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Abstract 

 

In this thesis a numerical model is devised to treat the problem of flapping foil propulors with 

chordwise flexibility. Recent research and development concerning flapping-wing propulsors 

has shown that such systems are able to achieve high levels of efficiency. Moreover, it has 

been demonstrated that chordwise flexibility further enhances their propulsive performance. 

Flapping foil biomimetic systems are also appropriate for other applications such as 

augmentation of ship overall propulsion by wave energy extraction and exploitation of wave 

and current renewable energy resources. In the present thesis a hydroelastic model based on a 

Discrete Vortex Method (DVM) for the hydrodynamics, in conjunction with Kirchhoff plate 

theory equation for the flexural deflection, is used to study the effect of chordwise flexibility 

on the performance of flapping hydrofoil. The foil response is actuated by harmonic heaving 

motion and pitching about its leading edge. As a first approximation we assume that the 

thickness and transverse deflections are small compared to the chord length. Numerical 

results are presented concerning the thrust coefficient and the efficiency of the system over a 

range of design and operation parameters, including Strouhal number, heaving and pitching 

amplitudes, and flexural rigidity, indicating that chordwise flexibility can improve propulsive 

efficiency. The present method can serve as a useful tool for assessment and the preliminary 

design and control of such biomimetic systems for marine propulsion. 

 

 

Περίληψη 

 

Στα πλαίσια αυτής της διπλωματικής εργασίας αναπτύσσεται μια μέθοδος επίλυσης του 

προβλήματος παλλόμενης υδροτομής με ικανότητα παραμόρφωσης υπό τις υδροδυναμικές 

πιέσεις κατά τη διάσταση της χορδής. Πρόσφατες έρευνες έχουν δείξει ότι προωστήρες που 

βασίζουν την αρχή λειτουργία τους σε παλλόμενα πτερύγια μπορούν να επιτύχουν μεγάλους 

βαθμούς απόδοσης. Η προσθήκη ευκαμψίας περαιτέρω βελτιώνει την απόδοσή τους. 

Βιομιμητικά συστήματα παλλόμενων πτερυγίων είναι επίσης κατάλληλα για εφαρμογές όπως 

η υποβοήθηση πρόωσης πλοίου μέσω απορρόφησης ενέργειας από το θαλάσσιο περιβάλλον 

και τα κύματα, καθώς κι απομάστευση ενέργειας ως ανανεώσιμη πηγή ενέργειας. Στην 

παρούσα εργασία αναλύεται ένα υδροελαστικό μοντέλο που βασίζεται στην μέθοδο 
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πεπερασμένων δινών (DVM) για την επίλυση του υδροδυναμικού προβλήματος, σε σύζευξη 

με τη θεωρία πλακών Kirchhoff για την επίλυση του προβλήματος της ελαστικής 

παραμόρφωσης της υδροτομής. Σκοπός είναι η διερεύνηση της επίδρασης της ελαστικότητας 

σε σύστημα παλλόμενων πτερυγίων. Η απόκριση της υδροτομής προκαλείται από αρμονική 

διέγερση σε κατακόρυφη κίνηση (heaving) και στροφή (pitching) περί το χείλος 

πρόσπτωσης. Σε πρώτη προσέγγιση υποθέτουμε ότι το πάχος της υδροτομής είναι αμελητέο, 

καθώς κι ότι οι ελαστικές παραμορφώσεις  είναι μικρές. Αριθμητικά αποτελέσματα 

παρουσιάζονται για το συντελεστή ώσης και το βαθμό απόδοσης του συστήματος σε ένα 

εύρος παραμέτρων λειτουργίας και σχεδίασης, όπως αριθμός Strouhal, πλάτος κατακόρυφης 

κίνησης, πλάτος στροφής, καμπτική δυσκαμψία. Οι ενδείξεις είναι προς την πλευρά 

αυξημένου βαθμού απόδοσης λόγω της προστιθέμενης ευκαμψίας της υδροτομής. Το παρόν 

αριθμητικό μοντέλο μπορεί να επεκταθεί εύκολα ώστε να χρησιμοποιηθεί ως εργαλείο για 

σχεδιασμού κι ελέγχου βιομιμητικών συστημάτων σε εφαρμογές πρόωσης.  
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Chapter 1 

Introduction to the Study of Flapping Foils 

 

 

The current thesis begins with a historic review on the study of flapping foils as promising 

alternatives to conventional screw propellers as main propulsive devices, as well as their 

study as auxiliary thrusters. Our emphasis is of course on the study of chordwise flexibility in 

flapping foils, the study of which is the prominent goal of this work. However, for 

completeness purposes we will refer to other uses of flapping foils where attention has been 

given by researchers, such as manoeuvring. 

 The main motivation for the study of flapping foils as thrust – producing devices 

stems from the observation that it is in the heart of the very complex thrust mechanisms 

occurring in nature, both in aquatic and flying animals. The study of aquatic animals can be 

traced back to the time of Aristotle, who in his works considered their anatomy and 

locomotion (Sparenberg, 2002). However, the mechanics of swimming took many centuries 

until researchers began to systematically study them and make actual progress. In 1490, 

Leonardo Da Vinci attempted to explain and implement the mechanism of thrust generation 

by a flapping foil.  

 In the last decades of the 17th century, the invention of the mercury barometer gave a 

boost to scientific research concerning fish locomotion. Later, the invention of film and 

photography allowed the recording of the fish movements, as well as pressure – measuring 

devices that had already been developed rendered the study easier.  

 According to biologists, aquatic animals can be split into three main categories based 

on the swimming mechanism they use to propel themselves (Lighthill, 1975); i) anguliform, 

where the thrust is produced by an undulatory motion throughout the whole animal body, 

which is largely flexible ii) carangiform, where the undulations are constrained to the 

posterior part of the body and iii) thunniform, where the undulation is confined at the 

relatively stiff caudal fin, performing flapping motion, a combination of heaving and pitching 

motion. The thunniform mode is the most efficient, according to Lighthill. Its efficiency has 

been demonstrated by the RoboTuna developed at MIT, which has achieved efficiencies up to 

91% (Sfakiotakis et al, 1999).  
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Figure 1.1: Swimming Modes (Lindsey, 1978) 

 

The basic swimming mechanism is the transfer of momentum from the fish body to the fluid. 

The transfer mechanisms are lift, drag and acceleration reaction forces. The drag forces are a 

result of friction and pressure drag, a result of the body form. Most fast – cruising fish have 

evolved so as to have a body shape that largely eliminates this drag component. Finally, the 

fins on fish bodies form vortices when generating lift and/or thrust, a result that is predicted 

theoretically. This drag component largely depends on the fin shape.  

 The largest leap forward came in the beginning of the 20th century. This era saw the 

introduction of the fish locomotion study into the realm of fluid mechanics. Engineers were a 

significant help to zoologists in the field and their collaboration has been fruitful. 

Experiments were performed with dead fish or wooden models in order to measure drag and 

power needed to propel the specimen. This series of experiments revealed many of the 

mechanics of fish locomotion, most notably the famous Gray’s paradox; it was found that the 

muscular power capacity of a dolphin is inadequate for the typical cruising speed observed in 

the species; the power needed to propel it was calculated to be seven times larger than that its 

muscles are able to produce. One of the most popular explanations of this peculiar fact is that 
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dolphins can extract energy from wavy, non – uniform flows (Rozhdestvensky & Ryzhov, 

2003).  

 Before we further explore the studies conducted in the field of flapping foils, we 

present the main points that have been established after extensive research of swimming 

mechanisms in fish and cetaceans. In particular, the following points are explicitly stated 

(Rozhdestvensky & Ryzhov, 2003): i) Large Reynolds numbers of order 107 are interesting 

for technical applications. ii) The rear part performs simultaneous heaving and pitching 

motion, with phase shift close to π/2. iii) Strouhal number, defined as /St fA U  is between 

0.25 – 0.40, where A is the characteristic length travelled by the transverse motion of the fin 

(a foil, from a fluid mechanics point of view), / 2f   f is the motion frequency (in Hz) 

and U the cruising speed. Another important frequency parameter is the reduced frequency, 

usually defined as / 2k c U . The latter is a non – dimensional parameter based on the time 

it takes for the system to travel its characteristic length (usually the chord length). iv) The 

mass and flexural rigidity of fins (foils)   varies, both in the chordwise and the spanwise 

directions. v) Fins are also used for manoeuvring purposes, besides thrust production. vi) 

Aquatic animals can detect wave – induced flows and adjust their motion so that the take 

advantage of the energy associated with them. These observations have served as guidelines 

towards the study of flapping foils as biomimetic systems, the ultimate goal being the design 

of efficient propulsors and manoeuvring devices based on flapping foils.  

 The beginning of the 20th century marked the advance in theoretical aero – and hydro 

– dynamics which provided theories enabling the thorough analysis of the various swimming 

and flying mechanisms occurring in nature, facilitating also in the design of biomimetic thrust 

and manoeuvring devices. We note here that the first unsteady aerodynamic theories were 

developed due to the interest in aircraft flutter problems. (Bisplingshoff & Ashley, 1955) Of 

great importance are the theories developed concerning the flow past rigid 2D foils in 

oscillating (flapping) motion. In 1922 Prandtl formulated the problem of the unsteady motion 

of a wing in incompressible flow, noting that vortices have to be shed from the trailing edge. 

He theorized that the shed vortices carry momentum that is opposite to the foil motion, hence 

thrust is produced. Indeed, a characteristic property of flapping motion is that the vortices 

shed from the trailing edge (or caudal fin in aquatic animals) form a reverse Karman vortex 

sheet, resulting in a jet – like flow behind the wing (or tail). Theodorsen’s thin airfoil theory 

was used by Garrick (1936) to calculate the thrust forces of a harmonically oscillating flat 

plate in incompressible flow.  The Prandtl theory predicted that the shed vortices form a 
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trailing wake which has a geometry that is unknown a priori, due to the complex interactions 

of foil body and wake. Birnbaum (1924) assumed small amplitudes and confined the trailing 

wake to emanate from the trailing edge with the free – stream flow, enabling him to obtain 

results. The problem of flapping foils has also been studied by a number of Eastern European 

scientists, such as Keldysh, Lavrentiev, Khaskind and Nekrasov (Rozhdestvensky & Ryzhov, 

2003).  

 The main categories of theoretical models attempting to explain the mechanisms of 

swimming are resistive and reactive models. Taylor (1951) developed a resistive theory 

suitable appropriate for the swimming of snakes and marine worms, where a bending wave is 

assumed to travel with constant speed along the animal’s body. In this model, the inertia is 

neglected, and it is proven that this travelling bending wave leads to motion through the fluid. 

The largest part of theories developed, however, fall into the reactive theory. They assume 

large Reynolds numbers so that the thin boundary layer around the body is neglected and the 

inertial effects dominate over the viscous. Probably the most ground-breaking theory is that 

of the «elongated body» developed by Lighthill (1960). It allows the calculation of the thrust 

produced by anguilliform and carangiform swimmers by basic momentum considerations.  

After Lighthill the field of theoretical treatments of swimming experienced a large boost. Wu 

(1961, 1971) studied the hydromechanics of swimming propulsion assuming a 2D flat plate 

with a prescribed lateral motion wave travelling in the chordwise direction. He also studied 

the feasibility of energy extraction from waves, the answer to which was affirmative for non 

– uniform flows.  

 After those seminal works, the study of the unsteady hydrodynamics and 

aerodynamics intensified, both for oscillating fins and artificial flapping foils. For clarity 

purposes, the following references will be presented in two separate categories; experimental 

and numerical (potential flow and CFD) studies. First we will present the work done on rigid 

foils and we will conclude with the work done on flexible foils, which is the main direction of 

the present work.  
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1.1 Studies of Rigid Flapping Foils 

 

1.1.1 Experimental Works 

 An important aspect of flapping foil motion is the trailing wake formation behind the 

oscillating foil that produces the jet flow with momentum with the opposite direction of the 

foil’s motion. Koochesfahani (1989) studied the vortical patterns in the wake of an oscillating 

foil. It was concluded that the amplitude, frequency and waveform of the oscillating greatly 

affected the structure of the airfoil’s wake, enabling vortex – vortex interactions that directly 

affect the thrust producing capabilities of the airfoil. Triantafyllou and Triantafyllou (1991) 

studied the wake formation behind an oscillating foil created by the shed vorticity owing to 

the flow unsteadiness. They concluded that the wake dynamics play a dominant role, thus the 

Strouhal number is the most important parameter and that optimal thrust production occurs at 

Strouhal numbers in the range 0.25 – 0.35 that correspond to maximum wake spatial 

amplification. The latter observation can be interpreted as maximization of the jet flow 

channel width that is caused by the reverse Karman vortex sheet. Gopalkrishnan et al (1994) 

studied a foil behind a cylinder’s wake. It was found that for specific parametric values 

interaction patterns emerged between the cylinder and foil – shed vortices, adjusting 

accordingly the wake to either a regular or reverse Karman vortex sheet.  

 Extensive experimental studies on rigid flapping foils have been performed by 

Triantafyllou and collaborators at MIT. Anderson et al (1998) performed systematic runs 

over a range of Strouhal numbers and motion amplitudes and established high efficiencies, up 

to 87%, associated with optimal wake formations. The corresponding angles of attack were 

moderately large, while the formed leading edge vortices were kept mild. DPIV 

measurements revealed the complex interactions between leading edge and trailing edge shed 

vortices. Read et al (2003) studied a flapping foil pitching around 1/3 of its chord length, with 

AR = 6. Endplates were used at the tips suppressing 3D flow effects and increasing the 

effective aspect ratio. In the experiments normalized heaving amplitude (with respect to the 

chord length) ranging from 0.75 and 1 are used. Under specific conditions, corresponding to 

optimal wake formation, good rates of efficiency were observed, reaching 71.5%. More 

important is the fact that large areas of high efficiency coincided with satisfactory levels of 

thrust, indicating the possible exploitation in flapping foils as biomimetic propulsive devices. 
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They reported that high values of efficiency were associated with effective angles of attack of 

the order of 15o – 25o. They reported high levels of achievable efficiency, of order 80%. 

These values of the geometric angle of attack are considerably larger than the angle of attack 

that leading edge flow separation occurs in steady flows around hydrofoils, indicating that 

partial separation and dynamic stall phenomena under certain flapping motion parameters 

does not lead to thrust breakdown; see, e.g., Belibassakis et al (1997) and Politis & 

Belibassakis (1999).  

Moreover, very large angles of attack lead to decreased thrust attributes, as was the case for 

very small values, too. The effects of phase difference between oscillatory motions were also 

investigated, concluding in the fact that optimal thrust production is usually associated with 

phase difference close to π/2, which is observed in hydrobionts. Furthermore, Read et al 

(2003) report that higher – order harmonics added to the heaving motion profile were able to 

alleviate the negative effects of multi – peaked effective angle of attack profiles and improve 

thrust production. Hover et al (2003) studied the different effective angle of attack profiles 

that come up in flapping foil motion, due to the non – linear effects associated with increased 

flapping frequency corresponding to higher Strouhal numbers, even for purely geometric 

quantities such as the effective angle of attack. They concluded that sawtooth profiles, with 

multiple peaks in a flapping period, leads to increased thrust, while the more rounded profiles 

lead to better efficiency. Schouveiler et al (2005) studied a flapping foil, adding a bias angle 

to the pitching motion. This mechanism is able to produce both thrust and non – zero mean 

lift, rendering it appropriate for manoeuvring purposes.  

 There are many more aspects of flapping foil motion that have been considered by 

experimental studies. The formation of leading edge vortices shed to the surrounding flow 

has been studied by Dickinson (1994), Maxworthy (1979), Ellington (1984), Gursul & Ho 

(1992). Those studies are mainly concerned with insects’ flying. Delayed stall and significant 

lift forces have been attributed to the formation of leading edge vortices. It is noted however 

that large leading edge vortices increase drag and reduce the efficiency of the flapping foil as 

a thrust – producing device.  

 

1.1.2    Inviscid (potential theory) models 

 Potential theory of incompressible fluid has been extensively used to simulate the 

unsteady flow around flapping foils. The advances in computer science in conjunction with 
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high – speed computers allowed for numerical BEM simulations overcoming restrictions 

imposed by previous analytic models (e.g. small oscillation amplitudes). Bose (1992) used a 

potential flow BEM for the calculation of the dynamic response of a flapping foil. The results 

agreed well with analytic theory in the case of small amplitudes. In the latter work chordwise 

flexibility has been included in the study, although it was not considered as a result of the 

fluid – structure interaction, but rather as a prescribed deformation, analogous to earlier 

research by Wu (1961, 1971). Bose & Yamaguchi (1994) continued the previous 

investigation, with application to the propulsion of a 200,000ton DWT tanker ship with a 

flapping foil with prescribed deformation added to its rear (trailing edge) part. It was found 

that the efficiency of the examined flapping thruster was 5% higher than that of a 

conventional propeller with the same thrust output.  

 La Mantia & Dabnichki (2009)  have devised a code to treat the problem of flapping 

foils  and throughout the last decade have studied several aspects of the problem, such as the 

thickness effect on thrust (Mantia & Dabnichki 2010), the effect of the wake model (Mantia 

& Dabnichki 2010) and the added mass effect (Mantia & Dabnichki 2012).  

  In order to investigate 3D effects, Belibassakis et al (1997) applied the Vortex Lattice 

Method to study the thrust producing capabilities of a pair of oscillating wings and compared 

against against experimental data by Triantafyllou et al (1993). 

 Politis & Tsarsitalidis (2009) simulated the unsteady flow around 3D flapping wings 

using a BEM time stepping algorithm; see also Politis (2011). They performed systematic 

simulations of fish –like foils possessing skewback angles equal to 25o and 45o and 

established the high efficiency associated with them. They validated the fact that the reverse 

Karman vortex sheet is the main mechanism of thrust production by displaying the vortex 

patterns of the trailing wake. They also tested a 2 – foil configuration, where two wings are 

placed one on top of the other and perform flapping motion with phase shift equal to π.  

 Pan et al (2012) used a potential BEM in conjunction with heuristic pressure 

arguments to predict the performance of flapping foils in the case where significant vortices 

are shed near the leading edge, as well as from the trailing edge. The results of their method 

were compared with the experimental of Read et al (2003) and the agreement was very good, 

indicating the significance of leading edge separation for flapping foils.  

  Turning into more specific applications in the context of ship hydrodynamics, 

Belibassakis & Politis (2013) studied the performance of flapping foils beneath a ship’s hull 

as thrust augmentation devices, absorbing energy by the heaving and pitching motion of the 
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ship in waves. In this case the heaving foil motion is offered by the ship responses in waves 

while the pitching motion is enforced. An active pitch control strategy was proposed that 

attempts to restrain the phase difference between heaving and pitching motions in the vicinity 

of π/2, where it has been repeatedly recorded to lead to increased efficiency. They considered 

both horizontally and vertically placed wings towards the fore of the ship. Apart from the 

thrust production, the placement of wings beneath the ship’s hull was able to substantially 

reduce the ship’s responses in heaving, pitching, swaying and rolling.  

 Filippas & Belibassakis (2014) used a BEM code to simulate the flow around a 

flapping foil that operates beneath the free surface in the presence of waves. It was found that 

the thrust of such an arrangement could be increased by 20% compared to the thrust obtained 

in an infinite domain, under proper selection of the parameters involved.  Results have been 

extended to incident wave spectra by Belibassakis & Filippas (2015). 

 Politis & Tsarsitalidis (2014) have presented a design methodology for flapping wings 

as ship propulsors. They developed a systematic series based on 3D unsteady BEM. In total, 

they produced results in the form of open water performance charts for a wing with zero 

skewback and a NACA 0012 foil section for 24 geometric and motion configurations. They 

considered the cases of three ships and compared the efficiency of a flapping – wing based 

propulsor against conventional propellers. In all three cases it was found that the flapping 

wing leads to reduced shaft horsepower.  

 

1.1.3 CFD Studies of Flapping Wings 

The problem of flapping foils has been tackled with CFD methods using Navier – Stokes 

equations for the flow around the oscillating body. Viscous effects that cannot be captured by 

potential-flow methods are simulated by CFD methods, shedding further aspects of the 

complicated unsteady flows into light, and a brief review is presented below. 

 Videv et al (1993) used 2D RANSE solver to study the flapping motion of a 

symmetric foil. They reported that heaving motion, although able to achieve relatively high 

levels of thrust, does so at very low efficiency values, rendering it virtually useless for 

propulsion applications. The basic flow features were found to depend mainly on the motion 

parameters instead of the foil geometry. An important point of their work was that slight 

alterations in the motion parameters could lead to large efficiency losses.  
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 Tuncer & Platzer (1999) used a Navier – Stokes solver with the incorporation of 

particle traces. They tested a flapping foil at moderate heaving amplitudes (of order 1) and 

varied the pitching amplitude and reduced frequency. They observed that increased 

efficiencies were associated with attached flow, which occurred at even large angles of 

attack.  

 Zhang & Zhou (2010) performed numerical investigation of a heaving 2D airfoil at 

Re = 104 varying the time the foil motion spends at the upstroke and the downstroke. They 

found that non – symmetry of heaving can lead to interaction between leading and trailing 

edge vortices that increase both thrust and efficiency.  

 

 

1.2 Studies of Chordwise Flexible Foils 

 

We proceed to the introduction of the main body of the present work, which is the study of 

the chordwise flexibility addition in flapping foils. Flexibility has long been established as a 

main feature of aquatic animals’ propulsion mechanisms, either when it is active (controlled 

by the animal with pressure variations as feedback) or passive (induced by surrounding fluid 

pressure and inertial effects).  

 The coupled system of a flapping foil that passively deforms is analysed in this work. 

The bibliography of this field is far more limited than this of rigid foils performing unsteady 

motions, although experiments and some numerical methods that couple the flow with the 

flexible dynamics have revealed some of the aspects of propulsion devices possessing 

chordwise flexibility.  

 

1.2.1 Experimental Studies 

Experimental studies in the field are relatively recent. They usually consist of a flat plate 

made of a flexible material (e.g. PDMS) that is subject to heaving or pitching, sometimes 

considering only one of those oscillatory motions.  

 Heathcote et al (2004) studied the thrust – producing capabilities of a flapping foil 

with a thin flat plate attached to it downstream in Re = 0 (i.e. no free – stream velocity 
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present). They observed that some degree of chordwise flexibility improved the thrust for 

heaving motion. Extreme flexibility was able to outperform the flexible and absolutely rigid 

foils only for very low Strouhal numbers. Heathcote et al (2007) went on to study the thrust 

capabilities in low Reynolds numbers. They reported both thrust and efficiency increase for 

certain degrees of flexibility. Finally, Heathcote et al (2008) studied the effect of spanwise 

flexibility on flapping wing propulsion. They found that a degree of spanwise flexibility 

increases both thrust and propulsive efficiency. Increased spanwise flexibility was shown to 

significantly deteriorate the hydrodynamic aspects of the wing, leading to reduced thrust – 

producing capability.  

 Alben et al (2012) studied the self – propulsion of freely swimming thin flexible foils. 

They established the power laws associating the swimming speed with the bending rigidity 

and the foil length. It is consistently reported that the swimming speed displays peaks as the 

above parameters are varied. 

 Barranyk et al (2012) performed experiments with flat plates in flapping motion of 

varying rigid to flexible ratio and reported that increasing flexibility increased both thrust and 

efficiency in the parameter range tested. They also studied the effect of depth of 

submergence, and found that the hydrodynamic aspects of the foil improved when it was 

placed in proximity to the channel bottom. 

 Prempraneerach et al (2013) performed experiments with chordwise flexible flapping 

foils in towing tanks. Propulsive efficiencies as high as 87%, up to 36% higher than those of 

rigid foils were recorded. 

 Dewey et al (2013) considered chordwise flexible wings in pitching motion and 

achieved improvements in both thrust and efficiency of the order 100%. The peaks observed 

in efficiency were associated with the simultaneous satisfaction of the Strouhal number lying 

in the optimal range (0.25 < St < 0.35) (Triantafyllou et al, 1993) and the forcing motion 

frequency is tuned to a structural resonant frequency of the system of foil and  surrounding 

fluid. Moreover, scaling laws were proposed for the thrust force and propulsive efficiency 

based on characteristic elastic forces, instead of characteristic fluid forces often used in the 

study of rigid flapping – wing propulsors, which seem to correctly collapse their 

experimentally acquired data. 

 Quinn et al (2014) considered chordwise flexible panels in heaving motion, as 

opposed to Dewey et al (2013). They reported that although the thrust produced is mainly a 

function of Strouhal number, local peaks were found associated with the structural resonance 
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of the panels. Their results are reported to scale with characteristic parameters derived from 

the Euler-Bernoulli beam equation. Conditions of zero-net thrust were considered, 

corresponding to freely swimming panels. It is shown that increased flexibility and reduced 

swimming speeds correspond to higher efficiency under these conditions.  

 Cleaver et al (2014) considered rigid heaving 0012 NACA section foils with a flexible 

flat plate attached downstream to the foil, with its length varying from 10% to 30% of the 

foil’s chord length. Their aim was to study the effect of chordwise flexibility to the drag 

reduction associated with heaving motion in uniform flow. The added flexibility provided 

improvements up to 20% higher compared to the rigid foil.  

 Paraz et al (2015) experimentally studied the response of a flexible heaving foil in 

harmonic forcing in a uniform flow. The effects of motion amplitude, Reynolds number and 

flexural rigidity were studied by systematically varying the corresponding values. It was 

revealed that the response of the panel was non – linear with respect to the forcing amplitude. 

Scaling the obtained results with the first resonant frequency of the foil in the surrounding 

fluid, the results collapsed well. The only parameter that greatly affected the plate’s response 

was that of the forcing amplitude, indicating that the response is non-linear with respect to the 

heaving motion amplitude.  

 Quinn et al (2015) used experimental gradient – based optimization to maximize the 

efficiency of a flexible panel actuated at its leading edge by both heaving and pitching 

motions. They concluded that optimality is achieved when the following conditions are 

simultaneously met: i) The Strouhal number lies in the range 0.26 – 0.33 for flapping motion, 

so that both the wake vortex sheet is packed and coherent and the flow does not separate 

when passing over peaks and troughs of the oscillating panel ii) The flexural rigidity of the 

panel is chosen such that the motion frequency corresponds to a resonant frequency of the 

fluid & panel system iii) The heaving amplitude is as high as possible, as long as the 

boundary layer stays attached along the panel body iv) The maximum angle of attack is 

minimum, so that leading edge separation is suppressed v) The phase lag between heaving 

and pitching lies near 90deg.  

 Richards & Oshkai (2015) studied the thrust capability and efficiency associated with 

flexible flapping foils by also varying their inertia and stiffness characteristics. They report 

that optimum propulsion is achieved when the frequency of the oscillation is tuned to a 

resonant frequency of the fluid & foil coupled system and is a result of both increased trailing 

edge amplitude (increasing the effective swept area) and of beneficiary phase difference 
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between leading edge and trailing edge, corresponding to about 90deg. trailing edge lag. The 

combination of heaving and pitching is found to lead to increased thrust although reducing 

thrust compared to the heaving – only case.  

 

1.2.2 Inviscid (potential theory) models 

The first (to our knowledge) theoretical work attempting to couple the potential flow around a 

thin foil with its passive elastic deformation due to added chordwise flexibility is that of Katz 

& Weihs (1978). Using the velocity potential and assuming a massless foil, they obtained 

results for the thrust force and efficiency associated with flapping configurations. They 

predicted that flexibility increases efficiency and reduces thrust capability. This is attributed 

to the fact that the passive deformation aligns the foil with the incoming flow, thus reducing 

the lift force produced, however its orientation is nearer the direction of advance, thus 

increasing efficiency.  

 Zhu (2007) used BEM fully coupled with thin – plate theory to simulate the flow 

around a 3D wing with both chordwise and spanwise flexibility. Attention was given to two 

separate cases: low density fluid (e.g. air) and high density fluid (e.g. water). It was found 

that the response of the wing in the first case is mainly inertial, while in the second case it is 

dominantly fluid – driven. In the inertia – driven response, the wing response causes its 

effective angle of attack to rise, thus deteriorating performance. On the other hand, fluid – 

driven response causes the feathering of the foil, aligning it with the flow in such a way that 

while the thrust reduces, the efficiency is increased.  

 The efforts to tackle the problem have substantially increased in number in recent 

years. Alben (2008) proposed a potential flow theory coupled with a massless and 

inextensible elastic sheet formulation to tackle the problem of flexible thin 2D panels 

pitching around their leading edge. The thrust displayed peaks as the non-dimensional 

rigidity was varied, corresponding to resonant frequencies of the coupled system, while the 

efficiency dropped smoothly from unity in the limit of zero rigidity to the value predicted by 

potential flow theory for rigid oscillating foils. The optimum rigidity for thrust production 

decreased as the pitching frequency increased.  

 Michelin & Smith (2009) considered the potential flow around heaving flexible foils 

and assumed inextensibility of the panel under its passive deformation due to the 

hydrodynamic pressures formed around it. They reported peaks in both the thrust and 
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efficiency when the flexural rigidity was varied, corresponding to resonance frequencies of 

the system. The efficiency compared to the rigid case was found to be even three times larger 

under optimal conditions. The increased thrust and propulsive capabilities that occurred with 

chordwise flexibility addition were associated with amplification of the reverse Karman 

vortex street formed downstream of the foil.   

 Paraz et al (2016), following the experimental results of Paraz et al (2015), developed 

an analytical model based on Euler – Bernoulli beam theory to study the effect of chordwise 

flexibility in heaving flexible plates. Peaks in thrust were associated with both peaks in 

trailing edge amplitude and its phase difference with respect to the leading edge excitation, 

occurring in the region of the coupled system resonance. The trailing edge response was 

found to decrease with increasing the heaving amplitude in Paraz et al (2015), an effect that is 

captured by the analytical model developed. 

 Kancharala & Philen (2016) performed numerical simulations based on 2D BEM 

coupled with non – linear Euler Bernoulli beam theory and performed an optimization 

procedure to determine the optimal chordwise stiffness profiles in flapping foil motion of self 

– propelled fins. The stiffness profiles that lead to minimum cost of transport are consistently 

characterized by abruptly reduced stiffness in the vicinity of the trailing edge, as observed in 

hydrobionts. 

 

1.2.3 CFD Studies of Flexible Flapping Wings 

The literature in the treatment of flexible flapping foils with CFD solvers is more limited than 

the inviscid methods’. In addition, most works in this area are concerned with animal flight, 

which is not the main object of interest in the present work. However, we shall present some 

works in this field.  

 Connel (2006) submitted a PhD thesis concerned with the interaction of a flexible 

panel in flapping motion with the ambient flow. The research consists of the coupling of a 

Navier – Stokes solver with geometrically non – linear thin –body structural solver. Stability 

issues are thoroughly discussed.  

 Luo et al (2010) developed a high – fidelity 3D numerical method to treat the problem 

of the flow – structure interaction in flapping flight. Their hydrodynamics solver consists of a 

Navier – Stokes solver based on immersed boundary method, while their structural solver is a 
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non – linear FEM. They used the proposed method to simulate the flow around the wing of a 

dragonfly, revealing the various aspects of the complicated phenomenon.  

 De Sousa & Allen (2011) considered a flat plate clamped on its leading edge, 

performing forced pitching oscillations. They used a numerical scheme to solve the Navier – 

Stokes for the hydrodynamics part and coupled it with a finite difference structural dynamic 

solver. They concluded that flexibility leads to efficiency increase, which is further improved 

by increasing the structural mass. 

 

 In this work, the case of a 2D flapping foil with chordwise flexibility is considered. 

Our point of interest is the thrust – production capability and efficiency of such a system, 

compared to the rigid flapping foil case. More specifically, in Chapter 2 we present in detail 

the inviscid Discrete Vortex Method (DVM) for the solution of the flow around the body, 

which is assumed to be of small thickness compared to its chord length, and of infinite span 

such that spanwise flow effects can be ignores. In Chapter 3 extensive simulations are 

conducted to validate the DVM and present the basic aspects of flapping foils. In Chapter 4 

the DVM is coupled with a thin plate dynamic structural solver based in Kirchhoff plate 

theory and the effect of chordwise flexibility is investigated. Finally, in Chapter 5 

conclusions are drawn and suggestions for further work are made. Details of the structural 

solver are thoroughly presented in the Appendix. 
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Chapter 2: Discrete Vortex Method for the Unsteady Flapping Foil 

Problem 

 

In this Chapter the unsteady lifting-flow problem of a flapping foil is presented, and its 

numerical solution obtained by the discrete vortex method (DVM, Katz & Plotkin, 1991). 

Details concerning the latter numerical method are also provided, as well as its application to 

similar problems of unsteady hydrofoil theory.  

 

 

2.1 Basic Nomenclature 

 

We consider a  foil, corresponding to symmetric wing of infinite span, travelling at a constant 

velocity and experiencing heaving and pitching motions. a sketch of the geometry is shown in 

Fig. 2.1.  The  thickness of the wing is assumed to be small compared to its chord length. The 

surrounding fluid is assumed to be inviscid, and the resulting unsteady flow is irrotational. 

These assumptions make the use of unsteady 2D thin foil theory acceptable.  

 The domain considered is 2D IR , with boundary B WD D D    , which is 

considered to be smooth everywhere except the trailing edge. The boundary represents the 

foil’s surface BD  and the resulting trailing wake WD  which ensures the conservation of 

circulation in the fluid domain, according to Kelvin’s theorem. The trailing wake is a product 

of the flow unsteadiness. It is noted here that the boundaries , WBD D   are actually time – 

dependent; it holds that    ,B B W WtD D tD D     . Generally, in the sequel the time 

dependency will be omitted when the time instant that we refer to is obvious. 

 The problem of a foil travelling with a constant speed V  (the minus sign stresses 

the fact that it travels towards negative values of the horizontal axis) is treated by considering 

the equivalent problem of a foil with zero speed subject to a free – stream velocity V . With 

this in mind, we consider two reference frames; one fixed at the foil’s mean position and 

hence is inertial, and one that is body – fixed, i.e. fixed on the foil’s leading edge and having 
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an inclination relative to the horizontal axis equal to the foil’s pitch angle. The corresponding 

reference frames are denoted ,x y  (inertial) and '',x y  (body – fixed).  

 The flow consists of two main components; a steady parallel flow  V  due to the 

constant travelling speed of the foil and an unsteady flow which, according to the 

assumptions stated above, is modelled by a scalar potential  ( , , )x y t . The unsteady 

velocities in the flow field are then given by  ( , , )x y t  .  

It is possible to include a rotational background unsteady flow component such as a velocity 

gust denoted by GV , provided that the vorticity contents are small. 

 Due to the unsteadiness of the flow around the foil, a trailing wake is formed 

downstream. Also, due to the generation of lifting flow and circulation around the foil an 

appropriate Kutta condition is satisfied at the trailing edge. The positions of point  BA D  is 

defined by T( ; )=[ ( ; ), ( ; )]s t x s t y s tr  and their velocity in the inertia reference frame are given 

by ;( , ) )(ts t tsAV r , where s is a curvilinear coordinate on the body’s surface.  

 Although initially we consider simple symmetric wings, more general camber 

geometries can also be included, defined by ( ', )x t  on the body – fixed reference frame. 

This extra consideration is made so that in the course of this work we will attempt to couple 

the hydrodynamic formulation developed in the chapter with the foil’s deflection thanks to its 

chordwise flexibility.  

 

 

 

c  

n  

V  

WD  

'y  

y  

x  

BD  ( )t  

( ; )x t 
 

           
  

        

 

 

'x

( )h t  

 

Figure 2.1: Foil and motion parameters sketch. The moving inertial and body fixed frames are denoted by (solid 

lines)   and  (dashed lines), respectively. The trailing wake is drawn in dash – dot line and wake point vortices are 

denoted by curved arrows.  
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The field equation that the flow potential must satisfy is Laplace’s equation 

 

2 ( , , ) 0,x y t                     (2.1) 

 

i.e. the equation of mass conservation (under the irrotationality assumption of the disturbance 

flow component). On the solid body’s surface BD  the no-entrance Neumann condition must 

hold 

 

( ) ,Φ     A Gn V V V n                  (2.2) 

 

where n denotes the unit normal vector on the body’s surface.  

 The problem formulation is completed with the addition of a relation analogous to 

(2.2) which describes the physical constraints of the trailing wake. This additional 

information is inserted via the Kutta condition, which is discussed further in this chapter.  

 

2.1 Solution of the lifting problem around the foil 

 

The flow around the foil is solved by the representation theorem the potential at every point 

in the domain D  can be expressed as a function of the potential values of its boundary D . 

The potential is expressed by vorticity distributions ( ; )B s t  and ( ; )W s t  in the body and 

trailing wake surface, respectively. These vorticity distributions are defined by the relations 

 

 (s; t) (s; t) ( ; ) )( ,U L U Lu u s t         τ τ             (2.1.1) 

 

where ( ; )u s t u denotes the tangential perturbation velocity and τ denotes the unit tangent 

vector on the surfaces ,B WD D  . The subscripts L, U denote the lower and upper sides of 

the surfaces, respectively. The potential values on the surfaces are denoted by  

 

   ( ), ,( );x s y s t t  r ,               (2.1.2) 
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to stress the fact that they actually correspond to traces of the potential. The    operator 

denotes the difference of quantities between the upper and lower side of the surfaces and will 

be used extensively in the course of this work. Since the body is assumed to have zero 

thickness no source distributions are considered. By default, Eq. (2.1.1) implies  

 

   ( ; ) ,
B

B TE
D

s t ds t


                   (2.1.3) 

 

that is, the integral of the bound vorticity is equal to the circulation around the foil, equivalent 

with the potential difference at the trailing edge.  

 The value of the potential gradient   when the potential satisfies Laplace’s 

equation can be directly represented by its values on the boundaries B WD D D   . 

Applying the representation theorem in the 2D case we have 
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           (2.1.4) 

 

where k denotes the unit vector normal to the x – y plane, according to the right – hand rule, 

and r(ξ|s;t) denotes relative distance of points on the surface D . In particular r(s;t) is the 

point where the no – entrance boundary condition is applied and r(ξ;t) denotes the integration 

points on the vorticity surface. Replacing the LHS of Eq.(2.1.4) from Eq. (2.2) we have 
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          (2.1.5) 

 

Eq. (2.1.5) is the integral equation to be solved for the distribution of the bound vorticity 

 ( ; ), ,B Bs Ds t t r . The solution is obtained numerically via a discretization scheme, 

including a wake model for the trailing wake vorticity described below.  
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2.2 Kutta Condition – Trailing wake model 

 

The unsteadiness of the flow creates a trailing vortex wake behind the foil, as has already 

been stated. Vorticity is continuously shed from the trailing edge and its strength is connected 

with the rate of change in of circulation around the foil, as obtained from application of 

Kelvin’s theorem concerning the conservation of circulation around closed material circuits. 

 .  

In this work a wake model is used for the trailing vortex sheet and its geometry is given by 

the trajectory of the trailing edge of the foil. This assumption corresponds to a prescribed 

wake geometry which simplifies the problem. The vorticity in the trailing wake is associated 

with the vorticity at the trailing edge using results from the analytic theory (e.g. Newman 

1977). Assuming small perturbations so that the foil’s geometry always coincides with a cut 

on the x – axis (coinciding with the interval [0, ]c , where c is the chord length), we try to 

establish the evolution of the vortex wake in time and space. From linear theory, the pressure 

difference on the vortex wake can be calculated from the Bernoulli’s equation 

 

 

 
Figure 2.2: Relative positions of control point on body surface and integration points, here shown in the wake 

surface for clarity 
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where U  V . The potential difference    on the wake surface is, extending (2.1.3) to 

apply for the trailing wake  
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Using Eq. (2.2.2) Bernoulli’s equation (2.2.1) becomes  
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Applying a pressure – type Kutta condition at the trailing edge demanding that the pressure 

difference between the foil’s surface sides becomes zero is straightforward. Actually, by 

setting x c  in (2.2.3) we have 
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            (2.2.4) 

 

Eq. (2.2.4) relates the vorticity at the trailing edge with the rate of circulation change around 

the foil. The kinematic boundary condition of the vortex wake requires that the pressure 

difference between the upper and lower sides of the wake boundary be equal to zero for 

x c . Since we have established that the pressure difference is zero at the trailing edge, this 

means that 

 

  ); ,( 0x t x cp x                 (2.2.5) 

 

Differentiating the Bernoulli equation (2.2.3) with respect to x and applying Eq.(2.2.5) we 

obtain  
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By virtue of Eq.(2.2.4) and differentiating under the integral sign, we have 
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The solution to this homogenous partial differential equation is  

 

( ; ) ( ),W Wx t x Ut                  (2.2.8) 

 

corresponding to a wave – like function. This equation implies that the vorticity is convected 

downstream with the free – stream velocity, which is an approximate result that complies 

with Kelvin’s theorem. Hence, the vorticity at x>c in time t is the same as the vorticity at the 

trailing edge in time  -1- - - ,TEt t t U x c x c  . This allows the calculation of the vortex 

wake vorticity from the derivative of the circulation around the foil at each time step, 

calculated by means of the DVM.  Formally, 

 

 ( ; ) ; .W W TEx t c t t                  (2.2.9) 

 

The above equation, in conjunction with the simplified wake model, describes the trailing 

wake vorticity effects. In particular, the RHS term of Eq.(2.2.9) is known from Eq. (2.2.4), as 

obtained from the solution of the lifting problem around the foil, wherefrom the bound 

vorticity distribution  ;B TEs t t   is calculated at each time step.  

 The analysis thus far is exact for the linearized case, where the foil’s unsteady motion 

amplitudes are considered small (with respect to the chord concerning heave motion and 

small with respect to unity concerning pitch). Application of Eq. (2.2.9) in the present method 

requires a proper extension. Since the motion amplitudes are not constrained in any way, the 

wake cannot be described just with its x – coordinate; rather, its points are described by a 

vector  ; Ws t Dr . Considering the position of the trailing edge, it is seen that it does not 

coincide with the vector [c,0]T. In the present model it is described by the more complicated 
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vector  ; WBTE ts D D  r . Thus the wake evolution equation (2.2.9) is recast in the more 

complex form 

 

 ( ; ) ;W W TE TEs t s t t   ,                                                                                             (2.2.10) 

 

such that    ; Ws Dt tr and    ;TE TE B W TEs Dt Dt t t    r . In Eq.(2.2.10) 

1 ( | );TE TEr s st U t  where ;( | )TEs s tr  denotes the relative position of the wake point (s ); tr  

with respect to the trailing edge position at a past time ;( )TE TEt ts r . In essence, TEt  is the 

time that a material point needs to travel from the trailing edge to the wake point (s ); tr  with 

the free – stream velocity (i.e ignoring the vorticity interaction effects); see Fig.2.3. It is 

evident that this extension of the linearized Kutta condition Eq.(2.2.9) retains approximately 

the material conservation of the vorticity.  Using Eq. (2.2.10) in the no – entrance   boundary 

condition (2.1.5) we have 
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Figure 2.3: Successive plots of the trailing wake geometry WD for harmonic motion of foil with period T. The 

geometry is visualized for an arbitrary time value tref (solid line), a previous one tref – T/4 (dotted line) and a 
future one  tref + T/4 (dashed line). The leftmost point of each curve coincides with the trailing edge position at 
the corresponding time 

 

 

The only unknown in the integral equation (2.2.11) is the bound vorticity distribution 

 γ s; tB . 

 

2.3 Pressure and Forces Calculation 

 

Since the wing is assumed to be equivalent to a thin foil, only differences in pressure are of 

interest. The pressure difference coefficient on the foil is defined as 
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To calculate the pressure difference coefficient, we employ an unsteady version of 
Bernoulli’s equation by integration of Euler’s equations (Filippas, 2013). The resulting 
expression is  
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Figure 2.4: Snapshot of trailing vortex sheet in flapping motion (Filippas, 2013). The free trailing sheet is shown 
in solid lines, while the frozen wake defined as in the present work is shown in dashed lines. The vortices shed 
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at the highest and lowest points of the foil trajectory gather the free vortices around them, as their intensity is 
locally maximum. The result is a clockwise pattern around the vortices shed at the lowest trajectory points and 
counter – clockwise pattern at the highest points. This causes a jet – like flow between them, resulting in net 
thrust. 

The derivation of Eq.(2.3.2) assumes that the background velocity GV  is weakly rotational so 

terms involving  GV  can be ignored. In Eq.(2.3.2), ( , ; )x y t   is the perturbation 

potential, ( , ; )p p x y t  is the absolute pressure and p  is the pressure at infinity. The flow is 

assumed to be incompressible, so the fluid density   is assumed constant.  

 An important note concerning Eq.(2.3.2) is that the involved spatial and time 

derivatives are written in the sense of space values. In the present method though, as is 

common in BEM, the potential values and their derivatives are calculated in a body – fixed 

reference frame in the sense of traces. We remind that the trace value of the potential is 

defined by the relation  

   ( ; ) ( ), ( ); , ( ), ( )
T

s t x s y s t x Ds y s    .            (2.3.3) 

Taking the total derivative of the potential trace    ; ( ), ( );s t x s y s t    with respect to the 

curvilinear coordinate s , such that  ;r s t D  , we have 

 

x x y y
ds dt ds dt

t x s t y s t
d dt

dt ds dt
t s t

                               

      

 

     

r r
          (2.3.4) 

 

Fixing a point on the boundary (fixing s), we have 

 

dd tt
t

d
t

      





 

r
 .              (2.3.5) 

 

For fixed s, d d    τ  is the velocity of the point A D , AV  where dτ  is a surface 

tangent vector. Dividing Eq. (2.3.5) by dt we have 

.
d d

dt dtt t

  
 


  


 


A AV V             (2.3.6) 

(Politis 2005). Eq. (2.3.6) gives the value of the space time derivative from the value of the 

trace time – derivative.  
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 We shall now find an expression between the space and trace values of the gradient in 

Eq. (2.3.2). Fixing time and releasing s in (2.3.4), we have 

 

,dd    τ    (2.3.7) 

 

where dτ  is the differential tangent at the surface vector. It also holds by default that 

 

,d d   τ                  (2.3.8) 

 

Equating the RHS’s of the above relations we obtain 

  0,d   τ                 (2.3.9) 

 

which implies that the vector     is normal to the surface. Since   is by default 

tangent to the surface, it follows that  

 

       n n .             (2.3.10) 

 

The first term in the RHS of (2.3.10) is known from the no – entrance boundary condition 

(2.2). Replacing (2.2) in (2.3.10) we have 

 

  .     A GV V V n             (2.3.11) 

 

From equations (2.3.2), (2.3.6), (2.3.11) we have 
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 

       


          

          
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     2 21

2

1

2

p p d

dt

  



 


            A G A GV V V V V V n .                 (2.3.12) 

 Applying Eq. (2.3.12) for two points ,L UA A  on the lower and upper side of the foil’s 

surface, respectively, we have  
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     2 21
,

2

1

2
L L

L L

p p d

dt
 




           


   A G A G LV V V V V V n       (2.3.13a) 

     2 21 1
.

22
U U

U U U

p p d

dt
 




          


    A G A GV V V V V V n

     

(2.3.13b) 

 

Subtracting (2.3.13b) from (2.3.12a) we have 

 

         2 21

2 U
L U

L

dp p

dt
 





   


      G AV V V       

    2 21
.

2               A G L A G UV V V n V V V n                               (2.3.14) 

 

The term in brackets in (2.3.14) vanishes, since  L Un n , and the thirds  term in the RHS of 

the above equation becomes 

 

       1 1

2 2L L LU U U                            (2.3.15) 

 

It holds for L , U  that 

 

1 1
( ; ) ( ; ) ( ; ), and ( ; ) ( ; ) ( ; ),

2 2L UL B BUs t u s t s t s t u s t s t               (2.3.16) 

 

so the term in the RHS of Eq. (2.3.15) vanished. Ultimately, the pressure difference 

coefficient is given by the expression  

 

     2
2

2
.

1
2

L U
P

dp p
C

U dtU





 
      





 G AV V V          (2.3.17) 

 

 Knowing the pressure difference coefficient, we can easily calculate the forces and 

moments on the foil, as well as the power input required to maintain its unsteady motion. In 
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the present work only forces that are induced from pressure variations between the foil’s 

upper and lower surface sides are considered. The forces, moments and input power are given 

in the form of non – dimensional coefficients. They are rendered non – dimensional with 

characteristic fluid forces, moments and power quantities. Specifically; 

 

     
2

1
ˆ

1
2

ˆ
B

L P

D

L t
C t C

cU
s

c
d

 

    n y            (2.3.18) 

is the instantaneous lift coefficient (expressing the force normal to the parallel stream U),  

     
2

1
ˆ

1
2

ˆ
B

P

D

T

T t
C t C

cU
ds

c 

     n x            (2.3.19) 

is the instantaneous thrust coefficient (negative values correspond to drag), and 

       2
2 2

1
ˆ | *

1
2

;
B

M P

D

s s ds
M t

C t C t
cU c 

     n r           (2.3.20) 

is the instantaneous moment coefficient, where r(s|s*; t) is the vector pointing from the 

reference point r(s*;t) (pivot point around which moments are calculated) to the surface point 

r(s; t). Note that in Eqs. (2.3.18) – (2.3.20) the ˆ ˆ,x y  vectors denote the unit – vectors along 

the inertial reference frame axis. Finally, the instantaneous input power coefficient is 

calculated as  

 

       
3

1
;ˆ

1
2

B

P

D

in
P

P t
C t C s t

U
d

cU c
s

 

     An V         (2.3.21a) 

In the case of rigid motion the general velocity of a surface point of the foil  ;s tAV  is a 

combination of translation V  and rotation ˆk , and is expressed as 

   ˆ | *; ;s t ts s AV V k r  and using the latter in Eq.(2.3.21) we obtain for the input and 

output  power 

       ,in outP t L t h M t P t TU   

                                                                       

(2.3.21b) 

However, we have maintained the more general expression given by Eq.(2.3.21) in order to 

account also for the additional power associated with the elastic deformation, which will be 

considered below in Chapter 4. 
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 For periodic foil motion and flow conditions (as e.g. in flapping foils) we are 

interested in amplitudes of the lift and moment coefficient and mean values of the thrust and 

input power coefficient per cycle. If the motion period is T and the responses have reached 

their periodic steady – state, the amplitudes and mean values of the above coefficients are 

calculated as follows; 

 

 
0

2
co

2
s

To

L L t dC C t
TT

t
   

 
               (2.3.22) 

for the lift coefficient amplitude, 

 

 
0

1 T

TT dC t
T

tC                 (2.3.23) 

for the mean thrust coefficient, 

 

 
0

2
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2
s

To

MM t dC C t
TT

t
   

 
              (2.3.24) 

for the moment coefficient amplitude, and 

 

 
0

1 T

P PC C t dt
T

                (2.3.25) 

for the mean input power coefficient.  

 Moreover, the Froude efficiency is defined as the ratio of output power over input 

power, as follows (Anderson et al, 1998) 

2
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1
2ˆ

1
2

T
out T

in in P
P

U C UP CUT

P P C

c

CcU





                (2.3.26) 

  

2.4 Numerical Scheme 

 
The solution to the unsteady lifting problem is equivalent to the solution of the integral 

equation (2.2.11) for the vorticity distribution bound on the foil’s surface. Knowledge of this 
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distribution renders the calculation of pressure around the foil possible, from which the forces 

acting on the foil can be calculated by integration using Eqs. (2.3.18) – (2.3.21).  

 

2.4.1 Discretization of vorticity distributions 

 The DVM solves the lifting problem in the time domain by calculating the discrete 

distribution of the bound vorticity at each time step, thus allowing for calculation of forces in 

transient as well as periodic conditions. The integral equation (2.2.11) is discretized 

appropriately to BN  panels on the foil’s surface and WN  panels on the trailing wake surface, 

respectively. The foil vorticity is approximated by the following distribution of discrete 

vortices 

 

( ; ), 1 , located at ; )(B B i B ii Bs t i DN ts    r         (2.4.1.1) 

 

in the sense that 

 

 
1

( ; ) , 1,...,
i

i

s

s

Bi B Bt s t ds i N


              (2.4.1.2) 

 

In a similar fashion, the wave vorticity distribution is approximated by 

 

( ; ), 1 , located at ; ) ,(Wj W j W j Ws t j N ts D    r                               (2.4.1.3) 

 

in the sense that 

 

 
1

( ; ) , 1,..., .
j

js

Wj W W

s

t s t ds j N


              (2.4.1.4) 

 

In Figure 2.5 the velocity field of a point vortex in (0,0) is shown.  
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Figure 2.5: Velocity field of a unit – strength vortex placed at (0,0). The upper figure shows the absolute value 

of the velocity which is radially symmetric, while the lower figures display the horizontal velocity (left) and 

vertical velocity (right), which are symmetrical about the x and y axis, respectively.  

 

2.4.2 Body, wake & temporal discretization 

 Since the discrete model is assumed to start from rest, the number of wake panels WN  

is equal to the number of time steps tN . The foil is discretized into BN  chord panels 

according to the cosine spacing method so that panels are accumulated in the leading and 

trailing edge regions were the most significant hydrodynamic variations are expected 

according to linear theory; see Fig.2.6. The foil elements are created as follows;

 

 

 Create a vector containing 1BN   iso – spaced values , 1,..., N 1i Bi    in the 

interval  , 0  

 Apply the transformation  cos 1 , 1,..., 1
2i i B

c
x i N       where c  is the foil’s 

chord length. The values ix  are cosine – spaced in the interval  0, c  
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 Calculate the length of each panel (projected to its chord) 1 , 1,....,i i i Bdx x x i N    

 Place a vortex point and a collocation point at each panel placed at 1/4 and 3/4 of the 

panel, as follows  

1

1

0.25
i

j
i j idxvor dx x





              (2.4.2.1) 

1

1

0.75i j

i

j
idxxcp dx





             (2.4.2.2) 

in the body – fixed reference frame. This way the collocation points are always 

downstream of the vortex points. Also note that vortex or collocation points are never 

placed exactly at the leading or trailing edge, thus avoiding manifestation of 

singularities in the discrete model. 

 The time is discretized in equal discrete steps t . The wake panels have length 

dw U t  . The ratio of wake panel length to trailing edge region foil panel is a control 

parameter of the method. The wake panels have the same direction with the free stream 

velocity V  which is consequence of the (approximate) material conservation of vorticity, as 

materialized by the present wake model. In this case we consider each wake panel to be a 

vector 

 

Figure 2.6: Bound vorticity for a flapping motion case. The time instant has been chosen so that the distribution 
displays significant variations in both the leading edge and trailing edge. This acts as an argument supporting 
the usage of cosine spacing for the collocation points on the foil’s mean camber line 
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      cos , sin, ,x ydwt dw U a a    dw V                                   (2.4.2.3) 

 

where 1tan
ˆ

a
U

     
 

V y
  is the mean angle of attack of the foil. 

2.4.3 Solution of the hydrodynamic problem 

The no – entrance boundary condition (2.2.11) is discretized by replacing the vorticity 

distributions ,B W   by the distributions of equivalent point vortices ,B W  . The resulting 

expression is 

 

1 1
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B W
B j i j W k ik
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k
i B

j

w U i Nw
 

                (2.4.3.1) 

 

At each time step nt , the term BiU  is the RHS of the no – entrance boundary condition Eq. 

(2.2) evaluated at the collocation points, Eq (2.4.2.2). The terms B
i jw  and W

ikw  are the values 

of the normal velocity also at the collocation points 1,..., Bi N  velocities, induced by the unit 

– strength bound point vortices located at    , , , 1,...,j j j n Bxvor yvor t j Ns r  , and trailing 

wake unit – strength point vortices located at    , , 1,..., ,k k k Wnxw yw t k Ns r , 

respectively. More specifically 
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More specifically, the induced velocities are given by the expressions 

 

       2 2 2 2

1
,

2
j i j iB

ij i

j i j i j i j i

yvor ycp xvor xcp
w

xvor xcp yvor ycp xvor xvor yvor ycp

    
      




n (2.4.3.3) 

       2 2 22

1
,

2
W k k

k k

i i
ik i

iik ij i

yw ycp xw xcp
w

xw xcp yw ycpxw xcp yw ycp

    
     




n      (2.4.3.4) 

 



39 

 

The positions of collocation points  ,i ixcp ycp , bound discrete point vortices  ,j jxvor yvor  

and trailing wake point vortices  ,k kxw yw  must be given in the inertial reference frame, as 

provided by Eqs. (2.4.3.3) - (2.4.3.4). The positions of the trailing wake point vortices 

 ,k kxw yw  are  given by the discrete equivalent of Eq.(2.2.10) as follows 

 
 

1

0.25 , 0.25 , if 1 0
,

undefined, otherwise

n k
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w d
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


 



      (2.4.3.5) 

Note that the trailing wake point vortices are placed at 1/4 location of each wake panel. 

 In the discretized no – entrance boundary condition (2.4.3.1) the trailing wake point 

vortices , 2W k k   are all known from the history of the motion, by virtue of Eq. (2.2.10), 

while the value of 1W  is an unknown quantity at every time step. We will follow an informal 

procedure and attempt to incorporate it in a straightforward way in the linear system Eqs. 

(2.4.3.1). We consider a time step of the discrete vortex method,  1, nntt t   and let nt t    

By definition, the discrete vortex strength of the first wake element is 
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Assuming that s x , setting x c U   and replacing in Eq. (2.4.3.6), we acquire 
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              (2.4.3.7) 

where 1n nt t t    .  Replacing the wake vorticity using Eq. (2.2.4) we have (see Fig.2.6) 
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              =     1n nt t                                                                                              (2 .4.3.8) 

 

Eq. (2.4.3.8) stresses the fact that every change of circulation around the foil must be 

counterbalanced by an opposite change in the circulation of the vortex wake, so that Kelvin's 

theorem is satisfied at each time step. The first term in the RHS is the circulation around the 
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foil at the previous time step which is already known. The second term is the sum of the 

bound point vortices at the current time step 

 
1

,
BN

j
n Bjt



                (2.4.3.9)  

which is unknown. However since it is a linear combination of the unknown quantities, it can 

be transferred to the LHS of the linear system. From Eq. (2.4.3.1), (2.4.3.8) & (2.4.3.9) we 

have 
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Eq. (2.4.3.10) constitutes a linear system of equations that is solved at each time step for the 

intensities of the bound point vortices , 1,...,Bj Bj N  .  

 

 

Figure 2.7: Visualization of the discrete wake model utilized in the present DVM. The foil starts from rest and 
the first wake vortex is shed, with intensity equal to –Γ1, opposing the circulation around the foil. At each 
subsequent time step nt , the intensity of the shed vortex is equal to    1n nt t    
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2.4.4 Calculation of pressure and forces in DVM 

The pressure difference coefficient is calculated via a discrete expression equivalent to 

Eq.(2.3.17). According to the present scheme, we have 
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          (2.4.4.1) 

and 
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Substituting the above expressions in Eq.(2.3.17) we have 
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where i i i  G Ab V V V .  

With the pressure difference coefficient known at each time step, the forces, moments and 

power coefficients time histories can be easily calculated by evaluating the integrals in Eqs 

(2.3.18) – (2.3.21) .  

Detailed results and comparison of the present DVM against other theoretical methods BEM 

and experimental data, in the case of rigid foils, will be presented in the next Chapter of the 

thesis. In particular, unsteady thin hydrofoils at various conditions, including heaving and 

pitching motion, flapping hydrofoils and hydrofoils in gust will be presented and discussing 

validating the developed numerical scheme. 
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2.5 Concluding Remarks  

 

A velocity potential, low order panel method, DVM, has been constructed for the solution of 

the unsteady lifting problem of a thin foil. The flow is governed by the Laplace equation 

(conservation of mass). The foil and its wake are assumed to be surfaces of potential 

discontinuity, and are represented by a distribution of vortices, which at each time during the 

solution satisfy the Neumann no – entrance boundary condition on the foil surface, and the 

dynamic boundary condition on the vortex wake, ignoring wake vorticity interactions with a 

simplified wake model. The field equation is immediately satisfied by the distribution of 

vortices, since the potential generated from each vortex by default satisfies it, and the 

potential from a distribution of vortices is the result of linear superposition of the single – 

vortex potentials. 

 The flow is comprised by a free stream velocity due to the foil's forward motion, 

radiation – potential velocities due to the foil's unsteady motions (such as in flapping mode) 

and, possibly rotational, flow disturbances such as a sinusoidal gust. Due to the flow's 

unsteadiness, vorticity is shed at each time step from the trailing edge to the trailing vortex 

sheet. For the calculation of pressures, an unsteady Bernoulli equation is employed, which 

does not make the usual negligibility of disturbance velocities assumption of linear, analytic 

theories. The wake complies with a prescribed model which assumes that the shed vortices 

coincide with the trajectory of the trailing edge, in an inertial frame of reference, or 

equivalently in a foil mean – position frame, travel downstream with celerity equal to the free 

stream velocity. 

 The distribution of the bound vorticity is calculated by applying a collocation scheme 

on the foil's surface, satisfying the kinematic boundary condition at a discrete number of 

points. This enables the calculation of circulation around the foil at each time step, and 

consequently that of forces and moments. 

 In the present DVM we have assumed that points on the foil may possess a velocity, 

which is in a straightforward way incorporated in the no – entrance boundary condition in the 

case where is it a priori known. In the course of this work we will consider the chordwise 

passive elastic deformations of the foil which couple the velocity of points on the foil’s 

camber line with the potential flow around the body.  
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Chapter 3: Numerical Study of Discrete Vortex Method – DVM 

The effectiveness of tackling 2D – flapping foils problems with DVM described in detail in 

the previous section is investigated in this chapter, in the case of rigid bodies.  

 Initially, the performance of the developed method is examined for the case of 

constant angle of attack. The convergence of the method is first shown in steady-state 

problems starting from rest, by increasing the space and time discretization. Subsequently, 

oscillatory motions of the foil will be studied, i.e. heaving and pitching motion and 

comparison against analytic results (in the case of small amplitudes). Next the highly 

interesting flapping motion is examined. The latter is obtained by combination of the two 

oscillatory motions with specific phase difference, which under proper selection of the 

kinematic parameters can produce thrust. Finally, the unsteady problem associated with the 

effect of  an oscillatory  gust is also investigated and results from DVM are compared against 

analytical solution of the Sears problem (Newman, 1977). 

 The validity of the present method is examined by comparing the results with linear 

analytic theory results and other method and experimental results from the literature. 

 

 

3.1 Kinematic Parameters 

 

The foil is assumed to travel towards the negative of the horizontal x axis with constant 

velocity U and possibly having an angle of attack a . It performs an unsteady motion 

comprising of simultaneous heaving and pitching. In this work the unsteady motion 

considered is flapping motion, where both the heaving and pitching motions are harmonic in 

time. They are given by the relations 
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respectively. In the above relations, 0h  is the heaving amplitude, 0  is the pitching amplitude 

and   is the phase lag between the two motions. The function   1 exp( )pF t t  
 
is a 

ramp function allowing for smooth transition between initial state of rest and unsteady 

motion. The parameters that affect the foil’s performance are 

 0h
c : non – dimensional heaving amplitude 

  : phase lag between heaving and pitching motion 

 maxa : maximum effective angle of attack 

 
2r

c
k

U


 : reduced frequency 

 
fA

St
U

 : Strouhal number, where 02A h  is the characteristic trailing edge amplitude 

and 2f 
  is the oscillatory motion frequency.  

 Rx : non – dimensional chordwise position of pivot point 

The reduced frequency rk  is a non – dimensional parameter that associates the oscillatory 

motion frequency   with a typical hydrodynamic time scale,  / 2c U , which is the time it 

takes for a fluid particle moving with the free – stream velocity to travel a half – chord 

length. The Strouhal number St  is a non – dimensional parameter associating the motion 

frequency with the vortex sheet forming behind the foil during its motion. It is a well – 

known fact that when bluff bodies, e.g. spheres, are placed in a uniform flow, a drag – 

producing Karman vortex sheet forms behind them. In the flapping motion case a reverse 

Karman vortex sheet is formed (Koochesfahani, 1989; Triantafyllou et al, 1993), creating a 

jet behind the foil which leads to thrust production. The Strouhal number is also a degree of 

the non – linearity of the flow.  

 The maximum effective angle of attack maxa  is defined by the following expression 

(see also Read et al, 2003) 

1 0
0tanmax

h
a

U

     
 

               (3.1.3) 

which is preferred as representative non-dimensional parameter instead of the pitching 

amplitude  0 ; Read et al (2003) 



46 

 

A sketch is given in figure 3.1 to assist in the interpretation of (3.1.3). Consider an observer 

fixed on the pivot point of the foil. Ignoring pitching motion, this observer is subject to an 

inclined velocity, a result of the free – stream velocity U  and the heaving velocity  h t . The 

apparent angle of attack is then 
 1tan

h t

U
  

 
  


. Adding the pitching motion, the total angle of 

attack is given by the expression  

 

 

     1taneff

h t
a t t

U
  

   
  


              (3.1.4) 

 

Assuming harmonic heaving and pitching motion profiles and 90o  , as it has shown to be 

the most efficient value of the phase lag (Anderson et al, 1998), we have 
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                  (3.1.5) 

 

From Eq.(3.1.5) and assuming small motion amplitudes, we acquire (3.1.3). It is noted here 

 

Figure 3.1: Derivation of effective angle of attack 
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that positive values of the pitching angle correspond to nose – down configurations. In the 

case that a constant angle of attack exists, it is added to expression (3.1.5) 

 The pivot point Rx  is naturally placed somewhere on the chord length of the foil. An 

obvious choice would be the pressure centre which, although unknown in cases of unsteady 

flow around the foil, can be approximated by steady analytic theory results. For the case of a 

symmetric foil approximated by a thin flat plate it holds that 1/ 4Rx  .  In practice Rx
 
is 

taken between 0.25 and 0.3. The position of the pivot point affects the power input to the foil, 

rendering its choice important for flapping foil propulsion. It is noted here that in the case of 

flexible foils the pivot point is generally be placed near the leading edge, as is the case in 

most bio-swimmers in nature.  

 The foil travels in otherwise undisturbed fluid with constant velocity V , while 

simultaneously performing periodic unsteady flapping motion with zero mean value. An 

equivalent from a fluid mechanics perspective case is that of a foil with zero mean velocity 

performing flapping motion around its mean position while subject to a free – stream velocity 

V . In this reference frame, the positions of points on the foil are given by the expressions 

 

         0 0cos sin ,R Rc tx t x y t x cx                     (3.1.6) 

           0 0 ,n c ssi oRy t x x t tyc h t                 (3.1.7) 

 

where  0 0,
T

x y  is the initial position of each point in the body-fixed reference frame, so 0x , 

where 0x  is the chordwise distance of foil points from the leading edge. In this work we have 

mainly considered uncambered hydrofoils and thus, 0 0y  , however, the analysis is also 

applicable to the general case.  

 

 

3.2 Symmetric foil at constant angle of attack 

 

 The present DVM is first validated by reproducing known results from the steady 

linear theory. The case of a symmetric foil at a constant angle of attack is treated in the 

framework of small thickness theory as a branch cut on the x axis resulting in the following 
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expression for the lift and moment coefficient (corresponding to the steady response of a flat 

plate,) see, e.g., Katz & Plotkin (1991) 

 

2 ,LC a                  (3.2.1) 

1
,

2MC a                  (3.2.2) 

 

respectively, where a  is the angle of attack, defined as the angle of the free – stream velocity 

with respect to the chord.  

 Apart from the agreement with the linear theory, we are interested in the convergence 

characteristics of the present method. To this end, we modify the number of chord elements 

used in the numerical solution. We therefore use 10, 20, 50, 100 elements chordwise and 

calculate the relative error of each approximation with the value acquired from the case with 

100 chord elements. The number of time steps per chord length travelled is set to 100. The 

simulation runs until the foil has travelled a distance equal to 100 chord lengths. In Figure 3.2 

the convergence of the lift coefficient is shown, while Figure 3.3 presents the convergence of 

the moment coefficient. The horizontal axis displays the number of chord elements used for 

each approximation.  

In all cases the method is shown to be rapidly convergent. It is remarkable that the error for 

the lift coefficient is negligible, even for 10 chord elements. This fact is due to the specific 

arrangement of bound vortex – collocation point used in this work. It can be proven that the 

1/ 4 - 3 / 4  choice leads to the exact value for the lift coefficient in the steady case, even for a 

single chordwise panel (James, 1971; Katz & Plotkin 1991). However the vorticity, and 

hence the pressure, distribution is not adequately reproduced for low numbers of chord 

elements which causes inaccuracies in the moment coefficient calculations. The relative error 

for the moment coefficient when 10 chord elements are used is around 20%  
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Figure 3.2: Lift coefficient convergence 

 

 

Figure 3.4: Moment coefficient convergence 
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The problem of a flat plate started abruptly from rest with a constant angle of attack assumes 

an analytical solution by the Wagner’s function (Newman, 1977), by considering the 

equivalent problem of the foil moving with zero angle of attack with speed U and at time t =0 

a vertical component is added to the velocity in a step – like manner. The steady – state result 

for the lift coefficient is of course correctly predicted by the steady analytical theory, but a 

transient response is now produced. The time history of the lift coefficient is given by the 

following approximate expression  

   0.045 0.3
0 1 0.165 0.335 ,s s

L LC t eC e                (3.2.3) 

(Kier, 2005), where 
/ 2

Ut
s

c
  is the number of half – chords travelled at time t and 0LC  is 

given by relation (3.2.1). Figure 3.5 shows the time histories of the lift coefficient as 

predicted by the present method compared to relation (3.2.2).  

The time histories acquired by the DVM display very good agreement with the predictions by 

Wagner’s function. 

 

Figure 3.5: Comparison of time histories with prediction by Wagner’s function 
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 According to the steady-state analytic result concerning the vorticity distribution is 

given by the expression (Moran, 1984) 

  2
c x

x U
x

a 
                 (3.2.4) 

From the fact that the prediction of the moment coefficient (Fig.3.3) is not as well predicted 

as the lift coefficient (Fig.3.2)  we conclude that t the vorticity distribution is not accurately 

represented by the present method for small numbers of chord elements (coarse 

discretization).  

In Figure 3.6 the vorticity distribution approximations for 10, 20, 50, 100 chord elements are 

given for four values of the angle of attack when the steady – state is reached and are 

compared to the analytical result Eq.  (3.2.4). Note that in this figure only the first 1 /10  of 

the chord length is shown, where the vorticity distribution has the most significant variations. 

We see that increasing the number of chord elements the resulting vorticity distribution 

weakly converges to the analytic result.  

 Finally in Fig.3.7 we present results for the steady – state lift and moment coefficient 

over a range of angles of attack. The results for the lift coefficient are compared with results 

from a steady low – order panel method based on Hess & Smith BEM (see Moran 1984), in 

the case of a very thin NACA 0001 hydrofoil.  

 

 

Figure 3.6: Vorticity distribution for flat plate at constant angle of attack 
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Figure 3.7: Steady results for lift and moment coefficient. Comparison with Hess & Smith, analytic theory 

The agreement of present DVM is very good with the panel method for all examined angles 

of attack. Small deviation between numerical methods and analytic theory results is observed 

as angle of attack becomes greater than about 10deg. This is attributed to the linearization of 

the analytic theory, in the treatment and approximation of the boundary condition and its 

transfer from the exact boundary on the cut (see, e.g. Newman 1977, Chap.5.3). 

 

3.3 Symmetric foil in unsteady motion – Convergence study 

 

Next, we will present results of a symmetric foil performing unsteady periodic flapping 

motion, comprising of simultaneous heaving and pitching motions, which will also be 

separately investigated. First we try to establish the convergence characteristics of the DVM. 

We perform runs for a range of flapping motion parameters, e.g. heaving/pitching amplitudes 

and reduced frequencies or Strouhal numbers. The phase angle between the heaving and 

pitching motions is set to 90o  .  

 To start with, we define a parameter that controls the temporal discretization of the 

flapping foil problem solution. We set 
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100 ,
T

TSR
t

                 (3.3.1) 

 

short for Time Stepping Ratio. In Eq. (3.3.1) T denotes the period of the flapping motion. The 

parameter that controls the space discretization is the number of panels BN  on the foil.  

 We will study the convergence characteristics of the flapping foil problem in two 

separate ways; first we set TSR = 1 and systematically change BN . The foil is then subject to 

three sets of flapping motion parameters 0 0/ , ,h c St . The numbers of chord elements used 

are 10, 20, 50, 75, 100. For each run we calculate the lift and thrust coefficients and present 

the relative error with that acquired with 100 chord elements. The results are illustrated in 

Figure 3.8.  

 The lift and thrust coefficients display good rate of convergence, with the relative 

error reducing as the number of chord elements BN  increases. In all three cases tested the 

relative error has dropped below 2% for 50 chord elements, while for 75 chord elements 

convergence (error below 0.1%) has been practically achieved. 

 Next we fix the number of chord elements at 100BN   and modify the TSR to study 

the convergence of the DVM when temporal discretization gets finer. The lift and thrust 

coefficients’ values are calculated for TSR = 0.1, 1, 2, 5, 10, which means that the time steps  

 

Figure 3.8: Flapping foil convergence study with fixed TSR and modifying number of chord elements. Case 1:  , 
Case 2:  , Case 3: 



54 

 

per period used are 1000, 100, 50, 20, 10, respectively. The results are shown in Figure 3.9. 

As the time discretization gets finer, the relative error decreases, as expected.  

 The results of the convergence study lead us to the obvious consideration that there 

exists an optimum relationship between the space and time discretization in the DVM in 

order for the numerical results to exhibit convergence. We define the following non-

dimensional parameter; 

,
TE

U t

x
 



                 (3.3.2) 

which is the ratio between the wake panel length over the foil panel length at the trailing edge 

region. We performed tests for a range of flapping parameters where the number of foil 

panels NB and TSR were systematically varied from 10 to 200 and 0.03 to 1, respectively. 

The relative error of the value for the thrust coefficient was calculated for each 

approximation, with the value for the finest discretization ( BN  = 200 and TSR = 0.03) 

serving as reference. The results are shown in Figure 3.10, where iso – λ curves are shown by 

using  solid lines.  

 

Figure 3.9: Flapping foil convergence study with fixed NB and modifying TSR. Case 1, Case 2, Case 3; as in 
figure 3.8 
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Figure 3.10: Map of convergence error 

 From Fig.3.10 and experience from similar cases it is evident that the values of λ that 

lead to relatively fast convergence of the thrust coefficient are approximately between 2 and 

5. The values used in this work henceforth are in this interval. In the present work, the TSR 

and λ are input values by the user which means that BN  is accordingly constrained. To avoid 

very high BN  (leading to increased run time) or very low BN  (leading to insufficient 

vorticity distribution representation) the λ parameter should take values in the suggested 

interval.  

 

3.4 Symmetric foil in heaving motion 

 

We begin by showing results of the DVM for unsteady motions in the case of pure heaving, 

(or plunging) motion. The foil is considered to be symmetric and of negligible thickness, 

subject to a constant potential free – stream flow with velocity magnitude U  while 

performing a simple oscillatory heaving motion about its mean position. The problem of a 

heaving flat plate allows for an analytic solution expressed by the Theodorsen function 

(Newman, 1977). 
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where  (2)
rmH k  is the Hankel function of m-order and second kind.  We will present results 

for the lift coefficient, which according to the linear theory is equal to  

   02 2L r r r r

h
k k i k

c
C C k                             (3.4.2) 

The Theodorsen function is complex – valued and models the wake memory effects. It is thus 

expected that as the reduced frequency decreases, its value gets close to unity. Its other 

limiting value occurs when the reduced frequency increases and is equal to 0.5. Its Argand 

diagram is shown in Figure 3.11.  

 Focusing on small values of 0rk  ,  it is easily seen that the above result is also 

compatible with the steady analytic theory result  2LC  ,  where 02 /rk h c  . 

The DVM is applied to heaving motion with amplitude 0 / 0.05, 0.1, 0.2, 0.4h c   and reduced 

frequency varying between 0.1 and 1.8. The simulation time was equal to the time needed for 

the foil to travel 30 chord lengths or 5 motion periods, whichever is higher. The results are 

shown in Figure 3.12 for unit chord length. The maximum Strouhal number is equal to about 

0.45. The DVM shows great agreement with the analytic theory results for small motion 

 

 

Figure 3.11: Theodorsen function 
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amplitudes in the whole frequency range tested. As the heaving amplitude increases, the 

DVM produces larger lift coefficient results, a trend which becomes more clear as the 

reduced frequency increases. This observation lies in the fact that the wake geometry displays 

a significant deviation from the linear one assumed by the linear theory, and thus the 

Theodorsen function cannot accurately describe the foil response.  

 The deviation from the linear theory results is evident not only in the lift coefficient 

amplitude, but in the phase and time history as well. In Figure 3.13, for a rather large value of 

2rk    and moderate heaving amplitude we present the time history of the lift coefficient for 

and compare with linear theory. In this case, the DVM predicts a more complicated time 

history, clearly possessing higher harmonics. The differences are essentially due to the 

sinusoidal wake geometry and will be investigated in more detail below in Sec.3.8.  

 

 

Figure 3.12: Lift Coefficient - Heaving motion  

 



58 

 

 

Figure 3.13: Comparison of lift coefficient time history with linear theory – high frequency heaving motion 

 

 

3.5 Symmetric foil in pitching motion 

 

Next we study the performance of a symmetric foil of negligible thickness in harmonic 

pitching motion, given by Eq.(3.1.2). This problem can also be treated in the scope of linear 

theory, assuming infinitesimal pitching amplitudes. The result for the lift coefficient is also 

given by an expression containing the Theodorsen function (3.4.1). The corresponding 

expression is 

 

   0

1 1
2 1 ,

2 2L r r r rC k ikC k ik   
 

 


             (3.5.1) 

 

similar to Eq. (3.4.2). Again, compatibility of the above equation with steady theory result is 

evident for small values of  0rk  . 

 In order to study the performance of the DVM in pitching motion we ran simulations 

for 0 1 , 2 , 5 ,10o o o o   and reduced frequencies varying between 0.1 and 3. The pivot axis is 

placed at the mid – chord. The rest of the simulation parameters are the same as in the case of 
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heaving motion. The results are shown in Figure 3.14, where the results of the linear theory 

are indicated by using dashed lines.  

 The results for the lift coefficient for pitching motion show the same trend as for 

heaving motion. The DVM shows very good agreement with the linear theory, even for large 

values of rk , with deviations becoming evident only for the largest pitching amplitude and 

rk =3. As the reduced frequency further increases, the differences between linear theory and 

DVM become significant as, for example, presented in Figure 3.15. The DVM predicts a 

more complicated time history clearly containing a second harmonic which the linear theory 

by default cannot reproduce. This deviation is due to both the high pitching motion amplitude 

and the high value of reduced frequency, similarly as in the pure heaving motion case 

presented in Figure 3.13. 

 

 

 

Figure 3.14: Lift Coefficient – Pitching motion 
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Figure 3.15: Comparison of lift coefficient time history with linear theory –high frequency pitching 
motion 

 

3.6 Symmetric foil in flapping motion 

 

Combining the heaving and pitching motions with phase difference around 90deg flapping 

foil motions are generated. This is the motion that many aquatic animals perform with their 

tails, while in some species a large portion of the body takes part (see Fig 1.1). It has been 

both theoretically and experimentally demonstrated that the flapping motion is thrust 

producing with high performance, under proper selection of the flapping parameters. In this 

section we will present results from the DVM concerning flapping motion configurations and 

compare the results with those predicted by the linear theory.  

 The heaving and pitching motions are described by relations (3.1.1), (3.1.2). The 

phase lag between heaving and pitching is set equal to 90o , while the pivot axis is placed at 

the mid – chord. To obtain the analytic theory result for the amplitude of the lift coefficient in 

the case of flapping motion we simply superpose the results for the heaving and pitching 

motions. Thus, the formula for the lift coefficient is  
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where the phase difference is  0 0arg arg
o o

h        
   

. 

We perform numerical simulations for heaving amplitudes 0 / 0.05, 0.1, 0.2, 0.4h c   and 

pitching amplitudes 0 1 , 2 , 5 ,10o o o o  , while the reduced frequency is varied between 

0.1rk   and 2rk  . The results for the lift coefficient obtained are presented in Figure 3.16, 

along with those predicted by Eq.(3.6.1). 

 The results are in agreement with those already observed for heaving and pitching 

motion. As the motion amplitudes increase the deviation of DVM from linear theory is 

amplified. Differences are attributed to the sinusoidal wake effects and the approximation of 

coupled heaving and pitching motion in the no – entrance boundary condition by the linear 

theory. In Figure 3.17 a time history of the lift coefficient is presented for a large – amplitude 

and high – frequency case. The time history of the lift coefficient as predicted by the DVM is 

non – symmetric due to a higher harmonic that is out of phase with the main harmonic 

corresponding to the flapping motion frequency.  

 

 

3.7 Symmetric foil in sinusoidal background gust 

In this section the presence of a non – uniform background flow field is considered. This flow 

field is a sinusoidal gust transverse to the foil’s mean forward motion. Thus, it effectively 

changes the angle of attack causing the forces on the foil to become unsteady. A practical 

example of a sinusoidal background velocity is a propeller’s blade operating in the wake of 

the ship. The assumption of the sinusoidal gust is a simple way to approach this very difficult 

problem. Another example would be a hydrofoil ship operating in waves, where its lift – 

producing components are subject to free – surface effects.  

The sinusoidal velocity gust is described by the following expression in the inertial frame of 

reference (moving with the foil mean forward travelling speed) 
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Figure 3.16: Lift Coefficient – flapping motion 

 

 
Figure 3.17: Comparison of lift coefficient time history with linear theory –high frequency flapping motion 
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 cosg g kV U g x t   .               (3.7.1) 

 

In the case where the gust is stationary in the earth-fixed frame of reference 2 /k rg k c  

implying that the celerity of the gust (with respect to the above inertial steadily travelling 

frame of reference) is equal to the free – stream velocity U ,  since / / 2k rC g c k U     

by virtue of the reduced frequency definition.  In this work we consider only such cases, 

however extension of the present model to the more general case of wave-like gusts, 

representing the effects of waves on flapping foils (see, e.g., Belibassakis & Politis 2013, 

Filippas & Belibassakis 2014) is straightforward. 

 The problem of a foil travelling with a constant velocity in a sinusoidal background 

velocity field assumes an analytical solution for the lift coefficient; 

   2 g
L r r

u
SC k

U
k                         (3.7.2) 

where  rS k  is the Sears  function (see Newman 1977) defined in terms of the Hankel 

functions of the second kind by the expression 

     (2) (2)
1 0

2 1
r

r r r

i
S k

k H k iH k



                        (3.7.3).  

The Sears function is complex valued. Its Argand diagram is shown in Figure 3.18. It 

naturally assumes the value 1 for very small frequencies, which again brings the above result 

given by Eq. (3.7.2) to agree with the steady result. The Sears function tends to zero for large 

frequencies (large rk ), with rapid variation of its phase due to the denominator oscillating 

proportionally to rike . 

 We perform numerical simulations for a symmetric foil of negligible thickness in 

constant motion through a fluid with sinusoidal velocity field. The TSR is equal to 0.02, 

which is a very low value. The gust amplitudes tested are / 0.05, 0.1, 0.2, 0.4gU U   and the 

reduced frequency is varied between 0.1 and 3. The results for the lift coefficient amplitude 

are presented in Figure 3.19. 
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Figure 3.18: Sears function 

 

The agreement of the DVM with the linear theory is very good, even for large amplitudes of 

the gust velocity where deviations were clearly observed for unsteady motions of the foil. 

This is attributed to the fact that in the case of background gust velocity the trailing vortex 

wake coincides with a straight line since it has been constrained to convect downstream with 

the free – stream velocity, as explained in detail in Chapter 2. The only source of 

unsteadiness is the harmonically varying normal to the foil velocity.  

 Non – linearities that occur due to wake geometry are not evident here as in the case 

of unsteady foil motion. Since the vorticity distribution depends linearly on the normal 

velocity and the trailing wake position, the hydrodynamic output of the foil motion in the 

velocity field in also harmonic with the same frequency. As a result non – harmonic time 

histories of vorticity, circulation and forces are not possible in this setup. 
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Figure 3.19: Lift coefficient – background gust velocity 

 

 

3.8 Further investigation of the DVM results 

 

Having established the convergence characteristics and the agreement of the DVM resuts 

with the linear theory we will proceed to further investigation accompanied by brief 

discussion.  

 

3.8.1 Approaching steady results 

A fundamental requirement for the numerical model to be valid is for it to be able to capture 

the results of the steady thin hydrofoil theory in both possible ways; as a limit of infinite 

chord lengths travelled after the foil starting its constant speed motion with a constant angle 

of attack and as a limit of a foil performing flapping motion with infinitesimal motion 

amplitudes. In the first case it has been shown in Sec. 3.3 that the DVM indeed captures the 

steady analytical theory result. Here we will attempt to run the DVM for decreasing values of 
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the reduced frequency and extrapolate the results for the lift coefficient to 0rk  , where it is 

impossible to apply the numerical model. To this end we perform numerical simulations for a 

flapping foil with 0 0/ 0.1, 5oh c    for values of reduced frequency varying in the interval 

10, 10rk     . The TSR is set to 0.05 and λ to 2.5. The result of the lift coefficient is divided 

by the amplitude of the effective angle of attack as defined by Eq. (3.1.3).  

 For very small values of the reduced frequency numerical simulations are not actually 

possible, since the motion period becomes very large and the number of chord lengths 

required by the foil to travel in order to achieve steady – state is unrealistically large. In the 

present case we performed simulations for 7 values of the reduced frequency rk  

logarithmically spaced between 1.510  and 110 . Therefore the smallest value of rk  for which 

we actually performed numerical calculations is 0.0316. In order to approximate the case for 

0rk   we fit the acquired data with a 3 – rd degree polynomial and extrapolate the results. 

The results are presented in figure 3.20. The fitting curve approaches the value 2π. This 

indicates that the presented model is compatible with the steady linear theory 

 

3.8.2 Lift Hysteresis loop in the case of unsteady hydrofoil   

The flapping foil motion results in a periodic effective angle of attack and lift coefficient time 

history, after some duration from the starting time, when a sufficient number of chord lengths 

has been travelled by the foil’s and the starting vortex no longer affects the flow around it. In 

order to study the effect of non – dimensional parameters to the solution in terms of time –

domain response (as opposed to essentially frequency domain response that has been already 

studied), we perform numerical simulations of flapping motion in a range of frequencies and 

present the phase portrait of instantaneous angle of attack – lift coefficient.  
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Figure 3.20: Flapping in low frequency. Red asterisks: results from DVM, Blue solid line: Data fitting 

The results are presented in Figure 3.21, where the effective angle of attack profile is also 

shown.  

 

 The phase diagrams indicate a hysteresis loop, a characteristic of time – dependent 

systems. In the first case (St = 0.10) the hysteresis loop resembles an inclined ellipse around 

the steady case curve, which is a line with inclination 2
180

   (since the angle of attack is 

presented in degrees). The elliptical shape suggests that the response in this case in mainly 

linear. This observation is also associated with the time history of the effective angle of 

attack, which is predominantly sinusoidal, that is the tan-1 term in relation (3.1.3) has not yet 

deviated from its linear behaviour.  In the second case (St = 0.20) the hysteresis loop 

slightly deviates from the elliptical one observed in the first case. This indicates that the 

system operates on the outskirts of the linear regime. The effective angle of attack profile is 

different than the sinusoidal one in the previous case, with a more flattened crest. In the third 

case (St = 0.40) the hysteresis loops 
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Figure 3.20: Phase diagram of   (right column) and effective angle of attack   time history for three flapping 
motion cases:  ,  ,  and 

significantly deviates from the ellipse in the first case. This is a trademark of the non – linear 

regime.  The lift coefficient values attained for the extreme values of the effective angle of 

attack are larger than those predicted by linear theory. This can be explained by observing 

that the corresponding angle of attack profile has deteriorated and two crests are starting to 
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form. In this case the tan-1 term of the effective angle of attack has significantly deviated from 

the linear region of small arguments.  

 In the last case (St = 0.40), the maximum angle of attack is smaller than the third case 

but its profile is seriously degraded, possessing many peaks in a period of oscillation. The 

result is a hysteresis loop that is more complex than in the previous cases, with very sharp 

crests at the points where the direction of the system changes.  

 The effective angle of attack profile serves as an indicator of the efficiency of the 

flapping foil system in thrust – producing applications. Deformed profiles such as the one in 

the last case for St = 0.40 are generally characterized by poor efficiency. Read et al (2003) 

tried to alleviate this fact by appropriately modifying the heaving motion amplitude so that 

the effective angle of attack profile remains sinusoidal. 

 

3.8.3 An in – depth analysis of the time histories of DVM 

We will in this sub – section examine more closely the results of the DVM. We perform 

simulations for four kinematic setups: 

 0 0.25, 20 , 0.2o
max

h Stc      (Case 1a) 

 0 0.25, 20 , 0.4o
max

h Stc      (Case 1b) 

 0 0.75, 30 , 0.2o
max

h Stc      (Case 1c) 

 0 0.75, 30 , 0.4o
max

h Stc      (Case 1d) 

Parameters 90 , / 1/ 3o
Rx c    in all cases. The simulation parameters are TSR = 0.05 and 

λ = 2.5, while the time duration of the simulations is equal to 5 motion periods. We display 

results for pressure difference coefficient, bound vorticity, lift coefficient, circulation and the 

satisfaction of the linearized Kutta condition (see Ch. 2). 
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Figure 3.21: Case 1a; 0 0.25, 20 , 0.2o
max

h a Stc    . Pressure coefficient & Bound Vorticity 

 

Figure 3.22: Case 1a; 0 0.25, 20 , 0.2o
max

h a Stc    . Lift Coefficient, Circulation & Kutta condition 

 

In Figure 3.21 the pressure coefficient and bound vorticity are presented as functions of 

chordwise position and time. Both quantities display the anticipated behaviour as 0x  , in 

conformity with the linear theory. More specifically, the bound vorticity is characterized by 

an integrable square – root singularity at the leading edge region which results in the well – 
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known leading – edge suction force enforcing satisfaction of Kutta – Joukowski theorem in 

the steady case (Kerwin, 2001). The pressure coefficient assumes very small values towards 

the trailing edge region as expected, even though no pressure – type Kutta condition is 

enforced as we have already discussed in Ch. 2. We note that the vorticity distribution does 

not vanish at the trailing edge, as we expected by virtue of the application of Kelvin’s 

theorem for unsteady foil motion.  

 Time histories of lift coefficient and circulation are displayed in Figure 3.22, for 

flapping case 1a. We have already discussed the time histories of CL (upper – left figure). The 

lower – left figure presents a Fourier analysis of the lift coefficient time signal. The amplitude 

is shown in log – scale over a range of frequencies non – dimensionalized by the flapping 

frequency. The most significant peak of the response amplitude occurs exactly at the flapping 

frequency, as expected. However, two more peaks are observed; one at 3 times and one at 5 

times the flapping frequency, negligible but certainly existing. Note that results concerning 

the response amplitude for frequencies that are not integer multiples of the fundamental (in 

this case, the flapping) frequency are not correctly represented by the Fourier Transform.  

An explanation concerning the appearance of the above peaks can be provided in terms of  

the effective angle of attack, which is given by relation (3.1.4), repeated here for clarity 

     1taneff

h t
a t t

U
  

    
 


           (3.8.3.1) 

The first term’s series expansion contains only odd powers of its argument, the case for 

sinusoidal functions as well. Hence we can comprehend every term in its expansion as an odd 

– valued higher – order harmonic. This explains the peaks of the lift coefficient Fourier 

analysis.  

In the lower right plot of Figure 3.22 the satisfaction of the linearized form of the Kutta 

condition is investigated. The blue line is the bound vorticity of the last chordwise panel on 

the foil, defined numerically as the ratio of the corresponding bound point vortex over the 

panel’s length. The yellow line corresponds to the numerical evaluation of the circulation 

around foil time derivative. The two curves display the same quantitative characteristics, 

although there is a small deviation in amplitude probably due to the heuristic incorporation of 

the shed vortex position in the numerical model, defined in Eq. (2.4.3.5) in Ch. 2. However 

no violation is made as far as Kelvin’s theorem is concerned, since the trailing vortex shed at 

each time instant is assigned the proper intensity in order to compensate for changes in the 

circulation around the foil.  
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 In Figures 3.23 – 3.24 the results are displayed for Case 1b. The frequency in this case 

is twice that of Case 1a.  

 

 

Figure 3.23: Case 1b; 0 0.25, 20 , 0.4o
max

h a Stc    . Pressure coefficient & Bound Vorticity 

 

Figure 3.24: Case 1b; 0 0.25, 20 , 0.4o
max

h a Stc    . Lift Coefficient, Circulation & Kutta condition 

 

This case displays a significantly amplified unsteady behaviour compared to the previous 

one. In Figure 3.23 the pressure coefficient distribution envelope strongly deviates from the 
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steady case, possessing significant values for the most part of the chord length and very 

abruptly diminishing at the trailing edge region. Similar observations are made for the 

vorticity distribution, most notable of which are the large values attained in the trailing edge, 

indicating a very intense circulation change around the foil. The lift coefficient Fourier 

analysis shown in Figure 3.24 indicates that the third harmonic in the time signal is of the 

same order of magnitude of the fundamental harmonic.  

 In Figures 3.25 – 3.26 the results are displayed for Case 2a, where 

0 / 0.75, 30 , 0.2o
maxh c a St   .  

 

 

Figure 3.25: Case 2a; 0 0.75, 30 , 0.2o
max

h a Stc    . Pressure coefficient & Bound Vorticity 
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Figure 3.26: Case 2a; 0 0.75, 30 , 0.2o
max

h a Stc     Lift Coefficient, Circulation & Kutta condition 

The vorticity in this region is negligible compared to the vorticity close to the leading edge, 

implying that the flow is weakly unsteady. In Figure 3.26 we observe that the higher – order 

peaks already reported are not reproduced in this case. This points to the fact that this 

parameter range corresponds to the linear response regime. Recall that for the same Strouhal 

number the previous case  0 / 0.25, 20o
maxh c a   displayed higher unsteadiness.  

 The last case results, 2b, are presented in figures 3.27 – 3.28.  

 

 

Figure 3.27: Case 2b; 0 0.75, 30 , 0.4o
max

h a Stc    . Pressure coefficient & Bound Vorticity 
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Figure 3.28: Case 2b; 0 0.75, 30 , 0.4o
max

h a Stc    . Lift Coefficient, Circulation & Kutta condition 

 

Figure 3.29: Comparison of the envelopes of the pressure difference coefficient PC  for Cases 1a & 1b, during 

the last period of oscillation. In Case 1a (St = 0.2) PC  smoothly tends to zero towards the leading edge, as is 

the case for steady flow. In Case 1b (St = 0.4) the flow is highly unsteady and PC  attends high values in the 

trailing edge vicinity before abruptly diminishing to near zero values. This behaviour is also predicted by the 
analytical theory of Wu (1961) based on Prandtl’s acceleration potential (1922).  
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3.8.4: Vorticity distribution: Bound & Free 

In this section we present some results for the vorticity distribution in the whole domain 

boundary B WD D D    . The case study is a thin symmetric foil in flapping motion with 

kinematic parameters 0 / 0.8, 0.45, 20o
maxh c St a    pitching around 1/ 3  of its chord 

length with phase lag between heaving and pitching set to 90o . The TSR has been set to 0.05, 

or 2000 time steps are used per motion period. The value of λ is set to 2.5, resulting in 59 

chord elements iso – cosine spaced on the foil’s camber line. The simulation duration is equal 

to 10 motion periods.  

 

Figure 3.30: Vorticity distribution across foil and trailing wake. 

(a) 

(b) 

(`c) 

(d) 
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Plots of the vorticity distribution across the foil and the adjacent trailing wake region are 

given in Figure 3.30 for four time instants in the last motion period, having as reference the 

instant where the circulation around the foil is maximized, reft .  

In Figure 3.30 – a, the vorticity distribution is presented at the time instant when circulation 

around the foil is maximized. This means that / 0d dt  , and hence by virtue of Eq.(2.2.4) 

the vorticity at the trailing edge is zero. The numerical results acquired by DVM satisfy this 

theoretical consideration. In Figure 3.30 – b the vorticity distribution is presented at a time 

instant T/4 before the circulation maximization. Keeping in mind that the circulation time 

signal is periodic with fundamental frequency equal to the flapping frequency and possible 

higher – orders harmonics being necessarily odd multiplies of the latter (as thoroughly 

explained in the previous section), this time instant corresponds to maximization of the 

circulation rate of change, d
dt

 . By virtue of Eq.(2.2.4) again, the vorticity at the trailing 

edge is maximized. Note that in this case the vorticity at the trailing edge is negative, since 

the circulation around the foil is increased.  

 In Figure 3.30 – c the vorticity distribution is presented when the modulus of 

(negative) circulation is again maximized. As expected, the results are the same as in (a). 

Similarly, in Figure 3.30 – d the results are presented for three quarters of a period before the 

maximization of the circulation around the foil. The results are the same as in (b) with 

negative sign. This time instant is the same as / 4reft T  in the steady – state results. Finally, 

it is interesting to note that in all cases it holds 

   
  

   
  

;; ; ;
lim lim; ; ,

TE TEs t s s t st t
s t s t 

  
      r r r r

r r               

(3.8.4.1) 

 

that is, continuation of the vorticity distribution is ensured at the trailing edge region.  
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3.9 Thrust and efficiency of flapping foil thruster 

 

In this section we will study the thrust – producing capabilities of flapping foils. The results 

acquired through the DVM are compared with those from experiments and numerical 

simulations from the literature.  

 In Figure 3.31 the results of the present numerical method are compared against 

experimental results of Read et al (2003). The quantity tested is the thrust coefficient, as 

defined in Ch. 2, relations (2.3.19), (2.3.23). Systematic runs are performed for Strouhal 

numbers 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 and pitch amplitudes ranging from 15o to 50o, 

resulting in effective angles of attack ranging from 5o to 35o, approximately.  

 

 

Figure 3.31: Comparison of CT with experimental results for NACA 0012 foil from Read et al (2003). Solid 
lines correspond to the DVM results and dashed lines to the experimental results, respectively. Solid black lines 
visualize iso - effa  lines, valid for numerical results only. 
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 The agreement is good for moderate to large effective angles of attack up to about 25o 

and Strouhal numbers up to 0.40, approximately. For large values of effa  (upper – left region 

of figure 3.31) the experimental values of CT are larger than those of the DVM for St>0.3. 

This deviation is attributed to the fact that the NACA 0012 section that was used in the 

experiments, although symmetric it possesses different hydrodynamic attributes than the flat 

plate used in the present DVM. On the other hand, the performance of the NACA foil in the 

experiments is significantly worse for small values of effa  as the Strouhal number increases 

(lower – right region of Figure 3.31). This is attributed to the degraded angle of attack time 

signal, possessing many peaks in a motion period, as has been stated by the authors in Read 

et al (2003). In Figure 3.31 three distinct cases of effective angle of attack profiles are 

presented.  

 

Figure 3.32: Angle of attack profiles for flapping motion in the parameter range experimentally tested by Read 
et al (2003) 
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 In general, the rounded angle of attack profiles result in better efficiency, while 

sawtooth profiles (with two peaks per period) are associated with high thrust. High thrust and 

high efficiency are conflicting requirements; this is a known result from simple actuator disk 

theory in propellers. However, there are regions in the parameter range tested where high 

efficiency and sufficient thrust co – exist.  

 In Figure 3.33, the thrust curves acquired through the DVM for the parameter range 

tested by Read et al (2003) are presented along with iso – efficiency curves. This 

visualization is very useful for design purposes. It is obvious that there is a large region 

where moderate thrust coefficients and efficiencies can be achieved, which renders this 

parameter range interesting for propulsive purposes.  

 

 

Figure 3.33: Thrust – efficiency curves for 0 90 11, , 3
o Rh x

c c  . Solid contour lines display iso – 

efficiency curves, while dashed contour lines display iso - effa  curves. 
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 Concluding the thrust and efficiency study of the DVM, we present time histories 

compared to the experimental results of Schouveiler et al (2005). The case in study is a 

flapping foil with 0 0.75, 20 , 0.3, 90o o
eff

h a Stc     . The authors provide the time 

histories of the thrust and lift force obtained. Their apparatus composed of a 18 meter – long 

water tank and a NACA 0012 section, with chord length equal to 0.1 m. and span 0.6 m. Thus 

an aspect ratio AR = 6 is achieved. Furthermore, they placed end – plates on the wing’s tips 

to suppress 3 – D effects. Hence comparison between the experimental results and the present 

2 – D method is possible. The curves are shown in figure 3.34.  

 

Figure 3.34: Comparison of time histories with experimental from Schouveiler et al (2005) 

 

3.9.1 Leading Edge Suction Force 

 At this point where we have discussed the thrust capabilities of a flapping foil we 

deem necessary to consider the leading edge suction force. In order to acquire a physical 

interpretation of this quantity, consider a thin symmetric foil in parallel steady flow, having a 
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constant angle of attack. In Eq. (3.2.4) we gave the analytic result for the vorticity 

distribution in this case, which is repeated here for convenience 

 

     s in2 sco
c

x U a
x

a
x

 


            (3.9.1.1) 

 

where α is the constant angle of attack and c is the chord length. In Eq. (3.9.1) we have taken 

into account that the parallel flow component on the foil’s surface is Ucos(α) instead of U. 

The pressure difference coefficient is defined for this case by 

 

     
2

2
.

1
2

P

U x
C x x

UU

 



               3.9.1.2) 

Integrating ΔCP we get the result 

 

   2 sin cos ,NC a a             (3.9.1.3) 

 

which is a normal to the foil’s camber line force. Projecting it to directions parallel and 

normal to the incoming flow we have 

 

   * 22 sin cosLC a a             (3.9.1.4) 

and 

   * 22 sin cosX a aC              (3.9.1.5) 

 

The force parallel to the incoming flow in Eq. (3.9.1.5) is obviously a drag force. However, 

this cannot be the case in the scope of potential theory by virtue of the Kutta – Joukowski 

theorem. This indicates that there must be a force component, ignored by thus – far 

considerations. Moreover, the result for the lift force coefficient in (3.9.1.4) is not correct; we 

already know that it should be equal to  2 sin a . These curious results indicate that a force 

must exist to cancel out the obviously non – existent drag and adjust the lift force to meet the 

Kutta – Joukowski standard. This is the leading edge suction force, which is a result of an 

infinitely small pressure acting in an infinitely small area in the leading edge region, resulting 

in a finite result. We follow here the procedure by Kerwin (2001) and a more detailed proof 
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can be achieved through conformal mapping of a flat plate in a circle and forces calculation 

with the Blasius formula (Katz & Plotkin, 1991). One way to approach the problem in a 

simple manner is to calculate the leading – edge singularity. In the vicinity of the leading 

edge, the vorticity distribution is proportional to /c x . We calculate the leading edge 

singularity strength as the bounded part of the vorticity distribution as  

 
0

lim .
x

x
cC x


    

            (3.9.1.6) 

The leading edge suction parameter is defined as  
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2SC
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.              (3.9.1.7) 

 

In the case of steady parallel flow at an angle of attack relative to the thin foil, it holds that 

 22 sinS aC  . If we now consider the force 2 2
0

1

2S SF U cC U c      acting parallel 

to the foil and project it to axis normal and parallel to the incoming flow, we have 
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       (3.9.1.8) 

and 

         * 2 2cos 2 sin cos 2 sin cos 0D D SC C a C a a a a             (3.9.1.9) 

which are the expected results.  

 These results are valid for the steady case. However, for lack of a better method, we 

use Eq. (3.9.1.7) in a quasi – steady approximation in the case of unsteady motions, as well, 

where α is replaced by the instantaneous value of the effective angle of attack  eff t . 

However, in reality the leading edge suction cannot be achieved in its full strength. This is a 

result of flow separation which takes place at the leading edge region in large angles of attack 

or cavitation due to the vaporization of water, entering its wet region. This unattainability of 

the theoretical quasi – steady leading – edge suction is crudely incorporated in our numerical 

model. The idea belongs to Paraz et al (2016). The instantaneous value of the leading edge 

suction is modified as follows;  
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      0 cos ,sinS S corr tF f t t F          (3.9.1.10) 

where 
  2

2
0 4S

C t
F U c

U

 
 

   
 

 and   C t  is calculated in the present DVM by means of 

Eq.(3.9.1.6) as follows 

     1

0
1

1lim ,
x

xcpx
c

t
C t x t

x c
 



     
 .                                                                 (3.9.1.11) 

Finally, the term  corrf t  is a correction term given by the expression 

    1 tanh 8 3 / 2corr efff t a t     ,      (3.9.1.11) 

which attempts to account for flow separation at the leading edge. In their original work, 

Paraz et al (2015) used the expression tanh(15αeff(t) – 3), however, when we compared results 

with the experiments of Read et al (2003) the coefficient 7 gave better results. This can be 

explained by considering that Paraz et al (2015) used a flat plate as opposed to the NACA 

0012 used by Read et al (2003). The empirical coefficient defined by Eq. (3.9.1.11) provides 

a leading-edge suction value that is 50% decreased for angle of attack around  20o  

 

 

Figure 3.35: Leading Edge Suction 
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In Figure 3.35 the effect of the above Leading Edge Suction model to the total thrust 

coefficient is presented.  It is obvious that the LES cannot be negative, a requirement that is 

satisfied by the present model. The modification of the suction force as a function of the 

instantaneous effective angle of attack causes the resulting thrust force to be somewhat 

biased. 
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Chapter 4: Flapping Foil with Chordwise Flexibility 

 

In the final chapter of this work we will attempt to couple the hydrodynamics of the flapping 

foil which have been thoroughly presented in chapters 2 and 3 with chordwise flexibility 

added to it. The idea stems from observation of many aquatic as well as flying animals that 

seem to benefit from flexibility added to their tails or wings, adjusting their effective angle of 

attack relative to the flow in ways that preferable levels of thrust and efficiency are 

maintained. 

 The added chordwise flexibility renders the foil a thin elastic plate (without spanwise 

3D effects) which is  clamped at the pivot point and has free ends. In the present work the foil 

is considered clamped at the leading edge. The main reason is that experimental data that will 

be used for testing and validation of the present Elastic DVM  are referred to such 

configurations (Fig.4.1). In addition, in the case of aquatic animal propulsion (e.g. thunniform 

swimming), the largest part of the body is considered rigid while the tail performs an 

oscillatory mode. The main characteristics of this setup are reproduces by a foil in heaving 

motion, pitching around its trailing edge. 

 

 
Fig.4.1 Schematic of the experimental system (Barranyk et al, 2012) 

 

However, the present method is extendable to treat other configurations (e.g. clamped on any 

chordwise position) 
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4.1 Formulation of the foil as a thin flexible plate 

 

We assume that the thin plate response is governed by the Kirchhoff plate theory.(Graff, 

1975). Ignoring higher – order terms, rotary inertia, shear deformation and damping, the 

governing equation assumes the form 

 

      2 2
2

2

, ; t
, ; t , ;

x z
x z p x zd t

t
D


 


 


                          (4.1.1) 

while the deflection occurs in the y – direction (normal to the plate mean surface). The first 

term in Eq.(4.1.1) is the inertia forces and the second term is the linear restoring force 

according to Hooke’s law. The flexural rigidity D is given by  

   
3

212 1

Ed
D x





                (4.1.2) 

 

where E is the Young’s modulus of the material and ν its Poisson ratio. The linear mass 

distribution of the plate is given by the relation 

   m x d x                             (4.1.3) 

where ρ is the material’s density and d is the plate thickness.  

 Expanding the first term in the LHS of Eq. (4.1.1), we obtain 

      2 2 22 4, ; t , ; t , ; tx z x z D x zD D         . The biharmonic operator 4 , is 

defined as  

 

     4 4
4

4 4x z

  
 




 
                (4.1.4) 

 

where z is the spanwise direction. 

The term  
 2

2

, ; tx z

t
d




 in the plate equation is associated with inertial effects. This 

expression would be correct and sufficient in the case when the analysis is carried out in an 

inertial coordinate system, as the one travelling with the hydrofoil at constant forward speed. 

In a subsequent section (Sec.4.5) the necessary modifications concerning the formulation in a 

non-inertial (accelerating) coordinate system (see Fig.4.1) as the body-fixed reference system 
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which is used in the case of a flapping hydrofoil (including the additional terms like 

centrifugal, Coriolis acceleration etc) are introduced and discussed.  

The term in the RHS of Eq. (4.1.1) is the loading force per unit surface, having pressure units. 

In the present work spanwise deflections and hydrodynamic 3D phenomena are ignored, 

hence any z – dependence of the problem vanishes. Moreover, the model’s assumptions 

under bending loading closely resemble those of the Euler – Bernoulli beam, in that plane 

sections remain plane and perpendicular to the middle plane, the deflection of which is the 

one actually described by Eq.(4.1.1). Applying all these assumptions and simplifications in 

Eq.(4.1.1), we finally obtain 

         
2

2

2

2

2

2
;

; ;
D x m x p x

x t x t

x x t
t

  
  


 


 

                                 (4.1.5) 

 

 

4.2 Coupling of Hydrodynamics with Elastic Response 

 

In the case of a flapping foil, the transverse deflection is a result of the hydrodynamic 

pressure around it due to the incoming flow and its unsteady motion. This fact essentially 

states that the hydrodynamics and the response of the foil as a flexible thin plate are coupled 

through the pressure term of the RHS of Eq.(4.1.5). Thus the pressure term in Eq.(4.1.5) is8 
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Figure 4.2: Foil (thick red line) and motion parameters sketch. The moving inertial and body fixed frames are denoted 
by (solid lines) and  (dashed lines), respectively. The trailing wake is drawn in dash – dot line and wake 

point vortices are denoted by curved arrows.  
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actually dependent on the elastic response  ;x t  and should be formally written in the form 

 , ;p x t  .  

 The coupling of the potential flow problem and the elastic response is implicit in 

nature, meaning that the pressure term cannot be explicitly written in terms of the unknown 

function  ;x t . The three main coupling mechanisms are; 

 Adjustment of the no – entrance boundary condition to include the unit – normal to 

the foil vector modification due to elastic response – induced inclination. In the case 

where the foil is absolutely rigid, the unit – normal to the foil vector is given by (see 

figure 4.1)   

     sin ,cos
T

rig t t    n              (4.2.1) 

Assume now that the foil is flexible, so a transverse deflection given by  ;x t  

results in an inclination distribution   

   1; tan
;

.el t
x

x
x t

   
  

 




              (4.2.2) 

This results in the following expression for the unit – normal vector; 

         sin , cos; ;
T

ee l ll ex tt t x t        n            (4.2.3) 

 The no – entrance boundary condition must include the normal to the foil velocity due 

to its elastic response. This velocity is equal to 
 ;x t

t




. Projecting it to a direction 

normal to the foil’s mean camber line, we obtain the term 
    ;

cos ;el t
t

x
x t







 that 

is included in the RHS of the Neumann boundary condition.  

 The geometry of the trailing wake is not a priori known, the case for a rigid flapping 

foil. Due to the unknown elastic response of the foil the position of the shed vortex at 

each time step is part of the solution. Formally, the position of the trailing edge in the 

rigid case is given by (see also Eqs. 2.2.10, 3.1.6, 3.1.7)  
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   

r            (4.2.4) 
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which is only a function of the prescribed kinematics. In the case of a flexible 

flapping foil the position of the trailing edge is given by the relation  

 

 
         
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
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

   
  
    

r          (4.2.5) 

 

which is a function of the unknown trailing edge response  ;c t . This implicit 

nonlinearity is treated by iterations are described in more detail in Sec. 4.7 below, 

where the extension of the present discrete model is presented. 

 

 

4.3 Addition of Damping in Hydroelastic Coupling Model 

 

It is a well – known fact that all realistic structures possess damping of some sort. In the case 

of a flapping foil, the damping is a result of internal damping due to the material, as well as 

external damping due to the surrounding fluid.  

 The viscoelasticity is an important aspect of the mechanical properties of polymers, 

the material that is used in many of the experimental apparatus to produce foils. It is defined  

as the property of the material which causes its strain to be time – dependent. It becomes 

more important as the temperature of the material rises and reaches the glass transition 

temperature, above which the material reacts in a manner between fluid – like and solid – 

like. The viscoelasticity is also evident in metals, although it is far less significant. 

 The viscous component of the stress in a viscoelastic material can be modelled as a 

dashpot. Assuming the Kelvin – Voigt model (Christensen, 1982) where the stress is given by 

a purely viscous damper and a purely elastic spring connected in parallel, the corresponding 

stress – strain relationship is  

 

   
,

d t
E t H

dt


                  (4.3.1) 
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where  t  is the strain and H is the viscoelasticity coefficient of the material. Its units are 

2/Ns m . In Euler – Bernoulli beam theory, the strain is given by the transverse deflection as 

follows; 

 

     2

2

;
, ; ;

x t
x y t k x t y

x
y


  




 ,              (4.3.2) 

 

where  ;k x t  is the beam curvature, so that the viscous stress component is given by  

 

   
2

3 ;
, ; H

x t
x y t y

t x







 
  .               (4.3.3) 

 

The bending moment due to viscoelastic forces at chordwise position x is given by 

 

       3 332 2
2

2 2

2 2
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; , ;
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d d

d d

d
x t x td
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 

 
   

     ,         (4.3.4) 

Differentiating twice with respect to x, we acquire the viscoelastic loading contribution 

 

   
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

 
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               (4.3.5) 

where 3 /12Hd   is the viscoelastic coefficient (with units 2 /Nms kgm s  ). 

 The viscoelastic contribution to the bending of the plate is linear with respect to the 

unknown transverse deflection η, thus it can easily be treated in the frame of the present finite 

difference scheme (discussed in Ch. 4).  

 Proceeding to the external damping, we first consider the linear version. It is 

historically the first damping mechanism considered owing to its simplicity and 

straightforward implementation in a system of dynamical equations. Its main drawbacks are 

that it does not model many realistic situations and the fact that its estimation is not possible 

in any physical basis, thus empirical estimates are needed. In the case of systems with many 

DOFs the simplest way to construct a damping matrix is with the Rayleigh’s method, which 

we present in the Appendix. The loading contribution of the linear external damping in given 

by  
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x
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  


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
               (4.3.6) 

 Apart from the linear external damping, we include in our model a quadratic damping 

term. It is implemented by adding the term 
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Q damp ext Dx t C

x t x t
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t t

 
 
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.             (4.3.7) 

 

According to this definition, the quadratic drag coefficient DC  has units 2 4 3/ /Ns m kg m . 

The term 
 ;x t

t




 ensures that this force is always a drag force. This non – linear damping 

term was added to the analytical model developed by Paraz et al (2016) to capture the effects 

of the transverse drag force induced by the fluid on a flexible heaving foil. In the latter work 

a suitable value reported in order for the model to fit well with experiments is 24 /DC m c , 

where m is the surface mass density and c is the chord length.  

 Incorporating the damping terms in our model for the hydroelastic coupling, we have  
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                                                                                                                                           (4.3.8) 

 

The above hydroelastic model and its coupling with hydrodynamic equations presented in the 

sequel is appropriate for relatively small deflections. In the case of large deflections an 

extended model would be based on curvilinear or discrete beam models. 
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4.4 System of Equations for the Hydrodynamic Coupling Problem 

 

Having established the model for the flexible foil response under hydrodynamic loading we 

proceed to present the full system of equations used to study the effect of chordwise 

flexibility in the flapping – foil thrusters.  

 The no- entrance boundary condition is described by the following integral equation 

(2.2.11) discussed in Ch.2 
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         (4.4.1) 

 

where    ; , ;B s t s t r  is the bound to the foil’s mean surface (or mean camber line) vorticity, 

and serves as the unknown function. The LHS of Eq.(4.4.1) is the projection of the relative to 

the foil velocity, composed of the free stream flow V , a background unsteady velocity field  

(gust) GV  and the foil’s motion flap res AV V V , where the first term is due to the rigid body 

motion and the second due to elastic response. The normal unit vector n  has been defined in 

relation (4.2.3), including the elasticity effects.  

 The pressure is given by relation  
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                     (4.4.2) 

 

where  ;x tτ  is the tangent to the foil unit vector. However, the integral 

     
0

;; B

x

x t x t ds x      takes into account that the integration domain is not a straight line 
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indirectly via the  ds x  differential which can be interpreted as the local infinitesimal length 

of the mean camber line.  

 Combining equations (4.4.2) and (4.3.8) we obtain  
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                                                                                                                                           (4.4.3) 

 

The solution of the present hydroelastic coupling problem consists of the simultaneous 

solution of the above equation in conjunction with the no-entrance boundary condition 

expressed by Eq. (4.4.1). 

 

 

4.5  Equations in the body-fixed frame of reference 

We recall the expression for the acceleration of points in the foil’s body in the inertial 

reference frame with respect to their coordinates on the body – fixed reference frame. We 

note that the body – fixed reference frame is a rotating frame, performing a vertical 

oscillatory   motion due to the heaving as well. Considering only the rotational pitching 

motion, the acceleration of a point on the foil is given by (Landau & Lifschitz, 1976) 

 2R R

d

dt
      

Ω
a a Ω v Ω Ω r r ,             (4.4.3) 

 

where 

 Ra  is the acceleration of the points in the rotating reference frame (due to only the 

elastic deformation of the foil) 

 2 R Ω v  is the Coriolis acceleration 

    Ω Ω r  is the centrifugal acceleration  
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 d

dt
 

Ω
r  is the Euler force 

 r  is the position vector in the rotating reference frame 

 Ω  is the angular velocity of the rotational reference frame 

 

In the case of a foil performing pitching motion around its leading edge where 0x  , the 

position vector of points on its surface subject to elastic deformation transverse to the mean 

camber line in the rotating frame is defined as  

 

     ; , ; ,0 ; 0
T

x t txx x t x            r i j k
  

,           (4.4.4) 

 

where , ,i j k
  

 are the unit vectors in the rotational frame according to the right – hand rule, 

therefore  k i j
 

.  We note that in our case  ;x t   is due to elastic deformation only. 

 

The angular velocity is defined as  

 

 0 0 t     Ω i j k
   .                (4.4.5) 

 

The velocity of the points on the foil’s surface in the rotational frame is  

 

   0 ; 0 ,;R x t x t     v i j k
  

               (4.4.6) 

 

due to the foil’s deformation as a thin plate only. Performing the vector algebra, the 

accelerations defined are; 

 ; 0 ,0R x t     a i j k
  

                (4.4.7) 

       2 2; ,x xt tt         Ω Ω r i j
                (4.4.8) 

   ;2 ,2R x t t   Ω v i
                (4.4.9) 

     ;
d

x t t x t
dt

          
Ω

r i j
   .           (4.4.10) 

 

Substituting to Eq.(4.4.3), we have    
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           

     

2

2

; ;

; ;

; 2 x t t x x t t

x t x t t x

x t t    

   

            

          

a i

j

  

 
         (4.4.11) 

 

The acceleration of the point on the foil due to its heaving motion is 

 

   0 ,h IN INt h t  a i j              (4.4.12) 

 

where ,IN INi j  are the unit basis vectors of the inertial reference frame. They are immediately 

associated with the unit basis vectors of the rotating reference frame ,i j
 

 by the relation 

 

   
   

cos sin

sin cos

IN

IN

t t

t t

 
 

    
    
       

i i

j j



 ,            (4.4.13) 

 

which has only formal meaning; to interpret it, one has to treat the unit basis vectors involved 

as scalars. Substituting (4.4.13) to (4.4.12) and adding to (4.4.11), we get the expression for 

the inertial acceleration of the points on the flexible foil 

 

               

         

2

2

; ; sin

; ; cos

; 2 x t t x x t t h t t

x t x t t x h t

x t t

t

     

    

             

          

a i

j

   

  
                  (4.4.14) 

 

Substituting the inertial acceleration transverse to the foil’s mean camber line from Eq. 

(4.4.14) to the PDE (4.1.5)  we have. 

     
22

22 '
;

;
hp x t

x t
D

x
m

x

  
 


 


  

a a j


 

which finally reduces to  

 

                
2 2

2
2 22

2; ;
; co; s

x t x t
D x t t hm p t t

t x x
x t m t x

 
   

               
        

                (4.4.15) 
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This above model is enhanced by the incorporation of the damping terms (as in Eq.4.4.3), and 

after dropping the     notation we finally have 

 

           

         

2 22 2

2

3

22

0

22

; ; ; ; ; ;

;; ;

D

x

B B

x t x t x t x t x t x t
m D C C

t x x t x

x t

t x t t

d
d

xs t x t
dt

x

     


   

         
                 




 

   





  G AV V V τ

                2; cosm t xx t t h t t          ,          (4.4.16)

 

 

which is the PDE to be solved, in conjunction with Eq. (4.4.1) in the present coupled 

hydrodynamic model. 

 

 

4.6 Boundary Conditions for Flexible Foil  

The foil is clamped on one end and free on the other. Usually, the clamped end coincides 

with the leading edge. For a fourth order PDE four boundary conditions are needed to fully 

define its solution. In the inertia reference frame the boundary conditions at the clamped end 

are those of prescribed position and inclination through the heaving and the pitching 

instantaneous values, respectively (see Figure 4.1). This translates to the following conditions 

in the inertial (steadily translating) system  

   0; ,t h t   
   0;t

t
x








             (4.6.1) 

which is equivalent to  

 0; 0,t   
 0;

0
t

x





                                   (4.6.2) 

in the body-fixed frame. 

At the free trailing edge conditions of zero shear force and bending moment hold. They are 

associated with the deflection  ;x t  by the relations 
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   2 32

2 3

;
0,

;

x c x c

D
x t x t

x x t x x

 


 

   
 

  

 
  

    
            (4.6.3) 

   2 2

2 2
0

; ;
,

x c x c

x t x t

x t x
D

 


 

  
 

  
 

 
             (4.6.4) 

respectively.  

4.7 Development of the discrete scheme 

The solution of the PDE Eq. (4.4.16) is achieved by applying a finite difference scheme. First 

the solution domain is discretized in exactly the same way as in the hydrodynamic problem of 

a rigid flapping foil. Therefore we try to calculate the deflection at the collocation points of 

the hydrodynamic problem, described by , 1,...,i Bxcp i N  as defined in Eq. (2.4.2.2). Thus 

the problem of the elastic thin plate response is reduced to a multiple DOF problem. 

Restricting ourselves to homogenous flapping foils, the following equation holds for the 

corresponding deflection i  at each collocation point: 

 

      21

2
iv iv

i i i i D i i pi i iC UD mCm C        


          ,           (4.7.1) 

 

where iv
i  is the corresponding value of the fourth spatial derivative and   is the response 

velocity. The term i  is the corresponding value of the acceleration terms that manifest due 

to the non – inertial reference frame that the PDE is defined in.  

 We want to obtain the solution of the PDE (4.4.16) in the vector form 

1 2, ,...,
B

T

N     η . To this end, we define the response velocity vector 1 2, ,...,
B

T

Nu u u   u

. The spatial derivatives in (4.7.1) are approximated using the finite differences scheme 

explained in detail in Ch. 4.  

 We recast relation (4.7.1) in the following form: 

 

    21

2
iv iv

i i i i i D i i pi i im u D C uu u C u U C m                 (4.7.2a) 

0i iu                  (4.7.2b) 
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The vectors 1 2 1 2, ,..., , , ,...,
B B

iv iv iv iv iv iv iv iv
N Nu u u         η u  are given by the expressions 

 

4 4,iv iv  η FD η u FD u ,              (4.7.3) 

 

where 4FD  is a matrix containing the fourth – derivative stencil in the collocation points 

grid. Thus we have achieved to express the derivatives involved in the discretized form of the 

elastic response PDE in linear terms of the deflection and response velocities vectors. We can 

now write the discretized PDE as a first – order system of ordinary differential equations.  

 

         
                   

0 M η K C η F

I 0 u 0 I u 0




.              (4.7.4) 

 

Each entry in the matrices of (4.6.4) is a B BN N  matrix. This is a system of 2 BN  equations. 

More specifically, rows 3,..., 2Bi N   are the discretized equations of motion for the inner 

stencil points, given by relation (4.7.2a) and the rows 1,..., 2 NB Bi N   are the discretized 

equations incorporating the response velocity into the dynamical system, relation (4.7.2b). K, 

C  are the equivalent stiffness and damping matrices of the system defined in detail below. 

The rows 1,2, 1,B Bi N N   are discretized equivalent forms of the boundary conditions; 

more specifically, we have for the clamped end 

 

 1 1 1
0, 0   FD η            (4.7.5a,b) 

 

and for the free end 

 

       
     

1 2 3

2 2

0,

0

B B B

B B

T T

N N N

T T

N N

      

     

FD D FD η μ FD u

D FD η μ FD u
       (4.7.7a,b) 

 

The terms of the form  m j
FD  in Eqs. (4.7.6) – (4.7.7) denote the j – th row and  m – th order  

derivative stencil approximated using fourth-order finite difference scheme in the collocation 

points grid. We also define the flexural rigidity and viscoelastic coefficient vectors as 
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1 2 1 2, ,..., , , ,...,
B B

T T

N NDD D          D μ ,            (4.7.8) 

 

so that the present numerical model can handle varying thickness distributions. In the sequel, 

the flexural rigidity and the viscoelastic coefficient will be chordwise constant.  

 We now shall inspect the entries of the matrices in relation (4.7.4) in more detail. We 

start with the matrix multiplying the  ,
T

η u   vector. The matrix M is the equivalent «mass 

matrix» of the system. It is created as follows 

 

3

2

0 0

0

0

0 0

B

B

N

N

m

m 

 
 
 
 
 

  
 
 
 
 
 

M 



              (4.7.9) 

 

Note that the first and last two rows of the matrix are zero. This happens because the 

boundary conditions are not in any way dependent on the mass.  

 The I matrix is the B BN N  unit matrix. We move on to the matrix multiplying the 

vector  ,
T

η u . The K entry matrix is the equivalent «stiffness matrix» of the system. It is 

defined as 

 

     

 

           
     

1 1 121 22 2,

1 1 2 1 2 1 2,1 ,2 ,N

1 2

2 2

2

2 2 2,1

1,1 1 1,2 1 N

,2 ,N

1, 1

1 0

2

3
B

BB B B B B B B B

BB B B B

B

N

diag

B

NN N N N N N

NN N N

N

N

D D D

D D D

     



 
 
 
 
 
 
 
 
      
 
  



 

K

FD FD FD

FD D FD

FD FD FD FD FD FD

FD FD FD




    




  

                (4.7.10) 
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The first two lines of matrix K are the discretized forms of the clamped end boundary 

conditions, while the last two are the terms of the free end boundary conditions that multiply 

the deflection vector η . The inner part of the K matrix is the fourth derivative stencil matrix 

multiplied appropriately by the flexural rigidity at the collocation points. The term diagD  is a 

square B BN N  matrix containing the flexural rigidity values in its main diagonal.  

 The C matrix is the «damping matrix» of the dynamical system. It is defined as  

 

2 2diag   C RD FD μ FD ,             (4.7.11) 

 

where RD  is the Rayleigh damping matrix obtained as explained in more detail in Appendix. 

The last two rows of the C matrix contain the terms that multiply the response velocity vector 

u , in a similar fashion with the last two rows of the stiffness matrix that contain the terms 

that multiply the deflection vector η  in the free end boundary conditions. The diagμ  term in 

Eq.(4.7.11) is a square matrix with the same properties as diagD , and contains the values of 

the viscoelastic coefficient in the collocation points, allowing (at least in theory) the treatment 

of varying stiffness profiles.  

 In the RHS of Eq. (4.7.4) the term F  is the loading vector. It is defined as  

 

   , diag ,; T
Dt   F f η u C u u             (4.7.12) 

 

where the first term in the RHS is the hydrodynamic pressure and acceleration terms due to 

the body – fixed reference frame being non – inertial.  

 

         ;, B
B

d t
t t t

dt
t 

 
   

 

Φ
f η u Γ e Ma           (4.7.13) 

 

where       ;it xcp t   G Ae V V V τ ,         , ,i h it xcp t t xcp t a a a j


 and                                                   

   ,B B it xcp t Φ . 
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The second term in the RHS of Eq.(4.7/12) is the quadratic damping term, where DC  is a 

diagonal matrix defined as follows;  

 

0 0

0

0

0 0

B

D

D

N

C

C

 
 
 
 
   
 
 
 
  

DC 



            (4.7.14) 

We remark that the pressure and reference frame accelerations term  , ; tf η u  is implicitly 

non – linear with respect to the unknown vectors ,η u .  

We note at this point that the mass, stiffness and damping terms should not be confused with 

the same matrix notation in finite element methods (FEM).  

4.8 Discrete Formulation of the Fully Coupled Hydroelastic Problem 

In this subsection the discrete systems of equations comprising the fully – coupled 

hydroelastic problem are presented in a more organized way.  

 After discretizing the integral equation Eq. (2.2.11) we obtain the following system of 

linear equations for each time instant nt  concerning the discrete bound vortices  
nB B ntΓ Γ : 

 

     1 1, ,,
nn n B W n n W B n n n     UV η u Γ UV η u Γ U UV η u         

     1
1 1,, ,

nB n n W n n W B n n n


       Γ UV η u UV η u Γ U UV η u  ,         (4.8.1) 

where 

 
1 2
, ,...,

n NB

T

B B B B     Γ is the vector containing the intensities of the bound discrete 

point vortices 

      1, , ,B W
n n ij n n i n nw wUV η u η u η u  (defined in Εq. 2.4.3.2) 

 PiC  (defined in Eq. 2.4.3.2) 
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 
1 2
, ,...,

Wn NW

T

W W W     Γ  is the vector containing the intensities of the trailing wake 

point vortices 

 1 2, ,...,
B

T

NUB UUB B   UB  where    i i i i iUB    A GV V V n η  with  i in η  being 

the unit normal vector at the i – th collocation point 

 1n  is the circulation around the foil at the previous time instant 1nt  .  

 

The elastic response of the foil as a thin deformable plate is described by the discrete system 

of the following first – order ODE’s 

 

  ,d

dt


w
A Bw Q w                 (4.8.2) 

 

where  

 
 
 
 


0 M

A
I 0

, separate entries defined in Sec. 4.6 

 
 
  




K C
B

0 I
, separate entries defined in Sec. 4.6 

  ,
Tw η u  

      , , ; diag T
n Dt

 
     
  

F
Q w F f η u C u u

0
, separate entries defined in Sec. 4.7 

   21
, ;

2 ii n Pi if Ut aC m   η u , where a  has been defined in Sec. 4.7 

          1
1

2
,

2 1
; , ,i

j j

B
Pi n n B n B n i n

i

n
j

n i i n n
i

C
t

t t t
U dx



      


        

η u τ η u b τ η u  

where ib  is defined in Eq. (2.4.4.3) 

 

4.9 Solution of the Hydrodynamic Coupling Problem 

Having presented the formulation of a flapping foil possessing chordwise flexibility, we 

devise a numerical method to solve the coupled equations of the foil’s dynamic response as a 
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flexible thin plate and the representation theorem for the bound vortex sheet strength. The 

equations are strongly coupled in a non – linear, implicit manner, rendering the analytical 

solution of the problem unachievable.  

 The proposed numerical solution has to take advantage of the fact that many of the 

terms in the system of ODE’s describing the elastic response dynamics of the foil as a 

flexible plate are linear in nature with respect to the unknown deflection and its first time 

derivative. However, the non – linearities require special care. 

 We attempt to establish a scheme to integrate in time the system of ODE’s (4.8.2) 

along with the discretized boundary conditions.  

First we approximate the time derivatives of the unknown vector w  at time nt  by first – order 

backwards differences, i.e. 

 

1n n n

dt t

d 



w w w

                (4.9.1) 

We note that explicit time integration is not possible in this problem; the mass matrix M is 

singular, thus rendering the matrix A in (4.8.2) singular, as well. Therefore an implicit time – 

integration scheme is necessary. Utilizing the Crank – Nicolson time – integration scheme for 

system (4.8.2) (see e.g. Strauss, 2008), we obtain 

   1
1 1

1 1

2 2
n n

n n n nt


 
        


 

w w
A B w Q B w Q          

 1 1

1 1

2 2

1

2n n n nt t t 
              

  
A B w A B w Q Q            (4.9.2) 

Given the values of the deflection and response velocity  1 1 1,n n n  w η u  along with the 

loading vectors 1,n nQ Q  relation (4.9.2) constitutes a system of linear equations to be solved 

for the vector nw . The matrix that has to be inverted in order to solve the above system is 

now 
1

2
t A B  which is non – singular.  

 The difficulty of solving Eq. (4.9.2) lies in the fact that the vector nQ , the loading 

term in the current time step, is an implicitly non – linear function of the sought – after vector 

nw . This implicit non – linearity is treated by devising an iterative scheme that attempts to 

solve the system of equations in Eq. (4.9.2) as a linear system successively until the non – 

linear part of the equation is also satisfied.  
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 Our main objective is to solve the equation in (4.9.2). Transferring all terms in the 

LHS, we obtain 

 

 1 1

1 1

2 2

1
0,

2n n n ntt t  
           

 
   

 
A B w A B w Q Q           (4.9.3) 

 

or, in a more abstract form 

 

  0n G w .                 (4.9.4) 

 

The time – stepping of the Crank – Nicolson scheme has been expressed as a system of non – 

linear equations the solution of which for each time step is the solution vector of the 

discretized PDE in (4.9.2). In order to solve (4.9.4) we employ the Newton – Raphson 

method (see e.g. Burden & Faires, 2010.). Starting with an initial guess 0
nw  (see below) for 

the solution, we successively calculate better approximations via the formula 

 

   1 1 1 1 , 1, 2,...q q q
n n n n
q q     w w J w G w             (4.9.5) 

 

The matrix J  is the Jacobian of the function 2 2: B BN NG   . It is defined as  
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

 



             (4.9.6) 

where        1 2 2, ,...,
B

T

NG GG   G w w w w . The calculation of the Jacobian matrix 

requires knowledge of the partial derivatives of the scalar components   , 1,..., 2i BNG i w  of 

the function  G w . This is not possible, however, since we do not have knowledge of the 
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explicit dependence of  G w  on the vector w . Thus we resort to numerical approximation 

of the partial derivatives. Using the central differences scheme, we calculate 

 

   
2

i j j i j ji

j j

G w h

w

G w h

h

G   


 ,              (4.9.7) 

 

where jh  is sufficiently small. In practice jh  is selected as a small percentage of jw . 

Therefore, by defining a perturbation vector 1 2 2, ,...,
B

Tqq q q
n Nh h h   h  we have 

 

     
2

q q q q
n n n nq

n q
n

 


G w h G w h
J w

h
              (4.9.8) 

 

The approximation of the partial derivatives (4.9.7) involved in the definition of the Jacobian 

matrix requires successive implementations of the DVM (in a predictor-corrector scheme). 

We shall first consider perturbations in the values of the deflection vector nη , assuming we 

have fixed the time step. We execute a loop where the DVM is implemented assuming that 

1q
n
w w , except for the fact that ( 1) , 1,...,

j j Bjn n h j N    . The DVM results enable us to 

calculate the corresponding value of the function we want to lead to zero,  1
( )j

q
nw 

G , where 

the (+) subscript denotes that the calculation has been implemented for positive perturbation. 

In a similar fashion, we calculate  1
( )j

q
nw 

G . Thus we can immediately approximate the j – 

th column of the Jacobian matrix. The same procedure holds for perturbations in the velocity 

portion of the w  vector. When the Jacobian matrix is calculated we calculate the next 

approximation of the solution through the formula in relation (4.9.5) and recalculate the 

hydrodynamic data. If the set convergence criteria are met, the iteration is completed, else we 

continue to find the next approximation. In most cases examined a number of 7-10 iterations 

were found enough for convergence. 

 In total, each step of the general iterative scheme requires 4 BN  implementations of 

the DVM, which makes the solution of the coupled hydroelastic problem far more 

computationally expensive than that of the hydrodynamic problem. We can partly alleviate 

this increased computational effort by noting that many of the hydrodynamic data remain 



107 

 

unchanged when the DVM is executed for perturbations of the deflection and response 

velocity vectors. For example, when the transverse position of collocation points is perturbed, 

the velocities induced from the wake point vortices do not have to be re – calculated for the 

rest of the collocation points. In the case of perturbing the elastic response velocities of the 

collocation points, only the no – entrance boundary condition is modified, which greatly 

facilitates the implementation of the Jacobian matrix calculation. 

 The iterative method we have presented requires an approximation of the unknown 

loading vector nQ  at each time step. This is rendered feasible by the following procedure; 

first, when the hydroelastic coupling method proceeds to a new time step, the DVM is 

implemented by assuming 0
1n nw w . The solution of the hydrodynamic problem gives a first 

approximation for the loading vector, 0
nQ . Then an implicit time integration scheme is 

applied to approximate the solution vector, thus 1
nw  is obtained. Starting with this vector we 

perform the iterative procedure based on the above Crank – Nicolson time – integration 

scheme.  

 To summarize, the solution of the hydroelastic coupling discretized problem consists 

of the following steps; 

 For 0 0t   set 0
0 w 0  

 At each time step , 0nt n   set 0
1n nw w . Given the vector as input to the DVM, 

along with the prescribed rigid – body kinematics and the hydrodynamic data from 

previous time steps a first approximation of the loading 0
nQ  is acquired. Perform an 

implicit time – integration step to obtain a better approximation for the solution 

vector, 1
nw . With 1

nw  as input, solve the hydrodynamic problem again and acquire the 

loading (pressure), wake effects and self – induced velocities. Establish the 

convergence criterion. If it is met, terminate the time step solution. Otherwise proceed 

to calculation of partial derivatives. 

 When the partial derivatives are calculated, use the Jacobian matrix to obtain the next 

approximation of the solution vector , 1n
q q w . For each approximation calculate the 

hydrodynamic results with the DVM. If the procedure does not converge, use each 

approximation to obtain the next one.  

 When the vector n
n
mw  satisfies the convergence criterion, calculate the corresponding 

hydrodynamic data and exit the iterative procedure. 
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 Set nm
n nw w  and proceed to the next time step.  

The flowchart of the described iterative procedure is shown diagrammatically in Figure 4.2.  

 The way we have set up our numerical model, the solution is essentially the deflection 

and response velocity distribution over the foil’s mean camber line. The hydrodynamic data 

(vorticity, pressure, forces) are, for all intents and purposes, intermediate steps that are 

required by the PDE describing the foil’s response as a thin, flexible plate. However, they are 

what is most interesting to us from a performance point of view.  

 
Figure 4.2: Flowchart of hydroelastic coupling solution algorithm 
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4.10 Numerical Study of Chordwise Flexibility in Flapping Foil Thrusters 

 The numerical model that treats the coupled problem of a foil performing unsteady 

motion with chordwise flexibility will be applied to various motion scenarios in an effort to 

understand the effects of flexibility on the thrust and efficiency of the system.  

 We deem the study of a heaving – only case a good starting point to this end. In a 

relatively recent work Paraz et al (2016) studied both experimentally and theoretically the 

performance of a heaving flexible foil in uniform free – stream velocity. In Table 4.1 the 

basic data are given. 

 

Table 4.1: Foil and flow parameters – heaving flexible foil 
Quantity Units Value 

 
Chord length 

 
m 

 
0.12 

Free – stream velocity /m s  0.0612 
Flexural rigidity Nm  0.027 

Surface mass density 2/kg m  4.8 

Resonance frequency /rad s  4.71 

Heaving amplitude 0 /h c  - 0.035, 0.085, 0.12 

Visc. Damping coefficient Nms  50.13 10  
Quadr. Damp. Coefficient 3/kg m  960 

 

The resonance frequency has been stated by Paraz et al (2016) to characterize the system of 

the foil and the surrounding fluid, hence it does not coincide with the values proposed by 

standard elasticity theories, e.g. Euler – Bernoulli. We will present the main points of the 

theoretical analysis by the previous authors, maintaining their notation.  

 The problem of the heaving flexible foil is characterized by the following non – 

dimensional quantities 

 

 Length scale; / 2c  C  (half – chord length) 

 Time scale; 2 m
DC  where m is the surface mass distribution and D is the flexural 

rigidity 

 Pressure; 2
D

m


C
 

 Frequency; 
1

2 m
D


 
  
C  



110 

 

 Force; D
m


C  

 Velocity; 
1

m
D


 
  
C  

 

Note that the non – dimensional quantities are depended on the geometric and elastic 

properties of the foil. 

 Concerning the resonance frequency, Paraz et al (2016) have concluded that in non – 

dimensional terms it is equal to 

 

0 0.226                 (4.10.1) 

 

According to Table 4.1, the non – dimensional characteristic frequency 
1

2 M
B


 
 



C

20.83rad/s. Multiplying with ω0 we get the resonance frequency, 4.71 rad/s. This is a result 

that applies to the coupling of the heaving foil with the surrounding fluid, and is an added 

mass effect (Newman, 1977). For comparison purposes, the first resonance frequency of the 

same foil in vacuum is easily found to be equal to 18.31 rad/s. This is an expected result by 

virtue of the added mass effects associated with oscillations inside water.  

 We perform runs for three heaving amplitudes; 0 0.035, 0.085, 0.12h
c  . The non-

dimensional frequency 
0


  is varied in the interval  0.4, 8 . The simulation parameters 

chosen are TSR = 0.35, λ = 3. Results are presented in figure 4.3 for four quantities;  

 Trailing edge amplitude / Leading edge amplitude /TE LE   

 Phase lag of trailing edge with respect to leading edge 

 Thrust coefficient Tf D

Tm




C
 

 Froude efficiency out

in

P

P
   

 

 In the upper left figure the trailing edge amplitude is compared to the leading edge 

amplitude (which is none other than the heaving motion amplitude). The frequency response 

of the foil’s deflection substantially changes when the heaving amplitude is varied. We see 
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that the maximum value of the response is actually a decreasing function of the heaving 

amplitude. This is a trademark of non – linear response. The maximum response for each 

heaving amplitude occurs around 
0

1
  , sliding slightly to the left as the heaving 

amplitude increases. A second resonance frequency is evident in the parameter range tested, 

although the response amplitude is substantially smaller than that of the first resonance. The 

sliding of the maximum response is more intense in this second resonance regime. For 

0 0.035h
c   the experimental results of Paraz et al (2015) are presented with white – faced 

squares. The present method displays great agreement with the experimental results. We note 

here that the experimental results were obtained by authors for stationary heaving foil. 

However, Paraz et al (2015, Fig.5c) have reported that the trailing edge response is not 

significantly affected by the forward speed  , which agrees with our results. 

 In the upper – right figure the phase lag of the trailing edge with respect to the 

heaving amplitude is presented. It is remarkable that the three curves essentially collapse to 

one. Moreover, the phase lag value around the first resonance frequency is around 90o, a 

result expected from the basic theory of linear harmonic oscillators. However, we do not 

observe a certain pattern for the second resonance.  

 In the lower left figure results concerning the thrust coefficient are presented. The 

thrust coefficient defined above is further divided by 2 2
LE  , a characteristic non – 

dimensional velocity squared. It is maximized for frequencies around the resonance and 

decreases with increasing heaving amplitude, following the same trend as the trailing edge 

response. The fact that these quantities are closely related has been stated by many authors. A 

second peak is observed around the second resonance. In the usual definition of the thrust 

coefficient, the frequency response is increasing, as we have already seen in Ch. 3. However 

the added flexibility significantly affects the frequency response of the thrust coefficient. In 

Figure 4.4 the thrust coefficient and Froude efficiency are shown for 0 / 0.035h c  , this time 

utilizing the fluid characteristic force . 20.5 cU . For comparison purposes, we assume that 

the leading edge suction force is as predicted by the leading edge suction parameter without 

any losses (see Ch. 2, Sec. 9). This causes the thrust coefficient for the rigid case to scale like 

the Strouhal number squared, as it has been repeatedly reported by many authors (e.g. 

Lighthill, 1975) 
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Figure 4.3: Results for heaving flexible foil. In the upper and lower left figures the experimental results of Paraz 
et al (2015) for  are shown in white – faced squares. The theoretical results for the thrust coefficient are shown 
in dashed lines in the 
 

Contrary to what we have observed in rigid flapping foils, the thrust coefficient in a heaving 

flexible foil is not monotonically increasing with the excitation frequency, or equivalently the 

Strouhal number. In fact for frequencies not significantly larger than the resonance frequency 

the thrust coefficient rapidly drops before rising again as the frequency approaches the 

second resonance. This substantially different behaviour is a result of the thrust mechanism 

for a heaving foil; when considering the case of a rigid flapping foil, the only thrust – 

producing mechanism is the leading edge suction. Adding chordwise flexibility, the pressure 

forces acting on the foil have a component aligned with the travelling direction, hence 

producing thrust. Note here that the efficiency of the flexible panel near the first resonance is 

very close to that predicted by assuming losses due to the leading edge singularity in Fig. 4.3, 

indicating that the deviation between the corresponding efficiency for the rigid panel is 
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Figure 4.4: Thrust coefficient for 0 / 0.035ch  . Comparison between flexible panel (cyan curve) and rigid 

panel (blue curve). Note that for comparison purposes, the presented results assume full attainability of the 
leading edge suction force in both the flexible and rigid panel case 

dominated by the elastic deformation. For larger values of the excitation frequency the 

effective angle of attack is large enough to trigger the leading edge separation effect, hence 

the increased efficiency and thrust force displayed by the rigid panel in Fig. 4.4 is only 

theoretical. The Strouhal number at the first resonance is close to 0.1, hence the effective 

angle of attack is 18o , meaning that the leading edge separation effect has already started to 

occur. 

 Returning to Figure 4.3, dashed lines display the thrust coefficient results of the 

numerical model devised by Paraz et al (2016), for 0 0/ .035ch  . We note that the agreement 

is very good. White – faced squares display the experimental results obtained by the authors.  
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Figure 4.5: Envelope of the foil deflection in the inertia reference frame 

The agreement of our numerical model is only qualitative in this case, a fact that also applies 

to the authors’ theoretical model. This is probably attributed to us ignoring any viscous 

resistive forces in the calculation of thrust; we only consider reactive, i.e. stemming from 

potential flow pressure forces. 

 In the lower right figure of Figure 4.3, the Froude efficiency curves are displayed. The 

trend remains the same; the efficiency is maximized around the first resonant frequency. 

Corresponding values of the maximum achieved efficiency are 0.31 for 0 0/ .035ch  , 0.24 

for 0 0/ .085ch   and 0.21 for 0 2/ 0.1ch  . Once again, increasing the excitation amplitude 

reduces the quantity of interest, in this case the Froude efficiency. In Fig. 4.5 we present the 

deflection time history for the last period of the heaving motion in the form of successive 

plots of the chordwise deflection at discrete times. The heaving amplitude is 0 / 0.035h c  . 

The results are presented for two values of the non – dimensional frequency, around the first 

and second resonance. The results agree well with those predicted by Paraz et al (2016). 
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Figure 4.6: Contour plots of the elastic plate deflection around the first two resonant frequencies, for 

0 / 0.035ch  .  

In the region of the second resonance frequency, the response displays a neck at around 2/3 

of the chord, due to the second eigenmode excitation.  In Fig. 4.6 contour plots are 

presented for the deflection of the panel near the first two resonant frequencies, again for 

0 / 0.035h c  . These plots reveal the phase lag between the leading and trailing edge 

transverse motion. More specifically, this lag is larger for the second resonance. This can 

easily be explained as follows: Assuming that the Euler – Bernoulli beam theory holds 

(which constitutes a good approximation in our case), the resulting dispersion relation 

dictates that the transverse wave speed is proportional to the square root of the response 

frequency (Elmore & Heald, 1969). Thus, increasing the Strouhal number, the ratio of the 
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time it takes for he transverse waves to travel along the chord length over the oscillation 

period is increasing.  

 The numerical simulations performed for a heaving flexible foil point to a single fact; 

that the frequency that optimizes the output of a flexible flapping foil thruster, whether we are 

interested in thrust or efficiency, is close to the resonance frequency of the combined system 

of foil and surrounding fluid.  

 We attempt to validate further the hydroelastic coupling model with comparing with 

the experimental results of Barranyk et al (2012). The foil considered was made of PDMS 

material that performed simultaneous heaving and pitching motions (in flapping mode). 

Three cases were studied in total, each with varying stiffness. The stiffness modification in 

the experimental process was achieved by using a composite foil with rigid forward part and 

flexible rear part. In each case a different length ratio was used; 15% for the most flexible 

case (meaning that only the forward 1/6 of the chord is rigid), 50% for the intermediate 

flexibility case and 100% for the absolutely rigid case.  

 To simulate the rear flexible part, we make an adjustment in the hydroelastic coupling 

method. The clamped end in moved downstream to the chordwise point where the rigid front 

part is connected with the flexible rear part. Thus the boundaries of the hydrodynamic and 

elastic response problems do not coincide. However nothing changes concerning the coupled 

solution.  

 The systematic runs parameters are given in the next table 

 

Table 4.2: Foil and flow parameters – flapping flexible foil 
Quantity Units Value 

 
Chord length 

 
m 

 
0.20 

Free – stream velocity /m s  0.22 
Flexural rigidity Nm  1.22 

Surface mass density 2/kg m  19.2 

Resonance frequency /rad s  Inf, 26.6, 14.11 

Heaving amplitude 0 /h c  - 0.4 

Pitch amplitude Deg. 8 
Visc. Damping coefficient Nms  54.84 10  
Quadr. Damp. Coefficient 3/kg m  2304 

Strouhal number St 0.25 – 0.45 
Flapping frequency ω 2.16 – 3.89 

 

                                                 
1 For 100%, 50% and 15% rigidity ratio, respectively, according to Barranyk et al (2012) 
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The Young modulus of the PDMS material is calculated from the authors’ information about 

the structural response of the foils in the fluid, and is found to be close to 3.25 MPa. The 

thickness of the foil is equal to 1.6 cm. The Strouhal number varies in the interval 

 0.25, 0.45  where Barranyk et al (2012) reported positive thrust. For smaller values of St the 

efficiencies reported were negative, something that is not predicted by the present method, 

probably a product of viscous effects that have not been included in our coupled model. The 

phase lag between heaving and pitching motion is set to 90o, while the foil pitches about its 

leading edge. The forward rigid part of the foil acts only on the hydrodynamic response of the 

foil, hence the leading edge is a boundary for the vorticity distribution only. 

 In Figure 4.7 we present the results obtained from the present method for the 

parameter set in table 4.2. In the upper left the results for the thrust coefficient are displayed. 

As the Strouhal number increases, the thrust coefficient of the 15% rigid foil is consistently 

larger than that of the 50% and 100% rigid foils. The thrust coefficient of the 50% rigid foil 

effectively displays improved performance over the 100% rigid one only for the larger 

Strouhal values tested. We note that the thrust curves obtained are monotonically increasing 

for all the values of the Strouhal number. This indicates that the resonance frequency of both 

the 15% and 50% foils is larger than the flapping frequency values considered in this study. 

This has been, at least qualitatively, predicted by the values of the resonance frequency we 

have given in table 4.2, which have been obtained by the linear theoretical model of Paraz et 

al.  

 The Froude efficiency curves are displayed in the upper right figure. The effect of 

chordwise flexibility is dramatic in the propulsive efficiency; For the 50% and 100% rigid 

foils the efficiency reaches a minimum around 11% - 12%, while the 15% rigid case the 

minimum is close to 17%. Moreover, the efficiency curve for the 15% rigid foil seems to 

flatten for the largest frequencies tested. Based on the observations made for the heaving 

flexible foil, we can assume the behaviour of the 15% rigid foil efficiency curve for the 

subsequent Strouhal numbers. As the flapping frequency approaches the resonance frequency 

of the foil and surrounding fluid, the curve possibly becomes increasing again. The local peak 

that will manifest will probably correspond to a relatively small value of efficiency, however. 

This is because the structural resonance frequency and the optimal flapping frequency, 

reported in Strouhal numbers between 0.25 and 0.40, are not adequately close to have 

simultaneously positive effects in the flapping foil thruster considered.
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.  

Figure 4.7: Systematic results for thrust coefficient (upper left), propulsive efficiency (upper right), trailing to 

leading edge amplitude ratio (lower left) and phase lag of trailing edge amplitude (lower right). Flapping foil 

with 0 0/ 0.4, 8oh c     and varying rigid to flexible chord –length ratio 

 

 In the lower left plot of Fig. 4.7 the trailing to leading edge response amplitude is 

presented. The observation that increasing thrust is associated with large trailing edge 

amplitudes is validated here. The 50% rigid foil shows no significant trailing edge response; 

its amplitude is mainly a product of the prescribed kinematics. The 15% rigid foil however 

displays large trailing edge amplitudes, owing to its structural response. These results are 

consistent with basic momentum consideration in the theory of propellers, where the thrust of 
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the propulsion device scales like the area swept by it. The increased trailing edge response 

amplitude of the 15% rigid foil acts as an effective increase in the Strouhal number.  

 The phase lag of the trailing edge response with respect to the leading edge excitation 

is presented in the lower right plot of Fig. 4.7. Once again, the 50% rigid foil shows 

insignificant variations with respect to the 100% rigid foil. The 15% rigid foil shows 

substantially varying phase lag, which can assume to reach values close to 90o for flapping 

frequencies close to its structural resonance.  

 At this point we note that agreement of the presented method with the experimental 

data of Barranyk et al (2012) is not expected. First, 3D flow effects are certainly evident in 

the experimental setup, due to the very low aspect ratio involved (AR = 0.5). Second, the 

plate the aforementioned authors used was relatively thick, with a sharp leading edge, so it is 

expected that leading edge vortex shedding significantly affects the flow. Finally, the 

effective angles of attack attained as the Strouhal number increases are very large. 

Interestingly, the fact that the thrust coefficient of the most flexible foil is larger than the rigid 

case is owed to the large values attained by the effective angle of attack (more specifically, 

for St = 0.45, max 47oa  , leading to significantly deteriorated flow around the plate. The 

overall trend is that in the case of flapping foils flexibility reduces the thrust coefficient, but 

increases thrust.  

 In Fig. 4.8 direct comparison between the presented method results and experimental 

data of Barranyk et al (2012) is shown for the thrust coefficient and the propulsive efficiency. 

The experiments of the aforementioned authors display peaks in the propulsive efficiency that 

are not captured by the present method. They occur at Strouhal numbers St = 0.3 for the most 

flexible case (15% rigid) and around St = 0.25 – 0.27 for the 100% and 50% rigid plates, 

respectively. However, the limiting value of the propulsive efficiency seems to be predicted 

correctly by the present method. The thrust coefficient in the experimental data displays the 

trend that we have already discussed, although all three curves are consistently below the 

thrust curves predicted by our model. Apart from the 3D flow effects that we certainly expect 

to significantly alter the flow around the plates in the experiments, we also expect strong 

leading edge – trailing edge vortex interactions, which is indicated in velocity plots by 

Barranyk et al (2012), probably a result of the moderately large thickness and abrupt leading 

edge geometry of the plates in the experiments.  
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Figure 4.8: Comparison between the present method and experimental results of Barranyk et al (2012). 

 

. We conclude that, comparing our results with the aforementioned authors’, we can only 

hope to reproduce the general trend: increase of both thrust and efficiency.  
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5. Conclusions – Suggestions for future work 

 A hydroelastic coupling model has been developed that successfully solves the 

problem of a thin symmetrical foil, modelled as a flat plate, in unsteady flow with chordwise 

flexibility. We saw that the high efficiency of flapping foil thrusters is enhanced by addition 

of chordwise flexibility. Generally, for the same kinematic parameters, proper flexibility 

addition leads to increased efficiency at the expense of thrust. However, increasing the 

flapping frequency we can achieve the thrust of the rigid case with improved efficiency.  

 The present model allows for additions and modifications. The thickness effects can 

be incorporated by applying the methodology in this thesis in a BEM solver, which is 

straightforward at this point. The hydrodynamics part of the method can be enhanced by 

modelling effects such as leading edge separation. The trailing wake can be updated so as to 

be freely deformed by the vortex interactions. As for the elasticity part of the solution, 

curvilinear beam models are required to obtain more accurate solutions in cases of large 

deformation.  

 Suggestions for future work foremostly include extensions of the present method to 

3D in both the hydrodynamics and elasticity part. This would allow the study of the spanwise 

wing deformations under hydrodynamic loading, a significant part of aquatic animals’ 

propulsion. It would be very interesting to apply the present method to other systems than 

propulsion, e.g. wave energy extraction in renewable energy applications or auxiliary 

propulsion in ships, with the wing placed under the hull fore. The effect of chordwise 

flexibility is largely unknown is such applications, not to mention the spanwise flexibility. In 

the case of auxiliary propulsion where the ship responds to random sea excitations, it would 

be very interesting to implement an optimum control method based on the present numerical 

model.  
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Appendix A: Finite Difference Scheme 

We present here details about various aspects of the numerical solution of the hydroelastic 

coupling problem of a flexible thin plate performing unsteady motion in unbounded fluid.  

In our model a non – uniform grid of collocation points has been utilized, as explained 

thoroughly in Ch. 2. The solution of the coupling problem requires the numerical evaluation 

of space derivatives, most notably the biharmonic operators, 4  and  2 2D  . Due to the fact 

that the grid is non – uniform, we cannot resort to expressions of the finite difference stencils 

from the literature for the approximation of the derivatives involved. Thus, we developed a 

systematic scheme based on Taylor expansion that provides us with the stencil coefficients.  

 Assume a stencil around a central point, which shall be called ix . The stencil extends 

from the point i lx   to the point i rx   such that i l i i rx x x    and ,l r IN . For simplicity, the 

point ix  will be repeatedly referred to as “central point”, even in the case when l r . 

Invoking the Taylor formula around the central point for a function  u x , we have 
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for ,j l r   , where j ij xx x   . Repeating for all j’s and taking a linear combination of 

the resulting expressions, we obtain 
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where ja , ,j l r    are unknown coefficients. Setting    
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Suppose now that we want to approximate the first derivative with 4th – order accuracy. 

Setting 1 2 3 41, 0b b b b     in Eq.(A.3), we have 
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so the approximation is indeed 4th order accurate, with the relevant scale being 

 max , ,...,j j lx r  . Note that the latter approximation required a set of four linear 

equations to be solved: 1 2 3 41, 0b b b b    . Therefore, for this case, l=r= 2 and the set of 

four linear equations gives the values of , 1,2,3, 4ja j  , Generally, we can easily see that for 

p – th order approximation of the k – th derivative, the following must hold: l+r = k+p-1. 

 To validate the proposed scheme, we try to reproduce stencils for uniform grids, 

which can be found easily in the literature. Consider the aforementioned case for the  

approximation of the first derivative with fourth degree of accuracy in a uniform grid with Δx 

= 0.1. The result is known to be equal to 

   1/12, 2 / 3,0,2 / 3, 1/12
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To obtain the coefficients numerically, we set 1 2 3 41, 0b b b b    . This translates to the 

following set of equations: 
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The solution to the system of linear equations in Eq.(A.6) is 

 0.8333, 6.667,0,6.667, 0.8333  , which is essentially the same as the result in Eq.(A.5). 

Notice that the coefficient of the central point 0 0
, 0

r

j l
j

j

a b a
 

      is incorporated in the 

system of equations Eq.(A.6) as the first equation.  
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Appendix B: Euler – Bernoulli Beam Eigenmodes and 

Approximation Error  

 

In this section we calculate the first eigenmodes of an Euler – Bernoulli beam in vacuum. The 

calculations are performed numerically via the finite difference scheme presented in 

Appendix A.  

 The equation that described the free vibration of an Euler – Bernoulli beam lying on 

the [0,L] interval is (Graff  1975, Clough & Penzien 1995) 
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where D EI  is the bending stiffness of the material and m is the linear mass distribution. 

Assuming solution of the form      ;w x t W x T t , the eigenmodes are obtained as 

solutions of the following boundary value problem: 
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subject to the following boundary conditions (in  the case of cantilever beam which are the 

same in the case of the flapping foil) 

 

   0 0, 0 0W W    (clamped end)               (B.3a) 

   0, 0iiiW L W L    (free end)               (B.3b) 

 

The solution to (B.2) is of the form 

 

         1 2 3 4cos sin cosh sinhx x x xW x C C C C                     (B.4) 

 

Differentiating Eq.(B.4) and applying the BC’s (B.3a,b) we obtain the eigenvalues of the 

BVP 
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which are the solutions to the dispersion relation    cosh 1 0cos L L    . 

 

and, by virtue of (B.2), we have for the eigenfrequencies 
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We now consider a cantilever beam with length 0.12L m , linear mass distribution 

24.8 /m kg m  and bending rigidity 20.027EI Nm .  These values correspond to the first 

example of Chapter 4. 

The resonance frequencies are  

 

1 18.313 / , 114.76 / , 321.27 /rad s rad s rad s                 (B.7) 

 

We now attempt to calculate the resonance frequencies and the eigenmodes of this cantilever 

beam numerically via the finite difference scheme developed. We discretize Eq.(B.1) as 

follows: 

 

 
2

1 22
, , , ,

T

N

d
w w

dt
w   

w
M D w 0 w                  (B.8) 

 

where M is a diagonal matrix with , 0,ii ijM m M i j    with zero elements in the first and 

last two lines. These rows represent the boundary conditions, which are independent of the 

mass distribution. The matrix D contains in each inner row the fourth – derivative stencil in 

the chosen grid  1 2, , ,
T

Nxx xx  . The first and last two rows of D contain the discretized 

form of the LHS’s of BC’s (B.3a,b). We choose second order of accuracy.  

 Assuming harmonic oscillations, i.e. 
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   2
2

0 02
ei t i td t

t e
dt

     
w

w w w                 (B.9) 

 

and substituting the above Eq. in (B.8), we obtain 

 

 2
0 0   M D w                  (B.10) 

Since we are looking for non – trivial solutions of Eq.(B.10), we set  

 2 0det  M D                  (B.11) 

The above relation constitutes an equation to be solved numerically for the resonance 

frequency ω. To display the capabilities of the proposed finite differences scheme, we 

employ a non – uniform grid, generated by cosine spacing. The number of collocation points 

is set equal to 100 and the order of accuracy of the finite difference scheme is set to 4. In Fig. 

B1 the resulting eigenmodes are displayed compared to the ones predicted by the analytic 

theory.  

The results are almost identical to those predicted by the analytic theory. The resonance 

frequencies are predicted remarkably well, with errors relative to the theoretical predictions 

being 0.16%, 0.0003% and 0.078% for the first, second and third resonance frequencies, 

respectively. Notice that the cosine spacing causes the collocation points grid to become 

much more dense near the boundaries than it is in the interior of the solution domain.  

 It is important to study the convergence characteristics of the finite difference scheme 

developed. Το this end we consider the same cantilever beam as before in static load. The 

equation describing the beam deflection is 

 

4

4

w
EI q

x





                  (B.12) 

Choosing the static load as 10 /q N m  , we have 

 

4

4
0.027 75

w

x
 




                 (B.13) 

 

Integrating Eq.(B.13) and applying BC’s Eqs.(B.3a,b) we obtain the analytic description of 

the beam’s deflection 



136 

 

 

 

 

Figure B1: Eigenmodes of Euler Bernoulli beam. Length: 0.12 m, linear mass distribution: 4.8 kg/m2, bending 
rigidity: EI = 0.027 Nm2.  
 

 

 

       2 2 2 2 24 6 15.43 0.48 0.0864
24an

q
w x x x Lx L x x x m

EI
                  (B.14) 
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We calculate the deflection numerically as the solution to a system of linear equations 

analogous to Eq.(B.10) where now M 0 . In Fig. B2 we display the approximation error for 

second order of accuracy approximation of the fourth derivative operator in (B.12). The error 

of each approximation,  ;w x h , is calculated with respect to the analytic expression in 

Eq.(B.14) by means of the 2L  norm as follows: 

 

        2

0

; ;an n

L

ae w x h w x w x h w x dx                 (B.15) 

 

where h is the maximum distance between collocation points in the grid.  

The second order approximation for uniform grid displays fourth order rate of convergence. 

The results are even more remarkable for the non – uniform, cosine spaced grid, where it 

seems that the second order approximation has actually convergence rate higher than 6. This 

can be explained by the fact that when non – uniform grids are utilized, the discretization 

parameter h is taken as the largest distance in the grid. The cosine spacing

 
Figure B2: Approximation error for cantilever beam in static loading. Left column: cosine spacing. Right 
column: Uniform spacing 
 

scheme used here causes the points to gather near the boundaries, which apparently leads to 

higher convergence rate. After all, the term “n-th order of accuracy approximation” has no 

clear meaning when non – uniform grids are utilized. In this work we call the approximation 
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order as we would if the same number of left and right points (with respect to the central 

point) were utilized for the setup of a finite differences scheme in a uniform grid.  

 The fourth order approximation leads to errors below machine precision 1610  for 

the largest of the discretization parameters tested in this case. It also has lost its fourth order 

rate of convergence due to numerical instabilities at this point. However, its negligible error 

makes it appealing for applications where the computational effort is large, e.g. the 

hydroelastic coupling of a flexible thin flat plate with unsteady flow.  
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Appendix C: Rayleigh Damping   

The Rayleigh damping is the first attempt to artificially incorporate damping in a system with 

many degrees of freedom. In matrix form, it is written as  

 t  Mx Cx Kx F                     (C.1) 

where M is the mass matrix and K is the stiffness matrix of the system. The matrix C is the 

damping matrix. It generally cannot be known on any physical basis. Rayleigh (1877) 

proposed the following expression: 

  

a  C M K ,                   (C.2) 

 

where ,a   are scalar coefficients. It can be shown that when linear damping is added to a 

system with many degrees of freedom it continues to possess normal modes (Adhikari, 2007).  

The damping ratio   for every natural frequency of the system in Eq.(C.1) is given by the 

expression  

2 2
i

i
i

a 


                     (C.3) 

A typical plot of this function is given in Fig. C1.  

 
Figure C1: Rayleigh damping: Distribution of damping ratio 

 
 

Note that the first term in Eq.(C.3) is negligible to the second term. This is the reason 

Rayleigh’s damping is often called “proportional damping”. 



140 

 

 However, it is not clear how to choose the coefficients ,a   in order to acquire an 

acceptable damping ratio distribution across the eigenfrequencies involved in the MDIF 

problem one wants to solve. Chowdhury & Dasgupta (2003) proposed an algorithm that leads 

to the proper selection of the coefficients, based on knowledge of the resonance frequencies 

of the system.  

 Eq.(C.1) describe a problem with many degrees of freedom. In this thesis we want to 

solve the problem of a cantilever beam, which after discretization is reduced to such a many – 

degrees – of – freedom problem. However, our resulting system of ODE’s is not in the form 

of Eq.(C.1). It is actually written as (see Ch. 4, Eq.(4.7.4))  

 

 

                 (C.4) 

 

as a system of first order in time ODE’s. Note that terms analogous to x  do not exist in this 

formulation. However, we find that the matrices M, K in Eq.(C.4) are equivalent to the 

classical mass and stiffness matrices in FEM formulation.  

 We shall continue to validate the algorithm of Chowdjury & Dasgupta (2003). that 

generates the Rayleigh damping matrix. We again consider a cantilever beam with length 

0.12 ,L m  bending stiffness 20.027EI Nm  and linear mass distribution 24.8 /m kg m . 

To test the validity of the Rayleigh damping, we set the beam in free vibration with initial 

conditions. Knowing the first resonance frequency of the beam from Eq.(B.7), we setup the 

Rayleigh damping matrix so that it corresponds to ζ = 1 to this frequency. The damping of 

another mode of the beam needs to be specified, so we set the damping at the second mode ζ 

= 1.5. The number of collocation points is set to 20, while the order of accuracy of the finite 

difference scheme is set to 4. The free end deflection and velocity are shown in Fig. C2 

         
                   

0 M η K C η F

I 0 u 0 I u 0



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. 

 
Figure C2: Free vibration of Euler – Bernoulli beam. 

 

We note that the free – end deflection and transverse velocity time history is not oscillatory, 

which is expected for the case of critical damping. The coefficients that generate the 

corresponding Rayleigh damping matrix are 29.28 2 9, 0.0 1a   . Indeed, for the first 

resonance frequency of the beam, 1 18.313 /rad s  , we have 

1

1

18.313

18.3

29.28 0.02

1

19
1

2 2 2 3 2

a 






                  (C.5) 

 


