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ABSTRACT 

 
Bayesian updating is a powerful method to learn and calibrate models with data 

and observations, facts that is of utmost importance in multiscale problems with 

uncertain microscale status like very random and hard predicted nanocomposite 

behavior. In this work BUS (Bayesian Updating with Structural reliability 

methods) with SuS (Subset Simulation) in a multiscale environment is employed 

to compute the posterior distribution of microscale random parameters in a 

framework that microscale with mesoscale and microscale with macroscale pair 

models converge into each experimental data simultaneously. More specific, every 

sample cluster of every subset within SuS in this parallel double Bayesian problem 

is forced to agree with the other one. In the end, the samples in the final subset 

(posterior samples in Bayesian terms) have the best agreement with experimental 

data. This methodology is very promising for nanomaterial reinforced composites 

which have big uncertainty range with quite unexpected measurements and really 

large number of parameters. It is a gainful direction for engineering practice and 



non-costly experimental investigations, being concurrently quite appropriate for 

every multiscale modeling application.  
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1. Introduction 

 The rapid growth of in situ measured data in structures and sites led to the 

search for a way to find the actual conditions and strength of structural members that 

from a statistical point of view they never are as designed. This is due to many factors 

like building procedure errors, modifications of any assumed parameter of the project 

or even due to the simplifying assumptions of design models. Undoubtedly, the most 

important cause of the uncertainty and the most difficult to mitigate is that of the 

microstructural configuration of materials. Materials inherently contain uncertainty 

that, despite their statistically stable behavior in the macroscale, they could exhibit 

surprisingly unstable behavior in their microstructure. Therefore, it is of the utmost 

importance and necessity to quantify in the best possible way the variation in the 

microstructure and its propagation to the upper scales in order to implement a 

rational validation and a more sophisticated design. Therefore, this work focuses on a 

Bayesian framework that updates the multiscale [1] probabilistic model with data at 

various scales. 

In modern material analysis and design, updating the properties and 

parameters of the microscale is imperative and necessary. However, experimental 
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validation based on measurements on micro-scales, except that they are way too 

costly, are rather complicated compared to traditional measurements at the 

experimental friendly scales. For this second reason, updating the microscale 

knowledge through upper scale observations is much easier and very more promising. 

Despite the great need to cover this gap, there is not much mobility in the engineering 

research community at that direction. On the other hand, it is on the rise the 

stochastic modeling of the microscale, for instance nanomaterial reinforced 

composites [2-5], without of course taking into account the observed behavior of the 

upper scales and then forming the microscale posterior belief in a Bayesian way. In [6] 

also verification and calibration images of stochastic computed parameters were 

used. In Papadopoulos et al. [7] besides the uncertainty in the material properties, the 

uncertainty of geometry has also been taken into account. In parallel, Farrell et al. [54] 

managed to update the uncertainty model at an atomistic level while others [55] 

propose stochastic design process from a manufacturing point of view. All the above 

methodologies would be more integrated if they had considered data from upper 

scales at the same time as stochastic modeling of the microstructure procedure went 

going on and update it appropriately through Bayesian rule. In contrast to the previous 

research efforts, a combination of a multiscale problem and its Bayesian update [8,9] 

has already been investigated while its main applications are in image processing [10-

12]. The closest to material field has been done on the hydraulic properties of soil 

materials [13] without emphasizing the multiscale structure of the material. None of 

those has used SuS techniques in order to model a large number of variable and 

handle very unexpected observation that are both in great need in this field. 

Therefore, a methodology that holistic addresses the problem of modern multiscale 

material analysis and design is absent. 

 Without loss of generality, this work presents a Bayesian update 

computational framework for the hierarchical multiscale analysis of composite 

nanomaterials in which the information on parameters calculated on each smaller 

scale are pass in the upper scales [14,49-53]. However, the methodology is generic 

and can be implemented as is to other bridging scale approaches such as concurrent 

and/or semi-concurrent 𝐹𝐸2 [23,45-48]. The basic idea is to use observations from 
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experimental friendly scales and update the parameters of the lower scales (nanoscale 

here). Consequently, the initial belief of a random parameter of the microscale will be 

properly updated so that the random parameter best reflects reality without ever 

losing its random nature. Thus, the purpose of the work is to update the picture of 

uncertainty on the microscale parameters. 

 In order to achieve the above mentioned, was chosen among more classical 

methods [15] Bayesian Updating with Structural Reliability methods (BUS) to 

formulate the problem in a way that a reliability analysis method is used to calculate 

the probability that particular samples are within or out of a specific failure function 

[16,17]. These samples within failure domain are samples lie in the posterior 

distribution in Bayesian terms. Because the prior assumption of random microscale 

properties is generally quite uncertain (or even arbitrary) due to hard-measured 

microscale nature, the reliability analysis method used is Subset Simulation (SuS) [18]. 

This method will allow calculations of very small probabilities that fit perfectly with 

the nature of the problem. The innovative key in the procedure is to allow only the 

acceptable parameter values in each subset of a double modeling process to proceed 

to the next subsets and thus configure the newest values. Consequently, for the 

modeling of complex microstructures like nanomaterial reinforced composites, BUS 

with SuS will finally results in the updating of each microscale parameter at a 

reasonable time and with conventional computational tools without being negative 

influenced of the large number of parameters or bad initial estimation. This is by far 

the biggest advantage of the proposed methodology. 

 The rest of the paper is organized as follows: section 2 describes the Bayesian 

update theory and how its results can be computed using structural reliability 

methods. Proposed methodology and neural networks that will inverse data from one 

scale to the other are listed in section 3. In section 4, the proposed methodology is 

illustrated with numerical examples that demonstrate its capabilities and efficiency. 
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2. Bayesian model updating in a single-scale problem 

Undoubtedly, no structure can exist without involving uncertainty in its final 

behavior in a real-world example. This uncertainty stems from the differentiation of 

its actual mechanical characteristics such as the properties of materials, geometry and 

loading conditions as compared to the initially assumed. On top of that, epistemic 

uncertainties and model errors are also present. This overall uncertainty can 

nowadays be estimated accurately with modern mathematical and computational 

tools. In the upcoming particular case of material properties, uncertainty always 

initiates at the microscale of the material structure and therefore rational 

construction of probabilistic macroscale models should be based on information on 

updated lower scales.  

2.1. Bayes' theorem 

Any of the parameters mentioned above can be modeled as a set of random 

variables  �⃗�=  (𝑋1, 𝑋2, … , 𝑋𝑛) where 𝑋𝑖 is the random variable of the 𝑖 uncertain 

property. In addition, these variables will be characterized by their joint probability 

density distribution (PDF) 𝑓(�⃗�) =  𝑓(𝑋1, 𝑋2, … , 𝑋𝑛). The whole idea of Bayesian rule 

refers to how these random variables will be modified to take into account what 

actually happened in the real engineering system. For example, measuring the value 

of soil settlement due to flooding would lead to a reassessment of random variables 

that model the mechanical properties of its soil material. It is obvious that there is an 
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initial belief for �⃗� that is updated in a final conviction and they called prior and 

posterior belief, respectively. Practically, is the prior and posterior PDF of �⃗�, namely,  

𝑓(�⃗�) and 𝑓(�⃗�| 𝐷𝑎𝑡𝑎).  

For two events A and B, the Bayes’ rule states that the probability of A 

occurring given that B is true is given by the following ratio: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)  ∙ 𝑃(𝐴)

𝑃(𝐵)
                                                 (1) 

 

In the multiple continuous variables space, the above ratio can be written as follows 

[16,17]: 

 

𝑓(�⃗�| 𝐷𝑎𝑡𝑎) =  
𝐿(�⃗�| 𝐷𝑎𝑡𝑎) ∙ 𝑓(�⃗�) 

∫ ∫ …
+∞

−∞

+∞

−∞
∫ 𝐿(�⃗�| 𝐷𝑎𝑡𝑎) ∙ 𝑓(�⃗�) 𝑑𝑋1𝑑𝑋2 … 𝑑𝑋𝑛

+∞

−∞

           (2) 

where the denominator is a number in 𝑅+ and, in general, is impossible to be 

calculated analytically. The likelihood function 𝐿(�⃗�| 𝐷𝑎𝑡𝑎) describes the 

experimental data in a structural system and may also take into account errors into 

the observation measurement process. It is defined as proportional to the probability 

of event of the 𝐷𝑎𝑡𝑎 given that the random variable vector �⃗� equals to a specific 

variable vector �⃗� is true: 

𝐿(�⃗�| 𝐷𝑎𝑡𝑎)  ∝ 𝑃(𝐷𝑎𝑡𝑎| �⃗� =  �⃗� )                                          (3) 

When observations (thus experimental 𝐷𝑎𝑡𝑎) are made, they often correspond to 

outcomes of the mechanical models. Therefore, the likelihood function must include 

the mechanical models to relate the observation to the model parameters �⃗�. As an 

example, if deformations of a structure are measured, the model predictions of these 

deformations for given values of �⃗�  are required. Let 𝐹𝐸𝑀𝑖(�⃗�) denote such a model 

prediction. Furthermore, let 𝑤𝑖 denote the corresponding observed deformation, and 

let 𝜀𝑖 denote the deviation of the model prediction from the observation. This 

deviation is caused by measurement errors and model errors (those not modeled 

explicitly through �⃗�); it is modeled through the PDF 𝑓𝜀𝑖
(∙). The following relationship 
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holds: 𝑤𝑖 −  𝐹𝐸𝑀𝑖(�⃗�) = 𝜀𝑖. The likelihood function 𝐿(�⃗�| 𝐷𝑎𝑡𝑎) describing this 

observation is therefore: 

𝐿(�⃗�| 𝐷𝑎𝑡𝑎) =  𝑓𝜀𝑖
(𝑤𝑖 −   𝐹𝐸𝑀𝑖(�⃗�) )                                        (4) 

 

 

2.2. Bayesian updating with structural reliability 

methods (BUS) 

 The BUS approach, proposed in [16], is based on a reinterpretation of the 

classical rejection sampling approach to Bayesian updating as a structural reliability 

problem. Rejection sampling [56] is based on the observation that to sample a random 

variable one can perform a uniformly random sampling of the 2D cartesian graph, and 

keep the samples in the region under the graph of its density function (fig.1). Thus, 

consider the augmented outcome space [ �⃗�, 𝑢 ] where 𝑢 is a standard uniform 

random variable in [ 0, 1 ], and define the observation event 𝑍 = { 𝑢 ≤ 𝑐 ∙

 𝐿(�⃗�| 𝐷𝑎𝑡𝑎) },  where 𝑐 is a positive constant that ensures                               𝑐 ∙

 𝐿(�⃗�| 𝐷𝑎𝑡𝑎)  ≤  1   ∀ �⃗�. It is shown in [16] that the posterior PDF can be obtained by 

censoring the prior PDF of  [ �⃗�, 𝑢 ] in the domain { 𝑢 ≤ 𝑐 ∙  𝐿(�⃗�| 𝐷𝑎𝑡𝑎) } and 

marginalizing out 𝑝: 

𝑓(�⃗�|𝐷𝑎𝑡𝑎) ∝  ∫ 𝐼𝑍(�⃗�, 𝑢)
1

0

∙ 𝑓(�⃗�) 𝑑𝑢                                          (5) 

Where 𝐼𝑍(�⃗�, 𝑢) is the indicator function that equals one if 𝑢 ≤ 𝑐 ∙  𝐿(�⃗�| 𝐷𝑎𝑡𝑎)  and 

zero otherwise. The proportionality constant in Eq. (5) is the probability of the event 

𝑍 under the prior PDF of [ �⃗�, 𝑢 ]: 

𝑝𝑧 =  ∫ ∫ …
+∞

−∞

+∞

−∞

∫ ∫ 𝐼𝑍(�⃗�, 𝑢)
1

0

∙ 𝑓(�⃗�) 𝑑𝑢 𝑑𝑋1𝑑𝑋2 … 𝑑𝑋𝑛

+∞

−∞

                  (6) 
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Evaluation of the probability in Eq. (6) corresponds to solving a structural reliability 

problem in the augmented space [ �⃗�, 𝑢 ] with limit state function  ℎ(�⃗�, 𝑢) =  𝑢 − 𝑐 ∙

 𝐿(�⃗�| 𝐷𝑎𝑡𝑎)  

 

 

Figure 1. Schematic representation of rejection sampling procedure 

 This problem can be solved with standard Monte Carlo through generating 

independent samples from the space [ �⃗�, 𝑢 ] . The samples of �⃗� that lie in the failure 

domain { ℎ(�⃗�, 𝑢)  ≤ 0 } will be samples from the posterior distribution 𝑓(�⃗�| 𝐷𝑎𝑡𝑎). 

If the number of observations in 𝐷𝑎𝑡𝑎 is high then the probability 𝑝𝑧 can become very 

small and standard Monte Carlo is too inefficient. Therefore, alternative structural 

reliability methods, such as SuS, are employed that are able to estimate rare events 

more efficiently. 
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2.3.  Subset simulation based BUS 

Subset simulation (SuS) is a structural reliability method, proposed in [31], that 

is especially efficient in estimating small failure probabilities in high dimensional 

random variable spaces. SuS estimates the probability in Eq. (6) through expressing 

the rare event 𝑍 as an intersection of a set of 𝑚 nested intermediate events 𝑍0 ⊂

 𝑍1  ⊂  …  ⊂  𝑍𝑚 in which 𝑍0 represents the certain event and 𝑍𝑚 = 𝑍. The probability 

𝑝𝑧 is written as: 

𝑝𝑧 =  𝑃 (⋂ 𝑍𝑖

𝑚

𝑖=0
) =  ∏ 𝑃(𝑍𝑖|𝑍𝑖−1) 

𝑚

𝑖=1

                                       (7) 

That is, the possibly small probability 𝑝𝑧 is expressed as a product of larger conditional 

probabilities. The events 𝑍𝑖  are defined as 𝑍𝑖 = { ℎ(�⃗�, 𝑢) ≤  𝑏𝑖 } where 𝑏𝑖 are positive 

thresholds, satisfying ∞ =  𝑏0  >  𝑏1  > ⋯  > 𝑏𝑚 = 0.  

 The thresholds 𝑏𝑖 that define the intermediate events are selected adaptively 

such that each conditional probability P(𝑍𝑖|𝑍𝑖−1) equals a target value 𝑝𝑆𝑢𝑆 , with 𝑝𝑆𝑢𝑆 

typically chosen as 𝑝𝑆𝑢𝑆 = 0.1. This is achieved through generating 𝑁 samples 

{ [�⃗�1, 𝑢1], [�⃗�2, 𝑢2], … , [�⃗�𝑁 , 𝑢𝑁] } from [ �⃗�, 𝑢 ], conditional on each of the 

intermediate events 𝑍0, 𝑍1, … , 𝑍𝑚−1 and setting 𝑏𝑖 as the 𝑝𝑠𝑢𝑠 percentile of the 

corresponding limit state function values. Samples conditional on the initial event 𝑍0 

are obtained with crude Monte Carlo. Samples conditional on the events 𝑍𝑖  , for 𝑖 =

1, 2, … , 𝑚 − 1, are obtained with Markov chain Monte Carlo (MCMC) sampling using 

as seeds the 𝑁𝑠 samples conditional on 𝑍𝑖−1 for which ℎ(�⃗�𝑖 , 𝑢𝑖) ≤  𝑏𝑖, where 𝑁𝑠 =

 𝑝𝑆𝑢𝑠 ∙  𝑁.  For more details on the implementation of this method, the reader is 

referred to [16]. The procedure is illustrated in fig.2 for a single-parameter problem 

with prior distribution 𝑁(0, 12) and an experimental data of 4.0 value with 𝑁(0, 0.22) 

additional error. The final samples draw the posterior distribution of the initial 

parameter. 
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Fig2. BUS with SuS procedure for (a) seed samples and (b) conditional samples 
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3.  Bayesian update in multiple scales using BUS 

 

 The use of the classical BUS method with SuS requires some modifications to 

solve multiscale problems, i.e. problems of prior and posterior variable distribution 

taking into account data on different scales. The method is indicated as much as more 

unexpected is the data of the experiment-friendly scales. As experiments at the 

microscale are expensive and very uncertain, the majority of useful and reliable data 

comes from scales which are close to the real structure where engineers are able to 

measure macroscale quantities such as deformation, strength etc. This means for the 

methodology that it is important to be able to correct the prior distribution of the 

microscale input variables with data stems from upper scales in a Bayesian context.  

 The first modification refers to the fact that, as mentioned, the new data is not 

necessarily on the same scale as of the parameter for which we have the prior belief. 

Therefore, it is necessary to translate the measurement at an upper scale as  data on 

the same scale as of the parameter of interest through inverse analysis, which in its 

most common computational implementation involves the identification of 

parameters at the lower scale through a minimization process of the error between 

observed and predicted results [33,34] at the macroscale. In this work, ANN machine 

learning techniques are proposed for this inverse identification process, as explained 

in detail in the following paragraph 3.2. 
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Figure 3 Double multiscale modeling problem process schematic representation 

 

 

 The second modification refers to the treatment of data stemming from 

different scales. These data by definition must be consistent, since they came from 

the same source. For instance, in the case of a structure the mesoscale and the 

macroscale are derived from the same material that is been simulated in its 

microscale. Thus, one specimen and a bridge pillar made of the same concrete type 

for example should have a common microstructure. Therefore, a specific parameter 

of the microscale should propagate information at the upper scales which is consistent 

to the observed parameters at these scales. This is accomplished by accounting only 

for the parameters which produce consistent through scale results, using a clustering 

procedure as explained later. The proposed multiscale BUS methodology exploit 

double process benefits is schematically represented for the generic case of a three-

scale problem in fig.3. 
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Figure 4 (a) microscale  samples of initial Z domain (b) seed samples 
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Figure 5. microscale seed samples for clustered (a) microscale-mesoscale process and (b) microscale-macroscale 

process for each first subset 

  

 Fig. 4a, 4b shows the samples produced in a classical BUS method. The fig. 

5a,5b shows the proposed multiscale BUS process from the sampling point of view 

assuming that experimental data have already be inversed into their microscale 

counterparts. Assuming we are examining the first subset. Then from two 𝑁𝑠 seed 
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samples, only a portion (a cluster) of those will be used to produce 𝑁 and 𝑁 

conditional samples of the next subset for both pair models explained in fig. 3.  

 

 

Figure 6. sampling clustering procedure for (a) intermediate step and (b) final step 

 The process continues until all subsets are accessed and finally samples of the 

posterior distribution are produced from the two pair models where a final clustering 

will be made between the last samples. Therefore, the final result would be samples 

of the microscale where they could simultaneously lead to the mesoscale and the 
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macroscale observations and agreeing in a Bayesian way on experimental data. In the 

end, fig.6a, 6b show the clustering process (selection of the in-agreement samples) for 

an initial and a final step respectively while fig.7 shows the posterior distributions of 

the microscale from both pair models that computed with and without their 

interdependence in the double parallel solution. It is clear that the distributions 

approach each other (to the weighted middle value of their data) without ever 

converging as the BUS for every pair model always converges to the experimental data 

and draws the distribution primarily to the ones there. In the end, only the samples in 

the intersection of the two distributions of the posterior microscale are kept as shown 

in the figure 5b. The distribution of samples is the clustered BUS computed microscale 

PDF. 
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Figure 7 comparison of BUS with SuS computed posterior distribution with and without proposed procedure for (a) 

microscale-mesoscale pair model and (b) microscale-macroscale pair model 

 

 

 

 

 

3.1. Artificial neural networks 

 

 Artificial Neural Networks (ANNs) are a tool in the machine learning area and 

essentially are used as means that associate some inputs with some outputs 

evaluating their relationship. Once properly trained, ANNs are able to reveal unknown 

outputs by giving them new inputs. In order to convert upper scale samples to 

corresponding microscale and thus run the BUS method, it would be necessary to 

reverse the homogenization process. In a linear and elastic problem being multiscale 

simulated using a hierarchical process, this inversion is immediate. In any other case 

that would be more realistic, the problem lies in finding the appropriate micro-inputs 

that would give the correct macro-outputs. In the present work, ANNs were used, 
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which were trained on a database of a large number of multiscale analyses whose 

output was input into ANN and inputs outputs [32]. Alternatively, other methods of 

reverse analysis could be used, eg. simultaneous minimization of the various 

objectives of the fit between measured and predicted data using parallel parsing 

techniques [33,34] or totally deferent approaches that have first be modified for a 

multiscale material problem [35-37] 

 

 A neural network [38,39,22] consists of units called neurons that are linked 

together. The structure of a typical artificial neuron consists of two parts: the net 

function and the activation function. The net function determines how the input data 

are combined within the neuron, while the activation function determines the output 

of the neuron. Consider input variables gathered in a vector �⃗� = [𝜃1, 𝜃2, … , 𝜃𝑛]. In the 

first part, the input data 𝜃𝑖 , 𝑖 = 1,2, … , 𝑛  are multiplied by the respective weight 𝑤𝑖𝑗  

which correspond to the strength of the influence of neuron 𝑗, and the resulting values 

are summed and biased (𝑎𝑗 =  ∑ 𝜃𝑖
𝑛
𝑖=1  ∙  𝑤𝑖𝑗 + 𝑏). The constant term 𝑏 in the net 

function is the bias value and acts as a level shifter; it increases or decreases the 

summation by a constant so that the neuron may cover an offset input range. The 

initial values of the weights are randomly chosen. In the second part, the activation 

function 𝑔(∙) processes the summation result a 𝑗 and gives the output 𝑦𝑗 of neuron 𝑗. 

The network’s architecture (or topology) describes the links among the artificial 

neurons. These can be organized in layers that are connected to each other with 

different patterns. The training of an ANN can be considered as a general function 

optimization problem, where the adjustable parameters are the weights 𝑤 of the 

network. The objective function that is optimized is usually the mean sum of squared 

network errors [40]. 

 

𝐸𝑑 =
1

𝑁
∑ 𝑒𝑖

2

𝑁

𝑖=1

                                                                           (8) 

 

where 𝑒 = (𝑦 − 𝑦(𝑤)) with 𝑦 being the exact value of the training data and 𝑦(𝑤) the 

network’s response. Large weights can cause excessively large variance of the output. 
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A way of dealing with the negative effect of large weights is regularization. The idea 

of regularization is to make the network response smoother through modifying the 

objective function by adding a penalty term that consists of the squares of all network 

weights. This additional term favors small values of weights and minimizes the 

tendency of the model to overfit. MacKay [41] introduced the Bayesian regularization, 

which sets the optimal performance function to achieve the best generalization based 

on inference techniques. The Bayesian optimization of the regularization parameters 

requires the computation of the Hessian matrix at the minimum point, which can be 

found by using the Levenberg–Marquardt optimization algorithm [42,43]. 

 

 

 

 

 

3.2 ANN based inverse multiscale analysis 

 

 

 

 

 

 

Figure 8. Schematic representation of ANN training. 
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 Inspired by the steps described in [32], the whole procedure can be itemized 

as follows:   

(1) The computational model of a particular problem has to be first developed 

using the appropriate FEM software for microscale experiment modeling. The next 

step is to perform multiscale modeling analysis and result the final macroscale 

behavior.  

(2) Input points (IP) of the computational model are considered as random 

variables described by a probability distribution; the uniform distribution is a ‘‘natural 

choice’’ as the lower and upper limits represent the bounded range of the physical 

existence of IP. However, also other distributions can be used, e.g. the Gaussian one. 

One IP is simulated randomly and by performing multiscale analysis the result is 

upper-scale output point (OP) of every IP. 

(3) A multiple calculation (Monte Carlo simulation or Latin hypercube sampling 

method [57,58] better) of the deterministic computational model using random 

realizations IP is performed and the respective statistical set of the upper-scale 

response OP is obtained. Note, that the selection of appropriate number of 

simulations is driven by many factors, mainly by complexity of the problem 

(computational demand), structure of neural network and variability of IP. No general 

rule can be therefore suggested. 

(4) Random microscale values of IP (now outputs of the ANN) and the 

respectively upper-scale responses from the computational model OP (now inputs of 

the ANN) serve as the basis for the training of an appropriate artificial neural network. 

This key point of the whole procedure is illustratively sketched in Fig. 8.  

(5) The last step is the results verification; the calculation of the multiscale 

computational model using IP should result in a minimum error between ANN outputs 

and multiscale modeled outputs. A comparison with those will show to what extent 

the inverse analysis was successful, and in any other way the ANN should be trained 

from the very start and the present proposed methodology should stop and start again 

from the beginning.  
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3.3. Multiscale BUS with SuS algorithm 

 

 

 Below is the algorithm that uses the above mentions key points (agreement 

between scales and inverse multi-scale analysis) and results in the determination of 

the posterior distribution of the microscale parameters which would potentially agree 

with the right experimental data to the higher scales in a Bayesian way. First the user 

has to define the 𝑁 (number of samples in each intermediate step), 𝑁𝑓 (number of 

final samples) and 𝑝𝑆𝑢𝑆 (probability of intermediate subsets) and then generate 𝑁 

samples 𝜉1
𝑗
, 𝑗 = 1, 2, … , 𝑁 from the (𝑛 + 1)-variate independent standard normal 

distribution 𝜑𝑛+1 having already conduct inverse multiscale analysis. Next, the 

domain 𝑍1 = { ℎ(𝜉1
𝑗
)  ≤  𝑏1 } is defined wherein 𝑏1 is chosen as the 𝑝𝑆𝑢𝑆 percentile of 

the samples ℎ(𝜉1
𝑗
), 𝑗 = 1,2, … , 𝑁𝑠. 𝑁 conditional samples 𝜉𝑖

𝑗
, 𝑗 = 1, 2, … , 𝑁 next is 

generated from the (𝑛 + 1)-variate independent standard normal distribution 

conditional on 𝑍𝑖−1, 𝜑𝑛+1(𝜉|𝑍𝑖−1) through a MCMC algorithm (e.g., [31,44)] where 𝑖 

denotes the iteration count. The process is repeating for the domain 𝑍𝑖 =

{ ℎ(𝜉)  ≤  𝑏𝑖 } for wherein 𝑏𝑖 is chosen as the 𝑝𝑆𝑢𝑆 percentile of the samples or 0, 

whichever is larger. Finally, all samples from 𝜉𝑖 that are in the domain 𝑍𝑈 =

{ ℎ(𝜉)  ≤ 0 } identified and 𝑁𝑓 conditional samples 𝜉𝑘, 𝑘 = 1, 2, … , 𝑁𝑓 are generated 

from the (𝑛 + 1)-variate independent standard normal distribution conditional 

on  𝑍𝑈 , 𝜑𝑛+1(𝜉|𝑍𝑈). This uses a MCMC algorithm where the seeds are the samples 

identified in previous step. All this process is lying in a double clustering environment 

as shown in the flow chart and guarantee the best possible agreement with 

experimental data at upper scales. 
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Figure 9 Flow chart for the proposed methodology 
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4. Numerical Examples 

  

This section demonstrates two numerical examples based on the proposed 

methodology. The first application refers to the problem of updating the 

microstructural material properties of a carbon nanotube (CNT) reinforced composite 

(RC). In particular, the matrix and carbon nanotube properties are updated at the 

nanoscale by mesoscale and macroscale measurements no matter how unexpected 

they are. The second application that uncovers the full potential of the proposed 

methodology, combines quite unexpected measurements at the upper scales with a 

very large number of random variables of uncertain parameters modeled as a 

stochastic field at the microstructure. The applications unfold the capabilities of the 

proposed approach in a simple and concise manner highlight perfectly its efficiency.  
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Figure 10 Hierarchical multiscale steps for RVE modeling  

 

 The modeling of the microscale in the following two examples was done by the 

following methodology. Following the steps described in [27], the Representative 

Volume Element (RVE) is constructed following a sequential approach as shown in 

figure 10. At the lowest scale, the interatomic relations between carbon atoms are 

governed by a quadratic force field potential and a molecular structural mechanics 

(MSM) model is formed for the simulation of stand-alone CNTs. According to MSM, 

the C–C covalent bonds are substituted by continuum beam elements allowing the 

atomic lattice of the nanotube to be modeled as a nanoscale space frame. Proceeding 

to the next scale, the space frame is reduced to an equivalent beam element (EBE) 

which is used as the basic structural element in the chain construction of long 

microscale CNT “ropes” inside the surrounding matrix. The final microstructured RVE 
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model is formulated by embedding these equivalent beam elements into the finite 

element discretized bulk matrix. A detailed description of the MSM approach as well 

as the multiscale modeling steps followed for the discretization of a microstructured 

RVE model with only one CNT, is given in detail in [27-30]. The present work extends 

this approach to the microstructured model of RVE which contains a 2.0 % weight 

fraction (w.f.) 240 𝑛𝑚 length EBE of CNTs that represented by two perpendicular 

elements inside a matrix volume of  250 ∙ 250 ∙ 50  𝑛𝑚3 (fig 11). RVE was chosen as is 

in order to simulate adequately every detail of the microstructure and also to 

effectively model the isotropic behavior at a plane stress environment, which is 

necessary for the first numerical application. 

 

      

 Figure 11. nanoscale RVE finite element mesh 
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4.1. Example 1 

 

 

 

Figure 12 ANN (a) efficiency and (b) error computation 

 

This example examines the Bayesian updating of a CNT RC and in particular the 

PDFs of the elastic modulus of carbon nanotubes and its surrounding matrix. A 

hierarchical modeling strategy is considered as explained above in fig. 10. The 
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equivalent elastic modulus of EBE (2.0 % 𝑤. 𝑓.) was assumed to be simulated by a 

normal (Gaussian) distribution with 𝜇 = 310 𝐺𝑃𝑎 and 𝜎 = 62 𝐺𝑃𝑎 while the 

surrounding matrix by a normal distribution with 𝜇 = 55 𝐺𝑃𝑎 and σ = 5.5 𝐺𝑃𝑎.  

As a first step, ANNs have been constructed linking nanoscale with mesoscale 

and nanoscale with macroscale as proposed algorithm suggests in paragraphs 3.2 and 

3.3. In this application two ANNs from multilayer feed-forward network’s category are 

used consists of one input layer, one hidden layer and one output layer. An example 

of the performance of such an ANN is shown in fig.12. It is clear that these ANNs 

provide satisfactory results with a minimum possible error trained by over 1000 

points. Note that the selection of the training algorithm and the architecture of the 

ANN is problem dependent so the effectiveness and the efficiency has to be examined 

separately for every case. The computational cost of training such an ANN can be very 

high for way too advanced models, yet is the time optimum among other complex 

inverse tools. 

 

 

 

Figure 13 finite element mesh of (a) mesoscale specimen and (b) macroscale specimen for multiscale analysis 

implementation 

 

The figure 13a shows the mesoscale specimen of the problem, namely a 

cylindrical specimen of 450 𝑚𝑚 height and a radius of 75 𝑚𝑚, where its elastic 

modulus resulted from a multiscale analysis based on the 1st order homogenization 

[27] in relation to the RVE of the problem. The analysis was performed in a finite 

element method framework. The figure 13b shows the macroscale specimen of the 
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problem, that is, a 4 m-long cantilever with a 30 × 30 𝑐𝑚 cross-section with a load of 

1000 𝑘𝑁 at its edge. To solve the problem according to the proposed in this paper, 

experimental data were considered of 83 𝐺𝑃𝑎 elastic modulus 𝐸 for mesoscale 

specimen with an average additional error of mean 0.0 and a standard deviation of 

16.0, and for the macroscale specimen experimental 36 𝑐𝑚 displacement 𝑢 with an 

average of an additional error 0.0 and standard deviation 7.0. The final updated 

posterior distribution of the modulus of elasticity at the nanoscale RVE is shown in the 

fig. 14a while fig. 14b shows the posterior distribution of the modulus of elasticity at 

the components of the nanoscale RVE (prior 𝑁(310, 622) and 𝑁(55, 5.52) as 

mentioned). Note that similar change rate for every nanoscale component within RVE 

is assumed here in order to avoid infinite solutions in this material science problem 

without loss of generality. The final distribution of material components agrees with 

all experimental data on each scale in a Bayesian way. The final results are the 

equivalent elastic modulus of EBE distributed with 𝜇 ≅  349.0 𝐺𝑃𝑎 and 𝜎 ≅

17.2 𝐺𝑃𝑎 while for the matrix 𝜇 ≅  78.5 𝐺𝑃𝑎 and σ ≅ 1.6 GPa. 
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Figure 14. prior and posterior distribution of elastic modulus for (a) homogenized nanoscale RVE (b) for EBE and 

matrix 
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4.2. Example 2 

 

 

Figure 15: non-overlapping window approach (image on [19]) 

 The second example deals with the common practice of extracting and 

updating the probabilistic characteristics of random microstructures based on partial 

evidence of image data and measurements at the material response at upper scales. 

To this purpose, a non-overlapping windowing technique is implemented for the 

image segmentation into smaller size statistical volume elements (SVEs) as shown in 

fig.15 which depicts such an image of a CNT RC of ~1.5 𝜇𝑚2 surface consisted of a 

total of 2500 SVEs. Each of these may have the same behavior, about the same or not 

at all similarities with the overall RVE. This is a reasonable assumption, given the 

uncertainties in such a small scale. Each of SVE parameter will then be updated, in this 

case, their modulus of elasticity, based on the experimental data of the above scales 

and in the end, will be shown that the deviation between every posterior variable 

decreases dramatically. Every SVE is directed so that final RVE be consistent with the 

experimental data, since Bayesian updating always leads to a more confidence on the 

posterior beliefs and so smaller deviations. 
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Figure 16: (a) model and (b) finite element mesh of second numerical example typical RVE 
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 The above analysis will be carried out as follows. Initially, a 2.0 % 𝑤. 𝑓. CNT 

reinforced matrix 1200 ∙ 1200 𝑛𝑚2 RVE is used to model multi-scaling problem (fig. 

16). A small segment of this (fig17) is then chosen as 24 ∙ 24 𝑛𝑚2 which differ in the 

modulus of elasticity of its matrix as well as the modulus of elasticity, the geometry of 

all EBE and of course the local CNT 𝑤. 𝑓. The case is that each of the 2500 windows is 

a random variable with a certain prior distribution of its elastic modulus. Therefore, 

each distribution will be updated into its posterior form taking into account the 

measured experimental data of the above scales according to the methodology 

presented in this paper. 

 

 

Figure. 17 finite element mesh of a typical SVE 

 Each window is a random variable which considered as follows. The mean 

value and the standard deviation of the initial set of random variables consist of two 

also random variables. Therefore, the random variable of each window has a mean 

value lies in (𝜇 = 100, 𝜎2 = 100) and a standard deviation lies in (𝜇 = 10, 𝜎2 = 1). 

These simplified distributions are based on observations through Monte Carlo 

simulation on 106 analyses of FEM model of fig. 17, each one with different 

parameters and geometrical configuration. At the end, 2500 normal distributions of 

elastic modulus will be generated, each corresponding to the prior distribution of 
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every window. Note that stationarity between distribution is assumed and also keep 

that the choice of normal distribution type does not affect the successful completion 

of the methodology. Each prior distribution is then updated by Bayesian' theorem 

from the experimental data of the upper scales, which were assumed to be 135 𝐺𝑃𝑎 

elastic modulus and 22 𝑚𝑚 cantilever deflection for the mesoscale and the 

macroscale, respectively. Note that the mesoscale and macroscale models are the 

same of those in first example both in nature and in numerical terms (fig. 13). The 

updating of every SVE is shown in fig.18 in detail. The visual representation of the 

results by covariance or the correlation coefficient of each variable [20,22] also would 

be very helpful. For this purpose, the following 2𝐷 autocorrelation index 𝑅 is 

introduced. The spatial correlations have been calculated for every lag (𝑘, 𝑙) according 

to the following formula [21]: 

𝑅(𝑘, 𝑙) =  
1

𝑁𝑆𝑉𝐸 − 1
∙  ∑ ∑ (

𝑋(𝑖, 𝑗) −  �̅�

𝜎𝑋
)

√𝑁𝑆𝑉𝐸

𝑗=0

√𝑁𝑆𝑉𝐸

𝑖=0

∙ (
𝑋(𝑖 + 𝑘, 𝑗 + 𝑙) −  �̅�

𝜎𝑋
)        (9)  

where �̅� is the spatial average value (spatial mean elastic modulus in this case) while 

𝜎𝑋 is the standard deviation of quantity 𝑋. 

 



[37] 
 

Marios Impraimakis                                          Stochastic Multiscale Analysis; Bayesian Multiscale Update 

 

Figure 18 (a) prior and (b) posterior elastic modulus expected value of each SVE 

 

 

 

The conclusion is that each SVE has been updated based on the experimental 

data of the upper scales as well as that the deviation between them decreased 

dramatically as each SVE is directed so that final RVE elastic modulus agrees with the 

experimental data. In particular, autocorrelation values increased, meaning that all 

the variables approach each other (random variables are getting closer) and even 

approach in such a way that the total RVE is in agreement with the experimental data 

in Bayesian terms but without ever losing their (different) random nature. Also, the 

denominator consists of standard deviation for every Bayesian updated variable 

decreases leading the same result in autocorrelation function (fig. 19). All the above 

leads to a closer nature of the random variables and so better correlation. The 

following figures (19a,19b) show the results schematically. 
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Figure 19: (a) prior and (b) posterior autocorrelation function  
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5. Conclusions 

 Bayesian updating is a powerful method to learn and calibrate models with 

data and observations, facts that is of utmost importance in problems like 

nanocomposites due to their very random and hard predicted behavior. In this work 

BUS with SuS in a multiscale environment was employed to compute the posterior 

distribution of nanoscale random parameter in a framework that nanoscale with 

mesoscale and nanoscale with macroscale pair models converge into each 

experimental data simultaneously. More specific, every sample cluster of every subset 

within SuS based BUS in this parallel double problem forced to agree with the other 

one. Therefore, because our initial assumption of microscale properties is generally 

quite uncertain (or even arbitrary), the reliability method used is SuS. This method 

allowed calculations of very small probabilities that fit perfectly with the nature of the 

problem. Finally, in order to achieve the maximum plausibility of the final results, only 

the acceptable parameters were selected in each subset of the process as described 

in Section 3. Thus, for the modeling of microscale updating problems like nanomaterial 

reinforced composites, BUS with SuS is recommended, which will finally result in the 
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updating of each microscale parameter at a reasonable time and with conventional 

computational tools without being influenced of the number of parameters or bad 

initial estimation. This is by far the biggest advantage of this methodology. In 

conclusion, this methodology is very promising for nanomaterial reinforced 

composites which have big uncertainty range with quite unexpected measurements 

and really large number of parameter and It is a gainful direction for engineering 

practice and non-costly experimental investigations, being concurrently quite 

appropriate for every multiscale modeling application. 
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