

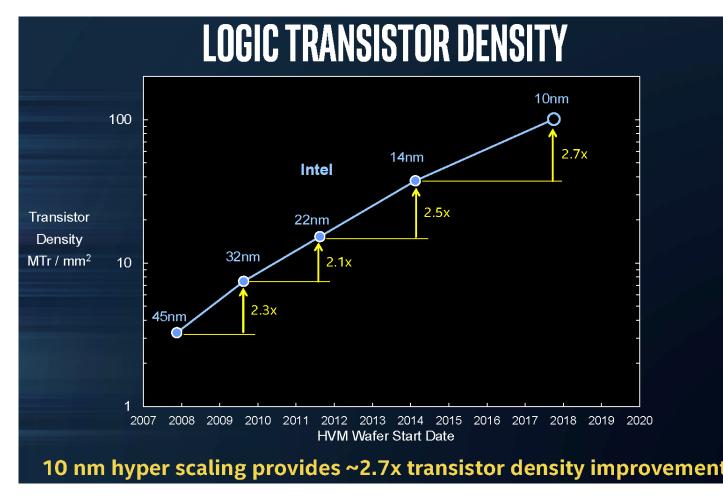
Μελέτη και Κατασκευή Μοντέλων για Πρόβλεψη του Ρυθμού Εγκατάλειψης σε Πρόγραμμα Αποταμιεύσεων

Διπλωματική Εργασία Γεωργακόπουλος Παναγιώτης 0310 9757

19 Ιουλίου 2017

Moore's Law

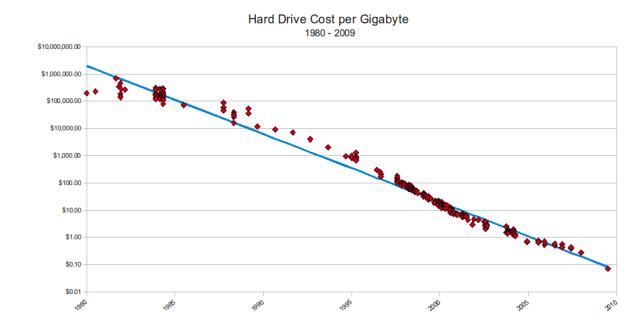
- Moore's Law (1965) predicts x2 improvement in computing capabilities every ~12-18 months
- Moore's Law alive and well after 52 yrs
- "In my 34 years in the semiconductor industry, I have witnessed the advertised death of Moore's Law no less than four times. As we progress from 14 nanometer technology to 10 nanometer and plan for 7 nanometer and 5 nanometer and even beyond, our plans are proof that Moore's Law is alive and well'
 - Intel CEO Brian Krzanich, 2016



Source: Intel

Why Moore's Law Matters for Data Science

- Computers are cheaper and faster than ever
- Computers are everywhere: Industry, Homes, Mobile, Cars, Embedded, Wearables
- Exponential growth in computing capabilities is followed by exponential growth in data available for collection and storage
- Cost of 1 Gigabyte of storage now below \$0.05, from \$200,000 - \$400,000 back at 1980
- Easy and cheap to keep all data possible



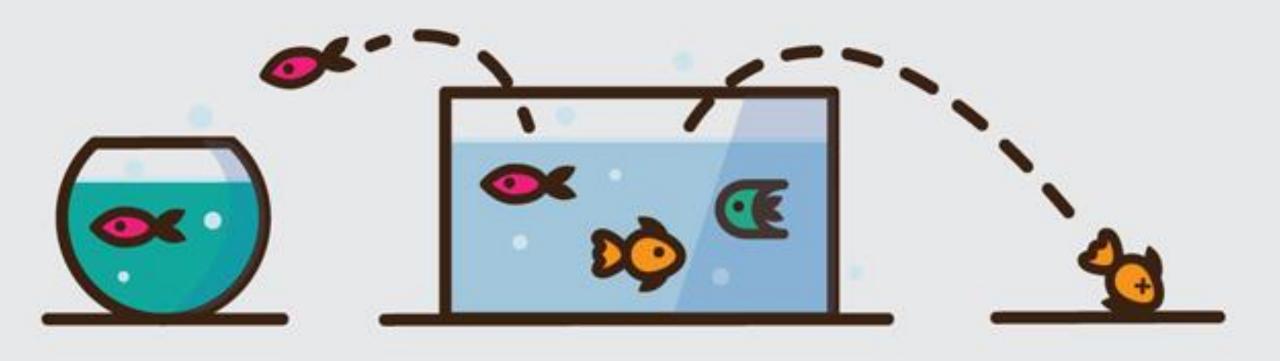
Collect tremendous amount of data. Then what?

- We have established that collecting data is easy and cheap.
- The straightforward business decision is to collect and store everything
- Next step: Leverage the information to gain advantage.
- Need to understand, analyze and model data, to be able to extract valuable, actionable insights about your business

Who can benefit

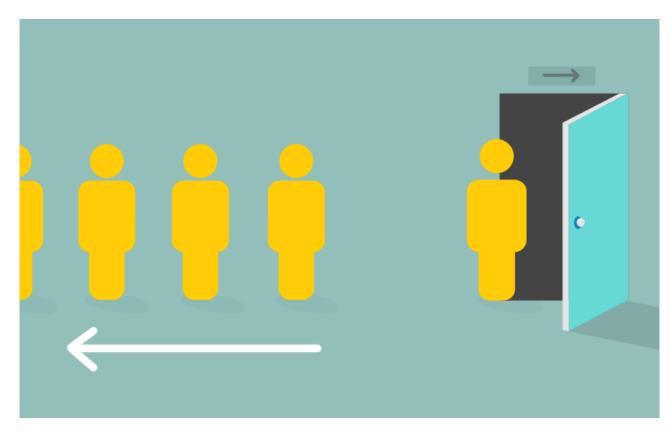
- Everyone!
 - Not using the data is an operational risk!
 - Using data is an operational opportunity!
 - Winning the race is an operational challenge!
- Telecom
 - Understand user needs
 - Optimize network coverage/quality vs population habits
- Retail Chains
 - Optimize advertising
 - Optimize product placement
 - Make accurate predictions
- Banking System
 - Observe customer behavior
 - Suggest relevant products to eligible customers
 - Get actionable insights for existing customers
 - Prevent customer churn

CUSTOMER CHURN



Customer Churn

- Customer churn refers to when a customer (player, subscriber, user, etc.) ceases his or her relationship with a company.
- Any business needs to minimize customer churn (attrition) to maintain a healthy and satisfied customer base.
- The need to minimize churn is even greater when the environment is heavily challenging as is the case with the banking system since 2007
- We will use data to predict (thus provide insights to prevent) customer churn in a banking program



Introducing the problem

- A Banking Institution needs to gain insights about their affluent clients
- Given the financial and demographic data of a client, can we predict if the client will remain in the affluent program of the bank?

- ➤ Insight for each client
- Flag risky clients for further actions

Available information - Demographics

Id	Sex	Age	Postal	Marital9	Status			Educa	ation	Home!	Status
1	F	49	15126	ПАНТРЕМ	ENOΣ/H	TPIT	OBAOMIA	EKΠΑΙ	ΔΕΥΣΗ	ΙΔΙΟΚΑΤ	ΣΙΚΗΣΗ
2	F	60	19014	ПАНТРЕМ	ENOΣ/H	TPIT(OBAOMIA	EKΠΑΙ	ΔΕΥΣΗ	ΙΔΙΟΚΑΤ	ΣΙΚΗΣΗ
3	F	58	10445	ПАНТРЕМ	ENOΣ/H	TPIT	OBAOMIA	EKΠΑΙ	ΔΕΥΣΗ		A/\/0
4	М	49	17562	ПАНТРЕМ	ENOΣ/H		ME	ΕΤΑΠΤΥ	XIAKA	UNKNOWN	VALUE
5	М	54	14234	ΧΩΡΙΣΜ	ENOΣ/H	TPIT	OBAOMIA	EKΠΑΙ	ΔΕΥΣΗ	ΙΔΙΟΚΑΤ	ΣΙΚΗΣΗ
6	М	84	16232	ПАНТРЕМ	ENOΣ/H	TPIT(OBAOMIA	EKΠΑΙ	ΔΕΥΣΗ	UNKNOWN	VALUE
				Profe	ssion	Email	Interne	etConn	Phone	Months	Stay
			Е∧.ЕП.	ΜΟΣΙΟΓΙ	ΡΑΦΟΣ	0		1	1	. 5	FALSE
ΔΙ	HM. YI	٦ ٨ ٨.٦	ΓΡΑΠΕΖΙ	(ΟΣ ΥΠΑΛ	ΛΗΛΟΣ	1		1	1	. 2	FALSE
	I∆.YI	1ΑΛ.1	ΓΡΑΠΕΖΙ	(ΟΣ ΥΠΑΛ	ΛΗΛΟΣ	1		1	1	. 19	FALSE
	IΔ	. ΥΠΑ/	\.ΛΟΙΠΕ Σ	EIΔIKO	ΤΗΤΕΣ	1		1	1	. 3	FALSE
	ΙΔ.ΥΠΑΛ.ΤΡΑΠΕΖΙΚΟΣ ΥΠΑΛΛΗΛΟΣ				1		1	1	. 3	FALSE	
				ΣΥΝΤΑΞ	.OAEE	0		0	0	1	FALSE

Available information - Demographics

- Sex (32% female)
- Age ([Q1, Median, Mean, Q2] =
 [49, 59.0, 59.57, 70]
- Postal Codes, (all over Greece)
- Marital Status(73% Married)
- Education (38% 3rd Lv, 31% HS)

- Home Status (50% Unknown)
- Profession (too many categories)
- Email (25 %)
- Internet (42 %)
- Phone flags (56%)
- Stay flag (50.7%)

Available information - Economics

Id	Month	Immediate	Insurance	Investment	Business	Consumer	Closed	MB	Housing
1	2014.01	376.01	0	0	0	0	0	0	0.0
1	2014.02	497.30	0	0	0	0	0	0	0.0
1	2014.03	591.67	0	0	0	0	60000	3	0.0
1	2014.04	17035.37	0	0	0	0	0	0	-127749.1
1	2014.05	18035.37	0	0	0	0	0	0	-224712.6
1	2014.06	18028.70	0	0	0	0	0	0	-223748.9
(Contribu	tions	Sums Statı	ıs Flag					
		0 6037	6.01 currer	nt TRUE					
		0 6049	7.30 currer	nt TRUE					
		0 6059	1.67 currer	nt TRUE					
		0 7703	5.37 currer	nt TRUE					
		0 7803	5.37 currer	nt TRUE					
		0 7802	8.70 los	st FALSE					

Available information – Economics

[Q1, Median, Mean, Q3]

$$[0, 0, -4k, 0]$$

$$[0,0,-59,0]$$

$$[0, 0, -101, 0]$$

Total: 89698 · 20 month-clients of data

Quick Reminder – Motivation

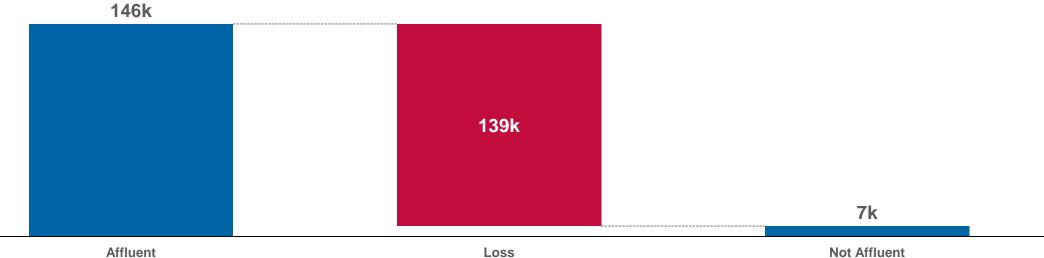
Affluent Clients

Lost Clients

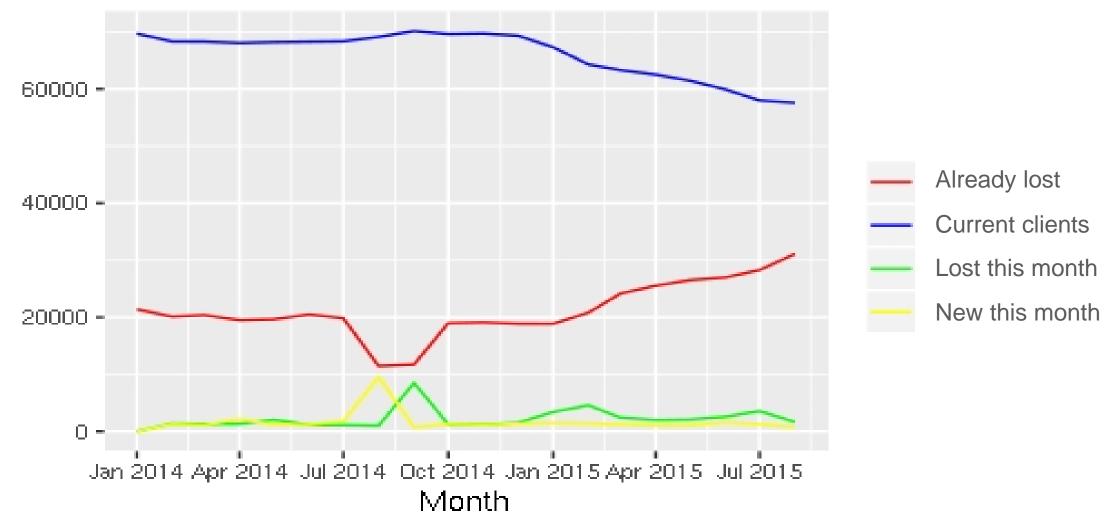
Mean Position: 146k€ per client

Mean Position 7.2k€ per client

$$139k \times 10k = 1.4 \ bn \in loss$$



Loss rate of clients



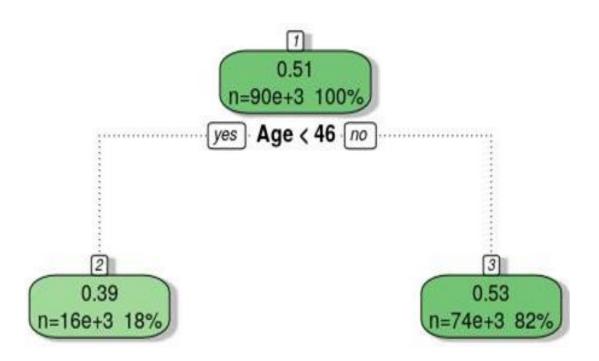
System Requirements

Client data

- A. Will the client leave the affluent program?
- B. Does the client belong to a category that implies an action?

A. Using Demographics

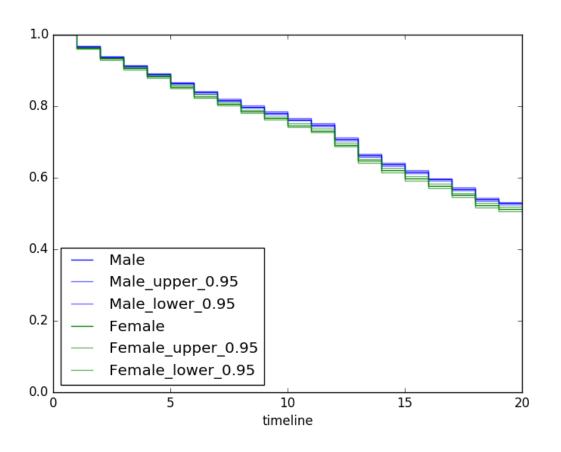
Regression Trees



- Age proves to be the only relatively useful demographic
- Can provide an insight to frontliners to be more eager with younger affluent clients

A. Using Demographics

Survival

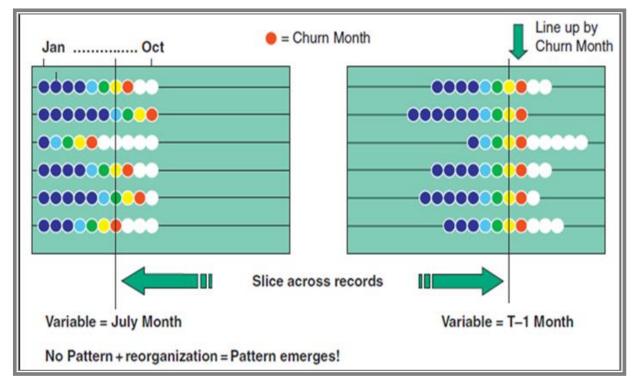


Other variables – e.g. Sex

Both sexes 'die' with the same rate, so this variable is independent

A. Using Economic Data

"Time Series" Analysis

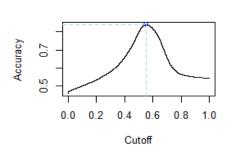


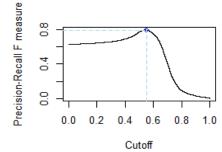
Methodology

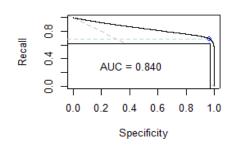
- Align triplet of months
- Using Month₀ and Month₁ predict if Month₂ is churn month
- Failed!
- 1,174,496 records, only 2.52% losses
- Systems can predict 'stay' with 97.5% success, so they don't even try

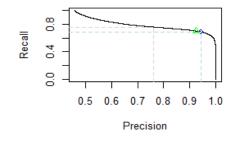
A. Using Economic Data

Summary Statistics/Logistic Regression









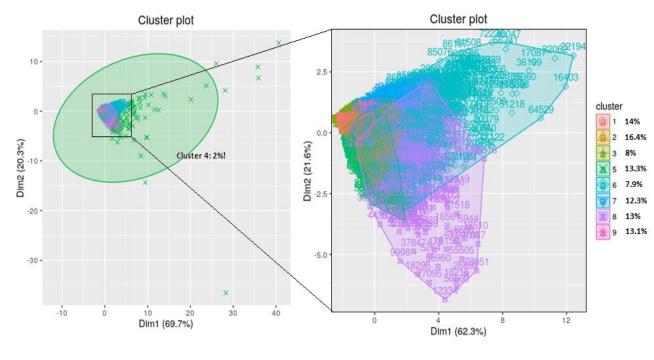
Methodology

- Calculate summary statistics for the period a client is active
- Learn flag if client churned, any month
- Logistic regression using
 - 1. Sums_mean
 - 2. Sums_var
 - Immediate_var
 - 4. Closed_var

These variables
describe most clients –
direction to use from
business owner

B. Using Economic Data

Clustering Analysis



Methodology

- Run model clustering with the same variables as above
- Variables from business owner
- Explain cluster results

B. Using Economic Data

Clustering Analysis

Cluster	Stay	Leave	N	Verdict
1	27.2	72.8	11867	Leave
2	85.1	14.9	13870	Stay
3	1.9	98.1	6787	Leave
4	57.5	42.5	1684	Outliers
5	33.7	66.3	11278	Leave
6	60.3	39.7	6653	Stay?
7	42.5	57.5	10413	Leave?
8	65.2	34.8	11042	Stay?
9	91.1	8.9	11134	Stay

If client gets classified in

- Cluster 1, 3, 5, 7, will probably churn. Actions:
 - storyline for each category
 - specific initiatives
 - flag as high risk, monitor each interaction
- Cluster 2, 6, 8, 9, will probably not churn Actions:
 - ensuring trust with initiatives
- Cluster 4: Outlier
 - this cluster 'pulls' 0.05% of clients with outlier data

A Combining cluster and regression

The idea is to run both methods

- Classify client in cluster
- If classified in 2, 3, 4, 8, 9 return cluster verdict (from last slide)
- Otherwise return logistic regression result
- Improves performance by 2%

System Layout

Cluster	Sample Population	Model	Accuracy
1	14.0%	Regression	90.2%
2	16.4%	Clustering	85.1%
3	8.0%	Clustering	98.1%
4	2.0%	Clustering	57.5%
5	13.3%	Regression	75.8%
6	7.9%	Regression	74.2%
7	12.3%	Clustering/Regression	57.5%
8	13.0%	Regression	81.6%
9	13.1%	Clustering	91.1%

Achievements

Understood & Analyzed data

 Provided actionable insights to client institution

Achievements

Understood & Analyzed data

 Provided actionable insights to client institution

Finished presentation

Achievements

- Understood & Analyzed data
- Provided actionable insights to client institution
- Finished presentation
- Ευχαριστώ!

Ευχαριστώ