ПАРАРТНМА **А**

Λίστα φασμάτων Δ.Δ.

Στο Παράρτημα αυτό δίνονται οι ονομασίες και οι κωδικοί SPUNAL για όλα τα φάσματα που χρησιμοποιήθηκαν στην παρούσα Δ.Δ. Τα φάσματα κατηγοριοποιούνται ανά Κεφάλαιο και ανά θεματική ενότητα.

Α.1 Κεφάλαιο 2

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL	Παρατηρήσεις
1	4	υπόστρωμα	bg4269	16/0.103	χωρίς τροφοδοσία Ν₂
2	14	υπόστρωμα	bgcss69	16/0.103	χωρίς τροφοδοσία Ν₂
3	4	υπόστρωμα	bg4277	16/2.255	χωρίς τροφοδοσία Ν₂
4	14	υπόστρωμα	bg1406	16/2.256	χωρίς τροφοδοσία Ν₂
5	4	υπόστρωμα	bg4270	16/0.102	με τροφοδοσία Ν ₂
6	14	υπόστρωμα	bgcss70	16/0.115	με τροφοδοσία Ν ₂
7	4	υπόστρωμα	bg4276	16/2.251	με τροφοδοσία Ν ₂
8	14	υπόστρωμα	bg1405	16/2.252	με τροφοδοσία Ν ₂

Η διάταξη Compton Suppression του Ε.Π.Τ. - Ε.Μ.Π.

Α.2 Κεφάλαιο 3

Μελέτη της απόκρισης του συστήματος Compton Suppression του Ε.Π.Τ. - Ε.Μ.Π.

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL	Παρατηρήσεις
9	4	υπόστρωμα	bg4265	14/7.36	πριν την εγκατάσταση του CSS
10	4	υπόστρωμα	bg4275	16/2.248	μετά την εγκατάσταση του CSS
11	14	υπόστρωμα	bg1404	16/2.249	
12	4	υπόστρωμα	bg4267	16/0.49	
13	4	υπόστρωμα	bg4270	16/0.114	
14	4	υπόστρωμα	bg4271	16/0.169	
15	4	υπόστρωμα	bg4272	16/1.247	
16	4	υπόστρωμα	bg4273	16/1.15	
17	4	υπόστρωμα	bg4274	16/2.51	υπολογισμος
18	4	υπόστρωμα	bg4275	16/2.248	00012/201001.11.
19	4	υπόστρωμα	bg4276	16/2.251	
20	4	υπόστρωμα	bg4278	16/2.257	
21	4	υπόστρωμα	bg4279	16/2.261	
22	4	υπόστρωμα	bg4280	16/2.265	
23	14	υπόστρωμα	bgcss67	16/0.104	
24	14	υπόστρωμα	bgcss70	16/0.115	
25	14	υπόστρωμα	bgcss71	16/0.171	
26	14	υπόστρωμα	bg1401	12/1.248	υπολογισμος
27	14	υπόστρωμα	bg1402	16/1.16	
28	14	υπόστρωμα	bg1403	16/2.52	
29	14	υπόστρωμα	bg1404	16/2.249	

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL	Παρατηρήσεις
30	14	υπόστρωμα	bg1405	16/2.252	
31	14	υπόστρωμα	bg1407	16/2.258	
32	14	υπόστρωμα	bg1408	16/2.262	
33	14	υπόστρωμα	bg1409	16/2.266	
34	4	σημειακή πηγή ²⁴¹ Am	am24100b	16/0.61	
35	4	σημειακή πηγή ¹³⁷ Cs	cs13700b	16/0.65	
36	4	σημειακή πηγή ¹³³ Ba	ba13300a	16/2.111	σε επαφή με τον
37	4	σημειακή πηγή ⁶⁰ Co	co6000b	16/0.76	ανιχνευτή
38	4	σημειακή πηγή ¹⁵² Eu	eu15200b	16/0.81	
39	4	σημειακή πηγή ²²⁶ Ra	ra22600b	16/0.85	
40	14	σημειακή πηγή ²⁴¹ Am	am24100c	16/0.62	
41	14	σημειακή πηγή ¹³⁷ Cs	cs13700c	16/0.66	
42	14	σημειακή πηγή ¹³³ Ba	ba13300b	16/2.112	σε επαφή με τον
43	14	σημειακή πηγή ⁶⁰ Co	co6000c	16/0.77	ανιχνευτή
44	14	σημειακή πηγή ¹⁵² Eu	eu15200c	16/0.82	
45	14	σημειακή πηγή ²²⁶ Ra	ra22600c	16/0.86	
46	4	σημειακή πηγή ²⁴¹ Am	am24173b	16/0.63	
47	4	σημειακή πηγή ¹³⁷ Cs	cs13773b	16/0.67	
48	4	σημειακή πηγή ¹³³ Ba	ba13373a	16/2.113	σε απόσταση από
49	4	σημειακή πηγή ⁶⁰ Co	co6073b	16/0.78	τον ανιχνευτή
50	4	σημειακή πηγή ¹⁵² Eu	eu15273b	16/0.83	
51	4	σημειακή πηγή ²²⁶ Ra	ra22673b	16/0.87	
52	14	σημειακή πηγή ²⁴¹ Am	am24173c	16/0.64	
53	14	σημειακή πηγή ¹³⁷ Cs	cs13773c	16/0.68	
54	14	σημειακή πηγή ¹³³ Ba	ba13373b	16/2.114	σε απόσταση από
55	14	σημειακή πηγή ⁶⁰ Co	co6073c	16/0.79	τον ανιχνευτή
56	14	σημειακή πηγή ¹⁵² Eu	eu15273c	16/0.84	
57	14	σημειακή πηγή ²²⁶ Ra	ra22673c	16/0.88	
58	4	φίλτρο	aiaea08e	16/0.72	
59	14	IAEA-CU-2008-02	aiaea08eb	16/0.73	
60	4		qms421h	16/0.70	
61	14	πηγή γεωμ. 8 MS421	qms419hb	16/0.71	
62	4	1 5 1 1 5 1 2 0	qms420h	16/0.74	
63	14	πηγη γεωμ. 5 ΜS420	qms420hb	16/0.75	
64	4		qms419k	16/0.59	
65	14	πηγη γεωμ. 2 ΜS419	gms419kb	16/0.60	
66	4	/	q1342d	16/0.109	
67	14	πηγή γεωμ. 2 QCY13	q1342db	16/0.110	
68	4		wt087f	16/2.295	
69	14	πηγή γεωμ. 2 WT087	wt087g	16/2.296	
70	4	1	wt088e	16/2.299	
71	14	πηγή γεωμ. 2 WT088	wt088f	16/2.300	
72	4		wt089g	16/3.1	
73	14	πηγή γεωμ. 2 WT089	wt089h	16/3.2	
74	4	δείγμα ιπτάμενης τέφοας	pm001de8a	16/2.138	
75	14	γεωμ. 8 PM001DE8	pm001de8b	16/2.138	

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL	Παρατηρήσεις
76	4	δείγμα ιπτάμενης τέφρας	pm001de5a	11/4.170	
77	14	γεωμ. 5 PM001DE5	pm001de5b	11/4.171	
78	4	δείγμα ιπτάμενης τέφρας	pm4p252a	16/2.135	
79	14	γεωμ. 2 PM4P252	pm4p252b	16/2.136	
80	14	υπόστρωμα	bg1412	16/2.271	coincidence mode
81	14	σημειακή πηγή ²⁴¹ Am	am24100d	16/3.18	
82	14	σημειακή πηγή ¹³⁷ Cs	cs13700d	16/2.272	
83	14	σημειακή πηγή ¹³³ Ba	ba13300c	16/3.63	σε επαφή
84	14	σημειακή πηγή ⁶⁰ Co	co6000d	16/2.275	coincidence mode
85	14	σημειακή πηγή ¹⁵² Eu	eu15200d	16/3.23	
86	14	σημειακή πηγή ²²⁶ Ra	ra22600d	16/2.277	
87	14	σημειακή πηγή ²⁴¹ Am	am24173d	16/3.19	
88	14	σημειακή πηγή ¹³⁷ Cs	cs13773d	16/2.273	
89	14	σημειακή πηγή ¹³³ Ba	ba13373c	16/3.64	σε απόσταση
90	14	σημειακή πηγή ⁶⁰ Co	co6073d	16/2.274	coincidence mode
91	14	σημειακή πηγή ¹⁵² Eu	eu15273d	16/3.24	
92	14	σημειακή πηγή ²²⁶ Ra	ra22673d	16/2.276	
93	14	φίλτρο IAEA-CU-2008-02	aiaea08f	16/3.17	coincidence mode
94	14	πηγή γεωμ. 8 MS421	qms421i	16/3.21	coincidence mode
95	14	πηγή γεωμ. 5 MS420	qms420i	16/3.20	coincidence mode
96	14	πηγή γεωμ. 2 MS419	qms419n	16/2.280	coincidence mode
97	14	πηγή γεωμ. 2 QCY13	q1342e	16/3.22	coincidence mode
98	4		wt082f	16/3.29	
99	14	πηγη γεωμ. 2 w 1082	wt082g	16/3.30	coincidence mode
100	4		wt088g	16/3.100	
101	14	πηγη γεωμ. 2 νν ι υ 88	wt088h	16/3.101	coincidence mode
102	4		wt089i	16/3.27	
103	14	πηγη γεωμ. 2 νν ι 089	wt089j	16/3.28	coincidence mode
104	4	δείγμα ιπτάμενης τέφρας	pm001de8c	16/3.72	
105	14	γεωμ. 8 PM001DE8	pm001de8d	16/3.73	coincidence mode
106	4	δείγμα ιπτάμενης τέφρας	pm001de5c	16/3.66	
107	14	γεωμ. 5 PM001DE5	pm001de5d	16/3.67	coincidence mode
108	14	δείγμα ιπτάμενης τέφρας γεωμ. 2 ΡΜ4Ρ252	pm4p252c	16/3.65	coincidence mode

Α.3 Κεφάλαιο 4

Πειραματική βαθμονόμηση του συστήματος Compton Suppression του Ε.Π.Τ. - Ε.Μ.Π.

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
109	4		mkcl2e	16/3.7
110	14	ληγη και γεωμ. 2 Ινικαι2	mkcl2f	16/3.8
111	4		mkcl5g	16/3.11
112	14	λιμγη και γεωμ. 5 Ινικαιό	mkcl5h	16/3.12
113	4	πηγή KCl γεωμ. 8 MKCl8	mkcl8a	16/3.15

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
114	14		mkcl8b	16/3.16
115	4		iaea3271n	16/2.285
116	14	XIAEA3271	iaea3271o	16/2.286
117	4		iaea3272m	16/2.189
118	14	XIAEA3272	iaea3272n	16/2.290
119	4	VIAEA2272	iaea3273l	16/3.228
120	14	AIAEA5275	iaea3273m	16/3.229
121	4	VIAEA227/	iaea3274l	16/2.175
122	14	AIALA3274	iaea3274m	16/2.177
123	4	XIAEA3275	iaea3275g	16/2.281
124	14	AIALA3273	iaea3275h	16/2.282
125	4	XIAEA3276	iaea3276g	16/2.283
126	14		iaea3276h	16/2.284
127	4		wt080b	14/7.71
128	4		wt080f	16/1.100
129	4	δείγμα γεωμ. 2 WT080	wt080h	16/1.160
130	14	IAEA-TEL-2011-03	wt080c	14/7.72
131	14		wt080g	16/1.101
132	14		wt080i	16/1.161
133	4		wt083a	16/1.186
134	4	δείγμα γεωμ. 8 WT083	wt083c	16/1.188
135	14	IAEA-TEL-2011-03	wt083b	16/1.187
136	14		wt083d	16/1.189
137	4		wt081b	12/1.271
138	4	δείγμα γεωμ. 2 WT081	wt081e	16/1.182
139	14	IAEA-TEL-2011-03	wt081a	12/1.270
140	14		wt081f	16/1.183
141	4	δείγμα γεωμ. 2 WT082	wt082a	11/3.225
142	14	IAEA-TEL-2011-03	wt082b	11/3.226
143	4	δείγμα γεωμ. 5 MS638	ms638i	16/4.72
144	14	IAEA-TEL-2011-03	ms638j	16/4.73
145	4	δείγμα γεωμ. 2 WT084	wt084b	16/1.234
146	14	IAEA-TEL-2012-04	wt084c	16/1.235
147	4	δείγμα γεωμ. 2 WT085	wt085e	16/1.237
148	14	IAEA-TEL-2012-04	wt085f	16/1.238
149	4	δείγμα γεωμ. 2 WT086	wt086b	16/2.16
150	14	IAEA-TEL-2012-04	wt086c	16/2.1/
151	4	δείγμα γεωμ. 2 MS643	ms643b	16/1.230
152	14	IAEA-TEL-2012-04	ms643c	16/1.231
153	4	οειγμα γεωμ. 2 MS642	ms642e	16/1.240
154	14	IAEA-TEL-2012-04	ms642f	16/1.241
155	4	οειγμα γεωμ. 2 W1087	wt087f	16/2.295
156	14	IAEA-TEL-2013-04	wtu8/g	16/2.296
157	4	οειγμα γεωμ. 2 W1088	wt088e	16/2.299
158	14	IAEA-TEL-2013-04	wt088f	16/2.300
159	4	οειγμα γεωμ. 2 W1089	wt089g	16/3.1

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
160	14	IAEA-TEL-2013-04	wt089h	16/3.2
161	4	δείγμα γεωμ. 2 ΤΚΑ34	tka34e	16/3.9
162	14	IAEA-TEL-2013-04	tka43f	16/3.10

Α.4 Κεφάλαιο 5

Προσομοίωση Monte Carlo συστήματος Compton Suppression

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL	Παρατηρήσεις
163	14	δείγμα γεωμ. 2 WT088 IAEA-TEL-2013-04	wt088h	16/3.101	coincidence mode
164	14	δείγμα γεωμ. 2 WT089 IAEA-TEL-2013-04	wt089j	16/3.28	coincidence mode

Α.5 Κεφάλαιο 6

Ανάλυση δειγμάτων από πυρηνικά ατυχήματα με το σύστημα Compton Suppression του Ε.Π.Τ. - Ε.Μ.Π.

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
165	4	δείγμα Χ0721, Πέτρινο,	tx721b	16/0.118
166	14	Ν. Καρδίτσας	tx721c	16/0.119
167	4	δείγμα Χ0722, Πέτρινο,	tx722b	16/0.120
168	14	Ν. Καρδίτσας	tx722c	16/0.121
169	4	δείγμα Χ0723, Πέτρινο,	tx723c	16/0.135
170	14	Ν. Καρδίτσας	tx723d	16/0.136
171	4	δείγμα Χ0724, Βλοχός Νότια 9 km,	tx724b	16/0.139
172	14	Ν. Καρδίτσας	tx724c	16/0.140
173	4	δείγμα Χ0725, Βλοχός,	tx725b	16/0.148
174	14	Ν. Καρδίτσας	tx725c	16/0.149
175	4	δείγμα Χ0726, Βλοχός,	tx726b	16/0.157
176	14	Ν. Καρδίτσας	tx726c	16/0.158
177	4	δείγμα Χ0727, Βλοχός Νότια 13 km	tx727b	16/0.159
178	14	Φαρκαδόνα, Ν. Καρδίτσας	tx727c	16/0.160
179	4	δείνως ΧΟΖ28, Παλαμάς, Ν.Καρδίτσας	tx728b	16/0.163
180	14	θειγμά λυγ28, Παλαμάζ, Ν.Καρθτιθάζ	tx728c	16/0.164
181	4	δείγμα Χ0729, Παλαμάς,	tx729b	16/1.166
182	14	Ν.Καρδίτσας	tx729c	16/1.167
183	4	δείγμα Χ0730, Παλαμάς,	tx730b	16/1.170
184	14	Ν.Καρδίτσας	tx730c	16/1.171
185	4	δείγμα Χ0731, Μάρκος,	tx731b	16/1.172
186	14	Ν. Καρδίτσας	tx731c	16/1.173
187	4	δείγμα Χ0732, Γοργοβίτες,	tx732b	16/1.176
188	14	Ν. Καρδίτσας	tx732c	16/1.177

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
189	4	δείγμα Χ0733, Γοργοβίτες,	tx733b	16/1.174
190	14	Ν. Καρδίτσας	tx733c	16/1.175
191	4	δείγμα Χ0734, Αγ. Θεόδωρος,	tx734b	16/1.178
192	14	Ν. Καρδίτσας	tx734c	16/1.179
193	4	δείγμα Χ0735, Αγ. Θεόδωρος,	tx735c	16/1.180
194	14	Ν. Καρδίτσας	tx735d	16/1.181
195	4		tx736c	16/1.184
196	14	δείγμα X0736, Αγ. Θεόδωρος περιμετρικά, Ν. Καρδίτσας	tx736d	16/1.185
197	3	περιμετρικά, Ν. καροτισάς	tx736e	16/2.172
198	4		tx737b	16/2.54
199	14	οειγμα χυ/37, Αγ. Θεοσωρος	tx737c	16/2.55
200	3	περιμετρικά, Ν. καροττοάς	tx737d	16/2.234
201	4	Solume X0728 Av. Oct Succes	tx738b	16/2.133
202	14	δειγμα Χ0/38, Αγ. Θεοδωρος	tx738c	16/2.134
203	3	περιμετρικά, Ν. καροτισάς	tx738d	16/2.244
205	4		tx739b	16/2.146
206	3	οειγμα χ0739, Αγ. Θεοσωρος Νοτια	tx739c	16/2.147
207	14	0.7 κm, Ν. καροιτοας	tx739d	16/2.243
208	4		tx740b	16/2.168
209	14	δειγμα Χ0740, Αγ. Θεοδωρος Νοτια 1 km,Ν. Καρδίτσας	tx740c	16/2.169
210	3		tx740d	16/2.245
211	4	δείγμα Χ0741, Αγ. Θεόδωρος Νότια	tx741b	16/2.170
212	14		tx741c	16/2.171
213	3	1.5 km, Ν. καροιτοας	tx741d	16/2.246
214	4		tx742b	16/2.173
215	14	δειγμα Χυ/42, Αγ. Θεοδωρος Νοτια	tx742c	16/2.174
216	3	2.8 κm, Ν. καροιτοας	tx742d	16/2.247
217	4		tx743c	16/2.186
218	14	δειγμα Χ0/43, Αγ. Θεοδωρος Νοτια	tx743d	16/2.187
219	3	3.2 κm, Ν. καροιτοας	tx743e	16/2.250
220	4		tx744c	16/2.192
221	14	οειγμα χυ744, καρποχωρι Βορεια 1 km,	tx744d	16/2.193
222	3	Ν. καροιισας	tx744e	16/2.253
223	4		tx745f	16/2.194
224	14	δείγμα Χ0745, Καρποχώρι, Ν. Καρδίτσας	tx745g	16/2.195
225	3		tx745h	16/2.254
226	4		tx746f	16/2.196
227	14	οειγμα Χυ746, Καρποχωρι Νοτία 2 km,	tx746g	16/2.197
228	3	Ν. Καροιτοας	tx746h	16/2.259
229	4		tx747b	16/2.198
230	14	οειγμα χ0/47, Τρικαλά Ανατολικά 1.8 km,	tx747c	16/2.199
231	3	Ν. Γρικάλων	tx747d	16/2.260
232	4		tx748b	16/2.200
233	14	οειγμα χυ/48, Τρικαλα, Ανατ. 2.0 km	tx748c	16/2.201
234	3	(ΝΙΕΟΟ ΑΔΕΕ), Ν. Τρικάλων	tx748d	16/2.263

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
235	4		tx749b	16/2.220
236	14	οειγμα Χυ749, Τρικαλά Ανατολικά 2 km,	tx749c	16/2.221
237	3	Ν. Τρικάλων	tx749d	16/2.264
238	4		tx750b	16/2.235
239	14	δειγμα X0/50, Ιρικαλα, Ανατ. 2.0 km,	tx750c	16/2.236
240	3	Ν. Τρικάλων	tx750d	16/2.267
241	4	δείνμα Χ0758. Μεναλοχώριο.	x0758b	12/2.121
242	14	Ανατ. 0.5 km, Ν. Τρικάλων	x0758c	12/2.122
243	4	δείνμα X0762. Πετρόπορο, 12.3 km από	x0762b	12/2.124
244	14	Τρίκαλα, Ν. Τρικάλων	x0762c	12/2.125
245	4	δείνμα X0764. Πετρόπορο, 12.4 km από	x0764c	12/2.127
246	14	Τρίκαλα. Ν. Τρικάλων	x0764d	12/2.128
247	4	δείγμα X0765, Πετρόπορο, 12.9 km από Τρίκαλα, Ν. Τρικάλων	x0765b	12/2.129
248	4	δείγμα X0768, Πετρωτό, 15.2 km από	x0768b	12/2.133
249	14	Τρίκαλα, Ν. Καρδίτσας	x0768c	12/2.134
250	4	δείγμα X0771, Γεωργιανάδες, 20.2 km	x0771b	12/2.135
251	14	από Τρίκαλα, Ν. Καρδίτσας	x0771c	12/2.136
252	3	δείγμα X0751, Τρίκαλα, Ανατ. 2.5 km, Ν. Τρικάλων	x0751b	12/2.113
253	3	δείγμα X0752, Τρίκαλα, Ανατ. 2.5 km, Ν. Τρικάλων	x0752b	12/2.114
254	3	δείγμα Χ0753, Τρίκαλα, Ανατ. 2.6 km, Ν. Τρικάλων	x0753b	12/2.115
255	3	δείγμα X0754, Τρίκαλα, Ανατ. 5.0 km, Ν. Τρικάλων	x0754b	12/2.116
256	3	δείγμα X0755, Τρίκαλα, Ανατ. 5.0 km, Ν. Τρικάλων	x0755b	12/2.118
257	3	δείγμα X0757, Μεγαλοχώριο, Δυτ. 0.5 km, Ν. Τρικάλων	x0757b	12/2.119
258	3	δείγμα Χ0760, Πετρόπορο, 11.8 km από Τρίκαλα, Ν. Τρικάλων	x0760b	12/2.120
259	3	δείγμα X0761, Πετρόπορο, 12.1 km από Τρίκαλα, Ν. Τρικάλων	x0761b	12/2.123
260	3	δείγμα X0763, Πετρόπορο, 12.3 km από Τρίκαλα, Ν. Τρικάλων	x0763b	12/2.126
261	3	δείγμα X0766 Πετρόπορο, 13.2 km από Τρίκαλα, Ν. Τρικάλων	x0766b	12/2.131
262	3	δείγμα Χ0767, Πετρωτό, 15.0 km από Τρίκαλα, Ν. Καρδίτσας	x0767b	12/2.132
263	3	δείγμα Χ0769, Πετρωτό, 15.8 km από Τρίκαλα, Ν. Καρδίτσας	x0769b	12/2.137
264	3	δείγμα X0782, Μαραθέα, Δυτ. 1 km, Ν. Καρδίτσας	x0782b	12/2.138
265	3	δείγμα Χ0783, Πεδινό, Υδ. Πύργος, Ν. Καρδίτσας	x0783b	12/2.147

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
266	3	δείγμα Χ0786 Πεδινό, Δυτ. 1.5 km, Ν. Καρδίτσας	x0786b	12/2.153
267	3	δείγμα Χ0790, προάστιο, Δυτ. 1 km, Ν. Καρδίτσας	x0790b	12/2.157
268	4	δείγμα ατμοσφαιρικού αεροζόλ	a0410b	12/1.135
269	14	A0410	a0410c	12/1.147
270	4	δείγμα ατμοσφαιρικού αεροζόλ	a0411b	11/3.177
271	14	A0411	a0411c	11/3.178
272	4	δείγμα ατμοσφαιρικού αεροζόλ	a0412a	11/3.180
273	14	A0412	a0412b	11/3.181
274	4	δείγμα ατμοσφαιρικού αεροζόλ	a0413a	12/1.152
275	14	A0413	a0413b	12/1.164
276	4	δείγμα ατμοσφαιρικού αεροζόλ	a0414a	12/1.92
277	14	A0414	a0414b	12/1.198
278	4	δείγμα ατμοσφαιρικού αεροζόλ	a0415a	11/3.182
279	14	A0415	a0415b	11/3.183
280	4	δείγμα ατμοσφαιρικού αεροζόλ	a0416a	12/1.205
281	14	A0416	a0416b	12/1.208
282	4	δείγμα ατμοσφαιρικού αεροζόλ	a0417a	12/1.218
283	14	A0417	a0417b	12/1.219
284	4	δείγμα ατμοσφαιρικού αεροζόλ	a0418a	12/1.220
285	14	A0418	a0418b	12/1.221
286	4		a0419a	12/1.222
287	14	δείγμα ατμοσφαιρικού αεροζόλ	a0419b	12/1.223
288	4	A0419	a0419c	16/1.44
289	14		a0419d	16/1.45
290	4		a0420a	12/1.224
291	14	δείγμα ατμοσφαιρικού αεροζόλ	a0420b	12/1.225
292	4	A0420	a0420c	16/0.218
293	14		a0420d	16/0.219
294	4		a0421a	11/3.184
295	14	δείγμα ατμοσφαιρικού αεροζόλ	a0421b	11/3.185
296	4	A0421	a0421c	16/0.228
297	14		a0421d	16/0.229
298	4		a0422a	14/7.61
299	14	δείγμα ατμοσφαιρικού αεροζόλ	a0422b	14/7.62
300	4	A0422	a0422c	16/0.234
301	14		a0422d	16/0.235
302	4		a0423a	12/1.229
303	14	δείγμα ατμοσφαιρικού αεροζόλ	a0423b	12/1.230
304	4	A0423	a0423c	16/0.238
305	14		a0423d	16/0.239
306	4		a0424a	12/1.231
307	14	δείγμα ατμοσφαιρικού αεροζόλ	a0424b	12/1.232
308	4	A0424	a0424c	16/0.242
309	14		a0424d	16/0.243

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
310	4		a0425a	12/1.233
311	14	δείγμα ατμοσφαιρικού αεροζόλ	a0425b	12/1.234
312	4	A0425	a0425c	16/0.246
313	14		a0425d	16/0.247
314	4		a0426a	11/3.186
315	14	δείγμα ατμοσφαιρικού αεροζόλ	a0426b	11/3.187
316	4	A0426	a0426c	16/0.252
317	14		a0426d	16/0.253
318	4		a0427a	12/1.237
319	14	δείγμα ατμοσφαιρικού αεροζόλ	a0427b	12/1.238
320	4	A0427	a0427c	16/0.254
321	14		a0427d	16/0.255
322	4		a0428a	11/3.188
323	14	δείνμα ατμοσφαιρικού αεροζόλ	a0428b	11/3.189
324	4	A0428	a0428c	16/0.256
325	14		a0428d	16/0.257
326	4		a0429a	12/1.241
327	14	δείνμα ατμοσφαιρικού αεροζόλ	a0429b	12/1.242
328	4	A0429	a0429c	16/0.260
329	14		a0429d	16/0.261
330	4	δείγμα ατμοσφαιρικού αεροζόλ Α0430	a0430a	11/3.190
331	14		a0430b	11/3.191
332	4		a0430c	16/0.262
333	14		a0430d	16/0.263
334	4		a0431a	11/3.192
335	14	δείνμα ατμοσφαιοικού αεροζόλ	a0431b	11/3.193
336	4	A0431	a0431c	16/0.264
337	14		a0431d	16/0.265
338	4		a0432a	12/1.243
339	14	δείγμα ατμοσφαιρικού αεροζόλ	a0432b	12/1.244
340	4	A0432	a0432c	16/0.266
341	14		a0432d	16/0.267
342	4		a0433a	11/3.194
343	14	δείγμα ατμοσφαιρικού αεροζόλ	a0433b	11/3.195
344	4	A0433	a0433c	16/0.274
345	14		a0433d	16/0.275
346	4		a0434a	12/1.245
347	14	δείνμα ατμοσφαιρικού αεροζόλ	a0434b	12/1.246
348	4	A0434	a0434c	16/0.276
349	14		a0434d	16/0.277
350	4		a0435a	11/3.196
351	14	δείγμα ατμοσφαιρικού αεροζόλ	a0435b	11/3.197
352	4	A0435	a0435c	16/0.285
353	14		a0435d	16/0.286

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
354	4		a0436a	11/3.198
355	14	δείγμα ατμοσφαιρικού αεροζόλ Α0436	a0436b	11/3.199
356	4		a0436c	16/0.299
357	14		a0436d	16/0.300
358	4		a0437a	11/3.200
359	14	δείγμα ατμοσφαιρικού αεροζόλ	a0437b	11/3.201
360	4	A0437	a0437c	16/1.12
361	14		a0437d	16/1.13
362	4		a0438a	11/3.205
363	14	δείγμα ατμοσφαιρικού αεροζόλ	a0438b	11/3.206
364	4	A0438	a0438c	12/1.265
365	14		a0438d	12/1.266
366	4		a0439a	11/3.211
367	14	δείγμα ατμοσφαιρικού αεροζόλ	a0439b	11/3.212
368	4	A0439	a0439c	16/1.17
369	14		a0439d	16/1.18
370	4		a0440a	11/3.213
371	14	δείγμα ατμοσφαιρικού αεροζόλ	a0440b	11/3.214
372	4	A0440	a0440c	16/1.19
373	14		a0440d	16/1.20
374	4	δείγμα ατμοσφαιρικού αεροζόλ Α0441	a0441a	12/1.249
375	14		a0441b	12/1.250
376	4		a0441c	16/1.21
377	14		a0441d	16/1.22
378	4		a0442a	12/1.251
379	14	δείγμα ατμοσφαιρικού αεροζόλ	a0442b	12/1.252
380	4	A0442	a0442c	11/3.220
381	14		a0442d	11/3.221
382	4		a0443a	12/1.253
383	14	δείγμα ατμοσφαιρικού αεροζόλ	a0443b	12/1.254
384	4	A0443	a0443c	16/1.26
385	14		a0443d	16/1.27
386	4		a0444a	12/1.256
387	14	δείγμα ατμοσφαιρικού αεροζόλ	a0444b	12/1.257
388	4	A0444	a0444c	16/1.28
389	14		a0444d	16/1.29
390	4		a0445a	12/1.258
391	14	δείγμα ατμοσφαιρικού αεροζόλ	a0445b	12/1.259
392	4	A0445	a0445c	16/1.30
393	14		a0445d	16/1.31
394	4		a0446a	11/3.215
395	14	δείγμα ατμοσφαιρικού αεροζόλ	a0446b	11/3.216
396	4	A0446	a0446c	16/1.32
397	14		a0446d	16/1.33

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
398	4		a0447a	12/1.260
399	14	δείγμα ατμοσφαιρικού αεροζόλ	a0447b	12/1.261
400	4	A0447	a0447c	16/1.34
401	14		a0447d	16/1.35
402	4		a0448a	16/0.258
403	14	δείγμα ατμοσφαιρικού αεροζόλ	a0448b	16/0.259
404	4	A0448	a0448c	16/1.36
405	14		a0448d	16/1.37
406	4		a0449a	11/3.217
407	14	δείγμα ατμοσφαιρικού αεροζόλ	a0449b	11/3.218
408	4	A0449	a0449c	16/1.38
409	14		a0449d	16/1.39
410	4	δείγμα ατμοσφαιρικού αεροζόλ	a0450a	16/1.24
411	14	A0450	a0450b	16/1.25
412	4	δείγμα ατμοσφαιρικού αεροζόλ	a0451a	11/3.222
413	14	A0451	a0451b	11/3.223
414	2	δείγμα βρόχινου νερού χωρίς επεξεργασία, R0054	r0054c	16/0.198
415	3	δείγμα βρόχινου νερού χωρίς επεξεργασία, R0055	r0055a	12/1.236
416	2	δείγμα βρόχινου νερού χωρίς επεξεργασία, R0058	r0058a	12/1.239
417	2	δείγμα βρόχινου νερού χωρίς επεξεργασία, R0060	r0060a	16/0.204
418	2	δείγμα βρόχινου νερού χωρίς επεξεργασία, R0061	r0061a	12/1.255
419	3	δείγμα βρόχινου νερού χωρίς επεξεργασία, R0062	r0062a	16/ 0.213
420	4	φίλτρο από επεξεργασία βρόχινου νερού,	aw016a	16/0.199
421	14	AW016	aw016b	16/0.200
422	4	φίλτρο από επεξεργασία βρόχινου νερού,	aw017a	16/0.205
423	14	AW017	aw017b	16/0.206
424	3	δείγμα βρόχινου νερού μετά από φιλτράρισμα, R0057	r0057a	16/0.201
425	2	δείγμα βρόχινου νερού μετά από φιλτράρισμα R0059	r0059a	16/0.208
426	2	δείγμα γεωμ.8 στάχτης από τζάκι	ms639a	16/1.217
427	15	Παναγιώτη Σπυριδάκου MS639	ms639b	16/1.216
428	2	δείγμα γεωμ.5 στάχτης από τζάκι	ms640a	16/1.211
429	15	Ιωάννα Παππά MS640	ms640b	16/1.220
430	15	δείγμα γεωμ.2 στάχτης από τζάκι Φιλίππας Σκουλουδάκη MS641	ms641a	16/1.215

Α.6 Κεφάλαιο 7

Ανάλυση ραδιενεργών ισοτόπων στο ατμοσφαιρικό

αεροζόλ	και στια	: υνρές	κατακοπιν	ίσεις
acposon	mai o ciç	, , , , , , ,	na canpijav	ivery

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
431	4	δείγμα ατμοσφαιρικού αεροζόλ	a0486a	16/1.276
432	14	A0486	a0486b	16/1.27
433	4	δείγμα ατμοσφαιρικού αεροζόλ	a0487a	16/1.282
434	16	A0487	a0487b	16/1.283
435	4	δείγμα ατμοσφαιρικού αεροζόλ	a0488a	16/3.34
436	16	A0488	a0488b	16/3.35
437	4	δείγμα ατμοσφαιρικού αεροζόλ	a0489a	16/3.59
438	14	A0489	a0489b	16/3.60
439	4	δείγμα ατμοσφαιρικού αεροζόλ	a0490a	16/3.79
440	14	A0490	a0490b	16/3.80
441	4	δείγμα ατμοσφαιρικού αεροζόλ	a0492a	16/3.105
442	14	A0492	a0492b	16/3.106
443	4	δείγμα ατμοσφαιρικού αεροζόλ	a0493c	16/3.142
444	16	A0493	a0493d	16/3.143
445	4	δείγμα ατμοσφαιρικού αεροζόλ	a0494b	16/3.221
446	14	A0494	a0494c	16/3.222
447	4	δείγμα ατμοσφαιρικού αεροζόλ	a0495d	16/3.236
448	14	A0495	a0495e	16/3.237
449	4	δείγμα ατμοσφαιρικού αεροζόλ	a0496c	16/3.299
450	14	A0496	a0496d	16/3.300
451	4	δείγμα ατμοσφαιρικού αεροζόλ	a0499b	16/3.285
452	14	A0499	a0499c	16/3.286
453	4	δείγμα ατμοσφαιρικού αεροζόλ	a0500b	16/3.245
454	14	A0500	a0500c	16/3.246
455	4	δείγμα ατμοσφαιρικού αεροζόλ	a0501d	16/3.295
456	14	A0501	a0501e	16/3.296
457	4	δείγμα ατμοσφαιρικού αεροζόλ	a0502b	16/3.283
458	14	A0502	a0502c	16/3.284
459	4	δείγμα ατμοσφαιρικού αεροζόλ	a0503b	16/3.297
460	14	A0503	a0503c	16/3.298
461	4	δείγμα ατμοσφαιρικού αεροζόλ	a0504b	16/4.2
462	14	A0504	a0504c	16/4.3
463	4	δείγμα ατμοσφαιρικού αεροζόλ	a0505a	12/2.72
464	14	A0505	a0505b	12/2.73
465	4	δείγμα ατμοσφαιρικού αεροζόλ	a0506a	12/2.85
466	14	A0506	a0506b	12/2.86
467	4	δείγμα ατμοσφαιρικού αεροζόλ	a0507a	16/4.14
468	14	A0507	a0507b	16/4.15
469	4	δείγμα ατμοσφαιρικού αεροζόλ	a0508a	16/4.42
470	14	A0508	a0508b	16/4.43

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
471	4	δείγμα ατμοσφαιρικού αεροζόλ	a0509a	16/4.48
472	14	A0509	a0509b	16/4.49
473	4	δείγμα ατμοσφαιρικού αεροζόλ	a0510a	16/4.50
474	14	A0510	a0510b	16/4.51
475	4	δείγμα ατμοσφαιρικού αεροζόλ	a0511a	16/4.54
476	14	A0511	a0511b	16/4.55
477	4	δείγμα ατμοσφαιρικού αεροζόλ	a0512a	16/4.102
478	14	A0512	a0512b	16/4.103
479	4	δείγμα ατμοσφαιρικού αεροζόλ	a0513a	16/4.104
480	14	A0513	a0513b	16/4.105
481	4	δείγμα ατμοσφαιρικού αεροζόλ	a0514a	16/4.108
482	14	A0514	a0514b	16/4.109
483	4	δείγμα ατμοσφαιρικού αεροζόλ	a0515a	16/4.112
484	14	A0515	a0515b	16/4.113
485	4	δείγμα ατμοσφαιρικού αεροζόλ	a0516a	16/4.114
486	14	A0516	a0516b	16/4.115
487	4	δείγμα ατμοσφαιρικού αεροζόλ	a0517a	16/4.116
488	14	A0517	a0517b	16/4.117
489	4	δείγμα ατμοσφαιρικού αεροζόλ	a0518a	16/4.120
490	14	A0518	a0518b	16/4.121
491	4		a048890a	16/3.81
492	16	συνδυασμένα φιλτρα ατμοσφαιρικού	a048890b	16/3.82
493	14	αεροζόλ Αυ488, Αυ489, Αυ490	a048890d	16/3.90
494	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0493-5a	16/4.8
495	14	αεροζόλ Α0493, Α0494, Α0495	a0493-5b	16/4.9
496	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0496-9-0a	16/4.46
497	14	αεροζόλ Α0496, Α0499, Α0500	a0496-9-0b	16/4.47
498	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0501-3a	16/4.44
499	14	αεροζόλ Α501, Α0502, Α0503	a0501-3b	16/4.45
500	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0504-6a	16/4.52
501	14	αεροζόλ Α0504, Α0505, Α0506	a0504-6b	16/4.53
502	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0507-9a	16/4.56
503	14	αεροζόλ Α0507, Α508, Α0509	a0507-9b	16/4.57
504	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0510-2a	16/4.122
505	14	αεροζόλ Α0510, Α511, Α0512	a0510-2b	16/4.123
506	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0513-5a	16/4.118
507	14	αεροζόλ Α0513, Α514, Α0515	a0513-5b	16/4.119
508	4	συνδυασμένα φίλτρα ατμοσφαιρικού	a0516-8a	16/4.139
509	14	αεροζόλ Α0516, Α517, Α0518	a0516-8b	16/4.140
510	4	δείγμα φιλτραρισμένου	wrc024a	16/3.42
511	14	βρόχινου νερού WRC024	wrc024b	16/3.43
512	4	δείγμα φιλτραρισμένου	wrc025a	16/3.44
513	14	βρόχινου νερού WRC025	wrc025b	16/3.45

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
514	4	δείγμα φιλτραρισμένου	wrc026a	16/3.48
515	14	βρόχινου νερού WRC026	wrc026b	16/3.49
516	4	δείγμα φιλτραρισμένου	wrc027a	16/3.76
517	14	βρόχινου νερού WRC027	wrc027b	16/3.77
518	2	δείγμα φιλτραρισμένου βρόχινου νερού WRC028	wrc028a	16/3.84
519	15	δείγμα φιλτραρισμένου βρόχινου νερού WRC029	wrc029a	16/3.86
520	15	δείγμα φιλτραρισμένου βρόχινου νερού WRC030	wrc030a	16/3.107
521	4	δείγμα φιλτραρισμένου βρόχινου νερού WRC031	wrc031a	16/3.116
522	15	δείγμα φιλτραρισμένου βρόχινου νερού WRC032	wrc032a	16/3.137
523	15	δείγμα φιλτραρισμένου βρόχινου νερού WRC033	wrc033a	16/3.173
524	15	δείγμα φιλτραρισμένου βρόχινου νερού WRC034	wrc034a	16/3.226
525	4	δείγμα (τριβλίο) ρητίνης κατιόντων	ms665a	16/3.40
526	14	MS665	ms665b	16/3.41
527	4	δείγμα (γεωμ.8) ρητίνης κατιόντων	ms666a	16/3.53
528	14	MS666	ms666b	16/3.54
529	4	δείγμα (γεωμ.8) ρητίνης κατιόντων	ms667a	16/3.57
530	14	MS667	ms667b	16/3.58
531	4	δείγμα (τριβλίο) αχρησιμοποίητης	ms668a	16/3.74
532	14	ρητίνης κατιόντων (blank) MS668	ms668b	16/3.75
533	4	δείγμα (γεωμ.8) ρητίνης κατιόντων	ms669a	16/3.93
534	14	MS669	ms669b	16/3.94
535	4	δείγμα (τριβλίο) ρητίνης κατιόντων	ms670a	16/3.93
536	14	MS670	ms670b	16/3.94
537	4	δείγμα (τριβλίο) ρητίνης κατιόντων	ms671a	16/3.96
538	14	MS671	ms671b	16/3.97
539	4	δείγμα (γεωμ.8) ρητίνης κατιόντων	ms713a	16/3.114
540	14	MS713	ms713b	16/3.115
541	4	δείγμα (τριβλίο) ρητίνης κατιόντων	ms714a	16/3.121
542	16	MS714	ms714b	16/3.122
543	4	δείγμα (τριβλίο) ρητίνης κατιόντων	ms739b	16/3.178
544	14	MS739	ms739c	16/3.179
545	4	δείγμα (τριβλίο) ρητίνης κατιόντων	ms740b	16/3.239
546	14	MIS740	ms740c	16/3.240
547	4	δείγμα (γεωμ.5) ρητίνης κατιόντων	ms765b	16/3.241
548	14	MIS765	ms765c	16/3.242

Α.7 Κεφάλαιο 8

Χρήση του συστήματος Compton Suppression στη νετρονική ενεργοποίηση

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
549	4	δείγμα NIST Montana Soil 2710,	n2710s14	16/3.247
550	14	INAA 1 h, ανάλυση 900 sec	n2782s114	16/3.252
551	4	δείγμα NIST Montana Soil 2710,	n2710m4a	16/3.263
552	14	INAA 110.5 h, 1 h, delay 1 min	n2710m14a	16/3.264
553	4	δείγμα NIST Montana Soil 2710,	n2710m4b	16/3.265
554	14	INAA 110.5 h, 2 h, delay 1 h	n2710m14b	16/3.266
555	4	δείγμα NIST Montana Soil 2710,	n2710m4c	16/3.267
556	14	INAA 110.5 h, 2 h, delay 2 h	n2710m14c	16/3.268
557	4	δείγμα NIST Montana Soil 2710,	n2710m4ac	16/3.291
558	14	INAA 110.5 h, 5 h, delay 1 min	n2710m14ac	16/3.292
559	4	δείγμα NIST Montana Soil 2710,	n2710m4d	16/3.269
560	14	INAA 110.5 h, 24 h, delay 5 h	n2710m14d	16/3.270
561	4	δείγμα NIST Montana Soil 2710,	n2710m4e	16/3.271
562	14	INAA 110.5 h, 72 h, delay 29 h	n2710m14e	16/3.272
563	4	δείγμα NIST Montana Soil 2709,	n2709s14	16/4.10
564	14	INAA 1 h, ανάλυση 900 sec	n2709s114	16/4.11
565	4	δείγμα NIST Montana Soil 2711,	n2711s14	16/4.12
566	14	INAA 1 h, ανάλυση 900 sec	n2711s114	16/4.13
567	4	δείγμα NIST Montana Soil 2711,	n2711n4a	16/4.88
568	14	INAA 110.5 h, 1 h, delay 1 min	n2711n14a	16/4.89
569	4	δείγμα NIST Montana Soil 2711,	n2711n4b	16/4.90
570	14	INAA 110.5 h, 2 h, delay 1 h	n2711n14b	16/4.91
571	4	δείγμα NIST Montana Soil 2711,	n2711n4c	16/4.92
572	14	INAA 110.5 h, 2 h, delay 2 h	n2711n14c	16/4.93
573	4	δείγμα NIST Montana Soil 2711,	n2711n4ac	16/4.95
574	14	INAA 110.5 h, 5 h, delay 1 min	n2711n14ac	16/4.94
575	4	δείγμα NIST Montana Soil 2711,	n2711n4d	16/4.96
576	14	INAA 110.5 h, 24 h, delay 5 h	n2711n14d	16/4.97
577	4	δείγμα NIST Montana Soil 2711,	n2711n4e	16/4.98
578	14	INAA 110.5 h, 72 h, delay 29 h	n2711n14e	16/4.99
579	4	δείγμα NIST Montana Soil 2711,	n2711n4de	16/4.100
580	14	INAA 110.5 h, 96 h, delay 5 h	n2711n14de	16/4.101
581	4	δείγμα NIST Fly ash 1633b,	n1633s14	16/3.249
582	14	INAA 1 h, ανάλυση 900 sec	n1633s114	16/3.250
583	4	δείγμα NIST Fly ash 1633b,	n1633m4a	16/3.273
584	14	INAA 110.5 h, 1 h, delay 1 min	n1633m14a	16/3.274

α/α	Ανιχνευτής	Τύπος δείγματος	Φάσμα	Κωδικός SPUNAL
585	4	δείγμα NIST Fly ash 1633b,	n1633m4b	16/3.275
586	14	INAA 110.5 h, 2 h, delay 1 h	n1633m14b	
587	4	δείγμα NIST Fly ash 1633b,	n1633m4c	16/3.276
588	14	INAA 110.5 h, 2 h, delay 2 h	n1633m14c	16/3.277
589	4	δείγμα NIST Fly ash 1633b,	n1633µ4ac	16/3.287
590	14	INAA 110.5 h, 5 h, delay 1 min	n1633m14ac	16/3.288
591	4	δείγμα NIST Fly ash 1633b,	n1633m4d	16/3.278
592	14	INAA 110.5 h, 24 h, delay 5 h	n1633m14d	16/3.279
593	4	δείγμα NIST Fly ash 1633b,	n1633m4e	16/3.280
594	14	INAA 110.5 h, 72 h, delay 29 h	n1633m14e	16/3.281
595	4	δείνμα NIST Fly ash 1633b.	n1633µ4de	16/3.289
596	14	INAA 110.5 h, 96 h, delay 5 h	n1633m14de	16/3.290
597	4	δείνμα NIST Industrial Sludge 2782.	n2782s14	16/3.251
598	14	INAA 1 h, ανάλυση 900 sec	n2782s114	16/3.252
599	4	δείγμα NIST Industrial Sludge 2782,	n2782b4a	16/3.255
600	14	INAA 110.5 h, 1 h, delay 1 min	n2782b14a	16/3.256
601	4	δείγμα NIST Industrial Sludge 2782,	n2782b4b	16/3.257
602	14	INAA 110.5 h, 2 h, delay 1 h	n2782b14b	16/3.258
603	4	δείγμα NIST Industrial Sludge 2782,	n2782b4ab	16/4.4
604	14	INAA 110.5 h, 2 h, delay 2 h	n2782b14ab	16/4.6
605	4	δείγμα NIST Industrial Sludge 2782,	n2782b4c	16/3.259
606	14	INAA 110.5 h, 5 h, delay 1 min	n2782b14c	16/3.260
607	4	δείγμα NIST Industrial Sludge 2782,	n2782b4d	16/3.261
608	14	INAA 110.5 h, 24 h, delay 5 h	n2782b14d	16/3.262
609	4	δείγμα NIST Industrial Sludge 2782,	n2782b4cd	16/4.5
610	14	INAA 110.5 h, 72 h, delay 29 h	n2782b14cd	16/4.7
611	4	δείγμα NIST Industrial Sludge 2782,	n2782b4a	16/3.255
612	14	INAA 110.5 h, 96 h, delay 5 h	n2782b14a	16/3.256
613	4	δείγμα IAEA Lake Sediment SL-1,	nls1s14	16/3.253
614	14	ΙΝΑΑ 1 h, αναλυση 900 sec	nls1s114	16/3.254
615	4	δείγμα IAEA Lake Sediment SL-1,	nsl1m4a	16/4.16
616	14		nsi1m14a	16/4.19
617	4	δειγμα IAEA Lake Sediment SL-1,	nsi1m4b	16/4.17
618	14	INAA 110.5 N, 2 N, delay 1 N	nsi1m14b	16/4.20
619	4	$o \epsilon i \gamma \mu \alpha$ IAEA Lake Sediment SL-1,	nsi1m4c	16/4.18
620	14	Solution IAEA Laka Sadimant SL 1	nsl1m14c	16/4.21
622	1/	INAA 110 5 h 5 h delay 1 min	nsl1m1/ac	16/4.22
622	<u> </u>	δείνωα ΙΔΕΛ Lake Sediment SL-1	nsl1m4d	16/4.23
624	14	INAA 110.5 h. 24 h. delay 5 h	nsl1m14d	16/4 26
625	4	δείνιια IAFA Lake Sediment SL-1	nsl1m4e	16/4.25
626	14	INAA 110.5 h. 72 h. delav 29 h	nsl1m14e	16/4.27
627	4	δείνμα IAEA Lake Sediment SI-1	nsl1m4de	16/4.29
628	14	INAA 110.5 h, 96 h, delay 5 h	nsl1m14de	16/4.28

^{*} Για άγνωστους λόγους δεν κατέστη δυνατή η λήψη του φάσματος.

Α-18 Διδακτορική Διατριβή Μαρίλιας Ι. Σάββα

парартнма $oldsymbol{B}$

Διαγράμματα διάσπασης

Στο Παράρτημα αυτό δίνονται τα διαγράμματα διάσπασης την ισοτόπων που χρησιμοποιήθηκαν στο πλαίσιο της Δ.Δ. όπως αυτά δίνονται στη βιβλιογραφική αναφορά (Bé, et al., 2004).

Σχήμα Β.3: Απλοποιημένο διάγραμμα διάσπασης του 241 Am.

Σχήμα Β.4: Διάγραμμα διάσπασης του ¹³³Ba.

Σχήμα Β.6: Διάγραμμα διάσπασης του 60 Co.

Σχήμα B.9: Διάγραμμα διάσπασης του 57Co.

Σχήμα Β.10: Απλοποιημένο διάγραμμα διάσπασης του $^{\rm 152}{\rm Eu.}$

Σχήμα Β.11: Απλοποιημένο διάγραμμα διάσπασης του ¹³⁴Cs.

Σχήμα Β.13: Απλοποιημένο διάγραμμα διάσπασης του ²¹⁴Pb.

Σχήμα Β.14: Απλοποιημένο διάγραμμα διάσπασης του ²¹⁰Pb.

Σχήμα Β.15: Απλοποιημένο διάγραμμα διάσπασης του 214Bi.

P. M. ENDT, Nuclear Physics A521,1 (1990)

Σχήμα Β.17: Διάγραμμα διάσπασης ⁷⁶As (<u>http://atom.kaeri.re.kr</u>).

Σχήμα Β.18: Διάγραμμα διάσπασης ¹⁹⁸Αυ (<u>http://atom.kaeri.re.kr</u>).

Σχήμα B.19: Διάγραμμα διάσπασης ¹⁴¹Ce (<u>http://atom.kaeri.re.kr</u>).

64CU EC DECAY (12.700 H)

Parent state: G.S Half life: 12.700 Q(gs): 1675.10(20 Branch ratio:	5. 9 H(2) 9) keV 0.610(3)	2+ 04 0.0000 Ni-64	Cu-64 + 12,700 EC 0.47 % b+ 17,40 % FC 43,10 %	H 12.700 H 1.6751
Beta+ ray: total for absolute inte Max.E(keV) 1673.4(10)	intensity =20 nsity multip: Avg.E(keV) 278.21(9)	8.5 ly by 1.639 Intensity(re 17.4(2)	:l) Spin	1+ 0+
EC: total intensi	ty = 71.4			
Gamma ray: Energy(keV) 1345.77(6)	Intensity(re 0.776(16)	el)		

Σχήμα B.20: Διάγραμμα διάσπασης 64 Cu (<u>http://atom.kaeri.re.kr</u>).

Σχήμα B.21: Διάγραμμα διάσπασης ¹⁴³Ce (<u>http://atom.kaeri.re.kr</u>).

59FE B- DECAY	-					
		Fe-59				
		3/2- 44.503	D 44.503 D			
	1		1	.5647 5/2-	0	
Parent state: G.	.s.	0.0	3 2 - 10-	\$9821-	Ål.⁺.	1:992
Half life: 44.50	03 D(6)	1.34	. » / //\\\	~		1:0993
Q(gs): 1564.7(6)) keV	1.0.				
Branch ratio:	1.0	40	50 &/// ``	7/2-		
		0.0	L X '//		Co-59	
		53.:	10 %/			
		0.18	з x ′			
Beta ray:						
Max E(kaW)	Aug E(koV)	Intensity(pol) Coin	2/2		
1575(20)	614 3(3)	0 18(4)) Spin	7/2-		
466(3)	149 10(13)	53 1(15)		3/2-		
374.7(-)	116.0(2)	0.01(LT)	C	9/2)-		
274(2)	80.84(21)	45.3(11)		3/2-		
132(AP)	35.59(18)	1.31(5)		1/2-		
85(AP)	21.94(18)	0.078(7)		5/2-		
Gamma rav:						
Energy(keV)	Intensity(re	1)				
142.652(2)	1.02(4)	·				
189	0.0009(9)					
192.349(5)	3.08(10)					
334.8(2)	0.27(1)					
382.0(4)	0.018(3)					
1099.251(4)	56.5(15)					
1291.596(7)	43.2(11)					
1481.7(2)	0.059(6)					

Σχήμα Β.22: Διάγραμμα διάσπασης ⁵⁹Fe (<u>http://atom.kaeri.re.kr</u>).

Σχήμα Β.23: Διάγραμμα διάσπασης ⁷²Ga (<u>http://atom.kaeri.re.kr</u>).

 $\begin{array}{c} 1.154(17)\\ 0.355(18)\\ 0.683(18)\\ 0.355(15)\\ 0.688(16)\\ 0.822(12)\\ 0.27(12)\\ 0.2$

Σχήμα Β.24: Διάγραμμα διάσπασης ¹⁴⁰La (<u>http://atom.kaeri.re.kr</u>).

Σχήμα B.25: Διάγραμμα διάσπασης 116 In (<u>http://atom.kaeri.re.kr</u>).

42K B- DECAY

		K-42			
		2- 12.268-Hy	12.360 H		
Parent state: G Half life: 12.3 Q(gs): 3525.1(1 Branch ratio:	.5. 60 H(3) 2) keV 1.0	0.05 % 0.34 % 17.64 81.90	3.5551 <u>9</u> <u>9</u> <u>9</u> <u>2</u> <u>2</u> <u>0</u> +	s Ca-42	3.447 2:428 1:824 0.000
Beta ray:					
Max.E(keV)	Avg.E(keV)	Intensity(rel)	Spin 2-		
3525.1(-)	1565.8(6)	81.90(9)	0+		
2000.4(-)	824.2(6)	17.64(9)	2+		
1687.8(-)	702.8(6)	0.34(3)	0+		
1100.9(-)	415.4(5)	0.05(1)	2+		
78.1(-)	20.9(3)	0.07(1)	3-		
Gamma ray: for a	absolute intens	ity multiply by 0	.1808(9)		
Energy(keV)	Intensity(re	1)			
312.6	1.86(11)				
586.87	0.0021(LT)				
694.54	0.018(4)				
899.43	0.285(14)				
1022.78	0.111(8)				
1227.66	0.013(6)				
1524.70	100				
1922.18	0.228(22)				
2424.09	0.110(16)				

Σχήμα B.26: Διάγραμμα διάσπασης ⁴²K (<u>http://atom.kaeri.re.kr</u>).

27MG B- DECAY

P. M. ENDT, Nuclear Physics A521,1 (1990)

Σχήμα B.27: Διάγραμμα διάσπασης ²⁷Mg (<u>http://atom.kaeri.re.kr</u>).

M- 50

56MN B- DECAY

		3+ 2,5789 H. 2,5	789 H	
			3.6955	
		0.04 2	97 ATT	
Parent state:	G.S.	14.60 %	2+ 111	2:9598
Half life: 2.5	5789 H(1)	27.90 %		2.6575
Q(gs): 3695.5	(4) keV	0.06 X	✓ \ \ \ \ \ \ ++ + + + + +	2.0850
Branch ratio:	1	56.30 %		
			24	
			<u>~~</u> v v	** 0.8468
			0+	
			E0-56	0.0000
			16-30	
Beta ray:				
Max.E(keV)	Avg.E(keV)	Intensity(rel)	Spin 3+	
2848.7(-)	1216.9(5)	56.3(10)	2+	
1610.5(-)	636.4(5)	0.059(11)	4+	
1038.0(-)	382.0(4)	27.9(8)	2+	
735.7(-)	255.3(4)	14.6(4)	2+	
572.6(-)	190.5(4)	0.040(5)	4+	
325.8(-)	99.2(4)	1.16(4)	2+	
250.5(-)	/3.0(3)	0.0100(20)	5+	
Gamma ray: for	absolute inten	sitv multiplv bv 0.	9887 (3)	
Energy(keV)	Intensity(r	el)		
846.754(20)	100.0(3)			
1037.818(22)	0.040(5)			
1238.255(26)	0.10(1)			
1810.72(4)	27.5(8)			
2113.05(4)	14.5(4)			
2522.88(6)	1.00(3)			
2598.40(5)	0.019(2)			
2657.45(5)	0.66(2)			
2959.77(6)	0.31(1)			
3369.60(7)	0.17(1)			

Σχήμα B.28: Διάγραμμα διάσπασης ⁵⁶Mn (<u>http://atom.kaeri.re.kr</u>).

24NA B- DECAY (14.9590 H)

Parent state: G. Half life: 14.95 Q(gs): 5513.6(6) Branch ratio:	5. 90 H(12) keV 1.0	Na-24 4+ 14.9590 H 1 0.05 % 99.94 %	4.9590 H 5.5136 3+ 4+ 2+ 0+	5.2352 4.2389 4.2389 1.3687 0.0000 Mg-24
Beta ray:				
Max.E(keV) 4144.9(-) 1390.7(-) 1275.2(-) 278.4(-)	Avg.E(keV) 1865.5(3) 554.1(3) 502.2(3) 89.24(22)	Intensity(rel) 0.003 99.944(4) 0.0005(LT) 0.053(4)	Spin 4+ 2+ 4+ 2+ 3+	
Gamma ray: Energy(keV) 996.82 1368.633 2754.028 2869.50 3866.19 4237.96	Intensity(re 0.0014(2) 100 99.944(4) 0.0003(1) 0.052(4) 0.0011(2)	1)		

Σχήμα Β.29: Διάγραμμα διάσπασης ²⁴Na (<u>http://atom.kaeri.re.kr</u>).

122SB B- DECAY

Parent state: G.S. Half life: 2.7238 Q(gs): 1978.6(22) Branch ratio:	D(2) keV 0.9759(12)	Sb-122 - 2.7238 D 0.01 0.01 4.71 0.01 68.38 26.72	2.7238 D 1.9786 2+ 2+ 2+ 2+ 2+ 2+ 2+ 0+	1.7523 1.2959 1:2959 0.5643 Te-122
Beta ray: for abso	lute intensi	y multiply by 1.	02359	
Max.E(keV)	Avg.E(keV)	Intensity(rel)	Spin 2-	
1980(3)	771.0(10)	26.1(2)	0+	
1414(3)	521.2(10)	66.8(2)	2+	
799.3(-)	265.8(9)	0.012(3)	4+	
723(5)	235.7(9)	4.6(5)	2+	
621.0(-)	197.7(9)	0.0108(10)	0+	
226.3(-)	62.8(8)	0.014(10)	2+	
Gamma ray: for abs Energy(keV) 564.24(4) 615.0(4) 692.65(4) 793.3(4) 1188(1) 1256.93(4) 1356.93(4)	olute intens: Intensity(re: 100 0.016(6) 5.45(18) 0.023(6) 0.006(1) 1.15(6) 0.012(2)	ty multiply by 0	0.7242(16)	

Σχήμα Β.30: Διάγραμμα διάσπασης ¹²²Sb (<u>http://atom.kaeri.re.kr</u>).

46SC B- DECAY				
Parent state: G. Half life: 83.810 Q(gs): 2366.5(7) Branch ratio:	5. ð D(10) keV 1.0	Sc-46 4+ 8 83.810 D 100.00 %	3665 4+ 2+ 0+ Ti-46	2.0098 0.8893 0.0000
Beta ray:				
Max.E(keV) 1475(6) 357(3)	Avg.E(keV) 580.7(4) 111.8(3)	Intensity(rel) 3.6E-3(7) 99.9964(7)	Spin	4+ 2+ 4+
Gamma ray: Energy(keV) 889.277(3) 1120.545(4) 2010	Intensity(ro 99.984(1) 99.987(1) 1.3E-5(10)	el)		

Σχήμα B.31: Διάγραμμα διάσπασης ⁴⁶Sc (<u>http://atom.kaeri.re.kr</u>).

Σχήμα B.32: Διάγραμμα διάσπασης ^{81m}Se (<u>http://atom.kaeri.re.kr</u>).

87SR IT DECAY						
Parent state: 38 Half life: 2.803 Q(gs): () keV Branch ratio:	8.531(3) keV H(3) 0.9970(8)	1/2-	Sr-87 2.803 H 2.80	<u>1/2-</u> 3 H <u>9/2+</u> 0.0000	Sr-87	2 0.3885 0.0000
Gamma ray: Energy(keV) 388.531(3)	Intensity(r 82.1(5)	el)				

Σχήμα Β.33: Διάγραμμα διάσπασης ^{87m}Sr (<u>http://atom.kaeri.re.kr</u>).

Σχήμα Β.34: Διάγραμμα διάσπασης 87m Ti (<u>http://atom.kaeri.re.kr</u>).

52V B- DECAY (3.75 M)

Beta ray:

Max.E(keV)	Avg.E(keV)	Intensity(rel) Spin	3+
2541.5(-)	1074.0(9)	99.22(5)	2+
1606.0(-)	637.2(9)	0.052(10)	4+
1207.8(-)	458.4(8)	0.570(13)	4+
1010.8(-)	372.6(8)	0.116(2)	2+
813.9(-)	289.4(8)	0.008(1)	2+
560.4(-)	187.3(7)	0.03(1)	4+
503.2(-)	165.4(7)	0.002(1)	3+
203.7(-)	59.0(6)	0.0025(14)	2+

Gamma	ray:	
-		

Energy(keV)	Intensity(rel)
398.08(9)	0.008(1)
647.45(2)	0.024(2)
704.6(3)	0.0018(9)
766.0(10)	-
935.52(2)	0.061(3)
1045.72(5)	0.01(LT)
1212.9	-
1333.62(3)	0.588(10)
1434.06(1)	100(1)
1530.67(1)	0.116(2)
1727.52(15)	0.007(1)
1981.1(4)	0.005(1)
2337.7(5)	0.0015(9)
2965(1)	0.0005(2)
3161.7(4)	0.0009(2)
3772(1)	0.0010(5)

Σχήμα B.35: Διάγραμμα διάσπασης ⁵²V (<u>http://atom.kaeri.re.kr</u>).
175YB B- DECAY

	Yb-175	
Parent state: G.S. Half life: 4.185 D(1) Q(gs): 468.8(14) keV Branch ratio: 1.00	7/2- 4.185 D 4.185 D 0.4688 10.20 % 9/2- 11/2+ 3.30 % 9/2+ 9/2+	3 0.3963 0.2515 9 0.1138 0.0000 Lu-175

Beta ray:

Max.E(keV)	Avg.E(keV)	Intensity(rel)	Spin	7/2-
468.8(-)	139.5(5)	86.5(17)		7/2-
355.0(-)	102.0(5)	3.3(1)		9/2+
72.5(-)	18.7(4)	10.2(1)		9/2-

Gamma ray: for absolute intensity multiply by 0.064(8) Energy(keV) Intensity(rel) 113.805(4) 29.4(5) 137.658(6) 1.61(13) 144.863(5) 5.13(17) 251.474(17) 1.31(7) 282.522(14) 47.0(7) 396.329(20) 100.0(15)

Σχήμα Β.36: Διάγραμμα διάσπασης ¹⁷⁵Yb (<u>http://atom.kaeri.re.kr</u>).

65ZN EC DECAY

Parent state: G.S. Half life: 244.26 D(26) Q(gs): 1350.8(6) keV Branch ratio: 1.0	5/2- 5/2- 5/2- 5/2- E 5/2- E 5/2- E Cu-65	Zn-65 244.26 D C 50.60 % + 1.40 % C 48.00 %	244.26 D 1.3508
Beta+ ray: total intensity =1.	4		

Max.E(keV)	Avg.E(keV)	Intensity(rel)	Spin	5/2-
1347(2)	142.55(25)	1.403(18)		3/2-

EC: total intensity = 98.6

Gamma ray:	
Energy(keV)	Intensity(rel)
344.95(20)	0.0030(3)
770.6(2)	0.0030(3)
1115.546(4)	50.60(24)

Σχήμα Β.37: Διάγραμμα διάσπασης ⁶⁵Zn (<u>http://atom.kaeri.re.kr</u>).

69ZN IT DECAN Parent state: 4: Half life: 13.70 Q(gs): () keV Branch ratio:	W (13.76 H) 38.636(18) keV 6 H(2) 0.99967(3)	Zn-6 9/2+ 13.1	9 7 <u>6 н 13.76 н</u>	<u>9/2+</u>	Zn-69	0.4386
Gamma ray: Energy(keV) 438.634(18)	Intensity(rel) 94.8(2))				

Σχήμα Β.38: Διάγραμμα διάσπασης ^{69m}Zn (<u>http://atom.kaeri.re.kr</u>).

Β-20 Διδακτορική Διατριβή Μαρίλιας Ι. Σάββα

ПАРАРТНМА Г

Στατιστικά μεγέθη και έλεγχοι

Στο παράρτημα αυτό, περιγράφονται τα μεγέθη και οι στατιστικοί έλεγχοι που χρησιμοποιήθηκαν στο πλαίσιο της Δ.Δ. για την αξιολόγηση των αποτελεσμάτων της απόκρισης ανιχνευτικών διατάξεων και τ

Γ.1 Ο στατιστικός έλεγχος U

Θεωρώντας ότι (Value₁ ± Unc₁) και (Value₂ ± Unc₂) είναι τα αποτελέσματα μιας μέτρησης (π.χ. της συγκέντρωσης ενός ισοτόπου σε δείγμα, του ρυθμού καταγραφής γεγονότων), με τη χρήση του στατιστικού ελέγχου U ελέγχεται το κατά πόσο τα δύο αυτά αποτελέσματα μπορούν να θεωρηθούν στατιστικά ίδια ή όχι. Ορίζεται έτσι η μηδενική και η εναλλακτική υπόθεση H₀ και H₁, αντίστοιχα.

> H_0 : Value₁ = Value₂ H_1 : Value₁ \neq Value₂

Πρόκειται επομένως για δίπλευρο στατιστικό έλεγχο. Ακολούθως με τη Σχέση (Γ.1) ορίζεται η μεταβλητή ελέγχου U, από την οποία παίρνει το όνομά του ο έλεγχος:

$$U = \frac{Value_1 - Value_2}{\sqrt{Unc_1^2 + Unc_2^2}}$$
 Σχέση (Γ.1)

Η μεταβλητή U ακολουθεί την κανονική κατανομή [0,1]. Επομένως:

αν |U|≤1.64 οι δύο τιμές δεν διαφέρουν στατιστικά σημαντικά (Σχήμα Γ.1)

Σχήμα Γ.1: Στατιστικός έλεγχος U, |U|≤1.64.

 αν 1.64<|U|≤1.95 οι δύο μετρήσεις πιθανώς δε διαφέρουν σημαντικά από την τιμή αναφοράς, (Σχήμα Γ.2)

Σχήμα Γ.2: Στατιστικός έλεγχος U, 1.64<U≤1.95.

- αν 1.95<|U|≤2.58 δεν είναι σαφές αν οι δύο τιμές διαφέρουν στατιστικά σημαντικά
- αν 2.58<|U|≤3.29 οι δύο μετρήσεις πιθανώς διαφέρουν σημαντικά
- αν |U|>3.29 οι δύο μετρήσεις διαφέρουν στατιστικά σημαντικά (Σχήμα Γ.3)

Σχήμα Γ.3: Στατιστικός έλεγχος U, 1.64<U≤1.96.

Για λόγους απλότητας στις περισσότερες εφαρμογές της Δ.Δ. θεωρήθηκε ότι η μηδενική υπόθεση του στατιστικού ελέγχου γίνεται αποδεκτή όταν |U|≤1.96 και απορρίπτεται όταν |U|≥2.58. Σε κάθε άλλη περίπτωση, ο έλεγχος τοποθετείται στην περιοχή αβεβαιότητας και δεν μπορεί να προκύψει σαφές συμπέρασμα για τις συγκρινόμενες τιμές.

Г-3

Γ.2 Υπολογισμός αβεβαιότητας συντελεστή T.A.S.F.

Ο συντελεστής Τ.Α.S.F. υπολογίζεται από τη Σχέση:

T.A.S.F.=
$$\frac{A(P/T)_{sup}}{A(P/T)_{unsup}}$$
 Σχέση (3.9)

Όπου ο λόγος Α(Ρ/Τ) δίνεται από τη Σχέση:

A(P/T)=
$$\frac{\sum_{k=p_{i}}^{p_{j}} C_{k} - B}{\sum_{k=1}^{M} C_{k}}$$
 Σχέση (3.3)

Όπου:

 $p_i,\,p_j$: τα κανάλια στην αρχή και στο τέλος της φωτοκορυφής ενδιαφέροντος

 C_k : оו катаүрафо́
μενες крои́σεις στο каváλı k

Β : το συνεχές υπόστρωμα κάτω από την φωτοκορυφή ενδιαφέροντος

Μ : το συνολικό πλήθος καναλιών του φάσματος

Ο υπολογισμός της αβεβαιότητας του συντελεστή Τ.Α.S.F. γίνεται με τη Σχέση:

$$Unc_{T.A.S.F.}^2 = Unc_{A(P/T)_{unsup}}^2 + Unc_{A(P/T)_{sup}}^2$$
 Σχέση (Γ.2)

Όπου:

$$Unc_{A(P/T)_{unsup}}^{2} = Unc_{peak area}^{2} + Unc_{total area}^{2}$$
 Σχέση (Γ.3)

Όπου:

Unc²_{peak area}: η αβεβαιότητα της επιφάνειας της φωτοκορυφής, όπως αυτή δίνεται από τον κώδικα ανάλυσης SPUNAL

 $Unc_{peak area}^2$: η αβεβαιότητα της ολικής επιφάνειας του ενεργειακού φάσματος.

Για τον υπολογισμό της αβεβαιότητας της ολικής επιφάνειας του ενεργειακού φάσματος, χρησιμοποιείται η σχέση που δίνει το σφάλμα της κατανομής Poisson:

$$Unc_{total area} = \frac{\sqrt{total area}}{total area}$$
 Σχέση (Γ.4)

ПАРАРТНМА 🛆

Πιστοποιητικά πηγών

Στο Παράρτημα αυτό δίνονται τα πιστοποιητικά των πηγών/δειγμάτων που χρησιμοποιήθηκαν στο πλαίσιο της παρούσας Δ.Δ.

Amersham Buchler GmbH & Co KG Hweg 1 (J. 530) Braunol twelp
Hin (0.5307) 2.06 (0) Teletex 5.307 812 ambutty
Hin (0.5307) 20.62.37 a autsbutos улт алхоноз на на 445 Straße 227, 4000 Dusseldorf Telefon (02.11) 74.20.66-69 р. полтаdter Landstr. 92, 6000 Frankfurt/М. Telefon (0.69) 62.10.62, 65 Amersham Autor cann Buchler GmbH & Co KG Postach 1149 D-3300 Blaunschweig Amtersham International Amtersham Laboratories White Lion Bood white Lion Road Amersham GH-Buckinghamshire HP7 9LL England Certificate no. 591559 AMR1121 to drawing VZ-1240/E Type Source No CP 716 Activity 40.2 kBq (1.09 µCi) Americium-241 Reference date 1 July 1991 ± 4 % Overall uncertainty* Capsule 0.5 mm plastic (density 1.18 $\rm g/cm^3$) Integrity ISO/DIN Classification C.34343 The source passed the tests for leakage** and contamination** L and A Date of test 27 June 1991 This estimate of uncertainty was calculated in accordance with the recommendation of the International Commission on Rediction Units and Measurements (ICRU Report 12). The limits of uncertainty were taken as the arithmetic sum of the uncertainty due to random variations, calculated at the 99.7 % confidence level and the estimated maximum systematic uncertainty in the measurement. ** See overleaf for description of tests Remarks Traceability: The activity of the source above-mentioned has been measured against a reference source, calibrated by the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig. Amersham Buchler Braunschweig. 28 June 1991 Dor/AM Dinho Sitz Braunschweig: Registergenicht Braunschweig, HRA 8621 Personlich haftende Gesellschaftenn Amersham Buchter GribH, Sitz Braunschweig Registergenicht Braunschweig HRB 638, Geschaftsuhrer: Reinhard W. Muth Vorsitzender des Aufsichtsrates. Wolfgang Busselberg Deutsche Bank AG Braunschweig BL 2 270 700 30 Konto 0.168 815 Postgiroamt Hannover BL 2 250 100 30 Konto 3133 30 - 300

Σχήμα Δ.1: Πιστοποιητικό σημειακής πηγής $^{\rm 241} {\rm Am}$ 1 μCi.

	ine kaaiochemical Centre	Amersham E	ngland		
	Certificate of measuren radioactive gamma ref	nent of erence source	e	TA 6424	
Description	Principal radionuclide: Caesium	-137	Produ	ct code: CDF e number: 752	266
Measurement	Reference time:	1200	GMT on 1st Janua	ry 1981	
	Activity of the principal radionuc	clide: 0.993	microcuries		
	Recommended half-life:	30.17	years		
	Method of measurement: The source was measured using equi prepared from a series of absolute	ipment calibrated o aly standardized so	directly or india plutions.	rectly with simi	ilar sources
Accuracy	The OVERALL UNCERTAINTY in the act to be less than \pm 6.0 \$	tivity quoted above	a for the princip	al radionuciide	ə was estimated
	This estimate of uncertainty was of International Commission on Radia The limits of uncertainty were tak random variations, calculated at uncertainties in the measurement.	calculated in accor tion Units and Mea: ken as the arithme the 99.7≸ confidenc	rdance with the i surements (ICRU i tic sum of the u ce level, and the	recommendations Report 12). ncertainty due a estimated sys	of the to tematic
Remarks	Tests for leakage and surface con	tamination have be	en carried out w	ith satisfactory	y results.
	radionuclide, recommended nuclear the source.	data and half-life	a is given in the	e data sheet ac	companying
Approved	Physics Department	~		G.L.	Director
	The Radiochemical Centre Ltd registered England	registered office: White Lion Road Amersham Buckinghamshire	telephone: Little Chalfont (024 04) 4444	cables: Activity Amersham	telex: 83141

Σχήμα Δ.2: Πιστοποιητικό της σημειακής πηγής ¹³⁷Cs 1 μCi.

	The Radiochemical Centre A	Amersham E	ngland		
					·
escription	Principal radionuciide: Barium-13	5 ·	Produc	ct code: BD	R.121
			Source	ə numbər: 7R	192
easurement	Reference time:	1200 0	MT on 1st Januar	ry 1981	
	Activity of the principal radionucli	lde: 1.149	microcuries		
	Recommended half-life:	10.8	years		
	Method of measurement: The source was measured using equip prepared from a series of absolutely	ment calibrated d y standardized so	lirectly or individuations.	rectly with sim	ilar sources
ccuracy	The OVERALL UNCERTAINTY in the activity belows than \pm 7.0 %	vity quoted above) for the princip	oal radionuciid	e was estimated
	This estimate of uncertainty was cal International Commission on Radiatic The limits of uncertainty were taker random variations, calculated at the uncertaintles in the measurement.	iculated in accor on Units and Meas a as the arithmet 9 99.7% confidenc	dance with the i surements (ICRU f ic sum of the u se level, and the	recommendations Report 12). ncertainty due e estimated sys	of the to tematic
Remarks	Tests for leakage and surface contan Further information about this source radionuclide, recommended nuclear da the source.	nination have bee ce including deta ata and half-life	in carried out wi ills of its const is given in the	ith satisfactor truction, purit a data sheet ac	y results. y of the companying
			-	. 1	
		· · ·			
FF1 0100	~ 0			\sim	
	Physics Department			for Managin	g Director
	The Radiochemical Centre Ltd	registered office: White Lion Road	telephone: Little Chalfont	cables: Activity	telex: 83141
	registered England 1002610	Amersham Buckinghamshire HP7 9LL	(024 04) 4444	Amersham	

Ine Kaaiocnemical Centre Amersham E

England

	Certificate of meas radioactive gamm	surement of a reference sour	e	TA 6422	2
escription	Principal radionuciide: C	Cobalt-60	Product	code: CKF	R.121
			Source n	umber: 702	238
asurement	Reference time:	1200	GMT on 1st January	1981	
	Activity of the principal r	adionuclide: 1.18	5 microcuries		
	Recommended half-life:	5.27	years		
	Method of measurement: The source was measured usi prepared from a series of a	ng equipment calibrated absolutely standardized	directly or indirectsolutions.	tly with simi	llar sources
curacy	The OVERALL UNCERTAINTY in to be less than \pm 3.9 \$	the activity quoted abo	ve for the principal	radionuclide	a was estimated
	This estimate of uncertaint International Commission on The limits of uncertainty w random variations, calculat uncertainties in the measur	y was calculated in acc Radiation Units and Me ere taken as the arithm ed at the 99.7% confider ement.	ordance with the rec asurements (ICRU Rep otic sum of the uncer ice level, and the e	ommendations ort 12). rtainty due t stimated syst	of the to tematic
emarks	Tests for leakage and surfa Further information about t radionuclide, recommended n the source.	nce contamination have by his source including def uclear data and half-lif	en carried out with ails of its construc- e is given in the da	satisfactory ction, purity ata sheet acc	r results. r of the companying
proved	D,	al C		aL	L
	Physics Department	ment		for Managing	Director
	The Radiochemical Centre Ltd	registered office: White Lion Road	telephone: Little Chalfont	cables: Activity	telex: 83141
	registered England 1002610	Amersham Buckinghamshire HP7 9LL	(024 04) 4444	Amersham	
	Σχήμα Δ.4: Πια	στοποιητικό σημειαι	κής πηγής ⁶⁰ Co 1	μCi.	

Amersham Buchler GmbH & Co KG

Gieselweg 1 · W-3300 Braunschweig Telefon (0 53 07) 2 06 - 0 Telefax Allgemein (0 53 07) 20 62 37 Telefax Strahlerproduktion (0 53 07) 20 62 93 Teletex 5307812 = ambuttx

Servicecentren in Frankfurt und Berlin

Page 1 of 2 pages Issue 9/91

CERTIFICATE

No: 753106 for a Sealed Radioactive Source

Source Type: Reference Source

Product Code Drawing Source No. Nuclide EFR1121 VZ-1240/1E DE 401 Europium-152

Measurement Data

Activity
Overall Uncertainty*
Reference Date
Traceability*
Radionuclidic Purity

46.2 kBq ± 5 % 1 November 1992 Defined on page 2 No gamma emitting impurities detected.

Leakage and Contamination Test(s)

Test Method(s)* Test(s) passed on II and I 23 October 1992

Additional Information

ISO Classification Recommended Working Life* C.34343 5 years

* see page 2 for explanation

Amersham Buchler

r. A. Mann

Braunschweig, 23 October 1992 Men/AM

Sitz Braunschweig, Registergericht Braunschweig, HRA 8621 Persönlich haftende Gesellschafterin: Amersham Buchler GmbH, Sitz Braunschweig Registergericht Braunschweig, HRB 638, Geschäftsführer: Dr. Anthony J. D'Eustachio Vorsitzender des Aufsichtsrates: Wolfgang Büsselberg Deutsche Bank AG Braunschweig, BLZ 270 700 30, Konto 0168815 Postgiroamt Hannover: BLZ 250 100 30, Konto 3133 30-300

Σχήμα Δ.5: Πιστοποιητικό σημειακής πηγής ¹⁵²Eu 1 μCi.

Amersham Buchler GmbH & Co KG

Gieselweg 1 · W-3300 Braunschweig Telefon (0 53 07) 2 06 - 0 Telefax Allgemein (0 53 07) 2 06 2 37 Telefax Strahlerproduktion (0 53 07) 20 62 93 Teletex 5307812 = ambuttx

Servicecentren in Frankfurt und Berlin

Amersham

Page 1 of 2 pages Issue 8/92

CERTIFICATE

No: 761525 for a Sealed Radioactive Source

Source Type: Reference Source

Product Code Drawing Source No. Nuclide

RAR8121 VZ-590/1E DF 740 Radium-226

57.1 kBq

1 December 1992

Defined on page 2

27 November 1992

±5 %

Measurement Data

Activity Overall Uncertainty* Reference Date Traceability* Radionuclidic Purity

Leakage and Contamination Test(s)

Test Method(s)* Test(s) passed on

Additional Information

ISO Classification* Recommended Working Life* Remark

C.11111 ---

IV and I

* see page 2 for explanation

Amersham Buchler id. Ment

Braunschweig, 30 November 1992 Men/AM

No gamma emitting impurities detected.

Sitz Braunschweig, Registergericht Braunschweig, HRA 8621 Persönlich haltende Gesellischafterin: Amersham Buchler GmbH, Sitz Braunschweig Registergericht Braunschweig, HRB 638, Geschäftsührer: Dr. Anthony J. D'Eustachio Vorsitzender des Aufsichtsrates: Wolfgang Büsselberg

Deutsche Bank AG Braunschweig, BLZ 270 700 30, Konto 0168815 Postgiroamt Hannover: BLZ 250 100 30, Konto 3133 30-300

Σχήμα Δ.6: Πιστοποιητικό της σημειακής πηγής 226 Ra 1 μCi.

	Amersham plc The Grove Centre							
	Certificate o gamma-ray i	l calibration reference so	1 of mixed lution	radionucli	de Pli 11	1827		UKAS CALIERATION 0146
SSUED Y:	Amersham plc Radiation & Radi Calibration Laboo The Grove Centre White Lion Road Amersham Buckinghamshire HP7 9LL	oactivity atory		ISSUED FOR:	AEA Technol Isotrak Gieselweg 1 D-38110 Brau Germany	logy QSA Gi	mbH	
1120	and the second	dir.	Sec. 5 115		-147 ⁻⁰ -1	1	1. 196	-
					Solution numb	er: R3/10/44	5	
escription	Product code:	QCY48			Solution nume	NOT: 153-157-42		
Description	Product code: This mixed radion listed below.	QCY48 uclide gamma-ra	y reference stan	dard consists c	of a solution in	4M HCl of th	e ten radionuc	lides
lescription feasurement nd accuracy	Product code: This mixed radion listed below. Reference time: Mass of solution:	QCY48 uclide gamma-ra 1200 GMT on 5.3992 grams	y reference stan 1 March 2003	dard consists c	of a solution in	4M HCl of th	e ten radionuc	lides
deasurement nd accuracy	Product code: This mixed radion listed below. Reference time: Mass of solution: Parent radionuclide	QCY48 nclide gamma-ra 1200 GMT on 5.3992 grams Gamma-ray Energy (keV)	y reference stan 1 March 2003 Gamma-rays per second per gram	dard consists of Combined Type A uncertainty	Combined Type B uncertainty	4M HCl of th Expanded uncertainty	e ten radionuc Calibration start date	lides Calibration finish date
deasurement nd accuracy	Product code: This mixed radion listed below. Reference time: Mass of solution: Parent radionuclide Americium-241	QCY48 nclide gamma-ra 1200 GMT on 5.3992 grams Gamma-ray Energy (keV) 59.54	y reference stan 1 March 2003 Gamma-rays per second per gram 1128	Combined Type A uncertainty ± 0.1 %	Combined Type B uncertainty ± 1.3 %	4M HCl of th Expanded uncertainty ± 2,6 %	e ten radionuc Calibration start date 08/04/1998	Calibration finish date 08/04/1998
deasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109	QCY48 nclide gamma-ra 1200 GMT on 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03	y reference stan 1 March 2003 Gamma-rays per gram 1128 648	Combined Type A uncertainty ± 0.1 % ± 0.3 %	Combined Type B uncertainty ± 1.3 % ± 3.1 %	4M HCl of th Expanded uncertainty ± 2.6 % ± 6.2 %	Calibration start date 08/04/1998 16/12/2002	Calibration finish date 08/04/1998 23/12/2002
leasurement nd accuracy	Product code: This mixed radion listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57	QCY48 nclide gamma-ra 1200 GMT on 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1	y reference stan 1 March 2003 Gamma-rays per second per gram 1128 648 593	Combined Type A uncertainty ± 0.1 % ± 0.3 % ± 0.1 %	Combined Type B uncertainty $\pm 1.3 \%$ $\pm 3.1 \%$ $\pm 0.8 \%$	4M HCl of th Expanded uncertainty ± 2.6 % ± 6.2 % ± 1.5 %	Calibration start date 08/04/1998 16/12/2002 29/08/2002	Calibration finish date 08/04/1998 23/12/2002 30/08/2002
leasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9	y reference stan 1 March 2003 Gamma-rays per gram 1128 648 593 712	dard consists of Combined Type A uncertainty $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$	f a solution in Combined Type B uncertainty $\pm 1.3 \%$ $\pm 3.1 \%$ $\pm 0.8 \%$ $\pm 0.7 \%$	4M HCl of th Expanded uncertainty ± 2.6 % ± 6.2 % ± 1.5 % ± 1.4 %	Calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2002	lides Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002
deasurement nd accuracy	Product code: This mixed radion listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139 Mercury-203	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9 279.2	y reference stan 1 March 2003 Gamma-rays per second per gram 1128 648 593 712 1851	dard consists of Combined Type A uncertainty $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$	Combined Type B uncertainty $\pm 1.3 \%$ $\pm 3.1 \%$ $\pm 0.8 \%$ $\pm 0.7 \%$ $\pm 0.7 \%$	4M HCl of th Expanded uncertainty ± 2.6 % ± 6.2 % ± 1.5 % ± 1.4 %	Calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2002 21/01/2003	lides Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002 21/01/2003
Acasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139 Mercury-203 Tin-113	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9 279.2 391.7	y reference stan 1 March 2003 Gamma-rays per gram 1128 648 593 712 1851 . 2139	dard consists of Type A uncertainty $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$	Combined Type B uncertainty ± 1.3 % ± 0.8 % ± 0.7 % ± 0.7 % ± 1.6 %	4M HCl of th Expanded uncertainty ± 2.6 % ± 6.2 % ± 1.5 % ± 1.4 % ± 1.4 % ± 3.2 %	Calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2002 21/01/2003 15/11/2001	Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002 21/01/2003 15/11/2001
Acasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139 Mercury-203 Tin-113 Strontium-85	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9 279.2 391.7 514.0	y reference stan 1 March 2003 Gamma-rays per second per gram 1128 648 593 712 1851 2139 3882	Combined Type A uncertainty ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 %	Combined Type B uncertainty ± 1.3 % ± 0.8 % ± 0.7 % ± 0.7 % ± 1.6 % ± 1.3 %	4M HCl of th Expanded uncertainty ± 2.6 % ± 1.5 % ± 1.4 % ± 1.4 % ± 3.2 % ± 2.5 %	Calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2002 21/01/2003 15/11/2001 11/09/2002	Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002 21/01/2003 15/11/2001 13/09/2002
Acasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139 Mercury-203 Tin-113 Strontium-85 Caesium-137	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9 279.2 391.7 514.0 661.6	y reference stan 1 March 2003 Gamma-rays per gram 1128 648 593 712 1851 2139 3882 2402	Combined Type A uncertainty ± 0.1 % ± 0.3 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 % ± 0.1 %	Combined Type B uncertainty $\pm 1.3 \%$ $\pm 3.1 \%$ $\pm 0.7 \%$ $\pm 0.7 \%$ $\pm 1.6 \%$ $\pm 1.3 \%$ $\pm 1.3 \%$	4M HCl of th Expanded uncertainty ± 2.6 % ± 1.5 % ± 1.4 % ± 1.4 % ± 3.2 % ± 2.5 % ± 1.9 %	Calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2003 15/11/2001 11/09/2002 06/01/2003	Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002 21/01/2003 15/11/2001 13/09/2002 07/01/2003
Acasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139 Mercury-203 Tin-113 Strontium-85 Caesium-137 Yttrium-88	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9 279.2 391.7 514.0 661.6 898.0	y reference stan 1 March 2003 Gamma-rays per second per gram 1128 648 593 712 1851 2139 3882 2402 6248	dard consists of Type A uncertainty ± 0.1 % ± 0.1 %	Combined Type B uncertainty ± 1.3 % ± 3.1 % ± 0.8 % ± 0.7 % ± 1.6 % ± 1.3 % ± 1.3 %	4M HCl of th Expanded uncertainty ± 2.6 % ± 6.2 % ± 1.5 % ± 1.4 % ± 3.2 % ± 2.5 % ± 1.9 % ± 1.6 %	calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2002 21/01/2003 15/11/2001 11/09/2002 06/01/2003 26/09/2002	Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002 21/01/2003 15/11/2001 13/09/2002 07/01/2003 30/09/2002
Acasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139 Mercury-203 Tin-113 Strontium-85 Caesium-137 Yttrium-88 Cobalt-60	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9 279.2 391.7 514.0 661.6 898.0 1173	y reference stan 1 March 2003 Gamma-rays per gram 1128 648 593 712 1851 2139 3882 2402 6248 3409	dard consists of Type A uncertainty ± 0.1 % ± 0.1 %	Combined Type B uncertainty ± 1.3 % ± 3.1 % ± 0.8 % ± 0.7 % ± 1.6 % ± 1.3 % ± 1.3 % ± 1.0 % ± 1.0 % ± 0.8 %	4M HCl of th Expanded uncertainty ± 2.6 % ± 1.5 % ± 1.4 % ± 1.4 % ± 3.2 % ± 1.9 % ± 1.6 % ± 1.5 %	c ten radionuc Calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2003 15/11/2001 11/09/2002 06/01/2003 26/09/2002 18/12/2001	Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002 21/01/2003 15/11/2001 13/09/2002 07/01/2003 30/08/2002 15/11/2001 13/09/2002 18/12/2001
Acasurement nd accuracy	Product code: This mixed radiom listed below. Reference time: Mass of solution: Parent radionuclide Americium-241 Cadmium-109 Cobalt-57 Cerium-139 Mercury-203 Tin-113 Strontium-85 Caesium-137 Yttrium-88 Cobalt-60 Cobalt-60	QCY48 nclide gamma-ra 5.3992 grams Gamma-ray Energy (keV) 59.54 88.03 122.1 165.9 279.2 391.7 514.0 661.6 898.0 1173 1333	y reference stan 1 March 2003 Gamma-rays per second per gram 1128 648 593 712 1851 2139 3882 2402 6248 3409 3412	dard consists of Type A uncertainty ± 0.1 % ± 0.1 %	Combined Type B uncertainty ± 1.3 % ± 0.8 % ± 0.7 % ± 1.6 % ± 1.3 % ± 1.4 % ± 1.3 % ± 1.8 % ± 1.8 % ± 1.8 % ± 0.8 % ± 0.8 %	4M HCl of th Expanded uncertainty ± 2.6 % ± 6.2 % ± 1.5 % ± 1.4 % ± 3.2 % ± 2.5 % ± 1.9 % ± 1.6 % ± 1.5 %	Calibration start date 08/04/1998 16/12/2002 29/08/2002 06/11/2003 15/11/2001 11/09/2002 06/01/2003 26/09/2002 18/12/2001 18/12/2001	lides Calibration finish date 08/04/1998 23/12/2002 30/08/2002 07/11/2002 21/01/2003 15/11/2001 13/09/2002 07/01/2003 30/09/2002 18/12/2001

reference date that must be used in all calculations relating to the values of activity.

Approved Signatory

February 2003 Date of 13 issue

B D D Singleton Page 1 of 2 pages • Affiet Shaffing This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to recognised national standards, and to units of

Σχήμα Δ.7: Πιστοποιητικό αμπούλας QCY.48.

REFERENCE SHEET

REFERENCE MATERIAL

IAEA-327

RADIONUCLIDES IN SOIL

Date of issue: April 2001[⊕]

Recommended Values (Based on dry weight)

Reference Date for decay correction: 31st December 1994

Radionuclide	Recommended Value Bq/kg	95% Confidence Interval Bq/kg	\mathbf{N}^{pt}
⁴⁰ K	621	612-630	143
90Sr	2.37	2.23-2.51	30
137Cs	24.9	24.6-25.2	152
²¹⁰ Pb	58.8	53.9-63.7	26
²²⁶ Ra	34.1	32.7 - 35.5	56
²²⁸ Ra	38.7	37.8-39.6	109
²²⁸ Th	38.2	37.2 - 39.2	56
²³⁰ Th	34.1	32.4-35.8	10
²³² Th	38.7	37.2-40.2	22
234U"	31.9	30.4 - 33.4	32
²³⁸ U	32.8	31.4-34.2	32
²³⁸ Pu	0.020	0.018 - 0.022	20
²³⁹¹²⁴⁰ Pu	0.58	0.56 - 0.60	51

Number of accepted laboratory means which were used to calculate the recommended values and confidence

intervals. The recommended value for ²³⁴U was calculated from the ²³⁸U recommended activity concentration in combination with the median of the ²³⁴U²⁸⁸U activity ratio calculated from participants results.

⊕ Revision of the original reference sheet dated May 2000.

Information Values (Based on dry weight)

Reference Date for decay correction: 31st December 1994

Radionuclide	Information Value Bq/kg	95% Confidence Interval Bq/kg	N^{*}
¹⁰⁶ Ru	<3	_	45
¹²⁵ Sb	< 0.8	_	48
¹⁵⁴ Eu	<3	_	40
¹⁵⁵ Eu	<2.3	-	4
²⁸⁵ U	1.43	1.22 - 1.64	12
²⁴¹ Am ^{##}	0.22	0.19 - 0.25	15

Number of accepted laboratory means which were used to calculate the information values and confidence -6 intervals. *88*

NB: The ³⁴Am value quoted is only valid for the reference date, as decay correction to alternated dates requires knowledge of the ³⁴¹Pu concentration which is not currently known.

Σχήμα Δ.8: Πιστοποιητικό υλικού αναφοράς ΙΑΕΑ-327 (πρότυπο έδαφος).

Certificate of Analysis

Standard Reference Material® 2709

San Joaquin Soil

Baseline Trace Element Concentrations

This Standard Reference Material (SRM) is intended primarily for use in the analysis of soils, sediments, or other materials of a similar matrix. SRM 2709 is an agricultural soil that was oven-dried, sieved, radiation sterilized, and blended to achieve a high degree of homogeneity. A unit of SRM 2709 consists of 50 g of the dried material.

The certified elements for SRM 2709 are given in Table 1. The values are based on measurements using one definitive method or two or more independent and reliable analytical methods. Noncertified values for a number of elements are given in Table 2 as additional information on the composition. The noncertified values should NOT be used for calibration or quality control. Analytical methods used for the characterization of this SRM are given in Table 3 along with analysts and cooperating laboratories. All values (except for carbon) are based on measurements using a sample weight of at least 250 mg. Carbon measurements are based on 100 mg samples.

NOTICE AND WARNINGS TO USERS

Expiration of Certification: This certification of SRM 2709 is valid, within the measurement uncertainties specified, until **31 December 2011**, provided the SRM is handled in accordance with instructions given in this certificate (see *Instructions for Use*). This certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Return of the attached registration card will facilitate notification.

The overall direction and coordination of the analyses were under the chairmanship of M.S. Epstein and R.L. Watters, Jr. of the NIST Inorganic Analytical Research Division.

Statistical consultation was provided by S.B. Schiller of the NIST Statistical Engineering Division.

The technical and support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the NIST Standard Reference Materials Program by T.E. Gills and J.S. Kane. Revision of this certificate was coordinated through the NIST Standard Reference Materials Program by B.S. MacDonald of the NIST Measurement Services Division.

Willie E. May, Chief Analytical Chemistry Division

Gaithersburg, MD 20899 Certificate Issue Date: 18 July 2003 See Certificate Revision History on Page 6 John Rumble, Jr., Chief Measurement Services Division

SRM 2709

Page 1 of 6

Σχήμα Δ.9α: Πιστοποιητικό υλικού αναφοράς NIST Montana Soil 2709.

Element	Mas (s F1 %)	raction	Element	Mas (s Fr μg/j	action g)
Aluminum	7.50	±	0.06	Antimony	7.9	±	0.6
Calcium	1.89	±	0.05	Arsenic	17.7	±	0.8
Iron	3.50	±	0.11	Barium	968	±	40
Magnesium	1.51	\pm	0.05	Cadmium	0.38	\pm	0.01
Phosphorus	0.062	±	0.005	Chromium	130	\pm	4
Potassium	2.03	±	0.06	Cobalt	13.4	\pm	0.7
Silicon	29.66	±	0.23	Copper	34.6	\pm	0.7
Sodium	1.16	±	0.03	Lead	18.9	\pm	0.5
Sulfur	0.089	±	0.002	Manganese	538	\pm	17
Titanium	0.342	\pm	0.024	Mercury	1.40	\pm	0.08
				Nickel	88	\pm	5
				Selenium	1.57	\pm	0.08
				Silver	0.41	\pm	0.03
				Strontium	231	\pm	2
				Thallium	0.74	\pm	0.05
				Vanadium	112	\pm	5
				Zinc	106	\pm	3

Table 1. Certified Values

Noncertified Values: Noncertified values, shown below, are provided for information only. An element concentration value may not be certified if a bias is suspected in one or more of the methods used for certification, or if two independent methods are not available.

Table 2. Noncertified Values

Element	Mass Fraction (%)	Element	Mass Fraction (µg/g)
Carbon	1.2	Cerium	42
		Cesium	5.3
		Dysprosium	3.5
		Europium	0.9
		Gallium	14
		Gold	0.3
		Hafnium	3.7
		Holmium	0.54
		Iodine	5
		Lanthanum	23
		Molybdenum	2.0
		Neodymium	19
		Rubidium	96
		Samarium	3.8
		Scandium	12
		Thorium	11
		Tungsten	2
		Uranium	3
		Ytterbium	1.6
		Yttrium	18
		Zirconium	160

SRM 2709

Page 3 of 6

Σχήμα Δ.9α: Πιστοποιητικό υλικού αναφοράς NIST Montana Soil 2709.

Certificate of Analysis

Standard Reference Material® 2710

Montana Soil

Highly Elevated Trace Element Concentrations

This Standard Reference Material (SRM) is intended primarily for use in the analysis of soils, sediments, or other materials of a similar matrix. SRM 2710 is a highly contaminated soil that was oven-dried, sieved, radiation sterilized, and blended to achieve a high degree of homogeneity. A unit of SRM 2710 consists of 50 g of the dried material.

The certified elements for SRM 2710 are given in Table 1. The values are based on measurements using one definitive method or two or more independent and reliable analytical methods. Noncertified values for a number of elements are given in Table 2 as additional information on the composition. The noncertified values should NOT be used for calibration or quality control. Analytical methods used for the characterization of this SRM are given in Table 3 along with analysts and cooperating laboratories. All values (except for carbon) are based on measurements using a sample weight of at least 250 mg. Carbon measurements are based on 100 mg samples.

NOTICE AND WARNINGS TO USERS

Expiration of Certification: This certification of SRM 2710 is valid, within the measurement uncertainties specified, until **31 December 2011**, provided the SRM is handled in accordance with instructions given in this certificate (see *Instructions for Use*). This certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Return of the attached registration card will facilitate notification.

The overall direction and coordination of the analyses were under the chairmanship of M.S. Epstein and R.L. Watters, Jr. of the NIST Analytical Chemistry Division of the NIST Measurement Services Division.

Statistical consultation was provided by S.B. Schiller of the NIST Statistical Engineering Division.

The technical and support aspects involved in the original preparation, certification, and issuance of this SRM were coordinated through the NIST Standard Reference Materials Program by T.E. Gills and J.S. Kane. Revision of this certificate was coordinated through the NIST Standard Reference Materials Program by B.S. MacDonald of the NIST Measurement Services Division.

Willie E. May, Chief Analytical Chemistry Division

John Rumble, Jr., Chief Measurement Services Division

Gaithersburg, MD 20899 Certificate Issue Date: 18 July 2003 See Certificate Revision History on Page 6

SRM 2710

Page 1 of 6

Σχήμα Δ.10α: Πιστοποιητικό υλικού αναφοράς NIST Montana Soil 2710.

Element	Ma	ss Fra (%)	action	Element	M	ass F (mg/l	raction kg)
Aluminum	6.44	±	0.08	Antimony	38.4	\pm	3
Calcium	1.25	\pm	0.03	Arsenic	626	\pm	38
Iron	3.38	\pm	0.10	Barium	707	\pm	51
Magnesium	0.853	\pm	0.042	Cadmium	21.8	\pm	0.2
Manganese	1.01	\pm	0.04	Copper	2950	\pm	130
Phosphorus	0.106	\pm	0.015	Lead	5532	\pm	80
Potassium	2.11	\pm	0.11	Mercury	32.6	\pm	1.8
Silicon	28.97	\pm	0.18	Nickel	14.3	±	1.0
Sodium	1.14	\pm	0.06	Silver	35.3	±	1.5
Sulfur	0.240	\pm	0.006	Vanadium	76.6	±	2.3
Titanium	0.283	\pm	0.010	Zinc	6952	\pm	91

Table 1. Certified Values

Noncertified Values: Noncertified values shown below are provided for information only. An element concentration value is not certified if a bias is suspected in one or more of the methods used for certification, or if two independent methods are not available.

Table 2. Noncertified Values

Element	Mass Fraction (%)	Element	Mass Fraction (mg/kg)
Carbon	3	Bromine	6
		Cerium	57
		Cesium	107
		Chromium	39
		Cobalt	10
		Dysprosium	5.4
		Europium	1
		Gallium	34
		Gold	0.6
		Hafnium	3.2
		Holmium	0.6
		Indium	5.1
		Lanthanum	34
		Molybdenum	19
		Neodymium	23
		Rubidium	120
		Samarium	7.8
		Scandium	8.7
		Strontium	330
		Thallium	1.3
		Thorium	13
		Tungsten	93
		Uranium	25
		Ytterbium	1.3
		Yttrium	23

SRM 2710

Page 3 of 6

Σχήμα Δ.10β: Πιστοποιητικό υλικού αναφοράς NIST Montana Soil 2710.

Certificate of Analysis

Standard Reference Material® 2711

Montana Soil

Moderately Elevated Trace Element Concentrations

This Standard Reference Material (SRM) is intended primarily for use in the analysis of soils, sediments, or other materials of a similar matrix. SRM 2711 is a moderately contaminated soil that was oven-dried, sieved, radiation sterilized, and blended to achieve a high degree of homogeneity. A unit of SRM 2711 consists of 50 g of the dried material.

The certified elements for SRM 2711 are given in Table 1. The values are based on measurements using one definitive method or two or more independent and reliable analytical methods. Noncertified values for a number of elements are given in Table 2 as additional information on the composition. The noncertified values should NOT be used for calibration or quality control. Analytical methods used for the characterization of this SRM are given in Table 3 along with analysts and cooperating laboratories. All values (except for carbon) are based on measurements using a sample weight of at least 250 mg. Carbon measurements are based on 100 mg samples.

NOTICE AND WARNINGS TO USERS

Expiration of Certification: This certification of SRM 2711 is valid, within the measurement uncertainties specified, until **31 December 2011**, provided the SRM is handled in accordance with instructions given in this certificate (see *Instructions for Use*). This certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Return of the attached registration card will facilitate notification.

The overall direction and coordination of the analyses were under the chairmanship of M.S. Epstein and R.L. Watters, Jr. of the NIST Inorganic Analytical Research Division.

Statistical consultation was provided by S.B. Schiller of the NIST Statistical Engineering Division.

The technical and support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the NIST Standard Reference Materials Program by T.E. Gills and J.S. Kane. Revision of this certificate was coordinated through the NIST Standard Reference Materials Program by B.S. MacDonald of the NIST Measurement Services Division.

Willie E. May, Chief Analytical Chemistry Division

John Rumble, Jr., Chief Measurement Services Division

SRM 2711

Gaithersburg, MD 20899

Certificate Issue Date: 18 July 2003

See Certificate Revision History on Page 6

Page 1 of 6

Σχήμα Δ.11α: Πιστοποιητικό υλικού αναφοράς NIST Montana Soil 2711.

Element	ent Mass Fraction (%)		Element	Mass Fraction (µg/g)		ction)	
Aluminum	6.53	\pm	0.09	Antimony	19.4	±	1.8
Calcium	2.88	\pm	0.08	Arsenic	105	\pm	8
Iron	2.89	\pm	0.06	Barium	726	±	38
Magnesium	1.05	\pm	0.03	Cadmium	41.70	±	0.25
Phosphorus	0.086	\pm	0.007	Copper	114	±	2
Potassium	2.45	$^{\pm\pm}$	0.08	Lead	1162	\pm	31
Silicon	30.44	\pm	0.19	Manganese	638	\pm	28
Sodium	1.14	\pm	0.03	Mercury	6.25	±	0.19
Sulfur	0.042	\pm	0.001	Nickel	20.6	\pm	1.1
Titanium	0.306	$ \pm $	0.023	Selenium	1.52	\pm	0.14
				Silver	4.63	±	0.39
				Strontium	245.3	\pm	0.7
				Thallium	2.47	\pm	0.15
				Vanadium	81.6	\pm	2.9
				Zinc	350.4	\pm	4.8

Table 1. Certified Values

Noncertified Values: Noncertified values, shown below, are provided for information only. An element concentration value may not be certified, if a bias is suspected in one or more of the methods used for certification, or if two independent methods are not available.

Table 2. Noncertified Values

Element	Mass Fraction	Element	Mass Fraction
	(%)		(µg/g)
Carbon	2	Bromine	5
curcon	2	Cerium	69
		Cesium	61
		Chromium	47
		Cobalt	10
		Dysprosium	5.6
		Europium	1.1
		Gallium	15
		Gold	.03
		Hafnium	7.3
		Holmium	1
		Indium	1.1
		Iodine	3
		Lanthanum	40
		Molybdenum	1.6
		Neodymium	31
		Rubidium	110
		Samarium	5.9
		Scandium	9
		Thorium	14
		Tungsten	3
		Uranium	2.6
		Ytterbium	2.7
		Yttrium	25
		Zirconium	230

SRM 2711

Page 3 of 6

Σχήμα Δ.11α: Πιστοποιητικό υλικού αναφοράς NIST Montana Soil 2711.

Certificate of Analysis

Standard Reference Material[®] 1633b

Constituent Elements in Coal Fly Ash

This Standard Reference Material (SRM) is intended for use in the evaluation of analytical methods for the determination of constituent elements in coal fly ash or materials with a similar matrix. SRM 1633b is a bituminous coal fly ash that was sieved through a nominal sieve opening of 90 μ m (170 mesh) and then blended to assure homogeneity. A unit of SRM 1633b consists of 75 g of powdered material.

The certified values for the constituent elements are given in Table 1. The values are based on measurements using one definitive method or two or more independent and reliable analytical techniques. Noncertified values for a number of elements are given in Table 2 as additional information on the composition of the material. The noncertified values **should not** be used for calibration or quality control. Analytical methods used for the certification of this SRM are given in Table 3 along with analysts and cooperating laboratories. All values are based on measurements using a dry sample weight of at least 250 mg.

Certified Values and Uncertainties: The certified values are weighted means of results of two or more independent analytical methods, or the means of results from a single definitive method. The weights for the weighted means were computed according to the iterative procedure of Paule and Mandel [1]. The stated uncertainty includes allowances for measurement imprecision, material variability, and differences among analytical methods. Each uncertainty is the sum of the half-width of a 95 % prediction interval, and includes an allowance for the systematic error among the methods used. In the absence of systematic error, a 95 % prediction interval predicts where the true concentrations of 95 % of the samples of this SRM lie.

Mercury certification is based on cold vapor isotope dilution inductively coupled plasma mass spectrometry (CV- ID-ICP-MS) at NIST [2]. The uncertainty in the certified value for mercury is expressed as an expanded uncertainty, $U = ku_c$, calculated according to the methods in the ISO/NIST Guide [3]. The quantity u_c represents, at the level of one standard deviation, the potential combined effects of the uncertainty due to material and measurement variability. The quantity k is the coverage factor used to obtain an expanded uncertainty with an approximate confidence level of 95 %. The value of the coverage factor, k = 2.034, is determined from the Student's *t*-distribution with 33 degrees of freedom and a confidence level of 95 %.

Expiration of Certification: The certification of this SRM is valid until **01 May 2014**, within the uncertainty specified, provided the SRM is handled and stored in accordance with the instructions given in this certificate (see "Instructions for Use"). However, the certification will be nullified if the SRM is damaged or contaminated. Registration (see attached sheet) will facilitate notification.

Stability: This material is considered to be stable; however, its stability has not been rigorously assessed. NIST will monitor this material and will report any substantive changes in certification to the purchaser.

The overall direction and coordination of the analyses were under the chairmanship of R.R. Greenberg of the NIST Analytical Chemistry Division.

Statistical consultation was provided by S.B. Schiller and D.D. Leber of the NIST Statistical Engineering Division.

Willie E. May, Chief Analytical Chemistry Division

Robert L. Watters, Jr., Chief Measurement Services Division

Gaithersburg, MD 20899 Certificate Issue Date: 10 December 2004 See Certificate Revision History on Last Page

SRM 1633b

Page 1 of 5

Σχήμα Δ.12α: Πιστοποιητικό υλικού αναφοράς NIST Fly ash 1633b .

Element	Mas	s Fr (%)	action)	Element	Mas	s Fra (mg/	ction kg)
Al	15.05	±	0.27	As	136.2	±	2.6
Ca	1.51	\pm	0.06	Ba	709	\pm	27
Fe	7.78	\pm	0.23	Cd	0.784	\pm	0.006
Mg	0.482	\pm	0.008	Cr	198.2	\pm	4.7
ĸ	1.95	±	0.03	Cu	112.8	\pm	2.6
Si	23.02	±	0.08	Pb	68.2	±	1.1
Na	0.201	±	0.003	Mn	131.8	±	1.7
S	0.2075	\pm	0.0011	Hg	0.1431	±	0.0018
Ti	0.791	\pm	0.014	Ni	120.6	±	1.8
				Se	10.26	\pm	0.17
				Sr	1041	\pm	14
				Th	25.7	\pm	1.3
				U	8.79	±	0.36
				V	295.7	±	3.6

Table 1. Certified Values

Table 2. Noncertified Values

	Mass Fraction		Mass Fraction
Element	(mg/kg)	Element	(mg/kg)
Sb	6	Р	2300
Br	2.9	Rb	140
Ce	190	Sc	41
Co	50	Sm	20
Cs	11	Та	1.8
Dy	17	Tb	2.6
Eu	4.1	T1	5.9
Gd	13	Tm	2.1
Hf	6.8	W	5.6
Ho	3.5	Yb	7.6
La	94	Zn	210
Lu	1.2		
Nd	85		

SRM 1633b

Page 3 of 5

Σχήμα Δ.12β: Πιστοποιητικό υλικού αναφοράς NIST Fly ash 1633b.

Certificate of Analysis

Standard Reference Material[®] 2782

Industrial Sludge

This Standard Reference Material (SRM) is intended primarily for use in the evaluation of methods used for the analysis of sludges and other materials of a similar matrix. A unit of SRM 2782 consists of 70 g of dried, pulverized, and radiation sterilized industrial sludge.

Certified Mass Fraction Values: The certified values, expressed as mass fractions on a dry basis, for ten elements are reported in Table 1. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or accounted for by NIST [1]. The certified values in this SRM are based on either a single NIST primary method or on concordant results from NIST and two or more collaborating laboratories. A certified value is the present best estimate of the true value.

Reference Mass Fraction Values: Reference values, expressed as mass fractions on a dry basis, for 16 additional elements are reported in Table 2. A NIST reference value are noncertified value that is the present best estimate of the true value; however, the value does not meet NIST criteria for certification and are provided with associated uncertainties that may reflect only measurement reproducibility and may not include all sources of uncertainty or may reflect a lack of sufficient statistical agreement among multiple analytical methods [1]. The reference values in this SRM are based on a combination of results from collaborating laboratories.

Information Mass Fraction Values: Information values are listed in Table 3. These values may be of interest to the SRM user and represent results from one or more collaborating laboratories. Insufficient information is available to adequately assess the uncertainty associated with these values [1].

Analytical methods used for the characterization of this SRM are given in Table 4. All values are reported as mass fractions [2], on a dry mass basis and are based on measurements using a sample mass of at least 100 mg.

Leachable Mass Fractions: Reference values for 14 acid-leachable mass fractions using U.S. Environmental Protection Agency (EPA) 3050, 3051, and New Jersey Department of the Environment (NJDEP) 100 methods are contained in Appendix A. These values are the means of all results supplied by cooperating EPA and NJDEP laboratories for the different leach and measurement methods used.

Expiration of Certification: The certification of SRM 2782 is valid, within the measurement uncertainty specified, until 1 October 2023, provided the SRM is handled and stored in accordance with instructions given in this certificate (See "Instructions for Use"). The certification is nullified if the SRM is damaged, contaminated or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet or register online) will facilitate notification.

Statistical consultation was provided by L.M. Gill of the NIST Statistical Engineering Division.

Overall direction and coordination of the analyses were under the chairmanship of J.D. Fassett and G.C. Turk of the NIST Chemical Sciences Division.

Carlos A. Gonzalez, Chief Chemical Sciences Division

Gaithersburg, MD 20899 Certificate Issue Date: 20 September 2015 Certificate Revision History on Page 5 Robert L. Watters, Jr., Director Office of Reference Materials

SRM 2782

Page 1 of 6

Σχήμα Δ.13α: Πιστοποιητικό υλικού αναφοράς NIST Industrial Sludge 2782.

Support aspects involved in the issuance of this SRM were coordinated through the NIST Office of Reference Materials.

Source and Preparation of Material: The base material for SRM 2782 was obtained as effluence from an industrial site in northern New Jersey involved in pharmaceutical research and was collected before treatment with the assistance of the New Jersey Department of Environmental Protection. The base material was freeze dried at a commercial facility under contract to NIST, and transferred to the U.S. Geological Survey (USGS) in Denver, CO. At USGS the material was ball milled to pass a 75 μ m (200 mesh) sieve and then blended into a single lot using a 0.2832 m³ (10 ft³) blender. The blended material was radiation sterilized and then bottled at USGS.

Analysis: The homogeneity was assessed at USGS on replicate samples of bulk material for over 40 elements using x-ray fluorescence (XRF) and/or inductively coupled plasma atomic emission spectrometry (ICP-AES). Homogeneity was further assessed during certification analysis with sample sizes of 100 mg or greater. No sample-to-sample variations in excess of those expected from the analytical measurements were detected.

Instructions for Use: A minimum sample mass of 100 mg (dry mass - see "Instructions for Drying") should be used and sample preparation procedures should be designed to effect complete dissolution for analytical determinations to be related to the certified values provided.

Instructions for Drying: When nonvolatile elements are to be determined, samples should be vacuum dried at room temperature for 24 h or oven dried for 2 h at 110 °C. Volatile elements (e.g., arsenic, mercury, and selenium) should be determined on samples as received; separate samples should be dried according to these instructions to obtain a correction factor for moisture. Moisture corrections are then made to measurement values before comparing them to the certified values. [Note: The mass loss on drying at the time of certification was found to be in the range of 2.1 % to 3.2 % when using the recommended drying procedures.]

Certified Values and Uncertainties: The measurands are the total mass fractions of selected elements in industrial sludge. The certified values are metrologically traceable to the SI unit for mass. The certified values for Cd, Cu, Pb, Mo and Ni are based on a primary NIST method. The certified values for the remaining elements are the results from two or more independent analytical methods as described by Schiller and Eberhardt [3]. The uncertainty in the values certified by a NIST primary method is expressed as an expanded uncertainty, U, and is calculated according to the method described in the ISO Guide [4]. The expanded uncertainty is calculated as $U = ku_e$ where u_e is intended to represent, at the level of one standard deviation, the combined effect of uncertainty components associated with the measurement uncertainty and basis weight uncertainty. The coverage factor, k, is determined from the Student *t*-distribution corresponding to the appropriate associated degrees of freedom and 95 % confidence for each method. The uncertainty in the values certified from combined independent method data is calculated as, $U = ku_e + B$. The quantity, u_e , is the combined standard uncertainty calculated according to ISO Guide [4], which accounts for the combined effect of the within variance for all participating laboratories at one standard deviation. The bias adjustment, B, is for the difference between methods, which is the maximum difference between the certified value and the method means [3].

Table 1. Certified Concentrations for Selected Inorganic Constituents (Dry-Mass Basis)

Element	Mass Fraction (mg/kg)			
Arsenic	166	\pm	20	
Cadmium	4.17	\pm	0.09	
Chromium	109	\pm	6.0	
Copper	2594	\pm	52	
Lead	574	\pm	11	
Mercury	1.10	±	0.19	
Molybdenum	10.07	\pm	0.20	
Nickel	154.1	\pm	3.1	
Selenium	0.44	\pm	0.11	
Zinc	1254	±	196	

SRM 2782

Page 2 of 6

Σχήμα Δ.13β: Πιστοποιητικό υλικού αναφοράς NIST Industrial Sludge 2782.

Reference Values and Uncertainties: The measurands are the mass fractions of selected elements in industrial sludge as determined by the methods indicated in Table 4. The reference values are metrologically traceable to the SI unit for mass. The reference values are the means of the results from two or more independent analytical methods. The uncertainty in the reference values is expressed as an expanded uncertainty, U, and is calculated according to the method described in the ISO *Guide to the Expression of Uncertainty in Measurement* [4]. The expanded uncertainty is calculated as $U = ku_{e}$, where u_{e} is intended to represent, at the level of one standard deviation, the combined effect of between-laboratory and within-laboratory components of uncertainty. The coverage factor, k, is determined from the Student *t*-distribution corresponding the appropriate associated degrees of freedom and 95 % confidence for each element. As the accuracy of the measurements could not be assessed from the data, the uncertainty associated with a reference value may fail to include all sources of uncertainties and may represent only a measure of the precision of the measurement methods.

Element	Mass Frac (mg/kg	tion g)	Element	Mass (Frac %)	tion
Barium	254 ±	24	Aluminum	1.37	\pm	0.09
Cerium	1240 ±	110	Calcium	0.67	±	0.06
Cobalt	66.3 ±	4.8	Iron	26.9	\pm	0.7
Gallium	35 ±	10	Magnesium	0.26	\pm	0.02
Indium	238 ±	70	Phosphorus	0.50	\pm	0.06
Lanthanum	58.1 ±	2.4	Potassium	0.32	±	0.01
Silver	30.6 ±	4.7	Sodium	1.30	\pm	0.05
Titanium	880 ±	90				
Vanadium	80 ±	10				

Table 2. Reference Concentrations for Selected Inorganic Constituents (Dry-Mass Basis)

Information Values: Additional data from collaborating laboratories are provided as information to the SRM user. These values represent results from one laboratory, two or more laboratories that used non-independent methods, or from two or more laboratories using different methods with significant differences in their results [1]. Information values cannot be used to establish metrological traceability.

Table 3. Information Concentrations for Selected Inorganic Constituents (Dry-Mass Basis)

Element	Mass Fraction (mg/kg)	Element	Mass Fraction (%)
Antimony	2.0	Carbon	2.1
Europium	0.34	Silicon	20.3
Gold	2.2	Sulfur	0.2
Hafnium	0.77		
Lithium	5.0		
Manganese	300		
Rubidium	23		
Samarium	1.3		
Scandium	3.4		
Tantalum	0.73		
Terbium	0.48		
Thorium	2.4		
Uranium	8.3		
Ytterbium	0.74		
Yttrium	10		

SRM 2782

Page 3 of 6

Σχήμα Δ.13γ: Πιστοποιητικό υλικού αναφοράς NIST Industrial Sludge 2782.

REFERENCE SHEET

REFERENCE MATERIAL

IAEA-SL-1

TRACE AND MINOR ELEMENTS IN LAKE SEDIMENT

Date of issue: September 1999[⊕]

(Based on dry weight)				
Element	Recommended Value mg/kg	95% Confidence Interval mg/kg	N*	
As	27.6	24.7-30.5	24	
Ba	639	586 - 692	15	
Ce	117	100 - 134	8	
Со	19.8	18.3 – 21.3	35	
Fe	67400	65700 - 69100	35	
La	52.6	49.5 - 55.7	26	
Mn	3460	3300 - 3620	34	
Rb	113	102 - 124	12	
Th	14	13 - 15	18	
Ti	5170	4740 - 5600	15	
V	170	155 - 185	20	
Zn	223	213 - 233	26	

Recommended Values

 Number of accepted laboratory means which were used to calculate the recommended values and confidence intervals.

• Revision of the original reference sheet dated December 1979

Page 1 of 4

Σχήμα Δ.14α: Πιστοποιητικό υλικού αναφοράς IAEA Lake Sediment SL-1.

(Based on dry weight)				
Element	Information Value mg/kg	95% Confidence Interval mg/kg	N*	
Cd	0.26	0.21 - 0.31	7	
Cr	104	95-113	34	
Cs	7.0	6.1 – 7.9	20	
Cu	30	24-36	31	
Dy	7.5	5.3 - 9.7	5	
Eu	1.6	1.1 - 2.1	10	
Ga	23.7	18.6 - 28.8	11	
Hf	4.2	3.6 - 4.8	7	
Hg	0.13	0.08 - 0.18	5	
K	14500	12400 - 16600	7	
Lu	0.54	0.41 - 0.67	10	
Na	1700	1600 - 1800	5	
Ni	44.9	36.9 - 53.9	11	
Pb	37.7	30.3 - 45.1	20	
Sb	1.31	1.19 - 1.43	15	
Sc	17.3	16.2 - 18.4	16	
Se	2.85	1.31 - 4.37	7	
Sm	9.25	8.74 - 9.76	8	
Sr	80	37 – 123	7	
Ta	1.58	1.00 - 2.16	6	
Tb	1.40	0.94 - 1.86	7	
\mathbf{U}	4.02	3.69 - 4.35	15	
Yb	3.42	2.77 - 4.07	5	

Information Values (Rased on dry weight)

* Number of accepted laboratory means which were used to calculate the information values and confidence intervals.

The values listed above were established on the basis of statistically valid results submitted by laboratories which had participated in an international intercomparison exercise organized during 1977-1978. The details concerning the criteria for qualification as a recommended or an information value can be found in the report (IAEA/RL/64) "Intercomparison Run SL-1: Determination of Trace and Minor Elements in Lake Sediment IAEA-SL-1" [1]. This report is available free of charge upon request.

Intended Use

This sample is intended to be used as a reference material for the measurement of trace and minor elements in lake sediment samples. It can also be used as a quality control material for the assessment of a laboratory's analytical work, for the validation of analytical methods and for quality assurance within a laboratory.

Page 2 of 4

Σχήμα Δ.14β: Πιστοποιητικό υλικού αναφοράς IAEA Lake Sediment SL-1.

парартнма $oldsymbol{E}$

Δομή του κώδικα PENELOPE

Στο Παράρτημα αυτό γίνεται λεπτομερής παρουσίαση του κώδικα χρήστη penmain του κώδικα προσομοίωσης PENELOPE (Χιώνης, 2011). Συνολικά αποτελείται από 2980 γραμμές κώδικα. Στο πρώτο τμήμα (Παράγραφος 0) διαβάζονται οι παράμετροι οι οποίες είναι απαραίτητες για την προσομοίωση από τα διάφορα αρχεία εισόδου και αρχικοποιούνται διάφορες παράμετροι. Στη συνέχεια, τα δεδομένα αυτά επεξεργάζονται και διαμορφώνονται τα αρχεία αποτελεσμάτων της προσομοίωσης (Παράγραφος 0). Μετά τον υπολογισμό των μεγεθών που αφορούν την προσομοίωση, τερματίζεται η παρακολούθηση της τρέχουσας ιστορίας και τα αποτελέσματα διαμορφώνονται κατάλληλα ώστε να εξαχθούν στα αρχεία εξόδου (Παράγραφος 0). Στη συνέχεια, όλα τα δεδομένα καταγράφονται στα αρχεία εξόδου (Παράγραφος 0). Τέλος, ο κώδιακς χρήστη penmain.f περιλαμβάνει τέσσερεις υπορουτίνες απαραίτητες για τη λειτουργία του (Παράγραφος 0).

E.1 Τμήμα δήλωσης μεταβλητών του κώδικα penmain.f

[Γραμμές 1-5]	\rightarrow	Σύνδεση των υπορουτινών των αρχείων penelope.f,
		pengeon.f, penvared.f και timer.f για την
		πραγματοποίηση του compilation.
[Γραμμές 6-489]	\rightarrow	Βοηθητικά σχόλια - εγχειρίδιο χρήστη / manual –για
		τον κώδικα χρήστη <i>penmain.f</i> .
[Γραμμές 490-604]	\rightarrow	Τμήμα δήλωσης όλων των παραμέτρων, μεταβλητών,
		μετρητών και πινάκων που χρησιμοποιούνται κατά
		την εκτέλεση του κώδικα.
[Γραμμή 605]	\rightarrow	Δηλώνεται η υπορουτίνα RAND για την κλήση των
		γεννητριών τυχαίων αριθμών.

Στο σημείο αυτό έχουν δηλωθεί όλες οι απαραίτητες για την προσομοίωση παράμετροι, μεταβλητές, μετρητές, υπορουτίνες και πίνακες. Τα δεδομένα αυτά είναι τα ίδια ανεξάρτητα από το προσομοιούμενο πρόβλημα. Στο σημείο αυτό ο κώδικας είναι έτοιμος να διαβάσει τα αρχεία εισόδου που έχει δημιουργήσει ο χρήστης, ώστε να διαβάσει τις απαραίτητες πληροφορίες που καθιστούν την κάθε προσομοίωση διαφορετική από την άλλη.

E.2 Τμήμα προετοιμασίας της προσομοίωσης του κώδικα penmain.f

- [Γραμμές 606-609] → Καλείται η υπορουτίνα ΤΙΜΕΟ, η οποία βρίσκεται στις βιβλιοθήκες του αρχείου *ΤΙΜΕR*.f, και αρχικοποιούνται οι μετρητές χρόνου.
- [Γραμμές 610-1598] → Ανοίγει το αρχείο εισόδου τύπου .in, δημιουργείται το αρχείο εξόδου penmain.dat και καταγράφονται σε αυτό όλες τις πληροφορίες της προσομοίωσης, όπως ακριβώς τις έχει συντάξει ο χρήστης στο αρχείο εισόδου τύπου .in. Επιγραμματικά, και εν σειρά καταγράφονται οι εξής πληροφορίες:
- [Γραμμές 610-620] \rightarrow Ημερομηνίας προσομοίωσης.

 \rightarrow [Γραμμές 621-631] Όνομα προσομοίωσης. [Γραμμές 632-658] \rightarrow Περιγραφή σημειακής πηγής. \rightarrow [Γραμμές 659-669] Περιγραφή μονοενεργειακής πηγής \rightarrow [Γραμμές 670-711] Περιγραφή ενεργειακού φάσματος. \rightarrow [Γραμμές 712-714] Μέγιστη δυνατή ενέργεια ποζιτρονίων. \rightarrow [Γραμμές 715-731] Χωρική θέση της σημειακής πηγής. [Γραμμές 732-760] \rightarrow Γωνιακή κατανομή των πρωτευόντων σωματιδίων ή φωτονίων. \rightarrow Δεδομένα από αρχείο phase - space (psf), το οποίο [Γραμμές 761-816] είναι προαιρετικό στη χρήση. [Γραμμές 817-838] \rightarrow Αριθμός υλικών από τα οποία αποτελείται η κατασκευή. \rightarrow Παράμετροι προσομοίωσης ανάλογα με κάθε υλικό. [Γραμμές 839-902] [Γραμμές 903-931] \rightarrow Όνομα αρχείο εισόδου υλικών .mat και άνοιγμα αρχείου δεδομένων pm_material.dat. [Γραμμές 932-975] \rightarrow Όνομα αρχείου εισόδου γεωμετρίας .geo. [Γραμμές 976-1010] \rightarrow Μέγιστο μήκος βήματος ηλεκτρονίων και φωτονίων σε κάθε σώμα της κατασκευής. [Γραμμές 1011-1078] \rightarrow Δεδομένα για αναγκαστική αλληλεπίδραση των σωματιδίων ή φωτονίων με την ύλη (προαιρετικό). [Γραμμές 1079-1155] \rightarrow Ενέργεια και γωνιακή κατανομή των σκεδαζόμενων σωματιδίων ή φωτονίων. [Γραμμές 1159-1166] \rightarrow Μέγεθος ενεργειακών καναλιών. [Γραμμές 1167-1324] \rightarrow Δεδομένα για τους ανιχνευτές αλληλεπίδρασης (impact detectors). [Γραμμές 1325-1410] \rightarrow Δεδομένα για τους ανιχνευτές αποτιθέμενης ενέργειας (energy deposition detectors). \rightarrow [Γραμμές 1411-1516] Δεδομένα για τους ανιχνευτές δόσης (dose distribution). [Γραμμές 1517-1598] \rightarrow Δεδομένα της προσομοίωσης όπως η ονομασία του αρχείου dump, η διάρκεια της περιόδου dumping, o αριθμός ιστοριών που προσομοιώνονται, οι αρχικές τιμές των μεταβλητών ISEED1 και ISEED2 οι οποίες χρησιμεύουν στις γεννήτριες τυχαίων αριθμών, καθώς και ο μέγιστος χρόνος που διαρκεί η προσομοίωση.

[Γραμμές 1599-1756]	\rightarrow	Καθορίζονται τα δεδομένα ανάκτησης σε περίπτωση
		επανεκκίνησης της προσομοίωσης.

[Γραμμές 1757-1769] → Αρχικοποιείται ο μετρητής SHN, ο οποίος σχετίζεται με τον αριθμό των ιστοριών που προσομοιώνονται.

Όταν ο κώδικας χρήστη *penmain* φθάσει στη γραμμή 1769 έχει καταγράψει όλα τα δεδομένα και τις πληροφορίες που απαιτούνται για να αρχίσει η προσομοίωση. Κάθε φορά που μία ιστορία φτάνει στο τέλος της, η προσομοίωση επιστρέφει στο σημείο αμέσως μετά την γραμμή 1769. Εάν ο αύξων αριθμός της ιστορίας που μόλις έχει τερματιστεί δεν είναι μεγαλύτερος από το μέγιστο αριθμό ιστοριών που έχει επιλέξει ο χρήστης να προσομοιωθούν και δεν έχει ξεπεραστεί ο μέγιστος χρόνος προσομοίωσης, τότε αυτόματα ξεκινάει η προσομοίωση της επόμενης ιστορίας (shower). Σε διαφορετική περίπτωση ο κώδικας ολοκληρώνει τη λειτουργία του.

E.3 Τμήμα επεξεργασίας και διαμόρφωσης των δεδομένων της προσομοίωσης του κώδικα penmain.f

- [Γραμμή 1770] → Εντολή CONTINUE. Σε αυτό το σημείο αρχίζει κάθε φορά η ιστορία (shower) του νέου πρωτογενούς σωματιδίου ή φωτονίου που έχει επιλέξει ο χρήστης να προσομοιωθεί
- [Γραμμές 1771-1783] → Μηδενίζεται η ενέργεια των σωματιδίων ή φωτονίων που έχει αποτεθεί στα σώματα, μεταβλητή DEBO για κάθε σώμα KB, της κατασκευής από την προηγούμενη ιστορία (shower).
- [Γραμμές 1784-1789] → Μηδενίζεται η ενέργεια του σωματιδίου ή φωτονίου που έχει καταγραφεί στους ανιχνευτές, μεταβλητή DEDI για τον ανιχνευτή KD, από την προηγούμενη ιστορία.

- [Γραμμές 1790-1791] \rightarrow Καλείται η υπορουτίνα CLEANS η οποία μηδενίζει τις αρχικές τιμές της λίστας δευτερογενών σωματιδίων (secondary stack), στην οποία αποθηκεύονται προσωρινά τα δευτερογενή σωματίδια που προκύπτουν από τις διάφορες αλληλεπιδράσεις του πρωτογενούς. Είναι απαραίτητο να καλείται πάντα η συγκεκριμένη υπορουτίνα, πριν την έναρξη κάθε νέας ιστορίας (shower) της προσομοίωσης που πραγματοποιείται, όπως άλλωστε αναφέρεται επεξηγηματικά και στην ίδια την υπορουτίνα CLEANS.
- [Γραμμές 1792-1805] → Για σημειακή πηγή, την οποία προβλέπει ο πρωτότυπος κώδικας, αυξάνεται ο αριθμός των ιστοριών που προσομοιώθηκαν, μεταβλητή SHN, καθορίζεται το είδος και ο παράγοντας βαρύτητας του πρωτογενούς σωματιδίου ή φωτονίου, μεταβλητές KPAR και WGHT αντίστοιχα, καθώς και η θέση της πηγής στο χώρο μέσω συντεταγμένων X, Y, Z που έχει εισάγει ο χρήστης στο αρχείο εισόδου τύπου .in.
- [Γραμμές 1806-1807] → Για τη σημειακή πηγή καλείται η υπορουτίνα GCONE από την οποία καθορίζονται τα συνημίτονα κατεύθυνσης για τα πρωτογενή σωματίδια ή φωτόνια που προσομοιώνονται.
- [Γραμμές 1808-1828] → Για τη σημειακή πηγή καθορίζεται η αρχική ενέργεια του σωματιδίου ή φωτονίου που έχει επιλεχθεί να προσομοιωθεί ανάλογα με τον τύπο της ραδιενεργού πηγής (μονοενεργειακή ή συνεχές φάσμα).
- [Γραμμές 1830-1853] → Από αρχείο δεδομένων phase-space (psf) διαβάζονται το είδος, η ενέργεια, ο παράγοντας βαρύτητας, οι συντεταγμένες και τα συνημίτονα κατεύθυνσης του πρωτογενούς σωματιδίου ή φωτονίου που προσομοιώνεται.

- [Γραμμές 1854-1857] → Καλείται η υπορουτίνα LOCATE η οποία χρησιμεύει για να προσδιοριστεί το σώμα (body) μέσα στο οποίο βρίσκεται το σημείο του χώρου με συντεταγμένες Χ, Υ, Ζ, δηλαδή το σημείο στο χώρο που βρίσκεται η πηγή των προσομοιούμενων σωματιδίων ή φωτονίων.
- [Γραμμές 1858-1870] → Ελέγχεται εάν το σωματίδιο βρίσκεται εντός του συστήματος που έχει ορίσει ο χρήστης.
- [Γραμμές 1871-1905] → Διαμορφώνονται δεδομένα για τον ανιχνευτή αλληλεπίδρασης, όπως η καταγεγραμμένη ενέργεια του σωματιδίου ή φωτονίου που έχει εισέλθει σε αυτόν για το συγκεκριμένο shower, μεταβλητή DEDI, ο καθορισμός του ενεργειακού εύρους που καταγράφει ο ανιχνευτής, ΙΕ, καθώς και ο αριθμός των σωματιδίων ή φωτονίων με ενέργεια που ανήκει στο συγκεκριμένο κανάλι, μεταβλητή DIT για το κανάλι ΙΕ.
- [Γραμμές 1906-1914] → Ελέγχεται εάν η ενέργεια του σωματιδίου ή φωτονίου είναι μικρότερη από την επιτρεπόμενη τιμή (cut-off energy), ώστε ανάλογα να τερματιστεί ή να συνεχίσει η προσομοίωση της συγκεκριμένης ιστορίας.
- [Γραμμές 1915-1945] Διαμορφώνονται \rightarrow τα δεδομένα αποτιθέμενης ενέργειας, λαμβάνοντας υπόψη τους συντελεστές βαρύτητας, μεταβλητή DEP, την αποτιθέμενη ενέργεια σε κάθε σώμα (body) για τη συγκεκριμένη ιστορία, τη μεταβλητή DEBO, καθώς και δεδομένα που αναφέρονται στη δόση που καταγράφεται στη συγκεκριμένη θέση του ανιχνευτή στην οποία βρίσκεται το προσομοιωμένο σωματίδιο ή φωτόνιο, μεταβλητή DOSE. Επίσης, προσδιορίζεται ο αριθμός του καναλιού της x, y και z συντεταγμένης της συγκεκριμένης θέσης του ανιχνευτή όπου βρίσκεται

το προσομοιωμένο σωματίδιο ή φωτόνιο, μέσω των μεταβλητών 11, 12 και 13 αντίστοιχα.

- [Γραμμές 1946-1949] → Καλείται η υπορουτίνα START. Για την περίπτωση ηλεκτρονίων ή ποζιτρονίων καλείται υποχρεωτικά πριν από κάθε νέα διαδρομή (track) του πρωτογενούς ή δευτερογενούς σωματιδίου. Για φωτόνια, η κλήση της είναι προαιρετική αλλά επιθυμητή, καθώς τελικά βοηθάει στον προσδιορισμό λαθών στον κώδικα χρήστη [Δ.Ε. Αθανασίου Ν., 2006].
- [Γραμμές 1951-1959] → Καλείται η υπορουτίνα JUMPF, στην περίπτωση της εξαναγκασμένης αλληλεπίδρασης (Interaction forcing), στην οποία υπολογίζεται η απόσταση, μεταβλητή DS, που διανύει το σωματίδιο ή φωτόνιο μέχρι αυτό να αλληλεπιδράσει για πρώτη φορά ή να ξανά-αλληλεπιδράσει.
- [Γραμμές 1960-1963] → Καλείται η υπορουτίνα JUMP για τον υπολογισμό της απόστασης DS σε κάθε άλλη περίπτωση (Analogue simulation) πλην της εξαναγκασμένης αλληλεπίδρασης.
- [Γραμμή 1964] → Καλείται η υπορουτίνα STEP η οποία ενημερώνει τον κώδικα χρήστη για την είσοδο και έξοδο του εξεταζόμενου σωματιδίου ή φωτονίου από ένα σώμα (body) της γεωμετρίας σε ένα άλλο.
- [Γραμμές 1965-1974] → Ελέγχεται αν το σωματίδιο βρίσκεται εντός του συστήματος.
- [Γραμμές 1975-2009] → Περαιτέρω υπολογισμοί για τους ανιχνευτές αλληλεπίδρασης, ανάλογα με την ύπαρξη ή όχι αρχείου Phase-space (psf).
- [Γραμμές 2010-2015] → Ελέγχεται αν το σωματίδιο ή φωτόνιο έχει διέλθει από μία διεπιφάνεια.
- [Γραμμές 2016-2020] → Καλείται η υπορουτίνα ΚΝΟCKF ή ΚΝΟCK, ανάλογα με τον αν υπάρχει ή όχι εξαναγκασμένη αλληλεπίδραση

αντίστοιχα. Οι συγκεκριμένες υπορουτίνες, μαζί με τις υπορουτίνες START και JUMP, είναι από τις πιο σημαντικές, αφού σε αυτές πραγματοποιείται η προσομοίωση της αλληλεπίδρασης που υφίσταται το σωματίδιο ή φωτόνιο από πλευρά φυσικής. Στην περίπτωση κατά την οποία το προσομοιούμενο σωματίδιο ή φωτόνιο έχει αποθέσει μέρος της ενέργειας του στο υλικό της κατασκευής εξαιτίας αλληλεπίδρασης που πραγματοποιήθηκε, υπολογίζεται η τιμή της μέσω της μεταβλητής DE. Το είδος της αλληλεπίδρασης περιγράφεται από τη μεταβλητή ICOL, ενώ η τιμή της DE ισούται με τη διαφορά των ενεργειών του σωματιδίου ή φωτονίου πριν και μετά την αλληλεπίδραση.

- [Γραμμή 2021] → Υπολογίζεται η αποτιθέμενη ενέργεια λαμβάνοντας υπόψη τους συντελεστές βαρύτητας, μεταβλητή DEP.
- [Γραμμές 2022-2041] → Περαιτέρω υπολογισμοί της συνολικής δόσης (μεταβλητή DOSE) και της αποτιθέμενης ενέργειας σε κάθε σώμα της κατασκευής για την συγκεκριμένη ιστορία (μεταβλητή DEBO).
- [Γραμμές 2042-2052] \rightarrow Διαδικασία με την ονομασία "Russian Roulette" εξειδικευμένη για φωτόνια των οποίων το συνημίτονο κατεύθυνσης στην κατεύθυνση z είναι μικρότερο του μηδενός (photons moving downstream). Καλείται η υπορουτίνα VKILL.
- [Γραμμές 2052-2061] → Ελέγχεται αν το σωματίδιο ή φωτόνιο έχει χάσει όλη την ενέργειά του.
- [Γραμμές 2062-2069] → Ενημερώνονται οι συνολικοί μετρητές πρωτογενών και δευτερογενών σωματιδίων (particle counters) ανάλογα με την έκβαση της ιστορίας (shower) της προσομοίωσης.
- [Γραμμές 2071-2083] Τα σωματίδια ή φωτόνια που έχουν προσομοιωθεί,
τερματίζουν την πορεία τους με διάφορους τρόπους. Το πρόγραμμα υπολογίζει, ανάλογα με το είδος τους, τον συνολικό αριθμό αυτών που εκπέμφθηκαν (transmitted), οπισθοσκεδάστηκαν (backscattered) ή απορροφήθηκαν (absorbed) από την κατασκευή.

- [Γραμμές 2084-2104] → Προσδιορίζεται η γωνιακή κατανομή, ανάλογα με το είδος των εκπεμπόμενων σωματιδίων ή φωτονίων.
- [Γραμμές 2105-2114] → Καλείται η υπορουτίνα SECPAR η οποία καθορίζει την αρχική κατάσταση του δευτερογενούς σωματιδίου και το αφαιρεί από τη δευτερογενή στοιβάδα (secondary stack).
- [Γραμμές 2115-2138] → Στην περίπτωση όπου υπάρχουν δευτερογενή σωματίδια (μεταβλητή LEFT) τότε επαναλαμβάνεται η τεχνική " Russian Roulette" έως ότου να προσομοιωθούν όλα και υπολογίζονται διάφορες μεταβλητές της δόσης.

E.4 Τμήμα τελικής επεξεργασίας αποτελεσμάτων της προσομοίωσης του κώδικα penmain.f

- [Γραμμές 2139-2152] → Προσδιορίζεται ο συνολικός αριθμός πρωτογενών και δευτερογενών σωματιδίων με ίδια τελική κατάσταση στο τέλος της ιστορίας (μεταβλητές PRIM και SEC αντίστοιχα).
- [Γραμμές 2153-2160] → Μηδενίζεται η τιμή της αποτιθέμενης ενέργειας που έχει καταγράψει ο κάθε ανιχνευτής απόθεσης, μεταβλητή DEDE, ώστε να διαγραφεί η αποθηκευμένη κατά την προηγούμενη ιστορία (shower) τιμή.
- [Γραμμές 2161-2170] → Υπολογίζεται η συνολική αποτιθέμενη ενέργεια στο κάθε σώμα (μεταβλητή TDEBO) και της συνολικής αποτιθέμενης ενέργειας που έχει καταγράψει κάθε

ανιχνευτής απόθεσης στο συγκεκριμένο shower (μεταβλητή DEDE).

- [Γραμμές 2171-2186] → Υπολογίζεται η συνολική αποτιθέμενη ενέργεια που έχει καταγράψει κάθε ανιχνευτής απόθεσης αθροιστικά μέχρι την ιστορία που έχει προσομοιωθεί (μεταβλητή TDED) και γίνεται υπολογισμός του αριθμού των σωματιδίων ή φωτονίων που έχουν αποθέσει ενέργεια η οποία βρίσκεται εντός των ορίων ενέργειας του καναλιού ΚΕ.
- [Γραμμές 2187-2195] → Για κάθε ανιχνευτή αλληλεπίδρασης υπολογίζεται η συνολική ενέργεια των εισερχόμενων σωματιδίων ή φωτονίων στον ανιχνευτή (μεταβλητή TDID).
- [Γραμμές 2196-2198] → Καλείται η υπορουτίνα ΤΙΜΕR στην οποία υπολογίζεται ο χρόνος προσομοίωσης σε δευτερόλεπτα.
- [Γραμμές 2199-2216] → Ελέγχεται εάν έχει ξεπεραστεί ο μέγιστος επιτρεπτός χρόνος προσομοίωσης, όπως αυτός έχει οριστεί από το χρήστη στο αρχείο εισόδου τύπου .in.
- [Γραμμές 2217-2263] → Αποθηκεύονται τα συνολικά αποτελέσματα των μεταβλητών PDE, PDA, DIT, DET και DOSE, για μετέπειτα αξιοποίηση τους κατά την καταγραφή τους στα αντίστοιχα αρχεία εξόδου.
- [Γραμμές 2264-2304] → Δημιουργείται το αρχείο dump, όπου καταγράφονται οι τιμές των μεταβλητών SHN, DET, DOSE, PDE, PDA, TDEBO, ISEED1, ISEED2 κ.λ.π., ανά τακτά χρονικά διαστήματα, όπως ορίζεται από την dumping period.

E.5 Τμήμα διαμόρφωσης των αρχείων εξόδου της προσομοίωσης του κώδικα penmain.f

[Γραμμές 2305-2434] → Καταγράφονται αποτελέσματα στο αρχείο εξόδου penmain.dat στο τμήμα αποτελεσμάτων (Program PENMAIN. Results.)

- [Γραμμές 2435-2468] → Καταγράφονται αποτελέσματα στο αρχείο εξόδου psource.dat, στην περίπτωση πηγής που εκπέμπει σωματίδια ή φωτόνια με φάσμα ενεργειών.
- [Γραμμές 2469-2489] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_energy_el_trans.dat, το οποίο αφορά στην κατανομή της ενέργειας των εκπεμπόμενων από την κατασκευή ηλεκτρονίων (Transmitted electrons).
- [Γραμμές 2490-2507] → Καταγράφονται αποτελέσματα στο αρχείο εξόδου pm_energy_el_back.dat, στο οποίο περιγράφεται η κατανομή της ενέργειας των οπισθοσκεδαζομένων ηλεκτρονίων (Backscattered electrons).
- [Γραμμές 2508-2525] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_energy_ph_trans.dat, το οποίο αφορά την κατανομή της ενέργειας των εκπεμπόμενων φωτονίων (Transmitted photons).
- [Γραμμές 2526-2543] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_energy_ph_back.dat, στο οποίο περιγράφεται η κατανομή της ενέργειας των οπισθοσκεδαζομένων φωτονίων (Backscattered photons).
- [Γραμμές 2544-2561] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_energy_po_trans.dat, το οποίο αφορά την κατανομή της ενέργειας των εκπεμπόμενων από την κατασκευή ποζιτρονίων (Transmitted positrons).
- [Γραμμές 2562-2579] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου *pm_energy_po_back*.dat, στο οποίο περιγράφεται η κατανομή της ενέργειας των οπισθοσκεδαζομένων ποζιτρονίων (Backscattered positrons).

- [Γραμμές 2580-2605] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_angle_el.dat, στο οποίο περιγράφεται η κατανομή της γωνίας με την οποία εξέρχονται της κατασκευής τα ηλεκτρόνια.
- [Γραμμές 2606-2629] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_angle_ph.dat, στο οποίο περιγράφεται η κατανομή της γωνίας με την οποία εξέρχονται της κατασκευής τα φωτόνια.
- [Γραμμές 2630-2653] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_angle_po.dat, στο οποίο περιγράφεται η κατανομή της γωνίας με την οποία εξέρχονται της κατασκευής τα ποζιτρόνια.
- [Γραμμές 2654-2676] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_spc_impdet_#.dat, στο οποίο περιγράφεται η κατανομή της ενέργειας των σωματιδίων ή φωτονίων που εισέρχονται στον ανιχνευτή αλληλεπίδρασης. Η δίεση (#) αναφέρεται στον αύξοντα αριθμό ανιχνευτή αλληλεπίδρασης.
- [Γραμμές 2677-2703] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου pm_spc_enddet_#.dat, το οποίο, όπως έχει αναφερθεί και προηγουμένως, αφορά στην κατανομή της αποτιθέμενης ενέργειας των σωματιδίων ή φωτονίων που βρίσκονται εντός του ανιχνευτή αποτιθέμενης ενέργειας. Η δίεση (#) αναφέρεται στον αύξοντα αριθμό του συγκεκριμένου είδους ανιχνευτή.
- [Γραμμές 2704-2734] → Καταγράφονται τα αποτελέσματα της προσομοίωσης στο αρχείο εξόδου *pm_depth_dose.dat*, στο οποίο περιγράφεται η κατανομή της δόσης συναρτήσει του βάθους ή του ύψους της κατασκευής.
- [Γραμμές 2735-2771] → Συμπληρώνονται στο αρχείο εξόδου penmain.dat, δεδομένα που αφορούν την κατανομή της δόσης.

- [Γραμμές 2772-2803] → Καταγράφονται αποτελέσματα στο αρχείο εξόδου pm_3d_dose.dat, στο οποίο περιγράφεται η τρισδιάστατη κατανομή της δόσης εντός του κατάλληλου ορθογωνίου παραλληλογράμμου (enclosure) το οποίο έχει ορίσει ο χρήστης.
- [Γραμμές 2804-2871] → Συμπληρώνονται στο αρχείο εξόδου penmain.dat, δεδομένα που αφορούν την κατανομή της τρισδιάστατης δόσης, καθώς και οι τιμές των τυχαίων αριθμών ISEED1 και ISEED2.

E.6 Τμήμα υπορουτινών του κώδικα penmain.f

Στο αρχείο penmain.f, μετά από τον κώδικα χρήστη, ακολουθούν οι βιβλιοθήκες υπορουτινών, οι οποίες καλούνται σε διάφορα τμήματα του. Εκτός από τις τέσσερις (4) υπορουτίνες που αναφέρονται στη συνέχεια, καλούνται επιπλέον από τον κώδικα χρήστη και άλλες δώδεκα (12) υπορουτίνες οι οποίες ανήκουν στους πηγαίους κώδικες του PENELOPE.

- [Γραμμές 2872-2907] → Υπορουτίνα GCONE η οποία υπολογίζει και επιστρέφει στο πρόγραμμα τα συνημίτονα κατεύθυνσης των εκπεμπόμενων σωματιδίων ή φωτονίων.
- [Γραμμές 2908-2931] → Υπορουτίνα GCONEO στην οποία αρχικοποιούνται όλοι οι παράμετροι που χρησιμοποιούνται στην υπορουτίνα GCONE.
- [Γραμμές 2908-2931] → Υπορουτίνα N2CH10, η οποία υπολογίζει ένα δεκαψήφιο ακέραιο αριθμό που χρησιμεύει στη διαμόρφωση των αρχείων εξόδων για τους ανιχνευτές αλληλεπίδρασης.
- [Γραμμές 2908-2931] → Υπορουτίνα RDPSF, η οποία διαβάζει το αρχείο δεδομένων phase-space (psf).

парартнма **ΣТ**

Βαθμονομήσεις απόδοσης με μεθόδους προσομοίωσης Monte Carlo

Στο Παράρτημα αυτό παρουσιάζονται οι βαθμονομήσεις απόδοσης που πραγματοποιήθηκαν και χρησιμοποιήθηκαν στο πλαίσιο της παρούσας Δ.Δ. με τεχνικές προσομοίωσης Monte Carlo.

ΣΤ.1 Βαθμονόμηση απόδοσης γεωμετρίας 10 - ανιχνευτική διάταξη XtRa - CSS

Με χρήση του γεωμετρικού μοντέλου που προσδιορίστηκε στο Κεφάλαιο 5 πραγματοποιήθηκε βαθμονόμηση απόδοσης της ανιχνευτικής διάταξης Xtra - CSS για φίλτρο fiber glass γεωμετρίας 10. Οι διαστάσεις της εν λόγω γεωμετρίας είναι 5.08 × 6.35 × 0.9 cm.

Για τον προσδιορισμό των καμπυλών απόδοσης χρησιμοποιήθηκαν καμπύλες δευτέρου βαθμού, της μορφής $\alpha_0 + \alpha_1 \cdot \ln(E) + \alpha_2 \cdot \ln(E)^2$, με σημείο καμπής στην ενέργεια 279.19 keV. Στους Πίνακες ΣΤ.1 και ΣΤ.2 δίνονται οι συντελεστές των αυτών καμπυλών βαθμονόμησης πλήρους απορρόφησης καθώς και του λόγου ολικής απόδοσης προς απόδοση φωτοκορυφής, αντίστοιχα.

E < 279.19 keV			E > 279.19 keV				
αο	α1	<i>a</i> ₂	RMS	αο	α1	a ₂	RMS
-9.1271	3.2907	-0.3650	1.2%	2.0812	-0.8299	0.0132	0.7%

Πίνακας ΣΤ.1: Καμπύλες βαθμονόμησης απόδοσης φωτοκορυφής της ανιχνευτικής διάταξης XtRa -CSS μέσω προσομοίωσης για φίλτρο fiber glass γεωμετρίας 10.

αο	α1	a ₂	RMS
0.0285	-0.1259	0.0454	3.6%

Πίνακας ΣΤ.2: Καμπύλες βαθμονόμησης ολικής απόδοσης της ανιχνευτικής διάταξης XtRa - CSS μέσω προσομοίωσης για φίλτρο fiber glass γεωμετρίας 10.

ΣΤ.2 Βαθμονόμηση απόδοσης γεωμετρίας 10 – ανιχνευτική διάταξη Ge-40 (HPGE 40%)

Με χρήση του γεωμετρικού μοντέλου που προσδιορίστηκε στο πλαίσιο της Δ.Ε. (Παπαδιονυσίου, 2015) πραγματοποιήθηκε βαθμονόμηση απόδοσης της ανιχνευτικής διάταξης Ge-40 για φίλτρο fiber glass γεωμετρίας 10, διαστάσεων 5.08 × 6.35 × 0.9 cm.

Για τον προσδιορισμό των καμπυλών απόδοσης χρησιμοποιήθηκαν καμπύλες δευτέρου βαθμού, της μορφής $\alpha_0 + \alpha_1 \cdot \ln(E) + \alpha_2 \cdot \ln(E)^2$, με σημείο καμπής στην ενέργεια 279.19 keV. Στους Πίνακες ΣΤ.3 και ΣΤ.4 δίνονται οι συντελεστές των αυτών καμπυλών βαθμονόμησης πλήρους απορρόφησης καθώς και του λόγου ολικής απόδοσης προς απόδοση φωτοκορυφής, αντίστοιχα.

E < 279.19 keV			E > 279.19 keV				
αο	α1	<i>a</i> ₂	RMS	αο	α1	a 2	RMS
- 24.8274	9.2467	-0.9440	5.9%	3.0549	-1.1554	0.0245	1.6%

Πίνακας ΣΤ.3: Καμπύλες βαθμονόμησης απόδοσης φωτοκορυφής της ανιχνευτικής διάταξης Ge-40 μέσω προσομοίωσης για φίλτρο fiber glass γεωμετρίας 10.

αο	α1	a 2	RMS
-0.3656	-0.0772	0.0518	4.4%

Πίνακας ΣΤ.4: Καμπύλες βαθμονόμησης ολικής απόδοσης της ανιχνευτικής διάταξης Ge-40 μέσω προσομοίωσης για φίλτρο fiber glass γεωμετρίας 10.

ΣΤ.3 Βαθμονόμηση απόδοσης γεωμετρίας τριών φίλτρων γεωμετρίας 10 - ανιχνευτική διάταξη XtRa - CSS

Με χρήση του γεωμετρικού μοντέλου που προσδιορίστηκε στο Κεφάλαιο 5 πραγματοποιήθηκε βαθμονόμηση απόδοσης της ανιχνευτικής διάταξης Xtra - CSS για συνδυασμένα φίλτρα fiber glass γεωμετρίας 10. Η εν λόγω γεωμετρία δεν πήρε κωδική ονομασία και παρουσιάζεται στην παρακάτω εικόνα.

Εικόνα ΣΤ.1: Τρόπος συσκευασίας συνδυασμένων τριών φίλτρων γεωμετρίας 10.

Για τον προσδιορισμό των καμπυλών απόδοσης χρησιμοποιήθηκαν καμπύλες δευτέρου βαθμού, της μορφής $\alpha_0 + \alpha_1 \cdot \ln(E) + \alpha_2 \cdot \ln(E)^2$, με σημείο καμπής στην ενέργεια 279.19 keV. Στους Πίνακες ΣΤ.5 και ΣΤ.6 δίνονται οι συντελεστές των αυτών καμπυλών βαθμονόμησης πλήρους απορρόφησης καθώς και του λόγου ολικής απόδοσης προς απόδοση φωτοκορυφής, αντίστοιχα.

E < 279.19 keV			E > 279.19 keV				
α,	α1	a2	RMS	αο	α1	a 2	RMS
- 10.9209	3.7346	-0.4021	1.3%	1.0567	-0.7006	0.0077	0.9%

Πίνακας ΣΤ.5: Καμπύλες βαθμονόμησης απόδοσης φωτοκορυφής της ανιχνευτικής διάταξης XtRa -CSS μέσω προσομοίωσης για τρία φίλτρα fiber glass γεωμετρίας 10.

αο	α1	a ₂	RMS
-0.6043	0.1656	0.0197	2.4%

Πίνακας ΣΤ.6: Καμπύλες βαθμονόμησης ολικής απόδοσης της ανιχνευτικής διάταξης XtRa - CSS μέσω προσομοίωσης για τρία φίλτρα fiber glass γεωμετρίας 10.

ΣΤ.4 Βαθμονόμηση απόδοσης γεωμετρίας τριβλίου – ανιχνευτική διάταξη XtRa - CSS

Με χρήση του γεωμετρικού μοντέλου που προσδιορίστηκε στο Κεφάλαιο 5 πραγματοποιήθηκε βαθμονόμηση απόδοσης της ανιχνευτικής διάταξης Xtra - CSS για το τριβλίο που χρησιμοποιείται για τη συσκευασία δειγμάτων ρητίνης. Το δοχείο έχει εσωτερική διάμετρο 53 mm και ύψος 12 mm.

Για τον προσδιορισμό των καμπυλών απόδοσης χρησιμοποιήθηκαν καμπύλες δευτέρου βαθμού, της μορφής $\alpha_0 + \alpha_1 \cdot \ln(E) + \alpha_2 \cdot \ln(E)^2$, με σημείο καμπής στην ενέργεια 279.19 keV. Στους Πίνακες ΣΤ.7 και ΣΤ.8 δίνονται οι συντελεστές των αυτών καμπυλών βαθμονόμησης πλήρους απορρόφησης καθώς και του λόγου ολικής απόδοσης προς απόδοση φωτοκορυφής, αντίστοιχα.

E < 279.19 keV			E > 279.19 keV				
αο	α1	<i>a</i> ₂	RMS	αο	α1	a ₂	RMS
-7.4588	2.7111	-0.3123	0.4%	1.4211	-0.5828	-0.0077	1.3%

Πίνακας ΣΤ.7: Καμπύλες βαθμονόμησης απόδοσης φωτοκορυφής της ανιχνευτικής διάταξης XtRa -CSS μέσω προσομοίωσης για γεωμετρία τριβλίου.

αο	α1	a ₂	RMS
0.5269	-0.3397	0.0643	4.3%

Πίνακας ΣΤ.8: Καμπύλες βαθμονόμησης ολικής απόδοσης της ανιχνευτικής διάταξης XtRa - CSS μέσω προσομοίωσης για φίλτρο γεωμετρία τριβλίου.

ΣΤ.5 Βαθμονόμηση απόδοσης γεωμετρίας τριβλίου – ανιχνευτική διάταξη Ge-40

Με χρήση του γεωμετρικού μοντέλου που προσδιορίστηκε στο πλαίσιο της Δ.Ε. (Παπαδιονυσίου, 2015) πραγματοποιήθηκε βαθμονόμηση απόδοσης της ανιχνευτικής διάταξης Ge-40 για το τριβλίο που χρησιμοποιείται για τη συσκευασία δειγμάτων ρητίνης. Το δοχείο έχει εσωτερική διάμετρο 53 mm και ύψος 12 mm.

Για τον προσδιορισμό των καμπυλών απόδοσης χρησιμοποιήθηκαν καμπύλες δευτέρου βαθμού, της μορφής $\alpha_0 + \alpha_1 \cdot \ln(E) + \alpha_2 \cdot \ln(E)^2$, με σημείο καμπής στην ενέργεια 279.19 keV. Στους Πίνακες ΣΤ.9 και ΣΤ.10 δίνονται οι συντελεστές των αυτών καμπυλών βαθμονόμησης πλήρους απορρόφησης καθώς και του λόγου ολικής απόδοσης προς απόδοση φωτοκορυφής, αντίστοιχα.

E < 279.19 keV			E > 279.19 keV				
αο	α1	a2	RMS	αο	α1	a2	RMS
- 22.6190	8.5253	-0.8821	5.8%	0.0390	-1.3614	0.0390	1.3%

Πίνακας ΣΤ.9: Καμπύλες βαθμονόμησης απόδοσης φωτοκορυφής της ανιχνευτικής διάταξης Ge-40 μέσω προσομοίωσης για γεωμετρία τριβλίου.

$\alpha_o \qquad \alpha_1$		a ₂	RMS	
-0.1532	-0.1891	0.0618	5.7%	

Πίνακας ΣΤ.10: Καμπύλες βαθμονόμησης ολικής απόδοσης της ανιχνευτικής διάταξης Ge-40 μέσω προσομοίωσης για φίλτρο γεωμετρία τριβλίου.

ПАРАРТНМА Z

Στοιχεία δειγματοληψιών ατμοσφαιρικού αεροζόλ

Στο Παράρτημα αυτό δίνονται τα στοιχεία των δειγματοληψιών ατμοσφαιρικού αεροζόλ που πραγματοποιήθηκαν στο πλαίσιο της παρούσας Δ.Δ.

Ζ.1 Δειγματοληψίες ατμοσφαιρικού αεροζόλ μετά το ατύχημα της Fukushima

Κωδικός	Ημερομηνία	Διάρκεια	Όγκος
φιλτρου	οειγματοληψιας	(min)	αερα (m²)
A0410	23/03/2011 09:45	369	527.18
A0411	24/03/2011 08:30	360	504.38
A0412	25/03/2011 08:39	341	477.91
A0413	25/03/2011 14:25	366	501.44
A0414	25/03/2011 20:36	714	997.99
A0415	26/03/2011 10:33	387	530.29
A0416	26/03/2011 18:04	896	1162.90
A0417	27/03/2011 09:05	604	825.89
A0418	27/03/2011 19:32	720	987.42
A0419	28/03/2011 09:35	463	621.21
A0420	28/03/2011 19:15	721	997.21
A0421	29/03/2011 09:30	464	631.77
A0422	29/03/2011 19:15	720	995.89
A0423	30/03/2011 09:05	495	667.59
A0424	30/03/2011 19:20	736	987.32
A0425	31/03/2011 08:45	511	699.93
A0426	31/03/2011 19:09	720	995.04
A0427	01/04/2011 18:50	719	1003.00
A0428	02/04/2011 10:48	720	1003.30
A0429	03/04/2011 16:35	720	994.85
A0430	04/04/2011 17:40	720	1001.70
A0431	05/04/2011 15:20	720	985.47
A0432	06/04/2011 18:35	720	1002.10
A0433	07/04/2011 18:13	720	1001.90
A0434	08/04/2011 18:12	720	976.63
A0435	09/04/2011 20:00	720	980.17
A0436	10/04/2011 15:23	720	982.67
A0437	11/04/2011 17:50	723	1015.70
A0438	12/04/2011 15:30	720	988.64
A0439	13/04/2011 17:08	722	987.36
A0440	14/04/2011 19:30	720	999.90
A0441	15/04/2011 16:45	720	991.28
A0442	16/04/2011 17:23	720	1009.00
A0443	17/04/2011 13:40	720	1009.10
A0444	18/04/2011 17:03	720	1011.90
A0445	19/04/2011 17:00	720	1004.40
A0446	20/04/2011 18:40	720	1005.60
A0447	27/04/2011 18:50	720	990.68
A0448	08/06/2011 15:41	720	965.30
A0449	26/07/2011 12:30	720	948.81
A0450	12/09/2011 14:20	720	943.91
A0451	11/11/2011 16:44	716	1023.60

Ζ.2 Δειγματοληψίες ατμοσφαιρικού αεροζόλ στο πλαίσιο μελέτης

Φίλτρο	Ημερομηνία έναρξης	Διάρκεια δειγματοληψίας (h)	Όγκος αέρα (m³)
A0486	19/02/2013 14:55	67.6	5729.80
A0487	22/02/2013 13:14	72.0	5928.90
A0488	24/07/2014 12:25	96.4	7523.10
A0489	10/10/2014 17:20	161.0	12920.00
A0490	18/11/2014 12:43	168.0	13104.00
A0492	19/12/2014 17:30	168.0	~13000.00*
A0493	19/01/2015 14:05	168.0	13382.00
A0494	20/02/2015 10:30	168.0	13100.10
A0495	16/03/2015 11:35	120.0	9677.40
A0496	21/04/2015 10:47	220.2	16582.30
A0499	17/05/2015 11:30	240.0	18680.20
A0500	16/06/2015 19:00	240.0	18598.30
A0501	12/07/2015 12:35	240.0	18370.20
A0502	12/08/2015 12:52	192.6	14902.00
A0503	18/09/2015 10:18	240.0	18693.30
A0504	29/10/2015 17:45	120.0	9902.60
A0505	15/11/2015 15:25	120.0	9621.50
A0506	09/12/2015 13:25	120.0	12719.00
A0507	13/01/2016 15:50	168.0	12040.00
A0508	31/01/2016 12:40	168.0	11919.00
A0509	21/03/2016 16:13	168.0	11333.00
A0510	14/04/2016 14:52	166.8	10654.00
A0511	23/05/2016 17:00	167.0	11317.00
A0512	23/06/2016 18:40	168.0	10797.00
A0513	17/07/2016 10:00	168.0	11129.00
A0514	26/08/2016 14:22	168.0	11183.00
A0515	09/09/2016 16:15	168.0	11065.00
A0516	26/10/2016 14:20	168.0	11696.00
A0517	06/11/2016 11:35	168.0	11496.00
A0518	18/12/2016 16:45	168.0	12239.00

Λόγω διακυμάνσεων στην τροφοδοσία του δικτύου της Δ.Ε.Η. και αστοχία της μπαταρίας της αντλίας χάθηκαν τα δεδομένα της δειγματοληψίας και εκτιμήθηκε ο συνολικός όγκος αέρα μέσω των υπολοίπων δειγματοληψιών.

парартнма $oldsymbol{H}$

Δεδομένα νετρονικής ενεργοποίησης

Στο Παράρτημα αυτό παρουσιάζονται δεδομένα για τη νετρονική ενεργοποίηση στοιχείων σύμφωνα με βιβλιογραφικές πηγές (De Corte, et al., 1969). Σημειώνεται ότι το διάστημα κορεσμού είναι για ροές νετρονίων $\phi_{thermal} = 10^{13} \text{ n/cm}^2 \text{s}$ και $\phi_{fast} = 10^{12} \text{ n/cm}^2 \text{s}$).

Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
Ag	¹⁰⁷ Ag	51.83%	^{108m} Ag	127 у	>20 d	433.70	90.00%
						614.40	90.00%
						723.00	90.00%
			^{108g} Ag	2.41 m	1 d	632.90	1.70%
						511.00	0.55%
						433.90	0.47%
	¹⁰⁹ Ag	48.17%	^{110m} Ag	250.4 d	>20 d	657.70	94.40%
						706.70	16.60%
						763.90	22.50%
						8784.70	73.50%
						937.50	34.30%
						1384.20	25.90%
			Ag-110g	24.6 s	1 h	657.70	4.50%
Al	²⁷ Al	100.00%	²⁸ AI	2.246 min	1 h	1778.80	100.00&
As	⁷⁵ As	100.00%	⁷⁶ As	26.3 h	1 d	559.10	44.60%
						657.00	6.40%
						1216.30	3.70%
Au	¹⁹⁷ Au	100.00%	¹⁹⁸ Au	2.695 d	20 d	411.80	95.50%
Ва	¹³⁰ Ba	0.101%	^{131m} Ba	14.6 m	1 d	32.20	34.00%
						108.20	40.00%
			^{131g} Ba	11.7 d	> 20 d	30.90	15.00%
						123.70	32.00%
						216.00	21.00%
						373.20	13.00%
						496.30	41.30%
	¹³² Ba	0.095%	^{133m} Ba	38.9 h	20 d	32.20	55.50%
						275.90	17.00%
			^{133g} Ba	10.4 y	> 20 d	30.90	
						81.00	32.80%
						302.70	18.60%
	1.14		175			355.90	62.30%
	¹³⁴ Ва	2.42%	ва	28.7 h	20 d	32.20	57.00%
	195		136m			268.20	15.50%
	¹³³ Ba	6.59%	Ва	0.308 s	1 min	32.20	11.70%
						163.90	31.30%
						818.00	100.00%
	126		127m			1050.00	100.00%
	¹³⁰ Ba	7.81%	¹³⁷ Ba	2.55 min	1 h	661.60	84.60%
	^{13°} Ba	71.66%	¹³⁵ Ba	83.3 min	1 d	33.40	13.00%
	70		80m			165.80	22.60%
Br	íЗВr	50.69%	Br	4.42 h	20 d	37.00	40.00%
			[®] Br	-	20 d	511.00	5.00%
	81-		82m_			617.00	7.20%
	°⁻Br	49.31%	Br	6.1 min	1 h	46.00	0.20%
						698.00	0.025%
			80m.cum_			777.00	0.02%
			Br	35.4 h	20 d	554.30	72.00%
						619.00	39.60%
						698.40	28.00%
						776.50	83.20%
						827.80	24.20%
						1044.00	28.00%
						1317.40	27.00%
•	13		140	570.0		1474.90	17.00%
C		1.11%		5736 y	>> 20 d		

Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
Са	⁴⁶ Ca	0.0033%	⁴⁷ Ca	4.54 d	>20d	488.90	7.00%
						807.80	7.40%
						1296.80	75.00%
			⁴⁷ Sc	3.41 d	>20d	159.40	70.00%
	⁴⁸ Ca	0.19%	⁴⁹ Ca	8.72 min	1 d	3084.00	91.70%
			⁴⁹ Sc	57.3 min	1 d	1780.00	0.03%
Cd	¹⁰⁶ Cd	1.20%	¹⁰⁷ Cd	6.5 h	20 d	22.10	90.00%
				453 d		93.10	4.60%
						511.00	0.48%
	¹⁰⁸ Cd	0.90%	¹⁰⁹ Cd	453 d	> 20 d	21.10	86.00%
						88.00	4.00%
	¹¹⁰ Cd	12.40%	¹¹¹ Cd	48.7 min	1 d	23.20	34.00%
						150.60	30.00%
						245.40	94.00%
			^{115m} Cd	44.6 d	>20d	934.10	1.90%
				1110 4	, 200	1289 90	0.90%
			^{115g} Cd	53 5h	>20d	492 30	8 10%
				55.511	, 20u	527.90	27 50%
			^{115m} ln	15 h	>20d	336.30	45.00%
				4.511	-20u	2/ 20	27 0.0%
			^{117m} Cd	2 /h	204	1065.00	14.00%
			Cu	5.411	200	1422.00	10.50%
						1452.00	10.30%
			117gCd	2.C.h	204	1996.00	20.00%
			Cu	2.011	200	273.00	27.00%
						344.00	17.00%
						434.00	10.00%
						1302.00	19.50%
			117m	1016	20 4	1576.00	14.30%
			In	1.94 h	20 d	24.20	17.00%
						158.60	15.00%
	136	0.4000/	137m e			315.30	15.00%
Ce	Ce	0.193%	Ce	34.3 h	20 d	34.70	61.00%
			137g _			255.00	11.00%
			Ce	9.0 h	20 d	33.40	62.00%
	138 -		139m -			446.00	2.30%
	Ce	0.26%	Ce	50 sec	1 h	34.70	5.20%
			139g	-	-	754.40	93.00%
			¹³³ ^E Ce	137 d	> 20 d	33.40	14.00%
	140		141 -			165.90	81.00%
	f⊸ce	88.48%	Ce	32.51 d	> 20 d	36.00	13.50%
	142		1/13			145.50	48.00%
	[⊥] **∠Ce	11.07%	- ⁺⁺ °Ce	33.0 h	20 d	36.00	57.00%
						57.40	11.10%
	50		60m			293.30	46.50%
Со	°°Co	100.00%	Co	10.48 min	1 d	58.60	2.10%
			^{oog} Co	5.272 y			
			Co		> 20 d	1173.20	99.90%
					20 d	1332.50	100.00%
Cr	⁵⁰ Cr	4.35%	²¹ Cr	27.71 d	> 20 d	320.10	19.80%
	⁵⁴ Cr	2.36%	⁵⁵ Cr	3.56 min	1 h	1528.20	0.043%
Cs	¹³³ Cs	100.00%	^{134m} Cs	2.9 h	20 d	30.90	18.00%
						127.40	14.00%
			^{134g} Cs	2.06 a	> 20 d	563.30	8.40%
						569.30	15.40%
						604.70	97.60%
						795.80	85.40%
						801.80	8.73%

Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
Cu	⁶³ Cu	69.10%	⁶⁴ Cu	12.74 h	20 d	511.00	37.00%
						1345.80	0.48%
	⁶⁵ Cu	30.90%	⁶⁶ Cu	510 min	1d	833.60	0.25%
						1039.00	9.00%
Dy	¹⁵⁶ Dy	0.06%	¹⁵⁷ Dy	8.1 h	20 d	44.40	66.00%
						326.40	94.50%
			¹⁵⁷ Tb	150 y	> 20 d	43.00	20.00%
						48.70	4.90%
						54.40	0.02%
	¹⁵⁸ Dy	0.10%	¹⁵⁹ Dy	144 d	> 20 d	44.40	78.00%
						58.20	4.00%
	¹⁶⁴ Dy	28.20%	^{165m} Dy	1.256 min	1 h	46.00	55.00%
			-			108.20	21.20%
						515.50	11.70%
			^{165gcum} Dy	2.35 h	1 d	47.50	6.20%
						545.70	1.80%
Eu	¹⁵¹ Eu	47.80%	^{152m2} Eu	96 min	1 d	41.50	17.70%
						89.80	74.00%
			^{152m1} Eu	9.3 h	20 d	40.10	13.30%
						121.80	9.00%
						841.60	13.00%
						963.50	12.00%
			^{152g} Eu	12.4 v	20 d	40.10	46.00%
			-	,		121.80	33.20%
						344.30	31.40%
						778.90	15.20%
						964.00	17.30%
						1085.80	10.00%
						1112.00	16.40%
						1407.90	24.00%
			¹⁴⁸ Pm	5.37 d	> 20 d	550.20	28.00%
						912.00	15.00%
						1465.10	22.00%
	¹⁵³ Eu	52.20%	¹⁵⁴ Eu	8.5 v	> 20 d	43.00	15.70%
	-			1		123.10	40.50%
						723.30	19.10%
						873.20	11.30%
						996.30	10.70%
						1004.50	17.60%
						1274.80	33.60%
Fe	⁵⁸ Fe	0.31%	⁵⁹ Fe	44.6 d	> 20 d	1099.30	56.00%
						1291.60	44.00%
Ga	⁶⁹ Ga	60.00%	⁷⁰ Ga	21.1 min	1 d	175.30	0.20%
						1039.40	0.50%
	⁷¹ Ga	40.00%	^{72g} Ga	14.10 h	20 d	629.90	25.50%
						834.00	100.00%
						894.20	10.30%
						2201.60	27.00%
						2507.70	13.40%
Gd	¹⁵² Gd	0.20%	¹⁵³ Gd	241 d	> 20 d	41.40	92.00%
	50.					97.50	30.00%
						103.20	21.80%

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
Image: constraint of the second sec		¹⁵⁸ Gd	24.70%	¹⁶⁵⁹ Gd	18.6 h	20 d	44.40	9.60%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							58.00	2.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							363.60	10.30%
$\begin{tabular}{ c c c c c c } \hline 100 & 100 & 100 & 100 & 315.00 & 20.30% & 315.00 & 20.30% & 315.00 & 20.30% & 315.00 & 20.30% & 315.00 & 20.30% & 315.00 & 20.30% & 315.00 & 20.30% & 118.00% & $$		¹⁶⁰ Gd	21.70%	¹⁶¹ Gd	3.7 min	1 h	44.40	20.30%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							102.50	15.30%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							315.00	20.30%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							361.00	61.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				¹⁶¹ Tb	6.9d	> 20 d	46.00	11.80%
Hf $^{1/3}$ Hf 10 Hf 70 d > 20 d 54.00% $^{17/1}$ Hf 18.50% 178m2 Hf 31 y >> 20 d 55.70 104.00% $^{17/1}$ Hf 18.50% 178m2 Hf 31 y >> 20 d 55.70 104.00% $^{17/1}$ Hf 18.50% 178m2 Hf 31 y >> 20 d 55.70 104.00% $^{17/9}$ Hf 18.50% 178m1 Hf $^{4.3}$ s 1011 min 55.60% 178m1 Hf 2178m1 Hf $^{4.3}$ s 1011 min 55.60% 178m1 Hf 278m1 Hf $^{18.7}$ s 11 h 55.70 49.00% 178 Hf $^{27.20\%}$ 179m1 Hf $^{18.7}$ s 1 h 55.70 49.00% 179 Hf $^{13.80\%}$ 198m1 Hf $^{18.7}$ s 1 h 57.50 48.00% 179 Hf $^{13.80\%}$ 198m Hf 5.5 h 20 d 55.20% $^{215.30}$ s $^{215.30}$ s $^{215.00}$ s 179 Hf<							74.60	5.90%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hf	¹⁷⁴ Hf	0.17%	¹⁷⁵ Hf	70 d	> 20 d	54.50	54.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							61.50	14.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							343.60	85.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		¹⁷⁷ Hf	18.50%	^{178m2} Hf	31 v	>> 20 d	55.70	104.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					- /		216.70	67.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							495.00	76.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							574.20	93.60%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				^{178m1} Hf	4.3 s	1 min	55.60	65.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							88.90	56.80%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							213.50	81.40%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							325.60	93 70%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							426.50	96.20%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		¹⁷⁸ Hf	27.20%	^{179m1} Hf	18.7 s	1 h	55.70	49.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					2017 0		63.50	13.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							215.50	82.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							307.00	24.30%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		¹⁷⁹ Hf	13.80%	^{180m} Hf	5.5 h	20 d	55.80	24.50%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			10:00/0		01011		57.50	48.00%
Image: second							63.50	6.60%
Image: second							93.40	16.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							215.30	82.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							332.20	93.00%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							443.10	180.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							500.60	17.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		¹⁸⁰ Hf	35.10%	¹⁸¹ Hf	42.4 d	> 20 d	55.80	24.50%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							133.00	43.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							346.00	14.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							482.20	86.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Hg	¹⁹⁶ Hg	0.15%	^{197g} Hg	64.1 d	> 20 d	77.3-80	35.40%
Image: Constraint of the system 191.50 0.56% 197mHg 23.8 h 20 d 67-71 27.50% 100 78-82.5 8.00% 133.90 30.20% 110 197mAu 7.8 s 1 d 67-69 19.00% 110 197mAu 7.8 s 1 d 67-69 19.00% 110 197mAu 7.8 s 1 d 67-69 19.00% 110 197mHg 42.6 min 1 d 68.9-71 49.30% 1198Hg 10.10% 199mHg 42.6 min 1 d 68.9-71 49.30% 1198Hg 10.10% 199mHg 42.6 min 1 d 68.9-71 49.30% 1198Hg 10.10% 199mHg 42.6 min 1 d 68.9-71 49.30% 1198Hg 20.70% 203Hg 46.60 d > 20 d 70.8-72.9 9.90% 1198 29.70% 203Hg 46.60 d > 20 d 70.8-72.9 9.90% 1198 202Hg 279.20 81.50)			67-69	56.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							191.50	0.56%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				^{197m} Hg	23.8 h	20 d	67-71	27.50%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							78-82.5	8.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							133.90	30.20%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				^{197m} Au	7.8 s	1 d	67-69	19.00%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							78-80	5.30%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							278.90	72.50%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		¹⁹⁸ Hg	10.10%	^{199m} Hg	42.6 min	1 d	68.9-71	49.30%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				_			80.2-82.5	14.30%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							158.40	58.40%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							374.10	13.80%
204 Hg 6.80% 205 Hg 5.2 min 1 d 70.8-72.9 1.25% 203.80 1.90% 1.90% 1.90% 1.90% 1.90% 1.90% 1.90%		²⁰² Hg	29.70%	²⁰³ Hg	46.60 d	> 20 d	70.8-72.9	9.90%
204 Hg 6.80% 205 Hg 5.2 min 1 d 279.20 81.50% 204 Hg 6.80% 205 Hg 5.2 min 1 d 70.8-72.9 1.25% 203.80 1.90% 203.80 1.90% 1.90%							82.5-85	2.90%
204 Hg 6.80% 205 Hg 5.2 min 1 d 70.8-72.9 1.25% 203.80 203.80 1.90% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>279.20</td> <td>81.50%</td>							279.20	81.50%
203.80 1.90%		²⁰⁴ Hg	6.80%	²⁰⁵ Hg	5.2 min	1 d	70.8-72.9	1.25%
							203.80	1.90%

Ho 100.00% <	Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
Image: section of the section of th	Но	¹⁶⁵ Ho	100.00%	^{166m} Ho	1200 y	> 20 d	80.60	11.00%
Image Image Image Image Image Image Image Image Image Image Image Image Image 							184.50	75.00%
							280.20	30.00%
							411.00	2.00%
							711.80	55.00%
							752.50	12.00%
				1//-			810.80	57.00%
I I ³⁷ 100.00% I ³⁸ 25.00 min 1 d 27.40 3.30% I <thi< th=""> <thi< th=""> I <</thi<></thi<>				Но	26.8 h	20 d	49.10	47.20%
I 100.00% 12 25.00 min 1 d 27.40 3.90% I <thi< th=""> <thi< th=""> I <th< td=""><td></td><td>197</td><td></td><td>100</td><td></td><td></td><td>80.60</td><td>5.40%</td></th<></thi<></thi<>		197		100			80.60	5.40%
	1	127	100.00%	128	25.00 min	1 d	27.40	3.90%
$ \begin{array}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $							442.90	17.50%
In ¹¹ / ₁ 4.28% ¹¹⁸ / ₁ n 49.51 d >20 d 24.20 30.00% I I I I I I89.90 17.70% I I I I I I89.90 I7.70% I I I I I I I89.90 I7.70% I I I I I I I I I I I I I I I I I I I I I II II II II II II II II I I II III III III III III III III III IIII IIII IIII IIII IIII IIIII IIIII IIIIII IIIIII IIIIII IIIIIII IIIIIII IIIIIII IIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		112		114m2			526.60	1.70%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	In	¹¹³ In	4.28%	¹¹⁴ In	49.51 d	> 20 d	24.20	30.00%
Image Image <thimage< th=""> Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>189.90</td><td>17.70%</td></th<></thimage<>							189.90	17.70%
							558.30	65.00%
				11/g		-	725.20	4.55%
		115		¹¹⁴⁸ In	71.9 sec	> 20 d	1300.20	0.17%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		¹¹³ In	95.72%	110m2ln	2.2 sec	1 min	164.00	50.00%
Image: book of the second s				In	54.2 min	1 d	417.00	30.00%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							818.80	17.00%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							1097.00	53.00%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							1293.40	80.00%
K 39 K 93.30% 47 K 12.36 h 20 d 1524.70 17.90% La 13 ⁵ La 99.91% 140 La 1.68 d 20 d 352.80 20.60% La 99.91% 140 La 1.68 d 20 d 352.80 20.60% La 99.91% 140 La 1.68 d 20 d 352.80 20.60% La 175 175 175 175 175 175 175 Lu 175 97.40% 175 3.69 h 20d 55.50 13.00% Lu 175 2.60% 177m ² Lu 161 d >20 d 55.50 100.00% 1 2.60% 177m ² Lu 161 d >20 d 55.00 100.00% 1 2.60% 177m ² Lu 161 d 20 d 105.30 13.00% 1 2.60% 177m ² Lu 161 d 20 d 105.30 13.00% 1 2.60% 177m ¹ Lu 1.1 sec 113.00<				116g.			2112.00	16.00%
k m k 93.30% m k 12.36 h 20 d 1524.70 17.90% La 139 La 99.91% 140 La 1.68 d 20 d 328.80 20.60% Lu 17 Lu 99.91% 140 La 1.68 d 20 d 328.80 22.30% Lu 175 Lu 97.40% 176m Lu 3.69 h 20d 55.50 13.00% Lu 97.40% 176m Lu 3.69 h 20d 55.50 13.00% Lu 97.40% 176m Lu 3.69 h 20d 55.50 13.00% Lu 2.60% 177m2 Lu 161 d >20 d 55.50 13.00% La 2.60% 177m2 Lu 161 d >20 d 105.30 13.00% La La <thla< th=""> <thla< th=""></thla<></thla<>		39		4/	14.2 s	1 h	1293.30	1.20%
La $^{1.7}$ La 1.68 d 20 d 328.80 20.60% i <tdi>i <t< td=""><td>К</td><td>³³K</td><td>93.30%</td><td>K</td><td>12.36 h</td><td>20 d</td><td>1524.70</td><td>17.90%</td></t<></tdi>	К	³³ K	93.30%	K	12.36 h	20 d	1524.70	17.90%
Image: book of the section	La	La	99.91%	La	1.68 d	20 d	328.80	20.60%
Image: second							487.00	46.10%
Lu 175 Lu97.40% 176m Lu 3.69 h20d 1596.20 $95.50%$ Lu 175 Lu 97.40% 176m Lu 3.69 h $20d$ 55.50 13.00% 1/6 176 1000% 88.30 10.00% 88.30 10.00% 1/6 176 2.60% 177m2 Lu $161 d$ $> 20 d$ 55.00 100.00% 1/6 1000% $177m2$ Lu $161 d$ $> 20 d$ 55.00 100.00% 1/6 1000% $6.71 d$ $20 d$ 105.30 13.00% 1/17 1000% $6.71 d$ $20 d$ 105.30 13.00% 1/17 1000% $6.71 d$ $20 d$ 105.30 13.00% 1/17 1000% 1000% 208.30 62.00% 1/17 1000% 1000% 112.90 23.00% 1/17 11000% 1000% 1100% 208.30 1/17 1000% 111.00% 1100% 208.00 11.00% 1/17 111.90% 100.00% 1000% 100.00% 100.00% 1/17 100.00% 1000% 100.00% 100.00% 100.00% 1/17 100.00% 100.00% 100.00% 100.00% 100.00% 1/17 100.00% 100.00% 100.00% 100.00% 100.00% 1/17 100.00% 100.00% 100.00% 100.00% 100.00% 1/17 100.00% 100.00% 100.00% 100.00% 100.00% 1/17 100.00% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>815.80</td> <td>22.30%</td>							815.80	22.30%
Lu 1.u 3.69 n 2.0d 55.50 13.00% i i i i i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		175.	07.400/	176m.	2.601	20.1	1596.20	95.50%
Image: second	Lu	Lu	97.40%	Lu	3.69 h	20d	55.50	13.00%
176 Lu 2.60% $177m^2$ Lu 161 d > 20 d 58.30 10.00% 176 Lu 2.60% $177m^2$ Lu 161 d > 20 d 55.00 100.00% 100 100 6.71 d 20 d 105.30 13.00% 112 112 23.00% 208.30 62.00% 100 100 112.90 23.00% 208.30 62.00% 100 100 100 100 208.30 62.00% 100 100 112.90 23.00% 113.00 65.0% Mg $26Mg$ 110.10 $177m^1$ Lu 1.1 sec 113.00 65.0% Mg $2^{10}Mg$ 9.45 min 1 d 843.80 72.00% Mg $2^{10}Mg$ 9.45 min 1 d 844.60 99.00% Mn $35Mn$ 100.00% $3^{5}Mn$ 2.582 h 1 d 846.60 99.00% Mn $3^{10}Mo$ 6.85							63.50	3.50%
10 2.60% 101 3.20 35.00 100.00% 10 10 101 3.20 63.50 25.00% 10 10 100 6.71 d 20 d 105.30 13.00% 10 100 6.71 d 20 d 105.30 13.00% 100 100 6.71 d 20 d 105.30 13.00% 100 100 100 208.30 62.00% 100 100 100 208.30 62.00% 100 100 100 208.30 62.00% 100 100 111 208.30 62.00% 100 100 111 111 208.30 62.00% 100 100 111 111 111 111 111 111 11100% 111.00% 111.00% 111.00% 111.00% 111.00% 111.00% 111.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% 1100.00% <		176	2.00%	177m2	101 d	> 20 d	88.30	100.00%
Image: book of the second s		LU	2.60%	LU	161.0	> 20 0	55.00	100.00%
Image: body body body body body body body body					C 71 d	20 4	63.50	25.00%
Image: constraint of the section o					6.710	20 d	105.30	13.00%
Image: body set in the set							208.20	23.00%
Image: book of the section of the							208.30	02.00%
Image: series of the series							228.40	37.00%
Image: border				177m1	1 1 505		378.50	29.00%
Image: Section of the section of t				LU	1.1 Sec		208.00	11.00%
Mg ${}^{26}Mg$ 11.01% ${}^{27}Mg$ 9.45 min1 d ${}^{416.30}$ ${}^{21.00\%}$ Mg ${}^{26}Mg$ 11.01% ${}^{27}Mg$ 9.45 min1 d ${}^{843.80}$ ${}^{72.00\%}$ Mn ${}^{55}Mn$ 100.00% ${}^{56}Mn$ 2.582 h1 d ${}^{846.60}$ 99.00%Mn ${}^{55}Mn$ 100.00% ${}^{56}Mn$ 2.582 h1 d ${}^{846.60}$ 99.00%Mo ${}^{92}Mo$ 14.80% ${}^{93m}Mo$ $6.85 h$ $> 20 d$ 263.20 61.20% Mo ${}^{92}Mo$ 14.80% ${}^{93m}Mo$ $6.85 h$ $> 20 d$ 263.20 61.20% Mo ${}^{92}Mo$ 14.80% ${}^{93m}Mo$ $6.85 h$ $> 20 d$ 263.20 61.20% Mo ${}^{92}Mo$ 13.6 y $> 20 d$ 30.40 0.0005% ${}^{98}Mo$ 23.78% ${}^{99}Mo$ $66.02 h$ $20 d$ 140.50 81.30% ${}^{98}Mo$ 23.78% ${}^{99}mTc$ $6.02h$ $20d$ 140.50 85.00%							200.00 /12 50	21.00%
MgMg 3.45 mm 100 343.80 72.00% Mn 55 Mn 100.00% 56 Mn 2.582 h $1d$ 1014.40 28.00% Mn 55 Mn 100.00% 56 Mn 2.582 h $1d$ 846.60 99.00% Mo 92 Mo 14.80% 93m Mo 6.85 h > 20 d 263.20 61.20% Mo 92 Mo 14.80% 93m Mo 6.85 h $>> 20$ d 263.20 61.20% Mo 92 Mo 14.80% 93m Mo 6.85 h $>> 20$ d 263.20 61.20% Mo 92 Mo 14.80% 93m Mo 6.85 h $>> 20$ d 263.20 61.20% Mo 92 Mo 13.6 y $>> 20$ d 30.40 0.0005% 98 Mo 23.78% 99 Mo 66.02 h 20 d 140.50 81.30% Mo 99m Tc $6.02h$ $20d$ 140.50 85.00%	Μσ	²⁶ Mg	11 01%	²⁷ Mg	9.45 min	1 d	8/12 20	72 00%
Mn 55 Mn 100.00% 56 Mn 2.582 h 1 d 846.60 99.00% Image: Model of the state of	1418	ivig	11.01/0	ivig	5.45 11111	<u> </u>	1014 40	28.00%
Min2000000 min2000000 min2000000 min390000 minImage: Second matrixImage: Second matrixImage: Second matrixImage: Second matrix30.00%Image: Second matrixImage: Second matrix<	Mn	⁵⁵ Mn	100.00%	⁵⁶ Mn	2 582 h	1 d	846.60	99.00%
Mo ⁹² Mo 14.80% ^{93m} Mo 6.85 h >> 20 d 263.20 61.20% Mo ⁹² Mo 14.80% ^{93m} Mo 6.85 h >> 20 d 263.20 61.20% Mo ⁹² Mo 14.80% ^{93m} Mo 6.85 h >> 20 d 263.20 61.20% Mo ^{93m} Mo 6.85 h >> 20 d 30.40 91.90% Mo ^{93m} Nb 13.6 y >> 20 d 30.40 0.0005% ⁹⁸ Mo 23.78% ⁹⁹ Mo 66.02 h 20 d 140.50 81.30% ⁹⁸ Mo 1.0 6.02 h 20 d 140.50 81.30% ⁹⁸ Mo 1.0 6.02 h 20 d 140.50 85.00%		· • · · ·	100.0070		2.302 11	10	1811 20	30.00%
Mo ${}^{92}Mo$ 14.80% ${}^{93m}Mo$ 6.85 h >> 20 d 263.20 61.20% Image: Second seco							2112.00	15 50%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mo	⁹² Mo	14 80%	^{93m} Mo	6 85 h	>> 20 d	263.20	61 20%
^{93m}Nb 13.6 y >> 20 d 1477.20 99.40% ^{98}Mo 23.78% ^{99}Mo 66.02 h 20 d 140.50 81.30% ^{98}Mo 23.78% ^{99}Mo 66.02 h 20 d 140.50 81.30% ^{98}Mo 23.78% ^{99}Mo 66.02 h 20 d 140.50 81.30% ^{99}Mo 66.02 h 20 d 140.50 85.00%		1010	14.00/0	1010	0.0011	20 u	684 60	91 90%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1477.20	99.40%
98 23.78% 99 66.02 h 20 d 140.50 81.30% 1<				^{93m} Nb	13.6 v	>> 20 d	30.40	0.0005%
Inc Inc <td></td> <td>⁹⁸Mo</td> <td>23 78%</td> <td>⁹⁹Mo</td> <td>66 02 h</td> <td>20 d</td> <td>140 50</td> <td>81.30%</td>		⁹⁸ Mo	23 78%	⁹⁹ Mo	66 02 h	20 d	140 50	81.30%
99m C 6.02h 20d 140.00 99m 50.000 50.000 85.000			2017070		00.02 11	200	181 10	6 95%
^{99m} Tc 6.02h 20d 140.50 85.00%							739 70	14.00%
				^{99m} Tc	6.02h	20d	140.50	85.00%

Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
	¹⁰⁰ Mo	9.63%	¹⁰¹ Mo	14.6 min	1 d	191.90	18.10%
						505.90	11.35%
						590.80	193.00%
						695.50	6.60%
						1012.40	11.30%
						1532.30	5.50%
			101-			2032.00	6.00%
	23.	100.000/	24m	14.2 min	1 d	306.90	82.80%
Na	Na	100.00%	Na 24gcum	20.1 ms	1 s	472.00	100.00%
			- Na	15.02 h	20 d	1368.60	100.00%
Nd	¹⁴⁶ Nd	17 220/	¹⁴⁷ Nd	10.00 d	20 d	2754.10	25.00%
ina	INU	17.22%	INC	10.99 0	20 0	38.70	35.00%
						531.00	13 50%
			¹⁴⁷ Pm	2624	> 20 d	121.00	0.004%
	¹⁴⁸ Nd	E 720/	¹⁴⁹ Nd	2.02 u	20 u	29.70	18.004/8
	Nu	5.7570	INU	1.7511	IU	114.20	10.00%
						114.30	19.00%
						155.90	5.80%
						211.30	24.00%
						270.30	10.00%
						423.60	7.00%
						540.50	6.50%
			1/19			654.80	8.40%
	150 .		151 · ·	53.1 h	20 d	285.90	3.10%
	Nd	5.62%	Nd	12.4 min	1 d	38.70	11.00%
						117.10	25.00%
						256.00	11.60%
			150			1180.70	9.00%
			¹⁵⁰ Pm	28 h	20 d	340.10	21.00%
Ni	⁶⁴ Ni	1.08%	⁵⁵ Ni	2.520 h	1 h	366.50	4.80%
						1115.50	15.20%
						1481.70	25.40%
Р	³¹ P	100.00%	³² P	14.28 d	> 20 d	όχι ακ	τίνες γ
Pb						όχι ακ	τίνες γ
Rb	⁸⁵ Rb	72.17%	^{86m} Rb	1.018 min	1 h	555.80	98.20%
			^{86gcum} Rb	18.65 d	> 20 d	1076.60	8.76%
	⁸⁷ Rb	27.83%	⁸⁸ Rb	17.7 min	1 d	898.00	14.50%
						1836.10	21.40%
						2776.40	21.00%
S	³⁶ S	0.015%	³⁷ S	5.06 min	1 h	3102.40	90.00%
Sb	¹²¹ Sb	57.25%	^{122gcum} Sb	-	20 d	564.10	63.00%
			^{122g} Sb	2.72d		-	
			^{122m} Sb	4.2 min	1 h	26.30	60.00%
						61.60	50.00%
						76.30	17.00%
	¹²³ Sb	42,75%	^{124m} Sh	93 sec	1 d	498.00	19,70%
		.2.,3,3		50 500	- ~	602 70	20.00%
						645.80	20.00%
			124gcum	60.3.4	> 20 4	602 70	98 10%
			50		- 20 U	722.70	11 20%
Sc	45sc	100 00%	46m S c	18.7.000	1 h	1/2 50	100.00%
50	JC	100.00%	30	10.7 Sec	<u> </u>	142.30	100.00%
			46gcumcc	03.0 U	1 d	-	100.000/
			50		1 U	009.30	100.00%
						1120.00	100.00%

Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
Se	⁷⁴ Se	0.90%	⁷⁵ Se	120 d	> 20 d	121.10	16.50%
						135.90	58.00%
						264.50	58.50%
-						279.50	25.00%
						400.70	12.00%
	⁷⁶ Se	9.00%	^{77m} Se	17.5 sec	1 h	161.90	59.50%
	⁷⁸ Se	23.50%	^{79m} Se	3.89 min	1 h	95.70	10.00%
	⁸⁰ Se	50.00%	^{81m} Se	57.3 min	1 d	103.00	8.00%
			^{81g} Se	18.5 min	1 d	275.90	0.51%
						290.00	0.44%
						828.30	0.20%
	⁸² Se	9.00%	^{83m} Se	70.0 sec	1 h	356.00	20.00%
						676.00	17.00%
						989.00	19.00%
						1031.00	30.00%
						2054.00	13.00%
			^{83g} Se	22.5 sec	1 h	226.00	35.00%
						356.00	75.00%
						512.00	45.00%
						720.00	22.40%
						801.00	15.00%
						837.00	14.00%
						2291.00	13.00%
			⁸³ Br	2.4 h	1 d	529.60	1.30%
			^{83m} Kr	1.86 h	1 d	32.20	0.075%
Si	³⁰ Si	3.10%	³¹ Si	2.62 h	20 d	1266.20	0.07%
Sm	¹⁴⁴ Sm	3.10%	¹⁴⁵ Sm	340 d	> 20 d	38.70	112.50%
						43.80	26.50%
						61.40	12.70%
	¹⁵⁰ Sm	7.40%	¹⁵¹ Sm	93 y	20 d	21.60	4.00%
	¹⁵² Sm	26.70%	¹⁵³ Sm			41.50	46.00%
						47.00	11.00%
						103.20	28.30%
	¹⁵⁴ Sm	22.80%	¹⁵⁵ Sm	22.2 min	1 d	41.50	15.30%
						104.20	73.00%
			¹⁵⁵ Eu	4.96 y	> 20 d	41.50	15.30%
						86.60	32.00%
Sr	⁸⁴ Sr	0.56%	^{85m} Sr	67.7 min	1 d	151.30	11.60%
						231.70	85.00%
			^{85g} Sr	65.2 d	20 d	514.00	99.30%
	⁸⁶ Sr	9.90%	^{87m} Sr	2.81 h	20 d	388.40	83.00%
	⁸⁸ Sr	82.60%	⁸⁹ Sr	50.5 d	> 20 d	909.00	0.009%
Та	⁺°⁺Ta	99.988%	Ta	15.9 min	20 d	57.50	67.00%
						146.70	40.00%
						171.70	42.00%
			1929			184.90	23.00%
			^{±°2®} Ta	115 d	20 d	59.00	23.00%
						67.50	49.00%
						100.10	11.90%
						222.10	8.00%
						1121.20	37.00%
						1189.00	17.10%
						1221.30	28.90%

Στοιχείο	Ισότοπο	Ισοτοπική αναλονία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
Tb	¹⁵⁹ Tb	100.00%	¹⁶⁰ Tb	72.3 d	20 d	46.00	17.00%
		100.0070		/ 0	10 6	86.80	13 40%
						298.60	27.40%
						879.40	30.00%
-						966.20	25 50%
						1178.00	15 50%
Th	²³² Th	100 00%	²³³ Th	22.2 min	1 d	92-96	1 90%
		100.0070			4.5	169.00	0.28%
-						459.20	0.80%
						669.80	0.38%
			²³³ Pa	27 d	> 20 d	94-99	23.80%
						111-114.5	6.50%
						300.10	6.60%
			fission	-	-	311.90	38.00%
Ti	⁵⁰ Ti	5.30%	⁵¹ Ti	5.76 min	1 d	320.00	95.00%
						928.50	5.00%
TI	²⁰³ TI	29.50%	²⁰³ TI	3.78 y	> 20 d	69-71	1.10%
Tm	¹⁶⁹ Tm	100.00%	¹⁷⁰ Tm	130 d	> 20 d	52.40	10.50%
						84.30	10.00%
U	²³⁸ U	99.27%	²³⁹ U	23.5 min	1 d	74.70	59.30%
			²³⁹ Np	2.35 d	> 20 d	103.70	18.00%
						99.50	11.00%
						106.00	21.00%
						277.60	12.00%
V	⁵¹ V	99.75%	⁵² V	3.755 min	1 h	1434.20	100.00%
W	¹⁸⁰ W	0.13%	¹⁸¹ W	121.2 d	> 20 d	57.50	62.00%
						150.00	0.10%
	¹⁸⁴ W	30.70%	^{185m} W	1.64 min	1 h	59.00	5.70%
						65.90	5.40%
						67.50	1.50%
						131.60	4.00%
			^{185gcum} W	75 d	> 20 d	125.40	0.02%
			¹⁸⁷ W	23.9 h	20 d	61.00	19.70%
						134.20	10.10%
						478.50	26.60%
	- 00		00m			685.70	32.00%
Y	٥ºY	100.00%	Y	3.19 h	20 d	202.50	96.50%
			90ccum			482.50	90.00%
	169		^{50gcuni} Y	64.0 h	1 d	1760.70	0.02%
Yb	¹⁰⁰ Yb	0.14%	Yb	46 sec + 31 d	> 20 d	50.70	120.00%
						57.50	30.00%
						63.10	45.00%
						109.80	18.00%
						130.50	11.50%
						1/7.20	22.00%
						198.00	36.00%
-	174	21.000/	175gy/h	4.40		307.70	11.10%
	۲D	31.80%	175gcum	4.19 0	20 4	-	2 000/
			ΥD	-	20 d	54.00	2.90%
						202.00	1.90%
						282.00	5.70%
	176Vb	10 700/	177Vh	6.41.000	1 d	590.00	
		12.70%		0.41 Sec	TU	121 60	2 0.00/
						121.00	2.90%
				10 h	_	1020.40	17.20%
				1711	-	12/11/10	4.70% 2 00%
						1241.40	2.90%

Στοιχείο	Ισότοπο	Ισοτοπική αναλογία	Προϊόν	Ημιζωή	Διάστημα Κορεσμού	Ενέργεια (keV)	Ποσοστό εκπομπής
			¹⁷⁷ Lu	6.71 d	> 20 d	113.00	6.50%
						208.30	11.00%
Zn	⁶⁴ Zn	48.90%	⁶⁵ Zn	243.7 d	> 20 d	1115.50	49.80%
	⁶⁸ Zn	18.60%	^{69m} Zn	13.9 h	20 d	438.90	100.00%
			^{69g} Zn	57 min		-	
			^{69m+g} Zn	-	20 d	318.40	
	⁷⁰ Zn	0.62%	^{71m} Zn	3.97 h	20 d	386.30	93.00%
						487.30	62.30%
						511.50	28.40%
						596.10	27.90%
						620.20	56.70%
			^{/1g} Zn	2.4 min	20d	121.50	3.00%
						390.00	3.90%
						511.60	32.00%
						910.00	8.00%
Zr	⁹² Zr	17.11%	^{93m} Nb	10.6 y	>> 20 d	30.40	0.0005%
	⁹⁴ Zr	17.40%	⁹⁵ Zr	65.5 d	> 20 d	724.20	43.00%
						756.70	54.60%
			^{95m} Nb	3.61 d	> 20 d	235.40	45.00%
						765.80	99.00%
	⁹⁶ Zr	2.80%	⁹⁷ Zr		20 d	507.60	5.10%
						355.40	2.30%
						1147.90	2.70%
			^{97m} Nb	54 sec	20 d	743.40	98.00%
			⁹⁷ Nb	73.6 min	20 d	657.90	98.20%

Πίνακας Η.1: Δεδομένα για τη νετρονική ενεργοποίηση στοιχείων (De Corte, et al., 1969).

ПАРАРТНМА 🕑

Αναλύσεις δειγμάτων νετρονικής ενεργοποίησης με το πρόγραμμα ANGES

Το Παράρτημα αυτό είναι συνοδευτικό του Κεφαλαίου 8, όπου παρουσιάσθηκε η εφαρμογή της μεθόδου της νετρονικής ενεργοποίησης σε πιστοποιημένα πρότυπα δείγματα: N.I.S.T. Montana Soil 2710, N.I.S.T. Fly ash 1633b, N.I.S.T. Industrial Sludge 2782 και Ι.Α.Ε.Α Lake sediment SL-1. Στο Κεφάλαιο 8 χρησιμοποιήθηκε για τις αναλύσεις μόνο ο κώδικας SPUNAL. Στο Παράρτημα αυτό παρουσιάζονται οι αναλύσεις των ίδιων φασμάτων του Κεφαλαίου 8 με το πρόγραμμα ANGES.

Θ.1 Πρότυπο υλικό αναφοράς NIST Montana Soil 2710

Θ.1.1 Ενεργοποίηση δείγματος Montana Soil 2710 για 1 h

Το δείγμα χώματος Montana Soil 2710, καθαρής μάζας 23.2429 gr, ενεργοποιήθηκε για 1 h στην διάταξη νετρονικής ενεργοποίησης του Ε.Π.Τ. - Ε.Μ.Π. και στη συνέχεια αναλύθηκε στην ανιχνευτική διάταξη XtRa - CSS για 900 sec. Από τα περιεχόμενα στο δείγμα στοιχεία, αναμένεται με 1 h νετρονική ενεργοποίηση να ανιχνευθούν τα εξής στοιχεία: Al, Mg, Mn, Ti, V. Τα στοιχεία ενεργοποίησης των στοιχείων αυτών δίνονται στο Παράρτημα Η. Στον Πίνακα Θ.1 δίνονται για κάθε ισότοπο και ανιχνευόμενη φωτοκορυφή ο ρυθμός καταγραφής γεγονότων, συνοδευόμενος από την αντίστοιχη αβεβαιότητα σε επίπεδο εμπιστοσύνης 1σ, για το unsuppressed και το suppressed φάσμα.

Ισότοπο	Ενέργεια (keV)	Cps _{unsup}			(c ps _{su}	p
²⁸ AI	1778.8	1.70	±	2.5%	1.61	±	2.0%
²⁷ Ma	843.8						
IVIg	1014.4				0.09	±	10.7%
⁵⁶ Mp	846.6	13.5	±	2.6%	10.6	±	3.2%
	1811.2	1.95	±	2.2%			
⁵² V	1434.0						
⁵¹ ;	320.0						
11	928.5						

Πίνακας Θ.1: Ρυθμοί καταγραφής γεγονότων με το πρόγραμμα ANGES για το δείγμα Montana Soil 2710 μετά από ενεργοποίηση 1 h.

Τα αποτελέσματα με το πρόγραμμα ANGES είναι αντίστοιχα με εκείνα του κώδικα SPUNAL όσον αφορά τα μονοενεργειακά και πολυενεργειακά ισότοπα. Ωστόσο, με το πρόγραμμα ANGES δεν ανιχνεύονται η φωτοκορυφή του ²⁷Mg ενέργειας 1014.4 keV στο unsuppressed φάσμα και η φωτοκορυφή του ⁵⁶Mn ενέργειας 1811.2 keV στο suppressed φάσμα. Αξίζει να σημειωθεί ότι σε όρους cps οι δύο προσεγγίσεις οδηγούν στις ίδιες τιμές σε όλες τις ανιχνευόμενες κορυφές. Ωστόσο, για τα φωτόνια που δεν εκπέμπονται σε σειρά με άλλα (1778.8 keV, 1014.4 keV), το πρόγραμμα ANGES αποδίδει στις φωτοκορυφές υψηλότερες αβεβαιότητες, ενώ συμβαίνει το αντίθετο για τα φωτόνια που εκπέμπονται σε σειρά.

Θ.1.2 Ενεργοποίηση δείγματος Montana Soil 2710 για 110.5 h

Την ενεργοποίηση του δείγματος Montana Soil 2710 για 110.5 h ακολούθησε πλήθος αναλύσεων διαφορετικής διάρκειας με σκοπό την εύρεση του βέλτιστου σεναρίου ανάλυσης όπου να ανιχνεύονται όσο το δυνατόν περισσότερα ισότοπα: 1 h, 2 h, 2 h, 5 h, 24 h, 72 h, 96 h. Σημειώνεται ότι τα φάσματα διάρκειας 5 h και 96 h αποτελούν επεξεργασμένα φάσματα τα οποία προέκυψαν αθροίζοντας τα προηγούμενα φάσματα 1 h, 2 h, 2 h και 24 h, 72 h, αντίστοιχα.

Δεδομένου ότι τα φάσματα προς επεξεργασία είναι πολλά, στην παρούσα Παράγραφο δίνονται τα αποτελέσματα των αναλύσεων μόνο για το βέλτιστο σενάριο για κάθε ισότοπο, δηλαδή το σενάριο στο οποίο ο ρυθμός καταγραφής είναι επαρκώς υψηλός και η αβεβαιότητα επαρκώς χαμηλή (Πίνακας Θ.2).

	Ισότοπο	Ενέργεια (keV)	Διάρκεια αναμονής [*]	Διάρκεια ανάλυσης	CPS _{unsup}	cps _{sup}
	²⁸ AI	1778.8	1 min	1 h	0.40 ± 3.6%	0.38 ± 2.7%
		559.1			0.379 ± 0.9%	0.324 ± 0.8%
	⁷⁶ As	657.0	5 h	24 h	0.039 ± 4.5%	0.0099 ± 5.6%
		1216.3			0.018 ± 7.4%	0.0170 ± 4.4%
sər	⁶⁴ Cu	1345.8	5 h	24 h	0.0064 ± 11.7%	0.0059 ± 8.1%
alı	⁴² K	1524.7	1 min	5 h	0.143 ± 2.8%	0.141 ± 1.8%
> 0	⁵⁹ Fo	1099.3	5 h	96 h	0.0016 ± 15.4\$	0.0016 ± 7.9%
fie	Te	1291.6	511	3011	0.0013 ± 14.3%	0.00139 ± 6.9%
it	⁵⁶ Mn	846.6	1 min	1 h	52.6 ± 1.7%	41.0 ± 1.4%
S		1811.2	I	111	7.4 ± 2.0%	2.55 ± 2.3%
	²⁴ Na	1368.5	1 min	5 h	3.81 ± 1.4%	1.90 ± 1.4%
	¹²² Sb	564.1	5 h	24 h	0.030 ± 4.9%	0.0249 ± 3.4%
	⁶⁵ Zn	1115.5	5 h	96 h	0.0054 ± 4.1%	0.0054 ± 3.3%
	^{69m} Zn	438.9	5 h	96 h	$0.0095 \pm 4.2\%$	0.0092 ± 2.7%
	¹⁹⁸ Au	411.8	29 h	72 h	0.0044 ± 10.9%	0.0043 ± 7.0%
S		121.8			0.015 ± 13.3%	0.0059 ± 15.6%
Iue	¹⁵² Eu	841.6	5 h	24 h	0.009 ± 24.8%	0.006 ± 22.5%
val		963.5			0.011 ± 11.3%	0.0101 ± 7.2%
b	⁷² Ga	834.0	5 h	96 h	0.0036 ± 19.3%	0.0020 ± 20.6%
ifie		328.8			0.0057 ± 7.6%	0.0013 ± 19.1%
erti	¹³⁹ 1 2	487.0	20 h	72 h	0.0087 ± 4.3%	0.0023 ± 8.7%
Ŭ	La	815.0	2511	7211	0.0038 ± 8.8%	0.0015 ± 8.7%
lor		1596.2			0.0080 ± 4.2%	0.0024 ± 5.8%
2	⁴⁶ Sc	889.3	29 h	72 h	0.0042 ± 6.4%	0.0018 ± 7.4%
	50	1120.0 ⁺	2311	7211	0.0227 ± 2.5%	0.0063 ± 5.3%

Πίνακας Θ.2: Ρυθμοί καταγραφής με το πρόγραμμα ANGES δείγματος Montana Soil 2710 μετά από 110.5 h ενεργοποίησης για το βέλτιστο σενάριο ανάλυσης για κάθε ισότοπο.

^{*} Όπου διάρκεια αναμονής διάφορη του 1 min σημαίνει ότι δεν λαμβάνονται υπόψη φάσματα που λήφθηκαν από το πέρας της ενεργοποίησης μέχρι την έναρξη της ανάλυσης ενδιαφέροντος.

[†] Έχει ληφθεί υπόψη και η συνεισφορά της φωτοκορυφής υποστρώματος του ²²⁸Ας.

^{*} Έχει ληφθεί υπόψη και η συνεισφορά της φωτοκορυφής υποστρώματος του ²¹⁴Bi.

Θ.2 Πρότυπο υλικό αναφοράς NIST Montana Soil 2711

Θ.2.1 Ενεργοποίηση δείγματος Montana Soil 2711 για 1 h

Το δείγμα χώματος Montana Soil 2711, καθαρής μάζας 24.0250 gr, ενεργοποιήθηκε για 1 h στην διάταξη νετρονικής ενεργοποίησης του Ε.Π.Τ. - Ε.Μ.Π. και στη συνέχεια αναλύθηκε στην ανιχνευτική διάταξη XtRa - CSS για 900 sec. Από τα περιεχόμενα στο δείγμα στοιχεία, σε αυτό το σενάριο ενεργοποίησης αναμένεται να ανιχνευθούν τα εξής στοιχεία: Al, Mg, Mn, Ti, V. Τα αποτελέσματα των αναλύσεων με το πρόγραμμα ANGES δίνονται στον Πίνακα Θ.3.

Ισότοπο	Ενέργεια (keV)	CPS unsup			C	:ps _{sup}
²⁸ AI	1778.8	1.83	±	2.7%	1.76	± 2.5%
²⁷ Mg	843.8	0.25	±	6.2%	0.25	± 5.8%
IVIg	1014.4	0.07	±	15.0%	0.064	l ± 13.8%
⁵⁶ M m	846.6	0.91	±	2.9%	0.72	± 3.2%
IVIII	1811.2	0.138	±	6.5%		
⁵² V	1434.0					
51-	320.0					
11	928.5					

Πίνακας Ο.3: Ρυθμοί καταγραφής γεγονότων με το πρόγραμμα ANGES για το δείγμα Montana Soil 2711 μετά από ενεργοποίηση 1 h.

Θ.2.2 Ενεργοποίηση δείγματος Montana Soil 2711 για 110.5 h

Το δείγμα Montana Soil 2711 μετά από ενεργοποίηση για 110.5 h, αναλύθηκε στην ανιχνευτική διάταξη XtRa - CSS με διάφορα σενάρια, όπως και στην περίπτωση το δείγματος Montana Soil 2710: 1 h, 2 h, 2 h, 5 h, 24 h, 72 h, 96 h. Τα φάσματα διάρκειας 5 h και 96 h αποτελούν επεξεργασμένα φάσματα τα οποία προέκυψαν αθροίζοντας τα προηγούμενα φάσματα 1 h, 2 h, 2 h και 24 h, 72 h, αντίστοιχα. Τα αποτελέσματα των αναλύσεων για το βέλτιστο σενάριο για κάθε ισότοπο δίνονται στον Πίνακα Θ.4.

	Ισότοπο	Ενέργεια (keV)	Διάρκεια αναμονής [§]	Διάρκεια ανάλυσης	CpS սոsսթ	cps _{sup}	
	²⁸ AI	1778.8	1 min	1 h	0.44 ± 2.8%	0.41 ± 2.5%	
		559.1	5 h	24 h	0.061 ± 2.1%	0.0528 ± 1.4%	
	⁷⁶ As	657.0			0.0068 ± 9.0%		
		1216.3			0.0027 ± 23.9%	0.0030 ± 12.2%	
s	⁶⁴ Cu	1345.8	5 h	24 h			
alue	⁴² K	1524.7	1 min	5 h	0.170 ± 2.3%	0.166 ± 2.5%	
d <	⁵⁹ Fo	1099.3	Бþ	96 h	0.0012 ± 16.8%	0.00135 ± 7.1%	
ifie	re	1291.6	511		0.0011 ± 15.0%	0.0011 ± 14.6%	
erti	⁵⁶ Mn	846.6	1 min	1 h	3.45 ± 2.3%	2.70 ± 1.5%	
0		1811.2	± 111111		0.49 ± 2.8%	0.153 ± 5.3%	
	²⁴ Na	1368.5	1 min	5 h	4.10 ± 1.4%	2.03 ± 1.5%	
	¹²² Sb	564.1	5 h	24 h	0.0149 ± 5.6%	0.0134 ± 3.2%	
	⁶⁵ Zn	1115.5	5 h	96 h			
	^{69m} Zn	438.9	5 h	96 h		0.0007 ± 24.8%	
	¹⁹⁸ Au	411.8	29 h	72 h	0.0010 ± 30.4%	0.0006 ± 25.5%	
	¹⁵² Eu	121.8		24 h	0.0148 ± 5.6%	0.0054 ± 9.5%	
es		841.6	5 h		0.0099 ± 8.5%	0.0053 ± 6.7%	
alu		963.5			0.0100 ± 8.4%	0.0099 ± 6.1%	
> p	⁷² Ga	834.0	5 h	96 h	0.0029 ± 8.8%	0.0017 ± 9.8%	
ifie	¹³⁹ La ^{**}	328.8	20 h	72 h	0.0015 ± 35.9%	0.0015 ± 12.8%	
cert		487.0			0.0042 ± 4.8%	0.0026 ± 6.7%	
Non-6		815.0	2911		0.0035 ± 5.9%	0.0020 ± 4.5%	
		1596.2			0.0050 ± 3.6%	0.0029 ± 4.1%	
	⁴⁶ Sc	889.3	20 h	72 h	0.0023 ± 9.6%	0.0017 ± 10.0%	
		1120.0	2911	7211	0.0036 ± 9.5%	0.0022 ± 10.5%	

Πίνακας Θ.4: Ρυθμοί καταγραφής με το πρόγραμμα ANGES δείγματος Montana Soil 2711 μετά από 110.5 h ενεργοποίησης για το βέλτιστο σενάριο ανάλυσης για κάθε ισότοπο.

Πρότυπο υλικό αναφοράς Fly ash 1633b Θ.3

0.3.1 Ενεργοποίηση δείγματος Fly ash 1633b για 1 h

Από την ενεργοποίηση του δείγματος ιπτάμενης τέφρας NIST fly ash 1633b για 1 h προέκυψαν δύο φάσματα ανάλυσης στην ανιχνευτική διάταξη XtRa - CSS, ένα unsuppressed και ένα suppressed. Αναλύοντας τα φάσματα αυτά με το πρόγραμμα ANGES προκύπτουν οι ρυθμοί καταγραφής γεγονότων που παρουσιάζονται στον

[§] Όπου διάρκεια αναμονής διάφορη του 1 min σημαίνει ότι δεν λαμβάνονται υπόψη φάσματα που λήφθηκαν από το πέρας της ενεργοποίησης μέχρι την έναρξη της ανάλυσης ενδιαφέροντος. ** Έχει ληφθεί υπόψη και η συνεισφορά της φωτοκορυφής υποστρώματος του ²²⁸Ac.

⁺⁺ Έχει ληφθεί υπόψη και η συνεισφορά της φωτοκορυφής υποστρώματος του ²¹⁴Bi.

Πίνακα Θ.5, συνοδευόμενοι από τις αντίστοιχες αβεβαιότητες προσδιορισμού φωτοκορυφής σε επίπεδο εμπιστοσύνη 1σ.

Ισότοπο	Ενέργεια (keV)	CPS _{unsup}		cps _{sup}			
²⁸ AI	1778.8	3.45	±	2.0%	3.29	±	2.1%
²⁷ Ma	843.8	0.57	±	5.8%	0.54	±	11.1%
Ivig	1014.4	0.21	±	6.5%	0.20	±	4.4%
56 40	846.6	0.21	±	10.6%			
IVIII	1811.2						
⁵² V	1434.0				0.08	±	14.7%
51 ;	320.0						
	928.5						

Πίνακας Θ.5: Ρυθμοί καταγραφής γεγονότων με το πρόγραμμα ANGES για το δείγμα Fly ash 1633b μετά από ενεργοποίηση 1 h.

Όμοια με την περίπτωση του Montana Soil 2710, τα αποτελέσματα των αναλύσεων με τον κώδικα SPUNAL και το πρόγραμμα ANGES είναι αντίστοιχα σε όρους cps, ωστόσο το πρόγραμμα ANGES αποδίδει στις φωτοκορυφές υψηλότερες αβεβαιότητες στις κορυφές φωτονίων που δεν εκπέμπονται σε σειρά με άλλα (1778.8 keV, 1014.4 keV), ενώ συμβαίνει το αντίθετο για τα φωτόνια που εκπέμπονται σε σειρά. Εξαίρεση στα παραπάνω αποτελεί το V, η φωτοκορυφή του οποίου δεν ανιχνεύεται από το πρόγραμμα καθόλου στο unsuppressed φάσμα, ενώ στο suppressed ο υπολογιζόμενος ρυθμός καταγραφής διαφέρει σημαντικά από εκείνου με τον κώδικα SPUNAL.

Θ.3.2 Ενεργοποίηση δείγματος Fly ash 1633b για 110.5 h

Τα αποτελέσματα των αναλύσεων του δείγματος Fly ash 1633b μετά από ενεργοποίηση για 110.5 h, για το βέλτιστο σενάριο για κάθε ισότοπο δίνονται στον Πίνακα Θ.6. Τα φάσματα διάρκειας 5 h και 96 h αποτελούν επεξεργασμένα φάσματα τα οποία προέκυψαν ως άθροισμα επιμέρους φασμάτων.

	Ισότοπο	Ενέργεια (keV)	Διάρκεια αναμονής ^{‡‡}	Διάρκεια ανάλυσης (h)	CpS _{unsup}		cps _{sup}		
Š	²⁸ AI	1778.8	1 min	1 h	0.90 ±	2.0%	0.86	± 1.8%	
		559.1	5 h	24 h	0.083 ±	1.5%	0.071	± 1.3%	
	⁷⁶ As	657.0			0.010 ±	7.0%	0.003	± 11.1%	
		1216.3			0.003 ±	13.6%			
alue	⁴² K	1524.7	1 min	5 h	0.145 ±	2.3%	0.139	± 2.5%	
o v	⁵⁹ Fo	1099.3	Гb	06 h	0.0048 ±	4.8%	0.0043	± 3.7%	
ifie	16	1291.6	511	3011	0.0032 ±	7.4%	0.0032	± 3.7%	
erti	⁵⁶ Mn	846.6	1 min	1 h	0.83 ±	5.5%	0.61	± 5.8%	
Ŭ		1811.2	± 111111	ТU	0.124 ±	5.2%	0.041	± 8.1%	
	²⁴ Na	1368.5	1 min	5 h	0.95 ±	1.6%	0.460	± 2.0%	
	^{81m} Se	103.0	5 h	24 h	0.140 ±	2.1%	0.137	± 2.6%	
	^{87m} Sr	388.4	1 min	5 h	0.023 ±	8.8%	0.022	± 9.5%	
	⁶⁰ Co	1173.2	20 h	72 h			0.0006	± 21.7%	
		1332.5	2911		0.0012 ±	12.5%	0.0006	± 18.2%	
10	¹⁵² Eu	121.8		24 h	0.064 ±	2.3%	0.0220	± 2.5%	
ne		841.6	5 h		0.0366 ±	2.5%	0.0201	± 4.3%	
val		963.5			0.040 ±	2.7%	0.037	± 3.0%	
ied	¹³⁹ La ^{§§}	328.8		72 h	0.0175 ±	3.0%	0.0031	± 7.9%	
Non-certif		487.0	20 h		0.0241 ±	1.5%	0.0062	± 3.2%	
		815.0	2311		0.0112 ±	3.5%	0.0048	± 3.9%	
		1596.2			0.0237 ±	2.4%	0.0069	± 2.9%	
	¹²² Sb	564.1	5 h	96 h	0.0034 ±	10.2%	0.0027	± 7.5%	
	¹⁷⁵ Yb	113.5	E b	96 h	0.0022 ±	35.7%	0.002	± 64.1%	
		396.0	JII		0.0020 +	13.6%	0.0020	+ 10.8%	

Πίνακας Θ.6: Ρυθμοί καταγραφής με το πρόγραμμα ANGES δείγματος Fly ash 1633b μετά από 110.5 h ενεργοποίησης για το βέλτιστο σενάριο ανάλυσης για κάθε ισότοπο.

Θ.4 Πρότυπο υλικό αναφοράς Industrial Sludge 2782

Θ.4.1 Ενεργοποίηση δείγματος Industrial Sludge 2782 για1 h

Από την ενεργοποίηση του δείγματος ιπτάμενης τέφρας NIST fly ash 1633b για 1 h προέκυψαν δύο φάσματα ανάλυσης στην ανιχνευτική διάταξη XtRa - CSS, ένα unsuppressed και ένα suppressed. Αναλύοντας τα φάσματα αυτά με το πρόγραμμα ANGES προκύπτουν οι ρυθμοί καταγραφής γεγονότων που παρουσιάζονται στον

^{**} Όπου διάρκεια αναμονής διάφορη του 1 min σημαίνει ότι δεν λαμβάνονται υπόψη φάσματα που λήφθηκαν από το πέρας της ενεργοποίησης μέχρι την έναρξη της ανάλυσης ενδιαφέροντος.

^{§§} Κατά τους υπολογισμούς έχει ληφθεί υπόψη και η συνεισφορά της φωτοκορυφής υποστρώματος του ²²⁸Ac στην ίδια ενέργεια.

Πίνακα Θ.7, συνοδευόμενοι από τις αντίστοιχες αβεβαιότητες προσδιορισμού φωτοκορυφής σε επίπεδο εμπιστοσύνη 1σ.

Ισότοπο	Ενέργεια (keV)	cps _{unsup}		cps _{sup}			
²⁸ AI	1778.8	0.53	±	5.1%	0.51	±	3.5%
	417.0	2.29	±	2.9%	0.78	±	4.1%
	818.8	0.50	±	7.0%			
¹¹⁶ In	1097.0	2.75	±	2.2%	1.11	±	3.6%
	1293.4	3.49	±	2.2%	1.19	±	3.1%
	1507.7	0.41	±	5.7%	0.16	±	7.0%
²⁷ Mg	843.8						
IVIg	1014.4						
⁵⁶ Mp	846.6	0.51	±	7.4%	0.43	±	7.2%
IVIII	1811.2						
⁵² V	1434.0						
⁵¹ T ;	320.0						
	928.5						

Πίνακας Θ.7: Ρυθμοί καταγραφής γεγονότων με το πρόγραμμα ANGES για το δείγμα Industrial Sludge 2782 μετά από ενεργοποίηση 1 h.

Θ.4.2 Ενεργοποίηση δείγματος Industrial Sludge 2782 για 110.5 h

Τα αποτελέσματα των αναλύσεων του δείγματος Industrial Sludge 2782 μετά από ενεργοποίηση για 110.5 h, για το βέλτιστο σενάριο για κάθε ισότοπο δίνονται στον Πίνακα Θ.8. Τα φάσματα διάρκειας 5 h και 96 h αποτελούν επεξεργασμένα φάσματα τα οποία προέκυψαν ως άθροισμα επιμέρους φασμάτων.

	Ισότοπο	Ενέργεια (keV)	Διάρκεια αναμονής ^{***}	Διάρκεια ανάλυσης	CPS unsup	срs _{sup}		
	²⁸ AI	1778.8	1 min	1 h	0.151 ± 5.7%	0.143 ± 4.3%		
	¹⁴¹ Ce	145.5	5 h	96 h	0.0180 ± 2.9%	0.0178 ± 2.0%		
	¹⁴³ Ce	57.4	5 h	96 h	0.0021 ± 31.6%			
		293.3			0.0076 ± 4.8%	0.0076 ± 2.4%		
	⁶⁰ Co	1173.2	29 h	72 h	0.0019 ± 14.8%	0.0008 ± 21.9%		
s		1332.5						
alue	⁵⁹ 50	1099.3	20 h	72 h	0.0150 ± 2.8%	0.0151 ± 2.6%		
d va	ге	1291.6	29 11		0.0115 ± 2.3%	0.0111 ± 2.4%		
fie	⁷² Ca	629.9	5 b	06 h	0.0133 ± 14.6%			
erti	Ga	834.0	5 11	90 11	0.0123 ± 2.6%	0.0098 ± 3.4%		
Ŭ	⁴² K	1524.7	1 h	5 h	0.023 ± 11.6%	0.025 ± 6.0%		
	²⁴ Na	1368.5	1 min	5 h	4.38 ± 1.5%	2.30 ± 1.6%		
	¹³⁹ La ^{†††}	328.8	5 h	96 h	0.0115 ± 5.7%	0.0019 ± 10.6%		
		487.0			0.0211 ± 2.2%	0.0059 ± 4.1%		
		815.0			0.0095 ± 3.2%	0.0039 ± 5.0%		
		1596.2			0.0210 ± 1.8%	0.0059 ± 2.9%		
sə	¹⁹⁸ Au	411.8	5 h	96 h	0.92 ± 1.1%	0.460 ± 1.3%		
alu	⁵⁶ Mn	846.6	1 min	1 h	2.09 ± 1.6%	1.65 ± 1.8%		
e v		1811.2	T IUIU		0.29 ± 3.5%	0.104 ± 5.3%		
enc	¹⁵² Eu	121.8		24 h	0.0040 ± 22.0%	0.0024 ± 23.7%		
fer		841.6	5 h		0.0035 ± 23.6%	0.0022 ± 18.8%		
Re		963.5				0.0033 ± 11.2%		
sər	⁷⁶ As	559.1		24 h	0.112 ± 1.1%	0.094 ± 1.4%		
on valu		657.0	5 h		0.0121 ± 5.5%	0.0029 ± 17.4%		
		1216.3			0.006 ± 17.5%	0.0052 ± 10.7%		
ati	⁶⁴ Cu	1345.8	5 h	24 h	0.0049 ± 12.3%	0.0049 ± 8.0%		
nform	^{81m} Se	103.0	5 h	96 h	0.0069 ± 11.3%	0.0064 ± 12.7%		
	^{69m} Zn	438.9	5 h	96 h	0.0020 ± 15.8%	0.0019 ± 10.1%		

Πίνακας Θ.8: Ρυθμοί καταγραφής με το πρόγραμμα ANGES δείγματος Industrial Sludge 2782 μετά από 110.5 h ενεργοποίησης για το βέλτιστο σενάριο ανάλυσης για κάθε ισότοπο.

^{****} Όπου διάρκεια αναμονής διάφορη του 1 min σημαίνει ότι δεν λαμβάνονται υπόψη φάσματα που λήφθηκαν από το πέρας της ενεργοποίησης μέχρι την έναρξη της ανάλυσης ενδιαφέροντος. *** Έχει ληφθεί υπόψη και η συνεισφορά της φωτοκορυφής υποστρώματος του ²²⁸Ac.