ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΤΕΡΟΓΕΝΩΝ ΜΕΙΓΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΚΑΥΣΗΣ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΘΕΡΜΙΚΩΝ ΚΑΙ ΡΟΪΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΦΩΤΙΑΣ ΕΞΕΡΧΟΜΕΝΗΣ ΑΠΟ ΑΝΟΙΓΜΑ

ΚΑΛΑΜΑΡΑΣ ΧΡΗΣΤΟΣ

ΕΠΙΒΛΕΠΩΝ: ΦΟΥΝΤΗ ΜΑΡΙΑ

AOHNA, 10-10-2017

ΕΥΧΑΡΙΣΤΙΕΣ

Πρώτα απ' όλα, θέλω να ευχαριστήσω τον επιβλέποντα της διπλωματικής εργασίας μου, κ. Διονύση Κολαΐτη, για την πολύτιμη βοήθεια, τις ώρες ενασχόλησης μαζί μου και καθοδήγησής του κατά τη διάρκεια της δουλειάς μου. Επίσης, είμαι ευγνώμων στην Καθηγήτρια κα. Μαρία Φούντη που μου έδωσε την ευκαιρία να συνεργαστώ μαζί της και να αποτελέσω μέλος της ομάδας της. Ευχαριστώ τον συναδέλφο μου Τρύφωνα Ρούτουλα για την πολύτιμη βοήθειά του στο σχεδιασμό στο πρόγραμμα Solidwoks. Ευχαριστώ όλους τους φίλους μου για την ηθική υποστήριξή τους. Επίσης, ευχαριστώ τη Μελίνα για την κατανόηση, συμπαράσταση και αγάπη της, ιδιαίτερα κατά τη διάρκεια των τελευταίων μηνών της προσπάθειάς μου. Πάνω απ' όλα, είμαι ευγνώμων στους γονείς μου, Φώτη και Ιωάννα Καλαμάρα για την ολόψυχη αγάπη και αμέριστη υποστήριξή τους όλα αυτά τα χρόνια των σπουδών μου. Αφιερώνω αυτή την εργασία στην μητέρα μου και στον πατέρα μου.

ΠΕΡΙΛΗΨΗ

Στην παρούσα διπλωματική εργασία μελετήθηκαν τα θερμικά και ροϊκά χαρακτηριστικά φωτιάς εξερχόμενης από άνοιγμα. Για το σκοπό αυτό πραγματοποιήθηκαν πειράματα διαφορετικών συνθηκών και δεδομένων κάθε φορά. Για την πραγματοποίησή τους, έγινε χρήση πειραματικής διάταξης διαμερίσματος-πρόσοψης, μικρής κλίμακας σύμφωνα με το πρότυπο ISO9705, το οποίο είχε κατασκευαστεί στο εργαστήριο ετερογενών μιγμάτων και συστημάτων καύσης, στα πλαίσια παλαιότερης διπλωματικής εργασίας. Χρησιμοποιήθηκαν μετρητικά στοιχεία, κατάλληλα τοποθετημένα, (θερμοστοιχεία, μετρητές ροής θερμότητας, δικατευθυντικοί μετρητές), τα οποία συνδέθηκαν με υπολογιστή για την καταγραφή και μετέπειτα αξιολόγηση των πειραματικών τιμών. Συνολικά τοποθετήθηκαν 87 θερμοστοιχεία, 4 δικατευθυντικοί μετρητές ταχύτητας και 3 μετρητές ροής θερμότητας. Μελετήθηκαν τέσσερα διαφορετικά επίπεδα ισχύος, δύο διαφορετικές γεωμετρίες ανοίγματος και δύο ύψη καυστήρα, προκειμένου να μελετηθεί πως ο κάθε ένας από αυτούς τους παράγοντες επηρεάζει τελικά τα χαρακτηριστικά της φλόγας. Συνολικά πραγματοποιήθηκαν 16 πειράματα και οι τιμές που προέκυψαν συγκρίθηκαν με αντίστοιχες εμπειρικές σχέσεις από τη διεθνή βιβλιογραφία.

Κύριοι παράγοντες μελέτης ήταν η επίδραση της ισχύος, της γεωμετρίας, καθώς και του ύψους του καυστήρα στα χαρακτηριστικά της φλόγας. Με βάση τα αποτελέσματα συμπεραίνεται πως όσο μεγαλύτερη είναι η ισχύς της φωτιάς, για την περίπτωση γεωμετρίας ανοίγματος τύπου παραθύρου και για υψηλή θέση καυστήρα, τόσο τα φαινόμενα είναι πιο έντονα και οι θερμοκρασίες που αναπτύσσονται μεγαλύτερες. Σχετικά με τις εμπειρικές συσχετίσεις μελετήθηκαν τρεις διαφορετικές σχέσεις για τον προσδιορισμό της θερμοκρασίας εξωτερικής φλόγας και εκείνη που βρέθηκε να προσεγγίζει περισσότερο τις πειραματικές τιμές σχεδόν σε όλες τις περιπτώσεις είναι εκείνη του Eurocode.

SUMMARY

The main subject of this diploma thesis is the study of the thermal and flow characteristics of externally venting flames (EVF) in a compartment fire. In this context, a compartment façade experimental setup was used to perform a number of fire tests; the compartment corresponded to a ¼ scale model of the standard ISO 9705 compartment. A large variety of measuring sensors (thermocouples, heat flux meters, bi-directional velocity probes) were used; the obtained data series were analysed to determine the thermal and flow characteristics of EVF. Altogether, 87 thermocouples, 4 bi-directional velocity probes and 3 heat flux meters were employed. An extensive parametric study was performed, aiming to investigate the impact of several operational parameters on the EVF characteristics. Towards this end, fire tests were done at four different fire power levels, using two different opening geometries (door, window) and two burner heights. In total, 16 experiments were performed and the values obtained were compared to corresponding empirical correlations available in the open literature.

The main parameters investigated in this work were the influence of fire power, opening geometry and burner height on flame characteristics. Based on the obtained experimental results, it was concluded that increasing the fire power, in the case of a window-type opening geometry and a high burner position, the obtained indoor and outdoor temperatures are increased. In terms of the empirical correlations, three different relationships were used to determine the external flame temperature and the one found to be closer to the experimental values in almost all cases was that proposed in Eurocode.

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΕΡΙΛΗΨΗ		iii
SUMMARY		iv
1 ΕΙΣΑΓΩ	ГН	1
1.1 Φω	τιά σε διαμέρισμα	1
1.1.1	Στάδια ανάπτυξης φωτιάς	2
1.2 Φω	τιά σε διαμέρισμα με άνοιγμα	3
1.2.1	Ροϊκό και θερμικό πεδίο	3
1.2.2	Αερισμός – Λόγος ισοδυναμίας	4
1.2.3	Υπο-αεριζόμενη φωτιά	7
1.3 Φω	τιά εξερχόμενη από άνοιγμα	7
1.4 Σκα	υπός της εργασίας	9
2 ΒΙΒΛΙΟ	ΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ	10
2.1 Αδι	άστατοι αριθμοί	10
2.2 Epa	ευνητική δραστηριότητα σχετική με τις ΦΕΑ	12
2.3 Δoi	κιμές φωτιάς σε διαμέρισμα μικρής κλίμακας	12
2.4 Eπ	δραση ύψους πηγής φωτιάς	17
3 ΣΧΕΣΕΙ	Σ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΕΞΕΡΧΟΜΕ	ΝΗΣ
ΦΛΟΓΑΣ		19
3.1 Σχέ	σεις προσδιορισμού θερμοκρασίας εξερχόμενης φλόγας	19
3.1.1	Σχέση Eurocode	19
3.1.2	Σχέση Himoto	22
3.1.3	Σχέση Lu	24
3.2 ΣX		
	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ	26
3.2.1	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode	26 26
3.2.1 3.3 Σχέ	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος	26 26 26
3.2.1 3.3 Σχέ 3.3.1	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος Eurocode	26 26 26 27
3.2.1 3.3 Σχέ 3.3.1 4 ΠΕΙΡΑΝ	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος Eurocode ΙΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ	26 26 26 27 28
3.2.1 3.3 Σχέ 3.3.1 4 ΠΕΙΡΑΝ 4.1 Γευ	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος Eurocode ΙΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ υμετρικά χαρακτηριστικά	26 26 26 27 28 28
3.2.1 3.3 Σχά 3.3.1 4 ΠΕΙΡΑΝ 4.1 Γευ 4.1.1	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος Eurocode ΜΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ υμετρικά χαρακτηριστικά Τοιχώματα	26 26 26 27 28 28 28
 3.2.1 3.3 Σχέ 3.3.1 4 ΠΕΙΡΑΝ 4.1 Γευ 4.1.1 4.1.2 	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος Eurocode ΜΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ μετρικά χαρακτηριστικά Τοιχώματα Γεωμετρία ανοίγματος	26 26 27 28 28 28 28 29
 3.2.1 3.3 Σχέ 3.3.1 4 ΠΕΙΡΑΝ 4.1 Γεω 4.1.1 4.1.2 4.1.3 	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος Eurocode ΛΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ ΜΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ Ομετρικά χαρακτηριστικά Τοιχώματα Γεωμετρία ανοίγματος Πρόσοψη	26 26 27 28 28 28 29 29
 3.2.1 3.3 Σχά 3.3.1 4 ΠΕΙΡΑΝ 4.1 Γεω 4.1.1 4.1.2 4.1.3 4.2 Πη³ 	ΞΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ Σχέση Eurocode ση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος Eurocode ΜΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ ΜΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ Ομετρικά χαρακτηριστικά Τοιχώματα Γεωμετρία ανοίγματος Πρόσοψη	26 26 27 28 28 28 29 29 31

4.3.1	Θερμοστοιχεία	32
4.3.2	Δικατευθυντικοί μετρητές ταχύτητας	33
4.3.3	Μετρητές ροής θερμότητας	34
4.4 Σú	στημα συλλογής δεδομένων	36
4.4.1	Λογισμικό Labview	37
5 ΔΟΚΙΜ	ΕΣ ΦΩΤΙΑΣ	42
5.1 Διά	ιταξη μετρητικών συσκευών	42
5.1.1	Θερμοστοιχεία	42
5.1.2	Μετρητές ροής θερμότητας	43
5.1.3	Δικατευθυντικοί μετρητές ταχύτητας	43
5.2 Eк	τίμηση σφαλμάτων	43
5.2.1	Εκτίμηση σφαλμάτων μέτρησης θερμοκρασίας	45
5.2.2	Εκτίμηση σφαλμάτων μέτρησης ροής θερμότητας	45
5.2.3	Εκτίμηση σφαλμάτων μέτρησης ταχύτητας	46
5.3 Πα	ραμετρικές μελέτες	46
5.3.1	Ισχύς καυστήρα	46
5.3.2	Μέγεθος ανοίγματος	47
5.3.3	Ύψος καυστήρα	48
6 NEIPAN	ΜΑΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ ΦΩΤΙΑΣ	51
6.1 Θε	ρμοκρασίες εσωτερικού χώρου	51
6.1.1	Επίδραση ισχύος φωτιάς	51
6.1.2	Επίδραση γεωμετρίας ανοίγματος	52
6.1.3	Επίδραση ύψους καυστήρα	53
6.2 Ta	χύτητες στο άνοιγμα	53
6.2.1	Επίδραση ισχύος φωτιάς	54
6.2.2	Επίδραση γεωμετρίας ανοίγματος	54
6.2.3	Επίδραση ύψους καυστήρα	55
6.3 Θε	ρμοκρασίες εξερχόμενης φωτιάς	56
6.3.1	Επίδραση ισχύος φωτιάς	57
6.3.2	Επίδραση γεωμετρίας ανοίγματος	58
6.3.3	Επίδραση ύψους καυστήρα	59
6.4 Θε	ρμοκρασίες στην πρόσοψη	59
6.4.1	Επίδραση ισχύος φωτιάς	59
6.4.2	Επίδραση γεωμετρίας ανοίγματος	60
6.4.3	Επίδραση ύψους καυστήρα	61
6.5 Θε	ρμορροή στην πρόσοψη	62
6.5.1	Επίδραση ισχύος φωτιάς	62
6.5.2	Επίδραση γεωμετρίας ανοίγματος	63
6.5.3	Επίδραση ύψους καυστήρα	64

7			05
1	ΣYI	ΚΡΙΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΣΧΕΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ	65
	7.1	Θερμοκρασίες εσωτερικού χώρου	65
	7.2	Θερμοκρασίες εξερχόμενης φλόγας	66
	7.3	Θερμορροή στην πρόσοψη	70
8	ΣΥΝ	/ΠΕΡΑΣΜΑΤΑ	73
9	BIB	ΛΙΟΓΡΑΦΙΑ	76
П	APAP ⁻	ГНМА А	79
	A.1 M	ετρήσεις χρονικά μέσων τιμών	79
	Α.2 Σα	ράλματα συσχετίσεων προσδιορισμού θερμοκρασίας ΦΕΑ	85

1 εισαγωγγ

1.1 Φωτιά σε διαμέρισμα

Μια φωτιά η οποία περιορίζεται σε ένα δωμάτιο ή σε έναν χώρο καθορισμένων ορίων σε ένα κτίριο, ορίζεται γενικά σαν φωτιά σε διαμέρισμα (compartment fire). Για μια φωτιά που λαμβάνει χώρα μέσα σε ένα διαμέρισμα χωρίς παρέμβαση, εφόσον υπάρχει επαρκής ποσότητα καυσίμου και εξαερισμού, η φωτιά μπορεί να εξελιχθεί από τοπική σε πλήρως ανεπτυγμένη (fully developed fire). Η μετάβαση αυτή αναφέρεται ως καθολική ανάφλεξη (flashover). Συνήθως λοιπόν, κάθε φωτιά σε διαμέρισμα αποτελείται από δύο περιόδους, την περίοδο πριν και την περίοδο μετά την καθολική ανάφλεξη (pre-flashover, post-flashover). Η πρώτη χαρακτηρίζεται από συνεχής κλιμάκωση της φωτιάς, και είναι η φάση όπου η εκκένωση του δωματίου είναι εφικτή, ενώ στη δεύτερη (Σχήμα 1.1) κύρια ανησυχία είναι πλέον η αντοχή των δομικών στοιχείων του διαμερίσματος (Yii, 2002).

Ο ρυθμός απώλειας μάζας καυσίμου, ο ρυθμός έκλυσης θερμότητας και οι συνθήκες αερισμού είναι ιδιαιτέρως σημαντικά για τον χαρακτηρισμό μιας φωτιάς. Είναι ευρέως γνωστό πως η εκδήλωση φωτιάς, ειδικά σε κατοικίες, είναι ιδιαίτερα επικίνδυνη και μπορεί να προκαλέσει σημαντικές ζημιές ή ακόμα και αφαίρεση ανθρωπίνων ζωών, σε περίπτωση που δεν αντιμετωπιστεί αποτελεσματικά και σε γρήγορο χρονικό διάστημα από την εκδήλωσή της (Hu et.al, 2015). Ειδικά στην περίπτωση φωτιάς που διαδίδεται από όροφο σε όροφο, οι απώλειες μπορεί να είναι ακόμα μεγαλύτερες. Κάτι τέτοιο μπορεί να συμβεί όταν φλόγες από το εσωτερικό του δωματίου βγουν εκτός αυτού μέσω ανοίγματος και σταθεροποιηθούν στην πρόσοψη του κτιρίου (γνωστές και ως EVF – Externally Venting Flames). Έτσι η φωτιά θα συνεχίσει στο αμέσως επόμενο δωμάτιο κ.ο.κ με αποτέλεσμα να υπάρχει κίνδυνος πλέον, για ολόκληρο το κτίριο και όχι μεμονωμένα για το δωμάτιο όπου ξεκίνησε η φωτιά.

Σχήμα 1.1 Καθολική ανάφλεξη εντός διαμερίσματος

1.1.1 Στάδια ανάπτυξης φωτιάς

Σε μια τυπική φωτιά διαμερίσματος, δημιουργείται ένα σύστημα δύο στρωμάτων. Το άνω στρώμα αποτελείται από τα «θερμά» προϊόντα της καύσης, ενώ το κάτω στρώμα αποτελείται κυρίως από αέρα περιβάλλοντος. Οι φωτιές διαμερίσματος συχνά μελετώνται με βάση την ανάπτυξη της θερμοκρασίας εσωτερικά, και διαχωρίζονται σε στάδια (Karlsson and Quintiere 2000).

Με κριτήριο τη θερμοκρασία λοιπόν, είναι δυνατόν να ορισθούν πέντε στάδια κατά την εκδήλωση μιας φωτιάς (Σχήμα 1.3):

- Στάδιο ανάφλεξης. Είναι το πρώτο στάδιο με βάση το οποίο εξαρτάται εαν θα εκδηλωθεί φωτιά. Χαρακτηριστικά μεγέθη που επιδρούν στην ανάφλεξη είναι τα όρια και περιοχή αναφλεξιμότητας καθώς και η θερμοκρασία ανάφλεξηςαυτανάφλεξης (Σχήμα 1.2)
- Στάδιο ανάπτυξης. Το συγκεκριμένο στάδιο χαρακτηρίζεται από, τη σταδιακή αύξηση της θερμοκρασίας, του μεγέθους της φλόγας και τη δημιουργία δέσμης καυσαερίων στην οροφή. Το είδος του καυσίμου (αν είναι υγρό ή στερεό), η τροφοδοσία του οξυγόνου, η αλληλεπίδραση του με το περιβάλλον, η γεωμετρία του διαμερίσματος καθώς και η τοποθεσία του σημείου αρχικής ανάφλεξης είναι παράγοντες που επιδρούν στο ρυθμό ανάπτυξης. Στο στάδιο αυτό υπάρχουν τρία πιθανά σενάρια:
 - Σβέση, χωρίς την περαιτέρω καύση άλλων καύσιμων υλικών, ειδικά στην περίπτωση που η έναυση γίνεται σε απομονωμένη καύσιμη ύλη,
 - Απουσία επαρκούς αερισμού, είναι δυνατόν να παρατηρηθεί σβέση ή καύση με πολύ αργό ρυθμό
 - Σε συνθήκες επαρκούς αερισμού, η φωτιά μπορεί να εξαπλωθεί σε ολόκληρο το διαμέρισμα, με την ανάφλεξη όλων των καύσιμων υλών.
- Στάδιο καθολικής ανάφλεξης (flashover). Στο στάδιο αυτό παρατηρείται, απότομη ανάφλεξη της εκτεθειμένης επιφάνειας όλων των καύσιμων υλών που βρίσκονται στο εσωτερικό του δωματίου. Το γεγονός αυτό οφείλεται κυρίως στην ισχυρή θερμική ακτινοβολία από το θερμό στρώμα των καυσαερίων (δέσμη οροφής) προς τα «φρέσκα υλικά». Το στάδιο αυτό χαρακτηρίζεται από τη μετάβαση από υπεραεριζόμενη σε υπο-αεριζόμενη φωτιά, απότομη διάδοση της φλόγας στη δέσμη οροφής και σε περιπτώσεις ισχυρά υπο-αεριζόμενων συνθηκών, είναι δυνατόν οι φλόγες να εξέλθουν από το άνοιγμα. Επίσης κύριο χαρακτηριστικό αυτού του σταδίου είναι η απότομη αύξηση του ρυθμού έκλυσης θερμότητας, της παραγωγής καυσαερίων και η αύξηση της θερμοκρασίας (Σχήμα 1.2).

Σχήμα 1.2 Αριστερά απεικονίζεται το στάδιο της ανάπτυξης, ενώ δεξιά έχει συμβεί η καθολική ανάφλεξη στο δωμάτιο

 Στάδιο πλήρως ανεπτυγμένης φωτιάς. Ακολουθεί το στάδιο της καθολικής ανάφλεξης. Είναι το στάδιο κατά το οποίο επιτυγχάνεται ο μέγιστος ρυθμός έκλυσης

θερμότητας και η μέγιστη θερμοκρασία αερίων (700-1200°C). Υπάρχει πλέον ανάφλεξη όλων των καύσιμων υλών στο διαμέρισμα και η διάρκεια του εξαρτάται από τη διαθέσιμη ποσότητα του καυσίμου. Το μέγεθος, το Σχήμα του διαμερίσματος, οι ποσότητες αερισμού και καυσίμων, καθώς και το είδος των δομικών υλικών οροφής, τοιχωμάτων και δαπέδου έχουν σημαντικό ρόλο στην εξέλιξη του συγκεκριμένου σταδίου.

Στάδιο απόσβεσης. Αποτελεί το τελευταίο στάδιο κατά την εκδήλωση μιας φωτιάς.
 Χαρακτηρίζεται από τη σταδιακή μείωση του ρυθμού καύσης λόγω εξάντλησης του καυσίμου, και γενικά τη σταδιακή αποτόνωση του φαινομένου.

Σχήμα 1.3 Τα στάδια ανάπτυξης φωτιάς

1.2 Φωτιά σε διαμέρισμα με άνοιγμα

1.2.1 Ροϊκό και θερμικό πεδίο

Κατά την καύση του καυσίμου τα θερμά καυσαέρια που παράγονται από τη φωτιά (Σχήμα 1.4) κινούνται προς τα πάνω λόγω της θερμικής άνωσης (διαφορά πυκνότητας λόγω διαφοράς θερμοκρασίας, ανάμεσα σε θερμά καυσαέρια και ψυχρό αέρα). Όταν τα καυσαέρια φτάσουν στην οροφή αλλάζουν κατεύθυνση και αρχίζουν να κινούνται κατά μήκος της οροφής. δημιουργώντας έτσι ένα θερμό στρώμα καυσαερίων ακριβώς κάτω από την οροφή, που ονομάζεται δέσμη οροφής. Στην περίπτωση αυτή η φωτιά βρίσκεται στο στάδιο μετά την καθολική ανάφλεξη (post-flashover fire) και υπάρχουν δύο ζώνες στο εσωτερικό του δωματίου (Σχήμα 1.4). Η άνω πλευρά όπου υπάρχουν τα καυσαέρια και η κάτω όπου βρίσκεται ο εισερχόμενος ψυχρός αέρας. Εάν υπάρχει κάποιο άνοιγμα στο διαμέρισμα, τα θερμά καυσαέρια διαφεύγουν από την επάνω πλευρά του ανοίγματος, ενώ ο φρέσκος αέρας εισέρχεται από την κάτω πλευρά του. Το σημείο διαχωρισμού των δύο στρωμάτων στο άνοιγμα ονομάζεται «ουδέτερο επίπεδο» και είναι στην πραγματικότητα το επίπεδο μηδενισμού των ταχυτήτων. Ανάμεσα στα δύο στρώματα αναπτύσσεται ροή με έντονη ανακυκλοφορία. Αντίστοιχα όταν η φωτιά βρίσκεται στο στάδιο πριν την καθολική ανάφλεξη (pre-flashover fire), θεωρείται πως η δέσμη οροφής των θερμών καυσαερίων καταλαμβάνει ολόκληρο το εσωτερικό του διαμερίσματος.

Σχήμα 1.4 Ροή των καυσαερίων

Ένα απλό ορθογώνιο διαμέρισμα με ένα απλό ορθογώνιο άνοιγμα αποτελεί την κλασσική περίπτωση για τη μελέτη των παραπάνω φαινομένων. Το άνοιγμα αποτελεί τον σύνδεσμο ανάμεσα στη φωτιά στο εσωτερικό και του εξωτερικού περιβάλλοντος. Τυπικές υποθέσεις που γίνονται στο μοντέλο μονής ζώνης είναι:

- Η θερμοκρασία των καυσαερίων εντός του δωματίου είναι ομοιόμορφη,
- Τα αέρια ρέουν μέσα και έξω από το διαμέρισμα διαμέσου του ανοίγματος με τη βοήθεια της διαφοράς της υδροστατικής πίεσης ανάμεσα στους δύο χώρους,
- Η αντίδραση ανάμεσα στους ατμούς του καυσίμου και του εισερχόμενου αέρα είναι άπειρα γρήγορη,
- Το περιβάλλον της φωτιάς είναι σχεδόν σταθερό.

Από την αρχή διατήρησης της ενέργειας συμπεραίνουμε ότι η ενέργεια που εισέρχεται στον όγκο ελέγχου θα είναι ίδια με την ενέργεια που εξέρχεται, δηλαδή η θερμότητα που εκλύεται κατά την καύση \dot{Q}_{FIRE} είναι ίση με το άθροισμα απωλειών λόγω συναγωγής των καυσαερίων \dot{Q}_L , των απωλειών λόγω ακτινοβολίας διαμέσου του ανοίγματος \dot{Q}_R , τις απώλειες συναγωγής και ακτινοβολίας λόγω των τοίχων \dot{Q}_W και της θερμότητας που αποθηκεύεται στο καύσιμο \dot{Q}_I όπως φαίνεται στην εξίσωση (1.1).

$$\dot{Q}_{FIRE} = \dot{Q}_L + \dot{Q}_R + \dot{Q}_W + \dot{Q}_G \tag{1.1}$$

Αντίστοιχα από την αρχή διατήρησης της μάζας η οποία φαίνεται στην εξίσωση (1.2), όπου *m*_{in} και *m*_{out} είναι οι παροχές μάζας αέρα που εισέρχεται και καυσαερίων που εξέρχονται από το δωμάτιο, ενώ *m*_p είναι η μάζα του καυσίμου που χάνεται.

$$m_{in} + m_p = m_{out} \tag{1.2}$$

1.2.2 Αερισμός – Λόγος ισοδυναμίας

Στο μοντέλο μονής ζώνης, θεωρείται πως η υδροστατική πίεση εντός και εκτός του δωματίου είναι γραμμικά εξαρτημένη με το ύψος, ενώ οι θερμοκρασίες είναι ομοιόμορφες. Η ροή δια μέσω του ανοίγματος ορίζεται από τη διαφορά πίεσης μεταξύ του εσωτερικού και εξωτερικού περιβάλλοντος, λόγω της θερμοκρασιακής διαφοράς. Η ανάλυση του αερισμού σύμφωνα με το μοντέλο μονής ζώνης έχει περιγραφεί από πολλούς ερευνητές (Babrauskas και Williamson, 1978), (Utiskul, 2007) και αναλύεται στη συνέχεια.

Στο Σχήμα 1.5 φαίνεται ένα δωμάτιο με παράθυρο ως άνοιγμα. Στο Σχήμα είναι εμφανής ο όγκος ελέγχου ο οποίος θεωρείται ως ο όγκος ολόκληρου του δωματίου, σημειώνονται τα διάφορα ύψη τα οποία παίζουν ρόλο στην ανάλυση, ενώ φαίνεται και το ουδέτερο επίπεδο (neutral plane).

Το σημείο 1 θεωρείται σε απόσταση πολύ μακριά από το άνοιγμα, το σημείο 2 στο εσωτερικό του δωματίου πολύ κοντά στο άνοιγμα, ενώ και τα δύο σημεία 1, 2 θεωρούνται στο ίδιο ύψος από το δάπεδο. Ανάλογα με την πυκνότητα του αέρα σε κάθε σημείο, η πίεση σε αυτά, δίνεται από τις εξισώσεις (1.3) και (1.4).

$$P_1 = P_0 + \rho_0 gy \tag{1.3}$$

$$P_2 = P_o + \rho_g g y \tag{1.4}$$

Σχήμα 1.5 Σχηματική αναπαράσταση των ροών σε ένα δωμάτιο με ένα άνοιγμα, με ομοιόμορφη θερμοκρασία (Yii, 2002)

Εφαρμόζοντας την εξίσωση Bernoulli (1.5) – αρχή διατήρησης ορμής - η εξίσωση της ορμής για τα σημεία 1, 2 διατυπώνεται σύμφωνα με την Εξίσωση (1.6).

$$\frac{P}{\rho} + \frac{v^2}{2} + gz = \sigma \tau \alpha \theta \epsilon \rho \dot{\alpha}$$
(1.5)

$$\frac{P_1}{\rho_1} + \frac{v_1^2}{2} = \frac{P_2}{\rho_2} + \frac{v_2^2}{2}$$
(1.6)

Υποθέτοντας ότι ο εξωτερικός αέρας είναι σε κατάσταση ηρεμίας, ισχύει ν₁=0 και επίσης ρ₁=ρ₂=ρ₀ (πυκνότητες ίσες με αυτή εξωτερικών συνθηκών), οπότε από την εξίσωση 1.6 εξάγεται η εξίσωση 1.7.

$$\frac{P_1 - P_2}{\rho_0} = \frac{v_2^2}{2} \tag{1.7}$$

Αντικαθιστώντας τις προηγούμενες σχέσεις, τελικά προκύπτει η εξίσωση (1.6).

$$V_2 = V_{in} = \sqrt{\frac{2\Delta P_{12}}{\rho_o}} = \sqrt{2gy \ 1 \ \frac{\rho_g}{\rho_o}}$$
 (1.8)

Για την εκροή αέρα, οι πιέσεις στα σημεία 3, 4, κατά τον ίδιο τρόπο δίνονται στις εξισώσεις (1.9) και (1.10).

$$P_3 = P_o - \rho_g g y \tag{1.9}$$

$$P_4 = P_o - \rho_o g y \tag{1.10}$$

Το σημείο 3 βρίσκεται εντός του δωματίου σε μεγάλη απόσταση από το άνοιγμα, το σημείο 4 είναι εκτός δωματίου, πολύ κοντά στο άνοιγμα, ενώ και τα δύο σημεία θεωρούνται στο ίδιο ύψος.

Με εφαρμογή της εξίσωσης Bernoulli μεταξύ των δύο σημείων και θεωρώντας *v*₃=0, εξάγεται η εξίσωση (1.11).

$$\frac{P_3 - P_4}{\rho_g} = \frac{v_4^2}{2} \tag{1.11}$$

Με βάση τις εξισώσεις (1.9) και (1.10), προκύπτει τελικά η εξίσωση (1.12).

$$V_4 = V_{out} = \sqrt{\frac{2\Delta P_{34}}{\rho_g}} = \sqrt{2gy} \frac{\rho_g}{\rho_o} \quad 1 \tag{1.12}$$

Σύμφωνα με τις εξισώσεις (1.8) και (1.12) φαίνεται πως οι ταχύτητες εισροής και εκροής του αέρα μεταβάλλονται με βάση το ύψος από το ουδέτερο επίπεδο. Με ενσωμάτωση των κατανομών ταχύτητας καθ' ύψος από το ουδέτερο επίπεδο προς το περβάζι και το άνω ύψος του ανοίγματος, για τους ρυθμούς εισόδου και εξόδου της μάζας (mass inflow-outflow rates) ισχύουν τα εξής:

Ο ρυθμός ροής εισερχόμενης μάζας δίνεται από την εξίσωση (1.13).

$$\dot{m}_{in} = C_d \rho_o W_v \int_{0}^{Z_n - \delta} v_{in} dy = C_d \rho_o W_v \int_{0}^{Z_n - \delta} \sqrt{2gy \left(1 - \frac{\rho_g}{\rho_o}\right)} dy = \frac{2}{3} C_d \rho_o W_v \sqrt{2g \left(1 - \frac{\rho_g}{\rho_o}\right)} (Z_n - \delta)^{3/2}$$
(1.13)

Ο ρυθμός ροής εξερχόμενης μάζας αντίστοιχα από την εξίσωση (1.14).

$$\dot{m}_{out} = C_d \rho_g W_v \int_{0}^{H_n - Z_n} V_{out} dy = C_d \rho_g W_v \int_{0}^{H_n - Z_n} \sqrt{2gy \left(\frac{\rho_o}{\rho_g} - 1\right)} dy = \frac{2}{3} C_d \rho_g W_v \sqrt{2g \left(\frac{\rho_o}{\rho_g} - 1\right)} (H_n - Z_n)^{3/2}$$
(1.14)

Όσον αφορά το συντελεστή παροχής C_d , ο υπολογισμός του είναι πειραματικός και έχει απασχολήσει πολλούς ερευνητές (Prahl και Emmons, 1975), (Steckler, 1984), (Cooper, 2002). Σύμφωνα και Emmons Jμ τους Prahl (1975), 0 συντελεστής βρέθηκε να είναι 0.68 και στις δύο περιπτώσεις –εισερχόμενης και εξερχόμενης μάζας αέρα-, ενώ σύμφωνα με το Steckler (1984) βρέθηκε να είναι 0.68 για τον εισερχόμενο αέρα και 0.73 για τον εξερχόμενο. Τέλος, ο Cooper (2002) υπέδειξε την τιμή 0.61 και στις δύο περιπτώσεις. Πάνω στη βάση αυτή, η τιμή του συντελεστή θεωρείται 0.68, όντας η καλύτερη προσέγγιση σε κάθε περίπτωση πυρκαγιάς (Prahl και Emmons, 1975).

Αντί της εξίσωσης (1.13), ο ρυθμός με τον οποίο η μάζα αέρα εισέρχεται στο δωμάτιο μέσω του ανοίγματος, προτάθηκε (Rockett, 1976) να δίνεται από την απλουστευμένη σχέση (1.15).

$$\dot{m}_{in} \approx 0.52 A_v \sqrt{H_v} \tag{1.15}$$

Όταν μια φωτιά ξεσπά σε ένα κτίριο, μετά από κάποιο χρονικό διάστημα, η συμπεριφορά της θα εξαρτάται από τον αερισμό. Αυτό σημαίνει πως η ένταση της φωτιάς καθορίζεται από την ποσότητα του φρέσκου αέρα που εισέρχεται στο διαμέρισμα που εξελίσσεται η φωτιά. Στην περίπτωση που ένα μεγάλο παράθυρο είναι ανοιχτό, μεγάλη ποσότητα αέρα μπορεί να εισέλθει στο δωμάτιο από την αρχή του φαινομένου, κάτι το οποίο βοηθάει τη φωτιά να μεγαλώσει και αν εκείνη αναπτύσσεται χωρίς εμπόδια να γίνει τελικά καθολική ανάφλεξη. Σε αυτή την περίπτωση όλα τα καύσιμα εντός του δωματίου θα αρχίζουν να καίγονται και η ανάγκη για αέρα αυξάνεται σημαντικά. Τα ανοίγματα όμως (παράθυρα, πόρτες) δεν είναι πλέον αρκετά για να παρέχουν τον αέρα που χρειάζεται η φωτιά. Από εκείνη τη χρονική στιγμή η φωτιά εξαρτάται πλέον από τον αερισμό και ονομάζεται υπο-αεριζόμενη φωτιά (ventilated controlled fire). Όπως είναι γνωστό, το μέγεθος του δωματίου, η γεωμετρία του, καθώς και ο αερισμός μέσα σε αυτό καθορίζουν τη συμπεριφορά της φωτιάς τη συγκεκριμένη χρονική στιγμή (Yii, 2002).

1.2.3 Υπο-αεριζόμενη φωτιά

Οι υπο-αεριζόμενες φωτιές μπορούν να επιφέρουν πιθανούς κινδύνους. Στην περίπτωση αυτή η φωτιά δεν τροφοδοτείται με αρκετό αέρα, για να προχωρήσει στο στάδιο της καθολικής ανάφλεξης και υποχωρεί σε μικρότερα ποσά έκλυσης θερμότητας, με ταυτόχρονη παραγωγή μεγάλων ποσοτήτων άκαυστων προϊόντων. Στο Σχήμα 1.7 απεικονίζεται η πορεία μιας καλώς αεριζόμενης φωτιάς (κόκκινη γραμμή) σε σχέση με τη πορεία τριών υπο-αεριζόμενων, με την πράσινη να είναι η πρώτη που γίνεται αεριζόμενη (Lambert, 2016).

1.3 Φωτιά εξερχόμενη από άνοιγμα

Όταν μια φωτιά σε ένα κτίριο είναι πλήρως ανεπτυγμένη, οι φλόγες είναι δυνατόν να εξέλθουν στο περιβάλλον μέσω ανοιγμάτων, δημιουργώντας Φωτιά Εξερχόμενη από Άνοιγμα (ΦΕΑ). Είναι αποδεδειγμένο πως οι ΦΕΑ αυξάνουν σημαντικά τον κίνδυνο εξάπλωσης της φωτιάς σε υψηλότερους ορόφους ή ακόμα και σε κοντινά κτήρια. Κατά τη διάρκεια των αρχικών σταδίων μιας φωτιάς διαμερίσματος, η καύση περιορίζεται στο εσωτερικό του διαμερίσματος. Όταν η φωτιά εξελίσσεται περαιτέρω, υπάρχει περίπτωση οι φλόγες που έχουν συσσωρευτεί στην οροφή, να είναι τόσο μεγάλες, ώστε να εξέλθουν από τα ανοίγματα του διαμερίσματος (Externally Venting Flames - EVF). Σε αυτή την περίπτωση παρατηρείται πλέον ελεγχόμενη από τον αερισμό (υπο-αεριζόμενη), τα άκαυστα πτητικά μπορούν να

εξέλθουν από το άνοιγμα, να αναμιχθούν με τον αέρα περιβάλλοντος, να αντιδράσουν με αυτόν και να δημιουργήσουν ΦΕΑ.

Στην περίπτωση που ξεσπάσει πυρκαγιά στο εσωτερικό χώρο ενός κτιρίου είναι πιθανό οι υαλοπίνακες να αστοχήσουν, λόγω της ραγδαίας αύξησης της θερμοκρασίας, δημιουργώντας έτσι ανοίγματα, γεγονός το οποίο αυξάνει την πιθανότητα εμφάνισης ΦΕΑ. Οι κίνδυνοι που σχετίζονται με τις ΦΕΑ είναι ακόμη μεγαλύτεροι σε πολυώροφα κτίρια. Είναι ευρέως αποδεκτό ότι η πυροπροστασία πολυώροφων κτιρίων είναι γενικά δύσκολη, δεδομένου ότι περιλαμβάνουν κάποια πρόσθετα χαρακτηριστικά σε σύγκριση με τα "συμβατικά" κτίρια χαμηλού ύψους. Επιπλέον σε πολυώροφα κτίρια, ως μέρος της ενεργειακής βελτιστοποίησής τους, γίνεται εκτεταμένη χρήση εξωτερικών μονώσεων στην πρόσοψη, κάτι το οποίο ενώ είναι χρήσιμο για την μείωση της σπατάλης ενέργειας, είναι επικίνδυνο, καθώς σε περίπτωση ανάφλεξης τους είναι πιθανό οι φλόγες να μεταδοθούν γρήγορα προς τα πάνω απειλώντας ολόκληρο το κτίριο. Ο πίνακας 1.3 αναφέρει ενδεικτικά μια σειρά πρόσφατων πυρκαγιών σε πολυώροφα κτίρια που παρατηρήθηκε διάδοση της φωτιάς μέσω της πρόσοψης.

Πίνακας 1.1 Ενδεικτικές περιπτώσεις φωτιάς σε πολυόροφα κτίρια (Πηγή: Asimakopoulou et.al,
2017).

	—	(=	A (
Κτηριο	Ιοποθεσια	Έτος	Λεπτομερειες
Ajman One residential cluster	Αχμάν, Ηνωμένα Αραβικά Εμιράτα 20		Η φωτιά ξεκίνησε σε έναν από τους ουρανοξύστες και μεταδόθηκε σε διπλανό, ένας τραυματισμός.
Address Hotel	Ντουμπάι, Ηνωμένα Αραβικά Εμιράτα	2016	Η φωτιά ξεκίνησε στον 20º όροφο και επηρέασε μόνο το εξωτερικό μέρος του κτιρίου, 16 τραυματίες.
Docklands Apartment Tower	Μελβούρνη, Αυστραλία	2015	Η φωτιά ξεκίνησε από αναμμένο τσιγάρο στο μπαλκόνι του 6 ^{ου} ορόφου, κανένας τραυματισμός ή θάνατος.
Marina Torch Tower	Ντουμπάι, Ηνωμένα Αραβικά Εμιράτα	2015	Η φωτιά ξεκίνησε στο κέντρο του πύργου, συνεχίστηκε προς του κατώτερους ορόφους, κανένας τραυματισμός ή θάνατος.
Residential Building Γκρόσνι, Ρωσία		2013	Η φωτιά ξεκίνησε από βραχυκύκλωμα στον κλιματισμό, κανένας τραυματισμός ή θάνατος.
Polat Tower	Κωνσταντινούπολη, Τουρκία	2012	Η φωτιά έκαψε την εξωτερική μόνωση του κτιρίου, κανένας τραυματισμός ή θάνατος.

Είναι γνωστό ότι κατά τη διάρκεια μιας πυρκαγιάς, ένα από τα πιο «αδύναμα» στοιχεία σε ένα κτίριο είναι οι υαλοπίνακες. Λόγω των θερμικών τάσεων, το συμβατικό γυαλί μπορεί να σπάσει ακόμα και όταν εκτεθεί σε μικρές θερμοκρασίες και θερμορροές. Σε μία πλήρως ανεπτυγμένη φωτιά, οι φλόγες μπορούν να βγουν έξω διαμέσου των ανοιγμάτων, σε περίπτωση όπου αστοχήσουν οι υαλοπίνακες. Η γεωμετρία του ανοίγματος και οι συνθήκες αερισμού είναι οι κυριότεροι παράγοντες που επηρεάζουν τα θερμικά και γεωμετρικά χαρακτηριστικά των ΦΕΑ.

Στα αρχικά στάδια της φωτιάς, η γεωμετρία του διαμερίσματος και οι διαστάσεις του διαδραματίζουν σημαντικό ρόλο, καθώς επίσης και το πόσο κοντά είναι η εστία φωτιάς σε σχέση με τα άλλα καύσιμα υλικά εντός, τα ανοίγματα εξαερισμού καθώς και τα όρια του χώρου. Τα ανοίγματα αφενός επηρεάζουν σοβαρά τη συμπεριφορά της φωτιάς, αφού όταν ξεκινήσει η καύση η φωτιά εξαρτάται από τη διαθέσιμη ποσότητα οξυγόνου για να διατηρηθεί, αφετέρου επηρεάζουν το ρυθμό επέκτασης της και τη θερμοκρασία του δωματίου. Στην περίπτωση όπου υπάρχει τοίχος πάνω από το άνοιγμα διαμέσου του οποίου εξέρχεται η φλόγα, η θερμοκρασιακή διαφορά ανάμεσα στα καυσαέρια και τον αέρα περιβάλλοντος δημιουργεί ένα ισχυρό ρεύμα που έχει ως αποτέλεσμα η φλόγα να κινείται προς τα πάνω. Έχει βρεθεί ότι οι οριζόντιες προεξοχές επηρεάζουν τα χαρακτηριστικά των ΦΕΑ. Πρόσφατα μελετήθηκε και η επιρροή των μπαλκονιών στην εξάπλωση της φωτιάς. Η απουσία μπαλκονιού ανάμεσα σε παράθυρα διαδοχικών ορόφων επιτρέπουν στη φωτιά να κινηθεί κατά μήκος της πρόσοψης, σε αντίθεση με την παρουσία του όπου η κίνηση αυτή περιορίζεται κατά πολύ (Asimakopoulou et. al, 2017).

1.4 Σκοπός της εργασίας

Σκοπός της συγκεκριμένης εργασίας, είναι η πειραματική μελέτη των χαρακτηριστικών φωτιάς εξερχόμενης από άνοιγμα (ΦΕΑ) κάτω από διαφορετικές συνθήκες. Μελετάται ο τρόπος με τον οποίο η γεωμετρία του ανοίγματος, η ισχύς της φωτιάς και θέση του καυστήρα μέσα στο διαμέρισμα επηρεάζουν τα χαρακτηριστικά της φλόγας. Εξάγονται συμπεράσματα, ύστερα από κατάλληλη επεξεργασία των πειραματικών αποτελεσμάτων, σχετικά με τις θερμοκρασίες εντός και εκτός του δωματίου και πως αυτές μεταβάλλονται, με τη μεταβολή ενός από τους παραπάνω παράγοντες. Μελετάται επίσης η θερμορροή στην πρόσοψη, οι ταχύτητες των αερίων, τόσο εισερχόμενων όσο και εξερχόμενων στο άνοιγμα. Στο τέλος, τα μεγέθη αυτά συγκρίνονται με σχέσεις από τη διεθνή βιβλιογραφία, προκειμένου να επαληθευτούν αυτές, αλλά και η ακρίβεια με την οποία περιγράφουν τα φαινόμενα που λαμβάνουν χώρα.

Για τη διεξαγωγή των πειραμάτων υλοποιήθηκε διαμέρισμα με άνοιγμα υπό κλίμακα σύμφωνα με το πρότυπο ISO9705. Τα χαρακτηριστικά του αναλύονται εκτενέστερα σε επόμενο κεφάλαιο.

2 ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ

2.1 Αδιάστατοι αριθμοί

Η δυσκολία επίλυσης των εξισώσεων της δυναμικής των ρευστών, ακόμα και από ηλεκτρονικούς υπολογιστές, δημιούργησε την ανάγκη για μελέτη εξισώσεων ρευστοδυναμικής μέσω πειραμάτων –συνήθως- μικρότερης κλίμακας. Για την αντιπροσώπευση πραγματικών καταστάσεων μέσω τέτοιον πειραμάτων υπό κλίμακα είναι απαραίτητη η δημιουργία κανόνων μέσω των οποίων θα διερευνάται η ροή πάνω σε πολύπλοκα γεωμετρικά Σχήματα, ενώ παράλληλα θα διατηρείται σταθερός ο αριθμός Reynolds (*Re*). Στη μηχανική ρευστών ο αριθμός αυτός είναι μια αδιάστατη ποσότητα η οποία αντιστοιχεί στην αναλογία των αδρανειακών δυνάμεων προς τις δυνάμεις ιξώδους. Ο αριθμός *Re* παρέχει ένα τρόπο για την ποσοτικοποίηση των δύο αυτών ειδών δυνάμεων για δεδομένες συνθήκες ροής και ορίζεται από τη σχέση (2.1).

$$Re = \frac{ul}{v} \tag{2.1}$$

Όπου:

- *u*: η ταχύτητα του ρευστού (m/s)
- *Ι*: το χαρακτηριστικό μήκος (m)
- ν: κινηματικό ιξώδες (m²/s)

Γενικά ο αριθμός Reynolds επαρκεί για την ομοιότητα και προσομοίωση ενός μοντέλου με το πρωτότυπο του, όμως για διάφορες περιπτώσεις, στις οποίες συγκαταλέγεται και η περίπτωση φωτιάς, χρειάζονται και άλλες προϋποθέσεις για την προσομοίωση.

Στο σημείο αυτό είναι απαραίτητη η εισαγωγή του αριθμού Froude (*Fr*) ο οποίος είναι μια αδιάστατη ποσότητα η οποία ορίζεται ως ο λόγος της αδράνειας ροής προς το εξωτερικό πεδίο, με το δεύτερο πολλές φορές να είναι η βαρύτητα. Η μοντελοποίηση με βάση τον αριθμό αυτό αποτελεί μια αποτελεσματική μέθοδο για τη μοντελοποίηση ροής καπνού και φαινομένων φωτιάς. Ο αριθμός Froude (*Fr*) ορίζεται από τη σχέση (2.2).

$$Fr = \frac{u^2}{\sqrt{gl}}$$
(2.2)

Στη συνέχεια περιγράφεται η μεθοδολογία για τη μοντελοποίηση φαινομένων φωτιάς όπως αναλύεται από τον Quintiere (2006), στην οποία οι ιδιότητες και άλλες σταθερές που σχηματίζουν τις αδιάστατες ποσότητες συμβολίζονται ως Π. Με τις αδιάστατες ομάδες μεταβλητών μπορούν να δημιουργηθούν προσεγγιστικές σχέσεις, με τη χρησιμοποίηση νόμων και ισολογισμών ενέργειας σύμφωνα με τη θεωρία, με τις οποίες να γίνεται ευκολότερα η μοντελοποίηση της φωτιάς και των φαινομένων που τη διέπουν. Η διαδικασία της μοντελοποίησης χρησιμοποιείται σε πολλές περιπτώσεις, π.χ συστήματα πυρασφάλειας, παρόλο που η ομοιότητα δεν είναι πάντα αντιπροσωπευτική, καθώς είναι αδύνατο να διατηρηθούν όλες οι σχέσεις των Π.

Για τη δημιουργία των αδιάστατων ομάδων-μεταβλητών χρησιμοποιούνται συνήθως τρεις μέθοδοι.

• H $\theta \epsilon \omega \rho i \alpha \tau \omega v \Pi$ (Buckingham Pi method).

- Η μέθοδος των μερικών διαφορικών εξισώσεων (partial differential equation method).
- Η διαστατική ανάλυση (dimensional analysis).

Σύμφωνα με την πρώτη μέθοδο, γίνεται επιλογή συνόλου σχετικών μεταβλητών και παραμέτρων οι οποίες σχετίζονται με τη ζητούμενη εφαρμογή μοντελοποίησης. Στη συνέχεια προσδιορίζεται ο αριθμός των ανεξάρτητων μεταβλητών και τελικά ο αριθμός των αδιάστατων ομάδων ισούται με τον αριθμό με τον αριθμό των μεταβλητών μείον τον αριθμό των διαστάσεων.

Κατά τη δεύτερη μέθοδο, γίνεται ο εντοπισμός της βασικής μερικής διαφορικής εξίσωσης και οι μεταβλητές του προβλήματος μετατρέπονται σε αδιάστατες με κατάλληλες παραμέτρους αδιαστατοποίησης.

Στην Τρίτη μέθοδο αναγνωρίζεται και ορίζεται στην απλούστερη, αλλά πλήρη μορφή της, η φυσική του προβλήματος.

Οι αδιάστατες ομάδες (Π) οι οποίες είναι απαραίτητες για τη δημιουργία κλίμακας σε μοντέλο στο οποίο μελετάται η μεταφορά θερμότητας παρατίθενται στον παρακάτω πίνακα. Φυσικά υπάρχουν και άλλες σχέσεις που να βοηθούν στη μοντελοποίηση περιπτώσεων φωτιάς, όμως δε γίνεται αναφορά όλων τους, καθώς δεν αποτελούν ιδιαίτερης σημασίας στις περιπτώσεις των πειραμάτων που διεξήχθησαν κατά τη διάρκεια της εργασίας αυτής και για το λόγο αυτό η αναφορά τους παραλείπεται. Είναι σημαντικό να αναφερθεί πως στις περισσότερες περιπτώσεις, είναι αδύνατο να διατηρηθούν αρκετές από τις ομάδες αυτές αφού είτε αποτελούν μικρής σημασίας, είτε πολλές φορές αγνοούνται σε περίπτωση που κάποιος άλλος όρος είναι κυρίαρχος στην αντίστοιχη σχέση.

Пі	Σχέση	Σχόλια		
Π1	$\frac{\rho_{\infty}u^{*}I}{\mu}$	Αφορά τον αριθμό Reynolds – Συνήθως δε χρησιμοποιείται		
П2	$rac{\dot{Q}_{fire}}{oldsymbol{ ho}_{_{\infty}}C_{_{ ho}}T_{_{\infty}}\sqrt{g}}$	Σημαντική σχέση για την καύση		
П₃	kl	Σημαντική για την ακτινοβολία αερίων		
П₄	$rac{q_o}{Q_{fire}}$	Συνήθως χρησιμοποιείται σε περίπτωση ελεύθερης καύσης (σε εξωτερικό χώρο)		
П₅	$\frac{(k\rho C_{\rho})_{w}^{1/2}}{\rho_{\infty}C_{\rho}g^{1/4}I^{3/4}}$	Μεταφορά θερμότητας με αγωγή		
Π ₆	$\frac{h_c}{\rho_{\infty}C_p\sqrt{gl}}$	Μεταφορά θερμότητας με συναγωγή		
Π7	$\frac{\sigma T_{\infty}^{3}}{\rho_{\infty}C_{p}\sqrt{gl}}$	Μεταφορά θερμότητας με ακτινοβολία		

Πίνακας 2.1 Βασικοί αδιάστατοι αριθμοί για την ανάλυση φαινομένων φωτιάς σε διαμέρισμα (Πηγή: Quintiere, 2006)

Пі	Σχέση	Σχόλια		
Π8	$\left(\frac{\rho C_{\rho}}{k}\right)_{w}^{1/2} \left(\frac{g}{l}\right)^{1/4} \delta_{w}$	Μεταφορά θερμότητας μέσω τοιχωμάτων πάχους δ.		
П∍	$\frac{\dot{m}_{Fan}}{\rho_{\infty}l^{5/2}\sqrt{g}}$	Ροή σε συνθήκες εξαναγκασμένου αερισμού – π.χ με ανεμιστήρα		
Π ₁₀	$\frac{\dot{m}_f}{\rho_{\infty}l^{5/2}\sqrt{g}}$	Ροή μάζας καυσίμου		
Π ₁₁	$C_{ ho}(T_{ m v}$ - $T_{ m o})/L_{g}$	Όρος για το ρυθμό καύσης (<i>Τ</i> , η θερμοκρασία επιφάνειας)		

Έχουν διεξαχθεί πολλά πειράματα πυρκαγιάς σε διαμέρισμα ανά τον κόσμο. Στις πρώτες δοκιμές, ως πηγή πυρκαγιάς χρησιμοποιήθηκαν σωροί ξύλου (wood cribs) λόγω της επαναληψιμότητας που διαθέτουν αλλά και του χαμηλού κόστους. Από τους πρώτους που διεξήγαγαν τέτοια πειράματα ήταν οι Magnusson και Thelandresson (1970) οι οποίοι κατέστρωσαν ένα σετ από φωτιές σχεδιασμού (design fires) με καύσιμο υλικό το ξύλο. Οι design fires κατηγοριοποιούνται με βάση το φορτίο καυσίμου, τον αερισμό και τις ιδιότητες των τριγύρω τοίχων. Αντίθετα η εκτεθειμένη επιφάνεια του καυσίμου δεν λαμβάνεται υπόψη. Τα αποτελέσματα και οι καμπύλες χρόνου-θερμοκρασίας των δύο μελετητών λαμβάνονται σοβαρά υπόψη κατά τις μελέτες πυροπροστασίας κτηρίων σε όλο τον κόσμο, και αποτελούν βάση για τις παραμετρικές φωτιές σχεδιασμού του Ευρωκώδικα.

2.2 Ερευνητική δραστηριότητα σχετική με τις ΦΕΑ

Η έρευνα για τις φωτιές εξερχόμενες από άνοιγμα (ΦΕΑ) έχει ξεκινήσει από τη δεκαετία του 1960. Πειράματα μεσαίας και μεγάλης κλίμακας συνδυασμένα με αριθμητικές προσομοιώσεις, έχουν αποδειχθεί χρήσιμα στην αναγνώριση των φυσικών πτυχών των ΦΕΑ και στις παραμέτρους που επηρεάζουν την ανάπτυξη τους. Οι αρχικές ερευνητικές προσπάθειες επικεντρώθηκαν στην αναγνώριση και χαρακτηρισμό των βασικών φυσικών χαρακτηριστικών ΦΕΑ καθώς και στην εξάρτηση τους από το καύσιμο και τα γεωμετρικά χαρακτηριστικά του διαμερίσματος. Οι πρώτοι συσχετισμοί που χρησιμοποιήθηκαν για να περιγράψουν τις ΦΕΑ αναπτύχθηκαν στη δεκαετία του 1960, και βελτιώθηκαν περαιτέρω από στη δεκαετία του 1980. Σε μεταγενέστερο στάδιο αναγνωρίστηκαν οι κύριες παράμετροι που επηρεάζουν τη θερμορροή στην πρόσοψη η οποία οφείλεται στις ΦΕΑ.

2.3 Δοκιμές φωτιάς σε διαμέρισμα μικρής κλίμακας

Για την αντιμετώπιση κινδύνων από φωτιά και τη λήψη απαραίτητων μέτρων πυροπροστασίας, είναι απαραίτητη η μελέτη όλων εκείνων των παραγόντων που επηρεάζουν την εξέλιξη μιας πυρκαγιάς σε κλειστό χώρο, όπως είναι οι συνθήκες του περιβάλλοντος, τα χαρακτηριστικά του πυροθερμικού φορτίου, η γεωμετρία του διαμερίσματος, ο τύπος των δομικών υλικών των τοιχωμάτων και οι συνθήκες αερισμού του διαμερίσματος. Ένας τρόπος για την επίτευξη του σκοπού αυτού είναι μέσω της διενέργειας και μελέτης πειραμάτων φωτιάς σε διαμερίσματα υπό κλίμακα.

Τέτοια πειράματα, που έχουν ως σκοπό την κατανόηση των χαρακτηριστικών της φωτιάς και των παραγόντων που επηρεάζουν στην εξέλιξη της, λαμβάνουν χώρα τα τελευταία χρόνια σε πολλά ερευνητικά και εκπαιδευτικά ιδρύματα σε πολλές χώρες (Quintiere et al., 1979), (Yii, 2002), (Makhviladze et al., 2006) κ.α. Στη συνέχεια πραγματοποιείται μια ανασκόπηση σε πειράματα που αφορούν πυρκαγιές σε κλειστούς χώρους τα οποία συνέβαλαν στην εξέλιξη της γνώσης για τα φαινόμενα που διέπουν μια φωτιά μέσα σε διαμέρισμα.

Σε πειραματικές μελέτες φωτιάς όπου χρησιμοποιείται διάταξη δωματίου, μεταβάλλονται κατάλληλες χαρακτηριστικές παράμετροι που διευκολύνουν τη μελέτη των χαρακτηριστικών της φωτιάς και των φαινομένων που τη διέπουν, Οι κύριες παράμετροι που επηρεάζουν την εξέλιξη μιας πυρκαγιάς είναι το είδος καυσίμου και το είδος αερισμού του δωματίου (Bundy et al., 2007), (Quintiere, et al., 1979). Για τη διερεύνηση των παραμέτρων αυτών πραγματοποιήθηκαν πειραματικές μελέτες σε δωμάτια υπό μεγάλη, μεσαία και μικρή κλίμακα. Στη συνέχεια ακολουθεί παρουσίαση πειραματικών μελετών για φωτιά σε διάταξη δωματίου μικρής κλίμακας, καθώς δωμάτιο μικρής κλίμακας χρησιμοποιήθηκε στα πειράματα της συγκεκριμένης εργασίας.

Η πιθανότητα εμφάνισης του φαινόμενου καθολικής ανάφλεξης (flashover) μελετήθηκε από τους Chen και συνεργάτες (Chen et al., 2011a) σε πειράματα μικρής κλίμακας σε δωμάτιο με εσωτερικές διαστάσεις 0.33m (πλάτος) x 0.60m (μήκος) x 0.36m (ύψος) και ανοίγματος μια πόρτα με σταθερό ύψος (0.225m) και μεταβλητό πλάτος (0.015-0.285m). Σημαντική παράμετρος μελέτης ήταν το υλικό της μόνωσης των τοιχωμάτων, καθώς χρησιμοποιήθηκαν πέντε διαφορετικά είδη. Οι θερμοκρασίες μετρήθηκαν σε 4 σημεία εντός του δωματίου με θερμοστοιχεία, ο ρυθμός καύσης μάζας καυσίμου μετρήθηκε με δυναμοκυψέλη, ενώ χρησιμοποιήθηκε και μετρητής ροής θερμότητας, όπως φαίνεται στην απεικόνιση της διάταξης στο Σχήμα 2.1. Σκοπός της μελέτης ήταν η συσχέτιση των τεσσάρων παραγόντων (θερμική αδράνεια υλικών, αερισμός ανοίγματος, ρυθμός απελευθέρωσης καυσίμου και γεωμετρία δωματίου) με την εμφάνιση καθολικής ανάφλεξης. Σύμφωνα με τα ευρήματα της μελέτης, η πιθανότητα εμφάνισης καθολικής ανάφλεξης μειώνεται όσο αυξάνεται ο αερισμός του δωματίου, σε αντίθεση με αύξηση του ρυθμού έκλυσης θερμότητας το οποίο επιφέρει αύξηση της πιθανότητας να εμφανιστεί καθολική ανάφλεξη.

Με βάση την πειραματική διάταξη της εργασίας των Chen και συνεργατών (Chen et al., 2011a), μελετήθηκε το φαινόμενο της εκτόνωσης της φωτιάς (backdraft) από τους Chen και συνεργάτες (Chen et al., 2011b). Με ίδια πειραματική διάταξη (Σχήμα 2.1) και χρησιμοποιώντας ως καύσιμα ξύλο και επτάνιο, μελετήθηκε η πιθανότητα να συμβεί το φαινόμενο με βάση τον αριθμό β. Ο αριθμός β χρησιμοποιείται για την έκφραση της αναλογίας του καύσιμου κλάσματος του όγκου καυσαερίων με το χαμηλότερο όριο αναφλεξιμότητας του μείγματος. Έτσι, με χρησιμοποίηση των ίδιων μετρητικών διατάξεων με το πείραμα των (Chen et al., 2011a) και εισαγωγή αναλυτή αερίων μετρήθηκαν οι θερμοκρασίες αερίου, η μάζα καυσίμου κάθε χρονική στιγμή και οι συγκεντρώσεις οξυγόνου, μονοξειδίου και διοξειδίου του άνθρακα, καθώς και οξείδια του αζώτου.

Σχήμα 2.1 Πειραματική εγκατάσταση των Chen et al. (2011a)

Μία ακόμα πειραματική μελέτη που αξίζει να αναφερθεί είναι εκείνη του Himoto και συνεργατών (Himoto et al, 2009). Πραγματοποιήθηκε με σκοπό τη διερεύνηση των θερμικών χαρακτηριστικών φωτιάς εξερχόμενης από άνοιγμα, που εκθέτει κοντινά κτίρια καθώς και τους υπερκείμενους ορόφους σε πιθανούς κινδύνους. Το δωμάτιο που χρησιμοποιήθηκε ήταν κυβικό, διαστάσεων (900 x 900 x 900mm). Μελετήθηκε η επίπτωση της μεταβολής των διαστάσεων του ανοίγματος (είτε πόρτας, είτε παραθύρου), ενώ το καύσιμο που χρησιμοποιήθηκε ήταν αλκοόλη. Ελήφθησαν μετρήσεις τόσο θερμοκρασίας, όσο και ταχυτήτων σε διάφορες θέσεις της πειραματικής διάταξης (Σχήμα 2.2). Στην επεξεργασία των πειραματικών δεδομένων χρησιμοποιήθηκε η αδιάστατη παράμετρος Q'* με σκοπό την εύρεση έκφρασης για την άνοδο της θερμοκρασίας κατά τον άξονα της φλόγας καθώς επίσης και του πλάτους αυτής.

Σχήμα 2.2 Σχηματική απεικόνιση της πειραματικής διάταξης των Himoto et al. (2009).

Στα Σχήματα 2.3-2.5 απεικονίζονται οι σχέσεις μεταξύ των κύριων μεγεθών που ενδιέφεραν στη συγκεκριμένη μελέτη.

Σχήμα 2.3 Παροχή μάζας αέρα από τον ανεμιστήρα συναρτήσει ΡΕΘ (Himoto et al., 2009).

Στο Σχήμα 2.3 απεικονίζεται η σχέση μεταξύ της ροής μάζας του αέρα (m₀) και του ρυθμού έκλυσης θερμότητας της εξερχόμενης φλόγας (PEO). Παρατηρείται πως όταν η ροή αέρα διακόπτεται η PEO λαμβάνει τη μέγιστη τιμή της όταν η γεωμετρία του παραθύρου ήταν B=0.2m (πλάτος) και H=0.5m (ύψος) Παρόλα αυτά στη συγκεκριμένη γεωμετρία ο PEO μειώνεται με την αύξηση της m₀ και αντίστροφα, αυξάνεται με τη μείωσή της.

Σχήμα 2.4 Παροχή μάζας αέρα και θερμοκρασία καυσαερίων διαμερίσματος α) για γεωμετρία *B*=0.2m, *H*=0.5m και β) για γεωμετρία *B*=*H*=0.3m (Himoto et al., 2009).

Στο Σχήμα 2.4 απεικονίζεται η σχέση μεταξύ της παροχής μάζας του αέρα (m₀) και της θερμοκρασίας καυσαερίων εντός του δωματίου, σε δύο διαφορετικές γεωμετρίες. Συμπεραίνεται ότι και στις δύο γεωμετρίες, οι θερμοκρασίες που αναπτύχθηκαν στα στρώματα ακριβώς κάτω από την οροφή του διαμερίσματος ήταν παρόμοιες. Η μόνη διαφορά υπήρξε στην περίπτωση της γεωμετρίας 0.2X0.5m όπου οι θερμοκρασίες είχαν μειωθεί λόγω της προσαγωγής του αέρα στο χώρο, καθώς είναι γνωστό ότι αυτή εντείνει την καύση του καυσίμου και την αραίωση του καυσαερίου εντός του δωματίου.

Σχήμα 2.5 Επίδραση της παροχής μάζας αέρα από τον ανεμιστήρα στη θερμοκρασία της φλόγας κατά μήκος της τροχιάς της (αριστερά) και παραδείγματα της ανόδου της θερμοκρασίας για διαφορετικές παροχές αέρα, για γεωμετρία *B*=0.2m, *H*=0.5m (μέση) και για γεωμετρία *B*=*H*=0.3m (δεξιά) (Himoto et al., 2009).

Στο Σχήμα 2.5 (αριστερά) φαίνεται η σχέση μεταξύ της ανόδου της θερμοκρασίας της φλόγας στο άνοιγμα (Δ*T_m*) κατά το μήκος της τροχιάς (ξ) του άξονά της. Στις περιπτώσεις όπου το ξ είναι μικρό, δηλαδή για περιοχές κοντά στο άνοιγμα, οι θερμοκρασίες είναι υψηλές και σταθερές, ενώ όσο αυξάνεται η απόσταση από αυτό, και άρα το ξ μεγαλώνει, οι θερμοκρασίες μειώνονται. Αυτή η παρατήρηση ήταν σε γενικές γραμμές η ίδια για όλες τις γεωμετρίες. Αντίθετα στο Σχήμα 2.5 (δεξιά) φαίνεται το πως μετακινείται ο άξονας της φλόγας σε δύο διαφορετικές γεωμετρίες, με προσαγωγή φρέσκου αέρα ή όχι. Παρατηρείται πως στις περιπτώσεις απομακρύνεται από την πρόσοψη και η φλόγα όπως λέγεται αποκολλάται από αυτήν.

Μπορούν να πραγματοποιηθούν αμέτρητες τέτοιες μελέτες η καθεμία μελετώντας διαφορετική παράμετρο και πως αυτή επηρεάζεται με την αλλαγή άλλων. Η θερμοκρασία εντός όσο και εκτός δωματίου, τα γεωμετρικά χαρακτηριστικά της φλόγας (ύψος, πλάτος), οι ταχύτητες στο άνοιγμα, η θέση του ουδετέρου επιπέδου, η θερμορροή πάνω στην πρόσοψη του κτιρίου είναι σχεδόν πάντα τα μεγέθη που μετρώνται ή υπολογίζονται σε τέτοια πειράματα και μαζί με τα γεωμετρικά χαρακτηριστικά του δωματίου και του καυσίμου διαφοροποιούν τις μελέτες μεταξύ τους.

Στον Πίνακα 2.2 παρουσιάζονται συνοπτικά στοιχεία σχετικά με αντίστοιχες δοκιμές φωτιάς μικρής κλίμακας.

α/α	Συγγραφέας	Διαστάσεις δωματίου	Διαστάσεις ανοίγματος	Διαστάσεις πρόσοψης	Υλικό τοίχου	Καύσιμο	lσχύς (kW)
1	Himoto et al, 2009	900x900x900	200-500x300-500	900x1800	Ασβεστοπερλίτης πάχους 20mm	Μεθανόλη- Αιθανόλη	18.8- 56.1
2	Snerigev et al, 2003	615x300x275	90x75 90x115	-	Monolux 500 πάχους 25mm	Προπάνιο	
3	Makhviladze et. al, 2006	720x480x480 590x300x275 430x300x275	90x75 90x115 130x95 140x160 150x125 160x160 180x80 300x250 285x320	-	Monolux πάχους 25mm	Προπάνιο	

Πίνακας 2.2 Συνοπτικά στοιχεία για δοκιμές φωτιάς σε διαμερίσματα μικρής κλίμακας

α/α	Συγγραφέας	Διαστάσεις δωματίου	Διαστάσεις ανοίγματος	Διαστάσεις πρόσοψης	Υλικό τοίχου	Καύσιμο	Ισχύς (kW)
4	Hu et al, 2011	800x800x800	200x300,400 250x250 300x200,300 400x200	5000x3000	Κεραμικές ίνες πάχους 50mm	LPG	
5	Beji et al, 2012	500x500x3000	100x250, 200x200, 250x100	-		Προπάνιο	30- 60
6	Huang et al, 2008	600x600x600	200x200 πίσω & μπροστά	-	Ξύλινες σανίδες πάχους 25mm Πυράντοχες σανίδες Φύλλα από ανοιξείδωτο ατσάλι	Επτάνιο	
7	Lu et al, 2013	400x400x400	150x150 200x100,200 250x150	2200x1000	Πυράντοχες σανίδες	LPG	39.9
8	Hu et al, 2014	800x800x800	200x300,400 250x250 300x200,300 350x350 400x200	3000x5000	Κεραμικές ίνες πάχους 50mm	LPG	40.2- 108.7
9	Lee et al, 2008	500x500x500 500x500x1000 500x500x1500	75x200, 100x200, 200x200, 300x100	-	Πυράντοχες σανίδες	Μεθάνιο, προπάνιο	
10	Zhao et al, 2015	500x500x500	100x200, 200x200 200x300, 300x300	1500x500	Πυράντοχες σανίδες πάχους 25mm	Προπάνιο	
11	Yamada et al 2002	900x400x600	300x100-600	1200x1200	Ατσάλι, με μόνωση στο εσωτερικό	Προπάνιο	
11	Tang et al, 2012	400x400x400	100x200 150x150 150x250 200x100 200x200	2200x1000	Κεραμικές ίνες	Προπάνιο	19.5- 61.7
12	Tang et al, 2011	800x800x800	200x300,400 250x250 300x200 350x350 400x200	3000x5000	Κεραμικές ίνες	Προπάνιο	
13	Hu et al, 2012	400x400x400	150x150 200x200 250x150	1000x2200		Προπάνιο	
14	Lee et al, 2007	500x500x500 500x500x1000 500x500x1500	75x200 100x250 200x200 300x100	-	Πυράντοχες σανίδες	Προπάνιο, μεθάνιο	
15	Lee et al, 2009	500x500x500	100x250 200x200 250x100	-	Κεραμικό πάνελ	Προπάνιο	

2.4 Επίδραση ύψους πηγής φωτιάς

Αυξάνοντας το ύψος του καυστήρα και τοποθετώντας τον κοντά στην οροφή του διαμερίσματος, για σταθερή παροχή μάζας καυσίμου, μεταβάλλονται όλα τα χαρακτηριστικά της φωτιάς μέσα στο διαμέρισμα. Υπερυψωμένες φωτιές και φωτιές σε δωμάτια με ψευδοροφές, παράγουν ίδια θερμοκρασιακά προφίλ μέσα στο δωμάτιο. Η απόσταση ανάμεσα στον καυστήρα και την οροφή του δωματίου θεωρείται σημαντική παράμετρος για τον ορισμό της θερμοκρασίας του κάθε στρώματος μέσα στο χώρο (Cetegen, 1982). Καθώς αυτή η απόσταση μειώνεται, το ύψος του πλουμίου μικραίνει και υπάρχει έτσι μικρότερη παγίδευση

κρύου αέρα στην περιοχή του πλουμίου, αυξάνοντας έτσι τη θερμοκρασία των άνω στρωμάτων. Στο Σχήμα 2.6 φαίνεται αυτή η αύξηση της θερμοκρασίας (Backovsky et al.,1988).

Σχήμα 2.6 Επίδραση της ανύψωσης φωτιάς για υπο-αεριζόμενες φωτιές (Πηγή: Backovsky et al.,1988).

Όσο μειώνεται το ενεργό ύψος (Σχήμα 2.7) τόσο αυξάνεται η κατανάλωση καυσίμου μέσα στο διαμέρισμα και μειώνεται ο χρόνος για να υπάρξουν σταθερές συνθήκες (steady state) (Σχήμα 2.8), καθώς αυξάνεται η θερμότητα που ακτινοβολούν η οροφή και οι φλόγες που έχουν σχηματιστεί κατά μήκος αυτής (ceiling jet flames) (Ji et al., 2014).

Σχήμα 2.7 Μείωση του ενεργού ύψους μιας φλόγας σε διαμέρισμα (Ji et al., 2014).

Σχήμα 2.8 Κατανάλωση καυσίμου συναρτήσει χρόνου (Ji et al., 2014).

3 ΣΧΕΣΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΕΞΕΡΧΟΜΕΝΗΣ ΦΛΟΓΑΣ

3.1 Σχέσεις προσδιορισμού θερμοκρασίας εξερχόμενης φλόγας

Εντός του δωματίου επικρατούν υπο-αεριζόμενες συνθήκες με αποτέλεσμα η φλόγα να εξέρχεται από το διαμέρισμα και για αυτό άλλωστε έχει νόημα να μελετηθούν τα θερμικά χαρακτηριστικά της εξερχόμενης φλόγας. Οι τιμές που προέκυψαν από τα πειράματα θα συγκριθούν με τις αντίστοιχες τιμές που προκύπτουν από εμπειρικές σχέσεις περιγραφής της θερμοκρασίας ΦΕΑ, προκειμένου να διαπιστωθεί κατά πόσο συμφωνούν μεταξύ τους. Στο τμήμα της φλόγας όπου είναι εκτός του διαμερίσματος (ΦΕΑ) θα χρησιμοποιηθούν τρεις διαφορετικές εκφράσεις, για τη σύγκριση της θερμοκρασίας της φλόγας κατά μήκος του άξονα της σε διαφορετικά ύψη. Όπως είναι αναμενόμενο κάθε ερευνητής χρησιμοποιεί τα δικά του σύμβολα για να ορίσει το κάθε μέγεθος. Για το λόγο αυτό, αρχικά παρατίθενται οι σχέσεις όπως ακριβώς εμφανίζονται στη βιβλιογραφία και στη συνέχεια γίνεται μετατροπή τους με χρήση κοινών συμβόλων και συντεταγμένων. Όλοι οι υπολογισμοί θερμοκρασίας θα γίνουν στον άξονα της φλόγας, ο οποίος και θεωρείται σταθερός για απλοποίηση των πράξεων, καθώς σε αυτόν αναπτύσσονται οι υψηλότερες θερμοκρασίες και άρα εκεί θα επικεντρωθεί η μελέτη.

3.1.1 Σχέση Eurocode

Φυσικά στις εξισώσεις που θα μελετηθούν, δε θα μπορούσαν να απουσιάζουν οι εξισώσεις από τον Ευρωκώδικα που αποτελούν βάση για πολλές μελέτες σχεδιασμού πυροπροστασίας κατά την κατασκευή νέων κτηρίων. Σύμφωνα με το Annex B και συγκεκριμένα την παράγραφο B.4.1 η σχέση που χρησιμοποιείται για τον προσδιορισμό της θερμοκρασίας της φλόγας εκτός δωματίου είναι η Εξίσωση (3.1). Παρατηρείται πως στην εξίσωση (3.1) η ζητούμενη θερμοκρασία είναι συνάρτηση του μεγέθους *L*_x και όχι του απόλυτου ύψους *z*.

$$T_{z} = \left(T_{W} - T_{0}\right) \left(1 - 0.4725 \left(\frac{L_{X} w_{t}}{Q}\right)\right) + T_{0}$$
(3.1)

Όπου:

- *Τ_z*: η θερμοκρασία στον άξονα της φλόγας, (°C)
- *Τ_w*: η θερμοκρασία στο άνοιγμα, (°C)
- *Τ*₀: η θερμοκρασία περιβάλλοντος, (°C)
- L_x: απόσταση κατά τον άξονα της φλόγας (Σχήμα 3.1), (m)
- *w_t*: Πλάτος ανοίγματος, (m)
- Q: Ισχύς φλόγας (MW)

Τα γεωμετρικά χαρακτηριστικά της φλόγας που εξέρχεται από άνοιγμα, σύμφωνα με τη θεώρηση του Ευρωκώδικα, φαίνονται στα Σχήματα 3.1 – 3.3. Το Σχήμα 3.1 (αριστερά) απεικονίζει την περίπτωση της γεωμετρίας παραθύρου, ενώ το Σχήμα 3.1 (δεξιά) την

περίπτωση γεωμετρίας πόρτας, καθώς σε αυτή την περίπτωση ισχύει η ανισότητα *h_{eq}* > 1.25 *w_t*.

Σχήμα 3.1 Σχήμα φλόγας εξερχόμενης από άνοιγμα για την περίπτωση γεωμετρίας παραθύρου (αριστερά) και γεωμετρίας πόρτας (δεξιά).

με τοίχο από πάνω

χωρίς τοίχο ή heq>1,25wt

 Τα γεωμετρικά χαρακτηριστικά της ΦΕΑ για την περίπτωση ανοίγματος παραθύρου απεικονίζονται στο Σχήμα 3.2.

Σχήμα 3.2 Βασικά γεωμετρικά μεγέθη ΦΕΑ για την περίπτωση γεωμετρίας παραθύρου

Η αρχή των αξόνων φαίνεται στο Σχήμα 3.2 και με βάση αυτό το σημείο η σχέση μεταξύ *L*_x και *z* δίνεται από την Εξίσωση (3.2).

$$z = \begin{cases} L_x \cos \theta + \frac{2}{3} h_{eq} + L_a & \text{ yia } 0 < L_x < L_1 \\ h_{eq} + L_a + L_x - L_1 & \text{ yia } L_1 < L_x < L_L \end{cases}$$
(3.2)

Οπότε τελικά η σχέση για την περίπτωση παραθύρου που θα χρησιμοποιηθεί στο κεφάλαιο 7 είναι η Εξίσωση (3.3).

$$T_{z} = \begin{cases} (T_{w} - T_{0}) \cdot \left(1 - 0.4725 \cdot \left(\frac{\left(z - \frac{2}{3} h_{eq} - L_{a} \right) \cdot w_{t}}{Q \cdot \cos \theta} \right) \right) + T_{0} \\ (T_{w} - T_{0}) \cdot \left(1 - 0.4725 \cdot \frac{W_{t}}{Q} \cdot (z - L_{a} - h_{eq} + L_{1}) + T_{0} \right) \end{cases}$$
(3.3)

 Τα γεωμετρικά χαρακτηριστικά της ΦΕΑ για την περίπτωση ανοίγματος πόρτας απεικονίζονται στο Σχήμα 3.3.

Σχήμα 3.3 Βασικά γεωμετρικά μεγέθη ΦΕΑ για την περίπτωση γεωμετρίας πόρτας

$$z = \begin{cases} L_x \cos \theta + \frac{2}{3} h_{eq} + L_a & \text{ yra } 0 < L_x < L_1 \\ h_{eq} + L_a + (L_x - L_1) \sin \varphi & \text{ yra } L_1 < L_x < L_L \end{cases}$$
(3.4)

Οπότε τελικά η σχέση για την περίπτωση γεωμετρίας πόρτας που θα χρησιμοποιηθεί στο κεφάλαιο 7 είναι η Εξίσωση (3.5).

$$T_{z} = \begin{cases} (T_{w} - T_{0}) \cdot \left(1 - 0.4725 \cdot \left(\frac{\left(z - \frac{2}{3}h_{eq} - L_{a}\right) \cdot w_{t}}{Q \cdot \cos \theta}\right)\right) + T_{0} \\ (T_{w} - T_{0}) \cdot \left(1 - 0.4725 \cdot \frac{w_{t}}{Q} \cdot \frac{z - h_{eq} - L_{a} + L_{1}\sin \varphi}{\sin \varphi}\right) + T_{0} \end{cases}$$
(3.5)

3.1.2 **Σχέση Himoto**

Με βάση τη μελέτη Himoto et al. (2009), η σχέση προσδιορισμού της θερμοκρασίας στον κεντρικό άξονα της ΦΕΑ δίνεται από την Εξίσωση (3.6).

Σχήμα 3.4 Σχηματική απεικόνιση των βασικών γεωμετρικών χαρακτηριστικών ΦΕΑ, σύμφωνα με τους Himoto et al. (2009).

Παρατηρείται πως υπάρχει μια διαφορετική έκφραση για την άνοδο της θερμοκρασίας κατά μήκος της τροχιάς της, ανάλογα σε ποια από τις τρεις περιοχές, γίνεται ο υπολογισμός της. Ο λόγος $\frac{\xi}{H-Z_N}$ καθορίζει το εύρος της κάθε περιοχής. Όπως φαίνεται και στο Σχήμα 3.4, με ξ συμβολίζεται η απόσταση κατά μήκος της τροχιάς της φλόγας η οποία είναι καμπύλη,

λόγω των φαινομένων θερμικής άνωσης. Με *Η* συμβολίζεται το ύψος του ανοίγματος, ενώ με *Ζ*_N το ύψος του ουδετέρου επιπέδου. Παρατηρείται δηλαδή πως η γεωμετρία του ανοίγματος διαδραματίζει σημαντικό ρόλο και επηρεάζει το εύρος των περιοχών.

Με *T*_∞ συμβολίζεται η θερμοκρασία του περιβάλλοντος ενώ με Q'* ο αδιάστατος ρυθμός έκλυσης θερμότητας ανά μονάδα μήκους, ο οποίος υπολογίζεται από τη σχέση 3.7.

$$Q'^{*} \equiv \frac{\dot{Q}'}{\rho_{\infty}C_{p}T_{\infty}g^{1/2}(H-Z_{N})^{3/2}}$$
(3.7)

Όπου:

- Q'ο ρυθμός έκλυσης θερμότητας ανηγμένος ανά μονάδα μήκους (kW/m)
- ρ_∞: πυκνότητα αέρα περιβάλλοντος (kg/m³)

ſ

C_p: ειδική θερμοχωρητικότητα αέρα περιβάλλοντος (kJ/kgK)

Στην εξίσωση (3.6) τα μεγέθη *Η* και *Z_n* είναι γνωστά και σταθερά σε κάθε πείραμα, οπότε με μικρή επεξεργασία μπορούν να αλλάξουν τα όρια και η εξίσωση μπορεί να μετατραπεί στην πιο εύχρηστη μορφή (Εξισώσεις 3.8 και 3.9).

$$T_{m} = \begin{cases} 2.0Q^{*2/3}T_{\infty} + T_{\infty} & \xi \leq 0.096 \\ 1.6Q^{*2/3} \left(\frac{\xi}{H - Z_{N}}\right)^{-1/2} T_{\infty} + T_{\infty} & 0.096 < \xi \leq 0.366 \\ 2.5Q^{*2/3} \left(\frac{\xi}{H - Z_{N}}\right)^{-1} T_{\infty} + T_{\infty} & 0.366 < \xi \end{cases}$$

$$(3.8)$$

$$(3.8)$$

$$(3.8)$$

$$(3.8)$$

$$T_{m} = \begin{cases} 1.6Q^{*2/3} \left(\frac{\xi}{H - Z_{N}}\right)^{-1/2} T_{\infty} + T_{\infty} & 0.16 < \xi \le 0.61 \\ 2.5Q^{*2/3} \left(\frac{\xi}{H - Z_{N}}\right)^{-1} T_{\infty} + T_{\infty} & 0.61 < \xi \end{cases}$$
(3.9)

Η εξίσωση 3.8 αφορά την περίπτωση παραθύρου, ενώ η εξίσωση 3.9 την περίπτωση πόρτας.

Η εύρεση της τροχιάς της φλόγας, δηλαδή το μέγεθος ξ είναι συνήθως δύσκολο να υπολογιστεί. Για το λόγο αυτό προτείνεται από τον ίδιο τον ερευνητή η αντικατάσταση του ξ με το κατακόρυφο ύψος z. Όπως γίνεται εύκολα αντιληπτό, με βάση το Σχήμα 3.4, η αρχή των αξόνων είναι στο κέντρο της φλόγας στο επίπεδο του ανοίγματος (σημείο Α). Για το σημείο αυτό δεν υπάρχει κάποιο δεδομένο ώστε να μπορέσει να υπολογιστεί. Για το λόγο αυτό

θεωρείται πως το σημείο Α βρίσκεται σε απόσταση $\frac{2}{3}H$, όπου H το ύψος του παράθυρου,

κάτι αντίστοιχο δηλαδή που θεωρείται και στην περίπτωση της θεωρίας του Eurocode (Σχήμα 3.2). Έτσι οι εξισώσεις υπολογισμού της θερμοκρασίας ΦΕΑ μετατρέπονται, σε πλήρη αντιστοιχία με τον Ευρωκώδικα, στις Εξισώσεις 3.10 και 3.11.

.

$$T_{m} = \begin{cases} 2.0Q^{*2/3}T_{\infty} + T_{\infty} & L_{x} \le 0.096 \\ 1.6Q^{*2/3} \left(\frac{L_{x}}{H - Z_{N}}\right)^{-1/2} T_{\infty} + T_{\infty} & 0.096 < L_{x} \le 0.366 \\ 2.5Q^{*2/3} \left(\frac{L_{x}}{H - Z_{N}}\right)^{-1} T_{\infty} + T_{\infty} & 0.366 < L_{x} \end{cases}$$
(3.10)

$$T_{m} = \begin{cases} 2.0Q^{*2/3}T_{\infty} + T_{\infty} & L_{x} \le 0.10 \\ 1.6Q^{*2/3} \left(\frac{L_{x}}{H - Z_{N}}\right)^{-1/2} T_{\infty} + T_{\infty} & 0.16 < L_{x} \le 0.61 \\ 2.5Q^{*2/3} \left(\frac{L_{x}}{H - Z_{N}}\right)^{-1} T_{\infty} + T_{\infty} & 0.61 < L_{x} \end{cases}$$
(3.11)

3.1.3 **Σχέση Lu**

Στη μελέτη των Lu et al. (2014) εισάγεται το μέγεθος Κ, το οποίο ορίζεται μέσω της Εξίσωσης (3.12).

$$K = \frac{I_1 + 2\left(0.317 \dot{Q}_{ex}^{*2/5} - 0.352\right)I_2}{I_1 + 2\left(0.317 \dot{Q}_{ex}^{*2/5} - 0.352\right)I_2\left(1 - \frac{I_1}{D}\right)}$$
(3.12)

Όπου:

$$I_1 = \left(A\sqrt{H}\right)^{2/5}$$
(3.13)

$$I_2 = (AH^2)^{1/4}$$
(3.14)

$$\dot{Q}_{ex}^{\star 2/5} = \left(\frac{\dot{Q} - 1500 \,A\sqrt{H}}{B}\right)^{2/5}$$
 (3.15)

Τα μεγέθη *I*¹ και *I*₂ αντιστοιχούν στα χαρακτηριστικά μήκη (διαστάσεις) μιας εικονικής ορθογωνικής φλόγας, με ρυθμό έκλυσης θερμότητας *Q*_{ex}, η οποία θεωρείται η πηγή του θερμικού πλουμίου.

Στην περίπτωση της εργασίας των Lu et al. (2014), χρησιμοποιείται το μέγεθος Θ, το οποίο ορίζεται με χρήση της Εξίσωσης (3.16), ενώ ισχύει και η Εξίσωση (3.17).

$$\Theta = \frac{\frac{\Delta T_z}{T_{\infty}}}{\frac{\dot{Q}_{conv}}{\rho_{\infty} C_p T_{\infty} \sqrt{g} I_1^{2/5}}}$$
(3.16)

$$\frac{\Theta}{\kappa} = 2.93 Z^{\star - 5/3} \tag{3.17}$$

Τελικά συνδυάζοντας τις Εξισώσεις 3.16 και 3.17, διατυπώνεται η τελική μορφή της εξίσωσης περιγραφής της θερμοκρασίας ΦΕΑ (Εξίσωση 3.18).

$$T_{Z} = T_{\infty} \left(\frac{\dot{Q}_{conv}}{\rho_{\infty} C_{\rho} T_{\infty} \sqrt{g} l_{1}^{2/5}} \right)^{2/3} 2.93 Z^{*-5/3} K + T_{\infty}$$
(3.18)

Παρατηρείται πως στη σχέση αυτή χρησιμοποιείται το μέγεθος *Z*^{*}. Για την αναγωγή της (3.18) στα μεγέθη των προηγούμενων σχέσεων, θα χρησιμοποιηθεί η σχέση 3.19, η οποία υπολογίζει το *Z*^{*}, συναρτήσει κάποιων σταθερών τιμών.

$$Z^* = \frac{Z - Z_n - Z_0}{I_1}$$
(3.19)

Όπου,

Ζ: η απόσταση από την αρχή των αξόνων (m) (μετρούμενο από το δάπεδο του διαμερίσματος)

Z_n: το ύψος του ουδετέρου επιπέδου (m)

*Ζ*₀: το εικονικό σημείο (m)

Τελικά η τελική μορφή της σχέσης των Lu et al. (2014) που θα χρησιμοποιηθεί είναι η Εξίσωση (3.19).

$$T = 2.93 T_{\infty} \left(\frac{\dot{Q}_{conv}}{\rho_{\infty} C_{\rho} T_{\infty} \sqrt{g} I_{1}^{2/5}} \right)^{2/3} I_{1}^{5/3} \left(Z - Z_{n} - Z_{0} \right)^{-5/3} K + T_{\infty}$$
(3.20)

Όπου:

- Τ_∞: η θερμοκρασία περιβάλλοντος (°C)
- Q_{conv}: θερμική ισχύς λόγω συναγωγής (kW/m²)
- ρ_∞: πυκνότητα αέρα σε τυπική θερμοκρασία περιβάλλοντος (kg/m³)
- C_p: ειδική θερμοχωρητικότητα αέρα σε θερμοκρασία περιβάλλοντος (kJ/kgK)
- g: επιτάχυνση της βαρύτητας, 9.81 (m/s²)

3.2 ΣΧΕΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΡΜΟΡΡΟΗΣ ΣΤΗΝ ΠΡΟΣΟΨΗ

Πέρα από τα χαρακτηριστικά της ίδιας της φλόγας, ενδιαφέρον έχει να μελετηθεί πως και σε τι βαθμό αυτή επηρεάζει το ίδιο το διαμέρισμα. Για το λόγο αυτό μελετάται η επιρροή της φλόγας στην πρόσοψη του διαμερίσματος. Η θερμορροή είναι το μέγεθος το οποίο δείχνει τη θερμική ισχύ ανά μονάδα επιφάνειας που δέχεται η πρόσοψη, μέγεθος το οποίο είναι σημαντικό και πρέπει να μπορεί να υπολογιστεί προκειμένου να υπάρχει μια ολοκληρωμένη εικόνα για τη συνολική επιρροή της φωτιάς στο διαμέρισμα.

3.2.1 Σχέση Eurocode

Σύμφωνα με το Section 3 του Eurocode, για τον υπολογισμό της θερμορροής στην

πρόσοψη του διαμερίσματος λαμβάνεται υπόψη ένα μέρος λόγω συναγωγής h_{net,c} και ένα

μέρος λόγω ακτινοβολίας *h_{net,r}*, επομένως τελικά η συνολική θερμορροή δίνεται από τη σχέση (3.20), ενώ οι επιμέρους σχέσεις προσδιορισμού της θερμορροής λόγω συναγωγής και της θερμορροής λόγω ακτινοβολίας εκφράζονται μέσω των Εξισώσεων (3.21) και (3.22), αντίστοιχα.

$$h_{net} = h_{net,c} + h_{net,r}$$
 (3.20)

$$\dot{h}_{net,c} = a_c \left(\Theta_g - \Theta_m \right)$$
 (3.21)

$$\dot{h}_{net,r} = \Phi \varepsilon_m \varepsilon_f \sigma \left[(\Theta_r + 273)^4 - (\Theta_m + 273)^4 \right]$$
(3.22)

Όπου:

- Φ: γωνιακός παράγοντας
- ε_m: συντελεστής εκπομπής της επιφάνειας
- ε: συντελεστής εκπομπής της φλόγας
- σ: σταθέρα Stephan Boltzmann (= $5.67 \cdot 10^{-8} \text{ W/m}^2\text{K}^4$)
- Θ_r: θερμοκρασία φλόγας (°C)

Θ_m: θερμοκρασία πάνω στην πρόσοψη στο σημείο που γίνεται ο υπολογισμός (°C)

Θ_g: θερμοκρασία καυσαερίων σε μικρή απόσταση από την πρόσοψη (°C).

*a*_c: συντελεστής μεταφοράς θερμότητας μέσω συναγωγής (W/m²K).

3.3 Σχέση προσδιορισμού θερμοκρασίας στο εσωτερικό του διαμερίσματος

Τα δομικά στοιχεία ενός διαμερίσματος έχουν κάποιες συγκεκριμένες μηχανικές ιδιότητες. Όπως είναι γνωστό, οι ιδιότητες αυτές μεταβάλλονται με τη θερμοκρασία και μάλιστα μειώνονται με την αύξηση της θερμοκρασίας. Όσο η φωτιά συνεχίζεται η θερμοκρασία εντός του δωματίου συνεχώς αυξάνεται. Για το λόγο αυτό είναι απαραίτητη η γνώση της

θερμοκρασίας που αναπτύσσεται εντός του δωματίου, προκειμένου να είναι δυνατή η εκτίμηση της πιθανότητας αστοχίας των δομικών στοιχείων και άρα κινδύνου κατάρρευσης του διαμερίσματος.

3.3.1 Eurocode

Σύμφωνα με την παράγραφο B.4.1 του Annex B του Eurocode η θερμοκρασία στο εσωτερικό του διαμερίσματος υπολογίζεται από τη Εξίσωση (3.24).

$$T_{f} = 6000 \left(1 - e^{\frac{-0.1}{O}} \right) O^{\frac{1}{2}} \left(1 - e^{0.00286\Omega} \right) + T_{0}$$
 (K) (3.24)

Όπου τα μεγέθη Ο, παράγοντας ανοίγματος (σχέση 3.25) και Ω (σχέση 3.26) είναι καθαρά γεωμετρικά μεγέθη του ανοίγματος και του διαμερίσματος. Παρατηρείται δηλαδή πως η θερμοκρασία εντός του δωματίου εξαρτάται αποκλειστικά από το είδος και μέγεθος του ανοίγματος, καθώς επίσης και από τις διαστάσεις του διαμερίσματος και όχι από το καύσιμο, τη θέση του καυστήρα ή το μέγεθος της φωτιάς. Τ₀ είναι η θερμοκρασία περιβάλλοντος.

$$O = \frac{A_v \sqrt{h_{eq}}}{A_t}$$
(3.25)

$$\Omega = \frac{\frac{A_f}{q_{f,d}}}{\left(\frac{A_v}{A_t}\right)^{1/2}}$$
(3.26)

Οι Εξισώσεις 3.3, 3.4, 3.9, 3.10, 3.20, 3.21 καθώς και 3.24 θα χρησιμοποιηθούν στο κεφάλαιο 7 προκειμένου να συγκριθούν τα αποτελέσματά τους με τις αντίστοιχες πειραματικές μετρήσεις.

4 ΠΕΙΡΑΜΑΤΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ

Με στόχο την πειραματική διερεύνηση των φυσικών χαρακτηριστικών των ΦΕΑ, έγινε χρήση πειραματικής διάταξης διαμερίσματος-πρόσοψης μικρής κλίμακας σύμφωνα με το πρότυπο ISO 9705 (1993). Στο παρόν κεφάλαιο αναλύεται το σύνολο της πειραματικής εγκατάστασης (διαμέρισμα, εξοπλισμός, λογισμικό) που χρησιμοποιήθηκε για την διεξαγωγή των πειραμάτων.

4.1 Γεωμετρικά χαρακτηριστικά

Για την πραγματοποίηση πειραμάτων που αφορούν στην εξάπλωση φωτιάς σε κλειστό χώρο, έχει αναπτυχθεί μια πρότυπη γεωμετρία διαμερίσματος, πλήρους κλίμακας, η οποία προσομοιώνει φωτιές σε εσωτερικό χώρο με ένα άνοιγμα (πόρτα ή παράθυρο), προκειμένου να αξιολογηθεί και να μελετηθεί η εξάπλωση μιας τέτοιας πυρκαγιάς σε σχέση με τα προϊόντα και τα υλικά των γύρω επιφανειών. Η μέθοδος αυτή περιγράφεται στο πρότυπο ISO 9705 (ISO, 1993).

Στα περισσότερα πειράματα μεγάλης και μεσαίας κλίμακας χρησιμοποιούνται διαστάσεις δωματίου υπό κλίμακα (Lock et al., 2008), (Bryner et al., 1994) με βάση το πρότυπο δωμάτιο του ISO 9705. Οι διαστάσεις ενός τυπικού δωματίου, σύμφωνα με το ISO9705, είναι 3.66 m (μήκος) x 2.44 m (πλάτος) x 2.44 m (ύψος). Για άνοιγμα θεωρείται πόρτα, πλάτους 0.8 m και ύψους 2 m. Είναι εύλογο να παρατηρηθεί πως η διάσταση του ύψους στην περίπτωση του πρότυπου δωματίου είναι ίδια με το πλάτος του δωματίου.

Τα πειράματα πραγματοποιήθηκαν στο Εργαστήριο Ετερογενών Μειγμάτων και Συστημάτων Καύσης, της Σχολής Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου. Η πραγματοποίηση τους έγινε σε γεωμετρία δωματίου υπό κλίμακα, με διαστάσεις συμβατές με τις αντίστοιχες του ISO 9705, με στόχο την όσο το δυνατόν πιο αντιπροσωπευτική απεικόνιση ενός τυπικού δωματίου. Για το σκοπό αυτό δημιουργήθηκε δωμάτιο μεσαίας κλίμακας ¼ ως προς το πρότυπο δωμάτιο που ορίζεται στο ISO 9705. Το δωμάτιο έχει εσωτερικές διαστάσεις 900mm (μήκος) x 600mm (πλάτος) x 600mm (ύψος), και άνοιγμα διαφόρων διαστάσεων. Στη συνέχεια προστέθηκε πρόσοψη (façade) στην εξωτερική πλευρά του νοτίου τοίχου όπου βρίσκεται το άνοιγμα. Οι διαστάσεις της κατασκευής φαίνονται στον Πίνακα 4.1 ενώ στη συνέχεια πραγματοποιείται εκτενέστερη ανάλυση αυτών.

	Μήκος (mm)	Πλάτος (mm)	Ύψος (mm)
Δωμάτιο (εσωτερικές διαστάσεις)	900	600	600
Α' περίπτωση – Πόρτα	-	200	500
Β' περίπτωση – Παράθυρο	-	300	300
Πρόσοψη	-	658	1800

Πίνακας 4.1 Διαστάσεις δωματίου και ανοίγματος

4.1.1 Τοιχώματα

Για τα πλαϊνά τοιχώματα, την οροφή και το δάπεδο του διαμερίσματος, χρησιμοποιήθηκαν δύο στρώσεις πυράντοχης γυψοσανίδας πάχους 12.5mm η καθεμιά, εσωτερικά του σκελετού. Η τοποθέτηση τους έγινε με τέτοιο τρόπο ώστε να μην υπάρχουν ορατά μέρη του σκελετού από την εσωτερική πλευρά του δωματίου. Η ορατότητα του σκελετού
στο εσωτερικό της κατασκευής θα είχε αρνητικό αντίκτυπο στις μετρήσεις, μεταβάλλοντας άρδην την ακτινοβολία εντός του δωματίου. Για το λόγο αυτό, τοποθετήθηκαν πρώτα οι γυψοσανίδες του δαπέδου και στη συνέχεια αυτές των πλαϊνών τοιχωμάτων με «συρταρωτό» τρόπο. Τέλος, οι γυψοσανίδες της οροφής βιδώθηκαν στην κάτω πλευρά του καπακιού, ώστε οι ακμές τους να εφάπτονται στις εσωτερικές πλευρές των πλαϊνών γυψοσανίδων. Με το βίδωμα αυτό, αποφεύγεται το ενδεχόμενο κατάρρευσης τους λόγω του βάρους τους. Τα βιδώματα αυτά έγιναν πάνω σε τρεις λάμες 40mm πλάτους και 4mm πάχους, οι οποίες συγκολλήθηκαν κατά μήκος του καπακιού όπως φαίνεται στο Σχήμα 4.1. Σε κάθε περίπτωση το άνοιγμα της διάταξης έγινε στο νότιο τοίχο του δωματίου.

Ο πίνακας 4.2 δείχνει τις διαστάσεις των γυψοσανίδων που χρησιμοποιήθηκαν.

Γυψοσανίδες	Δαπέδου (x2)	Ανατολικής- Δυτικής (x4)	Νότιας- Βόρειας (x4)	Οροφής (x2)
Διαστάσεις (mm)	950x650	950x625	650x625	900x600

Πίνακας 4.2 Διαστάσεις	γυψοσανίδων
------------------------	-------------

4.1.2 Γεωμετρία ανοίγματος

Στα πειράματα το άνοιγμα αντιστοιχούσε είτε σε γεωμετρία πόρτας είτε σε γεωμετρία παράθυρου. Οι σχετικές διαστάσεις για κάθε περίπτωση φαίνονται στον Πίνακα 4.3.

	Πλάτος (mm)	Ύψος (mm)
Περίπτωση D: Πόρτα	200	500
Περίπτωση W: Παράθυρο	300	300

4.1.3 **Πρόσοψη**

Στο δωμάτιο προστέθηκε πρόσοψη από μονή πυράντοχη γυψοσανίδα πάχους 12.5mm, με διαστάσεις 658mm (πλάτος) x 1800mm (ύψος), η οποία τοποθετήθηκε εξωτερικά της πλευράς του ανοίγματος (νότιας πλευράς) και φαίνεται στο Σχήμα 4.1. Στα Σχήματα 4.2 – 4.4 φαίνεται η συνολική εγκατάσταση σε διάφορες όψεις.

Σχήμα 4.1 Φωτογραφίες της πλάγιας όψης του διαμερίσματος (αριστερά) και της πρόσοψης του διαμερίσματος (δεξιά).

Σχήμα 4.2 Πλάγια όψη σε τομή του διαμερίσματος (αριστερά), πρόσοψη για την περίπτωση γεωμετρίας πόρτας (κέντρο), πρόσοψη για την περίπτωση γεωμετρίας παραθύρου (δεξιά).

Σχήμα 4.3 Κάτοψη του διαμερίσματος σε τομή

Σχήμα 4.4 Περίπτωση γεωμετρίας παραθύρου (αριστερά), περίπτωση γεωμετρίας πόρτας (δεξιά).

4.2 Πηγή φωτιάς

Το καύσιμο διοχετεύεται εντός του δωματίου μέσω ενός πορώδη καυστήρα τοποθετημένου στο γεωμετρικό κέντρο του δαπέδου, σε δύο διαφορετικά ύψη. Ο καυστήρας διαθέτει οπές διαμέτρου 1 mm σε όλη την επιφάνεια του. Ο καυστήρας είναι κατασκευασμένος από οξείδιο του αλουμινίου κατάλληλο για το περιβάλλον μεγάλων θερμοκρασιών που εκτίθεται. Ο καυστήρας τοποθετήθηκε στο κέντρο του δωματίου με τη μεγάλη διάσταση του παράλληλη στη μεγάλη πλευρά του δωματίου και την κάτω επιφάνεια να εφάπτεται στο πάτωμα του δωματίου. Ο καυστήρας (Σχήμα 4.5) είχε συνολικό ύψος 55mm, μήκος 175mm και πλάτος 125mm.

Σχήμα 4.5 Ο χρησιμοποιούμενος καυστήρας (αριστερά), τοποθετημένος εντός του διαμερίσματος (δεξιά), (φωτογραφία).

4.3 Μετρητικές διατάξεις

Για την μέτρηση των θερμικών και ροϊκών χαρακτηριστικών της φωτιάς χρησιμοποιήθηκαν θερμοστοιχεία, μετρητές ροής θερμότητας και δικατευθυντικοί μετρητές ταχύτητας. Ο τρόπος σύνδεσής τους και τα χαρακτηριστικά τους περιγράφονται στη συνέχεια.

4.3.1 Θερμοστοιχεία

Τα θερμοστοιχεία αποτελούν τη βασική μετρητική συσκευή για τη μέτρηση θερμοκρασίας. Ο τρόπος λειτουργίας τους βασίζεται στο φαινόμενο Σίμπεκ (Seebeck effect, κατά τον Εσθονό φυσικό Τόμας Σίμπεκ 1770-1831) ή αλλιώς θερμοηλεκτρισμός. Κατά το φαινόμενο αυτό, παρατηρείται μετατροπή της θερμότητας σε ηλεκτρισμό, λόγω της εμφάνισης διαφοράς δυναμικού σε μεταλλικό δείγμα που οφείλεται στη θερμοκρασιακή διαφορά μεταξύ των δύο άκρων του (Σχήμα 4.6).

Ένα θερμοστοιχείο αποτελείται από δύο μεταλλικούς αγωγούς κατασκευασμένους από διαφορετικά μέταλλα, οι οποίοι στις άκρες τους έρχονται σε επαφή. Η μια από τις δύο επαφές των δύο υλικών διατηρείται σε μία γνωστή θερμοκρασία αναφοράς (0°C), ενώ η άλλη χρησιμοποιείται για τη μέτρηση μιας εξωτερικής θερμοκρασίας. Μόλις τα μέταλλα αυτά θερμανθούν, παρατηρείται κίνηση των ηλεκτρονίων της θερμής περιοχής προς την ψυχρή περιοχή των μετάλλων, γεγονός που έχει ως αποτέλεσμα την παραγωγή ηλεκτρικής τάσης (διαφορά δυναμικού) στα άκρα τους. Το μέγεθος της παραγόμενης ηλεκτρικής τάσης εξαρτάται από τη διαφορά της θερμοκρασίας του σημείου επαφής, το οποίο χρησιμοποιείται ως αισθητήριο θερμοκρασίας (measuring junction), με άλλο σημείο του κυκλώματος. Για τη διατήρηση της επαφής αναφοράς (reference junction) στη σταθερή θερμοκρασία των 0°C χρησιμοποιούνται διάφορες ηλεκτρονικές και φυσικές μέθοδοι (Kasap, 2004).

Σχήμα 4.6 Αρχή λειτουργίας θερμοστοιχείου

Υπάρχουν πολλά θερμοστοιχεία, ανάλογα με τα υλικά κατασκευής τους και η επιλογή τους σε κάθε περίπτωση διαφέρει ανάλογα το εύρος θερμοκρασιών που μετράται και την ευαισθησία. Διάφοροι τύποι είναι οι K, J, N, E, B, R, S κ.α.

Στα πειράματα χρησιμοποιήθηκαν μη-γειωμένα θερμοστοιχεία τύπου Κ (Σχήμα 4.7), διαμέτρου 1.59mm (=0,062in.), όπου το υλικό κατασκευής τους είναι 90% Ni – 10% Cr για το θετικό πόλο, ενώ για τον αρνητικό 95% Ni – 2% Al – 3% Mn. Το ανώτερο όριο θερμοκρασίας που μπορούν να λειτουργήσουν είναι 1038°C (=1900°F), ενώ χρησιμοποιήθηκαν θερμοστοιχεία με δύο διαφορετικά μήκη, 450mm και 150mm (18in και 6in).

Σχήμα 4.7 Θερμοστοιχείο τύπου Κ

4.3.2 Δικατευθυντικοί μετρητές ταχύτητας

Μαζί με τη μέτρηση της θερμοκρασίας, η μέτρηση της ταχύτητας της ροής σε ένα πείραμα φωτιάς είναι από τις πιο βασικές μεθόδους για να κατανοηθεί η συμπεριφορά της καθώς επίσης και να χαρακτηριστεί το περιβάλλον της φλόγας. Υπάρχουν διάφοροι τρόποι, όπως οι LDV (Laser Doppler Velocimeter), PIV (Particle Image Velocimetry, για την ποσοτικοποίηση του πεδίου ροής. Παρόλα αυτά, στις περισσότερες δοκιμές φωτιάς οι προηγούμενες μέθοδοι είναι δύσκολο να εφαρμοστούν, λόγω των μη σταθερών χαρακτηριστικών και του «σκληρού» περιβάλλοντος της φωτιάς, συμπεριλαμβανομένων και των προϊόντων της καύσης, των σωματιδίων αιθάλης και των μεγάλων μεταβολών της θερμοκρασίας. Για αυτό το λόγο, ο κλασσικός μετρητής ταχύτητας διαφορικής πίεσης είναι συνηθισμένος σε τέτοιες δοκιμές, καθώς προσφέρει ευκολία στη χρήση, ευρωστία και καταλληλότητα για δοκιμές μεγάλης κλίμακας. Ο πλέον διαδεδομένος μετρητής ταχύτητας διαφορικής πίεσης είναι ο σωλήνας Pitot, ωστόσο παρουσιάζει μεγάλη ευαισθησία στην κατεύθυνση της ροής, όπως επίσης και υψηλό κίνδυνο απόφραξης των οπών μέτρησης λόγω της ροής των καυσαερίων. Για το λόγο αυτό, σε πολλές δοκιμές φωτιάς χρησιμοποιείται ο σωλήνας Pitot με χρήση γεωμετρίας διπλής κατεύθυνσης (bi-directional probe), ο οποίος τοποθετείται ακριβώς στο άνοιγμα του διαμερίσματος. Το πλεονέκτημα αυτής της συσκευής είναι ότι δε χρειάζεται να είναι εκ των προτέρων γνωστή η κατεύθυνση της ροής. Ο ανιχνευτής (probe) είναι σε θέση να μετράει την ταχύτητα και προς τις δύο κατευθύνσεις (Kim and Kim, 2013).Ο προσδιορισμός της στατικής ταχύτητας απαιτεί την μέτρηση της διαφοράς πίεσης μπροστά και πίσω από τον ανιχνευτή, καθώς και της στατικής πίεσης.

$$V = \frac{1}{k_{\rho}} \sqrt{\frac{2\Delta P}{\rho}}$$
(4.1)

Όπου:

V: η ταχύτητα (m/s)

k_p : Σταθερά του ανιχνευτή

Δ*Ρ*: διαφορά πίεσης (Pa)

ρ: στατική πυκνότητα (kg/m³)

Συνήθως η πυκνότητα υπολογίζεται με μέτρηση της στατικής θερμοκρασίας στην αντίστοιχη θέση και χρήση στη συνέχεια της καταστατικής εξίσωσης τελείων αερίων (για τον αέρα):

$$\rho = \frac{352.8}{T}$$
, όπου *T* η θερμοκρασία σε Kelvin

Για έναν ιδανικό σωλήνα Pitot η τιμή της σταθεράς *k*_p είναι κοντά στη μονάδα, αλλά στην περίπτωση του δικατευθυντικού μετρητή η τιμή του εξαρτάται από πολλούς παράγοντες, ένας εκ τω οποίων είναι ο αριθμός Reynolds. Σύμφωνα με την έρευνα των McCaffrey και Heskestad (1976) η τιμή αυτή είναι περίπου 1,08 για μικρούς αριθμούς Reynolds (μεταξύ 40 και 3800) (Kim and Kim, 2013).

Σχήμα 4.8 Τομή δικατευθυντικού μετρητή ταχύτητας (bidirectional probe)

Ο μετρητής (Σχήμα 4.8) αποτελείται από ένα μικρό κομμάτι ανοξείδωτου χάλυβα με ένα διάφραγμα στη μέση και δύο οπές, οι οποίες διανοίγονται πλησίον της κάθε πλευράς του διαφράγματος. Ο άξονας του σωλήνα είναι παράλληλος με τη ροή, με την ανάντι οπή να μετρά την πίεση ανακοπής και την κατάντι να μετρά πίεση ελάχιστα μικρότερη της στατικής. Οι μικροί αγωγοί χρησιμεύουν τόσο για τη μεταφορά του σήματος πίεσης όσο και για τη στήριξη του μετρητή (McCaffrey & Heskestad, 1976).

4.3.3 Μετρητές ροής θερμότητας

Ένας μετρητής ροής θερμότητας είναι μια μετρητική συσκευή με την οποία δίνεται η δυνατότητα μέτρησης της ροής θερμότητας από το περιβάλλον στο σημείο που είναι τοποθετημένη η συσκευή, ενώ υπό φυσιολογικές συνθήκες, το οπτικό πεδίο ενός τέτοιου μετρητή είναι 180°. Για τη μελέτη της ροής θερμότητας της φωτιάς στις πειραματικές δοκιμές, χρησιμοποιήθηκε ένας υδρόψυκτος μετρητής ροής θερμότητας (water-cooled heat flux sensor) τύπου Schmidt-Boelter, ο οποίος είναι κατασκευασμένος για μετρήσεις σε περιβάλλον υψηλών θερμοκρασιών. Τοποθετήθηκαν τρεις μετρητές στη μεσοκάθετο της πρόσοψης, σε ύψη 650, 850 και 1050mm από το δάπεδο του δωματίου. Ο μετρητής αυτός φαίνεται στο Σχήμα 4.10 τοποθετημένος επάνω στην πρόσοψη.

Σχήμα 4.9 Ο μετρητής ροής θερμότητας που χρησιμοποιήθηκε.

Σχήμα 4.10 Ο μετρητής ροής θερμότητας τοποθετημένος πάνω στην πρόσοψη

Ο αισθητήρας αποτελείται από μια θερμοστήλη, η οποία ουσιαστικά είναι θερμοστοιχεία τοποθετημένα σε σειρά. Με τη θερμοστήλη αυτή μετράται η διαφορά θερμοκρασίας μέσα σε ένα πλαστικό σώμα το οποίο βρίσκεται μέσα στη συσκευή. Με τον τρόπο αυτό, δημιουργείται μικρή διαφορά δυναμικού (τάση) ανάλογη της διαφοράς θερμοκρασίας η οποία αναγκάζει τη ροή θερμότητας να κινείται δια μέσω αυτού (Σχήμα 4.11).

Σχήμα 4.11 Χαρακτηριστικά ενός μετρητή ροής θερμότητας

Η θερμική αγωγιμότητα του αισθητήρα είναι μια σταθερά η οποία υπολογίζεται με πειραματικές μεθόδους στο εργαστήριο παρασκευής της συσκευής και επισυνάπτεται με τη συσκευή κατά την παραγγελία της. Ο αισθητήρας που χρησιμοποιήθηκε στα πειράματα είναι κατασκευασμένος ώστε να μετράει ροή θερμότητας έως 200 kW/m².

Όπως αναφέρθηκε, ο μετρητής που χρησιμοποιήθηκε ήταν υδρόψυκτος, οπότε σε συνήθεις εφαρμογές μελέτης φωτιάς απαιτείται η σύνδεσή του με παροχή νερού 3 bar. Ο αισθητήρας διαμέτρου 25.4mm (που χρησιμοποιήθηκε) χρειάζεται παροχή νερού 30 l/hr ώστε να απομακρύνεται η θερμότητα που παράγεται. Για το λόγο αυτό η σύνδεσή και ο έλεγχός του γινόταν με παροχόμετρο συνδεδεμένο στο κεντρικό δίκτυο ύδρευσης.

4.4 Σύστημα συλλογής δεδομένων

Για την καταγραφή και αποθήκευση των πειραματικών δεδομένων από τις μετρητικές συσκευές χρησιμοποιήθηκαν δύο Συστήματα συλλογής δεδομένων (Data Acquisition Systems). Οι συσκευές αυτές δέχονται ως είσοδο την τάση που δημιουργείται στις συσκευές μέτρησης και παρέχουν ως αποτέλεσμα, ψηφιακά, τη μέτρηση σε επιθυμητές μονάδες. Τα θερμοστοιχεία παράγουν σήμα τάσης, το οποίο επιλέχθηκε να μετατρέπεται σε θερμοκρασία (μετρούμενη σε βαθμούς Κελσίου), ενώ ο μετρητής ροής θερμότητας παράγει σήμα τάσης το οποίο και χρησιμοποιείται απευθείας.

Το ένα σύστημα που χρησιμοποιήθηκε είναι σύστημα συλλογής δεδομένων *NI cDAQ-*9172, το οποίο είναι της National Instruments και φαίνεται στο Σχήμα 4.12 (αριστερά). Στο σύστημα αυτό είναι συνδεδεμένη μια κάρτα με 18 κανάλια (channels) για την είσοδο σημάτων (signals) από συσκευές μέτρησης όπως θερμοστοιχεία, δυναμοκυψέλες κ.α. Στο σύστημα αυτό υπάρχει δυνατότητα να συνδεθούν μέχρι οκτώ κάρτες. Το σύστημα της National Instruments συνδέθηκε μέσω θύρας USB με τον ηλεκτρονικό υπολογιστή και χρησιμοποιήθηκε αντίστοιχο λογισμικό της εταιρείας για τον έλεγχο, τη δημιουργία, τη διαχείριση και φυσικά, τη δυνατότητα ορισμού βασικών παραμέτρων των καναλιών που χρησιμοποιούνται (όπως το εύρος μέτρησης, οι μονάδες μέτρησης κ.α).

Το δεύτερο σύστημα συλλογής δεδομένων που χρησιμοποιήθηκε είναι το Agilent 34972A της εταιρείας Agilent Technologies όπως φαίνεται στο Σχήμα 4.12 (δεξιά). Σε αυτό εφαρμόζονται μέχρι τρεις κάρτες, οι οποίες δέχονται σήμα (signal) για καθένα από τα 20 κανάλια (channels) τα οποία διαθέτουν. Στα πειράματα, χρησιμοποιήθηκαν τρεις κάρτες, με το σύνολο των 60 καναλιών τους να συμπληρώνονται από θερμοστοιχεία. Από την εταιρεία δίνεται το απαραίτητο λογισμικό για τη διαχείριση και τον ορισμό βασικών παραμέτρων των καναλιών (όπως το εύρος μέτρησης, οι μονάδες μέτρησης κ.α), ενώ η σύνδεση του Agilent με τον ηλεκτρονικό υπολογιστή έγινε μέσω θύρας USB. Παρόλα αυτά δημιουργήθηκε υπορουτίνα ώστε και τα δύο συστήματα να είναι διαχείρισιμα από ένα κοινό πρόγραμμα.

Ο χρόνος δειγματοληψίας των τιμών από τα δύο συστήματα συλλογής δεδομένων που χρησιμοποιήθηκαν ήταν τρία δευτερόλεπτα (3 s). Το Agilent 34972A εκτελεί σειριακή σάρωση όλων των καναλιών του. Στην περίπτωση των πειραμάτων και τα 60 κανάλια ήταν κατειλημμένα, όποτε ο χρόνος που χρειάζεται για να τα σαρώσει είναι περίπου 2,9 s. Για το λόγο αυτό ο χρόνος δειγματοληψίας στρογγυλοποιείται στα 3 s ώστε να υπάρχει αρκετός χρόνος για τη συλλογή δεδομένων από όλα τα συνδεδεμένα κανάλια και να μη χάνονται μετρήσεις.

Σχήμα 4.12 Φωτογραφίες των συστημάτων συλλογής δεδομένων NI cDAQ 9172 (αριστερά) και Agilent 34972A (δεξιά).

4.4.1 Λογισμικό Labview

Ο ηλεκτρονικός υπολογιστής του εργαστηρίου είχε ως λειτουργικό σύστημα τα Microsoft Windows 10. Για την αποθήκευση, επεξεργασία και παρουσίαση των τιμών από τις κάρτες συλλογής δεδομένων των δυο συστημάτων που χρησιμοποιήθηκαν, χρησιμοποιήθηκε το λογισμικό LabVIEW. Στο Σχήμα 4.13 δίνεται μια σχηματική απεικόνιση της σύνδεσης όλων των μετρητικών διατάξεων.

Σχήμα 4.13 Απεικόνιση μετρητικών διατάξεων και σύνδεση τους μέσω LabVIEW με τον Η/Υ

Το πρόγραμμα LabVIEW είναι ένα περιβάλλον προγραμματισμού στο οποίο χρησιμοποιείται η γλώσσα προγραμματισμού G, η οποία είναι γλώσσα γραφικού σχεδιασμού. Αυτή είναι και η μεγάλη διαφορά με γλώσσες κειμένου όπως η C, η C++ κ.α. Έτσι, με το LabVIEW, δημιουργείται πρόγραμμα το οποίο έχει τη μορφή διαγράμματος.

Το LabVIEW περιέχει βιβλιοθήκες με υπορουτίνες για κάθε είδους πρόγραμμα (και για το Agilent 34972A) Οι βιβλιοθήκες αυτές περιέχουν εργαλεία και υπορουτίνες για συλλογή δεδομένων, επεξεργασία, αποθήκευση, αλλά και τρόπο παρουσίασης σε πραγματικό χρόνο (real time).

Για την ανάπτυξη οποιουδήποτε προγράμματος γενικού σκοπού χρειάζεται να χρησιμοποιούνται πολλά προγραμματιστικά εργαλεία. Ένα από αυτά, ιδιαίτερης σημασίας, είναι η οπτικοποίηση της εκτέλεσης του προγράμματος, ώστε να φαίνεται ο τρόπος μεταβολής και επεξεργασίας των δεδομένων κατά την εκτέλεση του προγράμματος, ενώ υπάρχει και εργαλείο ένδειξης του σημείου στο οποίο έχει γίνει λάθος κατά την συγγραφή του προγράμματος (debugging tools). Σημαντικό επίσης εργαλείο είναι η δυνατότητα εκτέλεσης του προγράμματος σε διάφορα βήματα, κάτι που χρησιμοποιείται συχνά σε πολλές εφαρμογές.

Βασικό στοιχείο του προγράμματος είναι τα VIs (virtual instrument), τα οποία εκτελούνται από τον πίνακα ελέγχου (front panel) και από το διάγραμμα ροής δεδομένων (block diagram) (Σχήματα 4.14 και 4.15). Μέσω αυτών, ο χρήστης έχει τη δυνατότητα επικοινωνίας με το πρόγραμμα και τις λειτουργίες του. Με τον πίνακα ελέγχου ο χρήστης μπορεί να αλλάξει λειτουργίες και να έχει οπτικοποίηση των δεδομένων του, ενώ το διάγραμμα ροής δεδομένων ο χρήστης μπορεί να απότο διάγραμμα αποτελεί την απεικόνιση του προγράμματος προς εκτέλεση. Και στα δύο VIs ο χρήστης μπορεί να επέμβει και οποιαδήποτε αλλαγή εφαρμόσει στο ένα θα εμφανιστεί αυτόματα και στο άλλο VI.

CONTROL PANEL	WALL TEMPERATURES ROOM & BD TEMPERATURES	HEAT FLUX VELOCITY AIR FLOW FAR TEMPS MEDIUM TE VISA Resource Name 2 Agilent_34970A	
	Transducer Type (4:Def-Last) 2 Thermocouple 0 Reset (T: Reset) 2 Reset	Scan List (empty) 101:120,201:220,301:320	
	Don't Reset	AGILENT STOP	
		STOP	
		NI STOP	
		STOP	
%S			

Σχήμα 4.14 To front panel του προγράμματος Labview, πίνακας χειρισμού

Για τη δημιουργία ενός διαγράμματος χρησιμοποιούνται κάποια βασικά εργαλεία τα οποία περιέχονται στο πρόγραμμα και θα αναλυθούν παρακάτω.

Αυτά αποτελούνται από τα εργαλεία ελέγχου (control) και τους δείκτες (indicators). Τα εργαλεία ελέγχου αποτελούν δεδομένα εισόδου ενώ οι δείκτες δεδομένα εξόδου. Αυτά μπορεί να έχουν αριθμητική τιμή (ακέραιος, πραγματικός), TRUE ή FALSE, ενώ μπορεί να έχουν χαρακτήρες μορφής ASCII για απεικόνιση κειμένων.

Επίσης, σημαντικό χαρακτήρα έχουν οι επαναληπτικοί βρόγχοι (loops) και οι σήραγγες δομής (structure tunnels). Με επαναληπτικό βρόγχο εκτελείται επανειλημμένα κάποιο μέρος

του προγράμματος ή ολόκληρο το πρόγραμμα όσο η συνθήκη εκτέλεσης έχει την τιμή TRUE, ενώ μόλις πάρει την τιμή FALSE η εκτέλεση σταματάει. Η σήραγγα δομής επιτρέπει στο χρήστη τη μεταφορά δεδομένων από μια δομή σε άλλη. Με τη χρησιμοποίηση γραφημάτων (graphs) γίνεται η απεικόνιση δεδομένων ίδιου τύπου, ενώ ίδιου τύπου δεδομένα περιέχουν και τα διανύσματα (arrays). Αντίθετα, διαφορετικού τύπου δεδομένα μπορεί να έχουν οι ομάδες (clusers).

Τέλος, μείζονος σημασίας είναι η *δομή Case*, η οποία αποτελεί δομή εκτέλεσης εντολών κατά συνθήκη. Με τον τρόπο αυτό δίνεται η δυνατότητα εκτέλεσης εντολών με αυστηρή σειρά η οποία καθορίζεται από το χρήστη (χρησιμοποίηση των τιμών TRUE/FALSE).

Για κάθε πείραμα, αναπτύχθηκε και χρησιμοποιήθηκε κατάλληλο πρόγραμμα σε περιβάλλον LabVIEW για τον έλεγχο, την καταγραφή και την αποθήκευση των μετρήσεων των μετρητικών διατάξεων. Η μεθοδολογία που χρησιμοποιήθηκε για τη σχεδίαση προγράμματος σε κάθε πείραμα ήταν ίδια, έχοντας κάποιους βασικούς άξονες.

Αρχικά, μέσω υπορουτίνων από βιβλιοθήκες του προγράμματος, γινόταν η αναγνώριση των συσκευών που ήταν συνδεδεμένες με τις θύρες USB. Έτσι αναγνωριζόταν το μέγεθος του σήματος που έστελναν οι συσκευές απόκτησης δεδομένων.

Σχήμα 4.15 To block diagram με το πρόγραμμα που αναπτύχθηκε για τη διεξαγωγή των πειραμάτων

Στη συνέχεια, τοποθετήθηκε επαναληπτικός βρόγχος και οι εντολές που βρίσκονταν εντός αυτού πραγματοποιούνταν ανά 3 s (συχνότητα δειγματοληψίας). Εντός του επαναληπτικού βρόγχου πραγματοποιούταν συλλογή σήματος μέσω των εργαλείων ελέγχου (Signal Output) από τις συσκευές που είχαν ήδη αναγνωριστεί. Στη συνέχεια, σημαντικό βήμα αποτέλεσε ο διαχωρισμός των σημάτων από τις συσκευές για την καλύτερη διαχείριση και επεξεργασία κάθε μέτρησης. Αυτό έγινε με εισαγωγή του εργαλείου ελέγχου Signal Input, το οποίο κατηγοριοποιούσε τα σήματα σε ομάδες με οποιαδήποτε επιθυμητή σειρά. Με τον τρόπο αυτό έγινε δυνατή η επεξεργασία οποιουδήποτε σήματος θεωρούνταν σημαντικό, ενώ από το σημείο εκείνο γινόταν εύκολη η παρουσίαση των αποτελεσμάτων στην οθόνη του Η/Υ. Έχοντας τη δυνατότητα επεξεργασίας κάθε σήματος, με τους δείκτες, απεικονίζονταν σε γραφικές παραστάσεις (graph) οι τιμές των μετρήσεων σε πραγματικό χρόνο. Επειδή τα

σε δεκαδική μορφή μέσω αντίστοιχης ενσωματωμένης εντολής του προγράμματος. Παράλληλα, γινόταν αποθήκευση όλων των τιμών σε αρχεία μορφής .txt σε φάκελο του υπολογιστή που οριζόταν από την αρχή.

Τέλος, τοποθετήθηκε χρονόμετρο εκτός του επαναληπτικού βρόγχου το οποίο άρχιζε με την εκκίνηση του προγράμματος (που γινόταν από το χρήστη) και τελείωνε με το κουμπί Stop (επίσης από το χρήστη). Οι λειτουργίες που χρησιμοποιήθηκαν στο πρόγραμμα φαίνονται στο διάγραμμα ροής του Σχήματος 4.16, στο Σχήμα 4.15. απεικονίζεται ένα μέρος του προγράμματος, ενώ στα Σχήματα 4.17 και 4.18 απεικονίζεται η οθόνη κατά τη διάρκεια ενός πειράματος.

Κάθε μετρητικό όργανο από αυτά που χρησιμοποιήθηκαν (θερμοστοιχεία, μετρητές ροής θερμότητας, δικατευθυντικοί μετρητές ταχύτητας), στέλνει σήμα στον υπολογιστή υπό μορφή τάσης. Οι μέθοδοι αναγωγής του σήματος ηλεκτρικής τάσης, για τη διαμόρφωση της τελικής τιμής κάθε μεγέθους, σε μονάδες που μπορούν να αξιοποιηθούν, φαίνονται στον πίνακα 4.4 και έχει γίνει ήδη μέσα στο πρόγραμμα.

Μέγεθος	Μετρητικό στοιχείο	Αρχικά μετρούμενο μέγεθος	Αρχικές μονάδες	Σχέση μετατροπής	Τελικές μονάδες
Θερμοκρασία	Θερμοστοιχείο Κ	Θερμοκρασία	Volt	$T = Volts/41(\mu V/^{\circ}C)$	°C
Ταχύτητα	Δικατευθυντικός μετρητής ταχύτητας	Πίεση, Θερμοκρασία	Volt	$P (Pa)=2.49 \times Volts - 12.45$ $\rho = \frac{352.8}{T}$ $U (m/sec)=\frac{1}{1.08\sqrt{\frac{2P}{\rho}}}$	m/sec
Ροή θερμότητας	Μετρητής ροής θερμότητας	Ροή θερμότητας	Volt	Volts 0.000167	kW/m ²

	T			
Ι ΙΙνακας 4.4	διзσειχ	αναγωγης	μετρουμενων	μεγεθων

Σχήμα 4.17 Διάγραμμα μέτρησης θερμορροής κατά τη διάρκεια του πειράματος

Σχήμα 4.18 Διάγραμμα μέτρησης θερμοκρασίας δωματίου κατά τη διάρκεια του πειράματος

5 δοκιμές φωτίας

Τα πειράματα διεξήχθησαν στο Εργαστήριο Ετερογενών Μειγμάτων και Συστημάτων Καύσης της σχολής Μηχανολόγων Μηχανικών του Ε.Μ.Π. κατά το πρώτο εξάμηνο του 2017. Συνολικά διεξήχθησαν 16 δοκιμές φωτιάς κατά το διάστημα αυτό. Οι παράμετροι οι οποίες μεταβάλλονταν ήταν η γεωμετρία του ανοίγματος, η ισχύς της φωτιάς, καθώς και το ύψος του καυστήρα. Το καύσιμο που χρησιμοποιήθηκε σε όλα τα πειράματα ήταν μεθάνιο (CH₄), καθαρότητας 99.95%. Η διάταξη των θερμοστοιχείων εξωτερικά του δωματίου άλλαζε, ενώ οι θέσεις των μετρητών ροής θερμότητας παρέμειναν σταθερές σε όλα τα πειράματα. Συνολικά, τα χαρακτηριστικά του κάθε πειράματος που διεξήχθη και θα αναλυθεί στη συνέχεια, φαίνονται στον Πίνακα 5.1.

Ονομασία Πειράματος	Καύσιμο	Τύπος ανοίγματος	Διαστάσεις ανοίγματος [ύψος x πλάτος] (mm)	Απόσταση άνω επιφάνειας καυστήρα από δάπεδο (mm)	Επίπεδα ισχύος φωτιάς (kW)
D55		Πόρτα	500v200	55	80/100/130/160
D200	Μεθάνμο	Πορια	500x200	200	80/100/130/160
W55		Παράθυρο		55	80/100/130/160
W200		Πάραθυρο	300X300	200	100/110/130/160

Πίνακας 5.1	Βασικά γ	<i>αρακτηριστικά</i>	δοκιμών	ωωτιάς
111001005 0.1	Duoina y	(apakin pionika	00101000	ywnas

5.1 Διάταξη μετρητικών συσκευών

Όπως είναι κατανοητό, η τοποθέτηση των μετρητικών συσκευών είναι καθοριστικής σημασίας για τα αποτελέσματα που θα εξαχθούν. Η τοποθέτηση τους γίνεται σε σημεία που είναι άξια μελέτης προκειμένου να διερευνηθούν τα φαινόμενα που λαμβάνουν χώρα. Η ακριβής θέση των συσκευών καθορίζεται έπειτα από θεωρητική μελέτη και προσομοιώσεις. Συνολικά τοποθετήθηκαν 87 θερμοστοιχεία, 4 δικατευθυντικοί μετρητές ταχύτητας και 3 μετρητές ροής θερμότητας.

5.1.1 Θερμοστοιχεία

Τα θερμοστοιχεία χωρίστηκαν σε δύο μεγάλες κατηγορίες ανάλογα με το τι «είδος» θερμοκρασίας που έπρεπε να μετρηθεί. Έτσι λοιπόν προέκυψαν:

1ⁿ κατηγορία: Θερμοστοιχεία μέτρησης θερμοκρασίας αέριας φάσης (αέρα ή καυσαερίων) εντός του δωματίου και εκτός του δωματίου, στην περιοχή της ΦΕΑ. Τα θερμοστοιχεία για τη μέτρηση της θερμοκρασίας του αέρα εντός του δωματίου ήταν 15 σε αριθμό και τοποθετήθηκαν σε 5 διαφορετικά ύψη (100, 200, 300, 400 και 500mm) από το δάπεδο του διαμερίσματος. Δέκα από αυτά τοποθετήθηκαν στην δυτική πλευρά και 5 στην ανατολική. Για τη μέτρηση θερμοκρασίας της εξερχόμενης φλόγας χρησιμοποιήθηκαν 56 θερμοστοιχεία σε διαφορετικά ύψη και 6 διαφορετικές αποστάσεις (10, 50, 100, 200, 300 και 500mm) από την επιφάνεια της πρόσοψης, προκειμένου να αποκτηθούν μετρήσεις θερμοκρασίας σε όλο το πιθανό εύρος της φλόγας.

✓ 2^η κατηγορία: Θερμοστοιχεία μέτρησης θερμοκρασίας στερεών τοιχωμάτων δωματίου και πρόσοψης. Για τη μέτρηση της θερμοκρασίας των τοιχωμάτων του δωματίου χρησιμοποιήθηκαν 4 θερμοστοιχεία, 2 στη βόρεια πλευρά του διαμερίσματος (στην «πλάτη») και 2 στην οροφή. Αντίστοιχα στην πρόσοψη χρησιμοποιήθηκαν 6 θερμοστοιχεία για τη μέτρηση της θερμοκρασίας της εμπρός (εκτεθειμένης) επιφάνειας και δυο για την πίσω (μη-εκτεθειμένη) επιφάνεια της πρόσοψης.

5.1.2 Μετρητές ροής θερμότητας

Για να υπολογιστεί το θερμικό φορτίο που δεχόταν η πρόσοψη χρησιμοποιήθηκαν τρεις μετρητές ροής θερμότητας. Τοποθετήθηκαν σε τρία διαφορετικά ύψη, τα οποία ήταν τα σταθερά σε όλα τα πειράματα (650, 850 και 1050mm) και ακριβώς στον άξονα συμμετρίας του ανοίγματος.

5.1.3 Δικατευθυντικοί μετρητές ταχύτητας

Οι μετρητές είχαν ως σκοπό τη μέτρηση της ταχύτητας τόσο των εξερχόμενων καυσαερίων, όσο και του εισερχόμενου αέρα και για το σκοπό αυτό χρησιμοποιήθηκαν τέσσερις μετρητές. Όπως αναφέρθηκε και σε προηγούμενο κεφάλαιο, ακριβώς στο άνοιγμα παρατηρείται κίνηση αερίων προς δύο κατευθύνσεις. Άνωθεν του ουδετέρου επιπέδου εξέρχονται ζεστά καυσαέρια, περιοχή στην οποία τοποθετήθηκαν δύο μετρητές, ενώ κάτωθεν αυτού εισέρχεται «φρέσκος» αέρας, όπου τοποθετήθηκαν οι άλλοι δυο. Στο Σχήμα 5.1 απεικονίζονται οι θέσεις των δικατευθυντικών μετρητών ταχύτητας για την περίπτωση γεωμετρίας πόρτας και παραθύρου.

Σχήμα 5.1 Φωτογραφία των τοποθετημένων δικατευθυντικών μετρητών ταχύτητας στην περίπτωση της γεωμετρίας πόρτας (αριστερά) και παραθύρου (δεξιά), κατά τη διάρκεια πειράματος.

5.2 Εκτίμηση σφαλμάτων

Ως σφάλμα ορίζεται η διαφορά μεταξύ της τιμής του μεγέθους που προέκυψε από κάποια μέτρηση από την «πραγματική» του τιμή. Η πραγματική αυτή τιμή δε είναι σχεδόν ποτέ γνωστή, και κατά συνέπεια εκτίμηση του σφάλματος γίνεται με βάση συγκεκριμένες υποθέσεις. Υπάρχουν δύο είδη σφαλμάτων, το συστηματικό και το τυχαίο σφάλμα.

Το συστηματικό σφάλμα είναι το οφειλόμενο σε συστηματικές μεταβολές και συνήθως παραμένει σταθερό σε μια σειρά μετρήσεων. Τα συστηματικά σφάλματα είναι δυνατόν να οφείλονται σε κάποια από τις παρακάτω αιτίες:

- Ατελής βαθμονόμηση οργάνου
- Υποκειμενικό σφάλμα παρατηρητή
- Ατελής τεχνική μέτρησης (π.χ. κακή τοποθέτηση ενός θερμοστοιχείου μέσα σε ένα κανάλι ροής ρευστού.

Το τυχαίο σφάλμα είναι το οφειλόμενο σε τυχαίες μεταβολές και ποικίλλει από μέτρηση σε μέτρηση. Τα τυχαία σφάλματα είναι δυνατόν να οφείλονται σε κάποια από τις παρακάτω αιτίες:

- Διακυμάνσεις των πειραματικών συνθηκών (π.χ. λόγω χρονικής μεταβολής των τιμών των εξωτερικών μεταβλητών ή λόγω ελλιπούς ρύθμισης των τιμών των ανεξάρτητων μεταβλητών)
- Ανεπαρκής ανάγνωση οργάνου
- Διαταραχές που επιδρούν κατά μικρά και ακανόνιστα χρονικά διαστήματα

Από τα παραπάνω φαίνεται ότι σε μία μέτρηση μπορεί να συνυπάρχουν συστηματικά και τυχαία σφάλματα. Τα συστηματικά σφάλματα είτε εκτιμώνται κατά τη μέτρηση, είτε θεωρούνται δεδομένα (π.χ. το συστηματικό σφάλμα βαθμονόμησης). Τα τυχαία σφάλματα είναι δυνατόν να εκτιμηθούν, μόνο αν γίνουν επανειλημμένες μετρήσεις του ίδιου μεγέθους και κάτω από κατά το δυνατόν αμετάβλητες πειραματικές συνθήκες (Σιμόπουλος, 1989).

Προκειμένου να αποδοθεί το συνολικό ή σύνθετο σφάλμα της μέτρησης κάθε μεγέθους, πρέπει να συνδυαστεί κατάλληλα το μέγιστο πιθανό τυχαίο σφάλμα της μέτρησης (ε_μ), καθώς και το συστηματικό σφάλμα (S). Μετά από κατάλληλη στατιστική ανάλυση, η συνισταμένη των δύο σφαλμάτων, δηλαδή το συνολικό σφάλμα της μέτρησης, προσδιορίζεται με χρήση της Εξίσωσης (5.1) (Σιμόπουλος, 1989).

$$\boldsymbol{\varepsilon}_{o\lambda} = \sqrt{\boldsymbol{\varepsilon}_{\mu}^2 + \boldsymbol{S}^2} \tag{5.1}$$

Όπου:

εμ το μέγιστο πιθανό σφάλμα της μέτρησης το οποίο προκύπτει από τις μετρήσεις,

S: το συστηματικό σφάλμα (δίνεται από τον κάθε κατασκευαστή)

Το μέγιστο πιθανό σφάλμα (ε_μ) προκύπτει από την εξίσωση (5.2).

$$\varepsilon_{\mu} = 3\sigma_{x} \tag{5.2}$$

Όπου η τυπική απόκλιση της μέσης τιμής (σ_x) προσδιορίζεται μέσω της Εξίσωσης (5.3).

$$\sigma_x = \frac{s}{\sqrt{N}} \tag{5.3}$$

Όπου η τυπική απόκλιση (s) προσδιορίζεται μέσω της εξίσωσης (5.4).

$$s^{2} = \frac{1}{N} \sum_{i=1}^{N-1} \left(X_{i} - \bar{X} \right)^{2}$$
(5.4)

Όπου:

- Χ_i: η κάθε τιμή
- Χ : η μέση τιμή του δείγματος
- Ν: το μέγεθος του δείγματος

5.2.1 Εκτίμηση σφαλμάτων μέτρησης θερμοκρασίας

Η μετρούμενη θερμοκρασία από τα θερμοστοιχεία είναι διαφορετική από την πραγματική λόγω των μετρητικών σφαλμάτων που μπορεί να προκύψουν (Nakos, 2004). Στα πειράματα φωτιάς, όπου χρησιμοποιούνται θερμοστοιχεία για τη μέτρηση θερμοκρασίας στο εσωτερικό και στο εξωτερικό ενός δωματίου, οι παράγοντες που δημιουργούν τα μη συστηματικά σφάλματα είναι η επικάθηση αιθάλης στο αισθητήριο, η θερμική αδράνεια του θερμοστοιχείου, καθώς και η ακτινοβολία. Τα συστηματικά σφάλματα προκύπτουν κυρίως από σφάλματα κατά τη βαθμονόμηση, σφάλματα που οφείλονται στα καλώδια και στις προεκτάσεις αυτών και σφάλματα από τη σύνδεση των καλωδίων με τα συστήματα συλλογής δεδομένων (Nakos, 2004). Τα θερμοστοιχεία τύπου Κ, με τα καλώδια τα οποία χρησιμοποιήθηκαν, έχουν συστηματικό σφάλμα βαθμονόμησης που ανέρχεται στους ±2.2°C, ή ±0.75% (σύμφωνα με τον κατασκευαστή) για μετρήσεις θερμοκρασίας άνω των 0°C. Σε κάθε περίπτωση, επιλέγεται η τιμή του συστηματικού σφάλματος από την οποία προκύπτει η μεγαλύτερη κατά απόλυτο τιμή. Επίσης, για τη μείωση ενδεχόμενου λάθους κατά τη βαθμονόμηση των θερμοστοιχείων χρησιμοποιήθηκαν καινούργια καλώδια και προεκτάσεις, ώστε να μην έχουν φθαρεί από προηγούμενη χρήση. Συστηματικό σφάλμα το οποίο επίσης οφείλεται στα καλώδια των θερμοστοιχείων επιφέρει χρονική υστέρηση στη λήψη της μέτρησης.

Συστηματικά σφάλματα οφείλονται και στα συστήματα συλλογής δεδομένων. Από τους κατασκευαστές των συστημάτων συλλογής δεδομένων, δίνονται τιμές για συστηματικά σφάλματα που οφείλονται στο «θερμικό θόρυβο» .Πέραν του θερμικού θορύβου, τα κυκλώματα εμφανίζουν θόρυβο από επαγωγή που προκαλούν σε αυτά οι ηλεκτρομαγνητικές διαταραχές από το περιβάλλον, λόγω της διακριτότητας του φορτίου των φορέων σε ρεύματα χαμηλής έντασης καθώς και άλλους τύπους θορύβου (αυξανόμενες συχνότητες, τυχαίες μικροδιακυμάνσεις) που παράγονται ενδογενώς στο κύκλωμα λόγω των χαρακτηριστικών των στοιχείων του. Οι τιμές των σφαλμάτων λόγω θορύβου είναι 0.0015% επί της τιμής και 0.0004% επί του εύρους των τιμών (Agilent /34972A, 2012), (NI cDAQ-9172, 2008). Παρόλα αυτά, για τον υπολογισμό των σφαλμάτων της θερμοκρασίας ο θόρυβος αυτός δε λαμβάνεται υπόψη. Σύμφωνα με τον κατασκευαστή, το συστηματικό σφάλμα του οργάνου είναι S = 2.2

5.2.2 Εκτίμηση σφαλμάτων μέτρησης ροής θερμότητας

Στο μετρητή ροής θερμότητας η ακρίβεια βαθμονόμησης είναι ±3%. Επιπροσθέτως, εκτός από αυτό το συστηματικό σφάλμα, υπάρχουν και κάποια άλλα που οφείλονται στη μηγραμμικότητα, τη συναγωγή και την ακτινοβολία. Κατά τη μέτρηση, ο αισθητήρας θεωρείται ότι δημιουργεί τάση η οποία είναι γραμμική ως προς τη ροή θερμότητας, κάτι το οποίο δεν είναι αληθές. Η απόκλιση αυτή από την ιδανική συμπεριφορά, αποτυπώνεται στο σφάλμα μηγραμμικότητας. Το σφάλμα αυτό εκφράζεται ως ποσοστό επί της πλήρους κλίμακας ροής θερμότητας που χρησιμοποιήθηκε κατά τη βαθμονόμηση στο εργοστάσιο παρασκευής και μπορεί να είναι αρκετά μεγάλο. Γι' αυτό το λόγο θα πρέπει αν είναι συνατόν να χρησιμοποιείται τέτοιος αισθητήρας σε επίπεδα όπου η ροή θερμότητας να είναι υψηλότερα από το 50% της πλήρους κλίμακας ροής θερμότητας. Οπότε το σφάλμα μη-γραμμικότητας υπολογίζεται ως εξής:

(Μη-γραμμικότητα) = (Σφάλμα μέτρησης) / (Πλήρους κλίμακας ροή θερμότητας)

,όπου (Σφάλμα μέτρησης) = (Πραγματική τιμή) - (Τιμή μέτρησης)

Θα πρέπει να σημειωθεί πως για μεγάλες τιμές ροής θερμότητας, το σφάλμα είναι αρκετά μικρότερο σε σχέση με τη λειτουργία σε χαμηλές τιμές ροής θερμότητας. Για παράδειγμα, σε μια τιμή των 200 kW/m², ένα σφάλμα γραμμικότητας $\pm 2\%$ δίνει σφάλμα μέτρησης ± 4 kW/m², ενώ στις περιπτώσεις των πειραμάτων όπου καταγράφηκαν τιμές χαμηλότερες των 100 kW/m², το σφάλμα μέτρησης κυμαίνεται σε λίγο χαμηλότερα επίπεδα από το $\pm 20\%$.

Σε τέτοιους μετρητές ροής θερμότητας, όπως αναφέρθηκε, δημιουργούνται επίσης σφάλματα από τη συναγωγή και την ακτινοβολία. Λόγω συναγωγής δημιουργούνται δύο σφάλματα. Το πρώτο είναι το σφάλμα συναγωγής το οποίο οφείλεται στη διαφορά θερμοκρασίας μεταξύ αέρα-αισθητήρα και δημιουργεί επίδραση στην τιμή της ροής θερμότητας, ενώ το δεύτερο είναι το σφάλμα ευαισθησίας, όπου ο τοπικός συντελεστής μεταφοράς θερμότητας κυμαίνεται ανάλογα με την ταχύτητα του αέρα.

Επειδή η βαθμονόμηση γίνεται βάσει ακτινοβολίας, η μέτρηση ενός μετρητή ροής θερμότητας αφορά την εξισορρόπηση ακτινοβολίας, κατά την οποία η ροή θερμότητας όπως μετρήθηκε από τον αισθητήρα (σε kW/m²) είναι η διαφορά της ροής θερμότητας που προσπίπτει μείον τη ροή θερμότητας που εκπέμπεται (σε kW/m² επίσης). Και οι δύο αυτές ροές θερμότητας είναι ανάλογες της σταθεράς Boltzmann, με τη δεύτερη να είναι ανάλογη της θερμοκρασίας του αισθητήρα και την πρώτη ανάλογη της θερμοκρασίας της πηγής της ακτινοβολίας. Η ροή που εκπέμπεται στους 20°C είναι 0.420 kW/m², οπότε κατά τη βαθμονόμηση, όπου οι θερμοκρασίες είναι άνω των 800°C, η συνεισφορά αυτή θεωρείται αμελητέα και θεωρείται 0.6% (Hukseflux, 2011). Το συστηματικό σφάλμα του οργάνου είναι, σύμφωνα με τον κατασκευαστή, $S = \pm 6\%$.

5.2.3 Εκτίμηση σφαλμάτων μέτρησης ταχύτητας

Η αβεβαιότητα μέτρησης του δικατευθυντικού μετρητή ταχύτητας επηρεάζεται από τη γωνία τοποθέτησης του μετρητή και της διεύθυνσης της ροής. Στην περίπτωση που μετρητής και ροή έχουν γωνία έως 50 μοίρες μεταξύ τους, τότε σύμφωνα με τα αποτελέσματα των McCaffrey & Heskestad (1976) το σχετικό σφάλμα είναι της τάξης του ±0.10 m/s. Παρόλα αυτά σύμφωνα με τη μελέτη των Liu et al. (1990), στην περίπτωση όπου η γωνία είναι 30 μοίρες το σφάλμα λαμβάνει την τιμή ±0.18m/s, για σχετικά μικρούς αριθμούς Reynolds (100<Re<1200) (Kim and Kim, 2013). Το συστηματικό σφάλμα του οργάνου είναι, σύμφωνα με τον κατασκευαστή, S = 0.10m/s.

5.3 Παραμετρικές μελέτες

Κατά τη διάρκεια εξέλιξης μιας φωτιάς λαμβάνουν χώρα πολλά φαινόμενα. Προκειμένου να μελετηθούν πλήρως τα φαινόμενα αυτά, και να διαπιστωθεί πώς μεταβάλλονται τα χαρακτηριστικά τους, έγινε επανάληψη των δοκιμών φωτιάς, αλλάζοντας κάθε φορά μία από τις μεταβλητές που διαδραματίζουν σημαντικό ρόλο. Έτσι στα πειράματα μελετήθηκε η επίδραση των αλλαγών της ισχύος του καυστήρα, της γεωμετρίας του ανοίγματος και του ύψους του καυστήρα εντός του διαμερίσματος. Πραγματοποιήθηκαν συνολικά 16 πειράματα, τα χαρακτηριστικά των οποίων φαίνονται στον Πίνακα 5.2.

5.3.1 Ισχύς καυστήρα

Μελετήθηκαν τέσσερα διαφορετικά επίπεδα ισχύος του καυστήρα. Η ισχύς του καυστήρα, όπως φαίνεται και στην εξίσωση (5.5) είναι το γινόμενο της θερμογόνου δύναμης του καυσίμου επί την παροχή μάζας αυτού. Το καύσιμο που χρησιμοποιήθηκε σε όλα τα πειράματα ήταν το μεθάνιο, οπότε η θερμογόνος δύναμη ήταν σταθερή και ίση με 55000 kJ/kg.

Η παράμετρος τελικά που μεταβαλλόταν και άλλαζε την ισχύ της φωτιάς ήταν η ογκομετρική παροχή καυσίμου (V) (120,150,200,240 Ι_N/min).

$$\dot{Q} = m_B H_u \tag{5.5}$$

Όπου,

. Q η ισχύς καυστήρα (kW)

m_Bη παροχή μάζας καυσίμου (kg/s)

H^{*u*} η θερμογόνος δύναμη του μεθανίου (kJ/kg)

Το καύσιμο διοχετεύεται στον καυστήρα, μέσω παροχόμετρων, τα οποία ελέγχονται ηλεκτρονικά. Μέσω ηλεκτρονικού υπολογιστή ελέγχεται και ρυθμίζεται η ογκομετρική παροχή. Για τους υπολογισμούς όμως, απαραίτητη είναι η παροχή μάζας. Για τη μετατροπή αυτή χρησιμοποείται η πυκνότητα καυσίμου, η οποία σύμφωνα με τον κατασκευαστή πρέπει να είναι ανηγμένη στους 0°C. Έτσι λοιπόν θεωρώντας για το μεθάνιο πυκνότητα στους 0°C ίση με 0.717kg/m³, η παροχή μάζας του προσδιορίζεται μέσω της Εξίσωσης (5.6).

$$\dot{m}_B = \dot{V} \left[\frac{m^3}{s} \right] \cdot \rho \left[\frac{kg}{m^3} \right]$$
 (5.6)

5.3.2 Μέγεθος ανοίγματος

Μελετήθηκαν δύο είδη ανοίγματος, ένα που αντιστοιχούσε σε διάταξη πόρτας και ένα άλλο που αντιστοιχούσε σε διάταξη παραθύρου (Σχήμα 5.2). Ανάλογα με τη μορφή του ανοίγματος επηρεάζεται και ο παράγοντας αερισμού του δωματίου, και μάλιστα στην περίπτωση παραθύρου είναι μικρότερος, αφού μειώνεται η διαθέσιμη επιφάνεια. Το είδος πόρτας που μελετήθηκε είχε διαστάσεις 500x200mm, ενώ εκείνο του παραθύρου είχε διαστάσεις 300x300mm.

Σχήμα 5.2 Γεωμετρία ανοιγμάτων στην περίπτωση διάταξης πόρτας (αριστερά) και παραθύρου (δεξιά)

5.3.3 Ύψος καυστήρα

Εκτός από την ισχύ του καυστήρα μελετήθηκε και η επίδραση της μεταβολής του ύψους του καυστήρα μέσα στο διαμέρισμα (Σχήμα 5.3). Τα δύο ύψη που μελετήθηκαν αντιστοιχούσαν στην περίπτωση που η κάτω πλευρά του καυστήρας ήταν τοποθετημένη ακριβώς στο δάπεδο του δωματίου, με αποτέλεσμα η άνω επιφάνεια του να απέχει 55 mm από αυτό, ενώ στη δεύτερη περίπτωση η άνω πλευρά του καυστήρα βρισκόταν σε ύψος 200mm από το δάπεδο του διαμερίσματος.

A/A	Ονομασία πειράματος	Τύπος ανοίγματος	Απόσταση άνω επιφάνειας καυστήρα από δάπεδο (mm)	Ογκομετρική παροχή καυσίμου (lt _N /min)	Ισχύς φωτιάς (kW)	Παροχή καυσίμου <i>m_B</i> (kg/s)	
1	D55-80			120	80	0.00143	
2	D55-100		55	150	100	0.00179	
3	D55-130		55	200	130	0.00239	
4	D55-160	Πόρτα		240	160	0.00287	
5	D200-80		Πορια	120	80	0.00143	
6	D200-100			200	150	100	0.00179
7	D200-130		200	200	130	0.00239	
8	D200-160			240	160	0.00287	
9	W55-80			120	80	0.00143	
10	W55-100		55	150	100	0.00179	
11	W55-130		55	200	130	0.00239	
12	W55-160	Παράθυρο		240	160	0.00287	
13	W200-100	Παραθυρο		150	100	0.00179	
14	W200-110	10	200	170	110	0.00203	
15	W200-130		200	200	130	0.00239	
16	W200-160			240	160	0.00287	

Πίνακας 5.2 Βασικά χαρακτηριστικά πραγματοποιηθέντων πειραμάτων (παραμετρική μελέτη).

Σχήμα 5.3 Γεωμετρία παραθύρου με υψηλή θέση καυστήρα (αριστερά), γεωμετρία πόρτας με χαμηλή θέση καυστήρα (δεξιά).

Στα Σχήματα 5.4 και 5.5 απεικονίζεται η θέση όλων μετρητικών στοιχείων τόσο εκτός όσο και εντός του διαμερίσματος για τις περιπτώσεις γεωμετρίας πόρτας (Σχήμα 5.4) και παραθύρου (Σχήμα 5.5). Οι ακριβείς συντεταγμένες της θέσης του κάθε αισθητήρα δίνονται, αντίστοιχα, στους Πίνακες Α.1 και Α.3 του Παραρτήματος.

Σχήμα 5.4 Διάταξη μετρητικών συσκευών για τη γεωμετρία πόρτας

Σχήμα 5.5 Διάταξη μετρητικών συσκευών για τη γεωμετρία παραθύρου

6 ΠΕΙΡΑΜΑΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ ΦΩΤΙΑΣ

Τα πειραματικά αποτελέσματα χωρίστηκαν σε 5 κύριες κατηγορίες, ανάλογα με το μετρούμενο μέγεθος: θερμοκρασίες εσωτερικού χώρου, θερμοκρασίες εξωτερικού χώρου, ταχύτητες στο άνοιγμα, θερμοκρασίες στην πρόσοψη και θερμορροή. Στο παρόν κεφάλαιο παρουσιάζεται σε μορφή διαγραμμάτων και σχολιάζεται η επίδραση της ισχύος της φωτιάς, της γεωμετρίας του ανοίγματος καθώς και του ύψους του καυστήρα στα παραπάνω μεγέθη.

6.1 Θερμοκρασίες εσωτερικού χώρου

Η μέτρηση θερμοκρασίας έγινε σε τρεις αποστάσεις εντός του δωματίου και σε κάθε απόσταση σε πέντε διαφορετικά ύψη (βλ. Σχήματα 5.3 και 5.4 και Πίνακες Α.1, Α.3).

6.1.1 Επίδραση ισχύος φωτιάς

Στα Σχήματα 6.1 και 6.2 απεικονίζεται η μεταβολή της θερμοκρασίας καθ' ύψος ανάλογα με την ισχύ της φωτιάς.

Σχήμα 6.1 Επίδραση ισχύος φωτιάς στη θερμοκρασία εσωτερικού χώρου, για γεωμετρία πόρτας, στη θέση x= - 492.5mm και χαμηλή θέση καυστήρα (αριστερά) και στη θέση x= -717.5mm και υψηλή θέση καυστήρα (δεξιά).

Με βάση τα Σχήματα 6.1 και 6.2 για την υψηλή θέση καυστήρα παρατηρείται πώς με την αύξηση της ισχύος, αυξάνεται και η θερμοκρασία εντός του δωματίου. Αντίθετα στις περιπτώσεις χαμηλής θέσης καυστήρα, φαίνεται πως στα χαμηλά επίπεδα ισχύος επικρατούν μεγαλύτερες θερμοκρασίες. Οι καμπύλες όλων των σχημάτων ακολουθούν παρόμοια συμπεριφορά, με κοινή αναφορά το «σπάσιμο» που παρατηρείται σε ύψος 400mm και την μικρή πτώση της θερμοκρασίας.

Σχήμα 6.2 Επίδραση ισχύος φωτιάς στη θερμοκρασία εσωτερικού χώρου για γεωμετρία παραθύρου, στη θέση x= - 492.5mm και χαμηλή θέση καυστήρα (αριστερά) και στη θέση x= -267.5mm και υψηλή θέση καυστήρα (δεξιά).

6.1.2 Επίδραση γεωμετρίας ανοίγματος

Στα Σχήματα 6.3 και 6.4 απεικονίζεται η επίδραση της γεωμετρίας του ανοίγματος στα χαρακτηριστικά των θερμοκρασιών εντός του διαμερίσματος, για την απόσταση x=-267.5mm.

Σχήμα 6.3 Επίδραση γεωμετρίας ανοίγματος στη θερμοκρασία εσωτερικού χώρου στη θέση x=-267.5mm, για χαμηλή θέση καυστήρα, για ισχύ φωτιάς 100 και 130kW (αριστερά) και 80 και 160kW (δεξιά).

Σχήμα 6.4 Επίδραση γεωμετρίας ανοίγματος στη θερμοκρασία εσωτερικού χώρου στη θέση x=-267.5mm, για υψηλή θέση καυστήρα, για ισχύ φωτιάς 100 και 130kW (αριστερά), 80 και 160kW (δεξιά).

Σύμφωνα με τα Σχήματα 6.3 και 6.4 παρατηρείται ότι στη γεωμετρία παραθύρου (μπλε και πράσινες καμπύλες) οι θερμοκρασίες που αναπτύσσονται είναι μεγαλύτερες ειδικά στα χαμηλά ύψη για *z*=100 και 200mm. Η διαφορά αυτή μπορεί να φτάσει ακόμα και τους 250°C

(βλ. Σχήμα 6.3) η οποία όμως μειώνεται με την αύξηση του ύψους και τελικά παρατηρείται πως οι τιμές στο *z*=500mm είναι σχεδόν ίσες σε όλες τις περιπτώσεις και μάλιστα παρόμοια γύρω στους 800-850°C.

6.1.3 Επίδραση ύψους καυστήρα

Στα Σχήματα 6.5 και 6.6 απεικονίζεται η επίδραση του ύψους του καυστήρα στα χαρακτηριστικά των θερμοκρασιών εντός του διαμερίσματος, για την απόσταση *x*=-717.5mm.

Σχήμα 6.5 Επίδραση ύψους καυστήρα στη θερμοκρασία εσωτερικού χώρου στη θέση x=-717.5mm, για την περίπτωση γεωμετρίας πόρτας, για θερμική ισχύ 100 και 160kW (αριστερά) και 80 και 130kW (δεξιά).

Στις περισσότερες περιπτώσεις σύμφωνα με τα Σχήματα 6.5 και 6.6 φαίνεται πως υψηλότερη θέση καυστήρα συνεπάγεται και υψηλότερες θερμοκρασίες εντός του δωματίου. Με εξαίρεση την περίπτωση D200-100 και D55-100 (Σχήμα 6.5) όπου ισχύει ξεκάθαρα το αντίθετο.

6.2 Ταχύτητες στο άνοιγμα

Οι ταχύτητες εξόδου καυσαερίων από το διαμέρισμα και εισόδου αέρα μετρήθηκαν σε 4 σημεία στο άνοιγμα, με τη χρήση των δικατευθυντικών μετρητών ταχύτητας (bidirectional probes). Οι μεταβολές τους φαίνονται στα Σχήματα 6.7-6.12.

6.2.1 Επίδραση ισχύος φωτιάς

Σχήμα 6.7 Επίδραση ισχύος φωτιάς στις ταχύτητες στο άνοιγμα για την περίπτωση γεωμετρίας παραθύρου, χαμηλής θέσης καυστήρα (αριστερά), υψηλής θέσης καυστήρα (δεξιά).

Σχήμα 6.8 Επίδραση ισχύος φωτιάς στις ταχύτητες στο άνοιγμα για την περίπτωση γεωμετρίας πόρτας , χαμηλής θέσης καυστήρα (αριστερά), υψηλής θέσης καυστήρα (δεξιά).

Όπως φαίνεται από τα Σχήματα 6.7 και 6.8 οι καμπύλες που αντιστοιχούν σε διαφορετικά επίπεδα ισχύος φωτιάς έχουν παρόμοια μορφή. Με την αύξηση της ισχύος, παρατηρείται αισθητή αύξηση στην ταχύτητα εξόδου των καυσαερίων. Αντίθετα η ροή φρέσκου αέρα ναι μεν παρουσιάζει αύξηση, όχι όμως τόσο μεγάλη όσο αυτή των καυσαερίων.

6.2.2 Επίδραση γεωμετρίας ανοίγματος

Στα Σχήματα 6.9 και 6.10 απεικονίζεται η επίδραση της γεωμετρίας του ανοίγματος στις μετρούμενες ταχύτητες στο άνοιγμα. Παρατηρείται ότι η μορφή όλων των καμπυλών είναι κοινή με μία όμως διαφορά. Στη γεωμετρία παραθύρου οι ταχύτητες και ειδικά κοντά στο ανώφλι του ανοίγματος (στο σημείο μέτρησης σε ύψος 450mm δηλαδή), είναι εμφανώς μεγαλύτερες από ότι εκείνες που παρατηρούνται στην περίπτωση γεωμετρίας πόρτας, η διαθέσιμη επιφάνεια του ανοίγματος είναι μεγαλύτερη.

Σχήμα 6.9 Επίδραση γεωμετρίας ανοίγματος στις ταχύτητες στο άνοιγμα για την περίπτωση παραθύρου και πόρτας, χαμηλής θέσης καυστήρα για επίπεδα ισχύος 100 και 130kW (αριστερά), 80 και 160kW (δεξιά)

Σχήμα 6.10 Επίδραση γεωμετρίας ανοίγματος στις ταχύτητες στο άνοιγμα για την περίπτωση παραθύρου και πόρτας, υψηλής θέσης καυστήρα για επίπεδα ισχύος 100 και 130kW (αριστερά), 80 και 160kW (δεξιά)

6.2.3 Επίδραση ύψους καυστήρα

Στην περίπτωση της γεωμετρίας πόρτας (Σχήμα 6.11) παρατηρείται πως το ύψος του καυστήρα δεν έχει σχεδόν καμία επιρροή στις ταχύτητες. Οι τιμές αυξάνονται και η μορφή των καμπυλών είναι παρόμοια. Αξίζει μόνο να σημειωθεί πως στην περίπτωση της υψηλής θέσης καυστήρα οι τιμές είναι ελάχιστα μεγαλύτερες, σε σχέση με εκείνες της χαμηλής θέσης.

Σχήμα 6.12 Επίδραση θέσης καυστήρα στις ταχύτητες στο άνοιγμα για την περίπτωση παραθύρου χαμηλής και υψηλής θέσης καυστήρα για επίπεδα ισχύος 100 και 160kW (αριστερά), 80 και 130kW (δεξιά)

Αντίθετα στην περίπτωση παραθύρου (Σχήμα 6.12), όταν ο καυστήρας βρίσκεται χαμηλά παρατηρείται μείωση στις ταχύτητες εισόδου αέρα (στα ύψη 250 και 300mm), ειδικά στα μεσαία επίπεδα ισχύος. Στα 400 και 450mm παρόλα αυτά παρατηρείται αύξηση τους και μάλιστα στην περίπτωση όπου ο καυστήρας βρίσκεται στα 200mm, οι ταχύτητες καυσαερίων αγγίζουν τα 4m/s.

6.3 Θερμοκρασίες εξερχόμενης φωτιάς

Οι θερμοκρασίες εξωτερικά του δωματίου μετρήθηκαν με τη βοήθεια 40 θερμοστοιχείων τοποθετημένων σε 4 διαφορετικές αποστάσεις από την πρόσοψη και σε 10 διαφορετικά ύψη (βλ. Σχήμα 5.3 και Πίνακα 9.1). Οι μεταβολές τους φαίνονται στα Σχήματα 6.13-6.20. Οι θερμοκρασίες που απεικονίζονται αντιστοιχούν στον κατακόρυφο άξονα της φλόγας, δηλαδή σε απόσταση *x*=100mm από την πρόσοψη για την περίπτωση του παραθύρου και σε απόσταση *x*=167mm για την περίπτωση της πόρτας. Ο άξονας της φλόγας θεωρείται ιδανικά κατακόρυφος.

Σχήμα 6.13 Κατανομή ισοϋψών καμπύλων θερμοκρασίας εσωτερικά και εξωτερικά του διαμερίσματος για γεωμετρία πόρτας, επίπεδο ισχύος 160kW, σε χαμηλή (αριστερά) και υψηλή (δεξιά) θέση καυστήρα.

Σχήμα 6.14 Κατανομή ισοϋψών καμπύλων θερμοκρασίας εσωτερικά και εξωτερικά του διαμερίσματος για γεωμετρία παραθύρου, επίπεδο ισχύος 160kW, σε χαμηλή (αριστερά) και υψηλή (δεξιά) θέση καυστήρα.

Από τα σχήματα 6.13 και 6.14 φαίνεται ξεκάθαρα η επιρροή της γεωμετρίας όσο αφορά το σχήμα της φλόγας. Παρατηρείται πως στην περίπτωση γεωμετρίας πόρτας, (Σχήμα 6.14) η φλόγα εκτείνεται σε μεγαλύτερο μήκος εξωτερικά του διαμερίσματος και απομακρύνεται έτσι από την πρόσοψη. Το ύψος της φτάνει περίπου στα 1000mm ενώ οι θερμοκρασίες που επικρατούν είναι της τάξης 620-820°C. Αντίθετα στην περίπτωση γεωμετρίας παραθύρου (Σχήμα 6.15), φαίνεται πως η φλόγα τείνει να προσκολληθεί στην πρόσοψη, το μήκος της είναι μεγαλύτερο (1300-1400mm) και οι θερμοκρασίες σαφώς μεγαλύτερες. Ειδικά δε στην περίπτωση W200-160 παρατηρούνται οι μεγαλύτερες θερμοκρασίες από όλα τα πειράματα οι οποίες φτάνουν τους 920°C. Επίσης παρατηρώντας μεμονωμένα τα Σχήματα 6.13 και 6.14 φαίνεται πως στην υψηλή θέση του καυστήρα οι θερμοκρασίες της εξερχόμενης φλόγας είναι υψηλότερες, σε σχέση με τη χαμηλή θέση.

6.3.1 Επίδραση ισχύος φωτιάς

Σχήμα 6.15 Επίδραση ισχύος φωτιάς στις θερμοκρασίες εξερχόμενης φλόγας για την περίπτωση γεωμετρίας παραθύρου (*x*=100mm), χαμηλής θέσης καυστήρα (αριστερά), υψηλής θέσης καυστήρα (δεξιά).

Όπως αναμενόταν, με την αύξηση της θερμικής ισχύος, παρατηρούνται και σταδιακά υψηλότερες θερμοκρασίες στον εξωτερικό χώρο (Σχήματα 6.15 και 6.16). Οι καμπύλες έχουν

παρόμοια συμπεριφορά, με το μέγιστο κάθε φορά να παρατηρείται περίπου σε ύψος *z*= 600mm, λίγο πιο πάνω δηλαδή από το ανώφλι του ανοίγματος.

Σχήμα 6.16 Επίδραση ισχύος φωτιάς στις θερμοκρασίες εξερχόμενης φλόγας για την περίπτωση γεωμετρίας πόρτας (*x*=167mm), χαμηλής θέσης καυστήρα (αριστερά), υψηλής θέσης καυστήρα (δεξιά).

6.3.2 Επίδραση γεωμετρίας ανοίγματος

Σχήμα 6.17 Επίδραση γεωμετρίας ανοίγματος στις θερμοκρασίες εξερχόμενης φλόγας για την περίπτωση παραθύρου (*x*=100mm), και πόρτας (*x*=167mm),, χαμηλής θέσης καυστήρα για επίπεδα ισχύος 100 και 130kW (αριστερά), 80 και 160kW (δεξιά).

Σχήμα 6.18 Επίδραση γεωμετρίας ανοίγματος στις θερμοκρασίες εξερχόμενης φλόγας για την περίπτωση παραθύρου (*x*=100mm), και πόρτας (*x*=167mm), υψηλής θέσης καυστήρα για επίπεδα ισχύος 100 και 130kW (αριστερά), 80 και 160kW (δεξιά).

Στα Σχήματα 6.17 και 6.18 παρατηρείται συνολικά πως στην περίπτωση της γεωμετρίας παραθύρου οι θερμοκρασίες που αναπτύσσονται είναι υψηλότερες. Παρόλα αυτά,

με μια πιο προσεκτική ματιά, γίνεται αντιληπτό πως ακριβώς στο ανώφλι (στα 500mm δηλαδή), για την γεωμετρία πόρτας παρατηρούνται υψηλότερες τοπικές θερμοκρασίες.

6.3.3 Επίδραση ύψους καυστήρα

Σχήμα 6.19 Επίδραση ύψους καυστήρα στις θερμοκρασίες εξερχόμενης φλόγας για την περίπτωση γεωμετρίας πόρτας (*x*=167mm), για επίπεδα ισχύος 100 και 160kW (αριστερά), 80 και 130kW (δεξιά).

Και σε αυτήν την περίπτωση, όπως και στις ταχύτητες, έχοντας υπερυψωμένο τον καυστήρα, είτε πρόκειται για παράθυρο είτε για πόρτα, οι τιμές της θερμοκρασίας ΦΕΑ είναι μεγαλύτερες, ειδικά μάλιστα στην περίπτωση του παραθύρου (χαρακτηριστικές οι W200-110 με την W55-100 στο Σχήμα 6.20 αριστερά και W55-80 με W200-100 στο Σχήμα 6.20 δεξιά). Επίσης είναι εμφανές ότι στην υψηλή θέση καυστήρα, οι διαφορές στις θερμοκρασίες για διαφορετικά επίπεδα ισχύος δεν είναι τόσο μεγάλες όσο για την περίπτωση χαμηλού ύψους καυστήρα.

6.4 Θερμοκρασίες στην πρόσοψη

Στα Σχήματα 6.21 - 6.26 απεικονίζεται η μεταβολή των θερμοκρασιών στην πρόσοψη του διαμερίσματος. Ελήφθησαν μετρήσεις σε έξι διαφορετικά ύψη από 700 έως 1700mm (βλ. Σχήματα 5.3 και 5.4 και Πίνακες Α.1 και Α.3).

6.4.1 Επίδραση ισχύος φωτιάς

Όπως είναι αναμενόμενο και σε αυτήν την περίπτωση, όσο αυξάνεται η ισχύς της φωτιάς η θερμοκρασία στην πρόσοψη αυξάνεται και εκείνη με τη σειρά της (Σχήματα 6.21 και

6.22). Αξιοσημείωτο είναι πως σε όλες τις περιπτώσεις, στο ύψος z=800mm παρατηρείται μια απότομη μείωση της θερμοκρασίας. Η συγκεκριμένη μείωση μπορεί να οφείλεται στο γεγονός ότι στη συγκεκριμένη θέση η φωτιά είναι διακοπτόμενη και δεν είναι «προσκολλημένη» στην πρόσοψη, με αποτέλεσμα τοπικά να υπάρχει ψύξη.

Σχήμα 6.21 Επίδραση ισχύος φωτιάς στις θερμοκρασίες στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου, για χαμηλή (αριστερά) και υψηλή (δεξιά) θέση καυστήρα.

Σχήμα 6.22 Επίδραση ισχύος φωτιάς στις θερμοκρασίες στην πρόσοψη για την περίπτωση γεωμετρίας πόρτας, χαμηλής θέσης καυστήρα (αριστερά), υψηλής θέσης καυστήρα (δεξιά).

Σχήμα 6.23 Επίδραση γεωμετρίας ανοίγματος στις θερμοκρασίες στην πρόσοψη για την περίπτωση παραθύρου και πόρτας σε χαμηλή θέση καυστήρα, για επίπεδα ισχύος 100 και 130kW (αριστερά), 80

Σχήμα 6.24 Επίδραση γεωμετρίας ανοίγματος στις θερμοκρασίες στην πρόσοψη για την περίπτωση παραθύρου και πόρτας σε υψηλή θέση καυστήρα, για επίπεδα ισχύος 100 και 130kW (αριστερά), 80 και 160kW (δεξιά)

Στην περίπτωση γεωμετρίας παραθύρου, σε όλα τα επίπεδα ισχύος και για όλα τα ύψη καυστήρα, οι τιμές που προκύπτουν είναι μεγαλύτερες από τις αντίστοιχες για τη γεωμετρία πόρτας. Ειδικά στο Σχήμα 6.24 (δεξιά), παρατηρείται πως ανάμεσα στις περιπτώσεις W200-160 και D200-160, η διαφορά αυτή μπορεί να φτάσει ακόμα και τους 200°C.

6.4.3 Επίδραση ύψους καυστήρα

Σχήμα 6.25 Επίδραση ύψους καυστήρα στις θερμοκρασίες στην πρόσοψη για την περίπτωση γεωμετρίας πόρτας για επίπεδα ισχύος 100 και 160kW (δεξιά), 80 και 130kW (δεξιά).

Σχήμα 6.26 Επίδραση ύψους καυστήρα στις θερμοκρασίες στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου για επίπεδα ισχύος 100 και 160kW (δεξιά), 80 και 130kW (δεξιά).

Αξιολογώντας τα Σχήματα 6.25 και 6.26, παρατηρείται ότι στην περίπτωση όπου ο καυστήρας είναι υπερυψωμένος (μπλε και πράσινη καμπύλη), οι θερμοκρασίες είναι

υψηλότερες. Επίσης στην περίπτωση της γεωμετρίας παραθύρου (Σχήμα 6.24), οι θερμοκρασίες στα ύψη *z*=1000mm και *z*=700m, είναι σχεδόν ίσες, κάτι το οποίο δε συμβαίνει στην περίπτωση της γεωμετρίας πόρτας.

6.5 Θερμορροή στην πρόσοψη

Στα Σχήματα 6.27 - 6.32 απεικονίζεται η μεταβολή της θερμορροής στην πρόσοψη του διαμερίσματος. Ελήφθησαν μετρήσεις σε τρία διαφορετικά ύψη από το δάπεδο του διαμερίσματος: 650, 850 και 1050mm.

6.5.1 Επίδραση ισχύος φωτιάς

Σχήμα 6.27 Επίδραση ισχύος φωτιάς στη θερμορροή στην πρόσοψη, για την περίπτωση γεωμετρίας παραθύρου, για χαμηλή (αριστερά) και για υψηλή (δεξιά) θέση καυστήρα.

Σχήμα 6.28 Επίδραση ισχύος φωτιάς στη θερμορροή στην πρόσοψη, για την περίπτωση γεωμετρίας πόρτας, για χαμηλή (αριστερά) και για υψηλή (δεξιά) θέση καυστήρα.

Στα Σχήματα 6.27 και 6.28 παρατηρείται πως η θερμική ισχύς και η θερμορροή στην πρόσοψη είναι δύο μεγέθη ανάλογα. Όσο αυξάνεται η ισχύς, αντίστοιχα αυξάνεται και η θερμορροή που δέχεται η πρόσοψη. Και στα 4 διαγράμματα η μέγιστη τιμή θερμορροής παρατηρείται συνήθως στο χαμηλότερο ύψος (*z*=650mm).

6.5.2 Επίδραση γεωμετρίας ανοίγματος

Σχήμα 6.29 Επίδραση γεωμετρίας ανοίγματος στη θερμορροή στην πρόσοψη για γεωμετρία πόρτας και παραθύρου σε χαμηλή θέση καυστήρα, για επίπεδα ισχύος 80 και 100kW (αριστερά), 130 και 160 kW (δεξιά).

Σχήμα 6.30 Επίδραση γεωμετρίας ανοίγματος στη θερμορροή στην πρόσοψη για γεωμετρία πόρτας και παραθύρου σε υψηλή θέση καυστήρα, για επίπεδα ισχύος 80 και 100kW (αριστερά), 130 και 160kW (δεξιά).

Από τα Σχήματα 6.29 και 6.30 είναι φανερό πως στην περίπτωση γεωμετρίας παραθύρου (μπλε και πράσινες καμπύλες) η θερμότητα που δέχεται η πρόσοψη είναι μεγαλύτερη από την αντίστοιχη περίπτωση της γεωμετρίας πόρτας. Επίσης παρατηρείται πως στις περισσότερες περιπτώσεις η μέγιστη θερμορροή εμφανίζεται σε ύψος 650mm. Αξίζει να αναφερθεί επίσης πως οι καμπύλες για τις περιπτώσεις D55-100 και D55-160 (Σχήμα 6.29) έχουν διαφορετική μορφή από τις υπόλοιπες. Όσο αυξάνεται το ύψος οι τιμές τους μειώνονται συνεχώς χωρίς να παρουσιάζουν το «σπάσιμο» των υπολοίπων. Εδώ φαίνεται ξεκάθαρα η επιρροή της γεωμετρίας πόρτας, όπου όπως φαίνεται και στο Σχήμα 6.13 η φωτιά απομακρύνεται από την πρόσοψη, οπότε η θερμορροή πάνω σε αυτή συνεχώς μειώνεται.

6.5.3 Επίδραση ύψους καυστήρα

Σχήμα 6.31 Επίδραση ύψους καυστήρα στη θερμορροή στην πρόσοψη για γεωμετρία πόρτας, για επίπεδα ισχύος 80 και 100kW (αριστερά), 130 και 160kW (δεξιά).

Σχήμα 6.32 Επίδραση ύψους καυστήρα στη θερμορροή στην πρόσοψη για γεωμετρία παραθύρου, για επίπεδα ισχύος 100 και 130kW (αριστερά), 80 και 160kW (δεξιά).

Στα Σχήματα 6.31 και 6.32 παρατηρείται πως στην περίπτωση όπου ο καυστήρας είναι τοποθετημένος στην υψηλή θέση (μπλε και πράσινες καμπύλες) η θερμορροή που αναπτύσσεται στην πρόσοψη είναι μεγαλύτερη. Μάλιστα στην περίπτωση W200-160 η τιμή αυτή φτάνει ακόμα και τα 50kW/m².
7 ΣΥΓΚΡΙΣΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΣΧΕΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ

Στο παρόν κεφάλαιο χρησιμοποιούνται οι σχέσεις προσδιορισμού θερμικών μεγεθών ΦΕΑ, οι οποίες προέκυψαν στο κεφάλαιο 3 από τη διεθνή βιβλιογραφία, τροποποιημένες όμως κατάλληλα για τις συνθήκες των πειραμάτων. Τα αποτελέσματα των σχέσεων αυτών συγκρίνονται με τα πειραματικά αποτελέσματα και εξάγονται συμπεράσματα για το ποια σχέση τα περιγράφει ακριβέστερα.

7.1 Θερμοκρασίες εσωτερικού χώρου

Η εξίσωση (3.24) χρησιμοποιείται στον Ευρωκώδικα για τον προσδιορισμό της θερμοκρασίας εσωτερικά του διαμερίσματος. Στην περίπτωση της γεωμετρίας πόρτας η τιμή αυτή είναι 898.18°C, ενώ για τη γεωμετρία παραθύρου είναι 769.60°C. Θεωρείται πως η θερμοκρασία είναι ομοιόμορφη σε όλο το δωμάτιο. Στον Πίνακα 7.1, ο μέσος όρος των πειραματικών θερμοκρασιών και στις 3 θέσεις μέτρησης (-717.5mm, -492,5mm, -247.5mm), σε ύψος 400 και 500 mm, συγκρίνεται με τις θερμοκρασίες που προέκυψαν με χρήση της εξίσωσης (3.24).

α/α	Πείραμα	Εσωτερική θερμοκρασία (πειραματική) °C	Εσωτερική θερμοκρασία (Εξίσωση 3.24 - Eurocode) ºC	Σφάλμα (%)
1	D55-80	713.68		25.9
2	D55-100	723.60		24.1
3	D55-130	746.78		20.3
4	D55-160	787.86	909 19	14.0
5	D200-80	741.54	090.10	21.1
6	D200-100	781.92		14.9
7	D200-130	785.76		14.3
8	D200-160	782.59		14.8
9	W55-80	693.78		10.9
10	W55-100	714.33		7.7
11	W55-130	773.02		0.4
12	W55-160	790.53	760.60	2.6
13	W200-100	742.29	709.00	3.7
14	W200-110	736.86		4.4
15	W200-130	740.64		3.9
16	W200-160	779.12		1.2
			Μέσος Όρος:	11.5

Πίνακας 7.1 Σύγκριση πειραματικών και υπολογιστικών (Εξίσωσης 3.24) τιμών της θερμοκρασίας εντός του διαμερίσματος.

Από τη στήλη του σφάλματος συμπεραίνεται πως η διαφορά ανάμεσα στις δύο τιμές δεν είναι ιδιαίτερα μεγάλη (μέγιστη τιμή 25.9%, μέση τιμή 11.5%). Μάλιστα οι πειραματικές

τιμές είναι πάντοτε μικρότερες, με εξαίρεση τις περιπτώσεις 11,12 & 16, κάτι το οποίο είναι ιδιαίτερα σημαντικό, καθώς η μελέτη πυροπροστασίας γίνεται με βάση τον Ευρωκώδικα, ο οποίος δείχνει πως δίνει μεγαλύτερες, άρα και πιο ασφαλείς τιμές.

7.2 Θερμοκρασίες εξερχόμενης φλόγας

Στην περίπτωση των θερμοκρασιών εξωτερικής φλόγας χρησιμοποιούνται οι σχέσεις 3.3 ή 3.4, 3.9 ή 3.10 καθώς και η 3.19. Στα Σχήματα 7.1-7.8 γίνεται σύγκριση των πειραματικών τιμών θερμοκρασίας ΦΕΑ με τις αντίστοιχες τιμές που υπολογίστηκαν με τις παραπάνω σχέσεις. Οι πειραματικές τιμές απεικονίζονται για τη θέση που αντιστοιχεί στον κατακόρυφο άξονα της ΦΕΑ, δηλαδή σε απόσταση από την πρόσοψη x = 100 mm για την περίπτωση της γεωμετρίας παραθύρου και x = 167 mm για την περίπτωση της γεωμετρίας

Σχήμα 7.1 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 100 mm) συναρτήσει του ύψους, για την περίπτωση γεωμετρίας παραθύρου και χαμηλή θέση καυστήρα, για θερμική ισχύ 80kW (αριστερά) και 100kW (δεξιά).

Σχήμα 7.2 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 100 mm) συναρτήσει του ύψους, για την περίπτωση γεωμετρίας παραθύρου και χαμηλή θέση καυστήρα, για θερμική ισχύ 130kW (αριστερά) και 160kW (δεξιά).

Σχήμα 7.3 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 167 mm) συναρτήσει του ύψους για την περίπτωση γεωμετρίας πόρτας, για χαμηλή θέση καυστήρα και για θερμική ισχύ 80kW (αριστερά) και 100kW (δεξιά).

Σχήμα 7.4 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 167 mm) συναρτήσει του ύψους για την περίπτωση γεωμετρίας πόρτας, για χαμηλή θέση καυστήρα και για θερμική ισχύ 130kW (αριστερά) και 160kW (δεξιά).

Σχήμα 7.5 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 167 mm) συναρτήσει του ύψους για την περίπτωση γεωμετρίας πόρτας, για υψηλή θέση καυστήρα και για θερμική ισχύ 80kW (αριστερά) και 100kW (δεξιά).

Σχήμα 7.6 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 167 mm) συναρτήσει του ύψους για την περίπτωση γεωμετρίας πόρτας, για υψηλή θέση καυστήρα και για θερμική ισχύ 130kW (αριστερά) και 160kW (δεξιά).

Σχήμα 7.7 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 100 mm) συναρτήσει του ύψους για την περίπτωση γεωμετρίας παραθύρου, για υψηλή θέση καυστήρα και για θερμική ισχύ 100kW (αριστερά) και 110kW (δεξιά).

Σχήμα 7.8 Μεταβολή θερμοκρασίας στον κατακόρυφο άξονα της ΦΕΑ (*x* = 100 mm) συναρτήσει του ύψους για την περίπτωση γεωμετρίας παραθύρου, για υψηλή θέση καυστήρα και για θερμική ισχύ 130kW (αριστερά) και 160kW (δεξιά).

Μελετώντας τα Σχήματα 7.1-7.8 μπορούν να εξαχθούν τα ακόλουθα συμπεράσματα:

- Για τις εξισώσεις 3.3, 3.4 του Eurocode:
 - Στη θέση z=500mm σε όλα σχεδόν τα διαγράμματα (εκτός από την περίπτωση D200-80) η εξίσωση υπολογίζει με πολύ μεγάλη προσέγγιση την πειραματική τιμή).
 - ΟΙ καμπύλες εξωτερικής θερμοκρασίας ακολουθούν φθίνουσα πορεία συναρτήσει του ύψους, με σχεδόν γραμμική συμπεριφορά σε όλες τις περιπτώσεις.

- Οι τιμές που υπολογίζονται είναι σχεδόν σε όλες τις περιπτώσεις μικρότερες από τις πειραματικές, γεγονός το οποίο δεν οδηγεί σε «συντηρητικές» τιμές στο πλαίσιο υπολογισμών για σχεδιασμό πυροπροστασίας
- Για τις εξισώσεις 3.9, 3.10 των Himoto et al. (2009):
 - Οι καμπύλες ακολουθούν φθίνουσα πορεία συναρτήσει του ύψους σε όλο το εύρος, γεγονός αναμενόμενο, καθώς η φλόγα βρίσκεται περίπου από z=500 έως z=800mm.
 - Οι τιμές θερμοκρασίας στις περιπτώσεις χαμηλής θέσης καυστήρα, είτε για γεωμετρία παραθύρου είτε πόρτας, είναι μεγαλύτερες από τις πειραματικές, κάτι το οποίο σημαίνει, με βάση τη μελέτη των Himoto et al. (2009), ότι γίνεται υπερδιαστασιολόγηση.
 - Στη θέση z=500mm, δηλαδή ακριβώς στο ύψος του ανωφλίου του ανοίγματος, η εξίσωση αποκλίνει κατά πολύ από την πειραματική τιμή.
- Για την εξίσωση 3.19 των Lu et al. (2014):
 - Δεν ορίζεται στο z=500mm, και σε τιμές κοντινές σε αυτή, καθώς τα αποτελέσματα που προκύπτουν έχουν πολύ μεγάλη απόκλιση από τα πειραματικά.
 - Οι τιμές θερμοκρασίας είναι σε όλες τις περιπτώσεις μικρότερες από τις πειραματικές.

Στον πίνακα 7.2 παρατίθεται η απόκλιση κάθε συσχέτισης από τις πειραματικές τιμές για όλες τις περιπτώσεις μελέτης.

Πίνακας 7.2 Απόκλιση από τις πειραματικές τιμές για κάθε συσχέτιση προσδιορισμού θερμοκρασίας ΦΕΑ.

α/α	Πείραμα	Σφάλμα (%) συσχέτισης Eurocode	Σφάλμα (%) συσχέτισης Himoto	Σφάλμα (%) συσχέτισης Lu	
1	D55-80	26.3	148.4	156.4	
2	D55-100	11.1	75.1	87.7	
3	D55-130	9.2	65.0	59.1	
4	D55-160	12.0	51.6	95.6	
5	D200-80	24.9	41.1	41.1	
6	D200-100	26.5	25.4	52.4	
7	D200-130	23.7	24.3	8.4	
8	D200-160	21.7	21.4	73.3	
9	W55-80	26.7	118.7	33.1	
10	W55-100	18.6	81.1	35.0	
11	W55-130	27.7	55.7	21.0	
12	W55-160	22.2	66.6	42.1	
13	W200-100	46.5	21.3	60.4	
14	W200-110	31.5	27.6	51.2	
15	W200-130	27.3	39.4	91.6	
16	W200-160	26.0	58.1	34.3	
	Μέσος όρος	23.9	57.6	58.9	

Μελετώντας τον πίνακα 7.2 εξάγονται μερικά σημαντικά και ενδιαφέροντα συμπεράσματα:

- Αρχικά είναι εμφανές πως από τις τρεις συσχετίσεις εκείνη του Eurocode είναι πιο κοντά στις πειραματικές τιμές, οπότε μπορεί να ειπωθεί πως είναι καλύτερη και ακριβέστερη στη περιγραφή του φαινομένου. Επίσης παρουσιάζει μια ελάχιστη τιμή σφάλματος 9.2% για την περίπτωση D55-130.
- Η συσχέτιση του Eurocode φαίνεται να πλησιάζει τις πειραματικές τιμές καλύτερα στις χαμηλές θέσεις καυστήρα, σε αντίθεση με τη συσχέτιση Himoto όπου ισχύει το ανάποδο, ενώ όσον αφορά τη συσχέτιση Lu ταυτίζεται με εκείνη του Himoto για τη γεωμετρία πόρτας.

- Επίσης στην περίπτωση του Eurocode όσο αυξάνεται η ισχύς, σε κάθε περίπτωση, τόσο η απόκλιση μικραίνει. Το ίδιο μοτίβο ακολουθεί και η συσχέτιση Himoto με μόνη διαφορά ότι στη γεωμετρία παραθύρου και υψηλή θέση καυστήρα (W200-xxx) συμβαίνει το ανάποδο. Η συσχέτιση του Lu δεν ακολουθεί κάποια συγκεκριμένη συμπεριφορά καθώς αυξομειώνεται το σφάλμα από ισχύ σε ισχύ και δε μπορεί να διατυπωθεί κάποιο γενικό συμπέρασμα.
- Τέλος παρατηρείται πως η συσχέτιση του Eurocode παρουσιάζει μικρότερη απόκλιση στην περίπτωση της πόρτας (19.43%), έναντι εκείνης της πόρτας (28.31%). Αντίστοιχη συμπεριφορά έχει και η συσχέτιση του Lu για την περίπτωση πόρτας (71.75%) και για το παράθυρο (46.08%). Αντίθετα, η συσχέτιση του Himoto δίνει παρόμοια αποτελέσματα (56.54%) και (58.56%) για πόρτα και παράθυρο αντίστοιχα, κάτι που σημαίνει πως δεν επηρεάζεται ιδιαίτερα από τη γεωμετρία του ανοίγματος.

7.3 Θερμορροή στην πρόσοψη

Για τη θερμορροή στην πρόσοψη χρησιμοποιούνται οι σχέσεις 3.20, 3.21 & 3.22.

$$\dot{h}_{net} = \dot{h}_{net,c} + \dot{h}_{net,r}$$
 (3.20)

$$\dot{h}_{net,c} = a_c \left(\Theta_g - \Theta_m \right)$$
 (3.21)

$$\dot{h}_{net,r} = \Phi \varepsilon_m \varepsilon_f \sigma \left[\left(\Theta_r + 273 \right)^4 - \left(\Theta_m + 273 \right)^4 \right]$$
(3.22)

Με βάση τα πειραματικά δεδομένα ισχύει ότι:

- $a_c = 25 \text{ W/m}^2\text{K}$
- Θ_g λαμβάνεται ως η θερμοκρασία των καυσαερίων σε απόσταση x= 50mm από την πρόσοψη
- Θ_m λαμβάνεται ως η θερμοκρασία πάνω στην πρόσοψη
- Θ_r λαμβάνεται ως η θερμοκρασία στον άξονα της φλόγας, δηλαδή σε απόσταση x = 100mm από την πρόσοψη για την περίπτωση γεωμετρίας παραθύρου και σε απόσταση x = 167 mm για την περίπτωση γεωμετρίας πόρτας.

Ο υπολογισμός της θερμορροής έγινε σε τρία ύψη, στα 650, 850 και 1050mm, ακριβώς πάνω στην πρόσοψη του διαμερίσματος. Τα αποτελέσματα που προέκυψαν απεικονίζονται στα διαγράμματα 7.9 - 7.12.

Σχήμα 7.11 Μεταβολή θερμορροής στην πρόσοψη συναρτήσει του ύψους, για την περίπτωση

Σχήμα 7.10 Μεταβολή θερμορροής στην πρόσοψη συναρτήσει του ύψους, για την περίπτωση γεωμετρίας παραθύρου, για υψηλή θέση καυστήρα και για ισχύ 80kW (αριστερά) και 160kW (δεξιά).

Σχήμα 7.9 Μεταβολή θερμορροής στην πρόσοψη συναρτήσει του ύψους, για την περίπτωση γεωμετρίας παραθύρου, για χαμηλή θέση καυστήρα και για ισχύ 80kW (αριστερά), 160kW (δεξιά).

Η θερμορροή που υπολογίζεται με βάση τη συσχέτιση του Eurocode δίνει μεγαλύτερες τιμές από τις πειραματικές σχεδόν σε όλες τις περιπτώσεις, με μοναδική εξαίρεση την περίπτωση D55-80, επειδή όμως οι τιμές θερμορροής είναι πολύ μικρές στη συγκεκριμένη περίπτωση δεν είναι ανησυχητικό.

Στον πίνακα 7.3 παρατίθενται η απόκλιση (σφάλμα) της συσχέτισης Eurocode από την αντίστοιχη πειραματική τιμή. Η απόκλιση υπολογίστηκε ως η διαφορά της μέσης τιμής της συσχέτισης στα τρία ύψη, από την αντίστοιχη μέση τιμή στα τρία ύψη της πειραματικής τιμής.

α/α	Πείραμα	Σφάλμα (%) συσχέτισης Eurocode
1	D55-80	22.0
2	D55-100	16.6
3	D55-130	46.1
4	D55-160	62.9
5	D200-80	90.4
6	D200-100	72.9
7	D200-130	95.3
8	D200-160	121.9
9	W55-80	53.3
10	W55-100	76.2
11	W55-130	110.0
12	W55-160	96.0
13	W200-100	95.4
14	W200-110	91.9
15	W200-130	83.4
16	W200-160	61.0
	Μέσος όρος	74.7

Πίνακας 7.3 Σφάλμα της συσχέτισης Eurocode, σε σχέση με τις πειραματικές τιμές της θερμορροής στην πρόσοψη.

Αξιολογώντας τα αποτελέσματα του Πίνακα 7.3 παρατηρείται ότι:

- Οι τιμές του σφάλματος για την περίπτωση γεωμετρίας πόρτας είναι μικρότερες σε σχέση με εκείνες του παραθύρου. Πιο συγκεκριμένα για γεωμετρία πόρτας ο μέσος όρος των τιμών είναι 66.0%, ενώ για τη γεωμετρία παραθύρου είναι 83.4%.
- Όσον αφορά τη θέση του καυστήρα, στην περίπτωση της πόρτας η απόκλιση για τη χαμηλή θέση του είναι 36.9% και 95.1% για την υψηλή, ενώ στην περίπτωση του παραθύρου οι τιμές αυτές είναι 83.9% και 82.9%, αντίστοιχα. Παρατηρείται πως στην περίπτωση του παραθύρου το ύψος δεν επηρεάζει σχεδόν καθόλου το σφάλμα της συσχέτισης (από 83.9% στο 82.9%), σε αντίθεση με την πόρτα όπου το 36.% γίνεται 95.1%.
- Τέλος στην περίπτωση της γεωμετρίας πόρτας και της χαμηλής θέσης καυστήρα στο παράθυρο παρατηρείται, πως όσο αυξάνεται το επίπεδο ισχύος αυξάνεται και το σφάλμα. Αντίθετα στη γεωμετρία παραθύρου και υψηλής θέσης συμβαίνει το ανάποδο.

8 ΣΥΜΠΕΡΑΣΜΑΤΑ

Η μελέτη των χαρακτηριστικών της φωτιάς έχει απασχολήσει και συνεχίζει να απασχολεί την επιστημονική κοινότητα τόσο σε θεωρητικό όσο και σε πειραματικό επίπεδο. Παρά τις πειραματικές μελέτες οι οποίες έχουν γίνει, τα διαθέσιμα πειραματικά δεδομένα δεν επαρκούν για την κάλυψη διαφόρων περιπτώσεων φωτιάς. Στην παρούσα διπλωματική εργασία, ερευνώνται πειραματικά, τα θερμικά και ροϊκά χαρακτηριστικά φωτιάς, εξερχόμενης από άνοιγμα σε διάταξη δωματίου – πρόσοψης υπό κλίμακα. Εντός του δωματίου και συγκεκριμένα στο κέντρο του, τοποθετήθηκε πορώδης καυστήρας, ο οποίος διοχέτευε μεθάνιο το οποίο ήταν και το καύσιμο που χρησιμοποιήθηκε. Στον ένα τοίχο του δωματίου δημιουργήθηκε άνοιγμα από το οποίο εξερχόταν η φλόγα.

Για μια πιο ολοκληρωμένη μελέτη, ερευνήθηκε η επίδραση τριών παραγόντων στα χαρακτηριστικά της φλόγας. Οι παράγοντες αυτοί ήταν:

- Η ισχύς της φλόγας
- Η γεωμετρία του ανοίγματος
- Το ύψος του καυστήρα εντός του διαμερίσματος

Μεταβάλλοντας σε κάθε πείραμα αυτούς τους παράγοντες, στόχος ήταν να διερευνηθεί η μεταβολή των παρακάτω χαρακτηριστικών της φωτιάς, τα οποία μετρούνταν καθ' όλη τη διάρκεια των πειραμάτων:

- Θερμοκρασία εντός του διαμερίσματος,
- Ταχύτητες καυσαερίων και αέρα στο άνοιγμα,
- Θερμοκρασία εξερχόμενης φλόγας,
- Θερμοκρασία στην πρόσοψη,
- Θερμορροή στην πρόσοψη

Συνολικά χρησιμοποιήθηκαν 87 θερμοστοιχεία, 4 δικατευθυντικοί μετρητές ταχύτητας και 3 μετρητές ροής θερμότητας. Στο τέλος οι τιμές που προέκυψαν για τη θερμοκρασία εντός του δωματίου, της εξερχόμενης φλόγας καθώς και για τη θερμορροή στην πρόσοψη, συγκρίθηκαν με αντίστοιχες τιμές που προκύπτουν από συσχετίσεις της διεθνής βιβλιογραφίας.

Αξιολογώντας τα Σχήματα του Κεφαλαίου 6 εξάγονται τα παρακάτω αποτελέσματα:

- 1. Για τις θερμοκρασίες εσωτερικά του διαμερίσματος:
 - Με την αύξηση της ισχύος, στην περίπτωση χαμηλής θέσης καυστήρα, παρατηρείται και αύξηση στη θερμοκρασία που επικρατεί στο διαμέρισμα.
 Αντίθετα όταν ο καυστήρας βρίσκεται στην υψηλή θέση, μεγαλύτερες θερμοκρασίες παρατηρούνται στα χαμηλά επίπεδα ισχύος.
 - Γενικά στη γεωμετρία παραθύρου οι τιμές που επικρατούν εντός του δωματίου είναι αρκετά μεγαλύτερες. Ειδικά στα χαμηλά ύψη, δηλαδή για z=100mm και z=200mm, η διαφορά τους είναι ακόμα και 200°C.
- 2. Για τις ταχύτητες στο άνοιγμα:
 - Στις περισσότερες των περιπτώσεων αύξηση της ισχύος οδηγεί και σε αύξηση της εξερχόμενης ταχύτητας των καυσαερίων.

- Για τη γεωμετρία παραθύρου οι ταχύτητες είναι αισθητά μεγαλύτερες, από τις αντίστοιχες στη γεωμετρία πόρτας, που μπορεί στο ανώφλι (z=500mm) να φτάσουν ακόμα και το 1m/s (βλ. Σχήμα 6.10).
- Αντίθετα, το ύψος καυστήρα δεν έχει ιδιαίτερη επιρροή στις ταχύτητες καυσαερίων, είτε πρόκειται για γεωμετρία πόρτας είτε παραθύρου.
- 3. Για τη θερμοκρασία εξερχόμενης φλόγας:
 - Με την αύξηση της ισχύος, παρατηρείται αύξηση και των θερμοκρασιών στη φλόγα κατά βάση σε χαμηλή θέση καυστήρα. Στην περίπτωση όπου ο καυστήρας είναι στην υψηλή θέση οι διαφορές είναι ελάχιστες. Να σημειωθεί πως για ύψη άνω του z=1000mm η διαφορά ανάμεσα στο μικρότερο και μεγαλύτερο επίπεδο ισχύος μπορεί να φτάσει και τους 500°C (Σχήμα 6.17).
 - Γενικά στη γεωμετρία παραθύρου παρατηρούνται υψηλότερες θερμοκρασίες από ότι στην πόρτα. Παρόλα αυτά ακριβώς στο ανώφλι (z=500mm), η θερμοκρασία για τις περιπτώσεις τις γεωμετρίες πόρτας είναι μεγαλύτερη σχεδόν πάντα.
- 4. Για τη θερμοκρασία στην πρόσοψη:
 - Όπως και στις προηγούμενες περιπτώσεις έτσι και εδώ σε μεγαλύτερα επίπεδα ισχύος, παρατηρούνται υψηλότερες θερμοκρασίες στην πρόσοψη, ακόμα και με διαφορά της τάξης των 100°C (Σχήμα 6.22).
 - Ξεκάθαρα στη γεωμετρία παραθύρου η πρόσοψη έχει υψηλότερες θερμοκρασίες, και αυτό μπορεί εύκολα να γίνει αντιληπτό από τα Σχήματα 6.13 και 6.14, όπου παρατηρείται πως στην γεωμετρία παράθυρου, η φλόγα τείνει να προσκολλάται στην πρόσοψη, σε αντίθεση με τη γεωμετρία πόρτας όπου απομακρύνεται, αυξάνοντας έτσι τη θερμοκρασία της.
 - Σε όλες τις περιπτώσεις, για την υψηλή θέση καυστήρα αναπτύσσονται μεγαλύτερες θερμοκρασίες.
- 5. Για τη θερμορροή στην πρόσοψη:
 - Για μεγαλύτερα επίπεδα ισχύος, παρατηρείται ότι η πρόσοψη δέχεται μεγαλύτερη θερμορροή και μάλιστα για την περίπτωση W200-160 η τιμή αυτή φτάνει τα 50kW/m² (Σχήμα 6.27).
 - Παρόμοια συμπεριφορά με τη θερμοκρασία στην πρόσοψη εμφανίζεται και στη θερμορροή όσο αφορά το παράγοντα της γεωμετρίας του ανοίγματος, καθώς όπως φαίνεται από τα Σχήματα 6.13 και 6.14. η φλόγα προσκολλάται στην πρόσοψη με αποτέλεσμα η πρόσοψη να δέχεται μεγαλύτερη θερμότητα.
 - Τέλος στην υψηλή θέση καυστήρα, οι τιμές θερμορροής είναι αισθητά μεγαλύτερες από τις αντίστοιχες όταν ο καυστήρας βρίσκεται χαμηλά.

Στον Πίνακα 8.1 γίνεται μια συνοπτική παρουσίαση της επίδρασης που προκαλεί η αύξηση των βασικών παραμέτρων που εξετάστηκαν (ισχύς φωτιάς, ύψος ανοίγματος, ύψος καυστήρα) στα κύρια μετρούμενα μεγέθη (θερμοκρασίες εσωτερικού και εξωτερικού χώρου, θερμοκρασίες και θερμορροή στην πρόσοψη και ταχύτητες στο άνοιγμα).

Πίνακας 8.1 Επίδραση μεταβολής (αύξησης) βασικών παραμέτρων στα μετρούμενα μεγέθη

	Θερμική	Ύψος	Ύψος
	ισχύς	ανοίγματος	καυστήρα
Θερμοκρασίες εσωτερικού χώρου	↑	\downarrow	\downarrow
Ταχύτητες στο άνοιγμα	↑	\downarrow	-
Θερμοκρασίες ΦΕΑ	↑	\downarrow	1
Θερμοκρασίες πρόσοψης	↑	\downarrow	1
Θερμορροή στην πρόσοψη	1	\downarrow	1

Όσον αφορά τις συσχετίσεις της διεθνούς βιβλιογραφίας, αξιολογώντας τα Σχήματα του Κεφαλαίου 7 καθώς και τον Πίνακα 7.2 με τα σφάλματα συμπεραίνονται τα εξής:

 Η συσχέτιση του Eurocode είναι αυτή που πλησιάζει σχεδόν σε όλες τις περιπτώσεις (βλ. Πίνακα 7.2) περισσότερο τις πειραματικές τιμές. Για κάθε παράγοντα, είτε πρόκειται για την ισχύ είτε για τη γεωμετρία είτε για τη θέση του καυστήρα η απόκλιση από την πειραματική τιμή είναι μικρότερη των υπολοίπων. Χαρακτηριστικά παρατίθενται και στον πίνακα 8.2 οι αντίστοιχες τιμές των σφαλμάτων.

	Απόκλιση από πειραματική τιμή (%)						
Συσχέτιση	Eurocode	Himoto	Lu				
Χαμηλή θέση καυστήρα	19.2	82.8	66.3				
Υψηλή θέση καυστήρα	28.5	32.3	51.6				
Γεωμετρία παραθύρου	28.3	58.6	46.1				
Γεωμετρία πόρτας	19.4	56.5	71.8				

Πίνακας 8.2 Απόκλιση των συσχετίσεων Eurocode, Himoto, Lu από την πειραματική τιμή για τις θερμοκρασίες εξωτερικής φλόγας.

 Αξίζει να σημειωθεί πως η συσχέτιση Himoto δίνει σχεδόν ίδια αποτελέσματα είτε πρόκειται για παράθυρο είτε για πόρτα, σε αντίθεση με τις υπόλοιπες δύο που αποκλίνουν αρκετά.

9 ΒΙΒΛΙΟΓΡΑΦΙΑ

- 1. Agilent 34970A/34972A, Data Acquisition / Switch Unit User's Guide, Agilent Technologies Inc., 2012.
- 2. Asimakopoulou E.K., Kolaitis D.I. and Founti M.A., Characteristics of Externally Venting Flames and Their Effect on the Facade: A Detailed Experimental Study, *Fire Safety Journal* 91, 451-460, 2016.
- 3. Babrauskas V. and Williamson R.B., Post-Flashover Compartment Fires: *Basis of a Theoretical Model, Fire and Materials* 2, 39-53, 1978.
- 4. Backovsky J.L., Foote K. and Alvares N.J., Temperature Profiles in Forced Ventilation Enclosure Fires, *Fire Safety Science-Proceedings of the Second International Symposium*, 315-324, 1989.
- 5. Beji T., Ukleja S., Zhang J., and Delichatsios M. A., Fire behaviour and external flames in corridor and tunnel–like enclosures, *Fire and Materials*, 2012.
- Bryner N.P., Johnson E.L., Pitts W.M., Carbon Monoxide Production in Compartment Fires - Reduced-Scale Enclosure Test Facility, National Institute of Standards and Technology (NIST), 1994.
- 7. Bundy M., Hamins A., Johnsson A.E., Kim S.C., Ko G.H., Lenhert D.B., Measurements of Heat and Combustion Products in Reduced-Scale Ventilation-Limited Compartment Fires, *National Institute of Standards and Technology (NIST), Technical Note* 1483, 2007.
- 8. Cetegen B.M, Entrainment and flame geometry of fire plumes, *Thesis*, California Institute of Technology, 1982.
- 9. Chen A., Yang S., Dong X., Studies of the combined effects of some important factors on the likelihood of flashover., *Fire and Materials* 35, 105–114, 2011a.
- 10. Chen A., Zhou L., Liu B., Chen W., Theoretical analysis and experimental study on critical conditions of backdraft., *Journal of Loss Prevention in the Process Industries* 24, 632-637, 2011b.
- 11. Cooper L.Y., Smoke and Heat Venting, Handbook of Fire Protection Engineering (SFPE) Third Edition, Section 3, Chapter 9, 2002.
- 12. Eurocode 1: Actions on structures- Part1-2: General actions Actions on structures exposed to fire, 2006.
- 13. Himoto K., Tsuchihashi T, Tanaka Y., Tanaka T., Modeling thermal behaviors of window flame ejected from a fire compartment, *Fire Safety Journal* 44, 230-240 (2009).
- 14. Hu L., Lu K., Delichatsios M., He L., Tang F., An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening, *Combustion and Flame* 159, 1178-1184, 2012.
- 15. Hu L., Qiu Z, Lu K., Tang F., Window ejected flame width and depth evolution along façade from under-ventilated enclosure fires, *Fire Safety Journal* 76, 44-53, 2015.
- 16. Hu L.H., Tang F., Delichatsios M.A., Wang Q., Lu K.H., Zhang X.C., Global behaviors of enclosure fire and façade flame heights in normal and reduced atmospheric pressures at two altitudes, *International Journal of Heat and Mass Transfer* 56, 119-126, 2013.
- 17. Huang H., Ooka R., Liu N., Zhang L., Deng Z., Kato S., Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions, *Fire Safety Journal* 44, 311-321, 2009.
- 18. Hukseflux Thermal Sensors, SBG01 manual v1208.
- 19. Ji J., Fu Y., Li K., Sun J., Fan C., Shi W., Experimental study on behavior of sidewall fires at varying height in a corridor-like structure, *Proceedings of the Combustion Institute* 35, 2639-2646, 2015.
- 20. Karlsson B., Quintiere J., Enclosure Fire Dynamics, CRC Press, Boca Raton, Florida, 2000.

- 21. Kasap S.O., Αρχές ηλεκτρονικών υλικών και διατάξεων, εκδόσεις Παπασωτηρίου, 2004.
- 22. Kim S.C, Kim J.Y, the effect of flow approaching angle on the velocity measurement using bi-directional velocity probe, *Procedia Engineering* 62, 797-803, 2013.
- 23. Lee Y.P, Delichatsios M.A. and Silcock G.W.H., Heat Flux Distribution and Flame Shapes on the Inert Façade, *Fire Safety Science–Proceedings of the Ninth International Symposium*, 193-204, 2008.
- 24. Lee Y.P, Delichatsios M.A., Ohmiya Y., Wakatsuki K., Yanagisawa A., Goto D., Heat fluxes on opposite building wall by flames emerging from an enclosure, *Proceedings* of the Combustion Institute 32, 2551-2558, 2009.
- 25. Lee Y.P, Delichatsios M.A., Silcock G.W.H., Heat fluxes and flame heights in facades from fires in enclosures of varying geometry, *Proceedings of the Combustion Institute* 31, 2521-2528, 2007.
- 26. Liu, C.Y., Wong, Y., Chan, W.K., Can, T.C., 1990. Note on the Robust Bidirectional Low Velocity Probe, *Experiments in Fluids* 9, 254-356, 1990.
- 27. Lock A., Bundy M., Johnsson E., Hamins A., Ko G.H., Hwang C., Fuss P., Harris R., Experimental Study of the Effects of Fuel Type, Fuel Distribution, and Vent Size on Full Scale Underventilated Compartment Fires in an ISO 9705 Room., National Institute of Standards and Technology (NIST), 2008.
- 28. Lu K.H., Hu L.H., Tang F., He L.H., Zhang X.C., Qiu Z.W., Heat flux profile upon building facade with side walls due to window ejected fire plume: An experimental investigation and global correlation, *Fire Safety Journal* 70, 14-22, 2014.
- 29. Magnusson S.E. and Thelandersson S., Temperature-Time Curves of Complete Process of Fire Development, *Civil Engineering and Building Construction Series No.* 65, Acto Polytechnica Scandinavica, 1970.
- Makhviladze G. M., Shamshin A.V., Yakush S.E., and Zykov A.P., Experimental and Numerical Study of Transient Compartment *Fires, Combustion, Explosion, and Shock Waves* 42, No. 6, 723–730, 2006.
- 31. McCafrrey B.J and Heskestad G., A robust Bidirectional Low-Velocity Probe for Flame and Fire application, *Combustion and Flame* 26, 125-127, 1976.
- 32. Nakos, J.T., Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's radiant heat facility and Lurance Canyon burn site., Technical Report SAND2004-1023, Sandia National Laboratories, Albuquerque, 2004.
- 33. NI cDAQ-9172, User Guide and Specifications, National Instruments Corporation, 2008.
- 34. Oleszkiewicz I., Heat Transfer from a Window Fire Plume to a Building Façade., Collected Papers in Heat Transfer., American Society of Mechanical Engineers, 123:163-170, 1989. OMEGA Engineering, Inc. The Temperature Handbook., 21_{st} century, Second edition, Stamford, 2000.
- 35. Prahl J. and Emmons H.W., Fire Induced Flow Through an Opening., *Combustion and Flame* 25, 369-385, 1975.
- 36. Quintiere J.G., Fundamentals of Fire Phenomena, John Wiley and Sons Ltd, 2006.
- 37. Rockett J.A., Fire Induced Gas Flow in an Enclosure, *Combustion Science and Technology* 12, 165-175, 1976.
- 38. Snegirev A.Y., Makhviladze G.M., Talalov V. A., and. Shamshin A. V, Turbulent Diffusion Combustion under Conditions of Limited Ventilation: Flame Projection Through an Opening, *Combustion, Explosion, and Shock Waves* 39, No. 1, 1-10, 2003.
- 39. Steckler K.D., Baum H.R. and Quintiere J.G., Fire Induced Flows Through Room OpeningsFlow Coefficients., *Twentieth Symposium (International) on Combustion, The Combustion Institute,* 1591-1600, 1984.
- 40. Tang F., Hu L.H., Delichatsios M.A., Lu K.H., Zhu W., Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire, *International Journal of Heat and Mass Transfer* 55, 93–1012, 2012.

- 41. Tang F., Hu L.H., Wang Q., Lu K.H., Yang L.Z., An experimental investigation on temperature profile of buoyant spill plume from under-ventilated compartment fires in a reduced pressure atmosphere at high altitude, *International Journal of Heat and Mass Transfer* 55, 5642–5649, 2012.
- 42. Utiskul Y., Theoretical and Experimental Study on Fully-Developed Compartment Fires., National Institute of Standards and Technology (NIST), 2007.
- 43. Yamada T., Takanashi K.I, Yanai E., Suzuki T. and Sekizawa A., An experimental study of ejected flames and combustion efficiency, *Fire Safety Science-Proceedings of the Seventh International Symposium*, 903-914, 2002.
- 44. Yii E.H, Modelling the Effects of Fuel Types and Ventilation Openings on Post-Flashover Compartment Fires, Thesis, 2002.
- 45. Zhao G., Beji T and Merci B, Application of FDS to Under-Ventilated Enclosure Fires with External Flaming, *Fire Technology Springer Science+Business Media New York* 2015.
- 46. Σιμόπουλος Σ.Ε, Μετρήσεις τεχνικών μεγεθών Β' Έκδοση, Εκδόσεις Πολυτεχνείου, 1989.

ΠΑΡΑΡΤΗΜΑ Α

Α.1 Μετρήσεις χρονικά μέσων τιμών

Ο υπολογισμός της μέσης τιμής κάθε μεγέθους έγινε λαμβάνοντας υπόψη τις στιγμιαίες μετρήσεις που ελήφθησαν σε χρονικό διάστημα ενός πρώτου λεπτού, κατά τη διάρκεια του οποίου θεωρήθηκε πως όλα τα φαινόμενα είχαν σταθεροποιηθεί. Επειδή ο χρόνος δειγματοληψίας ήταν 3 s, στο χρονικό εύρος του ενός λεπτού αντιστοιχούσαν (μέγεθος του δείγματος) είναι 21 διαφορετικές τιμές. Έτσι λοιπόν υπολογίστηκε η μέση τιμή κάθε μεγέθους και με χρήση της εξίσωσης 5.4 η τυπική απόκλιση αυτών των τιμών. Με χρήση της εξίσωσης 5.1, καθώς και με χρήση του σφάλματος του κατασκευαστή για κάθε όργανο, υπολογίζεται το ολικό σφάλμα (ε_{ολ}) κάθε τιμής. Τα πειραματικά αποτελέσματα για τη μέση τιμή και το ολικό σφάλμα όλων των μετρήσεων που ελήφθησαν κατά τη διεξαγωγή των 16 πειραμάτων παρατίθενται στους Πίνακες Α.1-Α.4.

		Περίπτωση	D55 -	120	D55	-150	D55	-200	D55	-240	
x (mm)	z	Αισθητήριο	Μέση		Μέση	c		·			Μονά-
	(mm)		τιμή	εολ	τιμή	ε _{oλ}		ε _{oλ}		ε _{oλ}	δες
-717.5	100	LB1-NI207	182.4	11.8	244.4	10.2	346.8	51.1	419.6	4.2	°C
-717.5	200	LB2-NI208	211.8	11.6	278.7	13.2	429.9	81.8	484.2	6.0	S
-717.5	300	LB3-NI209	485.6	15.2	519.8	3.8	681.6	44.1	783.2	8.4	°C
-717.5	400	LB4-NI210	539.8	7.3	556.5	3.4	658.6	35.7	712.2	5.4	S
-717.5	500	LB5-NI211	552.6	7.7	567.0	3.4	640.8	33.5	682.9	5.1	°C
-492.5	100	LM1-NI202	328.5	13.0	289.0	5.8	291.4	5.3	302.2	3.1	°C
-492.5	200	LM2-NI203	643.2	11.7	578.8	18.3	551.1	42.8	466.9	7.1	S
-492.5	300	LM3-NI204	801.3	10.9	778.2	12.2	707.0	17.5	608.5	9.5	S
-492.5	400	LM4-NI205	871.9	5.3	829.7	11.1	788.6	25.1	782.8	9.5	S
-492.5	500	LM5-NI206	852.1	7.3	792.1	13.0	765.2	12.6	779.6	5.7	S
-267.5	100	RS1-NI114	188.0	15.2	272.5	13.0	398.6	63.8	442.0	4.4	S
-267.5	200	RS2-NI100	261.5	17.0	364.7	18.1	505.8	69.1	569.2	6.0	°C
-267.5	300	RS3-NI101	450.7	17.1	548.5	12.2	718.2	41.4	803.3	9.1	°C
-267.5	400	RS4-NI102	700.8	28.3	782.7	7.3	823.6	6.6	891.9	5.1	°C
-267.5	500	RS5-NI103	764.8	14.4	813.6	6.1	804.0	7.1	877.6	11.7	°C
0	50	BD1-NI300	64.8	4.0	83.9	5.4	108.5	6.7	173.8	5.3	°C
0	150	BD2-NI301	88.7	5.3	123.9	8.0	170.8	9.4	271.4	4.6	S
0	350	BD3-NI302	559.9	14.1	640.7	12.3	750.1	17.0	827.4	5.6	S
0	450	BD4-NI303	685.9	8.0	752.7	12.8	773.5	14.0	839.1	4.1	S
0	700	S1-NI108	34.7	2.3	45.4	4.3	73.6	5.8	145.0	3.6	S
0	800	S2-NI109	32.5	2.2	36.8	2.8	55.0	5.4	105.7	2.3	S
0	1000	S3-NI110	31.0	2.2	38.2	3.3	60.7	6.1	124.9	2.4	S
0	1200	S4-NI111	30.0	2.2	36.3	3.0	54.3	4.9	113.4	2.3	°C
0	1400	S5-NI112	29.3	2.2	34.5	2.8	49.7	4.2	105.8	2.2	°C
0	1700	S6-NI113	28.3	2.2	32.8	2.7	44.8	3.5	98.1	2.2	S
-12.5	700	B1-NI106	28.6	2.2	30.6	2.4	41.6	3.3	62.0	3.1	°C
-12.5	1000	B2-NI107	27.0	2.2	28.5	2.3	35.0	2.8	59.5	2.2	°C
-492.5	625	C1-NI200	43.4	2.2	43.4	2.2	45.7	2.3	62.5	2.2	°C
-492.5	600	C2-NI201	112.4	5.8	156.1	10.5	203.1	6.9	332.1	2.4	°C
-967.5	450	R1-NI104	35.9	2.2	35.6	2.2	36.9	2.2	52.8	2.2	S
-942.5	450	R2-NI105	85.9	4.1	114.9	7.0	148.3	6.6	275.7	4.7	S
0	50	VEL1-NI400	-0.7	0.17	-0.8	0.15	-1.0	0.14	-1.1	0.13	(m/s)
0	150	VEL2-NI401	-1.0	0.10	-1.0	0.14	-1.1	0.12	-1.2	0.11	(m/s)
0	350	VEL3-NI402	1.2	0.14	1.3	0.14	1.4	0.16	1.6	0.12	(m/s)
0	450	VEL4-NI403	1.8	0.12	2.0	0.13	2.2	0.13	2.4	0.13	(m/s)

Πίνακας Α. 1 Μέση τιμή και ολικό σφάλμα όλων των μετρούμενων μεγεθών για την περίπτωση της γεωμετρίας πόρτας, σε χαμηλή θέση καυστήρα (D55)

0 850 HF2-NI213 2.2 0.94 6.2 1.62 13.2 2.43 23.7 2.38 0 1050 HF3-NI214 1.2 0.41 3.5 1.20 8.2 2.18 16.1 1.57 300 250 TB2 58.2 4.0 81.4 5.4 109.3 4.6 156.7 2.7 300 500 TB3 59.9 4.7 96.5 7.2 150.4 15.6 220.5 6.1 300 600 TB4 118.3 11.7 179.1 11.3 253.6 17.3 347.1 10.8 300 700 TB5 169.3 14.8 242.5 14.5 307.7 16.0 408.2 11.4 300 800 TB6 192.6 20.2 276.7 19.9 329.0 22.2 432.1 15.5 300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1	(kW/m ²) (kW/m ²) ငိုင္ငံ ငိုင္ငံ ငိုင္ငံ ငိုင္ငံ ငိုင္ငံ
0 1050 HF3-NI214 1.2 0.41 3.5 1.20 8.2 2.18 16.1 1.57 300 250 TB2 58.2 4.0 81.4 5.4 109.3 4.6 156.7 2.7 300 500 TB3 59.9 4.7 96.5 7.2 150.4 15.6 220.5 6.1 300 600 TB4 118.3 11.7 179.1 11.3 253.6 17.3 347.1 10.8 300 700 TB5 169.3 14.8 242.5 14.5 307.7 16.0 408.2 11.4 300 800 TB6 192.6 20.2 276.7 19.9 329.0 22.2 432.1 15.5 300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1 17.8 300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 37	(kW/m ²)
300 250 TB2 58.2 4.0 81.4 5.4 109.3 4.6 156.7 2.7 300 500 TB3 59.9 4.7 96.5 7.2 150.4 15.6 220.5 6.1 300 600 TB4 118.3 11.7 179.1 11.3 253.6 17.3 347.1 10.8 300 700 TB5 169.3 14.8 242.5 14.5 307.7 16.0 408.2 11.4 300 800 TB6 192.6 20.2 276.7 19.9 329.0 22.2 432.1 15.5 300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1 17.8 300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 371.5 15.9 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1	<u>သို့</u> သို့ သို့ သို့ သို့
300 500 TB3 59.9 4.7 96.5 7.2 150.4 15.6 220.5 6.1 300 600 TB4 118.3 11.7 179.1 11.3 253.6 17.3 347.1 10.8 300 700 TB5 169.3 14.8 242.5 14.5 307.7 16.0 408.2 11.4 300 800 TB6 192.6 20.2 276.7 19.9 329.0 22.2 432.1 15.5 300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1 17.8 300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 371.5 15.9 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1 296.8 13.7 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1	လိ လိ လိ လိ ဂ
300 600 TB4 118.3 11.7 179.1 11.3 253.6 17.3 347.1 10.8 300 700 TB5 169.3 14.8 242.5 14.5 307.7 16.0 408.2 11.4 300 800 TB6 192.6 20.2 276.7 19.9 329.0 22.2 432.1 15.5 300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1 17.8 300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 371.5 15.9 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1 296.8 13.7 300 1700 TB10 89.3 5.4 133.3 5.7 176.9 12.8 220.0 8.3 500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3	သိ သိ သိ
300 700 TB5 169.3 14.8 242.5 14.5 307.7 16.0 408.2 11.4 300 800 TB6 192.6 20.2 276.7 19.9 329.0 22.2 432.1 15.5 300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1 17.8 300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 371.5 15.9 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1 296.8 13.7 300 1700 TB10 89.3 5.4 133.3 5.7 176.9 12.8 220.0 8.3 500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3 42.4 2.2 500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6	သို့ သို့ လို
300 800 TB6 192.6 20.2 276.7 19.9 329.0 22.2 432.1 15.5 300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1 17.8 300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 371.5 15.9 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1 296.8 13.7 300 1700 TB10 89.3 5.4 133.3 5.7 176.9 12.8 220.0 8.3 500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3 42.4 2.2 500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6 95.9 2.3	ວິ ວິ ວິ ວິ
300 1000 TB7 179.5 18.4 277.8 26.0 328.8 38.0 440.1 17.8 300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 371.5 15.9 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1 296.8 13.7 300 1700 TB10 89.3 5.4 133.3 5.7 176.9 12.8 220.0 8.3 500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3 42.4 2.2 500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6 95.9 2.3	⊃° ⊃°
300 1200 TB8 143.1 12.2 227.5 17.1 293.3 34.0 371.5 15.9 300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1 296.8 13.7 300 1700 TB10 89.3 5.4 133.3 5.7 176.9 12.8 220.0 8.3 500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3 42.4 2.2 500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6 95.9 2.3	°C
300 1400 TB9 120.3 9.0 181.5 10.2 239.6 27.1 296.8 13.7 300 1700 TB10 89.3 5.4 133.3 5.7 176.9 12.8 220.0 8.3 500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3 42.4 2.2 500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6 95.9 2.3	v
300 1700 TB10 89.3 5.4 133.3 5.7 176.9 12.8 220.0 8.3 500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3 42.4 2.2 500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6 95.9 2.3	.0°
500 250 TB12 26.7 2.3 31.1 2.4 35.3 2.3 42.4 2.2 500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6 95.9 2.3	°C
500 500 TB13 32.7 2.6 45.2 4.0 64.8 3.6 95.9 2.3	0
	°C
500 600 TB14 312 25 442 42 654 39 981 23	°C
500 Z00 TB15 28.0 24 39.3 37 60.3 47 93.0 23	°C
500 800 TB16 27.9 2.5 34.8 31 47.8 41 67.5 2.4	°C
500 1000 TB17 41.4 5.5 49.9 2.4 67.1 8.1 101.8 3.0	⊃°
500 1200 TB18 537 81 652 35 761 127 985 41	°Č
500 1400 TB19 582 75 696 49 676 117 837 45	°C
500 1700 TB20 52.2 7.8 50.5 7.5 67.6 117 50.7 7.5	° ℃
100 0 TA1 604 40 774 33 937 39 1305 25	° ℃
100 250 TA2 137 3 101 1920 82 248 8 137 3257 30	°€
100 500 TA3 6365 98 7247 195 7687 218 8494 70	°C ℃
100 600 TA 2835 137 482 2 51 3 601 3 42 1 846 0 100	°€
100 700 TA5 164.3 10.6 316.8 20.8 51.2 1 30.4 724.8 15.6	°C
100 800 TAG 107.6 82 255.5 19.3 449.9 35.6 641.3 17.8	° ℃
100 1000 TA7 1110 0.2 2000 100 TA0 0.10 11.0	ŝ
100 1200 TAB 1113 4 7 2058 152 3631 216 5119 1170	°℃
100 1400 TAG 84.9 2.9 1585 152 257.4 121 376.8 115	°C
100 1700 TA10 77.8 2.8 138.9 11.0 21.5 8.3 302.3 6.6	°C ℃
200 0 TA1 559 39 715 33 874 34 1176 24	°C ℃
200 250 TA12 591 48 859 59 1129 55 1608 27	°C ℃
200 500 TA13 266 0 17 0 361 2 15 4 468 6 17 7 567 9 15 7	°C ℃
200 600 TA14 431.9 14.3 555.2 20.5 633.5 11.9 746.3 14.8	°C ℃
200 700 TA15 213.9 11.8 406.5 38.0 528.2 11.4 611.1 4.3	°C
200 800 TA16 260.0 17.9 464.0 31.4 593.0 21.1 772.7 11.9	°C
200 1000 TAIZ 1775 121 3524 220 5303 183 6682 124	°C
200 1200 TA18 1382 74 2566 156 4067 203 5222 167	°C ⊃°
200 1400 TA19 1010 3.9 179.0 13.3 275.8 14.1 364.3 5.7	<u>0</u> °
200 1700 TA20 858 2.9 140.0 7.2 199.0 8.8 263.9 5.0	<u>0</u> °
10 500 F1 683.7 7.1 719.1 17.6 741.9 6.6 815.0 12.1	°C
10 600 F2 75.5 4.3 119.3 11.5 204.2 18.6 421.8 13.1	 ⊃°
10 700 F3 54.7 2.7 92.3 9.0 168.0 11.0 331.1 8.8	- O°
10 800 F4 59,1 3,7 96,9 9,3 182,4 15,2 315,0 11,3	°C
10 1000 F5 61.0 2.9 102.0 8.1 190.9 18.2 288.5 8.9	°C
10 1200 F6 60.7 2.5 104.1 7.8 182.3 12.9 273.5 8.2	°C
10 1400 F7 61.2 2.9 107.6 8.9 181.3 12.6 266.0 8.7	°C
10 1700 F8 54.1 2.3 89.2 7.7 144.1 8.2 215.3 4.4	°C
50 500 F9 678.4 4.6 724.3 16.9 748.0 11.1 816.8 5.8	°C
50 600 F10 119.7 6.3 212.4 22.9 389.3 38.8 628.2 20.4	°C
50 700 F11 94.0 6.1 176.2 15.2 315.7 34.5 522.7 23.3	°C
50 800 F12 87.0 8.0 180.8 13.5 328.0 37.4 476.0 17.6	°C
50 1000 F13 89.8 3.6 182.9 13.2 352.2 32.4 462.1 20.1	°Č
50 1200 F14 89.0 4.0 174.8 14.1 325.6 26.2 429.5 18.9	°C
50 1400 F15 86.2 3.5 165.5 14.1 287.8 19.6 387.8 12.4	°C
50 1700 F16 79.6 2.8 141.8 11.9 230.6 14.6 312.0 7.7	-

Πίνακας Α.2 Μέση τιμή και ολικό σφάλμα όλων των μετρούμενων μεγεθών για την περίπτωση της γεωμετρίας πόρτας, σε υψηλή θέση καυστήρα (D200)

			D20	0 -120	D200 -150		D200 -200		D200 -240		
x (mm)	z (mm)	Αισθητήριο	Μέση τιμή	ε _{ολ}	Μέση τιμή	ε _{ολ}	Μέση τιμή	ε _{ολ}	Μέση τιμή	ε _{ολ}	Μονά- δες
-717.5	100	LB1-NI207	270.4	4.1	337.5	4.0	355.1	3.4	377.5	13.5	0°
-717.5	200	LB2-NI208	305.3	3.9	372.7	3.8	391.8	4.0	417.7	17.2	0°
-717.5	300	LB3-NI209	491.9	15.9	527.9	14.7	623.0	16.9	670.3	53.5	0°
-717.5	400	LB4-NI210	649.6	6.0	722.0	5.5	725.4	4.1	745.7	48.6	0°
-717.5	500	LB5-NI211	614.2	5.9	667.8	3.3	676.1	3.5	693.6	31.0	0°
0	0	ORIGIN-NI201	100.0	2.7	119.8	2.4	121.8	2.3	125.0	3.2	0°

			D20	0 -120	D200	-150	D200 ·	-200	D200	-240	
x (mm)	7 (mm)	Δισθητήριο	Μέση	c	Μέση	c	Μέση		Μέση	c	Μονά-
× (mm)	2 (1111)	Alogitithio	τιμή	c _{oλ}	τιμή	ε _{oλ}	τιμή	εολ	τιμή	ε _{oλ}	δες
-492.5	200	LM2-NI203	324.3	2.6	340.9	2.6	335.9	2.3	341.9	25.1	°C
-492.5	300	LM3-NI204	746.7	15.7	633.7	44.2	425.1	8.3	412.3	32.9	°C °C
-492.5	400	LM4-NI205	807.5	7.5	835.9	7.5	824.8	15.6	796.8	60.2	<u>0</u>
-492.5	500	LIVID-NIZUO	711.Z	7.3	749.3	9.0	718.Z	9.1	706.0	32.7	ະ ເ
-207.5	200	RS1-NI114 RS2-NI100	203.0	2.0	330.9	3.0	304.4	3.0	374.0	14.2	-℃ -℃
-267.5	300	RS3-NI101	465.3	3.3	522.3	4.5	562.8	3.2	586.6	35.1	0
-267.5	400	RS4-NI102	789.7	6.7	825.9	11.5	884.4	5.6	910.4	85.8	 ℃
-267.5	500	RS5-NI103	877.0	5.0	890.7	3.8	885.6	6.5	843.1	59.8	°Č
0	50	BD1-NI300	121.1	4.3	153.6	2.9	148.1	3.4	157.2	8.3	°C
0	150	BD2-NI301	168.2	4.9	215.3	3.4	217.7	4.2	231.1	13.4	°C
0	350	BD3-NI302	732.2	15.0	820.3	6.2	845.3	6.1	830.3	78.8	°C
0	450	BD4-NI303	814.5	4.7	828.5	8.3	815.7	6.1	779.8	54.4	°C
0	700	S1-NI108	106.7	2.7	144.3	2.5	155.9	3.5	188.7	6.7	°C
0	800	S2-NI109	80.8	2.6	108.1	2.3	112.5	2.5	131.0	3.3	°C
0	1000	S3-NI110	82.2	2.4	112.6	2.4	123.4	3.3	153.1	2.8	°C °C
0	1200	S4-NI111	70.2	2.3	94.9	2.3	103.5	3.0	126.6	2.5	0° °C
0	1400	53-NI112 S6-NI112	03.0 50.0	2.3 2.2	00.4 70.0	∠.3 2.2	92.5	2.ð	00.4	2.4	 ∾ົ
-12.5	700	B1-NI106	53.0	2.3	68.0	2.3	70.1	2.0	39.1 75.2	2.3 2.2	 ℃
-12.5	1000	B1-N1100	45.8	2.4	59.7	2.2	61 9	23	67.4	2.2	 _∩
-492.5	625	C1-NI200	55.2	2.2	67.4	2.2	70.0	2.2	73.1	2.2	 ℃
-492.5	600	C2-NI201	283.3	3.3	327.8	2.9	339.7	2.7	355.8	2.4	°C
-967.5	450	R1-NI104	37.6	2.3	43.0	2.2	44.2	2.3	50.3	2.2	°Č
-942.5	450	R2-NI105	209.7	3.6	293.9	4.2	315.8	4.1	350.4	3.0	°C
		P1-NI215	102.6	3.7	125.8	4.7	155.3	5.1	185.0	30.6	°C
0	50	VEL1-NI400	-0.9	0.15	-0.9	0.13	-0.8	0.13	-0.9	0.13	(m/s)
0	150	VEL2-NI401	-1.0	0.11	-1.1	0.11	-1.1	0.12	-1.1	0.11	(m/s)
0	350	VEL3-NI402	1.1	0.12	1.2	0.14	1.3	0.13	1.4	0.16	(m/s)
0	450	VEL4-NI403	2.0	0.12	2.2	0.12	2.3	0.12	2.4	0.18	(m/s)
0	650	HF1-NI212	13.0	1.37	18.3	1.86	23.2	2.00	26.4	7.35	(kW/m^2)
0	850		9.3	2.13	7.0	1.95	22.5	2.84	24.2	6.90	$(KVV/ff1^{-})$
0		1 OW NI404	4.0 2334 0	1.05	7.0 2348.0	1.40	2426.3	1.70	2439.7	4.55 m ³ /h	(KVV/III)
300	250	TB2	109 1	23	127.5	24	131.9	24	145.6	4.5	°C
300	500	TB3	114.2	2.9	141.0	3.1	150.6	3.2	173.6	9.4	°C
300	600	TB4	188.9	6.2	250.4	10.1	315.5	8.3	381.9	37.7	°Č
300	700	TB5	291.1	5.7	369.6	12.4	441.6	11.0	492.1	47.2	°C
300	800	TB6	337.5	7.5	433.9	22.5	515.5	24.3	568.4	73.0	°C
300	1000	TB7	343.5	13.0	458.1	28.0	558.6	30.3	605.4	84.4	°C
300	1200	TB8	278.0	9.2	381.9	31.1	512.9	35.5	568.3	92.7	°C
300	1400	TB9	218.9	7.8	294.4	23.2	415.4	32.9	475.6	81.4	°C
300	1700	TB10	160.3	5.4	207.9	14.1	274.6	15.8	329.9	46.0	°C °C
500	250	1B12 TB40	38.7	2.2	43.2	2.4	43.2	2.3	50.1	2.1	℃
500	000	1813 TD14	04.3 65.4	2.2	70.0	2.3	84.3 97.6	2.4	94.7	3.1 20	°C ∞
500	700	TR15	60.4 60.5	2.2	75.0	∠.3 ??	01.0	2.4	30.0 08.0	3.9 3.5	- ℃
500	800	TR16	47.5	2.5	57.7	2.3	65.8	2.5	77 1	3.0	 ℃
500	1000	TB17	55.1	2.3	75.5	2.7	91.7	3.1	112.8	5.8	°Č
500	1200	TB18	57.7	2.9	78.8	6.1	114.1	4.6	136.9	13.9	°Č
500	1400	TB19	62.0	3.1	83.4	4.1	101.7	5.3	124.7	12.8	°C
500	1700	TB20	70.8	2.6	92.1	6.0	113.4	5.7	130.6	11.3	°C
100	0	TA1	99.7	2.3	116.3	2.3	121.3	3.0	132.0	6.5	°C
100	250	TA2	239.3	3.2	273.1	3.3	286.3	3.0	298.8	11.7	°C
100	500	TA3	802.7	6.3	795.3	11.8	767.0	6.4	743.6	61.6	°C
100	600	TA4	721.6	13.7	794.1	8.7	848.2	8.0	873.1	104.9	<u>℃</u>
100	/00	I A5	585.0	15.0	647.4	16.2	/40.7	12.8	804.0	112.2	°C ≎
100	1000	1 A0 T A7	4/1.Z	11.0	243.0 220.7	13.1	522.0	14.0	744.9 507.0	91.2	- ℃
100	1200		260.0	16.2	330 1	17.0	470.2	20.3	562 /	90.0	°C
100	1400	TA9	203.0	8.4	255.6	13.9	353.0	15.0	426.0	56.8	 ℃
100	1700	TA10	174.8	5.8	211.6	8.5	278.2	12.0	349.6	42.1	⊃°
200	0	TA11	87.0	2.4	102.1	2.4	107.6	3.2	118.5	6.4	°Č
200	250	TA12	132.5	2.3	154.0	2.6	159.9	2.8	175.6	5.3	°C
200	500	TA13	286.4	6.9	365.0	21.8	482.9	16.6	563.8	67.1	°C
200	600	TA14	628.7	13.6	716.2	17.0	759.1	11.2	797.2	108.9	٥C
200	700	TA15	395.0	10.0	532.1	45.0	721.4	29.5	770.3	98.6	°C
200	800	TA16	687.5	18.3	770.7	14.4	814.8	12.9	824.5	114.8	°C

			D20	0 -120	D200	-150	D200	-200	D200	-240	
x (mm)	z (mm)	Αισθητήριο	Μέση τιμή	ε _{ολ}	Μέση τιμή	ε _{ολ}	Μέση τιμή	ε _{ολ}	Μέση τιμή	ε _{ολ}	Μονά- δες
200	1000	TA17	506.0	19.4	633.0	22.7	747.9	15.1	790.4	118.9	°C
200	1200	TA18	352.0	18.8	455.6	32.6	624.0	23.7	702.7	179.4	°C
200	1400	TA19	239.5	6.1	307.3	14.5	416.4	18.9	515.9	66.3	°C
200	1700	TA20	189.3	5.6	228.1	12.2	312.8	14.0	355.7	48.0	°C
10	500	F1	810.0	4.4	817.1	3.6	812.3	5.1	788.1	54.7	°C
10	600	F2	228.1	6.3	299.1	10.5	393.1	17.2	411.4	53.2	°C
10	700	F3	180.7	4.5	238.8	7.6	301.3	5.1	346.8	23.8	°C
10	800	F4	170.5	6.7	219.9	11.8	286.6	6.7	342.6	28.4	°C
10	1000	F5	145.8	7.7	182.4	12.7	255.5	8.2	317.2	33.0	°C
10	1200	F6	137.1	6.0	172.7	9.6	234.3	9.2	292.2	25.7	°C
10	1400	F7	133.7	6.3	168.4	7.3	218.4	9.4	267.0	26.2	°C
10	1700	F8	115.9	4.3	143.8	5.7	179.1	7.5	215.2	17.0	°C
50	500	F9	802.0	5.9	800.8	8.3	792.5	6.3	756.1	57.9	°C
50	600	F10	438.8	21.8	508.8	11.3	610.2	17.7	689.8	96.9	°C
50	700	F11	336.0	15.7	384.7	16.8	516.8	13.2	596.1	85.0	°C
50	800	F12	269.9	11.2	322.3	19.0	452.7	21.9	555.5	80.2	°C
50	1000	F13	214.3	11.9	263.3	17.5	398.2	18.8	492.3	80.4	°C
50	1200	F14	195.7	11.8	239.6	17.0	350.3	17.2	431.3	68.0	°C
50	1400	F15	185.8	9.8	229.7	13.3	319.5	16.4	380.1	54.0	°C
50	1700	F16	161.6	8.3	195.0	12.1	266.8	13.5	311.3	42.0	°C

Πίνακας Α.3 Μέση τιμή και ολικό σφάλμα όλων των μετρούμενων μεγεθών για την πε	ρίπτωση της
γεωμετρίας παραθύρου, σε χαμηλή θέση καυστήρα (W55)	

			W55-	120	W55-	150	W55-	200	W55-	240	
x(mm)	z(mm)	Αισθητήριο	Μέση		Μέση		Μέση		Μέση		Μονά-
			τιμή	¢ολ	τιμή	¢ολ	τιμή	¢ολ	τιμή	εολ	δες
-717.5	100	LB1-NI207	231.3	3.0	370.4	11.6	616.6	8.4	778.6	17.5	°C
-717.5	200	LB2-NI208	291.8	5.4	422.7	6.5	742.9	13.3	829.8	7.2	°C
-717.5	300	LB3-NI209	464.0	4.4	555.7	4.4	716.5	10.0	807.9	6.9	S
-717.5	400	LB4-NI210	528.2	5.6	585.3	6.1	708.3	6.6	778.3	5.9	S
-717.5	500	LB5-NI211	570.0	8.5	613.9	6.9	712.1	6.2	766.2	3.7	S
-492.5	100	LM1-NI202	341.6	22.1	313.7	18.2	351.9	4.0	369.3	3.7	°C
-492.5	200	LM2-NI203	714.3	29.4	680.6	43.5	679.2	36.3	600.0	14.8	°C
-492.5	300	LM3-NI204	823.3	9.0	801.5	14.8	735.9	19.9	720.7	11.0	°C
-492.5	400	LM4-NI205	817.8	6.6	765.0	18.8	761.7	21.9	726.1	9.8	°C
-492.5	500	LM5-NI206	759.8	5.7	711.3	11.9	752.5	11.7	753.6	9.1	°C
-267.5	100	RS1-NI114	212.4	3.3	350.6	17.8	690.9	14.7	827.0	9.6	°C
-267.5	200	RS2-NI100	325.0	3.7	472.1	14.6	781.5	12.2	857.5	4.5	S
-267.5	300	RS3-NI101	475.1	5.0	647.4	14.1	839.0	5.1	863.1	6.6	S
-267.5	400	RS4-NI102	701.7	9.2	798.4	4.7	861.0	4.2	868.0	7.3	°C
-267.5	500	RS5-NI103	785.2	4.1	812.0	9.8	842.6	4.8	851.0	5.9	°C
0.0	250	BD1-NI300	84.3	3.1	136.9	7.2	237.6	7.0	282.0	3.1	°C
0.0	300	BD2-NI301	355.3	3.7	432.5	15.1	615.2	18.6	682.7	6.7	°C
0.0	400	BD3-NI302	541.5	11.2	695.8	26.7	804.0	5.5	811.7	7.2	S
0.0	450	BD4-NI303	626.2	13.7	738.0	10.5	786.5	4.4	768.9	5.2	S
10.0	200	W1-NI304	52.1	2.3	70.3	2.8	95.3	2.4	104.3	2.2	S
0.0	700	S1-NI108	63.1	2.7	95.5	2.5	166.2	5.1	217.0	2.2	S
0.0	800	S2-NI109	47.9	2.5	76.2	2.8	112.5	2.2	135.2	2.9	°C
0.0	1000	S3-NI110	54.9	2.6	92.0	3.1	166.5	2.8	222.5	2.7	S
0.0	1200	S4-NI111	50.4	2.5	82.0	3.4	141.4	2.8	201.5	2.2	S
0.0	1400	S5-NI112	48.4	2.5	74.2	3.1	127.3	2.4	166.0	2.7	S
0.0	1700	S6-NI113	44.2	2.4	64.1	2.8	113.4	2.2	129.8	2.4	S
-12.5	700	B1-NI106	34.4	2.3	51.0	2.4	71.2	2.2	76.5	2.3	S
-12.5	1000	B2-NI107	33.5	2.3	51.5	2.6	68.7	2.2	74.0	2.3	S
-492.5	625	C1-NI200	40.7	2.6	50.7	2.3	58.2	2.2	61.7	2.2	S
-492.5	600	C2-NI201	200.4	4.3	294.1	5.0	427.0	3.0	445.7	2.2	S
-967.5	450	R1-NI104	27.5	2.5	43.2	2.4	53.8	2.2	56.1	2.2	S
-942.5	450	R2-NI105	118.7	3.2	185.7	6.0	315.0	2.6	390.4	5.3	°C
-	-	P1-NI215	62.0	2.3	94.2	3.5	159.7	3.5	192.2	17.5	S
0.0	250	VEL1-NI400	-0.7	0.15	-0.8	0.13	-1.0	0.17	-1.0	4.2	m/s
0.0	300	VEL2-NI401	-0.4	0.40	-0.7	0.36	-0.6	0.48	-0.8	0.15	m/s
0.0	400	VEL3-NI402	1.7	0.20	1.8	0.22	2.1	0.27	2.1	0.26	m/s
0.0	450	VEL4-NI403	2.7	0.17	3.2	0.17	3.4	0.16	3.4	0.18	m/s
0.0	650	HF1-NI212	5.1	0.98	8.2	1.32	21.3	2.26	27.8	0.17	kW/m ²
0.0	850	HF2-NI213	4.9	1.66	8.9	2.25	23.2	3.59	30.4	2.94	kW/m ²
0.0	1050	HF3-NI214	3.8	0.87	7.5	1.81	20.8	3.85	27.2	4.83	kW/m ²

	AIR	FLOW-NI404	2283.9		2341.8		2360.9		2366.5		m³/h
300.0	200	TB1	40.8	2.2	53.5	2.7	70.4	2.4	76.7	2.3	°C
300.0	350	TB2	73.8	2.2	108.5	3.0	152.8	3.0	169.1	2.6	°C
300.0	500	TB3	64.9	2.3	100.5	3.7	158.3	2.7	183.8	2.4	°C
300.0	600	TB4	63.2	2.3	100.5	4.1	174.8	2.4	203.0	3.0	°C
300.0	700	TB5	70.1	2.7	112.1	5.6	204.0	3.1	239.1	2.8	°C
300.0	800	TB6	66.5	2.5	104.9	9.2	195.7	3.4	216.8	4.5	°C
300.0	1000	TB7	78.7	2.9	113.4	12.5	206.2	5.0	228.7	4.6	°C
300.0	1200	TB8	73.3	3.4	110.6	12.1	195.3	9.0	232.4	10.3	°C
300.0	1400	TB9	71.3	3.1	106.4	9.0	174.9	8.8	208.6	8.6	<u>.</u> 0°
300.0	1700	TB10	66.8	2.6	92.3	57	159.5	5.9	186.5	5.1	<u>.</u>
500.0	200	TB11	32.9	2.0	38.5	22	49.5	2.2	54.2	23	 _0°
500.0	350	TB12	30.3	2.2	34.4	2.2	43.5	2.3	46.9	2.3	<u> </u>
500.0	500	TB13	39.1	22	53.7	2.5	79.7	2.6	91.5	2.3	<u>.</u>
500.0	600	TB10	37.6	2.2	51.2	2.5	78.4	2.5	91.3	2.0	<u></u>
500.0	700	TB15	35.4	2.2	48.6	2.0	70.4	2.5	94.8	2.2	°C
500.0	800	TB16	20.7	2.2	36.0	2.7	55.2	2.0	65.6	2.2	0°C
500.0	1000	TB17	30.4	2.2	42.2	2.0	73.0	2.5	00.0 Q2.0	2.5	 ℃
500.0	1200	TB18	28.6	2.2	38.8	2.4	66.1	2.4	83.0	2.7	°C
500.0	1400	TB10	20.0	2.2	38.5	2.7	60.6	2.0	70.0	2.3	<u>د</u>
500.0	1700	TR20	29.0	2.2	43.6	3.1	83.3	2.9	116.3	2.3	 ℃
100.0	0	TA1	29.1	2.2	43.0	3.7	140.6	4.0	169.0	2.6	°C
100.0	250		167.5	3.0	238.0	5.0	357.0	2.4	200.3	2.0	 ℃
100.0	500		/19.2	3.2	230.0	20.0	654.5	5.1	608.3	5.0	°€
100.0	500		410.2	1.1	500.7	20.9	756.0	5.0	790.3	5.5	0 0
100.0	700		404.Z	0.4	300.4 454.6	10.0	730.2	0.0	703.0	0.2	0 0
100.0	700		320.5	9.3	404.0	19.9	749.0	11.0	793.0	0.3	- <u>C</u>
100.0	800		265.0	7.0	429.6	17.9	722.0	11.5	118.3	8.2	<u>ै</u>
100.0	1000		204.1	3.6	356.6	16.0	606.0	14.0	082.5	10.3	د ۵
100.0	1200		1/1.3	4.0	304.6	19.0	201.4	10.0	044.1	14.4	-C
100.0	1400	TA9	141.4	3.2	230.4	10.6	412.8	14.3	490.7	11.7	ै ।
100.0	1700	TA10	74.0	3.4	100.1	6.9	290.7	9.5	345.6	8.3	<u>्</u>
200.0	0	TA11	74.9	2.4	110.1	2.5	145.9	3.2	160.7	2.7	ೆ ೧
200.0	250	TA12	86.8	2.4	126.5	3.2	181.7	3.6	205.2	3.0	<u>್</u>
200.0	500	TA13	113.1	3.0	156.1	3.8	247.3	3.3	277.1	3.7	<u>್</u>
200.0	600	TA14	166.1	42.9	231.2	34.1	301.8	37.3	315.4	47.2	<u></u>
200.0	700	TA15	204.4	5.2	302.5	21.5	414./	9.0	461.2	10.1	<u> </u>
200.0	800	TA16	192.4	5.5	298.8	21.5	419.5	13.1	466.3	11.9	<u>ں</u> 0°
200.0	1000	IA1/	148.0	3.2	220.6	16.6	390.5	6.6	442.0	6.6	<u> </u>
200.0	1200	TA18	128.0	3.3	196.5	14.4	356.8	14.7	408.2	16.2	<u> </u>
200.0	1400	I A19	105.4	2.8	149.9	8.4	2/6.8	8.0	323.9	6.6	<u> </u>
200.0	1/00	I A20	88.9	2.8	125.9	6.2	216.9	5.9	254.1	8.2	<u> </u>
10.0	500	F1	6/8.2	4.3	689.6	8.3	/38.2	6.0	/38.5	4.2	<u> </u>
10.0	600	F2	143.2	1.0	1/1.8	11.6	421.7	42.3	4/3.7	12.4	<u> </u>
10.0	700	F3	129.0	4.9	186.5	13.0	399.2	19.1	463.5	7.5	°C
10.0	800	F4	151.8	8.9	216.0	15.1	444.2	19.8	527.3	12.3	<u>℃</u>
10.0	1000	F5	147.5	7.0	249.4	10.9	469.1	21.3	570.9	14.8	°C
10.0	1200	F6	139.7	5.7	242.0	9.1	452.2	22.0	566.8	18.6	°C
10.0	1400	F7	125.3	4.4	210.2	7.5	380.0	15.1	482.6	12.1	°C
10.0	1700	F8	96.9	3.3	156.5	5.4	275.5	7.0	347.4	7.0	°C
50.0	500	F9	627.1	9.8	708.1	6.0	755.2	4.0	739.3	4.9	°C
50.0	600	F10	230.6	10.2	283.5	16.8	657.9	10.6	794.4	16.6	°C
50.0	700	F11	225.1	8.8	310.9	23.5	654.1	19.0	771.2	14.9	°C
50.0	800	F12	233.2	10.3	361.6	25.5	692.7	24.1	789.4	12.3	°C
50.0	1000	F13	214.5	8.3	384.5	17.5	687.8	28.1	790.3	18.4	°C
50.0	1200	F14	186.8	6.4	335.5	14.6	613.5	26.0	733.2	22.2	°C
50.0	1400	F15	164.1	4.7	279.9	9.7	507.5	21.9	623.1	16.0	°C
50.0	1700	F16	133.2	4.2	219.6	7.6	378.2	13.8	472.2	13.0	°C

Πίνακας Α.4 Μέση τιμή και ολικό σφάλμα όλων των μετρούμενων μεγεθών για την περίπτωση της γεωμετρίας παραθύρου, σε υψηλή θέση καυστήρα (W200)

			W200-150		W200	W200-170 W2		W200-200		W200-240	
x(mm)	z(mm)	Αισθητήριο	Μέση τιμή	εολ	Μέση τιμή	εολ	Μέση τιμή	εολ	Μέση τιμή	εολ	Μονά- δες
-717.5	100	LB1-NI207	434.9	3.4	480.7	2.4	531.5	4.3	582.0	4.6	°C
-717.5	200	LB2-NI208	473.2	4.0	519.4	2.8	574.9	4.8	624.1	3.9	°C
-717.5	300	LB3-NI209	557.5	7.0	669.4	22.5	756.3	20.8	835.9	8.9	°C
-717.5	400	LB4-NI210	721.9	5.5	735.2	6.7	752.6	8.3	768.7	10.6	O°

-717.5	500	LB5-NI211	681.2	4.1	704.6	4.9	724.7	3.1	744.3	5.5	°C
-492.5	100	LM1-NI202	340.8	2.6	386.8	4.0	436.8	2.7	494.3	3.4	°C
-492.5	200	LM2-NI203	314.2	2.7	327.8	3.5	331.6	2.3	319.4	2.6	°C
-492.5	300	LM3-NI204	438.9	3.4	456.9	4.9	476.6	3.5	490.7	2.4	°C
-492.5	400	LM4-NI205	682.9	13.7	545.1	8.4	549.8	6.7	687.1	7.2	°C
-492.5	500	LM5-NI206	755.2	6.0	702.2	16.4	603.1	7.1	605.2	7.9	℃
-267.5	100	RS1-NI114	436.4	3.8	481.6	4.3	531.1	51	594.3	4.8	°C
-267.5	200	RS2-NI100	515.7	3.2	559.1	3.4	611.0	2.8	680.9	4.0	°C
267.5	200	PS2-NI100	580.5	1.2	640.0	6.9	704.2	6.7	704.0	9.2	°€
-207.5	400	R53-N1101	706.0	4.2	040.0	11.2	002 7	12.0	025.2	6.3	0 °C
-207.5	400	R54-NI102	720.0	1.0	023.3	11.2	003.7	12.9	935.2	0.3	-0
-267.5	500	R55-NI103	885.8	3.7	910.6	4.6	929.9	4.0	934.2	4.5	<u>°C</u>
0.0	250	BD1-NI300	230.9	4.7	252.9	3.0	276.0	3.5	300.1	6.4	<u></u>
0.0	300	BD2-NI301	497.7	5.4	555.4	16.3	625.0	17.4	762.7	7.9	J°
0.0	400	BD3-NI302	841.7	5.7	865.6	7.1	868.1	10.2	824.3	7.5	°C
0.0	450	BD4-NI303	873.0	4.1	882.1	6.0	876.7	14.6	819.6	12.5	°C
10.0	200	W1-NI304	103.2	2.3	107.6	3.1	117.4	3.3	128.5	2.3	°C
0.0	700	S1-NI108	274.8	3.0	312.0	2.5	336.1	3.5	370.1	2.2	°C
0.0	800	S2-NI109	194.1	3.3	235.0	3.4	264.5	2.9	293.5	2.3	°C
0.0	1000	S3-NI110	243.8	3.6	281.0	2.4	314.8	3.7	363.3	2.8	°C
0.0	1200	S4-NI111	186.9	3.3	219.2	2.6	254.5	3.4	311.2	2.5	°C
0.0	1400	S5-NI112	152.3	3.1	178.1	2.5	210.0	3.0	264.6	2.3	°C
0.0	1700	S6-NI113	119.9	2.5	135.9	2.3	155.1	2.4	197.4	2.4	°C
-12.5	700	B1-NI106	93.9	2.3	108.9	2.5	127.6	2.4	145.9	2.3	<u>.</u>
-12.5	1000	B2-NI107	88.9	2.3	95.1	24	112.6	3.0	151.4	3.0	⊃°
-402.5	625	C1-NI200	71 7	2.0	75.5	2.7	77.6	22	82.1	2.0	°℃
-402.5	600	C2-NI201	451.2	2.2	484.2	2.0	5047	2.5	522.2	2.2	°∩
-492.0	450		401.0 E7 4	0.4	404.Z	3.0	67.0	2.0	71.0	2.4	С С
-901.5	400		01.4	2.3	03.8	2.2	205.0	2.2	11.0	2.2	-C
-942.5	450		220.8	3.3	203.1	4.0	305.0	3.0	307.9	3.0	ິ ເ
-	-	P1-NI215	147.8	2.61	163.8	2.75	186.7	3.39	218.1	3.25	°U
0.0	250	VEL1-NI400	-0.7	0.16	-0.8	0.15	-0.8	0.14	-0.9	0.15	m/s
0.0	300	VEL2-NI401	-1.1	0.15	-1.1	0.15	-1.3	0.16	-1.4	0.23	m/s
0.0	400	VEL3-NI402	2.1	0.15	2.1	0.14	2.2	0.23	2.1	0.21	m/s
0.0	450	VEL4-NI403	3.5	0.14	3.6	0.16	3.7	0.14	3.7	0.15	m/s
0.0	650	HF1-NI212	36.0	3.26	39.4	4.19	46.4	5.59	49.7	5.29	kW/m ²
0.0	850	HF2-NI213	31.8	4.15	31.8	4.53	36.4	3.09	47.7	5.02	kW/m ²
0.0	1050	HF3-NI214	24.6	3.67	26.6	3.46	31.3	3.23	34.9	4.49	kW/m ²
0.0	1050 AIRF	HF3-NI214 LOW-NI404	24.6 2370.0	3.67	26.6 2398.5	3.46	31.3 2437.6	3.23	34.9 2398.7	4.49	kW/m ² m ³ /h
0.0	1050 AIRF 200	HF3-NI214 LOW-NI404 TB1	24.6 2370.0 2.3	3.67 2.3	26.6 2398.5 73.7	3.46 2.4	31.3 2437.6 82.2	3.23 2.3	34.9 2398.7 89.9	4.49 2.4	kW/m ² m ³ /h °C
0.0 300.0 300.0	1050 AIRF 200 350	HF3-NI214 LOW-NI404 TB1 TB2	24.6 2370.0 2.3 2.4	3.67 2.3 2.3	26.6 2398.5 73.7 154.1	3.46 2.4 2.5	31.3 2437.6 82.2 171.5	3.23 2.3 2.7	34.9 2398.7 89.9 185.8	4.49 2.4 3.3	kW/m ² m ³ /h °C °C
0.0 300.0 300.0 300.0	1050 AIRF 200 350 500	HF3-NI214 FLOW-NI404 TB1 TB2 TB3	24.6 2370.0 2.3 2.4 2.6	3.67 2.3 2.3 2.4	26.6 2398.5 73.7 154.1 163.1	3.46 2.4 2.5 3.1	31.3 2437.6 82.2 171.5 181.1	3.23 2.3 2.7 2.7	34.9 2398.7 89.9 185.8 198.8	4.49 2.4 3.3 3.3	kW/m ² m ³ /h °C °C °C
0.0 300.0 300.0 300.0 300.0	1050 AIRF 200 350 500 600	HF3-NI214 FLOW-NI404 TB1 TB2 TB3 TB4	24.6 2370.0 2.3 2.4 2.6 2.4	3.67 2.3 2.3 2.4 2.4	26.6 2398.5 73.7 154.1 163.1 187.8	3.46 2.4 2.5 3.1 3.4	31.3 2437.6 82.2 171.5 181.1 209.0	3.23 2.3 2.7 2.7 2.7	34.9 2398.7 89.9 185.8 198.8 231.4	4.49 2.4 3.3 3.3 3.6	kW/m ² m ³ /h °C °C °C
0.0 300.0 300.0 300.0 300.0 300.0	1050 AIRF 200 350 500 600 700	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5	24.6 2370.0 2.3 2.4 2.6 2.4 2.6	3.67 2.3 2.3 2.4 2.4 4.2	26.6 2398.5 73.7 154.1 163.1 187.8 230.4	3.46 2.4 2.5 3.1 3.4 5.6	31.3 2437.6 82.2 171.5 181.1 209.0 257.2	3.23 2.3 2.7 2.7 2.7 3.6	34.9 2398.7 89.9 185.8 198.8 231.4 283.2	4.49 2.4 3.3 3.3 3.6 4 3	kW/m ² m ³ /h °C °C °C °C °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0	1050 AIRF 200 350 500 600 700 800	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1	3.67 2.3 2.3 2.4 2.4 4.2 7.5	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8	3.46 2.4 2.5 3.1 3.4 5.6 12.5	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5	3.23 2.3 2.7 2.7 2.7 3.6 7.8	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9	4.49 2.4 3.3 3.3 3.6 4.3 4.7	kW/m ² m ³ /h °C °C °C °C °C °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0	1050 AIRF 200 350 500 600 700 800	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1	3.67 2.3 2.4 2.4 4.2 7.5	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.0	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4	4.49 2.4 3.3 3.3 3.6 4.3 4.7	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 200.0	1050 AIRF 200 350 500 600 700 800 1000	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB2	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7	3.67 2.3 2.3 2.4 2.4 4.2 7.5 8.3 7.1	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.2	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	1050 AIRF 200 350 500 600 700 800 1000 1200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB0	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3	3.67 2.3 2.3 2.4 2.4 4.2 7.5 8.3 7.1	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166 6	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.2	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175 5	3.23 2.3 2.7 2.7 3.6 7.8 5.8 7.3 6 9	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB40	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5	3.23 2.3 2.7 2.7 3.6 7.8 5.8 7.3 6.8 2.2	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB10	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0	3.23 2.3 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 3.8	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 05.7	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7	3.23 2.3 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 6.6	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB12	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.5	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.2	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9	3.23 2.3 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.5	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.2	kW/m² m³/h °C °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB13	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.2 2.3	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.3	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.2 2.2 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9	3.23 2.3 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.2 2.2 2.3	kW/m² m³/h °C °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB14	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.2 2.3 2.3	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1200 1400 1700 200 350 500 600 700	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB15	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2 2.3	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0	3.23 2.3 2.7 2.7 2.7 3.6 7.8 7.8 7.8 7.8 7.8 6.8 3.8 2.2 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1200 1200 1200 1200 200 350 500 600 700 800	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2 2.3 2.2	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.3 2.3 2.3 2.5	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.4	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4 2.5	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1200 1200 1200 1400 1700 200 350 500 600 700 800 1000	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2 2.3 2.2 2.3 2.2 2.3	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.3 2.3 2.3 2.3 2.5 2.4	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.3 2.4 2.5 2.9	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1000 1200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.2 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.5 2.4 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4 2.5 2.9 2.3	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.2 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.4 2.2 2.3 2.3 2.5 2.4 2.5	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.3 2.3 2.3 2.2	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.6	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400 1200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB19 TB20	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.2 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.4 2.2 2.5	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 3.8	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.	1050 AIRF 200 350 500 600 700 800 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400 1200 0	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.3	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.0 100.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400 1200 1400 1200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.4 2.3 2.5 2.4 2.5 2.5 2.8	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4	3.23 2.3 2.7 2.7 2.7 3.6 7.8 7.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7	4.49 2.4 3.3 3.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9	$\begin{array}{c} kW/m^2 \\ \hline m^3/h \\ \hline \circ C \\ \hline \hline$
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.0 100.0 100.0 100.0	1050 AIRF 200 350 500 600 700 800 1200 1200 1200 350 500 600 700 800 1000 1200 1400 1200 1400 1200 500 500	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB17 TB18 TB19 TB20 TA1 TA2 TA3	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.7 4.7 4.7 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5	3.23 2.3 2.7 2.7 2.7 3.6 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.3 2.2 2.5 2.5 2.6 8.1	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4	$\begin{array}{c} kW/m^2 \\ \hline m^3/h \\ \hline \circ C \\ \hline \hline$
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.	1050 AIRF 200 350 500 600 700 800 1200 1200 350 500 600 700 800 1200 1200 1200 1200 1200 1200 120	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.7 4.7 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880 5	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.4 2.2 2.5 2.5 2.5 2.8 10.1 107	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0	3.23 2.3 2.7 2.7 2.7 2.7 3.6 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0	$\begin{array}{c} kW/m^2 \\ \hline m^3/h \\ \hline \circ C \\ \hline \hline$
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.	1050 AIRF 200 350 500 600 700 800 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400 1200 1200 500 600 700 800 1000 1200 500 600 700 800 1000 1200 200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.5 2.4 2.3 2.5 2.4 2.5 2.5 2.5 2.5 2.8 10.1 10.7 7,5	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8	3.23 2.3 2.7 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.0 100.0 100.0 100.0 100.0 100.0	1050 AIRF 200 350 500 600 700 800 1200 1200 1200 350 500 600 700 800 1200 1200 1200 1200 1200 1200 500 600 700 800 1000 1200 1200 800 1000 1200 1200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.7 4.3 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2	3.67 2.3 2.4 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 80.6 4	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.4 2.3 2.5 2.4 2.5 2.5 2.5 2.5 2.8 10.1 10.7 7.5 6.8	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2	3.23 2.3 2.7 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 85.2 0	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2 7.2	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.0 100.0 100.0 100.0 100.0	1050 AIRF 200 350 500 600 700 800 1200 1200 1200 350 500 600 700 800 1200 1200 1200 1200 1200 1200 500 600 700 800 1000 800 1000	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.6	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 680.2	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.2	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.0 100.0 100.0 100.0 100.0	1050 AIRF 200 350 500 600 700 800 1200 1400 1700 200 350 500 600 700 800 1200 1200 1200 1200 1200 500 600 700 250 500 600 700 800 1000 1200	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA9	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8 12.6 16.2	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 68.2 259.7	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7 676.4	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6 736.6	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.4 2.5 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.3 20.5	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400 1700 0 250 500 600 700 800 1000 1200 1400	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA0	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8 12.6 16.2 10.4 12.8 12.6 16.2 10.4 12.8 12.6 16.2 10.4 12.8 12.6 16.2 10.4 12.8 12.6 16.2 10.4 12.8 12.6 10.4 12.6 10.4 12.8 12.6 10.4 12.8 12.6 10.4 12.8 12.6 10.4 12.8 12.6 10.4 12.8 12.6 10.4 12.8 12.6 10.4 12.8 12.6 10.4 12.8 10.4 1	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 680.2 598.7	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7 676.4	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6 736.6 736.6	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.4 2.5 2.3 2.4 2.5 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.3 20.5	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1200 1200 1200 1200 1200 1200 1400 1700 0 250 500 600 700 800 1200 1400 1250 500 600 700 800 1250 500 600 700 800 1250 700 800 1250 800 1250 800 1250 800 1250 800 1250 1250 1250 1250 1250 1250 1250 12	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 TA12	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 4.1 3.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8 12.6 16.3 9.3 2.7	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 680.2 598.7 444.7	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7 676.4 520.6	3.23 2.3 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6 736.6 561.5 204.6	4.49 2.4 3.3 3.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.3 20.5 17.2	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400 1700 0 250 500 600 700 800 1000 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1200 1200 1400 1200 1400 1200 1200 1200 1400 1200 1200 1400 1200 1200 1400 1200 1000 1200 1000 1200 10	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 TA10 TA10 TA10 TA10 TA10 TA10	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.7 4.7 4.7 2.6 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8 12.6 16.3 9.3 6.7 2.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 680.2 598.7 444.7 310.5	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 248.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7 676.4 520.6 351.9	3.23 2.3 2.7 2.7 2.7 3.6 7.8 7.8 7.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6 736.6 561.5 391.2	4.49 2.4 3.3 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.3 20.5 17.2 10.4 2.5	kW/m² m³/h °C
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.	1050 AIRF 200 350 500 600 700 800 1000 1200 350 500 600 700 800 1000 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1000 1200 1000 1200 1000	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 TA10 TA11 TA11 TA11 TA11	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.7 4.7 4.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2	3.67 2.3 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8 12.6 16.3 9.3 6.7 2.4 2.4 12.6 16.3 9.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 17.7 10.4 12.8 12.6 16.3 10.4 12.8 12.6 16.3 16.7 17.7 16.7 16.7 17.	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 680.2 598.7 444.7 310.5 149.3	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7 676.4 520.6 351.9 168.0	3.23 2.3 2.7 2.7 2.7 3.6 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6 736.6 561.5 391.2 179.0	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.3 20.5 17.2 10.4 3.2	$\begin{array}{c} kW/m^2 \\ m^3/h \\ \hline \circ C \\ \hline \hline$
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.	1050 AIRF 200 350 500 600 700 800 1200 1400 1700 200 350 500 600 700 800 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1400 1200 1000 1200 1000 1200 1000 1200 1000 1200 1000	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 TA10 TA11 TA12 TA11 TA12 TA12 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA12 TA10 TA11 TA11 TA12 TA10 TA11 TA12 TA12 TA10 TA11 TA12 TA12 TA12 TA10 TA11 TA12 TA1	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.7 4.3 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2	3.67 2.3 2.4 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8 12.6 16.3 9.3 6.7 2.4 2.4 2.4 12.6 16.3 9.3 12.6 16.3 12.4 12.8 12.6 16.3 12.4 12.8 12.6 16.3 12.4 12.8 12.6 16.3 12.4 12.8 12.6 16.3 12.4 12.8 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 17.6 16.3 12.6 16.3 16.7 17.6 16.7 16.7 17.6 16.3 17.6 16.7 17.6 16.3 17.6 16.7 17.6 17.7 17.4	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 680.2 598.7 444.7 310.5 149.3 194.8	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7 676.4 520.6 351.9 168.0 212.0	3.23 2.3 2.7 2.7 2.7 2.7 3.6 7.8 7.8 7.8 7.8 7.8 7.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6 736.6 561.5 391.2 179.0 226.9	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.6 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.3 20.5 17.2 10.4 3.2 2.7 10.4 3.2 2.7 10.4 3.2 2.7 10.4 3.2 2.7 10.4 3.2 10.4 3.2 10.4 3.2 10.4 10	$\begin{array}{c} kW/m^2 \\ m^3/h \\ \hline \circ C \\ \hline \hline$
0.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 200.0 200.0	1050 AIRF 200 350 500 600 700 800 1000 1200 1400 1700 200 350 500 600 700 800 1000 1200 1400 1700 0 250 500 600 700 800 1000 1200 1400 1700 0 250 500 600 700 800 1000 1200 1000 1200 1000 1200 1000 1200 1000 1200 100	HF3-NI214 ELOW-NI404 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 TB18 TB19 TB20 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9 TA10 TA11 TA12 TA13	24.6 2370.0 2.3 2.4 2.6 2.4 2.6 4.1 4.7 4.3 3.3 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2	3.67 2.3 2.4 2.4 2.4 4.2 7.5 8.3 7.1 4.5 3.6 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 3.3 5.6 7.0 10.4 12.8 12.6 16.3 9.3 6.7 2.4 2.4 4.2 12.6 16.3 9.3 6.7 2.4 2.4 4.2 12.6 16.3 9.3 12.6 16.3 9.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.4 12.6 16.3 12.4 12.4 12.6 16.3 12.4 12.4 12.6 16.3 12.4 12.4 12.6 16.3 12.4 12.4 12.6 16.3 12.4 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.6 16.3 12.4 12.	26.6 2398.5 73.7 154.1 163.1 187.8 230.4 222.8 212.9 194.7 166.6 144.0 57.7 49.0 87.8 90.4 91.8 70.0 92.2 73.9 62.8 62.1 161.1 364.5 760.4 880.5 850.1 806.4 680.2 598.7 444.7 310.5 149.3 194.8 287.9	3.46 2.4 2.5 3.1 3.4 5.6 12.5 7.1 7.6 7.3 6.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	31.3 2437.6 82.2 171.5 181.1 209.0 257.2 242.5 218.0 206.0 175.5 163.0 61.7 51.9 96.9 98.9 101.0 74.8 102.7 86.0 71.4 75.4 180.1 390.4 776.5 878.0 862.8 842.2 740.7 676.4 520.6 351.9 168.0 212.0 307.2	3.23 2.3 2.7 2.7 2.7 2.7 3.6 7.8 5.8 7.3 6.8 3.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	34.9 2398.7 89.9 185.8 198.8 231.4 283.2 271.9 260.4 247.5 217.0 191.0 65.7 55.1 103.5 106.9 111.3 79.6 117.4 102.6 85.5 110.9 189.2 427.7 770.0 858.7 861.1 852.0 788.6 736.6 561.5 391.2 179.0 226.9 360.9	4.49 2.4 3.3 3.6 4.3 4.7 8.3 12.1 7.4 3.9 2.2 2.3 2.3 2.4 2.5 2.9 2.3 2.4 2.5 2.9 2.3 2.4 2.5 3.8 2.5 3.9 3.4 5.0 6.2 7.2 11.3 20.5 17.2 10.4 3.2 2.7 9.3	kW/m² m³/h °C

200.0	700	TA15	11.5	16.8	502.5	24.8	522.3	17.8	551.5	14.7	°C
200.0	800	TA16	13.2	15.4	492.0	19.6	508.9	18.6	549.8	19.9	°C
200.0	1000	TA17	4.7	8.5	419.0	7.5	446.9	12.5	503.9	11.6	°C
200.0	1200	TA18	8.5	9.1	371.9	13.9	401.4	13.8	454.9	17.3	°C
200.0	1400	TA19	3.8	5.3	280.2	9.3	317.4	5.7	356.5	6.7	°C
200.0	1700	TA20	4.9	5.3	209.6	9.7	238.7	6.8	270.4	5.6	°C
10.0	500	F1	3.8	4.9	805.6	5.9	816.9	4.7	806.7	4.6	°C
10.0	600	F2	12.4	12.6	592.8	19.8	635.9	19.5	645.0	10.0	°C
10.0	700	F3	8.8	12.6	596.7	13.4	625.7	13.3	633.8	8.6	°C
10.0	800	F4	14.1	13.4	675.9	14.1	708.2	14.4	712.8	16.0	°C
10.0	1000	F5	13.3	13.7	649.1	8.9	718.1	11.6	738.0	8.9	°C
10.0	1200	F6	17.5	12.6	573.8	11.1	650.8	11.3	706.9	15.0	°C
10.0	1400	F7	9.9	7.5	443.5	6.5	515.4	7.5	595.6	15.8	°C
10.0	1700	F8	4.4	4.7	309.7	4.3	359.1	6.8	435.9	9.4	°C
50.0	500	F9	5.5	4.5	863.1	6.1	852.2	10.5	772.5	10.7	°C
50.0	600	F10	11.7	18.7	832.5	13.7	875.0	10.5	870.6	5.7	°C
50.0	700	F11	10.9	11.0	807.8	14.6	853.0	14.9	859.7	8.6	°C
50.0	800	F12	10.0	10.6	831.4	12.2	871.5	14.0	877.0	8.0	°C
50.0	1000	F13	14.0	15.8	802.7	11.0	863.5	11.9	884.4	11.9	°C
50.0	1200	F14	14.3	15.5	704.5	10.4	784.0	11.1	832.1	20.6	°C
50.0	1400	F15	9.9	11.9	570.8	9.5	659.6	10.0	741.4	20.1	°C
50.0	1700	F16	7.2	8.7	408.1	7.4	483.0	11.8	565.1	18.3	°C

Α.2 Σφάλματα συσχετίσεων προσδιορισμού θερμοκρασίας ΦΕΑ

Στους πίνακες A.5-A.20 παρατίθενται τα σφάλματα των τριών συσχετίσεων υπολογισμού της εξωτερικής θερμοκρασίας φλόγας σε σχέση με τις πειραματικές μετρήσεις, για καθεμία από τις 16 περιπτώσεις . Το σφάλμα υπολογίστηκε ως η διαφορά της τιμής που δίνει η αντίστοιχη συσχέτιση, από την πειραματική τιμή. Ενώ το απόλυτο σφάλμα αντιστοιχεί στην απόλυτη τιμή του σφάλματος και είναι αυτό που χρησιμοποιείται για τη σύγκριση των συσχετίσεων μεταξύ τους.

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	5.6	152.5	400.2	5.6	152.5	400.2
100	600	-29.5	67.8	25.2	29.5	67.8	25.2
100	700	-24.8	114.2	33.3	24.8	114.2	33.3
100	800	-47.0	140.2	40.1	47.0	140.2	40.1
				Μέσος όρος	26.7	118.7	33.1

Πίνακας Α.5 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W55-80

Πίνακας Α.6 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W55-100

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	4.7	120.3	2947.7	4.7	120.3	2947.7
100	600	-17.8	60.8	79.3	17.8	60.8	79.3
100	700	-16.9	73.3	23.8	16.9	73.3	23.8
100	800	-35.2	70.0	1.7	35.2	70.0	1.7
100	1000	-77.6	42.7	0.1	77.6	42.7	0.1
				Μέσος όρος	30.4	73.4	610.5

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	3.6	124.4	-	3.6	124.4	-
100	600	-25.8	49.2	310.4	25.8	49.2	310.4
100	700	-40.8	27	22	40.8	27	22
100	800	-40.5	22.2	-19.9	40.5	22.2	-19.9
100	1000	-56.5	1.2	-33.1	56.5	1.2	-33.1
100	1200	-82.2	-14.3	-35.6 Μέσος όρος	82.2 41 .6	-14.3 39.7	-35.6 84 -2

Πίνακας Α.7 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W55-130

Πίνακας Α.8 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W55-160

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	-0.7	139.1	-	0.7	139.1	-
100	600	-20.9	62.3	1406.3	20.9	62.3	1406.3
100	700	-29.9	36.3	78.5	29.9	36.3	78.5
100	800	-37.4	28.7	-5.7	37.4	28.7	5.7
100	1000	-48.7	1.9	-34.1	48.7	1.9	-34.1
100	1200	-66.9	-16.9	-41.6	66.9	16.9	-41.6
				Μέσος όρος	34.1	47.5	42.1

Πίνακας Α.9 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D200-80

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	82.9	31.1	-	82.9	31.1	-
100	600	-27.3	-22.3	309.0	27.3	22.3	309.0
100	700	-8.8	6.1	68.0	8.8	6.1	68.0
100	800	-57.0	-40.8	-30.7	57.0	40.8	30.7
100	1000	-76.4	-24.0	-24.5	76.4	24.0	24.5
				Μέσος όρος	50.5	24.9	108.1

Πίνακας Α.10 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D200-100

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	27.1	37.3	-	27.1	37.3	-
100	600	-22.7	-20.1	1925.0	22.7	20.1	1925.0
100	700	-10.3	-5.6	74.3	10.3	5.6	74.3
100	800	-45.8	-38.8	-30.4	45.8	38.8	30.4
100	1000	-56.8	-30.2	-38	56.8	30.2	38
100	1200	-75.1	-21.7	-21.8	75.1	21.7	21.8
				Μέσος όρος	39.6	25.6	417.9

Πίνακας Α.11 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D200-130

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	20.4	49.3	-	20.4	49.3	-
100	600	-18.4	-7.1	-	18.4	7.1	-
100	700	-20.1	-11.9	306.0	20.1	11.9	306.0
100	800	-35.8	-28.8	8.4	35.8	28.8	8.4
100	1000	-43.5	-27.5	-36.9	43.5	27.5	36.9
100	1200	-50.6	-29.3	-36.6	50.6	29.3	36.6
				Μέσος όρος	31.5	25.6	97.0

Πίνακας Α.12 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D200-160

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	11.6	58.5	-	11.6	58.5	-
100	600	-20.4	2.0	-	20.4	2.0	-
100	700	-22.3	-5.6	1446.2	22.3	5.6	1446.2
100	800	-32.5	-19.6	73.3	32.5	19.6	73.3
100	1000	-39.3	-21.7	-29.2	39.3	21.7	29.2
100	1200	-43.7	-27.8	-38	43.7	27.8	38
				Μέσος όρος	28.3	22.5	396.7

Πίνακας Α.13 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D55-80

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	17.0	113.1	-	17.0	113.1	-
100	600	-0.1	81.8	578.3	0.1	81.8	578.3
100	700	57.1	210.5	251.6	57.1	210.5	251.6
100	800	10.2	156.5	116.1	10.2	156.5	116.1
100	1000	-47.0	180.1	101.3	47.0	180.1	101.3
				Μέσος όρος	26.3	148.4	261.9

Πίνακας Α.14 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D55-100

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	13.3	98.9	-	13.3	98.9	-
100	600	-9.5	51.6	2557.0	9.5	51.6	2557.0
100	700	10.4	88.0	144.0	10.4	88.0	144.0
100	800	-11.1	62.1	31.3	11.1	62.1	31.3
100	1000	-32.2	75.7	12.7	32.2	75.7	12.7
100	1200	-62.4	85.0	34.8	62.4	85.0	34.8
				Μέσος όρος	23.1	76.9	556.0

Πίνακας Α.15 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D55-130

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	12.3	104.4	-	12.3	104.4	-
100	600	-10.5	49.4	-	10.5	49.4	-
100	700	1.6	64.0	453.4	1.6	64.0	453.4
100	800	-12.4	42.1	59.1	12.4	42.1	59.1
100	1000	-19.9	50.2	-3.3	19.9	50.2	3.3
100	1200	-28.1	49.4	-0.2	28.1	49.4	0.2
				Μέσος όρος	14.1	59.9	129.0

Πίνακας Α.16 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση D55-160

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	8.9	97.6	-	8.9	97.6	-
100	600	13.9	40.7	-	13.9	40.7	-
100	700	-4.0	48.7	1479.3	4.0	48.7	1479.3
100	800	-21.3	19.5	95.6	21.3	19.5	95.6
100	1000	-19.6	32.0	-9.3	19.6	32.0	9.3
100	1200	-19.6	31.1	-14.3	19.6	31.1	14.3
				Μέσος όρος	14.6	44.9	467.1

Πίνακας Α.17 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W200-100

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	-7.4	59.0	2143.4	7.4	59.0	2143.4
100	600	-34.3	5.0	-10.5	34.3	5.0	10.5
100	700	-46.5	-8.6	-65.2	46.5	8.6	65.2
100	800	-58.2	-10.0	-79.1	58.2	10.0	79.1
100	1000	-85.9	23.6	-87.0	85.9	23.6	87.0
				Μέσος όρος	46.5	21.3	477.0

Πίνακας Α.18 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W200-110

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	-5.1	81.6	-	5.1	81.6	-
100	600	-30.2	20.6	12.3	30.2	20.6	12.3
100	700	-40.3	5.4	-62.6	40.3	5.4	62.6
100	800	-50.4	3.0	-78.9	50.4	3.0	78.9
100	1000	-72.8	-15.1	-87.7	72.8	15.1	87.7
				Μέσος όρος	39.8	25.1	60.4

Πίνακας Α.19 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W200-130

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	-4.2	98.0	-	4.2	98.0	-
100	600	-25.7	34.5	167.3	25.7	34.5	167.3
100	700	-34.9	15.5	-38.0	34.9	15.5	38.0
100	800	-44.2	9.6	-69.6	44.2	9.6	69.6
100	1000	-61.1	-13.4	-84.7	61.1	13.4	84.7
100	1200	-84.4	-27.0	-89.4	84.4	27.0	89.4
				Μέσος όρος	42.4	33.0	89.8

Πίνακας Α.20 Σφάλματα μεταξύ συσχετίσεων και πειραματικών τιμών για την περίπτωση W200-160

x(mm)	z (mm)	Σφάλμα Eurocode (%)	Σφάλμα Himoto (%)	Σφάλμα Lu (%)	Απόλυτο σφάλμα Eurocode (%)	Απόλυτο σφάλμα Himoto (%)	Απόλυτο σφάλμα Lu (%)
100	500	-6.4	125.1	-	-6.4	125.1	-
100	600	-24.4	55.0	1079.4	-24.4	55.0	1079.4
100	700	-32.9	30.3	16.0	-32.9	30.3	16.0
100	800	-40.5	22.0	-52.6	-40.5	22.0	-52.6
100	1000	-53.9	-8.5	-80.2	-53.9	-8.5	-80.2
100	1200	-70.0	-24.7	-87.4	-70.0	-24.7	-87.4
				Μέσος όρος	38.0	44.3	263.1