (b)Elastic responses of the Mega – Float structure at wave excitation (right)  
             (see, e.g., Wang & Wang 2015). 

 
Given the demand for larger scale of different type of ships, which grow in numbers, 
models with higher requirements are on the rise. Regarding the advances in the 
hydroelastic theory, the last 30 years, significant enhancements provide us with new 
means to treat either the 2D or the 3D problem. Calculations concerning symmetric 
(vertical bending), antisymmetric (coupled horizontal bending and twisting), and 
unsymmetric (coupled vertical and horizontal bending and twisting) distortions 
together with the prediction of the responses due to slamming excitation are just some 
of the problems tackled by the developed 2D models. The associated non – linear 
phenomena involved in large motions of the large marine structures have been 
successfully treated by contemporary 3D modeling by means of Finite Element 
Method (FEM) and Computational Fluid Dynamics (CFD) techniques. 
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Fig. 08 Illustration of modern hydroelastic analysis, from Senjanovic et al. (2008) 

 

In previous years, the conduction of tests for the elastic model of the S175 container 
ship has been included in the work by Chen et al. (1999); see, also, Watanabe et al. 
(1989). More recently, Remy et al. (2006) have conducted tests for a flexible barge 
based on the work of Malenica et al. (2003) and on the theoretical model of Ledoux et 
al. (2004). The barge model has been constructed by twelve rigid pontoons connected 
via a steel rod, and the conducted tests have focused on the investigation of the 
structural behavior under vertical bending as well as under horizontal bending and 
torsion for heading regular and irregular waves. The results obtained by these test 
have been compared with a solution of the coupled wave load- ship vibrations system, 
which has been obtained by the use of 1D Finite Element Method analysis for the 
determination of the dry modes together with a 3D potential flow theory. The 
comparison between the test and the theoretical solution has shown good agreement 
between measured and simulated barge responses. However, in a retest by Malenica et 
al. (2007) of the latter experiment, the elastic models have been proved to be accurate 
enough in order to produce a unified hydroelastic prediction of the behavior of long 
and slender marine structures for which the amplitude ratio of the elastic and rigid 
modes is a bit lower. In addition, other tests have been conducted concerning the 
prediction of responses of two frigates as presented by Bishop et al. (1983) and Aksu 
et al. (1991). Last, Oka et al. (2007) and Oka et al. (2008) reported  series of tests 
conducted on a backbone elastic model of a high speed vessel (taking also into 
consideration whipping vibrations) as well as for a large container carrier.  
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Present work 

In the context of the present thesis we examine the hydroelastic responses of, long and 
slender, monohull marine structures in waves considering the action of vertical 
bending moments, which produce symmetric distortions. The calculation of the 
natural frequencies and the corresponding principal modes of the structure is initially 
based on examining the free edged thin beam, which is a common/standard approach 
for ships, by using “dry hull” analysis. We employ the Euler – Bernoulli and 
Timoshenko beam models in Chapters 1 and 2, respectively, see, e.g., Graff (1975) to 
calculate the structural responses of the beam by means of 1D Finite Difference 
formulations. The former model provides us with results concerning beams under 
pure bending, while the latter one incorporates the effects of shear deformations in the 
vertical plane (coupled system). In addition, we compare the results of the Euler – 
Bernoulli and Timoshenko models and we evaluate the accuracy of the two theories 
based on comparisons of numerical and analytical results. To better understand the 
use of the two models, the structural responses of different beam models are tested for 
specific examples, i.e., for different geometrical characteristics and types of end 
conditions. Results are presented in Chapters 1 and 2 concerning Euler-Bernoulli and 
Timoshenko beam models, respectively. Detailed comparisons are included in 
Appendix A. 

Subsequently, in Chapter 3 the rigid responses of an elongated (long and slender) 
marine structure travelling in deep water with steady mean forward speed U  in head 
or following incident waves are calculated by means of strip theory in the context of 
the potential flow. Head seas are considered most important from point the point of 
view of the severity of wave induced loads affecting the overall performance of the 
ship. The assessment of the ship hydrodynamic properties (added mass and damping 
coefficients, and generalized hydrodynamic forces) are calculated by the celebrated 
STF strip theory model (Salvensen et al 1970) using systematic sectional results that 
are obtained by means of Boundary Element Method (BEM). In this method the wet 
surface of the ship is divided into a number of strips (transverse sections of local 
characteristics) and then a 2D, linearized, potential flow analysis is applied to the 
local hydrodynamic problem for each strip. Potential flow analysis is used in 
conjunction with linearized boundary conditions obtained on the basis of assumptions 
concerning small wave amplitudes, small perturbation of the flow due to the ship 
forward motion and also small oscillatory ship motions. The present BEM applied to 
treat the sectional problems in deep water conditions is based on low order panels 
with continuous source-sink distribution, in conjunction with an absorbing layer 
technique to treat radiation conditions at appropriate distances of adequate wave 
lengths away of each body strip/section. Details concerning the method are presented 
in Appendix B. Then, the calculated sectional results of various quantities, including 
added mass, damping, Froude - Krylov and diffraction forces are integrated 
alongships to obtain the 3D hydrodynamic coefficients and exciting forces and 
moments. Using the latter results the system of dynamic equations is solved and the 
ship’s responses are derived.  

In the Chapter 4 the above model is extended to treat the problem of hydroelastic 
responses of a beamlike elongated marine structure and derive information concerning 
the elastic responses associated with flexural vertical vibrations in waves. In 
particular, a strip hydroelastic model is developed by exploiting the hull girder 
vertical dry modes and by using the additional elastic forces beyond those related to 
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inertia, damping and hydrostatic terms of a linear oscillator. Results are obtained for a 
particular floating structure (elastic barge) in waves and compared against measured 
data from model tests presented by Remy et al. 2006, Malenica et al. 2003. The hull 
form under investigation has specific geometry, mass and flexural rigidity distribution 
and the experiment concerns a flexible barge with transverse plane symmetry 
designed to permit hydroelastic phenomena at zero speed.  

Finally, conclusions and proposals for future work and further extensions are 
presented and discussed. 
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The Euler-Bernoulli Beam Model 
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1.1 Introduction to the Euler – Bernoulli model 

We start the present work by studying the linear model presented by the Euler-
Bernoulli (EB) beam and its full mechanics. We assume the steady state problem with 
respect to a harmonic forcing; thus, we consider the harmonic character of the 
solution corresponding to any permissible given frequency. 

 

 

 

 

  

                                                             

 

 

Fig. 1. Thin beam undergoing transverse oscillations [ ( ),y x t ] 

The governing equation describing the motion of a thin beam forced by bending 
moment, ( )M x , in the context of Euler-Bernoulli theory, is given by the following 

equation see, .e.g., Graff (1975, Ch.3), 

    ( ) ( )
4 2

4 2

( , ) ( , )
( , )

y x t y x t
D x m x q x t

x t

∂ ∂
+ =

∂ ∂
,     (1) 

where ( ) ( )D x EI x=  is the modulus of rigidity of the beam, E  is the Young modulus 

of the material, and ( )I x  is the moment of inertia of the cross section of the beam at 

each longitudinal position x ; see Fig.1. Also, ( )m x  is the linear mass density of the 

beam. For uniformly compact beams, it holds( ) ( )m x A xρΕ= , where ρΕ  is the 

constant density of the material, and( )A x  is the area of the cross section of the beam 

at each longitudinal position x . The term ( , )q x t  denotes the distribution of imposed 

forces, and the term ( )M x  denotes the longitudinal bending moment. 

Thin beam theory provides a methodology which, in its range of applicability, allows 
the analysis of structures in a simplified yet efficient way. Its basic characteristics are 
(i) linear mass density and linear bending stiffness, (ii ) shear deformation is 
considered to be zero during pure bending. Consequently, (iii ) the cross section areas 
remain always planar and the neutral axis passes through the centroid of the cross 
section area of the beam. Also, the motion of the beam lies on the planexy− only, 
while cross section areas are considered to be symmetric Finally, within the confines 
of linear elastic behavior, (iv) we assume transverse deformations and slopes to be 
small. 

 

x  

 y  

( , )Y x t  

M  

V  

V
V dx

x

∂
+

∂
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∂
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 The shear force, as provided by integrating the elastic line equation, is 

   ( )
( )dM x

V x
dx

=  .       (2) 

Focusing on the steady state linear problem we can examine free harmonic 
oscillations of the thin beam. Therefore, we eliminate the time dependence using 
complex amplitude technique. Hence, the representation of the flexural deflection can 
be written as follows  

    ( , ) Re ( ) j ty x t y x e ω
�

− =   
 ,      (3) 

where the over-circle denotes the complex amplitude of the corresponding quantity, 

( )Re ⋅ denotes the real part of the complex quantity, and 1j = −  is the imaginary 

unit. 

 Consequently, equation (1) takes the following form 

.   ( ) ( )
4

2
4

( )
( ) ( )

y x
D x m x y x q x

x
ω

�

� �∂
+ =

∂
 .    (4) 

 To find the natural modes of the thin beam we must consider the corresponding 
homogeneous version of (4), which is: 

    ( ) ( )
4

2
4

( )
( ) 0

y x
D x m x y x

x
ω

�

�∂
+ =

∂
 .      (5) 

The calculation of the eigenvalues (eigenfrequencies) and the corresponding 
eigenfunctions (mode shapes) of the model expressed by Eqn. (5) imposes the 
consideration of adequate boundary conditions  Eqn. (5) can be solved using different 
boundary conditions, which in turn correspond to different practical problems. Thus, 
the mathematical formulas for the free-free, pinned-pinned and clamped–clamped 
type of boundary conditions are investigated in this present work, expressed by the 
following equations  

Free – Free Boundary Conditions 

Concerning the free type of edges, the bending moment and shear force are zero, 
0M =  and 0V =  respectively, at the ends of the beam, i.e.: 

    2 3
, , ( 0) 0( 0)x x xy x y= = =∂ = ∂  ,               (6a) 

    2 3
, , ( ) 0( )x x x Ly x L y= = =∂ = ∂  .               (6b) 
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Clamped – clamped Boundary Conditions 

The boundary condition at the ends of the beam meet the necessities of 0Y =  and 
0Y ′ = , which are expressed as follows 

    
( 0)

( 0) 0
dy x

y x
dx

=
= = =  ,                (7a) 

    
( )

( ) 0
dy x L

y x L
dx

=
= = =  .                (7b) 

 

Pinned – pinned Boundary Conditions 

The end conditions in this last case, are 0Y =  and 0M = . More specifically  

    
2

2

( 0)
( 0) 0

d y x
y x

dx

=
= = =  ,                (8a) 

   
2

2

( )
( ) 0

d y x L
y x L

dx

=
= = =  .               (8b) 

 
The boundary conditions (6)-(8) are also presented in the following table 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Boundary Conditions for model (5) 
 

 In the section that follows, a numerical method based on finite differences (FDM) is 
developed and is applied to the solution of the above eigenvalue problems for a 
general Euler-Bernoulli beam and all combinations of boundary conditions; see Table 
1. The code implementation of the method has been built using Matlab®. The 
numerical results are compared with the analytical solution in the cases of a 
homogeneous and inhomogeneous beam (square cross section) and rod (circular cross 
section) (which is listed in Appendix A) for validation purposes. 

 

 

Type  
of edge 

position slope Moment 
Shear 
Force 

 

Free     0y′′ =  0y′′′ =  

 

Clamped 0y =  0y′ =      

 

Pinned 0y =    0y′′ =    
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1.2 Analytical modeling of the Euler - Bernoulli beam 

The general homogeneous solution of the equation (1.1.5) is (Graff 1975 , Ch.3) 

  1 2 3 4( ; ) cos( x) cosh( x) sin( x) sinh( x)Y x t C C C Cβ β β β= + + +  ,  (1) 

where iC , 1, , 4i …= , are constants representing the amplitude of the corresponding 

harmonic term and β  is the wave number. In order to satisfy the given boundary 
conditions we form the first, the second and the third order derivative of ( ; )Y x t  as 
follows: 

, 1 2 3 4sin( x) C sinh( x) C cos( x) C cosh( x)( ; )x CY x t β β β β β β β β=− + + +∂  ,   (2) 

2 2 2 2 2
, 1 2 3 4cos( x) C cosh( x) C sin( x) C sinh( x)( ; )x CY x t β β β β β β β β=− + − +∂  ,   (3) 

3 3 3 3 3
, 1 2 3 4( x) C sinh( x) C cos( x) C cosh( x)( ; ) sinx CY x t β β β β β β β β= + − +∂  .  (4) 

Free – Free Boundary Conditions 

Using the boundary conditions (3, 4) , in eq. (1) we obtain the analytical expressions 
for free edges of the beam, i.e., 

2 2 2 2 2
, 1 2 3 4cos(0) C cosh(0) C sin(0) C sinh(0) 0( 0; )x CY x t β β β β=− + − + =∂ = ,  (5) 

3 3 3 3 3
, 1 2 3 4(0) C sinh(0) C cos(0) C cosh(0) 0( 0; ) sinx CY x t β β β β= + − + =∂ =  ,  (6) 

2 2 2 2 2
, 1 2 3 4cos( ) C cosh( ) C sin( ) C sinh( ) 0( ; )x C L L L LY x L t β β β β β β β β=− + − + =∂ = , 

             (7) 

3 3 3 3 3
, 1 2 3 4( ) C sinh( ) C cos( ) C cosh( ) 0( ; ) sinx C L L L LY x L t β β β β β β β β= + − + =∂ = , 

            (8) 

or equivalently, in matrix formulation, 

 

2 2

3 3

2 2 2 2

3 3 3 3

1

2

3

4

0 0

0 0
0

cos( ) cosh( ) sin( ) sinh( L)

sin( L) sinh( L) cos( L) cosh( L)

C

C

C

C

L L L

β β

β β

β β β β β β β β

β β β β β β β β

 −         −    ⋅  =     − −           − 

 .

 

 

 

The characteristic polynomial associated with matrix A  of the homogeneous system 
above is, see, e.g. Graff (1975, Ch.3), Georgiou (2008, Ch.10) : 

    ( )10( ) 2 cos( )cosh( ) 1p L L Lβ β β β= −  .                               (9) 

A   B   
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 The characteristic roots of (9), are found by solving the equation  

    ( ) 0 cos ( )cosh( ) 1p L L Lβ β β= ⇔ =                                   (10) 

For the calculation of the roots, a numerical method also known as ‘’Newton-
Raphson’’ is used. The analytical expression of the eigenfrequencies is 

   
2

In
n

L E

L

β
ω

ρΑ

 
 =
  

 ,   1,2,n …=  .              (11) 

Next, we proceed with the specification of the coefficients iC  1, , 4i …= , in (1). By 

virtue of (5)-(8), we obtain 

   1 2C C=   and    3 4C C= . 

Thus, 

 [ ] [ ]1 3cos( ) cosh( ) sinh( ) sin( ) 0n n n nC L L C L Lβ β β β− + + − =  ,          (12a) 

  [ ] [ ]1 3sin( ) sinh( ) cosh( ) cos( ) 0n n n nC L L C L Lβ β β β+ + − =  ,          (12b), 

the latter Eqns. (12a-b) being equivalent. 

 Using eqn. (12a) or (12b) we introduce coefficient, AC , as follows  

  3

1

cos( ) cosh( ) sin( ) sinh( )

sinh( ) sin( ) cosh( ) cos( )
n n n n

A
n n n n

C L L L L
C

C L L L L

β β β β
β β β β

− +
= = =−

− −
 .            (13) 

 Hence, the eqn. (1) becomes 

   [ ]1( ) cos( ) cosh( ) sin( ) sinh( )n AY x C x x C x x = + + +   ,             (14) 

where 1C  is an undetermined coefficient. Thus we consider the non-dimensional 

version of (14): 

   ( ) cos( ) cosh( ) (sin( ) sinh( ))n AY x x x C x x= + + +  ,             (15) 

 It should be noted that the modes ( )nY x  are orthogonal. The normalized form of (14) 

is given by: 

    
( )ˆ ( )
( )

n
n

n

Y x
Y x

Y x
=  ,                 (16) 

where ( )nY x  is the norm 

  { }2

0

( ) ( )

L

n nY x Y x dx= ∫  .                 (17) 
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The integral, { }2

0

( )

L

nY x dx∫ , in the developed program ‘’EBT.m’’, is calculated 

through the trapezoidal rule.  

Given the group ( )nY x , { }( ), 1,2,3..nY x n =  in the domain L x L− ≤ ≤ , the inner 

product provides us with the following result 

    ,

L

n m n m

L

Y Y Y Y dx

−

=∫  .               (18) 

If the functions are orthogonal over the domain[ ],L L− , it is shown that, see, e.g., 

Boyce & Diprima (Ch. 10),  

    , 0n mY Y n m= ≠ ,             (19a) 

    , .n nY Y L n m= = .             (19b) 

Using the Dirac function, nmδ , over the beam’s length [ ]0,L , we obtain the alternative 

orthogonality schema  

    
0,

,
1,n m nm

n m
Y Y

n m
δ

 ≠=  =
 .             (19c) 

Hence, the function ( )nY x  are an orthogonal  basis. Furthermore, every function ( )f x , 

which is defined on [ ]0,L , can be represented by a basis of the domain as follows 

    
1

( ) ( )n n
n

f x f Y x
∞

=

=∑ ,   [ ]0,x L∈  , 

where, 

    ( ), ( )n nf f x Y x=                 (20) 

To enhance the orthogonality property for singular functions we begin by presenting 
the Dirac delta function at the point0x , through the formula  

    0
1

( ) ( )n n
n

x x Y xδ δ
∞

=

− =∑ .             (21a) 

Let nδ  be the inner product at 0x x=   

    0 0

0

( ) ( )
L

n nx x Y x dxδ δ= −∫ , 
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where  

   0 0 0

0

( ) ( ) ( )
L

n nY x x x dx Y xδ − =∫ ,     0x x=  . 

Thus, the general form is 

    0 0
1

( ) ( ) ( )n n
n

x x Y x Y xδ
∞

=

− =∑ .              (21b) 

To expand the previous results for other singular functions ( )f x , at 0x x= , the 

schema to be used is  

     0

0

( ) ( )
L

f x x x dxδ −∫  .                (22) 

Applying (21b), the eqn. (22) is now changed to 

   0 0
1 10

( ) ( ) ( ) ( ) ( ), ( )
L

n n n n
n n

f x Y x Y x dx Y x f x Y x dx
∞ ∞

= =

=∑ ∑∫ . 

Finally, using eqn. (20), the latter provides with the following result 

    0 0
1

( ) ( )n n
n

f Y x dx f x
∞

=

=∑ .                (23) 
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Solving the equivalent system of equations for the clamped-clamped and pinned-
pinned type of edges, we take the corresponding coefficients and the non-dimensional 
motion equations 

 Pinned-Pinned Boundary Conditions 

The frequency equation meeting the pinned type of edges, is 

    ( ) 0 sin( ) 0p L Lβ β= ⇔ =  ,                (24) 

see, e.g. Graff (1975, Ch.3). 

 To determine the natural frequencies using the roots Lβ , is based on the analytic 
expression 

    
2

In
n

L E

L

β
ω

ρΑ

 
 =
  

 .   1,2,n …=  .             (25) 

 The solution of the system associated with the boundary conditions (1.1.8a), (1.1.8b) 
provides us with the coefficients of eq. (1) 

    1 2 4 0C C C= = = . 

The corresponding non-dimensional form of the equation (1), is proved to be 

    ( ) sin( )nY x x=  ,                 (26) 

Clamped-Clamped Boundary Conditions 

Finally, the homogeneous system associated with the clamped type of edges leads to 
the frequency equation 

    ( ) 0 cos ( )cosh( ) 1p L L Lβ β β= ⇔ =  ,              (27) 

which is identical to the one obtained from the free type of edges, see, e.g. Graff 
(1975, Ch.3). Using the Newton - Raphson, numerical, method we obtain the 
characteristic rootsLβ , which in turn are used to define the frequencies based on 
equation: 

   
2

In
n

L E

L

β
ω

ρΑ

 
 =
  

 ,   1,2,n …=  .              (28) 

The system formulated by the boundary conditions (1.1.7a)-(1.1.7b) specifies the 
coefficients of the motion eq. (1) as follows 

   1 2C C=−  

   3 4C C=−  

   [ ] [ ]1 3cos( ) cosh( ) sin( ) sinh( ) 0n n n nC L L C L Lβ β β β− + − = ,             (29) 
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   [ ] [ ]1 3sin( ) sinh( ) cos( ) cosh( ) 0n n n nC L L C L Lβ β β β− + + − = .          (30) 

 We calculate the coefficient: 

    3

1

cos( ) cosh( )

sin( ) sinh( )
n n

A
n n

C L L
C

C L L

β β
β β

−
= =−

−
 ,                                   (31) 

and the corresponding motion eqn. (1)  is : 

    ( ) cos( ) cosh( ) (sin( ) sinh( ))n AY x x x C x x= − + − ,                 (32) 

The investigation of the divergence between the normal modes derived from the 
numerical and the analytical solution consists of severe importance and will be 
illustrated in Appendix A. 

1.3 Euler - Bernoulli modeling using Finite Difference Method 

 For the appropriate implementation of the Finite Differences Method (FDM), the 
discretization of the problem is necessary, through a suitable grid definition. Hence, 
we consider a discretization of the beam into a number of N  elements of equal 

length
L

x
N

∆ = , defined by a set of 1N +  points. For the domain[ ]0,L , we define the 

nodal points ( ){ }, , 1,2,..., 1i i ix y y x i N= = +  as depicted in the following figure,  

 

  

 

 

 

Fig. 1. Grid points 

 Thus, eqn. (1.1.5) is considered using its discrete analogue, which is presented by the 
linear formA Fu= , where matrix [ ]  A N N= ×  is a banded one and its bandwidth 

depends on the order of the derivative. For a first order derivative a tridiagonal table is 
formed (see figure 2), in which all non-zero elements are placed in the main diagonal 
and in its two adjacent sub-diagonals: 

   

11 21

12

1

1 1 1

0

0
N N

N N N N

a a

a

A

a

a a

⋱

⋱

⋱
⋱

+

+ + +

        =         

 

           Fig. 2. Banded (tridiagonal) table 

x∆  

1x  2x  3x  4x  ix  1ix +  Nx  1Nx +  

L  
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 Thus, the higher the order derivative we approximate, the more banded the table 
becomes. Setting a smaller (1) step ( )x∆  we increase the size of the table A and in 

parallel we have a better description of the specific domain. 

 Τhe discretization scheme for the Euler-Bernoulli equation is materialized by using 
second-order, central finite differences. Thus, first and second order derivatives of the 
deflection are approximated by the following formulas 

 

    
2

1 1( ) ( )
2

i i
i

y y
y x O x

x
∆

∆
+ −−′ = +   ,     (1) 

    
2

1 1
2

2
( ) ( )i i i

i

y y y
y x O x

x
∆

∆
+ −− +′′ = +  .   (2) 

 By virtue of the above equations, the calculation of the values at the nodes 1x x=  

and 1Nx x +=  needs a special treatment. An appropriate modification is used, based 

on the forward finite differences scheme at 1x x=  with a second order accuracy 

   23 2 1
1

4 3
( 0) ( )

2

y y y
y x O x

x
∆

∆
− + −′ = = + ,     (3) 

   ( ) ( )4 3 2 1
1 2

24  - 5  +2 y
0    

y y y
O x

x
y x″ ∆

∆

− +
= = +  ,    (4) 

   ( ) ( )5 4 3 2 1 2(3)
, 1 3

3 14 24  18  -5y
0    

2
x

y y
y

y y
x O x

x
∆

∆

− + − +
= = +  ,  (5) 

and the backward finite differences scheme, at 1Nx x +=  

   ( ) 21 1
1

4 3
( )

2
 N N N

Ny
y y y

O x
x

x L ∆
∆

′ − +
+ =

− +
+=  ,     (6) 

   ( ) ( )2 21 1
1 2

4  - 5  +2 y
   N N N N

Ny
y y y

O x
x

x L″ ∆
∆

− − +
+ =

− +
+=  ,    (7) 

  

 ( )3 2 1 1 2(3
3

)
, 1

3 14 24  18  +5
)

y

2
(   N

N N N N N
x

y y y y
O xy x L

x
∆

∆+
− − − +− + −

+= =   (8) 

respectively. 

 

                                                 
(1) A smaller step ( )x∆  than the initially used, /x L N∆ = , is achieved by increasing the number, N, of the elements. 
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At this point we grab the chance to investigate the method’s consistency. Consistency 
of the numerical procedure is a property related to the discrepancy of the numerical 

solution against the exact one, see, Akrivis, Dougalis (1997). The term ( )2O x∆  in the 

above eqns. (1-8), constitutes the error of the numerical method and on the step, 
x∆ used to discretize the domain.  

More specifically, given a function [ ]4( ) , , ( , )y x C a b x a b∈ ∈  and 

[ ]0 : , ,x x x x x a b∆ > + ∆ −∆ ∈  we calculate the Taylor series of eqn. (1) as follows 

  ( ) ( )
( ) ( ) ( ) ( )2 3 42 3 4

1
2 3 32 6 24i

u x u x u x u xx x x
u x x u x x

x x x x

∆ ∆ ∆
∆ ∆=

∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂
, 

  ( ) ( )
( ) ( ) ( ) ( )2 3 42 3 4

2
2 3 32 6 24i

u x u x u x u xx x x
u x x u x x

x x x x

∆ ∆ ∆
∆ ∆=

∂ ∂ ∂ ∂
− − + − +

∂ ∂ ∂ ∂
 , 

where ( )1 2, ,x x x xx x −∆ + ∆∈ . If we sum up the previous equations the 

approximation for the first and second order derivative becomes: 

   
( ) ( )

( ) ( ) ( )
3

2
3

1 3max
3 a x b

u x x u x x x
u x u x

x

∆ ∆ ∆
∆

≤
≤ ≤

+ − −
′−  

and 

   ( ) ( ) ( )
( ) ( ) ( )

3

2
4

1 32

2
max

12 a x b

u x x u x u x x x
u x u x

x

∆ ∆ ∆

∆
≤

≤ ≤

− − + +
′′−  , 

respectively. 

Let ( ) ( )
3

3
1 3max

a x b
u xC

≤ ≤
=  , ( ) ( )

3

4
2 3max

a x b
u xC

≤ ≤
=  , then the quantity on the 

right- hand side of each inequality is the maximum error of the approximation (finite 
difference method) , see also, Akrivis, Dougalis (1997, Ch.6). The first and the second 
order derivative in its discretized form is  

    1

2
1 1

3
i i

i

u u x
u

x
C
∆

∆
+ −

≤
− ′−  

    
2

1 1
2 2

2

12
i i i

i

u u u x
u

x
C
∆

∆
− +

≤
− + ′′−  . 

Though, the convergence of the numerical solution (and the quality of the 
corresponding results) is strongly dependent on the elimination of the error factor. 
Hence, in the case of a dense partitioning, we assume that the error is too small and 

practically is negligible when ( )2 0O x∆ → . 

Since all the parameters have been defined, we proceed with the presentation of the 
modified version of the finite differences scheme that replaces the beam equation 
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(1.1.5). We consider a homogeneous beam version, where ( ) ( ) .D x EI x D ct= = =  is 

the constant modulus of rigidity of the beam. Also, ( ) .m x m ct= =  is the constant 

mass density of the beam. The number of the given equations to be solved is equal to 
the number of the nodes. The homogeneous equation (1.1.5) can be written as follows 

First, we use the following notation  

    ( )
2

2
  

d y
G x D

dx
=  ,                  (9) 

    
( )2

2
2 ( ) 0

x
m x

d

d
y

G x
ω

�

+ =  .               (10) 

The finite difference scheme for (9) is written 

  
2

1 1 2 1 1 2
2 22

G 2 4 6 4( ) i ii i i i i iy yG G G D Dy Dy Dy Dd x
dx dxdx

+ − + + − −+− + − − +
≈ = , 

                      (11) 

 Also, the term  

    ( )2 2  iM x M yω ωy ≈  .               (12) 

 Replacing the schemes (11, 12) into equation (1.5), its discrete version, becomes 

  2
2 1 1 22 6

1
4 ( ) 4 ] 0i ii i i iMy Dy D yD y Dy D

dx
ω+ + − −


 − + + − + =  .            (13) 

 

1.4 Numerical code implementation 

 The solution of y  can be expressed in matrix form and the dimensions of the 
matrices are defined by the number of the nodes as it is mentioned before. We set the 
table form of the problem and so the linear expression of the system is: 

   
1

1

0
N

ij j j

j

A y yλ
+

=

− =∑ , ( ){ }2, , 1,2,3,......n
n n n iy nλ ω y= = = ,           (1) 

The eigenfrequencies can be specified by solving the previous homogeneous system. 
Matrix A appearing in (1) is a banded (pentadiagonal) matrix, as mentioned in Ch.1.3. 

Considering various types of boundary conditions, see Table 1 in Ch.1.1, and their 
analytical representation in Eqns. (1.3.1-1.3.8), we obtain the following cases for the 
construction of matrix A:  
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Clamped edges 

1 0 0
01.5 0.52

0.5 1.52
0

0 0 1

dx dx dx
A

dx dx dx

⋯

⋱ ⋱ ⋱

⋯

    − −    =     −      

 

 

Free edges 

2 2 2 2

3 3 3 3 3

3 3 3 3 3

2 2 2 2

52 4 1 0

2.5 9 7 1.512 0

1.5 7 9 2.5120

1 54 20

dx dx dx dx

dx dx dx dx dx

A

dx dx dx dx dx

dx dx dx dx

⋯

⋱ ⋱ ⋱

⋯

 − −      − −−         =        − − −      − −   
 

Pinned edges 

2 22 2

2 2 2 2

1 0 0
05 4 12

51 4 2
0

0 0 1

dx dxdx dx
A

dx dx dx dx

⋯

⋱ ⋱ ⋱

⋯

    − −     =    −−      

 

 

All the remaining cells of table A  are supplemented with the coefficients of eqn. 
(1.3.11). Now that the tables are set, we calculate the eigenfrequencies using a simple 
method. The first step is to set a big range of frequencies,ω  , and search for the roots 
in it, using an iterative process. Replacing each value of the range into the equation 

2y yωΑ −  we find all those frequencies that eliminate the equation. Those frequencies 
are called the ‘natural frequencies’ of the transverse oscillation of the homogeneous 
thin beam.  

Both numerical and analytical solutions have been examined and are presented in the 
Appendix A. In the next chapter we examine the beam case using the Timoshenko 
model.  
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Chapter 2 
 

 

 

The Timoshenko Beam Model 
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2.1 Introduction to the Timoshenko beam 
So far, we have examined the simplified model of a thin beam based on the Euler 
Bernoulli Theory (EBT). An important and widely adopted enhance of EBT is 
referred as Timoshenko Beam Theory (TBT), in which a correction for the shear 
deformation is taken into account in parallel with the effects of the rotary-inertia. The 
basic assumptions govern TBT approach are: (i) Thin beam theory, (ii) linear mass 
distribution and linear bending stiffness, (iii) planar sections remain planar while 
bending, (iv) we assume transverse deformations and slopes to be small, and (v) the 
neutral axis no longer passes through the centroid of each section, thus shear 
deformation is observed. Shear deformation is caused by pure bending and not from 
additional kinematic condition, such as torsion. Obviously, assumptions (iii) and (iv) 
impose the departure from EBT. Additionally, both EBT and TBT examine planar 
deformations. Therefore, the motion of the beam lies on the planexy− only, while 
cross section areas are considered to be symmetric. Also, the basic differences of TBT 
as compared to EBT approach are: (d1) the neutral axis no longer passes through the 
centroid of each section, and thus shear deformation is observed, and (d2) rotary-
inertia is no longer negligible. Finally, the forces acting on the beam are: the bending 
moment, M , the shear force, V , and the distribution of imposed forces, q .  
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Fig. 1. Forces acting on the cross section area (Timoshenko model). 
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The deformations of the beam are now described by two equations with respect to 
both, bending and shear effects. The two, coupled governing equations, are 

  
2 2

2 2

( , ) ( , )( , )
( ) ( ) ( ) 0b b

b

y x t y x ty x t
GA x K y D x I x

x x t
ρ

  ∂ ∂∂  − + − =  ∂ ∂ ∂
 ,   (1) 

  
2 2

2 2

( , ) ( , ) ( , )
( ) ( ) ( , )by x t y x t y x t

GA x K m x q x t
x x t

 ∂ ∂ ∂ − + =   ∂ ∂ ∂ 
 ,    (2) 

where ( )EI x  is the modulus of rigidity of the beam, E  is the Young modulus of the 

material, and ( )I x  is the moment of inertia of the cross section of the beam at each 

longitudinal position x ; see Fig.1. Shear modulus, G, has been also added to the 
equations, depicturing the shear deformation of the thin beam. Also, ( )m x  is the 

linear mass density of the beam. For uniformly compact beams, it holds 
( ) ( )m x A xρΕ= , where ρΕ  is the constant density of the material, and ( )A x  is the 

area of the cross section of the beam at each longitudinal position x . The term ( , )q x t  
denotes, again, the distribution of forces which is zero in the homogeneous scenario.  

Since, the cross sectional area is no longer perpendicular to the centroidal axis, we 
denote the displacement of the cross section by by  and the displacement of the 

centroidal axis by y .Thus, the basic equation that describes the geometrical 
deformation of the axis, is 

    0b
y

y
x

γ
∂

= +
∂

,        (3) 

where, 0γ , is the shear strain at the centroidal axis area, see, e.g., Graff (1975), 

Samouilidis (2004) and y x∂ ∂  determines the slope of the centroidal axis. 

 

2.2 Dispersion relations 

 Assuming harmonic responses  

    ( )( )1( , ) expby x t C j x tκ ω= −  ,      (1) 

and 

    ( )( )2( , ) expy x t C j x tκ ω= −  ,      (2) 

We denote that the coefficient κ  should be treated with extra caution as it consists of 
the wavenumber of the harmonic propagation, in contrast to the shape-dependent 
coefficient K of the beam. The harmonic response of the Timoshenko beam model 
can be specified by its phase velocity. For the calculation of the velocity we reduce 
the two equation motion system, (2.1.1, 2.2.2) into a single one by considering the 
homogeneous problem that is( , ) 0q x t = . Differentiating the eqn. (1) with respect to 
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x  as times as needed in order to replace the term by  into eqn. (2), see, e.g. Graff 

(1975, Ch.3.4) the following non-linear equation for the displacement, ( , )y x t , is 
obtained:  

4 4 2 4

4 2 2 2 4

( , ) ( , ) ( , ) ( , )
0

EI y x t I EI y x t y x t I y x t

A A G A GAKx x t t t

ρ
ρ Κ

 ∂ ∂ ∂ ∂− + + + =  ∂ ∂ ∂ ∂ ∂
 .    (3) 

Replacing eqn.(2) into eqn. (3), we get 

( )( )4 4 2 2 2 2 2 2 4 4exp 0
D I D I

i j j j j j x t
A A G A GAK

ρ
κ κ ω ω ω κ ω

ρ Κ

   − + + + − =    
.        (4) 

Recalling that 1j = −  and D EI=  we replace the phase velocityc
ω
κ

= and so the 

latter equation becomes 

   2 4
2

1
0

EI I EI I
c c

A A G A GAK

ρ
ρ κΚ

   − + + + =    
.      (5) 

Let 0
E

c
ρ

=  be the factor to non-dimensionalize the velocity c . For the non – 

dimensionalized expression of the velocity, we use the bar symbol 0c c c=  and 

therefore we obtain  

    
2 4

4 2 4 4
0 0 0

1
0

EI I EI c I c

A G A GAKAc c c

ρ
ρ κΚ

   − + + + = ⇒    
 

   4 2
2

1 0
GK GAK GK

c c
E EIEκ

   − + + + =    
 .     (6) 

Let 2x c= , 
2

1
GK GAK

E IE
β

κ

   =− + +    
, and 

GK

E
γ = , the equation (6) may be 

expressed as a quadratic equation in its typical form, 2 0x xβ γ+ + = . Calculating the 

discriminant of the problem, 2 4β γ∆ = − , only the positive roots are acceptable. 
Hence, the positive root we are interested in is 

     
2

c x
β ∆− −

= =       (7) 

We also calculate the phase velocity of the Euler-Bernoulli model for comparison 
purposes with the Timoshenko beam model which involves beam shear deformations. 

By the assumption of harmonic response, ( )( )( , ) expy x t C j x tκ ω= − , the EBT 

motion equation (1.1.1) is reformulated as follows: 
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    4 2 20
D

D m
m

κ ω ω κ− = ⇒ =  . 

The phase velocity c
ω
κ

=  leads to the equation  

     
D

c
m

κ= ,        (8) 

which, by using 0c E ρ= , takes the non-dimensional form 

     
D

c
mE

ρ
κ= .       (9) 

The wavenumber to be used in the dispersion curves is also non-dimensionalized 

through the wavenumber 0 2
a

πκ = , where a  denotes the thickness of the thin beam 

(or the thickness radius of a thin rod). The following figures, to be presented, are the 
results of the implementation of the code “Dispersion diagrams”. The shear 
coefficient K is defined based on analytical expressions, see, Hutchinson (2001). 

 

Fig. 2. Dispersion diagram for thin beam, 0.8333K =   Fig. 3. Dispersion diagram for thin rod, 0.8571K =  
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2.2.1 Conclusions 

0.8333K = (rod), 0.8571K = As expected, the dispersion curve predicted by the 
Euler-Bernoulli theory is a linear function, see, Fig.2, Fig.3, whereas the dispersion 
curve from the Timoshenko theory is a more complicated curve. In small 
wavenumbers κ  the curve representing the phase velocity of the Euler – Bernoulli 
model coincides, in a short area, with the Timoshenko model one. In contrast to EBT, 
the TBT phase velocity converges to 0.56C ≈  (rod case) and 0.54C ≈  (beam case) 
when larger wavenumbers, κ  approached. More specifically, letκ→∞  and then 
using eq. (2.6) we get 

    4 21 0
GK GK

c c
E E

 − + + =  
 ,  

which in turn leads to a single root independent from wavenumber κ . With further 
investigation the slope of the EBT rod is greater than the one of the beam. Moreover, 
the curve referring to the rod for the TBT approaches faster its upper bound compared 
to the beam of the counterpart theory. 

For the steady state linear problem, we eliminate the time dependence using complex 
amplitude technique. Hence, the representation of the flexural deflection for by  and y, 

can be written as follows 

   ( , ) Re ( ) i t
b by x t y x e ω− =   

�

 ,               (10) 

    ( , ) Re ( ) i ty x t y x e ω− =   

�

 ,                (11) 

Consequently, for the homogeneous problem, eqns. (1), (2) take the form  

  
2

2
2

( )
( ) ( ) ( ) 0b

b b

yy x
GA x K y D x I x y

x x
ρ ω

  ∂∂   − + − = ∂ ∂ 
 ,              (12) 

  
2

2
2

( ) ( )
( ) ( ) ( ) 0by x y x

GA x K m x y x
x x

ω
 ∂ ∂   − + = ∂ ∂  

 ,               (13) 

2.3 Timoshenko modeling using the Finite Difference Method 

The domain [ ]0,L  is defined by the nodal points ( ){ }, , 1,2,..., 1i i ix y y x i N= = + . 

Thus we consider a discretization of the beam into a number of N  elements of equal 

length
L

x
N

∆ = , defined by a set of 1N +  points. Considering the corresponding linear 

expressions of the systems (12), (13) are: 

   
1

1

1

0
N

ij j j

j

A y yλ
+

=

− =∑ , ( ){ }2, , 1,2,3,......n
n n n iy nλ ω y= = =  
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, and 

   
1

2

1

0
N

ij j j

j

A y yλ
+

=

− =∑ , ( ){ }2, , 1,2,3,......n
n n n iy nλ ω y= = =  ,  

where 1 [ 2 ]A N N= ×  and 2 [ 2 ]A N N= ×  The grid definition of the domain determines 

the size of the tables1A , 2A .The two tables will be merged into a larger matrix 
22[ 1]A N= +  in which we will seek the eigenfrequencies ω . 

 For the solution, to be found, we must set the table form of the linear systems, which 
will be based on the FDM analysis. Using the schemes (1.3.1), (1.3.2) for the first and 
second order derivatives, we replace the equation (12) with its discrete analogue:  

1

1 1 1 11 1 1
1 1 22 2 i i

i i i ii i i
i i i bi i b

G A K DG A K
y y G A K y

dx dx d
y

x +
+ + + +− − −

+ −− − +   

          
1

21
2 2

2
0

i i ib
i i

i i bb

D D
I y

dx d
y

x
y ρ ω

−
−− + − =  

             (1) 

 and the equation (13) becomes 

1 1 1

1 1 1 1 1 11 1 1
22 2i i i

i i i i i ii i i
b b

G A K G A KG A K

dx d
y y

x x
y

d+ − +
+ + + + + +− −− −−    

         
1

21 1 1
2 2

2
0

i i
i i i i i i

i iy y
G A K G A K

m y
dx dx

ω
−

− − − −+ − =   

             (2) 

 Setting-up the banded table1A , its bandwidth depends on the order of the derivative 

of equation (1). It is consisted of second order derivative of the corresponding term 

by , in parallel with first order derivative of the corresponding term y  Following this 

set-up, we obtain a tridiagonal table, [ 1 1]N N+ × +  in which all non-zero elements 
are placed in the main diagonal and in its two adjacent sub-diagonals, while in the rest 
table 1A ,[ 2 1]N N× +  all non-zero elements are placed in its two adjacent sub-

diagonals, see fig. 1. 

2, 111 21

1, 212

1

1 ,2 1

1 1 1 1,2

0
00

0

0 0
0

N

N

N N N N

N N N N N N

aa a

aa

A

a a

a a a

⋱⋱

⋱ ⋱

⋱ ⋱
⋱ ⋱

+

+

+ +

+ + + +

        =         

 

Fig. 1. 
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 Table 2A  is consisted of first order derivative, of the displacement by , alonghead with 

second order derivative of the displacement y  , see Fig. 2. 

1, 2 2, 311 21

2, 212

2

1 ,2 1

1 1,2 1,2 1

00

0

0 0

N N

N

N N N N

N N N N N N N N

a aa a

aa

A

a a

a a a a

⋱⋱

⋱ ⋱

⋱ ⋱
⋱ ⋱

+ +

+

+ +

+ + + +

        =         

 

Fig. 2. 

 Array 1A [ 1 2 1]N N+ × + , is the first to be placed in table A  whereas it follows array 

2A [2 1 2 1]N N+ × + . 

 The type of edges which are going to be tested are the ones that have been used in the 
(EBT) ,i.e. free-free, clamped-clamped and pinned-pinned boundary conditions. Thus, 
the mathematical formulas for the above type of boundary conditions should be 
recalculated considering the basic geometrical equation (2.1.3), for the (TBT). Based 
on the above assumption, that is, by consists of the displacement of the cross section 

area, we differentiateby , with respect tox , to calculate the slope of the cross section 

area. Its connection to the curvature is expressed by the equation, see, e.g. Graff 
(1975), Samouilidis (2004 ): 

   byM

EI x

∂
=−

∂
 ,          (3) 

 The equation (3) ,is now changed into the equivalent form : 

   
2

2
byy

xx

∂∂
=

∂∂
,          (4) 

 The expression of the shear force ,is: 

   0V GAKγ= ,          (5) 

,where 0γ  replaced by the eqn. (3), provides us with the corresponding result: 

   b
y

V GAK y
x

 ∂ = −   ∂
,         (6) 

Setting the proper values for each case beam support, we obtain the following 
collection of : 

 

Free – Free Boundary Conditions. In this case both bending moment and shear are 
zero at the ends of the beam. Using again the assumption that 0 0γ =  at the ends of 

the clamped beam we obtain from Eq.(3)  
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 2
, ,( 0) 0 ( 0) 0bx xy x y x∂ = = ⇒ ∂ = =  ,                (7a) 

 2
, ,( ) 0 ( ) 0bx xy x L y x L∂ = = ⇒ ∂ = =  ,                (7b)  

and from Eq. (6) 

 , ( 0) ( 0) 0bx y x y x∂ = − = =  ,                 (8a) 

 , ( ) ( ) 0bx y x L y x L∂ = − = =  ,                 (8b)  

respectively. 

Pinned – pinned Boundary Conditions: The end conditions 0Y =  is 
straightforward  in this case 

  ( 0) 0y x = =  ,                   (9a) 

  ( ) 0y x L= =  ,                   (9b) 

The second condition necessitates zero  bending moment at the ends of the beam 
M=0, which using Eq.(3) becomes 

 2
, ,( 0) 0 ( 0) 0bx xy x y x∂ = = ⇒ ∂ = =  ,              (10a) 

 2
, ,( ) 0 ( ) 0bx xy x L y x L∂ = = ⇒ ∂ = =  .             (10b)  

Clamped – clamped Boundary Conditions: The end conditions 0Y =  is 
straightforward 

  ( 0) 0y x = =  ,                 (11a) 

  ( ) 0y x L= = .                 (11b) 

Furthermore, using the assumption that 0 0γ =  at the ends of the clampted beam we 

obtain from Eq.(3) the corresponding boundary conditions  

  ( 0) 0by x = =  ,                 (12a) 

  ( ) 0by x L= =  ,                 (12b) 

ensuring that also 0Y ′ =  at the ends of the beam.   

As the basic geometrical parameters have been described, we use the forward and 
backward finite difference schemes (1.2.3-1.2.8) to discretize the above boundary 
conditions. 

Considering various types of boundary conditions, as presented in Eqns. (7a)-(12b) 
we obtain the following matricesA  : 

 



 41 

Clamped- clamped  

1 0 0 0
0 0

0 0

0 0
0 0

0 1 0 0

0 0 1 0
0 0

0 0

0 0
0 0

0 0 0 1

A

⋯ ⋯
⋱ ⋱

⋮ ⋱ ⋮ ⋱

⋱ ⋱
⋱ ⋱

⋯ ⋯
⋱ ⋱

⋮ ⋱ ⋮ ⋱

⋱ ⋱
⋱ ⋱

                  = −−−−−−−−−−−−−−−−−−−                   

 

Free-Free 

1 1 0 00 0
0 0

0 0
00 1 1 0 0

1 11 0 00
0 0

0 0
0 00 1 1 1

dx dx

dx dx
A

dx dx

dx dx

⋯ ⋯
⋱ ⋱

⋮ ⋱ ⋮ ⋱

⋱ ⋱
⋱⋱

⋯
⋱ ⋱

⋱ ⋮ ⋱

⋱ ⋱
⋱ ⋱

 −                −      = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−    −  −              − − 


 

Pinned-pinned 

1.5 0.52 0 0 0 0 0

0.5 1.5 0 0 0 020 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

dx dx dx

dx dx dx
A

⋯ ⋯

⋮ ⋱ ⋮ ⋱ ⋱

⋱ …⋯

⋯ ⋯

⋮ ⋱ ⋮ ⋱ ⋱

⋯ ⋱ …

 − −         −      = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−              
We place the rest coefficients of Eqns. (1), (2) in all the non-zero cells.  
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2.4 Illustration of the modes for a beam cross sectional area (EBT, TBT) 

In this chapter, we demonstrate the results derived from the developed numerical methods 
which are included in the program ‘’TBT.m’’ and ‘’’EBT.m’’. Regarding the Euler – 
Bernoulli model we depict the modes of a homogeneous and an inhomogeneous beam, see, 

Ch. (2.3.1), (2.3.3) respectively. It should be noted that we use the factor 2 L  to scale the 

modes in order to have a more distinct illustration of the modes and also in the homogeneous 
case we present the modes based on the analytical solution. Also we denote that beam 
represents a square sectional area while rod represents a circular sectional area. Furthermore, 
for comparison reasons we demonstrate the modes for a homogeneous and an inhomogeneous 
Timoshenko beam based, see, Ch. (2.3.2), (2.3.4). In all the previous cases we have used a set 
of M=100 points to discretize our domain. The main characteristics of the beam are: (i) 

Length: [ ]50 mL =  [m], (ii) Young’s modulus: [ ]6 5 10 Pa ,E =  shear modulus 

[ ]980 10 PaG =  (ii) Mass density: 3kg/m923ρ  =    , (iv) Thickness: [ ] 1 mt = , (v) 

Moment of inertia: 
3 20.0833 kg m12

tI π  = =    ,(vi) Cross section area: 

2 21A t m = =   and (vii) Shear coefficient 0.8333K = . For a more detailed 

presentation of all the combinations concerning a circular and a square cross sectional 
area using both the Euler – Bernoulli and Timoshenko models, see Appendix A. 
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2.4.1  Euler – Bernoulli homogeneous beam  

 
Fig. 1. Clamped edged homogeneous beam, factor 2 L  to scale the modes 

 
Fig. 2. Free edged homogeneous beam, factor 2 L  to scale the modes 

 
Fig. 3. Pinned edged homogeneous beam, factor 2 L  to scale the modes 
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2.4.2  Timoshenko homogeneous beam  

 
Fig. 1. Clamped edged homogeneous beam, M=100 points 

 
Fig. 2. Free edged homogeneous beam, M=100 points 

 
Fig. 3. Pinned edged homogeneous beam, M=100 points 
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2.4.3  Euler – Bernoulli inhomogeneous beam  

 
Fig. 1. Clamped edged homogeneous beam, 2 L  to scale the modes 

 
Fig. 2. Free edged homogeneous beam,2 L  to scale the modes 

 
Fig. 3. Pinned edged homogeneous beam,2 L  to scale the modes 
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 2.4.4 Timoshenko inhomogeneous beam  

 
Fig. 1. Clamped edged homogeneous beam, M=100 points 

 
Fig. 2. Free edged homogeneous beam, M=100 points 

 
Fig. 3. Pinned edged homogeneous beam, M=100 points 
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Chapter 3 
 

 

 

 

Ship Hydrodynamics 
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3.1 RIGID SHIP HYDRODYNAMICS  

In the present chapter we review approximate methods for elongated bodies for 
treating the problem of ship (of length L, breadth B and draft T) responses in waves, 
considering first the structure, traveling at constant forward speed U, in deep water, to 
be rigid. Also the waves and the induced motions are considered small so that linear 
theory can be applied. The slenderness assumption for the body will permit strip 
theory approximations to be used. For simplicity only the case of head incident waves 
will be considered. 

We begin by introducing a symmetric, 1 2-planex x  ship geometry and its motions 

analyzed on an orthogonal coordinate system,( )1 2 3, ,x x x  see Fig.8. The axis system 

( )1 2 3, ,x x x  is moving with the mean value of the ship’s velocity and refers to a steady 

axis system( )1 2 3, ,s s sx x x  . The steady coordinate system is placed on the free surface 

of the sea where the elevation of the water is zero. The 1 2 -planes sx x defines the 

horizontal plane and 3-axisx is opposite to the direction of the gravity and vertical 

to 1 2s sx x . 

 

Fig. 1. Ship’s motions 

Let , 1,..,6i iξ =  describes the generalized motions of the ship, see, Table (1) 

1ξ  

2ξ  

3ξ  

4ξ =  1θ  

5ξ =  2θ  

6ξ =  3θ  

Table 1 

 

 

 

2sx
 

1sx
 

3 (yaw)θ  

2 (sway)m
 

(p itch )2θ
 

1 (roll)θ  

U
�

 

1 (surge)m
 

3sx
 

3 ( )m heave
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Neglecting viscous effects we assume that the motion of the fluid is irrotational. 
Hence, we introduce the potential 1 2 3( , , ; )x x x tΦ  to formulate the body motions in the 

sea water. In order to solve the velocity potential of the waves a linearization scheme 
is followed. 

The Doppler effects is associated with a frequency shift, which in ocean engineering 
terms is named after “encounter frequency”, eω  , and is represented in the steady 

moving reference system by 

   0 0cose Uω ω κ β= −        (1) 

where 2
0 0 gκ ω=  is the wavenumber and β  is the wave incident angle (angle 

between the incident wave and the ship track). In the case of head seas (waves), 
β π= , relation (1) is simplified in 0 0e Uω ω κ= +  and from now on the expression 

eω  will be presented as ω . 

Τhe  linearized responses of the ship are obtained in the frequency domain 

( ) ( )Re j t
i it e ωξ ξ=  by the solution of the  system of equations describing the dynamics 

   ( ) ( )( )
6

2

1
i i i i i i

i

M A j UN B C Fω ω ξℓ ℓ ℓ ℓ ℓ ℓ

=

− + + + + =∑  ,    (2) 

where ( ) ( ) ( )( )Re Rej t j t
I DF t F e F F eω ω= = +

ℓ ℓ ℓ ℓ
 are the Froude-Krylov generalized 

forces denoted by the incident, ImF  , and the diffraction, DmF  , generalized forces. In 

the eqn. (2), the matrix miM  is  

  

3 2

3 1

2 1

3 2 11 12 13

3 1 21 22 23

2 1 31 32 33

0 0 0

0 0 0

0 0 0

0

0

0

i

M J J

M J J

M J J
M

J J I I I

J J I I I

J J I I I

ℓ

 −    −    −  =  −    − −     − 

.,                           (3) 

where /BM C LBT gρ= = ∆  is the mass of the ship (of displacement ∆) at draft T and 

BC  the block coefficient. Also  ( )1 2 3, , B
V

J J J r dVρ= = ∫J  is the polar moment of 

inertia, where, Br  , is the distance from the gravity center . Thus, GM=J R , where 

GR  is the center of gravity.  In the case of even keel ships ( ),0,G LCG VCG=R , with 

LCG denoting the long center and VGC the vertical center of gravity. 



 50 

Furthermore,
3

2 2

1
ii m i

mV

I r r dVρ
=

 
= − 

 
∑∫  , 1,2,3i =  is the moment of inertia while 

i i
V

I r r dVρ= ∫ℓ ℓ  , , 1,2,3i i≠ =ℓ  is the rotary product. 

The matrix 
2 3

1

1

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

i

M

M
N

J J

J

J

ℓ

        −  =  − −        

 .       (4) 

Also the, miC  , stands for the hydrostatic forces  

    33 34 35

43 44 45

53 54 55

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0

i

C C C
C

C C C

C C C

ℓ

         =          

 .      (5) 

The rest of the matrices such as jiA   is the added mass, and jiB   is the damping 

which dependent on the radiation potentials. Consequently, for head seas, 180β = �  , 
and using eqn. (1), we derive the following coupled-equations for the heave and the 
pitch motions of the ship, 

 ( ) ( ) ( )( )2 2
33 33 33 3 35 1 35 35 5 3( )M A j B C A J j B MU C Fω ω ξ ω ω ξ− + + + + − − + − + =  , 

(6)  

 ( ) ( ) ( )( )2 2
53 53 53 3 55 22 55 1 55 5 5( )M A j B C A I j B UJ C Fω ω ξ ω ω ξ− + + + + − + + + + =  , 

  (7) 

In the eqns. (6), (7) harmonic responses have been considered. In the above equations 

33 wlC gAρ=  , where 
1

1( )wl
x

A B x= ∫  is waterline area, 35 53 wlC C A LCF= = where 

LCF is the long center of flotation. Also, ( )55 L LC gM GM gM KB BM KG= = + − , 

where  KB is the vertical center of buoyancy, L
L

IBM = ∇ , 
11 11L xI I A= =  is the 

longitudinal metacentric radius, and KG is the vertical center of gravity (measured 
from the keel of the ship). 
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3.1.1 Flow potential linearization 

Setting the linearization scheme, the velocity potential, 1 2 3( , , ; )x x x tΦ  , and the 

elevation of the sea water, 1 2( , ; )x x tη  , are considered to be small. Due to small sea 

elevation, the boundary conditions, to be used, refer to the mean free surface of the 
sea, that is, 3 0x =  instead of the exact position at3x η= . In addition fD∂  , 

represents the free surface of the hull while, BD∂  represents the wet surface of the 

hull. Summing the previous assumptions the linear boundary conditions, are 

   T 0Φ∆ =  ,          (1) 

   
2

T
T

1 3

0U g
t x x

Φ
Φ

  ∂∂ ∂  − + =  ∂ ∂ ∂ 
,   fD∂  at 3 0x = ,     (2) 

while the boundary condition for the wet surface is, see , e.g., Athanasoulis & 
Belibassakis (2012), Salvesen et al (1970)  

  
( ) [ ]( )

( ) ( )
T T; tΦ Φ∇ ⋅ = ⋅ + − ∇ ×

 + ⋅ + × ⋅ − ⋅ + × ⋅ 

r n U n U n θ

u n ω r n ξ n θ r n
 , BD∈∂x    (3) 

In order to analyze the hydrodynamic responses of the ship we assume that: (i) the 
ship is treated as a long and slender body, that is, the length,L , is much greater 
compared to the other dimensions such as the beam,B , and the draft,T . Additionally, 
(ii) the water is considered deep, 0.5h λ>  

 
where, h is the depth of the sea and λ  is 

the length of the wave. Finally, (iii) pitch is negligible as the ship is oscillating under 
the influence of incident sea waves. 
According to the linearization scheme, the total velocity potential can be decomposed 
into a steady and an unsteady state potential, as follows 

  1 2 3 1 2 3 1 2 3( , , ; ) ( , , ) Re ( , , ) j t
T s ux x x t x x x x x x e xωΦ Φ Φ

�

ℝ
 = + ∈   

 ,    (4) 

where 1j = −  , 1 2 3( , , )s x x xΦ  is the steady potential and 1 2 3Re ( , , ) j t
u x x x e ωΦ

�     
 

represents the real part of the unsteady potential, where uΦ
�

 is the corresponding 

complex amplitude. For simplicity, from now on, the over-dot symbol of the complex 
amplitude will be omitted. Through Eq. (4) and by considering negligible contribution 
of the unsteady velocity potential, UΦ∇  , the Eq. (3) changes to  
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[ ]( ) ( )

( )
2

S U S

S

i jx x

∇Φ + ∇Φ = ⋅ + − ∇Φ × + ⋅ + ×

 ∂ Φ
− ⋅ + ×      ∂ ∂ 

n n U n U n θ u n ω r n

ξ n θ r n
 ,   (5) 

while the underlined terms refer to the time independent velocity potential and all the 
rest refer to the time dependent velocity potential. Hence, we obtain the following 
conditions 

  S∇Φ = ⋅n U n  ,                     (6) 

  [ ]( ) ( ) ( )
2

S
U S

i jx x

 ∂ Φ
∇Φ = − ∇Φ × + ⋅ + × − ⋅ + ×      ∂ ∂ 

n U n θ u n ω r n ξ n θ r n .    (7) 

Analyzing the components of eqn. (7) which represents the vertical unsteady velocity 

potential, we get 

• ( )⋅ + ×u n ω r n  ,    the vertical component of the unsteady potential. 

• ( )− ×U n θ  , the effect of the steady velocity potential . 

• ( ) ( )
2

S
S

i jx x

 ∂ Φ
∇Φ × − ⋅ + ×      ∂ ∂ 

n θ ξ n θ r n  , the effect of the steady flow field in 

the unsteady disturbance field . 

 For long and slender hull geometry, the latter component representing the effect of 

the steady flow field on the unsteady disturbance field can be neglected because the 

velocity potential term ( )S∇Φ ×n θ  is small. The final form of Eq. (7) is  

  ( ) ( )u∇Φ ⋅ = ⋅ + × − ×n u n ω r n U n θ  .       (8) 

 The expressions for the boundary conditions as described in Eqs. (1-3) , in terms of 

the steady and the unsteady potential, are  

  2 0S∇ Φ =  ,                    (9a) 

  2 0U∇ Φ =  ,                    (9b) 

  
2

2
2

31

0S SU g
xx

∂ Φ ∂Φ
+ =

∂∂
 ,  fD∂  (at 3 0x = )                        (10a) 
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2

1 3

0U
UU g

t x x

  ∂Φ∂ ∂
− Φ + = ∂ ∂ ∂ 

 ,  fD∂  ( at 3 0x = )           (10b) 

  S∇Φ ⋅ = ⋅n U n  ,     BD∈∂x                (11a) 

  ( ) ( )U∇Φ ⋅ = ⋅ + × + ×n u n ω r n θ n U  ,     BDx∈∂             (11b) 

A boundary condition at infinity should be also taken into account, describing the 

vanishing potential Φ far away from the hull, 2 2
1 2x x+ →∞  ,  

    0,Φ ∇Φ→  ,     2 2
1 2x x+ →∞               (12) 

Furthermore, the time-dependent potential is linearly decomposed to three terms,  

    u I D RΦ Φ Φ Φ= + +  ,                (13) 

where IΦ is the incident wave potential, DΦ  is the diffraction wave potential and 
6

1
R i i

i

jωξΦ Φ
=

=∑  , is the radiation potential caused from the i -motion of the ship, see 

, e.g., Athanasoulis, Belibassakis (2012). Using the relations 01 1x x Ut= +  , 02 2x x=  , 

03 3x x=  and by the assumption of deep water the incident potential relation IΦ  , is 

( ) ( ) ( ) ( )0 3 0 1 2
0

exp exp cos sin expI
jgA

k x j k x x j tx β β ω
ω

 Φ = − +   ,                   (14) 

The individual potentials IΦ  and DΦ  are part of the unsteady problem and represent 

the effect of the waves on a hull with zero velocity. Hence, the boundary conditions 
are satisfied as follows, see, e. g., Salvesen et al (1970) and also Athanasoulis, 
Belibassakis (2012). 

   0DΦ∆ =  ,                   (15) 

   
2

1 3

0D
Dj U g

x x
ω

Φ
Φ

  ∂∂  − + =   ∂ ∂ 
 ,   fD∂  ( at 3 0x = ) ,             (16) 

   ( ) 0D In
Φ Φ

∂
+ = ⇒

∂
 D I

n n

Φ Φ∂ ∂
=−

∂ ∂
 ,   BDx∈∂ ,              (17) 

while the boundary conditions for the radiation problem are 

   0jΦ∇ =  ,                   (18) 

   
2

1 3

0ji U g
x x

ω Φ
  ∂ ∂  − + =   ∂ ∂   

 .  fD∂  ( at 3 0x = )            (19) 
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Also the conditions for the wet surface of the hull ( BD∈∂x ) 

   , 1,2,3,4i
ij n i

n
ω

Φ∂
= =

∂
 , , 1,2,3,4i

ij n i
n

ω
∂Φ

= =
∂

,           (20a) 

   5
5 3j n U n

n
ω

∂Φ
= +

∂
 ,               (20b) 

   6
6 2j n U n

n
ω

∂Φ
= −

∂
 ,               (20c) 

Let 0
iΦ  represent the radiation potential, which is considered independent from 

velocityU , and let U
iΦ  represent the counterpart term depending on velocity U . 

Also, im  is the component of the velocity derivative, concerning the time-

independent problem , due to the motion of the ship with steady velocity, U . It 
follows: 

3

1

i
i k

ik

w
Um n

x=

∂
= −

∂∑  ,        1 2 3i , ,=     and    
( )3

1

i
i k

ik

Um n
x=

∂ ×
= −

∂∑
r w

 ,        4 5 6i , ,=   

where 

   ( )1 2 3
1 1 1

S S Sw w ,w ,w U , ,
x x x

 ∂Φ ∂Φ ∂Φ
= = − + ∂ ∂ ∂ 

 . 

Calculating the previous formulas, we are provided with the following results , see , 
e.g. , Athanasoulis, Belibassakis (2012) , Ohkusu (1996)  

   0im =  , 1,...,4i =  ,               (21a) 

and 

    5 3m n=  ,                (21b) 

    6 2m n=−  ,                (21c) 

see, e.g., Athanasoulis, Belibassakis (2012, p.242), Salvesen et al, (1970, Appendix 
1), we obtain  

    
0
i

ij n
n

ω
Φ∂

=
∂

 ,   1,...,6i =                 (22) 

    
U
i

ij m
n

ω
Φ∂

=
∂

 ,  1,...,6i =                 (23) 

Hence, we get 
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    0U
iΦ =  ,   1,...,4i =                  (24) 

and 

    0
5 3
UΦ Φ=  ,                  (25) 

    0
6 2
UΦ Φ=−  ,                  (26) 

    0 0U
i i

U

jω
Φ Φ+ =  ,   1,...,6i =                (27) 

In addition to the previous boundary conditions an appropriate condition at infinity , 
eqn. (12), should be considered. 

 

3.1.2 Forces and moments 

Since the viscous effects have been neglected, only pressure acting on the wet surface 
of the hull generating forces and moments given by the equations 

    ( , )

B

B

D

F p t dSx n
∂

= ∫∫  ,       (1) 

    ( , )

B

B

D

M p t dSx r n
∂

= ×∫∫  ,       (2) 

By Bernoulli’s equation, the dynamic pressure is given by 

    ( )2
1

1

2T T
p

j U
x

ω
ρ

Φ Φ
  ∂  =− − + ∇    ∂   

 ,     (3) 

In the linearized theory only the last term in the right-hand side is omitted as higher 
order quantity,  

   
1

( , ) Tp t j U
x

ρ ω Φx
 ∂  =− −   ∂ 

 ,      (4) 

and thus generalized dynamic forces are 

    
1

( )

B

B

D

F j U dS
x

ρ ω Φ x n
∂

 ∂  =− −   ∂ ∫∫  ,     (5) 

where { }, 1,..,6nn ℓ ℓ= =  is the generalized normal vector is defined by 

1 1 2 2 3 3n n n nj j j= + +  and by the cross product 4 5 6( , , )n n nr n× =  . The latter is 

analyzed as follows: 
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1 2 3

1 2 3 2 3 3 2 1 1 3 3 1 2 1 2 2 1 3

1 2 3

( ) ( ) ( )x x x x n x n x n x n x n x n

n n n

j j j

r n j j j× = = − − − + −  .   (6) 

Hence, 

  4 2 3 3 2 5 1 3 3 1 6 1 2 2 1, ( ) ,n x n x n n x n x n n x n x n= − =− − = −  .   (7) 

 

3.1.3 Hydrodynamic Coefficients 

Using Eq.(1.2.5) in conjunction with the radiation potentials 1,2,..6iΦ =  we obtain the 

hydrodynamic coefficients  

2 2 0

1 1
B B

U
i B i i B

D D

U
n j U dS n j U dS

x x j
ρω ω ρω ω

ω
Φ Φ Φℓ ℓ

∂ ∂

    ∂ ∂     − = − +          ∂ ∂     ∫∫ ∫∫  ,  

          , 1,...,6iℓ =       (1) 

where the integration refers to the mean position of the hull surface B BD S∂ = . 

By Stokes theorem see, e.g., Salvesen (1970, Appendix 1), and by the assumption of a 
slender hull, the following equation is derived 

    
0

0

1
B B

i
i

D D

n U dS U m dS
x

Φ
Φℓ ℓ

∂ ∂

∂
=

∂∫∫ ∫∫  ,      (2) 

Firstly, considering the speed-independent scenario, the eqn. (1.2.5) expressing the 
hydrodynamic forces in terms of the hydrodynamic coefficients, changes to 

    ( )0 0

B

ii i B

D

F j j n dSρ ω ωΠ Φ
ℓℓ ℓ

∂

= =− ⇒∫∫  , 

    0 0
2

B

i
i

i B

D

F
n dSρ

ω
Π Φ
ℓ

ℓ
ℓ

∂

= = ∫∫  ,      (3) 

where, 0
i

Π
ℓ

 , is the hydrodynamic coefficient of the ,1,...,6i =  , radiation potential in 

the 1,...,6=ℓ  - motion, referring to the steady body, i.e. 0U =  . 

Applying eqns. (1), (1.1.23) ,(3) to (1.2.5), we get 

    0 0
2

B

i
i

i B

D

F U
m dS

j
ρ

ωω
Π Φ
ℓ

ℓ
ℓ

∂

= − ∫∫  , , 1,...,4iℓ =  ,             (4a) 

and through (1.1.21b), (1.1.21c) ,respectively, we obtain 

    
3

0 0
2 i i
iF U

j
ρ

ωω
Π Π
ℓ

ℓ = −  ,      5ℓ=  ,     1,...,4i =             (4b) 
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and 

    
2

0 0
2 i i
iF U

j
ρ

ωω
Π Π
ℓ

ℓ = +  ,     6ℓ=  ,     1,...,4i =             (4c) 

Following the same method 

    0 0
2

B

i
i

i B

D

F U
n dS

j
ρ

ωω
Π Φ
ℓ

ℓ
ℓ

∂

= − ∫∫  ,      5,6i =  ,       1,...,4ℓ=   

                      (5a) 

and the corresponding terms 

    
3

0 0
2 i
iF U

j
ρ

ωω
Π Π
ℓ ℓ

ℓ = −  ,      5i =  ,    1,...,4ℓ=            (5b) 

and 

    
2

0 0
2 i
iF U

j
ρ

ωω
Π Π
ℓ ℓ

ℓ = +  ,      6i =  ,    1,...,4ℓ=  .             (5c) 

Finally, 

    
2

0 0
2 2

B

i
i

i B

D

F U
m dSρ

ω ω
Π Φ
ℓ

ℓ
ℓ

∂

= + ∫∫  ,     5,6i= =ℓ ,             (6a) 

and the corresponding terms which are derived from eqn.(13a)  

    
33

2
0 0

2 2i
iF U

ρ
ω ω

Π Π
ℓ

ℓ = +  ,       5iℓ= =  ,              (6b) 

and 

    
22

2
0 0

2 2i
iF U

ρ
ω ω

Π Π
ℓ

ℓ = +  ,      6iℓ= =  .              (6c) 

3.2 Strip theory approximations  

The strip theory approximation is derived by using specific assumptions concerning 
the geometrical characteristics of the hull, i.e. the beam and the draft of the ship are 
much smaller than the length, which results in a long and slender hull shape. It 
follows that, close to the hull, the derivative in the 1x  -direction is much smaller than 

the other directions
1 2 3

,
y

x x x
≪

∂ ∂ ∂
∂ ∂ ∂

. Thus, differentials with respect to1x  are omitted. 

In addition, for the components of the normal vector on the wetted hull it holds 

    1 2 3,n n n≪  .         (1)  
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Furthermore, introducing the two dimensional geometry of each vertical section, see 
e.g. Fig.1, the components of the generalized three dimensional normal vector 

( )1 2 3, ,n x x xℓ  , 2,..,6ℓ=  are approximated by the corresponding two dimensional 

ones 2 3 1( , ; )N x x xℓ  on each section over the length of the hull, parametrically 

dependent on the section shape (through the longitudinal position x1), as follows  

    ( )1 2 3 2 3 1, , ( , ; )n x x x N x x xℓ ℓ≈  ,   2,3,4ℓ=      (2) 

    ( )5 1 2 3 1 3 2 3 1, , ( , ; )n x x x x N x x x≈−  ,      (3) 

    ( )6 1 2 3 1 2 2 3 1, , ( , ; )n x x x x N x x x≈  ,      (4) 

where 

    4 2 3 1 3 2 2 3 1 2 3 2 3 1( , ; ) ( , ; ) ( , ; )N x x x x N x x x x N x x x= −  .    (5) 

 

 

 

 

 

 

Fig. 1. Strip theory 2D model 

 

Also, the tree-dimensional radiation potentials  ( )0
1 2 3, ,x x x

i
Φ  , for 2,3,4i =  are 

approximated by the two-dimensional ones 2 3 1( , ; )i x x xφ  , as follows 

 

ship section 

radiated waves 

2

0jk
x

φ
φℓ
ℓ

∂
+ =

∂
 

 

3x   
1x   

2x 
0
  

nℓ   
 

 
 

( )2 3,N N

radiated waves 

2

0jk
x

φ
φℓ
ℓ

∂
− =

∂
 

 

( )2 3,N N
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   ( )0
1 2 3 2 3 1, , ( , ; )ix x x x x x

i
φΦ =  , 2,3,4i =               (6a) 

and for  5,6i =  by 

    ( )
5

0
1 2 3 1 3 2 3 1, , ( , ; )x x x x x x xφΦ =−  ,               (6b) 

    ( )
6

0
1 2 3 1 2 2 3 1, , ( , ; )x x x x x x xφΦ =  .               (6c) 

 

The two dimensional potentials 2 3 1( , ; )i x x xφ  , 5,6i = are obtained as solutions of the 

Laplace equation on the vertical plane 2 3x x  for each ship – section at each 1x   

position. The latter satisfies the following boundary condition 

   
2 2

2 2
2 3

0i i

x x

φ φ∂ ∂
+ =

∂ ∂
 ,   2,3,4i =   ,      (7) 

the free surface boundary condition  

    2

3

0i
i g

x

φ
ω φ

∂
− + =

∂
 ,   2,3,4i =  , on 3 0x =  ,    (8) 

boundary condition on the wet surface of each section 

    i
iN

N

φ∂
=

∂
  ,   2,3,4i =  , on 1( )BD x∂  ,     (9) 

and finally  the condition at infinity expressing the fact that  the waves are outgoing at 
infinity , see, Fig.1 . 

    
2

2

0i
i

j

x g

φ ω
φ

∂
± =

∂
 ,                 (10) 

Clearly the 2D potentials 3 0x =  represent wave fields produced by the horizontal 

( )2i = , vertical ( )3i =  and rotational oscillation of the 2 3x x  transverse ship 

oscillation of each section. 

For the solution of the above problems in the present work a Boundary Element 
Method is developed and systematically applied, for all 2,3,4i =  and all ship 
sections, which are described in more details in Appendix B, where also numerical 
results are systematically presented and compare with measured data for validation. 

Based on the strip theory approximations and on eqns. (1.3.3)-(1.3.6), the 
hydrodynamic coefficients are obtained by the following integral 

  ( )
1

0 0
1 1 1

( )
i i

L C x L
iN ds dx x dxρ φ ϖΠ

ℓ ℓ ℓ= =∫ ∫ ∫   , , 2,3,4iℓ =    ,           (11a) 
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where 

    

1

0
1

( )

( ) i

C x

i x N dsϖ φℓ ℓ= ∫  ,   , 2,3,4iℓ = .            (11b) 

The above matrix 1( )xϖ ℓi  is the two dimensional hydrodynamic coefficients, for each 

section at the point 1x  see, e.g. G. Athanasoulis, K. Belibassakis (lectures, 2012). 

The rest of the hydrodynamic coefficients can be formulated through eqn. (11b) as 
follows 

    
52

0
52 1

L

dxϖΠ = ∫  ,               (12a) 

and by Eq. (6b) 

    
52

0
1 22 1

L

x dxϖΠ =− ∫  .              (12b) 

Equivalently, 

    
55

0 2
1 33 1

L

x dxϖΠ = ∫  .                 (13) 

In addition, 

    1
1 1

( )
( ) ( ) i

i i
b x

x a x
j

ϖ
ω
ℓ

ℓ ℓ= +  ,  , 2,3,4iℓ = ,              (14) 

where ia ℓ  , ib ℓ  depicture the added mass and the damping coefficients, respectively. 

Based on Green’s second the added mass and damping matrices are symmetric,   

    i ia aℓ ℓ=  and i ib bℓ ℓ=  .               (15) 

Moreover, the component 3N  is symmetric while 2N  and 4N  are anti-symmetric, 

and therefore, the potential 3φ  is symmetric and2φ  , 4φ  are anti-symmetric. It follows: 

    32 34 0a a= =  , 32 34 0b b= =  ,               (16) 

 

Hydrodynamic Forces 

According to strip theory, the three dimensional generalized forces on the surface of 
the hull due to incident wave potential (Froude-Krylov forces) and the diffraction 
forces are also calculated by corresponding integration along the length of the hull. 
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3.2.1 Froude-Krylov force 

    0
1

( )

B

I I B

D

F j U n dS
x

ρ ω Φ xℓ ℓ

∂

 ∂  = − −   ∂ ∫∫  ,     (1) 

where 

    0 1 20 3

0 0

( cos sin )cosh[ ( )]
( )

cosh ( )I
j x xx hjgA

e
h

κ β βκ
ω κ

Φ x − ++
=  ,         (2a) 

denotes the incident potential for finite water depth (h), while the incident potential 
equation for deep water is 

    0 3 0 1 2

0

( ) ( cos sin )( )I
x j x xjgA

e eκ κ β β

ω
Φ x − +=  ,             (2b) 

where A  stands for the amplitude of the incident wave, see, G. Athanasoulis, K. 
Belibassakis (2012), Salvesen (1970, Appendix 1). Εqn. (1), can be written  

    

( )1

0 1

x

I I

L C

F j n ds dxρω Φℓ ℓ

 
 
 =−  
 
 

∫ ∫  .               (3a) 

 

Using (2.2)-(2.5), we obtain  

   

( )1

0 1

x

I I

L C

F j N ds dxω ρ Φℓ ℓ

 
 
 =−  
 
 

∫ ∫  ,  2,3,4ℓ=  ,              (3b) 

and  

( )1

5 0 1 3 1

x

I I

L C

F j x N ds dxω ρ Φ

 
 
 =  
 
 

∫ ∫  ,     and   

( )1

6 0 1 2 1

x

I I

L C

F j x N ds dxω ρ Φ

 
 
 =−  
 
 

∫ ∫  ,     

        (3c,d) for 5ℓ=  and 6ℓ= , respectively. 

 

3.2.2 Diffraction force 

The general expression depicturing the force produced by the deflection potential is 

    
1

B

D D B

D

F j U n dS
x

ρ ω Φℓ ℓ

∂

 ∂  = − −   ∂ ∫∫  .     (1) 
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 The analytical schema for the diffraction potential DΦ  remains undefined. Having 

presented the equation (1.3.2) for the radiation problem we use the Stoke’s theorem, 
and then we apply the conditions (1.1.18), (1.1.19) in conjunction with the free 
surface boundary condition (1.1.20). Then the formula (1) becomes 

    
0

B

U
i i

Di I B

D

U
F j dS

n j n
ρ ω

ω
Φ Φ

Φ
∂

 ∂ ∂  = −   ∂ ∂ 
∫∫  .     (2) 

The application of Gauss’s second theorem on the pairs of functions, ( )0 ,i IΦ Φ  and 

( ),U
i IΦ Φ  , which both satisfy the Laplace field equation and the free surface 

boundary condition, see, e.g. G. Athanasoulis, K. Belibassakis, (2012), provides us 
with 

    
0

0

B B

i I
I B i B

D D

dS dS
n n

Φ Φ
Φ Φ

∂ ∂

∂ ∂
=

∂ ∂∫∫ ∫∫  ,     (3) 

    

B B

U
Ui I

I B i B

D D

dS dS
n n

Φ Φ
Φ Φ

∂ ∂

∂ ∂
=

∂ ∂∫∫ ∫∫  .     (4) 

Hence, Eqn. (3) is now 

    0
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U I
Di i i B

D

U
F j dS

j n
ρ ω

ω
Φ

Φ Φ
∂

 ∂= −    ∂ ∫∫  .              (5a) 

Additionally , using 0U
iΦ =  , 2,3,4i =  in (5a), we get 

    0

B

I
Di i B

D

F j dS
n

ρ ω
Φ

Φ
∂

∂
=

∂∫∫  ,     2,3,4i =  ,              (5b) 

and from 0
5 3
UΦ Φ=  , 0

6 2
UΦ Φ=−  it becomes 

 0 0
5 5 3

B B

I I
D B B

D D

U
F j dS dS

n j n
ρ ω

ω
Φ Φ

Φ Φ
∂ ∂

 
∂ ∂ = − 
∂ ∂ 

 
∫∫ ∫∫  ,              (6a) 

  0
6 6 2

B B

UI I
D B B

D D

U
F j dS dS

n j n
ρ ω

ω
Φ Φ

Φ Φ
∂ ∂

 
∂ ∂ = + 
∂ ∂ 

 
∫∫ ∫∫  ,              (6b) 

The derivative of IΦ  with respect to the components of the normal vector n  

(consider slender body assumptions for the 1x  direction), i.e. 

   0 3 0 1 2( cos sin )
0 3 2( sin ) x j x xI jA n jn e e

n
κ κ β βω β

Φ − +∂
= −

∂
     (7) 
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shows that the expressions (5b) and (6a,b), take the equivalent forms 

  0 1 0 3 0 2

1

cos sin 0
0 3 2 1

( )

( sin )j x x j x
Di i

L C x

F j A e jN N e e ds dxκ β κ κ βρ ω ω β Φ− −
 
 = + 
 
 

∫ ∫  ,  

             2,3,4i =      (8a) 

where 0
i iϕΦ = , 1,2,3i = , see eq. (6a) , and so, DiF , becomes  

  0 1 0 3 0 2

1

cos sin
0 3 2 1

( )

( sin )j x x j x
Di i

L C x

F j A e jN N e e ds dxκ β κ κ βρ ω ω β ϕ− −
 
 = + 
 
 

∫ ∫  .  

             2,3,4i =      (8b) 

Let, ih , be the expression 

  0 3 0 2

1

sin
1 3 2

( )

( ) ( sin ) x j x
i i

C x

h x jN N e e dsκ κ ββ φ−= +∫  ,   2,3,4i =   (9) 

referring to the two-dimensional problem of the section at 1x  , of the hull, where  the 

radiation potential is given through eqn. (2.6a). 

Furthermore, by (2.6b) and (2.6c)  

   5 1 3 1 1( )D

L

U
F j A x h x dx

j
ωρ

ω

 =− +    ∫  ,        5i = ,       (10a) 

where 0 3 0 2

1

sin
3 1 3 2 3

( )

( ) ( sin ) x j x

C x

h x jN N e e dsκ κ ββ φ−= +∫   

and 

   6 1 2 1 1( )D

L

U
F j A x h x dx

j
ωρ

ω

 = +    ∫  ,       6i =  ,      (10b) 

respectively, where 0 3 0 2

1

sin
2 1 3 2 2

( )

( ) ( sin ) x j x

C x

h x jN N e e dsκ κ ββ φ−= +∫  .  
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3.3 Numerical results 

An experiment conducted in the BGO-First Basin, Toulon, France with regards to a 
flexible barge of specific characteristics is presented by Senjanovic, Malenica, 
Tomasevic (2007). The barge, as described in their work, consists of 12 pontoons 
attached to each other through a steel rod which is placed above the deck level in such 
a way that the gravity center is lower than the deformation center, see, Fig.10. 
Though, the shape of the front pontoon is different from the others. In the context of 
this experiment the determination of the hydrodynamic ship properties employs a 3D 
hydrodynamic model which exploits linear (3D) flow potential analysis. However, 
concerning the used hydrostatic model (Malenica et al. 2007), it actually calculates 
the modal forces as the work of static and dynamic forces on the rigid body and so 
modal restoring forces include large displacements contrasting to the developed 
method of this thesis. From our viewpoint, we treat the hydrodynamic responses of 
the barge by means of Strip theory and a low order panel (BEM) within a 2D potential 
flow analysis. The illustration of the barge geometry is derived through the program 
barge.m, see, Fig. 1. In this section we will compare the hydrodynamic ship 
properties, obtained by the developed model of this thesis (cresolg.m), with the ones 
derived from the Toulon experiment, see also, Tomasevic (2007) and Senjanovic, 
Grubisic (1991).  

 

 
Fig. 1. Barge’s cross section 
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The main characteristics of the barge are: 

• Young’s modulus of rod : 11 22.1 10 N mE  =     

• Moment of inertia of rod cross section : 
4

10 48.33 10 m
12y zI I
α −  = = =     

• Bending stiffness of rod : 2175 N mEI  =     

• Pontoon length : [ ]0.19 ml =   

• Barge length (pontoons + clearances) : [ ]2.445 mL =   

• Total mass (pontoons and equipment) : [ ]171.77 kgM =   

• Distributed mass : [ ]70.253 kg mm M L= =   

• [ ]0.225 mxi =   

• [ ]2 3.556 kg mxJ mi= =  . 

For a more detailed description of the barges main characteristic see, Remy et al 
(2006) and also Malenica et al (2003). 

Fig. 2. 3D modeling of the barge (OE 2008) 
 
 
 
 
 
 
 
 

Barge (OE 2007) 

Barge (OE 2007) 
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Calculation of the hydrostatic and hydrodynamic coefficients of the prismatic 
barge 

By means of BEM analysis we calculate the radiation potential given a cross section 
area with geometrical characteristics/ 6B T = , see Appendix B. Then, we determine 
the 2D hydrodynamic coefficients , ,,i ia bℓ ℓ  and demonstrating the results Fig. 1.  

 
Fig. 1. Numerical hydrodynamic coefficients for / 6B T = . 
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Fig. 2. Numerical hydrodynamic forces 

2F   , 3F  , 410F  for / 6B T =   

 
 
 

Finally, the strip theory analysis is used to calculate the forces acting on the hull of 
the barge. We illustrate the results in Fig.2 

 
The produced results present quite good agreement based on the results obtained from 
the research of Senjanovic et al. (2009, Fig. 9). In particular, the Response Amplitude 
Operator (RAO) of the barge in heaving motion for wave period domain 5T s≤ , is 
presented in Fig. 3. The results shown in this figure concern nondimensional heave 

amplitude 3ξ  with respect to the wave height 
2

H
A =  . We investigate the calculated 

RAOs under different incidence wave angles for the case of the barge with zero 
Froude number.  
 
We observe that for high period values the response of the barge,3ξ , is approximately 

equal to the wave height A , i.e. 1RAO = , while moving to higher wave angles the 
peak of the RAO is transferred to lower period values. The response of the barge is 

highly increased as we move to higher angles of attack, e.g., 90� . On the other hand, 

we regard the wave angle of 60�  to be the most proper case to represent the coupling 
between the rigid and the flexural modes concerning vertical vibrations, in order to 
compare the developed method with experimental measurements obtained from 
Senjanovic et al (2009, Fig. 12) , via digitization.  
 

F3 

F2 

10F4 
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Fig. 3. Response Amplitude Operator (RAO) for heading angles (0, 30, 60, 90) 
 

 

 
Fig. 4. Numerical method vs. experimental measurements, for angle 60�   
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The experimental measurements included in Fig. 4 are obtained through digitization 
from experimental results presented in Senjanovic et al. (2009, Fig. 12). It is obvious 
that the most significant discrepancies spotted between the experimental points and 

the numerical method, occur in the area of the peak of the response, 3 0.19A
ξ ≈ . Also 

because of the resonance of the vertical oscillations in the area where unit 
convergence of the RAO is occurred, we observe a small dispersion of the measured 
points that slightly differs from the convergence of the numerical results. 
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Chapter 4 
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4.1 Hydroelasticity of ships 

In the previous chapters we have presented results concerning the determination of the 
dry vibrations of a beam, analyzed in the context of Euler Bernoulli (Chap.1) and 
Timoshenko (Chap.2) theory. The numerical solution has been obtained by 
discretizing and solving the corresponding equations by means of FDM. 
Subsequently, in Chap.3 the standard strip theory by Salvensen et al (1970) is 
described and applied to the calculation the hydrodynamic responses of a ship of 
slender hull form. In this part, for a specific hull geometry and mass distribution of a 
ship or floating structure (e.g. an elongated barge), an approximate hydroelastic model 
is presented, facilitating the treatment of vertical deformations of the hull girder. This 
is succeeded by expanding the deflection into dry modes, and then calculating the 
elastic responses by coupling with ship hydrodynamics in the framework of strip 
theory. For simplicity in this work only head (and/or following) harmonic waves will 
be considered resulting into motions and deflections considered only on the vertical 
plane. However, it should be remarked that the problem of head incident waves 
constitutes one of the most severe case (from the point of view of wave loads and 
responses) and thus, also a characteristic case to examine concerning the studied 
structure. 

First, by treating the ship or the floating structure as a girder of specific mass and 
flexural rigidity distributions, the natural frequencies and normal modes are calculated 
by using the specific beam model. In the examples presented in this chapter the Euler 
– Bernoulli model is used. From the solution of problem concerning the rigid motions 
of the ship under the action of sea waves, using the strip theory model, the 
corresponding longitudinal distributions of added mass and damping coefficients, as 
well as the sectional Froude - Krylov and diffractions forces are calculated. Then, by 
incorporating into the model the additional distributed elastic forces, the hydroelastic 
responses will be estimated. 

To begin with, we recall Eqs. (3.1.4) describing the rigid motions of the ship or  
elongated floating body on the vertical plane: 

( ) ( ) ( )( )2 2
33 33 33 3 35 1 35 35 5 3( )M A i B C A J j B MU C Fω ω ξ ω ω ξ− + + + + − − + − + = , (1a) 

where 

    3 03 3dF X X= +  ,                 (1b) 

are the Froude-Krylov and diffraction vertical forces due to head incident waves on 
the ship’s hull. These forces are defined by the following x1-integrals 

    
1 1

03 1 1 3 1 1( ) , ( )d
x x

X f x dx X h x dx= =∫ ∫ .    (2) 
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Fig. 1. Ship’s mass distribution 

 

 

 

Fig. 2.  Discretized sections and waterline 

In Eq.(1a) M is the total mass, 
1

1 1( )
x

M m x dx= ∫  , where 1( )m x  denotes an equivalent 

mass distribution along the length of the ship, derived from the analysis of ship 

weights; see Fig.1.  Also, we recall here that33 wlC gAρ=  , where 
1

1 1( )wl
x

A B x dx= ∫  is 

waterline area,
1

35 53 1 1 1( )wl
x

C C gA LCF g x B x dxρ ρ= = − = − ∫ , where LCF is the 

longitudinal center of flotation; see Fig.2. Moreover,  GM=J R , where GR  is the 

center of gravity, and in the case of  even keel ships , with LCG denoting the long 
center and VGC the vertical center of gravity. By using the above definitions in 
Eq.(1), the latter takes the following form 

 

 

 

 

 

1x  

1 1( )m x   
1( )m x  

1x  

1( )B x   
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1 1 1 1

2
1 1 33 1 1 33 1 1 1 1 3( ) ( ; ) ( ; ) ( )

x x x x

m x dx a x dx j b x dx g B x dxω ω ω ω ρ ξ
    − + + + + 

    
∫ ∫ ∫ ∫        

    

1 1 1 1

2
1 35 1 1 1 1 1 35 1 1 1 1 5( ; ) ( ) ( ; ) ( )

x x x x

x a x dx LCG m x dx j x b x dx U m x dxω ω ω ω ξ
    
    + − − − + − − +

    
    
∫ ∫ ∫ ∫   

1 1 1

1 1 1 5 1 1 1 1 03 3( ) ( ) ( ) d
x x x

g x B x dx f x dx h x dx X Xρ ξ
 
 − = + = +
 
 
∫ ∫ ∫  ,     (3) 

where the hydrodynamic coefficients have been also expressed following the strip-
theory approximation as longitudinal integrals of the hydrodynamic coefficients of the 
transverse sections of the hull in vertical oscillations 

  ( )
1

33 33 1 1( ; )
x

A a x dxω ω= ∫  , ( )
1

33 33 1 1( ; )
x

B b x dxω ω= ∫  ,              (4a) 

  ( )
1

35 1 33 1 1( ; )
x

A x a x dxω ω= − ∫  ,  ( )
1

35 1 33 1 1( ; )
x

B x b x dxω ω= − ∫  .            (4b) 

 

4.2 Hydroelastic responses 

Let now 3 1( ; )x ωΞ  denote the additional vertical oscillation at the same frequency 

(encounter frequency) due to the elastic responses of the ship or elongated floating 

structure in head or following waves( )180 or 0o oβ = . The above hydroelastic 

deflection are calculated by the vertical deflection of the ship hull girder treated as an 
elastic Euler-Bernoulli beam, with longitudinal mass distribution 1( )m x  and 

equivalent rigidity (stiffness parameter) 1( )D x . 

In practical applications the stiffness parameter of the structure (modeled as a floating 
beam) is calculated using the equation: 1 1( ) ( )D x E I x= ,  where E  is the Young’s 

modulus of the material of the structure, e.g. 9210 10E GPa= ⋅  in the case of steel 

structure. Also, 1( )I x  represents the hull girder moment of inertia of the section at 

1 ,x const= over the whole length of the structure. Obviously in the case of more 

complex or composite structures the calculation of an equivalent flexural deflection 
coefficient 1( )D x  has to be based on an appropriate analysis of the structure into its 

elements. Usually, such an analysis is performed only for the mid-ship section 
considering that the highest bending stresses occur in the middle of the ship hull. For 
the purposes of the present study such an analysis is needed for a number of ship 
sections except of the mid-section.   

In order to calculate the moment of inertia of all the supporting members of a section, 
data are taken from the structural design of the ship, and the moment is calculated 
with respect to the neutral axis (of the section). The latter, is determined through the 
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weighted sum of all supporting members (plates, stiffeners, etc.) expressed by the 

relation:( )
1

1 1

. .
M M

s s s
n n

N A I a a

−

= =

  
= ×  
  
∑ ∑  , where sa  and sI  denote the surface and the 

moment of inertia of each stiffener, respectively. Following the same procedure we 
calculate the moment of inertia of a number of representative sections from the stem 
to the bow of the ship or marine structure.  

To proceed, we consider that the total vertical response of the ship beam in waves is 
obtained as a superposition of the rigid motion on the vertical plane and the elastic 
deflection , as follows 

   ( )3 1 3 1( ; ) ( ; )x xω ξ ω ωΞ = +Ξ  ,      (1) 

where 3ξ  stands for the heaving motion  and 1( )xΞ  denotes the flexural deformation 

of the ship treated as a beam. Then, by considering the additional elastic forces of 

each beam section expressed by the term  ( )1 , ,
( ) xx xx

D x Ξ  in the Euler-Bernoulli beam 

model, and using Eq. (1.1) the latter equation takes the following form: 

( )
1 1 1 1

2
1 1 33 1 1 33 1 1 1 1 3 1( ) ( ; ) ( ; ) ( ) ( )

x x x x

m x dx a x dx j b x dx g B x dx xω ω ω ω ρ ξ
    − + + + + Ξ + 

    
∫ ∫ ∫ ∫

    
1 1 1 1

2
1 33 1 1 1 1 1 33 1 1 1 1 5( ; ) ( ) ( ; ) ( )

x x x x

x a x dx LCG m x dx j x b x dx U m x dxω ω ω ω ξ
    
    + − − − + − − +

    
    
∫ ∫ ∫ ∫     

    ( )
1 1 1 1

1 1 1 5 1 1 1 1 1 , 1,
( ) ( ) ( ) ( ) xx xx

x x x x

g x B x dx f x dx h x dx D x dxρ ξ
 
 − = + − Ξ
 
 
∫ ∫ ∫ ∫  .   (2) 

By subtracting by parts Eq.(3) of the last section (expressing the rigid heave 
responses) from the above equation, we obtain the following equation modeling the 
hydroelastic vertical deformation 1( ; )x ωΞ  of the hull girder in waves: 

( )
1 1 1

2
1 1 , 1 1 1 33 1 1 1,

( ) ( ) ( ) ( ; ) ( )xx xx
x x x

D x x dx m x dx a x dx xω ω
 
 Ξ − + Ξ +
 
 

∫ ∫ ∫  

   

1 1 1

33 1 1 1 1 1 1 1( ; ) ( ) ( ) ( )
x x x

j b x dx U m x dx g B x dx xω ω ρ
 
 + − + Ξ +
 
 
∫ ∫ ∫   

    ( )
1 1

1 1 1 1 03 3( ) ( ) d
x x

f x dx h x dx X X= + − +∫ ∫  .     (3) 

From the above equation it is seen that the vertical hydroelastic responses of the hull 
girder in head (or following) harmonic waves can be approximately calculated by the 
Euler-Benoulli beam model forced by the distribution of the Froude-Krylov and 
diffraction forces of the wetted surface of the hull. In order to illustrate this point, let 
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1
cx  denote point of application of the Froude-Krylov and diffraction forces 03 3dX X+ , 

while 1 1( ) ( )f x h x+  represents the distribution of the same forces over the  length of 

the ship hull. Using a Dirac function to represent the application point1
cx , we obtain 

   ( )
1

1 1 03 3 1 03 3( ) d d
x

cx x X X dx X Xδ − + = +∫  ,      (4) 

and thus,  Eq. (3) takes the form 

( ) ( ) ( )( )2
1 1 , 1 33 1 33 1 1 1 1,

( ) ( ) ( ) ( ; ) ( ; ) ( ) ( ) ( )xx xx
D x x m x a x j b x Um x gB x xω ω ω ω ρΞ + − + + − + Ξ =  

      ( )1 1 1 1 03 3( ) ( ) ( ) d
cf x h x x x X Xδ= + − − +  .         (5) 

We recall the completeness property of the beam eigenmodes 1( )n xΞ  , 1,2,3...,n =  

which forms an orthonormal basis along the length of the ship or marine structure, 
defined in the case of Euler Bernoulli model considered in this chapter in the interval 

1/ 2(stern) / 2(bow)L x L− < < . These eigenfunctions are found as a solution of the 

following problem 

  ( ) 2
1 1 , 1 1,

( ) ( ) ( ) ( ) 0n xx n nxx
D x x m x xωΞ + Ξ =  ,     1,2,3...,n =              (6a) 

in conjunction with the free-end conditions at the stern and bow of the ship 

  1 1
2 3
1 1

( / 2) ( / 2)
0n nd x L d x L

dx dx

Ξ = ± Ξ = ±
= =  ,         1,2,3...,n =              (6b) 

where , 1,2,3...,n nω =  are the corresponding eigenfrequencies. We now express the 

solution 1( )xΞ  of the above hydroelastic equation (Eq.5) into the modes 1( )n xΞ  as 

follows 

    1 1
1

( ) ( )
M

n n
n

x xξ
=

Ξ = Ξ∑  ,       (7) 

where nξ  are the unknown hydroelastic mode amplitudes. Due to the completeness 

and orthogonality property of the basis 1( )n xΞ  , 1,2,3...,n =   it can be also used to 

express the Dirac function in the following form 

     1 1 1 1
1

( ) ( ) ( )
M

n n
n

c cx x x xδ
=

− = Ξ Ξ∑  .       (8) 

We use the same property to express the distributions of Froude-Krylov and 
diffraction forces on the hull girder 

   
1

1 1 1 1 1
1

( ) ( ), where ( ) ( )
M

n n n n
n x

f x f x f f x x dx
=

= Ξ = Ξ∑ ∫  ,             (9a) 
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and 

   
1

1 1 1 1 1
1

( ) ( ), where ( ) ( )
M

n n n n
n x

h x h x h h x x dx
=

= Ξ = Ξ∑ ∫  .            (9b) 

Using Eq. (7) and the solution concerning the eigenvalue problem of the Euler – 
Bernoulli beam we have 

   ( ) ( ) 2
1 1 , 1 1 , 1 1, ,

1 1

( ) ( ) ( ) ( ) ( ) ( )
M M

xx n n xx n nxx xx
n n

D x x D x x m x xξ ω
= =

Ξ = Ξ = − Ξ∑ ∑  .               (8) 

Replacing the representation of the solution given by Eq. (8) into Eq.(5), and using 
Eq.(8),    the equation concerning the hydroelastic responses takes the following form 

( ) ( ){ }2 2
1 1 1 33 1 33 1 1 1

1

( ) ( ) ( ) ( ; ) ( ; ) ( ) ( )
M

n n n
n

x m x m x a x j b x Um x gB xξ ω ω ω ω ω ρ
=

Ξ − − + + − + =∑  

       ( )( )03 3 1 1
1

( ) ( )
M

n n d n n
n

cf h X X x x
=

= + − + Ξ Ξ∑  .    (9) 

Denoting the term in the brackets in the left-hand side of the above equation as  

( ) ( )2 2
1 1 1 33 1 33 1 1 1( ; ) ( ) ( ) ( ; ) ( ; ) ( ) ( )n nG x m x m x a x j b x Um x gB xω ω ω ω ω ω ρ= − − + + − +  

                      (10) 

Eq. (9) is put in the form 

  ( )( )1 1 03 3 1 1
1 1

( ; ) ( ) ( ) ( )
M M

n n n n n d n n
n n

cG x x f h X X x xξ ω
= =

Ξ = + − + Ξ Ξ∑ ∑  .             (11) 

We now exploit the completeness of the set 1( )m xΞ  , 1,2,...,m =  and project the 

above equation on the latter basis. Consequently, by following a Galerkin procedure, 
we obtain 

( ) ( ){ }1 1 1 03 3 1 1 1
1 1

( ; ) ( ), ( ) ( ) ( ), ( )
M M

n n n m n n d n n m
n n

cG x x x f h X X x x xξ ω
= =

Ξ Ξ = + − + Ξ Ξ Ξ∑ ∑ , (12) 

 where 
1

1 1 1, ( ), ( )
x

f g f x g x dx= ∫   denotes the L2-inner product in the x1-interval, and 

,n m nmδΞ Ξ = , the Kronecker’s delta. Subsequently, by defining the coefficient 

matrix in the left-hand side of Eq.(12) 

    1 1 1( ; ) ( ), ( )mn n n mA G x x xω= Ξ Ξ ,             (13a) 

and the right-hand side vector as follows 

    ( )1 1 03 3 1( ) ( ) ( )m m m d m
cH f x h x X X x= + − + Ξ  ,           (13b) 
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and thus the hydroelastic amplitudes ( )nξ ω  are found as the solution of the following 

linear algebraic system 

    ( ) ( )
1

, 1,2,...
M

mn n m
n

A H m Mω ξ ω
=

= =∑  .              (14) 

The corresponding hydroelastic complex RAO at each frequency ω is obtained as 

   ( )
( ) 1

1 1
1

( )
( ; )

;

M

n n
n

x
x

RAO x

ξ ω
ω

ω =
Ξ

Ξ
Ξ

= =
Α Α

∑
 ,            (15a) 

where A=H/2 is the wave amplitude. In addition the RAO associated with the 
hydroelastic amplitudes  

    ( ) /n nRAO Aω ξ=  ,               (15b) 

are sometimes used for illustrating the responses. 

In the case of a ship or marine structure with constant sections, i.e. 

   ( )1m x const=  , ( )1B x const=  , ( )33 33 1,a b x const=  , 

the coefficient matrix ( )mnA ω  contains only its diagonal elements and the following 

expression is obtained the modal amplitudes ( )nξ ω   

   ( ) ( )
( ) ( )

03 3 1
2 2 2

33 33

( )
, 1,2,.... .n n d n

n
n

cf h X X x
n M

m a j b Um gB
ξ ω

ω ω ω ω ρ

+ − + Ξ
= =
− + − + − +

 , (16) 

at a wave frequencyω  . 

4.3 Hydroelastic analysis of a barge in waves 

At this point, we recall the previously mentioned experiment of the flexible barge, 
conducted in the BGO-First Basin, Toulon, see, Senjanovic et al. (2008). In this case, 
the structural response of the barge concerned both the vertical and the coupled 
horizontal – torsional system of, the global load induced, vibrations. The vertical 
distortions have been found analytically based on the Timoshenko, Young (1955) 
while the system of horizontal – torsional distortions has been calculated analytically 
by direct integration and Ritz method in addition to numerical calculations by means 
of 1D FEM analysis. It is worth mentioning that this barge is a special form of ship 
with zero velocity 0U =  and specific geometrical characteristics see Fig.1 and Ch. 
3.3. The design of the barge permits the development of hydroelastic phenomena 
which are associated with the flexural deformations of the barge as it, approximately, 
follows the elevation of its water environment. For simplicity we set the origins of the 
coordinate system in the middle of the barge as seen in Fig. (1) To model the dry 
vibrations of the barge we treat the latter as an Euler – Bernoulli beam with free edges 
and then by means of FDM analysis we discretize the barge into 150 elements using 
the program EBT2.m.  
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Fig. 3. Barge’s geometrical characteristics 

 

 This specific type of ship, is associated with a set of geometrical and hydrostatic 
properties such as: (i) symmetry with respect to the transverse, 2 3-planex x , see Fig. 1. 

(ii) The barge is even keel and therefore the VCB  lies on the same vertical segment 
with VCG . (iii) Due to the barge’s symmetryLCF and LCG  are located at the origins 
of the coordinate system where 1 0x = . 

Given the above properties we get:  

• 
1

35 53 1 1 1( ) 0
x

C C g x B x dxρ= = − =∫ , due to ship’s symmetry, see (i) 

• 1 0J M LCG= =  , because of property (iii). 

Also given the negligible velocity of the barge, 0U =  we reduce the Eq. (1.1.a) to   

   ( ) ( ) ( )( )2 2
33 33 33 3 35 35 5 3( )M A i B C A j B Fω ω ξ ω ω ξ− + + + + − + =  ,    (1) 

which in turn is analyzed , based on the Eq. (2.5), as follows 

L=2.445 m 

B
=

0.
6 

m
 

2x   

1x   

2x   

3x   

( )0,0   

( )0,0   

B=0.6 m 

H
=

0.
25
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( )
1 1 1

2
1 1 , 1 1 1 33 1 1 1,

( ) ( ) ( ) ( ; ) ( )xx xx
x x x

D x x dx m x dx a x dx xω ω
 
 Ξ − + Ξ +
 
 

∫ ∫ ∫

( )
1 1 1 1

33 1 1 1 1 1 1 1 1 1 03 3( ; ) ( ) ( ) ( ) ( ) d
x x x x

j b x dx g B x dx x f x dx h x dx X Xω ω ρ
 
 + + Ξ = + − +
 
 
∫ ∫ ∫ ∫  .  

             (2) 

4.3.2 Flexural Responses 

The Euler – Bernoulli beam modeled barge problem (eigenfrequencies and 
eigenmodes) is solved by the program ‘’EBT2.m’’ and the results are depicted in 
Table 1. For the analytical determination of the eigenfrequencies eq. (11) in Ch. 1.2 , 
see also, Timoshenko , Young (1995). 

 

Mode 
Analytic Method 

Frequencies 
Numerical Method 

Frequencies 

1 5.7291 5.9249 

2 16.1276 16.3192 

3 31.7252 32.009 

4 53.042 52.9193 

Table 1 Natural frequencies [ ]rad/s   

The results (numerical and analytical) are in a good agreement. The flexural modes of 
the barge dry vibrations are depicted in Fig. 1 and in addition we demonstrate the 
deformation of the wet surface for the first three natural frequencies, see, Fig. 2 (a) , 
(b) . 
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Fig. 4. Natural frequencies (left), normal modes (right) 

  

Fig. 5. (a) Barge surface at the first (left) and second (right) natural modes  

 
Fig. 5. (b) Barge surface at the third natural mode  

 

ω (rad/sec) 

x(m) 

x(m) 

mode=1  ω=5.7291 mode=2  ω=16.1276 

mode=3  ω=31.7252 
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4.3.4 Hydroelasticity of the barge 

The determination of the dry modes in addition to the determination of the 
hydrodynamic coefficients (four rigid body motions included, see, Ch.3.2.3) provide 
us with all the proper parameters that are needed so as to define the barge’s response 
in different heading wave angles. The flexible design of the barge allows its distortion 
according to the elevation of the waves, see, Fig.1. 

 
Fig. 6. Barge flexibility during test experiments , from Malenica et al. (2008) 

 

 

 As described in Ch. 4.2 the hydroelastic response in its discretized form is 

  ( )( )1 1 03 3 1 1
1 1

( ; ) ( ) ( ) ( )
M M

n n n n n d n n
n n

cG x x f h X X x xξ ω
= =

Ξ = + − + Ξ Ξ∑ ∑  ,    (1) 

where  

  ( )2 2
1 1 1 33 1 33 1 1( ; ) ( ) ( ) ( ; ) ( ; ) ( )n nG x m x m x a x j b x gB xω ω ω ω ω ω ρ= − − + + +  .   (2) 

and nω  , 1,2,...,n =  are the eigenfrequencies of the barge modeled as a beam, see, 

Table1 in chapter 4.3.2. 

The final solution of the nξ  amplitudes require the solution of the linear algebraic 

system  

( ) ( ){ }1 1 1 03 3 1 1 1
1 1

( ; ) ( ), ( ) ( ) ( ), ( )
M M

n n n m n n d n n m
n n

cG x x x f h X X x x xξ ω
= =

Ξ Ξ = + − + Ξ Ξ Ξ∑ ∑  .  (3) 
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Because of the barge geometry, see, Fig. 3.1.1, we obtain the 
properties ( )1m x const= , ( )1B x const=  , ( )33 33 1,a b x const=  and so the coefficient 

matrix ( )mnA ω , which stands for the left- hand side of Eq. (3), is a diagonal matrix.  

Therefore, the modal amplitudes of its hydroelastic response are given be their 
reduced form 

   ( ) ( )
( ) ( )

03 3 1
2 2 2

33 33

( )
, 1,2,.... .n n d n

n
n

cf h X X x
n M

m a j b Um gB
ξ ω

ω ω ω ω ρ

+ − + Ξ
= =
− + − + − +

 , (4) 

 
In the following figures we present the modal amplitude, 3ξ  of the heave related 

motion and the elastic responses too. In the following figure the second mode is 
related to heave motion while the rest modes, starting from mode No.4, concern the 
elastic response of the barge. The structural behavior of the hull is determined for 

heading waves with angle 120�  using a variety of single length waves that 
are ( )0.51,1.01,1.48,2.06Lλ = . 

 

 
Fig. 7. Modal amplitude, heading angle 120� . Elastic modes start from mode number 4.  
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BARGE: RAO Ηeave ( )3 /ξ Α  and vertical elastic 
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Conclusions - suggestions for future work  
In the present thesis, we use the Euler – Bernoulli (EBT) and the Timoshenko beam 
(TBT) models to calculate the “dry modes” of a ship or a marine structure. Numerical 
calculations are based on second order Finite Difference Method for the solution of 
the eigenvalue problems, for pinned, fixed and free ends of an elastic beam, which 
models the marine structure. We implement the aforementioned models for both the 
case of a rectangular cross section area, i.e., a beam, and of a circular section area, 
i.e., a rod, and for selected end conditions, such as (i) free - free, (ii) clamped – 
clamped, and (iii) pinned – pinned. The dispersion relations of the two models are 
studied in the case of homogeneous beams illustrating significant differences, and 
showing that the elastic disturbances (waves of vertical beam deflections) disperse 
faster in EBT than TBT model. Concerning TBT formulation, the elastic wave phase 
velocity converges to a single value which is higher in the case of a rod ( 0.56C ≈ ) 
than in the case of the beam ( 0.54C ≈ ). Subsequently, the above models are applied 
to specific examples, and numerical results are compared to existing analytical ones, 
concerning the determination of the natural frequencies and of the principal modes of 
the structure. Convergence tests are conducted in order to estimate the validity of the 
developed numerical methods. It turns out that the obtained results are very accurate 
and the rate of convergence is very fast.  

Next, the standard STF (strip theory) model is used for the prediction of the rigid ship 
or elongated marine structure responses in head or following waves. To this aim, we 
use a 2D potential flow model implemented by means of Boundary Element 
formulations regarding sections with different local geometrical particulars, i.e., for 
various beam to draft ratios, B/T. The calculations predict very well the ship 
properties of interest, i.e., added mass and damping coefficients, and generalized 
forces, as compared with experimental results by Vughts (1968). Significant, though 
expected, discrepancies from the experimental values are observed in the case of roll 
motion, since roll hydrodynamics are dominated by viscous effects, which are not 
taken into account in the present ideal flow model. 

Finally, in this work, a model is developed to calculate the hydroelastic responses of 
beamlike marine structures by combining strip theory and beam elastic models. 
Results and comparisons are presented concerning the hydroelastic response of a 
flexible barge in waves, for which experimental data are available by using model 
tests, see, e.g., Malenica et al. (2008). In general, present results regarding heave 
motion and corresponding elastic responses for various incident waves are in a good 
agreement with experimental data, showing that the developed model can produce 
accurate results. Additional studies concerning the hydroelastic analysis of ships, such 
as tankers or bulk carriers, could also be conducted in order to further test and validate 
the present model. Future work should focus on appropriate extensions of the present 
model in order to take into account more consistently 3D hydrodynamic and elastic 
structural phenomena. 
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Appendix A 
 

Presentation of the comparative results for the EBT and TBT 

In this present Appendix, we display the results of the implementation of the 
developed program ‘’EBT’’ for an Euler Bernoulli beam and for a Timoshenko beam. 
We will demonstrate the natural frequencies and the natural functions for both the thin 
rod and the thin beam case. The implementations will concern the free, clamped and 
pinned vibration cases. 

 

Euler – Bernoulli model 

 

Results concerning a homogeneous rod 

The main characteristics of the rod are: (i) Length: [ ]50 mL=  [m], (ii) Young’s 

modulus: [ ]9 210 10 Pa ,E =  (ii) Mass density: 3kg/7825 mρ  =    , (iv) 

Thickness: [ ] 1 mt = , (v) Moment of inertia: 
4 20.7854 kg m4

tI π  = =   , (vi) Cross 

section area: 2 23.1416A t mπ  = =   . The results are illustrated in the following 

pages. 
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Fig. A. 1. Normalized eigenfunctions for homogeneous clamped rod, M=100 points, 

factor 
2

L
 to scale the modes 

 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=100) 
Error (%) 

1 23.144 23.155 0.050 

2 63.797 63.836 0.062 

3 125.067 125.148 0.065 

4 206.742 206.837 0.046 

5 308.837 308.866 0.009 

6 431.351 431.158 0.045 

7 574.284 573.629 0.114 

Table A. 1 Natural frequencies, [ ]rad/sec, for clamped rod 
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Fig. A. 2. Normalized eigenfunctions for homogeneous free rod, M=100 points, 

factor 
2

L
 to scale the modes 

 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=100) 
Error (%) 

1 23.144 23.176 0.139 

2 63.797 63.956 0.249 

3 125.067 125.486 0.335 

4 206.742 207.595 0.413 

5 308.837 310.305 0.475 

6 431.352 433.620 0.526 

7 574.285 577.504 0.561 

Table A. 2 Natural frequencies, [ ]rad/sec, for free rod 
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Fig. A. 3. Normalized eigenfunctions for homogeneous pinned rod, M=100 points, 

factor 
2

L
 to scale the modes 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=100) 
Error (%) 

1 10.210 10.206 0.033 

2 40.838 40.826 0.030 

3 91.886 91.833 0.057 

4 163.352 163.185 0.102 

5 255.238 254.826 0.161 

6 367.542 366.693 0.231 

7 500.266 498.698 0.313 

Table A. 3 Natural frequencies, [ ]rad/sec, for pinned rod 
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Concerning the differences spotted on the previous numerical results, they are 
compatible with the approximation based on second order finite differences.  

Regarding the modes, the number of the peaks (positive or negative ones) is increased 
accordingly with the number (index) of the mode. For instance, the first mode is 
represented by a single peak in the middle of the rod whereas in the second mode we 
get two peaks, in the third mode we get three peaks and so goes for the rest of the 
modes. It should be noted that the zero frequency is excluded as it represents a rigid 
body motion. Moreover, the convergence between the numerical (solid line) and the 
analytical solution (symbols) increases by using a higher number of grid points. More 
specifically, we illustrate the convergence of the developed numerical method. The 
results are depicted in the following figures 
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Fig. A. 4. Convergence numerical to analytical for a clamped edged 

homogeneous rod, M=25 points, factor 
2

L
 to scale the modes 

 

 

Mode 
Analytic Method 

Frequencies 
Numerical Method 
Frequencies (M=25) Error (%) 

1 23.144 23.353 0.902 

2 63.797 64.532 1.153 

3 125.067 126.410 1.074 

4 206.742 208.125 0.669 

5 308.837 308.591 0.080 

6 431.352 426.281 1.176 

7 574.285 559.236 2.620 

Table A. 4 Convergence for natural frequencies  
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Fig. A. 5 Convergence numerical to analytical for a free edged homogeneous 

rod, M=50 points, factor 
2

L
 to scale the modes 

 

 

Mode 
Analytic Method 

Frequencies 
Numerical Method 
Frequencies (M=50) Error (%) 

1 23.144 23.192 0.207 

2 63.797 63.971 0.273 

3 125.067 125.398 0.264 

4 206.742 207.118 0.181 

5 308.837 308.923 0.028 

6 431.352 430.493 0.199 

7 574.285 571.422 0.499 

Table A. 5 Convergence for natural frequencies  

 

Due to the small partitioning, the calculation speed is increased. However, increasing 
the knots on the beam the calculation speed is clearly decreasing. 
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Fig. A.6 Convergence numerical to analytical for a free edged homogeneous 

rod, M=150 points, factor 
2

L
 to scale the modes 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=150) 
Error (%) 

1 23.144 23.144 0.000 

2 63.797 63.797 0.000 

3 125.067 125.067 0.000 

4 206.742 206.742 0.000 

5 308.837 308.837 0.000 

6 431.351 431.351 0.000 

7 574.285 574.284 0.001 
Table A.6 Convergence for natural frequencies  
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Fig. A.7. Convergence numerical to analytical for a free edged homogeneous 

rod, M=200 points, factor 
2

L
 to scale the modes 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=200) 
Error (%) 

1 23.144 23.145 0.005 

2 63.797 63.805 0.013 

3 125.067 125.086 0.015 

4 206.742 206.764 0.011 

5 308.837 308.840 0.001 

6 431.351 431.309 0.010 

7 574.284 574.107 0.031 
Table A.7 Convergence for natural frequencies 
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Points

Mode
 

25 50 100 150 200 
Analytic 
Method 

1 23.353 23.192 23.155 23.144 23.145 23.144 

2 64.532 63.971 63.836 63.797 63.805 63.797 

3 126.410 125.398 125.148 125.067 125.086 125.067 

4 208.125 207.118 206.837 206.742 206.764 206.742 

5 308.591 308.923 308.866 308.837 308.840 308.837 

6 426.281 430.493 431.158 431.351 431.309 431.352 

7 559.236 571.422 573.629 574.284 574.107 574.284 

Table A.8 Focusing results for the converge of the natural Frequencies 

 

Apparently, investigating the lower frequencies the discrepancies of the results are 
very small. As we proceed to areas with higher frequencies the discrepancies between 
the results are more obvious, see, Table (8). In addition, increasing the number of the 
elements used over the rod the results converge to a single value. This latter comes in 
agreement with the used numerical theory according to which the higher we dense the 
grid the smaller declinations we get obtain. 

 

 

Calculations for an inhomogeneous rod 

In the following, we investigate the case of a inhomogeneous rod with varying 
thickness from 1b=  [m], concerning the domain 10x≤  and 40x ≥  , to 2b=  [m] in 
the domain , 10 40x< <  , with its maximum thickness to be in the middle of the 
beam. The two cases (homo. and inhomogeneous) will be compared concerning both 
the normalized eigenfunctions and the normal frequencies. It is obvious that the 
analytical solution isn’t feasible for cross sections with varying geometrical 
characteristics. Therefore, we demonstrate the results obtained from the numerical 
solution and only. 
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Fig. A.9 Normalized inhomogeneous clamped rod, M=100 points, factor 
2

L
 to scale 

the modes 
 

 

Mode 
Numerical Method 

Frequencies 
(M=100) 

1 23.625 

2 69.538 

3 174.939 

4 286.087 

5 414.479 

6 570.986 

7 759.211 

Table A. 9 Natural frequencies, [ ]rad/sec, for clamped rod 
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Fig. A.10 Normalized inhomogeneous free, M=100 points, factor 
2

L
 to scale the 

modes 
 

 

Mode 
Numerical Method 

Frequencies 
(M=100) 

1 47.170 

2 82.696 

3 174.731 

4 284.771 

5 415.310 

6 574.726 

7 765.928 

Table A.10 Natural frequencies, [ ]rad/sec, for free  rod 
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Fig. A.11 Normalized inhomogeneous pinned rod, M=100 points, factor 
2

L
 to scale 

the modes 
 

Mode 
Numerical Method 

Frequencies 
(M=100) 

1 12.683 

2 44.469 

3 135.604 

4 224.661 

5 338.718 

6 486.431 

7 663.437 

Table A.11 Natural frequencies, [ ]rad/sec, for pinned rod 

Results for a homogeneous beam 

The main characteristics of the rod are: (i) Length: [ ]50 mL=  [m], (ii) Young’s 

modulus: [ ]6 5 10 Pa ,E =  (ii) Mass density: 3kg/m923ρ  =    , (iv) 

Thickness: [ ] 1 mt = , (v) Moment of inertia: 
3 20.0833 kgm12

tI π  = =    , Cross 

section area: 2 21A t m = =     
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Fig. A.12 Normalized eigenfunctions for homogeneous clamped beam, M=100 

points, factor 
2

L
 to scale the modes 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=100) 
Error (%) 

1 13.362 13.364 0.016 

2 36.833 36.858 0.066 

3 72.208 72.251 0.060 

4 119.363 119.414 0.043 

5 178.307 178.321 0.008 

6 249.041 248.931 0.044 

7 331.563 331.180 0.115 

Table A.12 Natural frequencies, [ ]rad/sec, for clamped beam 
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Fig. A.13 Normalized eigenfunctions for homogeneous free beam, M=100 points, 

factor 
2

L
 to scale the modes 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=100) 
Error (%) 

1 13.362 13.380 0.133 

2 36.833 36.925 0.250 

3 72.208 72.448 0.333 

4 119.363 119.855 0.413 

5 178.307 179.152 0.474 

6 249.041 250.349 0.525 

7 331.563 333.424 0.561 

Table A.13 Natural frequencies, [ ]rad/sec, for free beam 
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Fig. A.14 Normalized eigenfunctions for homogeneous pinned beam, M=100 points, 

factor 
2

L
 to scale the modes 

 

 

 

Mode 
Analytic Method 

Frequencies 

Numerical Method 
Frequencies 

(M=100) 
Error (%) 

1 5.894 5.890 0.079 

2 23.578 23.571 0.030 

3 53.050 53.017 0.063 

4 94.311 94.212 0.106 

5 147.361 147.125 0.161 

6 212.201 211.709 0.232 

7 288.828 287.923 0.313 

Table A.14 Natural frequencies, [ ]rad/sec, for pinned beam 
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Results for an inhomogeneous beam  

 
Fig. A.15 Normalized eigenfunctions for inhomogeneous clamped beam, M=100 

points, factor 
2

L
 to scale the modes 

 

 

Mode 
Numerical Method 

Frequencies (M=100) 

1 15.661 

2 43.569 

3 96.269 

4 160.327 

5 236.918 

6 327.360 

7 434.215 

Table A.15 Natural frequencies, [ ]rad/sec, for clamped beam 
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Fig. A.16 Normalized eigenfunctions for inhomogeneous free beam, M=100 points, 

factor 
2

L
 to scale the modes 

 

 

Mode 
Numerical Method 

Frequencies (M=100) 

1 24.456 

2 48.486 

3 96.408 

4 160.050 

5 237.749 

6 329.646 

7 438.093 

Table A.16 Natural frequencies, [ ]rad/sec, for free beam 
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Fig. A.17 Normalized eigenfunctions for inhomogeneous pinned beam, M=100 

points, factor 
2

L
 to scale the modes 

 

 

Mode 
Numerical Method 

Frequencies (M=100) 

1 8.251 

2 27.503 

3 72.793 

4 126.809 

5 194.329 

6 277.707 

7 378.260 

Table A.17 Natural frequencies, [ ]rad/sec, for pinned beam 
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Comparative results of natural frequencies concerning a beam and a rod cross 
section 

In the following tables we present the way the natural frequencies change depending 
the shape of its cross sectional areas. Thus, we compare and contrast all the possible 
combinations concerning the given boundary conditions. 

Mode NATURAL FREQUENCIES 

1 23.176 23.176 10.206 

2 63.956 63.956 40.826 

3 125.486 125.486 91.833 

4 207.595 207.595 163.185 

5 310.305 310.305 254.826 

6 433.620 433.620 366.693 

7 577.504 577.504 498.698 

Table A.18 Homogeneous rod , Clamped (left) , Free (center), Pinned (right) 

 

 

 

Mode NATURAL FREQUENCIES 

1 23.625 47.170 12.683 

2 69.538 82.696 44.469 

3 174.939 174.731 135.604 

4 286.087 284.771 224.661 

5 414.479 415.310 338.718 

6 570.986 574.726 486.431 

7 759.211 765.928 663.437 

Table A.19 Inhomogeneous rod , Clamped (left) , Free (center), Pinned (right) 
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Mode NATURAL FREQUENCIES 

1 13.364 13.380 5.890 

2 36.858 36.925 23.571 

3 72.251 72.448 53.017 

4 119.414 119.855 94.212 

5 178.321 179.152 147.125 

6 248.931 250.349 211.709 

7 331.180 333.424 287.923 

Table A.20 Homogeneous beam, Clamped (left) , Free (center), Pinned (right) 

 

 

 

Mode NATURAL FREQUENCIES 

1 15.661 24.456 8.251 

2 43.569 48.486 27.503 

3 96.269 96.408 72.793 

4 160.327 160.050 126.809 

5 236.918 237.749 194.329 

6 327.360 329.646 277.707 

7 434.215 438.093 378.260 

Table A.21 Inhomogeneous beam, Clamped (left) , Free (center), Pinned (right) 

Regarding the homogeneous scenario, it is clearly depicted in the Tables (18), (20), 
that the clamped and free types of boundary conditions have the same values for the 
natural frequencies. The latter is associated with the roots of the characteristic 
polynomial which apparently is the same for both the cases; see, eq. (1.2.15). In 
addition, the first two columns of the inhomogeneous Tables (19), (21) are slightly 
different concerning the mode No.1 and mode No.2. The presented results are 
obtained exclusively through numerical analysis. Therefore, such small differences 
are attainable due to approximation errors.  
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Mode EIGENFREQUENCIES 

1 13.364 23.176 

2 36.858 63.956 

3 72.251 125.486 

4 119.414 207.595 

5 178.321 310.305 

6 248.931 433.620 

7 331.180 577.504 

Table A.22 Homogeneous beam (left) , homogeneous rod (right),given clamped type 
of edges 

 

 

Mode EIGENFREQUENCIES 

1 15.661 23.625 

2 43.569 69.538 

3 96.269 174.939 

4 160.327 286.087 

5 236.918 414.479 

6 327.360 570.986 

7 434.215 759.211 

Table A.23 Inhomogeneous beam (left), inhomogeneous rod (right), given clamped 
type of edges 

We presented the case of the simple beam and rod (homogeneous and 
inhomogeneous), to investigate the differences as we move from a square cross 
section area to a circular one. We observe that circular sections are associated with 
higher frequency excitations compared to the square sections and so do the same for 
the rest of the boundary conditions, i.e. free and pinned. 
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Timoshenko beam model 

Homogeneous rod 

The main characteristics of the rod are: (i) Length: [ ]50 mL=  [m], (ii) Young’s 

modulus: [ ]9 210 10 PaE = , (iii) Shear modulus [ ]980 10 PaG =   (iv) Mass 

density: 3kg/7850 mρ  =    , (v) Thickness: [ ] 1 mt = , (vi) Moment of inertia: 

4 20.7854 kgm4
tI π  = =   , (vii) Cross section area: 2 23.1416A t mπ  = =    

 
Fig. A.18 Normalized eigenfunctions for homogeneous clamped rod, M=100 points, 

0.8571K =  

Mode 
Numerical Method 

Frequencies 
(M=100) 

1 23.580 

2 64.481 

3 125.485 

4 203.820 

5 298.793 

6 408.324 

7 530.333 

Table A.24 Natural frequencies, [ ]rad/sec, for clamped rod 
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Fig. A.19 Normalized eigenfunctions for homogeneous free rod, M=100 points, 
0.8571K =  

 

 

Mode 
Numerical Method 

Frequencies 
(M=100) 

1 24.273 

2 66.560 

3 128.951 

4 210.753 

5 309.192 

6 422.882 

7 549.743 

Table A.25 Natural frequencies, [ ]rad/sec, for free rod 

 

As we see from the obtained results in the Timoshenko model the normal modes, 
concerning a circular sectional area, differ from the corresponding ones obtained from 
the Euler – Bernoulli model. 
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Fig. A.20 Normalized eigenfunctions for homogeneous pinned rod, using 100 points, 

0.8571K =  
 

 

Mode 
Numerical Method 

Frequencies 
(M=100) 

1 10.409 

2 41.604 

3 93.596 

4 164.306 

5 252.347 

6 357.025 

7 475.567 

Table A.26 Natural frequencies, [ ]rad/sec, for pinned rod 

It is now obvious, that the calculations according to the Timoshenko theory lead to 
higher natural frequencies compared to the ones derived from the Euler – Bernoulli 
model. The difference regarding the two methods is that the former involves the shear 
deformations of the beam. Furthermore, we use various discretization steps to 
demonstrate the progressive convergence of the method as we dense the grid over the 
beam. The results, concerning a clamped rod, are depicted in the following figures: 
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Fig. A.21 Clamped edged homogeneous rod, M=25 points, 0.8571K =  

 

 

Mode 
Numerical Method 
Frequencies (M=25) 

1 35.365 

2 95.676 

3 183.023 

4 294.634 

5 425.655 

6 573.313 

7 733.450 

Table A.27 Natural frequencies  
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Fig. A.22 Clamped edged homogeneous rod, M=50 points, 0.8571K =  

 

 

Mode 
Numerical Method 
Frequencies (M=50) 

1 26.353 

2 72.106 

3 138.656 

4 225.311 

5 329.295 

6 448.531 

7 580.939 

Table A.28 Natural frequencies  

 

 

 

 



 115

 
Fig. A.23 Clamped homogeneous rod, M=150 points, 0.8571K =  

 

 

Mode 
Numerical Method 

Frequencies 
(M=150) 

1 22.887 

2 63.094 

3 122.712 

4 199.661 

5 292.554 

6 400.005 

7 519.934 

Table A.29 Natural frequencies  
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Fig. A.24 Clamped homogeneous rod, M=200 points, 0.8571K =  

 

 

Mode 
Numerical Method 

Frequencies 
(M=200) 

1 22.887 

2 63.094 

3 122.019 

4 198.274 

5 290.474 

6 397.232 

7 516.468 

Table A.30 Natural frequencies  
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Points

Mode
 

25 50 100 150 200 

1 35.365 26.353 23.580 22.887 23.144 

2 95.676 72.106 64.481 63.094 63.317 

3 183.023 138.656 125.485 122.712 122.744 

4 294.634 225.311 203.820 199.661 200.111 

5 425.655 329.295 298.793 292.554 294.032 

6 573.313 448.531 408.324 400.005 403.122 

7 733.450 580.939 530.333 519.934 525.787 

 Table A.31 Focusing results for the converge of the natural frequencies  
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Results for an inhomogeneous rod 

We use the same function to describe the change of the thickness of the beam. From, 
1b=  [m], concerning the domain, 10x≤  and 40x ≥ , to 2b=  [m] in the domain , 

10 40x< <  with its maximum thickness to be in the middle of the beam.  

 
Fig. A.25 Normalized modes for inhomogeneous clamped rod, M=100 points, 

0.8571K =  
 

Mode 
Numerical Method 

Frequencies 

1 23.580 

2 82.505 

3 158.760 

4 252.347 

5 366.037 

6 497.751 

7 641.943 

Table A.32 Natural frequencies, [ ]rad/sec, clamped rod  
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Fig. A.26 Normalized inhomogeneous free rod, M=100 points, 0.8571K =  

 

 

Mode 
Numerical Method 

Frequencies 

1 21.500 

2 84.584 

3 164.306 

4 262.745 

5 379.901 

6 517.161 

7 667.593 

Table A.33 Natural frequencies, [ ]rad/sec, for free rod 
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Fig. A.27 Normalized inhomogeneous pinned rod, M=100 points, 0.8571K =  

 

Mode 
Numerical Method 

Frequencies 

1 6.2491 

2 55.4686 

3 117.1662 

4 202.4338 

5 311.9645 

6 440.2125 

7 580.2454 

Table A.34 Natural frequencies, [ ]rad/sec, for pinned rod 

Results for a homogeneous beam 

The main characteristics of the beam are: (i) Length: [ ]50 mL=  [m], (ii) Young’s 

modulus: [ ]6 5 10 Pa ,E =  shear modulus [ ]980 10 PaG =  (ii) Mass 

density: 3kg/m923ρ  =    , (iv) Thickness: [ ] 1 mt = , (v) Moment of inertia: 

3 20.0833 kgm12
tI π  = =    ,(vi) Cross section area: 2 21A t m = =   .  
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Fig.A.28 Normal modes for homogeneous clamped beam, M=100 points, 

0.8333K =  
 

 

Mode 
Numerical Method 

Frequencies 

1 14.568 

2 40.218 

3 79.039 

4 130.338 

5 192.729 

6 266.904 

7 352.172 

Table A.35 Natural frequencies, [ ]rad/sec, for clamped beam 
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Fig. A.29 Normalized eigenfunctions for homogeneous free beam, M=100 points, 

0.8333K =  
 

 

Mode 
Numerical Method 

Frequencies 

1 14.568 

2 41.604 

3 81.118 

4 133.804 

5 198.274 

6 274.530 

7 361.877 

Table A.36 Natural frequencies, [ ]rad/sec, for free beam 
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Fig. A.30 Normalized eigenfunctions for homogeneous pinned beam, M= 100 points, 

0.8333K =  
 

 

 

Mode 
Numerical Method 

Frequencies 

1 6.249 

2 25.660 

3 58.242 

4 103.302 

5 160.840 

6 230.163 

7 310.578 

Table A.37 Natural frequencies, [ ]rad/sec, for pinned beam 
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Results for an inhomogeneous beam  

 
Fig. A.31 Normal modes for inhomogeneous clamped beam, M=100 points, 

0.8333K =  
 

 

 

Mode 
Analytic Method 

Frequencies 

1 15.261 

2 51.309 

3 99.142 

4 160.840 

5 237.095 

6 329.295 

7 432.587 

Table A.38 Natural frequencies, [ ]rad/sec, for clamped inhomogeneous beam 
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Fig. A.32 Normalized eigenfunctions for inhomogeneous free beam, M=100 points, 

0.8333K =  
 

 

 

Mode 
Analytic Method 

Frequencies 

1 13.875 

2 52.002 

3 102.608 

4 165.693 

5 244.721 

6 339.001 

7 446.452 

Table A.39 Natural frequencies, [ ]rad/sec, for free inhomogeneous beam 
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Fig.A.33 Normalized eigenfunctions for inhomogeneous pinned beam, M=100 points 

 

 

Mode 
Analytic Method 

Frequencies 

1 4.863 

2 33.978 

3 72.799 

4 126.872 

5 198.968 

6 285.622 

7 383.367 

Table A.40 Natural frequencies, [ ]rad/sec, for pinned inhomogeneous beam 

Comparative results of natural frequencies concerning a beam and a rod cross 
section area 

In the following tables we present the way the natural frequencies change depending 
on the shape of the cross sectional area. Thus, we compare and contrast all the 
possible combinations of the geometrical shapes. 



 127

Mode NATURAL FREQUENCIES 

1 23.580 24.273 10.409 

2 64.481 66.560 41.604 

3 125.485 128.951 93.596 

4 203.820 210.753 164.306 

5 298.793 309.192 252.347 

6 408.324 422.882 357.025 

7 530.333 549.743 475.567 

Table A.41 Homogeneous rod , Clamped (left) , Free (center), Pinned (right) 

 

 

Mode NATURAL FREQUENCIES 

1 23.580 21.500 6.2491 

2 82.505 84.584 55.4686 

3 158.760 164.306 117.1662 

4 252.347 262.745 202.4338 

5 366.037 379.901 311.9645 

6 497.751 517.161 440.2125 

7 641.943 667.593 580.2454 

Table A.42 Inhomogeneous rod , Clamped (left) , Free (center), Pinned (right) 
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Mode NATURAL FREQUENCIES 

1 14.568 14.568 6.249 

2 40.218 41.604 25.660 

3 79.039 81.118 58.242 

4 130.338 133.804 103.302 

5 192.729 198.274 160.840 

6 266.904 274.530 230.163 

7 352.172 361.877 310.578 

Table A.43 Homogeneous beam, Clamped (left) , Free (center), Pinned (right) 

 

 

Mode NATURAL FREQUENCIES 

1 15.261 13.875 4.863 

2 51.309 52.002 33.978 

3 99.142 102.608 72.799 

4 160.840 165.693 126.872 

5 237.095 244.721 198.968 

6 329.295 339.001 285.622 

7 432.587 446.452 383.367 

Table A.44 Inhomogeneous beam, Clamped (left) , Free (center), Pinned (right) 
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Mode EIGENFREQUENCIES 

1 14.568 23.580 

2 40.218 64.481 

3 79.039 125.485 

4 130.338 203.820 

5 192.729 298.793 

6 266.904 408.324 

7 352.172 530.333 

Table A.45 Homogeneous beam (left) , homogeneous rod (right),given clamped type 
of edges 

 

 

Mode EIGENFREQUENCIES 

1 15.261 23.580 

2 51.309 82.505 

3 99.142 158.760 

4 160.840 252.347 

5 237.095 366.037 

6 329.295 497.751 

7 432.587 641.943 

Table A.46 Inhomogeneous beam (left), inhomogeneous rod (right), given clamped 
type of edges 

We note that in this case too circular sections are excited from higher frequencies 
compared to the square corresponding ones. 
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Comparative results for the Timoshenko and Euler – Bernoulli models 

In order to understand how shear deformations shape the range of the natural 
frequencies we demonstrate comparative results for both the TBT and EBT. 

Mode EIGENFREQUENCIES 

1 23.176 23.580 

2 63.956 64.481 

3 125.486 125.485 

4 207.595 203.820 

5 310.305 298.793 

6 433.620 408.324 

7 577.504 530.333 

Table A.47 Homogeneous clamped rod, EBT (left), TBT (right) 

 

 

Mode EIGENFREQUENCIES 

1 23.176 24.273 

2 63.956 66.560 

3 125.486 128.951 

4 207.595 210.753 

5 310.305 309.192 

6 433.620 422.882 

7 577.504 549.743 

Table A.48 Homogeneous free rod, EBT (left), TBT (right) 
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Mode EIGENFREQUENCIES 

1 10.206 10.409 

2 40.826 41.604 

3 91.833 93.596 

4 163.185 164.306 

5 254.826 252.347 

6 366.693 357.025 

7 498.698 475.567 

Table A.49 Homogeneous pinned rod, EBT (left), TBT (right) 

 

 

 

Mode EIGENFREQUENCIES 

1 23.625 23.580 

2 69.538 82.505 

3 174.939 158.760 

4 286.087 252.347 

5 414.479 366.037 

6 570.986 497.751 

7 759.211 641.943 

Table A.50 Inhomogeneous clamped rod, EBT (left), TBT (right) 
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Mode EIGENFREQUENCIES 

1 47.170 21.500 

2 82.696 84.584 

3 174.731 164.306 

4 284.771 262.745 

5 415.310 379.901 

6 574.726 517.161 

7 765.928 667.593 

Table A.51 Inhomogeneous free rod, EBT (left), TBT (right) 

 

 

 

Mode EIGENFREQUENCIES 

1 12.683 6.2491 

2 44.469 55.4686 

3 135.604 117.1662 

4 224.661 202.4338 

5 338.718 311.9645 

6 486.431 440.2125 

7 663.437 580.2454 

Table A.52 Inhomogeneous pinned rod, EBT (left), TBT (right) 
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Mode EIGENFREQUENCIES 

1 13.364 14.568 

2 36.858 40.218 

3 72.251 79.039 

4 119.414 130.338 

5 178.321 192.729 

6 248.931 266.904 

7 331.180 352.172 

Table A.53 Homogeneous clamped beam, EBT (left), TBT (right) 

 

 

 

Mode EIGENFREQUENCIES 

1 13.380 14.568 

2 36.925 41.604 

3 72.448 81.118 

4 119.855 133.804 

5 179.152 198.274 

6 250.349 274.530 

7 333.424 361.877 

Table A.54 Homogeneous free beam, EBT (left), TBT (right) 
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Mode EIGENFREQUENCIES 

1 13.380 14.568 

2 36.925 41.604 

3 72.448 81.118 

4 119.855 133.804 

5 179.152 198.274 

6 250.349 274.530 

7 333.424 361.877 

Table A.55 Homogeneous pinned beam, EBT (left), TBT (right) 

 

 

Mode EIGENFREQUENCIES 

1 15.661 15.261 

2 43.569 51.309 

3 96.269 99.142 

4 160.327 160.840 

5 236.918 237.095 

6 327.360 329.295 

7 434.215 432.587 

Table A.56 Inhomogeneous clamped beam, EBT (left), TBT (right) 
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Mode EIGENFREQUENCIES 

1 24.456 13.875 

2 48.486 52.002 

3 96.408 102.608 

4 160.050 165.693 

5 237.749 244.721 

6 329.646 339.001 

7 438.093 446.452 

Table A.57 Inhomogeneous free beam, EBT (left), TBT (right) 

 

 

 

Mode EIGENFREQUENCIES 

1 8.251 4.863 

2 27.503 33.978 

3 72.793 72.799 

4 126.809 126.872 

5 194.329 198.968 

6 277.707 285.622 

7 378.260 383.367 

Table A.58 Inhomogeneous pinned beam, EBT (left), TBT (right) 

 

The above results clearly depict the effect of the shear modulus, G , and of the rotary 
inertia , J ,on the normal frequencies and the normal modes either we refer to a 
circular cross section or to a square section area. 
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Appendix B 
 

Calculation of the radiation potentials 

For the calculation of the sectional hydrodynamic coefficients 

1

1

( )

( ) i

C x

i x N dsϖ φℓ ℓ= ∫ , where 1x  denotes the position alongships, the 2D potentials,  

1( )i xφ  , 2 3 4i , ,= , on the vertical 2 3x x−  plane are required. The latter are obtained 

by solving boundary value problems consisted of the Laplace equation in deep water 

   
2 2

2 2
2 3

0
x x

φ φℓ ℓ∂ ∂
+ =

∂ ∂
 ,  2,3,4=ℓ  ,               (1) 

the free surface boundary condition  

    2

3

0g
x

φ
ω φ

∂
− + =

∂
ℓ

ℓ  ,   2,3,4=ℓ  , 
on

 3 0x =  ,     (2) 

boundary condition on the wet surface of each section 

    N
N

φ∂
=

∂
ℓ

ℓ  ,   2,3,4=ℓ  , on 1( )BD x∂ ,             (3) 

and finally  the condition at infinity expressing the fact that  the waves are outgoing at 
infinity    

 

2

2

0
i

x g

φ ω
φℓ
ℓ

∂
± =

∂
                      (4) 

 

Several methods are available for the solution of (1) with boundary conditions (2)-(4),  

o the domain discretization methods using finite difference or finite element methods 
and boundary element methods (see, e.g. Ohkusu 1996),  

o analytic function methods in conjunction with conformal mapping techniques, 
Ursell (1949), Lewis (1986) 

o integral equation methods exploiting the Green function of the Laplace equation 
(method of potentials, methods based on Green’s theorem, Frank  1967). 

In this work a Boundary Element Method (BEM) will be developed and used for the 
solution of the sectional problems, based on source-sink distributions, in conjunction 
with an absorbing layer technique, permitting to truncate the computational domain at 
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some  distance from the body where the solution is absorbed with minimal reflections, 
and thus, minimum contamination of the numerical solution.  

 

First we consider a 2D section of the ship with local beam, B , and draft, T , as shown 
in Fig. A.1. The section is symmetric with respect to 3 axisx − . We also assume that 

the body is even keel; therefore, the center of gravity and the center of buoyancy are 
collinear.  

 
Fig. B.1  Section of the ship 

 

The potential at a point, x , ( )iφ x  based on surface source-sink distribution ( )iσ x  

over the boundary is used,  

   ( ) ( ) ( )|

B F

i i

D D

Q dSφ σ
∪∂ ∂

= ∫ sx x x x  2 3 4i , ,=  ,     (5) 

where ( )|Q sx x is the fundamental solution of the 2D Laplace equation, i.e. ,  

  ( ) ( )1
| ln

2
Q

π
=− −s sx x x x         (6) 

with ( )2 3,x x=x  denoting the field point in the domain and   ( )2 3,s s sx x=x  denoting 

the source point on the boundary of the domain  F BD D∪∂ ∂ , which consists of two  

parts the free surface (left and right to the body) FD∂  and the wetted part of the body 

BD∂ . 

 
 

 

3x  

2x  

D  T  

B  

  

absorbing layer absorbing layer 

2x a=  2x a= −  2x b=  
2x b= −  N  
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The derivative of the potential iφ  with respect to x  at a point in the domain is 

 ( ) ( ) ( ) ( )|
I

i i i

D

u Q dSφ σ
∂

=∇ = ∇∫x x sx x x x x  ,  2 3 4i , ,=  ,   (7) 

where  

  ( ) 2
|

2
Q

π

−
∇ =−

−
s

x s
s

x x
x x

x x
 .        (8) 

On the boundary B FD D∪∈∂ ∂x  the derivative of the potential see e.g., Gunter 

1967, Kress 1989) ,  is expressed as follows 

 ( ) ( ) ( ) ( ) ( )|
2 I

i
i i

D

u Q dS
σ

σ
∂

= + ∇∫ x s
x N x

x x x x ,   B FD D∪∈∂ ∂x  ,    2 3 4i , ,=  

   (8) 

where ( )2 3,N N=N  is the normal vector. Accordingly, the normal velocity on the 

boundary is  

 
( ) ( ) ( ) ( )|
2 I

ii
i

D

Q dS
n

σφ
σ

∂

∂
= + ∇

∂ ∫ x s
x

N x x x x ,   B FD D∪∈∂ ∂x  ,   2 3 4i , ,= .     (9) 

where ( ) ( )2 3,n N N=x , is the normal vector pointing into the exterior of the domain 

D, and thus, into the interior of the body on BD∂ .  

The boundary condition on the surface of the body takes the form  

  
( ) ( ) ( ) ( ) ( )|
2 I

i
i i

D

Q dS N
σ

σ
∂

+ ∇ =∫ x s
x

N x x x x x  , 2 3 4i , ,= , BD∈∂x  ,   (10) 

and the corresponding boundary condition on the (linearized) free surface is 

  
( )

( ) ( ) ( ) ( ) ( )
2

| | 0
2 I I

i
i i

D D

Q dS Q dS
g

σ ω
σ σ

∂ ∂

+ ∇ − =∫ ∫x s s
x

n x x x x x x x   

        2 3 4i , ,=   FDx ∈∂         (11) 

An important task concerning the present scheme deals with the treatment of 

horizontally infinite domain and the implementation of appropriate radiation-type 

conditions at infinity. Although in the case of linear waves, conditions at infinity 

could be treated using the appropriate time-dependent Green function, the present 

work is based on the truncation of the domain and on the use of Perfectly Matched 
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Layer (PML) model, as e.g. described by Berenger (1994) and Turkel, Yefet (1998), 

optimized by Collino, Monk (1998); see also  Filippas, Belibassakis (2014) 

The latter model permits the numerical absorption of the waves reaching the left, 

x a= , and right, x b= , ends of the truncated domain with minimum reflection. This 

selection is motivated by the fact that PML model supports the efficient extension of 

the present numerical scheme to treat generation and propagation of non-linear waves 

excited due to motion(s) of the moving body; see also Filippas, Belibassakis (2014). 

Following Sclavounos,  Borgen (2004) the boundary condition for FD∈∂x  inside 

the absorbing layer (2x a<−   and  2x a>  and 3 0x = ) is modified as follows 

  
( )( )2

3

0i
i

j

x g

ω δ ωφ
φ

+∂
− =

∂
 , 2,3,4i =  ,  1( )fD x∂      at 3 0x =  ,          (12) 

where the PML-parameter ( )δ ω  is a positive absorption coefficient with support of 

size  b aℓ= − extended over several wavelengths from the artificial end-type 

boundaries, x b= ± , used in order to truncate the computational domain. In the 

present work we use optimum PML coefficients, as described by Collino & Monk 

(1998) and applied by Belibassakis et al (2001) and Belibassakis & Athanassoulis 

(2011) to water wave problems. In accordance with the previous works the 

distribution of the absorption coefficient is of the form: 

   

( )

( )

0

0

,

( ) 0 ,

,

p

p

x a x

a x a

x a x a

δ ω α
δ ω

δ ω

 + <= − < < − >

 ,               (13) 

The performance of the PML model has been examined for PML absorbing layer with 

various parameters ,1.5 ,2λ λ λℓ= , 2,3,4p = and 0δ . It is found that the performance 

of the PML becomes better as its layer length increases. Based on extensive numerical 

evidence, we finally conclude that the PML parameters should be 

[ ]/ 1,2λℓ ∈ , [ ]2,4p∈  and ( )0δ ω  increasing with ω for optimum performance in the 

studied problem. In the sequel / 1λ =ℓ , 3p =  and ( ) ( )50 max/δ ω ω ω=  is used.  
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Boundary Element Method 

In this present work, we treat the problem using the Boundary Element Method, see, 
e.g. Beer & al (2008). Given a 2D geometry, see, e.g. Fig. A.2,  

 

Fig. B.2 Boundary Element approximation 

we consider a number M  of segments to form a low-order polygonal approximation 
(polyline) to describe the given geometry, D∂ . The shape of the approximate 
geometry MD∂ , is associated with the number of the elements, 1,...,i M= , used in the 

approximation, therefore the bigger number of elements we use, the better we 
approach the boundary, D∂ . This method is known as ‘’panel method’’ which  is 
based on the property  that the geometry approximation becomes more close to the 
exact geometry as the number of boundary element increases, i.e. MD D∂ → ∂  ,   as   

M →∞  . It should be noted that,  

• a dense grid is used to minimize the approximation errors, 

• specific parts with complicated geometry, e.g. the curvature of the boundary 
surface, required increased number of the panels, 

•  and at least 15 elements per wavelength are needed in order to discretize the 
free-surface part of the boundary, and thus the number of the elements depend 
on the wavelength and the frequency ω .  

Let, ( )σ x  be the unknown source-sink distribution over the boundary, D∂ . 

Concerning the low-order approximation the sink-source distribution, iσ , is 

considered partially constant at each panel, 1,...,i M= , of the boundary, MD∂ , see 

also, Fig. (A.3) 

1 
2 

3 

4 5 

6 

... M 

M+1 

(N2,N

D∂  

MD∂  
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Fig. B.3 Source sink distribution using Boundary Element Method 

It is now obvious that the sink-source distribution, iσ  , 1,...,i M=  approaches the 

distribution ( )σ x  over the real boundary BD∂  , when, 

( ) 0i
M

σ σ
→∞
→− x  . 

The integrals associated with the satisfaction of the boundary conditions, (10)-(12) 
will concern the center of each panel and will be represented by the index 1,...,i M=  . 
The boundary of the domain consists of the left and right, to the body, free surface 
and the wetted part of the body BD∂ . Regarding the panel method, starting from left 

to right, we set 1M  denoting the number of elements of the free surface to the left of 

the body, 2M  denoting the wetted part of the body and 3M  denoting the right free 

surface. The potential ( )ϕ x  based on the action of the sink-source distribution over 
the element( )AB , at some point, x , of the domain is given by Eqn. (5), see Fig.(A.4). 

Also by Eqns. (8), (9) we get the velocity, ( )iu x  and the normal velocity 
n

ϕ∂
∂

 , 

equivalently produced by the potential, ( )ϕ x  . 

The above integrals are easily calculated in local ζη- coordinate systems where the ζ-
axis is selected to coincide with each panel; see Fig. B4 

 

 

 

1σ   

2σ   

3σ   

5σ   
... 

1Mσ −   

Mσ   

 

4σ  

6σ   
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Fig. B.4 Linear segment AB as a low-order panel. 

 

Fig. B.5 Local coordination system for (AB) element 

 

Let ( )2 3,x x  be the coordinates of a point P  in the global coordinate system and 

( ),ζ η  the coordinates of the same point in the local coordinate system. Let also 

( )2 3,A Ax x  , ( )2 3
B Bx ,x  denote the coordinates of the panel ends in the global coordinate 

system , and ( ),0Aζ  , ( )0B ,ζ  be the corresponding  coordinates in the local system. 

The analytical expression of the result of the integral providing the induced potential 
is as follows 

      ( ) ( ) ( ) ( ) ( ){ }2 22 2

2 A A B B, ln ln ..
σ

φ ζ η ζ ζ ζ ζ η ζ ζ ζ ζ η
π

   = − − − + − − − + +
   

      

     
( ) ( )

1 1.. 2 tan tan
B A

η η
η

ζ ζ ζ ζ
− −

            +  −         − −        
  ,      (15) 

and the corresponding velocities (derivatives of the potential) in the local coordinate 
system are given by 
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  ( )
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1 1, tan tan
2 B A

uη
σ η η

ζ η
π ζ ζ ζ ζ
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2 2
, ln

2
A

B

uζ
ζ ζ ησ

ζ η
π ζ ζ η

 − + =−  
 − + 

  .                (17) 

 

As an example the induced potential and flow velocities from a linear element    

extending from A= (0,0) to B=(1,0) are shown in Fig. B6 

 

 

Fig. B.6 Induced potential and flow velocities from a linear element, as calculated 
using Eqs.(15)-(17). A colorbar is used to indicate the values of the potential. 

  

The induced velocity of the linear source element is given by the integral   

( ) ( ) ( ) ( )
2 2 3 3

2 2 3 3 2 2 3
2 2

3
2 2

,   
2

 
1 s s

s s s

B

AB

A s

x x x x
ds

x x x x x x x xπ
u

  − −  =−    − + − − + − 
∫            (18) 

 

The analytical formulas, for the velocity, in the global  coordinate system are then 
obtained by rotation of the previous result,  
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  ( ) ( ) ( ) ( ) ( )
2 2 3, , cos , sinxu x x u uζ ηζ η θ ζ η θ= −  ,               (19) 

  ( ) ( ) ( ) ( ) ( )
3 2 3, , sin , cosxu x x u uζ ηζ η θ ζ η θ= + ,               (20) 

taking into account that θ is the direction of the boundary element in the global 

coordinate system, i.e. 1 3 3

2 2

tan
B A

B A

x x

x x
θ −

 −  =   − 
 . 

We proceed with the presentation of the BEM by considering the collocation points 

( )2 3,m mx x  , 31,...,m M= , to be selected the centers of each element, where the 

boubdary conditions  will be satisfied. We denote by the matrix ( )2 3,n n
n x xφ φ=m  the 

induced potential from the m-boundary element to the n collocation point, and 

similarly by  ( )2 3,n n
nm u x xu = the induced velocity  of the -elementm  to the center, 

( )2 3,n nx x , of the -elementn ,  31,..,n M= . Using the above definitions the boundary 

conditions of the problem Eqs. (11)-(..) are written in the following discrete form: 

 ( )
1

0
2

M
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m n nm
m

σ
σ µφnmn u

=

+ − =∑  ,   11,..,n M=  ,                      (20) 

  ( ) ( )2 3
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m n i
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N x x
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+ =∑  ,   1 1 21,..n M M M,= + +  ,        (21) 

 ( )
1

0
2

M
n

m n nm
m

σ
σ µφnmn u

=

+ − =∑ ,  
3

1 2
1

1,.., i
i

n M M M
=

= + + ∑    .           (22) 

The frequency parameter is modified as follows  

    ( )
( )( )2j

g

ω δ ω
µ ω

+
=  .                (23) 

in order to model also the absorbing layer . 

Based on the previous analysis , the implementation of the code “cresolg.m” in 
Matlab® solves the linear system (20)-(22), which provides us with the values of 

{ }1n , n ,..,Mσ =  of the source-sink distribution on each boundary element. The 

calculated values are used as input to the integral representations (8), (9) which 
procide the potential and the velocity in the specific domain. Finally, replacing our 
results into Eq. (2) we the values of the 2D hydrodynamic coefficients are obtained. 

Numerical results and demonstration of the present BEM   

The application of the panel method is clearly depicted in the following figures, 
concerning a 2D sectional area, with / 2B T =  , including the free surface at the left 
and right of the body. The results, derived straight from the implementation of the 
code ‘’geom.m’’ . 
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Fig. B.7 BEM  discrezization of the boundary of the domain in the case of an 

orthogonal ship cross section B/T=2.   
 

 

Using as input the results from ‘’geom.m’’ (sectional area / 2B T = ) , we present the 
heave and the sway potentials at a low, a medium and a higher angular frequency 

within the range of investigation [ ]* / 2 0,2B gω ∈ . We recall that the parameters 

used in the PML model are / 1λ =ℓ , 3p =  and ( ) ( )50 max/δ ω ω ω=  . The results 

obtained from the implementation of the code ‘’cresolg.m’’ . 
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Fig. B.8 BEM discretization near the waterline. 

 

 
Fig. B.9 BEM discretization near the bilge keel  

2

1
i

i=
∑M   
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Fig. B.10 Heave & Sway potentials at angular frequency, * / 2 0.515B gω =   

 
It is now obvious that the PML model used at the ends, ,x a b= ±  of the truncated 
domain allows the absorption of the wave energy with zero reflections. The use of the 
aforementioned PML coefficients is associated with the angular range frequency and 
produces a specific number of wavelength which is by approximation 5, see, Fig.A10. 
We also notice that the energy derived from the motions of the body, is sustained 
during the propagation of approximately 3.5 wavelengths whereas close to the 
absorption layers the energy is rapidly absorbed. Therefore, we note that the 
amplitude of the waves remains the same for almost 3.5λ  while approaching the 
waves close to the edges, the amplitude is decreased to zero as seen in the Fig. A9. 
We proceed with the presentation of two more cases. 

 

The previous cases provide us with some interesting results regarding the use of the 
PML model. We observe that both in heave and sway potentials, the produced waves 
are shorter, in length, as we move to higher frequencies. More specifically, running 
through the given frequency range the model is developed to adjust the edges of the 
propagation domain, see Sclavounos, Borgen (2004), according to the boundary 
conditions inside the absorbing layer , see Eqn. (12). 

solid line: real part 

dashed line: complex part 

crosses: control points 

solid line: real part 

dashed line: complex part 

crosses: control points 
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Fig.B.11 Heave & Sway potentials at angular frequency, * / 2 1.055B gω =   

 

 
Fig. B.12 Heave & Sway potentials at angular frequency, * / 2 1.775B gω =   

 

solid line: real part 

dashed line: complex part 

crosses: control points 

solid line: real part 

dashed line: complex part 

crosses: control points 

solid line: real part 

dashed line: complex part 

crosses: control points 

solid line: real part 

dashed line: complex part 

crosses: control points 
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Moreover, following the PML the number of the produced waves has to remain the 
same given specific parameters / λℓ  , p  , ( )0δ ω  and /B T  see Figs. A10 – A12. In 

addition, higher frequency excitations, lead to smaller wave amplitudes. For instance, 
as seen in Figs. A10, A11 as frequency increases the amplitude of the waves, due to 
the heave motion becomes smaller, while the amplitude of the waves, due to sway 
motion, is almost the same. As we proceed to higher excitations, see Fig. A12, the 
sway motion produces waves of distinctively smaller amplitude, while heave 
produces even smaller ones.  

Finally, we proceed with the calculation of the hydrodynamic coefficients ia ℓ  , ib ℓ  , 

, 2,3,4i =ℓ  and by extension the calculation of the hydrodynamic forces 2F  , 3F  and 

4F . The results are depicted in the following figure  

 
Fig. B.13 Hydrodynamic Forces and coefficients 

 
In order to evaluate the correctness of the present numerical method, we compare our 
numerically calculated hydrodynamic coefficientsia ℓ  , iβ ℓ  , with experimentally 

measured ones, concerning sectional areas of various dimensions B ,T . The 
measurements are included in Vughts (1968) through digitization. In addition, we 
demonstrate the calculation of the hydrodynamic forces associated with the motions 
of the different sectional areas. In the following figures, we have the solid line 
representing the present numerical method and the bullets depicturing the 
experimental measurements.  
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Fig. B.14 Numerical and experimental hydrodynamic coefficients 
22a   , 22b  for 

/ 2B T =   

 

Figure B15 Numerical and experimental hydrodynamic coefficients 
33a   , 33b  for / 2B T =  
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 Fig. B.16 Numerical and experimental hydrodynamic coefficients ( )44 44,a b  ,( )42 42,a b , ( )24 24,a b , for 

/ 2B T =  
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Fig. B.17 Numerical hydrodynamic forces 

2F   , 3F  , 410F  for / 2B T =   

 

 

F2 

10F4 

F3 
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Fig. B.18 Numerical and experimental hydrodynamic coefficients 
22a   , 22b  for 

/ 4B T =   

 

 

Fig. B.19 Numerical and experimental hydrodynamic coefficients 
33a   , 33b  for 

/ 4B T =  
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Figure B20 Numerical and experimental hydrodynamic coefficients ( )44 44,a b  ,( )42 42,a b , ( )24 24,a b , 

for / 4B T =  
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Fig. B.21 Numerical hydrodynamic forces 

2F   , 3F  , 410F  for / 4B T =   

 

F2 

10F4 

F3 
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Fig. B.22 Numerical and experimental hydrodynamic coefficients 
22a   , 22b  for 

/ 4B T =   

 

 

Fig. B.23 Numerical and experimental hydrodynamic coefficients 
33a   , 33b  for 

/ 4B T =  
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 Fig. B.24 Numerical and experimental hydrodynamic coefficients ( )44 44,a b  ,( )42 42,a b , ( )24 24,a b , for 

/ 4B T =  
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Fig. B.25 Numerical hydrodynamic forces

2F  , 3F  , 410F  for / 4B T =   

We also examine the case of a cross section with/ 6B T = . Because we lack of 
experimental measures for such a case we compare the produced results with the 
previously presented results for/ 2B T =  , / 4B T =  and / 8B T =  . 
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Fig. B.26 Numerical and experimental hydrodynamic coefficients 
22a   , 22b  for 

/ 6B T =   
 

 

 

Fig. B.27 Numerical and experimental hydrodynamic coefficients 
33a   , 33b  for 

/ 6B T =  
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Figure B28 Numerical and experimental hydrodynamic coefficients ( )44 44,a b  ,( )42 42,a b , ( )24 24,a b , 

for / 6B T =  
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Fig. B.29 Numerical hydrodynamic forces 

2F   , 3F  , 410F  for / 6B T =   
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