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[TpoAoyog

Katé tnv molvetr) pov mapovoia oto ITodvtexveio éyva paptupag omovdaiwv alaywv Kat
petaPaoewv otov Topéa Twv Kataveunpévov Zvotnpatwy. Ano tnv enoxn tov Cluster Com-
puting Kal Twv TapAAANAwY epappoywv mepdoape otny emoxn Twv Siktvwv P2P, avalntovtag
nieploodTepn avtovopia. Afyo apyodtepa yevviOnke n déa tov Grid Computing, To omoio &e-
Kivnoe amnd pa avaykn Twv emotnpovey Tov CERN kal mapépetve Katd Koplo Adyo mpooavor-
TOAOHEVO OTOV EMIOTNHOVIKO KOOHO, Ve TehevTaia prrkape Suvapka otnv enoxrn tov Cloud
Computing, petevodpkwon tov Grid, mov dpaivetal oG €xel TPOTEAKDOEL TNV TTPOGOXT) XL HOVO
TOU aKadNHATKOU AN Kal TOU ETILXELPNHATIKOD KOOHOL Kot Ba pépel TNV TOALAVAHEVOUEVT
ENMAVACTAOT TIOL TOOH XPOvia ovelpebovTal ol emoTpoveS Tov Topéa. KabBog ot emoxég kat ot
opoloyieg al\dlovv, avTtd mov pével mavta idlo eivat n avéykn mov odrynoe oTn yEvvnon TV
Kartavepnpévwv Zuotnpdtov: No 0TIAGOUE Ta OpLa TOL VOOV TOL Moore ev Oyel TV OAoéva
avEAVOHEVOVY ATTALTHOEWY O€ VITOAOYLOTIKH oYXV, aroBnKkeuTikd xopo kat evpog {wvng. Ebxopat
Kol eATTiw n mpoomdBeld pov va GLVELTPEPEL, €0Tw KAl Aiyo, aTnV eEENEN auTOL TOL TOpEX OANK
KOl VO ATTOTENEOEL EPAATIPLO YL TIEPALTEPW EPEVVAL.

H 80okoAn oAA& Kat cuvapTao Tk Topeia Tov pe odrynoe g edw 8e Ba Ntav n idia xwpig
N ovpPoln Kdmmolwv avBponwy, oTovg oTmoiovg odeilw éva peydho evxaplotw. IlpoTa amod
OAOUG, EVXAPLOTH TOV EMIPAETTOVTA HOU, OXL HOVO YLor TNV EVKALPIA TTOL HOU €dwaoe Vo aaXoANOm
He TeXVONOYIEG alxHnG, aAAd Kot yloo TV eAevBepia oL pov Tapeixe va K&vw TG SiKéG pou
emNoYEG, éxovtag oav SixTu acpadeiog Tn otnpln Tov. H miotn tov otig SuvatdTnTéS oL o€
TIEPLOSOLE TTOL AKOpA KL €YD 1) iStor apdpePala pov €8wae To Kovpdyto Kal TNV automenoidnon
va ouveXilw va mpoomtaBa Yo 1o Kahvtepo. Emiong, Oa nbeha va evxapiotiion toug kabnyntég

Tov pe TipoBupia avéraPav TNV Tapakolovdnon kat Kpion tng Sovleldg pov. H ovppetoxn

Xix



eMOTNHOVRV TTOL Bavpale TNV emTpoTT) TOL SISAKTOPIKOD HOL ATTOTENEL YL HEVA HEYEAN TLUN
KOl LKovoTIoinor).

A6 1o Eexivnpa Tng SlatpiPnig pov péxpt onpepa, To Epyaotriplo YmoAoyloTik@wv ZuoTtnpd-
Twv vt pée To SebTEpo oTiTL Hov. OxL HOVO AdYy® TOL XPOVOUL TTOL TEépaoa oe aUTO, ANG KUPIwG
Xépn otn Leotn) Kat GpLAKn atpéoPatpa Tov dnpovpyolv Ta péAn Tou. Toug evxaploTod yla TNV
dyoyn ovvepyaoia Hag, TIG EMOIKOSOUNTIKEG CLLNTNOELG YIX EPEVVNTIKA OXANK KAl PIANOCOPIKA
Bépata, Tn etk Toug S1dbeon. Oewpw OTL HITOPG VA TOVG TTOKAAGD PpIAOLG KAl TOUG ebXOpaL
0,TL KKADUTEPO O€ 0100 Spdpo emiréel o Kabévag.

Ae Ba propovoa va pnv avadpepbm oTovg GIAoLG HOU aTTO TA OXOMKA Kol TIPOTTUXLAKA
Xpovia. MotpalopaoTte TTOMEG EVXAPLOTEG AVANUVIOELS KL EDXOUAL TO HENAOV Vo paG Xapioel
KOO TTEPLOCOTEPEG. TOLG ELXAPLOT® YLt TNV LITOHOVI Kol TNV KATAVONOT) TOUG, AN Kot Yot
TNV EVTUITOOLOKT IKAVOTNTE TOUG Vo OpOLV TTIAV®W HOL TOOO AYXOAUTIKA O€ TiepLlddouG Ttieong.

T 10 Téhog dpnoa Tovg onpavtikdTepoug avBpwmovg otn {wr) pov: Toug yoveig pov, Tov
HOUL TIPOCGPEPOLY ATTAOXEPQ T TIAVTA, TNV adepdr) HOU, atwviat cOUpaxd pov oe Kabe Suokolia,
TOV &vTpa oL, TINYT) TNG £UTTVELONG Kat TNG evtuxiag pov. Kapia Aé€n 8e pov paivetal apketn
Yo va eKGpAoEL TNV Ay aITn Kal TNV EDYVOHOoUVH Hov. Ag pov Hével TimoTa Ao TTapd Vo Toug

aAPLEPWO TNV Tapovoa Slatpipn.

Katepiva Adka,
Ampilyg 2011



Abstract

The increasing size of the data collected and generated by industrial and academic information
systems has created new sets of demands from data management platforms. Besides the well-
documented need for offline analytics, the requirement to immediately detect interesting trends
is ever-growing, rendering real-time analytics a necessity. Indeed, data processing applications
that incorporate, analyze and extract useful information in near real-time are taking center stage
in the enterprise IS infrastructure. In such applications, data are usually determined by a tempo-
ral aspect and presented at different levels of granularity. Thousands or millions of such records
are produced per second and modern systems are expected to be able to both incorporate and

process them.

This thesis deals with the storage, indexing and querying of multidimensional data used for
analytical processing in large scale distributed systems and aims to create an always-on, real-
time data access and support system. To that end, the basic requirements of such a system are
studied and identified: Powerful data processing and high-rate updates. Existing methodologies
inadvertently fail to simultaneously meet both these requirements. To alleviate the problem,
techniques from the field of distributed data management and data warehousing are applied in
order to disseminate, query and update high volumes of multidimensional data characterized by
hierarchies. The goal is to maintain the best of both worlds: Powerful indexing/analytics engine
for immense volumes of data both over historical and real-time incoming updates and a shared-
nothing architecture that ensures scalability and availability at low cost. Geographically spanned
users, without the use of any proprietary tool, can share information that arrives from distributed

locations at a high rate and query it in different levels of granularity.
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The research process towards this goal starts with an attempt, the first to the best of our
knowledge, to support concept hierarchies in DHTs, in order to store historical data in various
levels of granularity. The resulting system, HiPPIS, greatly simplifies the insertion and update
operations due to the lack of data pre-processing. Moreover, it employs an adaptive scheme that
automatically adjusts the level of indexing according to the granularity of the incoming queries,
without assuming any prior knowledge of the workload.

In an attempt to include an a-priori consideration for group-by queries, as well as to ex-
plicitly deal with the query performance versus variable data availability or load skew, a well
known, highly effective centralized structure is distributed over an unstructured network of in-
terconnected commodity nodes on-the-fly, reducing cube creation and query times by enforcing
parallelization. BrownDwarf performs online querying and updating and employs an adaptive
replication scheme that adjusts to sudden shifts in workload skew as well as network churn by
expanding or shrinking the units of the distributed data structure. Thus, the system ensures
elasticity of resources and content availability.

Finally, to improve the handling of time series data, namely data determined by a temporal
aspect, HORAE is proposed, a system that employs a hybrid solution for data storage and process-
ing: High-rate updates and queries targeting the most recent items are handled by a DHT-based
system that enables fast insertion times and multidimensional indexing. The large bulk of the
data is handled through a distributed data cube structure that adaptively materializes and repli-
cates according to demand. The two components seamlessly integrate to offer the advantages of
powerful aggregate data processing along with scalability and elasticity of commodity resources.

All of the proposed systems have been implemented and deployed either on a well known
simulator or on an actual LAN testbed of commodity PCs. Their extensive experimental evalu-
ation under a variety of datasets, workload distributions and network setups demonstrates their
ability to efficiently handle large rates of both updates and queries, tolerate high failure ratios and
adjust their indexing structure and their available resources according to demand. A direct com-
parison with centralized as well as distributed state-of-the-art warehousing solutions proves the
advantages of the proposed systems in both performance and elasticity: Query resolution is ac-
celerated, updates are performed online, the load is handled efficiently even after sudden bursts

and the functionality remains unaffected with a considerable fraction of frequent node failures.
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0.1 Ewaywyn

0.1.1 Kivntpo

Tnv tehevtaio dekaetia €Xoupe yivel papTupeg pLag EkpnEng dedopévwy, TToL aKopa Ppioke-
tat oe e€ENEN. KaBag n Texvoloyia tng [TAnpodopiag k&vel 6o kat 1o atoBntr TV mapovaoia
NG o€ ONEG TIG eKPAVOELG TNG (TG HAG, ) TTOOOTNTA TV OeSOUEVWY TTOL TTAp&yoVTaL KAl artodin-
kevovTal e€akolovBei va avEaveTal pe eKTANKTIKOVG puBpolG: Xopdpwva pe Tnv IBM [CCMRO6],
0 dyKoG Twv 8edopévwY TayKooping Sumhaotaletal kébe Svo xpdvia, evm éxel 1dn Eemepdoet To
opto tou zettabyte [IDC10]. H av€non avtr anodidetat 1000 otnv e€€AEN TV iSlwv Twv dedo-
HEVWV G600 Kat 0TS SlaSIKATIEG TTopaywY G Kat StaXeiplorig Toug.

To yeyovog autd éxel yivel epdpavég akdpo Kat 0Ty KaOnHepvoTTd Hag, OTIOL 1) avaduoT
TV VEV TEXVOAOYL®V aANG KUpinG 1 epddvion tov Web 2.0 emitpénel 6Toug XprjoTeg TOMG Tie-
plocdTEPA ATIO TNV ATTAN avaKTnon TAnpodopiag: O kabévag umopel eKTOG ATTO KATAVOAWTHG
va gival Kal Tapaywyog meptexopévou. Oco ol TIHEG TOL LAIKOL (artd TIG CUOKEVEG amoBikevong
HEXPL TIC YNLaKéG KAHEPES LYNANG TEXVONOYIAG) HelwvovTal, 1) TocoTNTa TwV SeSOUEVKOV TIOL
TIAPAYEL £VOG LECOG XPHOTNG LTTO TN HOPPN UNVUHATOV NAEKTPOVIKOU TaxuSpopeioy, EKOVQY,
Bivteo, mpoowmikwv apxeinv KA., avavetat paydaioa. EmmAéov, pe Tig otkiakég SladIKTuoKES
ovvdéoelg va kepdilouv €dapog, TIg TaxOTNTEG 00VIeONG var avEdvovTatl Kot TIG SIKSIKTUAKEG
unnpeoieg va yivovtal 1o pooPdotpeg, oykadn dedopéva 0mws putoypadies, apyeio elKOVwV
Kal Bivteo KATL. piropovy ebkoa va petapoptwBovv o1o StadikTvo. Ta 0TATIOTIKE ATTO Tt KOWV®-

vikd Siktua amrodetkviovy avtiv v Téon: To Facebook [fac] yia mapa&detypa, pe epiocdtepoug
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artd 500 ekaToppLpLa VEPYOVG XPNOTEG eival LTTELOLVO Yl TN HETAPOPTWOT) 20 EKATOHHLPIWV
Bivteo Kal v amd 2 dioekaToppLpinY pwToypadlav unviaing [facll], eve to [twia] petpd
TEPLOCOTEPOLG atO 160 eKATOUDPLA XPT)OTEG TTOL TTXPAYOLV TTdvw artd 90 exaTtoppvpla tweets

v nuépa [twil0l.

TTOAM\EG epAPHOYEG GTOV ETOTNHOVIKO TOHER, OTIWG OTNV PLOTTANPOPOPLKT), TN GLOIKT KAL TNV
aotpovopio Pacilovtal KAt éva pey&Ao HEPOG OTNV avAALoT OedOUEVOV TTOU TIAPAYOVTQAL LE
VYNAO pLBUS Kat O peYAAES TTOGOTNTEG ATTO YEWYPAPLKA XTTOHAKPUGHEVEG ETILOTNHOVIKEG GU-
OKEVEG OTIWG aloOnTrpeg, SopuPpdpoug, Yndlakeés kapepes KATL. [ mapddetypa, o peydhog emta-
xuvtn¢ adpoviwv, Large Hadron Collider (LHC), oto CERN [lhc] Snpovpyei dexddeg terabytes
dedopévav nuepnoing, Ta omoia pHeTadpEPovTat o€ AKAONHATKA VO TITOVTH VA TOV KOOHO O orVoL-
{fiTnon tov pmoloviov Tov Higgs [atl, ali]. Eva dAo mapadetypa eivat o ITapatnpntrplo Bapu-
Tikwv Kvpatwv — Laser Interferometer Gravitational Wave Observatory (LIGO) [lig], pia epev-
VITIKH EYKATAOTAON TNG OTOIAG 0 GTOXOG elval N aviyvevor) PapuTiKOV KUHATWY, TAPAYOVTAG
1 TB dedopévav kabe pépa. Adyw Tov avfavdpevov peyéBoug Tétolwv Sedopévwy, eival ava-
yraio n 0map€n evog SlaxelploTikoy TAALGIOL yior T SIopAALoT) THG YPHyopng Kot a€lOToTnG

nipdoPaong amod XproTeg ToL PpioKkovTal o€ KATavepnpuéveg Tomobeoieg.

21OV ETUKELPNUATIKO TOHER, OpYAVIOHOL eTTEVEVOVLY GUVEX®G G€ TTOAVTIAOKA epYaheior eTTLXEL-
PNHATIKNAG eVULIAG Kot aVAALONG OOTE va Pacilovy TIG artodpdoelg Tovg o€ a€lOTILOTEG TTANPOPO-
pieg. Eva amd ta mio Snpodir) tétota epyaleia eivat n amobnkes dedouévwv — data warehouses.
2115 armoBnkeg Sedopévwy, TEPAOTLEG TTOOOTNTEG LOTOPIKWYV oTolXeiwV pHali pe Sdedopéva ad Toh-
A éG Aettoupyikég Paoelg ammoBnrevovTal Kat avadDovVTal WO TE VO AVAYVOPLOTOVY HoTifa ov-
HITEpLpop®V Kat va avakalvpBovv xpriotpeg ovoxetioels. H maykoopionoinon tov ayopwy, 0
QUTOUATOTIOMNOT) TWV EMIXELPNUATIK®V dladiKaoldv Kat 1 avénuévn xprion atcOntipwv kat a\-
AwV ouokeLWV TTOL TTapdryovy dedopéva oe GLVOVAGUO He TIG TTPOOLTEG TIHEG TV TEXVOAOYLKOV
TIPOIOVTWV €XOLV OLVTEVEL O€ aLTO TO Ppatvopevo [Sie08]. TTpdypatt, mpdopatn épevva [Groll]
OUTOKAALYE TIWG OL HEYAAEG ETLKELPT)OELS LPIoTAVTAL KATA HECO dpo eTrola avénon 32% otov

OYKO TwV 0edOUEVOV TOUG.

ITépat atd TNV KAA& TEKUNPLOHEVT) AVAYKT YO oDYXPOVI) AVAALOT), 1 amtaiTnon yio dipe-
On avixvevon TAoewv ToL TTapoLotalovv evdiadépov yivetal 6ho Kat o emtakTikr [Kno09,
AFG™09], kabiotovtag Tnv avélvon mpaypatikol xpovou pia avaykatdtnta [datl0]. Ta mapd-
detypa, emibéoeig apvnong mapoxng vmnpeotodv — Denial of Service (DoS) attacks — 1} elofolég
Ba mpémel va aviyvevovTal atd Toug TarpoxXous SLSIKTLAKMY LIINPECIAOV TN OTLY T TTOL CUHPal-
VOLV, OOTE VO AApPEVOVTaL ToL AITAXPAiTNTA HETPA YIOt ATTOKATACTACT TWV AEITOVPYLAOV HE TNV
ehaxlotn Sakomn ¢ SiabeoipdtnToag Twv vnpectwv [SJ06]. Eva dAlo mapddetypa tng Suva-
HNG TNG AVAALOTG TTPAYHATIKOU XpdVou eival ) xprjon Tng yloo Ty TpoPAeyn tng mopeiag, Tng
EVTaONG KAl AAA®V XOPAKTNPLOTIK®V EVOG TUGOVA, MPEG 1) AKOUA Kol LEPES TIPLV TNV EUPGAVIOT



0.1. Ewoaywyn 3

tov [PHAMLIS], e€okovopmvTag TTOADTIHO XPOVO Ylot TNV EKKEVMOT) TIEPLOXWOV KAl T OWOTH
TIPOETOLLATIX, TIOL UITOPEL Vo 0WOEL {wEG Kol TTEPLOVTTEG.

H avavtikn enefepyaoia Twv §eS0HEVWY TOU TAYKOOHLOU LOTOD O€ TPAYHATIKO XpOVo eivat
i Wiaitepn katnyopia, pe pa TAnBopa epmopikwv mpoidvtwv (.. Clicky [cli], Woopra [woo],
Chartbeat [cha], KA1.) Tov StateivovTtal OTL EMONTEVOLY TNV EMOKEYIHOTNTA ULAG LOTOCTENSG
A& Kat TTapakoAovBolV oe TIPAYHATIKO XPOVO TIG CUHUETOXEG KATIOLOL XPr)OTH 08 ePAPHOYEG
KoWVwVIKAG SikTOwonG. EmurAéov, avalvovtag tov emovopaldpevo “lotd mpaypatikon xpdvouv”
(“real-time Web”), onwg yia mapddetypa 1o meplexopevo amo tweets, blogs kat .otooehideg emi-
KaLpOTNTOG, HItopovV va e€axBoOv TOADTIHEG TTANPOPOPiEG OXETIKA He CUUTTEPIPOPES KAL CLVAL-
oOnpata: Eva dnpooio mpoéowo ptopel va ektipnoel T dnpodihia tov (Twittercounter [twib]),
oL AVAALTEG TNG AYOPAG HITOPODYV VA LTTOAOYICOLV TOV AVTIKTULTIO TNG KUKAOPOPpIag evOg Tpoio-
vtog (WebTrends [webb], WebAbacus [weba], KAt.), akdpo kot TOATIKOL LTTOYTPLOL UITOPOLYV Var
e€dyouv oupmEpAOUATA Yiar TNV TTOALTIKY KatevBuvon Twv TTOMTOV Kal va TTpoPAEYOoLY TOV VI-
KNTN piag ekAoyIknG avapétpnong [DS10,MM10]. Avayvwpilovtag tn SOvaun Tng avalvong oe
TIPAYHATIKO XpOVO 8eSOEVROV TTOL TIPOEPXOVTAL ATIO CUGTAHHATA OTIwG To Twitter, Ta omoia eivat
ad’eavTol TIpAYHATIKOV Xpdvou, 1) opdda aviivong tov Twitter mpdodata (to DePpovdplo Tov
2011) napovoiace To Rainbird [Weill], éva c0otnpa avaluTikng enefepyaociog peydAov dyKov
dedopévmv Tov, TIEpa aTtd TO YEYOVAG OTL eival TIPAYHATIKOD XPOVOU, KALUAK®VETOL OpL{ovTLOL.

Etol, otepappoyég emeepyaciog Sedopévwy mov e€dyouy, ammobnievouvy kat avalntovv Xpr)-
otpn minpogopia oe (oxedOV) Tpaypatikd xpovo Aappavouv iaitepn Béon ota TAnpodoplakd
OLOTHHATO TWV ETALPLOV. X TETOLOL €id0oug epappoyEg, Ta dedopéva ouvnBwg XapakTnpilovtal
amtd pa Xpovikr StaoTacn Kat TapouotdlovTat oe SladpopeTIKd emimeda AeNMTOHEPELNG [LE TN XPT)-
on Twv evvoroloyikdv tepapyiev (concept hierarchies). Mia tétowa tepapyio Ba pmopotoe va ei-
val nMépa<Mivag<Tpipnvo<Etog. XIMAOEG 1) KL EKATOHUDPLO TETOLEG EYYPAPEG TTAPAYOVTAL AVK
SevuTepOAETTO KAl T GVYXPOVAX CUOTHHATO TIPETEL VX elval oe Béon TO00 va Tar cupTTEPIAAHPA-
VOLV OTIG avaADOELG TOVG 000 Kat va Tar emefepydlovtatl amodotika. Eival emopévwg EexdBapo
WG 1 artoSoTIK SlaXeiplon auTol ToL TEPAGTIOL GYKOL TTANpodopiag eival e€€xovong onuaoi-
G yLor TNV AP EKHETAANEVOT) TNG LI PXOLOAG TTANPOPOPIaG KAl YL T AYn aIToPpACE®Y TTOL
otnpilovtat oe akpiPr, AP Kat 650 To SLUVATOV TILO TTPOCPATH GTOLKEX.

Emumhéov, ta i0ta Ta mAnpogoplakd meptBéAlovia eival katavepnpéva. Emixelprioeig amote-
AovvTat amd TOANEG eTaLpieg arvd TOV KOO0, OL OTIOIEG, TTAPONO TTOU AELTOVPYOUV AUTOVOUQ, TIPE-
TIEL VA TIKPEXOLV OTNV €8pa TNG ETILXEIPNONG CLVOTITIKT TTANpOoPopia yia TN ARYn amodpacewy. Ei-
VaLeMIioNG Yeyovog TN Texvoloyia Tng mAnpodopiag Kiveital mpog meptBaiAovta dmou ot mopot
TIAPEXOVTAL WG UTINPETia HEOw SLASIKTVOU Kl OL ETILXELPTHATIKEG EPAPHOYEG EIVAL TIPOCPATIHES
Héow GpUANopeTpnTH oTOL (Web browser) [Ecol0]. To Ymoloyiotikd Népog (Cloud Computing)
elvat To TT0 TPOTPATO TETOLO TTAPASELY L, TTOV £XEL TTPOOEAKVOEL TO EVALXPEPOV TOTO TOV EPEL-

VI TIKOD 000 KAl TOU ETKELPNUATIKOV KOOHOV. MeydAeg eTatpieg TANPOPOPLKI)G CUHHETEXOLY OF
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auto tapéxovtag vrodopr) (Microsoft [mic], Amazon [ec2], Google [gap], KATt.), eTatpieg mov Ka-
Taokevalouy AVoelg yla avaluTikn ene€epyaoio To vtootnpilouvv (Vertica [ver], Terradata [ter],
GoodData [gooa], kA1t.) kot TAB0G eTixelprioewy To Xpnotpomotel. Aev eival Tuxaio OTL ot peya-
AOTEPOL TIOPOXEIG TTEPLEXOUEVOL KL OL OHAVTIKOTEPEG OENSES KOVWVIKNG SIKTVWONG éxOoLV 11N
vl00eTHoEL TTPAKTIKEG TOL LTTOAOYLOTIKOV VEPouG: To Twitter [twia], To Digg [dig], To Reddit [red]
Kol TOMG& GANa xpnotportotoby TNy Kataveunpévn Baon Apache Cassandra [cas] yia va artofn-
KELOLV TOV TEPAOTIO OYKO deSoUEVWY TOUG, ) uITodopr unvupdtwy Tov Facebook [fac] otnpiletat
otnv HBase [hba], eva to LinkedIn [lin] €xet vhomotoet 1 Sikr) Tov Baon, T Voldemort [vol],
yioo va xetpiCetar T Sedopéva aA& kat Tov avéavopevo puBpd mpoomélaong Touvg. Extipdrat
OTL TOLAGXLoTOV 15% TOoL YndLakoL kéopov Ba eivat amodnkevpévo oTo vépog péxpt To 2020 Kat
TOVAGXIOTOV TO €va TpiTo OAwV Twv dedopévwv Ba epvoly amd autd KATolX OTLypr TG (wig
toug [IDCI10]. Ze tétola mepiparrovta To Aoylopikd al& Kat Ta dedopéva amobnkevovtal oe
e€UTINPETNTEG CUXVA YEWYPAPLKA ATTOHAKPUGHEVOUG, TUVETIMG 1] SlarXelplon) TOUG aTtautTel e€eALy-
HEVEG, KATAVEUNHUEVEG TEXVIKEG.

Mexpt npoodata n dayeipion deSopévav petadppaldtav Kupiwg oTnv pdoPacn oe Kevipl-
KEG Pdoelg, otevd auvdedepéveg (e TNV eKAOTOTE ePpappoyT). OUw auTEG Ot CUHPATIKEG TAKTIKEG
de pmopotv va akohovBroovy 1o pubpd TV ALEAVOHEVWY XVAYKOV TwV GUYXPOVWYV EPpapHO-
ywv dedopévav. Idiaitepa 0Tov Topéa TNG avaAvTIKig emeepyaciag, Ta VGIOTAHEVA CUOTHHATA
QITOTUYXAVOLV Vo auVSLAoOoLY TNV LoXLpT) enedepyaocio Sedopévmwv pe Tov LYNAO pLBUS evn-
Hepaoewv: Ot mapadootakeg amodnkeg dedopévav (m.x., [LPZ03, SDRKO02, WLEY02]), eve eivat
atoS0TIKEG Yo TTOADTTAOKN EPWTHUATA TTAV® O€ LOTOPIKE SeSopéva peydAov 6yKov, artoteAovv
HLO QUO TN P& KEVTPIKT KAl aoUyxpovn poceyyton. Otdyelg (views) ouviiwg vmoloyilovTal nue-
pnoiwg 1 efdopadiaing, apot Ta Aettovpyikd SdeSopéva éxouv petapepel amod Tig Stdpopeg Pd-
oeig. Karavepnuéveg mapadhayég onwg ot [AACT08, ABJT03]) mpaktikd ammhog Siaovvdéovy
ovpPaTIKEG a0 KEG SeSOUEV®V, TTAPAUEVOVTUG KEVTIPIKEG OTN PACLKT TOUG AELTOVPYIKOTNTA.

A6 TV &M MAeLpd, LTTAPXEL aELONOYN SOVAELE OXETIKA [e TO SIAHOLPACHO OXEOLAKAOV de-
Sopévwv 1600 oe adopnta (tomov Gnutella) 600 kat oe Sounuéva (m.x., Kartaveunuévor Iivakeg
Karaxeppariopot i DHTs ev cuvtopia) Siktua opdTipev kKOHPwv (Peer-to-Peer i P2P), mov ouv-
Sualouy T TTAEOVEKTAHATA HLOG KATOVEUNUEVNG AVONG He TNV antdd0oT VoS CLOTHHATOG PAoNG
Sedopévwv. Tta Peer Database Management Systems [KTSR09, HHL 03, NOTZ03] ot k6ot
Satnpovv Bdoelg pe SIapopeTIKA TXHHAT KAl ETMKOVWVOLVY HETAED TOUG HE KATAVEUNHUEVO KAl
QVEKTIKO 08 OPAAHATA TPOTIO, XpNotpoTolovTag avadiatunwon (reformulation) yior tn petappor-
o1 EVOG EPMOTHHATOG aTTo éva oXNHa og éva aAho. QoTdoo, Se divetal karmola 8aitepn Tpocoxm
oe ToALdIdoTaTa Sedopéva e Llepapxie oUTe Kal oe SeSOHEVA XPOVIK®V OELPOV.

Mo véa KAGon pnxavev avélvong [ABPAT09, TSJT09] mou éxel k&vel Tpéodata TNV ep-
¢avion G Paoiletal oe apXITEKTOVIKES Xwpig Kotvoxpnotoug dpoug (shared-nothing) xpnot-

HOTTOLWVTOG LITOAOYIOTEG TOU EUITOPIOV Kal KAAUTITEL TNV VEQ ATAITNON Y1 KAUOXKWOLHOTNTA,
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evpwoTio Kat SlabeotpdtnTa o XapnAd K60ToC. Q0TO00, AKOUA Kal Ol VEEG TTAATPOPHES EXOLV
KATTOLOVG TIEPLOPLOHOVG: Baotlopeveg o1o mpoypappatioTikd poviého MapReduce, otoxevouv
TIEPLOCOTEPO O HAlIKEG aVaAUTIKEG epyaoieg Tapd oe emeepyaoio avd mAeldSa o€ Tpaypa-
TIKO XpOVo. AUTO TO HELOVEKTNHA avayvwpioTnke ipdodata and tnv Google kat mpotabnkav
evalakTikol TpoTotL Yl avintikr emeepyaoia kat diadpaoctikovs xpdvoug amokpiong [DP10,
MGL"10].

Tt va oOAoKANp@OOULE e TIG OXETIKEG ADOELG, ol TTap&AAnAeg Pdoelg [ora, ter] Tpoopepouvv
HEYGT aTTOSOTIKOTNTA £1G PEPOG TNG EAXCTIKOTNTAG KAL TG EVPWOTinG o€ odpaApata [PPRT09].
[Mopoho 1ov 1 KAHAKOOILOTNTA OewpnTIKE TTAPEXETOL TA UTIEPXOVTO CUOTHHATA AELTOUPYOLV
o€ oLoTOLY(EG LTTOAOYLOTOV TNG TAENG TwV eKaToVTAdwV. [TapaAénovTag To KOGTOG TNG AYOPAg
Kal TNG LITOOTHPLENG TETOLWV CUCTNHATWY, ) SUOKON K EYKATAOTAONG KAl 0wOTHG SIapdpPwaor|g
TOUG QITOTPETIOUV TNV AUTOHATN Kot Stadavr) 0To XproTn SlEDPUVOT) TOUG YIX TO XELPLOUO TNG
avfavopevng {nnong.

Ot amattnoelg pag ovvenayovral tn dnuiovpyia evog cLOTANATOG Yia TNV artoBrkevon, evn-
HEPWOT KL TIPOOTIEANOT) TwV SeSOUEVOV GE TIPAYUATIKO XPOVO KAl TNV TAuTOXpovn emelepyaaia
VYNAoL pLBHOL EPWTNUATOV XwPIG eMIOEV®OT TOL XPOVOUL ATTOKPLONG. L2G KIVNTHPLO OEVApLO,
oG eEETACOVE LA ETILXELPTHATIKY EYKATAOTHOT TTOL StaTnpel Ta apyxeia Twv epyaoiwv tnG. Ta
apyxeio autd Oo prropovoa KAAOTA va elvat Kataypadég aodaeiag, SIKTVOU 1) CUHPAVTKWV TOL
ovotiparog. H avalntnon kat n avélvon autov Tov Sedopévmv ammotelei ovolaoTKd Hépog Tng
dlaxeiplong, TNG aoPaAelog Kot TOL EAEYXOU XPr)ONG TNG TEXVOAOYIKNG LITOSOUNG TNG ETALPENG.
Avti tng Snpovpyiag piag kevipikng amodnikng dedopévwy eni TOTOL He HeydAo KOGTOG GUVTH-
pNOTNG, ETMAEYETAL 1) KATAVOHT TwV OeSOUEVOV OE EYKATAOTAOELG VTTOAOYLOT®V e EVKOAN TIpO-
oPoon. Me Tov TpOTTo aUT, HEWVETAL CNHAVTIKA TO KOOTOG GLVTIPNONG Kot UALKOV V@ TIopEXEL
Eva KALHAKOOpEVO oVOTNHO AYNG amopaoewy o€ paypatikd xpovo. To Zxrpa 1 ameikovilel
OUTO TO GEVAPLO OTIOL TTOAAATIAEG EYKATAOTAOELG LLOG ETILYEIPNONG ELGAYOLV, EVIILEPWVOLV KOl

avalntovv dedopéva o€ pia TETOlA KATOVEUNHEVT amtoOnKn.

0.1.2 ZvpBoAn

Ztnv mapovoa gpyaoia, aoxoloVHaoTeE pe TNy amobnkevorn, detktodoTnon Kat avalnTnon
TIOALSLAOTATWV SESOHEVWY TIOL XPNOLHOTIOODVTAL VI TNV AVAAVTIKT) eTe€epyaoior e KATAVEWN-
HEVO CLOTHHATA HEYAANG KAIHaKAG. Alepeuvove TOV TPOTTO SNHLOLPYING EVOG CLOTHHATOG TTOU
Ba mapéxet pdoPaocn mpaypaTikol xpovou oe dedopéva, eTITPEMOVTAG TNV TALTOXPOVN emedep-
yaoio vynAot puBROL EpWTNUATWV XwPIG oNHAVTIKY LITOPA&OLOT TOL XpPOVoU aTTdOKpLong. Avtd
EMTLYXAVETAL EPAPUOLOVTAG TEXVIKEG ATIO TO XOPO TNG KATaveunuévng Staxeiplong dedopévmv

Kat Twv arofnkwv dedopévawv. O o1dx06 eivat va Slatnpndovy Tor TAEOVEKTHHATH KAL ATTO TIG
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xnua 1: Kwyriipio oevdpio yia tnv katavous piag amobrnxns dedouévamv

dvo meploxéc: H toxupr) Seictoddtnon Kat avauTikn ene€epyaoio yloo TepaoTIeE TOOOTNTEG de-
dopévewv 1000 LOTOPIK®OV OO Kol TTPAYUATIKOL XpOvou Kat pio apxltektovikn shared-nothing
mov va Staapakilet Ty emextaotpdTnTa Kot 11 StxBeotpotnTa o8 XapnAo k60106, fewypadikd
KOTAVEUNUEVOL XPTOTEG, XWPIG TN Xprjon Karotov e€etdikevpévou epyaleiov, HITOpoLY var Hotpd-
Covtat mAnpodopieg Tov pO&vovy amnd Siapopeg Tomobeaieg pe LYNAS pLOUS Kat va Ti§ avaln-

ToUV o€ Slpopa eminmeda AeTTOUEPELXG.

H epevvnrikn Sadikaoio mpog 10 0T6X0 aLTO ekvd pe TNV TpooTdBela, TNV TPAOTN TN
BPAoypadia, yia TNV vrtoothpiln tepapytov ot diktva DHT, dote va amobnkeveTal 1oTopikn
nAnpogopia oe Siapopa emineda Aemtopépelag. To cvoTNHA TTOL TIpOéKLYE, To HIPPIS, amho-
Totel onpoavTiKd Ti§ Stadikaoieg eloarywyng Kat evpépmong Adyw tng ENketyng mpoemedepyaoiog

Twv dedopévwv. ITapohavtd avfdvel Tnv peténerta enefepyaoio amd Tnv TAELPA TOL TTEAKTN.

Ztnv mpooTaBeld oG va TIPOVONiGOUHE Yia epOTHHATA group-by aA& kat va Statnpricoupie
VYN TV anddoon KaTw oo Siapopeg auvOrKkes StabectpdtnTag Twv dedopévawy Kat TO -
ONG TOL GOPTOV, KATAVEHOVE UIA YVWOOTH, IOlTEPX ATTOTENECUATIKT KEVTPIKT dour}, To Dwarf
[SDRKO02], o éva 8ikTvo ouvdedepévamv KOHPwY, HELOVOVTAG TO XpOVo TNG Snpovpyiag Tov KU-
Pou al& kat To xpdvo avalntnong emParlovtag mapaAnlornoinon.

o va BeAtiwBei n Siaxeipion ypovikdv oeipdv dedopévav (time series), dnhadr deSopévwv
o kaBopilovTtal and pa xpovikn Staotaon, TpoadiopilovTal ot e0IKES ATIAITIOELG TOL GUYKE-
KPLHEVOL TUTTOV 8ed0pEVWY Kot ePpapHOlovTaL Ol KATAAANAEG TPOTIOTIOLOELG OTX TIPOTELVOUEVX

OLOTHHATA.
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Me tnv e€étaon kat TNV afloAdynon Twv TPOTEVOUEVWY CUOTNHATOV, AITOKAAVTITOVHE T
mAeovekTApaTa Kat Ti¢ aduvapieg Tovg. Ymdpyxel pior avTioTaBpion petald g anmhoTnTag Twv
AetTovpylwv amd Tn pia Kat NG KataveAmong amobnkeuTikod Xmpou Kabwg Kot TNG armoTele-
OHATIKOTNTAG TNG avaliTnong amo tnv GAAn. Q¢ cupépacpa TNG épeuvag Lag oLVOLALOUE Ta
TINEOVEKTHHATA TV TIAPATIAV® OLOTNHATOV, SnpulovpywvTag To cVoTnHa HORAE, pia vBpidikn

Aoon yla v amtoBnkevon kat Ty eneepyacia Sedopévwy.

H epevvntikn dovhewa tng SixtpiPrg avtng xwpiletal oe Tpior pHépn:

To Xootnua HiPPIS
To XZvotnua Opdtipev Koppov ya ) Aewktodotnon lepapyiwv (Hierarchical Peer-to-
Peer Indexing System 1) HiPPIS) [DATKO08, DTK08, DTK11] eivat éva Katoveuniévo ov-
otnpa oxedlaopévo va amobnkevel, va avalnTd Kat va evipepmvel amodoTikd ToALSL&-
otata 8edopEVQ, OpyavwéVa oe eVVOLONOYIKEG tepap)ies. To HiPPIS vioBetei pua péBodo
TI0L TTPOCApPUOleL avTdpaTa To emtimedo SelkTod6TNONG BAoEL TOL emuTéSoL AemTOHEPELNG
TWV ELOEPXOUEVOV EPWTNHATOV XwPIG va TpoimoBéTel €K TV TPOTEPWV YVAOOT) TOU $popTi-
ov. ArtodoTikég Aettoupyieg roll-up kat drill-down Aappdvouy xwpa yio tn peylotomoinon
NG atdd00NG, ENAXICTOTIOLOVTAG TO ETKOLVOVIAKO KO0TOG Ol eviuepwoelg yivovtal o€
TIPAYHATIKS XpOVO, pe KOGTOG TTov e€axpTdTat amd To eninedo TnG ouveémnelag (consistency)
o amoatteitat. H extetapévn mepapatikn aflohoynon deixvel 0tL, eKToG amd Ta TTAeove-
KTHHOTO TTOUL TTPOOhEPeL 1 KaTavepnpévn amobnkevon, n péBoddg pag amavta tnv mAeto-
Ynoia ToV EL0EPXOHEVOV EPWTNHATWY, TOTO ONHEIXK®OV 000 KAL CUYKEVTPWTIK®V, Xwpig var
mAnppvpilet To SikTLO KAl XWPIG Va TIpOKa el ONUAVTIKEG AVICOPPOTIiEG OE ATTOONKEVTIKO
xopo 1 poptio. To ovoTNUA pHag armodetkvieTal IKITEPA ATTOTENETHATIKO O€ TIEPUTTMOOELG
QOVUUETPOL GPOPTOL epYATinG, AKOUN KL OTAV ALTOG cAA&(el Suvapikd pe To Xpovo. Tav-
TOXpoVa, SlaTnpel TNV LepapXtkn Vo1 Twv dedopévmy. Zoppwva pe 6oa Yvwpilovpe, auTh

eivat n mpwtn mpoonadela yia tny vtooTHpEn Twv tepapylov oe DHT Siktua.

To X0otnua Brown Dwarf
To Brown Dwarf [DTK10a, DTK10c, DTK10b] eivat éva cvotnpa o omoio Stavépel pia
kevTpikr Sopr detktodotnong, to Dwarf [SDRK02] otoug kKOppoug evog addunTtou SIKTL-
ou “ev kivrioel” (on-the-fly), emrayvvovtag 1600 11 dnpiovpyia ToL 6G0 Kat TNV EMAVONG
TWV EPOTNHATWV X&pn oTnv aparinlomoinon mov emiPardel. Ta epwtipata avalvong
KaBwg Kat oL evuepaoelg paypatomolovvTat online péow Twv cuvepyalopevwy KOUPwv
ToU adOUNTOL SIKTVOU eTKAALYNG, e€aheipovTag Tn Samavnpn ovppatikn Siadikasia Tov

ovviBug yivetat acvyxpova. H ehaotikdtnTa Kat n Stabectpdtnta Tov mepleopévou eivat
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anapaitnto oTolxela: To cOOTNHA XpNOIHOTIOLEL vVl UNXAVIOHO aVTLYpadriG TTIOL TTIPOoap-
poletat oe EaPpvikeG aANAYEG TOL GpOPTOU EPYATIAG AANG KAl OTNV KIVITIKOTNTA TV KO-
Bwv, SlevplivovTag 1 CLPPIKVAOVOVTAG TIG HoVAdeg TG Kataveunuévng Sopng. Ta xapa-
KTNPLOTIK& aUTE pali e TNV AITOTEAECHATIKOTNTA KAL TO XAUNAG KOGTOG OTO AITAULTOVHEVO
VAIKS Kot AoyLopKO KaBloTd o Brown Dwarf 1davikr) vrtoyrpla epappoyn yla eVowpd-
TwoT) ot TePIBAANOV UTToAOYLoTIKOD Vépoug [AFGT09]. H meipapaticy afloddynon otoug
KOHPBOLG TparypaTiko SIKTOOU Seixvel OTL emITaOVEL TN Snpovpyia TOL KUPOL pEXPL KAl 5
POpEG Kat TNV eTTIAVON EMEPWTNOEWV APKETEG OEKADEG POPEG OE GUYKPLOT) HE TNV KEVTPL-
Kr Ao, adlomoldvtag Tig SuvatoTnTeg TwV SlaBéoipwy KOPBwV Tov SIKTVOL TIOL epY&-
Covtat mapdAAnia. Emiong, katadépvel va TpooappoleTal ypryopa, akOpn Kol HeTd otd
Eagvikég alay£g 0TO GpOPTIO TWV EPWTNHUATOV KL TTAPAHEVEL AVETINPEAOTO ATTO GUXVEG
aotoxieg KOpPwV. Ta TTAEOVEKTAUATH QLT €lvat aKOHN TILO UPAVT) YLt TTUKVOUG KOPOLG

Kol ToAwpéva popTia epyaociag.

To X0otnua HORAE
To HORAE eivat ¢va uBptdikd c0oTNHa ToL e0TId(eL 0TV SlaXelplon XPOVIKGOV GELPWV e
TIAMpwG Katavepnpévo tpdmo. Ta dedopéva xpovikwv oelpmv eival o CNHAVTIKA KATNYo-
pla Sedopévmv mov meptéxovv T SL&oTAOT) TOU XpOVOU, OTIWG TNV NHEPOUNVIA G [ por)
dedopévav yia TwANOELS 1} TO XPOVO ULOG 0rYOpPAG HE TILOTWTLKY KAPTA. APoV e€eTAOOVE TN
ovpmepipopd tov HiPPIS kabag Kot tov Brown Dwarf écov adopd to SeSopéva XpoviKamv
oelpwVv oXedIdlovpe £va ONOKANPWHEVO CUG TN TTOL XPNOLHOTIOLEL pior LBPLOIKA ADOT) Yo
v amobnkevon kat eme€epyacia TéTolov eidovg dedopévmwv: Ta mmio mpdopata dedopéva,
Ta oTrola EVNHEPOVOVTAL Ypriyopa Kot aval{nTobvTal oe Aentopepéotepo eninedo amodn-
kevovtal oe eva DHT cbotnua opoto pe To HiPPIS, TTov enITpETEL YPI)YOpPT) ELOXYWYT] KOL
nolvdidotatn detktodotnorn. Tov kOplo dyko Twv dedopévwv daxetpilovtal KOPot dpotot

pe To Brown Dwarf, mov bAOTIOLOUVTAL KAL avTILypadpovTal avaloya pe Tn {frnon.

To §V0 AUTE CLOTATIKE TOV CUOTAHATOG EVOWHATOVOVTOL EDKOAN, CLUVOLALOVTOG Tot TTAE-
OVEKTNHATA TNG LOXVPNG KEVTPIKNG emeepyaoiog pe TNV KAHAKOOIHOTNTA KL TNV EA0t-
oTIKOTNTA. H LAOTI0INON TOL CLOTHNATOG KoLt 1) EGAPHOYT) TOL O€ TIPAYUATIKN TTAATPOPH
dokipwv amodetkviel 6Tt to HORAE eival o Béomn va xelplotei amote \eopatikd peYGAovg
pLOHOVG EVIHEPWOEWYV KAl EPWOTNHATWY, EIVOL XVEKTIKO 0€ LYNAK TTOCOOTA ATTOTLXIAG KO-
Bwv kot ouoTéNNeL 1) SlaoTéNAEL TOLG TTOPOLG TOL avahoya e Tn {Tnon. H dueon ovykpion
He pioe o0y xpovn Avon artobrkng Sedopévwy amodelkvuel Ta mAeovekTrpata tov HORAE
oe art6doon Kal ENACTIKOTNTA UTTO HeTAPANTO GpOpTO epyaciag: To cOOTNUA pag eMITAXVVEL
Vv emilvon epOTNHATOV KaT& T&Eelg HeyEDOUG, TpocapUOleTal Ypryopa, AKOHN KAl HETH
and EaPpvikeg ekpr)Eelg 0TO ELOEPXOUEVO POPTIO KAl TIPAUEVEL AVETINPEACTO ATTO CUXVEG

aoTOX{EG ONUAVTIKOD TTOGOGTOD TWV KOUP®V.
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0.2 To Zvotnpa Opotipev Koppov yia tn Aeiktodotnon lepapyiov

0.2.1 Emokomnnon

Qg oevaplo xpriong, ag Bewprjcovpie pia ToALeOVIKN eTatpia TWAROEWY TTOL TTAPAYEL HEYANESG
mo0coTNTEG Sedopévwy. Ot xprioteg/avaluTég embupovy va B€Tovv epwTrHATH TTOU APOPOLY TA
dedopéva auta oe OAeg TIG SIOTATELG TOUG, VoL EPAPHOLOUV ATTAEG XANG ONHOVTIKEG AelTOLPYiEg
e€6puéng (mining) émwg roll-up kat drill-down oTig tepapyieg kat v vitohoyilouv cuvabpoloti-
KE€G OYelG. Eotw otL 1 Pdion SeSopévwv Tng etatpiag mepléxel SeSopévVa TTOL OPYAVAOVOVTAL OTIG
dlaotdoelg location Kat product (BA. Zxrpa 2).

Xpnotpomowwvtag éva arthd DHT Oa émpene yia k&Oe Sidotaon va emihexOei éva emimedo tng
lepopXiag MOTE VX ePAPHOCTEL 1) CUVAPTIOT) KATAKEPUATIGHOV GTNV TLHH TOV EMITESOVL ALTOV Yl
O\eg TG TTAedeg TIPOG eloarywYT) 0TO cVOTNHA. YTToBETOVTAG OTL emAéyovTal Ta eminmeda city
Kat category, Ba vTdpxel évag KOpPog veBLVOG Y TNV T Athens, évag yia Milan, k.,
OTwg emiong Kat KopPot vevBuvol ya Electronics, Household, kAmt. Mia Tétola Sopr) eivat oD
atoS0TIKT Yl TNV €MAVOT) TWV EPWTNHATWY TIOL apopolV Tar detkTodoTnpéva emimeda (aKkoOpa
Kat T0te Xpetdletal va Ppebei n topn tov Stapopwv cuvorwv MAEGSwWY), ANG EPWTHHATA TTOV

avadépovtat o€ StadopeTikd emineda amattovv kabohkn enefepyaoio.

H moA\am\n elcaywyn kdBe mieiddag epappolovtag Tn ouvApTNON KATAKEPUATIOHOD O
oo Ta tepapyikd emimeda OAwv Twv Slaotdoewy Ogv eival Plwotpn Avon: Kabwg avédvovtat
ot Staxotaoelg, aviaveral ekBeTikd Kal o emuTAéov xwpog 1oL Xpetaletal yiax Tnv anodnkevon
Twv dedopévwv. Emumiéov n Aoon avtr aduvatel va cupmepthafet TG tepapxikés oxéoels. Ia
napadetypa, 8e purmopovv va anavtndolv epwtipata onws “Xe mowx yopa aviker n Idtpa’ 1

“ITooo eivau 70 CUVOMIKG €LOOSTUA Yiat TTWARTELS HAEKTPOVIKDV .
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Z1dX0G pag eival vor epevVvooLpE TO TTPOPANHaA TNG OelKTOdOTNONG LepapXIKOV deSopévwy
oe DHT Siktva pe tpdmto mou va Siatnpei Tn onpactoloyia Tov lepapXlov Kot va emlVel artodo-
TIKQ ONHELaKd 0ANG Kot cLVaBpotoTikd epwThpata. [la To okomd auTod mpoTeivovpe T0 XooTHua
Oudtipwv Koppwv yia tn Aeiktodornon lepapyiov (Hierarchical Peer-to-Peer Indexing System 1
HiPPIS), ¢éva cvotnpa mov Baciletat oe DHT yio v amoBrkevon kat detktoddtnon deSopévav
UTTO TN HopdT) TIVEK®V (0Ttwg Tov TTivaka 1) oe moAamAég TomoBeaieg oe éva Siktvo. Emumhéov
emTpémnel TNV anodoTikn avalntnon oe ToAEG SlaoTAOELG TTOL XapakTnpilovTtal amd tepapyieg.
‘Eto1 To ovotnpa enmweleital oo Ta ey yev XapaKTNPLOTIKE Twv P2P cuoTnpdTwv 6mtwg KAHA-
KOOHOTNTA, avoxT) o€ opahparta Kat Stabeoipotnta. O kdppot tov HiPPIS emomtebouy TNy Ae-
TITOUEPELA TV EPWTNHATOV TTOL A pPEVOLY MOTE VA TTpocappdcoLy To entinedo SelkToddTnoNg
avéhoya pe T {tnon. O unxaviopds avtog oe cuVOLAGHO He Toug edpripepoug (soft-state) Sei-
KTeG TTOL SnpovpyoLVvTaL HeTd aTtd KABe aoToX (X KATTOLOU EPWTNUATOG EAAXLOTOTIOLEL TOV ApLlOHO
TV UNVURATV TToL TTANppLpifovy To dikTvo (floodings) kat Statnpel TIG o HACLONOYIKEG OXETELS
TV LEPAPYLOV.

Ot koppot apxtkd SeiktodoTovV O€ éva GLYKEKPLHEVO GUVELACHUO eTITES WV TTOL OVOHA&LoLE
pivot. Ot melddeg mov elodyovtat anobnkevovial eowteptka oe pia devdpikn dopr ov Siaxtnpei
TIG LepapXIKEG oxéoels. Ot aotoyieg Twv epwTNHAT®V cLUVodevovTaL artd TN Snpiovpyia soft-state
SEIKTOV OOTE HEAANOVTIKA EPWTHHATA VA aTavTOVTAL Xwpig TANppUpa. Ot kOpPot Siatnpovy To-
TIKE OTATIOTIKA TTOL WITOpoUV va xpnotpononfolv yia va arodpaotoTtei av xpeldletal emava-
deiktodoTNON O KATOLOV AANO CUVSLACHO eTUTESWY, AVAAOYX He TNV TAOT TV EPWTNHUATMV.

Extég and onpelaka epwtipata, to HiPPIS pnopel va amavtioel Kat cuvadpoloTika.

H ouvelopopa g SovAeldg avtrg eivat 1 e€ng:

o Avtipetmifet To mpoPAnpa tng ammobnkevong Kat avalntnong tepapxikmv dedopévmv oe
DHT ovotpata, Ta omoia de urtootnpifovv evBéwg epwTtrpata oe TOAAAEG o TdoElg
1oL xapaktnpilovrtat amnd tepapyieg. H uébodag pag, Aapfavovtag umdyty Tig poTIHnoeLg
TV XPNOT®V EMTPETEL TNV AVAOLOPYAVWOT) TV SEIKT®V TTPOG OPENOG TV TTL0 SNHOGIAGDV
dedopévav. Emiong katadpépvel va Statnpel Tn onpacloloyia TV LEpAPXLOV, 1) OTTola Kot-

TOOTPEPETOL LLE T OUVAPTNON KATAKEPUATIOUOD.

+ Emutpémel 11¢ online evnuepwoelg, oe avtibeon pe Ti¢ mapadooiakég TeEXVIKES Twv armodn-
KoV 0edopévav. To emmAéov eMKOWVWVIAKO KOOTOG e€apTdTal amd To emninedo cuVETELag

TIOU OTIALTEL 1] EKAOTOTE EPOUPHOYT)

+ To obotnua éxet vAototnBel o€ mpocopolwTn Kat €xel aroTipnOel pe pia TANBdpa a6 Se-
dopéva Kal KAt a1to diddpopeg ouvOrkeg SiktOouL Kat popToL epwtroewv. To HiPPIS emi-

TUYXAVELLYNAS TTOCOGTS ATTO AKPLBEIG ATTAVTHTELG AKOUA Kot STV T pOPTia EPOTNHATOV
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Mivakag 1: O mivakag dedopévwv yia 1o mapddetyud pag

Location Product Fact
TuplelD Country City Zip Category Brand Sales
ID2 Greece Athens 16674 Electronics Apple 11,500
ID5 Greece Athens 15341 Electronics Sony 1,900
ID51 Greece Athens 15341 Electronics Philips 22,900
ID31 Greece Athens 16732 Household AEG 2,450
ID55 Greece Larissa 20100 Electronics Sony 12,100
ID190 Greece Patras 19712 Household Unilever 1,990
ID324 Greece Athens 17732 Electronics Philips 2,450
ID501 Greece Athens 17843 Electronics Sony 12,000
ID712 Greece Athens 17843 Electronics Apple 32,000

aA&Couv duvapikd pe To Xpdvo Kot atodelkvieTal OLaiTepa aoS0TIKS e TTOAWUEVES Kot-
Tavopég 0edopévwy Kal EpOTNHATOV (TTOL CLVAVTWVTAL KAL TILO CUXVA OTNV TIAELOVOTNTA
TV epappoy®v). Emumiéov, akopa kat pe vPnAo puOUd evHeEPOOE®MY KATAPEPVEL VA ETTL-

OTPEPEL EVIUEPWHEVA ATTOTEAECHATAL.

0.2.2 ZXxediaon

YvpPoAiiopog
To Sedopéva mou xetpiletal o cvoTnpa eival d Staotdoewy. Kabe Sidotaon i opyavevetat Katd
unkog L; + 1 iepapyikov emmédwv: Hig, Hyy, ..., Hir,, pe v Tiun Hyo va eivat n eldikr tipn
ALL (%). ©@ewpovpe 6Tt ot TAeladeg TG P&oNG Hag eivat TNG LopPrG:
(tupleID, Dy ...Dip,,...,Dai...Dar,, facti,. .., facty), omov D;j,1 < i < dxarl <
J < L eivat n tipn tov emumédou j tng dikotaong ¢ kat T fact;, 0 < i < k eivar Ta aplOpntika
TIOOQ eVOLAPEPOVTOG. ZTOXOG eivat ) artodoTIKr SelkToddTNoN TV TAEIAd WV HOTE va eTAVOVTAL
EPWTNHATA TNG LOPPNG ¢ = (q1, G2, - - -, 4d), OTIOVL K&Be OTOLKEIO ¢; TOVL EPWTHHATOG AVIjKEL OE
KATTolo atd Tor emineda TG OLAOTAONG %, CUHTTEPIAXHBAVOUEVNG TNG TLUNG *.

Ewoayeyn Aedopévev
H eioaywyn plag mietddag (1 evag Seiktn otnv mpaypatikn tng 6éon) yivetat wg e€ng: Apxikd
emtAéyetal KaBOoMKA évag cuVOLAGHOG LepapXIKaV enttédwy (éva eminedo yla kabe SidoTtaon,
ovprepthapfavopévng Kat g elSIKNG TIHnG *), tov ovopdletat pivot kat cupPoliletar P. To
ID tn¢ k&Be MAELXONG TIPOG ELOAYWYT) Efval 1] TLUK) TTIOL TTPOKLTITEL ATId TNV EPAPHOYT| TNG OUL-
VAPTNONG KATAKEPHATIOHOV GTO OLVOLACUS TWV TIU®V TTOL AVTIOTOLXOUV 0TO P. ZT1 ovvéyela
10 DHT avaétet k&Be mhetdda otov kOpPo pe ID apBpntika minotéotepo otny tipr avth. [ia
TIAELAOEG TTOV elodyovTaL apydTEPQ, Ol KOpPoL TTANpopopolvTaL yia TO PP atd KATIOLOV YEITOVIKO

TOUG KO Po.
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Exnua 3: H Sevlpixii Souri orov kéuPo vrevBuvo yiax 1o Athens, Electronics puerd tnv ewoaywyy (a) tH¢
mpatng, (b) tne Sedtepns kat (c) Awv Twv mAeiddwy Tov IMivaka 1

To Sedopéva mov eloayovTal 0to cVoTNH armofnkevovTal oe pia OevOpikr dopr, Tov dla-
mpel TNV tepapyikn ¢pvomn touvg. Kabe kdpPog amobnrevel modamia 8évépa, éva yia k&Be ouv-
dvaoud amnod d Tipég Yo Tov omoio eivat vevBvvod. 'Etotl, kdBe Eexwplotn) Tipr Tov P avTtioTolyel
o€ éva 0€vOpo TTOL aITOKAAUTITEL HéPOG TNG LepapXiag. Oewpmvtag Ta dedopéva Tou IMTivaka 1 kat
v tepapyia Tov Zxnpatog 2 (xwpig to televtaio eninedo oe kabe Sikotaon) pe (city, category)
G 10 KaBohikd pivot, n mpaTn MAeldSa Tpog eloaywyn Aappavet To ID mov pokvTTEL ATTO TO
hash tn¢ twur g Athens||Electronics kau Snuiovpyei tn Sopr) tov Exrjpatog 3(a). Oco Sedopéva pe
idta ID ¢ptdvouy oTov KOHPO, ot SlapopeTikég TipEG o€ emnimeda xapnAdtepa ToL pivot dnpovp-

youv mapaxhadia, oxnpatifovrag Sevdpikég Sopég (Zxnpata 3(b) kat (c)).
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Patra]|Household

Larissal|Electronics

Athens||Household
Athens||Electronics

Sxnua 4: Avalijtyon ya (Athens,Electronics)

Patra||Household
Larissal|Electronics

Athens||Household
Athens||Electronics

Sxnua 5: Avalrtnon ko Syutovpyia deixty yie o (16674, Apple)

Avaintnon kot Aeiktodotnon Aedopévav
Ta epwtpata mov apopovv 1o P opilovtal wg akplfy (exact match) Kat LIOpovV va oaItavTn-
Bovv péoa oe O(log N) Prjpata. Epwtipata yio orotovdnmote Ao cuvSvaopd entmédwv po-
poLV va amtavTnBovv pévo pe mAnpupdpa oto diktvo DHT. T va ammooPéocoupie To KOGTOG aLTHG
NG Aettovpyiag, elodryovple Toug soft-state deixtes. Avtoi ot Seikteg dnpovpyodvTal Kat” amai-
™o, HOAG amtavtnOei K&Tolo epOTNHA TTOL aPop& cuvdvacuod entédwv dipopo Tov pivot.
A¢ov ot amavTtrioelg aLAAeXBOUV aTtd TOUG KOHBOUG HET aTtd TTANHUDP, O KOPPOG TToL €0e0e TO
ePOTNHA ePpaAPUOLEL TN OLVAPTNOT KATAKEPUATIONOV OTNV TIUN ToL epwTnBévTog ocLuVOLATHOD
Kat otélvel Seikteg mpog Ta dedopéva mov ouvéle€e aToV KOpPO TTOL givat vTtevBLVOC Yo KAeldi
TTOU TIPOEKVYE.

Ot soft-state deikteg divovv oToug xprioteg TNV YevdaioOnomn dTt oL TIHEG TTOL pWTVTAL AVA-
KTOVTAL AUEOWG, oav va NTav € apxnig Oeiktodotnuéves. Z1nv npaypatikoétnta, O(log N) Bry-
HoTo XpetdlovTal Yl TNV e0pecn TV SEIKTWV TTOL OTN GUVEXELA XPTOLHOTIOLODVTAL Y1 TNV AVA-
KTNOoT TwV TAELGdwV, oL 0TT0{eg HETE aTTd KATAAANAOULG UTTOAOYIOHOUG Bat eTILOTPEYOUV TO CWOTO

amtotéheopa. O aplBpog Twv SelkTav ov akolovBovvTal eaptdTat amd To epOTNHA KAl ATt TO
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P: Av 10 epotnpa apopa emineda ioa 1) pikpdTEPA TOL pivot, TdTE LTAPXEL HOVO €vag SeikTng.
Ye avtifetn nepintwon mpémel va akolovBnBovv oot Seikteg (0 akplPprg aptBuog e€aprdaral
atd ta dedopéva).

Ot 8eikteg mov SnpiovpyovvTal eivat soft-state, @ote va ehaiotonoteital n mpdobetn mAn-
podopia. Avto onpaivel 6Tt Afyouv petd amno éva ipokabopiopévo Sikotnpa (Time-to-Live or
TTL), ekTOG KAl av avavewBoiv Aoyw KATIOLOL EPOTHHATOC YIX TN GUYKeKptpevn Tiur. O pn-
Xaviopog avtdg Staopohifet ot Bavég alayég oto ovoTnua S Bax éxouvv wg amoTéeTUA TNV
Umapén GKLPWV SEIKTAOV, EMNPEALOVTAC e AUTOV TOV TPOTIO TNV ATtOS00N. Xe TIEPUTTWOELS [e-
y&hov dyKkouv Sedopévwy To péyebog Twv SelkTwv evdéxeTal va avénbei umepPolikd. i To Adyo
aUTO B€TOoVE £V AVW OPLO L1400 OTOV APLOUO TV SEIKTWV, TAVW ATTO TO OTT0(0 Ol Katvovuplot Sei-
KTeG TToL SnptovpyovvTat avtikabiotovv Toug malaidtepouvg. Etot To obotnpa Siatnpel Toug o
xpriotpoug Seikteg, Snhadr avtovg mov avadépovrtal e dedopéva ToL avalnTovVTAL TTLO GUXVA.

Zav tap&detypa, ag urtofécovpe g Exoupe TNV idia tepapyio pe mpty, pe P 1o (city, category).
Eva epwtnua yi 1o (Athens, Electronics) eivat exact match kot petadppaletar og amhn avalrtnon
oe DHT (Zxnua 4). Otav avalnteital 1o (16674, Apple), avaka\bntovpe 0Tt Sev LTTEPXEL TETOLO
kAewdi oto DHT. To epwtnua mAnpupupilet to diktuvo kat o kdéupog Athens||Electronics amavtd
pe TNV avrtiototxn mAetada. O koppog mov élaPe tnv amdvinon dnuiovpyei otov KOHPO TTOU
elvat vtevBuvog Yl to 16674||Apple éva Seiktn mpog tov kKOpuPo Athens||Electronics. Etol, oe
TIEPIMTWOT) VEOUL epWTNHATOG Yia TNV St Tipr), Ba ammopevyBei n TANupLpa Kat N amavtnon Oa
Bpebei péoa oe logN+C Prjpata. H St Siadikaoio ametkoviletal 6to Zxnipa 5 61mouv ot pavpot
Koppot eivat avtoi Tov arrobnkevovy dedopéva evmd oL Kool Tov TiepLEXoLV OelKTEG elval YKpL.
Ot {8tot o1 SeikTeg ametkovilovTal pe StakeKoppéva BEAN.

Enavadeiktodotnon Aedopévov
Ze pia amroBnKn 8edopévwy, N KATavopr] Twv SeSOHEVWY Kol TV EPWTNHATOV UITOpel var aANd-
CeL pe 1o xpovo. Eivat dowtov mibavov n ermloyn Tov P, 1ov yivetat Katd TNV apxLKn E0aywyn
TV 0edopévey, va pnv evvoel Ty anodoorn Tov cvotHuatog. To HiPPIS mpocapudletal oTnv
KOTAVOUT TOUL GOPTIOL TV EPOTNHATWV XWPIG va TTpolTTOBETEL TTPONYOUHEVT YVAOOT TOU, UTTO-
otnpiovtag Suvapikég aAayég Tov pivot Bactl{Opevo AITOKAEIOTIKE O€ TOTIKA& OTATIOTIKG. H
emavadektodotnomn Pacel StadpopeTikol cLVOLAGHOV eMUTESWV GTOXEVEL OTNV ALENCT) TOL TTO-
000TOL TV exact match epwTNUAT®Y, HELWVOVTAG TIG TTANHHUPEG.

Av 0 aplBudG TwV EPpOTNHATWY EVOS KOpPOL TTOL adpopolv auvALACHOUG eNUTEdWV Sladope-
TIKoUG Tov P Eemepvd TV apldpd Twv epwTnHATOV TOL To apopolV KATd £va dpio (threshold),
10Te 0 KOpPOG e€etdlet Ty BavdTTa emavadetktoddTnong. Kabe koppog voloyilet tnv Syuo-
pidia (popularity) kaBe cuvdvacpo emumédwv (Hgl:O L; 610 00VOAO) HeTp@VTOG TOV aplOpod Twv
EPWTNUATWV KATA TO TILO TTPOGPATO XPOVIKO TAaicto (time-frame) W. To W emi\éyetar Katd-
AAa ®ote vor avTdapPaveTtal TG aANAYEG OTNV KATOVOUT TV EPWTNHATWV 0AN TAUTOXpOova

Va HEVEL AVETINPEAOTO ATTO OTLYHLiEG SIAKKUHAVOELG GTO popTio.
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Yxnua 6: Ot Sevdpixéc Sopés uetd tnv emavadeiktodoTnon

Av T0 T0000TO TWV EPWTNHATMOV YLt TOV TTLO SNUOPIAT) CUVEVACHO ETITESWOV Cppaq OlOdEPEL
TiepLocdTEPO and threshold Tov AVTIGTOLXOVL TTOCOOTOD Ylot TO pivot, TOTE 0 KOWPOG eivart BeTikdg
oTo egvieXOpevo Tng enavadelktodotnong. Ze devtepn dpdorn, mpémel avth 1 Tomkn StaicOnon
va ertainBevBei f} va Stayevotel pe ) xpron kabohikwv otatioTikev. O KOppog Tou omoiov Ta
ToTKd oTaTloTiKd €8etéav mbavr) alayr) Tov P oTtével éva prjvopa SendStats oe dhovg Tovg
KOpPoug. Metd Tn cLUANOYT) TV KABOA KGOV OTATIOTIKGOV 0 KOUBOG UTTONOYIlEL EK VEOU TO Cpaq KA
emavalapPavel TNV ponyoLpevn Stadikaoic, ELITAOVTIOHEVT) HE (Lot OTPATNYLKT) Yo T1) BEATIOTN
eMmAoYT) TOU pivot.

Ztnv nepintwon mov emhexOei véo P, Ohot ot kKopPot emavadelkTodoTodV Ta Sedopéva TOUG.
O apxtkodg KOpPog mMANppvpilel éva pvupa Reindex yia va vitoxpewoel OAOULG TOUG KOUPOULG va
aA&€ovv 1o pivot Touvg. Kabe koppog mouv AapPdvel To urvupa auto datpéxet Tig mheddeg tov,
Bpioket OAeg TIC SapopeTIKES TIHEG Yior TO VEO GLUVSLAGHO TToL B Yivel pivot Kat TIG TEPVA aTtd
TN CLVAPTNON KATAKEPUATIOUOV, OTEAVOVTAG TIG TTAEL&SeG e To idlo ID oTov avtioTol o Koppo.
Otav n Sxdikacio ohokAnpwBei, o kOpPog oPrvel OAa T makid SeSopéva Kat Tovg deikTeg TOL.

Zoppwva pe To tapddetypd pag, dtav o koppog Athens||Electronics \apfdvet pvopa Reindex
yix o (city, brand) Ppiokel OTL OL TIHEG TTOL AVTIOTOLXOUV OTO VEO OUVSLAGHO ETUTESWV Elval OL
Athens| Sony, Athens||Philips ko Athens||Apple. Ot tipég auTéG TEPVOUV ATTO TN CLVEPTNOT KATA-
KEPUATIOHOV Kot TTAEOV oL avTioTolyol KopPot eivat vtevBuvol Ta Tig TAeIddeg TTOL TIG TIEpLEXOLY
(X0 6)

KAeidopa
[ va e€aopahiotei ) opBOTNTA TOV AMAVTOEWY KATE TH SLdpKeLa TG eavadelkTo8OTNoNG Kal
va artodpevxBoiv TavToxpoveg emavadelkTodoTHOELG ATTO TTOAAOVG KOHBOUG, ELCGYOVE €V [iN)-
XaVIOHO KAEWSOHATOG. AoV 0 KOHPoG amtopacioel enavadetkTod0Tnon cUUPWVA pe Ta KABOAKE
OTATIOTIKG, OTENVEL éva VU Lock og GAOLG TOUG KOPOLG TOU CUGTHHATOG TIPLV TNV EPAPHO-

oet. Otav k&rotog kKOpPog AaPet To prvupa Lock alalet Tnv katdotaot Tov oe LOCKED ot )
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diatnpet ylo mpokaBoplopévo xpovikd SIAo TN, TO 0TT0i0 OpileTal £€TOL ®OTE VA KXADTITEL ETTAP-
K®WG T Xpdvo TIou Xpetaletal To cUOTNHA Yl va HeTAPel 0TO Kawvoupto pivot. Oco évag KOpPog
efvat LOCKED ovuveyiet va amovTa epwTtripata péow mAnppopag. Etot to cbotnpa pével cuve-
Xxwg online.
Evnuepooeig

Ot evnuepwoelg oe edpapproyég armobnkng 0edopévav HETAPpPEloVTaL OTNV ELOAYWYT) VEWV TIAELL-
dwv o1o oboTnua. Eve n epappoyr TG ouvapTnong KATAKEPHATIOHOD KAL 1) EL0AYWYT WG TTPOG
10 TpéXOV eminedo eivat aImAr), evEEXETAL VA UTTAPXOLY OE(KTEG TIOL TIPETIEL VA eVIHEPWOOVY KaBmG
N véa mAeldda Tipénel va oupmepiAndOei ot amoteléopata Slapopwv epoTnpdTey. Lo mapa-
detypa, €0Tw OTL pia vEx TTAELdSa apopd OTIG TTWANOELG NAEKTPOVIK®Y O€ Lot KALVOUPLA TTOAN
G EMadag. O vridpyov Seiktng yia (Greece, Electronics) Oa mpénet va ovpmepi&pPet to ID tov
KOpPou Tov arobnkevoe TN véa TAELGdA. nHel@VeTal OTL AOLVETIELEG TIPOKOTITOLY HOVO aTtd
TIAELGSEG TIOV TTEPLEXOVV VEOUG OLVOLAGHOVG pivot SnpovpywvTag Kavolpleg devpiiég dopéq.
KaBag n dnpovpyia evdg deiktn pmopel va ouvodebetat armmd 10 oPr oo KATTOLoU 1 KATTOLV
M@V (AOY® TTEPLOPLOU®Y HVIHNG), 0 KOHPOG TTOL elodryel pia véa TTAel&da Se prmopei va E€pel ek
TV TIPOTEPWV TNV OTTAPEN 1) OXL EVOG OXETIKOV pe aAUTHV OeiKTN. AUTH 1] KATAoTooT) ADVETOL e

dvo TpdItoug, avéhoya e To eTinedo GUVETIELNG TTOL ATTALTEL 1) EPAPUOYT):

+ loyvpy ovvémeia: Tia epappoyég o Pacilovial oe cuvexn avAALOT) KAl GUETO EVTOTILOHO
oaAarywv, eivat {oTikig onpaoiag k&Oe ep@Tnpa var AapBavel Ta 1o TpOoPaTa ATTOTENE-
opata (7.x. avixvevon eloBolwv kat emBéoewv DoS). Ta va emitevyBei toxvpn ovvénela,
HET& TNV eloaywyT) TNG TAetGdag o KOpPoG ekTeel H?:o L; — 1 avalntioeg yo va e€a-
Kptpoaoet v vrapén mMBaveV SEIKTOV Yot OAOUG TOUG OLVOVAGUOVG ETTUTES WV KAL VO TOUG
evnpepwoel. Etot e€aopalifetal n ovvémela pe avtaAaypa epLOoOTEPO EMIKOLVWVIAKS

KOGTOG, TTOL e€APTATAL ATTO TO PUOUO TWV EVIHEPOTEWY Ayypd.

o Xadapr ovvémeia: Otav n) epappoyr) 0ev éxet avaykn amd 1600 “Pppéoka” dedopéva, epap-
poletat pia péBodog xahaprng ouvénelag. Ot KOpPOL ETOVVATITOVV TIG ELCEPKOHUEVEG TIAELK-
0gg o€ €va KaBoAkd yvwoto katahoyo. Ot kopPol mov amobnkevouv Seikteg pmopovv
AoDYXPOVA VX AVAKTOVV alLTOV TOV KATAAOYO Kol VO EVIHEP@VOUV TOUG OEIKTEG TOVG. XTO
evOL&ETO, EVOEXETAL OL ATIOVTINOELG 08 KATIOLA EPWTHHATA VA LNV TIEPLEXOLY OAQ TA TTLO
npoopata Sedopéva. H ppeokada tov anavrioewy (freshness) e€aprdral amd 10 Aypds
A& Kot otd To pLOUS Ajpger HE TOV OTIOIO K&OE KOPPOG AapPdivel TOV KEVTPIKO KATAAOYO
Kal v pepavel Toug OeikTeg Tov. To eMIKOIVWVINKS KOOTOG eival HIKPATEPO ATTO TNV TIPON-
YOUHEVN TIEPITITWOT TNG LOXVPNG OUVETTELAG, APOV Ninder < Aypd. ETOL QUTH 1) TPOGEYYIOT
evOeiKvVLTAL Yl TIEPUTTMOELG TIOL TO €VPOG (VNG eival TepLOPLoEVO Kal Oev amalteital

100% ovvemela.
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0.2.3 Zv{ntnon

Emiloyn) tov Threshold
H tiun tov threshold mailel onpoavtikd poAo 0TNV AITOTENETUATIKOTNTA TOL CUCTAHATOG Kot YU
aUTO TIPETIEL VO OpIlETOIL TIPOCEKTIKA WOTE VO AITOPEDYOVTAL AOKOTIEG ETTAVADEIKTOSOTH OELG. XU-
XVEG avadlopyavaoelg Twv SelkTmv TIpETeL va artoBapphvovTal, woToo0 Sev TIPETIEL VO AVACTEN-
Movtat wpépeg emavadeiktodotnoelg. O kOpPog mov Eekivd T cLANOYT KaBOAIK®V OTATIOTL-
K@V vrtohoyilel TNV T tov popularity kabe cvvdvaouov emédwy, dnhadn 1o T0000Td TWV
EPWTNUATWYV TIOL avadépovTal oe Kabe auvdvaopod, kat Tig Tadvopel (C : ¢p < ¢1 < ... <
Cmaz)- H OMKNA KATAVOUR TwV EpOTNUATOV TIPETTEL v AapPaveTat LTTOYLY KAB®G TO CUOTNHA EV-
dexopEVWG Vo wPpeNe(TaL TIEPLOCOTEPO ATTO TNV ETILAOYT VOGS AydTEPO SNUOPIAOUG CLVOVATHOD

eMUTESWV AT TO Cppgz- 1O CUUTEPACHO AVTO TIPOEPXETAL ATIO TNV €ENG TTAPATHPNON:

+ TMapapévovtag oto Tpéxov P amodpevyoupe TN damavnpr) enavadelktoddTnon aAld Kal

NV KataoTpodr) Twv soft-state delkTwv OV £X0UV dnptovpynOei.
+ To x gumepiéxet ONa Tar LepapXika emimeda piag SikoTaong.

H emloyr) Tov pivot Stapopdpavetat wg e€ng: Ot cuvdvacpoi Twv emmédwv mov PpiokovToat péoa

o€ threshold amdoTAON ATIO TO g BepOLVTAL LTTOYN LA pivot:

{Ve; € C, 0 < i < max| popularity, . — popularity. < threshold = c; € Ceana}

6110V T0 Clrgngd €IVAL TO GOVONO TV LTTOYN LV pivot cuvdvaouwy. H Tipr Tou opiov eivat avd-
Aoyn ¢ Méong Aapopdg (Mean Difference 1) A) twv Tipodv Tov popularity Kat cuykekpipuéva
threshold=k - A, k > 1. H napauetpog A, mov loovTalL He T HEOT aItOAUTN SlaPop& AVAHESH O€

SV0 avefapTnTeEG TIHES, ETUAEYETAL WG HETPO OTATIOTIKNG SIKGTIOPAG:

1 max max
A = Lo
max - (mal‘ _I_ 1) Zzg JZ; ’C’L C]‘

Avdpeoa o OAa Ta vtoynLa pivot ¢; € Crgpng ETAEYOUHE €va pe TNV €E€NG OTPATNYIKT:
1. Av 1o tpéxov eminedo P € Cigpg, T0 cVOTNHA Sev TpoPaivel oe alhay.

2. ANOG, arto Oha Tt ¢ € Crgpg IOV TIEPLEXOLY * O€ piat 1) TeploodTepeg dlaoTaoelg Ee-
xwpiCovpe pdvo TOLG CLVOLAOHOVG TIOL €XOUV HEXPL [%] Avtd e€aopatilel otL 8e Ba
Xpelaotel urtepPolikn Tomikn enefepyaocia yio Ta eloepxopeva epwtipata. T kabévav
atd Toug oLVSLVAGHOVE TIOL TTEPLEXOLY *, LToAoYileTal Eava To popularity mpocBétovtag
ekeivo MoV emumédwv Tov eprepiéxovral oe auto. [a mapdderypa av Oewprjoovpe Tt Ta

(Country, Brand), (City, *) Kat (%, Brand) eivat Ta oyl pivot, pe TG popularity ioeg
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pe 10%, 20% kat 15% avtiotorxa, T0Te eneldn) 10 (*, Brand) (ITOPEL VO ATTOVTHOEL EPOTHHA-
T IOV APOPOLV TO (Country, Brand), n Snuopihia Tov avePaivel oto 25% Kat uTtepTepei o€

oxéon pe to (City, *).

3. Av 8ev 1oxVel TIMOTA aTTd TA TAPATIAV®, TO cLOTNHA LI0OEeTEl TO oLVSVAOHS eTUTESWV pe

v vYnNAoTeEPn Snpodiia.

0.2.4 Ileipapatikn amotipnon

H vlomoinon tov HiPPIS ¢€xel yivel pe tn PonBeta Tov mpooopolwtn FreePastry [fre] kat mo-
poLCL&LOVTAL T TTLO AVTUTPOCMTIEVTIKA TIEPAHATA YLX TNV AITOT{HNOT) TOL CLUOTHHATOG. ETX TIEL-
papata Tov mapovaotdlovtat Bewpovpe Siktvo N = 256 kOUPwv, av kat €xovv Sie€axOei melpa-
potar pe SikTua TTov TepLéxouv péxpt 8K kopBoug.

To SeSopéva Tov Xpnotpomotovpe eivat cuvBeTikd Kot TapaxOnkav 1éco amod To Sk pHog
yevvitopa oAA& Kat amnd 1o yevvitopa Tov APB-1 benchmark [apb]. Ztnv npatn mepintwon,
T Sdedopéva ammotehovvtal €€ oplopov amd 22k mhelddeg, opyavwpéveg oe 3 Sla0TACELS e 3
lepapyka emnineda otnv kabepia. To apykd pivot eivat 1o (Hia, Haa, Hsa). Ta Sedopéva mov
napdxOnkav and to APB-1 meptyp&povtal 0To avTioTOL(O TElpapioL.

To ta popTia epTnHATWY, akohovBovpe pia Tpocéyylon dvo otadinv: [Tpwta opilovpe TNV
nBavornta va epwtndei kdBe cuvOLaAOHOG eTMES WV OVPPWVA pe TNV KaTavoun levelDist kau (-
Ta& emAEYOULE TO K&Be epdTNHA aTT6 TO CLVOLAOHS AVTO aKoAoLOWVTAG TNV KaTavoun valueDist.
‘O)ot ot mBavoi cuvdvacpoi ermnédwv taivopodvtar Ae€ikoypadikd, m.x. (His, Hoi, Hz1) >
(H11, Hag, Haz) ko n katavour) Zipf xpnotporoteitat wg levelDist (0 aplBpog twv epotnuatey
Y To GLVSLAGUO i eivan avéhoyog Tov 1/i%). Tta melpdpata ov TapovstdlovTal peTaBN-
Aouple TO0O0 TNV TIpr Tov 6 doo Kat Ty KatevBuvon g moAwong. T v kKatavoun valueDist
xpnotporolotpe tov kavova 80/20 €€’ oplopov.

Ta poptiar TOL XpNOIHOTOLOVVTAL ATTOTENODVTAL KAXT& Kavova artd 35k epwtrpata pe pud-
HO APIENG Aguery (00 pe 10 epwTApaTa avd povdda xpovou. [a Adyovg amhotntag Bétovpe TN
HovdSa Tov Xpovou o e 1 sec, OTOTE Agyery = 10 %gées. O¢tovpe TNV TIpr tov W ion pe 50
sec evw ol soft-state Seikteg mpakTika 8e Affyouv moté. TéNOG, 1) TIHH TOU g, TiBeTOU pETE 11O
TelpapaTa oTny Tiun 2k. Avto mpaktikd onpaivel 601t kabe kdpPog adiepcdvel To oAy 100KB
HvrunG otoug SeikTeg soft-state.

To metpdpata éxovv okomo va amodei€ouvv TNy armrodoTIKOTNTH TOL CLUOTHHATOG KABWE Kot
TNV TPOCAPHOCTIKOTNTH TOL O€ SlApopeg ovvOnKes. Xe auth Tnv KatevBuvor, HeTpape TO TTO-
000TO TWV EPWTNHATWOV TIOL eTMAVOVTAL XWPIG TANHUOpa (precision) Kot KAToypaPpOUHE TO HEGO
aplOud pnvopdtwyv mov avralldooovtal ava Aettovpyia. To HiPPIS ovykpivetal pe €va oaatAo
npwtOKoANO (TTov ovoudlovpe Naive), 6TIOL 1] TIU TOL precision WWoLTAL [e TO TOCOOTO TWV

EPWTNHATWYV IOV apopolV TO apxLKO pivot, kabwg kat pe TNV etdikn) mepintwon tov HiPPIS, 61ov
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Yxnua 7: H riyur tov precision yia Stagpopetikots fabuois médwoys (ue mo Snuopileic ovvdvaouois emi-
nédwv tovg (Hys, Has, Hss) xat (Hyy, Hay, Hsy) avriotoya)
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Ixnua 8: O puéaog aptOuds unvuudtev mov amaitodvTaL avd epATHUA yia StagopeTikols fabuois méAwaons
(ue o Snpogideic ovvdvaouovs emmédwv tovg (Hys, Hag, Hss) kau (Hy1, Ha1, H31) avriotoya)

XpnotpomolobvTal povo ot soft-state deikteg Xwpic va emtpénetal emavadeiktodotnomn (mov ovo-
udlovpe HiPPIS(N/R) 1 arthwg N/R).

Amnodoon pe Aradopes Katavouég @optiov
e auTAV TNV OpAda TEPAPATWY, HeTAPAANETAL N TTapA&peTpOg O TG Katavopng levelDist ko
Bwg kat n katevOvvon TNG TTOAWONG. ZTO TPWTO YpAPnHa Tov ZXAHATOG 7, Ta dedopéva eival
noAwpéva pe katevBuvon 1o (His, Hag, Haz). Oco 1o 6 avavetal, 1600 110 ToAwpévo eivat to
popTio kat o0 TI0 PerTiwpévn N anddoon tov HiPPIS, kabog 1 emavadeiktodotnon Aappd-
vel xopa vopitepa. Emumhéov ot Seikteg cuvelodpépouv meplocdTepo 0TO precision, apov o aptd-
HOG TV SIAPOPETIKOV EPWTNUATOV Ylo emtineda Stapopa Tov pivot petwvetat. [la opoldpopdeg
KATOVOHEG 0 aplOpdg Tov epoTNHaTwY dev emiTpémel ot HéB0SS pag va emwdpenbel amd
deiktodotnon.

To endpevo ypadpnpa mapouotalel amoTeAEoHATA Yl popTiot TTOL ELVOOLV TO GLVOVLACUSO
(H11, Ha1, H31). TTapatnpoVpe apOpoLa T&oT) (e TIPONYOUHEVKS OG0V apopd TNy artodoon 6co
avéavetal n T Tov 6. Iapatavta, 1o HiPPIS eival eptocdtepo armodoTikod Ao mpLy, pe Tn dto-
popd Tov art6 10 N/R va av€dvel pe Tnv avénon tov 0. Avto opeiletal aTov meploplopévo apliuo
TV SlapopeTKOV TIH®V Tov (H11, Ha1, H31), TOL Stevkolbvel tn Satrpnon twv soft-state Sei-

KTOV, 0PEAOVTAG €TOL TTEPLoadTEPO To N/R évavtt Tov HiPPIS. To televtaio ofrivel dGAovg Toug
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Ixfua 9: H iy tov precision w¢ mmpog 1o xpovo yia Siagopetikd gpopria dtav cvuPaiver pia Eapviki
aray oty moAwony v oriyur t. = 31000sec

Seikteg mov éxel dnpiovpynoet kata T Stadikaoia g emavadeiktoddtnong. Qotéco to HiPPIS
TeAKd Eemepvd TOV avTaywVvioTh ToL 0TV oTabepr) Katdotaot, apov n armddoon Tov avédvetal
HE TO XpOVvo.

To Zxfipa 8 aretkovilel Tov aplBpod Twv HNVUHATOV avd epOTNHE K¢ VO KATAVAAWONG
ToU e0povg {wvng. Ta UnvopaTa TTOL APOPOVV TNV EMIAVOT TWV EPOTNUATWV KAL TA UNVOHATA
eAéyxou mapovatdlovtal EexwploTd. TToloTIKE, 0 aplBpog UNVupdT®y eival avTioTpOPws ava-
Aoyog NG TG Tou precision Tou cvoTHPATOG. ONwe Mapatnpeital oe A& T TMEPAPATA, O
ETUTAE0V POPTOG TV UNVUHATOV eAéyXOUL eivat pikpdg Kot avTiotaduiletal amod 1o képdog o€
precision (Atyotepo artd 8% Tov auVOAIKOU aplOpol HNVUHATOV). AUTO OPeileTAL OTO YEYOVOG OTL
10 HiPPIS extelel Tov ehdxloto apldud emavadeiktodotroewy, mov HeTadppaletal oe pio emava-
deiktodotnon ava katevBuvvon moAwong. Iapatnpolpe akdpo 6TL 0 eUTAEOV GPOPTOC TWV HN-
VOHATOV eENEYXOU HelmveTal e TNy avénomn tng mélwong (oxedov apentéog yia 6§ > 1.5). Avtd
e€nyeitat amd To yeyovdg 011 to HiPPIS eivat o ofyovpo yla to emninedo enmavadelktodotnong
600 1o f av€avel.

Amnodoon og Avvapka iepipailovia
To meipapa avtd amotipd v amddoon Tov HiPPIS oe duvapikd mepparllovta, dTTov CUup-
Paivouv Eagvikés alayég oTo GpopTio TwV epOTHHETWY. XPNOLHOTOODHE £va popTio epwTN-
HATWV Yl TO oTtoio TN Xpovikn oTtypr] t. = 31000sec n moAwon aAa&let katevBvvon Kat amd
10 (H13, Hag, Haz) otoxevel oto (Hii, Hai, H31). Ta anoteléopata yia Svo emnineda mOAmong
napovotalovial 6To Zxfipa 9.

e O\eg TI§ IEPUTTAOOELS, TO HIPPIS avéavel ypriyopa Tnv T Tov precision Adyw Tov ouv-
Svacpot g avtopatng emavadelktodoTnong Kot Twv soft-state Seiktov. Ot MANHULPEG aLEX-
VOLV HETA TO ¢, OU®WG TO CVOTNHX CUVTOHO KATAPEPVEL Vo avakapyel Kabwg AapPdavel xwpa n

emavadelktodoTNnoN Kat xTilovtat ot amapaitntol Seikteg. O pubpdG pe Tov omoio cupPaivouvy Ta
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Mivakag 2: [Toooo16 aovvendV anavTHoewy yia Sidgopa \,pd

Aupd inconsistency (%)
(evnuepwoeig/sec) U Us
0.01 0.10 1.18
0.1 126  5.02
1.0 8.15 18.23
10.0 19.21 20.01

yeyovota avta e€aptatoat od 1o fabud tng moAwong. i @ = 3.0 n Tipr Tov precision av€dvetal
EVTUTIWOLAKA Kot 0XeOV apéomg HeTd TNV alayr) oTnv KatevBuvorn TG TOAWONG AVaKTA TNV
TIHT IOV gixe mpLy TNV adhoryr). Tl Atydtepo moAwpéveg Katavopég o pubudg oOyKALONG el Ve-

TaL, WOTO00 01N oTabepr) Katdotaomn 1 anddoon mapapével otabepd TTOAD LYNAR.

Evnuepooeig
210 OnHelo aUTO OTOXEVOVHE OTNV ATTOTIUNGOT TOL HNXAVIOHOV EVIIHEPWOEWY XOAXPTG OLVETTELOG
Tov HiPPIS. Yvykekptpéva, Bétovpe ota dedopéva Tov mponyolbuevou melpdpatog Svo popTtia
evnpepwoewv, To U kat 1o Us pe médwon 6 = 2.0. To Uy mepiéxel amoKAELOTIKG OTHELKE Epw-
TAHATA, eved To 30% TV epotndTev Tov Us eival cuvabpototikd. Katd t didprela tng mpo-
oopoinong Bétovpe evnuepwoelg 0To oOOTNHA pe PLOUS Ayypg TOL KupaiveTat artd 0.01 péxpt

dat ; . : - .
10 #2722 H mepiodog g Sadikaoiog evnuépwong Twv Seiktov tibetat ion pe 100 sec. Aap-

queries
sec

epotipata tilbevtatl 1,000 popég o ouxvd amd tov éleyxo Twv detktov. tov IMivaka 2 ko-

BévovTag LITOYIV OTL TA EPOTAHATA ELOEPXOVTAL OTO CUOTHHA HE PLOUO Agyery = 10 , T
TAYPAPETAL TO TTOGOOTO TV EPOTNHATOV TV OTIOIWV Ol ATAVTNOELS eivat atelels, péyedog To

omoio opilovpe wg inconsistency.

‘Ooo 110 Yp1iyopog 0 puBpdg TwV eviep®TEWY, TOGO HeEYXADTEPOG O aplOUOG TV AOLVETIOV
ooV ToEWY. Q0TO00, N ACVVETTEL TEIVEL VO GUYKAIVEL OGO TO Ayypg ALEAVETAL AKOHA KAL OTAV TO
Aupd €lvat {oo pe To To puBpo el0EPXOHEVOY EPWTNHATKV, SNAadT K&Be evnuépworn akolovBeitat
aTTo VA EPAOTNHO, 1) ACVVETTELA TIAPAPEVEL O aVeKTA eTtimeda, AOYw TOL OTL HET& TNV ATTopaiTn-
N enavadelktodoTNoN N TAEOVITNTA TWV EPWTNHATWY eTAVETAL XwPIG T cuvdpoun delkTav.
H enidpaon ¢ emavadeiktodotnong eivat epdpavag peyavtepn yua to U Emetdn Sev mepié-
XEL OLVAOPOLOTIKA EPWTHHATA, TO POPTIO EIVAL TIEPIOTOTEPO TIPOCAVATOMCUEVO GTO VEO pivot,

EMOHEVWG XpnotpoTtotel AtydTepo Toug SeikTeC.

Télog, a&ilet va onpetwBel 6Tt dtav akolovBeital ) peBodog xalaprg CUVETELAG, TO KOOTOG

TV EVNUEPWOOERY ival ave€APTNTO TOL Aypg Kot loobTal pe N unvopata avd mepiodo evnpé-

msg
sec

pwOoNG Twv SelkT®V (2.56 otV mepinTwon avth). AvtiBétwg, n pébodog Loxupng ouvémelag
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Yxnpa 10: H mipur tov precision tov HiPPIS yia To ¢poprio APB

napéxet 100% axpifeta, aM& amaitei (H?:o L;—1)-log(N) unvopata avé evnpuépwor, He arto-

msg
sec

TéNeoHa O HEOOG pLONOG Va va KupaiveTal artd 2.16 og 2160 yo i pubpioeig Tng mpooopoi-
WOT|G LG, AVAAOY O LE TO Aypg- ETTOPEVWG Y DYNAEG TIHEG Ayypg O HNXOVIOUOG IOXVPTG CUVETTELAG
Ba mpémel va amopelyeTal AOY® TOU OTHAVTIKOV ETIKOLVOVIAKOU KOGTOUG TIOU ETPEPEL.

Agdopéva kat Epotipata tov APB Benchmark
Télog, e€etalovpe TNV anddoon tov HiPPIS XproLLoTIoI)OVTAG TILO PEAALOTIKE Oedopéva Kot epw-
THpata mov dnpovpyovvial a6 to APB-1 benchmark [apb]. To APB-1 Snpovpyel pio pdaon
dedopévav pe mToANEg Siaotdoelg Kabwg Kal éva oOVONO AEITOVPYLOV TTOL AVTAVAKAODV TIG AeL-
Tovpylieg piag epappoyng OLAP. ®@étovtag tnv mapdpetpo density oe 0.1 kat 1, Snpiovpyodvral
dvo opadeg dedopévmv Tecodpwv Slaotdoewv (APB-A kat APB-B) pe mAnBapiBuovg 9000, 900,
9 kat 24. Kabe Siotaon epmepiéxet pia tepapxia pe 7, 4, 2 kat 3 emnineda avrtiotoryo. To APB-
A mepiéyxet 1.2M kot 1o APB-B 12M metadeg avTtiotolixws eve 1o dpoptio amoteleitat amd 25k
epotipata. Ta anotedéopata anewkovifovtal oto Zxiua 10.

[Mapatnpeital 611 To HiPPIS ekdniaovel vynhn amodoon, Eemepvavtag To 90% o€ precision
otn otabepn kKataotaon, mepinov 4000 epwTpATA HETA TNV EvapEn ToL TElp&HaTOG yio To APB-
A. To melpapa amodeikviel Tt Kat yia peaoTiKa oevépla to HiPPIS ipooapudletal Taxvtata
Kot LTI PETEL TV TIAELOVOTNTA TWV EPWTNHATWV Xwpic TANppOpa. H arhr) xprion SekTtov peto-
VEL TNV TN TOL precision mave amod 20%, evod vitapyel Kot oxeTikn kabvoTtépnon otny mpdoPao

otn otabepr) kataotaon (xpetaletal mepimov o SUTA&GL0G Xpdvoq).

0.2.5 Avakepalaioon

IMeptypddpnke To HiPPIS, éva Katavepunpuévo oot Ha o armodnkevel Kot detktodoTel TOAL-
ddotata tepapyika dedopéva oe Siktvar DHT. To HiPPIS, xwpig Kapio €K TwV TTPOTEPWV YV®-
0T TOU $pOPTIOL EPWTNHAT®WYV KAl Xwpig Kapio mpoenefepyaoia, anavtd epwtipata ot Sikpopeg
daotdoelg kat emnineda Aemropépelag. To oOOTNUE pag pooappoleTal Suvauika oto ¢poptio,

enavadelkTodoTMVTAG Tar SeSOUEVH TOL CUUPWVA HE TaL ELTEPXOHEVA EpWTAATA. ZvVEvalovTag
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NV TpooappooTiKn SelkToddTN oM pe soft-state deikTeg, To HiPPLS KaTapEpvel v artopUYeL TNV
TIANUHVPO UNVUHETOV OTLG TIEPLOCOTEPEG TIEPUTTAOOELS, EVEM ETITPETIEL AEITOVPYIEG TIAV® OF UEYA-
Ao 6yKo dedopévwy 0e TIPAYUATIKO XpOvo. AvAAoya pe TIG avayKes TnG epappoyng, to HiPPIS
Hitopei va epappooet pefddoug evnepmoewy e SlapopeTikd eminedo GLVETELAG, ®OTE VA TIETV-

XeL TNV embupnTr) akpifeta xwpig vepPoAid KOGTOG TNV EMKOVGViaL.

OL pocopolwoelg pe T xprion Stapopwv katavopomv Sedopévmv Kot GpopTiwv deixvouvv Ka-
A artodoon kat xprjon evpoug (ovng. To HiPPIS eivat 1dlaitepa aITOTEAECUATIKS YO TTOAWHEVQ
GopTia, EMTUYXAVOVTAG VYNAE TTOCOOTE aKpifelag Kot ypriyoprn TPOCAPUOYT) 08 SUVAULKES O\~
Aayég oty katevBuvon G mdAwong. Akopa Kot pe Alyo emavaAXpPavOpeva EpOTHUATA TO
HiPPIS katapEpvel va amtavTd TNV TAELOVOTNTA Xwpi§ va TANppupilet To diktvo, evromilovtag
TOoV 1110 SN HOPIAT) oLVOLAOUS eMUTED WV Kot ETTAVADEIKTOSOTOVTAG WG TIPOg avTdV. Tavtoxpdvwe,

TO GVLOTNHA ATTOPEVYEL TIG AVICOPPOTIIEG OTO GPOPTO KAL GTOV ATTOONKEVTIKO XWPO.

0.3 To X0otnpa Brown Dwarf

0.3.1 Emokomnnon

Z1dx0¢ eivat n Snpovpyia evog amoTeNeoHATIKOD oLOTHHATOG anoBnikevong dedopévamv,
OTIOL YEWYPAPLKA KATAVEUNHEVOL XPHIOTECS, XwPIG TN Xpromn Karolov e€eldikeupévou epyaleio,
Ba pmopovv va polpalovtal kat va aval{ntodv mAnpodpopies. ¢ kivnTpo, ag e€eTAoOVHE pla
ETIXELPTHATIKY) EYKATAOTAOT) TIOL Statnpei Ta apyeia yio Tig epyaoieg 6. Toa apyeio avtd Ba
HItopovoav KAAAoTa va eivat apyeia aopadelag SikTOOUL 1) Kataypadrg oLHBEvVTIwY. AvTi TG
dnuiovpyiag piag Kevtpikng amodnkng dedopévwy pe peydho KOGTOG Ayopag Kot CLUVTHPNONG,
emAéyetal 1 Slavopr) Twv 0edopévaVv Kat TG enefepyaciog Toug oe mBavmg TOMAITAEG TOTTO-
Beoieg, o1oL N TpdOPaon Ba yivetal ebkola.

T To okoT6 AVTY, TIpoTEiVOLE TO cVOTN A Brown Dwarf*, mou diavépel online pia kevTpikn
Sopn amobnkevong (Dwarf [SDRKO02]) oe éva Siktvo KOHPwV e TETOLO TPOTIO, WOTE OAX TA
EPMTHHATA TTOU APXIKA ETMADOVTAV HEOW TNG KEVTPIKNAG SOUNG TWPX VA KATAVEHOVTAL OF €V

addéunto Siktvo P2P.

To Dwarf eivat g Sopr) yloe Tov urtohoytopo, T detktodoTnomn Kal TNV avalnitnon peyalov
6yKoL ToALOLGoTaTWY dedopévmv. Eve mpoopépel TOANK TTAEOVEKTHHATH OTIWG T CUHTTiEDT) de-
dopévav Kat TNV aImodoTIKN at&vTnon cLVabpOLOTIKOV EPWTNHATWVY, TTAPOVCLELEL OPLOHEVOLG

TIEPLOPLOHOVG TIOL amoBoapplVoLY TN XPr)OT) TOL OE TIEPUTTMOELG OTIWG TOL oevapiov. EKTOC armod

*To Brown Dwarf eival éva avTikeipevo pe péyefog petald exeivouv evag yrydvTiov TAQVHTN Kol EVOG HIKPOD
aoteptov. Ewkaletat 6TL éva onpavTikd THipa g p&lag Tov obumavtog Ppioketat oe autr T Hopd.
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Mivakag 3: ITivakag Sedopuévwv pe tpeig Siaotdoeis kat Eva moad eviiapépovros (measure)

DIM1 DIM2 DIM3 Measure

S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

v éNewn avoxng oe oparpata, pia Sopr) Dwarf umopel va KataAdBet Xopo Katd T&éelg pe-
Y€0oug peyahbTepo amd 6Tt T apxika Sedopéva [DBS08]. To cvotnua Brown Dwarf xohapm-
VEL TNV anaitnon yia arnodnkevtikd xopo Kat SLEUKOADVEL TOV UTTOAOYIOHO TIOAD HEYOADTEP®WY
KUPBwV. EMmAéov, eMITPETEL EVIHEPWOELG TIPAYHATIKOD XPOVOU TIOL TIPOEPXOVTAL ATTO OTTOLOVOT-
mtoTe KOUPO TOu GLOTHHATOG. TENOG, TO TIPOTEIVOUEVO CVOTNHA UITOPEL VA XELPLOTEL ONUAVTLKE
HEYOADTEPO PLONO EPWTNUATOV Kol HEVEL AVETINPERGTO aTtd KOUPOULG TTOL AITOTLYXAVOULY 1} Og
ovvepydlovTat, KaBiG TpoodEpel TOAATTAG onpelx EL0OSOL Kol TTPOCAPHOTTIKI AVTLY PAPT TV

1110 BEPapnpévmy KOUHATLOV TOL KOPOU.

H ouvelopopa g SovAeldg avtrg eivat ) e€ng:

+ 'Eva ohokAnpopévo ocbotnua detktodoTNnong, enefepyaciog epOTNUAT®V KALEVIHEPWOTEWV
yio kKOBovg SeSopévwy oe éva Katavepnpévo meptBailov. O kKOPog dnpovpyeital pe v
povo mépaopa and Ta dedopéva, eve ol evnepwoels epappolovrtat online. H mpoofaon
OTO KATAVEUNHEVO AUTO CUOTNHA, OTO OTIOIO CUHHETEXOUV UITOAOYLOTEG TOU guTtopiov, dev

QITaLTEL TN X101 KATIOL0UL e€EISIKEVUEVOL epYaAeion.

+ 'Evag armodotikdg Kot eDpwaTog HNXAVIOUOG avTlypadrg, TTOU TIPOCUpUOleTal TOOO GTO
$pOpTO epyaciag 660 Kat 0TNV KIVNTIKOTNTA (eloarywyéc/e€aywyes) Twv KOUPwv, Xpnotpo-

TIOLOVTOG LOVO TOTIKEG HETPNOELG KAL YVMOELG Yl TO SiKTUO.

+ H avantuén tov cvotripartog kat n Aettovpyia Tov o€ éva TPayUatikd SKTVo GpUOIKGOV
Koppwv. H melpapatikn amotipnon oeixvel 61t to Brown Dwarf eivai 5 popég 1io yprjyopo
otnVv dnuiovpyia Tov KVPOL Kat pHEXPL 60 GOPEG TILO YPIYOPO GTNV ETAVON EPWTNUATOV
oe oVyKplon pe TN KevTpikn ekdoxr). EmimAéov katavépel Sikoia Tnv KevTpikr dopury ald
KL TO pOPTO EPWTNHATWY HE HIKPO KOGTOG, TO OTIOI0 HOLPALETAL AVAHESHK GE TTOAAOVG KON~
Boug, eMSEIKVDEL EVTUTTWOLAKA GHECT) TIPOCKPHOYT) OE TTOAWHEVEG KATAVOUES pOPTIOL KAl
efval e€alpeTikd avOeKTIKO 0g éva ONHAVTIKO TTOGO0TO CLXVOV HOTOXIOV KOUPWV aKdpa

Kot pe pKkpd Pabpd avrtypadng.



0.3. To Zvotnua Brown Dwarf 25
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Sxnua 11: H kevrpucy; Sous; Dwarf yia ta deopuéva tov Iivaxka 3

0.3.2 H Aopn Dwarf

H 8opn) Dwarf [SDRK02] amofnkevel, avalnté kal evipepwvel LAomolnpévous Kupoug Se-
dopévav. To kOplo TAEOVEKTNHAX TOL Dwarf eival To Yeyovog 0Tl e€aleipel TOOO TIG TpoDepATIKEG
600 Kal TIG emBepaTikeg emavalnyelg oTig Sikpopeg OYelg, HelwvovTag £Tot To péyefog Tou KO-
Pou. To Exnpa 11 deixvet T dour) Dwarf yia 1a ototxeia tov IMivaka 3: H Sopn xwpiletat oe
1é0a emineda, 00€G eivat Kot SlaoTaoelg Twv dedopévav. O koppog-pila (root) mepiéxet OAeg TIg
Stapopetikég TipéS TG mpwTng Stdotaone. Kabe kehi (cell) Seixvet oe évav koppo Tov emodpevou
eMUTESOL TIOL TIEPLEXEL ONEG TIG DlAPOPETIKEG TIHEG TTOL oXeTiovTal pe TnVv Tipr Tou cell. Ta ykpt
KeEAG avTioTotxoUV oTnVv Tiun “ALL’, tov Xpnotpomoleital yia tn cuvabpolon oe kdbe Sidotoon.
Omotodnmote onpelako  cuvabpoloTiko epwTnia prtopei va emtAvBel Statpéxovtag Tn dopr Kat
akolovBavtag Ta attributes Tov epwTpATOC TOL 08N YOLV TEAIKA G évav KOHPo-PpUANO (leaf)
oL TepLEXeL TNV andvtnon. [ mapd&derypa to epatnua (S1, C3, P1) Ba eruotpéyel Ty Tipn
$40 evw 1o (S2, ALL, ALL) tnv Tipr) $140 akolovBwvtag toug koppoug (1)—(6)—(7).

To Brown Dwarf (1} BD) eivat éva c0oTnpa Tov Katavépet 1o Dwarf oe éva Siktvo cuvede-
HEVWV KOpPPwV. ZTd)0¢ eivat va diatnpnbei n eukolia TNG KATAOKELNG, TNG avalnTnong Kat Tng
eVNUEPWONG TNG dOUNG aUTAG Kot OAEG oL Aettoupyieg va yivovTat pe online Tpdmo oe éva Siktvo
KOUPOV avTi Yl €évav KEVTPLKO UITOAOYLOTH.

H daSikacio Snpovpyiag tov BD katavépet Tn dopr) 6c0 ot mAelddeg Statpéxovtat. To Xxn-
o 12 Seixvel g ot kKopPol Tov Siktvov (1) péxpt (9) eméyovtal pe auTr TN CEPA Yl TNV
aofnikevon Twv avtioTowv KOpPwv NG Sopng tov Zxrpartog 11. Etot Snuiovpyeitat éva ado-
unto diktvo P2P pe B&on tn deiktodoTnon mov emiPdAlet n kevtpikn dopr). Ta epwtipata Kat
oL eVNHEPMOELG XpnotpoTtolobV TNV iSta dtadpopr) mov Ba xpnotpomotovoay Kat 6To Dwarf, ako-
MovBovtag topa mia Siktvakég ouvdéoels. Av éva epatnua apopa to S1 Ba mpowdnbei oTov
KOHPo (2). Ao exel, avaloya pe To group-by mov (nteitan (ALL, C2 1} C3), O katanet otov
kouBo (3), (4) 1} (5),

Zuykptvopevo pe 1o apadootakd Dwarf, 1o BD mipoodépel T €€1G TAEOVEKTHATA:
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+ H Omapén meplocdtepwv 1oL evOg KOUPwV emITpETEL TNV TAPAAANAOTIONNOT) TV AELTOVp-

YoV T0U KUBOoU.
+ H xaravopr tng doung kabiotd Suvatd Tov vTtoAoylopd TTOAD peyoADTEPWV KOPV.
+ To obotnua BD emitpérmnet online evpepOOELg TTOU TTPOEPXOVTAL ATTO OTTOLOVONTTOTE KOUPO.

+ To mpotevdpevo oOOTNHA UITOPEL VA XELPLOTEL ONUAVTIKA HEYOADTEPO PLOUO ATNUATOV
Xwpic va xpetaletal va avtiypayel OAn n doprn, KaBmG Tpoodépel TOAATIAG onpeia el06-

S0V Kol TIPOCAPHOCTIKT aVILYpad1) TWV TILO POPTWHEVOY KOUHATIOV TOL KUBOU.

0.3.3 ZXxediaon

H yevikn mpocéyylon tov BD eivat n akéhovdn: Kabe kopupr Tov ypadou (010 €€ig dwarf
node) opiletat pe éva povadiko ID (UID) kat avatiBetal oe évav koppo tov Siktvov. Oewpolpe
OTL K&Be dikTLAKOG KOUPOG 1 Yvwpilet TNV Utapén evdg aptBpot dAwv KOpPwV, oL omoiol ou-
ykpotoUv 10 Zdvoldo Ieirévwy Tov, 1) Neighbor Set, NS,,. lettovikoi dwarf koppot amodnkebovrat
O€ YELTOVIKOUG SIKTUAKOUG KOpPoug oTo oTpapa P2P mpoosbétovtag ouvdéaelg emkdAvyng. Etot,
K&Oe aKpn TNG KeVTPIKNAG Sopng avTimpoowetel pia SiKTvakn cUVSeon avdapesa oTov KOUPo n
Kal og évav KOpPo mov aviiket oto NS, Tov. Kdbe diktuakog koppog diatnpel évav mivaka mouv
ovopdQovpe hint kat eivat amapaitnTog yia v kabodnyel Tar epotipaTa amd Tov £vav Koppo
oTov &AooV péxpt va Bpebei n andvinon, dnwg Kat pio MoTta pe Toug KOHBoUG-yoveig Tou, TNV
omoia ovopd&lovpe parent list kot amatteital otn Stadikacia TNG avIypadng ylx TNV ammodpuyn
OOUVETTELQDV.

O mivaxag hint eival Tng popdng (currAttr, child), dmov 1o currAttr eivai 1o Tpéxov attribute
TOU TIPOG eTMiAvoT) epwTAPATOG Kat To child eivat to UID tou dwarf node oto omoio odnyei 1o
currAttr. Av o dwarf node mov mepiéxel 1o currAttr eivat KOpPog-pOANo, TO child eival n ovva-
Bpototikn Tipn. H parent list mepiéxet Ta UIDs twv yovéwv evog KOppou pali pe to currAttr, tov
omoiov To child o8nyel 010 cvykekpipévo kKOpPo. T va SpoporoynBolv Ta pnvopata avapeoo
0TOUG SIKTLAKOVG KOHPOUG, kKabe kOUPog Statnpel Evav mivaka Spopoldynong mov avtioTotyiel
UIDs og NIDs (dn\adn Siktvakd IDs, 6mtwg o cuvdvaoudg SievBuvong IP kat méptag).

Ewoayeyn Aedopévev
Tn Snpovpyia Tov KOPov Sedopévwv avalapPavel Evag oLYKEKPLLEVOG KOUPOG (creator), Tov
éxet mpooPaon otov mivaka dedopévwy. O creator akolovBel Tov akyoplOpo Kataokevng Tov
npwtdTLITOL Dwarf, katavépovtag touvg dwarf koppoug ev kivijoet (on-the-fly) katd tnv eneep-
yaoia ava mhetada, avti va Toug Kpatd oe Sevtepebov amobnkevtikod péco. levikd, n dnpovp-
yia evdg kehol oTov TTpwTdTLTIO Dwarf 16o0LVAEL e TNV E0AYWYT UIAG TIHAG KATW oITd TO

currAttr otov miivaka hint. H Snpovpyia evog dwarf node avtiotot el otny eyypadrn pag TpHnig
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currAttr|child currAttrchild
S1 2

S2 6
currAttr child ALL 8
c2 | 3 — =
c3 | a currAttr|child | child
ALL $130
$120
$250
currAttr|child - L &
P1 |$40 1 N child
P2 |$70 ' P1 1$90
ALL [$110 P2 1$50
ALL [$140
currxtr C;i;lg N currAttr|child
P2 $70
ALL |$40 ALL [$70

IxnNupa 12: H katavour twv kouPwv yia to obotypa Brown Dwarf tov Ilivaka 3

oto medio child. Etol, OAeg ot SladopeTIKEG TIHEG TV KEAL®V TTOL aviikouv oe évav dwarf node

Kataypadovtal ev Té\el wg currAtir, eve Ta madid kabe kopPouv kataypddpovtal wg child.

O mpoTelvOEVOG UNXAVIOHOG eloaywynig dev ipolimoBétel TNV ek Twv mpoTépwv Snplovpyia
TOU KeVTPLKOL ypddpou. Ot koppot dnuiovpyovvTal Kat ot Tivakeg hint cupminpavovtat otadia-
K& kotd Ty emeepyacia Towv mieladwv. H povn minpodopia mov xpetaletal kabe otrypr eivat
avtn Twv d dwarf KOpBwv mov BpiokovTtal 6To povordTt Tov Stacyilet ) MAedo TTOL LPioTATAL

emelepyaoia.

T v podytn mAetdSa tou IMivaxa 3, ot avtiotolot KOpPot Kat kehtd dnuiovpyovdvTatl oe dAa
Ta emtimeda g Sopn g (Exnpa 12). Kabévag and touvg dwarf koppoug (1), (2), (3) tov Zxnipartog 11
avatifetal oe SikTLAKOVG KOPPOLG. XToV Ttivaka hint Tov képPov (1), To S7 0dnyei oTOV KOHPO
(2). AkolovBovtag Ty St Stadikasia, o mivakag hint Touv (2) cupmAnpwvetat pe To Co Kat TO
(3) eva o mtivakag hint tou (3) pe 1o P kat 1o $70. H Siadikaoia tpoxwpd oty endpevn mhetdda,
1 oroia potpaletat pe TNV ponyoLevn To Kotvo podepa S1. Autd onpaivet dti 1o C3 Tipémel va
eloaxOel oTov kKOUPo (2) Kat pémel va SnpovpynBei o kOUPog (4). EmumAéov “kheivel” o kOpPog
(3), omdte kataypadetal n Tipn ALL poli pe tnv ovvabpolotikr Tipr $70 otov mivaka hint tov.
Ztadtaka, dnuiovpyovdvTatl OMot ol amapaitnTot KOpPot Kat ot mivakeg hint cupmAnpwvovTal pe

TIG KaTAAANAeG TANpopopieg Spopordynong.
Avalntnon Aedopévev
Ta epotrpata emAtovtal akoAovBwvTag TNV KATAANAN SIadpopr KATE UKOG TNG KATAVEN-

névng dopng Tov BD medio mpog medio. H Tipr kdbe dikotaong oto epdtnua aviikel oe évav



28 Extetapévn IMepiAnyn

dwarf node o omoiog péow tov mivaka hint odnyel otov KOpPo TOUL elvat LITELOLVOG Yl TNV TIHT
NG endpevng SL&oTAONG.

A6 TV mapanave meptypadn eival epdpavég 6TL To cVOTNH XpetaleTat €éva onpeio ekKiv-
ong, OnAadn k&be kKOPPog oL BETEL Eva epOdTNHA TIPETIEL VA YVwpilel Tov KOpPo-pila Tng Sopng,
antd omov Ba Eexivroet 1 emilvon. AvTO ETUTUYXAVETAL HECK KATTOLOU UnXaviopol Sadripong,
ToV 0110{0 KaAel 0 KOUPog-pila kata tn dnuiovpyia tov. H vmapén evog povadikot onpeiov k-
kivnong yta 1o BD, mov amotelei povadiko onpeio amotuyiag (single point of failure), avtipeto-

TieTal Ao TN OTPATNYLIKY AVTLYpAdHG TTOL TAPOLOLALETAL OTN) CLVEXELA.

I[Miow oto mapadelypd pag, N avalntnon y 1o epodtnua S1ALLPs Eekiva and tov KOppo
(1), Tov omoiov o child ov avtioTotxel oTNV T S1 00nYel oTOV KOPPO (2). ATO eKel, TO Epw-
o akolovBei Tn diadpour} mov vodeikvieTat and To Tpito oTolKeio Tov mivaka hint, ondte
emokéntetal 1o (5). H tipr) P meplopilet Tig mbavég emloyég oto Sedtepo atotyeio Tou mivaka,
dnhadn otnv Tiun $70 Tov eivart Kat n amdvTnon.

Evnuépwon Aedopévov
H dadkaoio tng evnpépwong eivat TapdpoLa e AUTHV TNG ELOAYWYTG TTAELGO WV, HOVO TIOL O TNV
nepinTwon autr) Tpénel va avakoAvpOei To peyahvTepo Kovd mpdbepa peTad Tng TpéXovong
mAeladag Kat Tng vdpyxovoag dopng, akohovBivTag Tig SiKTvakeg ouvdéoels. MOALG o diktva-
KOG KOpPog mov atoBnkevel To tedevtaio Kotvo medio Ppebei, ol vPLoTApEVOL KOPPOL EVIHEP®-
vovTal avadpopka. Avto onuaivel 6tL vtdpxovTeg KOpPol StevpvvovTtal yia va Gprolevijcovv
Kavovpla KeAld Kat véol kdpPot npovpyovvtal dtav auto eivat amapaitnto. Emumhéov, n etoa-
Ywyn Hag Katvolplag Aeladag oe vrtapyovoa Sopr BD ennpealet kat Ol Ta KeA& ALL mtou
oxetilovTal pe Toug MPog evnuépwaor Koppoug. Emetdn n Stadikacia twv evnpepwoeny eivat 16-
oo Samavnpn og e0pog {Hdvng, vtoBéTovpe dTL KAAEITAL OTAV €V GOVONO ATTO EVIHEPADOELG EXEL

oULM\eYOel.
Avrrypadn Aedopévaov

[ va Staopatiotei n Stabeoipotnta Kat va artodpevyBei n) viapén povadikol onpeiov amoTuyi-
a¢, 1Bing oTnV MepinTwomn Tov KOpPoL-pilag, Bewpoiie TNV KABOA KT Tap&HeTPO avTlypadng k.
H napapetpog avth kaBopilet 1o fabpo mieovaopot twv Sedopévwy oto ovotnua: Katd tn 8n-
Hovpyia Tov KOPov, k&Be dwarf node amobnkevetal oe k 4 1 SikTvakog KOpBOLS avTi oe évav
novo.’Etol, otnv apyikn Tou Katdotaot, To oboTnua dphoevel k + 1 avtiypada (mirrors) kabe
dwarf koppouv. Katd tnv emilvon evog epwTipatog o KOUPoG Tov AapBavel To ep@TNo ETTIAEYEL

va To TpowBnoet Tuxaia og éva amd Ta avTiypada Tov KOpPov-Tatdtov.

T va emitevyBei n owoTr) ovpmepipopd LeTa TN Sladikaoia avTlypadrg, oL yoveig, Ta taudii
Kol Ta avTiypada vog KopPou mpénet va evipepwBoiv yia éva véo avtiypado tov. Ot koppot-
yoveig Tpérnel va yvwpilouv yia To véo KOpPo kate va Tov cupmeptAdfouy otn Sladikacia ava-

{nnong. O katvovplog KOpPoG AapBavet Tov Tivaka hint kot TV AoTa Twv yovEémv oItd KATToLo
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artd Ta v Ty padd Tov. Tédog ot kopPol-tatdid mpémet vo evipepwBovv ylor Tov Kavouplo Ko po-
TaTépa.

Am6 10 onpeio auTo Kal HETA, TO oVOTNHA eivat LTTELOLVO Yia TN SLATHPNOT) TWV AVTLYPAPWY
kaBe koppouv mavw and k. [a va efaxpipwbei n Siabeoipotnta i oxt evog dwarf node, ot Si-
KTUAKOL KOUPOL 0TEAVOLV TiEpLodikd peTad Toug pnviopata ping. EKtog armo ) diadikaoia avth,
n StaBeoipotnTa e€akpiPoveral Kat HEow TV EPWTNHATWY, OTAV €vVag KOUPOG oTnV Ttopeia TOu
epwTipatog dev anmavtroet. Otav évag KOUPog avTiAngOel TV aoToxiot KATTOLOL AV TLYPAPGOL TOV
(Yo mapddetypa Aoyw opAAHAToG Tou SIKTUOV), TOTE ETAEYEL KATTOLO YEITOVIKO TOL KOUPO Kot
avttypaget o dwarf node oe avtov. H Siadikaoio avtr) dev emmpedlet Tnv vdloun Aettovpyia
TOU OUOTHHATOG, KAOMG OAa T epTAHATA oLVEXICOUVY Var ETTIADOVTOL KOVOVIKAL.

Xepiopog Aotoxiov Koppov kat ITodeong @optiov
M Baoikr) anaitnon k&Be katavepnuévng epappoyng eivat n avoxn oe opaipata. Ot ovoTotyi-
€G UTTOAOYLO TGOV ammoTeAobVTaL 6UVABWG amtd LAIKO emippeTtég oe aoTo)ieg. H moAwaon Tou eloep-
XOpevou ¢popTiov eival GANOG £vag TTapAYyOVTAG TTOL eNNPe(el TNV IKAVOTNTA TOU CUCTHHATOG
va Aettovpyel owoTd, Kabag pHelwvel TNV artddoon Twv LITEPPOPTWHEVWY KOHP®V, EXOVTAG eTi-
TIT®WOT OTO XPOVO €TMIAVONG TWV EPOTNHAT®YV. [l VA AVTIHETOTTIOTOVV TETOLEG KATAOTAOELG O
KOTAVEUNUEVH CUOTHHATO XPOLHOTIOLOVVTAL GUVAHBWG TEXVIKES avTlypadrg deSopévwy.

210 ovotnpa BD, xpnotponolobpe pia péBodo avtypadng mov mpocapudletal 1060 0TV
TIOAWOT) TOUL GopTiOL GCO Kol GTNV KIVITIKOTNTA TOV KOUP®V, ®OTE VX AVTIHETWITIoEL KAl Ta SV
{nTpata e opotdpopPpo TpoTo, SlaoTéAovTag SnHOPIAN KOUHATIA THG SOUNG Kot GUPPLIKVG-
vovTag dAa, TTou déxovTat Aiya attipata. Me tov Tpomo avtd, 1o BD eival oe Béon va amoomd
avlnuévoug mdpoug yia va Xelpiletat e€dpoelg 0To poptio Kat va Toug amelevBepwvel HONIG av-
TEG LTTOXWPOLV.

Kiwvntikotnta Koppov
Otav évag kopPog Bélet va ammoxwprioet artd To cLOTNHa, TOTE yia kdbe dwarf koppo ov amodn-
KEVEL, EVIUEPWVEL TOUG KOHPOUG-YOVEIG, TOUG KOUPOUG-TIaLSIA Kot TOUG KOUPOLG-avTiypada Yo
va Staypdyouv Tig ouvdéaelg Toug. Otav évag kKOpPog poyet Eapvika amd To iKTvo, N armoxwpn-
on Tov yivetat avTAnmTy eite and v meplodikn Swadikaoia ping eite péow tng dpopordynong
TV EPOTNHATWYV. ZTNV TPWTN TEPITTTWAT), TO aVTYpaPo eVOG KOUPOUL eival auTd TTOL avTIAAHPA-
vetal v aotoxio kat Eekvd T Stadikaoio Snpovpyiag evog Katvolplov avTlyp&pou o€ KATToLo
YELTOVIKO TOL KOpPo. X1n SelTepn MepiMTwon 1 aoToxiot avaKoAOTITETAL OTTO KATTOLOV KOHBO-
yovéa. O tedevtaiog, extdg amd 1o epwTnpa, powbel oe k&Moo A0 artd T TV TSI
(Tmov eivat avtiypaga Tov KOUPOL TTOL ATTOXWPNTE) KAl TNV VIO va Snuiovpyroetl avtiypado
1wV 0edopévav Tov. Tehkd, ot yovelc, To matdid oM Kot Ta avTiypada ToL KOHBOU TTOL AITETUXE
EVIHEPWVOVTAL YLt TO CUHPAV Kol AVOVEDVOLY TIG CUVOETELG TOUG.

Avtiypa¢r Baoiopévn oto @optio

210 BD, ot diktvakoi KopPol xpnotpomotovy pa pébodo avitypadrg mov mpooapuoletal 6To
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eloepyopevo ava dwarf node poptio. Zuykekpipéva, €vag kOpPog mov dpthoevel évav viteppop-
Twpévo dwarf node pmopei va dnpiovpynoet mpdobeta avtiypada péow tng Stadikaciag tng da-
aroAy¢ (expansion). Ta véx avtiypada O xpnotpomonBolv amd Toug KOpPovG-yoveic woTe va
avaA&Bouv HEPOG TOU GpOPTIOL EpWTNHATWV. XTNVv avTifetn mepintwon, évag KOpPog mov AapPd-
VELEANAXIO T EPpWTAATA PTTOPEL Vo 6PNoTel artd To oboTNUA péow TNG Stadikaoiog Tng cvoTodsg
(shrink), apkel 0 oLVOMKOG aplOUdG avTLYpAPwV TOL €V AOY® KOHBOU VA TIXPApEVEL TOUAGXL-
otov k + 1. H Staypadn avtr anelevbepavel mépoug mmov pmopovv va xpnotponotnovv yia mio
SNUOPIAT) KOPHATIA TG SOHTG.

Ot Swadikaoieg avtég mpoimobéTovv o1t K&be KOPPOC MOV CLpHETEXEL 0TO BD eNEYXEL TO E€L-
oepxépevo dpoptio yia kabévav and tovg dwarf koppoug dng, s € (i,1+ 1,..., ), mov anobn-
KeveL. Av I5(t) eivat To Tpéxov poptio ya Tov dns, ot 300 Stadikacieg LITopovV va TEpLy padpovv
o6 e€ng:

Ataotohi: Kabwg o ¢poptog avlavetal AOyw Twv el0EPXOHEVWV EPWTNUAT®Y, K&Ttotol dwarf
KOHBoL ¢pTdvouv To 6pLo TOug, TO oToio eKPpAleTal amd TNV Mapapetpo Limity,,. Avth avti-
TIPOOWITEVEL TO PEYIOTO TWV AUTNHATWV TTOL eival oe B¢on va e§unnpetrioet k&dbe dwarf koppog
dns otn povada Tov xpovouv. Otav 1o 6pto avtd EemepaoTel, 0 SIKTLAKOG KOUPOG eTmKaeiTaL
™ Stadikacia avriypadrg. TTio ovykekpipéva, k&be dns, pe ls(t) > LimitZ,,
[ls(t)/ Limit?

¢wva pe TN {RTnon kot fonBdel Tovg LITEPPOPTWHEVOLS KOPBOLE Vo aItXAAaryoVV oTtd €V HEPOG

Ba avtiypagei
zp| POPEG. AUTOG 0 pnXavIopdG emTpémel T SuVapIKY SICTON TV TTOPWV G-
TOU POPTIOL TOUG HETAPEPOVTAG TO G GANOUG KOUPOUG.

zuotorr: Ot HeTaPoAéG 0TO PpopTio UITOPOUV VA EMIPEPOLY TN ONHIOLPYIC AVILYPAPWV TTOU
HoakporpdBeapa Se xpnotpomotovvral. To cOotnpa mpémet va eivat oe Béon va dtaypddel TéTolx
avtiypada, apkel va eEaopalioel 6Tt 0 GUVOAKOG aplBudg Toug de Ba méPpTel K&ATw Ao k + 1.
OewpavTag 6TL T0 Limits,, elval To 6plo KdTw artd To omoio £vag kéuPog dns vtohettovpyel Kat
T eivat 0 aplOpOC TwV avTlypadwy Tov dng, T0Te KAOe dng pe ls(t) < Limit,  wours > k+ 1

Saypagetal. T va Steopaliotel 1L ) Staypadny Tov dng Oe Ba empépel LTIEPPOPTWAT TWV

s

avTlypadwv Tov, opifovpe TV TipA Tov Limits, . ion pe Limits,, - rs/(rs + ¢), 6mov c Betikn

otabepa.

0.3.4 Ileipapatikn Amotipnon

To BD éxet vhomoinBei o€ Java kat €xel eykataotabel o€ TpaypaATIKO GVOTNHA ATTOTIHNONG
N = 16 kopPwv (Quad Core @ 2.0 GHz, 4GB RAM). H kevtpikn ék8oon €xet omotnOei emiong,
Yl Gipeomn ovyKpLon).

ZTQ TIEPAPATA HOG XPNOLHOTIOLOVHE TO0O oLVOETIKA GO0 KAl TTparypaTiKd TOALSIGoTaTa Se-
Sopéva. Ta cuvBetikd €xouv apaxBei arod ko pag yevvtopa alAé Kot a1to T0 YEVVHTOPQ TOL

APB-1 benchmark kot akolovBo0v Siapopeg katavopég (opotdpopdn, avto-opota (self-similar)
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IMivaxag 4: O anairiioels oe amolnkevTikd xwpo kat oL xpévor Snutovpyiag yia kfovg Dwarf kar Brown
Dwarf pe Siagpopetixé apiBud dtaordoewy

Opotopopon 80-20 Zipf

d mivakag péyeBog (MB)xpovog (sec) éyebog (MB) xpovog (sec) |HéyeBog (MB) xpdvog (sec)

(MB)  Dwarf BD Dwarf BD | Dwarf BD Dwarf BD | Dwarf BD Dwarf BD
5 0.2 1 1 4 4 1 1 8 7 1 1 3 4
10 0.4 4 5 31 13 4 5 28 14 6 7 54 21
15 0.6 7 9 63 29 10 13 96 43 22 27 226 74
20 0.8 13 17 122 50 18 23 352 82 54 69 543 204
25 1.0 18 23 198 88 29 37 729 196 | 152 195 1206 535

80/20 xau Zipf pe § = 0.95). Ta poptiat epwTNHATWV TIEPIAAUPAVOLY TOCO OHHELKE OTO Kal
oLVABPOLOTIKA EpWTARATA e SIAPOPETIKEG AVANOYIEG KAL KATAVOHEG.

Anuovpyia tov Kopov
T Pabpd avtiypagng k = 0, kataokevalovpe Toug BD kot Dwarf K0Poug TTov amoteAovvTal
amtd 10k mhewadeg pe aplBpod diaotdoewv amd 5 éwg 25 Kat akohovBolv TNV opotopopdn, TNV
avto-opota 80-20 kat v Zipf (6 = 0.95) katavour). H katavéAwon amodnkeutikod Xmpou Kat
oL xpovol eloaywyng napovaotdlovtat otov IMivaka 4.

To oboTNUA pag emidelkvEeL EVTUTTOOLAKA YpNyopoTepn dnpovpyia Tov KUPoL oe axéon (e
NV KevTpIKr) péBodo, Adyw Tng emkaAvyng mov emitpémnet 0Tn dadikaoia anmodnikevong (kabe
KOpPog amobnkevel ave€dptnTa T0 HEPOG TOL KUPOL TTOL ToL avaloyei). H emrdyvvon eival
TTLO eUPAVIG 000 0 aplOpog Twv SlaoTaoewv avEdveTal Kat 1 TOAWOT) YiveTal eVvTovoTepn, yiaTi
é1ol Snpovpyovvtal peyalvtepol kKoPot. I mapdderypa, To BD elodyel Tov mToAwpévo Koo 25
Sxotdoewv péxpt 3.5 popég o ypryopa artd to Dwarf.

To BD emipépel £va pKpO EMUTAE0V KOOTOG OTOV ATITOONKEVTIKO XWPO, TO OTI0I0 OUWG HOLPK-
leTat avapeco 0TovG OLpHETEXOVTEG KOUPOLG. EvdeikTikg yior Tov KUBo 25 SlaoTaoewy, TTapOAo
TIOL TO eTUIMA£0V KOG TOG eivat 43MB, k&Be kOpPog armd Touvg 16 empoptiletal pe Aydtepo amd
3MB.Etol, To peyalttepo mheovékTnpa Tov BD eival 6tL pmopei va artoBnkevoet oxedov N ¢po-
péc Ta Sedopéva mov arroBnkevet o Dwarf (yio k = 0), xpnotpomotdvtag [N UTTOAOYLOTEG HE TIG
idleg SuVATOTNTEG.

Evnuepooeig
Xpnotpomolwvtag ta idia cuvola Sedopévwy dTtwg 0To TIponyoLevo Teipapa, BéTovpe evnpe-
pwoelg peyéBoug 1% emi Tov cUVOIOL TV TTAELAOWYV, TTOL aKOAoLBOUV TNV opoLdpopPN Kat TNV
avto-épola katavourn (80-20). Ta amoteréopata mapovaotdlovtat otov ITivaka 5.

Expetalevdpevo tnv mapaliniomnoinon tng dadikaoiag, to BD amodeikvietat péxpt 2.3
popég Lo ypriyopo yia dedopéva molmv Staotdoewv. O aplBudg twv Staotdoewy mailel onpa-
VTIKO pONO TOOO OTO XPOVO OGO Kot GTO KOOTOG TwV eVNHepwoewV. Qoo TepLocdTEPES OL SIAOTA-

O€LG, TOOO HeyaAUTeEPOG 0 KOPOG TToL dnpovpyeital, ondTe T000 TEploaoTepol ot dwarf kdupot
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Mivakag 5: H emidpaoy evijuepdoewv oe Sedopuéva SiapopeTikdv Staordoewv

Ouotdpopon 80-20
d Xpovog (sec) HnvOpaTo/evn . Xpovog (sec) pnvopaTo/evnp.
Dwarf BD BD Dwarf BD BD
5 7.1 7.2 14.6 7.5 6.4 13.7
10 17.7 14.3 50.8 21.3 14.4 49.8
15 30.8 21.8 111.0 43.4 31.2 120.4
20 48.6 27.9 193.3 104.1 65.8 200.2
25 89.1 39.1 300.7 172.1 103.6 305.7

Mivakag 6: Ot ypévor emidvong Kat 10 KOOTOG EMKOWVOVIAG yia SiagopeTikd abvola 1k epwTnudTmv

Oupodpopdn Zipf
d Xpovog (sec) HnvopaTo/epOTNUA Xpovog (sec) HnvopaTo/EpOTNIA
Dwarf BD BD Dwarf BD BD
5 52 4.0 5.8 1.9 1.7 5.5
10 30.1 2.6 10.9 29 1.2 10.6
15 65.2 2.9 15.6 55.4 1.2 15.5
20 102.1 3.0 20.8 88.3 1.5 20.3
25 182.5 13.2 25.9 1721 9.2 25.6

o ennpealovtal. Emiong, molopéva Sedopéva eviep@vovTal o apyd Aoy TG Urapéng mo-
KV@V OTHEIWV 0TOLG aVTIOTOLXOUG KOPOUG.

Enefepyacia Epotnuatov
Xpnotpomowwvtag ta (St SeSopéva Bétovpe 1k epwtipata mov akolovBovv TNV opoldpopdn
Katavoun Kat v katavopr Zipf (0 = 0.95), pe T0 TOCOOTO TWV ONUEIAKAOV EPOTNUATWYV (0O e
50%. Emiong, n mBavotnta Py va pn ouppetéxel pia Slaotaot oto epwtnua tifetal ion pe 0.3.

O Tivaxag 6 mapovolalel Ta ATOTENETHATAL.

Katapydg, mapatnpovpe 6Tl oe ONeG TIG TTePUTT®OELG TO BD emmiAlel Ta EpWTAHHATO TTOAD TTLO
ypnyopa amd tnv Kevrpikr ékdoot). Eve o xpdvog andkpiong avéavetal pe Ti¢ Slaotdoelg oTo
Dwarf, oto BD apapével oxedov otabepog. H emilvon kdBe attribute evdg epotrpatog pmopei
v yivel aToptKkd, arto dapopetikovs koppoug. 'Etot, €xovtag 16 kopPoug va ektehobV Aettoup-
yieg e106d0v/e€600L TapdAANAa, BeATidveTal atoBnta n amodoon. Iding otnv mepintwon molw-
HEVWV GpOpTiwV, To BD emIdeIKVDEL EVTUTIOOLXKT ETTAXLUVOT HEXPL Kal 60 GpopEG o€ oXEOT e TO
Dwarf.

Emumhéov o aplBudg Twv unvupdTtov ava epeTnia o ONeG TIG TTEPUTTWOELS €XEL AV OpLO
10 d + 1: To obotnua xpetdletal d pnvopata yia va Tpowdnioel To epOTNUA KATd HKOG TOU
HOVOTIATION TOV PEXPL TNV AIIAVTNON KAl éVa HVURA Yia VA OTEIAEL TNV AIT&VTNOT) THiow 0TOV

KOpPo mov TNV €Bece.



0.3. To Zvotnua Brown Dwarf 33

IMivakag 7: Metprioeis yia dudpopa abvora deSopévewv APB

péyebog (MB)  xpovog eloaywyng (sec)  xpovog avalntnong (sec)

[Mukvotnta  #mhewedwv  Dwarf  BD  Dwarf BD Dwarf BD
0.1 1.2M 17 20 42 16 40 12
0.2 2.5M 35 41 82 32 55 12
0.3 3.7M 51 60 126 53 80 12
0.5 6.2M 74 98 314 93 93 13

Mivakag 8: Metprioeis yia mpayuanikd Sedopuéva

péyebog (MB)  xpovog eloaywyrng (sec) A (sec) B (sec) C (sec)
Aedopéva  Dwarf  BD  Dwarf BD Dwarf BD Dwarf BD Dwarf BD
Weather 9.3 11.4 120 23 234 11 165 12 114 12
Forest 8.0 9.8 66 20 144 11 111 11 70 12

IMpaypatikd Aedopéva kat Aedopéva Benchmark
Ye auto 10 onpeio e€etdletal ) oupreplpopd Tov BD pe mio peahtoTiké dedopéva. Me tn Pon-
Bela Tou yevvritopa Touv APB-1 benchmark [apb] Snuiovpyovpe téooepa cUvola Sedopévwy pie
Sapopetikég TUKVOTNTEG. Emiong xpnotpomotovvtat Svo ovvola Sedopévwy mov amotehovvtal
amtd 10k mheiddeg, To Weather [wea] pe 9 SlaoTdoelg TOL avTIOTOLKEL O€ LETPTOELG KALPIKDV [LE-
yeBwv kat to Forest [Bla] pe 10 Staotdoelg mov mephapPavel petproels peyebwv mov oxetifovrat

pe daon. Ta dedopéva avtd éxouvv xpnotporoinBei oe oxeTikEG peréteg oTn PLpAoypadia.

Ta poptia mov Tilevtat ota Sedopéva tov APB mapdyovtat amd 1o yevviitopa tov benchmark
Kat artotehovvtal arno 1k epwtrpara, 1éo0 onpelakd 600 Kat cuvabpoloTikd. [ Ta mpaypaTiké
dedopéva mapayovpe poptia Tov amotelovvTat antd 10k epothpaTa TOL AkoAovBoLV TNV Ka-
tavopr) Zipf pe 6 arnd 0 éwg 2 (A, B kat C). To 10000TO TwV ONUEIK®OV ep@TNUAT®V gival 0.5,

eve yloe Ta cuvabpoloTika epotrpata Bétovpe Py = 0.3.

To amoteléopata mapovaotdlovtat otoug ITivakeg 7 kat 8 kat cuvadouv e Ta evpAHATA TWV
TIPONYOUHEVWY TTELpApATwV. OooV apopd Toug Xpovoug Snpovpyiag Tov KOPov, To BD eival ep-
Gpavag 1o ypryopo amno6 to Dwarf. Ta amotedéopata Seixvouv 0TL N Katavepnpévn ekdoxn eivat
Tévw artd 5 popég TaxhTEPn amd TNV KEVTPIKT, SIVOVTG EVTUNTWAIAKOUG XPOVOUG KATAOKELNG
KOPwV (Tepimov 1.5 Aentd yio 6.2M mhetddeg). H emilvon Twv epwtnpdtov eivat péxpt 20 ¢popég

ypnyopdtepn yia to BD, To omoio prtopel va Xelptotei oxedov 1k epwtnpata 1o SevutepodemnTo.

KA\ipakeowpdtnra
XpnotpomolwvTtag Tov KOPo twv 10 Siaotdoewv Bétoupe popTia oL ammoTehovVTAL aTtd 5k epw-
TAHOTA Kot akoAovBoUV TNV opotdpopdn Katavopn Kat Ty katavoun Zipf (pe Siadpopetikég

TipéG Tou 6) pe Py=0.3. Emuthéov 1o 6pto diaotoAng Tibetat ico pe 10 % (Limitg,,=10).
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IxNua 13: ApiOudc aviiypdewv ©g mpog 10 xpovo yia maduikd pvous epotnudroy ke Limitg,, = 10

Mivakag 9: O ovvémeies avéavipevov apibuot aotoxiev oty emelepyacioa Sedopévwy kat epOTHUATWY
yio SLapopeTikés Tiués THS Tapauétpov Trqaq

INfaitl Trai(sec) amoleles epwt. (%) emavampowdioels unvopata/epOt.  Xpovog/ep®t. (ms)

0 - 0 0 9.8 57

1 90 0 11 9.8 79

2 90 0 204 10.4 257
4 90 2.9 841 11.1 734
1 60 0 21 9.9 107
2 60 0 258 10.5 304
4 60 4.3 894 11.2 812

T va e€etdoovpe TN ovprepipopd TOL CUOTAHATOS KATW aTTO cLVONKeG Tieong Kat Expvi-
EPLTAHATA

K@V aAAaywv 6To popTtio, Eekivdipe ammo Eva apxiko pubuo epoTnuaTwy (0o pe 10 ==

, TIOV
£pWTN uomx)

Eagvikd avEdvel 0To dekamhdoto (to A ¢pTdvel T Tipr 100 ==

peta amo 20 sec. Meta
artd &Aa 20 sec, 0 puONOG ETTAVEPXETAL TNV APXLKT TLUH TOU. ATIOTIHATAL 1) IKAVOTNTA TOU {n)-
Xaviopoo tngG SlaoToAng (expansion) Kat TG GLOTONNG (shrink) va avTdapPaverat TG aA\ay€g
Kal va TTpocappolel avaldyws Tov aptdpd Twv avtlypadwy.

To Zxfpa 13 mapovotalet Tov aplpd Twv avtlypaPwv wg mpog 1o Xpdvo. Xxedov apéong
HET& TNV amtoTopn avénomn tou A, avavetal Kat 0 apldpdg Twv aviypddwy emi déka. Metd 10
TENOG TOU TTOApOD, O UNXavIopdG OlaoTolng Staypddel Toug kopBouvg dwarf mov e déxovral
epLTHHATA, artodeapeVovTag armobnkevTiko xwpo. To BD katadEépvel va aviXveDoeL TV aAAayT
oTo dpopTio Kal péoa o€ Alyo SevTepONeNTa TA VT PP HELOVOVTOL, PTAVOVTAG OTOV ap)LKO
TOUG apLOpo.

Avoxn og ZPpaApata
To ovoTnpa oTNpileTal oe LITOAOYLOTEG epTTOpiov, oTTOTE eivat TOAD TIBAVOV va cupfolv aoToyi-

&g Katd TN Stapketa NG Aettovpyiag Tou. Xpnopomotovtag ta dedopéva 10 Staotdoewy pe Pad-

EPWTNHATOL
sec ’

TIPOKOAOVHE ATTOTLX(EG OTOVG KOpPOUG w¢ e€NG: Kabe Ty sec, v UTTOGHVONO Nigyj) TWV KOHPwWV

1O avtypadng k=3 kat éva ¢poptio pe 5K epwtripata mov katapOdvouv pe pubuo 10
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TI0L gival online aIOTUYXAVOLY KUKALKE, £V oL KOHPoL TToL Tiponyoupévag nTav offline elodryo-
vtat ava 0To SiKTLO. ZeKVOVTaG aTtd |ngi|=1 otadakd avfavoupe v Tiun péxpt To 4 (Hioag
Kat k&Oe koppog dwarf vmapyel oe k+1=4 Siapopetikovg diktvakovg KopPovg). O Tlivakag 9
TIAPOLOLALeL Tar ATTOTENEOHATA. ZNHEIOVETAL OTL ) GTAAN TIOL KATAYPAPEL TO XPOVO avalTnong
OVOPEPETAL 0TIV KTTOAUTI TIHT YL TNV ETIAVOT) VO HELOVWHUEVOL EPWTHHATOC, OXL TO HEGO OPO

eMmiALONG Y €va GUVONO EPAOTIHATWV.

[Mapatnpolpe 6TL T0 cVOTNHA dlatnpei To BewpnTikn eyydnon 6Tt ylx onotodrjmote emninedo
OPOAUATOV KATw attd T0 BaBUd avtypadns (|ngi| < 4) de cupPaivet kapia andleta Sedopévmv
1) EPWTNHATWV. AKOHO KL OTAV TO 25% TwV KOUBWV oITOTUYXAVEL, VA PIKPS TTOCOO0TO TWV EPW-
TNH&TWV TTpéTiel va 1eBovv ek véou (AtydTepo arto 5% ot xelpotepn mepimtwon). Emiong, Aoyw
NG AUTOUATNG ATTOKATAOTHONG TOV AVILYPAP®VY, N AITOAEIX TOV EPWTNHATWY eival pikpr). Ot
emavanpowdnoelg kat ot kaBuoTtepnoelg avEdvouy To HECO XPOVO ATTOKPLONG KATA EVaV TToXPA-
yovta kKovta oto 13. Ot petprioelg Seixvouv emtmAéov 6Tt 0 aplpog Twv avIlypddwv Tapapével

ot1abepdg Kot TOAD KOVTA GTOV ApXLKO, TTAPA TIG AVaXwprOeLs TwV KOUPwV.

0.3.5 Avakepalaioon

To Brown Dwarf eivat éva c0oTNHa TTOL Katavépel éva KUBo dedopévmv 6Toug KOHBOUG VoG
adopntov Siktvov P2P. Avtr eivat pia povadikr mpooéyyton mou Sivet T SuvatodTnTa 0TOLG
Xproteg va Bétovv group-by epwtripata Kat evnpepmoelg oe moAvdiaotata dedopéva online,

xopic ™ xprion kdmotov e€eldikevpévou epyaleiov.

To mpotevdpevo cVOTNH Efval ETTEKTACIHO, dPOV HITOPEl VA XPNOLHOTIOOEL ATTEPLOPLOTO
aplOud ovvepyalopevwy KOpPwv, mapéxet Siabeoipotnta dedopévmwv HEow TG TPOCUAPUOCTIKNG
avTtypadng mov Paciletal 1660 010 GpopTio OGO KAl OTIG A0TOX(EG TWV KOUP®V, armavTd arodo-
TIKG& OTHELOKA KL OLVADPOLOTIKE EPOTHHATA OE TTEPLOPLOUEVO aplOpo PUAT®V Kot TENOG KaTa-

VaA@Vel 00 aImoBnNKeLTIKO XOPO XPeLAieTal X&pn 0TO UNXAVIOUO SIAGTOAG—GUGTOANG.

H metpapatikn anotipnon tov cvothpatog deixvel 0Tt 0 KOPog Twv dedopévmv katavépeToat
dikala avépeoa otouvg cuvepyalopevoug kOpBoug. Téoo ot xpdvol dnuiovpyiag doo Kat oL xpdvol
avalitnong petwvovtal SpaoTikd (ToAEG Ppopég kata Taln peyéBoug) xdpn otnv mapaAnio-
noinon. Emniong, 1o Brown Dwarf avttypadet SnpodiAn KoppaTior TG SOHnG XpnotHOTOLMV TG
HOVO TOTIKEG HETPNOELG KL EAXYLOTOTIOLEL TNV UTTEPPOPTWOT TWV KOUPWV AKOUX KAl G SUVOIHLKE

nepIBaAlovTa.
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Ixnua 14: H apyirektoviky Tov ovoriparo¢ HORAE

0.4 To Xvotnua HORAE

0.4.1 Emiokomnon

210 onpeio avtd napovotdletal n MAatpopua HORAET, 610V epaplolovTal TEXVIKEG oTTO
TOV TOHEN TV KATAVEUNHEVOV CUOTNHATWV KAl TV artodnkov dedopévwv yia Tnv amtobniKev-
on, avalntnon Kot evnpépwaon ToAvdidotatwv Xpovikemv oetpmv. H vlomoinon touv ouvdudlel
Hlot LoxLpr) pnxav 0elkToddTNoNG yiar peydho oyko dedopévmv, TO0O IGTOPLIKOV 600 Kol TIPAY-
HATIKOD XpOVoU, He pia apyltekTovikn shared-nothing mov Siopalilel KApHAKWOIHOTNTO KAl

SaBeotpotnTar oe XapnAé k6otog. H auvelodpopd tou éykettal ota akolovba:

+ TMapovotalet éva ohokAnpwpévo obotnua detktoddTnomnG, enefepyaciog epoTNHATOV KAl
EVIHEPWOTNG TIOAVSIAOTATWY XPOVIKAOV OELPGOV TIOL TIopdryovTal o€ LPnAovg puBpovg. Ba-
oileTal oe pior KATAVEUNHEVT APXLTEKTOVIKT] OTTO UTTOAOYLOTEG TOU EUTTOPIOV, XWPIG VA aTTalL-

Tel TN xprion Katotov e€etdikevpévou epyaeiou.

+ Tlpoteivel TponypéV XAPAKTNPLOTIKE TTOV TOU ENMITPETIOLY VA TIPOCAPHOLEL TH) CUUTIEPL-
Ppop& TOL OTO eloepXOpeVO Ppoptio. Tooo To eminedo TNG AeTMTOEPELNG GTO OTIOIO YiveTal
1 vhomoinorn Tov KVPov 660 Kat To TTANBOG TWV TTOPWV TTOL CUHHETEXOLV peTABAANOVTOL
SuVapIKA Yoo KaAOTEPN amtddoon, PEATIOTN Xprion TOL aIToBNKEVTIKOD XOPOUL Kal avoXH

og oPpAaApaTa.

+ Y)omoteitat kat svykpivetat pe to Hive [TS]T09] 1600 og ouvBeTikd 600 Kal o€ Tpaypati-
K& SeSopéva, amodetkviovTag OTL HEIWVEL ONHAVTIKA TO XpOVO ETTIAVOTG TWV EPWTNHATWV

EV® TIOPEXEL EAAOTIKOTNTA KAl SLABETIUOTNTA AVANOYQA E TIG ATTALTTOELS TNG EPAPHOYTG.

01 Qpeg fTav oL BedTNTES TV EMOXAOV KAl TOV wp&V oTnv ENAnvikn puboloyia
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0.4.2 ZXxediaon

To HORAE eivaut piia OAOKANpwpévn Aot 1o xpnotpomnotel texvoloyieg amobniov dedopié-
V@V KAl KATAVEUNUEVWV CUOTNHATWV YL TNV 0pYAVKOT) Kot avaAvon TToAvdidotatwy Sedopé-
VWV e KAMHOK®OLHO Kat armodoTikd tpomo. Xelpiletat deSopéva xapaktnplopeva amod tn dik-
0TAOT) TOL XPOVOU, TIOL TTapdyovTat e VYNAOUG pLOUOVG Kal ELGEPXOVTOL OTO GUGTNHA XPOVIKA
Tafvopnpéva . Qg otoxol Tov cvoTipatog TibevTal n anodotikr Kat online emefepyaocio Twv
EVIUEPWOEWY TTOL TTAPA&YoVTaL e LYNAO puOUO, N eTIAVOT TWV EPWTNHATOV SLAPOPwV eMUTEd WV
AETITOUEPELOG, 1) KALHOK®OLHOTNTA, 1) AVOXT) 08 CPANUATA KoLt 1) EVKOAa Xpriong.

H apxitektoviki) Tov oLOTARATOG aTtoTeAeiTal amtd dVO CUUITANPWHUATIKA VITOCULOTHHATA
(EZxnpa 14): To T-HORAE, mov amote)el 10 aAAnAemidpaotiko (transactional) koppdt, eivat
vrevBuvo yia v aoBnkevon Kat SelkTodOTNON TWV ELICEPXOUEVOV EVILEPWOEWY, EV® TO H-
HORAE, 10 10t0opik06 (historical) koppdtt, amoBnkevet 1o peydho dyko Twv dedopévmv, Kabwg
avta petadpépovtal and To T-HORAE. H Aoyikn miow amnd avtov 1o Siaxwplopod amoppéel amod
TNV avayKn t00 yla amodotikr) avaivon 600 Kat yio online emeepyacia Twv evnepOOEWY.
Emumhéov, eneidr) otoxevouvpe oe xpovika dedopéva, mepipévoupe (aAAd dev amattodpe) Ot Ta
npoopata Sedopéva Ba avalntovvTal pe peyahlTepn Aemtopépelar ammd OTL T 6TOpIKA. Etol
TopéXOL e €va oVOTNHA e XAANAETTIOPACTIKY) AOYIKT), TTOU OHWG VAOTIOLEL T TTEPLEXOUEVE TOU
aoVYXPOVA HECW EVOG CUGTATIKOD e T AOYIKN piag ammobnkng dedopévwv.

To dedopéva mov xetpiletal To ocvoTNH eival d SlAOTACEWY, He TN SLIOTAOT TOL XPOVOU
va Bewpeital n mpwtedovoa. [ Adyovg amhdtnTag, Bewpovipe 6TL LTApPXEL lepapyia povo oTN
didotaon avtr. QoT600, TO CUOTNHAE Hog pITopel ebKOAa va yevikevBel moTe va vtooTnpilel
lepapxieg oe Oheg Ti¢ Staotdoels. H iepapyia Tov xpdvou exteivetat oe L emineda 4, 0 < ¢ < L—1
He To £ VX avTIOTOLKEL OTO TTLO AeTTOEPEG KL TO /1,1 TNV e1dikr) Ti ALL (x). Opilovpe 0Tl €var
emninedo ¢}, eivat vyNAOTEPA (XAUNAOTEPQ) OTNV Lepap)ia amd To £ kat To oupBoAifovpe £y > ¢
(U, < £;) otav kat povo étav k > 1 (k < 1), m.x. Hour>Second. Ot mhetadeg tng Paong pog Exouv
™ popdn: (tID, Ty, ..., Ty, D1,..., Dg_1,facty,. .., fact), omov Tp,, 0 < i < L — 1 eivain
Tiur Tov £; emummédou Tou xpovov, Dj, 1 < j < d—1n 1 tng didotaong j katfact,, 1 <m <'s
T aplOUNTIKA TTOOG eVOLAPEPOVTOG.

YKOTIOG TOL OULOTHHATOG €ival 1) SeIKTOSOTNOT TWV CLVEXADG ELOEPXOUEV®V EVIHEPWDOEWV
OOTE va eMAVOVTAL EPWTANATA TNG LOPPNG: ¢ = (G, 1, G2, - - -, d—1), OTIOL TO OTOLXEIO G TOL
EPWTHHOTOG UTTOPEL VA TTAPEL TIUT KTTIO OTIOLOdNTIOTE LepapXIKo emtimedo Tov xpdvou Kot Kabe g;
Aappavet orotadnmote Tipr NG StdoTAONG J, CUHTTEPIAXUPBAVOUEVNG KOt TNG ELSIKNG TIHAG *.

O IMivaxag 10 mepiéxet dedopéva oe Tpelg SloTaoel (Time, Customer, Product) Kot pia T0GO-

Tt evlapépovtog (Sales), kabwg emiong kat v tepapyio Tng didotaong Tov xpdvou.

+Anhadn) 1o péytoto moad kabuvotépnong (lag) eivat meploplopévo.
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IMivaxag 10: [Tivakag Sedouévov kar petadedousva yia o oevdpLo Xprions Tov CUTTHUATOG

tepapyio Tiivakog Sedopévwv
TOUL XpOVoL tuplelD Time Customer Product Sales
Hour 1 Hl Ml Sl Cl Pl $10
1 2 H, M, S Cy P, $20
Minute 3 H, Mo So Cy P $30
1 4 H, M, Ss C, P, $40
Second 5 H2 M3 54 Cl P1 $50
Al fy Al fs

f f f f
Al 1 Al 2 Al 3 All 4
i, All Al b AL A b ALAI
M,
Sy _

Exfua 15: O Sevdpixés Soués tov T-HORAE uetd tnv eioaywyy (a) tns npdtys, (b) tne debrepys kat (c)
oAwv TV mAewddwv Tov ITivaka 10

To Ymoovotnua T-HORAE
To vmoototnua T-HORAE eivat vievBuvo yiax tnv amobrkevon kat detktodotnon tTwv eloep-
XOHEVWV TIAELGSwV artd TTOMATIAEG TINYEG, TTapéxovTag eviidpeon pvipn (buffering) avépeoa
0€ OUTEG KAL OTOV KUPLO OYKO TwV LoToplk®wV dedopévav mov puhdooetal oto H-HORAE. Ao-
Y® TOUL &ITAOV UNXOVIOHOU ELCOYWYTG, MITOPEL VOt XELPLOTEL ATTOOOTIKA OUXVEG EVIUEPADTELS, EVR
0 TIPOCOUPUOOTIKOG UNXAVIOUOG OelkToddTNoNG Slacdalilel TNV amOTENEOHATIKT ETTIAVON OAWV

TWV EPOTNHATOV OTIOLOVSHTIOTE EMUTESOVL NEMTOUEPELOG.

To T-HORAE Paoiletat oto HiPPIS, To Katavepnpévo c0OTNHA ylar TNV artobrkevon Kot

avalntnon epapykoav dedopévov oe diktva DHT mov meptypagnke npwtitepa. [Tpoteivovtal
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TOANEG OXeSLAOTIKEG OANAYEG Yia TNV KaAUTEpT Lo ThpLEN Xpovooelpwv: To oxrpo OelkT0do-
ong divel TeplocoTepn onpacia 0T SIEGTACT TOL XPOVOU, WOTE Vo SLEUKOADVEL YPTYOPES EVI)-
HEPWOELG, VR 1 ecwTepIKT) Sopr) ammoBnkevong Twv Sedopévwv poodépet peyahvtepn avefop-
ol Kot gvehi€ia yla armoTeAeopATIKY) TIpOoaproYr oTa Stapopa dpoptic. Ot Aettovpyieg TOL
T-HORAE meptypagovtot AETTOHEP®G TIOPAKATE.

Ewoaywyn/Eviuépwon Aeopévwv

Koatd tnv apxikn etoaywnyn Twv dedopévav 1 katd Ty Adiln opadwy and evHepwoels, KaAe(-
TaL N vnnpeoia Data Upload. H deiktodotnon avalapPdvetal and Tnv apxIteKToVIKY Hovada
(module) T-Indexing: To ID kaBe mAeiddag mpog eloaywyr) eival To ATTOTENECHA TNG EGAPUOYNS
NG CLVAPTNONG KATAKEPHATIOHOV 0TV Tipn Ty, H emloyn avtr) avtikatontpilet Tnv unmdOeon
OTL 0 XpOVog eival ) onuavtikotepn Sikotaon (MopOdV TNV TAEOVOTNTA TWV EPWTNHATWY) Kal
OTL T EPWTHHATA TTOL aPpopolV TTPOTPaTa YeYovoTa (avTd SnAadh) oL GUAAGOOVTAL KATE KU-
plo Aoyo oto T-HORAE) avalnroovtat otnv peyaittepn Aentopépeta. To DHT avabétel kdBe
TIAELAS A OTOV AVTIGTOLKO KOWPo.

Ot mhelddeg amoBnkevovtal ecwteptka oe kKabe kOpPo pe tn popdpn Sevdpikav Sopav. Ka-
Be tétolr Soun f xapaktnpiletar and 1o pivot Py, 10 omoio opiel To eminmedo deikTodOTNONG
Kal ptopel va eivat omotodnmote amnd Ta enineda g lepapxiag Tou XpOVoOU EKTOG ATTO TO *, Yl
Aoyoug e€looppomnong touv ¢poptou (load balancing). H tipr otnv omnoia avtiotoiykei to Py ovo-
udletan pivot value Ty. Zro T-HORAE, kd&0e devopixr) dopry f umopei va emavadeikrodotel Ta
Sedopéva tng oe dapopetikd eminedo ave€dptnTa and Tig AANeS, SNOLPYAOVTAG KALVOUPLEG
Sevdpikég Sopég pe Stapopetika Pr. Avtr) n) Stadikaoia e€nyeital AemTopepmg 0T CUVEXEL.

Ta 16 evnpepwoelg, Oa mpémel va avakalvdpBei oe rota Sevdpikn doun Ba emovvaBei n ka-
Bepia doTe v oupepAnOel oe peAovTikd epwTripata. Avtd pHeTadpaletal oTnv eVpeot) TG
devdpikng Sopng e Kotvo povomaTt amd T pila péxpl To pivot TnG Kat emTuyXaveTal pe StadoxL-
KEG avalnTroelg EeKvavVTag artd To TILo AeMTOHEPEG eTTieS0 0TO AlyOTEPO, HEXPL VO arvaKaALPOeL
TO TIPWTO Koo ototyeio. Av Oe Ppedei kavéva, TdTe dnpiovpyeital véa Sevpikr) doprn pe 1o £y g
pivot. H Stadikaoia kootiet O(L log n) pnvipata. AapBavoviag vmoyty 6tt o aplBuog twv emt-
nédwv NG Lepapxiog Tov Xpovou eivat ouVHBwG TTEPLOPIOUEVOC KL OTL EPOTHUATA YIA TTPOOHATA
dedopéva Teivouv va eival TILO AeTTTOpEPT), HITOPOVE Vo LTTOBECGOUE e aoPpANela OTL TO KOGTOG
efvat kovta oe pia anhn ewoaywyn oe DHT. To Zxrpa 15 deixvel éva mapdadetypo eloaywyng
dedopévav xpnotpomotovrag Tov IMivaka 10.

Avalitnon Aedopévawv

Epotipata mov apopovv 1o Py piag devopikng dopng f pimopovv va amavtndoty o AoyapiBui-
KO aptOpo Prpdtwv. Epotipata yo tipég Tov xpovou mou Sev eivat Seiktodotnuéveg Se piropovv
va anavtnBolvv mapd pévo av tpowdndoivv oe 6o 1o dikTvo. Me ToV TPOTIO AUTO AVAKAADTITO-
vTot OAot ot KOpPoL TTov £XouV TIAELASEG TTOL AVIIKOUV O TNV AITAVTNGOT, Ol OTIOIEG ETIOTPEPOVTAL

oTov KOpPo 1oL éBeoe TO EpOTNHA Yl TNV TeAKT) cuvdBpoton.
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OewpWOVTAG TNV APXIKN KATAOTAOT ToL Zxnpatog 15, 1o epwtnua (S1, C1, P2) mpowei-
TaL 0Tov KOpPo Tov eivat vevBuvog Yl To Sp Kat akohovBavTag Tig ouvdéoelg attribute pog
attribute, n tipn $20 enotpéperar. Otav 1o epwtnua eivat to (Hy, *, Pa), T0o 000TNHA avaKa\D-
nitel 0Tt o Hy Oev eivat Setktodotnpévo. Etot 1o epwtnpa mAnppupilet To SikTuo Kat ot Koppot
TIOUL TIEPLEXOLV TIG QOMEC f1, fo Kat f3 amavTovy, fe Tov apxtko KOpPo va kdvetl Tnv mpocbeon

Kat va katohnyet otny T $90.

Enavadeikrodornon

H povéda T-Workload Monitor tov T-HORAE eAéyxel Tnv Tpéxovoa T&om TOL popTiov TwV epw-
TNHATOV SIATNPOVTAG TOTIKAE OTATIOTIKA Yia Tr) Snpodihia kdbe emiéSou Tng LepapXiag Tov Xpo-
vou avd Sevipikn Sour). Av Ta ep@TAHATA TTOL apopolV 0TO TLo SNHOPIAEG eTtinedo Tov f, fmax,
vrtepPaivovy avtd ov apopolyv To Py katd threshold, Tote o k6puPog e€etdlel To evexopevo

avaSlopy&vwong Twv SEIKTOV TOU He PAON TO max.

AV lmax < Py, 16Te 0 KOpBog 1ov pLAodevel To f pmopel va épel autédvoua amoPpacn yia
emavadeiktodotnomn, kabng diabétel Oha Tar Sedopéva Kat Ta avTIOTOLXX OTATIOTIKA TWV UTTO-
Sév8pwv tou f otn didotaon Tov xpdvou. To T-Indexing elodyel ek VEOL ONEG TIG TTIAEL&GSEG TOV
f obppwva pe 1o Katvovplo pivot, T0 mayx. H Stadikacia avtr xwpilet To apyikod §évEpo kot 8n-
HlovpYeL TOoEG Katvoupleg devpiiég dopég 6oeg eivatl Kal oL SLpOpPETIKEG TIHES TOU £max TIOL

avrkouv oto f, Tig omoieg Siaxpotpalet oto Siktvo.

2ty avtifetn mepintwon, o kOpPog Sev eival o Béon va dpet LOVOG TOL TNV ATTOPAOT), Kot-
B¢ n T Tov Ty, vmapxet Kot o dANeg SevEpikég Sopég. Eva prvopa SendStats onpatodotel

TNV AITOGTOAT OTATIOTIK®V AT OAOLG TOVG KOUPOUG TToL TiepLéxouv Ty Tipn 1, . 0TIG OevOpIKEG

max
Sopég Toug. MeTd 1) GLANOYT) TWV CTATIOTIKAOV, 0 KOUPoG Tov ekivnoe Tn Stadikaoia eréyyel
av e€akolovBei va toxVel n ovvOnKn TTOL {OXVE TOTIKA. Le QUTH TNV TEPIMTWOT), €V UIVUHA
Reindex ammooTéNAeTaL G OAOVG TOUG KOUPOUG IOV AITAVTNONY e OTATIOTIKG, [e ATOTENECHO VX

ovyxwvevBolv ol epmAekdpeveg OevOpLKEG OOLEG O€ Hix, He TO fmax WG pivot.

Y10 mapddetypd pag, av 1o fi mapatnpnoet 61t to Hi AapPdvel meploocotepa epmTHHATA
art6 10 S Kol To OTATIOTIKA TV KOHPwV TToL Pprhofevolv To fa Kat To f3 emiPefatwvouy Ta To-
TIKG eVprpaTa, TOTE N eMavadelkToddTNoN epappoleTal o€ GAOVG TOUG EUTIAEKOHEVOUG KOHBOUG
(Zxnpo 16). Av KaTTolx OTLYHR TX OTATIOTIKG TOU f5 Oeiouv OTL TO Minute €ival TO L0 SNHOPIAEG
emninedo, o KOpPPoG propei HoOVog Tou va arodpaocioet va petakivnBei oto emninedo avtd (Exripa
17). Tia va Stacopoakiotei  opOITNTA TwV AEITOVPYLOV TOL CLOTARATOC Kot va atodevxBovv Tav-
1oXpoveG eMavadelkTod0THOELS, éva pufvupa Lock TAnppvpilet To SikTLOo yia va onpatodoTioet

oTL 8¢ prmopel va yivel dAAn emavadelktodoTnon.

Metapopd AeSopévewy

Kotd 11 StdipKela TG AeLTOUPYiag TOL CUOTHHATOG, Yl T1 SLEUKOAUVOT) HLG TTLO LOXUPNG XVAAL-

ong, éva pépog Twv dedopévav mmov puidooovtatl 6to T-HORAE petapépovial meplodikd oo
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Exfua 16: H karavour; towv dedouévowv yetd and emavadeikrodoryon oro Hy
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Yxnua 17: H katavour twv Sedouévewy petd and enavadeikrodornon oro My

H-HORAE péow g povadag Offload. H povada avtr puBuilet Suvapikd tn ouxvotnta Kat 1o
Héyebog Twv dedopévwy mou petadépovtat oto H-HORAE.

Néa yeyovota mpog kataypadr katadpBavouy actyxpova Kat lavov amd StadpopeTikég
ninyés. To T-HORAE xelpiCetal Tig evnpepmoelg autég avd opadeg (T1.x. ava Aento). Opilovpe g
kaBvatépnon (lag) To PéYIOTO XpOVO AVANETH GTO TILO TTIPOCPATO KAL TO TTL0 TIaALd deSopévo mov
avrkel 670 idlo ohVolo TTpog eloarywyr). ITpoKelTal ylor i ONUAVTIKY THpAUETPO, KAOmGS oxeTi-
Cetan pe 1o péyeBog tng evdigpeong pviung (buffer) mov amauteitar amd 1o T-HORAE oote ta
petapepdpeva dedopéva va LTTOGTOVY CWOTH enefepyaaio ATTO TNV TTLO AVOTNPT) pHovAada detkTo-
dotnong tov H-HORAE. Meydeg Tipég kabuotépnong avaykalovv 1o T-HORAE va mepipiével
TIEPLooATEPO TIPLV peTadépel To dedopéva TOU, VR HIKPEG TIHEG HITOPODV VA TTUPOSOTHOOUV I
o emBeTiky) oTpatnyKr. TéNog, Yl va KpatnBet oxetikd otabepd to péyebog Twv dedopévwv
oto T-HORAE, ot mAetadeg mpémel va avaxwpovy artd To UITOOVOTNHA He pLOHO avaloyo Tov
puOpoU el06dov. Etol, GANN pia mapapetpog mou ennpedlel T Stadikaoio tng petadopdg eivat
0 pLBUOG EVNUEPOTEWY Aypq.

Enidéyoupe va kakeitat n Stadikaoio meplodikd, kabe Tog XpOVIKO SIAOTNHA, EVE 0 aKkpLPrG
Saxwptopog Twv Sedopévwv peTal Twv vmoovoTNUATWY Kabopiletat artd TV TapAUeTPO Wiem:

Mia tipr) Wiem = 1 h onpaivet 61t to T-HORAE amoOnkevel Aetddeg pe xpovooppayideg tng
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Exnua 18: O mArpys kpog H-HORAE yua ta Sedopéva tov Iivaxa 10

televtaiog wpag. To cVOTNUA pog TTpooappdlet Suvapikd TG VO TAPAHETPOLS AVANOY e TIG
e€ng oxeoel: Tog = Coff - max{i7 lag} kot Wyem = Crem - max{%Pd7 lag}, 61OV Crem > Cog > 1.

To Ymoovotnua H-HORAE
To H-HORAE amoBnkevel to peydho 6yko twv dedopévmv kabang avtd petadépovtal anod to
T-HORAE. Opyavovel th 8eikto0dTNn o™ ToL KUPOU e TETOLO TPOTIO MOTE VA EAXXIOTOTIOLOVVTAL
1600 T0 KOOTOG OGO KAL 0 XPOVOG TV EVIHEPWTEWYV, EV® 1) TIPOCAPHOOTIKT HEBoS0g LAoTIOINONG
mtov vioBetel cuvoyilel Ta deSopéva avdoya pe T Hopdr TOL GopTiov epwTNUAT®Y. TéNOG,
otnpiletal og fia oTPATNYIKN avVTLlypadng Tov Aappdvel LITOYLY To GPopTo, dlacpaiilovtag T
daBeoipoTnTar KAl TNV EAACTIKOTNTA TOL CLOTHHATOG He Slapavr) TpOTO.

O oxedlaopndg tov Paciletal 6o Brown Dwarf, Tov, 6TIwG TEPLYpAPNKe G TIPONYOVHEVN
EVOTNTA, KATOVENEL o aTOOOTIKT) KEVTPIKT dopr} KUPov 0edopévwv aTOLG KOHBOUG £VOG ado-
untov Siktvov P2P. To H-HORAE «kdvet ti¢ anapaitnteg adlayég otn Sopr) Brown Dwarf oote
va SaxetpiCetal xpovikd dedopéva. Opyavwvovtag tr dopr) detktod6TNoNG KUPIKG CUHPWVA e
N SLAGTACT TOL XPOVOU, ELVOEL TIG GUXVEG EVIHEPAOOELG KAL TNV TIPOCKPUOYT| 0TI TATELG TOV
poptiov. ITpokertat ylo véa xapaktnptoTika mov divouvv 11 duvatdtnta 6to H-HORAE va g€l1-
0oppoTIEl TO KEPOOG TOU ava e oe artoOnKeLTIKO XMPOo Kat akpifeta pe puOulopevo tpdro.

Ewoaywyn Aedopuévawv

Q¢ eloaywyn Bewpeitat n apxikn Snpovpyic Tov KOPBOL XPNOIHOTIOIWVTAG T LOTOPLKA Sedopé-
va Tov taperfdvTog. Avtrv TNV arootolr) avalapPavel n povada H-Indexing. H Sikotaon tov
Xpovou emAéyetal TpwTn 01N oelpd PpBivovtog MAnBapiBpov Twv Staotdoewyv. Ot TAel&deg LPi-
otavtal enefepyacia pia mpog pia, oOpPwvVA He To TiIo AeTtTopepég eminedo . MOAG ONeg ot
TIHEG TOL £ TIOL aviKoLV oTNV (Sta TLpr) Tov ¢1 €xouv utoPAnBei oe emelepyacia, o alydpiBpog
dnuiovpyei éva ouvabpoloTikd keli yio ) ovykekpipévn tipr Tou £1. H iSiax Siadikaoia akoAov-
Beitat yia OMa T L emimeda tng tepapxiog.

o mapaderypa, 6tav ewodyetal n Tpitn mietada tou IMivaka 10, To oboTpa cuveldnTorolei
OTL O)eg ot AeldSeg Tov avrkouvy oto My éxouv eloaxOel, ondte Snpovpyei éva cuVaBpoloTIKO
kel Kat Tov avtioTot o uro-kUPBo yiax 1o M;. Opoiwg, pe tn Ajyn tng televtaiog mieddag, To

ovotnpa dnuiovpyei Tov LITo-KVPo Tov Y]. O Tehkog ypdpog paivetat oto Zxfpa 18. Ailet va



0.4. To Zvotnua HORAE 43

onpelwdei 611 To LYNAOTEPO eminedo cuvaBpotong kabopiletat ammd To LYNAOTEPO eminedo TG
lepapyiog kat 6Tt 8ev vtdpxet KeAi ALL yia tnv tepapyio Tov xpovou.

Avalitnon Aedopévawv

To epoTAHATA ATTAVTOVTOL AKOAOVODVTOG TO HOVOTIATL TOUG KATA KOG TOU CUOTHHATOG OTOL-
xelo mpog otouyeio. Evag koppog mov Eexiva éva epotnua g = (Gt, q1 - - - ¢4—1), T0 Tpowdei otov
KOHPo-pila NG katavepunuévng Sopng. Av 1o g; avrikel oto eninedo £y, TOTE TO epOTNHA 00N-
yeitat oToV emopevo KOpPo Tov mpémel va eniokepOei. H Stadikaoia emavodappaveral éwg dtouv
Bpebei n amdvinon. Enetdn yerrovikoi KOpPoL 0Tnv KATavepnéVn SO QVKOUV Ge YEITOVIKOUG
KOpPOLG 0TO SIKTLO EMIKAALYNG, OTIOLOONHTTIOTE GNHELAKO 1) OLVADPOLOTIKS EPAOTNHA ETTAVETAL TO
ToAV péoa oe d Pripata. To idlo woxvet kat dtav 1o ¢ avriket oe eninedo didpopo tov £y, apkei
va UTTdpxeL 1 ouvabpoloTik TIHN Tov ev Aoyw emumédov. Av 1) tiur avtr Sev éxet SnuiovpynOei
aKOUA, TO APIKO EPWTNHA TIPETTEL VA AVTIKATAGTADEL AT TTOMATIAK EPWTHHATA XAUNAOTEPOU
tepapytkov emuédov. H Swadikaoia avalntnong evopxnotpaovetat and tn povada Query Xform,
HéOw TNG oTroiag TTepvoly OAa Tar epwTApATA TTOL apopovy To H-HORAE.

1o mopa&detypd pog, eva epatnpa yato (My, ALL, P1) axolovBei to povonatt (1)—(6)—(7)
Kat enotpédet $10, eve 1o (M3, Cy, Pr1) petadppdletat 1o (Sy, C1, Py), T0 onoio adov emnioke-
¢Oei Toug kKOpPoug (1), (13) kot (14) ptdvel oty amdvnon $50.

Evnuépwon Aedouévov

H Sadikaoio TnG evnuépwong petadpaletal otTnv eloaywyr Kavouplov MAedSwv oTnV LITp-
xovoa Sopn (read-only 8eSopéva). Aev eival Suvatr epappoyr Talaidv evnpepwoeny 6To H-
HORAE. Avt6 Siaodpalietat amd to pnxaviopo petapopds dedopévwv tov T-HORAE, 10 omoio
OULYKEVTPWVEL OOVOAA TIAELAO WV, HECTH GTA OTTOIN OL EVI|UEPKDTELG TAEVOHOVVTAL TIPLY EVOWHATW-
Bovv otnv vAomownpévn dour tov H-HORAE.

AxolovBmvTag SIKTUAKEG GUVEETELG, AVAKXADTITETOL TO HEYAAVTEPO KOLVO TTpODepa TG KaL-
VoUpLaG TIAELASOG [LE TIG UTTAPXOVOEG TOL CUGTHIATOG KAL OL UTTOKEIHEVOL KO[BOL EVIHEP@VOVTOL
avadpopika. Onwg cupPaivel Kal 0Tny eloaywyT, ot TAeLESeG EL0AYOVTAL Ap)LK& OTO TILO AETITO-
Hepég emimedo £y Kat otadtakd Snpovpyodvial Ta cuVABPOIoTIKA KEALK TNG SOuN.

‘Eva onpavtiko mieovéktnpoa tov H-HORAE ovykpitikd pe 1o Brown Dwarf eival 6Tt pelovel
ONHAVTIKA TO KOOTOG TWV EVIHEPWOEWV AOYW TNG ELCAYWYNG TWV TTAELASWV UE XPOVIKT OELPK, O€
ovvduaopo pe TNy arovsia kehlov ALL oty nipotn Sicotaot. H xpovikn oetpd Staodpakifet 6T
10 TTp®TO TMEdio TNG Katvovplag TAeladag eite Ba Onpovpyroetl véo kel otov kOpPo-pila eite Oa
ovpITéoel pe To Tehevtaio Tou KeAi (Sev emnpedletal kavéva cuvabpoloTiko kel yia n Sidotaon
TOU XpOVOU).

H a¢pi&n g miewadag (Ha, M3, S5, Ca, P1,$60) 010 map&deryud pag dnovpyei éva katvov-
plo kel atov KOpPo (1) yia 1o S5 kat Svo véoug kOpPoug dwarf yia Tig evartopeivaoeg TIHEG, EVD
oL urtoA ool KOpPoL pévouy avennpéaotol. Avtifétwg, otnv avbevtikni Sopun Dwarf B mpoaoTe-

MaCovtav 12 kopPot.
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Yxqua 19: Ydomoinoy ue fdon o xpévo oto H-HORAE

Tpooappootixyy Yomoinon

To mpotelvépevo cVOTNHA, OTIWG TTEPLYPAPNKE TTAPATIAV®, AKOAOVOEL [l OTATIKN OTPATNYIKN
yta TV vAomoinon: Mia roll-up 6yn otnv tepapyia Tov xpovou Snuiovpyeital HOAG Ta aTtat-
Tovpeva dedopéva eivat Stabéoipa, xwpis va kataotpédpovtal ot drill-down oyelg. Avt’ avtrg,

Hitopovv va vioBetnBovV TILO TTPOCAPUOCTIKEG TIPOCEYYIOEL.

YAomoinon pe Baon To xpovo Xe epappoyEs anodnkwv 0edopévmy Tov apopolV XpOVOTEeLpE,
ovXVa T Tpoapata dedopéva avalntovvtal o€ HeYaADTEPT AETTTOHEPELX ATTO OTL T LOTO-
pkd. Me To OKEMTIKO aUTO, Onpiovpyeital pia péBodog vAomoinong omouv pia Stepyaocio
daemon dnuiovpyei eptodikd roll-up oyelg kat Sixypddet TG avtiotorxeg drill-down. H
niepiodog ¢ Stadikaciag avtng emAEyeTal AXUPAVOVTUG LITTOYLY TAX XAPAKTNPLOTIKA TNG
epappoyne. Etol, n vhomoinon akolovbei otadiaka tn roll-up Stadpopr), 6mwg dpaivetal

oTo Zxnpa 19.

Ta xpovikd opta mépa amd ta omoia dnpovpyovvtal roll-up oyelg kot orjvovrtat ot drill-
down opifovtat wg (Ty,, Ty, - .. Ty _ ). AUTO TIPAKTIKE ONHALVEL OTL YLOL TIG EYYPADEG TTOV
BplokovtalamoOnkevpéveg 0To CLOTNHA YIX TTEPLETOTEPO aTTO 1), TO COOTNUA KATAOKEVE-

Cet kat Statnpel povo tn ouvvabpoloTikr dYn 1oL avrKel 6TO 4;.

YAomoinon pe Baony To gpoprio Avihoya e Tnv epappoym, dev avalntovvtat Ola Ta dedopéva
o710 010 eminedo Aentopépetag. O KOpPog-pila Siatnpel OTATIOTIKA Yl TO GpopTio K&OEe eTi-
néSou AemTopépelag péow TG povadag H-Workload Monitor, eve 1 povada Materialization
Decision dnpiovpyei acOyxpova cuvaBpoloTikég OYel yio Snpodileis Tipég Kat Staxypdidet
ovelg ov dev mpoomerdlovTtat cuxva. To cUVONO TwV opiwv TOL PpopTiov AV ATTd TO
oroio dnptovpyeital pia roll-up 6yn Kat 1o cUVOAO TwV opiwV K&Tw atd To omoio Siaxypd-
¢etal pua drill-down éyn opifovtat wg (I'Mat,,, TMaty,, ..., TMat,, ) kot (T'Dely,,
TDely,, ..., TDel;, ,)avtiotoxa kat Ti@evTat avaloyoa pe TIG avayKeg TNG epaproynig.

2NV TepInT®aTn TNG TPOOAPHOOTIKNAG LAOTIOINONG, UITAPXEL éva avTIOTADIoNa avipeoa 0To

HéyeBog Kot TNV MOAVTTAOKOTNTA TOL KUBOV, oL emnpedlel TOUG XpOVOUG aItOKPLOTG AANK Katt
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v akpiPeta Twv amotedeopatwy. H meptodikr dnpovpyia kat Siorypadr) oOYewv ormd tn pio KA-
VEL OlKOVOUia o€ aIToBNKEVTIKO XOPO, ATTO TNV AAAN ETILPEPEL LEYANO ETKOVWVIAKO KOGTOG KAl
XAUNAN aKpiPela AITOTEAECUATWY OTAV TA EPWTHHATA OV AKOAOLBODV TNV AVAUEVOUEVT] KATA-
vopr). Emuméov, n Staypadn oyenv pmopei va odnyroet oe pn avaoTpéyipn anmlela dedope-
VWV, He aITOTENEOHN AeTITOHEPT EpLTHHATA Yia dedopéva TTov eival LAoTIONHEVA O€ TILO LYN-
A& entimeda g tepapyiog va prropotv va amtavtnBoov povo mpooeyyloTikd (pe pebddoug omwg
ot [DGR07, Gar06, GKMS03] kAr.).
Avtiypadn

H avtiypadn eivat évag onpavtikdg Hnxaviopog yia TnVv emitevuén KALHAK®Ot NG artodoong, 10iwg
UTto peydho ¢popto, Kat avoxrg oe apalpata. To HORAE mapéxet Suvatotnta avItypadng Kat
ota dvo Tov vtoovothpata. Xto T-HORAE, n avtiypadn avalapfdverat amnd 10 vGLOTAPEVO
DHT, evey to H-HORAE vio0etei pua pébodo avtiypadng mov mpooappdletat téoo otny mo-
Awon Tov popTiov 6CO KAl GTNV KIVNTIKOTNTA TwV KOUPwv. Ot kKopBot eEéyxouv meplodikd Toug
YeiToveg Toug Kot avTikabloTovv Ta avTiypada mov prthofevoiviav oe KOHPOUG TOL KGTOXN oAV,
datnpwvtag 1o Pabud mieovaopot Twv dedopévey dve and k. Emutiéov, emontebovtag to
eloepyopevo ¢poptio avé dwarf node, To H-HORAE 8npovpyei enumhéov avtiypaga veppop-
TOHEVWV KOPPwV Kot Slaypadel KOUPOUG He HIKPO GOPTO HECW TOVL UNXAVIOHOD TNG SlaaToARG

(expansion) xat cvoTOANG (shrink).

0.4.3 Ileipapatikn Amotipnon

To ocvotnua HORAE éxet vhomonBei kat amotiunOel mMelpapatikd oe €va TIPAYHATIKO OU-
otnua 16 kopfwv (Quad Core @ 2.0 GHz, 4GB RAM). To Hive [TSJT09] (version 0.5.0) éxet
eykataotadei 070 (810 cUOTNHX SOKIHAOV Y dpeon oVykplon: 15 kopPol-epyateg (pe 2 Mappers
Kot 2 Reducers xpnowonowwvtag 512 MB RAM o kabévag) kat éva pnxdvnua oto poAo Tov
HDES, MapReduce kat HBase master. [la dikain obykpiomn, de XprnoLpomoLeital avtlypadr oTo
HDES.

Xpnotponolwvtag Tov yevvtopa Tov APB-1 benchmark [apb] maprixfnoav tpioa sOvola Se-
dopévav pe 4 diaotdoelg (A, B kat C pe mukvotnteg 0.1, 0.2 kat 0.3 avtioTorka) Kat mAnBapiBpouvg
24,9000, 900 kot 9. H tepapyio Tov xpovou amoteleital amtd Ta emimeda Month<<Quarter<Year Kol
KaAUTTeL TNV epiodo amd Tov lavovapto tov 1995 péxpt tov Iovvio Tov 1996. Emiong xpnotpo-
ToLoLVTAL TTPAYHATIKG deSopEVa aTtd TO TIPOYPAUUA ATTOTIHNONG TN aviXVeuong eloBoAwy Tov
DARPA (Intrusion Detection Evaluation Program) [dar98]. ITepthapBévet 1.1 ekatoppoplo ey-
YPadEG, Tov cuveléynoav oe pia mepiodo 6 efSopddwv kat opyavavovtatl oe 7 Siaotdoelg. H
lepapyio Tov xpovou eivat 1 €€ng: Second<Minute<Hour<Day.

To metpapata Sie€ixOnoay pe Tn oTatikn oA Kat TNV TpooappooTikr ékdoor tov H-HORAE.

2Ny mpwTn MEPIMTWOoN, TNV oTola AVAPEPOUAOTE OTA TEIPAUATA HE TO AVAYVWPLOTIKO Hp, 1
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Ixnua 20: H katavoun twv dedopuévwv tov DARPA w¢ mipog To xpovo oto cborypua HORAE

IMivakag 11: Metprioews yia mpayparicd dedouéva kaw Sedouéva benchmark

Katavopn epwT.(%)  Xpovog/epat.(ms)  pécog Xpovog/epmt.(ms)

Oedopéva  #mhewadwv T H T H;y Hag Hy Hyg,
APB-A 1.2M 10 90 502 14 17 56 56
APB-B 2.5M 9 91 510 17 18 59 60
APB-C 3.7M 9 91 514 20 24 62 64
DARPA 3.0M 62 38 607 52 87 357 374

vlomoinon yivetal cUyxpova yiax Oha Ta tepapytka emineda. X1 devtepn mepintwon, mapadé-
Toupe TElpapaTa yix TN péBodo vAomoinong mov Paciletal oTo Ppoptio (Hyg,).

Toa epwtipata mov apopovv Ta dedopéva tov APB mapdyovtal amd Tov yevviitopa Tou
benchmark. Avtd ov apopotv ta dedopéva tov DARPA dnpovpyotvtat g e€ng: IMpwta emt-
Aéyetau pio mAedda oVppwva pe Tny Katavopr Zipf pe 8 = 1, mov evvoel Ta 1m0 TPdTPATA
dedopéva. Emelta, to eminedo ng tepapyiog Tov xpovou emhéyetal pe TNV St ToAwpéVn Kato-

voun. Etot, ta mpdopata Sedopéva avalnrovvial oe peyaADTEPN AETTOHEPELQL.

Metd Vv eloaywyn tov npwtwv 100K mieiddwv oto T-HORAE, apyilovv va tibevtal epow-
EPWTNHOT
sec

TuaTa pe Ay = 100 . Tavtoxpova, mhelddeg ovvexilovv va elodyovTal 6To cVOTNHA
obpdwva pe TIg Xpovoodpayideg Tovg. O pubudg dev eivat otabepds, alAd mepthapPdvel Kat
e€apoelg. To Zxrpa 20 mapovotalet To péyefog Twv amodnkevpévanv 8eSopéVwV wg TTPOG TO XPO-
vo, 1600 010 T-HORAE 600 kot cto H-HORAE, yix T dedopéva tov DARPA. Av Kat T0 Ay
petaaretat oto xpdvo, to T-HORAE Siatnpei oxedov otabepd péyeBog Sedopévwv x&pn otnv
nipocappoy Tov Ty Kat ToU Wiem. Ocov agpopd 1o H-HORAE, 1o péye8d6 tov avfavertat ka-
Bwg petadépovtal mheladeg meplodika amnd 1o T-HORAE, pe tnv av€non va eivat opoldtepn ylo
10 Hyy,.

O mivakoag 11 epiéxet HeTPrioeLg ToL apopovy oy avalntnon. Katapyxdag, onpeiwvoupe Tnv
KATAVOUN TV EPOTNHATWV avapeca ota 0o vrtocvothpata. [t To DARPA, ieploodtepo amd

10 60% TV epwTNUaTEV Katevdbvovtat 6to T-HORAE, agpot 10 poptio mov dnpiovpyndnke
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evvoel Ta mpdoPata dedopéva. [a Tnv mepintwon tov APB, o6mmov dev €xouvpe Kavévay éeyyo
ota $poptiat TOL TTAPAXONKAV ATIO TO YEVVATOP, 1) TIAELOVOTNTA TV EPWTNHATWY EMADOVTAL
anté to H-HORAE. Qotoco mapatnpeitat 61t Xedov 10 99% Twv epoTnHATOV 6TOXEDOLY GTO
TII0 AeTTOpEPEG eMiTieSo TNG lepapxiog TOL XPOVOU, OTIOTE 1) ETIAVCT] TOUG YIVETAL YPNYOopOTEP
a6 autrv Tov DARPA. Eve 1o T-HORAE eivat ev yéver o apyd ané to H-HORAE, n Siapopd
KOAUTITETAL OTTO TNV EVOWUATMOOT) TwV LITOCLOTNHETWV. EumAéov, kaBng Ta Vo vtocvoTrpa-
Ta AELTOLPYOUV TV TOXPOVQ, ETTLYXAVETAL TTApaAAnAoTtoinon oL “KpvPel” AKOUA TTEPLOTOTEPO
v enmPpadvvon tov T-HORAE. To Hive eivat té€eig peyéboug o apyd otny emilvon epwtn-

HATWV, He Xpovo attokptong 20 sec Kata pHéco 6po.

0.4.4 Avakepalaioon

IMeptypdpnke 1o HORAE, éva ovotnpa ammobrikng 0edopévwV avenTUYHEVO OF [ apyLTe-
ktovikr) shared-nothing kat etdik& oxediaopévo kote va xetpiletat Xpovikd Sedopéva Tov mapd-
yovtat pe vynAo puOpo. To HORAE cuvSudalel TNV ToX0TNTA KAL TV EVLPWOTIO EVOG OTPWHATOG
DHT, mou xpnotponoteitat yiax tnv anodotikr eneepyacia evnpephoemwy, pue T dvvapn pag
Sopng kKOPouv Sedopévmv, katavepnpévng oe adopnto Siktvo P2P, mov xpnotpomoteital yia 1o
XELPLOpHO oLVADPOLOTIKOV epOTNHATWY. Ta TTAeoVeKTAHATA TOL Tiephapfdvouy vynhovg pub-
Hovg e€uminpétnong, online evnuep®OELG KAt EPOTHHATA, EAACTIKOTNTA TWV TTOPWV AVANOYQ HE
™ {Atnomn Kat onpavTiko képdog oe amoBnKevTIKO X@pPOo Kal o€ xpdvo amokpiong. H melpapatikn
artotipnon tov HORAE oe mpaypatikd 8iktvo vmoloylotav deixvel 0Tt gival TTio ypriyopo oo
10 Hive oe omotodnmote ouvdvaoud onpelakamv kot cuvabpoloTikwv dedopévwy, ue oLyKpiol-
HoUG XpOvoug evnpepwoewy. EmmAéov, To HORAE emitpémnel mpooapooTIKY) EKXOPNOT) TTOPWY
avaAoya pe TIG ATTAUTHOELG TNG EPAPUOYTG, LAOTIOINOT TTov e€apTaTal amnd To $poptio, lcoppo-
TIOVTAG AVAHESH GTO ATTOONKEVTIKO KEPSOG Kot 0TV AKpIPELa KAt aAVOXT) 0€ ONHAVTIKO TTOGOGTH

OPAAUAT®V.

0.5 ZXvpmépaocpa

Ztnv emoxn NG €kpnéng twv dedopévav, 6mov oxeddv kdbe evépyela KataypapeTal o€ ap-
Xela, 1 ovéyKn va SLaXeLpLOTOVHE aUTH THV TEPACTLO TTOCOTNTA TTANpOPopiag, va e€dyoupe atd
QUTAV XPHOLUA CUUTTEPACHATA KAL VO TNV EKUETAAAEVTOVE YL TNV AVIXVELOT TROEWYV, TNV KATO-
VON o™ GALVOUEVKV KoL CUUTTEPLPOPRV, TNV TTPOPAEYT HEAAOVTIKOV YEYOVOT®V KAl €V KATAKAEISL
™ AN armopacewv Pactopévmy oe adldoeloTa ool elor EIVAL TTLO ETUTAKTIKY oTtd TToTE. Ol amat-
THOELG TNG ONHEPLVAG ETTOXNG ETUTACOOLY TNV DTTAPEN EVOG CUOTHHATOG ATTOPACENDY TIPAYUATL-
KoL xpdvouv, mov Ba ipoodépel ipdoPaon oe peyaho dyko dedopévav Kat O eumnpetel Tayeig

PLOLOVG EPpOTAOEWV XWPIG OTIOLAONTTOTE EMMTWOT GTO XPOVO ATTOKPLOTG.
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Meéxpt orjpepa, T cUHPATIKG epyaleia avilvong dedopévmy elvat KEVTPLKE Kot TapdAo TTov
ATV TOOV AITOSOTIKA TTOAVTTAOKA EPWTHHATA O€ HEYAAO OYKO LOTOPIKOV dedopévmv, amoTuyxd-
VOLV Vot KOADPOULV TIG OMOEVA ALEAVOHEVES aVAYKES Yia aTOBNKEVTIKO XWPO KAl eMECEPYAOTIKN
Lo 0. TexviKéG aItd TNV MEPLOXT) TWV KATAVEUNHEV®V CUOTNHATWY TTPOTABNKAY TIPOOPATA YIa VA
KaAvYouv To Kevd avTo. To YmoloyloTiko NéPog, Tov atoTelel TV TeEAevTAiA TAOT OTO XWPO
QUTO, EXELTTIPOTEAKVTEL TO EVOLPEPOV ETILOTHHOV®V KAL ETILXELPNUATIWV TTAYKOOHIWwG KaBmG TTpo-
OPEPEL PALVOUEVIKE GTTELPOVG TTIOPOLG KT amaitnon. QoTdoo, N vEx KAKGT HNXavOY avaALOoNG
IOV avamnTLXONKAY VK OTNV TAXTPOPUA ALTH, TTAPAE TNV KAHAKWOILOTNTA, dabeoipotnta
KOl AVOXT) 0€ GGAANHATA TTOU TIPOTPEPOLY, aduvaTolV va tapéxouv enefepyacia ava mAeldda
(per-tuple) o€ MpayHaTIKO XPOVO HIAG Kot XITOOKOTIOVY Kupiwg o€ palikn emilvorn mpoPAnua-
T®V.

H ¢pevva pov eotidlel otnv Katavopr kat Staxeipton peydhov oykov molvdikotatwy Se-
dopévav Tov ptopovv va xpnotpomotnfoiv oe epappoyég avaluTikig enefepyaciog. ApxIkd
nipotadnkav Vo cvothuata, To HiPPIS kot 1o Brown Dwarf, Ta omtoia GTOXEVOLY TNV KAALYT
™G St avdryxng: Tn Snpiovpyia pioag amobnkng 0edopévwy, AVETTUYHEVTG O€ LITOAOYIOTEG TOU
epmopiov, Tov Ba eival oe Béon va mapéxet pdoPaocn oe dedopéva Kat va vrtootnpilet online
enelepyaocia oe mpaypatiko Xpovo. [la va eEaopaloTel 1 KAHOAK®OIHOTNTA, 1) avOXT) 08 OPAA-
Hata Kat ) SIKatoohvn 0T XproT TV TOPwV EMOTPATEDTNKAV TEXVIKEG amtd ToV Topéa Twv P2P
SIKTOWV.

Téoo to HiPPIS 600 kat to Brown Dwarf BacilovTal o€ pia apXITEKTOVIKE XwpiG Kovoypr-
O0TOUG TIOPOUG, eTTEVOVOVTAG O€ EMEKTACLHOTNTA Kot SlaBeotpdtnta og xapunAé kdéotog. Ouotkol
1) €ELKOVIKOL TTOPOL HTTOPOUV VA ELOEPXOVTAL OTO CUOTNHA VKON KAl pe Slapavr) TPOTIO Yl va
avakovdifovv amnd to pdpto Kat va Bonbodv KoTe To CVOTNHA VO AVTATIOKPIVETAL OTIG AL
VOUEVEC ATALTHOELG O8 ATTOONKEVTIKO XWPO KAl LTTOAOYLOTIKY toX0. H avoxn o€ op&hparta eivat
GAAN pio amaitnon mov kavorolovy Kat Ta dvo cvothpata. Ot epyacieg avdivong eivat dtai-
Tepa evaioOnteg oe aotoyieg KOHPwV AOYw TOL XpOVOL TTOL Xpeld{ovTat yia vat OAOKANpwOov V.
H emavektéAeomn Tou GLUVOAOU TV EPOTNUATOV HLXG EPYATING OTNV TTEPITTWON TTOL €Vag KOHBOG
amtotOxel Sev eivat flwoipn Avon, 8iwg 6tav ot armopdaoelg pénetl va AndpBovv apeoa. Zntipata
avoxng oe oparpata ol Kat SlaBeotpdTNTAG TV 0eSOUEVOV AVTIHETOTTIOVTAL HECK TNG El-
puTNG peBodov avtiypadng dedopévwv ov tpoodpépouvy oo DHTSs otnv mepintwon tov HiPPIS
KOl HEOW TOU EVPUI UNXAVIOHOD aVTLypadrg TTOL TTPOTEiVOLE Yia To Brown Dwarf, mov mpo-
oappoletal TG0 0TO ElOEPXOHEVO POopTio OGO Kot OTNV KIVNTIKOTNTH TV KOUPWV.

IMapohavtd, kéBe cvoTnHa Tpooeyyilel Ta S Bépata amd diadopeTikr ONTIKY ywvic, O¢-
TOVTOG AAAEG TIPOTEPALOTNTEG:

To HiPPIS eo114let otn Staxeipion tepapXikwv Sedopévwy, eMITPENOVTAG EpWTHHATA 0€ SLi-
popa emineda Aentopépelag HEow Aettovpylav roll-up kat drill-down. Avto To yeyovog kabiotd

10 HiPPIS KatdAXnNAo Yl oevdpla OTIOU fval amapaiTnTh [ TILO AETTTOHEPTIG AVOTTAPAOTAOT)
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Twv dedopévwv. H amhotnta tng Sopng tov HiPPIS emiTpETEL TNV TAXEIQ ELCAYWYT] TOL APXLKOD
niivaka Sedopévwv xwpic kapia mpoeneepyaocia. Qotd00, emeldr) Kapioa VAoToINon Tou KOOV
Se yivetal ek Twv TIPOTéPWV, Ta EpLTHHATH group-by amattovv mepattépw emefepyacia petd
oLAOYT) TwV TIAELGdwV TToL oXeTilovTal e auTd. Ot eVNHEP®UTELG EIVAL TOOO YPIYOPES KAl ATTAEG
000 KAl Ol EL0AYWYEC, ETPEPOVTAG EMBAPLVOT) OTNV ENMKOVWVIA TTOL EXPTATAL ATTO TO eTiTTE-
do ovvémelag mov analtel 1 ek&kotote epappoyn. Etol, oe meputaroeig dmov ta dedopéva evn-
HEPWVOVTAL CUVEXWG KAL HAAOTA He LYNAO puBpod, To HiPPIS katapépvel vo avtene€éNDel e

atod0TIKO TPOTIO.

To Brown Dwarf katavépel pio evpéng Stadedopévn Sopr) mov vhomotei évav koo dedopé-
VWV, ETIITUYXAVOVTAG 08 TIOAEG TIEPUTTMOELG £Var ONUAVTIKO Babud ovumieong. TTAnpovovTag 10
KOOTOG TG TipoemeEepyaaiag dmag, emAvel T GUVABPOLOTIKA EPWTHHATA TOGO EVKOAX KAL GUOL-
K& 600 Kal Ta onpelaka. Opwg ot ouvaptioelg ouvdbpolong mpémet va éxouvv KaboploTei ek TV
nipotépwv. Emiong, ot evnpepwoelg oto Brown Dwarf eivat apketd damavnpég, kabBmg 1 elooryw-
Y1 HLog Kot Hovo Katvouplag Aeladog mupodotel TOMATTAEG alayég o oLVADPOLOTIKEG TIHES
oe OAn ) dopn). 'Etol, To obotnpa Brown Dwarf eivat o armodoTiko oe meptBAAOVTA OTT0L 0
pLOUOG TV evepwoewV OgVv eival TOOO LYNAGG o€ oXEoN e TO pLOUS TWV EPWTNUATOV 1} dTAV

OL EVNUEPWOTELG LITOPOUV VO EGAPUOCTOVV 0€ OUASEG.

Trapyet SexdBapa pia avtiotdduion: Mn vhomonuéva dedopéva Katahappdvouvy Aiyotepo
XWPO Kot TTPOCPEPOUV EVKONOTEPT AELTOVPYIX EVIHEPWONG HE KOOTOG TNV avEnuéva eneepya-
ola 0TV AeLP& TOL TTEAATN. AVTIOéTWG, o0 TIo emelepyaopéva eival Ta dedopéva TO0O Tre-
PLOGOTEPO XOPO KATAAAUPAVOLV A& Kot TOGO AyOTepn €K TV LOTEPWV eTteCepyaania Xpetdlo-
vtat Emopévamg, amo tn pia mhevpd to HiPPIS mpoopépel ypryopr EL0XYwYT) KAL EVI|HEPWOT) TWV
dedopévmv TTOL AVATIAPLOTOVTAL e TIEPLOCOTEPN AETITOHEPELX HEOW TNG XPTONG EVVOLONOYIK®OV
lepapylev, oA emidetkvoel o xpovoPopa enefepyacio epwTNHATWV. ATIO TNV GAAN TTAELPA,
10 Brown Dwarf anavid anmoSoTiK& OAa Ta onpelakd oA Kal ouvaBpoloTIKG epwTApATA O
Pporypévo apliud Pnuatwy, oA avTigeTwtiCel o damavnpég evnpepoelg Adyw Tng vAomoi-

nomng ToL KOPoU.

‘Exovtag Siakpivel TIg epmTmOElg 0TI oToieg Tatplalel KaAbTepa KaBéva armd Tor TpoTEVO-
Heva cuoThpata, To cVoTNUa HORAE yepupovel TO XAOHA Kol TIPOCPEPEL tiot ONOKAN pWHEVT)
Aoon mov ouvdualet Ta TAeoveKTHpaTa TOL KABeVOG yia Tn Slaxeiplon xpovooelpaov: Mia Lloxv-
pn Hnxav OelkTodOTNOoNG Yl TEPATTIO OYKO SeSOUEVWY TOCO LOTOPIK®V OGO KAL TIPAYUATIKOU
XPOVOUL [e pior apXITEKTOVIKI Xwpig Kotvoxpnotoug mdpoug mov e€acpalilel KAHAKOOIHOTNTA
Kat StaBeotpdtnTa o€ xapunAo kootog. Eva vrtocvotnua Paciopévo oe DHT mou powdlet pe
Sopn tov HiPPIS xelpiletal TI¢ evnpepmaelg o KatadpBavouy pe LYNAo puBuod Kat TIG EpWTH-
0O€lg oL apopolV Ta TiLo TTpoodpata dedopéva. Tov kUpLo 6yKo Twv dedopévmv avalapPavet éva

vtoovoTNUA pe TN Sour) Tov Brown Dwarf mov vlomolel Kat avtrypadel kat anaitnon. Toa §vo



50 Extetapévn IMepiAnyn

OUOTATIKA QUTH EVOWHATOVOVTAL IO VO TIPOOHEPOUVV Ta TTAEOVEKTHHATA TNG LOXVPTG eTe€epyat-
olag dedopévwv oe GUVEVAOHO He KALUAKWOLHOTNTO KAl EAXCTIKOTNTA TWV TTOPWV.

H SiatpiPr) péxpt topa éxet aoxohnOei pe tnv Saxyeipion Sopnpévwv dedopévav. Mépog Twv
HEANOVTIKOV EPEVVNTIKGOV HOU OTOXWV EIVAL 1] XAAAPWOT TWV TTEPLOPIOUWY TOL CUCTAHATOG YLl
éva kaBohiko oxrpa. O armodoTIKG Xelplopdg np-Sopnpévev dedopévawy, dmng yia mapddetypa
XML apyxeionv, aAAd kot n vtooTipEn SuvapIKaY oA ay®v ota oxfpata Sopnpévmy dedopévav
EVEXOLV UEYAAEG EPEVVNTIKEG TIPOKAT|OELG.

Emumhéov, ota peAhovTika oxédia PploKeTal n épevva yla To TG ol Texvoloyieg MapReduce
KOl T GUGTHAHOTOL TTOL TIPOTAONKAY 0TN SlaTpLPry avTr) propovy v alAnlooupmAnpwbovv otov
Topéa TNG evpeiag KAipakag avéAvong dedopévav. ITpaypatt, Omwg LITOSEIKVDEL KAl 1) TTELpa-
HOTIKT QITOTIHNON TV TIPOTELVOHEVOV CUOTNHAT®Y, Ol TAATPpOpuES avélvong MapReduce ei-
vat Baitepa amodotikég oe ETL diepyaoieg, Opuwg amotuyxavouv oe avéntikn enefepyaocia Kat
SladpaocTikOTNTA, Ot OTT0(EG elvat eMBVUNTEG O€ ePpapHOYEG OTIWG O €AeyX0G, 1 e§uTinpéTnon Te-
Aat®v, N 810pBwaorn oPaAUETOV KATL. ATtO TNV GAAN, dAa Tot CLOTHRATA TTOL TTpoTdBdnKav oTn
SatpiPr) avtr) mpoodépouy emeepyaoia ava mAetdda. Avti N mapatpnon Katadelkviel TNV
avdyKn ylax ovvepyaoia petad towv §00 KAAXoEwV oLOTNHATWV TToL Bar eTTITpETEL TNV EKHETAN-
AgVOT) TOV TTAEOVEKTNHATWV TOUG.

e e&eNEn Ppioketal épevva TOL APopP& OTN Xprion Tov cvoTHpatog HiPPIS yo tnv Sotr)-
pNOT TNG AVWVLHING 0pLllOVTIA KATAVEUNHEVKOVY OXETLAK®OV deSopévwv (PAéme IMapaptnua A). H
OLOTIKOTN T KATAVEUNHEVWY SeSopEVWY eival I8LaiTEPO ONHAVTIKT, HLXG KAl 1) AVAALOT) TOUG O€
oLVOLAOUO pe AAa oXeTIKd dedopéva Tov mapdyovTtat oLvhBwg amd SlapopeTIKEG TINYEG UITOpEL
V& QTTOKOXADYEL TTPOOTIIKEG Kal evaioOnTeg mAnpogopies. [ia Tnv amokatdotaomn Té€tolwy Aabov
Xpnolporoleitat ouxvd 1 yevikevon topéa (domain generalization): H avtiotoixnon tipaov evog
attribute o€ TIpég TOL AVKOLY OE Evay TTLO YEVIKO TOHER avePaivovTag LepapXIKa emimeda ptopel
va PonBnoet 610 va pn pmopei Kaveig va e€ayet evaiodntn TAnpodopia yior éval GUYKEKPLHEVO
dropo. To HiPPIS, mov eyyevag xetpiletat tepapXikd Kot Katavepnpéva dedopéva PeAtiwvetal
OTOV UNXaVIoUd SelkTodOTNOTG TOL e TETOLOV TPATIO MOTE Var SIATNPEL TNV AVWVUHIX TOUG UTTO
10 KaBeoTMG cuVeEXWV evnepwoewy. H emdiwén pag eivat n mepattépm diepebvnon Topéwv Kat

ePAPHOYQDV OTTOV Tar TIPOTABEVTH cLOTAHNATA B pITop€couy va XpnoLporonBolv emTuxwG.



CHAPTER 1

Introduction

1.1 Motivation

In the last decade we have witnessed an enormous data explosion, which is still in progress. As
Information Technology (IT) becomes ever more prevalent in nearly every aspect of our lives,
the amount of data generated and stored continues to grow at an astounding rate: According to
IBM [CCMRO06], worldwide data volumes are currently doubling every two years, having already
crossed the zettabyte limit [IDC10]. Scientists and computer engineers have coined a new term
for the phenomenon: big data*. This growth is attributed to the evolution of data itself as well as

its production and manipulation processes.

This fact has become apparent even in our everyday lives, where the emergence of new tech-
nologies and mainly the appearance of Web 2.0 allow users to do more than just retrieve infor-
mation: They can be content producers besides content consumers. As hardware (from storage
devices to high-tech digital cameras) becomes a cheaper commodity by the day, the amount of
data an average person produces in the form of e-mails, images, video albums, personal records,
etc., is rapidly increasing. Moreover, with domestic Internet connections gaining ground, con-

nection speeds being on the rise and web services becoming more and more accessible, “large”

*“Big data are datasets that grow so large that they become awkward to work with using on-hand database man-
agement tools. [...] Though a moving target, current limits are on the order of terabytes, exabytes and zettabytes of
data’, Wikipedia.
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data objects such as photos, audio and video files can easily be uploaded and shared over the In-
ternet. Social network statistics prove this tendency. Facebook [fac] for instance, with over 500
million active users is responsible for the upload of 20 million videos and over 2 billion photos
per month [facl1] while Twitter [twia] counts more than 160 million users producing over 90

million tweets per day [twil0].

Similarly, several data-intensive applications in the scientific field, such as bioinformatics,
physics or astronomy, rely, to a great extent, on the analysis of data produced at a tremendous
rate and volume by geographically disperse scientific devices such as sensors, satellites, digital
cameras, etc. For example, the Large Hadron Collider (LHC) project at CERN [lhc] generates
tens of terabytes of raw data per day that have to be transferred to academic institutions around
the world, in seek of the Higgs boson [at], ali]. Another example is the Laser Interferometer
Gravitational Wave Observatory (LIGO) [lig], a multi-site research facility whose objective is
the detection of gravitational waves, producing 1 TB of data per day. Due to the growing size of
such data sets, management platforms are needed to ensure fast and reliable access to users in

remote and distributed locations.

In the business domain, organizations are investing in more sophisticated business intelli-
gence and analytics in order to base decisions on solid and reliable management information.
One of the most popular tools for data analysis is Data Warehousing. In data warehousing, vast
amounts of historical data along with data from multiple operational databases (in the form of
multidimensional cubes) need to be stored and analyzed in order to identify behavioral pat-
terns and discover useful associations, pushing the size of data warehouses over the petabyte
barrier [Mon]. Market globalization, business process automation, the growing use of sensors
and other data-producing devices, along with the increasing affordability of hardware have con-
tributed to this continuous trend [Sie08]. Indeed, recent research [Grol0] has indicated that

large organizations are experiencing an average 32% annual growth in data volume.

Besides the well-documented need for offline analytics, the requirement to immediately de-
tect interesting trends is ever-growing [Kno09, AFG'09], rendering real-time analytics a neces-
sity [dat10]. For instance, Denial of Service (DoS) attacks or intrusions should be detected by
Internet Service Providers (ISPs) the moment they occur, so that appropriate measures can be
taken to restore functionality with minimal service unavailability [SJ06]. Another example of the
power of real-time analytics is their use in the forecasting of a hurricane’s path, intensity and wind
field hours or days in advance [PHAML98], sparing valuable time for evacuation and preparation
that can save lives and properties. In everyday business environments, real-time analytics can
provide up-to-the-minute information about an enterprise’s customers so that better and faster

business decisions can be made — perhaps even within the time span of a customer interaction.
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Real-time web analytics is a category per se, with a plethora of commercial products (e.g.,
Clicky [cli], Woopra [woo], Chartbeat [cha], etc.) claiming to offer monitoring of web page visi-
tors as well as tracking of social media shares in real time, unlike Google Analytics [goob], their
free adversary. Moreover, analyzing the so-called real-time Web, i.e., content pulled by Twitter,
blogs and news websites within minutes of its generation, valuable information about behav-
ior and sentiment can be derived: A public figure can estimate its reputation and popularity
(Twittercounter [twib]), market researchers can measure the impact of a product’s launch (Web-
Trends [webb], WebAbacus [weba], etc.), even political candidates can derive the orientation of
the electoral body and predict the winner of an election [DS10, MM10]. In recognition of the
power of real-time analytics over a system like Twitter, which is real-time itself, the Twitter an-
alytics team has recently (February 2011) presented Rainbird [Weill], a high-volume analytics
system that scales horizontally in addition to being real-time.

As a result, data processing applications that extract, store and process useful information
in near real-time are taking center stage in the enterprise Information System (IS) infrastruc-
ture. In such applications, data are usually determined by a temporal aspect (e.g., time-stamps
of router data or dates of purchases) presented at different levels of granularity through the use
of concept hierarchies (e.g., Day<Month<Quarter<Year). Thousands or millions of such records
are produced per second and modern systems are expected to be able to both incorporate and
process them. It is clear that the efficient and effective management of this enormous volume
of data is of utmost importance, in order to make the most out of the available information and
to ensure that the decisions are made and actions are taken based on accurate, complete and
up-to-date facts.

Another important aspect relates to the fact that information environments themselves are
distributed. Business groups consist of multiple companies around the world, which, although
operating autonomously, still need to provide the headquarters with summarized information
for decision making. Moreover, it is a fact that IT is moving towards environments, where re-
sources are provided as services over the Internet and business applications are delivered online
and accessed from a web browser [Ecol0]. Cloud Computing is the most recent such paradigm
that offers resources as a service and has drawn attention from the research as well as business
community, with major IT companies (e.g., Microsoft [mic], Amazon [ec2], Google [gap], etc.)
getting involved in the provision of infrastructure, on-demand analytics solution vendors (e.g.,
Vertica [ver], Terradata [ter], GoodData [gooa], etc.) supporting it and numerous enterprises
using it. It is not surprising that major content providers and social network sites have already
moved towards cloud-based solutions: Twitter [twia], Digg [dig], Reddit [red] and many others
use Apache Cassandra [cas] to store their large, active data sets, the message infrastructure of
Facebook [fac] relies on HBase [hba], while LinkedIn [lin] has launched its own project, Volde-

mort [vol], to handle the amount of stored data as well as the rate of operations. It is estimated
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Figure 1.1: Motivating scenario of distributing a datawarehouse

that at least 15% of the Digital Universe by 2020 will be managed or stored in the Cloud and
at least a third of all this data will pass through it at some point in their life cycle [IDC10]. In
such environments, the software as well as the data are stored on servers, often geographically
dispersed, and therefore their manipulation requires sophisticated, distributed techniques.

The above requirements imply the need for an always-on, real-time data access and support
system for concurrent processing of queries without significant deterioration in response times.
As a motivating scenario, let us consider a business establishment that maintains records of its
operations. These records could well be security, network or system event logs. The search and
analysis of such data constitutes an essential part of managing, securing and auditing the usage
of this company’s technology infrastructure. Instead of creating a centralized data warehouse
on-site with a large upfront and maintenance cost, the management chooses to distribute data
and computation to possibly multiple location-transparent facilities of commodity nodes and
access it more easily and ubiquitously. In this manner, the establishment significantly lowers
maintenance and hardware costs while enjoying a scalable, real-time decision support system.
Figure 1.1 depicts this scenario, where multiple establishments of a business insert, update and

query such a distributed warehouse.

1.2 Relative solutions

Up till recently, data management has mainly been translated to mediating access to central-

ized, application-specific databases. However, such conventional practices are unable to keep
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pace with the ever growing needs of today’s data-intensive applications. Particularly in the field
of analytics, existing systems inadvertently fail to achieve both powerful data processing and
high-rate updates: Conventional data warehousing solutions (e.g., [LPZ03, SDRK02, WLFY02]),
while highly efficient on complex queries upon large volumes of historical data, present a strictly
centralized and offline approach in terms of data location and processing: Views are usually cal-
culated on a daily or weekly basis, after the operational data have been transferred from various

locations and, surprisingly, this practice is still considered to be state-of-the-art.

Distributed variations (e.g., [AACT08, ABJT03]) essentially just interconnect conventional
warehouses, while maintaining the main functionality, i.e., aggregation, update and querying,
centralized. On the other hand, there has been considerable work in sharing relational data
using both structured (i.e., Distributed Hash Tables or DHTs for short) and unstructured (i.e.,
Gnutella-style) Peer-to-Peer (P2P) overlays, combining the advantages of a distributed and re-
silient solution with the performance of storing large volumes of data in database systems. In Peer
Database Management Systems (e.g., [KTSR09, HHL 03, NOTZ03]) peers maintain databases
with different schemas and communicate with each other in a distributed, fault-tolerant manner,
using query reformulation in order to translate a query form one schema to another. Neverthe-
less, no special consideration has been given to multidimensional data supporting hierarchies
nor to temporal data and, to date, Peer Databases that rely on DHT functionality are unable to
directly support queries on multiple dimension hierarchies. Moreover, the slow query refor-
mulation process renders them unsuitable for real-time application scenarios such as the ones

involving the management of temporal data.

A new class of analytics engines (e.g., [ABPA109, TSJT09]) that leverage the recent inno-
vation in the industry around large-scale data management has emerged to fill this gap. These
engines are deployed on shared-nothing, commodity hardware architectures, covering the newly
added requirement for scalability, robustness and availability at low cost. Yet, even the new plat-
forms pose some limitations: Based upon the MapReduce programming model, they mostly
target batch-mode analytics jobs rather than real-time, “per-tuple” processing. This drawback
has been recently identified by Google and alternative approaches for incremental processing

and interactive response times have been proposed [DP10, MGL*10].

To conclude with relative solutions, parallel databases (e.g., [ora, ter]) offer great efficiency
at the cost of elasticity and robustness in failures [PPRT09]. Although scalability is theoretically
promised, actual systems operate on relatively small clusters of 100 or less homogeneous nodes.
Overcoming the cost of purchase and support for such systems, the difficulty of their installation
and proper configuration prevents the automatic and transparent expansion of the system to

handle increased demand.
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1.3 Contribution

This thesis deals with the issue of storing, indexing and querying multidimensional data used for
analytical processing in large scale distributed systems. It explores ways to create an always-on,
real-time data access and support system, applying techniques from the field of distributed data
management and data-warehousing in order to disseminate, query and update high volumes of
multidimensional data. The goal is to maintain the best of both worlds: Powerful indexing/ana-
lytics engine for immense volumes of data both over historical and real-time incoming updates
and a shared-nothing architecture that ensures scalability and availability at low cost. Geograph-
ically spanned users, without the use of any proprietary tool, can share information that arrives
from distributed locations at a high rate and query it in different levels of granularity.

The research process towards this goal starts with an attempt, the first to the best of our
knowledge, to support concept hierarchies in DHTs, in order to store historical data in various
levels of granularity. The resulting system, HiPPIS, greatly simplifies the insertion and update
operations due to the lack of data pre-processing. However, it increases the post-processing on
the client side.

In an attempt to include an a priori consideration for group-by queries, as well as to explic-
itly deal with the query performance versus variable data availability or load skew, a well known,
highly effective centralized structure, the Dwarf [SDRKO02], is distributed over a network of inter-
connected commodity nodes on-the-fly, reducing cube creation and querying times by enforcing
parallelization.

To improve the processing of data determined by a temporal aspect (henceforth termed as
time series data t), the special requirements of this specific data type are identified and the ap-
propriate modifications in the proposed systems are applied.

By reviewing and evaluating the proposed systems, their strengths and weaknesses are re-
vealed. There exists a trade-off between the ease of operations in one hand and the storage
consumption as well as the efficiency of query resolution on the other. As a conclusion to my
research, the best of the two worlds are combined, creating HORAE, a hybrid solution for data
storage and processing.

Hence, the work of this dissertation can be divided in 3 major parts:

The Hierarchical Peer-to-Peer Indexing System (HiPPIS)
HiPPIS [DATKO08, DTK08, DTK11] is a distributed system designed to efficiently store,
query and update multidimensional data organized into concept hierarchies and dispersed
over a network. HiPPIS employs an adaptive scheme that automatically adjusts the level

of indexing according to the granularity of the incoming queries, without assuming any

t+We will be using the terms temporal data and time series data interchangeably to refer to the data determined
by a temporal aspect.
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prior knowledge of the workload. Efficient roll-up and drill-down operations take place
in order to maximize the performance by minimizing query flooding. Updates are per-
formed online, with minimal communication overhead, depending on the level of con-
sistency needed. Extensive experimental evaluations show that, on top of the advantages
that a distributed storage offers, HiPPIS answers the large majority of incoming queries,
both point and aggregate ones, without flooding the network and without causing signifi-
cant storage or load imbalance. HiPPIS proves to be especially efficient in cases of skewed
workloads, even when these change dynamically with time. At the same time, it manages
to preserve the hierarchical nature of data. To the best of our knowledge, this is the first

attempt towards the support of concept hierarchies in DHTs.

The Brown Dwarf System
Brown Dwarf [DTK10a,DTK10¢,DTK10b] is a data analytics system that distributes multi-
dimensional data over commodity network nodes, without the use of any proprietary tool.
Brown Dwarf distributes a centralized indexing structure, the Dwarf [SDRKO02], among
peers on-the-fly, reducing cube creation and query times by enforcing parallelization. Ana-
lytical queries as well as updates are naturally performed online through cooperating nodes
that form an unstructured P2P overlay. Updates are also performed online, eliminating the
usually costly over-night process. Elasticity and content availability are indispensable fea-
tures: The system employs an adaptive replication scheme that adjusts to sudden shifts
in workload skew as well as network churn by expanding or shrinking the units of the
distributed data structure. These characteristics along with the cost-effectiveness both
over the required hardware and software components render the Brown Dwarf an ideal
candidate application to be deployed in large scale distributed environments such as the
Cloud [AFG™09]. Experimental evaluation on an actual testbed has shown that it manages
to accelerate cube creation up to 5 times and querying up to several tens of times com-
pared to the centralized solution by exploiting the capabilities of the available network
nodes working in parallel. It also manages to quickly adapt even after sudden bursts in
load and remains unaffected with a considerable fraction of frequent node failures. These

advantages are even more apparent for dense and skewed data cubes and workloads.

The HORAE System
HORAE is a hybrid system focused on the management of time series data in a fully dis-
tributed manner. Time series data is an important class of data that typically contain a time
attribute, such as the date in a stream of sales data or the time of a credit card purchase.
Time series analysis can extract meaningful statistics and other characteristics of data that
have a natural temporal ordering and is widely used in forecasting. After examining the

behavior of HiPPIS as well as Brown Dwarf with respect to time series data, a complete



Chapter 1. Introduction

system that employs a hybrid solution for data storage and processing is designed: Recent
data, which are bound to be updated rapidly and queried in finer granularity, are stored
in a DHT, HiPPIS-like system, that enables fast insertion times and multidimensional in-
dexing. The large bulk of the data is handled through Brown Dwarf cubes that adaptively

materialize and replicate according to demand.

The two components seamlessly integrate to offer the advantages of powerful aggregate
data processing along with scalability and elasticity of commodity resources. The proto-
type implementation over an actual testbed proves that HORAE is able to efficiently handle
large rates of both updates and queries, tolerate high failure ratios and expand or contract
its resources according to demand. A direct comparison with a state-of-the-art warehous-
ing solution demonstrates HORAE'’s advantages in both performance and elasticity under
variable workloads: HORAE accelerates query resolution by orders of magnitude, man-
ages to quickly adapt to the incoming load and tolerates a considerable fraction of frequent

node failures.
The contribution of this thesis as a whole is summarized in the following:

« It studies and identifies the requirements of a large scale analytics platform.

« It proposes a system that provides an efficient and cost-effective way to handle concept
hierarchies in DHTs. Taking into account user preferences and sensing potential over-
all tendencies, the proposed system allows reorganization of the indexing structure in fa-
vor of resolving queries for the most popular data, preserving at the same time the useful
hierarchy-specific information that hashing destroys.To our knowledge, this is the first at-

tempt towards this direction.

« It creates a fully distributed data-warehouse-like system that offers indexing, query pro-
cessing and update operations for data cubes over a distributed environment. The cube is
created with just one pass over the data, while updates are processed online. Commodity
PCs can participate in this distributed data store, while users need no proprietary tool to
access it. Giving special consideration to elasticity and fault tolerance, a robust and effi-
cient adaptive replication scheme is designed, perceptive both to workload skew as well as

node churn using only local load measurements and overlay knowledge.

« It specifically deals with the special requirements of time series data, produced at a high
rate from distributed sources, presenting a complete system that stores, indexes and pro-
cesses them. Combining the advantages of both structured and unstructured P2P overlays,

the system enables fast insertions and efficient aggregate query resolutions.
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« All of the proposed systems have been implemented and deployed either on a well known
simulator or on an actual LAN testbed of commodity PCs. Their extensive experimental
evaluation under a variety of datasets, workload distributions and network setups demon-
strates their ability to efficiently handle large rates of both updates and queries, tolerate
high failure ratios and adjust their indexing structure and their available resources accord-
ing to demand. A direct comparison with centralized as well as distributed state-of-the-art
warehousing solutions proves the advantages of the proposed systems in both performance
and elasticity: Query resolution is accelerated, updates are performed online, the load is
handled efficiently even after sudden bursts and the functionality remains unaffected with

a considerable fraction of frequent node failures.

1.4 Outline

This dissertation is organized as follows:

Chapter 2 briefly introduces some basic notions, upon which the work of this thesis is based,
for self-containment reasons. On a higher abstraction level, references are made to the basic
structures and common practices of data warehousing. Moving towards lower levels, the chapter
presents Distributed System platforms, where our solutions can be applied and concludes with
the description of the underlying overlays, structure- and operation-wise, that were utilized in
our work.

Chapter 3 presents our work in the field of distributed management of multidimensional, hi-
erarchical data, describing HiPPIS, discussing its requirements together with protocol enhance-
ments and providing a cost/benefit analysis as well as a thorough evaluation of it.

Chapter 4, describes the Brown Dwarf system, which aims to serve as a distributed data-
warehouse-like system. Besides the evolution from the centralized Dwarf structure to the fully
distributed Brown Dwarf system, the chapter presents extensions that allow for dynamic repli-
cation as well as fault tolerance and discuss its potential for deployment in the Cloud.

Chapter 5 sums up the strengths and weaknesses of each of the previously proposed systems
and motivates the creation of a hybrid approach that combines the best of the two worlds to
target the efficient storage of time series data. The prototype system is evaluated in parts and as
a whole against a state-of-the-art large scale data warehousing solution.

Chapter 6 compares our approach to related work in the literature, while Chapter 7 summa-
rizes our conclusions and provides directions for future work. Appendix A presents a different
use case scenario for the HiPPIS system: The core idea of the hierarchy support in DHTs is ex-

ploited for the anonymization of distributed, sensitive data.
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CHAPTER 2

Background

In this chapter we introduce some basic terms used throughout the dissertation and elaborate on
notions necessary to guide us through the rest of the text. First, we cover the basic concepts of
data warehousing, which is the target application for the systems we propose. Then we introduce
the challenges and potentials of large scale distributed systems, presenting new paradigms that

are adopted in our proposed work.

2.1 Data Warehousing

Data Warehousing is a vital component of every organization in the scientific as well as the busi-
ness domain, as it provides tools for data analysis, summarization and prediction of future trends
in areas such as retail, finance, network/Web services, etc. A Data Warehouse (DW) is a central
repository that hosts immense volumes of historical data from multiple sources and provides
tools for their aggregation and management at different levels of granularity. Thus, unlike op-
erational database systems that cover day-to-day operations of an organization through Online
Transaction Processing (OLTP), data warehouses serve users and knowledge workers in the role
of data analysis and decision making through Online Analytical Processing (OLAP).

The basic abstraction in data warehousing is the data cube [GCB197], a multidimensional
array, in the form of which data are usually viewed. Data cubes are characterized by their dimen-
sions, which represent the notions that are important to an organization for managing its data

(e.g., time, location, product, customer, etc.) and the facts, which are the numerical quantities
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Table 2.1: Sales data for electronics, according to time, Location and product. The measure is dollars sold
(in thousands).

Time
2008 2009 2010
Location
Athens Patra Lamia Athens Patra Lamia Athens Patra Lamia
Apple $280 $120 $65 $290 $56 $36 $320 $ 38 $24
Sony $250 $140 $48 $220 $59 $45 $255 $46 $37
Intel $180 $42 $39 $200 $39 $22 $210 $46 $24

Product

% .
X Lamia

o 65_~48 39
3 Patra 450 440, 42
Athens
2008 280 | 250 | 180 22
® 39
= 04
& 2009 290 | 220 | 200 6

2010 320 | 255 | 210

Apple Sony Intel
product

Figure 2.1: The cube representing the data of Table 2.1

to be analyzed (e.g., sales, profit, etc.). Figure 2.1 depicts the 3-D cube representing the data in
Table 2.1 according to the dimensions time, location and product [HKO06]. They allow for effi-
cient summarization of data by reducing the dimensions and producing aggregate views of the
data. However, data can be presented in an even more fine-grained manner through the use of
concept hierarchies.

A concept hierarchy defines a sequence of mappings from more general to lower-level con-
cepts. Figure 2.2 shows a simple hierarchy for the location dimension, where Address < ZipNo <
City < Country and one for time, where a partial order is defined. Concept hierarchies are im-
portant because they allow the structuring of information into categories, thus enabling its search
and reuse. The mappings of a concept hierarchy are usually provided by application or domain
experts.

The typical OLAP operations for the multidimensional data model, where data are orga-
nized into multiple dimensions and each dimension contains several abstraction levels defined
by a concept hierarchy, offer users the flexibility to view data from different perspectives and at

different levels of granularity. These are the following:
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Figure 2.2: A concept hierarchy for dimension (a) Location (b) Time (lattice)

Roll-up The roll-up operation performs aggregation in a data cube either by climbing up to
a more summarized level of the hierarchy or by dimension reduction. For instance, by
ascending the location hierarchy by one level, the resulting cube groups data by Country

rather than City.

Drill-down The drill-down operation navigates to lower levels of increased detail. For exam-
ple, stepping down one level in the time hierarchy, the resulting cube details the sales per

quarter rather than summarizing them by year.

Slice and Dice The slice operation performs a selection on one dimension of a given cube, “slic-
ing” it and resulting in a subcube. When the selection concerns more than one dimension,
the operation is called dice. As an example, the subcube for Year=2009 is a slice while the

sales for Year=2009 and city=Athens form a dice.

Rotate This operation rotates the axis of the cube to present different views of the data.

In this thesis we focus on providing simple data warehousing functionality in a distributed
environment. By simple data warehousing functionality we mean the ability to answer roll-up,
drill-down, slice and dice queries. Using shared-nothing architectures we aim to store high vol-
umes of multidimensional, hierarchical data and accommodate high rate of update and queries

concerning any combination of dimensions at any granularity.

2.2 Large-Scale Distributed Environments

In the last few years, Distributed Systems have drawn much attention from the research as well
as the business community. They are mainly defined by their common properties: Several au-
tonomous computational entities (nodes), communicate with each other by message passing to

achieve a common goal — from a large computational problem to the coordination of the use of
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(C (b)

Figure 2.3: (a)The client-server model (b)The P2P model

shared resources. Other typical properties of distributed systems include fault tolerance of indi-
vidual computers, heterogeneity of the participating entities and limited, incomplete view of the
system from each node. A typical example of a distributed system is the Internet itself: Comput-
ers connected to it communicate with each other through well defined protocols (e.g., TCP/IP),
make use of common services (e.g., the World Wide Web, e-mail and file transfer services) and
share resources (e.g., files, printers etc.).

A long-standing tenet of distributed systems is that the strength of them can grow as more
hosts participate in them. Each participant may contribute data and computing resources (such
as unused CPU cycles and storage) to the overall system, thus the wealth of the community can
scale with the number of participants. On the other hand, the construction of distributed systems
faces numerous challenges, such as dealing with the heterogeneity of resources in terms of hard-
ware as well as software, guaranteeing the security of the shared information and the protection

of the participating resources, handling failures, ensuring transparency and many others.

2.2.1 The Peer-to-Peer System Architecture

A new paradigm for the construction of distributed systems that has become extremely popular
not only in the research community, but also in the general public is that of Peer-to-Peer (P2P)
systems. The P2P model dictates a fully-distributed, cooperative network design, where nodes
contribute data and computational resources and collectively form a system that provides a uni-
form service without any supervision. Most importantly, they operate in a symmetric manner,
running the same protocols and communicating freely and equally with each other. Unlike the
dominant client/server model, which decomposes the system into clients that consume services

and a limited number of well known, powerful sites that provide them, the P2P model consists of
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nodes that serve both as clients and as servers (Figure 2.3). Its advantages, although application-
dependent in many cases, are [CDKO5]:

+ Decentralization: P2P overlays have no central control over their main operations, and
their correct behavior does not depend on the existence of any centrally administered part.

Thus there is no single point of failure in the system.

+ Autonomy: Peers are autonomous in every role they are assigned in a P2P system. The
only key issue for their efficient operation is the choice of an algorithm for the placement

of data among hosts and the subsequent access to it.

+ Network dynamics: Peers join and leave the overlay very easily, with routing tables being

updated synchronously or asynchronously with fraction of a second delays.

+ Scalability: P2P systems have the ability to handle growing amounts of work in a graceful
manner as well as enlarge their capabilities when resources (typically hardware) are added.

This is a very important property, as P2P systems are meant to be used massively.

+ Robustness: It is essential for a P2P system to be able to cope with errors during execu-
tion and to continue to operate despite abnormalities. Routes and object references are

replicated n-fold ensuring tolerance of n failures of nodes or connections.

« Self-Organization: Because of the decentralization and scalability, there is no need for a
central administration. Each participating node is responsible for its own resilience and

maintenance of data as well as metadata.

+ Transparency: One of the goals of P2P applications is to transparently locate and access
data. Transparency is also aimed for replication of data as well as mobility and security of

peers.

Undoubtedly, P2P systems have gained their enormous popularity because of the file shar-
ing applications (e.g., Kazaa [kaz], eMule [emu], BitTorrent [Coh03], etc.). It is indicative that
the bandwidth consumption attributed to popular such applications amounts to a considerable
fraction (up to 60%) of the total Internet traffic ( [san]). However, many other examples of
P2P systems have emerged, most of which are wide-area, large-scale systems that provide stor-
age [KBC00], telephony [sky], audio and video streaming [joo], instant messaging [sky] and
many other services. The most exciting possibility of P2P computing is that the desirable prop-
erties of the system can become amplified as new peers join: Because of its decentralization, the
system’s robustness, availability and performance grows with the number of peers. Moreover,

the need for administration is diminished, since there is no dedicated infrastructure to manage.
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Figure 2.4: Routing of message with GUID D46A1C in a Pastry ring

In general, a P2P system is an overlay network, meaning a computer network which is built on
top of another network (often the Internet itself). Nodes in the overlay can be thought of as being
connected by logical links, each of which corresponds to a path, perhaps through many physical
links in the underlying network. Several P2P overlays have been proposed by both the academia
and the industry in the last few years in order to permit routing of messages to destinations not
specified by an IP address.

We can roughly classify P2P architectures into two categories according to the degree of con-
trol over the topology and routing infrastructure they provide: Structured P2P systems, which
follow strict rules for file placement and object discovery and unstructured ones that offer arbi-

trary network topology, file placement and search.

Structured P2P Systems Structured P2P networks employ a globally consistent protocol to guar-
antee the location and the retrieval of any data, if stored in the overlay, in a satisfying time
complexity, usually O(log N) with N being the number of peers. The information is in-
dexed and distributed using a global algorithm known to all participants in the system.
By far the most common type of structured P2P network is the Distributed Hash Table
(DHT), in which a variant of consistent hashing is used to assign ownership of each file to
a particular peer, in a way analogous to a traditional hash table’s assignment of each key to

a particular array slot.

In DHTs, (key, value) pairs are stored and any participating node can efficiently retrieve
the value associated with a given key. The responsibility for maintaining the mapping from
keys to values is distributed among the nodes, in such a way that a change in the set of
participants causes a minimal amount of disruption. This allows DHTs to scale to large
numbers of nodes and to handle continuous node arrivals, departures and failures. Some
prominent research projects include Chord [SMK™01], Pastry [RD01], Kademlia [MMO02],
P-Grid [ACMD™03] and others.
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In a nutshell, in DHTs resources as well as data are identified by globally unique identi-
fiers (GUIDs), usually derived as a secure hash from some or all of the resource’s state.
Each node is responsible for processing requests addressed to all objects in its numerical

neighborhood. The simplest API used to manipulate data is:

put(GUID, data) The data is stored at all nodes responsible for the object identified by
the GUID.

get(GUID) The data associated with GUID is retrieved from one of the nodes responsible

for it.

If the GUID identifies a node that is currently active, the message is delivered to it, oth-
erwise it is forwarded to the node whose GUID is numerically closest to it (according to
some proximity metric). As a use case, we present the Pastry routing algorithm, since Pas-
try is used as a substrate for HiPPIS, the first system proposed in this dissertation. All other

DHTs operate in a similar manner, mainly differing in the proximity metric utilized.

In Pastry, the GUID space is treated as circular. Each node maintains a leaf set, a vector of
size 2¢ containing the GUIDs and IP addresses of the nodes numerically closest on either
side (¢ above and ¢ below). Moreover, each pastry node holds a tree structured routing
table, which maps GUIDs to IPs of a set of nodes spread throughout the entire range of
the possible GUID values with increased density of coverage for GUIDs close to its own.
When routing a message m, the node # is able to scan both the leaf set and the routing
table and forward it to the node whose GUID has the most matching prefix digits with
m’s GUID but is closest to n's GUID. Figure 2.4 depicts the routing steps required for a

message starting from a node to reach its destination.

For further reading, there exists a plethora of works overviewing and comparing the most
popular DHT overlays and their operations in terms of performance and cost [BKK*03,
LSM ™05, KK07,JMW03, LCP*04].

Unstructured P2P Systems An unstructured P2P network is formed when the overlay links
are established arbitrarily. The simplicity of its construction is outweighed by the lack of
guarantees about the location and retrieval of any data stored in the system, especially with
low time complexity, since searching is performed through flooding. In practice, popular
content is likely to be available at several peers, thus it is feasible to retrieve it efficiently.
The lack of correlation between a peer and the content managed by it alleviates the burden
of the high cost of the necessary maintenance of indices and other such structures. This has
led to the success of applied P2P unstructured overlays (e.g. Kazaa [kaz], Gnutella [gnu03],
Freenet [CSWHO1] etc.). A survey and comparison of popular unstructured overlays can
be found in various studies in the relative bibliography [TR03, LCP*04, LCC*02].
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Consequently, DHTs guarantee the discovery of a data item as long as it exists in a bounded
number of hops at the cost of maintenance overhead. Indeed, structured graphs are more ex-
pensive to maintain than unstructured ones due to the constraints imposed by the structure. On
the other hand, unstructured overlays can perform complex (like range or boolean) queries more
efficiently than structured overlays but may prove inefficient in discovering (if at all) unpopular
data items since the lookup service relies on flooding. While both classes of P2P systems offer
tolerance in node churn, unstructured overlays can cope better in environments with extremely
transient peers due to the lack of strict rules for data placement [CCR04].

In this dissertation the potentials of both structured and unstructured P2P overlays are ex-
ploited. First, a system has been built, that relies on a DHT to enable fast operations on the data
with minimal communication cost, while additional design choices have been made for the han-
dling of more complex structured data (multidimensional, hierarchical). Next, in our efforts to
distribute a complex data structure (data cube) we create a system that benefits from the sim-
plicity of an unstructured overlay for efficient indexing, with special effort given to algorithms
that ensure availability and load balancing. In the last proposed system the advantages of both

are combine to offer an integrated solution for the efficient handling of temporal data.

2.2.2 Cloud Computing

The current trend in distributed computing dictates the exploitation of multiple commodity ma-
chines rather than the construction of conventional supercomputers to tackle the increased need
for CPU power as well as disk storage. The Grid [FKT01, FKNTO3] was a pioneering effort to
create wide-area, large-scale distributed computing systems, in which remotely located, disjoint
and diverse processing and data storage facilities are integrated. However, it remained mostly
targeted on the scientific world, unlike its latest descendant, the Cloud [AFG*09], which gains
ground both in the academic as well as the commercial world.

Cloud Computing represents a computing paradigm where computation and storage alike
move towards network-centric data centers hosted by large infrastructure companies. The new
aspects that distinguish Cloud Computing from other distributed architectures is the typically
elastic resource availability, which gives the illusion of infinite computing power and storage
available on demand and the particularly appealing pricing model based on direct storage use
and/or number of CPU cycles consumed, which largely alleviates companies from the cumber-
some and expensive maintenance costs.

In such environments, many remotely located users are able to share data to produce useful
results, thus there is an urgent requirement to obtain solutions to manage, distribute and access
large sets of raw and processed data efficiently and effectively. Currently, there exists a large

interest in cloud-based data management, with big companies such as Amazon, Google, Yahoo,
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Oracle, Sun, etc., providing either the computational resources or the application platforms. For
an application to be deployed in the Cloud, it should provide some architectural characteristics,
such as [BVET08]:

+ Cost-efficiency: Data volumes and transfers as well as computational costs should be min-
imized, as billing is always relative to the resource usage. Hence, we require efficient data-

compression combined with high-performance operations.

o Elasticity: Computing power and storage should be adaptively allocated according to de-
mand, giving the users the impression of infinite resources at their disposal. This require-

ment can be made possible through the use of a shared-nothing architecture.

+ Content availability: More precisely, a data management application should replicate data
automatically across the nodes in the Cloud, be able to continue running in the event of

multiple node failures and be capable of restoring data on recovered nodes automatically.

In this thesis, the proposed systems are based on a shared-nothing architecture, providing
most of the above characteristics. As such, they constitute ideal candidates for deployment in

distributed environments like the Cloud.
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CHAPTER 3

The Hierarchical Peer-to-Peer Indexing System

This chapter describes a distributed system designed to efficiently store, query and update multi-
dimensional data organized into concept hierarchies and dispersed over a network. Our system
employs an adaptive scheme that automatically adjusts the level of indexing according to the
granularity of the incoming queries, without assuming any prior knowledge of the workload. Ef-
ficient roll-up and drill-down operations take place in order to maximize the performance by
minimizing query flooding. Updates are performed online, with minimal communication over-
head, depending on the level of consistency needed. Extensive experimental evaluations show
that, on top of the advantages that a distributed storage offers, our method answers the large
majority of incoming queries, both point and aggregate ones, without flooding the network and
without causing significant storage or load imbalance. Our scheme proves to be especially effi-
cient in cases of skewed workloads, even when these change dynamically with time. At the same
time, it manages to preserve the hierarchical nature of data. To the best of our knowledge, this

is the first attempt towards the support of concept hierarchies in DHTs.

3.1 Overview

As a motivating scenario, let us consider a geographically dispersed business or application that

produces immense amounts of data, e.g., a multinational sales corporation or a data-collection
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Figure 3.1: A concept hierarchy for dimension (a) Location (b) product

facility that processes data from Internet routers. We argue for a completely decentralized ap-
proach, where users can perform online queries on the multiple dimensions, simple yet impor-
tant mining operations (such as roll-up and drill-down on the defined hierarchies) and calculate
aggregate views that return important data summaries. Such an application, besides eliminat-
ing the central storage and processing bottleneck and minimizing human coordination, enables

querying the data in real time, even if some of the resources are unavailable.

Let us assume that the company’s database contains data organized along the location and
product dimensions (see Figure 3.1). In a plain DHT system, one would have to choose a level of
the suggested hierarchy in order to hash all tuples to be inserted to the system and repeat this for
each dimension. Assuming the tuples are hashed according to the city and category attributes,
there will be a node responsible for tuples containing the value Athens, one for Milan, etc., as well
as nodes responsible for Electronics, Household, etc. This structure can be very effective when
answering queries referring to the chosen levels of insertion (and even so, intersection of tuples

will be necessary), whereas queries concerning other hierarchy levels demand global processing.

The solution of multiple insertion of each tuple by hashing every hierarchy value of each di-
mension is not viable: As the number of dimensions and levels increase, so does the redundancy
of data and the storage sacrificed for this purpose. Furthermore, while point queries would be
answered without global processing, this scheme fails to encapsulate the hierarchy relationships:
One cannot answer simple queries, such as “Which country is Patras part of” or “What is the

total revenue for Electronics products sold anywhere’.

This chapter investigates the problem of indexing and querying hierarchical data in DHTs in
a way that preserves the semantics of the hierarchies and is efficient in retrieving the requested
values for both point and aggregate queries. To that end, we propose the Hierarchical Peer-to-
Peer Indexing System (HiPPIS), a DHT-based system that stores and indexes bulk data in the

form of a fact table (e.g., Table 3.1) to multiple sites over the network. It also enables efficient
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querying over multiple dimensions characterized by specific hierarchies. Thus the system bene-
fits from the inherent characteristics of the P2P architecture, such as scalability, fault tolerance
and availability relying solely on commodity nodes. HiPPIS nodes actively monitor the granular-
ity of posed queries in order to adjust the indexing level to the most beneficial one. Combined
with soft-state indices which are dynamically created after query misses, our system manages to
minimize the number of flooding operations necessary to provide exact answers. Furthermore,
HiPPIS does not invalidate the semantics of the stored hierarchies and allows for distributed
knowledge mining.

Peers initially index at a default (pivot) level combination. Inserted tuples are internally stored
in a hierarchy-preserving manner. Query misses are followed by soft-state pointer creations so
that future queries can be served without re-flooding the network. Peers maintain local statis-
tics which are used in order to decide if a reindexing (to a different combination of hierarchy
levels) is necessary, according to the current query trend. For instance, if the ratio of queries
for (country, brand) exceeds a threshold (assuming the pivot level is (city, category)), data
would be reindexed according to that level combination so that most requests would be directly
answered. Besides answering point queries at different granularity, HiPPIS can answer group-by
queries, such as “Give me the sales registered for Greece for ALL products”.

It has been widely observed that most Internet-scale applications, including P2P ones, exhibit
highly skewed workloads (e.g., [CKRT07, RFI02], etc). HiPPIS indexes popular levels and uses
indices to answer the less popular requests. It adapts to the incoming workload as a whole,
without assuming any prior knowledge of the data or workload distributions and without any

precomputations on the data. The contribution of our work can be summarized in the following:

+ It addresses the problem of hierarchical data search in DHT systems. Even though DHTs
bind the number of query hops to the logarithm of the size of the overlay, they are un-
able to directly support queries on dimension hierarchies, since they perform exact match
lookups. Any other case would require message and time-consuming query flooding over
the whole network. Our technique, taking into account user preferences and sensing po-
tential overall tendencies, allows reorganization of the indexing structure in favor of re-
solving queries for the most popular data. It also manages to preserve the useful hierarchy-
specific information that hashing destroys. Either through hashing on a single or multiple
levels of the hierarchy, a naive data insertion would fail to preserve the associations be-
tween the stored keys. By using a tree-like data structure to store data and maintain indices

to related keys, our system is able to respond to more complex, hierarchy-based queries.

« Itallows for online updates, unlike the conventional update technique in data warehousing,
which dictates an offline update application on a daily or weekly basis. The communication

overhead depends on the level of consistency needed by the application.
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Table 3.1: Sample fact table

Location Product Fact
TuplelD Country City Zip Category Brand Sales
ID2 Greece Athens 16674 Electronics Apple 11,500
ID5 Greece Athens 15341 Electronics Sony 1,900
ID51 Greece Athens 15341 Electronics Philips 22,900
ID31 Greece Athens 16732 Household AEG 2,450
ID55 Greece Larissa 20100 Electronics Sony 12,100
ID190 Greece Patras 19712 Household Unilever 1,990
ID324 Greece Athens 17732 Electronics Philips 2,450
ID501 Greece Athens 17843 Electronics Sony 12,000
ID712 Greece Athens 17843 Electronics Apple 32,000

« It presents a thorough experimental section where we clearly identify the advantages of
our proposed system in a variety of workloads (variable levels of skew, dynamic changes,
etc.), datasets and update setups. We also register the induced data and load distributions
across the nodes of the overlay. HiPPIS achieves a high ratio of exact-match queries in a
variety of workloads, even when these change dynamically with time. We show that our
scheme is particularly efficient with highly skewed data distributions which are frequently
documented in the majority of applications, without inducing significant load or storage
imbalance among the network nodes. Moreover, even under high update rates, the fresh-

ness of the query responses remains acceptable.

3.2 HiPPIS Design

3.2.1 Necessary Notation

Our data spawn the d-dimensional space. Each dimension i is organized along L; + 1 hierarchy
levels: Hyo, Hi1, . .., H;1,, with H;o being the special ALL (%) value. We assume that our database
comprises of fact table tuples of the form:

(tupleID, D1y ...Dipy,...,Dg1...Dar,, facti,. .., facty), where D;;,1 < i < dand 1 <
j < L; is the value of the j* level of the i*" dimension of this tuple and fact;,0 < i < k are
the numerical facts that correspond to it (we assume that the numeric values correspond to the
more detailed level of the cube). Our goal is to efficiently insert and index these tuples so that
we can answer queries of the form: ¢ = (q1,qa,. .., qq), where each query element ¢; can be
a value from a valid hierarchy level of the i*" dimension, including the * value (dimensionality
reduction): ¢; = D;;,0 < x < L;.
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3.2.2 Data Insertion

The insertion of a data tuple (or a pointer to the real location of it) is performed as follows: Upon
creation of the database, a combination of levels is globally selected. This is called pivot P =
(p1,p2, .. .,p4q), where each pivot element p; can be a valid hierarchy level of the i*" dimension
(including the special x value): p; = H;y;,0 < y < L;. The ID of each tuple to be inserted is the
hashed value combination corresponding to the pivot. The DHT then assigns each tuple to the
node with ID numerically closest to this value. For tuples inserted at a later stage, nodes can be

informed of P from one of their neighbors in the overlay.

Inserted data are stored in the form of trees that preserves their hierarchical nature. Nodes
store multiple forests, one for each d-valued combination it is responsible for. As a consequence,
each distinct value of the pivot level combination corresponds to a forest that reveals part of the
hierarchy. Each forest consists of d rooted trees, one for each dimension. To see this pictorially,
let us refer to the example depicted in Figure 3.2. Let us assume the data contained in Table 3.1
and the hierarchy of figure 3.1 (without the last level of each dimension) with (city, category)
as the globally defined pivot. The first tuple to be inserted is assigned an ID that derives from
applying our hash over the value Athens|| Electronics and forms a forest with two plain lists (Figure
3.2(a)). As data items with the same ID keep arriving at this node, different values at levels lower
in the hierarchy than the pivot levels create branches, thus forming a tree structure (Figure 3.2(b)
and (c)). The trees of a forest are connected (in order to retrieve the corresponding facts) through

the tuple IDs, depicted as a linked list in Figure 3.2.

3.2.3 Data Lookup and Indexing Mechanism

Queries concerning P are defined as exact match queries and can be answered within O(log V)
forwarding steps. Since we have included the * as the top level of the hierarchy of each dimension,
P may include * in any of its d possible values. Therefore, assuming the query elements ¢; = D,
and the respective pivot level elements p; = H;,, the query is an exact match one if ¢ = y, in the
case it comprises of exact values, or if p; = *. Queries on any of the other level combinations
cannot be answered unless flooded across the DHT. In order to amortize the cost of this opera-
tion and facilitate such requests, we introduce soft-state indices to our proposed structure. These
indices are created on demand, as soon as a query for non-pivot level data is answered. After the
answers from the corresponding nodes are received through overlay flooding, the query initiator
hashes the value of the requested key and sends the IDs of the nodes that answered the query to
the node responsible for that key. So, essentially, we term indices the pointers from a node that
should hold the answer to a query, had the pivot been the queried level combination, to the node

or nodes that actually store the answer.



76 Chapter 3. The Hierarchical Peer-to-Peer Indexing System

All Al AI | AI I
Geece ... Electronics - Livot Greece R El ect ronl cs - Fivot
- Ath%ns ,At/hei / \
16674 Appl e 16674 15341 Appl e Sony
~ 7 AR A
N\ ¥ | D2 | D2 N\ N\ “|1D5
O O=—
$11,500 $11,500 S—— $1,900
@ (b)
Al Al l
G eece PlVOtLeVel ,,,,,,,,, El ectronics ----------
rrrrrrrrr At hins
15%41 16674 17732 17843 ony Phi I'i ps Appl e
A\ N NI -7 _ B
A N SoT TN T -~ >;’/,/” o

ézos \\\IL’D/SI N D/2 B ’1/0/324 S pr1e \A@ D501
O O O O

$1,900 $22,900 $11,500 $2,450 $32,000 $12,000

©

Figure 3.2: The forest structure at node responsible for Athens, Electronics after the insertion of (a) the
first tuple, (b) the second tuple and (c) all tuples of Table 3.1

Soft-state indices give users the illusion that the queried values are actually hashed and re-
trieved in a fast manner. In reality, O(log V) steps are required to locate the indices which are
then used to retrieve the multiple tuples required to compute the correct result set. The number
of indices followed depends on the query and P: If the query attributes are of equal/smaller level
than the respective pivot level elements, only a single pointer will exist. Otherwise multiple (the

exact number depends on the data) pointers need be followed.

The created indices are soft-state, in order to minimize the redundant information. This
means that they expire after a predefined period of time (Time-to-Live or TTL), unless a new
query for that specific value is initiated, in which case, the index is renewed. This mechanism
ensures that changes in the system (e.g., data location, node unavailabilities, etc.) will not result
in stale indices, affecting its performance. Apparently, in cases of very large datasets and uniform

query distributions the index size can grow large. While memory becomes a cheaper commodity
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Figure 3.3: Lookup for (Athens,Electronics)

by the day, the plain size of data discourages an “infinite” memory allocation for indices. After
the number of created indices per node has reached the limit 7,4, the creation of a new index
results in the deletion of the oldest one. Calibrating 4, for performance without increasing it
uncontrollably entails knowledge of our data (e.g., how skewed each hierarchy is). Thus, the sys-
tem tends to preserve the most “useful” indices, namely the ones that refer to the most frequently

used data items. The HiPPIS lookup and indexing algorithm is presented in Algorithm 3.1.

As an example, let us assume the same hierarchy as before, with (city, category) as P. A
query for (Athens,Electronics) is an exact match one and translates to a simple DHT lookup op-
eration (Figure 3.3). When querying for (16674, Apple), we discover that no such key exists in
the DHT. Flooding is performed and the node Athens||Electronics answers with the correspond-
ing tuple. The initiator, which now knows the ID of the node that answered the query, forwards
it to the node responsible for the value 16674||Apple, which now has an index pointing to the
node Athens||Electronics. Thus, in case of another query referring to the same value, the time
and bandwidth consuming flooding is avoided and the response can be provided quickly and

efficiently, within logN+C hops.

The same procedure takes place when the query concerns a value that lies higher in the hi-
erarchy than the pivot. The query for (Greece, ) is routed to the node responsible, where no
answer is available. Flooding is performed and the nodes that contain relevant tuples are discov-
ered. Finally, the data satisfying the query are returned to the initiator and multiple indices are
built. Both these cases are shown pictorially in Figures 3.4 and 3.5 respectively, where the black
nodes are the ones that store the actual data, whereas the nodes holding pointers are depicted in

gray. The pointers themselves are represented as dashed arrows.
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Figure 3.4: Lookup and index creation for (16674, Apple)

Patra||Household
Larissa||Electronics

Athens||Household
Athensl||Electronics

Greece||*

Figure 3.5: Lookup and index creation for (Greece, )

3.2.4 Reindexing Operation

In a data warehouse, the distribution of data or queries may vary over time. Thus, it is possible
that the choice of P, which is done once at the beginning, does not favor performance. HiPPIS is
adaptive to the query distribution, supporting dynamic changes in the pivot, without assuming
any prior knowledge, being solely based on locally maintained statistics. By shifting to a different
level combination we aim at increasing the ratio of exact match queries, reducing floodings and

boosting performance. The exact procedure is presented in Algorithm 3.2.

If the number of queries initiated by a node regarding level combinations different than P
exceeds the number of queries for P by some threshold, this node considers the possibility of a
new partitioning. Each node determines the popularity of each level combination (H?:o L; exist)

by measuring the number of queries it has locally initiated within the most recent time-frame W.
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This time-frame should be properly selected to perceive variations of query distributions and, at

the same time, stay immune to instant surges in load.

Algorithm 3.1: HiPPIS Lookup and Indexing Algorithm
Data: ¢ = (q1, 42, - - -, qq): the query to be resolved

P = (p1,p2,...,paq): the pivot level combination
r: remote node
K cracts Krina: set of keys held and indexed by remote node respectively

Result: Tuples returned to the query initiator

if 3P; C P :Vp; € Ps,p; = x N\ q; # * and the rest of the attributes (P — Ps) are of the
same level then
ID, < hash(q) where g; is replaced by *;
DHT_route (LookupMessage) to r responsible for 1.D;
local processing by r and possible answers returned;
end
else
IDg < hash(q);
DHT_route (LookupMessage(/ D,));
local processing by r;
if ID; ¢ K; czact then
if ID; ¢ K, inq then
flood (q), local processing by each r ;
answers returned by set of nodes R ;
DHT_route (IndexMessage(ID, — R));
Receiver nodes add 1D, to K, jnq4;
end

else
| local processing, tuples returned

end
end

else
| tuples returned

end

end

If the percentage of the queries on the most popular level combination ¢4, is more than
threshold of the respective pivot popularity, the node is positive to the potential of adopting

another pivot. If this is the case, reindexing enters its second phase, in which the local intuition
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Algorithm 3.2: HiPPIS Reindexing Algorithm
Data: P: current pivot level combination
popularity.,: popularity of level combination ¢;
Clocal = €0 < €1 < ... < Cmag ranked level combinations according to local popularity
Result: Reindexing of data

if popularity,,, .. - popularityp > threshold then
flood (SendStatsMessage) and collect global statistics;
Cylobal : €o < €1 < ... < Cpag ranked level combinations according to global
popularity;
calculate threshold,;
if popularity.,,.-popularityp > threshold then
determine new pivot level Pey;
if Py # P then
flood (ReindexingMessage(Ppew));
P < P, ey, rehashing of tuples;
end
end
end

must be confirmed (or not) using global statistics. The node whose local information indicates a
possible shift of P sends a SendStats message to all system nodes. The initiator, after collecting
the statistics from all nodes, redefines ¢4, and repeats the aforementioned procedure, enhanced
with a strategy for the optimal pivot selection, thoroughly described in the next section. In the

case of a new P selection, reindexing is performed respectively by all nodes.

It should be noted here that the first phase of the reindexing process is not decisive for the
selection of the new potential pivot; it is rather used as an indication of an imbalance that should
be further investigated. Thus, we assume that nodes act altruistically, not only by reporting their
true statistics, but also in the sense that they may trigger a change of pivot that may not reflect

their personal preferences.

The initiating node floods a Reindex message to force all nodes to change their pivot. Each
node that receives this message traverses its tuples, finds all the values of the level combination
that will constitute the new reference point and rehashes them one by one, sending the tuples to
the corresponding nodes. Assuming that the size of the dataset | D| > N2, N being the size of
the network, the preferred method to perform this is to send at most N — 1 messages per node,
grouping the tuples by recipient. After the node completes the procedure, it erases all its data

and indices.
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Figure 3.6: The produced tree structures after Reindexing

Back to our example, if the node Athens||Electronics receives a Reindex message for (city,
brand), it runs through its tuples and discovers that the values corresponding to that level com-
bination are Athens||Sony, Athens| Philips and Athens||Apple. The values are hashed and the

corresponding nodes are now responsible for the tuples containing these values (Figure 3.6).

3.2.5 Locking

In order to ensure the correctness of the answers during the reindexing process and to avoid
simultaneous reindexings by multiple nodes, we introduce a locking mechanism. After a node
decides to perform reindexing according to the global statistics, it first sends a Lock message to
all system nodes and then proceeds to it. Once a node receives the Lock message, it changes its
state to LOCKED and maintains it for a predefined period of time (related to the network size),
which we assume is adequate to cover the time needed for the whole system to finish reindexing
and to reach a stable state. During this time, locked nodes continue answering queries through
flooding. Therefore the system constantly remains online.

To cope with the issue of possible concurrent locks, we adopt a simple resolution mechanism:
Since each Lock message, upon creation by the initiator, is identified by a (local) timestamp and
the initiator’s ID, nodes receiving more than one Lock messages within a small time frame may
assume as valid the one with the earliest timestamp (or the one coming from the lowest ID) and
accept Reindex messages only by its initiator. If the newly received Lock is not valid, the node
stops forwarding it. An already LOCKED node is not allowed to initiate another locking.

We should note here that since each node collects global statistics before a new pivot decision,
it is impossible that two non-malicious nodes come to a different decision. This would only be
possible (with low probability) if sampling was used for global statistics collection. Even so, the

locking mechanism makes sure that only one node at a time can instruct reindexing.
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3.2.6 Updates

Tuple updates are normally performed through an update of the tuple’s measures at the cor-
responding node. One open issue relates to the insertion of new tuples in the system. While
hashing according to the current pivot and storing the new item is trivial, there may exist indices
that need to be updated since the new tuple must be included in the result set of various queries.
As an example, consider an inserted tuple that documents sales of electronics in a new Greek
city. An existing index for ¢ = (Greece, Electronics) should now include the ID of the node re-
sponsible for the new tuple. It should be noted that inconsistencies may arise only by tuples that
contain new pivot level combinations and thus create new forests. Since the creation of an index
may be followed by one or more index deletions at the creating node (due to space constraints),
the inserting node cannot know of the existence or not of an index relative to the new tuple a
priori. This can be resolved in a variety of ways, according to the level of consistency that we

require from our system. We identify the following two cases:

+ Strong consistency: For applications that rely on constant data analysis and immediate de-
tection of changes in trends, it is crucial that, at any time, any query to the data ware-
house returns the complete and most up-to-date answers. For instance, in case of an intru-
sion detection application which analyzes data created by geographically dispersed routers,
denial-of-service (DoS) attacks must be tracked immediately to protect the routers from
collapsing. To achieve strong consistency, after each tuple insertion, the node performs
H?:o L; — 1 lookups to identify the existence of all possible index combinations. Each
node that holds a corresponding combination will update its value. Thus, consistency is
guaranteed in exchange of a higher communication cost, which depends on the rate A4

at which updates are being performed.

o Weak consistency: When the application can afford some “staleness” in the data, a weak
consistency scheme can be applied. Nodes append the inserted tuples to a globally known
location. Index-holding peers can then, asynchronously, retrieve this directory and update
the required indices. During the time period between the new tuple insertion and the
asynchronous index update, it is possible that some answers are not 100% up-to-date. The
freshness of the responses depends on A,;q, as well as on the rate \;jqe, at which each
node contacts the central directory and updates its indices. The communication cost is
smaller than that of the strong consistency scheme, since Ajjge; < Aypa. Therefore, this
approach is recommended in cases where bandwidth resources are limited and not 100%

accuracy is required.
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3.3 Discussion - Enhancements

In this section we discuss some important aspects of HiPPIS that relate to its parameters as well

as optimization issues.

3.3.1 Memory requirements

A node running HiPPIS requires space for the combination statistics (O(Hf-l:0 L;) modulo the
window W) plus the storage required for the soft state indices. Each created index for a specific
key holds, besides the key itself and its time of creation, the IDs of the nodes that hold the relative
tuples. The number of different IDs is bound by the size of the network N. Hence, if K, is
the maximum number of non-pivot keys held by a node, each node requires O(N K;,4) bytes.
Note here that in this calculation we have not included the amount of space reserved for the data
at each node (usually not stored in main memory). Nodes can either physically store the data or
pointers to their original locations. Whichever the case, the amount of space per forest depends
on P (besides the data distribution of course): The more coarse grained the hierarchy levels in

P, the larger the number of tuples that correspond to each tree.

3.3.2 Parameter Selection

A careful choice of the TTL, W, K4, parameters plays an important role in the performance of
the system. A small T7L degrades the success ratio of the search mechanism, invalidating indices
unnecessarily. Assuming the rate at which participating peers delete their data or disconnect is
small (a reasonable assumption for our motivating application), a large value for TTL will not
create a stale image that fails to reflect the infrequent changes.

The window parameter W represents the number of previous statistics that each node stores
and uses in order to decide a pivot change. A large value for W will fail to perceive load variations,
whereas a very small value will possibly lead to frequent erroneous or conflicting reindexing
decisions. In order to estimate its value, we set W= O(1/)), i.e., we connect the size of the
window with the query inter-arrival time. The more frequent the requests, the smaller W can be
and vice versa.

0" and 1°¢ frequency moment (Fp and F} respectively)

In order to estimate A, we need the
of the request sequence arriving at a node. Fy is the number of distinct IDs that appear in the
sequence, while F7 is the length of the sequence (number of requests). Nodes can easily monitor
the number of incoming requests inside a time interval. Many efficient schemes to estimate Fp
within a factor of 14 ¢ have been proposed (e.g., [BYJK1T02,AMS99]). We use one of the schemes

in [BYJK*02], which requires only O(1/¢? + log(m)) memory bits, where m is the number of
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distinct node IDs. In reality, m is in the order of the network size, since all nodes may possibly
reach it in the DHT.

Finally, regarding the total amount of memory dedicated per node, this is dominated by the
maximum number of non-pivot keys K4, that a node is responsible for. Assuming a value
of N = 1K nodes for our application and that IDs and keys need 20 bytes (as outputs of the
SHAT1 hash function), a node that is responsible for 1K different keys will need at most 20MB of
memory while for 10K keys a node will need at most 200MB of memory (certainly affordable by

most modern desktop PCs).

3.3.3 Reindexing Cost and Load Balancing

Reindexing is a costly procedure, as it requires network flooding for the collection of statistics
and the consecutive re-insertion of tuples. Instead of crawling the entire network, the global
statistics collection could be based on uniform sampling, thus decreasing the number of required
messages. Random sampling in DHTs can be achieved simply by generating identifiers at ran-
dom and finding the peers closest to them. Because peer identifiers are generated uniformly, we
know they are uncorrelated with any other property. This technique is simple and effective, as
long as there is little variation in the amount of identifier space that each peer is responsible for.
Such a sampling technique was used in various studies of widely deployed DHTs (e.g., [SR06]).
However, the re-insertion of tuples is the operation that dominates the complexity of the rein-
dexing process, requiring 2(N?) messages. Therefore, it is important to ensure that our gains

from reducing query floodings outweigh this cost.

More formally, let us assume that x and y are the pivot level combinations before and after
reindexing respectively. As Gain,_,,(t) we denote the gain in messages after reindexing as a
function of time and as Cost,_,, the cost of reindexing in messages. To conclude that a reindexing

was indeed beneficial for the system, the following statement should be true:

Costyy<Gaing_,y (t) =

Costy—sy<EM,, - log(N) + Fl, - N — EM,, - log(N) — Fl, - N =
Costyyy<Agy - t-log(N) + (A= Xz) - t-N =Xy -t-log(N) = (A= Ay)-t-N =
Costyyy<(N —1og(N))(Ay — Az) - t

where EM; and Fl; represent the exact match and flooded queries respectively for level combina-
tion 7. Moreover, we assume no soft-state indices, a steady query arrival rate A and steady query

rates A, and ), targeted towards = and y respectively. Cost,_,, is bound by N?, since the size of
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the dataset |D| > N2 and thus messages are grouped by recipient. So, in the worst case:

NZ.log(N) < (N —log(N))(A\y — A\z) - t =

N2 .log(N)
Ay = Ag) -t > N —log(N)
and for large N values, N — log(N) = N
(Ay = Az) -t > N -log(N) (3.1)

From Equation 3.1 we derive that a reindexing is beneficial in terms of messages when the dif-
ference in the number of exact matches before and after reindexing is greater than a number
depending on the network size. This can be achieved either when there is a reasonable differ-
ence between the query arrival rates of the two level combinations or when adequate time has
elapsed before a new reindexing takes place. We must stress out that this formula represents the
worst case scenario for HiPPIS, since we have assumed that soft-state indices do not contribute
to the system’s gain. However we expect that, depending on the posed workload, soft-state in-
dices can significantly decrease the number of messages exchanged and thus lead to a balance
between reindexing Cost and Gain more quickly.

Furthermore, following our previous discussion, there is a clear trade-off between the amount
of space per forest (via the choice of the pivot) and the amount of processing corresponding to
each node: The higher the pivot levels, the more requests are handled through a single node.
In this work, we do not explicitly deal with the load-balancing problem (caused either by un-
even load or data distribution), as this is orthogonal and can be handled in a variety of well-
documented ways in a DHT (e.g., [PNT06, GSBK04], etc.). Nevertheless, for our target appli-
cations, we believe and prove in our experimental section that an uneven data distribution is
unlikely: The number of participating peers is not expected to be very high so that a uniform
hashing of the existing combinations even at the highest levels will result in a uniform data dis-

tribution.

3.3.4 Minimize Global Statistics Collection

In order to minimize the number of occasions where global statistics are collected due to nodes
interested in suboptimal levels or malicious users, we define the interval, ; parameter for each
node n at the #* time it checks its statistics. This parameter defines the minimum time-stretch
between two consequent checks that can be initiated by n and coincides with the frequency of n
checking its statistics. Its initial value T is the same for all nodes: interval, o = Ts. In order to
discourage consecutive reindexing attempts from the same node, this parameter is multiplica-

tively increased when the processing of global statistics concludes in different results or in a



86 Chapter 3. The Hierarchical Peer-to-Peer Indexing System

no-change decision and reset to T otherwise. Specifically:

2 x intervaly, ;—1  if conflict between
interval, ; = local & global stats

T otherwise

3.3.5 'Threshold Selection

The threshold parameter is of vital importance for the efficiency of the system, and should there-
fore be carefully determined in order to avoid unnecessary reindexing decisions. Frequent index
reorganizations should be discouraged, yet beneficial reindexing should not be prevented. The
node having initiated the collection of global statistics calculates the popularity of each level com-
bination, that is, the percentage of queries concerning that specific level combination, and ranks
them according to this metric (C': ¢y < ¢1 < ... < ¢pmaz). The overall query distribution should
be taken into account as well, since it is possible that the system profits by choosing some less

popular combination than ¢;,,4,. This conclusion derives from the following observations:

+ Remaining at the current P spares the reindexing process as well as the invalidation of the

so far created indices.

+ A x subsumes all levels of a dimension’s hierarchy, since queries for other levels can be an-
swered from the ALL data stored. For example, for a pivot level P = (Hj1, %) all queries
q = (D11, q2) can be answered (with g2 being any possible value from any level of dimen-

sion 2).

The pivot choice is shaped as follows: The level combinations that lie within threshold from cy,qx

are considered as pivot candidates. More formally,

{Ve; € C, 0 < i < max| popularity, . — popularity. < threshold = c; € Ceana}

where Cunq is the set of candidate level combinations. The threshold value is proportional to
the Mean Difference (A) of the popularity values, in particular threshold=k - A, k > 1. The
parameter A, which equals the average absolute difference of two independent values, is chosen

as a measure of statistical dispersion:

maxr maxr

1
A:maa:-(max—kl)zzlci_cj‘

i=0 j=0

Among all ¢; € Cegpg, the new pivot level is chosen through the following strategy:
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Table 3.2: Percentage of queries directed towards the 27 level combinations of our initial simulation

6 % most popular % least popular #combs

0 3.7 3.7 27
0.5 11.1 2.1 27
1.5 44.8 0.3 27
2.5 74.9 0.01 27
3.5 88.8 0.01 12

1. If the current level P € Cgn4, the system takes no action.

2. Otherwise, from all ¢ € C,,,,4 containing * in one or more dimensions, we consider only
combinations that include up to [%1 ones and exclude the rest. This is in order to ensure
that no excessive local processing will be needed for incoming queries. For each of the
remaining combinations containing *, we recalculate their popularity adding the popular-
ity of other candidate combinations that are subsumed by it. For instance, let us assume
(Country, Brand), (City, *) and (x, Brand) are the candidate pivot levels, with popularities
of 10%, 20% and 15% respectively. Comparing the two levels with *, (x,Brand) can an-
swer (Country, Brand) queries, thus its popularity rises to 25% and is therefore chosen over

(City, *) as the new pivot combination.

3. If none of the above holds, the system shifts to the level combination with the highest
popularity (¢maz)-

3.4 Experimental Results

We now present a comprehensive simulation-based evaluation of HiPPIS. Our performance re-
sults are based on a heavily modified version of the FreePastry simulator [fre], although any DHT
implementation could be used as a substrate. By default, we assume a network size of 256 nodes,
but results are collected with up to 8K nodes. In our simulations, we use synthetically generated
data, produced by our own as well as the APB-1 benchmark generator [apb]. In the former case,
each dimension is represented as a tree, with each value having a single parent and mul chil-
dren in the next level. The tuples of the fact table to be stored are created from combinations
of the leaf values of each dimension tree plus a randomly generated numerical fact (sales). By
default, our data comprise of 22k tuples, organized in a 3-dimensional, 3-level hierarchy. The
number of distinct values of the top level is | H1| = 20 and mul=2. The initial pivot is, by default,
(Hy2, Hao, H32). The APB-1 generated datasets are described in the corresponding subsection.

For our query workloads, we consider a two-stage approach: We first identify the probability

of querying each level combination according to the level/Dist distribution; a query is then chosen
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from that combination following the valueDist distribution. In our experiments, we order the
different combinations lexicographically, i.e., combination (H13, Ha1, H31) > (Hi1, Hos, H33)
and we use the Zipfian distribution for levelDist where the number of queries for combination 4
is proportional to 1/i%. We vary the value of 6 as well as the direction of the ordering to control
the amount and target of skew of our workloads. For valueDist we use the 80/20 rule by default,
unless stated otherwise. Table 3.2 gives an overview of the workloads we frequently use in this
section. We document the percentage of queries directed towards the most and least popular
combination, as well as the number of combinations that receive at least one query (out of the
total 27 existing).

Our default workload comprises of 35k queries which arrive at an average rate A\gyery of 10

queries per simulated time unit. For simplicity reasons we have set the time unit equal to 1

0 queries

sec, therefore Agyery = 10 T

. For our experiments, W is set to 50 sec and T7L is given a
practically infinite value (indices never expire). Finally,the value of ,,,4,, which is heavily data and
query-dependent, has been experimented on and set to 2k (see section 3.4.10). This practically
means that each node dedicates at most 100KB of memory on soft-state indices.

In this section, we intend to demonstrate the performance and adaptability of HiPPIS under
various conditions. To that direction, we measure the percentage of queries which are answered
directly, i.e., without flooding (precision) and we trace the average number of exchanged messages
per query, as well as the overhead of control messages needed by our protocol. We compare
HiPPIS with the naive protocol (referred to as Naive), where precision equals the ratio of queries
on the initial pivot, and a special case of HiPPIS, where only the indices are utilized and no

reindexing occurs (referred to as HiPPIS(N/R) or plain N/R).

3.4.1 Performance with Varying Query Distributions

In this initial set of simulations, we vary the 6 parameter for levelDist as well as the direction of
skew, using the default parameters otherwise.

In the first graph of Figure 3.7, data are skewed towards the “lowest” level ((H13, Hag, H33)).
As 6 increases, the workload becomes more skewed and the performance of HiPPIS improves:
Reindexing is performed sooner, as the ratio of popular queries increases, resulting in a rise of the
exact matches due to the chosen combination. For uniform distributions, the number of distinct
queries does not allow our method to capitalize on the indexing scheme.

The next graph shows results where our workload favors (Hy1, Ho1, H31). Again, we no-
tice a similar trend in performance as the values for 6 increase. Nevertheless, HiPPIS is slightly
more effective than before, with its difference from N/R increasing as € increases. This is due
to the limited number of distinct values of (H11, Ho1, H31), which facilitates the maintenance of

indices, favoring N/R against HiPPIS. The latter erases all created indices during the reindexing
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Figure 3.7: Precision for varying levels of skew (most popular combination is (Hys, Hos, Hs3) and
(Hy1, Hoy, H31) respectively)

.. 250 - 250
g g __
3200 3200
=150 & 150
g 100 a 100
£ =0 i £ =0
ﬁ | B v i E ?? I | 42 |

00 05 15 35 0

theta

Figure 3.8: Average number of messages required to answer a query for varying levels of skew (most popular
combination is (Hy3, Hos, Hss) and (H11, Ha1, Hs1) respectively)

process. However, HiPPIS naturally outperforms its competition in the steady state, as it can

increase its performance with time.

Figure 3.8 depicts the number of messages exchanged per query in the system, indicating a
measure of bandwidth consumption. Messages regarding query resolution (including requests
as well as responses) and control messages, which include those needed to build indices, collect
statistics, notify of a reindexing and reinsert tuples, are presented separately. Qualitatively, the
total number of messages per query is inversely proportional to the system’s precision. As ob-
served in all experiments, the overhead of control messages is small and outweighed by the gains
in precision (less than 8% over the total number of messages). This is due to the fact that HiPPIS
carries out the minimum required reindexing rounds, which translates to one reindexing process
per direction of skew. We also notice that the overhead of the control messages decreases as the
workload becomes more skewed (almost negligible for § > 1.5). This can be explained by the

fact that HiPPIS becomes more confident in the level of reindexing it chooses as 6 increases.
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Table 3.3: Statistics for various datasets

direction of skew 6 value #global stats #reind. #reinsertions sim. time (sec) BW (KB)

up 1.5 5 1 11746 5.1 755
up 2.5 4 1 11678 5.5 746
up 3.5 2 1 11521 55 730
down 1.5 5 1 16824 4.2 743
down 2.5 4 1 16933 4.4 735
down 3.5 3 1 16701 4.3 740
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Figure 3.9: Balance between reindexing cost and gain in messages over time (skew towards (Hy3, Haz, Hs3)
and (Hq1, Ho1, H31) respectively)

3.4.2 Reindexing Cost

Table 3.3 presents statistics concerning the reindexing process during the workloads of the previ-
ous experiment. The workloads directed towards ( Hy3, Ha3, H3s) are denoted as down and the
ones towards (H11, Ho1, H31) as up. As aforementioned, the cost of reindexing is non-negligible.
Hence, it is very important that the system performs the minimum required reindexing rounds.
HiPPIS proves extremely efficient to that end: Only one reindexing process is carried out per
direction of skew and less than 5 SendStats requests are produced per simulation, thanks to the
interval selection strategy presented in Section 3.3.4. Thus, our method makes near-optimal use
of its bandwidth-intensive operations. It is also worth noting that reindexings towards the lowest
hierarchy levels cause more reinsertions than those directed towards the upper ones. This is due
to the fact that the dataset used has a limited number of tuples. For a large number of tuples,
reinsertions for all possible pivots converge to N2. However, the total consumed bandwidth (de-
noted as BW) remains the same regardless the skew and its direction, since, in all cases, the initial
dataset is reinserted. The time measurements may not adequately reflect reality due to the fact
that the experimental evaluation is based on a simulation rather than a real system deployment.
In a real system of N nodes, we would expect a significant acceleration in computation (almost

N-fold) and a communication cost depending on the topology of the underlying network.
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Trying to identify the circumstances under which our system benefits from the reindexing
process, we plot the Cumulative Gain and the Cumulative Cost of reindexing in messages for
various datasets and workloads (Figure 3.9). By Cumulative Gain we signify the total number of
messages spared when using HiPPIS instead of N/R and in Cumulative Cost we include messages
for global statistics collection, locking and reinsertion of tuples. Our first observation is that
the Cumulative Gain increases more rapidly with the increase in skew. This is natural, since
highly skewed workloads translate to bigger differences between the most popular and the rest
level combinations. Moreover, the workloads directed towards (H13, Has, Hss) exhibit a higher
increase rate in Cumulative Gain compared to the ones towards (Hy1, H21, H31). This is due
to the fact that the soft-state indexing mechanism of N/R is more effective in the latter case
(less distinct values for the specific level combination). However, for highly biased workloads,
regardless the direction of skew, our system manages to outweigh the reindexing cost in less than
100 sec.

The results of this experiment conform to the conclusions derived by our cost benefit analysis
of Section 3.3.3: The highest the workload skew, the more quickly HiPPIS starts gaining benefit

from a reindexing.

3.4.3 Storage and Load Distribution

This set of experiments aims to evaluate HiPPIS in terms of storage and load distribution among
the participating network nodes. Using the default dataset, we utilize three of the workloads
generated for the previous experiments, the one with levelDist of # = 0 (denoted as uni), and the
ones with §# = 3.5, directed towards (Hy1, Ho1, H31) and (Hy3, Ha3, Hss) (denoted as up and
down respectively).

Figure 3.10 depicts the space dedicated by each node for storing the actual data (in the form
of the forest-like structures presented in Section 3.2.2) after the end of the simulation. The mea-
sured quantities for each of the 256 nodes are sorted in ascending order. After the necessary rein-
dexings have occurred, the final pivot level combinations are (H12, Hoo, Hs2), (H11, Ho1, H31)
and (H1s, Hos, Hs3) for uni, up and down respectively. The more numerous the different values
of P, the more balanced is the storage distribution among the nodes. In the case of the down
workload, the majority of nodes host similar quantities of storage space. However, even for the
up workload, no major differences are documented, since the number of different value combi-
nations is still much larger than the size of the network. This leaves the fairness of the distribution
mainly on the hash function.

P affects the total disk space needed to store the distributed data structure: The same dataset
requires more space when stored under (H13, Hos, Hs3) than under (Hy1, Ha1, Hs1). Thisis due

to the fact that a P close to the root of the forest eliminates redundancies in all levels lying above
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it in the hierarchy. This can be clarified by observing Figure 3.2(c) and 3.6. While the value Athens

is stored just once for (city, category), it needs to be stored 3 times for (city, brand).

Figure 3.11 shows the amount of indices stored by each network node in ascending order at
two distinct points in time, at 77 = 100 sec and 75 = 3000 sec. 17 corresponds to an initial point
before any reindexing has occurred, whereas 75 to a moment close to the end of the simulation.
In all cases (except uni), indices are distributed pretty evenly among the nodes, with more skewed
loads registering the most balanced results. Uni exhibits a remarkable increase in indices over
time (almost 18 times as many indices in 75 than in 77). Since the queries can contain any value
with equal probability and no reindexing is performed, very few queries are being repeated and
thus indices are constantly being built. The smallest increase is documented for the up workload,

since it is the workload with the least possible value combinations that can be queried.

Figure 3.12 depicts the average number of messages per second handled by each network
node over time, including control messages. For a uniform workload, the simulation starts with

an average load almost as high as the query arrival rate, since the majority of the queries are
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Table 3.4: Statistics for various network sizes

#nodes #global stats #reind. avg.load/node reindload/node #msg/query precision

(msg/s) (msg/s) (%)

128 5 1 2.2 95 28 84.7

256 4 1 2.0 54 51 84.4

512 4 1 1.9 31 97 83.9

1024 2 1 1.8 19 182 83.5
2048 2 1 1.7 12 348 83.3
4096 2 1 1.6 9 655 83.3
8192 2 1 1.6 6 1202 83.3

Table 3.5: Statistics for various dataset sizes

#tuples #global stats #reind. avg.load/node reindload/node BW  #msg/ precision

(msg/s) (msg/s) (MB)  query (%)

100K 3 1 2 204 4 52 83
1M 4 1 2 235 40 49 83
10M 3 1 2 254 400 50 83
100M 3 1 2 255 4000 49 83

answered though flooding. As time progresses and indices are being created, this measure de-
creases almost linearly. For the skewed workloads, we observe a spike in load shortly after the
simulation starts (see embedded graph). This is due to the reindexing process and mainly to the
reinsertion of the dataset according to the new P. However, the average load per node remains
within acceptable limits (less than 30 msg/sec) and can easily be handled by the network nodes.
Moreover, the decrease is more abrupt during the first 100 sec, while after that point, no sig-
nificant improvement is documented. This can be explained by the fact that reindexing occurs
very quickly, leaving little room for refinement through index creation. Finally, as seen in Figure
3.13, the individual load (sorted in ascending order) is very evenly distributed among the network

nodes at all times.

3.4.4 Scaling the Network and Dataset Size

In this set of experiments we aim to examine how well our system scales with regard to the
number of participating nodes and the number of tuples in the dataset. First, having inserted
the default dataset, we vary the network size from 128 to 8192 nodes. We believe that for a data
warehousing application, a system consisting of 8K nodes is an already exaggerated scenario.
Also, we vary the dataset size from 100k to 100M tuples and insert it in our default system of 256
nodes. In all cases we pose workloads with levelDist of § = 3, directed towards (H13, Ha3, H3s).
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As Table 3.4 proves, HiPPIS manages to maintain a steadily high precision, performing only
one reindexing and collecting global statistics less than 5 times throughout the simulation, re-
gardless of the network size. Of course, the average number of messages required to resolve a
query increases with the increase in network nodes, as floodings become more costly. However,
this number is scattered over the network nodes, resulting in a decreasing average load per node.
The same is true for the load caused by the reindexing process, since the number of reinsertions

remains the same in all cases due to the dataset size (|D| < N?2).

When the number of tuples increases by orders of magnitude, only the bandwidth consumed
during the reindexing process shows a proportional increase, due to the reinsertion of the dataset.
The rest of the statistics presented in Table 3.5 remain stable: Invariably high precision, steady
average load per node and number of messages per query and a reindexing load per node con-

verging to N.

3.4.5 The Effect of Recurring Queries

We plan to identify the effectiveness of our system’s indexing mechanism under workloads with
varying ratio of recurring queries. We believe that this will be the case for the majority of work-
loads for our target applications, with users temporarily interested in a small number (or set)
of (aggregate) data. We consider two different scenarios for the distribution of the duplicate
queries. In the first case, for two levels of skew (§ = {1.0,3.0}), we vary the percentage of
unique queries by increasing duplicate ones, following the same distribution. In the second case,
for three different values of  for levelDist, namely 0.0, 1.0 and 3.0, the valueDist distribution
varies from uniform to 99/1, creating within each level combination the same amount of skew.

The documented precision for both cases is depicted in Figures 3.14 and 3.15 respectively.

In both cases we notice that, as more queries recur in the workload, the performance in-
creases. In the first case, recurring queries follow the levelDist distribution, meaning that dupli-
cate queries primarily concern the most popular level combinations. Since HiPPIS reindexes to
the most beneficial level, it naturally increases its exact answers compared to N/R. Nevertheless,
the gains decrease as replication increases, unlike N/R, which shows almost linear improvement.
This is due to the fact that there exists less room for HiPPIS to take advantage of the indexed
queries, since it has already moved to the best P which takes up significantly more requests. As

6 increases, we normally expect an increase in performance.

In the second case (Figure 3.15), as the bias of queried values within a level combination
increases, we observe that our system benefits even more from the soft-state indices, exploited
by duplicate queries. Small replication in queries results in significant differences in precision

for the various 6 values, as for these kinds of workloads precision is dominated by exact matches.
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Nevertheless, all three distributions seem to converge to very high precision levels as the ratio of

duplicate queries augments.

3.4.6 The Effect of Aggregate Queries

In this experiment we intend to examine how our system behaves when we inject an increasing
number of aggregate queries (from zero up to 50% of the total number of queries). We assume
two different distributions as to how x* are distributed in those queries: In the first scenario (S1), a
* appears in the three dimensions with probabilities (0.73, 0.18, 0.09) respectively (i.e., we heavily
favor an aggregate view on the first dimension). In the second one (S2), each dimension is given
an equal probability. The workload skew is set to 6 = 2.0. Results are presented in Figure 3.16.
We notice that both methods increase in performance as the percentage of aggregate queries
increases in both distributions. This is due to the fact that the different combinations that these
queries can produce are less than those of point queries. Therefore, increasing their ratio enables

the indexing mechanism to store and answer a larger amount of requests without flooding. This
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Figure 3.18: Precision over time for various workloads when a sudden shift in skew occurs in t. = 31000sec

is evident from N/R’s precision increase. In the latter case, the reindexing process invalidates
all created indices, thus mitigating the beneficial effect we described before. Furthermore, the
skew in the star distribution affects, although slightly, the system’s precision. Greater skew leads
to greater probability of duplicate queries, favoring the indexing mechanism. Since HiPPIS is
less dependent on this mechanism, the increase in precision is less noticeable than in the case of
HiPPIS(N/R).

3.4.7 Performance in Dynamic Environments

In the next experiment, we measure the performance and adaptivity of HiPPIS in dynamic en-
vironments, namely sudden changes in the workload. We tailor our query distribution so that a
sudden change occurs in the middle of the simulation (t. = 31000sec): From a skewed work-
load towards (H13, Ha3, H3s) we shift to a skewed load towards (H11, Ha1, H31). We show the
results for two levels of skew in Figure 3.18.

Our results show that, in all cases, HiPPIS quickly increases its precision due to the combi-
nation of automatic reindexing and soft-state indices. Floodings increase after ¢., since neither
the pivot combination nor the so far created indices can efficiently serve queries with different
direction of skew (hence the decline in precision). However, it quickly manages to recover and
regain its performance characteristics, as a reindexing is performed and new indices are built.
The rate at which these events occur depends on the amount of skew: In the § = 3.0 case, we
show remarkable increase in precision (starting from the plain data insertion at t = Osec), fast
recovery after the change in skew and convergence to almost 100% precision. For the less skewed
distribution (f = 1.0), the results record a slight deterioration in the rate of convergence as well
as a decline in precision from the change in skew. Once again, we observe that HiPPIS performs
best in skewed workloads, but its performance in the steady state is invariably high, regardless

the workload.
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Figure 3.19: Precision over time when shifts in skew occur every 100 sec

Table 3.6: Statistics for various values of W

W (sec)  #global stats  #reind.  avg.load/node (msg/s)  #msg/query  precision (%)

10 10 10 1061 60 79
500 1 1 645 116 61
1000 0 0 523 133 52

To identify the role of the parameter W in the reindexing decision, we create a workload
where the skew changes direction between (H13, Hos, H33) and (H11, Ho1, Hs1) every Typew =
100 sec (# = 3.0).* Figure 3.19 plots the precision of HiPPIS over time and Table 3.6 presents

various statistics with W ranging from 10 to 1000 sec.

A small W is able to perceive more fine-grained changes in the skew and thus performs
frequent reindexings. Indeed, as proven by our experiments, for W’ sizes smaller than the period
of skew change the system performs one reindexing per direction of skew. Moreover, for W<
Tskew- the smaller its value, the faster HiPPIS shifts to the appropriate level combination and the
more queries it manages to answer without flooding. On the other hand, as W increases, the
changes in skew are less detected and the threshold selection policy is followed: When W= 500
sec a single reindexing occurs, while for W= 1000 sec the system performs no reindexing. As
less reindexings occur, the average precision naturally drops with an increase in W. Nevertheless,
infrequent reindexings also mean infrequent index invalidations, therefore large W values take
better advantage of the soft-state indexing scheme (which would become obvious if the average

measurement was over a larger simulation time).

*This is a fairly unrealistic setting for our target application, as we assume that workloads do not change direction
of skew this rapidly.
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3.4.8 Varying the Number of Dimensions

In this set of simulations we plan to investigate the possible performance variations caused by
datasets with variable dimensionality. We assume that each dimension is described by a 3-level
hierarchy. By varying the mul parameter we try to create equal-size data and query-sets with the
same 6 value. Figure 3.17 depicts the results for 2 to 8 dimensions for two different values of 6,
1.0 and 3.0.

As the number of dimensions increases linearly, the number of combinations increases expo-
nentially. This radically affects the popular levels’ request rates, especially for less skewed work-
loads, reducing the number of exact match queries for the level combination HiPPIS chooses.
This becomes obvious when 6 increases and the slope becomes more parallel to the dimension
axis. HiPPIS ranges between 40% and 70% in the low skew case while for bigger skew the preci-
sion varies from 80% to 93%. A pure indexing scheme solely relies on the duplicate queries and
(to a lesser extent) on the exact match queries of the random pivot level, thus producing poor

results.

3.4.9 Updates

In this subsection we focus on the evaluation of the weak consistency update mechanism of
HiPPIS. Specifically, we run the simulator using the default dataset and two workloads, U; and
Us, with skew set to § = 2.0. U; contains exclusively point queries, whereas in Us, 30% of the
workload’s queries are aggregate ones. During the simulation, we apply incremental updates at a
rate \ypq, that varies from 0.01 to 10 %. The period of the index update procedure is set to
100 sec for all network nodes in all cases. Bearing in mind that the incoming query rate Agyery =
10%;288, this translates to queries being posed 1,000 times more frequently than index updates
are checked. Incremental updates also occur up to 1,000 times more often than index checking.
We measure the percentage of queries whose answers are incomplete, henceforth termed as
inconsistency and present the results in Table 3.7. Note that a response is considered inconsistent,

when at least one record is missing, regardless of the total number of missing records.

Naturally, the faster the update rate, the higher the number of inconsistent answers. However,
inconsistency tends to converge as \,,q increases. Even when )4 is equal to the incoming query
rate, meaning that every update is followed by a query, the inconsistency remains in tolerable
levels, due to the fact that after the necessary reindexings have occurred, most of the queries
are answered directly, without the use of indices. The impact of reindexing is evidently heavier
for U;. Since it does not contain any aggregate queries, the workload is more targeted to the
new pivot level values, thus requiring less use of indices. As a result, the inconsistency ratio is

noticeably lower than that of Us.
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Table 3.7: Percentage of inconsistent answers for various A,

Aupd inconsistency (%)
(updates/sec) Uy U,
0.01 0.10 1.18
0.1 1.26 5.02
1.0 8.15 18.23
10.0 19.21 20.01

Finally, it is worth noting that when following the weak consistency scheme, the cost of up-

dates is independent of \,;,q and equals /N messages every period of the index update procedure

(2.56"24 in this case). On the contrary, a strong consistency scheme would provide 100% accu-

racy, but require (H?:o L;—1)-log(NN) messages per update, resulting in an average rate ranging

from 2.16 to 2160 =22 for our simulation settings, depending on A,;,4. Therefore, for high A,,q
the strong consistency scheme should be avoided due to the considerable communication cost

it produces.

3.4.10 The Effect of the /,,,,, Parameter

The value of the I,,,,, parameter is very important as it specifies the maximum number of differ-
ent non-pivot values that a node can index, and thus defines, as described earlier, the memory
requirements of each node. The effect of the I,,,,, parameter on the system’s precision is exam-
ined in this set of experiments, where its value varies from 0 to 3000 for the standard workload,
for two levels of skew, § = {1.0, 3.0}, directed towards (H13, Ha3, Hs3). Results are depicted in
Fig. 3.20.

As expected, the system performance improves as I, increases for all workload skews. As
the number of indices increases, more queries can be answered using this mechanism. There
exists a point Iyj,es, beyond which no significant improvement is observed. The ;4,5 value as
well as the documented slope strongly depend on the data and query workloads. For the less
skewed workload, the Iy, value is larger since more distinct values are requested, thus HiPPIS
relies more on indices to improve its performance. In the more skewed workloads HiPPIS tracks
the optimal pivot level sooner and shifts to it, hence less space dedicated to indices is necessary
to achieve high performance. Finally, it is worth noticing that the more biased the workload,
the lower the performance gains. This is due to the fact that a greater 6 value results in more
duplicate queries, thus in fewer distinct keys that need to be indexed. The dominant performance
mechanism in these cases is the indexing level.

Given this analysis, a value of 1,4, = 2k indices is deemed adequate, ensuring that the
majority of the created indices will remain in the system. This heavily favors the N/R method,

since HiPPIS discards all indices each time a reindexing occurs. With this value, used in all this
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Figure 3.20: Precision over variable Imax values Figure 3.21: Precision of HiPPIS for the APB
for both HiPPIS and HiPPIS(N/R) query workload

experimental section, each node needs to dedicate at most 100KB of main memory for the soft-

state indices.

3.4.11 APB Benchmark Datasets

Finally, we test the performance of HiPPIS using some more realistic data and query sets gener-
ated by the APB-1 benchmark [apb]. APB-1 creates a database structure with multiple dimen-
sions and generates a set of business operations reflecting basic functionality of OLAP applicati-
ons. Running the APB-1 data generator with the density parameter set to 0.1 and 1, we produced
two 4-dimensional datasets (APB-A and APB-B) with cardinalities 9000, 900, 9 and 24 and two
measure attributes. Each dimension comprises of a hierarchy of 7, 4, 2 and 3 levels respectively.
APB-A contains 1.2M and APB-B 12M tuples respectively, while the produced workload com-
prises of 25k queries (queries with * were filtered out from the original query workload) with 1%
replication ratio. Results are depicted in Figure 3.21.

We clearly notice that HiPPIS exhibits very high performance, reaching over 90% of precision
in its steady state after about 4000 queries (400 sec) for APB-A. This experiment shows that for
more realistic scenarios, even with more dimensions and levels, HiPPIS quickly adapts and serves
the vast majority of user requests without flooding. Using plain indices reduces the precision by
over 20%, while there is a substantial delay in reaching the steady state (twice as many queries
needed).

3.5 Summary

In this chapter we described HiPPIS, a distributed system that stores and indexes data orga-

nized in hierarchical dimensions for DHT overlays. HiPPIS, assuming no prior knowledge of the
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workload nor any precomputations, enables online queries on the different dimensions and gran-
ularities of the data. Our system dynamically adjusts to the workload by reindexing the stored
data according to the incoming queries. With the combination of adaptive indexing and soft-
state pointers, HiPPIS manages to avoid the network-disastrous flooding in most cases, while
enabling both real-time querying and update capabilities on voluminous data. Depending on the
needs of the application, HiPPIS can also deploy variable consistency update schemes to achieve
the desired accuracy in replies without excessive communication overhead.

Our simulations, using a variety of workloads and data distributions, show good performance
and bandwidth efficiency. HiPPIS is especially effective with skewed workloads, achieving very
high precision and fast adaptation to dynamic changes in the direction of skew. Even with few
recurring queries, HiPPIS manages to answer the majority of queries within O(log N) steps, by
detecting the most popular level combination and shifting to it. Moreover, a significant increase
in the number of aggregate queries does not degrade the system’s performance, but on the con-
trary, leads to higher precision. At the same time, the system manages to avoid substantial load
imbalance or uneven storage distribution. Finally, adopting a weak consistency update scheme
does not significantly degrade the freshness of the responses (less than 20% of the answers are

incomplete), even when updates occur as often as queries are posed.
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CHAPTER 4

The Brown Dwarf System

In this chapter we present the Brown Dwarf, a distributed data analytics system designed to effi-
ciently store, query and update multidimensional data over commodity network nodes, without
the use of any proprietary tool. Brown Dwarf distributes a centralized indexing structure among
peers on-the-fly, reducing cube creation and querying times by enforcing parallelization. Ana-
lytical queries as well as updates are naturally performed online through cooperating nodes that
form an unstructured P2P overlay. Updates are also performed online, eliminating the usually
costly over-night process. Moreover, the system employs an adaptive replication scheme that ad-
justs to sudden shifts in workload skew as well as network churn by expanding or shrinking the
units of the distributed data structure. Our system has been thoroughly evaluated on an actual
testbed: It manages to accelerate cube creation up to 5 times and querying up to several tens of
times compared to the centralized solution by exploiting the capabilities of the available network
nodes working in parallel. It also manages to quickly adapt even after sudden bursts in load and
remains unaffected with a considerable fraction of frequent node failures. These advantages are

even more apparent for dense and skewed datacubes and workloads.

4.1 Overview

Our goal is to create an on-demand version of a highly efficient data warehousing system, where
geographically spanned users, without the use of any proprietary tool, can share and query infor-

mation. Asa motivating scenario, let us consider a business establishment that maintains records
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of its operations. These records could well be security, network or system event logs, making the
search and analysis of that data an essential part of managing, securing, and auditing how this
company’s technology infrastructure is used. Instead of creating a centralized data warehouse
on-site with a large upfront and maintenance cost, the management chooses to distribute data
and computation to possibly multiple location-transparent facilities of commodity nodes and
access it more easily and ubiquitously.

To this end, we propose the Brown Dwarf*, a system that performs online distribution of a
centralized warehousing structure (Dwarf [SDRKO02]) over network hosts in a way that all queries
that were originally answered through the centralized structure are now distributed over an un-
structured P2P network of commodity nodes.

Dwarf is an approach to compute, index and query large volumes of multidimensional data.
While it offers many advantages, like data compression and efficiency in answering aggregate
queries, it exhibits certain limitations that prohibit its use as a solution for our motivating prob-
lem. Besides the lack of fault-tolerance and decentralization, a Dwarf structure may take up
orders of magnitude more space than the original tuples [DBS08]. Our Brown Dwarf system re-
laxes these storage requirements and enables the computation of much larger cubes. Moreover,
it allows for online updates that can originate from any host that accesses the particular ser-
vice. Finally, the proposed system can handle significantly larger query rates and actively protect
against failing or uncooperative peers, as it offers multiple entry points and adaptive replication
of the most loaded parts of the cube.

In summary, the contributions of the proposed system are the following:

+ A complete indexing, query processing and update system for data cubes over a distributed
environment. The cube is created with just one pass over the data, while updates are pro-
cessed online. Commodity PCs can participate in this distributed data store, while users

need no proprietary tool to access it.

« A robust and efficient adaptive replication scheme, perceptive both to workload skew as

well as node churn using only local load measurements and overlay knowledge.

+ A thorough validation of the proposed system using an actual deployment. Our findings
show that Brown Dwarf can be as much as 5 times faster in creating the cube and 60
times faster in querying it compared to the centralized version. Moreover, it offers a fair
distribution of the original dwarf and the induced query load at low cost (shared among
many nodes); it shows impressively prompt adaptation to query skew and proves resilient

to a considerable fraction of node failures even with low replication ratio.

*A brown dwarf is an object which has a size between that of a giant planet and that of a small star. It is possible
that a non-negligible portion of the mass in the Universe is in the form of brown dwarfs.
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Table 4.1: A sample fact table with three dimensions and one measure of interest

DIM1 DIM2 DIM3 Measure

St Co Po $70
S1 Cs Py $40
So Ci Py $90
Sa Cy Po $50

5) [}
P,:$40 P4 :$90 [ P, :$50 [[$1401]
©)
4P, 7§40 P,:$130] P,:$120

DIM,
C)Irp,:$70

Figure 4.1: The centralized Dwarf structure for the data of Table 4.1, using the sum aggregation function

4.2 Dwarfand Brown Dwarf

In this section we provide a short description of the original Dwarf as well as an overview of
Brown Dwarf. Presenting this evolution from the centralized to the fully distributed solution, we
aim to reveal the reasons that led us to the choice of Dwarf as our system’s data cube structure

and point out the advantages of its distribution.

4.2.1 The Original Dwarf Structure

Dwarf [SDRKO02] is a complete architecture for computing, storing, indexing, querying and up-
dating both fully and partially materialized data cubes. Dwarf’s main advantage is the fact that
it eliminates both prefix and suffix redundancies among the dimension values of multiple views.

Prefix redundancy happens when a value of a single or multiple dimensions occurs in multi-
ple group-bys (and possibly many times in each group-by). For example, for the data in Table 4.1,
the value S appearsin (Sy, Cy, P1), (S2, C1, P2) but also in many group-bys (e.g., (S2, C1), (S2),
etc.). On the other hand, suffix redundancy occurs when some group-bys share a common suf-
fix. For example, we can see in Table 4.1 that the (C, x) group-by has the same value as the
(S2, C1,x) one, with = being any value in the third dimension. Prefix redundancies are met in
dense areas of the cube while suffix redundancies are considerable in sparse areas. Both have a
significant effect on the size and computation costs over the cube.

The Dwarf construction algorithm employs a top-down computation strategy for the data

cube, which automatically discovers and eliminates all prefix and suffix redundancies on a given
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dataset. This elimination happens prior to the computation of the redundant values. As a result,
not only is the size of the cube reduced, but its computation is also accelerated.

To better understand how Dwarf indexes the dataset and uses its properties to answer queries,
we show in Figure 4.1 the cube created by this algorithm for the fact table of Table 4.1. The struc-
ture is divided in as many levels as the number of dimensions. The root node contains all distinct
values of the first dimension. Each cell value points to a node in the next level that contains all
the distinct values that are associated with its value. Grey cells correspond to ALL values of that
cell, used for aggregates on each dimension. Any group-by can be realized through traversing
the structure and following the query attributes, leading to a leaf node with the answer. For
example, (S1, C3, P1) will return the $40 value, while (So, ALL, ALL) will return the aggregate
value $140 following the nodes (1)—(6)—(7).

4.2.2 The Brown Dwarf Outline

Brown Dwarf (or BD for short) is a system that distributes Dwarf over a network of intercon-
nected nodest. The goal is to have the ease of constructing, querying and updating this structure
in an online fashion over a network overlay instead of a central location.

The BD construction algorithm distributes dwarf nodes to network hosts on-the-fly, as tuples
are parsed in a single pass. Pictorially, Figure 4.2 shows that nodes (1) through (9) are selected in
this order to store the corresponding dwarf nodes of Figure 4.1. These nodes form an unstruc-
tured PP overlay, using the indexing induced by the centralized creation algorithm. Queries
and updates are then naturally handled using the same path that would be utilized in Dwarf,
with overlay links now being followed: If the incoming query asks about S; it will be forwarded
to node (2). From there, depending on the requested group-by (ALL, C5 or Cs), terminal nodes
(3), (4) or (5) can be visited.

Compared to the traditional Dwarf (or other centralized indexing methods used in data

warehousing), BD offers the following advantages:

+ The existence of more than one hosting nodes offers the ability to parallelize the cube

construction, querying and update process.

+ The distribution of the structure enables the computation and storage of much larger

cubes.

+ BD allows for online updates that can originate from any host accessing the update service

of the system.

+We will be using the terms node and peer interchangeably to refer to the computational elements used for cube
storage and processing.
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+ The proposed system can handle significantly larger rate of requests without having to
replicate the whole structure, as it offers multiple entry points and adaptive replication of

the most loaded parts of the cube.

4.3 'The Brown Dwarf System Design

The essence of BD is the distribution of the original, centralized structure over the nodes of
an unstructured overlay in a way that guarantees equal storage and bandwidth consumption as
well as query processing efficiency, even under node churn. While structured P2P overlays pro-
vide efficient lookup operations for (key, value) pairs, they do not directly support the storage of
more complex data structures. Moreover, they require full control over the induced topology as
well as the storage distribution, thus proving unfitting for many realistic scenarios. Contrarily,
unstructured overlays (e.g., [gnu03]) offer more loose constraints on topology and data man-
agement (nodes are responsible for their own repositories), making them particularly appealing
for our application. Furthermore, our indexing mechanism guarantees an O(1) lookup opera-
tion (see Section 4.3.2), as opposed to the logarithmic cost of a DHT lookup. Lastly, although
DHTs inherently provide replication, they do so in a static way and in a per node basis, whereas
the replication scheme we propose needs to be fully adaptive to load, guaranteeing minimum

redundancy.

The general approach of BD is the following: Each vertex of the dwarf graph (henceforth
termed as dwarf node) is designated with a unique ID (UID) and assigned to an overlay (or net-
work) node. We assume that each network node n is aware of the existence of a number of other
network nodes, which form its Neighbor Set, NS,,. Adjacent dwarf nodes are stored in adjacent
network nodes in the P2P layer by adding overlay links. Thus, each edge of the centralized struc-
ture represents a network link between n and a node in N§,,. Each peer maintains a kint table,
necessary to guide a query from one network node to another until the answer is reached and a

parent list, required by our replication process, to avoid inconsistencies.

The hint table is of the form (currAttr, child), where currAttr is the current attribute of the
query to be resolved and child is the UID of the dwarf node the currAttr leads to. If the dwarf
node containing currAttr constitutes a leaf node, child is the aggregate value. The parent list
contains the UID of the dwarf node’s parent node(s) along with the currAttr, whose child led to
the specific node. In order to route messages among network nodes, each of the peers maintains

a routing table that maps UIDs to NIDs (i.e., network IDs, e.g., IP address and port).
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Figure 4.2: The distribution of the dwarf nodes in the Brown Dwarf of Table 4.1 and their hint tables

4.3.1 Insertion

The creation of the data cube is undertaken by a specific node (creator), that has access to the fact
table. The creator follows the algorithm of the original dwarf construction, distributing the dwarf
nodes on-the-fly during the tuple-by-tuple processing, instead of keeping them in secondary stor-
age. In general, the creation of a cell in the original dwarf corresponds to the insertion of a value
under currAttr in the hint table. The creation of a dwarf node corresponds to the registration of
a value under child. Thus, all distinct values of the cells belonging to a dwarf node are eventually
registered under currAttr. Moreover, the node each currAttr points to is kept under the child
attribute. In the case of a dwarf leaf node, child corresponds to the measure or the aggregate
value.

Let d be the number of dimensions and t; = (a1, az ... aq) be the first tuple of the fact table.
Upon processing of ¢1, a; triggers the creation of the root node, meaning that a network node
from the creator’s NS is allocated (let it be node N;.oo). A new hint table is created and stored
in Nyt under a randomly chosen UID. At this point, only the currAttr can be filled in with a;.
Moving to as, a new node is allocated from the neighborhood of N, and a new hint table
is created following the previous procedure. The UID of the newly allocated node is added to
Nyoot’s hint table under a;. The same procedure is followed by all dimension attributes of ¢; (plus
the special ALL attribute wherever needed). As tuples of the fact table are being processed one
by one, new hint tables are created and existing ones are gradually modified (see Algorithm 4.1).

Note that the proposed insertion mechanism does not entail an a priori creation of the cen-

tralized dwarf. Nodes are created and hint tables are filled in gradually, as tuples are processed.
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Algorithm 4.1: The BD insertion algorithm

Data: %,y the tuple to be inserted

tpre: the tuple previously inserted

Nereator: the node that initiates the insertion
Result: Insertion of dataset

sort the tuples of the fact table;
while unprocessed tuples exist do
teur < the next unprocessed tuple of the fact table;
find atjqs, the last common attribute of ¢, and t,,.¢;
locate the network node N, that hosts the dwarf node that at;,s; leads to;
add the first uncommon attribute to the hint table of N, under currAttr;
forall the remaining attributes of t.,, do
create dwarf node and assign it a UID;
add UID to the hint table of Nj,q;
randomly pick a node Nyt from NSy, _,;
send dwarf node to Nyez;
Nlast < Nnezt;
end
beginning bottom up, add the ALL cells and create new dwarf nodes according to the
original SuffixCoalesce algorithm;
end

The only information the creator needs to hold at each moment is that of d dwarf nodes (the

nodes of the path that ¢; traverses).

For the first tuple of Table 4.1, the corresponding nodes and cells are created on all levels of
the dwarf structure (Figure 4.1). Each of the created nodes (1), (2), (3) are assigned to respective
overlay nodes. In the hint table of (1), S is placed under currAttr and (2) under child. Following
the same procedure, the routing table for (2) is filled in with C'y and (3) and that of (3) with P, and
$70 (the measure attribute, since it is a leaf node). Insertion moves on to the next tuple, which
shares only prefix S; with the previous one. This means that the C3 value needs to be inserted
to the same node as C, namely (2), and (4) needs to be allocated. Thus, Cs must be registered in
the node’s hint table as a new currAttr and (4) as a new child value. Moreover, (3) is now closed,
so ALL along with the aggregate value $70 are registered in its hint table. Gradually, all necessary
nodes are allocated and their hint tables are filled in with the appropriate routing information

(see Figure 4.2).
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4.3.2 Query Resolution

Queries are resolved by following their path along the BD system attribute by attribute. Each
attribute value of the query belongs to a dwarf node which, through its hint table, leads to the
network node responsible for the next one.

A node initiating a query ¢ = (q1,42 . . . q4), with ¢; being either a value of dimension i or
ALL, forwards it to N,oo. There, the hint table is looked up for ¢; under currAttr. If it exists,
child will be the next node the query visits. The above procedure is followed until a measure is
reached. Note here that, since adjacent dwarf nodes belong to overlay neighbors, the answer to
any point or group-by query is discovered within at most d hops. A DHT-like solution would
require an average of log IV steps for each dwarf node discovery (N being the size of the network),
producing an average of dlog N overlay hops for a query resolution.

From the above description, it is clear that the system requires an entry point, meaning that
query initiators should be aware of N,,.t, where the resolution of any query starts from. This
can be achieved through an advertising mechanism, invoked by N, upon allocation. The exis-
tence of a single entry-point for BD, which constitutes a single point of failure, is tackled by our
replication strategy, thoroughly described in the following sections.

Back to our example, let us consider the query S;ALLP». Beginning the search from (1),
and consulting the child value corresponding to 51, we end up at (2). There, since the second
dimension value is ALL, the query follows the path indicated by the third entry of the hint table,
thus visiting (5). P, the third dimension value, narrows the possible options down to the second
entry of the hint table, namely $70.

4.3.3 Incremental Updates

The procedure of incremental updates is similar to the insertion process, only now the longest
common prefix between the new tuple and existing ones must be discovered following overlay
links. Once the network node that stores the last common attribute is discovered, underlying
nodes are recursively updated. This means that nodes are expanded to accommodate new cells
for new attribute values and that new dwarf nodes are allocated when necessary. Moreover, the
insertion of new tuple to an existing BD affects the ALL cells of dwarf nodes associated with the
updated nodes.

Assuming u = (uj,usg...uq) is the tuple to be added to an existing BD, the incremental
update procedure starts from the root of the structure following the path designated by w1, us
etc. Once the dwarf node containing the last attribute u; that is already present is discovered, a
new entry for u;41 must be registered to the node where the child of u; points to. The following
attributes (u;42 . .. uq) will trigger the creation of new dwarf nodes. The special ALL cells are

recursively updated for all nodes affected by the change.



4.3. The Brown Dwarf System Design 111

Figure 4.3: Example of mirroring

It is obvious that the update procedure is bandwidth-costly, therefore we assume it is invoked

when several batches of updates are collected.

4.3.4 Mirroring

In order to ensure availability and eliminate single points of failure, especially in the case of N;4ot,
that represents the single entry point for queries in our system, we assume a global replication
parameter k. This parameter defines the degree of data redundancy in the system: During the
insertion phase, each dwarf node is stored in £+ 1 network nodes instead of just one. Thus, in its
initial state, the system hosts k + 1 instances (mirrors) of each dwarf node. The query forwarding
algorithm is now amended: A node that receives a query randomly chooses from a list of mirrors
the one to forward the query to.

To achieve correct behavior after a mirroring operation, the parent, children and mirror
nodes of the original node(s) must be informed of this creation: Parents must know of the new
node in order to include it in the forwarding process. The mirror node must be informed of
the peers that it precedes according to BD as well as its parent(s). Finally, the children must
be informed of this new parent. Figure 4.3 describes this process pictorially: Node B chooses
to replicate one of its dwarf nodes to B; invoking mirror (Algorithm 4.2). B’ receives the hint
table of B regarding the specific dwarf node and is thus informed of A as well as C, D and E,
creating overlay links to them accordingly (parent and children). Node A is informed of the new
child, adding B’ to its list of children for this dwarf node. Moreover, parent links are also updated
(shown in dotted lines). With the exchange of hint tables between B and B; the latter is able to
discover all other mirrors and notify them of its existence.

From that point on, the system is responsible for preserving the number of each dwarf nodes’
mirrors above k. To validate their (un)availability, mirrors periodically ping each other. This is
also achieved through normal queries, when forwarding to a node that fails to reply. If a network
node perceives that the mirror of a dwarf node it hosts is unavailable (because of a network failure

for example), it initiates the mirroring operation for that dwarf node through the invocation of
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Algorithm 4.2: The BD mirror algorithm

Data: dng: dwarf node to be replicated
Result: Replication of dn

N: network node that hosts dng;
N sends hint table of dns to N’ € NSn;
N’ informs parents and mirrors of dn;

the mirror function: The node chooses another peer in order to replicate the dwarf node to it.
The node to receive the replica can be chosen either from the pool of locally known peers or
using another independent service. It is important to note here that the whole process does not

affect the behavior of the system, as all queries continue to be normally resolved.

4.3.5 Handling Node Failures and Query Skew

A basic requirement for every distributed application is fault-tolerance. Node clusters typically
consist of commodity, failure-prone hardware. Especially in the case of data analysis, where com-
plex workloads can take hours to complete, the probability of a failure occurring becomes higher.
Apart from node churn, data skew is another factor that stresses the system’s ability to operate
smoothly, as it can degrade the performance of overloaded nodes, having a disproportionate ef-
fect on total query latency. Data replication techniques are commonly utilized in distributed
systems in order to remedy these situations. Replicating critical or frequently accessed system
resources is a well-known technique utilized in many areas of computer science (distributed sys-
tems, databases, file-systems, etc.) in order to achieve reliability, fault-tolerance and increased
performance.

In BD, we utilize a replication scheme adaptive to skew as well as node churn to address both
issues in a unified way, expanding popular or unavailable elements of the structure and shrinking
others that receive few requests. This way, BD is able to obtain increased resources to handle

spikes in load and release them once the spike has subsided.

4.3.6 Node Churn

When a node wishes to leave the system, it initiates the graceful-depart function, given in Algo-
rithm 4.3: For each of the dwarf nodes it stores, the respective parents and children are notified
to revise their links. The same is true for the list of mirror nodes. Messages can be grouped
per recipient since, in the majority of cases, we anticipate that some nodes will be parents for
multiple dwarf nodes or both parents and children.

Given this process, we may now describe how random departures or node failures are han-

dled: A departed node is discovered either through the periodic ping procedure, or through
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Algorithm 4.3: The BD gracefull-depart algorithm

Data: dng: dwarf node to be deleted
Result: Deletion of dng

N: network node that initiates deletion;
N informs parents, children and mirrors of dn;
N deletes hint table of dng;

query routing. In the first case, the mirror node receives no acknowledgement from the de-
parted node within a period of time, considering it unavailable. It then initiates graceful-depart
with the failed node’s NID as a parameter. In the second case, the departed node is, at some
point, selected during the routing process. The parent node will be informed of this failure af-
ter a timeout occurs. The parent then forwards the current query along with a graceful-depart
request to another child, mirror of the departed node. Besides processing the query, this mirror
initiates graceful-depart with the failed node’s NID as a parameter. In the end, all of the failed

node’s parents, children and mirrors will be notified of this event and update their links.

4.3.7 Load-driven Mirroring

In BD, network nodes utilize adaptive mirroring according to the load received on a per-dwarf
node basis. A network node hosting an overloaded dwarf node can create additional mirrors
through the expansion process. The node to receive the new mirror can be chosen from the
node’s NS either randomly, or following some more advanced policy, which takes into account
parameters like storage, utilization and load. Such a policy could, for instance, dictate the selec-
tion of the most underloaded peer, or the peer with the largest amount of free disk space. The
newly created mirror will be used by the parent node(s) in order to receive some of the requests.
In the opposite case, an underloaded dwarf node can be deleted from the system through the
shrink process, as long as the total number of its mirrors remains above k. This deletion frees

resources that could be allocated for more “popular” parts of the structure.

These procedures require that each peer participating in BD monitors the incoming load for
each of the dwarf nodes dns it hosts. Let I5(t) be the current load for dns. The two procedures

can be described as follows:

Expansion: Asthe load increases due to the incoming requests, some dwarf nodes reach their

s .
erp*

maximum number of requests that dwarf node dn; can process per time unit. When this limit is

self-imposed limits, which we assume are expressed by the parameter Limit?, : It represents the

exceeded, the hosting node invokes mirror to replicate it according to its demand and relative to
Limit? . Specifically, each node dns, with [5(t) > Limit?,, will be replicated [l5(t)/Limit?,, ]

exp* exp exp
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Algorithm 4.4: The BD adaptive mirroring algorithm

Data: DNy : the set of dwarf nodes that network node N hosts
k: the replication degree
rs: the number of mirrors for dng

forall the dny, € DNy do

l5(t) the current load for dng;

if [5(t) > Limitg,, V rs < k then

fori = 1to max([ls(t)/Limit,,|, k —rs) do
| mirror (dng)

end

end
elseif [,(t) < Limit}, Ars > k+1then

| gracefull-depart (dng)
end

end

times. This mechanism allows for adaptive expansion of the network-wide storage according to
demand and helps overloaded nodes to offload part of their workload to other server instances.

Shrink: Temporal changes in workload may result in the creation of mirror nodes which
eventually become underutilized. The system should be able to delete such nodes, provided
that their deletion will not result in less than k + 1 mirrors. Assuming Limit$,  is the limit,
under which dng is considered underloaded and r, is the number of the mirrors of dn, that the
storing node is aware of, then each dn, with I,(t) < Limit$, and rs > k + 1 will be deleted,
through graceful-depart. To ensure that the deletion of dng will not cause the overloading of
its mirrors, we estimate Limit?, = using the following rationale: When deleting a replica, we
get from 7 to s — 1 mirrors. Estimating the total load for dng to be r4l5(t), we require that

Is(t) ~ rsls(t)/(rs — 1) < Limit$

czp- Thus we choose Limit},, = Limity,, - rs/(rs + c),

where c is a positive constant.

In essence, Limitcy, and Limitgy,,, relative to the context and values that are assigned to
them, implement the application’s policy with respect to the quality of service: Indeed, they
regulate how reactive (and thus query-efficient) we want the application to be at the cost of more
or less storage and data transfers. A more formal description of the adaptive mirroring algorithm

can be seen in Algorithm 4.4.

4.4 Optimizations - Discussion

In this section we suggest various optimizations and discuss issues concerning the data consis-

tency in the event of mirroring as well as the viability of such an application in the Cloud.
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Figure 4.4: The dwarf structure of Table 4.1, where nodes are grouped with h = 2

4.4.1 Query Performance Optimization

In general, we expect the number of dwarf nodes created to be much larger than the number of
participating hosts, with each peer hosting multiple dwarf nodes. This fact, along with the load-
driven expansion and shrink of the system may result in individual peers hosting dwarf nodes
that are connected in the logical level (a dwarf node and some of its children’s mirrors). In this
case, a query resolution that follows a random path from a dwarf node to one of its children may
result in unnecessary message exchange between peers. Alternatively, upon reception of a query,
the peer can choose from the list of children the one that resides in the same node, thus reducing

the network messages needed.

4.4.2 Dimension Grouping Optimization

This optimization intends to reduce the communication cost between network nodes during all
the operations of BD. Instead of storing the data structure at the dwarf node granularity, the
system chooses to group related dwarf nodes and store them together as an entity. Due to the
lack of a priori knowledge of the graph (since it is constructed and distributed on the fly) and
the distributed nature of our system, we employ a simple heuristic: Starting from the leaf nodes
of the structure, we create groups that contain sub-graphs of height 2, h < d. This practically
means that a dwarf node dn and all its descendants of depth & reside at the same physical node.
Nevertheless, this might not be the case for dwarf nodes along an aggregate path, since an ALL
cell might point to an existing dwarf node that belongs to a different group. Figure 4.4 depicts
the groups for h = 2.

Both data load and update procedures are now affected, since a group, rather than an indi-
vidual dwarf node, is assigned to a network node. During querying, the number of network hops
until the answer is reached is significantly reduced. For point queries, the number of hops is [%},

while for aggregate queries it may range from [%] to d at most. Replication takes great benefit
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from this enhancement as well, since the memory needed for statistics as well as the overall repli-
cation cost is reduced. However, it must be noted that such grouping may also reduce the effect
of decentralization and thus the potential of the system to exploit parallelization (relative to the
choice of h and the structure of the dwarf graph). This approach is deemed most beneficial for

high-dimensional datasets with the value of & set significantly smaller than that of d.

4.4.3 Consistency Issues

The expand/shrink scheme we described presents a fully adaptive and distributed replication
method. It adapts to both the direction and the amount of skew, as it replicates overloaded parts
of BD. It also adapts to node churn by keeping a minimum replication rate for each dwarf node.
This is achieved using only local load measurements and overlay knowledge.

Furthermore, the expand/shrink scheme raises some consistency issues relating to the pre-
cision of the information that each node has of the available mirrors: Obviously, an almost con-
current creation of two or more mirror nodes or a series of expansions and shrinks at different
parts of the overlay may result in nodes with different and incomplete knowledge of both the
number and the identities of available mirrors.

Yet, there exist arguments to manifest that these inconsistencies are temporary: First, the
higher the query rate that triggers such occurrences, the larger the probability that newly created
replicas or unavailable ones are discovered through the query forwarding process. Second, it is
reasonable to assume that, for our target applications, we do not expect a high churn rate from
participating peers. We may even assume that some nodes (possibly the initial ones) will be more
stable, server-like nodes that rarely disconnect.

The latter also justifies our choice of using the graceful-depart that notifies all children, par-
ent and mirror nodes (regardless of a graceful or not departure): Assuming that the churn rate is
not large enough for this process to become both strenuous and costly, we take steps to avoid the

delay in query processing (due to time-outs) rather than minimize inter-node communication.

4.4.4 Cloud Deployment Potentials

In data warehousing, the need to keep large volumes of historical data online and ensure their
availability and fast access even under heavy workload dictates a continuous investment in hard-
ware, electrical power and software maintenance. The nature of these applications with the large
amounts of data and their subsequent costs as well as the common operations involved (which
can be easily parallelized across the data sites) make them particularly well-suited for the Cloud.

We believe that our system is a particularly good candidate for deployment in the Cloud, as

it provides several required architectural characteristics, such as:
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+ Cost-efficiency: In the Cloud, data volumes and transfers as well as computational costs
should be minimized, as billing is always relative to the resource usage. Especially in the
case of data warehousing structures, where additional indices and materialized views swell
the size of source data, aggressive data compression results in significant savings. Our
system exploits the inherent efficient compression that the original Dwarf cube offers and
combines it with high-performance query processing and updates. Moreover BD is able
to obtain increased resources to handle spikes in load and release them once the spike has
subsided, adding a feature extremely important in a pay-as-you-go environment such as
the Cloud.

+ Elasticity: The shared-nothing architecture, upon which our system is based, permits the
platform to scale out, as the Cloud itself does. Most databases popularly used in BI today
have shared-everything or shared-storage architectures, which limit their ability to scale in
the Cloud. BD, however, allocates computational power and storage adaptively according
to demand, enabling an easy integration of additional machines with the existing system

on the fly, giving the users the impression of infinite resources at their disposal.

+ Fault tolerance: Clouds typically consist of commodity, failure-prone hardware. Espe-
cially in the case of data analysis, where complex workloads can take hours to complete,
the probability of a failure occurring becomes higher. It is thus important to ensure that
queries will not have to be reissued every time a node fails. BD employs a replication strat-
egy that adapts to node failures, ensuring that each data at any given time exists in at least
k physical nodes. The attribute by attribute query resolution makes sure that a message
directed to a failed node will be redirected to one of its mirrors, resuming the querying

process almost instantly and without having to reissue the whole query batch.

+ Content availability: Within a Cloud-based analytic database cluster, node failures, node
changes, and connection disruptions can occur. Given the vast number of processing ele-
ments within a Cloud, these failures can be made transparent to the end user if there exist
proper built-in failover capabilities. BD replicates data automatically across the nodes in
the Cloud and is thus able to continue running in the event of multiple node failures (k-

safety) and capable of restoring data on recovered nodes automatically.

4.5 Experimental Results

We now present a comprehensive evaluation of BD, entirely written in Java, using both an actual
and a simulation-based testbed. For our local area experiments, we utilize N = 16 commodity
nodes (Quad Core @ 2.0 GHz, 4GB RAM) to act as the storage/computation infrastructure.
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Table 4.2: Storage requirements and creation time for Dwarf and Brown Dwarf data cubes of various
dimensionalities and distributions

Uniform 80-20 Zipf

d Fact Tbl | size (MB) time (sec) | size (MB)  time (sec) size (MB) time (sec)

(MB) | Dwarf BD Dwarf BD | Dwarf BD Dwarf BD | Dwarf BD Dwarf BD
5 0.2 1 1 4 4 1 1 8 7 1 1 3 4
10 0.4 4 5 31 10 4 5 28 14 6 7 54 21
15 0.6 7 9 63 29 10 13 96 43 22 27 226 74
20 0.8 13 17 122 55 18 23 352 82 54 69 543 204
25 1.0 18 23 198 88 29 37 729 196 152 195 1206 535

The centralized approach has also been implemented for direct comparison. To examine the
scalability of our application as the infrastructure nodes scale to larger numbers, we simulate BD
using a network simulator with values of N ranging from 64 up to 1k nodes.

In our experiments, we use both synthetic and real datasets consisting of a fact table repre-
senting multidimensional data with numerical facts. The synthetic datasets have been generated
by our own and the APB-1 benchmark generator [apb]. Our generator creates the tuples of the
fact table to be stored from combinations of the different values of each dimension (cardinality)
plus a randomly generated numerical fact. By changing the number of distinct values per dimen-
sion we generate cubes of different density. Furthermore, we may choose to create tuples that
combine dimension values uniformly or with bias (creating 80/20, 90/10 and 99/1 self-similar
distributions and Zipfian distributions with § = 0.95). The aggregate function used in the re-
sults is sum.

For the application workloads, we include both point and aggregate queries with varying
proportions and distributions as well as batch updates. We either query the available dimension

values uniformly or with skew, following the Zipfian distribution with various 6 values.

4.5.1 Cube Creation

In the first set of experiments, we evaluate the creation of the distributed BD structure in terms
of construction time, storage and communication overhead. We also prove the fairness of the

data distribution over various datasets and local neighborhood information.

Varying the number of dimensions
Assuming no replication (i.e., k = 0), we construct BD and Dwarf cubes with variable number
of dimensions d (5 up to 25), with cardinalities equal to 1k values. The datasets consist of 10k
tuples, following the uniform, self-similar (80-20) and Zipfian (§ = 0.95) distributions. For the
BD evaluation, the experiments are conducted in our distributed testbed, consisting of 16 LAN

nodes. Storage consumption and insertion times are presented in Table 4.2.
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Our system exhibits impressively faster creation compared to the centralized method, due to
the fact that BD allows for overlapping of the store process (each peer stores its part of the cube
independently). The acceleration is more apparent as the number of dimensions and the skew
grow, since such datasets result in larger cubes. For instance, BD inserts the 25-d skewed cubes
up to 3.5 times faster than Dwarf. The acceleration factor of course is not directly proportional
to the number of participating nodes: The cube calculation remains serial and the network com-
munication introduces latencies. Since the nodes of our testbed are part of a LAN, the network
latencies are rather small. In a WAN environment, we would expect results to be somewhat
worse. However, we believe that a LAN setting provides a more realistic representation of the
network conditions in modern distributed systems (such as the Cloud), where nodes are con-
nected through high speed internet (e.g., in a datacenter facility).

Note that the total cube size is always bigger than the fact table by a factor that increases
with dimensionality and skew (152 times for the central and 195 times for BD in the worst case).
This observation confirms previous findings documenting that Dwarf blows up the size of some
datasets, especially for sparse cubes [DBS08]. This index growth, which constitutes an intrinsic
characteristic of the method, is an extra motivation for the distribution of the Dwarf cube.

In addition to that, BD induces a small storage overhead. This overhead is mainly attributed
to the mapping between the UIDs (set to 4 bytes each in our implementation) that every dwarf
node needs to keep in order to be accessible by network peers and dwarf node IDs, as well as
the parent list, which is necessary in the mirror process. This also explains why the overhead
slightly increases with the number of dimensions. Nevertheless, this overhead is shared among
the participating nodes. Indicatively, in the case of the 25-d Zipfian dataset, even though the
overhead is 43MB, the burden of each of the 16 peers is less than 3MB.Thus, the big advantage
of BD is the fact that it can store almost IV times as much data as Dwarf (for k = 0), using N
computers with capabilities similar to the one used in the central case.

Figure 4.6 plots the distribution of storage and messages among the nodes of the system,
where the measured quantities for each node are sorted in ascending order. All nodes host sim-
ilar quantities of storage space, which is on average equal to %. The cost per fact table tuple
insertion is small and increases with d, as more dwarf nodes are created, increasing the number
of network nodes to be contacted. This load is also equally distributed among peers. Another ob-
servation is that these characteristics are maintained even as the number of dimensions increases:
The structure may increase exponentially in the number of components, yet BD performs well
in distributing it over the network.

To further examine both storage and load distribution among network nodes, we employ the
simulation environment with N = 128 nodes and distribute over them datasets of 100k tuples,
with 10% density and d ranging from 2 to 8 (due to memory constraints). Figure 4.5 plots the

storage consumption and the message distribution. Results show that there are very few nodes
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Figure 4.5: Storage and message distribution over the simulated nodes for various datasets
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Figure 4.6: Storage and message distribution over the network nodes for various datasets

that both receive many requests and store significantly more data than the majority, unlike the
case of 8 peers that we examined above. This is due to the combination of comparatively small
datasets and the limited number of node acquaintances (NS=16) compared to the total network
size (every node knows about 12% of the whole network, whereas in the previous experiment,
this percentage was 100%). As our simulations proved, increasing the size of NS favors data
balancing, as a larger choice of nodes enables a more even distribution of storage and load among
the participants.

Table 4.3 presents the cube insertion times for the uniform datasets when the replication
parameter k ranges from O to 4. Although the cube is inserted k + 1 times and the storage
consumption as well as the communication cost sustain a k-fold increase, the increase in the
total insertion time is not proportional to k. Once again, parallel disk I/O operations alleviate
the impact of the linear increase in the size of the data to be stored, resulting in an average 2—2.5

factor increase in insertion times in the worst case (comparing £ = 0 with & = 4).

Varying the number of participating infrastructure nodes

To examine the gains in insertion time caused by the parallelization of the storage process and to
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Table 4.3: Creation time (in sec) for Brown Dwarf data cubes of various dimensionalities varying the k

parameter
k
c\ 0o 1 2 4
5 4 5 6 8
10 | 10 13 19 23
15 | 29 36 49 76
20 | 55 75 104 152
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Figure 4.7: Time and incoming messages per network node for various network and data cube sizes

analyze the evolution of the communication cost we vary the number of participant commodity
nodes. As input data, we use two 5-d, uniformly distributed cubes, consisting of 100k and 500k

tuples respectively. Cardinalities for all dimensions are set to 100.

The graphs in Figure 4.7 reveal on one hand that the increase in the number of participat-
ing nodes enhances the system performance. However, the speedup is not linear and there is
a point beyond which no dramatic improvement is demonstrated. This is due to the fact that
the serial nature of the cube creation algorithm poses a limit in the parallelization of the storage
process itself, since dwarf nodes can not be stored faster than their calculation. Moreover, as the
number of nodes increases, so does the cost of the node orchestration, which in turn hinders the
acceleration. On the other hand, a larger number of nodes induces bigger total communication
costs, as shown in the included graph. The total number of messages per insertion shows similar
behavior to that of the insertion time: The communication cost is not severely affected after a
certain point. It is also worth noticing that, even though the communication cost increases, the

overhead per network node decreases as messages are scattered among more peers.

Varying the number of tuples
We now examine how the BD cube behaves when scaling the number of tuples in the fact table.

Keeping the number of dimensions constant (d = 5) and all cardinalities equal to 100, we create
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Table 4.4: Effect of various dataset sizes on 5-d cubes

# Tuples Fact Tbl size size (MB) time (sec)
(MB) Dwarf BD Dwarf BD
10k 0.1 1.2 1.5 4 4
100k 1.7 4.8 5.9 71 20
500k 7.0 24.7 30.4 325 53

Table 4.5: Effect of various densities on 5-d cubes

Density Fact Tbl size size (MB) time (sec)

(%) (MB) Dwarf BD Dwarf BD
0.01 1.4 5.4 6.6 54 13
0.1 1.4 4.6 5.5 39 9
1.0 1.4 3.0 3.5 19 5

10.0 1.4 1.4 1.6 5 3

datasets of 10k, 100k and 500k tuples. Table 4.4 summarizes the results. As the number of tuples
increases, this leads to higher acceleration factors for our insertion method: While the insertion
of the 10k dataset lasts the same in both systems, the 500k dataset is inserted almost 6 times
faster. We observe that our system maintains roughly the same storage overhead for all dataset
sizes, since the increase in the number of tuples results in an increase in storage for both Dwarf
and BD cubes.

Varying the density of the cube
In this experiment we examine how the density of the data cube affects its insertion in the BD
system. We create 5-d datasets of 100k tuples following a uniform distribution, with variable
densities ranging from 0.01% to 10%. We document the amount of storage allotted by each net-
work node for Dwarf and BD and present it in Table 4.5. Our system remains faster in creating
and distributing the structure by a constant factor of about four. The next observation is that
the lower the density, the larger the total amount of storage for the BD, since sparse cubes leave
little room for redundancies, thus resulting in larger dwarf structures. Therefore the denser the

cubes, the less noticeable the difference in storage between Dwarf and BD.

4.5.2 Updates

In this section, we observe the behavior of BD when update batches are inserted to the distributed
structure using our real testbed of 16 nodes. Utilizing the same 10k-tuple datasets of varying di-
mensions (5-25) described before, we present measurements for two different settings. In the
first setting, we apply 1% incremental updates which follow the uniform and the self-similar (80-

20) distribution. In the second setting, we apply increments of sizes from 0.1% up to 10% to the
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Table 4.6: Effect of 1% increments over various dimensions

Uniform 80-20
d time (sec) msg/upd time (sec) msg/upd
Dwarf BD BD Dwarf BD BD
5 7.1 7.2 14.6 7.5 6.4 13.7
10 17.7 14.3 50.8 21.3 14.4 49.8
15 30.8 21.8 111.0 43.4 31.2 120.4
20 48.6 27.9 193.3 104.1 65.8 200.2
25 89.1 39.1 300.7 172.1 103.6 305.7

Table 4.7: Effect of various update types and sizes on the 10-d dataset

update time (sec) msg/update
old fresh old  fresh

update size %

0.1 1.9 1.8 49.5 402
1.0 14.3 11.6 50.8 41.5
10.0 127.2 78.0 61.2 56.6

10-d cube. These increments are of two types: Consisting of tuples generated either by combin-
ing existing dimension values (0ld), or by adding new values to the dimensions’ domains (fresh).
For both types, we record the total update time as well as the number of messages required per

individual update. We present the results for both settings in Tables 4.6 and 4.7 respectively.

Taking advantage of the inherent parallelization that updates (similar to insertions) exhibit,
BD is up to 2.3 times faster for the high-dimensional sets. Dimensionality plays a dicisive role
in both the time and the cost of updates. This observation is clearly documented: The more the
dimensions, the larger the BD cube created, thus the more dwarf nodes and cells are affected
(see Table 4.6). As observed in the case of cube creation, skewed datasets take longer to update,
due to the fact that updates in a dense part of the cube affect more dwarf nodes and cells, thus

slowing down the process and creating larger network traffic.

Table 4.7 shows that the size of the update batch over the original cube has negligible effect
on the communication cost per update. However, it is interesting to note that while fresh upda-
tes over the original cube create more nodes and cells in the structure, yet the cost is inversely
proportional: The number of update messages per update are almost 20% less compared to old
updates. This is due to the fact that the fresh batch contains new attribute values and fails to
find redundancies with the originally inserted BD structure. As a result, more new nodes are
created, yet less recursive updates of the affected ALL values are performed, hence less messages

are transmitted.
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Figure 4.8: Resolution time and messages per network node for a 20-d dataset over various network sizes
and query workloads

4.5.3 Query Processing

In this section we investigate the query performance of BD compared to that of Dwarf and ex-

amine the load distribution among peers with and without adaptive mirroring.

Varying the number of dimensions
Using the same datasets as in the insertion and update experiments, we pose two 1k querysets
that follow the uniform and Zipfian (# = 0.95) distributions respectively, with the ratio of point
queries set to 0.5. Moreover, P;, which we define as the probability of a dimension not partici-
pating in a query, is set to 0.3. Table 4.8 summarizes the results. It should be noted that the dwarf
index does not remain in memory for either method, thus I/O is performed for every query.

First, we observe that in all cases BD resolves the workload noticeably faster than the central-
ized version. While the query response times rise with the dimensionality for Dwarf, BD times
remain almost constant and only the 25-d workloads cause a slight slowdown. The resolution of
each dimension of the query is an atomic operation that may be performed by separate peers.
Thus, having 16 nodes perform I/O operations in parallel instead of just one significantly boosts
performance. Especially in the case of biased and high dimensional workloads, where there is
more room for parallelization, BD exhibits impressive acceleration factors, performing up to 60
times faster than Dwarf. It is therefore apparent, that BD is able to handle a significantly larger
(by orders of magnitude) request rate than its centralized version.

Moreover, the number of messages per query is in all cases bound by d+ 1: The system needs
d messages to forward the query to the dwarf nodes along the path towards the answer and one

to send the response back to the initiator.

Varying the number of nodes
For the 20-d dataset of the previous experiment, we plot the response times and the per query

communication when scaling the number of network nodes from 1 (centralized case) to 16. Apart
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Table 4.8: Query resolution times and communication cost over various 1k querysets

Uniform Zipf
d time (sec) msg/query time (sec) msg/query
Dwarf BD BD Dwarf BD BD
5 52 4.0 5.8 1.9 1.7 5.5
10 30.1 2.6 10.9 29 1.2 10.6
15 65.2 29 15.6 55.4 1.2 15.5
20 102.1 3.0 20.8 88.3 1.5 20.3
25 182.5 13.2 25.9 172.1 9.2 25.6

Table 4.9: Measurements for various APB datasets

Fact Thl size (MB) insertion time (sec)  querying time (sec)
Density ~ #Tuples (MB) Dwarf  BD  Dwarf BD Dwarf BD
0.1 1.2M 24 17 20 42 16 40 12
0.2 2.5M 49 35 41 82 32 55 12
0.3 3.7M 73 51 60 126 53 80 12
0.5 6.2M 131 74 98 314 93 93 13

from the uniform workload of 1k queries that was used in the previous experiment, we also pose
a workload of 10k queries with the same characteristics, to further stress the system. Figure 4.8
pictorially presents the results.

The first graph plots the total response times for the query batches. As observed, for a small
network size, the increase in nodes dramatically accelerates responses: Expanding the network
from 2 to 4 peers results in 4 times faster response times. The performance gain though becomes
smaller, as the size grows: The difference is almost negligible when going from 8 to 16 nodes. This
is due to the fact that, depending on the dataset and its dimensions, the parallelization ability of
BD is saturated after a certain number of nodes.

The second graph presents the average number of messages needed to answer a query for
both workloads. We notice that as the number of peers increases, the communication cost in-
creases too, but not uncontrollably, since it converges to d 4+ 1 messages per query (inner graph).

Furthermore, the cost is scattered among peers, resulting in less load per network node (outer

graph).

Benchmarks and real data sets
Next, we examine the behavior of BD with more realistic input sets. We utilize 6 different
datasets. Using the APB-1 benchmark [apb], which simulates a realistic OLAP business situation
and is used in a plethora of papers to evaluate data warehousing solutions. With its generator
we produce four 4-d datasets with densities varying from 0.1 to 0.4. The dimension cardinali-

ties are 24, 9000, 900 and 9, while there also exists one measure attribute. The other 2 datasets
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Table 4.10: Measurements for the real datasets

size (MB) insertion time (sec) A (sec) B (sec) C (sec)
Dataset Dwarf BD  Dwarf BD Dwarf BD Dwarf BD Dwarf BD
weather 9.3 114 120 23 234 11 165 12 114 12
Forest 8.0 9.8 66 20 144 11 111 11 70 12

are subsets of the weather [wea] and forest [Bla] data sets (10k tuples each). The forest dataset
has 10 dimensions with cardinalities as reported in [DBS08], while the weather dataset has 9
dimensions, corresponding to truncated ocean weather measurements for September 1984.

As far as the querysets are concerned, we use the APB query generator to produce 1k query
workloads, both point and aggregate ones. For the real datasets, in order to produce our work-
loads, we first order the tuples and then use the Zipfian distribution to select those that will form
10k query sets. We vary 6 from O (uniform distribution) to 2, producing three workloads (de-
noted as A, B and C respectively). The ratio of point queries is set to 0.5, while for the aggregate
ones we set P; = 0.3.

The results, presented in Tables 4.9 and 4.10, are in line with the findings of the previous
experiments. First, we notice that the dwarf algorithm can, depending on the input data, perform
efficient compression of the cube. The storage overhead is at most 14MB (for the APB dataset of
6.2M tuples), a steady 17% increase compared to the centralized case. Nevertheless, the cube is
now shared among each of the 16 peers participating in the system. For the construction times,
BD is obviously faster than Dwarf. Our results show that the distributed version is over 5 times
faster compared to the centralized run (for the weather dataset), giving impressive cube creation
times (about 1.5 minutes for 6.2M tuples). Query response times are up to 20 times faster for

BD, which is able to handle almost 1k queries per second.

4.5.4 Mirroring

This set of experiments aims to evaluate the mirroring process, both static and adaptive, in terms

of storage overhead, load balancing and scalability.

Static Mirroring
To examine the load distribution among the nodes of BD when varying the k parameter, we
pose different querysets in a testbed of 16 network nodes. Using a 10-d cube with 10k tuples
(uniformly distributed) we pose 5k querysets, following the uniform and the Zipfian (with vari-
ous 6 values) distributions respectively, with the ratio of point queries set to 0.5 and P; = 0.3.
Queries arrive at an average rate of A = 100%2265. For this set of experiments, only static mir-

roring is allowed. For the replication factor we chose the values £ = 0, meaning no replication
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Figure 4.9: Load distribution among peers for various replication factor values (static replication)

and k£ = 4, meaning that each dwarf node is stored in one third of the network nodes. From the
biased workloads we present results for § = 1.5, as results with different 6 values demonstrate
little qualitative difference.

Figure 4.9 shows the average load per network node throughout the experiment. As we would
expect, the more skewed the workload, the more uneven the load distribution gets. Skewed work-
loads may produce fewer loaded BD components, yet their load is larger compared to random
querysets. When increasing the k parameter from 0 to 4, we observe that the load distribution
becomes fairer, especially in the uniform case, where the initial load of the most loaded dwarf
nodes gets allotted over their mirrors. Nevertheless, for more skewed workloads there still re-
main a few nodes with noticeably heavier load due to the fact some nodes have such a high load
in the first place, that it still remains high after the replication. It should also be noted that when
increasing k, there is a trade-off between load distribution on one hand and creation time and
storage overhead on the other. Choosing £ = 4 means that the cube is inserted 5 times, increas-
ing the cube insertion time by a factor of 3.9.

From these experiments we deduce that a static replication strategy leads to an uneven load
distribution with a small part of the system being significantly loaded regardless of the incoming

requests.

Adaptive mirroring
We now enable the adaptive mirroring mode of BD, testing it with the same setup as the static
case. Figure 4.10 displays the number of the created replicas in total as well as the induced system-

wide communication overhead over time for different queryset distributions and for Limits =
exp
10 queries

sec

In all cases, our scheme increases the number of replicas at overloaded parts of the structure
through its expansion mechanism in order to bring the system to a balance and eliminate the
instances of overloaded dwarf nodes. The more skewed the queryset, the more replicas the BD

system produces. This is natural since, as shown earlier in the experimental section, overloaded
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Figure 4.11: Load distribution before, during and  Figure 4.12: Gini coefficient over time for various

after mirroring (0 = 1.5, Limitg,,,, = 10) workloads and Limit;,,, values

dwarf nodes for skewed distributions have substantially higher load. The rate at which replicas
are created decreases with time and reaches a steady state, where the number of mirrors remains
almost constant. It is worth noticing that BD reaches the steady state fairly quickly (within a few
seconds — less than 10 in our experiments), due to the ability of the expansion mechanism to

create multiple mirrors according to the amount of overload.

However, until steady state is reached, we observe a short period of fluctuation in the number
of replicas, which is more apparent for workloads of high skew. The simultaneous initiation of
the mirror process leads to temporary inconsistencies with regard to which mirror each node is
aware of. In this case, it takes some time until all mirrors discover each other, creating an uneven
load distribution among them. It is also very important to stress that the mirroring process
diminishes substantial load inequalities with minimal storage overhead: About 100 replicas are
created at most in an initial BD structure of 130k dwarf nodes, which translates to less than 0.1%

of extra storage consumption.
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The second graph of Figure 4.10 depicts the number of control messages in the course of time.
These are the messages required to inform parent, children and mirror nodes of the creation of
a new replica or the deletion of an existing one, as well as the insertion message itself in case an
expansion occurs. As expected, expansion and shrink comes with a certain communication cost:
The more the replicas created or deleted, the more the control messages required. However,
this message burst lasts only for a short period of time, until the system reaches a steady state.

Moreover, the communication cost is shared among the participating resources.

Figure 4.11 also shows that BD moves towards a more balanced load distribution with each
step. Load snapshots of a skewed workload (§ = 1.5) at the beginning, the middle and a random
point in the steady state show that our method manages to decrease disparity between node
loads. That is its main advantage compared to static mirroring: The system gradually moves
towards states where more server instances are involved in query processing and less overloaded
dwarf nodes exist. Without adaptive mirroring, the system exhibits overloaded peers with much
higher loads, while the large majority of the rest receive very few requests. Thus, the degraded

performance of overloaded nodes degrades the whole system’s performance.

Experiments with different values of the Limit,,, parameter show that the higher its value,
the smaller the total number of mirrors created and the smoother the transition to the steady
state. However, higher values of Limit,,, fail to guarantee fairness of load distribution. This
becomes clear in Figure 4.12, which plots the value of the Gini coefficient G over time for various
Limit;,, values. G is a summary statistic that serves as a measure of inequality in a population.
It is calculated as the sum of the differences between every possible pair of individuals, divided
by the mean size. Its value ranges between 0 and 1, where 0 corresponds to perfect equality.
Assuming our population comprises of the number of received requests by each mirror, we cal-
culate the value of G as an index of load distribution among servers. Note here that a low value

of G is a strong indication that load is equally distributed among them, but does not necessarily
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imply that this load is low. In all cases, its value stabilizes extremely quickly, a proof that BD
replica-sets are pretty stable over time. The runs with the low threshold offer better load bal-
ancing (with G dropping from 0.4 to 0.1 for the skewed workload) as more mirrors are created,
giving the system a chance to balance the inequalities.

To further examine the behavior of our system under stress conditions and sudden changes

in load, we conduct another series of experiments. Using the same workloads and an initial query

0 queries 0 querieS)

—» we suddenly increase the query rate by a factor of ten (A reaches 100 ©_

rate of 1
after 20 sec of querying time. After another 20 sec, the rate decreases again to its initial value. We
evaluate the efficiency of the expansion as well as the shrink mechanisms to perceive the change
and adapt the number of replicas accordingly, in order to perform as required with minimum
storage consumption.

Figure 4.13 presents the number of existing replicas over time throughout the experiment
for Limitg,,, = 10. Almost immediately after the increase in A, the number of replicas increases
rapidly, almost 10 times as much. After the end of the pulse, the shrink mechanism erases un-
derloaded dwarf nodes, freeing up disk space, making it (possibly) available for the creation of
other mirrors. Again, we observe how quickly BD manages to detect the change in load. Within
a few seconds the mirrors decrease dramatically and keep decreasing gradually, tending to reach
the state that existed before the pulse was applied. However, the more biased the workload, the
more the steady state before and after the pulse differs.

To affirm our findings, we repeat the experiment in our simulation testbed of 128 nodes. This

queries
sec

an order of magnitude larger than before. The results, depicted in Figure 4.14 are qualitatively

time the query rate changes from 100 to 1000 and back to 100 , since the network size is
similar to those of the real deployment, proving the ability of BD to fully exploit the elasticity that

the distributed environment offers.

4.5.5 Effect of Dimension Grouping

Here we evaluate the impact of dimension grouping on performance as well as fairness in both
storage and load. Using the 20-d dataset and varying the h parameter from 1 to 10, we apply a
batch of 20k updates in an existing BD structure of 100k tuples. Afterwards, we pose 1k uniformly
distributed queries. We measure the time and communication cost of the operations, as well as
the value of G for both the storage consumption and the produced load (Table 4.11). Assuming
our population comprises of the size of the stored data and the number of received requests by
each node respectively, we calculate G as an index of storage and load distribution among servers.

As h increases the communication cost of all operations noticeably decreases, since paths of
h nodes reside in the same host, consequently reducing the operation times. Naturally, as the

grouping becomes more coarse grained it causes imbalance in both storage and load. Although
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Table 4.11: Measurements for various values of h using the 20-d dataset

Storage Update Querying
h G time/update (ms) msg/update G  time/query (ms) msg/query G
1 0.01 153 35.6 0.05 109 17.2 0.05
2 0.20 148 30.3 0.13 38 8.6 0.08
5 0.39 102 23.4 0.29 15 39 0.18
10 0.1 91 20.8 0.30 13 2.3 0.32

Table 4.12: Implications on data and query processing for increasing number of failures and different T'y o4
values

|Nfaitl  Trair(sec) queryloss (%) total redirections msg/query time per query (ms)

0 - 0 0 9.8 57

1 90 0 11 9.8 79

2 90 0 204 10.4 257
4 90 2.9 841 11.1 734
1 60 0 21 9.9 107
2 60 0 258 10.5 304
4 60 4.3 894 11.2 812

the effect on storage is much more severe, the load remains more balanced among servers, even
in the exaggerated case of h = 10. This experiments proves the trade-off between performance

gain and balance, suggesting a choice of h much smaller than d.

4.5.6 Node Failures

Our system relies on the cooperation of commodity nodes forming an unstructured P2P over-
lay. In such an environment it is likely that failures will occur throughout the execution of a
workload. Indeed, Google reports an average of 1.2 failures per analysis job in their MapReduce
infrastructure [DGO8]. It is thus important to examine the impact that failing nodes have on our
system.

Using the 10-d dataset (with k£ = 3) and a uniformly distributed query set of 5k queries that
arrive at a rate of 10 %{75265, we enforce node failures as follows: every T, sec, a subset Ny
of the online peers fails in a circular way, while previously offline nodes are reinserted to the
network. Note that, by failing we mean that nodes depart ungracefully, without informing any
other peer. Starting from |Ny,;| = 1 we gradually increase it up to the value of 4 (since each
dwarf node exists in k + 1 = 4 different network nodes), aiming to test BD’s fault tolerance and
examine its performance under volatile conditions. The adaptive mirroring mode is turned off,

in order to better interpret the results.
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Figure 4.15: Number of replicas over time with various numbers of failing nodes

It is worth noting that the parameters used in these experiments are far more pessimistic than
the reported ones. According to [DGO08], Google experiences failures in 0.76% of the average
number of machines allocated for an analysis job, with T',; being almost 500 sec on average.
Table 4.12 summarizes our findings. Note that the query time column represents the absolute
time for a single query to be resolved (not the average completion time of many queries run in
batch mode).

We observe in Table 4.12 that the system maintains the theoretical guarantee that for any
failure level below the replication no data or query loss will occur (see lines with |Nfq| < 4).
Even when 25% of the nodes fail, a very small portion of the queries has to be restarted (less
than 5% in the worst case). This happens because, for a query to fail, all the replicas of at least
one the respective dwarf nodes that reside on the answering path must be offline. Because of the
automatic replenishment of the replica-set whenever a dwarf node falls below £+ 1 copies, query
loss is very small. The number of messages needed per query now tops d due to the redirections
needed for some requests. Redirections and mostly the induced timeouts increase the average
response time by a factor of roughly 13 compared to the no-failures run. Still, this number does
not incorporate the query resolution speed-up that BD exhibits when many queries are sent in
batches.

In Figure 4.15, we plot the total number of replicas in the system over time, for the various
| Nfqit| values. We observe that the number of mirrors remains stable, despite of the random
node departures and very close to the initial value for £ = 3 (represented by the horizontal
red line). In fact, the number of replicas is somewhat larger than the theoretical value. This
happens because more than one peers might initiate a mirroring process at the same time, thus
producing more replicas. This becomes more obvious as the ratio of failing nodes increases. The

small fluctuations are due to the deletion of mirrors as nodes fail.
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4.6 Summary

In this chapter we presented Brown Dwarf, a system that distributes a data cube across peers
in an unstructured P2P overlay. To our knowledge, this is a unique approach that enables users
to pose group-by queries and update multidimensional bulk datasets online, without the use of
any proprietary tool. BD creates a distributed Dwarf with a single pass over the the input data,
allotting dwarf nodes across peers and interconnecting them.

Our system employs many plausible features required by an application and its respective
hardware: It is scalable, as it can use an unbounded number of cooperating nodes, distributing
computation and storage; it provides data availability through its adaptive replication scheme ac-
cording to both workload and node failures; it efficiently answers all point and aggregate queries
in a bounded number of steps; finally, it is cost-effective, as it uses only commodity hardware
and with its expand/shrink scheme each dataset takes up only the necessary amount of storage.

Our evaluation shows that the data cube is evenly distributed across a number of cooper-
ating peers. Both creation and querying times are significantly reduced (often by an order of
magnitude) due to the parallel paths taken in the overlay. Also, BD expands popular parts of the
structure using local only load measurements, while constantly monitoring the whole set to re-
main above an acceptable replication threshold. Finally, it minimizes node overloads and query

processing times, even in very demanding and dynamic workload/churn conditions.
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CHAPTER 5

HORAE: An Analytics Platform for Temporal Data

In this chapter we deal with the special case of time series data, meaning data characterized by
a temporal aspect. Taking into account the properties of time series data as well as the require-
ments of its analysis, we propose HORAE, a shared-nothing analytics platform that stores, queries

and updates time series data in a fully distributed manner.

HORAE employs a hybrid solution for data storage and processing: High-rate updates and
queries targeting the most recent items are handled by a HiPPIS-like, DHT-based component,
that enables fast insertion times and multidimensional indexing. The large bulk of the data is
handled through an enhanced Brown Dwarf datacube structure, that adaptively materializes and
replicates according to demand. The two components seamlessly integrate to offer the advan-
tages of powerful aggregate data processing along with scalability and elasticity of commodity

resources.

Our prototype implementation over an actual testbed proves that HORAE is able to effi-
ciently handle large rates of both updates and queries, tolerate high failure ratios and expand or
contract its resources according to demand. A direct comparison with a state-of-the-art ware-
housing solution demonstrates HORAE'’s advantages in both performance and elasticity under
variable workloads: HORAE accelerates query resolution by orders of magnitude, manages to
quickly adapt even after sudden bursts in load and remains unaffected with a considerable frac-

tion of frequent node failures.

135
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Figure 5.1: Scenario of a data warehouse-like system for managing temporal data of an ISP

5.1 Overview

Most of the data used in data warehousing comes in the form of security, network and system
event logs. For example, network usage data collected from logs across network and security
devices of a communications service provider can be correlated in real time to identify security
threats as they happen, catch fraudulent activities, make better use of resources and improve the

quality of service.

In such applications, data are usually determined by a temporal aspect: Time series data
are characterized by a time attribute (e.g., time-stamps of router data or dates of purchases)
presented at different levels of granularity through the use of concept hierarchies (e.g.,
Day<Month<Quarter<Year). Thousands or millions of such records are produced per second and

modern systems are expected to be able to both incorporate and process them.

As a motivating scenario, let us consider a network service provider that maintains records
of its router operations. Instead of creating a centralized data warehouse on-site with a large
upfront and maintenance cost, the management chooses to transfer data and computation off-
site to a location-transparent facility and access it more easily and ubiquitously. In this manner,
the establishment significantly lowers maintenance and hardware costs while enjoying a scalable,

real-time decision support system that is viable even under heavy update load (Figure 5.1).

Existing systems inadvertently fail in one of the two basic requirements, powerful data pro-
cessing and high-rate updates. Even the new class of Cloud-based analytics engines that have
been proposed for large-scale data management, although they offer scalability, robustness and
availability at low cost, they pose some limitations. Since they are based on the MapReduce pro-
gramming model, they mostly target analytics jobs submitted in batches rather than real-time

and interactive “per-tuple” processing. This is exactly what we pursue.
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In previous chapters we presented two systems that emerged by our efforts to provide an
always-on, real-time data access system for concurrent update and query processing with fast
response times. Both works, HiPPIS and Brown Dwarf, aim to satisfy the same general need:
The creation of a data-warehouse-like platform, employed on commodity machines, which will
be able to provide an always-on, real-time data access and support for online processing. Tech-
niques from the field of P2P computing have been exploited in order to ensure scalability, fault
tolerance and fairness in resource utilization. However, each work approaches the same issue

from a different perspective, setting different priorities.

HiPPIS focuses on the management of hierarchical data, allowing queries of various granular-
ities through roll-up and drill-down operations. This fact makes HiPPIS well suited for scenarios
where a more detailed representation of the data is needed. The simplicity of the HiPPIS data
structure allows for fast insertion of the initial fact table, without any preprocessing. However,
since no a-priori materialization of the cube is performed, group-by queries require further pro-
cessing after the collection of all tuples that correspond to them. Updates are as fast as insertions,
incurring a small overhead which depends on the level of consistency needed by each applica-
tion. Therefore, in situations where data are constantly updated at a high rate, HiPPIS can cope

in a cost-efficient way.

Brown Dwarf manages to distribute a well known and established data structure, which ma-
terializes a data cube, achieving, in some cases, significant compression rates. At the cost of
preprocessing, which is paid only once though, aggregate queries can be answered as easy and
naturally as point ones. However, updates in Brown Dwarf are quite costly, since a single new tu-
ple insertion triggers multiple changes in aggregate values across the structure. Therefore, Brown
Dwarf is more efficient in environments where the update rate is not very high, compared to the

query rate, or where updates can be applied in batches.

In this chapter we design a complete system that combines the two approaches in order to
benefit from the strengths of both of them. To that end we present the HORAE* platform, where
techniques from both HiPPIS and Brown Dwarf are applied in order to disseminate, query and
update high volumes of multidimensional time series data: Recent data, which are bound to be
updated rapidly and queried in finer granularity will be stored in a HiPPIS-like system, whereas

historical data will be stored in less detail in Brown Dwarf cubes.

Our prototype implementation tries to maintain the best of both worlds: A powerful index-
ing/analytics engine for immense volumes of data both over historical and real-time incoming
updates and a shared-nothing architecture that ensures scalability and availability at low cost.

Geographically spanned users, without the use of any proprietary tool, can share information

*Horae were the goddesses of seasons and the natural portions of time in Greek mythology.
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Figure 5.2: An overview of the HORAE system for managing the temporal data of an enterprise

that arrives from distributed locations at a high rate in the form of time series and query it in dif-
ferent levels of granularity. An overview of the HORAE system is depicted in Figure 5.2, where
a use case scenario of an enterprise managing its temporal data is presented.

HORAE utilizes a mixture of two mechanisms: First, it employs a HiPPIS-like, DHT-based
storage and indexing substrate in order to buffer incoming updates at high rate and answer
queries relative to the most recent data. This “transactional” part, called T-HORAE, maintains
the required scalability and distribution constraints while, due to its simple insertion mechanism,
it efficiently handles frequent data insertions. Its adaptive reindexing mechanism ensures that
queries of any granularity are still effectively answered.

H-HORAE stores, replicates and maintains the large amount of data as they are gradually
transfered from T-HORAE by distributing a highly efficient cube indexing structure over an un-
structured P2P overlay, similarly to the Brown Dwarf. Its advantages are many-fold: It provides
an adaptive materialization scheme that summarizes data according to the level of temporal detail
they are requested, in order to minimize storage consumption and maximize query throughput.
It organizes the cube indexing so that updating costs and times are minimized. Finally, it employs
both static and adaptive replication over commodity hardware to ensure availability and elastic
behavior in a transparent manner.

The contributions of HORAE are tha folowing:

+ A complete indexing, query processing and update system for multidimensional time se-
ries data over a distributed environment, where frequent updates are performed. This
distributed data store comprises of commodity PCs, while users need no proprietary tool

to access it.

+ Advanced features that allow our system to adapt its behavior according to some strategy,

by conforming either to the incoming workload or to the common observation that queries



5.2. System Design 139

Data Upload
Service

User Interface

Query Decision
Component

T-HORAE

T-Workload

H- Workload
Monltor
Matenallzatlon

Monitor
Decision

OFFLOAD —
[ H IndeXIng
Component
< FreePastry Overlay g < Unstructured Overlay g
( Physical Storage C Physical Storage

Figure 5.3: The architecture of the HORAE system

over time tend to be less detailed as time progresses. Both the granularity of materialization
as well as the amount of dedicated resources are adjusted for best system performance and
optimal storage utilization. Thus, query resolution is accelerated and storage consumption

is minimized according to demand.

+ A thorough validation of the proposed system using an actual deployment on both syn-
thetic and real datasets. We measure our system’s performance at all stages of its operation
and compare it against Hive [TSJT09], a state-of-the-art distributed warehousing initia-
tive based on Hadoop [had]. Our findings show that our scheme, while comparable in
the update procedure, greatly reduces query times and required storage, while providing
advanced elasticity and availability operations according to the application or workload

demands.

5.2 System Design

HORAE is an integrated approach that employs data warehousing and distributed systems tech-
niques in order to organize and analyze multidimensional data in a scalable and efficient manner.
It operates on time series data, produced at high rates and arriving in a (roughly) time-ordered
mannert as they are created. As such, we define the system’s goals to be both efficient and online
update and querying capabilities, scalability, fault tolerance and ease of deployment.

The high-level architectural components of HORAE are shown in Figure 5.3. Our design
comprises of two complementary subsystems, 7-HORAE, which constitutes the “transactional”
part, and H-HORAE, which processes the “historical” application data. The rationale for this

distinction derives from our requirement for both efficient analytics and online processing of

tThis is not a strict requirement for our system. We deal with out-of-order updates, assuming that the maximum
amount of observed lag is bounded.
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updates. Moreover, since we target time series data, we anticipate (although not require) that
demand detail is fine-grained for more recent entries and gets more coarse for historical data.
Thus, we provide a system design with a transactional logic (i.e., online, fast) that asynchronously
materializes its contents inside the warehouse-logic component. The latter is designed so that
any group-by query over big multidimensional datasets is efficiently handled.

T-HORAE is in charge of storing and indexing the incoming updates from multiple enter-
prise sources. Its function is to provide a “buffering” between high-rate updates and the ma-
terialized bulk of historical data kept in H-HORAE. Built on top of a DHT overlay, it offers a
no-precomputation data insertion, enabling the inclusion of data as fresh as possible to query re-
sponses. Utilizing an indexing mechanism adaptive to workload skew, it also ensures high query
throughput with small communication and computation overhead.

H-HORAE is the subsystem that stores the large bulk of data as they are timely transferred
from T-HORAE. In order to allow for efficient analytical querying, H-HORAE materializes in-
coming tuples using a highly efficient cube index and distributes them across an unstructured
overlay of nodes. An adaptive materialization engine ensures that the granularity of the cre-
ated sub-cubes matches the workload patterns, while a load-based replication module provides
availability and elastic system behavior.

In the following we analyze the components and operations of the two subsystems as well as

the way they seamlessly cooperate for storage, indexing and analysis of time series data.

5.2.1 Data and Query Model

Our data spawns the d-dimensional space, with Time being the primary dimension. For simplic-
ity reasons, we only consider hierarchies for the Time dimension in our analysis. However, our
system can be generalized to support hierarchies in any dimension. Time is organized along L
hierarchy levels ¢;, 0 < i < L — 1 with ¢ corresponding to the most detailed level and ¢, being
the special ALL (x) value. We define that ¢}, lies higher (lower) than ¢; and denote it as £, > ¢;
U < 0)iff E > 1(k <), ie, if ¢ corresponds to a less (more) detailed level than ¢; (e.g.,
Hour>Second). We assume that our database comprises of fact table tuples of the form:
(tID, Ty, .- T4y, D1,...,Dg_1,facty,. .., facts), where Ty,, 0 < i < L —1is the value of the
th level of Time and Dj, 1 < j < d — 1 is the value of the 4 dimension of this tuple and fact,y,,
1 <'m < s are the numerical facts (we assume they correspond to the most detailed level of the
cube).

Our goal is to index large and constantly incoming volumes of these tuples so that we can
answer queries of the form: ¢ = (q¢, ¢1, G2, - - . , 4—1), where each query element g; can be a value
from a valid hierarchy level of the Time dimension (¢; = T,, 0 < ¢ < L — 1) and each g; can be
any value of the j" dimension, including the special * value (¢; = {Dj, *},1 < j < d —1).



5.2. System Design 141

Table 5.1: Data and Metadata sample for our use case

Time Fact Table
Hierarchy tupleID Time Customer Product Sales
Hour 1 Hl Ml Sl Cl Pl $10
T 2 H My S1 Ch P, $20
Minute 3 H; Moy So Cy P $30
T 4 H M Ss Cy P, $40
Second 5 H2 M3 S4 Cl P1 $50

Table 5.1 contains a sample fact table of 3 dimensions (Time, Customer, Product) and a mea-
sure of interest (Sales). It also includes the declaration of the hierarchy imposed on the Time

dimension of the sample dataset.

5.2.2 T-HORAE Subsystem

The T-HORAE subsystem is based on HiPPIS. As described in Chapter 3, the main idea of HiP-
PIS is that peers initially index tuples using a default level combination (pivot). Inserted tuples
are internally stored in a hierarchy-preserving manner. Query misses are followed by soft-state
pointer creations so that future queries can be served without reflooding the network. Peers
maintain local statistics which are used in order to decide if a reindexing to a different combina-
tion of hierarchy levels is necessary, according to the current query trend. HiPPIS is thus able to
process queries of variable granularity.

Yet, the maintenance of soft-state indices can be very costly in the case of frequent updates:
All affected indices must be checked after a tuple insertion among a large number of existing ones.
Moreover, the reindexing cost grows proportionally to the size of the data, making changes in
workload skew harder to handle. These limitations conflict with our requirements of a system
targeted to time series data. We provide multiple algorithmic/design changes in T-HORAE to
support high-rate updates and efficiently adapt to the incoming load: The indexing scheme gives
more consideration to the Time dimension to better support time series data, the soft state indices
are eliminated to facilitate fast updates and the internal data storage is structured in a way that
offers more independence for more cost-efficient adaption to the various workloads. Below we
describe the T-HORAE operations in detail.

Data Insertion/Update
Upon initial data loading or upon arrival of incoming update batches the Data Upload service
is called. Indexing is performed by the T-Indexing module: The ID of each tuple to be originally
inserted is the hash of the T}, value, contrarily to HiPPIS where all dimensions, not only Time,
contribute to the tuple ID. This choice consciously reflects the assumption that Time is the most

important dimension, which will be included in the majority of the queries and that queries
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Figure 5.4: The T-HORAE forests after the insertion of (a) the first, (b) the second and (c) all tuples of Table
5.1

concerning recent events (i.e., those mostly kept at T-HORAE) will require the most detail. The

DHT assigns each tuple to the corresponding node with ID numerically closest to this value.

As in HiPPIS, tuples are internally stored in forest-like structures, each of them consisting of
d rooted trees, one for each dimension. The tree corresponding to Time has a height of L (L — 1
levels plus the special ALL value *), while the rest d — 1 trees have a height of 2. Each forest
f is characterized by its pivot Py, which defines the level of indexing and can be any of the /;,
0 < i < L — 1 values, excluding *. Indeed, if Py = , then all data would be stored in one
node, defeating the purpose of our distributed overlay. The value corresponding to Py is called
pivotvalue Ty. In T-HORAE, each forest f can independently reindex its data to a different level,
creating new forests with pivots different than Py according to query trends. This mechanism is

explained in detail later in the section.

For tuple updates, we must discover which forest to append each new tuple to, so that it is
included in future queries. This translates to finding the forest with common path starting from
the root of the Time tree and moving towards the leaves. This is achieved by consequent lookups
starting from 7y, and moving towards Ty, _, until the first match is found. If no match is found, a
new forest must be created with ¢, as pivot. The process results in a cost of O(L log n) messages.

Considering that the number of levels for Time is usually limited and that queries for recent
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events tend to be more detailed (thus recently created forests mostly remain indexed according
to fp), it is safe to assume that this cost is close to a simple DHT insertion.

Figure 5.4 shows an example of data insertion using the tuples of Table 5.1. When items
with the same ID arrive at a host (Figures 5.4 a and 5.4 b), different values at levels lower in the
hierarchy than the pivot create branches, while items with different IDs are indexed separately
(Figure 5.4 c).

Data Lookup
Queries with ¢; = T}, that concern the Py of a forest f are exact match queries and can be
answered in logarithmic number of steps. More formally, assuming the query ¢ with ¢; = Ty, as
defined before, the query is an exact match if 3f : {; = Py A\ ¢ = Ty. Queries on Time values
that are not indexed cannot be answered unless circulated around the overlay. This way, all nodes
that contain (parts of) the answer are discovered and the corresponding answers are returned to
the query initiator to perform local aggregations.

Assuming the initial state of Figure 5.4 c, the query (S1,C1, P») is forwarded to the node
responsible for the hash of S;. This is an exact match query and the value $20 is returned. When
querying for (Hy,*, Py), we discover that the key that derives from hashing H; does not ex-
ist. Flooding is performed and the nodes responsible for fi, f2 and f3 answer with the initiator

(assuming the aggregation function is sum) performing the addition and returning $90.

Data Reindexing
While the initial Py setting in T-HORAE gives preference to queries over a specific level, it is
possible that some workloads will defy this choice over time. The 7-Workload Monitor module of
T-HORAE nodes actively monitors the current query trend by maintaining local statistics about
the popularity of each level of Time per forest. As popularity of ¢; of a specific forest f we define to
be the number of queries it has received regarding ¢; within the most recent time-frame W. This
time-frame should be properly selected to perceive variations of query distributions and, at the
same time, stay immune to instant surges in load. If the most popular level of f, /nax, exceeds
Py in popularity by some threshold$, the node considers the possibility of a new partitioning
according to /pmax.

If £max < Py, then the node hosting f can autonomously make a decision about reindexing,
since it holds all the data and corresponding statistics of all subtrees of f in Time. Indeed, any
forest stores all values of the levels below the pivot and therefore has a global view of the queries
regarding ¢max. 1-Indexing reinserts all tuples of f according to the new pivot £pax. This process
splits the initial forest, creating as many new forests as the number of distinct Time values of £pax

belonging to f and scatters them across the overlay. Each of the new forests has /.« as pivot.

+The threshold value identifies the dispersion of the different popularity values. As such, we choose it to be
proportional to the Mean Difference A of these, like in the HiPPIS case (see section 3.3.5).
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Figure 5.6: Data distribution after a shift towards the level Minute of the forest fs

In the opposite case ( £max > Pr), the node is not capable of making an individual decision,
since the value of Ty, is located in other forests as well. A SendStats global message signals
the transmission of statistics for all forests (if any) containing 7_, . The initiator, after collecting
them, checks if the condition that its popularity exceeds that of P; by threshold holds. If this is
the case, the initiator sends a Reindex message to all nodes that replied with statistics, resulting
in the merging of the involved forests to one, with /.« as pivot.

In our example, assume that the node storing f; observes that Hour is more popular than
Second, i.e., Hj gets more queries than S;. Statistics from nodes holding fs and f3 have to be
checked before making a final decision. If these statistics confirm the local findings, then rein-
dexing is performed by all involved nodes (Figure 5.5). If, at some later point, the statistics of f5
suggest Minute as the most popular level, the hosting node can individually decide to shift to that
level and reindex its data (Figure 5.6). To ensure the correctness of operations during reindex-
ing and to avoid simultaneous reindexings, a Lock message is flooded to signal the prevention of

other reindexings while one is in progress.

Data Offload
T-HORAE is intended to store recent transactions due to its simple and efficient insertion/up-

date mechanism. As time progresses, part of the T-HORAE data is moved to H-HORAE using
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Figure 5.7: Dwarf cube for the data of Table 5.1

the Offload module to facilitate more powerful analysis. Our system dynamically regulates the
frequency and size of data that the module operates on.

To understand the necessity of the module, let us refer to the initial requirements: New
events to be stored arrive asynchronously from possibly multiple sources. T-HORAE handles
these updates in batch mode (e.g., on a per-minute basis), since they must inevitably converge
through some common channel (e.g., a web application). We define lag as the maximum delay
between the most recent and oldest time-stamped data items inside a batch to be inserted. This
is an important quantity, as it closely relates to the amount of buffering necessary by T-HORAE
so that transferred data will be correctly processed by the more strict H-HORAE indexer. Larger
lag values force T-HORAE to wait more before oftfloading (to avoid out-of-order updates), while
smaller values could trigger a more “aggressive” strategy. Finally, to keep a roughly stable size of
data in T-HORAE, tuples must leave the subsystem at a rate proportional to the rate they enter
it. Thus, another parameter that influences the offload process is the update rate Aypq.

Our choice is to invoke the offload procedure periodically, every Ti,g, while the exact division
of data between the two components is governed by the Wiy, parameter: A value of Wiey, = 1
hour means that T-HORAE stores transactions that occurred within the last hour. Obviously,
Wiem > Tog, as we wish to take into consideration the time necessary to index the offloaded data,
while answering queries. Thus, our system dynamically adjusts these two parameters according
to the following formulas: Tog = cof - max{ﬁ, lag} and Wiem = Crem - max{ﬁpd, lag}, where
Crem > Coff > 1.

5.2.3 H-HORAE Subsystem

The H-HORAE subsystem serves as an archival storage of fully or partially summarized historical
data. Its design modifies the BD structure in a way that favors frequent updates over temporally
ordered information, produced in a distributed manner at a high rate and adjusts the granularity
of the materialization according to a predifined strategy: Either the data’s recency or the incoming

query workload.
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Figure 5.8: The distribution of dwarf nodes in the Brown Dwarf structure of Table 5.1 and their hint tables

BD has proved that it greatly increases scalability and performance (through parallelization)
while enabling the computation of much larger cubes (see Chapter 4). However, the update
procedure is costly in terms of time as well as bandwidth due to the a-priori materialization.
Therefore updates are usually performed in batches. Even so, sometimes it is more efficient to
reconstruct the whole dwarf structure from scratch. Moreover, it precludes the processing of
multiple-granularity queries on the time hierarchy. H-HORAE modifies BD to accommodate
time series data: By re-organizing the indexing structure according to Time, it allows for a design
that favors frequent updates and adaptation to workload trends. The latter is a completely new
feature that enables H-HORAE to vary its operational gains between storage and precision in a
totally customizable way.

Concisely, the top dimension of the structure is that of Time and tuples are inserted according
to the most detailed level of it. No ALL cell is calculated for Time; instead, a daemon process
periodically constructs roll-up aggregates for values that lie higher in the hierarchy, optionally
erasing the lower level ones for cube size reduction.

Apart from the benefits that the distribution of the Dwarf offers, such as the acceleration of
the cube construction, the ability to store much larger cubes and the dramatic reduction in query
response times, H-HORAE allows for online, cost-efficient updates that can originate from any
host accessing the update service of the system even at very high rates. Moreover, it makes better
use of the available storage and bandwidth, as the granularity of aggregation can be adjusted,

according to the application needs.

Insertion
The insertion operation refers to the initial cube creation using historical data of the past and is

undertaken by the H-Indexing component. Time is chosen first in the dimension ordering, while
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Figure 5.9: The full H-HORAE cube for the fact table of Table 5.1

the rest of the dimensions are placed in a descending cardinality order. As proven in the original
paper, dimensions with higher cardinalities result in a smaller Dwarf cube when placed on the
higher levels of the Dwarf cube. The construction is preceded by a sort on the fact table, as in
the original Dwarf. Figure 5.7 depicts the Dwarf structure according to the original algorithms
for the data of Table 5.1, while the corresponding BD distribution is presented in Figure 5.8 for

comparison reasons.

An important difference of our system’s cube construction is the lack of the ALL cell in the
Time dimension. Tuples are being processed one by one, first according to ¢y (Second in our
example). As soon as all the values of ¢ that are mapped to the same value of ¢; have been
processed, our algorithm creates an aggregate cell for that specific value of /;. This procedure is
followed for all L levels of the hierarchy. In general, the aggregate of a value of /; is created by
calling the suffixCoalesce routine of Dwarf (see [SDRKO02]), providing as input the set of dwarf
sub-cubes of the ¢;_; that correspond to the specific value of ¢;. For the sample data of Table
5.1, after having created the nodes and cells for the first two tuples according to the original cube
construction algorithm, when proceeding to the third tuple the system realizes that all tuples
belonging to M; have been processed, thus it creates the aggregate cell and the corresponding
subdwarf for M;. Similarly, upon reception of the last tuple, the system constructs the subdwarf
for Y7. The final graph can be seen in Figure 5.9, while its distribution over the nodes of an
unstructured overlay in Figure 5.10. Note that the highest level of aggregation is defined by the

highest level of the hierarchy and no ALL cell exists for the Time dimension.

Querying
Queries are resolved by following their path along the system attribute by attribute. A node initi-
ating a query ¢ = (g, q1 - - - gq4—1) forwards it to the root dwarf node of the distributed structure
(Nroot). There, the hint table is looked up for g, under currAttr. 1f q; is of ¢y and exists, child is
the next node the query visits. The above procedure is followed until a measure is reached. Since
adjacent dwarf nodes belong to overlay neighbors, the answer to any point or group-by query is

discovered within at most d hops. The same procedure is followed if ¢; is of a level ¢;, i # 0 and
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Figure 5.10: The distribution of the H-HORAE cube of Figure 5.9

this aggregate exists, with the answer being reached within d hops. If, however, the aggregate
cell has not yet been created, the initial roll-up query must be substituted by multiple queries
of £;_1. Let Vi, |4, be the set of values of /;_; that are descendants of the queried value of /;,
i # 0. Then the requester must issue |Vy, , 4, | queries for each value belonging to Vj, | .,
keeping gj, 1 < j < d — 1 the same as in the original query, gather the results and spend some
post-processing to calculate their aggregate. If the aggregate for some value of ¢;_; does not ex-
ist, the query is further analyzed, until ¢y is reached. In the worst case, the answer is at most
d - |Viy—q,| hops and an aggregation away. The querying process is orchestrated by the Query
Xform module, through which pass all queries concerning H-HORAE.

In our sample case, a query for (M7, ALL, P;) follows the path (1)—(6)—(7) and returns $10,
while (M3, Cy, Py) is translated to (Sy, C1, P;) through the metadata information and returns
$50 after visiting (1), (13) and (14).

Updating
This is an important operation, as, by nature, time series data undergo very frequent updates.
Assuming that already inserted tuples are read-only and can neither be changed nor deleted, as
the common practice in data warehouses dictates, the update procedure translates to the inser-
tion of new tuples in the existent cube. In H-HORAE, we require that no updates for past events
are posed to the system. T-HORAE’s offload component makes sure that this requirement is met
by offering batches within which all arriving updates are sorted before their integration with the

existing materialized H-HORAE structure.
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Figure 5.12: The effect of the insertion of a new update tuple ((Hs, M3, S5, Ca, P1, $60)) on the H-HORAE
structure

The difference is that now the longest common prefix between the new tuple and existing
ones must be discovered following overlay links. Once the network node that stores the last com-
mon attribute is discovered, underlying nodes are recursively updated. This means that nodes
are expanded to accommodate new cells for new attribute values and that new dwarf nodes are
allocated when necessary. As in the insertion case, tuples are initially inserted in ¢y and as soon
as a value of ¢;, ¢ # 0 is complete, the specific aggregate is constructed.

The important benefit of H-HORAE compared to BD is that it significantly reduces the up-
date cost, due to the arrival of tuples in temporal order, combined with the lack of an ALL cell in
the first dimension. The temporal order guarantees that the first attribute of the new tuple will
either create a new cell in the first dimension, or coincide with the last cell of N;oot. Therefore, no
aggregate cell of Time will be affected. This is not the case for the rest of the dimensions though,
where all the affected aggregates are recalculated.

In our example, if (Hs, M3, S5, Co, P1,$60) arrives, the system will create a new cell in (1)
for S5 and two new dwarf nodes for the rest of the attribute values, while all other nodes remain
unaffected. Contrarily, in the original Dwarf structure of Figure 5.7, 12 dwarf nodes would be
accessed. The effect of the update procedure on both the original Dwarf and the H-HORAE

distributed cube is illustrated in Figures 5.11 and 5.12 respectively. The created cells and nodes
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Figure 5.13: The time-driven materialization mechanism of H-HORAE

along with the newly added links are depicted with dashed lines, while both the inserted and the

updated attributes and fact values are depicted in red. It is thus apparent that updates in our

system are less costly, as they affect fewer dwarf nodes and cells compared to the original Dwarf.

Adaptive Materialization

The proposed system, as described above, follows a static strategy for materialization: A roll-up

view in the Time hierarchy is created as soon as all required data are available, without destroying

the drill-down views, which remain in the system. Instead, more dynamic approaches can be

adopted.

Time-driven materialization In data warehousing applications involving temporal data it is

often the case that recent data are demanded in a fine-grained manner, whereas queries
for historical data usually concern aggregated periods of time. A daemon process peri-
odically and asynchronously creates the roll-up views and erases the corresponding drill-
down ones. The period of this process is chosen taking into account the characteristics of
the application. Therefore, the materialization process gradually follows the roll-up path

and eliminates the more detailed views as time passes, as depicted in Figure 5.13.

The time thresholds beyond which a roll-up view is created and the corresponding finer
grained ones are erased are denoted as (7y,, Ty, ... Ty, _,). This practically means that
for records stored more than 7y, the system constructs and maintains only the aggregate
views that belong to ¢;, erasing all views from ¢ to ¢;_;. The values of the thresholds can
either be set by the administrator a priori, taking into account the needs of the specific

application or dynamically adjusted according to the monitored query trend.

Load-driven materialization Depending on the application, not all data are queried upon in

the same level of granularity. Nyoot maintains statistics for the query load of each granu-
larity level through the H-Workload Monitor and the Materialization Decision component
asynchronously creates aggregate views for popular values and erases the detailed ones
if they are infrequently requested. The query load thresholds above which a roll-up view
is created and below which the finer grained ones are erased are denoted as (T'Maty,,
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TMaty,, ..., TMat, ,) and (T'Dely,, TDely,,...,TDely, ,) respectively and can be

set according to the needs of the application.

In the case of adaptive materialization, there exists a trade-off between the size and the com-
plexity of the cube, which consequently affects update and query response times as well as the
accuracy of the responses. Creating and erasing the aggregate views periodically spares signifi-
cant amount of storage space. However, the main advantage of the method is the acceleration
of the updates and the increase in query throughput, due to the smaller overall size of the dis-
tributed cube: Keeping dwarf cubes small helps the system navigate more quickly through them.
On the other hand, queries that follow an opposite trend than the one expected either are more
costly, or cannot be answered accurately. More precisely, coarse grained queries concerning very
recent events that only exist in the finest granularity translate to multiple fine grained ones. The
system, apart from the bandwidth cost, has to pay a post-processing cost as well, calculating the
aggregate of the gathered responses.

Moreover, the erasure of fine grained aggregate views leads to irreversible information loss.
Therefore fine grained queries concerning them are only answered in approximation, for instance
with the ratio of the aggregate fact to the number of distinct values of the queried level that
belong to the data aggregation level. Orthogonal approximation methods (e.g., [DGR07, Gar06,
GKMSO03] etc.) can be applied to mitigate this fact.

5.2.4 Replication

Replication is an important mechanism to achieve scalable performance, especially under heavy
loads, as well as fault tolerance. HORAE provides replication in both its modes. In T-HORAE,
replication and load balancing are handled by the underlying DHT, while H-HORAE adopts the
BD replication scheme, which is adaptive to both node churn and data skew. Nodes periodically
ping each other and replace replicas hosted by failed peers, preserving the degree of data redun-
dancy above k. Moreover, monitoring its load on a per dwarf node basis, H-HORAE creates ad-
ditional mirrors of overloaded nodes and deletes underloaded ones (with load above a Limit;,,

and below a Limit$,  threshold respectively) through the expansion and shrink process.

5.3 Experimental Evaluation

In this section we provide a thorough evaluation of HORAE, testing its behavior both per com-
ponent and as a whole. T-HORAE is based on a heavily modified version of FreePastry [fre],
although any DHT implementation could be used as a substrate. H-HORAE is written in Java,
using the socket API for inter-node communication. HORAE is deployed on an actual test-bed
of n = 16 commodity nodes of our lab infrastructure (Quad Core @ 2.0 GHz, 4GB RAM).
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Hive [TSJ*09] (version 0.5.0) has been deployed in the same testbed for direct comparison: 15
worker nodes (spawning 2 Mappers and 2 Reducers running concurrently, given 512 MB RAM
each) and a single machine in the role of HDFS, MapReduce and HBase master. For a fair com-
parison, replication in HDFS was turned off.

In our experiments, we use both synthetic and real datasets consisting of a fact table repre-
senting multidimensional time series data with numerical facts. The synthetic datasets have been
generated with our own and the APB-1 benchmark generator [apb]. Our generator creates the
tuples of the fact table to be stored from combinations of the different values of each dimension,
set to 1000 by default, plus a randomly generated numerical fact. For Time, which consists of 3

hierarchy levels, Second<Minute<Hour, the value for each tuple is chosen using a Poisson distri-

bution of A = 5tizlces. Furthermore, we may choose to create tuples that combine dimension
values uniformly or with bias (creating zipfian distributions with § = 1).

Using the APB-1 benchmark generator [apb] we produce three 4-d datasets (A, B and C with
densities 0.1, 0.2 and 0.3 respectively) with dimension cardinalities 24, 9000, 900 and 9 and one
measure attribute. The Time dimension consists of 3 hierarchy levels, Month<Quarter<Year and
covers the period from January 1995 to June 1996. The real dataset contains publicly available
network audit data for the 1998 DARPA Intrusion Detection Evaluation Program [dar98]. It
includes 1.1 million records, collected over a period of 6 weeks and organized in 7 dimensions.
The Time hierarchy is organized along Second<Minute<Hour<Day.

The aggregate function used in the results is sum. For the application workloads, we include
both point and aggregate queries with varying granularities and distributions, as well as contin-
uous updates.

Experiments are conducted using both the static and the adaptive mode of H-HORAE. In the
former case, denoted as Hy (the full version of H-HORAE), materialization is performed for all
hierarchy levels in a synchronous way. In the latter case, H,4, we have implemented both the
proposed strategies, namely the time-driven and the load-driven. In the time-driven case, de-
noted as H,4,, materialization is performed through a daemon process, with thresholds statically
set according to the dataset, whereas in the load-driven case, denoted as H,q, aggregates are cre-
ated and erased according to the query workload. For direct comparison we have also conducted

experiments with the centralized Dwarf, as well as its distributed approach, BD.

5.3.1 DataLoad

The first set of experiments evaluates the initial data load in each of the system’s components in
terms of completion time as well as cost in both storage and communication overhead.

In Table 5.2, we directly compare all versions of H-HORAE with the original Dwarf and
its distribution, BD, when initially inserting the APB and DARPA datasets. Hy synchronously
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Table 5.2: Measurements for various dataset insertions

size (MB) time (sec) load (msg/insertion)
dataset #Tup. Dwarf BD Hy Hug, Hoq, Dwarf BD Hy Huq, Heq, BD Hjy Huq, Hag,
APB-A 1.2M 56 59 53 9 10 485 101100 57 31 2315 03 12
APB-B  25M 102 115 93 24 25 957 220198 123 71 2417 04 14
APB-C 3.7M 163 182146 32 34 1530 321289 167 104 2416 04 15
DARPA 1.1M 178 191 156 127 143 614 222208 189 103 5952 12 49

creates rollup aggregates upon completion of a hierarchy level value. In H,,4, materialization is
performed through a daemon process, with thresholds statically set according to the dataset: For
the APB datasets, (1y,, 1,) is set to (1 quarter, 1 year) and for the DARPA dataset (2 hours, 2
days). In this case we assume that only the aggregates that conform to the 7}, thresholds are being
created in the first place. For instance, for the DARPA dataset this means that records of the last
2 hours are stored in the granularity of minutes, of the last 2 days in the granularity of hours and
the rest as days. H,g,, initially stores data only in the most detailed level. The creation of roll-up
views (and the deletion of drill-down ones) are not considered part of the loading procedure of
H,gq,, since it takes place periodically and independently of the insertion, based on the incoming

query load.

We observe that Hy noticeably reduces the size of the created cube compared to BD, pro-
viding cubes smaller even than the ones generated by the centralized Dwarf, due to the lack of
the ALL cell in the first dimension. The reduction is even more impressive with H,4,, reaching
82% for the APB and 34% for the DARPA datasets. In this case, the choice of the T}, thresholds
plays a decisive role in the cube size reduction: The smaller the Tp,, the more coarse grained the
views of the stored data, thus the smaller the cube size. In the worst case, the size of a H,4, cube

is equal to that of Hy. The size of the H,4, cube is comparable to that of Hyq, .

Analogous to the cube size reduction is the acceleration of creation time. First, we confirm
that the distribution of the cube leads to a better exploitation of existing resources, enforces pa-
rallelization and thus reduces cube construction times. Hy and H,4, exhibit a further reduction
(reaching 10% and 45% respectively) compared to BD. H,q, is 89% and 70% faster in storing the
cube compared to the centralized system using the APB and DARPA datasets respectively. The
absence of the ALL cell in Time in both cases and the selective materialization of H,4, result in
smaller cubes with less dwarf nodes, thus requiring less communication and I/O cost. This is
in line with the results concerning the messages per tuple insertion. H,q4, exhibits even more
impressive acceleration, reaching 93% compared to Dwarf for APB-C. Thus, H,4, proves faster
than H,4,, although more costly in messages. This is due to the fact that no aggregation cell is

calculated for the Time dimension, dramatically reducing the time of the data load operation.
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Table 5.3: Initial load of 100K tuples of various dimensionalities in the T-HORAE and H-HORAE subsys-
tems

Fact Thl size (MB) time (sec) load (msg/insertion)
d (MB) T Hf Hu T Hy Hu, Hive T H;  Hy,
= 5 380 355 240 230 31 40 31 8 3 9 7
:c}: 10 810 725 635 565 38 132 115 9 3 15 12
§ 15 1320 1135 1125 1020 45 297 257 9 3 21 18
20 1815 1645 1635 1475 52 492 420 9 3 29 25
5 380 345 225 217 35 42 35 9 3 11 7
w 10 815 718 595 545 38 187 146 9 3 16 13
% 15 1325 1080 990 956 52 520 378 9 3 22 19
20 1810 1520 1465 1385 65 950 812 9 3 31 27

Table 5.3 presents results for the initial insertion of 100K tuples of various dimensionalities
and distributions in T-HORAE, H-HORAE and Hive. Considering that H,q, represents a more

adaptive and automatic strategy for materialization, we only test the H,4, mode.

For T-HORAE, the resulting structure is roughly the same size as the fact table for low-
dimensionality datasets. As dimensions and skew grow we observe an increasing compression,
due to the elimination of prefix redundancies in each dimension. As far as H-HORAE is con-
cerned, it noticeably reduces the size of the created cube compared to the original fact table,
due to both Dwarf’s redundancy elimination and the lack of the ALL cell in the first dimension.
The storage gain is more evident for low dimensional datasets (about 40% in the 5-d case) and
decreases as dimensionality rises. H-HORAE proves less storage consuming than T-HORAE as
well, even though it stores the materialized cube. The compression is even more apparent with

the adaptive version (an additional 10% compared to the Hy cube for the majority of cases).

As far as the insertion time and load are concerned, T-HORAE achieves high efficiency and
low bandwidth cost thanks to the simplicity of its insertion mechanism. As the number of di-
mensions increases, there is a slight increase in the total insertion time as well, due to the longer
processing time per tuple needed to create the internal forest structure. However, time is not di-
rectly proportional to the dimensionality due to the parallelization, since multiple nodes process
disjoint parts of the dataset. The average number of messages per insertion remains stable for
all datasets, translating to a steady load per node. We also observe an increase (less than 20%) in
insertion time for the more biased dataset, as dense areas create larger forests which take longer

to process.

H-HORAE is naturally slower, since aggregations are calculated on the fly. Even in the H,g4,
case, although no materialization in Time is performed, aggregations in all other dimensions still

take place. Hive outperforms both our methods in insertion, however its demonstrated times
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Table 5.4: Measurements for 10k updates over various datasets

time(sec) load (msg/update)
dataset DW&lIff BD Hf Had, Hadl BD Hf Haa, Hadl
APB-A 1123 603 404 315 316 21.5 9.1 8.2 8.2
APB-B 1158 611 418 323 318 23.1 10.3 8.8 8.8
APB-C 1203 624 424 328 321 25.2 10.9 9.1 9.2
DARPA 1535 649 458 380 375 28.6 13.6 9.3 9.2

are comparable to those of T-HORAE. This shortcoming is amortized by the remarkable gain in

querying time, shown later in the experimental section.

5.3.2 Incremental Updates

In this set of experiments, we test the behavior of HORAE under continuous updates. First,
to compare the various versions of H-HORAE we apply 10k tuple insertions over the APB and
DARPA datasets and measure the total time needed to process the update batch as well as the
communication cost of the procedure. Table 5.4 summarizes the results. It is worth noting that,
in the case of Hy, the update process includes the creation of roll-up aggregate views. This is
not the case for Hyq, nor Hy,q, though, where the creation of roll-up views and the deletion of
drill-down ones take place asynchronously.

All three modes of H-HORAE drastically improve the update performance, accelerating the
process compared to the centralized Dwarf and BD. Hy is about 3 times faster than the central
algorithm and over 30% more efficient than BD. Apart from the parallelization of the process,
which is enabled through the distribution of the cube structure, the updates come in order, guar-
anteeing that no update affects an already created roll-up view. Furthermore, recursive updates
of affected ALL cells take place only in the dimensions other than the first, reducing the com-
munication cost. Indeed, the required messages per update drop almost 3 times compared to
BD. Both H4, and H,q, prove even faster (about 20%) and more cost-efficient than Hy, due to
the fact that materialization in the various hierarchy levels is performed asynchronously. Lastly,
from the APB datasets we conclude that the larger the cube, the more the nodes and cells affected
by updates, thus the more costly the process in terms of time and messages.

Next, we pose a batch of 20K update tuples of various dimensionalities as well as distributions
into each of the T-HORAE, H-HORAE and Hive subsystems, which already contain a cube struc-
ture of 100K tuples. Results are presented in Table 5.5. Again, we chose to present measurements
only for the load-driven strategy of H-HORAE, since, as proven by Table 5.4, its performance is
almost identical to that of the time-driven version.

At this point we note that for T-HORAE the update operation is the same as the insertion,

therefore results are similar to the ones presented in the previous set of experiments. As for
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Table 5.5: Insertion of 20K update tuples of various dimensionalities in the T-HORAE and H-HORAE
subsystems

Time (sec) load (msg/update)

d T H; Had, Hive T Hy Had,
= 5 9 789 662 6 3 12 10
:c}: 10 11 803 690 6 3 23 19
§ 15 13 822 718 6 3 35 31
20 18 847 743 7 3 42 35
5 10 792 667 6 3 12 10
“-— 10 11 809 698 6 3 24 19
% 15 15 831 727 6 3 37 32
20 19 859 755 7 3 44 36

Table 5.6: Cost of materialization from seconds to minute and from minutes to hour granularities

d materialization time(sec) SiZepef SiZ€after Asize
10 sec— min 0.3 35K 42K 7K
20 sec— min 0.5 75K 119K 44K
10 min— hour 4.1 438K 1.7M 1.3M
20 min— hour 9.2 2.6M 8.1M 5.5M

H-HORAE, both its modes perform updates significantly slower than T-HORAE, because the
process is much more complex, requiring recursive updating of all aggregated measures involved.
Contrarily, updating T-HORAE is as easy as hashing a tuple and inserting it using the underlying
DHT. The adaptive mode of H-HORAE proves faster (about 15%) and more cost-efficient than
the full one, due to the asynchronous materialization in the various hierarchy levels. However,
updating remains by orders of magnitude more costly than in T-HORAE, which constitutes the
main argument for the use of T-HORAE as a reception component whose buffering helps in the
amortization of this cost. In all cases, the simple nature (single table) of the dataset enables Hive
to perform updates in an extremely efficient manner regardless of the number of dimensions or

level of skew.

Table 5.6 aims to show the overhead of the adaptive materialization of H-HORAE. More
specifically, it reports on the time as well as the increase in storage when materializing to minute
granularity from the 60 corresponding seconds and to hour from the 60 corresponding minutes
for the 10-d and 20-d cases. The reported numbers are indicative of the cost of the materialization
that is periodically executed and show that the increase in time and size closely relates to the
degree of materialization (the higher the aggregation step the bigger the cost) as well as the input

cube.
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It is lastly worth noting that the updates come in order, guaranteeing that no update will affect
an already created roll-up view. This motivates once again the existence of T-HORAE as a buffer
before H-HORAE.

5.3.3 Querying

We now investigate the query performance of HORAE in the static as well as the adaptive modes
compared to that of BD, using exclusively the DARPA dataset (since results for the APB datasets
are qualitatively similar). Furthermore, we examine the overhead introduced by the lack of the
ALL cell in the Time dimension and the information loss caused by erasing fine-grained views in
the case of Hyq, and Hyq,. H,q, creates and erases aggregates according to demand. We assume
the materialization threshold for minute is 5 %rcies and for hour 10 %rcies, while the deletion

thresholds for both second and minute is 0. Using the proper terminology, (I'Mat,,, T M aty) =
(5,10) and (T'Dels, T Del,y,) = (0, 0). For Hgq,, as before, (1y,, T}, ) is set to (2 hours, 2 days).

For this purpose, we pose 4 different querysets (DARPA;, DARPAy, DARPA3 and DARPA,)
consisting of 1k queries each. DARPA; is a workload that ideally conforms to the set of T},
thresholds of H,4,. DARPA; and DARPA3 are created by following a two-step approach. First,
a tuple of the dataset is selected using a zipfian distribution of § = 1, favoring the most and least
recent records respectively. Then, the level of Time to be used in the query is selected according to
the same biased distribution. This way, recent records are queried upon in more detail than older
ones for DARPA,, while DARPA3 contains more fine-grained queries for past events. DARPA4
follows the uniform distribution. For all querysets, we set P; = 0.3, which we define as the
probability of a dimension not participating in a query.

As seen in Table 5.7, DARPA; does not affect the query throughput nor the per query com-
munication cost of H,4,, since all queried levels exist. However, as the queryset approximates
the inverse distribution than the one assumed by our thresholds (DARPA3), the messages needed
to answer a query increase, naturally affecting the response times. This is attributed to the fact
that queries concerning aggregates of recent data cannot be answered directly, since these ag-
gregates have not been constructed yet, but need to be translated to multiple queries of a lower
hierarchy level, thus issuing more messages. H,q, is more costly for the first two workloads,
since aggregations do not exist a priori, but are constructed on demand. However, for DARPA3,
H,q, proves more efficient: Once the aggregations are calculated, queries concerning them are
answered directly.

For the adaptive versions of H-HORAE, it is possible that a query concerns a level of Time
that is no longer available. In such an event, only an approximation of the answer will be re-

turned. H,q, accurately answers all queries of DARPA, since none of them concern an erased
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Table 5.7: Measurements for various workloads over the DARPA dataset

time (sec) load (msg/query) %Inaccuracy
queryset BD Hf Haa, Hadl BD Hf Had, Hadl Had, Hadl
DARPA; 5 6 6 10 7 7 7 54 0% 0%
DARPA, 5 9 8 164 7 9 12 57 19% 2%
DARPA3 5 12 248 172 7 13 387 62 45% 2%
DARPA4 5 24 21 201 7 16 32 354 32% 24%

Table 5.8: Querying times and cost for of 1K querysets of various distributions in the two subsystems

time (s) load (msg/q) #reind %Precicion %Inaccuracy
Q d T Hf Hadl Hive T Hf Hadl T T Hadl
5 124 6 6 22738 3 5 7 0 98 0
Q1 10 127 7 7 22371 3 9 9 0 98
15 128 7 8 21847 3 14 14 0 98 0
20 133 10 10 21529 3 18 19 0 98 0
5 127 17 254 22737 5 5 158 5 91 3
@2 10 128 18 246 21374 4 10 343 5 92 4
15 130 19 272 22333 5 16 424 5 91 3
20 131 24 298 21736 5 21 693 5 91 3
5 189 10 195 21293 114 6 170 2 34 28
Q3 10 192 10 199 22382 115 12 358 1 33 27
15 193 12 201 21746 115 18 450 1 33 27
20 208 15 205 22067 114 24 704 1 33 28

level. However, for querysets that do not conform to the assumption that the temporal gran-
ularity of the posed queries is relative to the time the query is being posed, the percentage of
queries answered in approximation rises significantly. Even for the uniform query distribution,
it reaches 32%. It becomes apparent that in order to achieve the lowest possible inaccuracy, the
Ty, thresholds need to fit the expected workloads. Therefore, the dynamic threshold selection
according to the monitored query trend is chosen as a more suitable solution in cases where there
is no intuition about the incoming workload. Indeed, in all cases the inaccuracy rate remains in

lower levels when adopting the load-driven policy.

Testing the query performance of both subsystems for various dimensionalities and distribu-
tions, for all uniform datasets we create 3 different querysets (@1 through @Q3). Q1 and Q2 are
created similarly to DARPA; and DARPA3. (03 is a uniformly distributed workload: The level of
Time as well as its value (as of any other dimension) are chosen randomly. For all querysets, we set
Py = 0.3. Apart from the total resolution time for the 1K query batch and the communication

cost, in the T-HORAE case we measure the number of reindexings that occurred as well as the
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percentage of queries answered directly, i.e., without flooding (precision). The resolution times
for Hive are added for direct comparison.

Observing the querying times as well as the communication cost per query of T-HORAE
for all workloads in Table 5.8, we come to the conclusion that biased queryloads, regardless the
direction of skew, are answered more efficiently. This is due to the reindexing mechanism of
T-HORAE, which reorganizes the forests by shifting to the pivot levels that are more benefi-
cial to the system. Indeed, the more biased the workload, the more quickly the system adopts
the proper pivot levels, being thus able to answer the majority of the queries (more than 90%)
without flooding in almost 2/3 the time compared to the uniform distribution. The number of
reindexings as well as the corresponding load remains low due to the efficiency of the reindexing
algorithm, which monitors forests independently and only rehashes parts of the data where the
popularity definitively indicates a new pivot. Lastly, the dimensionality of the dataset does not
affect resolution times, which remain invariably low.

The full version of the H-HORAE is able to answer all queries without any information loss.
All point and aggregate queries are answered within d hops, except for queries concerning ag-
gregates of very recent data that have not been created yet as well as queries containing * in Time.
The latter are substituted by multiple queries that concern finer grained levels, whose aggregates
exist. Therefore, ()1 is the queryset that is resolved in the fastest and more cost efficient way,
since its distribution follows the materialization flow. As the queryset approximates the uniform
distribution, the messages needed to answer a query increase, naturally affecting the response
times. This is attributed to the fact that queries concerning aggregates of recent data cannot be
answered directly, since these aggregates have not been constructed yet, but need to be translated
to multiple queries of a lower hierarchy level, thus issuing more messages.

The adaptive H-HORAE creates and erases aggregates according to demand. Compared to
the full mode, it demonstrates similar performance for ()1, that queries recent events in finer
granularity. We believe that this is the case for the majority of querysets concerning temporal
data. However, for the rest of the querysets, resolution takes up an order of magnitude more
time and messages. The slowdown is especially apparent in the case of the uniform distribution
(Q3), since it takes longer for the thresholds 7'M at, to be reached, thus aggregate subdwarfs for
coarse grained levels of Time are not created as fast as in Q2. Moreover, (2 also activates the
erasure of fine grained views faster, resulting in more limited cube sizes, which allow queries to
navigate faster through them. The percentage of the queries that are answered in approximation
reaches 28% in the worse case (uniform distribution).

In all cases, both HORAE components clearly outperform the cloud-based Hive solution as
far as resolution time is concerned. Although Hive parallelizes the procedure by issuing multiple
mappers per node, it resolves the given queryset two orders of magnitude slower than T-HORAE

and H-HORAE, needing more than 20 sec to answer a single query. This is due to the fact that
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Figure 5.14: Storage gain vs.% inaccurate queries for various T Del values in H-HORAE

Table 5.9: Average Deletion time per Tz epoch in T-HORAE

d  #deletions time (sec)

5 18685 1.7
10 18906 2.0
15 18755 6.5
20 19044 8.7

Hive tends to have high latency and incur substantial overheads in job submission and schedul-
ing.

There clearly exists a trade-off between the size of the created cube and the accuracy of the
query responses. Figure 5.14 depicts the effect of different (7'Dels, T Del,,) values on these
measures for the 10-d dataset under the Q2 and Q3 workloads, while (T'M at,,,, T M aty,) remain
equal to (5, 10). The higher the threshold values, the faster the coarse grained aggregates replace
the finer grained ones. This leads to a gain in storage, yet a loss of detailed information, thus an
increase in inaccurate answers. However, after a certain combination of the deletion thresholds
(which depends on the posed load), the portion of inaccurate answers tends to converge to a
steady value. Therefore, to maximize the storage gains at a small cost, one would need to com-
bine workload with application-specific knowledge in order to choose suitable materialization

parameters.

5.3.4 Data Offload

We now examine the adaptivity of our offload component under varying update rates and lag
values. We set the value of c.g so that, assuming a lag of 60 sec, T,g = 1 h. We pose continuous
updates to T-HORAE, with d ranging from 5 to 20 and \,,, = 5%. In Table 5.9 we observe that

the average number of deleted tuples per Tog epoch is 20K, regardless of the dimensionality (as

it only depends on the lag and update rate). The respective time increases as dimensions grow,
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Figure 5.17: Size distribution over time in the HORAE system for the DARPA dataset

since they incur larger processing to locate the various tuples hashed at possibly different levels.

Yet, the reported times are less than 10 sec, i.e., less than 1% of the estimated Tyg.

Figure 5.15a plots the number of tuples remaining in T-HORAE in time when a sudden in-
upd

. occurs (when t = 2h). The load reverts

crease in the incoming A, from about 5 to 50
to its initial value when ¢ = 3h. As we notice, our system promptly comes up with an accu-
rate estimate for the incoming rate, adapting the rate at which data is offloaded respectively and
managing to keep the size of T-HORAE’s data fairly stable. On the other hand, when lag varies
greatly, T-HORAE delays the collection of tuples before offloading them (to minimize the chance
of out-of-order items). This is depicted in Fig. 5.15b, where the lag changes from 6 to 12, 30 and
60 sec per processed batch. Indicatively, T-HORAE chooses to store almost 8 times as many

tuples to cope with the 10-fold increase in lag.

5.3.5 Integrated System

In this section, we evaluate the system as a whole, under the APB (A, B and C) and the DARPA
datasets. The querysets concerning the APB datasets are produced by the generator and we have
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Table 5.10: Measurements for real and benchmark datasets

query distribution(%)  time per query (ms)  avg.time per query (ms)

dataset  #tuples T H T Hy Haq, Hy Haq,
APB-A 1.2M 10 90 502 14 17 56 56
APB-B 2.5M 9 91 510 17 18 59 60
APB-C 3.7M 9 91 514 20 24 62 64
DARPA 3.0M 62 38 607 52 87 357 374

no control over them. The queryset for the DARPA dataset is created in a way similar to )y

(recent events are queried in more detail).

After the insertion of the first 100K tuples in T-HORAE, we start to pose queries with A\, =
100%2165. At the same time, updates keep arriving at the system according to the tuple times-
tamps. This rate is not constant, but includes bursts in time. Figure 5.17 plots the storage size
over time in both T-HORAE and H-HORAE subsystems for the DARPA dataset. Despite the
fact that the )., varies over time, T-HORAE manages to maintain an almost steady size, thanks
to the adaptation of Ty and Wien, to that measure. As for the H-HORAE, the size increases
over time as new tuples are periodically transferred from T-HORAE, with the increase being

smoother for H,q4,, since aggregates are calculated on demand and unpopular views are erased.

Table 5.10 contains measurements concerning the querying process. First, we note the dis-
tribution of queries between the two components. For DARPA, more than 60% of the queries are
directed to T-HORAE, since the created queryset was intended to favor recent records. For the
APB cases, where we have no control over the generated queryset, the vast majority of the queries
are answered by H-HORAE. However, it was observed that almost 99% of the queries were tar-
geted to the most detailed level, therefore resolution times are considerably smaller than those
of DARPA. While T-HORAE is in general slower than H-HORAE, this difference is amortized in
the integrated system. Moreover, since the two subsystems work simultaneously, parallelization
is achieved, further “hiding” the T-HORAE slowdown. Hive remains by orders of magnitude

slower, with a per query resolution time around 20 sec.

5.4 Summary

In this chapter we described HORAE, a data-warehouse-like system deployed on a shared-nothing
architecture especially designed to handle time series data produced at a high rate. HORAE
combines the speed and robustness of a DHT-based layer for efficient update processing with
the power of handling aggregate queries of a distributed data cube structure over an unstruc-

tured overlay. Its advantages include high-throughput and online updating and querying, elastic
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provisioning of commodity resources according to demand and significant gains in storage and
update times by on-demand aggregation.

Results from our prototype implementation show that, while HORAE inserts and updates
data slower (although at a comparable scale) than Hive, it greatly outperforms it during querying
on any kind of aggregate/point queryset combination. Moreover, it allows for highly adaptive
resource allocation according to application or workload demands, managing to quickly adapt
even after sudden bursts in load; load-driven materialization, varying its gains between storage
and precision; availability, remaining unaffected with a considerable fraction of frequent node
failures. Altogether, it proves a practical solution that is easy to install and requires no proprietary

tools.
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CHAPTER O

Related Work

This thesis proposes three systems for addressing the analytics of modern, network-centric en-
terprises. The first one focuses on the efficient storage and retrieval of multidimensional, hierar-
chical information in DHTs, while the second one extends a traditional, well-established data
warehousing approach and combines it with P2P techniques in order to create a distributed
warehouse-like system. The third system integrates the two former techniques to create an
always-on, real-time access and support system for time-series data arriving at large rates. There-
fore, the research presented it this thesis spans multiple diverse fields of related work. In the
following, mechanisms relevant to those exploited in the dissertation as well as alternative ap-

proaches are presented and compared to the proposed ones.

6.1 Sharing of Structured Data in P2P

The sharing of relational data using both structured and unstructured P2P overlays is addressed in
a number of papers. PIER [HHL 03] proposes a distributed architecture for relational databases
supporting operators such as join and aggregation of stored tuples. A DHT-based overlay is used
for query routing. On top of the DHT overlay, a Prefix Hash Tree (PHT) is built for secondary
indexing. The PIER platform is also used along with a Gnutella overlay in [LHH " 04] for common
file-sharing. The unstructured overlay is used for locating popular items while the PIER search

engine favors the publishing and discovery of rare items.
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The Chatty Web [ACMHO3] considers P2P systems that share (semi)structured information
but deals with the degradation, in terms of syntax and semantics, of a query propagated along a
network path. In [THO4], the authors propose optimization techniques for query reformulation
in P2P database systems.

In GrouPeer [KTSR09], SP] queries are sent over an unstructured overlay in order to discover
peers with similar schemas. Peers are gradually clustered according to their schema similar-
ity. PeerDB [NOTZO03] also features relational data sharing without schema knowledge. Query
matching and rewriting are based on keywords provided by the users. GridVine [ACMHVP04]
and pSearch [TXDO03] are based on structured P2P overlays. GridVine hashes and indexes RDF
data and schemas, and pSearch represents documents as well as queries as semantic vectors. A
work by Vaisman et al. [VEP09] stressing the need for P2P OLAP mainly focuses on answering
OLAP queries over a network of data warehouses that do not share the same schema.

An interesting method for representing hierarchical data is presented in the work of Kolo-
niari and Pitoura [KP04]. The method is applied on unstructured networks containing XML
documents in order to favor the routing of path queries. Each XML document is represented by
an unordered label tree and bloom filters are used to summarize it.

All these approaches offer significant and efficient solutions to the problem of sharing struc-
tured and heterogeneous data over P2P networks. Nevertheless, they do not deal with the spe-
cial case of hierarchies over multidimensional datasets nor with temporal data that arrive at high
rates. Moreover, they do not support aggregate queries over voluminous datasets, unlike the

systems proposed in this thesis.

6.2 Data Warehousing and Traditional Structures

A data warehouse is a central repository that hosts immense volumes of historical data from
multiple sources and provides tools for their aggregation and management at different levels of
granularity. The basic abstraction in data warehousing is the data cube, a multidimensional ar-
ray in the form of which data are usually organized and viewed. Data cubes are characterized by
their dimensions, which represent the notions that are important to an organization for manag-
ing its data (e.g., time, location, product, customer, etc) and the facts, which are the numerical
quantities to be analyzed (e.g., sales, profit, etc). Their candidate workloads usually consist of
read-only queries interleaved with batch updates. They allow for efficient summarization of data
by reducing the dimensions and producing aggregate views of the data. However, data can be
presented in an even more fine-grained manner through the use of concept hierarchies.

Gray et al. introduced the data cube operator in 1997 [GCB97]. The data cube general-
izes many useful operators, namely aggregation, group by, roll-ups, drill-downs, histograms and

cross-tabs. A basic problem related to the data cube is the complexity of its computation and the
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corresponding storage requirements, since the number of possible views increases exponentially
to the number of dimensions. Materialization is commonly used in order to speed-up query
processing. This approach fails in a fully dynamic environment where the queries are not known
in advance or when the number of possible queries becomes very large. On the contrary, the
systems proposed in this dissertation rely on adaptive mechanisms to tackle the index growth
while preserving low response times. HiPPIS uses a no-precomputation scheme that adjusts the
level of data indexing to the incoming load, while Brown Dwarf distributes a compressed data
cube structure to multiple commodity PCs to accommodate larger cubes. HORAE adopts an

on-demand materialization mechanism that conforms to the monitored query trend.

Several indexing schemes have been presented for storing data cubes [LPZ03, WLFY02,SDRKO02].
However, only few support both aggregate queries and hierarchies. In the work of Sismanis et
al. [SDKRO03], hierarchies are exploited to enable faster computation of the possible views and
a more compact representation of the data cube. The Hierarchical Dwarf contains views of the

data cube corresponding to a combination of the hierarchy levels.

Another approach is the DC-Tree [EKKO00], a fully dynamic index structure for data ware-
houses modeled as data cubes. It exploits concept hierarchies across the dimensions of a data
cube. In this work, the attributes of a dimension are partially ordered with respect to the valid
hierarchy schema for each dimension. The DC-tree stores one concept hierarchy per dimension
and assigns an ID to every attribute value of a data record that is inserted. CURE [MI06] presents
a novel lattice traversal scheme, in order to construct complete data cubes with arbitrary hierar-
chies. The extension of this work by the same authors [MI10] introduces query-processing and

incremental maintenance algorithms for CURE cubes.

These approaches are very efficient in answering both point and aggregate queries over vari-
ous data granularities, but do so in a strictly centralized and controlled environment. Moreover,
they present an off-line approach in terms of data location and processing: Views are usually
calculated on a daily or weekly basis after the operational data have been transferred from vari-
ous locations. In contrast, this thesis presents data-warehouse-like systems that allow for online,
near real-time data processing making use of a shared-nothing architecture that ensures scala-

bility and fault tolerance.

6.3 Distributed Data Warehousing Techniques

The notion of a distributed data warehouse has been used in the past, although a more accu-
rate characterization for the proposed systems would be ‘cooperative; rather than ‘distributed’
In [KNO™02], the authors consider a number of data warehouses and peers forming an un-

structured P2P overlay for caching OLAP views. Views are divided in chunks and peers retrieve
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cached chunks from the network and the data warehouse if needed. In [AB] 03], the authors de-
fine the distributed data warehouse as a structure that consists of multiple local data warehouses
adjacent to data collection points and a coordinator site, responsible for interacting with each of
the local sites and for correlating and aggregating query results. A similar approach is described
in [CDH99], where a two-layer architecture consisting of multiple local data warehouses and a
global one is proposed. All these approaches adopt some hybrid query processing model by al-
lowing requests to route to different cites. WebContent [AACT08] describes a P2P platform for
managing distributed repositories of XML and semantic Web data, where various data process-
ing building blocks are integrated as Web services. Yet, none of the above works distributes the
warehouse structure itself, keeping the processing sites and their main functionality centralized.

Recently, effort has been made to exploit parallel processing techniques for data analysis by
integrating query constructs from the database community into MapReduce-like software. This
new class of analytics engines leverage the recent innovation in the industry around large-scale
data management. Deployed on shared-nothing, commodity hardware architectures, they cover
the newly added requirement for scalability, robustness and availability at low cost.

The Pig project at Yahoo [ORS™08], the SCOPE project at Microsoft [CJLT08] and the open-
source Hive project [TSJT09] mainly focus on language issues, addressing the creation of SQL
interfaces on top of Hadoop [had]. HadoopDB [ABPA™09] proposes a system-level hybrid ap-
proach, where MapReduce and parallel DBMSs are combined. SQL queries are translated with
the use of Hive into MapReduce jobs, which are eventually executed on a single node, running a
DBMS.

Yet, even the new platforms pose some limitations, targeting mostly batch-mode analytics
jobs, as they can provide large amount of processing power, rather than real-time, “per-tuple”
processing. Our systems maintain high efficiency in both batch and single operations, offering
a near real-time analytics platform. Especially HORAE proves a solution suitable for applica-
tions handling and analyzing time-series data, where updates are produced continuously and
responses should be as fresh as possible. Compared to a state-of-the-art warehousing solution
such as Hive, HORAE accelerates query resolution by orders of magnitude, manages to quickly
adapt even after sudden bursts in load and remains unaffected with a considerable fraction of
frequent node failures.

To conclude with relative solutions, parallel database solutions (e.g., [ora, ter]) offer great
efficiency at the cost of elasticity and robustness in failures [PPR*09]. Indeed, resources cannot
be automatically allocated (nor released) according to demand and the addition of new machines
to the system requires significant effort as well as downtime. Lastly, parallel databases do not
operate on heterogeneous environments. Contrarily, all systems proposed in this dissertation,
based on a shared nothing architecture, guarantee resilience as well as scalability on top of the

advantages that a distributed storage offers, without compromising query and update efficiency.
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Powerful replication mechanisms (inherent in the HiPPIS case and the load-driven one in the
BD case) ensure data availability despite node failures. Moreover, all operations are designed to
redirect messages in case of failed nodes, avoiding the reissuing of queries every time a node fails.

Physical or virtual resources can join and leave the system on the fly in a transparent manner.
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CHAPTER /

Conclusions and Future Directions

In the era of data explosion, where almost every transaction is logged, the need to sort through
enormous amounts of data, extract useful information and exploit it to detect interesting trends,
understand phenomena and behaviors, predict future events and finally make decisions based
on solid facts is more than ever compelling. The requirements of today imply the need for an
always on, real-time data access and support system for concurrent processing of large query
rates without deterioration in response times.

The widely used centralized analytics tools, while highly efficient on complex queries upon
large volumes of historical data, fail to meet the constantly increasing needs for storage and com-
putation. Distributed systems and techniques have emerged to fill this gap. Cloud Computing
is the latest trend in distributed computing that has drawn the attention of scientists and busi-
ness experts around the world as a platform that offers seemingly infinite resources on demand.
However, the new class of analytics engines, albeit the scalability, robustness and availability it
offers, fails to provide real-time, “per-tuple” processing, remaining mainly batch-oriented.

My research focuses on the distribution and manipulation of large volumes of multidimen-
sional data that can be used by analytical processing applications. The thesis initially proposes
two systems, HiPPIS and Brown Dwarf, which both aim to satisfy the same general need: The
creation of a data warehouse, deployed on commodity machines, which will be able to provide
an always-on, real-time data access and support for online processing. Techniques from the field
of P2P computing have been exploited in order to ensure scalability, fault tolerance and fairness

in resource utilization.
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Both HiPPIS and Brown Dwarf rely on a shared-nothing architecture of commodity nodes,
investing on scalability and availability at low cost. Physical or virtual resources can join the
system easily and transparently to relieve stress and assist in coping with increasing demand on

storage and/or computing power.

Fault tolerance is another requirement both systems satisfy. Analytics jobs are particularly
sensitive to node failures, due to their long completion time. Reissuing the whole query batch in
the event of a failed node is not a viable solution, especially when decisions must be made quickly.
Fault tolerance and the closely related availability issues are tackled through the inherent DHT
replication mechanism in HiPPIS and through the adaptive replication scheme of Brown Dwarf,
perceptive to both tthe incoming load and the node churn using only local load measurements

and overlay knowledge.

However, each system deals with the same issue from a different perspective, setting different
priorities:

HiPPIS focuses on the management of hierarchical data, allowing queries of various granu-
larities through roll-up and drill-down operations. This fact makes HiPPIS suitable for scenarios
where a more detailed representation of the data is needed. The simplicity of the HiPPIS data
structure allows for fast insertion of the initial fact table, without any pre-processing. However,
since no a-priori materialization of the cube is performed, group-by queries require further pro-
cessing after the collection of all tuples that correspond to them. Updates are as fast as insertions,
incurring an overhead which depends on the level of consistency needed by each application.
Therefore, in situations where data are constantly updated at a high rate, HiPPIS can cope in a

cost-efficient way.

Brown Dwarf manages to distribute a well-known data structure which materializes a data
cube, achieving, in some cases, significant compression rates. At the cost of pre-processing,
which is paid only once though, aggregate queries can be answered as easily and naturally as point
ones. However, the aggregate functions must be determined beforehand. Updates in Brown
Dwarf are quite costly, since a single new tuple insertion triggers multiple changes in aggregate
values across the structure. Therefore, Brown Dwarf is more efficient in environments where
the update rate is not very high, compared to the query rate, or where updates can be applied in
batches.

There clearly exists a trade-oft: Unprocessed (non-materialized) datasets occupy less space
and offer easier update functionality at the expense of increased client processing. On one hand,
HiPPIS offers fast insertion and update of data represented in a fine grained manner through the
use of concept hierarchies, but exhibits slower processing of queries. On the other hand, Brown
Dwarf efficiently answers all point and aggregate queries in a bounded number of steps, but faces

more costly updates due to the materialization of the cube.
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Having determined the cases where each of the proposed systems is better suited, the HORAE
system has naturally emerged to bridge the gap and offer an integrated solution that combines the
best of the two worlds for the handling of time series data: A powerful indexing/analytics engine
for immense volumes of data both over historical and real-time incoming updates with a shared-
nothing architecture that ensures scalability and availability at low cost. High-rate updates and
queries targeting the most recent items are handled by a DHT-based, HiPPIS-like component
that enables fast insertion times and multidimensional indexing. The large bulk of the data is
handled through an enhanced Brown Dwarf structure, that adaptively materializes and repli-
cates according to demand. The two components seamlessly integrate to offer the advantages of
powerful aggregate data processing along with scalability and elasticity of commodity resources.

Ongoing work includes the use of the HiPPIS system for the preservation of the anonymity
of horizontally partitioned data (see Appendix A). Privacy preservation of distributed data is of
great importance, since their analysis along with other related data, often produced by different
vendors, may reveal personal details and sensitive information about individuals. Domain gen-
eralization is used to remedy such situations: Mapping attribute values to values that belong to a
more general domain by climbing up hierarchy levels can help render individuals indistinguish-
able. HiPPIS, which inherently handles hierarchical, distributed data, is enhanced in its indexing
mechanism in a way that preserves data anonymity under continuous updates. Further explor-
ing domains and applications where the proposed systems can be successfully used is what I
currently pursue.

My work so far has addressed the manipulation of structured data. Relaxing the constraints of
the proposed systems on a globally defined schema is part of my future work. Efficiently handling
semi-structured data (e.g., XML documents) and supporting dynamic changes in schemata of
structured data entail many research challenges.

Moreover, it would be interesting to investigate how MapReduce technologies and the near
real-time systems presented in this thesis can complement each other in large scale data analysis.
Indeed, as the experimental evaluation of the implemented systems indicates, MapReduce-based
analytical engines prove extremely efficient in ETL tasks, but fail both in incremental processing
and interactive response times, which often make the qualitative difference in tasks like mon-
itoring, online customer support, debugging etc. On the other hand, all systems proposed in
this dissertation offer per-tuple processing, additionally providing operator-level restart in case
of individual node failures (unlike the batch-oriented MapReduce model). This observation mo-
tivates the need for integration of the two categories, that will allow each system to do what it is
best at.
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APPENDIX A

Exploitation of HiPPIS for k-anonymity

In this Appendix, we present a use case application for the HiPPIS system, related to the anonymiza-
tion of distributed data.

Numerous companies, scientific organizations as well as specialized enterprises produce
ever-growing amounts of data and heavily rely on their continuous analysis in order to iden-
tify behavioural patterns and discover interesting trends and associations. In order to cope with
these needs, distributed data-warehouse-like systems have been created, deployed on a shared-
nothing, commodity hardware architecture, giving the advantage of scalability and robustness at
low cost.

However, the wide accessibility to vast amounts of data, often originating from many different
sources, raises issues of individual privacy protection. Even if some identifiers such as Name or
Social Security Number are eliminated from the dataset, the combination of certain existing
attributes (called quasi-identifier attributes or just QID) with external, publicly available data
(e.g., voter registration lists) might uniquely identify individuals and release sensitive information
about them ( [Swe02]).

K-anonymity has been proposed as a remedy for such attacks. Its goal is to ensure that in-
dividuals are unidentifiable in released data. In a k-anomymous table, each value of the quasi-
identifier set appears at least k times. The most common way to produce k identical tuples is
to generalize values within the attributes, e.g., by dropping the least significant digit from the
Zip code domain. At the same time, the utility of the published data should remain as high as

possible.
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Figure A.1: Concept hierarchies for Gender, Age and Postcode

Gender Age Postcode

* * *
T T T
gender interval state
T T
value region
/]\
city
/]\
suburb

Various approaches for generalization dictate the mapping of a set of attribute values to an-
other set of values that belong to a more general domain. This mapping can be done either
globally, by mapping the whole domain to a more general one (global recoding) or locally, by
mapping each tuple individually to a generalized one (local recoding). There are many works in
the literature concerning global ( [LDR05, LDR06]) and local recoding ( [LWFP08, XWP*06]).
More recent works use attribute hierarchies in order to achieve k-anonymity with the less pos-

sible information loss by “climbing up” in the domain hierarchy ( [LWFPO08]).

However, these methods refer to the anonymization of one centralized database and do not
deal with distributed data. Some works ( [JC06, Zho09]) attempting to propose distributed k-
anonymity algorithms do not concern data horizontally partitioned and distributed among mul-
tiple network nodes. As more and more systems choose a horizontal partitioning of relational
data, we believe that their efficient anonymization is of great importance in order to guarantee

privacy.

We believe that HiPPIS and its algorithms can be applied to the problem of continuously
anonymizing fully distributed data in a way that balances the data distortion and the commu-
nication and computation overhead without affecting the efficiency and performance of data
indexing and querying operations. To that end we propose the proper modifications to HiPPIS
to provide an always on DHT-based system, that, besides storing and indexing multidimensional,
hierarchical data, can guarantee near real-time k-anonymization of the shared data during up-
dates. Although here only k-anonymity is discussed, the proposed system can be extended to
support other privacy principles. The method focuses on global recoding, as we believe that for
statistical analysis it is more important to maintain the domain consistency in each attribute.
Indeed, when values are drawn from more than one domain, values from a more general domain
do not provide the same detailed information as values from a more specific domain. The sys-

tem nodes actively monitor the privacy of the data they are responsible for, in order to adjust
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Table A.1: The raw table of our motivating scenario

No. Gender Age Postcode Problem
1 male middle 4350 Flu
2 male middle 4350 Ulcer
3 male middle 4351 Ulcer
4 female old 4353 Flu
5 female old 4353 Ulcer

Table A.2: The 2-anonymized version of Table A.1 through the use of hierarchies

No. Gender Age Postcode Problem
1 male middle 435* Flu
2 male middle 435* Ulcer
3 male middle 435* Ulcer
4 female old 435* Flu
5 female old 435* Ulcer

the indexing level to the one that guarantees k-anonymity after the insertion of new tuples. Fur-
thermore, the system does not invalidate the semantics of the stored hierarchies and allows for
distributed knowledge mining. To our knowledge, this is the first attempt towards the support

of distributed k-anonymity in DHTs.

A.1 Definitions

The goal of k-anonymization is to make every tuple of a published table identical to at least k — 1
other tuples with respect to a set of attributes. As a motivating example, let us assume a table of
patient’s data (Table A.1). Record No. 3 is unique with respect to the attribute set {Gender, Age,
Postcode}, hence the medical problem of this patient may be revealed if the table is published.
To preserve his privacy, we may generalize the Postcode attribute values such that each tuple
has at least two occurrences. Assuming each domain is analyzed in the hierarchies gender<x,
value<interval<x and suburb<city<region<state<x respectively, we can achieve 2-anonymity

by climbing up one level in the Postcode hierarchy (see Table A.2).

Definition 1 (Quasi-Identifier Attribute Set) A quasi-identifier attribute set (QID) is a mini-
mal set of attributes in a table that can be joined with external information to potentially identify

individual records.

The QID sets are selected by experts based on the specific knowledge of the domain they refer

to.
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Definition 2 (Equivalence Class) An equivalence class (EC) of a table with respect to an at-

tribute set is the set of all tuples that contain identical values for the attribute set.

Definition 3 (Frequency Set) The frequency set of a table with respect to an attribute set is a

mapping from each equivalence class to the total number of tuples (counts) that belong to it.

Definition 4 (K-Anonymity) A table satisfies k-anonymity with respect to a quasi-identifier set

if its frequency set contains counts greater than or equal to k.

Example For our motivating example, the QID set is {Gender, Age, Postcode}. Tuples 1
and 2 from Table A.1 form an EC with respect to the QID, with frequency count equal to 2. k-
anonymity requires that every tuple occurrence for a given QID set has a frequency of at least k.
For example, Table A.1 does not satisfy 2-anonymity since the tuple (male, middle, 4351) occurs
once.

There exist various metrics to evaluate the quality of a k-anonymous dataset. A general cri-
terion should be the distortion of a table. A simple measurement of distortion is the modification
rate. For a k-anonymous view V of table T, the modification rate is the fraction of cells being
modified within the quasi-identifier attribute set. For example, the modification rate from Table
A.1 to Table A.2 is 33.3%. However, this criterion does not consider hierarchical structures. For
example, the distortion caused by climbing up from suburb to city in the Postcode hierarchy is
not as important as the one introduced by the generalization from gender to *. A more suitable
metric is based on the weighted hierarchical distance (WHD), introduced in [LWFPO6].

A.2 Necessary Notation

Our data spawn the d-dimensional space. Each dimension i is organized along L; + 1 hierarchy
levels: Hyo, Hy1, . .., H;1,;, with H;o being the special ALL (*) value. We assume that our database
comprises of fact table tuples of the form:

(tupleID, D1y ...D1r,,...,Da1 ... Dar,, facty, ..., facty),

where D;;,1 <i < dand1 < j < L; isthe value of the j th Jevel of the 7' dimension of this tuple
and fact;,0 < i < k are the numerical facts that correspond to it (we assume that the numeric
values correspond to the more detailed level of the cube). Our goal is to efficiently insert and
index these tuples so that we can answer queries of the form: ¢ = (q1,q2, ..., qq), where each
query element ¢; can be a value from a valid hierarchy level of the i** dimension, including the *

value (dimensionality reduction): ¢; = D;;,0 <z < L;.

Definition 5 (Hierarchy Ordering) A level combination C = (Hor,, Hir,,...,Har, ,) lies
above (below) a level combination C' = (Hyy , Hip ..., Hyy ), denoted
C<C(C - C)if Hyp, < HYy, (Hi, > H JY0<i<d—1
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Example For the data of our motivating example, (gender, interval, city) < (gender, value,

suburb), while (gender, interval, city) > (%, interval, state).

Property 1 Ifa table T satisfies k-anonymity with respect to a level combination C, then it satis-
fies k-anonymity NC', where C' < C.

Property 2 If a table T does not satisfy k-anonymity with respect to a level combination C, nor
does it satisfy k-anonymity ¥C', where C' > C.

Example The data of our motivating example are 2-anonymous when P is (gender, interval,
city). Therefore, the data are also 2-anonymous when (%, interval, state) is selected as P. On
the contrary, since (gender, value, city) does not ensure 2-anonymity, nor does (gender, value,

suburb).

A.3 The System

In previous work we presented HiPPIS, a DHT-based system to efficiently store, index and up-
date multidimensional, hierarchical data. In short, HiPPIS peers initially choose a level of the
suggested hierarchy for each dimension and index all tuples according to that default level com-
bination, called pivot (P). This means that each tuple receives an ID that that equals the hashed
value of the attribute combination corresponding to P. The DHT then assigns each tuple to the
node with ID numerically closest to its ID. Inserted tuples are internally stored in a hierarchy-
preserving manner (tree-like form). Query misses are followed by soft-state pointer creations so
that future queries can be served without re-flooding the network. Peers maintain local statistics
which are used in order to decide if a re-indexing (to a different combination of hierarchy levels)
is necessary, according to the current query trend. Besides answering point queries at different

levels of granularity, HiPPIS can answer group-by queries.

A.3.1 Insertion

Before the data are initially inserted to the system, we assume the fact table undergoes global
recoding centrally (e.g., using [LDRO05]) and the appropriate P is selected so that the dataset
is k-anonymous. The data are parsed tuple by tuple, hashed according to the selected P and
inserted to the corresponding network nodes. Inserted tuples are internally stored in a hierarchy-
preserving manner: The data of Table A.2 would be stored as seen in Figure A.2. P would be
(gender, interval, city). Since for the sample data there exist 2 distinct value combinations for
pivot, two different trees are created and stored in the corresponding overlay nodes after the
insertion process is over. In this system, only the values above the pivot level (the yellow area)

are visible to the users, in order to ensure k-anonymity.
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Figure A.2: HiPPIS system for the motivating example

A.3.2 Updates

Here we should clarify that by updates we mean the insertion of new tuples, since in data ware-
housing applications tuples are commonly considered as read-only. Given that P is known to all
nodes participating in the overlay, hashing the newly inserted tuple according to it and storing
the new item is trivial. However, open issues related to the preservation of k-anonymity with low
data distortion arise.

On one hand, new tuples might break the k-anonymity constraint of existing data. Suppose
that a tuple (female, middle, 4352, Flu) is inserted in our k-anonymous distributed system.
Since the pivot is (gender, interval, city), a new tree will be created, as shown in Figure A.3.
However, this new tuple is unique for the QID set and thus jeopardizes the privacy of the indi-
vidual. In this case, a new global P must be selected in order to generalize the data and ensure
k-anonymity.

On the other hand, new tuples that arrive and load the existing trees with new values might
result in an overgeneralized dataset with high distortion. If tuple (male, middle, 4351, Flu)isin-
serted, we observe that drilling down one level in the Postcode hierarchy preserves k-anonymity
while significantly decreasing data distortion (see Figure A .4).

Both cases require the reindexing of the system’s data according to a new P. Our system
supports near real-time updates of the distributed data by dynamically adjusting its indexing to
the incoming tuples without assuming any prior knowledge, solely relying on locally maintained
information. By shifting to a different P we aim at guaranteeing k-anonymous data while causing
the least possible distortion.

Every time a new tuple or a batch of new tuples is inserted to the system, the receiving nodes
check the modified trees. Note here that each tree corresponds to an EC. If the number of tuples
belonging to a tree ¢ (the count of the EC), denoted County, is less than £, then the k-anonymity
constraint is violated and the roll-up anonymization strategy must be followed. If, on the other
hand, Count; > 2 - k then the drill-down anonymization strategy further investigates whether a

P with less distortion could be chosen.
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Roll-up Anonymization During this procedure, the node where the privacy breach has oc-
curred must select an alternative global P in order to ensure k-anonymity. To do so, the node
requires information from the rest of the network nodes. To that end, it floods a CollectStats
message over the network, which contains the values of all hierarchy levels above pivot. Upon
reception, each node collates these values with each of its trees and calculates the frequency set
of all possible ECs that lie above P. This frequency set is returned to the initiator.

With this process we aim to find all possible ECs that can be merged with the non-anonymized
one in order to result in an EC with size of at least k. Since the new P will always be a general-
ization of the old one, the already anonymized ECs will remain anonymized after the reindexing.

After collecting all the node statistics, the initiator chooses among the possible roll-up level
combinations the one, P, that will result in an EC of k or more tuples and will cause the
minimum distortion. A Reindexing is then initiated with P¢,.

Drill-down Anonymization This procedure is performed in order to check if there ex-
ists a level combination that preserves k-anonymity while reducing distortion. It is divided in
two phases, the local and the global one. During the local phase, for the specific tree ¢t where
Count; > 2-k the node calculates the frequency set for all possible level combinations that lie be-
low P. P44 is the set of level combinations that result in ECs with Count> k. If the set is empty,
the process stops. Otherwise, the global phase begins with P,,,4 being flooded to all network
nodes. Upon reception, each node n checks for each level combination of P, if the resulting
ECs are k-anonymous and sends back those that satisfy this constraint (P4yq4,,). After collect-
ing all the answers, the initiator calculates the intersection of the returned sets ﬂf\il P.andn and
choses the level combination P,¢,, with the minimum distortion. A Reindexing is then initiated
with Prew.
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Figure A.3: [nsertion of (female, middle, 4352, Flu) causes roll-up.
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Figure A.4: Insertion of (male, middle, 4351, Flu) causes drill-down.
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