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Ellhnik  PerÐlhyh

Sthn enìthta aut  paratÐjetai mia ektetamènh perÐlhyh thc diplwmatik c sthn
ellhnik  gl¸ssa. H sugkekrimènh diplwmatik  ergasÐa perièqei plhj¸ra exeidi-
keumènhc orologÐac h opoÐa den tugq�nei epituqhmènhc met�frashc sthn ellhnik 
gl¸ssa, gegonìc to opoÐo endeqomènwc na paraplan sei kai na kour�sei ton a-
nagn¸sth. Gia to lìgo autì krÐjhke ìti h suggraf  tou kurÐwc keimènou sthn
agglik  gl¸ssa ja euno sei thn apìdosh tou perieqomènou kai ja apotrèyei
pijan  paranìhsh twn ìrwn apì ton anagn¸sth.

Eisagwg  H rompotik  apoteleÐ èna antikeÐmeno melèthc me meg�lo endia-
fèron, kaj¸c qrhsimopoieÐtai ìqi mìno se exezhthmènec efarmogèc, all� kai sth
kajhmerin  zw . Genik�, ja mporoÔsame na perigr�youme th rompotik  wc th
melèth mhqan¸n pou mporoÔn na antikatast soun touc anjr¸pouc sthn ektèle-
sh miac diadikasÐac, ìson afor� tìso th swmatik  ergasÐa ìso kai th l yh twn
apof�sewn.

Genik�, up�rqoun poll� eÐdh rompìt an�loga me thn apostol  pou prèpei na
fèroun se pèrac. Se perÐptwsh pou gia thn apostol  apaiteÐtai eukinhsÐa kai
epidexiìthta qrhsimopoioÔntai kinht� rompìt me braqÐona (mobile manipulator
systems) ta opoÐa apoteloÔntai apì mia kinht  b�sh kai ènan   perissìterouc
braqÐonec. An�loga me ton tÔpo thc kinht c b�shc mporoÔme na kathgoriopoi-
 soume ta mobile manipulator systems se ed�fouc, aèroc kai upobrÔqia. Sta
plaÐsia aut c thc diplwmatik c ja asqolhjoÔme me ta upobrÔqia.

H an�gkh gia qr sh upobrÔqiwn rompìt ègkeitai sto gegonìc ìti o �njrwpoc
den mporeÐ na plhsi�sei afilìxenec perioqèc ìpwc eÐnai ta b�jh thc j�lassac,
all� akìma kai sth perÐptwsh pou eÐnai se jèsh na to k�nei den ja mporoÔse na
fèrei se pèrac qronobìrec ergasÐec ekeÐ. Genik�, ta upobrÔqia rompìt qrhsimo-
poioÔntai se plhj¸ra efarmog¸n. Sta plaÐsia thc sugkekrimènhc diplwmatik c
ja exetasteÐ h qr sh touc se mia efarmog  sullog c kai enapìjeshc kat� thn
opoÐa ta rompìt pi�noun èna antikeÐmeno to metafèroun kai to topojetoÔn se
mia telik  jèsh. Ta upobrÔqia rompìt me ta opoÐa ja asqolhjoÔme onom�zontai
upojal�ssia oq mata me braqÐona (Underwater Vehicle – Manipulator Systems,
UVMS).

Shmei¸netai ìti polÔ suqn� èna rompìt den eÐnai ikanì na ektelèsei mia er-
gasÐa mìno tou. Se autèc tic peript¸seic apaiteÐtai sunergasÐa perissotèrwn.
Me ton trìpo autì sthn perÐptwsh thc metafor�c enìc antikeimènou, h opoÐa
eÐnai h efarmog  pou mac endiafèrei, h sunergasÐa twn rompìt odhgeÐ sthn aÔxh-
sh tou megèjouc kai tou b�rouc tou metaferìmenou antikeimènou, kaj¸c kai se
dieukìlunsh thc ektèleshc apaithtik¸n eligm¸n.

DiatÔpwsh tou Probl matoc � Prosèggish thc LÔshc To prìblh-
ma me to opoÐo asqoleÐtai aut  h diplwmatik  eÐnai h sunergasÐa upojal�ssiwn
oqhm�twn me braqÐona gia mia efarmog  sullog c kai enapìjeshc enìc anti-
keimènou, kat� thn opoÐa ta rompìt prèpei na plhsi�soun èna antikeÐmeno na to
pi�soun kai na to metafèroun apì mÐa arqik  topojesÐa se mia telik . Pio sugke-
krimèna asqoleÐtai me to st�dio thc prosèggishc tou antikeimènou apì ta rompìt
kai eidikìtera me thn l yh thc apìfashc gia to se poi� shmeÐa tou antikeimènou
ja prèpei na pi�soun oi akrodèktec twn braqiìnwn twn rompìt. H apìfash aut 
eÐnai meÐzonoc shmasÐac, kaj¸c kat�llhlh epilog  shmeÐwn kr�thshc mporeÐ na
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odhg sei se kalÔterh apìdosh tou sunergatikoÔ sust matoc (rompìt kai anti-
keÐmeno) me mikrìterh katan�lwsh enèrgeiac kai �ra megalÔterh autonomÐa, en¸
antÐjeta, lanjasmènh epilog  tètoiwn shmeÐwn mporeÐ na odhg sei se adunamÐa
tou sust matoc na ektelèsei tic apaitoÔmenec enèrgeiec, endeqìmenh katastrof 
tou exoplismoÔ kai genik� apotuqÐa thc ìlhc epiqeÐrhshc.

Genik�, gia thn epilog  shmeÐwn kr�thshc qrhsimopoioÔntai kat�llhla mètra
( grasp quality measures). Aut� eÐnai dÔo eid¸n: mètra sta opoÐa lamb�netai
upìyh h ekteloÔmenh diergasÐa kai mètra anex�rthta me aut . Sthn efarmog 
pou melet�me endèqetai na mhn mporoÔme na problèyoume tic epimèrouc enèrgeiec
pou ja prèpei na ektelèsoun ta rompìt. Kat� sunèpeia h qr sh mètrwn pou
lamb�noun upìyh tic enèrgeiec autèc ja  tan anoÔsia. 'Etsi, proteÐnetai h qr sh
mètrwn pou den ja lamb�noun upìyh tic epimèrouc enèrgeiec pou ja prèpei na
ektelèsoun ta rompìt all� pou exasfalÐzoun ìti ìpoia kai an eÐnai h enèrgeia
pou ja prokÔyei na ektelèsoun, ta shmeÐa kr�thshc ja prèpei na epitrèpoun sto
sÔsthma na thn ektelèsei me th mikrìterh dunat  katan�lwsh enèrgeiac.

Sta plaÐsia aut c thc diplwmatik c proteÐnontai dÔo tètoia mètra, ta opoÐa
ex�gontai apì thn an�lush tou elleiyoeidoÔc dunamik c dunatìthtac qeirismoÔ
(Dynamic Manipulability Ellipsoid) tou sust matoc. To pr¸to mètro stoqeÔei
sth megistopoÐhsh tou ìgkou tou elleiyoeidoÔc exasfalÐzontac par�llhla èna
k�tw ìrio sthn mikrìterh apìdosh tou sust matoc, ìson afor� thn prokalo-
Ômenh epit�qunsh sto antikeÐmeno. To deÔtero mètro eÐnai h mikrìterh apìstash
sto q¸ro twn metaforik¸n kai peristrofik¸n epitaqÔnsewn, ìpwc prokÔptoun
apì thn aposÔnjesh tou elleiyoeidoÔc.

MontelopoÐhsh tou SunergatikoÔ sust matoc Prokeimènou na dh-
miourg soume to elleiyoeidèc dunamik c dunatìthtac qeirismoÔ tou sust matoc,
aparaÐthth eÐnai h montelopoÐhsh tou sunergatikoÔ sust matoc rompìt � antikei-
mènou. Arqik�, orÐzetai h kinhmatik  tou upobruqÐou rompìt, h opoÐa prokÔptei
apì thn kinhmatik  thc b�shc (upobrÔqiou oq matoc) se sunduasmì me th kinhma-
tik  tou braqÐona. Sth sunèqeia, orÐzontai oi exis¸seic kÐnhshc tou rompìt ìtan
autì brÐsketai se allhlepÐdrash me to perib�llon tou, kaj¸c sth perÐptws  mac
askeÐ dÔnamh kai rop  sto antikeÐmeno.

Epìmeno b ma eÐnai h montelopoÐhsh tou antikeimènou to opoÐo ta rompìt ja
metafèroun. Gia to lìgo autì orÐzetai h dunamik  tou antikeimènou ìtan autì
kineÐtai se reustì.

Sundu�zontac tic exis¸seic kÐnhshc twn M rompìt kai tou antikeimènou pro-
kÔptoun oi exis¸seic kÐnhshc tou sunergatikoÔ sust matoc, dhlad  twn M ro-
mpìt pou sugkratoÔn to antikeÐmeno kai tou antikeimènou.

Me kat�llhlec pr�xeic mporoÔme na fèroume tic exis¸seic autèc se morf 
kat� thn opoÐa na sundèetai h eÐsodoc elègqou stouc kinht rec twn rompìt me
thn prokaloÔmenh epit�qunsh sto antikeÐmeno. 'Eqoume, loipìn, th susqètish
twn eisìdwn elègqou twn kinht rwn me thn epit�qunsh sto kèntro b�rouc tou
antikeimènou. H susqètish aut  ja qrhsimopoihjeÐ gia th kataskeu  tou dynamic
manipulability ellipsoid tou sust matoc.

Epilog  Bèltistwn ShmeÐwn Kr�thshc 'Opwc anafèrjhke prohgou-
mènwc, h epilog  twn bèltistwn shmeÐwn kr�thshc mporeÐ na bohj sei sto na
ekmetalleutoÔme sto èpakro tic dunatìthtec pou parèqei h sunergasÐa twn ro-
mpìt, ìson afor� th diaqeÐrish tou antikeimènou. Gia thn epilog  twn shmeÐwn
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aut¸n eÐnai aparaÐthto na uiojethjeÐ mÐa posìthta h opoÐa ja antanakl� tic a-
n�gkec tou sust matoc kai to genikì stìqo ton opoÐo jèloume na epitÔqoume.
Qrhsimopoi¸ntac th posìthta aut  mporoÔme na axiolog soume ta upoy fia set
twn shmeÐwn kr�thshc kai na epilèxoume to bèltisto. Oi posìthtec autèc eÐnai
ta mètra gia thn epilog  twn shmeÐwn kr�thshc (grasp quality measures).

Me b�sh th bibliografÐa, gia thn epilog  shmeÐwn kr�thshc qrhsimopoioÔntai
sun jwc mètra pou lamb�noun upìyh tic ergasÐec pou ja akolouj soun. Aut 
h praktik  eÐnai epijumht  kai proteÐnetai stic peript¸seic pou gnwrÐzoume tic
ergasÐec pou prèpei na ektelèsoun ta rompìt. Up�rqoun ìmwc peript¸seic pou
den mporoÔme na gnwrÐzoume ek twn protèrwn thn akrib  poreÐa pou prèpei na
akolouj soun ta rompìt kai kat� sunèpeia tic epimèrouc ergasÐec pou prèpei
na ektelèsoun. Eidik� sthn perÐptwsh pou to perib�llon eÐnai adìmhto, h po-
reÐa prèpei na orÐzetai apì ta Ðdia ta rompìt kat� th di�rkeia thc epiqeÐrhshc,
me tic plhroforÐec pou lamb�noun apì touc aisjht rec touc. Akìma kai sthn
perÐptwsh pou to perib�llon eÐnai apolÔtwc gnwstì, to sÔsthma endèqetai na
brejeÐ antimètwpo me aprosdìkhtec katast�seic, ìpwc kinoÔmena empìdia, twn
opoÐwn h poreÐa den ja mporoÔse na problefjeÐ ek twn protèrwn. Se tètoiec
peript¸seic, oi epimèrouc enèrgeiec pou ja prèpei na ektelèsoun ta rompìt ja
prèpei na orÐzontai kat� th di�rkeia thc epiqeÐrhshc. Gia thn antimet¸pish autoÔ
tou probl matoc ja mporoÔse na gÐnei allag  twn shmeÐwn kr�thshc kat� th
di�rkeia thc epiqeÐrhshc. 'Etsi ìtan ja proèkupte k�poia kat�stash pou den
eÐqe problefjeÐ ek twn protèrwn ta rompìt ja èprepe na xanapi�soun to antike-
Ðmeno se nèa shmeÐa gia na ikanopoi soun tic nèec an�gkec tou sust matoc. Par�
ìla aut�, h sugkekrimènh lÔsh den eÐnai protimhtèa, kaj¸c apaiteÐ polÔ qrìno
kai polloÔc eligmoÔc apì ta Ðdia ta rompìt, ta opoÐa kaj� ìlh th di�rkeia aut 
katanal¸noun enèrgeia h opoÐa, dedomènou ìti eÐnai autìnoma, eÐnai periorismènh.

Gia touc parap�nw lìgouc, ja qrhsimopoihjoÔn mètra pou de sqetÐzontai
me tic epimèrouc enèrgeiec pou ja ektelèsoun ta rompìt, all� epitrèpoun thn
ektèlesh opoiasd pote enèrgeiac kai an apaithjeÐ me thn katan�lwsh thc el�qi-
sthc dunat c enèrgeiac.

Sthn plaÐsia thc ergasÐac aut c, wc enèrgeia tou sust matoc ja ennoeÐtai h
prìklhsh epit�qunshc sto kèntro b�rouc tou metaferìmenou antikeimènou, en¸
wc apìdosh tou sust matoc ja noeÐtai h ikanìthta tou sust matoc na epitaqÔnei
to antikeÐmeno se mia dedomènh kateÔjunsh gia dedomènh prosdidìmenh posìthta
enèrgeiac. 'Opwc anafèrjhke prohgoumènwc, ta proteinìmena mètra proèrqontai
apì thn an�lush tou dynamic manipulability ellipsoid (DME) tou sust matoc.
To DME parèqei mÐa susqètish metaxÔ tou q¸rou pou antistoiqeÐ sth kata-
naliskìmenh enèrgeia, o opoÐoc sth perÐptws  mac eÐnai o q¸roc twn eisìdwn
elègqou, me to q¸ro twn prokaloÔmenwn epitaqÔnsewn sto antikeÐmeno. Gia ton
upologismì tou DME jewroÔme ìti to di�nusma twn eisìdwn elègqou keÐtetai se
mÐa monadiaÐa sfaÐra. Qrhsimopoi¸ntac tic exis¸seic kÐnhshc tou sunergatikoÔ
sust matoc prokÔptei h exÐswsh tou elleiyoeidoÔc.

Proteinìmena Mètra Dedomènou ìti megistopoi¸ntac to mègejoc tou DME,
megistopoieÐtai kai h epit�qunsh pou ja mporoÔse na epitÔqei to sÔsthma dunhti-
k�, gia peperasmènh posìthta katanaliskìmenhc enèrgeiac, ta proteinìmena mètra
stoqeÔoun sth megistopoÐhsh tou megèjouc tou elleiyoeidoÔc me diaforetikì,
ìmwc, trìpo to kajèna.

To pr¸to proteinìmeno mètro stoqeÔei sth megistopoÐhsh tou ìgkou to DME
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jètontac par�llhla èna k�tw ìrio sthn el�qisth apìdosh tou sust matoc, ìson
afor� thn prokaloÔmenh epit�qunsh. Genik�, me th mèjodo aut  de diaqwrÐzetai h
{kajar } epit�qunsh tou sust matoc, apì aut  pou prokaleÐtai apì to Ðdio b�roc
tou. EpÐshc, o trìpoc me ton opoÐo megistopoieÐtai o ìgkoc eÐnai aujaÐretoc,
dhlad  den mporoÔme na epèmboume stic dieujÔnseic stic opoÐec ja megejunjeÐ
to elleiyoeidèc. Gia to lìgo autì endèqetai o kÐndunoc na epilegoÔn shmeÐa
pou nai men exasfalÐzoun th megistopoÐhsh tou ìgkou tou elleiyoeidoÔc, all�
to sÔsthma na mhn eÐnai se jèsh na shk¸sei to b�roc tou   akìma kai an to
shk¸sei na mhn mporeÐ na epitaqunjeÐ se orismènec kateujÔneic exaitÐac autoÔ.
Gia na apofeuqjeÐ o parap�nw kÐndunoc proteÐnetai to sugkekrimèno mètro na
sunodeÔetai apì èna periorismì, pou lamb�nontac upìyh thn epÐdrash tou b�rouc
na orÐzei èna k�tw ìrio sthn epÐdosh tou sust matoc.

To prohgoÔmeno mètro den lamb�nei upìyh th diaforetik  t�xh megèjouc
twn dÔo epitaqÔnsewn, thc metaforik c kai thc peristrofik c, me apotèlesma
h lÔsh na ephre�zetai kurÐwc apì thn epit�qunsh me th megalÔterh. Me afor-
m  thn parap�nw parat rhsh, proteÐnetai to deÔtero mètro to opoÐo stoqeÔei
sth megistopoÐhsh twn elaqÐstwn apost�sewn sto q¸ro twn metaforik¸n kai
peristrofik¸n epitaqÔnsewn, ìpwc prokÔptoun apì thn aposÔnjesh tou DME.
To DME metatopÐzetai ètsi ¸ste na lamb�netai upìyh h epÐdrash tou b�rouc
tou sust matoc, me apotèlesma o q¸roc twn epitaqÔnsewn na perilamb�nei mìno
th {kajar } epit�qunsh pou prokaleÐtai sto kèntro b�rouc tou antikeimènou.
Sth sunèqeia, gia k�je kateÔjunsh thc metaforik c kai thc peristrofik c epi-
t�qunshc metr�tai h apìstash tou orÐou tou elleiyoeidoÔc apì to kèntro tou.
H apìstash aut  apoteleÐ to mètro thc epit�qunshc sth kateÔjunsh aut . Me
epan�lhyh aut c thc diadikasÐac se k�je kateÔjunsh dhmiourgoÔntai oi q¸roi
twn peristrofik¸n kai metaforik¸n epitaqÔnsewn. Me ton trìpo autì mporeÐ na
upologisteÐ h mikrìterh apìstash apì to kèntro mèqri to ìrio tou q¸rou gia ton
k�je q¸ro epit�qunshc. To stajmismèno �jroisma twn dÔo aut¸n apost�sewn
apoteleÐ to proteinìmeno mètro.

Sq mata BeltistopoÐhshc Gia thn epilog  twn shmeÐwn kr�thshc apa-
raÐthth eÐnai h qr sh enìc sq matoc beltistopoÐhshc. Dedomènou ìti to DME
tou sust matoc den ephre�zetai mìno apì th jèsh tou shmeÐou kr�thshc all�
kai diamìrfwsh tou rompìt, dhlad  th jèsh tou kai th jèsh twn arjr¸sewn tou
braqÐona, san metablhtèc apìfashc ja qrhsimopoihjoÔn oi jèseic twn shmeÐwn
kr�thshc kai oi metablhtèc pou orÐzoun th diamìrfwsh twn rompìt.

Wc antikeimenik  sun�rthsh ja qrhsimopoihjoÔn ta proteinìmena mètra ta
opoÐa jèloume na megistopoihjoÔn. Wc periorismoÐ orÐzontai ta ìria twn meta-
blht¸n pou orÐzoun th diamìrfwsh twn rompìt, h sunj kh kat� thn opoÐa h
jèsh tou i-ostou shmeÐou kr�thshc ja prèpei na tautÐzetai me th jèsh tou a-
krodèkth tou i-ostoÔ rompìt, h sunj kh kat� thn opoÐa o prosanatolismìc tou
akrodèkth tou i-ostoÔ rompìt ja prèpei na tautÐzetai me ton epitrepìmeno pro-
sanatolismì sto i-ostì shmeÐo kr�thshc, ìpwc epib�lletai apì th gewmetrÐa tou
antikeimènou kai tèloc ènac periorismìc pou exasfalÐzei ìti ta shmeÐa kr�thshc
èqoun epilegeÐ ètsi ¸ste ta rompìt na mh sugkroÔontai metaxÔ touc. Epiplèon,
gia to pr¸to proteinìmeno mètro, autì thc megistopoÐhshc tou ìgkou tou ellei-
yoeidoÔc, ja prèpei na qrhsimopoihjeÐ kai o periorismìc pou orÐzei to kat¸tato
ìrio sth epÐdosh tou sust matoc, ìson afor� thn prokaloÔmenh epit�qunsh sto
antikeÐmeno.
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Prosomoi¸seic-Apotelèsmata Ta parap�nw sq mata beltistopoÐhshc
epilÔjhkan me th qr sh MATLAB. Ta sen�ria ta opoÐa dokim�sthkan periel�m-
banan tic peript¸seic ìpou 2, 3 kai 4 upobrÔqia rompìt qrhsimopoioÔntai gia
na pi�soun mia r�bdo kai mia pl�ka me kuklik , orjog¸nia parallhlìgrammh,
tetr�gwnh kai elleiptik  pleur�. Apì tic en lìgw prosomoi¸seic proèkuyan en-
diafèronta apotelèsmata wc proc thn apotelesmatikìthta tou k�je mètrou all�
kai wc proc thn katallhlìtht� touc gia di�forec efarmogèc.

'Oson afor� to pr¸to proteinìmeno mètro, dhlad  autì pou megistopoieÐ
ton ìgko tou DME. Me mia pr¸th mati� ta apotelèsmata faÐnontai diaisjhti-
k� swst�, dhlad  omoi�zoun me ta shmeÐa pou ja epilègame na pi�soume èna
antikeÐmeno aujìrmhta. Basikì qarakthristikì aut c thc mejìdou eÐnai ìti dÐnei
apotelèsmata se qrìno mikrìtero tou enìc leptoÔ, an�loga bèbaia me th morf 
tou antikeimènou kai me th jèsh twn arqik¸n shmeÐwn. Autì to gegonìc k�nei
to mètro kat�llhlo gia qr sh se peript¸seic ìpou h apìfash gia ta shmeÐa
kr�thshc prèpei na parjeÐ polÔ gr gora. Mia tètoia perÐptwsh ja mporoÔse na
eÐnai aÔth kat� thn opoÐa den gnwrÐzoume thn akrib  morf  tou antikeimènou  
thn Ôparxh empodÐwn pou duskoleÔoun th sugkr�thsh tou antikeimènou apì su-
gkekrimèna shmeÐa, ek twn protèrwn. Se autèc tic peript¸seic, h anagn¸rish tou
antikeimènou ja prèpei na gÐnei apì ta Ðdia ta rompìt kat� th di�rkeia thc aposto-
l c. Kat� sunèpeia, h apìfash gia ta shmeÐa kr�thshc ja prèpei na parjeÐ kai
aut  kat� th di�rkeia thc apostol c, jètontac periorismì ston qrìno pou aut 
ja prèpei na diarkèsei, kaj¸c ekeÐnh th stigm  ta rompìt katanal¸noun th dik 
touc enèrgeia. Mil¸ntac genik� gia to sugkekrimèno mètro, autì epitugq�nei th
megistopoÐhsh tou ìgkou tou DME. Me autì ton trìpo to DME megejÔnetai
se k�je kateÔjunsh kai kat� sunèpeia megejÔnontai h metaforik , h peristro-
fik  epit�qunsh kai o sunduasmìc touc. O trìpoc me ton opoÐo megistopoieÐtai
autìc o ìgkoc eÐnai aujaÐretoc kai ètsi den exasfalÐzetai ìti to mètro thc e-
pit�qunshc megistopoieÐtai se k�je kateÔjunsh. Epiplèon, aut  h mèjodoc de
diaqwrÐzei th metaforik  apì th peristrofik  epit�qunsh, oi opoÐec endèqetai na
èqoun diaforetik  t�xh megèjouc me apotèlesma h epit�qunsh me th megalÔterh
t�xh megèjouc na ephre�zei perissìtero th lÔsh. EpÐshc, h sugkekrimènh mèjo-
doc de lamb�nei upìyh thn epÐdrash tou b�rouc tou sust matoc, par� ìla aut�
me th qr sh tou proteinìmenou periorismoÔ exasfalÐzei thn apofug  anepijÔmh-
twn katast�sewn stic opoÐec ja mporoÔse na odhg sei autì to gegonìc. Tèloc,
shmei¸netai ìti h qr sh twn metablht¸n thc diamìrfwshc twn rompìt stic me-
tablhtèc apìfashc endèqetai na odhg soun se megalÔterh metabol  tou ìgkou
apì ìti h metabol  thc jèshc twn shmeÐwn kr�thshc, gegonìc pou ja odhgoÔse
se apotelèsmata pou ja antistoiqoÔsan sth bèltisth diamìrfwsh twn rompìt
kai ìqi sta bèltista shmeÐa kr�thshc.

'Oson afor� sto deÔtero proteinìmeno mètro, dhlad  autì pou megistopoieÐ
thn el�qisth apìstash sto q¸ro twn metaforik¸n kai peristrofik¸n epitaqÔn-
sewn, kai autì me mia pr¸th mati� dÐnei apotelèsmata pou faÐnontai diaisjhti-
k� swst�. Genik�, aut  h mèjodoc stoqeÔei sth megistopoÐhsh thc qeirìterhc
apìdoshc tou sust matoc. 'Ena meg�lo pleonèkthma thc mejìdou eÐnai h apo-
sÔnjesh tou q¸rou twn epitaqÔnsewn stouc epimèrouc q¸rouc twn metaforik¸n
kai peristrofik¸n epitaqÔnsewn me apotèlesma h diafor� twn t�xewn megèjouc
na mhn ephre�zei th lÔsh. H aposÔnjesh tou q¸rou twn epitaqÔnsewn eÐnai
qronobìroc kai odhgeÐ sto meg�lo meionèkthma thc mejìdou pou eÐnai o qrìnoc
l yhc thc apìfashc. Autìc ft�nei kai ta 50 lept� an�loga me to sq ma tou
antikeimènou kai ta arqik� shmeÐa, kajist¸ntac thn akat�llhlh gia thn epilog 
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shmeÐwn kr�thshc kat� th di�rkeia thc epiqeÐrhshc. Par� ìla aut�, h mèjodoc
eÐnai kat�llhlh se peript¸seic pou h morf  kai h jèsh tou antikeimènou eÐnai
gnwst� ek twn protèrwn opìte kai h apìfash mporeÐ na parjeÐ prin apì thn
ènarxh thc epiqeÐrhshc. Meg�lo pleonèkthma tou sugkekrimènou mètrou eÐnai
ìti lamb�nei upìyh thn epÐdrash tou b�rouc tou sust matoc dÐnontac pio axiìpi-
sta apotelèsmata.

En suneqeÐa, gÐnetai mia sÔgkrish metaxÔ twn dÔo proteinìmenwn mètrwn .
Genik�, ta dÔo mètra odhgoÔn se diaforetik� shmeÐa kr�thshc kai autì ofeÐletai
sto diaforetikì trìpo me ton opoÐo megistopoieÐtai to elleiyoeidèc. 'Opwc pro-
kÔptei apì th sÔgkrish, to pr¸to mètro parèqei to megalÔtero mègisto mètro
epit�qunshc en¸ to deÔtero mètro th kalÔterh mikrìterh apìdosh.

Prot�seic gia Peraitèrw 'Ereuna Genik�, h epilog  twn shmeÐwn kr�th-
shc prosfèretai gia peretaÐrw èreuna. Ta mètra pou proteÐnontai sth paroÔsa
diplwmatik  ergasÐa epidèqontai belti¸sewn kurÐwc se jèmata pou aforoÔn tic
upojèseic pou èginan gia thn exagwg  touc. EpÐshc, belti¸seic epidèqontai kai
ta mètra aut� kajaut�, ìpwc h enswm�twsh thc epÐdrashc tou b�rouc sto pr¸to
kai ènac pio gr goroc trìpoc aposÔnjeshc tou q¸rou twn epitaqÔnsewn sto
deÔtero. Tèloc, ìson afor� th sunolik  epiqeÐrhsh thc sullog c kai enapìje-
shc tou antikeimènou, proteÐnetai h enasqìlhsh me th f�sh thc prosèggishc tou
antikeimènou apì thn om�da twn rompìt.
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Abstract

In recent years, robotics have become an increasing field of study with rapid
growth. This mainly happens due to their applicability in everyday life. A great
characteristic of robotics is their ability to give access to areas where humans
would not be able to reach or even if they would, they would not be able to
execute long lasting operations, there. An area like this is the ocean, where many
long duration operations are taking place, making the use of robots necessary.
This thesis focuses in the use of Underwater Vehicle - Manipulator Systems
(UVMS), that are usually suitable for operations like these. The application
that is studied is a cooperative pick-and-place operation in which a team of
UVMSs have to reach an object, grasp it and transfer it from its initial location
to a final one.

More specifically, this work is dedicated to the selection of the grasp points
where the UVMSs’ end-effectors have to grasp at in order to lift, manipulate and
transfer an object from its initial location to a final one. A main characteristic, of
applications like this, is that the environment, where the robots have to execute
their tasks, is unstructured and likely unexplored. But even if we know the exact
environment’s structure a priori, it is possible to contains moving obstacles with
unpredicted motion that might interrupt predefined tasks. For these reasons,
in this work, for the evaluation and the selection of the grasp points, non-task
specific grasp quality measures are used. As a result, the quality measures do
not aim to an optimal execution of a set of predefine posterior tasks, but to the
system’s (UVMSs and manipulated object) ability to execute each task, that
might arise during the operation, in the best possible way.

In this work, two novel non-task specific quality measures for the selection
of optimal grasp points on an object in a cooperative pick-and-place operation
by a team of UVMSs, are presented. These measures are extracted from the
analysis of the system’s dynamic manipulability ellipsoid (DME). The system’s
DME is used as a mapping from the system’s control input space to the system’s
acceleration space connecting the consuming energy by the UVMSs’ actuators
with the provoked acceleration on the manipulated object. As a result the two
proposed measures aim in the maximization of the system’s ability to accelerate
the object by also minimizing the consuming energy for this purpose. Each
measure achieves this goal in a different way.

The first proposed measure is the volume of the system’s DME. This measure
aims in the maximization of the DME in every direction. Generally, this measure
does not take into account the acceleration produced by the system’s weight,
for this reason it is proposed to be used combined with a constraint that, based
in this acceleration, guarantees a bound in the system’s minimum performance,
as concerns the acceleration of the object’s center of gravity. As concerns the
second measure, this is the minimum distance in the translational and rotational
acceleration space, as arise from the decomposition of the system’s dynamic
manipulability ellipsoid.This measure provides grasp points that guarantee the
maximum possible minimum system’s performance as concerns the acceleration
of the object’s center of gravity. More specifically, it is guaranteed that the
system will be able to accelerate the object in the most difficult translational
and rotational direction in the best way, i.e. higher magnitude with lower energy
consumption.

In order to select the grasp points, the proposed grasp quality measures have
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to be embodied in an optimization scheme, whose objective function will be this
very measure. For this reason, two optimization schemes were created for the
purpose of this thesis, one for each measure. As constraints are established the
limitations imposed be the UVMSs, i.e. joint limits and actuators’ maximum
torque, and the shape of the manipulated object.

Finally, in order to clarify the proposed measures and to verify their effi-
ciency, the optimization schemes were solved for various case studies, i.e. differ-
ent number of UVMSs and object of varied shapes. The results were analyzed
in order to understand the advantages and disadvantages of the proposed mea-
sures. A comparison between the proposed measures is taking place in order to
illustrate their differences due to the different way that each of the two measures
maximizes the system’s DME.
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Chapter 1

Preface

1.1 Introduction

Robotics

Robotics is a field of study that provokes a great interest to engineers and
scientists from many disciplines, due to its applicability not only in special op-
erations, like search and rescue in areas suffer from natural disasters, inspections
in contaminated areas or exploration of other planets, but also in everyday ap-
plications like driving or even vacuum cleaning. As mentioned in [1], robotics
are concerned with the study of those machines that can replace human beings
in the execution of a task, as regards both physical activity and decision making.
A phrase that reveals the evolution of robotics in our society is: ”The dream to
create machines that are skilled and intelligent has been part of humanity from
the beginning of time. This dream is now becoming part of our world’s striking
reality” [1].

Mobile Manipulators

As long as the main goal of the robots’ use is to implement certain procedures
or tasks, there are many kinds of robots depending on the application that
they are designed for. Generally, robots can be classified in two major cate-
gories. To those that have a fixed base, which are called robot manipulators
and those with a mobile base, which are called mobile robots. As concerns the
robot manipulators, they are characterized by their dexterity while the mobile
robots are characterized by their mobility. In many applications both of the
previously mentioned properties are required for their efficient implementation.
For these cases the use of mobile manipulator systems is imposed. The mobile
manipulator systems are consisted of a mobile base equipped with one or more
manipulators, combining the mobile base’s mobility and the manipulators’ dex-
terity. Consequently, a mobile manipulator is able to execute various complex
tasks (e.g., lifting an object, open a vane or drilling on a surface) as a fixed
base manipulator does, but has also the ability to extend its workspace, due
to its mobile base. Thus, common applications in which the use of mobile ma-
nipulators is essential are mining, construction, forestry, planetary exploration
and the military [2]. Generally, the mobile manipulator systems, depending on
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their mobile base’s type, can be categorized as ground (Fig. 1.1a), aerial (Fig.
1.1b) or underwater (Fig. 1.1c), executing tasks in the field, the air and the
ocean respectively. In this work the operation that the mobile robots will have
to execute is going to take place in the ocean so we will concentrate to the case
of mobile robots whose base is an underwater vehicle.

(a) Unmanned ground mobile manipulator
(sourse: ICARUS)

(b) Multi-rotor aerial robot with manip-
ulator (ARCAS project)

(c) UVMS ECA Hytec H2000 (sourse:ROV Innovations)

Figure 1.1: Mobile manipulator systems

Underwater Vehicles - UVMSs

One of the most common reasons why we use robots, and especially mobile
robots, is the need to have access in regions that the human is not able to
or it would be extremely risky to do it. Even if the human is able to access
these areas it would be impossible to execute long lasting operations. Such
an inhospitable environment is the deep ocean and this is the reason why the
underwater robots are important. The underwater robots is an interesting field
of research with great potential and this is the reason why many researchers dealt
with them. Indicatively in [3] Fossen presents modeling and control of marine
vehicle focusing also in underwater vehicles, while in [4], Antonelli presents
modeling and control of underwater robots and especially of UVMSs. Common
operations for underwater robots are inspection, maintenance, repair and service
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work on underwater installations [5]. In this thesis, we will examine the use of
underwater vehicles in a pick-and-place operation.

Generally, we refer to underwater vehicles as Unmanned Underwater Vehicles
(UUVs) [4] and they are categorized to Remotely Operated Vehicles (ROVs),
which are physically linked (with wire) underwater vehicles and Autonomous
Underwater Vehicles (AUVs), that do not have the limitations that a wire pro-
vides but they have to deal with the autonomy limitations.

In many operations it is required from the underwater robots to execute
certain tasks that demand their interaction with their environment. Operations
like these could be the lift of an object, the turn of a valve e.t.c.. In order to
provide this ability to the robots, they have to be equipped with one or more
manipulators. In this case the system is called Underwater Vehicle - Manipula-
tor System (UVMS) [4] and might be autonomous (AUV+Manipulator) or not
(ROV+Manipulator).

This work concentrates at the autonomous Underwater Vehicle Manipulator
Systems (UVMS) like the one illustrated in Fig. 1.2.

Figure 1.2: UVMS developed for the TRIDENT project (GIRONA 500 AUV + ma-
nipulator)

Cooperative Manipulation

Despite the mobile manipulators’ advantages, they also have some typical lim-
itations. Some of the most usual are the autonomy range and the actuators’
maximum torque. As a result many tasks are difficult or impossible to be ex-
ecuted by a single robot. Such tasks could be the carriage of a heavy or of a
long enough object, the assemblance of multiple parts without the use of special
fixtures in order to facilitate the grasping or handling of flexible objects. In
these cases the robot might be unable to execute the tasks or it is possible to
have limited traveling time due to exaggerate energy consumption. These lim-
itations can be compensated more efficiently, if multiple mobile manipulators
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are cooperatively involved. In this way, a task that would have been doomed to
failure in the one-robot case, might be feasible when more robots are employed
in cooperative way. As concerns the case of object transportation, in which
we are interested in, the cooperative manipulation affects positively in terms of
size, weight and shape of the transported object and facilitates, also, intricate
moves and maneuvers [6].

1.2 Problem Statement

A common application of mobile manipulators and especially of UVMSs, as
concerns this work, is the pick-and-place operation. In cases where the object
is heavy enough or in cases where the environment is not hospitable for the
human (deep in the ocean, in contaminated areas e.t.c.) the need of robots
to execute these tasks is imposed. In this operation, the robots have to reach
an object, grasp it and transfer it from an initial location to a final one. In
Fig. 1.3 is illustrated the case that two UVMSs have grasped an object and
they are carrying it in order to transfer it to a final destination. As concerns
the reaching phase, that is illustrate in Fig. 1.4, the robots are reaching the
object in order to grasp it, starting from their initial positions. The problem of
cooperative reaching an object can be divided into two subproblems. The first
is the decision of the positions on the object where the robots will grasp at. The
second, is the way that the robots must reach these positions. This work deals
with the first problem, the determination of the grasp points.

Figure 1.3: UVMSs carrying an object in order to transfer it to a final destination.

The determination of the grasp points is crucial for the rest of the oper-
ation (i.e., transportation, manipulation), as long as a correct grasp planning
may lead to higher performance for the cooperative system, with lower energy
consumption, which would lead to higher autonomy. The achievement of higher
autonomy is translated to the robots’ ability to stay longer in the water, which
is crucial for the efficient execution of long lasting operations. In order to
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Figure 1.4: Mobile manipulators reaching object for grasping

strengthen the importance of the determination of the grasp points, it is men-
tioned that an improper grasping could lead to inability of the team to execute
the imposed operation successfully, which means inability to transfer the object,
possible destruction of the object or of the robotic equipment and generally the
complete failure of the whole operation. As can be inferred from the above the
proper selection of the grasp points is of great importance and as a result proper
grasp quality measures have to be adopted.

There are two kinds of quality measures for the selection of grasp points.
The first is the task oriented, which are quality measures that take into account
the tasks that the system , robots and object, will have to execute during the
operation. On the other hand, there are the quality measure that do not take
into account the following tasks, mainly because they are not known a priori.
So the selection of the grasp points is not based on them. These measures are
called non-task specific.

In many cases, especially when the environment is unstructured, like an area
full of ruins after an earthquake, an unexplored terrain or the deep ocean, we
are not aware of the exact path that the robots team and the grasp object will
have to follow. Consequently, we are not aware of the consecutive tasks that the
robots will have to execute a priori. In addition to the unstructured environ-
ment, there might be moving obstacles whose motion can not be predicted (e.g.,
a collapsing floor or a chain moved by ocean currents). Then, the tasks can not
be imposed before the start of the operation, as long as the robots will have
to collect on-line information about their environment. Each task will have to
be planned depending on the informations that the sensors of the robots pro-
vide about the surrounding environment’s structure and the relative position
of the moving obstacles. As can be referred from the above, the grasp quality
measures can not be task dependent and as a result non-task specific measures
should be used for the evaluation of the potential grasp points. This measures
should guarantee that no matter the task that might arise to be executed, the
resulting grasp points will permit to the system to execute it with the least
possible energy consumption.
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So in this work, the determination of the optimal grasp points, in a pick-
and-place operation is examined. For this operation we are not aware of the
consecutive tasks that might arise, so we are interested in finding proper non-
task specific quality measures for the grasp points evaluation.

1.3 Approach of Solution

In this work two non-task specific measures are presented in order to define
grasp points that by grasping them, the mobile manipulators can execute every
needed task with the least possible energy consumption. For the following anal-
ysis, as task will be denoted the acceleration of the object’s center of gravity
(translational, rotational or combination of them).

The measures will be extracted from the system’s dynamic manipulability el-
lipsoid [7]. The first proposed method aims at the maximization of the system’s
dynamic manipulability ellipsoid (DME)[7, 8] by also guaranteeing a bound in
the system’s minimum performance, as concerns the provoked acceleration. This
measure maximizes the system’s potential acceleration, by maximizing the vol-
ume of the system’s DME. In order to avoid the possibility that might arise,
of the system’s inability to accelerate its own weight or to execute a number of
tasks, in this work this measure is proposed to be accompany by a constraint
that guarantees a lower bound at the system’s performance.

The second proposed measure is the minimum distance in the translational
and rotational acceleration space. These two spaces are extracted by the de-
composition of the system’s dynamic manipulability ellipsoid. The minimum
distance from the center of one of these two spaces with its bound corresponds
to the most difficult acceleration’s directions, which means that the system
accelerates in this with the minimum magnitude and for maximum energy con-
sumption. The maximization of this measure, and consequently the maximiza-
tion of these two distances, guarantees that the system will accelerate in the
most difficult direction with the best possible way, i.e. higher magnitude with
lower energy consumption.

In order to select the grasp points, two optimization schemes will be imple-
mented. Each one of them will have as objective function one of the proposed
quality measures. The constraints that are considered for these optimization
schemes are the UVMS’s joint limits, control input saturations, a minimum dis-
tance between the robots (i.e., in order to satisfy collision avoidance) as well as
the object’s shape.

1.4 Thesis Structure

The structure of this thesis is as follows:
In Chap. 2 the model of the cooperative system, UVMSs and manipulated

object, is presented. More specifically, in section 2.1 the UVMS’s kinematics
and equations of motion are determined. In section 2.2 the dynamics of the
manipulated object are presented. Finally, in section 2.3 the UVMSs’ equations
of motion are combined with these of the manipulated object consisting the
dynamics of the cooperative system.

6



In Chap. 3 the proposed grasp quality measures are presented. A brief out-
line of the relative to the grasp points selection work is listed in section 3.1,
while in section 3.2 the proposed approach for the grasp point selection, that
is followed in this thesis, is explained. In 3.3 the general concept of Dynamic
Manipulability Ellipsoid (DME) is illustrated and the DME of the cooperative
system is determined. Finally, in section 3.4 the proposed grasp quality mea-
sures are presented , accompanied with the necessary informations for their
comprehension.

In Chap. 4 the optimization schemes for the selection of the grasp points are
presented, while in Chap. 5 the results from the application of the optimization
schemes in various case studies are presented, accompanied with comments for
each proposed measure.

Finally, in Chap. 6 some concluding remarks for the use of the presented
methods are listed, followed by proposals for the improvement of the aforemen-
tioned measures and for further research.
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Chapter 2

Modeling of the
Cooperative System

2.1 Reference Frames

In order to determine the equations of motion of the cooperative system, the
following reference frames are introduced. These frames are also illustrated in
Fig. 2.1 .

Earth-Fixed Frame With {I} is denoted the earth-fixed frame OI−XIYIXI

that will be used as inertial frame.

Vehicle-Fixed Frame With {V } is denoted the vehicle-fixed frame OV −
XV YVXV , whose origin is located on the vehicle’s center of gravity.

Manipulator’s Base frame With {0} is denoted the end-effector’s base
frame O0 −X0Y0X0 which is fixed on the vehicle. As P0 is denoted the pose of
the manipulator’s base frame with respect to the vehicle-fixed frame.

Manipulator’s End-Effector frame With {ee} is denoted the end-effector’s
frame Oee −XeeYeeZee.

Object-fixed frame With {O} is denoted the object-fixed frameOo−XoYoZo
whose origin is located at the object’s center of gravity

2.2 Modeling of UVMS

2.2.1 Vehicle’s Kinematics

In order to describe the position and the orientation of the vehicle in the inertial
frame {I}, as can be seen in Fig. 2.1, the following vector is used:

η =
[
ηT1 ηT2

]T ∈ R6 (2.1)
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Figure 2.1: In this figure simplified sketches of the UVMS and the object are depicted.
There are also presented the reference frames, which are denoted in this section, and
some important position vectors.

where η1 =
[
xv yv zv

]T ∈ R3 is the vector of the vehicle’s position coor-

dinates and η2 =
[
φv θv ψv

]T ∈ R3 is the vector of vehicle’s Euler-angle
coordinates in the inertial frame {I}. In our case, we use the roll, pitch, yaw
angles for the attitude representation.

The time derivative of the vehicle’s posture in inertial frame {I}, is denoted
as:

η̇ =

[
η̇1
η̇2

]
∈ R6 (2.2)

where η̇1 ∈ R3 is the time derivative of the vehicle’s position coordinates and
η̇2 ∈ R3 the time derivative of the vehicle’s Euler angles coordinates.

With ν ∈ R6 is denoted the vehicle-fixed velocity:

ν =

[
ν1
ν2

]
∈ R6 (2.3)

As ν1 ∈ R3 is denoted the body-fixed linear velocity, which is the linear velocity
of the origin of the vehicle-fixed frame {V } with respect to the origin of the
inertial frame {I}, expressed in the vehicle-fixed frame:

ν1 =

uυ
ω

 ∈ R3 (2.4)

The body-fixed linear velocity, ν1, is related with the time derivative of the
vehicle’s position coordinates, η̇1, with the following expresion:

ν1 = VRI η̇1 (2.5)
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where VRI ∈ R3 is the rotation matrix that expresses the transformation from
the inertial frame {I} to the vehicle-fixed frame {V }. In nautical field as attitude
representation are used the roll, pitch and yaw angles, so the rotation matrix
becomes:

VRI(η2) =

 cψcθ sψcθ −sθ
−sψcφ + cψsθsφ cψcφ + sψsθsφ sφcθ
sψsφ + cψsθcφ −cψsφ + sψsθcφ cφcθ

 ∈ R3 (2.6)

where, as a matter of convenience, the ca and sa are used as short notations for
cos(a) and sin(a) respectively.

As ν2 ∈ R3 is denoted the body-fixed angular velocity, which is the angular
velocity of the vehicle-fixed frame (body-fixed frame) with respect to the inertial
frame, expressed in the vehicle-fixed frame:

ν2 =

pq
r

 ∈ R3 (2.7)

The body-fixed angular velocity, ν2, is related with the time derivative of the
vehicle’s Euler angles coordinates, η̇2, with the following expression:

ν2 = Jk,o(η2)η̇2 (2.8)

As Jk,o(η2) is denoted a proper Jocobian matrix depending on the attitude rep-
resentation. For the roll, pitch ,yaw angles representation the Jacobian matrix
is of the form:

Jk,o(η2) =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 (2.9)

Combining equations (2.5) and (2.8) we have:[
ν1
ν2

]
=

[
VRI(η2) O3×3
O3×3 Jk,o(η2)

] [
η̇1
η̇2

]
(2.10)

By denoting the matrix Je(η2) ∈ R6×6 as

Je(η2) =

[
VRI(η2) O3×3
O3×3 Jk,o(η2)

]
(2.11)

and by substituting (2.11) to (2.10) we have:

ν = Je(η2)η̇ (2.12)

The above equation represents the vehicle’s differential kinematics.

2.2.2 Manipulator’s Kinematics with Mobile Base

Let assume that we have a manipulator of nm joints. The vector of joints’

positions is q =
[
q1 ... qnm

]T ∈ Rnm .
We define the end-effector’s posture as:

ηee =

[
ηee1
ηee2

]
∈ R6 (2.13)
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where ηee1 ∈ R3 is the position of the end-effector in the inertial frame {I} and
ηee2 ∈ R3 is the orientation of the end-effector in the inertial frame {I}. This
vector is also illustrated in Fig. 2.1

As it was mentioned before, the base frame of the end-effector, {0} is fixed
at the vehicle and in posture in the vehicle-fixed frame {V } of P0 ∈ R6. As
a result the position of the end-effector is a function of the vehicle’s position
and orientation and of the manipulator’s configuration, ηee1 = k1(η1,η2, q).
The orientation of the end-effector is also a function of vehicle’s orientation
and manipulator’s configuration, ηee2 = k2(η2, q). So the posture of the end-
effector can be denoted by the following function:

ηee = k(η1,η2, q) (2.14)

The above equation is the equation of direct kinematics of the UVMS and
is extracted by using the Denavit-Hartenberg convention. It depends on the
vehicle’s and manipulator’s structure and differs from robot to robot.

2.2.3 UVMS’s Kinematics

For the manipulator’s differential kinematics let
η0: be the vector of manipulator’s base frame position in inertial frame {I}
0η0,ee: be the vector connecting the manipulator’s base with the end effector,
expressed in manipulator’s base frame {0}
0ω0,ee: the end-effector’s angular velocity in manipulator’s base frame

Let consider the vector 0υee =
[
0η̇T0,ee

0ωT0,ee
]T ∈ R6 for which holds:

0υee =

[
0η̇0,ee
0ω0,ee

]
=

[
Jp
Jo

]
q̇ = Jq̇ (2.15)

where J ∈ R6×nm is the manipulator’s geometric Jacobian. The geometric
Jacobian can be derived in an easy and systematic way from the manipulators
direct kinematics, as derived from Denavit-Hartenberg convention, as mentioned
in [9].

ηee1 = η0 + IR0
0η0,ee (2.16)

By differentiating we obtain:

η̇ee1 = η̇0 + IṘ0
0η0,ee + IR0

0η̇0,ee (2.17)

By using the equation IṘ0 = Iω0 × IR0 we obtain:

η̇ee1 = η̇0 + Iω0 × IR0
0η0,ee + IR0

0η̇0,ee (2.18)

η̇ee1 = η̇0 − S(IR0
0η0,ee)

Iω0 + IR0
0η̇0,ee (2.19)

As mentioned in (2.15) 0η̇0,ee = Jpq̇ so we obtain:

η̇ee1 = η̇0 − S(IR0
0η0,ee)

Iω0 + IR0Jpq̇ (2.20)

η̇ee1 = η̇0 − S(IR0
0η0,ee)

Iω0 + IJpq̇ (2.21)
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If also considered that Iω0 = IRV ν2 then:

η̇ee1 = η̇0 − S(IR0
0η0,ee)

IRV ν2 + IJpq̇ (2.22)

For the time derivative of the manipulator’s base frame position η̇0 we have:

η̇0 = IRV ν1 + Iω0 × IRV V rV,0 (2.23)

η̇0 = IRV ν1 − S(IRV
V rV,0)IRV ν2 (2.24)

where V rV,0 ∈ R3 is the vector connecting the origin of the vehicle-fixed frame
with the base of the manipulator expressed in vehicle-fixed frame {V }.
By substituting (2.24) in (2.22) we have:

η̇ee1 = IRV ν1−S(IRV
V rV,0)IRV ν2−S(IR0

0η0,ee)
IRV ν2 + IJpq̇ (2.25)

η̇ee1 = IRV ν1 −
(
S(IRV

V rV,0) + S(IR0
0η0,ee)

)
IRV ν2 + IJpq̇ (2.26)

η̇ee1 = Jp,uvmsζ (2.27)

where

Jp,uvms =
[
IRV −

(
S(IRV

V rV,0) + S(IR0
0η0,ee)

)
IRV

IJp

]
(2.28)

As concerns the orientation, let define as:
ωee: the angular velocity of the end-effector in the inertial frame {I}
ω0: the angular velocity of the vehicle in the inertial frame {I}
0ω0,ee: the angular velocity of the manipulator with respect to the base frame
expressed in the base frame {0}

ωee = ω0 + 0ω0,ee (2.29)

From equation (2.15) we have 0ω0,ee = Joq̇ so by substituting to (2.29) we
have:

ωee = IRV ν2 + IR0Joq̇ (2.30)

ωee = IRV ν2 + IJoq̇ (2.31)

ωee = Jo,uvmsq̇ (2.32)

where
Jo,uvms =

[
O3×3

IRV
IJo

]
(2.33)

So the differential kinematics’ equation of the UVMS is:

ẋE =

[
η̇ee1
ωee

]
= Juvmsζ (2.34)

where

Juvms =

[
Jp,uvms
Jo,uvms

]
=

[
IRV −

(
S(IRV

V rV,0) + S(IR0
0η0,ee)

)
IRV

IJp

O3×3
IRV

IJo

]
(2.35)

For simplicity the UVMS’s geometric Jacobian will be denoted as J .
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2.2.4 Vehicle’s Dynamics

Rigid Body Dynamics In this section, the equations of motion of the vehicle
will be determined. In the following, it is considered that the origin of the body-
fixed frame coincides with the vehicle’s center of gravity, as it was mentioned
and in previous sections.

The Newton - Euler equations of motion of a rigid body moving is space are:

MRBν̇ +CRB(ν)ν = τν (2.36)

Where
ν: is the vector containing the body’s translational and angular velocities.
MRB: is the inertia matrix
CRB: is the matrix contains the Coriolis and centripetal terms
τν : the generalized forces acting to the body

Hydrodynamic Effects While the object is moving in a fluid the hydrody-
namic effects have great influence on its dynamics. The fluid surrounding the
body is accelerated with the body itself. The fluid exerts a reaction force, which
is equal to magnitude and opposite in direction of the force that the body exerts
to the fluid that causes the fluid’s acceleration. This reaction force is the added
mass contribution.
Let MA ∈ R6×6 be the added mass matrix and CA(ν) be the matrix containing
the added Coriolis and centripetal contribution of the added mass.

The presence of the fluid also provokes dissipative drag and lift forces on the
body. Let DRB(ν) be the matrix containing the linear and quadratic damping
terms that reflect the presence of dissipative drag and lift forces caused by the
fluid’s viscosity.

Let now consider the gravitational force acting on the body and the buoy-
ancy. The gravity force is:

fG(VRI) = VRImg
I (2.37)

The buoyancy force acting in the center of buoyancy is:

fB(VRI) = −VRIρ5 gI (2.38)

where m ∈ R is the vehicle’s mass,ρ the density and 5 the volume of the body.
Let denote the vector of force/moment due to gravity and buoyancy in the

body - fixed frame as:

gRB(VRI) = −
[

fG(VRI) + fB(VRI)
V rG × fG(VRI) + V rB × fB(VRI)

]
(2.39)

where V rB ∈ R3 is the center buoyancy.
Considering the vehicle as a rigid body submerged into the fluid. The vehi-

cle’s equations of motion become:

Mvν̇ +Cv(ν)ν +DRB(ν)ν + gRB(IRV ) = τv (2.40)

where
Mv = MRB +MA and Cv = CRB +CA
τv:the generalized forces (force and torque) acting on the vehicle
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2.2.5 Manipulator’s Dynamics

As concerns a manipulator moving in a fluid we have the equations of motion:

Mm(q)q̈ +Cm(q, q̇)q̇ +Dm(q, q̇)q̇ + gm(q) = τm (2.41)

where
Mm(q) the manipulator’s inertia matrix, including added inertia due to liquid
Cm(q, q̇) the matrix that contains Coriolis and centripetal terms
Dm(q, q̇) the hydrodynamic lift and damping matrix
gm(q) vector of gravity and buoyancy forces
τm vector of the torques acting to the manipulator’s joints

2.2.6 UVMS’s Dynamics

Combining vehicle’s and manipulator’s dynamics, equations (2.40) and (2.41)

respectively, and by denoting ζ =
[
νT q̇T

]T ∈ R6+nm , we can derive the
UVMS’s equations of motion as:

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(q, IRB) = τ (2.42)

where

M(q) =

[
Mv +H(q) Mc(q)
MT
c (q) Mm(q)

]
(2.43)

C(q, ζ) =

[
Cv(ν) +C1(q, q̇, ν) C2(q, q̇)

C3(q, q̇, ν) Cm(q, q̇)

]
(2.44)

D(q, ζ) =

[
Dv(ν) +D1(q) +D2(q, q̇, ν) D3(q, q̇, ν)

D4(q, q̇, ν) Dm(q) +D5(q, q̇, ν)

]
(2.45)

g(q, IRB) =

[
gv(η) + gE(q)

gm(q)

]
(2.46)

where:
H(q)ν̇: is the added inertia due to the manipulator
D1(q)ν: is the linear skin friction due to the manipulator
C2(q, q̇)q̇: are the Coriolis and centripetal terms due to the manipulator
MT
c (q)ν̇: are the reaction forces and moments between the vehicle and the

manipulator
Ci(q, q̇, ν): are the Coriolis and centripetal forces due to the interaction be-
tween the vehicle and the manipulator
Di(q, q̇, ν): is the quadratic drag due to the manipulator links and vehicle
Dm(q): is the linear skin-friction affecting the manipulator
gE(q): is the gravity force and moment vector due to the manipulator

As mentioned in [4] and [9], if the end-effector is in contact with the environ-
ment, the force/moment at the tip of the manipulator effects the whole system.
In this case the equations of motion become:

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(q, IRB) = τ + JT (q, IRV )h (2.47)
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In our case we are interested in the generalized forces exerted from the UVMS
to its environment, so for convenience the previous equation will be rewritten
as:

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(q, IRB) + JT (q, IRV )h = τ (2.48)

where h ∈ R6 is the generalized forces vector or wrench vector (forces and
moments) that the end-effector exerts to the environment, expressed in the
inertial frame {I}.

As concerns the vector of the generalized forces τ , can be written as:

τ =

[
τv
τman

]
∈ R(6+nm) (2.49)

where τv ∈ R6 is the vector of force/moment acting on the vehicle and τman ∈
Rnm is the vector of manipulator’s joint torques. nm is the number of manipu-
lator’s joints. For the vehicle, the forces and moments acting on it are exerted
by the thrusters. The relationship between the force/moment acting on the
vehicle τv ∈ R6 and the control input of the thrusters uv ∈ Rnv ,where nv is
the number of vehicle’s thrusters, is highly nonlinear. For simplicity, a linear
relationship can be considered:

τv = Bvuv (2.50)

where Bv ∈ R6×nv is the Thruster Control Matrix (TCM).
For the UVMS case the relationship between the generalized forces τ ∈

R6+nm and the control inputs is given by:

τ =

[
τv
τman

]
=

[
Bv O6×nm

Onm×nv Inm

]
= Bu (2.51)

With u is denoted the vector of control inputs:

u =

[
uv
um

]
∈ Rnv+nm (2.52)

where uv ∈ Rnv is the vector of vehicle’s control inputs and um ∈ Rnm the
vector of manipulator’s control inputs.

By substituting equation (2.51) in UVMS’s dynamics (2.48) we have:

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(q, IRB) + JT (q, IRV )h = Bu (2.53)

2.3 Modeling of the Manipulated Object

As we mentioned before, we are interested in transferring and manipulating an
object using a team of UVMSs, so it is crucial to determine the object’s equations
of motion. Taking into account that the object is submerged into the water, in
the object’s equations of motions will be incorporated the hydrodynamic effects.
So the object’s equations of motion become:

Mo
oν̇o + c(oνo) + d(oνo) + oGo = oho (2.54)
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Where
Mo ∈ R6×6 is the inertial matrix of the object containing the hydrodynamic
effect, for which holds:

Mo =

[
m · I3 O3

O3 I

]
+Madded ∈ R6×6 (2.55)

where m is the object’s mass, I ∈ R3×3 is the object’s moment of inertia and
Madded ∈ R6×6 the added mass matrix due to hydrodynamic effect.
oν̇o ∈ R6: is the acceleration of the object’s center of gravity in the object fixed
frame
c(oνo) ∈ R6: represent the Coriolis and centripetal terms containing also the
the added Coriolis and centripetal contribution of the added mass
d(oνo) ∈ R6: the vector containing the hydrodynamic damping forces that act
to the object
oGo ∈ R6: the vector containing the gravity and buoyancy force acting on the
object
oho ∈ R6: the vector of the generalized forces (wrench vector) exerted at the
object’s center of gravity.

oho =

[
ofo
oµo

]
∈ R6 (2.56)

where
ofo ∈ R3: the vector of the forces acting at the object’s center of gravity
expressed in the object frame {O}
oµo ∈ R3: the vector of the torques acting on the object expressed at the
object’s frame {O}.

2.4 Cooperative System

Object’s Dynamics As part of the system we will use the object’s equations
of motion (2.54)

Mo
oν̇o + c(oνo) + d(oνo) + oGo = oho (2.57)

Symmetric Formulation The forces and moments acting at the object’s
center of gravity are exerted by the generalized forces acting at the M grasp
points by the UVMSs. Based on the symmetric formulation proposed at [1,10],
we can express the generalized forces acting at the object’s center of gravity as
the sum of the generalized forces acting at the object’s center of gravity by each
UVMS grasped at the i-th grasp point.

Iho = IhS1 + ...+ IhSM (2.58)

where Iho =
[
IfTo

IµTo
]T ∈ R6 with Ifo ∈ R and IµTo ∈ R be the force

and torque exerted to the object’s center of gravity expressed in inertial frame
{I} as illustrated in Fig. 2.2. IhSi ∈ R6 is the vector of the generalized force
provoked to the object’s center of gravity from the generalized force exerted at
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the i-th grasp point from the i-th UVMS, Ihi ∈ R6. The equation connecting
Ihi ∈ R6 with IhSi ∈ R6 is:

IhSi = Wi
Ihi (2.59)

where

Wi =

[
I3 O3

−S(Iri) I3

]
(2.60)

S(Iri) ∈ R3×3 is the skew-symmetric matrix operator performing the cross
product and Iri ∈ R3 the vector connecting the i-th grasp point with the
object’s center of gravity in the inertial frame {I} as illustrated in Fig. 2.2.

Figure 2.2: In this figure the simplified sketch of two UVMSs cooperatively grasping
an object is presented. There are also illustrated the generalized forces exerted by the
UVMSs at the grasp points and the generalized forces provoked to the object’s center
of gravity.

By substituting (2.59) in (2.58) we have:

Iho = W1
Ih1 + ...+WM

IhM = W Ih (2.61)

Where W =
[
W1 ... WM

]
∈ R6×(6·M) is called grasp matrix [1] and Ih ∈

R6·M is the vector of the generalized forces exerted by the UVMSs at the M
grasp points. For Ih we have:

Ih =


Ih1

...
IhM

 ∈ R6·M (2.62)

where Ihi =
[
IfTi

IµTi
]T ∈ R6 is the vector containing the generalized forces

exerted by the i-th UVMS at the i-th grasp point expressed in the inertial frame
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{I}, with Ifi ∈ R3 and Iµi ∈ R3 the exerted force and the torque respectively,
as illustrated in Fig. 2.2.

Let oRI ∈ R3×3 be the rotation matrix from inertial {I} to object fixed
frame {O} and let also denote the rotation matrix from inertial {I} to object
fixed frame {O} for the wrench space as:

oRI =

[
oRI O3

O3
oRI

]
∈ R6×6 (2.63)

Now we can express equation (2.61) in the object fixed frame {O} as:

oho = oRI ·W · Ih (2.64)

Let now define Iνo =
[
IνT1,o

IνT2,o
]T ∈ R6 as the velocity of the object’s

center of gravity in the inertial frame {I} where Iν1,o ∈ R3 and Iν2,o ∈ R3

are the linear and angular velocities of the object’s center of gravity expressed
in inertial frame {I}, as illustrated in Fig. 2.3. Moreover we also define Iv =[
IvT1 · · · IvTM

]T ∈ R6M as the vector containing the velocities of the M

grasp points where Ivi = ẋEi =
[
η̇ee1,i

T ωee,i
T
]T ∈ R6 is the velocity of the

i-th grasp point where η̇ee1,i ∈ R3 and ωee,i ∈ R3 are the linear and angular
velocities provoked to the i-th grasp point from the i-th UVMS, as illustrated
in Fig. 2.3. The relationship between them, by applying the virtual work [1] is:

Iv = W T Iνo (2.65)

Where W ∈ R6×(6·M) is the grasp matrix presented in (2.61).

Figure 2.3: In this figure the simplified sketch of two UVMSs cooperatively grasping
an object is presented. There are also illustrated the velocities at the grasp points and
the velocity at the object’s center of gravity

18



UVMS’s Dynamics The equations of motion for the i-th UVMS were pre-
sented previously in equation (2.48). Let rewrite the equation as:

Mi(qi)ζ̇i +Ci(qi, ζi)ζi +Di(qi, ζi)ζi + gi(qi,
IRB)+

JTi (qi,
IRV )hi = τi

(2.66)

where i = {1, ...,M}.
By substituting (2.51) in (2.66) we have:

Mi(qi)ζ̇i +Ci(qi, ζi)ζi +Di(qi, ζi)ζi + gi(qi,
IRB)+

JTi (qi,
IRV )hi = Bui

(2.67)

Every element of ui has a range that depends on the corresponding motor’s
ability. In order to normalize the control inputs the weight factor wej ∈ R
is introduced such that uij = wej ûij , where uij ∈ R is the j-th element of the
control input vector of the i-th mobile manipulator and wej is a weighting factor
such that ûij ∈ [−1, 1]. j = {1, ..., ntot}. Now the control input vector of the
i-th mobile manipulator becomes:

ui = We · ûi (2.68)

where We = diag(we1, ..., wentot
) ∈ Rntot×ntot with ntot = nv + nm.

By substituting the (2.51) and (2.68) in dynamics (2.67) we have:

Mi(qi)ζ̇i +Ci(qi, ζi)ζi +Di(qi, ζi)ζi + gi(qi,
IRB)+

JTi (qi,
IRV )hi = BWeûi

(2.69)

for simplicity let ci(qi, ζi) = Ci(qi, ζi)ζi and di(qi, ζi) = Di(qi, ζi)ζi
Combining (2.69) for i = 1, ...,M the equations of motion for the cooperative

system of the M UVMSs are:

Mζ̇ +C′(ζ) +D′(ζ) +G+ JTh = BWeû (2.70)

where

M = diag(M1, ...,MM ) ∈ RM(6+nm)×M(6+nm) (2.71)

C′ =
[
cT1 ... cTM

]T ∈ RM(6+nm) (2.72)

D′ =
[
dT1 ... dTM

]T ∈ RM(6+nm)×M(6+nm) (2.73)

G =
[
gT1 ... gTM

]T ∈ RM(6+nm) (2.74)

J = diag(J1, ...,JM ) ∈ R6M×m(6+nm) (2.75)

BWe = diag(BWe, ...,BWe) ∈ RM(6+nm)×Mntot (2.76)

Accelerations By differentiating the equation (2.65) we obtain:

I v̇ = W T I ν̇o + Ẇ T Iνo (2.77)

Defining ζ =
[
ζT1 ... ζTM

]T ∈ RM(6+nm), for the team of the UVMSs we have:

Iv = Jζ (2.78)

By differentiating the previous equation we have:

I v̇ = Jζ̇ + J̇ζ (2.79)

19



Whole System Modeling We will regard the case that at the moment that
the team of the UVMSs are exerting generalized forces on the object’s grasp
points in order to accelerate it, the UVMSs and the object are standing still.
So we determine ζ = 0 and νo = 0. The equations of motion of the M UVMSs
(2.70) become:

Mζ̇ +G+ JTh = BWeû (2.80)

The object’s equations of motion (2.57) become:

Mo
oν̇o + oGo = oho (2.81)

As concerns the accelerations’ mapping, the equation (2.77) becomes:

I v̇ = W T I ν̇o (2.82)

and the equation (2.79) becomes:

I v̇ = Jζ̇ (2.83)

combining (2.82) and (2.83):

Jζ̇ = W T I ν̇oζ̇ = J+W T I ν̇o (2.84)

ζ̇ = J+W T I ν̇o (2.85)

and by expressing the object’s acceleration on object-fixed frame:

ζ̇ = J+W T IRo
oν̇o (2.86)

By substituting equation (2.64) in the object’s equations of motion (2.81) we
have:

Mo
oν̇o + oGo = oRIW

Ih (2.87)

from the (2.87), we can determine the vector of generalized forces acting at the
grasp points Ih ∈ R6M as:

Ih = W+oRI
−1(Mo · oν̇o + oGo) (2.88)

By substituting (2.88) and (2.86) into (2.80) we have:

MJ+W T IRo
oν̇o +G+ JTW+oRI

−1(Mo · oν̇o + oGo) = BWeû (2.89)

(MJ+W T IRo+JTW+oRI
−1Mo)oν̇o+

(G+ JTW+oRI
−1oGo) = BWeû

(2.90)

By denoting:
E = (MJ+W T IRo + JTW+oRI

−1Mo) (2.91)

and
Gtot = (G+ JTW+oRI

−1oGo) (2.92)

Equation (2.90) becomes:

Eoν̇o +Gtot = BWeû (2.93)

The mapping from the control input space to the task space, 6-dimensional
object’s center of gravity acceleration space, is denoted with the following equa-
tion:

oν̇o +E+Gtot = E+BWeû (2.94)
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Chapter 3

Optimal Grasp Points
Planning

As mentioned in the introduction, in a pick - and - place operation the robot
has to reach an object, grasp it and transfer it from an initial location to a final
one. The first phase of this operation, which is the reaching to grasp, includes
the selection of grasp points on the transfered object, where the robot has to
grasp at. In case that the object is heavy enough to be manipulated by a single
robot, multiple robots have to be used in order to manipulate cooperatively the
object. In this way, not only the object’s transfer can be guaranteed but also
better performance is possible to be achieved with lower energy consumption.

In order to exploit the benefits that the cooperative manipulation provides,
it is crucial to determine the grasp points position for each robot extremely
carefully. As it was mentioned, the correct selection of the grasp points could
be beneficial for the rest of the operation (i.e., transportation, manipulation),
by leading to lower energy consumption with higher performance of the coop-
erative system and as a result, to higher autonomy. On the other hand, an
improper grasping could lead to inability of the team to execute the imposed
operation successfully, which means system’s inability to transfer the object,
possible destruction of the object or of the robotic equipment and finally the
failure of the whole operation.

From the above we can refer that we need a portion that will reflect our
system’s needs and the goals that we hope to achieve. This portion will evaluate
the proposed set of grasp points in order the latter to be compared with other
sets for the decision of the optimal one. These portions are the grasp quality
measures. Two grasp quality measures are proposed in this chapter.

3.1 Related Work

The selection of grasp points on an object has already been studied by many
researchers in the past and there have been presented various methods for this
purpose. In [11] the MAG performance index is presented. This index is used to
evaluate a grasp for a predefined trajectory-task. A method for the selection of
the optimal grasp points based on the geometry of the grasp is presented in [12].
More specifically the optimal grasp position is decided such that the distance
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between the center of gravity and the closest edge of the triangle, consisted by
the three grasping points (grasping for 3-finger hand), to be the largest possible
and the loads on the robots to be as equal as possible. The optimization of load
distribution is used for the grasp points selection in [13]. The initial grasp point
set is decided by maximizing the probability that the center of mass exists in the
conveyable area produced by a certain grasp point configuration. By measuring
the real center of mass they change the grasp points based on a criterion that
takes into account the load capacity of each robot and the system’s energy
consumption in case of re-grasping. In [14] an index is proposed for measuring
the compatibility of manipulator postures for a generalized task description
using manipulability ellipsoids. This can be extended in grasp points planning.
Three quality measures for the evaluation of the grasp of multifinger hands are
proposed in [15]. Particularly, the two measures are based on the grasp matrix
properties and the third one is task - oriented but none of them are taking
the system’s dynamics into account. In [16] the quality of grasp is evaluated
as the relation between the force to be balanced and the force applied by the
griper’s fingers. In [17] an optimization scheme is presented for the selection of
contact points by minimizing the magnitude of the contact forces required to
resist a required external force. Finally, in [18] a review of the quality measures
proposed in grasp literature to quantify the grasp quality is presented. The
presented measures are not taking into account the system’s dynamics. Most
of these works are focusing in grasping using multifinger hands, but generally,
they can be extended in the cooperative grasping by multiple robots.

3.2 Proposed Approach

What we can refer from the aforementioned methods is that most of them are
task specific. This means that, it is assumed an a priori knowledge of the tasks
that the system has to execute during the operation. As a result, the grasp
quality measure takes into account the task that has to be executed in order
to provide grasp points that lead to the accomplishment of these tasks in an
optimal way, based on certain criteria.

Although, this approach is desirable and more efficient when the tasks are
known a priori, in many cases we are not aware of the exact path that the
robots holding the manipulated object have to execute and as a result of the
consecutive tasks that have to be executed. Especially, when the environment
is unstructured, like an area full of ruins after an earthquake, an unexplored
terrain or the deep ocean, in our case, the path has to be planned by the robots
using on-line information provided by their sensory system. Even in the case
that we are aware of the environment’s exact structure, the system is possible
to face unexpected situations like moving obstacles with unpredictable motion
(e.g., a collapsing floor or a chain moved by ocean currents). In cases like these,
the tasks have to be imposed during the operation and not before it.

A solution to this problem could be the re-grasping. In this case, the grasp
points could be selected based on a priori defined tasks and if the system has
to deal with a situation that was not predicted, then the robots will have to
change grasp points during the operation, performing, as it is called, re-grasping.
This is not a preferable action, because is time-consuming and demands a set
of maneuvers to be executed by each robot in order to change grasp point
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position, which is a drawback having in mind the limited energy resources of an
autonomous robot. So we have to ensure that whatever the maneuver needed
for the collision avoidance with an obstacle or in order to follow a path, the
system (robots and manipulated object) must be able to execute it, by also
achieving the least energy consumption possible.

Consecutively, the quality measures for the evaluation of the grasp points
have to provide grasp points that permit to the system to execute every possible
task that might arise with the least possible energy consumption. For this
purpose, non-task specific grasp quality measures are proposed to be used.

In this work, we will denote as task a desired acceleration of the grasped
object’s center of gravity. This direction can be translational, rotational or
combination of them. As system’s performance will be denoted the system’s
ability to accelerate in a desired direction (i.e., the acceleration’s magnitude)
for a given finite amount of energy.

In this chapter, two non-task specific measures are presented in order to
define grasp points that by grasping them, the UVMSs holding the object will
be able to execute every needed task (i.e., accelerate the object in a desired
direction) with the least possible energy consumption. More specifically, the
first proposed method aims at the maximization of the system’s dynamic ma-
nipulability ellipsoid (DME) [8], by also guaranteeing a bound in the system’s
minimum performance, as concerns the provoked acceleration. As a result, this
measure maximizes the system’s potential acceleration in every direction of the
task space (6-d acceleration space), by maximizing the volume of the system’s
DME, and also guarantees a lower bound at it. The second proposed method,
is the minimum distance in the translational and rotational acceleration space,
as arise from the decomposition of the system’s DME. The maximization of this
measure guarantees that the system will accelerate in the most difficult direction
in the best possible way, i.e. higher magnitude with lower energy consumption.

3.3 Dynamic Manipulability Ellipsoids

As it was mentioned before we are interested to determine grasp points on the
object that by grasping them the UVMSs will be able to exert at the object’s
center of gravity accelerations in any direction needed with high magnitude and
the least possible energy consumption.

A great tool for this purpose is the Dynamic Manipulability Ellipsoids (DME).
The DME provides a mapping between the space that reflect the consumed en-
ergy, which is in our case the control input space, and the space that reflects
the result produced by the consumption of this energy, in our case the provoked
acceleration of the object. From the system’s DME we will extract the proposed
measures. So in this section we will present the general concept of DME and
we will build the system’s (UVMSs and object) DME, in order to use it for the
determination of the grasp quality measures.

3.3.1 The General Concept

The concept of manipulability ellipsoids and of the manipulability measure was
first proposed by T. Yoshikawa in [8]. As concerns the manipulator case, the ma-
nipulability measure is a quantitative measure of manipulating ability of robot

23



arms in positioning and orienting the end-effectors. This measure describes
the ease of the robotic mechanism of changing arbitrarily the position and the
orientation of the end - effector. The measure that Yoshikawa proposed is:

w =
√
det(J(θ)JT (θ)) (3.1)

where J(θ) is the Jacobian matrix of the manipulator at the posture θ. One
of the facts that Yoshikawa mentioned was that w is equal to the volume of an
ellipsoid with principal axis of size equal to the singular values of the Jacobian
matrix at the determined posture. The greater the volume, the higher the degree
of arbitrariness in changing the position and orientation of the end effector.

In the aforementioned, the manipulator’s dynamics are not taken into ac-
count. In many cases, it is desirable to quantify the degree of arbitrariness of
changing the acceleration of the end-effector under some constraints on the joint
driving force. So, Yoshikawa adopt a new measure of the arm’s manipulability,
taking into account the arm’s dynamics, the dynamic manipulability measure.

In our case, we are not only interested in the ease of the system to exert
forces at the object’s center of gravity, but also we are aiming to take into
account the dynamic properties the manipulating object. This is important due
to the fact that there are directions of the acceleration which are more difficult
to implement on others due to the object’s geometric characteristics. By using
DMEs we can create a mapping between the control input space, that reflects
the consuming energy from the system, and the task space , which is in our case
the object’s acceleration space. By taking advantage of these properties, we will
extract the proposed grasp quality measures from the analysis of the system’s
Dynamic Manipulability Ellipsoid.

3.3.2 Dynamic Manipulability Ellipsoid For The Cooper-
ative System

In order to use the system’s Dynamic Manipulability Ellipsoid (DME) to ex-
tract the grasp quality measures, first we have to create it. In this section, the
dynamic manipulability ellipsoid of the cooperative system, described in equa-
tion (2.93), will be built. For the following analysis we will take into account
the procedure followed in [19].

Assuming that the normalized control inputs lie in a unitary sphere, let:

ûT û = 1 (3.2)

Solving (2.93) with respect to the control input vector û we have:

û = BWe
+E(oν̇o +E+Gtot) (3.3)

and by substituting (3.3) in (3.2) we have:

(oν̇o +E+Gtot)
TET (BWe

+)TBWe
+E(oν̇o +E+Gtot) = 1 (3.4)

Equation (3.4) is the equation of the system’s dynamic manipulability ellipsoid
in the task space.

In order to find out the ellipsoid’s structure, we have to find the principal
axes of the dynamic manipulability ellipsoid expressed in equation (3.4). Similar
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to [7] we use singular value decomposition of the mapping in (2.94), E+BWe ∈
R6×(M ·ntot).

E+BWe = UΣV T (3.5)

where
Σ =

[
diag(σ1, . . . , σ6) O6×(M ·ntot)

]
∈ R6×(M ·ntot)

U =
[
u1 . . . u6

]
∈ R6×6

V =
[
ν1 . . . ν6

]
∈ R(M ·ntot)×(M ·ntot)

where σi is the i-th singular value of the matrix E+BWe ∈ R6×(M ·ntot) and
it is also the size of the i-th principal axis. ui is the unitary vector of the i-th
principal axis of the ellipsoid in the object fixed frame {O}.

Let denote the vector of the ellipsoid’s i-th principle axis as uiσi ∈ R6 as
illustrated in Fig. 3.1. Let now define a 6-dimensional frame so that the origin

Figure 3.1: Ellipsoid’s Axes

coincides with the center of the ellipsoid (and the object’s center of gravity) and
the axes of this frame coincide with the principal axes of the ellipsoid and let
denote it as {E} as illustrated in Fig. 3.1. Let also define the 6-dimensional
task space frame whose axes correspond to each element of the acceleration
vector, three axes correspond to the translational acceleration and three to the
rotational acceleration, and is denoted as {a} as illustrated in Fig. 3.1.

We denote as rotation matrix from frame {E} to frame {a} the matrix:

aRE = U =
[
u1 ... u6

]
∈ R6×6 (3.6)

With the dynamic manipulability ellipsoid, presented in this section, we are
able to determine the potential magnitude of the acceleration in any direction
for a control input vector of unitary magnitude. In this way we are able to detect
the directions that the acceleration has potentially higher magnitude and the
directions with lower ones.

3.4 Proposed Quality Measures

In this section the quality measures for the evaluation and the selection of the
grasp points, will be presented. As it was mentioned before, the presented
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quality measures are base on the system’s dynamic manipulability ellipsoid. It
was, also, highlighted that by maximizing the size of the system’s DME, the
magnitude of the potential acceleration of the object’s center of gravity is also
maximized, for a finite amount of consumed energy (control inputs) by the
UVMSs. The following presented measures aim at the maximization of the
DME’s size by treating it in different ways.

The assumptions that have been made for the selection of the quality mea-
sures are:

� We are aware of the object’s exact shape.

� We are aware of the exact position of the object’s center of gravity.

� The end-effectors of the UVMSs are performing rigid grasp at the grasp
points on the object.

� The UVMSs used for the pick and place operation are identical.

� During the selection of the grasp points, each robot is aware of the grasp
points that corresponds to each one of the other robots of the team.

3.4.1 1st Measure: Dynamic Manipulability Ellipsoid’s
Volume

The first proposed measure that will be presented aims in the maximization of
the DME’s volume with a lower bound in the minimum performance, as concerns
the acceleration produced.

According to [8] the volume of the dynamic manipulability ellipsoid is:

w = d · σ1 · ... · σ6 (3.7)

where σi ∈ R is the i-th singular value of the transformation (3.5) and d ∈ R is
a constant value for which holds:

d =

{
(2π)(m/2)/(2 · 4 · 6... · (m− 2) ·m)when m is even

2(2π)(m−1)/2/(1 · 3 · 5 · ... · (m− 2) ·m)when m is odd
(3.8)

where m is the size of the task space. In our application m = 6.
As it was mentioned before, our goal is to achieve the highest possible accel-

eration norm in any direction in the task space (not only in any acceleration’s
direction but also in any combination of translational and rotational acceler-
ation). In order to do so, we have to maximize the volume of DME or the
function:

f(x) = w = d · σ1 · ... · σ6 (3.9)

where x ∈ R3M encloses the position of the grasp points on the object.
As can be seen in (3.4) the DME illustrates the system’s ”generalized accel-

eration” produced by the given set of control inputs. This acceleration incor-
porates the ”net acceleration” oν̇o ∈ R6 that is applied to the object’s center
of gravity, and the acceleration produced by the system’s weight E+Gtot ∈ R6.
The latter portion facilitates the acceleration to certain directions and resists
to others. As mentioned in [20] this acceleration produces an equal translation
of the ellipsoid with respect to object fixed frame. To illustrate this point, in
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Fig. 3.2a the ellipsoid before and after its translation due to weight is pre-
sented, with segmented and continuous line respectively. With the red arrow
the desired direction along which we want to accelerate the system is presented.
Moreover, an undesirable situation in which the ellipsoid does not contains the
origin of the reference frame is illustrated in Fig. 3.2b. Obviously, in this case
the previously desired direction can not be achieved.

Although that we are maximizing the ellipsoid’s volume, this does not guar-
antee that the acceleration’s norm is maximized in every direction. As can be
seen in Fig. 3.3 the volume of the ellipsoid with the dotted line is greater than
the one with the continuous line, even if in some directions the distance between
the center of the ellipsoid and the surface is greater at the ellipsoid with the
continuous line. From the above we can refer the possibility of the system’s
inability to lift its own weight.

(a) The desired acceleration can be
achieved.

(b) The desired acceleration can not be achieved.

Figure 3.2: Translated ellipsoid due to weight: the ellipsoid before and after its trans-
lation is indicated with segmented and continuous line respectively. The red arrow
illustrates the desired direction of the acceleration.

Figure 3.3: Comparison of ellipsoids with different volumes

In order to avoid this situation, a constraint will accompany the proposed
measure. As it is known, the minimum principal axis is the smallest distance
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between a point of the ellipsoid’s surface and its center. We have to guarantee
that this distance min(σi) ∈ R, will be greater than the euclidean norm of the
acceleration produced by the system’s weight ‖E+Gtot‖ ∈ R or in inequality
form:

min(σi) ≥ ‖E+Gtot‖ (3.10)

Assuming now that the equality in (3.10) exists, we are facing the danger of the
system to be able to lift the object without the ability of performing any other
maneuver. In order to avoid this situation a safety factor which guarantees that
the system in combination with the object’s lift will be able to be accelerated in
other directions is presented. Let this safety factor be a > 1. So the proposed
constraint becomes:

min(σi) ≥ a · ‖E+Gtot‖, a > 1 (3.11)

3.4.2 2nd Measure: Minimum Distance in Translational
and Rotational Acceleration Space

The previous method uses as measure the volume of dynamic manipulability
ellipsoid. But the task space is constituted by translational and rotational ac-
celerations, which are of different units and, consequently, of different order of
magnitude. More specifically the magnitude of the rotational acceleration de-
pends on the distance between the grasp points and the object’s center of gravity
in a way that the longer this distance, the higher the rotational acceleration’s
magnitude. As a result, the solution is dominated by the accelerations with the
highest magnitude. In order to overcome this situation, the following measure
is presented.

The second proposed quality measure, aims at the maximization of the min-
imum distance in the translational and rotational acceleration space, as results
from the decomposition of the DME (3.4).

The task space is constituted by the object’s translational and rotational
accelerations, or in other words by two subspaces, the translational and the
rotational acceleration space, which are of different order of magnitude that de-
pends on the object’s size. Due to that fact the results of the previous method
are dominated by the acceleration with the highest magnitude. In order to over-
come this situation, it is proposed to confront separately the two acceleration
spaces, i.e. the translational and the rotational.

For the DME, is known that the distance between the ellipsoid’s reference
frame’s origin and a point of its surface, in a given direction, expresses the ease
of the system to accelerate in this direction. As a result, our goal is to maximize
this distance in the direction that takes its minimum value. As concerns the two
acceleration spaces, it is desired to maximize the minimum distance between the
center of each subspace and its boundary.

The task space decomposition With {a}, is denoted the frame of the task
space as mentioned in previous sections and with {E} the ellipsoid’s frame,
also mentioned in previous sections. In order to take into account the system’s
weight, the ellipsoid’s center has to be translated with respect to the task space
reference frame in direction and measure equal to E+Gtot ∈ R6. For conve-
nience we will translate the frame of the task space in direction and measure
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equal to −E+Gtot ∈ R6. Let {a′} be the translated frame due to the system’s
weight and the vector connecting the frames {a} and {a′} is:

ara′ = −E+Gtot (3.12)

This vector is illustrated in Fig. 3.4. In equation (3.6) the rotation matrix
from the ellipsoid’s frame {E} to the task space frame {a} has been denoted
as aRE = U =

[
u1 ... u6

]
∈ R6×6. So expressing the vector in (3.12) in

ellipsoid’s frame we have:
Era′ = ERa

ara′ (3.13)

Let a
′
ν̇ ∈ R6 be the vector connecting the origin of the new task space frame

{a′} with a point of the ellipsoid’s surface in the new object fixed frame as
illustrated in Fig. 3.4. The homogeneous transformation from the new object
fixed frame {a′} to the ellipsoid’s frame {E} is:

ETa′ =

[
ERa

Era′

O1×6 1

]
=

[
ERa

ERa
ara′

O1×6 1

]
∈ R7×7 (3.14)

In this way, the vector connecting a point on the surface of the ellipsoid with
the origin of {a′} in the ellipsoid frame is:

Eν̇ = ETa′
a′
ν̇ (3.15)

Let El ∈ R6 be the vector connecting the same point of the ellipsoid’s surface
with the origin of the ellipsoid’s frame, as illustrated in Fig. 3.4, for which holds:

El = Era′ + Eν̇ = ERa
ara′ + ETa′

a′
ν̇ (3.16)

The elements of El ∈ R6 are satisfying the ellipsoid’s equation:

El1
2

σ2
1

+
El2

2

σ2
2

+ ...+
El6

2

σ2
6

= 1 (3.17)

where Eli ∈ R is the i-th element of the vector El ∈ R6 with i = {1, ..., 6}.
Let us now write the ellipsoid surface point position expressed in {a′} as:

a′
ν̇ = ‖a

′
ν̇‖a

′ ˆ̇ν (3.18)

where ‖a′
ν̇‖ ∈ R is the euclidean norm of the vector a

′
ν̇ ∈ R6. By substituting

(3.18) in (3.16), the latter becomes:

El = Era′ + Eν̇ = ERa
ara′ + ETa′‖a

′
ν̇‖a

′ ˆ̇ν (3.19)

Given now, a desired direction of acceleration in the new task space frame
{a′}, a′ ˆ̇ν ∈ R6, and by solving (3.19) and (3.17) we are able to determine
the distance between the frame’s origin and the ellipsoid’s surface in the given
directions, which is also the potential magnitude of the acceleration in this
direction, i.e. ‖a′

ν̇‖ ∈ R. Let a′ ˆ̇νtr ∈ R3 be the desired direction in the
translational space, for which we are interested. Following the previous proce-
dure, the magnitude of the acceleration in the desired direction, translational
in this case, depends on the desired direction in the task space, i.e. on the
desired rotational direction. This fact is illustrated in Fig. 3.5. In case 1 the
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Figure 3.4: Translated frame due to weight

green arrow represents the case that the rotational direction is equal to zero

a′ ˆ̇ν =
[
a′ ˆ̇ν

T

tr OT
1×3

]T
∈ R6. In case 2, with the orange arrow, the desired

direction is a combination of a desired translational and a rotational direction
a′ ˆ̇ν =

[
(a

′ ˆ̇νtrcos(θ))
T (a

′ ˆ̇νrotsin(θ))T
]T ∈ R6. From the Fig. 3.5 we can

refer that the projection in the translational subspace is greater in case 2 com-
paring to the case 1.

Therefore, in order to create an acceleration subspace, for any given direc-
tion, we are using the measure with the higher projected magnitude in this
subspace.

Proposed Measure After the decomposition of the task space and the cre-
ation of the translational and rotational spaces, we are able to determine the
minimum distances in these two resulted acceleration spaces. Let dmintr ∈ R
and dminrot ∈ R be the minimum distance in the translational and rotational
acceleration spaces respectively. In order to ensure that at least at the worst
direction the acceleration is the highest possible, we have to maximize these
quantities.

Let f(x) = f(dmintr, dminrot) ∈ R be a function that depends on the way
that we want to treat the two quantities. For the maximization of this func-
tion we have to solve a multi-objective optimization problem. There are many
methods of multi-objective optimization as mentioned in [21] depending on the
hierarchy between the analyst and the decision maker. For our application we
will use the weighting method [21]. If we ∈ [0, 1] is a weighting factor, the
function that has to be maximized is:

f(x) = (1− we) · dmintr + we · dminrot (3.20)
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Figure 3.5: Acceleration’s desired direction: The green arrow represents the case 1
where the rotational direction is equal to zero. The case 2, where the desired direction
is a combination of a desired translational and a rotational direction is denoted by
the orange arrow. The projection in the translational subspace is greater in case 2
comparing to the case 1.
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Chapter 4

Optimization Schemes

Generally, on an object there might be numerous of potential grasp points.
Especially in the case that the object is thin enough, like a plate, so that the
end-effector can grasp at any point of its periphery, the potential grasp points
are infinite.

In order to select the grasp points, we have to use an optimization scheme.
As it was mentioned before, we are looking forward in maximizing the system’s
DME. In the case that is examined, the cooperative manipulation of an object
by a number of UVMSs, not only the position of the grasp points affects the
size of the DME, but also each of the UVMSs’ configuration. Our main goal
is to find the grasp points’ position, but for each set of grasp points there is
a UVMS’s configuration that maximizes the grasp quality measure. So the
UVMSs’ configuration must be taken into account. As a result, the decision
variables are the position of the grasp points and the configuration of each
UVMS (vehicle’s and joint’s position).

As concerns the grasp points’ position, generally, we need a three-variables
representation in the 3-dimensional space. If we are aware of the object’s shape
and of its pose with respect to the inertial frame, as it is assumed in our case,
we are able to determine the position of a point on the object’s periphery by
only using one variable. Let this variable for the i-th grasp point denoted as
ri ∈ R, where i = {1, ...,M}. So let x be the vector of the decision variables:

x =
[
r1 ... rM qT1 ... qTM

]T ∈ R(M+ntot·M) (4.1)

4.1 1st Measure: Dynamic Manipulability El-
lipsoid’s Volume

In this section, the optimization scheme for the selection of the grasp points by
maximizing the volume of the system’s DME, will be presented.

4.1.1 Objective Function

As objective function, the function presented in equation (3.9) will be used. As
it was mentioned, we are interested in maximizing this function or to minimize
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the function:
f(x) = −d · σ1 · ... · σ6 (4.2)

4.1.2 Constraints

The constraints that have to be satisfied when we decide grasp points, will be
introduced.

Configuration’s Limits Let for simplicity denote as qi ∈ R6+nm the vector
containing the pose of the i-th UVMS (i.e., its position in the inertial frame
{I} and its attitude (roll, pitch, yaw angles)) and the nm manipulator’s joints’
position.

qi =

η1iη2i
qmi

 ∈ R6+nm (4.3)

As concerns the joints’ position, each joint has an angle range in which it can
move. Let qij,min be the lower bound as concern the angle that the j-th manip-
ulator’s joint of the i-th UVMS can reach and qij,max be the upper bound as
concern the angle that the j-th manipulator’s joint of the i-th UVMS can reach.
So we have:

qmi,min =
[
qi1,min ... qiM,min

]T ∈ Rnm (4.4)

and
qmi,max =

[
qi1,max ... qiM,max

]T ∈ Rnm (4.5)

for which holds:
qmi,min ≤ qmi ≤ qmi,max (4.6)

Let now conciser that each UVMS is able to, or it is desirable to, move in a
predefined area. We define as η1i,min ∈ R3 and η1i,max ∈ R3 the limits of this
area (a sphere around a reference frame). So we also have:

η1i,min ≤ η1i ≤ η1i,max (4.7)

For the UVMS’s attitude we also can consider bounds. Let η2i,min ∈ R3 and
η2i,max ∈ R3 be the lower and the upper bound respectively.

η2i,min ≤ η2i ≤ η2i,max (4.8)

Combining all the previous bounds we can define for the i-th UVMS the lower

and the upper configuration bound as qi,min =
[
ηT1i,min ηT2i,min qTmi,min

]T ∈
R6+nm and qi,max =

[
ηT1i,max ηT2i,max qTmi,max

]T ∈ R6+nm respectively.
So we have the contraint for the UVMS’s configuration:

qi,min ≤ qi ≤ qi,max (4.9)

There are also some equality constraints as concerns the UVMS’s configuration.
These constraints can be represented for the i-th UVMS as:

Aiqi = beq,i (4.10)
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Let q ∈ RM ·(6+nm) be the vector containing the configuration vectors qi ∈
R6+nm for the M UVMSs such that:

q =

 q1...
qM

 ∈ RM ·(6+nm) (4.11)

then from (4.9) and (4.10) and for i = {1, ...,M}, we have the constraints:

qmin ≤ q ≤ qmax (4.12)

and
Aq = beq (4.13)

End-Effector’s Position As long as we are using as decision variables both
the UVMSs configuration and the grasp points’ position, it is crucial to ensure
that the point at which the i-th UVMS grasps, coincides with the i-th grasp
point. In order to determine the end-effector’s position of the i-th UVMS, its
direct kinematics will be used. From equation (2.14) we have

ηee,i = k(η1i,η2i, qmi) (4.14)

or using the notation (4.3):

ηee,i =

[
ηee1,i
ηee2,i

]
= k(qi) (4.15)

For the grasp points’ position, as it was mentioned before, the variable ri ∈ R
is used. For the mapping from the 1-dimensional to the 3-dimensional represen-
tation the function P1(·) is used. This function depends on the object and its
pose with respect to the inertial frame {I}. So the i-th grasp point position in
the inertial frame is:

p1i = P1(ri) (4.16)

In order to guarantee that the point at which the i-th UVMS grasps, coincides
with the i-th grasp point, the following equation must be satisfied:

p1i = ηee1,i (4.17)

End-Effector’s Orientation As concerns the orientation, it is obvious that
the end-effector can not grasp the object arbitrarily. The permitted orientation
depends on the object’s shape. By using the variable ri ∈ R again, the function
that gives this orientation for any value of this variable is denoted as P2(·). So
the orientation that the end-effector must have in order to grasp at the i-th
grasp point is given as:

p2i = P2(ri) (4.18)

In order to guarantee that the end-effector’s orientation is the permitted for the
certain grasp point, the following equation must be satisfied

p2i = ηee2i (4.19)
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Collision Avoidance In order to decide the optimal grasp points we have
to guarantee that the UVMSs will not collide to each other. Let assume that
the AUVs body fixed frame has its origin at the center of gravity and we will
determine as rsafe the distance of the most remote point on the surface of the
AUV with respect to the center of gravity. In this way we create a sphere that
totally contains the AUV. Assuming that we have identical UVMSs, the distance
that the two AUVs’ center of gravity have to keep in order the two vehicles not
to collide to each other is dsafe = 2 · rsafe. So we have the constraint:

di
′

i ≥ 2 · rsafe (4.20)

where
di

′

i = ‖ηee1(qi)− ηee1(qi′)‖ (4.21)

and
i, i′ ∈ {1, ...,M}, i 6= i′ (4.22)

This constrain has to be repeated for every possible combination between the
UVMSs of the team.

Minimum Performance Constraint As it was mentioned at the definition
of the 1st measure, we are looking forward to maximize the volume of the DME
by also guaranteeing a lower bound as concerns the system’s performance. This
will be achieved by using the constraint proposed in (3.11).

min(σi) ≥ a · ‖E+Gtot‖, a > 1 (4.23)

4.1.3 Optimization Scheme

Combining the objective function and the aforementioned constraints, the op-
timization scheme for the selection of grasp points by using as quality measure
the volume of DME is:

min
x
f = −d · σ1 · ... · σ6

s.t. qmin ≤ q ≤ qmax
P1(ri) = ηee1(qi)

P2(ri) = ηee2(qi)

Aq = beq

di
′

i ≥ 2 · rsafe
min(σi) ≥ α · ‖E+Gtot‖

4.2 2nd Measure: Minimum Distance in Trans-
lational and Rotational Acceleration Space

In this section, the optimization scheme for the selection of grasp points by max-
imizing the minimum distances in the translational and rotational acceleration
space, will be presented.
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4.2.1 Objective Function

As objective function, the function presented in equation (3.20) will be used. As
it was mentioned we are interested in maximizing this function or to minimize
the function:

f(x) = −((1− we) · dmintr · γ + we · dminrot) (4.24)

where γ ∈ R is used in order to compensate the difference in the order of
magnitude which is due to the different units of the two accelerations.

4.2.2 Constraints

The constraint that will be used in this optimization scheme are the same to
those presented for the 1st measure excluding the one for the minimum perfor-
mance.

4.2.3 Optimization Scheme

Combining the objective function and the aforementioned constraints, the op-
timization scheme for the selection of grasp points by using as quality measure
the minimum distance in translational and rotational acceleration spaces is:

min
x
f(x) = −((1− we) · γ · dmintr + we · dminrot) (4.25)

s.t. qmin ≤ q ≤ qmax (4.26)

P1(ri) = ηee1(qi) (4.27)

P2(ri) = ηee2(qi) (4.28)

Aq = beq (4.29)

di
′

i ≥ 2 · rsafe (4.30)
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Chapter 5

Simulations

In the previous chapters, two measures for the grasp point evaluation were
presented. These measures aim at the determination of the grasp points on an
object, where M UVMS have to grasp at during a pick-and-place operation. In
this chapter the previously presented measures will be tested by applying the
optimization schemes presented in Chapter 4 in different case studies. These
optimization schemes are written in MATLAB code, which is presented in the
appendix.

Various scenarios were tested, including the cases where 2, 3 and 4 UVMSs
are used in order to grasp a rod and a plate of square, rectangle, circular and
elliptical face. Based on these results we will examine the appropriateness of
each measure’s use.

5.1 1st Measure: Dynamic Manipulability El-
lipsoid’s Volume

In this section, the grasp points that resulted by the use of the 1st grasp quality
measure, will be presented. The following results emerged from the solution
of the optimization scheme presented in Section 4.1.3. The code of this opti-
mization scheme, written in MATLAB, is listed in the Appendix. The results
for the rod are presented in figures 5.1a, 5.1c and 5.1e.For the square in figures
5.2a, 5.2c and 5.2e. For the rectangle in figures 5.3a, 5.3c and 5.3e. Finally, for
the circle and the ellipse the results are presented in figures 5.4a, 5.4c ,5.4e and
5.5a, 5.5c, 5.5e respectively.

As a first comment on the result it is mentioned that, intuitively in the rod’s
case we would expect the grasp point to be located at the rod’s extremes. As
can be seen in figures 5.1a, 5.1c and 5.1e two of the grasp points are located at
the extremes of the rod irrespective of the number of the mobile manipulators.
This fact could be a first verification for the presented methods.

Generally, we can refer that this method gives results in a short time. The
decision of the grasp points is taken in time that ranges between 0.5 min and 1
min depending on the object’s shape and the initial grasp points. This perfor-
mance makes this method suitable in cases that the decision have to be taken
fast. A case like this is when we are not aware of the exact shape of the object
or we are not aware of obstacles that might prevent the robot from grasping cer-
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tain areas of the object’s surface. In this case, the object identification have to
be done during the operation by the robots. As a result, the grasp points deci-
sion must not last long, guaranteeing that the robots will not consume excessive
energy resources in this phase.

As concerns general comments about the proposed measure, this measure
is used for the maximization of the volume of the system’s DME. In this way,
the DME is magnified in any direction and consequently the translational and
rotational potential acceleration and their combination do so. The way that this
volume is maximized is arbitrary, so it does not guarantees that the magnitude
of the acceleration in any direction is maximized. Furthermore, the method
does not separates the two acceleration subspaces, the translational and the
rotational, which are of different units and as a result of different order of mag-
nitude. So the acceleration space with the higher order of magnitude, or at least
the one that by changing the grasp points has the greater influence in the DME’s
volume change, dominates the solution. Another remark is that this measure
does not take into account the influence of the gravitational forces exerted to
the UVMSs and the object, but is protected from the undesirable situations
(system’s inability to lift and manipulate the object due to the weight’s influ-
ence) that this fact could lead, by the use of the proposed constraint (3.11).
Finally, it is important to be mentioned that by using as decision variables the
UVMSs’ configuration (4.1), a change in this configuration is possible to lead to
greater change of the DME’s volume, than a change in the grasp points posi-
tion. As a result, the final solution, it is possible to reflect the optimal UVMSs’
configuration and not the optimal grasp points’ position.

5.2 2nd Measure: Minimum Distance in Trans-
lational and Rotational Acceleration Space

In this section the grasp point resulted by the use of the 2nd grasp quality mea-
sure will be presented. The following results emerged from the solution of the
optimization scheme presented in Section 4.2.3. The code of this optimization
scheme, written in MATLAB, is introduced in the Appendix. The results for
the rod are presented in figures 5.1b, 5.1d and 5.1f. For the square in figures
5.2b, 5.2d and 5.2f. For the rectangle in figures 5.3b, 5.3d and 5.3f. Finally, for
the circle and the ellipse the results are presented in figures 5.4b, 5.4d ,5.4f and
5.5b, 5.5d, 5.5f respectively.

Firstly, for this measure also, the intuitive verification of the results will be
used. As it was mentioned before, in the rod’s case we would expect, intuitively,
the grasp point to be located at the rod’s extremes. As can be seen in figures
5.1b, 5.1d and 5.1f, two of the grasp points are located at the extremes of the
rod, irrespective of the number of the mobile manipulators.

Generally, this measure aims at the maximization of the system’s worst
performance. A great advantage of this measure is that decomposes the 6-
dimensional task space into two spaces, the translational and the rotational
acceleration space, and treats them separately. In this way, the different order
of magnitude between the two accelerations does not affect the result as does in
the previous method, where the acceleration with the higher order of magnitude
dominates the solution. On the other hand, the decomposition of the task space
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deals with the difficult situation of how the accelerations’ combination will be
reflected to the two new spaces. This situation is treated with the projection of
the combined acceleration to the two spaces as was explained in Section 3.4.2.
The decomposition and the treatment of the combined accelerations lead to the
measures great disadvantage, which is the decision time. This time ranges from
30 min to 50 min depending on the number of the UVMSs, the object’s shape
and the initial grasp points. This time makes this method unsuitable for on-line
grasp point selection. This is due to the fact that during the operation the
robots are consuming their own energy resources, so such a long decision time
would not be desirable. Consequently, this method is suitable for the selection
of grasp points, before the start of the operation in cases where the object’s
shape and position are already known.

A great advantage, on the other hand, is that this method takes into account
the effect of the systems weight, so the danger of the system’s inability to lift its
own weight is vanished, if the robots have the performance to do so. This mea-
sure’s characteristic, also ensures that the expected system’s performance will
not change due to the weight’s effect, as happens in the 1st proposed measure.

5.3 Comparison

Comparing the results, the two measures give different grasp points for the same
number of robots. This is due to the fact that the two measures maximize in a
different way the system’s DME. In order to illustrate this difference, the pro-
posed measures are compared with a third one which is the volume of the DME
without the proposed constraint. The three methods tested in the case that 4
UVMSs grasp a rod. After the selection, for each set of grasp points, the task
space is scanned and for every direction in the acceleration space the maximum
magnitude is given using as decision variables the UVMSs’ configuration. For
each grasp points set, we are searching for the maximum and the minimum
magnitude of the acceleration. In Fig. 5.6 these results are presented. The
bar-1 corresponds to the volume maximization with the constraint, the bar-2 to
the minimum distance maximization and the bar-3 to the volume maximization
without the constraint. As can be seen in Fig. 5.6a the first measure provides
the larger maximum magnitude while the 2nd method the minimum. On the
other hand in Fig. 5.6b the second method has the best minimum performance.
What can we also refer from the Fig. 5.6b is that the minimum magnitude
overcomes the constraint for the minimum performance which has been set to
a · ‖E+Gtot‖ = 1.5355 for all the measures. This means that the constraint did
not affect the selection of the grasp points in this case study.

From the above we can refer that as concerns the 1st proposed measure,
the grasp points guarantee the maximization of the DME with a bound in the
minimum performance, as concerns the provoked acceleration. On the other,
hand the 2nd proposed measure maximizes the magnitude of the accelerations’
directions with the minimum magnitude and as a result maximizes the systems
worst performance, as concerns the provoked acceleration.

As concerns the duration of the decision time, for the first measure this time
ranges from 0.5 min to 1 min depending on the object’s shape and the initial
grasp points. On the other hand, for the second measure, the time ranges from
30 min to 50 min. Having in mind that at the time of the decision the UVMSs
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consume energy resources the first measure is acceptable while the second is not.
As a result, the two measures have to be used in different cases. For instance,
the first one is suitable to be used during real time operations, where the exact
object’s shape has not to be known a priori and is figured by robot onboard
sensor system. On the other hand, the second measure is suitable for more
demanding operations, only in the special case that the decision can be taken
beforehand.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Grasp points positions on a rod: the results (a), (c) and (e) correspond to
the volume maximization for 2, 3 and 4 robots respectively and the results (b), (d) and
(f) to the minimum distance maximization for 2, 3 and 4 robots respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Grasp points positions on a square: the results (a), (c) and (e) correspond
to the volume maximization for 2, 3 and 4 robots respectively and the results (b), (d)
and (f) to the minimum distance maximization for 2, 3 and 4 robots respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Grasp points positions on a rectangle: the results (a), (c) and (e) corre-
spond to the volume maximization for 2, 3 and 4 robots respectively and the results (b),
(d) and (f) to the minimum distance maximization for 2, 3 and 4 robots respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Grasp points positions on a circle: the results (a), (c) and (e) correspond
to the volume maximization for 2, 3 and 4 robots respectively and the results (b), (d)
and (f) to the minimum distance maximization for 2, 3 and 4 robots respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Grasp points positions on an ellipse: the results (a), (c) and (e) correspond
to the volume maximization for 2, 3 and 4 robots respectively and the results (b), (d)
and (f) to the minimum distance maximization for 2, 3 and 4 robots respectively.
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(a) Maximum acceleratin magnitide (b) Minimum acceleration magnitude

Figure 5.6: Methods Comparison: Bar-1, Bar-2 and Bar-3 corresponds to the 1st
proposed measure, the 2nd proposed measure and to the volume of DME without the
proposed constraint respectively.
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Chapter 6

Concluding Remarks

6.1 Conclusions

In this work two non-task specific measures for the selection of grasp points on
an object are proposed. From the analysis and the simulations presented above
we can refer that:

As concerns the 1st proposed measure, which is the maximization of DME’s
volume with lower performance bound:

� Maximizes the DME in any direction.

� Provides greater highest potential accelerations.

� Short decision time. Suitable for decisions during the operation.

� Guarantees a lower bound in system’s performance as concerns the pro-
voked acceleration.

� The results are affected of the different accelerations’ orders of magnitude.

� The directions in which the DME is maximized can not be controlled.

� Does not take into account the effect system’s weight. As a result the
expected results, as concern the potential acceleration, may change.

As concerns the 2nd proposed measure, which is the maximization of the mini-
mum distances in translational and rotational acceleration spaces):

� Guarantees the highest possible worst performance,i.e. high acceleration
magnitude and lean energy consumption in the most difficult directions,
as concern the translational and rotational acceleration.

� The results are not affected by the different acceleration’s order of mag-
nitude.

� More conservative results. Focuses only to the maximization of the worst
directions.

� Does not guarantees the maximization of the accelerations with the higher
magnitudes.
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� Long decision time, suitable for operations that the object’s shape is
known a priori and the decision can be taken before the operation’s be-
ginning.

� The directions that combine translational and rotational part, are not
treated in a clear way.

6.2 Issues for Further Research

Generally, the field of grasp planning is offered for further research. As con-
cerns the proposed measures, there are also some issues that are susceptible of
improvement, which was not possible in the limited time of this thesis. Firstly,
as concerns the assumptions that have been made, it was mentioned that the
object is rigidly grasped by each end-effector. An improvement to the presented
measures would be the incorporation of the contact modeling [1], which would
lead to more reliable results. Another assumption was that the UVMSs used
are identical, so the proposed measures should be extended for the case that
the UVMSs are of different ability. Finally, in this work it is assumed that
each UVMS is aware of the grasp point position that the rest of the UVMSs
are intended to grasp (centralized). This is a convenient issue and absolutely
realistic when the grasp point selection is done in advance. On the other hand,
if the decision is taken during the phase of reaching to grasp, communication
issues have to be addressed, so the knowledge of the exact potential grasp point
position between the UVMSs might be difficult.

As concerns the proposed measures, for the 1st measure, the effect of the
system’s weight should be incorporated, so that the ellipsoid, whose volume is
maximized, to be the translated one due to the weight. As concerns the 2nd
measure, a faster way for the task space decomposition should be implemented
by also incorporating the combination of the transnational and rotational ac-
celeration in a clearer way. Another point that can be improved is the way that
the two minimum distances, dmintr ∈ R and dminrot ∈ R, are maximized. The
weighting method is suggested to be replaced by a no-preference method [21]
so that the difference of order of magnitude between the two distances to not
affect the result at all.

As concern the decision variables that are used in the proposed optimization
schemes, both the grasp point position and the UVMSs’ configuration partic-
ipated. In this way, the solution is affected from the changes in the UVMSs’
configuration. This issue could possibly lead to results that reflect the optimal
configuration and not the optimal grasp points’ position. In order to resolve
this problem, it is proposed the configuration to be excluded from the decision
variables and for every proposed grasp point set, the optimal configuration to
be taken into account for the evaluation of the set. This approach demands the
use of enfolded optimizations.

Finally, as concerns the general operation, in this thesis the pick-and-place
operation is studied and we dealt with its first phase, the selection of the grasp
points. The next step that has to be done is the investigation of the way that
the team of the UVMSs will reach the object in order to grasp at the selected
grasp points. This could be done in a centralized or in a decentralized way
depending on the ease of the communication between the robots.

48



Appendix A

MATLAB Code

A.1 1st Proposed Measure: Optimization Scheme

In this section of the appendix, the code used for the implementation of the
1st optimization scheme, presented in section 4.1, that corresponds to the 1st
proposed measure, is listed.

Let first explain the way that this code works. The code takes as an input
the number of the UVMSs that participate in the operation. It also takes as
an input the shape and all the geometric and dynamic characteristics of the
object as well as its position and orientation with respect to the inertial frame.
As it was mentioned in previous chapter, in order to decide the optimal grasp
points we do not only use as decision variables the variables concerning the
position of the grasp points, but we also have to use the variables correspond
to the configuration of each UVMS. The code places the initial grasp points
on the object and using the inverse kinematics of the UVMSs, initializes their
configuration. In this way we have the optimization’s initial point.

As concern the objective function obj volume.m, it takes as input the decision
variables. By taking the 1-d variable that corresponds to the i-th grasp point, the
function determines the point’s position in the 3-d space. This is repeated for all
the grasp points. Then the function determines the grasp matrix, the geometric
Jacobian of the UVMSs’ team and their inertial matrix and consequently the
matrix (2.91). Then singular value decomposition is applied as determined in
(3.5). Finally, the function computes the volume of the system’s DME for the
current value of the decision variables.

As concerns the constraints const volume.m, this function takes also as an
input the decision variables. By taking the 1-d variable that corresponds to
the i-th grasp point, determines the point’s position in the 3-d space and the
orientation that the end-effector must have in order to grasp at that point. This
function also determines the position and the orientation of the end-effector by
using the UVMS’s forward dynamics. As equality constraints are determined
the equality between the position of the grasp point and the permitted orien-
tation at it and the position and the orientation of the end-effector for each
grasp point and each corresponding UVMS. In this way, it is guaranteed that
the end-effector’s position and the grasp point will be identical. After that, the
function computes the matrices (2.91) and (2.92) and then sets the inequality
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constraint concerning the minimum performance (3.11). For the collision avoid-
ance, the function guarantees that each vehicle will not approach each other
more a specified distance.

The main code main.m and the functions obj volume.m and const volume.m
are presented bellow.

1 %% main.m
2 % selection of grasp points using as grasp quality measure the volume of
3 % the system's Dynamic Manipulability Ellipsoid
4 clear all
5 clc
6 global gplim lb gplim ub
7 global x d first object
8 global M R O2I wrench R O2I di I
9 global T O2I Po 1 Po 2

10 global plot var fitness plot obj tr plot obj rot check vals mat percent
11 plot var fitness=[];
12 plot obj tr=[];
13 plot obj rot=[];
14 check vals mat=[];
15 percent=1.1;%
16 %% Number of UVMSs
17 M=4;
18 %% Object's Frame wrt Inertial Frame
19 Po 1=[0;0;0]; % position of object's frame origin
20 Po 2=[0;pi;pi/2];% orientation wrt inertial frame
21 %% Transformations form {O} to {I} frames
22 R O2I=eulertoR(Po 2);% rotation matrix from object to inertial frame
23 T O2I=Homogen transf([Po 1;Po 2]);
24 R O2I wrench=[R O2I zeros(3);zeros(3) R O2I]; % rotation in wrench space
25 %% Geometry Recognition
26 object='rod'; %object's shape
27 if strcmp(object,'rod')
28 rod geometry;
29 elseif strcmp(object,'rectangle')
30 rect geometry;
31 elseif strcmp(object,'circle')
32 circle geometry;
33 elseif strcmp(object,'ellipse')
34 ellipse geometry;
35 else
36 end
37 %% UVMSs Characteristics
38 uvms parameters;
39 %% Optimal Position and Configuration Search
40 % grasp points' configuration limits
41 theta lb=ones(M,1)*theta min;
42 theta ub=ones(M,1)*theta max;
43 %UVMS's configuration limits
44 q ub=[];%upper Bound
45 q lb=[];%Lower Bound
46 for i=1:M
47 q ub=[q ub;gplim ub];
48 q lb=[q lb;gplim lb];
49 end
50 %the bounds of the decision variables
51 ub=[theta ub;q ub];
52 lb=[theta lb;q lb];
53

54 q init=[]; % UVMSs' initial configuration
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55 di I=[]; % Initial end−effector positions
56 phi i=[];% Initial end−effector configuration
57 for i=1:M
58 if strcmp(object,'rod')
59 [ P ] = Position ypol rod( theta in(i) );%position
60 [ phi ] = Orientation ypol rod( theta in(i) );%orientation
61 elseif strcmp(object,'rectangle')
62 [ P ] = Position ypol rect( theta in(i) );
63 [ phi ] = Orientation ypol rect( theta in(i) );
64 elseif strcmp(object,'circle')
65 [ P ] = Position ypol circle( theta in(i) );
66 [ phi ] = Orientation ypol circle( theta in(i) );
67 elseif strcmp(object,'ellipse')
68 [ P ] = Position ypol ellipse( theta in(i) );
69 [ phi ] = Orientation ypol ellipse( theta in(i) );
70 else
71 end
72 Pi O=P;
73 Pi I=T O2I*[Pi O;0];
74 Pi I=Pi I(1:3);
75 di I=[di I Po 1+Pi I];% position of i−th grasp point from inertial...
76 %frame expressed in inertial frame
77 phi i=[phi i phi];
78 end
79

80 %UVMSs' initial configuration
81 for i=1:M
82 nee1 i=di I(:,i);
83 Ree o=eulertoR(phi i(:,i));
84 [nee2 i(1,1),nee2 i(2,1),nee2 i(3,1)]=GetEulerAngles tar(R O2I*Ree o);
85 x d first=[nee1 i;nee2 i];
86 q start=[0;0;0;0;0;0;0;0;pi/3;0];
87 q initial i=inverse kinematic UVMS(q start);
88 q init=[q init;q initial i];
89 end
90

91 des var init=[theta in;q init];% initial decision variables
92

93 Aeq=[];% linear equality constraints
94 for i=1:M
95 aeq=[0 0 0 1 0 0 0 0 0 0;0 0 0 0 1 0 0 0 0 0];
96 Aeq in=[zeros(2,10*(i−1)) aeq zeros(2,10*(M−i))];
97 Aeq=[Aeq;Aeq in];
98 end
99 Aeq=[zeros(2*M,M) Aeq];

100 beq=zeros(2*M,1);
101

102 % optimization
103 options=optimoptions('fmincon','Display','iter',...
104 'Algorithm','sqp','MaxFunEvals',100000000,...
105 'MaxIter',1000000,'TolFun',1e−6,'TolX',1e−6,'TolCon',1e−4);
106 [des var,fval tr]=fmincon(@obj volume,des var init,[],[],...
107 Aeq,beq,lb,ub,@const volume,options);
108 %% Results
109 if strcmp(object,'rod')
110 rod plots;
111 elseif strcmp(object,'rectangle')
112 rectangle plots;
113 elseif strcmp(object,'circle')
114 circle plots;
115 elseif strcmp(object,'ellipse')
116 ellipse plots;
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117 else
118 end

1 function [ f ] = obj volume( des var )
2 % The objective function of the proposed optimization scheme that uses as
3 % grasp quality measure the volume of the Dynamic Manipulability
4 % Ellipsoid
5 global T O2I Po 1 ME R O2I M Beta weight mat torq Gforce
6 global U S metatopish tot
7 global plot var fitness check vals mat percent object
8 R O2I big=[R O2I zeros(3,3);zeros(3,3) R O2I];
9 %% Computation of W

10 ri I=[];% vector that connects the i−th grasp point with...
11 % the center of gravity
12 di I=[];% end−effector's position in inertial frame
13 for i=1:M
14 if strcmp(object,'rod')
15 [ P ] = Position ypol rod( des var(i) );
16 elseif strcmp(object,'rectangle')
17 [ P ] = Position ypol rect( des var(i) );
18 elseif strcmp(object,'circle')
19 [ P ] = Position ypol circle( des var(i) );
20 elseif strcmp(object,'ellipse')
21 [ P ] = Position ypol ellipse( des var(i) );
22 else
23 end
24 Pi O=P;
25 Pi I=T O2I*[Pi O;0];
26 Pi I=Pi I(1:3);
27 ri I=[ri I −Pi I];% position of object frame from i−th...
28 %grasp point expresed in inertial frame
29 di I=[di I Po 1+Pi I];% position of i−th grasp point from...
30 %inertial frame expressed in inertial frame
31 end
32 WW=[];% Grasp Matrix
33 for i=1:M
34 sm=[0 −ri I(3,i) ri I(2,i);ri I(3,i) 0 −ri I(1,i);...
35 −ri I(2,i)...
36 ri I(1,i) 0];
37 W=[eye(3) zeros(3);−sm eye(3)];
38 WW=[WW W];
39 end
40 %% Configuration
41 q i all=des var(M+1:size(des var,1));
42 BWs=[];
43 J=[];
44 M mat=[];
45 for i=1:M
46 q i=q i all((i−1)*10+1:(i−1)*10+10);% configuration of the i−th UVMS
47 [Jg, Ja] = JacUvms down(q i);% Jg the geometric Jacobian...
48 % of the i−th UVMS
49 M i=Mi(q i);% Inertia matrix of the i−th UVMS
50 % The inertia matrix of the cooperative UVMSs
51 M mat=[M mat zeros(size(M mat,1),size(M i,2));...
52 zeros(size(M i,1),size(M mat,2)) M i];
53 % The Jacobian of the cooperative UVMSs
54 J=[J zeros(size(J,1),size(Jg,2));zeros(size(Jg,1),size(J,2)) Jg];
55

56 BWs=[BWs zeros(size(BWs,1),size(Beta*weight mat torq,2));...
57 zeros(size(Beta*weight mat torq,1),size(BWs,2))...
58 Beta*weight mat torq];
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59 end
60 EE=M mat*pinv(J)*WW'*R O2I big+J'*pinv(WW)*inv(R O2I big)*ME;
61 metasx=pinv(EE)*BWs;% the mapping between the control input space...
62 % and the acceleration space
63 [U,S,V]=svd(metasx);% Singular Value Decomposition
64 %% Ellispoid's Translation due to Weight
65 Guvms=[];% Gravitational forces of the cooperative system
66 for i=1:M
67 q i=q i all((i−1)*10+1:(i−1)*10+10);
68 [G]= Gi(q i);% i−th UVMS's gravitational Forces
69 Guvms=[Guvms;G];
70 end
71 GG=J'*pinv(WW)*inv(R O2I big)*Gforce+Guvms;
72 metatopish tot=−pinv(EE)*GG; % the translation vector
73 %% Objective function
74 d=(2*pi)ˆ3/(2*4*6);
75 volume=d*S(1,1)*S(2,2)*S(3,3)*S(4,4)*S(5,5)*S(6,6);% Ellipsoid's Volume
76 f=−volume;
77 sing vals=[S(1,1);S(2,2);S(3,3);S(4,4);S(5,5);S(6,6)];
78 check vals mat=[check vals mat [sing vals;min(sing vals);...
79 norm(metatopish tot)*percent]];
80 plot var fitness=[plot var fitness des var];
81 end

1 function [ c,ceq ] = const volume( des var )
2 % The constraints of the proposed optimization scheme that uses as
3 % grasp quality measure the volume of the Dynamic Manipulability
4 % Ellipsoid.
5 global M T O2I Po 1 R O2I equalities r safe Gforce
6 global object percent Beta weight mat torq ME
7 R O2I big=[R O2I zeros(3,3);zeros(3,3) R O2I];
8 equalities=zeros(M*6,1);
9 q i all=des var(M+1:size(des var,1));

10 %% Constraints In Position
11 ri I=[];% vector that connects the i−th grasp point with...
12 % the center of gravity
13 di I=[];% end−effector's position in inertial frame
14 phi i=[];% end−effector's orientation
15 safe ineq=[];
16 for i=1:M
17 if strcmp(object,'rod')
18 [ P ] = Position ypol rod( des var(i) );
19 [ phi ] = Orientation ypol rod( des var(i) );
20 elseif strcmp(object,'rectangle')
21 [ P ] = Position ypol rect( des var(i) );
22 [ phi ] = Orientation ypol( des var(i) );
23 elseif strcmp(object,'circle')
24 [ P ] = Position ypol circle( des var(i) );
25 [ phi ] = Orientation ypol circle( des var(i) );
26 elseif strcmp(object,'ellipse')
27 [ P ] = Position ypol ellipse( des var(i) );
28 [ phi ] = Orientation ypol ellipse( des var(i) );
29 else
30 end
31 Pi O=P;
32 Pi I=T O2I*[Pi O;0];
33 Pi I=Pi I(1:3);
34 ri I=[ri I −Pi I];% position of object frame from i−th grasp
35 % point expresed in inertial frame
36 di I=[di I Po 1+Pi I];% position of i−th grasp point from
37 % inertial frame expressed in inertial frame
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38 phi i=[phi i phi];
39 end
40 for i=1:M
41 % the following equality constraints guarantee that the position
42 % of the i−th end−effector coincides with the i−th grasp point
43 % and the orientation of the i−th end−effector's frame is the
44 % allowed one depending on the position of the grasp point and
45 % the object's shape
46

47 q i=q i all((i−1)*10+1:(i−1)*10+10);% configuration of the i−th UVMS
48 [ p i] = Forward kin UVMS( q i);% corresponding end−effector's
49 % position
50 nee1 i=di I(:,i);
51 Ree2o=eulertoR(phi i(:,i));
52 [nee22(1,1),nee22(2,1),nee22(3,1)]=GetEulerAngles tar(R O2I*Ree2o);
53 equalities((i−1)*6+1:(i−1)*6+6)=[p i(1:3)−nee1 i;p i(4:6)−nee22];
54

55 % collision avoidance between the UVMSs
56 pos veh i=q i(1:3);
57 for j=i+1:M
58 q j=q i all((j−1)*10+1:(j−1)*10+10);
59 pos veh j=q j(1:3);
60 safe ineq=[safe ineq;2*r safe−norm(pos veh i−pos veh j)];
61 end
62 end
63 %% Constraint for the lower bound of the system's performance
64 %computation of Wi
65 WW=[];% Grasp matrix
66 for i=1:M
67 sm=[0 −ri I(3,i) ri I(2,i);ri I(3,i) 0 −ri I(1,i);...
68 −ri I(2,i)...
69 ri I(1,i) 0];
70 W=[eye(3) zeros(3);−sm eye(3)];
71 WW=[WW W];
72 end
73 BWs=[];
74 J=[];
75 M mat=[];
76 for i=1:M
77 q i=q i all((i−1)*10+1:(i−1)*10+10);% configuration of the i−th UVMS
78 [Jg, Ja] = JacUvms down(q i);% Jg the geometric Jacobian
79 % of the i−th UVMS
80 M i=Mi(q i);% Inertia matrix of the i−th UVMS
81 % The inertia matrix of the cooperative UVMSs
82 M mat=[M mat zeros(size(M mat,1),size(M i,2));zeros(size(M i,1),...
83 size(M mat,2)) M i];
84 % The Jacobian of the cooperative UVMSs
85 J=[J zeros(size(J,1),size(Jg,2));zeros(size(Jg,1),size(J,2)) Jg];
86 BWs=[BWs zeros(size(BWs,1),size(Beta*weight mat torq,2));...
87 zeros(size(Beta*weight mat torq,1),size(BWs,2))...
88 Beta*weight mat torq];
89 end
90 EE=M mat*pinv(J)*WW'*R O2I big+J'*pinv(WW)*inv(R O2I big)*ME;
91 metasx=pinv(EE)*BWs;% the mapping between the control input space
92 % and the acceleration space
93 [U,S,V]=svd(metasx);
94

95 % Ellispoid's Translation due to Weight
96 Guvms=[];
97 for i=1:M
98 q i=q i all((i−1)*10+1:(i−1)*10+10);
99 [G]= Gi(q i);% i−th UVMS's gravitational Forces
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100 Guvms=[Guvms;G];
101 end
102 GG=J'*pinv(WW)*inv(R O2I big)*Gforce+Guvms;
103 metatopish tot=−pinv(EE)*GG;% the translation vector
104 sing vals=[S(1,1);S(2,2);S(3,3);S(4,4);S(5,5);S(6,6)];
105

106 % inequality constraints for the lower performance bound. The minimum
107 % singular value must be greater equal to the norm of the vector of the
108 % ellipsoid's translation multiplied with a safety factor guaranteeing
109 % higher minimum performance
110 grav ineq=percent*norm(metatopish tot)−min(sing vals);
111 %% output
112 c=[safe ineq;grav ineq];
113 ceq=equalities;
114 end

A.2 2nd Proposed Measure: Optimization Scheme

In this section of the appendix the code used for the 2nd optimization scheme,
presented in section 4.2, that corresponds to the 2nd proposed measure, is listed.

The main code main.m has more or less the same structure with the one
presented for the 1st optimization scheme. The main difference between the
two codes is detected in the objective function obj min dist.m since they refer
to different grasp quality measures. The function takes as an input the deci-
sion variables. By taking the 1-d variable that corresponds to the i-th grasp
point, the function determines the point’s position in the 3-d space. This is
repeated for all the grasp points. Then the function determines the grasp ma-
trix, the geometric Jacobian of the UVMSs’ team and their inertial matrix and
consequently the matrix (2.91). Then singular value decomposition is applied
as determined in (3.5). In the sequel, the function determines the position vec-
tor of the translated frame due to the system’s weight, {a′}, with respect to
the frame {a} (3.12). After that, the function decomposes the system’s DME
in order to create the translational and the rotational acceleration space. As-
suming that we are interested in the creation of the translational acceleration
space. Let a direction of the translational acceleration in the 3d space. The
function creates the 6d acceleration combining the desired translational acceler-
ation and a rotational acceleration creating the desired acceleration in the 6-d
task space. In this direction calculates the distance between the translated, due
to weight, DME’s center and the ellipsoid’s surface. This distance is projected
in the translational acceleration space. The same procedure for the desired
translational acceleration is repeated for every possible rotational acceleration
direction. The maximum value of the projection is saved. This is repeated for
every direction of the translational acceleration. In this way, the translational
acceleration space is created. The same procedure is followed for the rotational
acceleration space. Then the minimum distance in these two spaces is deter-
mined. Finally, the two resulting values, multiplied with a weighting factor, are
added. The resulting quantity is the one that the optimization maximizes.

As concerns the constraints of the optimization scheme const min dist.m,
they are the same with the constraints presented for the 1st measure, excluding
the one concerning the bound in the minimum performance (3.11) which is not
required.
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The aforementioned main code main.m and the functions obj min dist.m
and const min dist.m are presented bellow.

1 %% main.m
2 % selection of grasp points using as grasp quality measure the minimum
3 % distance in the translational and rotational acceleration space as
4 % exerted from the system's Dynamic Manipulability Ellipsoid
5 clear all
6 clc
7 global gplim lb gplim ub
8 global x d first object
9 global M R O2I wrench R O2I di I

10 global T O2I Po 1 Po 2 direction matrix
11 global plot var fitness plot obj tr plot obj rot check vals mat percent
12 plot var fitness=[];
13 plot obj tr=[];
14 plot obj rot=[];
15 check vals mat=[];
16 percent=1.1;%
17 %% Number of UVMSs
18 M=4;
19 %% Object's Frame wrt Inertial Frame
20 Po 1=[0;0;0]; % position of object's frame origin
21 Po 2=[0;pi;pi/2];% orientation wrt inertial frame
22 %% Transformations form {O} to {I} frames
23 R O2I=eulertoR(Po 2);% rotation matrix from object to inertial frame
24 T O2I=Homogen transf([Po 1;Po 2]);
25 R O2I wrench=[R O2I zeros(3);zeros(3) R O2I]; % rotation in wrench space
26 %% Acceleration space
27 % the 6−d acceleration space is created by unitary acceleration vectors
28 % translational rotational or combination of them
29 diakr=pi/4;% sparcity of the acceleration space
30 [ space mat ] = space constr 3d( diakr );
31 direction matrix=space mat;
32 %% Geometry Recognition
33 object='rod'; %object's shape
34 if strcmp(object,'rod')
35 rod geometry;
36 elseif strcmp(object,'rectangle')
37 rect geometry;
38 elseif strcmp(object,'circle')
39 circle geometry;
40 elseif strcmp(object,'ellipse')
41 ellipse geometry;
42 else
43 end
44 %% UVMSs Characteristics
45 uvms parameters;
46 %% Optimal Position and Configuration Search
47 % grasp points' configuration limits
48 theta lb=ones(M,1)*theta min;
49 theta ub=ones(M,1)*theta max;
50 %UVMS's configuration limits
51 q ub=[];%upper Bound
52 q lb=[];%Lower Bound
53 for i=1:M
54 q ub=[q ub;gplim ub];
55 q lb=[q lb;gplim lb];
56 end
57 %the bounds of the decision variables
58 ub=[theta ub;q ub];
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59 lb=[theta lb;q lb];
60

61 q init=[]; % UVMSs' initial configuration
62 di I=[]; % Initial end−effector positions
63 phi i=[];% Initial end−effector configuration
64 for i=1:M
65 if strcmp(object,'rod')
66 [ P ] = Position ypol rod( theta in(i) );%position
67 [ phi ] = Orientation ypol rod( theta in(i) );%orientation
68 elseif strcmp(object,'rectangle')
69 [ P ] = Position ypol rect( theta in(i) );
70 [ phi ] = Orientation ypol rect( theta in(i) );
71 elseif strcmp(object,'circle')
72 [ P ] = Position ypol circle( theta in(i) );
73 [ phi ] = Orientation ypol circle( theta in(i) );
74 elseif strcmp(object,'ellipse')
75 [ P ] = Position ypol ellipse( theta in(i) );
76 [ phi ] = Orientation ypol ellipse( theta in(i) );
77 else
78 end
79 Pi O=P;
80 Pi I=T O2I*[Pi O;0];
81 Pi I=Pi I(1:3);
82 di I=[di I Po 1+Pi I];% position of i−th grasp point from inertial...
83 %frame expressed in inertial frame
84 phi i=[phi i phi];
85 end
86

87 %UVMSs' initial configuration
88 for i=1:M
89 nee1 i=di I(:,i);
90 Ree o=eulertoR(phi i(:,i));
91 [nee2 i(1,1),nee2 i(2,1),nee2 i(3,1)]=GetEulerAngles tar(R O2I*Ree o);
92 x d first=[nee1 i;nee2 i];
93 q start=[0;0;0;0;0;0;0;0;pi/3;0];
94 q initial i=inverse kinematic UVMS(q start);
95 q init=[q init;q initial i];
96 end
97

98 des var init=[theta in;q init];% initial decision variables
99

100 Aeq=[];% linear equality constraints
101 for i=1:M
102 aeq=[0 0 0 1 0 0 0 0 0 0;0 0 0 0 1 0 0 0 0 0];
103 Aeq in=[zeros(2,10*(i−1)) aeq zeros(2,10*(M−i))];
104 Aeq=[Aeq;Aeq in];
105 end
106 Aeq=[zeros(2*M,M) Aeq];
107 beq=zeros(2*M,1);
108

109 % optimization
110 options=optimoptions('fmincon','Display','iter',...
111 'Algorithm','sqp','MaxFunEvals',100000000,...
112 'MaxIter',1000000,'TolFun',1e−6,'TolX',1e−6,'TolCon',1e−4);
113 [des var,fval tr]=fmincon(@obj min dist,des var init,[],[],...
114 Aeq,beq,lb,ub,@const min dist,options);
115 %% Results
116 if strcmp(object,'rod')
117 rod min dist plots;
118 elseif strcmp(object,'rectangle')
119 rectangle min dist plots;
120 elseif strcmp(object,'circle')
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121 circle min dist plots;
122 elseif strcmp(object,'ellipse')
123 ellipse min dist plots;
124 else
125 end

1 function [ f ] = obj min dist( des var )
2 % The objective function of the proposed optimization scheme that uses as
3 % grasp quality measure the minimum distance in the translational and
4 % rotational acceleration space as exerted from the system's
5 % Dynamic Manipulability Ellipsoid
6 global T O2I Po 1 ME R O2I M Beta weight mat torq Gforce
7 global direction matrix object
8 global U S metatopish tot
9 global plot var fitness plot obj tr plot obj rot

10 R O2I big=[R O2I zeros(3,3);zeros(3,3) R O2I];
11 %% Computation of W
12 ri I=[];% vector that connects the i−th grasp point with...
13 % the center of gravity
14 di I=[];% end−effector's position in inertial frame
15 for i=1:M
16 if strcmp(object,'rod')
17 [ P ] = Position ypol rod( des var(i) );
18 elseif strcmp(object,'rectangle')
19 [ P ] = Position ypol rect( des var(i) );
20 elseif strcmp(object,'circle')
21 [ P ] = Position ypol circle( des var(i) );
22 elseif strcmp(object,'ellipse')
23 [ P ] = Position ypol ellipse( des var(i) );
24 else
25 end
26 Pi O=P;
27 Pi I=T O2I*[Pi O;0];
28 Pi I=Pi I(1:3);
29 ri I=[ri I −Pi I];% position of object frame from i−th...
30 %grasp point expresed in inertial frame
31 di I=[di I Po 1+Pi I];% position of i−th grasp point from...
32 %inertial frame expressed in inertial frame
33 end
34 WW=[];% Grasp Matrix
35 for i=1:M
36 sm=[0 −ri I(3,i) ri I(2,i);ri I(3,i) 0 −ri I(1,i);...
37 −ri I(2,i)...
38 ri I(1,i) 0];
39 W=[eye(3) zeros(3);−sm eye(3)];
40 WW=[WW W];
41 end
42 %% Configuration
43 q i all=des var(M+1:size(des var,1));
44 BWs=[];
45 J=[];
46 M mat=[];
47 for i=1:M
48 q i=q i all((i−1)*10+1:(i−1)*10+10);% configuration of the i−th UVMS
49 [Jg, Ja] = JacUvms down(q i);% Jg the geometric Jacobian...
50 % of the i−th UVMS
51 M i=Mi(q i);% Inertia matrix of the i−th UVMS
52 % The inertia matrix of the cooperative UVMSs
53 M mat=[M mat zeros(size(M mat,1),size(M i,2));...
54 zeros(size(M i,1),size(M mat,2)) M i];
55 % The Jacobian of the cooperative UVMSs
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56 J=[J zeros(size(J,1),size(Jg,2));zeros(size(Jg,1),size(J,2)) Jg];
57

58 BWs=[BWs zeros(size(BWs,1),size(Beta*weight mat torq,2));...
59 zeros(size(Beta*weight mat torq,1),size(BWs,2))...
60 Beta*weight mat torq];
61 end
62 EE=M mat*pinv(J)*WW'*R O2I big+J'*pinv(WW)*inv(R O2I big)*ME;
63 metasx=pinv(EE)*BWs;% the mapping between the control input space...
64 % and the acceleration space
65 [U,S,V]=svd(metasx);% Singular Value Decomposition
66 %% Ellispoid's Translation due to Weight
67 Guvms=[];% Gravitational forces of the cooperative system
68 for i=1:M
69 q i=q i all((i−1)*10+1:(i−1)*10+10);
70 [G]= Gi(q i);% i−th UVMS's gravitational Forces
71 Guvms=[Guvms;G];
72 end
73 GG=J'*pinv(WW)*inv(R O2I big)*Gforce+Guvms;
74 metatopish tot=−pinv(EE)*GG; % the translation vector
75 %% Acceleration space
76 % The Dynamic Manipulability Ellipsoid is decomposed into translational
77 % and rotational acceleration spaces
78

79 feasible space transl=zeros(size(direction matrix,1),3);
80 feasible space rot=zeros(size(direction matrix,1),3);
81 direct=direction matrix;% the directions of the task space which are
82 % identical to the 6−d acceleration space
83 SSconv=zeros(6,1);
84 for ii=1:6
85 SSconv(ii,1)=S(ii,ii);
86 end
87 UUconv=U';
88 UUconv=UUconv(:);
89 priv=[UUconv;SSconv;metatopish tot];
90 dist transl=zeros(size(direction matrix,1),1);
91 dist rot=zeros(size(direction matrix,1),1);
92

93 parfor(i=1:size(direct,1),4)
94 % the direction of interest in translational space
95 translational direction=direct(i,:)';
96 % the direction of interest in rotational space
97 rotational direction=direct(i,:)';
98 max transl proj=0;
99 max rot proj=0;

100 for j=1:size(direct,1)
101 % the direction in rotational space to be combined with
102 % the translational
103 rotational direction for tr=direct(j,:)';
104 % h ypopsifia pio epibaryntikh translational thn rotational
105 translational direction for rot=direct(j,:)';
106 for theta comb=0:pi/16:pi/2
107 % Projection on the translational acceleration space
108 direction 6d for tr=[translational direction*...
109 cos(theta comb);rotational direction for tr*...
110 sin(theta comb)];% The direction of interest in the 6−d
111 % space
112 P odot dist tr=[direction 6d for tr;priv];
113 % The distance from the center to the surface is
114 [ P dist ] = distance from weighted point par( P odot dist tr);
115 % The projection in the translational acceleration space
116 projection2transl dir=dot(P dist*direction 6d for tr,...
117 [translational direction;0;0;0])/...
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118 norm(translational direction);
119 % Search for the maximum projection
120 if max transl proj<=projection2transl dir
121 max transl proj=projection2transl dir;
122 end
123

124 % projection on the rotational acceleration space
125 direction 6d for rot=[translational direction for rot*...
126 sin(theta comb);...
127 rotational direction*cos(theta comb)];% The direction of
128 % interest in the 6−d
129 % space
130 P odot dist rot=[direction 6d for rot;priv];
131 % The distance from the center to the surface in the desired
132 % direction is:
133 [ P dist ] = distance from weighted point par( P odot dist rot);
134 projection2rot dir=dot(P dist*direction 6d for rot,...
135 [0;0;0;rotational direction])/norm(rotational direction);
136 % Search for the maximum projection
137 if max rot proj<=projection2rot dir
138 max rot proj=projection2rot dir;
139 end
140 end
141 end
142 dist transl(i)=max transl proj;
143 dist rot(i)=max rot proj;
144 end
145

146 %% Minimum distance in translational acceleration space
147 norm tr min=min(dist transl);%
148 f tr=−norm tr min;
149

150 %% Minimum distance in rotational acceleration space
151 norm rot min=min(dist rot);
152 f rot=−norm rot min;
153 %% Weighted sum objective function
154 w=0.5;
155 f=(1−w)*f tr+w*f rot;% the objective function
156 plot var fitness=[plot var fitness des var];
157 plot obj tr=[plot obj tr;−f tr];
158 plot obj rot=[plot obj rot;−f rot];
159

160 end

1 function [ c,ceq ] = const min dist( des var )
2 % The constraints of the proposed optimization scheme that uses as
3 % grasp quality measure the minimum distance in the translational
4 % and rotational acceleration space as exerted from the system's
5 % Dynamic Manipulability Ellipsoid
6 global M T O2I Po 1 R O2I equalities r safe
7 global object
8 R O2I big=[R O2I zeros(3,3);zeros(3,3) R O2I];
9 equalities=zeros(M*6,1);

10 q i all=des var(M+1:size(des var,1));
11 %% Constraints In Position
12 ri I=[];% vector that connects the i−th grasp point with...
13 % the center of gravity
14 di I=[];% end−effector's position in inertial frame
15 phi i=[];% end−effector's orientation
16 safe ineq=[];
17 for i=1:M
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18 if strcmp(object,'rod')
19 [ P ] = Position ypol rod( des var(i) );
20 [ phi ] = Orientation ypol rod( des var(i) );
21 elseif strcmp(object,'rectangle')
22 [ P ] = Position ypol rect( des var(i) );
23 [ phi ] = Orientation ypol( des var(i) );
24 elseif strcmp(object,'circle')
25 [ P ] = Position ypol circle( des var(i) );
26 [ phi ] = Orientation ypol circle( des var(i) );
27 elseif strcmp(object,'ellipse')
28 [ P ] = Position ypol ellipse( des var(i) );
29 [ phi ] = Orientation ypol ellipse( des var(i) );
30 else
31 end
32 Pi O=P;
33 Pi I=T O2I*[Pi O;0];
34 Pi I=Pi I(1:3);
35 ri I=[ri I −Pi I];% position of object frame from i−th grasp...
36 % point expresed in inertial frame
37 di I=[di I Po 1+Pi I];% position of i−th grasp point from...
38 % inertial frame expressed in inertial frame
39 phi i=[phi i phi];
40 end
41 for i=1:M
42 % the following equality constraints guarantee that the position
43 % of the i−th end−effector coincides with the i−th grasp point
44 % and the orientation of the i−th end−effector's frame is the
45 % allowed one depending on the position of the grasp point and
46 % the object's shape
47

48 q i=q i all((i−1)*10+1:(i−1)*10+10);% configuration of the i−th UVMS
49 [ p i] = Forward kin UVMS( q i);% corresponding end−effector's
50 % position
51 nee1 i=di I(:,i);
52 Ree2o=eulertoR(phi i(:,i));
53 [nee22(1,1),nee22(2,1),nee22(3,1)]=GetEulerAngles tar(R O2I*Ree2o);
54 equalities((i−1)*6+1:(i−1)*6+6)=[p i(1:3)−nee1 i;p i(4:6)−nee22];
55

56 % collision avoidance between the UVMSs
57 pos veh i=q i(1:3);
58 for j=i+1:M
59 q j=q i all((j−1)*10+1:(j−1)*10+10);
60 pos veh j=q j(1:3);
61 safe ineq=[safe ineq;2*r safe−norm(pos veh i−pos veh j)];
62 end
63 end
64 c=safe ineq;
65 ceq=equalities;
66 end

A.3 Shared Code

In this section of the appendix, the scripts of code that the two previously pre-
sented schemes share, are presented. As it was mentioned before, for the grasp
points’ position a one-variable representation is used. In order to transform the
one-variable representation into a point in 3d space, a proper function for each
object shape is used. The functions Position ypol rod.m, Position ypol rect.m,
Position ypol circle.m and Position ypol ellipse.m are used in order to transform
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the 1d variable into 3d point on a rod, a rectangle, a circle and an ellipse respec-
tively. As concern the permitted orientation that the end-effector must have in
order to grasp a certain grasp point, the following functions are used in order
to transform the variable that refers to the grasp point in the end-effector’s
permitted orientation. These functions are Orientation ypol rod.m, Orienta-
tion ypol rect.m, Orientation ypol circle.m and Orientation ypol ellipse.m and
correspond to the permitted orientations on a rod, a rectangle, a circle and an
ellipse respectively.

Finally in the script uvms parameters.m, the UVMS’s characteristics, as con-
cern the position of the manipulator on the vehicle, the length of the manipu-
lator’s links, the configuration limits and the torque limits, are determined.

The aforementioned functions are presented bellow:

1 function [ P ] = Position ypol rod( lamda )
2 % Takes as an input the 1−d variable that determines the position on the
3 % object and gives the actual position of the grasp point in the 3d space
4 global rod d L
5 Pref=rod d*L*lamda;
6 P=Pref−[0;L/2;0];
7 end

1 function [ P ] = Position ypol rect( theta )
2 % Takes as an input the 1−d variable that determines the position on the
3 % object and gives the actual position of the grasp point in the 3d space
4 global thetaA thetaB thetaC thetaD H L
5 if theta>=thetaD | | theta<=thetaA
6 x=H/2;
7 y=tan(theta)*x;
8 P=[x;y;0];
9 elseif theta>=thetaA && theta<=thetaB

10 y=L/2;
11 x=−tan(theta−pi/2)*y;
12 P=[x;y;0];
13 elseif theta>=thetaB && theta<=thetaC
14 x=−H/2;
15 y=tan(theta−pi)*x;
16 P=[x;y;0];
17 else
18 y=−L/2;
19 x=−tan(theta−3*pi/2)*y;
20 P=[x;y;0];
21 end
22 end

1 function [ P ] = Position ypol circle( theta )
2 % Takes as an input the 1−d variable that determines the position on the
3 % object and gives the actual position of the grasp point in the 3d space
4 global Rakt
5 x=Rakt*cos(theta);
6 y=Rakt*sin(theta);
7 P=[x;y;0];
8 end
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1 function [ P ] = Position ypol ellipse( theta )
2 % Takes as an input the 1−d variable that determines the position on the
3 % object and gives the actual position of the grasp point in the 3d space
4 global alpha be
5 x=alpha*cos(theta);
6 y=be*sin(theta);
7 P=[x;y;0];
8 end

1 function [ phi ] = Orientation ypol rod( lamda )
2 % Takes as an input the variable that determines the position on the
3 % object and gives the orientation that the end−effector of the UVMS
4 % must have in order to grasp at that position
5 phi=[0;−pi/2;0];
6 end

1 function [ phi ] = Orientation ypol rect( theta )
2 % Takes as an input the variable that determines the position on the
3 % object and gives the orientation that the end−effector of the UVMS
4 % must have in order to grasp at that position
5 global thetaA b thetaA a thetaB b thetaB a thetaC b thetaC a thetaD b
6 global thetaD a
7 phiDA=[0 3*pi/2 0]';
8 phiAB=[0 3*pi/2 pi/2]';
9 phiBC=[0 3*pi/2 pi]';

10 phiCD=[0 3*pi/2 3*pi/2]';
11 if theta>=thetaD a | | theta<=thetaA b
12 phi=phiDA;
13 elseif theta>=thetaA b && theta<=thetaA a
14 phi=phiDA+(phiAB−phiDA)/(thetaA a−thetaA b)*(theta−thetaA b);
15 elseif theta>=thetaA a && theta<=thetaB b
16 phi=phiAB;
17 elseif theta>=thetaB b && theta<=thetaB a
18 phi=phiAB+(phiBC−phiAB)/(thetaB a−thetaB b)*(theta−thetaB b);
19 elseif theta>=thetaB a && theta<=thetaC b
20 phi=phiBC;
21 elseif theta>=thetaC b && theta<=thetaC a
22 phi=phiBC+(phiCD−phiBC)/(thetaC a−thetaC b)*(theta−thetaC b);
23 elseif theta>=thetaC a && theta<=thetaD b
24 phi=phiCD;
25 else
26 phiCD=[0 3*pi/2 −pi/2]';
27 phi=phiCD+(phiDA−phiCD)/(thetaD a−thetaD b)*(theta−thetaD b);
28 end
29 end

1 function [ phi ] = Orientation ypol circle( theta )
2 % Takes as an input the variable that determines the position on the
3 % object and gives the orientation that the end−effector of the UVMS
4 % must have in order to grasp at that position
5 phi=[0;3*pi/2;theta];
6 end

1 function [ phi ] = Orientation ypol ellipse( theta )
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2 % Takes as an input the variable that determines the position on the
3 % object and gives the orientation that the end−effector of the UVMS
4 % must have in order to grasp at that position
5 global alpha be
6 x T=−(alpha*sin(theta))/sqrt(beˆ2*(cos(theta))ˆ2+alphaˆ2*(sin(theta))ˆ2);
7 y T=(be*cos(theta))/sqrt(beˆ2*(cos(theta))ˆ2+alphaˆ2*(sin(theta))ˆ2);
8 tangent=[x T;y T;0];
9 strof=atan2(tangent(2),tangent(1));

10 if strof<0
11 strof=2*pi+strof;
12 end
13 phi=[0;3*pi/2;strof−pi/2];
14 end

1 %% uvms parameters.m
2 % contains the characteristics of the UVMS
3 global x v y v z v phi v th v psi v L1 L2 L3 L4 L5
4 global u lim lb u lim ub gplim lb gplim ub
5 global Beta weight mat torq r safe
6 % position and orientation of the manipulator base frame(0) relative
7 % to vehicle body−fixed frame(B)
8 x v = 0.16; y v = 0; z v = 0.09;
9 phi v = 0; th v = 0; psi v = 0;

10

11 L1 = 77.8*10ˆ−3; %meter
12 L2 = 2.2*10ˆ−3;
13 L3 = 147.69*10ˆ−3;
14 L4 = 28*10ˆ−3;
15 L5 = 75.4*10ˆ−3;
16 % actuators' limits
17 u lim lb=[−15;−15;−15;−15;−5;−5;−5;−5];
18 u lim ub=[15;15;15;15;5;5;5;5];
19 %joints position limits
20 gplim lb = [ −30 , −30 , −30 , −pi/18 , −pi/18 , −2*pi ,...
21 −2*pi , −2*pi, −2*pi , −2*pi]'; % lower bounds of q
22 gplim ub = [ 30 , 30 , 30 , pi/18 , pi/18 , 2*pi , 2*pi ,...
23 2*pi , 2*pi , 2*pi]'; % upper bounds of q
24 % Thruster Control Matrix
25 Bv=[1 1 0 0;0 0 1 0;0 0 0 1;0 0 0 0;0 0 0 0;0.0475 −0.0475 −0.05 0];
26 Beta=[Bv zeros(6,4);zeros(4,4) eye(4)];
27 weight mat torq=100*diag([10 10 10 10 5 5 5 5]);
28 % radius of a sphere containing the vehicle used for collision avoidance
29 r safe=0.2;
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