

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΔΙΑΤΜΗΜΑΤΙΚΟ - ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ»

Βελτιστοποίηση περιγραφής κυματικών καταστάσεων μέσω μακροπρόθεσμων από κοινού κατανομών ύψους κύματος και περιόδου στα αβαθή ύδατα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Στρατηγίου Αλίκη-Άννα

Δ.Π.Μ.Σ. «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ» Επιβλέπων: Κωνσταντίνος Δ. Μέμος, Ομ. Καθηγητής ΕΜΠ

Αθήνα, Ιούνιος 2017

Βελτιστοποίηση περιγραφής κυματικών καταστάσεων μέσω μακροπρόθεσμων από κοινού κατανομών ύψους κύματος και περιόδου στα αβαθή ύδατα

Λέξεις-Κλειδιά: από κοινού κατανομή, χαρακτηριστικό ύψος κύματος, μέση περίοδος κύματος, περιθώρια κατανομή, κατανομή δεσμευμένης πιθανότητας

Optimisation of Wave Climate Description via Long-term Joint Probability Distributions of Wave Height and Period in Shallow Waters

Keywords: joint distribution, significant wave height, mean wave period, marginal distribution, conditional distribution

Το περιεχόμενο της ανά χείρας διπλωματικής εργασίας αποτελεί προϊόν της δικής μου πνευματικής προσπάθειας. Η ενσωμάτωση σε αυτήν υλικού τρίτων, δημοσιευμένου ή μη, γίνεται με δόκιμη αναφορά στις πηγές, που δεν επιτρέπει ασάφειες ή παρερμηνείες.

Ευχαριστίες

Στα πλαίσια της εκπόνησης της παρούσας μεταπτυχιακής εργασίας θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή μου, κύριο Κωνσταντίνο Μέμο, για την ανάθεση, συνεχή καθοδήγηση και επίβλεψη της εργασίας.

Θα ήθελα να ευχαριστήσω, επίσης, την υποψήφια διδάκτορα Δήμητρα Μαλλιούρη για τις πολύτιμες συμβουλές της και την άριστη συνεργασία.

Τέλος, θα ήθελα να ευχαριστήσω, τον κύριο Τακβόρ Σουκισσιάν, ο οποίος εκτός από την παροχή των δεδομένων από το Σύστημα Επιχειρησιακής Ωκεανογραφίας «ΠΟΣΕΙΔΩΝ», του Ελληνικού Κέντρου Θαλασσίων Ερευνών, συνέβαλλε με τις πολύτιμες επισημάνσεις του στην αρτιότερη εφαρμογή των μοντέλων της παρούσας μεταπτυχιακής εργασίας.

Περιεχόμενα

Περίλη	ηψη	iii
Abstra	ıct	v
Extend	led summary	vii
1.	Introduction	vii
2.	Theoretical background	viii
2.1	1. Basic points	viii
2.2	2. Univariate distributions	ix
2.3	3. Bivariate models	X
2.4	4. Goodness of fit	xiv
3.	Methodology	xv
4.	Case study of Athos, Lesvos and Santorini: Results	xvii
5.	Conclusions	xxii
Refe	erences	xxv
1. Eu	ισαγωγή	1
1.1.	Αντικείμενο της εργασίας	1
1.2.	Πρωτότυπα σημεία	2
1.3.	Διάρθρωση εργασίας	
2. Øa	εωρητικό υπόβαθρο	5
2.1.	Ορισμός βασικών χαρακτηριστικών των κυματισμών	5
2.2.	Ορισμός βασικών εννοιών κατανομής πιθανότητας τυχαίων μεταβλη	τών 8
2.3.	Γενική επισκόπηση κατανομών	11
2.3	3.1. Κατανομές μίας μεταβλητής	11
2.3	3.2. Κατανομές δύο μεταβλητών	14
2.4.	Ανάλυση παραμετρικών μοντέλων δύο μεταβλητών που εφαρμόστη	καν 15
2.4	4.1. Μοντέλο δεσμευμένης πιθανότητας (conditional modelling)	15
2.4	4.2. Μοντέλο Bivariate-Lognormal	17
2.4	4.3. Μοντέλο Plackett	19
2.4	4.4. Μοντέλο με μετασχηματισμούς Box-Cox	
2.5.	Εκτίμηση σφάλματος των μοντέλων	
3. Eq	φαρμογή μοντέλων στις διάφορες περιοχές	

	3.1.	Δεδομένα / Σύστημα «ΠΟΣΕΙΔΩΝ»	
	3.2.	Περιοχές μελέτης	
	3.3.	Αναλυτική εφαρμογή για την περιοχή του Άθω	
3.3.1. 3.3.2.		 Προεπεξεργασία δεδομένων 	
		2. Βαθιά ύδατα	
	3.3.	3. Υπολογισμός ύψους κύματος στα αβαθή ύδατα	
	3.3.	4. Αβαθή ύδατα	
	3.4.	Εφαρμογή στις υπόλοιπες περιοχές μελέτης	
4.	Απο	οτελέσματα και συγκριτική αξιολόγηση των μοντέλων	
	4.1.	Αποτελέσματα στα βαθιά ύδατα	
	4.2.	Αποτελέσματα στο βάθος σχεδιασμού d	
	4.3.	Σφάλματα μοντέλων	
	4.4.		
5.	Συμ	περάσματα – Προτάσεις	
	5.1.	Συμπεράσματα εργασίας	
	5.2.	Προτάσεις για περαιτέρω έρευνα	
B	ιβλιογρ	σαφικές αναφορές	
Π	APAP	ΤΗΜΑ Α: Πίνακες αποτελεσμάτων περιοχής Άθω (Μ1)	
Π	APAP	ΤΗΜΑ Β: Κώδικας σε MATLAB	

Περίληψη

Η γνώση του κυματικού κλίματος είναι απαραίτητη για το σχεδιασμό λιμενικών και παράκτιων κατασκευών που βρίσκονται σε διαρκή αλληλεπίδραση με τους θαλάσσιους κυματισμούς. Προκειμένου όμως να είναι αξιόπιστο για το σχεδιασμό, πρέπει να αναφέρεται σε χρονική περίοδο τόσο μεγάλη ώστε να υπερβαίνει τη διάρκεια ζωής του έργου. Συνήθης πρακτική, μέχρι σήμερα, είναι ο υπολογισμός των φορτίσεων να στηρίζεται μόνο σε ένα αντιπροσωπευτικό ύψος κύματος. Έτσι, όμως, χάνεται η πολύτιμη πληροφορία που αφορά στην περίοδο του κυματισμού. Γίνεται ολοένα και πιο αποδεκτό από την επιστημονική κοινότητα ότι η εν λόγω πληροφορία πρέπει να συμπεριληφθεί στα κριτήρια σχεδιασμού των έργων μαζί με το ύψος κύματος στο προσεχές μέλλον.

Η παρούσα εργασία, έχει ως αντικείμενο την περιγραφή του μακροπρόθεσμου (long-term) κυματικού κλίματος, ώστε να είναι δυνατόν να εξαχθούν οι μεταβλητές φόρτισης, ύψος κύματος και περίοδος κύματος, για το σχεδιασμό. Αυτό πραγματοποιείται μέσω υπολογισμού της μακροπρόθεσμης από κοινού κατανομής του σημαντικού ύψους και της μέσης περιόδου κύματος, λαμβάνοντας υπόψη τη συσγέτιση των δύο αυτών μεγεθών. Ειδικότερα, προτείνεται μια μεθοδολογία περιγραφής του κυματικού κλίματος οποιασδήποτε περιογής, με γρήση θεωρητικών μοντέλων. Τα θεωρητικά μοντέλα που επιλέχθηκαν για να μελετηθούν, είναι τα επικρατέστερα σύμφωνα με τη μέχρι τώρα γνώση. Εφαρμόστηκαν για τρεις θαλάσσιες περιοχές του Ελλαδικού χώρου, για τα βαθιά ύδατα, αλλά και για ένα βάθος σχεδιασμού παράκτιων έργων (λαμβάνοντας υπόψη μόνο τη ρήχωση των κυμάτων), με στόχο να αναδειχθεί το μοντέλο που περιγράφει καλύτερα τις μακροπρόθεσμες κυματικές συνθήκες. Τα εν λόγω μοντέλα είναι τα εξής: μοντέλο δεσμευμένης πιθανότητας, μοντέλο Bivariate-Lognormal (Ochi, 1978), μοντέλο Bivariate-Lognormal με διόρθωση λόγω ασυμμετρίας στα ύψη κύματος (Fang και Hogben, 1982), μοντέλο Plackett και μοντέλο με μετασχηματισμούς Box-Cox. Τα μοντέλα δεσμευμένης πιθανότητας και Plackett εξετάστηκαν για δύο περιπτώσεις προσαρμογής περιθώριων κατανομών στο ύψος κύματος (λογαριθμοκανονική κατανομή και Weibull) και για μια περίπτωση προσαρμογής (λογαριθμοκανονικής) κατανομής στην περίοδο κύματος. Συνεπώς, αναλύονται και συγκρίνονται επτά περιπτώσεις θεωρητικών μοντέλων και εκτιμάται το σφάλμα της καθεμίας. Επίσης, τα παραπάνω μοντέλα εφαρμόστηκαν και για το σύνολο των κυμάτων κάθε περιοχής και ξεχωριστά, για την ανεμογενή συνιστώσα και τη συνιστώσα της αποθάλασσας. Τα δεδομένα που χρησιμοποιήθηκαν για τη σύγκριση των μοντέλων προέργονται από το Σύστημα ΠΟΣΕΙΔΩΝ, του ΕΛΚΕΘΕ.

Τέλος, η μεθοδολογία που προτείνεται στην παρούσα εργασία αναμένεται να συμβάλλει στον μελλοντικό (προχωρημένο) πιθανοτικό σχεδιασμό έργων, παρέχοντας μια εκτίμηση και επιλογή των μεγεθών σχεδιασμού -σημαντικού ύψους κύματος και μέσης περιόδου κύματος- ανάλογα με τη δεδομένη διάρκεια ζωής ενός έργου και την επιθυμητή περίοδο επαναφοράς των μεγεθών σχεδιασμού.

Abstract

For the probability-based design and assessment of marine and coastal structures, interacting with sea waves, a reliable knowledge of the long-term wave climate is required. It is common practice nowadays, to use only the parameter significant wave height to represent the wave climate and the sea severity. However, it is highly recommended to characterize the sea condition using both parameters, the significant wave height H_s and the mean wave period T_m .

The objective of this thesis is to determine the theoretical model, among the models most commonly used in related studies, which best describes the wave climate in a way that the design criteria, wave height and wave period, for the design of coastal and harbour protection works, can be more precisely obtained. For this purpose, a methodology is proposed for the wave climate description, by estimating the long-term joint distribution of the significant wave height and mean wave period from the application of seven theoretical models, in three areas of the Aegean Sea. These models require knowledge of the frequency of occurrence of the two variables involved, from a sample of observations made over a period of time exceeding one year.

The models considered are: the conditional probability model, the Bivariate-Lognormal model (Ochi, 1978), the Bivariate-Lognormal model with correction for skewness (Fang and Hogben, 1982), the Plackett model and the bivariate model based on Box-Cox transformations. Two versions of the conditional probability model and of the Plackett model have been studied. In the first, the Lognormal distribution has been applied to both variables, H_s and $T_m|H_s$; however, in the second version the Lognormal distribution has been applied to the variable H_s , instead of the Lognormal. All these models have been tested with data from three areas in the Aegean Sea (Athos, Lesvos and Santorini) in deep and shallow waters. During the transition from deep waters to water depth d (shallow waters), only shoaling has been considered. Moreover, this work revisits the bivariate modelling of sea states, applying it to both the total sea state, and to each separate set of swell and wind-sea component. The data (in-situ measurements) used in the models, have been provided by POSEIDON System of Hellenic Centre for Marine Research.

To conclude, the aim of this work is to provide useful information regarding the wave climate and enhance its description, by estimating the long-term joint distribution of significant wave height and mean wave period.

Extended abstract

1. Introduction

For the probability-based design and assessment of marine and coastal structures, interacting with sea waves, a reliable knowledge of the long-term wave climate is required. It is common practice nowadays, to use only the parameter significant wave height for representing the wave climate and the sea severity. However, it is highly recommended to characterize the sea condition using both parameters, the significant wave height H_s and the mean wave period T_m .

Objective of this thesis is to select the theoretical model, among some of the most popular models according to related studies, which best describes the wave climate in a way that the design criteria, wave height and wave period, for the design of coastal and harbour protection works, can be more precisely obtained. For this purpose, a methodology is proposed for the wave climate description, by estimating the long-term joint distribution of the significant wave height and mean wave period from the application of seven theoretical models, in three areas of the Aegean Sea. These models require knowledge of the frequency of occurrence of the two variables involved, from a sample of observations made over a period of time exceeding one year.

The main reasons why theoretical models have been fit to the data instead of using data directly are the following: it is preferable to fit a theoretical model, because it may represent better some conditions of lower probability level that for some reason are not included in the sample and also, it will allow extrapolation of the data to lower levels of probability, corresponding to longer periods than the one of the measurements. Furthermore, it may be more convenient to have theoretical models to combine with other models in any further computational procedure (Lucas and Guedes Soares, 2015).

In the past, several researchers have studied these theoretical models. One of the first approaches was proposed by Ochi (1978), who adopted the Bivariate-Lognormal distribution. A Bivariate-Lognormal model with correction for skewness (Fang and Hogben, 1982) was an attempt to improve, the one mentioned before, Bivariate-Lognormal model. A measure of skewness was included in a term modifying the Lognormal form of the marginal distribution of H_s . Prince-Wright (1995) proposed maximum likelihood models of joint environmental data. The main idea of this method is to use a transformation of a joint environmental data set to a Gaussian model using a variant of the transformation of Box and Cox (1964) and to evaluate the transformation parameters by the Maximum Likelihood Method. The conditional probability model has been applied for H_s and T_p by Haver (1985). Lucas and Guedes Soares (2015) applied the same model for the average period T_m and Lucas and Guedes Soares (2016) also applied it for the peak period T_p . Also

Athanassoulis et al. (1994) introduced the Plackett model, that requires given marginals for H_s and T_m and takes into account the correlations between the two variables. Papanicolaou et al. (2016) studied the conditional probability modelling and the Plackett model for the area of Mykonos (Greece) for deep and shallow waters.

In the present work, seven models have been compared using in situ measurements. The models that have been studied are: the conditional probability model, the Bivariate-Lognormal model (Ochi, 1978), the Bivariate-Lognormal model with correction for skewness (Fang and Hogben, 1982), the Plackett model and the Bivariate model based on Box-Cox transformations. Two versions of the conditional probability model and of the Plackett model have been studied. In the first, the Lognormal distribution has been applied to both variables, H_s and $T_m|H_s$; however, in the second version the Lognormal distribution has been applied to the variable $T_m|H_s$ and the Weibull distribution has been applied to the variable H_s , instead of the Lognormal. All these models have been tested with data from three areas in the Aegean Sea (Athos, Lesvos and Santorini) in deep and shallow waters. During the transition from deep waters to water depth d (shallow waters) only shoaling has been considered. The data (in-situ measurements) cover a period of eleven years and have been provided by POSEIDON System of Hellenic Centre for Marine Research.

Another important point, worth mentioning, is that this work revisits the bivariate modelling of sea states, applying it to both the total sea state, and to each separate set of swell and wind sea component. A proper modelling of the wave climate would need to represent both types of sea conditions, as already noted by Guedes Soares and Nolasco (1992) and also by Bitner-Gregersen (2005). In fact, Guedes Soares and Nolasco (1992) have demonstrated that these two sets of data follow different probabilistic models.

Furthermore, the application of the models for the three selected areas has been programmed in MATLAB and the code is available for application in any other location.

To conclude, the aim of this work is to provide helpful information for the wave climate and improve its description, by estimating the long-term joint distribution of the significant wave height and mean wave period. This information can be used not only for the design wave loads on any coastal structure, but also for the long-term sediment transport and morphological changes of the nearshore area and beaches.

2. Theoretical background

2.1. Basic points

First of all, it is necessary to introduce some basic points about distributions in statistics (that are used in the present work) and about the different types of waves.

For a joint distribution function f(x, y) of two random variables X and Y the marginal distribution function of X and Y is defined as:

$$F_x(x) = F(x, \infty) = \Pr\{X \le x, Y < \infty\}$$

$$F_Y(x) = F(\infty, y) = \Pr\{X \le \infty, Y < y\}$$
(2.1)

The conditional probability distribution function of a random variable Y, given that a random variable X has the value x, is defined by:

$$F(y|x) = \Pr\{Y \le y|X = x\} = \frac{\Pr\{Y \le y \text{ and } X = x\}}{\Pr\{X = x\}}$$
(2.2)

In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables. This is in contrast with a conditional distribution, which gives the probabilities contingent upon the values of the other variables (www.wikipedia.org).

Concerning the division of the total sea-state in its two components (swell and windgenerated waves), we should mention that:

- Wind-generated waves are the waves that are generated due to local wind blowing. Wind waves have a certain amount of randomness: subsequent waves differ in height, duration, and shape with limited predictability.
- Swells are the result from distant weather systems over a fetch of ocean. They have a narrower range of frequencies and directions than locally generated wind waves, because swell waves have dispersed from their generation area, have dissipated and therefore lost an amount of randomness, taking on a more defined shape and direction (www.wikipedia.org).

In several situations, the sea states are a result of the combination of more than one wave system.

2.2. Univariate distributions

2.2.1. Lognormal distribution

The probability distribution function $f_L(x; \vec{\theta}_L)$ and the corresponding cumulative distribution function $F_L(x; \vec{\theta}_L)$ of a random variable x can be expressed as:

$$f_L(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}, \quad x > 0$$
 (2.3)

$$F_L(x;\mu,\sigma) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2}\sigma}\right]$$
(2.4)

where $\vec{\theta}_L = (\mu, \sigma) \in \mathbf{R} \times \mathbf{R}^+$ is the parameter vector of the Lognormal distribution. More specifically μ is a location parameter and σ is a scale parameter. This is a two-parameter form of a Lognormal distribution. In order to estimate the parameters, the Maximum Likelihood Method is applied.

2.2.2. Weibull distribution

The probability distribution function $f_W(x; \vec{\theta}_W)$ and the corresponding cumulative distribution function $F_W(x; \vec{\theta}_W)$ of a random variable x can be expressed as:

$$f_W(x; \alpha, b) = \frac{b}{a} \left(\frac{x}{a}\right)^{b-1} e^{-(x/a)^b}$$
(2.5)

$$F_W(x; \alpha, b) = 1 - e^{-(x/a)^b}$$
(2.6)

where $\vec{\theta}_W = (a, b) \in \mathbf{R} \times \mathbf{R}^+$ is the parameter vector of Weibull distribution. More specifically α , *b* are called shape and scale parameter respectively. In order to estimate the parameters, the Maximum Likelihood Method is applied. This is a two-parameter form of a Weibull distribution.

2.3. Bivariate models

2.3.1. Conditional modelling

The joint distribution of significant wave height and mean period is based on the total probability theorem, which models a probability density function for the significant wave height and probability density functions for the mean period conditional on the significant wave height, with the objective of obtaining the joint probability density function, as described by:

$$f(H_s, T_m) = f(H_s)f(T_m|H_s)$$
 (2.7)

in which $f(H_s, T_m)$ is the joint probability density function of H_s and T_m , $f(H_s)$ is the marginal distribution of H_s and $f(T_m|H_s)$ is the conditional distribution of the mean zerocrossing period T_m .

According to Repko (1998), the parameters of the conditional distribution of $T_m|H_s$ should be defined as a function of significant wave height H_s . At first, the parameters of the conditional distribution are estimated for each class of H_s . This gives a discrete version of the conditional function. Secondly, for each parameter of the conditional distribution function, an empirical regression function is selected, which defines the relationship between the parameters and the significant wave height. Following Li et al. (2013), the general expressions for the Lognormal distribution parameters are the following:

$$\mu_i = c_1 + c_2 h_i^{c_3}, i = 1, 2, ..., K$$

$$\sigma_i^2 = d_1 + d_2 \exp(d_3 h_i), i = 1, 2, ..., K$$
(2.8)

where c_1, c_2, c_3 and d_1, d_2, d_3 are the sought-for parameters, μ_i, σ_i^2 denote the values of the Lognormal parameters for each bin of significant wave height, h_i denotes the central bin value, and *K* denotes the number of bins. For the solution of the above system the non-linear least squares method has been implemented. So, in the present work the empirical regression functions which had been chosen, are a polynomial function (second degree) for the parameter μ_i and an exponential function (first degree) for the parameter σ_i^2 .

2.3.2. Bivariate-Lognormal model (Ochi, 1978)

Ochi (1978) introduced the use of a Bivariate-Lognormal distribution for the joint distribution of the significant wave height H_s and the peak period T_p (or zero up-crossing period). If two continuous random variables X_1 and X_2 are lognormally distributed, then the joint distribution of these variables may be represented by a Bivariate-Lognormal distribution. The probability density function (pdf) of the Bivariate-Lognormal distribution is given by:

$$f(H_s, T_p) = \frac{0.5}{H_s T_p \pi \delta_{H_s} \delta_{T_p} \sqrt{1 - \rho^2}} \times \exp\left\{-\frac{0.5}{1 - \rho^2} \left[\frac{(\ln T_p - \lambda_{T_p})^2}{\delta_{T_p}^2} - \frac{2\rho(\ln T_p - \lambda_{T_p})(\ln H_s - \lambda_{H_s})}{\delta_{H_s} \delta_{T_p}} + \frac{(\ln H_s - \lambda_{H_s})^2}{\delta_{H_s}^2}\right]\right\}$$
(2.9)

where λ_{H_s} , λ_{T_p} , δ_{H_s} , δ_{T_p} are the location and scale parameters of the marginal probability density functions of H_s and T_m , respectively (Repko et al. (2004)) and ρ is the linear correlation coefficient between the two variables involved and may be written as:

$$\rho = \frac{Cov(\ln T_p, \ln H_s)}{\sigma_{H_s}\sigma_{T_p}}$$
(2.10)

in which σ_{H_s} and σ_{T_p} are the standard deviation of the population of H_s and T_p respectively.

2.3.3. Bivariate-Lognormal model with correction for skewness (Fang and

Hogben, 1982)

Fang and Hogben (1982) proposed an improved version of the Bivariate-Lognormal distribution, using a parameter of skewness for the log-transformed wave heights. This version is recommended when there is clear evidence of skewness in the log transformed data of significant wave height. The probability density function of the new bivariate model, also called the Fang and Hogben distribution, is:

$$f(H_{s}, T_{p}) = \frac{0.5}{H_{s}T_{p}\pi\delta_{H_{s}}\delta_{T_{p}}\sqrt{1-\rho^{2}}} \times \exp\left\{-\frac{0.5}{1-\rho^{2}}\left[\frac{(\ln T_{p}-\lambda_{T_{p}})^{2}}{\delta_{T_{p}}^{2}} - \frac{2\rho(\ln T_{p}-\lambda_{T_{p}})(\ln H_{s}-\lambda_{H_{s}})}{\delta_{H_{s}}\delta_{T_{p}}} + \frac{(\ln H_{s}-\lambda_{H_{s}})^{2}}{\delta_{H_{s}}^{2}}\right]\right\} \times (2.11)$$

$$\left\{1 - \frac{k_{H_{s}}}{6}\left[3\left(\ln H_{s}-\delta_{H_{s}}\right) - \left(\ln H_{s}-\delta_{H_{s}}\right)^{3}\right]\right\}$$

where k_{H_s} is the coefficient of skewness for log H_s . The remaining parameters are similar to those of the Bivariate-Lognormal distribution by Ochi (1978).

2.3.4. Plackett model

The class of models designated by Fréchet models are bivariate distributions with given marginals. The Plackett model is a special case in the Fréchet class. The model gives the joint probability distribution for the case of uniform marginals defined by (Athanassoulis, et al., 1994):

$$f_{\vec{Y}}^{P}(y_1, y_2; \psi) = \frac{\psi \left[(\psi - 1)(y_1 + y_2 - 2y_1y_2) + 1 \right]}{\left\{ \left[1 + (y_1 + y_2)(\psi - 1) \right]^2 - 4\psi(\psi - 1)y_1y_2 \right\}^{3/2}}$$
(2.12)

in which:

 y_1 and y_2 are random variables that can also be written as a vector $\vec{Y} = (y_1, y_2)$

 $f_{\vec{Y}}^{P}(y_1, y_2; \psi)$: is Plackett's joint probability density function of random variables y_1 and y_2 and ψ is the correlation parameter (the definition of ψ is described below)

In the expression $(y_1, y_2) \in [0,1] \times [0,1] \ \psi \in \mathbb{R}^+$, ψ is the non-negative parameter that governs the dependence between the random variables y_1 and y_2 , and hence it is named parameter of correlation. Furthermore, ψ values in the interval (0, 1) induce a negative correlation, while ψ values in the interval $(1, \infty)$ induce a positive correlation and $\psi = 1$ corresponds to the case of independence (Athanassoulis et al., 1994).

The general form of Plackett density in case of two random variables: x_i (i = 1, 2) is shown in equation (2.13). Their marginal distributions are: $F_i(x_i) = F_i(x_i; \vec{\theta}_i)$, where $\vec{\theta}_i$

is the vector that contains the parameters of the distribution of x_i . The densities are respectively: $f_i(x_i) = f_i(x_i; \vec{\theta}_i)$. By the transformation $y_i = F_i(x_i; \vec{\theta}_i)$, i = 1, 2 made in equation (2.12), the general form of the Plackett density is expressed as:

$$f_{\vec{X}}^{P}(x_{1}, x_{2}; \vec{\theta}) = f_{\vec{Y}}^{P}(F_{1}(x_{1}; \vec{\theta}_{1}), F_{2}(x_{2}; \vec{\theta}_{2}); \psi) f_{1}(x_{1}; \vec{\theta}_{1}) f_{2}(x_{2}; \vec{\theta}_{2})$$

$$= \frac{\psi\{(\psi - 1)[F_{1}(x_{1}) + F_{2}(x_{2}) - 2 F_{1}(x_{1}) F_{2}(x_{2})] + 1\} f_{1}(x_{1}) f_{2}(x_{2})}{\{[1 + (F_{1}(x_{1}) + F_{2}(x_{2}))(\psi - 1)]^{2} - 4 \psi(\psi - 1) F_{1}(x_{1}) F_{2}(x_{2})\}^{3/2}}$$

$$(2.13)$$

in which the parameter vector $\vec{\theta} = (\vec{\theta}_1, \vec{\theta}_2, \psi)$ contains the parameters $\vec{\theta}_1, \vec{\theta}_2$ of distributions of x_1, x_2 respectively as well as the correlation parameter $\psi = \vec{\theta}_{12}$.

Two univariate distributions are used to represent the probability density functions in this study: Lognormal and Weibull.

Estimations of the parameters are made using the Maximum Likelihood Method. Thus, the parameters θ_1 and θ_2 are estimated from the corresponding univariate marginal, by maximizing the likelihood function. To estimate the correlation parameter $\vec{\theta}_{12}$, the following log-likelihood function has been maximized, whilst keeping the other parameters constant:

$$l_{12}^{N}\left(\vec{x};\vec{\theta}_{1},\vec{\theta}_{2},\vec{\theta}_{12}\right) = ln\left[\prod_{n=1}^{N} f_{\vec{Y}}\left(F_{1}\left(x_{1}^{(n)};\vec{\theta}_{1}\right),F_{2}\left(x_{2}^{(n)};\vec{\theta}_{2}\right);\vec{\theta}_{12}\right)\right]$$
(2.14)

where $\vec{x} = \{ (x_1^{(1)}, x_2^{(1)}), (x_1^{(2)}, x_2^{(2)}), ..., (x_1^{(N)}, x_2^{(N)}) \}$ is the bivariate data set, consisting of N (joint) observations and $\vec{x}_i = (x_i^{(1)}, x_i^{(2)}, ..., x_i^{(Ni)}), i = 1, 2$ are the marginal samples of \vec{x} .

2.3.5. Bivariate model based on Box-Cox transformations

Many real datasets are in fact not approximately Normal, however with an appropriate transformation of the data can often yield one that does follow approximately a Normal distribution. This increases the applicability and usefulness of statistical techniques based on the normality assumption. Box-Cox transformations are often used for this purpose and it has been shown that they are generally appropriate to transform long-term wave data of significant wave height (Cunha and Guedes Soares, 1999). A Box-Cox transformation of the positive variable X, given the transforming parameter λ (real) is defined as:

$$T_{\lambda}(X) = \begin{cases} \frac{X^{\lambda} - 1}{\lambda}, \lambda \neq 0\\ \ln(X), \lambda = 0 \end{cases}$$
(2.15)

with λ assumed to be in the interval [-1,1]. Considering the variables X_1 and X_2 to designate H_s and T_m , the corresponding values of λ are then designated by λ_1 and λ_2 , with the transformed variables given by:

$$Y_1 = \frac{X_1^{\lambda_1} - 1}{\lambda_1}$$
(2.16)

$$Y_2 = \frac{X_2^{\lambda_2} - 1}{\lambda_2}$$
(2.17)

where the parameters λ_1 and λ_2 transform the observations of X_1 and X_2 in ones that are approximately Normal, i.e., it is assumed that:

$$\underline{Y} = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \sim normal \left(\begin{bmatrix} \mu_{Y_1} \\ \mu_{Y_2} \end{bmatrix}, \begin{bmatrix} \sigma_{Y_1}^2 & \rho \sigma_{Y_1} \sigma_{Y_2} \\ \rho \sigma_{Y_1} \sigma_{Y_2} & \sigma_{Y_2}^2 \end{bmatrix} \right)$$
(2.18)

with μ_{Y_i} and $\sigma_{Y_i}^2$, i = 1,2 representing the vectors of expected values and variances of (Y_1, Y_2) , respectively, whilst ρ is the coefficient of correlation between the two variables. The expression that defines the probability density function of (Y_1, Y_2) is:

$$f_{(Y_1,Y_2)}(y_1,y_2) = \frac{(1-\rho^2)^{-(1/2)}}{2\pi\sigma_{Y_1}\sigma_{Y_2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{y_1-\mu_{Y_1}}{\sigma_{Y_1}}\right)^2 - 2\rho\left(\frac{y_1-\mu_{Y_1}}{\sigma_{Y_1}}\right) \left(\frac{y_2-\mu_{Y_2}}{\sigma_{Y_2}}\right) + \left(\frac{y_2-\mu_{Y_2}}{\sigma_{Y_2}}\right)^2 \right] \right\}$$
(2.19)

The inverse transformations are then used on Y_1 and Y_2 with the purpose of obtaining the probability density function of the original data, significant wave height and mean period, leading to the expression:

$$f(H_s, T_{02})^{h_s, t_{02}} = h_s^{\lambda_1 - 1} t_{02}^{\lambda_2 - 1} f(Y_1, Y_2) \left(\left(h_s^{\lambda_1} - 1 \right) \lambda_1^{-1}, \left(t_{02}^{\lambda_2} - 1 \right) \lambda_2^{-1} \right)$$
(2.20)

2.4. Goodness of fit

Lucas and Guedes Soares (2015, 2016) and Athanassoulis et al (1994) recommended the use of the squared Euclidean distance D^2 between the theoretical distributions and the empirical one from the data, in order to estimate the goodness of fit. It measures the distance between the theoretical probabilities c_i and the relative frequencies C_i defined by:

$$D^{2} = \sum_{j=1}^{J} (c_{j} - C_{j})^{2}$$
(2.21)

where c_j is the cell probability resulting from the statistical model (in this case bivariate distribution), and C_j the relative frequencies (number of values that fall inside the cell or interval).

3. Methodology

In this section, the methodology applied in the present work for the wave climate description of a location via long-term joint distributions of wave height and period is briefly presented. The proposed methodology consists of selecting the theoretical model which best describes the measured data, and thus can be used for designing purposes of coastal structures. The cases that have been considered are:

- a) No model, in-situ measurements of H_s , T_m
- b) Conditional modelling with Lognormal distribution for both variables H_s and T_m
- c) Conditional modelling with Weibull distribution for H_s and Lognormal distribution for T_m
- d) Bivariate-Lognormal model by Ochi (1978)
- e) Bivariate-Lognormal model with correction for skewness by Fang and Hogben (1982)
- f) Plackett model with Lognormal distribution for both variables H_s and T_m
- g) Plackett model with Weibull distribution for H_s and Lognormal distribution for T_m
- h) Model based on Box-Cox transformations

Case (a) represents the in-situ measurements of H_s and T_m , in order to have it as a standard base and compare it with the other models.

In models (b), (c) (Conditional modelling) the methodology consists of first fitting the corresponding univariate distribution to the conditional distribution of $T_m|H_s$ (Lognormal) and to the marginal distribution of H_s (Lognormal or Weibull). Then, the parameters of the conditional distribution of $T_m|H_s$ are defined as a function of H_s . The analytical bivariate probability density function is afterwards applied and the joint probability density functions for H_s and T_m are retrieved.

In model (d), the Lognormal distribution is fitted to the marginals of both variables H_s and T_m and then the analytical bivariate probability density function is applied.

In model (e), the same procedure, as in the previous model (d), is applied with the difference that an extra term is included concerning the skewness of H_s and modifying its marginal distribution.

In models (f), (g) (Plackett model) first the univariate distributions are fitted to the marginal and cumulative distributions of the two variables, H_s and T_m , and then the analytical bivariate model is applied to the data.

In model (h) (model based on Box-Cox transformations) the transformations are first applied to the data, then the analytical bivariate model is applied and finally the inverse transformations with the purpose of obtaining the probability density function of the original data, H_s and T_m .

All the models are applied to the data of deep and shallow water depth. During the transition from deep waters to water depth d (shallow waters) only shoaling has been considered. In order to avoid breaking of waves a water depth of:

$$d = 1.5Hmax \tag{3.1}$$

has been considered, where Hmax is the maximum significant wave height of each data set.

Moreover, the models have been applied for the total sea-state, and for the components wind-generated and swell waves, separately. The threshold which separates the wind-generated waves from swell is shown in Table 3.1. The separation has been done automatically on the buoy. The data have been provided by POSEIDON System of Hellenic Centre for Marine Research.

Table 3.1 Corresponding frequencies for the division of swell and wind-generated waves

Type of waves	BAND	Frequency of integration (Hz)	Corresponding period (sec)
SWELL	А	0.03-0.10	10-33
WIND- GENERATED	В	0.10-0.50	2-10

Furthermore, for each model and case, the associated error (Squared Euclidean Distance) is calculated from equation (2.21) in order to estimate the goodness of fit. The results obtained are represented as contour plots showing the joint probability density distributions of H_s and T_m . Taking into account these figures along with the associated error, the seven cases above can be compared with the measured data (for deep waters) and the calculated ones from the measured data (for depth d), in order to select the most representative theoretical distribution. The point of selecting the best theoretical model is to be able to use it for the prediction of the designing variables in more locations with enough accuracy.

4. Case study of Athos, Lesvos and Santorini: Results

The above models (see page xv) have been applied to three areas of the Aegean Sea, whose locations and characteristics are shown in Table 4.1 :

Table 4.1 Locations and characteristics of measured data (Source: www.poseidon.hcmr.gr)

Locations	Athos	Lesvos	Santorini		
Measurement spots	M1	M2	M5		
Latitude and Longitude of measurement spot	39° 57'.843N 24° 43'.208E	39° 09'.346N 25° 48'.472E	36° 15'.510N 25° 29'.769E		
Depth	212 m	121 m	314 m		
History of the site	2000-2011	2000-2011	2000-2011		
Type of surface buoy	Oceanor Wavescan	Oceanor SeaWatch	Oceanor SeaWatch		

The water depth d, that has been considered as shallow water, for each case and each location, according to equation (3.1), is shown in Table 4.2. During the transition from deep waters to water depth d only shoaling has been considered.

	WATER DEPTH d					
\sim	Athos (M1)	Santorini (M5)				
LOLAR	d= 8.68 m	d=8.07 m	d=7.38 m			
MIND	d=8.19 m	d=7.64 m	d=7.03 m			
SWELL	d=5.04 m	d=4.58 m	d=5.00 m			

Table 4.2 Water depth d for all locations considered

The results obtained for each model are represented as contour plots showing the joint probability density distribution of H_s and T_m . In the present extended abstract, only the

results for the case of Athos for shallow waters ($d_{total} = 8.68m$, $d_{wind} = 8.19m$ and $d_{swell} = 5.04m$) will be presented (Figure 4.1-Figure 4.3). In each diagram, the corresponding squared Euclidean distance is also shown. The rest areas and cases are presented analytically in the thesis.

Figure 4.1 Contour plots of joint probability density distributions of (Hs, Tm) and corresponding squared Euclidean distance for water depth $d_{total} = 8.68m$ for the data of Athos (M1) and for the total of the waves. For the numbering of models see page xv.

Figure 4.2 Contour plots of joint probability density distributions of (Hs, Tm) and corresponding squared Euclidean distance for water depth $d_{wind} = 8.19m$ for the data of Athos (M1) and the windgenerated component of the waves. For the numbering of models see page xv.

Figure 4.3 Contour plots of joint probability density distributions of (Hs, Tm) and corresponding squared Euclidean distance for water depth $d_{swell} = 5.04m$ for the data of Athos (M1) and the swell component of the waves. For the numbering of the models see page xv.

Finally, Table 4.3 shows the goodness of fit (squared Euclidean distance D^2) to the data for all the case studies. Let us note that smaller values of D^2 , mean better fit of the specific model to the data.

\smallsetminus	DEEP WATERS			WATER DEPTH d						
	Athos (M1)	Lesvos (M2)	Santorini (M5)		Athos (M1) Lesvos (M2)		esvos (M2)	Santorini (M5)		
Cond Log	0.0022	0.0044	0.0047			0.0022		0.0044		0.0051
Cond Weib	0.0014	0.0032	0.0050		_	0.0011	_	0.0029	_	0.0051
Biv Log	0.0109	0.0068	0.0051	``	8 π	0.0109	2 m	0.0072	8	0.0054
Biv Log Cor	0.0107	0.0084	0.0079	OT	8.6	0.0116	8.0	0.0095	7.3	0.0111
Plack Log	0.0049	0.0076	0.0076	Υ.	₽	0.0052	q	0.0079	.=p	0.0080
Plack Weib	0.0067	0.0146	0.0166			0.0076		0.0160		0.0185
Box-Cox	0.0055	0.0057	0.0044			0.0055		0.0056		0.0046
Cond Log	0.0021	0.0041	0.0045			0.0021		0.0040		0.0051
Cond Weib	0.0012	0.0031	0.0048		_	0.0010	_	0.0027	_	0.0050
Biv Log	0.0109	0.0067	0.0050	,	9 m	0.0109	4 m	0.0070	3 H	0.0053
Biv Log Cor	0.0109	0.0082	0.0083	MIN	8.1	0.0120	7.6	0.0093	0.7	0.0118
Plack Log	0.0049	0.0074	0.0076	.0	q	0.0051	0	0.0076	<u>"</u>	0.0079
Plack Weib	0.0071	0.0145	0.0169			0.0080		0.0159		0.0190
Box-Cox	0.0056	0.0056	0.0045			0.0055		0.0055		0.0046
Cond Log	0.4149	0.8166	0.5561			0.2397		0.6198		0.3356
Cond Weib	0.1197	0.2199	0.1126		_	0.1124	_	0.2238		0.0902
Biv Log	0.1314	0.1942	0.0718	0	4 m	0.1204	8 2	0.1748	ε	0.0622
Biv Log Cor	0.1610	0.6757	0.4557	Mr.	5.0	0.1417	4.5	0.8392	-2	0.5137
Plack Log	0.4784	0.9920	0.3347	<u>`4</u>	d=	0.2944	μ	0.5761	ρ	0.2285
Plack Weib	0.1698	0.2279	0.1056			0.1666		0.2250		0.1029
Box-Cox	0.1168	0.1762	0.0728			0.1020		0.1409		0.0576

Table 4.3 Squared Euclidean Distance for all the cases studied

Considering the contour plots of joint probability density distributions of (Hs, Tm) of the models, as well as the squared Euclidean distance, it is clear that the model which best describes the data is the conditional model with Weibull distribution for the significant wave height and Lognormal distribution for the period conditional on significant wave height. The most important conclusions of this work are presented in the next paragraph.

5. Conclusions

For the probability-based design and assessment of marine structures interacting with sea waves, a reliable knowledge of the long-term wave climate description is required, where the sea conditions are described using both parameters H_s and T_m . Different methods of fitting bivariate models of significant wave height and mean zero-crossing period were compared using data from the Stations of Athos (M1), Lesvos (M2) and Santorini (M5), in

order to assess their accuracy and applicability. The measure of goodness of approximation used in this work was the squared Euclidean distance D^2 . The conclusions drawn from all the different cases studied are the following:

- The separation of the waves, according to their type (wind-generated and swell), is really essential for the fit of the theoretical models. We can see that the models can have a better and more accurate fit when they are applied to homogenous and especially in wind-generated data. Swell data do not follow well enough these probability models. Further research is needed to find a model which can accurately represent the swell component.
- The quality of fit of the bivariate models to the data depends firstly on the chosen theoretical model. The conditional model seems to be the most representative among the other models. This is due to the conditional model's flexibility of including many conditional distributions for $T_m|H_s$ and not just a single marginal distribution for T_m , like in the Plackett model.
- The quality of fit of the bivariate models to the data also depends on the fit of the corresponding univariate distributions. The candidates for the probability density functions for H_s and T_m were the Lognormal and the Weibull distribution.
- The calculated error along with the observation of the depicted joint probability density distributions indicates that the conditional model with a Weibull distribution for H_s and a Lognormal distribution for $T_m|H_s$ seems to be the most representative.
- The model Bivariate-Lognormal with correction for skewness (Fang and Hogben, 1982) does not seem to offer a better fit than the classical Bivariate-Lognormal model by Ochi (1978). However, we should bear in mind that the data sets which had been considered for the H_s are not importantly skewed.
- The bivariate model based on Box-Cox transformations has a medium performance in general, but seems to represent better than the other models the swell component.
- The fit of the models for the data for the swallow water are similar to those of the deep water.

To conclude, the need to incorporate the mean wave period into the probability-based design criteria along with the significant wave height is strengthened. The current study provides a methodology for a simple first estimate of design wave loads: H_s and T_m . Further research on taking into consideration the long-term as well as the short-term joint density distribution of H_s and T_m in the design, is in progress.

References

Athanassoulis, G. A., Skarsoulis, E. K. and Belibassakis, K. A. 1994. Bivariate distributions with given marginals with an application to wave climate description, Applied Ocean Research 16, 1-17.

Bitner-Gregersen, E. M., 2005. Joint probabilistic description for combined seas, Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2005). ASME, NY, USA.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations (with discussion). J. R. Stat. Soc. B. 26.

Cunha, C., and Guedes Soares, C., 1999. On the choice of data transformation for modelling time series of significant wave height. Ocean Engineering, 26:489-506.

Fang, Z. S. and Hoghen, N., 1982. Analysis and prediction of long-term probability distributions of wave heights and periods. Tech. Rep., National Maritime Institute, London.

Guedes Soares, C., and Nolasco, M.C., 1992. Spectral modelling of sea states with multiple wave systems. Journal of Offshore Mechanics and Arctic Engineering, 114:278-284.

Haver, S., 1985. Wave climate off northern Norway. Appl. Ocean Res., 7 85-92.

Li, L., Gao, Z. and Moan, T., 2013. Joint Environmental Data At Five European Offshore Sites For Design Of Combined Wind And Wave Energy Devices. In: Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2013-10156, June 914, Nantes, France.

Lucas, C. and Guedes Soares, C. 2015. Bivariate distributions of significant wave height and mean wave period of combined sea states. Ocean Engineering. 106:341–353.

Lucas, C. and Guedes Soares, C. 2016. Bivariate distributions of significant wave height and peak period of sea states in deep and shallow waters offshore Portugal, Maritime Technology and Engineering 3, Guedes Soares, C., Santos T. A., (Eds.), Taylor et Francis Group, London, UK, pp. 1045-1054.

Ochi, M. K., 1978. Wave statistics for the design of ships and ocean structures. Trans. Soc. Naval Architects and Marine Engrs, 60 47-76.

Papanicolaou, M., Malliouri, D., Memos, C., 2016. Wave Climate Description Using Long-term Joint Distribussions of Wave Height and Wave Period, In Proceedings of the 7th Panhellenic Conference on Harbour Works, Eugenides Foundation, Athens.

Prince-Wright, R., 1995. Maximum likelihood models of joint environmental data for TLP design. Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering, Vol. 2, pp. 535.

Repko, A., 1998. Uni- and bivariate statistical analysis of long-term wave climates, Delft University of Technology.

Repko, A., Van Gelder, P. H. A. J. M., Voortman, H. G. and Vrijling, J. K. 2004. Bivariate description of offshore wave conditions with physics-based extreme value statistics, Applied ocean Research 26, 162-170.

www.poseidon.hcmr.gr

www.wikipedia.org

1. Εισαγωγή

1.1. Αντικείμενο της εργασίας

Η γνώση του κυματικού κλίματος είναι απαραίτητη για το σχεδιασμό λιμενικών και παράκτιων κατασκευών που βρίσκονται σε διαρκή αλληλεπίδραση με τους θαλάσσιους κυματισμούς. Το κυματικό κλίμα μπορεί να χαρακτηριστεί είτε ως βραχυπρόθεσμο (short-term) που αφορά ένα μεμονωμένο κυματικό γεγονός (καταιγίδα), είτε ως μακροπρόθεσμο (long-term) που περιγράφει μια σειρά από ανεξάρτητα κυματικά γεγονότα σε υπερετήσιο χρονικό ορίζοντα. Προκειμένου όμως να είναι αξιόπιστο για το σχεδιασμό, πρέπει να αναφέρεται σε χρονική περίοδο τόσο μεγάλη ώστε να υπερβαίνει τη διάρκεια ζωής του έργου. Συνήθης πρακτική, μέχρι σήμερα, είναι ο υπολογισμός των φορτίσεων παράκτιων έργων να στηρίζεται μόνο σε ένα αντιπροσωπευτικό ύψος κύματος. Έτσι, όμως, χάνεται η πολύτιμη πληροφορία που αφορά στην περίοδο του κυματισμού. Γίνεται ολοένα και πιο αποδεκτό από την επιστημονική κοινότητα ότι η εν λόγω πληροφορία πρέπει να συμπεριληφθεί στα κριτήρια σχεδιασμού των έργων μαζί με το ύψος κύματος στο προσεχές μέλλον.

Η παρούσα εργασία, λοιπόν, έχει ως αντικείμενο την περιγραφή του μακροπρόθεσμου (long-term) κυματικού κλίματος, ώστε να είναι δυνατόν να εξαχθούν οι μεταβλητές φόρτισης, ύψος κύματος και περίοδος κύματος, για το σχεδιασμό παράκτιων έργων. Αυτό πραγματοποιείται μέσω υπολογισμού της μακροπρόθεσμης από κοινού κατανομής του σημαντικού ύψους και της μέσης περιόδου κύματος, λαμβάνοντας υπόψη τη συσγέτιση των δύο αυτών μεγεθών. Ειδικότερα, προτείνεται μια μεθοδολογία περιγραφής του κυματικού κλίματος οποιασδήποτε περιογής, με γρήση θεωρητικών μοντέλων. Τα θεωρητικά μοντέλα που επιλέχθηκαν να μελετηθούν, είναι τα επικρατέστερα σύμφωνα με τη μέχρι τώρα γνώση. Εφαρμόστηκαν για τρεις περιοχές του Ελλαδικού χώρου, για τα βαθιά ύδατα και για ένα βάθος σχεδιασμού παράκτιων έργων (λαμβάνοντας υπόψη μόνο τη ρήγωση των κυμάτων), με στόγο να αναδειγθεί το μοντέλο που περιγράφει καλύτερα τις μακροπρόθεσμες κυματικές συνθήκες. Τα εν λόγω μοντέλα είναι τα εξής: μοντέλο δεσμευμένης πιθανότητας (conditional model), μοντέλο Bivariate-Lognormal, μοντέλο Plackett και μοντέλο με μετασγηματισμούς Box-Cox. Τα μοντέλα δεσμευμένης πιθανότητας και Plackett εξετάστηκαν για δύο περιπτώσεις προσαρμογής περιθώριων κατανομών στο ύψος κύματος (λογαριθμοκανονική κατανομή και Weibull) και για μια περίπτωση προσαρμογής (λογαριθμοκανονικής) κατανομής στην περίοδο κύματος. Επίσης, εξετάστηκαν δύο εκδοχές του μοντέλου Bivariate-Lognormal. Η πρώτη εκδοχή είναι σύμφωνα με τον Ochi (1978) και η δεύτερη σύμφωνα με τους Fang και Hogben (1982), η οποία περιλαμβάνει έναν επιπλέον όρο για τη διόρθωση λόγω ασυμμετρίας στα ύψη κύματος. Τα θεωρητικά αυτά μοντέλα κατανομών προϋποθέτουν γνώση της συγνότητας εμφάνισης του σημαντικού ύψους και της μέσης περιόδου κύματος ενός δείγματος παρατηρήσεων, σε μία υπερετήσια χρονική περίοδο.

Συνεπώς, αναλύονται επτά περιπτώσεις συνολικά θεωρητικών μοντέλων, από τις οποίες προκύπτουν οι από κοινού κατανομές του σημαντικού ύψους και της μέσης περιόδου κύματος και εκτιμάται το σφάλμα της καθεμίας. Είναι σημαντικό επίσης, να αναφερθεί πως τα παραπάνω μοντέλα εφαρμόστηκαν και για το σύνολο των κυμάτων κάθε περιοχής και χωριστά, για την ανεμογενή συνιστώσα και τη συνιστώσα της αποθάλασσας. Αυτός ο διαχωρισμός ακολουθείται σε όλη την έκταση της εργασίας και έγινε προκειμένου να αξιολογηθεί κατά πόσο η «ομοιογένεια» ή «ανομοιογένεια» των κυματισμών αντίστοιχα, επηρεάζει την εφαρμογή των θεωρητικών μοντέλων.

Η μεθοδολογία που προτείνεται στην παρούσα εργασία αναμένεται να συμβάλλει στον μελλοντικό (προχωρημένο) πιθανοτικό σχεδιασμό έργων, παρέχοντας μια εκτίμηση και επιλογή των μεγεθών σχεδιασμού -σημαντικού ύψους κύματος και μέσης περιόδου κύματος- ανάλογα με τη δεδομένη διάρκεια ζωής ενός έργου και την επιθυμητή περίοδο επαναφοράς των μεγεθών σχεδιασμού. Σε επόμενο στάδιο η γνώση της μακροπρόθεσμης πιθανοτικής κατανομής μεταξύ του χαρακτηριστικού ύψους κοί έργου μέσα στη διάρκεια ζωής του, από την υπέρβαση των δύο μεγεθών σχεδιασμού. Ακόμη, μπορεί να συμβάλλει και στη μελέτη της μακροπρόθεσμης στερεομεταφοράς, της εξέλιξης της ακτογραμμής κλπ.

1.2. Πρωτότυπα σημεία

Η παρούσα μεταπτυχιακή εργασία αποτελεί μια προσπάθεια ενσωμάτωσης μιας επιπρόσθετης παραμέτρου στο σχεδιασμό έργων, πέραν του χαρακτηριστικού ύψους κύματος: τη μέση περίοδο του κυματισμού. Η σημαντική αυτή πληροφορία, που δεν λαμβάνεται υπόψη κατά τη συνήθη μέθοδο σχεδιασμού που ακολουθείται σε πολλές χώρες μεταξύ των οποίων και στην Ελλάδα, μπορεί να ενταχθεί μέσω της περιγραφής των μακροπρόθεσμων από κοινού κατανομών ύψους και περιόδου κύματος.

Στο παρελθόν έχουν γίνει ορισμένες εφαρμογές σε συγκεκριμένες θαλάσσιες περιοχές, από τους Athanassoulis et al. (1994), οι οποίες αφορούν τα βαθιά ύδατα. Οι Lucas και Guedes Soares (2015), (2016) ασχολήθηκαν με αντίστοιχες εφαρμογές και σε βαθιά και αβαθή ύδατα. Οι Παπανικολάου κ.ά. (2016) εφάρμοσαν δύο μοντέλα (δεσμευμένης πιθανότητας και Plackett) σε βαθιά και αβαθή ύδατα για την περιοχή της Μυκόνου. Η παρούσα μεταπτυχιακή εργασία αποτελεί συνέχεια της μεταπτυχιακής εργασίας της Παπανικολάου (2016), επομένως συνδυάζει τα δυνατά σημεία εκείνης της εργασίας μαζί με νέα πρωτότυπα σημεία.

Καταρχάς η παρούσα εργασία αποτελεί μια ολική αξιολόγηση των επικρατέστερων θεωρητικών μοντέλων, σύμφωνα με τη μέχρι σήμερα γνώση, για την περιγραφή του μακροπρόθεσμου κυματικού κλίματος. Επεκτείνεται σε επτά θεωρητικά μοντέλα, τα οποία εφαρμόζονται σε πρωτογενή πραγματικά δεδομένα ύψους κύματος και περιόδου, για τρεις
περιοχές του Ελλαδικού χώρου (Άθω, Λέσβου, Σαντορίνης) και επομένως τα συγκρίνει σε ενιαία βάση.

Επιπρόσθετα, τα μοντέλα εφαρμόζονται και για το σύνολο των κυμάτων και για κάθε μία από τις συνιστώσες ξεχωριστά (ανεμογενή κύματα και κύματα αποθάλασσας). Ο διαχωρισμός των κυμάτων στις δύο συνιστώσες αποσκοπεί στη δημιουργία ομογενών δεδομένων. Σύμφωνα με τους Repko et al. (2004), όταν τα δεδομένα είναι ομογενή είναι δυνατή η επίτευξη καλύτερης προσαρμογής των μοντέλων στα πραγματικά δεδομένα. Οι Guedes Soares και Nolasco (1992) έχουν δείξει ότι τα ανεμογενή και τα κύματα αποθάλασσας ακολουθούν διαφορετικές πιθανοτικές κατανομές. Επομένως ο διαχωρισμός φαίνεται εύλογος και παράλληλα ουσιαστικός.

Τέλος, ο κώδικας που παράχθηκε στο πρόγραμμα MATLAB για τα επτά μοντέλα μπορεί να εφαρμοστεί σε οποιαδήποτε άλλη περιοχή, αρκεί να εισαχθούν οι αρχικοί πίνακες δεδομένων ζευγών χαρακτηριστικού ύψους κύματος και περιόδου ή οι πίνακες από κοινού συχνότητας εμφάνισης των δύο προαναφερθεισών μεταβλητών.

Βάσει αυτών, πραγματοποιείται σε αυτή την εργασία, μια περαιτέρω προσπάθεια διερεύνησης των θεωρητικών μοντέλων για την καλύτερη αποτύπωση του κυματικού κλίματος στα βαθιά και στα αβαθή ύδατα με στόχο τον ακριβέστερο και αποτελεσματικότερο σχεδιασμό παράκτιων, λιμενικών και ανοιχτής θαλάσσης έργων.

1.3. Διάρθρωση εργασίας

Στο 2° Κεφάλαιο παρουσιάζεται το θεωρητικό υπόβαθρο στο οποίο βασίστηκε η παρούσα μεταπτυχιακή εργασία. Πιο συγκεκριμένα, ορίζονται ορισμένες βασικές έννοιες των κυματισμών και της κατανομής πιθανότητας τυχαίων μεταβλητών που θα χρησιμοποιηθούν στα επόμενα Κεφάλαια. Πραγματοποιείται γενική επισκόπηση, σύμφωνα με την υπάρχουσα βιβλιογραφία, των μοντέλων κατανομών μίας μεταβλητής (univariate distribution models) και δύο μεταβλητών (bivariate distribution models). Εν συνεχεία, αναπτύσσονται τα παραμετρικά μοντέλα δύο μεταβλητών που χρησιμοποιούνται στην παρούσα εργασία: δεσμευμένης πιθανότητας, Bivariate-Lognormal, Plackett και το μοντέλο με μετασχηματισμούς Box-Cox. Τέλος, παρατίθεται η σχέση υπολογισμού του σφάλματος των θεωρητικών μοντέλων, σύμφωνα με το τετράγωνο της Ευκλείδειας απόστασης.

Στο Κεφάλαιο 3 εφαρμόζονται τα θεωρητικά μοντέλα στις διάφορες θαλάσσιες περιοχές που επιλέχθηκαν. Αρχικά, γίνεται αναφορά στα δεδομένα που χρησιμοποιήθηκαν για την εφαρμογή των μοντέλων και στο Σύστημα «ΠΟΣΕΙΔΩΝ» από το οποίο προήλθαν. Κατόπιν, αναλύονται τα χαρακτηριστικά των περιοχών μελέτης που επιλέχθηκαν και γίνεται αναλυτική εφαρμογή για την περιοχή του Άθω. Συγκεκριμένα, πρώτα λαμβάνει χώρα η προεπεξεργασία των δεδομένων, ακολουθεί η εφαρμογή των μοντέλων στα βαθιά ύδατα, υπολογίζεται το νέο ύψος κύματος στο βάθος σχεδιασμού ενός υποθετικού έργου, λαμβάνοντας υπόψη τη διαδικασία της ρήχωσης και τέλος εφαρμόζονται τα μοντέλα και

σε αυτό το βάθος. Στη συνέχεια εφαρμόζονται τα μοντέλα, κατά αντιστοιχία με την περιοχή του Άθω, και στις υπόλοιπες περιοχές μελέτης: περιοχή Λέσβου και Σαντορίνης.

Στο Κεφάλαιο 4 γίνεται απεικόνιση των δεδομένων και των αποτελεσμάτων του Κεφαλαίου 3 με τη μορφή πιθανοτικών εικόνων από κοινού κατανομών του ύψους κύματος και της περιόδου. Οι πιθανοτικές εικόνες δημιουργήθηκαν στο πρόγραμμα Surfer για καλύτερη ακρίβεια. Παρατίθεται συγκεντρωτικός Πίνακας όλων των σφαλμάτων των μοντέλων και έπειτα γίνεται σχολιασμός και σύγκριση των μεθόδων που εφαρμόστηκαν.

Τέλος, στο Κεφάλαιο 5 παρουσιάζονται τα συμπεράσματα της εργασίας καθώς και οι προτάσεις για περαιτέρω έρευνα που προτείνονται.

Στο Παράρτημα Α ενσωματώνονται οι Πίνακες των αποτελεσμάτων για την περιοχή του Άθω, ενώ στο Παράρτημα Β παρουσιάζεται ο κώδικας που κατασκευάστηκε για το σύνολο των μοντέλων στο πρόγραμμα MATLAB.

2. Θεωρητικό υπόβαθρο

2.1. Ορισμός βασικών χαρακτηριστικών των κυματισμών

Στα πλαίσια της παρούσας εργασίας, που πραγματεύεται την περιγραφή του κυματικού κλίματος μέσω μακροπρόθεσμων από κοινού κατανομών ύψους κύματος και περιόδου, κρίνεται απαραίτητο στην αρχή να ορισθούν και να περιγραφούν οι βασικές έννοιες που θα χρησιμοποιηθούν. Έτσι, αναπτύσσονται συνοπτικά οι έννοιες του χαρακτηριστικού ύψους κύματος H_s , της μέσης περιόδου κύματος T_m , καθώς και της περιόδου αιχμής T_p . Επίσης περιγράφονται τα διαφορετικά είδη κυμάτων (ανεμογενή, κύματα αποθάλασσας κλπ) και τα χαρακτηριστικά τους.

Το σημαντικό ύψος κύματος, H_s σε μια περιοχή ορίζεται ως η μέση τιμή ύψους (από κορυφή σε κοιλία) του ενός τρίτου των υψηλότερων κυμάτων, δηλαδή:

$$H_s = H_{1/3} = \frac{3}{N} \sum_{n=1}^{N/3} H_n \tag{2.1}$$

Το σημαντικό ύψος κύματος είναι η πιο σημαντική παράμετρος που χρησιμοποιείται για την περιγραφή της κυματικής κατάστασης. Συνήθως, δεν υπολογίζεται από τον παραπάνω ορισμό, αλλά από την φασματική ανάλυση στο πεδίο των συχνοτήτων, ως τέσσερις φορές η τυπική απόκλιση της ανύψωσης της επιφάνειας της θάλασσας ή ισοδύναμα ως τέσσερις φορές η τετραγωνική ρίζα της ροπής μηδενικής τάξης του φάσματος, δηλαδή:

$$H_s = 4\sqrt{m_0} \tag{2.2}$$

Κατά τη φασματική ανάλυση στο πεδίο των συχνοτήτων έχει θεωρηθεί πως τα ύψη κύματος ακολουθούν κατανομή Rayleigh. Το φάσμα αντιπροσωπεύει την ενέργεια του κύματος σε κάθε συχνότητα. Ισχύει ότι:

$$\int_{0}^{\infty} S(f) df = \bar{E}/\rho g \qquad (2.3)$$

όπου ρείναι η πυκνότητα του νερού, $g = 9.81 m/s^2$ είναι η επιτάχυνση της βαρύτητας και \overline{E} είναι η ειδική ενέργεια του κυματισμού:

$$\bar{E} = \rho g \frac{H_s^2}{16} \tag{2.4}$$

Η μέση περίοδος T_m ορίζεται ως ο μέσος όρος όλων των περιόδων T_n των «κυμάτων» της καταγραφής (βλ. Εικόνα 2.1):

$$T_m = \frac{1}{N} \sum_{n=1}^{N} T_n$$
 (2.5)

Εικόνα 2.1 Τυπική κυματική καταγραφή όπου κάθε «κύμα» ορίζεται με τη μέθοδο του ανοδικού μηδενισμού της μέσης στάθμης της ελεύθερης επιφάνειας

Η μέση περίοδος T_m μπορεί να υπολογιστεί συναρτήσει των ροπών

η τάξης του φάσματος ως:

$$T_m = \sqrt{\frac{m_0}{m_2}} \tag{2.6}$$

Η περίοδος αιχμής T_p ορίζεται ως το αντίστροφο της συχνότητας αιχμής f_p του κύματος με τη μέγιστη ενέργεια στο φάσμα (βλ. Εικόνα 2.2):

Εικόνα 2.2 Τυπική μορφή φάσματος ενέργειας κύματος συναρτήσει της συχνότητας

Τα θαλάσσια επιφανειακά κύματα μπορούν να ταξινομηθούν, ανάλογα με την περίοδο, την επενεργούσα ή την ελέγχουσα δύναμη σε: ανεμογενή, αποθάλασσες και capillary waves (ή ripples).

Ta ripples εμφανίζονται σε ήρεμη θάλασσα όταν φυσάει ο άνεμος, αλλά χάνονται μόλις σταματήσει να φυσάει. Η γενεσιουργός δύναμη που τα προκαλεί είναι η επιφανειακή τάση.

Τα ανεμογενή κύματα είναι μεγαλύτερης κλίμακας, συνήθως μη ομαλά, που δημιουργούνται λόγω πνοής του ανέμου. Αυτά τα κύματα συνήθως έχουν μεγαλύτερη διάρκεια, ακόμα και μετά τη διακοπή του ανέμου και η γενεσιουργός τους δύναμη είναι η βαρύτητα. Οι ανεμογενείς κυματισμοί διεγείρονται απ' ευθείας από το υπερκείμενο τυρβώδες πεδίο ροής του ανέμου. Οι κυματισμοί είναι έντονα «ανακατεμένοι» (confused), διαδίδονται προς διάφορες κατευθύνσεις (short-crested) (αν υπάρχει κύρια κατεύθυνση αυτή γενικά μεταβάλλεται χρονικά και χωρικά), ο λόγος ύψους προς μήκος κύματος είναι σχετικά μεγάλος και συχνά συμβαίνει θραύση των κυματισμών και εμφάνιση αφρού (whitecaps και spray). Ακόμη, η ροή στο νερό, κοντά στην ελεύθερη επιφάνεια, είναι ισχυρά στροβιλή λόγω της επίδρασης των διατμητικών τάσεων του τυρβώδους πεδίου του υπερκείμενου ανέμου.

Όπως τα κύματα διαδίδονται μακρυά από την περιοχή γένεσής τους, διαμορφώνουν ομάδες κυμάτων με κοινή διεύθυνση διάδοσης και μήκος κύματος. Οι ομάδες κυμάτων που διαμορφώνονται με αυτόν τον τρόπο είναι γνωστές ως αποθάλλασες. Οι αποθάλασσες είναι δηλαδή το αποτέλεσμα της διάδοσης των ανεμογενών, που έχουν όμως παραχθεί από τη δράση του ανέμου σε άλλες περιοχές. Είναι ό,τι απέμεινε κατά το ταξίδι από τη γένεση του κυματισμού εώς την εν λόγω θαλάσσια περιοχή μελέτης και επέζησε λόγω μικρής κλίσης που αντιστέκεται στην απώλεια ενέργειας. Αντίθετα από τα ανεμογενή κύματα, στην περίπτωση των αποθαλασσών, οι κυματισμοί είναι περισσότερο ομαλοί και λείοι, έχουν σαφή κύρια κατεύθυνση διάδοσης (long-crested), και είναι περισσότερο επιμήκεις (μικρότερος λόγος ύψους προς μήκος κύματος). Ακόμη, εάν οι κυματισμοί δεν βρίσκονται κάτω από την επίδραση άλλου τοπικού πεδίου ανέμου ή άλλου αιτίου διέγερσης τύρβης, η ροή στο νερό μπορεί να θεωρηθεί μη τυρβώδης και αστρόβιλη, και συνήθως δεν συμβαίνει θραύση των κυματισμών.

Επιπλέον, μπορεί να διαμορφωθούν «rogue waves» (ή «freak waves», «monster waves», «killer waves», και «king waves»), τα οποία έχουν πολύ μεγαλύτερο ύψος κύματος από τα υπόλοιπα κύματα.

Στην παρούσα μεταπτυχιακή εργασία μελετώνται τα ανεμογενή και τα κύματα αποθάλασσας. Ας σημειωθεί ότι, σε μια συγκεκριμένη θαλάσσια περιοχή, μπορεί να έχουμε είτε μόνο (τοπικούς) κυματισμούς ανέμου, είτε μόνο αποθάλασσες (αν δεν φυσά άνεμος), είτε ταυτόχρονη παρουσία κυματισμών ανέμου και αποθαλασσών. Επίσης, είναι δυνατόν να συνυπάρχουν περισσότερα από ένα συστήματα αποθαλασσών.

2.2. Ορισμός βασικών εννοιών κατανομής πιθανότητας τυχαίων μεταβλητών

Εκτός από τη συνοπτική περιγραφή των βασικών χαρακτηριστικών των κυματισμών, κρίνεται επίσης αναγκαίο να παρουσιαστούν οι βασικές έννοιες των κατανομών πιθανότητας που θα χρησιμοποιηθούν στη συνέχεια της εργασίας.

Στην πιθανοθεωρητική μελέτη ενός στοχαστικού (τυχαίου) φαινομένου, όπως επίσης και στη στατιστική συμπερασματολογία, αναφύεται συχνά η ανάγκη προσδιορισμού της κατανομής μιας τυχαίας μεταβλητής Y = g(x), η οποία είναι συνάρτηση μιας άλλης τυχαίας μεταβλητής X με γνωστή κατανομή. Στην περίπτωση αυτή ο προσδιορισμός της κατανομής της Y επιτυγχάνεται ευκολότερα με την εύρεση, αρχικά, της συνάρτησης κατανομής.

Για μία συνεχή τυχαία μεταβλητή X ($X \in R$) ορίζεται η συνάρτηση πυκνότητας πιθανότητας (probability density function) $f_X(x)$, που ικανοποιεί τις συνθήκες:

$$f_X(x) \ge 0 \quad \text{kat} \quad \int_{-\infty}^{\infty} f_X(x) dx = 1 \tag{2.8}$$

Η αντίστοιχη αθροιστική συνάρτηση κατανομής (cumulative distribution function) $F_X(x)$, που δηλώνει την πιθανότητα η τυχαία μεταβλητή X να πάρει τιμές μικρότερες ή ίσες από κάποια τιμή x ορίζεται ως:

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(u) du$$
 (2.9)

Για δύο συνεχείς τυχαίες μεταβλητές X και Y, η κοινή συνάρτηση πυκνότητας πιθανότητας (joint probability density function) $f_{XY}(x, y)$ θα πρέπει να ικανοποιεί τις συνθήκες:

$$f_{XY}(x,y) \ge 0 \text{ kat } \iint_{-\infty}^{\infty} f_{XY}(x,y) dy dx = 1$$
 (2.10)

Η κοινή αθροιστική συνάρτηση κατανομής (joint cumulative distribution function) για τις μεταβλητές X και Y ορίζεται ως:

$$F_{XY}(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) dv du$$
(2.11)

Η περιθώρια συνάρτηση κατανομής (marginal distribution function) μιας μεταβλητής X ή Y, για μία γνωστή κοινή συνάρτηση κατανομής $f_{XY}(x, y)$ δύο τυχαίων μεταβλητών ορίζεται ως:

$$F_{x}(x) = F(x, \infty) = \Pr\{X \le x, Y < \infty\}$$

$$F_{Y}(x) = F(\infty, y) = \Pr\{X \le \infty, Y < y\}$$
(2.12)

Με απλά λόγια, η περιθώρια συνάρτηση κατανομής της μεταβλητής X είναι η κατανομή πιθανότητας της X για όλες τις τιμές της μεταβλητής Y. Είναι, δηλαδή, η κατανομή πιθανότητας της μεταβλητής X, όταν η τιμή της μεταβλητής Y δεν είναι γνωστή. Η περιθώρια συνάρτηση κατανομής υπολογίζεται αθροίζοντας ή ολοκληρώνοντας (σε περίπτωση συνεχών μεταβλητών) την κοινή κατανομή πιθανότητας κατά Y. Αθροίζονται οι στήλες ή οι γραμμές ενός πίνακα από κοινού κατανομής και οι τιμές γράφονται στο περιθώριο του πίνακα, εξ ου και ο όρος «περιθώρια» κατανομή (www.wikipedia.org).

Για συνεχείς μεταβλητές, η περιθώρια κατανομή πυκνότητας πιθανότητας (marginal density function) των X και Y ορίζεται ως:

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
 (2.13)

Σύμφωνα με τη θεωρία πιθανοτήτων και στατιστικής, η περιθώρια κατανομή (marginal distribution) ενός υποσυνόλου του δείγματος τυχαίων μεταβλητών είναι η κατανομή πιθανότητας των μεταβλητών που ανήκουν στο υποσύνολο. Δίνει τις πιθανότητες για διάφορες τιμές των μεταβλητών στο υποσύνολο χωρίς, όμως, να τις συσχετίζει με τις τιμές των υπόλοιπων μεταβλητών (www.wikipedia.org). Στην Εικόνα 2.3 παρουσιάζονται οι περιθώριες κατανομές των τυχαίων μεταβλητών X και Y με μπλε και κόκκινο χρώμα αντίστοιχα.

Εικόνα 2.3 Πολλές μετρήσεις από κανονική κατανομή δύο μεταβλητών. Η περιθώρια κατανομή της μεταβλητής Χ παρουσιάζεται με μπλε χρώμα και της Υ με κόκκινο. Η περιθώρια κατανομή της μεταβλητής Χ προσεγγίζεται κατασκευάζοντας ιστόγραμμα με τις τιμές της Χ, χωρίς να λαμβάνονται υπόψη οι τιμές της Υ. Πηγή: www.wikipedia.org

Η κατανομή δεσμευμένης πιθανότητας (conditional probability distribution function) μιας τυχαίας μεταβλητής Y, δεδομένου ότι η μεταβλητή X έχει την τιμή x, ορίζεται ως:

$$F(y|x) = \Pr\{Y \le y|X = x\} = \frac{\Pr\{Y \le y \ \kappa \alpha i \ X = x\}}{\Pr\{X = x\}}$$
(2.14)

Η κατανομή δεσμευμένης πυκνότητας πιθανότητας (conditional probability density function) τυχαίας μεταβλητής Y, δεδομένου ότι η μεταβλητή X έχει την τιμή x, ορίζεται ως:

$$f(y|x) = \frac{f(x,y)}{f(x)} = \frac{f(x,y)}{\int_{-\infty}^{\infty} f(x,y)dy}$$
(2.15)

Αντίθετα με την περιθώρια κατανομή, η κατανομή δεσμευμένης πιθανότητας (conditional distribution), δίνει τις πιθανότητες εξαρτώμενες από τις τιμές των υπόλοιπων μεταβλητών (www.wikipedia.org). Η ανάγκη εισαγωγής της δεσμευμένης πιθανότητας αναφύεται στις περιπτώσεις όπου μερική γνώση, ως προς την έκβαση, ενός τυχαίου (στοχαστικού) πειράματος μειώνει την αβεβαιότητα συρρικνώνοντας το δειγματικό χώρο.

2.3. Γενική επισκόπηση κατανομών

Η αξία της προσαρμογής μακροπρόθεσμων κατανομών για την περιγραφή του κυματικού κλίματος αναγνωρίστηκε από τα πρώιμα στάδια της ανάπτυξης της στατιστικής προσέγγισης του κυματικού κλίματος, σύμφωνα με τους Athanassoulis et al. (1994). Αρχικά αναπτύχθηκαν τα μοντέλα μιας μεταβλητής και ύστερα, αφού αναδείχθηκε η αξία της συνδυασμένης γνώσης του ύψους κύματος και της περιόδου, για τον ακριβέστερο σχεδιασμό, αναπτύχθηκαν και τα παραμετρικά μοντέλα δύο μεταβλητών.

Τα θεωρητικά μοντέλα παρουσιάζουν πλήθος πλεονεκτημάτων και χρησιμοποιούνται ευρέως από πολλούς ερευνητές. Η αναλυτική περιγραφή προσφέρει συμπυκνωμένη πληροφορία και συμπληρώνει πιθανά κενά της πληροφορίας. Δηλαδή, τα θεωρητικά μοντέλα, μέσω της τυποποίησης της αναπαράστασης μπορούν να απεικονίσουν όλο το εύρος των πιθανοτήτων, ακόμη και τις πολύ μικρές πιθανότητες, που για διάφορους λόγους δεν έχουν συμπεριληφθεί στο δείγμα δεδομένων. Επίσης, καθιστούν δυνατή την εκτίμηση του κυματικού κλίματος και για χρονικές περιόδους επαναφοράς μεγαλύτερες της διάρκειας των μετρήσεων και παρέχουν τη δυνατότητα να συνδυασθούν με άλλα υπολογιστικά μοντέλα.

2.3.1. Κατανομές μίας μεταβλητής

Στην παρούσα παράγραφο αρχικά παρουσιάζονται οι κατανομές μίας μεταβλητής που έχουν χρησιμοποιηθεί για προσαρμογή στα δεδομένα του ύψους κύματος ή της περιόδου και στη συνέχεια αναλύονται οι συγκεκριμένες κατανομές μιας μεταβλητής που χρησιμοποιούνται στην παρούσα εργασία.

Ήδη από το 1956 ο Jasper πρότεινε τη χρήση λογαριθμοκανονικής κατανομής (Lognormal distribution) για την περιγραφή του χαρακτηριστικού ύψους κύματος H_s . Η κατανομή αυτή εν γένει δίνει μια ικανοποιητική συνολική προσαρμογή στα δεδομένα, αλλά έχει αποκλίσεις από αυτά για μεγάλες τιμές του H_s . Ο Nordenstrøm (1969) πρότεινε την κατανομή Weibull τριών παραμέτρων, η οποία γενικά περιγράφει καλύτερα τα μεγάλα αυτά ύψη κύματος H_s (upper tail), στην ακτή, παρά τις μεγάλες αποκλίσεις για μικρά χαρακτηριστικά ύψη κύματος. Ο Battjes (1972) πρότεινε την κατανομή Weibull, η οποία προσαρμόζεται ικανοποιητικά σε ακραίες τιμές ύψους κύματος, αλλά όχι τόσο καλά σε μικρά ύψη κύματος.

Παρόλα αυτά η κατανομή Weibull φαίνεται καταλληλότερη για ανάλυση μεγάλων τιμών (large-value analysis), όπως είναι για παράδειγμα η ανάλυση ακραίων τιμών (extreme value analysis). Αντιθέτως, η κατανομή Lognormal μοιάζει πιο κατάλληλη για ανάλυση μέσων τιμών (moderate-value analysis), όπως η ανάλυση κόπωσης-κύκλου ζωής (fatigue-life analysis).

Περαιτέρω προσπάθειες για την ανάπτυξη τέτοιων κατανομών που να περιγράφουν ικανοποιητικά τα κυματικά χαρακτηριστικά έγιναν από τους Ochi (1976), Andrew and

Price (1979). Οι ίδιοι πρότειναν τη χρήση της γενικευμένης κατανομής Γάμα (generalized Gamma distribution), η οποία περιλαμβάνει την κατανομή Weibull δύο παραμέτρων ως ειδική περίπτωση. Οι Fang and Hogben (1982) εισήγαγαν μια τροποποιημένη λογαριθμοκανονική κατανομή, που περιελάμβανε διόρθωση για την ασυμμετρία (skewness) των υψών κύματος, παρέχοντας καλύτερη περιγραφή -σε σύγκριση με την απλή λογαριθμοκανονική κατανομή- στα μεγάλα ύψη κύματος H_s , ειδικά για τιμές αθροιστικής πιθανότητας μεγαλύτερες του 0.95. Ο Haver (1985), προκειμένου να περιγράψει ικανοποιητικά το πλήρες εύρος των κυματισμών, πρότεινε το συνδυασμό Lognormal κατανομής και Weibull. Συνδύασε τη Lognormal κατανομή για μικρές και μεσαίες τιμές του ύψους κύματος, με τη Weibull για υψηλότερες τιμές του ύψους κύματος. Οι Ferreira και Guedes Soares (1999) χρησιμοποίησαν τη Βήτα κατανομή (Beta distribution) και έδειξαν ότι είναι καλύτερη από άλλες κατανομές, συμπεριλαμβανουένου και της γενικευμένης κατανομής Γάμα (generalized Gamma distribution).

Στη συνέχεια, αναλύονται οι συναρτήσεις πυκνότητας πιθανότητας και αθροιστικής πιθανότητας για τα δύο είδη κατανομών μίας μεταβλητής που χρησιμοποιούνται στην παρούσα εργασία.

Λογαριθμοκανονική κατανομή (Lognormal):

Η λογαριθμοκανονική κατανομή (Lognormal distribution) είναι μια πιθανοτική κατανομή της οποίας ο λογάριθμος έχει κανονική κατανομή. Για να εφαρμοστεί προϋποθέτει το εύρος τιμών της εν προκειμένω μεταβλητής να είναι θετικό, αφού η ποσότητα log(x)υφίσταται μόνο για x > 0. Η συνάρτηση πυκνότητας πιθανότητας της λογαριθμοκανονικής κατανομής είναι:

$$f_L(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}, \quad x > 0$$
 (2.16)

όπου τα μ, σ είναι οι παράμετροι της κατανομής. Συγκεκριμένα:

μ: παράμετρος θέσης (location parameter) και είναι η μέση τιμή του λογαρίθμου της κατανομής. Δείχνει σε ποιο σημείο του οριζόντιου άξονα τοποθετείται («κεντράρεται») το γράφημα. Το εύρος τιμών είναι: $-\infty < \mu < \infty$.

σ: παράμετρος κλίμακας (scale parameter) και είναι η τυπική απόκλιση του λογαρίθμου της κατανομής. Δείχνει πόσο «στενή» ή «φαρδιά» έιναι η κατανομή. Το εύρος τιμών είναι: $\sigma < 0$.

Σημειώνεται ότι η μορφή της λογαριθμοκανονικής κατανομής που αναφέρθηκε και χρησιμοποιείται στην εργασία είναι διπαραμετρική. Υπάρχει και τριπαραμετρική μορφή της κατανομής, η οποία όμως δεν αφορά την παρούσα εργασία. Η αθροιστική συνάρτηση πυκνότητας πιθανότητας $F_L(x; \mu, \sigma)$ της λογαριθμοκανονικής κατανομής της μεταβλητής x είναι η εξής:

$$F_L(x;\mu,\sigma) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2}\sigma}\right]$$
(2.17)

Η εκτίμηση των παραμέτρων θέσης και κλίμακας μ, σ γίνεται σύμφωνα με τη μέθοδο μέγιστης πιθανοφάνειας (Maximum Likelihood Method), κατά την οποία οι τιμές των παραμέτρων προκύπτουν με τη μεγιστοποίηση της λογαριθμικής συνάρτησης πιθανοφάνειας (log-likelihood function) για το δείγμα τιμών \vec{x}_i , ως προς το σύνολο των παραμέτρων $\vec{\theta}_i$, όπου $\vec{\theta}_i = (\vec{\mu}_i, \vec{\sigma}_i)$. Η λογαριθμική συνάρτηση πιθανοφάνειας (log-likelihood function) είναι:

$$l_i^{N_i}(\overrightarrow{x_i}; \overrightarrow{\theta_i}) = \ln\left[\prod_{n=1}^{N_i} f_i(x_i^n; \overrightarrow{\theta_i})\right], \qquad i = 1,2$$
(2.18)

όπου $\vec{x}_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(Ni)})$, με i = 1,2 είναι το αντίστοιχο δείγμα τιμών μίας μεταβλητής (περιθώριας ή δεσμευμένης πιθανότητας), το οποίο αποτελείται από N_i παρατηρήσεις.

Για τη μέγιστη επομένως τιμή της παραπάνω συνάρτησης προκύπτουν οι εκτιμήσεις του συνόλου των παραμέτρων (ML estimators) $\vec{\theta}_i$. Άρα:

$$\mu = \frac{1}{N} \sum_{n=1}^{N} \ln(x^{(n)})$$
(2.19)

$$\sigma = \left\{ \frac{1}{N} \sum_{n=1}^{N} \left[ln \left(x^{(n)} \right) - \mu \right]^2 \right\}^{1/2}$$
(2.20)

όπου, υπενθυμίζεται ότι $x^{(n)}$ είναι τα στοιχεία του δείγματος (N συνολικού αριθμού παρατηρήσεων) των τιμών μιας μεταβλητής.

Κατανομή Weibull:

Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Weibull είναι:

$$f_W(x; \alpha, b) = \frac{b}{a} \left(\frac{x}{a}\right)^{b-1} e^{-(x/a)^b}$$
(2.21)

όπου τα α, b είναι οι παράμετροι της κατανομής. Συγκεκριμένα:

a: παράμετρος κλίμακας (scale parameter) (a > 0)

b: παράμετρος σχήματος (shape parameter) (b > 0)

Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Weibull είναι θετική μονο για θετικές τιμές της μεταβλητής x, αλλιώς είναι μηδενική.

Σημειώνεται και εδώ, αντίστοιχα με τη λογαριθμοκανονική κατανομή, πως αναφέρεται και χρησιμοποιείται η διπαραμετρική μορφή της κατανομής Weibull.

Η αθροιστική συνάρτηση πυκνότητας πιθανότητας $F_W(x; \alpha, b)$ της κατανομής Weibull της μεταβλητής x είναι η εξής:

$$F_W(x;\alpha,b) = 1 - e^{-(x/a)^b}$$
(2.22)

Η εκτίμηση των παραμέτρων κλίμακας και σχήματος *α*, *b* γίνεται και εδώ σύμφωνα με τη μέθοδο μέγιστης πιθανοφάνειας (Maximum Likelihood Method), σχέση (2.18). Οι τιμές των παραμέτρων *α*, *b* δίνονται από τις εκφράσεις:

$$\frac{1}{b} = \frac{\sum_{n=1}^{N} [x^{(n)}]^{b} \ln(x^{(n)})}{\sum_{n=1}^{N} [x^{(n)}]^{b}} + -\frac{1}{N} \sum_{n=1}^{N} \ln(x^{(n)})$$
(2.23)

$$\alpha = \frac{1}{N} \sum_{n=1}^{N} [x^{(n)}]^b$$
(2.24)

Ομοίως, $x^{(n)}$ είναι τα στοιχεία του δείγματος (N συνολικού αριθμού παρατηρήσεων) των τιμών μιας μεταβλητής.

2.3.2. Κατανομές δύο μεταβλητών

Πολλά μοντέλα με κατανομές δύο μεταβλητών έχουν δημιουργηθεί για να συνδυάσουν τις σημαντικότερες παραμέτρους, ύψος κύματος και περίοδο, με στόχο την ακριβή, μακροπρόθεσμη περιγραφή του κυματικού κλίματος και συνεπώς την ορθότερη και ακριβέστερη εκτίμηση των μεγεθών σχεδιασμού για τα παράκτια και ανοιχτής θαλάσσης έργα. Μια από τις πρώτες προσεγγίσεις για τα παραμετρικά μοντέλα δύο μεταβλητών είναι αυτή του Ochi (1978), ο οποίος πρότεινε τη λογαριθμοκανονική κατανομή δύο

μεταβλητών (bivariate Lognormal distribution). Αυτή η μέθοδος, προκειμένου να προσαρμοστεί καλά στα δεδομένα, απαιτεί τα δεδομένα κάθε μεταβλητής να έγουν κανονική κατανομή, το οποίο ενώ ισχύει για μικρά και μεσαία ύψη κύματος, αρχίζει να μην ισχύει σε μεγαλύτερα ύψη κύματος. Οι Fang και Hogben (1982) έκαναν μια προσπάθεια να βελτιώσουν το μοντέλο του Ochi, κατασκεύζοντας ένα μοντέλο λογαριθμοκανονικής κατανομής δύο μεταβλητών, αλλά με διόρθωση της ασυμμετρίας (skewness) για τα ύψη κύματος. Ο Haver (1985) πρότεινε ένα μοντέλο δύο μεταβλητών, στο οποίο συνδύαζε κατανομή Lognormal για τα μικρά ύψη κύματος και κατανομή Weibull για τα μεγάλα (το συνδυασμό των δύο αυτών κατανομών ονόμασε κατανομή Lonowe), και χρησιμοποίησε κατανομή Lognormal για τις περιόδους. Οι Matiesen και Bitner-Gregersen (1990) χρησιμοποίησαν τριπαραμετρική κατανομή Weibull για τα ύψη κύματος και Lognormal για την περίοδο. Οι Athanassoulis et al. (1994) πρότειναν το μοντέλο Plackett, μοντέλο από την οικογένεια Fréchet, το οποίο έχει προκαθορισμένη περιθώρια κατανομή, ώστε να υπάρχει ευελιξία στην περιγραφή του βαθμού εξάρτησης των δύο μεταβλητών του μοντέλου. Οι Prince-Wright (1995) πρότειναν μοντέλα μέγιστης πιθανοφάνειας (maximum likelihood models) των από κοινού παραμέτρων. Η βασική ιδέα της μεθόδου έγκειται στο μετασχηματισμό των παραμέτρων ώστε να έχουν κανονική κατανομή. Ο μετασχηματισμός των μεταβλητών σε κανονικές γίνεται με τη βοήθεια των μετασχηματισμών Box-Cox (1964), σύμφωνα με τους οποίους επιλέγεται μια βοηθητική παράμετρος με τη μέθοδο της μέγιστης πιθανοφάνειας.

2.4. Ανάλυση παραμετρικών μοντέλων δύο μεταβλητών που εφαρμόστηκαν

Στη συνέχεια, αναπτύσσονται αναλυτικά τα παραμετρικά μοντέλα δύο μεταβλητών που μελετήθηκαν στην παρούσα μεταπτυχιακή εργασία.

2.4.1. Μοντέλο δεσμευμένης πιθανότητας (conditional modelling)

Η από κοινού κατανομή των δύο μεταβλητών, εν προκειμένω του χαρακτηριστικού ύψους κύματος (H_s) και της μέσης περιόδου (T_m) βασίζεται στο θεώρημα της ολικής πιθανότητας (total probability theorem). Το θεώρημα αυτό υποδεικνύει μια κατανομή πυκνότητας πιθανότητας (probability density function) για το χαρακτηριστικό ύψος κύματος $f(H_s)$ και μια κατανομή πυκνότητας πιθανότητας για τη μέση περίοδο δεσμευμένη ως προς το χαρακτηριστικό ύψος κύματος $f(T_m|H_s)$. Έτσι, η από κοινού κατανομή πυκνότητας πιθανότητας (joint probability density function) των H_s και T_m περιγράφεται από τη σχέση:

$$f(H_s, T_m) = f(H_s)f(T_m|H_s)$$
 (2.25)

όπου:

 $f(H_s, T_m)$ είναι η από κοινού συνάρτηση πυκνότητας πιθανότητας (joint probability density function) του χαρακτηριστικού ύψους κύματος (H_s) και της μέσης περιόδου (T_m)

 $f(H_s)$ είναι η περιθώρια κατανομή (marginal distribution) πυκνότητας πιθανότητας του H_s

 $f(T_m|H_s)$ είναι η κατανομή πυκνότητας πιθανότητας της μέσης περιόδου T_m δεσμευμένης ως προς το H_s (conditional distribution)

Το δεδομένο μοντέλο εφαρμόζεται δύο φορές. Αρχικά εφαρμόζεται με προσαρμογή κατανομής Lognormal στην περιθώρια κατανομή ύψους κύματος και στη συνέχεια με κατανομή Weibull, ώστε να βρεθεί η βέλτιστη προσαρμογή του μοντέλου στα δεδομένα. Όπως έχει αναφερθεί παραπάνω και οι δύο αυτές κατανομές μιας μεταβλητής έχουν αποδειχθεί καταλληλες για την προσαρμογή κυματικών δεδομένων ύψους κύματος. Η κατανομή Lognormal προσαρμόζεται καλύτερα σε μικρά και μεσαία ύψη κύματος, ενώ η κατανομή Weibull είναι καλύτερη για μεγαλύτερες τιμές ύψους κύματος.

Στην κατανομή της δεσμευμένης πιθανότητας της μέσης περιόδου ως προς τα ύψη κύματος προσαρμόζεται κατανομή Lognormal που έχει αποδειχθεί ότι προσαρμόζεται ικανοποιητικά.

Να σημειωθεί ότι το συγκεκριμένο μοντέλο είχε χρησιμοποιηθεί στο παρελθόν από τον Haver (1985), μόνο που τότε είχε εφαρμοστεί για την περίοδο αιχμής T_p αντί για την μέση περίοδο T_m . Οι Guedes Soares et al. (1988) εφάρμοσαν το παρόν μοντέλο στη μέση περίοδο T_m , διότι οι σύνθετες κυματικές καταστάσεις που έλαβαν υπόψη, είχαν δύο μέγιστα (αιχμές), συνεπώς, δεν ήταν σαφές ποια ήταν η περίοδος αιχμής της σύνθετης αυτής κυματικής κατάστασης. Άλλη μία εφαρμογή πραγματοποιήθηκε και από τους Lucas και Guedes Soares (2015). Οι παραπάνω εφαρμογές αφορούσαν τα βαθιά ύδατα. Οι Lucas και Guedes Soares (2016) εφάρμοσαν το μοντέλο και σε αβαθή ύδατα. Στη συγκεκριμένη εργασία επιλέχθηκε να χρησιμοποιηθεί ως περίοδος αναφοράς η T_m .

Σύμφωνα με τον Repko (1998), οι παράμετροι της κατανομής πυκνότητας πιθανότητας της περιόδου δεσμευμένης ως προς το ύψος κύματος $f(T_m|H_s)$ πρέπει να οριστούν ως συνάρτηση του ύψους κύματος. Πρώτα, υπολογίζονται οι παράμετροι της Lognormal κατανομής για τα κέντρα κλάσεων του H_s για τη δεσμευμένη πιθανότητα της περιόδου, σύμφωνα με τη Μέθοδο Μέγιστης Πιθανοφάνειας. Κατά αυτόν τον τρόπο δημιουργείται μια διακριτή εκδοχή της δεσμευμένης πιθανότητας παράμετρο της δεσμευμένης πιθανότητας ξεχωριστά, επιλέγεται μια εμπειρική συνάρτηση κατανομής που ορίζει τη σχέση ανάμεσα στην κάθε παράμετρο και το ύψος κύματος. Στη συνέχεια, οι συναρτήσεις που έχουν προσρμοστεί, χρησιμοποιούνται για να συνθέσουν μια συνεχή μορφή της δεσμευμένης πιθανότητας της περιόδου ως προς το ύψος κύματος, η οποία έχει τη μορφή:

$$f(T_m|H_s) = f(T_m|H_s; g(H_s)_1, g(H_s)_2)$$
(2.26)

όπου οι παράμετροι θέσης και κλίμακας εμπεριέχονται μέσω των συναρτήσεων $g(H_s)_1, g(H_s)_2.$

Κατά τους Li et al. (2013), οι γενικές εκφράσεις για τις παραμέτρους Lognormal κατανομής είναι οι εξής:

$$\mu_i = c_1 + c_2 h_i^{c_3}, i = 1, 2, ..., K$$

$$\sigma_i^2 = d_1 + d_2 \exp(d_3 h_i), i = 1, 2, ..., K$$
(2.27)

όπου:

 μ_i, σ_i^2 είναι οι τιμές των παραμέτρων της Lognormal κατανομής για κάθε κέντρο κλάσης των υψών κύματος

 h_i είναι η κεντρική τιμή κάθε κλάσης ύψους κύματος

Κ είναι ο αριθμός των κλάσεων ύψους κύματος

 $c_1, c_2, c_3, d_1, d_2, d_3$ είναι οι παράμετροι προς αναζήτηση

Οπότε, σύμφωνα με τα παραπάνω, επιλέγεται μια συνάρτηση που να προσαρμόζεται καλά για τη συσχέτιση των παραμέτρων με τα ύψη κύματος και στη συνέχεια εφαρμόζεται η μέθοδος. Η επιλογή της εμπειρικής συνάρτησης κατανομής γίνεται με τη μέθοδο των ελαχίστων τετραγώνων.

2.4.2. Μοντέλο Bivariate-Lognormal

Εφαρμόζονται δύο εκδοχές του μοντέλου. Η πρώτη είναι η αρχική εκδοχή του Ochi (1978) και η δεύτερη είναι η εκδοχή των Fang και Hogben (1982), οι οποίοι συμπεριέλαβαν έναν επιπλέον όρο για διόρθωση του μοντέλου λόγω ασυμμετρίας των υψών κύματος.

a) Movτέλο Bivariate-Lognormal Ochi (1978)

Ο Ochi (1978) εισήγαγε το μοντέλο Bivariate-Lognormal, το οποίο προκύπτει από προσαρμογή λογαριθμοκανονικής κατανομής και στις δύο μεταβλητές, ύψος και περίοδος κύματος. Η από κοινού συνάρτηση πυκνότητας πιθανότητας του μοντέλου είναι:

$$f(H_s, T_p) = \frac{0.5}{H_s T_p \pi \delta_{H_s} \delta_{T_p} \sqrt{1 - \rho^2}} \times \exp\left\{-\frac{0.5}{1 - \rho^2} \left[\frac{(\ln T_p - \lambda_{T_p})^2}{\delta_{T_p}^2} - \frac{2\rho(\ln T_p - \lambda_{T_p})(\ln H_s - \lambda_{H_s})}{\delta_{H_s} \delta_{T_p}} + \frac{(\ln H_s - \lambda_{H_s})^2}{\delta_{H_s}^2}\right]\right\}$$
(2.28)

όπου τα λ_{H_s} , λ_{T_p} , δ_{H_s} , δ_{T_p} είναι οι παράμετροι θέσης και κλίμακας των περιθώριων κατανομών των μεταβλητών H_s και T_p αντίστοιχα και ρ είναι ένας γραμμικός συντελεστής

συσχέτισης μεταξύ των μεταβλητών και η τιμή του μπορεί να υπολογιστεί από τις παρατηρήσεις/δεδομένα σύμφωνα με τον τύπο:

$$\rho = \frac{Cov(\ln T_p, \ln H_s)}{\sigma_{H_s} \sigma_{T_p}}$$
(2.29)

όπου σ_{H_s} είναι η τυπική απόκλιση του πληθυσμού του χαρακτηριστικού ύψους κύματος και σ_{T_p} η τυπική απόκλιση του πληθυσμού της περιόδου αιχμής αντίστοιχα.

Ο συντελεστής γραμμικής συσχέτισης δίνει ένα μέτρο του μεγέθους της γραμμικής συσχέτισης μεταξύ δύο μεταβλητών. Οι τιμές που παίρνει κυμαίνονται στο διάστημα [-1, 1]. Αν $\rho = \pm 1$ υπάρχει τέλεια γραμμική συσχέτιση. Θετικές τιμές υποδηλώνουν θετική συσχέτιση, ενώ αρνητικές τιμές αρνητική συσχέτιση αντίστοιχα. Αν $-0.3 \le \rho < 0.3$ δεν υπάρχει γραμμική συσχέτιση. Θετικές τιμές του ρ δεν υποδηλώνουν κατ' ανάγκη μεγαλύτερο βαθμό γραμμικής συσχέτισης, από το βαθμό γραμμικής συσχέτισης που υποδηλώνουν αρνητικές τιμές. Ο βαθμός γραμμικής συσχέτισης καθορίζεται από την απόλυτη τιμή του ρ , ενώ το πρόσημο καθορίζει το είδος μόνο της συσχέτισης (θετική ή αρνητική). Αν δηλαδή, αύξηση της μιας μεταβλητής οδηγεί σε αύξηση ή μείωση της άλλης μεταβλητής.

Να σημειωθεί ότι ο Ochi εφάρμοσε το μοντέλο για την περίοδο αιχμής T_p , ενώ στην παρούσα μεταπτυχιακή εργασία το μοντέλο εφαρμόζεται για τη μέση περίοδο κύματος T_m .

β) Moντέλο Bivariate-Lognormal των Fang και Hogben (1982)

Μια προσπάθεια βετίωσης του μοντέλου Bivariate-Lognormal του Ochi (1978) έγινε από τους Fang και Hogben (1982). Συμπεριέλαβαν έναν επιπλέον όρο, λαμβάνοντας υπόψη την ασυμμετρία (skewness) στην περιθώρια κατανομή των H_s . Η από κοινού συνάρτηση πυκνότητας πιθανότητας του μοντέλου ονομάστηκε Fang και Hogben κατανομή και είναι η εξής:

$$f(H_{s}, T_{p}) = \frac{0.5}{H_{s}T_{p}\pi\delta_{H_{s}}\delta_{T_{p}}\sqrt{1-\rho^{2}}} \times \exp\left\{-\frac{0.5}{1-\rho^{2}}\left[\frac{(\ln T_{p}-\lambda_{T_{p}})^{2}}{\delta_{T_{p}}^{2}} - \frac{2\rho((\ln T_{p}-\lambda_{T_{p}})(\ln H_{s}-\lambda_{H_{s}})}{\delta_{H_{s}}\delta_{T_{p}}} + \frac{(\ln H_{s}-\lambda_{H_{s}})^{2}}{\delta_{H_{s}}^{2}}\right]\right\} \times (2.30)$$

$$\left\{1 - \frac{k_{H_{s}}}{6}\left[3\left(\ln H_{s}-\delta_{H_{s}}\right) - (\ln H_{s}-\delta_{H_{s}})^{3}\right]\right\}$$

όπου k_{H_s} είναι ο συντελεστής λοξότητας ή ασυμμετρίας (coefficient of skewness) των log H_s και οι υπόλοιπες παράμετροι είναι όμοιες με αυτές της μεθόδου του Ochi (1978). Πάλι, και αυτή η μέθοδος θα εφαρμοστεί για τη μέση περίοδο, αντί για την περίοδο αιχμής.

Η συγκεκριμένη εκδοχή του μοντέλου θεωρείται βελτιωμένη σε σχέση με την αρχική μόνο σε περίπτωση που υπάρχει ασυμμετρία στα ύψη κύματος.

Αξίζει να σημειωθεί ότι στη στατιστική, η ασυμμετρία/λοξότητα αναφέρεται στο επίπεδο ασυμμετρίας που μπορεί να έχει η διασπορά δεδομένων ενός αριθμητικού συνόλου με πραγματικούς αριθμούς, και άρα η αντίστοιχη κατανομή πιθανοτήτων του, σε σχέση με το μέσο όρο του. Χαρακτηρίζει δηλαδή την κατανομή γύρω από τη μέση τιμή της. Πρέπει να σημειωθεί ότι τα «επίπεδα» ασυμμετρίας είναι αρκετά δύσκολο να «ποσοτικοποιηθούν» με στατιστικούς κανόνες και τύπους. Πιο σύνηθες μέτρο καθορισμού της ασυμμετρίας είναι ο συντελεστής λοξότητας ή ασυμμετρίας με βάση τις ροπές (α₃) (coefficient of skewness), ο οποίος ορίζεται από το λόγο:

$$\alpha_{3} = \frac{\mu_{3}}{\sigma^{3}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{3}}{\left\{ \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right\}^{3}}$$
(2.31)

όπου:

μ₃ είναι η κεντρική ροπή τρίτης τάξης

σ είναι η τυπική απόκλιση

n είναι ο αριθμός των παρατηρήσεων

Αν η κατανομή είναι συμμετρική τότε $\alpha_3 = 0$. Συντελεστής λοξότητας θετικός σημαίνει ότι οι περισσότερες τιμές της μεταβλητής βρίσκονται δεξιά της επικρατούσας τιμής, όπως φαίνεται στην Εικόνα 2.4(β), ενώ αρνητικός όπως φαίνεται στην Εικόνα 2.4(α).

Εικόνα 2.4 Κατανομές με αρνητική (αριστερή καμπύλη (α)) και θετική (δεζιά καμπύλη (β)) ασυμμετρία.

2.4.3. Μοντέλο Plackett

Το μοντέλο Plackett, σύμφωνα με τους Athanassoulis et al (1994), αποτελεί μια ειδική περίπτωση των μοντέλων της κατηγορίας Fréchet. Τα μοντέλα της κατηγορίας αυτής είναι μοντέλα δύο μεταβλητών με γνωστές-προκαθορισμένες περιθώριες κατανομές, τα οποία πρωτοαναπτύχθηκαν από τον Fréchet το 1951, εξ ου και το όνομά τους. Σύμφωνα με το μοντέλο Plackett, η από κοινού κατανομή πυκνότητας πιθανότητας (jpdf) για την περίπτωση των ενιαίων περιθώριων κατανομών (uniform marginals), είναι η εξής:

$$f_{\vec{Y}}^{P}(y_1, y_2; \psi) = \frac{\psi \left[(\psi - 1)(y_1 + y_2 - 2y_1y_2) + 1 \right]}{\left\{ \left[1 + (y_1 + y_2)(\psi - 1) \right]^2 - 4\psi(\psi - 1)y_1y_2 \right\}^{3/2}}$$
(2.32)

όπου:

 y_1 και y_2 είναι οι τυχαίες μεταβλητές που μπορούν να εκφρασθούν και με τη μορφή διανύσματος $\vec{Y} = (y_1, y_2)$

 ψ είναι η παράμετρος συσχέτισης (correlation parameter) μεταξύ των μεταβλητών y_1, y_2

To ψ δείχνει την εξάρτηση μεταξύ των τυχαίων μεταβλητών y_1 και y_2 . To ψ καλείται παράμετρος συσχέτισης (correlation parameter) καθώς δείχνει την εξάρτηση μεταξύ των τυχαίων μεταβλητών y_1 και y_2 . Στο σημείο αυτό να σημειωθεί ότι $\psi = 1$ σημαίνει ότι οι δύο μεταβλητές y_1, y_2 είναι ανεξάρτητες. Αν το ψ ανήκει στο διάστημα (0,1) τότε η συσχέτιση είναι αρνητική, ενώ αν ανήκει στο (1,∞) η συσχέτιση είναι θετική (Athanassoulis et al.,1994).

Ισχύει ότι $(y_1, y_2) \in [0,1] \times [0,1]$ και $ψ \in R^+$.

Η γενική μορφή της πυκνότητας κατά Plackett, για δύο μεταβλητές: x_i (i = 1, 2)παρουσιάζεται παρακάτω. Οι περιθώριες κατανομές τους εκφράζονται ως: $F_i(x_i)$ $= F_i(x_i; \vec{\theta}_i)$, όπου $\vec{\theta}_i$ είναι το διάνυσμα που περιέχει το σύνολο των παραμέτρων της κατανομής της x_i . Ομοίως, οι αντίστοιχες κατανομές πυκνότητας πιθανότητας είναι: $f_i(x_i) = f_i(x_i; \vec{\theta}_i)$. Έτσι, εφαρμόζοντας τον μετασχηματισμό $y_i = F_i(x_i; \vec{\theta}_i)$, i =1,2 στην ανωτέρω σχέση, προκύπτει η γενική μορφή της πυκνότητας κατά Plackett:

$$f_{\vec{X}}^{P}(x_{1}, x_{2}; \vec{\theta}) = f_{\vec{Y}}^{P}(F_{1}(x_{1}; \vec{\theta}_{1}), F_{2}(x_{2}; \vec{\theta}_{2}); \psi) f_{1}(x_{1}; \vec{\theta}_{1}) f_{2}(x_{2}; \vec{\theta}_{2})$$
(2.33)

$$=\frac{\psi \{(\psi - 1)[F_1(x_1) + F_2(x_2) - 2 F_1(x_1) F_2(x_2)] + 1\} f_1(x_1) f_2(x_2)}{\{[1 + (F_1(x_1) + F_2(x_2))(\psi - 1)]^2 - 4 \psi(\psi - 1) F_1(x_1) F_2(x_2)\}^{3/2}}$$

Η ανυσματική παράμετρος (parameter vector) $\vec{\theta}$ είναι ένα διάνυσμα: $\vec{\theta} = (\vec{\theta}_1, \vec{\theta}_2, \psi)$ που περιλαμβάνει τις παραμέτρους $\vec{\theta}_1$, $\vec{\theta}_2$ των κατανομών των x_1 , x_2 αντίστοιχα, καθώς και την παράμετρο συσχέτισης $\psi = \vec{\theta}_{12}$. Λαμβάνει τιμές μέσα στο διάστημα (parameter space) $\Theta_1 \times \Theta_2 \times \Theta_{12}$, $\Theta_{12} = (0, \infty)$.

Στην περιθώρια κατανομή του ύψους κύματος επιλέγεται να προσαρμοστούν δύο κατανομές μίας μεταβλητής. Αρχικά προσαρμόζεται κατανομή Lognormal και στη

συνέχεια κατανομή Weibull. Στην περιθώρια κατανομή της περιόδου επιλέγεται να προσαρμοστεί κατανομή Lognormal.

Η εκτίμηση των παραμέτρων που υπεισέρχονται στο μοντέλο Plackett, γίνεται με τη Μέθοδο Μέγιστης Πιθανοφάνειας (Maximum Likelihood Method). Πρώτα, εκτιμώνται οι παράμετροι θ_1 , θ_2 από τα δεδομένα των κατανομών μίας μεταβλητής, μεγιστοποιώντας για κάθε μεταβλητή την αντίστοιχη λογαριθμική συνάρτηση πιθανοφάνειας (log-likelihood function):

$$l_i^{N_i}(\overrightarrow{x_i}; \overrightarrow{\theta_i}) = \ln\left[\prod_{n=1}^{N_i} f_i(x_i^n; \overrightarrow{\theta_i})\right], \quad i = 1,2$$
(2.34)

Μετά, γίνεται εκτίμηση της παραμέτρου συσχέτισης $\psi = \vec{\theta}_{12}$ με τη Μέθοδο Μέγιστης Πιθανοφάνειας (Maximum Likelihood Method) από τα δεδομένα και των δύο μεταβλητών, θεωρώντας τις παραμέτρους θ_1 , θ_2 σταθερές. Η λογαριθμική συνάρτηση πιθανοφάνειας δύο μεταβλητών, η οποία πρέπει να μεγιστοποιηθεί για να δώσει την τιμή για την παράμετρο συσχέτισης είναι:

$$l_{12}^{N}\left(\vec{x};\vec{\theta}_{1},\vec{\theta}_{2},\vec{\theta}_{12}\right) = ln\left[\prod_{n=1}^{N} f_{\vec{Y}}\left(F_{1}\left(x_{1}^{(n)}; \vec{\theta}_{1}\right),F_{2}\left(x_{2}^{(n)}; \vec{\theta}_{2}\right);\vec{\theta}_{12}\right)\right]$$
(2.35)

όπου $\vec{x} = \{ (x_1^{(1)}, x_2^{(1)}), (x_1^{(2)}, x_2^{(2)}), ... (x_1^{(N)}, x_2^{(N)}) \}$ είναι το δείγμα τιμών των δύο μεταβλητών, που αποτελείται από συνολικό αριθμό N από κοινού (joint) παρατηρήσεων.

2.4.4. Μοντέλο με μετασχηματισμούς Box-Cox

Είναι σύνηθες τα πραγματικά δεδομένα να μην ακολουθούν κανονική κατανομή, όμως με έναν απλό μετασχηματισμό μπορούν να παραχθούν δεδομένα που ακολουθούν, περίπου τουλάχιστον, κανονική κατανομή. Αυτό αυξάνει την εφαρμοσιμότητα και χρησιμότητα στατιστικών τεχνικών που βασίζονται στην προϋπόθεση της κανονικότητας. Οι μετασχηματισμοί Box-Cox συχνά χρησιμοποιούνται για το σκοπό αυτό και έχει αποδειχθεί ότι είναι γενικά κατάλληλοι για το μετασχηματισμό μακροπρόθεσμων κυματικών δεδομένων ύψους κύματος (Cunha and Guedes Soares, 1999).

Ο μετασχηματισμός Box-Cox μιας θετικής μεταβλητής X, με δεδομένη την παράμετρο μετασχηματισμού λ (πραγματικός αριθμός) ορίζεται ως:

$$T_{\lambda}(X) = \begin{cases} \frac{X^{\lambda} - 1}{\lambda}, \lambda \neq 0\\ \ln(X), \lambda = 0 \end{cases}$$
(2.36)

υποθέτωντας ότι το λ βρίσκεται στο διάστημα [-1,1].

Θεωρώντας πως οι μεταβλητές X_1 και X_2 αντιπροσωπεύουν το ύψος κύματος H_s και την περίοδο T_m και οι παράμετροι μετασχηματισμού λ αντιστοιχούν στα λ_1 και λ_2 αντίστοιχα, τότε οι μετασχηματισμένες μεταβλητές ορίζονται ως:

$$Y_1 = \frac{X_1^{\lambda_1} - 1}{\lambda_1} \tag{2.37}$$

$$Y_2 = \frac{X_2^{\lambda_2} - 1}{\lambda_2}$$
(2.38)

όπου οι παράμετροι λ_1 και λ_2 μετασχηματίζουν τις παρατηρήσεις των μεταβλητών X_1 και X_2 , ώστε να ακολουθούν περίπου κανονική κατανομή, δηλαδή εξασφαλίζεται ότι:

$$\underline{Y} = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \sim normal \left(\begin{bmatrix} \mu_{Y_1} \\ \mu_{Y_2} \end{bmatrix}, \begin{bmatrix} \sigma_{Y_1}^2 & \rho \sigma_{Y_1} \sigma_{Y_2} \\ \rho \sigma_{Y_1} \sigma_{Y_2} & \sigma_{Y_2}^2 \end{bmatrix} \right)$$
(2.39)

με μ_{Y_i} και $\sigma_{Y_i}^2$, i = 1,2 να αντιπροσωπεύουν τα διανύσματα των αναμενώμενων τιμών και διακυμάνσεων των (Y_1, Y_2) , αντίστοιχα, ενώ το ρ είναι ο συντελεστής συσχέτισης μεταξύ των δύο μεταβλητών.

Η συνάρτηση πυκνότητας πιθανότητας των (Y_1, Y_2) είναι:

$$f_{(Y_1,Y_2)}(y_1,y_2) = \frac{(1-\rho^2)^{-(1/2)}}{2\pi\sigma_{Y_1}\sigma_{Y_2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{y_1-\mu_{Y_1}}{\sigma_{Y_1}}\right)^2 - 2\rho\left(\frac{y_1-\mu_{Y_1}}{\sigma_{Y_1}}\right) \left(\frac{y_2-\mu_{Y_2}}{\sigma_{Y_2}}\right) + \left(\frac{y_2-\mu_{Y_2}}{\sigma_{Y_2}}\right)^2 \right] \right\}$$
(2.40)

Ακολούθως, χρησιμοποιούνται οι αντίστροφοι μετασχηματισμοί Box-Cox στα Y_1 και Y_2 με στόχο να παραχθεί η συνάρτηση πυκνότητας πιθανότητας των αρχικών μεταβλητών, ύψους κύματος και περιόδου:

$$f(H_s, T_{02})^{h_s, t_{02}} = h_s^{\lambda_1 - 1} t_{02}^{\lambda_2 - 1} f(Y_1, Y_2) \left(\left(h_s^{\lambda_1} - 1 \right) \lambda_1^{-1}, \left(t_{02}^{\lambda_2} - 1 \right) \lambda_2^{-1} \right)$$
(2.41)

2.5. Εκτίμηση σφάλματος των μοντέλων

Κατά την προσαρμογή κατανομών σε δεδομένα είναι αναγκαίο να υιοθετείται ένα μέτρο ποσοτικοποίησης της ποιότητας προσαρμογής της κατανομής στα δεδομένα, δηλαδή να

μετράει πόσο καλά προσαρμόζεται η κατανομή στα δεδομένα. Στη γενική περίπτωση, εφαρμόζονται ο έλεγχος x^2 και τα Kolmogorov-Smirnov test, αλλά στη συγκεκριμένη περίπτωση, λόγω του μεγάλου πλήθους δεδομένων δεν ήταν χρήσιμα. Συνεπώς, αποφασίστηκε ο έλεγχος της προσαρμογής της εκάστοτε κατανομής στα δεδομένα να γίνεται με το μετρο D^2 , το αποκαλούμενο τετράγωνο της Ευκλείδειας απόστασης (squared Euclidean distance), το οποίο μετράει την απόσταση ανάμεσα στη θεωρητική κατανομή και την εμπειρική από τα δεδομένα. Συγκεκριμένα, μετράει την απόσταση ανάμεσα στις θεωρητικές πιθανότητες c_i (ή p_i) και στις σχετικές συχνότητες C_i (ή π_i) και ορίζεται ως:

$$D^{2} = \sum_{j=1}^{J} (c_{j} - C_{j})^{2}$$
(2.42)
 $\dot{\eta}$

$$D^{2} = \sum_{j=1}^{J} (p_{j} - \pi_{j})^{2}, \qquad j = 1, 2, \dots J$$
(2.43)

όπου p_j είναι η πιθανότητα που έχει προκύψει από το εμπειρικό-στατιστικό μοντέλο και π_j η θεωρητική πιθανότητα, δηλαδή η σχετική συχνότητα εμφάνισης που έχει προκύψει από τις παρατηρήσεις (measured data). Ο δείκτης j υποδηλώνει ότι αναφερόμαστε σε καθένα στοιχείο (cell). Άρα προκειμένου να ευρεθεί το σφάλμα της προσαρμογής του εμπειρικού μοντέλου δύο μεταβλητών, τα p_j και π_j εκφράζουν τιμές της από κοινού πιθανότητας.

3. Εφαρμογή μοντέλων στις διάφορες περιοχές

3.1. Δεδομένα / Σύστημα «ΠΟΣΕΙΔΩΝ»

Για την ικανοποιητική εφαρμογή και αξιολόγηση κάθε μοντέλου, πρωτεύουσας σημασίας είναι η ποιότητα και επάρκεια των δεδομένων. Στην παρούσα μεταπτυχιακή εργασία τα δεδομένα παρήχθησαν από το «Σύστημα Επιχειρησιακής Ωκεανογραφίας ΠΟΣΕΙΔΩΝ», του Ελληνικού Κέντρου Θαλασσίων Ερευνών (ΕΛΚΕΘΕ).

Το σύστημα ΠΟΣΕΙΔΩΝ είναι ένα από τα πληρέστερα και πλέον σύγχρονα συστήματα θαλάσσιας παρακολούθησης και πρόγνωσης στον ευρωπαϊκό χώρο. Οι λειτουργίες του συστήματος ΠΟΣΕΙΔΩΝ είναι η συνεχής παρακολούθηση και μέτρηση των παραμέτρων του θαλάσσιου και ατμοσφαιρικού περιβάλλοντος, η απομακρυσμένη μεταφορά δεδομένων στο ΕΛΚΕΘΕ για επεξεργασία, η πρόγνωση της κατάστασης θαλασσών με χρήση αριθμητικών μοντέλων και η διάθεση των δεδομένων και προϊόντων στους διάφορους χρήστες. Στην Ελλάδα, εκτός από το ΕΛΚΕΘΕ, δεν υπάρχει αυτή τη στιγμή ιδιωτικός ή δημόσιος φορέας που να διαθέτει συστηματικές σειρές μετρημένων κυματικών δεδομένων σε διάφορα σημεία του θαλάσσιου ελληνικού χώρου. Το δίκτυο του συστήματος ΠΟΣΕΙΔΩΝ παρουσιάζεται στην επόμενη εικόνα (Εικόνα 3.1).

Εικόνα 3.1 Θέσεις μετρητικών σταθμών του συστήματος ΠΟΣΕΙΔΩΝ

Πηγή: Σουκισσιάν κ.ά. (2007)

Τα σημεία στα οποία γίνονται επιτόπου (in situ) μετρήσεις είναι τα σημεία M1 – M6 (real time measured data) (βλ. Εικόνα 3.1). Να σημειωθεί ότι οι μετρήσεις στα σημεία δεν αναφέρονται σε κοινά χρονικά διαστήματα και τα αντίστοιχα δειγματικά μεγέθη δεν είναι τα ίδια. Χρονικές στιγμές που παρουσιάστηκαν προβλήματα στα μετρητικά όργανα έχουν εξαιρεθεί, όπως και δεδομένα που θεωρήθηκαν «λανθασμένα» («erroneous»).

Οι κυματικές μετρήσεις λαμβάνουν χώρα ανά 3 ώρες (διάστημα παύσης μετρήσεων/recording interval) σε ένα χρονικό διάστημα 1024 sec (διάρκεια καταγραφής). Οι ώρες που λαμβάνονται ημερησίως οι μετρήσεις είναι: 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00 UTC.

Οι παράμετροι που μετρώνται επί τόπου στους σταθμούς και χρησιμοποιήθηκαν ως δεδομένα στην παρούσα εργασία είναι το χαρακτηριστικό ύψος κύματος (H_s) , η μέση περίοδος μηδενικής υπέρβασης (T_{02}) και η περίοδος κορυφής φάσματος (T_p) .

Τα κυματικά δεδομένα των μετρητικών σταθμών είναι ουσιαστικά φασματικές παράμετροι που υπολογίζονται με τη βοήθεια των φασματικών ροπών.

Επιπρόσθετα, εκτός από τις μετρήσεις των συνολικών δεδομένων, έχει γίνει διαχωρισμός των κυμάτων σε ανεμογενή και αποθάλασσας. Ο διαχωρισμός έχει γίνει αυτόματα στο σταθμό μέτρησης, σύμφωνα με το λογισμικό που διαθέτει εγκατεστημένο. Τα όρια ολοκλήρωσης των συχνοτήτων, σύμφωνα με το εγχειρίδιο χρήσης των οργάνων μέτρησης, είναι τα εξής:

Πίνακας 3.1 Όρια συχνοτήτων (και αντίστοιχων περιόδων) ολοκλήρωσης για διαχωρισμό κυματισμών σε ανεμογενείς κυματισμούς και αποθάλασσες

KYMATA	BAND	Συχνότητα ολοκλήρωσης (Hz)	Αντίστοιχη περίοδος (sec)
Αποθάλασσας	A	0.03-0.10	10-33
Ανεμογενή	В	0.10-0.50	2-10

Τα είδη των πλωτών σταθμών μέτρησης (buoys) που χρησιμοποιούνται είναι το WAVESCAN (Εικόνα 3.2) και το SEAWATCH (Εικόνα 3.3). Οι σταθμοί είναι εξοπλισμένοι με αισθητήρες οι οποίοι μετρούν πλήθος παραμέτρων, συμπεριλαμβανομένων των κυματικών παραμέτρων, και είναι συνδεδεμένοι με τηλεπικοινωνιακά συστήματα μεταφοράς δεδομένων, όπως το Δορυφορικό INMARSAT-C, GPRS και Iridium (www.poseidon.hcmr.gr).

Ο σταθμός WAVESCAN είναι μια πλατφόρμα πολλαπλών χρήσεων και εφαρμογών. Έχει σχεδιαστεί έτσι ώστε να παρέχει περισσότερη σταθερότητα και μεγαλύτερη άνωση, χαρακτηριστικά που τον καθιστούν ιδανικό για βαθιές ποντίσεις μακριά από την ακτή, αλλά και για περιοχές με ισχυρά ρεύματα. Είναι πολυ-παραμετρικοί σταθμοί ειδικά σχεδιασμένοι για βαθιές λεκάνες (www.poseidon.hcmr.gr).

Εικόνα 3.2 Μετρητικός σταθμός τύπου WAVESCAN

Ο σταθμός SEAWATCH (Εικόνα 3.3) είναι μια σταθερή μετρητική πλατφόρμα με μικρότερη άνεση από την WAVESCAN. Είναι κατάλληλος για νερά μικρού και

ενδιάμεσου βάθους. Είναι εφοδιασμένος με αισθητήρες που μετρούν τις βασικές μετεωρολογικές και ωκεανογραφικές παραμέτρους. Κάθε σταθμός έχει τη δυνατότητα να μετράει θερμοκρασία, αλατότητα, πίεση και βιοχημικές παραμέτρους σε διαδοχικά βάθη μέσω οργάνων που μπορούν να προσαρμοστούν πάνω στην γραμμή αγκύρωσης. Στην παρούσα φάση ο κάθε σταθμός συλλέγει δεδομένα από το επιφανειακό θαλάσσιο στρώμα μέσω αισθητήρων που μετρούν αλατότητα, θερμοκρασία, ταχύτητα και κατεύθυνση ρεύματος και μια σειρά από κυματικές παραμέτρους. Στην κορυφή της πλατφόρμας μετεωρολογικοί αισθητήρες καταγράφουν την ατμοσφαιρική πίεση, θερμοκρασία καθώς και ταχύτητα – κατεύθυνση ανέμου (www.poseidon.hcmr.gr).

3.2. Περιοχές μελέτης

Οι περιοχές μελέτης που επιλέχθηκαν είναι οι περιοχές: Άθω, Λέσβου και Σαντορίνης. Τα χαρακτηριστικά τους παρουσιάζονται στον επόμενο πίνακα (Πίνακας 3.2).

Πίνακας 3.2 Χαρακτηριστικά σημείων μετρήσεων στις περιοχές μελέτης (www.poseidon.hcmr.gr)

ΠΕΡΙΟΧΕΣ	Άθως	Λέσβος	Σαντορίνη
Σημεία	M1	M2	M5
Συντεταγμένες	39° 57'.843N	39° 09'.346N	36° 15'.510N
σημείου μέτρησης	24° 43'.208E	25° 48'.472E	25° 29'.769E

Βάθος	212 m	121 m	314 m
Διάρκεια μέτρησης	2000-2011	2000-2011	2000-2011
Τύπος μετρητικού οργάνου	Oceanor Wavescan	Oceanor SeaWatch	Oceanor SeaWatch

Η επιλογή των τριών περιοχών, έναντι των υπολοίπων, έγινε με στόχο τα κυματικά δεδομένα να έχουν τη μεγαλύτερη δυνατή χρονική διάρκεια. Μόνο αυτές οι περιοχές είχαν καταγεγραμμένα δεδομένα για 11 χρόνια. Στις υπόλοιπες περιοχές οι μετρήσεις ήταν για μικρότερη χρονική διάρκεια.

Η χρονική διάρκεια καταγραφής των δεδομένων παίζει σημαντικό ρόλο αφενός στην αξιόπιστη περιγραφή του μακροχρόνιου κυματικού κλίματος και αφετέρου στον ακριβή σχεδιασμό των έργων. Ιδανικά, η χρονική διάρκεια των δεδομένων θα έπρεπε να ήταν δύο φορές η διάρκεια ζωής των λιμενικών έργων, δηλαδή περίπου 50 χρόνια. Επισημαίνεται ότι η περιγραφή του μακροπρόθεσμου (long-term) κυματικού κλίματος χρειάζεται δεδομένα που να αναφέρονται σε πολλές ανεξάρτητες κυματικές καταιγίδες -όχι παρατηρήσεις μέσα στην ίδια κυματική καταιγίδα- και που να καλύπτουν μια υπερετήσια χρονική περίοδο. Επειδή όμως η καταγραφή των μετρήσεων στον ελλαδικό χώρο γίνεται τα τελευταία χρόνια, η μέγιστη περίοδος καταγραφής που βρέθηκε, αφορά τις παραπάνω περιοχές και είναι 11 χρόνια. Αυτός είναι και ο λόγος που, ενώ αρχικά η μεθοδολογία θα εφαρμοζόταν για πίνακες του «Άτλαντα Ανέμου και Κύματος των Ελληνικών Θαλασσών» (2007), αναζητήθηκαν δεδομένα από το ΕΛΚΕΘΕ μεγαλύτερης χρονικής διάρκειας.

Τα δεδομένα παραχωρήθηκαν σε φύλλο Excel. Στη συνέχεια, με τη βοήθεια της περιγραφικής στατιστικής, παρουσιάζονται τα βασικά στοιχεία της μέσης περιόδου (Πίνακας 3.3) και του σημαντικού ύψους κύματος (Πίνακας 3.4) για την κάθε περιοχή. Σημειώνεται ότι παρουσιάζονται τα δεδομένα που αφορούν το σύνολο των κυμάτων (total), και ξεχωριστά τα ανεμογενή (wind-generated) και τα κύματα αποθάλασσας (swell).

Tm (sec)											
	Άθως (Μ1)	Λέσβος (M2)	Σαντορίνη (M5)								
min	2.2266	2.2266	2.3151	る、							
max	7.8516	8.8316	7.6611	AL							
mean	3.6344	3.5422	3.7363								
	Άθως (M1)	Λέσβος (Μ2)	Σαντορίνη (M5)								
min	2.2266	2.2266	2.3123	4,							
max	7.2006	6.7505	7.2656	NS							
mean	3.6074	3.5325	3.7235								
	Άθως (Μ1)	Λέσβος (Μ2)	Σαντορίνη (M5)								
min	10.2734	10.1471	10.3033	SU							
max	19.1016	15.8203	15.3735	EL.							
mean	13.6299	14.0035	13.2362								

Πίνακας 3.3 Στατιστικά στοιχεία μέσης περιόδου T_m στις περιοχές μελέτης

Πίνακας 3.4 Στατιστικά στοιχεία χαρακτηριστικού κύματος $H_{\rm s}$ στις περιοχές μελέτης

Hs (m)											
	Άθως (M1)	Λέσβος (Μ2)	Σαντορίνη (M5)								
min	0.0362	0.0156	0.0146	る、							
max	5.7875	5.3774	4.9219	A							
mean	0.8026	0.7807	0.8977								
	Άθως (M1)	Λέσβος (Μ2)	Σαντορίνη (M5)								
min	0.0362	0.0153	0.0122	4,							
max	5.4590	5.0905	4.6875	NO							
mean	0.7888	0.7797	0.8931								
	Άθως (M1)	Λέσβος (Μ2)	Σαντορίνη (M5)								
min	0.0101	0.0101	0.0101	Sh							
max	3.3594	3.0553	2.6025	- KI							
mean	0.0860	0.0609	0.0800								

3.3. Αναλυτική εφαρμογή για την περιοχή του Άθω

3.3.1. Προεπεξεργασία δεδομένων

Για την εφαρμογή των μοντέλων απαιτείται ως μοναδικό δεδομένο η γνώση της (από κοινού) συχνότητας εμφάνισης των ζευγών χαρακτηριστικού ύψους κύματος H_s και μέσης περιόδου κύματος T_m , ενός δείγματος παρατηρήσεων, για τα βαθιά ύδατα (λογος βάθους προς μήκος κύματος: $d/\lambda \ge 0.5$). Συνήθως, η πληροφορία αυτή δίδεται σε μορφή πίνακα,

διαστάσεων $(i \times j)$ όπου αναγράφονται οι από κοινού συχνότητες εμφάνισης των δύο μεγεθών (ταξινομημένων σε κλάσεις), ως προς το συνολικό αριθμό των παρατηρήσεων. Στην προκειμένη περίπτωση θα κατασκευαστεί ο εν λόγω πίνακας με τα δεδομένα από το «Σύστημα Επιχειρησιακής Ωκεανογραφίας ΠΟΣΕΙΔΩΝ». Χρησιμοποιούνται τα δεδομένα χαρακτηριστικό ύψος κύματος H_s και μέση περίοδος κύματος T_m . Θα χρησιμοποιηθεί και η περίοδος κορυφής T_p , μιας και διατίθεται, για καλύτερη εποπτεία και έλεγχο, όπως αναφέρεται παρακάτω.

Πριν την κατασκευή, όμως, του πίνακα εισαγωγής δεδομένων, πραγματοποιήθηκε διόρθωση και φιλτράρισμα των ληφθέντων δεδομένων. Συγκεκριμένα, έγινε απαλοιφή των αρνητικών, μηδενικών και ακραίων τιμών που εμπεριέχονταν σε αυτά. Επίσης έγινε αφαίρεση των «κολλημένων» τιμών, των τιμών δηλαδή που επαναλαμβάνονταν αυτούσιες με 6 δεκαδικά ψηφία οι μετρήσεις για πάνω από τρεις διαδοχικές φορές. Οι «κολλημένες» τιμές θεωρήθηκαν ως σφάλματα και αμφιλεγόμενης αξιοπιστίας τιμές. Φαινόμενα βιοαπόθεσης, δυσλειτουργίες των αισθητήρων, προβλήματα στην αγκύρωση των σταθμών αλλά και στη μετάδοση των δεδομένων, είναι από τις κύριες αιτίες των αναξιόπιστων μετρήσεων. Επιπλέον αφαιρέθηκαν τιμές, όπου δεν υπήρχαν ζεύγη μετρήσεων σημαντικού ύψους κύματος και περιόδου. Τα ζεύγη είναι απαραίτητα για την κατασκευή του πίνακα από κοινού συχνότητας εμφάνισης. Τέλος, βρέθηκαν ορισμένες τιμές της περιόδου κορυφής φάσματος T_p μικρότερες από 2 sec. Οι τιμές αυτές απορρίφθηκαν, καθόσον είναι πολύ κοντά στη συχνότητα δειγματοληψίας του κυματογράφου (Soukissian et al. 2008). Απορρίφθηκαν και τα αντίστοιχα ζευγάρια H_s και T_m . Για το συγκεκριμένο έλεγχο επομένως κωτά της περιόδου κορυφής.

Αφού λοιπόν έχει γίνει το αρχικό φιλτράρισμα των δεδομένων, το επόμενο βήμα είναι η κατασκευή του πίνακα από κοινού συχνότητας εμφάνισης των H_s και T_m . Κατασκευάζονται τρεις πίνακες: α) για το σύνολο των κυμάτων (total), και ξεχωριστά β) για τα ανεμογενή (wind-generated) και γ) για τα κύματα αποθάλασσας (swell). Τα δεδομένα χωρίζονται σε κλάσεις σταθερού εύρους. Σημειώνεται ότι τα διαστήματα των κλάσεων έχουν κλειστό το κατώτατο άκρο τους (όριο) και ανοιχτό το ανώτατο. Επίσης, στα ύψη κύματος οι μηδενικές τιμές δεν περιλαμβάνονται στο δείγμα, αφού αφαιρέθηκαν όπως αναφέρθηκε παραπάνω, συνεπώς η πρώτη κλάση για τα ύψη κύματος έχει ανοιχτά και τα δύο όρια. Το βήμα των κλάσεων επιλέγεται ώστε να είναι μικρό για να μη χάνεται πληροφορία (Πίνακας 3.5).

Περιοχή Μ1 Άθω											
Κύματα	Βήμα <i>Τ</i> _m	Βήμα <i>Η</i> _s									
Total	0.25	0.25									
Wind-generated	0.25	0.25									
Swell	0.5	0.25									

Πίνακας 3.5 Βήμα κλάσεων

Αξίζει να σημειωθεί σε αυτό το σημείο πως η επιλογή του βήματος των κλάσεων επηρεάζει την προσαρμογή του κάθε μοντέλου στη συνέχεια και ίσως πρέπει να διερευνηθεί περαιτέρω ο τρόπος χωρισμού των δεδομένων σε κλάσεις. Επίσης, επιλέχθηκε οι κλάσεις να είναι σταθερού εύρους και πιθανά να έπρεπε οι τελευταίες κλάσεις που έχουν λίγες παρατηρήσεις να είχαν συμπτυχθεί, όμως αυτό δυσκόλευε τη γραφική αναπαράσταση των αποτελεσμάτων στη συνέχεια.

Με τη βοήθεια του προγράμματος MATLAB, επιλέγοντας τα άκρα των διαστημάτων και το εύρος των κλάσεων, κατασκευάζονται οι επόμενοι πίνακες (Πίνακας 3.6 έως Πίνακας 3.8), που είναι οι πίνακες από κοινού συχνότητας εμφάνισης του H_s και της T_m για το σύνολο των κυμάτων και χωριστά για τα ανεμογενή και τα κύματα αποθάλασσας.

Πίνακας 3.6 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή του Άθω (M1) για το σύνολο των κυμάτων για τα βαθιά

-																												
		Περιοχή Άθω (M1) για το σύνολο των κυμάτων (total)																										
Κλάσεια	тпс												Κλά	σεις τ	ou Hs	(m)												
Tm (se	-0)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	Total
	,	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	
2 ÷	2.25	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
2.25 ÷	2.5	486	256	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	743
2.5 ÷	2.75	1269	862	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2168
2.75 ÷	3	1686	1356	324	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3376
3 ÷	3.25	1361	1529	842	110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3842
3.25 ÷	3.5	753	1243	1163	464	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3653
3.5 ÷	3.75	303	660	1006	826	193	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2998
3.75 ÷	4	114	282	781	1000	790	215	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3188
4 ÷	4.25	22	46	141	404	613	542	87	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1860
4.25 ÷	4.5	7	11	55	122	232	588	373	68	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1461
4.5 ÷	4.75	7	6	27	46	80	249	368	289	45	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1120
4.75 ÷	5	2	1	5	21	36	58	168	273	227	53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	844
5 ÷	5.25	1	0	3	11	17	28	45	98	183	190	52	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	635
5.25 ÷	5.5	0	0	0	1	3	14	22	24	62	139	148	63	7	0	0	0	0	0	0	0	0	0	0	0	0	0	483
5.5 ÷	5.75	0	0	0	0	2	3	7	20	18	46	116	102	76	22	0	0	0	0	0	0	0	0	0	0	0	0	412
5.75 ÷	6	1	1	0	0	0	0	1	3	10	7	17	30	49	65	15	0	0	0	0	0	0	0	0	0	0	0	199
6 ÷	6.25	0	0	0	0	0	0	2	0	2	2	3	3	14	31	38	13	2	0	0	0	0	0	0	0	0	0	110
6.25 ÷	6.5	0	0	0	0	0	0	0	0	0	0	1	7	7	3	10	21	16	3	0	0	0	0	0	0	0	0	68
6.5 ÷	6.75	0	0	0	0	0	0	0	0	0	2	1	1	0	0	7	5	13	13	6	0	0	0	0	0	0	0	48
6.75 ÷	7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	5	11	14	10	1	0	0	0	0	0	45
7 ÷	7.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	3	5	2	0	0	0	0	14
7.25 ÷	7.5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	4	1	0	0	8
7.5 ÷	7.75	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
7.75 ÷	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
8 ÷	8.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.25 ÷	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iota	II	6018	6257	4385	3015	1997	1707	1079	780	552	442	338	213	153	122	71	43	36	27	22	13	7	4	5	1	0	0	27287

Πίνακας 3.7 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή του Άθω (M1) για τα ανεμογενή κύματα για τα βαθιά

			Περιοχή Άθω (M1) για τα ανεμογενή κύματα (wind-generated)																										
Κλάα	7510	тпс												Κλά	σεις τ	ou Hs	(m)												
Tm	lse	ec)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	Total
		,	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	
2	÷	2.25	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
2.25	÷	2.5	517	254	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	772
2.5	÷	2.75	1305	882	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2227
2.75	÷	3	1607	1302	326	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3245
3	÷	3.25	1337	1476	849	109	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3772
3.25	÷	3.5	708	1161	1142	458	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3500
3.5	÷	3.75	269	606	970	778	211	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2845
3.75	÷	4	104	245	736	902	763	229	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2985
4	÷	4.25	14	39	126	375	560	545	86	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1750
4.25	÷	4.5	7	9	45	107	212	541	370	74	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1370
4.5	÷	4.75	5	6	21	38	73	218	344	273	49	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1031
4.75	÷	5	1	1	4	19	37	56	148	233	218	54	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	772
5	÷	5.25	1	0	1	11	13	29	42	89	157	181	56	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	588
5.25	÷	5.5	0	0	0	1	2	14	19	26	47	106	137	68	8	0	0	0	0	0	0	0	0	0	0	0	0	0	428
5.5	÷	5.75	0	0	0	1	0	3	7	21	17	39	94	87	73	22	0	0	0	0	0	0	0	0	0	0	0	0	364
5.75	÷	6	1	1	0	0	0	0	1	2	10	9	17	17	47	59	17	1	0	0	0	0	0	0	0	0	0	0	182
6	÷	6.25	0	0	0	0	0	0	1	0	2	2	3	4	14	26	32	19	2	0	0	0	0	0	0	0	0	0	105
6.25	÷	6.5	0	0	0	0	0	0	0	0	0	0	1	4	4	2	12	19	13	2	0	0	0	0	0	0	0	0	57
6.5	÷	6.75	0	0	0	0	0	0	0	0	0	1	0	0	0	1	5	4	14	19	9	0	0	0	0	0	0	0	53
6.75	÷	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	2	8	8	1	1	0	0	0	0	24
7	÷	7.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	3	0	0	0	0	9
7.25	÷	7.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.5	÷	7.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.75	÷	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	÷	8.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.25	÷	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Т	ota	l –	5882	5983	4261	2809	1903	1646	1024	723	505	396	309	188	146	110	66	47	29	23	18	10	4	4	0	0	0	0	26086

Πίνακας 3.8 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή του Άθω (M1) για τα κύματα αποθάλασσας για τα βαθιά

					П	εριοχ	ή Άθα	ა (M1)	για τ	α κύμ	ατα α	ποθά	λασσα	ας (sw	vell)							
Κλάσεις της									K)	ιάσεια	; του Η	ls (m)										
Tm (sec)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	Total
111 (300)	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	
10 ÷ 10.5	5	4	3	1	5	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	21
10.5 ÷ 11	154	78	51	32	16	9	3	4	3	2	1	0	1	1	0	0	0	0	0	0	0	355
11 ÷ 11.5	711	85	20	6	2	2	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	828
11.5 ÷ 12	1427	57	10	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1496
12 ÷ 12.5	1164	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1196
12.5 ÷ 13	880	34	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	915
13 ÷ 13.5	1083	19	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1103
13.5 ÷ 14	1149	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1161
14 ÷ 14.5	1489	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1494
14.5 ÷ 15	5406	7	5	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5425
15 ÷ 15.5	161	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	165
15.5 ÷ 16	69	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	70
16 ÷ 16.5	34	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35
16.5 ÷ 17	14	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
17 ÷ 17.5	0	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
17.5 ÷ 18	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
18 ÷ 18.5	0	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
18.5 ÷ 19	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
19 ÷ 19.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
19.5 ÷ 20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20 ÷ 20.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	13751	354	95	46	26	14	4	5	4	2	2	0	1	1	0	0	0	0	0	0	0	14305

Υπογραμμίζεται ότι η τελευταία στήλη των πινάκων αποτελείται από τις περιθώριες συχνότητες της μέσης περιόδου T_m , ενώ η τελευταία γραμμή των πινάκων από τις περιθώριες συχνότητες του ύψους κύματος H_s . Οι περιθώριες συχνότητες της μέσης περιόδου έχουν προκύψει από το άθροισμα κατά σειρά του πίνακα και αφορούν σε όλες τις συχνότητες που αντιστοιχούν σε συγκεκριμένο εύρος κλάσης περιόδων. Αντίστοιχα, οι περιθώριες συχνότητες του ύψους κύματος έχουν προκύψει από το άθροισμα κατά στήλη του πίνακα και αφορούν σε όλες τις συχνότητες που αντιστοιχούν σε συγκεκριμένο εύρος κλάσης περιόδων. Αντίστοιχα, οι κίνακα και αφορούν σε όλες τις συχνότητες που αντιστοιχούν σε όλες τις συχνότητες που αντιστοιχούν σε δια κατά στήλη του πίνακα και αφορούν σε όλες τις συχνότητες που αντιστοιχούν σε συγκεκριμένο εύρος κλάσης το κύματος κύματος έχουν προκύψει από το άθροισμα κατά στήλη του πίνακα και αφορούν σε όλες τις συχνότητες που αντιστοιχούν σε συγκεκριμένο εύρος κλάσης μεριόδων.

3.3.2. Βαθιά ύδατα

3.3.2.1. Μοντέλο δεσμευμένης πιθανότητας

Προκειμένου να εφαρμοστεί το μοντέλο δεσμευμένης πιθανότητας (conditional model), ώστε να ευρεθεί η συνάρτηση από κοινού πυκνότητας πιθανότητας (joint probability density function) του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , απαιτείται η γνώση της περιθώριας κατανομής (marginal distribution) του H_s , καθώς και της κατανομής δεσμευμένης πιθανότητας (conditional distribution) της T_m ως προς το H_s . Ερευνώνται δύο διαφορετικές περιπτώσεις:

- i. Λογαριθμοκανονική (Lognormal) κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο $T_m | H_s$
- ii. Κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο $T_m|H_s$

Η εφαρμογή της μεθοδολογίας έχει γίνει με τη βοήθεια του προγράμματος MATLAB, στο οποίο δημιουργήθηκε κώδικας για κάθε μέθοδο, καθώς και κώδικας για την προεπεξεργασία δεδομένων, που προηγήθηκε.

Στο παρόν μοντέλο εισάγεται ο πίνακας από κοινού συχνότητας εμφάνισης των H_s και T_m . Για το χαρακτηριστικό ύψος κύματος απαιτείται μόνο το ιστόγραμμα των περιθώριων (marginal) συχνοτήτων. Για τη μέση περίοδο απαιτούνται οι από κοινού συχνότητες εμφάνισης των δύο μεγεθών, δηλαδή, για καθεμία τιμή του ύψους κύματος H_s κατασκευάζεται και ένα ξεχωριστό ιστόγραμμα μέσης περιόδου T_m , στο οποίο προσαρμόζεται μία κατανομή.

Το πρώτο βήμα, είναι η προσαρμογή των κατανομών μίας μεταβλητής στο ύψος κύματος. Προσαρμόζονται οι κατανομές Lognormal και Weibull για τις δύο περιπτώσεις (i), (ii). Για την προσαρμογή των κατανομών, όσον αφορά στο ύψος κύματος H_s , αρκούν οι περιθώριες συχνότητες εμφάνισής του, όπως ήδη αναφέρθηκε, που φαίνονται στον Πίνακα 3.9 για το σύνολο των κυμάτων (total) και για τα ανεμογενή (wind-generated) και στον Πίνακα 3.10 για τα κύματα αποθάλασσας (swell). Το εύρος κάθε κλάσης είναι σταθερό και ίσο με το βήμα $DH_s = 0.25 \ m$ που απέχει η κεντρική τιμή κάθε κλάσης από την κεντρική τιμή της ακριβώς προηγούμενης.

j	Κεντρική τιμή ύψους κύματος <i>H</i> s (m)	Εύρος κλάσης / βήμα DHs (m)	Περιθώρια συχνότητα εμφάνισης <i>freq(Hs)</i> (total)	Περιθώρια συχνότητα εμφάνισης freq(H _s) (wind-generated)				
1	0.125	0.25	9	7				
2	0.375	0.25	743	772				
3	0.625	0.25	2168	2227				
4	0.875	0.25	3376	3245				
5	1.125	0.25	3842	3772				
6	1.375	0.25	3653	3500				
7	1.625	0.25	2998	2845				
8	1.875	0.25	3188	2985				
9	2.125	0.25	1860	1750				
10	2.375	0.25	1461	1370				
11	2.625	0.25	1120	1031				
12	2.875	0.25	844	772				
13	3.125	0.25	635	588				
14	3.375	0.25	483	428				
15	3.625	0.25	412	364				
16	3.875	0.25	199	182				
17	4.125	0.25	110	105				
18	4.375	0.25	68	57				
19	4.625	0.25	48	53				
20	4.875	0.25	45	24				
21	5.125	0.25	14	9				
22	5.375	0.25	8	0				
23	5.625	0.25	2	0				
24	5.875	0.25	1	0				
25	6.125	0.25	0	0				
26	6.375	0.25	0	0				

Πίνακας 3.9 Ιστογράμματα περιθώριων συχνοτήτων εμφάνισης του χαρακτηριστικού ύψους κύματος Η_s για τα βαθιά ύδατα για το σύνολο των κυμάτων (total) και για τα ανεμογενή (wind-generated)

Πίνακας 3.10 Ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του χαρακτηριστικού ύψους κύματος Η_s για τα βαθιά ύδατα για τα κύματα της αποθάλασσας (swell)

j	Κεντρική τιμή ύψους κύματος <i>H</i> s (m)	Εύρος κλάσης / βήμα DHs (m)	Περιθώρια συχνότητα εμφάνισης <i>freq(Hs)</i> (swell)					
1	0.125	0.25	21					
2	0.375	0.25	355					
3	0.625	0.25	828					
4	0.875	0.25	1496					
5	1.125	0.25	1196					
6	1.375	0.25	915					
7	1.625	0.25	1103					
8	1.875	0.25	1161					
9	2.125	0.25	1494					
10	2.375	0.25	5425					
11	2.625	0.25	165					
12	2.875	0.25	70					
13	3.125	0.25	35					
14	3.375	0.25	20					
15	3.625	0.25	4					
16	3.875	0.25	5					
17	4.125	0.25	9					
18	4.375	0.25	2					
19	4.625	0.25	1					
20	4.875	0.25	0					
21	5.125	0.25	0					

Χρησιμοποιώντας το πρόγραμμα MATLAB, γίνεται η προσαρμογή των δύο κατανομών πυκνότητας πιθανότητας στο ύψος κύματος: λογαριθμοκανονικής και Weibull, οι οποίες περιγράφονται από τις σχέσεις (2.16) και (2.21). Οι παράμετροι των κατανομών μ , σ (λογαριθμικής κατανομής, σχέσεις (2.19), (2.20)) και a, b (κατανομής Weibull, σχέσεις (2.23), (2.24)), όπως προκύπτουν από το ίδιο πρόγραμμα, παρουσιάζονται στον συγκεντρωτικό Πίνακα 3.11. Να σημειωθεί ότι το πρόγραμμα χρησιμοποιεί τη μέθοδο μέγιστης πιθανοφάνειας (Maximum Likelihood Method) της σχέσης (2.18), για την εξαγωγή των παραμέτρων. Η προσαρμογή των κατανομών στα ιστογράμματα περιθώριων συχνοτήτων εμφάνισης του H_s για τα βαθιά για τις διάφορες κατηγορίες κυμάτων παρουσιάζεται στις Εικόνες 3.4 έως 3.6, αντίστοιχα.

Εικόνα 3.4 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) και κατανομής Weibull στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος H_s για τα βαθιά για το σύνολο των κυμάτων (total)

Εικόνα 3.5 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) και κατανομής Weibull στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος H_s για τα βαθιά για τα ανεμογενή κύματα (wind-generated)

Εικόνα 3.6 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) και κατανομής Weibull στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος H_s για τα βαθιά για τα κύματα αποθάλασσας (swell)

Πίνακας 3.11 Συγκεντρωτικ	ός πίνακας	παραμέτρων	κατανομών για	$\tau o H_s$	για τα	βαθιά ύδατα
---------------------------	------------	------------	---------------	--------------	--------	-------------

Παράμετροι των κατανομών για τα βαθιά ύδατα							
Για το ύψος κύματος H_s (marginal distribution) :							
	Παράμετρος μ (location) : Παράμετρος σ (scale) :						
Κατανομή Lognormal	Total	Wind-generated	Swell	Total	Wind-generated	Swell	
	-0.63495	-0.65081	-2.02522	0.95455	0.95277	0.285223	
	П	Ιαράμετρος <i>a</i> (shap	e)]	Παράμετρος b (scal	e)	
Κατανομή Weibull	Total	Wind-generated	Swell	Total	Wind-generated	Swell	
	0.84637	0.83252	0.16027	1.15913	1.16126	1.58260	

Το δεύτερο βήμα είναι η προσαρμογή της λογαριθμοκανονικής (Lognormal) κατανομής στη δεσμευμένη περίοδο ως προς το χαρακτηριστικό ύψος κύματος $T_m|H_s$. Στο σημείο αυτό επισημαίνεται ότι αρχικά γίνεται προσαρμογή της κατανομής για τις κεντρικές τιμές των κλάσεων του H_s για τη δεσμευμένη πιθανότητα της περιόδου. Υπολογίζονται επομένως οι παράμετροι της Lognormal κατανομής μ , σ για τα κέντρα κλάσεων του H_s για τη δεσμευμένη πιθανότητα της περιόδου. Υπολογίζονται επομένως οι παράμετροι της Lognormal κατανομής μ , σ για τα κέντρα κλάσεων του H_s για τη δεσμευμένη πιθανότητα της περιόδου, σύμφωνα με τη Μέθοδο Μέγιστης Πιθανοφάνειας (2.18). Κατά αυτόν τον τρόπο, δημιουργείται μια διακριτή εκδοχή της

δεσμευμένης πιθανότητας. Οι παράμετροι για τα κέντρα κλάσεων παρουσιάζονται στον Πίνακα 3.12.

	Παράμετροι των κατανομών για τα βαθιά								
	Για την περίοδο κύματος T_m / H_s (conditional distribution) :								
K L	ατανομή ognormal	Παράμετρος μ (location) : Παράμετρος σ (scale) :							
j :	$H_{s}(m)$:	Total	Wind- generated	Swell	Total	Wind- generated	Swell		
1	0.125	1.08014	1.07497	2.60804	0.12069	0.11997	0.09603		
2	0.375	1.12989	1.12554	2.48485	0.12442	0.12340	0.11999		
3	0.625	1.24092	1.23715	2.44003	0.10293	0.10178	0.13370		
4	0.875	1.32490	1.32240	2.41912	0.08688	0.08765	0.10626		
5	1.125	1.39410	1.39021	2.40574	0.07377	0.07227	0.10788		
6	1.375	1.45734	1.45432	2.41278	0.06736	0.06850	0.09426		
7	1.625	1.51961	1.51721	2.36300	0.06276	0.06201	0.02381		
8	1.875	1.56778	1.56635	2.36538	0.05684	0.05890	0.02130		
9	2.125	1.61529	1.61199	2.38627	0.05248	0.05351	0.02273		
10	2.375	1.65623	1.65284	2.37491	0.04733	0.04811	0.00000		
11	2.625	1.69679	1.69335	2.39764	0.04002	0.04046	0.03215		
12	2.875	1.72292	1.71522	-	0.04354	0.04049	-		
13	3.125	1.75259	1.75032	2.37491	0.03803	0.03636	0.00000		
14	3.375	1.77675	1.77444	2.37491	0.03349	0.03220	0.00000		
15	3.625	1.81908	1.81486	-	0.03870	0.03489	-		
16	3.875	1.85262	1.84417	-	0.03706	0.03690	-		
17	4.125	1.87454	1.86820	-	0.03083	0.02440	-		
18	4.375	1.90167	1.89073	-	0.02509	0.01610	-		
19	4.625	1.92104	1.91136	-	0.02155	0.02263	-		
20	4.875	1.93613	1.93504	-	0.01566	0.01506	-		
21	5.125	1.96343	1.95468	-	0.02027	0.01786	-		
22	5.375	1.98919	1.95468		0.03252	0.01786			
23	5.625	2.01122	-		0.02934	-			
24	5.875	1.9981	-		0.00000	-			
25	6.125	-	-		-	-			
26	6.375	-	-		-	-			

Πίνακας 3.12 Συ	γκεντρωτικός πίνακας	παραμέτρων κα	τανομών για τη	$v T_m H_s$	για τα βαθιά
	/ · · · · · · · · · · · · · · · · · · ·				1

Ενδεικτικά παρουσιάζεται το γράφημα προσαρμογής λογαριθμοκανονικής κατανομής (Lognormal) στο ιστόγραμμα συχνοτήτων εμφάνισης της μέσης περιόδου $T_m|H_s$, για $H_s = 0.125m$, δηλαδή για την πρώτη στήλη (j=1) του Πίνακα 3.6 για τα βαθιά για το σύνολο των κυμάτων (total). Το εν λόγω ιστόγραμμα παρατίθεται στον Πίνακα 3.13 και το γράφημα στην Εικόνα 3.7.

i	Κεντρική τιμή μέσης περιόδου κύματος T _m (s)	Εύρος κλάσης / βήμα DT _m (s)	Συχνότητα εμφάνισης <i>freq(T_m H_s)</i> για <i>H_s</i> =0.125m (j=1)
1	2.125	0.25	6
2	2.375	0.25	486
3	2.625	0.25	1269
4	2.875	0.25	1686
5	3.125	0.25	1361
6	3.375	0.25	753
7	3.625	0.25	303
8	3.875	0.25	114
9	4.125	0.25	22
10	4.375	0.25	7
11	4.625	0.25	7
12	4.875	0.25	2
13	5.125	0.25	1
14	5.375	0.25	0
15	5.625	0.25	0
16	5.875	0.25	1
17	6.125	0.25	0
18	6.375	0.25	0
19	6.625	0.25	0
20	6.875	0.25	0
21	7.125	0.25	0
22	7.375	0.25	0
23	7.625	0.25	0
24	7.875	0.25	0
25	8.125	0.25	0
26	8.375	0.25	0

Πίνακας 3.13 Ιστόγραμμα συχνοτήτων εμφάνισης της μέσης περιόδου T_m , για δεδομένο $H_s = 0.125m$ (j=1) ενδεικτικά, για τα βαθιά για το σύνολο των κυμάτων (total)

Εικόνα 3.7 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) στο ιστόγραμμα συχνοτήτων εμφάνισης της μέσης περιόδου $T_m|H_s$ για $H_s = 0.125m$ (j=l) για τα βαθιά για το σύνολο των κυμάτων (total)

Κατόπιν, για κάθε παράμετρο της δεσμευμένης πιθανότητας ξεχωριστά, επιλέγεται μια εμπειρική συνάρτηση κατανομής, που ορίζει τη σχέση ανάμεσα στην κάθε παράμετρο και το ύψος κύματος. Η εμπειρική συνάρτηση, σύμφωνα με τους Li et al. (2013), για τις παραμέτρους μ , σ^2 , επιλέγεται να είναι της μορφής των σχέσεων (2.27). Στην παρούσα εργασία εφαρμόζεται μια απλουστευμένη μορφή των παραπάνω σχέσεων. Για τη μεν παράμετρο μ , η εμπειρική συνάρτηση επιλέγεται πολυωνυμική δευτέρου βαθμού, της μορφής:

$$\mu(H_s) = c_1 H_s^2 + c_2 H_s + c_3 \tag{3.1}$$

Για τη δε παράμετρο σ^2 , η εμπειρική συνάρτηση επιλέγεται εκθετική πρώτου βαθμού, της μορφής:

$$\sigma^2(H_s) = d_1 \exp(d_2 H_s) \tag{3.2}$$

Οι συντελεστές των εμπειρικών συναρτήσεων υπολογίζονται με τη μέθοδο Non Linear Least Squares και οι τιμές τους παρουσιάζονται στον Πίνακα 3.14:

Πίνακας 3.14 Συντελεστές εμπειρικών συναρτήσεων που ορίζουν τη σχέση ανάμεσα σε κάθε παράμετρο της $T_m|H_s$ και το ύψος κύματος

Συντελεστές	Total	Wind-generated	Swell
<i>C</i> ₁	-0.02470	-0.02825	0.03802
C2	0.30223	0.31753	-0.17923
<i>C</i> ₃	1.06470	1.05059	2.57129
d_1	0.01771	0.01757	0.01721
d_2	-0.87427	-0.88021	-0.75506

Παρουσιάζονται τα γραφήματα προσαρμογής των εμπειρικών κατανομών στις παραμέτρους στις επόμενες Εικόνες 3.8 έως 3.13, για την περίπτωση του συνόλου των κυμάτων (total), των ανεμογενών (wind-generated) και των κυμάτων αποθάλασσας (swell).

Εικόνα 3.8 Προσαρμογή πολυωνυμικής κατανομής ανάμεσα στο H_s και την παράμετρο μ για την περίπτωση του συνόλου των κυμάτων για τα βαθιά ύδατα (total)

Εικόνα 3.9 Προσαρμογή εκθετικής κατανομής ανάμεσα στο H_s και την παράμετρο σ^2 για την περίπτωση του συνόλου των κυμάτων για τα βαθιά ύδατα (total)

Εικόνα 3.10 Προσαρμογή πολυωνυμικής κατανομής ανάμεσα στο H_s και την παράμετρο μ για την περίπτωση των ανεμογενών κυμάτων για τα βαθιά ύδατα (wind-generated)

Εικόνα 3.11 Προσαρμογή εκθετικής κατανομής ανάμεσα στο H_s και την παράμετρο σ^2 για την περίπτωση των ανεμογενών κυμάτων για τα βαθιά ύδατα (wind-generated)

Εικόνα 3.12 Προσαρμογή πολυωνυμικής κατανομής ανάμεσα στο H_s και την παράμετρο μ για την περίπτωση των κυμάτων αποθάλασσας για τα βαθιά ύδατα (swell)

Εικόνα 3.13 Προσαρμογή εκθετικής κατανομής ανάμεσα στο H_s και την παράμετρο σ^2 για την περίπτωση των κυμάτων αποθάλασσας για τα βαθιά ύδατα (swell)

Στη συνέχεια, οι εμπειρικές συναρτήσεις που έχουν προσαρμοστεί χρησιμοποιούνται για να συνθέσουν μια συνεχή μορφή της δεσμευμένης πιθανότητας της περιόδου ως προς το ύψος κύματος, η οποία έχει τη μορφή της σχέσης (2.16) και αντί για τις απλές παραμέτρους μ και σ , εμπεριέχει τις συναρτήσεις $\mu(H_s)$ και $\sigma(H_s)$ από τις σχέσεις (3.1) και (3.2).

Το τρίτο βήμα λοιπόν, αφού έγινε η προσαρμογή των κατανομών μίας μεταβλητής, είναι η εφαρμογή του μοντέλου για τις δύο περιπτώσεις:

i. Λογαριθμοκανονική (Lognormal) κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο $T_m | H_s$

$$f_L(H_s, T_m) = f_L(H_s) \times f_L(T_m | H_s)$$
(3.3)

για την περίπτωση λογαριθμοκανονικής κατανομής και για το χαρακτηριστικό ύψος κύματος H_s (περιθώρια) και για τη μέση περίοδο $T_m | H_s$ (δεσμευμένη).

Όπου, για έναν Πίνακα $(i \times j)$:

$$f_{L}(H_{s}, T_{m}) = f_{L}^{(i,j)} \left(H_{s}^{(j)}, T_{m}^{(i)} \right)$$

$$f_{L}(H_{s}) = f_{L}^{(j)} \left(H_{s}^{(j)} \right)$$

$$f_{L}(T_{m}|H_{s}) = f_{L}^{(i,j)} \left(T_{m}^{(i)} | H_{s}^{(j)} \right)$$
(3.4)

Τα αριθμητικά αποτελέσματα παρουσιάζονται στους Πίνακες Α.1-Α.3 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

ii. Κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο $T_m|H_s$

$$f_W(H_s, T_m) = f_W(H_s) \times f_L(T_m | H_s)$$
(3.5)

για την περίπτωση της κατανομής Weibull για το χαρακτηριστικό ύψος κύματος H_s (περιθώρια) και λογαριθμοκανονικής κατανομής για τη μέση περίοδο $T_m | H_s$ (δεσμευμένη).

Όπου, απολύτως όμοια με προηγουμένως, για έναν Πίνακα $(i \times j)$:

$$f_{W}(H_{s}, T_{m}) = f_{W}^{(i,j)} \left(H_{s}^{(j)}, T_{m}^{(i)} \right)$$

$$f_{W}(H_{s}) = f_{W}^{(j)} \left(H_{s}^{(j)} \right)$$

$$f_{L}(T_{m}|H_{s}) = f_{L}^{(i,j)} \left(T_{m}^{(i)} | H_{s}^{(j)} \right)$$
(3.6)

Τα αριθμητικά αποτελέσματα παρουσιάζονται στους Πίνακες Α.4-Α.6 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

3.3.2.2. Μοντέλο Bivariate-Lognormal

Προκειμένου να εφαρμοστεί το μοντέλο δεσμευμένης πιθανότητας (Bivariate-Lognormal), ώστε να ευρεθεί η συνάρτηση από κοινού πυκνότητας πιθανότητας (joint probability density function) του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , απαιτείται η γνώση των περιθώριων κατανομών (marginal distributions) των H_s και T_m . Στο παρόν μοντέλο και στις δύο μεταβλητές, ύψος κύματος και περίοδος, προσαρμόζεται λογαριθμοκανονική (Lognormal) κατανομή στις περιθώριες συναρτήσεις τους.

Η προσαρμογή της λογαριθμοκανονικής κατανομής στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος έχει ήδη εφαρμοστεί στο προηγούμενο μοντέλο (conditional model) (Πίνακας 3.9 έως Πίνακας 3.11, Εικόνα 3.4 έως Εικόνα 3.6).

Η προσαρμογή της λογαριθμοκανονικής κατανομής στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης της μέσης περιόδου παρουσιάζεται στις Εικόνες 3.14 έως 3.16 για το σύνολο των κυμάτων, τα ανεμογενή και τα κύματα αποθάλασσας αντίστοιχα. Τα αντίστοιχα ιστογράμματα παρουσιάζονται παρακάτω (Πίνακας 3.15, Πίνακας 3.16). Ο συγκεντρωτικός πίνακας των αντίστοιχων παραμέτρων παρουσιάζεται στη συνέχεια (Πίνακας 3.17).

Πίνακας 3.15 Ιστογράμματα	περιθώριων	συχνοτήτων	εμφάνισης	της μέσης	περιόδου	T_m	για τα
βαθιά ύδατα για το σύνολο τα	ον κυμάτων (1	total) και τα	ανεμογενή (wind-gene	rated)		

i	Κεντρική τιμή μέσης περιόδου κύματος T _m (s)	Εύρος κλάσης / βήμα DT _m (s)	Περιθώρια συχνότητα εμφάνισης freq(T _m) (total)	Περιθώρια συχνότητα εμφάνισης freq(Tm) (wind-generated)
1	2.125	0.25	9	7
2	2.375	0.25	743	772
3	2.625	0.25	2168	2227
4	2.875	0.25	3376	3245
5	3.125	0.25	3842	3772
6	3.375	0.25	3653	3500
7	3.625	0.25	2998	2845
8	3.875	0.25	3188	2985
9	4.125	0.25	1860	1750
10	4.375	0.25	1461	1370
11	4.625	0.25	1120	1031
12	4.875	0.25	844	772
13	5.125	0.25	635	588
14	5.375	0.25	483	428
15	5.625	0.25	412	364
16	5.875	0.25	199	182
17	6.125	0.25	110	105
18	6.375	0.25	68	57
19	6.625	0.25	48	53
20	6.875	0.25	45	24
21	7.125	0.25	14	9
22	7.375	0.25	8	0
23	7.625	0.25	2	0
24	7.875	0.25	1	0
25	8.125	0.25	0	0
26	8.375	0.25	0	0

i	Κεντρική τιμή μέσης περιόδου κύματος T _m (s)	Εύρος κλάσης / βήμα DT _m (s)	Περιθώρια συχνότητα εμφάνισης freq(Tm) (swelll)
1	10.25	0.5	21
2	10.75	0.5	355
3	11.25	0.5	828
4	11.75	0.5	1496
5	12.25	0.5	1196
6	12.75	0.5	915
7	13.25	0.5	1103
8	13.75	0.5	1161
9	14.25	0.5	1494
10	14.75	0.5	5425
11	15.25	0.5	165
12	15.75	0.5	70
13	16.25	0.5	35
14	16.75	0.5	20
15	17.25	0.5	4
16	17.75	0.5	5
17	18.25	0.5	9
18	18.75	0.5	2
19	19.25	0.5	1
20	19.75	0.5	0
21	20.25	0.5	0

Πίνακας 3.16 Ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης της μέσης περιόδου T_m για τα βαθιά ύδατα για τα κύματα της αποθάλασσας (swell)

Εικόνα 3.14 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης της μέσης περιόδου T_m για τα βαθιά για το σύνολο των κυμάτων (total)

Εικόνα 3.15 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης της μέσης περιόδου T_m για τα βαθιά για τα ανεμογενή κύματα (wind-generated)

Εικόνα 3.16 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης της μέσης περιόδου T_m για τα βαθιά για τα κύματα αποθάλασσας (swell)

Πίνακας 3.17 Συγκεντρωτικός πίνακας παραμέτρων κατανομών για τη μέση περίοδο T_m για τα βαθιά ύδατα

Παράμετροι των κατανομών (marginal distribution) για τα βαθιά ύδατα							
Για την περίοδο κύματος T _m :							
	Παράμετρος μ (location) :			Παράμετρος σ (scale) :			
Κατανομή Lognormal	Total	Wind- generated	Swell	Total	Wind- generated	Swell	
	1.26867	1.26149	2.60240	0.21407	0.21260	0.10115	

Στη συνέχεια υπολογίζεται ο γραμμικός συντελεστής συσχέτισης σύμφωνα με τη σχέση (2.29):

Πίνακας 3.18 Τιμές συντελεστή συσχέτισης ρ για το μοντέλο Bivariate-Lognormal

	Total	Wind-generated	Swell
Συντ/στής συσχέτισης ρ	0.82055	0.81824	-0.48851

Οι τιμές του συντελεστή γραμμικής συσχέτισης, για την περίπτωση του συνόλου των κυμάτων $\rho_{total} = 0.82055$ και της ανεμογενούς συνιστώσας των κυμάτων $\rho_{wind} = 0.81824$, δείχνουν πολύ ισχυρή θετική γραμμική συσχέτιση ($0.8 \le \rho < 1$) μεταξύ των μεταβλητών H_s και T_m . Η αντίστοιχη τιμή του συντελεστή γραμμικής συσχέτισης για την περίπτωση των κυμάτων αποθάλασσας $\rho_{swell} = -0.48851$ δείχνει ασθενή αρνητική γραμμική συσχέτιση μεταξύ των μεταβλητών H_s και T_m .

Ερευνώνται δύο εκδοχές του μοντέλου, όπως αναφέρθηκε παραπάνω:

- i. Μοντέλο Bivariate-Lognormal του Ochi (1978)
- ii. Μοντέλο Bivariate-Lognormal των Fang και Hogben (1982) με διόρθωση λόγω ασυμμετρίας

Αναφορικά με την εκδοχή (i) υπολογίζεται η από κοινού πυκνότητα πιθανότητας του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου από τη σχέση (2.28). Τα αποτελέσματα φαίνονται στους Πίνακες Α.7-Α.9 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

Αναφορικά με την εκδοχή (ii) υπολογίζεται επιπλέον ο συντελεστής λοξότητας / ασυμμετρίας (coefficient of skewness) πριν εφαρμοστεί το μοντέλο. Όπως αναφέρθηκε παραπάνω, αυτή η δεύτερη εκδοχή, έχει νόημα μόνο σε περίπτωση που υπάρχει ασυμμετρία στην κατανομή των log Hs, διαφορετικά δίνει όμοια αποτελέσματα με την

πρώτη εκδοχή του Ochi (1978). Στην παρούσα περιοχή μελέτης ο συντελεστής λοξότητας / ασυμμετρίας, σύμφωνα με τη σχέση (2.31), δίνει τις τιμές του Πίνακα 3.19.

Πίνακας 3.19 Τιμές συντελεστή ασυμμετρίας για τη μέθοδο Bivariate-Lognormal (ii)

	Total	Wind-generated	Swell
Συντ/στής λοξότητας ή ασυμμετρίας (coefficient of skewness)	-0.23369	-0.23822	0.16809

Παρατηρείται ότι τα συγκεκριμένα ύψη κύματος H_s και για τις τρεις περιπτώσεις κυματισμών (total, wind-generated και swell), δεν έχουν σημαντική ασυμμετρία, οπότε δεν αναμένεται σημαντική βελτίωση για τη συγκεκριμένη περιοχή, του μοντέλου Bivariate-Lognormal (i).

Στη συνέχεια, εφαρμόζεται η σχέση (2.30) και υπολογίζεται η από κοινού πυκνότητα πιθανότητας του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου. Τα αποτελέσματα παρουσιάζονται στους Πίνακες Α.10-Α.12 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

3.3.2.3. Μοντέλο Plackett

Η μέθοδος αυτή απαιτεί γνώση των περιθώριων κατανομών (marginal distributions) πυκνότητας πιθανότητας (και των αντίστοιχων κατανομών αθροιστικής πιθανότητας) του H_s και της T_m . Θα ερευνηθούν και εδώ, κατ' αναλογία με το μοντέλο δεσμευμένης πιθανότητας (3.3.2.1), οι εξής δύο διαφορετικές περιπτώσεις:

- i. Λογαριθμοκανονική κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)
- ii. Κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική κατανομή για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)

Για τις δύο ανωτέρω περιπτώσεις χρησιμοποιείται το πρόγραμμα MATLAB, στο οποίο εισάγονται τα στοιχεία υπό μορφή συχνοτήτων (Πίνακας 3.6 έως Πίνακας 3.8) για τα βαθιά ύδατα, για το σύνολο των κυμάτων (total), τα ανεμογενή (wind-generated) και τα κύματα αποθάλασσας (swell). Όσον αφορά και στο χαρακτηριστικό ύψος κύματος και στη μέση περίοδο χρειαζόμαστε μόνο τα ιστογράμματα των περιθώριων (marginal) συχνοτήτων, δηλαδή τις τιμές του αθροίσματος που αναγράφονται στην τελευταία γραμμή και στήλη των Πινάκων, αντίστοιχα, προκειμένου να προσαρμοστούν οι περιθώριων συχνοτήτων φαίνεται στους Πίνακες 3.9 και 3.10. Οι περιθώριες κατανομές του φαίνονται

στις Εικόνες 3.4 έως 3.6 για τη λογαριθμοκανονική κατανομή και για την κατανομή Weibull για τα βαθιά ύδατα. Οι αθροιστικές περιθώριες κατανομές του ύψους κύματος παρουσιάζονται στις Εικόνες 3.17 έως 3.19.

Όσον αφορά στη μέση περίοδο T_m , η περιθώρια λογαριθμοκανονική κατανομή παρουσιάζεται στις Εικόνες 3.14 έως 3.16 και τα αντίστοιχα ιστογράμματα στους Πίνακες 3.15 και 3.16. Οι αντίστοιχες αθροιστικές παρατίθενται στις Εικόνες 3.20 έως 3.22.

Εικόνα 3.17 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) του χαρακτηριστικού ύψους κύματος H_s για τις περιπτώσεις λογαριθμοκανονικής κατανομής και κατανομής Weibull, για βαθιά ύδατα για το σύνολο των κυμάτων (total)

Εικόνα 3.18 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) του χαρακτηριστικού ύψους κύματος H_s για τις περιπτώσεις λογαριθμοκανονικής κατανομής και κατανομής Weibull, για βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

Εικόνα 3.19 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) του χαρακτηριστικού ύψους κύματος H_s για τις περιπτώσεις λογαριθμοκανονικής κατανομής και κατανομής Weibull, για βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

Εικόνα 3.20 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) της μέσης περιόδου κύματος T_m για την περίπτωση λογαριθμοκανονικής κατανομής για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)

Εικόνα 3.21 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) της μέσης περιόδου κύματος T_m για την περίπτωση λογαριθμοκανονικής κατανομής για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

Εικόνα 3.22 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) της μέσης περιόδου κύματος T_m για την περίπτωση λογαριθμοκανονικής κατανομής για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

Οι συντελεστές των κατανομών έχουν ήδη υπολογιστεί στις προηγούμενες μεθόδους και παρουσιάζονται στους Πίνακες 3.11 και 3.17. Είναι προφανές ότι η περιθώρια λογαριθμοκανονική κατανομή είτε του H_s είτε της T_m έχει τους ίδιους συντελεστές με την αντίστοιχη αθροιστική λογαριθμοκανονική κατανομή. Το ίδιο ισχύει και στην περίπτωση της κατανομής Weibull του H_s .

Αφού υπολογίστηκαν οι τιμές των παραμέτρων των κατανομών, καθίστανται γνωστές πλέον οι μαθηματικές εκφράσεις $f_L(x; \vec{\theta}_L)$ και $f_W(x; \vec{\theta}_W)$ των περιθώριων κατανομών πυκνότητας πιθανότητας Lognormal και Weibull και $F_L(x; \vec{\theta}_L)$ και $F_W(x; \vec{\theta}_W)$ των περιθώριων αθροιστικών κατανομών πιθανότητας, οι οποίες αναφέρονται αναλυτικά στο Κεφάλαιο 2 (σχέσεις (2.16), (2.17) και (2.21), (2.22)). Τα αριθμητικά αποτελέσματα όσον αφορά στο χαρακτηριστικό ύψος κύματος και στη μέση περίοδο ουσιαστικά δίνουν τις αριθμητικές τιμές των αντίστοιχων κατανομών. Η μικρή απόκλιση της συνολικής αθροιστικής πιθανότητας από τη μονάδα οφείλεται στην αριθμητική ολοκλήρωση που γίνεται κατά την εφαρμογή του μοντέλου.

Αφού υπολογίστηκαν οι περιθώριες κατανομές των δύο μεταβλητών, δηλαδή του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , καθίσταται δυνατός ο υπολογισμός της κατανομής της από κοινού πυκνότητας πιθανότητας $f_{\vec{X}}^P(x_1, x_2; \vec{\theta})$, σύμφωνα με το μοντέλο Plackett (σχέση (2.33)) για τις δύο περιπτώσεις. Έχουμε για τα βαθιά ύδατα:

i.
$$f_{\vec{X},L}^{P}(T_{m}, H_{s}; \vec{\theta}), \vec{X} = [T_{m}, H_{s}]$$
 (3.7)

για λογαριθμοκανονική κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m (για τις περιθώριες f και τις αντίστοιχες αθροιστικές τους F)

όπου στη σχέση (2.33) γίνονται οι εξής αντικαταστάσεις, για έναν Πίνακα $(i \times j)$:

$$f_{1}(x_{1}) = f_{L}(T_{m}) = f_{L}^{(i)} \left(T_{m}^{(i)}\right)$$

$$F_{1}(x_{1}) = F_{L}(T_{m}) = F_{L}^{(i)} \left(T_{m}^{(i)}\right)$$

$$f_{2}(x_{2}) = f_{L}(H_{s}) = f_{L}^{(j)} \left(H_{s}^{(j)}\right)$$

$$F_{2}(x_{2}) = F_{L}(H_{s}) = F_{L}^{(j)} \left(H_{s}^{(j)}\right)$$
(3.8)

Τέλος, $\vec{\theta}$ είναι το σύνολο των τεσσάρων περιθώριων παραμέτρων των Πινάκων 3.11 και 3.17, που αντιστοιχούν στις λογαριθμοκανονικές κατανομές H_s και T_m .

ii.
$$f_{\vec{X},W}^P(T_m, H_{\rm s}; \vec{\theta}), \ \vec{X} = [T_m, H_{\rm s}]$$
 (3.9)

για κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική κατανομή για τη μέση περίοδο T_m (για τις περιθώριες f και τις αντίστοιχες αθροιστικές τους F)

όπου, απολύτως όμοια με προηγουμένως, για έναν Πίνακα $(i \times j)$:

$$f_{1}(x_{1}) = f_{L}(T_{m}) = f_{L}^{(i)}(T_{m}^{(i)})$$

$$F_{1}(x_{1}) = F_{L}(T_{m}) = F_{L}^{(i)}(T_{m}^{(i)})$$

$$f_{2}(x_{2}) = f_{W}(H_{s}) = f_{W}^{(j)}(H_{s}^{(j)})$$

$$F_{2}(x_{2}) = F_{W}(H_{s}) = F_{W}^{(j)}(H_{s}^{(j)})$$
(3.10)

Και εδώ, $\vec{\theta}$ είναι το σύνολο των τεσσάρων περιθώριων παραμέτρων των Πινάκων 3.11 και 3.17, που αντιστοιχούν στη λογαριθμοκανονική κατανομή του T_m και την κατανομή Weibull του H_s .

Στο σημείο αυτό πρέπει να επισημανθεί ο τρόπος υπολογισμού της παραμέτρου συσχέτισης ψ , μεταξύ των H_s και T_m , η οποία υπεισέρχεται στη σχέση (2.33) της από κοινού πυκνότητας πιθανότητας κατά Plackett. Η τιμή του ψ όπως αναφέρεται και στο Κεφάλαιο 2 είναι εκείνη που μεγιστοποιεί το φυσικό λογάριθμο του γινομένου όλων των

στοιχείων του Πίνακα της από κοινού πυκνότητας πιθανότητας $f_{\vec{X}}^P(x_1, x_2; \vec{\theta})$ διαστάσεων $i \times j$ για τα βαθιά.

Ακολουθείται ο ακριβής τρόπος υπολογισμού της παραμέτρου συσχέτισης (σχέση (2.35)), χρησιμοποιώντας το πρόγραμμα MATLAB. Για καθένα ψ από 1.001 έως 8.5 με βήμα 0.001 (7500 επαναλήψεις περίπου) υπολογίζεται ο φυσικός λογάριθμος του γινομένου όλων των στοιχείων του Πίνακα της από κοινού πυκνότητας πιθανότητας $f_{\vec{X}}^P(x_1, x_2; \vec{\theta})$ για τα βαθιά. Εδώ να σημειωθεί ότι αν κάποιο στοιχείο του Πίνακα αυτού είναι μηδενικό, αντικαθίσταται από τη μονάδα, έτσι ώστε να μη μηδενιστεί το γινόμενο. Τελικά, η μεγιστοποίηση του φυσικού λογαρίθμου του γινομένου συμβαίνει για:

- i. $\psi_{Total} = 7.881$, $\psi_{Wind-generated} = 8.037$ και $\psi_{Swell} = 1.762$ για τα βαθιά, για την περίπτωση λογαριθμοκανονικής κατανομής και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m
- ii. $\psi_{Total} = 8.489$, $\psi_{Wind-generated} = 7.711$ και $\psi_{Swell} = 4.147$ για τα βαθιά, για την περίπτωση κατανομής Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονικής κατανομής για τη μέση περίοδο T_m

Άρα, με αυτές τις τιμές της παραμέτρου συσχέτισης ψ , οι αριθμητικές τιμές της από κοινού πυκνότητας πιθανότητας του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , $f_{\vec{X}}^P(x_1, x_2; \vec{\theta})$ που είναι και το ζητούμενο, παρουσιάζονται για τις δύο διαφορετικές περιπτώσεις κατανομών στους Πίνακες Α.13-Α.18 στο Παράρτημα Α. Η μικρή απόκλιση της συνολικής αθροιστικής πυκνότητας πιθανότητας των Πινάκων αυτών από τη μονάδα οφείλεται στην αριθμητική ολοκλήρωση που γίνεται κατά την εφαρμογή του μοντέλου. Τα αποτελέσματα της μακροχρόνιας από κοινού κατανομής πυκνότητας, θα δοθούν σε διαγραμματική μορφή στο Κεφάλαιο 4 συγκεντρωτικά.

3.3.2.4. Μοντέλο με μετασχηματισμούς Box-Cox

Προκειμένου να εφαρμοστεί το μοντέλο με μετασχηματισμούς Box-Cox, ώστε να ευρεθεί η συνάρτηση από κοινού πυκνότητας πιθανότητας (joint probability density function) του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , απαιτείται η γνώση των περιθώριων κατανομών (marginal distributions) των H_s και T_m . Το συγκεκριμένο μοντέλο, όπως αναφέρθηκε παραπάνω, πετυχαίνει να μετασχηματίζει τα δεδομένα ώστε να ακολουθούν περίπου κανονική κατανομή, με στόχο να μπορούν να εφαρμοστούν τεχνικές που στηρίζονται στην υπόθεση της κανονικότητας. Ακολούθως, αφού εφαρμοστεί το μοντέλο εφαρμόζονται οι αντίστροφοι μετασχηματισμοί, ώστε να ανακτηθούν τα αρχικά δεδομένα με τα αντίστοιχα αποτελέσματα.

Πρώτο βήμα της μεθόδου είναι η εφαρμογή των μετασχηματισμών Box-Cox στα δεδομένα του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m . Με τη βοήθεια του προγράμματος MATLAB, υπολογίζονται οι παράμετροι μετασχηματισμού λ_1 και λ_2 που

αντιστοιχούν στις μεταβλητές χαρακτηριστικό ύψος κύματος H_s και μέση περίοδο T_m , αντίστοιχα. Οι παράμετροι μετασχηματισμού υπολογίζονται σύμφωνα με τη Μέθοδο Μέγιστης Πιθανοφάνειας. Υπολογίζεται, δηλαδή, η τιμή λ που μεγιστοποιεί τη λογαριθμική συνάρτηση πιθανοφάνειας (βλ. σχέση (2.18)). Σημειώνεται ότι η τιμή του κάθε λ υπολογίζεται για το σύνολο του κάθε πληθυσμού H_s , T_m . Για το σύνολο του κάθε μετασχηματισμένου πλέον πληθυσμού, υπολογίζονται η μέση τιμή μ_{Y_1} , μ_{Y_2} και η διακύμανση $\sigma_{Y_1}^2$, $\sigma_{Y_2}^2$. Επίσης υπολογίζεται, πάλι για το σύνολο των μετασχηματισμένων πληθυσμών Y_1 , Y_2 ο συντελεστής συσχέτισης ρ .

Στη συνέχεια, υπολογίζονται οι μετασχηματισμένες μεταβλητές Y_1, Y_2 για τις κεντρικές τιμές των κλάσεων H_s, T_m , σύμφωνα με τις σχέσεις (2.37) και (2.38). Οι νέες αυτές μεταβλητές έχουν περίπου κανονική κατανομή. Ενδεικτικά για την περιοχή του Άθω και την περίπτωση των ανεμογενών κυματισμών παρουσιάζεται η πυκνότητα πιθανότητας (pdf) των μεταβλητών T_m και H_s πριν και μετά το μετασχηματισμό, καθώς και η αντίστοιχη κανονική κατανομή (Εικόνα 3.23, Εικόνα 3.24).

Εικόνα 3.23 Περιθώρια κατανομή πυκνότητας πιθανότητας της μέσης περιόδου T_m πριν (αριστερά) και μετά το μετασχηματισμό Box-Cox (δεζιά) και αντίστοιχη κανονική κατανομή για την περιοχή του Άθω, για τους ανεμογενείς κυματισμούς, για τα βαθιά ύδατα

Εικόνα 3.24 Περιθώρια κατανομή πυκνότητας πιθανότητας του χαρακτηριστικού ύψους κύματος Η_s πριν (αριστερά) και μετά το μετασχηματισμό Box-Cox (δεξιά) και αντίστοιχη κανονική κατανομή για την περιοχή του Άθω, για τους ανεμογενείς κυματισμούς, για τα βαθιά ύδατα

Το δεύτερο βήμα της μεθόδου είναι ο υπολογισμός της πυκνότητας πιθανότητας μεταξύ των μετασχηματισμένων μεταβήτών Y_1 και Y_2 , με την εφαρμογή της σχέσης (2.40). Τελευταίο βήμα είναι η εφαρμογή των αντίστροφων μετασχηματισμών, ώστε να υπολογιστεί η πυκνότητα πιθανότητας μεταξύ των αρχικών μεταβλητών H_s και T_m . Τα αποτελέσματα παρουσιάζονται στους Πίνακες A.19-A.21 στο Παράρτημα A, ενώ οι διαγραμματικές εικόνες θα παρουσιαστούν συγκεντρωτικά στο Κεφάλαιο 4.

3.3.3. Υπολογισμός ύψους κύματος στα αβαθή ύδατα

Μέχρι αυτό το σημείο της παρούσας εργασίας, οι πληροφορίες για το H_s και το T_m που έχουμε, καθώς και η εφαρμογή των μοντέλων για τις δεδομένες τιμές, δίνουν αποτελέσματα για τα βαθιά ύδατα. Στα βαθιά ύδατα μπορούν να σχεδιαστούν, από πλευρά Πολιτικού Μηχανικού, έργα ανοιχτής θαλάσσης, όπως πλατφόρμες εξόρυξης υδρογονανθράκων κλπ. Για να εξαχθούν οι μεταβλητές φόρτισης: H_s και T_m για το σχεδιασμό παράκτιων ή λιμενικών έργων, δεν αρκεί η πληροφορία στα βαθιά ύδατα. Πρέπει η ίδια να «μεταφερθεί» στο βάθος d που θα κατασκευαστεί το έργο. Στη συγκεκριμένη εφαρμογή λαμβάνεται υπόψη μόνο η διαδικασία της ρήχωσης. Θεωρείται κάθετη πρόσπτωση στην ακτή και το βάθος d λαμβάνεται έτσι ώστε να εξασφαλίζεται πως δε θραύονται οι κυματισμοι. Σημειώνεται ότι ο λόγος βάθους προς μήκος κύματος $d/\lambda \ge 0.5$ αντιστοιχεί σε βαθιά ύδατα. Σε ενδιάμεσα ύδατα ισχύει $0.05 \le d/\lambda < 0.5$, ενώ σε

Καθώς ένας κυματισμός προχωράει προς την ακτή, δηλαδή από τα βαθιά ύδατα προς τα αβαθή, το χαρακτηριστικό ύψος κύματος H_s αλλάζει. Αυτό συμβαίνει κυρίως, διότι καθώς το βάθος του νερού μειώνεται, αρχίζει να αυξάνεται η επίδραση του πυθμένα στη ροή (φαινόμενο ρήχωσης). Επίσης, γενικά σημαντικό ρόλο στη μεταβολή του ύψους κύματος διαδραματίζουν και άλλα φαινόμενα, όπως η διάθλαση, σε περίπτωση που ο κυματισμός δεν διαδίδεται με κατεύθυνση κάθετη προς την ακτογραμμή, αλλά υπό κάποια γωνία, αλλά και η ανάκλαση και η περίθλαση σε περίπτωση που υπάρχει κάποια παράκτια κατασκευή (κυματοθραύστης, λιμενοβραχίονας). Όσον αφορά στο φαινόμενο της διάθλασης μπορεί να θεωρηθεί για απλούστευση κάθετη πρόσπτωση προς την ακτογραμμή. Στο σημείο αυτό πρέπει να επισημανθεί ότι, κατά τη ρήχωση, η περίοδος του κύματος T_m παραμένει σταθερή.

Η θραύση του κυματισμού (breaking) συμβαίνει, προσεγγιστικά, όταν ο λόγος του ύψους κύματος Η ως προς το βάθος του νερού d, σε ένα σημείο, λαμβάνει τιμή περίπου 0.78. Για μεγαλύτερη τιμή του λογου από 0.78 ο κυματισμός έχει ήδη θραυστεί:

$$\frac{H_b}{d_b} \approx 0.78 \to d_b \approx 1.28 H_b \tag{3.11}$$

Θεωρώντας, για ασφάλεια, βάθος νερού d ίσο με μιάμιση φορά το μεγαλύτερο ύψος κύματος H_{max} που παρουσιάζεται στον Πίνακα των δεδομένων (με συχνότητα εμφάνισης μη μηδενική), ώστε να εξασφαλιστεί ότι δεν έχει συμβεί ακόμη θραύση, έχουμε:

$$d = 1.5 H_{max} \tag{3.12}$$

Αρχικά, περιγράφεται η διαδικασία της ρήχωσης για το εν λόγω βάθος d. Βασιζόμενοι στο συνολικό πληθυσμό του ύψους κύματος H_s του Πίνακα των δεδομένων, που αναφέρονται στα βαθιά ύδατα, υπολογίζουμε το ύψος κύματος H_s στο βάθος d για κάθε τιμή των H_s και T_m . Η τιμή του ύψους κύματος στο ζητούμενο βάθος είναι:

$$H_{s(d)} = K_s H_s \tag{3.13}$$

όπου K_s είναι ο συντελεστής ρήχωσης και υπολογίζεται από τη διαδικασία που παρατίθεται ακολούθως.

Αρχικά, επιλύεται η εξίσωση διασποράς για τις διάφορες τιμές της περιόδου κύματος T_m και υπολογίζονται οι τιμές του κυματαριθμού k για τα βαθιά ύδατα. Η εξίσωση της διασποράς είναι:

$$kd \tanh(kd) = \frac{4\pi^2 d}{gT_m^2}$$
(3.14)

Στη σχέση (3.14) το βάθος d και η μέση περίοδος T_m είναι γνωστά, και επομένως ζητείται ο κυματαριθμός k, που αναφέρεται στο d και βρίσκεται με επίλυση της εξίσωσης με τη βοήθεια του προγράμματος MATLAB. Έπειτα, το ζητούμενο μήκος κύματος είναι:

$$\lambda = \frac{2\pi}{k} \tag{3.15}$$

Στη συνέχεια, υπολογίζεται ο συντελεστής n ως εξής:

$$n = \frac{1}{2} * \left(1 + \frac{2kd}{\sinh(2kd)} \right) \tag{3.16}$$

Τελικά, ο συντελεστής ρήχωσης δίνεται από τη σχέση:

$$K_s = \sqrt{\frac{1}{2n} * \frac{C_o}{C}} \tag{3.17}$$

Όπου: $C_o = \lambda_o / T_m$ είναι η ταχύτητα διάδοσης του κυματισμού στα βαθιά ύδατα (σε m/s) και $C = \lambda / T_m$ είναι η ταχύτητα στο βάθος d. Άρα η σχέση (3.17) γίνεται ισοδύναμα:

$$K_s = \sqrt{\frac{1}{2n} * \frac{\lambda_o}{\lambda}}$$
(3.18)

Η ανωτέρω διαδικασία, επαναλαμβάνεται για όλες τις τιμές της μέσης περιόδου T_m και έπειτα για όλες τις τιμές του χαρακτηριστικού ύψους κύματος H_s . Υπενθυμίζεται ότι κατά τη ρήχωση η περίοδος του κύματος T_m παραμένει σταθερή, επομένως οι τιμές της T_m παραμένουν ίδιες και για τα βαθιά ύδατα και για το βάθος d.

Αν εκτός από τη ρήχωση, υπάρχει και διάθλαση (refraction) τότε το ύψος κύματος H_s στο βάθος d, για καθεμία τιμή των H_s και T_m , δίνεται από την κάτωθι σχέση αντί της σχέσης (3.13):

$$H_{s(d)} = K_s K_r H_s \tag{3.19}$$

Όμοια, αν υπάρχει και περίθλαση (diffraction) και ανάκλαση (reflection) που επιθυμούμε να συμπεριληφθεί, για να προκύψει το ύψος κύματος $H_{s(d)}$ στο βάθος d, στη σχέση (3.19) εισάγονται απολύτως ανάλογα και οι συντελεστές K_d , C_r . Σημειώνεται, όμως, ότι στην παρούσα εργασία λαμβάνεται μόνο το φαινόμενο της ρήχωσης και δε λαμβάνονται υπόψη φαινόμενα διάθλασης, περίθλασης και θραύσης.

Αφού λοιπόν υπολογίστηκαν τα νέα ύψη κύματος $H_{s(d)}$ στο βάθος d, αρκεί η κατασκευή των Πινάκων από κοινού συχνοτήτων εμφάνισης των νέων υψών $H_{s(d)}$ και της μέσης περιόδου κύματος T_m για τις τρεις περιπτώσεις κυματισμών. Η κατασκευή των Πινάκων γίνεται κατά όμοια τρόπο με την παράγραφο 3.3.1 με τη βοήθεια του λογισμικού MATLAB. Το εύρος των κλάσεων επιλέγεται όμοιο με το αντίστοιχο των βαθιών υδάτων (Πίνακας 3.5). Οι Πίνακες από κοινού συχνότητας εμφάνισης των νέων υψών $H_{s(d)}$ και της μέσης κυματισμών: για το σύνολο των κυματισμών (total), για τα ανεμογενή (wind-generated) και τα κύματα αποθάλασσας (swell). Επισημαίνεται ότι η διαφοροποίηση του κάθε Πίνακα από τον αρχικό για τα βαθιά ύδατα έγκειται στο γεγονός ότι κάποιες τιμές των H_s έχουν υποστεί την επίδραση του πυθμένα (ρήχωση) και επομένως έχει αλλάξει η τιμή τους.

3.3.4. Αβαθή ύδατα

Με την κατασκευή των Πινάκων από κοινού συχνοτήτων εμφάνισης των $H_{s(d)}$ και T_m η εφαρμογή των μοντέλων γίνεται με όμοιο τρόπο όπως στα βαθιά ύδατα, αρκεί η εισαγωγή των νέων Πινάκων δεδομένων. Για την περιοχή του Άθω το βάθος ύδατος d υπολογίζεται για τις τρεις περιπτώσεις, σύμφωνα με τη σχέση (3.12) σε $d_{total} = 8.68m$, $d_{wind} = 8.19m$ και $d_{swell} = 5.04m$. Οι νέοι πίνακες από κοινού συχνότητας εμφάνισης $H_{s(d)}$ και T_m στο δεδομένο βάθος για την περιοχή του Άθω (σημείο M1), παρουσιάζονται παρακάτω (Πίνακας 3.20 έως Πίνακας 3.22).

Πίνακας 3.20 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή του Άθω (M1) για το σύνολο των κυμάτων για βάθος d=8.68 m

									П	εριοχι	ή Άθω	(M1)	για το	ο σύνα	ολο τα	ον κυμ	ιάτων	(total)									
Κλάσε	іс тпс												Κλά	σεις τ	ou Hs	(m)												
Tm (sec)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	Total
,	,	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	
2 ÷	2.25	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
2.25 ÷	2.5	486	256	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	743
2.5 ÷	2.75	1269	862	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2168
2.75 ÷	3	1689	1353	324	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3376
3 ÷	3.25	1361	1532	845	104	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3842
3.25 ÷	3.5	757	1244	1178	450	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3653
3.5 ÷	3.75	304	673	1040	821	153	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2998
3.75 ÷	4	114	289	822	1153	694	114	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3188
4 ÷	4.25	23	47	230	447	658	413	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1860
4.25 ÷	4.5	7	11	87	143	312	624	247	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1461
4.5 ÷	4.75	7	6	36	48	156	287	407	161	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1120
4.75 ÷	5	2	1	9	25	44	81	298	281	97	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	844
5 ÷	5.25	1	0	5	13	21	35	83	165	234	68	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	635
5.25 ÷	5.5	0	0	1	1	10	17	26	50	150	148	74	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	483
5.5 ÷	5.75	0	0	0	2	1	4	17	22	43	108	119	83	13	0	0	0	0	0	0	0	0	0	0	0	0	0	412
5.75 ÷	6	2	0	0	0	0	0	4	8	8	18	30	68	51	10	0	0	0	0	0	0	0	0	0	0	0	0	199
6 ÷	6.25	0	0	0	0	0	0	2	2	2	3	3	20	35	36	6	1	0	0	0	0	0	0	0	0	0	0	110
6.25 ÷	6.5	0	0	0	0	0	0	0	0	0	1	7	7	5	14	25	7	2	0	0	0	0	0	0	0	0	0	68
6.5 ÷	6.75	0	0	0	0	0	0	0	0	1	2	1	0	0	7	8	14	13	2	0	0	0	0	0	0	0	0	48
6.75 ÷	7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	6	6	12	16	4	0	0	0	0	0	0	0	45
7 ÷	7.25	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	2	5	3	1	0	0	0	0	0	14
7.25 ÷	7.5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	1	0	0	0	0	8
7.5 ÷	7.75	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
7.75 ÷	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
8 ÷	8.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.25 ÷	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	ai	6028	6278	4615	3217	2074	1582	1128	719	547	354	244	184	106	67	46	28	28	20	9	6	5	2	0	0	0	0	27287

Πίνακας 3.21 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή του Άθω (M1) για τα ανεμογενή κύματα για βάθος d=8.19 m

									П	Ιεριοχ	ή Άθι	υ (M1) για τ	α ανε	μογεν	/ή κύμ	ιατα (wind-	gener	ated)									
Kλάσ	701	The												Κλά	σεις τ	ou Hs	(m)												
Tm			0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	Total
''''	1 (50	ecj	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	I
2	÷	2.25	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
2.25	÷	2.5	517	254	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	772
2.5	÷	2.75	1305	882	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2227
2.75	÷	3	1611	1302	322	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3245
3	÷	3.25	1339	1477	853	102	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3772
3.25	÷	3.5	713	1173	1148	442	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3500
3.5	÷	3.75	270	631	980	811	145	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2845
3.75	÷	4	104	260	798	1038	678	105	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2985
4	÷	4.25	14	41	218	415	621	406	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1750
4.25	÷	4.5	7	9	72	133	316	554	254	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1370
4.5	÷	4.75	5	6	30	40	142	255	422	117	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1031
4.75	÷	5	1	1	7	24	47	73	256	264	95	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	772
5	÷	5.25	1	0	3	12	19	36	75	141	222	69	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	588
5.25	÷	5.5	0	0	1	0	10	15	28	37	121	128	80	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	428
5.5	÷	5.75	0	0	0	1	1	5	16	24	38	97	91	79	12	0	0	0	0	0	0	0	0	0	0	0	0	0	364
5.75	÷	6	2	0	0	0	0	0	3	8	10	18	18	60	52	11	0	0	0	0	0	0	0	0	0	0	0	0	182
6	÷	6.25	0	0	0	0	0	0	1	0	4	2	5	14	37	28	12	2	0	0	0	0	0	0	0	0	0	0	105
6.25	÷	6.5	0	0	0	0	0	0	0	0	0	1	4	4	3	16	21	6	2	0	0	0	0	0	0	0	0	0	57
6.5	÷	6.75	0	0	0	0	0	0	0	0	0	1	0	0	2	6	6	15	19	4	0	0	0	0	0	0	0	0	53
6.75	÷	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	11	4	1	0	0	0	0	0	0	24
7	÷	7.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	5	1	0	0	0	0	0	9
7.25	÷	7.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.5	÷	7.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.75	÷	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	÷	8.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.25	÷	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Т	ota	al	5895	6037	4473	3028	2004	1457	1092	616	504	320	208	165	106	61	43	23	26	15	6	6	1	0	0	0	0	0	26086

Πίνακας 3.22 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή του Άθω (M1) για τα κύματα αποθάλασσας για βάθος d=5.04 m

					П	εριοχ	ή Άθω) (M1)	για τ	α κύμ	ατα α	ποθά	λασσα	xς (sw	ell)							
Κλάσεις της									Кλ	άσεις	του Η	ls (m)										
Tm (sec)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	Total
	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	
10 ÷ 10.5	4	3	5	1	2	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	21
10.5 ÷ 11	116	96	53	41	19	7	8	4	2	4	1	1	1	0	1	1	0	0	0	0	0	355
11 ÷ 11.5	650	135	25	10	3	1	2	0	0	1	0	0	1	0	0	0	0	0	0	0	0	828
11.5 ÷ 12	1393	88	10	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1496
12 ÷ 12.5	1116	78	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1196
12.5 ÷ 13	841	71	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	915
13 ÷ 13.5	1046	56	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1103
13.5 ÷ 14	1125	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1161
14 ÷ 14.5	1472	19	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1494
14.5 ÷ 15	5389	19	7	3	2	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5425
15 ÷ 15.5	160	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	165
15.5 ÷ 16	69	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	70
16 ÷ 16.5	32	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35
16.5 ÷ 17	13	2	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
17 ÷ 17.5	0	0	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
17.5 ÷ 18	3	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
18 ÷ 18.5	0	1	6	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
18.5 ÷ 19	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
19 ÷ 19.5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
19.5 ÷ 20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20 ÷ 20.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	13430	610	124	66	28	14	14	5	3	5	1	1	2	0	1	1	0	0	0	0	0	14305

3.3.4.1. Μοντέλο δεσμευμένης πιθανότητας

Η εφαρμογή του μοντέλου γίνεται όμοια με την παράγραφο 3.3.2.1, απλώς ως Πίνακες εισαγωγής δεδομένων εισάγονται διαδοχικά οι Πίνακες 3.20 έως 3.22 για την περίπτωση του συνόλου των κυμάτων (total), των ανεμογενών (wind-generated) και των κυμάτων αποθάλασσας (swell), αντίστοιχα.

Ερευνώνται πάλι δύο διαφορετικές περιπτώσεις, σε αντιστοιχία με τα βαθιά ύδατα:

- i. Λογαριθμοκανονική (Lognormal) κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο $T_m | H_s$
- ii. Κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο $T_m|H_s$

Οι περιθώριες συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος H_s για το βάθος d παρουσιάζονται στον Πίνακα 3.23 για το σύνολο των κυμάτων (total) και τα ανεμογενή (wind-generated) και στον Πίνακα 3.24 για τα κύματα αποθάλασσας (swell) αντίστοιχα.

Πίνακας 3.23 Ιστογράμματα περιθώριων συχνοτήτων εμφάνισης του χαρακτηριστικού ύψους κύματος Hs για το βάθος d για το σύνολο των κυμάτων (total) και για τα ανεμογενή (wind-generated)

j	Κεντρική τιμή ύψους κύματος <i>H</i> s (m)	Εύρος κλάσης / βήμα DH _s (m)	Περιθώρια συχνότητα εμφάνισης <i>freq(H_s)</i> (total)	Περιθώρια συχνότητα εμφάνισης freq(H _s) (wind-generated)
1	0.125	0.25	6028	5895
2	0.375	0.25	6278	6037
3	0.625	0.25	4615	4473
4	0.875	0.25	3217	3028
5	1.125	0.25	2074	2004
6	1.375	0.25	1582	1457
7	1.625	0.25	1128	1092
8	1.875	0.25	719	616
9	2.125	0.25	547	504
10	2.375	0.25	354	320
11	2.625	0.25	244	208
12	2.875	0.25	184	165
13	3.125	0.25	106	106
14	3.375	0.25	67	61
15	3.625	0.25	46	43
16	3.875	0.25	28	23
17	4.125	0.25	28	26
18	4.375	0.25	20	15

19	4.625	0.25	9	6
20	4.875	0.25	6	6
21	5.125	0.25	5	1
22	5.375	0.25	2	0
23	5.625	0.25	0	0
24	5.875	0.25	0	0
25	6.125	0.25	0	0
26	6.375	0.25	0	0

Πίνακας 3.24 Ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του χαρακτηριστικού ύψους κύματος Η_s για το βάθος d για τα κύματα της αποθάλασσας (swell)

j	Κεντρική τιμή ύψους κύματος <i>Hs</i> (m)	Εύρος κλάσης / βήμα DHs (m)	Περιθώρια συχνότητα εμφάνισης freq(Hs) (swell)
1	0.125	0.25	13430
2	0.375	0.25	610
3	0.625	0.25	124
4	0.875	0.25	66
5	1.125	0.25	28
6	1.375	0.25	14
7	1.625	0.25	14
8	1.875	0.25	5
9	2.125	0.25	3
10	2.375	0.25	5
11	2.625	0.25	1
12	2.875	0.25	1
13	3.125	0.25	2
14	3.375	0.25	0
15	3.625	0.25	1
16	3.875	0.25	1
17	4.125	0.25	0
18	4.375	0.25	0
19	4.625	0.25	0
20	4.875	0.25	0
21	5.125	0.25	0

Η προσαρμογή των κατανομών στα ιστογράμματα περιθώριων συχνοτήτων εμφάνισης του H_s για το βάθος d για τις διάφορες κατηγορίες κυμάτων παρουσιάζεται στις Εικόνες 3.25 έως 3.27, αντίστοιχα.

Εικόνα 3.25 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) και κατανομής Weibull στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος $H_s rix$ για το βάθος d=8.68mγια το σύνολο των κυμάτων(total)

Εικόνα 3.26 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) και κατανομής Weibull στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος H_s για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

Εικόνα 3.27 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) και κατανομής Weibull στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος H_s για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

Οι παράμετροι των κατανομών για το ύψος κύματος $H_{s(d)}$ στο δεδομένο βάθος d παρουσιάζονται στον επόμενο πίνακα (Πίνακας 3.25):

Παράμετροι των κατανομών για το βάθος d												
	Για το ύψος κύματος <i>H</i> s (marginal distribution) :											
	Παρ	άμετρος μ (location	ı):		Παράμετρος σ (scale) :							
Κατανομή Lognormal	Total	Wind- generated	Swell	Total	Wind-generated	Swell						
	-0.65935	-0.67762	-1.99658	0.92973	-0.67762	0.34311						
	По	αράμετρος a (shape)		Παράμετρος b (scale)							
Κατανομή Weibull	Total	Wind- generated	Swell	Total	Wind-generated	Swell						
weibuli	0.81436	0.79871	0.16964	1.20141	1.20397	1.47957						

Πίνακας 3.25 Συγκεντρωτικός πίνακας παραμέτρων κατανομών για το H_s για το βάθος d

Οι παράμετροι για τα κέντρα κλάσεων της δεσμευμένης περιόδου ως προς το χαρακτηριστικό ύψος κύματος $T_m|H_s$ για το βάθος d παρουσιάζονται στον Πίνακα 3.26.

	Παράμετροι των κατανομών για το βάθος d											
	Για την περίοδο κύματος T_m / H_s (conditional distribution) :											
K L	ατανομή ognormal	По	ιράμετρος μ (location	n) :	Γ	Ιαράμετρος σ (scale)	:					
j :	$\mathbf{H}_{s}\left(\mathbf{m}\right)$:	Total	Wind-generated	Swell	Total	Wind-generated	Swell					
1	0.125	1.08042	1.07526	2.61028	0.12108	0.12029	0.09479					
2	0.375	1.13047	1.12695	2.49308	0.12443	0.12371	0.09718					
3	0.625	1.24829	1.24518	2.48195	0.10728	0.10658	0.16715					
4	0.875	1.33029	1.32757	2.44870	0.08661	0.08646	0.15165					
5	1.125	1.40920	1.40886	2.41904	0.07790	0.07720	0.11986					
6	1.375	1.47294	1.47177	2.43573	0.06667	0.06786	0.14068					
7	1.625	1.54396	1.54159	2.43538	0.06337	0.06197	0.11912					
8	1.875	1.59317	1.59504	2.36538	0.05855	0.05730	0.02130					
9	2.125	1.64651	1.64443	2.35903	0.04836	0.04983	0.02750					
10	2.375	1.69212	1.69106	2.38400	0.04475	0.04397	0.02033					
11	2.625	1.72027	1.71348	2.37491	0.04268	0.04086	0.00000					
12	2.875	1.75583	1.75109	2.37491	0.03660	0.03494	0.00000					
13	3.125	1.78629	1.78491	2.39764	0.03841	0.03302	0.03215					
14	3.375	1.82272	1.82308	-	0.03387	0.03528	-					
15	3.625	1.86612	1.85361	2.37491	0.03631	0.03479	0.00000					
16	3.875	1.88637	1.87399	2.37491	0.02993	0.02581	0.00000					
17	4.125	1.90658	1.89639	-	0.02567	0.02275	-					
18	4.375	1.92776	1.91801	-	0.01669	0.01696	-					
19	4.625	1.94774	1.93980	-	0.01883	0.01844	-					
20	4.875	1.98641	1.95766	-	0.02778	0.01458	-					
21	5.125	1.99120	1.96361	-	0.01542	0.00000	-					
22	5.375	2.03089	-		0.04638	-						
23	5.625	-	-		-	-						
24	5.875	-	-		-	-						
25	6.125	-	-		-	-						
26	6.375	-	-		-	-						

π' 226Σ		/		$T \mid H$	
Πινακας 3.20 Συνκεν	τρωτικός πινακάς	παραμετρων κ	ατανομων νια τ	$nv I_m H_a$	νια το βάθος d
110,00000000000000000000000000000000000	ip is into y into ontony.			1' - 11115	//or to poro 5 th

Ενδεικτικά παρουσιάζεται το γράφημα προσαρμογής λογαριθμοκανονικής κατανομής (Lognormal) στο ιστόγραμμα συχνοτήτων εμφάνισης της μέσης περιόδου $T_m|H_s$, για $H_s = 0.125m$, δηλαδή για την πρώτη στήλη (j=1) του Πίνακα 3.20 για το βάθος d για το

σύνολο των κυμάτων (total). Το εν λόγω ιστόγραμμα παρατίθεται στον Πίνακα 3.27 και το αντίστοιχο γράφημα στην Εικόνα 3.28.

Πίνακας 3.27 Ιστόγραμμα συχνοτήτων εμφάνισης της μέσης περιόδου T_m , για δεδομένο $H_s = 0.125m$ (j=1) ενδεικτικά, για το βάθος d για το σύνολο των κυμάτων (total)

i	Κεντρική τιμή μέσης περιόδου κύματος T _m (s)	Εύρος κλάσης / βήμα DT _m (s)	Συχνότητα εμφάνισης <i>freq(T_m H_s)</i> για <i>H_s</i> =0.125m (<i>j</i> =1)
1	2.125	0.25	6
2	2.375	0.25	486
3	2.625	0.25	1269
4	2.875	0.25	1689
5	3.125	0.25	1361
6	3.375	0.25	757
7	3.625	0.25	304
8	3.875	0.25	114
9	4.125	0.25	23
10	4.375	0.25	7
11	4.625	0.25	7
12	4.875	0.25	2
13	5.125	0.25	1
14	5.375	0.25	0
15	5.625	0.25	0
16	5.875	0.25	2
17	6.125	0.25	0
18	6.375	0.25	0
19	6.625	0.25	0
20	6.875	0.25	0
21	7.125	0.25	0
22	7.375	0.25	0
23	7.625	0.25	0
24	7.875	0.25	0
25	8.125	0.25	0
26	8.375	0.25	0

Εικόνα 3.28 Προσαρμογή λογαριθμοκανονικής κατανομής (Lognormal) στο ιστόγραμμα συχνοτήτων εμφάνισης της μέσης περιόδου $T_m|H_s$ για $H_s = 0.125m$ (j=1) για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

Σύμφωνα με τις σχέσεις (3.1) και (3.2) υπολογίζονται οι συντελεστές των εμπειρικών συναρτήσεων και παρουσιάζονται στον Πίνακα 3.28.

Πίνακας 3.28 Συντελεστές εμπειρικών συναρτήσεων που ορίζουν τη σχέση ανάμεσα σε κάθε παράμετρο της $T_m|H_s$ και το ύψος κύματος για το βάθος d

Συντελεστές	Total	Wind-generated	Swell
<i>C</i> ₁	-0.02932	-0.03373	0.02654
<i>C</i> ₂	0.33254	0.34988	-0.15024
<i>C</i> ₃	1.05265	1.03910	2.57803
d_1	0.01817	0.01814	0.02129
d_2	-0.88797	-0.90850	-0.58383

Στη συνέχεια, παρουσιάζονται τα γραφήματα προσαρμογής των εμπειρικών κατανομών στις παραμέτρους στις Εικονες 3.29 έως 3.34 για τις τρεις περιπτώσεις κυματισμών.

Εικόνα 3.29 Προσαρμογή πολυωνυμικής κατανομής ανάμεσα στο H_s και την παράμετρο μ για την περίπτωση του συνόλου των κυμάτων (total) για το βάθος d=8.68m

Εικόνα 3.30 Προσαρμογή εκθετικής κατανομής ανάμεσα στο H_s και την παράμετρο σ^2 για την περίπτωση του συνόλου των κυμάτων (total) για το βάθος d=8.68m

Εικόνα 3.31 Προσαρμογή πολυωνυμικής κατανομής ανάμεσα στο H_s και την παράμετρο μ για την περίπτωση των ανεμογενών κυματισμών (wind-generated) για το βάθος d=8.19m

Εικόνα 3.32 Προσαρμογή εκθετικής κατανομής ανάμεσα στο H_s και την παράμετρο σ^2 για την περίπτωση των ανεμογενών κυματισμών (wind-generated) για το βάθος d=8.19m

Εικόνα 3.33 Προσαρμογή πολυωνυμικής κατανομής ανάμεσα στο H_s και την παράμετρο μ για την περίπτωση των κυμάτων αποθάλασσας (swell) για το βάθος d=5.04m

Εικόνα 3.34 Προσαρμογή εκθετικής κατανομής ανάμεσα στο H_s και την παράμετρο σ^2 για την περίπτωση των κυμάτων αποθάλασσας (swell) για το βάθος d=5.04m

Στις παραπάνω Εικόνες φαίνεται πως ενώ η προσαρμογή είναι καλή γενικά για το σύνολο των κυμάτων (total) και για τα ανεμογενή (wind-generated), για τα κύματα αποθάλασσας δεν είναι ικανοποιητική κυρίως για την παράμετρο σ^2 (Εικόνα 3.34). Είναι καλό να τονιστεί στην Εικόνα 3.34 πως η εκθετική κατανομή πρώτου βαθμού δεν προσαρμόζεται

καθόλου καλά στα δεδομένα και δεν περιγράφει ικανοποιητικά τη σχέση ανάμεσα στην παράμετρο σ^2 και το H_s . Αυτός θα είναι και ένας από τους λόγους στη συνέχεια που το μοντέλο αυτό δεν προσαρμόζεται ικανοποιητικά στα κύματα αποθάλασσας και παρουσιάζει μεγάλο σφάλμα.

Τέλος, αφού έγινε η προσαρμογή των κατανομών μίας μεταβλητής, εφαρμόζεται το μοντέλο για τις δύο περιπτώσεις σύμφωνα με τις σχέσεις (3.3) και (3.5).

Τα αριθμητικά αποτελέσματα παρουσιάζονται στους Πίνακες Α.22-Α.27 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

3.3.4.2. Μοντέλο Bivariate-Lognormal

Το μοντέλο Bivariate-Lognormal εφαρμόζεται κατά αναλογία με την παράγραφο 3.3.2.2, με μόνη διαφορά στον Πίνακα εισαγωγής δεδομένων ο οποίος είναι πλέον ο Πίνακας 3.20 για την περίπτωση του συνόλου των κυμάτων, ο Πίνακας 3.21 για την περίπτωση των ανεμογενών κυματισμών και ο Πίνακας 3.22 για την περίπτωση των κυμάτων αποθάλασσας για το δεδομένο βάθος $d_{total} = 8.68m$, $d_{wind} = 8.19m$ και $d_{swell} = 5.04m$.

Στο παρόν μοντέλο και στις δύο μεταβλητές, ύψος κύματος και περίοδος, προσαρμόζεται λογαριθμοκανονική (Lognormal) κατανομή στις περιθώριες συναρτήσεις τους, όπως έχει ήδη αναφερθεί.

Η προσαρμογή της λογαριθμοκανονικής κατανομής στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης του ύψους κύματος έχει ήδη εφαρμοστεί στο προηγούμενο μοντέλο (conditional model), Εικόνες 3.4 έως 3.6.

Η προσαρμογή της λογαριθμοκανονικής κατανομής στο ιστόγραμμα περιθώριων συχνοτήτων εμφάνισης της μέσης περιόδου είναι όμοια με την αντίστοιχη στα βαθιά ύδατα, καθώς η περίοδος θεωρείται ότι παραμένει σταθερή (Πίνακας 3.15, Πίνακας 3.16, Εικόνα 3.14 έως Εικόνα 3.16). Οι παράμετροι της λογαριθμικής κατανομής για την περίοδο T_m παρουσιάζονται στον Πίνακα 3.17.

Στη συνέχεια υπολογίζεται ο γραμμικός συντελεστής συσχέτισης σύμφωνα με τη σχέση (2.29) και παρουσιάζεται παρακάτω (Πίνακας 3.29).

	Total	Wind-generated	Swell
Συντ/στής συσχέτισης ρ	0.81169	0.80897	-0.44787

Πίνακας 3.29 Τιμές συντελεστή συσχέτισης ρ για το βάθος d

Όπως παρατηρείται οι τιμές του συντελεστή συσχέτισης δε μεταβλήθηκαν σημαντικά από τα βαθιά ύδατα (Πίνακας 3.18) στο βάθος σχεδιασμού d (Πίνακας 3.29). Στην περίπτωση του συνόλου των κυμάτων, καθώς και στην ανεμογενή συνιστώσα υπάρχει ισχυρή θετική συσχέτιση μεταξύ των μεταβλητών H_s και T_m , ενώ την περίπτωση της συνιστώσας των κυμάτων αποθάλασσας υπάρχει ασθενής αρνητική συσχέτιση μεταξύ των μεταβλητών H_s και T_m .

Ερευνώνται δύο εκδοχές του μοντέλου, όπως αναφέρθηκε παραπάνω:

- i. Μοντέλο Bivariate-Lognormal του Ochi (1978)
- ii. Μοντέλο Bivariate-Lognormal των Fang και Hogben (1982) με διόρθωση λόγω ασυμμετρίας

Αναφορικά με την εκδοχή (i) υπολογίζεται η από κοινού πυκνότητα πιθανότητας της μέσης περιόδου και του χαρακτηριστικού ύψους κύματος από τη σχέση (2.28). Τα αποτελέσματα φαίνονται στους Πίνακες Α.28-Α.30 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

Αναφορικά με την εκδοχή (ii) υπολογίζεται επιπλέον ο συντελεστής λοξότητας / ασυμμετρίας (coefficient of skewness) πριν εφαρμοστεί το μοντέλο. Στην παρούσα περιοχή μελέτης ο συντελεστής λοξότητας / ασυμμετρίας, σύμφωνα με τη σχέση (2.31), δίνει τις τιμές του Πίνακα 3.30.

Πίνακας 3.30 Συντελεστής ασυμμετρίας για το μοντέλο Bivariate-Lognormal (ii) για το βάθος d

	Total	Wind-generated	Swell
Συντ/στής λοξότητας ή ασυμμετρίας (coefficient of skewness)	-0.31600	-0.32036	0.13537

Όμοια με τα βαθιά ύδατα παρατηρείται πως δεν υπάρχει σημαντική ασυμμετρία στα ύψη κύματος.

Εφαρμόζεται η σχέση (2.30) και υπολογίζεται η από κοινού πυκνότητα πιθανότητας της μέσης περιόδου και του χαρακτηριστικού ύψους κύματος. Τα αποτελέσματα παρουσιάζονται στους Πίνακες Α.31-Α.33 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

3.3.4.3. Μοντέλο Plackett

Το μοντέλο Plackett εφαρμόζεται κατά αναλογία με την παράγραφο 3.3.2.3, με μόνη διαφορά στον Πίνακα εισαγωγής δεδομένων ο οποίος είναι πλέον ο Πίνακας 3.20 για την περίπτωση του συνόλου των κυμάτων, ο Πίνακας 3.21 για την περίπτωση των ανεμογενών κυματισμών και ο Πίνακας 3.22 για την περίπτωση των κυμάτων αποθάλασσας για το δεδομένο βάθος $d_{total} = 8.68m$, $d_{wind} = 8.19m$ και $d_{swell} = 5.04m$.

Ερευνώνται πάλι δύο διαφορετικές περιπτώσεις:

- i. Λογαριθμοκανονική κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)
- ii. Κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική κατανομή για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)

Οι αθροιστικές περιθώριες κατανομές του χαρακτηριστικού ύψους κύματος για το βάθος d παρουσιάζονται παρακάτω (Εικόνα 3.35 έως Εικόνα 3.37). Όσον αφορά στη μέση περίοδο T_m , η περιθώρια λογαριθμοκανονική κατανομή της και η αντίστοιχη αθροιστική είναι ίδιες με τις αντίστοιχες των βαθέων υδάτων (Εικόνα 3.20 έως Εικόνα 3.22).

Εικόνα 3.35 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) του χαρακτηριστικού ύψους κύματος H_s για τις περιπτώσεις λογαριθμοκανονικής κατανομής και κατανομής Weibull, για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

Εικόνα 3.36 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) του χαρακτηριστικού ύψους κύματος H_s για τις περιπτώσεις λογαριθμοκανονικής κατανομής και κατανομής Weibull, για το βάθος d = 8.19m για τα ανεμογενή κύματα (wind-generated)

Εικόνα 3.37 Αθροιστική περιθώρια κατανομή (cumulative marginal distribution) του χαρακτηριστικού ύψους κύματος H_s για τις περιπτώσεις λογαριθμοκανονικής κατανομής και κατανομής Weibull, για το βάθος d = 5.04m για τα κύματα αποθάλασσας (swell)

Τελικά, η μεγιστοποίηση του φυσικού λογαρίθμου του γινομένου συμβαίνει για:

- i. $\psi_{Total} = 8.451$, $\psi_{Wind-generated} = 7.478$ και $\psi_{Swell} = 1.056$ για το βάθος d, για την περίπτωση λογαριθμοκανονικής κατανομής και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m
- ii. $\psi_{Total} = 8.481$, $\psi_{Wind-generated} = 8.039$ και $\psi_{Swell} = 7.921$ για το βάθος d, για την περίπτωση κατανομής Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονικής κατανομής για τη μέση περίοδο T_m

Οι αριθμητικές τιμές της από κοινού πυκνότητας πιθανότητας του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , $f_{\vec{X}}^P(x_1, x_2; \vec{\theta})$ που είναι και το ζητούμενο, παρουσιάζονται για τις δύο διαφορετικές περιπτώσεις κατανομών στους Πίνακες Α.34 έως Α.39 στο Παράρτημα Α. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

3.3.4.4. Μοντέλο με μετασχηματισμούς Box-Cox

Το μοντέλο με μετασχηματισμούς Box-Cox εφαρμόζεται σύμφωνα με την παράγραφο 3.3.2.4, με μόνη διαφορά στον Πίνακα εισαγωγής δεδομένων, ο οποίος είναι πλέον ο Πίνακας 3.20 για την περίπτωση του συνόλου των κυμάτων, ο Πίνακας 3.21 για την περίπτωση των ανεμογενών κυματισμών και ο Πίνακας 3.22 για την περίπτωση των κυμάτων αποθάλασσας για το δεδομένο βάθος $d_{total} = 8.68m$, $d_{wind} = 8.19m$ και $d_{swell} = 5.04m$.

Υπολογίζονται οι παράμετροι μετασχηματισμού λ_1 και λ_2 , οι μέσες τιμές και διακυμάνσεις των μετασχηματισμένων πληθυσμών $\mu_{Y_1}, \mu_{Y_2}, \sigma_{Y_1}^2, \sigma_{Y_2}^2$ και ο συντελεστής συσχέτισης ρ ανάμεσα στους μετασχηματισμένους πληθυσμούς Y_1 και Y_2 .

Εφαρμόζονται οι σχέσεις (2.40) και (2.41) και υπολογίζεται η πυκνότητα πιθανότητας πρώτα των μετασχηματισμένων μεταβλητών και κατόπιν των αρχικών μεταβλητών H_s και T_m . Τα αποτελέσματα της πυκνότητας πιθανότητας των αρχικών μεταβλητών παρουσιάζονται στους Πίνακες A.40 έως A.42 στο Παράρτημα A. Οι αντίστοιχες πιθανοτικές εικόνες παρουσιάζονται στο Κεφάλαιο 4.

3.4. Εφαρμογή στις υπόλοιπες περιοχές μελέτης

Η διαδικασία που ακολουθήθηκε για την περιοχή του Άθω (M1), βλ. Παράγραφο 3.3, εφαρμόζεται ομοίως και για τις υπόλοιπες περιοχές μελέτης. Η διαφοροποίηση έγκειται στους Πίνακες εισαγωγής δεδομένων από κοινού συχνότητας εμφάνισης του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m για την κάθε περίπτωση κυματισμών (σύνολο κυμάτων, ανεμογενή κύματα, κύματα αποθάλασσας).

Για την περιοχή της Λέσβου (σημείο M2) οι αρχικοί Πίνακες εισαγωγής δεδομένων στα μοντέλα για τα βαθιά ύδατα, μετά την προεπεξεργασία, παρουσιάζονται στους Πίνακες 3.32 έως 3.34. Σημειώνεται ότι για την περίπτωση του συνόλου των κυματισμών οι κλάσεις είναι 29 (αντί για 26), καθώς εμφανίζονται μεγαλύτερες τιμές περιόδου σε σχέση με τις υπόλοιπες περιπτώσεις και με τις υπόλοιπες περιοχές (βλ. Πίνακα 3.3).

Για την περιοχή της Σαντορίνης (σημείο M5) οι αρχικοί Πίνακες εισαγωγής δεδομένων στα μοντέλα για τα βαθιά ύδατα, μετά την προεπεξεργασία, παρουσιάζονται στους Πίνακες 3.35 έως 3.37.

Επειδή η διαδικασία εφαρμογής των μοντέλων είναι όμοια με την αναλυτική εφαρμογή για την περιοχή του Άθω (σημείο M1), οι Πίνακες με τα αποτελέσματα για κάθε περιοχή δεν παρουσιάζονται, αλλά τα αποτελέσματα της μακροχρόνιας από κοινού κατανομής πυκνότητας πιθανότητας θα δοθούν σε διαγραμματική μορφή στο Κεφάλαιο 4 συγκεντρωτικά.

Για την εφαρμογή των μοντέλων στα αβαθή ύδατα, τα βάθη σχεδιασμού που επιλέγονται σύμφωνα με τη σχέση (3.12), παρουσιάζονται στον Πίνακα 3.31.

	ΒΑΘΟ	ΟΣ ΣΧΕΔΙΑΣΜΟ	DY EPFOY d
\sim	Άθως (M1)	Λέσβος (M2)	Σαντορίνη (M5)
TOTAL	d= 8.68 m	d=8.07 m	d=7.38 m
MIND	d=8.19 m	d=7.64 m	d=7.03 m
SWELL	d=5.04 m	d=4.58 m	d=5.00 m

Πίνακας 3.31 Βάθη σχεδιασμού έργου d για τις διάφορες περιοχές μελέτης και περιπτώσεις
κυματισμών

Η διαδικασία που εφαρμόζεται είναι όμοια με αυτήν που εφαρμόστηκε για την περιοχή του Άθω (M1), οπότε δεν αναλύεται περαιτέρω.

Πίνακας 3.32 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή της Λέσβου (M2) για το σύνολο των κυμάτων για τα βαθιά

-																															
										1	Τεριοχ	κή Λέο	σβου ((M2) γ	νια το	σύνολ	ιο τωι	<i>ι</i> κυμό	ιτων (total)											
κλάσ													Κλό	ισεις τ	ou Hs	(m)															
Tm	corl	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	6.75	7	Total
	300	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	6.75	7	7.25	
2 ·	÷ 2.25	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
2.25	÷ 2.5	370	399	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	769
2.5	÷ 2.75	937	1421	65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2423
2.75 ·	÷ 3	1017	1894	695	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3610
3 .	÷ 3.25	780	1524	1650	217	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4171
3.25	÷ 3.5	343	801	1816	829	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3859
3.5	÷ 3.75	138	326	1008	1314	376	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3182
3.75	÷ 4	44	138	491	1295	930	338	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3246
4 ·	+ 4.25	18	25	96	486	847	481	144	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2103
4.25	÷ 4.5	9	5	24	140	463	558	221	109	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1535
4.5	+ 4.75	3	3	5	25	148	411	259	202	67	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1128
4.75 ·	÷ 5	2	2	5	10	20	102	212	148	123	63	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	698
5 -	÷ 5.25	2	0	2	2	3	22	68	123	101	83	57	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	465
5.25	÷ 5.5	1	0	0	1	0	2	17	38	42	57	63	39	11	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	272
5.5	÷ 5.75	1	0	1	1	1	1	0	5	19	38	43	37	35	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	190
5.75 ·	÷ 6	0	1	0	0	0	1	0	2	0	4	12	22	12	23	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	88
6	÷ 6.25	0	0	0	0	0	0	1	0	0	1	2	3	4	12	5	4	4	0	0	0	0	0	0	0	0	0	0	0	0	36
6.25	÷ 6.5	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	1	3	3	0	0	0	0	0	0	0	0	0	0	0	11
6.5	÷ 6.75	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	1	0	1	0	0	0	0	0	0	0	0	0	0	7
6.75 ·	÷ 7	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	3	1	3	0	1	0	0	0	0	0	0	0	10
7	÷ 7.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.25 ·	÷ 7.5	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
7.5 ·	+ 7.75	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
7.75 ·	÷ 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8.25	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8.25	÷ 8.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8.5 ·	÷ 8.75	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8.75	÷ 9	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
9	9.25	5 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Тс	tal	3672	6539	5858	4324	2858	1938	933	636	359	252	189	103	63	45	17	10	9	6	2	3	0	1	0	0	0	0	0	0	0	27817

Πίνακας 3.33 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή της Λέσβου (M2) για τα ανεμογενή κύματα για τα βαθιά

									Πε	ριοχή	Λέσβ	ου (Ν	12) γιο	τα α	νεμογ	ενή κ	ύματο	ι (win	d-gen	erate	d)								
ку	άσει	стпс												Κλό	ισεις τ	ou Hs	(m)												
1	m la	مران در (مم	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	Total
			0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	
2	÷	2.25	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
2.2	25 ÷	2.5	390	427	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	817
2.	5 ÷	2.75	972	1485	79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2536
2.7	75 ÷	3	1054	1958	777	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3792
3	÷	3.25	793	1598	1715	223	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4329
3.2	25 ÷	3.5	343	829	1875	847	77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3971
3.	5 ÷	3.75	138	325	1043	1315	410	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3252
3.7	′5÷	4	41	136	497	1292	954	363	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3295
4	÷	4.25	16	27	96	474	877	512	153	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2164
4.2	25 ÷	4.5	7	1	23	132	469	576	250	127	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1591
4.	5 ÷	4.75	5	3	4	24	145	412	263	193	85	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1139
4.7	75 ÷	5	2	1	5	9	20	107	220	158	140	68	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	742
5	÷	5.25	2	0	1	1	2	19	66	123	99	93	66	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	475
5.2	25 ÷	5.5	1	0	0	1	0	3	15	34	49	63	65	39	14	1	0	0	0	0	0	0	0	0	0	0	0	0	285
5.	5 ÷	5.75	0	0	0	0	0	1	0	4	16	28	43	38	36	9	0	0	0	0	0	0	0	0	0	0	0	0	175
5.7	75 ÷	6	0	0	0	0	0	0	0	2	1	3	13	17	14	24	8	0	0	0	0	0	0	0	0	0	0	0	82
6	÷	6.25	0	0	0	0	0	0	0	0	0	0	2	0	4	6	6	6	4	0	0	0	0	0	0	0	0	0	28
6.2	25 ÷	6.5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	1	4	1	1	0	0	0	0	0	0	0	11
6.	5 ÷	6.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	3	1	1	1	0	0	0	0	0	0	8
6.7	75 ÷	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
7	÷	7.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.2	25 ÷	7.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.	5 ÷	7.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.7	′5÷	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	÷	8.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.2	25 ÷	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Tot	al	3770	6790	6115	4321	2954	2014	979	650	396	260	201	97	69	40	19	7	11	2	2	1	1	0	0	0	0	0	28699

Πίνακας 3.34 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή της Λέσβου (M2) για τα κύματα αποθάλασσας για τα βαθιά

					Πε	ριοχή	Λέσβ	ου (Μ	2) για	τα κύ	ματα	αποθ	άλασ	σας (s	well)							
Κλάσεις της									Kλ	άσεια	του Η	ls (m)										
Tm (sec)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	Total
111 (300)	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	
10 ÷ 10.5	23	2	2	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30
10.5 ÷ 11	184	83	36	14	2	4	3	1	0	1	0	0	1	0	0	0	0	0	0	0	0	329
11 ÷ 11.5	453	94	21	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	570
11.5 ÷ 12	483	28	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	513
12 ÷ 12.5	596	23	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	620
12.5 ÷ 13	826	14	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	841
13 ÷ 13.5	1516	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1523
13.5 ÷ 14	2207	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2211
14 ÷ 14.5	2486	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2489
14.5 ÷ 15	7582	67	39	3	4	0	4	3	1	0	0	0	0	0	0	0	0	0	0	0	0	7703
15 ÷ 15.5	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	31
15.5 ÷ 16	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
16 ÷ 16.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16.5 ÷ 17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 ÷ 17.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.5 ÷ 18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18 ÷ 18.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.5 ÷ 19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19 ÷ 19.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.5 ÷ 20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20 ÷ 20.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	16392	325	102	21	6	4	8	4	1	1	0	0	1	0	0	0	0	0	0	0	0	16865

Πίνακας 3.35 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή της Σαντορίνης (M5) για το σύνολο των κυμάτων για τα βαθιά

										Περια	οχή Σο	ιντορί	ίνης (Ν	/15) γι	α το σ	ύνολα	των	κυμάτ	:ων (te	otal)									
κλάα	751	TNC												Κλά	σεις τ	ou Hs	(m)												
Tm	lsi	-c)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	Total
	1.0	,	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	
2	÷	2.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.25	÷	2.5	73	83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	156
2.5	÷	2.75	204	762	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	998
2.75	÷	3	291	1723	743	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2759
3	÷	3.25	329	1410	2199	258	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4196
3.25	÷	3.5	246	817	2014	1588	66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4731
3.5	÷	3.75	150	479	1040	1832	764	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4280
3.75	÷	4	90	344	679	1091	1421	466	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4093
4	÷	4.25	41	129	294	492	709	918	169	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2755
4.25	÷	4.5	29	67	108	256	351	661	525	103	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2103
4.5	÷	4.75	11	34	63	118	194	290	416	358	72	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1558
4.75	÷	5	15	25	32	44	90	126	167	259	232	85	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1078
5	÷	5.25	11	16	18	22	43	52	93	122	166	158	37	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	740
5.25	÷	5.5	8	9	10	15	22	22	31	41	69	101	92	36	1	0	0	0	0	0	0	0	0	0	0	0	0	0	457
5.5	÷	5.75	4	3	3	4	8	13	9	17	24	37	70	58	21	2	0	0	0	0	0	0	0	0	0	0	0	0	273
5.75	÷	6	2	1	2	2	3	3	5	13	10	13	24	23	30	17	7	1	0	0	0	0	0	0	0	0	0	0	156
6	÷	6.25	0	0	1	3	1	1	2	7	10	10	7	10	13	15	10	3	1	0	0	0	0	0	0	0	0	0	94
6.25	÷	6.5	1	0	0	1	1	0	0	1	1	0	2	3	2	6	4	6	0	0	0	0	0	0	0	0	0	0	28
6.5	÷	6.75	1	0	1	0	0	0	0	1	1	2	0	1	0	0	3	9	0	0	0	0	0	0	0	0	0	0	19
6.75	÷	7	0	0	0	1	0	0	1	1	0	1	0	0	0	0	1	2	0	1	1	0	0	0	0	0	0	0	9
7	÷	7.25	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	5
7.25	÷	7.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
7.5	÷	7.75	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2
7.75	÷	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	÷	8.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.25	÷	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Т	ota	al	1506	5902	7239	5731	3673	2567	1420	926	588	410	235	133	67	42	25	21	2	1	2	1	0	0	0	0	0	0	30491

Πίνακας 3.36 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή της Σαντορίνης (M5) για τα ανεμογενή κύματα για τα βαθιά

									Περι	ιοχή Σ	αντορ	οίνης (M5) γ	ια τα	ανεμα	ογενή	κύμα	τα (wi	nd-ge	nerat	ed)								
κλά	מכוו	C THC												Κλά	σεις τ	ou Hs	(m)												
Tn	nis	۲ ניוז ۱۶ פר)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	Total
	. (3	,	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	
2	÷	2.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.25	÷	2.5	75	84	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	159
2.5	÷	2.75	204	773	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1009
2.75	÷	3	297	1718	746	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2763
3	÷	3.25	330	1417	2225	257	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4229
3.25	÷	3.5	244	817	2016	1602	69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4748
3.5	÷	3.75	151	483	1038	1843	779	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4309
3.75	÷	4	89	343	682	1082	1418	485	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4101
4	÷	4.25	42	124	292	504	724	922	179	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2790
4.25	÷	4.5	28	67	104	256	363	671	529	115	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2137
4.5	÷	4.75	16	34	71	118	180	275	424	360	76	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1557
4.75	÷	5	13	25	27	44	81	129	176	257	244	81	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1080
5	÷	5.25	12	19	21	19	41	61	86	115	159	163	39	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	739
5.25	÷	5.5	5	5	8	8	16	11	20	35	61	109	91	33	1	0	0	0	0	0	0	0	0	0	0	0	0	0	403
5.5	÷	5.75	5	3	4	5	5	6	4	9	16	40	75	58	21	3	0	0	0	0	0	0	0	0	0	0	0	0	254
5.75	÷	6	0	1	2	2	0	0	6	8	6	9	11	24	32	16	8	1	0	0	0	0	0	0	0	0	0	0	126
6	÷	6.25	0	0	1	1	1	0	0	4	7	3	1	7	10	11	14	3	1	0	0	0	0	0	0	0	0	0	64
6.25	÷	6.5	1	0	1	0	0	0	0	0	1	1	0	0	1	1	3	4	0	0	0	0	0	0	0	0	0	0	13
6.5	÷	6.75	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2	3	0	1	0	0	0	0	0	0	0	0	8
6.75	÷	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	2
7	÷	7.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.25	÷	7.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
7.5	÷	7.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.75	÷	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	÷	8.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.25	÷	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	ota	al	1512	5913	7270	5743	3677	2575	1426	906	575	409	220	126	65	32	27	11	2	1	2	0	0	0	0	0	0	0	30492

Πίνακας 3.37 Από κοινού συχνότητες εμφάνισης του χαρακτηριστικού ύψους κύματος και της μέσης περιόδου για την περιοχή της Σαντορίνης (M5) για τα κύματα αποθάλασσας για τα βαθιά

					Περι	οχή Σα	αντορ	ίνης (M5) γ	ιαται	κύματ	α απο	οθάλα	ισσας	(swel	I)						
Κλάσεις της									K)	άσεια	; του Η	ls (m)										
Tm (sec)	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	Total
(500)	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	
10 ÷ 10.5	66	31	10	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	111
10.5 ÷ 11	1043	349	131	41	21	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1595
11 ÷ 11.5	1535	210	78	50	14	8	5	2	1	0	0	0	0	0	0	0	0	0	0	0	0	1903
11.5 ÷ 12	1339	46	8	9	11	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1420
12 ÷ 12.5	1440	28	2	1	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1475
12.5 ÷ 13	1792	19	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1815
13 ÷ 13.5	2349	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2356
13.5 ÷ 14	2764	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2764
14 ÷ 14.5	2708	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2708
14.5 ÷ 15	5009	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5015
15 ÷ 15.5	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13
15.5 ÷ 16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16 ÷ 16.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16.5 ÷ 17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 ÷ 17.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.5 ÷ 18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18 ÷ 18.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.5 ÷ 19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19 ÷ 19.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.5 ÷ 20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20 ÷ 20.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	20058	694	231	104	48	22	13	2	2	0	1	0	0	0	0	0	0	0	0	0	0	21175

4. Αποτελέσματα και συγκριτική αξιολόγηση των μοντέλων

Στο παρόν Κεφάλαιο παρατίθενται σε μορφή διαγραμμάτων τα αποτελέσματα που προέκυψαν από την εφαρμογή των μοντέλων για την περιοχή του Άθω (M1), της Λέσβου (M2) και της Σαντορίνης (M5), με δεδομένα ζευγών, που ελήφθησαν, ύψους κύματος H_s και μέσης περιόδου T_m και επεξεργάστηκαν κατάλληλα. Πιο συγκεκριμένα, παρουσιάζονται οι κατανομές από κοινού πυκνότητας πιθανότητας μεταξύ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου κύματος T_m , με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας (contours). Για τη σύγκριση, παρουσιάζεται επίσης διάγραμμα με τα πρωτογενή δεδομένα χωρίς την εφαρμογή οποιουδήποτε μοντέλου. Για την καλύτερη αναπαράσταση των διαγραμμάτων χρησιμοποιήθηκε το πρόγραμμα Surfer. Τα διαγράμματα αφορούν και τις τρεις περιπτώσεις κυματισμών: σύνολο κυμάτων (total), ανεμογενή (wind-generated) και κύματα αποθάλασσας (swell).

Ανακεφαλαιώνοντας, τα διαγράμματα που παρουσιάζονται είναι:

α) Διάγραμμα πρωτογενών δεδομένων (H_s, T_m) χωρίς την εφαρμογή μοντέλου

β) Μοντέλο δεσμευμένης πιθανότητας με προσαρμογή λογαριθμοκανονικής (Lognormal) κατανομής και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο $T_m | H_s$

γ) Μοντέλο δεσμευμένης πιθανότητας με κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο $T_m|H_s$

δ) Μοντέλο Bivariate-Lognormal του Ochi (1978)

ε) Μοντέλο Bivariate-Lognormal των Fang και Hogben (1982) με διόρθωση λόγω ασυμμετρίας

στ) Μοντέλο Plackett με λογαριθμοκανονική κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)

ζ) Μοντέλο Plackett με κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική κατανομή για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)

η) Μοντέλο με μετασχηματισμούς Box-Cox

Συνοπτικά, παρατίθενται τα διαγράμματα καμπυλών ίσης πυκνότητας πιθανότητας που αφορούν τα δεδομένα στα βαθιά ύδατα καθώς και στο βάθος σχεδιασμού *d* (Πίνακας 3.31), πριν και μετά την εφαρμογή των μοντέλων.

4.1. Αποτελέσματα στα βαθιά ύδατα

Αρχικά, παρατίθενται τα διαγράμματα που αφορούν στα βαθιά ύδατα. Τα διαγράμματα παρουσιάζονται ανά περιοχές (Άθω (Μ1), Λέσβου (Μ2), Σαντορίνης (Μ5)) και ανά περίπτωση κυματισμού (σύνολο, ανεμογενείς, αποθάλασσες).

Στο πρώτο διάγραμμα κάθε Εικόνας (α) παρουσιάζεται η κατανομή από κοινού πυκνότητας πιθανότητας των (H_s, T_m) σύμφωνα με τα πρωτογενή δεδομένα σταθερού εύρους κλάσεων για τα βαθιά ύδατα χωρίς την εφαρμογή μοντέλου (βάσει των στοιχείων των Πινάκων 3.6 έως 3.8 για την περιοχή του Άθω και των Πινάκων 3.32 έως 3.37 για τις άλλες περιοχές). Στα επόμενα διαγράμματα κάθε Εικόνας, (β) εώς (η), παρουσιάζονται οι από κοινού κατανομές πυκνότητας πιθανότητας των (H_s, T_m) με την εφαρμογή διαδοχικά των μοντέλων. Η αρίθμηση των μοντέλων γίνεται σύμφωνα με τη σελ. 91 του Κεφαλαίου 4.

Σε κάθε διάγραμμα εφαρμογής μοντέλου αναγράφεται, επίσης, η τιμή του σφάλματος που του αντιστοιχεί, σύμφωνα με το τετράγωνο της Ευκλείδειας απόστασης D², το οποίο αποτελεί μια ποσοτικοποίηση της απόκλισης του μοντέλου από τα αρχικά δεδομένα. Τα σφάλματα παρουσιάζονται συγκεντρωτικά και σχολιάζονται παρακάτω στο υποκεφάλαιο 4.3.

Εικόνα 4.1 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή του Άθω (M1) για το σύνολο των κυμάτων (total).

Αρίθμηςη μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.2 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή του Άθω (M1) για τα ανεμογενή κύματα (windgenerated).

Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.3 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή του Άθω (M1) για τα κύματα αποθάλασσας (swell). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.4 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή της Λέσβου (M2) για το σύνολο των κυμάτων (total). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.5 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή της Λέσβου (M2) για τα ανεμογενή κύματα (wind-generated). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.6 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή της Λέσβου (M2) για τα κύματα αποθάλασσας (swell). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.7 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή της Σαντορίνης (M5) για το σύνολο των κυμάτων (total). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.8 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή της Σαντορίνης (M5) για τα κύματα αποθάλασσας (wind-generated). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.9 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για τα βαθιά ύδατα για την περιοχή της Σαντορίνης (M5) για τα κύματα αποθάλασσας (swell). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Σημειώνεται πως για την περίπτωση των κυμάτων αποθάλασσας και τις περιοχές της Λέσβου (M2) και της Σαντορίνης (M5) στις Εικόνες 4.6 και 4.9 αντίστοιχα, δεν παρουσιάζεται η περίπτωση του μοντέλου Bivariate-Lognormal (ii) κατά τους Fang και Hogben (1982). Το παραπάνω συμβαίνει για τον εξής λόγο: Το συγκεκριμένο μοντέλο στις δύο αυτές περιοχές δεν προσαρμόζεται καλά στα δεδομένα των κυμάτων αποθάλασσας, όπως θα φανεί εξάλλου και στη συνέχεια με τα σφάλματα που δίνει, και τα αποτελέσματα πυκνότητας πιθανότητας που δίνει έχουν πολύ μικρές τιμές με αποτέλεσμα να μη φαίνονται στις εικόνες με το βήμα της πυκνότητας πιθανότητας που έχει επιλεχθεί.

4.2. Αποτελέσματα στο βάθος σχεδιασμού d

Στο παρόν υποκεφάλαιο παρουσιάζονται τα διαγράμματα κατανομών από κοινού πυκνότητας πιθανότητας μεταξύ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου κύματος T_m , με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας (contours), που αντιστοιχούν στο εκάστοτε βάθος σχεδιασμού πιθανού έργου d (Πίνακας 3.31). Η δομή της παρούσας παραγράφου είναι όμοια με της προηγούμενης. Τα διαγράμματα παρουσιάζονται ανά περιοχές (Άθω (M1), Λέσβου (M2), Σαντορίνης (M5)) και ανά περίπτωση κυματισμού (σύνολο, ανεμογενείς, αποθάλασσες).

Στο πρώτο διάγραμμα κάθε Εικόνας (α) παρουσιάζεται η κατανομή από κοινού πυκνότητας πιθανότητας των (H_s, T_m) σύμφωνα με τα πρωτογενή δεδομένα σταθερού εύρους κλάσεων για τα βαθιά ύδατα χωρίς την εφαρμογή μοντέλου (βάσει των στοιχείων των Πινάκων 3.20 έως 3.22 για την περιοχή του Άθω και των αντίστοιχων Πινάκων για τις άλλες περιοχές). Στα επόμενα διαγράμματα κάθε Εικόνας, (β) εώς (η), παρουσιάζονται οι από κοινού κατανομές πυκνότητας πιθανότητας των (H_s, T_m) με την εφαρμογή διαδοχικά των μοντέλων. Η αρίθμηση των μοντέλων γίνεται σύμφωνα με τη σελ.91 του Κεφαλαίου 4.

Σε κάθε διάγραμμα εφαρμογής μοντέλου αναγράφεται, επίσης, η τιμή του σφάλματος που του αντιστοιχεί, σύμφωνα με το τετράγωνο της Ευκλείδειας απόστασης D², το οποίο αποτελεί μια ποσοτικοποίηση της απόκλισης του μοντέλου από τα αρχικά δεδομένα. Τα σφάλματα παρουσιάζονται συγκεντρωτικά και σχολιάζονται παρακάτω στο υποκεφάλαιο 4.3.

Παρατηρείται ότι υπάρχουν διαφορές στις κατανομές της από κοινού πυκνότητας πιθανότητας των (H_s, T_m) μεταξύ των βαθιών νερών και του εκάστοτε βάθους d, που αντιστοιχεί σε αβαθή ύδατα. Αναλυτικότερα, οι καμπύλες μετατοπίζονται (προς τα κάτω εν γένει) καθώς ο κυματισμός προχωρά από τα βαθιά ύδατα προς την ακτή και το βάθος του νερού ελαττώνεται. Η μετατόπιση αυτή οφείλεται στις τιμές του συντελεστή ρήχωσης K_s . Παρατηρούμε επίσης, ότι για μικρά ύψη κύματος $(H_s < 1.2m \pi epíπou)$ οι καμπύλες είναι σχεδόν ίδιες για τα βαθιά. Αυτό είναι λογικό, αφού τα μικρά ύψη κύματος (μικρότερα του 1.2m) δεν επηρεάζονται στο δεδομένο βάθος από τον πυθμένα, δεν υφίστανται ρήχωση και επομένως δε μεταβάλλεται η κλάση τους στον Πίνακα από κοινού συχνότητας εμφάνισης (H_s, T_m) , κατά τη διάδοση του κυματισμού από τα βαθιά ύδατα στο βάθος σχεδιασμού d.

Σημειώνεται πως και στα αβαθή ύδατα, για την περίπτωση των κυμάτων αποθάλασσας και τις περιοχές της Λέσβου (M2) και της Σαντορίνης (M5) στις Εικόνες 4.15 και 4.18 αντίστοιχα, δεν παρουσιάζεται η περίπτωση του μοντέλου Bivariate-Lognormal (ii) κατά τους Fang και Hogben (1982), για τον ίδιο λόγο που δεν παρουσιάστηκε ούτε στα βαθιά ύδατα.

Εικόνα 4.10 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d =8.68m για την περιοχή του Άθω (M1) για το σύνολο των κυμάτων (total). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.11 Από κοινού κατανομές των (H_s , T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d =8.19m για την περιοχή του Άθω (M1) για τα ανεμογενή κύματα (windgenerated). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.12 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d = 5.04mγια την περιοχή του Άθω (M1) για τα κύματα αποθάλασσας (swell). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.13 Από κοινού κατανομές των (H_s , T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d = 8.07m για την περιοχή της Λέσβου (M2) για το σύνολο των κυμάτων (total). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.14 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d = 7.64m για την περιοχή της Λέσβου (M2) για τα ανεμογενή κύματα (wind-generated). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.15 Από κοινού κατανομές των (H_s , T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d = 4.58m για την περιοχή της Λέσβου (M2) για τα κύματα αποθάλασσας (swell). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.16 Από κοινού κατανομές των (H_s, T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d = 7.38m για την περιοχή της Σαντορίνης (M5) για το σύνολο των κυμάτων (total). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.17 Από κοινού κατανομές των (H_s , T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d = 7.03m για την περιοχή της Σαντορίνης (M5) για τα ανεμογενή κύματα (wind-generated). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

Εικόνα 4.18 Από κοινού κατανομές των (H_s , T_m) με τη μορφή καμπυλών ίσης πυκνότητας πιθανότητας για το εκάστοτε βάθος σχεδιασμού d = 5.00m για την περιοχή της Σαντορίνης (M5) για τα κύματα αποθάλασσας (swell). Αρίθμηση μοντέλων σύμφωνα με σελ. 91.

4.3. Σφάλματα μοντέλων

Για τη σύγκριση των μοντέλων είναι αναγκαίο, όπως αναφέρθηκε παραπάνω, να υιοθετείται ένα μέτρο ποσοτικοποίησης της ποιότητας προσαρμογής της κατανομής στα δεδομένα. Επομένως, για κάθε μοντέλο, περιοχή, περίπτωση κυματισμού και βάθος υδάτων (βαθιά ύδατα ή εκάστοτε βάθος σχεδιασμού d) υπολογίζεται το αντίστοιχο σφάλμα. Όπως αναφέρθηκε στην Παράγραφο 2.5, τα σφάλματα στην παρούσα μεταπτυχιακή εργασία έχει αποφασιστεί να υπολογίζονται σύμφωνα με το τετράγωνο της Ευκλείδειας απόστασης D^2 , που μετράει την απόσταση ανάμεσα στη θεωρητική κατανομή και την εμπειρική από τα δεδομένα. Για κάθε υποπερίπτωση, λοιπόν, εφαρμόζεται η σχέση (2.42) ή (2.43) και υπολογίζεται το σφάλμα του κάθε μοντέλου. Τα σφάλματα για όλα τα μοντέλα και τις υποπεριπτώσεις που εξετάστηκαν, παρουσιάζονται συγκεντρωτικά στον Πίνακα 4.1. Να σημειωθεί πως όσο πιο μικρή είναι η τιμή του τετραγώνου της Ευκλείδειας απόστασης, τόσο πιο καλά περιγράφει το μοντέλο τα πραγματικά δεδομένα. Για την εκτίμηση των ανεκτών σφαλμάτων δεν υπάρχουν συγκεκριμένα όρια στη βιβλιογραφία, αλλά έχει συγκριθεί το εύρος των τιμών με παρόμοιες εφαρμογές από άλλους ερευνητές (πχ. Lucas και Guedes Soares (2015, 2016), Athanassoulis et al. (1994)).

		ΒΑΘΙΑ					A	ΑΒΑΘΗ ΥΔΑΤΑ	1	
	Άθως (M1)	Λέσβος (M2)	Σαντορίνη (M5)		Άθ	θως (M1)	٨	έσβος (M2)	Σαν	ντορίνη (M5)
Cond Log	0.0022	0.0044	0.0047			0.0022		0.0044		0.0051
Cond Weib	0.0014	0.0032	0.0050		_	0.0011	_	0.0029	_	0.0051
Biv Log	0.0109	0.0068	0.0051	`	8 π	0.0109	7 m	0.0072	8 1	0.0054
Biv Log Cor	0.0107	0.0084	0.0079	OT	8.6	0.0116	8.0	0.0095	7.3	0.0111
Plack Log	0.0049	0.0076	0.0076	N.	d=	0.0052	d=	0.0079	ц Ц	0.0080
Plack Weib	0.0067	0.0146	0.0166			0.0076		0.0160		0.0185
Box-Cox	0.0055	0.0057	0.0044			0.0055		0.0056		0.0046
Cond Log	0.0021	0.0041	0.0045			0.0021		0.0040		0.0051
Cond Weib	0.0012	0.0031	0.0048		_	0.0010	_	0.0027	_	0.0050
Biv Log	0.0109	0.0067	0.0050		9 m	0.0109	4 m	0.0070	3π	0.0053
Biv Log Cor	0.0109	0.0082	0.0083	NIN,	8.1	0.0120	7.6	0.0093	7.0	0.0118
Plack Log	0.0049	0.0074	0.0076		d=	0.0051	d=	0.0076	цщ Ц	0.0079
Plack Weib	0.0071	0.0145	0.0169			0.0080		0.0159		0.0190
Box-Cox	0.0056	0.0056	0.0045			0.0055		0.0055		0.0046
Cond Log	0.4149	0.8166	0.5561			0.2397		0.6198		0.3356
Cond Weib	0.1197	0.2199	0.1126		_	0.1124	_	0.2238		0.0902
Biv Log	0.1314	0.1942	0.0718	<u> </u>	4 m	0.1204	8 π	0.1748	E	0.0622
Biv Log Cor	0.1610	0.6757	0.4557	WE	5.0	0.1417	4.5	0.8392	ц Ц	0.5137
Plack Log	0.4784	0.9920	0.3347	.4	d=	0.2944	d =	0.5761	σ	0.2285
Plack Weib	0.1698	0.2279	0.1056			0.1666		0.2250		0.1029
Box-Cox	0.1168	0.1762	0.0728			0.1020		0.1409		0.0576

Πίνακας 4.1 Συγκριτικός Πίνακας σφαλμάτων μοντέλων σύμφωνα με το τετράγωνο της Ευκλείδειας απόστασης D²

4.4. Σχολιασμός και σύγκριση μεθόδων

Στο παρόν υποκεφάλαιο της μεταπτυχιακής εργασίας, μετά την ολοκληρωμένη εφαρμογή των επτά επικρατέστερων θεωρητικών μοντέλων -σύμφωνα με τη μέχρι σήμερα θεωρητική γνώση- στα δεδομένα των τριών θαλάσσιων περιοχών του Ελλαδικού χώρου, ακολουθεί ο σχολιασμός των αποτελεσμάτων και η σύγκριση των μοντέλων. Για να εξαχθούν ασφαλή και έγκυρα συμπεράσματα λαμβάνονται υπόψη οι εικόνες με τις καμπύλες πυκνότητας πιθανότητας, καθώς και τα σφάλματα κάθε μοντέλου.

Ως πρώτο σχόλιο, αξίζει να αναφερθεί πως ο διαχωρισμός των κυμάτων στις συνιστώσες τους, σε ανεμογενή και αποθάλασσες δηλαδή, φαίνεται να έχει ουσιαστικό νόημα για την ποιότητα της προσαρμογής των μοντέλων. Όπως διαπιστώθηκε τα κύματα αποθάλασσας δεν αναπαριστώνται ικανοποιητικά από τα παραπάνω μοντέλα εν γένει ή έστω παρουσιάζουν αρκετά χειρότερη προσαρμογή σε σχέση με την προσαρμογή των ανεμογενών κυμάτων. Αυτό επιβεβαιώνεται αφού τα σφάλματα για την περίπτωση των αποθαλασσών είναι μεγάλα και επίσης τα σφάλματα των ανεμογενών σε σχέση με τα αντίστοιχα για το σύνολο των κυματισμών είναι μικρότερα εν γένει και άρα βελτιωμένα. Για παράδειγμα, για την περιοχή του Άθω για τα βαθιά ύδατα το βέλτιστο σφάλμα για τις αποθάλασσες είναι $D^2_{BoxCox}=0.1168,$ ενώ για τα ανεμογενή κύματα είναι $D^2_{CondWeib}=$ 0.0012, το οποίο είναι δύο τάξεις μικρότερο. Για το σύνολο των κυμάτων το βέλτιστο σφάλμα είναι $D_{CondWeib}^2 = 0.0014$ που είναι χειρότερο από των ανεμογενών $(D_{CondWeib}^2 = 0.0012)$, αλλά κοντά σε αυτό, το οποίο είναι λογικό μιας και το ποσοστό των αποθαλασσών είναι μικρό στα συγκεκριμένα δεδομένα σε σχέση με το σύνολο των κυμάτων. Επομένως, τα θεωρητικά μοντέλα είναι προτιμότερο να εφαρμόζονται σε «ομογενή» δεδομένα ανεμογενών κυματισμών, ώστε να έχουν καλύτερη προσαρμογή και κατ' επέκταση να συμβάλλουν με περισσότερη ακρίβεια στο σχεδιασμό των λιμενικών και παράκτιων έργων.

Στη συνέχεια, ακολουθεί η σύγκριση των μοντέλων για τα ανεμογενή δεδομένα. Καλύτερο μοντέλο φαίνεται να είναι το μοντέλο δεσμευμένης πιθανότητας με κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο $T_m | H_s$. Η παραπάνω γενική τάση φαίνεται να μην ισχύει για την περίπτωση της Σαντορίνης, όπου υπερτερούν τα μοντέλα με μετασχηματισμούς Box-Cox. Το σφάλμα του μοντέλου με μετασχηματισμούς Box-Cox για την περίπτωση της Σαντορίνης είναι όμοιας τάξης με το αντίστοιχο των μοντέλων με μετασχηματισμούς Box-Cox για τις άλλες περιοχές, οπότε η μέθοδος αυτή δείχνει να έχει παρόμοια προσαρμογή και στη Σαντορίνη και στις άλλες περιοχές. Το μοντέλο δεσμευμένης πιθανότητας όμως φαίνεται να μην αποδίδει εξίσου στην περίπτωση της Σαντορίνης. Μια πιθανή εξήγηση μπορεί να είναι η μη καλή προσαρμογή της εμπειρικής συνάρτησης κατανομής που ορίζει τη σχέση ανάμεσα στην παράμετρο σ^2 (της λογαριθμικής συνάρτησης της μέσης περιόδου δεσμευμένης ως προς το ύψος κύματος) και στο ύψος κύματος. Στο αντίστοιχο διάγραμμα (Εικόνα 4.19) φαίνεται πως η εκθετική συνάρτηση πρώτου βαθμού που επιλέχθηκε δεν προσαρμόζεται καλά στα δεδομένα, ειδικά στις μεγάλες τιμές του ύψους κύματος, που είναι και οι πιο σημαντικές για το σχεδιασμό.

Εικόνα 4.19 Προσαρμογή εκθετικής κατανομής ανάμεσα στο H_s και την παράμετρο σ^2 για την περίπτωση των ανεμογενών κυματισμών (wind-generated) για τα βαθιά ύδατα για την περιοχή της Σαντορίνης (M5) (για μοντέλο δεσμευμένης πιθανότητας)

Συνεπώς, καλύτερο μοντέλο φαίνεται το μοντέλο δεσμευμένης πιθανότητας με κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο $T_m|H_s$, αρκεί να είναι ικανοποιητική η προσαρμογή των εμπειρικών κατανομών που περιγράφουν τη σχέση των παραμέτρων με το H_s , ιδιαίτερα στις ακραίες τιμές. Για το δεδομένο μοντέλο και οι καμπύλες πυκνότητας πιθανότητας φαίνεται να δίνουν ίδιας τάξης μεγέθους ύψη κύματος και συνολικά μοιάζουν οπτικά με τις αντίστοιχες των πρωτογενών δεδομένων. Αυτό επιβεβαιώνεται και από τα σφάλματα τα οποία είναι της τάξης του 1-3 ‰.

Το μοντέλο δεσμευμένης πιθανότητας με κατανομή Lognormal για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο $T_m|H_s$ είναι το επόμενο καλύτερο μοντέλο. Έχει παρόμοια προσαρμογή με το αντίστοιχο μοντέλο δεσμευμένης πιθανότητας με κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s . Φαίνεται πως το εν λόγω μοντέλο παρουσιάζει μια μικρή απόκλιση στα μέγιστα ύψη κύματος για συγκεκριμένη πυκνότητα πιθανότητας σε σχέση με τα πρωτογενή δεδομένα. Τα σφάλματα επιβεβαιώνουν την παραπάνω παρατήρηση.

Το μοντέλο Bivariate-Lognormal δε δείχνει να έχει καλή προσαρμογή σε σχέση με τα υπόλοιπα μοντέλα. Στις εικόνες με τις καμπύλες πυκνότητας πιθανότητας δείχνει να υποεκτιμά τα μέγιστα ύψη κύματος για δεδομένη πυκνότητα πιθανότητας. Στο συγκεκριμένο μοντέλο έχουν προσαρμοστεί λογαριθμοκανονικές κατανομές μόνο στις περιθώριες κατανομές του ύψους κύματος και της περιόδου, οπότε αξιοποιεί μικρότερη πληροφορία από τα δεδομένα σε σχέση με το μοντέλο δεσμευμένης πιθανότητας, το οποίο προσαρμόζει κατανομές στις από κοινού συχνότητες εμφάνισης -και όχι μόνο στις περιθώριες για την περίοδο κύματος.

Το ίδιο μειονέκτημα με το μοντέλο Bivariate-Lognormal φαίνεται να έχουν και τα μοντέλα Plackett. Και αυτά αξιοποιούν την πληροφορία των δεδομένων (της περιόδου) μόνο στις περιθώριες κατανομές τους. Σε σχέση με τις δύο περιπτώσεις μοντέλων Plackett που εφαρμόστηκαν, το μοντέλο με λογαριθμοκανονική κατανομή στο ύψος κύματος δείχνει να ταιριάζει πιο πολύ με τα πραγματικά πρωτογενή δεδομένα. Το σφάλμα που παρουσιάζει για τους ανεμογενείς κυματισμούς είναι της τάξης του 5-8‰, σε αντίθεση με το σφάλμα του μοντέλου Plackett με προσαρμογή κατανομής Weibull στο ύψος κύματος που είναι της τάξης του 7-17‰. Το μοντέλο Plackett με προσαρμογή κατανομής Weibull στο ύψος κύματος που είναι της τάξης του 7-17‰. Το μοντέλο Plackett με προσαρμογή κατανομής φαίνεται έντονα στις καμπύλες πυκνότητας πιθανότητας υπερεκτιμά κατά πολύ τα μέγιστα ύψη κύματος.

Σχετικά με το μοντέλο Bivariate-Lognormal η δεύτερη εκδοχή που παρουσιάστηκε, με διόρθωση λόγω της ασυμμετρίας στα ύψη κύματος, φαίνεται πως δεν παρουσίασε καμία βελτίωση στην προσαρμογή του μοντέλου, ίσως μάλιστα σε κάποιες περιπτώσεις χειροτέρευσε την προσαρμογή. Για παράδειγμα, για την περίπτωση της Σαντορίνης για τους ανεμογενείς κυματισμούς το σφάλμα του μοντέλου Bivariate-Lognormal κατά τον Ochi (εκδοχή i) είναι $D_{BivLog}^2 = 0.0050$, ενώ το αντίστοιχο των Fang and Hogben (εκδοχή ii) είναι $D_{BivLogCor}^2 = 0.0080$. Είναι γεγονός πάντως, πως στις συγκεκριμένες περιοχές που εξετάστηκαν, τα ύψη κύματος δεν παρουσιάζουν σημαντική ασυμμετρία (βλ. Πίνακα 3.19), οπότε ήταν αναμενόμενο ίσως η δεύτερη εκδοχή του μοντέλου να μην παρουσιάζει βελτίωση της αρχικής.

Σχετικά με το μοντέλο με μετασχηματισμούς Box-Cox, παρατηρείται πως το σφάλμα για την περίπτωση των ανεμογενών κυματισμών είναι της τάξης του 4.5-5.5‰ και δεν επηρεάζεται τόσο από την ιδιαιτερότητα των δεδομένων ανά περιοχή. Το ίδιο παρατηρείται και στις αντίστοιχες πιθανοτικές εικόνες, αφού μοιάζουν πολύ μεταξύ τους. Το συγκεκριμένο μοντέλο υποεκτιμά τα μέγιστα ύψη κύματος. Για παράδειγμα, για την περιοχή της Λέσβου για τους ανεμογενείς κυματισμούς το ύψος κύματος χωρίς την εφαρμογή του μοντέλου, μόνο με τα πρωτογενή δεδομένα, για πυκνότητα πιθανότητας 0.05 /(m×sec) είναι 2.5m, ενώ μετά την εφαρμογή του μοντέλου το αντίστοιχο ύψος κύματος είναι περίπου 2m (Εικόνα 4.5).

Το εν λόγω μοντέλο όμως, φαίνεται πως αποδίδει καλύτερα από τα υπόλοιπα για την περίπτωση των κυμάτων αποθάλασσας, αν και τα σφάλματα είναι μεγάλα γενικά (Πίνακας 4.1), αφού όπως αναφέρθηκε τα κύματα αποθάλασσας δεν αναπαριστώνται ικανοποιητικά από τα δεδομένα μοντέλα που ερευνήθηκαν. Μόνο για την περίπτωση της Σαντορίνης για

τα κύματα αποθάλασσας φαίνεται το μοντέλο Bivariate-Lognormal να έχει μικρότερο σφάλμα από το μοντέλο με μετασχηματισμούς Box-Cox, αλλά οι τιμές των σφαλμάτων είναι πολύ κοντινές (0.0718 και 0.0728 αντίστοιχα). Άρα το μοντέλο με μετασχηματισμούς Box-Cox μπορεί, σαν πρώτη εκτίμηση, να θεωρηθεί καταλληλότερο για τα κύματα αποθάλασσας σε σχέση με τα υπόλοιπα μοντέλα.

Επιπρόσθετα παρατηρείται πως η προσαρμογή των μοντέλων στα αβαθή ύδατα είναι παρόμοια με την αντίστοιχη προσαρμογή στα βαθιά ύδατα. Τα σφάλματα που προκύπτουν έχουν ελάχιστες διαφορές στην τιμή (Πίνακας 4.1) και οι πιθανοτικές εικόνες είναι παρόμοιες. Η διαφορά ανάμεσα στα βαθιά και τα αβαθή ύδατα (προ θραύσεως) είναι πως οι πιθανοτικές καμπύλες «μετατοπίζονται» ελαφρώς προς τα κάτω, όπως αναφέρθηκε ήδη, αλλά αυτό συμβαίνει για τα μεγαλύτερα ύψη κύματος και φαίνεται να μην επηρεάζει σημαντικά την προσαρμογή των θεωρητικών μοντέλων, τουλάχιστον στο βάθος που μελετήθηκε.

Τέλος, για το είδος της κατανομής μιας μεταβλητής (univariate distribution) που προσαρμόζεται στις περιθώριες συχνότητες του H_s (Lognormal και Weibull), σημειώνονται τα ακόλουθα. Αρχικά, στις πιθανοτικές εικόνες (περιπτώσεις (γ), (ζ)) που απεικονίζεται η κατανομή Weibull, βλέπουμε ότι οι καμπύλες ίσης πυκνότητας είναι πιο «ανοικτές» από κάτω, σε αντίθεση με τις πιθανοτικές εικόνες (περιπτώσεις (β), (ε)) που απεικονίζεται η κατανομή Lognormal και των οποίων οι καμπύλες είναι ή τείνουν να γίνουν «κλειστές». Αυτό ισχύει και για τα δύο μοντέλα δεσμευμένης πιθανότητας και Plackett που χρησιμοποιούν και τις δύο κατανομές. Η κατανομή Weibull είναι μια κατανομή ακραίων τιμών και θεωρείται περισσότερο αντιπροσωπευτική για μεγάλες τιμές του ύψους κύματος σε σχέση με τη λογαριθμοκανονική που συνιστάται για ανάλυση μέσων τιμών.

5. Συμπεράσματα – Προτάσεις

5.1. Συμπεράσματα εργασίας

Γίνεται ολοένα και πιο αποδεκτό από την επιστημονική κοινότητα ότι, πέραν του ύψους κύματος, σημαντικό ρόλο στη διαμόρφωση των κυματικών φορτίσεων επί εξωτερικών λιμενικών και παράκτιων έργων παίζει και η περίοδος των κυματισμών. Η εν λόγω παράμετρος προβλέπεται να ενσωματωθεί στο προσεχές μέλλον στα κριτήρια σχεδιασμού των ως άνω έργων μαζί με το ύψος κύματος.

Στην παρούσα εργασία μελετήθηκε η περιγραφή του κυματικού κλίματος, ώστε να είναι δυνατόν να εξαχθούν οι μεταβλητές αυτές φόρτισης, ύψος κύματος και περίοδος κύματος, για το σχεδιασμό λιμενικών και παράκτιων έργων.

Σύμφωνα με τα αποτελέσματα της εφαρμογής για τις τρεις θαλάσσιες περιοχές του Ελλαδικού χώρου (Άθως, Σαντορίνη, Λέσβος), πιο αντιπροσωπευτική για το σχεδιασμό λιμενικών και παράκτιων έργων θεωρείται η περίπτωση του μοντέλου δεσμευμένης πιθανότητας με κατανομή Weibull για το H_s και λογαριθμοκανονική κατανομή για την $T_m|H_s$. Το ίδιο συμπέρασμα προέκυψε και για τα βαθιά ύδατα και για το βάθος σχεδιασμού έργου d. Τα κυριότερα συμπεράσματα που προέκυψαν από τη σύγκριση παρατίθενται συγκεντρωτικά ακολούθως:

- Για την καλύτερη προσαρμογή των θεωρητικών μοντέλων είναι προτιμότερο τα δεδομένα να είναι «ομοιογενή», ανεμογενών κυματισμών. Τα κύματα αποθάλασσας θα πρέπει να μελετώνται ξεχωριστά, καθώς ακολουθούν διαφορετικές πιθανοτικές κατανομές.
- Η ποιότητα της προσαρμογής του θεωρητικού μοντέλου εξαρτάται πρώτον από την επιλογή του μοντέλου. Στη συγκεκριμένη εργασία, πιο αντιπροσωπευτικό θεωρητικό μοντέλο, για την περίπτωση των ανεμογενών κυματισμών, αποδείχθηκε το μοντέλο δεσμευμένης πιθανότητας.
- Δεύτερη παράμετρος που συμβάλλει στην ποιότητα της προσαρμογής του μοντέλου είναι η επιλογή της κατανομής του ύψους κύματος H_s. Για την περίπτωση του μοντέλου δεσμευμένης πιθανότητας καλύτερη περιθώρια κατανομή για το H_s αποδείχθηκε η κατανομή Weibull. Στην περίοδο προσαρμόστηκε λογαριθμοκανονική κατανομή.
- Πολλή προσοχή, κατά την εφαρμογή του μοντέλου δεσμευμένης πιθανότητας, πρέπει να δίνεται κατά την προσαρμογή των εμπειρικών κατανομών για την περιγραφή της σχέσης ανάμεσα στις παραμέτρους της λογαριθμικής κατανομής (που έχει προσαρμοστεί στην περίοδο δεσμευμένη ως προς το ύψος κύματος) και στα κέντρα των κλάσεων των υψών κύματος. Κυρίως, πρέπει να ελέγχεται η προσαρμογή στις ακραίες τιμές, ειδικά στα μεγάλα ύψη κύματος που μας ενδιαφέρουν περισσότερο για τον ακριβή σχεδιασμό των έργων. Μη καλή προσαρμογή του μοντέλου στα δεδομένα.

- Το μοντέλο δεσμευμένης πιθανότητας όσον αφορά τη μέση περίοδο κύματος προσαρμόζει κατανομές στις από κοινού συχνότητες εμφάνισης -και όχι στις περιθώριες- αξιοποιώντας έτσι όλη τη διαθέσιμη πληροφορία που εμπεριέχεται στα δεδομένα, σε αντίθεση με τα άλλα μοντέλα που προσαρμόζουν κατανομές στις περιθώριες μόνο τιμές της.
- Το μοντέλο Bivariate-Lognormal με διόρθωση λόγω ασυμμετρίας στα ύψη κύματος, δεν προσφέρει κάτι παραπάνω σε σχέση με το αρχικό μοντέλο Bivariate-Lognormal του Ochi (1978).
- Το Μοντέλο με μετασχηματισμούς Box-Cox αποδίδει καλύτερα από τα υπόλοιπα για την περίπτωση των κυμάτων αποθάλασσας, αν και τα σφάλματα είναι μεγάλα γενικά, αφού όπως αναφέρθηκε τα κύματα αποθάλασσας δεν αναπαριστώνται ικανοποιητικά από τις τυπικές κατανομές των μοντέλων που ερευνήθηκαν.

Εν κατακλείδι, για το (μελλοντικό) προχωρημένο πιθανοτικό σχεδιασμό έργων θα απαιτείται η γνώση της από κοινού πιθανότητας του ύψους κύματος και της περιόδου. Η προσαρμογή θεωρητικών κατανομών στα δύο αυτά μεγέθη σχεδιασμού, οι οποίες έπειτα υπεισέρχονται στα μοντέλα, παρέχει πληρέστερη περιγραφή του μακροχρόνιου κυματικού κλίματος. Οι θεωρητικές κατανομές μπορούν να απεικονίσουν όλο το εύρος των πιθανοτήτων, ακόμη και τις πολύ μικρές πιθανότητες, που για διάφορους λόγους δεν έχουν συμπεριληφθεί στο δείγμα των δεδομένων και επίσης, καθιστούν δυνατή την εκτίμηση του κυματικού κλίματος και σε μεγαλύτερες περιόδους επαναφοράς, από τη χρονική διάρκεια των μετρήσεων.

5.2. Προτάσεις για περαιτέρω έρευνα

Η παρούσα μεταπτυχιακή εργασία αφορά στη βελτιστοποίηση της περιγραφής του μακροπρόθεσμου κυματικού κλίματος μέσω από κοινού μακροπρόθεσμων κατανομών ύψους κύματος και περιόδου στα βαθιά και αβαθή ύδατα. Κατά τη διάρκεια της εκπόνησης της εργασίας, τα σημεία που κρίνεται πως αξίζει και μπορούν να διερευνηθούν περαιτέρω είναι τα εξής.

Αρχικά κρίνεται πως μπορεί να διερευνηθεί πιο διεξοδικά ο τρόπος διαχωρισμού των κυμάτων στις συνιστώσες τους, ανεμογενή και κύματα αποθάλασσας. Στην παρούσα εργασία ο διαχωρισμός έχει γίνει αυτόματα στο σταθμό μέτρησης από το ενσωματωμένο σε αυτόν λογισμικό και έχει γίνει θεωρώντας ως ανώτατο όριο για τους ανεμογενείς κυματισμούς την τιμή της περιόδου των 10 sec. Σε άλλες περιπτώσεις, σύμφωνα με τη βιβλιογραφία, ο διαχωρισμός γίνεται από τα φάσματα όταν αποτελούνται από δύο κορυφές. Για τον Ελλαδικό χώρο η μέθοδος διαχωρισμού με τα δίκορφα φάσματα δεν ενδείκνυται, καθώς δε συναντώνται τέτοια φάσματα στον Ελλαδικό χώρο γενικά, γιατί τα αναπτύγματα πελάγους είναι σχετικά μικρά σε σχέση με άλλες περιοχές και τα κύματα αποθάλασσας με τα ανεμογενή δεν είναι σαφώς διαχωρισμένα. Ο τρόπος διαχωρισμού που θα προτεινόταν, είναι λαμβάνοντας επιπλέον υπόψη το κατευθυντικό φάσμα. Ο ακριβής

διαχωρισμός των κυμάτων αποθάλασσας από τα ανεμογενή θεωρείται βασικό στοιχείο για την μετέπειτα καλή προσαρμογή των θεωρητικών μοντέλων και συνεπώς τον ακριβή πιθανοτικό σχεδιασμό των έργων.

Επιπρόσθετα, για τον ακριβέστερο πιθανοτικό σχεδιασμό, ως περαιτέρω έρευνα προτείνεται η ενσωμάτωση στο σχεδιασμό και των βραχυπρόθεσμων πιθανοτικών εικόνων του ύψους κύματος και της περιόδου. Το συγκεκριμένο στοιχείο ήδη μελετάται σε άλλη μεταπτυχιακή εργασία.

Ένα άλλο στοιχείο που θα συντελούσε στον πληρέστερο πιθανοτικό σχεδιασμό είναι να συμπεριληφθεί η χρονική διαδοχή των κυματισμών και να προκύψει ο χρονικός συσχετισμός των παραμέτρων των κατανομών. Από τη στιγμή που υπάρχουν διαθέσιμες οι μετρήσεις των ζευγών (H_s, T_m) στον αντίστοιχο χρόνο το παραπάνω θεωρείται εφικτό και παράλληλα αξίζει να μελετηθεί.

Τέλος, περαιτέρω έρευνα θα μπορούσε να αποτελέσει η μελέτη των θεωρητικών μοντέλων που ακολουθούν τα κύματα αποθάλασσας. Είναι πλέον σαφές πως δεν ακολουθούν τις πιθανοτικές κατανομές των ανεμογενών κυματισμών, καθώς δεν έχουν τόσο τυχαία διασπορά, αλλά δεν έχει βρεθεί η θεωρητική κατανομή την οποία ακολουθούν. Βέβαια από την πλευρά του σχεδιασμού λιμενικών και παράκτιων έργων, τα κύματα αποθάλασσας μας απασχολούν κυρίως ως προς την αποφυγή συντονισμού εντός των λιμενολεκανών και λιγότερο ως προς την κυματική τους δράση επί των κατασκευών.

Βιβλιογραφικές αναφορές

Andrew, R. N. & Price, W. G., 1979. Applications of generalized gamma functions in ship dynamics. Trans. Royal Inst. Naval Architects (RINA), 121 (1979) 137-43.

Athanassoulis, G. A., Skarsoulis, E. K. & Belibassakis, K. A. 1994. Bivariate distributions with given marginals with an application to wave climate description, Applied Ocean Research 16, 1-17.

Batjes, J.A., 1972. Long-Term wave height distributions at seven stations around the British Isles. Deutsche Hydrographische Zeitschrift, 251. 179-189.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations (with discussion). J. R. Stat. Soc. B. 26.

Cunha, C., and Guedes Soares, C., 1999. On the choice of data transformation for modelling time series of significant wave height. Ocean Engineering, 26:489-506.

Fang, Z. S. & Hoghen, N., 1982. Analysis and prediction of long-term probability distributions of wave heights and periods. Tech. Rep., National Maritime Institute, London.

Ferreira, J. A. & Guedes Soares, C. 2002. Modelling bivariate distributions of significant wave height and mean period, Applied Ocean Research 24: 31-45.

Ferreira, J.A., and Guedes Soares, C., 1999. Modelling the long-term distribution of significant wave height with the Beta and Gamma models. Ocean Engineeing, 26:713-725.

Guedes Soares, C., and Nolasco, M.C., 1992. Spectral modelling of sea statesw ith multiple wave systems. J ournal of Offshore Mechanics and Arctic Engineering, 114:278-284.

Guedes Soares, C., and Viana, P.C., 1988. Sensitivity of the response of marine structures to wave climatology. In: Schrefer and Zienkiewicz (Editors), Computer Modelling in Ocean Engineering, pp.487492. The Netherlands: A.A. Balkema Publishers.

Haver, S., 1985. Wave climate off northern Norway. Appl. Ocean Res., 7 (1985) 85-92.

Jasper, N. H., 1956. Statistical distribution patterns of ocean waves and of wave-induced ship stresses and motions with engineering applications. Trans. Soc. Naval Architects and Marine Engrs, 64 (1956) 375-432.

Li, L., Gao, Z. and Moan, T., 2013. Joint Environmental Data At Five European Offshore Sites For Design Of Combined Wind And Wave Energy Devices. In: Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2013-10156, June 914, Nantes, France.

Lucas, C. & Guedes Soares, C. 2015. Bivariate distributions of significant wave height and mean wave period of combined sea states. Ocean Engineering. 106:341–353.

Lucas, C. and Guedes Soares, C. 2016. Bivariate distributions of significant wave height and peak period of sea states in deep and shallow waters offshore Portugal, Maritime Technology and Engineering 3, Guedes Soares, C., Santos T. A., (Eds.), Taylor et Francis Group, London, UK, pp. 1045-1054.

Matiesen, J., Bitner-Gregersen, E., 1990. Joint distributions for significant wave height and wave zero up-crossing period. Appl. Ocean Res. 12 (1990), 93-103.

Nordenstrom, N., 1969. Methods for predicting long-term distributions of wave loads and probability of failure for ships. Part I: Environmental conditions and short term response. Tech. Rep. 69-21-S, Det Norske Veritas, Oslo.

Ochi, M. K., 1978. Wave statistics for the design of ships and ocean structures. Trans. Soc. Naval Architects and Marine Engrs, 60 (1978) 47-76.

Prince-Wright, R., 1995. Maximum likelihood models of joint environmental data for TLP design. Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering, Vol. 2, pp. 535.

Repko, A., 1998. Uni- and bivariate statistical analysis of long-term wave climates, Delft University of Technology.

Repko, A., Van Gelder, P. H. A. J. M., Voortman, H. G. & Vrijling, J. K., 2004. Bivariate description of offshore wave conditions with physics- based extreme value statistics, Applied ocean Research 26, 162-170.

Soukissian, T., Prospathopoulos, A., Hatzinaki, M., Kabouridou, M., 2008. Assessment of the wind and wave climate of the Hellenic Seas using 10-year hindcast results, Open Ocean Engineering Journal 1, 1-12.

Παπανικολάου, Μ., 2016. Περιγραφή κυματικού κλίματος μέσω μακροπρόθεσμων από κοινού κατανομών ύψους και περιόδου κύματος (Μεταπτυχιακή εργασία). Εθνικό Μετσόβιο Πολυτεχνείο, Ζωγράφου.

Παπανικολάου, Μ., Μαλλιούρη, Δ., Μέμος, Κ., 2016. Περιγραφή κυματικού κλίματος μέσω μακροπρόθεσμων από κοινού κατανομών ύψους και περιόδου κύματος, 7° Πανελλήνιο Συνέδριο Λιμενικών Έργων, Ίδρυμα Ευγενίδου, Αθήνα.

Σουκισσιάν, Τ., Χατζηνάκη, Μ., Κορρές, Γ., Παπαδόπουλος, Α., Κάλλος, Γ., Αναδρανιστάκης, Ε., 2007. Άτλας Ανέμου και Κύματος των Ελληνικων Θαλασσών, Εκδ. Ελληνικό Κέντρο Θαλασσίων Ερευνών, 300 σελ.

www.poseidon.hcmr.grΦ

www.wikipedia.org

Παράρτημα Α:

Πίνακες αποτελεσμάτων περιοχής Άθω (Μ1)

> Βαθιά ύδατα

- ο Πίνακες Α.1-Α.6: Αποτελέσματα μοντέλου δεσμευμένης πιθανότητας
- ο Πίνακες Α.7-Α.9: Αποτελέσματα μοντέλου Bivariate-Lognormal (i)
- ο Πίνακες Α.10-Α.12: Αποτελέσματα μοντέλου Bivariate-Lognormal (ii)
- ο Πίνακες Α.13-Α.18: Αποτελέσματα μοντέλου Plackett
- ο Πίνακες A.19-A.21: Αποτελέσματα μοντέλου με μετασχηματισμούς Box-Cox

Αβαθή ύδατα

- ο Πίνακες Α.22-Α.27: Αποτελέσματα μοντέλου δεσμευμένης πιθανότητας
- ο Πίνακες Α.28-Α.30: Αποτελέσματα μοντέλου Bivariate-Lognormal (i)
- ο Πίνακες Α.31-Α.33: Αποτελέσματα μοντέλου Bivariate-Lognormal (ii)
- ο Πίνακες Α.34-Α.39: Αποτελέσματα μοντέλου Plackett
- ο Πίνακες A.40-A.42: Αποτελέσματα μοντέλου με μετασχηματισμούς Box-Cox

Πίνακας A.1 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)

		Аπ	ό κοινού πυ	κνότητα πι	θανότητας	$f_L(H_{s}, T_m)$) του <i>Η</i> s και	της Τ _m για	τα βαθιά γι	α το σύνολι	ο των κυμά	των (total)		
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.03474	0.00168	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.24155	0.03632	0.00100	0	0	0	0	0	0	0	0	0	0
3	2.625	0.71056	0.25158	0.02231	0.00051	0	0	0	0	0	0	0	0	0
4	2.875	1.09606	0.73946	0.16145	0.01262	0.00023	0	0	0	0	0	0	0	0
5	3.125	1.03166	1.12383	0.48760	0.09967	0.00684	0.00010	0	0	0	0	0	0	0
6	3.375	0.66145	1.01974	0.74104	0.31753	0.06144	0.00356	0.00004	0	0	0	0	0	0
7	3.625	0.31348	0.61492	0.65170	0.48930	0.21175	0.03790	0.00178	0.00001	0	0	0	0	0
8	3.875	0.11683	0.26731	0.36888	0.41888	0.33520	0.14489	0.02337	0.00086	0	0	0	0	0
9	4.125	0.03591	0.08920	0.14593	0.22181	0.28021	0.23849	0.10151	0.01441	0.00040	0	0	0	0
10	4.375	0.00945	0.02400	0.04304	0.07906	0.13808	0.19493	0.17556	0.07276	0.00894	0.00018	0	0	0
11	4.625	0.00219	0.00542	0.00996	0.02029	0.04380	0.08868	0.14009	0.13319	0.05348	0.00565	0.00008	0	0
12	4.875	0.00046	0.00106	0.00189	0.00396	0.00960	0.02462	0.05813	0.10314	0.10385	0.04056	0.00372	0.00004	0
13	5.125	0.00009	0.00018	0.00030	0.00061	0.00154	0.00450	0.01383	0.03835	0.07704	0.08304	0.03208	0.00262	0.00002
14	5.375	0.00002	0.00003	0.00004	0.00008	0.00019	0.00058	0.00205	0.00760	0.02499	0.05766	0.06794	0.02686	0.00207
15	5.625	0	0	0.00001	0.00001	0.00002	0.00005	0.00020	0.00088	0.00397	0.01570	0.04248	0.05659	0.02418
16	5.875	0	0	0	0	0	0	0.00001	0.00006	0.00034	0.00189	0.00917	0.02997	0.04737
17	6.125	0	0	0	0	0	0	0	0	0.00002	0.00011	0.00078	0.00473	0.01936
18	6.375	0	0	0	0	0	0	0	0	0	0	0.00003	0.00026	0.00199
19	6.625	0	0	0	0	0	0	0	0	0	0	0	0.00001	0.00006
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

		1	Από κοινού	πυκνότητα	πιθανότητας	$f_L(H_s, T_m) \tau$	ου <i>Η</i> s και τι	ς T _m για τα	βαθιά για ΄	το σύνολο τ	ων κυμάτω	v (total)		
\geq	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0.00002	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00193	0.00001	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.02369	0.00221	0.00002	0	0	0	0	0	0	0	0	0	0
17	6.125	0.03867	0.02513	0.00326	0.00005	0	0	0	0	0	0	0	0	0
18	6.375	0.01061	0.02883	0.02757	0.00605	0.00019	0	0	0	0	0	0	0	0
19	6.625	0.00060	0.00433	0.01725	0.02760	0.01258	0.00115	0.00002	0	0	0	0	0	0
20	6.875	0.00001	0.00011	0.00106	0.00650	0.01915	0.02128	0.00724	0.00066	0.00002	0	0	0	0
21	7.125	0	0	0.00001	0.00011	0.00100	0.00539	0.01482	0.01904	0.01161	0.00392	0.00101	0.00032	0.00022
22	7.375	0	0	0	0	0	0.00003	0.00023	0.00117	0.00359	0.00698	0.00937	0.00934	0.00630
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.2 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

		Από κοι	ινού πυκνότ	ητα πιθανό	στητας fl (Hs, Tm) του	Η _s και της	Τ., για τα β	αθιά για το	ανεμογενή	κύματα (w	ind-genera	ted)	
\searrow	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.04501	0.00212	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.29237	0.04381	0.00115	0	0	0	0	0	0	0	0	0	0
3	2.625	0.80413	0.28898	0.02517	0.00053	0	0	0	0	0	0	0	0	0
4	2.875	1.16109	0.80673	0.17705	0.01331	0.00022	0	0	0	0	0	0	0	0
5	3.125	1.02440	1.16247	0.51661	0.10443	0.00672	0.00008	0	0	0	0	0	0	0
6	3.375	0.61656	0.99910	0.75504	0.32749	0.06144	0.00325	0.00003	0	0	0	0	0	0
7	3.625	0.27471	0.57036	0.63638	0.49298	0.21272	0.03613	0.00151	0.00001	0	0	0	0	0
8	3.875	0.09640	0.23469	0.34433	0.40981	0.33465	0.14179	0.02124	0.00068	0	0	0	0	0
9	4.125	0.02794	0.07414	0.12996	0.20972	0.27557	0.23619	0.09682	0.01252	0.00030	0	0	0	0
10	4.375	0.00694	0.01889	0.03652	0.07196	0.13281	0.19308	0.17260	0.06778	0.00749	0.00013	0	0	0
11	4.625	0.00152	0.00404	0.00805	0.01773	0.04095	0.08698	0.13985	0.13013	0.04893	0.00464	0.00006	0	0
12	4.875	0.00030	0.00075	0.00145	0.00331	0.00868	0.02372	0.05817	0.10373	0.10103	0.03681	0.00308	0.00003	0
13	5.125	0.00006	0.00012	0.00022	0.00049	0.00134	0.00423	0.01372	0.03906	0.07792	0.08069	0.02934	0.00228	0.00002
14	5.375	0.00001	0.00002	0.00003	0.00006	0.00016	0.00052	0.00199	0.00773	0.02577	0.05840	0.06619	0.02529	0.00200
15	5.625	0	0	0	0.00001	0.00001	0.00005	0.00019	0.00088	0.00410	0.01619	0.04272	0.05536	0.02399
16	5.875	0	0	0	0	0	0	0.00001	0.00006	0.00035	0.00195	0.00926	0.02938	0.04620
17	6.125	0	0	0	0	0	0	0	0	0.00002	0.00011	0.00077	0.00450	0.01781
18	6.375	0	0	0	0	0	0	0	0	0	0	0.00003	0.00023	0.00166
19	6.625	0	0	0	0	0	0	0	0	0	0	0	0	0.00004
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

		Από	κοινού πυκν	ότητα πιθα	νότητας f_L (H	Is, T _m) του 1	Η, και της Τ,	" για τα βαθ)ιά για τα α	νεμογενή κ	ύματα (win	d-generate	d)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s)		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0.00002	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00218	0.00002	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.02516	0.00312	0.00006	0	0	0	0	0	0	0	0	0	0
17	6.125	0.03648	0.02819	0.00581	0.00022	0	0	0	0	0	0	0	0	0
18	6.375	0.00849	0.02429	0.03013	0.01252	0.00139	0.00004	0	0	0	0	0	0	0
19	6.625	0.00039	0.00261	0.01087	0.02353	0.02256	0.00872	0.00137	0.00010	0.00001	0	0	0	0
20	6.875	0	0.00004	0.00037	0.00214	0.00782	0.01661	0.02050	0.01627	0.01028	0.00699	0.00691	0.01077	0.01493
21	7.125	0	0	0	0.00001	0.00009	0.00040	0.00125	0.00255	0.00344	0.00293	0.00122	0.00011	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας Α.3 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

			Από	κοινού	πυκνότ	τητα πι	θανότη	τας f_L ((H_{s}, T_{m})) του H _s	και της	Τ _m για	τα βαθ	ιά για τ	α κύμα	τα αποθ	θάλασσ	ας (swe	ll)			
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$T_m(s)$	\searrow	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
<i>i</i> : 1	10.25	0.70653	0.00043	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	10.75	1.23160	0.00074	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	11.25	1.82877	0.00105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	11.75	2.35912	0.00126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	12.25	2.68862	0.00131	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	12.75	2.74620	0.00120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	13.25	2.54524	0.00098	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	13.75	2.16356	0.00072	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	14.25	1.70254	0.00049	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	14.75	1.25039	0.00030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	15.25	0.86321	0.00018	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	15.75	0.56368	0.00010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	16.25	0.35012	0.00005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	16.75	0.20788	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	17.25	0.11849	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	17.75	0.06510	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.25	0.03459	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.75	0.01784	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	19.25	0.00895	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	19.75	0.00438	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	20.25	0.00209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.4 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull για το H_s (περιθώρια) και λογαριθμοκανονική κατανομή για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)

			Από κοινού	πυκνότητα	πιθανότητα	$\zeta f_W(H_s, T_m)$	του <i>H</i> s και	της Τ _m για β	αθιά για το	σύνολο των	ν κυμάτων	(total)		
\searrow	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.02958	0.00131	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.20566	0.02837	0.00098	0.00001	0	0	0	0	0	0	0	0	0
3	2.625	0.60498	0.19650	0.02186	0.00059	0	0	0	0	0	0	0	0	0
4	2.875	0.93319	0.57758	0.15823	0.01477	0.00030	0	0	0	0	0	0	0	0
5	3.125	0.87836	0.87781	0.47790	0.11665	0.00896	0.00013	0	0	0	0	0	0	0
6	3.375	0.56316	0.79651	0.72630	0.37162	0.08049	0.00494	0.00005	0	0	0	0	0	0
7	3.625	0.26690	0.48030	0.63874	0.57266	0.27741	0.05252	0.00249	0.00002	0	0	0	0	0
8	3.875	0.09947	0.20879	0.36154	0.49024	0.43915	0.20080	0.03267	0.00116	0	0	0	0	0
9	4.125	0.03057	0.06967	0.14302	0.25960	0.36710	0.33054	0.14193	0.01953	0.00051	0	0	0	0
10	4.375	0.00804	0.01875	0.04218	0.09253	0.18090	0.27017	0.24546	0.09860	0.01135	0.00021	0	0	0
11	4.625	0.00187	0.00423	0.00977	0.02375	0.05738	0.12290	0.19587	0.18050	0.06789	0.00652	0.00009	0	0
12	4.875	0.00039	0.00083	0.00185	0.00464	0.01258	0.03413	0.08127	0.13978	0.13183	0.04684	0.00380	0.00004	0
13	5.125	0.00008	0.00014	0.00030	0.00072	0.00202	0.00624	0.01934	0.05197	0.09781	0.09589	0.03284	0.00233	0.00002
14	5.375	0.00001	0.00002	0.00004	0.00009	0.00025	0.00080	0.00286	0.01030	0.03173	0.06658	0.06955	0.02383	0.00156
15	5.625	0	0	0.00001	0.00001	0.00002	0.00008	0.00028	0.00119	0.00504	0.01813	0.04349	0.05020	0.01822
16	5.875	0	0	0	0	0	0.00001	0.00002	0.00009	0.00043	0.00219	0.00939	0.02659	0.03568
17	6.125	0	0	0	0	0	0	0	0	0.00002	0.00013	0.00080	0.00420	0.01458
18	6.375	0	0	0	0	0	0	0	0	0	0	0.00003	0.00023	0.00150
19	6.625	0	0	0	0	0	0	0	0	0	0	0	0	0.00005
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

			Από κου	νού πυκνότητ	α πιθανότητας j	$f_W(H_s, T_m) \tau \sigma$	υ <i>Η</i> s και της	Τ _m για βαθ	ιά για το σι	ύνολο των κ	τυμάτων (to	tal)		
\sim	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0.00001	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00121	0.00001	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.01488	0.00114	0.00001	0	0	0	0	0	0	0	0	0	0
17	6.125	0.02428	0.01294	0.00136	0.00002	0	0	0	0	0	0	0	0	0
18	6.375	0.00666	0.01485	0.01147	0.00200	0.00005	0	0	0	0	0	0	0	0
19	6.625	0.00038	0.00223	0.00718	0.00915	0.00328	0.00023	0	0	0	0	0	0	0
20	6.875	0.00001	0.00006	0.00044	0.00215	0.00499	0.00431	0.00113	0.00008	0	0	0	0	0
21	7.125	0	0	0	0.00004	0.00026	0.00109	0.00231	0.00226	0.00104	0.00026	0.00005	0.00001	0.00001
22	7.375	0	0	0	0	0	0.00001	0.00004	0.00014	0.00032	0.00047	0.00046	0.00034	0.00017
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.5 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull για το H_s (περιθώρια) και λογαριθμοκανονική κατανομή για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

		Απά	ό κοινού πυκν	ότητα πιθαν	νότητας fw (1	H _s , T _m) του	Η _s και της 1	ω για βαθιά	ι για τα ανε	μογενή κύμ	ατα (wind-	generated)		
\backslash	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.03804	0.00167	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.24709	0.03438	0.00113	0.00001	0	0	0	0	0	0	0	0	0
3	2.625	0.67959	0.22683	0.02487	0.00063	0	0	0	0	0	0	0	0	0
4	2.875	0.98127	0.63322	0.17499	0.01571	0.00029	0	0	0	0	0	0	0	0
5	3.125	0.86575	0.91245	0.51061	0.12326	0.00886	0.00011	0	0	0	0	0	0	0
6	3.375	0.52107	0.78422	0.74627	0.38652	0.08101	0.00452	0.00004	0	0	0	0	0	0
7	3.625	0.23217	0.44769	0.62899	0.58185	0.28048	0.05023	0.00211	0.00001	0	0	0	0	0
8	3.875	0.08147	0.18422	0.34033	0.48369	0.44125	0.19710	0.02965	0.00091	0	0	0	0	0
9	4.125	0.02361	0.05819	0.12845	0.24752	0.36335	0.32833	0.13517	0.01686	0.00037	0	0	0	0
10	4.375	0.00587	0.01483	0.03609	0.08494	0.17511	0.26840	0.24098	0.09125	0.00939	0.00015	0	0	0
11	4.625	0.00129	0.00317	0.00795	0.02092	0.05399	0.12091	0.19525	0.17518	0.06133	0.00526	0.00006	0	0
12	4.875	0.00026	0.00059	0.00143	0.00391	0.01145	0.03297	0.08121	0.13964	0.12665	0.04170	0.00307	0.00003	0
13	5.125	0.00005	0.00010	0.00022	0.00058	0.00177	0.00588	0.01916	0.05258	0.09768	0.09141	0.02926	0.00196	0.00001
14	5.375	0.00001	0.00001	0.00003	0.00007	0.00021	0.00073	0.00278	0.01041	0.03230	0.06616	0.06601	0.02169	0.00144
15	5.625	0	0	0	0.00001	0.00002	0.00007	0.00027	0.00118	0.00514	0.01834	0.04260	0.04748	0.01734
16	5.875	0	0	0	0	0	0	0.00002	0.00008	0.00043	0.00221	0.00924	0.02520	0.03339
17	6.125	0	0	0	0	0	0	0	0	0.00002	0.00013	0.00077	0.00386	0.01287
18	6.375	0	0	0	0	0	0	0	0	0	0	0.00003	0.00020	0.00120
19	6.625	0	0	0	0	0	0	0	0	0	0	0	0	0.00003
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

		I	Από κοινού π	υκνότητα πιθ	ανότητας $f_W(H)$	s, T _m) του H _s	και της Τ _m	για βαθιά γ	ια τα ανεμο	γενή κύματ	α (wind-ge	nerated)		
\backslash	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0.00001	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00131	0.00001	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.01504	0.00152	0.00002	0	0	0	0	0	0	0	0	0	0
17	6.125	0.02180	0.01370	0.00226	0.00007	0	0	0	0	0	0	0	0	0
18	6.375	0.00508	0.01181	0.01173	0.00385	0.00033	0.00001	0	0	0	0	0	0	0
19	6.625	0.00023	0.00127	0.00423	0.00723	0.00540	0.00161	0.00019	0.00001	0	0	0	0	0
20	6.875	0	0.00002	0.00014	0.00066	0.00187	0.00306	0.00288	0.00172	0.00081	0.00041	0.00030	0.00033	0.00033
21	7.125	0	0	0	0	0.00002	0.00007	0.00018	0.00027	0.00027	0.00017	0.00005	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.6 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull για το H_s (περιθώρια) και λογαριθμοκανονική κατανομή για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

			Από	κοινού π	υκνότη	τα πιθο	ανότητο	$a\zeta f_W(H$	T_s, T_m	του Η _s	και της	; <i>T_m</i> , γ	ια βαθι	ά για τ	α κύμα	τα αποί	θάλασσ	ας (sw	ell)			
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T _m (s)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
<i>i</i> : 1	10.25	0.27973	0.03313	0.00054	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	10.75	0.48762	0.05652	0.00089	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	11.25	0.72405	0.07992	0.00118	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	11.75	0.93403	0.09590	0.00129	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	12.25	1.06449	0.09959	0.00119	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	12.75	1.08729	0.09105	0.00094	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	13.25	1.00772	0.07435	0.00065	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	13.75	0.85661	0.05492	0.00040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	14.25	0.67408	0.03710	0.00023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	14.75	0.49506	0.02314	0.00011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	15.25	0.34176	0.01343	0.00005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	15.75	0.22318	0.00732	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	16.25	0.13862	0.00376	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	16.75	0.08230	0.00184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	17.25	0.04691	0.00086	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	17.75	0.02578	0.00038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.25	0.01370	0.00016	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.75	0.00706	0.00007	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	19.25	0.00354	0.00003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	19.75	0.00173	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	20.25	0.00083	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Από κα	οινού πυκνό	τητα πιθαν	ότητας <i>fbi</i>	vLog (Hs, Tm) για το Hs	και την T _m	για τα βαθι	ά για το σύ	νολο των κ	υμάτων (to	tal)	
\backslash	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.67312	0.01293	0.00025	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	0.99746	0.12203	0.00563	0.00036	0.00003	0	0	0	0	0	0	0	0
3	2.625	0.73969	0.47885	0.04797	0.00509	0.00065	0.00010	0.00002	0	0	0	0	0	0
4	2.875	0.32961	0.97016	0.19654	0.03317	0.00602	0.00122	0.00028	0.00007	0.00002	0.00001	0	0	0
5	3.125	0.10031	1.18302	0.45698	0.11797	0.02943	0.00770	0.00216	0.00065	0.00021	0.00007	0.00003	0.00001	0
6	3.375	0.02286	0.97064	0.68026	0.25999	0.08693	0.02876	0.00979	0.00347	0.00129	0.00050	0.00020	0.00008	0.00004
7	3.625	0.00417	0.58220	0.70943	0.39031	0.17133	0.07043	0.02873	0.01190	0.00505	0.00221	0.00099	0.00046	0.00022
8	3.875	0.00064	0.27188	0.55513	0.42911	0.24282	0.12226	0.05904	0.02825	0.01361	0.00665	0.00331	0.00168	0.00087
9	4.125	0.00009	0.10376	0.34375	0.36546	0.26239	0.15978	0.09038	0.04953	0.02687	0.01459	0.00798	0.00441	0.00247
10	4.375	0.00001	0.03362	0.17563	0.25205	0.22642	0.16488	0.10825	0.06740	0.04088	0.02451	0.01466	0.00878	0.00530
11	4.625	0	0.00953	0.07655	0.14583	0.16187	0.13958	0.10548	0.07409	0.04993	0.03287	0.02138	0.01384	0.00895
12	4.875	0	0.00242	0.02923	0.07284	0.09880	0.09998	0.08632	0.06796	0.05061	0.03641	0.02566	0.01785	0.01234
13	5.125	0	0.00056	0.01000	0.03214	0.05275	0.06215	0.06090	0.05344	0.04375	0.03425	0.02603	0.01941	0.01429
14	5.375	0	0.00012	0.00312	0.01278	0.02514	0.03423	0.03784	0.03682	0.03299	0.02799	0.02287	0.01820	0.01423
15	5.625	0	0.00002	0.00090	0.00465	0.01087	0.01700	0.02108	0.02264	0.02212	0.02025	0.01773	0.01503	0.01244
16	5.875	0	0	0.00024	0.00157	0.00433	0.00772	0.01069	0.01262	0.01339	0.01319	0.01233	0.01110	0.00971
17	6.125	0	0	0.00006	0.00050	0.00160	0.00325	0.00500	0.00646	0.00742	0.00784	0.00781	0.00744	0.00686
18	6.375	0	0	0.00002	0.00015	0.00056	0.00128	0.00218	0.00307	0.00380	0.00430	0.00455	0.00458	0.00445
19	6.625	0	0	0	0.00004	0.00019	0.00048	0.00089	0.00137	0.00182	0.00220	0.00247	0.00262	0.00267
20	6.875	0	0	0	0.00001	0.00006	0.00017	0.00035	0.00058	0.00082	0.00106	0.00126	0.00140	0.00150
21	7.125	0	0	0	0	0.00002	0.00006	0.00013	0.00023	0.00035	0.00048	0.00060	0.00071	0.00079
22	7.375	0	0	0	0	0.00001	0.00002	0.00005	0.00009	0.00014	0.00021	0.00028	0.00034	0.00040
23	7.625	0	0	0	0	0	0.00001	0.00002	0.00003	0.00006	0.00009	0.00012	0.00016	0.00019
24	7.875	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00003	0.00005	0.00007	0.00009
25	8.125	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00003	0.00004
26	8.375	0	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001	0.00002

Πίνακας Α.7 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BivLog}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (i) για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)

		Από	κοινού πυκ	νότητα πιθο	ανότητας f _{Bivl}	L_{og} (H_s , T_m) γ	на то H _s ка	ι την Τ _m για	ι τα βαθιά γ	για το σύνο	λο των κυμ	άτων (total)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00002	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00011	0.00005	0.00003	0.00001	0.00001	0	0	0	0	0	0	0	0
8	3.875	0.00046	0.00025	0.00013	0.00007	0.00004	0.00002	0.00001	0.00001	0.00001	0	0	0	0
9	4.125	0.00140	0.00080	0.00047	0.00028	0.00017	0.00010	0.00006	0.00004	0.00002	0.00002	0.00001	0.00001	0
10	4.375	0.00322	0.00197	0.00122	0.00076	0.00048	0.00030	0.00020	0.00013	0.00008	0.00005	0.00004	0.00002	0.00002
11	4.625	0.00580	0.00377	0.00247	0.00162	0.00107	0.00072	0.00048	0.00032	0.00022	0.00015	0.00010	0.00007	0.00005
12	4.875	0.00850	0.00585	0.00404	0.00279	0.00194	0.00135	0.00094	0.00066	0.00047	0.00033	0.00024	0.00017	0.00012
13	5.125	0.01043	0.00759	0.00550	0.00399	0.00289	0.00210	0.00153	0.00112	0.00082	0.00060	0.00044	0.00033	0.00024
14	5.375	0.01099	0.00841	0.00640	0.00486	0.00368	0.00278	0.00210	0.00159	0.00121	0.00092	0.00070	0.00053	0.00041
15	5.625	0.01013	0.00815	0.00649	0.00514	0.00405	0.00318	0.00250	0.00196	0.00153	0.00120	0.00094	0.00074	0.00058
16	5.875	0.00832	0.00701	0.00584	0.00482	0.00395	0.00322	0.00261	0.00212	0.00171	0.00138	0.00112	0.00090	0.00073
17	6.125	0.00617	0.00544	0.00473	0.00406	0.00345	0.00291	0.00245	0.00204	0.00170	0.00142	0.00117	0.00097	0.00081
18	6.375	0.00419	0.00386	0.00349	0.00311	0.00274	0.00239	0.00207	0.00179	0.00153	0.00131	0.00112	0.00095	0.00080
19	6.625	0.00263	0.00252	0.00237	0.00219	0.00200	0.00180	0.00161	0.00143	0.00126	0.00111	0.00097	0.00084	0.00073
20	6.875	0.00154	0.00154	0.00150	0.00144	0.00136	0.00126	0.00116	0.00106	0.00096	0.00086	0.00077	0.00069	0.00061
21	7.125	0.00085	0.00088	0.00089	0.00088	0.00086	0.00082	0.00078	0.00073	0.00068	0.00063	0.00058	0.00052	0.00048
22	7.375	0.00044	0.00048	0.00050	0.00051	0.00051	0.00051	0.00049	0.00048	0.00045	0.00043	0.00040	0.00037	0.00035
23	7.625	0.00022	0.00025	0.00027	0.00028	0.00029	0.00030	0.00030	0.00029	0.00028	0.00028	0.00026	0.00025	0.00024
24	7.875	0.00010	0.00012	0.00014	0.00015	0.00016	0.00016	0.00017	0.00017	0.00017	0.00017	0.00016	0.00016	0.00015
25	8.125	0.00005	0.00006	0.00007	0.00007	0.00008	0.00009	0.00009	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010
26	8.375	0.00002	0.00003	0.00003	0.00004	0.00004	0.00004	0.00005	0.00005	0.00005	0.00006	0.00006	0.00006	0.00006

		Από κοινού	πυκνότητα	πιθανότητ	ας fBivLog (Нs, Tm) үга	το Η _s και τ	την Τπ για τ	τα βαθιά για	ι τα ανεμογ	ενή κύματο	a (wind-gei	nerated)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.67696	0.01347	0.00027	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	1.00921	0.12674	0.00600	0.00039	0.00003	0	0	0	0	0	0	0	0
3	2.625	0.75001	0.49442	0.05061	0.00547	0.00071	0.00011	0.00002	0	0	0	0	0	0
4	2.875	0.33397	0.99371	0.20497	0.03516	0.00648	0.00133	0.00031	0.00008	0.00002	0.00001	0	0	0
5	3.125	0.10134	1.20017	0.47057	0.12323	0.03114	0.00825	0.00234	0.00071	0.00023	0.00008	0.00003	0.00001	0
6	3.375	0.02299	0.97419	0.69102	0.26740	0.09046	0.03025	0.01040	0.00372	0.00139	0.00054	0.00022	0.00009	0.00004
7	3.625	0.00417	0.57758	0.71043	0.39505	0.17521	0.07272	0.02993	0.01250	0.00535	0.00235	0.00107	0.00050	0.00024
8	3.875	0.00064	0.26644	0.54778	0.42727	0.24398	0.12392	0.06033	0.02910	0.01412	0.00695	0.00348	0.00177	0.00092
9	4.125	0.00009	0.10040	0.33412	0.35790	0.25902	0.15895	0.09058	0.05000	0.02730	0.01492	0.00821	0.00456	0.00257
10	4.375	0.00001	0.03211	0.16812	0.24274	0.21956	0.16099	0.10641	0.06668	0.04069	0.02454	0.01476	0.00889	0.00539
11	4.625	0	0.00898	0.07215	0.13811	0.15420	0.13378	0.10170	0.07186	0.04870	0.03224	0.02108	0.01371	0.00891
12	4.875	0	0.00225	0.02713	0.06784	0.09246	0.09407	0.08166	0.06463	0.04838	0.03499	0.02477	0.01732	0.01202
13	5.125	0	0.00052	0.00914	0.02944	0.04850	0.05741	0.05652	0.04984	0.04100	0.03224	0.02462	0.01843	0.01363
14	5.375	0	0.00011	0.00281	0.01151	0.02271	0.03105	0.03447	0.03368	0.03031	0.02582	0.02118	0.01693	0.01329
15	5.625	0	0.00002	0.00080	0.00412	0.00965	0.01514	0.01885	0.02032	0.01993	0.01832	0.01610	0.01369	0.01138
16	5.875	0	0	0.00021	0.00137	0.00378	0.00676	0.00939	0.01112	0.01183	0.01170	0.01098	0.00991	0.00870
17	6.125	0	0	0.00005	0.00043	0.00138	0.00279	0.00431	0.00558	0.00643	0.00682	0.00681	0.00652	0.00603
18	6.375	0	0	0.00001	0.00013	0.00047	0.00108	0.00185	0.00261	0.00324	0.00367	0.00390	0.00394	0.00383
19	6.625	0	0	0	0.00004	0.00015	0.00040	0.00074	0.00114	0.00152	0.00184	0.00207	0.00221	0.00225
20	6.875	0	0	0	0.00001	0.00005	0.00014	0.00028	0.00047	0.00068	0.00087	0.00103	0.00116	0.00124
21	7.125	0	0	0	0	0.00001	0.00005	0.00010	0.00019	0.00028	0.00039	0.00049	0.00057	0.00064
22	7.375	0	0	0	0	0	0.00001	0.00004	0.00007	0.00011	0.00017	0.00022	0.00027	0.00032
23	7.625	0	0	0	0	0	0	0.00001	0.00003	0.00004	0.00007	0.00009	0.00012	0.00015
24	7.875	0	0	0	0	0	0	0	0.00001	0.00002	0.00003	0.00004	0.00005	0.00007
25	8.125	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00002	0.00003
26	8.375	0	0	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001

Πίνακας Α.8 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BivLog}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (i) για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

		Από κου	νού πυκνότι	ιτα πιθανότ	ητας f_{BivLog} (P	H _s , T _m) για το	ο Η _s και την	Τ _m για τα	βαθιά για τ	α ανεμογεν	ή κύματα (wind-gener	ated)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$	$\sum_{i=1}^{n}$	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00002	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00012	0.00006	0.00003	0.00002	0.00001	0	0	0	0	0	0	0	0
8	3.875	0.00049	0.00026	0.00015	0.00008	0.00005	0.00003	0.00002	0.00001	0.00001	0	0	0	0
9	4.125	0.00146	0.00085	0.00050	0.00029	0.00018	0.00011	0.00007	0.00004	0.00003	0.00002	0.00001	0.00001	0
10	4.375	0.00329	0.00202	0.00126	0.00079	0.00050	0.00032	0.00021	0.00013	0.00009	0.00006	0.00004	0.00003	0.00002
11	4.625	0.00580	0.00379	0.00249	0.00164	0.00109	0.00073	0.00049	0.00033	0.00023	0.00016	0.00011	0.00008	0.00005
12	4.875	0.00832	0.00575	0.00398	0.00277	0.00193	0.00135	0.00095	0.00067	0.00047	0.00034	0.00024	0.00017	0.00013
13	5.125	0.00999	0.00729	0.00531	0.00386	0.00281	0.00205	0.00150	0.00110	0.00081	0.00060	0.00044	0.00033	0.00024
14	5.375	0.01030	0.00791	0.00605	0.00460	0.00350	0.00265	0.00201	0.00153	0.00116	0.00089	0.00068	0.00052	0.00040
15	5.625	0.00930	0.00750	0.00600	0.00477	0.00377	0.00297	0.00234	0.00184	0.00144	0.00114	0.00089	0.00070	0.00055
16	5.875	0.00748	0.00632	0.00528	0.00437	0.00359	0.00294	0.00239	0.00194	0.00158	0.00128	0.00103	0.00084	0.00068
17	6.125	0.00544	0.00481	0.00419	0.00361	0.00308	0.00260	0.00219	0.00184	0.00153	0.00128	0.00106	0.00088	0.00073
18	6.375	0.00362	0.00334	0.00303	0.00271	0.00239	0.00209	0.00182	0.00157	0.00135	0.00116	0.00099	0.00084	0.00072
19	6.625	0.00223	0.00214	0.00202	0.00187	0.00171	0.00155	0.00139	0.00123	0.00109	0.00096	0.00084	0.00073	0.00064
20	6.875	0.00128	0.00128	0.00125	0.00120	0.00114	0.00106	0.00098	0.00089	0.00081	0.00073	0.00066	0.00059	0.00052
21	7.125	0.00069	0.00072	0.00073	0.00072	0.00071	0.00068	0.00064	0.00061	0.00056	0.00052	0.00048	0.00044	0.00040
22	7.375	0.00035	0.00038	0.00040	0.00041	0.00041	0.00041	0.00040	0.00039	0.00037	0.00035	0.00033	0.00031	0.00028
23	7.625	0.00017	0.00019	0.00021	0.00022	0.00023	0.00023	0.00023	0.00023	0.00023	0.00022	0.00021	0.00020	0.00019
24	7.875	0.00008	0.00009	0.00011	0.00011	0.00012	0.00013	0.00013	0.00013	0.00013	0.00013	0.00013	0.00013	0.00012
25	8.125	0.00004	0.00004	0.00005	0.00006	0.00006	0.00007	0.00007	0.00007	0.00007	0.00008	0.00008	0.00008	0.00007
26	8.375	0.00002	0.00002	0.00002	0.00003	0.00003	0.00003	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004

			A	πό κοινα	ού πυκνά	ότητα π	ιθανότη	τας fbivl	Log (Hs, 1	T _m) για 1	to Hs ка	ι την Τ _m	ι για τα	βαθιά γ	ια τα κ ι	ό ματα α	ποθάλα	σσας (sv	well)			
$\overline{\ }$	H _s (m)	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m ((s)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.87 5	5.12 5
<i>i</i> : 1	10.2 5	0.024	0.007 70	0.002 89	0.001 30	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 01	0.000	0.000	0.000 01	0	0	0
2	10.7 5 11.2	0.084 51 0.212	84 0.037	47 0.010	65 0.004	26 0.001	66 0.000	37 0.000	22 0.000	14 0.000	0.000 09 0.000	0.000 06 0.000	0.000 04 0.000	0.000 03 0.000	0.000 02 0.000	0.000 02 0.000	0.000 01 0.000	0.000 01 0.000	0.000 01 0.000	01 0.000	0	0
3	5 11.7	09 0.399	33 0.053	65 0.013	00 0.004	77 0.001	88 0.000	48 0.000	28 0.000	17 0.000	11 0.000	07 0.000	05 0.000	03 0.000	02 0.000	02 0.000	01 0.000	01 0.000	01 0.000	01	0	0
5	5 12.2	02 0.582	32 0.059	39 0.013	61 0.004	92 0.001	91 0.000	47 0.000	26 0.000	15 0.000	09 0.000	06 0.000	04 0.000	03 0.000	02 0.000	01 0.000	01 0.000	01	01	0	0	0
6	5 12.7 5	30 0.678 72	76 0.054 06	0.010 67	0.003 14	65 0.001 16	75 0.000 50	0.000 24	20 0.000 12	0.000	07 0.000 04	04 0.000 02	03 0.000 02	02 0.000 01	0.000	0	0	0	0	0	0	0
7	13.2 5	0.648 00	0.040 45	0.007 13	0.001 95	0.000 68	0.000 28	0.000 13	0.000 07	0.000 04	0.000 02	0.000 01	0.000 01	0	0	0	0	0	0	0	0	0
8	13.7 5	0.517 94	0.025	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000 01	0	0	0	0	0	0	0	0	0	0	0
9	14.2 5 14.7	0.353 23 0.208	0.013 91 0.006	0.001 98 0.000	0.000 47 0.000	0.000	0.000	0.000	0.000	0.000	0	0	0	0	0	0	0	0	0	0	0	0
10	5 15.2	98 0.108	61 0.002	85 0.000	19 0.000	06 0.000	02 0.000	01	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	5 15.7	83 0.050	79 0.001	32 0.000	07 0.000	02 0.000	01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5 16.2	54 0.021	06 0.000 36	11 0.000 04	02 0.000 01	01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	16.7 5	0.008 07	0.000 11	0.000 01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	17.2 5	0.002 83	0.000 03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	17.7 5	0.000 92 0.000	0.000 01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.2 5 18.7	28 0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	5 19.2	08 0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	5 19.7	02 0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	5 20.2 5	01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.9 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BivLog}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (i) για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

Πίνακας Α.10 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BivLogCor}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (ii) για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)

		Από κου	νού πυκνότι	ητα πιθανό	τητας fbivl	ogCor (Hs, T	m) για το Η	s και την T _m	, για τα βαί	θιά για το σ	ύνολο των	κυμάτων (t	total)	
\sim	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.66334	0.01132	0.00024	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	1.08791	0.11014	0.00530	0.00036	0.00003	0	0	0	0	0	0	0	0
3	2.625	0.88387	0.44401	0.04499	0.00503	0.00068	0.00011	0.00002	0	0	0	0	0	0
4	2.875	0.42793	0.92190	0.18383	0.03210	0.00608	0.00129	0.00030	0.00008	0.00002	0.00001	0	0	0
5	3.125	0.14052	1.14973	0.42639	0.11204	0.02882	0.00779	0.00225	0.00069	0.00023	0.00008	0.00003	0.00001	0
6	3.375	0.03435	0.96311	0.63331	0.24267	0.08273	0.02800	0.00975	0.00353	0.00133	0.00052	0.00021	0.00009	0.00004
7	3.625	0.00669	0.58892	0.65909	0.35848	0.15875	0.06621	0.02742	0.01152	0.00496	0.00219	0.00099	0.00046	0.00022
8	3.875	0.00109	0.28001	0.51475	0.38822	0.21947	0.11125	0.05419	0.02617	0.01271	0.00626	0.00313	0.00160	0.00083
9	4.125	0.00016	0.10868	0.31816	0.32601	0.23171	0.14100	0.07997	0.04399	0.02395	0.01304	0.00715	0.00396	0.00222
10	4.375	0.00002	0.03578	0.16228	0.22187	0.19560	0.14137	0.09253	0.05754	0.03487	0.02089	0.01248	0.00747	0.00449
11	4.625	0	0.01030	0.07061	0.12677	0.13698	0.11646	0.08726	0.06093	0.04086	0.02679	0.01735	0.01118	0.00720
12	4.875	0	0.00265	0.02693	0.06257	0.08198	0.08129	0.06924	0.05395	0.03983	0.02844	0.01989	0.01374	0.00943
13	5.125	0	0.00062	0.00920	0.02730	0.04296	0.04931	0.04743	0.04102	0.03317	0.02568	0.01932	0.01426	0.01040
14	5.375	0	0.00014	0.00286	0.01074	0.02011	0.02653	0.02866	0.02737	0.02415	0.02019	0.01628	0.01280	0.00989
15	5.625	0	0.00003	0.00082	0.00387	0.00855	0.01289	0.01555	0.01633	0.01565	0.01409	0.01214	0.01014	0.00828
16	5.875	0	0.00001	0.00022	0.00129	0.00335	0.00573	0.00769	0.00884	0.00917	0.00886	0.00813	0.00719	0.00619
17	6.125	0	0	0.00006	0.00040	0.00122	0.00236	0.00351	0.00440	0.00492	0.00509	0.00496	0.00464	0.00420
18	6.375	0	0	0.00001	0.00012	0.00042	0.00091	0.00149	0.00204	0.00245	0.00270	0.00279	0.00276	0.00262
19	6.625	0	0	0	0.00003	0.00014	0.00033	0.00060	0.00088	0.00114	0.00134	0.00147	0.00152	0.00151
20	6.875	0	0	0	0.00001	0.00004	0.00012	0.00023	0.00036	0.00050	0.00063	0.00072	0.00079	0.00082
21	7.125	0	0	0	0	0.00001	0.00004	0.00008	0.00014	0.00021	0.00028	0.00034	0.00038	0.00042
22	7.375	0	0	0	0	0	0.00001	0.00003	0.00005	0.00008	0.00012	0.00015	0.00018	0.00020
23	7.625	0	0	0	0	0	0	0.00001	0.00002	0.00003	0.00005	0.00006	0.00008	0.00009
24	7.875	0	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00003	0.00003	0.00004
25	8.125	0	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001	0.00002
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0.00001	0.00001

		Απόι	κοινού πυκν	ότητα πιθαν	νότητας fbivLa	ogCor (Hs, Tm)	για το Η _s κ	αι την Τ _m γ	ια τα βαθιά	για το σύν	ολο των κυ	μάτων (tota	al)	
\backslash	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s))	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00002	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00011	0.00005	0.00003	0.00001	0.00001	0	0	0	0	0	0	0	0
8	3.875	0.00044	0.00024	0.00013	0.00007	0.00004	0.00002	0.00001	0.00001	0	0	0	0	0
9	4.125	0.00126	0.00072	0.00042	0.00025	0.00015	0.00009	0.00005	0.00003	0.00002	0.00001	0.00001	0.00001	0
10	4.375	0.00272	0.00166	0.00103	0.00064	0.00040	0.00025	0.00016	0.00010	0.00007	0.00004	0.00003	0.00002	0.00001
11	4.625	0.00464	0.00300	0.00195	0.00128	0.00084	0.00056	0.00037	0.00025	0.00017	0.00011	0.00008	0.00005	0.00004
12	4.875	0.00645	0.00441	0.00302	0.00207	0.00143	0.00099	0.00069	0.00048	0.00034	0.00024	0.00017	0.00012	0.00009
13	5.125	0.00753	0.00542	0.00390	0.00280	0.00201	0.00145	0.00105	0.00076	0.00055	0.00040	0.00029	0.00021	0.00016
14	5.375	0.00755	0.00572	0.00430	0.00323	0.00242	0.00181	0.00135	0.00101	0.00076	0.00057	0.00043	0.00033	0.00025
15	5.625	0.00665	0.00527	0.00415	0.00325	0.00253	0.00196	0.00152	0.00118	0.00091	0.00071	0.00055	0.00043	0.00033
16	5.875	0.00522	0.00434	0.00356	0.00289	0.00234	0.00188	0.00151	0.00121	0.00096	0.00077	0.00061	0.00049	0.00039
17	6.125	0.00371	0.00322	0.00275	0.00233	0.00195	0.00162	0.00134	0.00110	0.00091	0.00074	0.00061	0.00050	0.00041
18	6.375	0.00242	0.00219	0.00194	0.00170	0.00148	0.00127	0.00108	0.00092	0.00078	0.00065	0.00055	0.00046	0.00038
19	6.625	0.00146	0.00137	0.00127	0.00115	0.00103	0.00091	0.00080	0.00070	0.00061	0.00052	0.00045	0.00039	0.00033
20	6.875	0.00082	0.00081	0.00077	0.00072	0.00067	0.00061	0.00055	0.00050	0.00044	0.00039	0.00034	0.00030	0.00026
21	7.125	0.00044	0.00044	0.00044	0.00043	0.00041	0.00038	0.00036	0.00033	0.00030	0.00027	0.00024	0.00022	0.00019
22	7.375	0.00022	0.00023	0.00024	0.00024	0.00023	0.00023	0.00022	0.00020	0.00019	0.00018	0.00016	0.00015	0.00014
23	7.625	0.00011	0.00012	0.00012	0.00013	0.00013	0.00013	0.00012	0.00012	0.00011	0.00011	0.00010	0.00010	0.00009
24	7.875	0.00005	0.00006	0.00006	0.00006	0.00007	0.00007	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00005
25	8.125	0.00002	0.00003	0.00003	0.00003	0.00003	0.00003	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002

Πίνακας A.11 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BivLogCor}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (ii) για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

	A	Από κοινού 1	τυκνότητα 2	πιθανότητα	ις fBivLogCor	(Hs, Tm) yı	α το Hs και	την Τ _m για	τα βαθιά γ	ια τα ανεμα	γενή κύμα	τα (wind-g	enerated)	
\sim	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.69084	0.01193	0.00026	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	1.13419	0.11544	0.00565	0.00039	0.00004	0	0	0	0	0	0	0	0
3	2.625	0.91932	0.46176	0.04748	0.00539	0.00074	0.00012	0.00002	0.00001	0	0	0	0	0
4	2.875	0.44296	0.94943	0.19167	0.03392	0.00651	0.00140	0.00033	0.00009	0.00002	0.00001	0	0	0
5	3.125	0.14449	1.17087	0.43868	0.11666	0.03036	0.00829	0.00242	0.00075	0.00025	0.00009	0.00003	0.00001	0
6	3.375	0.03504	0.96888	0.64236	0.24880	0.08573	0.02931	0.01030	0.00376	0.00143	0.00057	0.00023	0.00010	0.00004
7	3.625	0.00676	0.58480	0.65868	0.36169	0.16175	0.06810	0.02845	0.01205	0.00523	0.00233	0.00106	0.00050	0.00024
8	3.875	0.00110	0.27430	0.50663	0.38534	0.21980	0.11239	0.05520	0.02686	0.01314	0.00651	0.00328	0.00168	0.00088
9	4.125	0.00015	0.10499	0.30832	0.31826	0.22805	0.13990	0.07997	0.04431	0.02429	0.01332	0.00735	0.00409	0.00230
10	4.375	0.00002	0.03407	0.15480	0.21301	0.18918	0.13776	0.09082	0.05687	0.03469	0.02091	0.01257	0.00756	0.00458
11	4.625	0	0.00967	0.06630	0.11968	0.13019	0.11146	0.08408	0.05909	0.03988	0.02630	0.01713	0.01110	0.00718
12	4.875	0	0.00245	0.02488	0.05809	0.07657	0.07642	0.06550	0.05135	0.03813	0.02738	0.01925	0.01337	0.00922
13	5.125	0	0.00057	0.00836	0.02493	0.03944	0.04553	0.04406	0.03833	0.03117	0.02426	0.01835	0.01361	0.00997
14	5.375	0	0.00012	0.00256	0.00964	0.01815	0.02407	0.02614	0.02511	0.02226	0.01871	0.01517	0.01198	0.00930
15	5.625	0	0.00002	0.00073	0.00341	0.00759	0.01149	0.01393	0.01470	0.01416	0.01281	0.01109	0.00930	0.00763
16	5.875	0	0	0.00019	0.00112	0.00292	0.00502	0.00677	0.00782	0.00815	0.00791	0.00729	0.00648	0.00560
17	6.125	0	0	0.00005	0.00035	0.00105	0.00203	0.00303	0.00382	0.00430	0.00446	0.00437	0.00410	0.00373
18	6.375	0	0	0.00001	0.00010	0.00035	0.00077	0.00127	0.00174	0.00210	0.00233	0.00242	0.00239	0.00228
19	6.625	0	0	0	0.00003	0.00011	0.00028	0.00050	0.00074	0.00096	0.00113	0.00124	0.00130	0.00129
20	6.875	0	0	0	0.00001	0.00003	0.00009	0.00019	0.00030	0.00042	0.00052	0.00060	0.00066	0.00069
21	7.125	0	0	0	0	0.00001	0.00003	0.00007	0.00012	0.00017	0.00023	0.00028	0.00032	0.00035
22	7.375	0	0	0	0	0	0.00001	0.00002	0.00004	0.00007	0.00009	0.00012	0.00014	0.00016
23	7.625	0	0	0	0	0	0	0.00001	0.00002	0.00003	0.00004	0.00005	0.00006	0.00007
24	7.875	0	0	0	0	0	0	0	0.00001	0.00001	0.00001	0.00002	0.00003	0.00003
25	8.125	0	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001	0.00001
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0.00001

		Από κοινο	ού πυκνότη	τα πιθανότη	τας $f_{BivLogCor}$ ((H _s , T _m) για τ	το H _s και τη	ν Τ _m για το	ι βαθιά για	τα ανεμογε	νή κύματα	(wind-gene	erated)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$	\sum	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00002	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00012	0.00006	0.00003	0.00002	0.00001	0	0	0	0	0	0	0	0
8	3.875	0.00047	0.00025	0.00014	0.00008	0.00004	0.00003	0.00001	0.00001	0.00001	0	0	0	0
9	4.125	0.00131	0.00076	0.00044	0.00026	0.00016	0.00010	0.00006	0.00004	0.00002	0.00001	0.00001	0.00001	0
10	4.375	0.00279	0.00171	0.00106	0.00066	0.00042	0.00027	0.00017	0.00011	0.00007	0.00005	0.00003	0.00002	0.00001
11	4.625	0.00465	0.00303	0.00198	0.00130	0.00086	0.00057	0.00038	0.00026	0.00018	0.00012	0.00008	0.00006	0.00004
12	4.875	0.00634	0.00435	0.00299	0.00206	0.00143	0.00099	0.00069	0.00048	0.00034	0.00024	0.00017	0.00012	0.00009
13	5.125	0.00725	0.00524	0.00378	0.00273	0.00197	0.00142	0.00103	0.00075	0.00055	0.00040	0.00029	0.00022	0.00016
14	5.375	0.00713	0.00542	0.00410	0.00308	0.00232	0.00174	0.00131	0.00098	0.00074	0.00056	0.00042	0.00032	0.00024
15	5.625	0.00615	0.00490	0.00387	0.00304	0.00238	0.00185	0.00144	0.00112	0.00087	0.00068	0.00053	0.00041	0.00032
16	5.875	0.00474	0.00395	0.00326	0.00266	0.00216	0.00174	0.00140	0.00112	0.00090	0.00072	0.00057	0.00046	0.00037
17	6.125	0.00331	0.00288	0.00247	0.00209	0.00176	0.00147	0.00122	0.00101	0.00083	0.00068	0.00056	0.00046	0.00038
18	6.375	0.00212	0.00192	0.00171	0.00151	0.00131	0.00113	0.00097	0.00082	0.00070	0.00059	0.00049	0.00042	0.00035
19	6.625	0.00125	0.00118	0.00110	0.00100	0.00090	0.00080	0.00070	0.00061	0.00053	0.00046	0.00040	0.00034	0.00029
20	6.875	0.00069	0.00068	0.00065	0.00062	0.00057	0.00052	0.00047	0.00043	0.00038	0.00034	0.00030	0.00026	0.00023
21	7.125	0.00036	0.00037	0.00037	0.00036	0.00034	0.00032	0.00030	0.00028	0.00025	0.00023	0.00021	0.00019	0.00017
22	7.375	0.00018	0.00019	0.00019	0.00020	0.00019	0.00019	0.00018	0.00017	0.00016	0.00015	0.00014	0.00012	0.00011
23	7.625	0.00008	0.00009	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00007
24	7.875	0.00004	0.00004	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00004
25	8.125	0.00002	0.00002	0.00002	0.00002	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001

Πίνακας A.12 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BivLogCor}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (ii) για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

			Απά	ό κοινού	πυκνότ	ητα πιθ	ανότητο	ας f _{BivLo}	_{gCor} (H _s ,	T _m) για	то Н _s к	αι την Τ	m για το	α βαθιά	για τα κ	τύματα (αποθάλο	ασσας (s	swell)			
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.87 5	5.12 5
i [.]	10.2	0.0088	0.0071	0.0029	0.0013	0.0007	0.0003	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
1	5	9	0	6	6	0	8	3	4	9	6	4	3	2	2	1	1	1	1	0	0	0
	10.7	0 0309	0.0182	0,0066	0.0027	0 0013	0,0006	0 0003	0 0002	0 0001	0 0000	0 0000	0,0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0,0000	0	0
2	10.7	0.0309	0.0182	0.0000	0.0027	0.0015	0.0000	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0	~
	3	9	9	2	8	3	9	9	3	4	9	6	4	3	2	2	1	1	1	1	0	0
3	11.2	0.0777	0.0344	0.0109	0.0042	0.0018	0.0009	0.0005	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
5	5	8	2	0	0	7	3	0	8	7	1	7	5	3	2	2	1	1	1	0	0	0
4	11.7	0.1463	0.0491	0.0137	0.0048	0.0020	0.0009	0.0004	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
4	5	3	7	0	5	3	6	9	7	6	0	6	4	3	2	1	1	1	1	0	0	0
	12.2	0 2135	0.0551	0.0135	0 0044	0.0017	0.0007	0.0003	0.0002	0.0001	0,0000	0,0000	0 0000	0,0000	0 0000	0 0000	0 0000					
5	5	6	1	0.0155	2	E.0017	0.0007	0.0000	1	2	7	4	2	2.0000	1	1	1	0	0	0	0	0
	10.7	0	1	0	5	5	0	9	1	2	,	4	5	2	1	1	1	0	0	0	0	0
6	12.7	0.2489	0.0498	0.0109	0.0033	0.0012	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000							
÷	5	4	6	2	0	3	3	5	3	7	4	2	2	1	1	0	0	0	0	0	0	0
7	13.2	0.2376	0.0373	0.0073	0.0020	0.0007	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000									
'	5	8	1	0	5	2	0	4	7	4	2	1	1	0	0	0	0	0	0	0	0	0
	13.7	0.1899	0.0235	0.0041	0.0010	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000										
8	5	9	9	4	8	6	4	6	3	2	1	1	0	0	0	0	0	0	0	0	0	0
	14.2	0 1 2 9 5	0.0128	0.0020	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	-	-	-	-	-	-	-	-	-	-	-	-
9	14.2	0.1255	0.0128	0.0020	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0	0
	3	/	5	2	9	0	0	3	1	1	0	0	0	0	0	0	0	0	0	0	U	0
10	14.7	0.0766	0.0061	0.0008	0.0002	0.0000	0.0000	0.0000														
10	5	6	0	7	0	6	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.1	15.2	0.0399	0.0025	0.0003	0.0000	0.0000	0.0000															
11	5	3	7	3	7	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15.7	0.0185	0.0009	0.0001	0.0000	0.0000																
12	5	4	7	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16.2	0.0077	0.0002	0 0000	0 0000	-	0	U	U	0	0	U	0	U	U	0	0	0	0	0	Ū	0
13	10.2	0.0077	0.0005	0.0000	0.0000																•	
	5	6	3	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	16.7	0.0029	0.0001	0.0000																		
	5	6	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	17.2	0.0010	0.0000																			
15	5	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	177	0.0003	0.0000																			
16	5	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.2	0.0001	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	16.2	0.0001																			•	
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.7	0.0000																				
.0	5	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	19.2	0.0000																				
19	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	19.7																					
20	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20.2	č	0	0	0	0	0	0	Ũ	č	0	Ũ	0	0	0	0	0	0	0	0	Ū	
21	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Απά	ό κοινού πυι	κνότητα πι	θανότητας	$f_L^P (H_{s}, T_m)$) тоυ <i>H</i> s ка	ι της Τ _m για	τα βαθιά γ	ια το σύνολ	ο των κυμά	ίτων (total)		
\square	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.19390	0.03443	0.01074	0.00481	0.00260	0.00156	0.00101	0.00069	0.00049	0.00036	0.00027	0.00020	0.00016
2	2.375	0.51460	0.10296	0.03146	0.01393	0.00746	0.00447	0.00289	0.00196	0.00139	0.00101	0.00076	0.00058	0.00045
3	2.625	0.87221	0.24584	0.07256	0.03130	0.01651	0.00981	0.00629	0.00426	0.00300	0.00218	0.00163	0.00124	0.00096
4	2.875	0.91399	0.50367	0.14712	0.06103	0.03137	0.01832	0.01162	0.00781	0.00548	0.00397	0.00295	0.00224	0.00173
5	3.125	0.66337	0.82142	0.27355	0.11016	0.05484	0.03130	0.01954	0.01298	0.00903	0.00650	0.00481	0.00364	0.00281
6	3.375	0.40999	0.89460	0.44084	0.18532	0.09062	0.05059	0.03102	0.02033	0.01399	0.01000	0.00736	0.00554	0.00426
7	3.625	0.24527	0.64809	0.53116	0.27152	0.13808	0.07694	0.04669	0.03027	0.02064	0.01464	0.01070	0.00803	0.00614
8	3.875	0.14850	0.38381	0.44152	0.30751	0.17941	0.10498	0.06464	0.04200	0.02858	0.02020	0.01472	0.01100	0.00839
9	4.125	0.09160	0.21823	0.28406	0.25569	0.18216	0.11918	0.07766	0.05191	0.03582	0.02550	0.01865	0.01396	0.01066
10	4.375	0.05725	0.12611	0.16609	0.17050	0.14366	0.10761	0.07677	0.05433	0.03886	0.02830	0.02100	0.01588	0.01221
11	4.625	0.03595	0.07459	0.09595	0.10317	0.09577	0.07982	0.06238	0.04732	0.03559	0.02686	0.02046	0.01576	0.01229
12	4.875	0.02253	0.04482	0.05610	0.06086	0.05907	0.05250	0.04389	0.03535	0.02793	0.02192	0.01721	0.01358	0.01078
13	5.125	0.01401	0.02711	0.03319	0.03589	0.03546	0.03260	0.02840	0.02385	0.01958	0.01588	0.01282	0.01034	0.00837
14	5.375	0.00861	0.01638	0.01974	0.02123	0.02111	0.01974	0.01761	0.01518	0.01278	0.01062	0.00875	0.00719	0.00590
15	5.625	0.00523	0.00983	0.01174	0.01256	0.01252	0.01180	0.01066	0.00933	0.00799	0.00674	0.00563	0.00468	0.00389
16	5.875	0.00313	0.00585	0.00694	0.00740	0.00738	0.00699	0.00636	0.00562	0.00486	0.00413	0.00349	0.00292	0.00245
17	6.125	0.00185	0.00345	0.00407	0.00434	0.00432	0.00410	0.00375	0.00333	0.00289	0.00248	0.00210	0.00177	0.00149
18	6.375	0.00108	0.00201	0.00237	0.00252	0.00251	0.00239	0.00219	0.00195	0.00170	0.00146	0.00124	0.00105	0.00088
19	6.625	0.00063	0.00116	0.00137	0.00145	0.00145	0.00138	0.00126	0.00113	0.00098	0.00085	0.00072	0.00061	0.00052
20	6.875	0.00036	0.00067	0.00078	0.00083	0.00083	0.00079	0.00072	0.00065	0.00056	0.00049	0.00042	0.00035	0.00030
21	7.125	0.00020	0.00038	0.00044	0.00047	0.00047	0.00045	0.00041	0.00037	0.00032	0.00028	0.00024	0.00020	0.00017
22	7.375	0.00012	0.00021	0.00025	0.00027	0.00027	0.00025	0.00023	0.00021	0.00018	0.00016	0.00013	0.00011	0.00010
23	7.625	0.00006	0.00012	0.00014	0.00015	0.00015	0.00014	0.00013	0.00012	0.00010	0.00009	0.00008	0.00006	0.00005
24	7.875	0.00004	0.00007	0.00008	0.00008	0.00008	0.00008	0.00007	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003
25	8.125	0.00002	0.00004	0.00004	0.00005	0.00005	0.00004	0.00004	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002
26	8.375	0.00001	0.00002	0.00002	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001

Πίνακας A.13 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή (περιθώρια) και για το H_s και την T_m , σύμφωνα με το μοντέλο Plackett για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)
		I	Από κοινού 2	πυκνότητα 1	τιθανότητας j	$f_L^P(H_s, T_m)$	του <i>Η</i> _s και τ	ης Τ _m για το	α βαθιά για	το σύνολο 1	των κυμάτα	ov (total)		
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$)	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00012	0.00010	0.00008	0.00006	0.00005	0.00004	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001
2	2.375	0.00035	0.00028	0.00023	0.00018	0.00015	0.00012	0.00010	0.00009	0.00007	0.00006	0.00005	0.00005	0.00004
3	2.625	0.00075	0.00060	0.00048	0.00039	0.00032	0.00027	0.00022	0.00019	0.00016	0.00013	0.00011	0.00010	0.00008
4	2.875	0.00136	0.00108	0.00087	0.00071	0.00058	0.00048	0.00040	0.00033	0.00028	0.00024	0.00020	0.00018	0.00015
5	3.125	0.00220	0.00175	0.00140	0.00114	0.00093	0.00077	0.00064	0.00054	0.00045	0.00038	0.00033	0.00028	0.00024
6	3.375	0.00333	0.00264	0.00211	0.00171	0.00140	0.00116	0.00096	0.00081	0.00068	0.00058	0.00049	0.00042	0.00036
7	3.625	0.00478	0.00378	0.00302	0.00245	0.00200	0.00165	0.00137	0.00115	0.00097	0.00082	0.00070	0.00060	0.00051
8	3.875	0.00652	0.00514	0.00411	0.00332	0.00271	0.00223	0.00185	0.00155	0.00130	0.00110	0.00094	0.00080	0.00069
9	4.125	0.00828	0.00653	0.00521	0.00421	0.00344	0.00283	0.00235	0.00196	0.00165	0.00140	0.00119	0.00102	0.00088
10	4.375	0.00953	0.00754	0.00604	0.00489	0.00399	0.00329	0.00273	0.00229	0.00193	0.00163	0.00139	0.00119	0.00102
11	4.625	0.00970	0.00773	0.00623	0.00507	0.00416	0.00344	0.00286	0.00240	0.00202	0.00172	0.00146	0.00125	0.00108
12	4.875	0.00863	0.00696	0.00566	0.00464	0.00383	0.00318	0.00266	0.00224	0.00189	0.00161	0.00137	0.00118	0.00102
13	5.125	0.00680	0.00555	0.00456	0.00377	0.00313	0.00262	0.00220	0.00186	0.00158	0.00134	0.00115	0.00099	0.00085
14	5.375	0.00486	0.00401	0.00332	0.00276	0.00231	0.00194	0.00164	0.00139	0.00118	0.00101	0.00087	0.00075	0.00065
15	5.625	0.00323	0.00269	0.00224	0.00188	0.00158	0.00133	0.00113	0.00096	0.00082	0.00070	0.00060	0.00052	0.00045
16	5.875	0.00204	0.00171	0.00143	0.00121	0.00102	0.00086	0.00073	0.00062	0.00053	0.00046	0.00039	0.00034	0.00030
17	6.125	0.00125	0.00105	0.00088	0.00074	0.00063	0.00053	0.00045	0.00039	0.00033	0.00028	0.00025	0.00021	0.00018
18	6.375	0.00074	0.00063	0.00053	0.00045	0.00038	0.00032	0.00027	0.00023	0.00020	0.00017	0.00015	0.00013	0.00011
19	6.625	0.00044	0.00037	0.00031	0.00026	0.00022	0.00019	0.00016	0.00014	0.00012	0.00010	0.00009	0.00008	0.00007
20	6.875	0.00025	0.00021	0.00018	0.00015	0.00013	0.00011	0.00009	0.00008	0.00007	0.00006	0.00005	0.00004	0.00004
21	7.125	0.00014	0.00012	0.00010	0.00009	0.00007	0.00006	0.00005	0.00005	0.00004	0.00003	0.00003	0.00003	0.00002
22	7.375	0.00008	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001
23	7.625	0.00005	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
24	7.875	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0
25	8.125	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0	0	0	0
26	8.375	0.00001	0.00001	0.00001	0	0	0	0	0	0	0	0	0	0

		Από κοι	νού πυκνότι	ητα πιθανό	τητας fL^P (Hs, Tm) του	Η _s και της	T _m για τα β	Βαθιά για το	α ανεμογενή	κύματα (v	vind-genera	ated)	
\square	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.20622	0.03518	0.01088	0.00486	0.00261	0.00157	0.00101	0.00069	0.00049	0.00035	0.00026	0.00020	0.00016
2	2.375	0.54774	0.10551	0.03192	0.01407	0.00752	0.00449	0.00289	0.00196	0.00139	0.00101	0.00075	0.00057	0.00044
3	2.625	0.92038	0.25342	0.07380	0.03164	0.01663	0.00985	0.00630	0.00426	0.00300	0.00217	0.00162	0.00123	0.00095
4	2.875	0.94170	0.52337	0.15042	0.06188	0.03165	0.01842	0.01165	0.00781	0.00546	0.00395	0.00293	0.00222	0.00172
5	3.125	0.66584	0.85344	0.28161	0.11229	0.05555	0.03156	0.01964	0.01301	0.00902	0.00648	0.00479	0.00362	0.00278
6	3.375	0.40418	0.91079	0.45448	0.18984	0.09221	0.05121	0.03128	0.02044	0.01403	0.01000	0.00734	0.00552	0.00423
7	3.625	0.23914	0.64124	0.53966	0.27757	0.14074	0.07810	0.04721	0.03051	0.02074	0.01467	0.01071	0.00801	0.00612
8	3.875	0.14368	0.37205	0.43674	0.30939	0.18154	0.10622	0.06528	0.04231	0.02872	0.02025	0.01473	0.01099	0.00837
9	4.125	0.08804	0.20896	0.27454	0.25095	0.18088	0.11902	0.07770	0.05193	0.03581	0.02546	0.01859	0.01389	0.01060
10	4.375	0.05464	0.11972	0.15812	0.16375	0.13941	0.10527	0.07549	0.05357	0.03837	0.02794	0.02073	0.01567	0.01204
11	4.625	0.03405	0.07027	0.09043	0.09761	0.09117	0.07648	0.06010	0.04576	0.03451	0.02608	0.01988	0.01532	0.01194
12	4.875	0.02115	0.04189	0.05242	0.05696	0.05545	0.04947	0.04151	0.03354	0.02657	0.02088	0.01642	0.01296	0.01029
13	5.125	0.01302	0.02511	0.03074	0.03327	0.03292	0.03032	0.02647	0.02226	0.01831	0.01486	0.01200	0.00969	0.00784
14	5.375	0.00792	0.01502	0.01812	0.01949	0.01940	0.01815	0.01620	0.01397	0.01177	0.00977	0.00805	0.00661	0.00543
15	5.625	0.00476	0.00892	0.01066	0.01141	0.01138	0.01073	0.00969	0.00848	0.00725	0.00611	0.00511	0.00424	0.00352
16	5.875	0.00282	0.00525	0.00623	0.00665	0.00664	0.00628	0.00571	0.00504	0.00435	0.00370	0.00312	0.00261	0.00218
17	6.125	0.00165	0.00306	0.00362	0.00385	0.00384	0.00365	0.00333	0.00295	0.00256	0.00219	0.00185	0.00156	0.00131
18	6.375	0.00095	0.00176	0.00208	0.00221	0.00221	0.00210	0.00192	0.00170	0.00148	0.00127	0.00108	0.00091	0.00077
19	6.625	0.00054	0.00100	0.00118	0.00126	0.00126	0.00119	0.00109	0.00097	0.00085	0.00073	0.00062	0.00052	0.00044
20	6.875	0.00031	0.00057	0.00067	0.00071	0.00071	0.00067	0.00062	0.00055	0.00048	0.00041	0.00035	0.00030	0.00025
21	7.125	0.00017	0.00032	0.00038	0.00040	0.00040	0.00038	0.00035	0.00031	0.00027	0.00023	0.00020	0.00017	0.00014
22	7.375	0.00010	0.00018	0.00021	0.00022	0.00022	0.00021	0.00019	0.00017	0.00015	0.00013	0.00011	0.00009	0.00008
23	7.625	0.00005	0.00010	0.00012	0.00012	0.00012	0.00012	0.00011	0.00010	0.00008	0.00007	0.00006	0.00005	0.00004
24	7.875	0.00003	0.00005	0.00006	0.00007	0.00007	0.00006	0.00006	0.00005	0.00005	0.00004	0.00003	0.00003	0.00002
25	8.125	0.00002	0.00003	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001
26	8.375	0.00001	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001

Πίνακας A.14 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή (περιθώρια) και για το H_s και την T_m , σύμφωνα με το μοντέλο Plackett για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

		Από κ	κοινού πυκν	ότητα πιθαν	νότητας f_L^P (I	H _s , T _m) του 1	Η _s και της Τ	, m για τα βα	θιά για τα σ	νεμογενή κ	ύματα (win	nd-generate	d)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$)	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00012	0.00010	0.00008	0.00006	0.00005	0.00004	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001
2	2.375	0.00035	0.00028	0.00022	0.00018	0.00015	0.00012	0.00010	0.00009	0.00007	0.00006	0.00005	0.00004	0.00004
3	2.625	0.00075	0.00059	0.00048	0.00039	0.00032	0.00026	0.00022	0.00018	0.00015	0.00013	0.00011	0.00010	0.00008
4	2.875	0.00134	0.00107	0.00086	0.00070	0.00057	0.00047	0.00039	0.00033	0.00028	0.00023	0.00020	0.00017	0.00015
5	3.125	0.00218	0.00173	0.00138	0.00112	0.00092	0.00076	0.00063	0.00053	0.00044	0.00038	0.00032	0.00027	0.00024
6	3.375	0.00330	0.00261	0.00209	0.00169	0.00138	0.00114	0.00095	0.00079	0.00067	0.00056	0.00048	0.00041	0.00035
7	3.625	0.00476	0.00375	0.00300	0.00242	0.00198	0.00163	0.00135	0.00113	0.00095	0.00080	0.00068	0.00058	0.00050
8	3.875	0.00649	0.00511	0.00408	0.00329	0.00268	0.00220	0.00183	0.00153	0.00128	0.00109	0.00092	0.00079	0.00068
9	4.125	0.00822	0.00647	0.00516	0.00416	0.00339	0.00279	0.00231	0.00193	0.00162	0.00137	0.00117	0.00100	0.00086
10	4.375	0.00939	0.00742	0.00593	0.00480	0.00392	0.00322	0.00268	0.00224	0.00188	0.00159	0.00135	0.00116	0.00099
11	4.625	0.00942	0.00751	0.00604	0.00491	0.00403	0.00333	0.00277	0.00232	0.00195	0.00166	0.00141	0.00121	0.00104
12	4.875	0.00824	0.00664	0.00540	0.00442	0.00365	0.00303	0.00253	0.00213	0.00180	0.00153	0.00130	0.00112	0.00096
13	5.125	0.00637	0.00520	0.00427	0.00352	0.00292	0.00244	0.00205	0.00173	0.00147	0.00125	0.00107	0.00092	0.00079
14	5.375	0.00446	0.00368	0.00305	0.00254	0.00212	0.00178	0.00150	0.00127	0.00108	0.00092	0.00079	0.00068	0.00059
15	5.625	0.00292	0.00243	0.00202	0.00169	0.00142	0.00120	0.00101	0.00086	0.00073	0.00063	0.00054	0.00047	0.00040
16	5.875	0.00182	0.00152	0.00127	0.00107	0.00090	0.00076	0.00064	0.00055	0.00047	0.00040	0.00035	0.00030	0.00026
17	6.125	0.00109	0.00092	0.00077	0.00065	0.00055	0.00046	0.00039	0.00034	0.00029	0.00025	0.00021	0.00018	0.00016
18	6.375	0.00064	0.00054	0.00045	0.00038	0.00032	0.00027	0.00023	0.00020	0.00017	0.00015	0.00013	0.00011	0.00009
19	6.625	0.00037	0.00031	0.00026	0.00022	0.00019	0.00016	0.00013	0.00012	0.00010	0.00008	0.00007	0.00006	0.00005
20	6.875	0.00021	0.00018	0.00015	0.00013	0.00011	0.00009	0.00008	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003
21	7.125	0.00012	0.00010	0.00008	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002
22	7.375	0.00007	0.00006	0.00005	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001
23	7.625	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
24	7.875	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0	0
25	8.125	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0	0	0	0	0	0
26	8.375	0.00001	0.00001	0	0	0	0	0	0	0	0	0	0	0

			Απ	ό κοινο	ύ πυκνά	ότητα π	τιθανότ	ητας f	$L^P(H_{s}, L)$	Тт) точ) <i>H</i> s каи	της Τ _m	για τα	βαθιά γ	ια τα κύμ	ιατα απο	θάλασσ	σας (sw	ell)			
\backslash	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
<i>i</i> : 1	10.25	0.10539	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.10539
2	10.75	0.32458	0.00008	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.32458
3	11.25	0.77566	0.00019	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.77566
4	11.75	1.48612	0.00037	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.48612
5	12.25	2.33842	0.00062	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.33842
6	12.75	3.06452	0.00089	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.06452
7	13.25	3.37462	0.00114	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.37462
8	13.75	3.16364	0.00129	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.16364
9	14.25	2.57967	0.00129	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.57967
10	14.75	1.87521	0.00112	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.87521
11	15.25	1.24028	0.00085	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.24028
12	15.75	0.75657	0.00057	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.75657
13	16.25	0.42910	0.00034	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.42910
14	16.75	0.22750	0.00019	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.22750
15	17.25	0.11325	0.00010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.11325
16	17.75	0.05316	0.00005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05316
17	18.25	0.02364	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.02364
18	18.75	0.01000	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.01000
19	19.25	0.00404	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00404
20	19.75	0.00157	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00157
21	20.25	0.00058	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00058

Πίνακας A.15 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

			Από κοινού	πυκνότητα	πιθανότητας	$fw^P (H_s, T_m)$) του <i>Η</i> s και	της Τ _m για β	βαθιά για το	σύνολο τω	ν κυμάτων	(total)		
\backslash	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.08930	0.02203	0.01000	0.00569	0.00365	0.00252	0.00182	0.00137	0.00105	0.00082	0.00066	0.00053	0.00043
2	2.375	0.26302	0.06644	0.02977	0.01676	0.01066	0.00730	0.00526	0.00393	0.00302	0.00236	0.00188	0.00152	0.00123
3	2.625	0.56575	0.16105	0.07095	0.03909	0.02443	0.01652	0.01179	0.00874	0.00666	0.00519	0.00411	0.00330	0.00268
4	2.875	0.80918	0.33138	0.14976	0.08078	0.04926	0.03262	0.02288	0.01672	0.01261	0.00974	0.00766	0.00612	0.00495
5	3.125	0.70498	0.51360	0.27721	0.15362	0.09253	0.06002	0.04124	0.02961	0.02199	0.01676	0.01305	0.01033	0.00829
6	3.375	0.44580	0.49842	0.38416	0.24927	0.15804	0.10331	0.07039	0.04985	0.03648	0.02744	0.02110	0.01652	0.01313
7	3.625	0.25632	0.32714	0.34188	0.28977	0.21617	0.15342	0.10835	0.07765	0.05684	0.04252	0.03245	0.02521	0.01988
8	3.875	0.14825	0.18523	0.21781	0.22576	0.20623	0.17120	0.13422	0.10253	0.07785	0.05939	0.04575	0.03566	0.02812
9	4.125	0.08818	0.10395	0.12326	0.13791	0.14288	0.13676	0.12223	0.10381	0.08529	0.06881	0.05508	0.04405	0.03534
10	4.375	0.05370	0.06000	0.06940	0.07838	0.08495	0.08762	0.08585	0.08019	0.07196	0.06260	0.05329	0.04473	0.03724
11	4.625	0.03314	0.03557	0.04003	0.04467	0.04874	0.05160	0.05280	0.05217	0.04983	0.04618	0.04173	0.03695	0.03222
12	4.875	0.02053	0.02143	0.02360	0.02596	0.02816	0.02996	0.03114	0.03156	0.03118	0.03005	0.02830	0.02613	0.02372
13	5.125	0.01267	0.01299	0.01409	0.01531	0.01649	0.01751	0.01827	0.01870	0.01877	0.01846	0.01782	0.01689	0.01576
14	5.375	0.00776	0.00786	0.00844	0.00910	0.00974	0.01030	0.01075	0.01104	0.01116	0.01109	0.01084	0.01044	0.00990
15	5.625	0.00470	0.00472	0.00504	0.00540	0.00576	0.00608	0.00634	0.00651	0.00660	0.00660	0.00649	0.00630	0.00604
16	5.875	0.00281	0.00281	0.00299	0.00319	0.00340	0.00358	0.00372	0.00383	0.00389	0.00389	0.00385	0.00375	0.00361
17	6.125	0.00166	0.00166	0.00176	0.00187	0.00199	0.00209	0.00218	0.00224	0.00227	0.00228	0.00226	0.00221	0.00213
18	6.375	0.00097	0.00097	0.00102	0.00109	0.00116	0.00122	0.00126	0.00130	0.00132	0.00133	0.00131	0.00129	0.00124
19	6.625	0.00056	0.00056	0.00059	0.00063	0.00067	0.00070	0.00073	0.00075	0.00076	0.00076	0.00076	0.00074	0.00072
20	6.875	0.00032	0.00032	0.00034	0.00036	0.00038	0.00040	0.00042	0.00043	0.00044	0.00044	0.00043	0.00042	0.00041
21	7.125	0.00018	0.00018	0.00019	0.00020	0.00022	0.00023	0.00024	0.00024	0.00025	0.00025	0.00025	0.00024	0.00023
22	7.375	0.00010	0.00010	0.00011	0.00012	0.00012	0.00013	0.00013	0.00014	0.00014	0.00014	0.00014	0.00014	0.00013
23	7.625	0.00006	0.00006	0.00006	0.00006	0.00007	0.00007	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00007
24	7.875	0.00003	0.00003	0.00003	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004
25	8.125	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001

Πίνακας A.16 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)

			Από κοιν	ού πυκνότητο	α πιθανότητας <i>j</i>	$f_W^P(H_s, T_m) \tau_0$	ου <i>Η</i> s και της	; <i>Τ</i> _m για βαθ	θιά για το σ	ύνολο των ι	κυμάτων (te	otal)		
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s))	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00036	0.00029	0.00025	0.00021	0.00017	0.00015	0.00012	0.00011	0.00009	0.00008	0.00007	0.00006	0.00005
2	2.375	0.00101	0.00084	0.00070	0.00059	0.00049	0.00042	0.00035	0.00030	0.00026	0.00022	0.00019	0.00016	0.00014
3	2.625	0.00220	0.00182	0.00151	0.00126	0.00106	0.00090	0.00076	0.00065	0.00055	0.00047	0.00040	0.00034	0.00030
4	2.875	0.00404	0.00332	0.00276	0.00230	0.00193	0.00162	0.00137	0.00117	0.00099	0.00085	0.00072	0.00062	0.00053
5	3.125	0.00672	0.00551	0.00455	0.00378	0.00316	0.00265	0.00224	0.00190	0.00161	0.00137	0.00117	0.00100	0.00086
6	3.375	0.01057	0.00860	0.00706	0.00584	0.00486	0.00407	0.00342	0.00289	0.00245	0.00208	0.00178	0.00152	0.00130
7	3.625	0.01589	0.01284	0.01047	0.00862	0.00714	0.00595	0.00499	0.00420	0.00355	0.00301	0.00256	0.00219	0.00187
8	3.875	0.02243	0.01807	0.01470	0.01205	0.00995	0.00827	0.00691	0.00581	0.00490	0.00415	0.00352	0.00300	0.00257
9	4.125	0.02850	0.02313	0.01889	0.01553	0.01284	0.01068	0.00893	0.00750	0.00632	0.00535	0.00454	0.00387	0.00331
10	4.375	0.03090	0.02562	0.02127	0.01770	0.01477	0.01237	0.01040	0.00877	0.00742	0.00629	0.00535	0.00457	0.00391
11	4.625	0.02780	0.02380	0.02029	0.01726	0.01466	0.01246	0.01059	0.00902	0.00769	0.00657	0.00562	0.00482	0.00413
12	4.875	0.02123	0.01879	0.01650	0.01439	0.01250	0.01082	0.00935	0.00807	0.00696	0.00600	0.00518	0.00447	0.00386
13	5.125	0.01449	0.01317	0.01185	0.01057	0.00937	0.00826	0.00725	0.00635	0.00554	0.00483	0.00421	0.00366	0.00319
14	5.375	0.00927	0.00857	0.00785	0.00712	0.00641	0.00573	0.00510	0.00452	0.00399	0.00351	0.00308	0.00270	0.00237
15	5.625	0.00571	0.00534	0.00494	0.00453	0.00413	0.00373	0.00335	0.00299	0.00266	0.00236	0.00209	0.00184	0.00162
16	5.875	0.00344	0.00324	0.00302	0.00279	0.00255	0.00232	0.00210	0.00189	0.00169	0.00150	0.00134	0.00118	0.00105
17	6.125	0.00204	0.00193	0.00180	0.00167	0.00154	0.00140	0.00127	0.00115	0.00103	0.00092	0.00082	0.00073	0.00065
18	6.375	0.00119	0.00113	0.00106	0.00098	0.00091	0.00083	0.00076	0.00068	0.00062	0.00055	0.00049	0.00044	0.00039
19	6.625	0.00069	0.00065	0.00061	0.00057	0.00053	0.00048	0.00044	0.00040	0.00036	0.00032	0.00029	0.00026	0.00023
20	6.875	0.00040	0.00038	0.00035	0.00033	0.00030	0.00028	0.00025	0.00023	0.00021	0.00019	0.00017	0.00015	0.00013
21	7.125	0.00022	0.00021	0.00020	0.00019	0.00017	0.00016	0.00014	0.00013	0.00012	0.00011	0.00010	0.00008	0.00008
22	7.375	0.00013	0.00012	0.00011	0.00011	0.00010	0.00009	0.00008	0.00007	0.00007	0.00006	0.00005	0.00005	0.00004
23	7.625	0.00007	0.00007	0.00006	0.00006	0.00006	0.00005	0.00005	0.00004	0.00004	0.00003	0.00003	0.00003	0.00002
24	7.875	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001
25	8.125	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0

		Από	κοινού πυκν	ότητα πιθαν	ότητας fw^P (.	Hs, Tm) του	Η _s και της 2	Τ., για βαθιο	ά για τα ανε	μογενή κύμ	ιατα (wind-	-generated))	
\geq	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.09291	0.02384	0.01102	0.00634	0.00410	0.00284	0.00207	0.00156	0.00120	0.00095	0.00076	0.00062	0.00050
2	2.375	0.27054	0.07147	0.03269	0.01863	0.01195	0.00824	0.00597	0.00448	0.00345	0.00272	0.00217	0.00176	0.00144
3	2.625	0.56918	0.17042	0.07716	0.04318	0.02726	0.01858	0.01333	0.00993	0.00761	0.00595	0.00474	0.00382	0.00312
4	2.875	0.79946	0.33947	0.15946	0.08801	0.05446	0.03643	0.02574	0.01893	0.01435	0.01114	0.00880	0.00706	0.00573
5	3.125	0.70053	0.50392	0.28351	0.16262	0.10025	0.06606	0.04591	0.03325	0.02486	0.01906	0.01492	0.01186	0.00956
6	3.375	0.45165	0.47806	0.37295	0.25087	0.16443	0.11023	0.07650	0.05493	0.04064	0.03082	0.02387	0.01881	0.01504
7	3.625	0.26400	0.31655	0.32255	0.27619	0.21195	0.15515	0.11256	0.08243	0.06138	0.04655	0.03592	0.02816	0.02238
8	3.875	0.15419	0.18247	0.20646	0.21019	0.19273	0.16301	0.13107	0.10272	0.07981	0.06210	0.04864	0.03844	0.03068
9	4.125	0.09209	0.10380	0.11866	0.12912	0.13169	0.12579	0.11350	0.09805	0.08222	0.06773	0.05531	0.04503	0.03671
10	4.375	0.05607	0.06035	0.06766	0.07435	0.07885	0.08019	0.07813	0.07317	0.06626	0.05843	0.05053	0.04313	0.03650
11	4.625	0.03448	0.03584	0.03929	0.04280	0.04571	0.04755	0.04804	0.04713	0.04495	0.04181	0.03806	0.03405	0.03006
12	4.875	0.02123	0.02154	0.02319	0.02498	0.02659	0.02780	0.02847	0.02854	0.02799	0.02688	0.02533	0.02347	0.02142
13	5.125	0.01300	0.01298	0.01380	0.01473	0.01559	0.01629	0.01676	0.01695	0.01684	0.01646	0.01582	0.01497	0.01398
14	5.375	0.00788	0.00779	0.00821	0.00871	0.00918	0.00957	0.00985	0.01000	0.01000	0.00986	0.00958	0.00918	0.00869
15	5.625	0.00472	0.00464	0.00486	0.00514	0.00540	0.00562	0.00578	0.00587	0.00589	0.00583	0.00570	0.00550	0.00525
16	5.875	0.00279	0.00273	0.00286	0.00301	0.00315	0.00328	0.00337	0.00343	0.00344	0.00342	0.00335	0.00325	0.00311
17	6.125	0.00163	0.00159	0.00166	0.00175	0.00183	0.00190	0.00195	0.00199	0.00200	0.00198	0.00195	0.00189	0.00182
18	6.375	0.00094	0.00092	0.00096	0.00100	0.00105	0.00109	0.00112	0.00114	0.00115	0.00114	0.00112	0.00109	0.00105
19	6.625	0.00054	0.00052	0.00055	0.00057	0.00060	0.00062	0.00064	0.00065	0.00065	0.00065	0.00064	0.00062	0.00060
20	6.875	0.00030	0.00030	0.00031	0.00032	0.00034	0.00035	0.00036	0.00037	0.00037	0.00037	0.00036	0.00035	0.00034
21	7.125	0.00017	0.00017	0.00017	0.00018	0.00019	0.00020	0.00020	0.00021	0.00021	0.00021	0.00020	0.00020	0.00019
22	7.375	0.00010	0.00009	0.00010	0.00010	0.00011	0.00011	0.00011	0.00011	0.00012	0.00011	0.00011	0.00011	0.00011
23	7.625	0.00005	0.00005	0.00005	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006
24	7.875	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003
25	8.125	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001

Πίνακας A.17 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

		A	πό κοινού πυ	κνότητα πιθα	ανότητας f_W^P (H	Is, T _m) του H _s	και της Τ _m	για βαθιά γ	ια τα ανεμα	γενή κύμα	τα (wind-ge	enerated)		
\sim	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$)	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00042	0.00035	0.00029	0.00024	0.00021	0.00017	0.00015	0.00013	0.00011	0.00009	0.00008	0.00007	0.00006
2	2.375	0.00119	0.00099	0.00082	0.00069	0.00059	0.00050	0.00042	0.00036	0.00031	0.00027	0.00023	0.00020	0.00017
3	2.625	0.00257	0.00213	0.00178	0.00149	0.00126	0.00107	0.00091	0.00078	0.00066	0.00057	0.00049	0.00042	0.00036
4	2.875	0.00470	0.00388	0.00323	0.00271	0.00228	0.00193	0.00164	0.00140	0.00119	0.00102	0.00088	0.00076	0.00065
5	3.125	0.00779	0.00641	0.00532	0.00444	0.00372	0.00314	0.00266	0.00227	0.00193	0.00166	0.00142	0.00122	0.00105
6	3.375	0.01217	0.00995	0.00820	0.00682	0.00570	0.00479	0.00405	0.00343	0.00293	0.00250	0.00214	0.00184	0.00158
7	3.625	0.01801	0.01465	0.01202	0.00994	0.00828	0.00694	0.00584	0.00494	0.00420	0.00358	0.00306	0.00263	0.00226
8	3.875	0.02472	0.02009	0.01647	0.01360	0.01131	0.00946	0.00795	0.00672	0.00570	0.00485	0.00414	0.00355	0.00305
9	4.125	0.03002	0.02466	0.02036	0.01690	0.01410	0.01182	0.00995	0.00842	0.00714	0.00609	0.00520	0.00446	0.00383
10	4.375	0.03076	0.02587	0.02176	0.01833	0.01547	0.01308	0.01110	0.00944	0.00805	0.00688	0.00590	0.00507	0.00436
11	4.625	0.02626	0.02279	0.01968	0.01694	0.01456	0.01251	0.01075	0.00924	0.00795	0.00685	0.00591	0.00510	0.00441
12	4.875	0.01932	0.01726	0.01530	0.01348	0.01183	0.01034	0.00902	0.00786	0.00684	0.00595	0.00518	0.00451	0.00392
13	5.125	0.01290	0.01177	0.01065	0.00957	0.00854	0.00759	0.00672	0.00593	0.00522	0.00459	0.00403	0.00353	0.00309
14	5.375	0.00813	0.00753	0.00691	0.00629	0.00569	0.00512	0.00458	0.00408	0.00363	0.00321	0.00284	0.00251	0.00221
15	5.625	0.00495	0.00463	0.00428	0.00394	0.00359	0.00326	0.00294	0.00264	0.00236	0.00210	0.00187	0.00166	0.00147
16	5.875	0.00295	0.00277	0.00258	0.00238	0.00219	0.00199	0.00181	0.00163	0.00146	0.00131	0.00117	0.00104	0.00092
17	6.125	0.00173	0.00163	0.00152	0.00141	0.00130	0.00119	0.00108	0.00098	0.00088	0.00079	0.00071	0.00063	0.00056
18	6.375	0.00100	0.00094	0.00088	0.00082	0.00076	0.00069	0.00063	0.00057	0.00052	0.00046	0.00041	0.00037	0.00033
19	6.625	0.00057	0.00054	0.00051	0.00047	0.00043	0.00040	0.00036	0.00033	0.00030	0.00027	0.00024	0.00021	0.00019
20	6.875	0.00032	0.00031	0.00029	0.00027	0.00025	0.00023	0.00021	0.00019	0.00017	0.00015	0.00014	0.00012	0.00011
21	7.125	0.00018	0.00017	0.00016	0.00015	0.00014	0.00013	0.00012	0.00011	0.00010	0.00009	0.00008	0.00007	0.00006
22	7.375	0.00010	0.00010	0.00009	0.00008	0.00008	0.00007	0.00006	0.00006	0.00005	0.00005	0.00004	0.00004	0.00003
23	7.625	0.00006	0.00005	0.00005	0.00005	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002
24	7.875	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001
25	8.125	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0	0	0

		/	3	Από κ	ςοινού π	υκνότη	τα πιθα	νότητας	$fw^P (H_s)$	s, Tm) το	υ <i>Hs</i> κα	ιτης Τ	m, για β	αθιά για	ι τα κύμ	ατα απ	οθάλασ	σας (sw	ell)			
/	$H_s(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
i:	10.2	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	5	73	82	47	32	24	19	16	14	12	10	09	08	08	07	06	06	06	05	05	05	04
2	10.7	0.008	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	5	55	58	47	01	76	61	50	43	37	33	29	26	24	22	20	19	18	16	15	14	14
3	11.2	0.021	0.006	0.003	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	5	38	44	66	52	90	52	26	07	93	82	73	66	60	55	51	47	44	41	38	36	34
4	11.7	0.044	0.013	0.007	0.005	0.004	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
	5	98	56	70	29	00	19	64	25	95	72	53	38	26	15	06	98	91	85	80	75	71
5	12.2	0.082	0.024	0.014	0.009	0.007	0.005	0.004	0.004	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	5	18	99	23	/8	39	89	88	15	60	1/	83	55	32	12	96	81	69	58	48	39	31
6	12.7	0.128	0.040	0.023	0.016	0.012	0.009	0.008	0.006	0.005	0.005	0.004	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	10
	12.2	48	24	15	01	12	70	0.011	85	95	25	69	23	84 0.005	52	24	01	80	62	45	31	18
7	15.2	67	0.055	61	10	0.010	60	12	0.009	52	55	0.006	0.006	57	0.005	0.004	20	0.004	0.003	0.003 50	20	20
	127	0151	0.054	0.022	0.024	0.018	0.015	0.012	0.011	0 000	0.008	0.007	0.007	0.006	0.006	0.005	0.005	0.004	0.004	0.004	0.004	0.002
8	13.7	87	95	67	22	87	/13	0.013	26	0.00 <i>3</i>	82	95	23	62	11	66	28	0.004 Q/	64	37	13	0.003 Q1
	14.2	0 112	0.043	0.027	0 020	0.016	0.013	0.011	0.010	0.008	0.007	0.007	0.006	0.006	0.005	0.005	0.004	0 004	0 004	0 004	0 003	0.003
9	5	43	43	56	32	13	39	45	00	88	98	25	64	12	68	29	96	66	40	16	95	75
	147	0.071	0.028	0.018	0.013	0.011	0.009	0.008	0.007	0.006	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.002
10	5	69	69	60	93	20	40	11	14	39	78	28	87	51	21	94	71	50	31	15	00	86
	15.2	0.042	0.017	0.011	0.008	0.006	0.005	0.005	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001
11	5	32	18	24	49	87	79	03	45	99	63	33	08	86	67	51	37	24	13	03	93	85
10	15.7	0.023	0.009	0.006	0.004	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
12	5	83	72	38	83	92	32	88	56	30	10	92	78	66	55	46	38	31	24	19	13	08
12	16.2	0.012	0.005	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	5	87	25	45	62	13	80	57	39	25	14	05	97	91	85	80	76	72	68	65	62	60
14	16.7	0.006	0.002	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
14	5	63	71	78	35	10	93	81	72	65	59	54	50	47	44	41	39	37	35	34	32	31
15	17.2	0.003	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.5	5	25	33	87	66	54	46	40	35	32	29	27	25	23	22	20	19	18	17	17	16	15
16	17.7	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	5	52	62	41	31	25	21	19	16	15	14	12	12	11	10	09	09	09	08	08	07	07
17	18.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	5	6/	27	18	14	11	09	08	07	07	06	06	05	05	04	04	04	04	04	03	03	03
18	18.7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	5	28	12	08	06	05	04	03	03	03	03	02	02	02	02	02	02	02	02	01	01	01
19	19.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	3 10.7	11	0.000	0.000	0.000	0.000	0.000	0.000	01	01	01	01	01	01	01	01	01	01	01	01	01	01
20	19.7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20.2	0.000	0.000	01	01	01	01	01	U	U	0	U	U	U	U	0	U	U	0	0	0	U
21	20.2	02	0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	5	02	01	U	0	0	0	0	0	U	0	0	0	0	U	0	U	0	0	0	0	0

Πίνακας A.18 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

			Από κοινού 1	τυκνότητα π	ιθανότητας	fBoxCox(Hs, T	n) тоυ <i>Hs</i> ка	ι της Τ _m για	βαθιά για το	ο σύνολο τα	ον κυμάτων	v (total)		
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.02309	0.00005	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0.48460	0.01077	0.00040	0.00003	0	0	0	0	0	0	0	0	0
3	2.625	1.35187	0.18920	0.01767	0.00206	0.00030	0.00005	0.00001	0	0	0	0	0	0
4	2.875	1.15055	0.74986	0.15049	0.02954	0.00634	0.00150	0.00039	0.00011	0.00003	0.00001	0	0	0
5	3.125	0.48356	1.16349	0.44700	0.13666	0.04119	0.01287	0.00423	0.00146	0.00053	0.00020	0.00008	0.00003	0.00001
6	3.375	0.13399	0.99166	0.66606	0.29811	0.12030	0.04768	0.01913	0.00785	0.00332	0.00144	0.00064	0.00029	0.00014
7	3.625	0.02924	0.57522	0.62812	0.39168	0.20372	0.09927	0.04742	0.02266	0.01094	0.00535	0.00266	0.00135	0.00070
8	3.875	0.00562	0.26090	0.43659	0.36430	0.23682	0.13834	0.07704	0.04205	0.02283	0.01242	0.00681	0.00376	0.00210
9	4.125	0.00102	0.10142	0.24770	0.26752	0.21188	0.14535	0.09272	0.05695	0.03431	0.02050	0.01223	0.00731	0.00439
10	4.375	0.00018	0.03592	0.12295	0.16718	0.15792	0.12505	0.09005	0.06144	0.04063	0.02639	0.01698	0.01088	0.00696
11	4.625	0.00003	0.01209	0.05602	0.09368	0.10367	0.09337	0.07497	0.05622	0.04042	0.02830	0.01949	0.01329	0.00901
12	4.875	0.00001	0.00398	0.02423	0.04883	0.06235	0.06309	0.05589	0.04565	0.03539	0.02652	0.01942	0.01401	0.01001
13	5.125	0	0.00130	0.01018	0.02431	0.03535	0.03975	0.03851	0.03399	0.02822	0.02249	0.01742	0.01322	0.00990
14	5.375	0	0.00043	0.00423	0.01178	0.01929	0.02388	0.02510	0.02378	0.02102	0.01772	0.01444	0.01149	0.00898
15	5.625	0	0.00015	0.00175	0.00563	0.01028	0.01390	0.01575	0.01592	0.01490	0.01322	0.01129	0.00937	0.00762
16	5.875	0	0.00005	0.00073	0.00268	0.00541	0.00794	0.00963	0.01033	0.01019	0.00948	0.00845	0.00730	0.00616
17	6.125	0	0.00002	0.00031	0.00128	0.00284	0.00448	0.00580	0.00657	0.00681	0.00662	0.00614	0.00550	0.00479
18	6.375	0	0.00001	0.00013	0.00062	0.00149	0.00252	0.00346	0.00413	0.00447	0.00452	0.00435	0.00403	0.00363
19	6.625	0	0	0.00006	0.00030	0.00079	0.00142	0.00206	0.00257	0.00291	0.00306	0.00304	0.00291	0.00269
20	6.875	0	0	0.00003	0.00015	0.00042	0.00080	0.00122	0.00160	0.00188	0.00205	0.00210	0.00207	0.00197
21	7.125	0	0	0.00001	0.00007	0.00023	0.00046	0.00073	0.00100	0.00121	0.00137	0.00145	0.00146	0.00143
22	7.375	0	0	0.00001	0.00004	0.00012	0.00026	0.00044	0.00062	0.00079	0.00091	0.00099	0.00103	0.00103
23	7.625	0	0	0	0.00002	0.00007	0.00015	0.00027	0.00039	0.00051	0.00061	0.00068	0.00072	0.00074
24	7.875	0	0	0	0.00001	0.00004	0.00009	0.00016	0.00025	0.00033	0.00041	0.00047	0.00051	0.00053
25	8.125	0	0	0	0.00001	0.00002	0.00005	0.00010	0.00016	0.00022	0.00027	0.00032	0.00036	0.00038
26	8.375	0	0	0	0	0.00001	0.00003	0.00006	0.00010	0.00014	0.00019	0.00022	0.00025	0.00027

Πίνακας Α.19 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BoxCox}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , σύμφωνα με το μοντέλο με μετασχηματισμούς Box-Cox για τα βαθιά ύδατα για το σύνολο των κυμάτων (total)

			Από κοινο	νύ πυκνότητα	πιθανότητας <i>f</i> ε	$R_{oxCox}(H_s, T_m) \tau$	ου <i>Η</i> s και τι	ς <i>Τ</i> _m για βα	θιά για το ο	σύνολο των	κυμάτων (total)		
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$	$\sum_{i=1}^{n}$	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0.00001	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00007	0.00003	0.00002	0.00001	0	0	0	0	0	0	0	0	0
7	3.625	0.00036	0.00019	0.00010	0.00006	0.00003	0.00002	0.00001	0.00001	0	0	0	0	0
8	3.875	0.00119	0.00068	0.00039	0.00023	0.00014	0.00008	0.00005	0.00003	0.00002	0.00001	0.00001	0	0
9	4.125	0.00265	0.00161	0.00099	0.00061	0.00038	0.00024	0.00015	0.00010	0.00006	0.00004	0.00003	0.00002	0.00001
10	4.375	0.00446	0.00287	0.00185	0.00120	0.00078	0.00051	0.00034	0.00022	0.00015	0.00010	0.00007	0.00005	0.00003
11	4.625	0.00609	0.00412	0.00278	0.00189	0.00128	0.00087	0.00060	0.00041	0.00028	0.00020	0.00014	0.00010	0.00007
12	4.875	0.00710	0.00502	0.00354	0.00250	0.00176	0.00125	0.00088	0.00063	0.00045	0.00032	0.00023	0.00016	0.00012
13	5.125	0.00734	0.00541	0.00397	0.00290	0.00212	0.00155	0.00113	0.00083	0.00060	0.00044	0.00033	0.00024	0.00018
14	5.375	0.00693	0.00530	0.00403	0.00304	0.00229	0.00173	0.00130	0.00097	0.00073	0.00055	0.00041	0.00031	0.00024
15	5.625	0.00610	0.00483	0.00379	0.00295	0.00229	0.00177	0.00137	0.00105	0.00081	0.00062	0.00048	0.00037	0.00028
16	5.875	0.00510	0.00417	0.00337	0.00270	0.00215	0.00170	0.00134	0.00106	0.00083	0.00065	0.00051	0.00040	0.00032
17	6.125	0.00409	0.00344	0.00286	0.00235	0.00192	0.00156	0.00126	0.00101	0.00081	0.00065	0.00052	0.00041	0.00033
18	6.375	0.00319	0.00276	0.00235	0.00198	0.00165	0.00137	0.00113	0.00092	0.00076	0.00062	0.00050	0.00041	0.00033
19	6.625	0.00243	0.00215	0.00188	0.00162	0.00138	0.00117	0.00098	0.00082	0.00068	0.00056	0.00046	0.00038	0.00032
20	6.875	0.00182	0.00165	0.00147	0.00130	0.00113	0.00097	0.00083	0.00070	0.00059	0.00050	0.00042	0.00035	0.00029
21	7.125	0.00135	0.00125	0.00114	0.00102	0.00090	0.00079	0.00069	0.00059	0.00051	0.00043	0.00037	0.00031	0.00026
22	7.375	0.00099	0.00094	0.00087	0.00080	0.00072	0.00064	0.00056	0.00049	0.00043	0.00037	0.00032	0.00027	0.00023
23	7.625	0.00073	0.00070	0.00066	0.00062	0.00056	0.00051	0.00046	0.00040	0.00036	0.00031	0.00027	0.00024	0.00020
24	7.875	0.00053	0.00052	0.00050	0.00047	0.00044	0.00040	0.00037	0.00033	0.00029	0.00026	0.00023	0.00020	0.00018
25	8.125	0.00039	0.00039	0.00038	0.00036	0.00034	0.00032	0.00029	0.00027	0.00024	0.00022	0.00019	0.00017	0.00015
26	8.375	0.00028	0.00029	0.00029	0.00028	0.00026	0.00025	0.00023	0.00021	0.00019	0.00018	0.00016	0.00014	0.00013

		Από	κοινού πυκνό	τητα πιθανό	τητας f _{BoxCox}	(Hs, Tm) του	Η _s και της	Τ., για βαθι	ά για τα αν	εμογενή κύ	ματα (wind	l-generated	l)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
T _m (s))	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.02644	0.00007	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0.52276	0.01257	0.00049	0.00003	0	0	0	0	0	0	0	0	0
3	2.625	1.39847	0.20793	0.02021	0.00242	0.00036	0.00006	0.00001	0	0	0	0	0	0
4	2.875	1.15672	0.78766	0.16325	0.03283	0.00719	0.00173	0.00046	0.00013	0.00004	0.00001	0	0	0
5	3.125	0.47726	1.18217	0.46595	0.14535	0.04454	0.01411	0.00469	0.00163	0.00060	0.00023	0.00009	0.00004	0.00002
6	3.375	0.13081	0.98358	0.67376	0.30653	0.12539	0.05028	0.02037	0.00844	0.00359	0.00157	0.00070	0.00032	0.00015
7	3.625	0.02840	0.56088	0.62129	0.39245	0.20641	0.10155	0.04892	0.02355	0.01144	0.00564	0.00282	0.00143	0.00074
8	3.875	0.00545	0.25146	0.42478	0.35793	0.23474	0.13820	0.07750	0.04257	0.02324	0.01271	0.00699	0.00388	0.00218
9	4.125	0.00099	0.09703	0.23817	0.25901	0.20652	0.14255	0.09144	0.05644	0.03416	0.02050	0.01227	0.00736	0.00443
10	4.375	0.00018	0.03423	0.11727	0.16013	0.15198	0.12090	0.08743	0.05989	0.03975	0.02591	0.01672	0.01074	0.00689
11	4.625	0.00003	0.01150	0.05316	0.08904	0.09883	0.08929	0.07192	0.05409	0.03900	0.02738	0.01890	0.01291	0.00877
12	4.875	0.00001	0.00379	0.02292	0.04618	0.05904	0.05984	0.05313	0.04348	0.03378	0.02535	0.01860	0.01344	0.00961
13	5.125	0	0.00124	0.00962	0.02292	0.03332	0.03749	0.03635	0.03212	0.02671	0.02130	0.01652	0.01255	0.00941
14	5.375	0	0.00041	0.00400	0.01109	0.01812	0.02243	0.02358	0.02234	0.01976	0.01666	0.01359	0.01082	0.00846
15	5.625	0	0.00014	0.00166	0.00530	0.00964	0.01303	0.01474	0.01489	0.01394	0.01237	0.01056	0.00877	0.00713
16	5.875	0	0.00005	0.00070	0.00253	0.00507	0.00743	0.00899	0.00964	0.00950	0.00884	0.00787	0.00680	0.00573
17	6.125	0	0.00002	0.00030	0.00121	0.00266	0.00419	0.00541	0.00612	0.00633	0.00615	0.00570	0.00510	0.00444
18	6.375	0	0.00001	0.00013	0.00058	0.00140	0.00236	0.00323	0.00384	0.00415	0.00420	0.00403	0.00373	0.00335
19	6.625	0	0	0.00006	0.00029	0.00074	0.00133	0.00192	0.00239	0.00270	0.00283	0.00281	0.00268	0.00248
20	6.875	0	0	0.00003	0.00014	0.00040	0.00075	0.00114	0.00149	0.00175	0.00190	0.00194	0.00191	0.00181
21	7.125	0	0	0.00001	0.00007	0.00021	0.00043	0.00068	0.00093	0.00113	0.00126	0.00134	0.00135	0.00131
22	7.375	0	0	0.00001	0.00004	0.00012	0.00025	0.00041	0.00058	0.00073	0.00084	0.00092	0.00095	0.00094
23	7.625	0	0	0	0.00002	0.00006	0.00014	0.00025	0.00037	0.00047	0.00056	0.00063	0.00067	0.00068
24	7.875	0	0	0	0.00001	0.00004	0.00009	0.00015	0.00023	0.00031	0.00038	0.00043	0.00047	0.00049
25	8.125	0	0	0	0.00001	0.00002	0.00005	0.00010	0.00015	0.00020	0.00025	0.00030	0.00033	0.00035
26	8.375	0	0	0	0	0.00001	0.00003	0.00006	0.00010	0.00013	0.00017	0.00021	0.00023	0.00025

Πίνακας A.20 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BoxCox}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , σύμφωνα με το μοντέλο με μετασχηματισμούς Box-Cox για τα βαθιά ύδατα για τα ανεμογενή κύματα (wind-generated)

		A	τό κοινού πυι	ανότητα πιθαν	νότητας f _{BoxCox} (H _s , T _m) του Η	I_s και της T_m	για βαθιά	για τα ανεμ	ογενή κύμα	ιτα (wind-g	enerated)		
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0.00001	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00007	0.00004	0.00002	0.00001	0	0	0	0	0	0	0	0	0
7	3.625	0.00039	0.00021	0.00011	0.00006	0.00003	0.00002	0.00001	0.00001	0	0	0	0	0
8	3.875	0.00123	0.00071	0.00041	0.00024	0.00014	0.00008	0.00005	0.00003	0.00002	0.00001	0.00001	0	0
9	4.125	0.00268	0.00164	0.00100	0.00062	0.00039	0.00024	0.00015	0.00010	0.00006	0.00004	0.00003	0.00002	0.00001
10	4.375	0.00443	0.00285	0.00184	0.00120	0.00078	0.00051	0.00034	0.00022	0.00015	0.00010	0.00007	0.00005	0.00003
11	4.625	0.00594	0.00402	0.00272	0.00185	0.00126	0.00086	0.00059	0.00040	0.00028	0.00019	0.00013	0.00009	0.00007
12	4.875	0.00683	0.00483	0.00342	0.00241	0.00170	0.00121	0.00085	0.00061	0.00043	0.00031	0.00022	0.00016	0.00011
13	5.125	0.00698	0.00515	0.00378	0.00277	0.00202	0.00148	0.00108	0.00079	0.00058	0.00042	0.00031	0.00023	0.00017
14	5.375	0.00653	0.00500	0.00380	0.00287	0.00217	0.00163	0.00122	0.00092	0.00069	0.00052	0.00039	0.00029	0.00022
15	5.625	0.00571	0.00452	0.00355	0.00276	0.00214	0.00166	0.00128	0.00098	0.00076	0.00058	0.00045	0.00034	0.00026
16	5.875	0.00474	0.00387	0.00313	0.00251	0.00200	0.00158	0.00125	0.00098	0.00077	0.00061	0.00048	0.00037	0.00029
17	6.125	0.00379	0.00319	0.00265	0.00217	0.00177	0.00144	0.00116	0.00093	0.00075	0.00060	0.00048	0.00038	0.00030
18	6.375	0.00295	0.00254	0.00216	0.00182	0.00152	0.00126	0.00104	0.00085	0.00069	0.00056	0.00046	0.00037	0.00030
19	6.625	0.00224	0.00198	0.00173	0.00148	0.00126	0.00107	0.00090	0.00075	0.00062	0.00051	0.00042	0.00035	0.00029
20	6.875	0.00168	0.00152	0.00135	0.00119	0.00103	0.00089	0.00076	0.00064	0.00054	0.00045	0.00038	0.00032	0.00026
21	7.125	0.00124	0.00115	0.00104	0.00093	0.00083	0.00072	0.00063	0.00054	0.00046	0.00039	0.00033	0.00028	0.00024
22	7.375	0.00091	0.00086	0.00080	0.00073	0.00065	0.00058	0.00051	0.00045	0.00039	0.00034	0.00029	0.00025	0.00021
23	7.625	0.00067	0.00064	0.00061	0.00056	0.00051	0.00046	0.00041	0.00037	0.00032	0.00028	0.00025	0.00021	0.00018
24	7.875	0.00049	0.00048	0.00046	0.00043	0.00040	0.00037	0.00033	0.00030	0.00027	0.00023	0.00021	0.00018	0.00016
25	8.125	0.00036	0.00036	0.00035	0.00033	0.00031	0.00029	0.00026	0.00024	0.00022	0.00019	0.00017	0.00015	0.00013
26	8.375	0.00026	0.00026	0.00026	0.00025	0.00024	0.00023	0.00021	0.00019	0.00018	0.00016	0.00014	0.00013	0.00011

	<u> </u>	0,000320		A	τό κοινο	ύ πιθανόι	τητας f _{Box}	$Cox(H_s, T_s)$	m) του Η	s και της	; Τ _m , γιο	ι βαθιά γ	για τα κύ	ματα σ	ιποθάλ	aooaç	(swell)				
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s	5)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.12 5	3.37 5	3.62 5	3.87 5	4.12 5	4.37 5	4.62 5	4.87 5	5.125
i:	10.2	0.0800	0.0108	0.0025	0.0008	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									0.0800
1	5	8	8	1	1	2	4	7	4	2	1	1	1	0	0	0	0	0	0	0	0	8
2	10.7	0.1314	0.0156	0.0033	0.0010	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	_	_		_			_		0.1314
	5	6	0	9	5	0	8	9	5	3	2	1	1	0	0	0	0	0	0	0	0	6
3	11.2	0.2107	0.0215	0.0043	0.0012	0.0004	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	•	•	•	•			•		0.2107
	117	0 2220	2	/	9	8 0.0005	0 0002	0 0001	5	3	2	1	1	0	0	0	0	0	0	0	0	0 2220
4	5	U.3238	0.0280	0.0052	0.0014	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	U.3238
	12.2	0 4669	0 0336	0 0058	0 0015	0 0005	0 0002	0 0001	0 0000	0 0000	0 0000	0 0000	0 0000	0	0	0	0	0	0	0	0	0 4669
5	5	1	1	3	5	3	2	0.0001	5	3	1	1	1	0	0	0	0	0	0	0	0	1
	12.7	0.6149	0.0361	0.0057	0.0014	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	-	Ū	U	Ū	Ū	Ū	0	Ũ	0	0.6149
6	5	2	8	3	4	7	9	8	4	2	1	1	0	0	0	0	0	0	0	0	0	2
7	13.2	0.7167	0.0338	0.0048	0.0011	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000											0.7167
/	5	6	3	5	4	6	4	6	3	1	1	0	0	0	0	0	0	0	0	0	0	6
8	13.7	0.7124	0.0264	0.0034	0.0007	0.0002	0.0000	0.0000	0.0000	0.0000												0.7124
0	5	7	4	0	5	2	8	3	2	1	0	0	0	0	0	0	0	0	0	0	0	7
9	14.2	0.5783	0.0165	0.0018	0.0003	0.0001	0.0000	0.0000	0.0000													0.5783
	5	3	2	9	9	1	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	3
10	14.7	0.3646	0.0078	0.0007	0.0001	0.0000	0.0000															0.3646
	5	2	5	9	5	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
11	15.2	0.1685	0.0026	0.0002	0.0000	0.0000			•	•	•	•	•	•	•	•	•			•		0.1685
	157	0.0525	/	3	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 05 25
12	15.7	0.0555	0.0000	5	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0335
	16.2	0 0108	0 0000	0,000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0108
13	5	2	9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	16.7	0.0012	0.0000																			0.0012
14	5	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
15	17.2	0.0000																				0.0000
15	5	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
16	17.7																					
10	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	187	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	19.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	19.7	Ŭ	Ũ	0	0	0	0	0	0	0	0	Ũ	Ũ	U	Ū	Ū	Ū	0	Ū	Ū	Ū	0
20	5 20.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.21 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BoxCox}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , σύμφωνα με το μοντέλο με μετασχηματισμούς Box-Cox για τα βαθιά ύδατα για τα κύματα αποθάλασσας (swell)

Πίνακας A.22 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

		Από κ	οινού πυκνό	τητα πιθαν	νότητας f _L (H _s , T _m) του	Η _s και της	Tm, για βάθο	ος d=8.68m	για το σύνο	ολο των κυμ	ιάτων (tota	l)	
\geq	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.04501	0.00207	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.28172	0.04133	0.00094	0	0	0	0	0	0	0	0	0	0
3	2.625	0.76580	0.27198	0.02097	0.00035	0	0	0	0	0	0	0	0	0
4	2.875	1.11367	0.77361	0.15326	0.00945	0.00011	0	0	0	0	0	0	0	0
5	3.125	1.00387	1.15404	0.47260	0.08084	0.00390	0.00003	0	0	0	0	0	0	0
6	3.375	0.62412	1.03939	0.73957	0.28016	0.04125	0.00146	0.00001	0	0	0	0	0	0
7	3.625	0.28972	0.62768	0.67414	0.47086	0.16682	0.02025	0.00049	0	0	0	0	0	0
8	3.875	0.10663	0.27522	0.39755	0.44039	0.30874	0.09947	0.00947	0.00015	0	0	0	0	0
9	4.125	0.03259	0.09318	0.16451	0.25504	0.30063	0.20815	0.05894	0.00419	0.00004	0	0	0	0
10	4.375	0.00857	0.02556	0.05092	0.09948	0.17195	0.21420	0.14333	0.03453	0.00176	0.00001	0	0	0
11	4.625	0.00200	0.00590	0.01240	0.02795	0.06308	0.12160	0.15818	0.10028	0.02002	0.00071	0	0	0
12	4.875	0.00042	0.00118	0.00248	0.00597	0.01594	0.04180	0.08943	0.12021	0.07117	0.01159	0.00028	0	0
13	5.125	0.00008	0.00021	0.00042	0.00101	0.00294	0.00939	0.02861	0.06768	0.09348	0.05145	0.00685	0.00012	0
14	5.375	0.00002	0.00003	0.00006	0.00014	0.00042	0.00147	0.00562	0.01991	0.05208	0.07409	0.03830	0.00428	0.00005
15	5.625	0	0.00001	0.00001	0.00002	0.00005	0.00017	0.00073	0.00335	0.01382	0.04020	0.05972	0.02988	0.00298
16	5.875	0	0	0	0	0	0.00001	0.00007	0.00035	0.00192	0.00932	0.03056	0.04879	0.02500
17	6.125	0	0	0	0	0	0	0	0.00002	0.00015	0.00103	0.00589	0.02227	0.04004
18	6.375	0	0	0	0	0	0	0	0	0.00001	0.00006	0.00048	0.00330	0.01488
19	6.625	0	0	0	0	0	0	0	0	0	0	0.00002	0.00018	0.00152
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0.00005
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

		Ал	τό κοινού πυι	κνότητα πιθ	ανότητας f _L (Η	H _s , T _m) του H _s	, και της <i>Τ</i> _m ,	για βάθος	d=8.68m γu	α το σύνολο	των κυμάτ	των (total)		
\geq	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00003	0	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.00247	0.00003	0	0	0	0	0	0	0	0	0	0	0
17	6.125	0.02290	0.00259	0.00003	0	0	0	0	0	0	0	0	0	0
18	6.375	0.03212	0.02302	0.00363	0.00008	0	0	0	0	0	0	0	0	0
19	6.625	0.00843	0.02356	0.02425	0.00665	0.00036	0	0	0	0	0	0	0	0
20	6.875	0.00050	0.00352	0.01366	0.02294	0.01342	0.00235	0.00012	0	0	0	0	0	0
21	7.125	0.00001	0.00009	0.00084	0.00466	0.01358	0.01870	0.01198	0.00401	0.00093	0.00024	0.00012	0.00019	0.00116
22	7.375	0	0	0.00001	0.00007	0.00054	0.00242	0.00655	0.01114	0.01339	0.01339	0.01211	0.00770	0.00114
23	7.625	0	0	0	0	0	0.00001	0.00003	0.00008	0.00011	0.00007	0.00001	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.23 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

		Από κοινοι	ύ πυκνότητα	α πιθανότη	τας f _L (H _s , 7	т _т) точ <i>H</i> s к	αι της Τ,, γ	ια βάθος d=	=8.19m για ⁻	τα ανεμογεν	ή κύματα	(wind-gene	rated)	
\sim	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.05778	0.00252	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.33693	0.04858	0.00101	0	0	0	0	0	0	0	0	0	0
3	2.625	0.85705	0.30676	0.02254	0.00033	0	0	0	0	0	0	0	0	0
4	2.875	1.17086	0.83525	0.16319	0.00921	0.00009	0	0	0	0	0	0	0	0
5	3.125	0.99488	1.19099	0.49393	0.08089	0.00341	0.00002	0	0	0	0	0	0	0
6	3.375	0.58481	1.02442	0.75334	0.28297	0.03850	0.00113	0	0	0	0	0	0	0
7	3.625	0.25736	0.59054	0.66563	0.47379	0.16213	0.01748	0.00034	0	0	0	0	0	0
8	3.875	0.09002	0.24714	0.37887	0.43683	0.30635	0.09252	0.00751	0.00009	0	0	0	0	0
9	4.125	0.02620	0.07987	0.15081	0.24726	0.29964	0.20304	0.05223	0.00305	0.00002	0	0	0	0
10	4.375	0.00658	0.02092	0.04479	0.09360	0.16983	0.21417	0.13703	0.02913	0.00118	0	0	0	0
11	4.625	0.00147	0.00461	0.01044	0.02537	0.06105	0.12225	0.15825	0.09385	0.01618	0.00045	0	0	0
12	4.875	0.00030	0.00088	0.00199	0.00520	0.01497	0.04157	0.09123	0.12001	0.06541	0.00914	0.00018	0	0
13	5.125	0.00006	0.00015	0.00032	0.00084	0.00266	0.00911	0.02911	0.06969	0.09298	0.04690	0.00546	0.00008	0
14	5.375	0	0.00002	0.00005	0.00011	0.00036	0.00137	0.00560	0.02054	0.05372	0.07343	0.03529	0.00364	0.00004
15	5.625	0	0	0.00001	0.00001	0.00004	0.00015	0.00070	0.00337	0.01424	0.04107	0.05905	0.02861	0.00292
16	5.875	0	0	0	0	0	0.00001	0.00006	0.00033	0.00192	0.00937	0.03037	0.04805	0.02566
17	6.125	0	0	0	0	0	0	0	0.00002	0.00014	0.00098	0.00555	0.02083	0.03867
18	6.375	0	0	0	0	0	0	0	0	0.00001	0.00005	0.00041	0.00274	0.01229
19	6.625	0	0	0	0	0	0	0	0	0	0	0.00001	0.00013	0.00098
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0.00002
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

		Από κο	ινού πυκνότ	ητα πιθανότ	ητας f_L (H_s , T_m) του <i>H_s</i> και	της <i>Τ</i> _m , για	βάθος d=8.	19m για τα	ανεμογενή	κύματα (wi	nd-generat	ted)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T_m (s))	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00004	0	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.00304	0.00005	0	0	0	0	0	0	0	0	0	0	0
17	6.125	0.02566	0.00431	0.00013	0	0	0	0	0	0	0	0	0	0
18	6.375	0.02884	0.02726	0.00812	0.00063	0.00001	0	0	0	0	0	0	0	0
19	6.625	0.00541	0.01711	0.02593	0.01651	0.00425	0.00049	0.00003	0	0	0	0	0.00012	0.00765
20	6.875	0.00021	0.00137	0.00586	0.01456	0.02036	0.01709	0.01042	0.00626	0.00528	0.00766	0.01344	0.00525	0.00001
21	7.125	0	0.00002	0.00012	0.00062	0.00204	0.00440	0.00644	0.00661	0.00430	0.00106	0.00002	0	0
22	7.375	0	0	0	0	0.00001	0.00001	0.00002	0.00001	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.24 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

			Από κοιν	ού πυκνότι	ητα πιθ	ανότητ	$\alpha \zeta f_L (H$	ls, T _m) το	о <i>H_s</i> к	αιτης 7	「 _m , για β	βάθος d	=5.04n	ι για το	ι κύματ	α αποθ	άλασσ	ας (swe	ll)			
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$T_m(s)$	\sim	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
<i>i</i> : 1	10.25	0.63879	0.00366	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	10.75	1.00610	0.00567	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	11.25	1.39483	0.00761	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	11.75	1.72901	0.00901	0.00003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	12.25	1.94203	0.00954	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	12.75	1.99915	0.00916	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	13.25	1.90475	0.00807	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	13.75	1.69404	0.00658	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	14.25	1.41683	0.00501	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	14.75	1.12157	0.00359	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	15.25	0.84511	0.00243	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	15.75	0.60919	0.00157	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	16.25	0.42195	0.00097	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	16.75	0.28192	0.00057	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	17.25	0.18234	0.00033	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	17.75	0.11452	0.00018	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.25	0.07003	0.00010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.75	0.04181	0.00005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	19.25	0.02442	0.00003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	19.75	0.01398	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	20.25	0.00786	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.25 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull για το H_s (περιθώρια) και λογαριθμοκανονική κατανομή για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

		Από	κοινού πυκν	ότητα πιθαν	ότητας fw (Η	H _s , T _m) тов 1	Η _s και της Τ	m για βάθος	d=8.68m γ	ια το σύνολ	ο των κυμά	άτων (total)		
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.03833	0.00163	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.23990	0.03263	0.00094	0	0	0	0	0	0	0	0	0	0
3	2.625	0.65211	0.21476	0.02107	0.00042	0	0	0	0	0	0	0	0	0
4	2.875	0.94835	0.61086	0.15399	0.01137	0.00015	0	0	0	0	0	0	0	0
5	3.125	0.85485	0.91125	0.47483	0.09734	0.00523	0.00004	0	0	0	0	0	0	0
6	3.375	0.53147	0.82072	0.74306	0.33732	0.05528	0.00205	0.00001	0	0	0	0	0	0
7	3.625	0.24671	0.49562	0.67733	0.56693	0.22357	0.02832	0.00068	0	0	0	0	0	0
8	3.875	0.09080	0.21732	0.39943	0.53024	0.41376	0.13914	0.01310	0.00019	0	0	0	0	0
9	4.125	0.02775	0.07357	0.16529	0.30708	0.40289	0.29116	0.08152	0.00548	0.00005	0	0	0	0
10	4.375	0.00730	0.02018	0.05116	0.11978	0.23044	0.29963	0.19826	0.04512	0.00209	0.00001	0	0	0
11	4.625	0.00170	0.00466	0.01246	0.03365	0.08454	0.17010	0.21880	0.13103	0.02376	0.00074	0	0	0
12	4.875	0.00036	0.00093	0.00249	0.00719	0.02136	0.05847	0.12370	0.15708	0.08449	0.01209	0.00025	0	0
13	5.125	0.00007	0.00017	0.00042	0.00122	0.00394	0.01313	0.03957	0.08843	0.11097	0.05364	0.00609	0.00009	0
14	5.375	0.00001	0.00003	0.00006	0.00017	0.00056	0.00205	0.00777	0.02602	0.06183	0.07724	0.03403	0.00316	0.00003
15	5.625	0	0	0.00001	0.00002	0.00006	0.00024	0.00100	0.00437	0.01640	0.04190	0.05306	0.02204	0.00178
16	5.875	0	0	0	0	0.00001	0.00002	0.00009	0.00045	0.00228	0.00971	0.02715	0.03599	0.01495
17	6.125	0	0	0	0	0	0	0.00001	0.00003	0.00018	0.00107	0.00523	0.01642	0.02394
18	6.375	0	0	0	0	0	0	0	0	0.00001	0.00006	0.00043	0.00244	0.00890
19	6.625	0	0	0	0	0	0	0	0	0	0	0.00002	0.00013	0.00091
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0.00003
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

		Ал	ό κοινού πυι	ανότητα πιθο	ανότητας f _w (1	H _s , T _m) то <i>H</i>	s και της Τ _m	, για βάθος	d=8.68m γι	α το σύνολα	ο των κυμάτ	των (total)		
\sim	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00001	0	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.00117	0.00001	0	0	0	0	0	0	0	0	0	0	0
17	6.125	0.01086	0.00096	0.00001	0	0	0	0	0	0	0	0	0	0
18	6.375	0.01524	0.00850	0.00102	0.00002	0	0	0	0	0	0	0	0	0
19	6.625	0.00400	0.00870	0.00684	0.00141	0.00006	0	0	0	0	0	0	0	0
20	6.875	0.00024	0.00130	0.00386	0.00487	0.00211	0.00027	0.00001	0	0	0	0	0	0
21	7.125	0	0.00003	0.00024	0.00099	0.00213	0.00215	0.00099	0.00024	0.00004	0.00001	0	0	0.00001
22	7.375	0	0	0	0.00002	0.00008	0.00028	0.00054	0.00066	0.00055	0.00039	0.00024	0.00010	0.00001
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.26 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull για το H_s (περιθώρια) και λογαριθμοκανονική κατανομή για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

		Από κοινού	ό πυκνότητα	ι πιθανότητ	τας fw (H _s , T	Гm) точ Нs к	αι της Τ_, γ	ια βάθος d=	=8.19m για	τα ανεμογε	νή κύματα	(wind-gene	rated)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.04887	0.00200	0.00001	0	0	0	0	0	0	0	0	0	0
2	2.375	0.28494	0.03857	0.00102	0	0	0	0	0	0	0	0	0	0
3	2.625	0.72481	0.24355	0.02286	0.00040	0	0	0	0	0	0	0	0	0
4	2.875	0.99020	0.66315	0.16548	0.01119	0.00012	0	0	0	0	0	0	0	0
5	3.125	0.84137	0.94558	0.50086	0.09827	0.00460	0.00003	0	0	0	0	0	0	0
6	3.375	0.49457	0.81333	0.76390	0.34373	0.05190	0.00159	0.00001	0	0	0	0	0	0
7	3.625	0.21765	0.46886	0.67496	0.57553	0.21858	0.02448	0.00046	0	0	0	0	0	0
8	3.875	0.07613	0.19622	0.38418	0.53064	0.41301	0.12958	0.01033	0.00011	0	0	0	0	0
9	4.125	0.02216	0.06341	0.15293	0.30035	0.40396	0.28437	0.07190	0.00393	0.00002	0	0	0	0
10	4.375	0.00556	0.01661	0.04541	0.11370	0.22896	0.29996	0.18862	0.03761	0.00137	0	0	0	0
11	4.625	0.00124	0.00366	0.01059	0.03082	0.08230	0.17122	0.21783	0.12116	0.01882	0.00046	0	0	0
12	4.875	0.00025	0.00070	0.00202	0.00632	0.02018	0.05822	0.12558	0.15494	0.07609	0.00926	0.00015	0	0
13	5.125	0.00005	0.00012	0.00033	0.00103	0.00358	0.01276	0.04006	0.08997	0.10816	0.04748	0.00467	0.00006	0
14	5.375	0.00001	0.00002	0.00005	0.00014	0.00048	0.00192	0.00770	0.02652	0.06249	0.07434	0.03015	0.00256	0.00003
15	5.625	0	0	0.00001	0.00002	0.00005	0.00021	0.00096	0.00435	0.01657	0.04158	0.05046	0.02009	0.00164
16	5.875	0	0	0	0	0	0.00002	0.00008	0.00043	0.00223	0.00948	0.02595	0.03373	0.01445
17	6.125	0	0	0	0	0	0	0.00001	0.00003	0.00017	0.00099	0.00475	0.01463	0.02177
18	6.375	0	0	0	0	0	0	0	0	0.00001	0.00005	0.00035	0.00192	0.00692
19	6.625	0	0	0	0	0	0	0	0	0	0	0.00001	0.00009	0.00055
20	6.875	0	0	0	0	0	0	0	0	0	0	0	0	0.00001
21	7.125	0	0	0	0	0	0	0	0	0	0	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

		Από κοι	ινού πυκνότι	ητα πιθανότ	ητας $f_W(H_s, T_n)$	η) του <i>Η</i> _s και	της Τ _m , για	βάθος d=8.	19m για τα	ανεμογενή	κύματα (wi	ind-generat	ted)	
\geq	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0	0	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0	0	0	0	0	0	0	0	0	0	0	0	0
8	3.875	0	0	0	0	0	0	0	0	0	0	0	0	0
9	4.125	0	0	0	0	0	0	0	0	0	0	0	0	0
10	4.375	0	0	0	0	0	0	0	0	0	0	0	0	0
11	4.625	0	0	0	0	0	0	0	0	0	0	0	0	0
12	4.875	0	0	0	0	0	0	0	0	0	0	0	0	0
13	5.125	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5.375	0	0	0	0	0	0	0	0	0	0	0	0	0
15	5.625	0.00002	0	0	0	0	0	0	0	0	0	0	0	0
16	5.875	0.00134	0.00002	0	0	0	0	0	0	0	0	0	0	0
17	6.125	0.01133	0.00146	0.00003	0	0	0	0	0	0	0	0	0	0
18	6.375	0.01273	0.00926	0.00208	0.00012	0	0	0	0	0	0	0	0	0
19	6.625	0.00239	0.00581	0.00665	0.00314	0.00059	0.00005	0	0	0	0	0	0	0.00005
20	6.875	0.00009	0.00047	0.00150	0.00277	0.00283	0.00171	0.00074	0.00031	0.00018	0.00018	0.00022	0.00006	0
21	7.125	0	0.00001	0.00003	0.00012	0.00028	0.00044	0.00046	0.00033	0.00015	0.00003	0	0	0
22	7.375	0	0	0	0	0	0	0	0	0	0	0	0	0
23	7.625	0	0	0	0	0	0	0	0	0	0	0	0	0
24	7.875	0	0	0	0	0	0	0	0	0	0	0	0	0
25	8.125	0	0	0	0	0	0	0	0	0	0	0	0	0
26	8.375	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.27 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull για το H_s (περιθώρια) και λογαριθμοκανονική κατανομή για την $T_m|H_s$ (δεσμευμένη), σύμφωνα με το μοντέλο δεσμευμένης πιθανότητας (conditional modelling) για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

			Από κοι	ινού πυκνό	τητα πιθ	ανότητ	$\alpha \zeta f_W(E)$	Is, Tm) τ	ου <i>H</i> s κ	αι της Ί	Γ,, για	Βάθος ά	l=5.04n	η για το	α κύματ	τα αποθ	θάλασσ	ας (swe	ell)			
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
<i>i</i> : 1	10.25	0.28187	0.04749	0.00207	0.00004	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	10.75	0.44395	0.07357	0.00314	0.00005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	11.25	0.61548	0.09874	0.00404	0.00007	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	11.75	0.76294	0.11683	0.00451	0.00007	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	12.25	0.85693	0.12376	0.00444	0.00006	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	12.75	0.88214	0.11887	0.00393	0.00005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	13.25	0.84048	0.10470	0.00315	0.00004	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	13.75	0.74751	0.08538	0.00231	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	14.25	0.62518	0.06501	0.00157	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	14.75	0.49490	0.04655	0.00100	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	15.25	0.37291	0.03155	0.00060	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	15.75	0.26881	0.02035	0.00034	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	16.25	0.18619	0.01256	0.00018	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	16.75	0.12440	0.00745	0.00009	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	17.25	0.08046	0.00426	0.00005	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	17.75	0.05053	0.00236	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.25	0.03090	0.00127	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.75	0.01845	0.00066	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	19.25	0.01077	0.00034	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	19.75	0.00617	0.00017	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	20.25	0.00347	0.00008	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Аπό ко	ινού πυκνότ	ητα πιθανό	τητας f _{bivlog}	(Hs, Tm) топ	Η _s και της	Τ., για βάθ	θος d=8.68n	η για το σύν	ολο των κι	υμάτων (tot	tal)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.65396	0.01440	0.00029	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	0.94574	0.12703	0.00589	0.00037	0.00003	0	0	0	0	0	0	0	0
3	2.625	0.70539	0.48235	0.04770	0.00495	0.00062	0.00009	0.00002	0	0	0	0	0	0
4	2.875	0.32325	0.97032	0.19090	0.03118	0.00549	0.00108	0.00024	0.00006	0.00002	0	0	0	0
5	3.125	0.10287	1.19810	0.44277	0.10954	0.02629	0.00664	0.00180	0.00053	0.00016	0.00005	0.00002	0.00001	0
6	3.375	0.02482	1.01064	0.66833	0.24258	0.07751	0.02462	0.00808	0.00277	0.00100	0.00037	0.00015	0.00006	0.00003
7	3.625	0.00485	0.63069	0.71591	0.37092	0.15461	0.06073	0.02378	0.00949	0.00389	0.00165	0.00072	0.00032	0.00015
8	3.875	0.00080	0.30932	0.58136	0.41987	0.22429	0.10739	0.04959	0.02279	0.01058	0.00500	0.00241	0.00119	0.00060
9	4.125	0.00012	0.12492	0.37668	0.37142	0.25035	0.14434	0.07779	0.04082	0.02128	0.01114	0.00589	0.00315	0.00171
10	4.375	0.00002	0.04309	0.20273	0.26796	0.22481	0.15436	0.09622	0.05719	0.03325	0.01918	0.01106	0.00641	0.00375
11	4.625	0	0.01307	0.09358	0.16313	0.16829	0.13629	0.09747	0.06517	0.04200	0.02654	0.01663	0.01039	0.00650
12	4.875	0	0.00357	0.03802	0.08614	0.10809	0.10235	0.08337	0.06232	0.04428	0.03052	0.02067	0.01386	0.00925
13	5.125	0	0.00089	0.01388	0.04035	0.06098	0.06699	0.06175	0.05132	0.04000	0.02994	0.02183	0.01566	0.01112
14	5.375	0	0.00021	0.00464	0.01708	0.03082	0.03900	0.04044	0.03717	0.03165	0.02562	0.02005	0.01533	0.01155
15	5.625	0	0.00005	0.00144	0.00663	0.01417	0.02053	0.02382	0.02411	0.02233	0.01948	0.01631	0.01326	0.01056
16	5.875	0	0.00001	0.00042	0.00239	0.00601	0.00991	0.01281	0.01421	0.01427	0.01337	0.01194	0.01029	0.00865
17	6.125	0	0	0.00011	0.00081	0.00238	0.00444	0.00636	0.00771	0.00836	0.00840	0.00797	0.00727	0.00643
18	6.375	0	0	0.00003	0.00026	0.00089	0.00187	0.00295	0.00389	0.00455	0.00488	0.00491	0.00473	0.00440
19	6.625	0	0	0.00001	0.00008	0.00031	0.00074	0.00129	0.00185	0.00232	0.00264	0.00282	0.00286	0.00279
20	6.875	0	0	0	0.00002	0.00011	0.00028	0.00054	0.00083	0.00111	0.00135	0.00152	0.00162	0.00165
21	7.125	0	0	0	0.00001	0.00003	0.00010	0.00021	0.00035	0.00051	0.00065	0.00078	0.00087	0.00093
22	7.375	0	0	0	0	0.00001	0.00004	0.00008	0.00015	0.00022	0.00030	0.00038	0.00044	0.00049
23	7.625	0	0	0	0	0	0.00001	0.00003	0.00006	0.00009	0.00013	0.00018	0.00022	0.00025
24	7.875	0	0	0	0	0	0	0.00001	0.00002	0.00004	0.00006	0.00008	0.00010	0.00012
25	8.125	0	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00003	0.00005	0.00006
26	8.375	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001	0.00002	0.00003

Πίνακας A.28 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{bivlog}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (i) για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

		Από	κοινού πυκν	νότητα πιθα	νότητας f _{bivlog}	(H _s , T _m) του 1	Ης και της Τ,	", για βάθος	; d=8.68m γ	ια το σύνολ	.ο των κυμά	άτων (total)		
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$	\sim	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00001	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00007	0.00003	0.00002	0.00001	0	0	0	0	0	0	0	0	0
8	3.875	0.00031	0.00016	0.00009	0.00005	0.00003	0.00001	0.00001	0	0	0	0	0	0
9	4.125	0.00095	0.00053	0.00030	0.00017	0.00010	0.00006	0.00004	0.00002	0.00001	0.00001	0.00001	0	0
10	4.375	0.00221	0.00132	0.00079	0.00048	0.00030	0.00018	0.00012	0.00007	0.00005	0.00003	0.00002	0.00001	0.00001
11	4.625	0.00408	0.00258	0.00164	0.00105	0.00068	0.00044	0.00029	0.00019	0.00013	0.00009	0.00006	0.00004	0.00003
12	4.875	0.00617	0.00412	0.00276	0.00186	0.00126	0.00085	0.00058	0.00040	0.00028	0.00019	0.00013	0.00009	0.00007
13	5.125	0.00785	0.00553	0.00389	0.00274	0.00194	0.00137	0.00097	0.00069	0.00050	0.00036	0.00026	0.00019	0.00014
14	5.375	0.00861	0.00638	0.00470	0.00346	0.00255	0.00188	0.00138	0.00102	0.00076	0.00056	0.00042	0.00031	0.00023
15	5.625	0.00829	0.00645	0.00497	0.00382	0.00292	0.00223	0.00171	0.00130	0.00100	0.00076	0.00058	0.00045	0.00035
16	5.875	0.00714	0.00581	0.00468	0.00374	0.00297	0.00236	0.00186	0.00147	0.00116	0.00091	0.00072	0.00057	0.00045
17	6.125	0.00557	0.00473	0.00397	0.00330	0.00272	0.00223	0.00182	0.00148	0.00120	0.00097	0.00079	0.00064	0.00052
18	6.375	0.00398	0.00353	0.00308	0.00266	0.00227	0.00192	0.00162	0.00136	0.00113	0.00094	0.00078	0.00065	0.00054
19	6.625	0.00264	0.00244	0.00221	0.00197	0.00174	0.00152	0.00132	0.00114	0.00098	0.00084	0.00071	0.00060	0.00051
20	6.875	0.00163	0.00157	0.00148	0.00136	0.00124	0.00112	0.00100	0.00089	0.00078	0.00068	0.00060	0.00052	0.00045
21	7.125	0.00095	0.00095	0.00093	0.00089	0.00083	0.00077	0.00071	0.00065	0.00058	0.00052	0.00047	0.00042	0.00037
22	7.375	0.00053	0.00055	0.00055	0.00054	0.00053	0.00050	0.00047	0.00044	0.00041	0.00038	0.00034	0.00031	0.00028
23	7.625	0.00028	0.00030	0.00031	0.00032	0.00032	0.00031	0.00030	0.00029	0.00027	0.00026	0.00024	0.00022	0.00020
24	7.875	0.00014	0.00016	0.00017	0.00018	0.00018	0.00018	0.00018	0.00018	0.00017	0.00016	0.00016	0.00015	0.00014
25	8.125	0.00007	0.00008	0.00009	0.00009	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00009
26	8.375	0.00003	0.00004	0.00004	0.00005	0.00005	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006

		Από κοινού	πυκνότητα	πιθανότητα	$\alpha \zeta f_{bivlog} (H_s,$	<i>T_m</i>) του <i>H_s</i>	και της <i>Τ</i> _m ,	για βάθος d	l=8.19m γισ	τα ανεμογ	ενή κύματο	a (wind-gen	erated)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.65813	0.01478	0.00030	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	0.96437	0.13042	0.00618	0.00040	0.00004	0	0	0	0	0	0	0	0
3	2.625	0.72617	0.49414	0.04966	0.00524	0.00067	0.00010	0.00002	0	0	0	0	0	0
4	2.875	0.33503	0.99019	0.19699	0.03262	0.00582	0.00116	0.00026	0.00006	0.00002	0.00001	0	0	0
5	3.125	0.10711	1.21639	0.45250	0.11315	0.02746	0.00702	0.00192	0.00057	0.00018	0.00006	0.00002	0.00001	0
6	3.375	0.02592	1.01984	0.67604	0.24734	0.07976	0.02558	0.00847	0.00293	0.00106	0.00040	0.00016	0.00007	0.00003
7	3.625	0.00507	0.63212	0.71647	0.37322	0.15671	0.06204	0.02448	0.00985	0.00407	0.00174	0.00076	0.00035	0.00016
8	3.875	0.00084	0.30775	0.57546	0.41686	0.22391	0.10791	0.05016	0.02321	0.01085	0.00516	0.00250	0.00124	0.00063
9	4.125	0.00012	0.12333	0.36872	0.36384	0.24619	0.14267	0.07732	0.04081	0.02140	0.01127	0.00599	0.00323	0.00176
10	4.375	0.00002	0.04220	0.19621	0.25900	0.21779	0.15012	0.09400	0.05615	0.03281	0.01902	0.01103	0.00643	0.00377
11	4.625	0	0.01269	0.08955	0.15559	0.16063	0.13043	0.09362	0.06285	0.04068	0.02582	0.01625	0.01020	0.00641
12	4.875	0	0.00343	0.03597	0.08107	0.10167	0.09642	0.07875	0.05906	0.04211	0.02913	0.01981	0.01334	0.00894
13	5.125	0	0.00085	0.01299	0.03748	0.05653	0.06214	0.05738	0.04780	0.03737	0.02806	0.02053	0.01478	0.01053
14	5.375	0	0.00020	0.00429	0.01566	0.02816	0.03562	0.03697	0.03404	0.02905	0.02358	0.01850	0.01420	0.01072
15	5.625	0	0.00004	0.00131	0.00600	0.01277	0.01847	0.02144	0.02172	0.02015	0.01761	0.01478	0.01205	0.00962
16	5.875	0	0.00001	0.00038	0.00214	0.00534	0.00879	0.01135	0.01260	0.01266	0.01188	0.01063	0.00918	0.00774
17	6.125	0	0	0.00010	0.00072	0.00209	0.00388	0.00555	0.00673	0.00730	0.00733	0.00697	0.00637	0.00565
18	6.375	0	0	0.00003	0.00023	0.00077	0.00161	0.00254	0.00334	0.00390	0.00419	0.00422	0.00407	0.00379
19	6.625	0	0	0.00001	0.00007	0.00027	0.00063	0.00109	0.00156	0.00196	0.00223	0.00239	0.00242	0.00236
20	6.875	0	0	0	0.00002	0.00009	0.00024	0.00045	0.00069	0.00093	0.00112	0.00127	0.00135	0.00138
21	7.125	0	0	0	0.00001	0.00003	0.00008	0.00017	0.00029	0.00042	0.00054	0.00064	0.00071	0.00076
22	7.375	0	0	0	0	0.00001	0.00003	0.00007	0.00012	0.00018	0.00024	0.00030	0.00036	0.00040
23	7.625	0	0	0	0	0	0.00001	0.00002	0.00005	0.00007	0.00011	0.00014	0.00017	0.00020
24	7.875	0	0	0	0	0	0	0.00001	0.00002	0.00003	0.00004	0.00006	0.00008	0.00010
25	8.125	0	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00003	0.00004	0.00004
26	8.375	0	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00002

Πίνακας A.29 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{bivlog}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (i) για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

		Από κοιν	ού πυκνότη	τα πιθανότη	$ au \zeta f_{bivlog}$ (H _s , T	Г _т) точ Н _s ка	ιτης Τ _m , για	α βάθος d=8	3.19m για το	α ανεμογενί	j κύματα (v	vind-genera	ated)	
\geq	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s)		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00001	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00008	0.00004	0.00002	0.00001	0.00001	0	0	0	0	0	0	0	0
8	3.875	0.00032	0.00017	0.00009	0.00005	0.00003	0.00002	0.00001	0.00001	0	0	0	0	0
9	4.125	0.00098	0.00055	0.00031	0.00018	0.00011	0.00006	0.00004	0.00002	0.00001	0.00001	0.00001	0	0
10	4.375	0.00223	0.00134	0.00081	0.00049	0.00031	0.00019	0.00012	0.00008	0.00005	0.00003	0.00002	0.00001	0.00001
11	4.625	0.00404	0.00256	0.00164	0.00105	0.00068	0.00045	0.00029	0.00019	0.00013	0.00009	0.00006	0.00004	0.00003
12	4.875	0.00599	0.00401	0.00270	0.00182	0.00124	0.00084	0.00058	0.00040	0.00028	0.00019	0.00014	0.00010	0.00007
13	5.125	0.00746	0.00527	0.00372	0.00263	0.00186	0.00132	0.00094	0.00068	0.00049	0.00035	0.00025	0.00018	0.00013
14	5.375	0.00802	0.00596	0.00441	0.00326	0.00240	0.00177	0.00131	0.00097	0.00072	0.00054	0.00040	0.00030	0.00023
15	5.625	0.00758	0.00590	0.00457	0.00352	0.00270	0.00207	0.00159	0.00121	0.00093	0.00071	0.00055	0.00042	0.00033
16	5.875	0.00640	0.00522	0.00421	0.00338	0.00269	0.00214	0.00169	0.00134	0.00106	0.00084	0.00066	0.00052	0.00041
17	6.125	0.00490	0.00417	0.00351	0.00292	0.00242	0.00198	0.00162	0.00132	0.00108	0.00087	0.00071	0.00058	0.00047
18	6.375	0.00344	0.00306	0.00267	0.00231	0.00198	0.00168	0.00141	0.00119	0.00099	0.00083	0.00069	0.00057	0.00048
19	6.625	0.00224	0.00207	0.00188	0.00168	0.00149	0.00130	0.00113	0.00098	0.00084	0.00072	0.00061	0.00052	0.00044
20	6.875	0.00136	0.00131	0.00123	0.00114	0.00104	0.00094	0.00084	0.00075	0.00066	0.00058	0.00051	0.00044	0.00038
21	7.125	0.00078	0.00078	0.00076	0.00073	0.00069	0.00064	0.00059	0.00053	0.00048	0.00043	0.00039	0.00035	0.00031
22	7.375	0.00042	0.00044	0.00044	0.00044	0.00043	0.00041	0.00038	0.00036	0.00033	0.00031	0.00028	0.00025	0.00023
23	7.625	0.00022	0.00024	0.00025	0.00025	0.00025	0.00025	0.00024	0.00023	0.00022	0.00020	0.00019	0.00018	0.00016
24	7.875	0.00011	0.00012	0.00013	0.00014	0.00014	0.00014	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
25	8.125	0.00005	0.00006	0.00007	0.00007	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00007	0.00007
26	8.375	0.00002	0.00003	0.00003	0.00004	0.00004	0.00004	0.00004	0.00005	0.00005	0.00005	0.00005	0.00004	0.00004

						Από κοιν	ού πυκνότη	τα πιθανότ	ητας f_{bivlog} (H _s , T _m) του	Η _s και της	<i>Τ</i> _m , για βάθ	0ος d=5.04m	ι για τα κύμ	ιατα αποθάλ	λασσας (swe	ell)					
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.12 5
<i>i</i> :	10.2	0.0232	0.0081	0.0031	0.0014	0.0007	0.0004	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0	0	0
1	5 10.7	8 0.0821	2 0.0218	0 0074	5	5 0.0015	2	5	0 0002	0 0001	/ 0.0001	5 0.0000	0 0000	2	2 0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0
2	5	6	3	8	6	3	1	7	8	8	2	8	5	4	3	2	2	1	1	1	1	0
2	11.2	0.2114	0.0433	0.0131	0.0051	0.0023	0.0011	0.0006	0.0003	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
5	5	7	2	6	3	4	9	5	8	3	5	0	7	5	3	2	2	1	1	1	1	0
4	11.7	0.4124	0.0658	0.0178	0.0064	0.0027	0.0013	0.0007	0.0004	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	5	0	7	2	3	7	4	1	0	4	5	0	6	4	3	2	2	1	1	1	1	0
5	12.2	0.6297	0.0792	0.0191 q	0.0064 4	0.0026	0.0012	0.0006	0.0003	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0	0	0
	12.7	0.7742	0.0775	0.0168	0.0052	0.0020	0.0009	0.0004	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	1	0	0	0
6	5	6	1	7	8	4	1	5	4	4	8	5	3	2	1	1	1	0	0	0	0	0
7	13.2	0.7854	0.0631	0.0124	0.0036	0.0013	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
/	5	1	0	0	3	3	7	7	4	8	5	3	2	1	1	1	0	0	0	0	0	0
8	13.7	0.6712	0.0436	0.0077	0.0021	0.0007	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000								
	5	1	3	7	3	5	1	4	7	4	2	1	1	1	0	0	0	0	0	0	0	0
9	14.2	0.4921	0.0260	0.0042	0.0010	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0
	14.7	4 0 3145	0 0136	0 0020	0 0004	0 0001	0 0000	0 0000	0 0000	0 0000	1	1	0	0	0	0	0	0	0	0	0	0
10	5	8	8	2	9	6	6	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0
11	15.2	0.1777	0.0063	0.0008	0.0002	0.0000	0.0000	0.0000														
11	5	7	9	6	0	6	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	15.7	0.0899	0.0026	0.0003	0.0000	0.0000	0.0000															
	5	1	9	3	7	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	16.2	0.0411	0.0010	0.0001	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5 16 7	5	3	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5	1	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	17.2	0.0066	0.0001	0.0000	-	0	Ū	Ū	Ū	U	Ũ	0	Ū	0	0	0	Ū	0	0	0	Ū	0
15	5	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	17.7	0.0023	0.0000																			
10	5	7	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.2	0.0007	0.0000				-			-	-											
	5	9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.7	0.0002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	19.2	0.0000	5	5	5	5	5	5	5	5	5	5	5	5	0	0	5	0	0	0	5	5
19	5	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	19.7	0.0000																				
20	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	20.2	0.0000																				
1	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.30 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{bivlog}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (i) για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

		Από κοι	νού πυκνότι	ιτα πιθανότ	τητας $f_{bivlogco}$	or (Hs, Tm) το	υ <i>Η</i> s και τησ	ς Τ,, για βά	θος d=8.68	m για το σί	νολο των κ	τυμάτων (to	otal)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.73022	0.01268	0.00027	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	1.16388	0.11506	0.00542	0.00037	0.00003	0	0	0	0	0	0	0	0
3	2.625	0.94747	0.44780	0.04366	0.00477	0.00064	0.00010	0.00002	0	0	0	0	0	0
4	2.875	0.47013	0.92128	0.17400	0.02938	0.00543	0.00112	0.00026	0.00007	0.00002	0.00001	0	0	0
5	3.125	0.16092	1.16122	0.40206	0.10121	0.02519	0.00662	0.00186	0.00056	0.00018	0.00006	0.00002	0.00001	0
6	3.375	0.04154	0.99831	0.60480	0.22008	0.07213	0.02361	0.00798	0.00281	0.00103	0.00040	0.00016	0.00007	0.00003
7	3.625	0.00863	0.63409	0.64578	0.33086	0.14002	0.05621	0.02251	0.00917	0.00383	0.00165	0.00073	0.00033	0.00016
8	3.875	0.00152	0.31615	0.52284	0.36865	0.19803	0.09618	0.04513	0.02106	0.00991	0.00474	0.00231	0.00114	0.00058
9	4.125	0.00023	0.12967	0.33782	0.32131	0.21585	0.12533	0.06822	0.03616	0.01902	0.01004	0.00534	0.00287	0.00157
10	4.375	0.00003	0.04538	0.18133	0.22860	0.18954	0.13019	0.08150	0.04870	0.02845	0.01648	0.00953	0.00554	0.00324
11	4.625	0	0.01395	0.08350	0.13735	0.13891	0.11182	0.07990	0.05346	0.03448	0.02180	0.01365	0.00852	0.00532
12	4.875	0	0.00386	0.03384	0.07163	0.08745	0.08182	0.06625	0.04934	0.03495	0.02402	0.01622	0.01084	0.00720
13	5.125	0	0.00098	0.01233	0.03316	0.04841	0.05224	0.04764	0.03929	0.03042	0.02263	0.01640	0.01169	0.00825
14	5.375	0	0.00023	0.00411	0.01388	0.02402	0.02970	0.03033	0.02756	0.02323	0.01864	0.01446	0.01096	0.00818
15	5.625	0	0.00005	0.00127	0.00533	0.01086	0.01529	0.01740	0.01734	0.01585	0.01366	0.01131	0.00909	0.00716
16	5.875	0	0.00001	0.00037	0.00190	0.00453	0.00722	0.00912	0.00993	0.00981	0.00905	0.00797	0.00678	0.00563
17	6.125	0	0	0.00010	0.00064	0.00177	0.00317	0.00442	0.00524	0.00557	0.00550	0.00514	0.00461	0.00402
18	6.375	0	0	0.00003	0.00020	0.00065	0.00131	0.00200	0.00257	0.00294	0.00309	0.00306	0.00289	0.00264
19	6.625	0	0	0.00001	0.00006	0.00023	0.00051	0.00086	0.00119	0.00146	0.00162	0.00170	0.00169	0.00161
20	6.875	0	0	0	0.00002	0.00008	0.00019	0.00035	0.00052	0.00068	0.00081	0.00089	0.00093	0.00092
21	7.125	0	0	0	0.00001	0.00002	0.00007	0.00013	0.00022	0.00030	0.00038	0.00044	0.00048	0.00050
22	7.375	0	0	0	0	0.00001	0.00002	0.00005	0.00009	0.00013	0.00017	0.00021	0.00024	0.00026
23	7.625	0	0	0	0	0	0.00001	0.00002	0.00003	0.00005	0.00007	0.00009	0.00011	0.00013
24	7.875	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00003	0.00004	0.00005	0.00006
25	8.125	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00002	0.00003
26	8.375	0	0	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001

Πίνακας A.31 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{bivlogcor}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (ii) για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

		Από	κοινού πυκν	ότητα πιθαν	ότητας $f_{bivlogcon}$	- (H _s , T _m) του	Η _s και της 1	Γ,, για βάθο	ς d=8.68m	για το σύνο	λο των κυμ	άτων (total	l)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s)	$\sum_{i=1}^{n}$	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00001	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00007	0.00004	0.00002	0.00001	0	0	0	0	0	0	0	0	0
8	3.875	0.00030	0.00016	0.00008	0.00005	0.00003	0.00001	0.00001	0	0	0	0	0	0
9	4.125	0.00087	0.00049	0.00028	0.00016	0.00009	0.00005	0.00003	0.00002	0.00001	0.00001	0	0	0
10	4.375	0.00191	0.00114	0.00068	0.00042	0.00025	0.00016	0.00010	0.00006	0.00004	0.00003	0.00002	0.00001	0.00001
11	4.625	0.00334	0.00210	0.00133	0.00085	0.00055	0.00035	0.00023	0.00015	0.00010	0.00007	0.00004	0.00003	0.00002
12	4.875	0.00478	0.00318	0.00212	0.00142	0.00095	0.00064	0.00044	0.00030	0.00020	0.00014	0.00010	0.00007	0.00005
13	5.125	0.00579	0.00405	0.00283	0.00198	0.00138	0.00097	0.00068	0.00048	0.00034	0.00024	0.00018	0.00013	0.00009
14	5.375	0.00605	0.00444	0.00324	0.00237	0.00172	0.00126	0.00092	0.00067	0.00049	0.00036	0.00027	0.00020	0.00015
15	5.625	0.00556	0.00428	0.00326	0.00248	0.00188	0.00142	0.00107	0.00081	0.00061	0.00046	0.00035	0.00027	0.00020
16	5.875	0.00458	0.00368	0.00293	0.00231	0.00182	0.00142	0.00111	0.00086	0.00067	0.00052	0.00041	0.00032	0.00025
17	6.125	0.00343	0.00287	0.00238	0.00195	0.00158	0.00128	0.00103	0.00083	0.00066	0.00053	0.00042	0.00034	0.00027
18	6.375	0.00235	0.00205	0.00177	0.00150	0.00126	0.00105	0.00087	0.00072	0.00059	0.00049	0.00040	0.00033	0.00027
19	6.625	0.00150	0.00136	0.00121	0.00107	0.00093	0.00080	0.00068	0.00058	0.00049	0.00041	0.00034	0.00029	0.00024
20	6.875	0.00089	0.00084	0.00078	0.00071	0.00063	0.00056	0.00049	0.00043	0.00037	0.00032	0.00027	0.00023	0.00020
21	7.125	0.00050	0.00049	0.00047	0.00044	0.00041	0.00037	0.00033	0.00030	0.00026	0.00023	0.00020	0.00018	0.00016
22	7.375	0.00027	0.00027	0.00027	0.00026	0.00025	0.00023	0.00021	0.00020	0.00018	0.00016	0.00014	0.00013	0.00011
23	7.625	0.00014	0.00014	0.00015	0.00015	0.00014	0.00014	0.00013	0.00012	0.00011	0.00010	0.00010	0.00009	0.00008
24	7.875	0.00007	0.00007	0.00008	0.00008	0.00008	0.00008	0.00008	0.00007	0.00007	0.00006	0.00006	0.00006	0.00005
25	8.125	0.00003	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
26	8.375	0.00001	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002

		Από κοινού π	ιυκνότητα π	πθανότητα	$\varsigma f_{\it bivlogcor}$ ($H_{\it system}$, T _m) του H _s	και της Tm	, για βάθος	d=8.19m γι	α τα ανεμογ	γενή κύματ	α (wind-ge	nerated)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.76072	0.01317	0.00028	0.00001	0	0	0	0	0	0	0	0	0
2	2.375	1.22220	0.11923	0.00569	0.00039	0.00004	0	0	0	0	0	0	0	0
3	2.625	0.99980	0.46209	0.04547	0.00503	0.00068	0.00011	0.00002	0	0	0	0	0	0
4	2.875	0.49735	0.94523	0.17950	0.03064	0.00573	0.00120	0.00028	0.00007	0.00002	0.00001	0	0	0
5	3.125	0.17037	1.18329	0.41051	0.10422	0.02620	0.00695	0.00198	0.00060	0.00019	0.00007	0.00002	0.00001	0
6	3.375	0.04395	1.00952	0.61081	0.22368	0.07393	0.02442	0.00832	0.00296	0.00110	0.00042	0.00017	0.00007	0.00003
7	3.625	0.00912	0.63593	0.64488	0.33184	0.14140	0.05720	0.02308	0.00947	0.00399	0.00173	0.00077	0.00035	0.00017
8	3.875	0.00160	0.31432	0.51612	0.36482	0.19705	0.09633	0.04551	0.02138	0.01013	0.00487	0.00239	0.00119	0.00061
9	4.125	0.00025	0.12775	0.32960	0.31373	0.21164	0.12356	0.06766	0.03608	0.01910	0.01014	0.00542	0.00294	0.00161
10	4.375	0.00003	0.04430	0.17485	0.22023	0.18314	0.12636	0.07952	0.04777	0.02806	0.01634	0.00950	0.00555	0.00326
11	4.625	0	0.01349	0.07956	0.13056	0.13229	0.10687	0.07669	0.05156	0.03342	0.02123	0.01336	0.00838	0.00526
12	4.875	0	0.00369	0.03187	0.06719	0.08209	0.07701	0.06259	0.04680	0.03330	0.02299	0.01559	0.01046	0.00699
13	5.125	0	0.00093	0.01147	0.03070	0.04480	0.04844	0.04431	0.03666	0.02850	0.02129	0.01549	0.01109	0.00785
14	5.375	0	0.00022	0.00378	0.01268	0.02192	0.02713	0.02778	0.02531	0.02141	0.01723	0.01342	0.01021	0.00765
15	5.625	0	0.00005	0.00115	0.00481	0.00977	0.01376	0.01569	0.01567	0.01437	0.01242	0.01032	0.00832	0.00658
16	5.875	0	0.00001	0.00033	0.00170	0.00402	0.00641	0.00810	0.00884	0.00875	0.00810	0.00715	0.00610	0.00508
17	6.125	0	0	0.00009	0.00056	0.00155	0.00278	0.00387	0.00459	0.00489	0.00484	0.00453	0.00408	0.00357
18	6.375	0	0	0.00002	0.00018	0.00056	0.00113	0.00173	0.00222	0.00254	0.00268	0.00265	0.00252	0.00231
19	6.625	0	0	0.00001	0.00005	0.00019	0.00043	0.00073	0.00101	0.00124	0.00139	0.00145	0.00145	0.00139
20	6.875	0	0	0	0.00002	0.00006	0.00016	0.00029	0.00044	0.00057	0.00068	0.00075	0.00078	0.00078
21	7.125	0	0	0	0	0.00002	0.00006	0.00011	0.00018	0.00025	0.00031	0.00036	0.00040	0.00042
22	7.375	0	0	0	0	0.00001	0.00002	0.00004	0.00007	0.00011	0.00014	0.00017	0.00019	0.00021
23	7.625	0	0	0	0	0	0.00001	0.00001	0.00003	0.00004	0.00006	0.00008	0.00009	0.00010
24	7.875	0	0	0	0	0	0	0.00001	0.00001	0.00002	0.00002	0.00003	0.00004	0.00005
25	8.125	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001	0.00002	0.00002
26	8.375	0	0	0	0	0	0	0	0	0	0	0.00001	0.00001	0.00001

Πίνακας A.32 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{bivlogcor}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (ii) για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

		Από κοινα	νύ πυκνότητ	α πιθανότητ	$a\varsigma f_{bivlogcor}$ (H _s ,	<i>Т_m</i>) точ <i>H_s</i> к	αι της <i>Τ</i> _m , γι	ια βάθος d=	8.19m yıa 1	α ανεμογεν	ή κύματα (wind-genei	ated)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$	\sim	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00001	0.00001	0	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00008	0.00004	0.00002	0.00001	0.00001	0	0	0	0	0	0	0	0
8	3.875	0.00032	0.00017	0.00009	0.00005	0.00003	0.00002	0.00001	0.00001	0	0	0	0	0
9	4.125	0.00090	0.00050	0.00029	0.00017	0.00010	0.00006	0.00004	0.00002	0.00001	0.00001	0.00001	0	0
10	4.375	0.00193	0.00116	0.00070	0.00043	0.00026	0.00016	0.00010	0.00007	0.00004	0.00003	0.00002	0.00001	0.00001
11	4.625	0.00331	0.00210	0.00133	0.00085	0.00055	0.00036	0.00023	0.00015	0.00010	0.00007	0.00005	0.00003	0.00002
12	4.875	0.00466	0.00311	0.00208	0.00140	0.00094	0.00064	0.00043	0.00030	0.00020	0.00014	0.00010	0.00007	0.00005
13	5.125	0.00553	0.00388	0.00272	0.00191	0.00134	0.00095	0.00067	0.00047	0.00034	0.00024	0.00017	0.00012	0.00009
14	5.375	0.00567	0.00418	0.00307	0.00224	0.00164	0.00120	0.00088	0.00065	0.00047	0.00035	0.00026	0.00019	0.00014
15	5.625	0.00513	0.00395	0.00303	0.00231	0.00175	0.00133	0.00101	0.00076	0.00058	0.00044	0.00033	0.00025	0.00019
16	5.875	0.00415	0.00334	0.00267	0.00211	0.00166	0.00131	0.00102	0.00080	0.00062	0.00049	0.00038	0.00030	0.00023
17	6.125	0.00305	0.00256	0.00213	0.00175	0.00142	0.00116	0.00093	0.00075	0.00060	0.00048	0.00039	0.00031	0.00025
18	6.375	0.00206	0.00180	0.00155	0.00132	0.00111	0.00093	0.00078	0.00064	0.00053	0.00044	0.00036	0.00029	0.00024
19	6.625	0.00129	0.00117	0.00105	0.00092	0.00080	0.00069	0.00059	0.00050	0.00043	0.00036	0.00030	0.00025	0.00021
20	6.875	0.00076	0.00072	0.00066	0.00060	0.00054	0.00048	0.00042	0.00037	0.00032	0.00028	0.00024	0.00020	0.00017
21	7.125	0.00042	0.00041	0.00039	0.00037	0.00034	0.00031	0.00028	0.00025	0.00022	0.00020	0.00017	0.00015	0.00013
22	7.375	0.00022	0.00022	0.00022	0.00021	0.00020	0.00019	0.00018	0.00016	0.00015	0.00013	0.00012	0.00011	0.00010
23	7.625	0.00011	0.00012	0.00012	0.00012	0.00012	0.00011	0.00011	0.00010	0.00009	0.00009	0.00008	0.00007	0.00006
24	7.875	0.00005	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005	0.00004
25	8.125	0.00002	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003
26	8.375	0.00001	0.00001	0.00001	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002

						Από κοινο	ύ πυκνότητ	α πιθανότη	$ acupa f_{bivlogcor}$	(H _s , T _m) του	H_s και της	; <i>Τ</i> _m , για βά	θος d=5.04	η για τα κύ	ματα αποθά	ιλασσας (sw	/ell)					
\frown	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T _m (s		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.12 5
<i>i</i> :	10.2	0.0119	0.0076	0.0032	0.0015	0.0007	0.0004	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
1	5	2	7	3	1	8	3	6	6	0	7	5	3	2	2	1	1	1	1	0	0	0
2	10.7	0.0420	0.0206	0.0076	0.0032	0.0015	0.0008	0.0004	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0
	5	/ 0.1092	3	4	9	9	5	8 0.0006	9	8 0.0002	2	8 0.0001	5	4	0 0000	2	2	1 0 0 0 0 0	1 0 0 0 0 0	1 0000	1 0,0000	0
3	5	8	0.0409	0.0154 A	0.0035 A	0.0024 A	3	0.0000	0.0003 Q	0.0002	5	0.0001	0.0000	5	0.0000	0.0000	0.0000	1	1	1	0.0000	0
	117	0.2111	0.0622	0.0182	0.0067	0.0028	0.0014	0.0007	0.0004	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-	0
4	5	8	7	1	0	9	0	4	1	5	5	0	6	4	3	2	2	1	1	1	0	0
5	12.2	0.3224	0.0749	0.0196	0.0067	0.0027	0.0012	0.0006	0.0003	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
3	5	7	2	1	1	4	7	4	5	0	2	8	5	3	2	2	1	1	1	0	0	0
6	12.7	0.3965	0.0732	0.0172	0.0055	0.0021	0.0009	0.0004	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
Ŭ	5	2	8	5	0	3	5	6	5	4	8	5	3	2	1	1	1	0	0	0	0	0
7	13.2	0.4022	0.0596	0.0126	0.0037	0.0013	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0
	5 127	4	0.0412	8 0.0070	8 0.0022	9	9	8 0.0001	4	8 0.0000	5	0.0000	2	1	1	0	0	0	0	0	0	0
8	15.7	6	5	0.0079 A	2	8	0.0003	5	0.0000	4	0.0000	0.0000	0.0000	0.0000	0	0	0	0	0	0	0	0
	14.2	0 2520	0 0246	0 0043	0.0011	0 0003	0 0001	0 0000	, 0,000	0 0000	0 0000	0 0000	-	-	0	0	0	0	0	0	0	0
9	5	6	6	2	3	8	5	7	3	2	1	1	0	0	0	0	0	0	0	0	0	0
10	14.7	0.1611	0.0129	0.0020	0.0005	0.0001	0.0000	0.0000	0.0000	0.0000												-
10	5	2	4	7	1	6	6	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0
11	15.2	0.0910	0.0060	0.0008	0.0002	0.0000	0.0000	0.0000														
11	5	5	4	8	1	6	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	15.7	0.0460	0.0025	0.0003	0.0000	0.0000	0.0000	-	-	-		-		-	-			-				
	5	6	4	4	8	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	16.2	0.0210	0.0009	0.0001	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16.7	0 0088	0 0003	<u>∠</u>	0 0000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	5	1	4	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.5	17.2	0.0034	0.0001	0.0000																		-
15	5	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	17.7	0.0012	0.0000																			
10	5	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.2	0.0004	0.0000				-	-	-	-		-		-	-			-				
	5	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.7	0.0001	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.2	0 0000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
19	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	19.7	0.0000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	20.2																					
21	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.33 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{bivlogcor}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή και για το H_s (περιθώρια) και για την T_m (περιθώρια), σύμφωνα με το μοντέλο Bivariate-Lognormal (ii) για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

		Από κοι	νού πυκνότι	ητα πιθανό	τητας f_L^P (Hs, Tm) του	Η _s και της	Τ., για το β	άθος d=8.68	8m για το σ	ύνολο των	κυμάτων (1	total)	
\square	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.20263	0.03322	0.01000	0.00439	0.00233	0.00139	0.00089	0.00060	0.00042	0.00030	0.00022	0.00017	0.00013
2	2.375	0.53891	0.09976	0.02933	0.01272	0.00671	0.00397	0.00253	0.00170	0.00119	0.00086	0.00063	0.00048	0.00037
3	2.625	0.90686	0.24091	0.06783	0.02859	0.01484	0.00869	0.00551	0.00369	0.00257	0.00185	0.00137	0.00103	0.00079
4	2.875	0.92614	0.50535	0.13858	0.05586	0.02821	0.01624	0.01018	0.00676	0.00469	0.00336	0.00247	0.00186	0.00143
5	3.125	0.65226	0.85342	0.26239	0.10155	0.04946	0.02779	0.01713	0.01125	0.00774	0.00552	0.00404	0.00303	0.00231
6	3.375	0.39473	0.95152	0.43809	0.17394	0.08247	0.04515	0.02728	0.01767	0.01203	0.00850	0.00620	0.00462	0.00352
7	3.625	0.23327	0.68514	0.55204	0.26409	0.12844	0.06964	0.04147	0.02650	0.01785	0.01252	0.00906	0.00673	0.00510
8	3.875	0.14026	0.39807	0.47094	0.31349	0.17344	0.09770	0.05861	0.03736	0.02504	0.01747	0.01259	0.00931	0.00704
9	4.125	0.08617	0.22254	0.30271	0.26977	0.18430	0.11556	0.07283	0.04747	0.03213	0.02251	0.01624	0.01201	0.00908
10	4.375	0.05373	0.12708	0.17487	0.18172	0.15014	0.10871	0.07497	0.05154	0.03601	0.02571	0.01878	0.01400	0.01063
11	4.625	0.03369	0.07459	0.09980	0.10950	0.10135	0.08282	0.06302	0.04653	0.03415	0.02523	0.01887	0.01430	0.01099
12	4.875	0.02109	0.04460	0.05782	0.06409	0.06253	0.05510	0.04525	0.03567	0.02758	0.02121	0.01634	0.01267	0.00991
13	5.125	0.01311	0.02689	0.03399	0.03752	0.03740	0.03430	0.02956	0.02444	0.01971	0.01570	0.01245	0.00988	0.00787
14	5.375	0.00806	0.01622	0.02014	0.02208	0.02218	0.02075	0.01838	0.01566	0.01301	0.01064	0.00863	0.00698	0.00565
15	5.625	0.00489	0.00973	0.01194	0.01302	0.01311	0.01239	0.01114	0.00967	0.00818	0.00680	0.00561	0.00460	0.00376
16	5.875	0.00293	0.00579	0.00705	0.00766	0.00771	0.00733	0.00665	0.00583	0.00498	0.00419	0.00349	0.00289	0.00238
17	6.125	0.00173	0.00341	0.00413	0.00448	0.00451	0.00430	0.00392	0.00345	0.00297	0.00252	0.00211	0.00176	0.00146
18	6.375	0.00101	0.00199	0.00240	0.00260	0.00262	0.00250	0.00228	0.00202	0.00175	0.00149	0.00125	0.00104	0.00087
19	6.625	0.00059	0.00115	0.00139	0.00150	0.00151	0.00144	0.00132	0.00117	0.00101	0.00086	0.00073	0.00061	0.00051
20	6.875	0.00034	0.00066	0.00079	0.00086	0.00086	0.00082	0.00075	0.00067	0.00058	0.00050	0.00042	0.00035	0.00029
21	7.125	0.00019	0.00037	0.00045	0.00049	0.00049	0.00047	0.00043	0.00038	0.00033	0.00028	0.00024	0.00020	0.00017
22	7.375	0.00011	0.00021	0.00025	0.00027	0.00028	0.00026	0.00024	0.00022	0.00019	0.00016	0.00013	0.00011	0.00009
23	7.625	0.00006	0.00012	0.00014	0.00015	0.00016	0.00015	0.00014	0.00012	0.00011	0.00009	0.00008	0.00006	0.00005
24	7.875	0.00003	0.00007	0.00008	0.00009	0.00009	0.00008	0.00008	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003
25	8.125	0.00002	0.00004	0.00004	0.00005	0.00005	0.00005	0.00004	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002
26	8.375	0.00001	0.00002	0.00002	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001

Πίνακας A.34 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή (περιθώρια) και για το H_s και την T_m , σύμφωνα με το μοντέλο Plackett για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

		Από ι	κοινού πυκν	ότητα πιθαν	νότητας f_L^P (I	H _s , T _m) του H	Η _s και της Τ _n	, για το βάθ	ος d=8.68n	η για το σύν	ολο των κυ	μάτων (tot	al)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s)	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00010	0.00008	0.00006	0.00005	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001
2	2.375	0.00029	0.00023	0.00018	0.00015	0.00012	0.00010	0.00008	0.00007	0.00006	0.00005	0.00004	0.00003	0.00003
3	2.625	0.00062	0.00049	0.00039	0.00031	0.00025	0.00021	0.00017	0.00014	0.00012	0.00010	0.00009	0.00007	0.00006
4	2.875	0.00111	0.00087	0.00070	0.00056	0.00046	0.00037	0.00031	0.00026	0.00022	0.00018	0.00015	0.00013	0.00011
5	3.125	0.00180	0.00141	0.00113	0.00091	0.00074	0.00060	0.00050	0.00041	0.00035	0.00029	0.00025	0.00021	0.00018
6	3.375	0.00273	0.00214	0.00170	0.00137	0.00111	0.00091	0.00075	0.00062	0.00052	0.00044	0.00037	0.00032	0.00027
7	3.625	0.00394	0.00309	0.00245	0.00197	0.00159	0.00130	0.00107	0.00089	0.00075	0.00063	0.00053	0.00045	0.00039
8	3.875	0.00542	0.00424	0.00336	0.00269	0.00218	0.00178	0.00147	0.00122	0.00102	0.00086	0.00072	0.00061	0.00053
9	4.125	0.00698	0.00545	0.00432	0.00346	0.00280	0.00229	0.00188	0.00156	0.00130	0.00110	0.00093	0.00079	0.00067
10	4.375	0.00821	0.00643	0.00510	0.00409	0.00331	0.00271	0.00223	0.00185	0.00155	0.00130	0.00110	0.00093	0.00080
11	4.625	0.00856	0.00675	0.00538	0.00433	0.00352	0.00288	0.00238	0.00198	0.00166	0.00140	0.00118	0.00100	0.00086
12	4.875	0.00782	0.00623	0.00501	0.00406	0.00332	0.00273	0.00226	0.00189	0.00158	0.00133	0.00113	0.00096	0.00082
13	5.125	0.00631	0.00508	0.00412	0.00337	0.00277	0.00229	0.00191	0.00159	0.00134	0.00113	0.00096	0.00082	0.00071
14	5.375	0.00458	0.00373	0.00306	0.00251	0.00208	0.00173	0.00144	0.00121	0.00102	0.00087	0.00074	0.00063	0.00054
15	5.625	0.00309	0.00253	0.00209	0.00173	0.00144	0.00120	0.00101	0.00085	0.00072	0.00061	0.00052	0.00044	0.00038
16	5.875	0.00197	0.00163	0.00135	0.00112	0.00093	0.00078	0.00066	0.00055	0.00047	0.00040	0.00034	0.00029	0.00025
17	6.125	0.00121	0.00100	0.00083	0.00069	0.00058	0.00049	0.00041	0.00035	0.00029	0.00025	0.00021	0.00018	0.00016
18	6.375	0.00072	0.00060	0.00050	0.00042	0.00035	0.00029	0.00025	0.00021	0.00018	0.00015	0.00013	0.00011	0.00010
19	6.625	0.00042	0.00035	0.00029	0.00024	0.00021	0.00017	0.00015	0.00012	0.00010	0.00009	0.00008	0.00007	0.00006
20	6.875	0.00024	0.00020	0.00017	0.00014	0.00012	0.00010	0.00008	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003
21	7.125	0.00014	0.00012	0.00010	0.00008	0.00007	0.00006	0.00005	0.00004	0.00003	0.00003	0.00003	0.00002	0.00002
22	7.375	0.00008	0.00007	0.00005	0.00005	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001
23	7.625	0.00004	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
24	7.875	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0
25	8.125	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0	0	0	0	0
26	8.375	0.00001	0.00001	0.00001	0	0	0	0	0	0	0	0	0	0
	A	από κοινού π	τυκνότητα π	τιθανότητα	$\varsigma f_L^P (H_s, T)$	[m) του H _s	και τη ς <i>Τ</i> _m γ	ια το βάθος	; d=8.19m γ	ια τα ανεμα	ογενή κύμα	τα (wind-g	enerated)	
--------------	------------	--------------	-------------	------------	----------------------------	------------------------	---	-------------	-------------	-------------	------------	------------	-----------	---------
\square	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.20575	0.03698	0.01135	0.00502	0.00267	0.00158	0.00101	0.00068	0.00047	0.00034	0.00025	0.00019	0.00015
2	2.375	0.54125	0.11027	0.03318	0.01449	0.00766	0.00453	0.00288	0.00193	0.00135	0.00097	0.00072	0.00054	0.00041
3	2.625	0.90302	0.26141	0.07606	0.03237	0.01685	0.00988	0.00626	0.00418	0.00291	0.00209	0.00154	0.00116	0.00089
4	2.875	0.93466	0.52927	0.15263	0.06254	0.03177	0.01833	0.01149	0.00762	0.00528	0.00378	0.00278	0.00208	0.00159
5	3.125	0.67699	0.85172	0.27976	0.11142	0.05490	0.03100	0.01914	0.01258	0.00865	0.00616	0.00450	0.00337	0.00257
6	3.375	0.41976	0.92303	0.44429	0.18431	0.08929	0.04940	0.03001	0.01948	0.01327	0.00938	0.00683	0.00509	0.00387
7	3.625	0.25191	0.67283	0.53292	0.26593	0.13359	0.07380	0.04442	0.02856	0.01931	0.01356	0.00983	0.00730	0.00553
8	3.875	0.15271	0.40169	0.44758	0.30017	0.17120	0.09889	0.06034	0.03890	0.02626	0.01840	0.01330	0.00985	0.00745
9	4.125	0.09409	0.22946	0.29215	0.25252	0.17374	0.11111	0.07135	0.04718	0.03227	0.02278	0.01652	0.01226	0.00928
10	4.375	0.05860	0.13269	0.17248	0.17116	0.13871	0.10061	0.07012	0.04880	0.03446	0.02482	0.01824	0.01366	0.01041
11	4.625	0.03659	0.07828	0.10002	0.10480	0.09386	0.07549	0.05726	0.04241	0.03130	0.02326	0.01748	0.01331	0.01027
12	4.875	0.02276	0.04680	0.05842	0.06215	0.05850	0.05025	0.04065	0.03182	0.02454	0.01887	0.01456	0.01131	0.00886
13	5.125	0.01403	0.02810	0.03441	0.03664	0.03527	0.03142	0.02650	0.02158	0.01724	0.01365	0.01078	0.00853	0.00679
14	5.375	0.00854	0.01682	0.02032	0.02158	0.02098	0.01905	0.01647	0.01376	0.01126	0.00910	0.00732	0.00588	0.00474
15	5.625	0.00513	0.01000	0.01197	0.01268	0.01237	0.01136	0.00995	0.00845	0.00702	0.00575	0.00469	0.00381	0.00309
16	5.875	0.00304	0.00589	0.00701	0.00740	0.00724	0.00668	0.00590	0.00506	0.00424	0.00351	0.00288	0.00235	0.00192
17	6.125	0.00177	0.00343	0.00407	0.00429	0.00420	0.00389	0.00345	0.00297	0.00250	0.00208	0.00172	0.00141	0.00116
18	6.375	0.00102	0.00197	0.00234	0.00246	0.00241	0.00224	0.00199	0.00172	0.00145	0.00121	0.00100	0.00083	0.00068
19	6.625	0.00059	0.00113	0.00133	0.00140	0.00138	0.00128	0.00114	0.00098	0.00083	0.00070	0.00058	0.00048	0.00039
20	6.875	0.00033	0.00064	0.00075	0.00079	0.00078	0.00072	0.00064	0.00056	0.00047	0.00040	0.00033	0.00027	0.00022
21	7.125	0.00019	0.00036	0.00042	0.00044	0.00044	0.00040	0.00036	0.00031	0.00027	0.00022	0.00018	0.00015	0.00013
22	7.375	0.00010	0.00020	0.00024	0.00025	0.00024	0.00023	0.00020	0.00017	0.00015	0.00012	0.00010	0.00009	0.00007
23	7.625	0.00006	0.00011	0.00013	0.00014	0.00013	0.00013	0.00011	0.00010	0.00008	0.00007	0.00006	0.00005	0.00004
24	7.875	0.00003	0.00006	0.00007	0.00008	0.00007	0.00007	0.00006	0.00005	0.00005	0.00004	0.00003	0.00003	0.00002
25	8.125	0.00002	0.00003	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003	0.00002	0.00002	0.00001	0.00001
26	8.375	0.00001	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001

Πίνακας A.35 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

		Από κοινο	ύ πυκνότητ	α πιθανότητ	$a \zeta f_L^P (H_s, T_s)$	n) тов <i>H</i> s ка	α της <i>Τ</i> _m για	το βάθος d	=8.19m για	τα ανεμογ	ενή κύματα	(wind-gen	erated)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s)	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00011	0.00009	0.00007	0.00006	0.00005	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001
2	2.375	0.00032	0.00025	0.00020	0.00016	0.00013	0.00011	0.00009	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003
3	2.625	0.00069	0.00054	0.00043	0.00035	0.00028	0.00023	0.00019	0.00016	0.00013	0.00011	0.00009	0.00008	0.00007
4	2.875	0.00124	0.00097	0.00077	0.00062	0.00051	0.00041	0.00034	0.00028	0.00024	0.00020	0.00017	0.00014	0.00012
5	3.125	0.00199	0.00156	0.00124	0.00100	0.00081	0.00066	0.00055	0.00045	0.00038	0.00032	0.00027	0.00023	0.00020
6	3.375	0.00299	0.00235	0.00186	0.00150	0.00121	0.00099	0.00082	0.00068	0.00057	0.00048	0.00040	0.00034	0.00029
7	3.625	0.00426	0.00334	0.00265	0.00212	0.00172	0.00140	0.00115	0.00096	0.00080	0.00067	0.00057	0.00048	0.00041
8	3.875	0.00573	0.00448	0.00355	0.00284	0.00230	0.00188	0.00154	0.00128	0.00107	0.00090	0.00076	0.00064	0.00055
9	4.125	0.00715	0.00559	0.00442	0.00354	0.00287	0.00234	0.00193	0.00160	0.00133	0.00112	0.00094	0.00080	0.00068
10	4.375	0.00805	0.00632	0.00501	0.00402	0.00326	0.00266	0.00219	0.00182	0.00152	0.00128	0.00108	0.00092	0.00078
11	4.625	0.00802	0.00633	0.00505	0.00407	0.00331	0.00271	0.00224	0.00186	0.00156	0.00131	0.00111	0.00094	0.00080
12	4.875	0.00700	0.00558	0.00449	0.00364	0.00297	0.00244	0.00202	0.00169	0.00141	0.00119	0.00101	0.00086	0.00073
13	5.125	0.00543	0.00437	0.00354	0.00289	0.00237	0.00196	0.00163	0.00136	0.00114	0.00097	0.00082	0.00070	0.00060
14	5.375	0.00383	0.00311	0.00254	0.00208	0.00172	0.00142	0.00119	0.00100	0.00084	0.00071	0.00060	0.00051	0.00044
15	5.625	0.00252	0.00206	0.00169	0.00139	0.00115	0.00096	0.00080	0.00067	0.00057	0.00048	0.00041	0.00035	0.00030
16	5.875	0.00157	0.00129	0.00106	0.00088	0.00073	0.00061	0.00051	0.00043	0.00036	0.00031	0.00026	0.00022	0.00019
17	6.125	0.00095	0.00078	0.00064	0.00053	0.00044	0.00037	0.00031	0.00026	0.00022	0.00019	0.00016	0.00014	0.00012
18	6.375	0.00056	0.00046	0.00038	0.00032	0.00026	0.00022	0.00018	0.00016	0.00013	0.00011	0.00010	0.00008	0.00007
19	6.625	0.00032	0.00027	0.00022	0.00018	0.00015	0.00013	0.00011	0.00009	0.00008	0.00006	0.00006	0.00005	0.00004
20	6.875	0.00018	0.00015	0.00013	0.00010	0.00009	0.00007	0.00006	0.00005	0.00004	0.00004	0.00003	0.00003	0.00002
21	7.125	0.00010	0.00009	0.00007	0.00006	0.00005	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00001
22	7.375	0.00006	0.00005	0.00004	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001
23	7.625	0.00003	0.00003	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0
24	7.875	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0	0	0	0
25	8.125	0.00001	0.00001	0.00001	0.00001	0	0	0	0	0	0	0	0	0
26	8.375	0.00001	0	0	0	0	0	0	0	0	0	0	0	0

	Από κοινού πυκνότητα πιθανότητας f_L^P (H_s , T_m) του H_s και της T_m για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)																					
\backslash	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
<i>i</i> : 1	10.25	0.08689	0.00035	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.08689	0.00035
2	10.75	0.26682	0.00108	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.26682	0.00108
3	11.25	0.63303	0.00256	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.63303	0.00256
4	11.75	1.19677	0.00487	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.19677	0.00487
5	12.25	1.85127	0.00761	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.85127	0.00761
6	12.75	2.39703	0.01000	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.39703	0.01000
7	13.25	2.64979	0.01125	0.00003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.64979	0.01125
8	13.75	2.54462	0.01101	0.00003	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.54462	0.01101
9	14.25	2.15537	0.00949	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.15537	0.00949
10	14.75	1.63187	0.00728	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.63187	0.00728
11	15.25	1.11719	0.00504	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.11719	0.00504
12	15.75	0.69855	0.00317	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.69855	0.00317
13	16.25	0.40245	0.00184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.40245	0.00184
14	16.75	0.21529	0.00098	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.21529	0.00098
15	17.25	0.10768	0.00049	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.10768	0.00049
16	17.75	0.05066	0.00023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05066	0.00023
17	18.25	0.02255	0.00010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.02255	0.00010
18	18.75	0.00954	0.00004	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00954	0.00004
19	19.25	0.00386	0.00002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00386	0.00002
20	19.75	0.00150	0.00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00150	0.00001
21	20.25	0.00056	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00056	0

Πίνακας A.36 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_L^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας λογαριθμοκανονική κατανομή (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

		Από κ	οινού πυκνότ	ητα πιθανότ	ητας f_W^P (H_s	, T _m) του Η	s και της Tm	για το βάθ	ος d=8.68m	για το σύνο	ολο των κυ	μάτων (tota	al)	
\sim	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.08560	0.02112	0.00969	0.00558	0.00361	0.00251	0.00184	0.00139	0.00108	0.00085	0.00069	0.00056	0.00046
2	2.375	0.25294	0.06371	0.02887	0.01643	0.01055	0.00730	0.00531	0.00401	0.00310	0.00245	0.00197	0.00160	0.00132
3	2.625	0.54972	0.15438	0.06884	0.03838	0.02424	0.01656	0.01193	0.00892	0.00687	0.00540	0.00432	0.00351	0.00288
4	2.875	0.80280	0.31794	0.14532	0.07947	0.04905	0.03283	0.02325	0.01716	0.01306	0.01018	0.00809	0.00652	0.00533
5	3.125	0.71315	0.49465	0.26836	0.15108	0.09236	0.06069	0.04217	0.03059	0.02294	0.01765	0.01387	0.01109	0.00898
6	3.375	0.45425	0.48278	0.36926	0.24317	0.15710	0.10445	0.07219	0.05176	0.03831	0.02911	0.02260	0.01787	0.01435
7	3.625	0.26112	0.31800	0.32584	0.27756	0.21098	0.15304	0.11026	0.08040	0.05972	0.04525	0.03494	0.02743	0.02186
8	3.875	0.15069	0.18023	0.20667	0.21250	0.19579	0.16571	0.13299	0.10395	0.08057	0.06259	0.04898	0.03872	0.03093
9	4.125	0.08943	0.10113	0.11684	0.12874	0.13293	0.12832	0.11671	0.10136	0.08528	0.07040	0.05757	0.04693	0.03830
10	4.375	0.05437	0.05835	0.06582	0.07303	0.07836	0.08073	0.07968	0.07552	0.06910	0.06147	0.05354	0.04596	0.03909
11	4.625	0.03352	0.03458	0.03799	0.04164	0.04487	0.04720	0.04831	0.04803	0.04644	0.04376	0.04032	0.03647	0.03250
12	4.875	0.02074	0.02083	0.02241	0.02422	0.02594	0.02736	0.02833	0.02875	0.02858	0.02784	0.02660	0.02498	0.02311
13	5.125	0.01280	0.01262	0.01338	0.01430	0.01520	0.01599	0.01659	0.01696	0.01707	0.01690	0.01648	0.01583	0.01500
14	5.375	0.00783	0.00763	0.00802	0.00850	0.00898	0.00941	0.00976	0.01000	0.01011	0.01009	0.00994	0.00967	0.00929
15	5.625	0.00474	0.00459	0.00479	0.00505	0.00532	0.00556	0.00575	0.00590	0.00597	0.00598	0.00592	0.00580	0.00561
16	5.875	0.00284	0.00273	0.00284	0.00299	0.00314	0.00327	0.00338	0.00347	0.00351	0.00353	0.00350	0.00344	0.00334
17	6.125	0.00168	0.00161	0.00167	0.00175	0.00184	0.00191	0.00198	0.00203	0.00206	0.00206	0.00205	0.00202	0.00197
18	6.375	0.00098	0.00094	0.00097	0.00102	0.00107	0.00111	0.00115	0.00118	0.00119	0.00120	0.00119	0.00118	0.00115
19	6.625	0.00057	0.00054	0.00056	0.00059	0.00062	0.00064	0.00066	0.00068	0.00069	0.00069	0.00069	0.00068	0.00066
20	6.875	0.00032	0.00031	0.00032	0.00034	0.00035	0.00037	0.00038	0.00039	0.00039	0.00040	0.00039	0.00039	0.00038
21	7.125	0.00018	0.00018	0.00018	0.00019	0.00020	0.00021	0.00021	0.00022	0.00022	0.00022	0.00022	0.00022	0.00022
22	7.375	0.00010	0.00010	0.00010	0.00011	0.00011	0.00012	0.00012	0.00012	0.00013	0.00013	0.00013	0.00012	0.00012
23	7.625	0.00006	0.00006	0.00006	0.00006	0.00006	0.00007	0.00007	0.00007	0.00007	0.00007	0.00007	0.00007	0.00007
24	7.875	0.00003	0.00003	0.00003	0.00003	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004
25	8.125	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001

Πίνακας Α.37 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

		Ал	ό κοινού πυκ	νότητα πιθαν	ότητας $f_W{}^P$ (H_s ,	<i>Т_m</i>) точ <i>H_s</i> к	αι της Τ _m γι	α το βάθος	d=8.68m γι	α το σύνολα	ο των κυμά	των (total)		
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
T _m (s)	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00038	0.00032	0.00027	0.00023	0.00020	0.00017	0.00014	0.00012	0.00011	0.00009	0.00008	0.00007	0.00006
2	2.375	0.00110	0.00092	0.00077	0.00066	0.00056	0.00048	0.00041	0.00035	0.00030	0.00026	0.00023	0.00020	0.00017
3	2.625	0.00239	0.00199	0.00168	0.00142	0.00121	0.00103	0.00088	0.00076	0.00066	0.00057	0.00049	0.00043	0.00037
4	2.875	0.00440	0.00366	0.00307	0.00259	0.00220	0.00187	0.00160	0.00138	0.00119	0.00103	0.00089	0.00077	0.00067
5	3.125	0.00736	0.00609	0.00508	0.00427	0.00361	0.00307	0.00262	0.00225	0.00193	0.00167	0.00144	0.00125	0.00109
6	3.375	0.01167	0.00959	0.00795	0.00664	0.00559	0.00473	0.00403	0.00344	0.00295	0.00254	0.00220	0.00190	0.00165
7	3.625	0.01765	0.01441	0.01188	0.00987	0.00827	0.00697	0.00590	0.00503	0.00430	0.00369	0.00318	0.00275	0.00238
8	3.875	0.02496	0.02034	0.01673	0.01387	0.01158	0.00973	0.00822	0.00698	0.00596	0.00511	0.00439	0.00379	0.00328
9	4.125	0.03137	0.02583	0.02138	0.01780	0.01490	0.01254	0.01061	0.00902	0.00769	0.00659	0.00567	0.00489	0.00423
10	4.375	0.03308	0.02793	0.02358	0.01994	0.01690	0.01435	0.01223	0.01045	0.00896	0.00771	0.00664	0.00574	0.00498
11	4.625	0.02865	0.02505	0.02179	0.01888	0.01633	0.01412	0.01220	0.01056	0.00914	0.00793	0.00688	0.00598	0.00521
12	4.875	0.02111	0.01908	0.01709	0.01522	0.01348	0.01189	0.01047	0.00920	0.00808	0.00708	0.00622	0.00545	0.00479
13	5.125	0.01404	0.01300	0.01192	0.01085	0.00981	0.00882	0.00790	0.00705	0.00627	0.00557	0.00494	0.00438	0.00388
14	5.375	0.00882	0.00830	0.00773	0.00715	0.00656	0.00598	0.00543	0.00491	0.00442	0.00396	0.00355	0.00317	0.00283
15	5.625	0.00538	0.00511	0.00481	0.00449	0.00416	0.00383	0.00351	0.00320	0.00290	0.00263	0.00237	0.00213	0.00191
16	5.875	0.00322	0.00307	0.00291	0.00273	0.00255	0.00236	0.00218	0.00200	0.00182	0.00166	0.00150	0.00136	0.00122
17	6.125	0.00190	0.00182	0.00173	0.00163	0.00153	0.00142	0.00131	0.00121	0.00111	0.00101	0.00092	0.00083	0.00075
18	6.375	0.00111	0.00106	0.00101	0.00096	0.00090	0.00084	0.00078	0.00072	0.00066	0.00060	0.00055	0.00050	0.00045
19	6.625	0.00064	0.00062	0.00059	0.00056	0.00052	0.00049	0.00045	0.00042	0.00038	0.00035	0.00032	0.00029	0.00026
20	6.875	0.00037	0.00035	0.00034	0.00032	0.00030	0.00028	0.00026	0.00024	0.00022	0.00020	0.00018	0.00017	0.00015
21	7.125	0.00021	0.00020	0.00019	0.00018	0.00017	0.00016	0.00015	0.00014	0.00013	0.00012	0.00011	0.00010	0.00009
22	7.375	0.00012	0.00011	0.00011	0.00010	0.00010	0.00009	0.00008	0.00008	0.00007	0.00007	0.00006	0.00005	0.00005
23	7.625	0.00007	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003
24	7.875	0.00004	0.00004	0.00003	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
25	8.125	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0

		Από κοινού	πυκνότητα π	τιθανότητας	$fw^P(H_s, T_m)$	του <i>Η</i> _s και	της Τ _m για	το βάθος d	=8.19m για	τα ανεμογε	νή κύματα	(wind-gen	erated)	
\geq	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.08852	0.02224	0.01032	0.00598	0.00389	0.00272	0.00200	0.00152	0.00118	0.00094	0.00076	0.00062	0.00052
2	2.375	0.26030	0.06692	0.03070	0.01761	0.01138	0.00792	0.00578	0.00438	0.00340	0.00270	0.00218	0.00178	0.00147
3	2.625	0.55952	0.16092	0.07289	0.04104	0.02611	0.01793	0.01297	0.00975	0.00753	0.00595	0.00478	0.00389	0.00321
4	2.875	0.80658	0.32562	0.15226	0.08446	0.05263	0.03547	0.02526	0.01873	0.01432	0.01121	0.00894	0.00724	0.00593
5	3.125	0.71335	0.49193	0.27439	0.15801	0.09810	0.06514	0.04563	0.03330	0.02510	0.01941	0.01532	0.01229	0.01000
6	3.375	0.45616	0.46857	0.36299	0.24556	0.16250	0.11001	0.07706	0.05581	0.04163	0.03184	0.02486	0.01976	0.01594
7	3.625	0.26348	0.30711	0.31059	0.26772	0.20832	0.15482	0.11390	0.08446	0.06358	0.04869	0.03792	0.03000	0.02406
8	3.875	0.15243	0.17489	0.19550	0.19925	0.18484	0.15915	0.13048	0.10417	0.08230	0.06498	0.05156	0.04123	0.03327
9	4.125	0.09045	0.09861	0.11095	0.12004	0.12293	0.11889	0.10924	0.09635	0.08254	0.06939	0.05772	0.04779	0.03955
10	4.375	0.05484	0.05700	0.06277	0.06831	0.07227	0.07386	0.07280	0.06932	0.06403	0.05768	0.05097	0.04442	0.03835
11	4.625	0.03363	0.03372	0.03628	0.03907	0.04148	0.04314	0.04382	0.04345	0.04206	0.03982	0.03698	0.03379	0.03046
12	4.875	0.02067	0.02022	0.02136	0.02272	0.02400	0.02501	0.02566	0.02588	0.02564	0.02496	0.02390	0.02255	0.02100
13	5.125	0.01264	0.01217	0.01269	0.01337	0.01403	0.01460	0.01500	0.01522	0.01523	0.01504	0.01464	0.01408	0.01337
14	5.375	0.00766	0.00730	0.00755	0.00790	0.00825	0.00856	0.00879	0.00894	0.00898	0.00892	0.00876	0.00851	0.00818
15	5.625	0.00459	0.00434	0.00447	0.00465	0.00485	0.00502	0.00515	0.00523	0.00527	0.00525	0.00518	0.00506	0.00489
16	5.875	0.00271	0.00256	0.00262	0.00273	0.00283	0.00293	0.00300	0.00305	0.00307	0.00307	0.00303	0.00297	0.00288
17	6.125	0.00158	0.00149	0.00152	0.00158	0.00164	0.00169	0.00174	0.00177	0.00178	0.00178	0.00176	0.00173	0.00168
18	6.375	0.00091	0.00086	0.00088	0.00091	0.00094	0.00097	0.00100	0.00101	0.00102	0.00102	0.00101	0.00099	0.00097
19	6.625	0.00052	0.00049	0.00050	0.00052	0.00054	0.00055	0.00057	0.00058	0.00058	0.00058	0.00058	0.00057	0.00055
20	6.875	0.00030	0.00028	0.00028	0.00029	0.00030	0.00031	0.00032	0.00033	0.00033	0.00033	0.00033	0.00032	0.00031
21	7.125	0.00017	0.00016	0.00016	0.00016	0.00017	0.00018	0.00018	0.00018	0.00018	0.00018	0.00018	0.00018	0.00017
22	7.375	0.00009	0.00009	0.00009	0.00009	0.00009	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010
23	7.625	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00005
24	7.875	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003
25	8.125	0.00002	0.00001	0.00001	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001

Πίνακας A.38 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull (περιθώρια) και για το H_s και για την T_m , σύμφωνα με το μοντέλο Plackett για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

		Από κοι	νού πυκνότη	τα πιθανότητο	$a\varsigma f_W^P(H_s, T_m) \tau$	ου <i>Η</i> s και τη	ς Τ _m για το	βάθος d=8	.19m για τα	ανεμογενή	κύματα (w	ind-genera	ted)	
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$	$\sum_{i=1}^{n}$	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0.00043	0.00036	0.00031	0.00026	0.00022	0.00019	0.00017	0.00014	0.00012	0.00011	0.00009	0.00008	0.00007
2	2.375	0.00123	0.00103	0.00087	0.00074	0.00063	0.00055	0.00047	0.00041	0.00035	0.00031	0.00027	0.00023	0.00020
3	2.625	0.00267	0.00224	0.00189	0.00160	0.00137	0.00118	0.00101	0.00087	0.00076	0.00066	0.00057	0.00050	0.00044
4	2.875	0.00491	0.00410	0.00345	0.00293	0.00249	0.00213	0.00183	0.00158	0.00137	0.00119	0.00104	0.00090	0.00079
5	3.125	0.00823	0.00684	0.00573	0.00483	0.00410	0.00350	0.00300	0.00258	0.00223	0.00193	0.00168	0.00147	0.00128
6	3.375	0.01301	0.01074	0.00894	0.00750	0.00634	0.00539	0.00460	0.00395	0.00340	0.00294	0.00255	0.00222	0.00194
7	3.625	0.01954	0.01603	0.01328	0.01109	0.00933	0.00790	0.00672	0.00575	0.00494	0.00426	0.00369	0.00320	0.00279
8	3.875	0.02708	0.02224	0.01841	0.01535	0.01289	0.01089	0.00925	0.00790	0.00678	0.00583	0.00504	0.00437	0.00380
9	4.125	0.03280	0.02730	0.02281	0.01916	0.01617	0.01371	0.01167	0.00998	0.00857	0.00739	0.00638	0.00554	0.00482
10	4.375	0.03291	0.02816	0.02406	0.02057	0.01761	0.01510	0.01298	0.01118	0.00966	0.00837	0.00726	0.00632	0.00551
11	4.625	0.02717	0.02405	0.02117	0.01856	0.01624	0.01418	0.01238	0.01081	0.00945	0.00826	0.00723	0.00633	0.00556
12	4.875	0.01933	0.01763	0.01595	0.01434	0.01283	0.01143	0.01016	0.00901	0.00799	0.00707	0.00625	0.00553	0.00489
13	5.125	0.01257	0.01170	0.01081	0.00991	0.00903	0.00818	0.00739	0.00665	0.00597	0.00535	0.00478	0.00427	0.00381
14	5.375	0.00778	0.00734	0.00687	0.00638	0.00589	0.00541	0.00494	0.00449	0.00407	0.00368	0.00332	0.00299	0.00269
15	5.625	0.00469	0.00446	0.00420	0.00394	0.00366	0.00339	0.00312	0.00286	0.00261	0.00238	0.00216	0.00195	0.00176
16	5.875	0.00278	0.00265	0.00251	0.00236	0.00221	0.00206	0.00190	0.00175	0.00161	0.00147	0.00134	0.00122	0.00110
17	6.125	0.00162	0.00155	0.00147	0.00139	0.00130	0.00122	0.00113	0.00104	0.00096	0.00088	0.00080	0.00073	0.00066
18	6.375	0.00093	0.00090	0.00085	0.00081	0.00076	0.00071	0.00066	0.00061	0.00056	0.00051	0.00047	0.00043	0.00039
19	6.625	0.00053	0.00051	0.00049	0.00046	0.00043	0.00041	0.00038	0.00035	0.00032	0.00030	0.00027	0.00025	0.00023
20	6.875	0.00030	0.00029	0.00028	0.00026	0.00025	0.00023	0.00021	0.00020	0.00018	0.00017	0.00015	0.00014	0.00013
21	7.125	0.00017	0.00016	0.00015	0.00015	0.00014	0.00013	0.00012	0.00011	0.00010	0.00009	0.00009	0.00008	0.00007
22	7.375	0.00009	0.00009	0.00009	0.00008	0.00008	0.00007	0.00007	0.00006	0.00006	0.00005	0.00005	0.00004	0.00004
23	7.625	0.00005	0.00005	0.00005	0.00005	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002
24	7.875	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001
25	8.125	0.00002	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
26	8.375	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0	0	0	0

		Από κοινού πυκνότητα πιθανότητας fw^P (H_s , T_m) του H_s και της T_m , για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)																				
/	$H_s(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T_m (s)	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125	3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125
i:	10.2	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	5	88	54	30	20	15	12	10	08	07	06	06	05	05	04	04	04	03	03	03	03	03
2	10.7	0.005	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	5	97	71	95	65	48	38	31	27	23	20	18	16	15	13	12	11	11	10	09	09	08
3	11.2	0.015	0.004	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	5	47	40	44	65	23	98	80	68	59	51	46	41	37	34	31	29	27	25	23	22	21
4	11.7	0.035	0.009	0.005	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	5	22	90	45	68	73	16	77	49	29	13	00	90	81	74	68	63	58	54	51	48	45
5	12.2	0.074	0.020	0.011	0.007	0.005	0.004	0.003	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000
-	5	36	65	29	56	60	40	60	03	61	28	02	81	63	49	36	26	17	09	01	95	89
6	12.7	0.142	0.040	0.022	0.014	0.010	0.008	0.006	0.005	0.005	0.004	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.001
	5	57	35	07	76	91	56	98	87	03	39	88	47	13	85	61	40	22	07	93	81	70
7	13.2	0.209	0.066	0.037	0.025	0.019	0.015	0.012	0.010	0.008	0.007	0.006	0.006	0.005	0.005	0.004	0.004	0.003	0.003	0.003	0.003	0.003
	5	53	14	49	54	08	07	37	42	97	84	95	22	61	11	68	31	99	/1	46	24	05
8	13.7	0.191	0.072	0.044	0.032	0.024	0.020	0.016	0.014	0.012	0.011	0.010	0.009	0.008	0.007	0.006	0.006	0.005	0.005	0.005	0.004	0.004
	5	50	63	/2	05	82	14	8/	4/	63	1/	00	03	22	54	95	43	99	59	24	93	65
9	14.2	0.118	0.050	0.033	0.025	0.020	0.017	0.014	0.013	0.011	0.010	0.009	0.008	0.008	0.007	0.007	0.006	0.006	0.005	0.005	0.005	0.004
	5	0/	/0	63	43	54	25	88	0.008	6/	53	59	80	13	55	04	60	20	85	53	25	99
10	14.7	0.062	0.027	0.019	0.014	0.012	0.010	10	0.008	0.007	0.006	0.000	0.005	0.005	0.005	0.004	0.004	0.004	10	0.003	0.003	0.003
	15.2	/5	93	0.9	0.007	22	40	10 004	20	43	79	27	8Z 0.002	44	10	10	22	51	10	92	74	59
11	15.2	0.032	0.014 E1	0.009	0.007	0.006	0.005	0.004	0.004	0.004	0.003	0.003	10	0.002	0.002	0.002	0.00Z	0.002	20	0.002	12	0.002
	157	00	0.007	95	70	44	22	90	40	00	0.001	41	18	99	0.001	00	0.001	41	30	21	12	0.001
12	15.7	0.017	50	12	0.004	22	0.002 86	52	0.002	0.002	0.001	76	65	55	0.001	20.001	22	25	20	15	11	0.001
	16.2	0.008	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
13	5	0.008	0.003	62	0.002	60	15	28	15	0.001	0.000	0.000	0.000 94	0.000	7/	70	67	64	61	58	56	54
	16.7	0.004	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0,000	0.000	0.000	0.000	0.000	0.000
14	5	11	0.001	31	0.001	8/	73	64	57	52	18	45	12	30	37	35	33	32	30	20	28	27
	17.2	0.002	0 000	0.000	0.000	0 000	0,000	0 000	0,000	0 000	0.000	0.000	0 000	0 000	0.000	0 000	0.000	0.000	0.000	0,000	0.000	0,000
15	5	16	93	63	49	41	35	31	28	25	23	21	20	19	18	17	16	15	15	14	13	13
	177	0.001	0 000	0.000	0 000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0,000	0 000	0,000	0 000	0.000	0.000	0 000	0 000	0.000
16	5	00	43	29	23	19	16	14	13	12	11	10	09	09	08	08	07	07	07	06	06	06
	18.2	0 000	0 000	0 000	0.000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0,000	0,000	0,000	0 000	0 000	0 000
17	5	44	19	13	10	08	07	06	06	05	05	04	04	04	04	03	03	03	03	03	03	03
	187	0.000	0 000	0,000	0 000	0.000	0,000	0.000	0,000	0.000	0.000	0 000	0 000	0 000	0 000	0,000	0.000	0.000	0,000	0,000	0.000	0.000
18	5	19	0.000	0.000	0.000	0.000	03	03	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	01	01	0.000	0.000	01
	19.2	0 000	0.000	0.000	0 000	0.000	0.000	0.000	0 000	0.000	0.000	0 000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	01	01	01
19	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0	0	0
	19.7	0.000	0.000	0.000	0.000	0.000	01	01	01	01	01	01	01	01	01	01	01	01	01	U	0	U
20	5	03	01	01	0.000	0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20.2	0.000	01	01	01	01	U	U	U	U	U	U	0	0	U	0	U	U	U	U	0	U
21	5	01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	5	UT.	0	0	0	0	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.39 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_W^P(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , θεωρώντας κατανομή Weibull (περιθώρια) και για το H_s και για τη T_m , σύμφωνα με το μοντέλο Plackett για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

		Από κ	αινού πυκνότ	τητα πιθανότ	τητας f _{BoxCox} (Hs, Tm) του	Η _s και της	Tm για το βάθ	θος d=8.68m	για το σύνα	ολο των κυμ	ιάτων (tota	l)	
\backslash	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
T_m (s))	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.02422	0.00007	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0.48066	0.01168	0.00043	0.00003	0	0	0	0	0	0	0	0	0
3	2.625	1.32447	0.19482	0.01804	0.00201	0.00027	0.00004	0.00001	0	0	0	0	0	0
4	2.875	1.14172	0.75657	0.15023	0.02835	0.00576	0.00128	0.00031	0.00008	0.00002	0.00001	0	0	0
5	3.125	0.49315	1.17300	0.44506	0.13122	0.03759	0.01106	0.00340	0.00109	0.00037	0.00013	0.00005	0.00002	0.00001
6	3.375	0.14160	1.01128	0.66975	0.28989	0.11163	0.04186	0.01580	0.00608	0.00240	0.00097	0.00040	0.00017	0.00008
7	3.625	0.03217	0.59790	0.64289	0.38861	0.19359	0.08962	0.04045	0.01820	0.00825	0.00378	0.00176	0.00084	0.00040
8	3.875	0.00645	0.27771	0.45705	0.37047	0.23139	0.12889	0.06807	0.03511	0.01797	0.00920	0.00473	0.00246	0.00129
9	4.125	0.00122	0.11085	0.26598	0.27959	0.21336	0.14000	0.08498	0.04948	0.02819	0.01590	0.00894	0.00503	0.00284
10	4.375	0.00023	0.04038	0.13565	0.17981	0.16407	0.12461	0.08564	0.05556	0.03484	0.02142	0.01303	0.00788	0.00476
11	4.625	0.00004	0.01398	0.06355	0.10374	0.11115	0.09627	0.07396	0.05288	0.03615	0.02402	0.01567	0.01011	0.00648
12	4.875	0.00001	0.00473	0.02826	0.05569	0.06898	0.06727	0.05716	0.04462	0.03297	0.02349	0.01634	0.01118	0.00757
13	5.125	0.00000	0.00160	0.01221	0.02854	0.04033	0.04381	0.04079	0.03448	0.02734	0.02077	0.01530	0.01104	0.00785
14	5.375	0	0.00054	0.00521	0.01423	0.02267	0.02717	0.02750	0.02500	0.02115	0.01702	0.01323	0.01002	0.00745
15	5.625	0	0.00019	0.00222	0.00699	0.01244	0.01631	0.01783	0.01732	0.01554	0.01320	0.01076	0.00852	0.00660
16	5.875	0	0.00007	0.00095	0.00342	0.00674	0.00960	0.01125	0.01162	0.01101	0.00982	0.00837	0.00691	0.00556
17	6.125	0	0.00002	0.00041	0.00168	0.00363	0.00558	0.00698	0.00763	0.00760	0.00709	0.00630	0.00540	0.00450
18	6.375	0	0.00001	0.00018	0.00083	0.00195	0.00323	0.00429	0.00494	0.00515	0.00501	0.00463	0.00410	0.00353
19	6.625	0	0	0.00008	0.00041	0.00106	0.00187	0.00262	0.00317	0.00346	0.00349	0.00334	0.00306	0.00272
20	6.875	0	0	0.00004	0.00021	0.00058	0.00108	0.00160	0.00203	0.00230	0.00241	0.00238	0.00225	0.00205
21	7.125	0	0	0.00002	0.00011	0.00032	0.00063	0.00098	0.00130	0.00153	0.00166	0.00169	0.00164	0.00154
22	7.375	0	0	0.00001	0.00006	0.00018	0.00037	0.00061	0.00083	0.00101	0.00114	0.00119	0.00119	0.00114
23	7.625	0	0	0	0.00003	0.00010	0.00022	0.00038	0.00054	0.00067	0.00078	0.00084	0.00086	0.00084
24	7.875	0	0	0	0.00002	0.00006	0.00013	0.00023	0.00035	0.00045	0.00053	0.00059	0.00062	0.00062
25	8.125	0	0	0	0.00001	0.00003	0.00008	0.00015	0.00023	0.00030	0.00037	0.00042	0.00045	0.00046
26	8.375	0	0	0	0	0.00002	0.00005	0.00009	0.00015	0.00020	0.00026	0.00030	0.00032	0.00034

Πίνακας A.40 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BoxCox}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , σύμφωνα με το μοντέλο με μετασχηματισμούς Box-Cox για το βάθος d=8.68m για το σύνολο των κυμάτων (total)

		Ал	τό κοινού πυκ	ανότητα πιθαν	ότητας $f_{BoxCox}(I)$	H _s , T _m) του H	ς και της <i>Τ</i> _m	για το βάθος	d=8.68m γι	α το σύνολο	ο των κυμάτ	των (total)		
	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00003	0.00002	0.00001	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00020	0.00010	0.00005	0.00003	0.00001	0.00001	0	0	0	0	0	0	0
8	3.875	0.00068	0.00037	0.00020	0.00011	0.00006	0.00003	0.00002	0.00001	0.00001	0	0	0	0
9	4.125	0.00161	0.00092	0.00053	0.00031	0.00018	0.00011	0.00006	0.00004	0.00002	0.00001	0.00001	0.00001	0
10	4.375	0.00288	0.00174	0.00106	0.00065	0.00040	0.00025	0.00015	0.00010	0.00006	0.00004	0.00002	0.00002	0.00001
11	4.625	0.00414	0.00265	0.00169	0.00108	0.00069	0.00045	0.00029	0.00019	0.00012	0.00008	0.00005	0.00003	0.00002
12	4.875	0.00509	0.00340	0.00227	0.00152	0.00101	0.00068	0.00045	0.00031	0.00021	0.00014	0.00009	0.00006	0.00004
13	5.125	0.00553	0.00386	0.00268	0.00186	0.00129	0.00089	0.00062	0.00043	0.00030	0.00021	0.00014	0.00010	0.00007
14	5.375	0.00547	0.00397	0.00287	0.00206	0.00147	0.00105	0.00075	0.00053	0.00038	0.00027	0.00019	0.00014	0.00010
15	5.625	0.00503	0.00379	0.00283	0.00210	0.00155	0.00114	0.00083	0.00061	0.00045	0.00033	0.00024	0.00017	0.00013
16	5.875	0.00439	0.00342	0.00263	0.00201	0.00152	0.00115	0.00086	0.00065	0.00048	0.00036	0.00027	0.00020	0.00015
17	6.125	0.00367	0.00294	0.00233	0.00183	0.00142	0.00110	0.00085	0.00065	0.00049	0.00038	0.00029	0.00022	0.00017
18	6.375	0.00297	0.00245	0.00199	0.00160	0.00128	0.00101	0.00079	0.00062	0.00048	0.00038	0.00029	0.00023	0.00017
19	6.625	0.00235	0.00199	0.00166	0.00136	0.00111	0.00090	0.00072	0.00057	0.00045	0.00036	0.00028	0.00022	0.00018
20	6.875	0.00182	0.00158	0.00135	0.00113	0.00094	0.00078	0.00063	0.00051	0.00042	0.00033	0.00027	0.00021	0.00017
21	7.125	0.00140	0.00124	0.00108	0.00093	0.00079	0.00066	0.00055	0.00045	0.00037	0.00030	0.00025	0.00020	0.00016
22	7.375	0.00106	0.00096	0.00086	0.00075	0.00065	0.00055	0.00046	0.00039	0.00032	0.00027	0.00022	0.00018	0.00015
23	7.625	0.00080	0.00074	0.00067	0.00060	0.00052	0.00045	0.00039	0.00033	0.00028	0.00023	0.00020	0.00016	0.00013
24	7.875	0.00060	0.00057	0.00052	0.00047	0.00042	0.00037	0.00032	0.00028	0.00024	0.00020	0.00017	0.00014	0.00012
25	8.125	0.00045	0.00043	0.00041	0.00037	0.00034	0.00030	0.00027	0.00023	0.00020	0.00017	0.00015	0.00013	0.00011
26	8.375	0.00034	0.00033	0.00032	0.00029	0.00027	0.00024	0.00022	0.00019	0.00017	0.00015	0.00013	0.00011	0.00009

		Από κοινού	πυκνότητα 2	πιθανότητας	fBoxCox(Hs, 7	m) του H _s κ	αιτης Τ _m γι	α το βάθος d	=8.19m για	τα ανεμογε	νή κύματα	(wind-gene	rated)	
	$H_{s}(m)$	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.125
<i>i</i> : 1	2.125	0.00008	0	0	0	0	0	0	0	0	0	0	0	0.00008
2	2.375	0.01361	0.00053	0.00003	0	0	0	0	0	0	0	0	0	0.01361
3	2.625	0.21337	0.02051	0.00235	0.00033	0.00005	0.00001	0	0	0	0	0	0	0.21337
4	2.875	0.79303	0.16201	0.03126	0.00646	0.00146	0.00036	0.00009	0.00003	0.00001	0	0	0	0.79303
5	3.125	1.19250	0.46193	0.13854	0.04026	0.01200	0.00373	0.00121	0.00041	0.00015	0.00005	0.00002	0.00001	1.19250
6	3.375	1.00707	0.67626	0.29640	0.11541	0.04370	0.01664	0.00646	0.00257	0.00105	0.00044	0.00019	0.00008	1.00707
7	3.625	0.58758	0.63666	0.38810	0.19488	0.09087	0.04129	0.01869	0.00852	0.00393	0.00184	0.00088	0.00042	0.58758
8	3.875	0.27085	0.44669	0.36378	0.22837	0.12784	0.06784	0.03515	0.01806	0.00928	0.00479	0.00250	0.00131	0.27085
9	4.125	0.10775	0.25778	0.27131	0.20757	0.13660	0.08316	0.04856	0.02775	0.01569	0.00884	0.00499	0.00282	0.10775
10	4.375	0.03925	0.13085	0.17313	0.15800	0.12013	0.08267	0.05372	0.03374	0.02078	0.01266	0.00767	0.00464	0.03925
11	4.625	0.01363	0.06119	0.09942	0.10631	0.09201	0.07069	0.05055	0.03457	0.02299	0.01501	0.00969	0.00622	0.01363
12	4.875	0.00463	0.02722	0.05325	0.06570	0.06392	0.05424	0.04230	0.03124	0.02226	0.01548	0.01059	0.00717	0.00463
13	5.125	0.00157	0.01179	0.02729	0.03833	0.04147	0.03852	0.03249	0.02573	0.01952	0.01437	0.01036	0.00737	0.00157
14	5.375	0.00054	0.00505	0.01362	0.02154	0.02568	0.02589	0.02347	0.01981	0.01591	0.01234	0.00934	0.00694	0.00054
15	5.625	0.00019	0.00216	0.00671	0.01183	0.01541	0.01676	0.01622	0.01451	0.01228	0.01000	0.00790	0.00611	0.00019
16	5.875	0.00007	0.00093	0.00329	0.00642	0.00907	0.01057	0.01087	0.01026	0.00912	0.00775	0.00638	0.00512	0.00007
17	6.125	0.00002	0.00041	0.00162	0.00347	0.00528	0.00656	0.00714	0.00708	0.00657	0.00582	0.00497	0.00413	0.00002
18	6.375	0.00001	0.00018	0.00081	0.00187	0.00306	0.00404	0.00462	0.00480	0.00465	0.00427	0.00378	0.00324	0.00001
19	6.625	0	0.00008	0.00040	0.00102	0.00178	0.00248	0.00297	0.00322	0.00324	0.00308	0.00281	0.00249	0
20	6.875	0	0.00004	0.00021	0.00056	0.00103	0.00152	0.00191	0.00215	0.00224	0.00220	0.00207	0.00188	0
21	7.125	0	0.00002	0.00011	0.00031	0.00061	0.00093	0.00122	0.00143	0.00154	0.00156	0.00151	0.00141	0
22	7.375	0	0.00001	0.00006	0.00017	0.00036	0.00058	0.00079	0.00095	0.00106	0.00110	0.00109	0.00105	0
23	7.625	0	0	0.00003	0.00010	0.00021	0.00036	0.00051	0.00063	0.00073	0.00078	0.00079	0.00077	0
24	7.875	0	0	0.00002	0.00006	0.00013	0.00023	0.00033	0.00043	0.00050	0.00055	0.00057	0.00057	0
25	8.125	0	0	0.00001	0.00003	0.00008	0.00014	0.00022	0.00029	0.00035	0.00039	0.00041	0.00042	0
26	8.375	0	0	0.00001	0.00002	0.00005	0.00009	0.00014	0.00019	0.00024	0.00028	0.00030	0.00031	0

Πίνακας A.41 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BoxCox}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , σύμφωνα με το μοντέλο με μετασχηματισμούς Box-Cox για το βάθος d=8.19m για τα ανεμογενή κύματα (wind-generated)

		Από κοι	νού πυκνότη	τα πιθανότητ	$a\varsigma f_{BoxCox}(H_s, T_n)$	1) του <i>H</i> s και	της Τ _m για τ	ro βάθος d=8	.19m για τα	ανεμογενή	κύματα (w	ind-genera	ted)	
\geq	$H_{s}(m)$	<i>j</i> : 14	15	16	17	18	19	20	21	22	23	24	25	26
$T_m(s)$		3.375	3.625	3.875	4.125	4.375	4.625	4.875	5.125	5.375	5.625	5.875	6.125	6.375
<i>i</i> : 1	2.125	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2.625	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2.875	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3.125	0	0	0	0	0	0	0	0	0	0	0	0	0
6	3.375	0.00004	0.00002	0.00001	0	0	0	0	0	0	0	0	0	0
7	3.625	0.00021	0.00010	0.00005	0.00003	0.00001	0.00001	0	0	0	0	0	0	0
8	3.875	0.00070	0.00037	0.00020	0.00011	0.00006	0.00003	0.00002	0.00001	0.00001	0	0	0	0
9	4.125	0.00161	0.00092	0.00053	0.00031	0.00018	0.00011	0.00006	0.00004	0.00002	0.00001	0.00001	0.00001	0
10	4.375	0.00281	0.00170	0.00104	0.00063	0.00039	0.00024	0.00015	0.00009	0.00006	0.00004	0.00002	0.00002	0.00001
11	4.625	0.00398	0.00254	0.00163	0.00104	0.00067	0.00043	0.00028	0.00018	0.00012	0.00008	0.00005	0.00003	0.00002
12	4.875	0.00482	0.00323	0.00216	0.00144	0.00096	0.00064	0.00043	0.00029	0.00019	0.00013	0.00009	0.00006	0.00004
13	5.125	0.00518	0.00362	0.00252	0.00174	0.00121	0.00083	0.00058	0.00040	0.00028	0.00019	0.00013	0.00009	0.00007
14	5.375	0.00508	0.00369	0.00266	0.00191	0.00136	0.00097	0.00069	0.00049	0.00035	0.00025	0.00018	0.00013	0.00009
15	5.625	0.00465	0.00350	0.00261	0.00193	0.00142	0.00104	0.00076	0.00056	0.00041	0.00030	0.00022	0.00016	0.00012
16	5.875	0.00404	0.00314	0.00241	0.00184	0.00139	0.00105	0.00079	0.00059	0.00044	0.00033	0.00024	0.00018	0.00014
17	6.125	0.00336	0.00269	0.00213	0.00166	0.00129	0.00100	0.00077	0.00059	0.00045	0.00034	0.00026	0.00020	0.00015
18	6.375	0.00272	0.00224	0.00181	0.00145	0.00116	0.00091	0.00072	0.00056	0.00043	0.00034	0.00026	0.00020	0.00016
19	6.625	0.00214	0.00181	0.00150	0.00124	0.00100	0.00081	0.00065	0.00051	0.00041	0.00032	0.00025	0.00020	0.00016
20	6.875	0.00166	0.00144	0.00122	0.00103	0.00085	0.00070	0.00057	0.00046	0.00037	0.00030	0.00024	0.00019	0.00015
21	7.125	0.00127	0.00113	0.00098	0.00084	0.00071	0.00059	0.00049	0.00040	0.00033	0.00027	0.00022	0.00018	0.00014
22	7.375	0.00097	0.00087	0.00077	0.00068	0.00058	0.00049	0.00042	0.00035	0.00029	0.00024	0.00020	0.00016	0.00013
23	7.625	0.00073	0.00067	0.00061	0.00054	0.00047	0.00041	0.00035	0.00029	0.00025	0.00021	0.00017	0.00014	0.00012
24	7.875	0.00055	0.00052	0.00047	0.00043	0.00038	0.00033	0.00029	0.00025	0.00021	0.00018	0.00015	0.00013	0.00011
25	8.125	0.00041	0.00040	0.00037	0.00034	0.00030	0.00027	0.00024	0.00021	0.00018	0.00015	0.00013	0.00011	0.00009
26	8.375	0.00031	0.00030	0.00029	0.00027	0.00024	0.00022	0.00019	0.00017	0.00015	0.00013	0.00011	0.00010	0.00008

	<u> </u>			Από κο	ινού πιθο	ανότητας.	f _{BoxCox} (H	, <i>T</i> _m) τοι	υ <i>H</i> s και	της Τ _m ,	για το βά	θος d=5.	04m για 1	τα κύμ	ατα απ	ιοθάλα	σσας (swell)				
	H _s (m)	<i>j</i> : 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$T_m(s)$		0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875	3.12	3.37 5	3.62 5	3.87 5	4.12	4.37 5	4.62 5	4.87 5	5.125
i:	10.2	0.0133	0.0032	0.0010	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000										0.0133
1	5	9	7	7	2	9	9	5	3	2	1	1	0	0	0	0	0	0	0	0	0	9
	10.7	0.0197	0.0045	0.0014	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									0.0197
2	5	7	7	4	6	5	2	6	4	2	1	1	1	0	0	0	0	0	0	0	0	7
2	11.2	0.0282	0.0061	0.0018	0.0007	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									0.0282
3	5	5	3	6	0	0	4	7	4	2	1	1	1	0	0	0	0	0	0	0	0	5
4	11.7	0.0383	0.0077	0.0022	0.0008	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									0.0383
4	5	3	7	5	2	4	6	8	4	3	2	1	1	0	0	0	0	0	0	0	0	3
5	12.2	0.0483	0.0090	0.0025	0.0008	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000									0.0483
5	5	7	9	1	7	6	6	8	4	2	1	1	1	0	0	0	0	0	0	0	0	7
6	12.7	0.0552	0.0095	0.0025	0.0008	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000										0.0552
0	5	8	5	0	4	3	5	7	4	2	1	1	0	0	0	0	0	0	0	0	0	8
7	13.2	0.0554	0.0087	0.0021	0.0006	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000										0.0554
,	5	9	5	6	9	6	1	5	3	2	1	1	0	0	0	0	0	0	0	0	0	9
8	13.7	0.0471	0.0067	0.0015	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000											0.0471
	5	7	3	6	8	7	7	3	2	1	1	0	0	0	0	0	0	0	0	0	0	7
9	14.2	0.0325	0.0041	0.0009	0.0002	0.0000	0.0000	0.0000	0.0000		_	-	_	_					_			0.0325
-	5	6	7	0	6	9	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	6
10	14.7	0.01/3	0.0019	0.0004	0.0001	0.0000	0.0000	0.0000														0.01/3
	5	8	8	0	1	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	8
11	15.2	0.0067	0.0006	0.0001	0.0000	0.0000	•	•	•	•	•	•	•	•								0.0067
	5	9	8	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
12	15.7	0.0018	0.0001	0.0000	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0018
	162	2	0 0000	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2 0.0002
13	10.2	0.0005	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0005
	167	1 0000	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0000
14	5	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	17.2	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0	0	5
15	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	17.7																					
16	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	18.2																					
17	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18.7																					
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	19.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
20	19.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20.2	U	U	U	U	U	U	U	U	0	U	0	0	0	U	0	0	0	0	0	0	U
21	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Πίνακας A.42 Μακροχρόνια από κοινού πυκνότητα πιθανότητας $f_{BoxCox}(H_s, T_m)$ του χαρακτηριστικού ύψους κύματος H_s και της μέσης περιόδου T_m , σύμφωνα με το μοντέλο με μετασχηματισμούς Box-Cox για το βάθος d=5.04m για τα κύματα αποθάλασσας (swell)

Παράρτημα Β:

Κώδικας σε MATLAB

1. Κώδικας προεπεξεργασίας δεδομένων

%% Προεπεξεργασία δεδομένων %% Εισαγωγή δεδομένων πληθυσμού Tm, Hs και Tp %(replacing unimportable cells with NaN)

% Οι αρχικές μεταβλητές που εισάγονται είναι οι εξής:
 % (Μετονομασία αρχικών μεταβλητών αν χρειάζεται)

% AthosTm02s: δεδομένα Tm συνόλου κυματισμών

% AthosHm0m: δεδομένα Hs συνόλου κυματισμών

% AthosTm02bs: δεδομένα Tm ανεμογενών κυματισμών

% AthosHm0bm: δεδομένα Hs ανεμογενών κυματισμών

% AthosTm02as: δεδομένα Tm κυμάτων αποθάλασσας

% AthosHm0am: δεδομένα Hs κυμάτων αποθάλασσας

% AthosTps: δεδομένα Tp

% Διαχωρισμός ανά είδος προέλευσης κύματος

```
if strcmpi(eidos,'wind-generated')
   Athos=cat(2,AthosTm02bs,AthosHm0bm,AthosTps);
elseif strcmpi(eidos,'swell')
   Athos=cat(2,AthosTm02as,AthosHm0am);
elseif strcmpi(eidos,'all')
   Athos=cat(2,AthosTm02s,AthosHm0m,AthosTps);
end
[m,n] = size(Athos);
%%
% Προεπεξεργασία δεδομένων
```

```
% Αφαίρεση δεδομένων που δεν υπάρχουν μετρήσεις ΖΕΥΓΩΝ Hs & Tm, μηδενισμός % αρνητικών τιμών Hs,swell και αφαίρεση μηδενικών τιμών από όλους τους % πληθυσμούς
```

```
for i=1:m
  for j=1:2
    if isempty(Athos(i,j)) || isnan(Athos(i,j)) || Athos(i,j)==0
       Athos(i,1)=0; Athos(i,2)=0; Athos(i,3)=0;
    end
  end
  if Athos(i,2)<0 || Athos(i,2)<0.01 % Αφαίρεση κυμάτων <1 cm
     Athos(i,1)=0; Athos(i,2)=0; Athos(i,3)=0; % Μηδενισμός αρνητικών
                             % τιμών Hm0am
  end
end
% Αφαίρεση "κολλημένων" τιμών
for i=1:(m-3)
  if Athos(i,j)==Athos(i+1,j) & Athos(i,j)==Athos(i+2,j) & ... Athos(i,j)==Athos(i+3,j)
     Athos(i+3,1)=0; Athos(i+3,2)=0; Athos(i+3,3)=0;
  end
end
```

Athos(all(Athos==0,2),:)=[]; % all(A,2) works on successive elements in % the rows of A and returns a column vector of logical values [m,n] = size(Athos);

%% Ιστόγραμμα, παραγωγή πίνακα εμφάνισης από κοινού συχνοτήτων

D=Athos(:,1:2); % δεδομένα πληθυσμών Tm02, Hm0 AthosT=D(:,1); AthosH=D(:,2);

if strcmpi(eidos, 'wind-generated') edges={2:0.25:8.4;0:0.25:6.25}; % όρια κλάσεων και cH=0.25; % βήμα Hs cT=0.25; % βήμα Tm klaseis=26; %(26x26 κλάσεις)

elseif strcmpi(eidos,'swell')

edges={10:0.5:20;0:0.25:5}; % όρια κλάσεων και βήμα σε Tm και Hs cH=0.25; % βήμα Hs cT=0.5; % βήμα Tm klaseis=21; %(21x21 κλάσεις)

elseif strcmpi(eidos,'all') edges={2:0.25:8.4;0:0.25:6.25}; % όρια κλάσεων και cH=0.25; % βήμα Hs cT=0.25; % βήμα Tm klaseis=26; % (26x26 κλάσεις) end

[cond,centralvalues]=hist3(D,'Edges',edges); centralvalues=cell2mat(centralvalues); Tm=(centralvalues(1,1:klaseis))'; Hs=centralvalues(1,(klaseis+1):end); total=sum(sum(cond)); % σύνολο παρατηρήσεων

%% Συχνότητες και πιθανότητες

```
prob=zeros(klaseis,klaseis); % matrix preallocation
probdens=zeros(klaseis,klaseis); % matrix preallocation
for ii=1:klaseis
    for jj=1:klaseis
    prob(ii,jj)=cond(ii,jj)/total;
    probdens(ii,jj)=prob(ii,jj)/cH/cT;
    end
ond
```

```
end
```

%% Μετατροπή πινάκων σε πίνακες-στήλες για Surfer

probsurfwind=prob(:);
jdsurfwind=probdens(:);

NTsurf=cat(1,Tm,Tm,Tm,Tm,Tm,Tm); NTsurf=cat(1,NTsurf,NTsurf,NTsurf,NTsurf); NTsurf=NTsurf(1:(klaseis*klaseis),:); NHsnew=zeros(klaseis,klaseis); % matrix preallocation for ii=1:klaseis for i=1:klaseis NHsnew(i,ii)=Hs(ii); end end NHsurf=NHsnew(:);

%% Δημιουργία πίνακα Α (εισαγωγής δεδομένων) για μοντέλα

C=cat(1,Hs,cond); Dii=[0]; E=cat(1,Dii,Tm); A=cat(2,E,C);

2. Μοντέλο δεσμευμένης πιθανότητας (Conditional Model) με λογαριθμοκανονική (Lognormal) κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m|H_s

%% Conditional method: Lognormal Hs, Lognormal Tm|Hs για τα βαθιά και για % Πίνακα δεδομένων (από κοινού πιθανοτήτων) διαστάσεων jj x kk

%% Ανάκτηση δεδομένων από πίνακα Α εισαγωγής δεδομένων

Tm=A(2:end,1); Hs=(A(1,2:end))'; cond=A(2:end,2:end); total=sum(sum(cond)); freqTm=sum(cond,2); freqHs=(sum(cond))'; DTm=Tm(2,1)-Tm(1,1); DHs=Hs(2,1)-Hs(1,1); [gg,ff]=size(cond); if gg~=ff 'error matrix dimensions' end

%% Υπολογισμός παραμέτρων μ,
σ μετά από προσαρμογή κατανομής Log-normal % στην Tm
[Hs

```
for i=1:ff
    aaa=lognfit(Tm,[],[],cond(:,i));
    paramaa(i,1)=aaa(1);
    parambb(i,1)=aaa(2);
end
```

%% Υπολογισμός παραμέτρων μ, σ μετά από προσαρμογή κατανομής Lognormal % στην περιθώρια Hs

pd1 = fitdist(Hs, 'lognormal','freq',freqHs);

[param]=lognfit(Hs,[],[],freqHs); aL=param(1); bL=param(2);

%% Προσαρμογή εμπειρικής συνάρτησης για την παράμετρο μ της λογαριθμικής % κατανομής (πολυωνυμική 2ου βαθμού)

[fitresult, gof]=polyFit(Hs,paramaa); sintelestesm=coeffvalues(fitresult);

%% Προσαρμογή εμπειρικής συνάρτησης για την παράμετρο σ^2 της λογαριθμικής % κατανομής (εκθετική 1ου βαθμού)

squareparamb=parambb.^2;

[fitresultexp, gofexp]=expFit(Hs,squareparamb); sintelestess=coeffvalues(fitresultexp);

%% Probability density functions των κατανομών % Κατανομή Lognormal για την Tm|Hs

```
for kk=1:ff
```

```
for jj=1:gg
% Eµπειρική συνάρτηση παραμέτρων µ, σ
parama(kk)=sintelestesm(1)*((Hs(kk))^2)+sintelestesm(2)...
*(Hs(kk))+sintelestesm(3);
paramb(kk)=sqrt(sintelestess(1)*exp(sintelestess(2)*(Hs(kk))));
% Probability density function
pdfTm(jj,kk)=(exp(-1/2/(paramb(kk)^2)*(log(Tm(jj))...
-parama(kk))^2))*((paramb(kk)*Tm(jj)*(2*pi)^0.5)^(-1));
% Cumulative distribution function
cdfTm(jj,kk)=(1/2)+(1/2)*erf((log(Tm(jj))-parama(kk))/(2^0.5...
*paramb(kk)));
end
```

end

```
% Κατανομή Lognormal για το Hs
```

- % Εισάγονται ως δεδομένα οι τιμές του Hs(kk)
και οι παράμετροι aL,bL της
- % περιθώριας κατανομής

```
for kk=1:gg
% Probability density function
pdfHsLog(kk)= (exp(-1/2/(bL^2)*(log(Hs(kk))-aL)^2))*((bL*Hs(kk)...
*(2*pi)^0.5)^(-1));
% Cumulative distribution function
cdfHsLog(kk)=(1/2)+(1/2)*erf((log(Hs(kk))-aL)/(2^0.5*bL));
end
%% Conditional model: f(Hs,Tm)= f(Hs)*f(Tm|Hs)
for kk=1:ff
```

```
for jj=1:gg
% Joint probability density function
jpdfLog(jj,kk)=pdfTm(jj,kk).*pdfHsLog(kk);
end
```

end

```
% Μετατροπή πίνακα jpdfLog(jj,kk) σε πίνακα-στήλη για Surfer jpdfsurfLog=jpdfLog(:);
```

%% Σφάλμα D2 % Εισάγεται χωρικό βήμα DHs, χρονικό βήμα DTm και ο αρχικός πίνακας % Probability(jj,kk)των δεδομένων, πριν την εφαρμογή του μοντέλου

Probability=(cond(1:gg,1:ff))./total;

```
D2Log=0;
for kk=1:ff % στήλη
for jj=1:gg % γραμμή
diafora(jj,kk)=((jpdfLog(jj,kk)*DTm*DHs)-Probability(jj,kk))^2;
D2Log =D2Log+diafora(jj,kk);
end
end
```

```
function [fitresult, gof] = polyFit(Hs, paramaa)
```

% CREATEFIT(HS,PARAMAA)
% Create a fit.
%
% Data for 'Polynomial (degree 2)' fit:
% X Input : Hs
% Y Output: paramaa
% Output:
% fitresult : a fit object representing the fit.
% gof : structure with goodness-of fit info.

%% Fit: 'Polynomial (degree 2)'. [xData, yData] = prepareCurveData(Hs, paramaa);

% Set up fittype and options. ft = fittype('poly2');

% Fit model to data. [fitresult, gof] = fit(xData, yData, ft);

% Plot fit with data. figure('Name', 'Polynomial fit (degree 2)'); h = plot(fitresult, xData, yData);

legend(h,'mu vs. Hs','Polynomial fit (degree 2)','Location','NorthEast'); % Label axes xlabel Hs ylabel mu grid on

function [fitresultexp, gofexp] = expFit(Hs, squareparamb)

- %CREATEFIT(HS,SQUAREPARAMB)
- % Create a fit.
- %
- % Data for 'Exponential fit (degree 1)' fit:
- % X Input : Hs
- % Y Output: squareparamb
- % Output:
- % fitresult : a fit object representing the fit.
- % gof : structure with goodness-of fit info.

%% Fit: 'Exponential fit (degree 1)'. [xData, yData] = prepareCurveData(Hs, squareparamb);

% Set up fittype and options. ft = fittype('exp1'); opts = fitoptions('Method', 'NonlinearLeastSquares'); opts.Display = 'Off'; opts.StartPoint = [0.0142148156848028 -0.664464029665902];

% Fit model to data. [fitresultexp, gofexp] = fit(xData, yData, ft, opts);

% Plot fit with data. figure('Name', 'Exponential fit (degree 1)'); h = plot(fitresultexp, xData, yData); legend(h,'sigma square vs. Hs','Exponential fit (degree 1)',... 'Location','NorthEast'); % Label axes xlabel Hs ylabel sigmasquare grid on

3. Μοντέλο δεσμευμένης πιθανότητας (Conditional Model) με κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική (Lognormal) κατανομή για τη μέση περίοδο T_m|H_s

%% Conditional method: Weibull Hs, Lognormal Tm|Hs για τα βαθιά και για % Πίνακα δεδομένων (από κοινού πιθανοτήτων) διαστάσεων jj x kk

%% Ανάκτηση δεδομένων από πίνακα μετρήσεων

Tm=A(2:end,1); Hs=(A(1,2:end))'; cond=A(2:end,2:end); total=sum(sum(cond)); freqTm=sum(cond,2); freqHs=(sum(cond))'; DTm=Tm(2,1)-Tm(1,1); DHs=Hs(2,1)-Hs(1,1);

```
[gg,ff]=size(cond);
if gg~=ff
'error matrix dimensions'
```

end

%% Υπολογισμός παραμέτρων μ,
σ μετά από προσαρμογή κατανομής Lognormal % στην Tm
[Hs

```
for i=1:ff
    a=lognfit(Tm,[],[],cond(:,i));
    paramaa(i,1)=a(1);
    parambb(i,1)=a(2);
end
```

%% Υπολογισμός παραμέτρων a, b μετά από προσαρμογή κατανομής Weibull στην % περιθώρια Hs

```
[paramm]=wblfit(Hs,[],[],freqHs);
aW=paramm(1);
bW=paramm(2);
```

%% Προσαρμογή εμπειρικής συνάρτησης για την παράμετρο μ της λογαριθμικής % κατανομής (πολυωνυμική 2ου βαθμού)

```
[fitresult, gof]=polyFit(Hs,paramaa);
sintelestesm=coeffvalues(fitresult);
```

%% Προσαρμογή εμπειρικής συνάρτησης για την παράμετρο σ^2 της λογαριθμικής % κατανομής (εκθετική 1ου βαθμού)

squareparamb=parambb.^2;

[fitresultexp, gofexp]=expFit(Hs,squareparamb); sintelestess=coeffvalues(fitresultexp);

%% Probability density functions των κατανομών % Κατανομή Lognormal για την Tm|Hs

```
for kk=1:ff
for jj=1:gg
% Eµπειρική συνάρτηση συντ/στών µ, σ
parama(kk)=sintelestesm(1)*((Hs(kk))^2)+sintelestesm(2)*...
(Hs(kk))+sintelestesm(3);
paramb(kk)=sqrt(sintelestess(1)*exp(sintelestess(2)*(Hs(kk))));
% Probability density function
pdfTm(jj,kk)=(exp(-1/2/(paramb(kk)^2)*(log(Tm(jj))...
-parama(kk))^2))*((paramb(kk)*Tm(jj)*(2*pi)^0.5)^(-1));
% Cumulative distribution function
cdfTm(jj,kk)=(1/2)+(1/2)*erf((log(Tm(jj))-parama(kk))/...
(2^0.5*paramb(kk)));
end
end
```

% Κατανομή Weibull για το Hs % Εισάγονται ως δεδομένα οι τιμές του Hs(kk)και οι παράμετροι aW,bW της % περιθώριας κατανομής

```
for kk=1:gg
% Probability density function
pdfHsWeib(kk)=bW/aW*(Hs(kk)/aW)^(bW-1)*exp(-(Hs(kk)/aW)^bW);
% Cumulative distribution function
cdfHsWeib(kk)=1-exp(-(Hs(kk)/aW)^bW);
end
```

%% Conditional model: f(Hs,Tm)= f(Hs)*f(Tm|Hs)

```
for kk=1:ff
   for jj=1:gg
    % Joint probability density function
    jpdfWeib(jj,kk)=pdfTm(jj,kk)*pdfHsWeib(kk);
   end
end
```

% Μετατροπή πίνακα jpdfWeib(jj,kk) σε πίνακα-στήλη για surfer jpdfsurfWeib=jpdfWeib(:);

%% Σφάλμα D2 % Εισάγεται χωρικό βήμα DHs, χρονικό βήμα DTm και ο αρχικός πίνακας % Probability(jj,kk)των δεδομένων, πριν την εφαρμογή του μοντέλου

```
Probability=(cond(1:gg,1:ff))./total;
```

```
D2Weib=0;
for kk=1:ff % στήλη
for jj=1:gg % γραμμή
diafora(jj,kk)=((jpdfWeib(jj,kk)*DTm*DHs)-Probability(jj,kk))^2;
D2Weib=D2Weib+diafora(jj,kk);
end
end
```

4. Μοντέλο Bivariate-Lognormal κατά Ochi (1978)

```
%% Bivariate Lognormal Method
```

%% Ανάκτηση δεδομένων από πίνακα μετρήσεων

```
Tm=A(2:end,1);
Hs=(A(1,2:end))';
cond=A(2:end,2:end);
total=sum(sum(cond));
freqTm=sum(cond,2);
freqHs=(sum(cond))';
DTm=Tm(2,1)-Tm(1,1);
DHs=Hs(2,1)-Hs(1,1);
[gg,ff]=size(cond);
```

if gg~=ff 'error matrix dimensions' end

%% Υπολογισμός παραμέτρων μ,
σ μετά από προσαρμογή κατανομής Lognormal % στην περιθώρι
a $\rm Tm$

[param]=lognfit(Tm,[],[],freqTm); aa=param(1); bb=param(2);

%% Υπολογισμός παραμέτρων μ,
σ μετά από προσαρμογή κατανομής Lognormal % στην περιθώρια Hs

% pd1 = fitdist(Hs, 'lognormal','freq',freqHs); [param]=lognfit(Hs,[],[],freqHs); aL=param(1); bL=param(2);

%% Στατιστικά στοιχεία

pli8_Tm=AthosT; pli8_Hs=AthosH; mxT=mean(pli8_Tm); mxH=mean(pli8_Hs); sxT=std(pli8_Tm); sxH=std(pli8_Hs); syT=(log(1+sxT^2/(mxT^2)))^(1/2); syH=(log(1+sxH^2/(mxH^2)))^(1/2); myT=log(mxT)-(syT^2)/2; myH=log(mxH)-(syH^2)/2;

%% Υπολογισμός γραμμικού συντελεστή συσχέτισης των δυο μεταβλητών r % Θα πρέπει να έχουν εισαχθεί οι πίνακες για τον πληθυσμό

Y1=log(pli8_Tm); Y2=log(pli8_Hs); ra=corrcoef(Y1,Y2); r=ra(1,2); if r<-1 || r>1 'error correlation coefficient' end

%% Υπολογισμός από κοινού πυκνότητας πιθανότητας Tm, Hs

% Μετατροπή πίνακα jpdfbivLog(jj,kk) σε πίνακα-στήλη για surfer jpdfsurfbivLog=jpdfbivLog(:);

%% Σφάλμα D2 % Εισάγεται χωρικό βήμα DHs, χρονικό βήμα DTm και ο αρχικός πίνακας % Probability(jj,kk)των δεδομένων, πριν την εφαρμογή του μοντέλου % sss είναι το σύνολο των συχνοτήτων εμφάνισης

Probability=(cond(1:gg,1:ff))./total;

```
D2bivLog=0;
for kk=1:ff % στήλη
for jj=1:gg % γραμμή
diafora(jj,kk)=((jpdfbivLog(jj,kk)*DTm*DHs)-Probability(jj,kk))^2;
D2bivLog =D2bivLog+diafora(jj,kk);
end
end
```

5. Μοντέλο Bivariate-Lognormal κατά Fang and Hogben (1982) με διόρθωση λόγω ασυμμετρίας

%% Bivariate Lognormal Method with correction for skewness

%% Ανάκτηση δεδομένων από πίνακα μετρήσεων

```
Tm=A(2:end,1);
Hs=(A(1,2:end))';
cond=A(2:end,2:end);
total=sum(sum(cond));
freqTm=sum(cond,2);
freqHs=(sum(cond))';
[gg,ff]=size(cond);
if gg~=ff
'error matrix dimensions'
```

end

%% Υπολογισμός παραμέτρων (location & scale) μετά από προσαρμογή κατανομής % Lognormal στην περιθώρια Tm

[param]=lognfit(Tm,[],[],freqTm); aa=param(1); bb=param(2);

%% Υπολογισμός παραμέτρων (location & scale) μετά από προσαρμογή κατανομής % Lognormal στην περιθώρια Hs

%pd1 = fitdist(Hs, 'lognormal','freq',freqHs); [param]=lognfit(Hs,[],[],freqHs); aL=param(1); bL=param(2);

```
%%

pli8_Tm=AthosT;

pli8_Hs=AthosH;

mxT=mean(pli8_Tm);

mxH=mean(pli8_Hs);

sxT=std(pli8_Tm);

sxH=std(pli8_Hs);

syT=(log(1+sxT^2/(mxT^2)))^(1/2);

syH=(log(1+sxH^2/(mxH^2)))^(1/2);

myT=log(mxT)-(syT^2)/2;

myH=log(mxH)-(syH^2)/2;
```

%% Υπολογισμός γραμμικού συντελεστή συσχέτισης των δυο μεταβλητών r % Θα πρέπει να έχουν εισαχθεί οι πίνακες για τον πληθυσμό

```
Y1=log(pli8_Tm);
Y2=log(pli8_Hs);
ra=corrcoef(Y1,Y2);
r=ra(1,2);
if r<-1 || r>1
'error correlation coefficient'
end
```

%% Υπολογισμός coefficient of skewness for logHs (kHs)

```
% Υπολογισμός skewness sklogHs=skewness(Y2);
```

% Υπολογισμός coefficient of skewness asd=sklogHs/((std(Y2))^3);

%% Υπολογισμός από κοινού πυκνότητας πιθανότητας Tm, Hs

for kk=1:ff for jj=1:gg

```
% Probability density function

jpdfbivLogCor(jj,kk)=0.5./(syT*Hs(kk)*Tm(jj)*pi*syH*...

sqrt(1-r^2))*exp(-0.5/(1-r^2)*(((log(Tm(jj))-myT)^2)/...

(syT^2)-2*r*(log(Tm(jj))-myT).*(log(Hs(kk))-myH)/...

(syT*syH)+(log(Hs(kk))-myH)^2/(syH^2)))*(1-asd/...

6*(3*(log(Hs(kk))-syH)-(log(Hs(kk))-syH)^3));

end
```

```
end
```

% Μετατροπή πίνακα jpdfbivLog(jj,kk) σε πίνακα-στήλη για surfer jpdfsurfbivLogCor=jpdfbivLogCor(:);

%% Σφάλμα D2

```
% Εισάγεται χωρικό βήμα DHs, χρονικό βήμα DTm και ο αρχικός πίνακας
% Probability(jj,kk)των δεδομένων, πριν την εφαρμογή του μοντέλου
% sss είναι το σύνολο των συχνοτήτων εμφάνισης
```

```
DTm=Tm(2,1)-Tm(1,1);
DHs=Hs(2,1)-Hs(1,1);
Probability=(cond(1:gg,1:ff))./total;
D2bivLogCor=0;
for kk=1:ff % στήλη
for jj=1:gg % γραμμή
diafora(jj,kk)=((jpdfbivLogCor(jj,kk)*DTm*DHs)- ...
Probability(jj,kk))^2;
D2bivLogCor =D2bivLogCor+diafora(jj,kk);
end
end
```

6. Μοντέλο Plackett με λογαριθμοκανονική κατανομή και για το χαρακτηριστικό ύψος κύματος H_s και για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)

%% Plackett model: Hs Lognormal, Tm Lognormal για τα βαθιά και για Πίνακα % δεδομένων (από κοινού πιθανοτήτων) διαστάσεων jj x kk

%% Ανάκτηση δεδομένων από πίνακα μετρήσεων

Tm=A(2:end,1); Hs=(A(1,2:end))'; cond=A(2:end,2:end); total=sum(sum(cond)); freqTm=sum(cond,2); freqHs=(sum(cond))'; DTm=Tm(2,1)-Tm(1,1); DHs=Hs(2,1)-Hs(1,1); [gg,ff]=size(cond); if gg~=ff 'error matrix dimensions' end

%% Υπολογισμός παραμέτρων (location & scale) μετά από προσαρμογή κατανομής % Lognormal στην περιθώρια Tm

[param]=lognfit(Tm,[],[],freqTm); aT=param(1); bT=param(2);

%% Υπολογισμός παραμέτρων (location & scale) μετά από προσαρμογή κατανομής % Lognormal στην περιθώρια Hs

[param]=lognfit(Hs,[],[],freqHs); aH=param(1); bH=param(2); %% Κατανομή Lognormal του Hs

```
for kk=1:ff
% Probability density function
pdfHs(kk)=(exp(-1/2/(bH^2)*(log(Hs(kk))-aH)^2))* ...
((bH*Hs(kk)*(2*pi)^0.5)^(-1));
% Cumulative distribution function
cdfHs(kk)=(1/2)+(1/2)*erf((log(Hs(kk))-aH)/(2^0.5*bH));
end
```

```
%% Κατανομή Lognormal της Tm
```

```
for jj=1:gg
% Probability density function
pdfTm(jj)=(exp(-1/2/(bT^2)*(log(Tm(jj))-aT)^2))* ...
((bT*Tm(jj)*(2*pi)^0.5)^(-1));
% Cumulative distribution function
cdfTm(jj)=(1/2)+(1/2)*erf((log(Tm(jj))-aT)/(2^0.5*bT));
end
```

```
%% Plackett model
```

```
arithm=zeros(gg,ff);% αριθμητής κλάσματος Plackettparon=zeros(gg,ff);% παρονομαστής κλάσματος Plackettf=zeros(gg,ff);% Πίνακας Plackett joint density
```

```
y=[1.001:0.001:8.5]';
```

```
for ii=1:7500 % μετρητής για ψ: από 1.001 έως 8.500 (ανά 0.001)
```

```
gin(ii)=1;
```

```
for kk=1:ff

for jj=1:gg

arithm(jj,kk)=y(ii)*((y(ii)-1)*(cdfTm(jj)+cdfHs(kk)- ...

2*cdfTm(jj)*cdfHs(kk))+1)*pdfTm(jj)*pdfHs(kk);

paron(jj,kk)=((1+(cdfTm(jj)+cdfHs(kk))*(y(ii)-1))^2-...

4*y(ii)*(y(ii)-1)*cdfTm(jj)*cdfHs(kk))^(1.5);

f(jj,kk)=arithm(jj,kk)/paron(jj,kk);

if f(jj,kk)=1; % αντικατάσταση στοιχείου με μονάδα

end

gin(ii)=gin(ii)*f(jj,kk); % γινόμενο όλων των στοιχείων joint density

end

lngin(ii)=log(gin(ii)); % φυσικός λογάριθμος γινομένου
```

```
end
```

```
% Για ψ από 0.001 μέχρι 8.500 να βρεθεί ο μέγιστος λογάριθμος του γινομένου των στοιχείων και σε ποιο 
ψ αντιστοιχεί
mln=max(lngin);
for ii=1:7500
if lngin(ii)==mln
telikoy=y(ii);
```

end end % Για το σωστό ψ υπολογίζεται η Plackett joint density: f y1=telikoy; for kk=1:ff for jj=1:gg arithm(jj,kk)=y1*((y1-1)*(cdfTm(jj)+cdfHs(kk)-2*... cdfTm(jj)*cdfHs(kk))+1)*pdfTm(jj)*pdfHs(kk); paron(jj,kk)=((1+(cdfTm(jj)+cdfHs(kk))*(y1-1))^2-4*y1*... (y1-1)*cdfTm(jj)*cdfHs(kk))^(1.5); f(jj,kk)=arithm(jj,kk)/paron(jj,kk); end end % Μετατροπή πίνακα f(jj,kk) σε πίνακα-στήλη για surfer

% Μετατροπη πινακα f(jj,kk) σε πινακα-στηλη για sur fsurf=f(:);

```
% Σφάλμα D2
```

% Εισάγεται χωρικό βήμα DHs, χρονικό βήμα DTm και ο αρχικός πίνακας Probability(jj,kk)των δεδομένων, πριν την εφαρμογή του μοντέλου

Probability=(cond(1:gg,1:ff))./total;

```
D2plack=0;
for kk=1:ff
for jj=1:gg
diafora(jj,kk)=((f(jj,kk)*DTm*DHs)-Probability(jj,kk))^2;
D2plack =D2plack+diafora(jj,kk);
end
end
```

7. Μοντέλο Plackett με κατανομή Weibull για το χαρακτηριστικό ύψος κύματος H_s και λογαριθμοκανονική κατανομή για τη μέση περίοδο T_m (για τις περιθώριες και τις αντίστοιχες αθροιστικές τους)

%% Plackett model: Hs Lognormal, Tm Lognormal για τα βαθιά και για Πίνακα % δεδομένων (από κοινού πιθανοτήτων) διαστάσεων jj x kk

%% Ανάκτηση δεδομένων από πίνακα μετρήσεων

Tm=A(2:end,1); Hs=(A(1,2:end))'; cond=A(2:end,2:end); total=sum(sum(cond)); freqTm=sum(cond,2); freqHs=(sum(cond))'; DTm=Tm(2,1)-Tm(1,1); DHs=Hs(2,1)-Hs(1,1); [gg,ff]=size(cond); if gg~=ff 'error matrix dimensions' end

%% Υπολογισμός παραμέτρων (location & scale) μετά από προσαρμογή κατανομής % Lognormal στην περιθώρια Tm

[param]=lognfit(Tm,[],[],freqTm); aT=param(1); bT=param(2);

%% Υπολογισμός παραμέτρων (location & scale) μετά από προσαρμογή κατανομής % Lognormal στην περιθώρια Hs

[param]=wblfit(Hs,[],[],freqHs); aHW=param(1); bHW=param(2);

```
%% Κατανομή Weibull του Hs
```

```
for kk=1:ff
% Probability density function
pdfHs(kk)=aHW/bHW*(Hs(kk)/bHW)^(aHW-1)*exp(-(Hs(kk)/bHW)^aHW);
% Cumulative distribution function
cdfHs(kk)=1-exp(-(Hs(kk)/bHW)^aHW);
end
```

```
%% Κατανομή Lognormal της Tm
```

```
for jj=1:gg
% Probability density function
pdfTm(jj)=(exp(-1/2/(bT^2)*(log(Tm(jj))-aT)^2))* ...
((bT*Tm(jj)*(2*pi)^0.5)^(-1));
% Cumulative distribution function
cdfTm(jj)=(1/2)+(1/2)*erf((log(Tm(jj))-aT)/(2^0.5*bT));
end
```

%% Plackett model

arithm=zeros(gg,ff);% αριθμητής κλάσματος Plackettparon=zeros(gg,ff);% παρονομαστής κλάσματος Plackettf=zeros(gg,ff);% Πίνακας Plackett joint density

```
y=[1.001:0.001:8.5]';
```

for ii=1:7500 % μετρητής για ψ: από 1.001 έως 8.500 (ανά 0.001)

gin(ii)=1;

```
for kk=1:ff
for jj=1:gg
arithm(jj,kk)=y(ii)*((y(ii)-1)*(cdfTm(jj)+cdfHs(kk)- ...
2*cdfTm(jj)*cdfHs(kk))+1)*pdfTm(jj)*pdfHs(kk);
```

```
paron(jj,kk) = ((1 + (cdfTm(jj) + cdfHs(kk)))*(y(ij)-1))^{2}-...
       4*y(ii)*(y(ii)-1)*cdfTm(jj)*cdfHs(kk))^(1.5);
       f(jj,kk)=arithm(jj,kk)/paron(jj,kk);
       if f(jj,kk)<0.01
         f(jj,kk)=1; % αντικατάσταση στοιχείου με μονάδα
       end
       gin(ii)=gin(ii)*f(jj,kk); % γινόμενο όλων των στοιχείων joint % density
     end
  end
  lngin(ii)=log(gin(ii)); % φυσικός λογάριθμος γινομένου
end
% Για ψ από 0.001 μέχρι 8.500 να βρεθεί ο μέγιστος λογάριθμος του γινομένου των στοιχείων και σε ποιο
ψ αντιστοιχεί
mln=max(lngin);
for ii=1:7500
  if lngin(ii)==mln
    telikoy=y(ii);
  end
end
% Για το σωστό ψ υπολογίζεται η Plackett joint density: f
y1=telikoy;
for kk=1:ff
  for jj=1:gg
     arithm(jj,kk)=y1*((y1-1)*(cdfTm(jj)+cdfHs(kk)-2*...
     cdfTm(jj)*cdfHs(kk))+1)*pdfTm(jj)*pdfHs(kk);
    paron(jj,kk)=((1+(cdfTm(jj)+cdfHs(kk))*(y1-1))^2-4*y1*(y1-...
     1)*cdfTm(jj)*cdfHs(kk))^(1.5);
     f(jj,kk)=arithm(jj,kk)/paron(jj,kk);
  end
end
```

```
% Μετατροπή πίνακα f(jj,kk) σε πίνακα-στήλη για surfer fsurf=f(:);
```

% Σφάλμα D2

% Εισάγεται χωρικό βήμα DHs, χρονικό βήμα DTm και ο αρχικός πίνακας Probability(jj,kk)των δεδομένων, πριν την εφαρμογή του μοντέλου

Probability=(cond(1:gg,1:ff))./total;

```
D2plackWEIB=0;
for kk=1:ff
for jj=1:gg
diafora(jj,kk)=((f(jj,kk)*DTm*DHs)-Probability(jj,kk))^2;
D2plackWEIB=D2plackWEIB+diafora(jj,kk);
end
end
```

8. Μοντέλο με μετασχηματισμούς Box-Cox

%% Box-Cox %% Ανάκτηση δεδομένων από πίνακα μετρήσεων

Tm=A(2:end,1); Hs=(A(1,2:end))'; cond=A(2:end,2:end); total=sum(sum(cond)); freqTm=sum(cond,2); freqHs=(sum(cond))'; [gg,ff]=size(cond); if gg~=ff 'error matrix dimensions' end

%% Box-Cox transformations to the data of Tm, Hs % Χρειάζεται να εισαχθούν οι πίνακες πληθυσμού

pli8_Tm=AthosT; pli8_Hs=AthosH;

[transpli8_Tm, lambdapli8_Tm] = boxcox(pli8_Tm); [transpli8_Hs, lambdapli8_Hs] = boxcox(pli8_Hs);

Y1=transpli8_Hs; Y2=transpli8_Tm;

nY1=(Hs.^lambdapli8_Hs-1)/lambdapli8_Hs; nY2=(Tm.^lambdapli8_Tm-1)/lambdapli8_Tm;

% Mean and variance of the transformed data mY1=mean(Y1); varY1=var(Y1); mY2=mean(Y2); varY2=var(Y2);

% Συντελεστής συσχέτισης των transformed data Y1, Y2 rY1Y2a=(cov(transpli8_Hs,transpli8_Tm))/std(transpli8_Hs)/ ... std(transpli8_Tm); rY1Y2=rY1Y2a(1,2);

% Histogram for the transformed data %figtransTm=bar(Y2,freqTm); %xlabel('transformed Tm'); %ylabel('freqTm');

%figtransHs=bar(Y1,freqHs); %xlabel('transformed Hs'); %ylabel('freqHs');

% Probability density function of Y1, Y2

```
for ii=1:ff % column
 for jj=1:gg % row
    pdfY1Y2(ii,jj)=(1-rY1Y2^2)^(-1/2)/(2*pi*sqrt(varY1)* ...
    sqrt(varY2))*exp(-0.5/(1-rY1Y2^2)*((nY1(ii)-mY1)^2/varY1-...
    2*rY1Y2*(nY1(ii)-mY1)/sqrt(varY1)*(nY2(jj)-mY2)/ ...
    sqrt(varY2)+(nY2(jj)-mY2)^2/varY2));
  end
end
% Probability density function of original data
for jj=1:gg %row
  for ii=1:ff %column
    jpdfBox(jj,ii)=Hs(ii)^(lambdapli8_Hs-1)*Tm(jj)^ ...
    (lambdapli8_Tm-1)*pdfY1Y2(ii,jj);
  end
end
% Μετατροπές πινάκων σε κατάλληλους πίνακες-στήλες για surfer
jpdfsurfBox=jpdfBox(:);
pdfY1Y2surf=pdfY1Y2(:);
Y2surf=cat(1,Y2,Y2,Y2,Y2);
Y2surf=cat(1,Y2surf,Y2surf,Y2surf,Y2surf,Y2surf,Y2surf,Y2surf);
hjk=gg*ff;
Y2surf=Y2surf(1:hjk,:);
for j=1:ff
  for i=1:gg
    Y1new(i,j)=Y1(j);
  end
end
Y1surf=Y1new(:);
%% Σφάλμα D2
% Εισάγεται χωρικό βήμα DHs, χρονικό βήμα DTm και ο αρχικός πίνακας
% Probability(jj,kk)των δεδομένων, πριν την εφαρμογή του μοντέλου
% total είναι το σύνολο των συχνοτήτων εμφάνισης
DTm=Tm(2,1)-Tm(1,1);
DHs=Hs(2,1)-Hs(1,1);
Probability=(cond(1:gg,1:ff))./total;
D2Box=0;
for kk=1:ff % στήλη
  for jj=1:gg % γραμμή
    diafora(jj,kk)=((jpdfBox(jj,kk)*DTm*DHs)-Probability(jj,kk))^2;
    D2Box =D2Box+diafora(jj,kk);
  end
end
```

9. Κώδικας ρήχωσης

```
% Εφαρμογή ρήχωσης στα Hs, στο επιλεγμένο βάθος 1.5 Hsmax:
AthosHcolumn=AthosH(:); % πληθυσμός Hs μετά την προεπεξεργασία
AthosHmax=max(AthosHcolumn);
d=1.5*AthosHmax; % βάθος εφαρμογής ρήχωσης
% Επίλυση εξίσωσης διασποράς για τις διάφορες περιόδους Tm
% Root of function with extra parameter (MATLAB)
k=zeros(total,1); % matrix preallocation
myfun = @(k,c) (k*d)*tanh(k*d)-4*(pi^2)*d/(9.81*(c^2)); \% \pi a pauetpo-
                              % ποιημένη συνάρτηση
for i=1:total
  c = AthosT(i); % παράμετρος
  fun = @(k)myfun(k,c);% συνάρτηση μόνο ως προς την άγνωστη μεταβλητήk
  k(i,1) = abs(fzero(fun,0.1));
end
% Υπολογισμός συντελεστή ρήγωσης και νέων υψών κύματος Hsrix
Hsrix=zeros(total,1);
for i=1:total
  ks(i,1)=sqrt(1/((1+2*k(i,1)*d/sinh(2*k(i,1)*d))*tanh(k(i,1)*d)));
  mikoskum(i,1)=2*pi/k(i,1);
  y(i,1)=d/mikoskum(i,1);% Έλεγχος για περιοχή νερών(βαθιά, ενδιάμεσα, % ρηχά)
  if (y(i,1))<0.05
    'error: rixa nera'
  end
  Hsrix(i,1)=ks(i,1)*AthosH(i,1);
  if (Hsrix(i,1)/d) >= 0.78 % Έλεγχος για θραύση
    'error: breaking'
  end
```

```
end
```

%% Ιστόγραμμα, παραγωγή πίνακα εμφάνισης από κοινού συχνοτήτων % της περιόδου και των νέων υψών κύματος

DD=cat(2,AthosT,Hsrix); % δεδομένα πληθυσμών Tm02, Hsrix

```
[condrix,centralvaluesrix]=hist3(DD,'Edges',edges);
centralvaluesrix=cell2mat(centralvaluesrix);
if centralvaluesrix~=centralvalues
'error central values'
end
totalrix=sum(sum(condrix)); % σύνολο παρατηρήσεων
allages=(cond==condrix);
```

```
%% Συχνότητες και πιθανότητες
```

```
prob=zeros(klaseis,klaseis); % matrix preallocation
probdens=zeros(klaseis,klaseis); % matrix preallocation
for ii=1:klaseis
    for jj=1:klaseis
    probrix(ii,jj)=condrix(ii,jj)/totalrix;
```

probdensrix(ii,jj)=probrix(ii,jj)/cH/cT;
end
end

%% Μετατροπή πινάκων σε πίνακες-στήλες για Surfer probsurfwindrix=probrix(:); jdsurfwindrix=probdensrix(:);

% Δημιουργία πίνακα Α (εισαγωγής δεδομένων) C=cat(1,Hs,condrix); D=[0]; E=cat(1,D,Tm); A=cat(2,E,C); AthosH=Hsrix; % για εισαγωγή ως δεδομένο πληθυσμού με ρήχωση