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Chaos was the law of nature; Order was the dream of man.

(Henry Adams, 1918)

In this workshop we are venturing into a smoky area of science
where nobody knows what the real truth is.

Such fields are always dominated by the compensation phenomenon:
supreme self-confidence takes the place of rational arguments.

(ET. Jaynes, 1990)

That new data that we insist on analyzing

in terms of old ideas

(that is, old models which are not questioned)
cannot lead us out of the old ideas.

(ET.Jaynes, 1996)

Everything should be as simple as it can be,
but not simpler

(quote attributed to A. Einstein in 1933).

When you have combined experimentation,
mathematically and physically based justification,
time-series analysis of billions of observations,

new parsimonious ideas applied to old and new data,
and some things seem to be puzzled out, then

you may have put some order into the chaos in Nature

but also, Nature has put some chaos into the order in you.



Abstract

The high complexity and uncertainty of atmospheric dynamics has been long identified through the
observation and analysis of hydrometeorological processes such as temperature, humidity,
atmospheric wind, precipitation, atmospheric pressure, river discharges etc. Particularly, all these
processes seem to exhibit high unpredictability due to the clustering of events, a behaviour first
identified by H.E. Hurst in 1951 while working at the River Nile, although its mathematical
description is attributed to A. N. Kolmogorov who developed it while studying turbulence in 1940.
To give credits to both scientists this behaviour and dynamics is called Hurst-Kolmogorov (HK). In
order to properly study the clustering of events as well as the stochastic behaviour of
hydrometeorological processes in general we would require numerous of measurements in annual
scale. Unfortunately, large lengths of high quality annual data are hardly available in observations
of hydrometeorological processes. However, the microscopic processes driving and generating the
hydrometeorological ones are governed by turbulent state. By studying turbulent phenomena in
situ we may be able to understand certain aspects of the related macroscopic processes in field.
Certain strong advantages of studying microscopic turbulent processes in situ is the recording of
very long time series, the high resolution of records and the controlled environment of the
laboratory. The analysis of these time series offers the opportunity of better comprehending,
control and comparison of the two scientific methods through the deterministic and stochastic
approach.

In this thesis, we develop the stochastic framework for the empirical as well as theoretical
estimation of the marginal characteristic and dependence structure of a process. Also, we develop
and apply explicit and implicit algorithms for stochastic synthesis of mathematical processes as
well as stochastic prediction of physical processes. Moreover, we discuss and suggest a definition
for turbulent processes through the Hurst parameter and the drop of variance with scale based on
experiments held at the laboratory. Additionally, we propose a stochastic model for the behaviour
of a process from the micro to the macro scale that results from the maximization of entropy.
Finally, we apply this model to other microscale turbulent processes as well as to temperature,
precipitation, humidity, atmospheric pressure, river discharges and wind time series from
thousands of stations around the globe and several billions of data.

A summary of the major innovations of the thesis are: (a) the further development, and extensive
application to numerous processes, of the classical second-order stochastic framework including
innovative approaches to account for discretization effects and statistical bias; (b) the further
development of stochastic generation schemes such as the Sum of Autoregressive (SAR) models, e.g.
AR(1) or ARMA(1,1), the Symmetric-Moving-Average (SMA) scheme in multiple dimensions (that
can generate any process second-order dependence structure, marginal distribution and certain
aspects of the intermittency behaviour) and an implicit and explicit cyclo-stationary (CSAR and
CSMA) schemes for simulating the periodicities of a process such as seasonal and diurnal; and (c)
the introduction and application of an extended HK stochastic model (with an identical expression
of marginal distribution and correlation structure) that is in agreement with an interestingly large



variety of turbulent (such as thermal jet of positively buoyancy processes using laser-induced-
fluorescence techniques as well as grid-turbulence generated within a wind-tunnel) and
hydroclimatic processes (such as temperature, atmospheric wind, dew-point/humidity,
precipitation and atmospheric pressure in a global scale).

Keywords: generic stochastic methodology; second order dependence structure; marginal
probability density function; intermittency; principle of maximized entropy; longterm persistence;
climacogram; autocovariance; power spectrum; variogram; simulation and prediction stochastic
algorithms; sum of independent Markov models; explicit moving-average generation scheme;
explicit and implicit cyclostationary generation schemes; statistical uncertainty of deterministic
models; process discretization; estimators adjusting statistical bias; fitting norms for both
distribution tails; small to large scale analysis; experimental turbulent jets; grid-turbulence; global
databases; temperature; dew-point/humidity; wind speed; precipitation; river-discharge;
atmospheric pressure; Koppen-Geiger climatic classification.



Mepiinym

H vymAn moAuvmiokdtnta kot offefatdTnTa TG SUVAUIKNG TNG ATHOCEALPAG £XEL ATO KOLPO
avayvwploBel péoa amd TV EUTELPIO KoL aVAAVOT TWV VSPOUETEWPOAOYIKWY SLEPYATLWOV, OTIWG
Beppokpacia, vypacia, Avepog, BPOYXOTTWOTN, ATUOCEPALPIKY TIECT, TAPOXEG TOTAUOU KTA.
ZUYKEKPLUEVA, OAEG aUTEG oL Slepyacies @aivetal va eumepléxovv peyaAn afefadmmta otnv
TPOLAeYT TOV emITEIVETAL AOY®W TNG OUASOTIOMNONG OUOELSWY OALVOUEVWY. AUTH 1) CUUTIEPLPOPA
elvat oAU S1a@OpPETIKY aTd TNV €MOYIKN TEPLOSIKAOTNTA OV cupPaivel o vTo-etnola kKAlpaka. H
OMaSOTOMOoN AUTY) TWV EALVOUEVWY avixVeLTNKE TpwTa amd tov H.E. Hurst to 1951 oto mAaiolo
UEAETNG €pYwV oTov ToTtapud Neido. H pabnuatikny ék@paocn authg TG CUUTIEPLPOPAS aToSISeTL
otov A. Kolmogorov mov v avéntue evw pedetovoe TupBwdn @awvopeva to 1940. T'a va dobel
etioov avayvwplon kal 6touvg 600 EMOTHUOVEG, TO PALVOUEVO Kol 1) SUVALKY auTH ovopaleTol
Hurst-Kolmogorov (HK).

o ™V cwot PEAETN AUTHG TNG OUASOTIOMONG TWV EALVOUEVWVY KOl YEVIKA TNV GTOXNOTIKY
CUUTIEPLPOPA TWV USPOUETEWPOAOYIKWY Slepyaoiwy, Ba Xpelalopaotay a@Boves UETPNOELS OE
emola KA{paka. AvoTuxwg, UEYOAa pnMkn Kol LYPNANG TolotnTag dedopéva eival dUokodo va
BpebBolv Y vSpopeTEWPOAOYIKEG Slepyacies. L6TOGO, 0L PUOIKESG SLEPYNOIEG PIKPNG KAILAKAG TTOV
Snuovpyovv kot odnyovv TIG USPOUETEWPOAOYLIKEG, SLETMOVTAL amod TUPPWON CUUTEPLPOPA.
MeAetwvtag TNV HKPOKAIpHoKa TUPPWSWV  @AWVOUEVWY OCE  €PYAOTNPLO, HTOPOVHE VI
KOTOVOT)OOUUE OPLOUEVEG EKPAVOEL TWV OUYYEVDV HOAKPOOKOTIKWY Slepyaciwv oTto Tmedio.
YTdapyxouv opLOUEVEG OMOLOTNTEG HETOAED TNG MKPOKAIHAKAG TNG ToxVTNTAG TOU GVEUOU KOl TNG
Bewplag TupBwdoug oplakov otpwuatos. Emiong to péyefog twv otaydvwv Bpoxmns, mou eival
OUVU@AOUEVO UE TNV LOPEPT] KoL EvTaoT eTELGOSiwY BpoxoTTwong, emmpealetal amd v TupPwdn
KATAOTAOT TNG WKPOKAILaKaG Tou avépov. OplopEVH LoXUPA TAEOVEKTIHATA TNG UEAETNG OTN
ULKPOKALPOK TUPRNG GTO EPYACTNPLO E(VAL 1] KATAYPAPT] XPOVOCELPWV PEYGAOU UNiKOUG, 1] VIMAN
OUXVOTNTA KOTAYPAPNG KAL TO EAEYXOUEVO TieplBAAAov Tou epyaotnpiov. H avaivon autwv Twv
XPOVOGELP®WV PG Sivel TN SuvaTtoTNTA KAAVTEPNG KATAVONONG, EAEYXOU Kal cUYKpLoNG Twv 600
ETILOTNHOVIKWOV HEBOSWV, TNG VTETEPUIVIOTIKIG KL TNG OTOXAOTIKNG XVAAUGOTG.

e autn TV STPLPN], AVATITUGCOVUE TO TAKIGLO TNG OTOXAOGTIKNG AVAAVGNG Yl TNV EUTIELPLKN
oAAA kol BewpnTiK EKTIUNON TEPOWPLWY XAPAKTNPLOTIKWOV KAl SOUNG OCUCYXETIONG HLOG
Siepyaciag. Emiong, oavamticoovpe kot e@appolovpe aAyopibuouvg oToxaoTikng ovvOeong
HoBNUOTIKOV aveAlfewv aAAd Kol oToxaoTikng TpoBAeyms @uokwv Siepyaciwv. Emiong,
oU{NTOVUE Kol TIPOTEIVOUUE £vav XAPOAKTNPLWOUO TNG TUPR®SOUG CUUTEPLPOPAS HECK ATIO TNV
TapdpeTpo Hurst kat v peiwon g Slaomopds pe TNV avinon g XPOoviknG KAlpakag pe Baon
gEpyaoTnplaKa Tepapata Beppavopuevns tupPwdouvs @AéBas. Emmpoobeta, mpoteivovpe éva
OTOXOOTIKO HOVTEAO GCUUTEPLPOPAS MG Slepyaciag amd HIKPEG O UEYAAEG KAIHOKEG, TOU
TIPOKVTITEL ATIO TNV UEYLOTOTIOMON NG evipotiag. TéAog, e@apuolovpe autd TO POVTEAO KAl OF
aAAeg Stepyaoies pikpokAipakag TopAng aAAd kal oe Xpovooelpes Bepuokpaciag, BpoxomTwong,
Vypaciag, aTHOCEULPIKNG TEGNG, TIHPOX WV TOTAUOV KL AVEUOV, ATIO XIALASEG 0TABUOVG avd ToV
KOG 0.
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Overture and acknowledgment

An accomplishment may be important (or not) to know, whereas the extreme conditions (if any) under
which this was made are always important to know.
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Engineer studies at NTUA (Stochastics and Applied Hydraulics) and from the MSc (by scholarship)
in Hydrology at Imperial College of London (Stochastic and Hydrometeorology). But now it seemed
too easy, so we added some Laboratory Experiments to link the areas. Fortunately, the described
topic was not already taken, so along with Demetris, Panos and Christian, we formed the final title
of my Ph.D thesis (which interestingly, remained the same until the end).

So, the original plan was simply to:

» Understand and improve the framework of Stochastics (from the statistical analysis of a
timeseries to the introduction, application ad generation of a second-order stochastic model).

» Perform laboratory experiments at NTUA (velocity and concentrations of hydraulic jets)

» Find stochastic similarities between these two and among other hydrometeorological processes
from analysis of thousands of stations around the globe.

Boundary conditions of the PhD
In the next Figure, we present my extended supervisory committee.
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doubt) the greatest, most intuitive and well educated Scientist and Teacher in his fields of expertise
[ had ever met with such a universally recognized work. He has collaborated as equal to equal with
all the members of his universal team (and outside his team), colleagues, scientists and students,
and has created the (in situ) scientific community of ITIA (it is not by luck that all the members of
ITIA have become great scientists in their fields of expertise).

[ am also thankful and honored that I had the opportunity to collaborate with Panos, a great
Teacher, an expert in fluid mechanics and the greatest experimentalist Civil Engineer (in situ and in
field) I had ever met in our School at NTUA. I can’t even remember how many hours he spent
working with me at the Laboratory with classical and high-tech technologies (like the Laser-
Induced-Fluorescence and PIV) and helping other colleagues, scientist and students to get familiar
with the art of experimentalist. He also taught me the importance of experiments and
measurements in every aspect of engineering work and particularly, in Hydraulics and Turbulence.



Also, I am thankful to Christian who is a great Mathematician in his field of expertise. I had the
luxury of meeting him as my Teacher at Imperial College and his expertise in stochastics came at
hand when higher mathematical knowledge were required as for example, when we were
struggling to find some properties of the n-dimensional field of the second-order stochastic
framework.

[ am thankful to Nikos Mamasis, who is, without doubt, a great Teacher capable of explaining even
difficult and sophisticated meanings to any person willing to listen. He had supported me in several
situations during my PhD and his expertise in climate dynamics came at hand more times than I can
remember. He has handled the largest number of undergraduate and graduate theses (almost 100),
teaches at NTUA in 10 courses and has worked in over 30 projects.

[ am thankful to Andreas Efstratiadis, who has scientifically (and philosophically) supported me
several times during my PhD. He is the strongest non-academic I have ever met with publications
and citations that are above the average of the academic community in our School. He has handled a
very large number of undergraduate and graduate theses (almost 50), teaches at NTUA in 5 courses
and has worked in over 17 projects.

Great Thanks are also due to the ITIA research group that besides the financial crisis has a large
number of expertises in many fields, provides highly sophisticated open-software for hydrological
management and modelling, and keeps inspiring young scientists. More particular, I would like to
thank for their friendship, collaboration, exchange of ideas and support, Any Iliopoulou, Katerina
Tzouka, Hristos Tyralis, Yiannis Markonis, Federico Lombardo and his beautiful family, Georgia
Papacharalampous, Romanos Iloannidis, Simon Papalexiou, Antonis Koukouvinos, Antonis
Christofides, Sandra Mpaki, George Karavokiros, Evangelos Rozos, Archontia Lykou, Yiannis
Tsoukalas, Panagiotis Kossieris, Stefanos Kozanis, Vicky Tsoukala, Christos Markopoulos, and
Dimitris Dermatas.

[ am also thankful to Panos’ strongest PhD students Dr. Elias Papakonstantis and Dr. Spyros Michas,
and his PhD candidates Aris Mauromatis and Evgenios Retsinis, for helping me with the
experiments at the laboratory (many Thanks also to Manolis and Giannis, the two tireless engineers
of the laboratory). Also, I would like to thank Giannis Nikiforakis for his the exchange of ideas and
collaboration in so many experiments held at the laboratory, Georgia Papadonikolaki for her
collaboration, exchanging of ideas, and our interesting scientific talks drinking coffee and beers, and
Anthi Gkesouli for our friendly talks and exchanging of ideas.

Also, smaller but Crucial contribution has been made by Marina Pantazidou (for the exchange of
ideas and interesting questions), Andreas Langousis (for his strong but fair position towards
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Figure: My (extended) supervisory committee. From left to right, Demetris Koutsoyiannis, Panos

Papanicolaou, Christian Onof, Nikos Mamasis, Andreas Efstratiadis and the ITIA group.

Since “a man is known by the company he keeps” a successful PhD should be on the way.

Initial conditions of the PhD

The beginning of my PhD is placed at the beginning of the Financial Crisis in Greece. After my return

to Greece we got at least 5 rejections concerning my PhD (2010 to 2017):

>
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Heraclitus II (2010, European Commission): “The most excellent proposal in Hydrology”
(evaluated 9/10 by reviewer from Greece) vs. “This is already done” (evaluated 6/10 by
anonymous Greek reviewer from USA, without providing any references justifying this
statement) resulted in a final decision with rejection by a third reviewer (NTUA).

NTUA (internal scholarship): rejection due to application at an early stage of my PhD.

NTUA (internal scholarship): rejection due to application at a late stage of my PhD.

NTUA (IIEBE): successful (!) but NTUA unable to fund research due to the financial crisis.

State Scholarships Foundation (IKY, Greece): Rejection by mistake -my supervisor was
accidently evaluated lower than me- (President of IKY promised through email that he will
never let the two anonymous reviewers participate in evaluations again).

Laboratory of Applied Hydraulics of NTUA lacked of appropriate facilities for microscale
turbulence experiments (e.g., a dark room was necessary for the calibration and application of
the Laser-Induce-Fluorescence technique).

Numerical scheme of the PhD

The PhD typically started (part time) a little bit later (2012) due to the funding provided by several
NTUA projects (supervised by Demetris, Panos and Nikos). In total, I gained great work experience

by doing several tasks (such as land surveying and statistical analysis of medical data). I gained

great scientific experience by meeting several challenges (such as working side-by-side with great

scientists and colleagues, and co-supervising undergraduate and graduate theses). For example,
turbulent experiments were held during the night (mostly 20:00 to 03:00 and sometimes even
later) and also a few times at the University of Thessaly in Volos. Difficult numerical calculations



were performed mostly using open-software (or software provided by NTUA). For the above
reasons, creativity was highly increased after giving up on the system and started giving trust to
people that never failed me (I hope I didn’t failed them). Note that the only problem was that I
didn’t have much time to exercise (so, I gained a little weight).

General output results of the PhD

The general results from the PhD thesis are:

>
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A\

In total nine publications in scientific journals (some additional ones are still pending)

Around 45 conference publications (in 17 conferences, mostly funded by NTUA)

More than 25 co-supervised theses (undergraduate and graduate level)

Participation in several projects, 5 Courses (3 at undergraduate level and 2 at graduate level)
and challenging tasks (e.g., organizing tens of students for the EGU conference)

Met great people! (see next Figure for a small sample)

Figure: A sample of the Great People | met during my PhD thesis.
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1 Introduction

1.1 The complexity of nature

The word “complex” is attributed to “a whole comprised of parts” and comes from Latin but has
been re-borrowed from ancient Greek (originated from the verb “cuumA¢ékw”). It constitutes of the
Latin preposition “com” or “cum”, which is related to the Greek preposition “cuv” and is used,
usually at the beginning of a word, to declare union, ensemble etc.; and the Latin verb “plectere”
which comes from the Greek verb “mAékw” meaning “weave”, “twine” etc. In recent times, we
characterize a process as complex if it is difficult to analyze or explain it in a simple way. Climate
dynamics is characterized by high complexity since it is comprised by numerous geophysical
processes interacting with each other in a non-linear way. However, most of the involved processes
(will) remain unknown since it is impossible to fully analyze such complicated systems.
Nevertheless, even if we could determine a set of physical laws that describe in full detail the
complexity of climate dynamics it would be impossible to combine the equations for the purpose of
predictability due to the existence of chaos, i.e., a non-predictive sensitivity to initial conditions. For
example, consider the analysis of Poincaré (1890) for the three-body problem, where chaotic
behaviour emerges from the equations of classical mechanics when studying the interacting
gravitational forces between three bodies (e.g., planets). Similar results came into sight from Lorenz
(1963) while applying a simplified set of equations for the analysis of atmospheric dynamics. E.N.
Lorenz came across to the idea that non-linear dynamic systems may have a finite limit of
predictability (which for weather prediction he estimated this limit to be around two weeks), even
if the model is perfect and even if the initial conditions are known almost perfectly. Later on,
numerous methodologies were initiated not for predicting the exact outcome of a non-linear
system, which as we already explained may be trivial, but for rather estimating the limits of this
prediction through an alternative approach of stochastic analysis.

1.2 The stochastic approach

The scientific interest on Stochastics has increased over the last decades as an alternative way of
deterministic approaches, to model the so-called random, i.e., complicated, unexplained or
unpredictable, fluctuations recorded in non-linear geophysical processes. Randomness can emerge
even in a fully deterministic system with non-linear dynamics (Koutsoyiannis, 2010). Thus,
Stochastics help develop a unified perception for all natural phenomena and expel dichotomies like
random vs. deterministic. Particularly, there is no such thing as a ‘virus of randomness’ that infects
some phenomena to make them random, leaving other phenomena uninfected. It seems that rather
both randomness and predictability coexist and are intrinsic to natural systems which can be
deterministic and random at the same time, depending on the prediction horizon and the time scale
(Dimitriadis et al., 2016b). On this basis, the uncertainty in a geophysical process can be both
aleatory (alea = dice) and epistemic (as in principle we could know perfectly the initial conditions
and the equations of motion but in practice we do not). Therefore, dichotomies such as
‘deterministic vs. random’ and ‘aleatory vs. epistemic’ may be false ones and may lead to paradoxes.



The line distinguishing whether determinism (i.e. predictability) or randomness (i.e.
unpredictability) dominates is related to the scale (or length) I(¢) of the time-window within which
the future state deviates from a deterministic prediction by an error threshold €. For errors smaller
than &, we assume that the system is predictable within a time-window I(¢) and for larger errors
unpredictable (Dimitriadis and Koutsoyiannis, 2017). Therefore, by applying the concept of
stochastic analysis we identify the observed unpredictable fluctuations of the system under
investigation with the variability of a devised stochastic process. This stochastic process enables
generation of an ensemble of realizations, while observation of the given natural system can only
produce a single observed time series (or multiple ones in repeatable experiments).

1.3 The Hurst-Kolmogorov dynamics

The high complexity and uncertainty of climate dynamics has been long identified through plain
observations as well as extended analyses of hydrometeorological processes such as temperature,
humidity, surface wind, precipitation, atmospheric pressure, river discharges etc. Particularly, all
these processes seem to exhibit high unpredictability due to the clustering of events, an example is
large periods of high annual precipitation which are usually followed by large periods of annual
droughts. Note that this behaviour should not be confused with seasonal effects that correspond to
sub-annual scales. Interestingly, this clustering behaviour has been first identified in Nature by
Hurst (1951) while analyzing water levels from the Nile for optimum dam design. However, the
mathematical description and analysis of this behaviour through a power-law autocorrelation
function (vs. lag) is attributed to Kolmogorov (1940) who developed it earlier while studying
turbulence. To give credits to both scientists Koutsoyiannis (2010) named this behaviour as Hurst-
Kolmogorov (HK) behaviour.

1.4 From the microscopic analysis to the macroscopic observation

In order to properly study the aforementioned clustering of events and, in general, the stochastic
behaviour of hydrometeorological processes we would naturally require copious measurements in
annual scale. Unfortunately, large lengths of high quality annual data are hardly available in
observations of hydrometeorological processes (Koutsoyiannis, 2014). However, the microscopic
processes driving and generating the hydrometeorological ones are governed by turbulent state,
e.g. as identified in the field of Hydrology by Mandelbrot and Wallis (1968). For example, the size of
drops which is highly linked to the form and intensity of precipitation events is strongly affected by
the turbulent state of small scale atmospheric wind (Falkovich et al., 2002). Also in a physical-basis
the rain rate is found to be a function of gradient level wind speed, the translational velocity of the
tropical cyclone, the surface drag coefficient, and the average temperature and saturation ratio
inside the tropical cyclone boundary layer (Langousis and Veneziano, 2009). Another example is
the multifractal similarities between rainfall and turbulent atmospheric convection (Veneziano et
al,, 2006). Therefore, by studying turbulent phenomena (or other related small scale processes) in
situ we may be able to understand certain aspects of the related macroscopic processes in field.
Additional advantages of studying macroscopic processes in field through the microscopic



turbulent ones in situ could be the recording of very long time series, the high resolution of records
and the controlled environment of a laboratory.

1.5 Scientific innovations of the thesis

In this thesis, the sections are organized as follows: (1) in the first section we introduce basic
concepts of the thesis, such as the HK dynamics and we discuss on the motivation and the scientific
interest of the thesis mostly from an engineer point of view; (2) in the second section we introduce
and develop the statistical tools as well as the methods used in the thesis; (3) in the third section we
introduce and develop the generation algorithms that are extensively used in the thesis; (4) in the
fourth section we discuss on how and why the HK dynamics are related to uncertainty as well as on
the dichotomy between randonmness and determinism, with plenty applications on deterministic
and more complex processes; (5) in the fifth section we conduct a stochastic analysis on an
isotropic and an anisotropic turbulent process and we discuss on some identified similarities to
hydrometeorological processes; (6) in the sixth section we apply a stochastic analysis on several
hydrometeorological processes from a local to a global scale and we show how simple stochastic
models can simulate certain challenging aspects such as long-term persistence, and (7) in the
seventh section we summarize our results by highlighting the most important ones, and we discuss
on future investigations.

The major innovations of the thesis are the following: (a) further development and extensive
application to numerous processes of the classical second-order stochastic framework (sections 2.1
to 2.3 and 2.5) and related monoschedastic processes; (b) the estimation of the dimensionless
statistical error through Monte-Carlo analysis for a variety of Markov and HK models, regarding the
power spectrum, autocovariance and climacogram (section 2.4.5); (c) the exact mathematical
expression of the statistical bias of the autocovariance, variogram and power spectrum classical
estimator as a function of the theoretical autocovariance and climacogram (sections 2.3.4 and
2.3.5); (d) the introduction of the Markov process for a different time interval and response time,
and the expressions for its generation through an ARMA(1,1) model (section 2.4.1); (e) the further
development of the Sum of Autoregressive (SAR) and Moving Average (SARMA) schemes that can
generate a large variety of Gaussian processes approximated by a finite sum of AR(1) or ARMA(1,1)
processes (section 3.2); (f) the further development of the Symmetric-Moving-Average (SMA)
scheme that can explicitly (or implicitly) generate any process second-order dependence structure,
approximate (or exactly) preserve any marginal distribution function as well as simulate certain
aspects of the intermittent behaviour (sections 3.3); (g) the introduction and application of an
extended HK model to various turbulent and hydroclimatic processes (sections 2.4.3, 5.3, 6.3 and
6.4); (h) estimation of the Hurst parameter based on the Képpen-Geiger climatic-classification for
numerous hydroclimatic processes from global databases (section 6.5); and (i) the further
development of the multi-dimensional classical second-order stochastic framework and HK process
(section 3.4).

Incidental contributions and moderate innovations of this thesis are: (a) several illustrative
comparisons between complex natural as well as purely deterministic processes and the emerging
statistical uncertainty (section 4); (b) the further development and application of analogue and



stochastic prediction algorithms based on the climacogram (sections 3.5 and 4); (c) the estimation
of the most uncertain parameters in flood inundation modelling based on commonly-used hydraulic
models and on benchmark geometries (section 4.2); (d) the further development of how to deal
with discretization and statistical bias in stochastic modelling by selecting appropriate
climacogram-based estimators for the identification of the second-order dependence structure of a
process in case of the analysis of a single time series and of several time series of the same process
with different lengths and identical lengths (sections 2.5 and 6).

2 Definitions, methods and notation for stochastic analysis

In this section, we present the definitions and notations of the concepts used in the thesis as well as
the statistical metrics, methods and models for the stochastic analysis.

2.1 The definition of Stochastics and related concepts

AN. Kolmogorov (1931) is the first to mathematically define how a process can be stochastically
determined based on the theory of continuous-time probability function (rather than discrete), a
concept first visualized and applied by Bachelier (1900) while working on the evolution of price for
his PhD thesis (Koutsoyiannis and Dimitriadis, 2016). Kolmogorov (1931) distinguishes a purely
deterministic from a stochastic process by correspondingly letting a preceding state to uniquely
define a subsequent state rather than by permitting only a certain probability of a possible event of
a subsequent state to occur. Alternatively, the change of a physical system is deterministically
(stochastically) defined if (the probability distribution for) every subsequent state is decisive by the
knowledge of a preceding state. Therefore, a deterministic (stochastic) physical process can exactly
predict (the probability of an event of) a future state given the present and/or past state. The
purpose of stochastic analysis, or else the mathematical field of Stochastics, is to subject a natural
process to a stochastic process, or in other words to predict real changes using a stochastic (i.e., not
purely deterministic) mathematical scheme. Two additional concepts can arise from the above
definition of Stochastics, these of stationarity and ergodicity (Koutsoyiannis and Montanari, 2015).
The main scope of a stochastic analysis is the identification of the most parsimonious model in
continuous time that adequately preserves the physical characteristics of the natural process in
discrete time along with its statistical estimates from observed timeseries in order to investigate its
future variability through the generation of synthetic timeseries (Figure 1).

The analysis presented in this thesis is based on both the assumption of (cyclo)stationarity
(although it can be easily expanded to non-stationary processes following the methodology
described in section 3.3) and ergodicity, so that we can estimate all the desired characteristics of
the marginal distribution, dependence structure and combination thereof (e.g., intermittent
behaviour) from a single time series and simulate all periodicities (e.g., seasonal, diurnal) of the
process. Another important concept used in most of the applications is the homogenization, where
all time series corresponding to a single physical process are treated as realizations of a single
mathematical process, with a single marginal distribution and dependence structure. Therefore, by
a simple homogenization scheme (which depends entirely on the expression of both the marginal



distribution and dependence structure) we can combine all related time series to a single one with
a much larger length and thus, towards a better estimation of the statistical and stochastic
characteristics (see sections 5 and 6 for such applications). Note that the homogenization should
not be confused with the concept of standardization which corresponds to the dimensionalization
of a process by simply dividing it with a parameter or to the concept of normalization which can be
only applied to normal (or close to normal) processes in order to transform them properly to follow
exactly (or approximately) the standard N(0,1) distribution.

Observations of natural Statistical estimation &
processes time series synthesis

Stochastics

—

Stochastic process in Stochastic process in
continuous time discrete time

Figure 1: The steps for a stochastic analysis (source: Koutsoyiannis and Dimitriadis, 2016).

2.2 Observing a natural stochastic process

A stochastic analysis should imitate the physical procedure of data collection as much as possible
rather than strictly the observations. Nature is the most beautiful Being and although She might let
you observe She will never reveal Her true secrets. Observation of natural processes includes
numerous technical and unsurpassed obstacles, mostly related to hydrometeorological and
engineering processes, which are introduced by the complexity of numerous known and unknown
interacting processes, such as (known) instrumental errors and the (unknown) hydroclimatic
variability. This is of high importance in stochastic analysis and a stochastic analyst should be
cautious with data as well as the technical properties of the instrument used for data collection in
order not to end up simulating, without knowing it, the limitations of the instrument rather than
the physical process.

Although natural processes evolve in continuous time all observed timeseries are subject to a
response time 4 > 0 of the instrument and a sampling time interval D = 4, often fixed by the
observer. The corresponding discretized mathematical process can be estimated by averaging the
continuous one over a time scale 4 = 0 for every time interval D = A. It should be noted that
although the case 4 = 0 is technically impossible, it is theoretically possible and can be used as an

approximation for instruments of high resolution. Thus, the discrete time stochastic process x*"”)
can be calculated from the continuous one x(t) as:
(i-1)D+4
(4,p) _ f(i—1)D £(f)d€ (1)
ST



. . . . . . T—A .
where i € [1,n] is an index representing discrete time, n = TJ + 1 is the total number of

realizations and T € [4, ) is the time length of the realization sample (Figure 2). Note that
underlined quantities denote random variables.

x(t)4

-

continuous time process
e discrete time process

W

D

Figure 2: An example of realization (blue line) of a continuous time process x and a sample of

A,D)

Xi( (a,D)

realizations (black dots) of the discretized process x; averaged at time scale 4, with time

intervals D and for a total period T (source: Dimitriadis et al., 2016a).

2.3 Stochastic metrics for identification of a stochastic process

During a stochastic analysis we first have to visualize certain behaviours of the natural process
using the appropriate stochastic metrics, then to combine them for the identification of the
mathematical process and finally, to estimate the parameters of the latter. For simplicity, we can
investigate separately the probability distribution function and the dependence structure of the
process.

2.3.1 Most common measures for the marginal characteristics of a process

The marginal characteristics of the process can be entirely described by the probability distribution
function, i.e., F(g) = P({ < x), where x is the random process and x is a realization of the process.
In this thesis, we also use the tail probability distribution function, i.e., F*(g) =1- F(g), and the
density distribution function, i.e., f (g) =dF (g) /dx. The distribution function is estimated through
ﬁ(g) =n'/g(n), where n’ is the empirical number of occurrence with values less or equal to x, n is
the total number of observations, and typically g(n) = n + 1 is known as the Weibull estimator. For
the density of the distribution function we use the forward difference quotient, i.e., f (g) =

(F'(g +h)— F(g)) /h, where h is the length of the interval over which f is estimated. Note that the

estimation of a marginal characteristic of a process through the distribution function has the
drawback of preference of the function g(n), whereas through the density distribution function
that of the type of the derivative discretization. Other important marginal characteristics of the



process are the statistical moments (raw, central etc.) that can be estimated directly from the
distribution density function, i.e. for the central ones E [(g - ,u)i] = f_oooo(g - u)if(g) dx., fori>1,
where y = E[g] is the mean of the process. In case of large samples we can either use the above
definition (i.e., provided that we know the theoretical distribution f(g) of the process) in

discretized form or the classical estimators for the sample central moments, whereas for small
samples lack of information on f(g) could lead to poor estimation of the sample moments.

2.3.2 Most common and uncommon metrics for the dependence structure of a process

For the second order dependence structure (we will refer to this as dependence structure) we
present several metrics based on the correlation between variables as a function of lag as well as on
the variance of averaged variables as a function of scale. The first presented metric is the

climacogram y (k), i.e., the variance of the scaled process i.e., %fok x(t)dt vs. scale k, where k = k4 is

the continuous-time scale in time units and k the dimensionless discrete one, assuming that 4 = D is
a time unit that is used for discretization (Koutsoyiannis, 2000). The climacogram is directly linked

to the autocovariance c(h), i.e., c(h) = %az(hzy(h))/ahz, where his the continuous-time lag in time

units, and its power spectrum, i.e, s(w):= 2 ffooo c(h) cos(2mwh) dh, where w is the continuous

frequency in reverse time units (Koutsoyiannis, 2013). Thus, each of these three stochastic tools
contains exactly the same information and either can be used for the estimation of the dependence
structure. However, it has been shown that the former provides better estimates than the other two
(Dimitriadis and Koutsoyiannis, 2015a) and therefore, all applications here are based on the
climacogram. In Tables 1-3, we introduce the definitions of several climacogram-based measures
and in Tables 4-6, the corresponding autocovariance-based ones. We show the definitions in case of
a stochastic process in continuous time and in discrete time, widely used estimators and
estimations based on the latter estimators, all expressed as a function only of the climacogram
(Dimitriadis et al., 2016a).

2.3.3 Climacogram-based metrics for the dependence structure as a function of scale

First, we present the climacogram definition and expressions for a process in continuous and
discrete time, along with the properties of its estimator (Table 1), for comparison with the
autocovariance function.



Table 1: Climacogram definition and expressions for a process in continuous and discrete time,
along with the properties of its estimator. Source: Dimitriadis et al., (2016a).

Type Climacogram
continuous k (T1-1)
ys=var | [ x| /e
0
where k € R*
discrete Var[y ., x4 (T1-2)
YD (k): = % =y(k4)
where k € N is the dimensionless scale for a discrete time process
classical 1 ln/x| 1 Ki “ yn 1&(A) z (T1-3)
estimator P (k) = —— Z Z _&i=a
14 () n—1~« K 4 4 n
i=1 I=k(i-1)+1
expectation . 1—yma)/y(x4) (T1-4)
El7@W k)| = A
of classical [Z ( )] 1—x/n v(kd)

estimator

Note that the climacogram can be estimated through other methods such as raw moments, L-
moments etc. but for convenience in this thesis we choose the central classical moment estimator.
Furthermore, we introduce a climacogram-based variogram (CBV) for comparison with the
classical variogram defined in Table 5.

Table 2: Climacogram-based variogram (CBV) definition and expressions for a process in
continuous and discrete time, along with the properties of its estimator (source: Dimitriadis et al,
2016a).

Type Climacogram-based variogram

continuous  &(k):=y(0) —y(k) (T2-1)
discrete gé“) (©): = y(0) — y(k4) (T2-2)
classical é(l“) () = y(0) — ic(ld) (1) (T2-3)
estimator

expectation g [§§A) (K)] =y(0)—E [§§A) (K)] (T2-4)

of classical
estimator

Note that CBV includes the process variance at scale 0, i.e., y(0), and so, in cases where y(0) is
infinite, we can use a slightly different estimator with y(4) instead. Finally, we introduce a



climacogram-based spectrum (CBS) for comparison with the classical power spectrum
(Koutsoyiannis, 2013) defined in Table 3.

Table 3: Climacogram-based spectrum (CBS) definition and expressions for a process in continuous
and discrete time, along with the properties of its estimator (source: Dimitriadis et al., 2016a).

Type Climacogram-based spectrum
continuous 2y(1/w) y(1/w) (T3-1)
Yw): = -2

where w € R is the frequency for a continuous time process (in inverse
time units) and is equal to w=1/k.

discrete @, N 2y(1/w) 3 y(1/w) (T3-2)
1/Jd (w):= (1 }/(0) >
where w € R is the frequency for a discrete time process (dimensionless; w
=wd)
classical ~) _2y(1/w) y(1/w) (T3-3)
estimator Ya (@) = w (1 Ty (0) )
expectation E[5® _ 2E[y(1/w)] 1 Ely(1/w)] Var[y(1/w)] (T3-4)
of classical ¥ (w)] - w ( RO y(O)E[y(l/w)]>

estimator

Note that in cases where y(0) is infinite, CBS simplifies to @ Another useful metric is the

dimensionless-climacogram which is defined as y(k)/y(0) (to be used as an alternative tool to the

autocorrelation function).

2.3.4 Autocovariance-based metrics for the dependence structure as a function of lag

The climacogram is useful to measure the variance of a process among scales (the kinetic energy, in
case the variable under consideration is the velocity), and has many advantages in stochastic model
building, namely small statistical as well as uncertainty errors (Dimitriadis and Koutsoyiannis,
2015a). It is also directly linked to the autocovariance function c(h), h being the continuous-time

lag, by the following equations (Koutsoyiannis, 2013):

1
y(k) =2 f(l — x)c(xk)dx (2)
c(h) = % 3)

The autocovariance definition and expressions for a process in continuous and discrete time, along
with the properties of its estimator can be seen in Table 4.



Table 4: Autocovariance definition and expressions for a process in continuous and discrete time,
along with the properties of its estimator (source: Dimitriadis et al., 2016a).

Type Autocovariance

continuous  c(h): = cov|[x(t), x(t + h)] (T4-1)

where h € R is the lag for a continuous time process (in time units)

discrete @ () = Ny (a)] (T4-2)

O WETOART

1

=2 (@ + D (@ + D) + @ - D (@ - D4) - 207y (vD))

where v € Z is the lag for the process at discrete time (dimensionless)
classical ] = 1 (& 1 (& (T4-3)
estimator P @) = —Z @ = Z x@ @ - Z x®

&4 % X4 Xiyj X

{(v) 4 n Son
i=1 =1 =1

where {(v) is usually takenas:norn-1orn-u.

expectation

of classical ()

[ )] = ((n ~0)c @) + Ly wa) - vy (na) - "Ly ((n - v)A)) " (44

estimator

* For proof see in (Dimitriadis and Koutsoyiannis, 2015a).

We then introduce the classical variogram or else the second-order structure function (Table 5).
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Table 5: Variogram definition and expressions for a process in continuous and discrete time, along
with the properties of its estimator (source: Dimitriadis et al., 2016a).

Type Variogram

continuous  v(h):= c(0) — c(h) (T5-1)
discrete vé“) W):=y(4) - CéA) @) (T5-2)
classical ﬁé“) @) =7(4) - _Aé“) W) (T5-3)
estimator

expectation [0 ()] = E [Z(A)] —E[¢® )] (T5-4)

of classical
estimator

2.3.5 The power spectrum

Finally, we define the power spectrum (or else spectral density) that was introduced as a tool to
estimate the distribution of the power (i.e., energy over time) of a velocity sample over frequency,
more than a century ago by Schuster (Stoica and Moses, 2005, p. xiii). Since then, various methods
have been proposed and used to estimate the power spectrum, via the Fourier transform of the
time series (periodogram) or its autocovariance or autocorrelation functions (for more information
on these methods see in Stoica and Moses, 2005, ch. 2, and Gilgen, 2006, ch. 9). Most common (and
also used in this thesis) is that of the autocovariance which corresponds to the definition of the
power spectrum of a stochastic process. However, this accurate mathematical definition lacks
immediate physical interpretation since the Fourier transform of a function is nothing more than a
mathematical tool to represent the function in the frequency domain in order to identify any
periodic patterns which are not easily tracked in the time domain. Historically the power spectrum
is defined in terms of the Fourier transform of the process x(t) by taking the expected value of the
squared norm of the transform for time tending to infinity, which for a stationary process
converges to the Fourier transform of its autocovariance (this is known as the Wiener- Khintchine
theorem after Wiener, 1930, and Khintchine, 1934). Both definitions can be used for the power
spectrum; however the latter is simpler and more operational and has been preferred in modern
texts (e.g. Papoulis and Pillai, 1991, ch. 12.4).

Several studies that evaluate the statistical estimator of the power spectrum conclude that its major
disadvantage is that of its large variance (Stoica and Moses, 2005, p. xiv). Notably, this variance is
not reduced with increased sample size (Papoulis and Pillai, 1991, p. 447). To remedy this, several
mathematical smoothing techniques (e.g. windowing, regression analysis, see Stoica and Moses,
2005, ch. 2.6) have been developed. In cases of short datasets, trend-line approaches are most
commonly used to obtain a very rough estimation of the model behaviour or rules of thumb to
distinguish exponential and power-type behaviours (e.g., Fleming, 2008). In cases of long datasets,
the most commonly used approach is the windowing (data partitioning), also known as the Welch
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approach, where a certain window function (the simplest of which is the Bartlett window) is
applied to nearly independent segments. In the latter method, one has first to divide the sample
into several segments (but only after insuring these segments have very small correlations between
them), to calculate the power spectrum for each segment and then to estimate the average.
Assuming that the process is stationary, this average will be the power spectrum estimate.
Unfortunately, the more segments we divide the sample into, the more the cross-correlations
between segments are increasing as well as the more we lose in low frequency values (since the
lowest frequency is determined by the length of the segments). Thus, this method could be indeed a
robust one, but only for a very long sample (which is a rare case in geophysics), only when there is
no interest in the low frequency values (which can reveal large-scale behaviours) and only for an
unbiased power spectrum estimator or at least for an ‘a priori’ known bias, e.g. via an analytical
equation (which, as can observe in Table 6, is rarely the case). Based on these limitations,
Dimitriadis et al. (2012) and Koutsoyiannis (2013) provided some examples where this smoothing
technique fails to detect the large scale behaviour (i.e., HK behaviour), gives small scale trends that
are completely different from the ones characterizing the stochastic model and have several
numerical calculation problems that could cause misinterpretation. These all are due to the fact that
the power spectrum estimator has a large variance, is biased and it is difficult to estimate these
analytically. Nevertheless, the power spectrum is a useful tool to analyze a sample in harmonic
functions and so, to detect any dominant frequencies (this is the reason behind harmonic analysis
introduced by Fourier, 1822, and not time series analysis). In Table 6, we summarize the basic
equations for the power spectrum definition and estimation. Note that the identification and
simulation of the dependence structure through frequency can be employed through the power
spectrum (in this case frequency is defined as the inverse of lag) or equivalently through the CBS
(Table 3) which is based on the climacogram (in this case frequency is defined as the inverse of
scale).
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Table 6: Power spectrum definition and expressions for a process in continuous and discrete time,
along with the properties of its estimator (source: Dimitriadis et al., 2016a).

Type power spectrum

continuous ° (T6-1)
s(w): = 4f c(h) cos(2nmwh) dh

0

discrete . i . (T6-2)
sc(1 )(a)): =24y(4) + 44 z cé )(v) cos(2mwv)
where w € R is the frequency for a discrete time process (dimensionless; w =
wA)
classical 4) @ @ (T6-3)
estimator  S2(@) = 2469(0) + 44 z 29 (v) cos(2mwv)

v=1

expectation  E[3( ()] = 2n4(y(4) - y(n4))/3(0) +
of classical
estimator” Z cos(2mwv)

2 — )2 (T6-4)
o ( w&%w+%ﬂwywﬂmrllflﬂm—wm>

The continuous-time power spectrum can be solved in terms of c¢ to yield (the inverse cosine
Fourier transformation):

[ee]

c(h) = f s(w) cos(2nwh) dw 4)

0

Also, it can be solved in terms of y to yield (Koutsoyiannis, 2013):

[oe] . 2 k
Y09 = [ son Tt aw )
s(w) = =2 f (2nwk)?y (k) cos(2nwk) dk (6)

Note that the discrete-time power spectrum and the expectation of its classical estimator are more
easily calculated with fast Fourier transform (fft) algorithms.

2.4 Stochastic processes and estimators used in thesis

Although numerous stochastic processes exist in literature, in this thesis we mostly focus on
processes with mixed powered-exponential and power-type dependence structures as well as
mixed forms of various distribution functions such as Gaussian-type and Pareto-type.
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2.4.1 The Markov process

As shown above the time constants 4 and D affect the estimation of the statistical properties of the
continuous time process. Two special cases, 4 = 0 and 4 = D, are analyzed by Koutsoyiannis (2013)
who shows that in several tasks the differences are small. For samples with 4 << D (e.g., hourly
timeseries with one minute resolution) we can assume 4 = 0 and for samples with 4/D ~ 1 we can
focus on the case D=4 > 0.

However, it is known that the discrete time representation of the Markov process corresponds to an
ARMA(1,1) model (as mentioned in Dimitriadis and Koutsoyiannis, 2015a; Koutsoyiannis, 2002),
denoted as y. Its algorithm for the general case of D # 4, with discrete autocovariance:

AuD+A /_1(1 —A/q)z
—e
C‘(iA’D) (u) = Aizf f C(x —_ y)dxdy = We_([)u_d)/q (7)
0 jD

where q is a scale parameter (with p1=e~4/9) and A is the true variance at zero lag.

In Figure 3, we show the discretization effect for the case D # 4 and for various Markov processes.

Ratio of true process at lag one over the one with4 =D

1.E+00 1.E+01 1.E+02
1.E+00

1.E-01

1.E-02

1.E-03

Figure 3: Ratio of the true Markov process at lag one for D # A over the one with D = A4 vs. D/q, for
various values of the ratio 4/q.

In Table 7, we provide the mathematical expressions of the climacogram, autocovariance and
power spectrum for a Markov process, in continuous and discrete time for D =4 > 0.
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Table 7: Climacogram, autocovariance and power spectrum expressions of a Markov process, in
continuous and discrete time (source: Dimitriadis and Koutsoyiannis, 2015a).

Type Markov process

autocovariance  c¢(h) = Ae~IMl/a (T7-1)

(continuous)

autocovariance — e—4/0)? T7-2
_ (D) = A=) i-vera (72

(discrete) (4/9)?

for |[u| =1 and C(A)(O) =y(4)

climacogram (for —k (T7-3)
k k/q+e™*1—1
continuous and vl = (k/ )? /e K )
discrete) with y(0) = 1
power spectrum 41q
sw) = — 24 T7-4
(continuous) W) 1+ 4ng?w? ( )
t 1 (1—cos(2rdw)) sinh(4
polwer spectrum Séﬂ)(w) — (1 ( ( ) 4/9) (T7-5)
(discrete) A/q cosh(4/q) — cos(2ndw)

2.4.2 The HK-behavioural processes

The term HK-behaviour corresponds to the behaviour of process at large scales while the process
itself could not be necessarily an HK process or follow a Gaussian distribution. For example, both
the fractional Gaussian noise (fGn; see section 3.2) and the generalized HK (GHK; see below)
process are processes exhibiting an HK behaviour, but while the former’s autocorrelation function
is a power-law type at the whole range of lags, the latter’s autocorrelation function is a power-law
type only at large lags (at small lags behaves like a Markov process) and its distribution function is
not necessarily Gaussian.

The HK process (for more details on the definition see in section 3.4) can be described via the
climacogram in continuous time (with 4 = D):

et = 1) ®

where k = k/A denotes discrete time scale and y(4) is the variance at the unit time scale 4, and H is
the Hurst parameter (0 < H < 1). Note that this process has infinite variance at zero scale and thus,
should not be used to model the small scales of a physical process (e.g., the fGn process is widely
but erroneously used to model several processes at small scales).

15



Another example that will be used in this thesis is the so-called Hybrid Hurst-Kolmogorov (HHK)
process (Koutsoyiannis et al., 2017), whose climacogram is:

2
y(k) =

(1 + (e/q)2m) 7 ©

where 2 is the variance of the continuous-time process x(t), M is a fractal parameter, H is the Hurst
parameter and q is a characteristic time parameter. A particular case of the HHK, which is also used
in this thesis and referred to as GHK process, is when M = %, i.e.:

A

y(k) = A+ k2 (10)

Note that due to the discretization effect, an HK process for D # 4 > 0 can be well represented by a
GHK process. For example, an HK process with 4 = 0.1, D =1, A =1 and H = 0.8, can be well
represented by a GHK process with4 =D =1,A = 2.2, g =0.14 and H = 0.8. In Figure 4, we show an
example of comparison of an HK process with D/A = 5 (which is approximately invariant and can be
well represented by a process with 4 = 0) to the one with D = A.
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Figure 4: Ratio of the true HK process for D/A = 5 vs. the one with 4 = D for various Hurst
parameters.

We can also define another generalized HK process (gHK), similar to the HHK one, if we expand the
HK process through the autocovariance rather than the climacogram. The expressions of
climacogram, autocovariance and power spectrum for the gHK process are summarized in Table 8.
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Table 8: Climacogram, autocovariance and power spectrum expressions of a positively correlated
gHK process, with 0 < b < 1, in continuous and discrete time.

Type gHK process
autocovariance  ¢(t) = A((|t|/q)*M + 1)~2/CM); Gneiting (2000) (T8-1)
(continuous)

withb =2 — 2H

autocovariance ljA/q—A/q+ 11> + |jA/q + 4/q + 1|*>7P — 2]jA/q + 1|*7° (T8-2)

@y — 2
(discrete) ca () (4/9)*(1 —b)(2—b)
for M=1/2 forj > 1, with CéA)(O) =y(4)
climacogram _2AM((m/q + 12— 2-b)ym/q—1) (T8-3)
(continuous and y(m) = (1-=b)(2 = b)(m/q)?
discrete) with 7(0) = 1
for M=1/2
power 42q° T'(1 — b)Sin (% + 2q7r|w|)
spectrum s(w) = ZalwDi?
(continuous) W b3 b
1 2 Y . 52,2,,,2
for M=1/2 — 44 .1F2 [1’ ! 22 AW (T8-4)
1-b
(where ;F, is the hyper-geometric function)
power
spectrum
(discrete) not a closed expression
for g>0

It should be noted that the gHK for M=1/2 (or the GHK) process can be considered as an HK process
that gives a finite autocovariance value at zero lag, which is the common case in geophysical
processes (an HK process with autocovariance |h|™2*2H gives infinity at zero lag). Thus, a
parameter q is added to the HK process indicating the limit between HK processes (q << |h|) and
those affected by the minimum scale limit of the process (q >> |h|). To switch to an HK process from
the gHK (or GHK) we can replace A with 1g~2%2" and then estimate the limit g — 0 (see Dimitriadis
and Koutsoyiannis, 20153, section 2.1 of the supplementary material).

2.4.3 A mixed dependence structure from entropy extremization

In complex systems, entropy maximization (or extremization of entropy production) is a principle
that can determine the thermodynamic equilibrium of a system (Koutsoyiannis, 2011). Therefore, it
is a good practice when modelling a complex system, to first try-out processes that result from the
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extremization of entropy, which is defined for a random process with a probability density function
f(x) as (Koutsoyiannis, 2011; Shannon, 1948):

o(x) = E[-In (f(x))] (11)

Extremization of entropy is equivalent to extremization of entropy production (Koutsoyiannis,
2011). Such one-parameter processes that extremize the Entropy Production in Logarithmic Time
(EPLT), i.e., (p(g(k)) = d®(x(k))/dIn(k), are the Markov and HK processes. Particularly, the
Markov process maximizes the EPLT in small scales while the HK process dominates in large scales
(Koutsoyiannis, 2016). Interestingly, the EPLT for a Gaussian HK process is independent of scale
and equals H (Koutsoyiannis, 2011), while for a Gaussian-Markov process it can be expressed as:

1
k) = Eln(p"‘)(l - p) /(" +In(p™*) - 1) (12)

Following the analysis in (Koutsoyiannis, 2011, 2016), we investigate the powered exponential
dependence structure, i.e., with an autocovariance function (Gneiting, 2000):

c(h) = Ae~ (/@™ (13)

In Figure 5, we observe that the HK process corresponds to a larger ELTP for large scales whereas
for small scales the Markov process dominates. Also, the powered-exponential process for g tending
to zero corresponds to a larger EPLT for M < 0.5 as compared to M > 0.5 (for M = 0.5 it coincides
with the Markov process). Therefore, among processes with Markov, HK and mixed behaviour, we
expect that an HHK process, with M < 0.5 and H > 0.5, should adequately describe a great variety of
natural processes.
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Figure 5: The ELTP of an HK process with H = 5/6 and a Markov process with g = 1 [left] and two
powered-exponential functions with g = 0.001,and M =2/3 (> 0.5) and M = 1/3 (< 0.5) [right].
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2.4.4 Distributions based on entropy extremization
The extremization of entropy for a white noise process results in the so-called maximized entropy
(ME) distribution, written as (Dimitriadis and Koutsoyiannis, 2017; Jaynes, 1957):

X

flsA):= %e_<'11+51g"(’12)(%)2+(%)3+Sign(/14)(/{‘—4)4+...+(lll)l> -,
0

where A  =[4y,...,4;] , with A; having same wunits as x, 4,=>0 and with
constraints: fjooo x"f(x; A)dx = E[g’”], forr =0, ..., L

The ME for I = 2 results in the well-known Gaussian distribution (e.g., Koutsoyiannis, 2014).
Another interesting distribution function for a real random variable is the Pareto-Burr-Feller (PBF)
distribution (Koutsoyiannis et al., 2017) a generalization of the Cauchy distribution, i.e.:

r@=(1+ [+ d|b)_C/b (15)

where « is a scale parameter in units of X, b and ¢ are the dimensionless shape parameters of the
marginal distribution, and d is a dimensionless scale parameter.

This distribution is similarly derived from the maximization of entropy as shown in the previous
section, i.e.,, combination of exponential-type distributions for small values of x and heavy-tailed
distributions for large values of x, maximizing the raw moment E[x?] and the entropic moment (cf.,
Costa, 2008) E[In(x<)], respectively.

It can be shown that the magnitude of independent and identically distributed variables (following
the above distribution) follows the Pareto-Burr-Feller distribution (Dimitriadis and Koutsoyiannis,
2017):

F(x)=1- (1 + |§ + d|b)_6/b (16)

where « is a scale parameter in units of [x], b and c are the dimensionless shape parameters of the
marginal distribution, and d is a dimensionless scale parameter.

The above distribution has been also derived with alternative methods, as for example from a
generalization of the Rényi-Tsallis alternative definition of ME distribution (Bercher and Vignat,
2008; Yari and Borzadaran, 2010) or by adding a background measure to the original definition of
entropy in order for the discretized entropy to diverge to a real value (Koutsoyiannis, 2014, and
references therein). For this distribution we use the name Pareto- Burr-Feller (PBF) to give credit
to (a) the engineer V. Pareto, who discovered the family of power-type distributions (while working
on the size distribution of incomes in a society, Singh and Maddala, 1978), (b) to Burr (1942) who
identified and analyzed (but without giving a justification) of its function first proposed as an
algebraic form by Bierens de Haan, and (c) to Feller (1971) who linked it to the Beta function and
distribution through a linear power transformation, which was further analyzed and summarized
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by Arnold and Press (1983, sect. 3.2). Other names such as Pareto type IV or Burr type VII are also
in use for the same distribution. Interestingly, the PBF distribution has two different asymptotic
properties, i.e., the Weibull distribution for low wind speeds and the Pareto distribution for large
ones. The PBF has been used in a variety of independent fields (Brouers, 2015). This distribution is
in agreement with various geophysical processes such as magnitude of grid-turbulence and wind
(see in sections 5 and 6 for applications).

Additionally, for non-Gaussian distributions or for cyclo-stationary processes (as in the
atmospheric wind process, Dimitriadis and Koutsoyiannis, 2015b), we could apply a transformation
scheme that approximately normalizes the process. If the distribution of the process is unknown,
the transformation scheme should be based on maximum entropy (Dimitriadis and Koutsoyiannis,
2015b; Koutsoyiannis et al., 2008). If the distribution is known, then we can use the non-linear
method (Lavergnat, 2016) to normalize (in case we wish to transform the process to Gaussian) or
or homogenise (in case we wish to preserve the marginal distribution) the process.

2.4.5 On the uncertainty induced by the statistical bias

As we show above the true value of a statistical characteristic (e.g. variance) of a stochastic model
may differ from the one estimated from a time series (with finite length). Therefore, the bias effect,
i.e. the deviation of a statistical characteristic (e.g. variance) from its theoretical value in discretized
time, should be taken into account not only for the marginal characteristics but also for the
dependence structure. Therefore, to correctly adjust the stochastic model to the observed time
series of the physical process we should always account for the bias effect since all time series are
characterized by finite lengths. For example, in Tables 1-6, we present the expressions for the
expected value of each stochastic metric as a function of their true values. Therefore, the bias of the
expected value can be easily calculated by subtracting the expected value from its true value, e.g.
the bias for the expected value of the classical estimator of the climacogram is equal to y(k) —
E[y(k)] = (y(nd)/y(k4) — k/n)/(1 — k/n) y(kx4). However, not all statistical characteristics have

an analytical expression for the statistical bias and thus, Monte-Carlo techniques are usually
applied. In sections 5 and 6, we present how the bias effect of the mode and the expected value can
be simulated when we model a single time series, where the mode dependence structure should be
analyzed and not the expected one as erroneously done in literature, and when we model several
time series regarded as realizations of a single process and therefore, the expected value of the
dependence structure should be analyzed.

Comparison between the bias introduced by the expected value of the classical estimator of the
autocovariance, power spectrum and climacogram

Here, we investigate the bias in power spectrum estimator (evaluated via the autocovariance) that
is caused by the bias of autocovariance and the finite sample size of the discretized-time process
(often the discretization effect is also attributed to bias), complementing earlier studies (e.g., Stoica
and Moses, 2005, ch. 2.4). We also examine the asymptotic behaviour when the sample size tends to
infinity, investigating the question whether or not the discrete power spectrum estimator is
asymptotically unbiased or not. For comparison, we perform similar investigations for the
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autocovariance and climacogram (Dimitriadis and Koutsoyiannis, 2015a). The concepts of
autocovariance, power spectrum and climacogram are examined using both exponential and
power-type autocovariance, as well as combinations thereof, in order to obtain representative
results for most types of geophysical processes.

The log-log derivative (LLD) is a measure of the scaling behaviour related to asymptotic coefficients
such as the fractal and Hurst parameter. The LLD of a function f{x) is defined as:

‘_dln(f(x))_ x df(x)
i) = dlnx = f(x) dx a7

and for the finite logarithmic derivative of f(x), e.g. in case of discrete time process, we choose the
backward log-log derivative, i.e.:

In(f (x)/f (xiz1))

In(x;/x;-1) (18)

f#(xi) =

Since the LLD is always negative for stationary mean processes, we also define for convenience the
negative log-log derivative (NLD) as -f #(x).

Based on Gneiting et al. (2012) analysis, the fractal parameter (F) can be defined as (cf., Beran et al,,
2013, ch. 3.6):

1
: = lim £# 19
Fi=D+1--lim &*(h) (19)

where D the dimension of the field (e.g. D = 1 for one-dimensional velocity field) and for a 1d HHK
process is equal to M+2.

Based on Beran et al, (2013, ch. 1.3) analysis, the Hurst parameter (H) can be defined as
(Dimitriadis et al., 2016a):

1
H:=1+ Elym ¥ (k) (20)

Various physical interpretations of geophysical processes are based on the power spectrum and/or
autocovariance behaviour. However, as mentioned above, the estimation of these tools from data
may distort the true behaviour of the process and thus, may lead to wrong or unnecessarily
complicated interpretation. To study the possible distortion we use the simplest processes often
met in geophysics, which could be also used in synthesizing more complicated ones. Specifically, in
Appendix A, we investigate and compare the climacogram, autocovariance and power spectrum of
the Markov process and gHK one (for M = 0.5) in terms of their behaviour and of their estimator
performance for different values of their parameters. The methodology we use to produce synthetic
time series is through the SAR scheme (see in section 3.2). Some observations concluded from the
graphical investigation of Appendix A as well as from the definitions of the stochastic metrics, are
summarized as follows:
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(a) In the definition of the climacogram, the continuous-time values are equal to the discrete-time
ones (for 4 = D > 0), while in case of the autocovariance and power spectrum they are different.
More specifically, the discrete-time autocovariance is practically indistinguishable from the
continuous-time one, but only after the first lags, while the power spectrum continuous and
discrete time values vary in both small and large frequencies (where this variation is larger in the
latter).

(b) The expectation of autocovariance departs from both the true one and the discrete-time one, for
all the examined processes and its bias is always larger than that of the climacogram and the power
spectrum. Also, the climacogram has smaller bias in comparison to the power spectrum.

(c) While in theory the NLD of the climacogram, autocovariance and power spectrum should be
equal to each other, at least asymptotically, we observe from the graphical investigation (Appendix
A ; Dimitriadis and Koutsoyiannis, 2015a) that in practice this correspondence may be lost.

(d) The expected value of the power can be estimated theoretically only up to frequency w = 1/2
(also known as the Nyquist frequency), due to the cosine periodicity. On the contrary,
autocovariance and climacogram expected values can be estimated theoretically for scales and lags,
respectively, up ton - 1.

(e) A high computational cost is involved in the calculation of the power spectrum as compared to
the simple expressions of the climacogram and autocovariance. Although this is often dealt with
fast-Fourier-transform algorithms, the involved large sums and large number of trigonometric
products can often also cause numerical instabilities.

Some of the observations concerning the estimated power spectrum can be explained by
considering the way the power spectrum is calculated through the autocovariance: when a sample
value is above (below) the sample mean, the residual is positively (negatively) signed; thus, a high
autocovariance value means that, in that lag, most of the residuals of the same sign are multiplied
together (++ or --). In other words, the same signs are repeated (regardless of their difference in
magnitude). The same ‘battle of signs’ process, is followed in the case of the power spectrum, but in
this case, the sign is given by the cosine function. A large value of the power spectrum indicates
that, in that frequency, the autocovariance values multiplied by a positive sign (through the cosine
function) are more than those multiplied by a negative one. So, the power spectrum can often
misinterpret an intermediate change in the true autocovariance or climacogram. A way to ttackle
this could be through the autocovariance itself, i.e., not using the power spectrum at all, but this is
also prone to high bias (especially in its high lag tail) which always results in at least one negative
value (for proof see Hassani, 2010 and analysis in Hassani et al., 2012). These can be avoided with
an approach based on the climacogram since the calculated variance is always positive. Also, the
structure of the power spectrum is not only complicated to visualize and to calculate but also lacks
direct physical meaning (opposite to autocovariance and climacogram), as it actually describes the
Fourier transform of the autocovariance (Dimitriadis and Koutsoyiannis, 2015a)

Moreover, we investigate the performance of the estimators of climacogram, autocovariance and
power spectrum for Gaussian distributed variables. For their evaluation we use mean square error
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expressions as shown in the equations below. Assuming that 6 is the true value of a statistical
characteristic (i.e. climacogram, autocovariance, power spectral density and NLDs thereof) of the
process, a dimensionless mean square error (MSE):

_ele-o]

92 = Ev+ Eb (21)

where we have decomposed the dimensionless MSE into a variance and a bias term, i.e.:

&, = Var|8]/6? (22)
&= (60— E[Q])z/ﬂz (23)

Note that 6 is given by the true climacogram, the true autocovariance in discrete-time and the true
power spectrum in discrete-time. g, can be found analytically through E[Q], but ¢, cannot due to
the lack of analytical solutions for E[QZ] and hence, Var[ﬁ], for the classical estimators of
climacogram, autocovariance and power spectrum (hence, we use a Monte-Carlo analysis). This
analysis (also presented in Appendix A) allows for some observations related to stochastic model
building (Dimitriadis and Koutsoyiannis, 2015a):

(a) In general, the climacogram has lower variance than that of the autocovariance, which in turn is
lower than that of the power spectrum (e.g., for the examined Markov and HK processes as well as
in most scales for the gHK). Additionally, the climacogram has a smaller bias than that of the
autocovariance but larger than that of the power spectrum (for all examined processes). Since, for
the Markov and HK processes, the error component related to the variance, i.e., &y, is often larger
than that from the bias, i.e., g,, or conversely for the gHK ones, the climacogram has a smaller total
error €. Thus, we can state that (for all the examined cases) the expression below holds:

B[(2-7) ] 7 < B[(€ - )] e < B[(s8 - )] 15 (24)

(b) The total error for the NLD, i.e. €%, increases with scale in the climacogram and with lag in the
autocovariance for all examined processes. In case of a Markov process, the power spectrum NLD,
i.e. &% first decreases and then increases in large inverse-frequency values, while the
autocovariance and climacogram &* always increase. Also, climacogram and autocovariance &* are
close to each other and in most cases smaller than the power spectrum &*. For HK and gHK
processes, where large scales/lags/inverse-frequencies exhibit HK behaviour, the power spectrum
always decreases with inverse frequency under a power-law decay, in contrast to the
autocovariance and climacogram &* which they always increase. Thus, in this type of processes,
there exists a cross point between power spectrum &# and the other two, where behind this point,
the power spectrum has a larger €* and beyond a smaller one.

(c) The density distribution function of the climacogram and autocovariance have small magnitude
of skewness and can approximate a Gaussian density function for most of scales and lags, while the
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power spectrum density has a larger skewness that results in non-symmetric prediction intervals
(an important characteristic when it comes to stochastic modelling, e.g., see Lombardo et al., 2014).
However, the NLD of the power spectrum has a negligible skewness in comparison to those of the
autocovariance and climacogram, meaning that the expected NLD should be very close to the mode
NLD.

2.5 Proposed methodology for stochastic modelling

As mentioned above, we should investigate the behaviour of a natural process by estimating
separately its distribution function and marginal characteristics, and its dependence structure. A
theoretically more valid approach for the estimation of the process parameters would be to apply
estimators that take into account both marginal and dependence structures simultaneously. Such
estimators can result to more accurate estimations. However, it is not advised to use them directly
without having first visualized and identified candidates of mathematical processes, since this may
result in an erroneous analysis due to the complex nature of geophysical processes, an often large
number of included parameters and a high numerical burden. The best estimators of this kind
certainly belong to the maximume-likelihood group of estimators.

In this thesis, we mostly focus to the dependence structure where the climacogram-based metrics
are shown to be the most appropriate in terms of statistical uncertainty (section 2.4.5; Dimitriadis
and Koutsoyiannis, 2015a; Dimitriadis et al., 2016a). An important issue in statistical estimation,
which is sometimes misused or even neglected, is the discretization effect and statistical bias. The
discretization effect can be easily tackled either by preferring the climacogram-based metrics or by
following the methodology presented in section 2.4.

Furthermore, the accurate estimation of any characteristic of a timeseries corresponding to a
stochastic process requires an infinite number of realizations, i.e.,, T — co. However this is possible
only in theory in the sense that all estimations from a timeseries are biased and therefore, cannot
be accurately calculated. This can be illustrated through the estimation of raw moments from
Gaussian-distributed processes with a power-law dependence structure, where statistical
uncertainty is highly increased after the first two moments (Lombardo et al., 2014). Also, several
researchers have commented on that higher order moments are underestimated from short finite
samples (e.g., Ossiander and Waymire, 2000, 2002; Lashermes, 2004; Veneziano et al, 2006;
Langousis and Veneziano, 2007; Veneziano and Furcolo, 2009; Langousis et al., 2009; Veneziano
and Langousis, 2010, Langousis and Kaleris, 2014 and references therein).

Fortunately, although we cannot accurately estimate a statistical characteristic from a timeseries of
a stochastic natural process, we can estimate the error induced by the bias effect of the stochastic
mathematical process through theoretical calculations. In Tables 1 to 8, we show the equations for
calculating the expected value for the most common dependence structures and metrics. In the
cases where we cannot derive theoretically such relationships we can use as a fair approximation
through the Monte Carlo method which is based on algorithms presented in section 3. Nevertheless,
we can conclude that it is more likely for the sample climacogram to be closer to the theoretical one
(considering also the bias) in comparison to the sample autocovariance or power spectrum to be
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closer to their theoretical values. Thus, it is proposed to use the climacogram when building a
stochastic model and estimate the autocovariance and power spectrum from that model, rather
than directly from data. Particularly, we have to decide upon the large scale type of decay from the
climacogram. If the large scale NLD is close to 1 then the process is more likely to exhibit either an
exponential decay of autocovariance at large lags such as in Markov processes (scenario S1) or a
white noise behaviour, i.e., H = 0.5 (scenario S2). In case where the large scale NLD deviates from 1
then the process is more likely to exhibit HK behaviour (scenario S3). The autocovariance can help
us choose between scenarios S1 and S2, as in S1 we expect an immediate, exponential-like, drop of
the autocovariance (which often has the smaller difference between its expected and mode value)
whereas in S2 it is unbiased and therefore, the NLD should be close to 1. In case of the scenario S1,
we can estimate the scale parameter of the Markov-type decay from the NLD of the climacogram
while in case of the scenario S3 we should also look into the power spectrum decay behaviour in
low frequencies. Thereafter, for the determination of the Hurst parameter, we can use various
algorithms, e.g,, the one of Tyralis and Koutsoyiannis (2011), which is based on the climacogram
(usually taken up to 10%-20% of its maximum scale n/2), or that of Chen et al. (2007), which is
based on the power spectrum. For the estimation of the rest of the properties, i.e., for intermediate
and smaller scales, we should use the climacogram-based spectrum and climacogram-based
variogram, respectively (Dimitriadis et al., 2016a).

A recipe for a robust second-order stochastic analysis includes the following steps:

1) Select a stochastic model based on parsimony (few parameters as possible it can be), theoretical
justification (principle of maximized entropy) and physical interpretation (depending on the
natural characteristics of the physical process) as done by Koutsoyiannis (2016) and Koutsoyiannis
et al. (2017). From the analysis of this thesis, we find that the most appropriate models for the
general case of both the second order dependence structure (in terms of the autocovariance or the
climacogram) and the marginal distributions of several hydroclimatic processes (temperature,
wind, precipitation, dew-point/humidity, river discharges, atmospheric pressure and turbulent
processes) are in sections 2.4.3 and 2.4.4.

2) Handle the stochastic model for discretization and statistical bias in order to fit and emulate the
sample statistical characteristics of the observed time series that can be estimated with metrics of
low uncertainty. Note that the climacogram-based metrics (Koutsoyiannis, 2010; Dimitriadis and
Koutsoyiannis, 2015b; Dimitriadis et al., 2016b) are the ones with the lowest statistical uncertainty
and without a discretization effect. For the statistical bias, one should equate the mode of the
climacogram-based metrics whereas for many time series one should use the expected value (see
section 5 and 6 for many applications).

3) Using a Monte-Carlo analysis, generate as many time series as required (based on the
uncertainty induced by the stochastic model) and perform a sensitivity analysis in order to certify
the selection of model and parameters through the estimation of confidence intervals (Dimitriadis
et al, 2016b). The generation scheme for the correlation structure can be the Sum of AR(1) or
ARMA(1,1) models (known as the SAR model; Dimitriadis and Koutsoyiannis, 2015b) for
correlation structures that are only based on autoregressive expressions or the Symmetric-Moving-
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Average (SMA; Koutsoyiannis, 2000; Koutsoyiannis, 2016) model for any correlation structure. To
approximate the marginal distribution an implicit (Koutsoyiannis, 2010; see also section 3) scheme
can be used for simple applications whereas to adjust for intermittency an explicit scheme

(Dimitriadis and Koutsoyiannis, 2017; see also section 3) is the most appropriate and parsimonious
one.
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3 Stochastic synthesis and prediction algorithms

The main purpose of stochastic analysis is the synthesis and prediction of a process. Here, we
present several algorithms for generating and predicting the next values of a stochastic process by
preserving both the marginal probability function and second order dependence structure. When
applying the concept of stochastic analysis we model the observed unpredictable fluctuations of the
system under investigation with the variability of devised stochastic processes. This stochastic
process enables generation of an ensemble of its realizations, while observation of the given natural
system can only produce a single or multiple (but always limited) observed timeseries. The most
simple and yet powerful technique to reveal and analyze in total the system’s variability, is the
Monte-Carlo approach. However, this technique requires a generation algorithm capable of
modelling any selected marginal probability distribution and dependence structure of the
stochastic processes, appropriate for the investigated natural system.

3.1 Synthesis of a Markov process

In this section, we present a methodology to synthesize a discrete time representation of a
continuous time Markov process, with parameters g and A. We assume a sample sizenand D=4 >
0. First, we try to approximate the continuous-time Markov process in discrete-time by an AR(1)
model with variance A,g, shape parameter g, and autocovariance Ayge /4/94R  for v > 0. We find
that the AR(1) model either underestimates all autocovariances of the process for lags v > 1, when
we set the variance correctly to:

R=Y)=——=(4/q+e¥1-1)<2 (25)

(A/ )?
or overestimates this variance, when we set it equal to the continuous-time Markov variance, i.e.,
A'ar = 7(0) = A. Note that in both cases we apply the correct shape parameter gag = q. Keeping
the variance equal to A,gr and setting the ratio of the lag-one autocovariance (or first-order
autocorrelation coefficient) p; over the discrete variance to:

,_ P (1—ea)’
oy (4/qt+ed/a-1)

(26)

instead of its proper value, i.e., a = e~4/9, the model correctly estimates the zero and one lags of the
discrete-time autocovariances but leads to high overestimation for the rest autocovariances, i.e., for
lags v > 1. Only in case of a very small 4/q (or 4 < D), i.e, whena = a' = 1, céA)(l) ~ ay(4) and
Aar ® 4, a single AR(1) model can well approximate a discrete time representation of a continuous-
time Markov process. In other words, only for the impossible case of 4 = 0, the model AR(1) can
exactly represent a Markov process. In practice, for 4/q < 2.5%, we have |a' — a|/a’ < 1% and
thus, the AR(1) autocovariance deviates only a little from the Markov discretized one, while for
large 4/q, the error produced can be quite large. An example is shown in Figure 6 for 4 = D > 0,
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while for cases of 4 # D > 0, the produced errors can be significant. Particularly, we plot the
dimensionless error, between a Markov process in discrete time and various representations
through the AR(1) model, defined as:

P ) - P

£ Dw) | (27)
where cém (v > 0) is the Markov process and céA)(O) the zero-lag variance:
A(1—e4/a )2

(@)} — -(lvl-14/q
c;’(v) = e 28
@ (A/q)2 (28)

(A) _ -A/q _

O =y =7 / Qi la+ei=1) (29)

and C'Ef) (v) the AR(1) model, with gag = q and a scale parameter equal to the discrete-time
variance A, of the Markov process (blue line), the variance of the continuous time Markov process
i.e.,, A'ar = 4 (red line), the variance 1’4 used to correctly estimate all autocovariances except the
zero lag one (green line) and a variance A'',g = (Aar + 4)/2 in between A, and A (black line). The
Aar and 1" pg can be expressed as:

A ——(4 —4/a —1
oW ae¥(1—em/e)” (31)
Aar =" = (4/9)?
1.0E+03
—o—(a)
—o—(b) :
1.0E+02 -~ © g
’ —e—(d)
DZ’ 1.0E+01 -
I
5
1.0E+00 -
1.0E-01 - \ T
1.0E-02 1.0E-01 1.0E+00 1.0E+01
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Figure 6: Dimensionless error between the autocovariance of a Markov process and those of
expressed through various AR(1) models.

It is known that the discrete time representation of the Markov process corresponds to an
ARMA(1,1) model (Koutsoyiannis, 2002). The ARMA(1,1) algorithm for generating a Markov
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process y, i.e.,, with continuous-time autocovariance c(t) = exp(—|h| / q), in discrete-time, is the

following:
A,D A,D
Xi( )=qa yl( 1 v+ v, (32)
where i=1, ..., n, a; = e"P/% is a parameter related to the shape of the process with 0 < a; <1,

. . . . . . . 1-a .
V; = N([,L,,, O'v) is the discrete time Gaussian white noise process with mean value Uy = _1+a1 ,uy with
= vEv v Y

Uy the mean of y.

The parameters a, and g, and can be found from the solution of two equations (Dimitriadis and

Koutsoyiannis, 2015a):
céA)(O) = alcg‘)(l) + (1 + a;a; + ay?)0,’ (33)
CéA)(l) = alcéA)(O) + a,0,° (34)

where CCSA’D)(O) and céA’D)(l) are the discrete-time autocovariances of the Markov process for lag

zero and one, respectively:

@O =y =7 / Gy Bla+ei=1) (35)
(@) A1—e)’
1D = (A/—)z (D-4)/q (36)

These equations result in a second-order polynomial, i.e.:

2y g 2P - Qe y@
a? +a, DD — ary ) (37)

with céA’D)(l) > a,y(4) (the equality holds only for g — o). There are two real positive solutions:

—B++VB% =
a, = —BivVB -4 (38)
2
with a, > 0 and B and g, derived as:
_ 20,67~ A +a )y (@) _
S < -2 39)
(1) —a;y(4)
_ @ -V ) 40
vl 1+ aa; + ay?
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3.2 Sum of Markov processes; the SAR process and algorithms

In this section, we describe a methodology to produce synthetic Gaussian distributed timeseries of
a target process x based on a sum of independent Markov processes. For a typical finite size n, the
sum of a finite, usually small, number of Markov processes is capable of adequate representing a
great variety of processes. For the HK-Gaussian process (else called fractional-Gaussian-noise and
abbreviated as fGn) Mandelbrot (1971) introduced the idea of approximating the discrete fGn with
a sum of finite AR(1)-Gaussian models. On the same principle Koutsoyiannis (2002) showed that
the sum of three AR(1) models is adequate for representing an fGn process for n < 104 As accuracy
requirements and n increase, a larger number of Markov processes maybe required that could be
also applied for continuous processes as well as for processes different than fGn.

A general approach that can be applied to any autoregressive models (AR, ARMA etc.) has been
introduced in Dimitriadis and Koutsoyiannis (2015a) based on the original ideas of Mandelbrot
(1971) for the approximation of the fGn by a finite sum of Gaussian-AR(1) models, and that of
Koutsoyiannis (2002) for a similar but simpler approach that can be also applied to other processes
(i.e., with different dependence structures and probability distributions), with few parameters that
can be analytically estimated rather than many parameters arbitrarily approximated and by also
simulating the statistical bias. Note that although the methodology described below can be easily
applied to the sum of higher order AR or ARMA models, it is highly not recommended, since the
complexity increase could easily cause a model over-fit (e.g., Fig. 8), and present practical as well as
psychological drawbacks (Mandelbrot, 1971). In other words, a three-parameter GHK model can be
equivalently simulated by a sum of, as large as possible, finite number of AR(1) models, ARMA(1,1)
models, as well as by a sum of high-order autoregressive models (e.g., AR(q1), ARMA(q1, gz2) etc,
with arbitrarily large g; >1), but only the former approach is recommended since it can provide the
same (if not better) results with a simpler way and it can also deal with non-Gaussian distributions
(see also section 3.3.1). In fact, Everything should be as simple as it can be, but not simpler (quote
attributed to A. Einstein in 1933).

To explain how the SAR works, we seek the Markov climacograms whose sum fits the climacogram
of our target true continuous time process, represented by a function f(k4), with k the discrete-
time scale and D = 4 > 0 the time step. We could use the autocovariance or power spectrum but the
climacogram for D = A > 0 has the advantage of reduced computational cost due to the identical
expressions for continuous and discrete-time. We denote g(x4,q,4) the true climacogram of a
Markov process, i.e.:

21
g(xd,q,):= W(Kﬂ/q +er4/a — 1) (41)

where 4 and q are parameters corresponding to the variance and a characteristic time scale of the
process, respectively.

The SAR has been applied to several processes such as the wind process (Deligiannis et al., 2016),
for the process of solar radiation (Koudouris et al., 2017) or for the process of wave height and
wave period (Moschos et al,, 2017).
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However, although the SAR algorithm can preserve any of the processes presented in 2.4 with M =
% and additionally can preserve any distribution function (while the SARMA can be used only for
Gaussian distributions), it is inappropriate for several processes with 4>>0, such as precipitation.

Our target is to approximate f(kA) with the sum of a finite number N of functions g(«4, q;, 4;) for I
=1 to N, i.e, for all integral scales from k = 1 to n, where n is the number of data produced in the
synthetic time series. We seek q; > 0 and 4; > 0 such as for all scales k = 1 we have f(x4) =
>N 1 g(x4,q;, ). The basic assumption of this methodology is that the Markov parameters q; are
connected to each other in a predefined way, which can be even similar to the target process if we
wish to preserve in an exact way the 2rd order dependence structure. Here, we choose a simple
relationship based on two parameters p; and p, (Dimitriadis and Koutsoyiannis, 2015a):

qQ =pip' ! (42)

If we know p; and p,, we can calculate analytically parameters A; (expressed by the matrix 4 = 0)
from the equation below, since the ratio g(k4, q;, 4;)/4; is independent of A; for Markov processes:

AA=1-A=A4"1 (43)

where A=[1,...,Ax]%, I=[1,...,1]T and A7 =(ATA)_1AT, the left inverse of A (forn > N),

expressed as:

[H(A'Ch')q)/ll 94, qn, An) /An ]
| f(4) f(4) |
A=| : : I (44)
|g(nA'q1'Al)/Al g(nA'qulN)/lNl
| fnd) fmay |

As minimization objective for the above system of equations, in order to estimate the parameters p;
and p,, first we use the dimensionless error &5 between the sum of Markov climacograms and
f(k4), to locate initial values and then, we use the error &, (maximum absolute dimensionless
residual), for fine tuning and distributing the error equally to all scales:

N2 g ed g A) — £ ()
_ N g(kd, qu 2) — f(xd)
€m = K:lz:l-..,n f(KA) (46)

Thus, we can estimate parameters p; and p, by minimizing the above errors, then parameters q;
and A; can be easily found. Finally, the synthetic discrete time series for the x(t) process can be
estimated as:
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N
2= yPw (47)
=1

where yi(A)(l) is the discrete time Markov process corresponding to the climacogram g (x4, q;, 1;)

with parameters q; and 4;.

The above methodology has been tested in simple processes such as HK, GHK, gHK and combination
thereof as well as with Markov processes (Dimitriadis and Koutsoyiannis, 2015a) and therefore, for
other types of processes (e.g. anti-correlated ones with 1 < b < 2) one should be cautious when
applying it. For the purpose of the analysis, we apply the above methodology for HK and gHK
processes for A = 1 and for a variety of b, /4 and n values. In Tables 9-11, we present the results
from this analysis. Note that we choose N, for each n and each process, as the minimum value of the
sum of Markov processes achieving &, < 1%.

Table 9: Parameters p1 and p; estimated to fit different types of HK and gHK processes (for A = 1)
with a sum of Markov processes for n = 102,

process b q/4 p1 P2 N &y (%0)
HK 0.2 - 0.069 47.358 3 6
HK 0.5 - 0.122 22196 3 8
HK 0.8 - 0.101 17.045 3 9
gHK 0.2 1 2.888 10.656 3 5
gHK 0.2 10 11424 27.168 2 1
gHK 02 100 611.13 - 1 2
gHK 0.5 1 1.789 7.695 3 9
gHK 0.5 10 9.232 12.514 2 2
gHK 0.5 100 243.46 - 1 4
gHK 0.8 1 1.373  6.559 3 9
gHK 0.8 10 7.676 8.807 2 2
gHK 0.8 100 151.54 - 1 6
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Table 10: Parameters p: and p; estimated to fit different types of HK and gHK processes (for A = 1)
with a sum of Markov processes for n = 103.

process b q/A p1 D2 N &c (%0)
HK 0.2 - 0.379 10.356 5 2
HK 0.5 - 0.251 9.490 5 5
HK 0.8 - 0.103  8.958 5 4
gHK 0.2 1 2.656 11.873 4 3
gHK 0.2 10 0.852  43.042 3 6
gHK 02 100 11154 27331 2 1
gHK 0.5 1 1.964 10.505 4 7
gHK 0.5 10 8.744 5.801 4 2
gHK 0.5 100 89.976 12.591 2 2
gHK 0.8 1 1.362  8.240 4 7
gHK 0.8 10 6900 5.112 4 2
gHK 0.8 100 74.712 8.861 2 3

Table 11: Parameters p; and p; estimated to fit different types of HK and gHK processes (for A = 1)
with a sum of Markov processes for n = 104.

process b q/4 p1 P2 N ¢ (%0)
HK 0.2 - 0.665 18.217 5 7
HK 0.5 - 0.200 11.400 6 6
HK 0.8 - 0.053 17.044 5 8
gHK 0.2 1 2.695 12.006 5 4
gHK 0.2 10 20.809 12.793 4 5
gHK 0.2 100 7.743  44.342 3 7
gHK 0.5 1 2.226 12.176 5 10
gHK 0.5 10 14831 10.788 4 10
gHK 0.5 100 84308 5.835 4 2
gHK 0.8 1 1.115  6.220 6 3
gHK 0.8 10 10.132  8.149 4 9
gHK 0.8 100 66.249 5.123 4 2

3.3 Synthesis of a stochastic process through the (S)MA scheme

In this section, we present an extension of the symmetric-moving-average (SMA) generalized
framework introduced by Koutsoyiannis (2000) and further advanced by Koutsoyiannis (2016) and
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implemented within the Castalia computer package (Efstratiadis et al., 2014). Also, the SMA model
for autocorrelation functions accounting for seasonal aspects is initially developed by Langousis
(2003) and Langousis and Koutsoyiannis (2006). The generation scheme simultaneously preserves
any type of (second order) dependence structure as well as an approximation of the marginal
distribution function through the preservation of its statistical moments. Note that this scheme can
be applied to any type of statistical moments such as raw, central, L-moments etc. as well as to any
type of moving-average model such as backward (BMA), forward (FMA), symmetric (SMA) or
mixed. More details about the computational scheme can be found in Dimitriadis and Koutsoyiannis
(2017).

3.3.1 The impracticality of using multi-parameter stochastic models in geophysical
processes

Several families of autoregressive models are used for stochastic generation with the most popular
in literature to be the so-named AR, ARMA, ARIMA, FARIMA (cf, Koutsoyiannis, 2016). These
models are easy to handle and fast in stochastic generation once their parameters are known and
not too many. However, whenever the process exhibits long-range dependence these models
require a large number of parameters to approximate the long-range dependence (except only in
the FARIMA(0,d,0) case, where d = H - 0.5, with H the Hurst coefficient).

An additional difficulty may arise when estimating the prediction intervals (P.l.) of a long-range
process (Papoulis, 1990, pp. 240-242; Tyralis et al., 2013). Even if the model parameters are
calculated with adequate accuracy, this does not guarantee an adequate approximation of the
prediction intervals. Here, we apply various Monte-Carlo experiments and we show that even a
small deviation of the true process from the model one, may cause a larger deviation in the
prediction intervals. In Figure 7, we compare the 5% and 95% P.l. of the climacogram for a
Gaussian HK process with n = 2x103, using a model consisted from the sum of three AR(1) models
(through the SAR scheme) and the exact solution produced via the SMA model. We observe that
although the expected value is very well approximated by the SAR model with approximately a 99%
correlation coefficient, the 5% P.I. deviates from the true one by 1% and the 95% P.I. by 10%.
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Figure 7: Expected 5% and 95% quantiles of the climacogram for an HK process estimated from
Monte-Carlo experiments using the SMA model (exact solution) and the sum of three AR(1) models
(3AR1) through the SAR scheme.

A practical solution could be to increase the number of AR(1) processes through the SAR scheme or
to use higher order processes instead, such as ARMA models. However, in any case, it is often
difficult to know a priori the true P.I. in order to decide whether the number of applied parameters
is adequate. In Figure 8, we show that even when we extent the 3xAR(1) model to a 5xARMA(1,1)
model (through the SARMA scheme) for a simple HK process, the true 95% P.I. (defined through the
SMA scheme) is still not reached (the fitting error is around 1%).
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Figure 8: Expected 5% and 95% quantiles of the climacogram for an HK process estimated from
Monte-Carlo experiments using the SMA model (exact solution) and the sum of five ARMA(1,1)
models (5ARMA11) through the SARMA scheme.

Another limitation may arise for more complicated processes than that of the HK one. For example,
the GHK process, which is an HHK process with a = 1, can be somehow simulated through the SAR
algorithm. However, this simple algorithm is based on the sum of Markov processes and therefore,
it can only preserve stochastic structures with an exponential short-term behaviour at large scales.
In other words, the SAR scheme cannot accurately synthesize a process with a powered-
exponential autocorrelation function, such as the HHK with M # 1/2 (Figure 9).
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Figure 9: Expected 5% and 95% quantiles of the climacogram for two HHK processes, both with g =
10,b=1/3 (H=5/6), n = 2x103 and one with M = 1/3 < 0.5 (left) and the other with M =3/4 > 0.5
(right), estimated from Monte-Carlo experiments using the SMA model (exact solution) and the sum
of five ARMA(1,1) models (5ARMA11) through the SARMA scheme.

Additionally, another common practice is to use transformation schemes to indirectly simulate both
the dependence structure and marginal distribution of a process. However, since the
transformation of a Gaussian distributed process to a more complicated one is often non-linear,
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there will be a non-linear distortion in the dependence structure especially in case of an HK
process. In Figure 10, we show such a distortion in case of a Pareto distribution that leads to a non
HK process resembling that of a cyclo-stationary HK process (i.e., causing a small increase of the
climacogram at small scales) with the same Hurst parameter.
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Figure 10: Dimensionless climacogram vs. scale for a synthetic HK process with n = 105, H = 0.8 and
distribution N(0,1) as well as its transformation to U(0,1) and Pareto distribution with shape
parameter equal to 4.

Finally, if the estimation of higher than the third moment is needed, for example the kurtosis,
higher-order moments, i.e., E[EZKZ], will emerge that are not possible to measure or handle for
SARMA (or higher order) algorithms (Koutsoyiannis, 2016). In conclusion, the SMA algorithm
overcomes all the above limitations and offers a strong tool for applying a Monte Carlo analysis.

3.3.2 The impracticality of estimating higher-order moments in geophysical processes

Non-Gaussianity of the marginal distribution is very common in geophysical processes. It has been
shown (Lombardo et al, 2014) that the estimation of high raw moments corresponds to high
uncertainty and thus, it is rather ambiguous to use the schemes described in the previous section to
preserve higher moments for natural processes with only a few measurements, as for example in
typical geophysical records. For example, in case of a continuous HK process the variance of the
mean estimator is y,/n?"%! (e.g., Koutsoyiannis, 2003), where n is the sample size. Consequently,
for estimating the true mean p of a process with a standard error +&, we would require a timeseries
of length of at least (6/£)*/(*=H) where ¢ = +/y; is the standard deviation at scale 4 (Figure 11). For
an HK process with H = 0.8, in order to estimate the mean of the process with an error € = +10%a,
we would need a timeseries of length at least n = 105. Such lengths are hardly available in
observations of geophysical processes, which are not only often characterized by HK behaviour but
also include sub-daily and seasonal periodicities (e.g., Hasson et al, 1990; Dimitriadis and
Koutsoyiannis, 2015b, for the atmospheric wind process) that complicate the estimation further.
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Therefore, the preservation of solely the second order joint statistics is often adequate for capturing

the most important attributes of a geophysical process but also it is often impractical to estimate

higher-order statistics from observations of hydrometeorological processes since, the typically

available observation records cannot support the estimation of a few parameters (Koutsoyiannis,
2016).
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Figure 11: Standard deviation of the mean estimator of an HK process standardized by o vs. the
sample size (n) for various Hurst coefficients.

To give another example, we perform a Monte Carlo experiment for an HK process with H = 0.8
that follows a standard Gaussian distribution (i.e.,, # = 0 and ¢ = 1) and the results are shown in
the Figure 12. For each synthetic timeseries we estimate the mean, standard deviation as well as
skewness and kurtosis coefficients for six different lengths, i.e, n = 10, 10%,..., and 106. This
experiment shows that for n =106 the uncertainty (measured in terms of the standard deviation of
each measure) is below 10% for all measures. Therefore, to adequately estimate these measures
from data we would need timeseries with similar lengths. The same experiment must be repeated
for the estimated set of parameters to verify that the observed length was adequate for such
estimation.
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Figure 12: Standard deviation of the sample estimates of the mean (u), standard deviation (o),
skewness coefficient (Cs) and kurtosis coefficient (Cx) of an HK process with H = 0.8 and N(0,1)
distribution vs. the simulation length.

3.3.3 The SMA generation scheme

Although there are several methods for simulation of an arbitrary stochastic process each one has
its own limitations and advantages (Lavergnat, 2016 and references therein). For example, the
method of de-normalization (i.e., a Gaussian distributed process with the desired dependence
structure is produced and then it is transformed to the desired distribution through a non-linear
transformation) is often applied for synthesis of long-term processes (e.g., Koutsoyiannis et al,,
2008) but it has a disadvantage of distorting the dependence structure (because of the
transformation), while, in addition, the transformation cannot be invariant with respect to the time
scale (Lombardo et al., 2013). A rigorous and general method is the SMA scheme that is able to fully
preserve any (second order) dependence structure of a process and, simultaneously, the complete
multivariate distribution function if it is Gaussian (because of the preservation of the Gaussian
attribute within linear transformations). Koutsoyiannis (2000) also studied the application of the
same scheme to non-Gaussian processes by preserving the skewness of the marginal distribution.
In Dimitriadis and Koutsoyiannis (2017) the scheme is extended to precisely preserve the first four
central moments of the distribution, while exactly and simultaneously preserving any type of
(second-order) dependence structure, such as short-range (Markov) or long-range (Hurst-
Kolmogorov, abbreviated as HK). In most problems preservation of four moments suffices for a
very good approximation of the distribution function. In particular, the fourth moment has been
regarded of great importance in some problems, e.g.,, in the characterization of intermittency in
turbulence (Batchelor and Townsend, 1949).
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In the SMA model, the simulated process is expressed through the sum of products of coefficients
(not parameters) a; and white noise terms v;, (Koutsoyiannis, 2000):

l

X = Z Q)| Vi4 (48)

j=1

in which for simplicity and without loss of generality we assume that E[{] = E[g] =0 and

E[gz] = Var[y] = 1 and where j is an index ranging from 0 to infinity.

Derivation of the SMA dependence structure parameters

This scheme can be used for stochastic generation of any type of second order process structure
represented by functions such as the climacogram, the autocovariance function, the power
spectrum, and the variogram. It exhibits several advantages over widely used backward moving
average (BMA) schemes (Koutsoyiannis, 2000). The most important is that for some processes (for
example the HK]) it allows closed expressions for the coefficients a;, based on any of the above
functions, which can yield a very fast generation algorithm, in case an explicit expression for the
coefficients a; is not possible (as for the GHK and HHK processes). Particularly, the coefficients can
be numerically calculated through the Fourier transform of the discrete power spectrum of the
coefficients which is directly linked to the discrete power spectrum of the process (Koutsoyiannis,
2000):

Saq (@) = /254(w) (49)

where s, , and sq are the SMA coefficients and process power spectra in discrete time, respectively.

As an example, for an HK process with H > 0.5, the SMA coefficients can be estimated from
(Koutsoyiannis, 2016):

1 1
+1"z 412 1
a;=C 5 —jI"*2 (50)

where the coefficient C is:

_ J 2I'(2H + 1)sin(mH)y, (51)

r2(2H + 1)(1 + sin(nH))

Derivation of the SMA distribution parameters

Koutsoyiannis (2000) estimated the first three moments of the marginal distribution of the white
noise process y; required to reproduce those of the actual process x; using the SMA scheme. With
the conventions used here the mean and variance of y; are 0 and 1, respectively, while the third
moment, which is equal to the coefficient of skewness is:
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Zl.:_ aZ_
Cs,v = ( i |]|3) Cs,x (52)
where C; , is the coefficient of skewness of x..
Here, we expand the calculations to include the coefficient of kurtosis (Appendix B; Dimitriadis and

Koutsoyiannis, 2017):

1 2 )2 l l 2 2
Ciy = (B afy) 2yt = 9 O
,V A 4 X l 4
Dy py—y

(53)

where Cy , is the coefficient of kurtosis of x.. Note that the constant term in the right-hand side

depends only on the SMA coefficients and not on the marginal distribution of the process. Also, note
that the kurtosis of the white noise is not proportional to the kurtosis of the process, which makes a
difference from the case of the skewness.

For the generation scheme we need distributions that: (a) contain at least four parameters, creating
in such way a large variety of combinations between the first four moments; (b) have closed
analytical expressions for the first four central moments; and (c) can easily and quickly generate
random numbers. Here, we propose one distribution mostly appropriate for generating thin-tailed
distributions and another one for heavy-tailed ones (see Appendix C for the tail-classification of the
applied distributions).

For illustration, we apply the described SMA model for white noise processes with various marginal
distributions often met in geophysics, such as Weibull, gamma, lognormal and Pareto. Also, we
estimate the ME distribution up to the fourth moment and we compare it to the theoretical and
modelled distribution (through the SMA algorithm). The coefficients 1/4,,1/4,,1/15,1/4, of the
ME distribution can be also regarded as weighting factors representing the dependence of the
distribution on each raw moment. Interestingly, after standardizing these four parameters based on
the sum of their absolute values, 1/4; contributes to the Weibull, gamma, lognormal and Pareto
distributions in Figure 13, approximately 65%, 66%, 69% and 93%, respectively. Similarly, the
contribution of 1/4, is approximately 20%, 20%, 18% and 4%, the contribution of 1/43, 11%, 10%,
9% and 2% and the contribution of 1/4,4, 4%, 4%, 4% and 1%, respectively. Therefore, we can use
the ME probability density to approximately determine the weight for each statistical moment and
justify whether the preservation up to the fourth moment is adequate. Additionally in Figure 13, we
observe that the goodness of fit highly depends on the weighting factors of the ME distribution.
Particularly, large weighting factors of 4; and small weighting factors of 1,, 43 and 4, result in small
fitting errors.
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Figure 13: Various two-parameter distributions along with the fitted ME probability density
function and the empirical probability density from one single simulation with n = 105 using the
proposed generation scheme.

3.4 Synthesis of a multiple dimensional process through SMA scheme

Multi-dimensional stochastic processes are advantageous over multivariate ones in cases where the
natural process is observed by images (e.g., produced by satellite or radar) rather than point
measurements (e.g., temperature recorded at meteorological stations). In this section, we show the
expansion of the 1d SMA algorithm to an L-dimensional (Ld) based on mathematical reasoning as
well as numerical validation (Dimitriadis et al., 2013). We denote with x(t), the continuum random
variable of a stochastic stationary and isotropic process of M dimensions with ¢ a matrix of L
variables and [ varying from 1 to L, i.e., t := {t4, ..., t; } that is used to describe each dimension of the
process (e.g., t; can be a temporal variable, t, a spatial one etc.). Note that in this analysis the M
dimensions are considered independent to each other. Discretized processes are subject to a
sampling frequency D := {D;, ..., Dy;} and a response time 4 = {44, ..., 4, } as in the 1d case. Both D
and A have the same units with the corresponding variable t (e.g., if t;is a temporal variable
measured in seconds then D; and 4; will be measured also in seconds). Here, we focus only in the
case of D=A4>0. Also, for simplicity, we assume that all elements in D have the same magnitude (e.g.,
D;=1 sec, D,=1 km etc.) and so, we can use a unique symbol for that magnitude, i.e., |D;| = D = A.
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Finally, n denotes the total number of data in the Ld field. Thus, the discretized stochastic process

xi(lAilz,A..Z.’i.;’AL) = &.(A), for 4 >0, can be estimated from x as (Dimitriadis et al., 2013):
i14 iz iLA
@) _ f(il—l)A f(iz—l)A “J(ip-1)4 E(flﬁ 52' ey EL)dfldgz de (54)
X = AL

where i; € [1,n4],i, € [1,n,], ..., € [1,n,], are indices representing the serial number of each
observation associated with the corresponding variable t,,,

In Tables 12 and 13, we provide all necessary definitions and equations for the true continuous,
true discrete and most common estimators and estimations for the expected climacogram and
autocovariance for an Ld process (for the variogram and power spectrum see in Dimitriadis et al,,
2013).

Table 12: Climacogram definition and expressions for an Ld continue process, a discretized one, a
common estimator for the climacogram and the estimated value, based on this estimator.

Type Md climacogram
continuous Var [ [ L [ (8, e €y - dE (T12-1)
space v(k): = (kiky ... ke )?
where k: = (ky, ..., ky), with k € R, the vector of the scales.
discretized YD (k): = y(4ky, ..., Aky) (T12-2)
space where k: = (i, ..., k), with K € N7, the vector of all the dimensionless

scales for a discretized process.

classical ( n (A)>2 (T12-3)

>.orox;
5(4) __ 1 (/i l( KTy (4)) _oy=1=i
estimator 7 Ge) n'/w—lz:rl:1 K z:"l="l(rl—1)+1£" ns

where n' = nyn, ...n;, k': = Kk, ...k, and I ranges from 1 to L

1-y@m)/y®(x)
1—xk'/n'

expected value (T12-4)

Y@ (x)

E[7@a0)| =
of estimator -
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Table 13: Autocovariance definition and expressions for an Ld continue process, a discretized one, a
common estimator for the autocovariance and the estimated value, based on this estimator.

Type Md autocovariance
02 ((hyhy ... h)?y(h
continuous c(h) = Cov[g(t),g(t + h)] = (( 122 ZL) ¥ ( 2))
2Lah1 ahz ...ahL (T13‘1)
space

where h: = (hq, ..., h;), with h € R, the lag vector for the continue process.

AZL[(uluz ...uL)z}/l(iA)(u)]

di tized 4 — @ @7 _
iscretize 3 (w): = Covlx;”, x40 LA ZIA 2] AT (T13-2)
space where w: = (uy, ..., u; ), with u € Z, the lag vector for the discretized process.
. n, (4 nLo @ -
classical (D) = ymn |y @ Siper T @ _ DS (T13-3)
estimator = JaSh=1 =1\ = N =tu N
where {(u) is usually taken as: N or N-1 or [[t_;(n, — u,.).
A(4 7 . > /
expected value Eléq : )(u)] 1) ( @) Ty (e = ) + %y(uA) —uy(ud) -
(T13-4)
. L _
of estimator —Hr=1(:15 i) y((n— u)A)), where u' = uju, ... u;.
For example, the Ld HK process is subject to the equation below:
(&(m) _ #) =4 K2L(1—H)(£j(4) _ Il) (55)
where u is the mean of the process x; x® and x(m) the same process at scale k.
The Ld climacogram and autocovariance in the continuous domain can be expressed as:
A
v(k) = ——am (56)
(kg/a)
L
A(H2H -1
c(hy) = Gt ) (57)

(hyn /)T

where kg is the geometric mean of scales kq, kj ,..., ky, i.e, kg = \/kqk; ...k, a is a scale parameter
in units of kg, so that y(kg) A, and similarly, h,, = \/h? + h3 + -+ + h? is the lag magnitude.

For illustration we apply the HK process to the 2d climacograms of 2d images of sandstones
depicted at different spatial scales (Figure 14), and we estimate a Hurst parameter equal to 0.83
(Dimitriadis et al, 2017). Note that the 2d SMA is initially suggested and implemented by
Theodoratos (2004) and Koutsoyiannis et al. (2011).
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Figure 14: Images of sandstone as seen from the SEM (50 um), from a polarizing microscope, (3.5
mm), from a hand specimen (with length approximately 5 cm) and a field outcrop (1 m). For more
information on the source, description and processing of the images see in Dimitriadis et al., (2017).
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Figure 15: Climacograms of sandstone images depicted at four different scales (source: Dimitriadis
etal,, 2017).

3.5 Prediction algorithms

In this section, we apply two types of prediction algorithms, an analogue prediction algorithm
based solely on observations without any use of models, and a stochastic prediction algorithm
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based on the preservation of the marginal distribution and dependence structure of a process,
permitting the prediction of unprecedented events such as extreme events.

3.5.1 Analogue prediction algorithm

Here, we apply a deterministic data-driven model known as the analogue model (e.g., Koutsoyiannis
et al,, 2008), which is often used in chaotic systems. This model is purely data-driven, as it does not
use any mathematical expression between variables. Specifically, to predict a state s((t + l)A) at
future time /4 and based on h past states s((t -r+ 1)A), for r varying from 1 to h, we search the

database of all experiments or events to find k similar states (called neighbours or analogues),

S; ((tj —h+ I)A), so that for all j and r:

|s]- ((tj -+ 1)A) -s(t-r+ 1)A)| <y (58)
where g is an error threshold.

Then, we find for each neighbour the state at time (tj + l)A, ie, s; ((tj + l)A), and predicts the
state at lead time l4 as (e.g., Dimitriadis et al., 2016b):

k

s((t+D4) = %Z 5 ((t —h+1)a) (59)

j=1

3.5.2 Stochastic prediction algorithm

Here, we describe the stochastic prediction model (Dimitriadis et al,, 2016b), which is a linear
stochastic model that predicts the state at lead time [4, i.e, s((t + l)A), based on the linear
aggregation of weighted past states, cqs((t —q+ 1)A), cq being the weighting factors. Before we
calculate the weights, we need to assume a model for the stochastic structure of each process. For
model fitting we choose the climacogram method since as already mentioned it results in smaller
estimation errors in comparison to autocovariance (or autocorrelation) and power spectrum for
this type of models. We then apply the best linear unbiased estimator (BLUE) method
(Koutsoyiannis and Langousis, 2011, pp. 56-58), under the assumption of stationarity, to estimate
the weighting factors c,:

-1
C = ’;’Tc ;] "] (60)
where C = [cl, ...,cp,(]; represents the vector of the weighting factors ¢, (for ¢ = 0,..,p) and { a
coefficient related to the Lagrange multiplier of the method; M, = Cov[gi_j], for all i, j = q is the
positive definite symmetric matrix whose elements are the true (included bias) autocovariances of
x, which represents the variable of interest (u, v, w, £ or ) and now is assumed random (denoted by
the underscore) for the application of this method; 5, = Cov[qu] for all g; 1 is the index for the
lead time (I > 0); the superscript T denotes the transpose of a matrix.
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4 Uncertainty and HK dynamics

Although a white noise process is considered as the most unpredictable of all the processes, this is
true only for very short-term predictions. For long-term predictions, which are of high interest
from an engineering point of view, the maximization of entropy, and thus the uncertainty, shows
that the most unpredictable process is the HK one (Koutsoyiannis, 2011). Therefore, it is only
natural to assume that, eventually, a stationary process will exhibit HK behaviour. In this section,
we show that the HK dynamics can arise not only in complicated deterministic systems, but in
geophysical ones such as high-frequency precipitation and surface wind and even in a simple game
such as die throw.

4.1 Complex natural systems

In principle, one should be able to predict the trajectory and outcome of a die throw solving the
classical deterministic equations of motion; however, the die has been a popular symbol of
randomness. This has been the case from ancient times, as revealed from the famous quotation by
Heraclitus (ca. 540-480 BC; Fragment 52) ‘Aiwv mails ¢ott mai{wv meooeVwv’ (‘Time is a child
playing, throwing dice’). Die’s first appearance in history is uncertain but, as evidenced by
archeological findings, games with cube-shaped dice have been widespread in ancient Greece,
Egypt and Persia (often in dice shaped bones). Often in history dice games were restricted or even
prohibited by law perhaps for the fear of gamblers’ growing passion to challenge uncertainty. Dice
were also used in temples as a form of divination for oracles (Vasilopoulou, 2003). From ancient
times, each side of the die represented one number from 1 to 6 so that the sum of two opposite
sides was always seven. Despite dice games originating from ancient times, little has been carried
out in terms of explicit trajectory determination through deterministic classical mechanics (cf,
Kapitaniak et al., 2012; Nagler and Richter, 2008). Generally, a die throw is considered to be fair as
long as it is constructed with six symmetric and homogenous faces (Diaconis and Keller, 1989) and
for large initial rotational energy (Strzalko et al, 2010). However, statistical treatment of real
experiments with dice has not been uncommon. In a letter to Francis Galton (1894), Raphael
Weldon, a British statistician and evolutionary biologist, reported the results of 26,306 rolls from
12 different dice; the outcomes showed a statistically significant bias toward fives and sixes with an
observed frequency approximately 0.3377 against the theoretical one of 1/3 (cf.,, Labby, 2009).
Labby (2009) repeated Weldon's experiment (26,306 rolls from 12 dice) after automating the way
the die is released and reported outcomes close to those expected from a fair die (i.e., 1/6 for each
side). This result strengthened the assumption that Weldon’s dice was not fair by construction.
More recently, Strzalko et al. (2010) studied the Newtonian dynamics of a three dimensional die
throw and noticed that a larger probability of the outcome face of the die is towards the face
looking down at the beginning of the throw, which makes the die not fair by dynamics. The
probability of the die landing on any face should approach the same value for any face for large
values of the initial rotational and potential energy and large number of die bounces. Similar
experiments of coin tossing have also been examined in the past (Diaconis et al., 2007; Jaynes, 1957,
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ch. 10). According to Strzalko et al. (2010), a significant factor influencing the coin orientation and
final outcome is the coin’s bouncing. Specifically, they observed that successive impacts introduce a
small dependence on the initial conditions leading to a transient chaotic behaviour. Similar
observations are noticed in the analysis of Kapitaniak et al. (2012) in die trajectory, where lower
dependency in the initial conditions is noticed when die bounces are increasing and energy status is
decreasing. This observation allowed the speculation that as knowledge of the initial conditions
becomes more accurate, the die orientation with time and the final outcome of a die throw can be
more predictable and thus, the experiment tends to be repeatable. Nevertheless, in experiments
with no control of the surrounding environment, it is impractical to fully determine and reproduce
the initial conditions (e.g. initial orientation of the die, magnitude and direction of the initial or
angular momentum). Although in theory one could replicate in an exact way the initial condition of
a die throw, there could be numerous reasons the die path could change during its course and thus,
so would the outcome. Since the classical Newtonian laws can lead to chaotic trajectories, this
infinitesimal change could completely alter the rest of die’s trajectory and thus, the outcome. For
example, the smallest imperfections in die’s shape or inhomogeneities in its density, external forces
that may occur during the throw such as air viscosity or table’s friction and elasticity etc., could
vaguely alter dice orientation. Strzalko et al. (2010) and Nagler and Richter (2008) describe the die
throw behaviour as pseudorandom since its trajectory is governed by deterministic laws while it is
extremely sensitive to initial conditions. However, Koutsoyiannis (2010) argues that it is a false
dichotomy to distinguish deterministic from random. Rather randomness is none other than
unpredictability, which can emerge even if the dynamics is fully deterministic (see in section 4.1.2
for an example of a chaotic system resulting from the numerical solution of a set of linear
differential equations). According to this view, natural process predictability (rooted to
deterministic laws) and unpredictability (i.e., randomness) coexist and should not be considered as
separate or additive components (see also section 1.2). A characteristic example of a natural system
considered as fully predictable is the Earth’s orbital motion, which greatly affects the Earth’s
climate (e.g., Markonis and Koutsoyiannis, 2013). More specifically, the Earth’s location can become
unpredictable, given a scale of precision, in a finite time-window (35 to 50 Ma, according to Laskar,
1999). Since die trajectory is governed by deterministic laws, the related uncertainty should
emerge as in any other physical process and thus, there must also exist a time-window for which
predictability dominates over unpredictability. In other words, die trajectory should be predictable
for short horizons and unpredictable for large ones.

Here, we reconsider the uncertainty related to dice throwing (section 4.1.1). We conduct dice throw
experiments to estimate a predictability window in a practical manner without implementing
equations based on first principles. Furthermore, we apply the same models to high temporal
resolution series of rainfall intensity and wind speed (sections 4.1.2), occurring during smooth and
strong weather conditions, to acquire an insight on their similarities and differences in the process
uncertainty. The predictability windows are estimated based on the aforementioned two types of
models, the stochastic model fitted on experimental data using different time scales and the
deterministic-chaotic model that utilizes observed patterns assuming some repeatability in the
process (section 4.1.3). For validation reasons, the aforementioned models are also compared to
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benchmark ones. Certainly, the estimated predictability windows are of practical importance only
for the examined type of dice experiments and hydrometeorological process realizations;
nevertheless, this analysis can improve our perception of what predictability and unpredictability
(or randomness) are.

4.1.1 Experimental setup of dice throw

A simple mechanism is constructed with a box and a high speed camera in order to record the die
motion for further analysis. For this experiment we use a wooden box with dimensions 30 cm x 30
cm x 30 cm and white colour painted to easily distinguish it from the die. The die is of acetate
material with rounded corners, has dimensions 1.5 x 1.5 x 1.5 cm3 and weighs 4 g. Each side of the
die has been painted with a different colour: yellow, green, magenta, blue, red and black, for 1, 2, ...,
6 pips, respectively. Instead of the primary colour cyan, we use black to be easier traceable
contrasting to the white colour of the box. The height (30 cm) from which the die is released with
zero initial momentum or thrown, remained constant for all experiments. However, the die is
released or thrown with a random initial orientation and momentum, so that the results of this
study are independent of the initial conditions. Specifically, 123 die throws are performed in total,
52 with initial angular momentum in addition to the initial potential energy as well as 71 with the
initial potential energy only (Figure 16). Despite the similar initial energy status of the die throws,
the duration of each throw varied from 1 to 9 s, mostly due to the die’s cubic shape that allowed
energy to dissipate at different rates.

Figure 16: Mixed combination of frames taken from all die throw experiments for illustration
(source: Dimitriadis et al., 2016b).

Visualization of the die’s trajectory is done via a digital camera with 0.045 cm/pixel density of and
frame resolution rate of 120 Hz. The camera is placed in a fixed location and symmetrically at the
top of the box. The video is analysed to frame by frame and numerical codes are assigned to
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coloured pixels (based on the HSL system) and die’s position inside the box. Specifically, three
coordinates are recorded based on the Cartesian orthogonal system; the two horizontal ones are
taken from the box’s plan view while the die’s height above the box bottom is estimated from die’s
image size (the higher the die, the larger the die’s size in pixels). Moreover, the area of each colour
traced by the camera is estimated and then is transformed to a dimensionless value divided by the
total traced area of the die. In this manner, the orientation of the die in each frame can also be
estimated (with some observational error) through the traced colour triplets. Note that pixels not
assigned to any colour due to relatively low resolution and blurriness of the camera, are on average
approximately 30% of the total traced die area in each frame.

Finally, the audio signal is transformed to a dimensionless index from 0 to 1 (with 1 indicating the
highest sound produced in each experiment) and can be used to record the times the die bounces
colliding with the bottom or the sides of the box, contributing in this way to sudden changes in die’s
orientation, to its orbit and thus, to the final outcome. We observe that die bounces decay faster
than kinetic energy status (roughly estimated through linear velocity). Also, most of the die bounces
and energy dissipation occur approximately during initial 1.5 s, regardless of the initial conditions
of the die throw. Based on these observations, we expect predictability to improve after the first 1.5
s (Figure 18).
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Figure 17: Selected frames showing the die trajectory from experiments (a) 48 and (b) 78 (c, d)
their three Cartesian coordinates (denoted x, y. and z. for length, width and height, respectively);
(e) standardized audio index representing the sound the die makes when colliding with the box;
and (f) colour triplets (each of the 8 possible triplets corresponds to three neighbouring colours).
Source: Dimitriadis et al. (2016b).
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Figure 18: All experiments (a) standardized audios, showing the time the die collides with the box
(picks) and (b) linear velocities. Source: Dimitriadis et al. (2016b).

To describe the die orientation we use three variables (x, y and z) representing proportions of each
colour, as viewed from above, each of which varies in [-1,1], with x, y, z = 1 corresponding to black,
blue or green, respectively, and with x, y, z = -1 to the colour of the opposite side, that is yellow,
magenta or red, respectively (Table 14). In Figure 19 we show two examples of dice orientation
recorded through colour identification.

Table 14: Definition of variables x, y and z that represent proportions of each pair of opposite
colours (source: Dimitriadis et al., 2016b).

Value — -1 +1

Variable | Colour Pips Colour Pips

X yellow 1 black 6
y magenta 3 blue 4
vA red 5 green 2
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Figure 19: Time series of variables x, y and z for experiments 48 (a, b, c) and 78 (d, e, f); in both
experiments the outcome was green. Source: Dimitriadis et al. (2016b).

However, these variables are not stochastically independent to each other because of the obvious
relationship:

x| + Iyl +1z] = 1 (61)

The following transformation produces a set of independent variables u, v and w, where u and v
vary in [-1,1] and w is a two-valued variable taking either the value -1 or 1:

u=x+yv=x-—y,w=sign(z) (62)

The inverse transformation is:
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x=wW+v)/2,y=wWu—-v)/2,z= w(l — max(|u| + |v|)) (63)

In Figure 20, the plot of all experimental points and the probability density function (pdf) show that
u and v are independent and fairly uniformly distributed except the more probable states where u
+ v =0 (corresponding to one of the final outcomes). Note that w outcomes are also nearly uniform
with P(w = —1) = 54% and P(w = 1) = 46%.

u and v (data) x and y (data)
=== and vspace ==y and y space

1.0

(R o SR
(NGt s i S
0.5 e ; 1 g T =
M oo =
frs SR g
& 00 | 2
> e =
3. 3
l. " - = p 3
i, A o
-0.5 } HePe e At
1.0 MRS A LR s it el
(@& -1.0 -0.5 0.0 0.5 1.0

xand u

Figure 20: Plot of (a) all (x, y) and (u, v) points from all experiments and (b) the probability density
function of (u, v). Source: Dimitriadis et al. (2016b).

4.1.2 Hydrometeorological processes of high resolution

Here, we choose a set of high resolution time series of rainfall intensities (denoted by & and
measured in mm/h) and wind speed (denoted by ¥y and measured in m/s). The rainfall intensities
data set consists of seven time series with a 10 s time step recorded during various weather states
(such as low precipitation and storm events) and are provided by the Hydrometeorology
Laboratory at the lowa University (for more information regarding the database see Georgakakos
et al,, 1994). The wind speed database consists of five time series with a 1 min time step recorded
during various weather states (such as strong breeze and storm events) by a sonic anemometer on
a meteorological tower located at Beaumont KS and provided by NCAR/EOL
(http://data.eol.ucar.edu/). We have chosen these processes as they are of high interest in
hydrometeorology and often are also regarded as random-driven processes. For illustration we
show in Figure 21 a couple timeseries drawn from the above datasets.
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Figure 21: (a) Rainfall events 1 and 7 from Georgakakos et al. (1994) and (b) wind events 3 and 5
provided by NCAR/EOL.

4.1.3 Uncertainty evaluation and comparison

Here, we apply two types of prediction algorithms in each case and we compare them to each other
for the same process and to the other processes, in terms of the Nash and Sutcliffe (1970) efficiency
coefficient defined as:

n_ 3t (540 — 34(D)
_ 2
DN CHORINO)

(64)

where d is an index for the sequent number of the die experiments, rainfall or wind events; i
denotes time; n is the total number of the experiments, or of recorded rainfall or wind events (n =
123 for the die throw experiment, n = 7 for the rainfall and n = 5 for the wind events); b, is the total
number of recorded frames in the dth experiment, rainfall or wind event; § is the vector
(ﬁd(i), ﬁd(i),wd(i)), transformed from the originally observed (a?d(i),ﬁd(i),éd(i)), for the die
throw, the 1d rainfall intensity &;(i) for the rainfall events and the 1d wind speed 4(i) for the
wind events, with § the corresponding mean empirical discrete-time vector; and s is the discrete-
time vector estimated from the model.

Also, the prediction models described above are checked against two naive benchmark models. At
the first benchmark model (abbreviated B1), the prediction is the average state, i.e.:

s(t+D4)=0 (65)

where t4 is present time in s, I4 the lead time of prediction in s (I > 0) and 4 the sampling
frequency (equal to 1/120 seconds per frame for the die throw game, 10 seconds per record for the
rainfall events and 1 minute per record for the wind events). Although the zero state is not
permissible per se, the B1 is useful, as any model worse than that is totally useless. At the second
benchmark model (abbreviated B2), the prediction is the current state regardless of how long the
lead time (A4 is, i.e.:
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s((t+ D4) = s(td) (66)

The observed climacograms of the processes under investigation show the strong dependence of
the die orientation, rainfall intensity and wind speed in time (long-term, rather than short-term
persistence). This enables stochastic predictability up to a certain lead time. Here, we choose the
gHK model for the mathematical process, i.e., with climacogram y(x4) as in Table 8, where 4 is the
time resolution parameter, i.e.,, 1/120 s for the die experiments, 10 s for the rainfall events and 1
min for the wind events. For consideration of the bias effect due to varying sample sizes n of the die
experiments and rainfall and wind events, we estimate the average of all empirical climacograms
for experiments and events of similar sample size. However, due to the strong climacogram
structure of all three processes, the varying sample size has small effect on the shape of the
climacogram for scales approximately up to 10% of the sample size (following the rule of thumb for
this type of models, as analysed by Dimitriadis and Koutsoyiannis (2015a). Thus, we consider the
averaged empirical climacogram to represent the expected one. The fitted models are shown in
Figure 22 in terms of their climacograms. Their parameters are: for the u and v symmetric variables
of the dice process 4 = 0.6,q = 0.013 s and b = 0.83 (H = 0.6); for the w variable 1 = 1.635,q =
0.0082s and b =1.0 (H =0.5); for the rainfall process A = 12.874 mm?/h? q = 130s and
b =0.22 (H = 0.9); and for the wind process A = 65.84 m?/s?, ¢ = 86 min and b = 0.09 (H =
0.95). We observe that the scale parameter q and Hurst coefficient H are largest in the wind process
and smallest in the dice one.

Note that two additional criteria for the two above model parameters is that firstly, they should give
an efficiency coefficient greater than that of the B2 model (at least for most of the lead times) and
secondly, their efficiency values are estimated from a reasonable large set of tracked neighbours
(>10% of the total number of realizations for each process). Due to high variances of the time
averaged process (which correspond to high autocorrelations), it is expected that the B2 model will
work well, for fairly small lead times. Next, we depict the results for the four models for the 48t die
experiment, the 1st rainfall event and the 3rd wind event (Figure 23). The stochastic model provides
relatively good predictions (F = 0.5 and efficiency coefficients larger than the B2 and B1 models)
for lead times I4 < 0.1 s for the die experiments (with a range of approximately 0.05 to 0.5 s), £ 5
min for the rainfall events (with a range of approximately 1 min to 30 min) and < 1 h for the wind
events (with a range of approximately 0.1 h to 2 h). The analogue model gives smaller F values than
the B2 model for the die experiments and the wind process and larger in case of the rainfall process
(but smaller than the stochastic model). Predictability is generally good for small lead times;
however, the situation deteriorates for larger ones. Finally, we define and estimate the
predictability-window (that is the window beyond which the process is considered as
unpredictable), as the time-window beyond which the efficiency coefficient F becomes negative.
Specifically, predictability is superior to the case of a pure random process (B1) for lead times IA<
1.5 s for the die throw process, [A< 1 h for the rainfall process and IA< 4 h for the wind process.
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Figure 22: True, expected and averaged empirical climacograms for (a) u and v, (b) w, (c) ¢ and (d)
Y. Source: Dimitriadis et al. (2016b).
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Figure 23: Comparisons of B1, B2, stochastic and analogue models for the die experiment (a and b),
the observed rainfall intensities (c and d) and the observed wind speed (e and f). The left column (a,
c and e) represents the application of the models to all experiments and events and the right

column (b, d and f) to individual ones. Source: Dimitriadis et al. (2016b).

Next in Figure 24, we show the sensitivity analysis applied to each process and for both stochastic
and analogue models. Specifically, we apply a variety of p values (i.e.,, number of past states that the
model assumes the future state is depending on) for the stochastic model and combinations of h
(same as p) and g (i.e., error threshold value for selecting neighbours) values for the analogue one.
Employing a sensitivity analysis to the analogue model, we conclude that for the die process a value
of p = 20 (which corresponds to time length ~0. 17 s) works relatively well (on the concept that it is
a small value giving a large F), for [ varying from 8 ms to 1.5 s (for larger values of p we have
negligible improvement of the efficiency). Similarly, for the rainfall process, we concluded that p =

150 s is adequate, for [ varying from 10 s to 1 h (the variation of / is set equal to half the minimum
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duration between events). Finally, for the wind process, we concluded that p = 5 min works well, for
[ varying from 1 min to 6 h. Applying a sensitivity analysis for the stochastic model, we found that a
number of past values h= 15 (which corresponds to time length ~0.125 s) and a threshold g = 0.5
work relatively well for the die process. Similarly, for the rainfall process, we conclude that h = 15
(which corresponds to time length 150 s) and a threshold g = 2 mm/h works well. Finally, we
concluded that h = 5 (which corresponds to time length 5 min) and a threshold g = 0.5 m/s works

well for the wind process.
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4.2 Deterministic systems

Here, we show various examples of deterministic systems and application to benchmark and real-
case scenarios. By definition, these systems will exhibit Markov behaviour rather than HK, and
therefore, their window of predictability is expected to be short, a result which contradicts our
experience and thus, reality.

4.2.1 A classical deterministic system

As a prelude example, we apply all models described above to a set of timeseries produced by
numerically solving the classical Lorenz (1963) chaotic system of differential equations.
Specifically, using the Runge-Kutta integration approach (Press et al., 2007), we produce n = 100
timeseries of the Lorenz-system dimensionless variables (denoted Xi, Y. and Z.), with randomly
varying initial values of variables between -1 and 1, a time step of di=4=0.01 (dimensionless), a
total time length of T1=103 (so, each timeseries contains N = 105 data) and with the classical Lorenz-
system dimensionless parameters of 01.=10, r.=8 and b1.=8/3 (Lorenz, 1963):

dxi,
ar o, (Y, — X1)
dx
d—tL =nX, - Y, — X.Z. (67)
dXy,
\ 5 =Xh-hz )

The 5t timeseries is shown in Figure 25 along with the results from the stochastic and analogue
models. The estimated parameters for the best fitted (Markov-type) stochastic model are
A =728,q = 0.13 for X;. process, A = 93.1,q = 0.0836 for Y. and A = 272,q = 0.0007 for Z;, with
b = 1.0 (H = 0.5) for all processes. From the analysis, we concluded that the analogue model, with
h = 2 (which corresponds to time length 0.02 s) and a threshold of g = 0.1, works very well as
opposed to the stochastic model whose efficiency factor is always lower than the one
corresponding to B2 model. We believe this is because the system’s dynamics is relatively simple
and no other factors affect the trajectory. Such conditions are never the case in a natural process
and thus, the performance of the analogue model is usually of the same order (given there are many
data available, in contrast with the stochastic which can be set up with much fewer data). Finally,
we can also see here, that predictability is generally superior to a pure random process (B1), for
lead times lA< 1.
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Figure 25: (a) Values of Xi, Y1, and Z, plotted at a time interval of 0.1, for the 5th timeseries produced
by integrating the classical Lorenz’s chaotic system of equations, (b) observed climacogram as well
as its true and expected values for the fitted stochastic gHK model (average of Xi, Y. and Z.
processes), (c) sensitivity analysis of the analogue and stochastic models and (d) comparison of the
optimum stochastic and analogue models with B1 and B2. Source: Dimitriadis et al. (2016b).

4.2.2 Comparison between deterministic systems of high complexity

Here, we show some examples of deterministic systems of simplified hydraulic wave inundation
models. Although all parameters and equations are a priori selected and known in an exact way, we
show that they exhibit a large sensitivity to initial and boundary conditions as well as to
discretization schemes (Dimitriadis et al., 2016c).

In general, flood routing models solve part or the full one-dimensional (1d) Saint-Venant continuity
and momentum depth-averaged equations in the longitudinal direction (1d models) or,
additionally, in the lateral direction (quasi-2d or 2d models). The 1d Saint-Venant continuity and
momentum equations are (Chow et al,, 1988, p. 279):

04 0Q

il i 68
ot axo (68)

19Q  10(Q%*/A)  ow _
Aot A ax 8oy g5 9
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where Q is the discharge, A is the wetted area, g is the gravity acceleration, w is the water depth, S,
is the longitudinal bed slope (expressing the gravitational force), S, is the energy (or else friction)

slope, and dw/ dx, %E)Q/ Jdt and %G(QZ/A)/ Jx represent the pressure gradient and the local and

convective acceleration terms of the momentum equation.

The three hydraulic tools that are used in next analyses are described briefly below.

HEC-RAS

HEC-RAS is a widely used hydraulic software tool developed by the U.S Army Corps of Engineers,
which is wusually combined with the HEC-HMS platform for hydrological simulations
(hec.usace.army.mil). HEC-RAS employs 1d flood routing in both steady and unsteady flow
conditions by applying an implicit-forward finite difference scheme between successive sections of
flexible geometry. Due to the 1d nature of the model, the discharge is distributed within the whole
cross section in the longitudinal direction. This can create difficulties when multiple flow directions
are required or when the flow exchange between the channel and the floodplain cannot be
neglected. However, it can sufficiently represent the topography since it is not raster-based, it has
quite low computational cost and it is very powerful in 1d steady flow simulations. The steady flow
scheme is based on the solution of the 1d energy equation (for gradually-varied conditions) or the
momentum equation (for rapidly-varied conditions) between two successive cross sections:

V,? V2 - V,? V2
AY+a22—g—a12—g=LSe+C azz—g—alz—g (70)
Q2 Q1 (A, —AT) =
b,——b; — — —=g(5, - S 71
zAZ 1A1 g L g(S, e) (71)

where Y is the water surface elevation and AY is the residual between the upstream and
downstream cross sections, Q, A1 and Q,, A, are the discharge and wetted area of the upstream
and downstream cross sections, a;, b; and a,, b, are velocity and momentum correction
coefficients (for a non-uniform distribution), L is the flow-weighted reach length, S, is the
representative energy slope between two cross sections and C is the expansion or contraction loss
coefficient (representing the magnitude of the loss of energy between two expanding or contracting
cross sections).

For unsteady conditions, the model uses the 1d Saint-Venant set of equations:

04 0(pQ)  3((1-9)Q) _

72
Jt 0x. O0xs 0 (72)

0Q 9(p*Q*/A) (1 - 9)?Q*/Ap) aY Y _
% 2 C/A) A e) +g(Ac(axC+sec)+Af(a_%+sef))_o 73

where the subscripts c and f refer to the channel and floodplain, a variable specifying how flow is
partitioned between the channel and floodplain:
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0 =1/ (1475 U/ a0 (PR ) (74)

with A, P. and Ay, P¢ are the wetted area and perimeter, related to the channel and floodplain,
respectively. Note that the energy slope is approximated by the Manning’s equation.

Further details on the mathematical background of HEC-RAS are provided in the associated
documentation manual (Brunner, 2010).

LISFLOOD-FP

LISFLOOD-FP (bristol.ac.uk) is a quasi-2d, raster-based model that is appropriate for both steady
and unsteady flow conditions. It allows using a high resolution grid-based topographic terrain and
is more suitable for large basins with wide and shallow channels, since it assumes a rectangular
channel section and so, it approximates the wetted perimeter by the channel width. It can process
up to 106 grid cells, thus being suitable for implementing probabilistic investigations based on
Monte Carlo approaches. The channel’s flood routing is handled using the 1d kinematic wave (in
case of positively varying channel gradient) or the diffusive wave (in case of negative channel
gradient), which are solved with a backward-implicit numerical scheme. The diffusive wave scheme
is also used for lateral flow propagation (floodplain inundation), where the 1d channel and
floodplain routings are linked via a quasi, two-dimensional continuity equation (Bates et al., 2013):

94 9Q

Frir ik (75)
ow  QZn2p*/3
ax + Atz So=0 (76)

where q is the flow exerting from the channel to the floodplain. In this approach, it is assumed that
the flow between two adjacent cells is linearly interpolated between the known water depths of the
cells.

FLO-2d

FLO-2d basic (flo-2d.com) is also raster-based and allows for flexible geometry of the channel and
the floodplain terrain. It solves the 1d Saint-Venant set of equations using an explicit-central finite
difference scheme and, thus, it can describe in a more detail the flow wave propagation along the
channel and floodplain. It is more suitable for large grid cell size since it may be time consuming
when processing a high number of cells. For the floodplain, the equations of motion are applied by
computing independently the average flow velocity across each one of eight potential flow
directions (O’brien, 2007):
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where V is the depth-averaged velocity in one of the eight flow longitudinal directions, while the
energy slope component S, is based on the Manning’s equation.

Flow and boundary conditions

In all the above models, two boundary conditions are required, which are usually set at the
upstream end of the channel through an imposed inflow as well as the assumption of uniform water
depths at the upstream and downstream end (kinematic wave condition). Although an imposed
depth would result in more stable solutions than the condition of uniform flow, we choose the latter
since, in practice, it is rare to know the temporal evolution of the water depth at a specific location.
The models compute the appropriate time step based on the Courant number stability criteria
(Courant et al., 1959).

It can be illustrated that the uncertainty of the flood volume (which can be regarded as the wetted
area over length) corresponding to a triangular cross section is often larger than that of a
rectangular one. This is due to the fact that the area of a triangular cross section is a function of the
square of the water depth w, i.e., 4; = z w2, where z is the tangent of the interior angle of the section,
in contrast to the rectangular one which is linear function of w, i.e., A.=b w, where b is the section
width. Considering the uncertainty associated to a random variable as being proportional to its
variation coefficient C;, and the water depth as being stochastically independent of the geometrical
characteristics of the channel, we get for the rectangular cross section that C,? [Ar] = Var[ér] /
E2[A.], which after algebraic manipulations C,*[4;] = (C,*[b] + 1)E[w?]/E?[w] -1 and
equivalently for the triangular cross section we get C,*[4] = (C,*[z] + 1)E[w*]/E?[w?] - 1.
Furthermore, considering the water depth as being uniformly distributed, i.e., w~U(0,2u), with u
its mean value, we have that CVZ[AF] = %(CVZ[Q] + 1) — 1 and equivalently, CVZ[At] = S(Cvz[g] +
1) — 1. Thus, if we assume that CV[Q] ~ Cv[g], then CV[Ar] < CV[At]. For this reason, we apply a
triangular-like cross section (Figure 26), which appears quite often in field (compared to the
rectangular one). Moreover, this type of section permits the development of lateral flow wave
propagation (as opposed to the rectangular one) and thus, is convenient for observing the
differences between 1d and 2d models.

Benchmark experiments

Initially, we test the above models in theoretical applications to identify the impacts of the different
mathematical schemes and other assumptions in terms of uncertainty. In this respect, we employ
sensitivity analysis against the most important hydraulic variables (inflow, channel and floodplain
slope and roughness), as well as the model resolution (see Figure 26 and Table 15).

We consider six model configurations, by running HEC-RAS and LISFLOOD-FP in both steady and
unsteady conditions, and FLO-2d with including or not the wave propagation along the channel.
Note that when we omit the channel’s flow propagation we still apply the channel’s friction at the
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same cells that would be overlaid by the channel. Also, when we refer to unsteady conditions (but
with constant inflow), we mean that at the beginning we apply an increasing (i.e., starting from
zero) inflow and then we stabilize it to the desired constant value, in order to achieve steady state
conditions (i.e., no change in the water surface profile).

3 km
3 km

g gf

\d@a/

C
@ 1.6 km (b) 1.6km () 1.6 km

Figure 26: Layout of benchmark tests and associated input variables: (a) perspective view, (b) plan
view, and (c) cross sectional view, where solid lines represent the continuous geometry,
implemented within HEC-RAS, while dashed lines represent the raster-based geometry,
implemented within LISFLOOD-FP and FLO-2d (d. represents the channel depth; for rest of symbols
please refer to Table 15). Source: Dimitriadis et al. (2016b).

Table 15: Variables used within sensitivity analysis and associated range of feasible values; all
variables are uniformly distributed, except for the model resolution determined by the channel
width, which takes three discrete values with equal probability (25, 50 or 100 m).

variable symbol and units min max
upstream flow Q (m3/s) 100 5000
longitudinal gradient g, (%) 0.1 5
lateral gradient g, (%) 0.1 5
roughness coefficients (channel) ne 0.01 0.1
roughness coefficients (floodplain) ng 0.05 0.3
model resolution (= channel width) ¢ (m) 25,50,100

Input data and model setup

The channel and floodplain geometry are chosen in such a way to be similar in all models. We
consider the mixed section shown above, which is a typical approximation of a river and its
floodplains. Its geometry is defined by the channel width ¢ and the lateral gradient g¢. The channel
width is equal to the size of the model resolution and is allowed to take three values, i.e., 25, 50 and
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100 m. For simplicity, the depth of the channel d.. is determined by the intersection of the right and
left floodplain section, thus it is set equal to d. = cgs/2. The longitudinal gradient g, is constant
along the channel and floodplain. The channel length is L. = 3 km, in order to approximate uniform
flow conditions downstream, while the floodplain width is L¢ = 1.6 km, in order to ensure that it is
never fully flooded, for the given geometry and the examined flow conditions. The representation of
the actual layout differs according to the model structure. In HEC-RAS, we consider a discrete
number of cross-sections at same distances, which are set equal to the channel width ¢, each one
preserving the actual geometry. Therefore, the number of cross-sections is by definition L./c + 1. On
the other hand, in LISFLOOD-FP and FLO-2d, the geometry is approximated by a grid of (Lc/c) x
(Lt/c) cells, since the models are raster-based.

The inflow Q is applied to the upstream section, in HEC-RAS, or cell, in the other two models. In
order to assess the performance of the three models against multiple flow conditions, we
investigate a large range of inflow values, employing the steady flow scheme as well as the unsteady
one. In the second case, we assign a synthetic hydrograph of 48 h duration, in which discharge
slowly increases from zero to the desired value, within first 24 h, and then remains constant until
reaching steady state conditions. We remark that FLO-2d is only examined for non-steady
conditions, assuming both the full structure as well as the simplified structure in which the channel
flow propagation is omitted. Next, these two configurations will be marked as “with channel” and
“no channel”, respectively. Finally, different Manning’s roughness coefficients are set for the
channel and floodplain, symbolized n. and ny, respectively.

Setup of Monte Carlo simulations

Sensitivity analysis in based on a Monte-Carlo approach, by generating 1500 random values for
each of the six variables (resulting to 1500 parameter sets for each model configuration). For
continuous variables, we generate independent random values from a uniform distribution in the
range given in Table 15, while for the channel width, which also determines the model resolution,
we generate three equally-distributed discrete values (25, 50 and 100 m). The number of
simulations is chosen to ensure a satisfactory accuracy in statistical estimations.

For each simulation and each model configuration we record the water depths at the upstream and
downstream section (or cell), symbolized w, and wy, respectively. We also record the flood volume,
Vi, over the entire model domain. For each of the three output variables we employ typical
statistical analysis, focused on the quantification of their uncertainty. In particular, we calculate the
main statistical characteristics (mean, variance, skewness and kurtosis) and we extract their g-q
and box-plots. Moreover, we calculate their cross-correlation coefficients with all inputs variables.

Monte Carlo simulation results

We chose to perform 1500 simulations for each one of the six model configurations, to balance the
computational cost with an adequate quantitative analysis with an equivalent of more than three
values per input variable (i.e.,, 15001/¢ = 3.4). In Figure 27, we show the moving average of the
coefficient of variation C, (i.e., the ratio of standard deviation over mean) for the uniform depths
upstream, w,,, and downstream, wy, of the channel’s cell/section, as well as for the flood volume V;.
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For comparison, we also show the depths estimated from the Manning’s equation, assuming a

triangular cross section, i.e., w, = ﬁ(ngnf/\/a)3/8. We observe that all variables have nearly
reached a constant value, which strengthens the fact that the chosen number of simulations is
adequate. We also underline that the HEC-RAS wy and LISFLOOD-FP wy, lines for the steady-state
scheme coincide to the HEC-RAS and LISFLOOD-FP unsteady ones, respectively. Additionally, we
remark that the HEC-RAS steady and unsteady V; lines coincide to each other.
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Figure 27: Moving average of (a) coefficient of variation, C,, for all model configurations of the
water depth of the channels’ upstream and downstream cell/section, and (b) mean, g, (c) standard
deviation, o, and (d) C, for the flood volume. Source: Dimitriadis et al. (2016b).

In Table 16 we show the statistical characteristics (moment coefficients and cross correlations) of
the examined output variables, estimated from the full samples (i.e, 1500 values per model
configuration). The cross correlations between the input and output variables show that all output
variables are an increase function of the inflow discharge and channel and floodplain roughness
coefficients (same between the total flood volume and the lateral gradient) as well as a decrease
function of the longitudinal gradient and model resolution (same between the upstream and
downstream depths and the lateral gradient). Particularly, the largest correlations correspond to
the inflow discharge, followed by the channel and floodplain slopes and roughness coefficients and
with the model resolution having the smallest correlations.
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Table 16: Central moments’ variation (denoted C,), skewness (denoted () and excess kurtosis
(denoted C}) coefficients (using the unbiased classical estimators) for each model applied as well as

cross correlation coefficients between the input and output variables. Source: Dimitriadis et al.
(2016b).

variable model Cy C Cx Q g gs N ng c
W, uniform depth 0.5 09 1.4 05 -03 05 04 ~0 ~0
HEC-RAS (steady) 05 11 2.2 06 -04 03 04 01 -02
HEC-RAS (unsteady) 06 14 40 05 -03 03 03 01 -02
LISFLOOD-FP (steady) 07 18 51 06 -04 ~0 04 ~0 -03
i LISFLOOD-FP (unsteady) 07 18 51 06 -04 ~0 04 ~0 -03
FLO-2d (no channel) 04 04 ~0 07 -02 03 ~0 05 -01
FLO-2d (with channel) 05 03 ~0 08 -03 01 01 02 -04
HEC-RAS (steady) 05 11 24 06 -04 03 03 01 -02
HEC-RAS (unsteady) 05 1.2 24 06 -04 03 04 01 -02
LISFLOOD-FP (steady) 07 18 50 06 -04 01 04 ~0 -03
W LISFLOOD-FP (unsteady) 06 14 32 06 -03 01 04 ~0 -03
FLO-2d (no channel) 04 04 -05 07 -02 03 01 05 -02
FLO-2d (with channel) 07 06 -01 06 -03 ~0 04 02 -04
HEC-RAS (steady) 10 25 97 05 -04 -03 03 02 -01
HEC-RAS (unsteady) 1.2 64 896 04 -03 -03 02 01 -01
LISFLOOD-FP (steady) 1.7 44 307 04 -04 -03 03 ~0 -03
Vi LISFLOOD-FP (unsteady) 1.5 43 290 04 -04 -02 03 ~0 -02
FLO-2d (no channel) 0.7 15 36 07 -04 -02 ~0 04 01
FLO-2d (with channel) 09 19 58 06 -04 -04 03 02 -01

In Figure 28 we show the g-q and box-plots for each output variable and each model configuration.
All variables are characterized by positive skewness, with the larger one corresponding to the total
flood volume. Additionally, the latter variable exhibits heavy positive tails, as also indicated by the
kurtosis values shown in Table 16. In particular, the more complicated the model structure is the
less heavy is the positive tail of the empirical distribution. These outcomes are of major importance
in hydrological design and therefore, the application of average values to crucial model inputs (e.g.,
discharge, roughness coefficients etc.) may lead to over-designing, while, in contrast, the
application of the most probable values may result to severe underestimations. This can be even
deteriorated when the above variables exhibit heavy tails, since the mean would further deviate
from the mode value. Also, a heavy-tailed variable encloses higher uncertainty, since its prediction
intervals are wider, thus there is a higher probability for extreme values to occur.

In Figure 28 we also observe that the prediction intervals of LISFLOOD-FP (unsteady conditions)
are 1.5 times wider than the other models for the upstream depth, whereas for the downstream
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depth, HEC-RAS and LISFLOOD-FP (steady-state) intervals are approximately double more wide
(compared to the upstream depth). Also, FLO-2d exhibits similar intervals, compared to the
uniform depth ones, for the upstream depth and two times narrower for the downstream one.
Regarding flood volumes, HEC-RAS (unsteady) and LISFLOOD-FP (steady-state) exhibit wider
intervals while the rest are close to each other. It is noted that wider intervals enclose larger
variability and therefore, uncertainty. The aforementioned differences are due to the different
schemes, initial and hydraulic conditions made by each model and highlight the large uncertainty
that one should encounter in flood modelling.

Furthermore, in Figure 28 we observe that at the left and right tail of the flood volume distribution
all models deviate from normality, with HEC-RAS exhibiting the largest deviation, followed by
LISFLOOD-FP and FLO-2d. This can be explained by the fact that HEC-RAS is by construction 1d,
while the other two models are quasi-2d. Therefore, they can better approximate the lateral flow
attenuation along the floodplain, especially in mild topographic gradients, and thus, they would
require less discharge to capture a target flooded area. Also, FLO-2d uses the dynamic wave and so,
it can better approximate the floodplain attenuation in comparison to the diffusive wave of the
LISFLOOD-FP, which omits the local and convective acceleration terms. However, the use of extra
terms significantly increases the computational burden. In average, HEC-RAS (steady) requires
approximately 1 s per simulation, HEC-RAS (unsteady) requires 5 s, LISFLOOD-FP (steady and
unsteady) requires roughly 10 s for all cell sizes and FLO-2d requires up to 2 min, 15 minand 1.5 h
for cell sizes 100, 50 and 25 m, respectively (all simulations are performed with an Intel Core i7-
2600 @ 3.40GHz processor). Note that HEC-RAS includes 30, 60 and 120 cross sections and both
LISFLOOD-FP and FLO-2d include approximately 500, 2000 and 8000 grid cells, for cell sizes 100,
50 and 25 m, respectively.
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Figure 28: qqg-plots and box-plots of the water depth of the channels’ (a-b) upstream and (c-d)
downstream cell/section as well as of the (e-f) total volume of the flooded area. Note that the water
depths and flood volume are first standardized (i.e., the residual from their average value is divided
with their standard deviation). Source: Dimitriadis et al. (2016b).

Model sensitivity against roughness coefficients

It is well-known that the roughness coefficient is one of the most difficult parameters to estimate in
hydraulic modelling. A major issue is the different sensitivity of each model against the roughness
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assigned to the channel and the floodplain. In general, we expect the flood inundation to exhibit a
larger sensitivity to the channel friction rather than to the floodplain one, since the wave is carried
primarily by the channel while the floodplain acts merely as additional storage (Cunge et al., 1980;
Hunter et al, 2005). The above statement is in accordance with the computed correlation
coefficients between the three output variables (upstream and downstream depths and flood
volume) and all the input variables. Specifically, we observe that for the flood volume, HEC-RAS
exhibits the largest correlation to the floodplain friction, followed by FLO-2d. On the other hand,
LISFLOOD-FP exhibits minor only correlation. For the channel friction, HEC-RAS flood volume’s
correlation is larger than the floodplain one and similar for all models (except for the “no channel”
configuration of FLO-2d, which is expected to be small). The differences in the sensitivity against
the two roughness coefficients can be also illustrated through the estimation of the longitudinal and
lateral momentums, where the former is expected to highly outrange the latter one. In Figure 29 we
provide an example from LISFLOOD-FP, for the case of non-steady conditions.
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Figure 29: Contour maps of (a) water depths, (b) lateral flows, and (c) longitudinal flows produced
by LISFLOOD-FP (unsteady), for @ = 2500 m3/s, n; = 0.10,n, = 0.07, g, = 2.5%, g, = 2.8% and ¢ =
50 m. Source: Dimitriadis et al. (2016c).

0

Evaluation of uncertainty issues

In order to obtain a rough estimate on the uncertainty associated with the magnitude of each input
variable, we calculate the variation coefficient for each model against clustered samples of each
input variable. In particular, we formulate three equally sized clusters, with low, medium and high
values. In Figure 30, we show the relationship between the flood volume uncertainty against each
input variable and each model configuration. In general, we observe that for approximately all
cases, uncertainty decreases with increasing Q, g, and n., while it increases with increasing gy, ny
and c. The most important source of uncertainty is the channel’s roughness coefficient n, followed
by the floodplain’s one n; and the inflow discharge Q. Regarding the rest of the examined inputs,
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their range of variability is quite similar to each other and slightly smaller than the aforementioned
three variables one. Finally, in Figure 30, we also show the variability coefficients for each model as
well as the overall one, which is larger than their average value. A direct outcome of the above
investigations is that since the uncertainty related to an output variable (e.g., water depth) varies
significantly, so will do the hydraulic profile. This can completely alter the whole behaviour of the
flow if for example the profile includes a hydraulic jump from a switch of super-critical flow to sub-
critical one. It is interesting to remark that from the 1500 sets generated through the Monte Carlo
method, we observe upstream sub-critical flow in 50% of simulations with HEC-RAS, 60% with
LISFLOOD-FP (steady), 30% with LISFLOOD-FP (unsteady), 90% with FLO-2d (no channel) and
65% with FLO-2d (with channel). An important conclusion is that the uncertainty related to a
specific input variable can sometimes outperform the uncertainty related to different models,
schemes or conditions. The latter statement can be important in flood risk assessment, since it
raises the question whether saving computational time can always outbalance the cost of in situ
measurements (e.g., for accurate representation of geometry) in estimating a narrower variability
range for an input variable or in choosing which modelling scheme or flow condition is the most
appropriate for a particular case study.

As shown in the above analysis, uncertainty can be introduced in fully deterministic non-linear
systems with however, a short-term persistent behaviour as shown in Table 17, where a strong lag-
one cross-correlation between different models and schemes is apparent with all the larger lags
corresponding to approximately zero values.

Table 17: First order correlation between various hydraulic models and schemes as estimated from
the sensitivity analysis. Source: Dimitriadis et al. (2016c).

steady  unsteady steady unsteady nochannel  with channel
p1 of downstream depth

(HecRac) (HecRac) (Lisflood) (Lisflood) (Flo2d) (Flo2d)
steady (HecRac) 1 0.998 0.510 0.519 0.455 0.484
unsteady (HecRac) 0.998 1 0.512 0.521 0.452 0.485
steady (Lisflood) 0.510 0.512 1 0.982 0.712 0.903
unsteady (Lisflood) 0.519 0.521 0.982 1 0.733 0.922
no channel (Flo2d) 0.455 0.452 0.712 0.733 1 0.799
with channel (Flo2d) 0.484 0.485 0.903 0.922 0.799 1
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Figure 30: Variation coefficients of the flood volume vs. grouped input variables (coloured solid

lines), averaged per model (coloured dashed lines) and averaged (overall) for all models (black
line). Note that each variation coefficient is estimated from 500 (=1500/3), 1500 and 9000
(= 1500x6) values, respectively. Also note that the overall variation coefficients of HEC-RAS, for

steady and unsteady conditions, coincide with each other. Source: Dimitriadis et al. (2016c).
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4.3 HKdynamic as a measure of uncertainty

A key observation from the above analysis is that the more chaotic and complex a process is, the
larger is the introduced uncertainty (unpredictability or equivalently the predictability time
window) and the stronger is the HK behaviour (through the estimated Hurst parameter).
Particularly, a die’s trajectory is fairly predictable for time windows of approximately 0.1 s, and this
time window becomes 5 min for rainfall intensity and 1 h for wind speeds. Thus, dice seems to
behave like any other common physical system: predictable for short horizons, unpredictable for
long horizons. The main difference of dice trajectories from other common physical systems is that
they enable unpredictability very quickly. Also, the largest Hurst parameter corresponds to the
process of local wind events (H = 0.95), the intermediate to the process of local rainfall events (H =
0.9) and the smallest one to the die process (0.6 < H < 0.5). Conversely, if averages at large time
scales are considered, then the dice will become more predictable as it will soon develop a time
average of 3.5; this is also strengthened by the fact that die is orientation-limited to a combination
of six faces, while rainfall and wind processes have infinite possible patterns and thus, can be more
unpredictable for long horizons and long time scales.

As far as the examined purely deterministic systems, it is well-known that solutions of stochastic
differential equations cannot result in an HK behaviour and can be adequately approximated by
Markov chain Monte-Carlo algorithms (e.g., Infante et al., 2016, and references therein). However,
natural processes with HK behaviour abound in literature. For example, turbulent processes exhibit
such long-term persistent behaviour (e.g, Dimitriadis et al, 2016a, and references therein),
ecosystem variability (Pappas et al.,, 2017) as well as most geophysical processes as verified in
several cases (Koutsoyiannis, 2003; O’Connell et al.,, 2016; Sakalauskiené, 2003), and specifically in
key hydrometeorological processes such as: river discharges (Hurst, 1951; Koutsoyiannis et al,,
2008); solar radiation and wind speed (Koutsoyiannis et al., 2017; Tsekouras and Koutsoyiannis,
2014); precipitation (Iliopoulou et al., 2016); paleoclimatic temperature reconstructions (Markonis
and Koutsoyiannis, 2013); and temperature and dew point (Koutsoyiannis et al., 2017; Lerias et al,,
2016). Interestingly, in most of the aforementioned processes the Hurst parameter is estimated at
the range 0.8 to 0.85, as indicated by Hurst (1951) decades ago (Cohn and Lins, 2005).
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5 Application to microscale turbulent processes

Stochastic modelling and probabilistic approaches in general, have been proven useful in the
investigation of processes that resist a deterministic description, such as turbulence (e.g,
Dimitriadis et al., 2016a; Frisch, ch. 3, 2006; Kraichnan, 1991, ch. 1; McDonough, ch. 1, 2004). For
example, various physical interpretations of geophysical processes are based on the power
spectrum and/or autocovariance behaviour (e.g., spectral density function of isotropic turbulence,
see in Pope, 2000, p. 610), with both metrics belonging to the fields of Stochastics rather than
classical mechanics. In this section, we apply the stochastic framework presented in the previous
sections in microscale turbulent processes and we compare the results with the ones from
applications in hydrometeorological processes in small scale and in larger scales.

5.1 On the definition of turbulence

Turbulence originates from the Greek word ‘TOpBn’ (cf. “...tiv TOpPnv &v 1) l&pev’:'..for the
turbulence in which we live’, Isokrates, 15.130) which means disorder, confusion, turmoil etc.
Turbulence is considered to generate and drive most geophysical processes, e.g., wind turbulence
giving birth and spatiotemporal variability in cloud rainfall (Falkovich et al, 2002), yet it is
regarded as mystery within classical physics (McDonough, 2004, ch. 1). Studying turbulent
phenomena is of high importance in hydrology (Mandelbrot and Wallis, 1969; Rinaldo, 2006) since
the microscopic processes (related to turbulence) can help understand the macroscopic ones
(related to hydrology), since they enable the recording of very long time series and with a high
resolution, a rare case for hydrological processes (Koutsoyiannis, 2014). The simplest case of
turbulent state (in terms of mathematical calculations) is the stationary, isotropic and
homogeneous turbulence. While this is a physical phenomenon that has been recognized hundreds
of years ago, still there is no universally agreed mathematical definition for the so-called ‘turbulent
state’ (Tessarotto and Asci, 2010). Leonardo da Vinci tried to give a definition 500 years ago, based
on his observations that water falling into a sink forms large eddies as well as rotational motion
(Pedretti, 1977). Interestingly, Heisenberg (1985) commented on the definition of turbulent state of
flow that it is just the result of infinite degrees of freedom developed in a liquid flowing without
friction and thus, by contrast, laminar flow is a turbulent state of flow with reduced degrees of
freedom caused by the viscous action. In 1880, Reynolds introduced one of the most important
dimensionless parameters in fluid mechanics, the ratio of momentum over viscous forces which is
called Reynolds number ever since. Based on this dimensionless parameter, it was observed that
irrotationality in the streamlines occurred for values much greater than 1 and led to somehow
confine the occurrence of turbulence to Reynolds number values greater than approximately 1000
to 2000. Richardson (1922) introduced the idea of turbulence ‘energy cascade’ by stating that
turbulent motion, powered by the kinetic energy, is first produced at the largest scales (through
eddies of size comparable to the characteristic length scale of the natural process) and then to
smaller and smaller ones, until is dissipated by the viscous strain action. Taylor (1935) was the first
to use stochastic tools to study this phenomenon modelling turbulence by means of random
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variables rather than deterministic ones. Following this idea, Kolmogorov (1941a,b,c,d) managed to
derive the famous ‘5/3’ law (also known as K41 theory) through the Navier-Stokes equations. That
law describes the energy cascade from larger to smaller turbulence scales within the inertial
wavenumber sub-range, with the power spectrum no longer dependent on the eddy size and fluid
viscosity. Since then, many scientists (including Von Karman, 1948; Heisenberg, 1985; Kraichnan,
1959; Batchelor, 1953 and Pope, 2000), have significantly contributed to the current power-
spectrum-based models of turbulence. A general view of the stochastic approach of stationary and
isotropic turbulence (in which the random variables describing turbulence have the same statistical
properties in all directions) can be seen in many text books (e.g., Pope, 2000).

Following the stochastic framework in section 2, we derive in Table 18, the 1d and 3d isotropic
power spectra as well as their LLD, for a Markov process, a special case of a powered-exponential
process (e.g., Gneiting et al., 2012; Yaglom, 2004, ch. 10) and the gHK process. These positively-
correlated mathematical processes enclose possible asymptotic behaviours in large and small
scales. In particular, a positively-correlated natural process may approach zero or infinite scale, by
a powered-exponential (e.g., Markov process) or a power-type (e.g., HK process) rise or decay,
respectively. The 1d power spectrum and the 3d one, denoted as s;(w), are related by (Batchelor,
1953; Pope, 2000, pp. 226-227; Kang et al,, 2003):

sy = | T Wl dx (79)
L x3 3D
5 (l@(s(w)))
w3 \w  ow (80)
s3a(w) = 2 aw

where w is the isotropic 3d frequency vector (wavenumber), with ||w| = w = 0.

As mentioned above, the most common used model for stationary and isotropic turbulence consists
of the work of many scientists. Combining them into one equation, the power spectrum of isotropic
and stationary turbulence can be expressed as (Pope, 2000; Kang et al.,, 2003):

sspW) = fg(w, cg, 0) filw, cp) fo(w, cp) (81)

where, from the work of Von Karman (1948), for the energy containing eddies (large scales):

w 3P
e p) = (e (82)
fe(w, cg,p) (\/m>

combined with the work of Kolmogorov (1941a,b,c,d) for the inertial range (intermediate scales):

fiw,a) = qw™s 83)

and from the work of Kraichnan (1959) for the dissipation range (small scales):
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fow,cp) = e™eP (84)
where cg, p, ¢, cp are constants.

Table 18: 1d and 3d power spectrum for Markov, powered-exponential and gHK processes as well
as their LLD, where A is the parameter related to the true variance of the process, q the scale
parameter and b is related to the power-type behaviour of the process (source: Dimitriadis et al,,
2016a).

powered-exponential
Markov gHK
(special case)
c(v)
1-b)2-b
c(t) = Ae7ltl/a (T18-1) | c(7) = Ae~@D? (T18-2) | = W (T18-3)
with b € (0,2)
41q s(w) = Aqvm o (qwm)? lim,,_,o s ~w?~1, with (T18-6)
- 2 -
s(w) = .
T ith 5*(w) = —2(qwm)? im0 o” =1
o 4 (T18-4) | W W) ==2Wqwms | (T18-5)
with lim,, o s* =0 . “ ) o
lim,,_,s* = 0and lim,, o S ~w™*, with
and lim,,_,., s* = —2 s _ . (T18-7)
Vlvl_r)r(}os = —0o0 lim,, o, s" = -2
s3a(w) S3p(W)~gSwhe(@wm? \}3—%53d~wb_1' with
42q(2mqw)* ith s"(w) = 4 2 ) " W1 (T18-10)
=g with s*(w) = 4 — 2(qwm im,,_gS3q" = b —
(1 + 4m2q?w?)3 (T18-8) _ Y 1 (T18-9) v
with lim,, o 534" = 4 limy,_,o 534" = 4 and lim s3q~w™2, with
- w—0o
. ) lim,, ., 534" = —o0 _ ' (T18-11)
and lim,, o S3¢" = —2 lim,, e S3¢™ = —2

5.1.1 Stochastic properties of large-scale range

For the 3d and 1d (derived from the 3d one) power spectra at the energy containing range, we have
that:
. i D
fi 550 = fim s ~w (#5)

where Von Karman (1948) suggests p = 4 (or else known as ‘Batchelor turbulence’, cf., Davidson,
2000), while other works result in different values, e.g., Saffman (1967) suggests p = 2.

There are many arguments about the proper value of the p parameter and its relation to the
Loitsyansky integral which controls the rate of decay of kinetic energy (Davidson, 2000). The main
debate is whether points at a large distance in stationary, isotropic and homogeneous turbulent
flow are statistically independent or show a correlation that decays either exponentially (e.g., Von
Karman model for wind gust, cf.,, Wright and Cooper, 2008, ch. 16.7.1; Faisst and Eckhardt, 2004;
Avila et al,, 2010; Kuik et al,, 2010; models for pipe flow) or with a power-type law.
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Towards the stochastic properties of the aforementioned equation, we can see that the case p = 2
does not correspond neither to exponential (Markov or powered-exponential) nor to power-type
(i.e, HK) decay of autocovariance. Hence, this model cannot be applied to asymptotic zero
frequencies (or infinite scales). Interestingly, the case p = 4 can be interpreted by a Markov or a
special case of the powered-exponential decay of autocovariance. However, this case also excludes
the HK behaviour, i.e., long-range dependence, where p now equals b — 1 and is bounded to [-1, 1].

Although the aforementioned models do not include a possible power-law decay of autocovariance
(HK behaviour), several works show strong indication that turbulence natural processes can exhibit
such behaviour rather than Markov. Such works are reported by e.g., Nordin et al. (1972) for
laboratory turbulent flume and turbulent river velocities, Helland and Van Atta (1978) for grid
turbulence velocities, Goldstein et al. (1995) for magneto-hydrodynamic turbulent solar wind,
Chamorro and Porté-Agel (2009) for wind turbulent wakes and grid-turbulence, Dimitriadis and
Papanicolou (2012) and Charakopoulos et al. (2014a,b) for turbulent buoyant jets, Dimitriadis et al.
(2016a) for grid turbulence.

We believe that the reason a possible HK behaviour is not detected in geophysical processes (which
are often characterized by lack of measurements), is that mathematical smoothing techniques are
applied, e.g., windowing or else Welch approaches, regression analysis, wavelet techniques (see
other examples in (Stoica and Moses, 2005, ch. 2.6). Particularly, application of windowing
techniques to any stochastic tool can be misleading since they eliminate a portion (depending on
the type and length of the window applied) of the variance of the time series (which often is
incorrectly attributed to ‘noise’, e.g., Koutsoyiannis, 2010). This elimination can lead to process
misrepresentation in case of significant effects of discretization, small and/or finite record length
and bias (examples of applications to the power spectrum can be seen in Lombardo et al., 2013; and
Dimitriadis and Koutsoyiannis, 2015a). An example of smoothing out the HK behaviour by applying
the Welch approach with a Bartlett window and no segment-overlapping to an observed time series
is shown in Figure 31. Even though the smoothing technique decreases the variance of the power
spectrum, it also causes low frequency loss of information. This loss of information may cause a
process misinterpretation, as illustrated in Figure 31, where the autocorrelation function (derived
from the 3D power spectrum model) exhibits a Markov-like decay, while the empirical one (derived
from the windowed empirical power spectrum partitioned into 103 segments) exhibits HK
behaviour. Also, this smoothing technique should be used in caution in strong-correlated processes,
since an increase in the number of partitioned segments will cause an increase in their cross-
correlation. Finally, processes with HK behaviour have usually large bias and in case this is not
included in the model, the empirical rapid decay of autocovariance in large scales (or equivalently
lags) may be erroneously interpreted as short-range dependence.
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Figure 31: (a) Example of loss of low frequency information caused by the application of the
windowing technique, in a time-series provided by the Johns Hopkins University as well as the
maximum cross correlations between the partitioned segments; (b) 1D autocorrelation function
derived from the 3D power spectrum model (with parameters based on the fitting of the windowed
1D power spectrum with 1000 segments: cg = 2.5m™2, p =4, ¢, = 13.0m3/s?, ¢, =2x107*
m); a Markov autocorrelation function, i.e., e‘(T/‘U, for reasons of comparison; and the
corresponding (to the windowed 1D power spectrum with 1000 segments) empirical
autocorrelation function. Source: Dimitriadis et al. (2016a).

To incorporate possible HK behaviour in the model, we may assume an autocovariance power-type
decay at large scales, where the 3d and 1d power spectra at asymptotically zero frequency are of

the form w?~1

, with b bounded to (0,2), for positively correlated processes (i.e, 0.5 < H < 1),
negatively-correlated processes (i.e, 0 < H < 0.5) and for a process with a white-noise-like decay

in large scales (i.e.,, H = 0.5).

5.1.2 Stochastic properties of intermediate range

One may observe that the power spectrum asymptotic LLD for various processes often coincident
to each other. For example, for both a Markov and a gHK process with b =1, the power spectrum
LLD is O for the low frequency tail and -2 for the high frequency one. This may be confusing and
result in misinterpretation of the natural process. A solution to this may be to incorporate
additional stochastic tools in the analysis. For the aforementioned example, if the autocovariance
function asymptotic properties (local and global ones) are analyzed, one can decide upon powered-
exponential lag decay (as in the Markov process) and a power-type one (as in the gHK process).
Similarly, when a power-type behaviour appears in the intermediate frequencies of a power
spectrum (as in the case of a -5/3 LLD), it may be misleading to interpret it as a power-law function
(and thus, a power-type autocovariance decay), since this can be derived from different kind of
processes with no power-type expressions for the intermediate scale-range. An illustrative example
is shown in Figure 32, where the -5/3 LLD in the intermediate frequencies of the power spectrum
results from a simple combination of a Markov and a gHK process, both of which have a purely
stochastic interpretation and they do not include power-type expressions in the intermediate
frequency-range.
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Figure 32: Expected power spectrum resulted from a combination of a Markov and a gHK process
(source: Dimitriadis et al., 2016a).

Note also, that the Kolmogorov (1941ab,c,d) power-type power spectrum refers only to
intermediate frequencies and should not be also applied arbitrarily to low frequencies, since the
corresponding asymptotic large-scale behaviour of the autocovariance, i.e., c(t)~75/3-1, is equivalent
to an erroneous H = 4/3 > 1.

5.1.3 Stochastic properties of small-scale range
Similarly, for the 3d and 1d power spectra at the dissipation range, we have that (Figure 33):

w

lim s3q (W) = lim s (w)~e~ (86)
W—00 W—00
This corresponds to an autocovariance function of the form:
~ 87
(@~ (87)

which corresponds to the Wackernagel (1995) process (also mentioned as an autocovariance-based
Cauchy-class process resembling the Cauchy probability function). A generalized expression of this
process can be found in Gneiting (2000), which we will refer to it as the Gneiting process (Table 8):

A

c(r) = 1-H
A+ @/@*M)y M

(88)
Note that for M = %2 we have the gHK process and that if this process is expressed based on the

climacogram rather than the autocovariance; it corresponds to the HHK process.

For small lags (and for g = A = M= 1) this process behaves like (e.g., Gneiting and Schlather, 2004):
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limc ()~1 — t2~e™ ™ (89)

-0

which corresponds to the special case of a powered-exponential process. Note that if this process is
expanded directly to large scales it corresponds to an erroneous process with H = 0.
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Figure 33: (a) Power spectra and (b) corresponding autocovariances, in continuous time as well as
their expected values, with varying number of records n for a gHK process (source: Dimitriadis et
al,, 2016a).

Other models for the dissipation range are of the form of a powered-exponential power spectrum
process that may result from a powered-exponential autocovariance function. However, there is
evidence that these models cannot interpret the frequently observed spike in the high frequency
power spectrum (e.g., Cerutti and Meneveau, 2000; Kang et al., 2003). This is usually ignored and
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attributed to instrumental noise. In Figure 34, we show that this spike may appear in HK processes
and is due to discretization and bias errors, in case the shape parameter q/4 takes large values.
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Figure 34: Expected power spectra of a gHK process, with varying q/4 (where 4 the sampling time
interval). Source: Dimitriadis et al., 2016a.

5.2 Proposed model

Here, we focus on the local and global stochastic properties of the most common three-dimensional
power-spectrum-based models of stationary and isotropic turbulence in time domain and we detect
some model weaknesses despite their widespread use. In the previous section, we present several
limitations concerning the stochastic properties of proposed turbulent models from literature.
Specifically, we see that they only include exponential decay in the energy containing area and thus,
completely excluding possible HK behaviour. They also, describe the dissipation area decay with
only a specific case of a powered-exponential process and thus, leaving out all other possible types
of decay. Moreover, they interpret a possible power-type-like intermediate area (of the power
spectrum) with power-type behaviour (and particularly, only that of the K41 theory) which can also
result from intermediate non power-type processes. Furthermore, these models adequately
represent only the power spectrum while failing to describe other tools like the climacogram and
autocovariance. Moreover, these models are constructed based on multiplications between
processes, an action with no mathematical or physical justification and which may cause numerical
difficulties in stochastic generation. Since turbulence generates and drives most of geophysical
processes, we expect geophysical processes to exhibit similar types of decay in small and large
scales. Hence, a more robust, flexible and parsimonious model is required that can incorporate all
the aforementioned microscale and macroscale behaviours linking turbulence to hydrology and
beyond. Here, we choose the ergodic stochastic model that consists of two independent processes,
these of a Markov and an HHK process (with H > 0.5 and M < 0.5), combined in such way to exhibit
the desired behaviour in the intermediate scales. This model can describe a variety of combinations
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between powered-exponential and HK processes, including the often observed intermediate quick
drop of all the stochastic tools. This particular drop may be due to the interference of boundaries
and/or the existence of multiple periodic functions, as for example in case of combinations of HK
with cyclo-stationary processes (Dimitriadis and Koutsoyiannis, 2015b). Furthermore, although the
proposed model results in a complicated expression for the power spectrum, it provides simpler
expressions for the other tools. Additionally, the proposed model is also justified by the
extremization of entropy production in logarithmic time, as shown in section 2. Finally, this model
combines both fractal and HK dynamics using four parameters (Dimitriadis and Koutsoyiannis,
2017):

A N Mk/q + e ¥ —1)

y(k) = - 5 90
201+ (/) 7 /o >

For the estimation of the distribution parameters we minimize the error introduced in Dimitriadis
and Koutsoyiannis (2017) and is based on the absolute value of the difference between the main
body of the empirical and modelled distribution along with their left and right tails:

Zk———% wm)meZ’ S

where f;,, and f; are the model and empirical distribution functions, respectively.

(oD

For the estimation of the parameters of the dependence structure we minimize a similarly defined
error (Dimitriadis and Koutsoyiannis, 2017):

Ym (1) Ye(x)
& = Z ’1 - Ve(K) Zlye(K) - ym(K)lz ‘1 - Vm(K)

where y,, is the model climacogram and y, is the empirical climacogram.

(92)

5.3 Applications to laboratory microscale turbulent processes

In this section, we use laboratory measurements of grid-turbulence velocities recorded within a
wind-tunnel and of temperature differences recorded within a turbulent thermal jet.

5.3.1 Laboratory measurements of grid-turbulence velocities

As previously mentioned, high order moments cannot be reliably estimated from typically short
time series of geophysical processes. However, in laboratory experiments with high sampling rates,
very large time series of observations can be formed, which allow direct estimation of high order
moments from data. Here, we use a grid-turbulence massive database provided by the Johns
Hopkins University (www.me.jhu.edu/meneveau/datasets/datamap.html). This dataset consists of
40 time series, each with n = 36x106 data points of longitudinal wind velocity along the flow
direction, all measured by X-wire probes placed downstream of the grid and with a sampling time
interval of 25 ps. (Kang et al., 2003). Due to the laboratory nature of the experiment we may apply
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the Taylor’s hypothesis of frozen turbulence (Taylor, 1938) and shift from the spatial to the
temporal domain (Castro et al., 2011). We then use a standardization scheme illustrated in Figure
35 to homogenize all series (Dimitriadis et al., 2016a) and, by setting the empirical mean to zero,

we calculate the standardized empirical variance as E [?(D)] ~ 1. By the standardization we are

able to form a sample of 40 x 36 x106 = 1.44 x10° values for the estimation of the marginal
characteristics of the process and an ensemble of 40 series, each with 36 x10¢ values for the
estimation of the dependence structure characteristics.

It can be observed that the time series are not precisely Gaussian but rather nearly-Gaussian as
shown in Figure 35. This is also verified by the skewness and kurtosis estimates of 0.2 and 3.1,
respectively. If those values were estimated from a small sample, for example n = 100, then the
probability density function of the process would be regarded Gaussian and the divergence from
normality would be attributed to statistical error, since for n = 100 the uncertainty measured
through the standard deviation of the skewness and kurtosis, is as high as 30% and 50%,
respectively (Figure 12). However, for n * 1.5x109 the uncertainty of the mean will drop below 1%
for H = 0.8 and therefore, it is expected that the uncertainty of skewness and kurtosis will be low
too. Moreover, there are some theoretical arguments justifying the divergence of fully developed
turbulent processes from normality (Wilczek et al., 2011).
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Figure 35: [left] Standardization scheme for grid-turbulence data, where u and ¢ are the mean and
standard deviation, r is the distance from the grid, with the first 16 time series corresponding to
transverse points abstaining r = 20S from the source, the second 4 to r = 308, the third 4 to 40S and
the last 16 to 48S, with § = 0.152 m the size of the grid; [right] empirical probability density
function of the overall standardized time series (observed) along with that from a single synthetic
time series produced by the SMA scheme to preserve the first four moments (simulation); for
comparison the theoretical distributions N(0,1), skew normal and ME constrained on the four
moments (corresponding weights for the ME distribution: 15%, 51%, 21% and 13%). Source:
Dimitriadis and Koutsoyiannis (2017).

For the estimation of the climacogram we apply the suggested methodology of fitting the expected
model to the mean climacogram calculated from the 36 time series of identical length. However, to
improve the fitting of the model, we include in the analysis the additional climacogram-based
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metrics such as the CBF and CBS (see section 2.5). The climacogram is more representative of the
large and intermediate scales, the CBF of the small and intermediate scales and the CBS of small and
large scales and thus, by combining all three of them we can achieve a better fitting of the model
(Dimitriadis et al., 2016a).

The model parameters are estimated as: A= 1, M = 1/3, H = 5/6 and q = 14 ms. Here a large
number of parameters could be justified due the large data size but the above model is quite
parsimonious. Also, since the applied extended HHK model is theoretically justified through the
maximization of entropy (as shown in section 2.4) each parameter has a physically-based
interpretation. Moreover, we observe from Figure 36 that this model is also in agreement with the
work on the turbulent power spectrum by Von Karman (1948) for the large scale range, by K41
model for the intermediate range and by Kraichnan (1959) for the dissipation range (cf., Pope,
2000, pp. 232-233), while here we also simulate the HK behaviour that clearly appears in the very
small frequencies (very large scales) of the power spectrum and in the other stochastic tools.
Additionally, certain aspects exhibited in the power spectrum such as the bottleneck effect (Kang et
al,, 2003) and the spike at large frequencies which is often ignored and attributed to instrumental
noise (Cerutti and Meneveau, 2000) are also well represented. Finally, the preservation of kurtosis
of the velocity increments (see below) enables to even simulate the effect that the intermittent
behaviour of the process has on the marginal probability distribution, first discovered in turbulence
by Batchelor and Townsend (1949).
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Figure 36: The empirical, true and expected values of the climacogram [upper left], CBF [upper
right], CBS [lower left] and power spectrum [lower right] along with some important logarithmic
slopes. Source: Dimitriadis and Koutsoyiannis (2017).

It is interesting to further investigate the latter issue through the behaviour of a generalized
structure function V,(h):= E[|§i —&+h|p] and in particular the power-law behaviour for the

intermediate range of lags, i.e., V,(h) = h». Such behaviours have been attributed to intermittency
(Frisch, 2006, sect. 8.3) which initiated the need for exploring models different from the K41 such
as the multifractal ones (Frisch, 2006, sect. 8.5 to 8.9). As shown in Figure 37, the increase of V3 (h)
and the drop of kurtosis of the velocity increments for a wide range of lag (h), as well as the
increase of the exponent ¢, for a wide range of the p exponent, are impressively well preserved by
the proposed model. This is achieved with no particular effort or provision (e.g., without using extra
assumptions, parameters or models) but merely by simultaneously simulating the first four
moments (with focus on the coefficient of kurtosis) and the stochastic structure of the process.
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Figure 37: Empirical and simulated 31 order structure function [left] and kurtosis coefficient [right]
of the velocity increments vs. lag. Source: Dimitriadis and Koutsoyiannis (2017).

To further highlight this finding, we illustrate in Figure 38 that the HHK model alone cannot
simulate the observed behaviour of the high order structure function but rather approaches the
structure function as simulated by the K41 self-similarity model and reproduced by Frisch (2006,
Fig. 8.8). Similar results are obtained in case a Markov dependence structure is adopted but by
simultaneously preserving the empirical non-Gaussian marginal distribution. Interestingly, if both
the proposed dependence structure and marginal distribution are combined, then the observed
behaviour of the high order structure function is preserved and as a consequence the intermittent
behaviour of turbulence. For comparison, we plot the She-Leveque model (She and Leveque, 1994)
that behaves also exceptionally well and originates from the alternative assumption of independent
identically distributed log-Poisson multiplicative factors (Frisch, 2006, sect. 8.6.4, 8.6.5).
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Figure 38: Empirical and simulated structure function for various orders of the velocity increments
vs. lag. Source: Dimitriadis and Koutsoyiannis (2017).

5.3.2 Laboratory measurements of turbulent thermal jet temperatures

For the analysis of turbulence micro-scale through the measurement of concentration, a laser-
induced fluorescence (LIF) technique is used, implemented at the laboratory of Hydromechanics
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and Environmental Engineering at the University of Thessaly and at the laboratory of Applied
Hydraulics at the NTUA. The measurements are based on the Laser-Induced Fluorescence (LIF)
technique (Papanicolaou and List, 1987; 1988). Particularly, the buoyant jet is dyed with a
rhodamine 6G (R6G) dye with low concentration that does not affect the buoyancy forces. The jet
flow field is illuminated with a thin (order of 1 mm) plane sheet of laser light. A DPSS 1 W laser
beam at 532 nm (green) is converted to a thin laser light sheet via a rotating prism mirror at 20
kHz. The rhodamine dye excited by the 532 nm wavelength emits (yellow) light at 556 nm, the
intensity of which is proportional to the rhodamine concentration if it does not exceed 50 ppm, as
indicated by Ferrier et al. (1993). Thus, laser based tomography of the buoyant jet flow-field can be
obtained across any desired plane. Then, the experiment is videotaped using a high resolution
video-camera pointing normal to the light sheet at 30 frames per second (fps). The experimental
setup is illustrated in Figure 39.

[water tank | rotating
b e prism { video-recording

mirror

!

Figure 39: Photograph of the experimental set-up on turbulent buoyant jets at the laboratory of
Hydraulics at NTUA.

For larger than 50ppm concentrations of R6G, the attenuation factor can no longer be assumed
negligible and it should be taken into account (as shown in the equations below; Dimitriadis and
Papanicolaou, 2010):

P(x) = Pye~ 1P (93)
1(x) = [,e=¥m® (94)
I1(x) = BP(x)C(x) (95)
np(x) = Npw + £pC(x) (96)
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n(x) = nw + &C(x) 97)

where P, and P is the, initial and at distance x(m) from the source laser power (W),

I, and [ is the initial, and at distance x(m) from the source, intensity of the radiation in units of
wavelength (nm),

C is the concentration (pg/1) of the fluorescence element at distance x,

new, Niw and np, n; are the attenuation parameters (m-1) of laser power and radiation intensity
resulting from clear water and from concentration C of the fluorescence upstream of the element at
distance x, respectively,

ep and g are coefficients (I/pug/m) that affect the attenuation of the laser power and radiation
intension, respectively,

B (Inm/W/ug) is a coefficient indicating the measure of efficiency.

The coefficient n;, can be experimentally determined by estimating (via image processing methods)
the distribution of the intensity along the laser beam in the water tank. The same method can be
applied for the determination of & and 8 by taking a threshold value of fluorescence (uniformly
distributed in the tank). Afterwards, the coefficients 7. and €p can be also determined. The initial
fluorescence light intensity lo is proportional to the R6G initial concentration Co if it does not
exceed 50 ppm (or pg/L), as shown by Ferrier et al. (1993). Here, this is verified through the
measurement of the intensity of several R6G concentrations samples fully mixed into the water-
tank, for two camera shutter speeds (sp).of 50 and 100 Hz (see Figure 40). The curves in Ferrier et
al. (1993) are adjusted to the measurements by multiplying with an arbitrary factor since the
applied intensity is arbitrary. Finally, the emitted yellow light can be split to its components red and
green light intensity (with the blue one being near zero), and therefore, to avoid the contribution of
possible scattering from the green laser beam, one may compute the R6G concentration from the
red light component intensity only.
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Figure 40: Initial concentration C, vs. the initial intensity I, for the red (top) and green (bottom)
RGB intensity. Source: Dimitriadis et al. (2010).

A set of experiments is performed for buoyant jets discharging in the horizontal and vertical
direction, for Richardson numbers in the range 0.01 to 0.20. Richardson number is determined
from the initial jet volume, momentum and buoyancy fluxes Q, M and B, respectively, as QB1/2/M5/4
(Table 19) and is a measure of the relative strength of initial buoyancy and inertial forces applied at
the jet. Note that the effect of laser attenuation due to light absorption from diluted rhodamine dye
is not taken into account in the data analysis of this set of experiments. An image processing code is
created in MATLAB for estimating certain turbulent characteristics based only on the ratio of
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concentrations. Initially, the model zooms in the area of interest and removes the background noise
(by setting a threshold intension value of R6G coloured radiation). Then, all the static objects that
are not of interest (i.e., the nozzle) are removed from the video frames. Next, the model smoothes
the gridline areas and rotates/enlarges the frames to adjust them to the real dimensions. Finally,
the blue hue (from the RGB values) is removed as explained above. Following this initial frame
elaboration, the concentration values are analyzed to examine if they are compatible with
theoretical relationships resulting from dimensional arguments. The temperature difference
between jet and ambient fluid ratio is assumed to be proportional to the rhodamine concentration
for uniformly distributed R6G.

Table 19: Details of the experiments held at the Laboratory of Hydraulics at the NTUA on the period
1/5/09 to 1/10/10 (where C, is the R6G initial concentration, D is the diameter of the nozzle, Q is
the initial discharge of R6G, Tam» and Tj.: are the ambient and jet temperature). Source: Dimitriadis
and Papanicolaou (2010).

direction Q Tyt Tamp Reynolds Richardson type of
no date Co (mg/1) D (cm) Iv

of flow (ccs) (oC) (oC) number number flow
TBHJ01 8/2/2010 horizontal 6000 1.0 20.0040.0016.00 3851 0.094 945 Jet
TBV]01a9/7/2010 vertical 6000 1.0 15.2638.5025.10 2858 0.097 9.13 Jet
TBV]J01b9/7/2010 vertical 6000 1.0 18.6238.7025.10 3499 0.080 11.04 Jet
TBV]01c9/7/2010 vertical 6000 1.0 21.9738.8025.10 4137 0.068 1298 Jet
TBV]02a9/7/2010 vertical 6000 0.5 11.9133.4025.20 4040 0.017  26.69 Jet
TBV]02b9/7/2010 vertical 6000 0.5 18.6233.4025.20 6314 0.011  41.71 Jet
TBV]02c¢9/7/2010 vertical 6000 0.5 8.56 33.4025.20 2903 0.023  19.18 Jet

TBV]02d9/7/2010 vertical 6000 0.5 5.21 33.4025.20 1766 0.038 11.67 Jet

First, we analyze the horizontal turbulent buoyant jet (experiment TBH01) following the above
analysis (Figures 41 and 42).
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Figure 41: From left to righr and top to bottom: (a) Raw picture taken from the video-camera for
the TBJHO1 experiment, (b) gray-scale and (c) RGB format of the raw picture, (d) average gray-scale
and (e) RGB image of the experiment, and (f) average RMS image of the experiment. Source:
Dimitriadis and Papanicolaou (2010).
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Figure 42: Time series of the excess temperature over the maximum temperature at the jet
centerline for the TBHJ01 experiment (Table 19). Source: Dimitriadis and Papanicolaou (2010).

The same analysis is repeated for the vertical jets (Figure 43).
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Figure 43: Dimensionless average and standard deviation of the RGB intensity (1st and 3rd pictures)
and of the red RGB intensity (2nd and 4t plots), for the experiment TBV]01a. Source: Dimitriadis
and Papanicolaou (2010).

We then examine the HK behaviour of temperature as a function of the distance along the jet axis.
Near the nozzle, the flow is dominated by the initial horizontal momentum and attains pure jet
properties, while away from the nozzle the specific buoyancy flux dominates thus, the flow does not
longer behave as a jet but as a plume. At the jet regime, the flow behaves irrationally and the
fluctuations caused by turbulence are large. As a result of this, the temperature timeseries is
expected to have a low Hurst coefficient close to 0.5. In contrast, in the plume regime the timeseries
is expected to behave as a positively correlated process and thus, to have a larger Hurst coefficient.
This state takes place for distances from the nozzle S/Iu > 1.5 to 2 (Papanicolaou and List, 1987;
Michas and Papanicolaou, 2009), where S is the distance from the nozzle, Iy is a characteristic
length (indicating how far from the nozzle the buoyancy forces become significant).
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Figure 44: True (unbiased, pink line) and empirical (biased, blue line) Hurst parameter along the jet
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axis. Source: Dimitriadis and Papanicolaou (2010).
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5.4 Stochastic similarities between the microscale of turbulent processes and the
mesoscale geophysical ones

In this section, we show the stochastic analysis of a time-series of one month (Figure 45), consisted
of high resolution (4 ~ D = 0.1 s) atmospheric longitudinal wind speed (measured in m/s). This is
recorded by a sonic anemometer on a meteorological tower, located at Beaumont KS and are
provided by NCAR/EOL (http://data.eol.ucar.edu/).
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Figure 45: Part of the wind speed time-series provided by NCAR/EOL (http://data.eol.ucar.edu/).

First, we divide the time-series into three sets nearly Gaussian, each of which includes almost 1400
time-series of 10 min duration and of marginal empirical variances 0.15, 0.5 and 1.4 m2/s?,

respectively, and we estimate the climacogram and autocovariance based metrics for each set
(Figure 46).
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Figure 46: From top to bottom and from left to right: Averaged empirical (a) climacograms and
autocovariances, (b) CBV and variograms, (c) CBS and power spectra (for the three sets) and (d)
qq-plot of empirical pdf vs standard Gaussian pdf (for the original time-series), along with modelled
distribution density function (all parameters in m/s).

Additionally, we apply a model with HK behaviour (for details see in Dimitriadis et al., 2016a) and
we estimate the Hurst parameters as (Figure 47): H = 0.99 (first set), H = 0.98 (second set) and
H = 0.98 (third set).
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Figure 47: True, expected and empirical (averaged) climacogram values for the wind process

stochastic simulation.

We also show the stochastic analysis of three time-series (Figure 48) with high resolution (4 = D =
10 s) precipitation intensities (measured in mm/h). These episodes are recorded during various
weather states (high and low rainfall rates) and provided by the Hydrometeorology Laboratory at
the Iowa University (for more information concerning these episodes and various stochastic
analyses, see Georgakakos et al. (1994) and Koutsoyiannis and Langousis (2011, ch. 1.5).
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Figure 48: Three precipitation episodes provided by the Hydrometeorology Laboratory at the lowa
University.

Additionally, we estimate the climacogram and autocovariance based stochastic metrics for each
time series (Figure 49). Finally, we apply a model with HK behaviour (for details see in Dimitriadis

97



et al, 2016a) and we estimate the Hurst parameters as (Figure 49): H = 0.94 (T1),H = 0.95 (T2)
and H = 0.93 (T3).
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Figure 49: (a) Averaged empirical climacograms and autocovariances, (b) CBV and variograms, (c)
CBS and power spectra for T1, T2 and T3, and (d) true, expected and empirical (averaged)
climacogram values for the rainfall processes stochastic simulation. Source: Dimitriadis et al.
(2016a).

We choose these two processes (wind and precipitation events) since they are of high importance
in hydrometeorology. One may observe the transition from a process with low marginal variance
having a power spectrum with a drop in the intermediate scales (like in the turbulent applications),
to the one with larger marginal variance power spectrum (with no drop). Moreover, the similarities
between the climacogram (and autocovariance) based metrics are again obvious. Although the
above analysis can be considered quite simple, it highlights the deviation from Markov and white
noise behaviours of the high resolution wind and precipitation events (as in the case of the
examined turbulent processes). Particularly, the HK behaviour is apparent to all examined
processes with an interestingly large fitting error (for more details see in Dimitriadis et al., 2016a).
Therefore, although the physical mechanisms are considered to be substantially different between a
laboratory small-scale turbulent process and an atmospheric meso-scale hydrometeorological
process, the stochastic properties, such as the HK behaviour, seem to be quite similar.
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6 Application to hydrometeorological processes

In this section, we show how the proposed model that adequately describes the examined small
scale processes in the previous sections can be applied to macroscale hydrometeorological
processes.

6.1 Stochastic analysis of a long daily precipitation timeseries

In this application, we analyze one of the longest daily precipitation timeseries recorded for over
130 years at the site of Hohenpeifdenberg in Germany (latitude 47.801°N, longitude 11.011°E; data
from www.gkd.bayern.de/). We apply a special case of the PBF marginal distribution (see section
2.4) introduced for its use in precipitation in Koutsoyiannis (2004a) and justified in Koutsoyiannis
(2004b):

F(r)=1- (1 + (2 - h)>_c 98)

where r > ah is precipitation; a > 0 is a dimensionless scale parameter; ¢ > 0 is a dimensionless
parameter characterizing the right tail of the distribution and h is a dimensionless parameter
representing a threshold value. Theoretically, h = 0 but values slightly different from zero highly
improve fitting (Figure 50), while after the simulation we can set to zero any negative values of the
synthetic timeseries. With this technique, the probability of zero rainfall can be also adequately
preserved, i.e., P([ < 0) ~ P(r = 0). This technique can be justified through noticing that rainfall
measurements are usually corrupted with significant uncertainties (Krajewski et al., 1998; Villarini
etal., 2008) causing losses mainly due to wind effects (Sevruk and Nespor, 1998).

Note that here we ignore the seasonal periodicity of precipitation, which causes only a small
increase in the dependence structure as depicted in the climacogram of Figure 50. Since we have a
single timeseries we wish to estimate the dependence structure of the process through the mode
climacogram rather than the mean one (for more details see in Dimitriadis and Koutsoyiannis,
2017). For this, we apply a Monte-Carlo analysis by generating one thousand daily timeseries of
130 years following the fitted marginal distribution and an HK process. We use the ESK distribution
to simulate the white noise of the SMA scheme (section 3.3). From the Monte-Carlo ensemble, we
calculate the mode for each scale with three-digit accuracy and thus, constructing the mode
climacogram for the specified process. For the marginal distribution we use the same norm as in
the previous section and for the climacogram we use its classical estimator (referred in this section
as the E1 estimator):

ln/k| ki 2
. _ 1 2 1 2 Yi=1%
Bl = In/kl =1 & <E< &> oo ) >

I=k(i—-1)+1

where |n/k| is the integer part of n/k and x; is the time-averaged process at scale 4.
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The parameters related to the dependence structure via the climacogram are estimated from data,
based on the fitting norm, as: 1 = 1,2, where 1, = 6.5 mm is the standard deviation of , and H =
0.6, whereas those of the marginal distribution are: a =42.25 mm, ¢=7.7 and h = —0.1,
corresponding to 4 = 2.1 mm, ¢ = 7.3 mm, C; = 3.2 and (i = 24 (all estimations are based on the
fitting norms in Equations 91 and 92). Also, we calculate their corresponding weights determined
from the ME distribution (section 2.4.4) as 73%, 15%, 7% and 5%. Through a single synthetic
timeseries of equivalent length and after setting any negative values to zero, the modelled marginal
characteristics can be re-estimated as: y =3.3 (3.1) mm, ¢ =6.5 (6.5) mm, C; =4.5 (4.3),
Cx = 36.4 (30.2) and dry probability 44% (48%), where inside parentheses are the empirical values
that are adequately preserved. For illustration purposes, in Figure 50 we plot a 3000 days window
of the observed vs. the simulated precipitation.
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Figure 50: Empirical, modelled and simulated marginal distributions [upper left] and climacograms
[upper right] for the standardized precipitation process; the mode and several other essential
statistical measures of the standardized climacograms estimated from 103 synthetic timeseries (in
the figure we depict only 50 empirical climacograms) [lower left]; a 3000 days window of the

observed precipitation record along with a simulated one [lower right]. Source: Dimitriadis and
Koutsoyiannis (2017).
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6.2 Stochastic analysis of the longest hourly wind timeseries in Greece

For the hourly wind process we adopt the GHK process for the dependence structure. For the
probability function we apply a special case of the PBF marginal distribution (section 2.4) which
approximates the Weibull distribution for small hourly velocities and the Pareto distribution for
larger ones (e.g., Aksoy et al., 2004; Brano et al, 2011). The dependence structure, marginal
distribution and standardization scheme of wind are based on the preliminary analysis from
thousands of stations around the globe, performed by Dimitriadis et al. (2015); Deligiannis et al.
(2016); and Koutsoyiannis et al. (2017). A more thorough analysis justifying the above choices can
be seen in Koutsoyiannis et al. (2017) and in section 6.3. The three-parameter GHK process and
selected PBF marginal probability function can be written as:

A
y() = W (100)
by —C/b
Fv)=1- (1 + (U{:S) > (101)

where v > 0 is the wind process; k = kA4 is the continuous time scale with 4 = 1 h the sampling time
interval and k the discrete time scale; q is the scale parameter of the process; 4 is the true variance
of the continuous-time process; H is the Hurst coefficient; vg is the standard deviation of the
discretized process that should approximate the expected value of the square root of the

climacogram for scale k=1, i.e,, W = (1+4/q)"~'V2; and a is the scale parameter and b and ¢
are the shape parameters of the marginal distribution, all dimensionless. Note that we standardize
the wind process, in order to homogenize all timeseries recorded at different locations, altitude and
climatic conditions.

We choose to apply the above stochastic model to nine hourly wind timeseries of different lengths
located in Greece (Table 20). The expression for the bias of the classical estimator of the
climacogram is derived in Tyralis and Koutsoyiannis (2011) for an HK process and generalized for
all processes in Koutsoyiannis (2011). Here, we use the general expression and, since the timeseries
have different lengths n, we apply an estimator of the climacogram adjusted for n (referred in this
section as the E2 estimator):

[n/k| ki
N T T T S %
Z(kA) " n/k] -1 (E( Z &> T n

i=1 1=k(i-1)+1

) +y(nd) (102)

where f(kA) is an unbiased estimator of the climacogram y(kA4), since E [z(kA)] = y(k4).

The parameters related to the dependence structure via the climacogram are estimated from data
as: A=13,q=5h and H = 0.75, whereas for the marginal distribution as: a =6, b = 1.9 and
¢ = 14.8, corresponding to 1 = 1.9, 6 = 1.1 (= V4), Cs = 1.2 and Ci = 4.8 (all estimations are based on
the fitting norms in Equations 91 and 92). Also, we calculate their corresponding weights
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determined from the ME density function as 43%, 32%, 16% and 9%. To emulate the observed
wind timeseries one could set to zero any values of the synthetic timeseries that are below the
corresponding recording threshold of an anemometer, which is in average around 0.5 m/s
depending on the type of the anemometer (e.g.,, Conradsen et al., 1984)). For illustration purposes,
in Figure 51 we plot a 1000-day window of the observed vs. the simulated wind speed at Kos Island.
The empirical and modelled probability of wind speed less than or equal to 0.5 m/s are both around
20%.

Table 20: General information of the meteorological stations and statistical characteristics of the
hourly wind timeseries (downloaded from ftp.ncdc.noaa.gov). Source: Deligiannis et al. (2016).

above sea missing zero
hourly wind longitude latitude no. mean stdev
(deg) (deg) elevation (m/s) (m/s) values values
station eg eg years (m/s) (m/s
(m) (%) (%)
Herakleio  25.183 35.333 39 39 4.583 2918 88 6.3
N. Aghialos 228  39.217 15 17 3.258 2.331 28 19

Karpathos  35.417 27.15 20 17 7.506 4.074 304 39

Santorini 364 25483 38 24 5701 3.229 295 75
Kos 36.8 27.083 125 33 4805 27 15 7
El. Venizelos 37.93  23.93 96 11 3954 2995 0.6 1.9
Limnos 39917 25.233 5 38 4.458 3546 23 175
Paros 37.02  25.13 36 11 5567 3.265 46.8 6.5
Meganissi 3895 20.767 4 40 3.571 2.746 363 194

Note that ¢ and A should approximate unity but they are slightly larger due to the cyclo-stationary
effect of the daily and seasonal periodicities of the wind process (Deligiannis et al, 2016;
Dimitriadis and Koutsoyiannis, 2015b). These effects cause the small increase of climacogram
around daily and annual scales. Here, for simplicity, we ignore these effects and we apply a
stationary rather than cyclo-stationary model.
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Figure 51:Empirical mean (vm) vs. standard deviation of the nine timeseries along with the fitted
model [upper left]; the empirical, model and simulated marginal distributions [upper right] and
climacograms [lower left] for the standardized wind process; a 1000-day window of the observed
standardized wind process in Kos island along with a standardized simulated one [lower right].
Source: Dimitriadis and Koutsoyiannis (2017).

6.3 Global stochastic analysis of the hourly wind process

Understanding atmospheric motion in the form of wind is essential to many fields in geophysics.
Wind is considered one of the most important processes in hydrometeorology since, along with
temperature, it drives climate dynamics. Currently, the interest for modelling and forecasting of
wind has increased due to the importance of wind power production in the frame of renewable
energy resources development. For the investigation of the large scale of atmospheric wind speed,
we use over 15000 meteorological stations around the globe recorded mostly by anemometers and
with hourly resolution (www.nooa.gov; GHCN database). In total, we analyze almost 4000 stations
from different sites and climatic regimes by selecting time series that are still operational, with at
least one year length of data, at least one non-zero measurement per three hours on average and at
least 80% of non-zero values for the whole time series (Figure 52). This data set is referred below
as “global”.
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Figure 52: (upper) Distribution of the wind speed stations over the globe; (middle) sketch about the
selection of the stations in the analysis; (lower) evolution of the frequency of measured extremes in
the stations (where the ‘start’ year denotes the first operational year of the station and the ‘first’
and ‘last’ year denote the first and last year that an extreme value was recorded, respectively).

Source: Koutsoyiannis et al. (2017).
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By standardizing all series we formed a sample of ~0.5x109 values to estimate the marginal
distribution, and an ensemble of 3886 series, each with ~105 values on average, to estimate the
dependence structure through the climacogram. A known problem of field measurements of wind
(particularly those originating from over 70 years ago), is that the technology of measuring devices
has been rapidly changed (Manwell et al,, 2010, sect. 2.8.3). For example, in Figure 52 we illustrate
a rather virtual increase of extreme wind events after the 1970s which is mainly due to the inability
of older devices to properly measure wind speeds over 30 m/s (i.e., category I of Saffir-Simpson
hurricane wind scale). Furthermore, in common anemometer instrumentation there is a lower
threshold of speed that could be measured, usually within the range 0.1 — 0.5 m/s (e.g., www.pce-
instruments.com). It should be noted that, as the recorded wind speed decreases, so does the
instrumental accuracy and it may be a good practice to always set the minimum threshold to 0.5
m/s to avoid measuring the errors of the instrument (e.g., zero or extremely low values) in place of
the actual wind speed that can never reach an exact zero value.

In an attempt to incorporate smaller scales, starting from the microscale of turbulence, we include
again the dataset of the previous application of turbulence, using it as an indicator of the similar
statistical properties of small scale wind (Castaing et al., 1990). In addition to the 40 time series of
the longitudinal turbulent velocity in section 5.1, here we also use another 40 time series of
transverse velocity, measured at the same points with the longitudinal one; again each time series
has n = 36x10¢ data points with a sampling interval of 25 ps (Kang et al., 2003). The coefficients of
skewness and kurtosis are estimated as 0.1 and 3.1 for the transverse velocity, respectively.
Stochastic similarities between small scale atmospheric wind and turbulent processes abound in
the literature as for example in terms of the marginal distribution (Monahan, 2013, and references
therein), of the distribution of fluctuations (Bottcher et al,, 2007, and references therein), of the
dependence structure (Dimitriadis et al, 2016a, and references therein) and of higher-order
behaviour such as intermittency (e.g., Mahrt, 1989). This data set is referred below as “small”.

Finally, to link the large and small scale of atmospheric wind we analyse an additional time series,
referred to as “medium”, provided by NCAR/EOL of one-month length and with a 10 Hz resolution.
This time series has been recorded by a sonic anemometer on a meteorological tower located at
Beaumont KS and it includes over 25x10¢ longitudinal and transverse wind speed measurements
(http://data.eol.ucar.edu/; Doran, 2004).

The statistical characteristics based on moments up to fourth order are shown in Figure 53;
interestingly, there appears to be a rather well defined relationship between mean and standard
deviation. The plot of coefficient of kurtosis vs. coefficient of skewness indicates that Weibull
distribution falls close to the lower bound of the scatter of empirical points.
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Figure 53: Standard deviation vs mean (upper) and coefficient of kurtosis vs. coefficient of
skewness of all time series (source: Koutsoyiannis et al., 2017).

Numerous works have been conducted for the distribution of the surface wind speed (see in
Koutsoyiannis et al,, 2017, and references therein). The Weibull distribution is proven very useful
in describing the wind magnitude distribution for over three decades (Monahan, 2013, and
references therein). However, various studies illustrate empirical as well as physically-based
deviations from the Weibull distribution (Drobinski and Coulais, 2012, and references therein). Due
to the discussed limitations of properly measuring wind speed most studies have focused on a local
or small scale. In such cases where there is limited empirical evidence, but we could search for a
physical justification for the left and right tail of the probability function.

It can easily be proven that the magnitude of uncorrelated Gaussian distributions follows the
Rayleigh distribution. However, there is empirical and theoretical evidence that the small-scale
distribution of turbulence is not Gaussian and it is expected that this should also be the case for the
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components of wind speed. Through Monte-Carlo experiments we illustrate in Figure 54 that
correlated non-Gaussian components result in a distribution close to Weibull and is in agreement
with small and medium scale observations.
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Figure 54: Probability density function of the medium scale time series along with theoretical and
Monte Carlo generated distributions (source: Koutsoyiannis et al., 2017).

The distribution of the “global” time series appear to deviate from Weibull, gamma and log-normal
distributions, and is closer to a distribution with a much heavier tail, such as the PBF:

-c/b
F(v) =1- (1 + (%)b> (103)

S

where v > 0 is the wind speed, v, is the standard deviation of the wind speed process; a is a scale
parameter and b and c¢ are the shape parameters of the marginal distribution, all three
dimensionless.

The fitted distribution to all data sets and the fitted parameters are a = 3.5, b = 1.9, ¢ = 8.5 (see
Figure 55).
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Figure 55: Probability density function of the velocity of grid-turbulent data (small) and of the wind
speed of the medium and global scale time series along with fitted theoretical distributions (source:
Koutsoyiannis et al., 2017).

The mean estimated climacograms from the data indicate that the model is also applicable for the
wind speed at all scales with parameters estimated asA~ 1, M =1/3, H=5/6 and a = 6 h (Figure
56).
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Figure 56: Climacogram of the wind speed process estimated from the medium and global series
(source: Koutsoyiannis et al., 2017).
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6.4 Global stochastic analysis of the hourly temperature process

In this last application we analyze the dependence structure of the air temperature process close to
surface. For the microscale structure, we use a 10 Hz resolution timeseries recorded for a 2-month
period by a sonic anemometer at Beaumont USA (https://data.eol.ucar.edu/dataset/45.910). For
the macro-scale structure, we use a global database of hourly air temperature (www.nooa.gov;
GHCN database). In total, we analyze over 5000 stations from different sites and climatic regimes
by selecting time series with at least 1 year length and at least one measurement per three hours
(Figure 57). It can be assumed that the air temperature process follows a Gaussian distribution
(Koutsoyiannis, 2005). Indeed, the 90% of the time series have coefficient of skewness around 0
and of kurtosis around 3 with a standard deviation for both coefficients approximately equal to 1
(Figure 58). We normalize all time series and we estimate the dependence structure through the
climacogram, autocovariance and power spectrum (Figure 59 and 60) following the methodology in
Dimitriadis et al. (2016a).
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Figure 57: Locations of the selected hourly time series of air temperature from the global database
along with the Koppen climatic zones. Source: Lerias et al. (2016).

The mean estimated climacograms and climacogram-based spectrum from the data indicate that,
interestingly, the proposed mixed HHK model is also applicable here with parameters estimated as:
Ax1,M=1/3,H=5/6 and a = 3.3 d (Figure 59).
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Figure 58: Coefficient of skewness vs. coefficient of kurtosis for the 90% of the macro-scale
temperature time series (source: Koutsoyiannis et al., 2017).
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Figure 59: Climacogram of the normalized temperature for the micro-scale time series (small) and

the set of hourly air temperature time series (global; upper: average climacogram; lower:

climacograms of 100 different time series), compared to the fitted model (true and expected).
Source: Koutsoyiannis et al. (2017).
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Figure 60: Climacogram-based spectrum of the normalized temperature for the micro-scale time
series (small) and the set of hourly air temperature time series (global; average from all time
series), compared to the fitted model (true). Source: Koutsoyiannis et al. (2017).

6.5 Global stochastic analysis of hydrometeorological processes based on the Koppen-
Geiger climatic-classification

An annual change in hydroclimatic processes is commonly attributed to anthropogenic climatic
change. However, most of the studies have not taken into consideration the possibility of the Hurst
phenomenon. Usually, high (low) values of a hydroclimatic process are followed by high (low) ones,
meaning that observations appear in groups. In other words, the autocorrelation coefficient
remains quite high as the scale increases due to this clustering effect. Here, we analyze (additional
to the analyses of the previous sections) several hydroclimatic processes classified by the Koppen-
Geiger system of climatic zones and in terms of the climacogram in order to determine whether
they exhibit such behaviours of Long-Term Persistence (LTP). Again, we use the hourly database
GHCN with over 15,000 stations around the globe for the temperature, dew point, atmospheric
wind, precipitation and atmospheric pressure. First, we estimate the Hurst parameter for various
30-year time periods to test that there are no suspicious changes in LTP behaviour. The results
from this analysis are shown in Lerias et al. (2016) for the temperature and dew point processes, in
Sotiriadou et al. (2016) and Tyralis et al. (2017) for the precipitation process, in Deligiannis et al.
(2016) for the wind process and in Dimitriadis et al. (2016d) for the atmospheric pressure. In the
Table below we show the average Hurst parameter for each climatic-zone.
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Table 21: Hurst parameter under Képpen-Geiger classification (source: Dimitriadis et al., 2016d).

Hurst parameter
dew atmospheric
/ Koppen-Geiger temperature wind Speed precipitation
point pressure
classification
A 0.79 0.78 0.84 0.62 0.71
B 0.73 0.77 0.82 0.59 0.72
C 0.70 0.71 0.87 0.65 0.73
D 0.72 0.68 0.85 0.66 0.65
E 0.68 0.65 0.70 0.83 0.71

Finally, we estimate the prediction intervals for the 30 year period as well as the corresponding
error (prediction error) as shown in the next Figures. If the prediction error is small for all
examined 30-year periods and each station, then the model can describe adequately the climatic
variability of the process and so, the changes observed during the last decades can be attributed to
the Hurst phenomenon and not to anthropogenic factors. This should not be confused with the
urbanization factor. For example, the major cause for the deterioration of the natural defence
mechanism against floods and hurricanes is the destruction of forests. Indeed the damages from
severe flood events and hurricanes have increased over the last decades but that does not mean
that the human-kind has increased the severe storm events nor has changed the annual trend of
global climatic processes such as temperature, humidity (through the dew point), wind and
precipitation (similar to the atmospheric pressure).
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Figure 61: (a) temperature and (b) dew point timeseries and HK model for a station located in
Dallas, USA; (c) wind speed timeseries and HK model for a station located in Winter Trail, Alaska;
and (d) precipitation timeseries and HK model for a station located in North-East Australia. Source:
Dimitriadis et al. (2016e) and references therein. Source: Dimitriadis et al. (2016d).
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Figure 62: Prediction intervals for the examined station described in the previous figure and the
overall prediction error for (a) temperature, (b) dew point, (¢) wind speed and (d) precipitation.
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Overall, the Hurst parameter and the prediction errors are estimated from this analysis (following
an atmospheric circulation pattern) as: (a) H = 0.85 for the temperature process, with a prediction
error lower than 10% for the 73% of stations, (b) H = 0.83 for the wind process, with a prediction
error lower than 10% for the 71% of stations, (c) H = 0.80 for the dew point process, with a
prediction error lower than 10% for the 80% of stations, and (d) H = 0.67 for the precipitation and
atmospheric pressure processes, with a prediction error lower than 20% for the 86% of stations.

7 Conclusions and summary of thesis major innovations

The deeper understanding of the high complexity of atmospheric dynamics has been the key factor
towards the further enhancement of predictability of hydrometeorological processes. Although in
the last decades there has been a substantial increase of measurements and of the number of
meteorological stations, technological and theoretical advances on the recording devices,
breakthroughs on the mathematical techniques etc., the predictability has not significantly
improved. The latter conclusion is based on the simple observation that (extreme or mild) weather
phenomena most of the times still remain unpredictable. Hurst-Kolmogorov dynamics, i.e., the
dynamics causing random changes on the behaviour of a process that result in a clustering of
events, maybe a simple but rather a vital explanation of this inability of accurate predictions. In this
thesis, we analyze numerous of processes originating from the microscale of turbulence and
extending to macroscale hydrometeorological processes and we identify stochastic similarities
between them such as the HK behaviour with Hurst parameters considerably above 0.5. For this,
we first develop the stochastic framework for the empirical as well as theoretical estimation of the
marginal characteristic and second order dependence structure of a process, and by also
developing algorithms for stochastic synthesis of mathematical processes as well as stochastic
prediction of physical ones.

The major innovations of the thesis are (a) the further development and extensive application to
numerous stationary and isotropic processes of the second-order stochastic framework including
models in continuous and discrete time, expected values and classical estimators; (b) the estimation
of the dimensionless statistical error (due to discretization and bias) through Monte-Carlo analysis
of a variety of Markov and HK models, for the power spectrum, autocovariance and climacogram,
with the latter exhibiting the smaller error and the former the larger one for all examined
processes; (c) the exact mathematical expression of the statistical bias of the autocovariance and
power spectrum classical estimator as a function of the theoretical autocovariance; (d) the
introduction of the Markov process for a different time interval and response time, and the
expressions for its generation through an ARMA(1,1) model; (e) the further development of the
Sum of Autoregressive (SAR) and Moving Average (SARMA) schemes that can generate a large
variety of Gaussian processes approximated by a finite sum of AR(1) or ARMA(1,1) processes; (f)
the further development of the Symmetric-Moving-Average (SMA) scheme that can generate any
process second-order dependence structure as well as certain aspects of the intermittency
behaviour, and any marginal distribution by approximating a finite number of statistical moments;
(g) the introduction and application of an extended Hybrid HK model that is in agreement with an
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interestingly large variety of turbulent flows, such as grid-turbulence (analyzing ~1.5 billion of
data) and turbulent thermal jets of positive buoyancy (by performing numerous laboratory
experiments following the laser-induced-fluorescence technique, and by analyzing ~15,000 data),
as well as hydrometeorological processes, such as atmospheric wind and temperature (analyzing
~0.5 billion of data for each process and at various micro and macro scales); (h) estimation of the
Hurst parameter based on the Koppen-Geiger climatic-classification for numerous
hydrometeorological processes, such as temperature, atmospheric wind, precipitation, atmospheric
pressure and dew point (analyzing almost 5000 stations for each process with at least 30 years of
records); and (i) the further development of the multi-dimensional classical second-order
stochastic framework and HK process, and application to turbulence and geostatistics. Incidental
contributions and moderate innovations of this thesis are: (a) several illustrative comparisons
between complex natural as well as purely deterministic processes; (b) the further development of
analogue and stochastic prediction algorithms based on the climacogram; (c) the estimation of the
most uncertain parameters in flood inundation modelling based on commonly-used hydraulic
models and on benchmark geometries; (d) the introduction of an optimization target function and
the further development of the climacogram-based estimators, for the identification of the
dependence structure of a process, in case of the analysis of a single time series and of several time
series of the same process with different lengths and identical lengths.

An overall conclusion is that a simple model (from the view of Stochastics) can adequately explain
(and thus, predict) several aspects of turbulence in microscale and hydrometeorological processes.
Future investigations will mainly include the further investigation of the generating schemes for
simulating cyclostationary processes and of the HK behaviour for additional atmospheric and
hydroclimatic processes as well as of their marginal characteristics and additional aspects such as
their intermittent behaviour, and the deeper understanding towards a physical justification of the
origins of the HK dynamics in Nature.

Some scientific and philosophical questions to the Readers are:

» Will Determinism ever be able to fully describe (and predict) Natural phenomena?

» Will Stochastics ever be acceptable by scientists as well as non-scientists?

» Assuming that the world continues at the same course; will Stochastics be useful in many years
from now where observations will be abundant?

» Is Stochasticity an intrinsic property of Nature?
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Appendix A

In this Appendix, we investigate and compare the climacogram, autocovariance and power
spectrum of the Markov process and gHK one for M = 0.5 in terms of their behaviour and of their
estimator performance for different values of their parameters (Dimitriadis and Koutsoyiannis,
2015a). The methodology we use to produce synthetic time series is through the SAR scheme (see
in section 3.2).

Graphical investigation

We start our comparison with graphical investigations, which are actually very common in model
identification. We compare the true, continuous-time stochastic tools, along with their discrete-time
versions as well as their expectation of classical estimators. For the estimator, a medium sample
size n = 103 is used (apparently, as n increases the bias will decrease).

In particular, we investigate the climacogram, autocovariance and power spectrum for a Markov
processes with g =1, 10 and 100, and A = 1 (Figure A-1).
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Figure A-1: True values in continuous and discrete time and expected values of the climacograms
(a), autocovariances (c) and power spectra (e) as well as their corresponding NLDs (b, d and f,
respectively) of Markov processes with ¢ = 1, 10 and 100, A = 1 and n = 103. Note that the
continuous and discrete values of the climacogram are identical for4 =D > 0.

Additionally, we investigate the climacogram, autocovariance and power spectrum for a gHK
processes with g = 1,10 and 100, b = 0.2 and A = g, all with D =4 = 1 (Figure A-2).
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Figure A-2: True values in continuous and discrete time and expected values of the climacograms
(a), autocovariances (c) and power spectra (e) as well as their corresponding NLDs (b, d and f,
respectively) of gHK processes with b = 0.2 and q = 1, 10 and 100, A = g% (not A = 1, for
demonstration purposes) and n=103. Note that the continuous and discrete values of the
climacogram are identical for 4 =D > 0.

Comparison of statistical estimators

Thus, we produce synthetic time series for Markov processes with g = 1, 10 and 100 and gHK ones
with g =1, 10 and 100 and b = 0.2, all with D = 4 = 1. Then, for each scale, lag and frequency and
each synthetic timeseries, we calculate the mean, variance, mean of the NLD, and variance of the
NLD, for the climacogram, autocovariance and power spectrum, as well as their corresponding
errors (Figure A-3). Note that, on one hand, as n decreases, both bias and variance increase and
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thus, for the point estimate and variance to be closer to the expected ones, we need more time
series. On the other hand, as n increases, more Markov processes have to be added and with a
larger bias and variance (due to larger q). So, for the examined processes, we conclude that in order
to achieve a maximum error of about 1%o between scales 1 and n/2, we have to produce
approximate 104, 103 and 102 timeseries for n = 102, 103 and 104 respectively. The error is
calculated as the absolute difference between the estimated and expected value, and divided by the
expected value. Furthermore, the 1%o error refers to the climacogram and corresponds to a gHK
process with b = 0.2 and q = 100, which is considered the more adverse of the examined processes.
Note that in the Figures below, we try to show all estimates within a single plot for comparison to
each other. The inverse frequency in the horizontal axis is set to 1/(2w), in order to vary between 1
and n/2 and the lag to v+1 and for the estimation of variance at v = 0 to be also included in a log-log
plot.

Moreover, we investigate the shape of the probability distribution density function for each
stochastic tool, which, in many cases, differs from a Gaussian one, resulting in deviations between
the mean (expected) and mode (Figure A-4). To measure this difference, we use the sample
skewness (denoted g), where for g = 0, the difference is small and for any other case, larger. We
show for each stochastic tool and for a gHK process with b = 0.2 and q/4 = 10, an example of their
95% upper and lower prediction intervals (corresponding to exceedence probabilities of 2.5% and
97.5%), as well as their pdf for a specific scale, lag and frequency.
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Figure A-3: Dimensionless errors of the climacogram estimator (continuous line), autocovariance
(dashed line) and power spectrum (dotted line), calculated from 104 Markov synthetic series with n
=103 (for b = 0.2, g =1, 10 and 100 and A = g?): (a) & (dimensionless MSE of variance); (b) &,
(dimensionless MSE of bias); (c) ¢ (total dimensionless MSE); and (d) " (total dimensionless MSE

of NLD); as well as the sample skewness of each of the stochastic tools and their NLDs are also
shown (e) and (f).
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Figure A-4: Dimensionless errors of the climacogram estimator (continuous line), autocovariance
(dashed line) and power spectrum (dotted line), calculated from 104 gHK synthetic series with n =
103 (for b = 0.2, g = 1, 10 and 100 and A = g?*): (a) & (dimensionless MSE of variance); (b) ¢,
(dimensionless MSE of bias); (c) ¢ (total dimensionless MSE); and (d) " (total dimensionless MSE

of NLD); as well as the sample skewness of each of the stochastic tools and their NLDs are also
shown in (e) and (f).
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Appendix B

Here, we estimate several statistical characteristics of the ESK and NIG distributions such as the
mean, variance, and coefficients of skewness and kurtosis, as well as the minimum and maximum
kurtosis as a function of skewness.

For random number generation from thin-tailed distributions we adopt an extended standardized
version of the Kumaraswamy (1980) distribution (abbreviated as ESK) with probability
distribution function:

Flx;p):=1- (1 - (x ; C)a)b (B-1)

where x € [c,c +d], p = [a, b, ¢, d], the parameters of the distribution (see also Table C-1 and C-2),
with ¢,d € R (location and scale parameters, respectively, with units same as in x) and a,b > 0
(dimensionless shape parameters).

Below, we estimate several statistical characteristics of the ESK distribution such as the mean,
variance, and coefficients of skewness and kurtosis, as well as the minimum and maximum kurtosis
as a function of skewness. A detailed analysis on the general expansion of the Kumaraswamy
distribution can be found in Cordeiro and de Castro (2011), and Shuaib et al. (2016). The ESK
distribution has simple, analytical and closed expressions for its statistical central moments.
Notably, we find through numerical investigation that ESK has a low kurtosis boundary based on its
skewness and approximately expressed by C = Cs? + 1, which is also the mathematical boundary
for the sample skewness and kurtosis (Pearson, 1930).

The central moments of the ESK distribution can be expressed as (Dimitriadis and Koutsoyiannis,
2017):

p+1

Blle— " =ar ) (s (D) iae) ®-2)
&=1

for p > 1 and where u = c + dB;, (Ez—)l) the binomial coefficient and B = bB(1 +¢/a,b), with B

the beta function.

Thus, the variation, skewness and kurtosis coefficients can be expressed as (Dimitriadis and
Koutsoyiannis, 2017):

_ By—B4? __ 2B13-3B1B;+B3 _ —3B1*+6B1%B;—4B1B3+B,
v — s — k — 2
(By+c/d)?’ (B,-8:2)"% (B2-B1?)

(B-3)

respectively. After the numerical estimation of a and b, the parameters ¢ and d can be analytically
calculated as (Dimitriadis and Koutsoyiannis, 2017):

132



d= a/\/bB (1 +§,b) - b232(1 +§,b), c=u—bdB(1 +§,b) (B-4)

Therefore, we can use the ESK distribution to approximate a variety of thin-tailed distributions
based on the estimation of a, b, ¢ and d parameters from data.

For heavy-tailed distributions we use the Normal-Inverse-Gaussian (abbreviated as NIG)
distribution with probability density function (cf.,, Barndorff-Nielsen, 1978):

va? + bzeb+a(xd_C)

nd |1+ ((xd;c))z

where x € R, p = [a, b, ¢, d], the parameters of the distribution with ¢ € R, a # 0 and b,d > 0 (see
also Table C-1 and C-2); again ¢, d are location and scale parameters, respectively, with units same

flx;p) = K, (,/az + bz\jl + ((x - C)/d)2>

(B-5)

asinx, and a, b > 0 are dimensionless shape parameters.

The NIG distribution has similar advantages to the ESK, such as closed expressions for the first four
central moments. Also, it enables a large variety of skewness-kurtosis combinations and its random
numbers can be generated almost as fast as the ESK ones through the normal variance-mean

mixture:
a
x=ct gtz (B-6)
where
b2 (y/d-d/b)?
g~N(0,1), z~f(y; b/d ,d) = d/V2mv3e 2y (B-7)

The latter is the Inverse Gaussian distribution which can be easily generated (e.g., Chhikara and
Folks, 1989, ch. 4.5).

Below, we estimate the statistical characteristics of the NIG and we justify the use of the NIG
distribution as a heavy-tailed distribution. Note that the central moments of the NIG function
cannot be expressed as closed and analytical forms and thus, we can estimate them through the NIG
characteristic function (cf., Barndorff-Nielsen, 1978):

. b\% 2a, .
i ict+b— [(5) —i=-t—it? B-8
ox(t) = E[e™] = e @ - ©9)

where the pth raw moment corresponds to

(B-9)

E[X?] = (=)" lim (dp‘px(t)>

dep
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Particularly, the first moment and the sequent three central moments are given by:

u=c+ad/b (B-10)
E[(x - )] = (@ +b2)a?/p? (8-11)
21 3a((a? +b?)d?/b?)*
B0 == (B-12)
2 2Y42 /p3)?
E[(x-n)'| = e bb)d - (1+13 (i/a)z) +3((a? + b3d?/b%)" (B-13)

After algebraic manipulations the coefficients of variation, skewness and kurtosis can be expressed
as (Dimitriadis and Koutsoyiannis, 2017):

a?+b? 3a 3 4
CV - b(a+bc/d)?’ S - [b(a?+b2)’ Ck - ;(1 + 1+(b/a)2) +3 (B'14)

respectively. The NIG parameters can then be calculated from these equations as:

30 /3c -5C5%2-9 2
d:k—,bzgfc SZZS,a—bCSU,c':u—ad/b (B-15)
k—3%s ~

3CK—4Cs2—9 Y]

Also, we can derive theoretically the maximum kurtosis of NIG for a given skewness:
5 2
Cez3C +3 (B-16)

For the classification of tails we use the test based on the functions proposed by (Klugman et al.
2012, sect. 3.4.3; see also Halliwell, 2013) and here defined as:

NP df (x;p) — 1 df (x;p)
= ;1_{1;} (f(x;p)dx)' = xl—lyr_noo (f(x;p)dx) (B-17)
After calculations we get:
1, =vaZ+b2/d —a/d >0, 1, =VaZ + bZ/d +a/d = 0 (B-18)

and hence the NIG is expected to represent a large variety of heavy-tailed distributions.

In Fig. B-1 and B-2, we observe that the smaller possible kurtosis of the ESK distribution for a given
skewness coincides with the theoretical limit defined by Pearson (1930). Also, the larger kurtosis of
the ESK includes a variety of sub-Gaussian and thin-tailed distributions. On the contrary, the
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smaller kurtosis of the NIG distribution is very close to the larger one of the ESK and thus, it can
include a variety of heavy-tailed distributions.

100 - - ==
===
10 - — —min global Weibull
@) = = min ESK = = max ESK
= = min NIG min GEV
min pareto IV —— max pareto IV
- // — —lognormal skew normal
----- gen. normal II — min SEP
—— max SEP ——gamma
1 I I T | 1
0 2 4 6 8 10

G

Figure B-1: Combinations of skewness and kurtosis coefficients for various two-parameter
(Weibull, GEV, lognormal, generalized normal I, skew-exponential-power —SEP— and gamma),
three-parameter (generalized normal II and skew normal) and the four-parameter Pareto-Burr-
Fuller (PBF, further described in section 4) distribution functions along with the thin-heavy tailed
separation based on the ESK and NIG functions, respectively. Source: Dimitriadis and Koutsoyiannis
(2017).
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Table B-1: Mean, variance, and coefficients of skewness and kurtosis for the ESK and NIG
distributions. Note that B; = bB(1 + i/a, b), where B(x,y) is the beta function and i an integer.
Source: Dimitriadis and Koutsoyiannis (2017).

ESK NIG
u c+dB; c+ad/b
(a? + b?)d?
o? d*(B, — B,?) ——
c 2B,* —3B,B, + B, 3a
) (B, - B,;2)*"* Jb(@ + b2)
—3B,* + 6B,°B, —4B,B; +B, 3 4
(B, — B,%) b 1+ (b/a)?
: 2 5 2
min Cy =~ (5 +1 =§CS +3
max Cy ESCSZ +3" +00

* This is a fair approximation only for C; < -2. A more exact but empirical approximation for —10 < C; < 10, can be given by:

0.039C® + 1.724C,* + 0.032C> + 2.7. Note that the max kurtosis for the ESK for a given skewness coincides with the kurtosis of the
Weibull distribution (Fig. B-1).

Table B-2: Parameters of the ESK and NIG distributions in terms of the mean, standard deviation,
and coefficients of skewness and kurtosis (see also Fig. B-2). Source: Dimitriadis and Koutsoyiannis
(2017).

distribution ESK4 NIG
- b*Cso
a non-analytical
3d
dv3
b non-analytical * 5
o |C—3 Cs2 -3
c u—dB; u—ad/b
o
— 30 /3Ck—5652 -9
d 2
(B, — B,") 2
3C,—4Cs" -9

* The two parameters of the ESK distribution a and b can be found by solving numerically the equations: (s = (2813 —3B;B, + 83)/
(B, — B,?)"%, ¢ = (~3B," + 6B,2B, — 4B,B, + B,)/(B, — B,2)".
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Figure B-2: Isopleths for estimated coefficients of skewness and kurtosis for the specified values of
parameters a and b of the ESK and NIG distributions. Source: Dimitriadis and Koutsoyiannis (2017).

Appendix C

Here, we describe how the SMA scheme can preserve an approximation of the marginal distribution
of a process through the preservation of its first four moments. Although this scheme can be
extended to preserve any number of moments, here we present the solution for preservation up to
the fourth moment corresponding to kurtosis. The pth raw moment that coincides with the
corresponding central moment for E[y] =0, can be expressed through the SMA scheme as
(Dimitriadis and Koutsoyiannis, 2017):

i p
Elx?] =E Z @} Vi (C-1)

j=

Therefore, assuming that E[yz] =1, the second and third raw moments can be expressed as
(Koutsoyiannis, 2000):

l
E[x?] = [ ao? +2 Z a? (C-2)
=1
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1
E[x®] =| ao® + ZZ a;? E[v®] (C-3)
=1

For the fourth raw moment (p = 4) we use the multinomial theorem:

L 4

4 kj
Elx*] =E Z @jiisj | | = z (k—l'kl—l' __,,kl>E 1_[ (@)’ (C-4)

j=—1 k_jt+kq_j++kj=4 —lsjsl

where the multinomial coefficient can be expressed as:

o) e o
ko ky g k) Tk Ty ) €5

We notice that all combinations with k; = 1 are zero and thus, after algebraic manipulations we

obtain:
1 Lo
E[x*] = E[v*] [ ao* + ZZ a* |+ Z Z a|2]-| afy, (C-6)
= ===t

Thus, the skewness and kurtosis coefficients can be estimated as (Dimitriadis and Koutsoyiannis,
2017):

C..=C (a0 + 2% ;%)
S, X

x = Csy 32 (C-7)
(a0 +23}0107)

o - Cev(ao* + 2% a*) + 635, 0" + 12002 X) @ + 24354, X1, af af
kx — 2
(ao?+2%}_,a;2)

(C-8)
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