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Abstract 

 
Maritime Administration (MarAd) in cooperation with Hydronautics Inc., motivated 

by the rising interest for full hull form merchant ships in the early 1970’s and the lack 

of systematic data regarding the performance of these vessels, developed the so-called 

MARAD Systematic Series, comprised of 16 full hullforms, specifically designed for 

use as bulk carriers and tankers. The experimental resistance data are available in a 

series of diagrams illustrating the residual resistance coefficient as a function of the 

geometric characteristics of each hull for a range of Froude numbers. The present 

thesis investigates the potential of Artificial Neural Networks (ANNs) to estimate the 

residual resistance coefficient, and subsequently the resistance, of hullforms designed 

according to MARAD Systematic Series, given their main dimensions and block 

coefficient. The data used for the training of the networks were collected from five 

diagrams, which are provided by the Series, and illustrate the resistance coefficient for 

different combinations of their length to breadth and breadth to draft ratios and block 

coefficient.  

To this end, three different types of ANNs have been considered; Multi-layer 

perceptron (MLP) networks, Radial Basis Function (RBF) networks, and Support 

Vector Machines (SVM). The performance of a network, regardless its type, is 

affected by its characteristics, among which its architecture and learning method are 

of particular importance. Several trials have been conducted for every type of 

network, changing systematically these characteristics. The developed networks have 

been thoroughly evaluated, assessing their potential to accurately predict the 

resistance of MARAD-type hullforms.  

A total number of 616 networks were developed; 380 MLPs, 125 RBFs and 111 

SVMs. Selected alternatives of these networks, i.e. 4 MLPs, 2 RBFs and 2 SVMs are 

presented and their potential for the prediction of MARAD hullforms’ resistance is 

discussed. The deviations of the best-performing networks’ predictions from the 

resistance data provided by MARAD were not higher than 1.6% for hullform 

characteristics inside the limits of the training dataset and 6.8% outside them. 

ANNs are quick and effective in estimating the resistance of MARAD hullforms, 

eliminating the need for searching through the diagrams that provided their training 

data. The results indicate that their use could be successfully applied also in the case 

of other Systematic Series. In addition, it might be argued that ANNs could be 

successfully trained to estimate calm water resistance of selected hullform types, 

based on the results of systematic calculations using advanced CFD software tools. 
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Introduction  
The prediction of a hull's resistance is a problem of great importance for the ship 

designer, closely related to the design and optimization of the hullform and propeller, 

the selection of the main engine, the ship’s environmental impact and its fuel cost 

during the ship’s entire life-cycle. Resistance predictions are traditionally based on 

tank testing, or nowadays, on software tools applying Computational Fluid Dynamics 

(CFD). However, in the preliminary design stage, resistance predictions are quite 

often carried out based on relevant data from systematic series, such as the Series 60 

Methodical Series of Single-Screw Ships ([1]), the SSPA Cargo Liner Series ([2]), the 

BSRA Methodical Series ([3]), or the MARAD Systematic Series of full-form ship 

models ([4], [5]). The data from the systematic series are usually presented in 

graphical or tabular form, enabling the manual calculation of a ship’s resistance 

following a relatively simple and straightforward procedure. Such a procedure might 

be perfectly suitable for the estimation of the resistance curve of one particular 

hullform, but when it comes to the systematic optimization of a ship design, manual 

calculation procedures are not efficient any more. In such cases programmable 

calculation procedures would be required, enabling the evaluation of a large number 

of alternative designs in minimal computation time. Regression techniques, utilizing 

polynomial interpolation of the data provided by the systematic series have been 

developed by several authors (see e.g. [6] to [11]). The present work investigates a 

different approach to this problem, i.e. the use of Artificial Neural Networks (ANNs) 

as a tool for the prediction of resistance of full hullforms, based on the resistance data 

provided by the MARAD Systematic Series. 

The MARAD Systematic Series is comprised of 16 full hullforms, specifically 

designed for use as bulk carriers and tankers. The experimental resistance data are 

available in a series of diagrams. In these figures the residual resistance coefficient 

(CR) is given for a range of Froude (Fn) numbers as a function of three geometric 

parameters; length to breadth ratio (L/B), breadth to draft ratio (B/T) and block 

coefficient (CB). Data from these diagrams was collected in the form of points defined 

by five numbers (i.e. CR, Fn, L/B, B/T, CB), and has been used to train and evaluate a 

series of neural networks aiming to estimate the residual resistance coefficient of 

ships designed according to the MARAD Series.  

Artificial neural networks have recently found applications across many scientific 

fields, providing an alternative to traditional methods of solving complicated non-

linear problems, such as pattern recognition, classification or function approximation. 

They consist of processors (neurons), which communicate to each other with signals 

through weighted connections, mimicking the structure of a biological neural system. 

Trained ANNs are considered able to provide the desired output from a set of input 

parameters without the need for an exact function or model for the problem, even if 

the data are noisy. They also offer a number of advantages, including: sufficient 

accuracy of results, flexibility in implementing, availability of multiple training 



Prediction of Resistance of MARAD Systematic Series’ Hullforms using Artificial Neural Networks 

2 
 

algorithms, ability to implicitly detect complex non-linear relationships between 

independent variables. These features make ANNs rightly suited for application in a 

wide range of engineering problems. Examples from the use of ANNs for the 

prediction of resistance, propulsion, maneuvering and seakeeping characteristics of 

ship are presented in ([12]) to ([19]). 

Among the numerous available types of neural networks, three were selected, to be 

tested in the present thesis. The first type of the examined neural networks was the 

multi-layer perceptron (MLP), which is the most commonly used. They comprise at 

least one hidden layer of neurons, between the input and the output layer, which 

enables them to solve non-linear problems. Additionally, the distribution of their 

neurons in more than one parallel hidden layers, usually leads to lower numbers of the 

total neurons used. The weights of the neural connections are defined applying a 

back-propagation algorithm that transfers the error from the output back to the input 

layer. Radial Basis Function (RBF) neural networks were also considered for this 

study. They usually consist of one hidden layer, and although they also execute non-

linear transformations and linear weighted sums, they are trained using local 

transformations instead of the back-propagation algorithm, which is a computationally 

quicker process ([20]). Support Vector Machines (SVM), on the other hand, use a 

high principled learning method, that takes into account the structure of the network 

utilizing a different cost function compared to the other two ANNs and distinguishes 

between learning tasks. Different types of learning processes are used in order to 

solve regression or classification problems ([21]).  

In order to determine which network fits better to the problem at hand, several trials 

have been conducted. Taking into account that a network’s performance is affected by 

its characteristics, networks of the three aforementioned types were trained for a large 

number of combinations of these characteristics.  

In total, 616 networks were developed; 380 MLPs, 125 RBFs and 111 SVMs. 

Selected alternatives of these networks, i.e. 4 MLPs, 2 RBFs and 2 SVMs are 

presented and their potential for the prediction of MARAD hullforms’ resistance is 

discussed. Having been trained, they were used for estimating the resistance of 

MARAD-type hullforms and were evaluated accordingly. The best networks were, 

finally, selected and their estimations are presented in graphical and tabular form. 
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1. MARAD systematic series  

1.1 Systematic series in ship design 
Systematic series consist of hulls that share common geometric properties and have 

been developed in order to assist the naval architect in the design of an efficient 

hullform, particularly during the initial design stage. In addition, systematic series 

provide valuable data for the preliminary prediction of calm water resistance and, in 

some cases, maneuvering characteristics of ships, based on the systematic analysis of 

extensive tank testing. Systematic series are comprised by a number of hullforms, 

which are often developed from a parent hull, and usually in a dimensionless form. 

The hullform of the offsprings derives from the parent hull’s, with the systematic 

variation of appropriate geometric characteristics, within a predefined range. A series 

of model hulls are constructed and tank tested in order for their resistance and 

maneuvering properties to be obtained. The collected data are analyzed and illustrated 

in graphical or tabular form as functions of selected main hull parameters ([22], [23]).  

Systematic series’ data are available for a large range of ship types, such as merchant 

ships, tugs, fishing vessels, semi-displacement or planning hulls. Systematic series for 

single-screw merchant ships are, for example, the Series 60 Methodical Series of 

Single-Screw Ships ([1]), the SSPA Cargo Liner Series ([2]), the BSRA Methodical 

Series ([3]), or the MARAD Systematic Series of full-form ship models ([4], [5]).  

1.2 Development of MARAD systematic series 
MARAD Systematic Series was developed by the U.S. Maritime Administration 

(MarAd) in cooperation with Hydronautics Inc., aiming to respond to the rising 

interest for full hull form merchant ships in the early 1970’s, given the lack of 

systematic data regarding the performance of such vessels, that could be used in the 

design process. As a result, the systematic series is characterized by high block 

coefficient values (CB). Low length to breadth ratios (L/B) and high breadth to draft 

ratios (B/T) were also adopted for economic and operational reasons respectively. 

The initial task in the development of the MARAD Systematic Series was the 

selection of the appropriate parent hull form, from which the other hulls of the series 

derive. There were two options available regarding this task; either to choose an 

existing hull of known performance characteristics or to develop a new set of lines. 

The second one was eventually preferred and as a result research was conducted in 

order to define the appropriate geometric properties of the parent hull form. 

Consulting with experts in research facilities in UK, the Netherlands, West Germany, 

Denmark and Sweden and thorough review of the published literature was carried out. 

Ships in service, new designs and systematic series with geometric characteristics 

close to the desired range were taken into account. The considered data included 

information from the Series 60 Methodical Series of Single-Screw Ships ([1]), the 

SSPA Cargo Liner Series ([2]), the BSRA Methodical Series ([3]), the systematic 

series of tankers developed and tested by the Research institution of Japan ([24]) and 
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the results of the experiments regarding hulls with cylindrical bows that were 

conducted at the Netherlands Ship Model Basin ([25]). 

The results of the analysis of the collected information were used for the development 

of the geometry of the parent hull and the selection of the range of geometric 

characteristics of the series. High values of CB, combined with low values of L/B were 

observed with the increase in the size of tankers. Values up to 0.875 for the former 

and down to 4.5 for the latter parameter were expected to be within the range of 

interest for future ship designs. Restrictions in ship’s laden draft would also lead to 

higher B/T values. As a result, the following range of variation of the series’ 

parameters was selected: CB between 0.8 and 0.875, L/B values from 4.5 to 6.5 and 

B/T values from 3 to 4.75. A cylindrical bow shape was chosen over a conventional 

one, as a means of achieving lower resistance values, according to experimental data 

regarding full-form hulls for a range of drafts. The ease of adaption of this 

configuration to different geometries required for the development of the systematic 

series discouraged the consideration of a bulbous bow. The stern’s selection was 

made taking into account important hydrodynamic issues, such as flow separation and 

was based on the experience of Hydronautics Inc. regarding the afterbody design of 

ships with high B/T values. This approach resulted to an ending run with long, flat 

buttocks and conventional transom stern profile ([4], [5]).  

Sets of lines were developed for the parent and the offspring hulls as a combination of 

three segments; the entrance, the parallel mid-body and two alternative ending runs, a 

short and a long one, that represent the two extreme values of L/B of the series (i.e. 

L/Blong=6.5 and L/Bshort=4.5). Offsets for hulls with L/B values in the interim were 

obtained with interpolation methods. The lines of the three hull segments of the parent 

hull, also mentioned as Ship A, are presented in Fig. 1 to Fig. 3. Sixteen models were 

constructed and tank-tested in order to obtain their calm water resistance and 

maneuvering characteristics. Their longitudinal center of buoyancy (LCB) was placed 

2.5% of length forward of amidships, as a result of preliminary resistance tests that 

were performed on three models. The sixteen model hulls comprising the MARAD 

series are characterized by their block coefficient (CB), their breadth to draft ratio 

(B/T) and length to breadth ratio (L/B) as shown in Fig. 4.  

1.3 Ship Resistance  
A ship should be designed to travel efficiently through water with minimum 

resistance. The estimation of a ship’s resistance is a task of great importance during 

the design process. The optimization of the hullform, the selection of the main engine, 

and the reduction of fuel consumption are problems closely related to the ship’s 

resistance. Requirements for stability, good seakeeping and maneuvering properties 

also influence the hullform design. The estimation of a ship’s resistance may be 

decomposed in the calculation of two main components, the pressure resistance and 

the frictional resistance. Each of these two components may be calculated separately, 

based on the hypothesis that the interactions between them are low.  
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Tank tests are usually conducted and the resistance of the full scale ship is calculated 

from the resistance measurements of scaled models. The scaling of the tank test 

measurements for the calculation of the resistance of the full scale ship requires the 

understanding of the parts that comprise ship resistance and their behavior ([22], 

[23]). 

 Frictional Resistance 

This force component is present as a result of shear forces between the wetted surface 

and the elements of the fluid, due to its viscosity. The elements of the fluid close to 

the wetted surface have the velocity of the body. Subsequently, due to the created 

shear forces, layers of the fluid will follow the body’s movement. As a result, the 

boundary layer is formed, with velocities ranging from that of the moving object to 

that of the flow field far away from the object. The tangential shear forces acting on 

each element of the hull can be summed over the wetted surface S of the object for the 

friction resistance to be calculated. It is a function of hull’s wetted area, its velocity, 

its roughness and its geometry. It may be divided into two component forces; the flat 

plate frictional resistance and the form resistance, which is part of the residual 

resistance ([22], [23]).  

 Pressure resistance  

This part of the resistance arises from viscous effects and the hull’s wave making, and 

based on that can be divided into viscous pressure resistance and wave resistance. 

Both forces are part of the residual resistance. The viscous pressure resistance is a 

function of the wetted area of the ship, its velocity and its hull’s geometry. The 

creation of waves changes mainly the pressure distribution upon the hull and 

secondary the shear forces. As a result wave resistance is considered part of the 

pressure resistance and is affected by the hull’s form and its velocity. The ship’s 

pressure resistance may be calculated as the integral over the wetted surface of the 

pressure forces normal to the hull. 

Except for the aforementioned components of ship resistance, there are also some 

secondary forces such as: wave breaking resistance, spray resistance, air resistance, 

resistance of appendages including propulsive equipment and added resistance due to 

turning ([22]). 

Froude’s Method of calculating ship resistance 

According to this method the ship’s total resistance is divided into a frictional 

component and a residual component. The frictional component is estimated as the 

resistance of a flat plate with length and surface equal to ship’s length and wetted 

surface respectively, given by the following equation: 

2

2

1
SCR FF   (1) 
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where ρ is the mass density of the liquid, S is the ship’s wetted surface and CF the 

frictional resistance coefficient which is nowadays usually expressed by the 1975 

ITTC ([26]) formula as a function of Reynold’s number (RN):  

 210 2log

075.0




N

F
R

C  (2) 

where  

v

L
RN


  (3) 

and L is the ship’s length, υ its speed and v the liquid’s kinematic viscosity. 

The difference between the total resistance and the frictional resistance, calculated 

according to eq. 1 is defined as the residual resistance which may be expressed in a 

form given in eq. (4): 

2

2

1
SCR RR   (4) 

where CR is the residual resistance coefficient given by: 

F
T

FTR C

S

R
CCC 

2

2

1


 
(5) 

where CT is the total resistance coefficient and RT the total resistance of the ship.  

Based on the above equations and the use of experimental data from a scale model’s 

tests, the total resistance of a ship may be calculated. The model and the real ship 

share the same geometry and the same Froude number, defined as follows: 

gL
FN


  (6) 

where g is the gravitational acceleration. Because the lengths of the ship and the 

model are different, the same applies to their velocities in order to have the same 

Froude number. If λ is the length ratio between the ship and the model (λ = Ls / Lm), 

then the model’s speed should be equal to: 




 s

m   (7) 

For a given speed range at full scale, tank tests are carried out at model speeds 

according to the above equation and the total resistance of the model is measured. 

Subsequently, the frictional resistance coefficient and the frictional resistance of the 
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model, based on eq. (2) and eq. (1) respectively, are calculated. The residual 

resistance of the model is calculated subtracting the frictional resistance from the total 

resistance and subsequently the residual resistance coefficient is calculated from eq. 

(5). For the same Froude number, the residual resistance coefficient at ship scale is 

assumed equal to that at model scale. Then, using eq. (2) the frictional resistance 

coefficient at ship scale is calculated and is subsequently summed with the residual 

resistance coefficient to derive the total resistance coefficient and ultimately the total 

resistance of the ship at the corresponding speed. The towing tanks usually introduce 

the so-called allowance coefficient, or correlation factor CA. The total resistance 

coefficient of the ship in that case is given as follows: 

AFsRmAFsRsTs CCCCCCC   (8) 

where the index m corresponds to the model and s to the full scale ship. 

1.4 MARAD diagrams of residual resistance coefficient  
The experimental procedure described in the former chapter was followed by MarAd 

in order to obtain the residual resistance coefficient of each alternative hullform. 

Models of the 16 hulls were constructed with lengths ranging between 18 ft (5.49 m) 

to 27.48 ft (8.38 m). Bare hull resistance tests were performed for the 16 hulls at full 

load and ballast condition. The obtained results for the residual resistance coefficient 

(CR) are presented in [5] in a series of diagrams, both at full load and ballast 

condition. The diagrams illustrate the CR values versus length to breadth ratio (L/B) or 

breadth to draft ratio (B/T) for a series of Froude numbers (Fn), while block 

coefficient (CB) and B/T or L/B were held constant respectively. In total, five diagrams 

for full load and five for ballast condition are presented in ([5]). However, the range 

of the diagrams does not coincide with the range of the hulls’ parameters. In 

particular, the geometric properties of the ships denoted as M and O exceed the limits 

of the five diagrams. In addition, results for the CR values of the 16 hulls at an 

assumed displacement of 350000t are presented in tabular form for a range of Froude 

numbers. The table corresponding to the full load condition copied from [5] is 

presented in the following (Table 1). 

The data required for the networks’ training in this study were obtained from the 

diagrams corresponding to full load condition. A total number of 1983 points were 

collected from these five graphs in the form of input/output pairs. The input is a four-

dimensional vector consisting of the length to breadth ratio (L/B), the breadth to draft 

ratio (B/T), the block coefficient (CB) and the Froude number (Fn), while the output is 

the residual resistance coefficient (CR). The aforementioned diagrams are provided in 

Fig. 5 to  

Fig. 9. Data from Table 1 were used for further testing of the networks. The total 

resistance of MARAD-type hullforms of an assumed displacement of 350000 t was 

calculated using CR values from the diagrams or the table, the estimation of CF based 

on eq. (2) and setting CA equal to 0.00015 ([5]). 
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Fig. 5: CR versus L/B for Fn values from 0.13 to 0.18 
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Fig. 6: CR versus L/B for Fn values from 0.13 to 0.19 
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Fig. 7: CR versus B/T for Fn values from 0.13 to 0.19 



Prediction of Resistance of MARAD Systematic Series’ Hullforms using Artificial Neural Networks 

14 
 

 

 

Fig. 8: CR versus B/T for Fn values from 0.13 to 0.19 
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Fig. 9: CR versus B/T for Fn values from 0.13 to 0.19 
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2. Artificial Neural Networks  

2.1 Historical Information and Applications 
Artificial Neural Networks (ANNs) are inspired by the human brain functionality and 

loosely model the way it processes sensory information, received from the 

environment. They consist of parallel-distributed, interconnected, non-linear 

processing units, the neurons. Information is acquired from their environment through 

a learning process and stored in the form of weights in the connections ([21]). A 

simplified model of the biological neuron was initially introduced in 1943 by 

McCulloch and Pitts ([27]), as a possible component of a computational system. This 

neuron had several inputs, both excitatory and inhibitory1, and an output, which 

reflected the state of the neuron2. In order for the neuron to be activated, the sum of 

the excitatory signals had to exceed a threshold value T, while inhibitory signals were 

absent. In variations of this model, positive and negative stimulations were of the 

same importance, due to the use of adequate linear weights. Their work set the 

foundations of neural networks, forming a link between neurophysiology and 

mathematical logic ([21], [28]).  

There were numerous milestones in the field of neural networks since they were 

originally introduced, regarding the architecture of the networks and their learning 

process. A well-known learning algorithm for ANNs is based on Hebb’s theory, 

presented in 1949, regarding biological neural networks ([29]). According to this 

hypothesis, when the neurons connected by a synapse are stimulated repeatedly and 

simultaneously, this synapse becomes stronger, hence they are connected more 

effectively. In terms of ANNs, this is accomplished with the increase of synaptic 

weights ([21], [28]). One of the first ANNs to be developed was the perceptron, 

presented in 1957 by Rosenblatt ([30]). This simple neural network was a binary 

classifier that was based on the McCulloch–Pitts neuron, and had the ability of 

updating its weights through a numerical algorithm of supervised learning. This 

algorithm was based mathematically on the so-called perceptron convergence 

theorem. In 1960, the least mean-square (LMS) algorithm was introduced by Widrow 

and Hoff ([31]) and utilized for the development of the adaptive linear element 

(adaline), an early stage single-layer neural network, which also derived from the 

notes of McCulloch–Pitts. The multiple adaline (madaline) that was proposed by 

Widrow two years later ([32]), was one of the first multi-layered network 

architectures and also the first network to be utilized in a real life application, as a 

filter for elimination of echoes on phone lines, that is still in use.  

Minsky and Papert analyzed several proposed networks and proved mathematically in 

1969 that a single-layer network is not able to solve more complex problems, such as 

linear classification in more than two classes ([33]). The following decade was 

                                                 
1 excitatory signals increase the probability of the neuron to be activated, whereas the inhibitory ones, 
in this model, prevent its activation 
2 the sum of the neuron’s inputs 
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characterized by declined interest in neural networks, mainly because of the lack of 

the adequate technology, required for theory testing. However, in 1976 Willshaw and 

von der Malsburg ([34]) published a paper regarding the formation of neural 

connections on the brain using self-organization, that set the basis for later 

advancements. 

In 1982 Hopfield ([35]) presented a complete mathematical analysis of recurrent 

neural networks with symmetric synaptic weights based on an Ising model, which is 

used in statistical physics. Although Hopfield drew information from earlier 

publications, this type of networks are usually referred to by his name ([21], [36]). In 

the same year, Kohonen ([37]) presented his work on self-organized maps using one 

and two dimensioned lattices, presenting differences from the model of Willshaw and 

von der Malsburg. Rumelhart, Hinton and Williams ([38]) reintroduced the back-

propagation learning algorithm in 1986, proposing its use in machine learning and 

presenting its application for that cause. This algorithm adapts the synaptic weights in 

a way that minimizes the mean square error between the actual and desired output 

([21], [36]). The publication of a book under the title Parallel Distributed Processing 

by Rumelhart and McClelland ([39]) contributed to the designation of the back-

propagation algorithm as the most popular for the training of multi-layer perceptrons 

([21]). In 1988, the use of radial basis functions to feed forward neural networks as an 

alternative to multi-layer perceptrons was given by Broomhead and Lowe ([40]), 

linking neural networks with the field of numerical analysis. In the early 1990’s, the 

Support Vector Machines, a different type of supervised feed forward neural networks 

with robust computational properties and statistical learning background, were 

presented by Vapnik and coworkers ([41],[42]). Their work was on behalf of 

AT&Bell Laboratories, and as result these networks were oriented towards real life 

problems, such as character recognition ([21]).  

Artificial neural networks evolved since the introduction of the McCulloch-Pitts 

model, with contributions from the disciplines of neurophysiology, mathematic logic, 

numerical analysis, psychology and physics. Nowadays, their application expands in 

many complex and practical problems related with several fields, such as economics, 

medicine and engineering. Autonomous drivers, weather or stock predictions, image 

recognition and optimal path selection could be solved with ANNs ([43]).  

2.2 Artificial Neural Networks’ characteristics 
An Artificial Neural Network (ANN) consists of a distribution of interconnected 

neurons, arranged in layers, and is characterized by the number of its layers, the kind 

of its neural synapses and the learning paradigm it uses. According to the first 

characteristic they are divided into single-layer and multi-layer networks. The first 

type of networks contains only one layer of neurons as its output layer, while the later 

has ‘hidden’ layers between the input and the output layer ([21]). 

With respect to the kind of their neural synapses, networks may be characterized as 

feed-forward and recurrent. The data in feed-forward networks flow in one direction, 
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from the input layer to the output, through the hidden layers, if existent. Recurrent 

networks contain at least one feedback interconnection, which links the output of a 

neuron with the input of another, placed in the same or previous layer ([21], [36]). A 

network can be also characterized as fully or partially connected if every node is 

connected with every unit of its forward layer or not respectively ([21]). 

A fundamental feature of ANNs is their ability to learn. For this purpose, they adjust 

the weights of their connections and threshold values in order to present a satisfactory 

behavior according to a prescribed criterion. There are three different learning 

paradigms; supervised, unsupervised and reinforcement learning ([21]). In supervised 

learning, the network is provided with a series of input and output pairs in order to 

find a function that connects them. This procedure is evaluated by a cost function, 

usually the mean square error between actual and desired output, which needs to be 

minimized. In unsupervised learning, the network has to classify the input data 

without external information, finding a pattern ([21],[44]). In reinforcement learning, 

the network is in continuous communication with its environment, which rewards or 

not the input – output mapping that has been achieved, in order to minimize a 

performance indicator ([21]).  

2.3 Feed-forward Multi-layer Perceptron 
One of the most widely used neural networks, particularly for function approximation 

or pattern recognition problems, is the feed-forward, multi-layer perceptron (MLP, 

[45]). MLPs consist of an input layer, one or more hidden layers and an output layer 

(Fig. 10). The number of the input and output nodes is equal to the dimension of the 

input and output data respectively. The signal is transferred in a forward direction 

from the input to the output layer ([21]). Every node except for the input layers’ is a 

neuron with a differentiable activation function that generates its output ([21]). 

Sigmoid transfer functions, such as logistic sigmoid or hyperbolic tangent sigmoid, 

are usually preferred as activation functions for MLPs, because consecutive layers of 

neurons with non-linear activation functions enable the network to identify non-linear 

relationships between input and output. The linear transfer function is often used for 

the neurons of the output layer ([44]). The logistic sigmoid function is given by eq. 

(9) while its graphical representation is presented in Fig. 11. The hyperbolic tangent 

sigmoid function is given by eq. (10) and its graphical representation in Fig. 12.  
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In the above equations, yk is the output of the k-neuron and uk is the weighted sum of 

its input synapses. 
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Fig. 10: Architecture

Fig. 11: Logistic sigmoid function

 

The training of these networks is accomplished with the use of the 

propagation algorithm (BP), which is a supervised learning method

algorithm is based on the error correction learning rule, and is executed

In the first stage, the input signal is transferred through the layers, in order for the 

output signal to be produced. During this phase, the synaptic weights remain constant. 

Then, the mean square error of the deviation between the actual 

network and the desired output is 

transferred backwards and the synaptic weights change accordingly, so that the 

average squared error is minimized ([
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where k is the number of

patterns in the training set, 

output of this neuron given by the following equation:
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where uk, the state of the neuron, is given by
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Architecture of a multi-layer perceptron with two hidden layers

 
: Logistic sigmoid function Fig. 12: Hyperbolic tangent sigmoid function

The training of these networks is accomplished with the use of the 

propagation algorithm (BP), which is a supervised learning method

algorithm is based on the error correction learning rule, and is executed

In the first stage, the input signal is transferred through the layers, in order for the 

output signal to be produced. During this phase, the synaptic weights remain constant. 

Then, the mean square error of the deviation between the actual response of the 

network and the desired output is calculated. In the second stage, these deviations are 

transferred backwards and the synaptic weights change accordingly, so that the 

average squared error is minimized ([21]). This cost function is given by

 kk Tttytd 2))()((  

is the number of neurons in the output layer, T the number of input

patterns in the training set, dk(t) the target output of the k neuron and 

given by the following equation: 

, the state of the neuron, is given by 
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layer perceptron with two hidden layers 

 
: Hyperbolic tangent sigmoid function 

The training of these networks is accomplished with the use of the error back-

propagation algorithm (BP), which is a supervised learning method ([39]). This 

algorithm is based on the error correction learning rule, and is executed in two stages: 

In the first stage, the input signal is transferred through the layers, in order for the 

output signal to be produced. During this phase, the synaptic weights remain constant. 

response of the 

calculated. In the second stage, these deviations are 

transferred backwards and the synaptic weights change accordingly, so that the 

by eq.(11):  

(11) 

the number of input-output 

neuron and yk(t) the actual 

(12) 
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where wki is the weight of the synapse between the ith neuron of the previous layer and 

the kth neuron of the output layer. A graphical representation of the structure of the k-

output neuron is provided in Fig. 13. The gradient descent learning rule, known as 

delta rule is usually applied during the learning process for the adjustment of the 

weights. Other learning rules could be also used. The correction of the weights is 

given by eq. (14). 
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where η is the learning rate parameter, which controls the rate of change of the 

weights and the bias of the network and affects the speed of convergence of the 

training ([21]). 

 

Fig. 13: Structure of kt h neuron output 

 

2.3.1  Training algorithms 

The training algorithm is the overall algorithm that is used to train the neural network 

to recognize a certain input and map it to a specified output. Back-propagation 

algorithms are used for the training of multi-layer perceptron networks and can be 

divided further into gradient descent, Newton-Gauss, conjugate gradient and quasi-

Newton algorithms. In this study, three gradient descent algorithms and one quasi-

Newton algorithm were utilized. 

Gradient descent algorithms 

They are first order optimization algorithms that employ the gradient vector of the 

cost function to decide the direction of the training, always pointing towards its 

negative value ([45]). The three gradient descent algorithms used in this study are: 

 Gradient descent back-propagation 
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The weights and biases are updated in the direction of the negative gradient of the 

performance function. It is also called steepest descent. 

 Gradient descent with adaptive learning rate back-propagation 

This algorithm enables changes to the learning rate throughout the training, whereas 

in the steepest descent the learning rate is held constant. In this way, the learning rate 

adapts to the local complexity of the error surface. The algorithm aims to a high 

learning rate, as long as the errors decline. A higher learning rate is accepted, as far as 

the learning process stability is ensured; otherwise the learning rate is decreased as 

necessary ([46]).  

 Gradient descent with momentum and adaptive learning rate back-

propagation 

It is similar to the gradient descent with adaptive learning with the addition of the 

momentum coefficient. The weights are adjusted according to gradient descent with 

momentum. This allows a network to respond not only to the local gradient, but also 

to recent trends in the error surface in order to ignore small features. As a result, the 

network would not stuck in a shallow local minimum ([46]). 

Quasi-Newton algorithms 

Newton’s algorithm is a second order optimization algorithm that requires the 

calculation of a Hessian matrix, that contains second derivatives of the errors. Quasi-

Newton Algorithms approximate the Hessian without the need of calculating second 

derivatives ([46]). The quasi-Newton algorithm used in this study is: 

 Levenberg-Marquardt algorithm 

The Levenberg-Marquardt ([47], [48]) training algorithm is mostly used for training 

small or medium sized networks ([49]). The update of the weights is defined as 

follows: 
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where J is the Jacobian matrix of the first derivatives of the network’s errors with 

respect to its weights and biases, e the vector of network’s errors, wm the weights’ 

vector after the mth step and μ a positive parameter. The cost function of this method 

is the root mean square error: 
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where P is the number of patterns and M the number of outputs. The μ parameter 

changes according to the error. If the error declines μ is divided by a constant factor, 

whereas if the error increases the last adjustment of weights is not valid and μ is 

multiplied by the constant factor. 
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2.3.2 Learning algorithms 

The learning algorithm defines the way that weights and bias of the network will be 

updated during the training. Two different learning algorithms were utilized in this 

study: the gradient descent weight and bias and the gradient descent with momentum 

weight and bias. 

2.4 Radial Basis Function Neural Networks 
Radial Basis Function (RBF) neural networks belong to the category of supervised 

networks and are named after the activation functions they use. Their design does not 

resemble to a biological model, but originates from the field of numerical analysis. 

Radial basis functions were initially utilized in solving the real multivariate 

interpolation problem in 1987, as depicted in the paper of Powell ([50]), while their 

introduction in the design of neural networks was done by Broomhead and Lowe a 

year later ([40]). The learning process in RBFs could be considered as the problem of 

finding the best surface in a multi-dimensional space that provides best fit to the 

training data ([21]).  

The standard three-layer architecture of RBF neural networks is shown in Fig. 14. The 

input layer consists of I source nodes, which is equal to the dimension of the input 

vector and connects the network to its environment. The hidden layer comprises K 

radial basis units (denoted as Rk) that apply non-linear transformation to the input 

vector. This layer is usually of high dimension, because its size is related to the 

network’s capacity to approximate a smooth input-output mapping. The output layer 

is linear and gives the network’s response to the input vector. The hidden and the 

output layers communicate through weighted connections ([21]). In some cases a bias 

term is added, as shown on the left diagram of Fig. 14 or be absent as in that on the 

right. The network with a single output can be used for function approximation 

problems, whereas that with multiple outputs usually for classification problems. In 

this study the first architecture is developed, and therefore analyzed herein. 

 

Fig. 14: Architecture of RBF neural networks with single output (left) and 

multiple outputs (right) 

If xp=[xp1, xp2, …, xpI] is the vector of the pth pattern of the input data and Rk the radial 

basis function of the kth neuron, wk the weight of the connection between the kth 

neuron of the hidden layer with the output, then the output of the network is given by 

eq. 17: 
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If a bias term b is existent, it is added to the right side of eq. (17) or preferably is 

considered as an additional weight w0 with corresponding activation function 

R0(xp)=1 for every pattern p and is included to the sum. Commonly used types of 

radial basis functions include multiquadrics, inverse multiquadrics and polyharmonic 

splines, but the most preferred, and the one used in this study, is the Gaussian:  
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where ck is the I dimensional vector of the center of this radial basis function and σk
2 

the standard deviation of the function of the kth neuron. The selection of the center of 

this radial basis function is part of the learning process. As can be seen in eq. (18) the 

activations of the hidden units are determined by the distance between the input 

vector and a prototype vector (i.e. the center). In the following figure, a Gaussian-type 

one-dimensional RB function is presented for different values of σk
2. 

 

Fig. 15: Gaussian function for different standard deviation values 

Radial basis functions can be normalized and used for developing normalized RBF 

neural networks. Let Rk’ be the normalized radial basis function given by eq. (19). 
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The output of the network in that case is given by: 
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(20) 

In the above equations, a bias term is added, therefore the summation is starting from 

k=0. The normalized version of radial basis functions was selected in this study. The 

introduction of a regularization method in the design of the network is advised as a 
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means of improving its generalization ability, as seen in the work of Poggio and 

Girossi ([51]) and Broomhead and Lowe ([40]). 

2.4.1 Learning strategies 

The training of RBF neural networks is a two stage process. In the first stage, the 

parameters of the radial basis activation functions (i.e. the center vectors ck and the 

standard deviations σk
2) are determined utilizing unsupervised learning methods (i.e. 

methods which use only the input data and not the target data). In the second stage, 

these parameters remain constant and the solution of a linear problem gives the 

weights of the connections between the hidden and the output layers. These sub-

problems are easier to solve compared to the application of the back-propagation 

algorithm, and as result these networks are faster to train than multi-layer perceptrons 

([20]).  

For the selection of the radial basis functions’ centers there are a few different 

approaches. The centers could be a randomly selected subset of the training data, but 

usually this method is used as a first step of an optimization process. Another option 

is to start with all data points (patterns) as centers of the activation functions of the 

neurons. These neurons are then removed one by one as long as the performance of 

the network remains intact. Alternative methods for the selection of the centers are 

e.g. the orthogonal least-squares and the Gaussian-mixture model. However, the most 

widely used training method for RBF neural networks, and the one adopted in this 

study, is the K-means clustering algorithm. The number of the neurons (K) is defined 

in advance and the value of standard deviation is also set and is kept constant for the 

activation functions of all neurons ([20]).  

The algorithm aims to divide the training data {xp} with p=1, 2, …, P into K disjoint 

subsets (clusters) Sk of Nk members each, in such a way that the following metric is 

minimized: 
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where ck (center) is the mean of the data points included in the Sk subset and is given 

by 
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In order to accomplish that the algorithm does the following: It begins by randomly 

assigning the data to the Sk subsets and computes the center ck using eq. (22). Then, 

each pattern xp is reassigned according to its distance from the clusters’ centers, to the 

closest one. The new centers ck of the clusters are recalculated. This process is 

repeated until no change in the partitioning of the data is observed. It is proven that 

through this process the value of F will not increase ([52]). 
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After the centers have been selected, the weights are given by the solution of a pseudo 

inverse problem. Let dp be the desired output of the network for the pth input pattern 

xp. In order to fit the network to the training data, the actual output of the network 

would be required to be equal to the desired output for every presented input pattern, 

which using eq. (17) leads to the following equation: 
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Let G be a matrix with gij=Ri(xj) for i = 1, 2,…, K and j = , 2, …, P. If a bias value is 

used, the matrix has an extra column at the position k+1 with entries equal to one and 

the vector of weight has an extra entry, the bias, at the position k+1. The desired 

outputs and the weights could form a P-dimensioned and K-dimensioned column 

vector d and w respectively. Then eq. (23) could be rewritten as follows:  

Gwd   (24) 

The matrix G does not have an inverse. In order to overcome this difficulty the 

pseudo-inverse matrix G+ is used; where: 
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 As a result the weights of the output synapses are calculated setting:  

dGw   (26) 

Additional information regarding this approach and its theoretical background could 

be found in ([40]) and ([51]).  

2.5 Support Vector Machines 
Support Vector Machines (SVMs) are supervised, feed forward neural networks with 

a single hidden layer that originated from the field of statistical learning and are 

named after the learning algorithm that is used for their training ([21]). The Support 

Vector (SV) algorithm derives from the generalization portrait algorithm, which was 

introduced by Vapnik and Lerner ([53]) in 1963 for the solution of a pattern 

recognition problem and further developed by Vapnik and Chervonenkis ([54]). The 

implementation of the SV algorithm by learning machines of a form close to that of 

currently used SVMs was presented in 1992 and subsequently evolved by Vapnik and 

several coworkers ([41], [42]) at AT & Bell Laboratories. Although, these machines 

were initially used for pattern classification problems, their application expanded 

successfully in other problems such as regression and time series ([55], [56]).  

The SV algorithm differs in a few ways from the other neural network learning 

methods. The weights of an SVM network result from the solution of a Quadratic 

Programming (QP) problem with linear constraints, while that of other ANNs through 

solving a non-convex, unconstraint minimization problem ([57]), as it was described 
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in the case of MLPs and RBFs (see Chapters 2.3 and 2.4). Another difference, is that 

the cost function of an SVM takes into account the structure of the network.  

Different types of learning processes are used in order to solve regression or 

classification problems ([21]) with SVMs. Considering that the problem investigated 

in this thesis is a regression one, the basic concepts regarding SVMs will be described 

through the corresponding learning process, which is usually referred to as Support 

Vector Regression (SVR). There are a few approaches regarding the solution of a 

regression problem with SVM. Among them, the most widely known are the ε-SVR 

and the v-SVR. The first one is used in this study, and analyzed herein. 

2.5.1 Support Vector Regression 

The SVM has a three-layered structure with one hidden layer, as already mentioned, 

and its output for the nonlinear regression problem is the following: 
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where xp = [xp1, xp2, …, xpI] is the pth input pattern with p = 1, 2, … , P, wm is the 

weight of the connection between the mth neuron of the hidden layer and the output 

layer and w = [w0, w1, …, wM]T, {φm(x)} a set of non-linear basis functions with 

m = 0, 1 ,…, M and φ(xp) = [φ0(xp), φ1(xp), …, φm(xp)]. The bias term is represented 

by the weight w0 with corresponding activation function φ0(xp) = 1 for every pattern 

p. The weights w and their number are the results of the learning process. The SVR 

learning algorithm defines the weights and the number M of the neurons, minimizing 

the following value, known as empirical risk: 
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where dp is the desired output for the pth input pattern xp. This is the so-called ε-

intensive loss function. It ignores errors less than ε, which is a user defined positive 

value, and also allows the model to approximate dp with a specific accuracy ([58]). 

After appropriate calculations ([2142], [42]), this initial minimization problem is 
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reformed to the dual optimization problem of finding the values {αp}, {αp
*} with 

p = 1, 2, …, P that maximize the objective function given in eq. (31): 

 
),()()(

2

1

)()(),(

1

*

1

*

*

1

*

1

*

ji

P

i
jj

P

j
ii

pp

P

p
pp

P

p
ppp

K

dQ

xx



 











 (31) 

subjected to the following constraints: 
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where C is a user defined parameter, also called box constraint, and K is the inner-

product Kernel function: 
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The radial basis function φ maps the problem to the feature space, but the introduction 

of the Kernel function eliminates the need of computing the values φ(xp) for every 

pattern p for their inner product to be obtained. There are several types of inner-

product Kernel functions appropriate for use in SVMs, such as the polynomial with 

equation: 
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where its degree n and the kernel scale λ are user defined parameters, and the 

Gaussian function described by eq. (35), where only the kernel scale λ, which is equal 

to 1/2σ2, needs to be defined. 
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It is also proven that the vector of weights is given by the following equation: 
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The estimation yp of the network for the pattern xp given by eq. (27) is reformed 

taking into account eq. (36) and eq. (33) as follows:  
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The input patterns {xm} with corresponding multipliers αm≠αm
* are the support vectors 

of the SVM. Their number M is part of the optimization’s problem solution. The ε and 

C are user defined parameters, along with the selection of the Kernel function K and 

its parameters ([21]).  

The number of the occurring support vectors influences the complexity of the 

produced SVM. The ε value affects that number through the loss function that allows 

errors lower than ε. A higher ε value leads to fewer support vectors, and subsequently 

a more flat model (i.e. smaller w values), which is preferred. C value influences the 

weight values and the margin of acceptable errors above ε. Therefore, both parameters 

determine models complexity in different ways ([59]). These parameters should be 

defined simultaneously. The architecture of a trained SVM is depicted in Fig. 16. 

It is worth mentioning, that the dual optimization problem is a QP problem that is 

computationally demanding to solve for large datasets. To this end, several algorithms 

were proposed. The chunking algorithm ([58]), the Osuna’s algorithm ([57]) and the 

Sequential Minimal Optimization algorithm (SMO) ([60]). The last one is the most 

widely adopted. 

  

Fig. 16: Architecture of a trained SVM 

2.6 Data sets 
The available data for the network training are usually divided into three mutually 

exclusive sets.  

a. Training Set: This set of data is used for the update of weights and biases of 

the network in order for the cost function to be minimized. 



Prediction of Resistance of MARAD Systematic Series’ Hullforms using Artificial Neural Networks 

30 
 

b. Validation Set: This set is used for the tuning of parameters other than weights 

and for comparison between different neural networks. 

c. Test Set: This is the set of data used for evaluation of the predictive ability of 

the network. 

The scheme of selecting a validation set as a percentage of the available for training 

data is also known as holdout validation. There is also another way of selecting a 

validation set, usually used for small datasets; the k-fold validation. This scheme 

divides the available data in k disjoint folds. Subsequently, trains the algorithm k 

times using each time a different fold as the validation set and the remaining as 

training set. After each passing the corresponding validation error is calculated. The 

validation error of the network is equal to the average of all calculated validation 

errors. The number of the folds k is user defined ([61]). 

2.7 MATLAB Environment 
The development of the ANNs for the approximation of the resistance of ships 

designed according to the MARAD series was carried out using the MATLAB ([62], 

[63]) software. MATLAB is a fourth-generation programming language that is widely 

used in applications of linear algebra, numerical analysis, implementation of control 

systems and image processing by both researchers and practitioners.  

Except for a library of functions and a compiler MATLAB includes numerous 

Toolboxes specially designed for specific applications. In this study, two of these 

were used; the Neural Network Toolbox ([49],[64]) and the Statistics and Machine 

Learning Toolbox ([61], [65]). These added features provide functions and an app 

with a handy interface for designing, implementing, visualizing and evaluating neural 

networks and learning machines.  

Neural Network Toolbox is suitable for developing MLPs, and through its function 

library allows the user to set the learning rate, the division ratio of the data and the 

distribution of the neurons in the layers. There is also a list of available options 

regarding the activation functions of the neurons, the training and learning algorithm 

of the network. Although the corresponding app is easy to handle, it does not enable 

changes to all of the aforementioned network configurations. As a result, the 

developed MLPs were trained using a script that was generated for this purpose, 

deploying the functions available by the function library of the Toolbox. The script 

was used to set the number and the distribution of the neurons to layers, the applied 

training and learning algorithm, the learning rate, the division ratio of the data to sets 

(training, validation, test) and a stopping criterion.  

On the contrary, the available functions concerning RBFs were considerably fewer, 

and in any case not enough to allow for the use of Neural Network Toolbox. RBFs 

were trained with a user developed script that applied the learning strategy of K-

means described in chapter 2.4.1 to a network with the Gaussian as activation 

function of its neurons. The generated script allows the user to set the number of 
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neurons of the hidden layer, the sigma parameter of the Gaussian, and also calculates 

the performance indices of the network, which are necessary for its evaluation. A 

modified algorithm, as a means of achieving better results, was also developed in the 

form of script.  

The Statistics and Machine Learning Toolbox, and specifically the Regression 

Learner app, was used for the development of SVMs. This app offers a variety of 

regression learning algorithms and among them is the SVM algorithm, with six 

commonly used configurations for the kernel function. The app uses by default the 

SMO algorithm for the solution of the quadratic programming problem and the ε-

intensive loss function. The user through the app’s window defines the validation 

technique, the kernel function, the box constraint (C) and ε values. The app trains the 

network, calculates the performance indices and notes the most robust network among 

those produced by the user. Because of the Toolbox’s flexibility it was used for the 

development of the SVMs.  

All networks were developed on a personal portable computer equipped with a quad 

core processor (Intel® Core™ i7-2670QM at 2.2GHz) and a 4 GB of DDR3 RAM. 

The 2016b version of the MATLAB software was used for the development of MLPs 

and RBFs, and the 2017a for SVMs.  
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3. Development of Artificial Neural Networks  

3.1 Multi-layer Perceptrons 

3.1.1 Implementation 

In order to determine the MLP that suits better to the problem at hand, several trials 

have been conducted with different configurations. Each configuration is determined 

by ([49]): 

 the number of hidden layers used, 

 the number and type of neurons that comprise each one of them, 

 the training algorithm, 

 learning algorithm and rate.  

These trials have been carried out in two stages. In the first stage, 18 different 

network architectures have been tested. For each one of them, 16 different networks 

have been implemented, based on a combination of four back-propagation training 

algorithms and four different pairs of activation functions. As a result, 288 networks 

were constructed and tested. During this initial set of trials, the gradient descent 

weight and bias learning algorithm was used and the learning rate was set to 0.02. The 

available data was separated into mutually exclusive training (80%) and validation 

(20%) sets. The validation set comprises data unknown to the trained network and is 

usually used for the comparison and ranking of different network configurations. A 

graphical description of this stage of trials is given in Fig. 14. The four training 

algorithms used for this study are:  

 the Levenberg-Marquardt algorithm, 

 the gradient descent algorithm, 

 the gradient descent with adaptive learning rate algorithm, 

 the gradient descent with momentum and adaptive learning rate algorithm. 

Three different activation functions have been used, i.e. the hyperbolic tangent 

sigmoid function (herein denoted as T), the pure linear function (denoted as P) and the 

logistic sigmoid function (denoted as L). These activation functions were tested in 

pairs as follows (Fig. 14):  

 hyperbolic tangent sigmoid function for the neurons of the hidden layers and 

for those of the output layer, 

 hyperbolic tangent sigmoid function for the neurons of the hidden layers and 

pure linear function for those of the output layer, 

 logistic sigmoid function for the neurons of the hidden layers and for those of 

the output layer, 

 logistic sigmoid function for the neurons of the hidden layers and pure linear 

function for those of the output layer. 
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For each one of these 288 networks, the corresponding mean squared error (MSE) and 

regression value (R) were calculated, based on the training set of data and on the 

validation set. The MSE is calculated as the average of the sum of squares of “errors”. 

The error is the difference between the target output and the network output. The 

regression value is an indicator of the relationship between the actual and target 

outputs of the network and its absolute value ranges between one and zero, suggesting 

the existence of an exact linear relationship between outputs and targets or its absence 

respectively. The performance of these 288 networks was ranked according to their 

mean squared error (MSE) and regression value (R) based on the validation set.  

 

Fig. 17: Graphical description of the first stage of trials 
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Results from the evaluation of each one of the 18 architectures tested are presented in 

Table 2. The second column in the table shows the number of nodes per layer (input 

layer – hidden layer(s) – output layer). The number of nodes of the input and output 

layer is by default equal to 4 and 1 respectively, corresponding to the dimensions of 

the input and output vectors. The number of neurons and its distribution among the 

hidden layers varies. The minimum mean squared error values and the maximum 

regression values for each one of the 18 architectures obtained with the 16 

combinations of training algorithms and activation functions, both for the training and 

validation sets of data, are presented in Table 2.  

Table 2: Tested MLP architectures – first stage of trials 

Serial 

number 
Architecture 

Training set Validation set 

min MSE max R min MSE max R 

1 4-4-1 0.0095 0.9625 0.0086 0.9819 

2 4-8-1 0.0079 0.9695 0.0047 0.9694 

3 4-12-1 0.0062 0.9750 0.0071 0.9738 

4 4-16-1 0.0067 0.9749 0.0046 0.9808 

5 4-4-4-1 0.0066 0.9699 0.0084 0.9670 

6 4-8-4-1 0.0011 0.9733 0.0068 0.9744 

7 4-4-8-1 0.0068 0.9736 0.0068 0.9776 

8 4-12-4-1 0.0079 0.9778 0.0060 0.9814 

9 4-12-8-1 0.0059 0.9776 0.0052 0.9836 

10 4-16-8-1 0.0034 0.9864 0.0047 0.9791 

11 4-16-4-1 0.0041 0.9834 0.0062 0.9800 

12 4-16-12-1 0.0034 0.9866 0.0047 0.9798 

13 4-12-8-4-1 0.0043 0.9832 0.0042 0.9845 

14 4-12-4-4-4-1 0.0044 0.9831 0.0064 0.9762 

15 4-12-8-4-4-1 0.0050 0.9808 0.0058 0.9822 

16 4-16-12-8-4-1 0.0039 0.9845 0.0046 0.9796 

17 4-12-12-8-4-1 0.0048 0.9819 0.0049 0.9796 

18 4-12-8-8-4-1 0.0045 0.9817 0.0055 0.9598 

 

Table 3: Properties of networks – second stage of trials 

Code 

number 
Architecture 

Training 

algorithms 

Activation function 

Hidden 

layers 

Output 

layer 

2.4.2 4-8-1 LM T P 

4.4.1 4-16-1 LM T T 

10.4.2 4-16-8-1 LM T P 

13.4.1 4-12-8-4-1 LM T T 

16.4.2 4-16-12-8-4-1 LM T P 

16.4.4 4-16-12-8-4-1 LM L P 
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The ten networks that presented the lower values of MSE and the ten with the higher 

values of R, based on the validation dataset, were selected for further testing. 

According to the above selection criteria, and due to the observed overlapping 

between them, six networks were eventually identified for further study. The 

architecture and the activation functions of these networks are presented in Fig. 18. 

The first digit of their code numbers corresponds to the serial number of their 

architecture, the second one to the training algorithm used and the third one to the 

combination of activation functions as described in Fig. 17. 

The most important factor associated with improved MSE and R values was the 

training algorithm. The Levenberg-Marquardt training algorithm presented the best 

results, in comparison with the other three training algorithms that were tested. With 

respect to the pairs of activation functions, the networks that consisted only of logistic 

sigmoid neurons presented the worst performance. As a result, all the networks 

selected for the second stage of trials were using the Levenberg-Marquardt algorithm, 

while the networks with only logistic sigmoid neurons were excluded. 

The objective of the second stage of trials was to determine the most appropriate 

learning algorithm and rate. To this end, tests were carried out using six different 

learning rates (0.01, 0.02, 0.05, 0.1, 0.15, 0.2) and two learning algorithms: the 

gradient descent weight and bias (used also during the first stage) and the gradient 

descent with momentum weight and bias. As a result, a total of 72 networks were 

tested during this second stage of trials (Fig. 18).  

 
Fig. 18: Graphical description of the second stage of trials 

For this stage, the available data was divided into training, validation and test dataset 

with ratios 80%, 12% and 8% respectively. For each one of the six networks listed in 

Table 4 the minimum MSE and maximum R values obtained by the 12 combinations 

of learning rates and learning algorithms, both for the training and validation sets of 

data, are presented in Table 4. 
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Table 4: Obtained MSE & R values – second stage of trials 

a/a 
Training set Validation set 

min MSE max R min MSE max R 

2.4.2 0.0031 0.9875 0.0006 0.9978 

4.4.1 0.0028 0.9886 0.0006 0.9978 

10.4.2 0.0005 0.9977 0.0002 0.9993 

13.4.1 0.0016 0.9981 0.0003 0.9989 

16.4.1 0.0003 0.9989 0.0003 0.9986 

16.4.4 0.0002 0.9991 0.0001 0.9994 

 

Additional trials were conducted for the effect of the division ratio of the dataset to 

the performance of a network to be examined. To this end, ten of the 72 network 

configurations developed in the second stage of trials were also trained with datasets 

divided with two other division settings; 75%, 15%, 10% and 85%, 10%,5% ratios for 

training, validation and test dataset respectively. The validation MSE values of 

networks 2.4.2/0.15/2 and 16.4.2/0.20/1, were lower when the training set accounted 

for the 75% of the available data. The last one presented higher validation R value for 

that division ratio too. Six of the networks trained with the selected for this study 

division ratio (i.e. 80% of the data are assigned to the training set) were the best or the 

second best compared to networks trained with other division ratios with respect to 

both MSE and R values of the validation set. The MSE and R values for all datasets 

for these 10 networks and the three division settings are presented in Fig. 19 and Fig. 

20. Each network in these figures is characterized by three numbers divided by 

slashes; its code number, its learning rate and its learning algorithm, which is given by 

the code number 1 for the gradient descent weight and bias and 2 for the gradient 

descent with momentum weight and bias (see also Fig. 18). 

 

Fig. 19: MSE values of 10 networks for three different division settings 
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Fig. 20: R values of 10 networks for three different division settings 

3.1.2 Discussion and Results 

The trials, as already mentioned, were conducted in two stages. In the first stage, the 

most promising network configurations were determined (i.e. combinations of 

architecture, training algorithm and pairs of activation functions). In the second stage, 

the aforementioned combinations were tested in 12 pairs of learning algorithms and 

rates (Fig. 5), aiming to obtain improved results. The networks constructed in the 

second stage presented better validation MSE and R values (i.e. MSE and R values 

based on the validation set) compared to those in the first stage. For all 72 networks, 

the validation MSE value was lower by 52.9% to 96.9%, while the increase of the 

validation R value varied between 0.7% and 3.1%. Because R values were already 

very close to 1, the actual improvement may be better observed by looking at the 1-R 

values, which showed a reduction of 46.7% to 98.2% (Fig. 21).  

 

Fig. 21: MSE vs. 1-R values – second stage of trials 



Prediction of Resistance of MARAD Systematic Series’ Hullforms using Artificial Neural Networks 

39 
 

The networks were mainly evaluated using the validation and test MSE. These values 

should be lower than those obtained with the training data set and close to each other, 

with the test MSE value preferably lower than that of the validation. The MSE values 

for the 72 networks tested during the second stage of trials are illustrated in Fig. 22 

where each network is defined by three characteristics; its code number, its learning 

algorithm, and its learning rate (see also Fig. 5).A network usually does not perform 

equally well with respect to all data sets. For example, for the network presenting the 

higher training MSE value, low validation and test MSE values were observed. This 

network is marked in Fig. 22 with an open circle and has code number 13.4.1, 

gradient descent weight and bias as learning algorithm and 0.05 as learning rate. 

However, the MSE values were not the only criterion taken into account during the 

networks’ evaluation. 

A major issue in ANNs is overfitting. A network may present low error during 

training, while failing to generalize to unknown inputs. The generalization ability of 

the second stage networks was evaluated using data from five MARAD hullforms 

listed in Table 5. It is worth noting that data from these hulls was not included in the 

data sets used for the training and evaluation of the networks. More importantly, for 

two of them (ships M and O) their geometric characteristics (i.e. their combination of 

CB and B/T values) exceeded the limits of the training data set. As expected, the 

networks presenting the lower MSE and higher R values for the validation and test 

datasets, where those also providing better predictions for hulls B, E and H, i.e. those 

that were within the limits of the training dataset. However, a different behavior was 

observed for the remaining hulls (M and O): a few networks with relatively poor 

performance indices (i.e. MSE and R values according to the validation and test 

datasets) provided better predictions for these two hulls. 

Table 5: Geometric properties of five MARAD hullforms 

Ship B E H M O 

L/B 6.0 5.0 6.5 6.5 5.0 

B/T 3.00 3.00 3.00 3.75 3.75 

CB 0.875 0.850 0.850 0.875 0.875 

L [m] 349.9 333.4 372.6 397.5 355.6 

B [m] 58.3 60.6 57.3 61.2 64.7 

T [m] 19.4 20.2 19.1 16.3 17.2 

WSA [m2] 31111 29356 31877 33984 32252 

 

Four networks were finally selected for the prediction of the residual resistance 

coefficient, and subsequently the resistance of hullforms based on the MARAD 

Systematic Series. The first two networks (denoted as MLP1 and MLP2) showed the 

lowest validation and test MSE values. Their generalization ability to ships exceeding 

the training set’s limits was poor, but they were selected because of their superior 

fitting performance inside the training set’s range. The other two (denoted as MLP3 
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and MLP4) were selected because of their generalization ability beyond the limits of 

the training data, indicated in the case of the two hulls tested (ships M and O), while 

performing quite well inside it.  

The architecture of the first neural network (MLP1) is illustrated in Fig. 23. It 

comprises one hidden layer with 16 hyperbolic tangent sigmoid neurons and a linear 

output. The Levenberg-Marquardt training algorithm was used, along with the 

gradient descent with weight and bias learning algorithm and 0.20 learning rate. The 

progression of the MSE value during training is presented in Fig. 24. The training 

stopped when a minimum value of MSE for the validation dataset was reached. This 

network was selected for its low validation MSE, reached in 105th epoch of the 

training process. The MSEs based on the training and validation sets are relatively 

higher than that based on the test set. After the training process was completed, scatter 

diagrams comparing the actual outputs of the network with the desired ones for all 

three datasets (i.e. training, validation, test) were generated (see Fig. 25). Larger 

deviations between the actual and the desired output values may be observed in the 

scatter diagram corresponding to the training set. This is an expected result, since the 

network uses this set for updating its parameters, while validation and test sets are 

used for the evaluation of its predictive ability. Such deviations are missing from the 

scatter diagrams corresponding to the validation and test data sets, which present an 

almost linear relationship between actual and target outputs with R values over 0.99 

for both of them.  

The architecture of the second network (MLP2) is composed of four hidden layers of 

16, 12, 8 and 4 hyperbolic tangent neurons each and one linear output layer (Fig. 26). 

The same training algorithm as for MLP1 was used, but the gradient descent with 

momentum bias and weight learning algorithm and 0.15 learning rate were applied. 

The training stopped in the 43rd epoch. The lower MSE value was obtained by the test 

set (Fig. 27). The R values for this network were also very close to 1, with the one 

corresponding to the test set being the higher (Fig. 28).  

The third of the selected networks (MLP3) consists of hyperbolic tangent neurons 

arranged in three hidden layers, containing 12, 8 and 4 neurons each and one output 

layer (Fig. 29). It was trained using the same training and learning algorithms as 

MLP2, but the learning rate was set equal to 0.20. The training stopped in the 26th 

epoch after reaching a validation MSE higher than that of the two first networks. The 

performance indices (i.e. MSE and R value) of the test dataset were once again the 

best compared to those of the other datasets (see Fig. 30 and Fig. 31). 

The fourth network (MLP4) comprises one hidden layer with 8 hyperbolic sigmoid 

neurons and a linear output (Fig. 32). The same training and learning algorithms as 

those for MLP1 were used. The value of the learning rate was set to 0.05. The training 

stopped in the 26th epoch. The lower MSE value was obtained by the test set in this 

case, as well (Fig. 33). The R values for this network were also very close to 1, with 

that of the test set being the higher (Fig. 34).  
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Fig. 22: MSE of ANNs – second stage of trials  
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MLP1  

Training algorithm: Levenberg

weight and bias, Learning rate: 0.20

Fig. 24

Fig. 25: Actual output vs. desired for MLP

Prediction of Resistance of MARAD Systematic Series’ Hullforms using Artificial Neural Networks

42 

Training algorithm: Levenberg-Marquardt, Learning algorithm: Gradient descent 

weight and bias, Learning rate: 0.20 

 

Fig. 23: Architecture of MLP1 

 

24: MSE plot for MLP1 during training 

 

Actual output vs. desired for MLP1 after training
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Marquardt, Learning algorithm: Gradient descent 

after training 
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MLP2  

Training algorithm: Levenberg

momentum weight and bias, Learning rate: 0.15

Fig. 27

Fig. 28: Actual output vs. desired for MLP
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Training algorithm: Levenberg-Marquardt, Learning algorithm: Gradient descent with 

momentum weight and bias, Learning rate: 0.15 

Fig. 26: Architecture of MLP2 

 

27: MSE plot for MLP2 during training 

 

Actual output vs. desired for MLP2 after training
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Learning algorithm: Gradient descent with 

 

after training 
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MLP3  

Training algorithm: Levenberg

momentum weight and bias, Learning rate: 0.20

Fig. 30

Fig. 31: Actual output vs. desired for MLP
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Training algorithm: Levenberg-Marquardt, Learning algorithm: Gradient descent with 

momentum weight and bias, Learning rate: 0.20 

Fig. 29: Architecture of MLP3 

 

30: MSE plot for MLP3 during training 

 

Actual output vs. desired for MLP3 after training
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Marquardt, Learning algorithm: Gradient descent with 

 

after training 



Prediction of Resistance of MARAD Systematic Series’ Hullforms using Artificial Neural Networks

 

MLP4  

Training algorithm: Levenberg

weight and bias, Learning rate: 0.05

 

Fig. 33

Fig. 34: Actual output vs. desired for MLP
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Training algorithm: Levenberg-Marquardt, Learning algorithm: Gradient descent 

weight and bias, Learning rate: 0.05 

 

Fig. 32: Architecture of MLP4 

 

33: MSE plot for MLP4 during training 

 

Actual output vs. desired for MLP4 after training
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Marquardt, Learning algorithm: Gradient descent 

after training 
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The MSE values for MLP3 and MLP4 were higher than those for MLP1 and MLP2 

for all three data sets. Nevertheless, MLP3 and MLP4 were selected because of their 

fairly good performance outside the data set, indicating possibly improved 

generalization ability. The comparison of the residual resistance coefficient (CR) 

predicted by these four neural networks with the actual values according to the 

MARAD diagrams for the selected five ships is illustrated in Fig. 35 to Fig. 39 . 

 

Fig. 35: Residual resistance coefficient for ship B 

 

Fig. 36: Residual resistance coefficient for ship E 

 

Fig. 37: Residual resistance coefficient for ship H 
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The predictions by the four networks, for the first three ships, i.e. the ones within the 

limits of the training set, are quite close to the real values. In particular, for ship B, the 

results derived by both networks present very small deviations from the target values 

(see Fig. 35). For the other two ships, i.e. E and H, the predictions by MLP1 and 

MLP2 are relatively better than those by the other two (see Fig. 36 and Fig. 37). The 

performance of MLP1 and MLP2 was expected to be superior for these three ships, 

because of its lower MSE and higher R values. As already mentioned, the geometric 

properties of ships M and O exceeded the range of the training data set. For these 

ships, the predictions by MLP3 and MLP4 were better than those by the first two (Fig. 

38, Fig. 39). Although it’s MSE and R values were not among the best, an improved 

generalization ability beyond the limits of the training data set is indicated by the 

obtained results.  

 

Fig. 38: Residual resistance coefficient for ship M 

 

Fig. 39: Residual resistance coefficient for ship O 

The estimated CR values were used for the evaluation of total resistance of the five 

ships based on procedure described in Chapter 1.3. The results from the calculation of 

the total resistance based on the experimental CR values and those estimated by the 

neural networks for the five hullforms are compared in Table 6 to Table 10 as well as 

in Fig. 40 to Fig. 44. The predictions by MLP1 and MLP2 for the first three ships 

with characteristics within the limits of the training dataset (ships B, E, H) present 
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very low deviations from the experimental values, in the order of 0.1% to 1.5% for 

both networks. The corresponding deviations of the predictions by MLP3 and MLP4 

for the same ships ranged from 0.1% to 4.7% and to 3.8% respectively. For the other 

two ships exceeding the limits of the dataset, the deviations of the predictions 

obtained with MLP1 and MLP2 were quite larger. These of MLP1 ranged between 

1.2% to 13.3% for ship M and 0.8% to 11.1% for ship O, while of MLP2 were 0.9% 

to 12.9% for ship M and 0.6% to 13.5% for ship O. However, the predictions obtained 

with MLP3 and MLP4 were considerably better, with practically acceptable 

deviations. The predictions obtained with MLP3 had deviations from the experimental 

values in the order of 1.6% to 7.6% and 0.6% to 7.8% for ship M and ship O 

respectively. These of MLP4 ranged between 2.3% to 5.7% for ship M and 0.3% to 

6.8% for ship O. 

Table 6: Total resistance prediction of ship B 

  MARAD MLP1 MLP2 MLP3 MLP4 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 14.8 2025.4 2038.2 -0.6 2046.7 -1.1 2044.6 -0.9 2072.5 -2.3 

0.140 15.9 2486.3 2512.0 -1.0 2526.5 -1.6 2511.9 -1.0 2582.0 -3.8 

0.145 16.5 2810.3 2841.6 -1.1 2831.6 -0.8 2833.7 -0.8 2859.2 -1.7 

0.150 17.1 3173.3 3230.0 -1.8 3220.5 -1.5 3191.1 -0.6 3170.0 0.1 

0.155 17.6 3565.7 3600.2 -1.0 3589.5 -0.7 3563.8 0.1 3520.8 1.3 

0.160 18.2 3904.5 3937.1 -0.8 3946.6 -1.1 3950.9 -1.2 3917.5 -0.3 

0.165 18.8 4294.3 4346.8 -1.2 4367.2 -1.7 4371.8 -1.8 4366.5 -1.7 

0.170 19.4 4804.3 4874.2 -1.5 4854.5 -1.0 4867.0 -1.3 4873.6 -1.4 

0.175 19.9 5385.4 5466.6 -1.5 5440.6 -1.0 5462.4 -1.4 5444.0 -1.1 

0.180 20.5 6027.0 6093.7 -1.1 6073.2 -0.8 6057.2 -0.5 6081.5 -0.9 

 

Table 7: Total resistance prediction of ship E 

  MARAD MLP1 MLP2 MLP3 MLP4 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 14.0 1832.1 1832.2 0.0 1838.2 -0.3 1832.6 0.0 1828.6 0.2 

0.140 15.1 2222.2 2195.5 1.2 2208.9 0.6 2170.8 2.3 2186.8 1.6 

0.145 15.6 2455.9 2439.4 0.7 2438.5 0.7 2351.9 4.2 2387.4 2.8 

0.150 16.1 2684.7 2677.6 0.3 2697.1 -0.5 2557.7 4.7 2602.8 3.0 

0.155 16.7 2905.1 2910.7 -0.2 2904.7 0.0 2793.1 3.9 2833.2 2.5 

0.160 17.2 3136.7 3110.6 0.8 3101.9 1.1 3051.1 2.7 3078.8 1.8 

0.165 17.8 3379.9 3367.9 0.4 3349.2 0.9 3325.2 1.6 3342.3 1.1 

0.170 18.3 3634.8 3642.6 -0.2 3625.4 0.3 3621.3 0.4 3632.2 0.1 

0.175 18.8 3986.7 3976.9 0.2 3975.8 0.3 3961.8 0.6 3963.5 0.6 

0.180 19.4 4435.6 4420.5 0.3 4407.7 0.6 4378.1 1.3 4366.6 1.6 

0.185 19.9 4915.8 4898.9 0.3 4899.7 0.3 4879.6 0.7 4881.2 0.7 

0.190 20.5 5444.9 5435.8 0.2 5419.7 0.5 5421.2 0.4 5424.5 0.4 
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Table 8: Total resistance prediction of ship H 

  MARAD MLP1 MLP2 MLP3 MLP4 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 15.3 2012.7 2018.6 -0.3 2012.5 0.0 1988.4 1.2 1990.3 1.1 

0.140 16.5 2332.1 2345.6 -0.6 2347.1 -0.6 2337.7 -0.2 2328.7 0.1 

0.145 17.0 2544.9 2531.2 0.5 2535.5 0.4 2521.8 0.9 2503.4 1.6 

0.150 17.6 2756.6 2731.0 0.9 2745.2 0.4 2702.6 2.0 2682.0 2.7 

0.155 18.2 2936.0 2941.6 -0.2 2955.4 -0.7 2890.8 1.5 2871.0 2.2 

0.160 18.8 3136.2 3155.0 -0.6 3145.4 -0.3 3105.5 1.0 3084.4 1.7 

0.165 19.4 3343.8 3366.1 -0.7 3344.9 0.0 3359.9 -0.5 3338.9 0.1 

0.170 20.0 3558.8 3599.3 -1.1 3591.5 -0.9 3656.5 -2.7 3648.4 -2.5 

0.175 20.6 3964.5 3925.2 1.0 3920.2 1.1 3998.4 -0.9 4022.0 -1.5 

0.180 21.2 4398.9 4388.7 0.2 4360.8 0.9 4405.9 -0.2 4465.7 -1.5 

0.185 21.7 4945.0 4941.4 0.1 4871.8 1.5 4914.5 0.6 4983.9 -0.8 

0.190 22.3 5552.4 5516.4 0.6 5467.3 1.5 5542.9 0.2 5580.4 -0.5 

 

Table 9: Total resistance prediction of ship M 

  MARAD MLP1 MLP2 MLP3 MLP4 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 15.8 2202.5 2316.6 -5.2 2149.9 2.4 2309.7 -4.9 2151.2 2.3 

0.140 17.0 2592.1 2789.3 -7.6 2568.8 0.9 2694.7 -4.0 2672.5 -3.1 

0.145 17.6 2844.2 3062.0 -7.7 2981.1 -4.8 2890.6 -1.6 2989.6 -5.1 

0.150 18.2 3173.3 3336.1 -5.1 3405.8 -7.3 3107.7 2.1 3353.3 -5.7 

0.155 18.8 3608.8 3567.0 1.2 3849.5 -6.7 3383.8 6.2 3771.1 -4.5 

0.160 19.4 4097.9 3780.3 7.8 4443.8 -8.4 3787.4 7.6 4250.6 -3.7 

0.165 20.0 4608.4 4080.7 11.5 5201.5 -12.9 4353.1 5.5 4798.9 -4.1 

0.170 20.6 5177.8 4487.3 13.3 5743.6 -10.9 4992.4 3.6 5422.1 -4.7 

0.175 21.2 5810.8 5115.8 12.0 6196.4 -6.6 5602.0 3.6 6124.3 -5.4 

0.180 21.8 6578.7 5918.7 10.0 6716.6 -2.1 6171.3 6.2 6907.0 -5.0 

 

Table 10: Total resistance prediction of ship O 

  MARAD MLP1 MLP2 MLP3 MLP4 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 14.9 2325.3 2344.6 -0.8 2451.8 -5.4 2165.6 6.9 2166.4 6.8 

0.140 16.1 2830.3 2684.6 5.1 3043.7 -7.5 2846.5 -0.6 2670.2 5.7 

0.145 16.6 3089.9 2892.4 6.4 3327.1 -7.7 3215.8 -4.1 2968.7 3.9 

0.150 17.2 3351.6 3051.4 9.0 3702.4 -10.5 3576.9 -6.7 3275.4 2.3 

0.155 17.8 3640.8 3238.0 11.1 4130.6 -13.5 3924.6 -7.8 3651.2 -0.3 

0.160 18.4 3975.5 3537.3 11.0 4418.9 -11.2 4261.9 -7.2 4089.5 -2.9 

0.165 18.9 4393.1 3968.8 9.7 4673.9 -6.4 4597.1 -4.6 4642.3 -5.7 

0.170 19.5 4905.8 4535.7 7.5 4937.5 -0.6 4943.0 -0.8 5211.0 -6.2 

0.175 20.1 5508.8 5219.8 5.2 5215.7 5.3 5314.8 3.5 5840.4 -6.0 

0.180 20.7 6194.0 6059.7 2.2 5510.4 11.0 5728.8 7.5 6540.0 -5.6 
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Fig. 40: Total resistance for ship B 

 

Fig. 41: Total resistance for ship E 

 

Fig. 42: Total resistance for ship H 
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Fig. 43: Total resistance for ship M 

 

Fig. 44: Total resistance for ship O 

 

 

3.2 Radial Basis Function Neural Networks 

3.2.1 Implementation 

The performance of RBF neural networks is affected by the number of neurons that 

comprise the hidden layer, the selected activation function and learning method. The 

radial basis activation function that was selected for this study is the Gaussian, which 

has the standard deviation and its center as parameters, while the K-means algorithm 

was chosen as the learning method. In order to determine the network that suits better 

to the problem at hand, several trials have been conducted, changing the number of 

neurons and the sigma values, i.e. the square root of the standard deviation. The 

networks were evaluated based on their MSE and R values of the validation set. The 
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trials were conducted in three stages. In the first stage, the available data was 

separated into mutually exclusive training (80%) and validation (20%) sets. The 

configurations of the tested networks during this stage are presented in Table 11. Each 

network is given a serial number, that corresponds to a combination of a number of 

hidden neurons and a sigma value. For example, the networks with serial number 3 

and 15 have 10 and 70 hidden neurons respectively and a sigma value equal to 1. The 

networks with serial number 47 and 77 have 20 hidden neurons and a sigma value 

equal to 0.25 and 0.1 respectively. Observations during these trials regarding the 

performance indices affected the tested combinations, hence the difference in the 

number of tested configurations per sigma value. The best MSE and R values per 

sigma value are also included in this table. The MSE values regarding both datasets 

and all networks are illustrated in graphical form in Fig. 45.  

During trials a relation between the sigma value and the number of the hidden neurons 

was observed. Assuming a series of networks with different number of hidden 

neurons and the same sigma value, the MSE value declines as the number of the 

hidden neurons increases, and for a specific number of neurons it stabilizes. This limit 

decreases as the sigma value increases. For example, as it can be seen in Fig. 45, for 

sigma value equal to 0.5 the limit is at 30 neurons, while for sigma equal to 1 is at 50 

neurons. 

. 

Table 11 : Networks of the first stage of trials 

Serial 
No. 

No of Hidden neurons Sigma 
Training set Validation set 

min MSE max R min MSE max R 

1-2 25/30 1.50 0.0160 0.8734 0.0181 0.8700 

3-20 
10/15/20/25/30/35/40/45/ 

50/55/60/65/70/80/90/100/150/
200/500 

1.00 0.0148 0.8834 0.0171 0.8775 

21-38 
10/15/20/25/30/35/40/45/ 

50/55/60/65/70/80/90/100/150/
200/500 

0.50 0.0133 0.8949 0.0152 0.8907 

39-40 200/250 0.35 0.0110 0.9133 0.0139 0.9002 
41-42 200/250 0.30 0.0068 0.9460 0.0104 0.9252 
43-44 200/250 0.27 0.0049 0.9611 0.0079 0.9436 

45-66 
10/15/20/25/30/35/40/45/ 

50/55/60/70/80/90/100/150/200
/250/300/350/400/450 

0.25 0.0023 0.9745 0.0056 0.9597 

67-68 200/250 0.22 0.0032 0.9747 0.0056 0.9599 
69-70 200/250 0.17 0.0029 0.9773 0.0053 0.9618 
71-72 200/250 0.15 0.0029 0.9818 0.0054 0.9612 
73-74 200/250 0.12 0.0027 0.9788 0.0062 0.9554 

75-96 
10/15/20/25/30/35/40/45/ 

50/55/60/70/80/90/100/150/200
/250/300/350/400/450 

0.10 0.0025 0.9807 0.0063 0.9547 

97-
103 

250/300/350/400/450/500/ 
550 

0.05 0.0023 0.9818 0.0087 0.9378 
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Fig. 45: MSE values of networks – first stage of trials 

In the second stage, the six best performing networks of the previews stage were 

retrained with different division ratio of the available data along with some new 

configurations. The 85% of the available data were assigned to training set and the 

15% to the validation set. The networks that were retrained retain their serial number 

from the 1st stage with the addition of the letter b. For the additional networks capital 

letters from A to J are used as code names. The configurations of the networks and 

their performance characteristics are presented in Table 12. 

Table 12 : Networks of the second stage of trials 

Code 
No of Hidden 

neurons 
 

Sigma 

Training set Validation set 

MSE R MSE R 

60b 250 0.25 0.0042 0.9757 0.0028 0.9744 

62b 350 0.25 0.004 0.9768 0.0027 0.9745 

92b 250 0.10 0.0062 0.9637 0.0079 0.9264 

94b 350 0.10 0.0034 0.9801 0.0021 0.9802 

95b 400 0.10 0.0032 0.9814 0.0018 0.9836 

96b 450 0.10 0.0032 0.9815 0.0017 0.9845 

A 350 0.35 0.0115 0.9328 0.0100 0.9068 

B 350 0.30 0.0113 0.934 0.0101 0.9058 

C 350 0.27 0.0084 0.9507 0.0070 0.9353 

D 350 0.22 0.0038 0.9775 0.0022 0.9797 

E 350 0.17 0.0036 0.9793 0.0021 0.9801 

F 350 0.15 0.0034 0.9801 0.0020 0.9817 

G 350 0.12 0.0033 0.9805 0.0017 0.9837 

H 500 0.10 0.0032 0.9815 0.0017 0.9838 

I 550 0.10 0.0031 0.9816 0.0016 0.9849 

J 600 0.10 0.0032 0.9815 0.0017 0.9838 

 

The 20 networks from both stages that presented the lower validation MSE were 

selected for further testing. Taking into account that RBF neural networks are also 

susceptible to overfitting, the selected networks were also evaluated using data from 
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thirteen MARAD hullforms (see Table 13). The first five (i.e. ships B, E, H, M and O) 

belong to the sixteen hulls that were used in experiments, but their data were not 

included in the training and evaluation data sets. More importantly, as already 

mentioned, for two of them (ships M and O) their geometric characteristics exceeded 

the limits of the training data set. The other 8 hulls (i.e. S1 to S8) were created by 

selecting their geometric properties within the limits of the MARAD series. Their 

wetted surface was calculated with the use of three diagrams illustrated in ([5]) 

providing the wetted surface coefficient (CS) for various values of L/B, B/T and CB for 

MARAD-type hullforms. The CR values for these ships were taken from the diagrams 

presented in Fig. 5 to  

Fig. 9 using linear interpolation when required and their displacement was assumed 

350000 tons and equal to that of the 16 MARAD hullforms. The geometric 

characteristics of the aforementioned ships are presented in the following table. 

Table 13: Geometric properties of hullforms used for testing 

Ship L/B B/T CB WSA [m2] 

B 6 3 0.875 31111 

E 5 3 0.850 29356 

H 6.5 3 0.850 31877 

M 6.5 3.75 0.875 33984 

O 5 3.75 0.875 32252 

S1 5 3 0.825 30224 

S2 5 4.5 0.825 33493 

S3 5 3.75 0.825 30224 

S4 5 4.5 0.845 31775 

S5 5 3.75 0.845 31346 

S6 5 3 0.845 28931 

S7 5.5 3 0.865 29363 

S8 6 3 0.865 29996 

 

As expected, the selected networks performed well for all the ships within the limits 

of the training dataset (i.e. all ships except M and O). The six networks that provided 

the best predictions were selected. In an attempt to improve their performance, a new 

training algorithm was generated and a third stage of trials was carried out. In the 

third stage of these trials, the six selected networks were retrained using a modified 

K-means algorithm, and six new networks were developed from this process. 

This algorithm was inspired by a training method mentioned in Section 2.4.1 that adds 

neurons to the hidden layer until an error function is minimized. The new algorithm 

adds neurons to existent networks that have presented good performance indices. The 

centers of the RB functions of the new neurons are placed at the positions where the 

higher errors were observed. As long as the training MSE error of the suggested 

network is lower than the initial, the algorithm adds one neuron per step, searching for 

an even lower training MSE value in the interim. This algorithm has been tested in a 
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series of cases and the derived networks were compared with the original networks as 

well as with others of the same characteristics trained with the K-means algorithm in 

order to define its effectiveness and the results were promising. From this algorithm 

six networks were obtained and their characteristics along with their origin network 

are given in Table 14. The networks constructed in the third stage presented better 

validation MSE and R values compared to their origin networks. The decrease of 

MSE value was between 1% and 14%. Because R values were already very close to 1, 

the actual improvement may be better observed by looking at the 1-R values, which 

showed the same reduction (see Table 14). The networks of this stage were further 

evaluated based on their prediction of CR for the ships in Table 13. 

Table 14 : Networks’ properties -  third stage of trials 

Origin 
network Code 

No of Hidden 
neurons 

 

Sigma 

Training set Validation set Improvement 

MSE R MSE R MSE 1-R 

39 i 215 0.35 0.0170 0.9152 0.0136 0.9024 2% 2% 

40 ii 325 0.35 0.0109 0.9138 0.0137 0.9015 1% 1% 

61 iii 213 0.25 0.0035 0.9720 0.0060 0.9572 10% 10% 

94b iv 354 0.10 0.0033 0.9808 0.0018 0.9829 14% 14% 

G v 357 0.12 0.0032 0.9810 0.0016 0.9850 6% 8% 

J vi 606 0.10 0.0032 0.9816 0.0016 0.9848 6% 6% 

 

3.2.2 Discussion and Results 

The testing of the RBF neural networks, as already mentioned, was conducted in three 

stages and 125 RBF neural networks in total were developed. In the first stage, the 

division ratio of the available data to training and validation set was 80% and 20% 

respectively and 103 RBF neural networks were developed. In the second stage, 85% 

of the data were assigned to the training set, 15% to the validation set and 16 

networks were created. In the third stage, six new networks were obtained applying a 

modified K-means training algorithm to the best six networks from the two previous 

stages and two of them were finally chosen; the networks with code ii and vi (see 

Table 14). These networks herein denoted as RBF1 and RBF2 respectively were 

selected because they presented a good fit inside the dataset and the lower errors 

outside its limits. The first network (RBF1) has 213 hidden neurons, sigma parameter 

equal to 0.25, and its training set accounted for 80% of the available dataset. The 

second network (RBF2) has 606 hidden neurons, the value of the sigma parameter is 

0.1 and 85% of the data were assigned to its training set. They were used for 

estimating the CR and subsequently the resistance of the ships mentioned in Table 13 

for a range of Froude numbers. The comparison of the residual resistance coefficient 

(CR) predicted by these two neural networks with the actual values according to the 

MARAD diagrams for the first five ships is illustrated in Fig. 46 to Fig. 50. 

The predictions for the first three ships, i.e. the MARAD hulls within the limits of the 

training set, are quite close to the real values. In particular, for ship B, the results 

derived by both networks present very small deviations from the target values (see 
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Fig. 46). For the other two ships, i.e. E and H, the predictions by both networks are 

relatively poorer, but they are following the trend of the actual values (see Fig. 47 and 

Fig. 48). As already mentioned, the geometric properties of ships M and O exceeded 

the range of the training data set. For these ships, the predictions by the two RBF 

networks are poor, but they are presented for the sake of completeness (Fig. 49, Fig. 

50).  

 

Fig. 46: Residual resistance coefficient for ship B 

 

Fig. 47: Residual resistance coefficient for ship E 
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Fig. 48: Residual resistance coefficient for ship H 

 

Fig. 49: Residual resistance coefficient for ship M 

 

Fig. 50: Residual resistance coefficient for ship O 
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A comparison of the results for the total resistance of these five ships based on the 

MARAD data and the network predictions for the CR coefficient is presented in Fig. 

51 to Fig. 55 as well as in Table 16 to Table 19. The predictions for the first three 

ships with characteristics within the limits of the training dataset (ships B, E, H) 

present acceptable deviations from the experimental values, in the order of 0.2% to 

4.5% for both networks. For the other two ships, exceeding the limits of the dataset, 

the deviations of the predictions obtained with RBF1 and RBF2 were quite larger. 

These of RBF1 ranged between 0.1% to 15.4% for ship M and 13.9% to 18.3% for 

ship O, while of RBF2 were 0.2% to 18.5% for ship M and 13% to 18.6% for ship O.  

The predictions of CR values and resistance of the ships S1 to S8 are presented in 

tabular form in Table 20 to Table 27. The deviations of the predictions of RBF1 for 

these ships ranged between 0.0% and 2.9%, while those of RBF2 were from 0.2% to 

1.4%.  

Table 15: Total resistance prediction of ship B 

  MARAD RBF1 RBF2 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 14.8 2025.4 2052.3 -1.3 2068.9 -2.1 

0.140 15.9 2486.3 2545.2 -2.4 2543.8 -2.3 

0.145 16.5 2810.3 2838.7 -1.0 2829.0 -0.7 

0.150 17.1 3173.3 3168.1 0.2 3150.8 0.7 

0.155 17.6 3565.7 3537.0 0.8 3513.1 1.5 

0.160 18.2 3904.5 3949.3 -1.1 3919.7 -0.4 

0.165 18.8 4294.3 4408.9 -2.7 4375.0 -1.9 

0.170 19.4 4804.3 4920.0 -2.4 4883.1 -1.6 

0.175 19.9 5385.4 5486.8 -1.9 5448.5 -1.2 

0.180 20.5 6027.0 6114.0 -1.4 6075.8 -0.8 

 

Table 16: Total resistance prediction of ship E 

  MARAD RBF1 RBF2 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 14.0 1832.1 1851.7 -1.1 1873.3 -2.2 

0.140 15.1 2222.2 2199.9 1.0 2211.8 0.5 

0.145 15.6 2455.9 2399.5 2.3 2407.5 2.0 

0.150 16.1 2684.7 2618.6 2.5 2623.4 2.3 

0.155 16.7 2905.1 2859.0 1.6 2861.6 1.5 

0.160 17.2 3136.7 3122.8 0.4 3124.2 0.4 

0.165 17.8 3379.9 3412.2 -1.0 3413.7 -1.0 

0.170 18.3 3634.8 3729.5 -2.6 3732.2 -2.7 

0.175 18.8 3986.7 4076.9 -2.3 4082.2 -2.4 

0.180 19.4 4435.6 4457.0 -0.5 4466.1 -0.7 

0.185 19.9 4915.8 4872.4 0.9 4886.6 0.6 

0.190 20.5 5444.9 5325.8 2.2 5346.3 1.8 
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Table 17: Total resistance prediction of ship H 

  MARAD RBF1 RBF2 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 15.3 2012.7 2073.0 -3.0 2080.9 -3.4 

0.140 16.5 2332.1 2328.2 0.2 2334.9 -0.1 

0.145 17.0 2544.9 2485.2 2.3 2489.1 2.2 

0.150 17.6 2756.6 2666.6 3.3 2666.5 3.3 

0.155 18.2 2936.0 2876.5 2.0 2871.0 2.2 

0.160 18.8 3136.2 3119.1 0.5 3106.7 0.9 

0.165 19.4 3343.8 3398.7 -1.6 3378.0 -1.0 

0.170 20.0 3558.8 3720.3 -4.5 3689.6 -3.7 

0.175 20.6 3964.5 4088.8 -3.1 4046.3 -2.1 

0.180 21.2 4398.9 4509.4 -2.5 4453.2 -1.2 

0.185 21.7 4945.0 4987.6 -0.9 4915.8 0.6 

0.190 22.3 5552.4 5529.2 0.4 5439.8 2.0 

Table 18: Total resistance prediction of ship M 

  MARAD RBF1 RBF2 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 15.8 2202.5 2218.0 -0.7 2245.9 -2.0 

0.140 17.0 2592.1 2612.1 -0.8 2587.5 0.2 

0.145 17.6 2844.2 2847.5 -0.1 2795.9 1.7 

0.150 18.2 3173.3 3113.1 1.9 3034.6 4.4 

0.155 18.8 3608.8 3412.6 5.4 3307.9 8.3 

0.160 19.4 4097.9 3750.1 8.5 3620.4 11.7 

0.165 20.0 4608.4 4129.8 10.4 3976.7 13.7 

0.170 20.6 5177.8 4556.1 12.0 4382.0 15.4 

0.175 21.2 5810.8 5033.7 13.4 4841.4 16.7 

0.180 21.8 6578.7 5567.5 15.4 5360.5 18.5 

 

Table 19: Total resistance prediction of ship O 

  MARAD RBF1 RBF2 

Fn 
υ 

[kn] 

RT 

[kN] 

RT  

[kN] 

diff. 

[%] 

RT  

[kN] 

diff. 

[%] 

0.130 14.9 2325.3 1939.7 16.6 2023.0 13.0 

0.140 16.1 2830.3 2334.7 17.5 2349.6 17.0 

0.145 16.6 3089.9 2565.8 17.0 2550.9 17.4 

0.150 17.2 3351.6 2822.6 15.8 2782.4 17.0 

0.155 17.8 3640.8 3107.7 14.6 3048.1 16.3 

0.160 18.4 3975.5 3424.1 13.9 3352.2 15.7 

0.165 18.9 4393.1 3774.6 14.1 3699.0 15.8 

0.170 19.5 4905.8 4162.5 15.2 4093.1 16.6 

0.175 20.1 5508.8 4590.9 16.7 4539.0 17.6 

0.180 20.7 6194.0 5063.2 18.3 5041.6 18.6 
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Fig. 51: Total resistance for ship B 

 

Fig. 52: Total resistance for ship E 

 

Fig. 53: Total resistance for ship H 
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Fig. 54: Total resistance for ship M 

 

Fig. 55: Total resistance for ship O 

 

Table 20: Total resistance and residual resistance coefficient prediction of ship S1 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.67 2023.5 0.71 2052.2 -1.4 0.68 2032.4 -0.4 

0.1400 0.73 2294.3 0.73 2293.5 0.0 0.72 2292.3 0.1 

0.1600 0.88 3173.4 0.86 3152.6 0.7 0.88 3183.2 -0.3 

0.1775 1.06 4176.1 1.08 4210.8 -0.8 1.08 4216.8 -1.0 

0.1800 1.10 4344.1 1.12 4374.7 -0.7 1.12 4370.5 -0.6 
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Table 21: Total resistance and residual resistance coefficient prediction of ship S2 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.54 2281.6 0.47 2212.0 3.0 0.54 2283.9 -0.1 

0.1400 0.56 2560.0 0.55 2538.9 0.8 0.56 2552.8 0.3 

0.1600 0.67 3492.3 0.74 3603.6 -3.2 0.69 3523.0 -0.9 

0.1775 0.91 4739.4 0.92 4745.5 -0.1 0.90 4718.5 0.4 

0.1800 0.95 4924.5 0.94 4905.8 0.4 0.94 4901.5 0.5 

 

Table 22: Total resistance and residual resistance coefficient prediction of ship S3 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.52 1803.8 0.54 1825.9 -1.2 0.51 1801.9 0.1 

0.1400 0.54 2021.4 0.56 2040.6 -1.0 0.54 2015.3 0.3 

0.1600 0.68 2797.1 0.69 2811.2 -0.5 0.68 2793.4 0.1 

0.1775 0.89 3748.2 0.91 3766.4 -0.5 0.90 3759.0 -0.3 

0.1800 0.93 3897.1 0.94 3913.7 -0.4 0.94 3906.9 -0.3 

Table 23: Total resistance and residual resistance coefficient prediction of ship S4 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.58 2008.2 0.53 1954.7 2.7 0.60 2027.0 -0.9 

0.1400 0.62 2266.7 0.60 2244.1 1.0 0.61 2248.5 0.8 

0.1600 0.73 3082.2 0.81 3186.5 -3.4 0.73 3086.2 -0.1 

0.1775 0.98 4193.8 0.99 4197.4 -0.1 0.98 4181.7 0.3 

0.1800 1.03 4375.9 1.01 4339.6 0.8 1.02 4355.8 0.5 

 

Table 24: Total resistance and residual resistance coefficient prediction of ship S5 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.54 2004.0 0.53 1993.7 0.5 0.54 2011.1 -0.4 

0.1400 0.57 2259.0 0.57 2257.2 0.1 0.57 2251.1 0.3 

0.1600 0.78 3207.9 0.78 3210.6 -0.1 0.75 3173.0 1.1 

0.1775 1.02 4336.7 1.05 4399.5 -1.4 1.05 4389.4 -1.2 

0.1800 1.08 4542.4 1.10 4585.4 -0.9 1.10 4584.2 -0.9 
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Table 25: Total resistance and residual resistance coefficient prediction of ship S6 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.79 1865.0 0.80 1871.2 -0.3 0.81 1881.2 -0.9 

0.1400 0.87 2137.7 0.85 2116.6 1.0 0.86 2124.2 0.6 

0.1600 1.08 3008.8 1.06 2990.0 0.6 1.07 2994.9 0.5 

0.1775 1.32 4023.8 1.35 4063.2 -1.0 1.35 4068.6 -1.1 

0.1800 1.39 4219.0 1.40 4231.0 -0.3 1.40 4236.2 -0.4 

 

Table 26: Total resistance and residual resistance coefficient prediction of ship S7 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.83 1967.7 0.82 1959.9 0.4 0.80 1939.9 1.4 

0.1400 0.86 2211.8 0.90 2242.5 -1.4 0.86 2210.1 0.1 

0.1600 1.21 3278.4 1.18 3240.9 1.1 1.17 3233.1 1.4 

0.1775 1.57 4548.0 1.51 4452.5 2.1 1.60 4579.5 -0.7 

0.1800 1.66 4780.1 1.56 4641.5 2.9 1.67 4799.7 -0.4 

 

Table 27: Total resistance and residual resistance coefficient prediction of ship S8 

 MARAD RBF1 RBF2 

Fn 
CR RT 

[kN] 

CR RT  

[kN] 

diff. 

[%] 

CR RT  

[kN] 

diff. 

[%] 

0.1325 0.54 1846.0 0.52 1835.3 0.6 0.55 1856.1 -0.5 

0.1400 0.57 2075.8 0.57 2078.0 -0.1 0.59 2095.2 -0.9 

0.1600 0.86 3057.0 0.86 3058.6 -0.1 0.85 3050.5 0.2 

0.1775 1.29 4414.5 1.30 4436.4 -0.5 1.27 4381.9 0.7 

0.1800 1.38 4667.0 1.38 4668.1 0.0 1.34 4604.8 1.3 

 

 

3.3 Support Vector Machines 

3.3.1 Implementation 

The performance of SVMs is mainly affected by the number of the support vectors 

and the kind of the Kernel function used. The number of support vectors is 

determined by the algorithm and influenced by ε value. The box constraint C, and the 

kernel parameters are also important factors. The user is able to select the Kernel 

function and its parameters, the ε and C values. In order to determine the network that 

suits better to the problem at hand, several trials have been conducted, changing these 

values. The networks were evaluated based on their performance indices. The trials 

were conducted in two stages. 
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The MATLAB environment, as already mentioned, was selected for the development 

of SVMs and all the available tools that provides were deployed. In all trials the data 

were standardized and a 5-fold validation scheme was used. It is noted that 8% of the 

available data was kept for testing, while the other 92% for training and validation. In 

the first stage, SVMs using all available kernel functions were created and compared 

in order to select the one presenting the best results. These functions along with 

various performance indices calculated by the program are presented in Table 28. 

Regarding this table’s notations, Root Mean Square Error (RMSE) is the square root 

of MSE and Mean Absolute Error (MAE) is the average of the absolute value of 

difference between targets and predicted values. The program selected the network 

that used the Fine Gaussian function as the best one, based on its RMSE. However, 

the network with the Medium Gaussian function presented lower MAE value. Both of 

the aforementioned functions are Gaussian kernels with different parameters; the Fine 

Gaussian has kernel scale equal to 0.5, while for the Medium Gaussian is 2. As a 

result, the Gaussian kernel was selected. Five values of kernel scales were tested in 

the second stage: 0.25, 0.5 (i.e. the Fine Gaussian), 1, 1.5, 2 (i.e. the Medium 

Gaussian). It is worth noting that the ε and C values in the first stage were set to auto 

for all SVM models. That is ε equal to interquartile range (IQR) and C equal to IQR 

divided by 1.349 for Gaussian kernels and 1 otherwise. During the second stage, these 

parameters were also subjected to testing.  

Table 28: Performance of SVMs – first stage of trials 

Kernel function Mean value of validation folds 

RMSE MAE MSE R 

Linear 0.19 0.14 0.0361 0.73 

Quadratic 0.09 0.06 0.0081 0.94 

Cubic 0.06 0.03 0.0036 0.97 

Fine Gaussian 0.06 0.03 0.0036 0.97 

Medium Gaussian 0.06 0.02 0.0036 0.97 

Coarse Gaussian 0.11 0.07 0.0121 0.91 

 

In the second stage, SVMs with Gaussian kernels using 5 kernel scales were trained. 

Each one of these five cases, was tested with combinations of ε and C values, in order 

for the best one to be obtained. In this stage, the performance indices regarding the 

test set were also available. The procedure followed for each case is described herein. 

Firstly, the ε value is set to auto while the C varies and a series of networks is trained 

with these characteristics. Subsequently, the C value is set to auto and the ε varies. 

The C and ε values of the best performing networks according to validation and test 

MSE are selected, resulting to 1 to 4 combinations for each case depending on 

possible overlapping. The SVMs with ε value equal to 0.001 produced better results 

for all kernels and datasets. As a result, for each case two final combinations of C and 

ε values were selected and tested. The results of this stage are presented in Table 29. 

For each kernel scale value the performance indices of the best networks with ranging 

ε and C values are provided in the first two rows. In the third and the fourth row the 
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characteristics of the networks with the best C according to the validation and test 

MSE respectively are provided. It is noted that a total number of 105 SVMs was 

developed and evaluated in this stage, and ten of them were selected for further 

testing. A graphical description of this stage is provided in Fig. 56. 

 

Fig. 56: Graphical description of the second stage of trials 

Table 29: MSE and R values of SVMs – second stage of trials 

Kernel 
scale ε C 

Mean of 5 validation folds Test Set 

min MSE max R min MSE max R 

0.25 

auto variable 0.0025 0.98 0.001500 0.9864 

variable auto 0.0016 0.99 0.000440 0.9961 

0.001 1 0.0009 0.99 0.000143 0.9987 

0.001 10 0.0016 0.99 0.000077 0.9993 

0.50 

auto variable 0.0010 0.99 0.000869 0.9923 

variable auto 0.0025 0.99 0.000063 0.9994 

0.001 500 0.0009 0.99 0.000083 0.9993 

0.001 10 0.0025 0.99 0.000007 0.9999 

1 

auto variable 0.0025 0.98 0.000589 0.9948 

variable auto 0.0025 0.98 0.000049 0.9996 

0.001 2000 0.0025 0.97 0.000018 0.9998 

0.001 20 0.0025 0.98 0.000014 0.9999 

1.50 

auto variable 0.0036 0.98 0.000486 0.9957 

variable auto 0.0025 0.98 0.000059 0.9995 

0.001 500 0.0025 0.98 0.000035 0.9997 

0.001 3 0.0025 0.98 0.000033 0.9997 

2 

auto variable 0.0036 0.98 0.000441 0.9961 

variable auto 0.0036 0.98 0.000213 0.9981 

0.001 2000 0.0025 0.98 0.000169 0.9985 

0.001 1500 0.0025 0.98 0.000115 0.9990 
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The tested values of ε for all kernels were auto, 0.1,0.05,0.01,0.001. The range of C 

values for each kernel depended on the observed results and are presented in the 

following table. 

Table 30: Tested C values for each kernel case – second stage of trials 

Kernel 
scale 

Tested C values 

0.25 auto 0.05 0.5 0.75 1 1.25 1.5 2 3 10 20 50 100 200 500 

0.50 auto 0.05 0.5 1 2 3 10 20 50 100 200 500 1000 1500 2000 

1 auto 0.05 0.5 1 2 3 10 20 50 100 200 500 1000 1500 2000 

1.5 auto 0.05 0.5 1 2 3 10 20 50 100 200 500 1000 1500 2000 

2 auto 0.5 1 2 3 10 20 50 100 200 500 1000 1500 2000 2500 

 

3.3.2 Discussion and Results 

The second stage resulted in two networks for each case of kernel scale, leading to a 

total number of ten networks. Subsequently, the generalization ability of these 

networks was evaluated using data from five MARAD hullforms (B,E,H,M and O) 

listed in Table 5 (chapter 3.1.2). Once again, it is noted that data from these hulls was 

not included in the training and test data sets used for the training and evaluation of 

the networks. More importantly, for two of them (ships M and O) their geometric 

characteristics (i.e. their combination of CB and B/T values) exceeded the limits of the 

training data set.  

Two networks were finally selected. The first one (denoted SVM1) because it 

presented the best fit inside the dataset and the second one (denoted SVM2) for its 

lower errors outside its limits. SVM1 uses Gaussian kernel with kernel scale 1.5, C 

value equal to 500 and ε equal to 0.001, while the corresponding values for SVM2 are 

2,1500 and 0.001. The comparison of the residual resistance coefficient (CR) in a 

range of Froude numbers predicted by these two neural networks with the actual 

values according to the MARAD diagrams for the five ships is illustrated in Fig. 57 to 

Fig. 61.The predictions for the first three ships, i.e. the MARAD hulls within the 

limits of the training set, are quite close to the real values (see Fig. 57 - Fig. 59). In 

particular, these for ship E (Fig. 58) are the best ones compared to those for the other 

two ships.  

As already mentioned, the geometric properties of ships M and O exceeded the range 

of the training data set. For these ships, the predictions of the two networks are poor. 

However, those of SVM2 are considerably better than that of SVM1 for both ships. 

The predictions for ship O are better than those regarding ship M (Fig. 60 and Fig. 

61).  
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Fig. 57: Residual resistance coefficient for ship B 

 

Fig. 58: Residual resistance coefficient for ship E 

 

Fig. 59: Residual resistance coefficient for ship H 
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Fig. 60: Residual resistance coefficient for ship M 

 

Fig. 61: Residual resistance coefficient for ship O 

 

A comparison of the results for the total resistance of these five ships based on the 

MARAD data and the network predictions for the CR coefficient is presented in Fig. 

62 to Fig. 66 as well as in Table 31 to Table 35. The predictions for the first three 

ships with characteristics within the limits of the training dataset (ships B, E, H) 

present low deviations from the experimental values, in the order of 0.1% to 1.6% for 

SVM1 and up to 1.7% for SVM2. For the other two ships exceeding the limits of the 

dataset, the deviations were larger. These of SVM1 ranged between 0.6% to 17.4% 

for ship M and 3.3% to 13.2% for ship O, while these of SVM2 were lower (0.5% to 

11.0% for ship M and 1.7% to 8.3% for ship O). 
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Table 31: Total resistance prediction of ship B 

  MARAD SVM1 SVM2 

Fn 
υ 

[kn] 
RT 

[kN] 
RT  

[kN] 
diff. 
[%] 

RT  
[kN] 

diff. 
[%] 

0.130 14.8 2025.4 2045.7 -1.0 2046.0 -1.0 

0.140 15.9 2486.3 2509.0 -0.9 2518.4 -1.3 

0.145 16.5 2810.3 2833.6 -0.8 2844.1 -1.2 

0.150 17.1 3173.3 3209.3 -1.1 3213.3 -1.3 

0.155 17.6 3565.7 3587.7 -0.6 3590.0 -0.7 

0.160 18.2 3904.5 3956.4 -1.3 3963.4 -1.5 

0.165 18.8 4294.3 4361.2 -1.6 4367.2 -1.7 

0.170 19.4 4804.3 4860.0 -1.2 4858.2 -1.1 

0.175 19.9 5385.4 5458.7 -1.4 5461.8 -1.4 

0.180 20.5 6027.0 6110.8 -1.4 6122.3 -1.6 

Table 32: Total resistance prediction of ship E 

  MARAD SVM1 SVM2 

Fn 
υ 

[kn] 
RT 

[kN] 
RT  

[kN] 
diff. 
[%] 

RT  
[kN] 

diff. 
[%] 

0.130 14.0 1832.1 1825.7 0.4 1834.0 -0.1 

0.140 15.1 2222.2 2207.2 0.7 2212.4 0.4 

0.145 15.6 2455.9 2425.9 1.2 2432.3 1.0 

0.150 16.1 2684.7 2661.7 0.9 2667.9 0.6 

0.155 16.7 2905.1 2895.8 0.3 2899.0 0.2 

0.160 17.2 3136.7 3117.2 0.6 3118.4 0.6 

0.165 17.8 3379.9 3341.3 1.1 3345.6 1.0 

0.170 18.3 3634.8 3608.5 0.7 3618.6 0.4 

0.175 18.8 3986.7 3955.6 0.8 3968.9 0.4 

0.180 19.4 4435.6 4384.6 1.1 4399.5 0.8 

0.185 19.9 4915.8 4866.4 1.0 4887.7 0.6 

0.190 20.5 5444.9 5387.4 1.1 5416.5 0.5 
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Table 33: Total resistance prediction of ship H 

  MARAD SVM1 SVM2 

Fn 
υ 

[kn] 
RT 

[kN] 
RT  

[kN] 
diff. 
[%] 

RT  
[kN] 

diff. 
[%] 

0.130 15.3 2012.7 2026.5 -0.7 2025.8 -0.7 

0.140 16.5 2332.1 2347.7 -0.7 2352.8 -0.9 

0.145 17.0 2544.9 2545.0 0.0 2546.4 -0.1 

0.150 17.6 2756.6 2753.9 0.1 2756.3 0.0 

0.155 18.2 2936.0 2955.0 -0.6 2960.7 -0.8 

0.160 18.8 3136.2 3145.4 -0.3 3151.0 -0.5 

0.165 19.4 3343.8 3350.0 -0.2 3348.5 -0.1 

0.170 20.0 3558.8 3610.9 -1.5 3599.0 -1.1 

0.175 20.6 3964.5 3961.3 0.1 3944.9 0.5 

0.180 21.2 4398.9 4408.1 -0.2 4398.1 0.0 

0.185 21.7 4945.0 4939.3 0.1 4934.0 0.2 

0.190 22.3 5552.4 5550.9 0.0 5518.1 0.6 

Table 34: Total resistance prediction of ship M 

  MARAD SVM1 SVM2 

Fn 
υ 

[kn] 
RT 

[kN] 
RT  

[kN] 
diff. 
[%] 

RT  
[kN] 

diff. 
[%] 

0.130 15.8 2202.5 2586.8 -17.4 2440.4 -10.8 

0.140 17.0 2592.1 3020.7 -16.5 2873.7 -10.9 

0.145 17.6 2844.2 3283.9 -15.5 3156.9 -11.0 

0.150 18.2 3173.3 3585.8 -13.0 3493.2 -10.1 

0.155 18.8 3608.8 3917.6 -8.6 3864.8 -7.1 

0.160 19.4 4097.9 4266.4 -4.1 4259.3 -3.9 

0.165 20.0 4608.4 4638.1 -0.6 4689.1 -1.8 

0.170 20.6 5177.8 5061.3 2.2 5188.5 -0.2 

0.175 21.2 5810.8 5558.7 4.3 5781.5 0.5 

0.180 21.8 6578.7 6116.5 7.0 6438.6 2.1 

Table 35: Total resistance prediction of ship O 

  MARAD SVM1 SVM2 

Fn 
υ 

[kn] 
RT 

[kN] 
RT  

[kN] 
diff. 
[%] 

RT  
[kN] 

diff. 
[%] 

0.130 14.9 2325.3 2249.4 3.3 2229.3 4.1 

0.140 16.1 2830.3 2626.3 7.2 2606.4 7.9 

0.145 16.6 3089.9 2860.5 7.4 2847.3 7.9 

0.150 17.2 3351.6 3135.6 6.4 3157.1 5.8 

0.155 17.8 3640.8 3452.9 5.2 3521.1 3.3 

0.160 18.4 3975.5 3793.7 4.6 3906.6 1.7 

0.165 18.9 4393.1 4136.9 5.8 4292.0 2.3 

0.170 19.5 4905.8 4489.2 8.5 4688.4 4.4 

0.175 20.1 5508.8 4888.1 11.3 5137.6 6.7 

0.180 20.7 6194.0 5373.3 13.2 5682.5 8.3 
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Fig. 62: Total resistance for ship B  

 

Fig. 63: Total resistance for ship E 

 

Fig. 64: Total resistance for ship H 
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Fig. 65: Total resistance for ship M 

 

Fig. 66: Total resistance for ship O 

3.4 Comparison of selected ANNs 
The trials described in the previews chapters resulted in the selection of 8 neural 

networks; 4 MLPs, 2 RBFs and 2 SVMs. These networks are compared herein based 

on their predictions of CR for the five MARAD hullforms (B,E,H,M and O). All 

networks performed quite well inside the dataset (ships B,E,H), with the best one 

being SVM1 with observed deviation of predictions from the target values up to 

1.6%, followed by SVM2, MLP2 and MLP1. Outside the dataset the best performing 

network was MLP4, presenting deviations not higher than 6.8% from the desired 

values, while MLP3 and SVM2 are following with 7.8% and 11% respectively. The 

performance of RBFs was not superior than that of the other networks, although they 

presented deviations lower than 5% inside the dataset’s limits, which is considered 

acceptable. An overall comparison of the highest observed deviations between 

estimations and desired values per ship and network are provided in Fig. 67. Figures 
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illustrating the predictions of CR the five ships by the selected networks are also 

presented in Fig. 68-Fig. 72.  

It is worth noting that predictions using the developed artificial neural networks were 

conducted for Froude numbers up to 0.18, and in some cases up to 0.19, which are 

quite high when compared to Froude numbers of existing full-form vessels of similar 

size. However, since the data provided by the MARAD diagrams are extending up to 

these values, it was decided to use the full range of available data during the training 

and evaluation of the networks. 

 
Fig. 67: Higher observed deviation of Total Resistance per ship and network 

 

 

Fig. 68: Residual resistance coefficient for ship B 
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Fig. 69: Residual resistance coefficient for ship E 

 

Fig. 70: Residual resistance coefficient for ship H 

 

Fig. 71: Residual resistance coefficient for ship M 
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Fig. 72: Residual resistance coefficient for ship O 
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Conclusion 
This thesis investigates the ability of Artificial Neural Networks to predict the 

resistance of MARAD hullforms. The data for the training and evaluation of the 

networks were obtained from five diagrams illustrating the residual resistance 

coefficient (CR) for the full load condition presented in [5]. A total number of 1893 

points were collected from these diagrams and were separated into pairs of input – 

output data. The input vector consisted of length to beam ratio (L/B), breadth to draft 

ratio (B/T), block coefficient (CB) and the Froude number (Fn), while the output was 

the residual resistance coefficient (CR).  

Multi-layer perceptrons were trained and evaluated in two stages of trials. In the first 

stage a total number of 288 networks were developed. In this stage the learning 

function and rate were held constant, while different architectures, training and 

activations functions were tested. According to their performance on a validation data 

set, six networks of specific architecture, training and activations functions were 

selected. In the second set of trials, these six networks were tested in six learning rates 

and two learning functions while their other characteristics remained constant. 

Finally, four networks were selected. The first two presented the lower mean squared 

error on the validation dataset. The other two networks were selected for their 

possible generalization ability beyond the limits of the training data. 

Radial Basis Function networks were developed through a three stages process. In the 

first stage, 103 networks were trained. The division ratio of the available data to 

training and validation set was 80% and 20% respectively. In the second stage, the 

85% of the data was assigned to the training set, 15% to the validation set and 16 

networks were created. In the third stage, six networks were tested, using a modified 

K-means training algorithm, aiming to enhance their performance. All networks 

presented relatively high deviations outside the limits of the dataset, and as a result 

the two networks presenting the lower deviations inside its limits were selected. 

Support Vector Machines were trained using a two stages process. In the initial stage, 

SVMs with six Kernel functions were trained, in order for the most appropriate to be 

selected. The functions of the two best performing networks were Gaussian with 

different kernel scale configurations. As a result, in the second stage the Gaussian 

function was selected and 5 alternative kernel scales were tested. Every kernel scale 

was tested using 21 combinations of ε and C values. This process resulted in two 

networks for each kernel scale, leading to a total number of ten networks. Two of 

these were finally selected. The first one presented the lower validation mean square 

error inside the dataset and the second one presented the lower deviations outside the 

dataset, while performing well inside the dataset.  

Multi-layer perceptron neural networks and Support Vector Machines proved to be 

particularly effective in the evaluation of resistance of MARAD Hull forms with 

geometric characteristics within the limits of training data, with total deviations less 

than 2%. Some of the networks presented the ability of generalization exceeding the 
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limits of the training data. The obtained results with the MARAD series indicate that 

ANNs may be effectively used to provide accurate resistance predictions also for 

other systematic series. In addition, it might be argued that ANNs could be 

successfully trained to estimate calm water resistance of selected hullform types, 

based on the results of systematic calculations using advanced CFD software tools. 

They might be also used as an efficient means of calculation in other kinds of 

problems, such us for the prediction of maneuvering or seakeeping characteristics of 

ships, provided that adequate data for training are available. 
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