

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΒΕΛΤΙΩΜΕΝΑ ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΓΙΑ ΤΗΝ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΑΝΩΔΟΜΗΣ – ΘΕΜΕΛΙΩΣΗΣ ΣΕ ΠΥΛΩΝΕΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ του **ΓΕΩΡΓΙΟΥ Ι. ΤΣΙΚΟΥΡΑΚΗ**

> Επιβλέπων: **Χάρης Ι. Γαντές** Καθηγητής Ε.Μ.Π.

Αθήνα, Οκτώβριος 2017

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΒΕΛΤΙΩΜΕΝΑ ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΓΙΑ ΤΗΝ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΑΝΩΔΟΜΗΣ – ΘΕΜΕΛΙΩΣΗΣ ΣΕ ΠΥΛΩΝΕΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ του **ΓΕΩΡΓΙΟΥ Ι. ΤΣΙΚΟΥΡΑΚΗ**

Επιβλέπων: **Χάρης Ι. Γαντές** Καθηγητής Ε.Μ.Π.

Τριμελής εξεταστική επιτροπή:

Χ. ΓαντέςΔ. ΒαμβάτσικοςΑ. Παπαδημητρίου

Αθήνα, Οκτώβριος 2017

NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF CIVIL ENGINEERING MSc IN ANALYSIS AND DESIGN OF STRUCTURES LABORATORY OF STEEL STRUCTURES

IMPROVED NUMERICAL SIMULATION FOR THE STRUCTURE – FOUNDATION INTERACTION OF WIND TURBINES

POSTGRADUATE THESIS by GEORGIOS I. TSIKOURAKIS

Supervisor: Charis I. Gantes Professor N.T.U.A.

Three – member examination committee:

C. Gantes

D. Vamvatsikos

A. Papadimitriou

Athens, October 2017

Ευχαριστίες

Θα ήθελα να απευθύνω θερμές ευχαριστίες καταρχήν στον επιβλέποντα καθηγητή της παρούσας μεταπτυχιακής εργασίας και μέντορά μου, κ. Χάρη Γαντέ, Καθηγητή στο Εργαστήριο Μεταλλικών Κατασκευών της Σχολής Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου (Ε.Μ.Π.), για την εμπιστοσύνη που μου έδειξε και τις καίριες συμβουλές του στα ''λεπτά'' σημεία του σχεδιασμού μεταλλικών κατασκευών.

Πολύτιμη ήταν και η βοήθεια του κ. Αχιλλέα Παπαδημητρίου, Επίκουρου Καθηγητή στον Τομέα Γεωτεχνικής της ίδιας σχολής του Ε.Μ.Π., ο οποίος αποσαφήνισε θέματα γεωτεχνικής φύσεως που προέκυψαν κατά την εκπόνηση της εργασίας.

Πέραν του στενού ακαδημαϊκού κύκλου, οφείλω να ευχαριστήσω όλους τους φίλους που φρόντισαν να διατηρήσουν τις ισορροπίες στην καθημερινότητά μου και να με στηρίξουν με την παρουσία και την ενέργειά τους.

Το μεγαλύτερο όμως ευχαριστώ αισθάνομαι την βαθειά ανάγκη να απευθύνω στην οικογένειά μου που ανέκαθεν έκανε ο,τιδήποτε καθίστατο δυνατό προκειμένου να μου εξασφαλίσει, τόσο από πρακτικής, όσο και από πνευματικής απόψεως, όλα τα απαραίτητα εφόδια για την απρόσκοπτη συνέχεια των σπουδών μου, τόσο σε προπτυχιακό, όσο και μεταπτυχιακό επίπεδο. Η εργασία αυτή ανήκει και σε εσάς.

ΠΕΡΙΕΧΟΜΕΝΑ

Ευχαριστίες	I
Περίληψη	II-X
Ορισμοί & Σύμβολα	XI-XX
Κατάλογος Εικόνων	XXI-XXVI
Κατάλογος Πινάκων	XXVII

Κεφάλαιο 1° – Εισαγωγή στις ανανεώσιμες πηγές ενέργειας ανεμογεννήτριες	με έμφαση στις 1-20
<u>Παράγραφος 1.1.</u> – Γενικά	1-2
<u>Παράγραφος 1.2.</u> – Αιολική ενέργεια	2-3
<u>Παράγραφος 1.3.</u> – Ανεμογεννήτριες	3-20
Κεφάλαιο 2° – Περιγραφή ανεμογεννήτριας μελέτης	
<u>Παράγραφος 2.1.</u> – Γενικά	21
<u>Παράγραφος 2.2.</u> – Τύπος NREL 5 MW	
<u>Παράγραφος 2.3.</u> – NREL 5 MW – Land-based – Gravity Foundation	23
<u>Παράγραφος 2.4.</u> – NREL 5 MW – Offshore – Gravity Foundation	23-24
<u>Παράγραφος 2.5.</u> – NREL 5 MW – Land-based – Monopile	24
<u>Παράγραφος 2.6.</u> – NREL 5 MW – Offshore – Monopile	25
<u>Παράγραφος 2.7.</u> – NREL 5 MW – Offshore – Tripod	26
Κεφάλαιο 3° – Περιγραφή φορτίων και καταστάσεων φόρτισης	
<u>Παράγραφος 3.1.</u> – Αρχές σχεδιασμού	27-44
<u>Παράγραφος 3.2.</u> – Φορτίσεις σχεδιασμού	44
<u>Παράγραφος 3.3.</u> – Καταστάσεις φόρτισης σχεδιασμού	
<u>Παράγραφος 3.4.</u> – Οριακές καταστάσεις αστοχίας	
<u>Παράγραφος 3.5.</u> – Αστοχία λόγω κόπωσης	53
<u>Παράγραφος 3.6.</u> – Έλεγχοι ευστάθειας	53-54
<u>Παράγραφος 3.7.</u> – Ανάλυση κρίσιμου βέλους	54

<u>Παράγραφος 3.8.</u> – Φόρτιση ανεμογεννητριών μελέτης	54-59
<u>Παράγραφος 3.9.</u> – Συνδυασμοί φορτίσεων ανεμογεννητριών μελέτης	
Κεφάλαιο 4º – Ανάλυση ανωδομής ανεμογεννητριών	61-125
<u>Παράγραφος 4.1.</u> – Περιγραφή λογισμικού προσομοίωσης ανωδομής	61-108
<u>Παράγραφος 4.2.</u> – Ανάλυση ανωδομής ανεμογεννητριών μελέτης	
Κεφάλαιο 5° – Σχεδιασμός ανωδομής ανεμογεννητριών	126-140
<u>Παράγραφος 5.1.</u> – Δεδομένα σχεδιασμού	126-129
<u>Παράγραφος 5.2.</u> – Έλεγχοι οριακής κατάστασης αστοχίας (ΟΚΑ)	
<u>Παράγραφος 5.3.</u> – Έλεγχος κόπωσης	
Κεφάλαιο 6° – Προσομοίωση αλληλεπίδρασης εδάφους-θεμελίωσης	141-144
Κεφάλαιο 7° – Παραμετρική ανάλυση είδους ανεμογεννήτριας	145-191
<u>Παράγραφος 7.1.</u> – Εισαγωγή	
<u>Παράγραφος 7.2.</u> – Χερσαία ανεμογεννήτρια θεμελίωσης βαρύτητας	145-162
<u>Παράγραφος 7.3.</u> – Θαλάσσια ανεμογεννήτρια θεμελίωσης βαρύτητας	
<u>Παράγραφος 7.4.</u> – Χερσαία ανεμογεννήτρια μονοπάσσαλης θεμελίωσης	172-186
<u>Παράγραφος 7.5.</u> – Θαλάσσια ανεμογεννήτρια μονοπάσσαλης θεμελίωσης	
<u>Παράγραφος 7.6.</u> – Επιμέρους σύγκριση επιλύσεων	
Κεφάλαιο 8° – Παραμετρική ανάλυση τρόπου θεμελίωσης ανεμογεννήτριας	
<u>Παράγραφος 8.1.</u> – Εισαγωγή	
<u>Παράγραφος 8.2.</u> – Θαλάσσια ανεμογεννήτρια θεμελίωσης βαρύτητας	193
<u>Παράγραφος 8.3.</u> – Θαλάσσια ανεμογεννήτρια μονοπάσσαλης θεμελίωσης	
<u>Παράγραφος 8.4.</u> – Θαλάσσια ανεμογεννήτρια θεμελίωσης τρίποδα	
<u>Παράγραφος 8.5.</u> – Επιμέρους σύγκριση επιλύσεων	
Κεφάλαιο 9 ⁰ – Συμπεράσματα	
Βιβλιογραφία	XXVIII-XXVIX

ΠΕΡΙΛΗΨΗ

Αντικείμενο της παρούσας μεταπτυχιακής εργασίας αποτελεί η βελτίωση των μέχρι στιγμής διαθέσιμων τρόπων αριθμητικής προσομοίωσης της αλληλεπίδρασης ανωδομής - θεμελίωσης σε πυλώνες ανεμογεννητριών.

Ο σχεδιασμός ανεμογεννητριών αποτελεί εκ φύσεως ένα πολυσχιδές πρόβλημα πολιτικού μηχανικού εξαιτίας της δυναμικότητας των φορτίσεων ως προς το είδος, το μέγεθος και τη θέση εφαρμογής, αλλά και εξαιτίας των απαιτήσεων της κατασκευής σε αποτελεσματικότητα, οικονομία και αντοχή στον χρόνο.

Για τον λόγο αυτό, η προσομοίωση και ανάλυση των φορέων των ανεμογεννητριών με συμβατικές μεθόδους και προγράμματα δεν κρίνεται επαρκής. Αντιθέτως, νέα εξειδικευμένα υπολογιστικά εργαλεία αναπτύχθηκαν τα τελευταία έτη και συνεχίζουν ακόμα να εξελίσσονται, για την προσομοίωση της συζευγμένης δυναμικής απόκρισης ανεμογεννητριών. Τα εργαλεία αυτά αποτελούνται κατά κανόνα από επιμέρους αεροδυναμικά και υδροδυναμικά μοντέλα, καθώς και μοντέλα δομοστατικής δυναμικής και δυναμικής των συστημάτων ελέγχου και ηλεκτρικών συστημάτων. Για να καταστεί δυνατή η καθολική, μη-γραμμική ανάλυση του φορέα, υπάρχει συνήθως ένας ενιαίος κώδικας, ο οποίος καλεί και συνδυάζει τις επιμέρους υπορουτίνες στο πεδίο του χρόνου.

Κρίσιμο σημείο στην προσπάθεια για λεπτομερέστερη και ρεαλιστικότερη προσομοίωση των φορέων των ανεμογεννητριών αποτελεί η αλληλεπίδραση της ανωδομής τους με τη θεμελίωση και το υποκείμενο έδαφος έδρασης. Η σημαντικότητα του παράγοντα αυτού είναι γνωστή και αναγνωρισμένη σε όλες τις κατασκευές πολιτικού μηχανικού, γίνεται όμως ιδιαιτέρως αντιληπτή στην περίπτωση των ανεμογεννητριών εξαιτίας του ισοστατικού (ή με λίγους βαθμούς υπερστατικότητας) φορέα των.

Παρόλη τη βαρύτητα που φαίνεται να κατέχει ο παράγοντας της αλληλεπίδρασης εδάφους κατασκευής όμως, τα περισσότερα σύγχρονα εργαλεία αριθμητικής προσομοίωσης υστερούν στον συγκεκριμένο τομέα. Η συνήθης πρακτική είναι να θεωρείται ο πυλώνας της ανεμογεννήτριας πακτωμένος στη βάση του, συνθήκη που μπορεί να απέχει κατά πολύ από την πραγματικότητα.

Η παραπάνω αδυναμία των προγραμμάτων προσομοίωσης οφείλεται κυρίως στον υπολογιστικό κόπο που απαιτεί η ελευθερία επιλογής των ελευθεριών κίνησης της βάσης του πυλώνα από τον εκάστοτε χρήστη. Η κατάλληλη τροποποίηση των μητρώων των υπορουτίνων, αλλά και η κατάλληλη σύζευξη μεταξύ τους, αποτελεί μεν εφικτό στόχο, αλλά απαιτητικό κατά τη δόμηση του αλγορίθμου του κώδικα. Συνεπώς, η εξέλιξη αυτή προβλέπεται να συμπεριληφθεί εν καιρώ στις δυνατότητες των διαθέσιμων υπολογιστικών εργαλείων, όχι όμως στο προσεχές μέλλον.

Το γεγονός αυτό προκαλεί αβεβαιότητα για την ακρίβεια και την ασφάλεια του σχεδιασμού ανεμογεννητριών σε μία περίοδο έντονης κατασκευαστικής δραστηριότητας στον τομέα, αλλά και επιτακτικής κοινωνικής ανάγκης για στροφή στις ανανεώσιμες πηγές ενέργειας, όπως η αιολική. Στην πράξη, μάλιστα, πολλοί μελετητές οδηγούνται στην υπερδιαστασιολόγηση ανεμογεννητριών και σε αντιοικονομικούς σχεδιασμούς, λόγω της αβεβαιότητας που επικρατεί ως προς την επιρροή των συνθηκών έδρασης.

Ως άμεση απόρροια των παραπάνω, στα πλαίσια της παρούσας εργασίας, μελετάται η επιρροή της αλληλεπίδρασης ανωδομής – θεμελίωσης, τόσο στα εντατικά μεγέθη που αναπτύσσονται στους πυλώνες ανεμογεννητριών, όσο και στις προκαλούμενες μετατοπίσεις της κεφαλής τους. Η εκτίμηση της εν λόγω επιρροής πραγματοποιείται με ευριστικές μεθόδους που βασίζονται σε κανόνες της στατικής των κατασκευών και πραγματοποιούνται εκτός του αλγοριθμικού περιβάλλοντος του ειδικού προγράμματος ανάλυσης ανεμογεννητριών που χρησιμοποιήθηκε. Το πρόγραμμα αυτό αποτελεί το λογισμικό FAST του εργαστηρίου National Renewable Energy Laboratory (NREL), το οποίο χρηματοδοτείται από το Υπουργείο Ενέργειας των Ηνωμένων Πολιτειών Αμερικής.

Πιο συγκεκριμένα, υπολογίζεται η επιρροή της παραπάνω παραμέτρου στους λόγους εκμετάλλευσης και στους ελέγχους αστοχίας ανεμογεννητριών τύπου NREL 5 MW, ώστε να καταστεί αντιληπτό αν τίθεται ζήτημα ασφαλείας στην μέχρι στιγμής αποδεκτή προσομοίωση τους. Πέραν των ελέγχων αντοχής, ενδιαφέρον παρουσιάζει επίσης ο έλεγχος της επιρροής της αλληλεπίδρασης εδάφους – θεμελείωσης και στους ελέγχους κόπωσης της κατασκευής μέσα στο φάσμα ταχυτήτων ανέμου που μελετήθηκαν. Σημειώνεται ότι ο τύπος ανεμογεννητριών που επιλέχθηκε να μελετηθεί αποτελεί τον πλέον διαδεδομένο σε διεθνές επίπεδο τύπο ανεμογεννητριών οριζόντιου άξονα και συναντάται στις περισσότερες συναφείς μελέτες φέροντας τον τίτλο του «τύπου αναφοράς».

Επιπλέον, επειδή η ρεαλιστικότητα του τρόπου προσομοίωσης των συνθηκών στήριξης μίας ανεμογεννήτριας αποτελεί συνάρτηση πολλών μεταβλητών, πραγματοποιούνται παραμετρικές επιλύσεις ως προς τις σημαντικότερες εξ αυτών. Αξίζει να σημειωθεί ότι, στην κατεύθυνση της γενίκευσης των συμπερασμάτων του πονήματος, κρίθηκε σκόπιμη η μεγαλύτερη δυνατή διεύρυνση του εύρους των τιμών των παραμέτρων της μελέτης, ώστε να ανεξαρτητοποιηθεί το αποτέλεσμα από τα εκάστοτε δεδομένα και συνθήκες. Οι παράμετροι που διαφοροποιήθηκαν στις αναλύσεις είναι οι ακόλουθοι:

- Είδος ανεμογεννήτριας: χερσαία / θαλάσσια σταθερής βάσης πυθμένα
- Θεμελίωση ανεμογεννήτριας: ρηχή θεμελίωση (βαρύτητας με σύστημα anchor cage), βαθιά θεμελίωση (μονοπάσσαλη), χωροδικτύωμα (τρίποδας)

Ειδικότερα, η εργασία αποτελείται από τρία μέρη. Στο πρώτο μέρος γίνεται μία σύντομη θεωρητική αναφορά στον τομέα της αιολικής ενέργειας, καθώς και στα είδη των ανεμογεννητριών της μελέτης, αλλά και των φορτίσεων που αυτές δέχονται βάσει των ευρέως αποδεκτών κανονιστικών πλαισίων (Κεφ. 1-3). Στο δεύτερο μέρος πραγματοποιούνται οι αναλύσεις, ο σχεδιασμός και η παράθεση των παραμετρικών επιλύσεων της μελέτης (Κεφ. 4 – 10). Τέλος, στο τρίτο μέρος συγκρίνονται και αξιολογούνται τα αποτελέσματα του δεύτερου μέρους, ενώ εξάγονται και τα συμπεράσματα της μεταπτυχιακής εργασίας.

Αναλυτικότερα, στα έντεκα επιμέρους κεφάλαια περιλαμβάνονται τα εξής:

Κεφάλαιο 1°: Σύντομη αναφορά στις ανανεώσιμες πηγές ενέργειας με έμφαση στην παραγωγή αιολικής ενέργειας, στην εξέλιξη και την κατηγοριοποίηση των ανεμογεννητριών και της θεμελίωσής τους.

Κεφάλαιο 2°: Περιγραφή του είδους και των χαρακτηριστικών των ανεμογεννητριών μελέτης.

Κεφάλαιο 3°: Περιγραφή των φορτίσεων ανεμογεννητριών βάσει των ισχυόντων κανονιστικών πλαισίων.

Κεφάλαιο 4°: Ανάλυση της ανωδομής ανεμογεννητριών με το πρόγραμμα αριθμητικής αεροελαστικής μοντελοποίησης FAST. Πραγματοποιείται αναλυτική περιγραφή των λειτουργιών, των παραμέτρων και του τρόπου μοντελοποίησης εντός του προγράμματος.

Κεφάλαιο 5°: Περιγραφή της διαδικασίας σχεδιασμού της ανωδομής των ανεμογεννητριών και των ελέγχων έναντι λυγισμού και κοπώσεως.

Κεφάλαιο 6°: Περιγραφή της ευριστικής μεθόδου εισαγωγής της αλληλεπίδρασης ανωδομήςθεμελίωσης στην ανάλυση των ανεμογεννητριών. Αναλύεται η πορεία συλλογισμού της μεθόδου, καθώς και τα επιμέρους εργαλεία που χρησιμοποιεί, όπως η αρχή των δυνατών έργων και απλοποιημένα προσομοιώματα πεπερασμένων στοιχείων στο πρόγραμμα SAP2000. **Κεφάλαιο 7**°: Παρουσίαση της εφαρμογής όλων των παραπάνω σε μία σειρά παραμετρικών αναλύσεων ως προς το είδος της ανεμογεννήτριας μελέτης. Η παρούσα μεταπτυχιακή εργασία ασχολείται με χερσαίες και θαλάσσιες ανεμογεννήτριες σταθερής βάσης πυθμένα.

Κεφάλαιο 8°: Παρουσίαση της εφαρμογής όλων των παραπάνω σε μία σειρά παραμετρικών αναλύσεων ως προς τον τρόπο θεμελίωσης της ανεμογεννήτριας μελέτης. Η παρούσα εργασία ασχολείται με ανεμογεννήτριες ρηχής θεμελίωσης (βαρύτητας με σύστημα anchor cage), βαθιάς θεμελίωσης (μονοπάσσαλης) και θεμελίωσης τύπου πυραμοειδούς χωροδικτυώματος (τρίποδας).

Κεφάλαιο 9°: Έπεται ξεχωριστό κεφάλαιο που περιλαμβάνει την σύγκριση των επιμέρους αναλύσεων, καθώς και την αξιολόγηση των αποτελεσμάτων τους και συγκεντρώνει τα συμπεράσματα της μελέτης.

Με τον τρόπο αυτόν, η παρούσα μελέτη φιλοδοξεί να αποτελέσει γνώμονα της αλλοιωμένης συμπεριφοράς που επιφέρει η ελλιπής προσομοίωση της αλληλεπίδρασης εδάφους-κατασκευής στην περίπτωση των ανεμογεννητριών, αλλά και σημείο αφετηρίας για τους μηχανικούς εκείνους που θα ασχοληθούν με τον σχεδιασμό τους μέχρις, ότου πιο ολοκληρωμένα λογισμικά και εργαλεία ανάλυσης καταστούν προσιτά.

Ο υπογράφων

Αθήνα, Οκτώβριος 2017

Τσικουράκης Γεώργιος

<u>Λέξεις κλειδιά:</u>

Ανεμογεννήτριες, Αλληλεπίδραση εδάφους – κατασκευής, Βαθιές θεμελιώσεις, Ρηχές θεμελιώσεις, Θεμελιώσεις βαρύτητας, Πέδιλα, Σύστημα anchor cage, Μονοπάσσαλη θεμελίωση, Θεμελίωση τρίποδα, Περιβαλλοντικά φορτία, Φορτία ανέμου, Φορτία κύματος, Μη-γραμμική ανάλυση χρονοϊστορίας, Δυναμική ανάλυση, Λυγισμός, Λεπτότοιχες διατομές, Κόπωση

ABSTRACT

The present postgraduate thesis deals with the improvement of the numerical simulations concerning the structure – foundation interaction of wind turbines.

The design of wind turbines constitutes a sine qua non multifarious civil engineering venture, mainly due to the dynamic nature of the loads regarding their kind, value and application point, but also due to high quality demands of the structure in terms of efficiency, economy and durability.

Therefore, the simulation and the structural analysis of wind turbines using conventional methods and software is considered inadequate. On the contrary, new specialized computing tools have been developed over the last few years and are still evolving to simulate the coupled dynamic wind turbine response. Most commonly, these tools consist of individual aerodynamics and hydrodynamics models, as well as structural (elastic) dynamics and control and electrical system (servo) dynamics models. In order for a coupled, non-linear analysis to become feasible, there is usually a single code that calls and combines individual subroutines in the time domain.

A critical point in the effort for an ever more detailed and realistic simulation of the towers of wind turbines is the interaction of their superstructure with the foundation and underlying ground. The importance of this factor is known and recognized in most civil engineers projects, however it is particularly noticeable in the case of wind turbines, due to their statically determinate (or with a low degree of indetermination) bodies.

In spite of the importance of the soil-structure interaction factor though, most state of the art numerical simulation tools nowadays fail to sufficiently incorporate it in their analysis. The usual practice is to consider the tower of the wind turbine fixed at its base, a condition that may be far from the reality.

The cause of the above mentioned weakness of the simulation process is the computational effort required in case that the user of the program is able to choose the degrees of freedom of the base support of a wind turbine. The appropriate modification of the subroutine matrixes, as well as the proper coupling between them, is a feasible goal, but rather a demanding one, when constructing the algorithm of the code. Consequently, this development is expected to be included over time in the capabilities of available computing tools, but not in the nearest future.

As expected, the current inadequate tools cause uncertainty about the accuracy and safety of wind turbine design at a time of intense construction activity in the sector, but also at a time of pressing social need for a shift to renewable energy sources, such as wind power. In fact, many engineers are being lead to over-dimensioning of wind turbines and uneconomic design, due to the uncertainty surrounding the influence of ground conditions.

As an aftermath, in the present study, the influence of the superstructure - foundation interaction is studied, both regarding the internal forces developed on wind turbine towers and the resulted displacements of their top. The estimation of this influence is done by heuristic methods based on structural static fundamental concepts and carried out outside the algorithmic environment of the special wind turbine analysis program being used. Wind turbine analyzes were conducted in the FAST software environment produced and distributed by the National Renewable Energy Laboratory (NREL), which is funded by the United States Department of Energy.

More specifically, the influence of the above parameter on the exploitation ratios and failure checks of the NREL 5 MW wind turbine type is estimated, in order to be perceived whether there is a safety issue in their so far acceptable simulation. Apart from the strength checks, another interesting feature that is being evaluated, is the influence of soil-foundation interaction on the fatigue checks of the tower within the wind speed spectrum. It is noted that type NREL 5MW is one of the most widely used types of horizontal wind turbines worldwide and can be found in almost all relative papers under the characterization of "reference type".

Moreover, because the accuracy of the simulation of the support conditions depends on many variables, parametric analysis are conducted considering the alteration of the most important of them. It is worth noting that, in the direction of generalizing the conclusions of the thesis, the greatest possible extension of the range of values of the parameters was considered in order to disengage the results from the given data and conditions.

More specifically, this thesis consists of three parts. In the **first part**, a brief **theoretical reference** is made to the **wind energy** sector, as well as to the **types of wind turbines** used in the study and the **loads** they are exposed to, according to the widely accepted regulatory framework (Chapters 1 - 3). In the **second part**, the **analyzes**, **design** and presentation of the **parametric investigations** of the study are carried out (Chapters 4 - 10). Finally, the **third part** compares and evaluates the **results** of the second part, whereas the **conclusions** of the postgraduate thesis are summarized.

The contents of the eleven chapters is presented in detail below:

Chapter 1: Brief reference to renewable energy with emphasis on wind power generation and wind turbine development through the years. The classification of wind turbines as well as their foundation types are also presented.

Chapter 2: Description of the type and characteristics of the wind turbine used in the study.

Chapter 3: Description of wind turbine loads based on current regulatory framework.

Chapter 4: Analysis of the superstructure of wind turbines using FAST aeroelastic numerical modeling program and detailed description of the capabilities, parameters and concept of the modeling.

Chapter 5: Description of the superstructure design, buckling and fatigue checks.

Chapter 6: Description of the heuristic method used to introduce the superstructure-foundation interaction within the analysis of wind turbines. Presentation of the procedure sequence, as well as the individual tools involved, such as the principle of virtual work and simplified finite element simulations in SAP2000 software.

Chapter 7: Presentation of the implementation of all the above in a series of parametric analyzes regarding the type of wind turbine. This postgraduate thesis deals with land and sea, steady-based wind turbines.

Chapter 8: Presentation of the implementation of all the above in a series of parametric analyzes regarding the foundation of the wind turbine. The present study deals with shallow (pedestals), deep (single pile) and pyramidal (tripod) type foundations.

Chapter 9: A separate chapter follows, in which the evaluation of the results and the findings of the study is conducted through the comparison of the individual analyzes.

Eventually, by conducting all the above calculations, this post-graduate thesis aims to indicate and also quantify the influence of the structure-foundation interaction and its currently insufficient modeling in the cases of land-based and offshore wind turbines. The results of this paper aspire to constitute a

representative indication for those engineers that will face the design of wind turbines before updated and more complete analysis software tools become available.

The author

Athens, October 2017

Tsikourakis Georgios

Key words:

Wind Turbines, Soil-structure interaction, Deep foundations, Shallow foundations, Gravity foundations, Footings, Anchor cage system, Monopile foundations, Tripod foundations, Environmental loading, Wind loading, Wave loading, Time-history non-linear analysis, Dynamic modal analysis, Buckling design, Thin sections, Fatigue.

<u>Ορισμοί και σύμβολα</u>

> Ορισμοί

<u>Ακραίες εξωτερικές συνθήκες φόρτισης (extreme external conditions)</u>: Αφορούν σπάνιες εξωτερικές συνθήκες φόρτισης μίας ανεμογεννήτριας.

Αναγκαία ταχύτητα πνοής ανέμου (cut-in wind speed):

Η ελάχιστη ταχύτητα πνοής ανέμου, η οποία απαιτείται για την έναρξη της περιστροφής των πτερυγίων μίας ανεμογεννήτριας και της παραγωγής ηλεκτρικής ενέργειας. Η συγκεκριμένη ταχύτητα αναφέρεται στις περιπτώσεις σταθερού ανέμου χωρίς αναταράξεις αέρα και, συνήθως, κυμαίνεται μεταξύ 3 – 4 m/sec.

<u>Ανεμογεννήτριες οριζόντιου άξονα</u> (Horizontal Axis Wind Turbine - HAWT): Οι ανεμογεννήτριες, των οποίων τα πτερύγια περιστρέφονται γύρω από έναν οριζόντιο άξονα.

Ανεμόμετρο (anemometer):

Το ανεμόμετρο είναι μία συσκευή που μετρά την ταχύτητα του ανέμου και συλλέγει δεδομένα σχετικά με αυτή σε συγκεκριμένα υψόμετρα από τη βάση μίας ανεμογεννήτριας και σε συγκεκριμένες χρονικές στιγμές. Τα δεδομένα αυτά υποδεικνύουν πόση ενέργεια μπορεί να παραχθεί από την ανεμογεννήτρια σε καθορισμένα χρονικά διαστήματα, καθώς επίσης και αν οι καιρικές συνθήκες είναι οι κατάλληλες για την λειτουργία της.

Άξονας υψηλής ταχύτητας (high-speed shaft):

Ο άξονας υψηλής ταχύτητας είναι ένα μέλος με κοίλη μεταλλική διατομή, το οποίο περιστρέφεται γύρω από το διαμήκη άξονά του, ωθούμενο από το μικρότερο γρανάζι του κιβωτίου μηχανισμών, με την ίδια γωνιακή ταχύτητα. Ο άξονας αυτός ενεργοποιεί με την κίνησή του την γεννήτρια της κατασκευής.

Άξονας χαμηλής ταχύτητας (low-speed shaft):

Ο άξονας χαμηλής ταχύτητας είναι ένα μέλος με κοίλη μεταλλική διατομή, το οποίο περιστρέφεται γύρω από το διαμήκη άξονά του, ωθούμενο από τον ρότορα, με την ίδια γωνιακή ταχύτητα. Η τάξη μεγέθους της ταχύτητας περιστροφής του είναι 30-60 κύκλους το λεπτό. Ο άξονας αυτός μεταδίδει την κίνηση στο πρώτο και μεγαλύτερο γρανάζι του κιβωτίου μηχανισμών της ανεμογεννήτριας.

Απόδοση ανεμογεννήτριας:

Η απόδοση μίας ανεμογεννήτριας εξαρτάται από την ενεργό επιφάνεια των πτερυγίων (A) και την ταχύτητα του ανέμου (v). Η μέγιστη θεωρητική απόδοση ενέργειας μίας ανεμογεννήτριας προκύπτει από τον ακόλουθο τύπο:

$$P = 0.59 \cdot \frac{1}{2} \cdot \rho \cdot v^3 \cdot A$$

όπου, ρ η πυκνότητα του αέρα. Δηλαδή, μη μέγιστη απόδοση μίας ανεμογεννήτριας είναι το 59% της συνολικής κινητικής ενέργειας του αέρα που διέρχεται από τα πτερύγιά της.

Άτρακτος ανεμογεννήτριας (nacelle) :

Η άτρακτος μίας ανεμογεννήτριας αποτελεί έναν θάλαμο, ο οποίος περιέχει το σύνολο των μηχανολογικών εξαρτημάτων που συνεργάζονται για την μετατροπή της κινητικής ενέργειας του

ανέμου σε ηλεκτρική. Η άτρακτος αυτή προστατεύει τον εξοπλισμό που εσωκλείει από τα ακραία καιρικά φαινόμενα.

<u>Γεννήτρια</u> (generator):

Η γεννήτρια είναι μία ηλεκτρική συσκευή, ο οποία παράγει ηλεκτρική ενέργεια υπό τη μορφή του ρεύματος μεταβαλλόμενης διεύθυνσης.

Ηλεκτρικό ρεύμα μεταβαλλόμενης διεύθυνσης (alternating current AC):

Το ηλεκτρικό ρεύμα μεταβαλλόμενης διεύθυνσης είναι ένα ρεύμα, το οποίο έχει την ικανότητα να αλλάζει περιοδικά τη διεύθυνση μετάδοσής του. Η μορφή αυτή ηλεκτρικού ρεύματος είναι ιδανική για τη μεταφορά του σε πολύ μεγάλες αποστάσεις, διατηρώντας υψηλές τάσεις, καθώς επίσης είναι οικονομικότερο ως προς το υλικό των καλωδίων που απαιτεί για τη μεταφορά του.

<u>Θεμελίωση βαρύτητας</u> (gravity foundation):

Η θεμελίωση βαρύτητας είναι ένα είδος θεμελίωσης, το οποίο χρησιμοποιείται σε χερσαίες ή θαλάσσιες ανεμογεννήτριες σε ρηχή ύδατα. Κυρίαρχο χαρακτηριστικό της είναι ότι το βάθος έμπηξής της είναι μικρότερο από την μικρότερη διάστασή της σε κάτοψη. Αποτελείται από ένα πέδιλο οπλισμένου, προκατασκευασμένου σκυροδέματος.

<u>Θεμελίωση μονοπάσσαλου</u> (monopole foundation):

Η θεμελίωση μονοπάσσαλου είναι ένα είδος θεμελίωσης, το οποίο χρησιμοποιείται κυρίως σε θαλάσσιες ανεμογεννήτριες μεσαίου βάθους πυθμένα. Αποτελείται από ένα επιμήκη πάσσαλο με στιβαρά τοιχώματα, ο οποίος διατρυπά και βυθίζεται στον πυθμένα σε ικανοποιητικό βάθος.

<u>Θεμελίωση τρίποδα</u> (tripod foundation):

Η θεμελίωση τρίποδα είναι ένα είδος θεμελίωσης, το οποίο χρησιμοποιείται κυρίως σε θαλάσσιες ανεμογεννήτριες μεσαίου βάθους πυθμένα. Αποτελείται από ένα χωροδικτύωμα πυραμοειδούς μορφής, το οποίο καταλήγει σε τρεις εδράσεις στον πυθμένα.

Κανονική κατηγορία ασφαλείας:

Αναφέρεται στις περιπτώσεις σχεδιασμού ανεμογεννητριών, στις οποίες ως αστοχία της κατασκευής θεωρείται η πρόκληση κινδύνου τραυματισμού ανθρώπων ή/και άλλων κοινωνικών ή οικονομικών συνεπειών, τις οποίες όμως δεν καθορίζουν τοπικές διατάξεις ή απαιτήσεις συμφωνηθέντες μεταξύ κατασκευαστών και κύριων έργου.

Κανονικές εξωτερικές συνθήκες (normal external conditions): Αφορούν επαναλαμβανόμενες συνθήκες φόρτισης μίας ανεμογεννήτριας.

<u>Κιβώτιο μηχανισμών ανεμογεννήτριας</u> (gearbox):

Το κιβώτιο μηχανισμών μίας ανεμογεννήτριας αποτελείται από δύο διαδοχικά γρανάζια. Το μεγαλύτερο εξ αυτών είναι συνδεδεμένο με τον άξονα χαμηλής ταχύτητας, ενώ το μικρότερο με τον άξονα υψηλής ταχύτητας.

Ονομαστική ισχύς γεννήτριας (rated output power):

Η μέγιστη εφικτή ισχύς σχεδιασμού που μπορεί να επιτευχθεί από μία δεδομένη γεννήτρια.

Ονομαστική ταχύτητα πνοής ανέμου (rated wind speed):

Η ταχύτητα πνοής ανέμου, κατά την οποία επιτυγχάνεται η ονομαστική ισχύς της γεννήτριας. Η περαιτέρω αύξηση της ταχύτητας πνοής του ανέμου δεν επιφέρει οιαδήποτε αύξηση στην παραγόμενη ισχύ. Συνήθως, κυμαίνεται μεταξύ 12 – 17 m/sec.

<u>Οριακή ταχύτητα πνοής ανέμου</u> (cut-out wind speed):

Η ταχύτητα πνοής ανέμου, πέραν της οποίας υπάρχει κίνδυνος πρόκλησης ζημιάς στον ρότορα της ανεμογεννήτριας. Στο σημείο αυτό ενεργοποιείται ένα σύστημα ασφαλείας, το οποίο τερματίζει την λειτουργία της ανεμογεννήτριας και ακινητοποιεί τον ρότορα. Η συγκεκριμένη ταχύτητα αναφέρεται στις περιπτώσεις σταθερού ανέμου χωρίς αναταράξεις αέρα και, συνήθως, κυμαίνεται περίπου στα 25 m/sec.

<u>Όριο απόδοσης του Betz:</u>

Το πόρισμα θεωρητικής απόδειξης που υποδεικνύει πως η αποδοτικότητα μίας ανεμογεννήτριας υπόκειται σε περιορισμό άνω ορίου, ίσου με $\mu_{max} = 16/27 \approx 59\%$.

Πτερύγια ανεμογεννήτριας (blades):

Τα πτερύγια των ανεμογεννητριών αποτελούν επιμήκεις λεπίδες αεροδυναμικού σχήματος, η περιστροφή των οποίων υπό τη φόρτιση του ανέμου οδηγεί στην μετατροπή της κινητικής ενέργειας σε μηχανική.

<u>Πυλώνας ανεμογεννήτριας</u> (tower):

Ο πυλώνας μιας ανεμογεννήτριας αποτελεί το δομικό μέλος που μεταβιβάζει όλα τα φορτία από την ανωδομή στη θεμελίωση της κατασκευής. Επιπλέον, προστατεύει το δίκτυο καλωδίων από και προς την άτρακτο. Ο πυλώνας αποτελείται συνήθως από μεταλλικά μέλη κοίλης κυκλικής διατομής, τα οποία προετοιμάζονται και βάφονται κατάλληλα στο εργοστάσιο, ώστε να συναρμολογηθούν εύκολα στο εργοτάξιο και να παραμείνουν προστατευμένα από τις έντονες συνθήκες διάβρωσης που επικρατούν.

<u>Ρότορας ή κεντρικός κόμβος</u> (rotor or hub):

Ο ρότορας αποτελεί το σύνολο των μελών, τα οποία μεταδίδουν συλλογικά την κίνηση στις συσκευές του εσωτερικού της ατράκτου μιας ανεμογεννήτριας. Περιλαμβάνει συνήθως τα πτερύγια και τον κεντρικό κόμβο, στον οποίο συνδέονται ή την οποιαδήποτε σύνδεση μεταξύ των πτερυγίων και του άξονα χαμηλής ταχύτητας.

<u>Τύρβη (ανατάραξη) αέρα</u>:

Όρος που υποδηλώνει τυχαίες μεταβολές στην ταχύτητα του ανέμου συγκριτικά με τη μέση τιμή.

BeamDyn:

Μοντέλο δομοστατικής δυναμικής ανάλυσης του προγράμματος FAST που αφορά την προσομοίωση πτερυγίων ανεμογεννητριών. Το μοντέλο αυτό στηρίζεται στην γεωμετρικά ακριβή θεωρεία δοκού (GEBT) και εφαρμόζεται χρησιμοποιώντας μη γραμμικά, φασματικά πεπερασμένα στοιχεία τόπου Legendre (LSFEs). Πρόκειται για πεπερασμένα στοιχεία υψηλής τάξης, οι κόμβοι των οποίων ορίζονται στα σημεία Gauss-Legendre-Lobatto. Αξίζει να σημειωθεί δε ότι τα εν λόγω στοιχεία είναι μία τάξη μεγέθους πιο αποτελεσματικά συγκριτικά με τα πεπερασμένα στοιχεία χαμηλής τάξης για ένα δεδομένο επίπεδο ακρίβειας^[1]. Έτσι, το μοντέλο αυτό υποστηρίζει την θεώρηση μεγάλων μετατοπίσεων και εκτροπών με σύστημα ελευθεριών κάμψης, στρέψης, διάτμησης και διάτασης. Όλα τα παραπάνω καθιστούν το μοντέλο BeamDyn ιδανικό για την προσομοίωση των εξαιρετικά εύκαμπτων πτερυγίων ανεμογεννητριών, τα οποία κατασκευάζονται συνήθως από σύνθετα υλικά με μη γραμμικές ιδιότητες.

IEC:

Αρχικά της Διεθνούς Ηλεκτροτεχνικής Επιτροπής (International Electrotechnical Commission), η οποία αποτελεί μία παγκόσμια οργάνωση που δημοσιεύει διεθνή πρότυπα και διαχειρίζεται την αξιολόγηση των απαιτήσεων συμμόρφωσης για ηλεκτρικά και ηλεκτρονικά προϊόντα, συστήματα και υπηρεσίες.

> Σύμβολα

Λ₁: η παράμετρος του μεγέθους των αναταράξεων, η οποία δίδεται από τη σχέση της §3.1.4 **z**: ύψος

 $\mathbf{S_1}$: φασματικές πυκνότητες των τριών ορθοκανονικών συνιστωσών

 $\mathbf{S_2}$: φασματικές πυκνότητες των τριών ορθοκανονικών συνιστωσών

 S_3 : φασματικές πυκνότητες των τριών ορθοκανονικών συνιστωσών

 σ_1 : τυπική απόκλιση δίδεται από τον τύπο για το μοντέλο κανονικών αναταράξεων (NTM)

 $P_R \; (V_{hub}):$ η μέση τιμή της κατανομής της ταχύτητας του ανέμου στον άξονα του ρότορα της ανεμογεννήτριας

V_ave: η ταχύτητα αναφοράς του ανέμου για τις κανονικές κατηγορίες ανεμογεννητριών

Vref: ταχύτητα αναφοράς του ανέμου

V(z): προφίλ ανέμου

Iref: ένταση αναφοράς των στροβιλισμών

b: 5.6 m/sec.

V_e50 (z): η ακραία τιμή της ταχύτητας πνοής του ανέμου με περίοδο επαναφοράς 50 ετών

 $V_{e1}\left(z\right)$: η ακραία τιμή της ταχύτητας του ανέμου με περίοδο επαναφοράς 1 έτους

Vgust: μέγεθος της ταχύτητας της ριπής ανέμου στον άξονα του ρότορα για τις κανονικές κατηγορίες ανεμογεννητριών

D: η διάμετρος του ρότορα

V(z,t): συνολική ταχύτητα του ανέμου, μεταβολή (θετική ή αρνητική) κατακόρυφης διάτμησης

V(z): δίδεται από την εξίσωση του κανονικού προφίλ ανέμου (NWP)

Τ: χρόνος αύξησης της ταχύτητας, διάρκεια της ακραίας αλλαγής κατεύθυνσης
 \mathbf{c} : 2m/sec

θε: μέγεθος της ακραίας μεταβολής της διεύθυνσης

θ(t): η μεταβολή της διεύθυνσης στο χρόνο

 V_{cg} : 15m/sec, το μέγεθος της ταχύτητας της ριπής του ανέμου

θcg: μεταβολή διεύθυνσης γωνίας

β: 6.4

 $S_{PM}\left(f\right)$: φασματική πυκνότητα της υπερύψωσης της επιφάνειας της θάλασσας

 $\mathbf{H}_{\!s}\!\!:$ η τιμή του σημαντικού ύψους κύματος [m]

 $\mathbf{f_p}:$ η οριακή συχνότητα [HZ] - f_p=1/T_p

f: η συχνότητα του κυματισμού [Hz]

 $\mathbf{S}_{\mathbf{JS}}(\mathbf{f})$: η σχέση της φασματικής πυκνότητας της ανύψωσης της επιφάνειας της θάλασσας

γ: η παράμετρος ακρότατου και μορφής

C(γ): ο παράγοντας κανονικοποίησης

Η_{NWH}: ύψος σχεδιασμού του κύματος

 $\mathbf{H}_{s,NSS}$: δεδομένη τιμή της μέσης ταχύτητας ανέμου

Η₅₀: ακραίο ύψος κυματισμού

 H_{s1} : ακραίο ύψος κυματισμού

H_{red50}: μειωμένο ύψος κυματισμού

H_{red}: μειωμένο ύψος κυματισμού

 \mathbf{U}_{ss} (z): προφίλ ενός υποθαλάσσιου ρεύματος

d: βάθος του νερού

z: ύψος από τη μέση στάθμη θάλασσας

 $\mathbf{U}_{w}(\mathbf{z})$: γραμμική κατανομή της ταχύτητας

 $\mathbf{U}_{w}(\mathbf{0})$: φθίνουσα τιμή ταχύτητας στην επιφάνεια μέχρι την τιμή 0 σε βάθος 20m κάτω από τη μέση επιφάνεια της θάλασσας

 $V_{1-hour}(z=10m)$: ορίζεται ως η μέση τιμή της ταχύτητας πνοής του ανέμου μιας ώρας σε ύψος 10m από τη μέση στάθμη της θάλασσας

U_{BW}: η ταχύτητα σχεδιασμού στη θέση θραύσης του κύματος

Η_B: το ύψος του κύματος θραύσης

s: η κλίση του θαλάσσιου πυθμένα

g: η επιτάχυνση της βαρύτητας

S_{di}: εντατικά μεγέθη σχεδιασμού

γ_{fi}: ο μερικός συντελεστής ασφαλείας

 $\mathbf{S}_{\mathbf{ki}}$: η χαρακτηριστική τιμή του εντατικού μεγέθους

 \mathbf{F}_{di} : τιμές σχεδιασμού των ασκούμενων φορτίων

 $\mathbf{F}_{\mathbf{k}\mathbf{i}}$: χαρακτηριστική τιμή του ασκούμενου φορτίου

 $\mathbf{R}_{\mathbf{d}}$: מעדושדמסה שצב
אומסשוטי דאכ המדמשה
בטאָכ

 γ_m : ο μερικός συντελεστής ασφαλείας του υλικού

 $\mathbf{f}_{\mathbf{k}}$: η χαρακτηριστική τιμή της αντοχής του υλικού

 \mathbf{T}_{max} : ο συνολικός χρόνος ανάλυσης μετρούμενος σε sec

DT: η συνιστώμενη μέγιστη τιμή του χρονικού βήματος που θα χρησιμοποιήσει το πρόγραμμα σε μονάδες sec

 \mathbf{f}_{max} : η μέγιστη φυσική συχνότητα σύζευξης μεταξύ των στοιχείων σε Hz

kp_total: προσδιορίζει το συνολικό πλήθος σημείων που χρησιμοποιούνται για τον καθορισμό των γραμμικών μελλών

member_total: προσδιορίζει το συνολικό πλήθος των γραμμικών στοιχείων που χρησιμοποιούνται στην κατασκευή

ni: ο αριθμός του χαρακτηριστικού σημείου του i-στου μέλους

 $\mathbf{V}_{\mathbf{h}}$ (z): ταχύτητα του ανέμου

HWindSpeed: η οριζόντια ταχύτητα πνοής ανέμου σε ύψος RefHt [m/sec]

RefHt: το ύψος αναφοράς για την εφαρμογή του ανέμου [m]

PLexp: ο εκθέτης του καταστατικού νόμου για το μοντέλο του ανέμου

U(z): προφίλ ανέμου

URef: μέση συνιστώσα κατά τον άξονα u της ταχύτητας του ανέμου στο ύψος αναφοράς [m/sec]

PLExp: ο εκθέτης του καταστατικού νόμου, ο οποίος χρησιμοποιείται μόνον όταν WindProfile = 2 [-]

Z0: μήκος επιφάνειας τραχύτητας [m], το οποίο χρησιμοποιείται μόνον όταν WindProfile = 1 [m] **SumPrint**: όταν τίθεται ως αληθής, παράγεται ένα αρχείο αποτελεσμάτων

OutList: λίστα με όλα τα αποτελέσματα που θα προστεθούν στο αρχείο αποτελεσμάτων του FAST

AnalysisTime: διάρκεια ανάλυσης [sec] **TimeStep**: χρονικό βήμα ανάλυσης [sec] NumFreq: πλήθος των συγνοτήτων UsableTime: αποτελεί το ποσοστό της διάρκειας των εισαχθέντων δεδομένων που αποδίδεται εν τέλει στα αποτελέσματα της ανάλυσης [sec] HubHt: το ύψος του άξονα του ρότορα για το οποίο υπολογίζεται η ροή του ανέμου [m] GridHeight: αποτελεί την υψομετρική διαφορά μεταξύ του άνω και κάτω άκρου του καννάβου IECturbc: τύπος της έντασης αναταράξεων **CTKE**: μέγιστη κινητική ενέργεια αναταράξεων RITCH_NO: Αποτελεί τη σταθερά Richrdson, η οποία καθορίζει την κατακόρυφη σταθερότητα της ανεμογεννήτριας θ: η πιθανή διαφορά θερμοκρασίας UStar: αποτελεί τη μέση ταχύτητα διάτμησης (τριβής) επί του ρότορα n_p: τα σημεία λήψης μετρήσεων επί του δίσκου του ρότορα ZI: αποτελεί το βάθος του στρώματος αναταράξεων και υπολογίζεται σύμφωνα με την ακόλουθη σχέση [m] ω: 7.292116·10⁻⁵ rad/sec είναι η γωνιακή ταχύτητα περιστροφής της Γης **PC_UW**: μέση τάση u'w' κατά Reynolds στον άξονα του ρότορα [m²/sec²] Coh i,i: καθορίζει το συντελεστή συνοχής, α, και τον συντελεστή μετάθεσης, b για τη συνιστώσα της ταχύτητας ανέμου κατά τη u διεύθυνση [-, m^{-1}] r: η απόσταση μεταξύ των σημείων i και j f: η κυκλική συχνότητα **CohExp**: ο εκθέτης συνοχής \mathbf{z}_{m} : το μέσο ύψος u_m: η μέση ταχύτητα του ανέμου στα σημεία i και j Uss (z): εξίσωση που ακολουθούν τα υποθαλάσσια ρεύματα Ζ: το τοπικό βάθος κάτω από την επιφάνεια της θάλασσας σε ηρεμία. (δηλαδή ίσο με WtrDpth + MSL2SWL) ${f U}_{0SS}$: η ταχύτητα του ρεύματος στην επιφάνεια της θάλασσας σε ηρεμία (δηλαδή ισούται με CurrSSV0) U_{NS} (Z): καθ' ύψος κατανομή του ρεύματος h_{ref}: το βάθος αναφοράς (δηλαδή ισούται με CurrNSV0) σ_{νΕΝ}: η αξονική τάση της διατομής λόγω αξονικής καταπόνησης σ_{yEd}: η συνολική αξονική τάση σχεδιασμού της διατομής σ_{νΕ.Μ}: η αξονική τάση της διατομής λόγω καμπτικής καταπόνησης $au_{ au_{ ext{Pd}, ext{Ed}}}$: η συνολική διατμητική τάση σχεδιασμού της διατομής **F**_z: η κατακόρυφη αξονική δύναμη της διατομής $\mathbf{F}_{\mathbf{x}}$: η οριζόντια τέμνουσα δύναμη της διατομής παράλληλα στη διεύθυνση της φόρτισης Fy: η οριζόντια τέμνουσα δύναμη της διατομής κάθετα στη διεύθυνση της φόρτισης M_x: η καμπτική ροπή της διατομής περί άξονα κάθετου στη διεύθυνση της φόρτισης \mathbf{M}_{v} : η καμπτική ροπή της διατομής περί άξονα παράλληλου στη διεύθυνση της φόρτισης M_z : η στρεπτική ροπή της διατομής περί άξονα κάθετου στη διεύθυνση της φόρτισης $\sigma_{x.Rd}$ / $\sigma_{x.Rk}$: η αντοχή σχεδιασμού / χαρακτηριστική τιμή αντοχής έναντι λυγισμού για αξονική θλίψη $\sigma_{\theta,Rd}$ / $\sigma_{\theta,Rk}$: η αντοχή σχεδιασμού / χαρακτηριστική τιμή αντοχής έναντι λυγισμού για περιφερειακή

θλίψη

 $au_{x\theta,Rd}$ / $au_{x\theta,Rk}$: η αντοχή σχεδιασμού / χαρακτηριστική τιμή αντοχής έναντι λυγισμού για διάτμηση $au_{y,Rk}$: χαρακτηριστικές τιμές των τάσεων λυγισμού

 $\sigma_{\theta,Rk}$: χαρακτηριστικές τιμές των τάσεων λυγισμού

 $\tau_{\chi\theta,\mathbf{Rk}}$: χαρακτηριστικές τιμές των τάσεων λυγισμού

 $\chi_{\!x}\!\!:$ ο μειωτικός συντελεστής λυγισμού για αξονική θλίψη

 χ_{θ} : ο μειωτικός συντελεστής λυγισμού για περιφερειακή θλίψη

χτ: ο μειωτικός συντελεστής λυγισμού για διάτμηση

α: ο ελαστικός μειωτικός συντελεστής λόγω ατελειών

β: ο συντελεστής εύρους πλαστική περιοχής, β = 0.6 για αξονικά και καμπτικά φορτιζόμενα κελύφη **n**: ο εκθέτης αλληλεπίδρασης, n = 1.0 για αξονικά και καμπτικά φορτιζόμενα κελύφη

 λ_p : η ανηγμένη πλαστική λυγηρότητα, $\lambda_p = \sqrt{\frac{\alpha}{1-\beta}}$

 $\pmb{\lambda_0}$: η ανώτατη ανηγμένη λυγηρότητα της πλαστικής ζώνης

χ: μειωτικός συντελεστής λυγισμού

 λ_x : η ανηγμένη λυγηρότητα για αξονική θλίψη

λθ: η ανηγμένη λυγηρότητα για περιφερειακή θλίψη

λ_τ: η ανηγμένη λυγηρότητα για διάτμηση

 $σ_{x.Rcr}$: η ελαστική αξονική κρίσιμη τάση λυγισμού

 $\sigma_{\theta,Rcr}$: η ελαστική περιφερειακή κρίσιμη τάση λυγισμού (δεν αποτελεί κρίσιμη παράμετρο για τη φόρτιση των ανεμογεννητριών μελέτης)

 $au_{x\theta,Rcr}$: η ελαστική διατμητική κρίσιμη τάση λυγισμού

 $\mathbf{C_{xb}}:$ ο αδιάστατος συντελεστής συνοριακών συνθηκών, ο οποίος για συνθήκες προβόλου λαμβάνει την τιμή 3

 ω_x : η αδιάστατη παράμετρος μήκους

λχ0: ανώτατη ανηγμένη λυγηρότητα της πλαστικής περιοχής

α_χ: ο ελαστικός μειωτικός συντελεστής λόγω ατελειών στην περίπτωση θλιπτικής αξονικής τάσης Δ**w**_κ: εύρος ατελειών

Q: ανάλογα με την ποιότητα της κατασκευής, οι ανεμογεννήτριες χωρίζονται σε κατηγορίες, με βάση τις οποίες καθορίζεται και αυτή η παράμετρος

la: μήκος τμήματος κυλίνδρου

lb: μήκος τμήματος κυλίνδρου

lc: μήκος τμήματος κυλινδρου

ta: πάχος τμήματος κυλίνδρου

tb: πάχος τμήματος κυλίνδρου

tc: πάχος τμήματος κυλίνδρου

κ: αδιάστατο παράγοντα που προσδιορίζεται από το παρακάτω σχήμα

N_R: κύκλοι φόρτισης

 \mathbf{t}_{ref} : 32mm για ενώσεις κοίλων διατομών, 25mm για λοιπές συγκολλητές συνδέσεις

t: πάχος διατομής μέσα στο οποίο θα δημιουργηθούν και θα επεκταθούν οι πιθανές ρηγματώσεις λόγω κόπωσης (t \geq t_{ref})

k: εκθέτης μεγέθους

D_d: συνολική τιμή της φθοράς

 \mathbf{n}_{Ei} (γ_{Fi} · $\Delta_{\sigma i}$): ο αριθμός των κύκλων (\mathbf{n}_{Ei}) που αντιστοιχούν στο εύρος τάσεων γ_{Fi} · $\Delta_{\sigma i}$

 $N_{Ri}(\Delta \sigma_C / \gamma_{Mf})$: ο αριθμός των κύκλων έτσι, όπως προκύπτει από την καμπύλη S-N που αντιστοιχεί σε εύρος τάσεων $\Delta \sigma_C / \gamma_{Mf}$

Ε: το μέτρο ελαστικότητας του χάλυβα

I: η ροπή αδράνειας της διατομής του υπό εξέταση μέλους (σταθερή και ίση με τη διατομή της βάσης του πυλώνα)

M,maxf: το διάγραμμα ροπών που προκαλεί το εκάστοτε ενεργειακά ανταποκρινόμενο ασκούμενο φορτίο ενός από τους έξι φορτιστικούς συνδυασμούς μεγίστων καταπονήσεων

Μ,"1": το διάγραμμα ροπών που προκαλεί το εκάστοτε ισοδύναμο ενεργειακά ανταποκρινόμενο φορτίο που προκαλεί την αντίστοιχη μοναδιαία μετατόπιση

δ_{SAP}: μετατόπιση

 \mathbf{Q} ': η αντοχή της θεμελίωσης βαρύτητας σε κατακόρυφο θλιπτικό φορτίο υπό συνθήκες πλήρους στράγγισης

c': η συνοχή του εδαφικού σχηματισμού

 $\mathbf{N}_{\mathbf{q}}$: αδιάστατη συνάρτηση της φ΄

 $\mathbf{N}_{\mathbf{c}}$: αδιάστατη συνάρτηση της φ΄

 \mathbf{N}_{γ} : αδιάστατη εμπειρική συνάρτηση της φ΄

φ΄: η γωνία τριβής του εδαφικού σχηματισμού

γ΄: το ειδικό βάρος του εδαφικού σχηματισμού

q: το βάρος του εδάφους επίχωσης

D: το βάθος επίχωσης

Β: η ελάχιστη διάσταση κάτοψης της θεμελίωσης

Α΄: το ενεργό εμβαδόν της θεμελίωσης, το οποίο εξαρτάται από την εκκεντρότητα

K_c, **K**_q, **K**_γ: διορθωτικοί συντελεστές λόγω κλίσης ασκούμενου φορτίου, μορφής πέδιλου, βάθους επίχωσης, κλίσης βάσης πέδιλου και κλίσης επιφάνειας εδάφους

e: εκκεντρότητα της θεμελίωσης της βαρύτητας

V: κατακόρυφη δύναμη

i, s, d, b, q: ξεχωριστοί διορθωτικοί συντελεστές

m: αδιάστατος παράγοντας

γωνία θ: η γωνία που σχηματίζει η μεγάλη διάσταση του πέδιλου με τη διεύθυνση άσκησης της Η

Sc, Sγ, Sq: διορθωτικοί συντελεστές σχήματος

dc, dq, dγ: διορθωτικοί συντελεστές βάθους

bc, bq, bγ: διορθωτικοί συντελεστές κλίσης βάσης

v: η γωνία κλίσης της βάσης του θεμελίου

gc, gq, gγ: διορθωτικοί συντελεστές κλίσης επιφάνειας εδάφους

β: η γωνία κλίσης της επιφάνειας του εδάφους

 γ_{f} : ισούται με 2 και είναι ο συντελεστής ασφαλείας για τις αβεβαιότητες του ελέγχου φέρουσας ικανότητας

Η: ολίσθηση της θεμελίωσης βαρύτητας

Α: θεωρήθηκε δυσμενώς η ενεργώς επιφάνεια του πέδιλου

 γ_f : ισουται με 2 και είναι ο συντελεστής ασφαλείας για τις αβεβαιότητες του ελέγχου ολίσθησης

 $\mathbf{u}_{v},\,\mathbf{u}_{h}$: η κατακόρυφη και η οριζόντια μετατόπιση αντιστοίχως

Q, Η: το κατακόρυφο και οριζόντιο φορτίο αντίστοιχα

 $\boldsymbol{\theta}_{r},\,\boldsymbol{\theta}_{t}$: η γωνία ανατροπής και στρέψης αντίστοιχα

Μ, Τ: η ροπής ανατροπής και στρέψης αντίστοιχα

G: το μέτρο διάτμησης του εδαφικού σχηματισμού

ν: ο λόγος του Poisson του εδαφικού σχηματισμού

R: η ακτίνα της βάσης της θεμελίωσης βαρύτητας

 \mathbf{p}_u : μονοπάσσαλη θεμελίωση της αντίστασης του εδάφους στα φορτία που μεταβιβάζονται από τη θεμελίωση της ανεμογεννήτριας

 \mathbf{p}_{us} : η αντίσταση του εδάφους σε μικρά βάθη

 p_{ud} : η αντίσταση του εδάφους σε μεγάλα βάθη

γ: το ειδικό βάρος του εδάφους σε kN/m^3

Η: το βάθος σε m

φ΄: η γωνία τριβής του εδάφους

 $C_1,\,C_2,\,C_3$: suntelestés pou apoteloún sunárthsh th
ς $\phi^{'}$

D: η μέση διάμετρος του πασσάλου σε m

Α: συντελεστής για ανακυκλιζόμενη ή στατική φόρτιση

 p_u : η φέρουσα ικανότητα σε βάθος Η σε kN/m

k: αρχικό μέτρο αντίδρασης της υπόβασης, δηλαδή η αρχική σταθερά των ισοδύναμων ελατηρίων

εδάφους σε $kN/m^3.$ Αποτελεί συνάρτηση της φ΄ και δίδεται από το ακόλουθο διάγραμμα

y: πλευρική μετατόπιση σε m

H:βάθος σε m

<u>ΑΝΑΦΟΡΕΣ:</u>

[1] «Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics», Q. Wang, M. A. Sprague, and J. Jonkman, *National Renewable Energy Laboratory* - N. Johnson, *Colorado School of Mines*, 2014

ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ

Εικόνα 1.1 - Παγκόσμια κατανομή ενεργειακών πηγών το έτος 2014 1
Εικόνα 1.2 - Ποσοστά συμμετοχής της αιολικής και ηλιακής ενέργειας στην παγκόσμια αγορά ενέργειας το έτος 2014
Εικόνα 1.3 - Εξέλιξη υποδομών αξιοποίησης αιολικής ενέργειας
Εικόνα 1.4 - Πρώιμες απόπειρες κατασκευής ανεμογεννητριών 4
Εικόνα 1.5 - Εξέλιξη ανεμογεννητριών έως το έτος 2002 4
Εικόνα 1.6 - Μοντέλα αιχμής ανεμογεννητριών έως σήμερα 5
Eικόνα 1.7 - Μοντέλο Vestas V164 -8Mw 5
Εικόνα 1.8 - Απεικόνιση των δύο επιμέρους κατηγοριών ανεμογεννητριών 7
Εικόνα 1.9 - Μέλη ανεμογεννήτριας οριζόντιου άξονα 7
Εικόνα 1.10 - Φάση κατασκευής χερσαίας ανεμογεννήτριας 9
Εικόνα 1.11 - Φάση κατασκευής θαλάσσιας ανεμογεννήτριας 10
Εικόνα 1.12 - Ένδειξη πορείας κατασκευής θαλάσσιων ανεμογεννητριών στο προσεχές μέλλον
Εικόνα 1.13 - Κερματισμός κόστους κατασκευής ανεμογεννητριών 11
Εικόνα 1.14 - Μονοπάσσαλη θεμελίωση 11
Εικόνα 1.15 - Ομάδα πασσάλων με κεφαλόδεσμο
Εικόνα 1.16 - Σύστημα πασσάλων - κοιτόστρωσης 13
Εικόνα 1.17 - Θεμελίωση βαρύτητας 13
Εικόνα 1.18 - Οκταγωνική θεμελίωση βαρύτητας 14
Εικόνα 1.19 - Κλωβός αγκυρίων κατά τη φάση κατασκευής 14
Εικόνα 1.20 - Θεμελίωση ανεμογεννήτριας με κλωβό αγκυρίων κατά τη φάση κατασκευής

Εικόνα 1.21 - Λεπτομέρεια κοχλιωτής σύνδεσης πυλώνα – άνω δακτυλίου	15
Εικόνα 1.22 - Θεμελίωση βαρύτητας με αγκυρώσεις στον υποκείμενο βράχο	15
Εικόνα 1.23 - Προκατασκευασμένη θεμελίωση βαρύτητας	16
Εικόνα 1.24 - iCK θεμελίωση βαρύτητας	16
Εικόνα 1.25 - Θεμελίωση τρίποδα	17
Εικόνα 1.26 - Θεμελίωση πολυμελούς χωροδικτυώματος	17
Εικόνα 1.27 - Πλωτή θεμελίωση	18
Εικόνα 1.28 - Κυριότερα είδη θεμελιώσεων (α) χερσαίων και (β) & (γ) θαλό ανεμογεννητριών	ίσσιων 19
Εικόνα 1.29 - Κατανομή ειδών θεμελίωσης στις ήδη υφιστάμενες ανεμογενν μέχρι το τέλος του έτους 2012	νήτριες 20
Εικόνα 2.1 - Κυριότερα χαρακτηριστικά τύπου ανεμογεννητριών NREL 5MW	22
Εικόνα 4.2 - Απεικόνιση τυπικής χερσαίας ανεμογεννήτριας με θεμελίωση βαρτ Β	ύτητας 23
Εικόνα 4.2 - Απεικόνιση τυπικής θαλάσσιας ανεμογεννήτριας με θεμε βαρύτητας	ελίωση 24
Εικόνα 4.3 - Απεικόνιση τυπικής χερσαίας ανεμογεννήτριας με θεμε μονοπάσσαλου	ελίωση 24
Εικόνα 4.3 - Απεικόνιση τυπικής θαλάσσιας ανεμογεννήτριας με θεμε μονοπάσσαλου	ελίωση 25
Εικόνα 4.3 - Απεικόνιση τυπικής θαλάσσιας ανεμογεννήτριας με θεμε τρίποδα	ελίωση 26
Εικόνα 3.1 - Τυπική απόκλιση (αρ.) και ένταση (δεξ.) στροβιλισμών για το ΝΤΝ	M 30
Εικόνα 3.2 - Είδη κυματισμών θραύσης	38
Εικόνα 3.3 - Θεωρούμενες στάθμες σχεδιασμού	41

Εικόνα 3.4 - Διαφορετικές προσεγγίσεις διατύπωσης του κριτηρίου επάρκειας 51
Εικόνα 3.5 - Διάγραμμα ροής βασικών συστημάτων ελέγχου56
Εικόνα 4.1- Συστήματα ελέγχου ανεμογεννητριών οριζόντιου άξονα
Εικόνα 4.2- Σύζευξη επιμέρους μοντέλων για την προσομοίωση σταθερών ανεμογεννητριών62
Εικόνα 4.3 - Σύζευξη επιμέρους μοντέλων για την προσομοίωση πλωτών ανεμογεννητριών
Εικόνα 4.4 - Ορισμός στροφικών κινήσεων πλατφόρμας πλωτής ανεμογεννήτριας . 64
Εικόνα 4.5 - Ορισμός διευθύνσεων ιδιομορφών λεπίδας
Εικόνα 4.6 - Ορισμός ειδικών συνθηκών σύνδεσης πτερυγίων – άξονα ρότορα 66
Εικόνα 4.7 - Ορισμός ελευθεριών κίνησης πλωτής πλατφόρμας
Εικόνα 4.8 - Περιγραφή αξόνων πτερυγίων
Εικόνα 4.9 - Ορισμός καμπτικών ιδιομορφών πυλώνα
Εικόνα 4.10 - Διάγραμμα ροής υπολογισμών BModes
Εικόνα 4.11 - Μορφολογία εγκάρσιας καμπύλωσης πτερυγίου
Εικόνα 4.12 - Ορισμοί αξόνων τυπικής διατομής πτερυγίου ανεμογεννήτριας
Εικόνα 4.13 - Ορισμοί αξόνων τυπικής διατομής πυλώνα ανεμογεννήτριας
Εικόνα 4.13 - Ορισμοί αξόνων υπορουτίνας BeamDyn
Εικόνα 4.13 - Γεωμετρικά χαρακτηριστικά λεπίδων επιλυόμενων στην υπορουτίνα BeamDyn
Εικόνα 4.13 - Σύστημα περιστροφής των πτερυγίων
Εικόνα 4.13 - Ορισμός αξόνων υπορουτίνας InflowWind
Εικόνα 4.13 - Ορισμός αξόνων υπορουτίνας TurbSim
Εικόνα 4.13 - Σχηματική απεικόνιση πρόσθετων σημείων επί του πυλώνα

Εικόνα 4.13 - Παραδείγματα γεωμετρίας καννάβων υπορουτίνας TurbSim
Εικόνα 4.13 - Παραδείγματα φόρτισης και καννάβων της υπορουτίνας TurbSim 87
Εικόνα 4.13 - Διαθέσιμα φασματικά μοντέλα υπορουτίνας TurbSim
Εικόνα 4.13 - Διαθέσιμα μοντέλα IEC υπορουτίνας TurbSim
Εικόνα 4.13 - Διαθέσιμα προφίλ ανέμου υπορουτίνας TurbSim
Εικόνα 4.13 - Εκθέτες καταστατικού νόμου και μήκους τραχύτητας για κάθε μοντέλο της υπορουτίνας TurbSim
Εικόνα 4.13 - Διαδικασία σύζευξης ρουτινών HydroDyn, SubDyn και FASTv.8106
Εικόνα 4.14 - Πίνακας πρότυπων ανεμογεννητριών βάσει της NREL109
Εικόνα 4.14 - Πλατφόρμα πρόσβασης θαλάσσιας ανεμογεννήτριας115
Εικόνα 4.14 - Προσαρμογή 1ης ιδιομορφής πυλώνα χερσαίων ανεμογεννητριών σε πολυώνυμο 6ου βαθμού.
Εικόνα 4.14 - Προσαρμογή 2ης ιδιομορφής πυλώνα χερσαίων ανεμογεννητριών σε πολυώνυμο 6ου βαθμού.
Εικόνα 4.14 - Προσαρμογή 1ης ιδιομορφής πυλώνα θαλάσσιων ανεμογεννητριών σε πολυώνυμο 6ου βαθμού.
Εικόνα 4.14 - Προσαρμογή 2ης ιδιομορφής πυλώνα θαλάσσιων ανεμογεννητριών σε πολυώνυμο 6 ^{ου} βαθμού118
Εικόνα 5.1 - Χαρακτηριστικά τυπικής διαμόρφωσης πυλώνα ανωδομής128
Εικόνα 5.2 - Τυπική μόρφωση σύνδεσης βάσης πυλώνα ανωδομής τύπου anchor cage
Εικόνα 5.2 - Τυπική μόρφωση σύνδεσης συνέχειας πυλώνα ανωδομής129
Εικόνα 5.3 - Μετατροπή κυλινδρικού κελύφους μεταβλητού πάχους σε ισοδύναμο ενιαίου πάχους
Εικόνα 5.4 - Αδιάστατος συντελεστής κ για τον προσδιορισμό του leff

Εικόνα 5.5 - Καμπύλες S-N αντοχής σε κόπωση για ορθές τάσεις
Εικόνα 5.6 - Καμπύλες S-N αντοχής σε κόπωση για διατμητικές τάσεις137
Εικόνα 5.6 - Τυπική λεπτομέρεια κόπωσης για τη διατομή βάσης του πυλώνα για αξονική καταπόνηση (άνω) και διατμητική καταπόνηση (κάτω)
Εικόνα 5.6 - Τυπική λεπτομέρεια κόπωσης για τη διατομή κοχλία κλωβού για αξονική (κάτω) και διατμητική καταπόνηση (άνω)140
Εικόνα 6.1 - Απεικόνιση των εντατικών μεγεθών σε τυχούσα διατομή του πυλώνα 141
Εικόνα 6.2 - Επιλογή των έξι φορτιστικών καταστάσεων
Εικόνα 6.3 - Ενδεικτική αναπαράσταση της ΑΔΕ για μία μόνο μεταφορική δύναμη 142
Εικόνα 6.4 - Βήματα μεθόδου AFM143
Εικόνα 7.1 - Θεώρηση ενεργής επιφάνειας κυκλικών ρηχών θεμελιώσεων151
Εικόνα 7.2 - Πιθανές γωνίες κλίσης θεμελίου, φορτίου και εδάφους153
Εικόνα 7.3 - Διάγραμμα συντελεστών C1, C2 και C3174
Εικόνα 7.4 - Διάγραμμα συντελεστή k175
Εικόνα 8.1 - FEM SAP2000 FM τρίποδα
Εικόνα 8.2 - Διατομές μελών FM τρίποδα194
Εικόνα 8.3 - Καθορισμός φορτίου ανέμου επί του τμήματος της υποδομής πάνω από τη ΜΣΘ
Εικόνα 8.4 - Καθορισμός φορτίων κυματισμών195
Εικόνα 8.5 - Διακριτοποίηση και μεγέθη οριζόντιας και κατακόρυφης ταχύτητας κύματος
Εικόνα 8.6 - Διακριτοποίηση και μεγέθη οριζόντιας και κατακόρυφης τάσης κύματος 197
Εικόνα 8.7 - Καταστάσεις φόρτισης

Εικόνα 8.8 - Διαγράμματα: δ, Ν, Τ, F2-2, F3-3, M2-2, M3-3	198
Εικόνα 8.9 - Κανονιστικές αρχές σχεδιασμού	198
Εικόνα 8.10 - Συντελεστές αξιοποίησης μελών FM τρίποδα	199
Εικόνα 8.11 - Αντιδράσεις στηρίξεων FM τρίποδα	201
Εικόνα 8.12 - Μετακίνηση κορυφής FM τρίποδα	201
Εικόνα 8.13 - FEM SAP2000 AFM τρίποδα	202
Εικόνα 8.14 - Διατομές μελών AFM τρίποδα	202
Εικόνα 8.15 - Διαγράμματα: δ, Ν, Τ, F2-2, F3-3, M2-2, M3-3	203
Εικόνα 8.16 - Συντελεστές αξιοποίησης μελών τρίποδα	204
Εικόνα 8.17 - Αντιδράσεις εδαφικών ελατηρίων πασσάλων	209
Εικόνα 8.18 - Μετακίνηση κορυφής AFM τρίποδα	210
ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

Πίνακας 3.1 - Κατηγορίες φόρτισης ανέμου και ειδοποιά χαρακτηριστικά	28
Πίνακας 3.2 - Καταστάσεις φόρτισης σχεδιασμού για χερσαίες ανεμογεννήτριες4	46
Πίνακας 3.3 - Καταστάσεις φόρτισης σχεδιασμού για θαλάσσιες ανεμογεννήτριες4	47
Πίνακας 3.4 - Καταστάσεις φόρτισης σχεδιασμού με πάγο για θαλάσσιες	
ανεμογεννήτριες	50
Πίνακας 3.5 - Συντελεστές ασφαλείας φορτίσεων	52
Πίνακας 3.6 - Ιδιότητες βασικών συστημάτων ελέγχου	56
Πίνακας 3.7 - Συνδυασμοί φορτίσεων ανεμογεννητριών μελέτης	60
Πίνακας 5.1 - Ιδιότητες χάλυβα ανωδομής	26
Πίνακας 5.2 - Ιδιότητες κοχλιών σύνδεσης συνέχειας ανωδομής12	27
Πίνακας 5.3 - Ιδιότητες κοχλιών σύνδεσης βάσης ανωδομής12	27
Πίνακας 5.4 - Ιδιότητες μεταβαλλόμενης καθ' ύψος διατομής πυλώνα ανωδομής12	28
Πίνακας 5.5 - Συνοριακές συνθήκες κελύφους	33
Πίνακας 5.6 - Αδιάστατος συντελεστής συνοριακών συνθηκών Cxb	33
Πίνακας 5.7 - Κατηγορίες ποιότητας κατασκευής και σχετικοί συντελεστές13	34
Πίνακας 7.1 - Σταθερές τιμές υπόλοιπων παραμέτρων ανάλυσης14	45
Πίνακας 7.2 - Ειδικό βάρος ομοιόμορφης πυκνής άμμου14	47
Πίνακας 7.3 - Γωνία τριβής ομοιόμορφης πυκνής άμμου14	48
Πίνακας 7.4 - Συνοχή ομοιόμορφης πυκνής άμμου14	49
Πίνακας 7.5 - Μέτρο ελαστικότητας ομοιόμορφης πυκνής άμμου14	49
Πίνακας 7.6 - Λόγος Poisson ομοιόμορφης πυκνής άμμου14	49
Πίνακας 7.7 - Μέτρο διάτμησης ομοιόμορφης πυκνής άμμου15	50
Πίνακας 7.8 - Συντελεστής ασφαλείας ΑFM για έλεγχο μετατοπίσεων κεφαλής	
πυλώνα [γAFM,d]	93
Πίνακας 7.9 - Συντελεστής ασφαλείας ΑFM για λυγισμό πυλώνα [γAFM,b]19	93
Πίνακας 8.1 - Σταθερές τιμές υπόλοιπων παραμέτρων ανάλυσης	93
Πίνακας 8.2 - Συντελεστής ασφαλείας ΑFM για έλεγχο μετατοπίσεων κεφαλής	
πυλώνα [γAFM,d] και λυγισμού πυλώνα/αστοχία μελών [γAFM,b]21	0

ΚΕΦ.1 ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΜΕ ΕΜΦΑΣΗ ΣΤΙΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ

1.1. Γενικά

ε μία εποχή που τα αποθέματα και η διαθεσιμότητα των συμβατικών ενεργειακών πόρων του πλανήτη ελαττώνονται με ραγδαίους ρυθμούς, η προτίμηση εναλλακτικών πηγών και τρόπων παραγωγής ενέργειας δεν αποτελεί μόνον ντετερμινιστική επιδίωξη του μέλλοντος, αλλά κοινωνική απαίτηση και μονόδρομο επιβίωσης.

Ήδη εδώ και δεκαετίες γίνεται προσπάθεια αντικατάστασης των συμβατικών πηγών παραγωγής ενέργειας με αντίστοιχες ανανεώσιμες πηγές. Αν και η επίτευξη αυτού του στόχου θα αποτελέσει απαύγασμα μακροχρόνιας και εκτεταμένης προσπάθειας, ήδη ένα αξιόλογο ποσοστό της παγκόσμιας καταναλισκόμενης ενέργειας προέρχεται από ανανεώσιμες πηγές, ενώ σε πολλές χώρες η εντατική ενασχόληση στον τομέα αυτό έχει επιφέρει την κάλυψη των ενεργειακών απαιτήσεων από ανανεώσιμες πηγές ενέργειας σε ποσοστό άνω του 10%.

Εικόνα 1.1: Παγκόσμια κατανομή ενεργειακών πηγών το έτος 2014^[1]

Εικόνα 1.2: Ποσοστά συμμετοχής της αιολικής και ηλιακής ενέργειας στην παγκόσμια αγορά ενέργειας το έτος 2014^[2]

Υπό το πρίσμα αυτό, έχουν γίνει σημαντικά άλματα στην τεχνολογία παραγωγής ενέργειας χρησιμοποιώντας ανανεώσιμες πηγές, όπως ο ήλιος, ο άνεμος, η γεωθερμία ή η βιομάζα. Όλες οι παραπάνω μορφές ενέργειας καλούνται και ήπιες, επειδή για την εκμετάλλευσή τους δεν απαιτείται κάποια ενεργητική παρέμβαση, όπως συμβαίνει με τις συμβατικές.

Παρόλα αυτά όμως, για την εκμετάλλευση της ήδη υπάρχουσας ροής ενέργειας της φύσης είναι απαραίτητη η ύπαρξη κατάλληλων υποδομών. Έτσι, παράλληλα με την τεχνογνωσία που αποκτάται σταδιακά στους τρόπους εκμετάλλευσης των ανανεώσιμων πηγών ενέργειας, προάγεται και η αντίστοιχη τεχνογνωσία μελέτης, σχεδιασμού και κατασκευής των απαραίτητων υποδομών για την συλλογή τους.

Συνεπώς, ο σύγχρονος μηχανικός καλείται να εξοικειωθεί με τις ιδιάζουσες απαιτήσεις της κάθε επιμέρους περίπτωσης υποδομών για την παραγωγή ήπιων μορφών ενέργειας και να ανταποκριθεί στην επιτακτική κοινωνική ανάγκη για βελτιστοποίηση του σχεδιασμού τους.

1.2. Αιολική ενέργεια

Μία εκ των συνηθέστερων ανανεώσιμων πηγών ενέργειας (Α.Π.Ε.) είναι η αιολική. Ο άνθρωπος προσπάθησε αρκετές φορές στο πέρας των αιώνων να χρησιμοποιήσει ως πηγή ενέργειας τον άνεμο. Από τις εφαρμογές της αιολικές ενέργειας στην ναυσιπλοΐα των αρχαίων Αιγύπτιων περί το 3500 π.Χ., μέχρι την κατασκευή των πρώτων ανεμόμυλων στο σημερινό Ιράκ τον 7° αιώνα μ.Χ. και ακόμα περισσότερο μέχρι την κατασκευή της πρώτης ανεμογεννήτριας στα τέλη του 19^{ου} αιώνα από τον James Blyth, οι εκάστοτε μηχανικοί καλούνταν να αναπτύξουν και να διευρύνουν τις γνώσεις και τις τεχνικές τους με απώτερο σκοπό τη βέλτιστη αξιοποίηση την πνοής του ανέμου.

Η εν λόγω προσπάθεια βελτίωσης της τεχνικής κατάρτισης των πολιτικών μηχανικών επί του αντικειμένου εξακολουθεί να παρατηρείται και σήμερα. Η μόνη διαφορά είναι ότι οι απαιτήσεις σχεδιασμού των σύγχρονων κατασκευών αξιοποίησης της αιολικής ενέργειας έχουν αυξηθεί ραγδαία εξαιτίας του υψηλού επιπέδου αποδοτικότητας και λειτουργικότητας που προϋποθέτει μία τόσο ακριβή επένδυση.

Στην κατεύθυνση αυτή, η συνεχής μελέτη και έρευνα για την ανάλυση και τον σχεδιασμό υποδομών αξιοποίησης της αιολικής ενέργειας ενισχύεται σημαντικά από σχετικά ευρωπαϊκά και όχι μόνο κονδύλια και επιχορηγήσεις που επιστρατεύονται συχνά για την προώθηση των Α.Π.Ε..

Σημειώνεται επιπλέον ότι σήμερα η αιολική ενέργεια χρησιμοποιείται κυρίως για την παραγωγή ηλεκτρικής ενέργειας, ενώ η συλλογή της γίνεται ως επί των πλείστων με την κατασκευή αιολικών πάρκων, τα οποία αποτελούνται από ανεμογεννήτριες οριζόντιου άξονα με δύο ή τρία πτερύγια.

Εικόνα 1.3: Εξέλιξη υποδομών αξιοποίησης αιολικής ενέργειας (άνω αρ.: ναυσιπλοΐα, άνω δεξ.: πρωτογενής τομέας, κάτω: παραγωγή ηλεκτρικής ενέργειας)

1.3. Ανεμογεννήτριες

1.3.1. Ιστορική αναδρομή

Όπως αναφέρθηκε προηγουμένως, την κύρια σύγχρονη μονάδα υποδομών αξιοποίησης της αιολικής ενέργειας συνιστά η ανεμογεννήτρια. Πιο συγκεκριμένα, η ανεμογεννήτρια αποτελεί μία συσκευή μετατροπής της κινητικής ενέργειας του ανέμου σε ηλεκτρική ενέργεια.

Μάλιστα, η πρώτη ανεμογεννήτρια παραγωγής ηλεκτρικού ρεύματος κατασκευάστηκε μόλις τον Ιούλιο του 1887 από τον ακαδημαϊκό James Blyth με σκοπό την φόρτιση μπαταριών για την φωταγώγηση του εξοχικού του σπιτιού στη Σκοτία, ενώ λίγους μήνες αργότερα ο εφευρέτης Charles F. Brush κατάφερε να κατασκευάσει την πρώτη ανεμογεννήτρια αυτόματης λειτουργίας στο Cleveland, της πολιτείας Ohio, των Ηνωμένων Πολιτειών Αμερικής^[3].

ΚΕΦ.1 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Εικόνα 1.4: Πρώιμες απόπειρες κατασκευής ανεμογεννητριών (αριστερά: πρώτη ανεμογεννήτρια παραγωγής ηλεκτρικής ενέργειας από τον James Blyth, δεξιά: πρώτη λειτουργικά αυτόματη ανεμογεννήτρια από τον Charles F. Brush)

Έκτοτε, οι εξέλιξη των ανεμογεννητριών υπήρξε ιδιαίτερα αργή και σπασμωδική, κυρίως λόγω της ανάπτυξης που γνώρισε από νωρίς η ανταγωνίστρια βιομηχανία των ορυκτών καυσίμων. Ως φωτεινό σημείο στην εξέλιξη τους, ξεχωρίζει στις αρχές της δεκαετίας του '70 η παραγωγή και εμπορευματοποίηση μικρών ανεμογεννητριών των 22kW στη Δανία, ωθούμενη από το ρεύμα αντίδρασης κατά της πυρηνικής ενέργειας που επικρατούσε εκείνη την περίοδο. Έκτοτε, η ένταξη της χρήσης ανεμογεννητριών στην παγκόσμια αγορά ενέργειας και ο σχηματισμός των κατάλληλων ομάδων συμφερόντων ήταν θέμα χρόνου.

Εικόνα 1.5: Εξέλιξη ανεμογεννητριών έως το έτος 2002^[4]

Εικόνα 1.6: Μοντέλα αιχμής ανεμογεννητριών έως σήμερα^[5]

Όπως γίνεται αισθητό από τις παραπάνω εικόνες, το μέγεθος και η αποδοτικότητα των ανεμογεννητριών αποτελούν παράγοντες βελτιστοποίησης με την πάροδο του χρόνου. Η συσσώρευση μελετητικής και κατασκευαστικής εμπειρίας έχει οδηγήσει σε ανεμογεννήτριες συνήθους ύψους 110-140m και διαμέτρου ρότορα 80-100m, ενώ μία συνήθης πλέον τιμή απόδοσης είναι 3.6-5MW. Αξίζει να σημειωθεί ότι από το έτος 2014, το παγκόσμιο ρεκόρ διαθέτει η ανεμογεννήτρια Vestas V164, της οποίας το ύψος ανέρχεται στα 220m, με διάμετρο ρότορα 164m και απόδοση που αγγίζει πλέον τα 9 MW^[6].

Εικόνα 1.7: Μοντέλο Vestas V164 -8Mw

Συγκεκριμένα, η ποσότητα της παραγόμενης ηλεκτρικής ενέργειας εξαρτάται, τόσο από το μέγεθος και την ισχύ της ανεμογεννήτριας, όσο και από τα ανεμολογικά χαρακτηριστικά της εκάστοτε περιοχής. Για τον λόγο αυτό, εκτεταμένες μελέτες ρίσκου – απόδοσης διενεργούνται προτού αποφασισθεί η κατασκευή ανεμογεννητριών σε μία τοποθεσία. Έπειτα, σε περίπτωση που η αιολική ενέργεια της περιοχής κριθεί επαρκής και η εκμετάλλευσή της βιώσιμη οικονομοτεχνικά, πυροδοτείται η διαδικασία βέλτιστης τοποθέτησης και σχεδιασμού της ανεμογεννήτριας. Όπως θα γίνει αντιληπτό και στα ακόλουθα κεφάλαια, η γωνία και η επιφάνεια πρόσπτωσης του ανέμου επί των πτερυγίων της ανεμογεννήτριας, ο τύπος της, η ισχύς του κινητήρα της, καθώς και το ύψος της αποτελούν μερικούς από τους παράγοντες που επηρεάζουν άμεσα την απόδοσή της.

1.3.2. Είδη ανεμογεννητριών

Τα δύο κύρια είδη ανεμογεννητριών είναι τα εξής:

Ανεμογεννήτριες οριζόντιου άξονα (horizontal axis wind turbine – HAWT)

Το είδος αυτό διαθέτει τον ρότορα και την άτρακτο τοποθετημένα με οριζόντιο προσανατολισμό στην κορυφή του πυλώνα. Αποτελεί τον πλέον διαδεδομένο τύπο ανεμογεννητριών και βασίζεται στην περιστροφή των πτερυγίων περί τον οριζόντιο άξονα που ορίζει ο κεντρικός κόμβος του ρότορα. Για να επιτυγχάνεται κάθε φορά η μέγιστη δυνατή αποδοτικότητα, το επίπεδο των πτερυγίων θα πρέπει να βρίσκεται σε κάθετη τοποθέτηση με την διεύθυνση πνοής του ανέμου.

Πλεονεκτήματα:

- Ευκολότερη η επίτευξη υψηλών γωνιακών ταχυτήτων με αποτέλεσμα τη μεγαλύτερη αποδοτικότητα για δεδομένο άνεμο
- Μεγαλύτερη τεχνογνωσία και κατασκευαστική εμπειρία

Μειονεκτήματα:

- Αναγκαιότητα εκ νέου αναπροσαρμογής του επιπέδου των πτερυγίων ανάλογα με τη διεύθυνση πνοής του ανέμου
- Υψηλότερο κέντρο βάρους κατασκευής, το οποίο προκαλεί μεγαλύτερα φορτία στη θεμελίωση με συνέπεια την αύξηση του κόστους της τελευταίας
- Βαρύτερες κατασκευές
- Χαμηλή αποδοτικότητα και κακή συμπεριφορά της κατασκευής σε μη κανονικές φορτίσεις ανέμου με αναταράξεις και στροβιλισμούς
- Ανεμογεννήτριες κατακόρυφου άξονα (vertical axis wind turbine VAWT)

Το είδος αυτό διαθέτει τον ρότορα και την άτρακτο τοποθετημένα με κατακόρυφο προσανατολισμό και συνήθως όχι στην κορυφή της κατασκευής. Βρίσκει ανταπόκριση μέχρι σήμερα κυρίως σε εφαρμογές μικρής κλίμακας, υπάρχουν όμως ήδη πολλές προτάσεις για επέκταση του πεδίου εφαρμογής του και σε μεγαλύτερα έργα. Βασίζεται στην περιστροφή των πτερυγίων περί τον κατακόρυφο άξονα που ορίζει ο κεντρικός κόμβος του ρότορα. Αυτό το είδος ανεμογεννητριών ενεργοποιείται για οποιαδήποτε διεύθυνση πνοής του ανέμου, σε ορισμένες περιπτώσεις ακόμα και για κατακόρυφες διευθύνσεις.

Πλεονεκτήματα:

- Ευελιξία στον προσανατολισμό που οδηγεί στην μη απαίτηση συστήματος περιστροφής του επιπέδου των πτερυγίων
- Χαμηλότερο κέντρο βάρους κατασκευής, το οποίο προκαλεί μικρότερα φορτία τη θεμελίωση με συνέπεια τη μείωση του κόστους της τελευταίας
- Ελαφρύτερες κατασκευές
- Ορισμένα μοντέλα ανταποκρίνονται καλύτερα σε συνθήκες αναταράξεων και στροβιλισμών
- Καλύτερη συμπεριφορά σε τοποθεσίες, όπου η διεύθυνση του ανέμου δεν παραμένει σταθερή ή δεν μπορεί να προβλεφτεί εύκολα
- Καλύτερη συμπεριφορά σε τοποθεσίες, όπου εξαιτίας κοινωνικών και αρχιτεκτονικών περιορισμών δεν είναι δυνατή η κατασκευή υψηλού πυλώνα προς εκμετάλλευση των σταθερών ροών ανέμου σε μεγάλα υψόμετρα

Μειονεκτήματα:

- Δυσκολότερη η επίτευξη υψηλών γωνιακών ταχυτήτων με αποτέλεσμα τη μικρότερη αποδοτικότητα για δεδομένο άνεμο
- · Μικρότερη τεχνογνωσία και κατασκευαστική εμπειρία

Εικόνα 1.8: Απεικόνιση των δύο επιμέρους κατηγοριών ανεμογεννητριών (αρ.: HAWT, δεξ.: VAWT)

Σημειώνεται ότι στην παρούσα εργασία γίνεται αναφορά μόνον σε ανεμογεννήτριες τύπου HAWT.

1.3.3. Περιγραφή δομής και λειτουργίας της σύγχρονης HAWT

Ανεξαρτήτως του τύπου ή των συγκεκριμένων χαρακτηριστικών μίας ανεμογεννήτριες, ο αντικειμενικός στόχος της κατασκευής παραμένει πάντοτε ίδιος: η μετατροπή της κινητικής ενέργειας του ανέμου σε ηλεκτρική προς κατανάλωση από τον άνθρωπο.

Στην παρακάτω εικόνα παρουσιάζονται τα βασικά μέλη, από τα οποία απαρτίζεται μία τυπική ανεμογεννήτρια οριζόντιου άξονα, όπως αυτές που θα μελετηθούν στην παρούσα εργασία.

Εικόνα 1.9: Μέλη ανεμογεννήτριας οριζόντιου άξονα (αρ.: μακροσκοπική εξέταση, δεξ.: άτρακτος)

Η πορεία της ενέργειας είναι η εξής:

- **Κινητική ενέργεια** πνοής ανέμου.
- > Πρόσπτωση του ανέμου στα πτερύγια του ρότορα της ανεμογεννήτριας.
- Περιστροφή του ρότορα [1]. Σημειώνεται ότι οι ανεμογεννήτριες διαθέτουν αισθητήρες της διεύθυνσης πνοής του ανέμου [6], οι οποίοι ενεργοποιούν το σύστημα περιστροφής [7] του συστήματος ρότορα-ατράκτου περί τον κατακόρυφο άξονα, ώστε ο ρότορας να αποκτήσει τον εκάστοτε ορθό προσανατολισμό για την βέλτιστη αξιοποίηση του ανέμου.
- Μαζί με τον ρότορα περιστρέφεται και ο άξονας χαμηλής ταχύτητας [2], ο οποίος στρέφει με τη σειρά του το πρώτο και μεγαλύτερο γρανάζι του κιβώτιου μηχανισμών.
- Το κιβώτιο μηχανισμών [3] διαθέτει δύο γρανάζια. Η περιστροφή του μεγαλύτερου προκαλεί την περιστροφή του μικρότερου με μεγαλύτερη γωνιακή ταχύτητα. Έτσι, το δεύτερο κινείται με ταχύτερο ρυθμό.
- Ο άξονας υψηλής ταχύτητας [4] περιστρέφεται με την ίδια γωνιακή ταχύτητα με το μικρότερο γρανάζι του κιβωτίου μηχανισμών, γεγονός που τον καθιστά ικανό να ενεργοποιήσει την γεννήτρια.
- Η γεννήτρια [5] είναι μία ηλεκτρική συσκευή, η οποία παράγει ηλεκτρική ενέργεια υπό την μορφή ηλεκτρικού ρεύματος μεταβαλλόμενης διεύθυνσης (alternating current AC).
- Το παραγόμενο ηλεκτρικό ρεύμα μεταφέρεται μέσα από ένα σύστημα καλωδίων στον μετασχηματιστή [8] διαμέσου του πυλώνα. Από τον μετασχηματιστή η ενέργεια είναι έτοιμη να μεταφερθεί και να διοχετευθεί μέσω καλωδιώσεων στο εθνικό δίκτυο.

Ούτως ώστε να καταστεί δυνατή η παραπάνω διαδικασία μεταφοράς ενέργειας, είναι απαραίτητη η παραλαβή συγκεκριμένων δυνάμεων από τα μέλη της κατασκευής. Τα εν λόγω φορτία μπορούν να συνοψιστούν σε βαρυτικά μόνιμα φορτία και σε περιβαλλοντικά κινητά φορτία. Η πορεία παραλαβής των φορτίων αυτών είναι η εξής:

- Μόνιμα φορτία βάρους ανωδομής.
- Κινητά περιβαλλοντικά φορτία που ασκούνται στην ανωδομή (πτερύγια ρότορα, πυλώνας κ.τ.λ).
- Συγκέντρωση εσωτερικών φορτίων στη βάση του πυλώνα υπό τη μορφή διαξονικής κάμψης και διάτμησης συνδυασμένη με θλίψη.
- Τα φορτία μεταβιβάζονται από την ανωδομή στη θεμελίωση της ανεμογεννήτριας.
- Οι τάσεις μεταβιβάζονται από τη θεμελίωση στο υποκείμενο έδαφος έδρασης, στο οποίο διαχέονται και εκτονώνονται.

Όπως φαίνεται και σε επόμενα κεφάλαια, ανάλογα με το είδος της θεμελίωσης τα μέλη της καταπονούνται διαφορετικά, καθώς επίσης και οι τάσεις του εδάφους έχουν διαφορετική κατανομή.

1.3.4. Θέση τοποθέτησης ανεμογεννητριών

Σε κάθε περίπτωση, η τοποθεσία της κατασκευής επιλέγεται με γνώμονα τα ανεμολογικά χαρακτηριστικά της, ώστε να επιτυγχάνεται η βέλτιστη εκμετάλλευση

της αιολικής ενέργειας και συνεπακόλουθα η μέγιστη παραγωγή. Σε γενικές γραμμές, προτιμητέες είναι οι περιοχές με υψηλές ταχύτητες ανέμου σε ετήσια βάση, η κίνηση του οποίου είναι κατά το δυνατόν συνεχή και με λίγες αναταράξεις και στροβιλισμούς.

Οι δύο βασικές ομάδες, στις οποίες κατηγοριοποιούνται οι σύγχρονες ανεμογεννήτριες με κριτήριο τη θέση τοποθέτησής τους είναι οι **χερσαίες** (onshore) και οι **θαλάσσιες** (offshore).

Χερσαίες ανεμογεννήτριες:

Η συντριπτική πλειοψηφία των ήδη κατασκευασμένων ανεμογεννητριών αποτελείται από ανεμογεννήτριες θεμελιωμένες στη στεριά. Η επιλογή αυτή ενέχει τα παρακάτω πλεονεκτήματα και μειονεκτήματα.

Εικόνα 1.10: Φάση κατασκευής χερσαίας ανεμογεννήτριας

Πλεονεκτήματα:

- Ευκολότερη και οικονομικότερη μεταφορά και κατασκευή
- Οικονομικότερη θεμελίωση
- Οικονομικότερη διάθεση ηλεκτρικού ρεύματος με χρήση ήδη υπαρχόντων δικτύων μεταφοράς
- Πολυετής εμπειρία μελέτης και κατασκευής
- Ευκολότερη συντήρηση και επιδιόρθωση βλαβών

Μειονεκτήματα:

- Χαμηλότερες ταχύτητες ανέμου
- Αισθητική και ακουστική όχληση
- Ακριβή εύρεση διαθέσιμων εκτάσεων
- Σταδιακός κορεσμός εκτάσεων με αξιόλογα ανεμολογικά χαρακτηριστικά
- Όχληση πτηνών
- Θαλάσσιες ανεμογεννήτριες:

Οι θαλάσσιες ανεμογεννήτριες λόγω των ιδιαίτερων απαιτήσεων στην κατασκευή τους αποτελούν έναν σχετικά νεότερο κλάδο ανεμογεννητριών, οποίος όμως είναι σταδιακά και σταθερά ανερχόμενος λόγω των σημαντικών πλεονεκτημάτων του.

Εικόνα 1.11: Φάση κατασκευής θαλάσσιας ανεμογεννήτριας

Πλεονεκτήματα:

- Υψηλότερες ταχύτητες ανέμου
- Σταθερότερες ριπές ανέμου
- Σχεδόν ανεξάντλητες κατάλληλες τοποθεσίες για κατασκεύη

Μειονεκτήματα:

- Υψηλό κόστος μεταφοράς και κατασκευής
- Υψηλό κόστος συντήρησης
- Υψηλό κόστος μεταφοράς και διάθεσης ηλεκτρικού ρεύματος
- Πιθανή όχληση θαλάσσιας πανίδας
- Τα φορτία των κυμάτων και οι πιθανές ακραίες καιρικές συνθήκες (καταιγήδες, τυφώνες κ.τ.λ.) ενδέχεται να προκαλούν συχνές βλάβες

Τέλος, χαρακτηριστικό δείγμα για την αξιολόγηση των παραπάνω πλεονεκτημάτων και μειονεκτημάτων των θαλάσσιων ανεμογεννητριών αποτελεί το ακόλουθο διάγραμμα, το οποίο υποδεικνύει τη πορεία της αγοράς τα προσεχή έτη.

Εικόνα 1.12: Ένδειξη πορείας κατασκευής θαλάσσιων ανεμογεννητριών στο προσεχές μέλλον

1.3.5. Είδη θεμελιώσεων ανεμογεννήτριων

Η θεμελίωση ανεμογεννητριών αποτελεί συνεχώς τομέα εξελίξεων, καθώς νέοι τύποι εισέρχονται στην αγορά με σκοπό, αφενός να βελτιώσουν τη στατική συμπεριφορά της κατασκευής, αλλά και αφετέρου να μειώσουν το κόστος της. Όπως φαίνεται στον ακόλουθο πίνακα το κόστος κατασκευής της θεμελίωσης αποτελεί σημαντικό ποσοστό του συνολικού κόστους μίας ανεμογεννήτριας, ειδικά στις περιπτώσεις θαλάσσιων ανεμογεννητριών.

Εικόνα 1.13: Κερματισμός κόστους κατασκευής ανεμογεννητριών (αρ. γενικά, δεξ. θαλάσσιων)^[8]

Πιο συγκεκριμένα, τα επικρατέστερα είδη θεμελιώσεων ανεμογεννητριών είναι τα εξής:

Μονοπάσσαλη θεμελίωση (monopole):

Αποτελεί τη συνηθέστερη περίπτωση θεμελίωσης ανεμογεννητριών. Απαντάται κυρίως σε θαλάσσιες ανεμογεννήτριες ρηχών υδάτων με βάθος πυθμένα έως και 30m. Αποτελείται συνήθως από χαλύβδινο σωλήνα μεγάλης διαμέτρου (έως και 6m) και αντιστοίχως μεγάλου πάχους (έως και 150mm).

Εικόνα 1.14: Μονοπάσσαλη θεμελίωση

ΚΕΦ.1 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Επιμέρους παραλλαγές που χρησιμοποιούνται κυρίως στις χερσαίες εφαρμογές είναι οι εξής:

- <u>Ομάδα πασσάλων με κεφαλόδεσμο (pile group):</u>

Στην περίπτωση αυτή, ο κεφαλόδεσμος παραλαμβάνει τα φορτία της ανωδομής και τα μοιράζει στου υποκείμενους πασσάλους. Οι πάσσαλοι με τη σειρά τους τα μεταφέρουν στον εδαφικό ιστό, είτε μέσω της αιχμής τους αν καταλήγουν σε βραχώδεις σχηματισμούς, είτε μέσω τριβής με τις επιμέρους εδαφικές στρώσεις. Αξίζει να σημειωθεί ότι η απόδοση της πασσαλο-ομάδας δεν είναι κατ' ανάγκη ίση με το άθροισμα της απόδοσης των επιμέρους πασσάλων που περιλαμβάνει. Αντιθέτως, μπορεί να είναι αρκετά μικρότερη εξαιτίας της αλληλοεπικάλυψης των ζωνών τάσεων του εδάφους. Ιδιαίτερη προσοχή πρέπει να δίδεται, λοιπόν, στις αποστάσει μεταξύ των πασσάλων. Γενικώς, αποστάσεις 2.5-3 φορές τη διάμετρο των πασσάλων κρίνονται ικανοποιητικές.

Εικόνα 1.15: Ομάδα πασσάλων με κεφαλόδεσμο

- Σύστημα πασσάλων – κοιτόστρωσης (pile-raft foundation):

Το είδος αυτό εντάσσεται στις υβριδικές θεμελιώσεις, οι οποίες χρησιμοποιούν τα πλεονεκτικά χαρακτηριστικά αμφότερων των αβαθών και βαθιών θεμελιώσεων. Οι πάσσαλοι τοποθετούνται στην περίπτωση αυτή κυρίως για τη μείωση της διαφορικής καθίζησης της κοιτόστρωσης, προσφέρουν όμως και στη συνολική αντοχή της θεμελίωσης.

Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Θεμελίωση βαρύτητας (gravity foundation):

*

Αποτελεί συνήθης περίπτωση θεμελίωσης χερσαίων ανεμογεννητριών, ενώ χρησιμοποιείται και σε θαλάσσιες κατασκευές για βάθη πυθμένα από 20m – 80m. Αποτελείται συνήθως από μία βαριά κατασκευή οπλισμένου σκυροδέματος (πέδιλο), η οποία με το βάρος της αποτρέπει την ανατροπή της ανεμογεννήτριας. Η χρήση αυτού του τύπου θεμελίωσης επιλέγεται κυρίως στις περιπτώσεις όπου η κατασκευή μονοπάσσαλου είναι δύσκολη, όπως στην περίπτωση βράχου σε μικρό βάθος. Η κατάλληλη διαμόρφωση του εδάφους κατά την κατασκευή είναι απαραίτητη για την αποφυγή υποσκαφών.

Εικόνα 1.17: Θεμελίωση βαρύτητας

Επιμέρους παραλλαγές της θεμελίωσης βαρύτητας, οι οποίες απαντώνται κυρίως σε χερσαίες ανεμογεννήτριες, είναι οι ακόλουθες:

- <u>Οκταγωνική θεμελίωση βαρύτητας (octagonal foundation):</u>

Μία από τις πλέον διαδεδομένες μορφές θεμελίωσης χερσαίων ανεμογεννητριών, η οποία αποτελείται από ένα ογκώδες οκταγωνικό πέδιλο οπλισμένου σκυροδέματος. Οι συνήθεις τιμές διαμέτρου βάσης του πεδίλου κυμαίνονται μεταξύ 12m – 18m, ενώ τα αντίστοιχα πάχη από 0.7m στην άκρη του πεδίλου έως 2.5m – 3.5m στο κέντρο. Τα βάθη έμπηξης που συναντώνται είναι 2.4m – 3m.

Εικόνα 1.18: Οκταγωνική θεμελίωση βαρύτητας

Θεμελίωση βαρύτητας με κλωβό αγκυρίων (anchor cage foundation):

Αποτελείται από ένα σύνολο κοχλιών, τα οποία συγκρατούνται ενοποιημένα από μεταλλικά δαχτυλίδια στις δύο άκρες τους. Αφότου γίνει η εκσκαφή του εργοταξίου και εγχυθούν περίπου 20cm σκυροδέματος, γίνεται η συναρμολόγηση του κλωβού και η τοποθέτησή του επί της στρώσης σκυροδέματος. Έπεται η τοποθέτηση των οπλισμών έτσι, ώστε να έχουν όσο το δυνατόν καλύτερη εμπλοκή με τον κλωβό και η τελική έγχυση σκυροδέματος. Ο πυλώνας της ανεμογεννήτριας συνδέεται κοχλιωτά στον άνω δακτύλιο του κλωβού.

Εικόνα 1.19: Κλωβός αγκυρίων κατά τη φάση κατασκευής

Εικόνα 1.20: Θεμελίωση ανεμογεννήτριας με κλωβό αγκυρίων κατά τη φάση κατασκευής

Εικόνα 1.21: Λεπτομέρεια κοχλιωτής σύνδεσης πυλώνα – άνω δακτυλίου

<u>Θεμελίωση βαρύτητας με αγκυρώσεις σε υποκείμενο βράχο (rock anchor foundation):</u>

Το εν λόγω είδος θεμελίωσης εφαρμόζεται μόνον σε περιπτώσεις, όπου βραχώδεις σχηματισμοί συναντώνται σε μικρά βάθη. Η αντίσταση του θεμελίου έγκειται στο συνδυασμό των τάσεων της επιφάνειας έδρασης και στις εφελκυστικές δυνάμεις των προεντεταμένων αγκυρίων, τα οποία καταλήγουν σε φρεάτια εκσκαφής εντός του υποκείμενου βραχώδη σχηματισμού. Σκοπός των αγκυρώσεων αυτών είναι η αποτροπή της ανασήκωσης του πεδίλου με ταυτόχρονη εξοικονόμηση υλικών σε σκυρόδεμα και χάλυβα οπλισμού.

Εικόνα 1.22: Θεμελίωση βαρύτητας με αγκυρώσεις στον υποκείμενο βράχο

- <u>Προκατασκευασμένη θεμελίωση βαρύτητας:</u>

Αποτελεί κλασική περίπτωση θεμελίωσης βαρύτητας, με τα πλεονεκτήματα όμως της γρηγορότερης κατασκευής και τοποθέτησης, καθώς και της μείωσης του όγκου των εκσκαφών.

Εικόνα 1.23: Προκατασκευασμένη θεμελίωση βαρύτητας

- <u>iCK θεμελίωση βαρύτητας:</u>

Το πλήρες όνομα αυτού του τύπου είναι Gestamp iConcrete και αποτελεί μία τυποποίηση θεμελίωσης, η οποία περιλαμβάνει μία πλάκα με ενισχυμένο δακτύλιο στο μέσον της και ακτινικές δοκούς οπλισμένου σκυροδέματος. Έτσι επιτυγχάνεται υψηλή δυσκαμψία με ταυτόχρονη εξοικονόμηση υλικών.

Εικόνα 1.24: iCK θεμελίωση βαρύτητας

Τρίποδας (tripod):

Πρόκειται για ένα μεταλλικό πυραμοειδές χωροδικτύωμα με μεταλλικούς πασσάλους στις τρεις απολήξεις του. Το μήκος έμπηξης αυτών των πασσάλων κυμαίνεται συνήθως μεταξύ 10m – 20m. Απαντάται συνήθως σε θαλάσσιες ανεμογεννήτριες βάθους πυθμένα από 20m – 80m, ενώ κρίνεται οικονομοτεχνικά ασύμφορος τύπος θεμελίωσης για βάθη μικρότερα των 6-7m.

Εικόνα 1.25: Θεμελίωση τρίποδα

Πολυμελές χωροδικτύωμα (jacket structure):

Πρόκειται για ένα μεταλλικό χωροδικτύωμα με τρία ή τέσσερα στηρίζοντα σκέλη, το οποίο αποτελείται από μεγάλο αριθμό μελών για να επιτύχει την επιθυμητή δυσκαμψία. Απαντάται συνήθως σε θαλάσσιες ανεμογεννήτριες με βάθος πυθμένα μεταξύ 20m – 50m.

Εικόνα 1.26: Θεμελίωση πολυμελούς χωροδικτυώματος

Πλωτή θεμελίωση (floating foundation):

Αυτού το είδους οι θεμελιώσεις απαντώνται μόνον σε θαλάσσιες ανεμογεννήτριες και μάλιστα σε περιοχές μεγάλου βάθους πυθμένα (>50m). Ειδικότερα, χωρίζονται σε τρεις υποκατηγορίες:

- Spar buoy:

Αποτελείται από ένα μακροσκελές κυλινδρικό επιπλέων μέλος, το οποίο πληρώνεται με υλικό μεγάλους ειδικού βάρους για να προσφέρει την επιθυμητή σταθερότητα. Το μέλος αυτό σταθεροποιείται ως επί το πλείστον από τρία συνήθως καλώδια, τα οποία αγκυρώνονται στον πυθμένα. Σημειώνεται ότι το μεγαλύτερο τμήμα της κατασκευής βρίσκεται κάτω από τη στάθμη της θάλασσας ούτως ώστε να αποφευχθεί όσο το δυνατό περισσότερο η αλληλεπίδραση της κατασκευής με τους κυματισμούς.

- <u>Πλατφόρμα εφελκυόμενων μελών (tension leg platform TLP)</u>:
 Αποτελεί μία ημι-βυθισμένη κατασκευή με κατακόρυφα εφελκυόμενα καλώδια αγκυρωμένα στον πυθμένα.
- <u>Ημι-βυθιζόμενη θεμελίωση (semi-submersible):</u>

Αποτελεί παραλαγή της προηγούμενης περίπτωσης, όπου τα εφελκυόμενα καλώδια δεν τοποθετούνται στην κατακόρυφη διεύθυνση για την επίτευξη μεγαλύτερης σταθερότητας.

Εικόνα 1.27: Πλωτή θεμελίωση

Στις ακόλουθες εικόνες παρουσιάζονται συγκεντρωτικά τα κυριότερα είδη θεμελιώσεων ανεμογεννητριών. Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Εικόνα 1.28: Κυριότερα είδη θεμελιώσεων (α) χερσαίων και (β) & (γ) θαλάσσιων ανεμογεννητριών

Σε γενικές γραμμές σημειώνεται ότι αβαθείς θεμελιώσεις (βάθος έμπηξης μικρότερο της ελάχιστης πλευράς σε κάτοψη) προτιμούνται στις εξής περιπτώσεις:

- Υπαρξη επιφανειακού εδαφικού στρώματος ικανοποιητικής αντοχής
- Γεωτεχνικοί / τοπογραφικοί περιορισμοί της επιλεγμένης τοποθεσίας (π.χ. ύπαρξη βράχου)
- Είναι επιθυμητή μία γρήγορη και εύκολη κατασκευαστική λύση χωρίς ιδιαίτερα υψηλό κόστος
- Δεν απαιτείται μεγάλη αντίσταση σε ανατροπή και οιαδήποτε αντίσταση σε εφελκυσμό

Ενώ βαθιές θεμελιώσεις:

- Υπαρξη μεγαλύτερων φορτίων
- Αδυναμία επιφανειακών εδαφικών στρωμάτων να παραλάβουν τα φορτία της κατασκευής
- Δυνατότητα έμπηξης πασσάλων στην επιλεγμένη τοποθεσία
- Ανάγκη μείωσης της διαφορικής καθίζησης του εδάφους

Σε όλες τις ενδιάμεσες περιπτώσεις, συστήματα υβριδικών θεμελιώσεων που περιλαμβάνουν πλεονεκτήματα και από τις δύο προηγούμενες κατηγορίες είναι δυνατό να υιοθετηθούν.

Συμπερασματικά, λαμβάνοντας υπόψη όλα τα παραπάνω αξίζει να εξεταστεί το παρακάτω διάγραμμα με την κατανομή των διαφόρων τύπων θεμελιώσεων στα αιολικά πάρκα κατά το τέλος του έτους 2012. Η συντριπτική αριθμητική υπεροχή των μονοπάσσαλων και των θεμελιώσεων βαρύτητας είναι έκδηλη. **ΚΕΦ.1** Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Εικόνα 1.29: Κατανομή ειδών θεμελίωσης στις ήδη υφιστάμενες ανεμογεννήτριες μέχρι το τέλος του έτους 2012.

Για το λόγο αυτό, στην παρούσα μεταπτυχιακή εργασία θα μελετηθούν θεμελιώσεις μονοπάσσαλου, βαρύτητας και τρίποδα, οι οποίες σύμφωνα με το παραπάνω γράφημα καλύπτουν το 92% των περιπτώσεων.

ΑΝΑΦΟΡΕΣ:

- [1] <u>www.bp.com/statisticalreview</u> BP Statistical Review of World Energy (June 2015)
- [2] Global Energy Statistical Yearbook Enerdata (2015)
- [3] <u>www.wikipedia.org</u>
- [4] https://crewdevelopments.wordpress.com
- [5] www.fastcompany.com
- [6] <u>www.vestas.com</u>
- [7] <u>www.bloomberg.com</u>
- [8] <u>www.irena.org</u> International Renewable Energy Agency
- [9] http://www.ewea.org European Wind Energy Association

ΚΕΦ.2 ΠΕΡΙΓΡΑΦΗ ΑΝΕΜΟΓΕΝΝΗΤΡΙΩΝ ΜΕΛΕΤΗΣ

2.1. Γενικά

τον παρόν κεφάλαιο περιγράφονται τα χαρακτηριστικά των ανεμογεννητριών που χρησιμοποιήθηκαν στις παραμετρικές επιλύσεις της εργασίας. Η επιλογή του μοντέλου ανωδομής ανεμογεννήτριας NREL 5 MW έγινε με βάση τη δημοτικότητά του στις εκπονούμενες μελέτες ανά τον κόσμο. Η ευρεία χρήση του εν λόγω μοντέλου το καθιστά ιδανικό για άμεση σύγκριση αποτελεσμάτων μεταξύ διαφορετικών μελετών, αλλά και την εξαγωγή συμπερασμάτων εύκολης και άμεσης αναφοράς.

2.2. Τύπος NREL 5 MW

Ο τύπος ανεμογεννήτριας NREL 5 MW αναφέρεται στο μοντέλο που αναπτύχθηκε το 2009 από το National Renewable Energy Laboratory των Η.Π.Α..

Το μοντέλο αυτό αναπτύχθηκε για να υποστηρίξει τη μελέτη σχετικά με την εκτίμηση της αιολικής ενέργειας με απώτερο σκοπό να αποτελέσει μοντέλο αναφοράς από ερευνητικές ομάδες ανά τον κόσμο. Με τον τρόπο αυτό, οι δημιουργοί του αποσκοπούν να συνεισφέρουν στην τυποποίηση των βασικών προδιαγραφών των ανεμογεννητριών μελέτης και την ποσοτικοποίηση των αποτελεσμάτων.

Πρόκειται για μία συμβατική ανεμογεννήτρια τριών πτερυγίων με προδιαγραφές απόδοσης ενέργειας για την κάλυψη αναγκών κοινής ωφέλειας. Η NREL 5 MW διαθέτει ρυθμιζόμενο σύστημα προσανατολισμού πτερυγίων για μεταβαλλόμενη ταχύτητα ανέμου, ενώ διαθέτει μία μίξη χαρακτηριστικών λαμβανομένων από τα κυριότερα υπαρκτά μοντέλα ανεμογεννητριών. Τα βασικότερα χαρακτηριστικά της είναι τα ακόλουθα.

Αρχικές συνθήκες:	
Αρχική ταχύτητα περιστροφής ρότορα:	12.1 rpm
Γεωμετρικά χαρακτηριστικά:	
Αριθμός πτερυγίων (s):	3
Γωνία κώνου πτερυγίων:	-2.5°
Γωνία κατά την αζιμούθιο όταν ένα πτερύγιο	
βρίσκεται σε κατακόρυφη θέση προς τα άνω:	0 °
Διάμετρος ρότορα:	126 m
Ύψος πυλώνα από την επιφάνεια του εδάφους:	87.6 m
Διάμετρος άξονα περιστροφής:	3 m
Γωνία κλίσης άξονα περιστροφής ρότορα: -5°	
Απόσταση του κατακόρυφου άξονα περιστροφής	
(yaw axis) από τον άξονα περιστροφής του ρότορα:	-5.0191 m
Απόσταση εξωτερικού περιβλήματος άξονα	
ρότορα από τη θέση μέτρησης των τάσεων:	1.912 m
Κατακόρυφη απόσταση κορυφής πυλώνα από το	
κέντρο βάρους της ατράκτου της γεννήτριας:	1.9 m
Πλευρική απόσταση κορυφής πυλώνα από το	
κέντρο βάρους της ατράκτου της γεννήτριας:	0 m
Οριζόντια εγκάρσια απόσταση κορυφής πυλώνα	
από το κέντρο βάρους της ατράκτου της γεννήτριας:	1.75 m
Πλευρική απόσταση κορυφής πυλώνα από τη	
θέση ΙΜU της ατράκτου της γεννήτριας:	0 m
· · · · · · · · · · · · · · · · · · ·	

Οριζόντια εγκάρσια απόσταση κορυφής πυλώνα	
από τη θέση ΙΜU της ατράκτου της γεννήτριας:	2.23336 m
Κατακόρυφη απόσταση κορυφής πυλώνα από τον	
άξονα του ρότορα:	1.96256 m
Μάζες και ροπές αδράνειας:	
Μάζα ρότορα:	110000 kg
Μάζα ατράκτου-γεννήτριας:	240000 kg
Ροπή αδράνειας κεφαλής ρότορα περί τον άξονα	_
του ρότορα:	534.116 kg·m²
Ροπή αδράνειας ατράκτου γεννήτριας περί	C
τον κατακόρυφο άξονα περιστροφής:	2.60789E+06 kg·m ²
Σύστημα μετάδοσης:	
Απόδοση κιβωτίου γεννήτριας:	100%
Αναλογία κιβωτίου γεννήτριας (gearbox ratio):	97
Δυστρεψία συστήματος μετάδοσης:	8.67637 E+08 N·m/rad
Στρεπτική απόσβεση συστήματος μετάδοσης:	6.215E+06 N·m·sec/rad
Ονομαστική ισχύς:	5000 kW
Στοιχεία προσομοίωσης πυλώνα:	
Αριθμός κόμβων διακριτοποίησης δυναμικής	
ανάλυσης:	20
Δείκτης απόσβεσης:	1%
Πυκνότητα:	8500 kg/m ³
Μέτρο ελαστικότητας:	210 GPa
Μέτρο διάτμησης:	80.8 GPa
Ανεμολογικά στοιχεία ανεμογεννήτριας:	
Αναγκαία ταχύτητα πνοής ανέμου:	3 m/sec

Αναγκαία ταχύτητα πνοής ανέμου:	3 m/sec
Ονομαστική ταχύτητα πνοής ανέμου:	11.4 m/sec
Οριακή ταχύτητα πνοής ανέμου:	25 m/sec

Rating	5 MW
Rotor Orientation, Configuration	Upwind, 3 Blades
Control	Variable Speed, Collective Pitch
Drivetrain	High Speed, Multiple-Stage Gearbox
Rotor, Hub Diameter	126 m, 3 m
Hub Height	90 m
Cut-In, Rated, Cut-Out Wind Speed	3 m/s, 11.4 m/s, 25 m/s
Cut-In, Rated Rotor Speed	6.9 rpm, 12.1 rpm
Rated Tip Speed	80 m/s
Overhang, Shaft Tilt, Precone	5 m, 5°, 2.5°
Rotor Mass	110,000 kg
Nacelle Mass	240,000 kg
Tower Mass	347,460 kg
Coordinate Location of Overall CM	(-0.2 m, 0.0 m, 64.0 m)
Coordinate Location of Overall CM	(-0.2 m, 0.0 m, 64.0 m)

Εικόνα 2.1: Κυριότερα χαρακτηριστικά τύπου ανεμογεννητριών NREL 5MW.

2.3. NREL 5 MW - Land-based – Gravity Foundation

Στοιχεία θεμελίωσης ανεμογεννήτριας:

Τύπος θεμελίωσης:	Βαρύτητας
Διάμετρος πεδίλου:	18 m
Πάχος πεδίλου στην άκρη:	1 m
Πάχος πεδίλου στη παρειά του πυλώνα:	3.5 m
Βάθος έδρασης πεδίλου:	3.5 m
Υλικό πεδίλου:	Προκατ. / Σκυρ. C40/50
Πυκνότητα υλικού:	2500 kg/m^3
Μέτρο ελαστικότητας:	35 GPa
Λόγος Poisson:	0.2
Μέτρο διάτμησης:	21.875 GPa

Εικόνα 4.2: Απεικόνιση τυπικής χερσαίας ανεμογεννήτριας με θεμελίωση βαρύτητας

2.4. NREL 5 MW – Offshore – Gravity Foundation

Υδροδυναμικά στοιχεία:

20m
1027 kg/m ³
Jonswap / Pierson-
Moskowitz spectrum
(irregular)
0.25 sec
6 m
10 sec
0.15708 rad/sec
3.2 rad/sec
Βαρύτητας
18 m
1 m
3.5 m
3.5 m
Προκατ. / Σκυρ. C40/50
2500 kg/m^3
35 GPa
0.2
21.875 GPa

Εικόνα 4.3: Απεικόνιση τυπικής θαλάσσιας ανεμογεννήτριας με θεμελίωση βαρύτητας

2.5. NREL 5 MW - Land-based - Monopile

Στοιχεία θεμελίωσης ανεμογεννήτριας:

Γύπος θεμελίωσης:	Μονοπάσσαλη
Διάμετρος διατομής πασσάλου:	6 m
Πάχος διατομής πασσάλου:	60 mm
Μήκος έμπηξης πασσάλου:	30 m
Πυκνότητα:	8500 kg/m ³
Μέτρο ελαστικότητας:	210 GPa
Λόγος Poisson:	0.3
Μέτρο διάτμησης:	80.8 GPa

Εικόνα 4.4: Απεικόνιση τυπικής χερσαίας ανεμογεννήτριας με θεμελίωση μονοπάσσαλου

2.6. NREL 5 MW – Offshore – Monopile

Υδροδυναμικά στοιχεία:		
Βάθος πυθμένα:	20m	
Πυκνότητα νερού:	1027 kg/m ³	
Κινηματικό μοντέλο κύματος:	Jonswap /	Pierson-
	Moskowitz	spectrum
	(irregular)	-
Χρονικό βήμα υπολογισμών	0.25 sec	
Ύψος κύματος:	6 m	
Ιδιοπερίοδος κύματος:	10 sec	

Ελάχιστη ιδιοσυχνότητα κύματος: Μέγιστη ιδιοσυχνότητα κύματος:

Στοιχεία θεμελίωσης ανεμογεννήτριας:

Τύπος θεμελίωσης: Διάμετρος διατομής πασσάλου: Πάχος διατομής πασσάλου: Μήκος έμπηξης πασσάλου: Πυκνότητα: Μέτρο ελαστικότητας: Λόγος Poisson: Μέτρο διάτμησης: 0.15708 rad/sec 3.2 rad/sec

Mονοπάσσαλη 6 m 60 mm 30 m 8500 kg/m³ 210 GPa 0.3 80.8 GPa

Εικόνα 4.5: Απεικόνιση τυπικής θαλάσσιας ανεμογεννήτριας με θεμελίωση μονοπάσσαλου

2.7. NREL 5 MW – Offshore – Tripod

Υδροδυναμικά στοιχεία:

Βάθος πυθμένα:	20m	
Πυκνότητα νερού:	1027 kg/m ³	
Κινηματικό μοντέλο κύματος:	Jonswap / Pierson-	
	Moskowitz spectrum	
	(irregular)	
Χρονικό βήμα υπολογισμών	0.25 sec	
Ύψος κύματος:	6 m	
Ιδιοπερίοδος κύματος:	10 sec	
Ελάχιστη ιδιοσυχνότητα κύματος:	0.15708 rad/sec	
Μέγιστη ιδιοσυχνότητα κύματος:	3.2 rad/sec	
Στοιχεία θεμελίωσης ανεμογεννήτριας:		
Τύπος θεμελίωσης:	Πυραμοειδές χωροδικτύμα	
Διατομή πυλώνα:	CHS 6x0.06 [m]	

Διατομή πυλώνα: Διατομές άνω διαγώνιων μελών: Διατομή κεντρικού μέλους: Πυραμοειδές χωροδικτύμα CHS 6x0.06 [m] CHS 2.20x0.03 [m] CHS 5.0x0.05 [m] CHS 4.0x0.05[m] CHS 3.15x0.05[m]

Διατομές κάτω διαγώνιων μελών: Διατομές συνδετήριων δοκών:	CHS 1.5x0.02 [m] CHS 1.2x0.025 [m]
Διατομές ενδιάμεσων μελών πασσάλου	CHS 2.2x0.03 [m]
Διάμετρος διατομής πασσάλου:	2 m
Πάχος διατομής πασσάλου:	20 mm
Μήκος έμπηξης πασσάλου:	20 m
Πυκνότητα:	8500 kg/m ³
Μέτρο ελαστικότητας:	210 GPa
Λόγος Poisson:	0.3
Μέτρο διάτμησης:	80.8 GPa

Τα πλήρη αρχεία δεδομένων της ανεμογεννήτριας NREL 5 MW – Offshore – Tripod αναγράφονται αναλυτικά στο Παράρτημα Α.5..

Εικόνα 4.6: Απεικόνιση τυπικής θαλάσσιας ανεμογεννήτριας με θεμελίωση τρίποδα

ΚΕΦ.3 ΠΕΡΙΓΡΑΦΗ ΦΟΡΤΙΩΝ ΚΑΙ ΚΑΤΑΣΤΑΣΕΩΝ ΦΟΡΤΙΣΗΣ

3.1. Αρχές σχεδιασμού

3.1.1. <u>Κανονισμοί</u>

α τελευταία χρόνια όλο και περισσότεροι διεθνείς κανονισμοί και πρόσθετες διατάξεις δημοσιεύονται με απώτερο στόχο την παροχή ενός ικανοποιητικού επιπέδου προστασίας των ανεμογεννητριών έναντι της πρόκλησης ζημιών από την πληθώρα φυσικών κινδύνων που αντιμετωπίζουν κατά τη προγραμματισμένη διάρκεια ζωής ρυς.

τους.

Λόγω του σύνθετου χαρακτήρα του σχεδιασμού ανεμογεννητριών, αλλά και της σχετικά σύντομης ιστορίας του, ο μηχανικός καλείται συχνά να επιλέξει μεταξύ πολλών και διαφορετικών κανονιστικών πλαισίων, οι διατάξεις των οποίων μπορεί να μην διασφαλίζουν πάντοτε τη δυσμενέστερη δυνατή θεώρηση. Για τον λόγο αυτό κρίνεται ιδιαίτερα σημαντική η κατανόηση των ιδιαίτερων συνθηκών κάθε μεμονωμένης περίπτωσης και ο έλεγχος κατά το δυνατόν περισσότερων εναλλακτικών εξωτερικών φορτίσεων.

Στα πλαίσια της παρούσας εργασίας, λοιπόν, θα χρησιμοποιηθεί το παρακάτω πακέτο οδηγιών και κανονιστικών διατάξεων:

- International Standard: Wind Turbines Design Requirements (IEC 61400-1:2005)
- International Standard: Wind Turbines Design Requirements for offshore wind turbines (IEC 61400-3)
- BSI British Standards (2009), **BS-EN 61400-3: 2009** Wind Turbines Part 3: Design Requirements for Offshore Wind Turbines, CENELEC, Brussels.
- Design of Offshore Wind Turbine Structures (DNV-OS-J101) –May 2014
- American Petroleum Institute (API) RP 2A-WSD (2007), "Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design"
- European Standard **Eurocode 3** (1993), Design of Steel Structures Part 1-6: Strength and Stability of Shell Structures.

3.1.2. <u>Γενικά:</u>

Αρχικά, σημειώνεται ότι οι περιβαλλοντικές φορτίσεις μιας ανεμογεννήτριας χωρίζονται στην κανονική κατηγορία ασφαλείας^[1], δηλαδή την περίπτωση που τυχόν αστοχίες δεν καθορίζονται από τοπικούς κανονισμούς και μεμονωμένες απαιτήσεις ασφαλείας και στην ειδική κατηγορία ασφαλείας, για την οποία ισχύει το αντίθετο.

Όσον αφορά τις εξωτερικές συνθήκες, υφίσταται γενικά ο διαχωρισμός μεταξύ κανονικών (normal) και ακραίων (extreme) συνθηκών^[2]. Οι πρώτες αφορούν κυρίως επαναλαμβανόμενες φορτιστικές καταστάσεις, ενώ οι δεύτερες εκπροσωπούν σπάνιες τυχηματικές καταστάσεις.

Επιπλέον, σημειώνεται ότι οι ακραίες συνθήκες φόρτισης ανέμου έχουν συνήθως περίοδο επαναφοράς 1 ή 50 χρόνια.

Όσον αφορά το μοντέλο εισαγωγής των στροβιλισμών του ανέμου προτείνεται η κατανομή του Mann ή εναλλακτικά το φάσμα του Kaimal^[3].

3.1.3. Κατηγορίες ανεμογεννητριών:

Πιο συγκεκριμένα, η εξωτερική φόρτιση του ανέμου, η οποία αποτελεί και την κατ' εξοχή φόρτιση μίας ανεμογεννήτριας, οδηγεί στην κατηγοριοποίησή της με βάση την ταχύτητα πνοής και τις αναταράξεις. Στον ακόλουθο πίνακα παρουσιάζονται οι εν λόγω κατηγορίες. Σημειώνεται ότι η κατηγορία S αφορά περιπτώσεις ειδικών εξωτερικών συνθηκών, οι οποίες χρήζουν ξεχωριστών απαιτήσεων εκ μέρους του μηχανικού ή/και του κυρίου του έργου. Στην τελευταία περίπτωση ανήκουν συνήθως και οι υπεράκτιες ανεμογεννήτριες, καθώς και οι συνθήκες που επικρατούν κατά τη διάρκεια τροπικών καταιγίδων, ανεμοστρόβιλων και τυφώνων.

Wind to	urbine class	Ι	Ш	Ш	S
V _{ref}	(m/s)	50	42,5	37,5	Values
А	$I_{\rm ref}$ (-)		0,16		specified
В	$I_{\rm ref}$ (-)	0,14			by the
С	<i>I</i> _{ref} (-)	0,12		designer	

Πίνακας 3.1: Κατηγορίες φόρτισης ανέμου και ειδοποιά χαρακτηριστικά^[4].

Όπου,

- V_{ref} η μέση ταχύτητα αναφοράς του ανέμου στη θέση του άξονα περιστροφής του ρότορα για διάρκεια 10 min
- Α σηματοδοτεί την υψηλότερη κατηγορία αναταράξεων αέρα
- Β σηματοδοτεί τη μεσαία κατηγορία αναταράξεων αέρα
- C σηματοδοτεί τη χαμηλότερη κατηγορία αναταράξεων αέρα
- $I_{\rm ref}$
 η αναμενόμενη τιμή της έντασης των στροβιλισμών του α
έρα για ταχύτητα 15 m/sec

3.1.4. Συνθήκες ανέμου

Οι συνθήκες ανέμου διαδραματίζουν, όπως οφείλουν άλλωστε, σημαντικό ρόλο στο σχεδιασμό μιας ανεμογεννήτριας.

Τα φορτία ανέμου χωρίζονται σε φορτία υπό κανονικές συνθήκες ανέμου, τα οποία συμβαίνουν συχνά κατά τη διάρκεια της κανονικής ζωής μίας ανεμογεννήτριας και σε φορτία υπό ακραίες συνθήκες ανέμου, τα οποία έχουν περίοδο επαναφοράς από 1 έως 50 έτη.

Οι παραπάνω συνθήκες περιλαμβάνουν μία συνιστώσα ανέμου με σταθερή μέση ροή συνδυασμένη πολλές φορές, είτε με μία μεταβαλλόμενη ριπή ανέμου, είτε με αναταράξεις. Σε κάθε περίπτωση, η επιρροή της κλίσης της ροής του ανέμου σε σχέση με τον οριζόντιο άξονα θα λαμβάνεται για γωνίες έως και ±8°. Η κλίση αυτή της ροής θεωρείται ότι παραμένει αναλλοίωτη με το ύψος.

Ακόμα, η έκφραση «αναταράξεις» ή «στροβιλισμός» υπονοεί τυχαίες μεταβολές στην ταχύτητα του ανέμου σε σχέση με τη μέση ταχύτητα 10 λεπτών. Έτσι, όταν χρησιμοποιείται, το μοντέλο των αναταράξεων οφείλει να συμπεριλαμβάνει την επίδραση της μεταβαλλόμενης ταχύτητας, της τέμνουσας και της διεύθυνσης του ανέμου. Τα τρία επιμέρους διανύσματα της ταχύτητας των αναταραχών του ανέμου μπορούν να καθοριστούν:

- Διάμηκες: κατά τη διεύθυνση της μέσης ταχύτητας του ανέμου
- Πλευρικό: κατά την οριζόντια, κάθετη διεύθυνση ως προς το διάμηκες
- Ανοδικό: κάθετο στα δύο προηγούμενα και στη μέση ταχύτητας του ανέμου

Για τις κανονικές κατηγορίες ανεμογεννητριών, το τυχαίο πεδίο ταχυτήτων των αναταράξεων του ανέμου, πληροί τους ακόλουθους περιορισμούς:

- Η τυπική απόκλιση, σ₁, θεωρείται αμετάβλητη με το ύψος, ενώ οι τυπικές αποκλίσεις, οι οποίες αφορούν διευθύνσεις κάθετες στη μέση ταχύτητας του ανέμου ακολουθούν τα εξής συγκεκριμένα κριτήρια: πλευρική συνιστώσα σ₂ \geq 0.7·σ₁ και ανοδική συνιστώσα σ₃ \geq 0.5·σ₃.
- Η παράμετρος μεγέθους της διαμήκης συνιστώσας σε ύψος z δίδεται από τον τύπο:

$$\Lambda_1 = \begin{cases} 0.7 \cdot z & z \le 60m \\ 42m & z \ge 60m \end{cases}$$

Οι φασματικές πυκνότητες των τριών ορθοκανονικών συνιστωσών, $S_1(f)$, $S_2(f)$ και $S_3(f)$ τείνουν ασυμπτωτικά στις παρακάτω εκφράσεις, καθώς η συχνότητα των εσωτερικών επαναλήψεων αυξάνεται:

$$S_{1}(f) = 0.05 \cdot \sigma_{1}^{2} \cdot \left(\frac{\Lambda_{1}}{V_{hub}}\right)^{-2/3} \cdot f^{-5/3}$$
$$S_{2}(f) = S_{3}(f) = \frac{4}{3} \cdot S_{1}(f)$$

- Ένα αναγνωρισμένο μοντέλο για τη συνοχή

 $\Omega \varsigma$ εκ τούτου, το μοντέλο που ικανοποιεί όλες τις παραπάνω προδιαγραφές και προτείνεται από τον κανονισμό είναι αυτό του Mann.

3.1.4.1. Κανονικές συνθήκες ανέμου

Ως κανονικές συνθήκες ανέμου αναφέρονται εκείνες που συμβαίνουν τακτικά στη διάρκεια κανονικής λειτουργίας μιας ανεμογεννήτριας.

Υπό αυτές τις συνθήκες, η μέση τιμή της κατανομής της ταχύτητας του ανέμου στον άξονα του ρότορα της ανεμογεννήτριας για μία περίοδο 10min ακολουθεί την κατανομή Rayleigh:

$$P_R(V_{hub}) = 1 - \exp\left[-\pi \cdot \left(\frac{V_{hub}}{2 \cdot V_{ave}}\right)^2\right]$$

Όπου για τις κανονικές κατηγορίες ανεμογεννητριών (κατηγορίες Ι,ΙΙ,ΙΙΙ του Πίνακα 3.1):

$$V_{ave} = 0.2 \cdot V_{ref}$$

Παρακάτω παρατίθενται τα μοντέλα κανονικών εξωτερικών συνθηκών ανέμου:

- Μοντέλο κανονικού προφίλ ανέμου (NWP)

Θεωρείται ότι η μέση ταχύτητα του ανέμου αποτελεί συνάρτηση του ύψους άνω του εδάφους. Πιο συγκεκριμένα, για τις κανονικές κατηγορίες ανεμογεννητριών το προφίλ του ανέμου διέπεται από την παρακάτω σχέση:

$$V(z) = V_{hub} \cdot \left(\frac{z}{z_{hub}}\right)^a$$

όπου, ο εκθέτης α λαμβάνεται ίσος με 0.2.

Το προφίλ αυτό του ανέμου χρησιμοποιείται για να καθορίσει τη μέση κατακόρυφη τέμνουσα του ανέμου στην περιοχή σάρωσης του ρότορα.

Μοντέλο κανονικών αναταράξεων (NTM)

Θεωρείται ότι η αντιπροσωπευτική τιμή της τυπικής απόκλισης των στροβιλισμών δίδεται από ένα ποσοστημόριο 90% για τη δεδομένη ταχύτητα ανέμου στο ύψος του άξονα του ρότορα. Η τιμή αυτή για τις τυπικές ανεμογεννήτριες περιγράφεται από τη σχέση:

 $\sigma_1 = I_{ref} \cdot (0.75 \cdot V_{hub} + b)$

Οι τιμές της τυπικής απόκλισης των στροβιλισμών σ₁, καθώς και της έντασης των στροβιλισμών (σ₁/V_{hub}) δίδονται στις παρακάτω εικόνες, ενώ οι τιμές για την ένταση αναφοράς των στροβιλισμών I_{ref} παρουσιάζονται στον Πίνακα 3.1..

Εικόνα 1: Τυπική απόκλιση (αρ.) και ένταση (δεξ.) στροβιλισμών για το ΝΤΜ

3.1.4.2. Ακραίες συνθήκες ανέμου

Ως ακραίες συνθήκες ανέμου αναφέρονται εκείνες που συμβαίνουν σπανιότερα στη διάρκεια κανονικής λειτουργίας μιας ανεμογεννήτριας με περίοδο επαναφοράς ενός ή πενήντα ετών. Περιλαμβάνουν γεγονότα ακραίων τεμνουσών λόγω ανέμου, μέγιστες τιμές των ταχυτήτων ανέμου λόγω καταιγίδων, καθώς επίσης και ραγδαίες αλλαγές στην τιμή και τη διεύθυνση των ταχυτήτων ανέμου.

Παρακάτω παρατίθενται τα μοντέλα ακραίων εξωτερικών συνθηκών ανέμου:

- Μοντέλο ακραίας ταχύτητας ανέμου (EWM)

Το εν λόγω μοντέλο μπορεί να ενέχει, είτε σταθερό, είτε άνεμο με στροβιλισμούς, ενώ βασίζεται στην ταχύτητα αναφοράς του ανέμου (V_{ref}) και σε σταθερή τιμή της τυπικής απόκλισης των στροβιλισμών (σ_1).

Στην περίπτωση σταθερών ανέμων, η ακραία τιμή της ταχύτητας πνοής του ανέμου με περίοδο επαναφοράς 50 ετών (V_{e50}) και η ακραία τιμή της ταχύτητας του ανέμου με περίοδο επαναφοράς 1 έτους (V_{e1}) δίνονται από τις παρακάτω εξισώσεις συναρτήσει του ύψους z:

$$V_{e50}(z) = 1.4 \cdot V_{ref} \cdot \left(\frac{z}{z_{hub}}\right)^{0.11}$$

 $V_{e1}(z) = 0.8 \cdot V_{e50}(z)$

Οι τυχόν αποκλίσεις από τη διεύθυνση του μέσου φορτίου ανέμου λαμβάνονται υπόψη μέσω της θεώρησης κεκλιμένου άξονα (±15°) για την περίπτωση των σταθερών ακραίων ταχυτήτων ανέμου.

Οι μέσες ταχύτητες ανέμου των 10min ως συνάρτηση του ύψους z, δίδονται από τους ακόλουθους τύπους με περίοδο επαναφοράς 50 και 1 έτος αντίστοιχα:

$$V_{e50}(z) = V_{ref} \cdot \left(\frac{z}{z_{hub}}\right)^{0.11}$$
$$V_{e1}(z) = 0.8 \cdot V_{e50}(z)$$

Έτσι, η διαμήκης τυπική απόκλιση είναι:

$$\sigma_1 = 0.11 \cdot V_{hub}$$

Μοντέλο ακραίας ριπής ανέμου (EOG)

Το μέγεθος της ταχύτητας της ριπής ανέμου στον άξονα του ρότορα δίδεται από τον παρακάτω τύπο για τις κανονικές κατηγορίες ανεμογεννητριών:

$$V_{gust} = min\left\{1.35 \cdot (V_{e1} - V_{hub}), \quad 3.3 \cdot \left(\frac{\sigma_1}{1 + 0.1 \cdot \left(\frac{D}{A_1}\right)}\right)\right\}$$

όπου,

-

σ1 δίδεται από τον τύπο για το μοντέλο κανονικών αναταράξεων (NTM)

Λ₁ η παράμετρος του μεγέθους των αναταράξεων, η οποία δίδεται από τη σχέση της §3.1.4

D η διάμετρος του ρότορα

Ενώ, η συνολική ταχύτητα του ανέμου ορίζεται ως:

$$V(z,t) = \begin{cases} V(z) - 0.3 \cdot V_{gust} \cdot \sin\left(\frac{3 \cdot \pi \cdot t}{T}\right) \cdot \left[1 - \cos\left(\frac{2 \cdot \pi \cdot t}{T}\right)\right] & \gamma \iota \alpha \ 0 \le t \le T \\ V(z) & \delta \iota \alpha \varphi o \rho \varepsilon \tau \iota \kappa \dot{\alpha} \end{cases}$$

όπου:

- Μοντέλο ακραίων αναταράξεων (ETM)

Το μοντέλο αυτό χρησιμοποιεί το μοντέλο NWP συνδυασμένο με αναταράξεις τυπικής απόκλισης διαμήκους διανύσματος που δίδεται από:

$$\sigma_1 = c \cdot I_{ref} \cdot \left[0.072 \left(\frac{V_{ave}}{c} + 3 \right) \cdot \left(\frac{V_{ave}}{c} - 4 \right) + 10 \right]$$

όπου, c = 2m/sec.

Μοντέλο ακραίας μεταβολής διεύθυνσης (EDC)

Το μέγεθος της ακραίας μεταβολής της διεύθυνσης καθορίζεται χρησιμοποιώντας την ακόλουθη σχέση:

$$\theta_{e} = \pm 4 \cdot \arctan\left\{\frac{\sigma_{1}}{V_{hub} \cdot \left[1 + 0.1 \cdot \left(\frac{D}{A_{1}}\right)\right]}\right\}$$

όπου,

_

- σ1 δίδεται από τον τύπο για το μοντέλο κανονικών αναταράξεων (NTM)
- Λ₁ η παράμετρος του μεγέθους των αναταράξεων, η οποία δίδεται από τη σχέση της §3.1.4
- D η διάμετρος του ρότορα

Ενώ, η μεταβολή της διεύθυνσης στο χρόνο ορίζεται ως:

$$\theta(t) = \begin{cases} 0^{o} & \gamma \iota \alpha \ t < 0\\ \pm 0.5 \cdot \theta_{e} \cdot \left[1 - \cos\left(\frac{\pi \cdot t}{T}\right)\right] & \gamma \iota \alpha \ 0 \le t \le T\\ \theta_{e} & \gamma \iota \alpha \ t > T \end{cases}$$

όπου, T = 6 sec είναι η διάρκεια της ακραίας αλλαγής κατεύθυνσης, ενώ η επιλογή του πρόσημου στη σχέση θα γίνεται έτσι, ώστε να προκύπτουν δυσμενέστερες φορτίσεις.

Μετά το πέρας της περιόδου των έξι δευτερολέπτων, θεωρείται ότι η διεύθυνση του ανέμου παραμένει σταθερή.

Όσον αφορά, την ταχύτητα πνοής του ανέμου, δίδεται κατά τα γνωστά από την εξίσωση του μοντέλου NWP.

Μοντέλο ακραίας ριπής ανέμου με αλλαγή διεύθυνσης (ECD)

Το μέγεθος της ταχύτητας της ριπής του ανέμου λαμβάνεται σε αυτήν την περίπτωση ίσο με $V_{\rm cg}=15m/sec.$

Η ταχύτητα πνοής του ανέμου ορίζεται ως εξής:

$$V(z,t) = \begin{cases} V(z) & \gamma \iota \alpha \ t < 0\\ V(z) + 0.5 \cdot V_{cg} \cdot \left[1 - \cos\left(\frac{\pi \cdot t}{T}\right)\right] \gamma \iota \alpha \ 0 \le t \le T\\ V(z) + V_{cg} & \gamma \iota \alpha \ t > T \end{cases}$$

όπου, T = 10sec είναι ο χρόνος αύξησης της ταχύτητας, ενώ η ίδια η ταχύτητα πνοής του ανέμου V(z) δίδεται από την εξίσωση του κανονικού προφίλ ανέμου (NWP).

Σημειώνεται ότι πραγματοποιείται η θεώρηση πως η αύξηση της ταχύτητας συμβαίνει ταυτόχρονα με τη μεταβολή της διεύθυνσης από μηδενική γωνία μεταβολής έως και της θ_{cg}, η οποία ορίζεται ως:

$$\theta_{cg} = \begin{cases} 180^{o} & \gamma \iota \alpha V_{hub} < 4 \\ \frac{720^{o} m/sec}{V_{hub}} & \gamma \iota \alpha \ 4m/sec \le V_{hub} \le V_{ref} \end{cases}$$
Οπότε, η ταυτόχρονη μεταβολή της διεύθυνσης δίδεται από:

$$\theta(t) = \begin{cases} 0^{0} & \gamma \iota \alpha \ t < 0\\ \pm 0.5 \cdot \theta_e \cdot \left[1 - \cos\left(\frac{\pi \cdot t}{T}\right)\right] & \gamma \iota \alpha \ 0 \le t \le T\\ \pm \theta_{cg} & \gamma \iota \alpha \ t > T \end{cases}$$

όπου, T = 10sec είναι ο χρόνος αύξησης της ταχύτητας.

- Μοντέλο ακραίας διατμητικής μεταβολής ανέμου (EWS)

Οι μεταβολές των συνιστωσών της ταχύτητας πνοής του ανέμου ορίζονται ως εξής.

Μεταβολή (θετική ή αρνητική) κατακόρυφης διάτμησης:

$$V(z,t) = \begin{cases} V_{hub} \cdot \left(\frac{z}{z_{hub}}\right)^{a} \pm \left(\frac{z - z_{hub}}{D}\right) \cdot \left[2.5 + 0.2 \cdot \beta \cdot \sigma_{1} \cdot \left(\frac{D}{\Lambda_{1}}\right)^{1/4}\right] \cdot \left[1 - \cos\left(\frac{2 \cdot \pi \cdot t}{T}\right)\right] & \text{fia } 0 \le t \le T \\ V_{hub} \cdot \left(\frac{z}{z_{hub}}\right)^{a} & \text{fiagoretika} \end{cases}$$

Μεταβολή οριζόντιας διάτμησης:

$$V(z,t) = \begin{cases} V_{hub} \cdot \left(\frac{z}{z_{hub}}\right)^{a} \pm \left(\frac{y}{D}\right) \cdot \left[2.5 + 0.2 \cdot \beta \cdot \sigma_{1} \cdot \left(\frac{D}{\Lambda_{1}}\right)^{1/4}\right] \cdot \left[1 - \cos\left(\frac{2 \cdot \pi \cdot t}{T}\right)\right] & \forall i \alpha \ 0 \le t \le T \\ V_{hub} \cdot \left(\frac{z}{z_{hub}}\right)^{a} & \delta_{i \alpha \varphi o \rho \varepsilon \tau i \kappa \dot{\alpha}} \end{cases}$$

όπου και για τις δύο διατμητικές μεταβολές:

- $\alpha = 0.2$
- $\beta = 6.4$
- T = 12sec
- σ1 δίδεται από τον τύπο για το μοντέλο κανονικών αναταράξεων (NTM)
- Λ₁ η παράμετρος του μεγέθους των αναταράξεων, η οποία δίδεται από τη σχέση της §3.1.4
- D η διάμετρος του ρότορα

Ενώ σημειώνεται ότι η επιλογή του πρόσημου στη σχέση θα γίνεται έτσι, ώστε να προκύπτουν δυσμενέστερες φορτίσεις. Ακόμη, οι δύο ακραίες διατμητικές μεταβολές δεν εφαρμόζονται ταυτόχρονα.

3.1.5. <u>Θαλάσσιες συνθήκες</u>

Το θαλάσσιο περιβάλλον και οι συνθήκες που επικρατούν σε αυτό επηρεάζουν καθοριστικά τις περισσότερες φορές τις εκτιθέμενες σε αυτές υπεράκτιες ανεμογεννήτριες.

Όπως και με τα φορτία του ανέμου, έτσι και τα θαλάσσια φορτία χωρίζονται σε φορτία υπό κανονικές θαλάσσιες συνθήκες, τα οποία συμβαίνουν συχνά κατά τη διάρκεια της κανονικής ζωής μίας υπεράκτιας ανεμογεννήτριας και σε φορτία υπό ακραίες θαλάσσιες συνθήκες, τα οποία έχουν περίοδο επαναφοράς από 1 έως 50 έτη. Εξαίρεση αποτελεί η ετήσια μεταβολή της στάθμης των υδάτων, η οποία θεωρείται ως κανονική θαλάσσια συνθήκη, όπως περιγράφεται και στη συνέχεια.

3.1.5.1. <u>Κυματισμοί</u>

Οι κυματισμοί είναι γενικά ακανόνιστοι σε σχήμα και ποικίλουν σε ύψος, μήκος, ταχύτητα διάδοσης, καθώς επίσης μπορούν να προσεγγίσουν μία θαλάσσια ανεμογεννήτρια από μία ή περισσότερες διευθύνσεις ταυτόχρονα.

Συνεπώς, ο καλύτερος τρόπος περιγραφής των κυματισμών είναι η προσομοίωσή τους με στοχαστικά μοντέλα, τα οποία αντιμετωπίζουν τη θαλάσσια κατάσταση ως ένα άθροισμα πολλών μεμονωμένων συνιστωσών συχνότητα. Κάθε μία από αυτές τις συνιστώσες, αποτελεί ένα περιοδικό κύμα με το δικό του μέγεθος, συχνότητας και διεύθυνση μετάδοσης. Επιπλέον, οι συνιστώσες δεν βρίσκονται κατ' ανάγκη σε φάση και οποιαδήποτε αλληλο-συσχέτιση είναι τυχαία.

 Ω ς εκ τούτου, ο σχεδιασμός για τη θαλάσσια κατάσταση περιγράφεται από ένα φάσμα κυματισμών (S_η) με ένα σημαντικό ύψος κύματος (H_s), μία φασματική ιδιοπερίοδο (T_p) και μία μέση διεύθυνση διάδοσης (θ_{wm}). Σημαντικό ρόλο δε στην επιλογή του πλέον καταλληλότερου φάσματος διαδραματίζει η γεωγραφική περιοχή της μελέτης, η οξύτητας της θαλάσσιας κατάστασης που θα προσομοιωθεί, καθώς επίσης και άλλα ιδιάζοντα χαρακτηριστικά της εκάστοτε εφαρμογής. Αναλυτικότερα, παρακάτω περιγράφονται τα δύο βασικότερα είδη κυματικών φασμάτων.

- Φάσμα Pierson-Moskowitz (PM)

Το εν λόγω φάσμα χρησιμοποιείται κυρίως για τη μοντελοποίηση κυματισμών υπό πλήρη ανάπτυξη, λόγου χάρη όταν το μέγεθος των κυματισμών δεν εμποδίζεται από την πνοή του ανέμου. Σε πολλές περιοχές η θεώρησή αυτή ανταποκρίνεται στην πραγματικότητα για τον περισσότερο χρόνο, συνεπώς το φάσμα PM είναι ιδανικό για αναλύσεις κόπωσης.

Η φασματική πυκνότητα της υπερύψωσης της επιφάνει
ας της θάλασσας δίδεται από τον ακόλουθο τύπο:

$$S_{PM}(f) = 0.3125 \cdot H_s^{2} \cdot f_p^{4} \cdot f^{-5} \cdot exp\left[-1.25 \cdot \left(\frac{f_p}{f}\right)^{4}\right]$$

όπου:

_

Hs	η τιμή του σημαντικού ύψους κύματος [m]
$\mathbf{f}_{\mathbf{p}}$	η οριακή συχνότητα [HZ] - $f_p = 1/T_p$
f	η συχνότητα του κυματισμού [Hz]

Φάσμα Jonswap

Το φάσμα αυτό σχηματίστηκε από την κατάλληλη μετατροπή του PM φάσματος για κυματισμών κατά τη διαδικασία της ανάπτυξης. Για το λόγο αυτό, το φάσμα Jonswap θεωρείται το πλέον κατάλληλο για την προσομοίωση ακραίων συνθηκών. Πιο συγκεκριμένα, εισάγονται δύο συντελεστές, ένας παράγοντας αύξησης της μέγιστης τιμής, γ^α, και ένας παράγοντας κανονικοποίησης, C (γ). Ο πρώτος παράγοντας αυξάνει τη μέγιστη τιμή του φάσματος και «στενεύει» την περιοχή υψηλών τιμών, ενώ ο δεύτερος μειώνει τη φασματική πυκνότητα συγκριτικά με το φάσμα PM. Έτσι, προκύπτει ένα φάσμα με ίδια τιμή του σημαντικού ύψους κύματος, H_s (και συνεπώς με ίδια ενέργεια).

Παρακάτω παρουσιάζεται η σχέση της φασματικής πυκνότητας της ανύψωσης της επιφάνειας της θάλασσας. Η διατύπωση γίνεται με τέτοιο τρόπο έτσι, ώστε για γ = 1, το φάσμα Jonswap να εκφυλίζεται σε ένα φάσμα PM.

$$S_{JS}(f) = C(\gamma) \cdot S_{PM}(f) \cdot \gamma^{\alpha}$$

όπου,

γ η παράμετρος ακρότατου και μορφής

$$C(\gamma) = \frac{\int_0^\infty S_{PM}(f)df}{\int_0^\infty S_{PM}(f) \cdot \gamma^\alpha df}$$
ο παράγοντας κανονικοποίησης

Πιο αναλυτικά, ισχύουν τα παρακάτω:

$$\alpha = exp\left[-\frac{\left(f-f_p\right)^2}{2\cdot\sigma^2\cdot f_p^2}\right]$$

όπου:

$$σ$$
 =0.07 για f ≤ f_p

$$\sigma$$
 =0.09 για f > f_p

$$\gamma = \begin{cases} 5 & \gamma \iota \alpha \ \frac{T_P}{\sqrt{H_s}} < 3.6 \\ exp\left(5.75 - 1.15 \cdot \frac{T_P}{\sqrt{H_s}}\right) \gamma \iota \alpha \ 3.6 \le \frac{T_P}{\sqrt{H_s}} < 5 \\ 1 & \gamma \iota \alpha \ \frac{T_P}{\sqrt{H_s}} \ge 5 \end{cases}$$

όπου, H_s σε m και T_p σε sec.

$$C(\gamma) = 1 - 0.287 \cdot ln\gamma$$

όπου, ο συντελεστής κανονικοποίησης λαμβάνει την τιμή μονάδα για $\gamma = 1$.

Αν εφαρμοστούν όλες οι παραπάνω μεταβλητές στη σχέση της φασματικής πυκνότητας του φάσματος Jonswap, τότε λαμβάνει τη μορφή:

$$S_{JS}(f) = 0.3125 \cdot H_s^2 \cdot T_p \cdot \left(\frac{f}{f_p}\right)^{-5} \cdot exp\left[-1.25 \cdot \left(\frac{f}{f_p}\right)^{-4}\right] \cdot (1 - 0.287 \cdot ln\gamma) \cdot \gamma \left[-0.5 \cdot \left(\frac{f}{f_p}\right)^2\right]$$

Σημειώνεται ότι το φάσμα ενδείκνυται να χρησιμοποιείται για κυματισμούς σε ρηχά ύδατα.

Ανεξαρτήτως των παραπάνω φασμάτων, υπάρχουν περιπτώσεις όπου περιοδικά ή κανονικά κύματα μπορούν να χρησιμοποιηθούν ως στιγμιότυπα της πραγματικής κατάστασης που επικρατεί στη θαλάσσια περιοχή της μελέτης για τον σχεδιασμό της κατασκευής. Σε κάθε περίπτωση όμως ένας ντετερμινιστικός σχεδιασμός πρέπει να καθορίζεται από το ύψος, την περίοδο και τη διεύθυνση των κυματισμών.

Ιδιαίτερη σημασία αποκτά η έννοια της συζευγμένης πιθανότητας για την κατανομή των παραπάνω παραμέτρων στον χώρο και στον χρόνο σε σχέση με τα αντίστοιχα φορτία ανέμου. Άπτεται στον σχεδιαστή, λοιπόν, να εκτιμήσει τον συσχετισμό μεταξύ των συνθηκών ανέμου και κυματισμών και ενδεχομένως να χρειαστεί η δυσμενής θεώρηση ότι άνεμος και κυματισμός δρουν ταυτόχρονα στην ίδια διεύθυνση.

Παρακάτω παρουσιάζονται αναλυτικά οι καταστάσεις κυματισμών που θεωρούνται κατά τον σχεδιασμό μιας ανεμογεννήτριας.

- Κανονική θαλάσσια κατάσταση (NSS)

Το σημαντικό ύψος κύματος, η περίοδος συντονισμού και η διεύθυνση στην περίπτωση της κανονικής θαλάσσιας κατάστασης επιλέγεται μαζί με τη σχετιζόμενη μέση ταχύτητα ανέμου, με βάση την εκτιμώμενη μακροπρόθεσμη συζευγμένη πιθανότητα κατανομής των παραμέτρων στη δεδομένη τοποθεσία κατασκευής.

Για τους ελέγχους κοπώσεως, ο σχεδιαστής πρέπει να βεβαιωθεί ότι ο αριθμός και η επιλογή των κανονικών θαλάσσιων καταστάσεων επαρκούν για την εκτίμηση των βλαβών λόγω κόπωσης που σχετίζονται με τη μακροπρόθεσμη κατανομή των παραμέτρων.

Για τους ελέγχους αστοχίας, οι κανονικές θαλάσσιες καταστάσεις χαρακτηρίζονται από την αναμενόμενη τιμή του σημαντικού ύψους κύματος με ταυτόχρονη άσκηση μίας μέσης ταχύτητας ανέμου. Άπτεται στην κρίση του σχεδιαστή να επιλεγεί επαρκές εύρος τιμών για τη περίοδο συντονισμού του κάθε σημαντικού ύψους κύματος. Η επιλογή της περιόδου αυτής οφείλει να οδηγεί στις δυσμενέστερες φορτίσεις της κατασκευής.

- Κανονικό ύψος κύματος (NWH)

Το ύψος σχεδιασμού του κύματος, H_{NWH} , θεωρείται ίσο με την αναμενόμενη τιμή του σημαντικού κύματος, η οποία είναι εξαρτώμενη από τη δεδομένη τιμή της μέσης ταχύτητας ανέμου, $H_{s,NSS}$. Άπτεται στην κρίση του σχεδιαστή να επιλεγεί επαρκές εύρος τιμών για τη περίοδο συντονισμού του κάθε σημαντικού ύψους κύματος. Το εύρος αυτό προτείνεται να βρίσκεται εντός της περιοχής τιμών:

$$11.1 \cdot \sqrt{H_{s,NSS}(V)/g} \le T \le 14.3 \cdot \sqrt{H_{s,NSS}(V)/g}$$

- Δριμεία θαλάσσια κατάσταση (SSS)

Το στοχαστικό μοντέλο της δριμείας θαλάσσιας κατάστασης λαμβάνεται σε συνδυασμό με τις κανονικές συνθήκες ανέμου για τον υπολογισμό των οριακών φορτίσεων μιας θαλάσσιας ανεμογεννήτριας κατά τη φάση παραγωγής ενέργειας. Το εν λόγω μοντέλο σχετίζει τη δριμεία θαλάσσια κατάσταση με κάθε ταχύτητα ανέμου, η οποία βρίσκεται εντός του εύρους που επιτρέπεται η παραγωγή ενέργειας. Το σημαντικό ύψος κύματος, H_{s.SSS}(V) καθορίζεται με τη βοήθεια παρεμβολής μεταξύ των καταγραφών των βάσεων δεδομένων της περιοχής της κατασκευής ούτως, ώστε ο συνδυασμός της εμφάνισης του σημαντικού ύψους κύματος και της ταχύτητας ανέμου να έχει περίοδο επαναφοράς ίση με 50 έτη. Για οποιαδήποτε ταχύτητα ανέμου μπορεί να θεωρηθεί δυσμενώς η ακραία τιμή του ύψους κυματισμού, H₅₀, η οποία έχει περίοδο επαναφοράς 50 έτη.

Και πάλι άπτεται στην κρίση του σχεδιαστή να επιλεγεί επαρκές εύρος τιμών για τη περίοδο συντονισμού του κάθε σημαντικού ύψους κύματος. Η επιλογή της περιόδου αυτής οφείλει να οδηγεί στις δυσμενέστερες φορτίσεις της κατασκευής.

· Δριμύ ύψος κύματος (SWH)

Το μοντέλο σχεδιασμού του δριμύ κυματισμού λαμβάνεται σε συνδυασμό με τις κανονικές συνθήκες ανέμου για τον υπολογισμό των οριακών φορτίσεων μιας θαλάσσιας ανεμογεννήτριας κατά τη φάση παραγωγής ενέργειας. Το εν λόγω μοντέλο σχετίζει το δριμύ ύψος κυματισμού με κάθε ταχύτητα ανέμου, η οποία βρίσκεται εντός του εύρους που επιτρέπεται η παραγωγή ενέργειας. Το σημαντικό ύψος κύματος, H_{SWH}(V) καθορίζεται με τη βοήθεια παρεμβολής μεταξύ των καταγραφών των βάσεων δεδομένων της περιοχής της κατασκευής ούτως, ώστε ο συνδυασμός της εμφάνισης του σημαντικού ύψους κύματος και της ταχύτητας ανέμου να έχει περίοδο επαναφοράς ίση με 50 έτη. Για οποιαδήποτε ταχύτητα ανέμου μπορεί να θεωρηθεί δυσμενώς η ακραία τιμή του ύψους κυματισμού, H₅₀, η οποία έχει περίοδο επαναφοράς 50 έτη.

Και πάλι άπτεται στην κρίση του σχεδιαστή να επιλεγεί επαρκές εύρος τιμών για τη περίοδο συντονισμού του κάθε σημαντικού ύψους κύματος. Η επιλογή της περιόδου αυτής οφείλει να οδηγεί στις δυσμενέστερες φορτίσεις της κατασκευής.

- Ακραία θαλάσσια κατάσταση (ESS)

Το στοχαστικό μοντέλο της ακραίας θαλάσσιας κατάστασης λαμβάνεται υπόψη χρησιμοποιώντας τα ακραία σημαντικά ύψη κυματισμού, H_{s50} και H_{s1} , με περίοδο επαναφοράς 50 και 1 έτος αντιστοίχως. Οι ακραίες αυτές τιμές υπολογίζονται μέσω ανάλυσης των κατάλληλων μετρήσεων και/ή μετεωρολογικών δεδομένων για τη θέση κατασκευής.

Και πάλι άπτεται στην κρίση του σχεδιαστή να επιλεγεί επαρκές εύρος τιμών για τη περίοδο συντονισμού του κάθε σημαντικού ύψους κύματος. Η επιλογή της περιόδου αυτής οφείλει να οδηγεί στις δυσμενέστερες φορτίσεις της κατασκευής.

Ελλείψει διαθέσιμων πληροφοριών για τη μακροπρόθεσμη συζευγμένη πιθανότητα κατανομής του ακραίου ανέμου και του ακραίου κυματισμού, μπορεί να θεωρηθεί ότι η ακραία τιμή της μέσης ταχύτητας του ανέμου για 10min με περίοδο επαναφοράς 50 έτη (1 έτος αντίστοιχα) συμβαίνει κατά τη διάρκεια των 3hours που επικρατεί η ακραία θαλάσσια κατάσταση με περίοδο επαναφοράς 50 έτη (1 έτος αντίστοιχα).

Ακραίο ύψος κύματος (EWH)

Η ακραία τιμή σχεδιασμού για το ύψος του κύματος λαμβάνεται υπόψη χρησιμοποιώντας το ακραίο ύψος κυματισμού, H_{50} και H_{s1} , με περίοδο επαναφοράς 50 και 1 έτος αντιστοίχως. Οι ακραίες αυτές τιμές υπολογίζονται μέσω ανάλυσης των κατάλληλων μετρήσεων για τη θέση κατασκευής. Εναλλακτικά, μπορεί να θεωρηθεί ότι τα ύψη των κυματισμών ακολουθούν την κατανομή Rayleigh, δηλαδή:

 $H_{50} = 1.86 \cdot H_{s50} \ (H_1 = 1.86 \cdot H_{s1})$

όπου, τα σημαντικά ύψη κύματος αναφέρονται σε περίοδο μέτρησης 3hours.

Ειδικότερα, για ρηχά ύδατα οι ακραίες τιμές των υψών των κυματισμών και οι σχετιζόμενες περίοδοι καθορίζονται από την ανάλυση κατάλληλων ειδικών επί τόπου μετρήσεων. Σε περιπτώσεις όπου τέτοιες μετρήσεις δεν είναι διαθέσιμες, τα ύψη των κυματισμών μπορούν να θεωρηθούν ίσα με το ελάχιστο εκ των δύο: του ύψους του κυματισμού θραύσης και του ύψους που προκύπτει από την κατανομή Rayleigh.

Μειωμένο ύψος κύματος (RWH)

Η μειωμένη τιμή σχεδιασμού για το ύψος του κύματος λαμβάνεται υπόψη χρησιμοποιώντας το μειωμένο ύψος κυματισμού, $H_{\rm red50}$ και $H_{\rm red1}$, με περίοδο επαναφοράς 50 και 1 έτος αντιστοίχως. Οι ακραίες αυτές τιμές υπολογίζονται έτσι, ώστε ο ταυτόχρονος συνδυασμός τους με την ακραία ταχύτητα ανέμου, η οποία προκύπτει ως μέση ταχύτητα για διάρκεια 3sec ($V_{e50}, \ V_{e1}$), να οδηγούν στην ίδια πιθανότητα με αυτή ενός δυσμενέστερου συνδυασμού που προκύπτει από τον συνδυασμό του ακραίου ύψους κύματος και της μειωμένης ακραίας ταχύτητας του ανέμου.

Οι ακραίες αυτές τιμές υπολογίζονται μέσω ανάλυσης των κατάλληλων μετρήσεων για τη θέση κατασκευής. Εναλλακτικά, μπορεί να θεωρηθεί ότι τα ύψη των κυματισμών ακολουθούν την κατανομή Rayleigh, δηλαδή:

$$H_{red50} = 1.3 \cdot H_{s50} \ (H_{red1} = 1.3 \cdot H_{s1})$$

όπου, τα σημαντικά ύψη κύματος αναφέρονται σε περίοδο μέτρησης 3hours.

Ειδικότερα, για ρηχά ύδατα οι ακραίες τιμές των υψών των κυματισμών και οι σχετιζόμενες περίοδοι καθορίζονται από την ανάλυση κατάλληλων ειδικών επί τόπου μετρήσεων. Σε περιπτώσεις όπου τέτοιες μετρήσεις δεν είναι διαθέσιμες, τα ύψη των κυματισμών μπορούν να θεωρηθούν ίσα με το ελάχιστο εκ των δύο: του ύψους του κυματισμού θραύσης και του ύψους που προκύπτει από την κατανομή Rayleigh.

Κύματα θραύσεως

Η επιρροή των κυμάτων θραύσεως πρέπει να αξιολογείται κατά τον σχεδιασμό μία θαλάσσιας ανεμογεννήτριας. Γενικά, τα κύματα θραύσης κατηγοριοποιούνται σε διαβροχή (spilling), βύθιση (plunging) και παφλασμό (surging). Σημειώνεται ότι οι διαμόρφωση πυθμένα στις πρώτες δύο περιπτώσεις είναι κατάλληλη για την κατασκευή ανεμογεννητριών, όπως φαίνεται και στην ακόλουθη εικόνα. Το βάθος του πυθμένα, αλλά και η διαμόρφωσή του, καθώς επίσης και η περίοδος του κυματισμού καθορίζουν σε ποια κατηγορία ανήκει ο κυματισμός θραύσης.

Εικόνα 2: Είδη κυματισμών θραύσης

3.1.5.2. <u>Θαλάσσια ρεύματα</u>

Παρόλο που τα θαλάσσια ρεύματα ποικίλουν στον χώρο και στον χρόνο, θεωρούνται γενικά ως ένα ενιαίο πεδίο οριζόντιας ροής σταθερής ταχύτητας και διεύθυνσης. Η μόνη παράμετρος μεταβολής είναι το βάθος.

Τονίζεται ότι αν και η επίδραση των ρευμάτων στη σχέση μεταξύ του μήκους κύματος και την περίοδο του κύματος είναι μικρή και μπορεί να αγνοηθεί, είναι πιθανόν όμως η επίδρασή τους να είναι αξιόλογη στο σχεδιασμό έναντι κόπωσης.

- Υποθαλάσσια ρεύματα

Το προφίλ ενός υποθαλάσσιου ρεύματος μπορεί να περιγραφεί από έναν απλό καταστατικό νόμο συναρτήσει του βάθους του νερού (d) και του ύψους από τη μέση στάθμη θάλασσας (z):

$$U_{ss}(z) = U_{ss}(0) \cdot [(z+d)/d]^{1/7}$$

Οι τιμές της ταχύτητας της επιφάνειας της θάλασσα, $U_{ss}(0)$ για περιόδους επαναφοράς 1 και 50 ετών αντίστοιχα μπορούν να καθοριστούν μέσω κατάλληλων μετρήσεων στην τοποθεσία της κατασκευής.

Σημειώνεται η θεώρηση ότι τα υποθαλάσσια ρεύματα είναι συντρέχοντα με τη διεύθυνση πνοής του ανέμου.

Επιφανειακά ρεύματα προκαλούμενα από τον άνεμο

Το είδος αυτό μπορεί να χαρακτηριστεί ως μία γραμμική κατανομή της ταχύτητας $U_w(z)$, η οποία φθίνει από την τιμή $U_w(0)$ στην επιφάνεια μέχρι την τιμή 0 σε βάθος 20m κάτω από τη μέση επιφάνεια της θάλασσας:

$$U_w(z) = U_w(0) \cdot (1 + z/20)$$

Σε τοποθεσίες όπου το βάθος πυθμένα είναι μικρότερο από 20m, τότε η ταχύτητα του ρεύματος στον πυθμένα είναι μη μηδενική.

Όσον αφορά τη ταχύτητα του ρεύματος στην επιφάνεια, μπορεί αφενός να θεωρηθεί συγγραμμική με τη διεύθυνση πνοής του ανέμου και αφετέρου το μέτρο της μπορεί να υπολογιστεί ως:

$$U_W(0) = 0.01 \cdot V_{1-hour}(z = 10m)$$

όπου, $V_{1-hour}(z=10m)$ ορίζεται ως η μέση τιμή της ταχύτητας πνοής του ανέμου μιας ώρας σε ύψος 10m από τη μέση στάθμη της θάλασσας.

Οι τιμές της ταχύτητας της επιφάνειας της θάλασσα, $U_{1-hour}(z=10m)$ για περιόδους επαναφοράς 1 και 50 ετών αντίστοιχα μπορούν να καθοριστούν μέσω κατάλληλων μετρήσεων στην τοποθεσία της κατασκευής.

- Επιφανειακά ρεύματα προκαλούμενα από κύματα θραύσεως

Όταν μία ανεμογεννήτρια προβλέπεται να κατασκευαστεί κοντά σε ακτές που μορφολογικά προκαλούν τη θραύση κυματισμών, πρέπει να ληφθεί ειδική μέριμνα για τα ρεύματα που προκαλούνται από τις διατμητικές δυνάμεις των κυμάτων θραύσης.

Το μέγεθος των ρευμάτων αυτών μπορεί να καθοριστεί με τη χρήση ενός κατάλληλου αριθμητικού μοντέλου που λαμβάνει υπόψη την πλήρη σύζευξη των κινηματικών στοιχείων των κυματισμών και των ρευμάτων. Παρόλα αυτά, για ρεύματα κοντά στην ακτή, τα οποία έχουν διεύθυνση παράλληλα στην ακτογραμμή, η ταχύτητα σχεδιασμού στη θέση θραύσης του κύματος υπολογίζεται ως εξής:

$$U_{bw} = 2 \cdot s \cdot \sqrt{g \cdot H_B}$$

όπου:

Η_B το ύψος του κύματος θραύσης

- s η κλίση του θαλάσσιου πυθμένα
- g η επιτάχυνση της βαρύτητας
- Κανονικό μοντέλο ρευμάτων (NCM)

Το μοντέλο αυτό ορίζεται ως ο κατάλληλος συνδυασμός των ρευμάτων λόγω ανέμων και των ρευμάτων λόγω κυμάτων θραύσεως που απαντώνται στην τοποθεσία του έργου, στην περίπτωση που αυτά σχετίζονται με τις κανονικές συνθήκες κυματισμού. Από το εν λόγω μοντέλο εξαιρούνται η παλίρροια και τα υποθαλάσσια ρεύματα που προκαλούνται από καταιγίδες.

Το μοντέλο NCM χρησιμοποιείται για φορτιστικές καταστάσεις που αφορούν κανονικές και δριμείες κυματικές καταστάσεις (NSS, NWH, SSS, SWH). Σημειώνεται ότι για κάθε κατάσταση φόρτισης, η ταχύτητα των προκαλούμενων από άνεμο ρευμάτων μπορεί να υπολογίζεται από τη σχετική μέση ταχύτητα πνοής του ανέμου.

```
Ακραίο μοντέλο ρευμάτων (ECM)
```

Το μοντέλο αυτό ορίζεται ως ο κατάλληλος συνδυασμός των υποθαλάσσιων ρευμάτων που απαντώνται στην τοποθεσία του έργου, τα οποία προκαλούνται από τον άνεμο και από τυχόν κυματισμούς θραύσης με περίοδο επαναφοράς 1 και 50 ετών.

Το μοντέλο NCM χρησιμοποιείται για φορτιστικές καταστάσεις που αφορούν ακραίες και μειωμένες κυματικές καταστάσεις (ESS, EWH, RWH). Σημειώνεται ότι για τις καταστάσεις φόρτισης του μοντέλου θεωρούνται θαλάσσια ρεύματα με την ίδια περίοδο επαναφοράς με αυτή των κυματισμών.

3.1.5.3. <u>Στάθμη υδάτων</u>

Για τον υπολογισμό των υδροδυναμικών φορτίων μιας θαλάσσιας ανεμογεννήτριας λαμβάνεται υπόψη η μεταβολή της στάθμης των υδάτων μόνον όταν αυτό κρίνεται απαραίτητο. Στις περιπτώσεις όμως κανονικών κυματικών συνθηκών (NSS, NWH), θεωρείται συνήθως ως σταθερή στάθμη υδάτων η μέση στάθμη της θάλασσας (MSL).

Στην ακόλουθη εικόνα παρουσιάζονται αναλυτικά οι εναλλακτικές στάθμες σχεδιασμού.

Εικόνα 3: Θεωρούμενες στάθμες σχεδιασμού^[5]

Κανονική μεταβολή της στάθμης υδάτων (NWLR)

Ως κανονική μεταβολή της στάθμης υδάτων θεωρείται η μεταβολή με περίοδο επαναφοράς 1 έτους. Ελλείψει απαραίτητων δεδομένων από την τοποθεσία της κατασκευή, ώστε να χαρακτηριστεί η μακροπρόθεσμη πιθανότητα κατανομής της στάθμης των υδάτων, λαμβάνεται η μεταβολή μεταξύ της υψηλότερης αστρονομικής παλίρροιας (HAT) και της χαμηλότερης αστρονομικής παλίρροιας (LAT).

Η μεταβολή NWLR θεωρείται για εκείνες τις περιπτώσεις φόρτισης κόπωσης και οριακών καταστάσεων που αφορούν το μοντέλο κανονικών θαλάσσιων συνθηκών (NSS) με βάση τη συζευγμένη πιθανότητα κατανομής των θαλάσσιων συνθηκών και της ταχύτητας του ανέμου (H_s , T_p , V_{hub}). Πεδία εφαρμογής της NWRL αποτελούν επίσης οι οριακές καταστάσεις φόρτισης που σχετίζονται με την δριμεία θαλάσσια κατάσταση (SSS) και το δριμύ ύψος κύματος (SWH), καθώς και με συνθήκες κυματισμών με περίοδο επαναφοράς 1 έτους.

Σημειώνεται ότι στις οριακές καταστάσεις φόρτισης που σχετίζονται με τη δριμεία στοχαστική θαλάσσια κατάσταση (SSS) και το μοντέλου του δριμύ ύψους κύματος, η στάθμη υδάτων που επιλέγεται μπορεί να οδηγήσει στον περιορισμό της ανάπτυξης του κύματος λόγω του μικρού βάθους πυθμένα. Στις περιπτώσεις αυτές, επιλέγεται υψηλότερη στάθμη υδάτων με τη δριμεία μεταβολή στάθμης (EWLR).

· Ακραία μεταβολή της στάθμης υδάτων (EWLR)

Ως ακραία μεταβολή της στάθμης υδάτων θεωρείται η μεταβολή με κυματικές συνθήκες περιόδου επαναφοράς 50 έτη. Οι συνδυασμοί φόρτισης επιλέγονται έτσι, ώστε να αντιστοιχούν σε στάθμες υδάτων που επιφέρουν τα δυσμενέστερα φορτία για την κατασκευή.

Ελλείψει απαραίτητων δεδομένων από την τοποθεσία της κατασκευής, ώστε να χαρακτηριστεί η μακροπρόθεσμη πιθανότητα κατανομής της στάθμης των υδάτων, ο μελετητής οφείλει να θεωρήσει τις εξής μεταβολές στάθμης στους σχετικούς υπολογισμούς:

- HSWL με περίοδο επαναφοράς 50 έτη, βασισμένη σε κατάλληλους συνδυασμούς της υψηλότερης αστρονομικής παλίρροιας και του θετικού κύματος καταιγίδας
- LSWL με περίοδο επαναφοράς 50 έτη, βασισμένη σε κατάλληλους συνδυασμούς της χαμηλότερης αστρονομικής παλίρροιας και του αρνητικού κύματος καταιγίδας.
- Στάθμη σχετιζόμενη με το μεγαλύτερο φορτίο κύματος θραύσης.

3.1.5.4. <u>Πάγος</u>

Σε αρκετές περιπτώσεις η εφαρμογή των φορτίων πάγου στην υποδομή μίας ανεμογεννήτριας μπορεί να αποδειχθεί κρίσιμη.

Πιο συγκεκριμένα, τα φορτία αυτά είναι δυνατό να ενέχουν στατικές συνιστώσες από την ταχεία ανάπτυξη πάγου ή δυναμικές που οφείλονται στον άνεμο και στα ρεύματα. Η δε επαναλαμβανόμενη κρούση κινούμενου πάγου στην υποδομή μιας ανεμογεννήτριας για αρκετό χρονικό διάστημα μπορεί να οδηγήσει σε σημαντική καταπόνηση κόπωσης.

3.1.5.5. Ανάπτυξη θαλάσσιας ζωής

Η ανάπτυξη θαλάσσιας ζωής στα υποθαλάσσια τμήματα της ανεμογεννήτριας επηρεάζει τη μάζα, τη γεωμετρία και την υφή της επιφάνειας της υποδομής της. Κατ' επέκταση ο παράγοντας αυτός ενδέχεται να επηρεάσει τα υδροδυναμικά φορτία, τη δυναμική απόκριση, την προσβασιμότητα και τον ρυθμό διάβρωσης της κατασκευής.

Επιμέρους υποκατηγορίες αποτελούν η ανάπτυξη «σκληρών» ειδών (δηλαδή έμβιοι οργανισμοί, όπως μύδια, στρείδια κ.τ.λ.) και η ανάπτυξη «μαλακών» ειδών (όπως φύκια). Η πρώτη κατηγορία καταλαμβάνει κατά κανόνα λεπτότερες στρώσεις, αποτελεί όμως εντονότερη παρέμβαση από ό,τι η δεύτερη. Σημειώνεται ότι οι θαλάσσιοι οργανισμοί αποικούν σχετικά γρήγορα μία υποθαλάσσια κατασκευή, αλλά ο ρυθμός ανάπτυξής τους φθίνει με τον χρόνο.

Ακόμα, η φύση και το πάχος των στρώσεων της θαλάσσιας ζωής εξαρτάται από τη θέση των δομικών μελών σε σχέση με την επιφάνεια της θάλασσας, τον προσανατολισμό τους ως προς το επικρατές ρεύμα, την ηλικία της κατασκευής και τον προγραμματισμό της συντήρησής της. Πέραν αυτών, σημαντικό ρόλο διαδραματίζουν επίσης η περιεκτικότητα του νερού σε αλάτι και οξυγόνο, ο δείκτης pH και η θερμοκρασία.

Επιπρόσθετα, η ύπαρξη ή όχι θαλάσσιας ζωής στα βυθισμένα μέλη μιας κατασκευής επηρεάζει σημαντικά τον βαθμό και ρυθμό διάβρωσης, στην οποία υπόκειται. Η επίδραση μάλιστα ενδέχεται να είναι, είτε αρνητική, είτε θετική και σε κάθε περίπτωση ανομοιόμορφη στα μέλη της κατασκευής.

Για όλους τους παραπάνω απρόβλεπτους λόγους, ενδείκνυται ο προγραμματισμός τακτικών επιθεωρήσεων και πιθανής καθαίρεσης της αναπτυσσόμενης θαλάσσιας ζωής από τα βυθισμένα μέλη.

3.1.5.6. Μετατόπιση του θαλάσσιου πυθμένα και υποσκαφές

Ειδική μέριμνα γίνεται για τυχόν μετατοπίσεις του θαλάσσιου πυθμένα και υποσκαφές κατά τον σχεδιασμό μιας θαλάσσιας ανεμογεννήτριας. Σχετικές διατάξεις περιέχονται στον κανονισμό ISO 19901-4.

3.1.6. Λοιπές περιβαλλοντικές συνθήκες

Πέραν του ανέμου και των θαλάσσιων συνθηκών, οφείλει να διερευνηθεί η επιρροή και άλλων περιβαλλοντικών συνθηκών στην ασφάλεια και ακεραιότητα μίας ανεμογεννήτριας. Τέτοιες συνθήκες περιλαμβάνουν:

- Θερμοκρασία
- Υγρασία
- Πυκνότητα αέρα
- Ηλιακή ακτινοβολία
- Βροχή, χαλάζι, χιόνι και πάγο
- Χημικώς ενεργές ουσίες
- Μηχανικά ενεργά σωματίδια
- Αλμυρότητα
- Κεραυνός
- Σεισμός

Κατά τον σχεδιασμό ανεμογεννητριών, και δε υπεράκτιων, διάφοροι περιβαλλοντικοί παράγοντες οφείλουν να ληφθούν υπόψη, είτε υπό μορφή αντιπροσωπευτικών τιμών είτε υπό μορφή ακρότατων τιμών.

Σε κάθε περίπτωση, η εκάστοτε πιθανότητα ταυτόχρονης πραγματοποίησης δύο ή περισσότερων διαφορετικών περιβαλλοντικών συνθηκών πρέπει να λαμβάνεται υπόψη στο σχεδιασμό.

3.1.6.1. Κανονικές λοιπές περιβαλλοντικές συνθήκες

- Διακύμανση θερμοκρασίας περιβάλλοντος: -10° C +40° C
- Σχετική υγρασία έως και 95%
- Περιεχόμενο ατμόσφαιρας ισοδύναμο με εκείνο μίας μη μολυσμένης ατμόσφαιρας της ενδοχώρας^[6]
- Ένταση ηλιακής ακτινοβολίας: 1000 W/m^2
- Πυκνότητα αέρα: 1.225 kg/m³

3.1.6.2. Ακραίες λοιπές περιβαλλοντικές συνθήκες

Στην κατηγορία αυτή περιλαμβάνονται συνθήκες θερμοκρασίας ($\leq 20^{\circ}$ C και $\geq 50^{\circ}$ C), κεραυνών^[7], πάγου και σεισμών.

Σημειώνεται ότι στην περίπτωση περιοχών υψηλής σεισμικότητας, προτείνεται η διενέργεια ελέγχου της επιρροής του σεισμού στην κατασκευή με τη διεξαγωγή μίας απλοποιημένης μονοβάθμιας ανάλυσης (Fundamental Mode Analysis). Αν οι σεισμικοί συνδυασμοί κριθούν κρίσιμοι τότε διενεργείται πλήρες έλεγχος με πολυβάθμιες δυναμικές αναλύσεις.

3.1.7. Συνθήκες δικτύου ηλεκτρικού ρεύματος

Οι κανονικές συνθήκες του δικτύου ηλεκτρικού ρεύματος που λαμβάνονται υπόψη για τους τερματικούς μετασχηματιστές των ανεμογεννητριών είναι οι εξής:

-	Τάση ρεύματος:	ονομαστική τιμή $^{[8]} \pm 10\%$
-	Συχνότητα:	ονομαστική τιμή $\pm 2\%$
-	Ανισορροπία τάσης:	ο λόγος της συνιστώσας της αρνητικής ακολουθίας
-	Ανακυκλιζόμενοι βρόχοι:	της τάσης να μην υπερβαίνει το 2% περίοδοι από 0.1sec – 5sec για την πρώτη και 10sec – 90sec για τη δεύτερη ανακύκλιση
-	Διακοπές ρεύματος:	20 φορές / έτος με διάρκεια μέχρι 6 hours

3.2. Φορτίσεις σχεδιασμού

Γενικά, τα φορτία σχεδιασμού μίας ανεμογεννήτριας χωρίζονται στις εξής κατηγορίες:

- Βαρυτικά και αδρανειακά:

Στατικά και δυναμικά φορτία που προκαλούνται από τη βαρύτητα, τις δονήσεις, την περιστροφή των πτερυγίων και τη σεισμική δραστηριότητα.

- Αεροδυναμικά:

Στατικά και δυναμικά φορτία που προκαλούνται από τη ροή του ανέμου και από την αλληλεπίδρασή του με τα εν στάσει και εν κινήσει μέλη των ανεμογεννητριών.

- Φορτία ενεργοποίησης:

Προκαλούνται από τη λειτουργία και τις δυνατότητες ελέγχου των ανεμογεννητριών.

- Υδροδυναμικά φορτία:

Πρόκειται για δυναμικά φορτία που προκαλούνται από τη ροή των υδάτων και την αλληλεπίδρασή της με την υποδομή μιας ανεμογεννήτριας.

Φορτία λόγω θαλάσσιου πάγου:

Πρόκειται, τόσο για στατικές, όσο και δυναμικές φορτίσεις.

Οι πρώτες είναι αποτέλεσμα θερμοκρασιακών διακυμάνσεων ή μεταβολών της στάθμης υδάτων, οι οποίες προκαλούν ταχύ σχηματισμό πάγου στην επιφάνεια του νερού.

Οι δεύτερες προκαλούνται από τον άνεμο και τα ρεύματα, τα οποία κινούν τμήματα πάγου που προσκρούουν στην υποδομή της κατασκευής.

- Λοιπά φορτία:

Όπως ειδικές φορτίσεις κυματισμών, κρουστικών φορτίων, φορτίων πάγου, σεισμικών φορτίων κ.τ.λ.

3.3. Καταστάσεις φόρτισης σχεδιασμού

Για τις ανάγκες σχεδιασμού μιας ανεμογεννήτριας, η διάρκεια ζωής της θεωρείται ότι μπορεί να αντιπροσωπευτεί επαρκώς από ένα ελάχιστο πλήθος των σημαντικότερων καταστάσεων σχεδιασμού που μπορεί να κληθεί να αντιμετωπίσει. Ο καθορισμός των καταστάσεων φόρτισης γίνεται έπειτα από κατάλληλο συνδυασμό των συνθηκών λειτουργίας με άλλες καταστάσεις σχεδιασμού, όπως η συναρμολόγηση, η ανέγερση και η συντήρηση υπό τις εξωτερικές επιδράσεις.

Πιο συγκεκριμένα, οι καταστάσεις φορτίσεων σχεδιασμού οφείλουν να συνδυάζουν τις παρακάτω συνθήκες λαμβάνοντας υπόψη τις κατάλληλες πιθανότητες πραγματοποίησης:

- Κανονικές συνθήκες σχεδιασμού και κατάλληλες κανονικές ή ακραίες εξωτερικές συνθήκες
- Συνθήκες σχεδιασμού υπό βλάβη και κατάλληλες εξωτερικές συνθήκες
- Συνθήκες σχεδιασμού για μεταφορά, εγκατάσταση και συντήρηση και κατάλληλες
 εξωτερικές συνθήκες

Στους ακόλουθους πίνακες παρουσιάζονται οι ελάχιστες καταστάσεις φόρτισης σχεδιασμού που πρέπει να ληφθούν κατά την ανάλυση χερσαίων και θαλάσσιων ανεμογεννητριών.

Σημειώνεται ότι σε κάθε κατάσταση φόρτισης σχεδιασμού υποδεικνύεται ο κατάλληλος τύπος ανάλυσης που πρέπει να διεξαχθεί, δηλαδή ανάλυση οριακών καταστάσεων (U), οι οποίες περιλαμβάνουν τον έλεγχο της αντοχής του υλικού, τον υπολογισμό της παραμόρφωσης του άκρου της λεπίδας και την ευστάθεια της κατασκευής, ή ανάλυση κόπωσης (F).

Αξίζει ακόμα να σημειωθεί ότι οι καταστάσεις φορτίσεων σχεδιασμού που αναφέρονται στις οριακές καταστάσεις (U) σηματοδοτούνται επιπλέον ως εξής:

- Κανονικές καταστάσεις (N)

Οι οποίες αναμένονται να συμβούν συχνά στη διάρκεια ζωής μιας ανεμογεννήτριας. Η κατασκευή βρίσκεται στη συνήθη προβλεπόμενη κατάσταση ή μπορεί να έχει υποστεί μικρές βλάβες.

- Ασυνήθιστες καταστάσεις (Α)

Οι οποίες είναι λιγότερο πιθανό να συμβούν και αντιστοιχούν συνήθως σε καταστάσεις σχεδιασμού με σοβαρές βλάβες που έχουν ως αποτέλεσμα την ενεργοποίηση των συστημάτων ασφαλείας της ανεμογεννήτριας.

- Καταστάσεις μεταφοράς και ανέγερσης (T)

Κατά τη διάρκεια των οποίων αρκετά διαφορετικά εντατικά μεγέθη αναπτύσσονται στα μέλη της κατασκευής σε σχέση με τις υπόλοιπες καταστάσεις.

Το είδος των καταστάσεων φόρτισης (Ν, Α ή Τ) καθορίζει και τον επιμέρους συντελεστή ασφαλείας που θα χρησιμοποιηθεί.

ΚΕΦ.3 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Design situation	DL C		Wind condition	Other conditions	Type of analysis	Partial safety factors
1) Power production	1.1	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	For extrapolation of extreme events	U	N
	1.2	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$		F	•
	1.3	ETM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$		U	N
	1.4	ECD	$V_{hub} = V_r - 2 \text{ m/s}, V_r, V_r + 2 \text{ m/s}$		U	N
	1.5	EWS	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$		U	N
2) Power production plus occurrence of	2.1	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	Control system fault or loss of electrical network	U	N
fault	2.2	NTM	V _{in} < V _{hub} < V _{out}	Protection system or preceding internal electrical fault	U	A
	2.3	EOG	$V_{\rm hub}$ = $V_{\rm r}\pm2$ m/s and $V_{\rm out}$	External or Internal electrical fault including loss of electrical network	U	A
	2.4	NTM	V _{in} < V _{hub} < V _{out}	Control, protection, or electrical system faults including loss of electrical network	F	•
3) Start up	3.1	NWP	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$		F	•
	3.2	EOG	$V_{\rm hub}$ = $V_{\rm in}$, $V_{\rm r} \pm 2$ m/s and $V_{\rm out}$		U	N
	3.3	EDC	$V_{\rm hub}$ = $V_{\rm in}$, $V_{\rm r} \pm 2$ m/s and $V_{\rm out}$		U	N
4) Normal shut down	4.1	NWP	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$		F	•
	4.2	EOG	$V_{hub} = V_r \pm 2$ m/s and V_{out}		U	N
5) Emergency shut down	5.1	NTM	$V_{hub} = V_r \pm 2$ m/s and V_{out}		U	N
6) Parked (standing still or idling)	6.1	EWM	50-year recurrence period		U	N
	6.2	EWM	50-year recurrence period	Loss of electrical network connection	U	A
	6.3	EWM	1-year recurrence period	Extreme yaw misalignment	U	N
	6.4	NTM	$V_{\rm hub} < 0.7 V_{\rm ref}$		F	•
7) Parked and fault conditions	7.1	EWM	1-year recurrence period		U	A
8) Transport, assembly, maintenance and repair	8.1	NTM	$\mathcal{V}_{\rm meint}$ to be stated by the manufacturer		U	т
	8.2	EWM	1-year recurrence period		U	A

Πίνακας 3.2: Καταστάσεις φόρτισης σχεδιασμού για χερσαίες ανεμογεννήτριες^[9].

The following abbreviations are used in Table 2:				
DLC	Design load case			
ECD	Extreme coherent gust with direction change			
EDC	Extreme direction change			
EOG	Extreme operating gust			
EWM	Extreme wind speed model			
EWS	Extreme wind shear			
NTM	Normal turbulence model			
ETM	Extreme turbulence model			
NWP	Normal wind profile model			
V _r ±2 m/s	Sensitivity to all wind speeds in the range shall be analysed			
F	Fatigue			
U	Ultimate strength			
Ν	Normal			
А	Abnormal			
т	Transport and erection			
*	Partial safety for fatigue			

Πίνακας 3.2: Καταστάσεις φόρτισης σχεδιασμού για χερσαίες ανεμογεννήτριες (συνέχεια)^[9].

Design situation	DLC	Wind condition	Waves	Wind and wave directionality	Sea currents	Water level	Other conditions	Type of analysis	Partial safety factor
1) Power production	1.1	NTM V _{in} < V _{hub} < V _{out} RNA	NSS $H_{s} = E[H_{s} V_{hub}]$	COD, UNI	NCM	MSL	For extrapolation of extreme loads on the RNA	U	N (1,25)
	1.2	NTM $V_{in} < V_{hub} < V_{out}$	NSS Joint prob. distribution of H_{s}, T_{p}, V_{hub}	COD, MUL	No currents	NWLR or ≥ MSL		F	*
	1.3	ETM V _{in} < V _{hub} < V _{out}	NSS $H_s = E[H_s V_{hub}]$	COD, UNI	NCM	MSL		U	N
	1.4	ECD $V_{hub} = V_r - 2 \text{ m/s}, V_r,$ $V_r + 2 \text{ m/s}$	NSS (or NWH) $H_{s} = E[H_{s} V_{hub}]$	MIS, wind direction change	NCM	MSL		U	N
	1.5	EWS V _{in} < V _{hub} < V _{out}	NSS (or NWH) $H_s = E[H_s V_{hub}]$	COD, UNI	NCM	MSL		U	N
	1.6a	NTM V _{in} < V _{hub} < V _{out}	SSS H _s = H _{s.SSS}	COD, UNI	NCM	NWLR		U	N
	1.6b	NTM V _{in} < V _{hub} < V _{out}	SWH H = H _{SWH}	COD, UNI	NCM	NWLR		U	N
Design situation	DLC	Wind condition	Waves	Wind and wave directionality	Sea currents	Water level	Other conditions	Type of analysis	Partial safety factor
2) Power pro- duction plus occurrence of fault	2.1	NTM $V_{in} < V_{hub} < V_{out}$	NSS $H_{\rm s} = E[H_{\rm s} V_{\rm hub}]$	COD, UNI	NCM	MSL	Control system fault or loss of electrical network	U	N
	2.2	$\frac{\text{NTM}}{V_{\text{in}} < V_{\text{hub}} < V_{\text{out}}}$	NSS $H_{\rm s} = E[H_{\rm s} V_{\rm hub}]$	COD, UNI	NCM	MSL	Protection system or preceding internal electrical fault	U	A
	2.3	EOG $V_{hub} = V_r \pm 2 \text{ m/s}$ and V_{out}	NSS (or NWH) $H_{s} = E[H_{s} V_{hub}]$	COD, UNI	NCM	MSL	External or internal electrical fault including loss of electrical network	U	A
	2.4	NTM V _{in} < V _{hub} < V _{out}	NSS $H_{\rm s} = E[H_{\rm s} ~V_{\rm hub}]$	COD, UNI	No currents	NWLR or ≥ MSL	Control, protection, or electrical system faults including loss of electrical network	F	*
3) Start up	3.1	NWP $V_{in} < V_{hub} < V_{out}$	NSS (or NWH) $H_e = E[H_e V_{hub}]$	COD, UNI	No currents	NWLR or ≥ MSL		F	*
	3.2	EOG $V_{hub} = V_{in}, V_r \pm 2 \text{ m/s}$ and V_{out}	NSS (or NWH) $H_s = E[H_s V_{hub}]$	COD, UNI	NCM	MSL		U	N
	3.3	EDC ₁ $V_{hub} = V_{in}, V_r \pm 2 \text{ m/s}$ and V_{out}	NSS (or NWH) $H_{s} = E[H_{s} V_{hub}]$	MIS, wind direction change	NCM	MSL		U	N

Πίνακας 3.3: Καταστάσεις φόρτισης σχεδιασμού για θαλάσσιες ανεμογεννήτριες^[10].

ΚΕΦ.3 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

4) Normal shut	4.1	NWP	NSS (or NWH)	COD, UNI	No	NWLR or		F	*
down		$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	$H_{\rm s} = E[H_{\rm s} ~V_{\rm hub}]$		currents	2 MSL			
	4.2	EOG	NSS (or NWH)	COD, UNI	NCM	MSL		U	N
		$V_{\rm hub}$ = $V_{\rm r} \pm 2 {\rm m/s}$ and $V_{\rm out}$	$H_{\rm s} = E[H_{\rm s} V_{\rm hub}]$						
5) Emergency	5.1	NTM	NSS	COD, UNI	NCM	MSL		U	N
shut down		$V_{hub} = V_r \pm 2m/s$ and V_{out}	$H_s = E[H_s V_{hub}]$						
6) Parked	6.1a	EWM Turbulent wind model	ESS	MIS, MUL	ECM	EWLR		U	N
(standing still or idling)		$V_{\text{hub}} = k_1 V_{\text{ref}}$	$H_{e} = k_{2} H_{e50}$						
or runny)	6.1b	EWM Steady wind model	RWH	MIS, MUL	ECM	EWLR		U	N
		$V(z_{hub}) = V_{off}$	$H = H_{rodED}$						
	6.1c	RWM Steady wind model	EWH	MIS. MUL	ECM	EWLR		U	N
		$V(z_{hun}) = V_{radia}$	$H = H_{ro}$	ŕ					
	6.2a	EWM Turbulent wind model	ESS	MIS. MUL	ECM	EWLR	Loss of electrical	U	A
		$V_{int} = k_i V_{int}$	$H_{\rm r} = k_{\rm e} H_{\rm res}$				network	-	
	6 2b	EWM Steady wind model	RWH	MIS MUL	ECM	EWIR	Loss of electrical	u	Δ
	0.20	$V(z,) = V_{-1}$	H = H	1110, 1102	2011	2	network	Ŭ	
	6.3a	FWM Turbulent wind model	ESS FSS	MIS MUI	ECM	NWLR	Extreme yaw		N
	0.54	V = k V	H = k H	MINO, MIOL	Low		misalignment	Ŭ	
	6.35	Flub "1 "1 FWM Steady wind model	RWH	MIS MUI	ECM	NWLR	Extreme yaw		N
	0.55	V(z,) = V	H = H	MIG, MOL	Low		misalignment	Ŭ	
	-	NTM	11 - 11red1		Ne			-	
	6.4	V < 0.7 V	distribution of	COD, MUL	currents	≥ MSL		F	
		hub for ref	H _s , T _p , V _{bub}						
			0 p 1100						
			0 p 1100	Wind and					Partial
Design situation	DLC	Wind condition	Waves	Wind and wave directionality	Sea currents	Water level	Other conditions	Type of analysis	Partial safety factor
Design situation 7) Parked and	DLC 7.1a	Wind condition	Waves	Wind and wave directionality MIS, MUL	Sea currents ECM	Water level NWLR	Other conditions	Type of analysis U	Partial safety factor A
Design situation 7) Parked and fault	DLC 7.1a	Wind condition EWM Turbulent wind model	Waves ESS $H_e = k_2 H_{e1}$	Wind and wave directionality MIS, MUL	Sea currents ECM	Water level NWLR	Other conditions	Type of analysis U	Partial safety factor A
Design situation 7) Parked and fault conditions	DLC 7.1a	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$	Waves ESS $H_{s} = k_2 H_{s1}$	Wind and wave directionality MIS, MUL	Sea currents ECM	Water level NWLR	Other conditions	Type of analysis U	Partial safety factor A
Design situation 7) Parked and fault conditions	DLC 7.1a 7.1b	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model	Waves ESS $H_8 = k_2 H_{81}$ RWH	Wind and wave directionality MIS, MUL MIS, MUL	Sea currents ECM ECM	Water level NWLR NWLR	Other conditions	Type of analysis U	Partial safety factor A A
Design situation 7) Parked and fault conditions	DLC 7.1a 7.1b	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{g1}$	Waves ESS $H_6 = k_2 H_{51}$ RWH $H = H_{red1}$	Wind and wave directionality MIS, MUL MIS, MUL	Sea currents ECM ECM	Water level NWLR NWLR	Other conditions	Type of analysis U	Partial safety factor A A
Design situation 7) Parked and fault conditions	DLC 7.1a 7.1b 7.1c	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{g1}$ RWM Steady wind model	Waves ESS $H_6 = k_2 H_{51}$ RWH $H = H_{red1}$ EWH	Wind and wave directionality MIS, MUL MIS, MUL	Sea currents ECM ECM ECM	Water level NWLR NWLR	Other conditions	Type of analysis U U U	Partial safety factor A A A
Design situation 7) Parked and fault conditions	DLC 7.1a 7.1b 7.1c	$\label{eq:wind_condition} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Waves ESS $H_6 = k_2 H_{61}$ RWH $H = H_{red1}$ EWH $H = H_1$	Wind and wave directionality MIS, MUL MIS, MUL	Sea currents ECM ECM ECM	Water level NWLR NWLR NWLR	Other conditions	Type of analysis U U U	Partial safety factor A A A
Design situation 7) Parked and fault conditions	DLC 7.1a 7.1b 7.1c	$\label{eq:wind_condition} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Waves ESS $H_6 = k_2 H_{61}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob.	Wind and wave directionality MIS, MUL MIS, MUL COD, MUL	Sea currents ECM ECM ECM	Water level NWLR NWLR NWLR or	Other conditions	Type of analysis U U U F	Partial safety factor A A A
Design situation 7) Parked and fault conditions	DLC 7.1a 7.1b 7.1c 7.2	$\label{eq:wind_condition} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Waves ESS $H_6 = k_2 H_{61}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of H_1, T_2, V_{rem}	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL	Sea currents ECM ECM ECM No currents	Water level NWLR NWLR NWLR NWLR or ≥ MSL	Other conditions	Type of analysis U U U F	Partial safety factor A A A
Design situation 7) Parked and fault conditions	DLC 7.1a 7.1b 7.1c 7.2	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{nub}) = V_{e1}$ RWM Steady wind model $V(z_{nub}) = V_{red1}$ NTM $V_{hub} < 0,7 V_1$	Waves ESS $H_6 = k_2 H_{61}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of $H_{e} T_p, V_{hub}$	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL	Sea currents ECM ECM ECM No currents	Water level NWLR NWLR NWLR NWLR or ≥ MSL	Other conditions	Type of analysis U U U F	Partial safety factor A A A
Design situation 7) Parked and fault conditions 8) Transport, assembly.	DLC 7.1a 7.1b 7.1c 7.2	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{nub}) = V_{e1}$ RWM Steady wind model $V(z_{nub}) = V_{red1}$ NTM $V_{hub} < 0,7 V_1$ To be stated by the manual	Waves ESS $H_{6} = k_{2} H_{61}$ RWH $H = H_{red1}$ EWH $H = H_{1}$ NSS Joint prob. distribution of $H_{e} T_{p} / F_{hub}$ ufacturer	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL	Sea currents ECM ECM ECM No currents	Water level NWLR NWLR NWLR NWLR or ≥ MSL	Other conditions	Type of analysis U U U F F	Partial safety factor A A A T
Design situation 7) Parked and fault conditions 8) Transport, assembly, maintenance	DLC 7.1a 7.1b 7.1c 7.2 8.1 8.2a	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0.7 V_1$ To be stated by the manu EWM Turbulent wind model	Waves ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of H_g, T_p, V_{hub} Jfacturer ESS	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL	Sea currents ECM ECM ECM No currents ECM	Water level NWLR NWLR NWLR NWLR or ≥ MSL	Other conditions	Type of analysis U U U F U U U U	Partial safety factor A A A T T A
Design situation 7) Parked and fault conditions 8) Transport, assembly, maintenance and repair	DLC 7.1a 7.1b 7.1c 7.2 8.1 8.2a	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0.7 V_1$ To be stated by the manu emodel EWM Turbulent wind model $V_{hub} = k_r V_r$	$Waves$ ESS $H_{g} = k_{2} H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_{1}$ NSS Joint prob. distribution of $H_{g} T_{p} V_{hub}$ If acturer ESS $H_{g} = k_{2} H_{g1}$	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL	Sea currents ECM ECM ECM No currents ECM	Water level NWLR NWLR NWLR NWLR or ≥ MSL	Other conditions	Type of analysis U U U F V U U U	Partial safety factor A A A T A
Design situation 7) Parked and fault conditions 8) Transport, assembly, maintenance and repair	DLC 7.1a 7.1b 7.1c 7.2 8.1 8.2a 8.2b	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0.7 V_1$ To be stated by the manual EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model	Waves Waves ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of $H_g \cdot T_p \cdot Y_{nub}$ ufacturer ESS $H_g = k_2 H_{g1}$ RWH	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL COD, UNI	Sea currents ECM ECM ECM currents ECM	Water level NWLR NWLR NWLR or ≥ MSL	Other conditions	Type of analysis U U U U F U U U U	Partial safety factor A A A T T A
Design situation 7) Parked and fault conditions 8) Transport, assembly, maintenance and repair	DLC 7.1a 7.1b 7.1c 7.2 8.1 8.2a 8.2b	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0,7 V_1$ To be stated by the manual model $V_{hub} = k_1 V_1$ EWM Turbulent wind model $V_{hub} = k_1 V_1$	Waves Waves ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of $H_{u}.T_{p}.V_{nub}$ If acturer ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL COD, UNI	Sea currents ECM ECM ECM currents ECM	Water level NWLR NWLR NWLR NWLR or ≥ MSL	Other conditions	Type of analysis U U U U F U U U U	Partial safety factor A A A T A A
Design situation 7) Parked and fauit conditions 8) Transport, assembly, maintenance and repair	DLC 7.1a 7.1b 7.1c 7.1c 8.1 8.2a 8.2b	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0,7 V_1$ To be stated by the manumodel $V_{hub} = k_1 V_1$ EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V_{hub} = V_{e1}$ RWM Steady wind model	Waves ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of $H_w T_p \cdot V_{hub}$ Jfacturer ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL COD, UNI	Sea currents ECM ECM ECM Currents ECM ECM	Water level NWLR NWLR NWLR NWLR NWLR NWLR	Other conditions	Type of analysis U U U U F C U U U U	Partial safety factor A A A T A A
Design situation 7) Parked and fauit conditions 8) Transport, assembly, maintenance and repair	DLC 7.1a 7.1b 7.1c 7.2 8.1 8.2a 8.2b 8.2c	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0,7 V_1$ To be stated by the manumodel $V_{hub} < 0,7 V_1$ EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V_{hub} = V_{e1}$ RWM Steady wind model $V_{hub} = V_{e1}$	Waves Waves ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of $H_w T_p \cdot F_{hub}$ ufacturer ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL COD, UNI COD, UNI	Sea currents ECM ECM ECM Currents ECM ECM	Water level NWLR NWLR NWLR NWLR NWLR NWLR	Other conditions	Type of analysis U U U U F U U U U U	Partial safety factor A A A T A A
Design situation 7) Parked and fauit conditions 8) Transport, assembly, maintenance and repair	DLC 7.1a 7.1b 7.1c 7.2 8.1 8.2a 8.2b 8.2c 8.3	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0,7 V_1$ To be stated by the manu model $V_{hub} < k_1 V_1$ EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V_{hub} = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM	Waves ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of $H_v T_p, P_{hub}$ Jfacturer ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob.	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL COD, UNI COD, UNI COD, UNI	Sea currents ECM ECM ECM Currents ECM ECM ECM	Water level NWLR NWLR NWLR NWLR NWLR NWLR NWLR	Other conditions	Type of analysis U U U U F U U U U U F	Partial safety factor A A A A A A A A
Design situation 7) Parked and fauit conditions 8) Transport, assembly, maintenance and repair	DLC 7.1a 7.1b 7.1c 7.2 8.1 8.2a 8.2b 8.2c 8.3	Wind condition EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V(z_{hub}) = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM $V_{hub} < 0,7 V_1$ To be stated by the manu EWM Turbulent wind model $V_{hub} = k_1 V_1$ EWM Steady wind model $V_{hub} = V_{e1}$ RWM Steady wind model $V(z_{hub}) = V_{red1}$ NTM NTM	Waves ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of $H_v T_p, V_{hub}$ Jfacturer ESS $H_g = k_2 H_{g1}$ RWH $H = H_{red1}$ EWH $H = H_1$ NSS Joint prob. distribution of distribution of	Wind and wave directionality MIS, MUL MIS, MUL MIS, MUL COD, MUL COD, UNI COD, UNI COD, UNI	Sea currents ECM ECM ECM currents ECM ECM ECM	Water level NWLR NWLR NWLR NWLR NWLR NWLR NWLR NWLR	Other conditions	Type of analysis U U U F U U U U U F	Partial safety factor A A A · T A A A A

Πίνακας 3.3: Καταστάσεις φόρτισης σχεδιασμού για θαλάσσιες ανεμογεννήτριες (συνέχεια)^[10].

КЕΦ.3

The following	abbreviations	are	used	in	Table	1
---------------	---------------	-----	------	----	-------	---

COD	co-directional
DLC	design load case
ECD	extreme coherent gust with direction change (see IEC 61400-1)
ECM	extreme current model
EDC	extreme direction change
EOG	extreme operating gust
ESS	extreme sea state
EWH	extreme wave height
EWLR	extreme water level range
EWM	extreme wind speed model (see IEC 61400-1)
EWS	extreme wind shear (see IEC 61400-1)
MIS	misaligned
MSL	mean sea level
MUL	multi-directional
NCM	normal current model
NTM	normal turbulence model (see IEC 61400-1)
NWH	normal wave height
NWLR	normal water level range
NWP	normal wind profile model (see IEC 61400-1)
NSS	normal sea state
RWH	reduced wave height
RWM	reduced wind speed model
SSS	severe sea state
SWH	severe wave height
UNI	uni-directional
$V_{\rm r} \pm 2 {\rm m/s}$	sensitivity to all wind speeds in the range shall be analysed
F	fatigue
U	ultimate strength
Ν	normal
Α	abnormal
т	transport and erection
•	partial safety factor for fatique

Πίνακας 3.3: Καταστάσεις φόρτισης σχεδιασμού για θαλάσσιες ανεμογεννήτριες (συνέχεια)^[10].

ΚΕΦ.3 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Design situation	DLC	Ice condition	Wind condition	Water level	Type of analysis	Partial safety factor
Power	E1	Horizontal load from	NTM	NWLR	U	N
production		temperature nuctuations	$V_{\rm hub}$ = $V_{\rm r} \pm 2$ m/s and $V_{\rm out}$			
			Wind speed resulting in maximum thrust			
	E2	Horizontal load from water fluctuations or arch effect	NTM	NWLR	U	N
		indettations of aron eneor	$V_{hub} = V_r \pm 2 \text{ m/s and } V_{out}$			
			Wind speed resulting in maximum thrust			
]	E3	Horizontal load from moving	NTM	NWLR	U	N
	For	velocities	$V_{\rm hub}$ = $V_{\rm r} \pm 2$ m/s and $V_{\rm out}$			
	ation of extreme	$H = H_{50}$ in open sea $H = H_m$ for land-locked	Wind speed resulting in maximum thrust			
-	events	waters	N - N N		-	
	E4	ice floe at relevant velocities	V in < V hub < V out	NVVLR	F	
		$H = H_{50}$ in open sea $H = H_{\rm m}$ for land-locked waters				
	E5	Vertical force from fast ice covers due to water level fluctuations	No wind load applied	NWLR	U	N
Parked	E6	Pressure from hummocked	EWM	NWLR	U	N
		ice and ice ndges	Turbulent wind model			
			$V_{hub} = V_1$			
	E7	Horizontal load from moving	NTM	NWLR	F	•
		velocities	V _{hub} < 0,7 V _{ref}			
		$H = H_{50}$ in open sea $H = H_m$ for land-locked waters				

Abbreviations used in Table 2:

DLC	design load case
EWM	extreme wind speed model (see IEC 61400-1)
NTM	normal turbulence model (see IEC 61400-1)
NWLR	normal water level range
F	fatigue
U	ultimate strength
N	normal
*	partial safety factor for fatigue

Πίνακας 3.4: Καταστάσεις φόρτισης σχεδιασμού με πάγο για θαλάσσιες ανεμογεννήτριες^[10].

Όπου συναντάται εύρος τιμών της ταχύτητας πνοής του ανέμου στον παραπάνω πίνακα, πρέπει να λαμβάνεται η τιμή εκείνη εντός του εύρους, η οποία προκαλεί τη δυσμενέστερη κατάσταση για την ανεμογεννήτρια. Η διαδικασία εύρεσης της τιμής αυτής επιτρέπεται να επαφίεται σε διακριτές τιμές, η πυκνότητα των οποίων θα διασφαλίζει την ακρίβεια των υπολογισμών (τιμές ανά 2-5 m/sec κρίνονται αρκούντως πυκνές).

3.4. Οριακές καταστάσεις αστοχίας

Προκειμένου να ληφθεί υπόψη η μεταβλητότητα των φορτίων και των υλικών της κατασκευής, καθώς επίσης και οι αβεβαιότητες των μεθόδων ανάλυσης, γίνεται χρήση μερικών συντελεστών ασφαλείας.

Πιο συγκεκριμένα, η ασφάλεια μιας κατασκευής θεωρείται ότι επιτυγχάνεται όταν ισχύει η παρακάτω σχέση μεταξύ των εντατικών μεγεθών σχεδιασμού, S_d , και της αντίστασης σχεδιασμού, R_d :

$$S_d \leq R_d$$

Όπως φαίνεται και στην ακόλουθη εικόνα, υπάρχουν δύο εκδοχές διατύπωσης του παραπάνω κριτηρίου σχεδιασμού.

Εικόνα 4: Διαφορετικές προσεγγίσεις διατύπωσης του κριτηρίου επάρκειας [11]

Προσέγγιση 1:

Σύμφωνα με αυτήν την προσέγγιση τα εντατικά μεγέθη σχεδιασμού υπολογίζονται ως εξής:

$$S_{di} = \gamma_{fi} \cdot S_{ki}$$

όπου, γ_{fi} ο μερικός συντελεστής ασφαλείας και S_{ki} η χαρακτηριστική τιμή του εντατικού μεγέθους.

Σημειώνεται ότι η χαρακτηριστική τιμή των εντατικών μεγεθών υπολογίζεται μέσω ανάλυσης για τις χαρακτηριστικές τιμές των ασκούμενων φορτίων, F_{ki}.

<u>Προσέγγιση 2</u>:

Σύμφωνα με αυτήν την προσέγγιση τα εντατικά μεγέθη σχεδιασμού, S_{di} υπολογίζονται μέσω ανάλυσης για τις τιμές σχεδιασμού των ασκούμενων φορτίων, F_{di} , η οποία προκύπτει ως εξής:

$$F_{di} = \gamma_{fi} \cdot F_{ki}$$

όπου, $\gamma_{\rm fi}$ ο μερικός συντελεστής ασφαλείας και $F_{\rm ki}$ η χαρακτηριστική τιμή του ασκούμενου φορτίου.

Γενικά, η πρώτη προσέγγιση χρησιμοποιείται όταν κύριο μέλημα του μελετητή είναι ο ορθός υπολογισμός της δυναμικής απόκρισης της κατασκευής, ενώ η δεύτερη όταν μεγαλύτερη

έμφαση δίδεται στη μη-γραμμικότητα του υλικού ή/και στις γεωμετρικές μη-γραμμικότητες της κατασκευής.

Η ίδια λογική ακολουθείται και για τον υπολογισμό της διαθέσιμης αντίστασης σχεδιασμού της κατασκευής, $R_{\rm d}$:

Προσέγγιση 1:

Σύμφωνα με αυτήν την προσέγγιση η αντίσταση σχεδιασμού αποτελεί συνάρτηση της χαρακτηριστικής τιμής της αντοχής του υλικού:

$$R_d = R\left(\frac{1}{\gamma_m} \cdot f_k\right)$$

ópou, γ_m o merikóc suntelestńc asqaleíac tou ulikoú kai f_k η carakthristikή timή the antochic tou ulikoú.

<u>Προσέγγιση 2</u>:

Σύμφωνα με αυτήν την προσέγγιση η αντίσταση σχεδιασμού, R_d υπολογίζεται ως εξής:

$$R_d = \frac{1}{\gamma_m} \cdot R_k$$

όπου, γ_m ο μερικός συντελεστής ασφαλείας του υλικού και R_k η χαρακτηριστική τιμή της αντοχής του υλικού.

Σημειώνεται ότι για τη διεξαγωγή ανάλυσης και σχεδιασμού της υποδομής και της θεμελίωσης μιας ανεμογεννήτριας σε συμφωνία με τα πρότυπα ISO ή παρόμοιους αναγνωρισμένους κανονισμούς, ο μελετητής οφείλει να ακολουθεί τη δεύτερη προσέγγιση κατά τα ανωτέρω. Ο δε σχεδιασμός της θεμελίωσης μπορεί να πραγματοποιηθεί μέσω ξεχωριστής ανάλυσης του απομονωμένου υπο-φορέα, υπό τη φόρτιση των εσωτερικών εντατικών μεγεθών σχεδιασμού σε κατάλληλη διατομή της κατασκευής (όπως η βάση του πυλώνα ή ο πυθμένας της θάλασσας κ.τ.λ.) λαμβάνοντας υπόψη και τα τυχόν εξωτερικά φορτία της θεμελίωσης^[12].

Όσον αφορά τους μερικούς συντελεστές ασφαλείας των φορτίσεων ισχύει ο ακόλουθος πίνακας.

	Favourable loads			
Type of				
Normal (N)	Normal (N) Abnormal (A) Transport and erection (T)			
1,35*	1,1	1,5	0,9	
* For design load case DLC 1.1, wind speeds between V_{in} and V_{o} If for normal design situations th for the design situation in quest from gravity and other sources in $\gamma_{\rm f} = 1, 1 + \varphi \varsigma^2$ $\varphi = \begin{cases} 0, 15 \text{ for DLC1.1} \\ 0, 25 \text{ otherwise} \\ \zeta = \begin{cases} 1 - \left \frac{F_{\rm gravity}}{F_k} \right ; & F_{\rm gravity} \le F_k \\ 1; & F_{\rm gravity} > F_k \end{cases}$, given that loads are detern _{out} , the partial load factor for he characteristic value of the ion, and gravity is an unfavo may have the value	nined using statistical load extr r normal design situations shall e load response F _{gravity} due to purable load, the partial load fa	apolation at prescribed be γ _f =1,25. gravity can be calculated ctor for combined loading	

Ενώ, όσον αφορά τους συντελεστές ασφαλείας του υλικού ισχύουν οι μέγιστοι συντελεστές ασφαλείας εκ των ορισμένων από τους εκάστοτε ακολουθούμενους κανονισμούς και από τις παρακάτω τιμές:

Για τις τιμές των συντελεστών ασφαλείας των υλικών θα ισχύει σε κάθε περίπτωση: $\gamma_m \ge 1$.

Για υλικά που ενδέχεται να αστοχήσουν με ψαθυρό τρόπο και να οδηγήσουν έτσι την κατασκευή ή σημαντικό μέρος της σε ραγδαία, πρόωρη αστοχία, ισχύουν οι παρακάτω συντελεστές ασφαλείας:

- 1.2 για λυγισμό καμπύλων επιφανειακών στοιχείων όπως αυτά που απαρτίζουν τον πυλώνα και τις λεπίδες της ανεμογεννήτριας.
- 1.3 για θραύση λόγω υπέρβασης της εφελκυστικής ή θλιπτικής αντοχής.

Σημειώνεται ότι οι μερικοί συντελεστές ασφαλείας για τις επιπτώσεις της αστοχίας (σημαντικότητα του έργου) λαμβάνουν την τιμή:

 Κατηγορίας μέλους 1:
 $\gamma_n = 0.9$

 Κατηγορίας μέλους 2:
 $\gamma_n = 1.0$

 Κατηγορίας μέλους 3:
 $\gamma_n = 1.3$

3.5. Αστοχία λόγω κόπωσης

Οι βλάβες λόγω κόπωσης υπολογίζονται μέσω ειδικών αναλύσεων, όπως για παράδειγμα ο κανόνας του Miner. Ανάλογα με την εκάστοτε μέθοδο ανάλυσης που επιλέγεται, το κριτήριο επάρκειας διαφέρει.

Σε κάθε περίπτωση πάντως, ο μερικός συντελεστής ασφαλείας των φορτίων λαμβάνεται ίσος με μονάδα ($\gamma_{\rm fi} = 1$) για όλες τις κανονικές και ασυνήθιστες καταστάσεις σχεδιασμού.

Παράλληλα, ο μερικός συντελεστής ασφαλείας του υλικού (γ_m) οφείλει να είναι τουλάχιστον ίσος με 1.5 για συντελεστές μεταβλητότητας < 15%, ενώ για υψηλότερους συντελεστές μεταβλητότητας < 15%, ενώ για υψηλότερους συντελεστές μεταβλητότητας που συναντούνται σε πολλά σύνθετα υλικά ο συντελεστής ασφαλείας του υλικού πρέπει να είναι τουλάχιστον ίσος με 1.7.

Συγκεκριμένα για χαλύβδινες συγκολλητές κατασκευές όπου η πιθανότητα «επιβίωσης» του υλικού μετά το πέρας των ανακυκλιζόμενων φορτίσεων είναι 97.7%, ο συντελεστής ασφαλείας του υλικού μπορεί να λαμβάνεται ίσος με 1.1. Ακόμα, σε περιπτώσεις όπου ακολουθείται τακτικό περιοδικό πρόγραμμα ελέγχου της κατασκευής, το οποίο είναι σε θέση να διαπιστώσει αν υπάρχει ανάπτυξη κρίσιμων ρωγμών, τότε ο συντελεστής ασφαλείας μπορεί να μειωθεί έως και στην τιμή 0.9.

Σημειώνεται ότι οι μερικοί συντελεστές ασφαλείας για τις επιπτώσεις της αστοχίας (σημαντικότητα του έργου) λαμβάνουν την τιμή:

 Κατηγορίας μέλους 1:
 $\gamma_n = 1.0$

 Κατηγορίας μέλους 2:
 $\gamma_n = 1.15$

 Κατηγορίας μέλους 3:
 $\gamma_n = 1.3$

3.6. Έλεγχοι ευστάθειας

Οποιοδήποτε ψαθυρό μέλος της κατασκευής δεν επιτρέπεται να αστοχήσει λόγω λυγισμού υπό τα φορτία σχεδιασμού. Για όλα τα υπόλοιπα μέλη, ελαστικός λυγισμός υπό τα φορτία

σχεδιασμού είναι αποδεκτός. Παρόλα αυτά, κανένας λυγισμός δεν επιτρέπεται να συμβεί υπό τα χαρακτηριστικά φορτία.

Για τους μερικούς συντελεστές ασφαλείας των φορτίων ισχύει ο Πίνακας 3.5, ενώ ο συντελεστής ασφαλείας του υλικού δεν θα είναι μικρότερος του 1.1.

3.7. Ανάλυση κρίσιμου βέλους

Ο σχεδιασμός μιας ανεμογεννήτριας θα πρέπει να εξασφαλίζει ότι τα μέλη της κατασκευής δεν θα υποστούν παραμορφώσεις, οι οποίες θα απειλούν τη δομική ακεραιότητά της. Ένας εκ των σημαντικότερων ελέγχων παραμορφώσεων είναι η αποτροπή της μηχανικής επαφής των λεπίδων με τον πυλώνα.

Γενικά, η ελαστικές παραμορφώσεις των μελών καθορίζονται χρησιμοποιώντας τα χαρακτηριστικά φορτία και εφαρμόζοντας εκ των υστέρων τους όποιους συντελεστές ασφαλείας φορτίων, υλικών και σημαντικότητας επί της υπολογιζόμενης παραμόρφωσης.

Πιο συγκεκριμένα, για τους μερικούς συντελεστές ασφαλείας των φορτίων ισχύει ο Πίνακας 3.5, ενώ ο συντελεστής ασφαλείας του υλικού λαμβάνεται ίσος με 1.1, εκτός κι αν πλήρεις έλεγχοι του υλικού έχουν διεξαχθεί, οπότε και επιτρέπεται να ληφθεί ίσος με 1.0.

Οι μερικοί συντελεστές ασφαλείας για τις επιπτώσεις της αστοχίας (σημαντικότητα του έργου) λαμβάνουν την τιμή:

 Κατηγορίας μέλους 1:
 $\gamma_n = 1.0$

 Κατηγορίας μέλους 2:
 $\gamma_n = 1.0$

 Κατηγορίας μέλους 3:
 $\gamma_n = 1.3$

Ιδιαίτερη προσοχή πρέπει να αποδίδεται στις γεωμετρικές αβεβαιότητες και στην ακρίβεια υπολογισμού των παραμορφώσεων.

Σε κάθε περίπτωση, οι υπολογιζόμενες ελαστικές παραμορφώσεις προστίθενται στην πλέον δυσμενέστερη απαραμόρφωτη μετατοπισμένη θέση της κατασκευής, ώστε να είναι εφικτός ο έλεγχος εξασφάλισης μη-επαφής μεταξύ των μελών.

Σημειώνεται ότι εναλλακτικά μπορεί να διεξαχθεί και απευθείας δυναμική ανάλυση παραμορφωσιμότητας.

3.8. Φόρτιση ανεμογεννητριών μελέτης

Στη συνέχεια παρατίθενται οι φορτίσεις που εισήχθησαν στις ανεμογεννήτριες των εφαρμογών της παρούσας εργασίας και πιο συγκεκριμένα στις χερσαίες και θαλάσσιες ανεμογεννήτριες της μελέτης. Παρουσιάζονται δε αναλυτικά οι κατηγορίες και τα μοντέλα στα οποία ανήκουν οι εκάστοτε φορτίσεις, σύμφωνα με όλα τα παραπάνω.

Κατά τον σχεδιασμό των ανεμογεννητριών στην παρούσα εργασία, οι φορτίσεις αποτελούνται από κρίσιμους συνδυασμούς κατά κανόνα κανονικών εξωτερικών συνθηκών με τα λειτουργικά φορτία της κατασκευής.

Αξίζει να σημειωθεί ότι στις επιλύσεις των επόμενων κεφαλαίων χρησιμοποιήθηκαν φορτίσεις ανέμου κατηγορίας S_A με εφαρμογή του μοντέλου Kaimal για τον υπολογισμό των αναταράξεων. Όσον αφορά τη μέση ταχύτητα αναφοράς, ορίστηκαν τιμές λαμβανόμενες από τη βιβλιογραφία ή διενεργήθηκαν παραμετρικές επιλύσεις.

3.8.1. <u>Ανεμογεννήτρια NREL 5 MW - Land-based – Gravity Foundation</u>

3.8.1.1. Βαρυτικά και αδρανειακά φορτία

Το ειδικό βάρος του χαλύβδινου πυλώνα θεωρήθηκε **8.5kN/m³**, έγινε δηλαδή προσαύξηση του ειδικού βάρους του χάλυβα (7.85kN/m³), ώστε να ληφθούν υπόψη οι βαφές, οι κοχλιώσεις, οι συγκολλήσεις και τα ελάσματα που τοποθετούνται κατά μήκος του πυλώνα.

Πρόσθετα μόνιμα φορτία της ανεμογεννήτριας αποτελούν τα ίδια βάρη της ατράκτου της ανεμογεννήτριας (**240000kg**) και του ρότορα (**110000kg**) συμπεριλαμβανομένου και του ίδιου βάρους του άξονα του ρότορα (56780kg). Σημειώνεται ότι η θέση εφαρμογής των μαζών αυτών όπως υποδεικνύεται στο Κεφ. 2 επηρεάζει τον υπολογισμό των ιδιομορφών της κατασκευής (βλ. Παράρτημα Α).

Το ίδιο βάρος του σκυροδέματος της θεμελίωσης θεωρήθηκε **25kN/m3**, ενώ το βάρος του εδάφους που υπερκαλύπτει το πέδιλο θεμελίωσης εξαρτάται από τον εκάστοτε εδαφικό σχηματισμό (βλ. Κεφ. 10).

Σημειώνεται ότι δεν εξετάστηκε η περίπτωση σεισμού, συνεπώς τα αδρανειακά χαρακτηριστικά της κατασκευής δεν ενεργοποιούνται λόγω σεισμικής φόρτισης.

3.8.1.2. Αεροδυναμικά φορτία

Η συγκεκριμένη ανεμογεννήτρια φορτίστηκε με μοντέλο κανονικών αναταράξεων ανέμου (NTM) χρησιμοποιώντας την κατανομή Kaimal. Επίσης, εφαρμόστηκε η μεσαία κατηγορία αναταράξεων αέρα (A, $I_{ref} = 0.16$). Η μέση ταχύτητα πνοής ανέμου σε ύψος αναφοράς $H_{ref} = 90$ m θεωρήθηκε $U_{ref} = 20$ m/sec. Η ονομαστική ταχύτητα του ανέμου θεωρήθηκε $V_{rated} = 11.4$ m/sec, ενώ η μέση γωνία πρόσπτωσης του ανέμου σε σχέση με το οριζόντιο επίπεδο θεωρήθηκε ότι δεν υπερβαίνει τις 8°. Αναλυτικότερα, παρουσιάζονται τα ακόλουθα δεδομένα:

Συνθήκες ανέμου

Ετήσια μέση ταχύτητα ανέμου V _{ref}	20m/s
Κατανομή ταχύτητας ανέμου	Rayleigh
Μοντέλο ανέμου κατά ΙΕC	NTM
Παράμετρος b	5.6m/s
Χαρακτηριστική ομάδα αναταράξεων	A Υψηλή ($I_{ref} = 0.16$)
Μοντέλο αναταράξεων	Kaimal
Τύπος κατανομής ανέμου	Power Law
Εκθέτης καταστατικού νόμου α	0.2
Ύψος άξονα ρότορα z _{hub}	90m

Σημειώνεται ότι στις παραμετρικές επιλύσεις του Κεφ. 9 η ταχύτητα του ανέμου μεταβάλλεται από 5m/s – 25m/sec.

3.8.1.3. Φορτία ενεργοποίησης

Για τα επιμέρους συστήματα ελέγχου της ανεμογεννήτριας, κατά την ενεργοποίηση των οποίων εισάγονται πρόσθετες φορτίσεις στην κατασκευή, πραγματοποιείται ειδική μνεία στο Παράρτημα Α.

Πιο συγκεκριμένα γίνεται χρήση δυναμικών συνδέσμων βιβλιοθηκών (DLL), ώστε να εισαχθεί η μεταβλητότητα της ταχύτητας και η αντίστοιχη αντίδραση των συστημάτων ελέγχου.

Εικόνα 5: Διάγραμμα ροής βασικών συστημάτων ελέγχου [14]

Corner Frequency of Generator-Speed Low-Pass Filter	0.25 Hz
Peak Power Coefficient	0.482
Tip-Speed Ratio at Peak Power Coefficient	7.55
Rotor-Collective Blade-Pitch Angle at Peak Power Coefficient	0.0 °
Generator-Torque Constant in Region 2	0.0255764 N•m/rpm ²
Rated Mechanical Power	5.296610 MW
Rated Generator Torque	43,093.55 N•m
Transitional Generator Speed between Regions 1 and 1 ¹ / ₂	670 rpm
Transitional Generator Speed between Regions 11/2 and 2	871 rpm
Transitional Generator Speed between Regions 21/2 and 3	1,161.963 rpm
Generator Slip Percentage in Region 2 ¹ / ₂	10 %
Minimum Blade Pitch for Ensuring Region 3 Torque	1 °
Maximum Generator Torque	47,402.91 N•m
Maximum Generator Torque Rate	15,000 N•m/s
Proportional Gain at Minimum Blade-Pitch Setting	0.01882681 s
Integral Gain at Minimum Blade-Pitch Setting	0.008068634
Blade-Pitch Angle at which the Rotor Power Has Doubled	6.302336 °
Minimum Blade-Pitch Setting	0 °
Maximum Blade-Pitch Setting	90 °
Maximum Absolute Blade Pitch Rate	8 °/s
Equivalent Blade-Pitch-Actuator Linear-Spring Constant	971,350,000 N•m/rad
Equivalent Blade-Pitch-Actuator Linear-Damping Constant	206,000 N•m/rad/s

Πίνακας 3.6: Ιδιότητες βασικών συστημάτων ελέγχου

3.8.1.4. Υδροδυναμικά φορτία

Η συγκεκριμένη ανεμογεννήτρια είναι χερσαία. Συνεπώς, δεν εφαρμόστηκαν υδροδυναμικά φορτία.

3.8.1.5. Φορτία λόγω θαλάσσιου πάγου

Η συγκεκριμένη ανεμογεννήτρια είναι χερσαία. Συνεπώς, δεν εφαρμόστηκαν φορτία λόγω θαλάσσιου πάγου.

3.8.1.6. Λοιπά φορτία

Στη συγκεκριμένη ανεμογεννήτρια δεν ασκούνται άλλα φορτία.

3.8.2. <u>Ανεμογεννήτρια NREL 5 MW – Offshore – Gravity Foundation</u>

3.8.2.1. Βαρυτικά και αδρανειακά φορτία

Βλέπε §3.8.1.1.

3.8.2.2. Αεροδυναμικά φορτία

Βλέπε §3.8.1.2.

3.8.2.3. Φορτία ενεργοποίησης

Βλέπε §3.8.1.3.

3.8.2.4. Υδροδυναμικά φορτία

Η συγκεκριμένη ανεμογεννήτρια φορτίστηκε με μοντέλο κανονικής θαλάσσιας κατάστασης (NSS) χρησιμοποιώντας το φάσμα Pierson-Moskowitz. Επίσης, εφαρμόστηκε κυματισμός με σημαντικό ύψος 6m και περίοδο συντονισμού 10sec. Αναλυτικότερα, παρουσιάζονται τα ακόλουθα δεδομένα:

Συνθήκες κυματισμών	
Μοντέλο κυματισμών	NSS
Θωρούμενη πυκνότητα θαλασσινού νερού	10.27kN/m ³
Βάθος πυθμένα	20m
Φάσμα κυματισμών	Jonswap / Pierson-Moskowitz
Σημαντικό ύψος κυμάτων (H _s)	6m
Φασματική περίοδος συντονισμού κυματισμών (Tp)	10sec
Συντελεστής ακρότατου-σχήματος (γ)	1
Ελάχιστη υπολογιστική συχνότητα κύματος	0.15708rad/s
Μέγιστη υπολογιστική συχνότητα κύματος	3.2rad/s
Υπολογισμός κυμάτων 2 ^{ας} τάξεως	NAI
Μοντέλο ρευμάτων	ΌXΙ
Ανάπτυξη θαλάσσιας ζωής	ΌXΙ

3.8.2.5. Φορτία λόγω θαλάσσιου πάγου

Στη συγκεκριμένη ανεμογεννήτρια δεν εφαρμόστηκαν φορτία λόγω θαλάσσιου πάγου.

3.8.2.6. Λοιπά φορτία

Στη συγκεκριμένη ανεμογεννήτρια δεν ασκούνται άλλα φορτία.

3.8.3. <u>Ανεμογεννήτρια NREL 5 MW – Land-based – Monopile</u>

3.8.3.1. Βαρυτικά και αδρανειακά φορτία

Βλέπε §3.8.1.1.

Όσον αφορά το ίδιο βάρος του χαλύβδινου μονοπάσσαλου λαμβάνεται ίσο με τον υπόλοιπο χαλύβδινο φορέα.

3.8.3.2. Αεροδυναμικά φορτία

Βλέπε §3.8.1.2.

3.8.3.3. Φορτία ενεργοποίησης

Βλέπε §3.8.1.3.

3.8.3.4. Υδροδυναμικά φορτία

Η συγκεκριμένη ανεμογεννήτρια είναι χερσαία. Συνεπώς, δεν εφαρμόστηκαν υδροδυναμικά φορτία.

3.8.3.5. Φορτία λόγω θαλάσσιου πάγου

Η συγκεκριμένη ανεμογεννήτρια είναι χερσαία. Συνεπώς, δεν εφαρμόστηκαν φορτία λόγω θαλάσσιου πάγου.

3.8.3.6. Λοιπά φορτία

Στη συγκεκριμένη ανεμογεννήτρια δεν ασκούνται άλλα φορτία.

3.8.4. <u>Ανεμογεννήτρια NREL 5 MW – Offshore – Monopile</u>

3.8.4.1. Βαρυτικά και αδρανειακά φορτία

Βλέπε §3.8.3.1.

3.8.4.2. Αεροδυναμικά φορτία

Βλέπε §3.8.1.2.

3.8.4.3. Φορτία ενεργοποίησης

Βλέπε §3.8.1.3.

3.8.4.4. Υδροδυναμικά φορτία

Βλέπε §3.8.2.4.

3.8.4.5. Φορτία λόγω θαλάσσιου πάγου

Στη συγκεκριμένη ανεμογεννήτρια δεν εφαρμόστηκαν φορτία λόγω θαλάσσιου πάγου.

3.8.4.6. Λοιπά φορτία

Στη συγκεκριμένη ανεμογεννήτρια δεν ασκούνται άλλα φορτία.

3.8.5. <u>Ανεμογεννήτρια NREL 5 MW – Offshore – Tripod</u>

3.8.5.1. Βαρυτικά και αδρανειακά φορτία

Βλέπε §3.8.1.1.

Όσον αφορά το ίδιο βάρος των χαλύβδινων μελών του τρίποδα λαμβάνεται ίσο με τον υπόλοιπο χαλύβδινο φορέα.

3.8.5.2. Αεροδυναμικά φορτία

Βλέπε §3.8.1.2.

3.8.5.3. Φορτία ενεργοποίησης

Βλέπε §3.8.1.3.

3.8.5.4. Υδροδυναμικά φορτία

Βλέπε §3.8.2.4.

3.8.5.5. Φορτία λόγω θαλάσσιου πάγου

Στη συγκεκριμένη ανεμογεννήτρια δεν εφαρμόστηκαν φορτία λόγω θαλάσσιου πάγου.

3.8.5.6. Λοιπά φορτία

Στη συγκεκριμένη ανεμογεννήτρια δεν ασκούνται άλλα φορτία.

3.9. Συνδυασμοί φορτίσεων ανεμογεννητριών μελέτης

Τόσο για τις χερσαίες, όσο και για τις θαλάσσιες ανεμογεννήτριες της μελέτης, χρησιμοποιήθηκαν οι παρακάτω συνδυασμοί φόρτισης (βλ. Πίνακας 3.2 και Πίνακας 3.3). Σημειώνεται ότι απλοποιητικά δεν χρησιμοποιήθηκαν μοντέλα ρευμάτων, ενώ οι διευθύνσεις του ανέμου και των κυματισμών θεωρήθηκαν ίδιες σε κάθε περίπτωση.

ΚΕΦ.3 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Κατάσταση σχεδιασμού	DLC	Μοντέλο ανέμου	Κυματισμοί	Κατεύθυνση ανέμου και κυματισμού	Θαλάσσια ρεύματα	Στάθμη υδάτων	Άλλες καταστάσεις	Τύπος ανάλυσης	Μερικοί συντελεστές ασφαλείας
1) Παραγωγή ενέργειας	1.1 (χερσαίες)	$NTM \\ V_{in} < \\ V_{hub} < \\ V_{out}$	-	-	-	-	Για την εκτίμηση ακραίων γεγονότων	U	Ν
	1.2 (χερσαίες)						-	F	*
	1.1 (θαλάσσιες)		$NSS \\ H_s = \\ E[H_s V_{hub}]$				Για την εκτίμηση ακραίων γεγονότων	U	N
	1.2 (θαλάσσιες)		ΝSS Συζ. Πιθ. Κατανομής of H _s , T _p , V _{bub}	COD	ΌΧΙ	MSL		F	*

Πίνακας 3.7: Συνδυασμοί φορτίσεων ανεμογεννητριών μελέτης

ΑΝΑΦΟΡΕΣ:

- [1] IEC61400-1:2005, §5.3
- [2] IEC61400-1:2005, §6.1
- [3] IEC61400-1:2005, §6.3
- [4] IEC61400-1:2005, §6.2, Table 1
- [5] IEC61400-3:2009, §6.4.3, Figure 3
- [6] IEC 60721-2-1
- [7] IEC 61024-1 & IEC 61400-24
- [8] IEC 60038
- [9] IEC61400-1:2005, §7.4, Table 2
- [10] IEC61400-3:2009, §7.4, Table 1
- [11] IEC61400-3:2009, §7.6.1.1, Figure 4
- [12] IEC61400-3:2009, §7.6.2
- [13] IEC61400-1:2005, §7.6.2.1, Table 3

[14] "Definition of a 5-MW Reference Wind Turbine for Offshore System Development (2009)", J. Jonkman, S. Butterfield, W. Musial, G. Scott, Figure 7-5.

ΚΕΦ.4 ΑΝΑΛΥΣΗ ΑΝΩΔΟΜΗΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΩΝ

4.1. Περιγραφή λογισμικού προσομοίωσης ανωδομής

προσομοίωση της ανωδομής των ανεμογεννητριών που πραγματεύεται η παρούσα εργασία, έλαβε χώρα στο πρόγραμμα FAST v.8.15.00. Το εν λόγω λογισμικό αποτελεί ένα εργαλείο αεροελαστικών αναλύσεων για ανεμογεννήτριες οριζόντιου άξονα, το οποίο σχεδιάστηκε από την Αμερικανική Εθνική Υπηρεσία Ανανεώσιμης Ενέργειας (NREL) και το Αμερικανικό Εθνικό Κέντρο Αιολικής Ενέργειας (NWTC).

Το FAST, καθιστά εφικτή την προσομοίωση της συνδυασμένης μη γραμμικής, δυναμικής απόκρισης ανεμογεννητριών στο πεδίο του χρόνου, με κατάλληλο συνδυασμό αεροδυναμικών και υδροδυναμικών μοντέλων, καθώς και δυναμικών μοντέλων συστημάτων ελέγχου και ηλεκτρικών συστημάτων, αλλά και ελαστικών δυναμικών μοντέλων. Επιτρέπει, μάλιστα, την ανάλυση πληθώρας διαφορετικών ειδών και διατάξεων ανεμογεννητριών, όπως θα σχολιασθεί εκτενώς στη συνέχεια.

Πιο συγκεκριμένα, τα **αεροδυναμικά μοντέλα** του προγράμματος (InflowWind, AeroDyn), χρησιμοποιώντας τα δεδομένα της εισροής αέρα, καταφέρνουν να προσομοιώσουν τις επιδράσεις της κίνησης του ρότορα στην κατασκευή, καθώς και τα αεροδυναμικά φορτία που προκαλούνται από την ταχύτητα πνοής του ανέμου.

Όσον αφορά τα υδροδυναμικά μοντέλα του προγράμματος (HydroDyn, OrcaflexInterface, IceFloe, IceDyn), επιτρέπουν την προσομοίωση κανονικών ή μη κανονικών κυματισμών και ρευμάτων και αναλύουν την υποδομή μίας υπεράκτιας κατασκευής υπό υδροστατικά φορτία, αλλά και φορτία λόγω μετάδοσης και περίθλασης του κύματος, καθώς και λόγω της ύπαρξης ιξώδους.

Ακόμα, τα μοντέλα δυναμικής των συστημάτων ελέγχου και ηλεκτρικών συστημάτων (ServoDyn) προσομοιώνουν το σύστημα ελέγχου και τους αισθητήρες της μεταβολής της γωνίας προσβολής των πτερυγίων της ανεμογεννήτριας (blade-pitch system), της ενεργοποίησης της περιστροφικής κίνησης των πτερυγίων από την γεννήτρια (generator-torque system), καθώς και του συστήματος περιστροφής του ρότορα προς την διεύθυνση πνοής του ανέμου (nacelle-yaw system). Το μοντέλο αυτό περιλαμβάνει επίσης την προσομοίωση της λειτουργίας της γεννήτριας και του μηχανισμού μετατροπής της ενέργειας σε ηλεκτρική.

Τέλος, τα μοντέλα δομοστατικής δυναμικής (ElastoDyn, SubDyn, BeamDyn, MAP++, MoorDyn, FEAMooring, OrcaflexInterface) προσθέτουν, πέραν όλων των προηγούμενων φορτίων, και τα φορτία βαρύτητας. Σημειώνεται δε ότι αυτά είναι υπεύθυνα για την προσομοίωση της ελαστικότητας του ρότορα, του συστήματος μετάδοσης και της δομής στήριξης.

Η ορθή προσομοίωση της ανωδομής μίας ανεμογεννήτριας, λοιπόν, έγκειται στην κατάλληλη σύζευξη όλων των παραπάνω αναφερθέντων μοντέλων, όπως παρουσιάζεται και στις Εικόνα 4.2 και Εικόνα 4.3.

Εικόνα 4.3: Σύζευξη επιμέρους μοντέλων για την προσομοίωση πλωτών ανεμογεννητριών^[1]

Αξίζει να σημειωθεί ότι, όπως φαίνεται και στις παραπάνω εικόνες, το πρόγραμμα FAST δεν παρέχει προς το παρόν αξιόπιστη πληροφορία για την αλληλεπίδραση της ανωδομής με τη

θεμελίωση μιας ανεμογεννήτριας, είτε πρόκειται για κατασκευή σταθερού πυθμένα, είτε για πλωτή. Απάντηση στην ελλιπή αυτή πληροφόρηση θα επιδιωχθεί να δοθεί στο Κεφ. 6.

Στη συνέχεια, επεξηγούνται οι κύριες παράμετροι ανάλυσης που περιλαμβάνει το χρησιμοποιούμενο λογισμικό πακέτο.

4.1.1. <u>Ενιαίος κώδικας^[2]</u>

• T_{max} : Ο συνολικός χρόνος ανάλυσης μετρούμενος σε sec, αν θεωρηθεί ότι το πρώτο αποτέλεσμα προκύπτει την χρονική στιγμή t = 0 και το τελευταίο την t = T_{max} .

DT: Η συνιστώμενη μέγιστη τιμή του χρονικού βήματος που θα χρησιμοποιήσει το πρόγραμμα σε μονάδες sec. Φυσικά, ο μελετητής μπορεί να επιλέξει οποιοδήποτε ακέραιο υποπολλαπλάσιο του αριθμού αυτού, ως επιθυμητό βήμα, ανάλογα με τις ιδιαιτερότητες του εκάστοτε προσομοιώματος, την απαιτούμενη ακρίβεια, αλλά και την ανάγκη σύγκλισης της ανάλυσης. Σημειώνεται ότι οι σχέσεις που συνδέουν δεδομένα με αποτελέσματα επανυπολογίζονται σε κάθε βήμα.

Η εν λόγω τιμή υπολογίζεται βάσει του κανόνα:

$$DT = \frac{1}{10 \cdot f_{max}} \tag{4.1}$$

όπου, f_{max} η μέγιστη φυσική συχνότητα σύζευξης μεταξύ των στοιχείων σε Hz. Η παραπάνω συχνότητα υπολογίζεται από την γραμμική ανάλυση που πραγματοποιεί το πρόγραμμα, με εξαίρεση τις εφαρμογές, όπου χρησιμοποιούνται οι υπορουτίνες BeamDyn και SubDyn, όπου η συχνότητα επιλέγεται καταλλήλως.

InterpOrder: Η τάξη παρεμβολής/προέκτασης δεδομένων/αποτελεσμάτων. Πιο συγκεκριμένα, η εν λόγω μεταβλητή λαμβάνει την τιμή «1», όταν επιδιώκεται γραμμική παρεμβολή/προέκταση και «2», όταν επιδιώκεται τετραγωνική. Σημειώνεται ότι η παρεμβολή για την εκτίμηση των τιμών των παραμέτρων ενδιαφέροντος, πραγματοποιείται στην αρχή κάθε βήματος. Συνίσταται δε η χρήση της τετραγωνικής παρεμβολής, εκτός από περιπτώσεις ύπαρξης αρχικών τιμών χαμηλής ακρίβειας ή ύπαρξης εγγενούς σφάλματος στη δόμηση του προσομοιώματος, όπου η γραμμική παρεμβολή είναι δυνατόν να αποδώσει σταθερή λύση.

NumCrctn: Το πλήθος των διορθώσεων που λαμβάνει χώρα σε κάθε βήμα υπολογισμού. Σημειώνεται ότι αν χρησιμοποιηθεί InterpOrder = 2 και χρονικό βήμα DT, τότε συνήθως προκύπτει μηδενικό πλήθος διορθώσεων. Αντιθέτως, το πλήθος των διορθώσεων αυξάνει, όσο μικραίνει το χρονικό βήμα, καθώς αυξάνεται και η απαιτούμενη ακρίβεια.

DT_Ujac: Ο χρόνος μεταξύ δύο διαδοχικών αναβαθμίσεων Ιακωβιανών πινάκων σε sec. Η χρήση Ιακωβιανών πινάκων απαιτείται κατά την συσχέτιση των επιταχύνσεων με τις δυνάμεις στις υπορουτίνες ElastoDyn – HydroDyn – Sub-Dyn και Elasto-Dyn - OrcalFlexInterface. Οι πίνακες αυτοί συμπληρώνονται με στοιχεία πεπερασμένων διαφορών και για τον λόγο αυτό, ενδέχεται να είναι χρονικά αρκετά δαπανηροί.

Στις συνήθεις εφαρμογές, δίδεται στον χρόνο αυτό μία τιμή μεγαλύτερη του T_{max} , ενώ αξίζει να σημειωθεί ότι η παράμετρος αυτή δεν χρησιμοποιείται καθόλου σε εφαρμογές που δεν θέτουν σε λειτουργία τις υπορουτίνες BeamDyn, HydroDyn, SubDyn και OrcalFlexInterface. Εντούτοις, στην περίπτωση πλωτών ανεμογεννητριών, όπου η πλατφόρμα μπορεί να λάβει σχετικά μεγάλες γωνίες στροφής και ως προς τους τρεις άξονες (pitch, roll, yaw rotation, βλ. Εικόνα 4.4), συνίσταται η χρήση της σχέσης (4.1), με την f_{max} να λαμβάνει την τιμή της φυσικής συχνότητας της επικρατούσας στροφικής κίνησης σε Hz.

Εικόνα 4.4: Ορισμός στροφικών κινήσεων πλατφόρμας πλωτής ανεμογεννήτριας

 CompElast: Επιλέγεται το μοντέλο δυναμικής ανάλυσης. Η επιλογή γίνεται μεταξύ των μοντέλων:

- ElastoDyn για τον ρότορα, το σύστημα μετάδοσης, την άτρακτο της γεννήτριας και τον πυλώνα ή/και την πλατφόρμα [1]
- BeamDyn για τα πτερύγια και ElastoDyn για το σύστημα μετάδοσης, την άτρακτο της γεννήτριας και τον πυλώνα ή/και την πλατφόρμα [2]

 CompInflow: Επιλέγεται το μοντέλο υπολογισμού των ταχυτήτων πρόσπτωσης του ανέμου. Η επιλογή γίνεται μεταξύ των μοντέλων:

- Αγνόηση ταχύτητας ανέμου (θεώρηση ακίνητου αέρα) [0]
- InflowWind [1]
- OpenFOAM/SOWFA [2]

 CompAero: Επιλέγεται το μοντέλο υπολογισμού των αεροδυναμικών φορτίων. Η επιλογή γίνεται μεταξύ των μοντέλων:

- Αγνόηση αεροδυναμικών φορτίων [0]
- AeroDyn v14 [1]
- AeroDyn v15 [2]

Σημειώνεται ότι η διαφοροποίηση του AeroDyn v15 από το AeroDyn v14 είναι ότι παρέχει τη δυνατότητα ανεξάρτητης διακριτοποίησης των πτερυγίων και του πυλώνα κατά

τον υπολογισμό των αεροδυναμικών φορτίων από την αντίστοιχη διακριτοποίηση που διενεργείται κατά τη δυναμική ανάλυση με τα ElastoDyn ή BeamDyn.

- CompServo: Επιλέγεται το μοντέλο καθορισμού της δυναμικής συμπεριφοράς του συστήματος ελέγχου και των ηλεκτρικών συστημάτων:
 - Αγνόηση της δυναμικής συμπεριφοράς των συστημάτων [0]
 - ServoDyn [1]
- CompHydro: Επιλέγεται το μοντέλο υπολογισμού των υδροδυναμικών φορτίων:
 - Αγνόηση υδροδυναμικών φορτίων [0]
 - HydroDyn [1]

Σημειώνεται ότι σε περίπτωση που η παράμετρος CompHydro είναι μη μηδενική, τότε αυτομάτως το πρόγραμμα αντιλαμβάνεται πως η ανεμογεννήτρια είναι υπεράκτια. Αν, επιπλέον, η παράμετρος CompSub είναι κι αυτή μη μηδενική, τότε η υπεράκτια ανεμογεννήτρια θεωρείται αυτομάτως σταθερού πυθμένα. Αντιθέτως, αν η παράμετρος CompSub είναι μηδενική, τότε το πρόγραμμα εκλαμβάνει την υπεράκτια ανεμογεννήτρια ως πλωτή.

CompSub: Επιλέγεται το μοντέλο προσομοίωσης της δυναμικής συμπεριφοράς της υποδομής:

- Αγνόηση δυναμικής συμπεριφοράς υποδομής [0]
- SubDyn [1]

 CompMooring: Επιλέγεται το μοντέλο υπολογισμού του συστήματος πρόσδεσης πλωτών ανεμογεννητριών:

- Χωρίς σύστημα πρόσδεσης [0]
- MAP++ [1]
- FEAMooring [2]
- MoorDyn [3]
- OrcaFlexInterface [4]

Σημειώνεται ότι αν η παράμετρος CompMooring λάβει την τιμή [4], τότε πρέπει η παράμετρος CompHydro να λάβει μηδενική τιμή, ώστε να αντιληφθεί το FAST πως πρόκειται για υπεράκτιο, πλωτό σύστημα.

 Complee: Επιλέγεται το μοντέλο υπολογισμού των φορτίων λόγω σχηματισμού πάγου στην επιφάνεια της θάλασσας στην περίπτωση υπεράκτιων ανεμογεννητριών:

- Αγνόηση των φορτίων πάγου [0]
- IceFloe [1]
- IceDyn [2]

Σημειώνεται πως σε περίπτωση που η παράμετρος Complee είναι μη μηδενική, τόσο η CompHydro, όσο και η CompSub, πρέπει να λάβουν την τιμή [1], καθώς η ύπαρξη φορτίων πάγου σηματοδοτεί αφενός πως η ανεμογεννήτρια είναι θαλάσσια και αφετέρου πως διαθέτει σταθερό πυθμένα.

DT_Out: Το χρονικό βήμα για τον πίνακα εξόδου σε sec. Η παράμετρος αυτή θα πρέπει να αποτελεί ακέραιο πολλαπλάσιο του DT ή, εναλλακτικά, να τίθεται ως "προεπιλογή" ("default"), ώστε να λάβει αυτομάτως την τιμή του DT.

 TStart: Ο χρόνος σε sec κατά τον οποίο το FAST ξεκινά την συμπλήρωση του πίνακα αποτελεσμάτων. Για να ξεκινούν τα αρχεία αποτελεσμάτων από τον χρόνο αυτό θα πρέπει ο τελευταίος να αποτελεί ακέραιο πολλαπλάσιο του DT_Out.

OutFileFmt: Επιλέγεται η μορφή του αρχείου αποτελεσμάτων. Στην περίπτωση που
 OutFileFmt = 1, τότε παράγεται ένα απλό αρχείο κειμένου, ενώ σε περίπτωση που

OutFileFmt = 2, τότε παράγεται ένα δυαδικό αρχείο (binary file). Τέλος, αν ισχύει ότι OutFileFmt = 3, τότε παράγονται και τα δύο προαναφερθέντα αρχεία.

- 4.1.2. <u>Κώδικας υπορουτίνας ElastoDyn</u>
 - Method: Υποδεικνύει τη χρησιμοποιούμενη μέθοδο διακριτοποίησης στο πεδίο του χρόνου.
 - DT: Χρονικό βήμα διακριτοποίησης σε sec.
 - FlapDOF1: Σε περίπτωση που αυτή η λογική μεταβλητή τεθεί ως αληθής, τότε ενεργοποιείται η πρώτη ιδιομορφή της καμπτόμενης λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της. Στην πραγματικότητα, ο παράγοντας αυτός ενεργοποιεί την ευκαμψία των λεπίδων.
 - FlapDOF2: Σε περίπτωση που αυτή η λογική μεταβλητή τεθεί ως αληθής, τότε ενεργοποιείται η δεύτερη ιδιομορφή της καμπτόμενης λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της.
 - EdgeDOF: Σε περίπτωση που αυτή η λογική μεταβλητή τεθεί ως αληθής, τότε ενεργοποιείται η πρώτη ιδιομορφή της καμπτόμενης λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μικρότερης διάστασης της διατομής της. Στην πραγματικότητα, ο παράγοντας αυτός ενεργοποιεί την ευκαμψία των λεπίδων. Σημειώνεται ότι η τιμή των FlapDOF1 και EdgeDOF πρέπει να είναι κοινή.

Εικόνα 4.5: Ορισμός διευθύνσεων ιδιομορφών λεπίδας

 TeetDOF: Όταν η λογική αυτή μεταβλητή τεθεί ως αληθής, ενεργοποιεί την κλίση του συστήματος των λεπίδων ως προς το κάθετο επίπεδο του άξονα του ρότορα. Σημειώνεται ότι για συστήματα τριών λεπίδων η μεταβλητή αυτή αγνοείται.

Εικόνα 4.6: Ορισμός ειδικών συνθηκών σύνδεσης πτερυγίων – άζονα ρότορα
- DrTrDOF: Όταν τίθεται ως αληθής, ενεργοποιεί τη στροφική ευκαμψία του κινητήρα της ανεμογεννήτριας. Το γεγονός αυτό μοντελοποιεί τον κινητήρα ως ένα στροφικό ελατήριο-αποσβεστήρα μεταξύ της γεννήτριας και του ρότορα.
- GenDOF: Όταν τίθεται ως αληθής, ενεργοποιεί την ελευθερία κίνησης της γεννήτριας. Το γεγονός αυτό επιτρέπει τη χρήση διαφόρων λειτουργιών ελέγχου μεταβαλλόμενων ταχυτήτων κατά τη διάρκεια μιας ανάλυσης χρονοϊστορίας.
- YawDOF: Όταν τίθεται ως αληθής, ενεργοποιεί την ελευθερία περιστροφής της ατράκτου περί τον κατακόρυφο άξονα. Η αρχική γωνία, στην οποία είναι στραμμένη η άτρακτος της ανεμογεννήτριας υποδηλώνεται από τη μεταβλητή NacYaw. Αν η μεταβλητή YawDOF είναι ψευδής τότε η άτρακτος παραμένει καθηλωμένη στη γωνία NacYaw καθ΄ όλη τη διάρκεια της ανάλυσης.
- TwFADOF1: Στην περίπτωση που είναι αληθής, ενεργοποιείται η πρώτη καμπτική εμπρόσθια ιδιομορφή του πυλώνα. Στην πραγματικότητα, ο παράγοντας αυτός ενεργοποιεί την ευκαμψία του πυλώνα.
- TwFADOF2: Στην περίπτωση που είναι αληθής, ενεργοποιείται η δεύτερη καμπτική εμπρόσθια ιδιομορφή του πυλώνα. Στην πραγματικότητα, ο παράγοντας αυτός ενεργοποιεί την ευκαμψία του πυλώνα.
- TwSSDOF1: Στην περίπτωση που είναι αληθής, ενεργοποιείται η πρώτη καμπτική πλευρική ιδιομορφή του πυλώνα. Στην πραγματικότητα, ο παράγοντας αυτός ενεργοποιεί την ευκαμψία του πυλώνα. Σημειώνεται ότι η τιμή των TwFADOF1 και TwSSDOF1 πρέπει να είναι κοινή.
- TwSSDOF2: Στην περίπτωση που είναι αληθής, ενεργοποιείται η δεύτερη καμπτική πλευρική ιδιομορφή του πυλώνα. Στην πραγματικότητα, ο παράγοντας αυτός ενεργοποιεί την ευκαμψία του πυλώνα. Σημειώνεται ότι η μεταβλητή αυτή μπορεί να είναι αληθής μόνον αν και η TwSSDOF1 είναι επίσης αληθής.
- PtfmSgDOF: Στην περίπτωση που είναι αληθής, ενεργοποιείται η οριζόντια μεταφορική ελευθερία κίνησης της πλωτής πλατφόρμας στη διεύθυνση άσκηση των φορτίων ανέμου και κυματισμών (surge translation).
- PtfmSwDOF: Στην περίπτωση που είναι αληθής, ενεργοποιείται η οριζόντια μεταφορική ελευθερία κίνησης της πλωτής πλατφόρμας σε διεύθυνση κάθετη σε αυτήν που ασκούνται τα φορτία ανέμου και κυματισμών (sway translation).
- PtfmSvDOF: Στην περίπτωση που είναι αληθής, ενεργοποιείται η κατακόρυφη μεταφορική ελευθερία κίνησης της πλωτής πλατφόρμας (heave translation).
- PtfmRDOF: Στην περίπτωση που είναι αληθής, ενεργοποιείται η στροφική ελευθερία κίνησης της πλωτής πλατφόρμας περί οριζόντιο άξονα παράλληλο στη διεύθυνση άσκησης των φορτίων ανέμου και κυματισμών (roll tilt rotation).
- PtfmPDOF: Στην περίπτωση που είναι αληθής, ενεργοποιείται η στροφική ελευθερία κίνησης της πλωτής πλατφόρμας περί οριζόντιο άξονα κάθετο στη διεύθυνση άσκησης των φορτίων ανέμου και κυματισμών (roll tilt rotation).
- PtfmYDOF: Στην περίπτωση που είναι αληθής, ενεργοποιείται η στρεπτική ελευθερία κίνησης της πλωτής πλατφόρμας περί τον κατακόρυφο άξονα (yaw rotation).

Εικόνα 4.7: Ορισμός ελευθεριών κίνησης πλωτής πλατφόρμας

- TipMass (1): Βάρος μηχανισμού στροφής-φρένου πτερυγίου 1 σε kg.
- TipMass (2): Βάρος μηχανισμού στροφής-φρένου πτερυγίου 2 σε kg.
- TipMass (3): Βάρος μηχανισμού στροφής-φρένου πτερυγίου 3 σε kg.
- HubMass: Μάζα δακτυλίου άξονα ρότορα σε kg.
- HubIner: Ροπή αδράνειας του δακτυλίου περί τον άξονα του ρότορα [kg·m²].
- GenIner: Ροπή αδράνειας της γεννήτριας περί τον δίσκο μεγάλης ταχύτητας [kg·m²].
- NacMass: Μάζα ατράκτου σε kg.
- NacYIner: Ροπή αδράνειας της ατράκτου περί τον κατακόρυφο άξονα [kg·m²].
- YawBrMass: Μάζα δίσκου έδρασης της ατράκτου σε kg.
- PtfmMass: Μάζα πλωτής πλατφόρμας σε kg.
- PtfmRIner: Ροπή αδράνειας πλωτής πλατφόρμας περί οριζόντιο άξονα παράλληλο στη διεύθυνση των φορτίων του ανέμου και των κυματισμών [kg·m²].
- PtfmPIner: Ροπή αδράνειας πλωτής πλατφόρμας περί οριζόντιο άξονα κάθετο στη διεύθυνση των φορτίων του ανέμου και των κυματισμών [kg·m²].
- PtfmYIner: Ροπή αδράνειας πλωτής πλατφόρμας περί τον κατακόρυφο άξονα [kg·m²].
- BldNodes: Πλήθος σημείων πτερυγίων ανά πτερύγιο.
- GBoxEff: Αποδοτικότητα του κιβωτίου ταχυτήτων [%]

- GBRatio: Λόγος του κιβωτίου ταχυτήτων [-]
- DTTorSpr: Στροφικό ελατήριο του κινητήρα [N·m/rad].
- DTTorDmp: Στροφικός αποσβεστήρας του κινητήρα [N·m/(rad/sec)].
- TwrNodes: Πλήθος σημείων πυλώνα που χρησιμοποιούνται στην ανάλυση.
- NTwGages: Πλήθος σημείων πυλώνα που διαθέτουν σταθμούς μέτρησης των εντάσεων.
- NBIGages: Πλήθος σημείων πτερυγίου που διαθέτει σταθμούς μέτρησης των εντάσεων.

Εντός της εν λόγω υπορουτίνας καλούνται τα επιμέρους αρχεία BldFile(i), τα οποία περιέχουν όλα τα χαρακτηριστικά του πτερυγίου i της ανεμογεννήτριας. Πιο συγκεκριμένα στα αρχεία αυτά εμπεριέχονται οι παρακάτω μεταβλητές:

- NBIInpSt: Πλήθος εισαγόμενων σημείων-σταθμών του πτερυγίου.
- BldFlDmp(1): Ποσοστό απόσβεσης ως προς την τιμή της κρίσιμης για την πρώτη ιδιομορφή της καμπτόμενης λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της.
- BldFlDmp(2): Ποσοστό απόσβεσης ως προς την τιμή της κρίσιμης για τη δεύτερη ιδιομορφή της καμπτόμενης λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της.
- BldEdDmp(1): Ποσοστό απόσβεσης ως προς την τιμή της κρίσιμης για την πρώτη ιδιομορφή της καμπτόμενης λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μικρότερης διάστασης της διατομής της.
- FIStTunr(1): Ρυθμιστής δυσκαμψίας για την πρώτη ιδιομορφή της λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της.
- FIStTunr(2): Ρυθμιστής δυσκαμψίας για τη δεύτερη ιδιομορφή της λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της.
- AdjBIMs: Συντελεστής για την προσαρμογή της πυκνότητας της μάζας της λεπίδας.
- AdjFlSt: Συντελεστής για την προσαρμογή της δυσκαμψίας της λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της.
- AdjEdSt: Συντελεστής για την προσαρμογή της δυσκαμψίας της λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της.
- BIFract: Τμήμα κατά μήκος της λεπίδας.
- PitchAxis: Θέση του διαμήκους άξονα της λεπίδας στην εκάστοτε διατομή.

- StrcTwst: Η γωνία στροφής της διατομής περί τον διαμήκη άξονα σε μοίρες.
- BMassDen: Μάζα ανά μέτρο μήκους λεπίδας σε kg/m.
- FlpStff: Η μηχανική δυσκαμψία της λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της ανά μέτρο μήκους σε N·m².
- EdgStff: Η μηχανική δυσκαμψία της λεπίδας περί τον άξονα που είναι εντός του επιπέδου της μικρότερης διάστασης της διατομής της ανά μέτρο μήκους σε N·m².
- BldFl1Sh(i): Συντελεστής του στοιχείου i-στης δύναμης του πολυωνύμου της πρώτης ιδιομορφής περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της λεπίδας.
- BldFl2Sh(i): Συντελεστής του στοιχείου i-στης δύναμης του πολυωνύμου της δεύτερης ιδιομορφής περί τον άξονα που είναι εντός του επιπέδου της μεγαλύτερης διάστασης της διατομής της λεπίδας.
- BldEdgSh(i): Συντελεστής του στοιχείου i-στης δύναμης του πολυωνύμου της πρώτης ιδιομορφής περί τον άξονα που είναι εντός του επιπέδου της μικρότερης διάστασης της διατομής της λεπίδας.

Ακόμα, η ElastoDyn καλεί το αρχείο ElastoDyn_Tower, το οποίο περιέχει όλα τα χαρακτηριστικά του πυλώνα της ανεμογεννήτριας. Πιο συγκεκριμένα στο αρχείο αυτό εμπεριέχονται οι παρακάτω μεταβλητές:

- NTwInpSt: Πλήθος εισαγόμενων σημείων-σταθμών του πυλώνα.
- TwrFADmp(1): Ποσοστό απόσβεσης για την πρώτη ιδιομορφή του πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών (fore-aft mode).

- TwrFADmp(2): Ποσοστό απόσβεσης για τη δεύτερη ιδιομορφή πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- TwrSSDmp(1): Ποσοστό απόσβεσης για την πρώτη ιδιομορφή του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών (side-to-side mode).
- TwrSSDmp(2): Ποσοστό απόσβεσης για τη δεύτερη ιδιομορφή του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών.

Εικόνα 4.9: Ορισμός καμπτικών ιδιομορφών πυλώνα

- FAStTunr(1): Ρυθμιστής δυσκαμψίας για την πρώτη ιδιομορφή του πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- FAStTunr(2): Ρυθμιστής δυσκαμψίας για τη δεύτερη ιδιομορφή του πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- SSStTunr(1): Ρυθμιστής δυσκαμψίας για την πρώτη ιδιομορφή του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- SSStTunr(2): Ρυθμιστής δυσκαμψίας για τη δεύτερη ιδιομορφή του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- AdjTwMa: Συντελεστής για την προσαρμογή της πυκνότητας της μάζας του πυλώνα.
- AdjFASt: Συντελεστής για την προσαρμογή της δυσκαμψίας του πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- AdjSSSt: Συντελεστής για την προσαρμογή της δυσκαμψίας του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- HtFract: Τμήμα κατά μήκος του πυλώνα.

- TMassDen: Μάζα ανά μέτρο μήκους πυλώνα σε kg/m.
- TwFAStff: Η μηχανική δυσκαμψία ανά μέτρο μήκους του πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών σε N·m².
- TwSSStff: Η μηχανική δυσκαμψία ανά μέτρο μήκους του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών σε N·m².
- TwFAM1Sh(i): Συντελεστής του στοιχείου i-στης δύναμης του πολυωνύμου της πρώτης ιδιομορφής του πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- TwFAM2Sh(i): Συντελεστής του στοιχείου i-στης δύναμης του πολυωνύμου της δεύτερης ιδιομορφής του πυλώνα περί οριζόντιου άξονα κάθετου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- TwSSM1Sh(i): Συντελεστής του στοιχείου i-στης δύναμης του πολυωνύμου της πρώτης ιδιομορφής του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών.
- TwSSM2Sh(i): Συντελεστής του στοιχείου i-στης δύναμης του πολυωνύμου της δεύτερης ιδιομορφής του πυλώνα περί οριζόντιου άξονα παράλληλου στη διεύθυνση των φορτίων ανέμου και κυματισμών.

Σημειώνεται ότι για τον υπολογισμό των ιδιομορφών του πυλώνα χρησιμοποιήθηκε το λογισμικό BModes^[3], το οποίο λειτουργεί εκτός του προγραμματιστικού περιβάλλοντος του FAST και υπολογίζει τις συζευγμένες ιδιομορφές γραμμικών πεπερασμένων στοιχείων.

Πιο συγκεκριμένα, η πορεία υπολογισμού του αλγορίθμου του προγράμματος παρουσιάζεται στην ακόλουθη εικόνα.

Εικόνα 4.10: Διάγραμμα ροής υπολογισμών BModes

Οι επιμέρους μεταβλητές που χρησιμοποιεί το πρόγραμμα BModes για τον υπολογισμό των ιδιομορφών του πυλώνα είναι οι ακόλουθες:

- beam_type: Ίσο με 1 για μοντελοποίηση πτερυγίων και 2 για πυλώνες ανεμογεννητριών [-].
- romg: Η ταχύτητα του ρότορα (τίθεται αυτομάτως ίση με το μηδέν για ιδιομορφική ανάλυση πυλώνων) [rpm].
- romg_mult: Πολλαπλασιαστής της ταχύτητας του ρότορα [-].
- radius: Η διάμετρος του ρότορα ή το ύψος του πυλώνα σε [m]
- hub_rad: Η διάμετρος του δακτυλίου του άξονα του ρότορα ή το ύψος της πακτωμένης βάσης του πυλώνα [m].
- precone: ενσωματωμένη γωνία precone (τίθεται αυτομάτως ίση με το μηδέν για ιδιομορφική ανάλυση πυλώνων) [deg].
- bl_thp: μορφολογία εγκάρσιας καμπύλωσης πτερυγίου (τίθεται αυτομάτως ίση με το μηδέν για ιδιομορφική ανάλυση πυλώνων).

Εικόνα 4.11: Μορφολογία εγκάρσιας καμπύλωσης πτερυγίου

- hub_conn: Συνδεσμολογία του δακτυλίου του άξονα του ρότορα με το πτερύγιο της ανεμογεννήτριας. Προς το παρόν η μόνη δυνατότητα επιλογής στατικού συστήματος για τη λεπίδα είναι ο πρόβολος.
- modepr: Πλήθος παραγόμενων ιδιομορφών.
- mid_node_tw: Όταν τίθεται ως αληθής, τότε προκύπτουν αποτελέσματα για τα μέσα των μελών, διαφορετικά δεν παρέχεται πληροφορία για αυτά τα σημεία.
- tip_mass: Μάζα άκρου λεπίδας ή μάζα κορυφής πυλώνα [kg]
- cm_loc: Η μετατόπιση του κέντρου μάζας του άκρου λεπίδας από τον διαμήκη άξονα της λεπίδας μετρούμενη σε m επί του άξονα Y_R. Ενώ, στην περίπτωση μοντελοποίησης πυλώνα, αποτελεί την μετατόπιση του διαμήκη άξονα του πυλώνα κατά τον άξονα x_T [m].
- ixx_tip: Καμπτική ροπή αδράνειας της λεπίδας περί τον άξονα X_R [kg·m²].
- iyy_tip: Καμπτική ροπή αδράνειας της λεπίδας περί τον άξονα Y_R [kg·m²].

- izz_tip: Στρεπτική ροπή αδράνειας της λεπίδας περί τον διαμήκη άξονα [kg·m²].
- ixy_tip: Ροπή αδράνειας της λεπίδας περί ως προς τους άξονες X_R και Y_R για την περίπτωση λεπίδας και ως προς τους x_T και y_T για την περίπτωση πυλώνα [kg·m²].
- iyz_tip: Ροπή αδράνειας της λεπίδας περί ως προς τους άξονες Y_R και Z_R για την περίπτωση λεπίδας και ως προς τους y_T και z_T για την περίπτωση πυλώνα [kg·m²].

Εικόνα 4.12: Ορισμοί αξόνων τυπικής διατομής πτερυγίου ανεμογεννήτριας

Εικόνα 4.13: Ορισμοί αξόνων τυπικής διατομής πυλώνα ανεμογεννήτριας

id_mat: Μεταβλητή που καθορίζει αν το υλικό είναι ισότροπο ή ανισότροπο.
 Μέχρι στιγμής υπάρχει μόνον η δυνατότητα λήψης της τιμής 1 που υποδηλώνει ισότροπο υλικό.

- sec_mass_mult: Πολλαπλασιαστής κατανεμημένης μάζας [-].
- flp_iner_mult: Πολλαπλασιαστής κατανεμημένης ροπής αδράνειας flp_iner [-].
- lag_iner_mult: Πολλαπλασιαστής κατανεμημένης ροπής αδράνειας lag_iner [-].
- flp_stff_mult: Πολλαπλασιαστής κατανεμημένης δυσκαμψίας flp_stff [-].
- edge_stff_mult: Πολλαπλασιαστής κατανεμημένης δυσκαμψίας edge_stff [-].
- tor_stff_mult: Πολλαπλασιαστής κατανεμημένης δυστρεψίας tor_stff [-].
- axial_stff_mult: Πολλαπλασιαστής κατανεμημένης δυστένειας axial_stff [-].
- cg_offst_mult: Πολλαπλασιαστής απόστασης cg_offst [-].
- sc_offst_mult: Πολλαπλασιαστής απόστασης sc_offst [-].
- tc_offst_mult: Πολλαπλασιαστής απόστασης tc_offst [-].
- nselt: Πλήθος στοιχείων που απαιτούνται για τη διακριτοποίηση των πεπερασμένων στοιχείων [-].
- el_loc: Η μεταβλητή el_loc (i) υποδηλώνει τη θέση του εσωτερικού άκρου του στοιχείου i της λεπίδας ως προς το σημείο στήριξής της, ενώ η μεταβλητή el_loc (i+1) υποδηλώνει τη θέση του εξωτερικού άκρου του ίδιου στοιχείου [-].
- n_attachments: Πλήθος υψομετρικών σημείων του πυλώνα, στα οποία προσαρμόζονται τυχόν υποστηρικτικά καλώδια. Η μέγιστη δυνατή ακέραια τιμή της μεταβλητής είναι 2, ενώ σε περίπτωση μηδενικής τιμής υπονοείται ότι δεν υπάρχει κανένα εφελκυόμενο καλώδιο στην κατασκευή [-].
- n_wires: Ένας πίνακας-διάνυσμα που υποδεικνύει το πλήθος των καλωδίων υποστήριξης που προσαρμόζονται σε κάθε υψομετρική θέση με ελάχιστο ακέραιο αριθμό το 3. Το πλήθος των κελιών του πίνακα πρέπει να ισούται με n_attachments [-].
- node_attach: Μια σειρά από αριθμούς σημείων του πυλώνα, στα οποία εφαρμόζεται μία ομάδα καλωδίων υποστήριξης [-].
- wire_stfness: Ένας πίνακας-διάνυσμα που υποδεικνύει την ελατηριακή σταθερά κάθε ομάδας καλωδίων. Το πλήθος των κελιών του πίνακα πρέπει να ισούται με n_attachments. Μέχρι στιγμής ο αλγόριθμος θεωρεί ότι όλα τα καλώδια μιας υψομετρικής ομάδας έχουν ίδια ελατηριακή σταθερά. Επιπλέον, το πρόγραμμα θεωρεί ότι τα καλώδια παραμένουν σε εφελκυσμό καθ΄ όλη τη διάρκεια των δονήσεων του πυλώνα, ενώ τέλος τα καλώδια προσομοιώνονται ως αβαρή στοιχεία [N/m].
- th_wire: Ένας πίνακας-διάνυσμα που υποδεικνύει τη γωνία μεταξύ των καλωδίων της κάθε ομάδας και του διαμήκους άξονα του πυλώνα. Το πλήθος των κελιών του πίνακα πρέπει να ισούται με n_attachments. Μέχρι στιγμής ο αλγόριθμος θεωρεί ότι όλα τα καλώδια μιας υψομετρικής ομάδας έχουν ίδια γωνία κλίσης ως προς τον πυλώνα [deg].

- n_secs: Πλήθος σημείων κατά τη διαμήκη έννοια ενός γραμμικού στοιχείου, στα οποία ο χρήστης προσδιορίζει τη διατομή της λεπίδας. Συνεπώς, η μεταβλητή αυτή είναι κατ' ελάχιστο ίση με δύο [-].
- sec_loc: Θέση τομής μετρούμενη από τη στηριζόμενη βάση της λεπίδας. Για την περίπτωση προσομοίωσης πυλώνα, η απόσταση μετράται από τον κόμβο έδρασης του πυλώνα [-].
- str_tw: Για την περίπτωση πτερυγίου, είναι η γωνία μεταξύ των κύριων ελαστικών αξόνων (principle elastic axes) και των αξόνων αναφοράς της λεπίδας (reference axes), αν η μεταβλητή bl_thp τεθεί ίση με το μηδέν (βλ. Εικόνα 4.12). Η συνολική εγκάρσια καμπύλωση λαμβάνει την τιμή str_bl + bl_thp. Για την περίπτωση πυλώνα, η παράμετρος λαμβάνεται αυτόματα ίση με το μηδέν [deg].
- tw_iner: Για την περίπτωση πτερυγίου, είναι η γωνία μεταξύ των κύριων αξόνων αδράνειας (principle inertia axes) και των αξόνων αναφοράς (reference axes), αν η μεταβλητή bl_thp τεθεί ίση με το μηδέν (βλ. Εικόνα 4.12) [deg].
- mass_den: Μάζα διατομής ανά μέτρο μήκους [kg/m].
- flp_iner: Για την περίπτωση πτερυγίου, είναι η ροπή αδράνειας περί τον άξονα Y_G και ανά μέτρο μήκους (βλ. Εικόνα 4.12). Για την περίπτωση πυλώνα, είναι η ροπή αδράνειας της μάζας του πυλώνα ανά μέτρο μήκους και περί τον άξονα y_T (βλ. Εικόνα 4.13) [kg·m].
- edge_iner: Για την περίπτωση πτερυγίου, είναι η ροπή αδράνειας περί τον άξονα X_G και ανά μέτρο μήκους (βλ. Εικόνα 4.12). Για την περίπτωση πυλώνα, είναι η ροπή αδράνειας της μάζας του πυλώνα ανά μέτρο μήκους και περί τον άξονα x_T (βλ. Εικόνα 4.13) [kg·m].
- flp_stff: Για την περίπτωση πτερυγίου, είναι η δυσκαμψία περί τον άξονα Y_E (βλ. Εικόνα 4.12). Για την περίπτωση πυλώνα, είναι η δυσκαμψία του πυλώνα περί τον άξονα y_T (βλ. Εικόνα 4.13) [N·m²].
- edge_stff: Για την περίπτωση πτερυγίου, είναι η δυσκαμψία περί τον άξονα X_E και ανά μέτρο μήκους (βλ. Εικόνα 4.12). Για την περίπτωση πυλώνα, είναι η δυσκαμψία του πυλώνα περί τον άξονα x_T (βλ. Εικόνα 4.13) [N·m²].
- tor_stff: Δυστρεψία διατομής $[N \cdot m^2]$.
- axial stff: Δυστένεια διατομής [N].
- cg_offst: Απόσταση του κέντρου μάζας της διατομής του πτερυγίου από την τομή R των αξόνων αναφοράς κατά μήκος της χορδής. Για την περίπτωση πυλώνα, η παράμετρος αυτή τίθεται ίση με το μηδέν [m].
- sc_offst: Απόσταση του κέντρου διάτμησης της διατομής του πτερυγίου από την τομή R των αξόνων αναφοράς. Για την περίπτωση πυλώνα, η παράμετρος αυτή τίθεται ίση με το μηδέν [m].

- tc_offst: Απόσταση του κέντρου εφελκυσμού της διατομής του πτερυγίου από την τομή R των αξόνων αναφοράς. Για την περίπτωση πυλώνα, η παράμετρος αυτή τίθεται ίση με το μηδέν [m].
- span_loc: Θέση του σημείου αναφοράς επί του διαμήκους άξονα της δοκού μετρούμενη από τη βάση στήριξης της δοκού και κανονικοποιημένη ως προς το μήκος της δοκού.
- flap disp: Για την περίπτωση πτερυγίου, είναι η συνιστώσα της ιδιομορφικής εμπρόσθιας μετατόπισης που είναι κάθετη στη επίπεδο αναφοράς της λεπίδας (επίπεδο του ρότορα). Για την περίπτωση του πυλώνα, πρόκειται για την ιδιομορφική μετατόπιση παράλληλα στον άξονα X_T (βλ. Εικόνα 4.13).
- flap slope: Για την περίπτωση πτερυγίου, είναι η προβολή της ιδιομορφικής πλευρικής μετατόπισης στο επίπεδο που διέρχεται από τον απαραμόρφωτο άξονα αναφοράς της λεπίδας και είναι κάθετο στο επίπεδο αναφοράς (επίπεδο του ρότορα). Για την περίπτωση του πυλώνα, πρόκειται για την προβολή της ιδιομορφικής πλευρικής μετατόπισης στο επίπεδο X_T-Z_T (βλ. Εικόνα 4.13).
- lag disp: Για την περίπτωση πτερυγίου, είναι η προβολή της ιδιομορφικής εμπρόσθιας μετατόπισης της λεπίδας στο επίπεδο αναφοράς (επίπεδο του ρότορα). Για την περίπτωση του πυλώνα, πρόκειται για την προβολή της ιδιομορφικής εμπρόσθιας μετατόπισης στο επίπεδο Υ_T-Z_T (βλ. Εικόνα 4.13).
- lag slope: Για την περίπτωση πτερυγίου, είναι η προβολή της ιδιομορφικής πλευρικής μετατόπισης της λεπίδας στο επίπεδο αναφοράς (επίπεδο του ρότορα). Για την περίπτωση του πυλώνα, πρόκειται για την προβολή της ιδιομορφικής πλευρικής μετατόπισης στο επίπεδο Y_T-Z_T (βλ. Εικόνα 4.13).
- twist: Για την περίπτωση πτερυγίου, είναι η προβολή της στρεπτικής ιδιομορφής της διατομής στο κάθετο επίπεδο και προς το επίπεδο αναφοράς, αλλά και ως προς τον άξονα αναφοράς της λεπίδας. Για την περίπτωση πυλώνα, είναι προσεγγιστικά η προβολή της στρπτικής ιδιομορφής της διατομής επί του επιπέδου X_T-Y_T (βλ. Εικόνα 4.13).

4.1.3. <u>Κώδικας υπορουτίνας BeamDyn^[4]</u>

Το σύστημα αξόνων της υπορουτίνας φαίνεται στην ακόλουθη εικόνα.

Εικόνα 4.14: Ορισμοί αξόνων υπορουτίνας BeamDyn

- analysis_type: Επιλέγεται η τιμή 1 για στατική ανάλυση και η τιμή 2 για δυναμική ανάλυση.
- rhoinf: Αριθμητική τιμή του συντελεστή απόσβεσης. Λαμβάνει την τιμή 1, όταν δεν εισάγεται καθόλου αριθμητική απόσβεση και την τιμή 0, όταν εισάγεται η μέγιστη.
- Quadrature: Μεταβλητή που καθορίζει την αριθμητική παρεμβολή. Μέχρι στιγμής υπάρχουν δύο διαθέσιμες κατανομές: η κατανομή Gauss και η τραπεζοειδής κατανομή.
- Refine: Προσδιορίζει έναν παράγοντα βελτίωσης της μορφής της τραπεζοειδούς κατανομής. Ακέραιες τιμές μεγαλύτερες της μονάδας σημαίνουν ότι το τμήμα μεταξύ δύο σημείων-σταθμών θα διακριτοποιηθεί και η μορφή του θα βελτιωθεί. Η επιλογή "DEFAULT" χρησιμοποιείται όταν καμία διαμόρφωση δεν απαιτείται.
- N_Fact: Προσδιορίζει την απαραίτητη παράμετρο που χρησιμοποιείται για την τροποποίηση της μεθόδου Newton-Raphson. Σε περίπτωση που λάβει την τιμή μονάδα, τότε διενεργείται η πλήρης μέθοδος σύγκλισης Newton. Σε περίπτωση που λάβει τιμή μεγαλύτερη της μονάδας, τότε διενεργείται η τροποποιημένη μέθοδος σύγκλισης Newton. Η τιμή "DEFAULT" αντιστοιχεί σε τιμή N_Fact = 5.
- DTBeam: Προσδιορίζει το σταθερό χρονικό βήμα που χρησιμοποιείται κατά τη σύγκλιση της διαδικασίας [sec].
- NRMax: Προσδιορίζει το μέγιστο πλήθος επαναλήψεων σε κάθε χρονικό βήμα για τη διαδικασία συγκλισης Newton-Raphson. Αν δεν επιτευχθεί σύγκλιση εντός του πλήθος των εν λόγω επαναλήψεων, τότε η BeamDyn επιστρέφει στον χρήστη ένα αντίστοιχο μήνυμα σφάλματος. Η τιμή "DEFAULT" θέτει τη NRMax = 10.
- Stop_Tol: Προσδιορίζει την παράμετρο ανοχής του κριτηρίου σύγκλισης της μηγραμμικής ανάλυσης, η οποία χρησιμοποιείται για τον τερματισμό των επαναλήψεων. Η τιμή "DEFAULT" θέτει τη Stop_Tol = 10⁻⁵.
- member_total: Προσδιορίζει το συνολικό πλήθος των γραμμικών στοιχείων που χρησιμοποιούνται στην κατασκευή.
- kp_total: Προσδιορίζει το συνολικό πλήθος σημείων που χρησιμοποιούνται για τον καθορισμό των γραμμικών μελλών. Μεταξύ των παραπάνω ισχύει η ακόλουθη σχέση:

$$kp_total = \sum_{i=1}^{member_total} n_i - member_total + 1$$

όπου, ni ο αριθμός του χαρακτηριστικού σημείου του i-στου μέλους.

Εικόνα 4.15: Γεωμετρικά χαρακτηριστικά λεπίδων επιλυόμενων στην υπορουτίνα BeamDyn

- kp_xr (i): Συντεταγμένη κατά τον άξονα x του χαρακτηριστικού σημείου i [m].
- kp_yr (i): Συντεταγμένη κατά τον άξονα y του χαρακτηριστικού σημείου I [m].
- kp_zr (i): Συντεταγμένη κατά τον άξονα z του χαρακτηριστικού σημείου I [m].
- Initial_twist (i): Γωνία στροφής εκ κατασκευής περί του αρνητικού Ζ_l άξονα. [m].
- Order_Elem: Προσδιορίζει την τάξη του πολυωνύμου περιγραφής του σχήματος για κάθε πεπερασμένο στοιχείο. Για κατανομές Gauss η τάξη του πολυωνύμου πρέπει να είναι μεγαλύτερη της μονάδας.
- UsePitchAct: Η ενεργοποίηση της λειτουργίας περιστροφής των πτερυγίων δεν είναι διαθέσιμη με την τρέχουσα έκδοση του προγράμματος. Συνεπώς, η μεταβλητή θα πρέπει να έχει την τιμή "FALSE".

Εικόνα 4.16: Σύστημα περιστροφής των πτερυγίων

- PitchJ: Η ροπή αδράνειας του συστήματος ενεργοποίησης περιστροφής [kg·m²].
- PitchK: Η δυασκαμψία του συστήματος ενεργοποίησης περιστροφής [kg·m²/sec²].

- PitchC: Ο συντελεστής απόσβεσης του συστήματος ενεργοποίησης περιστροφής [kg·m²/sec].
- SumPrint: Όταν τίθεται ως αληθής, η μεταβλητή αυτή επιτρέπει την παραγωγή αρχείου αποτελεσμάτων.
- OutFmt: Υποδεικνύει την μορφή κωδικοποίησης του αρχείου αποτελεσμάτων. Σε περίπτωση, συζευγμένης χρήσης του BeamDyn με το πρόγραμμα FAST, η τιμή της μεταβλητής αγνοείται.
- NNodeOuts: Υποδεικνύει το πλήθος των σημείων, όπου ζητείται η εξαγωγή αποτελεσμάτων. Μέχρι στιγμής η μέγιστη τιμή που υποστηρίζει το πρόγραμμα είναι 9.
- OutNd: Αποτελεί μία λίστα με τους αριθμούς αναφοράς (1 node_total) των NNodeOuts σημείων εξαγωγής αποτελεσμάτων.
- OutList: Αποτελεί μία λίστα με τα ζητούμενα αποτελέσματα.
- **BldFile**: Αποτελεί το αρχείο δεδομένων των πτερυγίων της ανεμογεννήτριας.

Πιο συγκεκριμένα στο αρχείο αυτό εμπεριέχονται τα εξής:

- Station_Total: Προσδιορίζει το πλήθος των σταθμών διατομής κατά μήκος του διαμήκους άξονα του πτερυγίου.
- Damp_Type: Προσδιορίζει τη μηχανική απόσβεση που θεωρείται στην ανάλυση. Σε περίπτωση μηδενικής τιμής, δεν θεωρείται οιαδήποτε απόσβεση, ενώ σε περίπτωση μοναδιαίας τιμής γίνεται η θεώρηση απόσβεσης στην ανάλυση.
- Damping Coefficient: Εισάγονται έξι συντελεστές απόσβεσης για κάθε ελευθερία κίνησης.
- Distributed properties: Εισάγονται οι διανεμημένες ιδιότητες σε κάθε σταθμό διατομής, όπως η δυσκαμψία και η μάζα.

4.1.4. Κώδικας υπορουτίνας InflowWind^[5]

Εικόνα 4.17: Ορισμός αξόνων υπορουτίνας InflowWind

- WindType: Γίνεται η επιλογή του τύπου του τύπου ανέμου μεταξύ των εξής επιλογών:
 - 1: Σταθερός άνεμος (υπολογίζεται εσωτερικά χρησιμοποιώντας της σταθερές συνθήκες ανέμου)
 - 2: Ομοιόμορφος άνεμος (εισάγεται από αντίστοιχο αρχείο)
 - 3: Άνεμος πλήρους πεδίου από δυαδικό αρχείο της υπορουτίνας TurbSim
 - 4: Ανεμος πλήρους πεδίου από δυαδικό αρχείο άλλης κατάλληλης για τα πτερύγια μορφής
 - 5: Άνεμος πλήρους πεδίου από δυαδικό αρχείο τύπου HAWC
 - 6: Καθορισμός τύπου ανέμου από τον χρήστη μέσω της υπορουτίνας UserWind
- PropagationDir: Πρόκειται για τη γωνία περιστροφής του πεδίου ανέμου ως προς τον κατακόρυφο άξονα της ανεμογεννήτριας [deg]. Θετική νοείται η περιστροφή σύμφωνα με τους δείκτες του ρολογιού αν η ανεμογεννήτριας εξεταστεί από πάνω κοιτάζοντας προς το έδαφος.
- NWindVel: Πλήθος σημείων εξαγωγής τιμής ταχύτητας ανέμου (από 0-9 σημε
- WindVxiList: Συντεταγμένες Χί για κάθε ένα σημείο εκ των NWindVel.
- WindVyiList: Συντεταγμένες Υί για κάθε ένα σημείο εκ των NWindVel.
- WindVziList: Συντεταγμένες Ζί για κάθε ένα σημείο εκ των NWindVel.

Παράμετροι για WindType=1:

Σε αυτήν την ενότητα, επιλέγονται οι απαραίτητες παράμετροι για τον υπολογισμό των συνθηκών ανέμου χρησιμοποιώντας τον ακόλουθο καταστατικό νόμο για την ταχύτητα του ανέμου:

$$V_h(z) = HWindSpeed\left(\frac{z}{RefHt}\right)^{PLexp}$$

- HWindSpeed: Η οριζόντια ταχύτητα πνοής ανέμου σε ύψος RefHt [m/sec].
- **RefHt**: Το ύψος αναφοράς για την εφαρμογή του ανέμου [m].
- PLexp: Ο εκθέτης του καταστατικού νόμου για το μοντέλο του ανέμου.

Παράμετροι για WindType=2:

Σε αυτήν την ενότητα, επιλέγονται οι απαραίτητες παράμετροι για την κατάλληλη εισαγωγή των δεδομένων ανέμου:

- Filename: Αρχείο με τη χρονο-ϊστορία φόρτισης ανέμου.
- RefHt: Το ύψος αναφοράς για το αρχείο ανέμου [m].
- RefLength: Το μήκος αναφοράς, στο οποίο πραγματοποιείται η κλιμάκωση των οριζοντίων και κατακόρυφων τεμνουσών ανέμου.

Παράμετροι για WindType=3:

Σε αυτήν την ενότητα, επιλέγονται οι απαραίτητες παράμετροι για την κατάλληλη εισαγωγή των δεδομένων ανέμου:

• Filename: Αρχείο με τη χρονο-ϊστορία φόρτισης ανέμου.

Παράμετροι για WindType=4:

Σε αυτήν την ενότητα, επιλέγονται οι απαραίτητες παράμετροι για την κατάλληλη εισαγωγή των δεδομένων ανέμου:

- Filename: Αρχείο με τη χρονο-ϊστορία φόρτισης ανέμου.
- TowerFile: Προαιρετικό αρχείο με τη χρονο-ϊστορία φόρτισης ανέμου επί του πυλώνα.

Παράμετροι για <u>WindType=5</u>:

Σε αυτήν την ενότητα, επιλέγονται οι απαραίτητες παράμετροι για την κατάλληλη εισαγωγή των δεδομένων ανέμου:

- Filename_u: Αρχείο με τη χρονο-ϊστορία φόρτισης της συνιστώσας u του ανέμου.
- Filename_v: Αρχείο με τη χρονο-ϊστορία φόρτισης της συνιστώσας ν του ανέμου.
- Filename_w: Αρχείο με τη χρονο-ϊστορία φόρτισης της συνιστώσας w του ανέμου.
- nx: Πλήθος κόμβων καννάβου στη x διεύθυνση και για τα τρία αρχεία δεδομένων.
- ny: Πλήθος κόμβων καννάβου στη y διεύθυνση και για τα τρία αρχεία δεδομένων.
- nz: Πλήθος κόμβων καννάβου στη z διεύθυνση και για τα τρία αρχεία δεδομένων.
- RefHt: Το ύψος αναφοράς για το κέντρο στην κατακόρυφη έννοια του καννάβου του αρχείου ανέμου [m].
- dx: Απόσταση μεταξύ των κόμβων στη x διεύθυνση.

- dy: Απόσταση μεταξύ των κόμβων στη y διεύθυνση.
- dz: Απόσταση μεταξύ των κόμβων στη z διεύθυνση.
- ScaleMethod:

Διατίθενται οι εξής μέθοδοι για την κλιμάκωση των αναταράξεων:

- Καμία κλιμάκωση (ScaleMethod = 0)
- Αμεση κλιμάκωση (ScaleMethod = 1)
- Υπολογισμός κλιμάκωσης βασισμένος στην επιθυμητή τυπική απόκλιση (ScaleMethod = 2)
- SFx: Συντελεστής κλιμάκωσης των αναταράξεων στη διεύθυνση x για ScaleMethod = 1 [-].
- SFy: Συντελεστής κλιμάκωσης των αναταράξεων στη διεύθυνση y για ScaleMethod = 1 [-].
- SFz: Συντελεστής κλιμάκωσης των αναταράξεων στη διεύθυνση z για ScaleMethod = 1 [-].
- SigmaFx: Τυπική απόκλιση της ταχύτητας ανέμου με αναταράξεις στη διεύθυνση x για ScaleMethod = 2 [m/sec].
- SigmaFy: Τυπική απόκλιση της ταχύτητας ανέμου με αναταράξεις στη διεύθυνση y για ScaleMethod = 2 [m/sec].
- SigmaFz: Τυπική απόκλιση της ταχύτητας ανέμου με αναταράξεις στη διεύθυνση z για ScaleMethod = 2 [m/sec].
- URef: Μέση συνιστώσα κατά τον άξονα u της ταχύτητας του ανέμου στο ύψος αναφοράς [m/sec].
- WindProfile:

Διατίθενται οι εξής τύποι προφίλ ανέμου.

- Συνεχές προφίλ ανέμου: u(z) = URef

- Λογαριθμικό προφίλ ανέμου:
$$u(z) = URef \cdot \frac{ln \overline{z_0}}{ln \frac{RefHt}{z_0}}$$

- Προφίλ καταστατικού νόμου: $u(z) = URef \cdot \left(\frac{z}{RefHt}\right)^{PLexp}$
- PLExp: Ο εκθέτης του καταστατικού νόμου, ο οποίος χρησιμοποιείται μόνον όταν WindProfile = 2 [-].
- Z0: Μήκος επιφάνειας τραχύτητας [m], το οποίο χρησιμοποιείται μόνον όταν WindProfile = 1 [m].
- SumPrint: Όταν τίθεται ως αληθής, παράγεται ένα αρχείο αποτελεσμάτων.

 OutList: Λίστα με όλα τα αποτελέσματα που θα προστεθούν στο αρχείο αποτελεσμάτων του FAST.

Σημειώνεται ότι η χρήση του WindType = 3, συνεπάγεται τη χρήση ενός στοχαστικού προσομοιωτή ανέμου πλήρους πεδίου με στοιχεία αναταράξεων ονόματι **TurbSim**^[6]. Το στατιστικό αυτό μοντέλο αριθμητικού υπολογισμού διαθέτει τις παρακάτω παραμέτρους:

Definitions of TurbSim Wind-Component Coordinate Systems

Inertial Reference Frame

- U Along positive X (nominally downwind)
- V Along positive Y (to the left when looking along X)
- W Up, along positive Z (opposite gravity)

Aligned with the Mean Wind

- u Streamwise (longitudinal)
- V Transverse (crosswise)

w Vertical

Εικόνα 4.18: Ορισμός αξόνων υπορουτίνας TurbSim

- RandSeed1: Αποτελεί την πρώτη τυχαία παράμετρο εκκίνησης, η οποία χρησιμοποιείται για τον αρχικό υπολογισμό του pRNG. Η τιμές της παραμέτρου αυτής πρέπει να είναι ακέραιοι αριθμοί από το -2147483648 μέχρι το 2147483647.
- RandSeed2: Αποτελεί τη δεύτερη τυχαία παράμετρο εκκίνησης, η οποία χρησιμοποιείται για τον αρχικό υπολογισμό του pRNG. Η τιμές της παραμέτρου αυτής πρέπει να είναι ακέραιοι αριθμοί από το -2147483648 μέχρι το 2147483647. Αν τεθεί ίσο με "RNSNLW", τότε η TurbSim παράγει τυχαίους αριθμούς χρησιμοποιώντας έναν αλγόριθμο που μπορεί να βρεθεί στο SNLWIND και "SNLWIND-3D"
- WrBHHTP: Αν τεθεί ως αληθής, παράγεται ένα δυαδικό αρχείο με προέκταμα .bin, το οποίο περιέχει τη χρονοϊστορία της φόρτισης του ανέμου και των παραμέτρων αναταράξεων επί του κέντρου του καννάβου στο ύψος του άξονα του ρότορα.
- WrFHHTP: Αν τεθεί ως αληθής, παράγεται ένα αρχείο με προέκταμα .dat, το οποίο περιέχει τη χρονοϊστορία της φόρτισης του ανέμου και των παραμέτρων αναταράξεων επί του κέντρου του καννάβου στο ύψος του άξονα του ρότορα.
- WrADHH: Αν τεθεί ως αληθής, παράγονται τα αντίστοιχα αρχεία με τις χρονοϊστορίες του ύψους του άξονα του ρότορα για την υπορουτίνα AeroDyn.
- WrADFF: Αν τεθεί ως αληθής, ενεργοποιείται η παραγωγή των δυαδικών αρχείων με τις χρονοϊστορίες πλήρους πεδίου σε μορφή επεξεργάσιμη από την υπορουτίνα AeroDyn.

- WrBLFF: Αν τεθεί ως αληθής, ενεργοποιείται και πάλι η παραγωγή των δυαδικών αρχείων με τις χρονοϊστορίες πλήρους πεδίου σε μορφή επεξεργάσιμη από την υπορουτίνα AeroDyn. Η μορφή αυτή είναι συμβατή με τη διαδικασία GH Bladed, αλλά σε μερικές περιπτώσεις ο πηγαίος κώδικάς της διαθέτει λιγότερη ακρίβεια από ότι τα αρχεία της WrADFF.
- WrADTWR: Αν τεθεί ως αληθής, η TurbSim παράγει χρονοϊστορίες για σημεία επί του άξονα του πυλώνα από το κάτω μέρος του καννάβου του ρότορα μέχρι το έδαφος.

Εικόνα 4.19: Σχηματική απεικόνιση πρόσθετων σημείων επί του πυλώνα

- WrFMTFF: Αν τεθεί ως αληθής, παράγονται χρονοϊστορίες πλήρους πεδίου στη διαδικασία SNLWIND-3D και για τις τρεις συνιστώσες u, v και w του ανέμου.
- WrACT: Αν τεθεί ως αληθής, δημιουργούνται αρχεία με χρονοϊστορίες αναταράξεων σε μορφή επεξεργάσιμη από την υπορουτίνα AeroDyn.
- Clockwise: Αν τεθεί ως αληθής, τότε τα πτερύγια του ρότορα περιστρέφονται σύμφωνα με τους δείκτες του ρολογιού αν εξεταστούν κατά τον προσανατολισμό πνοής του ανέμου.
- Scale IEC: Μόνον στην περίπτωση των φασματικών μοντέλων IECKAI και IECVKM, η μεταβλητή αυτή καθορίζει τον τρόπο κλιμάκωσης της χρονοϊστορίας της ταχύτητας του ανέμου έτσι, ώστε να επιτυγχάνονται οι επιθυμητές τιμές τυπικών αποκλίσεων. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Χωρίς κλιμάκωση
 - 1: Χρήση του ίδιου πολλαπλασιαστή για κάθε σημείο για κάθε μία εκ των συνιστωσών της ταχύτητας του ανέμου.
 - 2: Χρήση διαφορετικού πολλαπλασιαστή για κάθε σημείο για κάθε μία εκ των συνιστωσών της ταχύτητας του ανέμου.
- NumGrid_Z: Πλήθος κατακόρυφων σημείων καννάβου [-].
- NumGrid_Y: Πλήθος οριζόντιων σημείων καννάβου [-].
- TimeStep: Χρονικό βήμα ανάλυσης [sec]. Καθορίζει τη μέγιστη τιμή της συχνότητας μέσω της σχέσης:

$$f_{max} = \frac{1}{\Delta t}$$

 AnalysisTime: Διάρκεια ανάλυσης [sec]. Ισχύουν οι ακόλουθες σχέσεις μεταξύ της διάρκειας ανάλυσης, της συχνότητας και του πλήθους των συχνοτήτων:

$$\Delta f = \frac{1}{AnalysisTime}$$

$$NumFreq = \frac{AnalysisTime}{TimeStep}$$

Συνίσταται η διάρκεια της ανάλυσης να μην είναι λιγότερη από 600sec.

 UsableTime: Αποτελεί το ποσοστό της διάρκειας των εισαχθέντων δεδομένων που αποδίδεται εν τέλει στα αποτελέσματα της ανάλυσης [sec]. Η διάρκεια αυτή ενδέχεται να είναι μικρότερη από τη συνολική σε ορισμένες περιπτώσεις, όπως για παράδειγμα κατά την περιστροφή του οριζόντιου δίσκου του ρότορα. Για το λόγο αυτό, η TurbSim υπολογίζει πάντα έναν πρόσθετο χρόνο ανάλυσης σύμφωνα με τη σχέση:

 $OutputTime = UsableTime + \frac{GridWidth}{\overline{u}_{hub}}$

Παράλληλα, πρέπει να ικανοποιείται ι σχέση:

 $AnalysisTime \geq OutpoutTime$

- HubHt: Το ύψος του άξονα του ρότορα για το οποίο υπολογίζεται η ροή του ανέμου [m]. Η θέση αυτή χρησιμοποιείται επιπλέον και για τον ορισμό της θέσης του καννάβου του προγράμματος.
- GridHeight: Αποτελεί την υψομετρική διαφορά μεταξύ του άνω και κάτω άκρου του καννάβου. Σημειώνεται ότι το άνω άκρο ταυτίζεται με την άνω άκρη των πτερυγίων του ρότορα σε κατακόρυφη θέση, ο άξονας του ρότορα βρίσκεται σε κεντρική θέση σε σχέση με τον κάνναβο και ως εκ τούτου πρέπει να ισχύει η ακόλουθη σχέση:

$$\frac{1}{2}$$
 · GridHeight < HubHt

GridWidth: Αποτελεί το πλάτος του καννάβου [m].

	(Σ)	
Height = Width	Height > Width	Height < Width

Σημειώνεται ότι όλα τα μέλη του ρότορα πρέπει να βρίσκονται σε θέσεις εντός του καννάβου ακόμα και μετά την παραμόρφωση της κατασκευής.

- VFlowAng: Αποτελεί την κατακόρυφη γωνία της μέσης ροής του ανέμου, η οποία είναι σταθερή σε όλον τον κάνναβο [deg]. Δεν πρέπει να ξεπερνάει τις 45°, ενώ θετική τιμή σημαίνει πως ο άνεμος κατευθύνεται ανοδικά και αρνητική τιμή ότι κατευθύνεται καθοδικά.
- HFlowAng: Αποτελεί την οριζόντια γωνία της μέσης ροής του ανέμου, η οποία είναι συνήθως σταθερή σε όλον τον κάνναβο [deg].

Εικόνα 4.21: Παραδείγματα φόρτισης και καννάβων της υπορουτίνας TurbSim

Όπως φαίνεται στις παραπάνω εικόνες, τα τοπικά συστήματα συντεταγμένων, καθώς και τα επίπεδα των καννάβων φόρτισης «κατευθύνονται» προς τη θετική διεύθυνση του καθολικού άξονα X, ανεξαρτήτων της ροής του ανέμου.

Ακόμα, στην κάτω αριστερά εικόνα παρουσιάζεται ροή ανέμου με μηδενικές γωνίες κατεύθυνσης, ενώ στην κάτω δεξιά εικόνα παρουσιάζεται η ίδια ροή με μη μηδενικές τις αντίστοιχες γωνίες.

 TurbModel: Καθορίζει πιο φασματικό μοντέλο θα χρησιμοποιηθεί. Οι επιλογές ποτ δίνονται φαίνονται στον ακόλουθο πίνακα.

TurbModel Input Value	Description
GP_LLJ	NREL Great Plains low-level jet
IECKAI	IEC Kaimal
IECVKM	IEC von Karman
NWTCUP	NREL National Wind Technology Center
SMOOTH	Risø smooth terrain
WF_07D	NREL wind farm: 7 rotor-diameters downwind
WF_14D	NREL wind farm: 14 rotor-diameters downwind
WF_UPW	NREL wind farm: upwind
TIDAL	Tidal channel turbulence model (water)

Εικόνα 4.22: Διαθέσιμα φασματικά μοντέλα υπορουτίνας TurbSim

- IECstandard: Καθορίζει τον κανονισμό IEC που ακολουθείται. Η μεταβλητή δέχεται τις εξής τιμές:
 - 1: κλιμάκωση σύμφωνα με τον IEC 61400-1
 - 2: κλιμάκωση σύμφωνα με τον IEC 61400-2 (μικρές ανεμογεννήτριες)
 - 3: υπεράκτιες ανεμογεννήτριες
- IECturbc: Σε περίπτωση χρήσης του μοντέλου IEC Kaimal ή von Karman προσδιορίζεται ο τύπος της έντασης αναταράξεων. Οι διαθέσιμες επιλογές τύπου είναι οι Α, Β ή C, και αντιστοιχούν στις κατηγορίες που περιγράφηκαν ήδη εκτενέστερα σε προηγούμενο κεφάλαιο. Υπάρχει επίσης η δυνατότητα από τον χρήστη να υπολογίσει και να εισάγει την τιμή της έντασης των αναταράξεων με βάση τον ακόλουθο τύπο:

$$\sigma_1 = \frac{{}^{IECturbc}}{{}^{100}} \cdot \bar{u}_{hub}$$

Σε περίπτωση χρήσης των φασμάτων NWTCUP ("KHTEST"), η TurbSim δημιουργεί ένα δοκιμαστικό πεδίο ανέμου, το οποίο χρησιμοποιείται, ώστε να παραχθεί μέγιστη κινητική ενέργεια αναταράξεων σύμφωνα με τη σχέση:

$$CTKE = \frac{1}{2} \cdot \sqrt{(u'w')^2 + (u'w')^2 + (v'w')^2}$$

 IEC_WindType: Καθορίζεται το μοντέλο IEC που θα χρησιμοποιηθεί. Οι διαθέσιμες επιλογές παρουσιάζονται στον ακόλουθο πίνακα.

IEC_WindType	Description
NTM	Normal Turbulence Model
1ETM	Class I Extreme Turbulence Model
2ETM	Class II Extreme Turbulence Model
3ETM	Class III Extreme Turbulence Model
1EWM1	Class I turbulent Extreme Wind Speed Model, 1-yr recurrence
2EWM1	Class II turbulent Extreme Wind Speed Model, 1-yr recurrence
3EWM1	Class III turbulent Extreme Wind Speed Model, 1-yr recurrence
1EWM50	Class I turbulent Extreme Wind Speed Model, 50-yr recurrence
2EWM50	Class II turbulent Extreme Wind Speed Model, 50-yr recurrence
3EWM50	Class III turbulent Extreme Wind Speed Model, 50-yr recurrence

Εικόνα 4.23: Διαθέσιμα μοντέλα ΙΕC υπορουτίνας TurbSim

 ETMc: Αποτελεί την παράμετρο c στην παρακάτω εξίσωση της διαμήκους συνιστώσας της τυπικής απόκλισης του μοντέλου ETM [m/sec]:

$$\sigma_1 = c \cdot I_{ref} \cdot \left[0.072 \cdot \left(\frac{V_{ave}}{c} + 3 \right) \cdot \left(\frac{\overline{u}_{hub}}{c} - 4 \right) + 10 \right]$$

Η τιμή default για τη μεταβλητή ETMc είναι 0.2m/sec.

 WindProfileType: Καθορίζει τον τρόπο υπολογισμού του προφίλ του ανέμου. Οι διαθέσιμες επιλογές παρουσιάζονται στον ακόλουθο πίνακα.

WindProfileType	Description
PL	Power-law wind profile
LOG	Diabatic (logarithmic) wind profile; not valid with KHTEST
H2L	Logarithmic velocity profile for MHK models (TIDAL)
JET	Low-level jet wind profile, valid only with GP_LLJ model
IEC	Power-law profile on the rotor disk; logarithmic profile elsewhere
Default	Uses a default: JET for the GP_LLJ model; H2L for the TIDAL model; IEC for all other models

Εικόνα 4.24: Διαθέσιμα προφίλ ανέμου υπορουτίνας TurbSim

- RefHt: Καθορίζει το ύψος εφαρμογής της ταχύτητας αναφοράς του ανέμου, URef [m].
- URef: Αποτελεί τη μέση ταχύτητα ανέμου στο ύψος αναφοράς, RefHt [m/sec].
- ZJetMax: Χρησιμοποιείται μόνον στην περίπτωση του προφίλ ανέμου "JET" και καθορίζει το ύψος, στο οποίο συναντάται η μέγιστη τιμή της ταχύτητας ανέμου [m].
- PLExp: Χρησιμοποιείται στις περιπτώσεις προφίλ ανέμου "IEC" ή "PL". Αποτελεί τον εκθέτη του καταστατικού νόμου, ο οποίος χρησιμοποιείται για τον υπολογισμό της οριζόντιας συνιστώσας της μέσης ταχύτητας πνοής του ανέμου καθ' όλη την επιφάνεια του δίσκου του ρότορα. Η εξίσωση του νόμου είναι:

$$\bar{u}(z) = \bar{u}_{hub} \cdot \left(\frac{z}{HubHt}\right)^{PLExp}$$

όπου, z το ύψος μετρούμενο από την επιφάνεια του εδάφους. Οι default τιμές της παραμέτρου φαίνονται στον ακόλουθο πίνακα.

TurbModel	PLExp	<i>Z0</i> (m)
IECKAI, IECVKM	0.11 for EWM 0.14 for offshore (61400-3) NTM, 0.2 otherwise	0.03
SMOOTH	0.143	0.01
GP_LLJ	0.143	0.005
NWTCUP	0.08-0.15, increasing with <i>RICH_NO</i> , 0.3 for KHTEST option	0.021
WF_UPW	same as NWTCUP	0.018
WF_07D	0.13-0.18, increasing with RICH_NO	0.064
WF_14D	same as WF_07D	0.233

Εικόνα 4.25: Εκθέτες καταστατικού νόμου και μήκους τραχύτητας για κάθε μοντέλο της υπορουτίνας TurbSim

 Z0: Αποτελεί το μήκος τραχύτητας του εδάφους, δηλαδή το υπολογιζόμενο ύψος, στο οποίο η μέση ταχύτητα του ανέμου λαμβάνει μηδενική τιμή σε μία ουδέτερη ατμόσφαιρα [m]. Η σχέση που θεωρείται για τον υπολογισμό της μέσης ταχύτητας είναι:

$$\bar{u}(z) = URef \cdot \frac{\ln(Z/z_0)}{\ln(RefHt/z_0)}$$

- Latitude: Αποτελεί το γεωγραφικό πλάτος της τοποθεσίας της κατασκευής [deg] και χρησιμοποιείται μόνον στον υπολογισμό του φαινομένου Coriolis. Οι τιμές τις μεταβλητής πρέπει να περιορίζονται μεταξύ των 5° και 90°, ενώ η default τιμή είναι 45°.
- **RITCH_NO**: Αποτελεί τη σταθερά Richrdson, η οποία καθορίζει την κατακόρυφη σταθερότητα της ανεμογεννήτριας.

$$RICH_NO = \frac{\frac{g}{\theta}\frac{\partial\bar{\theta}}{\partial z}}{\left(\frac{\partial\bar{u}}{\partial z}\right)^2}$$

όπου, θ η πιθανή διαφορά θερμοκρασίας.

UStar: Αποτελεί τη μέση ταχύτητα διάτμησης (τριβής) επί του ρότορα.

$$UStar = \bar{u}_* = \frac{1}{n_p} \cdot \sum_{i=1}^{n_p} \sqrt{\left| \overline{u'} \cdot \overline{w'} \right|}$$

όπου, $n_{\rm p}$ τα σημεία λήψης μετρήσεων επί του δίσκου του ρότορα.

 ΖΙ: Αποτελεί το βάθος του στρώματος αναταράξεων και υπολογίζεται σύμφωνα με την ακόλουθη σχέση [m]:

$$ZI = \begin{cases} \frac{400 \cdot URef}{\log_{10}\left(\frac{RefHt}{Z0}\right)}, & UStar < u_{*0} \\ \frac{UStar}{12 \cdot \omega \cdot sin\left(\frac{\pi}{180} \cdot |Latitude|\right)}, & UStar \ge u_{*0} \end{cases}$$

όπου, $\omega = 7.292116 \cdot 10^{-5}$ rad/sec είναι η γωνιακή ταχύτητα περιστροφής της Γης.

PC_UW: Μέση τάση u'w' κατά Reynolds στον άξονα του ρότορα [m²/sec²]. Οι γραμμικοί συνδυασμοί που πραγματοποιεί ο αλγόριθμος είναι οι εξής:

 $u_{j,correlated} = u_{j,independent}$

 $v'_{j,correlated} = a_{uv} \cdot u'_{j,independent} + v'_{j,independent} + a_{vw} \cdot w'_{j,independent}$

 $w'_{j,correlated} = a_{uv} \cdot u'_{j,independent} + w'_{j,independent}$

 $PC_UW = u'_{hub,correlated} \cdot w'_{hub,correlated}$

 $PC_UV = u'_{hub,correlated} \cdot v'_{hub,correlated}$

 $PC_VW = \overline{v'_{hub,correlated} \cdot w'_{hub,correlated}}$

- PC_UV: Μέση τάση u'v' κατά Reynolds στον άξονα του ρότορα [m²/sec²].
- PC_VW: Μέση τάση ν'w' κατά Reynolds στον άξονα του ρότορα [m²/sec²].
- IncDec1: Καθορίζει το συντελεστή συνοχής, α, και τον συντελεστή μετάθεσης, b για τη συνιστώσα της ταχύτητας ανέμου κατά τη u διεύθυνση [-, m⁻¹]. Οι δύο αυτοί συντελεστές χρησιμοποιούνται για τον καθορισμό της συνοχής μεταξύ των σημείων στον κάνναβο σύμφωνα με την εξίσωση:

$$Coh_{i,j} = exp\left[-a_K \cdot \left(\frac{r}{z_m}\right)^{CohExp} \cdot \sqrt{\left(\frac{fr}{\overline{u}_m}\right)^2 \cdot (b_k \cdot r)^2}\right]$$

όπου,

r	η απόσταση μεταξύ των σημείων i και j
f	η κυκλική συχνότητα
CohExp	ο εκθέτης συνοχής
Zm	το μέσο ύψος

um η μέση ταχύτητα του ανέμου στα σημεία i και j

- IncDec2: Καθορίζει το συντελεστή συνοχής, α, και τον συντελεστή μετάθεσης, b για τη συνιστώσα της ταχύτητας ανέμου κατά τη v διεύθυνση [-, m⁻¹].
- IncDec3: Καθορίζει το συντελεστή συνοχής, α, και τον συντελεστή μετάθεσης, b για τη συνιστώσα της ταχύτητας ανέμου κατά τη w διεύθυνση [-, m⁻¹].
- CohExp: Ο εκθέτης συνοχής και για τις τρεις συνιστώσες της ταχύτητας του ανέμου
 [-]. Λαμβάνει θετικές τιμές ή την default τιμή που ισούται με το 0.
- **CTEventPath**: Αρχεία δεδομένων με τα δεδομένα των αναταράξεων.
- CTEventFile: Τύποι αρχείων δεδομένων που θα χρησιμοποιηθούν (DNS, LES ή Random).
- Randomize: Αν τεθεί ως αληθής, ενεργοποιεί την τυχαία επιλογή της θέσης και του μεγέθους των συγκεντρώσεων αναταράξεων στο δίσκο του ρότορα. Αν τεθεί ως ψευδής, ο χρήστης επιλέγει τα χαρακτηριστικά αυτά σύμφωνα με τις ακόλουθες μεταβλητές.
- DistScl: Αποτελεί τον λόγο του ύψους του πεδίου αναταράξεων προς τη διάμετρο του ρότορα [-].
- CTLy: Καθορίζει την πλευρική μετατόπιση του πεδίου αναταράξεων σε σχέση με τον δίσκο του ρότορα [-].
- CTLz: Καθορίζει την κατακόρυφη μετατόπιση του πεδίου αναταράξεων σε σχέση με τον δίσκο του ρότορα [-].
- CTStartTime: Καθορίζει τον ελάχιστο χρόνο, στον οποίο θα εισαχθεί το πεδίο αναταράξεων στην κατασκευή [sec].

4.1.5. <u>Κώδικας υπορουτίνας AeroDyn^[7]</u>

- DTAero: Αποτελεί το χρονικό βήμα για τους αεροδυναμικούς υπολογισμούς [sec].
- WakeMod: Προσδιορίζει την επιρροή των φαινομένων αλληλεπίδρασης του ανέμουρότορα. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: απενεργοποίηση της επιρροής των φαινομένων
 - 1: ενεργοποίηση της επιρροής των φαινομένων
- AFAeroMod: Καθορίζει τον τύπο της αεροδυναμικής φόρτισης των πτερυγίων. Οι διαθέσιμες επιλογές είναι οι εξής:

- 1: σταθερή ροή
- 2: ασταθές μοντέλο Beddoes-Leishman
- TwrPotent: Καθορίζει την επιρροή της ύπαρξης του πυλώνα στο προφίλ του ανέμου.
 Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Καμία επιρροή
 - 1: Ενεργοποίηση επιρροής λόγω τυπικής πιθανής ροής
 - 2: Ενεργοποίηση επιρροής λόγω τυπικής πιθανής ροής με διόρθωση τύπου Bak
- TwrShadow: Αν τεθεί ως αληθής, ενεργοποιείται η επιρροή της «σκίασης» του πυλώνα στο προφίλ του ανέμου.
- TwrAero: Αν τεθεί ως αληθής, ενεργοποιείται ο υπολογισμός των αεροδυναμικών φορτίων επί του πυλώνα.
- AirDens: Πυκνότητα του αέρα $[kg/m^3]$.
- KinVisc: Κινηματικό ιξώδες αέρα [m²/sec].
- SpdSound: Ταχύτητα του ήχου [m/sec].
- SkewMod: Σε περίπτωση που WakeMod = 1, η μεταβλητή αυτή καθορίζει τον τύπο του μοντέλου διόρθωσης λόγω λοξής πρόσπτωσης. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 1: Καμία διόρθωση
 - 2: Διόρθωση Pitt/Peters
 - 3: Συζευγμένη διόρθωση
- TipLoss: Αν τεθεί ως αληθής, γίνεται χρήση του μοντέλου Prandtl tip-loss.
 Χρησιμοποιείται μόνον όταν WakeMod = 1.
- HubLoss: Αν τεθεί ως αληθής, γίνεται χρήση του μοντέλου Prandtl hub-loss.
 Χρησιμοποιείται μόνον όταν WakeMod = 1.
- TanInd: Αν τεθεί ως αληθής, λαμβάνεται υπόψη η εφαπτομενική επαγωγή στο μοντέλο πεπερασμένων στοιχείων. Χρησιμοποιείται μόνον όταν WakeMod = 1.
- AIDrag: Αν τεθεί ως αληθής, λαμβάνονται υπόψη οι δυνάμεις ιξώδους τύρβης στον υπολογισμό της αξονικής καταπόνησης. Χρησιμοποιείται μόνον όταν WakeMod = 1.
- TIDrag: Αν τεθεί ως αληθής, λαμβάνονται υπόψη οι δυνάμεις ιξώδους τύρβης στον υπολογισμό της εφαπτομενικής καταπόνησης. Χρησιμοποιείται μόνον όταν WakeMod = 1.
- IndToler: Η ανοχή σύγκλησης του μη-γραμμικού μοντέλου πεπερασμένων στοιχείων. Χρησιμοποιείται μόνον όταν WakeMod = 1.
- MaxIter: Μέγιστο πλήθος επαναληπτικών βημάτων. Χρησιμοποιείται μόνον όταν WakeMod = 1.

- UAMod: Καθορίζει τον τύπο ασταθούς μοντέλου. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 1: Απλό μοντέλο Beddes-Leishman
 - 2: Μεταβλητή Gonzalez's
 - 3: Μεταβλητή Minemma / Pierce
- FLookup: Καθορίζει τον τρόπο υπολογισμού της αδιάστατης απόστασης f'.
- InCol_Alfa: Ο αριθμός της στήλης του μητρώου της ροής του ανέμου που περιλαμβάνει τη γωνία πρόσπτωσης [-].
- InCol_Cl: Ο αριθμός της στήλης του μητρώου της ροής του ανέμου που περιλαμβάνει τον συντελεστή ανόδου [-].
- InCol_Cd: Ο αριθμός της στήλης του μητρώου της ροής του ανέμου που περιλαμβάνει τον συντελεστή τύρβης [-].
- InCol_Cm: Ο αριθμός της στήλης του μητρώου της ροής του ανέμου που περιλαμβάνει τον συντελεστή pitching-moment [-].
- InCol_Cpmin: Ο αριθμός της στήλης του μητρώου της ροής του ανέμου που περιλαμβάνει τον συντελεστή Cpmin [-].
- NumAFfiles: Πλήθος των αρχείων ροής ανέμου.
- AFNames: Ονόματα αρχείων ροής ανέμου.
- UseBlCm: Αν τεθεί αληθής, λαμβάνονται υπόψη τα φαινόμενα pitching-moment στους υπολογισμούς. Χρησιμοποιείται μόνον όταν TwrPotent / = 0, TwrShadow = True ή TwrAero = True.
- **ADBIFile** (i): Όνομα αρχείου αεροδυναμικών ιδιοτήτων του πτερυγίου i.
- NumTwrNds: Πλήθος σημείων επί του πυλώνα που θα ληφθούν υπόψη στην ανάλυση. Χρησιμοποιείται μόνον όταν TwrPotent / = 0, TwrShadow = True ή TwrAero = True.
- TwrElev: Ύψος εκάστοτε σημείου από την επιφάνεια του εδάφους [m].
- TwrDiam: Προσδιορίζει τη διάμετρο του πυλώνα σε κάθε σημείο.
- TwrCd: Προσδιορίζει τον συντελεστή των δυνάμεων τύρβεως σε κάθε σημείο.
- NBIOuts: Πλήθος σημείων πτερυγίων, στα οποία επιζητείται η εξαγωγή αποτελεσμάτων.
- BlOutNd: Αριθμός σημείων πτερυγίων, στα οποία επιζητείται η εξαγωγή αποτελεσμάτων.
- NTwOuts: Πλήθος σημείων πυλώνα, στα οποία επιζητείται η εξαγωγή αποτελεσμάτων.

- TwOutNd: Αριθμός σημείων πυλώνα, στα οποία επιζητείται η εξαγωγή αποτελεσμάτων.
- OutList: Λίστα με τα επιθυμητά εξαγόμενα αποτελέσματα.

4.1.6. <u>Κώδικας υπορουτίνας ServoDyn</u>

- DT: Χρόνος ενεργοποίησης συστημάτων ελέγχου [sec].
- PCMODE: Σύστημα ελέγχου της στροφής περί άξονα κάθετο στη διεύθυνση των ασκούμενων δυνάμεων. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 3: Αρχείο από την υπορουτίνα PitchCntrl
 - 4: Αρχείο από τη διαδικασία Simulink/Labview
 - 5: Αρχείο από τη διαδικασία Bladed-style DDL
- TPCOn: Χρόνος για την ενεργοποίηση του συστήματος ασφαλείας για τη στροφή περί άξονα κάθετο στη διεύθυνση των ασκούμενων δυνάμεων [sec].
- TPitManS (i): Χρόνος για την ενεργοποίηση του συστήματος ασφαλείας για τη στροφή περί άξονα κάθετο στη διεύθυνση των ασκούμενων δυνάμεων για τη λεπίδα i [sec].
- PitManRat (i): Μέγεθος στροφής περί άξονα κάθετο στη διεύθυνση των ασκούμενων δυνάμεων της λεπίδας i, για την οποία ενεργοποιείται το αντίστοιχο σύστημα ασφαλείας [deg/sec].
- BlPitchF (i): Τελική στροφή περί άξονα κάθετο στη διεύθυνση των ασκούμενων δυνάμεων της λεπίδας i [deg]
- VSContrl: Σύστημα ασφαλείας για μεταβαλλόμενη ταχύτητα. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 1: Απλό σύστημα
 - 3: Αρχείο από την υπορουτίνα UserVSCont
 - 4: Αρχείο από τη διαδικασία Simulink/Labview
 - 5: Αρχείο από τη διαδικασία Bladed-style DLL
- GenModel: Μοντέλο γεννήτριας, το οποίο χρησιμοποιείται μόνον όταν VSContrl =
 0. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 1: Απλό σύστημα
 - 2: Σύστημα Thevenin
 - 3: Αρχείο από την υπορουτίνα UserGen
- GenEff: Απόδοση γεννήτριας [%].
- GenTiStr: Μέθοδος εκκίνησης της γεννήτριας. Αν τεθεί ως αληθής, χρησιμοποιείται η μέθοδος TimeGenOn, ενώ αν τεθεί ως ψευδής χρησιμοποιείται η μέθοδος SpdGenOn.

- GenTiStp: Μέθοδος διακοπής λειτουργίας της γεννήτριας. Αν τεθεί ως αληθής, χρησιμοποιείται η μέθοδος TimeGenOf, ενώ αν τεθεί ως ψευδής μηδενίζεται η ισχύς της γεννήτριας.
- SpdGenOn: Ταχύτητα ενεργοποίησης λειτουργίας της γεννήτριας [rpm].
 Χρησιμοποιείται μόνον στην περίπτωση που GenTiStr = False.
- TimGenOn: Χρόνος εκκίνησης της λειτουργίας της γεννήτριας [sec].
 Χρησιμοποιείται μόνον στην περίπτωση που GenTiStr = True.
- TimGenOf: Χρόνος διακοπής της λειτουργίας της γεννήτριας [sec]. Χρησιμοποιείται μόνον στην περίπτωση που GenTiStp = True.
- VS_RtGnSp: Ονομαστική ταχύτητα γεννήτριας για το απλό σύστημα ελέγχου μεταβαλλόμενης ταχύτητας [rpm]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 1.
- VS_RtTq: Ονομαστική / σταθερή ροπή γεννήτριας στην περιοχή 3 για το απλό σύστημα ελέγχου μεταβαλλόμενης ταχύτητας [N·m]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 1.
- VS_Rgn2K: Ονομαστική / σταθερή ροπή γεννήτριας στην περιοχή 2 για το απλό σύστημα ελέγχου μεταβαλλόμενης ταχύτητας [N·m]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 1.
- VS_SIPc: Ονομαστική ολίσθηση γεννήτριας στην περιοχή 2 ¹/₂ για το απλό σύστημα ελέγχου μεταβαλλόμενης ταχύτητας [%]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 1.
- SIG_SIPc: Ονομαστική ολίσθηση γεννήτριας [%]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 1.
- SIG_SySp: Ταχύτητα γεννήτριας κατά την εφαρμογή μηδενικής ροπής [rpm].
 Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 1.
- SIG_RtTq: Ονομαστική ροπή [N·m]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 1.
- SIG_PORt: Λόγος χρησιμοποίησης για αστοχία τύπου pull-out [-]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 1.
- TEC_Freq: Γραμμική συχνότητα [Hz]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.
- TEC_NPol: Πλήθος πόλων [-]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.
- TEC_SRes: Αντίσταση στάτορα [ohms]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.
- TEC_RRes: Αντίσταση στάτορα [ohms]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.

- TEC_VLL: Τάση RMS [volts]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.
- TEC_SLR: Αντίσταση διαρροής στάτορα [ohms]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.
- TEC_RLR: Αντίσταση διαρροής ρότορα [ohms]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.
- TEC_MR: Αντίσταση μαγνητισμού [ohms]. Χρησιμοποιείται μόνον στην περίπτωση που VSControl = 0 και GenModel = 2.
- HSSBrMode: Μοντέλο φρεναρίσματος δίσκου υψηλής ταχύτητας [HSS]. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 1: Απλό σύστημα
 - 3: Αρχείο από την υπορουτίνα UserHSSBr
 - 4: Αρχείο από τη διαδικασία Simulink/Labview
 - 5: Αρχείο από τη διαδικασία Bladed-style DLL
- THSSBrDp: Χρόνος εκκίνησης εφαρμογής του συστήματος φρεναρίσματος HSS [sec].
- HSSBrDT: Χρόνος για την πλήρη εφαρμογή του συστήματος φρεναρίσματος HSS [sec]. Χρησιμοποιείται μόνον στην περίπτωση που HSSBrMode = 0.
- HSSBrTqF: Ροπή κατά την πλήρη εφαρμογή του συστήματος φρεναρίσματος [N·m].
- YCMode: Μοντέλο ελέγχου της περιστροφής γύρω από τον κατακόρυφο άξονα. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 3: Αρχείο από την υπορουτίνα UserYawCont
 - 4: Αρχείο από τη διαδικασία Simulink/Labview
 - 5: Αρχείο από τη διαδικασία Bladed-style DLL
- TYCOn: Χρόνος εκκίνησης εφαρμογής του συστήματος ελέγχου περιστροφής γύρω από τον κατακόρυφο άξονα [sec].
- YawNeut: Ουδέτερη θέση δίσκου περιστροφής [deg]. Το ελατήριο του συστήματος περιστροφής είναι μηδενικό στη θέση αυτή.
- YawSpr: Σταθερά ελατηρίου για την περιστροφή της ατράκτου περί του κατακόρυφου άξονα [N·m/rad].
- YawDamp: Σταθερά απόσβεσης για την περιστροφή της ατράκτου περί του κατακόρυφου άξονα [N·m/rad].
- TYawManS: Χρόνος διακοπής λειτουργίας του συστήματος ελέγχου περιστροφής γύρω από τον κατακόρυφο άξονα [sec].
- YawManRat: Μεταβολή ελιγμών περιστροφής [deg/sec].

- NacYawF: Τελική γωνία στροφής κατά το τέλος των ελιγμών [deg].
- CompNTMD: Αν τεθεί ως αληθής, τότε ενεργοποιείται ο υπολογισμός της συντονισμένης αποσβενύμενης μάζας της ατράκτου.
- NTMDfile: Όνομα αρχείου δεδομένων για τη συντονισμένη αποσβενύμενη μάζα της ατράκτου.
- CompTTMD: Αν τεθεί ως αληθής, τότε ενεργοποιείται ο υπολογισμός της συντονισμένης αποσβενύμενης μάζας του πυλώνα.
- TTMDfile: Όνομα αρχείου δεδομένων για τη συντονισμένη αποσβενύμενη μάζα του πυλώνα.
- DLL_FileName: Όνομα και θέση αρχείου της δυναμικής βιβλιοθήκης.
- DLL_InFile: Όνομα του αρχείου δεδομένων για τη διαδικασία DLL.
- DLL_ProcName: Όνομα διαδικασίας εντός της DLL.
- DLL_DT: Χρόνος εσωτερικού συντονισμού για τη δυναμική βιβλιοθήκη [sec].
- DLL_Ramp: Αν τεθεί ως αληθής, χρησιμοποιείται γραμμική παρεμβολή μεταξύ των βημάτων DLL_DT.
- BPCutoff: Συχνότητα που αντιστοιχεί στα πτερύγια για τη διαδικασία DLL [Hz].
- NacYaw_Nortch: Γωνία στροφής αναφοράς της ατράκτου περί του κατακόρυφου άξονα [deg].
- Ptch_Cntrl: Καταγραφή 28 Χρήση μεμονωμένου συστήματος ελέγχου στροφής περί άξονα κάθετο στη διεύθυνση των ασκούμενων δυνάμεων. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Συγκεντρωτική στροφή
 - 1: Ξεχωριστός έλεγχος
- Ptch_SetPnt: Καταγραφή 5 Καθορισμός γωνίας μικρότερης της ονομαστικής [deg]
- Ptch_Min: Καταγραφή 6 Ελάχιστη γωνία [deg].
- Ptch_Max: Καταγραφή 7 –Μέγιστη γωνία [deg].
- **Gain_OM**: Καταγραφή $16 E\pi$ ίτευξη βέλτιστης μορφής $[N \cdot m/(rad/s)^2]$.
- GenSpd_MinOM: Καταγραφή 17 Ελάχιστη γωνία γεννήτριας [rpm].
- GenSpd_MaxOM: Καταγραφή 18 Μέγιστη γωνία γεννήτριας [rpm].
- GenSpd_Dem: Καταγραφή 19 Απαιτούμενη ταχύτητα γεννήτριας πλέον της ονομαστικής [rpm].

- GenTrq_Dem: Καταγραφή 22 Απαιτούμενη ροπή γεννήτριας πλέον της ονομαστικής [N·m].
- GenPwr_Dem: Απαιτούμενη ισχύς [W].
- DLL_NumTrq: Καταγραφή 26 Πλήθος σημείων στο μητρώο ροπής ταχύτητας
- TStart: Χρόνος εκκίνησης αποτελεσμάτων [sec].
- OutList: Λίστα επιθυμητών αποτελεσμάτων.

4.1.7. <u>Κώδικας υπορουτίνας HydroDyn^[8]</u>

- WtrDens: Πυκνότητα νερού [kg/m³].
- WtrDpth: Βάθος νερού [m].
- MSL2SWL: Μετατόπιση της επιφάνειας του νερού σε ηρεμία από τη μέση στάθμη θάλασσας (MΣΘ) [m].
- WaveMod: Μοντέλο κυματισμών. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα (νερό σε ηρεμία)
 - 1: Κανονικό (περιοδικό)
 - 1P#: Κανονικό με φάση προσδιοριζόμενη από τον χρήστη
 - 2: Φάσμα JONSWAP / Pierson-Moskowitz (μη-κανονικό φάσμα)
 - 3: Φάσμα white noise (μη-κανονικό φάσμα)
 - 4: Προσδιοριζόμενο από τον χρήστη φάσμα μέσω της υπορουτίνας UserWaveSpctrm (μη-κανονικό φάσμα)
 - 5: Χρονοϊστορία κύματος-υπερύψωσης
 - 6: Πλήρης κινηματική χρονοϊστορία κυματισμών
- WaveStMod: Μοντέλο για την έκταση της κινηματικής προσπίπτουσας κυματομορφής στην στιγμιαία ελεύθερη επιφάνεια. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Καμία
 - 1: Κατακόρυφη έκταση
 - 2: Εκτιμώμενη έκταση με προέκταση του πεδίου
 - 3: Έκταση Wheeler
- WaveTMax: Χρόνος ανάλυσης [sec].
- WaveDT: Χρονικό βήμα ανάλυσης [sec].
- WaveHs: Σημαντικό ύψος κυματισμών [m].
- WaveTp: Φασματική συχνότητα συντονισμού κυματισμών [sec].
- WavePkShp: Παράμετρος κορυφής-σχήματος φάσματος κυματισμών [sec].

- WvLowCOff: Ελάχιστη υπολογιστική συχνότητα κυματισμών [rad/sec].
- WvHiCOff: Μέγιστη υπολογιστική συχνότητα κυματισμών [rad/sec].
- WaveDir: Κύρια διεύθυνση μετάδοσης κυματισμών [deg].
- WaveDirMod: Λειτουργία διάδοσης κυματισμών. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Καμία
 - 1: COS2S
- WaveDirSpread: Συντελεστής διάδοσης κυματισμών.
- WaveNDir: Πλήθος διευθύνσεων διάδοσης κυματισμών.
- WaveDirRange: Εύρος κατευθύνσεων διάδοσης κυματισμών [deg].
- WaveSeed(1): Πρώτη τυχαία μεταβλητή κυματισμών. Η τιμή της κυμαίνεται από -2147483648 μέχρι 2147483647.
- WaveSeed(2): Δεύτερη τυχαία μεταβλητή κυματισμών. Η τιμή της κυμαίνεται από -2147483648 μέχρι 2147483647.
- WaveNDAmp: Αν τεθεί ως αληθής, η διαμόρφωση του εύρους της συχνότητας του κύματος ακολουθεί μία τυχαία κανονική κατανομή, ενώ αν τεθεί ως ψευδής, η διαμόρφωση του εύρους της συχνότητας του κύματος ακολουθεί πάντα το φάσμαστόχο.
- WvKinFile: Τοποθεσία αρχείου με τα δεδομένα κυματισμού. Χρησιμοποιείται μόνον στην περίπτωση που WaveMod = 5 ή 6.
- NWaveElev: Πλήθος σημείων υπολογισμού της υπερύψωσης του κύματος [-].
- WaveElevxi: Λίστα των συντεταγμένων xi των σημείων όπου προσδιορίζεται η υπερύψωση του κύματος.
- WaveElevyi: Λίστα των συντεταγμένων yi των σημείων όπου προσδιορίζεται η υπερύψωση του κύματος.
- WvDiffQTF: Σε περίπτωση που τεθεί ως αληθής, ενεργοποιούνται τα φαινόμενα 2ας τάξεως με πλήρως αντίθετη συχνότητα των κυματισμών.
- WvSumQTF: Σε περίπτωση που τεθεί ως ψευδής, ενεργοποιούνται τα φαινόμενα 2^{ας} τάξεως με πλήρως αθροιστική συχνότητα των κυματισμών.
- WvLowCOffD: Ελάχιστο μέγεθος της διαφοράς συχνοτήτων [rad/sec].
- WvHiCOffD: Μέγιστο μέγεθος της διαφοράς συχνοτήτων [rad/sec].

- WvLowCOffS: Ελάχιστο μέγεθος της πρόσθετης συχνότητας [rad/sec].
- WvHiCOffS: Ελάχιστο μέγεθος της πρόσθετης συχνότητας [rad/sec].
- CurrMod: Μοντέλο ρευμάτων. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 1: Κανονικό
 - 2: Καθορίζεται από τον χρήστη μέσω της υπορουτίνας UserCurrent

Σημειώνεται ότι στο κανονικό μοντέλο ρευμάτων της HydroDyn μπορούν να συμπεριληφθούν τριών ειδών ρευμάτων: ρεύματα κοντά στην επιφάνεια, υποθαλάσσια ρεύματα και ρεύματα ανεξάρτητα του βάθους.

Η εξίσωση που ακολουθούν τα υποθαλάσσια ρεύματα είναι η ακόλουθη:

$$U_{SS}(Z) = U_{0_{SS}} \cdot \left(\frac{Z+d}{d}\right)^{\frac{1}{7}}$$

όπου,

- Z το τοπικό βάθος κάτω από την επιφάνεια της θάλασσας σε ηρεμία. (δηλαδή ίσο με WtrDpth + MSL2SWL)

Η καθ' ύψος κατανομή του ρεύματος είναι γραμμική και ακολουθεί την εξής σχέση:

$$U_{NS}(Z) = \begin{cases} U_{0_{SS}} \cdot \left(\frac{Z + h_{ref}}{h_{ref}}\right), Z \in \left[-h_{ef}, 0\right] \\ 0, \delta i \alpha \varphi o \rho \varepsilon \tau i \kappa \dot{\alpha} \end{cases}$$

όπου,

 h_{ref} το βάθος αναφοράς (δηλαδή ισούται με CurrNSV0)

- CurrSSVO: Ταχύτητα υποθαλάσσιου ρεύματος στην επιφάνεια της θάλασσας [m/sec]. Χρησιμοποιείται μόνον όταν CurrMod = 1.
- CurrSSDir: Κατεύθυνση διάδοσης υποθαλάσσιου ρεύματος [deg]. Χρησιμοποιείται μόνον όταν CurrMod = 1. Η default τιμή είναι ίδια με αυτή της WaveDir.
- CurrNSRef: Βάθος αναφοράς επιφανειακού ρεύματος [m]. Χρησιμοποιείται μόνον όταν CurrMod = 1.
- CurrNSV0: Ταχύτητα επιφανειακού ρεύματος στην επιφάνεια της θάλασσας σε ηρεμία [m/sec]. Χρησιμοποιείται μόνον όταν CurrMod = 1.
- CurrNSDir: Κατεύθυνση διάδοσης επιφανειακού ρεύματος [deg]. Χρησιμοποιείται μόνον όταν CurrMod = 1.

- CurrDIV: Ταχύτητα ρεύματος ανεξάρτητου του βάθους [m/sec]. Χρησιμοποιείται μόνον όταν CurrMod = 1.
- CurrDIDir: Διεύθυνση διάδοσης ρεύματος ανεξάρτητου του βάθους [deg].
 Χρησιμοποιείται μόνον όταν CurrMod = 1.
- PotMod: Μοντέλο πιθανής ροής. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 1: Μεταβαλλόμενο πεδίο συχνοτήτων-χρόνου σύμφωνα με τα αποτελέσματα της διαδικασίας WAMIT
 - 2: Θεωρία fluid-impulse (FIT)
- PotFile: Τοποθεσία αρχείου δεδομένων πιθανής ροής
- WAMITULEN: Χαρακτηριστική κλίμακα μήκους που χρησιμοποιείται για την επανα-διαστασιολόγηση των αποτελεσμάτων WAMIT.
- PtfmVol0: Μετατοπισμένος όγκος νερού όταν η πλατφόρμα βρίσκεται στην απαραμόρφωτη κατάσταση [m³]. Χρησιμοποιείται μόνον όταν PotMod = 1.
- PtfmCOBxt: Η μετατόπιση xt του κέντρου επίπλευσης (COB) σε σχέση με το σημείο αναφοράς της πλατφόρμας. Χρησιμοποιείται μόνον όταν PotMod = 1.
- PtfmCOByt: Η μετατόπιση yt του κέντρου επίπλευσης (COB) σε σχέση με το σημείο αναφοράς της πλατφόρμας. Χρησιμοποιείται μόνον όταν PotMod = 1.
- RdtnMod: Μοντέλο φαινομένου ακτινοβολίας «μνήμης». Χρησιμοποιείται μόνον όταν PotMod = 1. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 1: Μοντέλο περιελιγμού
 - 2: Γραμμικό μοντέλο state-space
- RdtnTMax: Καθορίζει τον χρόνο ανάλυσης για τους υπολογισμούς της ακτινοβολίας πυρήνα [sec]. Χρησιμοποιείται μόνον όταν PotMod = 1.
- RdtnDT: Καθορίζει το χρονικό βήμα ανάλυσης για τους υπολογισμούς της ακτινοβολίας πυρήνα [sec]. Χρησιμοποιείται μόνον όταν PotMod = 1.
- MnDrift: Μέση σχετική διαφορά δυνάμεων 2^{ας} τάξεως. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 7, 8, 9, 10, 11, 12: Αρχείο WAMIT
- NewmanApp: Μέση και χαμηλή σχετική διαφορά δυνάμεων 2ας τάξεως σύμφωνα με την προσέγγιση Newman.
- DiffQTF: Δυνάμεις 2ας τάξεως πλήρους διαφοράς συχνότητας σύμφωνα με την πλήρη QTF. Οι διαθέσιμες επιλογές είναι οι εξής:
- 0: Κανένα
- 10, 11, 12: Αρχείο WAMIT
- SumQTF: Δυνάμεις 2ας τάξεως πλήρους αθροιστικής συχνότητας σύμφωνα με την πλήρη QTF. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 0: Κανένα
 - 10, 11, 12: Αρχείο WAMIT
- PtfmSgF: Αν τεθεί ως αληθής, ενεργοποιείται η δυνατότητα παραλαβής οριζόντιας μεταφορικής δύναμης της πλατφόρμας σε διεύθυνση κάθετη στον ρότορα.
- PtfmSwF: Αν τεθεί ως αληθής, ενεργοποιείται η δυνατότητα παραλαβής οριζόντιας μεταφορικής δύναμης της πλατφόρμας σε διεύθυνση παράλληλη στον ρότορα.
- PtfmHvF: Αν τεθεί ως αληθής, ενεργοποιείται η δυνατότητα παραλαβής κατακόρυφης μεταφορικής δύναμης της πλατφόρμας.
- PtfmRF: Αν τεθεί ως αληθής, ενεργοποιείται η δυνατότητα παραλαβής ροπής της πλατφόρμας περί άξονα παράλληλου στη διεύθυνση της φόρτισης.
- PtfmPF: Αν τεθεί ως αληθής, ενεργοποιείται η δυνατότητα παραλαβής ροπής της πλατφόρμας περί άξονα κάθετου στη διεύθυνση της φόρτισης.
- PtfmYF: Αν τεθεί ως αληθής, ενεργοποιείται η δυνατότητα παραλαβής στρεπτικής ροπής της πλατφόρμας περί του κατακόρυφου άξονα.
- NAxCoef: Πλήθος αξονικών συντελεστών [-].
- AxCoefID: Αριθμός αξονικού συντελεστή [-].
- AxCd: Συντελεστής ιξώδους [-].
- AxCa: Συντελεστής πρόσθετης μάζας [-].
- AxCp: Συντελεστής δυναμικής πίεσης [-].
- NJoints: Πλήθος κόμβων [-]. Πρέπει να είναι 0 ή τουλάχιστον 2.
- JointID: Αριθμός κόμβου [-].
- Jointxi: Συντεταγμένη xi κόμβου [m].
- Jointyi: Συντεταγμένη yi κόμβου [m].
- Jointzi: Συντεταγμένη zi κόμβου [m].
- JointAxID: Καθορίζει τον αξονικό συντελεστή για κάθε κόμβο [-].

- JointOvrlp: Επικάλυψη κόμβων. Για την τρέχουσα έκδοση του προγράμματος, πρέπει να τίθεται ίση με το μηδέν.
- NPropSets: Πλήθος μελλών διαφορετικών ιδιοτήτων διατομής [-].
- PropSetID: Αριθμός διατομής μέλους [-].
- **PropD**: Διάμετρος κυκλικής διατομής μέλους [m].
- PropThck: Πάχος κυκλικής διατομής μέλους [m].
- SimplCd: Απλός υδροδυναμικός συντελεστής ιξώδους [-].
- SimplCdMG: Απλός υδροδυναμικός συντελεστής ιξώδους για μέλη με ανάπτυξη θαλάσσιας ζωής [-].
- SimplCa: Απλός υδροδυναμικός συντελεστής πρόσθετης μάζας [-].
- SimplCaMG: Απλός υδροδυναμικός συντελεστής πρόσθετης μάζας για μέλη με ανάπτυξη θαλάσσιας ζωής [-].
- SimplCp: Απλός υδροδυναμικός συντελεστής δυναμικής πίεσης [-].
- SimplCpMG: Απλός υδροδυναμικός συντελεστής δυναμικής πίεσης για μέλη με ανάπτυξη θαλάσσιας ζωής [-].
- SimplAxCa: Απλός υδροδυναμικός αξονικός συντελεστής πρόσθετης μάζας [-].
- SimplAxCaMG: Απλός υδροδυναμικός αξονικός συντελεστής πρόσθετης μάζας για μέλη με ανάπτυξη θαλάσσιας ζωής [-].
- SimplAxCp: Απλός υδροδυναμικός αξονικός συντελεστής δυναμικής πίεσης [-].
- SimplAxCpMG: Απλός υδροδυναμικός αξονικός συντελεστής δυναμικής πίεσης για μέλη με ανάπτυξη θαλάσσιας ζωής [-].
- NCoefDpth: Πλήθος συντελεστών εξαρτώμενων από το βάθος [-].
- **Dpth**: Βάθος [m].
- DpthCd: Υδροδυναμικός συντελεστής ιξώδους εξαρτώμενος από το βάθος [-].
- DpthCdMG: Υδροδυναμικός συντελεστής ιξώδους για μέλη με ανάπτυξη θαλάσσιας ζωής εξαρτώμενος από το βάθος [-].
- DpthCa: Υδροδυναμικός συντελεστής πρόσθετης μάζας εξαρτώμενος από το βάθος
 [-].
- DpthCaMG: Υδροδυναμικός συντελεστής πρόσθετης μάζας για μέλη με ανάπτυξη θαλάσσιας ζωής εξαρτώμενος από το βάθος [-].

- DpthCp: Υδροδυναμικός συντελεστής δυναμικής πίεσης εξαρτώμενος από το βάθος
 [-].
- DpthCpMG: Υδροδυναμικός συντελεστής δυναμικής πίεσης για μέλη με ανάπτυξη θαλάσσιας ζωής εξαρτώμενος από το βάθος [-].
- DpthAxCa: Υδροδυναμικός αξονικός συντελεστής πρόσθετης μάζας εξαρτώμενος από το βάθος [-].
- DpthAxCaMG: Υδροδυναμικός αξονικός συντελεστής πρόσθετης μάζας για μέλη με ανάπτυξη θαλάσσιας ζωής εξαρτώμενος από το βάθος [-].
- DpthAxCp: Υδροδυναμικός αξονικός συντελεστής δυναμικής πίεσης εξαρτώμενος από το βάθος [-].
- DpthAxCpMG: Υδροδυναμικός αξονικός συντελεστής δυναμικής πίεσης για μέλη με ανάπτυξη θαλάσσιας ζωής εξαρτώμενος από το βάθος [-].
- NCoefMembers: Πλήθος συντελεστών μελών [-].
- NMembers: Πλήθος μελών [-].
- NFillGroups: Πλήθος ομάδων μελών [-].
- NMGDepths: Πλήθος τιμών βάθους για την ανάπτυξη θαλάσσιας ζωής [-].
- NMOutputs: Πλήθος αποτελεσμάτων μέλους [-].
- NJOutputs: Πλήθος αποτελεσμάτων κόμβων [-].
- JOutLst: Λίστα κόμβων στους οποίους επιζητείται αποτέλεσμα [-].
- Wave1Elev: Υπερύψωση κυματισμού στο σημείο αναφοράς της διαδικασίας WAMIT.

4.1.8. <u>Κώδικας υπορουτίνας SubDyn^[9]</u>

Η διαδικασία σύζευξης των επιμέρους ρουτινών SubDyn και HydroDyn μέσω του ενιαίου κώδικα FAST v.8 παρουσιάζεται στην ακόλουθη εικόνα.

Εικόνα 4.26: Διαδικασία σύζευξης ρουτινών HydroDyn, SubDyn και FASTv.8

Ο κώδικας της υπορουτίνας διαφοροποιείται για το εκάστοτε σύστημα θεμελίωσης της ανεμογεννήτριας. Συνεπώς, στις τρεις περιπτώσεις της θεμελίωσης μελέτης αντιστοιχούν τα ακόλουθα αρχεία.

- Χερσαίες θεμελιώσεις:

Στην περίπτωση των χερσαίων θεμελιώσεων βαρύτητας και μονοπάσσαλου δεν χρησιμοποιήθηκε οιαδήποτε αρχείο SubDyn, καθώς η υποδομή της ανεμογεννήτριας ταυτίζεται με τον πυλώνα και δεν αποτελεί επιπλέον τμήμα.

Θαλάσσιες θεμελιώσεις (βαρύτητας / μονοπάσσαλη / τρίποδας):

Στην περίπτωση των θαλάσσιων θεμελιώσεων βαρύτητας / μονοπάσσαλου χρησιμοποιείται κοινό αρχείο SubDyn, καθώς η υποδομή της ανεμογεννήτριας είναι κοινή και στους δύο τύπου και αποτελείται από μία υποθαλάσσια προέκταση του πυλώνα, η οποία καταλήγει σε ένα πέδιλο / σε έναν πάσσαλο. Πιο συγκεκριμένα, ισχύει:

- SDdeltaT: Χρονικό βήμα ανάλυσης [sec].
- IntMethod: Μέθοδος ενσωμάτωσης. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 1: RK4
 - 2: AB4
 - 3: ABM4
 - 4: AM2
- SttcSolve: Σε περίπτωση που τεθεί ως αληθής, πραγματοποιείται δυναμική επίλυση για την εύρεση σημείου στατικής ισορροπίας.
- FEMMod: Τύπος μοντέλου πεπερασμένων στοιχείων. Οι διαθέσιμες επιλογές είναι οι εξής:
 - 1: Euler-Bernoulli (E-B)
 - 2: Tapered E-B (δεν είναι διαθέσιμο στην τρέχουσα έκδοση)

- 3: Timoshenko 2-σημείων
- 4: Tapered timoshenko 2-σημείων (δεν είναι διαθέσιμο στην τρέχουσα έκδοση)
- NDiv: Πλήθος υπο-στοιχείων κάθε μέλους [-].
- CBMod: Αν τεθεί ως αληθής, πραγματοποιείται απομείωση C-B, διαφορετικά οι ελευθερίες κίνησης των πεπερασμένων στοιχείων διατηρούνται.
- Nmodes: Πλήθος εσωτερικών ιδιομορφών που πρέπει να διατηρηθούν [-].
- JDampings: Ποσοστά απόσβεσης για κάθε ιδιομορφή που πρέπει να διατηρηθεί [%].
- NJoints: Πλήθος κόμβων [-].
- JointID: Αριθμός κόμβου [-].
- JointXss: Συντεταγμένη Xss κόμβου [m].
- JointYss: Συντεταγμένη Yss κόμβου [m].
- JointZss: Συντεταγμένη Zss κόμβου [m].
- NReact: Πλήθος κόμβων που δέχονται αντιδράσεις στήριξης [-].
- RJointID: Αριθμός κόμβου [-].
- RctTDXss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Xss μεταφορικής ελευθερίας κίνησης του κόμβου [-].
- RctTDYss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Yss μεταφορικής ελευθερίας κίνησης του κόμβου [-].
- RctTDZss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Yss μεταφορικής ελευθερίας κίνησης του κόμβου [-].
- RctRDXss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Xss στροφικής ελευθερίας κίνησης του κόμβου [-].
- RctRDYss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Yss στροφικής ελευθερίας κίνησης του κόμβου [-].
- RctRDZss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Zss στροφικής ελευθερίας κίνησης του κόμβου [-].
- NInterf: Πλήθος σημείων διεπαφής, τα οποία είναι «κλειδωμένα» στο τεμάχιο μετάβασης [-].
- IJointID: Αριθμός κόμβου [-].
- ItfTDXss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Xss μεταφορικής ελευθερίας κίνησης του κόμβου [-].

- ItfTDYss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Yss μεταφορικής ελευθερίας κίνησης του κόμβου [-].
- ItfTDZss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Zss μεταφορικής ελευθερίας κίνησης του κόμβου [-].
- ItfRDXss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Xss στροφικής ελευθερίας κίνησης του κόμβου [-].
- ItfRDYss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Yss στροφικής ελευθερίας κίνησης του κόμβου [-].
- ItfRDZss: Λαμβάνει μοναδιαία τιμή σε περίπτωση δέσμευσης της Zss στροφικής ελευθερίας κίνησης του κόμβου [-].
- NMembers: Πλήθος μελών [-].
- MemberID: Αριθμός μέλους [-].
- MJointID1: Αριθμός κόμβου αρχής [-].
- MJointID2: Αριθμός κόμβου τέλους [-].
- MPropSetID1: Αριθμός είδους διατομής [-].
- MPropSetID2: Αριθμός είδους tapered διατομής [-].
- NPropSets: Πλήθος διαφορετικών x-διατομών.
- PropSetID: Αριθμός μέλους [-].
- YoungE: Μέτρο ελαστικότητας [N/m²].
- ShearG: Μέτρο διάτμησης [N/m²].
- MatDens: Πυκνότητα υλικού [kg/m³].
- XsecD: Διάμετρος κοίλης κυκλικής διατομής [m].
- XsecT: Πάχος κοίλης κυκλικής διατομής [m].
- NXPropSets: Πλήθος διαφορετικών μη-κυκλικών x-διατομών [-].
- NCOSMs: Πλήθος διαφορετικών μητρώων συνημίτονων [-].
- NCmass: Πλήθος κόμβων με συγκεντρωμένες μάζες [-].
- NMOutputs: Πλήθος μελών, των οποίων οι δυνάμεις / μετατοπίσεις / ταχύτητες / επιταχύνσεις επιζητούνται ως αποτέλεσμα [-].

4.2. Ανάλυση ανωδομής ανεμογεννητριών μελέτης

Ως βάση για την ανάλυση των ανεμογεννητριών της μελέτης χρησιμοποιήθηκε ο πίνακας πρότυπων ανεμογεννητριών σύμφωνα με την NREL που φαίνεται παρακάτω. Παρατηρείται ότι οι πέντε περιπτώσεις τύπων ανεμογεννητριών που επιλέχθηκαν να προσομοιωθούν (Gravity foundation land-based/offshore, Monopile land-based/offshore, Tripod offshore) αποτελούν παραλλαγές των παραδειγμάτων 18-20 του παρακάτω πίνακα, οι οποίες τροποποιήθηκαν καταλλήλως για τις ανάγκες της συγκεκριμένης μελέτης.

Test Name	Turbine Name	No. Blades (-)	Rotor Diameter (m)	Rated Power (kW)	Test Description
Test01	AWT-27CR2	2	27	175	Flexible, fixed yaw error, steady wind
Test02	AWT-27CR2	2	27	175	Flexible, steady wind, high-speed shaft brake shutdown
Test03	AWT-27CR2	2	27	175	Flexible, free yaw, steady wind
Test04	AWT-27CR2	2	27	175	Flexible, free yaw, turbulence
Test05	AWT-27CR2	2	27	175	Flexible, steady wind
Test06	AOC-15/50	3	15	50	Flexible, steady wind
Test07	AOC-15/50	3	15	50	Flexible, free yaw, turbulence
Test08	AOC-15/50	3	15	50	Flexible, fixed yaw error, steady wind
Test09	UAE VI downwind	2	10	20	Flexible, yaw ramp, steady wind
Test10	UAE VI upwind	2	10	20	Rigid, power curve, ramp wind
Test11	WP 1.5 MW	3	70	1500	Flexible, variable speed & pitch control, pitch
					failure, turbulence
Test12	WP 1.5 MW	3	70	1500	Flexible, variable speed & pitch control, ECD event
Test13	WP 1.5 MW	3	70	1500	Flexible, variable speed & pitch control,
Test14	Not currently available				tarbalence
Test14	SWIPT	3	5.8	10	Elevible variable speed control free yaw EOG01
Testis	20081	-	5.5	10	event
Test16	SWRT	3	5.8	10	Flexible, variable speed control, free yaw, EDC01 event
Test17	SWRT	3	5.8	10	Flexible, variable speed control, free yaw, turbulence
Test18	NREL 5 MW - Land-based	3	126	5000	Flexible, DLL control, tower potential flow and drag, turbulence
Test19	NREL 5 MW - OC3-Mononile	3	126	5000	Flexible, DLL control, tower potential flow
	and the second place	-			turbulence, irregular waves
Test20	NREL 5 MW - OC3-Tripod	3	126	5000	Flexible, DLL control, tower potential flow.
					steady wind, regular waves with 0 phase
Test21	NREL 5 MW - OC4-Jacket	3	126	5000	Flexible, DLL control, tower potential flow,
					turbulence, irregular waves, marine growth
Test22	NREL 5 MW - ITI Barge	3	126	5000	Flexible, DLL control, turbulence, irregular waves
Test23	NREL 5 MW - MIT/NREL TLP	3	126	5000	Flexible, DLL control, turbulence, irregular & multidirectional waves
Test24	NREL 5 MW - OC3-Hywind	3	126	5000	Flexible, DLL control, turbulence, irregular waves
Test25	NREL 5 MW - OC4-	3	126	5000	Shortened OC4 Load Case (LC) 3.7: steady wind
	DeepCwind Semi-	-	110	5000	white noise second-order waves
Test26	NREL 5 MW - Land-based	3	126	5000	The same as Test 18, but using BeamDyn instead
765120	with BeamDyn		120	5000	of ElastoDyn for the blade dynamics

Εικόνα 4.27: Πίνακας πρότυπων ανεμογεννητριών βάσει της NREL

Ακολούθως, περιγράφονται οι τιμές των μεταβλητών ανάλυσης της προηγούμενης παραγράφου για τις ανεμογεννήτριες ανάλυσης.

Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης КЕФ.4 σε πυλώνες ανεμογεννητριών

4.2.1. Ανάλυση ανωδομής ανεμογεννήτριας NREL 5 MW

Οι παράμετροι ανάλυσης της ανωδομής και για τις πέντε περιπτώσεις ανεμογεννητριών που επιλέχθηκαν είναι κοινές, καθώς η διαφοροποίηση έγκειται μόνον στον τρόπο θεμελίωσής τους και, όπως έγει σχολιασθεί εκτενώς, το πρόγραμμα FAST θεωρεί όλες τις ανεμογεννήτριες πακτωμένες στη βάση τους, ανεξαρτήτως του τύπου θεμελίωσης και των συνθηκών αλληλεπίδρασης με το έδαφος.

Επιπλέον, η διάταξη της υποθαλάσσιας υποδομής των δύο εκ των τριών θαλάσσιων ανεμογεννητριών είναι κοινή (εξαιρείται η περίπτωση θεμελίωσης με τρίποδα). Πιο συγκεκριμένα, στις περιπτώσεις θαλάσσιων ανεμογεννητριών θεμελίωσης βαρύτητας και μονοπάσσαλης θεμελίωσης, το υποθαλάσσιο τμήμα της κατασκευής είναι πρακτικά ίδιο, καθώς αποτελεί επέκταση του γαλύβδινου πυλώνα. Συνεπώς, στις δύο αυτές περιπτώσεις και οι υπορουτίνες HydroDyn και SubDyn είναι ίδιες. Στις υπορουτίνες αυτές έγκειται η διαφοροποίηση της ανάλυσης της ανεμογεννήτριας με θεμελίωση τρίποδα (βλ. §4.2.2).

Συνεπώς, η περιγραφή της ανάλυσης ανωδομής που πραγματοποιείται στις ακόλουθες σελίδες αφορά όλες τις ανεμογεννήτριες, ενώ οι υπορουτίνες της υποδομής που διαφοροποιούνται στις περιπτώσεις των θαλάσσιων ανεμογεννητριών παρουσιάζονται ξεχωριστά σε επόμενη παράγραφο.

Παράμετροι ανάλυσης:

<u>Ενιαίος κώδικας</u> FASTv.8:

Συνολικός χρόνος ανάλυσης (T _{max}): Συνιστώμενη μέγιστη τιμή χρονικού βήματος (DT):	<u>Χερσαίες</u> 60sec 0.00625sec	<u>Θαλάσσιες</u> 60sec 0.005sec
Τάξη της παρεμβολής/προέκτασης των δεδομένων/αποτελεσμάτων (InterpOrder):	2	2
Πληθος διορθωσεων σε καθε βημα (NumCrctn): Χρόνος μεταξύ δύο διαδοχικών αναβαθμίσεων	U	0
Ιακωβιανών πινάκων (DT_Ujac):	99999sec	99999sec
CompElast:	1	1
CompInflow:	1	1
CompAero:	2	2
CompServo:	1	1
CompHydro:	0	1
CompSub:	0	1
CompMooring:	0	0
CompIce:	0	0
DT_Out:	0.02sec	0.05sec
Tstart:	0	0
OutFileFmt:	1	3
<u>ElastoDyn:</u>		
Method:	3	3
DT:	DEFAULT	DEFAULT
Gravity:	9.80665m/s	9.80665m/s
FlapDOF1:	True	True
FlapDOF1:	True	True
EdgeDOF:	True	True
TeetDOF:	False	False
DrTrDOF:	True	True

КЕФ.4

	<u>Χερσαίες</u>	Θαλάσσιες
GenDOF:	True	True
YawDOF:	True	True
TwFADOF1:	True	True
TwFADOF2:	True	True
TwSSDOF1:	True	True
TwSSDOF2:	True	True
PtfmSgDOF:	False	True
PtfmSwDOF:	False	True
PtfmHvDOF:	False	True
PtfmRDOF:	False	True
PtfmPDOF:	False	True
PtfmYDOF:	False	True
OoPDef1:	0	0
IPDef1:	0	0
BlPitch(1):	0	0
BlPitch (2):	0	0
BlPitch (3):	0	0
TeetDefl:	0	0
Azimuth:	0	0
RotSpeed:	12.1rpm	12.1rpm
NacYaw:	0	0
TTDspFA:	0	0
TTDspSS:	0	0
PtfmSurge:	0	0
PtfmSway:	0	0
PtfmHeave:	0	-0.0009m
PtfmRoll:	0	0
PtfmPitch:	0	0
PtfmYaw:	0	0
NumB1:	3	3
TipRad:	63m	63m
HubRad:	1.5m	1.5m
PreCone (1):	-2.5m	-2.5m
PreCone (2):	-2.5m	-2.5m
PreCone (3):	-2.5m	-2.5m
HubCM:	0	0
UndSling:	0	0
Delta3:	0	0
AzimBlUp:	0	0
OverHang:	0	-5.0191m
ShftGagL:	1.912m	1.912m
ShftTilt:	-5m	-5m
NacCMxn:	1.9m	1.9m
NacCMyn:	0	0
NacCMzn:	1.75m	1.75m
NcIMUxn:	-3.09528m	-3.09528m
NcIMUyn:	0	0
NcIMUzn:	2.23336m	2.23336m
Twr2Shft:	1.96256m	1.96256m
TowerHt:	87.6m	87.6m
TowerBsHt:	10m	10m
PtfmCMxt:	0	0

	Χερσαίες	<u>Θαλάσσιες</u>
PtfmCMvt:	0	0
PtfmCMzt:	10m	10m
PtfmRefzt:	10m	10m
TipMass(1):	0	0
TipMass(2):	0	0
TipMass(3):	0	0
HubMass:	56780kg	56780kg
HubIner:	115926kg·m ²	115926kg·m ²
GenIner:	534.116kg·m ²	534.116kg·m ²
NacMass:	240000kg	240000kg
NacYIner:	2.60789·10 ⁶ kg·m ²	2.60789·10 ⁶ kg·m ²
YawBrMass:	0	0
PtfmMass:	0	0
PtfmRIner:	0	0
PtfmPIner:	0	0
PtfmYIner:	0	1.534·10 ⁶
BldNodes:	17	17
BldFile(1):	See Blds file	See Blds file
BldFile(2):	See Blds file	See Blds file
BldFile(3):	See Blds file	See Blds file
TeetMod:	0	0
TeetDmpP:	0	0
TeetDmp:	0	0
TeetCDmp:	0	0
TeetSStP:	0	0
TeetHStP:	0	0
TeetSSSp:	0	0
TeetHSSp:	0	0
GBoxEff:	100%	100%
GBRatio:	97	97
DTTorSpr:	8.67637·10 ⁸ N·m/rad	8.67637·10 ⁸ N·m/rad
DTTorDmp:	6.215·10 ⁶ N·m/(rad/s)	6.215·10 ⁶ N·m/(rad/s)
Furling:	False	False
FurlFile:	"unused"	"unused"
TwNodes:	24	24
TwrFile:	See ElastoDyn_Twr	See ElastoDyn_Twr
SumPrint:	True	True
OutFile:	1	1
TabDelim:	True	True
OutFmt:	ES10.3E2	ES10.3E2
TStart:	0	0
DecFact:	1	1
NTwGages:	3	3
TwrGagNd:	1, 4, 24	1, 4, 24
NBlGages:	3	3
BldGagNd:	5, 9, 13	5, 9, 13
	. ,	

Blades input file: NRELOffshrBsline5MW_Blade

	<u>Χερσαίες</u>	<u>Θαλάσσιες</u>
NBlInpSt:	49	49
BldFlDmp(1):	0.477465N·m/(rad/s)	0.477465N·m/(rad/s)
BldFlDmp(2):	0.477465N·m/(rad/s)	0.477465N·m/(rad/s)
BldEdDmp(1):	0.477465N·m/(rad/s)	0.477465N·m/(rad/s)
FlStTunr(1):	1	1
FlStTunr(2):	1	1
AdjBlMs:	1.04536	1.04536
AdjFlSt:	1	1
AdjEdSt:	1	1
BldFl1Sh(2):	0.0622	0.0622
BldFl1Sh(3):	1.7254	1.7254
BldFl1Sh(4):	-3.2452	-3.2452
BldFl1Sh(5):	4.7131	4.7131
BldFl1Sh(6):	-2.2555	-2.2555
BldFl2Sh(2):	-0.5809	-0.5809
BldFl2Sh(3):	1.2067	1.2067
BldFl2Sh(4):	-15.5349	-15.5349
BldFl2Sh(5):	29.7347	423.7347
BldFl2Sh(6):	-13.8255	-13.8255
BldFl1Sh(2):	0.3627	0.3627
BldFl1Sh(3):	2.5337	2.5337
BldFl1Sh(4):	-3.5772	-3.5772
BldFl1Sh(5):	2.376	2.376
BldFl1Sh(6):	-0.6952	-0.6952

ElastoDyn_Tower:

	<u>Χερσαίες</u>	<u>Θαλάσσιες</u>
	11	11
N I winpSt:	11	11
TwrFADmp(1):	1%	1%
TwrFADmp(2):	1%	1%
TwrSSDmp(1):	1%	1%
TwrSSDmp(2):	1%	1%
FAStTunr(1):	1	1
FAStTunr(2):	1	1
SSStTunr(1):	1	1
SSStTunr(2):	1	1
AdjTwMa:	1	1
AdjFASt:	1	1
AdjSSSt:	1	1
TwFAM1Sh(2):	1.0448	1.0389
TwFAM1Sh(3):	0.0122	0.0201
TwFAM1Sh(4):	0.0909	0.0772
TwFAM1Sh(5):	-0.1248	-0.1026
TwFAM1Sh(6):	-0.0231	-0.0336
TwFAM2Sh(2):	-41.806	-50.5545
TwFAM2Sh(3):	25.622	30.8779
TwFAM2Sh(4):	30.980	40.7134
TwFAM2Sh(5):	4.117	-1.5212
TwFAM2Sh(6):	-17.914	-18.5155

ΚΕΦ.4 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

	<u>Χερσαίες</u>	Θαλάσσιες
TwSSM1Sh(2):	1.0448	1.0389
TwSSM1Sh(3):	0.0122	0.0201
TwSSM1Sh(4):	0.0909	0.0772
TwSSM1Sh(5):	-0.1248	-0.1026
TwSSM1Sh(6):	-0.0231	-0.0336
TwSSM2Sh(2):	-41.806	-50.5545
TwSSM2Sh(3):	25.622	30.8779
TwSSM2Sh(4):	30.980	40.7134
TwSSM2Sh(5):	4.117	-1.5212
TwSSM2Sh(6):	-17.914	-18.5155

Οι παραπάνω τιμές των πολυωνύμων των ιδιομορφών προέκυψαν μέσω του προγράμματος BModes, όπως παρουσιάζεται ακολούθως.

BModes:

	Χερσαίες	<u>Θαλάσσιες</u>
Echo:	False	False
beam_type:	2	2
romg:	0	0
romg_mult:	1.0	1.0
radius:	87.6m	77.6m
hub_rad:	0	0
precone:	0	0
bl_thp:	0	0
hub_conn:	1	1
modepr:	20	20
TabDelim:	f	f
mid_node_tw:	f	f
tip_mass:	296780kg	296780kg
cm_loc:	1.9 m	1.9m
ixx_tip:	10^{-11} kg·m ²	10 ⁻¹¹ kg·m ²
iyy_tip:	10^{-11} kg·m ²	10^{-11} kg·m ²
izz_tip:	10 ⁻¹¹ kg·m ²	10 ⁻¹¹ kg·m ²
ixy_tip:	10 ⁻¹¹ kg·m ²	10 ⁻¹¹ kg·m ²
izx_tip:	-18400kg·m ²	-18400kg·m ²
iyz_tip:	0	0
id_mat:	1	1
sec_props_file:	*	**
sec_mass_mult:	1.0	1.0
flp_iner_mult:	1.0	1.0
lag_iner_mult:	1,0	1.0
flp_stff_mult:	1.0	1.0
edge_stff_mult:	1.0	1.0
tor_stff_mult:	1.0	1.0
axial_stff_mult:	1.0	1.0
cg_offst_mult:	1.0	1.0
sc_offst_mult:	1.0	1.0
tc_offst_mult:	1.0	1.0
nselt:	10	10
n_attachments:	0	0
n_wires:	33	33

	Χερσαίες	Θαλάσσιες
node_attach:	69	69
wire_stfness:	0	0
th_wire:	0	0

Όπου, * Test18_tower_sec_props.dat και ** Test19_tower_sec_props.dat τα αρχεία δεδομένων της μεταβλητής καθ' ύψος γεωμετριάς των πυλώνων, ενώ αξίζει να σημειωθεί ότι το μικρότερο μήκος των πυλώνων των θαλάσσιων ανεμογεννητριών οφείλεται στην προεξοχή της υποδομής από τη μέση στάθμη της θάλασσας κατά 10m. Στο σημείο αυτό βρίσκεται και η πλατφόρμα πρόσβασης της ανεμογεννήτριας (βλ. ακόλουθη εικόνα με κίτρινο χρώμα επισήμανσης).

Εικόνα 4.28: Πλατφόρμα πρόσβασης θαλάσσιας ανεμογεννήτριας.

Αφού, λοιπόν, καθιστούν γνωστές οι ιδιομορφές των πυλώνων, πραγματοποιείται η προσαρμογή τους σε πολυώνυμα 6^{ου} βαθμού για την ενσωμάτωσή τους στο FAST.

Εικόνα 4.30: Προσαρμογή $2^{\eta\varsigma}$ ιδιομορφής πυλώνα χερσαίων ανεμογεννητριών σε πολυώνυμο 6^{00} βαθμού.

Εικόνα 4.31: Προσαρμογή 1^{ης} ιδιομορφής πυλώνα θαλάσσιων ανεμογεννητριών σε πολυώνυμο 6^{ου} βαθμού.

ΚΕΦ.4 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Εικόνα 4.32: Προσαρμογή 2^{ης} ιδιομορφής πυλώνα θαλάσσιων ανεμογεννητριών σε πολυώνυμο 6^{ου} βαθμού.

BeamDyn:

	<u>Χερσαίες</u>	<u>Θαλάσσιες</u>
station_total:	49	49
damp_type : mu1-6:	1 10 ⁻³	1 10 ⁻³

InflowWind:

	Χερσαίες	<u>Θαλάσσιες</u>
Echo:	False	False
WindType:	3	3
PropagationDir:	0	0
NWindVel:	1	1
WindVxiList:	0	0
WindVyiList:	0	0
WindVziList:	90m	90m
HWindSpeed:	0	0

	<u>Χερσαίες</u>	<u>Θαλάσσιες</u>
RefHt:	90m	90m
PLexp:	0.2	0.2
Filename:	***	****
RefHt:	90m	90m
RefLength:	125.88m	125.88m
Filename:	***	****
FilenameRoot:	***	****
TowerFile:	False	False
FileName_u:	basic_5u	basic_5u
FileName_v:	basic_5v	basic_5v
FileName_w:	basic_5w	basic_5w
nx:	64	64
ny:	32	32
nz:	32	32
dx:	16m	16m
dy:	3 m	3m
dz:	3m	3m
RefHt:	90m	90m
ScaleMethod:	1	1
SFx:	1	1
SFy:	1	1
SFz:	1	1
SigmaFx:	12	12
SigmaFy:	8	8
SigmaFz:	2	2
URef:	20	20
WindProfile:	2	2
PLExp:	0.2	0.2
Z0:	0.03	0.03
SumPrint:	False	False

Όπου, *** Wind/5MWTurbSim_18_URef.bts and **** Wind/5MWTurbSim_19_URef.bts μπορούν να βρεθούν στο Παράρτημα Α.

TurbSim:

	<u>Χερσαίες</u>	Θαλάσσιες
RandSeed1:	13428	13428
RandSeed2:	RaNLuX	RaNLuX
WrBHHTP:	False	False
WrFHHTP:	True	True
WrADHH:	False	False
WrADFF:	True	True
WrBLFF:	False	False
WrADTWR:	True	True
WrFMTFF:	True	True
WrACT:	False	False
Clockwise:	True	True
ScaleIEC:	0	0
NumGrid_Z:	31	31

КЕФ.4	Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

	Χερσαίες	<u>Θαλάσσιες</u>
NumGrid Y:	31	31
TimeStep:	0.05sec	0.05sec
AnalysisTime:	630sec	630sec
UsableTime:	60sec	60sec
HubHt:	90m	90m
GridHeight:	145m	175m
GridWidth:	145m	210m
VFlowAng:	0	0
HFlowAng:	0	0
TurbModel:	IECKAI	IECKAI
IECstandard:	1-ed3	1-ed3
IECturbc:	Α	Α
IEC_WindType:	NTM	NTM
ETMc:	default	default
WindProfileType:	PL	PL
RefHt:	90m	90m
URef:	20m/sec	20m/sec
ZJetMax:	default	default
PLExp:	default	default
Z0:	default	default
Latitude:	default	default
RICH_NO:	0.05	0.05
UStar:	default	default
ZI:	default	default
PC_UW:	default	default
PC_UV:	default	default
PC_VW:	default	default
IncDec1:	default	default
IncDec2:	default	default
IncDec3:	default	default
CohExp:	default	default
CTEventPath:	EventData	EventData
CTEventFile:	Random	Random
Randomize:	true	true
DistScl:	1.0	1.0
CTLy:	0.5	0.5
CTLz:	0.5	0.5
CTStartTime:	10.0	10.0

AeroDyn:

	<u>Χερσαίες</u>	<u>Θαλάσσιες</u>
Echo:	False	False
DTAero:	default	default
WakeMod:	1	1
AFAeroMod:	2	2
TwrPotent:	1	1
TwrShadow:	False	False
TwrAero:	True	True
AirDens:	1.225kg/m ³	1.225kg/m ³

	<u>Χερσαίες</u>	<u>Θαλάσσιες</u>
KinVisc:	1.464·10 ⁻⁵ m ² /s	1.464·10 ⁻⁵ m ² /s
SpdSound:	335m/s	335m/s
SkewMod:	2	2
TipLoss:	True	True
HubLoss:	True	True
TanInd:	true	true
AIDrag:	False	False
TIDrag:	False	False
IndToler:	default	default
MaxIter:	100	100
UAMod:	3	3
FLookup:	True	True
InCol_Alfa:	1	1
InCol_Cl:	2	2
InCol_Cd:	3	3
InCol_Cm:	4	4
InCol_Cpmin:	0	0
NumAFfiles:	8	8
AFNames:	****	****
UseBlCm:	True	True
ADBlFile(1):	AeroDyn_blade	AeroDyn_blade
ADBlFile(2):	AeroDyn_blade	AeroDyn_blade
ADBlFile(3):	AeroDyn_blade	AeroDyn_blade
NumTwrNds:	12	11
SumPrint:	True	True
NBlOuts:	0	0
BlOutNd:	1 9 19	29164571113
NtwOuts:	0	0
TwOutNd:	126	12345

Όπου, ***** χρησιμοποιούνται τα ακόλουθα πρότυπα αρχεία:

"Airfoils/Cylinder1.dat"	"Airfoils/Cylinder2.dat"
"Airfoils/DU40_A17.dat"	"Airfoils/DU35_A17.dat"
"Airfoils/DU30_A17.dat"	"Airfoils/DU25_A17.dat"
"Airfoils/DU21_A17.dat"	"Airfoils/NACA64_A17.dat"

ServoDyn:

	<u>Χερσαίες</u>	Θαλάσσιες
Echo:	False	False
DT:	default	default
PCMode:	5	5
TPCon:	0	0
TPitManS (1):	9999.9sec	9999.9sec

ΚΕΦ.4 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

TPitManS (2)
TPitManS (3) :
PitManRat (1):
PitManRat (2):
PitManRat (2) :
RiPitchF(1)
BlPitchF (2) :
BlPitchF (3) :
VSContrl:
GenModel:
GenEff:
GenEII.
ConTiStry
SendConOni
SpaGenOn:
TimGenOn:
TimGenOf:
VS_RtGnSp:
VS_Rt1q:
VS_Rgn2K:
VS_SIPc:
SIG_SIPc:
SIG_SySp:
SIG_RtTq:
SIG_PORt:
TEC_Freq:
TEC_NPol:
TEC_SRes:
TEC_RRes:
TEC_VLL:
TEC_SLR:
TEC_RLR:
TEC_MR:
HSSBrMode:
THSSBrDp:
HSSBrDT:
HSSBrTqF:
YCMode:
TYCOn:
YawNeut:
YawSpr:
YawDamp:
TYawManS:
YawManRat [•]
NacYawF [•]
CompNTMD [.]
NTMDfile
CompTTMD.
TTMDfile
DI I FileName
DI I InFile
DLL_IIITIC.
DII DT.
עבבעו.

Χερσαίες	Θαλάσσιες
9999.9sec	9999.9sec
9999.9sec	9999.9sec
2deg/sec	2deg/sec
2deg/sec	2deg/sec
2deg/sec	2deg/sec
0	0
0	0
0	0
5	5
2	2
94.4%	94.4%
True	True
True	True
9999.9rpm	9999.9rpm
0	0
9999.9sec	9999.9sec
9999.9rpm	9999.9rpm
9999.9N·m	9999.9N·m
9999.9N∙m/rpm²	9999.9N·m/rpm ²
9999.9%	9999.9%
9999.9%	9999.9%
9999.9rpm	9999.9rpm
9999.9N·m	9999.9N·m
9999.9	9999.9
9999.9Hz	9999.9Hz
9998	9998
9999.90hms	9999.90hms
9999.90hms	9999.90hms
9999.9volts	9999.9volts
9999.90hms	9999.90hms
9999.90hms	9999.90hms
9999.90hms	9999.90hms
0	0
9999.9sec	9999.9sec
0.6sec	0.6sec
28116.2N∙m	28116.2N·m
0	0
9999.9sec	9999.9sec
0	0
9.02832·10 ⁹ N·m/rad	9.02832·10 ⁹ N·m/rad
1.916·10 ⁷	9999.9%
9999.9s ec	9999.9s ec
2deg/sec	2deg/sec
0	0
False	False
"unused"	"unused"
False	False
"unused"	"unused"
DISCON_x64.ddl	DISCON_x64.ddl
DISCON.IN	DISCON.IN
DISCON	DISCON
default	default

	<u>Χερσαίες</u>	<u> Θαλάσσιες</u>
DLL_Ramp:	false	false
BPCutoff:	9999.9Hz	9999.9Hz
NacYaw_North:	0	0
Ptch_Cntrl:	0	0
Ptch_SetPnt:	0	0
Ptch_Min:	0	0
Ptch_Max:	0	0
PtchRate_Min:	0	0
PtchRate_Max:	0	0
Gain_OM:	0	0
GenSpd_MinOM:	0	0
GenSpd_MaxOM:	0	0
GenSpd_Dem:	0	0
GenTrq_Dem:	0	0
GenPwr_Dem:	0	0
DLL_NumTrq:	0	0
SumPrint:	True	True
OutFile:	1	1
TabDelim:	True	True
OutFmt:	ES10.3E2	ES10.3E2
TStart:	30sec	30sec

4.2.2. Αρχεία υποδομής ανεμογεννητριών μελέτης

Οι δύο υπορουτίνες της ανάλυσης που επηρεάζονται άμεσα από τη διάταξη της υποδομής της ανεμογεννήτριας, δηλαδή του υποθαλάσσιου τμήματός της, είναι η HydroDyn και η SubDyn. Λογικό είναι, επομένως, οι υπορουτίνες αυτές να διαφοροποιούνται στην περίπτωση θεμελίωσης τρίποδα, σε σχέση με τη μονοπάσσαλη θεμελίωση και τη θεμελίωση βαρύτητας.

Παρακάτω παρατίθενται αναλυτικά οι τιμές των μεταβλητών ανάλυσης για τις δύο αυτές διαφορετικές περιπτώσεις.

HydroDyn:

	Προέκταση πυλώνα	Χωροδικτύωμα
Echo:	False	False
WtrDens:	1027kg/m ³	1025kg/m ³
WtrDpth:	20m	20m
MSL2SWL:	0	0
WaveMod:	2	1P0.0
WaveStMod:	0	0
WaveTMax:	3630sec	3630sec
WaveDT:	0.25sec	0.25sec
WaveHs:	6m	6m
WaveTp:	10sec	10sec
WavePkShp:	DEFAULT	DEFAULT
WvLowCOff:	0.15708rad/sec	0

	Προέκταση πυλώνα	Χωροδικτύωμα
WvHiCOff:	3.2rad/sec	500rad/sec
WaveDir:	0	0
WaveDirMod:	0	0
WaveDirSpread:	1	1
WaveNDir:	1	1
WaveDirRange:	- 90deg	0
WaveSeed(1):	123456789	123456789
WaveSeed(2):	1011121314	1011121314
WaveNDAmp.	True	False
WyKinFile:	-	-
NWaveElev:	1	1
WaveElevxi:	0	Î O
WaveElevvi:	Ô	Ô
WvDiffOTF.	True	False
WvSumOTF:	True	False
WyLowCoffD.	0	0
WvHiCoffD:	3.04292rad/sec	3.5rad/sec
WyLowCoffS.	0.314159rad/sec	0.1rad/sec
WvHiCoffS:	3.2rad/sec	3.5rad/sec
CurrMod	0	0
CurrSSV0	0	ů 0
CurrSSDir	DEFAULT	DEFAULT
CurrNSRef	20m	20m
CurrNSV0	0	0
CurrNSDir:	Õ	0
CurrDIV:	0	0
CurrDIDir:	0	0
PotMod:	0	0
PotFile:	"unused"	"unused"
WAMITULEN:	1	1
PtfmVol0:	0	0
PtfmCOBxt:	0	0
Ptfm_COByt:	0	0
RdtnMod:	1	1
RdtnTMax:	60sec	60sec
RdtnDT:	0.005sec	0.025sec
MnDrift:	0	0
NewmanApp:	0	0
DiffQTF:	0	0
SumQTF:	0	0
PtfmSgF:	TRUE	TRUE
PtfmSwF:	TRUE	TRUE
PtfmSvF:	TRUE	TRUE
PtfmRF:	TRUE	TRUE
PtfmPF:	TRUE	TRUE
PtfmYF:	TRUE	TRUE
NAxCoef:	1	1
NJoints:	2	55
NPropSets:	1	8
NCoefDpth:	0	0
NCoefMembers:	0	0
NMembers:	1	60

	<u>Προέκταση πυλώνα</u>	Χωροδικτύωμα
NFillGroups:	0	0
NMGDepths:	0	0
NMoutputs:	0	1
NJOutputs:	0	0
JOutList:	1, 2, 3	0
HDSum:	True	True
OutAll:	False	False
OutSwtch:	2	2
OutFmt:	ES11.4e2	ES11.4e2
OutSFmt:	ALL	ALL

SubDyn:

-		Voossumbourg
	<u>Προεκταση πυλωνα</u>	<u> Λωρυσικτυωμα</u>
Echo:	False	False
SDdeltaT:	DEFAULT	DEFAULT
IntMethod:	3	3
SttcSolve:	True	True
FEMMod:	3	3
NDiv:	3	1
CBMod:	True	True
Nmodes:	0	12
JDampings:	1%	1%
NJoints:	4	158
NReact:	1	3
Ninterf:	1	1
NMembers:	3	163
NPropSets:	4	15
NXPropSets:	0	0
NCOSMs:	0	0
NCmass:	0	0
SSSum:	True	True
OutCOSM:	False	False
OutAll:	False	False
OutSwtch:	2	2
TabDelim:	True	True
OutDec:	1	1
OutFmt:	ES11.4e2	ES11.4e2
OutSFmt:	ALL	ALL
NMoutputs:	2	9

ΑΝΑΦΟΡΕΣ:

[1] «FAST v8.15.00a-bjj Accompanying Manual», Bonnie Jonkman, Jason Jonkman, NREL, p. 6, 2016

[2] «FAST User's Guide», Jason M. Jonkman, Marshall L. Buhl Jr., NREL, Technical Report NREL/EL-500-38230, 2005

[3] «User's Guide to BModes (Software for Computing Rotating Beam Coupled Modes)», Gunjit S. Bir, NREL, 2005

[4] «BeamDyn User's Guide and Theory Manual», Q. Wang, J. Jonkman, M. Sprague, B. Jonkman, 2016

[5] «InflowWind User's Guide», Andy Platt, Bonnnie Jonkman, Jason Jonkman, NWTC, 2016

[6] «TurbSim User's Guide: Version 1.06.00», B.J. Jonkman, L. Kilcher, NREL, 2012

[7] «AeroDyn v15 User's Guide and Theory Manual», J. M. Jonkman, G.J.Haynan, B. J. Jonkman, R.R. Damiani, NREL

[8] «HydroDyn User's Guide and Theory Manual», J. M. Jonkman, A. N. Robertson, G. J. Hayman, NREL.

[9] «SubDyn User's Guide and Theory Manual», R. Damiani, J. Jonkman, G. Hayman, NREL

ΚΕΦ.5 ΣΧΕΔΙΑΣΜΟΣ ΑΝΩΔΟΜΗΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΩΝ

5.1. Δεδομένα σχεδιασμού

το παρών κεφάλαιο περιγράφεται η διαδικασία του σχεδιασμού της ανωδομής των ανεμογεννητριών, δηλαδή του χαλύβδινου πυλώνα, ο οποίος καταπονείται σε διαξονική κάμψη και θλίψη υπό τα δυναμικά φορτία που του ασκούνται. Οι βασικοί έλεγχοι που πραγματοποιούνται είναι οι εξής:

- Έλεγχοι σε οριακή κατάσταση αστοχίας:

Οι εν λόγω έλεγχοι πραγματοποιούνται σύμφωνα με το κανονιστικό πλαίσιο των ευρωκωδίκων και πιο συγκεκριμένα του μέρους ΕΝ1993-1-1 (Γενικοί Κανόνες) και του μέρους ΕΝ 1993-1-6 (Αντοχή και Ευστάθεια Κελυφωτών Κατασκευών).

<u>Έλεγχοι σε κόπωση:</u>

Ο εν λόγω έλεγχος πραγματοποιείται σύμφωνα με το κανονιστικό πλαίσιο των ευρωκωδίκων και πιο συγκεκριμένα του μέρους EN1993-1-9 (Κόπωση).

Σε κάθε περίπτωση, θεωρούνται τα ακόλουθα δεδομένα για τον πυλώνα των ανεμογεννητριών της μελέτης.

5.1.1. Υλικά σχεδιασμού

Στην ανωδομή των ανεμογεννητριών μελέτης απαντώνται τα εξής υλικά.

Δομικός Χάλυβας:

Επιλέγεται χάλυβας υψηλής αντοχής **S355** και συνηθισμένης συγκολλησιμότητας, ο οποίος ανήκει στη βασική κατηγορία (primary category)^[1]. Τα χαρακτηριστικά του χάλυβα αυτού παρουσιάζονται στον ακόλουθο πίνακα. Αξίζει να σημειωθεί ότι το ειδικό βάρος του χάλυβα θεωρήθηκε προσαυξημένο εξαιτίας των επιπλέον εξωτερικών μονωτικών στρώσεων, καθώς και των πρόσθετων ελασμάτων και κοχλιών στις συνδέσεις της κατασκευής.

Συμβολισμός	Μονάδες	Τιμή	Περιγραφή
Е	MPa	$210 \cdot 10^{3}$	Μέτρο ελαστικότητας
G	MPa	$80.8 \cdot 10^{3}$	Μέτρο διάτμησης
ρ	kg/m ³	8500	Ειδική πυκνότητα
-	-	S355	Ποιότητα
fyk	MPa	355	Αντοχή διαρροής
fuk	MPa	510	Αντοχή αστοχίας
ν	-	0.3	Λόγος Poisson
			Συντελεστής
α	-	$12 \cdot 10^{-6}$	γραμμικής θερμικής
			διαστολής

Πίνακας 5.1: Ιδιότητες χάλυβα ανωδομής

Κοχλίες σύνδεσης συνέχειας ανωδομής:

Για τη σύνδεση συνέχειας του πυλώνα χρησιμοποιούνται 90 προεντεταμένοι κοχλίες M36 10.9 ανά 4°.

Συμβολισμός	Μονάδες	Τιμή	Περιγραφή
d	mm	36	Διάμετρος
fyb	MPa	900	Αντοχή διαρροής
fub	MPa	1000	Αντοχή αστοχίας
-	-	10.9	Ποιότητα

Πίνακας 5.2: Ιδιότητες κοχλιών σύνδεσης συνέχειας ανωδομής

Κοχλίες κλωβού anchor cage:

Για τη σύνδεση συνέχειας του πυλώνα χρησιμοποιούνται 150 κοχλίες M36 10.9 ανά 2.4°.

Συμβολισμός	Μονάδες	Τιμή	Περιγραφή
d	mm	36	Διάμετρος
fyb	MPa	900	Αντοχή διαρροής
fub	MPa	1000	Αντοχή αστοχίας
-	-	10.9	Ποιότητα

Πίνακας 5.3: Ιδιότητες κοχλιών σύνδεσης βάσης ανωδομής

5.1.2. Διατομές σχεδιασμού

Η διατομή του πυλώνα όπως έχει σχολιαστεί εκτενώς και σε προηγούμενα κεφάλαια είναι κοίλη κυκλική με μεταβαλλόμενη διάμετρο και πάχος καθ' ύψος. Πιο συγκεκριμένα, τα χαρακτηριστικά που λήφθηκαν υπόψη παρουσιάζονται στον ακόλουθο πίνακα.

Height [m]	HtFra ct [-]	Length [m]	Steel Density ρ [kg/m3]	External Diameter D [m]	Thickn ess t [m]	Area A [m2]	TMassD en (kg/m)	Young's Modulus E [N/m2]
0	0,000	0,00	8500	6,00	0,027	0,51	4306,51	2,10E+11
9,73	0,111	9,73	8500	5,76	0,026	0,47	4000,33	2,10E+11
19,47	0,222	19,47	8500	5,53	0,025	0,44	3705,35	2,10E+11
29,20	0,333	29,20	8500	5,29	0,024	0,40	3421,57	2,10E+11
38,93	0,444	38,93	8500	5,05	0,023	0,37	3148,97	2,10E+11
48,67	0,556	48,67	8500	4,82	0,023	0,34	2887,55	2,10E+11
58,40	0,667	58,40	8500	4,58	0,022	0,31	2637,34	2,10E+11
68,13	0,778	68,13	8500	4,34	0,021	0,28	2398,32	2,10E+11
77,87	0,889	77,87	8500	4,11	0,020	0,26	2170,50	2,10E+11
87,60	1,000	87,60	8500	3,87	0,019	0,23	1953,87	2,10E+11

Height [m]	HtFrac t [-]	Length [m]	Moment of Inertia I [m4]	Torsional Moment of Inertia J [m4]	TwFAStif [Nm^2]	Axial Stif [N]
0	0,000	0,00	2,259	4,519	4,745E+11	1,064E+11
9,73	0,111	9,73	1,936	3,873	4,067E+11	9,883E+10
19,47	0,222	19,47	1,649	3,298	3,463E+11	9,154E+10
29,20	0,333	29,20	1,395	2,790	2,930E+11	8,454E+10
38,93	0,444	38,93	1,172	2,343	2,460E+11	7,780E+10
48,67	0,556	48,67	0,976	1,952	2,050E+11	7,134E+10
58,40	0,667	58,40	0,806	1,612	1,692E+11	6,516E+10
68,13	0,778	68,13	0,659	1,318	1,384E+11	5,925E+10
77,87	0,889	77,87	0,533	1,066	1,120E+11	5,362E+10
87,60	1,000	87,60	0,426	0,852	8,949E+10	4,827E+10

Height [m]	HtFr act [-]	Length [m]	TwFAStif [kgm]	TwSSStif [Nm^2]	TwSSStif [kgm]	TwZStiff [Nm^2]	TwZStiff [kgm]
0	0,000	0,00	4971087783 ,02	4,745E+11	497108778 3,02	9,450E+11	9,942E+09
9,73	0,111	9,73	4260310938 ,68	4,066E+11	426031093 8,68	8,133E+11	8,521E+09
19,47	0,222	19,47	3628485097 ,93	3,463E+11	362848509 7,93	6,927E+11	7,257E+09
29,20	0,333	29,20	3069548118 ,40	2,930E+11	306954811 8,40	5,860E+11	6,139E+09
38,93	0,444	38,93	2577447463 ,14	2,460E+11	257744746 3,14	4,921E+11	5,155E+09
48,67	0,556	48,67	2147263934 ,37	2,050E+11	214726393 4,37	4,099E+11	4,295E+09
58,40	0,667	58,40	1773041285 ,11	1,692E+11	177304128 5,11	3,385E+11	3,546E+09
68,13	0,778	68,13	1449874259 ,87	1,384E+11	144987425 9,87	2,768E+11	2,900E+09
77,87	0,889	77,87	1172908628 ,02	1,120E+11	117290862 8,02	2,239E+11	2,346E+09
87,60	1,000	87,60	1172908628 ,02	8,949E+10	117290862 8,02	1,790E+11	2,346E+09

Πίνακας 5.4: Ιδιότητες μεταβαλλόμενης καθ' ύψος διατομής πυλώνα ανωδομής

Εικόνα 5.1: Χαρακτηριστικά τυπικής διαμόρφωσης πυλώνα ανωδομής

Σημειώνεται ότι η μεγάλη διάμετρος της κοίλης διατομής του πυλώνα, σε συνδυασμό με το σχετικά μικρό πάχος της, οδηγούν στην κατάταξη των διατομών στην κατηγορία 4, δηλαδή ο τοπικός λυγισμός της διατομής προηγείται της ανάπτυξης διαρροής σε οποιοδήποτε σημείο της.

Οι δύο διατομές με ιδιαίτερο ενδιαφέρον για τον σχεδιασμό του πυλώνα είναι οι εξής:

<u>Βάση πυλώνα:</u>

Στη θέση αυτή αναπτύσσονται τα σημαντικότερα εντατικά μεγέθη του πυλώνα. Συνεπώς, σε αυτή τη διατομή πραγματοποιούνται οι έλεγχοι αστοχίας και με βάση αυτή ολοκληρώνεται ο σχεδιασμός του πυλώνα. Επιπλέον, τα εντατικά μεγέθη της βάσης του πυλώνα χρησιμοποιούνται για την ανεξάρτητη φόρτιση των μοντέλων της υποδομής και θεμελίωσης της ανεμογεννήτριας, ενώ με βάση τα ίδια εντατικά γίνεται και η διαστασιολόγηση της σύνδεσης βάσης. Τα ιδιαίτερα χαρακτηριστικά της διατομής είναι τα ακόλουθα:

Εικόνα 5.2: Τυπική μόρφωση σύνδεσης βάσης πυλώνα ανωδομής τύπου anchor cage

Σύνδεση συνέχειας πυλώνα:

Στη θέση αυτή θεωρείται ότι ενώνονται δύο επιμέρους μέλη του πυλώνα της ανωδομής. Τα εντατικά μεγέθη της θέσης αυτής, η οποία θεωρείται ότι βρίσκεται στο 0.85 του συνολικού ύψους του πυλώνα, χρησιμοποιούνται για τη διαστασιολόγηση της σύνδεσης συνέχειας.

Τα ιδιαίτερα χαρακτηριστικά της διατομής είναι τα ακόλουθα:

Απόσταση από την έδραση:	75m
Διάμετρος D:	4.19m
Πάχος t:	0.020m
Μέση ακτίνα Rm:	2.085m

Εικόνα 5.3: Τυπική μόρφωση σύνδεσης συνέχειας πυλώνα ανωδομής

5.2. Έλεγχοι οριακής κατάστασης αστοχίας (ΟΚΑ)

Όπως αναφέρθηκε και σε προηγούμενη ενότητα, ο κρίσιμος έλεγχος αστοχίας των διατομών του πυλώνα είναι ο έλεγχος λυγισμού. Ο έλεγχος αυτός πραγματοποιείται στην κρίσιμη διατομή της βάσης του πυλώνα, όπου εμφανίζεται η μεγαλύτερη θλίψη και κάμψη.

Όσον αφορά τους συντελεστές ασφαλείας, θεωρήθηκαν οι ακόλουθες τιμές σε συμφωνία και με όσα περιγράφηκαν στο Κεφ. 3:

- Συντελεστής ασφαλείας φόρτισης γ_f = 1.25 για DLC1.1 (βλ. Πίνακα 3.7)
- Συντελεστής ασφαλείας υλικού γ_m = 1.2 για έλεγχο λυγισμού κελυφωτών κατασκευών

Πιο συγκεκριμένα, αφότου υπολογιστούν από το πρόγραμμα FAST οι τιμές των εσωτερικών εντατικών μεγεθών της διατομής (βλ. Κεφ. 4), υπολογίζονται οι ασκούμενες τάσεις ως εξής:

$$\sigma_{x.E,N} = \frac{F_z}{2 \cdot \pi \cdot R_m \cdot t} , \qquad \sigma_{x.E,M} = \frac{\sqrt{(M_x^2 + M_y^2)}}{\pi \cdot R_m^2 \cdot t}$$
$$\sigma_{x.Ed} = \sigma_{x.E,N} " + " \sigma_{x.E,M}$$
$$\tau_{x\theta.Ed} = \frac{M_z}{2 \cdot \pi \cdot R_m^2 \cdot t} " + " \frac{\sqrt{(F_x^2 + F_y^2)}}{\pi \cdot R_m \cdot t}$$

όπου,

 F_x η οριζόντια τέμνουσα δύναμη της διατομής παράλληλα στη διεύθυνση της φόρτισης

 F_y η οριζόντια τέμνουσα δύναμη της διατομής κάθετα στη διεύθυνση της φόρτισης

- F_z η κατακόρυφη αξονική δύναμη της διατομής
- M_x η καμπτική ροπή της διατομής περί άξονα κάθετου στη διεύθυνση της φόρτισης
- My η καμπτική ροπή της διατομής περί άξονα παράλληλου στη διεύθυνση της φόρτισης
- M_z η στρεπτική ροπή της διατομής περί άξονα κάθετου στη διεύθυνση της φόρτισης
- $\sigma_{x.E,N}$ η αξονική τάση της διατομής λόγω αξονικής καταπόνησης
- $\sigma_{x.E,M}$ η αξονική τάση της διατομής λόγω καμπτικής καταπόνησης
- $σ_{x.Ed}$ η συνολική αξονική τάση σχεδιασμού της διατομής
- $τ_{x\theta..Ed}$ η συνολική διατμητική τάση σχεδιασμού της διατομής

Οι τάσεις αντοχής έναντι λυγισμού είναι οι εξής:

$$\sigma_{x.Rd} = \frac{\sigma_{x.Rk}}{\gamma_{M1}}$$
$$\sigma_{\theta.Rd} = \frac{\sigma_{\theta.Rk}}{\gamma_{M1}}$$
$$\tau_{x\theta.Rd} = \frac{\tau_{x\theta.Rk}}{\gamma_{M1}}$$

όπου,

$\sigma_{x.Rd} \ / \ \sigma_{x.Rk}$	η αντοχή σχεδιασμού / χαρακτηριστική τιμή αντοχής έναντι λυγισμού για αξονική θλίψη
$\sigma_{\theta.Rd} \ / \ \sigma_{\theta.Rk}$	η αντοχή σχεδιασμού / χαρακτηριστική τιμή αντοχής έναντι λυγισμού για περιφερειακή θλίψη
$\tau_{x\theta.Rd} \ / \ \tau_{x\theta.Rk}$	η αντοχή σχεδιασμού / χαρακτηριστική τιμή αντοχής έναντι λυγισμού για διάτμηση

Οι παραπάνω χαρακτηριστικές τιμές των τάσεων λυγισμού υπολογίζονται σύμφωνα με τις ακόλουθες σχέσεις:

$$\sigma_{x.Rk} = \chi_x \cdot f_{yk}$$
$$\sigma_{\theta.Rk} = \chi_\theta \cdot f_{yk}$$
$$\tau_{x\theta.Rk} = \chi_\tau \cdot \frac{f_{yk}}{\sqrt{3}}$$

όπου,

χ_x ο μειωτικός συντελεστής λυγισμού για αξονική θλίψη

χ_θ ο μειωτικός συντελεστής λυγισμού για περιφερειακή θλίψη

χτ ο μειωτικός συντελεστής λυγισμού για διάτμηση

Οι μειωτικοί συντελεστές λυγισμού αποτελούν συνάρτηση της ανηγμένης λυγηρότητας του πυλώνα και πιο συγκεκριμένα:

$$\begin{split} \chi &= 1, \lambda \leq \lambda_0 \\ \chi &= 1 - \beta \cdot \left(\frac{\lambda - \lambda_0}{\lambda_p - \lambda_0}\right)^n, \ \lambda_0 \leq \lambda \leq \lambda_p \\ \chi &= \frac{\alpha}{\lambda^2}, \ \lambda_p \leq \lambda \end{split}$$

όπου,

α ο ελαστικός μειωτικός συντελεστής λόγω ατελειών

β ο συντελεστής εύρους πλαστική περιοχής

 $\beta=0.6$ για αξονικά και καμπτικά φορτιζόμενα κελύφη

n ο εκθέτης αλληλεπίδρασης

n = 1.0 για αξονικά και καμπτικά φορτιζόμενα κελύφη

 λ_p η ανηγμένη πλαστική λυγηρότητα

$$\lambda_p = \sqrt{\frac{\alpha}{1-\beta}}$$

λ₀ η ανώτατη ανηγμένη λυγηρότητα της πλαστικής ζώνης

Επιπλέον, η τιμές της ανηγμένης λυγηρότητας λ των παραπάνω τύπων, δίνεται σύμφωνα με τα ακόλουθα:

$$\lambda_{x} = \sqrt{\frac{f_{yk}}{\sigma_{x.Rcr}}}$$
$$\lambda_{\theta} = \sqrt{\frac{f_{yk}}{\sigma_{\theta.Rcr}}}$$
$$\lambda_{\tau} = \sqrt{\frac{f_{yk}}{\tau_{x\theta.Rcr}}}$$

όπου,

 λ_x η ανηγμένη λυγηρότητα για αξονική θλίψη

λ_θ η ανηγμένη λυγηρότητα για περιφερειακή θλίψη

 λ_{τ} η ανηγμένη λυγηρότητα για διάτμηση

 $\sigma_{x.Rcr}$ η ελαστική αξονική κρίσιμη τάση λυγισμού

ενώ, στην περίπτωση που $\frac{r}{t} \le 150$, $\omega \le 6 \cdot \left(\frac{r}{t}\right)_{\chi}$ και $500 \le \frac{E}{f_{yk}} \le 1000$, ισχύει ότι

$$C_{x} = C_{x,N} \cdot \frac{\sigma_{x.E,N}}{\sigma_{x.Ed}} " + " \frac{\sigma_{x.E,M}}{\sigma_{x.Ed}}$$

 C_{xb} ο αδιάστατος συντελεστής συνοριακών συνθηκών, ο οποίος για συνθήκες προβόλου λαμβάνει την τιμή 3

Boundary condition	Simple term	Description	Normal displacement	Meridional displacements	Meridional rotation
code			S		
BC1r	Clamped	radially restrained meridionally restrained rotation restrained	w = 0	u = 0	$\beta_{\phi} = 0$
BC1f		radially restrained meridionally restrained rotation free	w = 0	u = 0	$\beta_{\phi} \neq 0$
BC2r		radially restrained meridionally free rotation restrained	w = 0	u ≠0	$\beta_{\phi} = 0$
BC2f	Pinned	radially restrained meridionally free rotation free	<i>w</i> = 0	u ≠0	$\beta_{\phi} \neq 0$
BC3	Free edge	radially free meridionally free rotation free	$w \neq 0$	u ≠0	$\beta_{\phi} \neq 0$
NOTE: The separate bou should be ac	NOTE: The circumferential displacement v is closely linked to the displacement w normal to the surface, so separate boundary conditions are not identified for these two parameters (see (4)) but the values in column 4 should be adopted for displacement v .				

Πίνακας 5.5: Συνοριακές συνθήκες κελύφους

Case	Cylinder end	Boundary condition	Cxb
1	end 1 end 2	BC 1 BC 1	6
2	end 1 end 2	BC 1 BC 2	3
3	end 1 end 2	BC 2 BC 2	1

					o '	-
INAVAC	5 6.	Λλιαστατος	TINTCACC		TIMHNKIW	C .
πνακας	J.U.	AULUULUU	υυνιελει	DVUDLUKUV		Vyh
				 		- 70

σ_{θ.Rcr} η ελαστική περιφερειακή κρίσιμη τάση λυγισμού (δεν αποτελεί κρίσιμη παράμετρο για τη φόρτιση των ανεμογεννητριών μελέτης)

τ_{xθ.Rcr} η ελαστική διατμητική κρίσιμη τάση λυγισμού

ω_x η αδιάστατη παράμετρος μήκους

$$\omega_x = \frac{l}{\sqrt{R_m \cdot t}}$$

Ακόμα, η ανώτατη ανηγμένη λυγηρότητα της πλαστικής περιοχής λαμβάνεται:

$$\lambda_{x0} = 0.2 + 0.1 \cdot \frac{\sigma_{x.E.M}}{\sigma_{x.Ed}}$$

ενώ, ο ελαστικός μειωτικός συντελεστής λόγω ατελειών στην περίπτωση θλιπτικής αξονικής τάσης:

$$a_{\chi} = \frac{0.62}{1 + 1.91 \cdot \left(\frac{\Delta w_k}{t}\right)^{1.44}}$$

με χαρακτηριστικό εύρος ατελειών $\Delta w_k = \frac{1}{q} \cdot \sqrt{\frac{r}{t}} \cdot t$

Ανάλογα με την ποιότητα της κατασκευής, οι ανεμογεννήτριες χωρίζονται σε κατηγορίες, με βάση τις οποίες καθορίζεται η παράμετρος Q.

Ποιότητα κατασκευής	Περιγραφή	$\alpha_{\theta}, \alpha_{\tau}$ [-]	Q [-]
Κλάση Α	Εξαιρετική	0.75	40
Κλάση Β	Υψηλή	0.65	25
Κλάση C	Κανονική	0.50	16

Πίνακας 5.7: Κατηγορίες ποιότητας κατασκευής και σχετικοί συντελεστές

Για τις περιπτώσεις των ανεμογεννητριών της μελέτης επιλέγεται η Κλάση Β, δηλαδή υψηλή ποιότητα και συνεπώς λαμβάνεται Q = 25.

Στην περίπτωση που το εξεταζόμενο κέλυφος αποτελείται από τμήματα διαφορετικού πάχους, όπως στην εν λόγω περίπτωση, τότε για τον υπολογισμό της ελαστικής διατμητικής κρίσιμης τάσης λυγισμού, πρέπει το μέλος να αντικαθίσταται από ένα ισοδύναμο κυλινδρικό (equivalent cylinder) τριών επιμέρους τμημάτων a, b και c.

Το μήκος la του άνω τμήματος a πρέπει να καταλήγει στο τμήμα του αρχικού κυλίνδρου, το οποίο είχε πάχος 1.5 φορές μεγαλύτερο του ελάχιστου πάχους του αρχικού κυλίνδρου, αλλά να μη ξεπερνά το μισό αρχικό μήκος. Δηλαδή:

$$l_a = min \begin{cases} l_{1.5 \cdot tmin} \\ l_2 \end{cases} = min \begin{cases} 87.6_2 \\ 43.8m \end{cases} = 43.8m$$

Για τα μήκη των υπόλοιπων δύο τμημάτων, όταν $l_a \leq 1/3$, τότε ισχύει:

$$l_b = l_a$$
$$l_c = l - 2 \cdot l_a$$

ενώ, όταν l/3 < l_a \leq l/2, όπως συμβαίνει στην περίπτωση των ανεμογεννητριών της μελέτης, τότε ισχύει:

Εικόνα 5.4: Μετατροπή κυλινδρικού κελύφους μεταβλητού πάχους σε ισοδύναμο ενιαίου πάχους

Εν συνεχεία, υπολογιζόνται τα πάχη των τριών τμημάτων ως ο σταθμισμένος μέσος όρος του πάχους των τμημάτων j του αρχικού κυλίνδρου που βρίσκονται στα αντίστοιχα μήκη l_a , l_b και l_c :

$$t_a = \frac{1}{l_a} \cdot \sum_a l_j \cdot t_j = 0.021m$$
$$t_b = \frac{1}{l_b} \cdot \sum_b l_j \cdot t_j = 0.024m$$
$$t_c = \frac{1}{l_c} \cdot \sum_c l_j \cdot t_j = 0.026m$$

Ακολούθως, το κυλινδρικό κέλυφος των τριών τμημάτων a, b, c αντικαθίσταται με ένα ισοδύναμο μήκους και πάχους:

 $l_{eff}=rac{l_a}{\kappa},$ με κ αδιάστατο παράγοντα που προσδιορίζεται από το παρακάτω σχήμα $t=t_a=0.021m$

Για $l_b = l_c$ και l_a / 1 =0.5 και t_b / $t_a = 1.143$ και $t_c = 0.026$ m, προκύπτει κ = 0.6, δηλαδή ισοδύναμο μήκος $l_{eff} = 73m$.

Έτσι, προσδιορίζεται η αδιάστατη παράμετρος μήκους:

$$\omega_{\tau} = \frac{l_{eff}}{\sqrt{R_m \cdot t_{eff}}} = \frac{73}{\sqrt{2.99 \cdot 0.021}} = 291.349$$

Επίσης,

$$C_{\tau} = \begin{cases} \sqrt{1 + \frac{42}{\omega_{\tau}^{2}}}, & \omega_{\tau} \leq 10 \\ 1.0, & \omega_{\tau} > 10 & \kappa \alpha \iota \ \omega_{\tau} \leq 8.7 \cdot \left(\frac{r}{t}\right)_{\tau} \\ \frac{1}{3} \cdot \sqrt{\omega_{\tau} \cdot \frac{t}{r}}, & \omega_{\tau} > 8.7 \cdot \left(\frac{r}{t}\right)_{\tau} \end{cases}$$

Οπότε.

$$\tau_{x\theta.Rcr.Eff} = 0.75 \cdot E \cdot C_{\tau} \cdot \sqrt{\frac{1}{\omega_{\tau}}} \cdot \frac{t}{r}$$

$$\tau_{x\theta.Rcr} = \frac{t_a}{t_i} \cdot \tau_{x\theta.Rcr.Eff} = \frac{0.021}{0.027} \cdot \tau_{x\theta.Rcr.Eff} \cong 0.778 \cdot \tau_{x\theta.Rcr.Eff}$$

και $\alpha_t = 0.65$ (Πίνακας 5.7), $\lambda_{\tau 0} = 0.4$.

Ο έλεγχος λυγισμού έγκειται στις ακόλουθες εξισώσεις:

 $σ_{x.Ed} \le σ_{x.Rd}$ και $τ_{x\theta.Ed} \le τ_{x\theta.Rd}$

καθώς επίσης στη σχέση αλληλεπίδρασης των μεμβρανικών τάσεων:

$$\frac{\sigma_{x.Ed}k_x}{\sigma_{x.Rd}} + \frac{\tau_{x\theta.E\delta}k_\tau}{\tau_{x\theta.Rd}} \le 1$$

όπου,

$$k_x = 1.25 + 0.75 \cdot \chi_x$$
$$k_\theta = 1.25 + 0.75 \cdot \chi_\theta$$
$$k_\tau = 1.75 + 0.25 \cdot \chi_\tau$$

5.3. Έλεγχος κόπωσης

Ορίζεται ως κόπωση (fatigue) το φαινόμενο της φθοράς ενός δομικού στοιχείου που προκαλείται λόγω της επιβολής επαναλαμβανόμενων κύκλων φόρτισης. Έτσι, λοιπόν, η κόπωση αποτελεί ένα προοδευτικό φαινόμενο, το οποίο όμως συνήθως οδηγεί σε ψαθυρή αστοχία. Η κατάληξη αυτή μπορεί να επέλθει ακόμα και σε περιπτώσεις άσκησης φορτίσεων μικρότερου μεγέθους από το όριο θραύσης ή και διαρροής του γάλυβα. Συνεπώς, η θραύση επέρχεται απότομα, όταν, η αντοχή γίνει μικρότερη από την απαιτούμενη για την παραλαβή της επιβαλλόμενης φόρτισης, έπειτα από την προοδευτική μείωσή της λόγω ρηγματώσεων της κρίσιμης διατομής.

Εξαιτίας του δυναμικού χαρακτήρα της φόρτισης της ανεμογεννήτριας, κρίσιμος έλεγχος αστοχίας των διατομών του πυλώνα, αλλά και των συνδέσεών του είναι ο έλεγχος κόπωσης. Ο κίνδυνος αστοχίας λόγω κόπωσης είναι ιδιαίτερα αυξημένος, καθώς η συχνότητα μεταβολής της φόρτισης είναι ιδιαίτερα υψηλή, με συνέπεια οι κύκλοι φόρτισης, στους οποίους υπόκειται η ανεμογεννήτρια στη διάρκεια ζωής της, να ξεπερνούν κατά πολύ αυτούς των συνήθων κατασκευών.

Ο έλεγχος κόπωσης πραγματοποιείται στην κρίσιμη διατομή της βάσης του πυλώνα, όπου εμφανίζεται η μεγαλύτερη θλίψη και κάμψη, αλλά και στη διατομή της σύνδεσης συνέχειας.

Όσον αφορά τους συντελεστές ασφαλείας, θεωρήθηκαν οι ακόλουθες τιμές σε συμφωνία και με όσα περιγράφηκαν στο Κεφ. 3:

- Συντελεστής ασφαλείας φόρτισης $\gamma_f = 1.0$ για DLC1.2 (βλ. Πίνακα 3.7)
- Συντελεστής ασφαλείας υλικού $\gamma_m = 1.5$ για έλεγχο σε κόπωση (βλ. §3.5)

Πιο συγκεκριμένα, υπολογίζονται και πάλι από το πρόγραμμα FAST οι τιμές των εσωτερικών εντατικών μεγεθών της διατομής (βλ. Κεφ. 4) και εν συνεχεία υπολογίζονται οι ασκούμενες τάσεις, όπως και στον έλεγχο λυγισμού.

Η αντοχή σε κόπωση για ονομαστικές τάσεις (όπως υπολογίστηκαν στην παρούσα περίπτωση) προσδιορίζεται από μία σειρά καμπυλών τάσεων (ΔσR) – κύκλων φόρτισης (N), οι οποίες είναι αποτυπωμένες σε λογαριθμική κλίμακα (καμπύλες S-N). Κάθε καμπύλη αντιστοιχεί σε μια συγκεκριμένη (τυπική) κατηγορία λεπτομέρειας. Κάθε κατηγορία λεπτομέρειας χαρακτηρίζεται από μία τιμή, η οποία ισούται με το εύρος τάσης $\Delta \sigma_c$ που αντιστοιχεί σε N=2·10⁶ κύκλους φόρτισης και έχει προκύψει από πειραματικά δεδομένα για 75% επίπεδο εμπιστοσύνης και 95% πιθανότητα επιβίωσης (probability of survival), λαμβάνοντας επίσης υπόψη την τυπική απόκλιση, το μέγεθος τους δείγματος και την επίδραση των παραμενουσών τάσεων. Οι τυπικές καμπύλες S-N παρουσιάζονται στις ακόλουθες εικόνες για ορθές και διατμητικές τάσεις αντίστοιχα.

Εικόνα 5.6: Καμπύλες S-N αντοχής σε κόπωση για ορθές τάσεις^[2]

Εικόνα 5.7: Καμπύλες S-N αντοχής σε κόπωση για διατμητικές τάσεις^[3]

Το τμήμα της καμπύλης που αντιστοιχεί σε σταθερού πλάτους ονομαστικές τάσεις προσδιορίζεται από τις ακόλουθες σχέσεις:

$$\Delta \sigma_R^{\ m} \cdot N_R = \Delta \sigma_C^{\ m} \cdot 2 \cdot 10^6 \ \mu \varepsilon \ m = 3 \ \gamma \iota \alpha \ N_R \le 5 \cdot 10^6$$
$$\Delta \tau_R^{\ m} \cdot N_R = \Delta \tau_C^{\ m} \cdot 2 \cdot 10^6 \ \mu \varepsilon \ m = 5 \ \gamma \iota \alpha \ N_R \le 10^8$$

όπου,

$$\Delta \sigma_D = \left(\frac{2}{5}\right)^{1/m} \cdot \Delta \sigma_c , \text{ το όριο κόπωσης για σταθερό πλάτος φόρτισης}$$
$$\Delta \tau_L = \left(\frac{2}{100}\right)^{1/m} \cdot \Delta \tau_c , \text{ το όριο αποκοπής (cut-off limit)}$$

Για ονομαστικά φάσματα με εύρη τάσεων μικρότερα ή μεγαλύτερα από το όριο κόπωσης για σταθερό πλάτος Δσ_D, η φθορά λόγω κόπωσης μπορεί να υπολογιστεί από τις εκτεταμένες καμπύλες κόπωσης που προσδιορίζονται από τις εξισώσεις:

$$\begin{split} \Delta \sigma_R^{\ m} \cdot N_R &= \Delta \sigma_C^{\ m} \cdot 2 \cdot 10^6 \ \mu \varepsilon \ m = 3 \ \gamma \iota \alpha \ N_R \le 5 \cdot 10^6 \\ \Delta \sigma_R^{\ m} \cdot N_R &= \Delta \sigma_C^{\ m} \cdot 5 \cdot 10^6 \ \mu \varepsilon \ m = 5 \ \gamma \iota \alpha \ 10^6 \le N_R \le 10^8 \end{split}$$

όπου,

$$\Delta \sigma_L = \left(rac{5}{100}
ight)^{1/m} \cdot \Delta \sigma_D$$
 , το όριο αποκοπής

Στην παρούσα μελέτη, χρησιμοποιείται η ακόλουθη εξίσωση για τις χαρακτηριστικές S-N καμπύλες^[4]:
$$log_{10}N = log_{10}\alpha - m \cdot log_{10} \left[\Delta \sigma \left(\frac{t}{t_{ref}} \right)^k \right]$$

όπου,

- t_{ref} 32mm για ενώσεις κοίλων διατομών 25mm για λοιπές συγκολλητές συνδέσεις
- t πάχος διατομής μέσα στο οποίο θα δημιουργηθούν και θα επεκταθούν οι πιθανές ρηγματώσεις λόγω κόπωσης ($t \ge t_{ref}$)
- k εκθέτης μεγέθους

Τέλος, οφείλει να σημειωθεί ότι πειραματικά δεδομένα ενδέχεται να μην ταιριάζουν ακριβώς σε κάποιες καμπύλες. Σε αυτήν την περίπτωση, ούτως ώστε να διασφαλιστεί η αποφυγή μη συντηρητικών συνθηκών, οι λεπτομέρειες κατατάσσονται στην αμέσως χαμηλότερη κατηγορία λεπτομέρειας από αυτή που προκύπτει για $2 \cdot 10^6$ κύκλους φόρτισης. Εναλλακτικά, είναι δυνατή η κατάταξη στην αμέσως επόμενη κατηγορία λεπτομέρειας με την προϋπόθεση όμως ότι το όριο κόπωσης για σταθερό πλάτος $\Delta \sigma_D$ αντιστοιχεί στην αντοχή σε κόπωση στους 10^7 (και όχι στους $2 \cdot 10^6$) κύκλους για m=3. Εν γένει δηλαδή, για λόγους τυποποίησης, οι υπολογισμοί της αντοχής σε κόπωση με τις παραπάνω καμπύλες είναι συντηρητικοί. Οι τιμές αντοχής $\Delta \sigma_c$ και $\Delta \tau_c$ για ονομαστικές τάσεις για διάφορες κατηγορίες λεπτομέρειας περιγράφονται στους πίνακες 8.1 – 8.10 του ΕΝ 1993-1-9.

Συνεπώς, ο έλεγχος κόπωσης συνοψίζεται στις ακόλουθες συνθήκες:

$$\frac{\gamma_{Ff} \cdot \Delta \sigma_{E,2}}{\Delta \sigma_c / \gamma_{Mf}} \le 1.0$$
 kai $\frac{\gamma_{Ff} \cdot \Delta \tau_{E,2}}{\Delta \tau_c / \gamma_{Mf}} \le 1.0$

ενώ, σε περιπτώσεις συνδυασμένης ορθής και διατμητικής καταπόνησης:

$$\left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{E,2}}{\Delta \sigma_{c}/\gamma_{Mf}}\right)^{3} + \left(\frac{\gamma_{Ff} \cdot \Delta \tau_{E,2}}{\Delta \tau_{c}/\gamma_{Mf}}\right)^{5} \leq 1.0$$

Στην προκειμένη περίπτωση, αρχικά προσδιορίζονται οι χρονοιστορίες φορτίων που δρουν στην εκάστοτε υπό έλεγχο διατομή. Στη συνέχεια, οι χρονοιστορίες φόρτισεις θα πρέπει να μετατραπούν σε χρονοιστορίες τάσεων, λαμβάνοντας υπόψη τα χαρακτηριστικά του υλικού και της γεωμετρίας της διατομής. Μετά τον προσδιορισμό των χρονοιστοριών τάσεων, θα πρέπει με κατάλληλη μεθοδολογία να ομαδοποιηθούν τα διάφορα εύρη τάσεων και να υπολογιστεί ο αριθμός των κύκλων φόρτισης που αντιστοιχεί σε κάθε ομάδα. Η μέθοδος που χρησιμοποιείται στην παρούσα μελέτη είναι η «μέθοδος δεξαμενής (Reservoir Method)», η οποία προτείνεται και από τον ΕΝ 1993-1-9. Για την αυτοματοποίηση της διαδικασίας Reservoir για τις επιμέρους παραμετρικές επιλύσεις της εργασίας χρησιμοποιήθηκε ειδικός κώδικας^[5] σε γλώσσα προγραμματισμού Visual Basic σε περιβάλλον Excel (VBA, βλ. Παράρτημα Δ). Αφότου υπολογιστεί ο αριθμός των κύκλων φόρτισης για κάθε ομάδα, μπορεί να εξαχθεί πλέον το φάσμα εύρους τάσεων (stress range spectrum).

Ο έλεγχος ρηγμάτωσης πραγματοποιείται για τις εξής δύο περιπτώσεις:

Χαλύβδινη διατομή πυλώνα στη βάση:

Ο έλεγχος πραγματοποιείται για τη διατομή του πυλώνα στη θέση της σύνδεσης του με την άνω στεφάνη του συστήματος anchor cage. Η αντίστοιχη τυπική λεπτομέρεια 71 (11) παρουσιάζεται στην ακόλουθη εικόνα.

Εικόνα 5.8: Τυπική λεπτομέρεια κόπωσης για τη διατομή βάσης του πυλώνα για αξονική καταπόνηση (άνω) και διατμητική καταπόνηση (κάτω)^[6]

Σχετικές τιμές για ορθές τάσεις:

 $\log a = 11.851$ gia $m = 3 \ (N \le 5 \cdot 10^6)$

 $\log \alpha = 15.286 \text{ gia } m = 5 \text{ (N} > 5.10^6\text{)}$

 $\Delta \sigma_D = 52 N/mm^2 (N = 5 \cdot 10^6)$

 $\Delta \sigma_L = 29 N/mm^2 (N = 10^8)$

Σχετικές τιμές για διατμητικές τάσεις:

loga = 15.801 για m = 5 (N < 10⁸)

 $\Delta \tau_L = 36 N/mm^2 (N = 10^8)$

Κοχλίες M36 10..9 (anchor cage bolt):

Ο έλεγχος πραγματοποιείται για τον δυσμενέστερο κοχλία του πυλώνα στη θέση της σύνδεσης του με την άνω στεφάνη του συστήματος anchor cage. Η αντίστοιχη τυπική λεπτομέρεια 50 (14) παρουσιάζεται στην ακόλουθη εικόνα.

Detail category	Constructional detail	Description	Requirements
100 m=5		Bolts in single or double shear Thread not in the shear plane 15) - Fitted bolts - normal bolts without load reversal (bolts of grade 5.6, 8.8 or 10.9)	15) $\Delta \tau$ calculated on the shank area of the bolt.

КЕФ.5

Εικόνα 5.9: Τυπική λεπτομέρεια κόπωσης για τη διατομή κοχλία κλωβού για αξονική (κάτω) και διατμητική καταπόνηση (άνω)^[6]

Σχετικές τιμές για ορθές τάσεις:

loga = 11.401 για m = 3 (N ≤ 5·10⁶) loga = 14.536 για m = 5 (N > 5·10⁶)

 $\Delta \sigma_{\rm D} = 37 \text{N/mm}^2 \text{ (N} = 5 \cdot 10^6\text{)}$

 $\Delta \sigma_{\rm L} = 20 \text{N/mm}^2 \text{ (N} = 10^8)$

Σχετικές τιμές για διατμητικές τάσεις:

$$\label{eq:alpha} \begin{split} &\log \alpha = 16.301 ~ \mbox{sigma} ~ m = 5 ~ (N < 10^8) \\ &\Delta \tau_L = ~ 46 N / mm^2 ~ (N = 10^8) \end{split}$$

Από την παραπάνω διαδικασία μπορεί να υπολογιστεί η τιμή της φθοράς που προκαλείται από κάθε εύρος τάσης έτσι, όπως προκύπτει από την αντίστοιχη καμπύλη S-N. Τέλος, η συνολική φθορά προκύπτει από το άθροισμα των επιμέρους τιμών της φθοράς για κάθε ομάδα τάσεων εφαρμόζοντας τον κανόνα Palmgren-Miner. Η συνολική τιμή της φθοράς D_d, προκύπτει από τη σχέση:

$$D_d = \sum \frac{n_{Ei}(\gamma_{Fi} \cdot \Delta \sigma_i)}{N_{Ri} \left(\frac{\Delta \sigma_C}{\gamma_{Mf}} \right)}$$

όπου,

 $n_{Ei}(\gamma_{Fi} \cdot \Delta_{\sigma i})$ ο αριθμός των κύκλων (n_{Ei}) που αντιστοιχούν στο εύρος τάσεων $\gamma_{Fi} \cdot \Delta_{\sigma i}$

 $\begin{aligned} N_{Ri}(\Delta\sigma_C \ / \ \gamma_{Mf}) & \text{o aribmóg twn kúklwn étsi, όπως προκύπτει aπό την καμπύλη S-N που } \\ & \text{antistoice} i \ σε εύρος τάσεων \ \Delta\sigma_C \ / \ \gamma_{Mf} \end{aligned}$

Αστοχία λόγω κόπωσης επέρχεται, όταν κατά τη διάρκεια λειτουργίας της κατασκευής προκύψει $D_d \ge 1$. Σημειώνεται ότι σε περίπτωση που η εκτιμώμενη μέση διάρκεια ζωής λόγω κόπωσης προκύψει μικρότερη από την προσδοκώμενη διάρκεια σχεδιασμού του μέλους της κατασκευής, τότε αναμένεται αστοχία λόγω κόπωσης και συνεπώς πρέπει να ληφθεί κατάλληλη μέριμνα κατά το σχεδιασμό (π.χ. αλλαγή διαστάσεων μέλους ή κατηγορίας λεπτομέρειας).

Στην παρούσα εργασία, έπειτα από επαρκή αριθμό αναλύσεων, εξάγεται για κάθε ταχύτητα ανέμου η τιμή της φθοράς, ενώ εκτιμάται η επίδραση της αλληλεπίδρασης του εδάφους στην τιμή αυτή.

<u>ΑΝΑΦΟΡΕΣ:</u>

- [1] DNV-OS-J101, §6.1.3.4 Table 6-21
- [2] EN1993-1-9, §7.1(3), Figure 7.1
- [3] EN1993-1-9, §7.1(3), Figure 7.2
- [4] DNV-OS-J101, §J.201

[5] «Ανάλυση Σύμμικτων Γεφυρών σε Κόπωση», Διπλωματική Εργασία ΕΜΚ ΔΕ 2012/40 - Ε.Μ.Π., Γιαννάτος Σ.Γ.

[6] EN1993-1-9, §8, Figure 8.5

ΚΕΦ.6 ΠΡΟΣΟΜΟΙΩΣΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΕΔΑΦΟΥΣ -ΘΕΜΕΛΙΩΣΗΣ

πως αναφέρθηκε και προηγουμένως η ανάλυση μίας ανεμογεννήτριας με το πρόγραμμα FAST δεν λαμβάνει υπόψη την αλληλεπίδραση εδάφους – κατασκευής, αντιθέτως θεωρεί τον φορέα πακτωμένο στη βάση του. Υπό αυτήν την έννοια τα αποτελέσματα της προηγούμενης παραγράφου δεν αντιπροσωπεύουν απόλυτα τη συμπεριφορά της κατασκευής, ενώ μάλιστα πολλά από αυτά είναι ευμενέστερα της πραγματικότητας, όπως θα αποδειχθεί παρακάτω.

Για την αντιμετώπιση του εν λόγω προβλήματος και τη βελτιωμένη προσομοίωση της κατασκευής χρησιμοποιήθηκε η μέθοδος του Φαινομενικά Πακτωμένου Μοντέλου (Apparent Fixity Model – AFM). Πιο αναλυτικά, προβλέπονται τα ακόλουθα βήματα:

BHMA 1^o:

Ανάλυση του φορέα στο πρόγραμμα FAST (βλ. Κεφ. 4).

BHMA 2°:

Έλεγχος επάρκειας της διατομής του πυλώνα (βλ. Κεφ. 5).

BHMA 3°:

Από τις προκύψασες χρονοϊστορίες αποτελεσμάτων επιλέγονται οι έξι χρονικές στιγμές, κατά τις οποίες αναπτύσσονται τα μέγιστα εντατικά μεγέθη στη βάση του μοντέλου.

Εικόνα 6.1: Απεικόνιση των εντατικών μεγεθών σε τυχούσα διατομή του πυλώνα

No Set	Mx [kNm]	My [kNm]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1						
2						
3						
4						
5						
6						
			Fixity Mo	del		

Εικόνα 6.2: Επιλογή των έξι φορτιστικών καταστάσεων

BHMA 4°:

Ακολούθως, δημιουργείται ένα προσομοίωμα της θεμελίωσης της ανεμογεννήτριας εκτός περιβάλλοντος FAST. Το πρόγραμμα που επιλέχθηκε να χρησιμοποιηθεί είναι το SAP2000.

Το νέο προσομοίωμα φορτίζεται στην κορυφή του με τα εντατικά μεγέθη του Βήματος 1, ενώ εισάγονται ως στηρίξεις τα κατάλληλα κατά περίπτωση μη γραμμικά ελατήρια, ώστε να προσομοιωθεί η μη-γραμμική συμπεριφορά του εδάφους, στο οποίο θεμελιώνεται η ανεμογεννήτρια.

BHMA 5°:

Στατική ανάλυση του φορέα υποδομής / θεμελίωσης στο πρόγραμμα SAP2000 ή μέσω κατάλληλα διαμορφωμένων φύλλων excel.

BHMA 6°:

Έλεγχος επάρκειας διατομής φορέα υποδομής / θεμελίωσης στο πρόγραμμα SAP2000 ή μέσω κατάλληλα διαμορφωμένων φύλλων excel.

BHMA 7°:

Για τα δεδομένα μεγέθη παραμόρφωσης στην κορυφή του νέου μοντέλου (δ_x , δ_y , δ_z , φ_x , φ_y , φ_z), όπως προέκυψαν κατά το Βήμα 5, υπολογίζεται το αντίστοιχο μήκος προβόλου (L) και η δυσκαμψία (EI) ενός ισοδύναμου προβόλου σύμφωνα με την Αρχή των Δυνατών Έργων (AΔE).

Σύμφωνα με την εν λόγω αρχή, η μετατόπιση του φορέα σε δεδομένο σημείο προς κάποια από τις ελευθερίες κίνησής του, λόγω ενός φορτίου ενεργειακά ανταποκρινόμενου με αυτή, είναι δυνατό να υπολογιστεί μέσω της άθροισης των διαγραμμάτων των εσωτερικών μεγεθών που προκαλούν ένα ισοδύναμο "1" φορτίο που προκαλεί μοναδιαία ενεργειακά ανταποκρινόμενη μετατόπιση και το ασκούμενο φορτίο. Η παραπάνω διαδικασία παρουσιάζεται ενδεικτικά στην ακόλουθη εικόνα για μία μόνο μεταφορική δύναμη.

Εικόνα 6.3: Ενδεικτική αναπαράσταση της ΑΔΕ για μία μόνο μεταφορική δύναμη

Η μετατόπιση του σημείου αυτού, ήδη γνωστή από το Βήμα 5, οφείλει σύμφωνα με την ΑΔΕ να ισούται με:

$$\delta_{SAP} = \frac{1}{EI} \cdot \int M_{,maxF} \cdot M_{,"1"} dx$$

όπου,

- Ε το μέτρο ελαστικότητας του χάλυβα
- Ι η ροπή αδράνειας της διατομής του υπό εξέταση μέλους (σταθερή και ίση με τη διατομή της βάσης του πυλώνα)
- $M_{,maxF}$ το διάγραμμα ροπών που προκαλεί το εκάστοτε ενεργειακά ανταποκρινόμενο ασκούμενο φορτίο ενός από τους έξι φορτιστικούς συνδυασμούς μεγίστων καταπονήσεων
- Μ_{,"1"} το διάγραμμα ροπών που προκαλεί το εκάστοτε ισοδύναμο ενεργειακά ανταποκρινόμενο φορτίο που προκαλεί την αντίστοιχη μοναδιαία μετατόπιση

Σημειώνεται ότι για λόγους απλούστευσης και οικονομίας του υπολογιστικού φόρτου, αγνοήθηκαν τα έργα των διατμητικών και αξονικών δυνάμεων. Η συνεισφορά εξάλλου των τελευταίων είναι ιδιαίτερα πενιχρή σε σύγκριση με το έργο των καμπτικών δυνάμεων του μέλους.

Ακόμα, ως τελική τιμή του μήκους του φανταστικού πρόσθετου τμήματος του πυλώνα λαμβάνεται η διάμεσος των έξη μέσων όρων των τιμών L_{effi}. Η διάμεσος προτιμάται σε αυτήν την περίπτωση αντί του μέσου όρου των τιμών, για να μην επηρεαστεί το τελικό αποτέλεσμα από ακραίες τιμές που ενδέχεται να προκύψουν, λόγω της ελλιπούς προοσομοίωσης του φαινομένου της στρέψης από τα γραμμικό πεπερασμένα μέλη του SAP2000.

Ο ισοδύναμος, λοιπόν, πρόβολος εισάγεται στο αρχικό προσομοίωμα του Βήματος 1 στο πρόγραμμα FAST, υπό την έννοια της αντίστοιχης αύξησης του πυλώνα της εκάστοτε ανεμογεννήτριας. Δηλαδή, σύμφωνα με την AFM προστίθεται ένα "φανταστικό" τμήμα πυλώνα κάτω από τον υπαρκτό ούτως, ώστε το συνολικό πακτωμένο σύστημα να ισοδυναμεί πλέον με ένα βελτιωμένο προσομοίωμα, το οποίο λαμβάνει στροφές και μετατοπίσεις στη βάση του, λόγω της αλληλεπίδρασής του με το έδαφος θεμελίωσης.

BHMA 8°:

Εκ νέου ανάλυση στο πρόγραμμα FAST ενός ισοδύναμου μοντέλου ανεμογεννήτριας με αυξημένο μήκος πυλώνα κατά L_{eff} και εκ νέου έλεγχος επάρκειας διατομής του τελικού φορέα σε κατάλληλα διαμορφωμένα φύλλα excel. Σημειώνεται ότι η προσθήκη του επιπλέον μήκους γίνεται κάτω από την επιφάνεια θεωρούμενης έδρασης του πυλώνα από το πρόγραμμα FAST έτσι, ώστε να μην υπάρχει επιπλέον επιφάνεια φόρτισης ανέμου. Πιο συγκεκριμένα, στην περίπτωση των χερσαίων ανεμογεννητριών οι μεταβλητές TowerBsHt, PtfmCMzt και PtfmRefzt της υπορουτίνας ElastoDyn λαμβάνουν αρνητικές τιμές έτσι, ώστε να συμπεριληφθεί το πρόσθετο μήκος μόνον κατά την δομοστατική ανάλυση του προγράμματος FAST. Αντιστοίχως, στην περίπτωση των θαλάσσιων ανεμογεννητριών προστίθεται ένα νέος κόμβος στην υπορουτίνα SubDyn, ο οποίος βρίσκεται υψομετρικά L_{eq} μέτρα κάτω από τη θέση του πυθμένα.

BHMA 9°:

Σύγκριση αποτελεσμάτων πακτωμένου και φαινομενικά πακτωμένου μοντέλου. Η συγκρίσεις που πραγματοποιούνται στην παρούσα εργασία είναι πολυσχιδείς και περιλαμβάνουν το σύνολο των παραμετρικών επιλύσεων των Κεφ. 7-8. Πιο συγκεκριμένα εξετάζεται η επιρροή της αλληλεπίδρασης εδάφους – κατασκευής στις ακόλουθες περιπτώσεις:

- > Σε θαλάσσιες και χερσαίες ανεμογεννήτριες
- Σε ανεμογεννήτριες με θεμελίωση βαρύτητας, μονοπάσσαλη θεμελίωση και θεμελίωση τρίποδα

Απώτερος σκοπός όλων των ανωτέρω περιπτώσεων αποτελεί η εξαγωγή συμπερασμάτων ανεξάρτητων από τις εκάστοτε συνθήκες φόρτισης, θεμελίωσης και σχεδιασμού έτσι, ώστε να καταστεί δυνατή η ποσοτικοποίηση της αλλοιωμένης συμπεριφοράς των ανεμογεννητριών λόγω αγνόησης της αλληλεπίδρασης τους συστήματος εδάφους – κατασκευής.

Στα πλαίσια του παραπάνω εγχειρήματος, προτείνονται κατάλληλοι συντελεστές ασφαλείας για τις αναλύσεις που πραγματοποιούνται με αγνόηση της επίδρασης του εδάφους μέχρις, ότου προκύψουν ακριβέστερα υπολογιστικά εργαλεία (Κεφ. 9).

ΚΕΦ.7 ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΟΥΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΑΣ

7.1. Εισαγωγή

το παρόν κεφάλαιο πραγματοποιείται η εφαρμογή όλων των προηγούμενων σε μία σειρά παραμετρικών αναλύσεων ως προς το είδος της ανεμογεννήτριας.

Πιο συγκεκριμένα, οι ανεμογεννήτριες χωρίζονται ως προς το είδος τους σε χερσαίες και θαλάσσιες. Στα πλαίσια της μεταπτυχιακής αυτής εργασίας, λοιπόν, διενεργούνται επιλύσεις για χερσαίες και θαλάσσιες ανεμογεννήτριες θεμελίωσης βαρύτητας / μονοπάσσαλης θεμελίωσης και συγκρίνονται τα μεταξύ τους αποτελέσματα ειδικά σε σύγκριση με την επιρροή της αλληλεπίδρασης εδάφους κατασκευής.

Αναλυτικά, οι τιμές των υπόλοιπων μεταβαλλόμενων παραμέτρων που παραμένουν σταθερές σε αυτή τη σειρά αναλύσεων είναι οι ακόλουθες:

Παράμετρος	Τιμή
Θεμελίωση	Όπως αναγράφεται
Ταχύτητα πνοής ανέμου	20m/sec
Εδαφικός σχηματισμός	Ομοιόμορφος / αμμώδης / πυκνός

Πίνακας 7.1: Σταθερές τιμές υπόλοιπων παραμέτρων ανάλυσης

7.2. Χερσαία ανεμογεννήτρια θεμελίωσης βαρύτητας

Από την ανάλυση στο πρόγραμμα FAST προέκυψαν οι ακόλουθοι φορτιστικοί συνδυασμοί μεγίστων καταπονήσεων για την περίπτωση του πακτωμένου προσομοιώματος (βλ. Κεφ. 4).

No Set	Mx [kNm]	My [kNm]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1	18090	191900	1720	2127	-198,5	-6269
2	17760	192200	1332	2118	-188,9	-6289
3	10450	33920	-4703	399,3	-92,27	-6038
4	18040	192100	1683	2127	-197,5	-6271
5	-8313	1911	-351	28,03	274,1	-6142
6	15430	190500	1159	2055	-114	-6316
			Fixity Mo	odel		

Εν συνεχεία, πραγματοποιείται η διαστασιολόγηση του πυλώνα της ανεμογεννήτριας έναντι λυγισμού για την πακτωμένη κατάσταση (βλ. Κεφ. 5).

													A STATE																
ŝ	otion Ba	200																											
ection	â	m) t(m)	В.	(m)	m) E(kPa) f _{ul}	(kPa) Vi	м м																					
acteris	5 G	000	2	8	7,6 210	00000	1	2	5											_									
				Internal Fo	NCCES					8	2000		_			Merid	ional (axia	il) compress	ŋ					Shear		_	Com	compres	of meridion sion and sh
L		Ma(KN	(m)	(XMm) Mz)	KNm) Fa	d(N) F	r(KN) F2(NN) (M3 ⁺ -N	(1) ^{0,4} (E, ² +4	all day	O days	0,0	Tem	J	O.pu	2	~	*	a _{th}	0,00 0,0	a/due	~	*	r X	ian Ta	Thater on	Tayo I		Combi
	1 max	cMx 226	12,5 2	39875	2150 2	658,75 2	48,13	836 2405	35.	154	7 31846	33393	6 11962	2 0,985	1132382	0,295	0,560	3,775 2	75071 2	19226	1,45	0414	4 2,016	0,160 32	273	0.4	3	31 17	8
	2 max	dMy Z	22000 2	40250	1665	2647,5 2	36,13 77	861 2412	74 26	1551	16815 3	33442	8 11595	385,0,585	1132354	0,295	0,560	3,775 2	75068 2	29223	1,46 5(0414 0	4 2,016	0,160 33	273	0,4	1	31 17	206
	a ma	xMiz 130	62,5	42400 58	78,75 4	99,125 1	15,34 77	548 443	51	2 1485	7 58643	73540	5907	0,938	1077608	0,280	0,574 (0,755 2	68032 2	23360 0	0,33	0414 0	4 2,016	0,160 33	273	0,2	1	816 1,7	06
	4 ma	XFX 2	2550 2	40125 21	03,75 2	658,75 2	46,883	839 2411	82 26	0	2 31879	33426	2 11931	1 0,985	1132393	0,295	0,560	3,775 2	75073 2	12121	1,46 50	0414 0	4 2,016	0,160 33	273	0,4	3	31 1,7	8
	5 m	xFy 1039	1,25 22,10	188,75 4	38,75 3	5,0375 3	42,63 7	578 105	12	4 1515	4 14093	29240	1650	0,842	886996	0,248	0,606	3,715 2	23699	11416 0	0,14 5(0414 0	4 2,016	0,160 33	273	0,0	1	785 1.7	06
	6 ma	00Fz 192	87,5 2	38125 14	48,75 2	568,75	142.5 77	3352 2385	8	3 1558	3 31578.	33136	4 1111	3 0,585	1132134	0,295	0,560	3,775 2.	75039 2	29200	1,45 5(0414 0	4 2,016	0,160 32	273	0.4	11	31 1.7	206
Internal huse		1	9					5	var huckling	•	ţ							-		_	-	_	_		-			Г	
arameter		the 110.6				-	-	•	arameters	2	219							-				1 0	-	~		1	Ten	ļ	
-		0,69				-	-			<i>د</i> ۱	21.9											'∰ ⊣	64	1.778 0.	206 421	32 3511		1	
		m	2	ð						Ľ	73,00											3	818 0,4	1,778 0,	206 421	32 3511	9	m	
	Ā	M 0,011	4							*	9/0	(Figure D	9									3	818 0,4	1,778 0,	206 421	32 3511	0	11	
		22	ġ	155 B)						*	0,021											1	818 0,4	1,778 0,	206 421	32 3511	0	2	
	a	z, 0,4								ä	291,34											1	818 0,4	1,778 0,	206 421	32 3511	0	8	
	4	8, 0,6								(r/t)	 142,35 	4										1 58	818 0,4	1,778 0,	206 421	32 3511	0,0	32	
	-	-								Ű	-																		
	*									ä	0,65	(Class E	0																
										đ	9/0																		
							ð			ĕ	1											8							
cylinders		ux<1,7			-	alse 1,	3541			λ,	1,275					short cylli	nders	1 1 1	9	•	u siste	2000							
un length	cylinders	1,75005	0,5 (r/t)×		*	alse				Lat	2,99					medium	length cylli	nders 105.	uc38,7 (r/t	-	anu	-							
dinders		02,056	r/t)×		-	o,	8948									long cylln	ders	10m	8,7 (r/t)=	•	alse 0	4769							
Inders*	(L/)	iz-m pure 0515-	6 r/t and 5	115#1/35005	8	une 0	5536									_		-				-	_		_				
														No sheat	r budding ch.	eck neede		(r/t)=50,1	16 (E/I,J ^{0,4}	•	ale a								
ridional t	sudding the	it months	1	VOLDE FAL	•	-																							

Παρατηρείται ότι ο μέγιστος λόγος αξιοποίησης είναι 2.222 > 1, δηλαδή ο πυλώνας αστοχεί λόγω λυγισμού υπό τα ασκούμενα φορτία. Η δυσμενέστερη φορτιστική κατάσταση είναι αυτή που αποδίδει maxFx.

Για τον σχεδιασμό της θεμελίωσης βαρύτητας θεωρούνται τα ακόλουθα χαρακτηριστικά εδάφους.

Typical Soil C	haracteristics	[1]
Soil Type	γ [kN/m3]	γ _{sat} [kN/m3]
Sand, loose, uniform	14	19
Sand, dense, uniform	17	20
Glacial clay, soft	12	17
Glacial clay, stiff	17	20
Elization 7.2.5. South Oliverse		and a decement

Πίνακας 7.2: Ειδικό βάρος ομοιόμορφης πυκνής άμμου

ΚΕΦ.7 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

		Soil friction	on angle [°]	
Description	USCS	min	max	Specific value	Reference
Loose sand	(SW, SP)	29	30		[5 cited in 6]
Medium sand	(SW, SP)	30	36		[5 cited in 6]
Dense sand	(SW, SP)	36	41		[5 cited in 6]
Silty sands	SM	32	35		[1],
Silty clays, sand-silt mix - Compacted	SM	-	-	34	[3 cited in 6]
Silty sand - Loose	SM	27	33		[3 cited in 6]
Silty sand - Dense	SM	30	34		[3 cited in 6]
Clayey sands	SC	30	40		[1],
Calyey sands, sandy-clay mix - compacted	sc			31	[3 cited in 6]
Loamy sand, sandy clay Loam	SM, SC	31	34		[7],
Inorganic silts, silty or clayey fine sands, with slight plasticity	ML	27	41		[1],
Inorganic silt - Loose	ML	27	30		[3 cited in 6]
Inorganic silt - Dense	ML	30	35		[3 cited in 6]
Inorganic clays, silty clays, sandy clays of low plasticity	CL	27	35		[1],
Clays of low plasticity - compacted	CL			28	[3 cited in 6]
Organic silts and organic silty clays of low plasticity	OL	22	32		[1],
Inorganic silts of high plasticity	мн	23	33		[1],
Clayey silts - compacted	мн			25	[3 cited in 6]
Silts and clayey silts - compacted	ML			32	[3 cited in 6]

Πίνακας 7.3: Γωνία τριβής ομοιόμορφης πυκνής άμμου^[2]

КЕФ.7

		Cohes	sion [k	Pa]	
Description	USCS	min	max	Specific value	Reference
Well graded gravel, sandy gravel, with little or no fines	GW	-	-	0	[1],[2],[3],
Poorly graded gravel, sandy gravel, with little or no fines	GP	-	-	0	[1],[2], <mark>[</mark> 3],
Silty gravels, silty sandy gravels	GM	-	-	0	[1],
Clayey gravels, clayey sandy gravels	GC	-	-	20	[1],
Well graded sands, gravelly sands, with little or no fines	sw	-	-	0	[1],[2], [3],
Poorly graded sands, gravelly sands, with little or no fines	SP	-	-	0	[1],[2], <mark>[</mark> 3],
Silty sands	SM	-	-	22	[1],
Silty sands - Saturated compacted	SM	-	-	50	[3],
Silty sands - Compacted	SM	-	-	20	[3],
Clayey sands	SC	-	-	5	[1],
Clayey sands - Compacted	SC	-	-	74	[3],
Clayey sands -Saturated compacted	SC	-	-	11	[3],
Loamy sand, sandy clay Loam - compacted	SM, SC	50	75		[2],
Loamy sand, sandy clay Loam - saturated	SM, SC	10	20		[2],
Sand silt clay with slightly plastic fines - compacted	SM, SC	-	-	50	[3],
Sand silt clay with slightly plastic fines - saturated compacted	SM, SC	-	-	14	[3],

Πίνακας 7.4: Συνοχή ομοιόμορφης πυκνής άμμου^[2]

USCS	Description	Loose	Medium	Dense
GW, SW	Gravels/Sand well-graded	30-80	80-160	160-320
SP	Sand, uniform	10-30	30-50	50-80
GM , SM	Sand/Gravel silty	7-12	12-20	20-30

Πίνακας 7.5: Μέτρο ελαστικότητας ομοιόμορφης πυκνής άμμου

Description	Poisson's Ratio
Sand	0.15 - 0.4
Dense	0.2 - 0.4
Course	0.15
Fine	0.25
Silt	0.3 - 0.35
Clay	0.1 - 0.5
Saturated	0.4 - 0.5
Unsaturated	0.1 - 0.3
Sandy Clay	0.2 - 0.3

Πίνακας 7.6: Λόγος Poisson ομοιόμορφης πυκνής άμμου

Type of Soil	Small-Strain Shear Wave Velocity, V _S (ft/s)	Initial Shear Modulus, G _{max} (tsf)
Soft Clays	130 - 300	30 - 140
Firm Clays	220 - 460	70 - 360
Loose Sands	420 - 900	290 - 1,440
Dense Sands and Gravel	660 - 1,350	720 - 3,600

Πίνακας 7.7: Μέτρο διάτμησης ομοιόμορφης πυκνής άμμου

Στο Κεφ. 2 παρουσιάζονται αναλυτικά τα γεωμετρικά χαρακτηριστικά και η επιλογή των υλικών της θεμελίωσης βαρύτητας. Έπεται, η διαστασιολόγηση του πέδιλου για συνθήκες πλήρους στράγγισης^[3].

Η αντοχή της θεμελίωσης βαρύτητας σε κατακόρυφο θλιπτικό φορτίο υπό συνθήκες πλήρους στράγγισης δίδεται από την ακόλουθη σχέση:

$$Q' = \left(c' \cdot N_c \cdot K_c + q \cdot N_q \cdot K_q + \frac{1}{2} \cdot \gamma' \cdot B \cdot N_\gamma \cdot K_\gamma\right) \cdot A'$$

όπου,

c'	η συνοχή του εδαφικού σχηματισμού
$\mathbf{N}_{\mathbf{q}}$	$=e^{\pi\cdot tan arphi}\cdot\left[tan^2\left(45^o+rac{arphi'}{2} ight) ight]$, αδιάστατη συνάρτηση της φ΄
N _c	$= ig(N_q-1ig)\cdot cot arphi'$, αδιάστατη συνάρτηση της φ΄
Nγ	$=2\cdotig(N_q+1ig)\cdot tan arphi'$, αδιάστατη εμπειρική συνάρτηση της φ΄
φ´	η γωνία τριβής του εδαφικού σχηματισμού
γ́	το ειδικό βάρος του εδαφικού σχηματισμού
q	=γ΄·D , το βάρος του εδάφους επίχωσης
D	το βάθος επίχωσης
В	η ελάχιστη διάσταση κάτοψης της θεμελίωσης
A′	το ενεργό εμβαδόν της θεμελίωσης, το οποίο εξαρτάται από την εκκεντρότητα
K_c, K_q, K_γ	διορθωτικοί συντελεστές λόγω κλίσης ασκούμενου φορτίου, μορφής πέδιλου, βάθους επίχωσης, κλίσης βάσης πέδιλου και κλίσης επιφάνειας εδάφους

Ο υπολογισμός της εκκεντρότητας της θεμελίωσης βαρύτητας πραγματοποιείται δυσμενώς, θεωρώντας την ελάχιστη κατακόρυφη δύναμη και τη μέγιστη ανατρεπτική ροπή, ως εξής:

Reduced Area—Circular Footing Εικόνα 7.1: Θεώρηση ενεργής επιφάνειας κυκλικών ρηχών θεμελιώσεων^[4]

Εν συνεχεία, γίνεται η απλοποιητική θεώρηση της ενεργούς επιφάνειας της παραπάνω εικόνας και των αντίστοιχων ισοδύναμων διαστάσεων:

$$A' = 2 \cdot s = B' \cdot L'$$

$$L' = \left(2 \cdot s \cdot \sqrt{\frac{R+e}{R-e}}\right)^{1/2}$$

$$B' = L' \cdot \sqrt{\frac{R-e}{R+e}}$$

$$s = \frac{\pi \cdot R^2}{2} - \left[\sqrt[e]{R^2 - e^2} + R^2 \cdot \sin^{-1}\left(\frac{e}{R}\right)\right]$$

Οι διορθωτικοί συντελεστές που αναφέρθηκαν παραπάνω λαμβάνουν τη μορφή:

$$\begin{cases} K_c = i_c \cdot s_c \cdot d_c \cdot b_c \cdot g_c \\ K_q = i_q \cdot s_q \cdot d_q \cdot b_q \cdot g_q \\ K_\gamma = i_\gamma \cdot s_\gamma \cdot d_\gamma \cdot b_\gamma \cdot g_\gamma \end{cases}$$

όπου, i, s, d, b και q ξεχωριστοί διορθωτικοί συντελεστές.

Αναλυτικότερα, ισχύει:

Διορθωτικοί συντελεστές φορτίου υπό κλίση:

$$\begin{cases} i_q = \left[1 - \frac{H}{Q + B' \cdot L' \cdot c \cdot cot\varphi}\right]^m, \varphi' > 0\\ i_{\gamma} = \left[1 - \frac{H}{Q + B' \cdot L' \cdot c \cdot cot\varphi}\right]^{m+1}, \varphi' > 0\\ i_c = i_q - \frac{1 - i_q}{N_c \cdot tan\varphi'}, \varphi' > 0\\ i_c = 1 - \frac{m \cdot H}{B' \cdot L' \cdot c \cdot N_c}, \varphi' = 0 \end{cases}$$

όπου, δυσμενώς λήφθηκε υπόψη η ελάχιστη οριζόντια δύναμη βάσης Η και η μέγιστη κατακόρυφη Q και m αδιάστατος παράγοντας που λαμβάνει την τιμή:

$$m = m_L \cdot \cos^2\theta + m_B \cdot \sin^2\theta$$

με

$$m_L = rac{2 + rac{L'}{B'}}{1 + rac{L'}{B'}}$$
 , $m_B = rac{2 + rac{B'}{L'}}{1 + rac{B'}{L'}}$

και η γωνία θ ισούται με τη γωνία που σχηματίζει η μεγάλη διάσταση του πέδιλου με τη διεύθυνση άσκησης της Η.

Διορθωτικοί συντελεστές σχήματος:

$$\begin{cases} s_c = 1 + \left(\frac{B'}{L'}\right) \cdot \left(\frac{N_q}{N_c}\right) \\ s_q = 1 + \frac{B'}{L'} \cdot tan\varphi \\ s_\gamma = 1 - 0.4 \cdot \frac{B'}{L'} \end{cases}$$

Διορθωτικοί συντελεστές βάθους:

$$\begin{cases} d_q = 1 + 2 \cdot tan\varphi \cdot (1 - sin\varphi)^2 \cdot \frac{D}{B'} \\ d_{\gamma} = 1.0 \\ d_c = d_q - \frac{1 - d_q}{N_c \cdot tan\varphi} \end{cases}$$

Διορθωτικοί συντελεστές κλίσης βάσης:

$$\begin{cases} b_q = b_{\gamma} = (1 - v \cdot tan\varphi)^2, \varphi' > 0\\ b_c = b_q - \frac{1 - b_q}{N_c \cdot tan\varphi'}, \varphi' > 0\\ b_c = 1 - \frac{2 \cdot v}{N_c}, \varphi' = 0 \end{cases}$$

όπου, ν η γωνία κλίσης της βάσης του θεμελίου.

Διορθωτικοί συντελεστές κλίσης επιφάνειας εδάφους:

$$\begin{cases} g_q = g_{\gamma} = (1 - tan\varphi)^2, \varphi' > 0\\ g_c = g_q - \frac{1 - g_q}{N_c \cdot tan\varphi'}, \varphi' > 0\\ g_c = 1 - \frac{2 \cdot \beta}{N_c}, \varphi' = 0 \end{cases}$$

όπου, β η γωνία κλίσης της επιφάνειας του εδάφους.

Εικόνα 7.2: Πιθανές γωνίες κλίσης θεμελίου, φορτίου και εδάφους

Ο έλεγχος φέρουσας ικανότητας έγκειται στην ακόλουθη σχέση:

$$Q' \ge \gamma_f \cdot Q_E$$

όπου, $\gamma_f{=}\,2$ ο συντελεστής ασφαλείας για τις αβεβαιότητες του ελέγχου φέρουσας ικανότητας.

Τέλος, ελέγχεται και η ολίσθηση της θεμελίωσης βαρύτητας ως εξής:

 $H = c' \cdot A + Q \cdot tan\varphi'$

όπου, Α θεωρήθηκε δυσμενώς η ενεργώς επιφάνεια του πέδιλου. Ο έλεγχος ολίσθησης έγκειται στην ακόλουθη σχέση:

$$H \ge \gamma_f \cdot H_E$$

όπου, $\gamma_f = 2$ ο συντελεστής ασφαλείας για τις αβεβαιότητες του ελέγχου ολίσθησης.

Πιο αναλυτικά, οι υπολογισμοί παρουσιάζονται στους ακόλουθους πίνακες.

Drained Bearing Capacity							
Safety factor n=	2	-					
Effective friction angle $\varphi =$	38	rad					
Effective unit weight $\gamma'=$	17	kN/m ³					
Depth of embedment Df=	3,5	m					
Inoform vertical load of soil q=	59,5	kN/m^2					
Effective cohesion c'=	22	kPa					
Dimensionless function Nq=	48,933	-					
Dimensionless function Nc=	61,352	-					
Dimensionless function Ny=	78,024	-					
Minimum lateral dimension B=	18	m					
Thickness of base footing t=	1	m					
Height of inclined part h1=	2,5	m					
Pedestal height h2=	0,5	m					
Pedestal lateral dimension R=	7	m					
Base footing area Atot=	254,469	m^2					
Foundation's volume Vf=	1580,090	m^3					
Concrete's Grade:	C40/50						
Ef. concrete unit weight $\gamma c=$	25	kN/m ³					
Concrete's weight Wc=	39502,255	kN					
Minimum horizontal load H=	275,529	kN					
Maximum vertical load Q=	45818,255	kN					
Eccentricity e=	4,197	m					
Effective Area							
Equivalent parameter s=	85,247	m^2					
Equivalent length L'=	16,812	m					

Equivalent width B'=	10,141	m				
Effective footing area A'=	170,493	m ²				
Inclination Factors (φ>						
Inclination of footing $\theta =$	0	0				
Dimensionless function mL=	1,376	-				
Dimensionless function mB=	1,624	-				
Dimensionless function m=	2,235	-				
I.F. iq=	0,988	-				
I.F. iγ=	0,982	-				
I.F. ic=	0,988	-				
Shape Factors (Equivalent Rec	tangular)					
S.F. sc=	1,481	-				
S.F. sq=	1,471	-				
S.F. sγ=	0,759	-				
Depth Factors						
D.F. $dq=$	1,080	-				
D.F. $d\gamma =$	1	-				
D.F. $dc=$	1,081	-				
Base and Ground Inclination	Factors					
Base inclination angle v=	0	0				
Ground Inclination angle β =	0	0				
B.I.F. $bq = b\gamma =$	1	-				
B.I.F. bc=	1	-				
G.I.F. $gq = g\gamma =$	1	-				
G.I.F. gc=	1	-				
Correction Factors						
C.F. Kc=	1,582	-				
C.F. Kq=	1,569	-				
С.F. Кү=	0,745	-				
Maximum net vertical load a	t failure					
Q'(rapture 1)=	2660132,371	kN				
m,r2=	1	-				
I.F. $iq,r2=I.F.$ $ic,r2=$	0,995	-				
I.F. $i\gamma$, $r2=$	0,989	-				
I.F. ic0,r2=	1,009	-				
Q'(rapture 2)=	3614535,401	kN				
minQ'=	2660132,371	kN				
Q'd=	1330066,19	kN				
q'rd=	7801,279	kN/m ²				
_nq=	0,034	< 1				
Sliding Resistance						
Maximum horizontal load H=	2136,242	kN				
Minimum vertical load Q=	45540,255	kN				
Sliding Capacity HR=	39330,801	kN				
HRd=	19665,400	kN				
nh=	0,109	< 1				
Hd/Q=	0,094	< 0,4				
h'rd=	115,344	kN/m ²				

Εξαιτίας της απλότητας της θεμελίωσης βαρύτητας, δεν απαιτείται η διεξαγωγή μηγραμμικών αναλύσεων στο πρόγραμμα SAP2000, όπως στην περίπτωση της μονοπάσσαλης θεμελίωσης. Αντί αυτού, η θεμελίωση αντιμετωπίζεται μακροσκοπικά και αντικαθίσταται από ένα και μόνο γενικευμένο ελατήριο, το οποίο διαθέτει τις ακόλουθες εξισώσεις παραμόρφωσης^[5]:

Κατακόρυφη: $u_{v} = \left(\frac{1-v}{4 \cdot G \cdot R}\right) \cdot Q$

Οριζόντι	$u_h = \left[\frac{7 - 8 \cdot v}{32 \cdot (1 - v) \cdot G \cdot R}\right] \cdot H$
Ανατροπ	ής: $θ_r = \left[\frac{3 \cdot (1-\nu)}{8 \cdot G \cdot R^3}\right] \cdot M$
Στρέψης	$\theta_t = \left[\frac{3}{16 \cdot G \cdot R^3}\right] \cdot T$
όπου,	
u _v , u _h r	κατακόρυφη και η οριζόντια μετατόπιση αντιστοίχως
Q, H a	ο κατακόρυφο και οριζόντιο φορτίο αντίστοιχα
θ_r, θ_t r	γωνία ανατροπής και στρέψης αντίστοιχα

- M, Tη ροπής ανατροπής και στρέψης αντίστοιχα
- G το μέτρο διάτμησης του εδαφικού σχηματισμού
- ν ο λόγος του Poisson του εδαφικού σχηματισμού
- R η ακτίνα της βάσης της θεμελίωσης βαρύτητας

Στην προκειμένη περίπτωση ισχύει:

No Set	u _v [m]	u _h [m]	$\theta_{\rm r}$ [rad]	θ_t [rad]
1	9,37E-03	7,07E-04	1,01E-03	6,42E-06
2	9,37E-03	7,04E-04	1,01E-03	4,97E-06
3	9,44E-03	1,36E-04	1,85E-04	-1,8E-05
4	9,37E-03	7,07E-04	1,01E-03	6,28E-06
5	9,41E-03	9,12E-05	4,45E-05	-1,3E-06
6	9,36E-03	6,81E-04	9,98E-04	4,32E-06

Οι παραπάνω τιμές των μετατοπίσεων χρησιμοποιούνται για τον υπολογισμό του ισοδύναμου πρόσθετου μήκους πυλώνα σύμφωνα με την ΑΔΕ.

Critical Load 1					
Principle of virtual work based on U1					
E=	2,1E+08	kN/m2			
d=	6	m			
t=	0,06	m			
A=	1,1197	m2			
I=	4,939	m4			
EI=	1,0371E+09	kNm2			
LU1=	2,74	m			
M,Fx=1=	2,74	m			
Fx=	2127	kN			
M,Fx=	5819,31	kNm			
My=	191900	kNm			
M,My=	191900	kNm			
δx=	0,000707	m			
δx'=	0,000706	m			
Critical Load 2					
Principle of virtual work based on U1					
E= 2,1E+08 kN/m2					

Critical Load 1					
Principle of virtual work based on R1					
E=	2,1E+08	kN/m2			
d=	6	m			
t=	0,06	m			
A=	1,1197	m2			
I=	4,939	m4			
EI=	1,0371E+09	kNm2			
LR1=	46,10	m			
M,Mx=1=	1,00	m			
Fy=	-198,5	kN			
M,Fy=	9150,48	kNm			
Mx=	18090	kNm			
M,Mx=	18090	kNm			
$\theta x =$	0,001007	rad			
$\theta x' =$	0,001007	rad			
	Critical Load 2				
Principle of virtual work based on R1					
E=	2,1E+08	kN/m2			

d-	6	m
t=	0.06	m
	1 1197	m2
I=	4 939	m2 m4
EI=	1 0371E+09	kNm2
LU1=	2.73	m
M Fx=1=	2,73	m
Fx =	2118	kN
M.Fx=	5777.27	kNm
Mv=	192200	kNm
M.Mv =	192200	kNm
$\delta x =$	0.000704	m
$\frac{\delta x'}{\delta x'}$	0.000703	m
	Critical Load 3	
Principle	f virtual work base	d on U1
F–	$2 1F \pm 0$	kN/m^2
	2,111+00	m
u— t—	0 06	m
<u>ι</u>	1 1107	m?
<u>I–</u>	/ 030	m2
 FI_	4,239 1 0371F±00	kNm2
	2.84	m
M Ev-1-	2,04	m
F_{v-}	300.3	hi kN
M Ev-	1133.27	kNm
	33920	kNm
M My-	33920	kNm
$\frac{NI,NIy}{Sy}$	0.0001	m
δx'-	0,0001	m
04-		111
Duincinla	Critical Load 4	d on II1
Principle o	1 VIFLUAI WOFK Dase	
E		V N/m /
<u>E=</u>	2,1E+08	KIN/III2
E= d=	2,1E+08	m
E= $d=$ $t=$ $A=$	2,1E+08 6 0,06	m m m2
E= d= t= A=	2,1E+08 6 0,06 1,1197	m m m2 m4
E= d= t= A= I=	2,1E+08 6 0,06 1,1197 4,939	m m m2 m4
E= d= t= A= I= EI=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09	m m m2 m4 kNm2 m
E= d= t= A= I= EI= LU1= ME:=1-	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73	m m m2 m4 kNm2 m m
E= d= d= A= I= EI= LU1= M,Fx=1= Ey=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73	m m m2 m4 kNm2 m m kN
E= d= t= A= I= EI= LU1= M,Fx=1= Fx= MEx=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2,73 2127 5816 22	m m m2 m4 kNm2 m m kN kN kNm2
E= d= d= I= EI= LU1= M,Fx=1= Fx= M,Fx= M,Fx=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23	m m m2 m4 kNm2 m m kN kNm kNm kNm
E= d= t= A= EI= EI= LU1= M,Fx=1= Fx= M,Fx= My= My=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100	m m m2 m4 kNm2 m m kN kNm kNm kNm kNm
E= d= t= A= I= EI= LU1= M,Fx=1= Fx= M,Fx= M,Fx= My= M,My= Sy=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 192100	m m m2 m4 kNm2 m m kN kNm kNm kNm kNm m m
E= d= d= L= EI= LU1= M,Fx=1= Fx= M,Fx= M,Fx= My= M,My= δx= δx=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2,73 2,73 2127 5816,23 192100 192100 0,000707 0,000707	m m m2 m4 kNm2 m kNm kNm kNm kNm kNm m m m
$\begin{array}{c} E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ M,Sx= \\ \delta x'= \\ \delta x'= \\ \end{array}$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2,73 2,73 2127 5816,23 192100 192100 192100 0,000707 0,000706	m m m2 m4 kNm2 m m kNm kNm kNm kNm kNm m m
$E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ My= \\ M,My= \\ \delta x= \\ \delta x'= \\ B t t t t t t t t t t t t t t t t t t$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 192100 0,000707 0,000706 Critical Load 5	m m m2 m4 kNm2 m m kNm kNm kNm kNm kNm m m
$E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ M,Fx= \\ My= \\ M,My= \\ \delta x= \\ \delta x'= \\ \hline Principle o$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 0,000707 0,000706 Critical Load 5 f virtual work base	m m m2 m4 kNm2 m m kN kNm kNm kNm kNm m m d on U1
E= d= d= L= A= EI= LU1= M,Fx=1= Fx= M,Fx= M,Fx= M,Fx= M,My= δx= δx'= Principle o E=	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 192100 0,000707 0,000707 0,000706 Critical Load 5 f virtual work base 2,1E+08	m m m2 m4 kNm2 m m kN kNm kNm kNm kNm m m m d on U1 kN/m2
$E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ \delta x'= \\ \delta x'= \\ \hline Principle o \\ E= \\ d= \\ d= \\ c$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73	m m m2 m4 kNm2 m m kNm kNm kNm kNm kNm m m m d on U1 kN/m2 m
$\begin{array}{c} E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ \delta x'= \\ \hline \\ Principle o \\ E= \\ d= \\ t= \\ t= \\ \end{array}$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 192100 0,000707 0,000707 0,000706 Critical Load 5 f virtual work base 2,1E+08 6 0,06	m m m2 m4 kNm2 m m kN kNm kNm kNm kNm m m m d on U1 kN/m2 m m m
$\begin{array}{c} E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ M,Fx= \\ My= \\ \delta x'= \\ \hline \\ M,My= \\ \delta x'= \\ \hline \\ ext{t} \\ cxt{t} \\ cxt{t$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 0,000707 0,000707 0,000706 Critical Load 5 f virtual work base 2,1E+08 6 0,06 1,1197	m m m2 m4 kNm2 m m kNm kNm kNm kNm kNm m m m d on U1 kN/m2 m m m m
$E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ My= \\ M,Fx= \\ My= \\ \delta x = \\ \delta x'= \\ \hline E= \\ d= \\ t= \\ d= \\ t= \\ A= \\ I= \\ E= \\ Fx = \\ C = \\ C$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 0,000707 0,000706 Critical Load 5 f virtual work base 2,1E+08 6 0,06 1,1197 4,939	m m m2 m4 kNm2 m m kNm kNm kNm kNm kNm m m m d on U1 kN/m2 m m m m 2 m 4
$E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ My= \\ \delta x = \\ \delta x'= \\ \hline E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ EI= \\ LU' \\ H = \\ H$	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 0,000707 0,000706 Critical Load 5 f virtual work base 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09	m m m2 m4 kNm2 m m kNm kNm kNm kNm m m m d on U1 kN/m2 m m m m2 m m m kNm2
$E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ \Delta x^{+} = \\ \delta x^{+} = \\ \delta x^{+} = \\ C $	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 0,000707 0,000707 0,000706 Critical Load 5 f virtual work base 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 9,48	m m m2 m4 kNm2 m m kNm kNm kNm kNm m m m d on U1 kN/m2 m m m2 m4 kNm2 m
$E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LU1= \\ M,Fx=1= \\ Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ M,Fx= \\ \delta x'= \\ \delta x'= \\ C = $	2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 2,73 2,73 2127 5816,23 192100 0,000707 0,000707 0,000706 Critical Load 5 f virtual work base 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 9,48 9,48	m m m2 m4 kNm2 m m kNm kNm kNm kNm kNm m m m d on U1 kN/m2 m m m2 m4 kNm2 m m h kNm2 m h m

d=	6	m			
t=	0.06	m			
A=	1.1197	m2			
I=	4,939	m4			
EI=	1.0371E+09	kNm2			
LR1=	47.10	m			
M.Mx=1=	1.00	m			
Fv=	-188.9	kN			
M.Fy=	8897,17	kNm			
Mx=	17760	kNm			
M,Mx=	17760	kNm			
$\theta x =$	0,001008	rad			
$\theta x' =$	0,001009	rad			
	Critical Load 3				
Principle of	virtual work based	l on R1			
E=	2 1E+08	kN/m2			
d=	2,11100	m			
	0.06	m			
<u>A=</u>	1 1197	m2			
	<u> </u>	m4			
 EI=	1 0371E+09	kNm?			
 	17.10	m			
M.Mx=1=	1 00	m			
Fv=	-92.27	kN			
M Fv=	1578.11	kNm			
Mx =	10450	kNm			
M.Mx=	10450	kNm			
$\theta x =$	0.000185	rad			
$\theta x' =$	0,000185	rad			
Critical Load 4					
Principle of	virtual work based	l on R1			
E=	2.1E+08	kN/m2			
d=	6	m			
t=	0.06	m			
A=	1,1197	m2			
I=	4,939	m4			
EI=	1.0371E+09	kNm2			
LR1=	46.26	m			
M.Mx=1=	1.00	m			
Fy=	-197,5	kN			
M,Fy=	9136,34	kNm			
Mx=	18040	kNm			
M,Mx=	18040	kNm			
$\theta x =$	0,001008	rad			
$\theta x' =$	0,001008	rad			
	Critical Load 5				
Principle of	virtual work based	d on R1			
E=	2,1E+08	kN/m2			
d=	6	m			
t=	0,06	m			
A=	1,1197	m2			
I=	4,939	m4			
EI=	1,0371E+09	kNm2			
LR1=	-6,25	m			
M,Mx=1=	1,00	m			
Fy=	274,1	kN			

M,Fy=	1714,11	kNm
Mx=	-8313	kNm
M,Mx=	-8313	kNm
$\theta x =$	4,455E-05	rad
$\theta x' =$	0,000045	rad
(Critical Load 6	
Principle of	virtual work base	d on R1
E=	2,1E+08	kN/m2
d=	6	m
t=	0,06	m
A=	1,1197	m2
I=	4,939	m4
EI=	1,0371E+09	kNm2
LR1=	55,63	m
M,Mx=1=	1,00	m
Fy=	-114	kN
M,Fy=	6342,02	kNm
Mx=	15430	kNm
M,Mx=	15430	kNm
$\theta x =$	0,000998	rad
$\theta x' =$	0,000998	rad

M,Fx=	265,77	kNm
My=	1911	kNm
M,My=	1911	kNm
δx=	9,118E-05	m
δx'=	0,000091	m
	Critical Load 6	
Principle o	f virtual work base	ed on U1
E=	2,1E+08	kN/m2
d=	6	m
t=	0,06	m
A=	1,1197	m2
I=	4,939	m4
EI=	1,0371E+09	kNm2
LU1=	2,70	m
M,Fx=1=	2,70	m
Fx=	2055	kN
M,Fx=	5540,89	kNm
My=	190500	kNm
M,My=	190500	kNm
δx=	0,00068	m
δx'=	0,00068	m

Όπως φαίνεται στην παραπάνω εικόνα, το ισοδύναμο πρόσθετο μήκος πυλώνα προκύπτει $L_{eq} = 24.46m$. Αφότου εισαχθεί η τιμή αυτή στο πρόγραμμα FAST και διενεργηθεί εκ νέου η ανάλυση με τις ίδιες ακριβώς παραδοχές προκύπτει τα παρακάτω αποτελέσματα.

No Set	Mx [kNm]	My [kNm]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1	22160	195200	110,3	2096	-373,4	-6448
2	16170	197500	2308	2101	-91,41	-6513
3	3749	41220	-4713	479,6	-27,51	-6386
4	13680	197400	2805	2110	16,9	-6542

ΚΕΦ.7 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

5	1	2216	0 19520	00	110,3	2096	-373,4	-6448
6		1776	0 18600)0	1266	1910	-225	-6645
	Leq = 24.46 m							
% Modif.		22,50) 2,76	5	0,58	-0,80	36,23	5,45
1/10 411		FM	AFM					
dx	1,6	50E+00	2,24E+00					
39,68				-				

Παρατηρείται ότι τα φορτία στο ίδιο σημείο του πυλώνα (πρώην βάση πυλώνα – FM και νυν σημείο που απέχει 24.46m από τη βάση του πυλώνα – AFM) υπάρχει αύξηση των περισσότερων εντατικών μεγεθών έως και κατά 36%. Η δε μετακίνηση της κορυφής του πυλώνα στη διεύθυνση άσκησης των φορτίων υπόκειται σε αύξηση 40%.

Wind velocity Wx time history [m/sec] w_x [m/sec] 30,0Ō 25,00 20,00 15,00 FM 10,00 AFM 5,00 0,00 0 10 20 30 40 50 60 t [sec]

Τα παραπάνω συνοψίζονται και στα ακόλουθα διαγράμματα.

Εν συνεχεία, πραγματοποιείται εκ νέου ο έλεγχος λυγισμού του πυλώνα.

															= bar	24.45 m															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Znjuz	clo Base	0																											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		feujuerpuck	m) D	(m)	R _{pite} (m	(m)1 (r	E(kP.	a) f ₄ (kP	a) Ves	¥																					
Non-state Invidence Antionalised Control Faylow Fastis		Χαρακτηριστικά	é 6,00	0,027	2,99	87,6	210000	0000 3550	11	1,25																					
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $																									-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Iwbua	σμός Φορτίκ	ALC: N					Tái	and the second se					Mer	idional (axi	al) compre	noiss					Shear			Combina	tions of 1 mpressio	neridional n and shea
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Mbd(KNIm)	May(KNin	n) MajkNim	n) Fx(K)	N) FWIX	N) F2(KN	V) (M ² +M ²)	1 ^{0,6} [E, ² +E,	1 ^{c4} Gas	Gaine	G ₄₁₀	a al	J	d, hu	ړ	~	*	a _{th}	Gum G	and an	3	۲ د	*	Color Lanc	Taja7	*	*	Αλληλεπ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	1	maxh	MX 2771	2440	00 137,87	12	1620 466,	75 806	245567	7 2661	15908	324585	34045	6 1059	6 0,985	1132240	0,295	0,560	0,775	275053	112623	1,49	50414	14 2,01	6 0,160 3	2769 27308	65,0	1,831	1,790	2,24
Opliticity 3 markty 4668.73 589.13 589.53 599.53 37.738 57.738	No.	2	maxN	VV 20212	15 2468	75 288	35.262	6,25 114,	26 814	11 247701	2625	16069	327408	34340	7 1228	4 0,985	1132219	0,295	0,560	0,775	275050	602621	1,50	50414 0	14 2,01	6 0,160 3	2769 27306	0,45	1,831	1,790	2,33
t^{4} t^{4} $masky$ 21700 246730 32652 32132	cylinde	m	maxA	Viz 4686,	25 515	25 5891,2	22	99,5 34,3	387-798	31738	600	15756	68386	8414	2 6264	1 0,943	1082978	0,281	0,573	0,757	268722	223935	0,38	50414 0	14 2,01	6 0,160 3	2769 27306	0,23	1,818	1,790	0,24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	'n	4	maxé	Fx 171	00 24675	50 3506,2	25 26	37,5 21,1	25 817	78 247342	2638	16140	326933	3 34300	3 1272	385'0 6	1132127	0,295	0,560	0,775	275039	661671	1,50	50414 C	14 2,01	6 0,160 3	2769 27306	0,47	1,831	1,790	2,34
		5	maxé	FV 277A	2440	00 137,83	75 2	0620 466,	75 806	30 245563	7 2661	15908	324588	34045	6 1059	985'0 9	1132240	0,295	0,560	0,775	275053	112623	1,49	50414 C	14 2,01	6 0,160 3	2769 27308	0,39	1,831	1,790	2,24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9	maxt	222	2325(00 1582,	23	87,5 281,	25 830	16 233557	2404	16395	308713	3 32510	8 1053	6 0,985	1130941	0,295	0,560	0,774	274885	129072	1,42	50414 0	14 2,01	6 0,160 3	2769 27306	0,39	1,831	1,790	2,05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																									\vdash						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Meridianal buckli	in the	308,49						Shea	r buckling	-3	43,8							-	Equivalent	single cyll	inder				shear			_	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		parameters	(r/r)	x 110,611						ă	ameters	3	21,9										-	u U	A. 40	×	X. Law	Tays 1	Tajar/Taj	8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Ĵ	0,695									21,9											- 3	818 0,4	1,778 0	206 42132	35110	05,0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Ů	m	(BC1r)							ľ	73,00											- 2	818 0,4	1,778 0	206 42132	35110	0,35		
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			Δw	V 0,0114								*	9'0	(Figure /	0.6)									1	818 0,4	1,778 0	206 42132	35110	0,18		
a. 0.4 0.4 A. 0.5 0.5 A. 0.5 0.5 A. 1 1 A. 1 1 Abort ophinders 1.0 0 Abort ophinders 1.2 0 Abort ophinders 0 0 <tr< th=""><th></th><td></td><td>٥</td><td>22</td><td>(Class B</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>0,021</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>818 0,4</td><td>1,778 0</td><td>206 42132</td><td>35110</td><td>0,36</td><td></td><td></td></tr<>			٥	22	(Class B							4	0,021											1	818 0,4	1,778 0	206 42132	35110	0,36		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			đ	0,4								ä	291,34	p.										1	818 0,4	1,778 0	206 42132	35110	05,0		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			ġ	9'0								(r/t)=	142,35	7										1 64	818 D,A	1,778 0	206 42132	35110	05,0		
Åu L0 Cx abort of Inders ux-c1,7 ux-c1,7 Cx abort of Inders ux-c1,7 tales 1.35-L in modum length of Inders 1,75-us-05.5 (r/h)s tales 1 long of Inders* (r/h)s.519.and ux-6 r/h and 500.5 h/s1000 true 0.565-R long of Inders* (r/h)s.519.and ux-6 r/h and 500.5 h/s1000 true 0.565-R			ď	1								ŭ	1																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			λ,	1,0								đ	0,65	(Class.	6																
Abort oplinders ux-c17 Cc Cc abort oplinders ux-c17 talee 1.3541 1 medium length oplinders 1.724-0.05 (r/h) talee 1.3541 1 long oplinders* (r/h)-150 and ux-65 (r/h) traise 0.9568 1 long oplinders* (r/h)-150 and ux-65 (r/h) true 0.9667 1 1 born oplinders* (r/h)-150 and ux-65 (r/h) true 0.9667 1 1 1												đ	9'0																		
Obstrt Oplinders us-s1.7 table 1.3541 1 Indextine lineaging 1.756u.005 (r/h) 1 1 1 Index (indext) (r/h)-5150 and ux-6 r/h and 5005 (r/h) 1 1 1 Index (indext) (r/h)-5150 and ux-6 r/h and 5005 (r/h) 1 0.5657 1 1								ð				ć	-											5							
medium length oplinders 1.724u-00.5 (r/h) take 1 long oplinders unsacts (r/h) k true 0.0948 long oplinders* (r/h)-110 and ucds r/h and 500±6 //_01000 true 0.3657 konnectional briefling above exceeded (r/h)-0100 art ucds r/h and 500±6 //_01000 true 0.3657	4	thort cylinders		ux<1,7			ta B	e 1,35	41			λ ,	1,275					short of	Inders	á	9		talse	2000							
long of inders lux.25 f (r/t) x lux.25 f (r/t) x true 0.5948 long of inders* (r/t) x150 and ux.56 r/t and 50026 f x21000 true 0.4857 long of inders* (r/t) x150 and ux.56 r/t and 50026 f x21000 true 0.4857		nedium length cyl	linders	1,75m×0,5	5 (r/t)×		tals.	-				T _{er}	2,99					mediun	n length cyl	Inders 10	Sur48,7 (r/	÷	true	-							
long of linders* (r/t)=5150 and u=56 r/h and 500cE/h_d1000 true 0.5637 to modeline neuron benefitier neuron content (r/h)=700 E.M. + +++=	-	ong cylinders		√r) 2,0≤∞tu	÷		ţ	e9'0	¥									long cyl	Inders	ă	×8,7 (r/t)=		talse	1,4769			_			_	
No monthlement lauristication secondari 1. (h)(3) 25 K. future	-	ong cylinders*	(r/t)×5	150 and web 1	/t and 5005	@//**1000	đ	e 0,98	21											-							_			_	
No monthleard have there are acceled (r.Mc.) 03.2.M. false																No shear	buckling c	hedk need	3	(r/t)=3	"("H) 91"		false	-			_			_	
normal Winter professional annual Section (Section 1997)	-	Vo meridional bud	dding check	needed	(r/t)×50,	,03 E/Y	tals	9												_		_	_	_	_	_	_		_	_	

Παρατηρείται ότι ο μέγιστος λόγος αξιοποίησης είναι 2.348 > 1, δηλαδή ο πυλώνας αστοχεί λόγω λυγισμού υπό τα ασκούμενα φορτία. Η δυσμενέστερη φορτιστική κατάσταση είναι αυτή που αποδίδει maxFx.

Αξίζει να εξεταστεί η μεταβολή της συμπεριφοράς της κατασκευής σε λυγισμό με και χωρίς τη θεώρηση της αλληλεπίδρασης με το έδαφος.

Από τα παραπάνω διαγράμματα καθίσταται εμφανές ότι η θεώρηση της αλληλεπίδρασης αποδίδει ελαφρώς δυσμενέστερα αποτελέσματα ως προς τον λυγισμό του πυλώνα. Σημαντική αύξηση συναντάται στους λόγους αξιοποίησης για τον συνδυασμό της μέγιστη τέμνουσας δύναμης σε διεύθυνση κάθετη στα ασκούμενα φορτία. Η αύξηση όμως αυτή δε θεωρείται ως αντιπροσωπευτική, καθώς τυχαίνει ο συνδυασμός της maxFy στη περίπτωση FM να συνοδεύεται από ιδιαίτερα μικρές τιμές των υπόλοιπων φορτίων. Έτσι, για την εξαγωγή συντελεστών ασφαλείας μη-θεώρησης αλληλεπίδρασης εδάφους – κατασκευής λαμβάνεται ο συντελεστής του μέγιστου λόγου αξιοποίησης.

Total desi amplifi fact	AFM gn cation or
maxMx	1,013
maxMy	1,056
maxMz	1,217
maxFx	1,057
maxFy	62,782
maxFz	0,961
Overall:	1,057

7.3. Θαλάσσια ανεμογεννήτρια θεμελίωσης βαρύτητας

No Set	Mx [kNm]	My [kNm]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1	28460	231500	2152	1587	-445,2	-8776
2	11040	242300	1425	1877	121	-8773
3	13320	28310	-5067	69,96	-115	-8557
4	11240	240300	1415	1889	87,21	-8757
5	28460	231500	2152	1587	-445,2	-8776
6	21160	238000	1595	1753	-201	-8799
			Fixity Mo	del		

πίδραση ανωδομής-	
ες ανεμονεννητοιών	I

Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-
θεμελίωσης σε πυλώνες ανεμογεννητριών

														Field	ty Model															
	ង	diate	Base																											
	Temperpus	-	0(m) t(n	m) R,	(m)	ш (ш)	(kPa) f,	(kPa)	Yna	¥																				
	Xapartriput		6,00 0,0	127	2,99	77,6 210	000000	22000	1,2	1,25																				
						-	+		-														-	-	-					
		L		ľ					┝						┡							ſ						Combinatio	ons of mo	ridional (axial)
				1	vononov	Doptionuv			_			Τάσεις					We	ridional (ax	dal) compr	ession					Sheat		1	com	pression	and shear
			Modk	M (mN)	W(KNm) M	a(kNm) F	x(xN) F	W(KN) F	2(XN) (M)	"+Mu ²) ^{0.6} (F ₂ ⁴	Fv ²) ^{0,4} G ₄₄	- O.	and a	1 1 1	ۍ ه	Gum	2	~	*	a _{th}	d _{utro}	Turb/and	3	7 7	*	Toja Taja	Taja/Taja	4	R.	υληλεπίδραση
		1	axMx	35575	289375	2690	1983,75	556,5 1	2 07601	91554 2/	216. 216.	52 3853	772 4070	124 991	11 0,58	6 1132560	5 0,295	0,560	0,775	274955	229129	1,78	53564	0,4 1,95	56 0,170 3	14816 29014	0,34	1,831	1,792	3,009
<u>8</u>		2 m	VMXE.	13800	302875	781,25	2346,25	151,25 1	10966	Z 68180	ISI 216	4003	51 4223	36 104	58 0,98	7 1133154	4 0,295	0,560	0,775	275036	229197	1,84	53564	0,4 1,95	56 0,170 3	14816 29014	96'0	1,831	1,792	3,224
cylinde		m	naxMiz	16650	35387,5 6	333,75	87,45	143,75 1	0696	1 60161	68 211	12 516	33 728	35 48	S0 0,92	4 105110	5 0,271	0,578	0,747	265223	221019	0,33	53564	0,4 1,95	56 0,170 3	14816 29014	0,17	1,810	1,792	0,174
Ŀ		4	TaxFx	14050	300375	768,75	2361,25	10,901	10946 3	2 2	364 216	75 3974	66 4190	71 105	00	5 113306(0 0,295	0,560	0,775	275023	229185	1,83	53564	0,4 1,95	56 0,170 3	14816 29014	96,0 36	1,831	1,792	3,181
		e ۱۰	TaxFy	35575	289375	2690	1983,75	556,5 1	2 00600	91554 21	216. 216.	52 3853	772 4070	124 991	11 0,98	6 1132560	5 0,295	0,560	0,775	274955	229129	1,78	53564	0,4 1,95	56 0,170 3	14816 29014	0,34	1,831	1,792	500/E
		9	TaxFz	26450	297500	993,75	2191,25	251,25	2 6660	98673 24	217	3945	83 4164	91 100	24 0,58	5 1132888	8 0,295	0,560	0,775	275000	229166	1,82	53564	0,4 1,95	56 0,170 3	14816 29014	0,35	1,831	1,792	3,135
																							$\left \right $	$\left \right $						
		:		T									T																	
-	Meridianal buc	ck/ling	uix 273,	127						Shear bucklin	۳ ۲	8	80							Equivalen	t single cy	Under				Shear				
	parameter		(r/t)× 110,	611						parameters	3	19,	4										ŭ	A. Mar	. λ	X, Tays	T.a.yo	ater/ater		
			C., 0,7	37							7	,ei	4										1 68	10 8368	4 1,725 (0,218 44764	37303	0,27		
			C.b.		(BC1r)						Ļ	54	15										1 68	Y0 8983	4 1,725 (0,218 44764	37303	0,28		
			Awk 0,01	114							*	70	5 (Figure	D.6)									1 68	10 8388	4 1,725 (0,218 44764	37303	0,13		
			2Z	s S	(lass B)						4	1010	1										1 68	10 8388	4 1,725 (0,218 44764	37303	0,28		
			a. 0	4							ä	1581	06										1 68	10 8385	4 1,725 (0,218 44764	37303	0,27		
			9 10	ų							(r¥	142,5	121										1 68	5868 0,4	4 1,725 (0,218 44764	37303	0,27		
			ъ.	_							Ű	1																		
			Apr. 1.1	Q							ä	0,6	s (Class	8																
											đ	0,6	12																	
								ð			ď	1											8							
11	hort cylinders		ux<1,7	-		-	false	EESE'1			λ,	1,2,	5				short o	ylinders	3	97		false	50007							
E	nedium length	h cylinders	1,75ux	40,5 (r/t)			false	-			F.o.	2,9	6				medium	n length cy	dinders 14	05ur48,7 (r,	÷,	true	-							
3	ang cylinders		2,05×W	5 (r/t)×			true	0,7373									long cy/	Inders	3	~8.7 (r/t)=		talse	1,4488							
3	ong cylinders*	ž	t)×5150 and ux	d6 r/t and	2# V32005 P	000	true	01985.0																						
															No she	ar budding c	check need	ped	(1/1)~	"(", M, 3) 6L,0	4	talse								
2	to meridional b	buckling ch	redk meeded	(2)	1)×50,03 E/		false																							

Drained Bearing Capacity		
Safety factor n=	2	-
Effective friction angle $\varphi =$	38	rad
Effective unit weight $\gamma'=$	20	kN/m ³
Depth of embedment Df=	3,5	m
Inoform vertical load of soil q=	70	kN/m ²
Effective cohesion c'=	22	kPa
Dimensionless function Nq=	48,933	-
Dimensionless function Nc=	61,352	-
Dimensionless function Ny=	78,024	-
Minimum lateral dimension B=	18	m
Thickness of base footing t=	1	m
Height of inclined part h1=	2,5	m
Pedestal height h2=	0,5	m
Pedestal lateral dimension R=	7	m
Base footing area Atot=	254,469	m^2
Foundation's volume Vf=	1580,090	m ³
Concrete's Grade:	C40/50	
Ef. concrete unit weight $\gamma c=$	25	kN/m ³
Concrete's weight Wc= 3	9502,255	kN
Minimum horizontal load H=	134,608	kN
Maximum vertical load Q= 4	8301,255	kN
Eccentricity e=	5,019	m
Effective Area		
Equivalent parameter s=	77,086	m^2
Equivalent length L'=	17,010	m
Equivalent width B'=	9,064	m
Effective footing area A'=	154,173	m ²
Inclination Factors (φ>0)		
Inclination of footing $\theta =$	0	0
Dimensionless function mL=	1,348	-
Dimensionless function mB=	1,652	-
Dimensionless function m=	2.227	-

I.F. iq=	0,994	-
I.F. $i\gamma =$	0,992	-
I.F. ic=	0,994	-
Shape Factors (Equivalent Re	ectangular)	
S.F. $sc =$	1,425	-
S.F. sq=	1,416	-
S.F. $s\gamma =$	0,787	-
Depth Factors	·	
D.F. dq=	1,089	-
D.F. $d\gamma =$	1	-
D.F. $dc=$	1,091	-
Base and Ground Inclination	n Factors	
Base inclination angle v=	0	0
Ground Inclination angle $\beta =$	0	0
B.I.F. $bq=by=$	1	-
B.I.F. bc=	1	-
G.I.F. $gg = g\gamma =$	1	-
G.I.F. gc=	1	-
Correction Factors		
C.F. Kc=	1,546	-
C.F. Kq=	1,534	-
C.F. $K\gamma =$	0,780	-
Maximum net vertical load	at failure	
Q'(rapture 1)=	2821339,391	kN
m,r2=	1	-
I.F. $iq,r2=I.F.$ $ic,r2=$	0,997	-
I.F. $i\gamma$, $r^2 =$	0,995	-
I.F. $ic0.r2=$	1.005	-
O'(rapture 2)=	3882782,448	kN
minO'=	2821339,391	kN
O'd=	1410669.7	kN
a'rd=	9149.935	kN/m ²
ng=	0,034	< 1
Sliding Resistance	,	
Maximum horizontal load H=	1891,012	kN
Minimum vertical load Q=	48059,255	kN
Sliding Capacity HR=	40939,803	kN
HRd=	20469,902	kN
nh=	0.092	< 1
Hd/Q=	0.079	< 0,4
h'rd=	132,773	kN/m ²
	,	

КЕФ.7

No Set	uv [m]	uh [m]	θr [rad]	θt [rad]
1	8,67E-03	5,45E-04	1,22E-03	8,03E-06
2	8,67E-03	6,22E-04	1,27E-03	5,32E-06
3	8,73E-03	4,45E-05	1,63E-04	-1,9E-05
4	8,67E-03	6,26E-04	1,26E-03	5,28E-06
5	8,67E-03	5,45E-04	1,22E-03	8,03E-06
6	8,66E-03	5,84E-04	1,25E-03	5,95E-06

ΚΕΦ.7 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

	Critical Load 1	
Principle o	of virtual work base	d on U1
E=	2,1E+08	kN/m ²
d=	6	m
t=	0,06	m
A=	1,1197	m ²
=	4,939	m ⁴
EI=	1,0371E+09	kNm ²
LU1=	2,20	m
M,Fx=1=	2,20	m
Fx=	1587	kN
M,Fx=	3490,13	kNm
My=	231500	kNm
M,My=	231500	kNm
δx=	0,000545	m
δx'=	0,000545	m

	Critical Load 2	
Principle o	of virtual work base	d on U1
E=	2,1E+08	kN/m ²
d=	6	m
t=	0,06	m
A=	1,1197	m ²
=	4,939	m ⁴
EI=	1,0371E+09	kNm ²
LU1=	2,29	m
M,Fx=1=	2,29	m
Fx=	1877	kN
M,Fx=	4305,59	kNm
My=	242300	kNm
M,My=	242300	kNm
δx=	0,000622	m
δx'=	0,000622	m
	Critical Load 3	
Principle o	of virtual work base	d on U1
Principle o E=	f virtual work base 2,1E+08	d on U1 kN/m ²
Principle o E= d=	f virtual work base 2,1E+08 6	d on U1 kN/m ² m
Principle o E= d= t=	f virtual work base 2,1E+08 6 0,06	d on U1 kN/m ² m m
Principle o E= d= t= A=	f virtual work base 2,1E+08 6 0,06 1,1197	d on U1 kN/m ² m m m ²
Principle o E= d= t= A= I=	f virtual work base 2,1E+08 6 0,06 1,1197 4,939	d on U1 kN/m ² m m m ² m ⁴
Principle o E= d= t= A= I= EI=	f virtual work base 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09	d on U1 kN/m ² m m ² m ⁴ kNm ²
Principle o E= d= t= A= I= EI= LU1=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,79	d on U1 kN/m ² m m ² m ⁴ kNm ² m
Principle o E= d= t= A= I= EI= LU1= M,Fx=1=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,79	d on U1 kN/m ² m m ² m ⁴ kNm ² m m
Principle o E= d= t= A= I= EI= LU1= M,Fx=1= Fx=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,79 69,96	d on U1 kN/m ² m m ² m ⁴ kNm ² m m kN
Principle o E= d= t= A= I= EI= LU1= M,Fx=1= Fx= M,Fx=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,0371E+09 1,79 69,96 125,42	d on U1 kN/m ² m m ² m ⁴ kNm ² m kN kN
Principle o E= d= t= A= I= EI= LU1= M,Fx=1= Fx= M,Fx= My=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,0371E+09 1,79 69,96 125,42 28310	d on U1 kN/m ² m m ² m ⁴ kNm ² m kN kN kNm kNm
Principle o E= d= t= A= I= EI= LU1= M,Fx=1= Fx= M,Fx= My= M,My=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,79 69,96 125,42 28310 28310	d on U1 kN/m ² m m ² m ⁴ kNm ² m kN kNm kNm kNm
Principle o E= d= t= A= I= EI= LU1= M,Fx=1= Fx= M,Fx= My= δx=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,0371E+09 1,79 69,96 125,42 28310 28310 0,00004	d on U1 kN/m ² m m ² m ⁴ kNm ² m kN kNm kNm kNm kNm m
Principle α E= d= t= A= I= EI= LU1= M,Fx=1= Fx= M,Fx=1 My= Mx= δx= δx'=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,0371E+09 1,79 69,96 125,42 28310 28310 0,00004	d on U1 kN/m ² m m ² m ⁴ kNm ² m kN kNm kNm kNm kNm m m
Principle α E= d= t= A= I= EI= LU1= M,Fx=1= Fx= M,Fx= My= δx= δx'=	f virtual work baser 2,1E+08 6 0,06 1,1197 4,939 1,0371E+09 1,0371E+09 1,79 69,96 125,42 28310 28310 0,00004 0,00004 0,00004	d on U1 kN/m ² m m ² m ⁴ kNm ² m kN kNm kNm kNm kNm m m

	Critical Load 1	
Principle of	f virtual work based	l on R1
E=	2,1E+08	kN/m ²
d=	6	m
t=	0,06	m
A=	1,1197	m ²
=	4,939	m ⁴
EI=	1,0371E+09	kNm ²
LR1=	34,87	m
M,Mx=1=	1,00	m
Fy=	-445,2	kN
M,Fy=	15522,09	kNm
Mx=	28460	kNm
M,Mx=	28460	kNm
θx=	0,001218	rad
θx'=	0,001218	rad

Critical Load 2				
Principle of	f virtual work based	l on R1		
E=	2,1E+08	kN/m ²		
d=	6	m		
t=	0,06	m		
A=	1,1197	m ²		
=	4,939	m ⁴		
EI=	1,0371E+09	kNm ²		
LR1=	91,24	m		
M,Mx=1=	1,00	m		
Fy=	121	kN		
M,Fy=	-11040,00	kNm		
Mx=	11040	kNm		
M,Mx=	11040	kNm		
θx=	0,001267	rad		
θx'=	0,000486	rad		
	Critical Load 3			
Principle of	f virtual work based	l on R1		
E=	2,1E+08	kN/m ²		
d=	6	m		
t=	0,06	m		
A=	1,1197	m ²		
I=	4,939	m ⁴		
EI=	1,0371E+09	kNm ²		
LR1=	12,09	m		
M,Mx=1=	1,00	m		
Fy=	-115	kN		
M,Fy=	1390,12	kNm		
Mx=	13320	kNm		
	15520			
M,Mx=	13320	kNm		
M,Mx= θx=	13320 0,000163	kNm rad		
M,Mx= θx= θx'=	13320 0,000163 0,000163	kNm rad rad		
M,Mx= θx= θx'=	13320 13320 0,000163 0,000163 Critical Load 4	kNm rad rad		

E=	2.1E+08	kN/m ²		
d=	6	m		
t=	0,06	m		
A=	1,1197	m²		
I=	4,939	m ⁴		
EI=	1,0371E+09	kNm ²		
LR1=	128,88	m		
M,Mx=1=	1,00	m		
Fy=	87,21	kN		
M,Fy=	-11240,00	kNm		
Mx=	11240	kNm		
M,Mx=	11240	kNm		
θx=	0,001256	rad		
θx'=	0,000698	rad		
	Critical Load 5			
Principle of	f virtual work based	on R1		
E=	2,1E+08	kN/m²		
d=	6	m		
t=	0,06	m		
A=	1,1197	m ²		
I=	4,939	m ⁴		
EI=	1,0371E+09	kNm²		
LR1=	34,85	m		
M,Mx=1=	1,00	m		
Fy=	-445,2	kN		
M,Fy=	15517,08	kNm		
Mx=	28460	kNm		
M,Mx=	28460	kNm		
θx=	1,218E-03	rad		
θx'=	0,001217	rad		
Critical Load 6				
Principle of	f virtual work based	on R1		
E=	2,1E+08	kN/m ²		
d=	6	m		
t=	0,06	m		
A=	1,1197	m ²		
=	4,939	m ⁴		
EI=	1,0371E+09	kNm ²		
LR1=	49,51	m		
M,Mx=1=	1,00	m		
Fy=	-201	kN		
M,Fy=	9952,34	kNm		
Mx=	21160	kNm		
M,Mx=	21160	kNm		
θx=	0,001248	rad		
θx'=	0,001248	rad		

E=	2,1E+08	kN/m ²		
d=	6	m		
t=	0,06	m		
A=	1,1197	m²		
=	4,939	m ⁴		
EI=	1,0371E+09	kNm ²		
LU1=	2,31	m		
M,Fx=1=	2,31	m		
Fx=	1889	kN		
M,Fx=	4362,26	kNm		
My=	240300	kNm		
M,My=	240300	kNm		
δx=	0,000626	m		
δx'=	0,000625	m		
	Critical Load 5			
Principle o	of virtual work base	d on U1		
F=	2.1F+08	kN/m ²		
d=	6	m		
t=	0.06	m		
A=	1.1197	m ²		
=	4.939	m ⁴		
EI=	1.0371E+09	kNm ²		
 U1=	2.20	m		
M.Fx=1=	2.20	m		
Fx=	1587	kN		
M,Fx=	3489,50	kNm		
My=	231500	kNm		
M,My=	231500	kNm		
δx=	5,455E-04	m		
δx'=	0,000545	m		
Critical Load 6				
Principle o	of virtual work base	d on U1		
E=	2,1E+08	kN/m ²		
d=	6	m		
t=	0,06	m		
A=	1,1197	m²		
=	4,939	m ⁴		
EI=	1.0371E+09	kNm ²		
LU1=	2.24	m		
M,Fx=1=	2,24	m		
Fx=	1753	kN		
M,Fx=	3931,36	kNm		
Mv=	238000	kNm		
, M,Mv=	238000	kNm		
δx=	0.00058	m		
δx'=	0,00058	m		

No Se	et	Mx [kNm	My 1] [kNm	1]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1		3448	0 3244	0	-640,2	-47,67	-515,8	-8573
2		2217	0 23270)0	1074	1853	-419,5	-8728
3		2027	0 1924	0	-4688	90,36	-242,5	-8526
4		1571	0 22710	00	1276	1935	-73,8	-8845
5		-1900) 10190)0	-208,8	669,8	763,4	-8930
6		-2324	4 -518,	8	328,3	-436,5	-222,7	-11450
				L	eq = 22.21 m			
% Modif.		21,15	5 -3,90	5	-17,61	2,44	326,28	30,98
		FM	AFM					
dx	1,2	26E+00	1,78E+00]				

КЕФ.7

													lee	= 22.21 m																
	an I	uclo Base																												
	feujuctouch	(m)o	t(m)	R _{pite} (m)	(m)	E(kPa)	f _M (kPa)	Van 1	*																					
	χαρακτηριστυ	xdi 6,00	0,027	2,99	87,6	2100000	0 35500	11	1,25																				-	
											+	+		+										+		+	+		+	
1								Γ						╞		ľ						L		1			3	mbination	s of meric	lional (axial)
				formown2	not the property	A					1000			_		×	ieridional (axial com	pression					200	a la		_	compre	ession and	shear
			Mbd(KNIm)	Miy(KNm)	Ma(KNm)	Fx(KN)	FW(KN)	Fz(KN)	(M, ² ,+M, ²) ^{0,4} (F,	*******	Gaue C	- 0 0	an an	a a	Guine	~	۲	8	d _{i,N}	G _{ub} ti	awo/awo	3	۰.	A, X	T _{40,00}	ter ater	a tan	k,	k, AV	ηλεπίδραση
	-	1 maxMix	4310	0 40550	800,25	59,587.	5 644,7	5 -10716	59177	647	1151 78	219 99	371 36	0,94	4 10843	81 0,275	9 0,572	0,756	268382	223652	0,44	53564	0,4	,956 0,17	0 34816 2	1014	0,11	1,817 1	,792	0,247
in the second se	a	2 maxMy	27712	5 290875	2,242,5	5 2316,2	5 524,3	8 10910	292192	2375	1534 38	5216 400	7749 10	1262 0,98	36 11326	81 0,29/	5 0,560	0,775	274971	229143	1,78	53564	0,4	,956 0,17	0 34816 2	9014	0,35	1,831 1	,792	3,028
syllinde		3 maxMz	25337,5	5 24050	5850	112,9.	5 303,1	3 10658	34934	323	1035 46	175 67.	211 55	16,0 0,01	3 10541A	65 0,265	9 0,580	0,744	264282	220235	0,31	53564	0,4 1,	,956 0,17	0 34816 2	19014	0,18	1,808 1	,792	0,152
'n	4	4 maxFx	19637	5 283875	1595	5 2418,7.	5 92,2	5 11056	284553	2421 2	1822 37	390	7941 10	95'0 609	VE 11320	69 0,295	5 0,560	0,774	274887	229073	1,74	53564	0,4 1,	,956 0,17	0 34816 2	19014	0,37	1,831 1	,792	2,913
		5 maxFy	2375	5 127375	261	1 837,2	5 954,2	5 11163	127397	1269 0	2032 16	3392 130	3424 51	184 0,97	TELLI 0"	01 0,285	8 0,565	0,767	272375	22697%	0,84	53564	0,4 1,	,956 0,17	0 34816 2	19014	0,18	1,825 1	L,792	0,771
	-	5 maxFz	2900	5 648,5	410,375	545,625	5 278,38	8 14313	7162	613	8249 3	334 32	184 26	589 0,76	88371	18 0,213	2 0,634	0,679	241061	200884	0,16	53564	0,4 1,	956 0,17	0 34816 2	9014	60,0	1,759 1	,792	0,054
	Werldional buck	viling uix	308,49						Shear buckli	8	4	a se							Equival	ent single	cylinder	L			Shear			Γ		
	parameters	s (r/t)×	110,611						parameter		4 7	61										ŭ	Lak	A A.	×	T. Mart	T ana	am/tan		
		Ĵ	0,695								L 2	61										1	200	0,4 1,72	S 0,218 4	4764 3	\$7303	0,08		
		ů	8	(BC1r)							L _{er} 75	8										1	83853	0,4 1,72	5 0,218 4	4764 3	37303	0,28		
		Δwv	0,0114									1,6 (Figur	(910 a)									1	89889	0,4 1,72	5 0,218 4	14764 3	87303	0,14		
		۵	22	(Class B)							t, 0,	021										1	83853	0,4 1,72	S 0,218 4	4764 3	37303	0,28		
		ő	0,4								ur 29.	349										1	68868	0,4 1,72	S 0,218 4	14764 3	37303	0,14		
		ß	0,6							-	r/t)= 140	1,357										1	68868	0,4 1,72	5 0,218 4	14764 3	37303	0,07		
		ď	1								ŭ	1																		
		A	01								a a	,65 (Cla	(8 2																	
											₿ C	1,6																		
							ð				ŭ	1										8								
10	hort cylinders		uts<1,7			false	1,3533				λ _{με} 1,	275				tions	cylinders		01×10		false	1,000								
E	redium length c	cylinders	1,75m×30,5	(r/t)×		false	-				r _{er} 2	8				med	um length	cylinders	105wc8,7	=(1/1)=	true	-								
2	ong cylinders		uv20,5 (r/t)			true	0,7373									long	cylinders		ur>8,7 (r/h	÷	talse	0,4488								
9	ong cylinders*	(r/t)×515	0 and weds r/	t and SOOSE)	4,41000	true	0,944	_																						
														No sh	ear buckling	t check ne	reded	Ϋ́.	1-30,16 (E/I	an la	false									
N	to meridional bu	udding check ne	reded	(r/t)=50,03	3 E/H _a k	false							_																	

КЕФ.7

Από τα παραπάνω διαγράμματα καθίσταται εμφανές ότι η θεώρηση της αλληλεπίδρασης αποδίδει ελαφρώς ευμενέστερα αποτελέσματα ως προς τον λυγισμό του πυλώνα. Έτσι, για την εξαγωγή συντελεστών ασφαλείας μη-θεώρησης αλληλεπίδρασης εδάφους – κατασκευής λαμβάνεται ο συντελεστής του μέγιστου λόγου αξιοποίησης.

Total AFM d	esign
amplification	factor
maxMx	0,082
maxMy	0,939
maxMz	0,929
maxFx	0,916
maxFy	0,256
maxFz	0,017
maxOverall:	0,939

7.4. Χερσαία ανεμογεννήτρια μονοπάσσαλης θεμελίωσης

Για την περίπτωση του FM τα αποτελέσματα είναι ίδια με αυτά της §7.1.

Στην περίπτωση μονοπάσσαλης θεμελίωσης η αντίσταση του εδάφους στα φορτία που μεταβιβάζονται από τη θεμελίωση της ανεμογεννήτριας υπολογίζονται ως εξής^[7]:

$$p_u = min \begin{cases} p_{us} = (C_1 \cdot H + C_2 \cdot D) \cdot \gamma \cdot H \\ p_{ud} = C_3 \cdot D \cdot \gamma \cdot H \end{cases}$$

όπου,

p _{us}	η αντίσταση του εδάφους σε μικρά βάθη
p_{ud}	η αντίσταση του εδάφους σε μεγάλα βάθη
γ	το ειδικό βάρος του εδάφους σε kN/m ³
Н	το βάθος σε m
φ΄	η γωνία τριβής του εδάφους
C ₁ , C ₂ , C ₃	συντελεστές που αποτελούν συνάρτηση της φ΄ και δίνονται από το διάγραμμα στην Εικόνα 7.3
D	η μέση διάμετρος του πασσάλου σε m

Εικόνα 7.3: Διάγραμμα συντελεστών C₁, C₂ και C₃

Έτσι, προκύπτουν οι καμπύλες φόρτισης – μετατόπισης για τον αμμώδη εδαφικό σχηματισμό, σύμφωνα με την ακόλουθη εξίσωση:

$$P = A \cdot p_u \cdot tanh\left(\frac{k \cdot H}{A \cdot p_u} \cdot y\right)$$

όπου,

Α συντελεστής για ανακυκλιζόμενη ή στατική φόρτιση

Α = 0.9 για ανακυκλιζόμενη φόρτιση

$$A = 3 - 0.8 \cdot rac{H}{D} \ge 0.9$$
 για στατική φόρτιση

- p_{u} η φέρουσα ικανότητα σε βάθος Η σε kN/m
- k αρχικό μέτρο αντίδρασης της υπόβασης, δηλαδή η αρχική σταθερά των ισοδύναμων ελατηρίων εδάφους σε kN/m³. Αποτελεί συνάρτηση της φ΄ και δίδεται από το ακόλουθο διάγραμμα.

Εικόνα 7.4: Διάγραμμα συντελεστή k

- y πλευρική μετατόπιση σε m
- Η βάθος σε m

Ο παραπάνω υπολογισμός πραγματοποιήθηκε για τον εδαφικό σχηματισμό της ανάλυσης για μήκος έμπηξης πασσάλου 30m και ανά 0.5m. Με τον τρόπο αυτό προκύπτουν οι ισοδύναμες σταθερές των μη-γραμμικών ελατηρίων που χρησιμοποιήθηκαν στο πρόγραμμα SAP2000 για την ανεξάρτητη προσομοίωση της μονοπάσσαλης θεμελίωσης. Πιο συγκεκριμένα:

NON-COHESIVE DE WATER	ENSE SOIL AB TABLE	OVE
Soil Description	Dense Sand	
Young's Modulus E=	60	MPa
Poisson's Ratio v=	0,3	-
Depth H=	30	m
Diameter D=	6	m
φb'=	38	0
k=	65173,359	kN/m3
A=	0,9	
γ=	17	kN/m3
C1=	3,9	
C2=	3,8	
C3=	78	

Z	pus	pud	pu	Apu	kz/A/pu	ymax	Pmax	Fmax	Keff
[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[1/m]	[m]	[kN/m]	[kN]	[kN/m]
0	0,00	0	0,00	0,00	-	-	198.050	- 04 475	-
1	453.90	7956	453.90	408.51	159.5392	0.0200	407.506	203,753	9702,529
1,5	730,58	11934	730,58	657,52	148,6805	0,0220	655,624	327,812	14900,55
2	1040,40	15912	1040,40	936,36	139,2058	0,0240	934,016	467,008	19458,66
2,5	1383,38	19890	1383,38	1245,04	130,8663	0,0250	1241,458	620,729	24829,15
3 3 5	2168 78	23808	2168 78	1585,55	123,4093	0,0260	1578,402	072 409	30333,89
4	2611,20	31824	2611,20	2350,08	110,9296	0,0270	2340,675	1170,33	41797,76
4,5	3086,78	35802	3086,78	2778,10	105,5687	0,0300	2768,254	1384,13	46137,57
5	3595,50	39780	3595,50	3235,95	100,7020	0,0310	3223,400	1611,70	51990,31
5,5	4137,38	43758	4137,38	3723,64	96,2643	0,0320	3707,954	1853,98	57936,78
6.5	5320,58	51714	5320.58	4788.52	88.4672	0.0340	4765,207	2382.60	70076.57
7	5961,90	55692	5961,90	5365,71	85,0239	0,0350	5337,865	2668,93	76255,21
7,5	6636,38	59670	6636,38	5972,74	81,8386	0,0360	5939,854	2969,93	82497,97
8	7344,00	63648	7344,00	6609,60	78,8833	0,0370	6571,158	3285,58	88799,43
8,5	8084,78	67626 71604	8084,78	7276,30	73 5699	0,0390	7238,036	3619,01	92795,33
9.5	9665,78	75582	9665,78	8699,20	71.1729	0.0410	8648,542	4324,27	105470,0
10	10506,0	79560	10506,0	9455,40	68,9271	0,0420	9397,740	4698,87	111877,8
10, 5	11379,3	83538	11379,3	10241,44	66,8188	0,0430	10176,21	5088,11	118328,1
11	12285,9	87516	12285,9	11057,31	64,8356	0,0440	10983,96	5491,98	124817,8
11, 5	13225,5	91494	13225,5	11903,02	62,9667	0,0450	11820,97	5910,49	131344,1
12	14198,4	95472	14198,4	12778,56	61,2025	0,0460	12687,23	6343,62	137904,6
12, 5	15204,3	99450	15204,3	13683,94	59,5345	0,0470	13582,73	6791,37	144497,1
13	16243,5	103428	16243,5	14619,15	57,9551	0,0480	14507,46	7253,73	151119,3
13, 5	17315,7	107406	17315,7	15584,20	56,4572	0,0490	15461,41	7730,71	157769,5
14	18421,2	111384	18421,2	16579,08	55,0348	0,0500	16444,58	8222,30	164445,8
14, 5	19559,7	115362	19559,7	17603,80	53,6824	0,0510	17456,97	8728,49	171146,7
15	20731,5	119340	20731,5	18658,35	52,3948	0,0520	18498,56	9249,28	177870,7
15, 5	21936,3	123318	21936,3	19742,74	51,1675	0,0530	19569,35	9784,68	184616,5
16	23174,4	127296	23174,4	20856,96	49,9964	0,0540	20669,33	10334,7	191382,6
16, 5	24445,5	131274	24445,5	22001,02	48,8778	0,0550	21798,50	10899,2	198168,1
17	25749,9	135252	25749,9	23174,91	47,8080	0,0560	22956,85	11478,4	204971,9
17, 5	27087,3	139230	27087,3	24378,64	46,7841	0,0570	24144,38	12072,1	211792,8
18	28458,0	143208	28458,0	25612,20	45,8032	0,0580	25361,09	12680,5	218630,0
18, 5	29861,7	147186	29861,7	26875,60	44,8625	0,0590	26606,96	13303,4	225482,7
19	31298,7	151164	31298,7	28168,83	43,9597	0,0600	27882,01	13941,0	232350,0
19, 5	32768,7	155142	32768,7	29491,90	43,0925	0,0610	29186,21	14593,1	239231,3
20	34272,0	159120	34272,0	30844,80	42,2589	0,0620	30519,58	15259,7	246125,6
20, 5	35808,3	163098	35808,3	32227,54	41,4569	0,0630	31882,11	15941,0	253032,6
21	37377,9	167076	37377,9	33640,11	40,6848	0,0640	33273,78	16636,8	259951,4
21, 5	38980,5	171054	38980,5	35082,52	39,9409	0,0650	34694,61	17347,3	266881,6
22	40616,4	175032	40616,4	36554,76	39,2237	0,0650	36111,32	18055,6	277779,4
22, 5	42285,3	179010	42285,3	38056,84	38,5319	0,0660	37589,23	18794,6	284766,9

ΚΕΦ.7 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

23	43987,5	182988	43987,5	39588,75	37,8640	0,0670	39096,27	19548,1	291763,2
23, 5	45722,7	186966	45722,7	41150,50	37,2188	0,0680	40632,45	20316,2	298768,0
24	47491,2	190944	47491,2	42742,08	36,5953	0,0690	42197,75	21098,8	305780,8
24, 5	49292,7	194922	49292,7	44363,50	35,9924	0,0700	43792,19	21896,0	312801,3
25	51127,5	198900	51127,5	46014,75	35,4089	0,0710	45415,74	22707,8	319829,2
25, 5	52995,3	202878	52995,3	47695,84	34,8441	0,0720	47068,43	23534,2	326864,1
26	54896,4	206856	54896,4	49406,76	34,2971	0,0730	48750,24	24375,1	333905,7
26, 5	56830,5	210834	56830,5	51147,52	33,7669	0,0740	50461,17	25230,5	340953,8
27	58797,9	214812	58797,9	52918,11	33,2529	0,0750	52201,22	26100,6	348008,1
27, 5	60798,3	218790	60798,3	54718,54	32,7543	0,0750	53920,11	26960,0	359467,4
28	62832,0	222768	62832,0	56548,80	32,2704	0,0760	55717,06	27858,5	366559,6
28, 5	64898,7	226746	64898,7	58408,90	31,8006	0,0770	57543,11	28771,5	373656,6
29	66998,7	230724	66998,7	60298,83	31,3443	0,0780	59398,28	29699,1	380758,2
29, 5	69131,7	234702	69131,7	62218,60	30,9010	0,0790	61282,56	30641,2	387864,3
30	71298,0	238680	71298,0	64168,20	30,4699	0,0800	63195,94	31597,9	394974,6

Προκύπτει συνεπώς το ακόλουθο διάγραμμα καμπυλών P-y.

Η προσομοίωση των μη-γραμμικών ελατηρίων στο πρόγραμμα SAP2000, έγινε με στοιχεία τύπου multi-linear elastic spring, όπως φαίνεται και στην ακόλουθη ενδεικτική εικόνα. Τα στοιχεία αυτά δέχονται μόνον εφελκυσμό και τοποθετούνται και στους τέσσερις ημι-άξονες κάθε διατομής στοιχείου ανά 0.5m.

Η ανάλυση που επιτρέπει το λογισμικό SAP2000 για τα στοιχεία αυτά είναι ισοδύναμη γραμμική λαμβάνοντας υπόψη την ισοδύναμη σταθερά δυσκαμψίας των μη-γραμμικών καμπύλων p-y. Η ακρίβεια αυτή θεωρείται ικανοποιητική για τις παραμετρικές επιλύσεις της παρούσας εργασίας, ενώ για επίτευξη μεγαλύτερης ακρίβειας μπορούν να χρησιμοποιηθούν στοιχεία multi-linear plastic spring.

					Edit		• •
Link/Supp Property N Property N Total Mass Mass Weight Factors For	ort Type Name otes and Weigh [([[Line, Area	MultiLinear E Non-linear sp nt 0,01 0,01 and Solid Sprin	astic S ing 1 S Rotational Inertia 1 Rotational Inertia 3 as	et Default Name Modify/Show 0.01 0.01 0.01	 Identification Property Name Direction Type NonLinear Properties Used For Linear An Effective Stiffness Effective Stiffness 	Non-linear spring 1 U1 MultiLinear Elastic Yes alysis Cases 2768,411 0,	• ₩
Property is Property is Directional I Direction	Defined fo Defined fo Properties Fixed	r This Length In r This Area In Ar NonLinear	a Line Spring ea and Solid Springs Properties	1, 1, P-Delta Parameters Advanced	Multi-Linear Force-Deformation Displ Force 1 -1, 0, 2 0, 0, 3 1.000E/03 8,132 4 2.000E/03 16,178		• ₩
NA DI			Modify/Show for U1 Modify/Show for U2 Modify/Show for U3		5 3,000E-03 24,055 Order Rows Delete F	Add Row 1003	• 🕅
U2 U3 R1				or 1			

Για το υλικά και τη διατομή προσομοίωσης του πασσάλου δίδονται οι ακόλουθες εικόνες.

Material Name and Display Color	S355
Material Type	Steel
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 85,	KN, m, C
Mass per Unit Volume 8,6676	
sotropic Property Data	1
Modulus of Elasticity, E	2,100E+08
Poisson's Ratio, U	0,3
Coefficient of Thermal Expansion, A	1,170E-05
Shear Modulus, G	80769231
Other Properties for Steel Materials	
Minimum Yield Stress, Fy	355000,
Minimum Tensile Stress, Fu	510000,
Effective Yield Stress, Fye	390500,
Effective Tensile Stress, Fue	561000,

Pipe Section	Property Data
Section Name pylonas Section Notes Modify/Show Notes Properties Set Modifiers Section Properties Set Modifiers Dimensions Set Modifiers Dutside diameter (13) [5.03] Wall thickness (tw) [0.06] Display Color	Section Name pplonas Properties Cross-section (axial) area 1.1253 Section modulus about 3 axis 1.663 Moment of Inetia about 3 axis 5.0139 Section modulus about 2 axis 1.663 Moment of Inetia about 2 axis 5.0139 Plastic modulus about 2 axis 2.1385 Product of Inetia about 2.3 0. Plastic modulus about 2 axis 2.1385 Shear area in 2 direction 0.5627 Radius of Gyration about 2 axis 2.1108 Shear area in 3 direction 0.5627 Radus of Gyration about 2 axis 2.1108 Torsional constant 10.0279 Shear Center Eccentricity (x3) 0.

Ακολούθως παρατίθενται τα εντατικά μεγέθη του πασσάλου, ενώ τέλος εξάγονται οι μετατοπίσεις κεφαλής του, ώστε να διεξαχθεί η ΑΔΕ και η μέθοδος AFM.

Join t	OutputCase	CaseTyp e	U1	U2	U3	R1	R2	R3
Text	Text	Text	m	m	m	Radians	Radians	Radians
2	DEAD	LinStatic	0	0	- 0,000182	0	0	0
2	Critical Load 1	LinStatic	0,02608 6	- 0,002466	- 0,000978	0,000299	0,00316 9	0,000064
2	Critical Load 2	LinStatic	0,02610 6	- 0,002412	- 0,000981	0,000293	0,00317 2	0,000049
2	Critical Load 3	LinStatic	0,00464 9	- 0,001388	- 0,000949	0,00017	0,00056 3	- 0,000174
2	Critical Load 4	LinStatic	0,02610 9	- 0,002459	- 0,000978	0,000298	0,00317 2	0,000062
2	Critical Load 5	LinStatic	0,00027 1	0,001436	0,000962	0,000159	0,00003 2	0,000013
2	Critical Load 6	LinStatic	0,02580 2	0,002012	- 0,000984	0,000249	0,00313 9	0,000043

Principle of virtual work based on U1 Principle of virtual work based on U2 Principle of virtual work based on R1 Principle of based	of virtual v	work
based on U1 based on U2 based on R1 based		NOLV
	sed on R2	
\mathbf{F}_{-} $\mathbf{k}\mathbf{N}'$ \mathbf{F}_{-} $\mathbf{k}\mathbf{N}'$ \mathbf{F}_{-} $\mathbf{k}\mathbf{N}'$ \mathbf{F}_{-}		kN/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,1E+08	m2
d= 6 m d= 6 m d=	6	m
t= 0,06 m t= 0,06 m t= 0,06 m	0,06	m
A= 1,1197 m2 A= 1,1197 m2 A= 1,1197 m2 A=	1,1197	m2
I= 4,939 m4 I= 4,939 m4 I= 4,939 m4 I=	4,939	m4
FI- 1,0371E kNm FI- 1,0371E kNm FI- 1,0371E kNm FI- 1.	1,0371E	kNm
+09 2 $+09 2$ $+09 2$ $+09 2$ $+09 2$	+09	2
LU1= 15,89 m LU2= 15,91 m LR1= 15,78 m LR2=	15,75	m
M,Fx= M,Fy= M,Mx= M,My=		
1= 15,89 m 1= -15,91 m 1= 1,00 m 1=	1,00	m
Fx= 2127 kN Fy= -198,5 kN Fy= -198,5 kN Fx=	2127	kN
M,Fx= 33787,80 kNm M,Fy= 3158,86 kNm M,Fy= 3131,34 kNm M,Fx= 33	33503,82	kNm
My= 191900 kNm Mx= 18090 kNm Mx= 18090 kNm My= 1	191900	kNm
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	191900	kNm
$\delta x = 0.026086$ m $\delta y = 0.002466$ m $\theta x = 0.000299$ rad $\theta y = 0.000$	0.003169	rad
$\delta x' = 0.026085$ m $\delta y' = -0.00247$ m $\theta x' = 0.000299$ rad $\theta y' = 0.00297$	0.003169	rad
Critical Load 2 Critical Load 2 Critical Load 2 Critical Load 2	ical Load 2	
Critical Load 2 Critical Load	of vintual r	noul
based on U1 based on U2 based on R1 based	sed on R2	WOLK
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,1E+08	kN/ m2
d= 6 m d= 6 m d= 6 m d= 6 m d= 1000000000000000000000000000000000000	6	m
t= 0,06 m t= 0,06 m t= 0,06 m	0,06	m

КЕФ.7

ΚΕΦ.7 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

A=	1,1197	m2
I=	4,939	m4
EI=	1,0371E +09	kNm 2
LU1=	15.88	m
M,Fx=	,	
1=	15,88	m
Fx=	2118	kN
M,Fx=	33641,84	kNm
My=	192200	kNm
M,My _	192200	kNm
- 8v-	1)2200	Ki (iii
0.1	0,026106	m
ox=	0,026105	m
C	ritical Load 3	
Princip	ble of virtual	work
	Jused on CT	kN/
E=	2,1E+08	m2
d=	6	m
t=	0,06	m
A=	1,1197	m2
I=	4,939	m4
EI=	1,0371E	kNm 2
LU1-	+09	2 m
M Fy-	15,90	111
1=	15 90	m
Fx=	399.3	kN
M,Fx=	6347,82	kNm
My=	33920	kNm
M,My =	33920	kNm
δx=	0,004649	m
δx'=	0.0046	m
C		
C	nucai Load 4	
D	le of riter 1	moult
Princip	ble of virtual based on U1	work
Princip I	ole of virtual based on U1	work kN/
Princip I E=	ble of virtual based on U1 2,1E+08	work kN/ m2
Princip I E= d=	ble of virtual based on U1 2,1E+08 6	work kN/ m2 m
Princip E= d= t=	ble of virtual based on U1 2,1E+08 6 0,06	kN/ m2 m m
Princip E= d= t= A=	ble of virtual based on U1 2,1E+08 6 0,06 1,1197	kN/ m2 m m2 m2
Princip E= d= t= A= I=	ble of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939	kN/ m2 m m2 m4
Princip E= d= t= A= I= EI=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E	kN/ m2 m m2 m4 2
Princip E= d= t= A= I= EI=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15 88	kN/ m2 m m2 m4 kNm 2 m4
Princip E= d= t= A= I= EI= LU1= M,Fx=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88	kN/ m2 m m2 m4 kNm2 m4
Princip E= d= t= A= I= EI= LU1= M,Fx= 1= Ev=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 15,88	kN/ m2 m m2 m4 kNm 2 m m kNm
Princip E= d= t= A= I= EI= LU1= M,Fx= 1= Fx= M Fv-	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 15,88 2127 33797 39	work kN/ m m m2 m4 kNm 2 m m kN kN kNm
Princip E= d= t= EI= EI= LU1= Kx= 1= Fx= M,Fx= Mv=	be of virtual based on U1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,88 15,88 2127 33787,38 192100	work kN/ m m m2 m4 kNm 2 m m kN kN kNm kNm
Princip E= d= t= A= I= KFx= M,Fx= I= Fx= M,Fx= M,Fx= M,Fx= M,Y= M,My	ble of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100	work kN/ m2 m4 kNm m m kNm kNm kNm kNm kNm kNm
Princip E= d= t= A= I= EI= LU1= Fx= M,Fx= I= Fx= M,Fx= M,Fx= S=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100	kN/ m m m2 m4 kNm 2 m m kN kN kNm kNm kNm kNm
Princip E= d= t= A= I= EI= LU1= M,Fx= 1= Fx= M,Fx= My= M,My = δx=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 15,88 2127 33787,38 192100 192100 0,026109	work kN/ m m m2 m4 kNm m m m kNm kNm kNm kNm m
Princip E= d= t= A= I= EI= LU1= M,Fx= 1= Fx= M,Fx= M,Ay= δx= δx'=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 15,88 2127 33787,38 192100 192100 0,026109 0,026109	kN/ m m m2 m4 kNm 2 m kN kN kNm kNm kNm m
Princip E= d= t= A= I= EI= LU1= M,Fx= Sx= Sx'= Ct	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 15,88 2127 33787,38 192100 192100 0,026109 0,026109 citical Load 5	work kN/ m2 m4 kNm 2 m kN kN kNm kNm m m
Princip E= d= t= A= I= EI= LU1= M,Fx= m,Fx= My= δx= δx'=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100 0,026109 0,026109 0,026109 citical Load 5 be of virtual based on U1	work kN/ m2 m m4 kNm 2 m kN kNm kNm kNm kNm kNm m m m work
Princip E= d= t= A= I= EI= LU1= M,Fx= M,Fx= M,Fx= M,Fx= My= δx= δx'= Cr Princip L E=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100 0,026109 0,026109 0,026109 0,026109 0,026109	work kN/ m2 m m4 kNm 2 m m kN kNm kNm kNm kNm kNm kNm kNm kNm
Princip E= d= t= A= I= EI= LU1= M,Fx= m,Fx= M,Fx= M,Fx= My= δx= δx= Cr Princip E=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100 0,026109 0,026109 0,026109 0,026109 0,026109 2,026109 2,026109	work kN/ m2 m m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm kNm k
Princip E= d= t= A= I= EI= LU1= M,Fx= 1= Fx= M,Fx= My= $\Delta x^{=}$ $\delta x^{=}$ Cr Princip E= d=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100 0,026109 0,026109 0,026109 0,026109 0,026109 2,026109 2,1E+08 6 6 0 0,026	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm kNm k
Princip E= d= t= A= I= EI= LU1= M,Fx= I= Fx= M,Fx= My= M,Fx= CI Princip E= d= t= A	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100 0,026109 0,026109 0,026109 0,026109 2,026109 0,026109 0,026109 192100 0,026109 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,026000 0,0260000000000	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm kNm m m m
Princip E= d= t= A= I= U1= M,Fx= 1= Fx= M,Fx= M,Fy= $\Delta x^{+}=$ $\delta x^{+}=$ Cr Princip I= d= t= t= d= t= d= t=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 0,026109 0,026109 0,026109 0,026109 virtual based on U1 2,1E+08 6 0,06 1,1197	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm m m m
Princip E= d= t= A= I= U1= M,Fx= 1= Fx= M,Fx= M,Y= $\Delta x^{=}$ $\delta x^{=}$ $\delta x^{=}$ C Princip E= d= t= d= t= A= T=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 0,026109 0,026109 0,026109 0,026109 0,026109 citical Load S ble of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm m m m m kN/ m2 m kN/ m2 m m m2 m m2 m4 kNm kNm kNm m m m2 m m m m m m m m m m m m m m m
Princip E= d= t= A= I= UI= M,Fx= I= M,Fx= M,Fx= M,Y= Δx^{+} δx^{+} CI Princip E= d= t= A= E= d= t= E= E= d= t= E=	be of virtual based on U1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,88 15,88 2127 33787,38 192100 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 1,1197 2,1E+08 6 0,006 1,1197 4,939 1,0371E 4,939 1,0371E	work kN/ m2 m m4 kNm 2 m m kNm kNm kNm kNm kNm kNm kNm m m m kN/ m2 kN/ m2 m m m kN/ m2 kN/ m2 m m m kN/ m2 m m m m2 m4 kNm 2
Princip $E =$ $d =$ $t =$ $A =$ $I =$ $EI =$ $LU1 =$ $M,Fx =$ $1 =$ $Fx =$ $M,Fx =$ $\delta x =$ CC Princip $E =$ $d =$ $t =$ $A =$ $I =$ $EI =$ $LU1 =$	be of virtual based on U1 2,1E+08 6 0,006 1,11197 4,939 1,0371E +09 15,88 2127 33787,38 192100 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 citical Load 5 ble of virtual based on U1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,95	work kN/ m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm m kNm m m m
Princip E= d= t= A= I= UI= M,Fx= M,Fx= M,Fx= M,My = $\delta x^{=}$ $\delta x^{=}$ C. Princip E= d= t= E= LUI= E= LUI= E= LUI= E= LUI= LUI= M,Fx= E= d= t= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= E= LUI= LUI= M,Fx= E= LUI= LUI= M,Fx= E= LUI= LUI= M,Fx= LUI= LUI= M,Fx=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 192100 0,026109 0,026109 0,026109 0,026109 0,026109 1,0371E +09 1,0371E +09 1,0371E +09 1,0371E	work kN/ m2 m4 kNm 2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm m kNm m m m
Princip E= d= t= A= I= LU1= M,Fx= M,Fx= M,Fx= M,Fx= M,Fx= M,Fx= M,Fx= M,Fx= M,Fx= C Princip L E= d= t= A= I= LU1= M,Fx= 1=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 192100 0,026109 0,000000	work kN/ m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm kNm k
Princip $E =$ $d =$ $t =$ $A =$ $I =$ $EI =$ $LU1 =$ $M,Fx =$ $M,Fx =$ $M,Fx =$ $M,Fx =$ $M,Fx =$ $\delta x =$ $\delta x =$ $\delta x =$ $E =$ $d =$ $t =$ $A =$ $I =$ $EI =$ $LU1 =$ $M,Fx =$ $I =$ $Fx =$	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 192100 0,026109 0,026109 0,026109 0,026109 0,026109 192100 0,026109 0,006 0,006 0,006 0,006 0,006 0,006 0,006 0,006 0,006 0,007 0,00000000	work kN/ m2 m4 kNm 2 m kN kNm kNm kNm kNm kNm kNm kNm kNm kN
Princip E= d= t= A= I= EI= LU1= M,Fx= M,Fx= M,Fx= M,Fx= My= δx= δx= Cr Princip C B= d= t= A= I= EI= LU1= M,Fx= I= Fx= M,Fx=	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 192100 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,95 28,03 447,13	work kN/ m2 m m4 kNm 2 m m kN kNm kNm kNm kNm kNm kNm m m m m
Princip $E =$ $d =$ $t =$ $A =$ $E =$ $M, Fx =$ $\delta x =$ $\delta x' =$ $\delta x' =$ $Cr Princip d = d = d = d = d = E = d = E = D = M, Fx = E = M, Fx = E = M, Fx = Fx = M, Fx = M, Fx = M, Fx = $	be of virtual based on U1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,88 2127 33787,38 192100 192100 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 0,026109 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,95 28,03 447,13 1911	work kN/ m2 m m m2 m4 kNm 2 m kN kNm kNm kNm kNm kNm kNm kNm m m m

A=	1.1197	m2
I=	4,939	m4
EI=	1,0371E	kNm
1112-	+09	2
LU2= M Ev-	15,91	m
1=	-15.91	m
Fy=	-188,9	kN
M,Fy=	3005,34	kNm
Mx=	17760	kNm
M,Mx	177(0)	1.57
=	17/60	KNM
δy=	0.002412	m
$\delta v' =$	-	
0y	0,002412	m
Cı	ritical Load 3	
Princip	le of virtual	work
ł	based on U2	1-N1/
E=	2 1E±08	KIN/ m2
d=	2,111+00	m
t=	0,06	m
A=	1,1197	m2
I=	4,939	m4
EI=	1,0371E	kNm
1.112	+09	2
LU2=	15,87	m
імі, гу= 1.—	-15 87	m
Fv=	-92.27	kN
M.Fv=	1464.21	kNm
Mx=	10450	kNm
M,Mx	10450	kNm
 δv=	-	KINII
6 y	0,001388	m
øy=	0,001387	m
Cı	ritical Load 4	
Princip	le of virtual	work
Princip ł	ble of virtual based on U2	work
Princip I E=	2 1E+08	work kN/ m2
Princip E= d=	ble of virtual based on U2 2,1E+08 6	work kN/ m2 m
Princip E= d= t=	ble of virtual based on U2 2,1E+08 6 0,06	work kN/ m2 m m
Princip t E= d= t= A=	2,1E+08 0,006 1,1197	work kN/ m2 m m m2
Princip E= d= t= A= I=	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939	kN/ m2 m m2 m4
Princip E= d= t= A= I= EI=	2,1E+08 2,1E+08 6 0,06 1,1197 4,939 1,0371E	work kN/ m2 m m2 m2 m4 kNm
Princip E= d= t= A= I= EI=	2,1E+08 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15.92	work kN/ m2 m m2 m4 kNm 2 m
Princip E= d= t= A= I= EI= LU2= M.Fv=	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92	work kN/ m2 m m2 m4 kNm 2 m
Princip E= d= t= A= I= EI= EI= LU2= M,Fy= 1=	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92	work kN/ m2 m m2 m4 kNm 2 m m m
Princip E= d= t= A= I= EI= LU2= M,Fy= 1= Fy=	ble of virtual based on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5	kN/ m2 m m2 m4 m2 m4 m4 m6 m6 m6 m7 m6 m6 m7 m6 m7 m7
Princip E d= t= A= I= EI= LU2= M,Fy= Fy= M,Fy=	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38	kN/ m2 m m2 m4 m2 m4 m4
Princip E d= t= A= I= EI= LU2= M,Fy= 1= Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy=	ble of virtual based on U2 2,1E+08 6 0,06 1,11197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040	kN/ m2 m m2 m4 kNm 2 m m kN kN kN
Princip E d= t= A= I= EI= LU2= M,Fy= M,Fy= M,Fy= Mx= M,Mx	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040	kN/ m2 m m2 m4 kNm 2 m m kN kN kNm kNm
Princip E= d= t= A= I= EI= LU2= M,Fy= 1= Fy= M,Fy= Mx= ôv=	be of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 18040	kN/ m2 m m2 m4 kNm m m mkN kNm kNm kNm
Princip E= d= t= A= I= EI= LU2= M,Fy= 1= Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Mx = δy=	ble of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 18040	work kN/ m m m2 m4 kNm kNm kNm kNm m
Princip E d= t= A= I= EI= LU2= M,Fy= δy= δy'=	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 18040 0,002459 0,002459	kN/ m2 m m2 m4 kNm 2 m m4 kNm kNm kNm kNm m
Princip E d= t= A= I= EI= LU2= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= My= δy'= Cr	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 18040 0,002459 0,002459 - 0,002459 - - - - - - - - - - - - -	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm m m m
Princip E d= t= A= I= EI= LU2= M,Fy= Oy= Oy= Crip Princip	ble of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 0,002459 0,002459 0,002459 	work kN/ m2 m4 kNm m m m m kNm kNm kNm m m m m work
Princip E d= t= A= I= EI= LU2= M,Fy= Oy= ôy= Cr Princip E	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 18040 0,002459 0,002459 	work kN/ m2 m4 kNm kN m m m kN kNm kNm work kN/
Princip E d= t= A= I= EI= LU2= M,Fy= Oy= ôy= Cr Princip E .	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 18040 0,002459 0,002459 0,002459 	kN/ m m m2 m4 kNm m m m m kN kNm kNm m m work m m
Princip E= d= t= A= I= EI= LU2= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= My= δy'= Cr Princip E= d= i	be of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 18040 0,002459 0,002459 0,002459 	kN/ m m m2 m4 kNm m m m kN kNm kNm m m work kN/ m2
Princip E d= t= A= I= EI= LU2= M,Fy= By= Sy'= Cr Princip E= d= t= A=	ble of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 18040 0,002459 0,002459 0,002459 	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm m m m
Princip E d= t= A= I= EI= LU2= M,Fy= By= ôy'= Cr Princip B d= t= d= t= A=	Je of virtual assed on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 0,002459	work kN/ m2 m4 kNm2 m4 kNm2 m kNm kNm kNm kNm work m m m m m m m m m m m m m
Princip E= d= t= A= I= EI= LU2= M,Fy= 1= Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Mx = δy'= Cr Princip E= d= t= A= I=	be of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 0,002459 -0,002459 	work kN/ m2 m4 kNm z m mkN kNm kNm work m m m m m m m m m m m m m2 m m2 m m2 m m2 m4 kNm
Princip E d= t= A= I= EI= LU2= M,Fy= 0y= ôy= Cr Princip I E= d= t= A= I= EI= EI= EI=	be of virtual pased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 0,002459 0,00259 0,005	kN/ m2 m4 kNm m m m m kNm kNm kNm m m m m m m m m m m m m m m m m2 m4 kNm 2
Princip E d= t= A= I= EI= LU2= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= Øy= Øy= Ct Princip I E= d= t= I= EI= LU2= M F=	ble of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 - 0,002459 - 0,002 - 0,002459 - 0,002 - 0,000 - 0,000 - 0,000 - 0,000 - 0,000 - 0,000 - 0,002 - 0,000 - 0,000 - 0,000 - 0,000 - 0,000 -	work kN/ m2 m m m2 m4 kNm 2 m kN kNm kNm kNm kNm kNm kNm kNm m m m
Princip E d= t= A= I= EI= LU2= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= Øy= Øy= Ct Princip B C B E= d= t= EI= LU2= M,Fy= I= EI= LU2= M,Fy= 1-	ble of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 - 0,002459 - 0,002459 - 0,002459 - 0,002459 - - 0,002459 - - 0,002459 - - - 0,002459 - - - - 0,002459 - - - - - - 0,002459 - - - - - - - - - - - - - - - - - - -	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm m m m
Princip E= d= t= A= I= LU2= M,Fy= 1= Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Mx = δy'= Cr Princip I E= d= t= A= I= EI= LU2= M,Fy= I=	be of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 0,002459 -0,002459 -0,002459 -0,002459 	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm m m m m m m kN/ m2 m m m kN/ m2 m m m kN/ m2 m m kN/ m2 m m kN/ m2 m m m kN/ m2 m m m kN/ m2 m m m kN/ m kNm kNm kNm kNm kNm kNm kNm kNm kNm k
Princip E d= t= A= I= LU2= M,Fy= 1= Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= Øy'= Ot Princip B d= t= d= t= A= I= EI= LU2= M,Fy= I= Fy= M,Fy=	ble of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -15,92 -197,5 3143,38 18040 0,002459 -0,002459 -0,002459 	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm m m m m m
Princip E d= t= A= I= LU2= M,Fy= 1= Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= Øy'= Cr Princip B Cr Princip I E= d= t= A= I= EI= LU2= M,Fy= I= Fy= I= Fy= M,Fy= Mx=	be of virtual aased on U2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,92 -15,92 -197,5 3143,38 18040 -0,002459 -0,002459 -0,002459 -0,002459 	work kN/ m m2 m4 kNm kNm kNm kNm kNm m m m m m m m m m m m m m m m2 m m2 m m2 m m2 m4 kNm kNm kNm

A=	1,1197	m2
I=	4,939	m4
FI-	1,0371E	kNm
L1-	+09	2
LR1=	15,78	m
M,Mx=		
1=	1,00	m
Fy=	-188,9	kN
M,Fy=	2981,53	kNm
Mx=	17760	kNm
M,Mx=	17760	kNm
$\theta x =$	0.000293	rad
0.1	· · · ·	
$\theta x =$	0,000293	rad
Cr	itical Load 2	
Princip	le of virtual	work
b	ased on R1	
E=		kN/
	2,1E+08	m2
d=	6	m
t=	0,06	m
A=	1,1197	m2
I=	4,939	m4
FI_	1,0371E	kNm
E1=	+09	2
LR1=	15,77	m
M,Mx=		
1=	1.00	m
Fv=	-92.27	kN
M.Fv=	1455.21	kNm
Mx=	10450	kNm
	10.00	iu (iii
M,Mx=	10450	kNm
$\theta x =$	0,00017	rad
θx'=		
UA.	0,000170	rad
Cr	itical Load 4	
Princin	le of virtual v	work
Princip	le of virtual v ased on R1	work
Princip b	le of virtual based on R1	work
Princip b E=	le of virtual based on R1	work kN/ m2
Princip b E= d=	le of virtual pased on R1 2,1E+08	work kN/ m2 m
Princip b E= d=	le of virtual pased on R1 2,1E+08 6	kN/ m2 m
Princip b E= d= t=	le of virtual pased on R1 2,1E+08 6 0,06	kN/ m2 m m m2
Princip b E= d= t= A=	le of virtual pased on R1 2,1E+08 6 0,06 1,1197	kN/ m2 m m m2 m2
Princip b E= d= t= A= I=	le of virtual pased on R1 2,1E+08 6 0,06 1,1197 4,939	kN/ m2 m m2 m2 m4 hX
Princip b E= d= t= A= I= EI=	Le of virtual pased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E	kN/ m2 m m2 m2 m4 kNm 2
Princip b E= d= t= A= I= EI=	le of virtual pased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09	kN/ m2 m m2 m4 kNm 2
Princip b E= d= t= A= I= EI= EI= LR1=	le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77	kN/ m2 m m2 m2 m4 kNm 2 m
Princip b E= d= t= A= I= EI= EI= LR1= M,Mx=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77	kN/ m2 m m2 m4 kNm 2 m
Princip b E= d= t= A= I= EI= LR1= M,Mx= 1=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00	work kN/ m2 m m2 m4 kNm 2 m m 1.2
Princip b E= d= t= A= I= EI= LR1= M,Mx= 1= Fy= Fy=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5	work kN/ m2 m m2 m4 kNm 2 m m kN m kN m 1 1 1 1 1 1 1 1 1 1 1 1 1
Princip b E= d= t= A= I= LR1= M,Mx= 1= Fy= M,Fy=	le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73	work kN/ m2 m m2 m4 kNm 2 m m kN kNm kNm
Princip b E= d= t= A= I= KR1= M,Mx= Hype M,Fy= Mx=	le of virtual assed on R1 2,1E+08 6 0,06 1,11197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040	kN/ m2 m m2 m4 kNm 2 m m kN kN kN kN
Princip b E d= t= A= I= LR1= M,Mx= Py= Mx= M,Mx=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 18040	work kN/ m2 m4 kNm 2 m mkN kN kNm kNm kNm kNm kNm
Princip b E d= t= A= I= KRI= M,Mx= Mx= Mx= θx=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 18040 0,000298	work kN/ m2 m m2 m4 kNm kNm kNm kNm kNm
Princip b E= d= t= I= EI= LR1= M,Mx= M,Fy= Mx= M,Mx= θx=	le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 18040 0,000298	kN/ m2 m m2 m4 kNm kN kNm kNm kNm rad
Princip b E= d= t= I= EI= LR1= M,Mx= M,Fy= Mx= M,Mx= θx= θx=	le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 18040 0,000298 0,000298	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm kNm rad rad
Princip b E= d= t= A= I= EI= LR1= M,Mx= h M,Fy= Mx= θx= θx'=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 18040 0,000298 0,000298 iitical Load 5	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad
Princip b E= d= t= A= I= KR1= M,Mx= M,Fy= M,Fy= M,Fy= M,Fy= MA= θx= θx'= Cr Princip	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad work
Princip E d= t= A= I= EI= LR1= M,Mx= Mx= Mx= θx= θx'= Cr Princip b	le of virtual assed on R1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual assed on R1	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad work
Princip b E= d= t= A= I= EI= LR1= M,Mx= Mx= θx= θx'= Cr Princip b	le of virtual sased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 0,000298	work kN/ m2 m4 kNm 2 m mkN kNm kNm rad rad work kN/
Princip b E= d= t= A= I= KR1= M,Mx= Mx= Mx= 0x= θx'= Cr Princip b E=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual aased on R1 2,1E+08	work kN/ m2 m m2 m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad work kN/ m2
Princip E= d= t= A= I= EI= M,Mx= M= M,Fy= Mx= θx= θx'= E= d= d=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 iitical Load 5 le of virtual aased on R1 2,1E+08 6	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad kN/ m2 kN/ m2 m kN/ m2 m
Princip E= d= t= A= I= EI= LR1= M,Mx= MFy= MX= θx= θx'= E= d= t=	le of virtual a saed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual assed on R1 2,1E+08 6 0,006	work kN/ m2 m4 kNm kNm kNm kNm kNm rad rad work kN/ m2 m m m m m m m
Princip E d= t= A= I= EI= LR1= M,Mx= Mx= Mx= θx= θx'= E= d= t= A=	le of virtual assed on R1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual based on R1 2,1E+08 6 0,006 1,1197	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad kNm kNm rad rad m kN/ m2 m m2
Princip b E= d= t= A= I= KRI= M,Mx= Mx= 0x= 0x'= E= d= t= A= I=	le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 0,000298 0,000298 1itcal Load 5 le of virtual 2,1E+08 6 0,06 1,1197 4,939	work kN/ m2 m m2 m m2 m4 kNm 2 m kNm kNm kNm kNm kNm rad rad rad kN/ m2 m kN/ m2 m m m m2 m4
Princip b E= d= I= II= KRI= M,Mx= M,Fy= M,E= 0x'= Cr Princip b E= d= t= N	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 iitical Load 5 le of virtual 2,1E+08 6 0,06 1,1197 2,1E+08 6 0,06	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad kN/ m2 m m m2 m kN/ m2 m m m2 m m m2 kN/ m2 m m m m2 m4 kN/ m2 m m m m2 m4 kNm m m m m m m m m m m m m m m m m m m
Princip E= d= t= A= I= EI= LR1= M,Mx= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= Bax'= E= d= t= A= I= EI=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 0,000298 itical Load 5 ble of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad kN/ m2 m m m2 m m kN/ m2 m m m2 m4 kN/ m2 m m m2 m4 kNm 2
Princip E d= t= A= I= EI= LR1= M,Mx= M,Fy= Mx= Øx= Øx'= E= d= t= A= I= E= d= t= A= I= EI= LR1=	le of virtual a saed on R1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual ased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75	work kN/ m2 m m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad kN/ m2 kN/ m2 m m m2 m4 kN/ m2 0 0
Princip b E= d= t= A= I= KRI= M,Mx= Mx= 0x= 0x'= E= I E= I	le of virtual assed on R1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 0,000298 itical Load 5 le of virtual based on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm kNm rad rad kN/ m2 m m2 m kNm kNm rad rad rad kN/ m2 m m2
Princip b E= d= I= IE EI= LR1= M,Mx= 0x= 0x= 0x= E= d= t= LE= LE= LE= M,Mx= Bx'=	le of virtual aased on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual 2,1E+08 6 0,06 1,1197 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75	work kN/ m2 m m2 m m2 m4 kNm 2 m kNm kNm kNm kNm kNm rad rad rad kN/ m2 m m m2 m kN/ m2 m m m 2 0 m m m 2 0 m m m m 2 0 m m m m
Princip E d= t= A= I= KR MA MX= MX= Øx= Øx'= E= d= t= Z Princip b E= d= t= A= I= EI= LR1= M,Mx=	le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 0,000298 itical Load 5 le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 274 1	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm kNm kNm kNm kNm kNm k
Princip b E= d= t= A= I= KRI= M,Mx= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= M,Fy= Max= θx'= 0x'= E= d= t= A= I= EI= LR1= M,Mx=	le of virtual sased on R1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000 0,000298 0,000 0,000298 0,000 0,000298 0,000298 0,000 0,000298 0,000 0,0	work kN/ m2 m m2 m4 kNm kNm kNm kNm kNm kNm work m m m m m made work kN/ m m m m m2 m4 kNm 20 m m m4 kNm 20
Princip E d= t= A= I= KRI= M,Mx= Mx= Øx= Øx= Øx= E E L E E E E L E E E E E E E E E E E E E E E KPy= M,Mx= I= Fy= M,Fy=	le of virtual assed on R1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 itical Load 5 le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 274,1 -4316,58 9 212	work kN/ m2 m m2 m4 kNm kNm kNm kNm rad m
Princip b E= d= t= A= I= KRI= M,Mx= Mx= 0x= 0x'= E= d= t= LR1= M,Mx= 0x'= 0x'= E= d= t= E= d= t= EI= LR1= M,Mx= I= Fy= M,Fy= MX=	le of virtual assed on R1 2,1E+08 6 0,006 1,1197 4,939 1,0371E +09 15,77 1,00 -197,5 3114,73 18040 0,000298 0,000298 0,000298 0,000298 0,000298 0,000298 0,000298 11101 Load 5 le of virtual assed on R1 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 274,1 -4316,58 -8313 -831 -831	work kN/ m2 m m2 m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad rad kN/ m2 m kN/ m2 m m m2 m4 kNm

A=	1,1197	m2
I=	4,939	m4 kNm
EI=	+09	2
LR2=	15,75	m
M,My= 1=	1.00	m
Fx=	2118	kN
M,Fx=	33357,38	kNm
My=	192200	kNm
M,My=	192200	kNm
θy=	0,003172	rad
θy'=	0,003172	rad
Cr	itical Load 3	
b	ased on R2	WOLK
E=	0.1E .00	kN/
d=	2,1E+08	m2 m
t=	0,06	m
A=	1,1197	m2
I=	4,939	m4
EI=	1,0371E +09	kinm 2
LR2=	15,75	m
M,My=	1.00	
l= Fv-	1,00	m kN
ГX= M Fx=	6289.99	kNm
My=	33920	kNm
M,My=	22020	1-11-11-11
θv=	33920	kinm
θy'=	0,000563	rad
0 y	0,000563	rad
· · · ·	itical Load 4	
Deine in	1	
Princip	le of virtual ased on R2	work
Princip b E=	ased on R2	work kN/
Princip b E= d=	le of virtual based on R2 2,1E+08 6	work kN/ m2 m
E= d= t=	le of virtual pased on R2 2,1E+08 6 0,06	kN/ m2 m m
Princip b E= d= t= A=	le of virtual ased on R2 2,1E+08 6 0,06 1,1197	kN/ m2 m m2 m2
Princip b E= d= t= A= I=	le of virtual ased on R2 2,1E+08 6 0,06 1,1197 4,939	work kN/ m2 m m2 m2 m4 LtNu
Princip b E= d= t= A= I= EI=	le of virtual v ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09	work kN/ m2 m m2 m4 kNm 2
Cr Princip b E= d= t= I= EI= LR2=	le of virtual ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75	kN/ m2 m m2 m4 kNm 2 m
Princip b E= d= t= L= EI= LR2= M,My=	le of virtual ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75	kN/ m2 m m2 m4 kNm 2 m
Cr Princip b E= d= t= EI= LR2= M,My= 1= Fv-	le of virtual of ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127	work kN/ m2 m m2 m4 kNm 2 m m kN
Cr Princip b E= d= t= EI= LR2= M,My= I= Fx= M,Fx=	le of virtual of ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503.96	kN/ m2 m m2 m4 kNm 2 m m kNm kNm kNm kNm kNm
Cr Princip b E= d= t= EI= LR2= M,My= 1= Fx= M,Fx= My=	le of virtual of ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100	work kN/ m2 m m2 m4 kNm 2 m kN kN kNm kNm
Cr Princip b E= d= t= A= I= EI= LR2= M,My= M,Fx= My= M,My=	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 192100	kN/ m2 m m2 m4 kNm 2 m m kNm kNm kNm kNm kNm
$\begin{array}{c} \text{Cr}\\ \text{Princip}\\ \text{b}\\ \text{E}=\\ \text{d}=\\ \text{d}=\\ \text{I}=\\ \text{I}=\\ \text{I}=\\ \text{EI}=\\ \text{I}=\\ \text{I}=\\ \text{I}=\\ \text{I}=\\ \text{I}=\\ \text{M}, \text{My}=\\ \text{I}=\\ \text{My}=\\ \text{My}=\\ \text{My}=\\ \text{Hy}=\\ \end{array}$	le of virtual ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 192100 0,003172	kN/ m2 m m2 m4 kNm 2 m kN kN kNm kNm kNm rad
$\begin{array}{c} \text{Cr}\\ \text{Princip}\\ \text{b}\\ \text{E}=\\ \text{d}=\\ \text{t}=\\ \text{d}=\\ \text{t}=\\ \text{I}=\\ \text{I}=\\ \text{I}=\\ \text{IR2=}\\ \text{M,My=}\\ \text{I}=\\ \text{Fx=}\\ \text{M,Fx=}\\ \text{My=}\\ \text{My=}\\ \text{Hy=}\\ \theta \text{y}=\\ \theta \text{y}=\\ \end{array}$	le of virtual of ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 192100 0,003172 0,003172	work kN/ m2 m m2 m4 kNm 2 m kN kNm kNm kNm rad rad
$\begin{array}{c} \text{Cr}\\ \text{Princip}\\ \text{b}\\ \text{E}=\\ \text{d}\\ \text{d}\\ \text{i}\\ \text{a}\\ \text{i}\\ \text{a}\\ \text{i}\\ i}\\ \text{i}\\ \text{i}\\$	le of virtual of ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 192100 0,003172 0,003172 0,003172	work kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm kNm rad rad
$\begin{array}{c} Cr \\ Princip \\ b \\ E= \\ d= \\ d= \\ I= \\ I= \\ I= \\ I= \\ I= \\ I$	le of virtual o ased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 itical Load 5 le of virtual o	kN/ m2 m m2 m4 kNm 2 m kNm kNm kNm rad rad work
$\begin{array}{c} \text{Cr}\\ \text{Princip}\\ \text{b}\\ \text{E}=\\ \text{d}=\\ \text{d}=\\ \text{I}=\\ \text{M}, \text{My}=\\ \text{I}=\\ \text{M}, \text{My}=\\ \text{M}, \text{My}=\\ \text{M}, \text{My}=\\ \text{M}, \text{My}=\\ \text{H}, \text{M}=\\ \text{H}, \text{M}=\\ \text{H}, \text{H}=\\ \text$	le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 itical Load 5 le of virtual aased on R2	work kN/ m m m2 m4 kNm kNm kNm kNm rad work
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ d = \\ 1 \\ EI = \\ LR2 = \\ M,My = \\ 1 \\ Fx = \\ M,My = \\ M,Fx = \\ My = \\ M,Fx = \\ My = \\ \theta y = \\ \theta y' = \\ \hline Cr \\ Princip \\ b \\ E = \\ \end{array}$	le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 itical Load 5 le of virtual aased on R2 2,1E+08	kN/ m2 m m2 m4 kNm2 m kNm kNm kNm rad rad work kN/ m2
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ A = \\ I = \\ EI = \\ LR2 = \\ M,My = \\ I = \\ Fx = \\ M,My = \\ Hy = \\ M,Fx = \\ My = \\ M,My = \\ \theta y = \\ \theta y = \\ \theta y' = \\ \hline Cr \\ Princip \\ b \\ E = \\ d = \\ \end{array}$	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 itical Load 5 le of virtual of assed on R2 2,1E+08 6	kN/ m m m2 m4 kNm kNm kNm kNm rad rad work kN/ m2
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ A = \\ I = \\ EI = \\ LR2 = \\ M,My = \\ I = \\ Fx = \\ M,My = \\ I = \\ M,Fx = \\ M,Fx = \\ My = \\ 0 y' = \\ \theta y' = \\ \theta y' = \\ \hline Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ d = \\ t = \\ \end{array}$	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 itical Load 5 le of virtual of assed on R2 2,1E+08 6 0,06	kN/ m m m2 m4 kNm kNm kNm kNm kNm rad work kN/ m2
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ A = \\ I = \\ EI = \\ IR2 = \\ M,My = \\ I = \\ Fx = \\ M,My = \\ I = \\ M,Fx = \\ M,Fx = \\ M,Fx = \\ My = \\ 0 y = \\ \theta y = \\ \hline Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ A = \\ A = \\ A = \\ \hline A = \\ A =$	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 0,003172 itical Load 5 le of virtual of assed on R2 2,1E+08 6 0,06 1,1197	kN/ m m m2 m4 kNm kNm kNm kNm rad rad work kN/ m m
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ A = \\ I = \\ EI = \\ IR2 = \\ M,My = \\ I = \\ Fx = \\ M,My = \\ Hy = \\ M,My = \\ \theta y = \\ \theta y = \\ \theta y' = \\ \hline Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ A = \\ I = \\ I = \\ \end{array}$	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 itical Load 5 le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939	work kN/ m m m2 m4 kNm kNm kNm kNm rad rad work kN/ m m m m m m m m m m m2 m m2 m4 kNm
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ d = \\ 1 = \\ EI = \\ LR2 = \\ M,My = \\ I = \\ Fx = \\ M,My = \\ Hy = \\ M,My = \\ \theta y = \\ \theta y = \\ \theta y' = \\ \hline Cr \\ Princip \\ hy = \\ \theta y' = \\ \hline Cr \\ Princip \\ h \\ E = \\ d = \\ 1 = \\ I = \\ EI = \\ \hline EI = \\ \end{array}$	le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 itical Load 5 le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09	kN/ m m m2 m4 kNm kNm kNm kNm rad rad work kN/ m m m m rad m m2 m m m2 m m2 m4 kNm 2
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ d = \\ 1 = \\ EI = \\ LR2 = \\ M,My = \\ 1 = \\ Fx = \\ M,My = \\ 1 = \\ Fx = \\ M,Fx = \\ My = \\ 0 y' = \\ \theta y' = \\ \theta y' = \\ \theta y' = \\ \theta y' = \\ \hline Cr \\ Princip \\ b \\ E = \\ d = \\ 1 = \\ EI = \\ LR2 = \\ LR2 = \\ \end{array}$	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 0,003172 itical Load 5 le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,57	kN/ m m m4 kNm kNm kNm kNm kNm rad rad m m m m m m rad m m2 m m2 m m2 m m2 m4 kNm 2 m
$\begin{array}{c} Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ A = \\ I = \\ EI = \\ LR2 = \\ M,My = \\ I = \\ Fx = \\ M,Fx = \\ My = \\ My = \\ Hy = \\ \theta y = \\ Cr \\ Princip \\ b \\ E = \\ d = \\ t = \\ I = \\ EI = \\ LR2 = \\ M,My = \\ I = \\ LR2 = \\ M,My = \\ Hy = \\$	le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 0,003172 itical Load 5 le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09	work kN/ m2 m m4 kNm 2 m kNm kNm kNm kNm rad rad kN/ m2 m kN/ m2 m m m2 m kN/ m2 m m m m2 m
$\begin{array}{c} Cr \\ Princip \\ b \\ E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LR2= \\ M,My= \\ I= \\ Fx= \\ M,Fx= \\ My= \\ My= \\ Hy= \\ 0y'= \\ \thetay'= \\ \hline Cr \\ Princip \\ hy= \\ \thetay'= \\ \hline Cr \\ Princip \\ LR2= \\ I= \\ I= \\ I= \\ I= \\ LR2= \\ M,My= \\ I= \\ Fx- \\ Fx- \\ \end{array}$	le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 0,003172 itical Load 5 le of virtual aased on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,57 1,00 28,03	work kN/ m m m2 m4 kNm kNm kNm kNm rad rad work kN/ m2 m m rad m m2 m m2 m m2 m m2 m m2 m m m m m m m m m m m m
$\begin{array}{c} Cr \\ Princip \\ b \\ E= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LR2= \\ M,My= \\ I= \\ Fx= \\ M,Fx= \\ My= \\ Hy= \\ 0y= \\ 0y'= \\ \hline Cr \\ Princip \\ b \\ e= \\ d= \\ t= \\ A= \\ I= \\ EI= \\ LR2= \\ M,My= \\ I= \\ Fx= \\ M,Fx= \\ M,Fx= \\ \end{array}$	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 0,003172 itical Load 5 le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,57 1,00 28,03 436,43	work kN/ m2 m m4 kNm 2 m kNm kNm kNm kNm kNm rad rad rad kN/ m2 m m kN/ m2 m m kN/ m2 m m kN/ m2 m m kN/ kNm
$\begin{array}{c} {\rm Cr} \\ {\rm Princip} \\ {\rm b} \\ {\rm E}= \\ {\rm d}= \\ {$	le of virtual of assed on R2 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,75 1,00 2127 33503,96 192100 0,003172 0,003172 0,003172 0,003172 2,1E+08 6 0,06 1,1197 4,939 1,0371E +09 15,57 1,00 28,03 436,43 1911	work kN/ m2 m m4 kNm 2 m kNm kNm kNm kNm kNm rad rad rad kN/ m2 m m kN/ m2 m m m2 m m m2 m kN/ m2 m m m2 m m m2 m m kN/ m2 m m m2 m m kN/ m kNm kNm kNm kNm kNm kNm kNm kNm m kN m kNm kN

=			I	=						I			
δx=	0,000271	m		бу=	0,001436	m	θx=	- 0,000159	rad		θу=	0,000032	rad
δx'=	0,000271	m		δy'=	0,001436	m	θx'=	- 0,000159	rad		θy'=	0,00003	rad
C	ritical Load 6	1		Cı	ritical Load 6	i	Cr	itical Load 6			Cr	itical Load 6	
Princip	ole of virtual based on U1	work		Princip ł	le of virtual based on U2	work	Princip b	le of virtual ased on R1	work		Princip b	le of virtual ased on R2	work
E=	2,1E+08	kN/ m2		E=	2,1E+08	kN/ m2	E=	2,1E+08	kN/ m2		E=	2,1E+08	kN/ m2
d=	6	m		d=	6	m	d=	6	m		d=	6	m
t=	0,06	m		t=	0,06	m	t=	0,06	m		t=	0,06	m
A=	1,1197	m2		A=	1,1197	m2	A=	1,1197	m2		A=	1,1197	m2
I=	4,939	m4		I=	4,939	m4	I=	4,939	m4		I=	4,939	m4
EI=	1,0371E +09	kNm 2		EI=	1,0371E +09	kNm 2	EI=	1,0371E +09	kNm 2		EI=	1,0371E +09	kNm 2
LU1=	15,88	m		LU2=	15,84	m	LR1=	15,81	m		LR2=	15,75	m
M,Fx=				M,Fy=			M,Mx=				M,My=		
1=	15,88	m		1=	-15,84	m	1=	1,00	m		1=	1,00	m
Fx=	2055	kN		Fy=	-114	kN	Fy=	-114	kN		Fx=	2055	kN
M,Fx=	32631,87	kNm		M,Fy=	1805,74	kNm	M,Fy=	1802,67	kNm		M,Fx=	32369,00	kNm
My=	190500	kNm		Mx=	15430	kNm	Mx=	15430	kNm		My=	190500	kNm
M,My =	190500	kNm		M,Mx =	15430	kNm	M,Mx=	15430	kNm		M,My=	190500	kNm
δx=	0,025802	m		δy=	0,002012	m	$\theta x =$	0,000249	rad		θy=	0,003139	rad
δx'=	0,02580	m		δy'=	- 0,002012	m	$\theta x' =$	0,000249	rad		θy'=	0,003139	rad

No Set	Mx [kNm]	My [kNm]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1	21450	28800	279,3	341,6	-251,3	-6537
2	14190	193500	1589	2161	-58,97	-6812
3	-268,9	37500	-4739	464,1	29,58	-6549
4	14170	193400	1539	2163	-56,41	-6812
5	-8142	2187	-561	29,74	300,3	-6680
6	14160	193300	1392	2162	-52,31	-6815
		Le	q = 19.27 m			
% Modif.	18,57	0,68	2,09	1,69	-8,32	8,26

КЕФ.7

Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

	Contion	1		I																									
Sect	a la	(m)0	t(m)	R(m)	(m)1	E(kPa)	f _w (kPa)	Yna	¥		+	-				-												-	
Charad	eristics	6,00	0,027	2,99	87,6	21000000	355000	17	1,25																				
				Intern	al Forces						Stresses						Meridiona	ul (axial) co	mpression					She	a.		Com	compres	f meridion ion and sh
			Vbc(KNm)	My(KNm)	Ma(KNm)	Fx(KN)	Fy(KN)	Fz(KN) (I	M ₂ ² +M ₂ ²) ^{0,8} (F	10 (1 ⁴ +1) ^{0,2}	O.A.S	Gaine	a,in	Tajin	۳ م	× 3	ہ ر	*	d _i in	G _{upt}	aun/an	3	~	× در	Low La	tan Tam	la la la	<u>م</u>	Combin
	-	maxMix	26812,5	36000	349,125	423	314,13	8171	44888	230	16128	59332	75460	2323 0,	935 107	13695 0.	72,0 275	S 0,754	1 2675	9222 6	0,34	50414	0,4 2,1	091(0)160	32769 27	308 0,	11	1,7	8
8	2	WWXEW	17737,5	241875	1986,25	27/01/25	73,713	\$515	242525	2702	16807	320566	337372	11580 0,	S85 113	31156 0,	295 0,56	0 0,774	1 2749	4 2290	35 1,47	50414	0,4 2,1	091(0)160	32769 27	308 0,	11	31 1.7	30
8	m	maxMz	336,125	46875	5923,75	580,125	36,975	8186	46876	281	16158	61960	78118	6210 0,	937 107	16112 0.	72,0 672	4 0,754	1 2678	12222 6	0,35	50414	0,4 2,1	091(0)910	32769 27.	308	1	N16 1,7	8
	4	maxFx	17712,5	241750	1923,75	27/03,75	70,513	8515	242398	2705	16807	\$20398	337205	11948 0,	985 113	31147 0,	295 0,56	0 0,774	2749.	3 2290	34 1,47	50414	0,4 2,1	0116 0,160	32769 27.	308 0,	1.2	31 1,7	90 2
	'n	maxFy	10177,5	2733,75	701,25	37,175	375,38	\$350	10538	377	16481	13929	30410	1952 0,	835 958	3636 0,	246 0,60	9 0,712	1 2526	VB 2105	0,14	50414	0,4 2,1	0116 0,160	32769 27.	308 0,	11 10	784 1,7	0
		maxFz	17700	241625	1740	27072	65,388	8519	242272	2703	16814 3	20232	337046	11821 0,	985 113	1131 0.	295 0,56	0 0,774	1 2749.	1 2290	32 1,47	50414	0,4 2,1	116 0,160	32769 27	308 0	11	31 1.7	30 2
Meridional	I buckling	ă	308,49						Shear buck	ting	3	43,8				+			Equit	alent singl	e cylinder	L			Shear			Г	
param	veters	(r/t)×	110,611						paramete		3	21,9							•			U	Take	*	2 *	1	tain Tain	taju	
		5	0,695									6,12										-	64818 0	4 1,778	0,205 42	132 351	9	10	
		Ĵ	m	(BC1r)							Ľ.	73,00										-	64818 0	4 1,778	0,205 42.	132 351	9	2	
		Δwv	0,0114								×	0,6 (F.	(grue D.6)									1	64818 C	4 1,778	0,205 42.	132 351	0,0	18	
		ø	22	(Class B)							•	0,021										1	64818 C	4 1,778	0,205 42.	132 351	10 011	2	
		ä	0,4								5 6	91,349										1	64818 C	4 1,778	0,205 42.	132 351	010	8	
		đ	9'0								(r/t)= 1	42,357										1	64818 C	4 1,778	0,205 42.	132 351	10 01	2	
		ŭ	1								ŭ	1																	
		λ	1,0								ä	0,65	(Class B)																
											đ	0,6																	
							ð				ŭ	1										8							
short cyllind	ters	á	417			talse	1,3541				hys	1,275				-6	ort cylinder	2	ur<10		false	1,0002							
medium les	ngth cylinde	2	7) 2,02×1027	,		false	٦				F ac	2,99				Ĕ	adium leng	th cylinder.	s 105ar-58	1,7 (r/t)=	true	-							
long cyllinde	512	á	20,5 (r/t)×			true	0,6948									ğ	R cylinders		uro8,7 (r/k)=	talse	0,4769							
long cylinds	• 512	r/t)×5150 and	dund6r/ta	M35005 put	00015*	true	0,9348																						
														2	shear buck	ling check	needed	-	1) 31,02-(1/1	(Ma) ^{cato}	false								
Also see al discontration				and the second sec	1																								

Από τα παραπάνω διαγράμματα καθίσταται εμφανές ότι η θεώρηση της αλληλεπίδρασης αποδίδει ελαφρώς δυσμενέστερα αποτελέσματα ως προς τον λυγισμό του πυλώνα. Έτσι, για την εξαγωγή συντελεστών ασφαλείας μη-θεώρησης αλληλεπίδρασης εδάφους – κατασκευής λαμβάνεται ο συντελεστής του μέγιστου λόγου αξιοποίησης.

Total AFM de amplification f	esign factor
maxMx	0,069
maxMy	1,021
maxMz	1,110
maxFx	1,016
maxFy	1,134
maxFz	1,040
Max Overall:	1,017

7.5. Θαλάσσια ανεμογεννήτρια μονοπάσσαλης θεμελίωσης

Για την περίπτωση του FM τα αποτελέσματα είναι ίδια με αυτά της §7.3., ενώ για την περίπτωση της AFM ισχύουν τα ακόλουθα:

NON-COHESIVE DE WATER	NSE SOIL AB TABLE	OVE
Soil Description	Dense Sand	
Young's Modulus E=	60	MPa
Poisson's Ratio v=	0,3	-
Depth H=	30	m
Diameter D=	6	m
φb'=	38	0
k=	32586,679	kN/m3
A=	0,9	
γ=	20	kN/m3
C1=	3,9	
C2=	3,8	
C3=	78	

No Set	Mx [kNm]	My [kNm]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1	27100	235400	1599	2011	-726,8	-8749
2	25260	236300	1296	2025	-499,1	-8695
3	19800	18000	-4394	13,36	-220,2	-8522
4	25260	236300	1296	2025	-499,1	-8695
5	23890	153000	1429	1090	-935,3	-8873
6	152,5	460,5	-73,05	-196,1	19,83	-10210
		Leq	= 17.83 m			
% Modif.	-4.78	-2.48	-31.27	7.20	672.98	16.49

													a	n ES.17.83 n	-															
	Znjuclo	Base																												
	feujuerpuch		t(m)	R _{pite} (m)	(m)	E(kPa)	f _w (kPa)	And I	¥																					
	Χαρακτηριστικά	6,00	0,027	2,99	87,6	2100000	00 35500	11	1,25																				+	
																													_	
		L						F						┝								L		ľ			0	ombination	s of mer	dional (axial)
				Thronout 7	to mobility						1000						Mendion	in (axial) col	mpression					7	ucar			compru	ession ar	d shear
			Mbd(KNm)	MMy(KNm)	Miz(KNm)	Fx(KN)	Fy(KN)	Fz(KN)	(M ² +M ²) ^{0.4} (F,	2+Ev ²) ^{0.6}	Gain	Gape	G _{uto}	Tapp	в 0	Turn A	*	*	d _{ut} n	an a	a,o/a,o	2	۸	۲ ۲	10 L DAN	T anal	aya/taya	a.	k, A)	ληλεπίδραση
	1	maxMix	33875	5 294250	1998,75	7513,7	1308 S08	5 -10936	296193	2673	21586 3	91505	1 06061	1872 0,	586 113	12849 0,2	195,0 261	0 0,775	27499	4 22916	1,80	53564	0,4	1,956 0,1	170 34816	29014	0,41	1,831	1,792	3,143
ğ	2	maxMy	31575	3 295375	1620	2531,2	5 623,8	8 -10869	297058	2607	21452 3	92647 4	14099 1	1362 0,	586 113	12584 0,2	195,0 2,56	0 0,775	27501	3 22917	1.81	53564	0,4	1,956 0,1	170 34816	29014	0,39	1,831	1,792	3,141
cyllinde	m	maxMz	24750	0 22500	5492,5	16,	7 275,2	5 -10653	33449	276	21025	4212	1 12233	4719 0,	315 105	51353 0,2	268 0,58	1 0,743	26390	1 21991	05'0 81	53564	0,4	1,956 0,1	170 34816	29014	0,16	1,808	1,792	0,150
'n	4	maxFx	31575	3 295375	1620	2531,2	5 623,8	8 -10869	297058	2607	21452 3	92647 4	14099 1	1362 0,	586 113	32984 0,2	395 0,56	0 0,775	27501	3 22917	1,81	53564	0,4	1,956 0,1	70 34816	29014	0,39	1,831	1,792	3,141
	5	maxFy	23862	5 191250	1786,25	1362,	5 1169,	11091	193567	1795	21891 2	55855	177745	\$268 O,	511 676	24832 0,2	192 0,56	2 0,772	27389	7 22824	1,22	53564	0,4	1,956 0,1	170 34816	29014	0,28	1,829	1,792	1,537
	9	maxFz	190,625	575,625	91,3125	245,12	S 24,78	8 12763	605	246	25190	801	26652	1033 0,	745 854	6132 0,2	203 0,64	4 0,668	23721	8 19768	0,13	53564	0,4	1,956 0,1	70 34816	29014	0,04	1,751 1	1,792	0,031
																									_			ſ		
	Meridianal buckling	ň	308,49						Shear buckl	bag a	_	43,8							Equivo	alent singl	e cyllinder				Shea					
	parameters	(r/t)×	110,611						parameter	2	3	21,9										J	Take	λ λ	X N	Taps	T.ayo	a a Tapa		
		Ĵ	0,695								4	21,9										-	68368	0,4 1,7	725 0,218	44764	37303	0,32		
		đ	m	(BC1r)							-	73,00										1	83858	0,4 1,7	725 0,218	44764	37303	05,0		
		Δwv	0,0114								*	0,6 (Fig	(ure D.6)									1	68868	0,4 1,7	725 0,218	44764	37303	0,13		
		٥	22	(Class B)							t,	0,021										T	68368	0,4 1,7	725 0,218	44764	37303	0,30		
		ä	0,4								ur 2	91,349										1	68868	0,4 1,7	725 0,218	44764	37303	0,22		
		đ	9'0								(r/t)= 1	42,357										1	68368	0,4 1,7	725 0,218	44764	37303	0,03		
		ď	1								ŭ	1																		
		λ,	0,1								ä	0,655 (6	(B ssel)																	
											ġ	0,6																		
							ð				ŭ	1										8								
et.	short cylinders		ux<1,7			false	1,3533				A ₂₀	1,275				đ	art cylinder	2	ur<10		false	1,0003								
	medium length cylin	inders	1,750×50,51	r/t)×		false	-				Lee .	2,99				e	sdium leng	th cylinders	105ar48,	7 (r/t)=	true	-								
	ong cylinders		ux20,5 (r/t)			true	0,7373									ē	g cyllinders		ue8,7 (r,	-(¥)-	talse	0,4488								
-	ong cylinders*	(r/t)×515	0 and ws56 r/	and 5005E/	V_451000	true	0,5863	-																						
														Ň	shear buck	ling check	needed	2	h)-40,16 (E,	Mul ⁰⁴⁰	false									
	No meridional buck	ling check ne	reded	(r/t)×50,03	E/H.w	talse																								

Από τα παραπάνω διαγράμματα καθίσταται εμφανές ότι η θεώρηση της αλληλεπίδρασης αποδίδει ελαφρώς ευμενέστερα αποτελέσματα ως προς τον λυγισμό του πυλώνα. Έτσι, για την εξαγωγή συντελεστών ασφαλείας μη-θεώρησης αλληλεπίδρασης εδάφους – κατασκευής λαμβάνεται ο συντελεστής του μέγιστου λόγου αξιοποίησης.

191

Total AFM d amplification	lesign factor
maxMx	1,044
maxMy	0,974
maxMz	0,858
maxFx	0,987
maxFy	0,511
maxFz	0,010
maxOverall:	0,975

7.6. Επιμέρους σύγκριση επιλύσεων

Από τα παραπάνω καθίσταται εμφανές ότι:

Οι μετακινήσεις κεφαλής του πυλώνα προκύπτουν, όπως ήταν αναμενόμενο, κατά πολύ αυξημένες για τα μοντέλα AFM.

Οι θεμελιώσεις βαρύτητας είναι εν γένει αρκετά πιο ευαίσθητες στην επιρροής της αλληλεπίδρασης ανωδομής – θεμελίωσης ως προς τη μετακίνηση της κεφαλής του πυλώνα (όπως θα συζητηθεί και στο επόμενο κεφάλαιο).

Ακόμα, οι θαλάσσιες ανεμογεννήτριες είναι εν γένει ελαφρώς πιο ευαίσθητες στην επιρροή της αλληλεπίδρασης ανωδομής – θεμελίωσης ως προς τη μετακίνηση της κεφαλής του πυλώνα σε σχέση με τις χερσαίες, ειδικά στην περίπτωση μονοπάσσαλης θεμελίωσης.

Τύπος \ Είδος	Χερσαίες	Θαλάσσιες
Θεμελίωση Βαρύτητας	1.397	1.410
Μονοπάσσαλη θεμελίωση	1.111	1.322

Πίνακας 7.8: Συντελεστής ασφαλείας AFM για έλεγχο μετατοπίσεων κεφαλής πυλώνα [γ_{AFM,d}]

Οι λόγοι εκμετάλλευσης της κρίσιμης διατομής του πυλώνα σε λυγισμό προκύπτουν, άλλοτε ελαφρώς αυξημένοι για τα μοντέλα AFM, λόγω επιρροής φαινομένων 2ας τάξεως και άλλοτε ελαφρώς μειωμένοι, λόγω της ενδοσιμότητας του εδάφους και της μερικής λήψης τάσης από αυτό.

Οι θαλάσσιες ανεμογεννήτριες είναι εν γένει ελαφρώς λιγότερο ευαίσθητες στην επιρροή της αλληλεπίδρασης ανωδομής – θεμελίωσης ως προς τους ελέγχους λυγισμού σε σχέση με τις χερσαίες.

Τύπος \ Είδος	Χερσαίες	Θαλάσσιες
Θεμελίωση Βαρύτητας	1.057	0.939
Μονοπάσσαλη θεμελίωση	1.017	0.975

Πίνακας 7.9: Συντελεστής ασφαλείας AFM για λυγισμό πυλώνα [γ_{AFM,b}]

ΚΕΦ.8 ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΤΡΟΠΟΥ ΘΕΜΕΛΙΩΣΗΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΑΣ

8.1. Εισαγωγή

το παρόν κεφάλαιο πραγματοποιείται η εφαρμογή όλων των προηγούμενων σε μία σειρά παραμετρικών αναλύσεων ως προς τον τρόπο θεμελίωσης της ανεμογεννήτριας.

Πιο συγκεκριμένα, οι ανεμογεννήτριες χωρίζονται ως προς τον τρόπο θεμελίωσής τους σε ανεμογεννήτριας θεμελίωσης βαρύτητας, μονοπάσσαλης θεμελίωσης και θεμελίωσης τρίποδα. Στα πλαίσια της μεταπτυχιακής αυτής εργασίας, λοιπόν, διενεργούνται επιλύσεις για θαλάσσιες ανεμογεννήτριες των τριών αυτών ειδών θεμελίωσης και συγκρίνονται τα μεταξύ τους αποτελέσματα, ειδικά σε σχέση με την επιρροή της αλληλεπίδρασης εδάφους κατασκευής.

Παράμετρος	Τιμή
Είδος ανεμογεννητριών	Θαλάσσιες
Ταχύτητα πνοής ανέμου	20m/sec
Εδαφικός σχηματισμός	Ομοιόμορφος / αμμώδης / πυκνός

Πίνακας 8.1: Σταθερές τιμές υπόλοιπων παραμέτρων ανάλυσης

8.2. Θαλάσσια ανεμογεννήτρια θεμελίωσης βαρύτητας

Η περίπτωση αυτή ταυτίζεται με την αντίστοιχη της §7.2.

8.3. Θαλάσσια ανεμογεννήτρια μονοπάσσαλης θεμελίωσης

Η περίπτωση αυτή ταυτίζεται με την αντίστοιχη της §7.4.

8.4. Θαλάσσια ανεμογεννήτρια θεμελίωσης τρίποδα

Αρχικά, λαμβάνεται το προσομοίωμα FAST για την περίπτωση 8.3 και αφότου επιλυθεί, διαβάζονται τα εντατικά μεγέθη στη βάση του πυλώνα, δηλαδή σε ύψος 10m πάνω από τη ΜΣΘ.

No Set	Mx [kNm]	My [kNm]	Mz [kNm]	Fx [kN]	Fy [kN]	Fz [kN]
1	19190	34680	-1292	384,4	-214,3	-5724
2	14210	174400	1191	2311	-64,16	-5909
3	9768	18720	-5007	369,7	-108,3	-5690
4	13560	174100	1429	2335	6,544	-5890
5	15820	170700	2155	2174	-321,8	-5895
6	15100	173600	1597	2233	-178,7	-5917
		Fi	xity Model	l		

Έπειτα, επιλέγεται η προσομοίωση του τρίποδα αρχικά ως ξεχωριστή πακτωμένη κατασκευή (FM). Η προσομοίωση έλαβε χώρα στο πρόγραμμα SAP2000, όπως περιγράφεται από τις ακόλουθες εικόνες.

ΚΕΦ.8 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Εικόνα 8.1: FEM SAP2000 FM τρίποδα

Τα μέλη του δικτυωτού φορέα έπειτα από δοκιμές θεωρήθηκαν με τις διατομές της επόμενης εικόνας έτσι, ώστε οι λόγοι αξιοποίησης του πακτωμένου μοντέλου να είναι σχετικά χαμηλοί.

Εικόνα 8.2: Διατομές μελών FM τρίποδα

Τα φορτία της βάσης του πυλώνα ανωδομής που υπολογίστηκαν στο FAST, εφαρμόστηκαν στην κορυφή της υποδομής του τρίποδα, ενώ το ίδιο βάρος της κατασκευής θεωρήθηκε αυτομάτως από το πρόγραμμα.

Για τα φορτία ανέμου στο τμήμα 10m της υποδομής που ξεπροβάλει από τη μέση στάθμη της θάλασσας χρησιμοποιήθηκε το κανονιστικό φορτίο του API 4F 2008.

Exposure and Pressure Coefficients	Wind Coefficients
C Exposure from Extents of Rigid Diaphragms	Ref. Wind Velocity (Knots) 20,
 Exposure from Frame and Area Objects ☐ Include Area Objects ☑ Include Frame Objects (Open Structure) 	SSL Multiplier, Alpha 1. Shielding Factor 1.
Wind Exposure Parameters	
Wind Direction Angle 0,	
Exposure Height ← Program Calculated	DK
User Specified Reset Defaults Maximum Global Z	Cancel

Εικόνα 8.3: Καθορισμός φορτίου ανέμου επί του τμήματος της υποδομής πάνω από τη ΜΣΘ

Τα φορτία κυματισμών υπολογίστηκαν σύμφωνα με τη θεωρία Stokes 5^{ης} τάξεως χρησιμοποιώντας όλα τα επιμέρους χαρακτηριστικά κύματος που προβλέπονται και από το πρόγραμμα FAST. Σημειώνεται ότι εξαιτίας του σχετικά μικρού βάθους πυθμένα, επιλέγεται η χρήση της θεωρίας υψηλής τάξεως για λόγους ακρίβειας.

Wave Load Pattern										
Wave Load Pattern Parameters										
Wave Characteristics	Tripod FAST Wave Lo	oading 💌	Add	Modify/Show	Delete					
Current Profile	None	-	Add	Modify/Show	Delete					
Marine Growth	None	•	Add	Modify/Show	Delete					
Drag and Inertia Coefficients	API Default	•	Add	Modify/Show	Delete					
Wind Load	None	•	Add	Modify/Show	Delete					
☑ Include Buoyant Loads										
Wave Load Pattern Discretization										
Maximum Discretization Segment Size 1.524 Global Z Coordinate 0 of Vertical Datum										
Wave Crest Position			Other Verti	al Elevations Re	lative To Datum					
Global X Coord of Pt on Initial Cr	est Position 0,		Mudline fro	m Datum 🛛 🗔	20					
Global Y Coord of Pt on Initial Cr	est Position 0,		High Tide	irom Datum 🛛 🗍	,5					
Number of Wave Crest Position:	Considered 1									
-Wave Direction			Sea Water	Properties						
Wave Approach Angle in Degre	es 0,		Water Weight Density 10,27							
	Show Wave Table	SI Car	now Wave Plo	it						
Wave Characteristics										
Edit										
Wave Charact	eristic Name	T	ripod FAST \v	'ave Loading]					
Wave Factors		Wave Type								
Wave Kinematics Factor 1		 From S 	elected Wave	Theory						
Storm Water Depth 20		C UserD	efined							
Wave Data Wave Theory										
Wave Height 6,	Wave Height 6, C Airy Wave Theory (Linear)									
Wave Period 10		C Cnoida	Wave Theor	y Order						
	<u> </u>	Car	ncel							

Εικόνα 8.4: Καθορισμός φορτίων κυματισμών

ΚΕΦ.8 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Εικόνα 8.7: Καταστάσεις φόρτισης

Έτσι, προκύπτουν οι παρακάτω εικόνες παραμόρφωσης και εντασιακών μεγεθών για τον κρίσιμο συνδυασμό της μέγιστης δύναμη κατά τη διεύθυνση x.

Εικόνα 8.8: Διαγράμματα: δ, N, T, F_{2-2} , F_{3-3} , M_{2-2} , M_{3-3}

Ακολουθεί η διαστασιολόγηση των μελών του τρίποδα ως εξής:

Εικόνα 8.9: Κανονιστικές αρχές σχεδιασμού

Εικόνα 8.10: Συντελεστές αξιοποίησης μελών FM τρίποδα

Οι μέγιστοι συντελεστές αξιοποίησης ανά διατομή μέλους παρουσιάζονται στον ακόλουθο πίνακα:

		TABL	E: Steel Desig	gn 1 - Sum	mary Data -	Eurocode	e 3-2005		
Fram	DesignSect	DesignTy	Status	Ratio	RatioTy	Comb	Locatio	ErrMsø	WarnMsg
e	Designocet	ре	Status	Ratio	ре	0	n	Ennisg	warming
Text	Text	Text	Text	Unitle ss	Text	Text	m	Text	Text
54	CHS3.15x0.	Column	No Messages	0,0008	PMM	DSTL1	2,525	No Messages	No Messages
83	CHS5.0x0.0 5	Column	No Messages	0,4127	PMM	COMB 2	2,000	No Messages	No Messages
84	CHS5.0x0.0 5	Column	No Messages	0,4662	PMM	COMB 2	2,000	No Messages	No Messages
85	CHS6x0.06	Column	No Messages	0,3567	PMM	COMB 2	0,000	No Messages	No Messages
86	CHS6x0.06	Column	No Messages	0,3483	PMM	COMB 2	0,000	No Messages	No Messages
87	CHS6x0.06	Column	No Messages	0,3398	PMM	COMB 2	0,000	No Messages	No Messages
109	CHS4x0.05	Column	No Messages	0,5644	PMM	COMB 2	13,268	No Messages	No Messages
111	CHS2x0.02	Column	No Messages	0,4693	PMM	COMB 4	0,000	No Messages	No Messages
112	CHS2.2x0.0 3	Column	No Messages	0,2275	PMM	COMB 4	0,000	No Messages	No Messages
113	CHS2.2x0.0 3	Column	No Messages	0,3249	PMM	COMB 4	1,837	No Messages	No Messages
116	CHS2x0.02	Column	No Messages	0,5218	PMM	COMB 5	0,000	No Messages	No Messages
117	CHS2.2x0.0 3	Column	No Messages	0,2639	PMM	COMB 5	0,000	No Messages	No Messages
118	CHS2.2x0.0 3	Column	No Messages	0,3468	PMM	COMB 5	1,837	No Messages	No Messages
121	CHS2x0.02	Column	No Messages	0,4490	PMM	COMB 4	0,000	No Messages	No Messages
122	CHS2.2x0.0 3	Column	No Messages	0,2271	PMM	COMB 4	0,000	No Messages	No Messages

123	CHS2.2x0.0 3	Column	No Messages	0,2946	PMM	COMB 4	1,837	No Messages	No Messages
128	CHS1.2x0.0 25	Beam	No Messages	0,0989	PMM	COMB 5	21,480	No Messages	No Messages
129	CHS1.2x0.0 25	Beam	No Messages	0,1015	PMM	COMB 5	0,000	No Messages	No Messages
130	CHS1.2x0.0 25	Beam	No Messages	0,0869	PMM	COMB 4	0,000	No Messages	No Messages
4	CHS2x0.02	Column	No Messages	0,0008	PMM	DSTL1	0,000	No Messages	No Messages
6	CHS2x0.02	Column	No Messages	0,0008	PMM	DSTL1	0,000	No Messages	No Messages
8	CHS2x0.02	Column	No Messages	0,0008	PMM	DSTL1	0,000	No Messages	No Messages
14	CHS2.2x0.0	Brace	No Messages	0,5111	PMM	COMB 6	2,000	No Messages	No Messages
16	CHS2.2x0.0	Brace	No	0,4588	PMM	COMB 4	2,000	No	No
19	CHS2.2x0.0	Brace	No	0,5913	PMM	COMB 2	1,997	No	No
20	CHS2.2x0.0	Brace	No Messages	0,4709	PMM	COMB	2,000	No Messages	No Messages
22	CHS2.2x0.0	Brace	No Messages	0,4231	PMM	COMB	2,000	No Messages	No Messages
25	CHS2.2x0.0	Brace	No Messages	0,5300	PMM	COMB	2,000	No Messages	No Messages
26	CHS2.2x0.0	Brace	No Messages	0,4232	PMM	COMB	7,245	No Messages	No Messages
27	CHS2.2x0.0	Brace	No	0,3954	PMM	COMB	10,867	No	No
28	CHS2.2x0.0	Brace	No Messages	0,3757	PMM	COMB	7,245	No Messages	No No Messages
29	CHS2.2x0.0	Brace	No	0,3406	PMM	COMB	10,867	No	No
30	CHS2.2x0.0	Brace	No	0,3461	PMM	COMB	0,000	No	No
31	CHS2.2x0.0	Brace	No	0,4703	PMM	COMB	7,246	No	No
32	CHS1.5x0.0	Brace	No	0,2438	PMM	COMB	0,000	No	No
33	2 CHS1.5x0.0	Brace	No	0,2197	PMM	COMB	0,000	No	No
34	CHS1.5x0.0	Brace	No	0,3093	PMM	COMB	0,000	No	No
35	2 CHS1.5x0.0	Brace	No	0,2303	PMM	COMB	6,365	No	No
36	CHS1.5x0.0	Brace	No No	0,2658	PMM	COMB	0,000	No	No
37	2 CHS1.5x0.0	Brace	Nessages No	0,1938	PMM	4 COMB	6,365	No No	Nessages No
39	2 CHS6x0.06	Column	No	0,3313	PMM	4 COMB	0,000	No	No
40	CHS6x0.06	Column	Nessages No Messages	0,3228	PMM	COMB	0,000	Nessages No Messages	Nessages No Messages

ΚΕΦ.8 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

Παρατηρείται δηλαδή πως οι λόγοι αξιοποίησης των διατομών του τρίποδα δεν υπερβαίνουν την τιμή **0.591**.

Ακόμα, εξάγονται οι αντιδράσεις των τριών στηρίξεων του τρίποδα:

Εικόνα 8.11: Αντιδράσεις στηρίξεων FM τρίποδα

Οι μετατοπίσεις της κορυφής του τρίποδα δηλαδή της βάσης της ανωδομής παρουσιάζεται στον ακόλουθο πίνακα.

Εικόνα 8.12: Μετακίνηση κορυφής FM τρίποδα

Ακολούθως, δημιουργείται νέο προσομοίωμα στο SAP2000, στο οποίο αντί πακτώσεων, τις στηρίξεις του πυλώνα απαρτίζουν τρεις επιμέρους πάσσαλοι έμπηξης διατομής CHS2.0x0.02 και βάθους έμπηξης 20m. Αναλυτικότερα ισχύουν τα εξής:

Εικόνα 8.13: FEM SAP2000 AFM τρίποδα

Τα μέλη του δικτυωτού φορέα παραμένουν ίδια με αυτά του πακτωμένου μοντέλου με την προσθήκη και των πασσάλων έδρασης.

Εικόνα 8.14: Διατομές μελών AFM τρίποδα

Τα φορτία και οι καταστάσεις φόρτισης της κατασκευής παραμένουν ίδια με αυτά του πακτωμένου μοντέλου. Ενώ, οι ελατηριακές σταθερές κάθε πασσάλου της ομάδας

παραμένουν ίδιες με αυτά του μεμονωμένου πάσσαλου της προηγούμενης παραγράφου χάριν απλούστευσης της διαδικασίας.

Έτσι, προκύπτουν οι παρακάτω εικόνες παραμόρφωσης και εντασιακών μεγεθών για τον κρίσιμο συνδυασμό της μέγιστης δύναμη κατά τη διεύθυνση x.

Εικόνα 8.15: Διαγράμματα: δ, N, T, $F_{2\text{-}2}, F_{3\text{-}3}, M_{2\text{-}2}, M_{3\text{-}3}$

Εικόνα 8.16: Συντελεστές αξιοποίησης μελών τρίποδα

		TABL	E: Steel Desig	gn 1 - Sum	mary Data -	Eurocode	3-2005		
Fram e	DesignSect	DesignTy pe	Status	Ratio	RatioTy pe	Comb o	Locatio n	ErrMsg	WarnMsg
Text	Text	Text	Text	Unitle ss	Text	Text	m	Text	Text
22	CHS2.0x0.0 2	Column	No Messages	0,2230	PMM	COMB 4	0,5	No Messages	No Messages
23	CHS2.0x0.0 2	Column	No Messages	0,2234	PMM	COMB 4	0,5	No Messages	No Messages
24	CHS2.0x0.0 2	Column	No Messages	0,2238	PMM	COMB 4	0,5	No Messages	No Messages
25	CHS2.0x0.0 2	Column	No Messages	0,2241	PMM	COMB 4	0,5	No Messages	No Messages
26	CHS2.0x0.0 2	Column	No Messages	0,2244	PMM	COMB 4	0,5	No Messages	No Messages
27	CHS2.0x0.0 2	Column	No Messages	0,2244	PMM	COMB 4	0,5	No Messages	No Messages
28	CHS2.0x0.0 2	Column	No Messages	0,2244	PMM	COMB 4	0	No Messages	No Messages
29	CHS2.0x0.0 2	Column	No Messages	0,2242	PMM	COMB 4	0	No Messages	No Messages
30	CHS2.0x0.0 2	Column	No Messages	0,2250	PMM	COMB 4	0,5	No Messages	No Messages
31	CHS2.0x0.0 2	Column	No Messages	0,2266	PMM	COMB 4	0,5	No Messages	No Messages
32	CHS2.0x0.0 2	Column	No Messages	0,2287	PMM	COMB 4	0,5	No Messages	No Messages
33	CHS2.0x0.0 2	Column	No Messages	0,2315	PMM	COMB 4	0,5	No Messages	No Messages
34	CHS2.0x0.0 2	Column	No Messages	0,2349	PMM	COMB 4	0,5	No Messages	No Messages
35	CHS2.0x0.0 2	Column	No Messages	0,2391	PMM	COMB 4	0,5	No Messages	No Messages
36	CHS2.0x0.0 2	Column	No Messages	0,2440	PMM	COMB 4	0,5	No Messages	No Messages
37	CHS2.0x0.0 2	Column	No Messages	0,2498	PMM	COMB 4	0,5	No Messages	No Messages
38	CHS2.0x0.0 2	Column	No Messages	0,2563	PMM	COMB 4	0,5	No Messages	No Messages
39	CHS2.0x0.0 2	Column	No Messages	0,2637	PMM	COMB 4	0,5	No Messages	No Messages

Οι μέγιστοι συντελεστές αξιοποίησης ανά διατομή μέλους παρουσιάζονται στον ακόλουθο πίνακα:

Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομήςθεμελίωσης σε πυλώνες ανεμογεννητριών

All CHS_00 Column No. Outside Outside No. No. 42 CHS_000 Column Messages 0.2004 PMM CMB 0.5 Messages Messages 43 CHS_000 Column Messages 0.3006 PMM CMB 0.5 Messages Messages 44 CHS_0000 Column Messages 0.3111 PMM CMB 0.5 Messages Messages 43 CHS_0000 Column Messages 0.3111 PMM CMB 0.5 Messages Messages 44 CHS_0000 Column Messages 0.3219 PMM 40.5 Messages Messages 45 CHS_0000 Column No 0.3269 PMM 40.5 Messages Messages 48 CHS_0000 Column No 0.3269 PMM 40.5 Messages Messages 50 CHS_0000 Column No 0.3698 PMM<	40	CHS2.0x0.0	Column	No	0,2719	PMM	COMB	0,5	No Massagas	No
CHS2_000 Column Nessages 0.2044 PMM COME 4.4 Messages Messages 43 CHS2_000 Column No 0.3006 PMM COME 4.5 Messages Messages 44 CHS2_000 Column No No No No No No 44 CHS2_000 Column No 0.3111 PMM COME 4.5 Messages Messages 45 CHS2_000 Column No 0.3219 PMM COME 4.5 Messages Messages 46 CHS2_000 Column No 0.3229 PMM COME 4.5 No No 47 CHS2_000 Column No 0.3529 PMM COME 4.5 Messages Messages 48 CHS2_000 Column Messages 0.3619 PMM COME 4.5 Messages Messages 50 CHS2_000 Column Messages	41	CHS2.0x0.0	Column	No	0,2808	PMM	COMB	0,5	No	No
43 CHS2.00.0 Column Nessages 0.3006 PMM COME 4.4 Messages Nessages Nessages 44 CHS2.00.0 Column Nessages 0.3111 PMM COME 4.5 Messages Nessages 0.3219 PMM COME 4.5 Messages Nessages 0.3326 PMM COME 4.5 Messages Nessages Nessages <t< td=""><td>42</td><td>2 CHS2.0x0.0</td><td>Column</td><td>Messages No</td><td>0,2904</td><td>PMM</td><td>4 COMB</td><td>0,5</td><td>Messages No</td><td>Messages No</td></t<>	42	2 CHS2.0x0.0	Column	Messages No	0,2904	PMM	4 COMB	0,5	Messages No	Messages No
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	43	2 CHS2.0x0.0	Column	No	0,3006	PMM	4 COMB	0,5	Nessages No	Nessages No
1 2 Column Messages 0.111 1.111 4 0.50 Messages Me	44	2 CHS2.0x0.0	Column	No	0 3111	PMM	4 COMB	0.5	Nessages	Nessages
4.3 2 Column Messages Messages 0.219 PARM 4 0.03 Messages Messages Messages Messages 46 CHS2.0800 Column No 0.3326 PMM COBB 0.5 No No 47 CHS2.0800 Column No 0.3529 PMM COBB 0.5 No Messages 48 CHS2.0800 Column No 0.3619 PMM COBB 0.5 No No No 50 2.2 Column No 0.3619 PMM COMB 0.5 No No No 51 2.2 Column No 0.3698 PMM COMB 0.5 No No 52 2 CHS2.0800 Column No 0.3805 PMM 4 0.5 No No 53 CHS2.0800 Column No 0.3828 PMM COMB 0.5 No No No 54	45	2 CHS2.0x0.0	Column	Messages No	0.2210	DMM	4 COMB	0,5	Messages No	Messages No
46 2 Column Messages 0.3326 PMM 4 0.5 Messages Messages 47 CHS2.0x.0.0 Column Messages 0.3430 PMM COMB 0.5 No No No 48 2 CHS2.0x.0.0 Column Messages 0.3529 PMM 4 0.5 Messages Messages 49 2 CHS2.0x.0.0 Column Messages 0.3619 PMM 4 0.5 No No No 50 2 Column No 0.3698 PMM 4 4.5 Messages Messages 51 2 Column No 0.3761 PMM 4 4.5 Mo No	43	2 CHS2.0x0.0	Column	Messages No	0,3219		4 COMB	0,5	Messages No	Messages No
47 CHS 2000 Column Messages Messages 0.3430 PMM CMB 0.5 Messages Messages Messages Messages 48 2 Column No 0.3529 PMM COMB 0.5 No No No 49 2 Column No 0.3529 PMM 4 4 5 No No No 50 2 Column No 0.3619 PMM 4 4 5 No No No 51 CHS2.0x0.0 Column No 0.3698 PMM COMB 0.5 Messages Messages 52 CHS2.0x0.0 Column Messages 0.3828 PMM COMB 0.5 Messages Messages 53 CHS2.0x0.0 Column Messages 0.3828 PMM COMB 0.5 Messages Messages 54 CHS2.0x0.0 Column Messages 0.3828 PMM COMB 0 Messages	46	2 CHS2.0x0.0	Column	Messages	0,3326	РММ	4 COMB	0,5	Messages	Messages
48 CHS 2/0x00 Column No 0.3529 PMM COMB 0.5 No No No 49 2 Churn No 0.3619 PMM COMB 0.5 No No No 50 2 Column No 0.3619 PMM 4 0.5 No No No 51 CHS2.0x0.0 Column Messages 0.3605 PMM 4 0.5 Messages Messages 51 CHS2.0x0.0 Column No 0.3805 PMM COMB 0.5 Messages Messages 53 CHS2.0x0.0 Column No 0.3828 PMM COMB 0.5 Messages Messages 54 CHS2.0x0.0 Column Messages 0.3828 PMM COMB 0.5 Messages Messages 55 CHS2.0x0.0 Column Messages 0.3828 PMM COMB 0 No No 57	47	2	Column	Messages	0,3430	PMM	4 4	0,5	Messages	Messages
49 CHS2 0x0.0 Column No No No No No 50 2 Column No No No No No No 51 CHS2 0x0.0 Column No No Messages No No <t< td=""><td>48</td><td>CHS2.0x0.0 2</td><td>Column</td><td>No Messages</td><td>0,3529</td><td>PMM</td><td>COMB 4</td><td>0,5</td><td>No Messages</td><td>No Messages</td></t<>	48	CHS2.0x0.0 2	Column	No Messages	0,3529	PMM	COMB 4	0,5	No Messages	No Messages
50 CH32 0x0.0 2 Column No Messages Messages 0.3698 PMM COMB 4 0.5 No Messages Messages Mo No 51 CH32 0x0.0 Column No Messages 0.3761 PMM COMB 4 0.5 Messages Messages 52 CH32 0x0.0 Column No Messages 0.3805 PMM COMB 4 0.5 Messages Messages 53 CH32 0x0.0 Column No Messages 0.3828 PMM COMB 4 0.5 Messages Messages 54 CH32 0x0.0 Column No Messages 0.3827 PMM COMB 4 0 Messages Messages 55 CH32 0x0.0 Column No Messages 0.3801 PMM COMB 4 0 Messages Messages 56 2 Column No Messages 0.3748 PMM COMB 4 0 Messages Messages 57 CH32 0x0.0 Column No Messages 0.3563 PMM COMB 4 0	49	CHS2.0x0.0 2	Column	No Messages	0,3619	PMM	COMB 4	0,5	No Messages	No Messages
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	CHS2.0x0.0 2	Column	No Messages	0,3698	PMM	COMB 4	0,5	No Messages	No Messages
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	51	CHS2.0x0.0 2	Column	No Messages	0,3761	PMM	COMB 4	0,5	No Messages	No Messages
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	CHS2.0x0.0 2	Column	No Messages	0,3805	PMM	COMB 4	0,5	No Messages	No Messages
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	CHS2.0x0.0 2	Column	No Messages	0,3828	PMM	COMB 4	0,5	No Messages	No Messages
55 CHS2.0x0.0 Column No	54	CHS2.0x0.0	Column	No	0,3828	PMM	COMB	0	No	No
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	55	CHS2.0x0.0	Column	No Messages	0,3827	PMM	COMB	0	No Messages	No Messages
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	CHS2.0x0.0	Column	No	0,3801	PMM	COMB	0	No	No Messages
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	CHS2.0x0.0	Column	No	0,3748	PMM	COMB	0	No	No
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	58	CHS2.0x0.0	Column	No	0,3668	PMM	COMB 4	0	No	No Messages
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	59	CHS2.0x0.0	Column	No	0,3563	PMM	COMB 4	0	No	No
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	60	CHS2.0x0.0	Column	No	0,3436	PMM	COMB 4	0	No	No
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	61	CHS2.0x0.0 2	Column	No Messages	0,3292	PMM	COMB 4	0	No Messages	No Messages
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	CHS3.15x0. 05	Column	No Messages	0,0008	PMM	DSTL1	2,5247	No Messages	No Messages
3 $CHS5.0x0.0$ 5 $Column$ No Messages $0,4729$ PMM $COMB$ 22 No Messages $Mosages$ Messages4 $CHS6.0x0.0$ 6 $Column$ No Messages $0,3569$ PMM $COMB$ 2 0 No Messages $Messages$ Messages5 $CHS6.0x0.0$ 6 $Column$ No Messages $0,3569$ PMM $COMB$ 2 0 No Messages $Messages$ Messages5 $CHS6.0x0.0$ 6 $Column$ No Messages $0,3483$ PMM $COMB$ 2 0 No Messages $Messages$ Messages6 $CHS6.0x0.0$ 6 $Column$ No Messages $0,3398$ PMM $COMB$ 2 0 No Messages $Messages$ Messages7 $CHS4.0x0.0$ 5 $Column$ No Messages $0,5731$ PMM $COMB$ 2 0 No Messages No Messages8 $CHS2.0x0.0$ 3 $Column$ No Messages $0,3136$ PMM $COMB$ 4 0 Messages No Messages9 $CHS2.2x0.0$ 3 $Column$ No Messages $0,3899$ PMM $COMB$ 4 0 Messages $Messages$ Messages10 $CHS2.2x0.0$ 3 $Column$ No Messages $0,4209$ PMM $COMB$ 4 0 Messages No Messages11 $CHS2.2x0.0$ 2 $Column$ No Messages $0,4209$ PMM $COMB$ 4 0 Messages No Messages	2	CHS5.0x0.0	Column	No	0,4188	PMM	COMB 2	2	No	No
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	CHS5.0x0.0	Column	No	0,4729	PMM	COMB 2	2	No	No
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	CHS6.0x0.0	Column	No	0,3569	PMM	COMB 2	0	No	No
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	CHS6.0x0.0	Column	No	0,3483	PMM	COMB 2	0	No	No Messages
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	CHS6.0x0.0	Column	No	0,3398	PMM	COMB	0	No	No
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	CHS4.0x0.0	Column	No	0,5731	PMM	COMB	13,2676	No	No Messages
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	CHS2.0x0.0	Column	No Massages	0,3136	PMM	COMB	0	No Messages	No
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	CHS2.2x0.0	Column	No	0,1907	PMM	COMB	0	No	No
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	CHS2.2x0.0	Column	No	0,3899	PMM	COMB	1,8365	No	No
12 CHS2.2x0.0 Column No 0.2420 PMM COMB 0 No No	11	CHS2.0x0.0	Column	No	0,4209	PMM	COMB 5	0	No	No
1 - 3 Column Messages 0,2720 Intern 5 0 Messages Messages	12	CHS2.2x0.0	Column	No	0,2420	PMM	COMB 5	0	No	No
13 CHS2.2x0.0 No No No 13 3 Column Messages 0,3929 PMM COMB 1,8365 Messages	13	CHS2.2x0.0	Column	No	0,3929	PMM	COMB 5	1,8365	No	No
14 CHS2.0x0.0 Column No 0,3638 PMM COMB No No No 14 2 Column Messages 0,3638 PMM 4 0 No No	14	CHS2.0x0.0	Column	No	0,3638	PMM	COMB 4	0	No	No

ΚΕΦ.8 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

15	CHS2.2x0.0	Column	No	0.2113	PMM	COMB	0	No	No
10	3 CHS2.2x0.0	Calaran	Messages No	0,2242	DMM	4 COMB	1 9265	Messages No	Messages No
16	3 CHS1 2x0 0	Column	Messages	0,3343	PMM	4 COMB	1,8365	Messages	Messages
17	25	Beam	Messages	0,1756	PMM	5 5	9	Messages	Messages
18	CHS1.2x0.0 25	Beam	No Messages	0,1319	PMM	СОМВ 5	0	No Messages	No Messages
19	CHS1.2x0.0 25	Beam	No Messages	0,1560	PMM	COMB 4	0	No Messages	No Messages
20	CHS2.0x0.0 2	Column	No Messages	0,0008	PMM	DSTL1	0	No Messages	No Messages
21	CHS2.0x0.0 2	Column	No Messages	0,0008	PMM	DSTL1	0	No Messages	No Messages
62	CHS2.0x0.0 2	Column	No Messages	0,0008	PMM	DSTL1	0	No Messages	No Messages
63	CHS2.2x0.0 3	Brace	No Messages	0,5427	PMM	COMB 5	2	No Messages	No Messages
64	CHS2.2x0.0 3	Brace	No Messages	0,4843	PMM	COMB 4	2	No Messages	No Messages
65	CHS2.2x0.0 3	Brace	No Messages	0,6277	PMM	COMB 4	1,99743	No Messages	No Messages
66	CHS2.2x0.0 3	Brace	No Messages	0,4964	PMM	COMB 6	2	No Messages	No Messages
67	CHS2.2x0.0 3	Brace	No Messages	0,4448	PMM	COMB 4	2	No Messages	No Messages
68	CHS2.2x0.0	Brace	No Messages	0,5585	PMM	COMB 4	2	No Messages	No Messages
69	CHS2.2x0.0	Brace	No	0,4420	PMM	COMB 5	7,24458	No Messages	No Messages
70	CHS2.2x0.0 3	Brace	No Messages	0,4447	PMM	COMB 5	5,43343	No Messages	No Messages
71	CHS2.2x0.0	Brace	No Messages	0,3920	PMM	COMB 4	7,24458	No Messages	No Messages
72	CHS2.2x0.0	Brace	No	0,3811	PMM	COMB	5,43343	No Messages	No Messages
73	CHS2.2x0.0	Brace	No	0,4125	PMM	COMB 4	0	No	No Messages
74	CHS2.2x0.0 3	Brace	No Messages	0,4912	PMM	COMB 4	7,2456	No Messages	No Messages
75	CHS1.5x0.0 2	Brace	No Messages	0,3325	PMM	COMB 4	0	No Messages	No Messages
76	CHS1.5x0.0 2	Brace	No Messages	0,2493	PMM	COMB 4	3,18264	No Messages	No Messages
77	CHS1.5x0.0 2	Brace	No Messages	0,3851	PMM	COMB 5	0	No Messages	No Messages
78	CHS1.5x0.0 2	Brace	No Messages	0,2787	PMM	COMB 5	6,36529	No Messages	No Messages
79	CHS1.5x0.0 2	Brace	No Messages	0,3328	PMM	COMB 4	0	No Messages	No Messages
80	CHS1.5x0.0 2	Brace	No Messages	0,2328	PMM	COMB 4	6,36529	No Messages	No Messages
81	CHS6.0x0.0 6	Column	No Messages	0,3313	PMM	COMB 2	0	No Messages	No Messages
82	CHS6.0x0.0 6	Column	No Messages	0,3228	PMM	COMB 2	0	No Messages	No Messages
83	CHS2.0x0.0 2	Column	No Messages	0,2204	PMM	COMB 4	0	No Messages	No Messages
84	CHS2.0x0.0 2	Column	No Messages	0,2204	PMM	COMB 4	0	No Messages	No Messages
85	CHS2.0x0.0 2	Column	No Messages	0,2205	PMM	COMB 4	0	No Messages	No Messages
86	CHS2.0x0.0 2	Column	No Messages	0,2206	PMM	COMB 4	0	No Messages	No Messages
87	CHS2.0x0.0 2	Column	No Messages	0,2207	PMM	COMB 4	0	No Messages	No Messages
88	CHS2.0x0.0 2	Column	No Messages	0,2207	PMM	COMB 4	0	No Messages	No Messages
89	CHS2.0x0.0 2	Column	No Messages	0,2207	PMM	COMB 4	0	No Messages	No Messages
90	CHS2.0x0.0 2	Column	No Messages	0,2210	PMM	COMB 4	0,5	No Messages	No Messages

Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομήςθεμελίωσης σε πυλώνες ανεμογεννητριών

91	CHS2.0x0.0	Column	No Messages	0,2218	PMM	COMB	0,5	No Messages	No Messages
92	CHS2.0x0.0	Column	No	0,2231	PMM	COMB	0,5	No	No
93	2 CHS2.0x0.0	Column	No	0,2250	PMM	COMB	0,5	No	No
94	CHS2.0x0.0	Column	No Messages	0,2275	PMM	COMB	0,5	No Messages	No Messages
95	CHS2.0x0.0	Column	No	0,2306	PMM	COMB	0,5	No	No
96	2 CHS2.0x0.0 2	Column	No Messages	0,2344	PMM	COMB 4	0,5	No Messages	No Messages
97	CHS2.0x0.0 2	Column	No	0,2389	PMM	COMB 4	0,5	No Messages	No Messages
98	CHS2.0x0.0	Column	No Messages	0,2441	PMM	COMB 4	0,5	No Messages	No Messages
99	CHS2.0x0.0 2	Column	No Messages	0,2501	PMM	COMB 4	0,5	No Messages	No Messages
100	CHS2.0x0.0 2	Column	No Messages	0,2568	PMM	COMB 4	0,5	No Messages	No Messages
101	CHS2.0x0.0 2	Column	No Messages	0,2642	PMM	COMB 4	0,5	No Messages	No Messages
102	CHS2.0x0.0 2	Column	No Messages	0,2722	PMM	COMB 4	0,5	No Messages	No Messages
103	CHS2.0x0.0 2	Column	No Messages	0,2807	PMM	COMB 4	0,5	No Messages	No Messages
104	CHS2.0x0.0 2	Column	No Messages	0,2896	PMM	COMB 4	0,5	No Messages	No Messages
105	CHS2.0x0.0 2	Column	No Messages	0,2988	PMM	COMB 4	0,5	No Messages	No Messages
106	CHS2.0x0.0 2	Column	No Messages	0,3081	PMM	COMB 4	0,5	No Messages	No Messages
107	CHS2.0x0.0 2	Column	No Messages	0,3172	PMM	COMB 4	0,5	No Messages	No Messages
108	CHS2.0x0.0 2	Column	No Messages	0,3259	PMM	COMB 4	0,5	No Messages	No Messages
109	CHS2.0x0.0 2	Column	No Messages	0,3339	PMM	COMB 4	0,5	No Messages	No Messages
110	CHS2.0x0.0 2	Column	No Messages	0,3410	PMM	COMB 4	0,5	No Messages	No Messages
111	CHS2.0x0.0 2	Column	No Messages	0,3468	PMM	COMB 4	0,5	No Messages	No Messages
112	CHS2.0x0.0 2	Column	No Messages	0,3510	PMM	COMB 4	0,5	No Messages	No Messages
113	CHS2.0x0.0 2	Column	No Messages	0,3535	PMM	COMB 4	0,5	No Messages	No Messages
114	CHS2.0x0.0 2	Column	No Messages	0,3540	PMM	COMB 4	0	No Messages	No Messages
115	CHS2.0x0.0 2	Column	No Messages	0,3539	PMM	COMB 4	0	No Messages	No Messages
116	CHS2.0x0.0 2	Column	No Messages	0,3522	PMM	COMB 4	0	No Messages	No Messages
117	CHS2.0x0.0 2	Column	No Messages	0,3481	PMM	COMB 4	0	No Messages	No Messages
118	CHS2.0x0.0 2	Column	No Messages	0,3419	PMM	COMB 4	0	No Messages	No Messages
119	CHS2.0x0.0 2	Column	No Messages	0,3337	PMM	COMB 4	0	No Messages	No Messages
120	CHS2.0x0.0 2	Column	No Messages	0,3241	PMM	COMB 4	0	No Messages	No Messages
121	CHS2.0x0.0 2	Column	No Messages	0,3137	PMM	COMB 4	0	No Messages	No Messages
122	CHS2.0x0.0 2	Column	No Messages	0,3039	PMM	COMB 4	0	No Messages	No Messages
162	CHS2.0x0.0 2	Column	No Messages	0,2568	PMM	COMB 5	0	No Messages	No Messages
163	CHS2.0x0.0 2	Column	No Messages	0,2568	PMM	COMB 5	0	No Messages	No Messages
164	CHS2.0x0.0 2	Column	No Messages	0,2570	PMM	COMB 5	0	No Messages	No Messages
165	CHS2.0x0.0 2	Column	No Messages	0,2571	PMM	COMB 5	0	No Messages	No Messages

ΚΕΦ.8 Βελτιωμένα αριθμητικά προσομοιώματα για την αλληλεπίδραση ανωδομής-θεμελίωσης σε πυλώνες ανεμογεννητριών

166	CHS2.0x0.0	Column	No	0,2572	PMM	COMB	0	No	No
167	2 CHS2.0x0.0	Column	No	0.2573	PMM	COMB	0	No	No
168	2 CHS2.0x0.0	Column	Messages No	0.2573	PMM	5 COMB	0	Messages No	Messages No
100	2 CHS2.0x0.0	Column	Messages No	0,2573	DMM	5 COMB	0.5	Messages No	Messages No
169	2 CHS2.0x0.0	Column	Messages No	0,2574	PMM	5 COMB	0,5	Messages No	Messages No
170	2 CUS2.0x0.0	Column	Messages	0,2580	PMM	5 COMB	0,5	Messages	Messages
171	2	Column	Messages	0,2593	PMM	5	0,5	Messages	Messages
172	CHS2.0x0.0 2	Column	No Messages	0,2611	PMM	COMB 5	0,5	No Messages	No Messages
173	CHS2.0x0.0 2	Column	No Messages	0,2636	PMM	COMB 5	0,5	No Messages	No Messages
174	CHS2.0x0.0 2	Column	No Messages	0,2668	PMM	COMB 5	0,5	No Messages	No Messages
175	CHS2.0x0.0 2	Column	No Messages	0,2707	PMM	COMB 5	0,5	No Messages	No Messages
176	CHS2.0x0.0 2	Column	No Messages	0,2753	PMM	COMB 5	0,5	No Messages	No Messages
177	CHS2.0x0.0	Column	No Messages	0,2808	PMM	COMB 5	0,5	No Messages	No Messages
178	CHS2.0x0.0 2	Column	No	0,2870	PMM	COMB 5	0,5	No	No
179	CHS2.0x0.0	Column	No	0,2940	PMM	COMB	0,5	No	No Messages
180	CHS2.0x0.0	Column	No	0,3018	PMM	COMB	0,5	No	No
181	CHS2.0x0.0	Column	No	0,3103	PMM	COMB	0,5	No	No
182	CHS2.0x0.0	Column	No	0,3194	PMM	COMB	0,5	No	No
183	2 CHS2.0x0.0	Column	Messages No	0.3290	PMM	5 COMB	0.5	Messages No	Messages No
184	2 CHS2.0x0.0	Column	Messages No	0.3389	PMM	5 COMB	0.5	Messages No	Messages No
185	2 CHS2.0x0.0	Column	Messages No	0.3489	PMM	5 COMB	0.5	Messages No	Messages No
186	2 CHS2.0x0.0	Column	Messages No	0.3589	PMM	5 COMB	0.5	Messages No	Messages No
187	2 CHS2.0x0.0	Column	Messages No	0.3685	PMM	5 COMB	0,5	Messages No	Messages No
188	2 CHS2.0x0.0	Column	Messages No	0.3775	PMM	5 COMB	0,5	Messages No	Messages No
190	2 CHS2.0x0.0	Column	Messages No	0.2856	DMM	5 COMB	0,5	Messages No	Messages No
109	2 CHS2.0x0.0		Messages No	0,3850		5 COMB	0,5	Messages No	Messages No
190	2 CHS2.0x0.0	Column	Messages No	0,3925	PMM	5 COMB	0,5	Messages No	Messages No
191	2 CHS2.0x0.0	Column	Messages	0,3979	РММ	5 COMB	0,5	Messages	Messages No
192	2 CHS2.0x0.0	Column	Messages	0,4014	PMM	5 COMB	0,5	Messages	Messages
193	2 CUS2.0x0.0	Column	Messages	0,4029	PMM	5 COMB	0,5	Messages	Messages
194	2 2	Column	Messages	0,4031	PMM	5 5	0	Messages	Messages
195	CHS2.0x0.0 2	Column	No Messages	0,4022	PMM	COMB 5	0	No Messages	No Messages
196	CHS2.0x0.0 2	Column	No Messages	0,3991	PMM	COMB 5	0	No Messages	No Messages
197	CHS2.0x0.0 2	Column	No Messages	0,3938	PMM	COMB 5	0	No Messages	No Messages
198	CHS2.0x0.0 2	Column	No Messages	0,3863	PMM	COMB 5	0	No Messages	No Messages
199	CHS2.0x0.0 2	Column	No Messages	0,3772	PMM	COMB 5	0	No Messages	No Messages
200	CHS2.0x0.0 2	Column	No Messages	0,3670	PMM	COMB 5	0	No Messages	No Messages
201	CHS2.0x0.0 2	Column	No Messages	0,3568	PMM	COMB 5	0	No Messages	No Messages
Παρατηρείται δηλαδή πως, ενώ οι λόγοι αξιοποίησης των διατομών του τρίποδα δεν υπερβαίνουν την τιμή **0.628**, υπάρχει μία αύξηση σε σχέση με τους αντίστοιχους του FM, με μέγιστο συντελεστή ασφαλείας για τη θεώρηση αλληλεπίδρασης ανωδομής – θεμελίωσης 1.05.

Ακόμα, εξάγονται οι αντιδράσεις των ελατηρίων των τριών πασσάλων έμπηξης:

Εικόνα 8.17: Αντιδράσεις εδαφικών ελατηρίων πασσάλων

Οι μετατοπίσεις της κορυφής του τρίποδα δηλαδή της βάσης της ανωδομής παρουσιάζεται στον ακόλουθο πίνακα.

Παρατηρείται ότι ο μέγιστος συντελεστής ασφαλείας για τη θεώρηση αλληλεπίδρασης ανωδομής – θεμελίωσης προκύπτει 1.593.

8.5. Επιμέρους σύγκριση επιλύσεων

Από τα παραπάνω καθίσταται εμφανές ότι:

- Οι μετακινήσεις κεφαλής του πυλώνα και αντίστοιχα του τρίποδα προκύπτουν, όπως ήταν αναμενόμενο, κατά πολύ αυξημένες για τα μοντέλα AFM.
 Οι θεμελιώσεις βαρύτητας είναι εν γένει αρκετά πιο ευαίσθητες στην επιρροής της αλληλεπίδρασης ανωδομής θεμελίωσης ως προς τη μετακίνηση της κεφαλής του πυλώνα σε σχέση με τις μονοπάσσαλες θεμελιώσεις. Το ίδιο ισχύει και για την περίπτωση του τρίποδα.
- Οι λόγοι εκμετάλλευσης της κρίσιμης διατομής του πυλώνα σε λυγισμό προκύπτουν ελαφρώς μειωμένοι, λόγω της ενδοσιμότητας του εδάφους και της μερικής λήψης τάσης από αυτό. Αντιθέτως, για τους λόγους εκμετάλλευσης των μελών του τρίποδα σε κάμψη και αξονική καταπόνηση με λυγισμό προκύπτει μία μικρή αύξηση.

Τύπος θεμελίωσης	γafm,d	ү ағм,ь
Θεμελίωση Βαρύτητας	1.410	0.939
Μονοπάσσαλη θεμελίωση	1.322	0.975
Θεμελίωση τρίποδα	1.593	1.063

Πίνακας 8.2: Συντελεστής ασφαλείας AFM για έλεγχο μετατοπίσεων κεφαλής πυλώνα [γ_{AFM,d}] και λυγισμού πυλώνα/αστοχία μελών [γ_{AFM,b}]

ΚΕΦ.9 ΣΥΜΠΕΡΑΣΜΑΤΑ

το παρόν κεφάλαιο πραγματοποιείται μία σύνοψη των κυριότερων συμπερασμάτων των προηγούμενων κεφαλαίων.

Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την πρόταση εναλλακτικού τρόπου ανάλυσης και σχεδιασμού σε περιπτώσεις χερσαίων και θαλάσσιων ανεμογεννητριών σταθερής βάσης. Η βελτιωμένη διαδικασία επίλυσης φιλοδοξεί να περιγράψει ακριβέστερα την αλληλεπίδραση του συστήματος ανωδομής - θεμελίωσης μιας ανεμογεννήτριας.

Ακόμα, η ποσοτικοποίηση του φαινομένου της αλληλεπίδρασης ανωδομής – θεμελίωσης αποτελεί έναν σημαντικό στόχο, ο οποίος βέβαια δεν είναι δυνατό να επιτευχθεί εξ ολοκλήρου στα πλαίσια μίας μεταπτυχιακής εργασίας, αλλά απαιτεί πληθώρα αναλύσεων και εκτενέστερων μελετών. Παρόλα αυτά, κατάλληλοι διορθωτικοί συντελεστές ασφαλείας προτείνονται ως ενδεικτικές τιμές.

Ως κυριότερα συμπεράσματα από τη σύγκριση των αποτελεσμάτων που προέκυψαν από την εφαρμογή των ανωτέρω παραμετρικών επιλύσεων αναφέρονται τα εξής:

 Όσον αφορά τη διαστασιολόγηση έναντι λυγισμού, υπάρχουν μικρές, αλλά όχι ευκαταφρόνητες επιρροές λόγω της αλληλεπίδρασης ανωδομής - θεμελίωσης. Ο παρακάτω πίνακας είναι ενδεικτικός. Ελαφρώς δυσμενέστερα αποτελέσματα προκύπτουν για τις περιπτώσεις χερσαίων ανεμογεννητριών και του τρίποδα.

Τύπος \ Είδος	Χερσαίες	Θαλάσσιες
Θεμελίωση Βαρύτητας	1.057	0.939
Μονοπάσσαλη θεμελίωση	1.017	0.975
Θεμελίωση τρίποδα	-	1.063

Ένας μέσος συντελεστής ασφαλείας για τις χερσαίες περιπτώσεις θα ήταν $\gamma_{AFM,b.L}=1.04$, ενώ για τις θαλάσσιες $\gamma_{AFM,b.Of}=0.99$. Αν εξεταστούν καθολικά οι περιπτώσεις των ανεμογεννητριών, τότε προκύπτει συντελεστής ασφαλείας $\gamma_{AFM,b}=1.01$, ο οποίος στην γενική περίπτωση είναι αμελητέος.

 Όσον αφορά τις προκαλούμενες μετατοπίσεις της κεφαλής του πυλώνα και του τρίποδα αντιστοίχως, υπάρχουν σημαντικές επιρροές λόγω της αλληλεπίδρασης ανωδομής - θεμελίωσης. Ο παρακάτω πίνακας είναι ενδεικτικός. Σαφώς δυσμενέστερα αποτελέσματα προκύπτουν για τις περιπτώσεις θαλάσσιων ανεμογεννητριών.

Τύπος \ Είδος	Χερσαίες	Θαλάσσιες
Θεμελίωση Βαρύτητας	1.397	1.410
Μονοπάσσαλη θεμελίωση	1.111	1.322
Θεμελίωση τρίποδα	-	1.593

Ένας μέσος συντελεστής ασφαλείας για τις χερσαίες περιπτώσεις θα ήταν $\gamma_{AFM,d.L}=1.25$, ενώ για τις θαλάσσιες $\gamma_{AFM,d.Of}=1.44$. Αν εξεταστούν καθολικά οι περιπτώσεις των ανεμογεννητριών, τότε προκύπτει συντελεστής ασφαλείας γ_{AFM} .d= 1.37, ο οποίος στην γενική περίπτωση είναι αμελητέος.

Συμπερασματικά, οι παραμετρικές επιλύσεις που διεξήχθηκαν στην εν λόγω μεταπτυχιακή εργασία αναδεικνύουν την **ανάγκη βελτιωμένης προσομοίωσης** της αλληλεπίδρασης του συστήματος ανωδομής – θεμελίωσης κυρίως όσον αφορά τις **μετακινήσεις** του φορέα, οι οποίες μπορεί να προκαλέσουν ποικίλα προβλήματα λειτουργικότητας και ευστάθειας της κατασκευής. Επιπτώσεις στην αντοχή λυγισμού των μελών και στον σχεδιασμό μπορεί ενδεχομένως να υπάρξουν, αλλά σε κάθε περίπτωση είναι περιορισμένης κλίμακας.

ΒΙΒΛΙΟΓΡΑΦΙΑ

ΚΑΝΟΝΙΣΜΟΙ:

- ✤ International Standard: Wind Turbines Design Requirements (IEC 61400 -1:2005)
- International Standard: Wind Turbines Design Requirements for offshore wind turbines (IEC 61400-3)
- Design of Offshore Wind Turbine Structures (DNV-OS-J101) May 2014
- Environmental Conditions and Environmental Loads RECOMMENDED PRACTICE, (DNV-RP-C205: 2010), DET NORSKE VERITAS AS
- American Petroleum Institute (API) RP 2A-WSD (2007), "Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design"
- BSI British Standards (2009), BS-EN 61400-3: 2009 Wind Turbines Part 3: Design Requirements for Offshore Wind Turbines, CENELEC, Brussels.
- European Standard Eurocode 3 (1993), Design of Steel Structures Part 1-1: General rules and rules for buildings.
- European Standard Eurocode 3 (1993), Design of Steel Structures Part 1-6: Strength and Stability of Shell Structures.
- European Standard Eurocode 3 (1993), Design of Steel Structures Part 1-9: Fatigue.

ΣΥΓΓΡΑΜΜΑΤΑ:

- Ευθυμία Μητσοπούλου, "Στατική των γραμμικών φορέων: κλασσικές και μητρωικές μέθοδοι ανάλυσης", Εκδόσεις Σοφία (2009)
- Nicholas Ward, "Wind Turbine Definition: The Way of the Future"
- Shweta Shrestha, "DESIGN AND ANALYSIS OF FOUNDATION FOR ONSHORE TALL WIND TURBINES", Clemson University (2015)
- Macalloy Bar & Cable Systems, "The foundation anchor solution for wind turbines: The Macalloy Bar"
- ♦ Jeramy C.Ashlock & Vern Schaefer, "Foundations for Wind Turbines ENGR340 (2011)
- Γιαννάτος Σ.Γ., "Ανάλυση Σύμμικτων Γεφυρών σε Κόπωση", Διπλωματική Εργασία ΕΜΚ ΔΕ 2012/40 - Ε.Μ.Π. (2012)

ΔΗΜΟΣΙΕΥΣΕΙΣ:

- Margariti G., Papadopoulos A., Barmpas D., Gantes C., Gkologiannis C., 8th GRACM International Congress on Computational Mechanics, Volos, 12-15 July 2015, "DESIGN OF MONOPILE AND TRIPOD FOUNDATION OF FIXED OFFSHORE WIND TURBINES VIA ADVANCED NUMERICAL ANALYSIS"
- SeaWind Σχεδιασμός θαλασσίων ανεμογεννητριών με βάση την επιτελεστικότητα", DAE S.A., TEPNA A.E., Εργαστήριο Μεταλλικών Κατασκευών Ε.Μ.Π., Εργαστήριο Υδραυλικής Μηχανικής Π.Π. (2012-2014)
- Jonkman J., Butterfield S., Musial W. and Scott G. (2009), "Definition of a 5-MW Reference Wind Turbine for Offshore System Development"

- ✤ Global Energy Statistical Yearbook Enerdata (2015)
- ✤ Support Structures to Offshore Wind Turbines 4C Offshore (2013)
- Civil Engineering Reference Manual for the PE Exam, Lindeburg, 8th ed
- NHI Course No.130094, Publication No. FHWA-NHI-11-032, GEC No.3, August 2011, U.S. Department of Transportation Federal Highway Administration

ΔΙΑΔΙΚΤΥΟ:

- ✤ <u>www.wind-power-program.com</u>
- ✤ <u>www.energizect.com</u>
- ✤ www.geotechdata.info
- ✤ <u>nwtc.nrel.gov/FAST8</u> NWTC Information Portal (FAST v8)
- ✤ energy.sandia.gov
- www.wikipedia.org
- ✤ <u>www.bloomberg.com</u>
- <u>www.irena.org</u> International Renewable Energy Agency
- ✤ <u>https://crewdevelopments.wordpress.com</u>
- ✤ <u>www.fastcompany.com</u>
- ✤ <u>www.vestas.com</u>
- <u>www.bp.com/statisticalreview</u> BP Statistical Review of World Energy (June 2015)
- ✤ <u>http://www.jandenul.com</u>
- http://www.ewea.org European Wind Energy Association
- ✤ <u>www.dsiminingproducts.com</u>
- ✤ <u>http://www.windfarmbop.com</u>