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Abstract

The objective of this research is to develop more accurate, robust and reliable
microscopic models. An integrated methodological framework based on non–
parametric approaches is proposed for estimation of data–driven microscopic
traffic simulation models. The methodology is implemented using different ma-
chine learning techniques such as clustering, classification, locally weighted re-
gression, spline fitting, Gaussian processes, Kernel support vector machines and
neural networks. The methodology is demonstrated using real trajectory data
from three different sources and specifically an experiment from Naples, NGSIM
data and non–lane disciplinary trajectory data from India. The focus is given
on car–following models and Gipps’ model, one of the most extensively used car–
following models, is calibrated against the same data in order to be used as a
reference benchmark. Many parameters affect driving behavior and it is explored
how the performance of the models is improved by including more explanatory
variables. Then, a practical and simple approach is developed and motivated for
the online calibration of microscopic traffic simulation models, which considers
dynamic parameters for individual drivers, in time and space. The model adapts
to driving behavior in a rolling horizon and leads to less than 10% error in speed
prediction even for ten steps into the future. This research also examines the fea-
sibility and the benefits of using data–driven models on mixed traffic trajectory
data, including non–lane discipline and heterogeneity in vehicle types, common
characteristics in cities in developing countries. Although typical car–following
models are theoretically justified, data–driven approaches are more flexible and
allow the easy incorporation of additional information to the process of speed
estimation. The results indicate that data–driven models could ensure reliability
and improvement in estimation of microscopic models.

Keywords

Data–driven models, microscopic traffic simulation models, traffic modeling, ma-
chine learning, on–line calibration, NGSIM data, non–lane discipline
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Περίληψη

Στόχος της έρευνας είναι η ανάπτυξη πιο αξιόπιστων μικροσκοπικών κυκλοφοριακών προ-

τύπων. Αναπτύσσεται μια ολοκληρωμένη μεθοδολογία για την εκτίμηση προτύπων κυκλοφο-

ριακής προσομοίωσης με τη χρήση καινοτόμων και ευέλικτων μεθόδων μηχανικής μάθησης,

όπως η ταξινόμηση, η ομαδοποίηση, η τοπικά σταθμισμένη παλινδρόμηση (loess), οι καμπύλες

splines, οι Gaussian διαδικασίες, οι διανυσματικές μηχανές υποστήριξης και τα νευρωνικά

δίκτυα. Τα δεδομένα που χρησιμοποιήθηκαν στην έρευνα αυτή περιλαμβάνουν δεδομένα από

τρεις διαφορετικές πηγές, δεδομένα από τη Νάπολη, τα NGSIM δεδομένα και δεδομένα α-

πό την Ινδία. Δίνεται έμφαση στα πρότυπα ακολουθίας οχημάτων και για τα ίδια δεδομένα

εφαρμόζεται το μοντέλο του Gipps, ένα γνωστό μοντέλο ακολουθίας οχημάτων που χρησιμο-

ποιείται ως μοντέλο αναφοράς στην παρούσα έρευνα. Επειδή πολλοί παράγοντες επηρεάζουν

τη συμπεριφορά του οδηγού, εξετάζεται κατά πόσο βελτιώνεται το μοντέλο ενσωματώνοντας

περισσότερες μεταβλητές. Επιπλέον, εξετάζεται η δυναμική βαθμονόμηση κυκλοφοριακών

προτύπων λαμβάνοντας υπόψη τη δυναμική μεταβολή των παραμέτρων για κάθε οδηγό, στον

χρόνο και το χώρο. Οι παράμετροι μεταβάλλονται σε έναν κυλιόμενο χρονικό ορίζοντα και

επιτυγχάνεται πρόβλεψη της ταχύτητας έως 10% για δέκα βήματα στο μέλλον. Διερευνάται η

χρήση μοντέλων καθοδηγούμενων από τα δεδομένα σε συνθήκες μεικτής κυκλοφορίας χωρίς

τήρηση των λωρίδων κυκλοφορίας και με μεγάλη ποικιλία ως προς τον τύπο των οχημάτων,

κοινά χαρακτηριστικά των αναπτυσσόμενων χωρών. Αν και τα κλασσικά πρότυπα ακολουθίας

οχημάτων είναι θεωρητικά τεκμηριωμένα, τα πρότυπα βασισμένα σε δεδομένα προσφέρουν

μεγαλύτερη ευελιξία και επιτρέπουν την εύκολη ενσωμάτωση νέων μεταβλητών. Τα αποτε-

λέσματα υποδεικνύουν ότι τα πρότυπα που βασίζονται σε δεδομένα μπορούν να συμβάλλουν

στην εκτίμηση πιο αξιόπιστων μικροσκοπικών προτύπων.

Λέξεις κλειδιάΛέξεις κλειδιάΛέξεις κλειδιά

Μοντέλα βασισμένα σε δεδομένα, μικροσκοπικά πρότυπα κυκλοφοριακής προσομοίωσης, μο-

ντελοποίηση κυκλοφορίας, μηχανική μάθηση, δυναμική βαθμονόμηση, δεδομένα NGSIM , μη

τήρηση λωρίδων κυκλοφορίας
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Summary

MotivationMotivationMotivation
The rapid development of technology has contributed to the availability of high–
quality traffic data, leading the way for the development of more advanced sim-
ulation models. As a result of an explosive increase of the data that are being
generated and collected, data–driven modeling is emerging as a fast developing
field of transportation research. In big data era, it is important to be able to han-
dle the available information to increase accuracy and reliability of traffic models.
The emergence of new transportation modes (services and technologies), also new
challenges for modeling traffic system, have created a need for more robust and
advanced traffic simulation models. In particular, traffic simulation models need
to capture the operations and interactions among new traffic systems. In a future
world with a cooperative vehicle to vehicle and vehicle to infrastructure commu-
nication, all traffic modes and conditions need to be modeled. It is important to
be able to offer solutions on–line and provide information and guidance back to
drivers.
ObjectiveObjectiveObjective
Transportation is experiencing a period of great development potential and changes,
including new modes and new data sources. In an era of big data and au-
tonomous vehicles, traffic simulation models need to adapt to these new chal-
lenges. The objective of this research is to provide an alternative modeling ap-
proach for traffic simulation models and develop more accurate, robust and re-
liable microscopic models. The proposed methodology aims to increase model
flexibility and provide the opportunity for incorporation of additional parameters
without the need to resort to cumbersome reformulations of conventional models
functional form. The proposed modeling approach can take advantage of a wide
range of available data, and is therefore suitable to implementation in the context
of intelligent transportation systems.
MethodologyMethodologyMethodology
In this research an integratedmethodological framework based on non–parametric
approaches is proposed for estimation of data–driven microscopic traffic simula-
tion models. The methodology is implemented using different computational ap-
proaches such as locally weighted regression, spline fitting, Gaussian processes,
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8 Summary

Kernel support vector machines and neural networks. These methods are effec-
tively employed with clustering and classification techniques, so as more detailed
models to be produced. The methodology is demonstrated using real trajectory
data from three different sources and specifically an experiment from Naples,
NGSIM data and non–lane disciplinary trajectory data from India. The focus
is given on car–following models and Gipps’ model, one of the most extensively
used car–following models, is calibrated against the same data in order to be
used as a reference benchmark. The performance of all the models presented in
this research is evaluated using several goodness–of–fit measures so as a com-
prehensive and objective assessment of prognostics performance to be provided.
In addition, a policy evaluation methodology based on distributions rather than
single aggregate measures is applied, too. Then, a comparison among the differ-
ent models is presented and comparative benefits as well as limitations of each
one are identified.

Many parameters affect driving behavior and in this research it is explored
how the performance of the models is improved by including more parameters.
Machine learning techniques that allow the incorporation of additional informa-
tion, such as traffic density, vehicle type of both the leader and following vehi-
cles, may lead to more detailed models, and are very difficult to integrate within
conventional, analytical models. The effects of different predictor variables on
the models are explored through a quantitative and qualitative analysis. For a
more in depth analysis, a meta–model is developed to evaluate the magnitude of
the effect of the considered predictor variables on the models. Then, a practi-
cal and simple approach is developed and motivated for the online calibration of
microscopic traffic simulation models, which considers dynamic parameters for
individual drivers, in time and space. The model adapts to driving behavior in
a rolling horizon and leads to less than 10% error in speed prediction even for
ten steps into the future, in all considered datasets. After the validation of data–
driven models on data of vehicles characterized by lane discipline, this research
examines the feasibility and the benefits of using data–driven models on mixed
traffic trajectory data, which are characterized by non–lane discipline and het-
erogeneity in vehicle types, common characteristics in cities in developing world.
Conclusions and research contributionsConclusions and research contributionsConclusions and research contributions
Modeling driving behavior plays a fundamental role in traffic management, safety
research and the development of Intelligent Transportation Systems. This re-
search makes several contributions to the state–of–the–art of microscopic traffic
simulation:

• Amethodological framework based on non–parametric approaches has been
developed for simulation of driving behavior. Microscopic conventional mod-
els represent individual vehicles and their interactions and are capable of
simulating traffic to a high level of detail, but they do require a long exe-
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cution time, as their successful application depends on the effectiveness of
calibration process. On the other hand, the proposed methodology offers
great flexibility and there is no need for time consuming calibration process.
Data–driven models result in better fit, comparing to the traditional models,
and thus could be a plausible substitute for theory–based models.

• Computational approaches allow the easy incorporation of additional pa-
rameters. Conventional models do not allow the easy incorporation of ad-
ditional variables without labor undue, since cumbersome reformulations
of functional form should be performed. Data–driven microscopic models
have been proposed in this research as a way to overcome these limita-
tions and capture driving behavior in an efficient way taking into account
various variables. Additional variables, such as traffic density, have been
incorporated into the proposed models and more detailed models have been
developed.

• The use of various machine learning techniques for estimation of micro-
scopic models is explored. The question of which machine learning tech-
nique could be the most appropriate one for traffic simulation models has
not been answered conclusively. This research provides some more input
into this ongoing active research field.

• The impact of various predictor variables on the models is investigated. A
meta–model is developed to evaluate the magnitude of the effect of the con-
sidered predictor variables on driving behavior.

• Data–driven models are validated on non-disciplinary trajectory data with
heterogeneous mixture of vehicle types and are proved to be a promising
perspective for microscopic traffic simulation in the developing world, where
these conditions occur in a common basis.

• Data–driven models and on–line calibration of microscopic models provide
a robust solution to autonomous driving. Aiming at safety, reliability and
convenience, an autonomous vehicle should adapt to user preferences and
simulate human driving reactions naturally, preventing abrupt acceleration
and jerk. Undoubtedly, in this context, this research contributes signifi-
cantly into learning driving styles and realizing autonomous driving.

• Data–driven estimation of microscopic models appears to be a promising
tool that could offer considerable benefits if integrated into microscopic traf-
fic simulators, resulting in higher accuracy and reliability of model outputs.

Typical car following models are relied on mathematical formulas and are the-
oretically justified, though they are more restrictive. On the other hand, machine
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learning approaches may not provide as much insight into traffic flow theory as
the traditional models do, though they are more flexible and allow the easy incor-
poration of additional information to the process of speed estimation. The results
indicate that computational approaches could ensure reliability and improve-
ment in estimation of microscopic models. Data–driven models could provide a
robust solution to autonomous driving and be incorporated in traffic microsim-
ulators. Conclusively, better representation of driving behavior contributes sub-
stantially into the development of Intelligent Transportation Systems, which are
directly related to the concept of smart cities. This contribution could be trans-
lated to sustainable transportation solutions, reduced costs in terms of safety,
time, money, energy and environmental impact, and by extension to benefits of
the humanity.
Future prospectsFuture prospectsFuture prospects

Directions for further research are outlined in this section.

• Data–driven simulators

Data–driven microscopic models could be integrated in a traffic microsim-
ulator to be used for real–time applications. The results presented in the
research provide clear evidence that data–driven traffic approaches have
the potential to contribute to improved modeling capabilities, in light of new
data and emerging simulation needs. A network–wide validation using a
microscopic traffic simulator would create a flexible environment. Imple-
mentation aspects should be carefully considered.

• Clustering of sub–models

In Section 3.1 two methodological approaches are proposed for estimation of
data–driven models. In this research the focus is given on the first method-
ological approach which is applied directly on the data. In the second
methodological approach, more elaborate approach, data are divided into
clusters before the model fitting. In such a way more detailed models could
be developed and testing on data should be performed. Guidelines for the
selection of one or the other approach and the best way of clustering should
be given.

• Space gaps in the optimization algorithm

In this research speeds have been used in the optimization algorithm so
that the model minimizes the difference between observed and simulated
speeds. It is proposed as a future prospect that space gaps instead of speeds
can be used for the model optimization.

• Incorporation of additional variables in the models
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The proposed methodological framework is flexible, less time-consuming
and allows the incorporation of additional variables that may influence driv-
ing behavior (such as density of the surrounding area, vehicle type, drivers’
age, road infrastructure etc.). In addition, the proposed methodology could
be employed with flexible data-driven models which allow incorporation of
further variables moving towards an integrated solution for the simulation
of mixed traffic. In Section 4.5 the incorporation of additional informa-
tion is feasible and density of the surrounding area is explored as an extra
variable. However, there are many variables, the influence of which on driv-
ing behavior has not been explored, yet. Further information on various
predictor variables (such as weather, lighting, road geometry, percent of au-
tonomous vehicles etc.) could be also added to the model and tested if it is
significant.

• Parameters evolution

In Chapter 5, the prediction of the dynamic parameters was simple, in the
sense that the dynamically calibrated parameters were assumed as the best
available estimate for the short–term values of these parameters. Further
research could consider secondary models that would actually aim at pre-
dicting the evolution of these parameters, as well, e.g. via autoregressive,
polynomial or other statistical forecasting specifications.

• Model calibration separately for each vehicle type

In case study for mixed traffic conditions (chapter 6) the calibration for the
Gipps model as well as for the data–driven model is implemented using a
representative sample from each vehicle type category. For a more in depth
analysis, different models for each vehicle type category could be calibrated
in order to develop more detailed models.

• Vehicle–dependent models

Vehicle-dependent models need to be developed, as the drivers of vehicles
with unequal dimensions tend to have different driving behaviors; further-
more, different vehicle types are characterized by varying vehicle kinemat-
ics. Especially, in case of heterogeneous traffic vehicle type plays a signif-
icant role as it is indicated in Section 6.3.3. The performance of a model
seems to be differentiated as per the vehicle type. The best performance
is achieved for cars and light commercial vehicles, while higher RMSN are
observed for other vehicle types, especially for trucks and auto-rickshaws.
Vehicle type should be incorporated as a categorical variable in the process.
Thus, it is foreseen that further exploration into this could open up oppor-
tunities to understand and simulate driving behavior in non–lane discipline
conditions with heterogeneity of vehicle types.
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• Exploration of longitudinal and lateral movement separately for mixed
traffic conditions

In this research speed for mixed conditions is explored as a sum of longi-
tudinal and lateral speed. However, longitudinal and lateral speed could
be explored separately in order to investigate the model efficiency for each
direction.

• Mixed traffic

Crowd simulation and swarm–like models could be also used for modeling
mixed traffic conditions due to weak–lane discipline characteristics.

• Deep learning and tree–based modeling

In this research various machine learning techniques have been used. How-
ever, other methods, such as deep learning and tree–based algorithms,
should also be applied in order to offer an overall comparison of machine
learning techniques for the estimation of microscopic traffic simulationmod-
els.

• Integrated behavior models

Car–following and lane–changing behaviors should be incorporated into one
data–driven model, as there is interaction between these two behaviors.

• Further experimental analysis

The estimation of data–driven models as well as the dynamic calibration and
multiple time step prediction have been successfully demonstrated using
actual data from a variety of facilities. However, additional testing on richer
data and further applications in different networks need to be performed.



Εκτενής Περίληψη

Κίνητρο για έρευναΚίνητρο για έρευναΚίνητρο για έρευνα

Με το επιστημονικό ενδιαφέρον να στρέφεται στα αυτόνομα οχήματα, τα μοντέλα ακολουθίας

οχημάτων πρέπει να αντικατοπτρίζουν την ετερογένεια στη συμπεριφορά των οδηγών. Τα

μικροσκοπικά μοντέλα περιγράφουν τις αλληλεπιδράσεις μεταξύ των οχημάτων ή μεταξύ των

οχημάτων και του οδικού δικτύου. Λόγω της μεγάλης λεπτομέρειας που προσφέρουν, θεω-

ρούνται κατάλληλα για την ανάπτυξη «ευφυών συστημάτων αναφοράς» και τον έλεγχο των

κυκλοφοριακών συστημάτων. Οι ολοένα αυξανόμενες απαιτήσεις για μεγαλύτερη ακρίβεια

και ευελιξία στη προσομοίωση της συμπεριφοράς των οδηγών έχουν οδηγήσει στην ανάπτυξη

πολλών μικροσκοπικών μοντέλων κατά τις τελευταίες δεκαετίες. Αρκετά από αυτά αδυνατούν

να παρέχουν μια αξιόπιστη εκτίμηση χωρίς κατάλληλη βαθμονόμηση των παραμέτρων τους.

Στόχος της έρευνας είναι η ανάπτυξη μιας ολοκληρωμένης μεθοδολογίας για την εκτίμηση

αξιόπιστων προτύπων κυκλοφοριακής προσομοίωσης σε ποικίλες κυκλοφοριακές συνθήκες με

τη χρήση καινοτόμων και ευέλικτων μεθόδων μηχανικής μάθησης, όπως η τοπικά σταθμισμένη

παλινδρόμηση (loess), οι καμπύλες splines, οι Gaussian διαδικασίες, οι διανυσματικές μηχα-

νές υποστήριξης και τα νευρωνικά δίκτυα. Οι μέθοδοι μηχανικής μάθησης παρά το γεγονός

ότι αδυνατούν να εξηγήσουν ποιοτικά τις συσχετίσεις που μοντελοποιούν, παρουσιάζουν με-

γαλύτερη ευελιξία, καθώς επιτρέπουν την εισαγωγή περισσότερων παραμέτρων. Οι Antoniou

and Koutsopoulos (2006) και οι Antoniou et al. (2013) έχουν προτείνει τη χρήση μεθόδων

μηχανικής μάθησης για μακροσκοπική και μεσοσκοπική προσομοίωση. Στο πλαίσιο της έρευ-

νας αυτής το ενδιαφέρον στρέφεται σε μικροσκοπικό επίπεδο.

Αντικείμενο έρευναςΑντικείμενο έρευναςΑντικείμενο έρευνας

Τα δεδομένα που χρησιμοποιήθηκαν στην έρευνα αυτή περιλαμβάνουν δεδομένα από τρεις δια-

φορετικές πηγές, δεδομένα από τη Νάπολη, τα NGSIM δεδομένα και δεδομένα από την Ινδία.

Αρχικά για την εκπαίδευση των μοντέλων εισάγονται δεδομένα, όπως ταχύτητα και απόσταση

που αφορούν το προπορευόμενο και το ακόλουθο όχημα. Στη συνέχεια εξετάζεται η περαιτέρω

βελτίωση του μοντέλου από την εισαγωγή δεδομένων από τις παρακείμενες λωρίδες και έπειτα

η μεθοδολογία εφαρμόζεται σε δεδομένα με βασικά χαρακτηριστικά την έλλειψη λωρίδων κυ-

κλοφορίας και την μεγάλη ποικιλία ως προς τον τύπο των οχημάτων. Σε αυτές τις συνθήκες

για τα διαθέσιμα δεδομένα η προτεινόμενη μεθοδολογία υπερτερεί του μοντέλου του Gipps και

επίσης φαίνεται ότι ο ρόλος του οχήματος είναι καθοριστικός στη συμπεριφορά των οδηγών.

Επιπλέον, εξετάζεται η δυναμική βαθμονόμηση κυκλοφοριακών μοντέλων και αναγνωρίζονται

τα οφέλη από τη χρήση δυναμικής έναντι στατικής βαθμονόμησης στην μοντελοποίηση της

13



14 Εκτενής Περίληψη

κυκλοφορίας. Καθώς οι κυκλοφοριακές συνθήκες τροποποιούνται δυναμικά με το χρόνο, προ-

τείνεται η δυναμική εναλλαγή των παραμέτρων των μοντέλων, έτσι ώστε να προσομοιώνεται

όσο το δυνατόν καλύτερα η συμπεριφορά των οδηγών στις εκάστοτε συνθήκες.

ΜεθοδολογίαΜεθοδολογίαΜεθοδολογία

Η προτεινόμενη μεθοδολογία βασίζεται στη χρήση τεχνικών μηχανικής μάθησης. Με τη

χρήση των τεχνικών αυτών αναγνωρίζονται πρότυπα και συσχετίσεις στα διαθέσιμα δεδο-

μένα (εκπαίδευση μοντέλου). Με αυτόν τον τρόπο προκύπτει ένα μικροσκοπικό μοντέλο

που βασίζεται στα δεδομένα εκπαίδευσης. Στη συνέχεια χρησιμοποιείται μια νέα σειρά δεδο-

μένων, στην οποία εφαρμόζεται το πρότυπο που δημιουργήθηκε με σκοπό να γίνει εκτίμηση

κυκλοφοριακών μεγεθών (π.χ. ταχύτητα) που αφορούν τα νέα δεδομένα (δοκιμαστικά δεδο-

μένα). Αναμφισβήτητα τα δεδομένα εκπαίδευσης πρέπει να περιλαμβάνουν επαρκές πλήθος

παρατηρήσεων, ώστε το πρότυπο που προκύπτει να είναι αντιπροσωπευτικό. Η προτεινόμενη

μεθοδολογία εφαρμόζεται χρησιμοποιώντας πέντε διαφορετικές τεχνικές μηχανικής μάθησης.

Συγκεκριμένα, μέθοδοι μηχανικής μάθησης, όπως τοπικά σταθμισμένη παλινδρόμηση (loess),

καμπύλες splines, Gaussian διαδικασίες, διανυσματικές μηχανές υποστήριξης και νευρω-

νικά δίκτυα δοκιμάστηκαν και φαίνεται να παρουσιάζουν παρόμοια συμπεριφορά παρέχοντας

αξιόλογες εναλλακτικές λύσεις. Παράλληλα για τα ίδια δεδομένα εφαρμόζεται το μοντέλο

του Gipps, ένα γνωστό μοντέλο ακολουθίας οχημάτων που χρησιμοποιείται στο AIMSUN

λογισμικό προσομοίωσης και χρησιμοποιείται ως μοντέλο αναφοράς στην παρούσα έρευνα.

Συμπεράσματα και συνεισφορά έρευναςΣυμπεράσματα και συνεισφορά έρευναςΣυμπεράσματα και συνεισφορά έρευνας

Στο πλαίσιο της έρευνας αυτής εξετάστηκαν οι μέθοδοι μηχανικής μάθησης ως εναλλακτι-

κές μέθοδοι για την εκτίμηση προτύπων ακολουθίας οχημάτων. Η προτεινόμενη μεθοδολογία

παρουσιάζει μεγάλη ευελιξία και ταχύτητα ως προς τη διαχείριση των δεδομένων, καθώς δεν

απαιτείται ειδική βαθμονόμηση αρκετών παραμέτρων όπως συνήθως χρειάζεται στα παραδοσια-

κά μοντέλα. Επίσης, παρέχουν τη δυνατότητα εξέτασης νέων παραμέτρων που επιδρούν στη

συμπεριφορά των οδηγών και δεν περιορίζονται σε αυτές που ορίζουν οι μαθηματικοί τύποι

των παραδοσιακών μοντέλων. Για παράδειγμα επιτρέπουν την εύκολη ενσωμάτωση πρόσθετων

μεταβλητών, όπως π.χ. της πυκνότητας των οχημάτων στις παρακείμενες λωρίδες. Παρά το

γεγονός ότι οι τεχνικές μηχανικής μάθησης στερούνται θεωρητικής τεκμηρίωσης παρέχουν

τη δυνατότητα για πιο εξειδικευμένα και λεπτομερή μοντέλα μικροσκοπικής προσομοίωσης.

Η καινοτομία στην παρούσα έρευνα έγκειται στη χρήση μεθόδων μηχανικής μάθησης για την

ανάπτυξη ευέλικτων και αξιόπιστων μικροσκοπικών μοντέλων που επιτρέπουν την προσομοίω-

ση της συμπεριφοράς των οδηγών με ακρίβεια παρέχοντας παράλληλα τη δυνατότητα εύκολης

ενσωμάτωσης πρόσθετων μεταβλητών καθώς και αξιοποίησης πληθώρας πληροφοριών που ε-

ίναι σήμερα διαθέσιμες. Επιπλέον, η προσομοίωση κυκλοφορίας σε συνθήκες οδήγησης χωρίς

τήρηση των λωρίδων κυκλοφορίας, όπως συμβαίνει στον αναπτυσσόμενο κόσμο, είναι υπό

εξέλιξη και η παρούσα έρευνα συνεισφέρει σημαντικά προς την κατεύθυνση αυτή.

Η μοντελοποίηση της συμπεριφοράς των οδηγών παίζει καθοριστικό ρόλο στη διαχείριση

της κυκλοφορίας, την οδική ασφάλεια και την ανάπτυξη και εξέλιξη των ΅Εξυπνων Συστη-

μάτων Μεταφοράς¨. Η έρευνα αυτή συνεισφέρει σημαντικά στον κλάδο της μικροσκοπικής

κυκλοφοριακής προσομοίωσης και συγκεκριμένα:
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• Προτείνεται μια μεθοδολογία βασίζομενη σε μη παραμετρικές μεθόδους για την προσομο-

ίωση της συμπεριφοράς των οδηγών. Τα κλασσικά μικροσκοπικά μοντέλα περιγράφουν

τις αλληλεπιδράσεις των οχημάτων σε μεγάλη λεπτομέρεια. Ωστόσο, η βαθμονόμηση

των παραμέτρων τους είναι απαραίτητη και απαιτεί πολύ χρόνο. Αντιθέτως η προτεινόμε-

νη μεθοδολογία προσφέρει μεγάλη ευελιξία χωρίς να απαιτείται η χρονοβόρα διαδικασία

της βαθμονόμησης πολλών παραμέτρων. Επιπλέον, με την προτεινόμενη μεθοδολογία

εξασφαλίζεται καλύτερη απόδοση.

• Επιτυγχάνεται η εύκολη ενσωμάτωση πρόσθετων μεταβλητών με τις τεχνικές μηχανι-

κής μάθησης. Στα κλασσικά μοντέλα η ενσωμάτωση πρόσθετων μεταβλητών μπορεί

να οδηγήσει σε προβήματα πολύπλοκων μαθηματικών σχέσεων. Η προτεινόμενη με-

θοδολογία προσφέρεται ως εναλλακτική λύση για να ξεπεραστούν οι περιορισμοί των

κλασσικών μοντέλων. Στην παρούσα έρευνα αναπτύσσεται ένα ευέλικτο μοντέλο ακο-

λουθίας οχημάτων που περιλαμβάνει πληροφορίες από τις παρακείμενες λωρίδες και πιο

συγκεκριμένα πληροφορίες για τον αριθμό των οχημάτων. Με αυτόν τον τρόπο συνυ-

πολογίζονται πιθανές αλληλεπιδράσεις μεταξύ των οχημάτων σε περιβάλλον πολλάπλων

λωρίδων κυκλοφορίας.

• Εξευρευνήθηκε η χρήση ποικίλων τεχνικών μηχανικής μάθησης. Αν και η επιλογή της

καταλληλότερης μεθόδου δεν είναι ξεκάθαρη, η έρευνα αυτή παρέχει κάποιες κατευθύν-

σεις για το ερώτημα αυτό. Συγκεκριμένα, η προτεινόμενη μεθοδολογία υλοποιήθηκε

με τη χρήση ποικίλων τεχνικών μηχανικής μάθησης, όπως τοπικά σταθμισμένη πα-

λινδρόμηση (loess), καμπύλες splines, Gaussian διαδικασίες, διανυσματικές μηχανές

υποστήριξης και νευρωνικά δίκτυα. Οι Gaussian διαδικασίες απαιτούν αρκετό χρόνο

για την εκπαίδευση του μοντέλου σε σύγκριση με τις υπόλοιπες τεχνικές, αλλά είναι

αρκετά γρήγορες κατά την εφαρμογή τους σε νέα δεδομένα για την πρόβλεψη τιμών των

μεταβλητών. Η μέθοδος λοεσς συνδυάζει ταχύτητα, απλότητα και ακρίβεια. Ωστόσο,

όλες οι τεχνικές που δοκιμάστηκαν παρέχουν αξιόπιστες εναλλακτικές λύσεις.

• Διερευνάται η επίδραση των διαφόρων μεταβλητών στο μοντέλο με τη χρήση ενός μετα–

μοντέλου που αναπτύχθηκε για να αξιολογήσει την επίδραση κάθε μεταβλητής στη συ-

μπεριφορά του οδηγού. Για χαμηλές ταχύτητες κυκλοφορίας, η απόσταση από το προπο-

ρευόμενο όχημα φαίνεται να είναι σημαντική για την πρόβλεψη ταχύτητας. Ωστόσο, για

υψηλότερες ταχύτητες η μεταβλητή αυτή δεν φαίνεται να είναι σημαντική. Αυτό μπορεί

να αποδωθεί στο γεγονός ότι σε χαμηλές ταχύτητες οι αποστάσειςμεταξύ των οχημάτων

τείνουν να είναι μικρότερες και κατά συνέπεια πιο καθοριστικές για τη συμπεριφορά του

οδηγού.

• Διερευνάται η χρήση μοντέλων καθοδηγούμενων από τα δεδομένα σε συνθήκες μεικτής

κυκλοφορίας χωρίς τήρηση των λωρίδων κυκλοφορίας και με μεγάλη ποικιλία ως προς

τον τύπο των οχημάτων. Τα μοντέλα αυτά μπορούν να συμβάλλουν στην κυκλοφορια-

κή προσομοίωση σε συνθήκες του αναπτυσσόμενου κόσμου. Πιο συγκεκριμένα ανα-

πτύχθηκε μια μεθοδολογία που περιλαμβάνει αναγνώριση του κρίσιμου προπορευόμενου
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οχήματων σε συνθήκες πολλαπλών προπορευόμενων οχημάτων, καθορισμό προσωρινών

νοητών λωρίδων κυκλοφορίας και εκπαίδευση μικροσκοπικών προτύπων από εμπειρικά

δεδομένα παρόμοιων κυκλοφοριακών συνθηκών. Επιτυγχάνεται εκτίμηση της ταχύτη-

τας για τις επόμενες χρονικές στιγμές και για συγκερκιμένες κατηγορίες οχημάτων με

αιχμή της καμπύλης πυκνότητα των σφαλμάτων μικρότερη από 10%.

• Τα προτεινόμενα μοντέλα καθώς και η δυναμική βαθμονόμηση των μικροσκοπικών μο-

ντέλων παρέχουν βοηθητικές λύσεις προς την κατεύθυνση των αυτόνομων οχημάτων.

Στοχεύοντας στην ασφάλεια, την αξιοπιστία και την άνεση, ένα αυτόνομο όχημα πρέπει

να μπορεί αν προσαρμόζεται στις προτιμήσεις του χρήστη και να προσομοιώνει τη συ-

μπεριφορά του οδηγού με φυσικό τρόπο εμποδίζοντας απότομες επιταχύνσεις και επι-

βραδύνσεις. Αναμφισβήτητα, η παρούσα έρευνα συνεισφέρει σημαντικά στην κατανόηση

της οδηγικής συμπεριφοράς και στην αποκωδικοποίηση διαφορετικών τρόπων οδήγησης,

συμπεριλαμβανομένων διαφορετικών τύπων οχημάτων, οδηγών, συνθηκών και οδικών

δικτύων.

Προτάσεις για το μέλλονΠροτάσεις για το μέλλονΠροτάσεις για το μέλλον

Κατευθύνσεις για μελλοντική έρευνα μπορεί να είναι οι εξής:

• Προσομοίωση με χρήση μοντέλων καθοδηγούμενων από τα δεδομένα

Μοντέλα καθοδηγούμενα από δεδομένα μπορούν να ενσωματωθούν σε κυκλοφοριακούς

προσομοιωτές και να χρησιμοποιηθούν για εφαρμογές σε πραγματικό χρόνο. Τα απο-

τελέσματα της διατριβής συνιστούν ότι τα μοντέλα αυτά μπορούν να συμβάλλουν στη

βελτίωση της μοντελοποίησης, δεδομένων των νέων αναγκών προσομοίωσης και των

διαθέσιμων δεδομένων. Η επικύρωση των μοντέλων αυτών σε επίπεδο δικτύου σε περι-

βάλλον προσομοιωτή μπορείνα παρέχει ευέλικτες λύσεις κυκλοφοριακής προσομοίωσης.

• Ταξινόμηση και δημιουργία υπο–μοντέλων

Στο κεφάλαιο 3.1 παρουσιάζονται δύο μεθοδολογικές προσεγγίσεις. Στην έρευνα αυτή

δόθηκε έμφαση στην πρώτη μεθοδολογική προσέγγιση που εφαρμόζεται απευθέιας στα

δεδομένα. Στη δεύτερη μεθοδολογική προσέγγιση, τα δεδομένα χωρίζονται σε ομάδες

πριν την εκπαίδευση του μοντέλου και στη συνέχεια προκύπτει ένα μοντέλο για κάθε

ομάδα. Με αυτόν τον τρόπο μπορούν να προκύψουν πιο εξειδικευμένα μοντέλα. Ω-

στόσο, απαιτούνται κατευθύνσεις για την καλύτερη δυνατή ταξινόμηση καθώς και για

την επιλογή της πρώτης ή δεύτερης μεθοδολογικής προσέγγισης.

• Χρήση αποστάσεων αντί ταχυτήτων στον αλγόριθμο βελτιστοποίησης

Ο αλγόριθμος βελτιστοποίησης που χρησιμοποιείται στην παρούσα έρευνα περιλαμβάνει

την ελαχιστοποίηση της διαφοράς μεταξύ παρατηρούμενων και προσομοιωμένων τιμών

ταχύτητας. Εναλλακτικά προτείνεται να χρησιμοποιηθεί η ελαχιστοποίηση της διαφοράς

μεταξύ παρατηρούμενων και προσομοιωμένων τιμών απόστασης.

• Ενσωμάτωση πρόσθετων μεταβλητών στο μοντέλο
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Στην παρούσα έρευνα επιτυγχάνεται η ενσωμάτωση πρόσθετων μεταβλητών στο μο-

ντέλο. Ως παράδειγμα χρησιμοποιείται η πυκνότητα στις παρακείμενες λωρίδες κυκλο-

φορίας. Ωστόσο, υπάρχουν πολλές μεταβλητές που μπορούν να εξεταστούν, όπως η

ηλικία του οδηγού, οι καιρικές συνθήκες, ο φωτισμός, το ποσοστό των αυτόνομων

οχημάτων κλπ.).

• Εξέλιξη παραμέτρων

Στην έρευνα αυτή διερευνήθηκε η δυναμική βαθμονόμηση των παραμέτρων για την

πρόβλεψη κυκλοφοριακών μεγεθών σε μικρό χρονικό ορίζοντα. Θα ήταν σκόπιμη η

ανάπτυξη δευτερευόντων μοντέλων που θα προβλέπουν την εξέλιξη των παραμέτρων

αυτών σε μεγαλύτερο χρονικό ορίζοντα.

• Μοντέλα εξαρτώμενα από τον τύπο οχήματος

Κρίνεται σκόπιμη η ανάπτυξη μοντέλων εξαρτώμενων από τον τύπο του οχήματος, κα-

θώς οι οδηγοί εμφανίζονται να έχουν διαφορετική συμπεριφορά ανάλογα με τον τύπο

του οχήματος. Επίσης, διαφορετικοί τύποι οχήματος τείνουν να έχουν διαφορετικές

κινηματικές δυνατότητες.

• Μεικτά μοντέλα

Η συμπεριφορά ακολουθίας οχημάτων σε συνδυασμό με τη συμπεριφορά αλλαγής λω-

ρίδας θα ήταν σκόπιμο να περιγράφονται από το ίδιο μοντέλο, καθώς υπάρχουν αλληλε-

πιδράσεις ανάμεσα στις δύο αυτές συμπεριφορές. Επιπλέον, η εξέταση των ταχυτήτων ή

των αποστάσεων ξεχωριστά κατά μήκος και κατά πλάτος μπορεί να παρέχει περισσότερες

πληροφορίες για τη σύνθετη κίνηση σε περιβάλλον μεικτών συνθηκών.

• Χρήση άλλων τεχνικών μηχανικής μάθησης

Στο πλαίσιο της έρευνας αυτής χρησιμοποιήθηκαν αρκετές τεχνικές μηχανικής μάθη-

σης. Ωστόσο, εφαρμογές της βαθιάς μάθησης ή δενδροειδών μοντέλων πρέπει επίσης

να εξεταστούν ώστε να προκύψει μια συνολική σύγκριση για τις βέλτιστες εναλλακτικές

επιλογές με σκοπό την ανάπτυξη μοντέλων καθοδηγούμενων από τα δεδομένα.

• Περαιτέρω πειραματική ανάλυση

Η εκτίμηση μη παραμετρικών μοντέλων και η δυναμική βαθμονόμηση εφαρμόστηκαν

επιτυχώς σε πειραματικά δεδομένα. Ωστόσο, κρίνεται σκόπιμη η περαιτέρω πειραματική

ανάλυση σε περισσότερα δεδομένα.
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Chapter 1

Introduction

1.1 Motivation and overview

Traffic simulation models have been used for several decades to conduct detailed
analysis of traffic networks. Traffic simulation models play an important role
in traffic management and safety research (Barceló et al., 2010). Modeling traf-
fic behavior has also contributed significantly in the development of Intelligent
Transportation Systems (Koutsopoulos and Farah, 2012). Zhang et al. (2011)
have expressed the need for a shift from a conventional technology–driven sys-
tem into a more powerful multifunctional data–driven intelligent transportation
system. Microscopic models describe driving behavior and interactions among
vehicles. Moving towards autonomous driving, more and more reliable and ac-
curate models are required. Nowadays, there has been an increasing interest
in self–driving or autonomous vehicles. Aiming at safety, reliability and conve-
nience, an autonomous vehicle should adapt to user preferences and simulate
human driving reactions naturally, preventing abrupt acceleration and jerk (Kud-
erer et al., 2015).

Nowadays, technological advances have significantly improved our traffic data
collection capabilities and increasing volumes of potentially useful data are read-
ily available in low-cost opportunistic sensors. Methods such as differential GPS
and real time kinematic allow the collection of high fidelity traffic data (Ranjitkar
et al., 2005) and consequently may improve the accuracy of traffic simulation
models. On the other hand, ubiquitous sensors (e.g. accelerometers and gyro-
scopes) from regular smartphones could provide a much richer sample of hetero-
geneous data, which could allow much richer calibration, e.g. utilizing distribu-
tions rather than point values (Antoniou et al., 2014b). For a review of novel data
collection techniques and their applications to traffic management applications
see Antoniou et al. (2011).

As a result of an explosive increase of the data that are being generated and
collected, data–driven modeling is emerging as a fast developing field of trans-
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portation research. The use of machine learning methods in transportation is
still limited. There are several successful demonstrations of machine learning
algorithms in the field of intelligent autonomous vehicles. At a macroscopic level,
Antoniou and Koutsopoulos (2006a) have proposed estimation of traffic dynamics
models using machine learning approaches instead of the classic way of speed–
density relationships. In the context of mesoscopic traffic simulation models,
Antoniou et al. (2013) have developed a methodology based on data–driven mod-
els for the identification and short-term prediction of traffic state and local speed.
The results are promising and the introduction of data–driven models into mi-
croscopic traffic simulation needs to be also investigated.

Recently, more and more researchers tend to adopt the concept that drivers
behave differently in different traffic conditions (Yang and Koutsopoulos, 1996;
Ahmed, 1999; Toledo et al., 2003; Wang et al., 2005; Koutsopoulos and Farah,
2012). In this case, sub-phases can be recognized, such as free-flowing, ap-
proaching, close-following, car-following, emergency braking, and stop-and-go.
This has led to the development of multi-regime car following models, accord-
ing to which different rules are adopted under different traffic states, so that
driving behavior can be best captured. A generalization of such multi-regime ap-
proaches is an attractive perspective. However, a large number of regimes may
result to overly complex models and developing the equations to model them
can become cumbersome. Furthermore, incorporating additional measurement
data to these models is very complicated. These limitations have motivated us
to suggest within this research an alternative methodology for the estimation of
car-following models, combining flexible, data-driven components.

Machine learning techniques may allow for robust and reliable representa-
tion of driving behavior and contribute into the development of flexible micro-
scopic models, anticipating future needs. Moving towards autonomous vehicles,
models should be able to reflect additional heterogeneity in driving behavior and
traffic networks. Undoubtedly, in this direction, machine learning techniques
could play a key role in learning driving styles and realizing Autonomous Driv-
ing. Machine learning methods can capture driving behavior in an efficient way
taking into account various explanatory variables. In contrast, conventional car–
following models based on a mathematical formula may not allow the incorpora-
tion of all these variables because of the high number of parameters (Papathana-
sopoulou and Antoniou (2015b); Antoniou and Koutsopoulos (2006a)).

Traffic simulation models have been formulated for lane–based conditions.
However, simulation of mixed traffic flow in non lane based heterogeneous con-
ditions is still a challenge. In recent years, there has been an increasing interest
in modeling driving behavior in developing countries where conditions, such as
non-lane discipline and heterogeneity in vehicle types, prevail. Traffic flow in de-
veloping countries is very complex in nature and safety issues arise. Data-driven
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models may offer a reliable alternative for simulation in mixed traffic conditions.

1.2 New modeling challenges and data opportunities

Transportation is experiencing a period of great development potential and changes,
including new modes and new data sources. In an era of big data and au-
tonomous vehicles, traffic simulation models need to adapt to these new chal-
lenges. The objective of this research is to provide an alternative modeling ap-
proach for traffic simulation models. This modeling approach can take advantage
of a wide range of available data, and is therefore suitable to implementation in
the context of intelligent transportation systems.

1.2.1 New modeling requirements

The emergence of new transportation modes (services and technologies), also new
challenges for modeling traffic system, have created a need for more robust and
advanced traffic simulation models. In particular, traffic simulation models need
to capture the operations and interactions among new traffic systems.

New systems impact different aspects of traffic demand and driving behavior.
Autonomous vehicles for example, under active development, are expected to be
gradually introduced in the market. Therefore, autonomous driving constitutes
one of the future modes that should be modeled, as well as the interaction of
autonomous vehicles and classical vehicles. In addition, new modes such as car–
sharing (Barth et al., 2004) may not be easily modeled using the current models.
These modes share attributes of both private and public transport. These modes
are expected to be more popular, as they offer a plausible alternative solution to
severe parking problems in metropolitan areas (Xu and Lim, 2007). Furthermore,
there has been an increasing interest in modeling driving behavior in developing
countries where conditions, such as non-lane discipline and heterogeneity in
vehicle types, prevail. Traffic flow in developing world is very complex in nature
and safety issues arise.

The focus here is on traffic moving from the local level to the network level. To-
wards sustainable mobility, vehicle–to–vehicle and vehicle–to–infrastructure ar-
chitectures should be employed in real–time applications to develop effective traf-
fic solutions based on real–time data. Data-driven models may offer a reliable
alternative for simulation of all these new modes that require the evolution of
traffic simulation models including data fusion of various data sources.

1.2.2 New data sources

The rapid development of technology has contributed to the availability of high–
quality traffic data, leading the way for the development of more advanced sim-
ulation models. As a result of an explosive increase of the data that are being
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generated and collected, data–driven modeling is emerging as a fast developing
field of transportation research. Zhang et al. (2011) have expressed the need
for a shift from a conventional technology–driven system into a more powerful
multifunctional data–driven intelligent transportation system.

On the demand side, social media networks provide a huge volume of data
including temporal, spatial, and textual information that could be exploited in
the transportation field (Chaniotakis et al., 2016). In the era of big data, it is
important to be able to handle the available information to increase accuracy
and reliability of traffic models.

On the supply side, technological advances have significantly improved our
traffic data collection capabilities and increasing volumes of potentially useful
data are readily available from low-cost opportunistic sensors. Other sources
of data (such as cameras, GPS, cell phone tracking, and probe vehicles) are in-
creasingly used as supplementary measurement systems (El Faouzi et al., 2011).
Methods such as differential GPS allow the collection of high fidelity traffic data
(Ranjitkar et al., 2005) and consequently may improve the accuracy of traffic
simulation models. On the other hand, ubiquitous sensors (e.g. accelerometers
and gyroscopes) from regular smartphones could provide a much richer sample
of heterogeneous data, which could facilitate both, the development of a new gen-
eration of models and their calibration, e.g. utilizing distributions rather than
point values (Antoniou et al., 2014b). For a review of novel data collection tech-
niques and their applications to traffic management applications see (Antoniou
et al., 2011). Drones could also be a future option for data collection. Drones
equipped with video cameras have been used for the acquisition of accurate ve-
hicle tracking profiles (Guido et al., 2016).

1.2.3 Future challenges

Kaisler et al. (2013) define “Big Data” as the amount of data just beyond tech-
nology’s capability to store, manage, and process efficiently. Advances in infor-
mation technology are likely to offer new opportunities for transportation and
generate changes in speed and efficiency.

New data sources can help us to optimize the transportation networks and
improve the balance between demand and supply. Providing accurate traffic in-
formation is becoming a major challenge for road traffic management and the
deployment of intelligent transportation systems. The focus should be placed on
travel time and cost minimization, as well as environmental challenges.

New transportation modes need to be integrated in the cities and a new bal-
ance between new and old systems needs to be found, especially as the pene-
tration level of autonomous vehicles keeps changing. In a future world with a
cooperative vehicle to vehicle and vehicle to infrastructure communication, all
traffic modes and conditions need to be modeled. It is important to be able to
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offer solutions on–line and provide information and guidance back to drivers.

1.3 Problem statement and research objectives

The objective of this research is the representative modeling of traffic and the
estimation of traffic simulation models under varying traffic conditions using
innovative and flexible methods. The research contributes significantly to the
optimal planning, management of transport networks and autonomous driving.
The proposed methodology aims to increase model flexibility and provide the op-
portunity for incorporation of additional explanatory variables without the need
to resort to cumbersome reformulations of conventional models functional form.

Microscopic models describe driving behavior which is affected by many pa-
rameters. They often comprise different detailed models, including car-following,
lane-changing and gap-acceptance models and their successful application is
closely related to calibration process of their parameters. Simulation models do
not always adequately reflect field conditions outside of the time period for which
they have been calibrated (Balakrishna et al., 2007a; Daamen et al., 2014; Hen-
clewood et al., 2012). Furthermore, incorporation of additional variables into
models may lead to cumbersome mathematical relationships and they are very
difficult to integrate within conventional, analytical models.

Simulating driving behavior in high accuracy allows short–term prediction of
traffic parameters, such as speeds and travel times, which are basic components
of Advanced Traveler Information Systems (ATIS). Models with static parameters
are often unable to respond to varying traffic conditions and simulate effectively
the corresponding driving behavior. It has therefore been widely accepted that
the model parameters vary in multiple dimensions, including across individual
drivers, but also spatially across the network and temporally. Furthermore, traf-
fic simulation models have been formulated for lane–based conditions. In de-
veloping countries conditions, such as non-lane discipline and heterogeneity in
vehicle types, prevail and traffic simulation is still a challenge in mixed traffic.
Due to lack of lane discipline, it is difficult to identify leader–follower pairs and
thus a methodology on temporary virtual lanes is proposed.

In this research a comparative analysis is attempted based on the following
alternatives:

• fixed models versus new adaptive alternatives

• conventional versus data–driven models

• simplified models versus models including additional variables

• static versus dynamic models

• lane-based versus non-lane based models
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1.4 Dissertation outline and research plan

The remainder of this dissertation is organized as follows. Chapter 2 provides
a literature review for both conventional and data–driven microscopic models
followed by a qualitative comparison between them.

Chapter 3 analyzes the proposed methodological framework including the in-
tegrated methodology for estimation of data–driven microscopic models. Method-
ological components and evaluation methods are analyzed.

In chapters 4 –6 the experimental setup of this research is outlined. The
proposed methodology is demonstrated using real trajectory data from three dif-
ferent sources and specifically an experiment from Naples, NGSIM data and non–
lane disciplinary trajectory data from India. Traffic characteristics of the avail-
able data are presented, followed by a deeper exploration of the field data. In
chapters 4 –5 two different approaches of data–driven models are proposed.

In Chapter 4, a case study is conducted using the available data and the
results are presented. Various machine learning techniques are employed for
implementation of the proposed methodology. The focus is given on longitudinal
behavior.

In Chapter 5, online calibration for microscopic traffic simulation and dy-
namic multi-step prediction of traffic speed are implemented. The proposed mod-
eling process is data–driven as the estimation of model parameters is originated
and produced by the data from the previous time instants.

In Chapter 6, mixed traffic behavior is also explored. A methodological frame-
work for simulation of mixed traffic is developed. The methodology consists of two
parts: the identification of follower–leader pairs and the determination of virtual
lane changes.

Finally, in Chapter 7 conclusions are drawn and directions for future work
are provided. Directions on integrated behavior models are provided. Preliminary
work on using the distributions of the field data for the calibration of microscopic
traffic simulation software is described, too.

By the end of the thesis, an integrated methodological framework is devel-
oped that can simulate driving behavior under various conditions with flexibility
and better accuracy. Figure 1.1 illustrates the structure and the design of this
research.
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Figure 1.1: Research plan: literature review (white), model improvement (cyan),
model improvement–contributions (yellow)





Chapter 2

Synthesis of the state of the art

Data-driven techniques provide a new paradigm for modeling driving behavior by
extracting the correlations directly from the data. This section reviews classical
microscopic models, in particular car following, lane changing models and some
attempts on integrated behavior models, followed by a qualitative comparison
between conventional and data–driven models in terms of modeling philosophy,
accuracy and flexibility. Limitations of existingmodels are identified and research
gaps are highlighted.

2.1 Heterogeneity in driving behavior

Microscopic traffic models are developed to simulate driving behavior, which can
be influenced by many driving characteristics. Saifuzzaman and Zheng (2014)
have summarized the main driving characteristics as follows:

• Socio–economic characteristics (e.g., age, gender, income, education, etc.).

• Reaction time.

• Estimation errors: spacing and speeds cannot be estimated with high ac-
curacy by drivers.

• Perception threshold: human cannot perceive small changes as distinctive
abilities are limited.

• Temporal anticipation: drivers can predict traffic situation for the next few
time instants.

• Spatial anticipation: drivers consider not only the immediate leader but also
further vehicles ahead.

• Context sensitivity: traffic conditions may affect driving behavior.
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• Imperfect driving: for the same condition driving behavior may be different
at different times.

• Aggressiveness or risk averseness.

• Driving capabilities.

• Driving needs.

• Distraction.

• Desired speed.

• Desired spacing.

• Desired time headway.

Traffic models should capture driving heterogeneity in order to be realistic.
However, it is complicated to incorporate all these factors in a model or to create
different sub–models for different situations. As George Box famously put it, "All
models are wrong, but some are useful" (Box, 1979).

2.2 Traffic simulation models

Simulation models are used as the fundamental tool of traffic management and
safety research, as they allow the evaluation of traffic plans before their imple-
mentation (Barceló et al., 2010). Depending on the level of detail, simulation
models are classified into microscopic, mesoscopic and macroscopic models. In
microscopicmodels vehicles are described individually and interactions between
vehicles or between vehicles and the road network are included (Bellemans et al.,
2002). Each vehicle is described by parameters such as its origin, destination,
desired speed, acceleration and deceleration, the type of vehicle and the driver’s
characteristics (Bellemans et al., 2002). Macroscopic traffic models use aggre-
gated variables to describe traffic phenomena. Such models simulate the move-
ment as a continuous flow, using theories often inspired by the fluid dynamics.
Macroscopic measurements include speed, traffic flow and traffic density (Boxill
and Yu, 2000). Finally, mesoscopic models provide an intermediate situation,
in which they model individual vehicles but at an aggregate level, usually us-
ing speed–density relationships and queuing models to model vehicle dynamics.
Thus, mesoscopic models share common characteristics with both macroscopic
and microscopic models (Boxill and Yu, 2000) and aim to combine the benefits
of both, while overcoming their respective limitations.

An ongoing debate among traffic modelers relates to the relative benefits of
each level of simulation models. Microscopic models provide the highest level of
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detail for advanced transport applications and Intelligent Transportations Sys-
tems (Antoniou and Koutsopoulos, 2006a). While microscopic traffic simula-
tion models have a higher computational complexity, compared to mesoscopic or
macroscopic models, they are more suited to the evaluation and operation of ITS,
as they canmodel in detail more complex aspects of such systems. For example, it
would be harder to model managed lanes, vehicle actuated traffic control systems
and public transport priority systems with a mesoscopic or macroscopic model.
Furthermore, microscopic models are appropriate for modeling mixed traffic as
heterogeneity in vehicle types does not allow assumptions of homogeneity that are
common in macro– and mesoscopic models. In addition, interactions between
surrounding vehicles are critical in mixed traffic conditions and are described
in detail in microscopic models. Developments of Advanced Traveler Information
Systems (ATIS) rely significantly on the capability to perform accurate estimates
of the current traffic state and short–term predictions of driving behavior and
traffic characteristics, such as speed (Vlahogianni et al., 2005a; van Lint et al.,
2005; Vlahogianni et al., 2008). Due to a number of practical, data and com-
putational considerations, during the past two decades, ATIS applications have
been mostly supported by mesoscopic or macroscopic traffic simulation models.
Data collection and computational advances are making it possible to consider
more detailed, microscopic models for this kind of applications. Naturally, such
models introduce a number of complications, and therefore their adoption should
be clearly motivated and justified. In this research, emphasis is placed on micro-
scopic models and especially on car–following and lane–changing behavior.

2.3 Overview of traffic simulators

Road traffic tends to become a priority concern, especially for urban cities, where
heavy congestion problems are met. Simulation is necessary for understanding
traffic problems, assessing the effects of incidents and finding effective solutions.
In general, simulation is a dynamic representation of some part or aspects of the
real world through time. Traffic simulation is widely used as a tool to test or
evaluate a traffic plan of action before its implementation. Currently, there are
several traffic simulation softwares. A brief overview and comparative analysis
is performed for some of the most used and most mature traffic simulation soft-
wares.

• AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-
Urban Networks) microscopic traffic simulator was developed by Barceló
and Casas (2005) and is available from TSS–Transport Simulation Systems
(Spain). The car–following models implemented in AIMSUN are based on
the Gipps model (Gipps, 1981, 1986). AIMSUN combines microscopic and
mesoscopic modeling.
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• ARCHISIM (Bonte et al., 2006), developed by the team Modeling and Sim-
ulation of the National Institute for Research on Transport and Safety, is a
behavioral model based on multi–agent concepts.

• CORSIM (CORridor SIMulation) has been developed in United States by the
Federal Highway Administration (FHWA) and is appropriate for exploring ge-
ometric configurations, incident zone impacts, ramp metering options and
traffic control (Boxill and Yu, 2000). However, may not capture effectively
European traffic behavior. For instance, the "keep right rule" is not in-
cluded. Furthermore, relaxation phenomenon has not been considered and
driver classes are limited (Oud, 2016).

• MATSim (Multi–Agent Transport Simulation), developed by the Polytechnic
of Zurich, is an agent–based simulation tool that relies on activity-based ap-
proach rather than origin–destination matrices to generate traffic demand.

• MITSIMLab (MIcroscopic Traffic SIMulation Laboratory) (Yang and Kout-
sopoulos, 1996), developed at MIT (Massachusetts Institute of Technology),
is an open source application that supports evaluation of advanced systems
for traffic management and guidance.

• Paramics (Parallel Microscopic Simulation), marketed by Quadstone Param-
ics (UK), illustrates the psychophysical car-following model developed by
Fritzsche (1994). The basic concept is that the car-following phase space
is divided into five regions representing different modes of car–following. It
offers good visual display including 3-D visualization.

• SimTraffic (Husch and Albeck, 2000), marketed by Trafficware (United States),
is user–friendly and simulates individual vehicle movements using algo-
rithms for driving behavior and vehicle performance. The disadvantage is
that SimTraffic does not provide automated statistical analysis and detailed
information of vehicle variables (Saidallah et al., 2016)

• SUMO (Simulation of Urban Mobility) is a free microscopic traffic flow sim-
ulation software developed at the German Aerospace Centre. It includes
the safe distance Krauss car–following model (Krauß, 1998), an extension
of the Gipps model (Gipps, 1981), and the Krajzewicz lane–changing model
(Krajzewicz, 2009). The problem lays in the insufficient capacity of the net-
work and it is attempted to increase capacity through parameter calibration
(Maciejewski, 2010).

• TRANSIMS (TRansportation ANalysis and SIMulation System) (Smith et al.,
1995), developed at Los Alamos National Laboratory (USA), is a free sim-
ulation system. It is based on cellular automaton to conduct analysis of
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a regional transportation system. It integrates a new modeling paradigm
of individual travelers and multi-modal transport, advances, providing ad-
vances in travel forecasting process. Despite of considered simplifications,
it is computationally effective and is appropriate for large networks (Ma-
ciejewski, 2010).

• TransModeler, marketed by Caliper Corporation (USA), can simulate all types
of networks and complex multimodal systems. It also supports modeling of
high occupancy vehicle (HOV) lanes, bus lanes, parking lots, tolls, evacua-
tion scenarios and inter–vehicle interactions.

• VISSIM is provided for microscopic traffic simulation by PTV. It is based on
psychophysical models reported by Wiedemann (1994, 1991) and a rule-
based lane selection model reported by (Wiedemann, 1991). It is usually
used for transit signal priority and interchange design. Although VISSIM
offers great flexibility, it is hard to be calibrated due to the large set of pa-
rameters (Oud, 2016).

Table 2.1: Traffic simulators overview

Traffic
Model Category Visualization

simulators Micro Meso Macro Open source Commercial 2D 3D
AIMSUN x x x x x x
ARCHISIM x x x
CORSIM x x x x
MATSim x x x
MITSIMLab x x x
Paramics x x x x
SimTraffic x x x x
SUMO x x x
TRANSIMS x x x x
TransModeler x x x x x x
VISSIM x x x x

In order to achieve a realistic representation of the real world, models that
could capture effectively heterogeneity of driving behavior under various condi-
tions need to be integrated in traffic simulation softwares.

2.4 Conventional microscopic traffic simulation models

Microscopic models include gap-acceptance, speed adaptation, lane changing,
ramp merging, overtaking, and car-following models (Olstam and Tapani, 2004).
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Car–following and lane–changing manoeuvres constitute the most common driv-
ing behaviour on urban roads and highways. Therefore, in this research the
focus is placed on to modeling these two driving situations. A lane-changing
situation causes the immediate deviation of driving behavior from the common
car–following models. Thus, there is a shift towards the development of an inte-
grated model to imitate both car-following and lane–changing behaviors. Three
types of models are further explored:

• Car–following models

• Lane–changing models

• Integrated behavior models

2.4.1 Car–following

Car–following models describe the longitudinal movements of vehicles. The con-
cept of car–following was first introduced by Reuschel (1950) and Pipes (1953).
Car–followingmodels have been studied withmany diverse approaches for decades.
Car following models typically inspect driving behavior with respect to the leading
vehicle in the same lane. A vehicle is limited by the movement of the leading vehi-
cle, because driving at the desired rate may lead to a crash (Olstam and Tapani,
2004). According to Bonsall et al. (2005), the main parameters that are involved
in the majority of car–following models are the following:

• Desired speed is the speed at which the driver wishes to travel.

• Desired headway is the minimum safe time or distance between two suc-
cessive cars that the follower vehicle is unwilling to compromise even when
at rest.

• Reaction time is the time delay required by any driver in order to respond
to any stimulus and take an action.

• Normal Acceleration is the acceleration that the driver wishes to acquire in
a normal following situation

• Normal Deceleration is the braking that the driver wishes to apply in a non-
emergency situation.

Initially, car following models were developed to represent a single state of traf-
fic, such as the traffic state, where the subject vehicle reacts to the actions of the
leading vehicle (Reuschel, 1950; Pipes, 1953). Moreover, many of the earlier car
following models, including the General Motors models (Chandler et al., 1958;
Gazis et al., 1961; Chandler et al., 1958) refer to low–speed situations and may
not be suitable for high–speed networks. Recently, more and more researchers
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tend to adopt the concept that drivers behave differently in different traffic con-
ditions (Koutsopoulos and Farah, 2012; Yang and Koutsopoulos, 1996; Ahmed,
1999; Toledo, 2003; Wang et al., 2005; Koutsopoulos and Farah, 2012). In this
case, sub–phases can be recognized, such as free-flowing, approaching, close–
following, car-following, emergency braking, and stop–and–go. This has led to the
development of multi–regime car following models, according to which different
rules are adopted under different traffic states, so that driving behavior can be
best captured. A generalization of such multi–regime approaches is an attractive
perspective. However, a large number of regimes may result to overly complex
models and developing the equations to model them can become cumbersome.
Furthermore, incorporating additional measurement data to these models is very
complicated.

A historical review of car-following models is provided by Braskstone and Mc-
Donald (2000). They have classified car-—following models into five groups:
Gazis-–Herman—Rothery (GHR) model, collision–avoidance model (CA), linear
model, psychophysical or action–point model (AP), and fuzzy logic–based model.
However, more models have been developed since then and some scientists ((Pan-
wai and Dia, 2005) and (Wei, 2014)) have included them into additional groups.
Taking into consideration the abovementioned classifications, classical car-following
models are classified into the following groups depending on the utilized logic.

Gazis–Herman–Rothery (GHR) Model

The first version of GHR model was proposed in 1958 at the General Motors
Research Laboratory in Detroit (Chandler et al., 1958) and was later further re-
searched by (Gazis et al., 1961). Due to ineffectiveness for both low and high
densities applying the same formula, several extensions to the GM framework
were proposed (for instance by (Tordeux et al., 2010)). The model is based on
Equation 2.1, which relates follower’s acceleration to the speed of the follower,
the speed difference between follower and leader, spacing between the subject
vehicles and driver reaction time.

an(t) = cvmn
∆v(t− T )

∆xl(t− T )
(2.1)

where:
an(t) is the acceleration of vehicle n at time instant t
vn is the speed of vehicle n
∆x is the relative distance between vehicle n and n-1
∆v is the relative speed between vehicle n and n-1
T is the driver reaction time
l,m,c are constants
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Drivers respond to the speed difference as a major stimulus (Wei, 2014). The
application of this model requires calibration of model parameters l and m for a
particular network. Braskstone and McDonald (2000) explained that the GHR
model is now being used less frequently because of the large number of contra-
dictory findings for parameter values. Moreover, the assumption of the GMmodel
that if the speed of the leading vehicle is higher than the following one, then the
driver of the following driver will accelerate is re-examined and should be revised
(Koutsopoulos and Farah, 2012).

Safety distance or collision avoidance (CA) Model

Collision-avoidance or safety distance model was introduced by Kometani and
Sasaki (1958). Numerous other models have been also reported in the literature
((Benekohal and Treiterer, 1988)), (Gipps, 1981)). All these models are based on
the idea that a safety distance should be maintained between the follower and
the leader, so as a collision to be avoided with the leading vehicle. The safety
distance is described by Equation 2.2 as a function of the speeds of the leader
and the follower and driver’s reaction time.

∆x(t− T ) = av2n−1(t− T ) + β1v
2
n(t) + βvn(t) + β0 (2.2)

where:
vn is the speed of vehicle n
vn−1 is the speed of vehicle n− 1

∆x is the relative distance between vehicle n and n-1
T is the driver reaction time
β,β1,β0 are constants
According to Hidas (1998) several researchers (e.g. Chen et al., 1995 and

Parker, 1996) have found that many drivers tend to adopt a "close following be-
havior" and the assumption of a safe distance is not obeyed. In the recent years,
there is also the need for the deployment of car–following models in the field of
intelligent autonomous vehicles. Van Arem et al. (2006) have developed a car–
following model appropriate for automated vehicles. The drivers tend to adjust
his speed to the leading vehicles while also maintaining constant time gap. The
following paragraph provides some additional information on the Gipps model,
which is widely adopted in micro-simulation and is still one of the most exten-
sively used models Ciuffo et al. (2012). Therefore, it is also selected as the refer-
ence model for the framework developed in this research.

The Gipps model
The car–following model, used in Aimsun traffic simulator, is a safety distance

model based on the model developed by Gipps (Gipps, 1981; Olstam and Tapani,
2004; Barceló et al., 2005). The model suggests that the speed of a vehicle (n)
is subject to three constraints (Eq. 2.3). First, the vehicle speed does not exceed
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the driver’s desired speed (Vn). Second, the vehicle accelerates rapidly until it
approaches the desired speed and then the acceleration is reduced almost to
zero. If two vehicles are far apart, they behave as in the free flow condition.
These two conditions are summarized in the first part of Equation 2.3. The third
condition is taken into account, when the vehicle is constrained by the vehicle in
front. It is taken for granted that the following vehicle will adjust its velocity so
as to keep a safe distance from the leading vehicle. This condition is described
by the second part of Equation 2.3. Overall, according to the above restrictions,
the speed of vehicle n at time (t+ τ ) could be calculated by the following formula:

vn[t+τ ]=min


vn[t] + 2.5 · an · τ · (1− vn[t]

Vn
·
√

(0.025 + vn[t]
Vn

)

bn ·τ+

√
(bn ·τ)2− bn ·[2·(xn−1[t]−sn−1− xn[t])−vn[t]· τ− v2n−1[t]

b̂
]

(2.3)

where:

an : the maximum acceleration that the driver of vehicle n wishes to acquire
(m/s2).
bn : the maximum braking that the driver of vehicle n wishes to apply in order to
avoid a crash, bn<0 (m/s2).
b̂ : the estimated maximum braking that the driver of the leading vehicle (n-1)
wishes to apply (m/s2).
sn−1 = Ln−1 + Safety, namely the size of the leading vehicle (n-1) including its
length and the safety distance at which vehicle n is unwilling to compromise
even when at rest (m).
Vn : the speed at which the driver of vehicle n wishes to travel (m/s).
xn[t], xn−1[t] : the location of the front side of the respective vehicle (n or n-1) at
time t (m)
vn−1[t] : the speed of the leading vehicle (n-1) at time t (m/s)
vn[t] : the speed of the following vehicle (n) at time t (m/s)
τ : the apparent reaction time (a constant for all vehicles) (s)

Linear (Helly) Model

This model is rooted in the GHRmodels and was further improved by Helly (1959)
who introduced the concept of desired following distance. The model calculates
the acceleration of the follower as a function of desired following distance, speed
of the following vehicle, relative distance and speed between follower and leader,
and driver’s reaction time.

an(t) = c1∆v(t− T ) + c2∆x(t− T )−Dn(t)

Dn(t) = a+ βv(t− T ) + γan(t− T )
(2.4)
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Figure 2.1: Notation for the Gipps model (Olstam and Tapani, 2004)

where:
an(t) is the acceleration of vehicle n at time instant t
Dn(t) is the desired following distance of vehicle n at time instant t
v is the speed of vehicle n at time instant t
∆x is the relative distance between vehicle n and n-1
∆v is the relative distance between vehicle n and n-1
T is the driver reaction time
α, β, γ, c1, c2 are constants
A similar model was used later by Yeo et al. (2008) to model an oversaturated

freeway flow. Overall, the linear CF model fits well in a low acceleration pattern,
but in high disturbance within the traffic flow the model overestimates headways
(Braskstone and McDonald, 2000).

Psychophysical or AP Model

Psychological or AP models constitute another type of car–following models in-
troduced by Michaels (1963) as they wanted to relax constraints of GM models.
Drivers change their behavior at different regions which are determined by their
psychological status. More specifically, drivers react to distance or speed differ-
ence between pairs of vehicles, when a threshold is reached. Different equations
are applied for each region, as the behavior is differentiated. Thresholds are ex-
pressed as a function of speed difference and distance. Representative examples
of psycho-physical car–following models are visual angle models (Michaels, 1963)
and the ones developed by Leutzbach and Wiedemann (1986), Wiedemann and
Reiter (1992) and Fritzsche (1994). Wiedemann and Reiter (1992) proposed that
two vehicles moving in sequence may interact under four traffic states: free flow-
ing, approaching, car following and emergency situation. These models depend
on the human perception of motion. However, the ability to perceive speed dif-
ferences and distances varies among drivers and thus estimation of individual
thresholds is a difficult task.
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Figure 2.2: A psycho–physical car–following model (Olstam and Tapani, 2004)

Fuzzy–logic–based models

The application of fuzzy-logic principles to the GHR model was introduced by
(Kikuchi and Chakroborty, 1992). The fuzzy system of car–following models de-
scribes a follower’s response to the change of relative speed and headway to that
of the leader’s. Variables of the model are divided into a number of overlapping
sets associated with a particular term such as "close" and "too close". Fuzzy sets
according to the follower’s desired relative speed and headway are used and are
interpreted in logical operators or rules like if "too close" then use emergency
deceleration. Another typical fuzzy rule would be: If Distance Divergence is "too
Far" and relative speed is "closing" then the driver’s response is "No Action". The
application of the models and their effectiveness depends on the determination
of membership functions (Panwai and Dia, 2005).

Cellular automata model

This type of model was first introduced by Nagel and Schreckenberg (1992). Their
model has been extended by several others in the last few years (Blue et al., 1996;
Rickert et al., 1996; Bham and Benekohal, 2004). In cellular automata, space
and time are discrete and physical quantities take discrete values. A cellular
automaton consists of a regular uniform lattice with discrete variables at the
various sites. The state of a cellular automaton is completely specified by the
values of the variables at each cell. The variables are updated simultaneously,
based on the values of the variables in their neighborhood at the preceding time
step according to a definite set of "local rules".
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Optimal velocity model

Optimal Velocity model was introduced by Bando et al. (1994, 1995) and the
governing equation is the following:

dxi
dt

= vi

dvi
dt

= α[V (xi+1 − xi)− vi]
(2.5)

where:
xi positions of vehicles
vi velocities of vehicles a a sensitivity parameter denoting the speed of driver’s

response.
The basic principles of optimal velocity model are the following. A vehicle

obtains the optimal velocity determined by the distance from the leading car. At
any vehicle density there is only one optimal velocity. Driver’s reaction time and
sensitivity to the vehicle’s environment depend on whether the road is congested
or not.

Desired spacing models

In the desired spacing models (Parker, 1996; Hidas, 1998, 2005), a desired spac-
ing criterion is defined as a linear function of the speed. The desired spacing is an
individual characteristic and varies among drivers and acceleration or decelera-
tion states. Each driver adjusts his acceleration in order to achieve the desired
spacing without attempting to explain behavioral tasks or to estimate reaction
time. This model is proposed only for urban streets with low speeds by Hidas
(1998).

Intelligent driver model

The Intelligent driver model was proposed by Treiber et al. (2000). It is a determin-
istic continuous car–following model. The acceleration is given as a continuous
function of the speed, the gap and the speed difference from the leader vehicle.
The model is given by

aIDM (s, v,∆v) =
dv

dt
= a[1− (

v

v0
)δ − (

s∗(v,∆v)

s
)2]

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

(2.6)

where:
v is the velocity of the subject vehicle
s is the current net space headway of the subject vehicle
∆v is the relative distance between the vehicle and the leader vehicle
s∗(v,∆v) is the desired space gap
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a is the maximum acceleration
s0 is the minimum distance or the jam distance
v0 is the desired speed of the subject vehicle
b is the desired deceleration
δ is the free acceleration exponent
T is the safe time headway
The advantage of the model is that it is collision free. However, it is formulated

to describe traffic dynamics in one lane only and when the actual gap is signif-
icantly lower than the desired gap, e.g. in lane–changing situations, the model
leads to unrealistic behavior. An enhanced model, called "ACC model", has been
developed by Kesting et al. (2010) in order to prevent unnaturally strong braking
reactions due to lane changes.

Capacity drop and traffic hysteresis

This model has been proposed by Zhang and Kim (2005). Capacity drop corre-
sponds to a specific density, while traffic hysteresis reflects a stop and go situa-
tion. Multiphase traffic situations, such as steady state phase and congestions
and transition phase simultaneously, are considered. The model provides more
insight to the macroscopic level rather than microscopic level. This model lead
to more realistic fundamental diagrams (flow–density).

2.4.2 Lane–changing

Lane–changing models describe the lateral movements of vehicles and often in-
corporate lane selection and lane–changing decision, recognizing acceptable con-
ditions (lead and lag gaps) and lane-changing maneuver. Most models classify
lane changes into two categories, mandatory and discretionary, based on the
execution process (Ben-Akiva et al., 2009; Mathew, 2014). A mandatory lane
change (MLC) occurs when a driver must change lane to follow a certain path.
For instance, if a driver wants to turn right at the next intersection, he must
change lane to follow the right most lane. On the other hand, a discretionary
lane change (DLC) occurs when a driver changes to a lane perceived to offer
better driving conditions, for instance if he tries to achieve his desired speed or
to avoid trucks in the same lane, etc.

The execution of a lane change is modeled using gap acceptance models. Gaps
are considered either in terms of time or space and in some models there is
distinction between the lead gap and the lag gap (see Figure 2.3). Gap acceptance
models are usually defined as binary problems, in which drivers accept or reject
the available gap by comparing it with the critical gap (minimum acceptable gap)
(Toledo et al., 2003).

In congested traffic conditions, other types of lane-changingmechanisms have
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Figure 2.3: Vehicles and gaps within a lane–changing manoeuvre (Toledo et al.,
2003)

been found in the literature and include forced and cooperative gap acceptance.
Forced merging is executed if the gap on the target lane is not acceptable and
the lag vehicle on the target lane is forced to decelerate until the gap is accept-
able. Cooperative merging occurs when a driver changes lane through courtesy
and cooperation of the lag vehicles on the target lane that decelerate in order to
facilitate the lane change (Ben-Akiva et al., 2009; Mathew, 2014).

Many lane-changing models have been developed in the last few decades.
These models often have different base principles, such as thresholds or util-
ity functions. A critical review is provided by Moridpour et al. (2010) and Toledo
(2007). Each model is based on a decision making process (Bonsall et al., 2005).
The general structure of these lane–changing models is outlined in Figure 2.4
(Ben-Akiva et al., 2009).

Most lane change models assume that gap–acceptance is either a function of
distance and speed difference, or deceleration is determined by a car-following
model. However, in the real world, drivers tend to apply small decelerations and
accept smaller time headways (Laval and Leclercq, 2008). This is the relaxation
phenomenon which takes place whenever a lane change occurs at a short spac-
ing and is not in accordance with the fundamental diagram (Leclercq et al., 2007).

Gipps (Gipps, 1986) introduced the first lane-changing decision model in-
tended for microsimulation tools. Ahmed (1999) and Ahmed et al. (1996) have
proposed a lane–changingmodel that captures bothmandatory and discretionary
lane changes. Lane–changing process is divided into three steps: decision to con-
sider a lane change, choice of a target lane, and acceptance of gaps in the target
lane. If the driving conditions in the current lane are not satisfactory, the driver
compare them with conditions in adjacent lanes and selects a target lane. Lane
utilities depend on the speeds of the lead and lag vehicles in target lane in com-
parison with the current and desired speeds of the vehicle. The model takes
into account differences in driving behavior of heavy vehicles, too. Wiedemann
and Reiter (1992) developed a lane changing decision model that considers the
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Figure 2.4: A generic structure of lane–changing models (Ben-Akiva et al., 2009)
* MLC: Mandatory lane change, DLC: Discretionary lane change

driver’s perception of surrounding vehicles. Different drivers have different char-
acteristics such as different driving capabilities and perception abilities. Wei et al.
(2000) proposed a model of lane selection for drivers that turn into two–lane ur-
ban arterials. They identified another category of lane changes, preemptive lane
changes. A preemptive lane change is performed by a driver when he is going
to turn after some intersections. The proposed model is outlined in Figure 2.7.
Hidas (2002, 2005) introduced the concept of driver’s courtesy of the lag vehicle
in the target lane. However, lane–changing is simulated as an instantaneous ac-
tion. Kesting et al. (2007) incorporated in their model the consequences of lane
change for the surrounding vehicles. Ben-Akiva et al. (2009) developed a model
that integrates mandatory and discretionary lane changes in a single framework.
Various types of lane-changing mechanisms, such as cooperative lane changing
and forced merging, are included and heterogeneity in driving behavior has been
taken into consideration. This model is presented in Figure 2.6 and has been
implemented in MITSIMLab microscopic traffic simulator.

These works focus on the decision-making process for lane-changing, but they
ignore the process of lane-changing execution as well as the speeds of other
potentially involved vehicles. The conventional lane–changing approaches are
based on predefined logic rules, which explain driving behavior to some extent.
However, simplicity and inflexibility of such rules may lead to unrealistic lane–
changing simulation (Bi et al., 2016), as they do not incorporate the inconsis-
tencies and uncertainties of drivers’ perception and decisions (McDonald et al.,
1997). Further details are provided for some lane-changing models below.
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The Gipps model

The Gipps model (Gipps, 1986) has been proposed to explain lane–changing deci-
sions both on freeways and in urban driving conditions, including traffic signals,
heavy vehicles and obstructions that affect drivers’ behavior and decisions. The
modeling approach is based on some simplified assumptions. Drivers’ decision
to proceed to a lane change depends on three factors, safety, necessity and
desirability of lane changes.

During a lane–changing manoeuvre, the model identifies three zones based
on the distance from the point of the intended turn. In the remote–zone, the
intended turn is far away. There is no effect on drivers’ lane–changing decision
and the drivers focus on their desired speed. In the middle–zone, the intended
turn is a middle distance away. The driver steers the vehicle towards his desti-
nation or the target lane ignoring opportunities to take speed advantage. In the
near–zone, the distance from the exit point is too close and the drivers try to
follow the correct lane without speed considerations.

The Gipps lane changing model provides a good and reasonable explanation
on how a driver decides to execute a lane–change. However, according to Zheng
(2014), the limitation of the model is that the vehicles change lanes only if there
is a safe and adequate headway. The model does not take into consideration
heterogeneity in driving behavior and the assumption on the required safety gap
may not be applicable in congested traffic conditions that the required gaps may
not be available.

The Hidas’ model

Hidas (2002, 2005) have developed a lane changing decision model which in-
corporates the simulation of driver’s courtesy in target lane (Figure 2.5). Lane–
changing decisions are classified into three types: free, forced and cooperative.
During a free lane change manoeuvre, there are no significant changes in lead
and lag gaps. In a forced lane change, headways decrease before the lane change
execution and increase after that, while in cooperative lane changes the opposite
is observed. Cooperative lane–changing depends on the willingness and feasibil-
ity of the lag vehicle driver to decelerate in order to provide a sufficient space gap
for the lane change. The main assumption of the model is that a lane change is
feasible if there is a sufficient gap in the target lane.

The target lead gap and the target lag gap in a free lane changing manoeuvre
are given by Equation 2.7. The lag gap in the target lane and the minimum
acceptable target lead and lag space gaps in a cooperative or forced lane changing
manoeuvre are calculated by Equations 2.8 and 2.9 respectively.
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gl = g0l − (vs − bs/2) + vl

gf = g0f − (vf − bf/2) + (vs + bS/2)
(2.7)

gf = g0f − (vfDt − bf/2D2
t ) + vsDt (2.8)

gl,min = gmin +


cl(vs − vl), vs > vl

0, otherwise

gf,min = gmin +


cf (vs − vf ), vf > vs

0, otherwise

(2.9)

where gl is the target lead gap
gf is the target lag gap
g0l is the target lead gap at the start of lane change
g0f is the target lag gap at the start of lane change
vs is the speed of the subject vehicle
vf is the speed of the lag vehicle
vl is the speed of the lead vehicle
bs is the deceleration of the subject vehicle
bf is the deceleration of the lag vehicle
Dt=Dv/bf is the time of deceleration period, Dv is the speed decrease of the

subject vehicle
cl, cf are constants

The Mobil model

The Mobil model ("Minimizing Overall Braking Induced by Lane changes”) was
developed by Kesting et al. (2007). It is an acceleration–based model that takes
into consideration the consequences of a lane change for the followers in the
origin and target lane. The parameters of the model determine how much the
driver weighs the consequences for his followers. A safety criterion ensures that
after the lane change the deceleration ãn of the upstream vehicle in the target
lane does not exceed a given safe limit bsafe.

ãn ≥ bsafe (2.10)

Kesting et al. (2007) have also formulated an asymmetric lane-changing cri-
terion for two-lane freeways taking for granted that the right lane is the default
lane. Two European traffic rules are described by the following formulas.
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Figure 2.5: General structure of Hidas’ lane–changing model (Hidas, 2002)

According to the first rule, overtaking from the right lane is forbidden, unless
congested conditions prevail Equation 2.11. The second rule is summarized in
Equations 2.12 and 2.13, whether the vehicle moves from left to right or from
right to left respectively.

aeurc =


min(ac, ãc), vc > ṽlead > vcrit

ac, otherwise

(2.11)

ãc − aeurc + p(ãn − an) > ∆ath −∆abias (2.12)

ãc − aeurc + p(ã0 − a0) > ∆ath −∆abias (2.13)

where:
ac: the current acceleration of the vehicle
ãc: the current acceleration of the vehicle after the lane change
vc: the current speed of the vehicle
ṽlead: the speed of the leader in the target lane
vcrit: the minimum speed of the traffic that can be considered as free-flow
p: politeness factor
∆ath: threshold level of the advantages to avoid fluctuations
∆abias: additional bias to motivate the traffic to keep right
a0: the current acceleration of the follower in the origin lane
ã0: the acceleration of the follower in the origin lane after the lane change
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Figure 2.6: Structure of a model that integrates courtesy and forced merging
(Ben-Akiva et al., 2009)

an: the current acceleration of the follower in the new lane
ãn: the acceleration of the follower in the new lane after the lane change

2.4.3 Integrated behavior models

An integrated behavior model incorporates both car–following and lane–changing
behavior into one model. As these two behaviors are closely related to each other,
there have been a few attempts to develop an integrated model. One of these is
the Toledo’ s model (Toledo, 2003).

This model consists of three main parts: the short–term goal, the short–term
plan and the driver’s actions. The short–term goal is the target lane of the driver.
Then, the driver decides on a short term plan and chooses a target gap for the
lane change. Finally, the driver takes action by adapting the acceleration and
changes lane when his requirements for space gap are satisfied. If no lane change
is necessary, the driver remains in the same lane and tries to get or to maintain
the desired speed.

The Toledo’s model structure is outlined in Figure 2.8. A four–level decision
making is implemented based on target lane, gap acceptance, target gap and ac-
celeration. Driver’s actions are observable and are represented by squares in
Figure 2.8. Decisions on short–term goal and short–term plan are latent and are
shown as oval in Figure 2.8. Acceleration is represented as a continuous func-
tion, while lane changes as a discrete function. It is assumed that only one lane
change could be executed during one time interval. The model includes several
techniques and sub–models (for instance models utility of target lane, critical gap,
etc.) to capture variable driver characteristics and inter–dependencies between
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Figure 2.7: Structure of the model developed by Wei et al. (2000)

the four–level decisions. However, drivers may need to reconsider short–term
goals and plans per time step, as traffic conditions change dynamically. This
leads to the assumption that all state dependencies are captured by the explana-
tory variables of the model. Further details on the model are provided by Toledo
(2003).

2.5 Data–driven microscopic traffic simulation models

Nowadays, the rapid development of technology has contributed to the availability
of high–quality traffic data, leading the way for the development of more advanced
microscopic models. Limitations of conventional models have been the motiva-
tion to explore alternative approaches for the estimation of microscopic mod-
els, combining flexible data–driven components. Such methods have been used
in several transport–related applications. Various machine learning techniques
have been used in transportation research in recent years. More than ten years
ago, Antoniou and Koutsopoulos (2006c) developed a framework for speed esti-
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Figure 2.8: Integrated behavior model (Toledo, 2003)

mation using machine learning concepts, including clustering algorithms and lo-
cally weighted regression. Antoniou and Koutsopoulos (2006b) compared a num-
ber of machine learning techniques for speed estimation, including loess, support
vector regression, and neural networks. Other data–driven methods, including
neural networks (Huval et al., 2015), Gaussian processes (Chen et al., 2014) and
Kernel methods offering similar capabilities (Karlaftis and Vlahogianni, 2011).
Antoniou et al. (2013) developed a framework for dynamic traffic state estimation
and prediction using machine learning methods. Kleyko et al. (2015) have com-
pared three machine learning techniques, specifically logistic regression, neural
networks, and support vector machines, for a vehicle classification problem and
have indicated that logistic regression provided the best results. Jenelius and
Koutsopoulos (2013) have presented a statistical models for travel time estima-
tion for urban road network travel time estimation using low frequency probe
vehicle data. Jenelius and Koutsopoulos (2018) used probabilistic component
methods for traffic state prediction. Lv et al. (2015) and Huang et al. (2014) have
used deep learning for traffic flow prediction.

Focusing on microscopic data–driven models, the available background litera-
ture is still limited. A brief overview of them is presented in the following sections
and the focus is placed on car–following, lane–changing behavior and driving in
mixed traffic conditions.

2.5.1 Car–following models

Innovative ways for modeling car–following behavior are based on data–driven
methods. Zhang et al. (2011) have suggested and implemented the use of ma-
chine learning approaches to support a shift from conventional technology-driven
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systems into data–driven intelligent transportation system. Data–driven approaches
have already been used in developing a fully adaptive cruise control system (Si-
monelli et al., 2009; Bifulco et al., 2013b) and in modeling car–following behavior
via artificial neural networks (Colombaroni and Fusco, 2014; Chong et al., 2013;
Zheng et al., 2013). Simonelli et al. (2009) have applied neural networks to de-
velop a real–time learning model for capturing car-following behavior taking into
consideration individual drivers’ characteristics. Bifulco et al. (2013b) extended
the work of Simonelli et al. (2009) into a framework for reproducing spacing in
adaptive cruise control applications. Furthermore, Panwai and Dia (2007) devel-
oped a car following model based on neural networks and fuzzy neural networks.
They tried different types of neural networks and validated their model using field
data from two vehicles equipped with radar detectors. The results were promis-
ing as their models outperformed Gipps’ model. Zheng et al. (2013) proposed a
model based on neural networks, too. The difference of their model is that they
used a two–level neural network structure. The first level is used to estimate the
dynamic reaction delay, while the other to predict the acceleration of the following
vehicle. While most data–driven studies adopt a neural network approach, there
are several methods that either have not been adequately explored or have not
been compared on the same data with other methods in order to obtain a better
understanding on how the algorithm choice could influence the results.

2.5.2 Lane–changing models

To overcome the limitations of conventional lane-changing models, the scien-
tific interest has shifted towards data—-driven traffic simulation using machine
learning techniques. Kumar et al. (2013) have proposed a learning–based ap-
proach, using Support Vector Machine and Bayesian filtering, for online lane–
change intention prediction. Their model predicts driver intention to change
lanes about 1.3 seconds in advance. Ding et al. (2013) have explored the ability
of a neural network to learn and identify the uncertainties and perceptions in hu-
man behavior from real driving data in order to predict a lane-changing trajectory.
Hou et al. (2014) have developed a lane changing assistance system that advises
drivers for safe gaps and if it is safe or unsafe to execute a mandatory lane–
change. The model is validated on NGSIM data and predicts whether a driver
will merge or not as a function of certain input variables using Bayes Classifier
and Decision Trees. Bi et al. (2016) have developed a data-driven model to simu-
late the process of lane–changing in traffic simulation using RANDOM forests and
back-propagation neural network algorithms. However, they do not take driver
heterogeneity into account. Wang et al. (2017) have modeled various merging be-
haviors at expressway on-ramp bottlenecks using support vector machine (SVM)
models. They have considered four merging behaviors with different degrees of
merging risk. In comparison with other models including discrete choice model,
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Bayesian network and classification and regression tree, SVM achieves the best
prediction results.

2.5.3 Mixed traffic conditions

Asaithambi et al. (2016) review driver behavior models under mixed traffic condi-
tions and have pointed out limitations of current models, arguing that the main
limitation is that they do not explicitly consider the wider range of situations
that drivers in mixed traffic face. Munigety and Mathew (2016) have identified
that due to weak lane discipline, drivers maneuvering in mixed traffic streams
exhibit some peculiar patterns such as maintaining shorter headways, swerving,
and filtering. They have also proposed that the lane should be divided into small
strips in order to handle virtual lane movements. Li et al. (2015) have proposed a
car–following model that considers the effect of two–sided lateral gaps and have
they have shown that their model has larger stable region compared to a car–
following model that captures the impacts from the lateral gap on only one side.
In addition, Parsuvanathan (2015) has used proxy lanes between the main lanes.
It is assumed that free space is perceived as lanes by small vehicles. However,
distribution and types of vehicles could affect the width of the lanes. A grid-
based modeling approach akin to cellular automata (Gundaliya et al., 2008) and
a strip-based modelling method (Mathew et al., 2013) have also been proposed.
Mathew et al. (2013) have based their idea on portions of traffic queues instead
of regular main lane queues. Kanagaraj et al. (2013) have evaluated the perfor-
mance of different car following models under mixed traffic conditions. However,
they have not taken into account the fact that a vehicle may not be exactly in line
with its leading vehicle due to weak lane discipline in mixed traffic. Metkari et al.
(2013) have modified an existing car-following model in order to take into account
lateral movements and include mixed traffic conditions. Choudhury and Islam
(2016) have developed a latent leader acceleration model.

2.6 Qualitative comparison of data–driven and conven-
tional models

A SWOT analysis in using data–driven models versus classical models is shown
in Table 2.2. Data–driven models allow the easy incorporation of additional vari-
ables avoiding complex reformulations of fixed formulas. Conventional car follow-
ing models rely on mathematical formulas and are derived from traffic flow the-
ory; a property that often makes them more restrictive. Furthermore, machine
learning techniques are non–parametric methods and the calibration of their hy-
perparameters is not so time–consuming as the calibration process of conven-
tional models is. Data–driven models are based on correlation(Wei, 2014). Using
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classical models some assumptions on driving behavior are made and then the
model is improved through parameters calibration. Instead, data–driven models
are generated from data itself and could identify correlations that scientists could
not even imagine. Causal inference is self-taught from learning experiences. In
such a way, more detailed models are developed. On the other hand, data–driven
models may not provide as much insight into traffic flow theory as the traditional
models. Correlations between data are identified but only significant ones should
be included. Otherwise over-fitted models may be produced. In addition, hidden
biases in data may lead to biased models.

Moving to opportunities, machine learning techniques contribute into the de-
ployment of ITS and the effective analysis of large datasets analyzing modern
traffic data from multiple sources with different time resolution and spatial cov-
erage. They could also provide robust policies for simulation and autonomous
driving. However, there might be hidden threats in opportunities, such as data
compatibility and protection of personal data.

Table 2.2: SWOT analysis of using data–driven transportation models

Strengths Weaknesses
• easy incorporation of additional
variables

• calibration of few hyperparam-
eters instead of complex and
time–consuming parameter cali-
bration of conventional models

• identification of correlations
among data instead of based on
fixed formulas

• more detailed models

• not theoretically verified

• hidden biases in data collection
and analysis

Opportunities Threats
• Exploitation of available data

• Deployment of ITS

• Data compatibility

• Protection of personal data
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2.7 Limitations of existing models and research direc-
tions

From the foregoing review of the literature, themain limitations of existingmodels
are identified and presented below.

• The majority of models could not represent driving characteristics, for in-
stance reaction time, as vary with traffic conditions (Al-Obaedi et al., 2009).
Vehicle–dependent models need to be developed.

• Driving characteristics vary not only for different traffic conditions, but also
for different drivers. Driver heterogeneity influences drivers’ behavior, per-
ception, aggressiveness, risk awareness and safety constraints.

• The effect of the vehicle size in driving behavior of the follower vehicle is
not considered as a factor influencing distance from the leading vehicle (Al-
Obaedi et al., 2009) or lane–changing patterns (Moridpour et al., 2010).

• Nowadays, models tend to be more complicated without understanding the
physical meaning and the qualitative effect of their parameters.

• Incorporation of additional explanatory variables in conventional models
may lead to cumbersome reformulations of formulas.

• Hoogendoorn et al. (2011) have concluded that the assumption of drivers
accelerating smoothly may not be valid. Drivers may not pay attention to
car–following situation all the time and do not adapt their acceleration re-
spectively (Oud, 2016). Distraction needs to be taken into consideration in
future models.

• Stop–and–go waves constitute a common driving experience but most mod-
els could not explain wave features and replicate this traffic behavior (Wilson
and Ward, 2011).

• Most lane–changing models focus on lane–changing decision and ignore
lane changing execution. A lane change is treated as an instantaneous
event. However, a driver needs several seconds to execute a lane change
(Moridpour et al., 2010). Furthermore, lane changing behavior should de-
pend not only on lead and lag vehicles but also the conditions of the broader
traffic range, such as traffic density around lead and lag vehicles (Rahman
et al., 2013).

• The strict separation of lane changes into mandatory and discretionary is
not realistic, as except for very special cases, such as on-ramp merging
traffic, the emergence of a mandatory lane change is unobservable (Toledo
et al., 2003).
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• Some lane–changing models assume that a lane change is executed when
the available space gap is satisfactory. However, these models may not be
appropriate for modeling traffic in congested conditions that gaps are cre-
ated with courtesy of surrounding drivers or smaller headways are accepted.

• Most lane–changing approaches rely on predefined logic–based rules, which
explain driving behavior to some extent. However, simplicity and inflexibility
of such rules may lead to unrealistic lane–changing simulation.

• Most existing models ignore interactions between car–following and lane-
changing decisions and model them separately.

• Traffic simulation researches in mixed traffic conditions is limited and exist-
ing models may not perform well in mixed traffic conditions under non-lane
discipline. The current models do not consider the wider range of situations
that drivers in mixed traffic may face compared to drivers in homogeneous
lane-based traffic, such as staggered following, following between two vehi-
cles, and passing and lateral shifts.

• Data collected from multiple sources will play a key role in ITS. However,
existing models could neither exploit the information generated from the
available data nor incorporate ITS in their functions.

Application of these models in micro-simulation softwares may result in un-
realistic traffic flow simulation. The literature review has highlighted a number
of areas where further research needs to focus on in order to overcome gaps in
existing knowledge. Future models should capture driver heterogeneity through
time in various conditions. Furthermore, research should be directed towards
integrated behavior models, vehicle–dependent models and traffic simulation in
mixed traffic conditions. Data–driven models offer flexibility in incorporating
more explanatory variables influencing driving behavior without using complex
functions.
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Methodology

The objective of this research is to provide an alternative modeling approach for
microscopic traffic simulation models. This modeling approach can take advan-
tage of a wide range of available data, and is therefore suitable to implementation
in the context of ITS systems.

3.1 Modeling framework for microscopic data–drivenmod-
els

The overall process for data–driven model development is outlined in Figure 3.1.
The approach includes two parts: training and application. First the required ex-
planatory variables of the model are determined and the appropriate surveillance
data are collected. In the training step traffic models are estimated according to
the available surveillance data, while in the application step these traffic models
are applied to provide predictions using new observations.

The training process is initialized with the identification of clusters based on
underlying patterns and in the available data, corresponding to traffic states
with similar characteristics. A flexible regression technique is applied to each
cluster separately and representative models are formed for each group of the
data (calibration). The fitted models are stored into a knowledge database.

In the application step follows, when new measurements become available,
the new data are classified to the appropriate classes based on their characteris-
tics. The model that has been estimated for that class is then retrieved from the
knowledge base and applied to the new data for the estimation of the response
variable.The predicted values are evaluated and the next iteration improves the
model.

A methodology, separated in two approaches is presented in Figure 3.2. The
first one employs a flexible regression technique, while the second one comprises

0The sub–chapter 3.1 is based on Papathanasopoulou and Antoniou (2015a)

63



64 Chapter 3. Methodology

Figure 3.1: Process diagram for data–driven model development

a combination of computational methods, such as flexible regression techniques,
model-based clustering and classification algorithms.

Both methodological approaches include two parts: training and application.
First the required explanatory variables of the microscopic model are determined
and respectively the appropriate data are collected. In the training step traffic
models are estimated according to the available surveillance data, while in the
application step these traffic models are applied to provide speed predictions for
the following vehicle and the next time instant using new observations.

The secondmethodological approach includes a clustering step to identify por-
tions of the available data that correspond to traffic states with similar character-
istics. Then, a flexible regression technique is applied to each cluster separately
and representative models are formed for each group of the data (fitting). The
application step follows, when new measurements arise. New data are classified
to the appropriate classes based on their characteristics. The flexible model that
has been estimated for that class is then retrieved from the knowledge base and
applied to the new data for the estimation of the response variable, for instance
speeds of the following vehicle.

In this research the first methodological approach has been used as the sec-
ond more elaborate one was not necessary for the available data. T he explana-
tory variables per each time instant t have been considered as independent pre-
dictor variables for the estimation of the response variable (for instance speed)
for the next time instant (t+τ ), where τ is the apparent reaction time. Estimation
is achieved without assuming any predefined functional form; instead a flexible



3.1 Modeling framework for microscopic data–driven models 65

regression method can be used.

Figure 3.2: Methodology for estimation of flexible microscopic models

The type of driving situation is divided into free flow, car–following and lane–
changing according to the Figure 3.3. Longitudinal and lateral positions are
recorded per time instant and saved in a database. Then significant lateral
changes are identified using appropriate algorithms that allow monitoring struc-
tural changes in linear regression models. If no significant lateral change is iden-
tified then lateral information is used for determination of lane identification and
then a car-following model or a free flow model is applied if at least one preced-
ing vehicle is identified or not respectively. It is common that multiple leader
vehicles are identified in heterogeneous traffic conditions and thus the critical
leader vehicle should be identified. The probability of a given front vehicle to be
the governing leader depends on the type of the lead vehicle and the extent of
lateral overlap with the following vehicle (Choudhury and Islam, 2016). On the
other hand, if a breakpoint is observed in data sequence, namely if significant
lateral changes are identified, then a lane-changing situation is indicated and
the lane needs to be modified. A lane–changing model should be applied for time
tL, time of lane-changing duration. Then the process is iterated for the following
time instants.

In order to explore car–following and lane–changing behavior, data–driven
models could be applied, as described in Figure 3.2. Details on identification
of lane–changing behavior and estimation of lane–changing duration is provided
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in the following chapters. Furthermore, the methodology needs to be modified to
adapt to mixed traffic conditions.

Figure 3.3: Operationalization process

3.2 Data

In order to implement the proposed methodology, trajectory data are required.
The data were selected from available multiple sources so as to cover different



3.2 Data 67

aspects of three factors: the data collection technology, the environment and
the driver (Figure 3.4). The feasibility of the proposed methodology should be
checked using data collected from different technologies (cameras or GPS). Re-
garding the environment, traffic network and traffic rules may be differentiated
between different continents or even between different countries (Oud, 2016).
Furthermore, different conditions prevail in terms of traffic, such as congested
conditions or mixed conditions. In order to capture heterogeneity in driving be-
havior, data should definitely capture different driving behaviors. A mixture of
heterogeneous data allows the validation of the proposed methodology from dif-
ferent perspectives. Last but not least, the selected data should be appropriate
for study of car–following, lane–changing models, as well as models for mixed
traffic. Data selection plays a key role for data–driven models, as the models
learn from the data. The data selected are briefly described in Figure 3.5 and are
analyzed in detail in the following chapters.

Figure 3.4: Data selection criteria

3.2.1 Naples data

A series of data–collection experiments were carried out on roads surrounding
the city of Naples, in Italy (Punzo et al., 2005). All data were collected from
the same platoon under real traffic conditions in October 2002. The same four
drivers weremoving by the same vehicles (vehicles 1, 2, 3, 4) in the same sequence
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Figure 3.5: Data selection for implementation of the proposed methodology

(first vehicle 1 as the leader, followed by vehicle 2, which was in turn followed by
vehicle 3, while the last vehicle was vehicle 4), but from different driving ses-
sions. The driving routes and traffic conditions were differentiated among the
datasets. Datasets with index A and C correspond to one–lane urban road, while
datasets with index B to a two–lane extraurban highway (Figure 3.8). However,
all selected roads have one lane per direction in order to avoid effects on driving
behavior by lane changing. GPS receivers located on the vehicles were recording
the coordinates X, Y, Z of each vehicle per 0.1s (i.e. in 10Hz). Thus, the speed
of each vehicle (v1(t), v2(t), v3(t), v4(t)) and the traveled distances for each vehicle
could be calculated at each moment (x1(t), x2(t), x3(t), x4(t)). In this research,
data used are readily available observations from the field. No corrections and no
interpolation have been performed. Therefore, only segments with consecutive
measurements have been considered. The data series include location records of
each vehicle (coordinates x, y, z and time) per 0.1 s for all the vehicles. Using the
above information, the vehicle headways, the distance traveled per 0.1 s for each
vehicle, and their respective speeds were calculated. The size and speed ranges
of each data series are shown in Table 3.1 and Figures 3.6 and 3.7. A detailed
description of the data could be found in Punzo et al. (2005), who kindly provided
the data for this research. Trajectory and speeds are plotted indicatively for data
series B1695 in Figures 3.9 and 3.10.

3.2.2 NGSIM data

The “Next Generation SIMulation (NGSIM)” program (http://ngsim.fhwa.dot.gov.)
includes vehicle trajectories in real traffic conditions, which -–along with other
output of the project– have become available to the scientific community for re-
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Table 3.1: Characteristics of Naples data

a/a Dataset No. Observa-
tions

Duration (s)

1 B1695 1695 169.4
2 C621 621 62.0
3 A358 358 35.7
4 A172 172 17.1
5 C168 168 16.7
6 C171 171 17.0
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Figure 3.6: Summary statistics of speed for Naples data

search of microscopic driving behavior. The considered NGSIM data were col-
lected on eastbound I-80 in the San Francisco Bay area in Emeryville on April
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Figure 3.7: Speed ranges for Naples data

13, 2005 (US Department of Transportation 2012). The study area extends ap-
proximately 500m in length and consists of six freeway lanes (Figure 3.11). Seven
modern digital cameras were mounted on the top of a 30-story-building adjacent
to the freeway and were recording passing vehicles. The custom NG–VIDEO soft-
ware application transformed video to vehicle trajectories data (at 10Hz). These
data were recorded mainly in congested conditions. 45 minutes of data are avail-
able in a data set divided into three periods of 15 minutes and particularly in
accordance with the register time, 4:00 p.m. to 4:15 p.m., 5:00 p.m. to 5:15
p.m., and 5:15 p.m. to 5:30 p.m.

NGSIM data have been used in many studies for calibration or validation of
existing models (e.g. (Bevrani and Chung, 2011)). In the years 2007-2008 more
than 30 studies used the NGSIM data (Punzo et al., 2011). However, only few
studies have raised the issue of their accuracy (Hamdar and Mahmassani, 2008;
Punzo et al., 2011; Thiemann et al., 2008). Although the way that the veloci-
ties and accelerations of vehicles were calculated and the errors were reduced
is not known, studies suggest the existence of residual noise and errors in the
data (Bevrani and Chung, 2011; Punzo et al., 2011). The complete set of NGSIM
vehicle trajectory data from the I80–1 dataset (from 4.00 p.m. to 4.15 p.m.) was
filtered with a multi–step procedure for vehicle trajectory reconstruction by Mon-
tanino and Punzo (2014). For each vehicle the available data which are taken
into account are: Vehicle ID, Frame ID (Frame Identification number, ascending
by start time), Lane ID, LocalY (Longitudinal Y coordinate of the front center of
the vehicle with respect to the entry edge of the section in the direction of travel
[m]), Mean Speed, Mean Acceleration, Vehicle length, Vehicle Class ID, Follower
ID, Leader ID. More information about the Enhanced NGSIM data could be found
in (M. Montanino and V. Punzo, 2015; Montanino and Punzo, 2013; Punzo et al.,
2011).
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Figure 3.8: Routes from Naples data

The available enhanced NGSIM data include 1055800 observations. Due to
frequent lane changing, 10 vehicles moving only in a car–following state were
chosen for this analysis. Vehicles moving in the same lane and in sequence
one after the other were easily recognized according to the lane identification
and Follower/ Leader ID. The data selected are presented in Table 3.2. Speed
densities of the selected data series are plotted in Figure 3.12.

3.2.3 Indian data

In order to evaluate the feasibility of the methodological framework, data collected
in India were used (Kanagaraj et al., 2015). The video data were collected on a six-
lane separated urban arterial road at the Maraimalai Adigalar Bridge in Saidapet,
Chennai, India. Collection took place on the northbound approach, as shown in
Table 3.3. The section was on a bridge, which ensured that the road geometry
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Figure 3.10: Speeds for B1695 data series

was uniform and that there were no nearby intersections, bus stops, parked
vehicles, or other side factors that could affect drivers’ behavior. Furthermore,
there was no interaction between vehicle traffic and pedestrians, because the
pedestrian walkway is segregated by a barrier. A detailed description of the data
can be found in Kanagaraj et al. (2015). The data are presented in two parts –
two excel files for the data collected in the periods 2:45–3:00 PM (data245) and
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(a) A digital video camera
recording vehicle trajectory
data

(b) Aerial photograph and schematic drawing of the I–80
study area

Figure 3.11: NGSIM data collection

Table 3.2: Characteristics of Data Series

a/a Observations No. Observations Duration (s)

1 405108:405521 414 41.4
2 422895:423105 211 21.1
3 733723:733967 245 24.5
4 954322:954709 388 38.8
5 1006645:1006788 144 14.4
6 1000238:1000463 226 22.6
7 84232:84592 361 36.1
8 971206:971558 353 35.3
9 972848:973219 372 37.2
10 972848:973219 330 33.0

3:00–3:15 PM (data300), respectively, on February 13, 2014. Each excel sheet
contains 12 columns of data, as described in Table 3.3. The trajectory data is
available publicly at the address http://toledo.net.technion.ac.il/downloads/.
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Figure 3.12: Speed densities in data series

Figure 3.13: Trajectory extractor user interface showing road section and refer-
ence points in India

3.3 Methodological components

Data–driven models can greatly benefit from efficient machine learning algo-
rithms. A number of machine learning techniques, including loess, splines, sup-
port vector machines, Gaussian processes and neural networks, are analyzed and
used for implementation of the proposed methodology.
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Table 3.3: Description of Indian data

Column Item Remarks

2 Vehicle type 1– motorcycle, 2– car, 3– bus, 4–
truck, 5– light commercial vehicle, 6–
auto–rickshaw

3 Time (s) Time from beginning of recording. The
time interval is 0.5 s.

4 Vehicle length (m) –

5 Vehicle width (m) –

6 Longitudinal position (m) Position of the front of the vehicle,
measured from the upstream end of
the section.

7 Longitudinal speed (m/s) Instantaneous speed of the vehicle

8 Longitudinal acceleration
(m/s2)

Instantaneous acceleration of the ve-
hicle

9 Lateral position (m) Position of the center of the vehicle,
measured from the left–most side of
the roadway

10 Lateral speed (m/s) Instantaneous speed of the vehicle.
Positive (negative) values represent
movement to the right (left).

11 Lateral acceleration (m/s2) Instantaneous acceleration of the ve-
hicle

12 Flag Represents manual correction of data
points where overlap among vehicles
occurred. 0: No correction, 1 through
7: Data was manually modified to
eliminate overlap with other vehicles.
It is suggested that these observations
will not be used for microscopic–level
analysis.

3.3.1 Clustering and classification

Clustering

A simple form of clustering is k-means algorithm. As its name suggests, the k–
means algorithm (MacQueen et al., 1967; Hartigan and Wong, 1979) minimizes
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the distance between each point and the center of its cluster for k given clusters.
This is achieved by assigning each point to the nearest mean and reestimating
or moving the mean to the center of its cluster. It is regarded as a maximum
likelihood clustering. The objective function to be minimized is:

min(µ1,...,µk)
∑
h=1

∑
x∈Xh

‖X − µh‖2 (3.1)

where µi is the mean of cluster i. A hypothesis h1 =< µ1, . . . , µk > with the
means of the k different normal distributions is requested. A random hypothesis
is assumed for the initialization of the procedure. Each instance could be writ-
ten as < xi, zi1, zi2, . . . , zik > where xi is the observed variable and zij is equal to
1 if it was obtained by the jth normal distribution or 0 otherwise. A maximum–
likelihood hypothesis is sought after iterative re-estimations of the expected val-
ues of zij. Then, a new maximum likelihood hypothesis h2 is calculated using the
expected values in the previous step. Finally, the new hypothesis replaces the
earlier one and iterations are going on until the algorithm converges to a value
for the hypothesis.

Fraley and Raftery (2002, 2003) proposed a model based clustering which
combines hierarchical clustering, expectation–maximization algorithm (EM algo-
rithm) for mixture models and Bayesian information Criterion (BIC) for selection
of models and number of classes (Schwarz et al., 1978). Hierarchical clustering,
used for model–based hierarchical agglomeration, is initialized by default with
each observation of the data in a cluster by itself and finished when all obser-
vations have been merged into a cluster. A classification maximum likelihood
approach is required to determine which two groups are merged at each stage
(Banfield and Raftery, 1993; McLachlan and Krishnan, 1997; Fraley, 1998). EM
algorithm is included in the R Mclust package and is applied for maximum like-
lihood clustering with parameterized Gaussian mixture models (Dempster et al.,
1977; McLachlan and Krishnan, 1997). The EM algorithm is implemented in two
steps: E–step which calculates a matrix zik, which corresponds to the likelihood
of an observation i to be merged into a cluster κ given the current parameter es-
timates, and M-step, which calculates maximum likelihood parameter estimates
given z. Each cluster is represented by a Gaussian model φκ(x|µκ,Σκ), where x
are the data, κ an integer indicating a cluster centered at means µκ and covari-
ances Σκ. Then the maximum likelihood values for the Gaussian mixture model
is given by Equation 3.2 (Fraley and Raftery, 2002), where τκ are the mixing
proportions.

f(z) = argmin
y∈

d(z, y) (3.2)

Banfield and Raftery (1993) suggested a clustering strategy based on a max-
imization algorithm and Bayes factors. This strategy was upgraded by Fraley
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(1998) and later by Fraley and Raftery (2002, 2003) and could be carried out
with the following steps:

• A maximum number of clusters and a subset of covariance structures are
considered

• A hierarchical agglomeration that maximizes the classification likelihood for
each model is performed and the appropriate classifications are illustrated
up to M groups.

• The EM algorithm is applied for each model and each number of clusters
2,. . . , M. The procedure is initialized from the classification result of hierar-
chical agglomeration.

• The Bayesian information Criterion BIC is calculated for the one-cluster
case for each model and for the mixture model with the optimal parameters
from EM for 2,. . . , M clusters. Each combination corresponds to a unique
probability model.

• The model with the highest BIC is selected and the best classification is
recovered. Although in such a way the optimal number of classes is deter-
mined, a lower number of classes could be chosen, aiming at the develop-
ment of more parsimonious models.

Classification

One of themost commonmethods of classification is k–nearest neighbors (Mitchell
et al., 1997). According to this method, all observations correspond to points in
n–dimensional space. Future data points are registered in the class of nearest
neighbors of the already grouped data. Especially, the point of the nearest neigh-
bor classification is the calculation of the correlation map:

d(xi, xj) =
√

(
n∑
r=1

[ar(xi)− ar(xj)]2) (3.3)

In a pattern space P, where M ⊆ P , z ∈ P and d(z,y) is a metric in P–
dimensional space. The evaluation of Equation 3.3 could be easily achieved on
a computer following three steps: computation of an array with distances from z
to each y ∈ M , finding the minimum distance after comparisons and exporting
the final result y∗ ∈ M (Muezzinoglu and Zuracla, 2005). The nearest neighbors
could be defined according to the Euclidean distance (Roughan et al., 2004), if a
point x is described as < a1(x), a2(x), . . . , an(x) > where ar(x) corresponds to the
value of the r–th attribute of x. Attributes of x could include density, traffic flow,
and time. The distance between two points is defined by Equation 3.4 (Mitchell
et al., 1997). Thus the class of a new observation xi is the same as the class of
point xj, which minimizes the distance ‖xi − xj‖.
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f(z) = arg min
y∈M

d(z, y) (3.4)

3.3.2 Flexible fitting models

Loess

Locally weighted regression (loess) could be considered as a generalization of
the k-nearest neighbor method (Mitchell et al., 1997). It was firstly introduced
by Cleveland (1979) and the following analysis is based on Cleveland and Devlin
(1988).

Locally weighted regression yi = g(xi) + εi, where i=1,. . . , n index of observa-
tions, g is the regression function and εi are residual errors, provides an estimate
g(x) of each regression surface at any value x in the d-dimensional space of the
independent variables. Correlations between observations of the response vari-
able yi and the vector with the observations d-tuples xi of d predictor variables
are identified. Local regression provides an estimation of function g(x) near x =
x0 according to its value in a particular parametric class. This estimation could
be achieved by adapting a regression surface to the data points within a neigh-
borhood of the point x0, which is bounded by a smoothing parameter: span. The
span determines the percentage of data that are considered for each local fit and
hence the smoothness of the estimated surface is influenced (Cohen, 1999). The
span ranges from 0 (wavy curve) to 1 (smooth curve). Each local regression uses
either a first or a second degree polynomial that it is specified by the value of the
“degree” parameter of the method (degree=1 or degree=2).

The data are weighted according to their distance from the center of neighbor-
hood x, therefore a distance and a weight function are required. As a distance
function p, Euclidean distance is used for a single independent variable; other-
wise, for the multiple regression case, any variable should be evaluated on a scale
before applying a standard distance function (Cleveland et al., 1988). A weight
function defines the size of influence on fit for each data point taking for granted
that nearby points have higher influence than the most distant. Therefore the
weight function calculates the distances between each point and the estimation
point and higher values in a scale from 0 to 1 are set for the nearest observations.
A weight function should meet the requirements determined by Cleveland (1979)
and the most common one is the tri–cube function:

W (u) =


(1− u3)3, 0 ≤ u ≤ 1

0, otherwise

(3.5)
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The weight of each observation (yi, xi) is defined as following:

wi(x) = W [p(x, xi)/d(x)] = (1− (
xi − x
d(x)

)3)3 (3.6)

where d(x) is the distance of the most distant predictor value within the area
of influence. In the loess method, weighted least squares are used so as linear
or quadratic functions of the independent variables could be fitted at the cen-
ters of neighborhoods (Cleveland, 1979). The objective function that should be
minimized is:

n∑
n=1

wi · ε2i (3.7)

Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines (MARS) have been introduced by Fried-
man (1991). It is a non-parametric method for flexible regression modeling of
high dimensional data that identifies nonlinearities and interactions between
variables. In this research, this method is implemented using package ’earth’
(Milborrow, 2017) in R (R Core Team, 2017). MARS builds a model of the form:

f(x) =

k∑
i=1

ci ·Bi(x) (3.8)

The model is a weighted sum of basis functions Bi(x) where ci are coefficients
estimated by minimizing the residual sum of squares (Happe et al., 2010). The
model strategy is similar to stepwise linear regression, except that the basis func-
tions are taken into account instead of the observations. An independent vari-
able translates into a series of linear segments joint together at points called
knots (Courtois and Woodside, 2000). Each segment uses a piecewise linear ba-
sis function which is constructed around a knot. MARS selects dynamically the
knot locations. It is a forward pass– backward pass process in order to decrease
the training error. Optimal number of terms in the model is estimated using
generalized cross validation (Happe et al., 2010).

Kernel support vector machines (KSVM)

Support vector machines are based on the Structural Risk Minimization principle
(Cortes and Vapnik, 1995). An SVM model is a representation of training data as
points in space. Training a support vector machine (SVM) leads to the following
quadratic optimization problem with bound constraints and one linear equality
constraint (Cortes and Vapnik, 1995).

W (a1 . . . an) = −
n∑
i=1

ai +
1

2

n∑
i=1

n∑
j=1

yi · yj · ai · aj ·K(xi, xj) (3.9)
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subject to
n∑
n=1

yi · ai, 0 < ai < C (3.10)

Where n is the dimensionality of αi, each component αi corresponds to a train-
ing example (xi, yi), K(xi,xj) is the kernel function which is used as a similarity
measure between objects xi and xj and C is an upper bound on αi.

Gaussian processes

Gaussian processes are based on the idea that adjacent observations convey
information about each other (Williams and Rasmussen, 1996). Observations
are considered to be normal and the relationship between them is represented
by a covariance matrix of a normal distribution. Kernel matrix is used as the
covariance matrix in order to extend Bayesian modeling to non-linear situations.
The following analysis is based on (Quiñonero-Candela and Rasmussen, 2005).
For regression estimation it is assumed that observations f(x) could be written
as y(x)=f(x)+ε, where ε is Gaussian distribution noise with zero mean, ε∼ N(0,
σ2n). The number of training data is n. A Gaussian distribution is fully described
by the mean µ and covariance Σ of the distribution in terms of hyperparameters
θ. The log marginal likelihood is given by Equation 3.11.

L = logp(y|x, θ) = −1

2
log|Σ| − 1

2
(y − µ)TΣ−1(y − µ)− n

2
log(2π) (3.11)

Bayesian regularized neural networks (BRNN)

In the Bayesian framework, model parameters are treated as probabilistic vari-
ables. The posterior probability of the weights is given according to Bayes’ rule
by Equation 3.12.

p(w|D) =
p(w|D)p(w)

p(D)
(3.12)

where D is a set of observations, p(w|D) is the probability of observations given a
choice of weights w, p(w) is a prior distribution of weights and p(D) is a normal-
ization factor.

BRNN address one of the difficulties in building a neural network, i.e. deter-
mining the number of hidden neurons. To overcome this difficulty, the BRNN al-
gorithm incorporates the Bayes’ theorem into the regularization scheme. Foresee
and Hagan (1997) and MacKay (1992) provide a detailed description of Bayesian
regularized neural networks. It uses the Nguyen and Widrow algorithm (Nguyen,
1990) to assign initial weights and the Gauss–Newton algorithm to perform the
optimization.
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The model is given by:

yi = g(xi) + ei =
s∑

k=1

wkgk(bk +

p∑
j=1

xijβ
[k]
j ) + ei, i = 1, . . . , n (3.13)

where
ei ∼N(0,σ2e ), s is the number of neurons,
wk is the weight of the k–th neuron, k=1,. . . , s
bk is a bias of the k–th neuron, k=1,. . . , s
β
[k]
j is the weight of the j–th input to the net, j=1,. . . , p
gk is the activation function in this implementation

gk(x) =
exp(2x)− 1

exp(2x) + 1
(3.14)

The software will minimize
F = βED + αEW (3.15)

where

ED =

n∑
i=1

(yi − ŷi)2, (3.16)

i.e. the error sum of squares,
EW is the sum of squares of network parameters (weights and biases)

β =
1

2σ2e
(3.17)

α =
1

2σ2θ
(3.18)

σ2θ is a dispersion parameter for weights and biases.

3.4 Goodness–of–fit measures

3.4.1 Single aggregate measures

The performance of the models presented in this paper is evaluated using sev-
eral goodness–of–fit measures: RMSN, RMSPE, MPE and Theil’s U , Um and Us

coefficients (for details and a discussion of these metrics, see e.g. Antoniou et al.
(2013)). Different measures are used so that the properties of the calibration
and validation results could be quantified from different views. For example,
the normalized root mean square error (RMSN) assesses the overall error and
performance of each method estimating the difference between the observed val-
ues Y obs

n and their simulated counterparts Y sim
n . The root mean square percent-

age error (RMSPE) penalizes large errors more heavily than small errors and the
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mean prediction error (MPE) indicates the existence of systematic under– or over–
estimation in the simulated values. The measure of Theil’s inequality coefficient
U has been applied in transport model validation and includes three error pro-
portions: the bias (Um), the variance (Us) and the covariance (Uc), whose sum is
one. Values close to zero for Um and Us measures indicate an ideal fit, while val-
ues close to 1 suggest the worst fit. The goodness–of–fit measures are calculated
from the following equations:

RMSN =

√
N ·

∑N
n=1 (Y sim

n − Ynobs)2∑N
n=1 Y

obs
n

(3.19)

RMSPE =

√√√√ 1

N
·
N∑
n=1

(
Y sim
n − Ynobs

Yn
obs

)2

(3.20)

MPE =
1

N
·
N∑
n=1

(
Y sim
n − Y obs

n

Y obs
n

)
(3.21)

U =

√
1
N ·
∑N

n=1 (Y sim
n − Ynobs)2√

1
N ·
∑N

n=1 (Y sim
n )2 +

√
1
N ·
∑N

n=1 (Y obs
n )2

(3.22)

Um =
(Ȳn

sim − Ȳnobs)2
1
N ·
∑N

n=1 (Y sim
n − Ynobs)2

(3.23)

Us =
(σsim − σobs)2

1
N ·
∑N

n=1 (Y sim
n − Ynobs)2

(3.24)

Uc =
2 · (1− p) · σsim · σobs

1
N ·
∑N

n=1 (Y sim
n − Ynobs)2

(3.25)

3.4.2 Distribution–based evaluation

Unlike dealing with absolute numbers as the measure of effectiveness, which
is the commonly used evaluation approach, in this research we are proposing
the use of distributions. Besides the advantages that derive from the richness
of these data, there are also significant challenges regarding the statistics that
will be used for distributions’ comparison. In particular, while the statistics that
are needed to compare numerical values have been widely used and there is
experience in using them, working with distributions imposes novel challenges.

The distribution–based evaluation approach assumes as input a set of mea-
sured distributions of the appropriate measures of effectiveness (e.g. speeds
or accelerations). The data need to be appropriately pre–processed, to ensure
they are not susceptible to measurement or equipment error, and that they com-
ply with the experiment requirements. These distributions are then compared
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with the simulated distributions, based on a series of goodness–of–fit measures,
depending on the requirements of the application. If, according to the set con-
vergence criteria, the simulated distributions accurately capture their observed
counterparts, then the process concludes that models are considered suitable
for the application at hand. Otherwise, the models need to be fitted again using
more data.

The simplest approach would probably be to compare the first few moments
of the distributions (Figure 5.10). According to Ramsey et al. (2002) almost all
the information about the shape of histograms (location, spread, symmetry, and
peakedness) could be described by four numbers. These numbers are the aver-
ages of powers of the variable values, named moments. The mean of a distribu-
tion, namely the first moment, is a measure of location. In order to find out if two
distributions have means that are significantly different, a statistical t–test may
be applied (Press et al., 1992). The second moment is the average squared devia-
tion of the variable’s values from the mean and it is used as a measure of spread.
For measuring how significantly different the variances of two distributions are,
an appropriate statistical test is the F–test (Press et al., 1992). The F–test sug-
gests that two variances are significantly different by rejecting the null hypothesis
that they are both consistent. The third and fourth moments imply measures of
skewness and kurtosis accordingly. Higher moments could also been taken into
consideration. However, many distributions are not uniquely determined by their
moments (Lindsay and Basak, 2000; McCullagh, 1994; Stoyanov, 2006).

Another approach could be to create a metamodel (Santos and Santos, 2007;
Antoniou et al., 2014a; Ciuffo et al., 2013; Pereira et al., 2014) of the available
data (and their simulated counterparts), and then work with the parameters
of the metamodel. For example, instead of comparing the distributions them-
selves, one could perform F-tests with the null hypothesis that the parameters
of the metamodels are jointly equal. Santos and Santos (2007) claimed that an
improved comprehension of the system could be obtained by using the normal
distribution mean and variance functions. The parameters of the distribution
metamodel could be estimated using the least squares method. Metamodels are
not accurate representations of the original model and may include a degree of
uncertainty. If two or more metamodels ensure sufficiently accurate fit capture,
then it is preferable to choose the simplest one. These approaches are computa-
tionally and conceptually attractive, but might lead to some loss of information.
Therefore, this tradeoff between loss of information and gain in simplicity should
be carefully evaluated.

The selection of the most appropriate distribution could be assisted by distri-
bution fitting software packages. Such packages calculate goodness of fit statis-
tics and can support decisions regarding the distribution with the best fit on the
data. However, there is the dilemma if the chosen distribution and its parameters
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capture well the original output or not. The cumulative of a continuous distri-
bution is equal to the integral F (x) =

∫ x
xmin f(y)dy. Therefore, the cumulative of a

sample could be calculated as
∑

iH(x−Xi). The comparison of two distributions
could be easily done visually by looking at the cumulative of these distributions.
The smaller the difference between the cumulative of two distributions is, the
most two distributions approach each other. The Kolmogorov–Smirnov statistic
test (K–S test) is based on this concept and is an approach to obtain a quantita-
tive assessment. The K–S test is defined as the maximum value of the absolute
difference between two distribution functions (Press et al., 1992). Therefore, the
maximum vertical difference between the measured and the simulated cumula-
tive distribution functions could be evaluated. The K–S test is sensitive and cap-
tures effectively changes especially in the median value. On the other hand, it is
less sensitive to the tails of the distribution. In this case, other suitable statistics
can be used, such as Kuiper’s variant (Tygert, 2010). There are many available
metrics to evaluate the distance between probability distributions. Although it
is difficult enough to choose which of them to prefer, Gibbs and Su (2002) have
presented an overview of the most important probability metrics/distances. They
offer guidance for a better choice of metrics and suggest that complementary in-
sights could be provided using several metrics for an analysis instead of only
one. Some extra important statistical distances found in the literature are the
following: discrepancy, Hellinger distance, relative entropy (or Kullback-Leibler
divergence), Levy metric, Prokhorov metric, separation distance, total variation
distance, Wasserstein (or Kantorovich) metric, x2 distance, maximum mean dis-
crepancy (Gibbs and Su, 2002; Gretton et al., 2012). The maximum mean dis-
crepancy is the only method applicable to structured data, such as graphs, and
is used in Kernel approaches for comparison between distributions on graphs
(Gretton et al., 2007).

3.5 Resume

Machine learning techniques are innovatively integrated into a methodological
framework for estimation of data–driven microscopic models. These techniques
are easily employed and could help us to overcome limitations of conventional
models and develop more robust and flexible models. Different goodness–of–fit
measures allow for a more comprehensive evaluation of models performance.
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Figure 3.14: Comparison of distributions





Chapter 4

Data–driven car–following
models

Car followingmodels have been studied withmany diverse approaches for decades.
Nowadays, technological advances have significantly improved our traffic data
collection capabilities. Conventional car following models rely on mathematical
formulas and are derived from traffic flow theory; a property that often makes
them more restrictive. On the other hand, data–driven approaches are more
flexible and allow the incorporation of additional information to the model; how-
ever, they may not provide as much insight into traffic flow theory as the tradi-
tional models. In this research, an innovative methodological framework based
on a data–driven approach is proposed for the estimation of car–following models,
suitable for incorporation into microscopic traffic simulation models. The focus
is given on simulation optimization of car-following models, mainly the error be-
tween simulation and real traffic to be minimized, using a flexible method. An
existing technique, i.e. locally weighted regression (loess), is defined through an
optimization problem and is employed in a novel way. The proposed methodology
is demonstrated using data collected from a sequence of instrumented vehicles
in Naples, Italy. Gipps’ model, one of the most extensively used car–following
models, is calibrated against the same data and used as a reference benchmark.
Optimization issues are raised in both cases. The obtained results suggest that
data-driven car–following models could be a promising research direction.

4.1 Reference benchmark: conventional car–followingmod-
els

In this research, Gipps’ model is used as a reference model for the comparison
with the proposed methodology on the same data. Punzo et al. (2012) suggested a

0The sub–chapters 4.1–4.3.1 are based on Papathanasopoulou and Antoniou (2015b) and 4.5
on Papathanasopoulou and Antoniou (2016).
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calibration process of Gipps’ model using three different algorithms. However, in
this research in order to solve the optimization problem (finding optimal values
for Gipps’ parameters), two ways are used: a thorough sensitivity analysis of
the ranges of all model parameters and a constrained global optimization. The
optimal values of model parameters are defined using as objection function to be
minimized the RMSN. In such way it is ensured that the calibrated Gipps’ model
for this data–set was as good as possible, thus providing a fair reference model
for this comparison.

4.1.1 Sensitivity analysis

First, a sensitivity analysis of the ranges of all model parameters has been per-
formed. In particular, changing one-factor-at-a-time, an one–at–a–time (OAT)
sensitivity analysis is implemented. Parameter ranges for the sensitivity analysis
are defined by the suggested ranges by Gipps (1981) and Ranjitkar et al. (2005)
as presented in Figure 4.1 for some parameters. The range for the reaction time
was defined taking into consideration a larger number of available references
(Johansson and Rumar, 1971; Gipps, 1981; Fambro et al., 1998; Ahmed, 1999;
Green, 2000; Summala, 2000; Taieb-Maimon and Shinar, 2001; Brunson et al.,
2002; Yang et al., 2004; Ranjitkar et al., 2005; Magister et al., 2005; Bilban et al.,
2009) (Figure 4.2). The selected ranges for the parameters are: reaction time τ :
0.4s – 3 s, maximum desired speed Vn: 10.4 m/s – 29.6 m/s, distance sn−1: 5.6
m – 7.5 m, maximum desired acceleration an: 0.8m/s2 – 2.6 m/s2, maximum
desired deceleration bn: 1.6 m/s2 – 5.2 m/s2, maximum estimated deceleration
b̂: 3.0 m/s2 – 4.5 m/s2.

Gipps (1981)
Ranjitkar et al. (2005)

Selected range
Gipps (1981)

Ranjitkar et al. (2005)
Selected range

Gipps (1981)
Ranjitkar et al. (2005)

Selected range
Gipps (1981)

Ranjitkar et al. (2005)
Selected range

Range of parameters
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Figure 4.1: Range of Gipps’ parameters values according to references

The most extensive data series (B1695, comprising 1695 triplets) is selected
for the sensitivity analysis, as it includes more traffic states and more variable
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Figure 4.2: Range for drivers’ reaction time according to references

speed profiles than others. Hence it may lead to a more representative model,
thus potentially avoiding overfitting. For this data series, the best combination of
parameter values is requested for the entire trajectory. The performance of each
combination of parameter values is evaluated with the normalized root mean
square error (RMSN). The combination of parameter values, which provides out-
puts with the least overall error, is chosen. The effect of each parameter on
the performance of the model (namely how the RMSN measure increases or de-
creases) was examined separately with respect to how its value affects the entire
trajectories of the given data series B1695. The values of the other parameters
were set at the middle of their identified range. The value of each parameter,
which results in the most limited simulation error, is the solution of the op-
timization problem and could thus be determined. The sensitivity analysis is
illustrated in Figure 4.3. The influence of speed Vn and maximum acceleration
an is not clear from Figure 4.3, as some ranges of these parameters do not seem
to affect the RMSN at all. This is due to the observation that both parameters are
found only in the first equation of Gipps’ model and for certain parameter val-
ues the speed estimation may be provided by the second equation of the model.
Consequently, the behavior of these parameters was examined again after setting
the other parameters to their “optimal” values, as determined by the sensitivity
analysis. Figure 4.4 shows the sensitivity analysis that resulted in this case.
The best performance of Gipps’ model (RMSN=2.7%) in the calibration data–set
was achieved with the following combination of parameters: τ=0.4 s, Vn=14 m/s,
an=0.8 m/s2, sn−1=5.6 m, bn=-5.2 m/s2 and b̂=-3.0 m/s2. According to Brack-
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stone and McDonald (2003), time steps between 0.1 and 1 second are commonly
used in micro–simulation models. Brackstone and McDonald (2003) also suggest
that small time steps do not allow for driver error. In addition, Simonelli et al.
(2009), applying Gipps’ model using the same data, have also tested values for
this apparent reaction time in the range of 0.4- 1 s. Therefore, a second model
was also calibrated, in which a value for the reaction time of τ=1.0 s was consid-
ered and accordingly a sensitivity analysis was revised. The values of the final
parameters are: τ=1.0 s, Vn=16 m/s, an=1.6 m/s2, sn−1=5.6 m, bn=-5.2 m/s2 and
b̂=-3.0 m/s2, and the minimum RMSN that was achieved was 4.9%.
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Figure 4.3: Sensitivity analysis of Gipps’ parameters



4.1 Reference benchmark: conventional car–following models 91

1.0 1.5 2.0 2.5

3.0

3.5

4.0

4.5

5.0

Maximum desired acceleration a (m/s^2)

R
M

S
N

 (%
)

Maximum desired acceleration (m/s )n
2

10 15 20 25 30

2.8

3.0

3.2

3.4

3.6

Maximum desired speed Vn (m/s)

R
M

S
N

 (%
)

Maximum desired speed V (m/s)n

Figure 4.4: Calibration of Gipps’ model

4.1.2 Parameters Optimization

To confirm the robustness of the sensitivity analysis results and for a more
evidence–based approach, Gipps’ model was calibrated using the same data and
an optimization algorithm. The longest data series (B1695, longer than 3 min-
utes) was used again for model calibration. It is worth noting that –besides being
the longest– this time series includes the most extensive range of speed values.
The calibration process was performed within the R software for statistical com-
puting (R Core Team, 2016). In particular, the Improved Stochastic Ranking
Evolution Strategy (ISRES) algorithm was used, which is included in the pack-
age “nloptr" (Runarsson and Yao, 2005) and is appropriate for nonlinearly con-
strained global optimization. This method is implemented in a simple way and
supports arbitrary nonlinear inequality and equality constraints in addition to
the bound constraints. Furthermore, it incorporates heuristics to escape local
optima. On the other hand, although a lot of research has been performed on
determining which algorithm is best suited for a given problem, there has not
been a satisfactory answer to this question. Thus, various algorithms should be
tested in future research.

The objective function that was minimized is: RMSN(vobs3 ,vsim3 ). The range of
model parameters, shown in Table 4.1, has been defined in Figures 4.1 and 4.2.
In addition, as initial values for the optimization process, optimal values, defined
through the sensitivity analysis of Gipps’ model, were used. However, it is noted
that interactions among the parameters had not been taken into account in the
sensitivity analysis. A global optimization is performed, considering all combi-
nations of these model parameters concurrently. For the whole dataset B1695
the optimization process has converged to the optimal set of parameters after
approximately 10000 iterations. All parameter combinations that were tested are
presented in Figures 4.5, 4.6 and 4.7. In Figure 4.5 optimization results for pa-
rameters, included in the first equation of the Gipps model, are presented. These
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figures confirm the results of sensitivity analysis and indicate that the apparent
reaction time is the most critical parameter. The optimal values are presented in
Table 4.1, where "initial values" refers to the model parameter values obtained
by the sensitivity analysis and "optimal values" refers to the parameters obtained
from the optimization using the ISRES algorithm within this research. The min-
imum value of the objective function, namely the RMSN, that was achieved with
these optimal values of parameters was 2.2%, which is slightly smaller than this
obtained from the sensitivity analysis.
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Figure 4.5: Optimization results for Gipps’ parameters an, Vn, τ
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Figure 4.6: Optimization results for Gipps’ parameters an, Vn, bn

As mentioned in the sensitivity analysis section, a second model was also
calibrated allowing for a more relaxed apparent reaction time. A value for the re-
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Table 4.1: Optimization of model parameters using ISRES algorithm

Parameters of Parameters Initial Optimal
Gipps’ model range values values

an (m/s2) [0.8, 2.6] 0.8 0.8
bn (m/s2) [-5.2, -1.6] -5.2 -3.2
Vn (m/s) [10.4, 29.6] 14.0 14.4
Sn−1 (m) [5.6, 7.5] 5.6 5.9
b̂ (m/s2) [-4.5, -3.0] -3.0 -3.1
τ (s) [0.4, 3.0] 0.4 0.4

action time of τ=1.0 s was considered and accordingly the optimization process
was revised for the rest of parameters. In the optimization process initial values
obtained from the sensitivity analysis, as indicated in Table 4.2. The results are
presented in Figures 4.8 and 4.9. The isres algorithm converged after 10000 it-
erations to the optimal set of parameters: τ=1.0 s, Vn=15.8 m/s, an=0.8 m/s2,
sn−1=5.6 m, bn=-5.0 m/s2 and b̂=-3.0 m/s2. The minimum value of the objec-
tive function, namely the RMSN, that was achieved with these optimal values of
parameters was 4.2%.

The two calibrated models that ensure the best performance for data series
B1695 and that will be used for a fair comparison with the proposed methodology
are summarized in Table 4.3.
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Table 4.2: Optimization of 5 model parameters using ISRES algorithm, consid-
ering τ=1.0 s

Parameters of Parameters Initial Optimal
Gipps’ model range values values

an (m/s2) [0.8, 2.6] 1.6 0.8
bn (m/s2) [-5.2, -1.6] -5.2 -5.0
Vn (m/s) [10.4, 29.6] 16 15.8
Sn−1 (m) [5.6, 7.5] 5.6 5.6
b̂ (m/s2) [-4.5, -3.0] -3.0 -3.0

4.1.3 Gipps’ model application – a benchmark case

The two calibrated models with the fixed parameters values could be validated to
the rest of data series. The validation results are presented in Figure 4.14.
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Table 4.3: Calibrated Gipps’ model

Parameters of Model Model
Gipps’ model (τ=0.4 s) (τ=1.0 s)

an (m/s2) 0.8 0.8
bn (m/s2) -3.2 -5.0
Vn (m/s) 14.4 15.8
Sn−1 (m) 5.9 5.6
b̂ (m/s2) -3.1 -3.0
τ (s) 0.4 1.0

4.2 Estimation of data–driven car–following models

The proposed methodology is composed of two parts: training and application,
outlined in Figure 4.11. In the training step traffic models are estimated accord-
ing to the available surveillance data, while in the application step these traffic
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Figure 4.10: Validation results for Gipps’ model using Naples data

models are applied to provide speed predictions for the following vehicle and the
next time instant using new observations. In particular, the required explana-
tory variables of the car-following process are determined and respectively the
appropriate data are collected. In this research the triples vi(t), vi−1(t), di,i−1(t)
(leader and follower speed and their distance) per each time instant t have been
considered as independent predictor variables for the estimation of the response
variable vi−1(t + τ), i.e. the follower speed, for the next time instant (t+τ ), where
τ is the apparent reaction time. Estimation has been achieved without assum-
ing any predefined functional form; instead a flexible regression method can be
used. Portions of the available data are identified and correspondingly various
representative models are formed (fitting). The application step follows, when
new measurements arise. The flexible model that has been estimated for each
traffic state is then retrieved from the knowledge base and applied to the new
data for the estimation of the speeds of the following vehicle.

4.2.1 Application of loess model

The models presented in this research were all implemented using the R Soft-
ware for Statistical Computing (R Core Team, 2017). Application of loess (locally
weighted regression) requires the ’stats’ package and the determination of its pa-
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Figure 4.11: Estimation of data–driven car–following models

rameter values, i.e. span (a) and degree (presented in Section 3.2), to ensure a
good fit to the data. The span determines how smooth the curve is and it ranges
from 0 (wavy curve) to 1 (smooth curve). The degree determines the degree of
local polynomials, which are used in each local regression. In the used imple-
mentation, a value of 1 refers to a linear function, while 2 in quadratic function.
Optimal values of the loess model parameters can be estimated through an opti-
mization approach. A sensitivity analysis was preferred here. The performance
of the proposed method for different values of span and degree is presented in
Figures 4.12 and 4.13 for all available data series in order for appropriate values
to be selected. The optimal values are these for which RMSN is minimized.

It is noted that the data that are taken into account for loess are the same
with those used in Gipps’ model [speed v2(t) and v3(t) of vehicles 2 and 3 and
distance D23(t) between vehicles 2 and 3, as they were estimated by their co-
ordinates], so that a direct and fair comparison between them is possible. It
should be mentioned that different combinations of data (v1, v2, v3, v4, D23, D34)
have also been tested. However, the best performing loess model was this taking
into account the same data with Gipps’ model, mainly speed v2(t) and v3(t) and
distance D23(t). In addition, for all data series the speed estimation for speed
v3(t+ τ) with the proposed method relies on the pattern resulting from the entire
leader–follower trajectory of data series B1695, as well as the calibration of Gipps’
model. In more detail, the proposed method firstly recognizes the relationships
between observations (v2(t) and v3(t) and distance D23(t)) and the response data
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v3(t+τ ) of the B1695 data series. After the relevant pattern from the B1695 data
series has been identified, the proposed method is applied to the remainder of
the data series. It requires the input data (here speed v2(t) and v3(t) and distance
D23(t)) and exports the estimated output v3(t+τ ). It should be clarified that reac-
tion time is not a parameter of the loess method. However, it plays a significant
role in loess method application, as for different values of reaction time τ differ-
ent data, mainly data of different time instants, are selected for prediction. For
instance, if prediction for time instant t is required, then data for time instant
(t-τ ) are used. In this research, the same values of reaction time as those used
for Gipps’ calibration are used, ensuring a fair comparison. In Figure 4.12, the
solid lines illustrate the RMSN of speed v3(t+τ ) estimation with proposed method
considering degree = 1 for each data series and for each value of span among
its range, while the dashed lines illustrate the corresponding results for degree
= 2. The solid lines (degree = 1) are smoother and represent lower RMSN than
dashed lines (degree = 2), and therefore the preferred degree in this case is se-
lected equal to 1. Regarding the span, the solid lines are almost flat for values
of span between 0.4 and 1.0 for all data sets and for both reaction times (0.4 s
or 1.0 s). Consequently, excluding low values, the span does not appear to af-
fect significantly the results. Furthermore, the ranges of the span, for which the
lowest RMSN was observed for all data series, are presented in Figure 4.13. The
value 0.75 is chosen as average and more representative of the data.

4.2.2 Application of other machine learning techniques

The proposed methodology for estimation of data–driven car–following models has
been applied using different state–of–the–art machine learning techniques, which
are currently finding a lot of researchers’ attention and have described in method-
ology chapter, such as: locally weighted regression, splines, Gaussian process,
kernel support vector machine and neural network. Computational intelligence
in general has proven its applicability to traffic simulation models. However, the
question of which machine learning technique could be the most appropriate one
for traffic simulation models has not been answered conclusively. This research
aims to provide some more input into this ongoing active research field.

In this case study traffic models are trained using as input data the most
representative data series, B1695. Relationships among predictor variables v(t),
vfront(t), Dfront(t)) and the response variable v(t+τ ) are identified using observa-
tions of data series B1695. After the model fitting, the proposed methods are
applied to the remainder of the data series for validation. The proposed method-
ology is further implemented using MARS, KSVM, GP and BRNN as regression
techniques. All the models have been applied in the R statistical software and
specifically MARS using ’earth’ package (Milborrow, 2017), KSVM and GP using
the ’kernlab’ package (Zeileis et al., 2004) and finally BRNN using the ’brnn’ pack-
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Figure 4.12: RMSN for different values of span and degree, by applying the
method loess for a reaction time τ = 0.4 s

age (Pérez-Rodriguez and Gianola, 2013). For each model hyperparameters need
to be calibrated.

Calibration of MARS models includes tuning parameters, such as nprune,
maximum number of terms (including intercept) in the pruned model, and de-
gree, which defines the maximum degree of interaction. The degree is set to one,
but more complicated response curves may be necessary in certain instances.
The value for nprune is semi-automatically calculated from the number of pre-
dictors. The optimal number of terms in the model is estimated using generalized
cross validation (Happe et al., 2010). The additive model includes 4 terms at the
degree of interaction. The distance between the two vehicles was not used be-
cause it was not considered as an important predictor variable by the algorithm.

A KSVM is trained using 110 Support Vectors. Between the Gaussian and
polynomial kernels, Ben-Hur and Weston (2010) claim that the Gaussian kernel
usually outperforms the polynomial kernel in both accuracy and convergence
time. The hyperparameter sigma, the inverse kernel width for the Radial Basis
kernel function "Gaussian" (rbfdot), is estimated using automatic sigma estima-
tion for the regression by the kernlab package. For the available data the esti-
mated value is sigma = 2.799. The cost of constraints violation is the C-constant
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Figure 4.13: Ranges of span, which minimize the RMSN for each data series

of the regularization term in the Lagrange formulation. For a large value of C a
large penalty is assigned to errors/ margin errors (Ben-Hur and Weston, 2010).
The value C=1 has been used.

The GP is a generalisation of a LOESS, where the span (“bandwidth”) pa-
rameter varies in the dataset. Data are scaled internally to zero mean and unit
variance. The center and scale values are returned and used for later predic-
tions. The list of hyper-parameters (kernel parameters) contains the parameters
to be used with the kernel function.The Radial Basis kernel function "Gaussian"
(rbfdot) has been used. The hyperparameter sigma, the inverse kernel width for
the Radial Basis kernel function "rbfdot", is estimated using automatic sigma
estimation for the regression by the kernlab package. For the available data the
estimated value is sigma = 3.059.

Before applying a BRNN, the optimal number of neurons should be deter-
mined. If the number of neurons is too small, the network cannot learn cor-
rectly. If it is too large, it will increase complexity and training time and may lead
to overfitting, thus the network will model random noise in the data. In order to
determine the optimal number of neurons, 2 to 10 neurons have been tested. The
RMSN for the training data B1695 is 1.6 using 2 neurons, while using from 3 up
to 10 neurons the RMSN remains 1.5. The number of neurons seems that does
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not impact the model efficiency for the available data. Therefore, the simplest
BRNN with 2 neurons is selected for application. A Bayesian regularized neural
network with 2 neurons and 10 weights, biases and connection strengths has
been applied. Inputs and output were normalized (scaling factor: 0.700287).
Nguyen and Widrow algorithm (Nguyen, 1990) has been used to assign initial
weights. The training process finished because changes in Equation 3.15 in last
3 iterations were less than 0.001.

In this research locally weighted regression has been used for further analysis,
as it comprises much of the simplicity of linear least squares regression with the
flexibility of nonlinear regression.

4.3 Validation results- accuracy comparison

4.3.1 Comparison of Gipps’ model and loess model

The accuracy of estimation of the speed v3(t+τ ) of the third vehicle was estimated
with both approaches and their performance in terms of RMSN is presented in
Figure 4.14. The loess method provides more reliable results (smaller RMSN
errors) for all data sets than Gipps’ model. Figure 4.15 present the same com-
parison (for reaction time τ=0.4 s), but considering more measures of goodness
of fit, used so that both approaches could be evaluated from different points of
view, as described in the methodology section. Figure 4.15 confirms that the pro-
posed method outperforms Gipps’ model. This result confirms the claim that the
proposed method comprising locally linear regressions could provide satisfactory
results and that data–driven methods could outperform the performance of con-
ventional models. For reaction time equal to 1 s, these measures of goodness of
fit were also calculated and it was found that the comparative advantage of the
loess method was even larger. Furthermore, we notice that the performance of
both models is significantly better for lower values of the reaction time variable
t. This could be explained by the fact that a driver with a smaller reaction time
could react faster and respond more abruptly to the changes in traffic conditions.
Therefore, a model with shorter reaction time would also be able to replicate this
driving behavior better.

Besides the aggregate analysis of the model fit, an analysis of the produced
residuals is also undertaken, in order to check whether the estimation of speed is
biased or not. This could be achieved by testing if the assumptions of normality,
linearity and homoscedacity are met or violated. Linearity and homoscedacity
could be detected in a plot of residuals versus predicted values. The linearity
assumption is supported to the extent that the amount of points scattered above
and below the line is equal. The homoscedacity refers to the homogeneity of vari-
ance, which is sufficient to the extent that the vertical scatter is the same across
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Figure 4.14: Comparison of RMSN by applying Gipps’ model and loess method

all x values. The normality assumption could be tested using normal quantile
(Q–Q) plots or normal probability (P–P) plots. Normality is achieved when the
points on such a plot fall close to the diagonal reference line. The analysis is
outlined in Figures 4.16, 4.17 and 4.18. Standardized residuals have been used.
Residuals of all the data series are presented together in each plot. The assump-
tion of normality seems to be probably sufficient looking at the Q–Q plot (Figure
4.16). The deviations from the diagonal line in the center of the plot are min-
imal. The pattern is slightly differentiated at both ends, which may indicate a
light tail on both sides. The P-P plot (Figure 4.17) also shows that the distribu-
tion of the residuals tends to be normal. However, it may suggest some skew,
though not so sensitive. The plot of standardized residuals versus standardized
predicted values (Figure 4.18) suggests that points are around the horizontal line
and therefore the assumptions of homoscedacity and linearity are met. Based on
this analysis, the assumptions of normality, linearity and homoscedacity seem
to be supported. There is no evidence for a biased estimation of speeds.

4.3.2 Comparison of Gipps’ model and other flexible models

The goodness–of–fit measures have been estimated in order to compare predicted
and observed speed values and to evaluate the performance of other models. The
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Figure 4.15: Comparison of Gipps’ model and loess method for reaction time τ =
0.4 s with different measures of goodness of fit for the available data series

results are presented in Figure 4.19 and indicate that for the considered problem
themost stable performance is achieved by loess method and Gaussian processes
for the majority of the data series. Loess method, which combines the benefit of
being very simple to implement, seems to be the best choice for this case study, as
speed estimation with the lowest error is consistently achieved. Further analysis
is presented in the computational cost section. Similar behavior is observed
using other machine learning techniques, such as KSVM, MARS and BRNN, and
all of them provide good alternatives for estimation of data–driven models using
the available data.
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Figure 4.16: Q–Q plot

Figure 4.17: P–P plot

Figure 4.18: Linearity and homoscedacity plot

4.4 Further exploration of the models

4.4.1 Computational cost

As far as computational effort is concerned, the execution time, including train-
ing and application time, has been estimated for each model. All models have
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Figure 4.19: Results for Gipps’ model and loess, MARS, GP, KSVM, BRNNmodels
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been performed in R using the same computer workstation. In this respect,
some considerations can be drawn for the computational cost of each method.
Although Gaussian Processes allow for a reliable estimation of car–following mod-
els, they seem to require more execution time than the other methods, as out-
lined in Figure 4.20. Gaussian Processes seem to be slow to learn but fast to
use. Training MARS and KSVM models seem to be faster processes. The cali-
bration time for Gipps’ model has not been estimated, as it is a time consuming
process. For calibration or training of all methods B1695 dataset was used. In
Figure 4.21 it is observed that after Gipps’ model, GP tend to require more time
for model application on the validation data, while MARS and KSVM are less time
consuming models. Computational cost of models plays an important role and
should be taken into account in order to choose the appropriate model for each
application, especially if it is an on–line application which requires speed and
accuracy.
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Figure 4.20: Training time for loess, MARS, GP, KSVM and BRNN models

4.4.2 Exploration of noise interference in the models

Data used in this research are readily available observations from the field with-
out corrections. The proposed methodology is applied to measured trajectory
data without filtering measurement noise. Although Gipps’ model has a fixed
equation structure, the proposed flexible models are not based on a specific re-
lationship. Therefore, one could claim that the noise affects the effectiveness of
each model in a different way and thus a fair comparison is not feasible. In order
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Figure 4.21: Application time for loess, MARS, GP, KSVM and BRNN models

to address this issue, it is proposed to create extra noise on the trajectory data
and then to explore the noise interference in the after effect prediction process.
Jitter function, written by Werner Stahel and Martin Maechler (ETH Zurich), is
used to apply noise on X, Y, Z coordinates of the vehicles in R Statistical Software.
This function is appropriate to add a small amount of noise to a numeric vector.
The result ε is given as per Equation 4.1.

ε = x + runif(n,−a, a) (4.1)

where x: numeric vector to which jitter should be added. n = length(x) α: the
amount argument, α <- factor * d/5 where d is the smallest difference between
adjacent unique (apart from fuzz) x values. Factor=1 was set.

The coordinates Xi, Yi and Zi after the application of jitter function are de-
scribed by Equation 4.2.

Xi = Xreali + δxi + εxi

Yi = Yreali + δyi + εyi

Zi = zreali + δzi + εzi

(4.2)

where i: time instant Xreal,Yreal, Zreal: the real coordinates of the vehicles δx,
δy, δz: the unspecified noise included in measured observation εxi, εyi, εzi: the
noise added to the coordinates using jitter function
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Then speeds and distances are estimated using the noisy coordinates. In
Figure 4.22 the measured speed (black line) and the noisy speed (red line) of the
third vehicle is plotted against time for dataset B1695.
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Figure 4.22: Speed with noise applied by jitter function

The speed estimation for the next time instants is revised using all the ap-
plicable models. The concept is to explore the effect of noise εxi, εyi, εzi on the
prediction process for all the methods. The results are indicated in Figure 4.23.
The various models seem to react in a similar way to the noise and no signifi-
cant changes in their between comparison were observed. It is noted that B1695
dataset is used both for calibration and validation. Gaussian processes allow also
to define the initial noise variance, which can improve significantly the model ef-
ficiency.

4.4.3 Input data: more traffic observations but irrelevant or less
traffic observations but relevant?

The updated version of the methodology is based on an on–line fitting of data–
driven models (Figure 4.24). The proposed methodology may benefit from a sys-
tem that allows a fleet of connected vehicles to exchange information, such as (X,
Y , Z) coordinates, using a central data system. However, even a single instru-
mented vehicle, with the ability to geo–locate itself, and obtain (e.g. via suitable
instruments and cameras) estimates of the speed and distance of surrounding ve-
hicles, has access to all information required to apply this methodology. Speeds,
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Figure 4.23: Speed with noise applied by jitter function

accelerations or gaps could be calculated per time instant and used to dynami-
cally calibrate or fit flexible car–following models. Therefore, fitting of the flexible
models is achieved using as input data the most recent and thus more relevant
observations obtained from the same driver, the same vehicle, the same network
and the same traffic conditions. Specifically, observations up to time t are used
as input in a flexible regression technique and a pattern of speed prediction for
the following vehicle and the next time instant is identified. In the next time
instant when a new observation arises, the calibrated model from the previous
time instant is used and estimated speeds from time t onwards are produced.
In the meantime, the new observation has been stored to a database with the
previous observations and the whole process is iterated per time instant t. In
each iteration a certain amount of the most recent and relevant observations is
used. The question that arises at this point is what is the amount of the most
recent observations that is required for the suggested methodological approach.

In the second column of the Table 4.4 off–line fitting has been already demon-
strated using Naples data as presented in the subsection 5.2.1. In this case traffic
models are calibrated using as input data the most representative data series,
namely this with the largest speed range, B1695. Relationships among predictor
variables v(t), vfront(t), Dfront(t)) and the response variable v(t+τ ) are identified
using observations of B1695 data series (1695 observations). After the relevant
pattern from the B1695 data series has been formed, the suggested method is
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Figure 4.24: Recent traffic observations as input in data–driven car–following
models

applied to the remainder of the data series for validation. The RMSN values have
been estimated in order to compare predicted and observed speed values and
estimate the performance of this methodological approach. The results are pre-
sented in the second column of Table 4.4. As regards the loess parameters and
the reaction time, degree=1, span=0.75 and τ=0.4 s have been considered.

In order to start with the implementation of method presented in Figure 4.24,
a certain amount of few observations from each data series is required. This
depends on the number of most recent observations required to calibrate traffic
models. In this case, trafficmodels are fitted using as input data the observations
of each data series up to time t. Relationships among predictor variables v(t),
vfront(t), Dfront(t) and the response variable v(t+τ ) are identified using the most
recent n observations of each data series. Therefore, traffic patterns are formed
using less but more relevant data in comparison with the first methodological
approach. When a new observation in time instant t + 1 arises, the calibrated
traffic models are used for speed estimation on time t + 1 + τ . Then the whole
process is revised and models are fitted again using as input data the n most
recent observations up to time t + 1 and the process goes on. Regarding the
amount of the most recent observations that is required, values from 10 up to
100 observations have been tested, in order to define the most appropriate value
of n. The RMSN values have been estimated in all occasions and a sensitivity
analysis is illustrated in Table 4.4. For the majority of data series there is a sharp
decrease when using only the 20 most recent observations, namely a period of 2
seconds. However, a second level of improvement is obtained for model fitting in
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data series C621 and A358. When 60 or more of the most recent observations are
taken into account in each step of model fitting, the RMSN seems to be stabilized
for all data series.

In Table 4.4 a comparison of their performance is attempted from 10 up to
100 observations. The RMSN values are indicative for the overall error of each
approach. The second column refers to an off–line fitting of data–driven models,
while the rest of the columns refer to an on–line approach taking into consider-
ation from 10 up to 100 most recent observations in each step of model fitting.
B1695 data series should be omitted and not be used for a fair comparison as
the whole B1695 data series is used for both calibration and validation. For the
majority of the remaining data series, the loess method based on on–line calibra-
tion and taking into account only the 100 most recent observations outperforms
the loess method based on off–line calibration (considering the entire data–set).
For data series A358 and C621 it seems that more observations are required
for a better performance. This could be attributed to different traffic conditions.
Specifically, if 150 of the most recent observations are considered in each step of
model calibration for A358 data series, the RMSN for the second methodological
approach is reduced to 1.8% and outperforms the first methodological approach.
Respectively, if 250 of the most recent observations are considered in each step
of model calibration for C621 data series, the RMSN for the second methodolog-
ical approach is reduced to 4.1%. The results are presented in Figure 4.25. The
RMSN for the off–line process is indicated with red dashed line, while the RMSN
against the number of the considered observations for the on–line process is
plotted with black line. Consequently, the results indicate that if fewer observa-
tions, but more relevant, are used as input for data–driven car–following models,
a better performance of the flexible models could be achieved.

Table 4.4: Modeling improvement versus number of observations

RMSN (%)

Data series Loess (off–line calibration)
Loess on–line calibration/ Number of observations

10 20 30 40 50 60 70 80 90 100
B1695 1.6 8.6 3.2 2.9 2.8 2.8 2.7 2.7 2.7 2.7 2.6
A358 2.1 10.6 4.9 3.5 2.8 2.8 2.6 2.5 2.4 2.5 2.5
C621 4.3 26.6 29.6 9.3 8.4 7.3 7.2 6.1 5.9 6.0 5.8
C171 6.2 37.7 9.2 8.2 9.3 8.8 5.2 4.4 4.5 4.2 4.2
A172 3.4 18.7 6.4 5.3 4.5 3.7 3.0 2.9 3.0 3.0 2.9
C168 1.8 6.4 5.0 3.3 2.4 2.2 2.0 1.9 1.6 1.5 1.4
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Figure 4.25: On–line application of loess method
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4.5 Incorporation of additional variables

4.5.1 Motivation

In recent years, technological advances have significantly improved Driver Assis-
tance Systems and there has been an increasing interest in autonomous vehicles.
Aiming at safety, reliability and convenience, autonomous vehicles require de-
tailed car–following models that could model driving behavior in an efficient way.
In this section, the proposed methodology model is enriched by incorporating
additional information about density of two adjacent lanes. It is explored if the
additional information on density of adjacent lanes could improve the accuracy
of a car–following model. More realistic detailed models could provide a robust
solution to autonomous driving. The updated model is applied to reconstructed
NGSIM data using a flexible regression technique, loess method. For a more in
depth analysis, a meta–model is developed to evaluate the magnitude of the effect
of the considered predictor variables on the proposed model.

Car–following models and driving behavior have been studied with many di-
verse approaches for decades. In recent years, technological advances have sig-
nificantly improved Driver Assistance Systems and Intelligent Transportation Sys-
tems. Moreover, increasing volumes of potentially useful data are readily avail-
able in low-cost opportunistic sensors. Nowadays, there has been an increasing
interest in self–driving or autonomous vehicles. Aiming at safety, reliability and
convenience, an autonomous vehicle should adapt to user preferences and simu-
late human driving reactions naturally, preventing abrupt acceleration and jerk
(Kuderer et al., 2015). Undoubtedly, in this direction, machine learning tech-
niques have played a key role in learning driving styles and realizing Autonomous
Driving. Wachenfeld and Winner (2016) have paid attention to collective learning
in the context of autonomous driving, as directly exchanging with and copying
from the learned is one of the particular advantages machine learning has over
the human version. Machine learning methods can capture driving behavior in
an efficient way taking into account various variables. In contrast, traditional
car–following models based on a mathematical formula may not allow the incor-
poration of all these variables because of the high number of parameters (Pap-
athanasopoulou and Antoniou, 2015b; Antoniou and Koutsopoulos, 2006a).

There are several successful demonstrations of machine learning algorithms
in the field of intelligent autonomous vehicles (Ding et al., 2015; Xu et al., 2015).
Riedmiller et al. (2007) used reinforcement learning to learn a steering controller
from scratch. Their approach learns a controller that is able to navigate the
vehicle on the track within 25 min of driving a real car. Kuderer et al. (2015)
presented an inverse reinforcement learning method to learn individual driving
styles for self–driving cars from demonstration. In order to capture the rele-
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vant properties of highway driving, they proposed a set of features that captures
distances to other vehicles, the distance to the desired lane as well as higher
order properties such as velocities and accelerations. Zhou and Qu (2016) have
developed a microscopic car–following model for autonomous vehicles using Re-
inforcement Learning. Huval et al. (2015) showed how existing convolutional
neural networks (CNNs) can be used to perform lane and vehicle detection while
running at frame rates required for a real-time system. They rely only on the ro-
bustness of a neural network to make reasonable predictions. In addition, some
researchers have introduced new insights for car–following models by exploring
how traffic flow in the adjacent lanes could affect car-following behavior. Relative
speed from one or two adjacent lanes has been taken into consideration (Ponnu
and Coifman, 2015; Yu et al., 2015). However, features such as lane density
of the adjacent lanes has not been included in the aforementioned studies. In
this research it is attempted to improve further the existing model developed by
(Papathanasopoulou and Antoniou, 2015b). This could be achieved by incorpo-
rating additional information to the model aiming at more detailed models. This
research aims to explore if a car–following model depends on new features such
as the density of adjacent lanes and if this additional information could improve
the accuracy of speed prediction. Furthermore, the significant contribution of
machine learning methods into autonomous driving is recognized. More realistic
detailed models could provide a robust solution to autonomous driving. Atten-
tion is also given to flexibility of these methods and a metamodel for evaluation
of model parameters is suggested.

4.5.2 Methodology extension

The proposedmethodology for estimation of data–drivenmodels is flexible enough
to allow the incorporation of additional information to microscopic models. This
is the main advantage of machine learning methods against traditional mathe-
matical models. It is assumed that the speed of a vehicle in the next time instant
is a function of various features.

v(t+ τ) = f(x1(t),x2(t), . . . ,xn(t)) (4.3)

where:
t: time instant
τ : the apparent reaction time
v: the speed of a vehicle in a car–following state
x1, x2, . . . ,xn: predictor variables (such as speed of the preceding vehicle, dis-
tance from the front vehicle, lane density, weather, information from adjacent
lanes etc.) that affect the driving behavior.

The accurate formula of Equation 5.4 is unknown as machine learning tech-



4.5 Incorporation of additional variables 115

niques are used. While they may not provide as much insight into traffic flow
theory as the traditional models, new predictor variables could be easily added
to the process. The opportunity to incorporate new kind of data is explored in
this subsection (Figure 4.26). The existing model is enriched by adding the in-
formation about the density of adjacent lanes. The purpose of this choice was to
examine if a car–following model depends on traffic of the adjacent traffic lanes
or not.

The proposed methodology may benefit from a system that allows a fleet of
connected vehicles to exchange information, such as (X,Y ,Z) coordinates, using
a central data system. However, even a single instrumented vehicle, with the
ability to geo–locate itself and obtain (e.g. via suitable instruments and cameras)
estimates of the speed and distance of surrounding vehicles, has access to all
information required for this methodology.

Figure 4.26: Modeling improvement including further explanatory variables

The performance of the models is evaluated using goodness–of–fit measures
described in Section 3. In addition, a metamodel is used in order to evaluate the
significance of predictor variables.

4.5.3 Application and Results

Four models are applied to the available data using loess method. The models
presented in this research were all implemented using the R Software for Statis-
tical Computing R Core Team (2017).

As training data for the calibration of traffic models, the longest data set is
selected, the first one in Table 3.2. The rest of available data series are used as
explanatory data for validation of the models. For the application of the loess
method, parameters degree=1 and span =0.75 are set, as they have been chosen
in the previous work Papathanasopoulou and Antoniou (2015b). In addition,
the apparent reaction time is considered as 0.4 s, as the previous research, too.
The predictor variables considered in each model are outlined in Table 4.5. The
Model I is the existing one from the previous research Papathanasopoulou and
Antoniou (2015b). Specifically, predictor variables are defined as following.
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v: the current speed of the vehicle
vfront: the current speed of the preceding vehicle
Dfront: the distance from the front vehicle
Nleft: the number of existing vehicles in a distance of 100 m (50 m forwards and
backwards, see Figure 4.27) in relation to the moving vehicle in the left adjacent
lane
Nright: the number of existing vehicles in a distance of 100 m (50 m forwards and
backwards, see Figure 4.27) in relation to the moving vehicle in the adjacent lane
on the right
Nall: the number of existing vehicles in a distance of 100 m (50 m forwards and
backwards, see Figure 4.27) in relation to the moving vehicle in both adjacent
lanes, given by Equation 4.4. It is assumed that the density of both adjacent
lanes would contribute equally to the model.

Nall = 0.50 ·Nleft + 0.50 ·Nright (4.4)

Figure 4.27: Area considered for lane density

The predictor variables, which are used in each model (Table 4.5), are referred
to time instant t, while the response variable in all cases is the speed v of the
vehicle at time instant t+τ .

The application results of four models are presented in Table 4.6 and Figure
4.28. It is observed that for some data series Model II or Model III outperform
Model I. However, for all data series Model IV outperforms the other three models.
Therefore, the accuracy of the method has increased by adding information about
the density of the two adjacent lanes.

4.5.4 Effect of the predictor variables on the model

Visual inspection

A visual inspection is attempted for dependent and independent variables used
in Model IV. In Figure 4.29, variables and their correlations are outlined. In the
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Table 4.5: Predictor Variables used in Models

Predictor Variables

Models v
v f
ro
nt

D f
ro
nt

N l
ef
t

N r
ig
ht

N a
ll

Model I X X X

Model II X X X X

Model III X X X X

Model IV X X X X

Table 4.6: Results

RMSN (%)
Data series Model I Model II Model III Model IV

1 3.7 3.7 3.6 3.6
2 7.7 6.0 7.1 5.4
3 7.6 13.7 5.7 5.9
4 9.5 9.4 9.9 9.5
5 4.5 4.0 4.5 4.3
6 11.7 15.5 13.9 10.5
7 7.4 9.1 6.0 5.9
8 11.0 12.9 11.4 10.4
9 10.5 12.4 10.8 9.7
10 7.7 7.9 7.7 7.1

diagonal line, histograms of the variables are presented. In the upper triangle,
values of correlations have been estimated for each potential pair of variables,
while scatterplots of variables are displayed in the lower triangle. Looking at the
lower triangle, two trends are evident, one for speeds lower than 6 m/s and one
for speeds higher than 6 m/s. As concerns as speeds greater than 6m/s, RMSN
decreases, as speeds v approach the value of 6 m/s. On the other hand, for
speeds higher than 6 m/s, a balance with small variations of RMSN is observed.

Qualitative analysis

For a more in-depth and quantitative analysis of the proposed model, a meta-
model is used. This is a way to test the predictors, but of course there are other
ways as well in the machine learning literature.

The effect of the predictor variables on RMSN is estimated. In order to evalu-
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Figure 4.28: RMSN (%) for all data series and all models

ate if the considered predictor variables are highly significant, a multiple linear
regression is performed. It is assumed that RMSN is the dependent variable and
that the predictor variables v, vfront, Dfront and Nall are independent variables
that might affect RMSN. The general format of the metamodel is:

RMSN = β0 + β1 · v + β2 · vfront + β3 ·Dfront + β4 ·Nall (4.5)

A multiple linear model is fitted to the observed data and the RMSN resulting
from the application of the proposed model. Due to two trends observed, it is sug-
gested that two metamodels are developed. Data are divided into two categories,
observations with speeds v higher than 6 m/s or lower than 6 m/s. Speeds v
and vfront are highly correlated. Thus the division is implemented taking into
account only speeds v.

The model estimation results for the first group (observations with v<6 m/s)
are presented in Table 4.7. As it is indicated by t values, all the variables are
highly significant. Specifically, there is an overall positive relationship between
the variable Nall and RMSN, which could be physically interpreted as higher val-
ues of lane density combined with low speeds lead to more conservative car–
following behavior (moving to a more congested environment) and therefore to
higher values of RMSN. On the other hand, there is a negative correlation be-
tween the other variables (speeds and distances) suggesting that higher speeds
and higher distances lead to lower RMSN (and therefore a better fitting model).
Higher speeds and reasonable distances lead to a more uniform flow, and there-
fore it is expected that the fit of the model would be better (i.e. lower RMSN).

Regarding the second group (observations with v>6 m/s), a regression was
attempted and all the variables were included. However, variable Dfront was not
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significant and it was excluded. This could be attributed to the fact that higher
speeds often lead to higher distances moving from car–following to independent
movement. Then, the regression was revised and the results are presented in
Table 4.8. As it is indicated by t values, all the remaining variables are significant.
Specifically, there is an overall negative relationship between all the variables
and RMSN, suggesting that higher speeds and densities lead to lower RMSN (and
therefore to a better fitting model).

Two parts of the dataset imply a different error distribution. A model that
assumes varying variance could be also implemented (e.g. Heteroskedastic GP,
heteroskedastic time series ARCH). Incorporation of information from adjacent
lanes contributes into creating more detailed models. Machine learning methods
are promising for modeling driving behavior, as well as for self–driving vehicles.
The updatedmodel was applied to the available data and outperforms the existing
model. Higher distances and speeds could imply a driving behavior that is more
consistent, thus leading to better model fit (i.e. lower RMSN). Machine learning
techniques could provide robust policies for autonomous vehicles.

The proposed methodology should be implemented not only for speed estima-
tion but also for estimation of spacing, as suggested by Punzo and Montanino
(2016). In addition, in this case study it is considered that both adjacent lanes
contribute equally to modeling driving behavior. Different weights of density on
the right or left lane should be also tested. Further information on various pre-
dictor variables (such as weather, lighting, road geometry, etc.) could be also
added to the model and tested if it is significant.

Table 4.7: Multiple linear Regression Results for Observations with v<6 m/s

Estimate Std. Error t value
v (m/s) -0.271 0.035 -7.745

vfront(m/s) -0.284 0.035 -8.205
Dfront -0.057 0.012 -4.588
Nall 0.272 0.029 9.275

Table 4.8: Multiple linear Regression Results for Observations with v>6 m/s

Estimate Std. Error t value
v (m/s) -0.050 0.021 -2.427

vfront(m/s) -0.150 0.021 -7.206
Nall -0.518 0.020 -26.398
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4.6 Conclusions

Data driven estimation of car following models appears to be a promising tool
that could offer considerable benefits if integrated into traffic simulation models,
resulting in higher accuracy and reliability of model outputs. In this research,
an alternative methodology for estimation of car following models has been pre-
sented. A simulation optimization of car–following models could be achieved
using the proposed method. The proposed method outperforms the reference
(Gipps’) model for all available data. This research corroborates results from
other studies (Simonelli et al., 2009; Bifulco et al., 2013b), which imply that data–
driven methods could provide better estimation than conventional models. The
additional contribution of this work is to suggest an easy and quick methodology
for estimation of car–following models, especially for applications that individ-
ual and personalized models are not so critically necessary. Machine learning
methods present great flexibility and speed in managing data, avoiding the time
consuming process of parameter calibration, which is essential for traditional car
following models. The most important advantage of the proposed method is that
it does not require the specification of a function to fit a model simultaneously to
all the data in a sample. There is only the need to define the smoothing parame-
ter and the degree of the local polynomial, avoiding time–consuming calculations
for traffic model calibration. Moreover, the loess method could be helpful and
flexible in specific and complex traffic situations (for instance emergency cases),
for which no theoretical models may exist or it is complicated to be specified.
Therefore the proposed method can be used in calibration issues, where com-
putational ability of classical methods is limited. Furthermore, it provides the
opportunity for incorporation of additional parameters without the need to resort
to cumbersome reformulations of the model functional form. The loess procedure
is suitable for data with outliers (not extreme), when a robust fitting method is
essential. On the other hand, the loess method cannot be represented by a math-
ematical formula and it is thus difficult to transfer the results to other cases. It
should be also referred that too large data series may require too much memory
for loess application and that extreme outliers may overcome the method. While
this research focused on the longitudinal interaction among vehicles moving in
sequence, there are many other perspectives of the issue that have not been con-
sidered, such as the lateral interaction of a vehicle with vehicles in near–by lanes,
as well as interactions between vehicles and road infrastructure (road curvature,
existence of stop or traffic light at intersections, etc.). However, it is noted that
Brackstone et al. (2009) detected little correlation between road type and driv-
ing behavior. Other factors, which could influence driving behavior and may be
incorporated into the process, include drivers’ characteristics, such as age, reac-
tion time and experience. Moreover, heterogeneity of data could be addressed by
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more specific car-following models moving towards clustered models. This could
be an interesting topic for future work. This research suggests that data–driven
methods could provide reliable results and potentially more accurate than tradi-
tional car– following models. However, traditional car–following models have the
advantage of basing their output on traffic flow theory. In contrast, despite their
flexibility, computational approaches do not contribute as much in the advance-
ment of traffic flow theory, may not be necessarily comprehensible by the human
mind. Integration of data-driven methods in the simulation process requires
additional studies that will further confirm their validity. Technological advance-
ments will contribute significantly into the collection of data, which could in turn
result to more robust and reliable models. Although many theoretical models
have been developed so far, there is lack of a robust model that could generally
represent car–following behaviors under all conditions. Data driven methods can
be a plausible substitute for theory–based models and this research provides a
contribution towards this direction. Naturally, a lot of further research is needed
to elucidate further aspects of its applications and verify its robustness.



Chapter 5

Dynamic calibration and
multiple time step prediction

Simulating driving behavior in high accuracy allows short–term prediction of traf-
fic parameters, such as speeds and travel times, which are basic components of
Advanced Traveler Information Systems (ATIS). Models with static parameters
are often unable to respond to varying traffic conditions and simulate effectively
the corresponding driving behavior. It has therefore been widely accepted that
the model parameters vary in multiple dimensions, including across individual
drivers, but also spatially across the network and temporally. While typically on–
line, predictive models are macroscopic or mesoscopic, due to computational and
data considerations, nowadays microscopic models are becoming increasingly
practical for dynamic applications. In this research, we develop a methodology
for online calibration of microscopic traffic simulation models for dynamic multi–
step prediction of traffic measures, and apply it to car–following models, one of
the key models in microscopic traffic simulation models. Online calibration of
model parameters is data–driven in the sense that the data from previous time
instants indicate parameter values for the next time instants. The methodology
is illustrated using real trajectory data available from an experiment conducted
in Naples, using a well–established car–following model. The performance of the
application with the dynamicmodel parameters consistently outperforms the cor-
responding static calibrated model in all cases, and leads to less than 10% error
in speed prediction even for ten steps into the future, in all considered data–sets.

5.1 Problem statement

While Advanced Traveler Information Systems have been around for decades, cur-
rent developments, such as the increasing interest in Active Traffic Management,
make them more relevant (Kurzhanskiy and Varaiya, 2010). Indeed, ATIS can be

0The chapter 5 is based on Papathanasopoulou et al. (2016).
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effective in supporting active traffic management policies by Real-Time Decision
Support Systems, whose core engine is a real-time traffic simulation model. The
real–time requirements bring to the forefront the limitations of static calibration,
and accelerate the need for procedures like the ones discussed in this research.
An example of such applications is the Integrated Corridor Management initiative
in the US (Miller and Skabardonis, 2010).

Reliable representation of driving behavior is a crucial issue for traffic simula-
tion. Appropriate simulation models are chosen according to the requirements of
each application; when considering the modeling detail, traffic simulation mod-
els can be divided into microscopic, mesoscopic and macroscopic. Microscopic
models provide the highest level of detail for advanced transport applications (An-
toniou and Koutsopoulos, 2006a). However, the traditional static calibration ap-
proachmay not allow the incorporation of driving heterogeneity in the simulation.

In recent years there has been a tendency towards more flexible and dynamic
methods than static car–following models. It is widely accepted that driving be-
havior in general (and therefore car–following parameters) vary in multiple dimen-
sions, i.e. exhibit inter–personal, temporal and spatial heterogeneity. Higgs and
Abbas (2014) compare car–following models at different levels of analysis: driver,
car–following period and cluster of drivers. For example, Ossen and Hoogendoorn
(2005) have identified considerable differences between the car–following behav-
ior of individual drivers. Ma (2006) has developed a neural fuzzy framework for
modeling car–following behavior. It illustrates human knowledge of car–following
in a more understandable manner and can be rather flexible as the regime pa-
rameters andmodel formsmay vary according to the application context. Accord-
ing to Hoogendoorn et al. (2006) and Ellison et al. (2013), real driving behavior is
variable in time and space. Some researchers have attempted to capture hetero-
geneity across drivers spatially (e.g. Papathanasopoulou and Antoniou (2015b))
or temporally, which is one of the aspects investigated in this research.

Many car–following models predict a stable car–following behavior with a very
small fluctuation around an equilibrium value. However, in reality these fluctu-
ations are much larger than these models predict. Wagner (2012) has attributed
them not due to driver heterogeneity, but to an internal stochasticity of the driver
itself. Randomness is thus incorporated in traffic flow and model calibration re-
quires the flexibility to adapt to it. On the other hand, several empirical analyses
performed by Ossen and Hoogendoorn (2007) showed a high degree of driver het-
erogeneity in car–following. Inter–driver differences could be described not only
by different parameter values, but also different model specifications may be
needed. All above researchers conclude that different optimal parameter values,
as well as different optimal car–following models, should be applied to overcome
this problem.

Static calibration requires a database with historical data. It could feed a sim-
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ulation model with initial parameter values, which allow a good representation of
a general traffic state (Balakrishna, 2006). However, dynamic calibration could
take advantage of real–time data and adapt model parameters to the current traf-
fic state. Dynamic estimation of model parameters and especially reaction time
have been attempted by e.g. Hoogendoorn et al. (2006) and Ma and Jansson
(2007). Hoogendoorn et al. (2006) and Lorkowski and Wagner (2005) use the Un-
scented Kalman Filter (UKF), while Ma and Jansson (2007) have proposed a dy-
namic model estimation method based on iterative usage of the Extended Kalman
Filter (IEKF) algorithm. Ma and Andréasson (2005) have suggested a dynamic car
following data collection and noise cancellation based on the Kalman smoothing.
However, according to Treiber and Kesting (2013), smoothing the data had no sig-
nificant influence on the calibration quality. Naturally, calibration and sampling
issues in estimation car–following parameters have been studied extensively in
the literature (Monteil et al., 2014; Schultz and Rilett, 2004)

Rahman et al. (2014) develop a calibration approach based on the Markov
Chain Monte Carlo (MCMC) simulation that uses the Bayesian estimation the-
ory. The authors use a linear model (Helly) with a different number of vehicle tra-
jectories on a highway network. Ossen and Hoogendoorn (2011) investigate the
level of heterogeneity in car–following behavior, using a large number of trajectory
observations collected via helicopter. The authors observe different vehicle type
interactions and develop eight models with different car–following assumptions.

Simulation models do not always adequately reflect field conditions outside of
the time period for which they have been calibrated (Balakrishna et al., 2007b;
Daamen et al., 2014; Henclewood et al., 2012). Microscopic models often com-
prise different detailed models, including car–following, lane–changing and gap–
acceptance models. In most cases, the parameters of these models are assumed
to be stable, both across space and time, and also across drivers. The online
calibration of car–following models is a promising approach to capture the het-
erogeneity of driver behavior and traffic conditions. By continuously supplying
a car–following model with surveillance data, an online calibration process could
be applied in order to adapt model parameters to the current traffic state. In this
view, the use of richer data, such as real–time Floating Car Data (FCD), based
on traces of Global Navigation Satellite Systems (GNSS), could be leveraged as a
reliable and cost–effective way to gather accurate traffic data (De Fabritiis et al.,
2008; Antoniou et al., 2011).

Calibration of car–following models (Brackstone and McDonald, 1999) has
been an issue for a long time (Aycin and Benekohal, 1999), but nowadays it
has received a new boost (Hoogendoorn and Hoogendoorn, 2010; Monteil et al.,
2014), in light of new data–collection techniques, mostly related to the increas-
ing availability of trajectory data (Kesting and Treiber, 2008; Punzo et al., 2005;
Papathanasopoulou and Antoniou, 2015b), which of course introduce other chal-
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lenges (Punzo et al., 2012).
Online calibration has been used in many macroscopic and mesoscopic mod-

eling approaches (Papageorgiou et al., 1989; Kim, 2002; Antoniou et al., 2005;
Fei et al., 2011). The use of the Kalman Filter (and its extensions) for online
parameter calibration has shown encouraging results (Antoniou et al., 2007).
However, in recent years there has been an increasing interest in online applica-
tions of microscopic traffic models. Moreover, Henclewood et al. (2012) suggest
that a real-time calibration algorithm should be included in online, data–driven
microscopic traffic simulation tools.

The objective of this chapter is to motivate, develop and demonstrate with real
data a practical approach for the online calibration of microscopic traffic simula-
tion models, which considers dynamic parameters for individual drivers, in time
and space. At each time instance, the dynamically obtained model parameters
are being used for short–term prediction (up to ten steps into the future), and
the performance of this prediction is compared with the reference case of static
model parameters.

5.2 On–line calibration process

In this research, a methodological framework for the dynamic calibration of car–
following models using real–time data is proposed. The approach has two main
steps, an estimation phase and a prediction phase. The estimation phase relies
on a constrained global optimization algorithm. Once an optimal set of param-
eters is identified for each individual time–instance (and each individual driver),
multi–step prediction is performed. In each time step, prediction is achieved
using the estimated values from the previous time step, i.e. the best available
estimates of the drivers’ behavior. The evolving patterns of the driver behavior
during the past few intervals is used to forecast the expected behavior during the
next few time–steps. Naturally, this logic could be adapted to data–availability or
computational concerns, e.g. it could only be invoked when there is an indication
that traffic conditions may be changing (e.g. automatically detected anomaly in
the data).

The dynamic calibration problem can be mathematically stated as

min f(xt), xt = (x1t, . . . , xnt) ∈ Rn (5.1)

where f(xt) is the objective function (e.g. error estimating the difference be-
tween observed and simulated values of a traffic measure), t is the current time
interval, xt stands for time dependent parameters, and the feasible region F is
defined by

F = {xt ∈ Rn|gj(xt) ≤ 0 ∀j} (5.2)
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where gj(xt), j = 1, . . . ,m are inequality constraints. For instance, these con-
straints could ensure that a traffic measure, such as space gaps, will not take
unacceptable values. The way that the constraints are handled may vary accord-
ing to the type of optimization algorithm that is adopted, including the penalty
function method, special representations and operators, and the co–evolutionary
method, the repair method or the multiobjective method (Runarsson and Yao,
2005). The dynamic calibration problem could also be stated as a multiobjec-
tive optimization problem including various measures of effectiveness (such as
speeds, space gaps, and accelerations) and various measures of goodness–of–
fit (such as normalized root mean square error and mean prediction error, as
described in Chapter 3).

min(f1(xt), f2(xt), . . . , y1(xt), y2, (xt) . . . z1(xt), z2, (xt), . . . ), xt = (x1t, . . . , xnt),∈ Rn

(5.3)
where f1(xt), f2(xt), . . . correspond to the same measure of effectiveness (e.g.

comparison of observed and simulated speeds), but differentmeasures of goodness–
of–fit, while fi(xt), yi(xt), zi(xt) . . . correspond to different measures of effective-
ness, but for the same measure of goodness–of–fit.

The estimated model parameters can then be easily propagated into the fu-
ture, thus providing plausible predictions of these values for the next intervals,
as shown in Figure 5.1 for a hypothetical parameter. A general way to express
this evolution could be

x̂t+1 = h(xt,xt−1,xt−2, . . . ) (5.4)

where h is a function relating an estimate of the car–following model parameter
values in the next time interval to the best available estimates of the same model
parameters in previous time steps. However, in this way all observations from
time t=t0 up to time t are considered as equally important and included to define
the objective function. This approach could lead to errors since drivers may
drive in a different way at the current moment in comparison with previous time
instants. The apparent solution could be based on weighting the data:

x̂t+1 = h(w0 · xt, w1 · xt−1, w2 · xt−2, . . . ) (5.5)

where wi are the weights of observations. Presumably largest weights would
be applied to the most recent data and therefore w1> w2> w3> · · · . The decaying
weights thus imply that in practice only a finite number of past observations af-
fects the process. A more explicit example of an operationalization of this process
is e.g. an autoregressive process, such as:

x̂t+1 = f0 · xt + f1 · xt−1 + f2 · xt−2 + ε (5.6)

where fi are the autoregressive factors, and ε a random error term. A process
for determining these factors is presented e.g. in (Antoniou, 2004, p. 79).
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Through repeating this process, multi–step predictions can be obtained in the
following manner:

x̂t+2 = h(w0 · x̂t+1, w1 · xt, w0 · xt−1, . . . ) (5.7)

x̂t+3 = h(w0 · x̂t+2, w1 · x̂t+1, w2 · xt, . . . ) (5.8)

Naturally, as the number of time–intervals (for which the prediction is per-
formed) increases, the accuracy of these predictions is expected to deteriorate,
as evidenced schematically by the widening bounds of the predicted values in Fig-
ure 5.1. A practical way to determine these bounds is presented in Pereira et al.
(2014). As the process is repeated, though, when new data are available, these
forecasts can be improved, as shown by the lower subfigure in Figure 5.1. This
concept of "rolling horizon" is being used in software for real–time traffic predic-
tions (Ben-Akiva et al., 2010). In that case, at time t+ 1 the previously predicted
values of the model parameters for time t + 1 can now be estimated using avail-
able data. Furthermore, the previous two–step predicted model parameters for
time interval t+ 2 can now be replaced by one–step predicted model parameters,
since estimates of the model parameters are available up to time interval t + 1.
Similarly, e.g. at time t+ 1 for time interval t+ 7, the previous seven–step predic-
tion (using estimated values up to time interval t and predicted parameter values
for subsequent intervals) can be replaced by an —arguably more accurate— six–
step prediction (using estimated values up to time interval t + 1 and predicted
parameter values for subsequent intervals).

The proposed methodological framework may benefit from a system that al-
lows a fleet of connected vehicles to exchange information, such as (X,Y ,Z) co-
ordinates, using a central data system. However, even a single instrumented
vehicle, with the ability to geo–locate itself, and obtain (e.g. via suitable instru-
ments and cameras) estimates of the speed and distance of surrounding vehi-
cles, has access to all information required to apply this methodology. Therefore,
speeds, accelerations or gaps could be calculated per time instant and used to
dynamically calibrate driver–specific, time–varying parameters for the considered
model. The overall methodology is illustrated in Figure 5.2. A calibration pro-
cess is demonstrated for each time instant t, using observations available up to
that time and applying a suitable optimization algorithm, solving Equation 5.1 or
Equation 5.3. The estimated optimal model parameters for time intervals up to t
are being used to predict dynamic parameter values for the subsequent intervals,
using Equations 5.4 or Equations 5.5 and so on. These predicted parameters
can then be used as time–dependent inputs into the microscopic traffic models
to provide predicted outputs for the horizon from t onwards. In the next time–
interval, this process is repeated, but this time using also measured information
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Figure 5.1: A rolling horizon for prediction with improving bounds

from time–interval t+ 1, thus obtaining an estimated set of model parameters for
time interval t + 1, updated predicted values for the subsequent intervals, plus
a new predicted value for a new time–interval (for example, if performing n–step
prediction, during time t we obtained predicted parameter values for intervals
t + 1 through t + n, but when we move to time interval t + 1 then we obtain pre-
dictions for intervals t+ 2 through t+ n+ 1, thus revising the previous estimates
for intervals t+ 2 through t+n and extending our prediction horizon to t+n+ 1).

The methodology is applied to a car–following model, which is arguably the
most critical component of microscopic traffic simulation models. In particular,
Gipps’ model (used e.g. in the widely used Aimsun traffic simulation model and
described in detail in chapter 2) is calibrated using available data from an ex-
periment conducted in Naples (Punzo et al., 2005). A static calibration is also
performed in order to be used as a reference benchmark. The main difference
from dynamic calibration is that the parameter values are constant for all the time
instants and all prediction steps. For both methods, the same optimization al-
gorithm was used. Therefore, for the static calibration Equation 5.1 is simplified
through the removal of subscript t, while of course the forecasting Equations 5.4
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and so on are not relevant (since the parameter values are constant).

5.3 Static calibration

For a more evidence–based approach, the calibration process was performed
using an optimization algorithm within the R software for statistical comput-
ing (R Core Team, 2016). In particular, the Improved Stochastic Ranking Evo-
lution Strategy (ISRES) algorithm was used, which is included in the package
"nloptr" (Runarsson and Yao, 2005) and is appropriate for nonlinearly constrained
global optimization. This method is implemented in a simple way and supports
arbitrary nonlinear inequality and equality constraints in addition to the bound
constraints. In addition, it incorporates heuristics to escape local optima. On
the other hand, although a lots of research has been performed on determining
which algorithm is best suited for a given problem, there has not been a satis-
factory answer to this question. Thus, various algorithms should be tested in
future research.

The objective function that was minimized is: RMSN(vobs3 ,vsim3 ). The range of
model parameters are shown in Figures 4.1 and 4.2 and these constraints are
defined by Equation 5.9:

¯
xit ≤ xit ≤ x̄it (5.9)

which is a special case of Equation 5.2. In addition, as initial values for the op-
timization process, optimal values defined through the sensitivity analysis were
used. It is noted that interactions among the parameters had not been taken into
account in the sensitivity analysis. However, a global optimization is performed,
considering all combinations of these model parameters concurrently. For the
whole dataset B1695 the optimization process has converged to the optimal set
of parameters after approximately 10000 iterations. The optimal values are pre-
sented in Table 4.1, where "initial values" refers to the model parameter values
obtained by the sensitivity analysis and "optimal values" refers to the parame-
ters obtained from the static calibration using the ISRES algorithm within this
research. The minimum value of the objective function, namely the RMSN, that
was achieved with these optimal values of parameters was 2.2%.

5.4 Dynamic calibration and results analysis

Gipps’ model is calibrated dynamically in order to simulate the speed of the third
vehicle (v3(t+τ )). Gipps’ model requires as input data v2(t), v3(t), x2(t), x3(t) and
the appropriate parameter values. The superiority of this calibration over the
static calibration presented before is demonstrated both for estimation and also
for multiple step prediction of traffic speeds.
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5.4.1 Dynamic calibration

In online calibration an optimization process with the same characteristics (pa-
rameters range, initial values, objective function) is iterated per time instant,
namely per observation (v2(t), v3(t), x2(t) and x3(t)), and not for the whole data
series such as in static calibration. Therefore, a different optimal set of parame-
ters is determined per time instant t in order to be characteristic of the current
traffic conditions. In order to simplify the optimization problem, the apparent
reaction time is considered equal to τ=0.4 sec (for a discussion and motivation of
this choice, see e.g. Papathanasopoulou and Antoniou (2015b)). Five parameters
are optimized per iteration (the remaining five parameters shown in Table 4.1).

This implies that —with the addition of subscript t to the time–dependent
parameters— in effect Equation 2.3 becomes

vnt[t+ τ ]=min


vnt[t] + 2.5 · ant · τ · (1− vnt[t]

Vnt
·
√

(0.025 + vnt[t]
Vnt

)

bnt ·τ+

√
(bnt ·τ)2− bnt ·[2·(xn−1[t]−sn−1,t− xn[t])−vnt[t]· τ−

v2n−1[t]

b̂t
]

(5.10)

where:

ant : the maximum acceleration that the driver of vehicle n wishes to acquire
(m/s2).
bnt : the maximum braking that the driver of vehicle n wishes to apply in order
to avoid a crash, bn<0 (m/s2).
b̂t : the estimated maximum braking that the driver of the preceding vehicle (n-1)
wishes to apply (m/s2).
sn−1,t = Ln−1 + Safety, namely the size of the preceding vehicle (n-1) including its
length and the safety distance at which vehicle n is unwilling to compromise even
when at rest (m).
Vnt : the speed at which the driver of vehicle n wishes to travel (m/s).
xn[t], xn−1[t] : the location of the front side of the respective vehicle (n or n-1) at
time t (m)
vn−1[t] : the speed of the preceding vehicle (n-1) at time t (m/s)
vn[t] : the speed of the following vehicle (n) at time t (m/s)
τ : the apparent reaction time (a constant for all vehicles) (s)

In setting up the case study, a single objective optimization problem was for-
mulated and the objective function f that was set to be minimized is:

min f(xt) = min(RMSN(vobs3 , vsim3 (xt))) (5.11)
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where
xt = (ant, Vnt, bnt, sn−1,t, b̂t) (5.12)

In the optimization process for the case study, observations of only the previous
time instant have been taken into consideration and therefore the formulation of
the weights was straightforward, i.e. the weight of the last observation was 1 and
that of all previous observations was 0. In Figure 5.3, the RMSN goodness–of–fit
measure assesses the overall error and performance of the static and dynamic
calibration procedures estimating the difference between the observed and the
simulated values of speed v3 per time instant.

RMSN(static) was calculated considering fixed parameters values for all ob-
servations. It becomes evident that lower RMSN values are consistently achieved
through dynamic calibration, as expected. While the difference is not so large
most of the time, there is a specific period, in which the static model seems to
perform particularly poorly. In order to investigate the conditions that led to this
performance deterioration, we have looked at the prevailing traffic conditions,
which indeed provide some insight. In particular, in the bottom subfigure of Fig-
ure 5.3 observed speeds are also plotted over time, in order to clarify when the
static model performance deteriorates. During the time period of interest (the
sharp increase in RMSN), very low speeds are observed, and it is therefore rea-
sonable to assume that the static calibration does not allow the model to adapt
to these extreme traffic conditions. Therefore, it is not expected to provide a good
speed prediction, when significant changes in speed take place. On the other
hand, dynamic calibration is more flexible and adaptable to the current traffic
conditions, reacting considerably better, even in such extreme situations.

In this case study, we use a single measure of effectiveness (speed). The fail-
ure of the dynamic calibration in the low–speed situation in Figure 5.3 could be
overcome by considering additional measures of effectiveness (e.g. vehicle gap).

5.4.2 Multiple time step prediction

Multiple steps prediction is achieved using bothmethods of calibration, static and
dynamic. In each prediction step, predicted values from the previous step and
optimal values used in the initial step are imported to the car–following model.
However, after the first prediction step, only the speed of the third vehicle v3t is
predicted and could be used to the next step. Therefore, the speed v2 of the lead
vehicle, which is also required as input to the model, is considered as constant
through the prediction steps, since there is no way to know what the evolution of
that speed would be. Extensions to this model could include predicting of other
traffic parameters, such as speeds of surrounding vehicles. Values for vehicle
positions x2 and x3 are calculated according to the distance that was traveled in
the corresponding time (i.e. assuming the appropriate speed values).
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Figure 5.3: Dynamic calibration versus static calibration and speed profile (ob-
served values) for B1695 data series

The proposed methodology has been applied for all data series. In the presen-
tation of the results in the following subsections, we make a distinction between
measures of effectiveness and measures of goodness–of–fit that have been used
in the objective function, versus those that have not. In particular, the objective
function has been formulated in terms of RMSN (as the goodness–of–fit measure)
and following car speed (as the measure of effectiveness). Looking only at these
metrics could leave us susceptible to over–fitting. However, to demonstrate that
this is not the case, we also present results for other measures of effectiveness (in
particular distance between the lead and following vehicle), as well as a number
of other goodness–of–fitness measures (as described in Chapter 3).

Measures of effectiveness included in the objective function

Figure 5.4 presents the aggregate goodness–of–fit measures for the estimated
speeds. The left subfigure of Figure 5.4 presents the calibration results based
on the RMSN metric, which has been included in the objective function. Indeed,
as expected, dynamic calibration outperforms static calibration in all cases for
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one–step prediction. This is evident also from all other goodness–of–fit measures
(right subfigure of Figure 5.4). The RMSPE measure indicates that using static
calibration results in large errors. Values of Theil’s inequality Um and Us are close
to zero for all data series and indicate an ideal fit. It is noted that for the B1695
data series, prediction with the static calibration is using additional information,
as the information for the entire data–set has been considered for the estimation
of the static parameter values. Therefore, this value is “better" than it would oth-
erwise be. Put differently, the improvement obtained by the dynamic calibration
is arguably underestimated. In Figure 5.5, the Empirical Cumulative Distribu-
tion Functions (ECDFs) of observed and simulated speeds are illustrated. The
ECDF of simulated speeds using dynamic calibration is almost identical with the
ECDF of observed speeds in the majority of data series. While in many cases
the static calibration also performs reasonably well, in some cases, such as in
the first half of data series A172 and C171, the poorer performance of the static
calibration (compared to dynamic calibration) is clearly evident.
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Figure 5.4: Comparison of estimated speeds between static and dynamic calibra-
tion for one–step prediction

Measures of effectiveness not included in the objective function

In order to check if the methodology over–fits to speed prediction due to the objec-
tive function defined in Equation 5.11, other measures of effectiveness such as
space, acceleration etc. not included in the objective function may be checked.
For instance, space prediction is not included in the objective function (Equa-
tion 5.11) and this could make the parameter estimation rather insensitive to
space–gap related properties.

Space headways for dynamic calibration have been estimated using the as-
sumption that the the speed v2 is constant throughout the prediction steps. Fig-
ure 5.6 is similar to Figure 5.4, but this time presents the same results for space
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Figure 5.5: ECDFs of observed and simulated speeds for one–step prediction
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headways. Indeed, the dynamic calibration once again performs considerably
better than the static calibration, in most cases. Furthermore, Figure 5.7 illus-
trates the Empirical Cumulative Distribution Functions (ECDFs) of the observed
and simulated space gaps. Although space gaps were not included as a traffic
measure in the objective function, the estimated space gaps from the dynamic
calibration track the observed values much better than those obtained from the
static calibration.
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Figure 5.6: Comparison of estimated space gaps between static and dynamic
calibration for one–step prediction

5.4.3 Multiple time step prediction results for the entire prediction
horizon

The RMSN results for all five data series and for the entire prediction horizon
(one– to ten–step prediction) are presented in Figure 5.8. The superior perfor-
mance of the prediction based on the dynamic calibration is evident in all data
series. While prediction error consistently increases as the prediction horizon
increases, the results obtained from the dynamic calibration never exceed 10%

error, even for ten–step prediction into the future.
Figure 5.9 presents a more detailed overview of the predicted speeds by the

static and dynamic calibration, compared with the observed speed for one of the
data series (C171, the one for which the biggest improvement has been achieved
through the use of dynamic vs. static calibration).

5.4.4 Exploration of calibrated parameter values

The overall results presented in the previous subsection eloquently illustrate the
superior performance of the dynamic calibration over the static case. In this sub-
section, we explore the values of the parameters obtained from each approach,
in order to gain some further insight. Figure 5.10 presents the densities of the
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Figure 5.7: ECDFs of observed and simulated space gaps for one–step prediction
Note: Different ranges, but same scale, have been used for the x axis in all sub-
figures
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Figure 5.8: Multiple time steps prediction using static and dynamic calibration

obtained parameters for the considered model and data–set. It is noted that,
since for each time instant only one of the two equations is critical, the parame-
ter values for that equation are considered at each time point. For example, if the
top equation of Equation 2.3 is active at the particular point, then the parame-
ters ant and Vnt are used (and therefore these values contribute to the densities
in Figure 5.10), while if the bottom equation is active then the values for the
parameters bnt, snt and b̂t are considered.

In each figure, the value of the static calibration is also indicated with a verti-
cal dashed line. It becomes apparent that the dynamic values are not distributed
symmetrically around the statically obtained value. This could have several im-
plications. One question could be whether the static calibration is not really opti-
mal. To check for this, we repeated the estimation and prediction using constant
parameter values; however, this time, instead of using the value obtained from
the static calibration, we used the median from the densities obtained from the
dynamic calibration (i.e. the distributions shown in Figure 5.10). In that case,
the estimation RMSN ended up actually being inferior to that obtained from the
static calibration results (with an RMSN of 3.4% instead of 2.2%). Therefore, it
seems that there is something different going on, and that indeed the median
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(b) Step 5

Figure 5.9: Predicted speed v3 for data series C171 for steps 1 and 5

values from the distributions cannot be used as best values for the determina-
tion of constant/average values. The explanation for this may come from the
nature of the Gipps model, i.e. the fact that there are two different equations,
and at each given time the parameters of a single one are in effect considered.
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Therefore, while during the dynamic calibration the model steers only these pa-
rameters towards their desired values, using the available information, in the
case of a static calibration one needs to determine single values that are relevant
for all observations.

Another concern could, of course, be that the dynamic model is actually over-
fitting. However, the fact that it outperforms the static model even in ten–step
predictions (as shown in Figure 5.8) provides compelling evidence that this is not
the case.
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5.5 Conclusions

The findings of this research suggest that dynamic calibration for microscopic
traffic models could be promising and should be further studied. In this re-
search, the prediction of the dynamic parameters was simple, in the sense that
the dynamically calibrated parameters were assumed as the best available es-
timate for the short–term values of these parameters. Further research could
consider secondary models that would actually aim at predicting the evolution of
these parameters, as well, e.g. via autoregressive, polynomial or other statistical
forecasting specifications.

Furthermore, the procedure could be applied to other car–following models.
Regarding the optimization process, different optimization algorithms could be
tested, besides the ISRES optimization algorithm, which has been selected for
the case study presented in this research. In addition, the results of this re-
search should be compared with those obtained by a multiobjective optimization
process in a future research. While in this research the optimization of the car–
following model parameters has been performed using an optimization algorithm
across all parameters concurrently, further exploration of the correlation of the
model parameters (Kim and Mahmassani, 2011) could provide deeper insight
into the problem. The heterogeneity of the drivers and their behavior (Ossen and
Hoogendoorn, 2011) could also be further explored, using a larger number of
characteristics trajectories from a larger sample of drivers.

While in this case study we only use a small number of vehicles, for which
data are available, it is practical to apply this methodology to all individual ve-
hicles in a network, in real time. The computational and data requirements are
such, that allow the application of the methodology to each individual vehicle (as
the required data could be obtained e.g. from a GPS trace of the vehicle, and
e.g. radars/cameras providing information about the vehicles around it). Fur-
thermore, the computational overhead to apply the methodology is minimal and
it can be dealt by in-vehicle processing facilities, in a decentralized way. This
would allow to not only obtain different parameters estimated and predicted per
each vehicle class, but indeed for each individual vehicle, in real time.

In the realistic situation that not all vehicles have the ability to collect/receive
the required data, an extrapolation could be used to generalize the obtained re-
sults. In this case, it could be practical to identify classes of vehicles, estimate
and predict these parameters for the vehicles comprising the sample for each
class, and then extrapolate this information to the entire population of vehicles
of this class in the studied area. Besides temporal variability of these parameters,
by class, one can of course foresee a spatial distribution, as traffic conditions,
road characteristics, fleet mix, and other parameters could influence their value.

In the case study, presented in this research, we use a single measure of effec-
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tiveness (speed). The failure of the dynamic calibration in the low–speed situation
in Figure 5.3 could be overcome by considering additional measures of effective-
ness (e.g. vehicle gap). Furthermore, the data set used in this research has
intentionally considered the movement of vehicles in a single lane, avoiding the
complications offered by lane–changing opportunities. Richer data–sets, offering
also lane-changing opportunities, would allow the extension of this research to
more elaborate models, such as joint car–following/lane–changing models.

Car–following models are also used as input to Adaptive Cruise Control sys-
tems, which also need to be adaptive and consider the heterogeneity of the driver
behavior (Bifulco et al., 2013a,b). The work presented in this research could be
leveraged for the improvement of such models.

In conclusion, as we move towards more detailed models, even for online ap-
plications, it is expected that dynamic calibration will play an increasing role for
this type of models. While a lot of experience exists in the online calibration of
macroscopic and mesoscopic models, it is likely that this expertise will not trans-
fer directly to the more detailed microscopic models. Therefore, novel research
is needed, to validate the existing techniques and develop new ones, specifically
suited to leverage the benefits and unique characteristics of microscopic traffic
simulation models.





Chapter 6

Flexible microscopic models in
mixed traffic conditions

6.1 Problem statement

Intelligent transportation systems require detailed car-followingmodels that could
represent driving behavior in an efficient way. Moving towards autonomous ve-
hicles, models should be able to reflect heterogeneity in driving behaviour and
traffic networks. While many driving behavior models have been developed over
the years, there are still aspects that remain unsolved. Most existing studies
focus on driving behavior using trajectory data of vehicles moving in lanes. How-
ever, modeling driving behavior in mixed traffic streams is still a challenge.

A heterogeneous mixture of vehicle types and a violation of lane discipline are
common characteristics in cities in developing countries. These conditions lead
to driving manoeuvres that combine both longitudinal and lateral movements.
Modeling this driving behavior tends to be complex and cumbersome, as various
phenomena, such as multiple–leader following, should be addressed. Traffic flow
in the developing countries, as well as in urban road networks mainly in South
European countries, is very complex in nature and safety issues arise. This
research attempts to simplify mixed traffic modeling by developing a methodology
which is based on data–driven models. The focus is given on recognizing leader–
follower pairs and identifying significant lateral changes that may be indicative
of the traffic situation of a vehicle (car–following, lane–changing or free flow).
The objective of this research is to develop a dynamic methodology that could
describe mixed traffic in a more realistic way using different virtual lanes for
each driver which are constantly modified according to the traffic conditions.
The proposed methodology is validated on mixed traffic trajectory data, which
have been collected in India.

0The sub–chapters 6.1, 6.2.1 and 6.3 are based on Papathanasopoulou and Antoniou (2017),
while the sub–chapter 6.2.2 is based on Papathanasopoulou and Antoniou (2018).
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6.2 Non–lane based approach

It is assumed that all vehicles are moving without lane discipline. In order to sim-
plify this traffic situation, temporary virtual lanes for each vehicle are defined.
The methodology is based on the idea that each driver follows his own temporary
virtual traffic lane until his lane overlaps with the virtual lane of another driver
and thus he is forced to modify it. The proposed methodological approach is
outlined in Figure 6.3. Longitudinal and lateral positions are recorded per time
instant and saved in a database. Then significant lateral changes are identified
using appropriate algorithms that allow monitoring structural changes in lin-
ear regression models. If no significant lateral change is identified then lateral
information is used for determination of a temporary virtual lane and then a car-
following model or a free flow model is applied if at least one preceding vehicle
is identified or not respectively. For identification of the front vehicle more de-
tails are provided in the next subsection. On the other hand, if a breakpoint is
observed in data sequence, namely if significant lateral changes are identified,
then a lane-changing situation is indicated and the virtual lane needs to be mod-
ified. A lane–changing model should be applied for time tL, time of lane-changing
duration. Then the process is iterated for the following time instants.

6.2.1 Identification of lead and lag vehicle

Since multiple leader vehicles may be present in heterogeneous traffic conditions
and thus the critical leader vehicle should be identified. The probability of a given
front vehicle to be the governing leader depends on the type of the lead vehicle
and the extent of lateral overlap with the following vehicle Choudhury and Islam
(2016).

In order to apply a microscopic model, it should be determined whether there
is a vehicle pair of follower–leader. The main characteristic of mixed traffic is that
the size of overlap between the leader and the follower varies. Assuming that the
lateral and longitudinal coordinates of the front center of each vehicle (xci, xci ) are
known, it could be defined which vehicle follows the other. The coordinates for
the left and the right lateral bound of each vehicle are estimated per time instant
t by Equations 6.1 and 6.2 (as shown in Figure 6.1).

xli(t) = xci(t)−
wi
2
− si(t) (6.1)

xri(t) = xci(t) +
wi
2
− si(t) (6.2)

where i: 0,1,2,. . . n vehicle index xci: lateral coordinate of the front center of
vehicle i, xli: lateral coordinate of the front left bound of vehicle i, xri: lateral
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coordinate of the front right bound of vehicle i, wi: width of vehicle i si: a lateral
safety distance for vehicle i

Figure 6.1: Estimation of lateral coordinates

In order to define the car–following vehicle pairs, the longitudinal position of
the leader should be in front of the following vehicle and in a distance L that could
influence the movement of the following vehicle (Equation 6.3). In addition, a part
of the front side of a vehicle should overlap a part of the front side of another
vehicle (Equation 6.4). This overlap is evident in Figure 6.2 with light blue color.
Each vehicle i is considered as follower and then a leader vehicle is required to
fulfill the conditions, described by Equations 6.3 and 6.4, at the same instant t:

yfollower(t) ≤ yleader(t) ≤ yfollower(t) + L (6.3)

xlfollower
(t) ≤ xrleader(t)

xlleader(t) ≤ xrfollower
(t)

(6.4)

Four cases of vehicle pair leader– follower have been identified, as shown in
Figure 6.2. Furthermore, a scenario with two leaders and one follower case is
also possible. For instance, a bus could be the follower and a part of its front
side may overlap with two leaders such as two motorcycles or a small vehicle
and a motorcycle. In this case the closest vehicle according to the direction of
movement is chosen as the most critical leader. If no vehicles are identified as
leaders, then the driving situation of the vehicle is free flow.
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Figure 6.2: Identification of pair leader- follower

6.2.2 Determination of virtual lane changes

A typical example of modification of virtual lane change is illustrated in Figure
6.4. In this figure, there are two vehicles. The first vehicle follows the virtual
lane i. While there are small lateral movements, it is considered that it does not
change lane. However, when its movement is constrained by the hatched vehicle
at the breakpoint, it is considered that it changes lane and then follows virtual
lane i+1. The challenge is that vehicles are moving constantly laterally. This could
be addressed in two distinct ways. The first one is to estimate the threshold that
indicates a lane change. The second one is using change detection algorithms.
In this research the focus is given on the second approach, namely on identifying
significant changes in lateral positions, so as the appropriate microscopic model
to be applied. Algorithms that are capable of finding major changes in data
sequence could be used.

Heterogeneity in vehicle types implies various widths of vehicles and thus
various widths of virtual lanes. The width of a temporary virtual lane W could be
estimated by Equation 6.5, if no significant lateral changes and breakpoints are
identified. The estimation of temporary virtual lanes is also illustrated in 6.5.

W =max(xt, xt+1 + · · ·+ xt+n)−

min(xt, xt+1 + · · ·+ xt+n) + wv
(6.5)
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where xt is the position of the center of the vehicle, measured from the left–most
side of the roadway for each time instant t+i and wv is the width of the vehicle.

Figure 6.3: Methodological approach for non–lane based traffic

Figure 6.4: Virtual lanes
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Figure 6.5: Estimation of virtual lane width

6.3 Car–following application

The next step is the fitting of the proposed methodology for car–following sit-
uations using data–driven models. The problem to be addressed is the speed
estimation of each vehicle, when the available data include its speed, the speed
of the preceding vehicle and the distance between the two vehicles (in the previ-
ous time instant). Locally weighted regression could be used for the application.
In the training step the flexible car-following model is fitted or calibrated on the
surveillance data and validated on the other dataset. If no vehicles are identified
as leaders, then these observations are omitted, as they do not correspond to
car-following state.

6.3.1 Data processing

First, data were organized in ascending order of vehicle ID, so as the trajectory
of each vehicle to be continuous and observations of other vehicles not to inter-
fere. Then, only observations appropriate for microscopic analysis are selected
(flag=0). As coordinates of the front center of each vehicle longitudinal and lat-
eral positions are used. Regarding the considered speed for each vehicle, the
resultant speed is estimated by Equation 6.6.

vi(t) =
√
vlongi

2 + vlati
2 (6.6)

where vi: resultant speed of vehicle i, vlongi: longitudinal speed of vehicle i and
vlati: lateral speed of vehicle i.

In addition, a new column is added which includes the observed speed for the
next time instant, namely the speed that should be predicted for each observa-
tion. Actually this is the speed that corresponds to time t + 0.5 s and to the same
vehicle ID. If there is no observation for this vehicle and for the next time instant,
NA is given. Afterwards, rows with NA in this column are omitted, as there is no
observed speed to compare with the estimated one by the proposed methodology.
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Due to the mature of mixed traffic data the next step was to define the car-
following sequence, namely which vehicle is in front of the other. Kanagaraj et al.
(2015) have identified that in 45% of the observations the overlap between the
leader and the follower is less than half the follower width. The methodology
described in section was adopted for the identification of the front vehicle. Ob-
servations that correspond to vehicles with no leading vehicle were excluded. As
lateral safety distance, s=0.20m is considered for each vehicle on both sides. As
distance L in Equation 6.3, L=200m is considered. The same procedure was also
used with the validation on dataset data300. Finally, dataset “data245” includes
47036 observations corresponding to 1511 vehicle pairs and dataset “data300”
45982 observations corresponding to 1488 vehicle pairs.

6.3.2 Estimation of conventional models

A conventional car–followingmodel, the Gippsmodel (Gipps, 1981), is used as ref-
erence in order to monitor and evaluate the effectiveness of the proposed method.
It is a well–known model that is used in AIMSUN traffic simulator. This model
requires as input the same data as the proposed method and thus a direct com-
parison would be feasible. First, a calibration of model parameters is required.
There are six parameters in this model that have to be calibrated. The apparent
reaction time is considered as 0.5 s and for calibration of the rest of parameters an
optimization process is implemented. Dataset “data245” was used for calibration
and “data300” for validation. The calibration process was performed within the
R software for statistical computing (R Core Team, 2017). In particular, the Im-
proved Stochastic Ranking Evolution Strategy (ISRES) algorithmwas used, which
is included in the package ”nloptr” (Runarsson and Yao, 2005) and is appropriate
for nonlinearly constrained global optimization. This method is implemented in a
simple way and supports arbitrary nonlinear inequality and equality constraints
in addition to the bound constraints. In addition, it incorporates heuristics to
escape local optima. The objective function that was minimized is the RMSN
between the observed and simulated values of speeds:

RMSN(vobsfollower, v
sim
follower) (6.7)

Bounds and initial values for model parameters have been defined in Figures
4.1 and 4.2. These initial values have been defined as optimal values for data
with lane discipline by algorithm ISRES in that research. Thus, it is expected
that there will be a differentiation in optimal values due to different nature of
data. Three samples of 5000 observations were selected randomly from dataset
“data245”. The amount of observations used in each sample are summarized
in Table 6.1 per vehicle type. A representative amount for each vehicle type is
included in each sample. The optimization process was implemented for each
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Table 6.1: Observations per vehicle type used for calibration of each data sample

a/a Vehicle type Sample 1 Sample 2 Sample 3

1 motorcycle 2665 2701 2626
2 car 1347 1292 1347
3 bus 145 156 156
4 truck 41 29 15
5 light commercial vehicle 56 59 78
6 auto–rickshaw 746 763 778

Table 6.2: Optimized parameters values for dataset “data245” using ISRES algo-
rithm

Parameters
Initial
values

Constraints Optimized
values

for sample 1

Optimized
values

for sample 2

Optimized
values

for sample 3

Mean
parameter
values

min max

a(m/s2) 0.8 0.8 -2.6 0.81 0.82 0.82 0.82
b(m/s2) -3.2 -5.2 -1.6 -5.18 -5.17 -5.08 -5.14
V (m/s) 14.4 10.4 29.6 10.45 10.44 10.44 10.44
s(m) 5.9 5.6 7.5 5.62 5.60 5.60 5.61

b̂(m/s2) -3.1 -4.5 -3.0 -3.01 -3.01 -3.00 -3.01
RSMN - - - 0.21 0.22 0.21 -

sample separately and the results are presented in Table 6.2. For these samples
the optimization process has converged to the optimal set of parameters after
approximately 10000 iterations. For all samples similar parameter values have
been produced and thus the optimization process for the whole dataset is consid-
ered unnecessary. Instead, the mean of the three optimized sets of parameters is
selected and is presented in the last column of Table 6.2. Furthermore, the au-
thors explored the impact of different initial values and the algorithm converged
to the same solution, suggesting robustness of the optimization process. Looking
into initial values that were appropriate for traffic under normal conditions and
optimized values optimized for mixed traffic conditions, the main difference is ob-
served in maximum braking b that the driver of vehicle wishes to apply in order
to avoid a crash. This could be attributed to the fact that more abrupt driving
is observed in a mixed traffic environment. The minimum value of the objective
function, namely the RMSN that was achieved with these optimal values of pa-
rameters was 21%. Then, the calibrated model is validated on dataset “data300”
and RMSN is estimated between observed and predicted speed per time instant.
The results are shown in Figure 6.6 and a comparison with the proposed method
is feasible.
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Figure 6.6: Histograms of RMSN using loess method and Gipps’ model for dataset
“data300”

6.3.3 Exploration of data–driven models

The proposed method identifies the relationships between predictor variables
vleader(t), vfollower(t), the distance D(t) between the two vehicles and the response
data vfollower(t+τ), where τ=0.5 s. After the relevant pattern from “data245” data
series has been identified, the proposed method is applied to “data300” data
series. It requires the input data (vleader(t), vfollower(t) and distance D(t)) and ex-
ports the estimated vfollower(t + 0.5). The RMSN values have been estimated per
time instant t in order to compare predicted and observed speed values and es-
timate the performance of this methodological approach. The validation results
are presented in Figures 6.7, 6.8 and 6.9.

In Figure 6.6, the proposed method outperforms Gipps’ model and produces
a more reliable speed prediction. In Figure 6.7, distance between the follower
and the leader is plotted versus residuals produced by loess method. Residuals
are estimated as the difference between observed and predicted speeds. Higher
values of residuals are observed for smaller distances. Then, in Figures 6.8a and
6.8b, an analysis of the results per vehicle type is attempted. Figure 6.8a shows
the density of RMSN per vehicle type. The best performance of loess method is
achieved for cars and light commercial vehicles, while higher RMSN are observed
for other vehicle types, especially for trucks and auto–rickshaws. In Figure 6.8b
densities of RMSN are outlined per vehicle type of the leader when the follower is
a car. Vehicles pairs car– car and motorcycle– car (leader– follower) have a peak of
density curve lower than RMSN=0.1. The vehicle type plays a significant role in
accuracy of the model. This could be attributed to different driving behavior in
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Figure 6.7: Distance between the follower and the leader versus residuals pro-
duced by loess method for dataset “data300”
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Figure 6.8: (a) Density of RMSN per vehicle type for dataset “data300”, (b) Density
plot of RMSN per vehicle type of the leading vehicle when the follower is a car

different vehicle types, as well as varying vehicle kinematics. The density curve
of vehicle pair truck– car corresponds to higher RMSN than the other vehicle
pairs. Finally, in Figure 6.9 observed speeds are plotted versus predicted speeds
per vehicle type. Linearity is evident for all vehicle types.

Finally, a visual inspection is attempted for dependent and independent vari-
ables used in the proposed method. In Figure 6.10, variables and their correla-
tions are outlined. In the diagonal line, histograms of the variables are presented.
In the upper triangle, values of correlations have been estimated for each poten-
tial pair of variables, while scatterplots of variables are displayed in the lower
triangle. Looking at the first column of Figure 6.10, the lower speeds are, the
higher RMSN is. In addition, a negative relationship is observed for distances,
too.
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Figure 6.9: Observed speeds versus predicted speeds by loess method

6.4 Conclusions

Data driven approaches could be a promising tool for modeling mixed traffic.
They lead to flexible car-following models and thus to more robust and reliable
representation of driving behavior. In this research, an existing methodology for
estimation of car following models has been validated on mixed traffic trajectory
data. This simple methodological approach outperforms the reference (Gipps’)
model for the available data. Data-driven estimation techniques are designed to
address cases in which the traditional approaches do not perform well or cannot
be effectively applied without including undue labor. The data-driven approach
presented in this research is based on a non-parametric method, locally weighted
regression (loess), which might be considered as a generalization of multi-regime
approaches (Antoniou and Koutsopoulos, 2006b; Antoniou et al., 2013). There
are also other data-driven methods such as neural networks (Vlahogianni et al.,
2005b; van Lint et al., 2005) and kernel methods offering similar capabilities.
Karlaftis and Vlahogianni (2011) provide an interesting discussion of such meth-
ods against statistical methods. However, locally weighted regression comprises
much of the simplicity of linear least squares regression with the flexibility of
nonlinear regression. Deep learning networks and Gaussian processes could be
also explored as future prospects.

Models developed for lane–based traffic conditions may not be appropriate to
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Figure 6.10: Visual inspections of model variables including scatterplots, his-
tograms and correlation values

simulate traffic situations in developing countries, where weak lane discipline
is often observed. Traffic in developing countries is so heterogeneous that of-
ten lane–based models cannot be realistic. To overcome some of the associated
limitations, in this research a methodology is proposed using temporary virtual
lanes. An algorithm for the identification of significant lateral changes has been
applied and the feasibility of the method has been explored. As future prospects,
there are some components in the proposed methodology that require further
analysis. The estimation of lane–change duration is one of these. In addition,
the proposed methodology could be employed with flexible data–driven models
Papathanasopoulou and Antoniou (2017), which allow incorporation of further
variables moving towards an integrated solution for the simulation of mixed traf-
fic. For instance, vehicle–dependent models need to be developed in case of het-
erogeneous traffic, as the drivers of vehicles with unequal dimensions tend to
have different driving behaviors; furthermore, different vehicle types are char-
acterized by varying vehicle kinematics. Thus, it is expected that further explo-
ration of data–driven approaches could open up opportunities to understand and
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simulate driving behavior in non–lane discipline conditions with heterogeneity of
vehicle types. Additional research should be performed to determine the factors
that determine its performance, too. The proposed methodological framework is
flexible, less time-consuming and allows the incorporation of additional parame-
ters that may influence driving behavior (such as density of the surrounding area,
vehicle type, drivers’ age, road infrastructure etc.). Vehicle type seems to play a
significant role in speed estimation and should be incorporated as a categorical
variable in the process. Resorting cumbersome reformulations of a fixed model
form could be impractical. However, conventional models such as Gipps’ model
may provide better insight into traffic flow theory. The integration of data-driven
methods in advanced driver assistance systems under mixed traffic conditions
could be very interesting, though additional research should be conducted.





Chapter 7

Discussion and conclusion

7.1 Conclusions

In this research a data–driven methodological approach has been developed and
successfully demonstrated on experimental data, in order to overcome some of
the associated limitations of conventional microscopic models. The proposed
approach is suitable for incorporation into microscopic traffic simulation mod-
els. Data driven approaches could be a promising tool for optimization of micro-
scopic models, as it may lead to more robust and reliable representation of driv-
ing behavior. The proposed approach outperforms the reference (Gipps’) model
and could be an innovative perspective for estimation of microscopic data–driven
models. Flexible models are derived from causal inference and allow the incor-
poration of additional predictor variables, while cumbersome reformulations of
a fixed model form could be impractical. However, conventional models such as
Gipps’ model may provide better insight into traffic flow theory.

On the other hand, model parameters vary in multiple dimensions, includ-
ing across individual drivers, spatially and temporally. The computational and
data requirements in the proposed methodology are such, that allow the applica-
tion of the methodology to each individual vehicle (as the required data could be
obtained e.g. from a GPS trace of the vehicle, and e.g. radars/cameras provid-
ing information about the vehicles around it). Furthermore, the computational
overhead to apply the methodology is minimal and it can be dealt by in-vehicle
processing facilities, in a decentralized way; This is very important in the con-
text of autonomous vehicles. The proposed methodology allows to have not only
different parameters estimated and predicted for each vehicle class, but indeed
for each individual vehicle, in real time. The extrapolation will be needed in the
case of only having a sample of vehicles with the ability to collect/receive the
required data. In this case, it could be practical to identify classes of vehicles,
estimate and predict these parameters for the vehicles comprising the sample
for each class, and then extrapolate this information to the entire population of
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vehicles of this class in the studied area. Besides temporal variability of these
parameters, by class, one can of course foresee a spatial distribution, as traffic
conditions, road characteristics, fleet mix, and other parameters could influence
their value. Microscopic models are also used as input to Adaptive Cruise Con-
trol Systems, which also need to be adaptive and consider the heterogeneity of
the driver behavior. The work presented in this research could be leveraged for
the improvement of such models.

On–line calibration of microscopic traffic simulationmodels for dynamicmulti–
step prediction outperforms the static calibrated models and less than 10% error
in speed prediction even for ten steps into the future. As we move towards more
detailed models, even for online applications, it is expected that dynamic calibra-
tion will play an increasing role for this type of models.

Furthermore, models developed for lane-based traffic conditions may not be
appropriate to simulate traffic situations in developing countries, where weak
lane discipline is often observed. Traffic in the developing world is so hetero-
geneous that often lane-based models cannot be realistic. In this research an
alternative methodology based on temporary virtual lanes is proposed. The in-
tegration of data-driven methods in advanced driver assistance systems under
mixed traffic conditions could be very helpful, though additional research should
be conducted.

Data driven estimation of microscopic models appears to be a promising tool
that could offer considerable benefits if integrated into traffic simulation models,
resulting in higher accuracy and reliability of model outputs.

7.2 Research Contributions

Modeling driving behavior plays a fundamental role in traffic management, safety
research and the development of Intelligent Transportation Systems. This re-
search makes several contributions to the state–of–the–art of microscopic traffic
simulation:

• Amethodological framework based on non–parametric approaches has been
developed for simulation of driving behavior. Microscopic conventional mod-
els represent individual vehicles and their interactions and are capable of
simulating traffic to a high level of detail, but they do require a long exe-
cution time, as their successful application depends on the effectiveness of
calibration process. On the other hand, the proposed methodology offers
great flexibility and there is no need for time consuming calibration process.
Data–driven models result in better fit, comparing to the traditional models,
and thus could be a plausible substitute for theory–based models.

• Computational approaches allow the easy incorporation of additional pa-
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rameters. Conventional models do not allow the easy incorporation of ad-
ditional variables without labor undue, since cumbersome reformulations
of functional form should be performed. Data–driven microscopic models
have been proposed in this research as a way to overcome these limita-
tions and capture driving behavior in an efficient way taking into account
various variables. Additional variables, such as traffic density, have been
incorporated into the proposed models and more detailed models have been
developed.

• The use of various machine learning techniques for estimation of micro-
scopic models is explored. The question of which machine learning tech-
nique could be the most appropriate one for traffic simulation models has
not been answered conclusively. This research provides some more input
into this ongoing active research field.

• The impact of various predictor variables on the models is investigated. A
meta–model is developed to evaluate the magnitude of the effect of the con-
sidered predictor variables on driving behavior.

• Data–driven models are validated on non-disciplinary trajectory data with
heterogeneous mixture of vehicle types and are proved to be a promising
perspective for microscopic traffic simulation in the developing world, where
these conditions occur in a common basis.

• Data–driven models and on–line calibration of microscopic models provide
a robust solution to autonomous driving. Aiming at safety, reliability and
convenience, an autonomous vehicle should adapt to user preferences and
simulate human driving reactions naturally, preventing abrupt acceleration
and jerk. Undoubtedly, in this context, this research contributes signifi-
cantly into learning driving styles and realizing autonomous driving.

• Data–driven estimation of microscopic models appears to be a promising
tool that could offer considerable benefits if integrated into microscopic traf-
fic simulators, resulting in higher accuracy and reliability of model outputs.

Conclusively, better representation of driving behavior contributes substan-
tially into the development of Intelligent Transportation Systems, which are di-
rectly related to the concept of smart cities. This contribution could be translated
to sustainable transportation solutions, reduced costs in terms of safety, time,
money, energy and environmental impact, and by extension to benefits of the
humanity.

7.3 Directions for future research

Directions for further research are outlined in this section.
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• Data–driven simulators

Data–driven microscopic models could be integrated in a traffic microsim-
ulator to be used for real–time applications. The results presented in the
research provide clear evidence that data–driven traffic approaches have the
potential to contribute to improvedmodeling capabilities, in light of new data
and emerging simulation needs. A network–wide validation using a micro-
scopic traffic simulator would offer a flexible environment. Implementation
aspects should be carefully considered.

• Clustering of sub–models

In Section 3.1 two methodological approaches are proposed for estimation of
data–driven models. In this research the focus is given on the first method-
ological approach which is applied directly on the data. In the second
methodological approach, more elaborate approach, data are divided into
clusters before the model fitting. In such a way more detailed models could
be developed and testing on data should be performed. Guidelines for the
selection of one or the other approach and the best way of clustering should
be given.

• Space gaps in the optimization algorithm

In this research speeds have been used in the optimization algorithm so
that the model minimizes the difference between observed and simulated
speeds. It is proposed as a future prospect that space gaps instead of speeds
can be used for the model optimization.

• Incorporation of additional variables in the models

The proposed methodological framework is flexible, less time-consuming
and allows the incorporation of additional variables that may influence driv-
ing behavior (such as density of the surrounding area, vehicle type, drivers’
age, road infrastructure etc.). In addition, the proposed methodology could
be employed with flexible data-driven models which allow incorporation of
further variables moving towards an integrated solution for the simulation
of mixed traffic. In Section 4.5 the incorporation of additional informa-
tion is feasible and density of the surrounding area is explored as an extra
variable. However, there are many variables, the influence of which on driv-
ing behavior has not been explored, yet. Further information on various
predictor variables (such as weather, lighting, road geometry, percent of au-
tonomous vehicles etc.) could be also added to the model and tested if it is
significant.

• Parameters evolution
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In Chapter 5, the prediction of the dynamic parameters was simple, in the
sense that the dynamically calibrated parameters were assumed as the best
available estimate for the short–term values of these parameters. Further
research could consider secondary models that would actually aim at pre-
dicting the evolution of these parameters, as well, e.g. via autoregressive,
polynomial or other statistical forecasting specifications.

• Model calibration separately for each vehicle type

In case study for mixed traffic conditions (chapter 6) the calibration for the
Gipps model as well as for the data–driven model is implemented using a
representative sample from each vehicle type category. For a more in depth
analysis, different models for each vehicle type category could be calibrated
in order to develop more detailed models.

• Vehicle–dependent models

Vehicle-dependent models need to be developed, as the drivers of vehicles
with unequal dimensions tend to have different driving behaviors; further-
more, different vehicle types are characterized by varying vehicle kinemat-
ics. Especially, in case of heterogeneous traffic vehicle type plays a signif-
icant role as it is indicated in Section 6.3.3. The performance of a model
seems to be differentiated as per the vehicle type. The best performance
is achieved for cars and light commercial vehicles, while higher RMSN are
observed for other vehicle types, especially for trucks and auto-rickshaws.
Vehicle type should be incorporated as a categorical variable in the process.
Thus, it is foreseen that further exploration into this could open up oppor-
tunities to understand and simulate driving behavior in non–lane discipline
conditions with heterogeneity of vehicle types.

• Exploration of longitudinal and lateral movement separately for mixed
traffic conditions

In this research speed for mixed conditions is explored as a sum of longi-
tudinal and lateral speed. However, longitudinal and lateral speed could
be explored separately in order to investigate the model efficiency for each
direction.

• Deep learning and tree–based modeling

In this research various machine learning techniques have been used. How-
ever, other methods, such as deep learning and tree–based algorithms,
should also be applied in order to offer an overall comparison of machine
learning techniques for the estimation of microscopictraffic simulation mod-
els.
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• Mixed traffic

Crowd simulation and swarm–like models could be also used for modeling
mixed traffic conditions due to weak–lane discipline characteristics.

• Integrated behavior models

Car–following and lane–changing behaviors should be incorporated into one
data–driven model, as there is interaction between these two behaviors.

• Further experimental analysis

The estimation of data–driven models as well as the dynamic calibration and
multiple time step prediction have been successfully demonstrated using
actual data from a variety of facilities. However, additional testing on richer
data and further applications in different networks need to be performed.
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