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Extended Abstract 
The objective of this research was the investigation, design, implementation, and 

enhancement of state-of-the-art computer vision and artificial intelligence approaches within 

the framework of GEographic Object-Based Image Analysis (GEOBIA) and their employment 

in specific remote sensing problems such as building extraction, foreshore mapping, building 

change detection and alluvial fan and bajada identification.  

The first objective of this dissertation was the design and implementation of an ontological 

reasoner allowing to design ontologies based on fuzzy spectral, geometric, and spatial 

relationships through multi-scale GEOBIA analysis, named SPatial Ontology Reasoner (SPOR). 

Identification of complex landscape components in terms of spectral, geometric, and rich 

spatial relationships, requires the representation of expert knowledge into a problem-solving 

strategy through an establish-and-refine-paradigm, within the environment of a knowledge 

representation system. To take advantage of this expert knowledge within an automated 

image analysis system it is required to be formalized into a computer-conceivable form. Thus, 

a semantic gap arises between the high-level semantics employed by the experts to describe 

the phenomenon and the numerical low – level information extracted from data. To this end 

ontologies offer potential for knowledge formalization. Previous studies depicted the 

applicability of ontologies in GEOBIA. However, still remained the need to incorporate fuzzy 

reasoning in an ontology-based GEOBIA approach. Furthermore, the importance of spatial 

relationships and multi-scale analysis has already been stated in earlier GEOBIA studies. 

Although, spatial reasoning with ontologies for image analysis has been examined, still 

remained the need for spatial reasoning in a multi-scale GEOBIA approach. Finally a limitation 

was stated for current Description Logic (DL) – based ontology reasoners, concerning the 

required processing time, when dealing with large number of classes and objects, which is 

very common in GEOBIA studies. Thus to address these needs in SPOR, OWL 2 was selected 

to formalize the ontology, which is latest version of this W3C standard. OWL 2 ensures the 

integration and exchange of GEOBIA ontologies with current semantic web technologies. Since 

GEOBIA frameworks should be compatible with Open GIS Standards, and it was also required 

computation of spatial relationships during the reasoning process, SPOR integrated 

PostgreSQL which supported such functionality.  

The second objective was the integration of advanced machine learning techniques within the 

ontological-based reasoning. In the literature machine learning techniques have been 

employed as a classification step before the ontology-based refinement in medical and scene 

analysis studies. However, still remains the need to examine the applicability of such approach 

in GEOBIA. To address this issue, it was decided to examine Deep Learning methods, which 

are machine learning algorithms aiming to model high-level abstractions in data by using 

model architectures composed of multiple non-linear transformations. Such algorithm is the 
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Deep Belief Network. DBN training is performed in two phases. At first unsupervised training 

is performed by stacking multiple layers of simple unsupervised networks such as the 

Restricted Boltzmann machines (RBM) which were trained by the contrastive divergence 

algorithm. Unsupervised training output is provided as input to Logistic Regression supervised 

algorithm which provides the final DBN output. To perform integrated reasoning with DBN 

and fuzzy ontologies, OWL 2 was enhanced with proper restrictions which allowed class 

definitions through the combination of DBN and fuzzy expressions. SPOR was also enhanced 

to be able to perform reasoning with such ontologies. 

The third objective was the investigation and addressing of specific remote sensing problems 

through GEOBIA multiscale analysis. To evaluate SPOR a building extraction approach through 

multi-scale analysis from QuickBird imagery was designed. Three segmentation and 

classification levels were designed and implemented. Aim of level 1 was the extraction of 

spectral categories with spectral properties similar to the present buildings. Aim of level 3 was 

the elimination of the road network. The final buildings were extracted on level 2. Evaluation 

with photo-interpretation data was satisfactory since 75% of the total rooftop area was 

extracted while the commission error was around 20%. 

Afterwards, an ontology-based multi-scale GEOBIA approach based on anisotropic diffusion 

and fuzzy ontologies for foreshore automatic identification was designed and implemented. 

The identification was based on the foreshore interpretation criteria provided by the Greek 

Cadastral Office, from multispectral and Digital Terrain Model (DTM) data. Management of 

the coastal zone is now recognized as an issue of importance due to the growing social and 

demographic pressures that threaten its sustainability. More than half of the world's 

population lives within 60 km of the coast.  Specifically, foreshore mapping is important as the 

processes that take place in the foreshore affect the nearby water quality. Proper 

management of the foreshore will improve property values and provide recreational amenity. 

Foreshore mapping in Greece will contribute to the completion of the National Cadastre. 

Although in Greece this mapping was performed manually, it was decided to investigate 

methods for the formalization of the foreshore interpretation criteria provided by the Greek 

Cadastral Office towards the automation of the process. Due to the expression of the spatial 

organization of the foreshore within the interpretation criteria (e.g. present vegetation, 

slopes, present infrastructure etc.) it was decided to formalize the criteria through an 

Ontology-Based GEOBIA approach. Due to the number and complexity of these criteria, the 

two most commonly appearing criteria in Greece were investigated, the vegetation border 

and the topographic crown border. To reduce undesired spectral and spatial detail, the 

imagery was filtered through morphological leveling which smoothed small spectral 

differences while major edges of the original image objects were preserved. A three level 

segmentation and classification hierarchy was developed were smaller objects were created 
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on the lower levels, while larger objects where created on the higher levels. Level creation 

sequence was 1-2-3. On Level 1, general thematic categories were extracted (e.g. vegetation, 

water, low sloping areas). Through the interpretation rules derived from foreshore criteria 

these areas were refined on Level 2 and the final foreshore area was determined on Level 3. 

Evaluation with image interpreted reference data was satisfactory since 89% of the total 

foreshore area was identified while commission errors was around 14%. 

A building change detection scenario was investigated in suburban areas of Greece. The 

developed multi-scale GEOBIA approach integrated Deep Learning classification with 

ontological reasoning. A three level segmentation hierarchy was designed and implemented. 

Level creation order was 1-2-3. On the lowest level an estimation of areas of possible change 

was performed through fuzzy properties and multiple DBN classifications. Through 

interpretation rules related to the geometry of the buildings, employed on Level 2 and level 3 

the final changes were derived. Results were satisfactory since 73 out of 87 changes were 

successfully identified, while having small omission and commission errors (10 and 14 changes 

respectively). 

To perform alluvial fan and bajada mapping, state-of-the-art DEM processing and multi-scale 

GEOBIA analysis approaches were investigated, extended, and implemented. Mapping of 

alluvial fans and bajadas is important for practical and economic importance to society, 

particularly in arid and semiarid climates where they may be the principal groundwater source 

for irrigation farming and the sustenance of life. In this study, advanced image processing and 

knowledge representation methods were investigated and enhanced, towards the automatic 

identification of alluvial fans and bajadas. The developed method was based on the landform-

pattern element approach which identifies landforms based on pattern-elements such as 

topography, drainage pattern and texture, soil spectral signature, spatial relationships, and 

other characteristics. Data used included the 10m spatial resolution National Elevation 

Dataset, provided by USGS and a pan-sharpened Landsat OLi imagery. The study area was 

located in the Death Valley, Nevada, USA. DTM processing included noise-removal filtering 

and depression treatment. A two-phase GEographic Object-Based Image Analysis (GEOBIA) 

approach involving multi-scale segmentation and fuzzy ontology-based reasoning was 

designed. Aim of the first phase was the identification of topographic forms such as the basin, 

mountain-range, and piedmont. Piedmont is the area where alluvial fans and bajadas reside. 

A four level segmentation hierarchy, accompanied by a four level ontological hierarchy, were 

developed. The identification was based on topography attributes such as slope gradient and 

curvature, and spatial reasoning. Aim of the second phase was the identification of alluvial 

fans and bajadas based on drainage pattern texture and topographic features such as 

landform shape. Thus a two-level segmentation and ontological hierarchy were developed. 

Due to a systematic omission on the fan toe, each fan and bajada soil spectral signature was 
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taken into account to determine the omitted areas through region growing on the 

multispectral imagery. Accuracy assessment indicated satisfactory results, since a 90% 

completeness and 89% quality was achieved for both alluvial fans and bajadas. 

Finally, the fourth objective of this dissertation was the development and release of all the 

developed methods as Free and Open Source Software. 

Keywords: GEOBIA, ontologies, image analysis, buildings, change detection, foreshore, alluvial 

fan 
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Εκτενής Περίληψη  

Στόχος της παρούσας διατριβής ήταν η διερεύνηση, ο σχεδιασμός, η επέκταση, και η 

υλοποίηση καινοτόμων μεθόδων Όρασης Υπολογιστών και Τεχνητής Ευφυΐας μέσα στα 

πλαίσια της Γεωγραφικής Αντικειμενοστρεφούς Ανάλυσης Εικόνας (GEographic Object-Based 

Image Analysis – GEOBIA) όπως εξαγωγή κτιρίων, οριοθέτηση αιγιαλού, ανίχνευση 

μεταβολών κτιρίων, και χαρτογράφηση αλουβιακών ριπιδίων.  

Ο πρώτος στόχος αυτής της διατριβής αφορούσε την ανάπτυξη μιας μηχανής συλλογιστικής 

η οποία θα επέτρεπε την τυποποίηση της φωτοερμηνευτικής γνώσης των εμπείρων 

φωτοερμηνευτών σε μέσα από την υλοποίηση ασαφών φασματικών, χωρικών, γεωμετρικών 

και τοπολογικών σχέσεων στα πλαίσια της πολυκλιμακωτής ανάλυσης εικόνας, το οποίο 

ονομάστηκε SPOR (SPatial Ontology Reasoner). Καθώς η αναγνώριση θεματικών κατηγοριών 

οι οποίες έχουν πολύπλοκες φασματικές, γεωμετρικές και χωρικές ιδιότητες, απαιτεί την 

αναπαράσταση και δόμηση της φωτοερμηνευτικής γνώσης για την παρατηρούμενη 

κατηγορία σε μια διαδικασία επίλυσης προβλήματος, απαιτούνται μέθοδοι αναπαράστασης 

της ανθρώπινης γνώσης σε μορφή κατανοητή από τον υπολογιστή. Λόγω του ότι οι 

φωτοερμηνευτές χρησιμοποιούν ”υψηλού επιπέδου” αναπαράσταση γνώσης για να 

περιγράψουν μια θεματική κατηγορία, ενώ ο υπολογιστής μπορεί να εξάγει “χαμηλού 

επιπέδου” αριθμητική πληροφορία από τα δεδομένα, παρουσιάζεται η ανάγκη να 

γεφυρωθεί το υπάρχον σημασιολογικό κενό (Semantic gap). Η τυποποίηση και αξιοποίηση 

αυτής της γνώσης σε μορφή “κατανοητή” από τον υπολογιστή επιτυγχάνεται με την χρήση 

μεθόδων όπως οι οντολογίες. Οι οντολογίες μπορούν να χρησιμοποιηθούν για να 

γεφυρώσουν το σημασιολογικό κενό και να αποτελέσουν τμήμα της υλοποίησης ενός 

αυτόματου συστήματος ανάλυσης εικόνας με βάση την GEOBIA. Η δυνατότητα που έχουν οι 

οντολογίες να τυποποιήσουν την φωτοερμηνευτική γνώση έχει ήδη αποδειχθεί από 

προηγούμενες μελέτες. Παρόλα αυτά, δεν είχε γίνει διερεύνηση των οντολογιών με 

ταυτόχρονη χρήση ασαφούς λογικής, χωρικών συσχετίσεων και πολυκλιμακωτής χωρικής 

ανάλυσης μέσα στο πλαίσιο της GEOBIA. Τέλος, έχει αναφερθεί στη βιβλιογραφία πως οι 

υπάρχουσες μηχανές συλλογιστικής για οντολογίες που στηρίζονται σε περιγραφικές λογικές 

χρειάζονται μεγάλο χρόνο για την περάτωση της συλλογιστικής διαδικασίας, όταν η βάση 

γνώσης περιέχει πολλές κατηγορίες ή/και αντικείμενα, όπως είναι οι μελέτες που 

στηρίζονται στην GEOBIA. Για να αντιμετωπισθούν αυτές οι ανάγκες, στην την ανάπτυξη και 

υλοποίηση του SPOR ως γλώσσα τυποποίησης της οντολογίας χρησιμοποιήθηκε η ΟWL 2 η 

οποία αποτελεί σήμερα το τελευταίο επίσημο πρότυπο της γλώσσας OWL για τον 

Σημασιολογικό Ιστό (ΣΙ). Έτσι διασφαλίζεται η συμβατότητα με τις τεχνολογίες του ΣΙ αλλά 

και την ανταλλαγή GEOBIA οντολογιών με χρήση των τεχνολογιών του. Καθώς τα συστήματα 

που στηρίζονται στην GEOBIA πρέπει να είναι συμβατά με τα ανοικτά γεωχωρικά πρότυπα 

(Open GIS Standards) και καθώς απαιτούνταν ο υπολογισμός χωρικών συσχετίσεων κατά τη 
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διάρκεια της συλλογιστικής διαδικασίας, στο SPOR χρησιμοποιήθηκε η PostgreSQL η οποία 

ενσωματώνει τέτοιες δυνατότητες.  

Ο δεύτερος στόχος αυτής της διατριβής αφορά την διερεύνηση και ενσωμάτωση μεθόδων 

μηχανικής μάθησης μέσα στη συλλογιστική διαδικασία των οντολογιών. Στη βιβλιογραφία 

έχει ήδη διερευνηθεί ο συνδυασμός μεθόδων μηχανικής μάθησης με οντολογίες για την 

ταξινόμηση επίγειων λήψεων ή ιατρικών δεδομένων με ικανοποιητικά αποτελέσματα, αλλά 

κάτι τέτοιο δεν είχε διερευνηθεί στα πλαίσια της GEOBIA. Αποφασίστηκε η διερεύνηση 

μεθόδων Deep Learning, οι οποίες τυποποιούν πληροφορία υψηλής αφαιρετικότητας από 

τα δεδομένα, μέσω της υλοποίησης μη γραμμικών μετασχηματισμών. Σε αυτή την οικογένεια 

αλγορίθμων ανήκει και o Deep Belief Network (DBN). Ένα DBN εκπαιδεύεται σε δύο φάσεις. 

Αρχικά γίνεται μη επιβλεπόμενη εκπαίδευση όπου χρησιμοποιούνται πολλαπλά επίπεδα 

από Restricted Boltzmann Machines (RBM) τα οποία εκπαιδεύονται μέσω του αλγορίθμου 

contrastive divergence. Η τελική έξοδος των RBM δίνεται ως είσοδο στον αλγόριθμο 

επιβλεπόμενης μάθησης Logistic Regression, ο οποίος εκπαιδεύεται μέσω του stohastic 

gradient decent. Η έξοδος της επιβλεπόμενης εκπαίδευσης αποτελεί το τελικό αποτέλεσμα 

της ταξινόμησης του DBN. Για να μπορέσει να γίνει συνδυαστική συλλογιστική DBN και 

ασαφών περιορισμών, επαυξήθηκε η τυποποίηση των οντολογιών με κατάλληλες δηλώσεις 

– περιορισμούς οι οποίες επέτρεψαν τον ορισμό κατηγοριών με συνδυασμό ασαφών 

περιορισμών αλλά και μηχανική μάθηση. Επίσης επεκτάθηκε κατάλληλα η συλλογιστική 

διαδικασία του SPOR ώστε να συμπεριλάβει τον αλγόριθμο DBN. 

Ο τρίτος στόχος αυτής της διατριβής ήταν η διερεύνηση συγκεκριμένων προβλημάτων της 

τηλεπισκόπησης και υλοποίηση μεθοδολογιών για την αντιμετώπισή τους μέσα από την 

υλοποίηση μεθοδολογιών πολυκλιμακωτής ανάλυσης εικόνας. 

Ο SPOR δοκιμάστηκε σε ένα σενάριο εξαγωγής κτιρίων από εικόνες QuickBird στο οποίο 

σχεδιάστηκε και υλοποιήθηκε πολυκλιμακωτή ανάλυση εικόνας για την εξαγωγή τους. 

Υλοποιήθηκαν τρία (3) επίπεδα κατάτμησης. Για κάθε επίπεδο κατάτμησης υλοποιήθηκε 

ιεραρχία θεματικών κατηγοριών σε μια οντολογία. Στο επίπεδο 1 έγινε εντοπισμός 

κατηγοριών οι οποίες είχαν φασματικές ιδιότητες παρόμοιες με τα κτίρια. Στο επίπεδο 3, 

έγινε εξαγωγή των δρόμων ώστε να αφαιρεθούν από το τελικό αποτέλεσμα. Ο τελικός 

εντοπισμός των κτιρίων έγινε στο επίπεδο 2. Τα αποτελέσματα κρίθηκαν ικανοποιητικά μετά 

από σύγκρισή τους με φωτοερμηνευτικά δεδομένα αναφοράς, καθώς από τη συνολική 

επιφάνεια των κτιρίων, εντοπίστηκε επιτυχώς το 75%, ενώ υπήρχε σφάλμα συμπερίληψης 

της τάξης του 20%. 

Στη συνέχεια διερευνήθηκε η δυνατότητα εξαγωγής του αιγιαλού μέσω της υλοποίησης 

πολυκλιμακωτής ανάλυσης εικόνας και ασαφούς οντολογικής συλλογιστικής. Η διαχείριση 

των παράκτιων ζωνών είναι πολύ σημαντική σε παγκόσμιο επίπεδο καθώς πάνω από 50% 
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του πληθυσμού του πλανήτη ζει σε απόσταση έως 60 Km από τις ακτές. Επίσης, η 

χαρτογράφηση του αιγιαλού είναι σημαντική λόγω των φυσικών διεργασιών που λαμβάνουν 

χώρα στη ζώνη αυτή, καθώς επηρεάζουν την ποιότητα του νερού. Στην Ελλάδα, η 

χαρτογράφηση της ζώνης του αιγιαλού θα συμβάλει και στην ολοκλήρωση του Εθνικού 

Κτηματολογίου. Παρόλο που η χαρτογράφηση αυτή έχει ήδη γίνει με φωτοερμηνεία, 

αποφασίστηκε η διερεύνηση μεθοδολογιών για την τυποποίηση των κριτηρίων της 

ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε. με στόχο την αυτόματη χαρτογράφηση του αιγιαλού. Οι περιγραφές 

των κριτηρίων περιλαμβάνουν συσχετίσεις του αιγιαλού με γειτνιάζουσες χρήσεις γης (πχ 

βλάστηση, κλίσεις, τυχόν έργα υποδομής κτλ). Έτσι αποφασίστηκε η διερεύνηση της 

τυποποίησης των κριτηρίων με την υλοποίηση κατάλληλης οντολογίας στα πλαίσια της 

GEOBIA. Λόγω του πλήθους και της πολυπλοκότητας των κριτηρίων διερευνήθηκαν τα πιο 

κοινά εμφανιζόμενα στον ελλαδικό χώρο, το κριτήριο της βλάστησης και το κριτήριο της 

στέψης πρανούς.  Για την αφαίρεση ανεπιθύμητης φασματικής και χωρικής πολυπλοκότητας 

από τις εικόνες, εφαρμόστηκε  φίλτρο ανισοτροπικής διάχυσης στα δεδομένα. Τα φίλτρα 

αυτά εξομαλύνουν μικρές διαφορές φωτεινότητας, ενώ παράλληλα διατηρούν τις κύριες 

ακμές των αντικειμένων. Υλοποιήθηκε μια ιεραρχία τριών επιπέδων κατάτμησης όπου 

μικρότερα αντικείμενα σχεδιάστηκαν στα χαμηλότερα επίπεδα και μεγαλύτερα στα 

υψηλότερα. Για κάθε επίπεδο κατάτμησης υλοποιήθηκε στην οντολογία ιεραρχία θεματικών 

κατηγοριών στις οποίες ταξινομήθηκαν τα αντικείμενα. Η σειρά υλοποίησης των επιπέδων 

ήταν 1-2-3. Στο επίπεδο 1 αναγνωρίστηκαν γενικές θεματικές κατηγορίες (πχ βλάστηση, νερό, 

επιφάνειες με χαμηλή κλίση). Στη συνέχεια μέσω ερμηνευτικών κανόνων που προέκυψαν 

από τα κριτήρια χάραξης του αιγιαλού δημιουργήθηκαν ενδιάμεσες οντότητες 

συσχετιζόμενες με τα υποαντικείμενα του αιγιαλού, ο οποίος αιγιαλός αναγνωρίστηκε τελικά 

στο 3ο και τελευταίο επίπεδο. Η αξιολόγηση έγινε με φωτοερμηνευτικά δεδομένα αναφοράς 

και κρίθηκε ικανοποιητική καθώς αναγνωρίστηκε επιτυχώς περίπου το 89% της συνολικής 

έκτασης του αιγιαλού, ενώ τα σφάλματα συμπερίληψης δεν ξεπέρασαν το 14%. 

Επίσης, ένα σενάριο ανίχνευσης μεταβολών σε περιαστικό περιβάλλον σχεδιάστηκε και 

υλοποιήθηκε. Μια ιεραρχία τριών επιπέδων σχηματίστηκε για την αναγνώριση των αλλαγών. 

Η σειρά δημιουργίας των επιπέδων ήταν 1-2-3. Στο χαμηλότερο επίπεδο με χρήση ασαφών 

κανόνων και πολλαπλών DBN ταξινομήσεων έγινε μια πρώτη εκτίμηση των περιοχών όπου 

έγιναν αλλαγές. Στη συνέχεια με χρήση ερμηνευτικών κανόνων στα επίπεδα 2 και 3 

προσδιορίστηκαν οι τελικές αλλαγές. Τα αποτελέσματα έπειτα από σύγκριση με 

φωτοερμηνευτικά δεδομένα αναφοράς κρίθηκαν ικανοποιητικά, καθώς 73 από συνολικά 87 

αλλαγές εντοπίστηκαν επιτυχώς, με μικρά σφάλματα παράλειψης (10) και συμπερίληψης 

(14).  

Τέλος έγινε διερεύνηση, υλοποίηση και επέκταση προχωρημένων τεχνικών επεξεργασίας 

ψηφιακών μοντέλων αναγλύφων και την αξιοποίησή τους μέσα στο πλαίσιο της GEOBIA  με 
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στόχο την αναγνώριση αλουβιακών ριπιδίων και Bajadas. Η αναγνώριση στηρίχθηκε στην 

προσέγγιση της αναγνώρισης προτύπων γεωμορφών το οποίο έχει αναπτυχθεί στις ΗΠΑ και 

ευρέως χρησιμοποιηθεί διεθνώς για την χαρτογράφηση γεωμορφών. Η χαρτογράφηση 

αυτών των σχηματισμών είναι πολύ σημαντική ειδικά σε ερημικές και ημιερημικές περιοχές 

όπου πιθανότατα οι σχηματισμοί αυτοί είναι η κύρια πηγή επιφανειακού νερού για χρήση 

σε ύδρευση και άρδευση. Έχοντας αυτό ως κίνητρο, διερευνήθηκαν και αναπτύχθηκαν 

προχωρημένες τεχνικές ανάλυσης εικόνας, ψηφιακών μοντέλων αναγλύφου και 

αναπαράστασης γνώσης με απώτερο στόχο την αυτόματη αναγνώριση αυτών των 

γεωμορφών. Στα πλαίσια αυτής της διερεύνησης η αναγνώριση αυτών των γεωμορφών έγινε 

αρχικά από ψηφιακά μοντέλα εδάφους (ΨΜΕ) και στη συνέχεια το αποτέλεσμα βελτιώθηκε 

με χρήση πολυφασματικών δορυφορικών δεδομένων. Για την απομάκρυνση του θορύβου το 

ΨΜΕ φιλτραρίστηκε με βέλτιστο φίλτρο Weiner. Στη συνέχεια, καθώς ένα από τα απαραίτητα 

στοιχεία για τον εντοπισμό αυτών των μορφών είναι το υδρογραφικό δίκτυο, σύγχρονες 

τεχνικές σχετιζόμενες με τη διαχείριση βυθισμάτων και επίπεδων περιοχών, καθώς και 

εξαγωγής του υδρογραφικού δικτύου από ΨΜΕ διερευνήθηκαν, επεκτάθηκαν, 

υλοποιήθηκαν. Τα αποτελέσματα της εξαγωγής του δικτύου ήταν ικανοποιητικά όσον αφορά 

το δίκτυο των υπερκείμενων λεκανών, αλλά όχι τόσο ικανοποιητικά για την εξαγωγή του 

διχοτομικού υδρογραφικού προτύπου. Έτσι αποφασίστηκε πως στη μέθοδο αναγνώρισης θα 

γίνει προσέγγιση του προτύπου μέσω ευρετικών κανόνων οι οποίοι θα χαρακτήριζαν τις 

ιδιότητες του. Επίσης, λόγω του ιδιαίτερου ημικυκλικού σχήματος του αλουβιακού ριπιδίου, 

σχεδιάστηκε και υλοποιήθηκε ένας δείκτης ο οποίος λαμβάνει υπόψη το υδρογραφικό 

δίκτυο της υπερκείμενης κοιλάδας, τη θέση,  τον προσανατολισμό, και το μέγεθος της κάθε 

υποψήφιας για αλουβιακό ριπίδιο μορφής. Ο δείκτης συνέκρινε την υποψήφια μορφή με 

ισεμβαδικό κυκλικό τομέα και υπολόγιζε ένα ποσοστό ταύτισης. Η τελική διαδικασία 

εξαγωγής έγινε μέσω της GEOBIA με την υλοποίηση δύο ιεραρχιών κατάτμησης και 

ταξινόμησης των αντικειμένων μέσω οντολογιών. Η πρώτη ιεραρχία περιείχε 4 επίπεδα με 

σειρά δημιουργίας 4-1-2-3. Στο επίπεδο 4 αναγνωρίστηκαν οι κοιλάδες που υπήρχαν στην 

περιοχή. Στο 1ο επίπεδο έγινε αναγνώριση των ζωνών στις οποίες πιθανώς να υπάρχουν 

αλλουβιακά ριπίδια ή/και bajadas. Στο αποτέλεσμα της ταξινόμησης του επιπέδου 1 έγινε 

διόρθωση και πλήρωση κενών στα επίπεδα 2 και 3. Στο αποτέλεσμα της ταξινόμησης του 

επιπέδου 3 έγινε μορφολογικό άνοιγμα ώστε να μπορέσουν να διαχωριστούν οι αλλουβιακοί 

σχηματισμοί από άλλες περιοχές, και στο αποτέλεσμα αυτό έγινε κατάτμηση για τον 

υπολογισμό νέων αντικειμένων που θα αναπαριστούσαν τις επιθυμητές γεωμορφές, 

σχηματίζονταν το επίπεδο 2b. Για να εντοπισθούν υποψήφια τμήματα του υδρογραφικού 

δικτύου σχετιζόμενα με τη μεταφορά φερτών υλικών για το σχηματισμό των αλουβιακών 

ριπιδίων, το επίπεδο 1b δημιουργήθηκε κάτω από το επίπεδο 2b. Η τελική αναγνώριση των 

μορφών έγινε στο επίπεδο 2b. Τα αποτελέσματα της αναγνώρισης μετά από αξιολόγηση με 

φωτοερμηνευτικά δεδομένα αναφοράς κρίθηκαν ικανοποιητικά, καθώς για όλες τις μορφές 
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εντοπίστηκε επιτυχώς το 90% των εκτάσεών τους, ενώ ο δείκτης ποιότητας του τελικού 

αποτελέσματος ήταν της τάξης του 89%. 

Ο τελευταίος στόχος της παρούσας διατριβής ήταν η υλοποίηση και δημοσίευση των 

αλγορίθμων οι οποίοι υλοποιήθηκαν ως ελεύθερο λογισμικό. 

Λέξεις κλειδιά: Αντικειμενοστρεφής ανάλυση εικόνας, ανίχνευση μεταβολών, κτίρια, 

εξαγωγή αιγιαλού, αλλουβιακά ριπίδια. 
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1 Introduction 

1.1 Recent Advancements in Remote Sensing: From Pixels to Objects 
Aerial photography has a long tradition dating back to Nadar’s balloon-based images of Paris, 

France in 1858, while civilian space-borne remote sensing (RS) began in 1972 with Landsat-1. 

This sensor set the standards and foundation for future multi-spectral scanner technologies 

and its corresponding pixel-based image analysis (Blaschke et al. 2014).  Towards the 

development of automatic image analysis tools, it is required a processing scheme able to 

encapsulate effectively the content of remote sensing data. Due to landscape complexity, the 

provided remotely sensed data represent a large variety of thematic categories, such as man-

made infrastructure, various types of vegetation and water bodies etc. Furthermore, the scale 

of the represented categories differs in terms of their size and range. 

In very high resolution imagery such as IKONOS and QuickBird, traditional classification 

methods which are tailored for lower resolution imagery have become less effective given the 

magnitude of heterogeneity appearing in the spectral feature space of such imagery. 

Classification results of such approaches exhibit the “salt and pepper” phenomenon in their 

classification results. Such problems occur also to medium resolution satellite data, such as 

Landsat TM, SPOT etc. Moreover the fact that pixels do not come isolated but are knitted into 

an image full of spatial patterns was left out of the early per-pixel investigation. Consequently, 

the full structural parameters of the image (i.e., color, tone, texture, pattern, shape, shadow, 

context, etc.) could only be exploited manually by human interpreters. However, around the 

year 2000, the first software appeared specifically for the delineation and analysis of image-

objects (rather than individual pixels) from remotely sensed imagery. The subsequent area of 

research was referred to as object-based image analysis (OBIA). Since geographic space is 

intrinsic to this analysis, and as such, should be included in the name of the concept and, 

consequently, in the abbreviation: Geographic Object-Based Image Analysis (GEOBIA- Hay and 

Castilla 2008; Blaschke et al. 2014). 

1.2 Geographic Object-Based Image Analysis  
Unlike the georelational data model (such as the one employed in relational spatial 

databases), which separates spatial and attribute data and links them by using a common 

identifier, the object-oriented data model views the real world as a set of individual objects 

that may have spatial and non-spatial interrelationships among each other. Thus, an object 

has a set of properties and can perform operations on requests (Blaschke et al. 2014). To 

better understand and develop an explicit specification for a GEOBIA framework, Hay and 

Castilla (2008) provided a number of requirements for such frameworks:  

• Earth centric – its data sources originate from the surface of this planet. 
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• Multi-source capable – its methods provide for the inclusion of multiple different 

digital data types/sources within a common geographic referent and for the flow of 

information and intelligence from pixel-based RS data to GIS ready polygons. 

• Object-based – meaningful image-object delineation is a prerequisite of this approach, 

from which relevant intelligence can be generated. 

• Multiscale – a scene is often composed of objects of different size, shape and spatial 

location, thus multiscale analysis both within a hierarchical level and between levels is 

essential. Because GEOBIA is multiscale, potential exists to model alternative 

‘multiscale’ realities based on selective user defined aggregations of fine scale 

segments and/or their attributes. 

• Contextual – it has the ability to incorporate or integrate surrounding information and 

attributes. When processing RS data, this includes mechanisms to quantify an object's 

photointerpretive elements i.e., color (hyperspectral), tone, size, shape, pattern, 

location, and texture. By adding time (multitemporal imagery), as well as other 

attributes such as height (Lidar) and heat (Thermal) into the ‘contextual pool’, there 

will be a greater information potential for each image-object than ever possible for 

individual pixels. 

• Adaptive – it allows for the inclusion of human semantics and hierarchical networks – 

whether through experts systems, or expert interpreters, so that analysis may be 

tailored to specific user needs. However, to be fully adaptive, GEOBIA tools need to 

build on existing Open GIS standards and provide mechanisms to integrate user and 

domain specific ontologies into a semantic web so as to globally facilitate improved 

sharing, integration and generation of new synergistic geographic information and the 

development of their associated markets. 

Thus, to determine the objects belonging to a thematic category one can employ Standard 

Nearest Neighbor or advanced Machine Learning techniques such as the Support Vector 

Machine (SVM), Relevance Vector Machine (RVM), Random Forest, Convolutional Neural 

Networks etc. (Baatz and Schäpe 2000; Tzotsos and Argialas 2008; Blaschke and Strobl 2010). 

Such methods can take advantage of the spectral, textural, and geometric properties of the 

objects and statistically determine the class they belong. However, the representation of 

contextual information within this multiscale requires the expression of human-derived 

interrelationships between the objects allowing the delineation of complex thematic 

categories. Since thematic delineation is often related to a certain field and application within 

this field (e.g. urban planning, geology etc.), different thematic maps can be derived from the 

same data. Thus, thematic delineation requires the application of field-expert knowledge into 

a problem-solving strategy through an establish-and-refine-paradigm, within the environment 



18 

 

of a knowledge representation system. Thus interpretation rules derived from knowledge 

stored in books, photo-interpretation manuals, certain specifications, relative work on the 

field, and personal experience of the phenomenon needs to be explicitly formalized and 

represented within an automated image analysis system (Argialas and Harlow 1990, Arvor et 

al. 2013, Blaschke et al. 2014). 

1.3 Ontologies in GIS, Remote Sensing, and GEOBIA  
Knowledge formalization into a computer-conceivable form creates a semantic gap between 

the complex high-level semantics employed by experts to describe a phenomenon (e.g. water 

absorbs infrared radiation) and the low-level data-derived numerical information extracted 

from the provided data (ndwi values larger than 0.25). To this end, rule-based systems and 

ontologies offer potential for knowledge formalization (Argialas and Harlow 1990, Argialas et 

al. 2013, Arvor et al. 2013, Blaschke et al. 2014). 

Gruber (1995) defines the ontology as a formal, explicit specification of a shared 

conceptualization. An ontology is usually composed of two parts: A Terminological component 

(TBox) were the properties and the concept definitions are represented, and an Assertion 

Component (ABox) where the objects of the domain along with their properties are stored. 

Due to the Semantic Web movement, ontologies became a requirement to represent 

machine-readable knowledge. They support (Ding et al. 2007): 

• Extensibility, as ontologies can be built in an incremental manner, by taking advantage 

of concepts declared in other ontologies. 

• Visibility, as ontologies are shared through web publishing mechanisms and employ 

proper Syntax and semantics (URI based vocabulary, XML Syntax, RDF graph data 

model). 

• Inferenceability, as ontologies are not only employed to represent knowledge but also 

infer knowledge based on the defined axioms. 

Thus, ontologies can be employed when data, information, or services from different 

disciplines should be integrated, exchanged, or queried. Furthermore, ontologies enable 

semantic interoperability (Grubber 1995, Janowicz 2010).  

Ontologies can help solve the semantic gap issue towards the implementation of an automatic 

image recognition system based on GEOBIA that is able to bridge the expert derived symbolic 

information and the numerical information extracted from the image (Arvor et al. 2013). 

Ontology-based recognition consists of classifying an image object as an instance of a specific 

type if it satisfies all of the constraints defined in the ontology for that object type (Arvor et 

al. 2013). The development of ontology-based recognition requires (i) formalizing the 

symbolic knowledge of an expert, of a specific image object type in an ontology, and (ii) 
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associating this knowledge with image segments described through annotations that are 

based on the same ontology.  

Ontology studies have already been conducted in GIS, scene analysis, remote sensing, and 

GEOBIA. In GIS, ontologies have been successfully applied to perform knowledge 

representation. Torres et al. (2005) employed ontologies to describe the semantic content of 

topographic and thematic maps. Lutz and Klien (2006) used an ontology to explicitly specify 

and formalize the meaning of the domain concepts into a machine-readable language that 

enabled spatial information retrieval on a semantic level. Zhan et al. (2008) developed a 

framework to retrieve spatial information, based on spatial relation and geometric relation 

ontologies. Lüscher et al. (2009) developed an ontology-driven approach for cartographic 

pattern recognition in support of map generalization. 

In the field of scene analysis, ontologies have been also employed to extract scene content. 

Wang et al. (2006) established a method for retrieving scene imagery, by developing 

ontologies which combined text annotation and image features. Hudelot et al. (2008) 

organized spatial relationships in an ontology representing topological relations (adjacency, 

inclusion etc.) and metric relations which further contained distance relations (far/close 

distance etc.), and directional relations (right to, left to, etc.). This ontology was linked with an 

upper ontology, describing brain entities, and spatial reasoning was performed to recognize 

various elements of the brain. In Bannour and Hudelot (2014) a multi-stage reasoning 

approach was developed, to perform semantic annotation/tagging on a target dataset 

containing ground scenes.  An ontology was developed based on the imagery annotations and 

a common sense ontology was employed to extract additional concepts that linked the 

concepts defined by the annotations. A multi stage reasoning approach was developed to 

extract the annotations for each scene.  

In the field of remote sensing, ontologies have been employed to represent expert knowledge 

for the representation of the properties and relations of objects in an image. Kohli et al. (2012) 

developed a generic slum ontology based on input from 50 experts, covering 16 countries. 

Bertrand et al. (2013) developed an ontology framework based on OWL 2 and the Semantic 

Web Rule Language (SWRL) employing expert knowledge, to describe urban elements and 

their spatial organization. 

Ontologies have been also applied in the field of GEOBIA. Durand et al. (2007) developed a 

methodology for object recognition, from very high resolution imagery, based on an ontology 

developed by machine learning techniques and experts. The ontology was based on spectral 

and geometric properties of the objects. In Forestier et al. (2012) the matching algorithm 

introduced by Durand et al. (2007) was employed to map the observations extracted from the 

image with the domain nomenclature (linguistic notions). The method was employed to 
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extract image domain elements from QuickBird Imagery. In Belgiu and Lapoltshammer (2013), 

information contained in visual interpretation keys was modelled into an ontology to perform 

extraction from Very High Resolution imagery. An ontology was designed, defining a class – 

subclass hierarchy based on the United Nations Land Cover Classification System. Each class 

was defined by employing spectral and geometric features existing in visual interpretation 

keys. Belgiu et al. (2014) employed random forest and ontologies to extract buildings from ALS 

data by employing topographic and geometric features.  

1.4 Research Objectives and Contributions 
The objective of this research was the investigation and implementation of state-of-the-art 

computer vision and artificial intelligence approaches within the framework of GEographic 

Object-Based Image Analysis (GEOBIA). More specifically, the motivation was the investigation 

of the potential of ontologies as a knowledge formalization method in GEOBIA through 

multiscale analysis to improve the knowledge representation for the GEOBIA classification 

task. A second objective was the integration of ontologies with advanced machine learning 

methods towards the automation of the recognition process. A third objective was the 

employment of these algorithms in specific image analysis problems such as building 

extraction, building change detection, foreshore, alluvial fan, and bajada identification. Finally 

the fourth objective was the development of these image analysis frameworks in the form of 

Free and Open-Source Software (FOSS). 

More specifically, the first objective was the design and implementation of a SPatial Ontology 

Reasoner (SPOR) to allow the development of GEOBIA ontologies by employing fuzzy, spatial 

and multiscale representations, with time efficiency (Argyridis and Argialas 2015). An 

enhanced version of the Web Ontology Language 2 (OWL 2) with fuzzy representations was 

adopted and expanded to represent fuzzy spatial relationships within the framework of 

GEOBIA. Segmentation results are stored within PostgreSQL. An ontology described the 

class/subclass hierarchy and class definitions. SPOR integrated PostgreSQL and the ontology, 

to store the objects, compute spatial relationships during the reasoning process, and store the 

classification results.  

The second objective was the integration of advanced machine learning approaches with 

ontological reasoning in GEOBIA. To address this, the OWL 2 syntax was enhanced to allow the 

declaration of machine learning restrictions within class definitions. To define the machine 

learning method and its parameters, a machine learning datatype was designed and 

implemented. The information related with to machine learning method properties was 

encoded within proper OWL 2 metadata. To denote which classes should be involved in the 

same machine-learning classification, the machine-learning restriction should be included in 

their definition. Training samples were created as OWL 2 individuals. The machine learning 

method which was integrated with SPOR was the Deep Belief Network (DBN).  
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The third objective was the investigation and addressing of specific image analysis problems. 

Four remote sensing cases were investigated: building extraction, foreshore extraction, 

building change detection, and alluvial fan and bajada identification.  

To evaluate SPOR a building extraction approach through multi-scale analysis from QuickBird 

imagery was designed. Three segmentation and classification levels were designed and 

implemented. Aim of level 1 was the extraction of spectral categories with spectral properties 

similar to the present buildings. Aim of level 3 was the elimination of the road network. The 

final buildings were extracted on level 2 with satisfactory results, since 75% of the total 

building rooftop area was correctly identified. 

To investigate foreshore mapping from single-date very high resolution imagery and DTM, a 

multi-scale GEOBIA approach, employing anisotropic filtering and fuzzy ontologies was 

designed and implemented. At first the imagery was filtered through anisotropic 

morphological levelings. A three level segmentation approach was investigated, to design 

proper objects.  Ontological reasoning was employed to formalize symbolic expert knowledge 

describing the spectral and spatial organization of the foreshore to classify the objects into 

semantic categories. Accuracy assessment with reference data provided satisfactory results, 

as for the identified foreshore border a mean error of 2.4m was scored. 

To investigate building change detection, a GEOBIA approach integrating Deep Learning 

classification and Fuzzy ontologies was designed and implemented. The method was tested in 

building monitoring in suburban areas of Greece. Three suburban areas of east Attica, Greece 

were selected as representative to test the methodology. For each area one QuickBird and 

one WorldView 2 image, taken in 2006 and 2011 respectively were employed. Three 

segmentation levels and a three level class hierarchy were developed for the extraction 

process. Deep Belief Networks and fuzzy reasoning were employed on the lowest level of the 

segmentation hierarchy (Level 1) for an initial detection of areas of possible change. To detect 

the changes in building infrastructure, the classification result of Level 1 was refined based on 

interpretation rules, developed on the upper levels of the hierarchy (Level 2 and Level 3). 

Classification evaluation showed satisfactory results since 93.5% of the total number of 

changes were successfully detected, while the commission error was less than 20%. 

Finally, to investigate alluvial fan and bajada mapping, a GEOBIA approach, following the 

landform-pattern element approach was designed and implemented. Alluvial fan and bajada 

mapping is important for practical and economic importance to society. Thus, state-of-the-art 

geomorphometric, image processing, and knowledge representation methods were 

investigated, enhanced, and developed, towards the simultaneous identification of alluvial 

fans and bajadas. Data used included the 10m spatial resolution National Elevation Dataset, 

provided by USGS and a pan-sharpened 15m Landsat OLi imagery. The study area was located 
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in the Death Valley, Nevada, USA. DTM processing included noise-removal filtering and 

depression treatment. A two phase GEographic Object-Based Image Analysis approach 

involving multi-scale segmentation and fuzzy ontology-based reasoning was designed. On the 

first phase, topographic-forms were identified, by examining their morphometry and spatial 

relationships. On the second phase, the alluvial fans and bajadas were identified based on 

drainage pattern texture and topographic features such as landform shape. Due to a 

systematic omission on the fan toe outline, each fan and bajada spectral signature was taken 

into account to determine the omitted areas through region growing on the multispectral 

imagery. Accuracy assessment indicated satisfactory results, since a 90.2% completeness and 

88.8% quality was achieved for both alluvial fans and bajadas. 

In terms of the algorithms developed in this dissertation, this research introduced five (5) 

contributions. One (1) fuzzy ontology reasoner optimized for GEOBIA studies which integrates 

fuzzy rule-based reasoning and deep learning classification, four (4) ontologies developed for 

GEOBIA studies compatible with the developed reasoner, one (1) improved version of a 

depression treatment algorithm, and one (1) algorithm for drainage network extraction, and 

one fan-shape index. The last three aided in alluvial fan and bajada mapping. 

Finally, this dissertation had the following publication contributions: 

• Two publications in highly rated Remote Sensing Journals (Argyridis and Argialas 2015; 

Argyridis and Argialas 2016). 

• One submitted manuscript in a highly rated Remote Sensing Journal, accepted with 

minor revision (Argyridis and Argialas 2017a). 

• One submitted publication in a highly rated Remote Sensing Journal pending review 

(Argyridis and Argialas 2017b). 

• One publication submitted in conference proceedings (Argyridis and Argialas 2014). 

1.5 Overview 
The presented contributions are presented in detail in the following chapters. In Chapter 2, 

the development of SPOR is presented. Chapter 3 discusses the development of the foreshore 

extraction algorithm. Chapter 4 concerns the enhancement of SPOR with Deep Learning 

classification and the development of a change-detection method based on this 

improvement. Chapter 5 presents the development of a GEOBIA method towards the 

automatic identification of alluvial fans and bajadas and Chapter 6 presents the overall 

conclusions along with the prospects for future research. 
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2 Development of a Generic Spatial Ontology Reasoner for Multi-

scale GEOBIA ontologies 

2.1 Introduction 
In GEographic Object-Based Image Analysis (GEOBIA) an image is partitioned into primitives 

(segments), which are classified into semantic categories by employing Standard Nearest 

Neighbor, fuzzy inferencing or advanced machine learning techniques (Baatz and Schäpe 

2000; Blaschke et al. 2008; Hay and Castilla 2008; Tzotsos and Argialas 2008; Blaschke and 

Strobl 2010; Mallinis et al. 2011; Blaschke et al. 2014). However, to extract complex landscape 

components in terms of spectral, geometric, and rich spatial relationships, it is required the 

representation of expert knowledge into a problem-solving strategy through an establish-and-

refine-paradigm, within the environment of a knowledge representation system (Argialas and 

Harlow 1990; Argialas et al. 2013). This requires the application of heuristic rules derived from 

knowledge stored in books, photo-interpretation manuals, relative work on the field and 

personal experience of the phenomenon (Argialas and Harlow 1990; Arvor et al. 2013). To 

take advantage of this symbolic knowledge within an automated image analysis system it is 

required to be formalized into a computer-conceivable form. Thus, a semantic gap arises 

between the high-level semantics employed by the experts to describe the phenomenon 

(Vegetation has high infrared reflectance values) and the numerical low – level information 

extracted from data (NDVI values greater than 0.25). To address this problem, methods are 

required to identify optimal features to discriminate between evaluated classes and to 

explicitly specify the knowledge of the experts on the evaluated classes (Belgiu et al. 2014). 

To this end, rule-based systems and ontologies offer potential for knowledge formalization 

(Argialas and Harlow 1990; Lüscher et al. 2009; Belgiu et al. 2014). 

In recent years, ontologies have become popular as a means of representing machine-

readable knowledge. An ontology is defined as a formal, explicit specification of a shared 

conceptualization (Gruber 1995). Ontologies allow to capture the semantics of the domain 

concepts into knowledge organization systems that can be easily reused and extended (Belgiu 

and Lampoltshammer 2013). In Guarino (1997), ontologies were classified based on their 

detail as top-level (describing generic concepts), domain (describing the knowledge of a 

certain field), task (describing generic tasks) and application ontologies (describing concepts 

related to a certain field and related tasks). Domain, task and application ontologies need to 

be aligned with the top-level ontology to ensure collaboration with other domain applications. 

Ontologies can help solve the semantic gap problem towards the implementation of an 

automatic image recognition system based on GEOBIA that is able to bridge the symbolic 

information derived from the experts and the numerical information extracted from the data 

(Blaschke et al. 2014). Ontology-based recognition consists of classifying an image object as 
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an instance of a specific type if it satisfies all of the constraints defined in the ontology for that 

object type (Arvor et al. 2013). The development of ontology-based recognition requires (i) 

formalizing the symbolic knowledge of an expert, of a specific image object type in an 

ontology, and (ii) associating this knowledge with image segments described through 

annotations that are based on the same ontology.  

The applicability of ontologies in GEOBIA has already been depicted in the literature (e.g. 

Durand et al. 2007, Forestier et al. 2012, Belgiu et al. 2014). However, still remains the need 

to integrate fuzzy reasoning with spatial relationships and multiscale analysis in an ontology-

based GEOBIA approach. Indeed, Belgiu et al. (2013) stated the need for fuzzy reasoning in 

GEOBIA ontologies. Furthermore, the importance of spatial relationships has already been 

stated in early GEOBIA studies (Baatz and Schäpe 2000; Burnett and Blaschke 2003). Although, 

spatial reasoning with ontologies for image analysis has been examined (Hudelot et al. 2008; 

Forestier et al. 2012; Bannour and Hudelot 2014), still remains the need of spatial reasoning 

for multiscale analysis in GEOBIA ontologies. Arvor et al. (2013) and Belgiu et al. (2014) stated 

a limitation of current Description Logic (DL) – based ontology reasoners, concerning the 

required processing time when dealing with a large number of classes and objects, which is 

very common in GEOBIA studies. 

To address the above stated needs, this research aided in the development of an ontological 

reasoner for GEOBIA, named SPatial Ontology Reasoner (SPOR). SPOR was developed to 

provide representation of fuzzy spectral, geometric, and spatial relationships for the 

development of a GEOBIA ontology. Spatial relationships were designed to express 

relationships between single or multiple levels of analysis. Considering the language 

employed to represent ontologies, OWL 2 was selected, which is a World Wide Web 

Consortium (W3C) recommendation (W3C 2012). OWL 2 ensures the integration and 

exchange of GEOBIA ontologies with current semantic web technologies. Hay and Castilla 

(2008) stated the need to incorporate Open GIS Standards (Open Geospatial Consortium 

2014) in GEOBIA applications to ensure collaboration with current remote sensing and GIS 

software. Thus, SPOR was designed to incorporate technologies which already adopted these 

standards (notably PostgreSQL) and also provide for time efficiency in processing large 

amount of data. 

2.2 Methodology and Implementation 

2.2.1 Fuzzy OWL 2 Ontologies for GEOBIA 

Based on the OWL 2 specification, OWL 2 ontologies enable the design of classes, individuals, 

properties, datatypes, and annotations (W3C 2012). In the following the main expressions 

along with their employment in SPOR is presented. It is noted that all OWL 2 expressions will 

be presented in Manchester OWL 2 Syntax which is a user-friendly syntax for OWL 2 

descriptions (W3C 2012). Thus of OWL 2 supports: 
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• Classes to represent groups of things, thus they were employed to represent thematic 

categories. 

• Individuals to represent actual objects of the domain, thus they could be employed to 

represent the segments from the segmentation process. However, since spatial 

reasoning was required, and also to ensure collaboration with current GIS software, it 

was determined to store the segments in PostgreSQL. 

• Data properties to represent relationships between an individual and data values, thus 

they were employed to represent quantitative properties of the objects. 

• Object properties to connect pairs of individuals, thus they were employed to 

represent spatial relationships between objects. Spatial relationships were interpreted 

as topologic links between two segments. 

• Datatypes to refer to sets of data values, which are used in expressions to restrict Data 

properties. 

• Annotation properties to encode metadata of the ontology itself or the declarations 

within the ontology. 

• Axioms which are statements asserted to be true in the described domain. 

• Expressions to represent complex notions in the described domain, employed mostly 

in class definitions. 

Bobillo and Straccia (2011) enhanced OWL 2 with fuzzy representations encoded as OWL 2 

metadata (Annotation properties). This allowed the development of class definitions with 

fuzzy representations. To restrict Data properties, fuzzy datatypes were employed (Bobillo and 

Straccia 2011). As an example, the partial definition of Vegetation class is presented as follows: 

ndvi some mediumToLargeValuesOfNDVI 

The mediumToLargeValuesOfNDVI is a fuzzy datatype. The fuzzy information, regarding the 

membership function and its borders is encoded, within an annotation property called 

fuzzyLabel, as follows: 

 <Datatype type="rightshoulder" a="0.2" b="0.4" /> 

To design fuzzy object properties capable of defining topologic/spatial relationships, the 

relative annotation should include information regarding the type of the spatial relationship, 

the membership function, and its borders. Thus, in the restriction isSurroundedBy some 

Water, the isSurroundedBy notion was designed to be the fuzzy object property representing 

the spatial relationship of the segments with the ones belonging to the Water class. Thus, the 

fuzzy object property was designed to have an annotation property as it follows: 
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<Role datatype="highRelBrdr" spatial_relationship="relative_border" /> 

The highRelBrdr is a fuzzy datatype with similar definition to the one presented earlier. The 

spatial_relationship attribute describes the type of the spatial relationship represented by the 

fuzzy object property. The developed spatial relationships express relationships between 

objects belonging at the same level (relative border, length of common border, distance of 

centroids, and distance from the outer border of a class), between an object and objects of 

lower levels (relative area and overlaps) and between an  object and objects of higher levels 

(overlapped by). In Table 1, the expressions supported by SPOR are presented.  

2.2.2 Design and Implementation of SPOR for GEOBIA 

To gain in terms of computation performance, SPOR was developed in C++. Integration of 

SPOR with PostgreSQL was achieved through PostgreSQL C++ interface. SPOR performs the 

following actions (Figure 1). 

• Parsing of the ontology. 

• Connection to PostgreSQL and retrieval of the stored segments attribute table. 

• Computation of topologic tables (if not present). 

• Reasoning/classification process based on the axioms defined in the ontology. 

• Labeling of segments. 

Initially the ontology is parsed by SPOR. Afterwards the attribute table of the segments is 

retrieved from PostgreSQL. For multiscale segmentation analysis (Baatz and Schäpe 2000; 

Tzotsos and Argialas 2006), two topologic relationships were considered to represent the 

hierarchical and spatial relationships of the segments. Each segment requires knowledge of 

its neighbors at the same level, its sub-objects at lower levels and its super objects at higher 

levels. Before the reasoning process, if these relationships have not been computed by the 

segmentation algorithm, SPOR carries out the required computations through SQL queries. 
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Table 1: Expressions supported by SPOR and MV computation. 

Constructor Manchester OWL 2 Syntax  Explanation/Information 

Class VegetationL1, WaterL1 Image thematic categories 

Individual id100 Samples required in cases where DBN 
classification is involved. Segments are 
stored in PostgreSQL 

Top Thing All classes are subclasses of Thing 

Fuzzy Datatype fuzzy_RS_0.2_0.3 Fuzzy function and borders  

Datatype Property ndvi, msavi2, 
machineLearningFeature 

Segment quantitative properties 

Object Property has_Fuzzy_RS_0.3_0.5_RelativeBord
er 

Spatial relationships 

Existential fuzzy data 
property restriction 

ndvi some fuzzy_RS_0.2_0.3 Each segment MV is determined 
based on its feature value and Fuzzy 
Datatype information. 

Conjunction WaterL1 and VegetationL1 
 
(msavi2 some fuzzy_RS_0.5_0.6)   
and (ndvi some  
fuzzy_RS_0.2_0.3) 

For each segment the MV is computed 
as the minimum MV computed from 
the two involved expressions. 

Fuzzy Existential Object 
Property restriction 

has_Fuzzy_RS_0.3_0.5_RelativeBord
er some WaterL1 

Spatial relationship with a class. At 
first the value of the spatial 
relationship is computed for each 
segment. Afterwards the MV is 
computed based on the feature value 
and the fuzzy information. 

Disjunction VegetationL1 or WaterL1 
 
(msavi2 some fuzzy_RS_0.5_0.6) or 
(ndvi some fuzzy_RS_0.2_0.3) 

For each segment the MV is computed 
as the maximum MV computed from 
the two involved expressions. 

Negation not (VegetationL1) 
 
not (msavi2 some fuzzy_RS_0.5_0.6) 

Negation. For each segment the MV is 
computed by subtracting the MV 
determined by the involved 
expression from 1. 

Concept Definition  not (WaterL1) and  ( (msavi2 some 
fuzzy_RS_0.5_0.6)   or (ndvi some  
fuzzy_RS_0.2_0.3) ) 

A complex expression that defines a 
class. 
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Figure 1: Overview of SPOR architecture 

To determine the MV of each segment with all classes, SPOR iterates over the classes defined 

in the ontology (Figure 2). As OWL 2 does not provide information regarding the hierarchy 

depth of the examined class, the classes are examined in alphabetical order. At first the 

reasoner iterates over the referenced classes in class definition (e.g. parent, spatially-related, 

or appearing in a logical operation). If MVs of the segments for these classes have not as yet 

been computed, then the reasoner tries to compute their MVs. To consider objects with 

adequate MVs for all parent classes, as candidate segments for the currently examined class, 
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are considered objects having MV greater than 0.5 for all parent classes 

(computeCandidates()). Afterwards the spatial relationships are computed 

(computeSpatialRelationship()). If the class has a spatial relationship with herself, then 

multiple classification iterations are performed. In the first iteration the spatial relationship is 

ignored. In the next iteration, the objects belonging to the examined class are considered to 

compute the spatial relationship. This is repeated until the classification result is not altered 

between two iterations. 

From the examined-class definition, a node graph is created (computeMembership()). Each 

node can represent a class, a feature node (fuzzy Data or Object property restriction) or a 

logical operator (and, or, not). For each candidate-segment the MV is computed. The node is 

scanned in depth-first order and the membership value for each node is computed. If it is a 

class node, then the MV of the current candidate with the referenced class is set as node 

value. If it is a feature node, then the MV of the current candidate is computed, based on its 

feature value and the fuzzy operator determined by the ontology. If it is a logical operator 

node, then at first the MVs of the sub-nodes are computed. Afterwards, based on Zadeh 

semantics (Zadeh 1965) the logical node MV is computed. Computation stops when the MV 

of the top node is computed. If the final MV is greater than 0.5, then the class name of the 

currently examined class is assigned as label to the candidate. SPOR is a Free and Open Source 

Software under the terms of GPLv3 (or later) and the source code can be downloaded from 

the following url: 

https://github.com/ArArgyridis/SPOR 
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Figure 2: SPOR reasoning process that determines the membership value of each segment with a class. 

2.3 Building Extraction through GEOBIA and SPOR 

In this section building extraction from remotely sensed imagery is presented. The aim was to 

develop a problem solving strategy to represent the implicit relationships of image elements 

with an ontology. Data used included one fused QuickBird image of a sub-urban residential 

area of east Attica, Greece, taken in 2006. Before the extraction analysis, the image was 

georeferenced.  

2.3.1 Design of the ontology 

The aim was to represent domain knowledge (such as land cover classes) and remote sensing 

knowledge (such as the required indices for the definition of land cover classes) within a 

GEOBIA ontology. The development began with the specification phase (Paslaru et al. 2006; 

Brusa et al. 2006), where the general concepts that were going to be described by the 

ontology were determined. These concepts correspond to the land use / land cover classes, 

present in the imagery (Figure 3). Given that only spectral information was available for 

building extraction and the majority of the rooftops appeared relatively spectrally 
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homogeneous and rectangular, it was decided to extract the rooftops based on their spectral 

and geometric signature.  

Figure 3: Overview of the examined area. The coordinates are presented in Greek National Grid 87 (EPSG: 

2100). 

In the conceptualization phase, the main concepts were formalized in an initial taxonomy, 

independently of any software or language implementation along with the properties 

required to define each class. As the taxonomy was related with the levels of analysis, the 

number and parameters of the segmentation levels were also approximately determined. The 

lower level properties were determined based on remote sensing knowledge, literature 

survey, and personal experimentation. Knowledge formalization, the final step, involved the 

development of a fuzzy OWL 2 ontology, based on the conceptual scheme. Through the 

formalization step, the ontological conceptual scheme was refined, by a repeated trial and 

error process. In the following, the extraction strategy is presented. 

For the segmentation process the multiresolution segmentation algorithm included in 

Definiens eCognition 8.6 (Trimble 2011) was employed. Any single or hierarchical 

segmentation algorithm could be employed along with SPOR. Segmentation results were 

exported from eCognition and imported into PostgreSQL. To visualize extraction results, the 

Quantum GIS environment was employed (QGIS Development Team 2014). The aim was to 
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extract rooftops based on their spectral and geometric properties; thus spectrally-

homogeneous areas should at first be detected, which could later be refined into rooftops 

considering their geometry as well. It was determined that three segmentation levels were 

required for the extraction of buildings. Each level aimed to represent different scale objects. 

In implementing a mixed bottom-up and top-down approach, larger objects were created in 

higher levels of the hierarchy and finer scale objects were created in the lower levels. Details 

concerning the classes, properties and class definitions developed, can be found in the 

uploaded ontology in the following link, while an overview of the developed classes is 

presented in Figure 4.  

https://github.com/ArArgyridis/GEOBIA-Ontologies/blob/master/GEOBIA_Ontology_Quickbird_2006.owl 

Figure 4: Classes developed in building extraction from QuickBird 2006. 

Given that vegetated, shadowed, and water areas (e.g. pools) can be detected based on their 

spectral properties, a small scale should be employed for proper extraction. Thus, Level 1 was 

designed on the lower level of the multiresolution analysis (Scale=5, Shape = 0.5 and 

Compactness = 0.5). For the segmentation process all the available bands were employed. 

First, the classes VegetationL1 and WaterL1 were created and defined by large values of the 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index 

(NDWI), respectively. The rest of the areas were classified as OtherAreaL1 (Figure 4). 

ShadowL1 was created as subclass of OtherAreaL1, defined by low intensity values of Hue 
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Saturation Intensity (HSI) transform of infrared, red, and green bands. All other areas were 

classified as NotShadowL1 (Figure 4). As buildings and roads have similar spectral signatures, 

roads were also extracted to avoid confusion with the buildings. As roads are elongated 

objects, the small objects of Level 1 were not appropriate for their extraction.  

Thus, a coarser level (Level 3) (Scale = 45, Shape = 0.8, Compactness = 0.0) was created above 

Level 1. Again, all bands were included in the segmentation process. Classification results from 

Level 1 were projected onto Level 3, and the classes VegetationL3, WaterL3, and ShadowL3 

were developed and defined (Figure 4). To demonstrate the projection from lower to upper 

levels the definition of class VegetationL3 is presented in Equation (1): 

VegetationL3 EquivalentTo: 

Level3 and (has_RS_0_1_RelativeAreaToSubObjects some VegetationL1)  (1) 

This definition reads as follows: Objects were assigned to class VegetationL3 if they were 

belonging to Level3 class and had relative area with the objects classified as VegetationL1, 

greater than 50%. All other areas were classified as OtherAreaL3. RoadL3 was created as 

subclass of OtherAreaL3, defined by large values of the asymmetry, low values of the density 

and relatively large values of the length properties. The results from the classification process 

of Level 3 were projected onto Level 1. Thus, the class RoadL1 was defined as subclass of 

NotShadowL1 (Figure 4). To demonstrate the projection from upper to lower levels, the 

definition of class RoadL1 is presented in Equation (2): 

RoadL1 EquivalentTo: 

NotShadowL1 and (is_RS_0_1_OverlappedBy some RoadL3) (2) 

This definition reads as follows: objects were assigned to class RoadL1 if they were classified 

as NotShadowL1 and they were overlapped by objects of class RoadL3. As NotRoadL1 were 

classified NotShadowL1 segments which were not classified as RoadL1. Four classes 

(WhiteSurfaceL1, OrangeSurfaceL1, DarkGreySurfaceL1 and BrightGreySurfaceL1) were 

designed to represent objects with spectral properties similar to those of the rooftops. After 

defining each class (e.g. WhiteSurfaceL1) a complement class was defined (e.g. 

NotWhiteSurfaceL1). The next class (e.g. OrangeSurfaceL1) and its complement 

(NotOrangeSurfaceL1) were defined as subclasses of the aforementioned class (Figure 4). This 

approach was applied to all four spectral classes related to rooftop areas. A set of spectral 

indices were employed, to describe the spectral properties of each of these classes.  

The objects, classified as WhiteSurfaceL1, OrangeSurfaceL1, DarkGreySurfaceL1, and 

BrightGreySurfaceL1 were spatially merged and a new level, Level 2 was created between 

Level 1 and Level 3. Classification results from Level 1 were projected onto Level 2, thus the 

classes BrightGreySurfaceL2, DarkGreySurfaceL2, OrangeSurfaceL2, RoadL2, ShadowL2, 
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VegetationL2, WaterL2 and WhiteSurfaceL2 were defined through a set of proper 

topologic/spatial properties (Figure 4). Misclassified Level 1 areas were excluded by applying 

additional spectral and texture properties.  

Based on geometric properties (such as the rectangular fit, length/width ratio and the area) 

the classes BrightGreySurfaceL2, DarkGreySurfaceL2, OrangeSurfaceL2 and WhiteSurfaceL2 

were refined into the final classes representing building roofs: BrightGreyRoofL2, 

DarkGreyRoofL2, OrangeRoofL2 and WhiteRoofL2.  To demonstrate the geometric refinement, 

the definition of the class WhiteRoofL2 is presented in Equation (3): 

WhiteRoofL2 EquivalentTo: 

WhiteSurfaceL2  

and (areaM2 some fuzzy_TRP_20_40_360_380) 

and (rectangularFit some fuzzy_RS_0.6_0.7) (3) 

This definition reads as follows: Objects were assigned to class WhiteRoofL2 if they were 

classified as WhiteSurfaceL2, and had area between 30m2 and 370m2, and had rectangular fit 

greater than 0.65. In Figure 5 the results of the building extraction process are presented. 

Some omission errors are shown in ellipsis, while some commission errors are shown in 

rectangles. A visual examination showed satisfactory results, since few areas were 

misclassified as rooftops, while the majority of the rooftops were correctly classified. 

2.3.2 Accuracy assessment 

Classification results were compared with human interpreted ground truth and were 

evaluated with two methods. At first, the number of ground truth rooftops was compared to 

the number of extracted building rooftops. From the total of 191 rooftops, 166 (87%) were 

detected, 25 (13%) were omitted and 16 (8%) were committed. On a second step, the areas 

correctly detected (True Positive - TP), omitted (False Negative – FN) or committed (False 

Positive – FP) were computed by comparison to the ground truth. Thus, the Completeness, 

Correctness, and Quality indices were computed as shown in Equations (4)-(6) (Agouris et al. 

2004). 

TP
Completeness= =75.0%

TP+FN
 

(4) 

TP
Correctness= =79.4%

TP+FP
 

(5) 

TP
Quality= =62.8%

TP+FP+FN
 

(6) 
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Evaluation based on fuzzy logic was performed by computing the classification stability index 

which is the difference between the two largest membership values for each segment (Trimble 

2011). Table 2 contains the results of this index, for each of the building classes of Level 2. 

Table 2: Evaluation based on fuzzy logic index (classification stability). 

Class Name Number of 

Classified Objects 
Mean St. dev Min Max 

BrightGreyRoofL2 22 0.85 0.18 0.52 1 

DarkGreyRoofL2 26 0.88 0.18 0.53 1 

OrangeRoofL2 89 0.97 0.08 0.57 1 

WhiteRoofL2 45 0.94 0.13 0.55 1 

2.4 Discussion of Results 
A fuzzy reasoner, SPOR, was designed and implemented in C++ for OWL 2, by integrating 

PostgreSQL with a fuzzy OWL 2 ontology. This enabled the definition of classes with fuzzy data 

properties and the expression of spatial relationships though properly designed fuzzy object 

properties. The design of the reasoner enabled handling of spatial relationships of objects 

belonging to a single or multiple levels of analysis. Adoption of fuzzy logic enabled the 

evaluation of the knowledge base through stability measures. The integration with PostgreSQL 

allowed computation of spatial relationships during the reasoning process and ensured 

collaboration with current GIS and remote sensing technologies. 
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Figure 5: Result of building extraction from QuickBird 2006 imagery. Omission errors appear in ellipses while 

commission errors appear in rectangles. 
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Development of GEOBIA ontologies provides for critical review and correction of the 

represented knowledge. It can also be directly employed in a GEOBIA process to extract 

landscape components. The adoption of OWL 2 for ontology formalization ensures the 

integration of GEOBIA ontologies between them or with others from different disciplines 

through Semantic Web ontologies. Towards the exchange of knowledge with other domains, 

it can be examined the integration of the developed ontology with top level ontologies, such 

as DOLCE or SWEET (Belgiu et al. 2014). To experiment with and evaluate SPOR, a case study 

regarding building extraction was designed. Classification stability results indicated that the 

segments were classified with high confidence in their respected classes, since the lowest 

average stability was 0.8503. Accuracy assessment showed that 87% of the total number of 

buildings and 75.0% of the total rooftop area was correctly classified. Most of the omission 

error, was due to the heterogeneity of spectral and geometric signature of some rooftops. 

Most of the commission error was due to the spectral similarities of various bare ground areas 

with rooftops. Elimination of such commission error could be achieved if DSM data were 

available, such as in Belgiu et al. (2014). The above observations indicate the difficulty of 

completely reducing the semantic gap.  

Possible extensions of SPOR might include some of the following. An earlier approach, 

developed by Hudelot et al. (2008), aimed at the development of a generic spatial relations 

ontology. It can be examined the extension and integration of their approach within SPOR, to 

take advantage of the representation of spatial relationships from a generic ontology. 

Furthermore, approaches have been developed aiming to automatically create an ontology 

from given data by employing machine learning techniques (Durand et al. 2007; Forestier et 

al. 2012; Bannour and Hudelot 2014; Belgiu et al. 2014). Such approaches might be employed 

for the automatic design of the ontology hierarchy and the determination of the required 

features that define each class. Another consideration could be the extension of the reasoner 

with additional fuzzy membership functions and spatial properties. 

Despite the rather large size of the knowledge base (37 classes, 300.000 segments) the 

reasoning process required satisfactory time to complete (around 31s, on an Intel i7 3770K). 

This addressed the issues reported by previous studies (Arvor et al. 2013; Belgiu et al. 2014), 

regarding the extended time required by current reasoners to perform the classification 

process, on large knowledge bases. 

2.5 Conclusions and Future Perspectives 
Already, a lot of effort has already been developed within the GEOBIA community to extract 

semantic information from images. The results of these efforts (knowledge bases, employed 

strategies, extraction process) today exist only on paper or isolated and unrelated 

implementations. Thus, the generic knowledge base is available only to a strict number of 

individuals. Ontologies, on the other hand, have been developed for knowledge exchange 
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within the Semantic Web. Therefore, such efforts provide an opportunity for the development 

of a collaboration tool to allow exchanging and enhancing of the developed ontologies for 

image extraction by all GEOBIA community. 

SPOR is as Free and Open Source Software, under the terms of GNU GPL v3 (Free Software 

Foundation, 2007). The purpose is to integrate SPOR with other open source GEOBIA 

environments, such as GNORASI (Doulaverakis et al. 2014). This would allow to take advantage 

of the capabilities of an integrated environment and to enhance the design of such ontologies 

with the development of additional tools such as an appropriate ontological editor. 
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3 Fuzzy Ontology-Based Foreshore Identification from Digital 

Terrain Model and Very High Resolution Airborne Imagery 

through GEOBIA Multi-Scale Analysis 

3.1 Introduction 
Coastal zone management is important due to the growing social and demographic pressures 

that threaten its sustainability. More than half of the world's population lives within 60 km of 

the coast. Almost 70% of the world’s beaches are under coastal erosion (Moore et al. 1999; 

Ghosh et al. 2015).  

Coastal mapping from remotely sensed data has already been achieved from 

multispectral/hyperspectral, Digital Elevation Model (DEM) data or their combination. Pixel-

based, GIS, and object-based approaches have been developed for coastline extraction and 

change detection (e.g. Liu et al. 2007, Urbanski 2010, Braga et al. 2013, Hannv et al. 2013, 

Niya et al. 2013, Gong et al. 2014, Ghosh et al. 2015), as well as coastal habitat mapping such 

as the beach, foreshore, backshore, and dunes (e.g. Bertels et al. 2012, Baptist 2009, Urbanski 

2010, Forestier et al. 2013). 

Foreshore mapping specifically is important, since the processes that take place in the 

foreshore affect the nearby water quality. Proper management of the foreshore will improve 

property values and provide recreational amenity (Water and Rivers Commission 2001). 

Furthermore foreshore mapping assists on the definition of the zone of entry (ZOE), 

delineating coastal landing zones, coastal obstacle mapping, and other terrain analysis 

operations (FM 5-33, 1992). Foreshore is the land between the mean high water limit and the 

mean low water limit (Baptist 2009). Foreshore is the land that adjoins or directly influences 

a waterway. It is the area of transition between the edge of the waterway and the furthest 

extent of riparian vegetation, flood prone land, and riverine landforms or simply the adjacent 

upland. Thus, the morphology of the foreshore is affected by the presence of various 

elements, such as the present vegetation, slopes, etc. (Water and Rivers Commission 2001, 

Department of Water 2012). Since the foreshore is related with land management and 

property, its delineation can be also affected by the relevant law. 

Foreshore definition involves foreshore spatial relationships with the nearby land cover. To 

standardize foreshore mapping, the Greek Cadastral office (Ktimatologio S.A.) published a set 

of foreshore interpretation criteria as guidance to photo – interpreters.  Ktimatologio S.A. 

(2006) provided multiple criteria to determine the foreshore position, which consider present 

nearby land cover and terrain features such as vegetation, slope, infrastructure etc. In this 

study, the two most commonly occurring interpretation criteria were examined, the 

vegetation border and the topographic crown border, defined as follows (Ktimatologio S.A., 

2006): 
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The vegetation border criterion defines the foreshore as the land between the sea and last 

vegetation line towards the land. It is applied in cases where vegetation is present, the shore 

has small slope gradients and the various types of vegetation are clearly the limit of the 

foreshore. The last line of vegetation towards the sea is taken into account. The exact border 

should coincide with the tree trunk position (Figure 6.a). 

The topographic crown border criterion is applied in cases where there is significant height 

difference in the foreshore area (Figure 6.b). The delineation is performed on a Digital Terrain 

Model (DTM). The borderline is placed on the topographic crown. 

  

(a) (b) 

Figure 6: Foreshore Interpretation examples, provided by Ktimatologio S.A, (2006) a. The vegetation border 

criterion presented with green line. b. Vegetation border (green line) and topographic crown border criteria 

(orange line). 

Since the spatial organization of the foreshore is important in foreshore definition and 

delineation, a Geographic Object-Based Image Analysis (GEOBIA) approach was investigated. 

GEOBIA partitions the imagery into primitives (segments) representing thematic objects. 

These objects can be assigned into thematic categories through machine learning. However, 

mapping of thematic categories having complex spectral, geometric and spatial relationships, 

requires the formalization of expert knowledge into a problem-solving strategy through an 

establish-and-refine-paradigm, within the environment of a knowledge representation system 

(Argialas and Harlow 1990, Baptist 2009, Arvor et al. 2013, Forestier et al. 2013).  The expert 

knowledge acquired from books, photo-interpretation manuals, relative work on foreshore, 

and personal experience of the phenomenon needs to be formalized into a computer-

conceivable form to be employed in image analysis approaches. This leads to a semantic gap, 

between the expert high-level semantics employed for the interpretation of the phenomenon 

and the data-derived low-level information. To this end, ontologies offer potential for 

knowledge formalization (Arvor et al. 2013, Blaschke et al. 2014). 

Gruber (1995) defines the ontology as a formal, explicit specification of a shared 

conceptualization. The Semantic Web movement made ontologies a requirement for 
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knowledge representation. Thus, they were built to be extensible (created in an incremental 

manner), visible (shared through web publishing mechanisms) and support inference. 

Furthermore, ontologies enable semantic interoperability (Grubber 1995, Janowicz 2010). 

Ontologies can help to address the semantic gap issue towards the implementation of an 

automatic image recognition system based on GEOBIA that is able to bridge the symbolic 

information derived from the experts and the numerical information extracted from the image 

(Blaschke et al. 2014). Their applicability in GEOBIA has already been depicted in previous 

studies (e.g. Forestier et al. 2013, Argyridis and Argialas 2015). 

Aim of this chapter was the extraction of the foreshore border towards the land by making 

explicit and by formalizing the interpretation rules related to foreshore delineation 

(Ktimatologio S.A. 2006) through a GEOBIA approach. Objects representing thematic 

categories were extracted in a multi-scale approach. Image interpretation knowledge required 

for object classification into semantic categories, was formalized through the development of 

an ontology, which represented the explicit and/or implicit relationships of each category.  

3.2 Materials and Methods 

3.2.1 Preprocessing: Morphological Levelings 

Aim of the preprocessing was the reduction of noise and undesired spatial detail by preserving 

the borders of the main thematic categories of the imagery. Thus morphological leveling 

filtering was performed (Meyer and Maragos 2000, Meyer 2004, Karantzalos and Argialas 

2006). A leveling Λ(F, H) transforms a marker H, into an image G, which is a leveling of image 

F as follows. If {H < F}, H is increased as little as possible. If {H > F}, H is decreased as little as 

possible. This process continues until a flat zone is created or G reaches the borders of F. Thus 

G is flat when {G < F} and {G > F} and the procedure continues until convergence. Leveling 

markers can be sampled from Gaussian scale-space. Employment of different scaled markers, 

can create a multiscale representation of F. In this study, the Anisotropic Morphological 

Leveling (AML) similar to Karantzalos and Argialas (2006) was employed. AML was designed 

to smooth small differences in reflectance values in a direction parallel to image object edges, 

while preserving major edges. 

3.2.2 GEOBIA Ontologies 

OWL 2 ontologies allow the design of Classes, Individuals, Properties, Datatypes and 

Annotations.  In the following, all OWL 2 restrictions will be presented in Manchester OWL 

Syntax (W3C 2012). The reasoning process was performed by SPOR (Argyridis and Argialas 

2015). Classes represent groups of things (image categories), while Individuals represent 

actual objects of the domain (segments). Data properties represent relationships between an 

individual and data values (e.g. spectral or geometric properties). Object properties express 

relationships between pairs of Individuals. Datatypes refer to sets of data values. Annotation 
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properties (AP) encode metadata related to the ontology or its entities. Axioms or Expressions 

are statements that are asserted to be true in the described domain. 

Fuzzy datatypes were employed to encode fuzzy information for Data property restriction. 

Membership functions were represented through the left shoulder (LS) right shoulder (RS), 

triangular (TR) and trapezoidal (TRP) functions (Bobillo and Straccia 2011). Thus the 

expression mNDWI some fuzzy_RS_0.05_0.15 restricts the NDWI (Normalized Difference 

Water Index) property with a fuzzy right shoulder function (greater than) with its left border 

equal to 0.05 and its right border equal to 0.15. Respectively, fuzzy objects properties were 

employed to restrict fuzzy spatial relationships (Argyridis and Argialas 2015). Thus the 

expression has_Fuzzy_RS_0.15_0.40_RelativeBorderTo some SeaL2, denotes all the objects, 

having relative border with objects classified as SeaL2, restricted by a right shoulder function 

with borders 0.15 and 0.40. Interweaving of such expressions through the and, or, and not 

operators were employed as class definitions. 

3.3 Foreshore identification through ontologies and GEOBIA 

3.3.1 Data used and foreshore interpretation 

The study area was the coastal zone of Preveza Prefecture, Greece. A total length of 5 Km of 

coastline was investigated, divided into seven representative areas (Figure 7). In areas a-d the 

foreshore is interpreted based on the vegetation border criterion. In areas e-f the foreshore is 

interpreted by both the vegetation and topographic crown border criteria. In area a the 

foreshore area is composed mostly by vegetation with relative border with the sea, while a 

small part of it is bare ground. Areas b – d have variations related to their slopes and 

elevations. Area e had minor slopes. Area f had both major and minor slopes. In area g the 

foreshore has been affected by human intervention. For each area, the dataset, included a 

georeferenced multispectral image taken by the airborne DMC sensor, having four bands 

(blue, green, red, and infrared) with spatial resolution of 0.25m and a Digital Terrain Model 

(DTM) of 1m spatial resolution. The data were also accompanied by foreshore reference data, 

derived by manual photo – interpretation including coastline and the foreshore border 

towards the land (Figure 7). 
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Figure 7: Overview of the examined areas. Foreshore in areas a – d is interpreted based on vegetation border 

criterion, while in areas e-g is interpreted based on vegetation and topographic crown border criteria. 

3.3.2 Foreshore identification and evaluation of results 

Due to the different spatial resolution of the multispectral imagery and the DTM, to eliminate 

possible noise, and compute larger homogeneous objects during the segmentation process 

(due to the local increase of pixel homogeneity), the multispectral imagery was smoothed by 

the AML algorithm. After extensive trial and error experimentation a 2000 scale was found 

appropriate for the AML.  

To design an ontology-based identification strategy, two types of knowledge were investigated 

and represented: domain knowledge (such as land cover classes) and remote sensing 

knowledge (such as the indices required for class definitions). The exact classes, properties, 

and their interweaving in the ontology, were determined after three phases: the specification, 

conceptualization, and knowledge formalization (Paslaru et al. 2006, Brusa et al. 2006) as 

shown in the following sections.    

3.3.3 Ontology Specification and Conceptualization 

In the specification phase the main thematic categories required to be represented by the 

ontology were determined. Foreshore border delineation required the extraction of the area 

between the coastline and the foreshore border towards the land, a unified polygon called 

from now on foreshore-area. The foreshore border will be derived by intersecting the 

foreshore-area with the inland areas. Coastline identification required the determination of 

land and sea (e.g. Hannv et al. 2013). Identification of the Foreshore land-border based on the 

provided interpretation rules (Ktimatologio S.A. 2006) requires the following. From the 

vegetation border criterion definition, two components should be identified: the foreshore 

vegetation, and small sloped areas, close to the sea. From the definition of the topographic 
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crown border criterion, areas with large slopes, close to the sea should be identified as part of 

the foreshore. 

In the conceptualization phase, the main classes were represented in an initial taxonomy. For 

each class a number of properties which could be employed in their definition were also 

examined. The classes within the taxonomy were organized to eliminate areas of no interest, 

leading to the desired thematic categories (Figure 8). The Sea and Land areas should be firstly 

identified. Afterwards, the vegetated areas (Vegetation) should be identified from the other 

(Impervious) areas. Given that the foreshore is composed by land and vegetated areas, the 

foreshore components should be derived as sub-classes of the Vegetation and Impervious 

classes. Thus, the VegetationOfForeshore and InlandVegetation should be defined as sub – 

classes/objects of Vegetation. Furthermore, the impervious land composing the foreshore-

area can be separated into two types: areas with small slopes (Vegetation Border criterion) 

and areas with large slopes (Topographic crown border criterion). Thus, three classes, the 

LandWithLowSlopeNearTheSea, the LandWithHighSlopeNearTheSea, and InlandImpervious 

should be defined as sub – classes/objects of Impervious (Figure 8). The Inland areas should 

be composed by the areas classified as InlandVegetation and InlandImpervious, while the 

ForeshoreArea should be composed by the areas classified as VegetationOfForeshore, 

LandWithHighSlopeNearTheSea, and LandWithLowSlopeNearTheSea.  

Land, Sea and Vegetation class definitions should involve spectral indices (e.g. NDWI and 

NDVI). LandWithLowSlopeNearTheSea and the LandWithHighSlopeNearTheSea definitions 

should involve the expression of slope gradient values and neighborhood relationships with 

the Sea or other foreshore-area components. Determination of the last line of vegetation 

towards the land, expressed in VegetationOfForeshore definition, should involve 

neighborhood relationships with the LandWithLowSlopeNearTheSea (Figure 8). 

 

Figure 8: Conceptualization taxonomy indicating the part-whole hierarchy of the main components related to 
the foreshore extraction. 
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3.3.4 Formalization of the conceptual scheme 

In the knowledge formalization stage, the abstract taxonomy developed in the 

conceptualization phase was transformed into a fuzzy OWL 2 ontology. While the taxonomy 

initially thought to specify the profound categories required for foreshore-area identification 

(Figure 8), a great number of additional classes needed to be invented and defined as 

intermediate concepts for knowledge representation in order to fill the semantic gaps intrinsic 

to the GEOBIA approach (Arvor et al. 2013, Blaschke et al. 2014). The semantic gap issue was 

taken care by an establish-and-refine-paradigm, and classes were conceived, represented, and 

formalized through a trial – and – error procedure where proper heuristics were developed 

for class definitions. Since class definitions in GEOBIA are derived as a result of hierarchical 

multiresolution segmentation and repeated classification based segmentations, they 

constitute an additional procedural semantic gap. During this process multiple segmentation 

levels were developed and tested, along with correlation plots of the feature values to 

determine proper features for the taxonomy. 

Since a unique scale could not be determined to extract each foreshore component as a single 

object, the dataset was initially oversegmented to extract sub-objects of the foreshore 

components. Through proper classification-based fusions and classification refinement of the 

resulting fused objects through spatial reasoning the final foreshore components were 

derived. Thus, a multi – scale segmentation approach was investigated. In a bottom – up 

approach, finer objects were created on the lower levels while larger objects were created on 

the higher levels of the segmentation hierarchy. Segmentation was performed by the multi – 

resolution segmentation algorithm included in Trimble eCognition (Baatz and Schäpe, 2000). 

Segmentation results were exported from eCognition and imported into PostgreSQL to 

perform reasoning with SPOR (Argyridis and Argialas 2015). The segmentation hierarchy was 

represented within the ontology by developing a class representing the objects of each 

segmentation level. For example, the class Level1 represented Level 1 segmentation objects. 

To ease the reading of the ontology a notation was appended to the names of the thematic 

classes indicating the segmentation level of the class members. For example, the class 

VegetationL2 represented Level 2 objects, classified as vegetation. Details concerning the 

exact classes, properties, property formulas, and ranges of values employed in this study can 

be found in the following URL: 

https://github.com/ArArgyridis/GEOBIA-Ontologies/blob/master/GEOBIA_foreshore.owl 

Level 1 aimed to represent sub-objects of the spectral and topologic categories, related to 

foreshore-area components (sea, vegetation, and low/high sloping areas) on the lowest level 

of the hierarchy. Thus it was created with a small scale (Scale = 5, Shape = 0.1, Compactness = 

0.1). Segmentation was performed on the four multispectral bands and the slope gradient.  
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Due to the orthorectification procedure, the imagery contained blank (empty) areas. Thus, 

classification began with the elimination of these areas and the classes BlankSpaceL1 and 

ImageSpaceL1 were developed. Initially the land and sea should be determined to identify the 

coastline. However, the Sea could not be determined only by spectral information since the 

water areas did not have adequate depth near the coast to absorb infrared radiation, allowing 

the extraction of sea-like areas only and later refine them as Sea. Thus, as sub-classes of 

ImageSpaceL1 the classes SeaLikeAreaL1 and NotSeaLikeAreaL1 were defined (Figure 9.a). To 

avoid omission of sea areas, small values of the slope and elevation parameters were included 

in SeaLikeAreaL1 definition. For the determination of vegetated areas, the classes 

VegetationL1 and NotVegetationL1 were developed as sub-classes of NotSeaLikeAreaL1 

(Figure 9a). Medium values of the NDVI feature were examined and employed in VegetationL1 

definition. 

(a) (b) (c) 

Figure 9. Final developed taxonomy for foreshore identification 

Since the sea was not properly identified, LandWithLowSlopeNearTheSea (Figure 8) could not 

be properly identified as well. Thus, areas with smooth slopes were identified, which will be 

refined on an upper level. However, data examination showed that the Vegetation border 

criterion was not only applied in areas with small slopes, but in areas with larger slopes as well 

if the elevation was sufficient and the vegetation was the border between the foreshore and 

the main land. Thus, NotVegetationL1 was refined into LowAltitudeAreaL1 (determined by 

relative small values of the mDem property) and OtherAreaL1 (Figure 9.a). 

All imagery of the Hellenic foreshore mapping project, was acquired in a way to represent the 

sea as feature with large areal extents to properly determine the foreshore. Thus, to 

determine the Sea through GEOBIA, it was decided to take advantage of its spectral (e.g. 

absorption of infrared radiation) and geometric properties (large areal feature). Furthermore, 

refinement of LowAltitudeAreaL1 into LandWithLowSlopeNearTheSea (Figure 8), required the 

examination of these objects as a single unified object. To address these needs, SeaLikeAreaL1 
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and LowAltitudeAreaL1 objects were spatially fused and a new level (Level 2) was created 

above Level 1.  

The class SeaL2 (Figure 9.b) was defined by projecting the objects classified as SeaLikeAreaL1 

on Level 2 and  determining proper values for the NDWI and area features, as presented in 

Equation (7): 

Class: SeaL2 EquivalentTo: 

     Level2 

     and (hasFuzzy_RS_0_1_RelativeAreaToSubObjects some SeaLikeAreaL1) 

     and (areaM2 some fuzzy_RS_800_1000) 

     and (mNdwi some fuzzy_RS_0.05_0.15)      (7) 

This definition reads  as follows: As SeaL2 were classified Level2 objects, covering 

SeaLikeAreaL1 objects by at least 50%, and had area greater than 900m2, and had ndwi values 

greater than 0.1.  

To separate the LowAltitudeAreaL1 foreshore-area objects from other inland areas, since the 

foreshore has at the same time relative border with the sea, the inland areas, and the imagery 

borders, the relative border with the SeaL2 can be no more than about 30%. This heuristic 

was represented with a left shoulder function having left border equal to 0.15 and a right 

border equal to 0.40. The final definition of the class LowAltitudeAreaNearTheSeaL2 is 

presented as presented in Equation (8): 

Class: LowAltitudeAreaNearTheSeaL2 EquivalentTo: 

     Level2 

 (8) 

     and (hasFuzzy_RS_0_1_RelativeAreaToSubObjects some LowAltitudeAreaL1) 

     and (has_Fuzzy_RS_0.15_0.40_RelativeBorderTo some SeaL2)  

This definition reads as follows: As LowAltitudeAreaNearTheSeaL2 were classified Level2 

objects, covering LowAltitudeAreaL1 objects by at least 50%, and having relative border with 

SeaL2 objects greater than 27.5%.  

Level2 vegetated areas were determined by projecting VegetationL1 objects (VegetationL2). 

Level2 objects not classified as either LowAltitudeAreaNearTheSeaL2, SeaL2, or VegetationL2, 

were classified as OtherAreaL2. 

The foreshore-area defined by the Topographic Crown border criterion, consists on impervious 

areas with large slopes. To determine such areas, at first the classes 

SlopedForeshoreLikeAreaL2 and InlandLikeAreaL2 were defined as sub-classes of 
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OtherAreaL2. After experimentation, it was determined that SlopedForeshoreLikeAreaL2 

should be defined with the mSlope feature restricted by a right shoulder function with left 

border equal to 21.5 and right border equal to 23.5. All other areas were classified as 

InlandLikeAreaL2. 

Due to the coastal configuration in some of the examined areas, objects of the foreshore, close 

to the sea, classified as LowAltitudeAreaL1 at Level 1, were not classified as 

LowAltitudeAreaNearTheSeaL2. Thus, the classes OmittedForeshoreAreaL2 and InlandAreaL2 

were developed as subclasses of InlandLikeAreaL2. OmittedForeshoreAreaL2 definition was 

determined to involve the spatial relationship with the LowAltitudeAreaL1 and a search buffer 

beginning at the border of SeaL2 objects. A search distance of 4 to 5 meters was found 

appropriate after experimentation. Thus, the class OmittedForeshoreAreaL2 was developed 

as sub-class of OtherAreaL2, and defined as presented in Equation (9):  

Class: OmittedForeshoreAreaL2  EquivalentTo: 

     InlandLikeAreaL2 

     and (hasFuzzy_RS_0_1_RelativeAreaToSubObjects some LowAltitudeAreaL1) 

     and (has_Fuzzy_LS_4_5_DistanceToExterior some SeaL2)  (9) 

This definition reads as follows: As OmittedForeshoreAreaL2 were classified InlandLikeAreaL2 

objects covering LowAltitudeAreaL1 objects by at least 50%, with less than 4.5m distance from 

SeaL2 objects. All other objects were classified as InlandAreaL2. 

Foreshore-area vegetation (VegetationOfForeshore – Figure 8) had two components: the 

vegetation having relative border with (i) the smooth sloped area of the foreshore and (ii) the 

sea (Vegetation border criterion). The tree trunk position was estimated by an ideal tree with 

a 5.5m crown diameter. The tree trunk should reside near the center of the tree. These 

heuristics were included in the definition of the class VegetationOfForeshoreL2, as presented 

in Equation (10): 

Class: VegetationOfForeshoreL2   EquivalentTo: 

     VegetationL2 

      ((has_Fuzzy_TRP_0_0.01_2.5_3.0_DistanceToExterior some 

LowAltitudeNearTheSeaL2) 

      or (has_Fuzzy_TRP_0_0.01_2.5_3.0_DistanceToExterior some 

OmittedForeshoreAreaL2) 

     or (has_Fuzzy_TRP_0_0.01_2.5_3.0_DistanceToExterior some SeaL2)) (10) 
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This definition reads as follows: As VegetationOfForeshoreL2 were classified the objects having 

a distance between 0 and 2.75m from the areas classified as LowAltitudeNearTheSeaL2, or 

OmittedForeshoreAreaL2, or SeaL2. 

To define the final foreshore-area components the expression of spatial relationships of 

unified objects was required. Thus, the objects classified as OmittedForeshoreAreaL2, 

InlandAreaL2, OtherVegetationL2, SlopedAreaL2 and VegetationOfForeshoreL2 were spatially 

merged and a new level (Level 3) was created above Level 2. On Level 3 the classes 

ForeshoreL3, InlandAreaL3 and SeaL3 (Figure 9.c) were created.  

SeaL3 objects were determined by projecting SeaL2 objects onto Level 3. For ForeshoreL3 class 

definition the spatial relations between all the candidate components were examined as 

shown in the definition presented in Equation (11). The fuzzy function borders were 

determined after sufficient experimentation. 

Class: ForeshoreL3 EquivalentTo: 

Level3 

      and (((hasFuzzy_RS_0_1_RelativeAreaToSubObjects some SlopedAreaL2) 

            and (has_Fuzzy_RS_0.09_0.11_RelativeBorderTo some ForeshoreL3)) 

            or ((has_Fuzzy_LS_0_0.2_RelativeBorder some BlankSpaceL3) 

                  and (has_Fuzzy_RS_0.7_0.8_RelativeBorder some ForeshoreL3)) 

            or (hasFuzzy_RS_0_1_RelativeAreaToSubObjects some 

OmittedForeshoreAreaL2) 

            or (hasFuzzy_RS_0_1_RelativeAreaToSubObjects some 

VegetationOfForeshoreL2) 

            or (has_Fuzzy_RS_0.7_0.8_RelativeBorder some ForeshoreL3)) 

      and (has_Fuzzy_LS_0.90_0.95_RelativeBorder some SeaL3)       (11) 

 

Determination of ForeshoreL3 objects required multiple classification iterations. In each 

iteration additional Level3 objects were classified as ForeshoreL3. Classification stopped when 

no other objects could be added in the current iteration step. Thus, in the first classification 

step, as ForeshoreL3 were assigned objects: 

• Having at most 92.5% relative border with SeaL3 objects since the foreshore-area has 

a large relative border with the sea, or  
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• Objects classified as OmittedForeshoreAreaL2 or  

• Objects classified as VegetationOfForeshoreL2.  

• In the following classification steps, an object was classified as foreshore if: 

• It had large slopes (classified as SlopedAreaL2) and relative border (which after 

experimentation was determined to be more than 10%) with areas previously 

classified as ForeshoreL3, or 

• It was mostly surrounded by other ForeshoreL3 objects, thus it had greater than 75% 

relative border with objects previously classified as ForeshoreL3, or 

• To eliminate a commission error, created by some objects existing between the sea 

and the imagery blank-space, an object was classified as ForeshoreL3 if it had less than 

10% relative border with BlankSpaceL3 objects (thus avoiding omitting objects which 

touched on a small percentage the imagery blank-space) and also had greater than 

75% border with objects previously classified as ForeshoreL3. 

3.4 Evaluation of results 
Figure 10 presents the results of Level 3 classification for all areas of interest, accompanied by 

the reference data. It is observed that both the foreshore border and the coastline is 

satisfactory determined by the developed method. Omissions were related with the 

determination of the coastline, as in area b where part of the coastline is composed by rocks 

with low elevation, and were not identified as land by the ontology. Furthermore, omissions 

were observed and in the foreshore border towards the land, as in area d where bare ground 

belonging to the foreshore was not adequately identified. Furthermore, commission errors 

were observed due to the definition of the vegetation border criterion. In cases where the 

present vegetation had a smaller crown than the one considered, (as in areas a and b) part of 

the vegetation near the sea which should not be committed to the foreshore, was considered 

as such. 
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Figure 10: Final classification result for all test areas.  
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Classification results were compared with the reference data as follows. At first the entire 

foreshore-area was compared with the reference data which were converted into a unified 

polygon. Afterwards, the foreshore border was extracted as a line by intersecting ForeshoreL3 

with InlandAreaL3 objects and was compared with the reference data.  

To evaluate the foreshore area accuracy, the areas correctly detected (True Positive – TP), 

omitted (False Negative – FN) or committed (False Positive – FP) were computed. Afterwards, 

based on these areas the Completeness, Correctness and Quality indices (Equations (4)-(6)) 

were computed (Agouris et al. 2004), and the results are presented on Table 3. It is observed 

that large results were achieved for all measures. The lowest completeness and quality were 

scored for area a (80.6% and 67.6%) while the lowest correctness was scored for area e 

(75.1%), which was considered satisfactory.  

Table 3: Area-based quantitative evaluation of the extracted foreshore-area and the reference data. 

Area Completeness (%) Correctness (%) Quality (%) 

a 80.6 80.7 67.6 
b 88.8 82.4 74.7 
c 84.4 92.0 78.6 
d 86.2 80.9 71.3 
e 88.9 75.1 68.6 
f 92.3 90.6 84.2 
g 95.6 95.5 91.5 

Overall 88.9 86.4 77.9 

 

To assess the distance between the identified foreshore border and the reference data, the 

mean error (ME) and the root mean square error (RSME) were computed as shown in 

Equations (12) and  (13), between each point of the extracted and the reference lines.  

�� = ∑ ����	
�  (12) 

��� = �∑ ��� −������	
 � − 1  
(13) 

The results of this evaluation is presented in Table 4. It is observed that overall the extracted 

foreshore border falls within 2.4m from the interpreted foreshore borderline with a mean 

square error of 3.2m. This is considered satisfactory by considering the issues depicted 

previously, along with the fact that the foreshore does not have precise physical borders like 

man-made objects and its delineation is based on abstract interpretation criteria where the 

decision and experience of the interpreter affects the final result. 
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Table 4: Evaluation of the foreshore border, by computing the distance of the extracted foreshore border with 
the reference data. 

Area a b c d e f g overall 

ME (m) 1.34 3.28 2.40 2.32 4.40 2.25 2.02 2.44 

RSME (m) 2.66 5.60 1.97 2.02 3.10 3.13 1.80 3.17 

3.5 Discussion of Results 
In this study an ontology – based, multi – scale GEOBIA approach was investigated and 

developed towards the automatic identification of the foreshore area. At first, the 

multispectral imagery was filtered by the AML, which smoothed the imagery and preserved 

the borders of the foreshore components at the same time. During experimentation an effort 

was attempted to filter the DTM with the AML, but the derived slopes from the filtered DEM 

were significantly affected and thus it was avoided. To identify foreshore components based 

on the vegetation border and topographic crown border criteria three segmentation levels of 

analysis were developed. Through the development of a three-level ontology hierarchy, the 

foreshore interpretation guidelines provided by Ktimatologio S.A. (2006) were explicitly 

represented, formalized, and employed in the GEOBIA identification process through the 

development of proper heuristics.  

Sea identification (Figure 8), required the extraction of sea-like areas on Level 1, their spatial 

merging, and their spectral and geometric refinement on Level 2. The 

LandWithLowSlopeNearTheSea was determined by fusing objects with small elevation 

detected on Level 1 and considering their spatial relationship (relative border) with the Sea. 

The controversy between the class name in the conceptualization phase 

(LandWithLowSlopeNearTheSea) and the properties involved in the final definition (altitude / 

relative border with the sea) is due to the semantic gap introduced by the interpretation 

criteria and specifically the vegetation border criterion. In its definition the vegetation border 

criterion is applied in areas with small slopes near the sea, however in practice it is applied in 

areas with low altitude near the sea.  

As VegetationOfForeshore objects (Figure 8) were identified the vegetated areas having 

distance from the Sea or from the LandWithLowSlopeNearTheSea less than 2.75m. If Digital 

Surface Model data were available instead of DTM, in cases of trees or shrubs, one could 

determine the crown and estimate the tree trunk position by considering the medial axes of 

the crown which is parallel to the coastline. Finally, the LandWithHighSlopeNearTheSea 

(Figure 8) was determined by considering large values of the slope property derived from the 

DTM.  

The final foreshore-area was determined on Level 3, through spatial merging and 

representation of foreshore spatial relationships with the remaining land cover. Visual 

examination of the results showed that the coastline and the foreshore border provided in 
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the reference data were close to those extracted by the developed method. Only in area b the 

extracted coastline was differentiated significantly from the reference coastline (Figure 9). Due 

to the existence of rocks near the sea with near to zero elevation and slope in the provided 

DTM this area was classified as sea by the developed method, however in the provided 

reference data it belonged to the land. 

Omission and commission errors of the foreshore area were mostly related with the exact 

interpretation of the shoreline and the estimation of the tree trunk position (which also 

affected the identification of the foreshore border) by the interpreter. These differences 

however were generally acceptable. The largest commission error caused by this effect was 

observed in area e, where the foreshore was interpreted based on the vegetation border 

criterion on very sparse vegetation near the sea, which was not captured by the ontology, 

since the NDVI values of the representing objects were not adequate. 

Evaluation of the foreshore area showed that, the lowest completeness was 80.6% in area a, 

while a total score of 88.9% was achieved for all areas (Table 3), thus the majority of the 

foreshore area was correctly determined. The lowest achieved correctness was 75.1% for area 

e with a total score of 86.4% for all areas (Table 3), indicating that the extracted foreshore area 

was satisfactorily not confused with other land cover. Finally, the lowest quality index was 

67.6% for area f with a total of 77.9% for all areas, indicating that the result was overall 

satisfactory.  

Evaluation of the distance of the foreshore border from the reference data (Table 4) showed 

that an overall ME of 2.4m and an overall RSME of 3.2 was achieved. Thus, the identified 

foreshore border by the algorithm was satisfactory close with the reference data. In area e the 

worst ME (4.4) and in area b the worst RSME (5.6) were scored. This can be correlated with 

the low quality values achieved from the foreshore area evaluation for these areas, due to the 

commission errors which were related with the exact position of the foreshore border. 

3.6 Conclusions and Future Perspectives 
Automatic foreshore delineation, by proper knowledge representation of interpretation 

criteria is feasible through a GEOBIA multi-scale approach and fuzzy ontology-based 

reasoning. GEOBIA offers the capability of expressing spatial relationships aiding in the 

identification process. Ontological formalization standardized the implicit interpretation 

knowledge into an explicit computer-conceivable form which can be at the same time 

interpreted and enhanced by humans. Thus, it contributed to reduce the semantic gap 

between the implicit interpretation knowledge and the developed formalization. 

Evaluation of the developed approach was satisfactory, since the majority of the foreshore 

area was accurately mapped. Comparison of the automatically extracted foreshore border 

with the reference one was also satisfactory, since both fall within close distance. Apart from 
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the omission and commission errors which depend on the developed methodology, 

differences between the automatically extracted and the human interpreted borderlines are 

related with the fact that the foreshore does not have strong physical borders like man-made 

objects, making its border rather fuzzy and open to heuristic interpretation decisions. 

Considering foreshore mapping, it would be desirable to examine and formalize additional 

criteria for foreshore interpretation which consider complex thematic categories such as 

building area density near the sea, present infrastructure such as breakwaters etc. 

Furthermore, towards the identification of the true foreshore area, one could examine tidal 

models to estimate the position of the mean low water limit as the borderline of the foreshore 

towards the sea. Finally machine learning approaches such as deep learning or the 

consideration of additional data such as those provided by crowdsourcing technologies could 

be also examined for foreshore mapping. 
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4 Integration of Deep Belief Networks with Fuzzy Ontologies to 

perform Building Change Detection through Multi-Scale GEOBIA 

Analysis 

4.1 Introduction 
Urban environments are dynamic and complex, evolve over time and constitute the key 

elements for currently emerging environmental and engineering applications in global, 

regional, and local spatial scales (Wurm et al. 2011). The necessity for monitoring urban 

growth is now more intense than ever, especially in developing countries such as Greece. The 

existence of informal settlements leads to lower revenues for the government, additional 

investments to create and develop the necessary infrastructure, high expenses to restrict and 

repair the environmental damage and lack of public acceptance (Ioannidis et al. 2009). Urban 

environment is covered with urban green, various types of buildings, roads and other 

settlements. Due to the complexity of the urban environment, mapping of urban elements 

and their changes can be tedious and time-consuming. To this end, automatic or computer-

assisted methods are desirable in terms of economy and efficiency (Bouziani et al. 2010, 

Argialas et al. 2013, Karantzalos 2015). 

To capture the spectral, geometric and spatial relationships of the urban elements, a pixel-

based method is not promising; instead, it is required unfolding of the structure, of objects at 

various scales, involving properties of objects and spatial relations among them (Argialas and 

Harlow 1990, Blaschke et al. 2014). These capabilities are offered by frameworks based on 

GEographic Object-Based Image Analysis (GEOBIA), thus it was determined that a GEOBIA 

approach will be developed. 

Urban mapping has been studied in remote sensing, computer vision, and geography scientific 

communities (Karantzalos 2015). Already GEOBIA change detection studies were conducted 

in the urban environment. Bouziani et al. (2010) detected changes by comparing a very high 

spatial resolution imagery with an existing urban geodatabase. Brunner et al. (2010) 

developed a methodology for building damage assessment after earthquakes. Doxani et al. 

(2012) detected urban changes based on the Multivariate Alteration Detector (MAD) from 

IKONOS and QuickBird imagery. Initially the images were filtered through scale-space filtering 

and MAD components were computed. Afterwards, the imagery was segmented, with 

chessboard segmentation and a rule-based classification was designed to compute a first 

estimation of the possible changes from the MAD components. Finally, another level was 

designed above Level 1 through multiresolution segmentation and a knowledge-based rule 

set was designed to detect the changes. Hebel et al. (2013) detected changes in urban areas 

from multi-view Advanced Laser Scanner data. In the work by Karantzalos (2015) a detailed 

review of the advances in urban change detection methodologies was presented. 
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Bannour and Hudelot (2014) interweaved machine learning, and specifically Support Vector 

Machine classification, with ontological refinement. However, there still remains the need to 

examine the applicability of such approach in GEOBIA and specifically in building change 

detection. Thus, state-of-the-art Deep Learning methods were examined, which are machine-

learning algorithms aiming to model high-level abstractions in data by using model 

architectures composed of multiple non-linear transformations (Deng and Yu 2014). Such 

algorithm is the Deep Belief Network, (DBN) which was already applied in image analysis 

(Hinton and Salakhutdinov 2006, Mnih and Hinton 2010, Wang et al. 2014). Thus DBN was 

integrated with fuzzy ontologies. Fuzzy OWL 2 was enhanced to include machine learning 

algorithms within class restrictions. To perform the reasoning process the DBN algorithm was 

integrated with SPOR, enabling the assignment of objects to classes with fuzzy properties, 

DBN, or by their combination. This was tested by the development of a building change 

detection method through multi-scale analysis. Since auxiliary data such as building 

geodatabases or 3D information such as a Digital Surface Model (DSM) were unavailable, the 

developed approach was designed to detect changes in buildings by strictly employing 

multitemporal satellite imagery. 

4.2 Methods 

4.2.1 Morphological Levelings 

Morphological levelings are employed to construct nonlinear scale space image 

representations (Meyer and Maragos 2000, Meyer 2004, Karantzalos et al. 2007). Levelings 

are transformations Λ(f, h) where a marker h is transformed to an image g, which is a leveling 

of the reference image f (Karantzalos et al. 2007). In places where {h < f}, h is increased as little 

as possible until a flat zone is created or the image g reaches the reference image f. In places 

where {h > f}, h is decreased as little as possible until a flat zone is created or image g reaches 

the reference image f. This makes image g to be flat on {g < f} and {g > f} and the procedure 

continues until convergence. The markers employed in the transformation can be sampled by 

Gaussian scale-space. By performing the leveling transformation with multiple markers of 

different scales one can produce a multiscale representation. To preserve building edges, it 

was decided to smooth the imagery with the Anisotropic Morphological Leveling (AML) as 

stated by Karantzalos and Argialas (2006). AML was designed to smooth small differences in 

reflectance values in a direction parallel to image object edges, while preserving major edges. 

4.2.2 Deep Belief Network 

A DBN is a deep neural network composed of multiple layers of hidden units. When trained in 

an unsupervised way (by training multiple Restricted Boltzmann Machines – RBM) a DBN can 

learn to probabilistically reconstruct its inputs (generative model). Afterwards, the layers act 

as feature detectors on inputs, allowing to be further trained in a supervised way to perform 

classification (Hinton et al. 2006, Bengio et al. 2007). 
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An RBM is an undirected graphical model having a visible layer representing the observable 

data (V) and a hidden layer (H) that learn to represent features that capture higher-order 

correlations in the data, by modeling the distribution of the provided training set (P(v)). V can 

have Boolean or continuous values, while H are Boolean. A weight matrix (W) is associated 

with the connections between V and H, along with bias weights a, b for both V and H 

respectively. In RBM hidden to hidden or visible to visible connections are not permitted, 

allowing training with the gradient-based contrastive divergence algorithm. The training 

process maximizes the expected log probability presented in Equation (14) of the training set 

V, by optimizing the weight factor W (Bengio et al. 2007, Hinton 2009). 

( ) 
 
 
∑W
vÎV

arg max E LogP v  
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 with P(v) computed as in Equation (15): 
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Where Z is a normalization constant for this distribution. The following steps describe the 

contrastive divergence (CD) for Boolean V. 

1. A number of training samples k is provided as input. Let the size of H be h, the size of 

V be v and i a training sample. 

2. The conditional probability (mean activation) of  H, given the values of V is computed 

(σ: logistic sigmoid function):  

( )H[ 1:h, iÎ[1,k] ] =σ b + P[1:h, i] , where P= WV  (16) 

3. A sample of the hidden units (Hs) is computed based on H from a binomial distribution. 

4. The conditional probability of V given H (V’) is computed: 

( ) T
sV’[ 1:v, iÎ[1,k] ]=σ a+ L , where L[1:v, =W] Hi  (17) 

5. A sample of the visible units (V’s) is computed based on V’ from a binomial distribution. 

6. Steps 2-5 are repeated for k times (Gibbs sampling – Figure 11). In each iteration, V’s 

is provided as input to compute H’.  

7. The weight W along with the biases a, b are updated (e: learning rate) as in Equations 

(5-7):  
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∑
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e
a = a+ N[1:v, i], where N =V-V'

k
  (19) 

∑
k

i=1

e
b = b + R[1:h,i],whereR=H-H'

k
  (20) 

 

8. Steps 1-7 are repeated for a number of epochs. In each epoch the learning rate is 

underestimated by a coefficient c (e’=ec). 

 

 

Figure 11. Gibbs sampling process (adopted from Hinton et al. 2006). 

 
If the visible layer contains continuous values (Bengio et al. 2007) then the input values are 

scaled in the interval [0, 1]. Afterwards, in step 4, the conditional probability is computed as 

follows: 

1 1
-

1-exp(-a-L[1:v, i])
V’[ 1:v,

exp(a
 iÎ[

+L[1
1,k

:v
] ]=

, i])
 (21) 

In step 5, V’s is sampled from a uniform distribution.  

To improve RBM training, Tieleman (2008) enhanced CD. In persistent contrastive divergence 

(PCD), the Gibbs sampling process is initiated from the sample (V’s) computed in step 5 of the 

previous loop. 

DBN training begins by treating the first two layers (v and h1) as an RBM (Figure 12). After 

training with PCD, from h1 a representation of the input is computed and is provided as input 

for the second layer which is also trained as an RBM. This process is repeated until all hidden 

layers are trained (Hinton et al. 2006, Bengio et al. 2007).  
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Figure 12. DBN layer-wise training process. v is the input vector, while hi are DBN hidden layers. In each training 

iteration one DBN layer is considered as a hidden RBM layer. DBN arrows indicate the direction of the 

generative model (adopted from Wang et al. 2014). 

Supervised fine-tuning was performed by Logistic Regression, a probabilistic, statistical 

classifier. Its parameters are a weight matrix W and a bias vector b. Classification is performed 

by projecting an input vector onto a set of hyperplanes, each of which corresponds to a class. 

As input is provided the sample computed from the mean activation of the last DBN hidden 

layer. The distance of an input to a hyperplane reflects the probability to be member of the 

corresponding class (Bishop 2006). The probability being an input vector x a member of a class 

i is computed by Equation (22): 

( ) ( )
Wi i

i Wj j

x+b
e

P Y=i x,W,b =softmax Wx+b =
x+b

e∑
 

(22) 

Learning the parameters W, b involves the minimization of a cost function. For multi-class 

regression the negative log likelihood was chosen as a loss function. Cost minimization is 

achieved through stochastic gradient decent, thus W is computed through multiple iterations 

with respect to a learning rate.  

4.3 Representation of DBN in ontologies and integration with SPOR 

In the following the integration of DBN with SPOR will be presented. Classes involved in a DBN 

classification were declared by including proper restrictions in class definitions. Conceiving 

the result of the DBN classification as a table having the probability of each segment to be an 

object of each class, and considering that datatypes in OWL 2 define sets of data values, it was 

decided that such restrictions should be developed as Data property restrictions, called 

Machine Learning Data Property Restrictions. Thus, a proper datatype was designed, called 

Machine Learning Datatype (MLD). An AP attached to the MLD was designed to encode DBN 

training parameters, called machineLearningLabel. Training parameters were encoded 

through XML Syntax. Table 5 presents a summary of the parameters related to DBN training 

along with a brief description, and the values employed in this study which were derived after 

extensive experimentation. The size of a DBN visible layer is determined by the number of the 

input features, while the number of the classes involved in supervised training by the number 
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of the class definitions an MLD was included. In this study, in each DBN only the input features 

were modified to represent the desired properties of the involved classes. 

To include certain classes in the same DBN classification the same machine learning restriction 

was added in their definition. Thus, Equations (23)-(25) involve the classes, 

WhiteSurface20062011, CeramicSurface20062011, and PossibleChangeL1 in the same DBN. 

DBN parameters (Table 5) are encoded as in Equation (26). Thus dbn1 has four (4) input 

features and three (3) output classes. 

 
Class: WhiteSurface20062011    EquivalentTo:  

        OtherAreaL1 

         and (machineLearningFeature some dbn1) (23) 

  

 Class: CeramicSurface20062011 EquivalentTo:  

        OtherAreaL1 

         and (machineLearningFeature some dbn1) 

 

 

 

(24) 

 

    Class: PossibleChangeL1    EquivalentTo:  

        OtherAreaL1 

         and (((not (CeramicSurface20062011)) 

         and (not (WhiteSurface20062011))) 

         or (machineLearningFeature some dbn1)) 

 

 

 

 

(25) 
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Table 5. DBN training parameters. 

Parameter Name (XML 
attribute name) 

Description Example value 

Input features 
(feature_space) 

Features employed in DBN 
training and classification process.  

“whiteIndex2006,whiteI
ndex2011,ceramicIndex2
006,ceramicIndex2011” 

Number of layers and 
number of units per layer 
(network) 

Number and size of the hidden 
layers of the DBN.  

170-170 

Unsupervised Learning rate 
(learning_rate) 

learning rate employed for RBM 
training 

0.0001 

Unsupervised Learning 
coefficient (learning_coef) 

Degree of underestimation of the 
RBM learning rate in each 
iteration 

0.95 

Unsupervised number of 
epochs (epochs) 

Number of iterations of the 
contrastive divergence 

2000 

Number of Gibbs sampling 
iterations (k) 

Number of Gibbs sampling 
iterations in each epoch 

3 

Supervised learning rate 
(supervised_lr) 

Learning rate employed by logistic 
regression 

0.7 

Supervised learning rate 
coefficient 
(supervised_coef) 

Degree of underestimation of the 
logistic regression learning rate in 
each iteration 

0.95 

Supervised number of 
epochs 
(supervised_epochs) 

Number of iterations for logistic 
regression training 

2000 

 
<method type="DBN"> 
    <properties feature_space = "whiteIndex2006,whiteIndex2011, 
ceramicIndex2006,ceramicIndex2011" network="170-170" learning_rate = 
"0.0001" learning_coef = "0.95" epochs = "2000" k = "3" supervised_lr = "0.7" 
supervised_coef = "0.95" supervised_epochs = "2000"/> 
</method>  
 

(26) 

To classify groups of classes with different DBNs, multiple MLDs were designed and the proper 

machine learning restrictions were included within their definitions. Training samples were 

represented as OWL 2 Individuals. To match the sample-individual with the segment in 

PostgreSQL, each Individual contained an id Data Property representing the id of the segment 

in PostgreSQL table. The samples were collected through Quantum GIS (QGIS Development 

Team 2014).  

To integrate DBN within SPOR, the reasoning process was performed as follows. To determine 

the MV of each segment with all the classes, SPOR iterates over the classes defined in the 

ontology (Figure 13). As OWL 2 does not provide information regarding the hierarchy depth 

of the examined class, the classes are examined in alphabetical order. At first the reasoner 

iterates over the referenced classes in class definition (e.g. parent, spatially-related, or 
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appearing in a logical operation). If MVs of the segments for these classes have not as yet been 

computed, then the reasoner tries to compute their MVs.  

 

Figure 13. SPOR reasoning process after DBN integration 

As candidates for the currently examined class, are considered objects having MV greater than 

0.5 for all parent classes (computeCandidates()). Afterwards the spatial relationships are 

computed (computeSpatialRelationship()). If the class has a spatial relationship with herself, 

then multiple classification iterations are performed. In the first iteration the spatial 

relationship is ignored. In the next iteration, the objects classified in the examined class are 

considered to compute the spatial relationship. This is repeated until the classification result 
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is not altered between two iterations. If the class is involved in a DBN classification, the 

probability of each candidate segment to belong to the class is computed through DBN 

classification. 

From the examined class definition, a node graph is created (computeMembership()). Each 

node can represent a class, a feature node (fuzzy Data or Object property restriction) or a 

logical operator (and, or, not). For each candidate segment the MV is computed (Figure 14).  

 

Figure 14. Examples of segment membership values computation based on OWL 2 fuzzy restrictions. 

If it is a class node, then the MV of the current candidate with the referenced class is set as 

node value. If it is a feature node, then the MV of the current candidate is computed, based 

on its feature value and the fuzzy operator determined by the ontology. If the data property 

restriction refers to a DBN, then DBN probabilities are converted into MVs as in Equation (27) 

(Figure 14.3): 

 

MV = x (x: DBN probability) (27) 

If it is a logical operator node, then at first the MVs of the sub-nodes are computed. 

Afterwards, based on Zadeh semantics (Zadeh 1965) the logical node MV is computed. 
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Computation stops when the MV of the top node is computed. If the final MV is greater than 

0.5, then the class name of the currently examined class is assigned as label to the candidate.

  

4.4 Buildings change detection through DBN and ontologies 

4.4.1 Study area and data used 

To perform change detection in building infrastructure in the sub urban area of east Attica, 

Greece, between 2006 and 2011, three study areas were examined. For each area data 

included one QuickBird image taken in 2006 and one WorldView 2 (WV2) image taken in 2011. 

Figure 15 presents an overview of the three study areas. Prior to the extraction process the 

imagery was atmospherically corrected and georeferenced by rational functions. 

4.5 Change detection and evaluation of results 

To eliminate noise and lessen the undesired spatial detail, the imagery was filtered through 

the AML algorithm. After experimentation, a scale of 1000 was found appropriate to smooth 

the imagery. In the sub-images presented in Figure 16, it is observed that areas related to the 

building rooftops (denoted with B) and the vegetation (denoted with V) were smoothed, while 

their major edges were preserved. 

 

Figure 15. Overview of the study area. a-c: Quickbird imagery taken in 2006. d-f WV2 Imagery taken in 2011. 

Left: Imagery of area 1, middle: Imagery of area 2, right: Imagery of area 3. 
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To design an ontology-based change-detection strategy, domain knowledge (such as land 

cover classes) and remote sensing knowledge (such as the required indices for the definition 

of land cover classes) was collected. The exact classes, properties, and their interweaving in 

the ontology, were determined after three phases: the specification, conceptualization, and 

knowledge formalization (Paslaru et al. 2006, Brusa et al. 2006). In the specification phase, 

the general land cover classes that will be defined in the ontology were determined. 

Inspection of the imagery, showed that the area was covered by vegetation, water (mostly 

appearing in pools), bare ground, roads, and the rooftops. The rooftops were further divided 

into rooftops which remained unchanged between 2006 and 2011 and rooftops which were 

newly built or modified during the examined period. 

 

Figure 16. Magnifications of the original dataset. a-b. Original QuickBird and WV2 imagery. c-d. The same areas 

after morphological leveling. It is observed that vegetation and rooftop areas were smoothed from the filtering 

process. 

In the conceptualization phase, the main classes were represented in an initial taxonomy.  For 

each class a number of properties which could be employed in their definition were also 

examined. The classes within the taxonomy were organized to eliminate areas of no interest, 

resulting into the desired classes (i.e. rooftop changes). At first the Vegetation, Water, and 
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Impervious classes were defined. Since some buildings and roads were expected to be the 

same in both years, the impervious areas were refined into PossibleChange (areas where a 

change could take place), and NoChange (Figure 17). To define the Vegetation and Water 

classes the ndvi and ndwi indices were considered. Impervious can be defined as the 

intersection of the negation of the other two classes (not (Vegetation) and not (Water)). 

Since each rooftop in the examined areas was relatively spectrally homogeneous, spectral 

indices were investigated to emphasize them and determine areas of possible change. The 

dominant rooftops in the area were white tiled and ceramic rooftops (Figure 15). After 

experimentation two indices were found appropriate to emphasize the rooftops, the 

WhiteIndex and the CeramicIndex (Figure 18), computed from Equations (28)-(29) as follows:  

 

RedBand+BlueBand+GreenBand
WhiteIndex=

3
 (28) 

2

3

RedBand
CeramicIndex =

GreenBand
 (29) 

 

 

 

Figure 17. Conceptualization of the change detection process. The RoofChange class should contain the final 

changes in building rooftops. 

 

Figure 18. Examples of the white and ceramic indices. a-c: Areas with white tiled roofs. d-f: Areas with ceramic 

roofs. g-i: Results of the whiteIndex. The white areas are presented with high values of the index while other 

areas appear with lower values. j-l: Similarly the ceramicIndex emphasizes the ceramic roofs, while other areas 

have lower values. 



68 

 

Their differences (difWhite and difCeramic) should be considered to define the class 

PossibleChange. New white tiled and new ceramic rooftops should be detected with high 

values of the difWhite and the difCeramic index respectively. Likewise, demolished white and 

ceramic rooftops should be detected by low values of the difWhite and difCeramic index. A 

ceramic rooftop which was previously a white tiled rooftop should be detected by high values 

of the difCeramic index and low values of the difWhite index.  

By considering the rectangular-like geometric signature of the rooftop, rooftop changes were 

expected to be rectangular also. Thus, RoofChange should be defined based on geometric 

indices (such as the rectangular fit), representing the rectangular shape of the objects.  

In the knowledge formalization stage, the abstract taxonomy developed in the 

conceptualization phase was transformed into a fuzzy OWL 2 ontology. Thus, the actual 

taxonomy for the change detection process was developed after performing sufficient tests 

to determine the required number of segmentation levels, and the exact classes and 

properties through an iterative trial – and – error process. 

To perform the segmentation process, the multiresolution segmentation algorithm, included 

in Definiens eCognition 8.6, was employed (Baatz and Shäpe 2000, Trimble 2011). 

Segmentation results were exported from eCognition and imported into PostgreSQL. Results 

were visualized through Quantum GIS. 

Figure 19 presents an overview of the classes developed and their interweaving, derived from 

the knowledge formalization stage. Since multiple DBN classifications were defined in the 

ontology, the classes involved in each DBN classification are also highlighted. Details 

concerning the exact developed classes, properties, and class definitions, can be found in the 

uploaded ontology in the following url: 

https://github.com/ArArgyridis/GEOBIA-
Ontologies/blob/master/GEOBIA_Change_Detection_Quickbird_Worldview2.owl  
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Figure 19.  Overview of the developed change extraction strategy. 

Aim of Level 1 was to extract objects representing the rooftops. Since the rooftops were 

relatively spectrally homogeneous, due to the anisotropic diffusion the homogeneity within 

the rooftops was increased. Since the edges of the image objects were preserved from the 

filtering, a small segmentation parameter should compute objects representing parts of the 

rooftops (since the segmentation heterogeneity will be very small), and at the same time 

achieve minimum confusion with the surroundings. Thus, Level 1 was designed on the lowest 

level of the segmentation hierarchy. After experimentation it was observed that a scale 

parameter equal to 5 (shape = 0.2, compactness = 0.5) was satisfactory.  

In the ontology, each segmentation level was represented by a class, e.g. for segmentation 

Level 1, the class Level1 was developed and defined as in Equation (30) (level: position of the 

segmentation level in the hierarchy): 

Class: Level1 EquivalentTo: 

    level some fuzzy_TR_0_1_2 

 

(30) 

Based on the conceptualization scheme (Figure 17), classification of Level 1 began with 

VegetationL1 and WaterL1 which were defined through medium to large values of the NDVI 

and NDWI respectively. All impervious areas were classified as OtherAreaL1 (Figure 19). To 

reduce possible noise, it was determined to eliminate areas, with spectral profile similar to 

the white or ceramic rooftops, where no change occurred (NoChange – Figure 17). Thus, 

OtherAreaL1 was refined, and the classes CommonWhiteSurfaceL1, 
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CommonCeramicSurfaceL1 and PossibleChangeL1 were defined. A DBN was included in the 

definition of these classes (Figure 19). As input properties were given the whiteIndex and 

ceramicIndex of 2006 and 2011. Segments from representative areas were sampled, spread 

throughout the imagery. For each image 20 samples were collected for each class. The other 

training parameters were the same as in Table 5.  

To detect areas of possible rooftop change, PossibleChangeL1 was refined into 

PositiveWhiteDifferenceL1 to represent areas with large values of the diffWhite index, 

PositiveCeramicDifferenceL1 to represent areas with large positive values of the diffCeramic 

index, and OtherDifferenceL1. However, as areas existed having at the same time high values 

of the diffCeramic index and low values of the diffWhite index, it was decided to classify these 

areas as PositiveCeramicDifferenceL1. A second DBN restriction was created and included in 

the definition of these classes (Figure 19). As input features were set the diffWhite index and 

the diffCeramic index. The same sampling strategy and parameters for DBN were employed 

as in the previous case.  

To detect areas with low values of the diffWhite index and the diffCeramic index, 

OtherDifferenceL1 was further refined into NegativeWhiteDifferenceL1, 

NegativeCeramicDifferenceL1 and NoChangeL1. A third DBN restriction was created and 

included in the definition of these classes (Figure 19). Its parameters were the same as with 

the second DBN. Figure 20 presents examples from the classification results of Level 1. Visual 

inspection shows that the combination of fuzzy rules with DBN classification captured 

satisfactorily the objects belonging to the developed classes. 

Since building rooftops changes were expected to have rectangular-like shape, due to the 

rectangular shape of the roofs, Level 1 classification should be refined based on geometric 

properties which express shape rectangularity. However, prior to this refinement, to optimize 

the shape of the possible roof changes, it was decided to create a new level above Level 1. 

Due to the small shape of the objects, it was assumed that objects that were surrounded by 

areas of possible change actually belong to the area that could be considered as change by a 

photo-interpreter. Thus, the areas classified as PositiveWhiteDifferenceL1, 

PositiveCeramicDifferenceL1, NegativeWhiteDifferenceL1, and NegativeCeramicDifferenceL1 

were merged, and Level 2 was created above Level 1. The classes PositiveWhiteDifferenceL2, 

PositiveCeramicDifferenceL2, NegativeWhiteDifferenceL2, and NegativeCeramicDifferenceL2 

were created (Figure 19). To project classification results from Level 1 to Level 2 each of these 

classes were defined with the has_Fuzzy_RS_0_1_RelativeAreaToSubObjects fuzzy object 

property. In Equation (31) the definition of the class PositiveWhiteDifferenceL2 is presented: 
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Class:  PositiveWhiteDifferenceL2 EquivalentTo:  

        Level2 

             and (has_Fuzzy_RS_0_1_RelativeAreaToSubObjects some                                                                          

PositiveWhiteDifferenceL1) 

 

 

(31) 

 

 

This definition reads as follows: Objects were assigned to class PositiveWhiteDifferenceL2 if 

they were belonging to class Level2 and had relative area with the objects classified as 

PositiveWhiteDifferenceL1 greater than 50%. All other areas were classified as OtherAreaL2. 

 

 

Figure 20. Examples from the classification of Level 1. (1): RGB 753 of WV2. (2): diff white index. (3): diff 

ceramic index. (4): Result of the classification process, derived through the interweaving of multiple DBNs and 

fuzzy ontologies. 

Objects having relative border greater than 55% with areas of possible change, were 

considered appropriate to be merged with the areas of possible change. Thus, the class 

OtherAreaL2 was refined into MergeWithPositiveWhiteDifferenceL2, 

MergeWithPositiveCeramicDifferenceL2, MergeWithNegativeWhiteDifferenceL2, and 

MergeWithNegativeCeramicDifferenceL2. To show how each of these classes were defined, in 

Equation (32) the definition of MergeWithPositiveWhiteDifferenceL2 is presented: 
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Class:  MergeWithPositiveWhiteDifferenceL2  EquivalentTo:  

        OtherAreaL2 

         and (has_Fuzzy_RS_0.50_0.60_RelativeBorderTo some PositiveWhiteDifferenceL2) 

 
 
 
(32) 

This definition reads as follows: Objects were assigned to class 

MergeWithPositiveWhiteDifferenceL2 if they were belonging to class OtherAreaL2 and had 

relative border with objects classified as PositiveWhiteDifferenceL2 greater than 0.55. All 

other objects were classified as NoMergeL2. 

To extract the rooftop changes, the objects classified as PositiveWhiteDifferenceL2, 

PositiveCeramicDifferenceL2, NegativeWhiteDifferenceL2, and NegativeCeramicDifferenceL2 

were spatially merged with the objects classified as MergeWithPositiveWhiteDifferenceL2, 

MergeWithPositiveCeramicDifferenceL2, MergeWithNegativeWhiteDifferenceL2, and 

MergeWithNegativeCeramicDifferenceL2 and a new level (Level 3) was created above Level 2. 

The classes ChangeL3 and NoChangeL3 were defined (Figure 19). To express the shape of the 

rooftops, ChangeL3 was defined based on geometric properties as shown in Equation (33): 

Class: ChangeL3 EquivalentTo:  

Level3 

    and ((has_Fuzzy_RS_0_1_RelativeAreaToSubObjects some 

NegativeCeramicDifferenceL2) 

          or (has_Fuzzy_RS_0_1_RelativeAreaToSubObjects some 

NegativeWhiteDifferenceL2) 

          or (has_Fuzzy_RS_0_1_RelativeAreaToSubObjects some 

PositiveCeramicDifferenceL2) 

          or (has_Fuzzy_RS_0_1_RelativeAreaToSubObjects some 

PositiveWhiteDifferenceL2)) 

     and (areaM2 some fuzzy_TRP_50_55_360_380) 

     and (compactness some fuzzy_LS_2.2_2.4) 

     and (density some fuzzy_RS_1.75_1.80) 

     and (lengthM some fuzzy_TRP_8_9_30_35) 

     and (rectangularFit some fuzzy_RS_0.6_0.7) 

     and (widthM some fuzzy_RS_5_7)  (33) 
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This definition reads as follows: Objects were assigned to class ChangeL3 if they were covering 

at least one of the classes PositiveWhiteDifferenceL2, PositiveCeramicDifferenceL2, 

NegativeWhiteDifferenceL2, and NegativeCeramicDifferenceL2 by at least 50%, and had area 

between 52.5m2 and 370m2 and had compactness smaller than 2.3, and had density larger 

than 1.775, and had length between 9m and 32.5m, and had rectangular fit larger than 0.65, 

and had width larger than 6m. All other objects were classified as NoChangeL3. Figure 21 

presents the objects classified as ChangeL3 in the examined areas. As changes were detected 

entirely new buildings and changes in existing building infrastructure (for example the creation 

of a ceramic roof on top of a white roof). 

Classification results were compared with human interpreted reference data and evaluated 

with two methods. At first, the number of changes recorded in ground data was compared to 

the number of extracted changes (Table 6). 

Table 6. Quantitative evaluation comparing the number of extracted changes with the reference data. 

Area Ground Truth 

Changes 

Extracted 

changes 

Correctly 

detected changes 

Committe

d changes 

Omitted 

changes 

Commission 

(%) 

Omission 

(%) 

Area 1 19 23 19 4 0 21.1 0.0 

Area 2 36 37 30 7 6 19.4 11.8 

Area 3 28 27 24 3 4 10.7 14.3 

Overall 83 87 73 14 10 18.3 12.1 
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Figure 21. Final changes recorded in the three areas, shown in WV2 2011 (RGB 532). 

 

Second, the areas correctly detected (True Positive – TP), omitted (True Negative – TN) or 

committed (False Positive – FP) were computed by comparison to the ground data. Based on 

these areas, the Completeness, Correctness and Quality indices (Table 7 - Agouris et al. 2004) 

were computed as presented in Equations (4)-(6). 
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Table 7. Quantitative evaluation based on the Completeness, Correctness, and Quality indices for each 
examined area. 

 Ground Data 

(m2) 

TP (m2) FN (m2) FP (m2) Completeness (%) Correctness (%) Quality (%) 

Area 1 2021.50 1634.91 386.59 468.84 80.9 77.7 65.7 

Area 2 4038.82 2570.59 1468.23 1360.16 63.6 65.4 47.6 

Area 3 3055.82 1779.21 1276.61 881.79 58.2 66.9 45.2 

Overall 9116.14 5984.71 3131.43 2710.79 65.6 68.8 50.6 

 

4.6 Discussion of results 
In this chapter fuzzy ontologies were integrated with Deep Learning techniques, allowing the 

development of class definitions with fuzzy properties and machine learning. To perform the 

reasoning process with such ontologies, a reasoner developed for GEOBIA ontologies, SPOR, 

was enhanced through the integration of DBN algorithm. The approach was tested in building 

change detection.  

Due to the relatively spectral homogeneity of the rooftops, the reduction of undesired spatial 

detail through the anisotropic filtering aided in the extraction of proper objects, similar to 

Doxani et al. (2012). Through multi-scale analysis objects representing properties of the 

present thematic categories were computed. The spectral properties of the rooftops were 

captured on the lowest level of the hierarchy by creating objects representing parts of the 

rooftops with a small scale parameter (5). Fuzzy rules and machine learning classification were 

combined to determine areas of possible rooftop change (Figure 19). Level 2 was designed 

above Level 1 by fusing the objects belonging to classes representing areas of possible rooftop 

change. Based on spatial rules, the shape of these objects was optimized to be closer to a 

rectangle, by considering areas partially or completely included within the rooftops as parts 

of possible change. This was achieved through the relative border spatial property. Level 3 was 

designed at the top of the hierarchy, by fusing the areas of possible change with their 

respective contained areas. Spectral properties of the sub-objects along with the geometric 

properties of the rooftops were employed to discriminate the rooftop changes from the other 

areas.   

Evaluation with ground data showed satisfactory results, since the majority of the changes 

were successfully detected (73 out of 83) and a relative small number of changes were 

omitted (9) and committed (15). Evaluation based on the extracted area showed that the 

overall result was around 68% complete and accurate (Completeness and Correctness 

indices), thus the omission and commission errors were around 30%.  
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A major issue was the acquisition angle of the imagery. For the QuickBird imagery it was 8.2o, 

and for the WV2 19.6o. The large acquisition angle of the WV2 imagery affected significantly 

the computation of the difference of the white and ceramic indices in areas with tall buildings 

and committed as part of the changed rooftop area parts of the building sides, or shifted parts 

of rooftops. In area 1, where the buildings were not as tall, evaluation was satisfactory since 

all the changes were detected with relatively small commission errors (Table 6) and the 

mapping accuracy was also satisfactory (Completeness 80.9%, Correctness 77.7% - Table 7). 

In the other two areas, rooftop shifting further affected the detection of the number of 

changes and the mapping accuracy. 

 Omission error occurred mainly when the area detected as change was not enough, or the 

shape of the change was not satisfying the shape restrictions defined in the ontology. To lessen 

the omission error, an optimization of the parameters related to the rooftop shape was 

attempted, however, this increased the commission error so it was not adopted. The 

commission error was mostly related with the commission of building sides to the result, or 

by confusing bare ground or road areas with similar spectral and geometric properties with 

the rooftops, as change. Improved results could be achieved by employing Digital Surface 

Model (DSM) data for the creation of true ortho-photos thus reducing the errors related to 

the geometry and position of the rooftops. 

Possible future work might include some of the following. In previous approaches (e.g. Durand 

et al. 2007) performed automatic development of ontologies based on machine learning 

techniques. It is desirable to examine the potential of such approaches in building change 

detection, through multi-scale analysis, to determine optimal features for class definitions. 

SPOR could be extended by integrating additional supervised techniques such as the SVM and 

to be further developed to better support OWL 2 expressiveness (such as symmetrical or 

transitive properties etc.) or examine and deal with cases where undecidability might occur. 

Furthermore it would be desirable to examine the probability of integrating unsupervised 

machine learning with ontologies in GEOBIA. Regarding the change detection process, the 

involvement of DSM or advanced registration approaches can be examined to reduce the 

offset between the rooftops. Furthermore the approach can be generalized by examining 

additional cases, such as building change detection in a continuous urban environment. 

4.7 Conclusions and Future Perspectives 
Development of GEOBIA ontologies is important as it provides for critical review of the 

knowledge base. The knowledge base can be directly employed in GEOBIA processes to 

extract landscape components. Furthermore adoption of Semantic Web technologies for 

knowledge representation can provide for sharing, extension, and integration of the 

developed ontologies with others from the same or different disciplines by employing or 
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extending approaches such as the ones described in Kavouras et al. (2005) and Kavouras and 

Kokla (2007). 

Machine learning is widely adopted in image analysis since it enables the classification of 

objects based on data-derived information. The integration of state-of-the-art machine 

learning methods, such as the DBN, with ontological reasoning could assist towards the 

automation of an ontology-based GEOBIA approach, since thresholds of spectral and 

geometric properties are not required to be determined by the designer, to classify objects in 

a designated class. However, complex thematic concepts require human interpretation 

knowledge to be explicitly represented. This was shown through the developed building 

change detection approach. AML reduced the spatial detail of the imagery and provided a 

simplified imagery representing smoothed building rooftops. DBN along with fuzzy ontological 

reasoning aided to satisfactorily determine areas of possible rooftop change, by employing 

spectral properties of the present rooftops. Interpretation knowledge related to geometric 

and spatial relations of the objects, represented within the ontology determined the building 

changed areas from noise or other areas unrelated to building changes. Qualitative and 

quantitative evaluation of results showed that the changes were detected satisfactorily. 

However, the developed method relies in a correct detection of areas of possible change on 

Level 1 based mainly on the spectral properties of the present infrastructure. Thus, in cases 

where the rooftops have a large shift due to the acquisition angle, the detection of areas of 

possible change on Level 1 will not be adequate to detect the change. Furthermore, the 

method should be extended to consider rooftops having different spectral and geometric 

properties from the ones examined. Finally, it would be interesting to examine the developed 

approach in dense urban areas where the complexity of the environment is higher than the 

one examined in this study. 
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5 GEOBIA-based Identification of Alluvial Fans and Bajadas through 

Geomorphometry, Image Analysis, and Fuzzy Ontology-Based 

Reasoning 

5.1 Introduction 
Mapping of alluvial fans and bajadas is important for practical and economic importance to 

society, especially in arid and semiarid climates where they may be the principal groundwater 

source for irrigation farming and the sustenance of life. However, the flash flooding and the 

shifting streams develop may develop issues on man-made objects. Cities, such as Los 

Angeles, have been developed on alluvial fan. Furthermore, it provides climatic information 

(Beratan and Anderson 1998, Miliaresis 2001, Britannica 2016).  

Mapping of terrain elements such as alluvial fans and bajadas from remote sensing data is 

performed by manual interpretation through terrain analysis. In terrain analysis the landscape 

is composed by distinct terrain units called landforms. In United States, the landform-pattern 

element approach has been the most prominent terrain analysis approach (Way 1978, Mintzer 

and Messmore 1984). When a landform is developed under similar climate, weathering, and 

erosion conditions, it exhibits a distinct and predictable range of visual and physical 

properties. Any two landforms derived from the same soil and bedrock, or deposited by 

similar processes, and existing under the same climatic conditions, exhibit similar physical and 

visual features on satellite or airborne imagery, called pattern elements. The pattern elements 

examined in the landform-pattern element approach include topography, drainage pattern 

and texture, gully characteristics, soil spectral signature, landuse, and other special features 

that may be present (Mintzer and Messmore 1984, ASPRS 1997).  

Alluvial fan development requires three necessary conditions: (a) a spatial/topologic 

organization where an upland catchment drains to a valley; (b) sufficient sediment production 

in the catchment to construct the fan, and (c) a process to transfer the upland sediments into 

the basin, which is usually sporadic high water discharge (Hunt 1975, Bull 1977, Harvey et al. 

2005, Blair and McPherson 2009). The head of an alluvial fan is located right at the 

downstream end of the upland drainage network, where a stream pours abruptly into a basin 

at the startup of the creation of an alluvial fan (Figure 22). It has a semi-circular, fan-like shape. 

It has slopes from near 0o, rarely exceeding 10o-12o (Troeh 1965, Bull 1977, Rachocki 1981, 

Miliaresis and Argialas 2000). Smaller forms with slopes greater than 20o are rather alluvial 

cones (Bull 1977). Bissenbach (1954) stated that alluvial fans have three distinct 

morphological parts: i) the fan-head, which is the fan area closest to the apex with the largest 

slopes; ii) the fan-toe, which is the outermost and lowest zone of the fan having the lowest 

slopes usually grading into a zone of coalescence with other fans; iii) the mid-fan which is the 

area between the fan-head and the fan-toe.  
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Figure 22: Fan developed in front of a valley mouth at the adjacent basin floor. Image © 2017 Digital Globe. 

An alluvial fan has a dichotomic drainage pattern (Way 1978, Mintzer and Messmore 1984). 

In this pattern, branches are diverging from the main stream. These branches may also have 

braiding, causing them to intersect (Fenneman 1931, Rachocki 1981, Pandey 1987, 

Drummond and Erkeling 2014). Individual fans may grow laterally to an extent that they 

coalesce to form bajadas (Hooke 1972, Bull 1977). Bajadas are created when a series of 

adjacent fans are coalescing and they form a continuous piedmont alluvial apron, in-between 

the mountain front and the basin floor. 

Landform photo-interpretation it is carried out manually by expert photo-interpreters, thus it 

is a time consuming process and cost-deficient. Thus, investigation of automated landform 

mapping approaches is desirable for economy and efficiency. Automated approaches also aid 

in the standardization and objectiveness of the process, as books, often, do not describe 

explicitly the procedural framework for terrain interpretation problem-solving. Due to the 

complexity of the pattern elements involved in landform interpretation such as slope gradient, 

landform shape, drainage pattern, and context (Way 1978, Mintzer and Messmore 1984, 

Argialas and Miliaresis 2000) it is necessary to represent image primitives related to the shape 

and topological organization of the examined landforms, making object-based approaches 

(GEOBIA) appropriate (Argialas and Harlow 1990, Drăgut and Eisank 2011, Blaschke et al. 

2014). In GEOBIA, segments corresponding to image patterns, are extracted and are later 

assigned into thematic categories through machine learning. However, in cases where the 

recognition process involves the investigation of complex relationships involving properties of 

the object itself and its spatial organization, it is required to express photo-interpretation 

knowledge derived from knowledge stored in books, field work, and personal experience into 

machine-readable formalization and employ it in the identification process. Knowledge 

formalization into a computer-conceivable form needs to address a semantic gap between the 
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complex high-level semantics employed by experts (e.g. an alluvial fan is a gently-sloping 

feature) and the low-level data-derived numerical information (specific value ranges of slope 

gradient, curvature etc), thus requiring a knowledge representation approach (Argialas and 

Harlow 1990, Arvor et al. 2013, Blaschke et al. 2014, Argyridis and Argialas 2015).  

Knowledge representation in the Semantic Web is performed through ontologies (W3C 2012).  

Gruber (1995) defines the ontology as a formal, explicit specification of a shared 

conceptualization. Thus, Semantic Web ontologies were designed to be extensible, visible, 

support inference, and provide semantic interoperability (Ding et al. 2007, Janowicz 2010).  

Ontologies can provide solution to the semantic gap issue by bridging the expert derived 

symbolic information and the numerical information extracted from the image (Arvor et al. 

2013). Their applicability in GEOBIA has already been demonstrated in previous studies (e.g. 

Durand et al. 2007, Forestier et al. 2012, Belgiu et al. 2014, Argyridis and Argialas 2015).  

Alluvial fans and bajadas have already been extracted from remote sensing data. Argialas and 

Miliaresis (2000) developed an expert system to aid human interpretation of physiographic 

regions through the landform-pattern element approach. Spatial terrain decomposition was 

achieved by partitioning each physiographic section into its component physiographic 

features, and each physiographic feature into its component topographic forms, and each 

topographic form into its component landforms. Miliaresis and Argialas (2000) developed a 

region growing segmentation method to extract alluvial fans from DTM and Landsat TM 

imagery. The process began with drainage network extraction through runoff simulation, 

thresholding, and skeletonisation to one-pixel wide lines. Afterwards the outflow points to 

the basin floor were detected. Through visual interpretation it was determined that all the 

outflow points were located on the piedmont slope and, in particular, on the alluvial fan 

regions. Region growing of the outflow points was performed on the basis of the gradient 

value of the surrounding pixels in the digital elevation model, and a set of fan polygons was 

derived. The final fans were extracted through spectral refinement on Landsat TM imagery. In 

Miliaresis (2001) bajadas were extracted from DTM and Landsat TM imagery through region 

growing segmentation, by considering the drainage that crossed the uplands and the bajadas, 

their slope, and their spectral signature in Landsat TM. Asselen and Seijmonsbergen (2006) 

extracted alluvial fans from 1m Laser DTM through multi-scale GEOBIA approach. On Level 1 

potential incised channels were identified. This information, was used on Level 2 to separate 

incised channels from river terraces and to classify other geomorphological units. Alluvial fans 

were determined based on their elevation and slope gradient properties. Classification result 

was optimized on Level 3 by merging adjacent objects classified in the same class, and by 

filtering out small misclassified ones. Argialas and Tzotsos (2006) extracted alluvial fans from 

ASTER L1 and 1o DTM through multi-scale analysis. At first, basins, piedmont slopes, and 

mountains were approximated (Level 1). These were refined, through classification-based 



81 

 

fusions (Level 2), spectral nearest neighbor (Level 2) and context-based, knowledge based 

classification (Level 2 - 4), to deliver the alluvial fans on the coarsest level. Crouvi et al. (2006) 

mapped alluvial fans from field spectrometer and hyperspectral remote sensing data. Roberts 

and Cunningham (2008) separated alluvial fans from SRTM data through slope thresholds and 

topographic roughness filter. Schneevoigt et al. (2008) classified various alpine landforms 

through multi-scale GEOBIA analysis from ASTER-derived spectral and DTM data. On Level 1 

spectral classification was performed to define the boundaries of all objects. Level 4 displayed 

the strata mask, while on Level 3 hollow forms and crest regions were extracted. Alluvial fans 

were extracted based on their slopes on Level 2, along with all other landforms. Classification 

results were satisfactory, however for the alluvial fans it was mentioned that it was difficult to 

separate them from floodplains or vegetation-covered channels. Yong et al. (2008) developed 

a four-level segmentation approach to identify piedmonts, basin, and mountains. After 

experimentation the segmentation parameters were determined and the final product was 

delivered through Nearest Neighbor classification of the final level. Hardgrove et al. (2009) 

employed thermal imagery to extract geomorphic features and evidence of sedimentary 

processes on the surfaces of alluvial fans. 

Previous studies employed spectral, slope, and elevation properties to determine alluvial fans 

and bajadas. Furthermore elements of the drainage network were considered in the 

identification process to identify their outflow points / apex points (e.g. Miliaresis and Argialas 

2000, Miliaresis 2001). However still remains the need to employ additional landform-pattern 

elements such as the landform shape, and the drainage pattern type and texture. Thus in this 

study geomorphometric and image analysis techniques were investigated and integrated 

through a GEOBIA multi-scale approach, towards the automated identification of alluvial fans 

and bajadas. At first, the elements required for the identification process were specified. 

Drainage pattern identification requires the extraction of the drainage network, thus state-of-

the-art DTM filtering, depression treatment, and drainage network extraction methods were 

investigated. Employment of topographic properties such as slope and shape required the 

investigation, enhancement and creation of DTM-derived indices. A fuzzy ontology was 

developed, based on the landform-pattern element approach, interweaving topographic-

form, drainage pattern, and spatial properties to carry out the identification of alluvial fans 

and bajadas. 

5.2 Materials and Methods 

5.2.1 Area of study and Data used 

The study area is part of the Great Basin section of the Basin and Range Physiographic Province 

in the Death Valley region in Nevada, USA. This region is characterized by large mountain 

ranges intervened by tectonic alluvial basins (Fenneman 1931, Peterson 1981). Eastward 

tilting of Death Valley has caused the west-side fans to be rather extensive, and the toes of 
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the east-side fans to be buried by playa deposits (Bull 1977). Numerous springs and wells are 

evident at the emergence of the alluvial landforms to the valley floor (Hunt 1975) and a 

seasonal shallow lake is formed occasionally in the Badwater Basin, in the northwest portion 

of the study area (Figure 23). Badwater Basin is confined by two mountain ranges the 

Panamint Range on the west side and the Black Mountains on the east side. It has the lowest 

elevation of any area in the United States. 

 

Figure 23: Overview of the study area (Landsat OLi imagery). Map data © 2017 Google, INEGI. 

Data used included the NED DTM provided by USGS and Landsat OLi multispectral imagery 

taken in 2015. The NED assembly process involves edge matching and mosaicking elevation 

data into NED layers. The processing system for the NED Seamless Layers is designed to 

assemble a seamless dataset from multiple data sources, resolutions, and production 

methods. Procedures have been developed to maintain the database with continuous updates 

and to insure the integration of higher resolution elevation data as they become available 

(USGS 2016). In this study, the 10m spatial resolution NED was employed. The examined area 

covered around 1270 km2.  

5.2.2 DTM processing 

An overview of the developed methodology is presented in Figure 24. DTM processing aimed 

to reduce noise and ensure the computation of continuous flowpaths from the uplands until 

the end of the drainage network through depression treatment. 
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Figure 24: Overview of the developed method for alluvial fan and bajada identification. 

Following Pelletier (2013), noise reduction was performed through optimal Wiener filtering, 

which removed microtopographic noise. Depression treatment was performed by an 

enhanced version of the PDEM algorithm which was stated in Feifei et al. (2012). PDEM 

performs depression treatment through linear interpolation. For each pixel, the downward 

elevation gradient (DEG) was computed in a 3x3 neighborhood. A Flat or Sink (FS) pixel was 

identified if its DEG was less or equal to zero. Afterwards, 8-connected FS pixels were grouped 

into Flat – or – Depression – Areas (FAD). For each FAD the bordering pixels were also 

determined. The border pixels with the minimum elevation were defined as outlets, while all 

the others were called inflows. Their coordinates were stored in arrays. Depression treatment 

began by setting the minimum border elevation to all FAD pixels. From an outlet a line was 

drawn towards a FS pixel (OF line) and extended until it intersected the border. The 

interpolation was performed if the OF was passing completely through the FAD. The OF line 
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was extended from the FS towards the border as follows. The maximum distance between the 

FS pixel and all inflow pixels was computed, rounded, and increased by 1. Iteratively, possible 

border coordinates were computed as shown in Equations (34)-(35). 

Xm = int( FSx + m * 0.1 * cos (ang) )  (34) 

Ym = int ( Fsy + m * 0.1 * sin (ang) ), ang: direction angle, m = 1,....,M (35) 

Xm and Ym were matched with all inflow coordinate pixels. If these coordinates matched the 

coordinates of an inflow pixel, linear interpolation was performed. A similar process was 

performed to extend the line from the outlet to the FS pixel. This process was performed for 

all outlet pixels. The final height was the minimum one computed from all interpolations. After 

experimentation, two special FAD occasions were identified. The first special occasion 

addressed the case where all border pixels had the same height. In this case, each border 

elevation was recomputed based on the height of the pixel it flowed into, determined by 

Single Flow Direction (SFD - O’Callaghan and Mark, 1984). The second special occasion 

addressed the case where all OF lines were connecting two outlet pixels. In this case each 

outlet elevation was recomputed based on the pixel it flowed into, determined by the SFD. 

After treatment of a single FAD, the algorithm reprocess the entire DTM to detect FADs and 

perform the above process. 

To deal with possible errors and improve computation efficiency, this algorithm was modified 

as follows. To ignore large flat areas (such as the sea) the modified algorithm ignores pixels 

having a certain mask value. Considering that each FAD is treated independently, to avoid the 

identification of the same FADs in multiple iterations and thus reducing computations, all FADs 

were treated in one iteration. Computations during line extension from the FS pixel towards 

the border were reduced by employing a raster in which the border pixels for each FAD were 

flagged. During OF line extension, a pixel was verified as inflow if it was flagged as border pixel 

and had larger elevation than the outflow. Similarly, it was verified if the OF line was passing 

outside the FAD. To reduce the possibility of computing the same elevation for two 

neighboring pixels, a small random value (between 0 and 1 cm) was added to the 

interpolation-derived height. Finally, to ensure compatibility with current Open GIS raster 

standards, the Orfeo Toolbox (OTB Development Team 2016) was employed for its 

development. 

5.2.3 Drainage Network Extraction 

Pelletier (2013) extracted the drainage network as follows. After wiener filtering, depression 

treatment was performed through Pelletier (2008). Valley heads were identified by a user-

defined contour-curvature threshold criterion. From each detected valley-head all down-slope 

pixels were flagged as non-valley-heads. Flow routing from each valley head was performed, 
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by the Multiple Flow Direction (MFD) as stated in Freeman (1991) and discontinuous reaches 

where the flow was divided into multiple paths were removed from the drainage network by 

applying a user-defined discharge-per-upstream-valley-head threshold criterion. The drainage 

network was derived by thinning the flow routing to a single pixel width (Rosenfeld and Kak 

1982). 

To investigate modern flow routing approaches since the MFD may produce artifacts (Freeman 

1991) and reduce computation time, this algorithm was modified as follows. Flow routing was 

performed by the Triangular Multiple Flow Direction (TMFD) as stated in Seibert and Mcglynn 

(2007). The contour curvature was mapped by computing the geometric curvature 

(Passalacqua et al. 2010), defined in Equation (36) as follows: 

 ∇�(  ∇h /| ∇h|) (h: input DTM) (36) 

The DTM was searched in ranked order. Flow was routed if the examined pixel had contour 

curvature value greater than the specified threshold (thus the pixel was recognized as a valley 

head), or if it had accepted flow from TMFD routing (thus being downstream from the valley 

head). This reduces computations since valley heads are determined during flow routing and 

not in a separate process.  

Drainage network extraction, aimed in the identification of the dichotomic drainage pattern, 

as it was specified by the landform-pattern element approach. Furthermore as it will be 

presented later, it was important to compute the Strahler order of the network. This however 

requires integrated stream network. Thus, the discharge-per-upstream-valley-head threshold 

was not applied in flow routing computation to ensure network continuity. Finally, single pixel 

width streams were computed through the Ehlschlaeger (1989) method, which is based on AT 

search algorithm. The developed drainage network extraction method is presented as 

pseudocode in Equation (37) as follows: 

filtered_dtm = optimal_wiener_filter( input_dtm ); 

treated_dtm = pdem( filtered_dtm ); 

sorted_dtm = sort( treated_dtm ); 

for_each ( pixel in sorted_dtm ) 

        if  ( ( pixel.contour_curvature > threshold ) OR ( pixel.flow > 0 ) ) 

                accumulation = tmfd_flow_routing( pixel ); 

drainage_network =  ehlschlaeger( accumulation ); 

 

 

 

 

 

 

(37) 
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After experimentation through trial and error, a geometric curvature threshold of 0.015 was 

found appropriate for stream extraction. Results were satisfactory in the upland areas (Figure 

25). However, in the piedmont, streams appropriate for dichotomic drainage pattern 

identification were not extracted satisfactorily. Dichotomic drainage pattern has multiple 

branches diverging from the apex, however the extracted branches did not had such 

integration. In some cases a sufficient number of branches was not extracted (Figure 25 – 

Example A) while in other cases they had topological errors since they were not initiated from 

the main stream (Figure 25 – Example B). Furthermore braiding of the branches also 

complicated network integration.  

Figure 25: Detail of the extracted drainage network (appearing in white). In the upland areas, streams were 

extracted satisfactorily. Circle A denotes the small number of extracted streams in the alluvial fan. Circle B 

denotes topological errors in the extracted stream network. 

5.2.4 Fuzzy Ontologies for GEOBIA 

Alluvial fan and bajada identification was performed through the design and development of 

a GEOBIA multi-scale approach. Knowledge representation and reasoning was performed 

through the development of a fuzzy ontology. Aim of the ontology was the representation of 

domain knowledge such as topographic forms related to the spatial organization of alluvial 

fans and bajadas, and remote sensing knowledge related to the landform-pattern element 

approach required for the definition of each class. The final ontology was developed following 
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three phases: specification, conceptualization, and formalization (Paslaru et al. 2006, Brusa et 

al. 2006).  

Reasoning was performed through the SPatial Ontology Reasoner SPOR (Argyridis and Argialas 

2015). SPOR was designed to perform fuzzy and spatial reasoning through multi-scale analysis. 

Fuzzy operations were performed based on Zadeh semantics (Zadeh 1965). To formalize an 

ontology in SPOR, an enhanced version of OWL 2 with fuzzy representations was adapted 

(Bobillo and Straccia 2011). OWL 2 supports the development of Classes, Data Properties (to 

express numerical properties such as slope, or curvature), Object Properties (to express 

topological relationships) datatypes (to express value ranges), Annotation Properties (to 

encode metadata) and Restrictions (class definitions). As membership functions were 

employed the left shoulder (LS), right shoulder (RS), triangular (TR), and trapezoidal (TRP) 

functions (Bobillo and Straccia 2011). This allowed to involve fuzzy data properties restrictions 

in class definitions. For example the expression slope some fuzzy_TRP_0_10_15_20 restricts 

the slope property with a TR function having borders 0, 10, 15, and 20 degrees. Furthermore 

the expression fuzzy_RS_0.8_1.0_RelativeBorder some piedmont restricts the spatial 

relationship relative border of the segments with the ones classified as Piedmont to have 

values determined by an RS function with borders 0.8 and 1.0. The general framework of the 

SPOR reasoning process is described in Argyridis and Argialas (2015). 

5.3 Identification of Alluvial Fans and Bajadas  

5.3.1 Ontology Specification  

In the specification phase, the major thematic categories that will be defined in the ontology 

were determined. The developed classes considered the implicitly or explicitly mentioned 

landforms in alluvial fan and bajada definitions and the landform-pattern element approach. 

Given that alluvial fans and bajadas are residing on the piedmont, one first recognizes a 

piedmont which is a topographic form, then the alluvial feature (AF) as an intermediate 

conceptual and visual feature, before arriving at the final level of recognition where alluvial 

fans are distinguished from bajadas. Thus the term AF was introduced in the present 

conceptual scheme to represent both alluvial fans and bajadas.  

Following Argialas and Miliaresis (2000) and Argialas and Tzotsos (2006), since the examined 

area is a part of a physiographic province (Figure 23), it is required to represent topographic 

forms related to the province spatial organization (Basin, Piedmont, UplandMountainRange) 

and the landforms (AlluvialFan and Bajada). However, due to the different size of the bajadas 

appearing on the Panamint Range and the ones appearing on the Black Mountains, it was 

determined that bajadas composed of two or three coalescing fans, having an area closer to 

an alluvial fan, should be represented with a different class, namely CoalescingAlluvialFan. 

Furthermore, in the landform-pattern element approach an important feature is the drainage 

pattern type and texture. Thus, the dichotomic drainage network 
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(DichotomicDrainageNetwork) and its texture should be identified. Finally, the AFs apex points 

formed by the upland drainage network should be identified. Thus, the upland drainage 

network (UplandDrainageNetwork) draining the UplandMountainRange should be identified. 

5.3.2 Ontology Conceptualization 

In the Conceptualization phase, the major categories determined in the Specification phase 

were represented in an initial taxonomy. For each class, properties which could be employed 

in their definition and identification were also examined. Following Argialas and Miliaresis 

(2000), It was determined that, at first, topographic forms should be identified (i.e. Basin, 

Piedmont, and MountainRange). Afterwards the Piedmont should be refined into the 

AlluvialFan, Bajada, and CoalescingAlluvialFan (Figure 26).  

Figure 26: Conceptualization of the ontology. 

At first the basin should be distinguished from the MountainRange. The Basin has large area 

extent and small slopes thus it can be identified based on its topography, through properties 

such as the MultiResolution index of Valley Bottom Flatness (MRVBF - Gallant and Dowling 

2003). This index takes advantage of the slope and aspect of the present forms, and 

determines flat areas. The MountainRange should be separated into the Piedmont (where AFs 

reside) and UplandMountainRange. Considering the literature and after experimentation it 

was observed that alluvial fans (and thus bajadas as well) have slope gradient values from 

nearly 0O, and generally did not exceed 10O-12O and this should be involved in Piedmont 

identification. Furthermore, Basin, MountainRange, and Piedmont spatial organization can be 

implied from the definitions and thus is should be represented in the ontology. Since the 

Piedmont is part of the MountainRange, it has relative border with the Basin. Furthermore 

Piedmont has relative border with the UplandMountainRange which is eroded and the 

produced sediments are deposited on the Piedmont. 

From the entire DrainageNetwork, the UplandDrainageNetwork and the 

DichotomicDrainageNetwork should be identified. UplandDrainageNetwork definition (which 

erodes the upland and carries the sediments) should correspond to the DrainageNetwork 
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covering the UplandMountainRange. Determination of the areas not drained by a dichotomic 

drainage pattern should aid in the elimination of piedmont areas which are not part of an AF. 

Thus, DichotomicDrainagePattern definition should encompass its geometry, topology, and 

texture. However, since the drainage network extraction did not represent network topology 

adequately, only its texture will be further quantified. Thus, 

TerrainWithDichotomicDrainagePatternTexture should represent objects having dichotomic 

drainage network texture. Pelletier (2013) employed low values of the discharge-per-

upstream-valley-head ratio to eliminate from the drainage network areas where the flow was 

not confined. Since the dichotomic drainage network it is not integrated, the same heuristic 

can be employed in TerrainWithDichotomicDrainagePatternTexture definition. Furthermore, 

proper texture features such as the Haralick measures should be employed in its definition.  

TerrainWithDichotomicDrainagePatternTexture should be refined into AlluvialFan, 

CoalescingFan, and Bajada. AlluvialFan definition should consider additional topographic 

properties related to its geometric signature which is close to a circular sector (CS). An index 

enhancing the AlluvialFan geometric signature was computed as follows. An ideal 

corresponding CS was determined for each AF (Figure 5). This required the computation of 

the CS angle and the direction of its bisector. CS center should be positioned on apex. An apex-

like point was identified by intersecting UplandDrainageNetwork objects with each AF and 

selecting the stream-end closest to each AF centroid. CS angle bisector direction was defined 

as the line connecting the apex-like point and each AF centroid. The radius (R) of the CS sector 

was computed by extending the CS bisector until the end of each AF. The central angle was 

computed in Equation (38) as follows, while the final index value was computed as shown in 

Equation (39) as follows: 

2

2AFArea
centralangle =

R
 

(38) 

intAF
int

Jo CSArea
Fan ShapeIndex =

Jo AFCSArea+ AFOnlyArea+ CSOnlyArea
−  

(39) 

In Equations (2-3) AFArea is the area of an AF, JointAFCSArea is the common area between an 

AF and its corresponding CS, AFOnlyArea is the area that belongs only to an AF and not its 

corresponding CS, and CSOnlyArea is the area that belongs only to the CS and not its 

corresponding AF. 

From Figure 27 it is observed that alluvial fans were satisfactorily matched with a CS. In such 

cases, the fan-shape index had a value greater than 0.60-0.65. However, the CS is not 

coincident to the observed bajada/coalescing fan, since it is not clearly fan-shaped (although 
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it is composed of multiple fan-shaped objects). The Index value for the bajada was around 

0.36. 

Figure 27: Example of fan-shape index computation. The UplandDrainageNetwork objects were intersected 

with AFs and apex-like points were defined as the stream edges closer to each AF centroid. The alluvial fans 

(middle and bottom) were satisfactorily matched with a circular sector. However, this was not true for the 

bajada/coalescing fan on the top. 

5.3.3 Knowledge formalization for the Identification of Alluvial Fans and Bajadas 

During knowledge formalization, the derived taxonomy from the Conceptualization phase was 

expanded into a fuzzy OWL 2 ontology. In the conceptualization phase, it was determined that 

Basin, MountainRange, and Piedmont areas need to be determined first (Figure 5 - Phase 1). 

Alluvial fans, bajadas, and coalescing fans should be detected afterwards, as sub-objects of 

piedmont (Figure 5 - Phase 2). Thus the developed formalization aimed at first to extract the 

Basin and the Piedmont areas. From the later, the fans and bajadas should be separated and 

identified. This was achieved after performing sufficient tests to determine through an 

iterative trial – and – error process the required number of segmentation levels, the exact 

taxonomy, classes, and properties for their definition.  

Segments were derived by Definiens eCognition multiresolution segmentation (Baatz and 

Shäpe 2000, Trimble 2011) and were stored in PostgreSQL to be available to SPOR for the 
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reasoning process. In a multi-scale approach, larger objects were created on the higher levels 

of the hierarchy while finer-scaled objects on the lower. Figure 28 presents an overview of the 

classes developed and their interweaving, derived from the knowledge formalization stage. 

To represent the segmentation hierarchy within the classification hierarchy and ease the 

expression of spatial relationships between levels, each segmentation level was represented 

by a class. The class name indicated the level in the hierarchy and its purpose. Thus, for Level 

3 segmentation the class Level3 was created. Details concerning the exact formalized classes, 

properties, and class definitions, can be found in the uploaded ontology in the following URL. 

https://github.com/ArArgyridis/GEOBIA-Ontologies/blob/master/GEOBIA_alluvial_bajada.owl  

 

5.3.3.1 Phase 1 - Identification of topographic forms 

Level 4: Basin identification through topographic properties 

Figure 29 presents magnifications of the major geomorphometric features employed in Phase 

1. Based on the conceptualization scheme, classification began with the determination of 

Basin areas. Since it was difficult to determine a segmentation parameter to compute a single 

object for the entire Basin, it was decided to compute large objects representing parts of the 

Basin. Thus a large segmentation scale parameter should be employed.  

Figure 28: Final identification strategy. Phase 1 was designed to perform the identification of Basin, Mountain, 

and Piedmont areas. Phase 2 was designed to distinguish and identify each AF type. 

After experimentation, a scale of 45 (shape 0.1, compactness 0.5) was found appropriate for 

the segmentation process and Level 4 was designed as the highest in the hierarchy. 

Segmentation was performed on the slope gradient and the MRVBF index (Figure 29.f). 

Computation of the later requires a large number of parameters, however Gallant and 
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Dowling (2003) stated that adjustment of MRVBF slope gradient threshold, which is related to 

DTM resolution, should be sufficient to determine flat areas. The authors stated that a value 

of 32% was appropriate in the case of an 8m resolution DTM. Since NED has around 10m 

spatial resolution the 32% threshold was applied to compute the MRVBF. All other MRVBF 

parameters remained the same. Results were satisfactory since the basin had large values of 

the MRVBF index and was separated from the mountain range (Figure 29.f). The computation 

was performed on SAGA GIS (Condrad et al. 2015). 

Figure 29: Subsets of the major geomorphometric features employed in Phase 1. a. Landsat OLi imagery. b. 

geometric curvature. AFs have medium values. c. slope gradient. AFs have slope values from near zero to 10-12 

degrees. d. first order derivative of slope gradient. AFs have small values. e. aspect. Mountain range and AFs 

have small aspect variation. f. MRVBF index. Basin areas have medium to large values. 

Based on the conceptualization scheme classification began with the declaration of 

BasinLikeL4 and MountainRangeLikeL4 as sub-classes of Level4 (Figure 26, Figure 28). 

Definition of BasinLikeL4 was based on the topography of the basin objects. Basin flatness was 

expressed through medium to large values of the MRVBF (Figure 29.f). Furthermore, it was 

observed that large values of the standard deviation of the aspect were also appropriate for 

BasinLikeL4 definition, to properly separate the AFs from the basin, since their aspect is 

homogeneous compared to the basin (Figure 29.e). All other objects were classified as 

MountainRangeLikeL4. After classification the objects of each class were spatially merged. 

Level 1: Identification of piedmont-like objects through topographic properties 

To extract Piedmont-Like areas as sub-objects of the MountainRangeLikeL4 objects, a new 

Level (Level 1) was created below Level 4. Level 1 was designed to represent objects 
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completely included within the piedmont area. Thus, segmentation was performed on the 

slope gradient, with a smaller scale parameter (scale = 15, shape = 0.3, compactness = 0.5), 

on the objects classified as MountainRangeLikeL4 (Figure 26, Figure 28). For Level 1 

classification, BasinLikeL1 and MountainRangeLikeL1 were created as sub-classes of Level1. 

BasinLikeL1 was defined by projecting classification results from Level 4 through the 

is_Fuzzy_RS_0_1_OverlappedBy spatial feature. All other objects were classified as 

MountainRangeLikeL1. 

PiedmontLikeL1 and UplandMountainRangeLikeL1 were created as sub-classes of the 

MountainRangeLikeL1 (Figure 28). Since AFs reside on the Piedmont, properties representing 

AFs topography were added in PiedmontLikeL1 definition. This involved slope gradient 

thresholds as they were depicted in the Conceptualization phase (Figure 29.c) which were 

represented through a fuzzy trapezoidal function as shown in Equation (40). The AFs gently-

sloping property was represented through low values of the slope gradient first order 

derivative (Figure 29.d). Finally, to separate AF apex-like areas from the end of the upland 

drainage network, low to medium contour curvature values were also employed. Remaining 

MountainRangeLikeL1 objects were classified as UplandMountainRangeLikeL1. 

Class: PiedmontLikeL1    EquivalentTo:  

        MountainRangeLikeL1 

         and (mCurvature some fuzzy_LS_0.011_0.013) 

         and (mSlope some fuzzy_TRP_0.00_0.00001_10.0_20.0) 

         and (mSlopeFirstOrderDerivative some fuzzy_LS_8.4_9.0) 

 

 

 

 

(40) 

This definition reads as follows: MountainRangeLikeL1 objects having geometric curvature 

values smaller than 0.012, and slopes from nearly 0O to 10O but no more than 20O, and having 

values of the first order derivative of slope smaller than 8.7, were classified as objects of 

PiedmontLikeL1. 

Figure 30 presents subsets of Level 1 classification result. It is observed that piedmont areas 

were satisfactorily identified. However, MountainRange areas were committed to 

PiedmontLikeL1 objects and islands (gaps) were observed on the piedmont. To address these 

errors further refinement was necessary. 
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Figure 30: Subsets of Level 1 classification result. 

Level 2: Piedmont identification through spatial reasoning 

Upon identifying Piedmont-Like objects through topographic properties, now Piedmont spatial 

relationships should be expressed for its identification. Spatial reasoning was developed to 

identify the Piedmont as sub-object of the MountainRangeLikeL4 objects having relative 

border with the Basin and to identify piedmont islands. To express piedmont spatial 

relationships, the piedmont area needed to be represented by a single object, thus 

PiedmontLikeL1 objects were merged and Level 2 was created above Level 1. BasinLikeL2, 

PiedmontLikeL2, and UplandMountainRangeLikeL2 were created as sub-classes of Level2 

(Figure 28).  

Level2 objects covered by objects classified as BasinLikeL4 were classified as BasinLikeL2. 

Level2 objects covering PiedmontLikeL1 objects, with relative border with BasinLikeL2 objects 

were identified as PiedmontLikeL2. All other Level2 objects were classified as 

UplandMountainRangeLikeL2. To fill PiedmontLikeL2 islands, MergeWithPiedmontLikeL2 and 

OtherUplandMountainRangeLikeL2 were created as sub-classes of 

UplandMountainRangeLikeL2. After trial-and-error as MergeWithPiedmontLikeL2 were 

classified objects having at least 47.5% relative border with PiedmontLikeL2 objects. All other 

objects were classified as OtherUplandMountainRangeLikeL2. 

Level 3: Piedmont refinement through spatial reasoning 

MergeWithPiedmontLikeL2 objects did not contain all PiedmontLikeL2 islands, thus further 

piedmont refinement was necessary. To address this, a new level was created. 

PiedmontLikeL2, and MergeWithPiedmontLikeL2 objects were merged together. Also 

OtherUplandMountainRangeLikeL2 objects were merged and Level 3, was created between 

Level 2 and Level 4. The classes PiedmontL3, and NotPiedmontL3 were defined as sub-classes 

of Level3 (Figure 28). Level3 objects covering BasinLikeL2 or OtherUplandMountainRangeLike-
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L2 objects by at least 50% were classified as NotPiedmontL3. Level3 objects, covering 

PiedmontLikeL2 objects by at least 50%, having relative border with NotPiedmontL3 objects 

greater than 85% were classified as PiedmontL3. As sub-classes of NotPiedmontL3 the 

BasinL3, MergeWithPiedmontL3, and UplandMountainRangeL3 were created. After 

experimentation, as MergeWithPiedmontL3 were classified the objects having relative border 

greater than 85% with the objects classified as PiedmontL3 or the objects having relative 

border greater than 25% with objects classified as MergeWithPiedmontL3.  

NotPiedmontL3 objects, covered by BasinLikeL4 objects, which were not classified as 

MergeWithPiedmontL3 were classified as BasinL3 (Figure 28). All other NotPiedmontL3 

objects were classified as UplandMountainRangeL3. The objects classified as 

UplandMountainRangeL3, PiedmontL3, and MergeWithPiedmontL3 were merged after 

classification. Figure 31.a presents a detail of Level 3 AF classification result in the Panamint 

Range region. It is observed that the piedmont and the remaining islands 

(MergeWithPiedmontL3) were satisfactorily identified. Furthermore Figure 31.b shows that in 

the Black Mountains region the piedmont was also satisfactorily identified, however the AFs 

are merged and further processing was required to separate them.  

Figure 31: Classification result of Level 3. Background: Landsat OLi imagery. The piedmont was captured 

satisfactorily in both cases. a. The Panamint Range Piedmont islands were identified. b. Black Mountain AFs 

requires further processing to be separated. 

5.3.3.2 Phase 2 - Identification of Alluvial Fans, Bajadas, and Coalescing Fans 

Upon identifying the topographic forms related to AF spatial organization, now each AF form 

will be identified. Their identification will be based on drainage pattern texture, and geometric 

properties.  

The UplandDrainageNetwork should be identified to determine apex-like points and compute 

the fan-shape index. To compute proper objects representing the UplandDrainageNetwork 

(Figure 26), these objects should not be covered by AFs. It was determined that at first the AF 
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objects should be created on an upper level and the drainage network should be created on 

the lower. After the determination of the UplandDrainageNetwork, the AFs could be 

separated into the AlluvialFan, CoalescingFan, and Bajada classes. 

Level 2b: Separation of each alluvial feature through morphological opening 

Separation of each AF object was achieved through morphological opening on all Level 3 

objects. However, since this action would affect the hierarchical properties of the 

segmentation levels, it was decided that a new segmentation hierarchy should be developed. 

(Figure 26, Figure 28). The upper level was designed to represent each individual AF. Thus, at 

first, morphological opening on all Level 3 objects with a 10 pixel radius structural element 

was performed and Level 2b was created. Classification of Level 2b objects was performed 

after UplandDrainageNetwork identification since the later is required for the computation of 

AF fan-shape index.  

Level 1b: Upland Drainage Network Identification 

To determine the upland drainage network (UplandDrainageNetwork – Figure 26), a new level 

(Level 1b) was developed on the lowest level of the second hierarchy. Since the drainage 

network had a single-pixel width, a scale parameter equal to 1 was employed in the 

segmentation process, resulting into pixel-sized objects. Segmentation was performed on the 

Strahler raster. As sub-classes of Level1b, the classes UplandDrainageNetworkL1b, 

NotStreamL1b, and OtherStreamL1b were created (Figure 26, Figure 28). Streams with 

sufficient sediment carrying capacity were considered these having Strahler order larger than 

3. Furthermore, these streams should drain the upland mountain range in order to produce 

the required sediments. Thus, the class UplandDrainageNetworkL1b was defined in Equation 

(41) as follows: 

Class: UplandDrainageNetworkL1b   EquivalentTo:  

        Level1b 

         and (is_Fuzzy_RS_0_1_CoveredBy some UplandMountainRangeL3) 

         and (mStrahler some fuzzy_TRP_2_3_254_255) 

 

 

 

(41) 

This definition reads as follows: Level1b objects covered by UplandMountainRangeL3 objects, 

having Strahler order greater than 3, were classified as UplandDrainageNetworkL1b.  

Level 2b: Dichotomic drainage pattern texture and alluvial feature identification 

On Level 2b, AFs were separated from other objects, based on heuristics representing 

dichotomic drainage pattern texture properties. Thus, the classes 

TerrainWithDichotomicDrainagePatternTextureL2b and OtherAreaL2b were developed 

(Figure 26, Figure 28). Figure 32 presents the main features employed for the final 

identification of TerrainWithDichotomicDrainagePatternTextureL2b.  
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Figure 32: Major geomorphometric features employed in Phase 2. a. Landsat OLi imagery. b. number of valley 

head contribution for each pixel. AFs and basin have a large number of contributing valley heads per pixel c. 

discharge-per-upstream-valley-head ratio. AFs and basin have low values of this ratio. 

TerrainWithDichotomicDrainagePatternTextureL2b was defined as follows. As shown in the 

conceptualization phase, these areas should be part of the piedmont, having low values of the 

discharge-per-upstream-valley-head (Figure 32.c). Furthermore, since in the AFs the flow is 

not confined but it is rather distributed on the entire area due to the dichotomic drainage 

pattern, the discharge-per-upstream-valley-head and flow accumulation values were low and 

were not deviating much. This heuristic was represented in the ontology through low values 

of the Grey-Level Co-occurrence Matrix (GLCM) Contrast and the GLCM Angular 2nd Moment 

Haralick features. These features have small values on areas with small local variation. 

Appropriate values for these features were determined by plotting their values in QGIS and 

testing appropriate thresholds. AF formation requires a considerable sediment quantity. Thus 

it was assumed that a considerable number of streams should contribute flow into the apex, 

thus an AF should receive flow from a large number of upstream valley-heads. However, since 

all streams end up in the basin, the basin has very large values of this feature (Figure 32.b). 

Thus, medium values of flow-contributing valley heads per pixel were included into 

TerrainWithDichotomicDrainagePatternTextureL2b definition. Finally small noise was 

eliminated by applying an area feature restriction. Definition of the class 

TerrainWithDichotomicDrainagePatternTextureL2b is presented in Equation (42) as follows. 
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Class: TerrainWithDichotomicDrainagePatternTextureL2b    EquivalentTo:  

        Level2b 

         and (is_Fuzzy_RS_0_1_CoveredBy some PiedmontL3) 

         and (areaPxl some fuzzy_RS_330_350) 

         and (glcmContrastAccumulation some fuzzy_LS_800_900) 

         and (glcmAngular2ndMomentDischargePerValleyHead some fuzzy_LS_0.5_0.6) 

         and (glcmContrastDischargePerValleyHead some fuzzy_LS_640_700) 

         and (mDischargePerValleyHead some fuzzy_LS_8.0_8.5) 

         and (mNumberOfValleyHeads some fuzzy_TRP_130_210_5000_6000) 

 

 

 

 

 

 

 

 

(42) 

This definition reads as follows: Level2b objects covered by PiedmontL3 objects, having area 

greater than 340 pixels, and GLCM contrast values (computed on the flow accumulation) 

smaller than 850, and GLCM Angular 2nd Moment values (computed on the discharge-per-

upstream-valley-head) smaller than 0.55, and GLCM Contrast values (computed on the 

discharge-per-upstream-valley-head) smaller than 670, and discharge-per-upstream-valley-

head values smaller than 8.25, accepting flow from 170 to 5500 valley heads, were classified 

as TerrainWithDichotomicDrainagePatternTextureL2b. 

Based on the conceptualization scheme, TerrainWithDichotomicDrainagePatternTextureL2b 

objects were further separated into AlluvialFanL2b, BajadaL2b, and CoalescingFanL2b (Figure 

26, Figure 28). As AlluvialFanL2b were classified DichotomicDrainagePatternTextureL2b 

objects having fanShape index values greater than 0.60. As CoalescingFanL2b were classified 

the small bajadas in the area. It was determined that these should be defined as areas which 

were not classified as AlluvialFanL2b (thus they could not be determined as fan-shaped) 

having a maximum area determined by a left shoulder function with left border equal to 

80000 and right border equal to 140000 pixels. All other areas were classified as BajadaL2b. 

Evaluation of results was satisfactory since the AF entities were successfully identified. 

However, overlaying the results on Landsat OLi imagery indicated a systematic omission error 

on the fan-toe of the AFs. This error was corrected by considering the spectral signature of 

the soil composing each individual AF as it will be presented in the next section. 

5.3.4 Fan-toe shape Refinement based on Soil Spectral Signature 

To correct the fan-toe of the AFs, the soil spectral signature of each AF needed to be enhanced 

through proper spectral indices. It was determined that such indices should present each AF 

with a homogeneous spectral signature. After experimentation, the following approach was 

developed. PCA-2 was appropriate to enhance bajada spectral signature and PCA-3 was 
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appropriate for alluvial fans and coalescing fans. For each AF the mean and standard deviation 

of its respective index was computed. Afterwards to identify candidate pixels for addition to 

each AF and avoid merging the AFs between them, through experimentation, dilation was 

performed with a 30-pixel radius disk. If a pixel belonging to the dilated AF had a PCA-2(3) 

value in the range [mean – std, mean + std] and was classified as BasinL3 it was added to the 

original AF. For shape optimization, gap filling, and morphological opening with a 9 kernel 

radius was performed on the result of this process. The result was vectorized and the objects 

overlapping the original DEM-derived AFs were retained. The effects of this process are 

presented in Figure 33. It is observed that the boundary of the AFs is extended within the 

basin, following the spectral signature of the material each AF is composed.  

Figure 33: a. Each dilated AF is presented with grey color, while in white are denoted the criterion-determined, 

dilated, AF pixels. b. Final results after gap filling on Landsat OLi imagery.  

The final classification result is presented in Figure 34. The major fan/coalescing fans and 

bajadas in the examined area were successfully identified. Furthermore, the majority of each 

AF omitted alluvial material was included to the final result through the spectral shape 

optimization.  

5.4 Evaluation of Results and Discussion 

Classification results were compared with reference data derived by human interpretation and 

evaluated as follows. At first the areas correctly detected (True Positive – TP), omitted (False 

Negative – FN) or committed (False Positive – FP) were computed by comparison to the 

reference data. Based on these areas, the Completeness, Correctness and Quality indices 

(Agouris et al. 2004) were computed as presented in Equations (4)-(6). The results are 

presented in Table 8. 

Omission errors were observed on the northern parts of the bajadas, which were caused by 

the criteria involved in PiedmontLikeL1 identification. Small commission errors were caused 

due to the existence of alluvial material with similar spectral signature with the AFs within the 

Badwater basin. Visual evaluation of the result was performed by comparing the existing road 

near the Black Mountains with the extracted alluvial/coalescing fan polygons. The comparison 
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is sound, since the roads are built on the same level as the alluvial fan surface because roads 

that are lower than the surface of the fan tend to be buried and roads that are higher may be 

destroyed by floods (Bull 1977). It was observed that the border of the road followed 

satisfactorily the fan border towards the playa. It should be noted that the objects classified 

as AlluvialFanL2b and CoalescingFanL2b did not contain the coalescing zone between fans, 

since the aim was to identify individual AFs. Extraction of this zone as a part of an 

alluvial/coalescing fan would result into their merging, which was undesirable. Small alluvial 

fans (Figure 12) were not identified by the developed method. Their size was too small and 

the geometry of the extracted objects were considerably affected by the morphological 

opening process. Thus, further investigation is required to identify them, or consider 

examining finer resolution data. 

Figure 34: Areas identified as alluvial fan, coalescing fan, and bajada, shown on Landsat OLi 765 color 

composite. In the magnification small alluvial fans, not extracted, in the present study are presented. The 

coordinates are in WGS 84 Pseudo Mercator (EPSG: 3857). 

 

Table 8: Comparison of the extracted alluvial fan, coalescing fan, and bajadas with reference data. 

 Omission Error (%) Commission Error (%) Completeness (%) Correctness (%) Quality (%) 

Alluvial Fans 11.9 4.1 88.1 95.5 84.6 

Coalescing Fans 15.1 5.0 84.9 94.4 80.8 

Bajadas 9.5 1.3 90.5 98.6 89.4 

Total 9.8 1.5 90.2 98.3 88.8 

 

Overall an omission and commission error of 9.7% and 1.8% was achieved. The largest 

omission error was computed for the coalescing fans (15.1%) while the largest commission 
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error was computed for the alluvial fans and (6.1%). The smallest errors were computed for 

both measures for the bajadas. Similar results were obtained through the evaluation with the 

Completeness, Correctness, and Quality indices. For coalescing fans the smallest quality was 

scored (82.4%) while for bajadas the largest (89.4%). These findings can be justified since the 

bajadas have very large area extent, and thus, the omission/commission errors observed on 

their border did not affect the evaluation significantly. It should be noted however that in the 

evaluation process as isolated alluvial fans were considered and old alluvial fans that may 

completely contain younger alluvial fans, since in such cases only the geometric signature of 

the old alluvial fans could be examined by the developed approach. 

The developed GEOBIA approach for alluvial fan, coalescing fan, and bajada identification was 

based on the landform-pattern element approach. The semantic gap between the human-

employed semantics in terrain analysis, the low-level numerical values, and medium level 

descriptors employed in an automated approach, was addressed through the design and 

development of a fuzzy ontology. This required the investigation, development and 

interweaving of numerical indices expressing the shape, topography and spatial organization 

of the examined landforms and their employment in landform class representation. To aid 

drainage network extraction, optimal wiener filtering reduced DTM noise, and flat and sink 

areas were treated through an enhanced version of PDEM algorithm. Drainage extraction 

results showed that the drainage was extracted satisfactorily in the upland areas (Figure 4). 

However, the extracted drainage network in each AF was not integrated (like it is in the 

dendritic or rectangular drainage pattern). The number of the branches composing the 

dichotomic drainage pattern were not sufficient, and they required topological correction. 

Thus, it was not possible to identify the dichotomic drainage pattern through geometric and 

topological relations of the extracted streams as in cases of integrated drainage networks 

(Argialas et al. 1988, Ichoku and Chorowicz 1994). Improper extraction could be also affected 

by the fact that dichotomic drainage pattern streams present braiding causing them to 

intersect. Furthermore, examination of the accumulation raster showed that most of the 

surface of each AF was accepting flow. This made difficult for the drainage extraction 

algorithm to initiate the dichotomic drainage pattern branches. Additionally the drainage 

network was not extracted satisfactorily in the basin area. A lot of streams were extracted, 

creating a rather complex drainage network system within the basin. This was caused by the 

fact that the basin is a rather flat area, with small slopes, thus the water is not confined in 

streams but in rain events it spreads within the entire basin area. However, since the drainage 

network in the basin was not a requirement in this study, it was not further examined. 

Previous GEOBIA studies extracted alluvial fans by taking advantage on their slope gradient, 

curvature properties, elements of the upland drainage network, spectral, and spatial 

properties. The employed semantics examined mostly the topographic properties of the 
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alluvial fans, thus identifying the alluvial fans as a topographic form. Furthermore, in the event 

of multiple co-existing alluvial fans, each alluvial fan was not examined as a separate entity 

but rather the entirety of alluvial fans were examined as a unified polygon area. However, the 

landform-pattern element approach human interpretation descriptors examine landform 

properties as a single entity. Furthermore, additional properties referring to the shape and 

the landform specific drainage network pattern and texture are also examined. Thus, to 

properly investigate such properties, in this study proper descriptors were designed and 

implemented. The developed reasoning in the first GEOBIA phase aimed to take advantage of 

the topographic properties (slope gradient, curvature, spatial organization), similar to 

previous studies, to identify the piedmont areas. To examine each form separately, through 

morphological operations the piedmont polygons were refined and objects corresponding to 

single alluvial fan entities were created. Although distant alluvial fans, coalescing fans and 

bajadas were satisfactorily separated, this process could not separate alluvial fans in cases 

where an older alluvial fan may contain younger alluvial fans.  Such refinement would require 

further processing which could examine indicators such as the upland drainage network 

related with an alluvial fan (e.g. the number of streams which touches an AF) and the 

extraction of strong and weak edges in order to identify the border of the younger alluvial fans 

within the older AF. Drainage network texture was approximated by developing the class 

TerrainWithDichotomicDrainagePatternTextureL2b which was defined by features such as the 

mean value of the discharge-per-upstream-valley-head ratio, its GLCM Contrast and 2nd 

Angular moment, and the number of contributing valley-heads per pixel. However, the 

drainage pattern approximation did not examined the topological relationships of the 

drainage network streams. Furthermore, the landform-pattern element approach examines 

the landform drainage network texture visually, by examining the density of the drainage 

network streams. Thus, investigation of methods for dichotomic drainage network pattern 

extraction should be performed towards the automatic identification of alluvial fans.  

Since individual alluvial fans have a characteristic fan-shape geometric signature, while 

coalescing fans and large-extent bajadas do not, a fan-shape index was developed which 

examined the site, the relation with the upstream drainage network, and each AF orientation. 

Large scores were computed for isolated alluvial fans, and lower scores were computed for 

coalescing fans and bajadas. However, since an old alluvial fan could contain younger alluvial 

fans which could not be separated, during fan-shape index computation the geometric 

signature of the old alluvial fans was only examined. However, in the event that younger 

alluvial fans would be identified, their shape could be also examined in this approach. 

5.5 Conclusions 

Earlier GEOBIA studies, considered the slope, spectral, and spatial organization for alluvial fan 

or bajada identification. In this study these properties were examined and interweaved with 
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additional landform pattern elements which consider the landform shape (fan shaped) and 

the drainage network pattern (dichotomic) through the development of a fuzzy ontology. 

Heuristics were developed to express the drainage network texture. A fan-shape index was 

developed to examine each form shape. The developed approach should work satisfactorily 

in areas with similar conditions. However, towards the automation of alluvial fan mapping and 

the identification of specific types of alluvial fans further investigation is required. This can be 

aided by the developed algorithms and the developed ontology which are available online and 

can be examined by anyone who wants to investigate alluvial fan mapping and further 

enhance it. 

Future work might include some of the following. The developed method can be extended to 

consider other, more complex cases, e.g. to examine cases when the bajada has covered the 

entire basin, examine fans and bajadas in humid climates, to examine coalescing fans in cases 

where younger fans are formed over older fans, examine cases where the alluvial materials 

are not exposed but are covered by vegetation or infrastructure, or determination of more 

appropriate indices to emphasize alluvial materials. It is also desirable to investigate the 

extraction of the dichotomic drainage pattern through topological properties, by either 

employing finer DTM data, or investigating other approaches for drainage network extraction.  
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6 Overall Conclusions and Prospect 
In this research state-of-the-art image analysis, machine-learning, and knowledge 

representation methods were investigated towards the automatic identification of landscape 

components within the framework of GEOBIA. 

Ontologies were developed for the following remote sensing problems: building extraction 

and change detection, foreshore extraction, and alluvial fan, coalescing fan, and bajada 

identification. In all cases, the required knowledge was satisfactorily represented with an 

ontology, based on the available axioms (Chapter 2). By assigning objects to the thematic 

categories defined in the developed ontologies, SPOR classified successfully single (Chapter 2, 

Chapter 3, Chapter 4) and multiple segmentation hierarchies (Chapter 5), thus addressing the 

first objective of this research. Furthermore both machine learning and fuzzy ontological 

reasoning was employed simultaneously within SPOR (Chapter 4). This qualifies SPOR as a 

satisfactory classifier for GEOBIA, and addresses the second research objective. The derived 

classification results were compared with reference data, with promising results, thus, 

addressing the third objective of this research. For the development of SPOR, DEM depression 

treatment, and drainage extraction algorithms, free (as in freedom) software such as LibXML2, 

Boost, PostgreSQL/PostGIS, OrfeoToolbox, QGIS, and GDAL was employed. For SPOR 

knowledge formalization the open standard OWL 2 was adopted. For all algorithms the coding 

was performed in C++ to gain in terms of computation performance. All developed algorithms 

and ontologies are available on the following GitHub repository under the terms of GPL v3, 

thus addressing the fourth and final objective of this research. 

https://github.com/ArArgyridis/ 

Future work, might include some of the following. A significant amount of effort has been 

developed within the GEOBIA community to extract semantic information from images. The 

results of these efforts (knowledge bases, employed strategies, extraction processes) today 

exist only on paper or isolated and unrelated implementations. Thus, the generic knowledge 

base is available only to a limited number of individuals. Development of multiple GEOBIA 

ontologies for different remote sensing problems in this dissertation depicts their suitability 

for knowledge formalization. Furthermore adoption of Semantic Web technologies for 

knowledge representation can provide for sharing, extension, and integration of the 

developed ontologies with others from the same or different disciplines. Therefore, such 

efforts provide an opportunity for the development of a collaboration tool to allow exchanging 

and enhancing of the developed ontologies for image extraction by all GEOBIA community.  

During GEOBIA analysis it is often desirable to perform pre-classification or post-classification 

processes on the objects belonging to a single or multiple classes (e.g. object merging or 

morphological operations). SPOR could be extended through its integration with image 
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analysis tools such as Orfeo Toolbox or vector processing tools such as QGIS in order to 

perform such actions. Encoding of such information within a GEOBIA ontology can be 

performed by designing and implementing proper metadata describing the exact processes 

and the order in which they should be executed on the objects of a class. 

Integration of SPOR with technologies such as PostgreSQL, allows for sharing classification 

results through OGC Services such as Web Map Services (WMS) and Web Feature Services 

(WFS) over the Internet. By taking advantage of such protocols, a free and open source web 

application which can perform GEOBIA processing can be built. A web server integrating 

segmentation algorithms such as MSEG (Tzotsos and Argialas 2006) and SPOR for the 

classification process is required. A Graphical User Interface (GUI) which can allow to design 

GEOBIA processes (e.g. developing processing flows, optimizing segmentation parameters, 

developing classes for the classification process) can be built by taking advantage on W3C 

standards such as HTML5, CSS3, and Asynchronous Javascript and XML (AJAX) techniques. 

Exchange of information between the server and the GUI can be performed by developing 

Representational state transfer (REST) services. Javascript libraries such as OpenLayers or 

Leaflet can be employed to display web maps and classification results. 
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