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Abstract

Hydroelastic analysis represents a theory for taiitig the responses of marine
structures in a more accurate and realistic faslsioice it integrates aspects of
deformable body mechanics, namely elasticity themtyp classical ship and marine
hydrodynamics. In that connection, it provides av@dul tool for the derivation of a
unified, coupled system of responses, since thestiyation of the hydrodynamic
behavior of ships and other ocean structures idndgaknto account their
mechanical/structural properties and in return chei framework of analysis for
strength aspects is provided to ocean engineems.oDtine main aspects of this thesis
is the assessment of the heave induced elasticndations for an ocean going ship
cruising at steady mean forward speed in headindo{towing) seas. Symmetrical
distortions (i.e. vertical bending) are triggeredspecific frequencies called natural
frequencies. Every structure can be modeled forugnto some degree, elastic
behavior and the associated flexibility is relatedts structural characteristics. The
latter define the natural frequencies of the stme&ctThe eigenfrequencies of a marine
structure may be met within the range of (encogritequencies on which the energy
of a sea state is distributed, by means of waveggngpectrum. This may lead to
critical conditions from the local and global sigém point of view. In this work, we
take advantage of the benefits of previously edisiaalytical theories in order to
produce (linear) hydroelastic models applied tongdded (long and slender),
monohull marine structures. First, the Euler — Beilh and Timoshenko beam
models are used as main analytical tools for thevécuo”, or “dry hull” analysis.
Then by means of strip theory we employ a 2D paétiiow theory in order to
calculate the hydrodynamic and hydrostatic shipperties. Finally, the produced
structure principal modes are imposed to the rgigp motions producing the full set
of equations which describe the ship responsesditations due to harmonic waves.
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Hydroelasticity is a discipline, within marine aadean engineering science, which it
integrates aspects of deformable body mechaniasnelyaelasticity theory, into
classical ship and marine hydrodynamics, thus ducing elasticity into fluid-
structure interaction. Subsequently, wave loads @sponses calculations for an
ocean going vessel becomes more realistic. Moreifggadly, since the action of the
pressure field on the ship hull dynamically deforthe structure, the developed
distortions modify the nearby flow field. Therefprcean going vessels, and marine
structures exhibit properties, which must be deteeoh through a combined/mixed
modeling and design, i.e. using analytical and misaktools stemming from both
hydrodynamics/fluid mechanics and elasticity thémechanics of deformable
bodies. Over the past years, hydroelasticity hasegr to be of paramount importance
for the design of a variety of marine structurespeeially in the case of novel types,
such as large vessels and VLFS, operating in tea spas.

Concerning the water environment, the most comnause of the marine structure
loads are the surface gravity waves. Among therlatte wind waves are the result of
the turbulent wind flow field acting over and oretllea water free surface. The
geometrical characteristics of the wind waves vacgording to their height and

length due to the excitation of the turbulent i the related energy transfer to the
sea water and the duration of the subsequent ata Bt addition, modeling of wave

propagation must be enhanced when different battrymimttoms and transient

regions coexist, and solid bodies are present @etsnobstacles modifying the flow
field characteristics due to refraction/diffractiphenomena.

Bodies floating or moving/travelling in a realisteea water environment operate
encountering sea waves, that is, under hydrodyndoaids/forces, which are the
cause of body motions. Given the wide range of meaapplications, several criteria
have been developed in view to protecting and ssguhe operational capabilities
and the safety of a ship starting from the eargas$ of its design. More specifically,
ocean going vessels are designed taking into atsmweral crucial factors, such as
thrust efficiency, service speed attainment (batkalm and rough seas), seakeeping
and maneuverability, cargo capacity, and hull $tmat strength, aiming to provide a
sound design from different points of view, i.ecoeomic efficiency, ship’s and
crew/passengers safety and environmental protectiegspecially, hull strength
calculations focus on the determination of globad éocal wave induced loads on
hull structural elements. During initial designgsa, global stress analysis treats the
ship as a hull girder operating under the effectvaffe induced bending moments.
Further examination may focus on the endurancéefstructure by means of local
analysis and/or the determination of the shiprstgf. Finally, an important criterion
in the power performance of the ship is the ad@sistance in waves caused by the
motion of the ship in rough seas. Many tools hasenbcreated over the years and are
still in the process of further development andasmement, leading to the current-
state-of-the-art for the design of the ships takimgdroelastic phenomena into
account. Amid others, Strip Theory, and Boundamntdnt Method, which lie in the
core of the present thesis, as well as Computdtibhad Dynamics, and Finite
Element Analysis, all contributing in the task gfihoelastic analysis.



Evolution of the Hydroelasticity theory

The term “hydroelasticity” was first introducedtime technical terminology by Heller
and Abramson in 1959 pinpointing in this way a tiyeequivalent to aeroelasticity,
i.e., the combined action of air induced loads togewith structural responses, for
application in the analysis of marine structurdswas not until 1974 when the
enlightening work of Bishop and Price embodied laHydroelastic analysis together
with applications to specific type of ships, seead#ris, Temarel (2009) and Wu, Cui
(2009). Bishop, Price (1974) presented a new thgomyng the distortions of
beamlike hulls under the influence of both regudrd irregular sea waves,
emphasizing mainly in the symmetric distortions ri¢al bending) while the
antisymmetric ones (coupling of vertical, horizdnéad twisting) were in a more
premature stage, for adequate tools did not extsgdtat time. In this early stage, the
tools for attacking the hydroelasticity problem @/@onfined within the limits of 2D
linear potential flow and linear structural crierin that connection, the calculation of
principal modes for the structure using “dry hultr “in vacuo”) analysis adopts
formulations for modeling the monohull vessels #sstee deformable beams by
means of Timoshenko beam model (Timoshenko BeamryheTBT) together with
finite difference analysis. Another method for potidg the influence of the
surrounding fluid on a structure was the couplé&ddf— structure, system known as
“wet mode” analysis. The calculation of the fluidtians on the hull and thus the
estimation of the hydrodynamic ship propertiestegated by means of Strip Theory.
Basic assumptions for applying strip theory techagjare: (i) the fluid is inviscid, (ii)
incompressible, and (iii) homogeneous together wditlequate (iv) boundary
conditions. Hence, generalized forces, added masgksamping coefficients can be
calculated using the strip formulation and this,timn, reduces the complex 3D
problem to an adequate number of simplified 2D f@mwmis alongships. Numerically
accurate results were produced for ship propeofiéswer modes given several local
cross section forms, exploiting the existing methtw the calculation of added mass
and damping coefficients, see, e.g., the seminakvioy Lewis (1989) and other
authors as referred in Bishop, Price (1979).
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Fig. 01 Lewis forms (left) were employed to modifgn — dimensionalized added
mass in the vertical plane (right), from Lewis (298

The incorporation of the dry hull analysis to thepsrigid responses resulted in a
unified model to treat hydroelastic problems reduae 2D. This model has been
applied on a plethora of slender beamlike hullg, eontainer ship, bulk carrier, naval



vessel travelling with different service speedsearrttie effect of sea waves of various
headings. Later methods included full — scale nremsents concerning the
aforementioned commercial ships in order to test ¥alidity of the developed
models, see, Bishop et. d1983), Bishop et al(1985), Bishop et al(1991). A
demonstration of the unified solution for the twalimensional problem is illustrated
in the following figure.

Dry Analysis Timoshenko bea
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| preliminary

design

Global dynamic loac
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Fig. 02 2D hydroelasticity theory

It was not until 1980s when the application of #ferementioned basic principles by
Bishop, Price was related to the developmentgedrseral and compact 3D theory for
treat the problem of hydroelastic responses. The -adbeamlike flexible marine
structures were analyzed within the framework pédirity, see Bishop et al. (1986),
Wu (1984), Price, Wu (1985). More specifically, ®ifation of linearized boundary
conditions on the mean free surface, on the mebsimiace and radiation conditions
at infinity provided prerequisites for the derivati of a unique solution for the
velocity potential of the flow field. In additiostructural linearities accounted for the
assessment of the structural deformations on giesired planes. Furthermore, based
on the potential flow analysis simplifications, adopted by Bishop, Price, were
employed permitting the treatment of the fluid damas of infinite depth,
homogeneous, and inviscid with irrotational fluidoton. The abovementioned
elements were embodied in a more advanced potdiotralmethod, where panels of
pulsating sources distribution placed over the eléssnean hull set the basis for the
application of Boundary Element Method (BEM) tecjue. Additionally, benefits of
the Finite Element modeling (including Timoshenkadaplate theories) were
exploited for the determination of the principalaes in the case of the 3D structural
modes. For such a purpose, the boundary conditiolnlggn was treated on the basis
of several existed theories, see, e.g., Wu, Pi68%) and Timman, Newman (1962)
for the “special’ case of symmetric bodies. The abes in hydroelastic theory,
permitting for a more realistic and efficient madgl of the related phenomena on
marine structures, have contributed to the analysthod entitled “fluid — flexible
structure interaction” and have paved the way edévelopment of design software
appropriate to handle such problems. Over thediesades, investigations on different
type of applications have been achieved using fing@ modeling regarding
commercial ships, such as large containers, balikd, multihull ships. For instance,
Price et al. (2002) have analyzed the dynamic bheha¥ a slender monohull vessel
in oblique seas, and Hermundstad et(E#)99) have examined the hydroelastic
phenomena on a high speed catamaran; see, alsayrisliet al(2003), Hirdaris et al
(2006), Basaran et gr008).

10



Recent progress in the Hydroelastic models

Together with the development of more complex hgthstic models, during the
design stage, marine structures grew in sizes.caygixample is the introduction of
the so called Very Large Floating Structures (VLFB)e VLF structures during their
operational life in the sea environment are charatd by large motions, introducing
non — linear phenomena to spring responses dueetmfiuence of the instantaneous
wetted surface. These applications can preserearistructural characteristics, while
nonlinear eigenvalue formulations are requiredciculating the modes involved in
the responses. In both frameworks of 2D or 3D ams|gpecific techniques should be
applied to confront this additional complexity. Téire, quadratic elements
embedded in strip theory and formulations for sedcoarder generalized
hydrodynamic forces have been considered, seeg,teegworks by Jensen, Dogliani
(1996) and Wu et a[1997). The development of models for such largectires is
facing efficiency problems. However, solutions agglin the VLFS modeling have
already reported via the works of Wang et al. (398dd Price, Wu (1989). The
former have introduced two techniques. The firghieque involves the use of a
specific criterion in order to eliminate the infhee of the pulsating source type Green
function and its derivatives to achieve better @vgence. The second technique
introduces the implementation of iterative sparskvess for the linear system of
equations on the 3D theory. Other applicationsering the enhancements above,
have incorporated fluid viscous damping effects levhproducing time domain
simulations for slamming phenomena of large masinectures operating in irregular
head and oblique seas, see, e.g., Aksu (1993)r ltegads in the hydroelastic
modeling of marine structures have introduced simat non — linearities for a
floating plate using a generalized time dependeamt A linear exciting force, see,
Chen et al. (2003) and Chenadt (2006). In conclusion, over the last two desade
great progress has been achieved in the modelingadghe structures permitting the
prediction of responses for a variety of applicasioand therefore, we refer to
Senjanovic et al. (2009) for the importance of dep®g accurate 3D models in some
modern design applications.

Fig. 03 7800 TEU Container ShippA=334 [m], B=42.8 [m], T=14.5 [m],
Arp=135336 [t], from Senjanovic et al. (2010)
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Fig. 04 Determination of natural modes, given fghtiveight condition displacement
A=33693 [t], by means of (a) 1D Finite element asigly (b) 3D Finite element
analysisfrom Senjanovic et al. (2010)
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Fig. 05 Transfer functions of torsional (left) ahdrizontal bending (right) moment,
=120, U=25 [kn] , x= 155, 75 m from AP, from Senjanoei al. (2010)

Other marine structures for specific applicationshsas pipelines conveying fluids,
floating airplane runways, floating bridges and tiuils, e.g., trimarans, are some of
the most popular designing trends calling for thr@kmensional (3D) techniques.
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Fig. 07 (a) Velocity flow domain of the currentfests of transient bottom (left)
(b)Elastic responses of the Mega — Float &irecat wave excitation (right)
(see, e.g., Wang & Wang 2015).

Given the demand for larger scale of different tgpships, which grow in numbers,
models with higher requirements are on the risegaR#ng the advances in the
hydroelastic theory, the last 30 years, significamhancements provide us with new
means to treat either the 2D or the 3D problemc@ations concerning symmetric
(vertical bending), antisymmetric (coupled horizinbending and twisting), and
unsymmetric (coupled vertical and horizontal begdiand twisting) distortions
together with the prediction of the responses dugadmming excitation are just some
of the problems tackled by the developed 2D modEhe associated non — linear
phenomena involved in large motions of the largerimeastructures have been
successfully treated by contemporary 3D modelingniwans of Finite Element
Method (FEM) and Computational Fluid Dynamics (CE€jhniques.
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Fig. 08 lllustration of modern hydroelastic anatysrom Senjanovic et al. (2008)

In previous years, the conduction of tests fordlzstic model of the S175 container
ship has been included in the work by Chen e{18199); see, also, Watanabe et al.
(1989). More recently, Remy et al. (2006) have cmteld tests for a flexible barge
based on the work of Malenica et al. (2003) anthertheoretical model of Ledoux et
al. (2004). The barge model has been constructadidlye rigid pontoons connected
via a steel rod, and the conducted tests have édcos the investigation of the
structural behavior under vertical bending as vasllunder horizontal bending and
torsion for heading regular and irregular wavese Tasults obtained by these test
have been compared with a solution of the coupladewoad- ship vibrations system,
which has been obtained by the use of 1D FinitenEld Method analysis for the
determination of the dry modes together with a 3@eptial flow theory. The
comparison between the test and the theoreticatisnlhas shown good agreement
between measured and simulated barge responsegvEiQwn a retest by Malenica et
al. (2007) of the latter experiment, the elastic modhelge been proved to be accurate
enough in order to produce a unified hydroelastedigtion of the behavior of long
and slender marine structures for which the angiditeatio of the elastic and rigid
modes is a bit lower. In addition, other tests hbeen conducted concerning the
prediction of responses of two frigates as presehyeBishop et al. (1983) and Aksu
et al. (1991). Last, Oka et.gR007) and Oka et al. (2008 ported series of tests
conducted on a backbone elastic modelaohigh speed vessel (taking also into
consideration whipping vibrations) as well as fdamge container carrier.
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Present work

In the context of the present thesis we examindyldeoelastic responses of, long and
slender, monohull marine structures in waves camsig the action of vertical
bending moments, which produce symmetric distostiomhe calculation of the
natural frequencies and the corresponding principades of the structure is initially
based on examining the free edged thin beam, whiahcommon/standard approach
for ships, by using “dry hull” analysis. We emplalge Euler — Bernoulli and
Timoshenko beam models in Chapters 1 and 2, ragpbgtsee, e.g., Graff (1975) to
calculate the structural responses of the beam bgns of 1D Finite Difference
formulations. The former model provides us withules concerning beams under
pure bending, while the latter one incorporatesefifiects of shear deformations in the
vertical plane (coupled system). In addition, wenpare the results of the Euler —
Bernoulli and Timoshenko models and we evaluateatteeiracy of the two theories
based on comparisons of numerical and analyticalltee To better understand the
use of the two models, the structural responseferent beam models are tested for
specific examples, i.e., for different geometrichlaracteristics and types of end
conditions. Results are presented in Chapters Rarwhcerning Euler-Bernoulli and
Timoshenko beam models, respectively. Detailed @imspns are included in
Appendix A.

Subsequently, in Chapter 3 the rigid responsesnoélangated (long and slender)
marine structure travelling in deep water with diemean forward speed in head

or following incident waves are calculated by meahstrip theory in the context of
the potential flow. Head seas are considered nmogbitant from point the point of
view of the severity of wave induced loads affegtthe overall performance of the
ship. The assessment of the ship hydrodynamic prepgadded mass and damping
coefficients, and generalized hydrodynamic foraa®) calculated by the celebrated
STF strip theory model (Salvensen et al 1970) usysiematic sectional results that
are obtained by means of Boundary Element Methd&MB In this method the wet
surface of the ship is divided into a number ofpstr(transverse sections of local
characteristics) and then a 2D, linearized, paaéritow analysis is applied to the
local hydrodynamic problem for each strip. Potdnflaw analysis is used in
conjunction with linearized boundary conditionsabéd on the basis of assumptions
concerning small wave amplitudes, small perturlmatod the flow due to the ship
forward motion and also small oscillatory ship roas. The present BEM applied to
treat the sectional problems in deep water condtis based on low order panels
with continuous source-sink distribution, in comjtion with an absorbing layer
technique to treat radiation conditions at appwdpridistances of adequate wave
lengths away of each body strip/section. Detailsceoning the method are presented
in Appendix B. Then, the calculated sectional ressaf various quantities, including
added mass, damping, Froude - Krylov and diffractimrces are integrated
alongships to obtain the 3D hydrodynamic coeffitseand exciting forces and
moments. Using the latter results the system ofdya equations is solved and the
ship’s responses are derived.

In the Chapter 4 the above model is extended &t tlee problem of hydroelastic
responses of a beamlike elongated marine struahdealerive information concerning
the elastic responses associated with flexuralicadrtvibrations in waves. In
particular, a strip hydroelastic model is develog®d exploiting the hull girder
vertical dry modes and by using the additional telaerces beyond those related to

15



inertia, damping and hydrostatic terms of a lingsuillator. Results are obtained for a
particular floating structure (elastic barge) inwers and compared against measured
data from model tests presented by Remy et al. ,2d0@&enica et al. 2003. The hull
form under investigation has specific geometry, sreasd flexural rigidity distribution
and the experiment concerns a flexible barge wrdnsverse plane symmetry
designed to permit hydroelastic phenomena at z@reds

Finally, conclusions and proposals for future wahkd further extensions are
presented and discussed.

16



Chapter 1

The Euler-Bernoulli Beam Model

17



1.1 Introduction to the Euler — Bernoulli model

We start the present work by studying the lineardehqoresented by the Euler-
Bernoulli (EB) beam and its full mechanics. We assuhe steady state problem with
respect to a harmonic forcing; thus, we consider tlarmonic character of the
solution corresponding to any permissible givequiency.

M M +8—de

al AT X

oV
v dX V + & dx

y
Fig. 1. Thin beam undergoing transverse oscillzstiky(x,t)]

The governing equation describing the motion ohia tbeam forced by bending
moment, M (x) in the context of Euler-Bernoulli theory, is givéy the following

equation see, .e.g., Graff (1975, Ch.3),

4 2
D () 72E0 1 m(x) 22D — (), w

where D(x) = El (x) is the modulus of rigidity of the bear, isthe Young modulus
of the material, and (x) is the moment of inertia of the cross sectionhef heam at
each longitudinal positiorx; see Fig.1. Alsom(x) is the linear mass density of the
beam. For uniformly compact beams, it hatix)= g, A(x), where p; is the

constant density of the material, ahk) is the area of the cross section of the beam
at each longitudinal position. The termq(x,t) denotes the distribution of imposed
forces, and the terM (x) denotes the longitudinal bending moment.

Thin beam theory provides a methodology whichtsmange of applicability, allows
the analysis of structures in a simplified yet@ént way. Its basic characteristics are
(i) linear mass density and linear bending stiffne®9, shear deformation is
considered to be zero during pure bending. Conselyudii) the cross section areas
remain always planar and the neutral axis pasgesigh the centroid of the cross
section area of the beam. Also, the motion of teani lies on thexy — planeonly,

while cross section areas are considered to be symanfrinally, within the confines
of linear elastic behaviorj\) we assume transverse deformations and slopes to b
small.

18



The shear force, as provided by integrating thetal line equation, is

V<X):de—>EX) . (2)

Focusing on the steady state linear problem we egamine free harmonic
oscillations of the thin beam. Therefore, we eliatéenthe time dependence using
complex amplitude technique. Hence, the representaf the flexural deflection can
be written as follows

y(xt)= Re[°y(x )e—’“] , (3)

where the over-circle denotes the complex amplitoidthe corresponding quantity,
Re(- )denotes the real part of the complex quantity, andv/—1 is the imaginary
unit.

Consequently, equation (1) takes the followingxfor

D(X)a%xﬁx)m(x)wz y(x) = q(x) . 4)

To find the natural modes of the thin beam we nugstsider the corresponding
homogeneous version of (4), which is:

4 .
D(x)a ygx) +m(X)w® y(x)=0 . (5)

OX
The calculation of the eigenvalues (eigenfrequexciand the corresponding
eigenfunctions (mode shapes) of the model expressedeqn. (5) imposes the
consideration of adequate boundary conditions Eg)ncan be solved using different
boundary conditions, which in turn correspond tibedent practical problems. Thus,
the mathematical formulas for the free-free, pinpathed and clamped—-clamped
type of boundary conditions are investigated irs ghiesent work, expressed by the
following equations

Free — Free Boundary Conditions

Concerning the free type of edges, the bending moared shear force are zero,
M =0 andV =0 respectively, at the ends of the beam, i.e.:

95Y(x=0)=0%y(x=0)=0, (6a)

O5y(x=L)=d%y(x=1)=0. (6b)

19



Clamped — clamped Boundary Conditions

The boundary condition at the ends of the beam theatecessities of =0 and
Y'=0, which are expressed as follows

yix=0)=YE=0_ 4 (7a)
dx

yix— )= Y=L o (7b)
dx

Pinned — pinned Boundary Conditions

The end conditions in this last case, #re 0 and M = 0. More specifically

2 _

y(x:O):%:o, (8a)
2 _

yu:uzﬂlggﬁzo. (8b)

The boundary conditions (6)-(8) are also presemié¢ke following table

nyggge position slope Moment E;?i;
Free y'=0 y" =0
Clamped | y=0 y'=0

Pinned y=0 y'=0

Table 1. Boundary Conditions for model (5)

In the section that follows, a numerical methodeduabon finite differences (FDM) is
developed and is applied to the solution of thevabeigenvalue problems for a
general Euler-Bernoulli beam and all combinatiohbaundary conditions; see Table
1. The code implementation of the method has begh bsing Matlab®. The
numerical results are compared with the analytalution in the cases of a
homogeneous and inhomogeneous beam (square cotisssand rod (circular cross
section) (which is listed in Appendix A) for valigian purposes.
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1.2 Analytical modeling of the Euler - Bernoulli bem

The general homogeneous solution of the equatidn5)lis (Graff 1975, Ch.3)
Y(x;t) =C, cos(@ x4+ C, coshf x} C; sing xC, sinif », (1)

where C, i=1,...,4, are constants representing the amplitude of ¢leesponding
harmonic term ands is the wave number. In order to satisfy the gibeundary

conditions we form the first, the second and thedtbrder derivative ofy(x;t) as
follows:

0 \Y(Xt)=—-C,Bsin( x)+ C, g sinhB x{- G cosf xy GB cosp( , (2)
8?XY(X;t):—C1,b’2cos(B X)+ Qﬂz coshg x)- C;,BZ silf x) {;ﬂz sinfi( (3)
%Y (xt) =C,B°sin(Bx)+C, A3sinh(B x)— C;5° cosf x} GB° cosi > . (4)

Free — Free Boundary Conditions

Using the boundary conditions (3, 4) , in eq. (¥) ebtain the analytical expressions
for free edges of the beam, i.e.,

95Y (x=0;t)=—C, g cos(0}+ G A% cosh(0) €A sin(@ B> sinh@®) , (5)

%Y (x=0;t)=C,5°sin0) + C, #°sinh(0)- GA° cos(0)} ¢A° cosh(®) (6)
03Y (x=L;t) =—C,B%cos(BL )+ G, % coshL ) Gp2 sifL ¥ ¢> sinpL 9
(7)
%Y (x=L;t) =C,5%sin(pL) +C, B3sinh(BL ) C,8° cosfL } GB° cosll ¥
(8)
or equivalently, in matrix formulation,
—p? B 0 0 c1
0 0 e il C2

—p%cos(L) B?coshfl )  —p% singL ) B2 sing L)C3
Bisin(B L) Besinh(3 L) —B%cosB L) pB°coshg L) \C4

N /\_Y_/
B

—
A

The characteristic polynomial associated with mia#i of the homogeneous system
above is, see, e.g. Graff (1975, Ch.3), Georgi®@d82Ch.10) :

p(AL) =24"(cos (AL )coshgL ¥ 1. (9)
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The characteristic roots of (9), are found by s@\he equation
p(pL) =0 < cos(BL )coshgL ¥ (20)
For the calculation of the roots, a numerical mdtladso known as “Newton-

Raphson” is used. The analytical expression ofeilgenfrequencies is

2
a)n:l[il_"] % , n=12,... (11)
yo)

Next, we proceed with the specification of the @oefntsC. i=1,...,4, in (1). By
virtue of (5)-(8), we obtain

C, =G, and C,=C,.
Thus,
C,[-cos(B,L 4 cosh@,L D+C,[ sinbg L ) sigf.L | (12a)
C,[sin(B,L)+ sinh@,L J+C,[ coshg,L }» cogL |» (12b),

the latter Eqns. (12a-b) being equivalent.

Using eqgn. (12a) or (12b) we introduce coefficigdy, as follows

C; _cosg,L)-coshg,L )  singlL } sinifL (13)
C, sinh(BL)-sin@ L)  coshgL } cofL

Hence, the eqgn. (1) becomes

Y, (x) = C,[cos(x )+ coshg }C,[ sin{ ¥ sink(]), (14)

Chr=

where C, is an undetermined coefficient. Thus we consider mon-dimensional
version of (14):

Y, (X) =cosk )+ cosh }C, (si{ 3 sinkx( , (15)

It should be noted that the mod¥égx) are orthogonal. The normalized form of (14)
is given by:

% _ Y, (X)
Yn(x) - ”Yn(X)” ’ (16)

where||Y,(x)| is the norm

(17)
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L
The integral,f{Yn(x)}2 dx, in the developed program “EBT.m”, is calculated
0

through the trapezoidal rule.
Given the groupY,(x), {Y,(x),n=1,2,3} in the domain—L <x<L, the inner
product provides us with the following result

L

(YY) = f Y.Y, dx . (18)

—L

If the functions are orthogonal over the donjaib, L], it is shown that, see, e.g.,
Boyce & Diprima (Ch. 10),

(Y0, Yy)=0 n=m, (19a)

(Y. Y,) = L. n=m. (19b)

Using the Dirac functiong,,,,, over the beam’s lengtld,L|, we obtain the alternative
orthogonality schema

<Yn’Ym> - 5nm

{O, n=m (190)

1, n=m

Hence, the functiory,(x) are an orthogonal basis. Furthermore, every fomd¢t(x) ,
which is defined orj0, L], can be represented by a basis of the domairiles/fo

f(x):i f.Y,(x), xe[o,L],
n=1

where,
fn=(F0),Y,(x)) (20)

To enhance the orthogonality property for singfu@ctions we begin by presenting
the Dirac delta function at the poigt, through the formula

S(x—3) =35 a(¥). (21a)
=1

Let 6, be the inner product at= x,

L
Sy = [ Sx— 30, (X)elx,
0
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where

L
Ya00) [ S(x=x0)dx = Y, (%0),  X=% -
0
Thus, the general form is

5(x— %)= > Vo (%)Y (X) (21b)

n=1

To expand the previous results for other singularcfionsf (x), at x=x,, the
schema to be used is

L
f f(X)S(X— %) dX (22)
0
Applying (21b), the egn. (22) is now changed to
L o0 o
JRICORACH A ESPACHIETRACHIES
0 n=1 n=1
Finally, using eqn. (20), the latter provides wttle following result

3 NGk =  (Xp). (23)

n=1
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Solving the equivalent system of equations for ¢keemped-clamped and pinned-
pinned type of edges, we take the correspondinfficieats and the non-dimensional
motion equations

Pinned-Pinned Boundary Conditions

The frequency equation meeting the pinned typelgés, is
p(pL) =0 < sin(fL)=C, (24)
see, e.g. Graff (1975, Ch.3).

To determine the natural frequencies using thesgo, is based on the analytic

expression
2
\EL nN=12... . (25)
PA

The solution of the system associated with thendaty conditions (1.1.8a), (1.1.8b)
provides us with the coefficients of eq. (1)

Al
L

.

C,=C,=C,=0.
The corresponding non-dimensional form of the @qudtl), is proved to be
Y, (X) =sin(x) , (26)

Clamped-Clamped Boundary Conditions

Finally, the homogeneous system associated witltldraped type of edges leads to
the frequency equation

p(pL) =0 < cos(L )coshgL ¥ (27)

which is identical to the one obtained from theeftgpe of edges, see, e.g. Graff
(1975, Ch.3). Using the Newton - Raphson, numerioa¢thod we obtain the
characteristic root8L, which in turn are used to define the frequend&iased on

equation:
2
(AR s 29
P.

n

The system formulated by the boundary conditionk.h)-(1.1.7b) specifies the
coefficients of the motion eq. (1) as follows

C,=-C,
C;=-C,
C,[cos(B,L )— coshB,L )+C,[ sing,L ¥ sinkfL |» |, (29)
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—C,[sin(8,L)+ sinh@,L }+C,[ cosB,L } cosi,L | . (30)
We calculate the coefficient:

Cp— [ _ cos(B,L )— coshg,L (31)

C, sin(B,L)—sinh@ L)’
and the corresponding motion eqn. (1) is:
Y, (X) =cos(k )— cosh }C, (sin{ } sinix( , (32)

The investigation of the divergence between themabrmodes derived from the
numerical and the analytical solution consists e¥ese importance and will be
illustrated in Appendix A.

1.3 Euler - Bernoulli modeling using Finite Differance Method

For the appropriate implementation of the Finitdddences Method (FDM), the
discretization of the problem is necessary, throaghitable grid definition. Hence,
we consider a discretization of the beam into alemof N elements of equal

IengthAx:ﬁ, defined by a set o +1 points. For the domaj, L], we define the

nodal points{xi Y= y(xi),i =12,.N+ } as depicted in the following figure,

v

A
\ 4

Fig. 1. Grid points

Thus, eqgn. (1.1.5) is considered using its discagtalogue, which is presented by the
linear formAu = F , where matrixA=[N x N] is a banded one and its bandwidth

depends on the order of the derivative. For a éirder derivative a tridiagonal table is
formed (see figure 2), in which all non-zero eletsere placed in the main diagonal
and in its two adjacent sub-diagonals:

Q; ay
&,

aN N+1

AN ANt

Fig. 2. Banded (tridiagonal) table
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Thus, the higher the order derivative we approxénthe more banded the table
becomes. Setting a smalltrstep(Ax) we increase the size of the table A and in

parallel we have a better description of the spedidmain.
The discretization scheme for the Euler-Bernoulliagpn is materialized by using

second-order, central finite differences. Thustfand second order derivatives of the
deflection are approximated by the following foriaml

/ Yia— V¥ 2

=YY g’ 1
y(%) A + O(AX) (1)
I i -2 i+ i— 2
y'(x) =2 Ai’z Y1 o) )

By virtue of the above equations, the calculabbthe values at the nodes= x,
and x= Xy, needs a special treatment. An appropriate motiificas used, based
on the forward finite differences schemexat x, with a second order accuracy

- 4y, — 3y 2
(% =0)=LFD2=H | 5axp2, 3
y (% =0) A +0(Ax) (3)
—Y4+4Y; -y, +2
yN<X1:0): y4+ y3 2y2 + M._i_ O(AX)Z, (4)
AX
— 14y,— 2 18, -
Y@ (% = 0)= 3ys +14y, 2A33+ §, 5y, o(ax)? . 5)

and the backward finite differences schemex atx, ,

, 4y, +3
Y (Xa=L)= e ZyANX yN+1+O(AX)2 ’ (6)

Y (g = LDzt X oa? ()

3yn 3 — 14y o+ 24y 1 — 18y +9y.,

o + O(Ax)®  (8)

y(g),X(XN+1 =L)=

respectively.

@ A smaller step(AX) than the initially usedAX=L / N , is achieved by increasing the number, N, of thments.
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At this point we grab the chance to investigatertteghod’s consistency. Consistency
of the numerical procedure is a property relatetheodiscrepancy of the numerical

solution against the exact one, see, Akrivis, Dtiag4997). The terrrO(Ax)2 in the
above eqns. (1-8), constitutes the error of the arigal method and on the step,

AXused to discretize the domain.
More specifically, given a function y(x)eC* [a, b], xe(a,b) and
Ax>0 :x+Ax,x—Axe[a,b] we calculate the Taylor series of eqn. (1) aofud

X@u(x)+Ax282u(x) ACOuU(x)  Ax*0%u(x)

AX) = A
U(X+4%) - u(x)+ X i 2 X 6 ox° 24 ox3

X@u(x) +sz 0%u(x) AX®9%u(x)  Ax*9%u(x,)
ox i 2 o 6 ox* 24 ox°

u(x—Ax)=u(x)—A ,
where x;, X, € (X—Ax, X+ Ax). If we sum up the previous equations the

approximation for the first and second order deivweabecomes:
|u(x+Ax)—u(x—AX) X
| AX

—u'(x) max‘u(g’) (%)

<
a<x;<b

and
|u(x—Ax)— 2u(x) +u(x+ AX) X2
| AX?

< )

a<x;<b

. u//<xl)

max‘u“) (%)

respectively.

Let C, = max‘u(s) (%3)

, C,= max‘u(ﬂ') (%)

, then the quantity on the
a<xg<b a<xa<b

right- hand side of each inequality is the maximemor of the approximation (finite
difference method) , see also, Akrivis, Dougali@9Z, Ch.6). The first and the second

order derivative in its discretized form is

2

U —U, AX
—U|< _
AX =G 3
U — Zui2+ Ui _ ui” < C2 AXZ _
AX 12

Though, the convergence of the numerical solutiamd( the quality of the
corresponding results) is strongly dependent onellreination of the error factor.
Hence, in the case of a dense partitioning, weragdhat the error is too small and

practically is negligible Whelﬁ)(Ax)2 —0.

Since all the parameters have been defined, weepbwith the presentation of the
modified version of the finite differences scherhattreplaces the beam equation
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(1.1.5). We consider a homogeneous beam versioerend(x) = El (x) = D =ct. is

the constant modulus of rigidity of the beam. Also(x)=m=ct. is the constant

mass density of the beam. The number of the gigeateons to be solved is equal to
the number of the nodes. The homogeneous equdtibrd) can be written as follows

First, we use the following notation

_ pd%
G<X) - dx2 ! (9)
2 o
dGYXHmfﬂm:O. (10)
dx

The finite difference scheme for (9) is written

d”G(x) G126 4Gy Dy, o,— 4Dy, + By, — Dy 1+ Dy,
dx? dx? dx?

(11)
Also, the term
Mo’ y(X)~Ma®y; . (12)
Replacing the schemes (11, 12) into equation (ftbjliscrete version, becomes

1
v Dy.., — 4Dy, + (6D +M;w?)y, —4Dy; ;+ Dy, ,]=0 . (13)

1.4 Numerical code implementation

The solution ofy can be expressed in matrix form and the dimensainthe

matrices are defined by the number of the nodésiasnentioned before. We set the
table form of the problem and so the linear expoessf the system is:

N+1

> Ay, -2y, =0, {zn =2y, =y, n:1,2,3,....}., 1)
=1

The eigenfrequencies can be specified by solviegptievious homogeneous system.
Matrix A appearing in (1) is a banded (pentadiagjomatrix, as mentioned in Ch.1.3.

Considering various types of boundary conditioreg $able 1 in Ch.1.1, and their
analytical representation in Eqns. (1.3.1-1.3.8),abtain the following cases for the
construction of matrix A:
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Clamped edges

1 0 0 - .
_1%X %X _O%X .
0 D% o W
. 0 0

1

Free edges

%xz _%xz %xz _)/dxz 0
_2%x3 %x?’ _1%x3 %x?’ - 175((1lx3 0

0 _1%x3 _%xg 1%x3 _%x3 2/5((1x3
0 _}/dxz %xz _%xz %xz

Pinned edges
1 0 0

%xz . _5dx2 %xz _ _}éxz _O
0 _}/dxz %xz _%xz %xz
0 0

1

All the remaining cells of tableA are supplemented with the coefficients of eqn.
(1.3.11). Now that the tables are set, we calculaesigenfrequencies using a simple
method. The first step is to set a big range ajdemciesp , and search for the roots

in it, using an iterative process. Replacing eaaluer of the range into the equation

Ay — w?y we find all those frequencies that eliminate theation. Those frequencies

are called the ‘natural frequencies’ of the tramsgeoscillation of the homogeneous
thin beam.

Both numerical and analytical solutions have beamened and are presented in the

Appendix A. In the next chapter we examine the bease using the Timoshenko
model.
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Chapter 2

The Timoshenko Beam Mode
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2.1 Introduction to the Timoshenko beam

So far, we have examined the simplified model dhia beam based on the Euler
Bernoulli Theory (EBT). An important and widely gited enhance of EBT is
referred as Timoshenko Beam Theory (TBT), in whé&ltorrection for the shear
deformation is taken into account in parallel wiitle effects of the rotary-inertia. The
basic assumptions govern TBT approach are: (i) Deam theory, (ii) linear mass
distribution and linear bending stiffness, (iii)aphr sections remain planar while
bending, (iv) we assume transverse deformationsstopks to be small, and (v) the
neutral axis no longer passes through the centobiccach section, thus shear
deformation is observed. Shear deformation is @hbyepure bending and not from
additional kinematic condition, such as torsionvidbsly, assumptions (iii) and (iv)
impose the departure from EBT. Additionally, botBTEand TBT examine planar
deformations. Therefore, the motion of the beara ba the xy — planeonly, while
cross section areas are considered to be symm&lsi, the basic differences of TBT
as compared to EBT approach awtt)(the neutral axis no longer passes through the
centroid of each section, and thus shear deformascobserved, andd®) rotary-
inertia is no longer negligible. Finally, the foscacting on the beam are: the bending
moment,M , the shear force/ , and the distribution of imposed forceg,
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Fig. 1. Forces acting on the cross section aread3ihenko model).
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The deformations of the beam are now describedwoyedquations with respect to
both, bending and shear effects. The two, couptegigning equations, are

y(x,t %y, (x,t 92y, (Xt

GA(X)K yg:()—yb]-l—D(x)%—pl(x)%:O, 1)
Ayp(xt)  9%y(x.t) d%y(xt)

Gawq:ax o e mg =252 = atxt) )

where EI (x) is the modulus of rigidity of the beark, isthe Young modulus of the

material, andl (x) is the moment of inertia of the cross sectionhef beam at each

longitudinal positionx; see Fig.1. Shear modulus, G, has been also adddte
equations, depicturing the shear deformation of tthie beam. Also,m(x) is the

linear mass density of the beam. For uniformly caotpbeams, it holds
m(x)= pyA(X), where p; is the constant density of the material, aftk) is the

area of the cross section of the beam at eachtiahgal positionx. The termq(x,t)
denotes, again, the distribution of forces whichdaro in the homogeneous scenario.

Since, the cross sectional area is no longer pdipdar to the centroidal axis, we
denote the displacement of the cross sectionypyand the displacement of the

centroidal axis by y.Thus, the basic equation that describes the gemalet
deformation of the axis, is

0
-%:w+%, 3)

where, y,, is the shear strain at the centroidal axis asea, e.g., Graff (1975),
Samouilidis (2004) andy/dx determines the slope of the centroidal axis.

2.2 Dispersion relations

Assuming harmonic responses

Yo (%) = C exp( j (xx—at)) | 1)
and

y(x,t)=C,exp(j (xx—at)) , (2)

We denote that the coefficieat should be treated with extra caution as it coas$t
the wavenumber of the harmonic propagation, in reshtto the shape-dependent
coefficient K of the beam. The harmonic response of the Timoshésam model
can be specified by its phase velocity. For thewdation of the velocity we reduce
the two equation motion system, (2.1.1, 2.2.2) atsingle one by considering the
homogeneous problem thatgix,t) = 0. Differentiating the eqn. (1) with respect to
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X as times as needed in order to replace the tgrrimto eqn. (2), see, e.g. Graff
(1975, Ch.3.4) the following non-linear equatiorr the displacementy(x,t), is
obtained:

El ay*(x,t) (1 = El Joy*(x,t)  ay?(x,t) pl dy*(xt)

2 |3t 201 2 2 T 7 =0 (3)
PA  OX A GKA) 9x“ot ot GAK ot
Replacing egn.(2) into eqgn. (3), we get
£K4i4—[|—+— k% %0% *+ o 2+p—|a)4j exp( j (xx—ot))= 0. (4)
PA A GKA GAK

Recalling tha =+—1 and D = El we replace the phase velocdtyﬂand so the
K
latter equation becomes

['_+i]+i
A GKA| 2

El

—— +-2 _c*=o0. (5)
pA

Let CO:\/E be the factor to non-dimensionalize the veloatty For the non —
Yo,

dimensionalized expression of the velocity, we tlse bar symbolc =c/c, and
therefore we obtain

El _[I_+ El ]+i°_2 pl c*
pAci ||A GKA) «k?%|ct GAK ¢l
_ GK GAK |_, GK
c4—[ +1]+ ~|c?+=—=0. (6)
E |[Ex E
Let x=¢C?, B=— G—K+1 +GAK , and y:G—K, the equation (6) may be
E Ex? E

expressed as a quadratic equation in its typical fo® + x4+ y = 0. Calculating the

discriminant of the problemA = % —4y, only the positive roots are acceptable.
Hence, the positive root we are interested in is

c=Vx= # (7)

We also calculate the phase velocity of the EulenBelli model for comparison
purposes with the Timoshenko beam model which iremlveam shear deformations.

By the assumption of harmonic responsgx.t)=Cexp(j(xx—at)), the EBT
motion equation (1.1.1) is reformulated as follows:
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Dx? —mw?=0 = a)zlcz\/E .
m

The phase velocitg = 2 leads to the equation

K
C:K‘\/E, (8)
m

which, by usinge, = /E/ o, takes the non-dimensional form

.. [Pr
C_K\/;. ©)

The wavenumber to be used in the dispersion cuwvesspo non-dimensionalized
through the wavenumbe, = 2%, wherea denotes the thickness of the thin beam

(or the thickness radius of a thin rod). The follogvifigures, to be presented, are the
results of the implementation of the cod®igpersion diagrams’. The shear
coefficient K is defined based on analytical exprass, see, Hutchinson (2001).

1 1
0.9 0.9
Timoshenko Theory
0.8 0.8 ;
Timoshenko Theory Euler-Bernoulli Theory
0.7 07
Euler-Bernoulli Theory

-‘%‘ 0.6 %‘ 06
& g=1
® T o —
o o500 > =05
) [1:]
£ g
o 0.4 = 0.4

0.3 0.3

0.2 0.2

0.1 0.1

o 0
a 1 2 3 4 5 0 1 2 3 4 5
Wavenumber k Wavenumber K

Fig. 2. Dispersion diagram for thin beait,= 0.833% Fig. 3. Dispersion diagram for thin rd¢€l= 0.8571
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2.2.1 Conclusions

K =0.8335(rod),K =0.8571As expected, the dispersion curve predicted by the
Euler-Bernoulli theory is a linear function, seeg.Bi Fig.3, whereas the dispersion
curve from the Timoshenko theory is a more compddatcurve. In small
wavenumberskc the curve representing the phase velocity of thiered Bernoulli
model coincides, in a short area, with the Timosbemkdel one. In contrast to EBT,
the TBT phase velocity converges @~ 0.56 (rod case) andC ~ 0.54 (beam case)
when larger wavenumbers; approached. More specifically, ket oo and then
using eq. (2.6) we get

oK _ o
E

E4_[GK
E

—+1]62+

which in turn leads to a single root independeatfrwvavenumbernc. With further
investigation the slope of the EBT rod is greatenttiee one of the beam. Moreover,
the curve referring to the rod for the TBT approactaster its upper bound compared
to the beam of the counterpart theory.

For the steady state linear problem, we eliminlagetime dependence using complex
amplitude technique. Hence, the representatiohefléxural deflection fory, andy,

can be written as follows

Y (1) = Re[”yb (x )e-‘”t] , (10

y(x,t) = Re[°y x )e‘i“t] , (11)

Consequently, for the homogeneous problem, eghs()ltake the form

) 8?2
GA(XK %— Yo |+ D(x)aTZ,b—pl (XNo®y, =0, (12)
GAxK | 2B o V§X> Fm(X)o? y(x) =0 , (13)
OX 15)4

2.3 Timoshenko modeling using the Finite Differenc&ethod

The domain0,L] is defined by the nodal poirfts,y, = y(x),i=12,..N+ }.
Thus we consider a discretization of the beamamaomber ofN elements of equal

IengthAx:ﬁ, defined by a set oN +1 points. Considering the corresponding linear
expressions of the systems (12), (13) are:

N+1

> Ay -2y =0, {4 =l v, =", n=123,..}
j=1
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, and

N+1

ZAZijyj —A1y; =0, {ﬁ“n:a)rf’ yn:yi(n)’ n:1’2’3’""}' '

)

whereA =[N x2N] andA, =[N x2N] The grid definition of the domain determines
the size of the table§, A,.The two tables will be merged into a larger matrix
A= 2[N +1J? in which we will seek the eigenfrequencies

For the solution, to be found, we must set théetédrm of the linear systems, which

will be based on the FDM analysis. Using the scle(hed.1), (1.3.2) for the first and
second order derivatives, we replace the equatidpwith its discrete analogue:

GaA K - _GLA K

D
Yiii— GAKW, +d7+21 Yo, .1

2dx e 2dx
2D D_
_azl Yo +?21 Yoi 4 —,oilia)zybi =0
1)
and the equation (13) becomes
G ALK _GLA K, VR G ALK y
20dx bit1 2dx bj_1 dx? i+1
2G AK. G K.
oty -~y —mofy <0

(2)

Setting-up the banded tal#lg its bandwidth depends on the order of the devigat
of equation (1). It is consisted of second ordaivdéve of the corresponding term
Y, , in parallel with first order derivative of thercesponding termy Following this
set-up, we obtain a tridiagonal tab[@& +1x N +1] in which all non-zero elements
are placed in the main diagonal and in its two @hasub-diagonals, while in the rest
tableA ,[Nx2N +1] all non-zero elements are placed in its two adjacib-
diagonals, see fig. 1.

31 ay 0 0 B N+1 0
a5 a1,N+2
A= : 0
. an N1 ) aN 2N+1
0 0 ..
AN Angangt IR N 0
Fig. 1.
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Table A, is consisted of first order derivative, of thepdgsemeny, , alonghead with
second order derivative of the displacemgnt see Fig. 2.

a Y Ny2 QAongs
Qg 121 0 + N 0
&, . D N+2
A= 0 '
Ay N1 ) aN 2N+1
0 0 ..
AN A ANi1oN AN N+l
Fig. 2.

Array A [N +1x2N +1], is the first to be placed in tabk whereas it follows array
A [2N +1x 2N +1].

The type of edges which are going to be testeth&renes that have been used in the
(EBT) ,i.e. free-free, clamped-clamped and pinneutgd boundary conditions. Thus,
the mathematical formulas for the above type ofndawmy conditions should be
recalculated considering the basic geometrical temué2.1.3), for the (TBT). Based
on the above assumption, that yg,consists of the displacement of the cross section

area, we differentiatg, , with respect ta, to calculate the slope of the cross section

area. Its connection to the curvature is expressedhe equation, see, e.g. Graff
(1975), Samouilidis (2004 ):

u_D ©

El ox

The equation (3) ,is now changed into the equitefam :

82)’ Oy,
9y _ P 4
x> Ox @)

The expression of the shear force ,is:

V =GAKy,, (5)

,\wherey, replaced by the eqn. (3), provides us with theesponding result:
oy
V =GAK|—— , 6
2] ©)

Setting the proper values for each case beam siipper obtain the following
collection of :

Free — Free Boundary Conditions In this case both bending moment and shear are
zero at the ends of the beam. Using again the gagmthaty, =0 at the ends of

the clamped beam we obtain from Eq.(3)
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0 xYp(x=0)= 0= 05y(x=0)= 0, (7a)

O xYp(x=L)=0= 05y(x=L)=0, (7b)
and from Eq. (6)

9 xy(x=0)—y,(x=0)=0, (8a)

Ixy(x=L)=y,(x=L)=0, (8b)

respectively.

Pinned — pinned Boundary Conditions: The end conditonsY =0 is
straightforward in this case
y(x=0)=0, (9a)
y(x=L)=0, (9b)

The second condition necessitates zero bendingembit the ends of the beam
M=0, which using Eq.(3) becomes

0 xYp(x=0)=0= d%y(x=0)=0, (10a)
O xYp(x=L)=0=05y(x=L)=0. (10b)

Clamped - clamped Boundary Conditions: The end conditionsY =0 is
straightforward

y(x=0)=0, (11a)
y(x=1L)=0. (11b)

Furthermore, using the assumption thgt=0 at the ends of the clampted beam we
obtain from Eq.(3) the corresponding boundary comas

Yo(x=0)=0, (12a)
Yo(x=L)=0, (12b)

ensuring that alsy’ = 0 at the ends of the beam.

As the basic geometrical parameters have beenibledcwe use the forward and
backward finite difference schemes (1.2.3-1.2.8discretize the above boundary
conditions.

Considering various types of boundary conditiorsspeesented in Eqns. (7a)-(12b)
we obtain the following matrices :
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Clamped- clamped

1 0 0O O
. O . 0
o . o .
“. 0 . .0
0 0 .
0 1 0 O
A=|--—_______________
0 O 1 O
. - 0 . 0
0 o .
“.0
0 0
0 O 0 1
Free-Free
_%x %jx 0 o 0 0
0 o .
0 0 . 0
0 .
- 0 0
Yox Hax
A: ————————————————————————————————

0
e K
Pinned-pinned

_1%)( %x —.O./Sax 0 00 .0 .O
0 O%x _%x 1%x o o 00

0

N
0 0 0 0 1 00 0
0 0 0 0 0 0 01

We place the rest coefficients of Eqns. (1), (23lirthe non-zero cells.
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2.4 lllustration of the modes for a beam cross saonal area (EBT, TBT)

In this chapter, we demonstrate the results derfvaah the developed numerical methods
which are included in the program “TBT.m” and EBT.m"”. Regarding the Euler —
Bernoulli model we depict the modes of a homogeseand an inhomogeneous beam, see,
Ch. (2.3.1), (2.3.3) respectively. It should beetbthat we use the facthZ/L to scale the

modes in order to have a more distinct illustratbbthe modes and also in the homogeneous
case we present the modes based on the analytitdios. Also we denote that beam
represents a square sectional area while rod psea circular sectional area. Furthermore,
for comparison reasons we demonstrate the modeslfomogeneous and an inhomogeneous
Timoshenko beam based, see, Ch. (2.3.2), (2.3.4ll the previous cases we have used a set
of M=100 points to discretize our domain. The maharacteristics of the beam ar@)

Length: L=50[m [m], (i) Young’s modulusE=51C [Pa shear modulus
G=8010[P3 (i) Mass densityp:923[kg/m3}, (iv) Thicknesst=1[m], (v)
Moment of inertia: | =”t%2=0.0833[ kg nﬂ ,(vi) Cross section area:

A:tzzl[mﬂand (vii) Shear coefficientK =0.8332. For a more detailed

presentation of all the combinations concerning@utar and a square cross sectional
area using both the Euler — Bernoulli and Timoslemidels, see Appendix A.
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2.4.1 Euler — Bernoulli homogeneous beam
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Symbols: Analytical results ‘
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x(m)
Fig. 1. Clamped edged homogeneous beam, faﬂ to scale the modes
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Fig. 2. Free edged homogeneous beam, fayfﬂjt to scale the modes
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Fig. 3. Pinned edged homogeneous beam, fa\éﬂ to scale the modes
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2.4.2 Timoshenko homogeneous beam
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Fig. 1. Clamped edged homogeneous beam, M=100spoint
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Fig. 3. Pinned edged homogeneous beam, M=100 points
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2.4.3 Euler — Bernoulliinhomogeneous beam

2 T T
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2.4.4 Timoshenko inhomogeneous beam
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Chapter 3

Ship Hydrodynamics
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3.1 RIGID SHIP HYDRODYNAMICS

In the present chapter we review approximate method elongated bodies for
treating the problem of ship (of length L, breaBtland draft T) responses in waves,
considering first the structure, traveling at canstforward speet, in deep water, to
be rigid. Also the waves and the induced motiorscansidered small so that linear
theory can be applied. The slenderness assumptiothé body will permit strip
theory approximations to be used. For simplicitiydhe case of head incident waves
will be considered.

We begin by introducing a symmetrig;x,-plane ship geometry and its motions
analyzed on an orthogonal coordinate sys(el{rbgz,XS) see Fig.8. The axis system
(%, %5, %) is moving with the mean value of the ship’s vefipeind refers to a steady
axis systenix, X, X5 ) - The steady coordinate system is placed on teedurface
of the sea where the elevation of the water is.z&h®e x X,,-planedefines the
horizontal plane and;-axisis opposite to the direction of the gravity andticeai

to X5 Xog -

AAX3S n’b (hea e)AL
Xoq m, (sway) -

U
—>
63 (yaw) | //;£ itch)
Q . (roll /
N > ) > \

__________________________________________

Fig. 1. Ship’s motions

Let &, i =1,..,6 describes the generalized motions of the ship,Tsdgde (1)

¢

S

S3
Sa= 0
&5 = 0,
$6 = O
Table 1
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Neglecting viscous effects we assume that the modibthe fluid is irrotational.
Hence, we introduce the potentig]x, x,, X5;t) to formulate the body motions in the

sea water. In order to solve the velocity poterdfahe waves a linearization scheme
is followed.

The Doppler effects is associated with a frequesiaift, which in ocean engineering
terms is named after “encounter frequency, , and is represented in the steady
moving reference system by

we = 0y —Ukycosp (1)

where k = a)g/g is the wavenumber ang® is the wave incident angle (angle

between the incident wave and the ship track).him ¢ase of head seas (waves),
p = r, relation (1) is simplified inw,= @y +Ux, and from now on the expression

@, Will be presented a& .

The linearized responses of the ship are obtaimedhe frequency domain
& ()= Re(;ei"’t) by the solution of the system of equations dbsugithe dynamics

6
(—a’2<Mfi+A/i>+jw(UNfi+Bfi>+czi)§i =F, 2)

i=1

whereF, (t) = Re(F,e" ) = Re(( F,+ FD[)e""’t) are the Froude-Krylov generalized

forces denoted by the incideri,, , and the diffractionFy,,, , generalized forces. In

the eqgn. (2), the matriM ; is

M 0 0 0 J -J,
o M 0 -J 0 J
o 0 M J -J O

M, = ., 3)
I O _‘J3 ‘J2 Ill I 12 I 13
_‘JS O _‘Jl |21 I 22 I 23
‘J2 _‘Jl O I 31 I 32 I 33

where M = pC,LBT = A/ g is the mass of the ship (of displacem&pat draft T and

C, the block coefficient. Also J =(J1,J2,J3):J'erdV is the polar moment of
v
inertia, where,rg , is the distance from the gravity center . Thiis; MR, where

Rs is the center of gravity. In the case of everl kbéps R; =(LCG,0,VCG), with
LCG denoting the long center and VGC the vertical @eat gravity.
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3
Furthermorel;, = jp(z r2— riZJ dv ,i=1,2,3is the moment of inertia while
\Vj m=1

l,; :J'prxridv , L #1,i=1,2,3is the rotary product.
v

000 O O 0
000 O O M
. 000 O0-M O
The matrix N,; = (4)
0000 -3, —J,
0000 J O
0000 0 J

Also the,C,; , stands for the hydrostatic forces

00 0 0 0
00 0 0 d
0 CSS CS4 C 35 0
0 C43 C44 C 45 0 .
0 CSS CS4 C 55 0
0 0 0 0 (@

O
I

(5)

O O O O o o

The rest of the matrices such &g is the added mass, arig}; is the damping

which dependent on the radiation potentials. Comsetly, for head seag; =180
and using eqgn. (1), we derive the following coupdeghations for the heave and the

pitch motions of the ship,
(_a,Z(M + Ag) + ja;B33+C33)§3—|—(—a)2(A35—J )+ jo(B 35 MU)+C 3}5 =F ,
(6)
(—a’z(M + Asg) + ja;B53+C53)§3+(—w2(A55+I 23+ jo(B 55-UJ }+C 5)5§ sF
(7)

In the eqgns. (6), (7) harmonic responses have beesidered. In the above equations

Cs3=p0A, , Where A, = J' B(x) is waterline areaCss=Cg3= A, LCF where
X

LCF is the long center of flotation. Alsdss =gM GM | =gM (KB+BM_ - KG),

where KB is the vertical center of buoyanc$M, = I/, I =1y,=A4 Is the

longitudinal metacentric radius, adG is the vertical center of gravity (measured
from the keel of the ship).
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3.1.1 Flow potential linearization

Setting the linearization scheme, the velocity poéd, ®(x,X,,X5t) , and the
elevation of the sea waten(x, X,;t) , are considered to be small. Due to small sea
elevation, the boundary conditions, to be usedrref the mean free surface of the
sea, that is,x;=0 instead of the exact positionxat=7z. In additioroD; |,
represents the free surface of the hull wha®g represents the wet surface of the
hull. Summing the previous assumptions the lineamidary conditions, are

o oY) oD
——U—| @ T—-0, 9D; atx, =0, 2
[8t 8)(1] T+g@x3 f 3 (2)

while the boundary condition for the wet surface sse , e.g., Athanasoulis &
Belibassakis (2012), Salvesetral (1970)

VO (r;t)n =U-n+[U-Vo;|(nx0)

+ un + (oxr)n—[&n+(@xr)n|’ X €0Ds ®)
In order to analyze the hydrodynamic responsehi@fship we assume that: (i) the
ship is treated as a long and slender body, thathes lengthl., is much greater
compared to the other dimensions such as the li2aand the draff . Additionally,
(ii) the water is considered deefy,A > 0.5 where, his the depth of the sea aridis
the length of the wave. Finally, (iii) pitch is diggple as the ship is oscillating under
the influence of incident sea waves.
According to the linearization scheme, the totdbeity potential can be decomposed
into a steady and an unsteady state potentiabllasvk

D (X, Xz, Xgit) = D (X3, X2, X 5)+ Re{&)u K1X 2 X 3¢jwt]X€R : (4)

where j=\/——1 , D (X, %Xy, X3) IS the steady potential angBe

D, (04 X X )e"wt]

represents the real part of the unsteady potemilagére @, is the corresponding

complex amplitude. For simplicity, from now on, theer-dot symbol of the complex
amplitude will be omitted. Through Eq. (4) and lmnsidering negligible contribution
of the unsteady velocity potenti®®d, , the Eq. (3) changes to
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VO + VO;n = U-n+[U - Vdg](nx0)+u-n+e(rxn)

—[F,-n+0(r><n)]( 82(1)5} '

OX; OX;

()

while the underlined terms refer to the time indejant velocity potential and all the
rest refer to the time dependent velocity potenki@nce, we obtain the following
conditions

Vbosn=U-n, (6)

Vo n=[U - VOg](nx8)+u-n+o(rxn) - [&n+o(r Xn)](;jq;; ] 7)
i 7

Analyzing the components of eqn. (7) which represéme vertical unsteady velocity
potential, we get

e u-n+a(rxn), the vertical component of the unsteady péént

e -U(nx0) , the effect of the steady velocity potential .

2
o VOg(nxB)—[&-n+0(rxn )](aax‘q;;] , the effect of the steady flow field in
J

the unsteady disturbance field .
For long and slender hull geometry, the latter ponent representing the effect of

the steady flow field on the unsteady disturbamelel tan be neglected because the

velocity potential termVCDS(an) is small. The final form of Eq. (7) is

V®,-n=u-n+o(rxn)-U([nxe) . (8)

The expressions for the boundary conditions asriesl in Egs. (1-3) , in terms of

the steady and the unsteady potential, are
Vb =0, (9a)
Vi, =0, (9b)

2
u2Z®Ps q’8+g—a®s =0, dD; (at x, =0) (10a)
2 f 3
29 OXg
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2
(a Uij <I>U+gaq)u =0, OD; (atxg=0) (10b)

ES 0% OXg
Vbg.n=U-n, X € dDg (11a)
VO, -n = u-n+o(rxn)+6(nxy), x € ODg (11b)

A boundary condition at infinity should be alsog¢akinto account, describing the
vanishing potentiab far away from the hull )(12 + x§ — 00 ,

O,VD >0, X +Xx5 —o00 (12)

Furthermore, the time-dependent potential is lilye@g@composed to three terms,
Oy =@ +@p + g, (13)

where @, is the incident wave potentiath is the diffraction wave potential and
6
Op = Z jo&®, , is the radiation potential caused from thmotion of the ship, see
i=1
, €.9., Athanasoulis, Belibassakis (2012). Usirgriiationsq, = X, +Ut , X5, =X, ,
Xo3 = X3 and by the assumption of deep water the incideterpial relation®, , is
_ oA ik ) o
P, (x) = » exp(kyXs) exp— jKo(X; O+ X, sifF)| exut) , (14)
0

The individual potentialsb, and® are part of the unsteady problem and represent

the effect of the waves on a hull with zero velpdience, the boundary conditions
are satisfied as follows, see, e. g., Salveseh(&0@0) and also Athanasoulis,
Belibassakis (2012).

o\ oD
3
0 oD f8))
%(CDD +@)=0= BnD == anl , X€0Dg, 17

while the boundary conditions for the radiationlgem are

Vo, =0, (18)

®;=0. 0D; (atx;=0) (29)
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Also the conditions for the wet surface of the lfxilc 9Dg )

0 Dj . . o0D: . )

—_—= , 1=1,2,3,¢4,—L = , 1=1,2,3,¢ 20a
el o5 - en (20a)
oD, .

—2 = +Uns , 20b
n Joong 3 (20Db)
0Dy .

——6 _ -Un,, 20c
n Jong 2 (20c)

Let CDiO represent the radiation potential, which is com®d independent from

velocityl —and let <I>iU represent the counterpart term depending on \gldgi.
Also, m is the component of the velocity derivative, conagy the time-

independent problem , due to the motion of the shifh steady velocity,U . It
follows:

3 3. O(rxw).
Um:_znk%, i=1,2,3 and Um:—anu, 1=4,5,6
1 O k=1 %

oDg 0D acpsj

= ’ ’ = —U ’ f
W= (g W W) ( +6)(1 0% 0%

Calculating the previous formulas, we are provideth the following results , see,
e.g. , Athanasoulis, Belibassakis (2012) , Ohkd996)

m=0,i=1,...4, (21a)
and

m =n;, (21b)

ms=—n, , (21c)

see, e.g., Athanasoulis, Belibassakis (2012, p,B&lyesen et al, (1970, Appendix
1), we obtain

0

a(;in‘:ja)r\ , i=1..,6 (22)
U

a;pr; = jom , i=1,..,6 (23)

Hence, we get
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o’ =0, i=1..4 (24)

and
®5 =D, (25)
Of =D, (26)
®9+_iq)g =0, i=1,..,6 (27)
jo

In addition to the previous boundary conditionsappropriate condition at infinity ,
egn. (12), should be considered.

3.1.2 Forces and moments

Since the viscous effects have been neglected,pyeksure acting on the wet surface
of the hull generating forces and moments givethkeyequations

F= [/ p(x.)nds; (1)
9Dg

M :ff p(x,t)r xndS; | ()
D4

By Bernoulli's equation, the dynamic pressure igegiby

bw_ugz
0%

o, +%(V(DT 7

p

P

: ®3)

In the linearized theory only the last term in tight-hand side is omitted as higher
order quantity,

. 0
p(X,t):—p[ja)—U &]q% , (4)

and thus generalized dynamic forces are

F:—pff[ja)—U%

Dg

d(x)ndS; , (5)

where n={n,, (=1,..,6 is the generalized normal vector is defined by
Nn=n,j;+ N,j,+ Nsj5and by the cross product«n = (n,,ns,ng) . The latter is
analyzed as follows:
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IXN=[x% X, Xg=(XN3—=XN)j—(XPgxB)j (X 7xB)j . (6)
n N, nNg

Hence,
Ny = XNz — XAy, Ng=—(XN13—XH), Nge=XRN ~XB . (7)

3.1.3 Hydrodynamic Coefficients

Using Eq.(1.2.5) in conjunction with the radiatiootentials ®;_, , ¢ we obtain the
hydrodynamic coefficients

po? [

Dg

ot

Ja)

jo—U ]d) dS; =pw ffn/[ja) Uai
2D "
i=1,..,€ (1)

where the integration refers to the mean positicth® hull surfaced)Dg = S;.

By Stokes theorem see, e.g., Salvesen (1970, Appéhdand by the assumption of a
slender hull, the following equation is derived

ffnﬁu o) dS:Uffm,p?dS , 2)
9Dy 9Dy

Firstly, considering the speed-independent scenémm eqn. (1.2.5) expressing the
hydrodynamic forces in terms of the hydrodynamiefioients, changes to

Fi =110 =—p [[ jo(iod?)n, ds; =

9Dy
F
i HO_pffn@ ds; | (3)
o 9D

where,l‘l(zi , Is the hydrodynamic coefficient of thie=1,...,6 , radiation potential in
the /=1,...,6 - motion, referring to the steady body, =0 .
Applying eqgns. (1), (1.1.23) ,(3) to (1.2.5), we ge

F—fzi: ——pffmp ds, , fi=1...4, (4a)

@ 9D

and through (1.1.21b), (1.1.21c) ,respectively olvein
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and

F—”Zi:HO. +_ipn_° , (=6 i=1..4 (4c)

) Y4l Ja) i2 1
Following the same method

F—fzi_ ° —ipffng(I)IOdSB, i=5,6 ~ (=1..4

@ 1955,

(5a)

and the corresponding terms

Fi o U 0 o _

;_H/{i _j_a)pH:V y 1=5 , g—l,,4 (5b)
and

Fi 0 U 0 L _

a)z _Hﬂi +J_a)pH2f , =6 , /=1,..,4. (50)
Finally,

F; u? :

r=nd +=p [[mofds, , (=i=56, (6a)

w ’ a

0D

and the corresponding terms which are derived £gm(13a)

Fi 0, U o i

;—H“‘F?pn:ﬂ y £—|—5 ’ (6b)
and

Fi 0, U® o i

?_Hgi +;,OH22 ) {=1=6. (6¢)

3.2 Strip theory approximations

The strip theory approximation is derived by usipgafic assumptions concerning
the geometrical characteristics of the hull, itee beam and the draft of the ship are
much smaller than the length, which results in agland slender hull shape. It

follows that, close to the hull, the derivativetire x -direction is much smaller than

the other directionsa—< iﬂ Thus, differentials with respecttpare omitted.
0% OX, 0Xg

In addition, for the components of the normal veaio the wetted hull it holds

N < Ny, Ny . (1)
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Furthermore, introducing the two dimensional geaynet each vertical section, see
e.g. Fig.1, the components of the generalized tiiireensional normal vector

n, (x1 x2,x3) , 1 =2,..,6 are approximated by the corresponding two dimeradio
onesN,(X,, X3; %) on each section over the length of the hull, patacally
dependent on the section shape (through the latigaupositionx;), as follows

Ny (X, X, X3) & Ny (X0, X5 Xp) , (=2,3,4 (2)
Ns (X3, X0, Xg) & —XN 5(X 5 X 5X 9 | (3)
N (X1, X5, X3) & XN A(X 5 X 5X ) | (4)
where
N3 O X559 = XN XX 53— X N £X 3 X ) ©)
ship section  *s g X
\\ e a

/ 0y ,f”/ a8
HI___,..-J‘%" ____/ ,_.____li””

radiated waves radiated waves

Fig. 1. Strip theory 2D model

Also, the tree-dimensional radiation potentialzé? (%, %,%35) , fori=2,3,4 are

approximated by the two-dimensional orgéx,, X5; X;) , as follows
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q)?()&,xz,xa):ﬂ (X5 X3 X)) ,1=2,3,4 (6a)

and for i =5,6 by

P (X% Xg) = —Xghs(X 2 X3X) (6b)
CDZ (X1 %o, Xg) = Xgho(X 2 X 3X ) - (6¢)
The two dimensional potentigdgx,,Xs;X;) , I =5,6are obtained as solutions of the

Laplace equation on the vertical plangx; for each ship — section at each
position. The latter satisfies the following boundeondition

2 2
9% 9% o, =234, @)
oxX;  OX5
the free surface boundary condition
—a)2¢5|+g%20, i=2,3,4,0nx=0, (8)

O0Xq

boundary condition on the wet surface of each secti

0 .
a—ﬁ:Ni , 1=2,3,4,0n9Dg(x) , 9

and finally the condition at infinity expressirfgetfact that the waves are outgoing at
infinity , see, Fig.1 .

L2
%iﬂq -0, (10)
0%y g
Clearly the 2D potentials =0 represent wave fields produced by the horizontal
(i=2), vertical (i=3) and rotational oscillation of the,x; transverse ship
oscillation of each section.

For the solution of the above problems in the preseork a Boundary Element
Method is developed and systematically applied, dri=2,3,4 and all ship

sections, which are described in more details ipekglix B, where also numerical
results are systematically presented and compdhermeasured data for validation.

Based on the strip theory approximations and ons.eqd.3.3)-(1.3.6), the
hydrodynamic coefficients are obtained by the folly integral

% =p[ [ Ngdsdx = [, ()b , £i=234 (11a)
L C(x) L

59



where

@i, (%) = f Nyglds , (=234 (11b)
C(x)

The above matrixg; ,(X) is the two dimensional hydrodynamic coefficieris,each
section at the poink see, e.g. G. Athanasoulis, K. Belibassakis (lestu2012).

The rest of the hydrodynamic coefficients can benfdated through egn. (11b) as
follows

H(;s = f @s0Xy (12a)
L
and by Eqg. (6b)
MY, =% [ @b, (12b)
L
Equivalently,
Hg5 = f X12W33dX1 . (13)
L
In addition,
@i (%) = 80 (%) + Wj(a):l) , 1i=2,3,4, (14)

whereg;, , by, depicture the added mass and the damping coeitficieespectively.
Based on Green’s second the added mass and damatrniges are symmetric,

8, =a, andh, =by; . (15)

Moreover, the componeni; is symmetric whileN, and N, are anti-symmetric,
and therefore, the potenti@l is symmetric and, , ¢, are anti-symmetric. It follows:

832 =834=0 , b3y =bgy=0, (16)

Hydrodynamic Forces

According to strip theory, the three dimensionaleyalized forces on the surface of
the hull due to incident wave potential (Froudedkwforces) and the diffraction
forces are also calculated by corresponding integralong the length of the hull.
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3.2.1 Froude-Krylov force

o= [[- [on U—]cb ()N, dSs (1)

ODg

where

D, (x) = JOA coshf, X;+h )]e—jzco(xlcosﬂ+x2 sing ) ’

(2a)
@, coshk, Q)

denotes the incident potential for finite water tthefd), while the incident potential
equation for deep water is

@, (x) = m_A‘e(Koxs)e—jKo(X1COSﬂ+X2 sing ) ’ (2b)
2

where A stands for the amplitude of the incident wave, $&eAthanasoulis, K.
Belibassakis (2012), Salvesen (1970, AppendiEdh. (1), can be written

Fiu=—ipa [| [ @nds|dx . (3a)

L1

Using (2.2)-(2.5), we obtain

L C(><1)

and

LS L o

(3c,d) forr =5 and /¢ =6, respectively.

3.2.2 Diffraction force

The general expression depicturing the force pradlbgethe deflection potential is

For= [ [ =+

0Dg

jo— U—]q’on/ dS; - (1)
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The analytical schema for the diffraction potentigl remains undefined. Having

presented the equation (1.3.2) for the radiatiabi@m we use the Stoke’s theorem,
and then we apply the conditions (1.1.18), (1.1id@pnjunction with the free
surface boundary condition (1.1.20). Then the fdenfll) becomes

FD.ZPJ'wff

9Dy

o0 U oo
on  jo on

@, dS; . )

The application of Gauss’s second theorem on thes Mifunctions,(db?,db,) and

((I)iu ,CD|) , which both satisfy the Laplace field equationd aihe free surface

boundary condition, see, e.g. G. Athanasoulis, Bli&ssakis, (2012), provides us
with

[ f U, ds, = f f 9\ pogs, | @3)

9Dy
ff—'cp ds; = ffaq)' oVds; . )
9Dy 9Dy

Hence, Eqgn. (3) is now

o =pio ]

9Dy

oD
®? ——<I>U L ds, . 5a
jo ] on Se (5a)

Additionally , using®? =0 , i =2,3,4in (5a), we get

pja)ffq)o . i=2,34, (5b)

9D

and from®y = @3 , dg =) it becomes

, od oD
FDszpja)ff®0 IdSB ff_ D3 IdSB (6a)
9Dg
Foo = pio| [ 37 1dsy + ff )= LdSy | (6b)
0Dg
The derivative ofd, with respect to the components of the normal veato
(consider slender body assumptions for xhelirection), i.e.
8(;1: JACOO (n3_ jI’IZSInﬂ) KoXs g~ jxo(X,€088+X, Sing ) (7)
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shows that the expressions (5b) and (6a,b), takedhivalent forms

Foi = pjoA f @y € 1F01c0sh f (jN3+ N,sin g)er%e 105"/ 0ds|dx, |
L

C(x)

i=2,34 (8a)

where®? = ¢, i =1,2,3, see eq. (6a) , and sBy, , becomes

Foi = pjoA [ wye 75| [ (Ny+ N,sin g)ere K05 g ds|dbg
L C(x)
i—2,3,4 (8b)
Let, h, be the expression
oY= [ (iNg+N,singlese ¥ gds , =234 (9

C(x)

referring to the two-dimensional problem of thetgecat x, , of the hull, where the
radiation potential is given through egn. (2.6a).

Furthermore, by (2.6b) and (2.6¢)

. U .
Fos = —JWPAI[Xl"‘j_a)]hs(XJ) dx, , =3, (10a)
L

where h;(x)) = f (iNg+ N,sin g)e g 15oxsinf y g
COq)

and

ho(x)) dx, | i=6, (10b)

. U
Foe = JCOpAf Xl+j_a)
L

respectively, wheré, (x,) = f (jN5+ stinﬂ)eKoX3 e*jngzsin/f¢2dS _
C(x)
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3.3 Numerical results

An experiment conducted in the BGO-First Basin, daulFrance with regards to a
flexible barge of specific characteristics is présd by Senjanovic, Malenica,
Tomasevic (2007). The barge, as described in therk,wepnsists of 12 pontoons
attached to each other through a steel rod whiphaised above the deck level in such
a way that the gravity center is lower than theodwehtion center, see, Fig.10.
Though, the shape of the front pontoon is diffefemrin the others. In the context of
this experiment the determination of the hydrodyigaship properties employs a 3D
hydrodynamic model which exploits linear (3D) flgwotential analysis. However,
concerning the used hydrostatic model (Malenical.e2007), it actually calculates
the modal forces as the work of static and dyndiarices on the rigid body and so
modal restoring forces include large displacemeamtstrasting to the developed
method of this thesis. From our viewpoint, we trést hydrodynamic responses of
the barge by means of Strip theory and a low opdeel (BEM) within a 2D potential
flow analysis. The illustration of the barge geomesr derived through the program
barge.m, see, Fig. 1. In this section we will comspshe hydrodynamic ship
properties, obtained by the developed model of tthesis (cresolg.m), with the ones
derived from the Toulon experiment, see also, Tomas@007) and Senjanovic,
Grubisic (1991).
steel rod

D ma =0.01x 0.01 m
< A tH A
- (S
o
1 \ 4 G Q
21 T g 2
e ~ & 9 u
s i | <
Y V¥ |l 4 \ 4 \ 4
K
P B=0.6 m .
A :
o) |
N i
o !
I = = T E
= — : —
= : ov
: £
o
B=0.6 m . o

A

Fig. 1. Barge’s cross section
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The main characteristics of the barge are:

e Young’s modulus of rod E =2.1 16* [ N mz]

8.33 1010[ rﬂ

o
2

Moment of inertia of rod cross sectiof =1, = 1

175| Nnf |

Bending stiffness of rod El =

e Pontoon length t =0.19[ m

: 2.445[ n

Barge length (pontoons + clearanceg)=

171.77 kg

Total mass (pontoons and equipment) :

70.253] kg nj

M/L =

Distributed mass m=

i

= 0.225]

X

3.556[ kgn .

. 2
X

m

J

For a more detailed description of the barges rolaracteristic see, Remy et al

(2006) and also Malenica et al (2003).

Barge (OE 2007)

barge (OE 2008)

Barge (OE 2007)

Fig. 2. 3D modeling of the barge (OE 2008)
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Calculation of the hydrostatic and hydrodynamic co€ficients of the prismatic
barge

By means of BEM analysis we calculate the radiagiotential given a cross section
area with geometrical characteristit6T =6, see Appendix B. Then, we determine
the 2D hydrodynamic coefficienw, ;,b,; and demonstrating the results Fig. 1.

BARGE: a22,h22 BARGE: a33,b33
08 . . 6 . ; ,
A
. i 4 = i
: : 2t :
Y IROPRSRISS . RS SROY TN, - QTR OO i TR :
1 s .. S— 1
0 ™ ;i i 0 i H i iy
0 0.5 1 1.5 2 0 0.5 1 1.5 2
w*sqrt{B/2g) w”sqrt(B/2g)
BARGE: a44,10*b44 BARGE: a24,b24
8 , T " 0.8 ; ; T
A
/ : \\ g h 06
8 e \.\. !
b i 4 ; 1 :
j, ; \\ [0 1 RO OSSN, SUUTE SRR, TSSOSO
4+ ! : Y ; i
: kS
! - N 0.2}
/f : &
.8
7 : = .
/ ~
/ B,
s
0 = : ; -0.2 : : ;
0 0.5 1 15 2 0 0.5 1 15 2
w*sqrt{B/2g) w*sqrt(B/2g)

Fig. 1. Numerical hydrodynamic coefficients fBr/ T =6.
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BiT=6: F2(dashed line),F3{solid line),10*F4(dotted line}

F2/pgAT,F3/pgAT F4ipgAT?
— — 3 [ £ad Lal e
[} [y o LI [ [y s

ot

0.2 0.4 06 0.8 1 12 1.4 16 1.8 2
w"sqri(B/2q)
Fig. 2. Numerical hydrodynamic forces , F; ,10F, for B/T =6

Finally, the strip theory analysis is used to cklteithe forces acting on the hull of
the barge. We illustrate the results in Fig.2

The produced results present quite good agreemsatlman the results obtained from
the research of Senjanovic et al. (2009, Fig.®pdrticular, the Response Amplitude
Operator (RAO) of the barge in heaving motion fave period domaih <5s, is

presented in Fig. 3. The results shown in this Bgooncern nondimensional heave

amplitude &; with respect to the wave heiglaﬂi’t:i . We investigate the calculated

RAOs under different incidence wave angles for thse of the barge with zero
Froude number.

We observe that for high period values the respoh#iee barge;, is approximately

equal to the wave heighd, i.e. RAO =1, while moving to higher wave angles the
peak of the RAO is transferred to lower period ealuThe response of the barge is

highly increased as we move to higher angles atkte.g.,90 . On the other hand,

we regard the wave angle 60 to be the most proper case to represent the caupli
between the rigid and the flexural modes concerniggical vibrations, in order to
compare the developed method with experimental oreagents obtained from
Senjanovic et al (2009, Fig. 12) , via digitization
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Fig. 3. Response Amplitude Operator (RAO) for hegdingles (0, 30, 60, 90)

1.2

08

e

0.4

02r

0.8

BARGE: RAO heave

B/T=6,

COER=Q

05 1 1.5 2 2.5 3 3.5 4 4.5
T(sec)

BARGE: RAO heavg&;/ A) - f=60°

B/T=6, Fn=0
solid line: present methed
symbols: exper.data
stejanovic et al (OE2008)
0 0.5 1 15 2
T(sec)

25

Fig. 4. Numerical method vs. experimental measurgsyéor angle60’
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The experimental measurements included in Fig.edoatained through digitization
from experimental results presented in Senjanovad.€2009, Fig. 12). It is obvious
that the most significant discrepancies spotteevéen the experimental points and

the numerical method, occur in the area of the péalke responseg;%z 0.19. Also

because of the resonance of the vertical osciflation the area where unit
convergence of the RAO is occurred, we observe all sfispersion of the measured
points that slightly differs from the convergendele® numerical results.
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Chapter 4

Hydroelasticity effects
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4.1 Hydroelasticity of ships

In the previous chapters we have presented resultserning the determination of the
dry vibrations of a beam, analyzed in the contdxEoler Bernoulli (Chap.1) and
Timoshenko (Chap.2) theory. The numerical solutibas been obtained by
discretizing and solving the corresponding equationy means of FDM.
Subsequently, in Chap.3 the standard strip thegryShlvensen et al (1970) is
described and applied to the calculation the hyghiacthic responses of a ship of
slender hull form. In this part, for a specific hgeéometry and mass distribution of a
ship or floating structure (e.g. an elongated bar@e approximate hydroelastic model
is presented, facilitating the treatment of vettabeformations of the hull girder. This
is succeeded by expanding the deflection into doges, and then calculating the
elastic responses by coupling with ship hydrodymamn the framework of strip
theory. For simplicity in this work only head (andfollowing) harmonic waves will
be considered resulting into motions and deflestioonsidered only on the vertical
plane. However, it should be remarked that the lprobof head incident waves
constitutes one of the most severe case (from tht pf view of wave loads and
responses) and thus, also a characteristic cagxamine concerning the studied
structure.

First, by treating the ship or the floating struetas a girder of specific mass and
flexural rigidity distributions, the natural frequees and normal modes are calculated
by using the specific beam model. In the exampiesgnted in this chapter the Euler
— Bernoulli model is used. From the solution offgeon concerning the rigid motions
of the ship under the action of sea waves, usirg strip theory model, the
corresponding longitudinal distributions of addedss and damping coefficients, as
well as the sectional Froude - Krylov and diffraa forces are calculated. Then, by
incorporating into the model the additional distitdd elastic forces, the hydroelastic
responses will be estimated.

To begin with, we recall Egs. (3.1.4) describing ttigid motions of the ship or
elongated floating body on the vertical plane:

(—WZ(M +AS:-;)+ia)B33+C33)§3+<—‘02(A35—J )+ jo(B 35 MU)+C 3}5 s=F.(1a)
where
F3 = Xog+ Xq3 5 (1b)

are the Froude-Krylov and diffraction vertical fescdue to head incident waves on
the ship’s hull. These forces are defined by thiedong x;-integrals

Xoz = I f(xpdx, Xy 3=I h(xydx . 2

X X1
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__________________________________________

Fig. 1. Ship’s mass distribution

B(x)

w | W

Fig. 2. Discretized sections and waterline

In Eq.(1a)M is the total massM = J‘m(xl)dxl , wherem(x;) denotes an equivalent
X

mass distribution along the length of the ship,ivier from the analysis of ship
weights; see Fig.1. Also, we recall here Ggt= pgA, , where A, = j B(x)dx, is

X
waterline are&C;5=Cs3=—p0A, LCF:—ngxlB(x])de, where LCF is the
X
longitudinal center of flotation; see Fig.2. Moreoy J = MR;, where R; is the

center of gravity, and in the case of even kegsshwith LCG denoting the long
center and VGC the vertical center of gravity. Bsing the above definitions in
Eq.(1), the latter takes the following form
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{—a)z[j m(xq)dx; + _[ Ay Xy a’)dxl}r Ja’_[ b 3{x j)dx 1+pg_[ B(x 1dx }5 S

X X X X1

+(—w2(— [ %s(x @)t~ LOG rr(x])dxl} jw[— [ xb sbx )k U [ mix yax Df éf
* X

X1 X1

—(pg | xls(xl)dleés [ £0x9ax s+ [h(xdx ;= X ozt Xg -, (3)
X X1 Xy

where the hydrodynamic coefficients have been algoressed following the strip-
theory approximation as longitudinal integralstod hydrodynamic coefficients of the
transverse sections of the hull in vertical ostidias

Poa(@) = [@gix;0)0X;,  Byg(@) = [ bygxzw)xy , (4a)
Ass(a’):_j X@z{ X3 @)dXy , 835(60):—]‘ X3 X5 @)dX . (4b)

4.2 Hydroelastic responses

Let now =5(x;;w) denote the additional vertical oscillation at #ewme frequency

(encounter frequency) due to the elastic responsdise ship or elongated floating
structure in head or following wav@§:180’ or (?). The above hydroelastic

deflection are calculated by the vertical deflectad the ship hull girder treated as an
elastic Euler-Bernoulli beam, with longitudinal maglistribution m(x) and

equivalent rigidity (stiffness parameteb)x,) .

In practical applications the stiffness parametehe structure (modeled as a floating
beam) is calculated using the equatidx)=EI(x;), whereE is the Young’s
modulus of the material of the structure, ef=210-10GPa in the case of steel
structure. Also,l(x) represents the hull girder moment of inertia &f Hection at
X =const, over the whole length of the structure. Obviousiytie case of more

complex or composite structures the calculatiorammfequivalent flexural deflection
coefficient D(x;) has to be based on an appropriate analysis dttheture into its
elements. Usually, such an analysis is performely éor the mid-ship section
considering that the highest bending stresses andine middle of the ship hull. For
the purposes of the present study such an analysiseded for a number of ship
sections except of the mid-section.

In order to calculate the moment of inertia ofte# supporting members of a section,
data are taken from the structural design of thp, sind the moment is calculated
with respect to the neutral axis (of the sectidiie latter, is determined through the
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weighted sum of all supporting members (platedfestrs, etc.) expressed by the

M Mo\t
relationy(N.A) = (z X aSJKZaSJ , Whereag and | denote the surface and the
n=1 n=1

moment of inertia of each stiffener, respectivétpllowing the same procedure we
calculate the moment of inertia of a number of espntative sections from the stem
to the bow of the ship or marine structure.

To proceed, we consider that the total verticapoase of the ship beam in waves is
obtained as a superposition of the rigid motiontlom vertical plane and the elastic
deflection , as follows

Ea(xgy o) = 683(50) +E(Xpo) , (1)

where &; stands for the heaving motion aBdx) denotes the flexural deformation
of the ship treated as a beam. Then, by conside¢hegadditional elastic forces of
each beam section expressed by the teém(xl)Elxx) in the Euler-Bernoulli beam

, XX

model, and using Eq. (1.1) the latter equationddke following form:

{_QZ(I MO+ [l ”)dxlj + jo| bafx jw)dx o pg [ B(x ) }(5 FE(X)) +

x X1 X1 X1

+(—a»2 {— [ %aax; o)~ LCG m(x;)dxl} J'co[— [ X gz £U [ m(x e Bé %
! el X X

—[pgj xls(xl)dlegf [ £Odxs+ [ h(x)dx i~ [ (D(x)= Xx)yxxdx .. )

X X Xy X1

By subtracting by parts Eq.(3) of the last secti@xpressing the rigid heave
responses) from the above equation, we obtaindhewing equation modeling the
hydroelastic vertical deformatioB(x;; @) of the hull girder in waves:

[EY=E% ,XX)'Xdel— a)z[ [ i+ [agfxje)ax Ja(x )+
X X

il

+ Ja{I P33(Xy; @)X, —U J. m(x,)dx,+ ng' B(x )dx IJE (x)+

X X X1

= [ £0q)dx, + [ hOx)dg— (X g+ Xy 9 - ®3)

X X

From the above equation it is seen that the véitigdroelastic responses of the hull
girder in head (or following) harmonic waves canapproximately calculated by the
Euler-Benoulli beam model forced by the distribatiof the Froude-Krylov and

diffraction forces of the wetted surface of thelhld order to illustrate this point, let
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x_ denote point of application of the Froude-Krylowdadiffraction forces(oz + X 43,
while f(x)+h(x) represents the distribution of the same forces twe length of

the ship hull. Using a Dirac function to represtet application poimf, we obtain

J-5(X1—Xf)(xos+ Xq3)dxy= X ozt Xg ¢ 4)

X

and thus, Egq. (3) takes the form

(DOVZ0W) )  +(-? (M) + agdx;0)) + o(Dohx 1) ~Um(x }) + pgB(x ) E(x ) =

= f Q) +h(x) 604~ X)) (Xogt Xq9 - (5)

We recall the completeness property of the bearanengpde&, (%) , n=1,2,3...

which forms an orthonormal basis along the lendtlthe ship or marine structure,
defined in the case of Euler Bernoulli model coastdl in this chapter in the interval
—L/2(sternk x, < L /2(bow. These eigenfunctions are found as a solutionhef t

following problem

(DOWE(x) XX)XX +@?m(x)E,(x)=0, n=1,2,3.. (6a)

in conjunction with the free-end conditions at sern and bow of the ship

d=, (% =£L/2) dE,(4=%L/2)
dx? ax?

0, n=123.. (6b)

where @,,n=1,2,3... are the corresponding eigenfrequencies. We nowesgphe
solution =(x) of the above hydroelastic equation (Eq.5) into iih@des=, (%) as
follows

M
= (Xl) = Zén E‘n(xl) | (7)
n=1
where &, are the unknown hydroelastic mode amplitudes. Dugne completeness

and orthogonality property of the bas#s (%) , n=1,2,3.... it can be also used to
express the Dirac function in the following form

M
S(x—X0) =D B, (X)E,(X) (8)
n=1

We use the same property to express the distrimitiof Froude-Krylov and
diffraction forces on the hull girder

M
f() =Y faEa(x0), where fo= [ f & E, & ¥ixs , (92)
n=1 Xq
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and
M
h(q) = MEn(x), whereh,=[h & E, )i, . (9b)
n=1 X

Using Eq. (7) and the solution concerning the ergére problem of the Euler —
Bernoulli beam we have

M M
(DODZECD) ) = D En(DODER(XD) ) = ~MX)D @FZ (X)) - (8)
' n=1 ' n=1

Replacing the representation of the solution gilbgrEqg. (8) into Eqg.(5), and using
Eq.(8), the equation concerning the hydroelassponses takes the following form

M
D &8 ()| -MO)af — 0% (M(x;) + adx;0)) + jo(bafx 1) ~Um(x }) + pgB(x )| =

n=1

M=

(fo+ 1= (Xog+ Xg3) En(X5)) Zn (%) - (9)
1

>
Il

Denoting the term in the brackets in the left-hart® of the above equation as
Gy (%3 @) = —M(x)) 0 — % (M(X)) + 83 X5 @) + joo (b 3{x @) ~UmM(x }) + pgB(x )

(10)
Eq. (9) is put in the form

M M
D G (5 @)Z0 (%) =D f + Py = (Xoa+ X ) Ea(xD))En(x) - (11)
n=1 n=1

We now exploit the completeness of the Bei(x) , m=1,2,..., and project the

above equation on the latter basis. Consequentligllowing a Galerkin procedure,
we obtain

M M
D & (Gh0w 2, 09, Zn (D) =D {( 1) = (X ozt Xg 90 OCDNEn (), Zm () (12)
n=1

n=1

where(f,g>:j f(%),9(x)dx, denotes the tinner product in the xinterval, and

X
(E0.Em) =6, the Kronecker's delta. Subsequently, by definthg coefficient
matrix in the left-hand side of Eq.(12)

Ann = <Gn(xl; a))En (Xl)!Em (X1)> ) (133-)

and the right-hand side vector as follows
Him = fn() + (X)) = (Xoa+ Xg 9 Em(X3) (13b)
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and thus the hydroelastic amplitudﬁf(a)) are found as the solution of the following
linear algebraic system

i%(m)éﬁ, =Hp (@), m=1,2,.M . (14)
n=1

The corresponding hydroelastic complex RAO at desdiuencyw is obtained as

<

zgn (a))En(Xl)

RAO; (%, @) = = ():; 0) _ it N : (15a)

where A=H/2 is the wave amplitude. In addition the RAO assted with the
hydroelastic amplitudes

RAO, (@) =|&)|/ A, (15b)
are sometimes used for illustrating the responses.
In the case of a ship or marine structure with tamssections, i.e.
m(x )=const , B(x)=const , a;,b,;(x,)=const ,

the coefficient matrixAm(a)) contains only its diagonal elements and the faihgw

expression is obtained the modal amplitudew)

= (C
‘fn(a)): fn""hn_(XOS""xd?))h‘n(xl) n=12.M ,(16)

—m(a)ﬁ + a)2) — 0 ag3+ jo(byz—Um)+ pgB

at a wave frequenay .

4.3 Hydroelastic analysis of a barge in waves

At this point, we recall the previously mentionexperiment of the flexible barge,
conducted in the BGO-First Basin, Toulon, see, &wmyic et al. (2008). In this case,
the structural response of the barge concerned thethvertical and the coupled
horizontal — torsional system of, the global loaduced, vibrations. The vertical
distortions have been found analytically based len Timoshenko, Young (1955)
while the system of horizontal — torsional distons has been calculated analytically
by direct integration and Ritz method in additionnumerical calculations by means
of 1D FEM analysis. It is worth mentioning thatgtbarge is a special form of ship
with zero velocityU =0 and specific geometrical characteristics see Fagd Ch.
3.3. The design of the barge permits the developroérhydroelastic phenomena
which are associated with the flexural deformatiohghe barge as it, approximately,
follows the elevation of its water environment. Bonplicity we set the origins of the
coordinate system in the middle of the barge as sed-ig. (1) To model the dry
vibrations of the barge we treat the latter as aleri=- Bernoulli beam with free edges
and then by means of FDM analysis we discretizebtirge into 150 elements using
the program EBT2.m.
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Fig. 3. Barge’s geometrical characteristics

This specific type of ship, is associated withed af geometrical and hydrostatic
properties such as: (i) symmetry with respect #otthnsversex,x;-plane, see Fig. 1.

(i) The barge is even keel and therefore Y&B lies on the same vertical segment
with VCG. (iii) Due to the barge’s symmettyCF and LCG are located at the origins
of the coordinate system whexg=0.

Given the above properties we get:

o Cyi5=Cy3= —pgj XB(x)dx,=0, due to ship’s symmetry, see (i)
%

e J,=MLCG=0, because of property (iii).
Also given the negligible velocity of the bardg¢,=0 we reduce the Eq. (1.1.a) to
(~0"(M + Agg) +i0Bag+ Cogé 5 (—0” (Agd+ jo(B d) € = F (1)

which in turn is analyzed , based on the Eq. (a8)ollows
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[ (D= ‘XX),Xdel— aﬁ[ [ MmOk, + [ agixjem)dx Ja(x )+
X X

X

+ ja)( [ bya(xg @)y + pg | B(x])dleE(x]) = [ Od g [ )d (X o Xg ) -
X

X X1 X1

)

4.3.2 Flexural Responses

The Euler — Bernoulli beam modeled barge problege(drequencies and
eigenmodes) is solved by the program "EBT2.m” dhd results are depicted in
Table 1. For the analytical determination of thgeeifrequencies eq. (11) in Ch. 1.2,
see also, Timoshenko , Young (1995).

Analytic Method Numerical Method
Mode . )
Frequencies Frequencies
1 5.7291 5.9249
2 16.1276 16.3192
3 31.7252 32.009
4 53.042 52.9193

Table 1 Natural frequencidsad/d

The results (numerical and analytical) are in adgagreement. The flexural modes of
the barge dry vibrations are depicted in Fig. 1 anéddition we demonstrate the
deformation of the wet surface for the first threstural frequencies, see, Fig. 2 (a) ,

(b) .
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4.3.4 Hydroelasticity of the barge

The determination of the dry modes in addition tee tdetermination of the
hydrodynamic coefficients (four rigid body motiomsluded, see, Ch.3.2.3) provide
us with all the proper parameters that are needeak 40 define the barge’s response
in different heading wave angles. The flexible dasif the barge allows its distortion
according to the elevation of the waves, see, Fig.1

e

Fig. 6. Brge flexibility dring test experimentsgm Malenic et al. (2008)

As described in Ch. 4.2 the hydroelastic respimés discretized form is
M M c
&G0 @)Z0 (%) =D f + Py = (Xoa+ Xa 3 Za(xD))En(x) (1)
n=1 n=1

where

Gy (¥y; @) = —M(X)@f — 0 (M(Xy) + Ao X5 @) ) + job zdX ;@) + pgB(X) . (2)

and o, ,n=1,2,..., are the eigenfrequencies of the barge modeled [z=am, see,
Tablel in chapter 4.3.2.

The final solution of thes, amplitudes require the solution of the linear hlgé&
system

M M
0 (Gn % )0 (%), Em (40) =3 {( fo 1)~ (Xogt X 9Z0 (D) (En (X2, Em (X)) - ()
n=1 n=1
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Because of the barge geometry, see, Fig. 3.1.1, wofetain the
propertiesn(x ) =const, B(x)=const , a;,b,;(x,)=const and so the coefficient

matrix A, (a)) which stands for the left- hand side of Eq. (8)a diagonal matrix.

Therefore, the modal amplitudes of its hydroelasésponse are given be their
reduced form

fn +hn _(X03+ XdS)En(X(l:)

_ n=12..M ,(4)
—m(aﬁ+a)2)—co 33+ jo(bg—Um) + pgB

‘fn(a’)z

In the following figures we present the modal atyole&; of the heave related

motion and the elastic responses too. In the foligwliigure the second mode is
related to heave motion while the rest modes,istaftom mode No.4, concern the
elastic response of the barge. The structural beha the hull is determined for

heading waves with angld20 using a variety of single length waves that
arel/L =(0.51,1.01,1.48,2.0x.

BARGE: RAOHeave(&/ A) and vertical elastic

2 T
AlL=1.01 \ bos=1b
1.8 5
1 solid|line: present method
16 ‘_ dashed line. experimental
' AL=2 06 ll Stejgnovic et al OE[2008)
Rigid |Heave \ 1
1.4
Responses AL=1 48 L
\ ¥ oul=2.06
1.2
1 S AL=2.06 T
s=148 T ML=0.5 Responses
0.8
[
AlL=1.01
0.6
.4
hL=1.48
0.z AL=0.
AfL=0.51
]
1 2 3 4

Mode number

Fig. 7. Modal amplitude, heading andl20 . Elastic modes start from mode number 4.
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Conclusions - suggestions for future work

In the present thesis, we use the Euler — Bern{GBiT) and the Timoshenko beam
(TBT) models to calculate the “dry modes” of a sbrm marine structure. Numerical
calculations are based on second order Finite 2ifilee Method for the solution of
the eigenvalue problems, for pinned, fixed and ®eds of an elastic beam, which
models the marine structure. We implement the aierdgioned models for both the
case of a rectangular cross section area, i.eeampand of a circular section area,
i.e., a rod, and for selected end conditions, sash(i) free - free, (ii) clamped —
clamped, and (iii) pinned — pinned. The dispergielations of the two models are
studied in the case of homogeneous beams illusfyatignificant differences, and
showing that the elastic disturbances (waves oficatrbeam deflections) disperse
faster in EBT than TBT model. Concerning TBT foratidn, the elastic wave phase
velocity converges to a single value which is higimethe case of a rodQ ~ 0.56)
than in the case of the bear@ £ 0.54). Subsequently, the above models are applied
to specific examples, and numerical results arepawed to existing analytical ones,
concerning the determination of the natural freqieshand of the principal modes of
the structure. Convergence tests are conducteddar ¢o estimate the validity of the
developed numerical methods. It turns out thataibained results are very accurate
and the rate of convergence is very fast.

Next, the standard STF (strip theory) model is Usedhe prediction of the rigid ship
or elongated marine structure responses in he&ollowing waves. To this aim, we
use a 2D potential flow model implemented by meafsBoundary Element
formulations regarding sections with different Ibgeometrical particulars, i.e., for
various beam to draft ratios, B/T. The calculatigm®dict very well the ship
properties of interest, i.e., added mass and dampaoefficients, and generalized
forces, as compared with experimental results bgh¥si (1968). Significant, though
expected, discrepancies from the experimental gadwe observed in the case of roll
motion, since roll hydrodynamics are dominated lgcous effects, which are not
taken into account in the present ideal flow model.

Finally, in this work, a model is developed to cddde the hydroelastic responses of
beamlike marine structures by combining strip tlgeand beam elastic models.
Results and comparisons are presented concernendnyttiroelastic response of a
flexible barge in waves, for which experimentaladatre available by using model
tests, see, e.g., Malenica et @008). In general, present results regarding éeav
motion and corresponding elastic responses foouarincident waves are in a good
agreement with experimental data, showing thatdieeloped model can produce
accurate results. Additional studies concerninghydroelastic analysis of ships, such
as tankers or bulk carriers, could also be conduict®rder to further test and validate
the present model. Future work should focus on@prate extensions of the present
model in order to take into account more consigte3iD hydrodynamic and elastic
structural phenomena.
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Appendix A

Presentation of the comparative results for the EBTand TBT

In this present Appendix, we display the resultstioé implementation of the

developed program "EBT” for an Euler Bernoulli&® and for a Timoshenko beam.
We will demonstrate the natural frequencies anchdtaral functions for both the thin

rod and the thin beam case. The implementatioriscaiicern the free, clamped and
pinned vibration cases.

Euler — Bernoulli model

Results concerning a homogeneous rod

The main characteristics of the rod are: (i) Lendth- 50[m] [m], (ii) Young's

modulus:E = 210 16 [ P4 (i) Mass densityp = 7825[kg/m3} , (iv)
Thicknesst =1[m], (v) Moment of inertia:l = ”t% =O.7854[ kg rﬁ], (vi) Cross

section areaA= 7t? = 3.1416{m2]. The results are illustrated in the following

pages.
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I I
Symbols: Analytical results
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Fig. A. 1. Normalized eigenfunctions for homogergolamped rod, M00 points,

factor \/% to scale the modes

Mode Ang:ggzxgzgd NurErGeraclilerl:/clzieetQOd Error (%)
(M=100)
1 23.144 23.155 0.050
2 63.797 63.836 0.062
3 125.067 125.148 0.065
4 206.742 206.837 0.046
5 308.837 308.866 0.009
6 431.351 431.158 0.045
7 574.284 573.629 0.114

Table A. 1 Natural frequenciefrad/seg, for clamped rod
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T T
Symbols: Analytical results
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Fig. A. 2. Normalized eigenfunctions for homogere&ree rod, M4.00 points,

factor \/2
L

to scale the modes

Mode Ang:ggzxgzgd NurErGeraclilerl:/clzieetQOd Error (%)
(M=100)
1 23.144 23.176 0.139
2 63.797 63.956 0.249
3 125.067 125.486 0.335
4 206.742 207.595 0.413
5 308.837 310.305 0.475
6 431.352 433.620 0.526
7 574.285 577.504 0.561

Table A. 2 Natural frequenciefrad/seg, for free rod
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Symbols: Analytical results
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Fig. A. 3. Normalized eigenfunctions for homogerepinned rod, M200 points,

factor \/% to scale the modes

Mode Ang:ggﬁgf}itiggd Nurgreeracl?érl:/cl:ieetzw Error (%)
(M=100)
1 10.210 10.206 0.033
2 40.838 40.826 0.030
3 91.886 91.833 0.057
4 163.352 163.185 0.102
5 255.238 254.826 0.161
6 367.542 366.693 0.231
7 500.266 498.698 0.313

Table A. 3 Natural frequenciefrad/seg, for pinned rod
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Concerning the differences spotted on the previoumerical results, they are
compatible with the approximation based on secaoddrdinite differences.

Regarding the modes, the number of the peaks {p®sit negative ones) is increased
accordingly with the number (index) of the moder hwstance, the first mode is
represented by a single peak in the middle of dtldewhereas in the second mode we
get two peaks, in the third mode we get three peakkso goes for the rest of the
modes. It should be noted that the zero freques@xcluded as it represents a rigid
body motion. Moreover, the convergence betweemtimaerical (solid line) and the
analytical solution (symbols) increases by usiriggler number of grid points. More
specifically, we illustrate the convergence of tteveloped numerical method. The
results are depicted in the following figures
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Fig. A. 4. Convergence numerical to analyticaldarlamped edged

homogeneous rod, M=25 points, fac\% to scale the modes

ode | Anaiclethod | Numercallthod | o
1 23.144 23.353 0.902
2 63.797 64.532 1.153
3 125.067 126.410 1.074
4 206.742 208.125 0.669
5 308.837 308.591 0.080
6 431.352 426.281 1.176
7 574.285 559.236 2.620

Table A. 4 Convergence for natural frequencies
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Fig. A. 5 Convergence numerical to analytical fdreee edged homogeneous

15 20

rod, M=50 points, facto‘/% to scale the modes

45

ode | Araticlietod | Mumerca el ey
1 23.144 23.192 0.207
2 63.797 63.971 0.273
3 125.067 125.398 0.264
4 206.742 207.118 0.181
5 308.837 308.923 0.028
6 431.352 430.493 0.199
7 574.285 571.422 0.499

Table A. 5 Convergence for natural frequencies

Due to the small partitioning, the calculation speeincreased. However, increasing
the knots on the beam the calculation speed islgldacreasing.
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Fig. A.6 Convergence numerical to analytical fdreee edged homogeneous

rod, M=150 points, factoK/% to scale the modes

Mode Ang:ggzxgzgd NurErGeraclilerl:/clzieetQOd Error (%)
(M=150)
1 23.144 23.144 0.000
2 63.797 63.797 0.000
3 125.067 125.067 0.000
4 206.742 206.742 0.000
5 308.837 308.837 0.000
6 431.351 431.351 0.000
7 574.285 574.284 0.001

Table A.6 Convergence for natural frequencies

95

50



25 30

® (m)

x(m)

Fig. A.7. Convergence numerical to analytical fdreee edged homogeneous

rod, M=200 points, factoK/% to scale the modes

Mode Angggﬁgf}itizgd Nurgreeracl?érl:/cl:ieetzw Error (%)
(M=200)
1 23.144 23.145 0.005
2 63.797 63.805 0.013
3 125.067 125.086 0.015
4 206.742 206.764 0.011
5 308.837 308.840 0.001
6 431.351 431.309 0.010
7 574.284 574.107 0.031

Table A.7 Convergence for natural frequencies
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Y

Points Analytic

Mode 25 50 100 150 200 Method
1 23.353 23.192 23.155 23.144 23.145 23.144
2 64.532 63.971 63.836 63.797 63.805 63.797
3 126.410 125.398 125.148 125.067 125.086 125.06]
4 208.125 207.118 206.837 206.742 206.764 206.741
5 308.591 308.923 308.866 308.837 308.840 308.83]
6 426.281 430.493 431.158 431.351 431.309 431.35]
7 559.236 571.422 573.629 574.284 574.107 574.284

Table A.8 Focusing results for the converge ofrtariral Frequencies

Apparently, investigating the lower frequencies thscrepancies of the results are
very small. As we proceed to areas with higherdestgies the discrepancies between
the results are more obvious, see, Table (8). thtiad, increasing the number of the

elements used over the rod the results convergestogle value. This latter comes in

agreement with the used numerical theory accorttinghich the higher we dense the

grid the smaller declinations we get obtain.

Calculations for an inhomogeneous rod

In the following, we investigate the case of a imogeneous rod with varying
thickness fromb =1 [m], concerning the domair <10 andx>40 ,tob=2 [m]in
the domain ,10< x< 40 , with its maximum thickness to be in the middfetloe
beam. The two cases (homo. and inhomogeneousp&itiompared concerning both
the normalized eigenfunctions and the normal freqies. It is obvious that the
analytical solution isn’t feasible for cross sen#owith varying geometrical
characteristics. Therefore, we demonstrate theltsesbtained from the numerical
solution and only.
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Mode No.4 .
Mode No.2
== Mode No.3
—___ Mode No.1
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= " Mode No.5
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I
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0 5 10 15 20 5 30 35 40 15 50

Fig. A.9 Normalized inhomogeneous clamped rod180& points, factor\/% to scale

the modes

Numerical Method
Mode Frequencies
(M=100)

23.625
69.538
174.939
286.087
414.479
570.986
. 759.211
Table A. 9 Natural frequenciefrad/seg, for clamped rod

o (01 | (W N |
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Mode No.3

T

Mode No.5
|

45

25 30
x(m)

35

45

Fig. A.10 Normalized inhomogeneous free, M}© points, factor\/% to scale the

modes

Mode

Numerical Method
Frequencies
(M=100)

47.170

82.696

174.731

284.771

415.310

o (01 |~ (W N |

574.726

7

765.928

Table A.10 Natural frequenciefrad/seg, for free rod
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Mode No.5
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Fig. A.11 Normalized inhomogeneous pinned rod, A& points, factor\/% to scale

the modes

Numerical Method
Mode Frequencies
(M=100)

12.683
44.469
135.604
224.661
338.718
486.431
7 663.437
Table A.11 Natural frequenciefrad/seg, for pinned rod

o (O |~ (W N |

Results for a homogeneous beam

The main characteristics of the rod are: (i) Lendth= 50[m] [m], (ii) Young's

modulus:E =510 [Pa (ii) Mass densityp = 923[kg/m3} , (iv)
Thicknesst =1[m], (v) Moment of inertia:l :”t%2:0.0833[ kg rﬁ] , Cross

section areaA=t?=1 [mﬂ
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Fig. A.12 Normalized eigenfunctions for homogenedasnped beam, MO0

. 2
points, factor\/E to scale the modes

Mode Ang:ggzxgzgd NurErGeraclilerl:/clzieetQOd Error (%)
(M=100)
1 13.362 13.364 0.016
2 36.833 36.858 0.066
3 72.208 72.251 0.060
4 119.363 119.414 0.043
5 178.307 178.321 0.008
6 249.041 248.931 0.044
7 331.563 331.180 0.115

Table A.12 Natural frequenciefrad/seg, for clamped beam
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Fig. A.13 Normalized eigenfunctions for homogenefvas beam, M£00 points,

factor \/2
L

to scale the modes

Mode Ang:ggﬁgf}itiggd Nurgreeracl?érl:/cl:ieetzw Error (%)
(M=100)
1 13.362 13.380 0.133
2 36.833 36.925 0.250
3 72.208 72.448 0.333
4 119.363 119.855 0.413
5 178.307 179.152 0.474
6 249.041 250.349 0.525
7 331.563 333.424 0.561

Table A.13 Natural frequenciefrad/seg, for free beam
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Symbols! Analytical results
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Fig. A.14 Normalized eigenfunctions for homogenepimied beam, M£00 points,

factor \/% to scale the modes

Mode Ang:ggzxgzgd NurErGeraclilerl:/clzieetQOd Error (%)
(M=100)
1 5.894 5.890 0.079
2 23.578 23.571 0.030
3 53.050 53.017 0.063
4 94.311 94.212 0.106
5 147.361 147.125 0.161
6 212.201 211.709 0.232
7 288.828 287.923 0.313

Table A.14 Natural frequenciefrad/seg, for pinned beam
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Results for an inhomogeneous beam

2 T

Mode No.3

Mode No4

S ~"ModeNo5

10 15 20

45

25 30 35

40

45

Fig. A.15 Normalized eigenfunctions for inhomogemgclamped beam, M0

. 2
points, factor\/E to scale the modes

Mode

Numerical Method
Frequencies (M=100)

15.661

43.569

96.269

160.327

236.918

o (O | W N |

327.360

7

434.215

Table A.15 Natural frequenciefrad/seg, for clamped beam
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Mode No.3

“Mode No.5

0 ] 10 15 20 25 30 35 40 45

o 5 10 15 20 25 30 35 40 45

*(m)

Fig. A.16 Normalized eigenfunctions for inhomogenefree beam, M0 points,

factor \/% to scale the modes

Numerical Method

Mode Frequencies (M=100)

24.456
48.486
96.408
160.050
237.749
329.646
7 438.093
Table A.16 Natural frequenciefrad/seg, for free beam

o (01 | (W N |
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Fig. A.17Normalized eigenfunctions for inhomogeneous pinoeam, M100

. 2
points, factor\/E to scale the modes

Numerical Method

Mode Frequencies (M=100)

8.251
27.503
72.793
126.809
194.329
277.707
. 378.260
Table A.17 Natural frequenciefrad/seg, for pinned beam

o (01 | (W N (-
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Comparative results of natural frequencies concermg a beam and a rod cross
section

In the following tables we present the way the radtirequencies change depending
the shape of its cross sectional areas. Thus, wgare and contrast all the possible
combinations concerning the given boundary conaiétio

Mode NATURAL FREQUENCIES
1 23.176 23.176 10.206
2 63.956 63.956 40.826
3 125.486 125.486 91.833
4 207.595 207.595 163.185
5 310.305 310.305 254.826
6 433.620 433.620 366.693
7 577.504 577.504 498.698
Table A.18 Homogeneous rod , Clamped (left) , Fceater), Pinned (right)

Mode NATURAL FREQUENCIES
1 23.625 47.170 12.683
2 69.538 82.696 44.469
3 174.939 174.731 135.604
4 286.087 284.771 224.661
5 414.479 415.310 338.718
6 570.986 574.726 486.431
7 759.211 765.928 663.437

Table A.19 Inhomogeneous rod , Clamped (left) eRoenter), Pinned (right)
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Mode NATURAL FREQUENCIES
1 13.364 13.380 5.890
2 36.858 36.925 23.571
3 72.251 72.448 53.017
4 119.414 119.855 94.212
5 178.321 179.152 147.125
6 248.931 250.349 211.709
7 331.180 333.424 287.923

Table A.20 Homogeneous beam, Clamped (left) , f@erter), Pinned (right)

Mode NATURAL FREQUENCIES
1 15.661 24.456 8.251
2 43.569 48.486 27.503
3 96.269 96.408 72.793
4 160.327 160.050 126.809
5 236.918 237.749 194.329
6 327.360 329.646 277.707
7 434.215 438.093 378.260

Table A.21 Inhomogeneous beam, Clamped (left) e Ezenter), Pinned (right)

Regarding the homogeneous scenario, it is cleapioted in the Tables (18), (20),

that the clamped and free types of boundary candithave the same values for the
natural frequencies. The latter is associated wlih roots of the characteristic

polynomial which apparently is the same for botk ttases; see, eq. (1.2.15). In
addition, the first two columns of the inhomogernediables (19), (21) are slightly

different concerning the mode No.1 and mode No.Be Ppresented results are
obtained exclusively through numerical analysiserEfore, such small differences
are attainable due to approximation errors.
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Mode EIGENFREQUENCIES
1 13.364 23.176
2 36.858 63.956
3 72.251 125.486
4 119.414 207.595
5 178.321 310.305
6 248.931 433.620
7 331.180 577.504

Table A.22 Homogeneous beam (left) , homogenealigright),given clamped type
of edges

Mode EIGENFREQUENCIES
1 15.661 23.625
2 43.569 69.538
3 96.269 174.939
4 160.327 286.087
5 236.918 414.479
6 327.360 570.986
7 434.215 759.211

Table A.23 Inhomogeneous beam (left), inhomogeneodigright), given clamped
type of edges

We presented the case of the simple beam and rainogeneous and
inhomogeneous), to investigate the differences asmmwove from a square cross
section area to a circular one. We observe thatilar sections are associated with
higher frequency excitations compared to the sqgeactions and so do the same for
the rest of the boundary conditions, i.e. free pimthed.
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Timoshenko beam model

Homogeneous rod

The main characteristics of the rod are: (i) Lendth- 50[m] [m], (ii) Young's
modulus:E = 210 16 [ P4, (iii) Shear modulusz =80 10 [ P§ (iv) Mass
density;p = 7850[kg/m3}, (v) Thicknesst =1[m|, (vi) Moment of inertia:

| = ”t% = 0.7854[ kg rﬁ] , (vii) Cross section areaA = 7t* = 3.1416{m2}

03 T
Mode No.3

" Mode No.4 '

| | | | | | | | |
o 5 10 16 20 25 30 35 40 45 50
*x (m)

Fig. A.18 Normalized eigenfunctions for homogenedasped rod, MZ00 points,
K =0.857]

Numerical Method
Mode Frequencies
(M=100)

23.580
64.481
125.485
203.820
298.793
408.324
y 530.333
Table A.24 Natural frequenciefrad/seg, for clamped rod

o (01 |~ (W N (-
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Mode No.3

Mode No.5

45

25 30

x (m)

40

45

Fig. A.19 Normalized eigenfunctions for homogenefras rod, M=100 points,

K =0.857]

Mode

Numerical Method
Frequencies
(M=100)

24.273

66.560

128.951

210.753

309.192

o O |~ (W N (-

422.882

7

549.743

Table A.25 Natural frequenciefrad/seg, for free rod

As we see from the obtained results in the Timokbemodel the normal modes,
concerning a circular sectional area, differ frdra torresponding ones obtained from

the Euler — Bernoulli model.
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Fig. A.20 Normalized eigenfunctions for homogenepusied rod, usind 00 points,

K =0.857]

Mode

Numerical Method
Frequencies
(M=100)

10.409

41.604

93.596

164.306

252.347

o O |~ (W N (-

357.025

7

475.567

Table A.26 Natural frequenciefrad/seg, for pinned rod

It is now obvious, that the calculations accordinghe Timoshenko theory lead to
higher natural frequencies compared to the onesetkefrom the Euler — Bernoulli
model. The difference regarding the two methodbkas the former involves the shear
deformations of the beam. Furthermore, we use waridiscretization steps to
demonstrate the progressive convergence of theameth we dense the grid over the
beam. The results, concerning a clamped rod, aieted in the following figures:
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o ] 10 15 20 25 30 35 40 45
x (m)

Fig. A.21 Clamped edged homogeneous rod, M=25 polit=0.8571

Numerical Method

Mode Frequencies (M=25)

35.365
95.676
183.023
294.634
425.655
573.313

7 733.450
Table A.27 Natural frequencies

o O |~ (W N (-
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o 5 10 15 20 25 30 35 40 45
x (m)

Fig. A.22 Clamped edged homogeneous rod, M=50 polit= 0.8571

Numerical Method

Mode Frequencies (M=50)

26.353
72.106
138.656
225.311
329.295
448.531

7 580.939
Table A.28 Natural frequencies

o O |~ (W N (-
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o 5 10 15 20 25 30 35 40 45
% (m)

Fig. A.23 Clamped homogeneous rod, M=150 poi#ts;: 0.8571

Numerical Method
Mode Frequencies
(M=150)

22.887
63.094
122.712
199.661
292.554
400.005

7 519.934
Table A.29 Natural frequencies

o O |~ (W N (-
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10 18 20 25 30 35 40 45 50
®(m)

Fig. A.24 Clamped homogeneous rod, M=200 poifts; 0.857]

Numerical Method
Mode Frequencies
(M=200)

22.887
63.094
122.019
198.274
290.474
397.232

7 516.468
Table A.30 Natural frequencies

o (O |~ (W N |
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Points

Mode 25 50 100 150 200
1 35.365 26.353 23.580 22.887 23.144
2 95.676 72.106 64.481 63.094 63.317
3 183.023 138.656 125.485 122.712 122.744
4 294.634 225.311 203.820 199.661 200.111
5 425.655 329.295 298.793 292.554 294.032
6 573.313 448.531 408.324 400.005 403.122
7 733.450 580.939 530.333 519.934 525.787

Table A.31 Focusing results for the converge efrthtural frequencies
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Results for an inhomogeneous rod

We use the same function to describe the changigeahickness of the beam. From,
b=1 [m], concerning the domain <10 and x> 40, to b=2 [m] in the domain ,
10< x < 40 with its maximum thickness to be in the middldtoé beam.

Mode No.1
Mode No.2
Mode No.3
0.2 — Mode No.4

— Mode No.5

o 5 10 15 20 25 30 35 40 45 50

| | | | | | | | |
o 5 1o 15 20 25 30 35 40 45 50
® (m)

Fig. A.25 Normalized modes for inhomogeneous clatmpe, M=100 points,

K =0.8571
Mode Numerical Method
Frequencies
1 23.580
2 82.505
3 158.760
4 252.347
5 366.037
6 497.751
. 641.943

Table A.32 Natural frequenciefrad/se¢, clamped rod
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0.5

— Mode No.5

Mode No.1
Mode No.2

Mode No.3
Mode No.4

50

10 15 20 25 30 35 40 45
(m)
1 1 | | 1 | 1 1
10 15 20 25 30 35 40 45
x(m)

Fig. A.26 Normalized inhomogeneous free rod, 8 points, K = 0.857]

Numerical Method

Mode Frequencies
1 21.500
5 84.584
3 164.306
4 262.745
5 379.901
5 517.161
7 667.593

Table A.33 Natural frequenciefrad/seg, for free rod
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Mode No.1 | .
Mode No.2
Mode No.3
Mode No .4
Mode No.2

5

5 10 15 20 25 30 35 40 45 50
® (m)

Fig. A.27 Normalized inhomogeneous pinned rod,1d& points, K = 0.8571

Mode Numerical Method
Frequencies

1 6.2491

2 55.4686

3 117.1662

4 202.4338

5 311.9645

6 440.2125

7 580.2454

Table A.34 Natural frequenciefrad/seg, for pinned rod

Results for a homogeneous beam

The main characteristics of the beam are: (i) Lenbt= 50[m] [m], (ii) Young's
modulus:E =510 [ P& shear modulu& =80 10 [ P§ (ii) Mass
density:p = 923[kg/m3}, (iv) Thicknesst =1[m], (v) Moment of inertia:

| = ”t%zz 0.0833[ kg rﬁ] ,(vi) Cross section ared=t>=1 [mz].
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| | |

Mode No.3

T T
Mode No.4

Mode No.5
|

10 15 20

*x (M)

45

10 15 20

25
®x (m)

40

45

Fig.A.28 Normal modes for homogeneous clamped bé&4i,00 points,
K =0.833¢

Mode Numerical Method
Frequencies
1 14.568
5 40.218
3 79.039
4 130.338
5 192.729
5 266.904
7 352.172

Table A.35 Natural frequenciefrad/seg, for clamped beam
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0 5 10 15 20

45

Fig. A.29 Normalized eigenfunctions for homogenefvas beam, M£00 points,
K =0.833¢

25 30
®(m)

Mode Numerical Method
Frequencies
1 14.568
5 41.604
3 81.118
4 133.804
5 198.274
5 274.530
7 361.877

Table A.36 Natural frequenciefrad/seg, for free beam

45
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T
_ Mode No.2

T
Mp_d_e:__No,S

K =0.833¢

Numerical Method

Mode Frequencies

1 6.249

2 25.660
3 58.242
4 103.302
5 160.840
6 230.163
. 310.578

01 RHH““HH
02~ =i Mode No.3 . Mode No.4
03 | | | | | | | | |
o 5 10 15 20 25 30 35 40 45
x (m)
10
e |
o
-5 —
Ao | | | | | | | | |
o 5 10 156 20 25 30 35 40 45
® (m)
Fig. A.30 Normalized eigenfunctions for homogenepused beam, MA.00 points,

Table A.37 Natural frequenciefrad/seg, for pinned beam
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0.3

Results for an inhomogeneous beam

01 =

R

0.2 =

Mode No.1

Mode No.2
Mode No.3
Mode No.4

— Mode No.5|

5 10 16 20 25 30 35 40 45 50
®x (m)

Fig. A.31 Normal modes for inhomogeneous clampedryév=100 points,
K =0.833¢

Analytic Method

Mode Frequencies
1 15.261
2 51.309
3 99.142
4 160.840
5 237.095
6 329.295
7 432.587

Table A.38 Natural frequenciefrad/seg, for clamped inhomogeneous beam
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Fig. A.32 Normalized eigenfunctions for inhomogemeéree beam, M00 points,
K =0.833:

Analytic Method

Mode Frequencies
1 13.875
5 52.002
3 102.608
4 165.693
5 244.721
6 339.001
7 446.452

Table A.39 Natural frequencieb’,adlseqc, for free inhomogeneous beam
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Mode No.1 |,
Mode No.2
Mode No.3
Mode No.4
Mode No.5

5 10 15 20 25 30 35 40 45 50
® (m)

Fig.A.33 Normalized eigenfunctions for inhomogenepinned beam, ME0O0 points

ode | Anai et

1 4.863

2 33.978
3 72.799
4 126.872
c 198.968
6 285.622
7 383.367

Table A.40 Natural frequencieﬁ,ad/seét, for pinned inhomogeneous beam

Comparative results of natural frequencies concermg a beam and a rod cross
section area

In the following tables we present the way the ratfrequencies change depending
on the shape of the cross sectional area. Thuscomgpare and contrast all the
possible combinations of the geometrical shapes.
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Mode NATURAL FREQUENCIES
1 23.580 24.273 10.409
5 64.481 66.560 41.604
3 125.485 128.951 93.596
4 203.820 210.753 164.306
5 298.793 309.192 252.347
5 408.324 422.882 357.025
y 530.333 549.743 475.567

Table A.41 Homogeneous rod , Clamped (left) , Kceater), Pinned (right)

Mode NATURAL FREQUENCIES
1 23.580 21.500 6.2491
5 82.505 84.584 55.4686
3 158.760 164.306 117.1662
A 252.347 262.745 202.4338
c 366.037 379.901 311.9645
5 497.751 517.161 440.2125
. 641.943 667.593 580.2454

Table A.42 Inhomogeneous rod , Clamped (left) eRoenter), Pinned (right)
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Mode NATURAL FREQUENCIES
1 14.568 14.568 6.249
5 40.218 41.604 25.660
3 79.039 81.118 58.242
4 130.338 133.804 103.302
5 192.729 198.274 160.840
5 266.904 274.530 230.163
7 352.172 361.877 310.578

Table A.43 Homogeneous beam, Clamped (left) , Freeter), Pinned (right)

Mode NATURAL FREQUENCIES

1 15.261 13.875 4.863

2 51.309 52.002 33.978
3 99.142 102.608 72.799
4 160.840 165.693 126.872
5 237.095 244,721 198.968
6 329.295 339.001 285.622
7 432.587 446.452 383.367

Table A.44 Inhomogeneous beam, Clamped (left) e Fecenter), Pinned (right)
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Mode EIGENFREQUENCIES
1 14.568 23.580
2 40.218 64.481
3 79.039 125.485
4 130.338 203.820
5 192.729 298.793
6 266.904 408.324
7 352.172 530.333

Table A.45 Homogeneous beam (left) , homogenealigright),given clamped type
of edges

Mode EIGENFREQUENCIES
1 15.261 23.580
) 51.309 82.505
3 99.142 158.760
4 160.840 252.347
5 237.095 366.037
6 329.295 497.751
y 432.587 641.943

Table A.46 Inhomogeneous beam (left), inhomogeneodigright), given clamped
type of edges

We note that in this case too circular sectionsex@ted from higher frequencies
compared to the square corresponding ones.
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Comparative results for the Timoshenko and Euler Bernoulli models

In order to understand how shear deformations shhperange of the natural
frequencies we demonstrate comparative resultsdtir the TBT and EBT.

Mode EIGENFREQUENCIES
1 23.176 23.580
2 63.956 64.481
3 125.486 125.485
4 207.595 203.820
5 310.305 298.793
6 433.620 408.324
7 577.504 530.333

Table A.47 Homogeneous clamped rod, EBT (left), TB@ht)

Mode EIGENFREQUENCIES
1 23.176 24.273
2 63.956 66.560
3 125.486 128.951
4 207.595 210.753
5 310.305 309.192
6 433.620 422.882
7 577.504 549.743

Table A.48 Homogeneous free rod, EBT (left), TBiglt)
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Mode EIGENFREQUENCIES
1 10.206 10.409
2 40.826 41.604
3 91.833 93.596
4 163.185 164.306
5 254.826 252.347
6 366.693 357.025
7 498.698 475.567

Table A.49 Homogeneous pinned rod, EBT (left), TEght)

Mode EIGENFREQUENCIES
1 23.625 23.580
5 69.538 82.505
3 174.939 158.760
4 286.087 252.347
5 414.479 366.037
5 570.986 497.751
7 759.211 641.943

Table A.50 Inhomogeneous clamped rod, EBT (IefBT {right)
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Mode EIGENFREQUENCIES
1 47.170 21.500
2 82.696 84.584
3 174.731 164.306
4 284.771 262.745
5 415.310 379.901
6 574.726 517.161
7 765.928 667.593

Table A.51 Inhomogeneous free rod, EBT (left), T@ght)

Mode EIGENFREQUENCIES
1 12.683 6.2491
2 44.469 55.4686
3 135.604 117.1662
4 224.661 202.4338
5 338.718 311.9645
6 486.431 440.2125
7 663.437 580.2454

Table A.52 Inhomogeneous pinned rod, EBT (left),TT{Eght)
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Mode EIGENFREQUENCIES
1 13.364 14.568
2 36.858 40.218
3 72.251 79.039
4 119.414 130.338
5 178.321 192.729
6 248.931 266.904
7 331.180 352.172

Table A.53 Homogeneous clamped beam, EBT (left) Tiigyht)

Mode EIGENFREQUENCIES
1 13.380 14.568
2 36.925 41.604
3 72.448 81.118
4 119.855 133.804
5 179.152 198.274
6 250.349 274.530
7 333.424 361.877

Table A.54 Homogeneous free beam, EBT (left), TBht)
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Mode EIGENFREQUENCIES
1 13.380 14.568
2 36.925 41.604
3 72.448 81.118
4 119.855 133.804
5 179.152 198.274
6 250.349 274.530
7 333.424 361.877

Table A.55 Homogeneous pinned beam, EBT (left), TBJht)

Mode EIGENFREQUENCIES
1 15.661 15.261
5 43.569 51.309
3 96.269 99.142
A 160.327 160.840
5 236.918 237.095
5 327.360 329.295
. 434.215 432.587

Table A.56 Inhomogeneous clamped beam, EBT ([ER)[ (right)
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Mode EIGENFREQUENCIES
1 24.456 13.875
2 48.486 52.002
3 96.408 102.608
4 160.050 165.693
5 237.749 244,721
6 329.646 339.001
7 438.093 446.452

Table A.57 Inhomogeneous free beam, EBT (left), TBJht)

Mode EIGENFREQUENCIES

1 8.251 4.863

2 27.503 33.978
3 72.793 72.799
4 126.809 126.872
5 194.329 198.968
6 277.707 285.622
7 378.260 383.367

Table A.58 Inhomogeneous pinned beam, EBT (IeB)T Tright)

The above results clearly depict the effect ofghear modulus(, and of the rotary
inertia , J,on the normal frequencies and the normal moddsereive refer to a
circular cross section or to a square section area.
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Appendix B

Calculation of the radiation potentials

For the  calculation of the sectional hydrodynamic oefticients

@i (%) = f N,gds , where x, denotes the position alongships, the 2D potentials
C(x)

#(x) . 1=2,34, on the verticalx, — X, plane are required. The latter are obtained

by solving boundary value problems consisted ofLiyglace equation in deep water

2 2
9 9% o, y=234, ()

2 2
oxX;  OX3

the free surface boundary condition

2 o¢, _ _ B
oG =0, (=234.,%=0, )

boundary condition on the wet surface of each secti

%: Nf ’ é: 21314 ] on 8DB(X:I.)’ (3)

and finally the condition at infinity expressirngetfact that the waves are outgoing at
infinity

¢, | i
L= 4,=0 4
% g é (4)

Several methods are available for the solutiorilpfafth boundary conditions (2)-(4),

0 the domain discretization methods using finiteat#hce or finite element methods
and boundary element methods (see, e.g. Ohkusy,1996

0 analytic function methods in conjunction with comf@l mapping techniques,
Ursell (1949), Lewis (1986)

0 integral equation methods exploiting the Green fiancof the Laplace equation
(method of potentials, methods based on Greentzé¢ne Frank 1967).

In this work a Boundary Element Method (BEM) wik loleveloped and used for the

solution of the sectional problems, based on sesirde distributions, in conjunction
with an absorbing layer technique, permitting totrate the computational domain at
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some distance from the body where the soluti@bsorbed with minimal reflections,
and thus, minimum contamination of the numericéltson.

First we consider a 2D section of the ship withaldmeam,B, and draft,T , as shown
in Fig. A.1. The section is symmetric with respxtx; —axis. We also assume that

the body is even keel; therefore, the center ovigrand the center of buoyancy are
collinear.

absorbing layer >

absorbing layer X,

Fig. B.1 Section of the ship
The potential at a pointx, ¢ (x) based on surface source-sink distributigr{ x)
over the boundary is used,

¢ (x)= f o (X)Q(x|xs)dS =234, (5)
dDg| oD

WhereQ(x | xs) is the fundamental solution of the 2D Laplace eiguat.e. ,

Q(x|xs):—%ln(|x—xs|) (6)

with X =(x,,X3) denoting the field point in the domain anslg = (X,s, X55) denoting
the source point on the boundary of the domﬁBFUé?DB, which consists of two

parts the free surface (left and right to the bodp)- and the wetted part of the body
8DB .
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The derivative of the potentigl with respect tox at a point in the domain is

U ()= fa )V, Q(x|x)dS, =234, 7)
aD'
where
V,Q(X[Xg)=———25 ®)
27| X — X

On the boundaryxeaDBU8DF the derivative of the potential see e.g., Gunter
1967, Kress 1989) , is expressed as follows

U (X) = +fa V,Q(x|%)dS, xedDg| JOD: , =234
oD
(8)

where N =(N,,N;) is the normal vector. Accordingly, the normal \afp on the
boundary is

88_?]:Gigx)+N(x)fai(x)VXQ(x|xS)dS, x €D JOD , 1=2,34. (9)

where n(x)=(N,, N;), is the normal vector pointing into the exteriérttoe domain
D, and thus, into the interior of the body 8Dy .

The boundary condition on the surface of the bades$ the form

fa V,Q(X[%)dS=N;(x) ,i=2,34, xcdDg , (10)
oD'

and the corresponding boundary condition on timedrized) free surface is

fa V,Q(X | Xq dS——fa Q(x|xs)dS=0

oD' aD'
i=2,34 X € ODg (11)

An important task concerning the present schemdsded#h the treatment of
horizontally infinite domain and the implementatioh appropriate radiation-type
conditions at infinity. Although in the case of éar waves, conditions at infinity
could be treated using the appropriate time-depgn@eeen function, the present

work is based on the truncation of the domain andhe@ use of Perfectly Matched
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Layer (PML) model, as e.g. described by Bereng884) and Turkel, Yefet (1998),
optimized by Collino, Monk (1998); see also Filgsp Belibassakis (2014)

The latter model permits the numerical absorptibrihe waves reaching the left,
x=a, and right,x=b, ends of the truncated domain with minimum reftact This

selection is motivated by the fact that PML modgdmorts the efficient extension of
the present numerical scheme to treat generatidrpeopagation of non-linear waves

excited due to motion(s) of the moving body; seso dtilippas, Belibassakis (2014).
Following Sclavounos, Borgen (2004) the boundasgdition for x € 9D, inside
the absorbing layeng < —a and x, >a andx; =0) is modified as follows
. 2
o4 _(0+i5(w)

o ] 4=0,i=234, 0D,(x) atx=0, (12)

where the PML-paramete¥f(w) is a positive absorption coefficient with suppoft

size (=Db—aextended over several wavelengths from the au@ifi@nd-type
boundaries,x=+b, used in order to truncate the computational damé the
present work we use optimum PML coefficients, ascdbed by Collino & Monk
(1998) and applied by Belibassakis et al (2001) Betibassakis & Athanassoulis
(2011) to water wave problems. In accordance with the iptess works the

distribution of the absorption coefficient is oktform:

So(@)|x+a”, x<a
o(w) = 0 , —a<x<a, (13)

So(@)|x—4", x>a

The performance of the PML model has been exanforedML absorbing layer with

various parameteré= 1,151,214, p=2,3,4and¢,. It is found that the performance

of the PML becomes better as its layer length m®es. Based on extensive numerical

evidence, we finally conclude that the PML paramgeteshould be

t12€[1,2,pe[2,4] and &, (w) increasing withw for optimum performance in the

studied problem. In the sequel 1 =1, p=3 and &, (@) =(w/ w,,,)’ is used.
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Boundary Element Method

In this present work, we treat the problem usirg Boundary Element Method, see,
e.g. Beer & al (2008). Given a 2D geometry, seg,Eg. A.2,

(N2,N

Fig. B.2Boundary Element approximation

we consider a numbe of segments to form a low-order polygonal appraation
(polyline) to describe the given geometrgD. The shape of the approximate
geometryoD,, , is associated with the number of the elementd,...,.M , used in the

approximation, therefore the bigger number of eleimewve use, the better we
approach the boundaryD. This method is known as “panel method” whicls |
based on the property that the geometry approimdiecomes more close to the
exact geometry as the number of boundary elemen¢ases, i.edD,, - oD , as

M — o . It should be noted that,

e adense grid is used to minimize the approximatioars,

e specific parts with complicated geometry, e.g. ¢hevature of the boundary
surface, required increased number of the panels,

e and at least 15 elements per wavelength are naadeder to discretize the
free-surface part of the boundary, and thus thebmurof the elements depend
on the wavelength and the frequeneay

Let, o(x) be the unknown source-sink distribution over theurdary, oD.
Concerning the low-order approximation the sinkrseu distribution, o;, is
considered partially constant at each pamell,...M , of the boundarygoD,,, see
also, Fig. (A.3)
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Fig. B.3 Source sink distribution using Boundargraent Method

It is now obvious that the sink-source distributien , i =1,...,M approaches the
distribution o(x) over the real boundargDg , when,

”Jr—a(xw - 0.
M —oo

The integrals associated with the satisfactionhef boundary conditions, (10)-(12)
will concern the center of each panel and will gresented by the index1,...M .

The boundary of the domain consists of the left aglt, to the body, free surface
and the wetted part of the bodp;. Regarding the panel method, starting from left

to right, we setM; denoting the number of elements of the free sarfache left of
the body, M, denoting the wetted part of the body akl} denoting the right free

surface. The potentiap(x) based on the action of the sink-source distriloubwer
the elementAB), at some pointx, of the domain is given by Eqn. (5), see Fig.(A.4)

Also by Eqgns. (8), (9) we get the velocity-,(x) and the normal veIocityZ—: ,

equivalently produced by the potential,x) .

The above integrals are easily calculated in Iggalcoordinate systems where the
axis is selected to coincide with each panel; sgeB4
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A

Fig. B.5 Local coordination system for (AB) element

Let (xz,x3) be the coordinates of a poift in the global coordinate system and
({,77) the coordinates of the same point in the localrdioate system. Let also

(sz,xg*) : (sz,x3B) denote the coordinates of the panel ends in thieagicoordinate

system , and¢s,0) , (£.,0) be the corresponding coordinates in the locatiesys

The analytical expression of the result of thegnaé providing the induced potential
is as follows

#(¢ )= (6 =N (€ =) 0 | (¢ ~Ca)n] (¢ =G ) +07 ]+

’ . (19)

and the corresponding velocities (derivatives @f plotential) in the local coordinate
system are given by

_n
(& —<s)

1

tan ! — tan

_n
|2n S
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’ _9 ltant n <1 n , 16

Uy ()= B | g =N (19)
— 2+ 2

ug(g,n)——%m (§—§:§2+ZZ (17)

As an example the induced potential and flow veiegifrom a linear element

extending from A= (0,0) to B=(1,0) are shown in .FB®$

Fig. B.6 Induced potential and flow velocities fraamlinear element, as calculated
using Egs.(15)-(17). A colorbar is used to indidhie values of the potential.

The induced velocity of the linear source elemsrgiven by the integral

X5 — Xos X3— X3

Xy — X23)2 +(x3— X$)2 \/(Xz— Xzs)z +(xg— Xss)z

ds (18)

_ 1y
AB 27Z'jA‘ \/(

The analytical formulas, for the velocity, in thilgal coordinate system are then
obtained by rotation of the previous result,
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Uy, (X2, Xg) = U, (¢ 117) cog0)—u, (¢ 1) sind) (19)

Uy, (%2, %3) = Us (&) sIN(0) +u,, (¢ 77) cog6), (20)

taking into account thal is the direction of the boundary element in thebgl
B A
coordinate system, i.# = tan %
Xy =X

We proceed with the presentation of the BEM by aering the collocation points
(xg‘,xg‘) , m=1,..M;, to be selected the centers of each element, wthere
boubdary conditions will be satisfied. We denogetfie matrix ¢,,, = ¢(x§,x§) the
induced potential from then-boundary element to tha collocation point, and
similarly by u,,, = u(xg,xg)the induced velocity of then-elemen to the center,
(xg,xg), of the n-elemeni, n=1,..,M;. Using the above definitions the boundary
conditions of the problem Egs. (11)-(..) are wntte the following discrete form:

M

a—;+20m(nnunm—y¢nm)zo, n=1..M; (20)
m=1

On M n o n

7+Zo-m(nnunm):Ni(x2,x3>, n=M,;+1..M;+M,,  (21)
m=1

o M 3

7”+Zam(nnunm—,u¢nm)zo, N=M;+M,+1..> M; . (22)
m=1 i=1

The frequency parameter is modified as follows

(a)—l— j5(a>))2
g

u(w)= (23)

in order to model also the absorbing layer .

Based on the previous analysis , the implementatibthe code “cresolg.m” in
Matlab® solves the linear system (20)-(22), whiglovides us with the values of

{o,,n=1.,M} of the source-sink distribution on each boundalgment. The
calculated values are used as input to the integadesentations (8), (9) which

procide the potential and the velocity in the sfpecdomain. Finally, replacing our
results into Eq. (2) we the values of the 2D hygrainic coefficients are obtained.

Numerical results and demonstration of the presenBEM

The application of the panel method is clearly degl in the following figures,
concerning a 2D sectional area, wBYT =2 , including the free surface at the left
and right of the body. The results, derived straigbm the implementation of the
code “geom.m” .
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Fig. B.7 BEM discrezization of the boundary of tt@mnain in the case of an
orthogonal ship cross section B/T=2.

Using as input the results from “geom.m” (sec@bareaB/T =2) , we present the
heave and the sway potentials at a low, a mediudhaahigher angular frequency

within the range of investigatiow* /B/ 2g € [0,2]. We recall that the parameters

used in the PML model aré/2=1, p=3 and &,(»)=(o/w,,) . The results
obtained from the implementation of the code “olgan” .

145



0.3F ' : ; ; ; |

e} =— ‘ f j ‘ ; | —

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Fig. B.9 BEM discretization near the bilge keel
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Heave potential. Angular frequency w*sqrt(B/2g)=0.515
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Fig. B.10 Heave & Sway potentials at angular fremye »* \/B/ 29 =0.515

It is now obvious that the PML model used at thdserx=+ a,b of the truncated
domain allows the absorption of the wave energh wéro reflections. The use of the
aforementioned PML coefficients is associated whih angular range frequency and
produces a specific number of wavelength whichyisproximation 5, see, Fig.A10.
We also notice that the energy derived from theionst of the body, is sustained
during the propagation of approximately 3.5 wavgths whereas close to the
absorption layers the energy is rapidly absorbederdfore, we note that the
amplitude of the waves remains the same for aln3SZ while approaching the
waves close to the edges, the amplitude is deadaseero as seen in the Fig. A9.
We proceed with the presentation of two more cases.

The previous cases provide us with some interesgsglts regarding the use of the
PML model. We observe that both in heave and sveagnpials, the produced waves
are shorter, in length, as we move to higher fraqigs. More specifically, running
through the given frequency range the model is ldgeel to adjust the edges of the
propagation domain, see Sclavounos, Bor@¢2004), according to the boundary
conditions inside the absorbing layer , see Eqa). (1
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Heave potential Angular frequency o*sgrt(B/2g)=1.055
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Fig.B.11 Heave & Sway potentials at angular freqyem* /B/ 2g =1.055

Heave potential. Angular frequency w*sqrt(B/2g)=1.775
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Fig. B.12 Heave & Sway potentials at angular fremye »* /B/ 29 =1.775
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Moreover, following the PML the number of the prodd waves has to remain the
same given specific parametefsl , p , 5o(a)) andB/T see Figs. A10 — Al12. In

addition, higher frequency excitations, lead to kenavave amplitudes. For instance,
as seen in Figs. A10, A1l as frequency increaseaitiplitude of the waves, due to
the heave motion becomes smaller, while the angditof the waves, due to sway
motion, is almost the same. As we proceed to higixertations, see Fig. A12, the
sway motion produces waves of distinctively smallmplitude, while heave

produces even smaller ones.

Finally, we proceed with the calculation of the todlynamic coefficientss;, , by, ,
i,/ =2,3,4 and by extension the calculation of the hydrodyicaiorces F, , F; and
F,. The results are depicted in the following figure

F2,F3,10°F4

200 0
EF2: c—
F3: —

100 0.2
10"F4: ——

0 0.4

o 0.5 1 15 2 0
a22,h22
2 0.6

Fig. B.13Hydrodynamic Forces and coefficients

In order to evaluate the correctness of the presemterical method, we compare our
numerically calculated hydrodynamic coefficieats, £, , with experimentally

measured ones, concerning sectional areas of \wadiowensions8,T . The
measurements are included in Vugit868) through digitization. In addition, we
demonstrate the calculation of the hydrodynamicderassociated with the motions
of the different sectional areas. In the followirgures, we have the solid line
representing the present numerical method andulet® depicturing the
experimental measurements.

149



a22/pA

a33/ph

16T

1471

121

08r

06

0.4

02r

25

0.5

B/T=2

0.2 04 06 08 1 12 14 16 18
w*sqgrt(B/2g)

(b22/pA ) sart(B/2g)

027

0.6

047

0.2 04 06 08 1 12 14 16 18
w"sqrt(B/2g)

Fig. B.14 Numerical and experimental hydrodynanueficientsa,, , b,, for
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Figure B15Numerical and experimental hydrodynamic coeffitsea,, , b;; for B/T =2
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BiT=2: F2(dashed line).F3{solid line),10*F4 (dotted line}
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Fig. B.17 Numerical hydrodynamic forces , F; ,10F, for B/T =2
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B/T=4
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Figure B20 Numerical and experimental hydrodynamic coeffitsefa,,b,,) »(842:b42) (824:024).
for B/IT=4

18

(b4 2/pA) sqrt(Bi2g)

(b24/pAB)*sqrt(B/2g)

(b44/pAB)*sqrt(B/2g)

0121

U

0.08

0.06

0.02 1

0.2

015

01}

0.05 1

0067

0.2

018

01r

0.05

0067

18

BiT=4
A A
s o]
o ©
o]
o]
o]
o}
g 2| | , | |
02 04 06 0.8 1 12 14 16
w*sqrt(B/2g)
BIT=4
A y———u.d
A A

0.2 04 0.6 0.4 1 12

14

16

18

w*sqrt(B/2g)
BIT=4
o
o %aq

02 04 0.6 0.8 1 12
w"sqgrt(B/2g)

154

14

16

18



BiT=4: F2(dashed line).F3{solid line),10*F4(dotted line}
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Fig. B.21 Numerical hydrodynamic forces , F; ,10F, for B/T =4
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BiT=8: F2(dashed line).,F3{solid line),10*F4(dotted line}
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Fig. B.25 Numerical hydrodynamic forces, F; ,10F, for B/T =4

We also examine the case of a cross section BVith=6. Because we lack of

experimental measures for such a case we compar@rtduced results with the
previously presented results ®fT=2 , B/T=4 andB/T =8 .
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Fig. B.27 Numerical and experimental hydrodynanueficientsa,, , b;; for
B/T=6

159



016 1

0.05 ¢
0.045
0.04 ©
S 0.035
o
2]
= 003t
7
0025
5]
<
& oozt
=+
2 015
001t
0.005 [
0.02 ' : : : ' ' ' : !
0z 04 08 08 1 12 14 16 18 2 0 : : : : : : :
w'sqrt(B/2g) 6 02 04 06 08 1 12 14 16 18
w'sqrt(B/2g)
027 015
0.15
0.1
0.05 F
a U
3
g 008
k! BIT=
01
015
0zt
025
04 ; ; : : : : ' ' ' 015 ; ; : : : : ' : '
O 02 04 06 08 1 12 14 16 18 02 04 06 08 1 12 14 16 18 2
w"sqrt({B/2g) w"sqrt{B/2g)
0.2 015
0.5}
01t
01t
0.05 | =
& 005
L [ue]
2 - 5
£ 005 L. 5
&l [ui]
o 3
0.1 £
S 008t
0.15 e
BT=2
02}
01
025
04 : : : : : : ' ' ' 015 : ; : ; : : ' : :
0 02 04 06 08 1 12 14 16 18 62 04 06 08 1 12 14 16 18 2
w*sqgrt(B/2g) w*sqrt(B/2g)
Figure B28 Numerical and experimental hydrodynamic coefficiefd,,,b,,) »(842:b42) (824:024).
for B/T=6

160



BiT=6: F2(dashed line),F3{solid line),10*F4(dotted line}

ra Cad Lad =
tn = n =
T

F2!;:191,-!'«LT,F?u‘|:31g,|‘1~LT,Fihfpg,f!'«.T2
o B

P
]

0.2 0.4 0.6 0.8 1 1.2 14 16 18 2
w"sqri(B/2q)
Fig. B.29 Numerical hydrodynamic forces , F; ,10F, for B/T =6
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