

Μεταπτυχιακή Διπλωματική Εργασία

«Υπολογιστική προσέγγιση τάσεων-παραμορφώσεων στη διαδικασία συγκόλλησης κυλινδρικών σωλήνων, διαφορετικού υλικού, με αναλυτική λύση και χρήση πεπερασμένων στοιχείων.»

Ζησοπούλου Ασημίνα Επιβλέπων Καθηγητής: Α.Μ. 09516004 Γιαννακόπουλος Αντώνιος Τριμελής εξεταστική επιτροπή: Γιαννακόπουλος Αντώνιος, Καθηγητής Τσόπελας Παναγιώτης, Αναπληρωτής Καθηγητής Ζήσης Αθανάσιος, Επίκουρος Καθηγητής

<u>Ευχαριστίες</u>

Η παρούσα Διπλωματική εργασία εκπονήθηκε στα πλαίσια του Μεταπτυχιακού Προγράμματος Σπουδών ¨Εφαρμοσμένη Μηχανική¨, του τομέα Μηχανικής, του Εθνικού Μετσόβιου Πολυτεχνείου (ΕΜΠ), υπό την επίβλεψη του Καθηγητή κ. Γιαννακόπουλου Αντώνιου.

Πριν από την παρουσίαση της Διπλωματικής μου εργασίας, αισθάνομαι την υποχρέωση να ευχαριστήσω ορισμένους από τους ανθρώπους που γνώρισα, συνεργάστηκα μαζί τους και έπαιξαν σημαντικό ρόλο στην πραγματοποίησή της.

Πρώτα από όλους, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή της Διπλωματικής εργασίας, κ. Γιαννακόπουλου Αντώνιο για την ευκαιρία που μου έδωσε να ασχοληθώ με ένα τόσο ενδιαφέρον αντικείμενο, που ανταποκρίνεται στο έπακρο στα επιστημονικά μου ενδιαφέροντα, αλλά και την εμπιστοσύνη, την αμέριστη συμπαράσταση και εκτίμηση καθόλη την διάρκεια της εκπόνησης της εργασίας.

Εν συνεχεία, θα ήθελα να απονείμω ιδιαίτερες ευχαριστίες στο κ. Δρ. Βαριά Ανδρέα που εν μέσω του Καθηγητή μου κ. Γιαννακόπουλο Αντώνιο, μου εμπιστεύθηκε το αντικείμενο της παρούσας μελέτης και την επίλυση ενός τόσου σημαντικού θέματος της Δημόσιας Επιχείρησης Ηλεκτρισμού (Δ.Ε.Η.).

Επίσης, ευχαριστώ τα υπόλοιπα μέλη της Τριμελούς επιτροπής, τους κυρίους Τσόπελα Παναγιώτη, Αναπληρωτή καθηγητή του τομέα Μηχανικής και τον Ζήση Αθανάσιο, Επίκουρο Καθηγητή του τομέα Μηχανικής, για την αποτελεσματική συνεργασία και συμβολή τους στην τελική μορφή της εργασίας. Τις ευχαριστίες μου, ακόμη, εκφράζω και στην υποψήφια Διδάκτωρ του τμήματος Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών (Σ.Ε.Μ.Φ.Ε) Παπαθανασίου Σπυριδούλα που με τα πνευματικά της προσόντα και το ήθος της συνέβαλε ουσιαστικά στην ολοκλήρωση της Μεταπτυχιακής μου εργασίας.

Τέλος, θέλω να ευχαριστήσω θερμά τους γονείς μου Δημοσθένη και Ελένη, καθώς και τον αδερφό μου Δημήτρη, που με υπομονή και κουράγιο μου προσέφεραν την διαχρονική ηθική και υλική συμπαράσταση και στήριξη των επιλογών μου.

<u>Περίληψη</u>

Η παρούσα εργασία αφορά ένα πραγματικό πρόβλημα σχεδιασμού, στην κατασκευή ενός ατμοπαραγωγού. Πιο συγκεκριμένα πρόκεται να συγκολληθούν με περειφερειακή ραφή, δύο αυλοί ατμού, κατασκευασμένοι από κράματα διαφορετικού συντελεστή θερμικής διαστολής και διαφορετικά μέτρα ελαστικότητας. Γίνεται, λοιπόν, μια προσπάθεια εύρεσης των θερμικών τάσεων που αναπτύσσονται στις σωλήνες, αλλά και μια εκτίμηση ανάπτυξης ρωγμών.

Δίδεται μία αναλυτική λύση για την ανάπτυξη των τάσεων, βασιζόμενη στην θεωρία για λεπτά κελύφη (thin shells theory). Αρχικά, υπολογίζονται οι αξονικές και οι περειφερειακές τάσεις που αναπτύσσονται στις σωλήνες, σε τρία διαφορετικά είδη διατομών. Το πρώτο είδος είναι οι ανοιγτές διατομές, οι οποίες μπορούν να διασταλλούν ή να συσταλούν επί της ουσίας ελευθέρα. Το δεύτερο είδος διατομής είναι οι πακτωμένες διατομές, οι οποίες έχουν πακτωθεί στις άκρες τους και δεν μπορούν να κινηθούν παραπάνω από το αρχικό τους μήκος. Στο τρίτο είδος διατομής βρίσκονται οι κλειστές διατομές, σύμφωνα με τις οποίες οι σωλήνες δέχονται μια εφελκυστική, αξονική πίεση στα άκρα τους. Έπειτα, αναλύονται για τις παραπάνω διατομές οι συνθήκες φόρτισης. Πρώτα, μελετάται η ομοίομορφη πίεση που αναπτύσσεται στο εσωτερικό των σωλήνων και μετά η διαφορά θερμοκρασίας έτσι όπως ακριβώς δίδεται στα πραγματικά στοιχεία. Επιπλέον, γίνεται υπέρθεση των δύο αυτών ειδών φόρτισης, καθώς η ανάλυση που παρίσταται είναι ελαστική. Προσδιορίζονται οι μηχανικές τροπές που αναπτύσσονται στους τρεις άξονες (x,r,θ) σύμφωνα με το νόμο του Hooke, αλλά και η ακτινικήκαι η αξονική μετατόπιση του κελύφους. Οι ακτίνες και τα πάγη των δύο σωλήνων, λόγω των διαφορετικών ελαστικοτήτων, έχουν διαφορετικές τιμές. Η συγκόλληση, όμως, υποχρεώνει τις δύο σωλήνες να αποκτήσουν την ίδια ακτίνα και κοινή εφαπτομένη. Το συμβιβαστό των μετατοπίσεων, για τις επιφανειακές παραμορφώσεις και την κλίση αυτών, αλλά και η εξίσωση ισσοροπίας δίνουν τις επιθυμητές τιμές.

Εν συνεχεία, το πρόγραμμα πεπερασμένων στοιχείων Abaqus, μας βοηθάει στην ανάλυση του προβλήματος αυτού και αντίστοιχα στην εύρεση των τάσεων. Μελετάται ως αξονοσυμμετρικό πρόβλημα και στα τρία είδη διατομών και στα δύο είδη φορτίσεων. Τα αποτελέσματα που εξάγονται ως προς τις τάσεις συγκρίνονται με αυτά της αναλυτικής λύσης.

Τέλος, μελετάται η έναρξη πλαστικοποίησης και ρηγμάτωσης. Τοπική πλαστικοποίηση συμβαίνει εφόσον η Mises τάση υπερβεί το όριο διαρροής, στην υψηλότερη θερμοκρασία λειτουργίας του δοκιμίου ή και στην χαμηλότερη. Η εναλλακτική μορφή αστοχίας ενδέχεται να εμφανιστεί λόγω ρηγμάτωσης του υλικού. Στην περίπτωση αυτή, εξετάζουμε τις ορθές τάσεις και εφόσον αυτές είναι ισχυρά εφελκυστικές δημιουργούνται κρίσιμα σημεία. Οι διατμητικές τάσεις είναι σημαντικές για τις διεπιφάνειες των υλικών γιατί τότε είναι πιθανό να αναπτυχθεί ρωγμή. Προφανώς σε περίπτωση που δεν υπάρχουν αρχικά ρωγμές, με εξαίρεση τις διεπιφάνειες, ο σχεδιασμός μας εντοπίζεται στην εύρεση κύκλων φόρτισης που

οδηγεί σε ανάπτυξη μικρορωγμών. Το φαινόμενο αυτό συνιστά την κόπωση του υλικού (fatigue) και μάλιστα το πρώιμο στάδιό της. Αυτό, λοιπόν, που από φυσικής πλευράς ερευνάται είναι εάν οι αρχικές κρυσταλλικές ατέλειες του υλικού, παρόλο που δεν δημιουργούν μακροσκοπικά πλαστικότητα, αναδιατάσσονται, πολλαπλασιάζονται και δημιουργούν περιοχές κυκλικής ολίσθησης, σε πολύ μικρές κλίμακες Επομένως, χρειαζόμαστε φαινομενολογικούς νόμους που να συνδέουν τις τάσεις με τον αριθμό κύκλων φόρτισης-αποφόρτισης.

<u>Abstract</u>

This thesis deals with a real design problem in the construction of a steam generator. More specifically, it is to be welded with a regional seam, two steam vessels, made of alloys of different coefficient of thermal expansion and different modulus of elasticity. There is, therefore, an attempt to find the thermal stresses, developing in the pipes, as well as a crack growth estimate.

An analytical solution for the development of stresses is given, based on the theory of thin shells. Initially, the axial and hoop stresses, occurring in the pipes, are calculated, in three different types of cross sections. The first type is open cross sections, which can expand or contractile on the free. The second type of cross-section is the fixed sections, which have been stamped at their edges and can not move beyond their original length. In the third cross section there are the closed sections, according to which the pipes receive a tensile axial pressure at their ends. Then, the loading conditions are analyzed for the above cross sections. First, the uniform pressure developing inside the pipes and then the temperature difference as in the actual data be given. In addition, these two types of loading are superimposed, as the analysis is presented is elastic. The strains developed in the three axes (x,r,θ) according to Hooke's law, as well as the radial and axial displacement of the shell, are determined. The radius and thicknesses of the two pipes, due to different elasticities, have different values. Welding, however, forces the two pipes to acquire the same radius and common tangent. The symmetry of the displacements, for the surface distortions and their slope, as well as the equilibrium equation give the desired values.

The Abaqus finite element program then, helps us to analyze this problem and find the developing stresses. It is studied as an axisymmetric problem in all three types of cross sections in both types of charges. The results obtained in terms of trends are compared with those of the analytical solution.

Finally, the beginning of plasticity and cracking are studied. Local plasticity occurs if the Mises value exceeds the yield stress, at the highest operating temperature or at the lowest. The alternative form of failure may occur due to cracking of the material. In this case, we are looking the normal stresses and if these are strong tensile, critical points are created. Shear stresses are important for the material interfaces because then a crack is likely to develop. Obviously, if there are no initial cracks, except for the interfaces, our design is located in finding load cycles that lead to microcracking. This phenomenon is the fatigue, the early stage. What is physically explored is, therefore, that the original crystalline defects of the material, even though they do not create macroscopic plasticity, are rearranged, multiplied and create circular glide areas, on very small scales. Therefore, we need phenomenological laws linking trends to number of charge-discharge cycles.

Κεφάλαιο 1.	Εισαγωγή και Περιγραφή προβλήματος				7
Κεφάλαιο 2. ελαστικότητα	Μεθοδολογία 13	Ανάλυσης	; Τάσεων	ν-Παραμορφώ	σεων με
2.1. Проба	έγγιση με Θεωρί	α Κελυφών (s	shell approac	h)	13
Κεφάλαιο 3.	Αριθμητική Μοντελοποίηση				47
Κεφάλαιο 4. Πεπερασμένα ο	Σύγκριση της στοιχεία	Αναλυτικής	λύσης και	της Μοντελα	ποίησης με 212
Κεφάλαιο 5. Θραυστομηχαν	Κόπωση, νκή		ρηγμάτο	οση 	και 273
Κεφάλαιο 6. Προτάσεις	Συμπεράσμ	ιατα		290	και

Κεφάλαιο 1. Εισαγωγή και Περιγραφή προβλήματος

Για την βιομηχανική κατασκευή, η διαδικασία της συγκόλλησης και της κοπής των υλικών έχουν θεμελιώδη σημασία.

1.1.Κατανομές θερμοκρασίας

Οι συνθήκες ηλεκτρικής συγκόλλησης επηρεάζουν σημαντικά επακόλουθα φαινόμενα, όπως οι παραμένουσες τάσεις, η συρρίκνωση και οι μεταλλουργικές και φυσικο-χημικές αλλαγές, όπως η εμφάνιση μαρτενσίτη κατά την ψύξη της συγκόλλησης (Rosenthal, 1941). Το ηλεκτρικό τόξο της συγκόλλησης διοχετεύει θερμότητα πάνω στη ραφή, η οποία στην συνέχεια οδηγεί σε μεγάλη τοπική αύξηση της θερμοκρασίας (>1500°C), που προκαλεί τοπικά τήξη των συνδεόμενων μεταλλικών τμημάτων. Στη συνέχεια, η θερμική αγωγιμότητα διαχέει αυτήν την υψηλή θερμοκρασία σε μια περιοχή γύρω από την διέλευση του τόξου συγκόλλησης. Το υλικό του ηλεκτροδίου λιώνει και καταναλώνεται με ταχύτητα σύντηξης u(~0.3-1.0cm/s) που είναι ανάλογη της πυκνότητας ρεύματος i(~1000-2500 A/cm²). Η ολική παρεχόμενη ισχύς $Q_t = VI$ εξαρτάται από την διαφορά ηλεκτρικής τάσεως V(~20-30V), το ηλεκτρόδιο συνήθως απορροφά 14-17% της παρεχόμενης ισχύος και τα συγκολλούμενα τμήματα το υπόλοιπο ($Q_p \approx 0.8 Q_t$).

Η κατανομή της θερμοκρασίας λόγω δράσεων του ηλεκτρικού τόξου είναι ζήτημα, αντικείμενο της προτεινόμενης ανάλυσης, ιδιαίτερα σε καταστάσεις περιφερειακής ραφής, μεταξύ δύο σωλήνων από ειδικούς χάλυβες. Αυτό υποθέτει μια τρισδιάστατη ανάλυση της εξίσωσης διάχυσης θερμότητας σε κυλινδρικές συντεταγμένες, ώστε να εξεταστεί το κέλυφος των σωλήνων. Το ήμισυ του σωλήνα θα εξεταστεί, διότι οι σωλήνες μπορεί να έχουν διαφορετική θερμική διάχυση, θερμική αγωγιμότητα K και ειδική θερμότητα C. Συνεπώς η θερμική ισχύς του κάθε σωλήνα θα είναι ανάλογη του C του κάθε σωλήνα. Σε μια απλούστερη μορφή η κατανομή της θερμοκρασίας θα μοντελοποιηθεί σαν αξονοσυμμετρική, ως προς τον άξονα των σωλήνων κα η ταχύτητα του τόξου της συγκόλλησης θα αγνοηθεί. Εναλλακτικά, με την βοήθεια των πεπερασμένων στοιχείων, η παροχή θερμότητας θα εφαρμοστεί σε μία περιοχή διαμέτρου ίσης με την διάμετρο του ηλεκτροδίου στην εξωτερική επιφάνεια των σωλήνων.

Το δεύτερο σημαντικό ζήτημα είναι ο ρυθμός ψύξεως της συγκόλλησης. Μία πρώτη προσέγγιση θεωρεί ότι ο ρυθμός ψύξεως $\frac{\partial T}{\partial t}$ είναι ανάλογος του τετραγώνου της θερμοκρασιακής διαφοράς $\frac{\partial T}{\partial t} = -2\pi\kappa u(T - T_0)^2/Q_p$. Αυτός ο ρυθμός ψύξεως αλλάζει, όμως και την πλαστική συμπεριφορά του υλικού συγκόλλησης, πράγμα που πρέπει να ληφθεί υπόψη στην προτεινόμενη μοντελοποίηση και είναι μη-γραμμικό φαινόμενο. Γενικά, αύξηση του ρυθμού ψύξεως οδηγεί σε αύξηση της κινηματικής

κράτυνσης^{*} του υλικού, όπως αυτό μπορεί να αποτυπωθεί και από πειράματα σκληρότητας (Brinell and Vickers) που, επίσης, προτείνονται στην παρούσα πρόταση.

1.2.Παραμένουσες τάσεις λόγω συγκόλλησης

Η μοντελοποίηση των παραμένουσων τάσεων λόγω συγκόλλησης παρουσιάζει μεγάλη ευαισθησία. Κυρίως, στις παραμέτρους που επιλέγονται για να περιγράψουν τους πιθανούς μαρτενσιτικούς μετασχηματισμούς, κατά την ψύξη ενός θερμικού κύκλου συγκόλλησης και τις παραμέτρους της κινηματικής σκλήρυνσης κατά την ελαστοπλαστική συμπεριφορά των συμμετεχόντων υλικών σε ένα μεγάλο εύρος θερμοκρασιών, (Abdel-Tawab and Noor, 1999). Υπάρχει πλήρη έλλειψη ή περιορισμένη γνώση των παραμέτρων που περιγράφουν το μαρτενσιτικό μετασγηματισμό για τα νέα υλικά που προτίθενται να μελετηθούν. Σε μερικές περιπτώσεις, μπορούν να χρησιμοποιηθούν παράμετροι από συναφείς περιπτώσεις, (Taljatet al, 1998). Επομένως, αναμένεται αβεβαιότητα στα αποτελέσματα ως προς τις παραμένουσες τάσεις. Αυτή η αβεβαιότητα θα επιχειρηθεί να μικρύνει από πειραματικές μετρήσεις των παραμένουσων τάσεων και από μετρήσεις των ελαστοπλαστικών ιδιοτήτων, που, όμως, μπορούν να λάβουν χώρα μόνο πριν και μετά την διαδικασία συγκόλλησης. Προφανώς, τα πεπερασμένα στοιχεία πρέπει να είναι τρισδιάστατα ή αξονοσυμμετρικά και μπορούν να δώσουν σύντομα και αποτελεσματικά πολλά πιθανά σενάρια. Ενώ, μπορούν να βοηθήσουν σημαντικά στην βαθύτερη κατανόηση των φυσικών μεταλλουργικών φαινομένων και τουλάχιστον να καθορίσουν πιθανά εύρη των σχετικών παραμέτρων. Επιπλέον, η παραμετρική ανάλυση μπορεί να οδηγήσει και σε βελτιστοποίηση των συντελεστών της συγκόλλησης και του κόστους της (ανάλογα με την ταχύτητα συγκόλλησης και τιμής ρεύματος ανά kwh). Τρεις ομάδες παραμέτρων των υλικών απαιτούνται στα ελάχιστα δεδομένα για ένα μοντέλο συγκόλλησης:

- a) Παράμετροι μεταλλουργικών μετασχηματισμών: θερμοκρασίες έναρξης και λήξης ωστενοποίησης, θερμοκρασίες στερεάς και ρευστής κατάστασης, παράμετρος σχηματισμού ωστενίτη κατά την ψύξη στερεοποίησης, θερμοκρασία έναρξης μαρτενσίτη (εξαρτάται από την τάση) και κινητική παράμετρος μεταβολής ωστενίτη (σχέση Koistenin-Marburger). Η χρήση των ανωτέρω παραμέτρων οδηγεί στα κατ'όγκο ποσοστά ωστενίτη, μαρτενσίτη και ρευστής φάσης και εξαρτώνται από τη θερμοκρασία και τον ρυθμό ψύξεως.
- b) Παράμετροι μοντέλου θερμικής διάχυσης: πυκνότητα μάζας, ειδική θερμότητα (εξαρτάται από την θερμοκρασία), θερμική αγωγιμότητα (εξαρτάται από την

^{*} Παρατηρείται ότι αν πλαστικοποιηθεί ένα στερεό, στη συνέχεια το αποφορτίσουμε και στη συνέχεια προσπαθούμε να το ξαναφορτίσουμε, έτσι ώστε να προκληθεί περαιτέρω πλαστική ροή, η αντοχή του σε πλαστική ροή θα έχει αυξηθεί, δηλ. (η πλαστική ροή αρχίζει σε υψηλότερη τάση σε σχέση με τον προηγούμενο κύκλο - έτσι λέμε ότι η αντοχή στην πλαστική ροή αυξάνεται).Το φαινόμενο αυτό είναι γνωστό σαν σκλήρυνση.(Βλ.Παράρτημα Α.8)

θερμοκρασία), η ενθαλπία ρευστοποίησης /στερεοποίησης και η ενθαλπία μαρτενσιτικού μετασχηματισμού. Η ροή θερμότητας λόγω του ηλεκτρικού τόξου συγκόλλησης απαιτεί την ηλεκτρική ισχύ, την ακτίνα του ηλεκτρικού τόξου προσβολής, την ενέργεια που απορροφά το ηλεκτρόδιο και τον συντελεστή απόδοσης λόγω ακτινοβολιών κ.λπ. Η χρήση των ανωτέρω παραμέτρων οδηγεί στο πεδίο θερμοκρασιών που αναπτύσσονται στην συγκόλληση και στις συγκολλούμενες σωληνώσεις. Θερμικές απώλειες στις άλλες επιφάνειες, λόγω ακτινοβολίας, μπορούν να μοντελοποιηθούν με την σταθερά Stefan-Boltman (εξαρτάται από την θερμοκρασία) και την σταθερά μεταφοράς θερμότητας στον αέρα, (Tekriwal and Mazumber, 1988).

c) Παράμετροι που αφορούν την θερμο-ελαστο-πλαστική συμπεριφορά: μέτρο ελαστικότητας, συντελεστής Poisson, συντελεστής θερμικής διαστολής. κινηματική συνάρτηση κράτυνσης, όριο διαρροής, η μέγιστη μεταβολή όγκου ωστενίτη και μαρτενσίτη, η παράμετρος διάτμησης μαρτενσίτη (όλα είναι συναρτήσεις της θερμοκρασίας και των ποσοστών μαρτενσίτη, ωστενίτη και ρευστού). Η ανάλυση αρκεί στο μη συζευγμένο θερμικό και ελαστοπλαστικό μέρος και φαινόμενα βισκοπλαστικά μπορούν να αγνοηθούν κατ'αρχήν. Η χρήση των ανωτέρω παραμέτρων οδηγεί στις παραμένουσες τάσεις και στην συσσώρευση πλαστικών τροπών στην περιοχή της σύντηξης και στην ευρύτερη θερμικά επηρεαζόμενη περιοχή της συγκόλλησης. Τα μεγέθη αυτά θα χρησιμοποιηθούν στην συνέχεια για την μοντελοποίηση σεναρίων ρηγμάτωσης και κόπωσης.

Η ανωτέρω μοντελοποίηση θα γίνει στην πλατφόρμα πεπερασμένων στοιχείων Abaqus. Μια πιο λεπτομερής διάσπαση του ωστενίτη σε φερρίτη, περζίτη και μπενίτη κατά την ψύξη θα εξαρτηθεί από αν υπάρχουν διαθέσιμα διαγράμματα TTT(Time-Temperature-Transformation) και CCT (Continious-Cooling-Transformation), (Wang and Inoye,1985). Η σταδιακή εμφάνιση του υλικού κατά την σύντηξη με το ηλεκτρόδιο θα πρέπει να αντιμετωπιστεί αριθμητικά (πεπερασμένα στοιχεία), αλλά και θεωρητικά διότι ουσιαστικά δεν ισχύει η διατήρηση της μάζας, πράγμα που φέρνει αρκετές αλλαγές στην Μηχανικού Συνεχούς Μέσου, ειδικά εάν η συγκόλληση γίνεται σε πολλαπλές στρώσεις. Τέλος, θα πρέπει να σημειωθεί ότι πολύ μεγάλες χωρικές μεταβολές τάσεων σε τοπικό επίπεδο, αναπόφευκτα οδηγούν σε διερεύνηση με θεωρίες κλίμακας, όπου το μέγεθος του ωστενικού κόκκου παίζει σημαντικό ρόλο, (Lebland and Devaus, 1984).

1.3.Η σκληρομέτρηση σαν μέθοδος διερεύνησης συγκολλήσεων

Η περιοχή της συγκόλλησης χαρακτηρίζεται από την ζώνη σύντηξης και από την ευρύτερη θερμική επηρεαζόμενη ζώνη. Στις περιοχές αυτές οι ελαστοπλαστικές και κυρίως οι πλαστικές ιδιότητες του υλικού δεν είναι γνωστές. Η προτεινόμενη μεθοδολογία είναι η σκληρομέτρηση κατά Vickers (Βλ.Παράρτημα Α.9.), η οποία μπορεί να δώσει σχετικά αποτελέσματα. Όμως, τα αποτελέσματα αυτά εμπεριέχουν και την επίδραση των παραμενουσών τάσεων που πρέπει να απομονωθούν (Giannakopoulos and Giannakopoulos et al). Η σκληρομέτρηση κατά Vickers

επηρεάζει μικρή επιφανειακή περιοχή και μπορεί να εκτελεστεί σε μεγάλη περιοχή περιμετρικά της συγκόλλησης χωρίς και μετά από τομές. Γενικά, αύξηση της σκληρότητας σημαίνει σημαντική ποσότητα μαρτενσίτη.

Ένα πρόγραμμα σκληρομέτρησης θα δώσει σημαντικές πληροφορίες ως προς τις πλαστικές ιδιότητες του υλικού των συγκολλήσεων. Θεωρητικό ενδιαφέρον παρουσιάζει η σκληρομέτρηση κοντά στο σύνορο μεταξύ του υλικού συγκόλλησης και του βασικού μετάλλου. Προς την κατεύθυνση αυτή θα γίνει θεωρητική ανάλυση και υπολογισμός με πεπερασμένα στοιχεία.

Προφανώς η σκληρομέτρηση θα πρέπει να συνδυαστεί και με άλλες πειραματικές μεθόδους, όπως η σκέδαση νετρονίων που μετρά τις αλλαγές στο κρυσταλλικό πλέγμα, (WiKander et al, 1994).

Τέλος, θα πρέπει να εξεταστεί κατά πόσο αξονοσυμμετρικές είναι οι παραμένουσες τάσεις. Ακόμη χειρότερο, αν αναπτύσσεται γωνία μεταξύ των αξόνων των συγκολλούμενων σωλήνων, (Ravichandran et al, 1997). Στην τελευταία περίπτωση θα απαιτηθεί πλήρης τρισδιάστατη ανάλυση.

1.4.Σύνδεση μικροδομής με την ανάπτυξη τάσεων

Η θερμοκρασία έναρξης σχηματισμού μαρτενσίτη Ms κατά την ψύξη κραμάτων χάλυβα αυξάνει με εφελκυστικές τάσεις, κάτω από το όριο διαρροής. Μία σχέση Clausius-Clapeyron μπορεί να γραφεί για τη σχέση Ms και υδροστατικής πίεσης (θλιπτική πίεση οδηγεί σε μείωση του Ms), (Denis et al,1985). Η εφελκυστική τάση αυξάνει σχεδόν γραμμικά την μέγιστη πλαστική παραμόρφωση μαρτενσιτικού μετασχηματισμού (μοντέλο Greenwood and Johnson).

Θα μοντελοποιηθεί η σύζευξη μεταξύ μεταβολών μικροδομής, θερμοκρασιακών πεδίων και τασικών πεδίων όπως δείχνουν σημαντικά οι Börjesson and Lindgren, 2001:

Η επίδραση του τασικού πεδίου στο θερμοκρασιακό πεδίο αγνοείται λόγω των μικρών ταχυτήτων που λαμβάνουν χώρα τα φαινόμενα. Για τον ίδιο λόγο αγνοούνται και όλες οι αδρανειακές δυνάμεις (επιτάχυνση, βαρύτητα κ.λπ.).

Η ανάλυση ξεκινά με διαδοχικά βήματα (διότι όλες οι παράμετροι εξαρτώνται από την θερμοκρασία), λύνοντας πρώτα το θερμοκρασιακό πεδίο. Ισοτροπία και μικρές παραμορφώσεις υποτίθενται. Το θερμοκρασιακό πεδίο επηρεάζει άμεσα το τασικό πεδίο, λόγω των παραμορφώσεων 1.θερμικής διαστολής. Επίσης, το θερμοκρασιακό πεδίο, επηρεάζει άμεσα και την μικροδομή μέσω της θερμοκρασιακής ιστορίας (2.θέρμανση και ψύξη). Αυτό οδηγεί σε μικροδομή με πολλές φάσεις που επηρεάζουν τις συνολικές μηχανικές ιδιότητες και ιδιαίτερα το μέτρο ελαστικότητας, το όριο διαρροής και την κράτυνση, εισάγει δε και πλαστικές παραμορφώσεις λόγω μετασχηματισμών στερεών φάσεων. Έτσι, το τασικό πεδίο αντιλαμβάνεται τις 3.μεταβολές της μικροδομής. Η μεταβολή της μικροδομής επηρεάζεται εκ νέου από τις τάσεις διότι ορισμένες γαρακτηριστικές θερμοκρασίες φάσεων μεταβάλλονται από το 4.τασικό πεδίο. Τέλος, η μεταβολή της μικροδομής επαναπροσδιορίζει τις θερμικές σταθερές όπως ο συντελεστής θερμικής αγωγιμότητας και η ειδική θερμότητα, οι οποίες εξαρτώνται από το 5.ποσοστό των φάσεων. Ο ανωτέρω κύκλος επαναλαμβάνεται για το επόμενο θερμικό βήμα. Στην όλη διαδικασία εμφανίζεται νέα μάζα, που είναι το υλικό που πληρώνει το κενό της συγκόλλησης και πρέπει να μοντελοποιηθεί επίσης (και εδώ υπάρχουν οι μεγαλύτερες ασάφειες). Μια σχετικά πλήρης περιγραφή της μεταβολής της μικροδομής απαιτεί τα διαγράμματα ΤΤΤ (όπως οι Murty et al (1966)) και έλεγχο με τις καμπύλες CCT (όπως οι Papazoglou and Masubuchi (1982)). Στην "απλή" περιγραφή αυτών των μεταβολών γρειάζονται 12 σταθερές, Oddy et al (1996), πράγμα που σπανίως έχουμε για όλα τα υλικά.

Η ανάλυση χωρίζεται σε δύο μεγάλα μέρη: (a) συγκόλληση, (b) φόρτιση της συγκολλημένης κατασκευής.

Ως προς τη συγκόλληση, είναι φανερό ότι σημαντικό ρόλο παίζουν οι συνθήκες θέρμανσης και οι συνθήκες ψύξης. Οι συνθήκες θέρμανσης εξαρτώνται από την μορφή που επιλέγουμε για να μοντελοποιήσουμε το τόξο συγκόλλησης με μία συνθήκη ροής θερμότητας. Υπάρχουν τουλάχιστον 3 τρόποι : η ιδιόμορφη (δέλτα) κατανομή του Rosenthal (1941), η Gauss κατανομή του Fiedmann (1975) και η ελλειψοειδής κατανομή του Goldak et al (1986). Η τελευταία είναι εύχρηστη στην αριθμητική προσομοίωση, ενώ η πρώτη ενδείκνυται για αναλυτικές προσεγγίσεις. Ως προς τις συνθήκες ψύξης, κυριαρχεί η ακτινοβολία, Hibbit and Marcal (1973), με τον νόμο Stefan-Boltzmann ή η επαγωγική ψύξη με τον νόμο του Newton, Sheng and Chen (1992). Απουσία δεδομένων μπορεί να χρησιμοποιηθεί η θερμοκρασία ρευστοποίησης στο σύνορο της συγκόλλησης, Jones et al (1993). Πλαστικότητα λόγω μετασχηματισμού (TRIP: transformation induced plasticity) πρέπει να εισαχθεί, Fischer et al (2000). Η ύπαρξη μικροδομής λόγω στερεοποίησης είναι ένας ακόμη λόγος να εισαχθεί θεωρία κλίσεως στην ελαστοπλαστική συμπεριφορά της συγκόλλησης, Machin et al (1991).

Ένα σημαντικό ζήτημα είναι ο τρόπος εισαγωγής νέου υλικού στο κενό της συγκόλλησης. Γενικά υπάρχουν δύο τρόποι αντιμετώπισης με πεπερασμένα στοιχεία, Lindgren et al (1999). Ο πρώτος τρόπος, που θα χρησιμοποιηθεί στην παρούσα μελέτη, είναι τα "ήσυχα" στοιχεία που προϋπάρχουν στο αριθμητικό μοντέλο, αλλά

έχουν ιδιότητες που δεν διαταράζουν τα αποτελέσματα πριν εμφανιστούν (έχουν ασήμαντη ακαμψία). Τα στοιχεία αυτά, όμως, πρέπει να εγκιβωτιστούν από επιφάνειες που επιτρέπουν την θερμική αγωγιμότητα ώστε να αντιληφθούν την νέα ροή θερμότητας από το ηλεκτρικό τόξο. Εναλλακτικά, μπορούν να χρησιμοποιηθούν τα "αδρανή" στοιχεία που εμφανίζονται κατά την διάρκεια της εναπόθεσης υλικού, προθερμαίνονται και εισάγονται στην περιοχή της συγκόλλησης, Hong et al (1998).

Το πρόβλημα διάχυσης θερμότητας ακολουθεί τον νόμο Fourier, αλλά στη θερμοκρασία τήξεως η παροχή θερμότητας απορροφάται από την αλλαγή φάσεως στερεού σε ρευστό. Αυτή η επιπλέον θερμότητα δημιουργεί αριθμητικά προβλήματα κάνοντας "άκαμπτες" της εξισώσεις διάχυσης. Μία μέθοδος βελτίωσης είναι η μέθοδος ενθαλπίας, όπου η ειδική θερμότητα ολοκληρώνεται στο εύρος της θερμοκρασίας. Στην παρούσα εργασία προτείνεται μια διαδικασία εισαγωγής πρώτης παραγώγου της ειδικής θερμότητας. Επίσης, η ρευστοποίηση του υλικού σημαίνει αύξηση της αγωγιμότητας, λόγο επαγωγικής αγωγιμότητας, Michaleru and DeBiccari (1997).

Οι παραμένουσες τάσεις και οι παραμορφώσεις λόγω της συγκόλλησης τόξου αναλύονται και προσδιορίζονται κατά την διαδικασία συγκόλλησης χαλύβδινων σωλήνων διαφορετικών υλικών. Η θερμομηχανική συμπεριφορά απόκρισης υπολογίζεται σε 3 στάδια, (i) ανάλυση ροής θερμότητας στους δύο σωλήνες, λόγω της κίνησης του ηλεκτροδίου περιμετρικά σε αυτούς, (ii) κατανομή της πίεσης εσωτερικά των σωλήνων και (iii) το αποτέλεσμα και των δύο προηγούμενων σταδίων, ταυτόχρονα. Η σταδιακή στρατηγική οδηγεί σε μια πιο ολοκληρωμένη προσέγγιση της θερμικής και μηχανικής λύσης. Η βαθμωτή λύση της θερμοελαστικής-ιξωδοπλαστικής διεργασίας απεικονίζεται με τη συγκόλληση τόξου στους δύο χαλύβδινους σωλήνες, για τους οποίους υπάρχουν περιορισμένα

Κεφάλαιο 2. Μεθοδολογία Ανάλυσης Τάσεων-Παραμορφώσεων με ελαστικότητα

2.1.Προσέγγιση με Θεωρία Κελυφών (shell approach)

Για καλύτερη κατανόηση θεωρούμε τους χαλύβδινους σωλήνες ως λεπτότοιχα κυλινδρικά κελύφη υπό εσωτερική πίεση p. Τα κελύφη έχουν αξονική συμμετρία και καλούνται κελύφη εκ περιστροφής. Τομές στην επιφάνεια του κελύφους, οι οποίες εμπεριέχουν τον άξονα συμμετρίας καλούνται μεσημβρινές τομές, ενώ τομές που είναι κάθετες στον άξονα συμμετρίας ονομάζονται παράλληλες τομές. Λόγω συμμετρίας και στην γεωμετρία των κελυφών, αλλά και στη φόρτιση στις μεσημβρινές και στις παράλληλες τομές δεν αναπτύσσονται διατμητικές τάσεις, παρά μόνο ορθές.

Figure 2.1 Representation of steel pipes as thin cylindrical shells

Όπου $R_p^{(1)}$, $R_p^{(2)}$ είναι η ακτίνα του κάθε σωλήνα. Κάνοντας δύο παράλληλες τομές σε απειροστή απόσταση δL και μια μεσημβρινή απομονώνουμε το κομμάτι από κάθε σωλήνα, που φαίνεται στα παρακάτω σχήματα (a) και (b). Εκεί παριστάνονται οι περιφερειακές τάσεις $\sigma_{\theta\theta}^{p^{(1)}}$, $\sigma_{\theta\theta}^{p^{(2)}}$, αλλά και οι αξονικές ή διαμήκεις τάσεις $\sigma_{xx}^{p^{(1)}}$, $\sigma_{xx}^{p^{(2)}}$. Όπου $p^{(1)}$, $p^{(2)}$ είναι η ομοιόμορφη πίεση που ασκείται εντός του κάθε σωλήνα. Εν συνεχεία, γίνεται μία εγκάρσια τομή σε κάθε σωλήνα και εξάγονται τα παρακάτω σχήματα (c) και (d). Να σημειωθεί πως εφόσον η πίεση είναι θλιπτική στην εσωτερική επιφάνεια του κάθε σωλήνα, οι αξονικές τάσεις στην τομή θα είναι εφελκυστικές, λόγω ισορροπίας. Ενδιαφέρουσα παρατήρηση αποτελεί το γεγονός (όπως αποκαλύπτεται παρακάτω) πως στα κυλινδρικά κελύφη η αξονική τάση είναι ίση με το μισό της περιφερειακής τάσης.

Στο παρακάτω σχήμα παριστάνονται οι συνοριακές συνθήκες στα τρία είδη διατομών. Οι διατομές αυτές, κατά σειρά, είναι: (a) οι ανοιχτές, (b) οι πακτωμένες και (c) οι κλειστές. Επίσης, στο σχήμα (2.4) παριστάνονται οι συνθήκες φόρτισης, για κάθε μια από τις παραπάνω διατομές, που είναι η ομοιόμορφη πίεση, η θερμοκρασία και η συνδυασμένη φόρτιση πίεσης και θερμοκρασίας.

Συνοριακές συνθήκες:

Figure 2.4 Loading conditions considered are a combination of pressure and temperature difference between in and out of the pipes

Το παρακάτω σχεδιάγραμμα απεικονίζει τη διαδικασία που ακολουθείται για την προσέγγιση των τάσεων. Ουσιαστικά μελετάται ξεχωριστά η διαφορά θερμοκρασίας, έπειτα η επιβολή της πίεσης, το συμβιβαστό των μετατοπίσεων και παράλληλα πως μεταβάλλονται μέσω αυτών των φορτίσεων, τα επιμέρους γεωμετρικά χαρακτηριστικά των κελυφών, δηλαδή το πάχος των σωλήνων και η ακτίνα αυτών.

Figure 2.5 The depiction of the process for the estimation of the stresses

2.1.1. Θερμική μεταβολή

Κατά την διαδικασία της συγκόλλησης, η θερμοκρασία αυξάνεται, με αποτέλεσμα είτε την αλλαγή μήκους των δύο σωλήνων που συγκολλούνται, είτε την αλλαγή όγκου αυτών, είτε και τα δύο ταυτόχρονα, αλλά και αλλαγή στο πάχος αυτών. Στο παρακάτω σχήμα παριστάνεται ένα δείγμα από κάθε χαλύβδινο σωλήνα, λίγο μετά την συγκόλλησή τους. Όπου $R_{p'}^{(1)}$, $R_{p'}^{(2)}$ είναι η ακτίνα του κάθε σωλήνα και $H_{p'}^{(1)}$, $H_{p'}^{(2)}$ το πάχος του σωλήνα (1) και (2), αντίστοιχα, έπειτα από την θερμική μεταβολή που υπέστησαν.

Figure 2.6 The two pipes of steel with radius $R_{p'}^{(1)}$, $R_{p'}^{(2)}$ and thickness $H_{p'}^{(1)}$, $H_{p'}^{(2)}$, respectively, after the thermal expansion (in an exaggerate shape)

2.1.2. Μεταβολή Γεωμετρικών Χαρακτηριστικών λόγω θερμικής μεταβολής

Αν ΔΤ ορίσουμε την θερμοκρασιακή μεταβολή, τότε αξίζει να σημειωθεί ότι:

ΔT>0, για θερμοηλεκτρικές μηχανές, πυρκαγιά ενώ

 $\Delta T < 0$, για ψυκτικές μηχανές, συνθήκες αρνητικές

Η πρώτη απεικόνιση, με την αλλαγή της ακτίνας και του πάχους, σε κάθε μία από τις σωλήνες, απεικονίζεται παρακάτω:

$$\begin{aligned} \boldsymbol{R}_{p}^{(1)} &\to \boldsymbol{R}_{p}^{(1)} \big(1 + \alpha^{(1)} \Delta T^{(1)} \big) = \boldsymbol{R}_{p'}^{(1)} \\ \boldsymbol{R}_{p}^{(2)} &\to \boldsymbol{R}_{p}^{(2)} \big(1 + \alpha^{(2)} \Delta T^{(2)} \big) = \boldsymbol{R}_{p'}^{(2)} \end{aligned}$$
(2.1)

$$\begin{aligned} H_{p}^{(1)} &\to H_{p}^{(1)} \big(1 + \alpha^{(1)} \Delta T^{(1)} \big) = H_{p'}^{(1)} \\ H_{p}^{(2)} &\to H_{p}^{(2)} \big(1 + \alpha^{(2)} \Delta T^{(2)} \big) = H_{p'}^{(2)} \end{aligned}$$
 (2.2)

2.1.3. Αξονικές τάσεις λόγω πίεσης

A) Για κλειστές διατομές, όπως στο σχήμα 2.1 (b), έχουμε τις εξής αξονικές τάσεις:

Ο παρακάτω τύπος συνδέει τις αξονικές τάσεις λόγω πίεσης με το πάχος και την ακτίνα την ακτίνα των σωλήνων (1) και (2), λαμβάνοντας υπόψη την αλλαγή των μεγεθών λόγω θερμικής διαστολής:

$$\sigma_{xx}^{p^{(1)}} = \frac{R_{p'}^{(1)}p^{(1)}}{2H_{p'}^{(1)}}$$

$$\stackrel{(2.1),(2.2)}{\longrightarrow} \sigma_{xx}^{p^{(1)}} = \frac{R_{p}^{(1)}(1+\alpha^{(1)}\Delta T^{(1)})p^{(1)}}{2H_{p}^{(1)}(1+\alpha^{(1)}\Delta T^{(1)})}$$

$$\Rightarrow \sigma_{xx}^{p^{(1)}} = \frac{R_{p}^{(1)}p^{(1)}}{2H_{p}^{(1)}}$$
(2.3)

Ενώ, για τη δεύτερη σωλήνα:

$$\sigma_{xx}^{p^{(2)}} = \frac{R_{p'}^{(2)} p^{(2)}}{2H_{p'}^{(2)}}$$

$$\xrightarrow{(2.1),(2.2)} \sigma_{xx}^{p^{(2)}} = \frac{R_{p}^{(2)} (1 + \alpha^{(2)} \Delta T^{(2)}) p^{(2)}}{2H_{p}^{(2)} (1 + \alpha^{(2)} \Delta T^{(2)})}$$

$$\Rightarrow \sigma_{xx}^{p^{(2)}} = \frac{R_{p}^{(2)} p^{(2)}}{2H_{p}^{(2)}}$$
(2.4)

B) Για ανοιχτές διατομές, όπως στο σχήμα 2.1 (a), δεν έχουμε αξονικές τάσεις λόγω πίεσης, δηλαδή:

$$\sigma_{xx}^{p^{(1)}} = \sigma_{xx}^{p^{(2)}} = 0$$
(2.5)

Γ) Για την πακτωμένη περίπτωση, όπως αυτή του σχήματος 2.1 (c), έχουμε:

7 Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

$$\sigma_{xx}^{p^{(1)}} = -E^{(1)}\alpha^{(1)}\Delta T^{(1)} + v^{(1)}\frac{R_{p'}^{(1)}p^{(1)}}{H_{p'}^{(1)}}$$

= $-E^{(1)}\alpha^{(1)}\Delta T^{(1)} + v^{(1)}\frac{R_{p}^{(1)}(1+\alpha^{(1)}\Delta T^{(1)})p^{(1)}}{H_{p}^{(1)}(1+\alpha^{(1)}\Delta T^{(1)})}$
= $-E^{(1)}\alpha^{(1)}\Delta T^{(1)} + v^{(1)}\frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}}$ (2.6)

Ενώ, για τη δεύτερη σωλήνα:

$$\sigma_{xx}^{p^{(2)}} = -E^{(2)}\alpha^{(2)}\Delta T^{(2)} + v^{(2)}\frac{R_p^{(2)}p^{(2)}}{H_p^{(2)}}$$
(2.7)

2.1.4. Αξονικές τάσεις λόγω θερμοκρασιακής μεταβολής

A) Για κλειστές διατομές, όπως στο σχήμα 2.1 (b), έχουμε τις εξής αξονικές τάσεις:

$$\Rightarrow \sigma_{xx}^{p^{(i)}} = \frac{R_p^{(i)} p^{(i)}}{2H_p^{(i)}}$$
(2.8)

B) Για ανοιχτές διατομές, όπως στο σχήμα 2.1 (a), δεν έχουμε αξονικές τάσεις, δηλαδή:

$$\sigma_{xx}^{p^{(1)}} = \sigma_{xx}^{p^{(2)}} = 0$$
(2.9)

Γ) Για την πακτωμένη περίπτωση, όπως αυτή του σχήματος 2.1 (c), έχουμε:

$$\sigma_{xx}^{p^{(i)}} = -E^{(i)} \alpha^{(i)} \Delta T^{(i)}$$
(2.10)

2.1.5. <u>Περιφερειακές τάσεις (hoop stresses):</u>

Όπως φαίνεται και παρακάτω, οι περιφερειακές τάσεις δεν αλλάζουν σε κλειστές, ανοιχτές ή πακτωμένες διατομές, οπότε και για τις τρεις προαναφερθείσες

περιπτώσεις ισχύει ο ίδιος τύπος, που συνδέει τις περιφερειακές τάσεις με το πάχος και την ακτίνα των σωλήνων, μετά από την αλλαγή αυτών λόγω πίεσης:

$$\sigma_{\theta\theta}^{p^{(i)}} = \frac{R_{p'}^{(i)}p^{(i)}}{H_{p'}^{(i)}}$$

$$\xrightarrow{(2.1),(2.22)\beta} \sigma_{\theta\theta}^{p^{(i)}} = \frac{R_{p}^{(i)}(1+\alpha^{(i)}\Delta T^{(i)})p^{(i)}}{H_{p}^{(i)}(1+\alpha^{(i)}\Delta T^{(i)})}$$

$$\Rightarrow \sigma_{\theta\theta}^{p^{(i)}} = \frac{R_{p}^{(i)}p^{(i)}}{H_{p}^{(i)}}$$
(2.11)

Ωστόσο, οι περιφερειακές τάσεις λόγω θερμοκρασιακής μεταβολής είναι 0.

Θεωρείται ότι η μεταβολή της θερμοκρασίας σε όλο το πάχος των σωλήνων είναι γραμμική. Από τα παραπάνω προκύπτει ότι στην επιφάνεια του κελύφους υπάρχει μια κατάσταση επίπεδης τάσης με κύριες τάσεις:

$$\sigma_1 = \sigma_{\theta\theta}^p \sigma_2 = \sigma_{xx}^p$$
(2.12)

Figure 2.7 Sample of the pipe

2.1.6. <u>Μηχανικές τροπές λόγω αξονικών και περιφερειακών τάσεων στα τρία</u> είδη διατομών

Για ομογενές και ισότροπο υλικό οι κύριες τάσεις δίνουν και τις εξής κύριες τροπές:

$$\begin{aligned}
\varepsilon_1 &= \varepsilon_{\theta\theta}^p \\
\varepsilon_2 &= \varepsilon_{xx}^p
\end{aligned} (2.13)$$

Α) Για τις κλειστές διατομές έχουμε τις εξής τροπές:

Από τον νόμο του Hooke και με αντικατάσταση των (2.6),(2.7) και (2.11), για τις τροπές κατά την x διεύθυνση:

$$\varepsilon_{xx}^{p^{(i)}} = \frac{1}{E^{(i)}} \left[\sigma_{xx}^{p^{(i)}} - \nu \sigma_{\theta\theta}^{p^{(i)}} \right]$$
$$= \frac{1}{E^{(i)}} \left[\frac{R_p^{(i)} p^{(i)}}{2H_p^{(i)}} - \nu \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right]$$
$$= \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \left[\frac{1}{2} - \nu \right]$$
(2.14)

Όπου i=1,2 για κάθε μία σωλήνα.

Ενώ, οι τροπές κατά την θ διεύθυνση:

$$\varepsilon_{\theta\theta}^{p(i)} = \frac{1}{E^{(i)}} \left[\sigma_{\theta\theta}^{p(i)} - \nu \sigma_{xx}^{p^{(i)}} \right]$$
$$= \frac{1}{E^{(i)}} \left[\frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} - \nu \frac{R_p^{(i)} p^{(i)}}{2H_p^{(i)}} \right]$$
$$= \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \left[1 - \frac{\nu}{2} \right]$$
(2.15)

Όπου i=1,2 για κάθε μία σωλήνα.

B) Για τις ανοιχτές διατομές έχουμε τις εξής τροπές:

Τις τροπές κατά την x διεύθυνση, με αντικατάσταση των (2.8) και (2.11):

Όπου i=1,2 για κάθε μία σωλήνα.

$$=\frac{1}{E^{(\iota)}}\left[\frac{R_p^{(\iota)}p^{(\iota)}}{H_p^{(\iota)}}-\nu^{(\iota)}\left(-E^{(\iota)}\alpha^{(\iota)}\Delta T^{(\iota)}+\nu^{(\iota)}\frac{R_p^{(\iota)}p^{(\iota)}}{H_p^{(\iota)}}\right)\right]$$
(2.19)

$$= -\alpha^{(\iota)} \Delta T^{(\iota)} \tag{2.18}$$

$$\varepsilon_{xx}^{p^{(\iota)}} = \frac{1}{E^{(\iota)}} \left[\sigma_{xx}^{p^{(\iota)}} - \nu \sigma_{\theta\theta}^{p^{(\iota)}} \right]$$
$$= \frac{1}{E^{(\iota)}} \left[-E^{(\iota)} \alpha^{(\iota)} \Delta T^{(\iota)} + \nu \frac{R_p^{(\iota)} p^{(\iota)}}{H_p^{(\iota)}} - \nu \frac{R_p^{(\iota)} p^{(\iota)}}{H_p^{(\iota)}} \right]$$

 $\varepsilon_{\theta\theta}^{p^{(\iota)}} = \frac{1}{E^{(\iota)}} \Big[\sigma_{\theta\theta}^{p^{(\iota)}} - \nu \sigma_{xx}^{p^{(\iota)}} \Big]$

Τις τροπές κατά την x διεύθυνση, με αντικατάσταση των (2.9), (2.10) και (2.11):

Γ) Για την πακτωμένη περίπτωση έχουμε τις εξής τροπές:

$$= \frac{1}{E^{(\iota)}} \frac{R_p^{(\iota)} p^{(\iota)}}{H_p^{(\iota)}}$$
(2.17)

$$\varepsilon_{\theta\theta}^{p^{(\iota)}} = \frac{1}{E^{(\iota)}} \left[\sigma_{\theta\theta}^{p^{(\iota)}} - \nu \sigma_{xx}^{p^{(\iota)}} \right]$$
$$= \frac{1}{E^{(\iota)}} \left[\frac{R_p^{(\iota)} p^{(\iota)}}{H_p^{(\iota)}} - \nu 0 \right]$$

Και τις τροπές κατά την θ διεύθυνση:

$$\varepsilon_{xx}^{p^{(i)}} = \frac{1}{E^{(i)}} \left[\sigma_{xx}^{p^{(i)}} - \nu \sigma_{\theta\theta}^{p^{(i)}} \right]$$
$$= \frac{1}{E^{(i)}} \left[0 - \nu \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right]$$
$$= -\frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \nu$$
(2.16)

2.1.7. Εύρεση της ακτινικής μετατόπισης του κελύφους w και της αξονικής μετατόπισης u

Έπειτα από τις θερμικές μετατοπίσεις υπάρχουν και οι επιπλέον μετατοπίσεις λόγω της επιβαλλόμενης πίεσης:

$$\begin{cases} w^{(1)} & w^{(2)} \\ u^{(1)}_{x} & u^{(2)}_{x} \end{cases}$$
(2.20)

Όπου $w^{(i)}$: η ακτινική μετατόπιση του κελύφους, ενώ $u_x^{(i)}$: οι επιπλέον μετατοπίσεις, i=1,2.

Επισημαίνεται ότι ο άξονας συντεταγμένων x είναι τοποθετημένος στη μέση γραμμή συγκόλλησης, οπότε για x = 0, $u_x^{(1)} = 0$ και $u_x^{(2)} = 0$, η κινηματική συνοριακή συνθήκη.

Α) Για τις κλειστές διατομές, από τις γεωμετρικές σχέσεις και με αντικατάσταση των
 (2.1) και (2.15) έχουμε:

$$\begin{split} \varepsilon_{\theta\theta}^{p^{(i)}} &= \frac{w^{(i)}}{R_{p'}^{(i)}} \\ &\Rightarrow \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \bigg[1 - \frac{v^{(i)}}{2} \bigg] = \frac{w^{(i)}}{R_{p'}^{(i)}} \\ &\Rightarrow = \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \bigg[1 - \frac{v^{(i)}}{2} \bigg] = \frac{w^{(1)}}{R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)})} \end{split}$$

$$\Rightarrow w^{(i)} = p^{(i)} \frac{1}{E^{(i)}} \frac{\left(R_p^{(i)}\right)^2}{H_p^{(i)}} \left[1 - \frac{\nu^{(i)}}{2}\right] \left(1 + \alpha^{(i)} \Delta T^{(i)}\right)$$
(2.21)

Όπου i=1,2 για κάθε μία σωλήνα.

Ισχύει ότι:

$$\varepsilon_{xx}^{p^{(1)}} = \frac{\partial u_x^{(1)}}{\partial x} \qquad \kappa \alpha \iota \qquad \varepsilon_{xx}^{p^{(2)}} = \frac{\partial u_x^{(2)}}{\partial x} \tag{2.22}$$

22

Εάν στο x = 0, $u_x^{(1)} = 0$ και $u_x^{(2)} = 0$ οι αρχικές τιμές, τότε ολοκληρώνοντας την σχέση (2.22) για κάθε μία από τις δύο σωλήνες και αντικαθιστώντας την (2.14), αντίστοιχα, παίρνουμε:

$$u_x^{(1)} = \frac{1}{E^{(1)}} \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} \left[\frac{1}{2} - \nu \right] x$$
(2.23)

$$u_x^{(2)} = \frac{1}{E^{(2)}} \frac{R_p^{(2)} p^{(2)}}{H_p^{(2)}} \left[\frac{1}{2} - \nu\right] x$$
(2.24)

Β) Για τις ανοιχτές διατομές, από τις γεωμετρικές σχέσεις και με αντικατάσταση των (2.1) και (2.17) έχουμε:

$$\varepsilon_{\theta\theta}^{p^{(i)}} = \frac{w^{(i)}}{R_{p'}^{(i)}}$$

$$\Rightarrow \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} = \frac{w^{(i)}}{R_{p'}^{(i)}}$$

$$\Rightarrow \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} = \frac{w^{(i)}}{R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)})}$$

$$\Rightarrow w^{(i)} = p^{(i)} \frac{1}{E^{(i)}} \frac{\left(R_p^{(i)}\right)^2}{H_p^{(i)}} \left(1 + \alpha^{(i)} \Delta T^{(i)}\right)$$
(2.25)

Όπου i=1,2 για κάθε μία σωλήνα.

Εάν στο x = 0, $u_x^{(1)} = 0$ και $u_x^{(2)} = 0$ οι αρχικές τιμές, τότε ολοκληρώνοντας την σχέση (2.25) για κάθε μία από τις δύο σωλήνες και αντικαθιστώντας την (2.16), αντίστοιχα, παίρνουμε:

$$u_x^{(1)} = -\frac{1}{E^{(1)}} \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} v^{(1)} x$$
(2.26)

$$u_x^{(2)} = -\frac{1}{E^{(2)}} \frac{R_p^{(2)} p^{(2)}}{H_p^{(2)}} v^{(2)} x$$
(2.27)

Γ) Για τις πακτωμένες διατομές, από τις γεωμετρικές σχέσεις και με αντικατάσταση των (2.1) και (2.19) έχουμε:

$$\begin{split} \varepsilon_{\theta\theta}^{p^{(i)}} &= \frac{w^{(i)}}{R_{p'}^{(i)}} \\ \Rightarrow \frac{1}{E^{(i)}} \left[\frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} - \nu \left(-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \nu \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right] &= \frac{w^{(i)}}{R_{p'}^{(i)}} \\ \Rightarrow \frac{1}{E^{(i)}} \left[\frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} - \nu \left(-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \nu \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right] &= \frac{w^{(i)}}{R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)})} \\ \Rightarrow w^{(1)} &= \frac{1}{E^{(i)}} R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left[\frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \\ &- \nu \left(-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \nu \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right] \end{split}$$
(2.28)

Όπου i=1,2 για κάθε μία σωλήνα.

Εάν στο x = 0, $u_x^{(1)} = 0$ και $u_x^{(2)} = 0$, τότε ολοκληρώνοντας την σχέση (2.28) για κάθε μία από τις δύο σωλήνες και αντικαθιστώντας τις (2.18), αντίστοιχα, παίρνουμε:

$$u_x^{(1)} = -\alpha^{(1)} \Delta T^{(1)} x \tag{2.29}$$

$$u_x^{(2)} = -\alpha^{(2)} \Delta T^{(2)} x \tag{2.30}$$

Τα $R_{p'}^{(1)}$ και $R_{p'}^{(2)}$ δεν είναι συμβιβαστά. Υπάρχει το θέμα του ασυμβίβαστου στις δύο σωλήνες, κυρίως λόγω διαφορετικών συντελεστών θερμικής αγωγιμότητας. Υποθέτουμε ότι η θερμική διαστολή είναι ισότροπη. Οπότε, για την περίπτωση των κλειστών και ανοιχτών διατομών A) και B), έχουμε:

$$u_x^{T^{(1)}} = \alpha^{(1)} \Delta T^{(1)} x$$

$$u_x^{T^{(2)}} = \alpha^{(2)} \Delta T^{(2)} x$$
(2.31)

Ενώ για την περίπτωση της πακτώσεως Γ):

$$u_x^{T^{(1)}} = 0$$

$$u_x^{T^{(2)}} = 0$$
(2.32)

Figure 2.8 Cross-section of the pipe (1) and (2), with E: Young's modulus, v: Poisson's ratio, α: linear expansion coefficient

2.1.8. Επιρροή Εσωτερικής Πίεσης

Η δεύτερη απεικόνιση, με την αλλαγή της ακτίνας και του πάχους, σε κάθε μία από τις σωλήνες, απεικονίζεται παρακάτω:

Α) Για τις κλειστές διατομές, με αντικατάσταση των (2.1), (2.21):

$$R_{p''}^{(1)} = R_{p'}^{(1)} + w^{(1)}$$

= $R_{p}^{(1)} (1 + \alpha^{(1)} \Delta T^{(1)})$
+ $p^{(1)} \frac{1}{E^{(1)}} \frac{\left(R_{p}^{(1)}\right)^{2}}{H_{p}^{(1)}} \left[1 - \frac{\nu^{(1)}}{2}\right] (1 + \alpha^{(1)} \Delta T^{(1)})$
= $R_{p}^{(1)} (1 + \alpha^{(1)} \Delta T^{(1)}) \left\{1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}} \left[1 - \frac{\nu^{(1)}}{2}\right]\right\}$ (2.33)

$$R_{p''}^{(2)} = R_{p'}^{(2)} + w^{(2)}$$

$$= R_{p}^{(2)} (1 + \alpha^{(2)} \Delta T^{(2)}) + p^{(2)} \frac{1}{E^{(2)}} \frac{\left(R_{p}^{(2)}\right)^{2}}{H_{p}^{(2)}} \left[1 - \frac{\nu^{(2)}}{2}\right] (1 + \alpha^{(2)} \Delta T^{(2)})$$

$$= R_{p}^{(2)} (1 + \alpha^{(2)} \Delta T^{(2)}) \left\{1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)} p^{(2)}}{H_{p}^{(2)}} \left[1 - \frac{\nu^{(2)}}{2}\right]\right\}$$
(2.34)

Αυτό που υποχρεούμαστε να υπολογίσουμε επιπλέον είναι οι τροπές που δημιουργούνται κατά την r διεύθυνση. Αξίζει να σημειωθεί πως μπορεί να μην υπάρχουν τάσεις κατά την r διεύθυνση, αλλά οι τροπές που αναπτύσσονται δεν μπορούν να αγνοηθούν. Με αντικατάσταση των (2.6), (2.7) και (2.11), ισχύει:

$$\varepsilon_{rr}^{p^{(1)}} = \frac{1}{E^{(1)}} \left[\sigma_{rr}^{p^{(1)}} - \nu \left(\sigma_{xx}^{p^{(1)}} + \sigma_{\theta\theta}^{p^{(1)}} \right) \right]$$
$$= \frac{1}{E^{(1)}} \left[0 - \nu \left(\frac{R_p^{(1)} p^{(1)}}{2H_p^{(1)}} + \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} \right) \right]$$
$$= -\frac{\nu}{E^{(1)}} \frac{3R_p^{(1)} p^{(1)}}{2H_p^{(1)}}$$
(2.35)

Αντίστοιχα,

$$\varepsilon_{rr}^{p^{(2)}} = -\frac{\nu}{E^{(2)}} \frac{3R_p^{(2)}p^{(2)}}{2H_p^{(2)}}$$
(2.36)

Οπότε, υπολογίζοντας τώρα το νέο πάχος, με αντικατάσταση των (2.2),(2.35) και (2.36) έχουμε:

$$H_{p''}^{(1)} = H_{p'}^{(1)} \left(1 + \varepsilon_{rr}^{p^{(1)}}\right)$$

$$= H_{p}^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)}\right) \left(1 - \frac{\nu^{(1)}}{E^{(1)}} \frac{3R_{p}^{(1)}p^{(1)}}{2H_{p}^{(1)}}\right)$$

$$H_{p''}^{(2)} = H_{p'}^{(2)} \left(1 + \varepsilon_{rr}^{p^{(2)}}\right)$$

$$= H_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)}\right) \left(1 - \frac{\nu^{(2)}}{E^{(2)}} \frac{3R_{p}^{(2)}p^{(2)}}{2H_{p}^{(2)}}\right)$$
(2.37)
$$(2.38)$$

Β) Για τις ανοιχτές διατομές, με αντικατάσταση των (2.1) και (2.25):

$$\begin{aligned} R_{p''}^{(1)} &= R_{p'}^{(1)} + w^{(1)} \\ &= R_{p}^{(1)} \big(1 + \alpha^{(1)} \Delta T^{(1)} \big) + p^{(1)} \frac{1}{E^{(1)}} \frac{\left(R_{p}^{(1)} \right)^{2}}{H_{p}^{(1)}} \big(1 + \alpha^{(1)} \Delta T^{(1)} \big) \end{aligned}$$

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

$$= R_p^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)} \right) \left[1 + \frac{1}{E^{(1)}} \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} \right]$$
(2.39)

$$R_{p''}^{(2)} = R_p^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)}\right) \left[1 + \frac{1}{E^{(2)}} \frac{R_p^{(2)} p^{(2)}}{H_p^{(2)}}\right]$$
(2.40)

Οι τροπές που δημιουργούνται κατά την r διεύθυνση, με αντικατάσταση των (2.8) και (2.11), είναι:

$$\varepsilon_{rr}^{p^{(1)}} = \frac{1}{E^{(1)}} \left[\sigma_{rr}^{p^{(1)}} - \nu^{(1)} \left(\sigma_{xx}^{p^{(1)}} + \sigma_{\theta\theta}^{p^{(1)}} \right) \right]$$
$$= \frac{1}{E^{(1)}} \left[0 - \nu^{(1)} \left(0 + \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} \right) \right]$$
$$= -\frac{\nu^{(1)}}{E^{(1)}} \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}}$$
(2.41)

Ενώ, για την δεύτερη σωλήνα,

$$\varepsilon_{rr}^{p^{(2)}} = -\frac{\nu^{(2)}}{E^{(2)}} \frac{R_p^{(2)} p^{(2)}}{H_p^{(2)}}$$
(2.42)

Οπότε, υπολογίζοντας τώρα το νέο πάχος, με αντικατάσταση των (2.2),(2.41) και (2.42) έχουμε:

$$H_{p''}^{(1)} = H_{p'}^{(1)} \left(1 + \varepsilon_{rr}^{p^{(1)}}\right)$$
$$= H_{p}^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)}\right) \left(1 - \frac{\nu^{(1)}}{E^{(1)}} \frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}}\right)$$
(2.43)

$$H_{p''}^{(2)} = H_p^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)}\right) \left(1 - \frac{\nu^{(2)}}{E^{(2)}} \frac{R_p^{(2)} p^{(2)}}{H_p^{(2)}}\right)$$
(2.44)

Γ) Για τις πακτωμένες διατομές, με αντικατάσταση των (2.1) και (2.28):

$$R_{p''}^{(1)} = R_{p'}^{(1)} + w^{(1)}$$
(2.45)

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

$$= R_{p}^{(1)} (1 + \alpha^{(1)} \Delta T^{(1)}) \left[1 + \frac{1}{E^{(1)}} \left(\frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}} - \nu^{(1)} \left(-E^{(1)} \alpha^{(1)} \Delta T^{(1)} + \nu^{(1)} \frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}} \right) \right) \right]$$

$$R_{p''}^{(2)} = R_{p'}^{(2)} + w^{(2)}$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

$$(2.46)$$

Οι τροπές που δημιουργούνται κατά την r διεύθυνση, με αντικατάσταση των (2.9), (2.10) και (2.11), είναι:

$$\varepsilon_{rr}^{p^{(1)}} = \frac{1}{E^{(1)}} \left[\sigma_{rr}^{p^{(1)}} - \nu^{(1)} \left(\sigma_{xx}^{p^{(1)}} + \sigma_{\theta\theta}^{p^{(1)}} \right) \right]$$
$$= \frac{1}{E^{(1)}} \left[0 - \nu^{(1)} \left(-E^{(1)} \alpha^{(1)} \Delta T^{(1)} + \nu^{(1)} \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} + \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} \right) \right]$$

$$= -\frac{\nu^{(1)}}{E^{(1)}} \left[-E^{(1)} \alpha^{(1)} \Delta T^{(1)} + \frac{R_p^{(1)} p^{(1)}}{H_p^{(1)}} \left(\nu^{(1)} + 1 \right) \right]$$
(2.47)

Ενώ, για την δεύτερη σωλήνα,

$$\varepsilon_{rr}^{p^{(2)}} = -\frac{\nu^{(2)}}{E^{(2)}} \left[-E^{(2)} \alpha^{(2)} \Delta T^{(2)} + \frac{R_p^{(2)} p^{(2)}}{H_p^{(2)}} (\nu^{(2)} + 1) \right]$$
(2.48)

Οπότε, υπολογίζοντας τώρα το νέο πάχος, με αντικατάσταση των (2.2),(2.47) και (2.48) έχουμε:

$$H_{p''}^{(1)} = H_{p'}^{(1)} \left(1 + \varepsilon_{rr}^{p^{(1)}}\right)$$
$$= H_{p}^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)}\right) \left(1 - \frac{\nu^{(1)}}{E^{(1)}} \left[-E^{(1)} \alpha^{(1)} \Delta T^{(1)} + \frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}} (\nu^{(1)} + 1)\right]\right)$$
(2.49)

$$H_{p''}^{(2)} = H_p^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)}\right) \left(1 - \frac{\nu^{(2)}}{E^{(2)}} \left[-E^{(2)} \alpha^{(2)} \Delta T^{(2)} + \frac{R_p^{(2)} p^{(2)}}{H_p^{(2)}} \left(\nu^{(2)} + 1\right)\right]\right)$$
(2.50)

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

2.1.9. Περιοχή συγκόλλησης

Παρατηρείται ότι από τους προηγούμενους υπολογισμούς προέκυψαν 2 διαφορετικές ακτίνες για κάθε συγκόλληση, $R_{p''}^{(1)}$ και $R_{p''}^{(2)}$, λόγω διαφορετικών συντελεστών θερμικής αγωγιμότητας και μέτρων ελαστικότητας ($\alpha^{(1)} \neq \alpha^{(2)}$, $E^{(1)} \neq E^{(2)}$). Η συγκόλληση, όμως, υποχρεώνει τις 2 σωλήνες να αποκτήσουν την ίδια ακτίνα και κοινή εφαπτομένη.

Για να συμβεί αυτό απαιτούνται οι ροπές και οι διατμητικές δυνάμεις, όπως φαίνεται στο παρακάτω σχήμα, όπου Q_0 [N/m] και M_0 [Nm/m]:

Figure 2.10 The forces one pipe exerts on the other during the welding

Figure 2.11 (a) Uniform distribution of torque (b) Uniform distribution of shear force, across the cross-section of each tube

Τότε, η εξίσωση ισορροπίας, κατά την ακτινική κατεύθυνση, παίρνει την μορφή:

$$D^{(i)}\frac{d^{4}n^{(i)}}{dx^{4}} + \underbrace{\frac{E^{(i)}H_{p''}^{(i)}}{\left(R_{p''}^{(i)}\right)^{2}}n^{(i)}}_{(a\pi \circ i\sigma \rho \rho \sigma \pi i \alpha \kappa \epsilon \lambda \circ \varphi o \nu \varsigma)} = 0$$
(2.51)

Όπου,

$$D^{(i)} = \frac{E^{(i)} \left(H_{p''}^{(i)}\right)^3}{12(1-(\nu^{(i)})^2)}$$
(2.52)

η καμπτική ακαμψία του σωλήνα, με i=1,2 για κάθε σωλήνα, αντίστοιχα. Η γενική λύση της (2.51) δίνεται από τον Timoshenko, Theory of Plates and Shells,1989 και συνοψίζεται στο Παράρτημα Α.1. που παρατίθεται στο τέλος. Για την γενική λύση χρειαζόμαστε την σταθερά $\beta^{(i)}$, όπου:

$$\beta^{(i)} = \left[\frac{3(1 - (\nu^{(i)})^2)}{\left(R_{p''}^{(i)} H_{p''}^{(i)}\right)^2}\right]^{1/4}$$
(2.53)

Α) Για τις κλειστές διατομές, η εξίσωση ισορροπίας, η καμπτική ακαμψία του κάθε σωλήνα και η σταθερά $\beta^{(i)}$ με αντικατάσταση των (2.33), (2.34) και (2.37), (2.38), προκύπτουν ως:

$$(2.58) \Rightarrow D^{(i)} \frac{d^4 n^{(i)}}{dx^4} + \frac{E^{(i)} H_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left(1 - \frac{\nu^{(i)}}{E^{(i)}} \frac{3R_p^{(i)} p^{(i)}}{2H_p^{(i)}}\right)}{\left\{R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left[1 + \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \left(1 - \frac{\nu^{(i)}}{2}\right)\right]\right\}^2} n^{(i)} = 0$$

$$\Rightarrow D^{(i)} \frac{d^4 n^{(i)}}{dx^4} + \frac{E^{(i)} H_p^{(i)} \left(1 - \frac{\nu^{(i)}}{E^{(i)}} \frac{3R_p^{(i)} p^{(i)}}{2H_p^{(i)}}\right)}{(1 + \alpha^{(i)} \Delta T^{(i)}) \left\{R_p^{(i)} \left[1 + \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \left(1 - \frac{\nu^{(i)}}{2}\right)\right]\right\}^2} n^{(i)} = 0$$

$$(2.54)$$

Όπου:

$$(2.59) \Rightarrow D^{(i)} = \frac{E^{(i)} \left[H_p^{(i)} \left(1 + \alpha^{(i)} \Delta T^{(i)} \right) \left(1 - \frac{\nu^{(i)}}{E^{(i)}} \frac{3R_p^{(i)} p^{(i)}}{2H_p^{(i)}} \right) \right]^3}{12(1 - (\nu^{(i)})^2)}$$
(2.55)

$$(2.60) \Rightarrow \beta^{(i)} = \left[\frac{3(1 - (\nu^{(i)})^2)}{\left\{ R_p^{(i)} H_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)})^2 \left[1 + \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} (1 - \frac{\nu^{(i)}}{2}) \right] \left(1 - \frac{\nu^{(i)}}{E^{(i)}} \frac{3R_p^{(i)} p^{(i)}}{2H_p^{(i)}} \right) \right\}^2} \right]^{1/4}$$
(2.56)

Β) Για τις ανοιχτές διατομές, η εξίσωση ισορροπίας, η καμπτική ακαμψία του κάθε σωλήνα και η σταθερά $\beta^{(i)}$ με αντικατάσταση των (2.39), (2.40) και (2.43), (2.44), προκύπτουν ως:

$$(2.58) \Rightarrow D^{(i)} \frac{d^4 n^{(i)}}{dx^4} + \frac{E^{(i)} H_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left(1 - \frac{\nu^{(i)}}{E^{(1)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}}\right)}{\left\{R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left[1 + \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}}\right]\right\}^2} n^{(i)} = 0$$

$$\Rightarrow D^{(i)} \frac{d^4 n^{(i)}}{dx^4} + \frac{E^{(i)} H_p^{(i)} \left(1 - \frac{\nu^{(i)}}{E^{(1)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}}\right)}{(1 + \alpha^{(i)} \Delta T^{(i)}) \left\{R_p^{(i)} \left[1 + \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}}\right]\right\}^2} n^{(i)} = 0$$

$$(2.57)$$

Όπου:

$$(2.59) \Rightarrow D^{(i)} = \frac{E^{(i)} \left[H_p^{(i)} \left(1 + \alpha^{(i)} \Delta T^{(i)} \right) \left(1 - \frac{\nu^{(i)}}{E^{(1)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right]^3}{12(1 - (\nu^{(i)})^2)}$$
(2.58)

$$(2.60) \Rightarrow \beta^{(i)} = \left[\frac{3(1 - (\nu^{(i)})^2)}{\left\{ R_p^{(i)} H_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)})^2 \left[1 + \frac{1}{E^{(i)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right] \left(1 - \frac{\nu^{(i)}}{E^{(1)}} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right\}^2 \right]^{1/4}$$
(2.59)

Γ) Για τις πακτωμένες διατομές, η εξίσωση ισορροπίας, η καμπτική ακαμψία του κάθε σωλήνα και η σταθερά $\beta^{(i)}$ με αντικατάσταση των (2.45), (2.46) και (2.49), (2.50), προκύπτουν ως:

$$(2.58) \Rightarrow D^{(i)} \frac{d^4 n^{(i)}}{dx^4} + \frac{E^{(i)} H_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left(1 - \frac{v^{(i)}}{E^{(i)}} \left[-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} (v^{(i)} + 1) \right] \right)}{\left\{ R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left[1 + \frac{1}{E^{(i)}} \left(\frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} - v^{(i)} \left(-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + v^{(i)} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right) \right] \right\}^2} n^{(i)} = 0 \Rightarrow D^{(i)} \frac{d^4 n^{(i)}}{dx^4} + \frac{E^{(i)} H_p^{(i)} \left(1 - \frac{v^{(i)}}{E^{(i)}} \left[-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} (v^{(i)} + 1) \right] \right)}{(1 + \alpha^{(i)} \Delta T^{(i)}) \left\{ R_p^{(i)} \left[1 + \frac{1}{E^{(i)}} \left(\frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} - v^{(i)} \left(-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + v^{(i)} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right) \right\} \right\}^2} n^{(i)}$$
(2.60)
= 0

Όπου: (2.59) ⇒
$$D^{(i)}$$

= $\frac{E^{(i)} \left[H_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)}) \left(1 - \frac{\nu^{(i)}}{E^{(i)}} \left[-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} (\nu^{(i)} + 1) \right] \right) \right]^3}{12(1 - (\nu^{(i)})^2)}$ (2.61)

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

$$(2.60) \Rightarrow \beta^{(i)} = \left[\frac{3(1 - (\nu^{(i)})^2)}{\left[\left\{ R_p^{(i)} (1 + \alpha^{(i)} \Delta T^{(i)})^2 \left[1 + \frac{1}{E^{(i)}} \left(\frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} - \nu^{(i)} \left(-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \nu^{(i)} \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} \right) \right) \right] H_p^{(i)} \left(1 - \frac{\nu^{(i)}}{E^{(i)}} \left[-E^{(i)} \alpha^{(i)} \Delta T^{(i)} + \frac{R_p^{(i)} p^{(i)}}{H_p^{(i)}} (\nu^{(i)} + 1) \right] \right) \right\}^2} \right]^{1/4}$$

$$(2.62)$$

Η πρώτη συνοριακή συνθήκη, στο σύνορο x=0, όπως εξάγεται και στο παράρτημα A.1., μας δίνει την επιφανειακή παραμόρφωση, η οποία είναι:

$$n^{(i)}(0) = -\frac{1}{2(\beta^{(i)})^3 D^{(i)}} \left(\beta^{(i)} M_0 + Q_0\right)$$
(2.63)

και η δεύτερη συνοριακή συνθήκη (βλ. Παράρτημα Α.1.), μας δίνει την κλίση των επιφανειακών παραμορφώσεων:

$$n^{\prime(i)}(0) = \frac{1}{2(\beta^{(i)})^2 D^{(i)}} (2\beta^{(i)} M_0 + Q_0)$$
(2.64)

Όπου i=1,2 για κάθε μία από τις σωλήνες (1) και (2).

Να σημειωθεί ότι στις ανωτέρω συνοριακές συνθήκες δεν είναι γνωστά τα M_0 και Q_0 . Προφανώς πρέπει να υπολογιστούν. Αυτό σημαίνει ότι απαιτείται η χρήση των συνθηκών συμβιβαστού ή και άλλων φυσικών παραμέτρων.

Τα ανωτέρω μας οδηγούν στην τρίτη απεικόνιση παραμορφώσεων της μορφής:

$$R_{p'''} = R_{p''}^{(i)} - n^{(i)}(0), i = 1,2$$
(2.65)

Η αντίστοιχη παραμόρφωση του πάχους $H_{p''}^{(i)}$ δεν λαμβάνεται πλέον υπόψη, διότι είναι αμελητέα.

Η πρώτη συνθήκη συμβιβαστού των μετατοπίσεων τώρα δίνει:

$$R_{p'''} = R_{p''}^{(1)} - n^{(1)}(0) = R_{p''}^{(2)} + n^{(2)}(0)$$
(2.66)

Αυτή η συνθήκη πρέπει να ισχύει γενικά.

Η δεύτερη συνθήκη συμβιβαστού έχει άμεση εξάρτηση από την ποιότητα της συγκόλλησης.

Α) Για τις κλειστές διατομές, με αντικατάσταση των (2.33), (2.34) και (2.63) στην
 (2.66) έχουμε:

$$R_{p''}^{(1)} - n^{(1)}(0) = R_{p''}^{(2)} + n^{(2)}(0)$$

$$R_{p}^{(1)}(1 + \alpha^{(1)}\Delta T^{(1)}) \left\{ 1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \left[1 - \frac{\nu^{(1)}}{2} \right] \right\}$$

$$+ \frac{1}{2(\beta^{(1)})^{3}D^{(1)}} (\beta^{(1)}M_{0} + Q_{0})$$

$$= R_{p}^{(2)} (1 + \alpha^{(2)}\Delta T^{(2)}) \left\{ 1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \left[1 - \frac{\nu^{(2)}}{2} \right] \right\}$$

$$- \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} (\beta^{(2)}M_{0} + Q_{0}) \qquad (2.67)$$

Όπου $D^{(i)}$ και $\beta^{(i)}$, με i=1,2, είναι οι τιμές από τις σχέσεις (2.55) και (2.56), αντίστοιχα.

Διακρίνουμε τέσσερις περιπτώσεις σχετικά με την αντοχή της συγκόλλησης:

 a) Στην περίπτωση της πλήρως ρηγματωμένης συγκόλλησης, έχει επέλθει θραύση και δεν υπάρχει αντίσταση ροπής, δηλαδή

$$M_0 = 0$$
 (2.68)

Τότε από την (2.67) με αντικατάσταση της (2.68):

$$R_{p}^{(1)}(1 + \alpha^{(1)}\Delta T^{(1)}) \left\{ 1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \left[1 - \frac{\nu^{(1)}}{2} \right] \right\} + \frac{1}{2(\beta^{(1)})^{3}D^{(1)}} (0 + Q_{0})$$

$$= R_{p}^{(2)}(1 + \alpha^{(2)}\Delta T^{(2)}) \left\{ 1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \left[1 - \frac{\nu^{(2)}}{2} \right] \right\} - \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} (0 + Q_{0})$$

$$\Rightarrow Q_{0} \left[\frac{1}{2(\beta^{(1)})^{3}D^{(1)}} + \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} \right] =$$

$$= R_{p}^{(2)}(1 + \alpha^{(2)}\Delta T^{(2)}) \left\{ 1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \left[1 - \frac{\nu^{(2)}}{2} \right] \right\}$$

$$- R_{p}^{(1)}(1 + \alpha^{(1)}\Delta T^{(1)}) \left\{ 1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \left[1 - \frac{\nu^{(1)}}{2} \right] \right\}$$
(2.69)

Όπως προαναφέρθηκε τα $D^{(i)}$ και $\beta^{(i)}$, με i=1,2, είναι οι τιμές από τις σχέσεις (2.55) και (2.56), αντίστοιχα.

b) i) Εναλλακτικά θα μπορούσε η διατομή να έχει πλαστικοποιηθεί, δηλαδή:

$$M_0 = \pm M_y \tag{2.70}$$

Το διπλό πρόσημο λαμβάνει υπόψη μια υποτιθέμενη αλλαγή στροφής. Όπου η M_y είναι η οριακή ροπή διαρροής, που συνδέεται με την τάση αντοχής (διαρροής) της συγκόλλησης, σ_y , άρα:

$$M_{y} = \frac{\sigma_{y}}{4} \left(H_{p''} \right)^{2}$$
 (2.71)

Επειδή, όμως, θα έχουμε διαφορετικό πάχος από την σωλήνα (1) και διαφορετικό πάχος από την σωλήνα (2), θα πρέπει να πάρουμε ένα μέσο πάχος, $H_{n''}$, όπου:

$$H_{p''} = \frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2}$$
(2.72)

Έτσι,

$$M_{y} = \frac{\sigma_{y}}{4} \left(\frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2} \right)^{2}$$
(2.73)

Και

$$\sigma_{xx}^{P(i)} = 0 \tag{2.74}$$

Κάπως έτσι και παρότι βρισκόμαστε στην περίπτωση των κλειστών διατομών, εφόσον η διατομή μου έχει πλαστικοποιηθεί και λόγω της (2.74), αναγόμαστε στην περίπτωση B) των ανοιχτών διατομών. Παίρνουμε, λοιπόν, την εξίσωση (2.66) και αντικαθιστούμε, για ανοιχτή διατομή αυτήν την φορά, ως από τις (2.58), (2.59) αλλά και (2.63):

$$\begin{split} R_{p^{\prime\prime}}^{(1)} - n^{(1)}(0) &= R_{p^{\prime\prime}}^{(2)} + n^{(2)}(0) \Rightarrow \\ R_{p}^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)}\right) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}}\right] + \frac{1}{2(\beta^{(1)})^{3} D^{(1)}} \left(\beta^{(1)} M_{0} + Q_{0}\right) \\ &= R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)}\right) \left[1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)} p^{(2)}}{H_{p}^{(2)}}\right] \\ &- \frac{1}{2(\beta^{(2)})^{3} D^{(2)}} \left(\beta^{(2)} M_{0} + Q_{0}\right) \end{split}$$

$$\Rightarrow \mathbf{Q}_{0} \left(\frac{1}{2(\beta^{(1)})^{3}D^{(1)}} + \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} \right)$$

$$= R_{p}^{(2)} \left(1 + \alpha^{(2)}\Delta T^{(2)} \right) \left[1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \right]$$

$$- R_{p}^{(1)} \left(1 + \alpha^{(1)}\Delta T^{(1)} \right) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \right]$$

$$- M_{y} \left(\frac{1}{2(\beta^{(2)})^{2}D^{(2)}} + \frac{1}{2(\beta^{(1)})^{2}D^{(1)}} \right)$$
(2.75)

Όπου το M_y υπολογίζεται από την (2.73), ενώ τα $\beta^{(1)}, \beta^{(2)}$ και $D^{(1)}, D^{(2)}$ υπολογίζονται από τις σχέσεις (2.58), (2.59) για i=1,2.

- ii) Αν $M_y = 0$ τότε έχουμε την (a) περίπτωση.
- c) Πλαστικοποίηση λόγω τέμνουσας:

$$Q_0 = Q_y \tag{2.76}$$

Μία ακόμη περίπτωση απώλειας αντοχής στην συγκόλληση είναι να υπάρξει διαρροή του υλικού λόγω τέμνουσας, όπου τότε:

$$Q_{y} = \tau_{y} \left(\frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2} \right)$$
(2.77)

Όπου Q_y είναι η τέμνουσα διαρροής που συνδέεται με τη διατμητική τάση αντοχής:

$$\tau_y = \frac{\sigma_y}{2} \tag{2.78}$$

Τότε, αντίστοιχα από την:

$$(2.67) \Rightarrow \boldsymbol{M}_{0} \left(\frac{1}{2(\beta^{(1)})^{2} D^{(1)}} + \frac{1}{2(\beta^{(2)})^{2} D^{(2)}} \right) = R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right) \left\{ 1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)} p^{(2)}}{H_{p}^{(2)}} \left[1 - \frac{\nu^{(2)}}{2} \right] \right\} - R_{p}^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)} \right) \left\{ 1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}} \left[1 - \frac{\nu^{(1)}}{2} \right] \right\} - \boldsymbol{Q}_{y} \left(\frac{1}{2(\beta^{(2)})^{3} D^{(2)}} + \frac{1}{2(\beta^{(1)})^{3} D^{(1)}} \right)$$

$$(2.79)$$

Όπου Q_y υπολογίζεται από την (2.77) και $\beta^{(1)}$, $\beta^{(2)}$ και $D^{(1)}$, $D^{(2)}$ υπολογίζονται από τις σχέσεις (2.55), (2.56) για i=1,2.

d) Ισχυρή συγκόλληση $|M_0| < M_y$

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης
Στην περίπτωση, όμως που η συγκόλληση είναι ισχυρή τότε θα πρέπει να υπάρχει συμβιβαστό και ως προς την κλίση του κελύφους. Δηλαδή:

$$n^{\prime(1)}(0) = -n^{\prime(2)}(0)$$
(2.80)

Με αντικατάσταση της (2.64):

$$\frac{1}{2(\beta^{(1)})^2 D^{(1)}} \left(2\beta^{(1)} M_0 + Q_0 \right) = -\frac{1}{2(\beta^{(2)})^2 D^{(2)}} \left(2\beta^{(2)} M_0 + Q_0 \right)$$
(2.81)

$$\Rightarrow \frac{2\beta^{(1)}M_0}{2(\beta^{(1)})^2 D^{(1)}} + \frac{Q_0}{2(\beta^{(1)})^2 D^{(1)}} = -\frac{2\beta^{(2)}M_0}{2(\beta^{(2)})^2 D^{(2)}} - \frac{Q_0}{2(\beta^{(2)})^2 D^{(2)}}$$
$$\Rightarrow Q_0 \left(\frac{1}{2(\beta^{(1)})^2 D^{(1)}} + \frac{1}{2(\beta^{(2)})^2 D^{(2)}}\right) = -M_0 \left(\frac{1}{\beta^{(2)}D^{(2)}} + \frac{1}{\beta^{(1)}D^{(1)}}\right)$$
$$Q_0 = -2\frac{\beta^{(1)}\beta^{(2)}(\beta^{(1)}D^{(1)} + \beta^{(2)}D^{(2)})}{(\beta^{(2)})^2 D^{(2)} + (\beta^{(1)})^2 D^{(1)}} M_0$$
(2.82)

Αν θέσω πίσω τους όρους $R_{p''}^{(1)}$ και $R_{p''}^{(2)}$, χάριν συντομίας, από την (2.67) προκύπτει:

$$R_{p''}^{(1)} + \frac{1}{2(\beta^{(1)})^{3}D^{(1)}} (\beta^{(1)}M_{0} + Q_{0}) = R_{p''}^{(2)} - \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} (\beta^{(2)}M_{0} + Q_{0})$$

με αντικατάσταση της (2.82):

$$M_{0}\left[\left(\frac{1}{2(\beta^{(1)})^{2}D^{(1)}}\left(1-2\frac{\beta^{(2)}(\beta^{(1)}D^{(1)}+\beta^{(2)}D^{(2)})}{(\beta^{(2)})^{2}D^{(2)}+(\beta^{(1)})^{2}D^{(1)}}\right)\right)+\left(\frac{1}{2(\beta^{(2)})^{2}D^{(2)}}\left(1-2\frac{\beta^{(1)}(\beta^{(1)}D^{(1)}+\beta^{(2)}D^{(2)})}{(\beta^{(2)})^{2}D^{(2)}+(\beta^{(1)})^{2}D^{(1)}}\right)\right)\right]$$
$$=R_{p''}^{(2)}-R_{p''}^{(1)}$$
(2.83)

Όπου τα και $\beta^{(1)}, \beta^{(2)}, D^{(1)}, D^{(2)}$ και $R_{p^{\prime\prime}}^{(1)}, R_{p^{\prime\prime}}^{(2)}$ υπολογίζονται από τις σχέσεις (2.55), (2.56) για i=1,2 και (2.33), (2.34), αντίστοιχα.

B) Για τις ανοιχτές διατομές, με αντικατάσταση των (2.46), (2.47) και (2.63) στην (2.66) έχουμε:

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

$$R_{p''}^{(1)} - n^{(1)}(0) = R_{p''}^{(2)} + n^{(2)}(0) \Rightarrow$$

$$R_{p}^{(1)}(1 + \alpha^{(1)}\Delta T^{(1)}) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \right] + \frac{1}{2(\beta^{(1)})^{3}D^{(1)}} (\beta^{(1)}M_{0} + Q_{0})$$

$$= R_{p}^{(2)}(1 + \alpha^{(2)}\Delta T^{(2)}) \left[1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \right] - \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} (\beta^{(2)}M_{0} + Q_{0})$$
(2.84)

Όπου τα και $\beta^{(1)}, \beta^{(2)}, D^{(1)}, D^{(2)}$ και $R_{p^{\prime\prime}}^{(1)}, R_{p^{\prime\prime}}^{(2)}$ υπολογίζονται από τις σχέσεις (2.58), (2.59) για i=1,2.

Διακρίνουμε, σε αντιστοιχία με πριν, τέσσερις περιπτώσεις σχετικά με την αντοχή της συγκόλλησης:

 a) Στην περίπτωση της πλήρως ρηγματωμένης συγκόλλησης, έχει επέλθει θραύση και δεν υπάρχει αντίσταση ροπής, δηλαδή, M₀ = 0. Τότε από την (2.84) με αντικατάσταση αυτής της σχέσης έχουμε:

$$R_{p}^{(1)}(1 + \alpha^{(1)}\Delta T^{(1)}) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \right] + \frac{1}{2(\beta^{(1)})^{3}D^{(1)}} (0 + Q_{0})$$

$$= R_{p}^{(2)}(1 + \alpha^{(2)}\Delta T^{(2)}) \left[1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \right] - \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} (0 + Q_{0})$$

$$\Rightarrow Q_{0} \left(\frac{1}{2(\beta^{(1)})^{3}D^{(1)}} + \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} \right)$$

$$= R_{p}^{(2)}(1 + \alpha^{(2)}\Delta T^{(2)}) \left[1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \right]$$

$$- R_{p}^{(1)}(1 + \alpha^{(1)}\Delta T^{(1)}) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \right]$$
(2.85)

Όπου τα $D^{(i)}$ και $\beta^{(i)}$, με i=1,2, είναι οι τιμές από τις σχέσεις (2.58) και (2.59), αντίστοιχα.

b) i) Εναλλακτικά θα μπορούσε η διατομή να έχει πλαστικοποιηθεί, δηλαδή:

$$M_0 = \pm M_y \tag{2.86}$$

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

Το διπλό πρόσημο λαμβάνει υπόψη μια υποτιθέμενη αλλαγή στροφής. Όπου η M_y είναι η οριακή ροπή διαρροής, που συνδέεται με την τάση αντοχής (διαρροής) της συγκόλλησης, σ_y , άρα:

$$M_{y} = \frac{\sigma_{y}}{4} \left(H_{p''} \right)^{2}$$
(2.87)

Επειδή, όμως, θα έχουμε διαφορετικό πάχος από την σωλήνα (1) και διαφορετικό πάχος από την σωλήνα (2), θα πρέπει να πάρουμε ένα μέσο πάχος, $H_{p''}$, όπου:

$$H_{p''} = \frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2}$$
(2.88)

Έτσι,

$$M_{y} = \frac{\sigma_{y}}{4} \left(\frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2} \right)^{2}$$
(2.89)

Και

$$\sigma_{\chi\chi}^{P(i)} = 0 \tag{2.90}$$

Από την (2.85) με αντικατάσταση των παραπάνω σχέσεων έχουμε:

$$\Rightarrow \mathbf{Q}_{0} \left(\frac{1}{2(\beta^{(1)})^{3}D^{(1)}} + \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} \right)$$

$$= R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right) \left[1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \right]$$

$$- R_{p}^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)} \right) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \right]$$

$$- \mathbf{M}_{y} \left(\frac{1}{2(\beta^{(2)})^{2}D^{(2)}} + \frac{1}{2(\beta^{(1)})^{2}D^{(1)}} \right)$$
(2.91)

Όπως ήταν αναμενόμενο η σχέση αυτή είναι ακριβώς η σχέση (2.75). Όπου το M_y υπολογίζεται από την (2.89), ενώ τα $\beta^{(1)}, \beta^{(2)}$ και $D^{(1)}, D^{(2)}$ υπολογίζονται από τις σχέσεις (2.58), (2.59) για i=1,2.

- ii) Αν $M_y = 0$ τότε έχουμε την (a) περίπτωση.
- c) Πλαστικοποίηση λόγω τέμνουσας:

$$Q_0 = Q_y \tag{2.92}$$

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

Μία ακόμη περίπτωση απώλειας αντοχής στην συγκόλληση είναι να υπάρξει διαρροή του υλικού λόγω τέμνουσας, όπου τότε:

$$Q_{y} = \tau_{y} \left(\frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2} \right)$$
(2.93)

Όπου Q_y είναι η τέμνουσα διαρροής που συνδέεται με τη διατμητική τάση αντοχής:

$$\tau_y = \frac{\sigma_y}{2} \tag{2.94}$$

Τότε, αντίστοιχα από την:

$$(2.84) \Rightarrow M_{0} \left(\frac{1}{2(\beta^{(1)})^{2} D^{(1)}} + \frac{1}{2(\beta^{(2)})^{2} D^{(2)}} \right) = R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right) \left[1 + \frac{1}{2(\beta^{(2)})^{2} D^{(2)}} \right] - R_{p}^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)} \right) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)} p^{(1)}}{H_{p}^{(1)}} \right] - Q_{y} \left(\frac{1}{2(\beta^{(2)})^{3} D^{(2)}} + \frac{1}{2(\beta^{(1)})^{3} D^{(1)}} \right)$$

$$(2.84) \Rightarrow M_{0} \left(\frac{1}{2(\beta^{(1)})^{3} D^{(1)}} \right) = R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right) = R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right) \left[1 + \frac{1}{2(\beta^{(2)})^{3} D^{(2)}} \right]$$

$$(2.84) \Rightarrow M_{0} \left(\frac{1}{2(\beta^{(2)})^{3} D^{(2)}} \right) = R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right) = R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right) \left[1 + \frac{1}{2(\beta^{(2)})^{3} D^{(2)}} \right]$$

$$(2.85) = R_{p}^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)} \right)$$

Όπου Q_y υπολογίζεται από την (2.93) και $\beta^{(1)}, \beta^{(2)}$ και $D^{(1)}, D^{(2)}$ υπολογίζονται από τις σχέσεις (2.58), (2.59) για i=1,2.

d) Ισχυρή συγκόλληση $|M_0| < M_y$

Στην περίπτωση, όμως που η συγκόλληση είναι ισχυρή τότε θα πρέπει να υπάρχει συμβιβαστό και ως προς την κλίση του κελύφους. Δηλαδή:

$$n^{\prime(1)}(0) = -n^{\prime(2)}(0)$$
(2.96)

Με αντικατάσταση της (2.63), όπως και πριν προκύπτει:

$$\boldsymbol{Q}_{0} = -2 \frac{\beta^{(1)} \beta^{(2)} \left(\beta^{(1)} D^{(1)} + \beta^{(2)} D^{(2)}\right)}{(\beta^{(2)})^{2} D^{(2)} + (\beta^{(1)})^{2} D^{(1)}} \boldsymbol{M}_{0}$$
(2.97)

Όπου αν θέσω πίσω τους όρους $R_{p''}^{(1)}$ και $R_{p''}^{(2)}$, χάριν συντομίας, από την (2.84) προκύπτει:

$$R_{p''}^{(1)} + \frac{1}{2(\beta^{(1)})^3 D^{(1)}} \left(\beta^{(1)} M_0 + Q_0\right) = R_{p''}^{(2)} - \frac{1}{2(\beta^{(2)})^3 D^{(2)}} \left(\beta^{(2)} M_0 + Q_0\right)$$

με αντικατάσταση της (2.97):

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

$$M_{0}\left[\left(\frac{1}{2(\beta^{(1)})^{2}D^{(1)}}\left(1-2\frac{\beta^{(2)}\left(\beta^{(1)}D^{(1)}+\beta^{(2)}D^{(2)}\right)}{\left(\beta^{(2)}\right)^{2}D^{(2)}+\left(\beta^{(1)}\right)^{2}D^{(1)}}\right)\right) + \left(\frac{1}{2(\beta^{(2)})^{2}D^{(2)}}\left(1-2\frac{\beta^{(1)}\left(\beta^{(1)}D^{(1)}+\beta^{(2)}D^{(2)}\right)}{\left(\beta^{(2)}\right)^{2}D^{(2)}+\left(\beta^{(1)}\right)^{2}D^{(1)}}\right)\right)\right] = R_{p''}^{(2)}-R_{p''}^{(1)}$$

$$(2.98)$$

Όπου τα και $\beta^{(1)}, \beta^{(2)}, D^{(1)}, D^{(2)}$ και $R_{p^{\prime\prime}}^{(1)}, R_{p^{\prime\prime}}^{(2)}$ υπολογίζονται από τις σχέσεις (2.65), (2.66) για i=1,2 και (2.58),(2.59), αντίστοιχα.

Γ) Για τις πακτωμένες διατομές, με αντικατάσταση της (2.63) στην (2.66) έχουμε:

$$R_{p''}^{(1)} - n^{(1)}(0) = R_{p''}^{(2)} + n^{(2)}(0) \Rightarrow$$

$$R_{p''}^{(1)} + \frac{1}{2(\beta^{(1)})^{3}D^{(1)}} (\beta^{(1)}M_{0} + Q_{0})$$

$$= R_{p''}^{(2)} - \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} (\beta^{(2)}M_{0} + Q_{0})$$
(2.99)

Όπου $D^{(i)}$ και $\beta^{(i)}$, με i=1,2, είναι οι τιμές από τις σχέσεις (2.61) και (2.62), αντίστοιχα, ενώ τα $R_{p''}^{(1)}$, $R_{p''}^{(2)}$ προκύπτουν με αντικατάσταση των (2.45), (2.46).

Διακρίνουμε, σε αντιστοιχία με πριν, τέσσερις περιπτώσεις σχετικά με την αντοχή της συγκόλλησης:

 a) Στην περίπτωση της πλήρως ρηγματωμένης συγκόλλησης, έχει επέλθει θραύση και δεν υπάρχει αντίσταση ροπής, δηλαδή, M₀ = 0. Τότε από την (2.99) με αντικατάσταση αυτής της σχέσης έχουμε:

$$R_{p''}^{(1)} + \frac{1}{2(\beta^{(1)})^{3}D^{(1)}} (0 + Q_{0}) = R_{p''}^{(2)} - \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} (0 + Q_{0})$$

$$\Rightarrow Q_{0} \left(\frac{1}{2(\beta^{(1)})^{3}D^{(1)}} + \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} \right) = R_{p''}^{(2)} - R_{p''}^{(1)}$$
(2.100)

Όπου τα $D^{(i)}$ και $\beta^{(i)}$, με i=1,2 και $R_{p''}^{(1)}$, $R_{p''}^{(2)}$ είναι οι τιμές από τις σχέσεις (2.61) και (2.62), αντίστοιχα και (2.45), (2.46).

b) i) Εναλλακτικά θα μπορούσε η διατομή να έχει πλαστικοποιηθεί, δηλαδή:

$$M_0 = \pm M_y \tag{2.101}$$

Το διπλό πρόσημο λαμβάνει υπόψη μια υποτιθέμενη αλλαγή στροφής. Όπου η M_y είναι η οριακή ροπή διαρροής, που συνδέεται με την τάση αντοχής (διαρροής) της συγκόλλησης, σ_y , άρα:

$$M_{y} = \frac{\sigma_{y}}{4} \left(H_{p''} \right)^{2}$$
 (2.102)

Επειδή, όμως, θα έχουμε διαφορετικό πάχος από την σωλήνα (1) και διαφορετικό πάχος από την σωλήνα (2), θα πρέπει να πάρουμε ένα μέσο πάχος, $H_{n''}$, όπου:

$$H_{p''} = \frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2}$$
(2.103)

Έτσι,

$$M_{y} = \frac{\sigma_{y}}{4} \left(\frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2} \right)^{2}$$
(2.104)

Και

$$\sigma_{xx}^{P(i)} = 0 \tag{2.105}$$

Κάπως έτσι και παρότι βρισκόμαστε στην περίπτωση των πακτωμένων διατομών, εφόσον η διατομή μου έχει πλαστικοποιηθεί και λόγω της (2.105), αναγόμαστε στην περίπτωση B) των ανοιχτών διατομών. Παίρνουμε, λοιπόν, την εξίσωση (2.66) και αντικαθιστούμε, για ανοιχτή διατομή αυτήν την φορά, ως από τις (2.39), (2.40) αλλά και (2.63):

$$\Rightarrow \mathbf{Q}_{0} \left(\frac{1}{2(\beta^{(1)})^{3}D^{(1)}} + \frac{1}{2(\beta^{(2)})^{3}D^{(2)}} \right)$$

$$= R_{p}^{(2)} \left(1 + \alpha^{(2)}\Delta T^{(2)} \right) \left[1 + \frac{1}{E^{(2)}} \frac{R_{p}^{(2)}p^{(2)}}{H_{p}^{(2)}} \right]$$

$$- R_{p}^{(1)} \left(1 + \alpha^{(1)}\Delta T^{(1)} \right) \left[1 + \frac{1}{E^{(1)}} \frac{R_{p}^{(1)}p^{(1)}}{H_{p}^{(1)}} \right]$$

$$- M_{y} \left(\frac{1}{2(\beta^{(2)})^{2}D^{(2)}} + \frac{1}{2(\beta^{(1)})^{2}D^{(1)}} \right)$$
(2.106)

Όπως ήταν αναμενόμενο η σχέση αυτή είναι ακριβώς η σχέση (2.75). Όπου το M_y υπολογίζεται από την (2.104), ενώ τα $\beta^{(1)}, \beta^{(2)}$ και $D^{(1)}, D^{(2)}$ υπολογίζονται από τις σχέσεις (2.58), (2.59) για i=1,2.

ii) Αν $M_y = 0$ τότε έχουμε την (a) περίπτωση.

c) Πλαστικοποίηση λόγω τέμνουσας:

$$Q_0 = Q_y \tag{2.107}$$

Μία ακόμη περίπτωση απώλειας αντοχής στην συγκόλληση είναι να υπάρξει διαρροή του υλικού λόγω τέμνουσας, όπου τότε:

$$Q_{y} = \tau_{y} \left(\frac{H_{p''}^{(1)} + H_{p''}^{(2)}}{2} \right)$$
(2.108)

Όπου Q_y είναι η τέμνουσα διαρροής που συνδέεται με τη διατμητική τάση αντοχής:

$$\tau_y = \frac{\sigma_y}{2} \tag{2.109}$$

Τότε, αντίστοιχα από την:

$$(2.99) \Rightarrow M_{0} \left(\frac{1}{2(\beta^{(1)})^{2} D^{(1)}} + \frac{1}{2(\beta^{(2)})^{2} D^{(2)}} \right) = R_{p''}^{(2)} - R_{p''}^{(1)} - Q_{y} \left(\frac{1}{2(\beta^{(2)})^{3} D^{(2)}} + \frac{1}{2(\beta^{(1)})^{3} D^{(1)}} \right)$$
(2.110)

Όπου Q_y υπολογίζεται από την (2.108) και $\beta^{(1)}, \beta^{(2)}, D^{(1)}, D^{(2)}$ και $R_{p^{\prime\prime}}^{(1)}, R_{p^{\prime\prime}}^{(2)}$ υπολογίζονται από τις σχέσεις (2.61), (2.62) για i=1,2 και (2.45), (2.46).

d) Ισχυρή συγκόλληση $|M_0| < M_y$

Στην περίπτωση, όμως που η συγκόλληση είναι ισχυρή τότε θα πρέπει να υπάρχει συμβιβαστό και ως προς την κλίση του κελύφους. Δηλαδή:

$$n^{\prime(1)}(0) = -n^{\prime(2)}(0)$$
(2.111)

Με αντικατάσταση της (2.64), όπως και πριν προκύπτει:

$$\boldsymbol{Q}_{0} = -2 \frac{\beta^{(1)} \beta^{(2)} \left(\beta^{(1)} D^{(1)} + \beta^{(2)} D^{(2)}\right)}{(\beta^{(2)})^{2} D^{(2)} + (\beta^{(1)})^{2} D^{(1)}} \boldsymbol{M}_{0}$$
(2.112)

με αντικατάσταση της (2.112):

$$\begin{split} \mathbf{M}_{\mathbf{0}} \Bigg[\Bigg(\frac{1}{2(\beta^{(1)})^{2}D^{(1)}} \Bigg(1 - 2\frac{\beta^{(2)} \left(\beta^{(1)}D^{(1)} + \beta^{(2)}D^{(2)}\right)}{\left(\beta^{(2)}\right)^{2}D^{(2)} + \left(\beta^{(1)}\right)^{2}D^{(1)}} \Bigg) \Bigg) \\ & + \Bigg(\frac{1}{2(\beta^{(2)})^{2}D^{(2)}} \Bigg(1 - 2\frac{\beta^{(1)} \left(\beta^{(1)}D^{(1)} + \beta^{(2)}D^{(2)}\right)}{\left(\beta^{(2)}\right)^{2}D^{(2)} + \left(\beta^{(1)}\right)^{2}D^{(1)}} \Bigg) \Bigg) \Bigg] \\ & = R_{p^{''}}^{(2)} - R_{p^{''}}^{(1)} \end{split}$$
(2.113)

Όπου τα και $\beta^{(1)}, \beta^{(2)}, D^{(1)}, D^{(2)}$ και $R_{p^{\prime\prime}}^{(1)}, R_{p^{\prime\prime}}^{(2)}$ υπολογίζονται από τις σχέσεις (2.61), (2.62) για i=1,2 και (2.45),(2.46), αντίστοιχα.

2.1.10. Διατμητικές τάσεις

Οι διατμητικές τάσεις, σ_{xr} , που αναπτύσσονται, θεωρούμε ότι ακολουθούν παραβολική κατανομή. Έτσι, οι μέγιστη διατμητική τάση εμφανίζεται στο κέντρο των δύο σωλήνων και πιο συγκεκριμένα στο σημείο C, όπου:

$$max \left| \sigma_{xr}^{(i)} \right|_{c} = \frac{3}{2} \frac{Q_{0}}{H_{p''}^{(i)}}$$
(2.114)

Ενώ, οι κύριες τάσεις που αναπτύσσονται ακολουθούν τον παρακάτω τύπο:

$$\left|\sigma_{1,2}{}^{(i)}\right|_{A,B} = \sigma_{xx}{}^{p(i)} \pm \sigma_{xx}{}^{b(i)}$$
(2.115)

Figure 2.12 Depiction of bending and shear stresses

2.1.11. Τάσεις von Mises

Οι τάσεις von Mises χρησιμοποιούνται συχνά για να προσδιορίσουν πότε ένα ισότροπο και όλκιμο υλικό αρχίζει και παραμορφώνεται πλάστιμα και ουσιαστικά πότε διαρρέει όταν υπόκειται σε μια περίπλοκη περίπτωση φόρτισης. Αυτό επιτυγχάνεται με τον υπολογισμό των τάσεων von Mises και την σύγκριση αυτών με την τάση διαρροής του υλικού. Στον παρακάτω τύπο φαίνεται ο τύπος υπολογισμού των τάσεων αυτών, όπου:

$$\sigma_{M} = \sqrt{\frac{1}{2} (\sigma_{xx}^{p^{(i)}} - \sigma_{rr}^{p^{(i)}})^{2} + (\sigma_{rr}^{p^{(i)}} - \sigma_{\theta\theta}^{p^{(i)}})^{2} + (\sigma_{\theta\theta}^{p^{(i)}} - \sigma_{xx}^{p^{(i)}})^{2} + 3(\sigma_{xr}^{(i)})^{2}}$$
(2.116)

Με την εύρεση τώρα των ροπών M_0 και των διατμητικών δυνάμεων Q_0 μπορούμε να βρούμε τις διατμητικές τάσεις και τις καμπτικές τάσεις που αναπτύσσονται λόγω M_0 και Q_0 , όπως φαίνεται και στο παραπάνω σχήμα. Επομένως, οι καμπτικές τάσεις εξάγονται ως:

$$\sigma_{xx}^{b(1)} = 6 \frac{M_0}{\left(H_{p''}^{(1)}\right)^2}$$
(2.117)

$$\sigma_{\chi\chi}^{b(2)} = 6 \frac{M_0}{\left(H_{p\prime\prime}^{(2)}\right)^2}$$
(2.118)

Και οι διατμητικές τάσεις:

$$\sigma_{xr}^{(1)}(0) = \frac{Q_0}{H_{p\prime}^{(1)}} = \frac{Q_0}{H_p^{(1)} \left(1 + \alpha^{(1)} \Delta T^{(1)}\right)}$$
(2.119)

$$\sigma_{xr}^{(2)}(0) = -\frac{Q_0}{H_{p'}^{(2)}} = -\frac{Q_0}{H_p^{(2)} \left(1 + \alpha^{(2)} \Delta T^{(2)}\right)}$$
(2.120)

Να σημειωθεί ότι παρατηρείται εάν το $M_0>0$ τότε επιβαρύνεται η εσωτερική πλευρά των σωλήνων, ενώ το αντίθετο συμβαίνει για $M_0 < 0$. Στην πρώτη περίπτωση, λοιπόν αρχίζει και δυσχαιρένει η κατάσταση, αφού η δημιουργία μικρορωγμών συμβαίνει στην εσωτερική πλευρά και καθιστά την επιθεώρηση και την πιθανή επιδιόρθωση πολύ πιο δύσκολες, σαν διεργασίες.

Κεφάλαιο 3. Αριθμητική Μοντελοποίηση

3.1. Αξονοσυμμετρικό μοντέλο κυλινδρικών σωλήνων

Δημιουργήθηκε, εξαρχής ένα αξονοσυμμετρικό μοντέλο, αφού όλα τα φορτία και κατ' επέκταση όλες οι αναπτυσσόμενες τάσεις συμβαίνουν αξονοσυμμετρικά στους συγκολλημένους κυλίνδρους.

Έτσι, αρχικά δημιουργήθηκαν γεωμετρικά τα μοντέλα των δύο σωλήνων με την συγκόλλησή τους, όπως φαίνεται στο παρακάτω σχήμα:

Δημιουργήθηκαν συνολικά 18 μοντέλα. Τα πρώτα 9 αφορούν τη σύνθεση υλικών RH2, ενώ τα άλλα 9 τη σύνθεση SH2. Καθένα από αυτά τα 9 μοντέλα απαρτίζεται από τις 3 συνθήκες στήριξης, οι οποίες δημιουργούν τις ανοιγτές, κλειστές και πακτωμένες διατομές όπως αναφέρθηκε παραπάνω. Σε κάθε μια από τις περιπτώσεις στήριξης, δημιουργήθηκαν 3 συνθήκες φόρτισης. Η πρώτη αφορά την εφαρμογή μόνο της πίεσης p. Η δεύτερη την εφαρμογή μόνο της διαφοράς θερμοκρασίας ΔT . Ενώ η τρίτη την επαλληλία αυτών, (δηλαδή p+ΔT). Ας εξεταστούν, όμως, αναλυτικά τα μοντέλα σε κάθε περίπτωση. Για πιο εύκολη κατανόηση έγινε η σύμβαση αρίθμησης ότι ο πρώτος αριθμός αναφέρεται στο συνδυασμό υλικών (βλ. Παράρτημα A.6.), δηλαδή 1 για το RH2 και 2 για τον συνδυασμό SH2, ο δεύτερος αριθμός αναφέρεται στο είδος της διατομής, δηλάδη για ανοιχτές διατομές το 1, για πακτωμένες διατομές το 2, ενώ για κλειστές διατομές το 3. Ο τρίτος αριθμός αναφέρεται στις συνθήκες φόρτισης, δηλαδή για επιβολή μόνο πίεσης το 1, για θερμοκρασία το 2, ενώ για συνδυασμό και των δύο μαζί το 3. Παραδείγματος χάρη η διατομή 2.1.3. αναφέρεται στον συνδυασμό υλικών SH2, στις ανοικτές διατομές, για ομοιόμορφη πίεση και θερμοκρασία.

3.2. Συνδυασμός υλικών RH2

Figure 3.1 The internal radius and the thickness of the combination RH2

Longitudinal (Axial) stresses: για έναν κλειστό κύλινδρο και στα 2 άκρα, η εσωτερική πίεση δημιουργεί μια δύναμη κατά μήκος του άξονα x.

1.1.1. Μοντέλο RH2 σε ανοιχτές διατομές, με άρθρωση στη συγκόλληση και ομοιόμορφη πίεση στο μήκος των σωλήνων. Ιδιότητες:

do(mm)	60.3						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
RH2	1	28.35	25 26	5.23	0	1.23E-05	179200
KH2 —	2	20.55	5.0		0	1.81E-05	148500

Table 3.1. Properties for the combination of materials RH2 where, R_i : middle radius, H_i : thickness, p_i : internal pressure, ΔT : temperature difference, E: Young's modulus, v: Poisson's ratio, α : linear expansion coefficient and some properties from Abaqus discrimination

Table 3.2. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises stresses	47.161	33.871

Figure 3.2 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Abaqus				Appl	rtical		
Mises(c	entral)	Mises(1)		Mises(2)		Allan	ytical
0	43.8138	0	47.0976	0	40.5067	0	45.2681
0	43.8723	0.37751	46.5743	0.376341	40.0784	0.376341	44.57842
0.359956	43.3985	0.377525	46.5743	0.752686	39.2462	0.752686	43.88874
0.719918	42.4726	0.755028	45.5435	1.12903	38.4521	1.12903	43.19906
1.07988	41.5888	0.755052	45.5434	1.50538	37.6861	1.50538	42.50938
1.43985	40.7435	1.13255	44.5543	1.88173	36.9469	1.88173	41.8197
1.79982	39.9338	1.13258	44.5542	2.25807	36.2318	2.25807	41.13002
2.15979	39.1578	1.51008	43.6137	2.63442	35.5394	2.63442	40.44034
2.1598	39.0798	1.51011	43.6136	3.01078	34.8677	3.01078	39.75066
2.51977	38.414	1.88761	42.7194	3.38713	34.2164	3.38713	39.06098
2.51978	38.3369	1.88764	42.7193	3.76348	33.8961	3.76348	38.3713
2.87975	37.6264	2.26515	41.871				
2.87975	37.7016	2.26518	41.871				
3.23973	37.0199	2.64269	41.0682				
3.23973	36.948	2.64272	41.0681				
3.59971	36.6167	3.02024	40.3112				
3.59971	36.6867	3.02026	40.3112				
		3.39779	39.6027				
		3.77534	39.2614				

Table 3.3. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Παρατηρείται ασυνέχεια στις χρωματικές καμπύλες, όπως φαίνεται στα παραπάνω σχήματα, που οφείλονται στην ασυνέχεια των τάσεων.

Table 3.4.	Maximum and minimum	values for Radial Stresses,	exported from Abaqus
------------	---------------------	-----------------------------	----------------------

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	-0.204	-5.044

Figure 3.3 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Abaqus						Anal	ytical		
S11(c	central)	S1	.1(1)	S1	.1(2)	thin	shells	thick	shells
0.000	-4.9051	0.000	-4.9478	0.000	-4.8899	0.000	0.0000	0.000	-4.7326
0.000	-4.9040	0.378	-4.6613	0.376	-4.5728	0.360	0.0000	0.360	-4.2096
0.360	-4.6003	0.378	-4.6613	0.753	-3.9696	0.720	0.0000	0.720	-3.6866
0.720	-4.0051	0.755	-4.0814	1.129	-3.4078	1.080	0.0000	1.080	-3.1636
1.080	-3.4355	0.755	-4.0813	1.505	-2.8648	1.440	0.0000	1.440	-2.6406
1.440	-2.8892	1.133	-3.5041	1.882	-2.3390	1.800	0.0000	1.800	-2.1176
1.800	-2.3631	1.133	-3.5041	2.258	-1.8304	2.160	0.0000	2.160	-1.5946
2.160	-1.8561	1.510	-2.9485	2.634	-1.3398	2.520	0.0000	2.520	-1.0716
2.520	-1.3668	1.510	-2.9485	3.011	-0.8689	2.880	0.0000	2.880	-0.5486
2.520	-1.3593	1.888	-2.4147	3.387	-0.4229	3.240	0.0000	3.240	-0.0256
2.880	-0.8899	1.888	-2.4146	3.763	-0.2075	3.600	0.0000	3.600	0.0000

Table 3.5.Radial Stresses along the thickness with units in (MPa), for the three paths from
Abaqus and the Analytical solution

2.880	-0.8948	2.265	-1.9007
3.240	-0.4389	2.643	-1.4039
3.240	-0.4367	3.020	-0.9216
3.600	-0.2140	3.398	-0.4539
3.600	-0.2149	3.775	-0.2237

Table 3.6. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	2.052	-1.940

Figure 3.4 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

		thin shells					
S22(c	central)	S22(1)	S22(2)	Analytical	
0.000	0.3002	0	0.9170	0	-0.3564	0.000	0
0.000	0.2561	0.37751	0.8007	0.376341	-0.3233	0.000	0
0.360	0.2211	0.377525	0.8007	0.752686	-0.2672	0.360	0
0.720	0.1550	0.755028	0.5988	1.12903	-0.1973	0.720	0
1.080	0.0974	0.755052	0.5987	1.50538	-0.1023	1.080	0
1.440	0.0466	1.13255	0.4089	1.88173	0.0077	1.440	0
1.800	-0.0003	1.13258	0.4089	2.25807	0.1392	1.800	0
2.160	-0.0455	1.51008	0.2032	2.63442	0.2919	2.160	0
2.160	-0.0621	1.51011	0.2032	3.01078	0.4721	2.160	0
2.520	-0.0900	1.88761	-0.0117	3.38713	0.6810	2.520	0
2.520	-0.1273	1.88764	-0.0118	3.76348	0.7927	2.520	0

Table 3.7.Axial Stresses along the thickness with units in (MPa), for the three paths from
Abaqus and the Analytical solution

2.880	-0.1947	2.26515	-0.2450
2.880	-0.1342	2.26518	-0.2451
3.240	-0.1782	2.64269	-0.4995
3.240	-0.2654	2.64272	-0.4995
3.600	-0.3018	3.02024	-0.7807
3.600	-0.2002	3.02026	-0.7808
		3.39779	-1.0981
		3.77534	-1.2688

2.880	0
2.880	0
3.240	0
3.240	0
3.600	0
3.600	0

Table 3.8. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	44.818	34.137

Figure 3.5 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.9. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Analytic	cal				
S33(ce	ntral)	S33	(1)	S33	(2)	thin shells	
0.000	41.2786	0	44.8067	0	37.6918	0.000	41.186
0	41.3199	0.37751	44.3998	0.376341	37.4576	0	41.186
0.359956	41.0058	0.377525	44.3998	0.752686	36.9902	0.359956	41.186
0.719918	40.3907	0.755028	43.6157	1.12903	36.5403	0.719918	41.186
1.07988	39.8006	0.755052	43.6156	1.50538	36.1167	1.07988	41.186
1.43985	39.2342	1.13255	42.8699	1.88173	35.7155	1.43985	41.186
1.79982	38.6901	1.13258	42.8699	2.25807	35.3374	1.79982	41.186
2.15979	38.1666	1.51008	42.1469	2.63442	34.9809	2.15979	41.186
2.1598	38.0863	1.51011	42.1468	3.01078	34.6461	2.1598	41.186
2.51977	37.6626	1.88761	41.4468	3.38713	34.3307	2.51977	41.186
2.51978	37.5717	1.88764	41.4467	3.76348	34.1773	2.51978	41.186
2.87975	37.0748	2.26515	40.766			2.87975	41.186

2.87975	37.1769	2.26518	40.7659
3.23973	36.7087	2.64269	40.103
3.23973	36.5945	2.64272	40.1029
3.59971	36.3585	3.02024	39.4558
3.59971	36.4788	3.02026	39.4557
		3.39779	38.8203
		3.77534	38.5045

2.87975	41.186
3.23973	41.186
3.23973	41.186
3.59971	41.186
3.59971	41.186

 Table 3.10.
 Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	0.157	-0.498

Figure 3.6 Fluctuation colored curve for shear stresses in three paths, A-B, C-D, E-F

		Anal(1)-(2)				
S12(ce	entral)	S12	2(1)	S12	2(2)	thin sl	nells
0	-0.0795	0	-0.1560	0	-0.1593	0	1.6038
0	-0.0793	0.3775	-0.2512	0.3763	-0.2559	0	1.6038
0.3600	-0.1526	0.3775	-0.2512	0.7527	-0.3907	0.35996	1.38996
0.7199	-0.2899	0.7550	-0.3832	1.1290	-0.4555	0.71992	1.17612
1.0799	-0.3990	0.7551	-0.3832	1.5054	-0.4874	1.07988	0.96228
1.4399	-0.4657	1.1326	-0.4438	1.8817	-0.4835	1.43985	0.74844
1.7998	-0.4871	1.1326	-0.4438	2.2581	-0.4482	1.79982	0.5346
2.1598	-0.4657	1.5101	-0.4712	2.6344	-0.3817	2.15979	0.32076
2.1598	-0.4638	1.5101	-0.4712	3.0108	-0.2847	2.1598	0.10692
2.5198	-0.4046	1.8876	-0.4636	3.3871	-0.1554	2.51977	-0.10692
2.5198	-0.4029	1.8876	-0.4636	3.7635	-0.0825	2.51978	-0.32076

Table 3.11. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

2.8798	-0.3036	2.2652	-0.4259
2.8798	-0.3050	2.2652	-0.4259
3.2397	-0.1661	2.6427	-0.3590
3.2397	-0.1653	2.6427	-0.3590
3.5997	-0.0863	3.0202	-0.2656
3.5997	-0.0867	3.0203	-0.2656
		3.3978	-0.1440
		3.7753	-0.0757

2.87975	-0.5346
2.87975	-0.74844
3.23973	-0.96228
3.23973	-1.17612
3.59971	-1.38996
3.59971	-1.6038

1.1.2. Μοντέλο RH2 σε ανοιχτές διατομές, με άρθρωση στη συγκόλληση, ενώ 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα και θεωρείται ότι ξεκινάει από θερμοκρασία 20°C.

	do(mm)	60.3						
	v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
	RH2	1	28.35	3.6	0	506	1.23E-05	179200
		2				500	1.81E-05	148500

Table 3.12.	Maximum a	nd minimum	values f	or Mises	Stresses,	exported	from Abaqua
-------------	-----------	------------	----------	----------	-----------	----------	-------------

	Max value (MPa)	Min value (MPa)
Stresses Mises	295.015	0.060

Figure 3.7 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.13. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus							alutical
Mises(central)		Mises(1)		Mises(2)		Analytical	
0	42.2086	0	216.776	0	194.507	0	184.8228
0	46.4346	0.379852	216.88	0.379632	195.581	0.360	184.8228
0.362647	66.4739	0.759836	205.777	0.759127	186.925	0.720	184.8228
0.725296	86.0399	1.13975	189.572	1.13869	172.792	1.080	184.8228
1.08795	77.853	1.5197	184.476	1.51823	167.934	1.440	184.8228
1.4506	62.0481	1.8996	187.6	1.89781	169.915	1.800	184.8228
1.81326	45.5217	2.27955	194.556	2.27736	174.923	2.160	184.8228

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

2.17592	28.205	2.65944	210.604	2.65697	187.209	2.520	184.8228
2.53858	14.7771	3.03937	222.15	3.03655	196.008	2.880	184.8228
2.90124	13.5662	3.41918	248.233	3.41625	213.919	3.240	184.8228
3.26391	15.3892	3.7988	275.087	3.79618	232.727	3.600	184.8228
3.62658	13.8749						
3.62658	13.7736						

Table 3.14. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 11 direction	167.178	-172.261

Figure 3.8 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.15. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus					Analytical				
S11(d	S11(central)		511(1)	S	11(2)	thins	shells	thick	shells
0.000	-0.1518	0.000	-104.5900	0.000	-54.4334	0.000	0.0000	0.000	-4.7326
0.000	0.3199	0.000	60.6415	0.000	97.1901	0.360	0.0000	0.360	-4.2096
0.363	-0.3049	0.380	88.1384	0.379	129.0330	0.720	0.0000	0.720	-3.6866
0.725	-1.5392	0.760	116.1810	0.379	129.4710	1.080	0.0000	1.080	-3.1636
1.088	-3.3302	1.140	123.6560	0.759	154.2960	1.440	0.0000	1.440	-2.6406
1.451	-4.9064	1.520	133.9250	1.138	149.2500	1.800	0.0000	1.800	-2.1176
1.813	-5.1098	1.900	141.5690	1.518	146.6540	2.160	0.0000	2.160	-1.5946
2.176	-4.4381	2.281	150.5750	1.897	138.5240	2.520	0.0000	2.520	-1.0716
2.539	-2.8573	2.661	155.0830	2.277	130.3380	2.880	0.0000	2.880	-0.5486
2.901	-1.5312	3.041	160.9980	2.657	118.5730	3.240	0.0000	3.240	-0.0256
3.264	-0.4071	3.421	129.7150	3.036	107.5420	3.600	0.0000	3.600	0.0000
3.627	0.4900	3.421	129.3100	3.416	77.3779				
3.627	-0.3993	3.800	91.8471	3.796	51.0539				
		3.800	-52.0682	3.796	-81.1662				

Table 3.16.	Maximum and	l minimum v	values for	Axial	Stresses,	exported	from Abaqus
-------------	-------------	-------------	------------	-------	-----------	----------	-------------

	Max value (MPa)	Min value (MPa)
Strains in 22 direction	133.611	-171.936

Figure 3.9 Fluctuation colored curve for Axial stresses in 3 paths, A-B, C-D, E-F

Abaqus and the Analytical solution										
	thin she	lls								
S22(central) S22(1) S22(2)							al			
0.000	7.0150	0	66.7907	0	-44.0752	0.000	0			
0.000	20.1426	0.379852	74.0265	0.379632	-49.4346	0.000	0	l		
0.363	15.6086	0.759836	68.2537	0.759127	-45.8807	0.360	0]		
0.725	7.9475	1.13975	52.6533	1.13869	-36.7544	0.720	0	l		

41.5048

Table 3.17. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

1.088

3.2000

1.5197

1.51823

-30.8367

0

1.080

1.451	0.1572	1.8996	24.3342	1.89781	-19.4426	1.440	0
1.813	-2.5858	2.27955	7.7901	2.27736	-8.2540	1.800	0
2.176	-5.4260	2.65944	-16.7718	2.65697	9.9302	2.160	0
2.539	-7.9488	3.03937	-35.3118	3.03655	22.7223	2.160	0
2.901	-9.2372	3.41918	-103.9630	3.41625	76.4487	2.520	0
3.264	-8.6922	3.7988	-170.6060	3.79618	130.1840	2.520	0
3.627	-7.8676					2.880	0
3.627	-13.1459					2.880	0
		-				3.240	0
						3.240	0
						3.600	0
						3.600	0

Table 3.18. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 33 direction	266.757	-232.057

Figure 3.10 Fluctuation colored curve for Hoop stresses in 3 paths, A-B, C-D, E-F

Table 3.19. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

······································									
Abaqus thin shells									
S33(central)	S33	(1)	S33	(2)	Analytical				
0.000 -3.692	1 0	247.549	0	-215.233	0.000	0			
0 -2.458	8 0.379852	254.72	0.379632	-221.771	0	0			
0.362647 -4.139	9 0.759836	257.675	0.759127	-225.644	0.359956	0			
0.725296 -7.061	2 1.13975	251.792	1.13869	-222.48	0.719918	0			
1.08795 -9.254	9 1.5197	246.272	1.51823	-219.366	1.07988	0			
1.4506 -10.86	8 1.8996	238.656	1.89781	-214.218	1.43985	0			
1.81326 -11.96	9 2.27955	230.49	2.27736	-208.431	1.79982	0			
2.17592 -12.81	6 2.65944	219.224	2.65697	-199.81	2.15979	0			
2.53858 -13.26	4 3.03937	206.97	3.03655	-190.332	2.1598	0			
2.90124 -13.38	9 3.41918	167.331	3.41625	-157.616	2.51977	0			
3.26391 -13.00	4 3.7988	133.105	3.79618	-128.953	2.51978	0			
3.62658 -12.54	2				2.87975	0			
3.62658 -8.966	6				2.87975	0			
					3.23973	0			

3.23973	0
3.59971	0
3.59971	0

i wore stable in and manifully and for should be stored in the internation of the store in the internation of the store in the internation of the store is the store in the internation of the store is	Table 3.20.	Maximum and	minimum	values	for Shear	Stresses,	exported	from Abagus	
---	-------------	-------------	---------	--------	-----------	-----------	----------	-------------	--

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	77.698	-104.803

Figure 3.11 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.21. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	•	Anal(1)-(2)				
S12(c	entral)	S1	2(1)	S1	2(2)	thin sł	nells
0	-23.7508	0	47.4200	0	43.0085	0	63.0808
0	-23.8078	0.3799	58.8710	0.3796	52.6897	0	55.1957
0.3626	-36.4963	0.7598	57.4729	0.7591	49.9501	0.35996	47.3106
0.7253	-49.0748	1.1398	37.3813	1.1387	31.0435	0.71992	39.4255
1.0880	-44.5135	1.5197	23.6722	1.5182	18.2711	1.07988	31.5404
1.4506	-35.3914	1.8996	10.4047	1.8978	6.0064	1.43985	23.6553
1.8133	-25.8104	2.2796	-1.0538	2.2774	-4.5778	1.79982	15.7702
2.1759	-15.5033	2.6594	-12.6152	2.6570	-15.1781	2.15979	7.8851
2.5386	-4.5941	3.0394	-26.3843	3.0366	-27.9112	2.1598	0.0000
2.9012	4.2250	3.4192	-23.5002	3.4163	-25.6163	2.51977	-7.8851
3.2639	6.0343	3.7988	-13.7390	3.7962	-16.5948	2.51978	-15.7702
3.6266	4.5368					2.87975	-23.6553
3.6266	4.5842					2.87975	-31.5404

3.23973	-39.4255
3.23973	-47.3106
3.59971	-55.1957
3.59971	-63.0808

1.1.3. Μοντέλο RH2 σε ανοιχτές διατομές, με άρθρωση στη συγκόλληση και 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα, ενώ θεωρούμε ότι ξεκινάει από θερμοκρασία 20°C. Ακόμη, θεωρείται και ομοιόμορφη πίεση κατά μήκος των σωλήνων.

do(mm)	60.3						
ν	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	ΔT(°C)	a[°C^(-1)]	E[Mpa]
рцο	2 1	1 28.25 2.6	E 22	FOG	1.23E-05	179200	
KH2	2	20.35	3.0	5.23	500	1.81E-05	148500

Table 3.22. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises Stress	322.210	6.792

Figure 3.12 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.23. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus						Analytical	
Mises(c	entral)	Mises(1)		Mises(2)		Analytical	
0	56.374	0	260.502	0	158.273	0	221.9182
0	56.2131	0.379809	258.06	0.379595	162.009	0.376341	225.7421
0.362608	74.3821	0.759754	245.167	0.759052	155.193	0.752686	229.5659
0.725219	92.2255	1.13963	229.518	1.13858	140.41	1.12903	233.3898
1.08784	84.8431	1.51954	223.458	1.51808	136.547	1.50538	237.2137
1.45046	70.5034	1.89942	224.65	1.89763	140.637	1.88173	241.0375
1.81308	56.0339	2.27933	229.417	2.27714	147.938	2.25807	244.8614
2.17571	42.5123	2.6592	242.741	2.65672	162.883	2.63442	248.6853
2.53834	33.4809	3.03909	252.553	3.03628	173.32	3.01078	252.5091
2.90098	31.784	3.41888	278.292	3.41595	190.906	3.38713	256.333
3.26362	31.3855	3.79848	304.83	3.79585	209.399	3.76348	260.1569
3.62626	29.9864						

3.62626 37.2997

	Max value (MPa)	Min value (MPa)
Strains in 11 direction	166.516	-176.393

Table 3.24. Maximum and minimum values for Radial Stresses, exported from Abaqus

Figure 3.13 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.25. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

 -	-	
	Abaqus	Analytical
		-

S11(central)		S	11(1)	S	S11(2)		thin shells		thick shells	
0.000	-5.0720	0.000	33.5929	0.000	-39.7799	0.000	0.0000	0.000	-4.7326	
0.000	-4.6006	0.380	59.7793	0.380	-63.0354	0.360	0.0000	0.360	-4.2096	
0.363	-4.9174	0.760	94.2191	0.759	-93.0351	0.720	0.0000	0.720	-3.6866	
0.725	-5.5498	1.140	108.6960	1.139	-104.9720	1.080	0.0000	1.080	-3.1636	
1.088	-6.7651	1.520	119.6270	1.518	-113.7400	1.440	0.0000	1.440	-2.6406	
1.450	-7.7902	1.899	129.1860	1.898	-121.0220	1.800	0.0000	1.800	-2.1176	
1.813	-7.4658	2.279	135.9230	2.277	-125.7890	2.160	0.0000	2.160	-1.5946	
2.176	-6.2873	2.659	140.0540	2.657	-128.0200	2.520	0.0000	2.520	-1.0716	
2.538	-4.2190	3.039	135.0290	3.036	-122.2630	2.880	0.0000	2.880	-0.5486	
2.901	-2.4228	3.419	89.5686	3.416	-148.7810	3.240	0.0000	3.240	-0.0256	
3.264	-0.8444	3.419	11.9610	3.416	-81.5039	3.600	0.0000	3.600	0.0000	
3.626	0.2763	3.798	51.7629	3.796	-46.629					
3.626	-0.6147									

Table 3.26. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	134.487	-173.309

Figure 3.14 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.27. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		thin shells					
S22(central)	S22	2(1)	S22	(2)	Analytical	
0.000	7.3019	0	67.7569	0	-44.4058	0.000	0
0.000	20.4758	0.379809	74.8744	0.379595	-49.7348	0.000	0
0.363	15.9039	0.759754	68.8903	0.759052	-46.1305	0.360	0
0.725	8.1680	1.13963	53.0900	1.13858	-36.9396	0.720	0
1.088	3.3471	1.51954	41.7276	1.51808	-30.9314	1.080	0
1.450	0.2330	1.89942	24.3335	1.89763	-19.4308	1.440	0
1.813	-2.5795	2.27933	7.5484	2.27714	-8.1138	1.800	0
2.176	-5.4883	2.6592	-17.2768	2.65672	10.2213	2.160	0
2.538	-8.0803	3.03909	-36.1056	3.03628	23.1910	2.160	0
2.901	-9.4401	3.41888	-105.0870	3.41595	77.1303	2.520	0
3.264	-8.9699	3.79848	-171.9110	3.79585	130.9840	2.520	0
3.626	-8.1838					2.880	0
3.626	-13.3605					2.880	0
3.240	0						
-------	---						
3.240	0						
3.600	0						
3.600	0						

Table 3.28. Maximum and minimum values for Hoop Stresses, exported from Al	baqus
--	-------

Figure 3.15 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

	*		thin she	lls				
\$33(ce	S33(central)		(1)	\$33	(2)	Analytical		
0.000	37.9603	0	292.717	0	-177.239	0.000	41.563	
0	39.1529	0.379809	299.478	0.379595	-184.016	0	41.563	
0.362608	37.152	0.759754	301.641	0.759052	-188.365	0.359956	41.563	
0.725219	33.603	1.13963	295.004	1.13858	-185.658	0.719918	41.563	
1.08784	30.8048	1.51954	288.753	1.51808	-182.975	1.07988	41.563	
1.45046	28.6098	1.89942	280.43	0.43 1.89763 -1		1.43985	41.563	
1.81308	26.9479	2.27933	271.575	2.27714	-172.833	1.79982	41.563	
2.17571	25.56	2.6592	259.639	2.65672	-164.574	2.15979	41.563	
2.53834	24.5904	3.03909	246.731	3.03628	-155.437	2.1598	41.563	
2.90098	23.9621	3.41888	206.446	3.41595	-123.039	2.51977	41.563	
3.26362	23.8601	3.79848	171.896	3.79585	-94.5282	2.51978	41.563	
3.62626	24.0833					2.87975	41.563	
3.62626	27.7793					2.87975	41.563	
		-				3.23973	41.563	
						3.23973	41.563	
						3.59971	41.563	
						3.59971	41.563	

Table 3.29. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.30. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	133.611	-172.936

Figure 3.16 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.31. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Anal(1	.)-(2)				
S12(c	entral)	S1	2(1)	S1	.2(2)	thin s	hells
0	-23.8441	0	47.2555	0	42.8442	0	63.0339
0	-23.9019	0.3798	58.6126	0.3796	52.4268	0	55.1546
0.3626	-36.6644	0.7598	57.0832	0.7591	49.5488	0.35996	47.2754
0.7252	-49.3811	1.1396	36.9311	1.1386	30.5748	0.71992	39.3962
1.0878	-44.9281	1.5195	23.1955	1.5181	17.7688	1.07988	31.5169
1.4505	-35.8709	1.8994	9.9368	1.8976	5.5067	1.43985	23.6377
1.8131	-26.3088	2.2793	-1.4823	2.2771	-5.0427	1.79982	15.7584
2.1757	-15.9775	2.6592	-12.9744	2.6567	-15.5766	2.15979	7.8792
2.5383	-5.0043	3.0391	-26.6485	3.0363	-28.2119	2.1598	0.0000
2.9010	3.9174	3.4189	-23.6386	3.4160	-25.7858	2.51977	-7.8793
3.2636	5.8678	3.7985	-13.8049	3.7959	-16.6901	2.51978	-15.7585
3.6263	4.4507					2.87975	-23.6377
3.6263	4.4975					2.87975	-31.5170

3.23973	-39.3962
3.23973	-47.2755
3.59971	-55.1547
3.59971	-63.0339

1.2.1. Μοντέλο RH2 σε πακτωμένες διατομές στις άκρες των σωλήνων και ομοιόμορφη πίεση στο μήκος των σωλήνων.

do(mm)	60.3						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
рцγ	1		26	E 22	0	1.23E-05	179200
KH2	2	20.55	3.0	5.23	0	1.81E-05	148500

Table 3.32. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises stresses	44.151	14.023

Figure 3.17 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.33. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	۸n	alutical						
Mises(central)		Mise	s(1)	Mise	s(2)	Analytical		
0	41.0226	0	44.112	0	37.8876	0	38.57327	
0	41.044	0.188765	43.8368	0.18818	37.6314	0.360	38.2907	
0.179974	40.7784	0.377532	43.278	0.376363	37.1386	0.720	38.00814	
0.35995	40.253	0.377548	43.278	0.564543	36.676	1.080	37.72557	
0.539926	39.7393	0.566303	42.7123	0.752726	36.2277	1.440	37.44301	
0.719904	39.2373	0.566323	42.7122	0.940908	35.789	1.800	37.16045	
0.719914	39.2373	0.755072	42.1539	1.12909	35.3597	2.160	36.87788	
0.899883	38.7464	0.755098	42.1538	1.31727	34.9383	2.520	36.59532	

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

1.07986	38.2659	0.943844	41.606	1.50546	34.5249	2.880	36.31275
1.25984	37.7953	1.13262	41.0687	1.69364	34.119	3.240	36.03019
1.43982	37.334	1.32139	40.5425	1.88183	33.7205	3.600	35.74763
1.61981	36.8816	1.5102	40.0268	2.07001	33.3293		
1.79979	36.4379	1.69895	39.5219	2.2582	32.9454		
1.97977	36.0024	1.88773	39.027	2.44638	32.5688		
2.15975	35.5751	2.07654	38.542	2.63457	32.1998		
2.33974	35.1558	2.26529	38.0667	2.82275	31.8382		
2.51972	34.7442	2.45407	37.6007	3.01094	31.4849		
2.69971	34.3403	2.4541	37.6007	3.19913	31.1396		
2.8797	33.944	2.64285	37.1437	3.38731	30.8057		
2.8797	33.9041	2.83163	36.6955	3.5755	30.4925		
3.05969	33.5552	2.83166	36.6954	3.76369	30.3421		
3.23968	33.1331	3.02042	36.2555				
3.23968	33.174	3.20921	35.8237				
3.41966	32.7588	3.39799	35.3983				
3.41966	32.8002	3.58678	34.9715				
3.59965	32.5735	3.77556	34.7567				

Table 3.34. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	0.201	-7.756

Figure 3.18 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.35.	Radial	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytic	al solu	tion										

		-	-							
			Abaqu	Analytical						
S11(central)		ntral)	S11(1)		S11(2)		thin shells		thick shells	
	0.000	-5.0683	0.000	-5.1408	0.000	-5.0018	0.000	0.0000	0.000	-4.7326
	0.180	-4.9124	0.189	-5.0298	0.188	-4.8044	0.360	0.0000	0.360	-4.2096
	0.360	-4.6042	0.378	-4.7746	0.376	-4.4505	0.720	0.0000	0.720	-3.6866
	0.540	-4.3027	0.566	-4.4828	0.565	-4.1458	1.080	0.0000	1.080	-3.1636
	0.720	-4.0082	0.755	-4.1900	0.753	-3.8524	1.440	0.0000	1.440	-2.6406
	0.900	-3.7204	0.944	-3.9005	0.941	-3.5662	1.800	0.0000	1.800	-2.1176
	1.080	-3.4386	1.133	-3.6158	1.129	-3.2857	2.160	0.0000	2.160	-1.5946

1.260	-3.1625	1.321	-3.3370	1.317	-3.0096	2.520	0.0000	2.520	-1.0716
1.440	-2.8917	1.510	-3.0637	1.505	-2.7379	2.880	0.0000	2.880	-0.5486
1.620	-2.6259	1.699	-2.7962	1.694	-2.4703	3.240	0.0000	3.240	-0.0256
1.800	-2.3649	1.888	-2.5340	1.882	-2.2070	3.600	0.0000	3.600	0.0000
1.980	-2.1087	2.077	-2.27692	2.070	-1.94782				
2.160	-1.8571	2.265	-2.02427	2.258	-1.69333				
2.340	-1.6099	2.454	-1.77594	2.446	-1.44343				
2.520	-1.3609	2.643	-1.53083	2.635	-1.19898				
2.700	-1.1239	2.83163	-1.28878	2.823	-0.95984				
2.880	-0.8948	3.02044	-1.04788	3.011	-0.72802				
3.060	-0.6625	3.20921	-0.80787	3.199	-0.50365				
3.240	-0.4377	3.39799	-0.56372	3.387	-0.29258				
3.41966	-0.216669	3.58678	-0.29487	3.576	-0.12342				
3.59965	-0.107021	3.77556	-0.15105	3.764	-0.05435				

Table 3.36.	Maximum and	minimum	values for	r Axial	Stresses,	exported	from Abaqus
-------------	-------------	---------	------------	---------	-----------	----------	-------------

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	46.593	-24.457

Figure 3.19 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.37.	Axial	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	e Analytic	cal solu	ition	l									

		Ab	aqus			thin	shells
S22(0	central)	S22	(1)	S22	(2)	Ana	lytical
0.000	10.3455	0	10.8596	0	9.8423	0.000	12.5259
0.000	10.3319	0.188765	10.7980	0.18818	9.8496	0.360	12.5259
0.180	10.3140	0.377532	10.7176	0.376363	9.8402	0.720	12.5259
0.360	10.2785	0.377548	10.7176	0.564543	9.8382	1.080	12.5259
0.540	10.2443	0.566303	10.6515	0.752726	9.8601	1.440	12.5259
0.720	10.2125	0.566323	10.6515	0.940908	9.8852	1.800	12.5259
0.900	10.1833	0.755072	10.5680	1.12909	9.9187	2.160	12.5259
1.080	10.1562	0.943844	10.4862	1.31727	9.9550	2.520	12.5259
1.260	10.1307	1.13262	10.3991	1.50546	9.9964	2.880	12.5259
1.440	10.1064	1.13265	10.3991	1.69364	10.0409	3.240	12.5259
1.620	10.0830	1.32139	10.3117	1.88183	10.0899	3.600	12.5259
1.800	10.0602	1.5102	10.2210	2.07001	10.1427		
1.980	10.0378	1.69895	10.1286	2.2582	10.2004		
2.160	10.0158	1.88773	10.0327	2.44638	10.2625		
2.340	9.99416	2.07651	9.93371	2.63457	10.3304		
2.520	9.97277	2.26532	9.8303	2.82275	10.4028		
2.700	9.95164	2.4541	9.72257	3.01094	10.4824		
2.880	9.93079	2.64285	9.60915	3.19913	10.5631		
3.060	9.91016	2.83166	9.4907	3.38731	10.6555		
3.240	9.84686	3.02044	9.36492	3.5755	10.7108		
3.42	9.8174	3.39799	9.09701	3.76369	10.7116		
3.42	9.86933	3.58678	8.98689				
3.6	9.8024	3.77556	8.95317				

 Table 3.38.
 Maximum and minimum values for Hoop Stresses, exported from Abaqus

Figure 3.20 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.39. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Aba	qus			thin she	ells
S33(ce	ntral)	S33(1)		S33	(2)	Analytic	cal
0.000	41.4285	0	44.7374	0	38.0588	0.000	41.186
0	41.4485	0.188765	44.5199	0.18818	37.9461	0	41.186
0.179974	41.2881	0.377532	44.1125	0.376363	37.7047	0.359956	41.186
0.35995	40.9703	0.566303	43.7297	0.564543	37.4575	0.719918	41.186
0.539926	40.6589	0.755098	43.3511	0.752726	37.2208	1.07988	41.186
0.719904	40.354	0.943844	42.9811	0.940908	36.9892	1.43985	41.186
0.899883	40.0554	0.943872	42.981	1.12909	36.7648	1.79982	41.186
1.07986	39.763	1.13265	42.6166	1.31727	36.5459	2.15979	41.186
1.25984	39.4766	1.32139	42.2588	1.50546	36.3332	2.1598	41.186
1.43982	39.196	1.51017	41.9066	1.69364	36.126	2.51977	41.186
1.61981	38.9209	1.5102	41.9065	1.88183	35.9245	2.51978	41.186
1.79979	38.6512	1.69898	41.56	2.07001	35.7283	2.87975	41.186
1.97977	38.3867	1.88773	41.2188	2.2582	35.5375	2.87975	41.186
2.15975	38.1272	1.88776	41.2188	2.44638	35.3519	3.23973	41.186
2.33974	37.8727	2.07651	40.8827	2.63457	35.1713	3.23973	41.186
2.51972	37.5831	2.26529	40.5513	2.82275	34.9954	3.59971	41.186
2.69971	37.335	2.4541	40.2247	3.01094	34.8242	3.59971	41.186
2.8797	37.1371	2.64287	39.9025	3.19913	34.6556		
3.05969	36.9009	2.83163	39.585	3.38731	34.4909		
3.23968	36.6689	3.02042	39.2717	3.5755	34.3065		
3.41966	36.385	3.20921	38.964	3.76369	34.2026		
3.59965	36.2703	3.39799	38.661			•	
		3.58678	38.3809				
		3.77556	38.2516				

 Table 3.40.
 Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	8.982	-8.981

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

Figure 3.21 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.41. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Anal(1	.)-(2)				
S12(ce	entral)	S12	(1)	S12	(2)	thin sł	nells
0	-0.0795	0	-0.1560	0	-0.1593	0	1.4595
0	-0.0793	0.3775	-0.2512	0.3763	-0.2559	0	1.3431
0.3600	-0.1526	0.3775	-0.2512	0.7527	-0.3907	0.35996	1.2267
0.7199	-0.2899	0.7550	-0.3832	1.1290	-0.4555	0.71992	1.1103
1.0799	-0.3990	1.1326	-0.4438	1.5054	-0.4874	1.07988	0.9939
1.4399	-0.4657	1.1326	-0.4438	1.8817	-0.4835	1.43985	0.8775
1.7998	-0.4871	1.5101	-0.4712	2.2581	-0.4482	1.79982	0.7611
2.1598	-0.4657	1.5101	-0.4712	2.6344	-0.3817	2.15979	0.6447
2.1598	-0.4638	1.8876	-0.4636	3.0108	-0.2847	2.1598	0.5283
2.5198	-0.4046	1.8876	-0.4636	3.3871	-0.1554	2.51977	0.4119
2.5198	-0.4029	2.2652	-0.4259	3.7635	-0.0825	2.51978	0.2955
2.8798	-0.3036	2.6427	-0.3590			2.87975	0.1791
2.8798	-0.3050	3.0202	-0.2656			2.87975	0.0627
3.2397	-0.1653	3.0203	-0.2656			3.23973	-0.0537
3.5997	-0.0863	3.3978	-0.1440			3.23973	-0.1701
3.5997	-0.0867	3.7753	-0.0757			3.59971	-0.1701

1.2.2. Μοντέλο RH2 σε ανοιχτές διατομές, με άρθρωση στη συγκόλληση, ενώ 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα και θεωρείται ότι ξεκινάει από θερμοκρασία 20°C.

do(mm)	60.3						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
RH2	1	28.35	3.6	0	506	1.23E-05	179200

Table 3.42. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises Stresses	1853.177	654.644

Figure 3.22 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

	Abaqus									
Mises(c	entral)	Mise	s(1)	Mise	s(2)	Analytical				
0	1217.04	0	1330.44	0	1151.33	0	1112.704			
0	1203.29	0.380217	1339.89	0.38011	1139.89	0.360	1137.178			
0.36351	1208.26	0.760781	1362.03	0.760314	1112.44	0.720	1161.653			
0.726937	1215.61	1.14109	1378.73	1.14037	1092.38	1.080	1186.127			
1.09045	1218.01	1.5216	1391.35	1.5206	1079.98	1.440	1210.602			
1.45389	1218.72	1.90192	1409.56	1.9007	1064	1.800	1235.076			
1.81741	1220.52	2.28241	1426.15	2.28091	1050.86	2.160	1259.55			
2.18085	1223.45	2.66274	1449.11	2.66107	1033.26	2.520	1284.025			
2.54438	1227.16	3.04318	1460.92	3.04129	1028.04	2.880	1308.499			
2.90782	1229.97	3.42346	1490.84	3.4216	1009.37	3.240	1332.974			
3.27136	1230.97	3.80353	1524.89	3.80216	983.693	3.600	1357.448			

Table 3.43. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.63481	1231.08
3.63481	1238.76

Table 3.44. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	328.706	-361.306

Figure 3.23 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.45.	Radial	Stresses	along the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytica	al solution										

Abaqus							Analytical				
S11(c	entral)	S11(1)		S11(2)		thin shells		thick shells			
0.000	5.3991	0.000	47.5867	0.000	-32.5509	0.000	0.0000	0.000	-5.2300		
0.000	6.2180	0.380	76.3565	0.380	-59.4858	0.360	0.0000	0.360	-4.7070		
0.364	5.4660	0.761	113.9860	0.760	-94.4266	0.720	0.0000	0.720	-4.1840		
0.727	4.0885	1.141	129.4260	1.140	-108.5560	1.080	0.0000	1.080	-3.6610		
1.090	2.0928	1.522	140.9380	1.521	-119.1330	1.440	0.0000	1.440	-3.1380		
1.454	0.3694	1.902	150.9950	1.901	-128.0090	1.800	0.0000	1.800	-2.6150		
1.817	0.1568	2.282	158.0270	2.281	-133.9810	2.160	0.0000	2.160	-2.0920		

2.181	0.9095	2.663	162.1560	2.661	-137.1570	2.520	0.0000	2.520	-1.5690
2.544	2.6512	3.043	156.3050	3.041	-131.2200	2.880	0.0000	2.880	-1.0460
2.908	4.1451	3.423	105.6580	3.422	-85.0580	3.240	0.0000	3.240	-0.5230
3.271	5.4093	3.804	63.1694	3.802	-46.4560	3.600	0.0000	3.600	0.0000
3.635	6.3068								
3.635	5.5860								

Table 3.46. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	-189.848	-2175.370

Figure 3.24 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

			thin	shells				
S22	2(central)	S2	S22(1)		2(2)	Analytical		
0.000	-1211.1800	0	-1141.8700	0	-1269.2000	0.000	-976.514	
0.000	-1196.3800	0.380217	-1134.0000	0.38011	-1275.6400	0.360	-999.284	
0.364	-1201.3000	0.760781	-1140.6600	0.760314	-1271.9700	0.720	-1022.05	
0.727	-1209.6300	1.14109	-1158.4800	1.14037	-1261.9400	1.080	-1044.83	
1.090	-1214.8900	1.5216	-1171.4000	1.5206	-1255.5200	1.440	-1067.6	
1.454	-1218.4900	1.90192	-1191.1500	1.9007	-1242.8600	1.800	-1090.37	
1.817	-1221.9300	2.28241	-1210.2900	2.28091	-1230.4600	2.160	-1113.14	
2.181	-1225.6300	2.66274	-1238.4200	2.66107	-1210.0300	2.520	-1135.91	
2.544	-1229.1000	3.04318	-1259.9100	3.04129	-1195.8100	2.880	-1158.68	
2.908	-1231.3200	3.42346	-1337.2000	3.4216	-1134.8800	3.240	-1181.45	

Table 3.47. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.271	-1231.5800	3.80353	-1411.9900	3.80216	-1073.8500	3.600	-1204.22
3.635	-1231.1100						
3.635	-1236.9300						

Table 3.48. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	309.551	-1522.358

Figure 3.25 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

			thin shells				
S33(ce	ntral)	S33	(1)	S33	(2)	Analytical	
0.000	4.93839	0	288.43	0	-239.767	0.000	0
0	6.20592	0.380217	296.195	0.38011	-247.313	0	0
0.36351	4.31778	0.760781	299.12	0.760314	-251.806	0.359956	0
0.726937	1.0528	1.14109	292.161	1.14037	-248.223	0.719918	0
1.09045	-1.4523	1.5216	285.607	1.5206	-244.713	1.07988	0
1.45389	-3.3678	1.90192	276.706	1.9007	-238.888	1.43985	0
1.81741	-4.7721	2.28241	267.21	2.28091	-232.342	1.79982	0
2.18085	-5.9349	2.66274	254.251	2.66107	-222.583	2.15979	0
2.54438	-6.6931	3.04318	240.251	3.04129	-211.875	2.1598	0
2.90782	-7.1125	3.42346	195.759	3.4216	-174.745	2.51977	0

Table 3.49. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.27136	-6.9846	3.80353	157.424	3.80216	-142.228	2.51978	0
3.63481	-6.6557					2.87975	0
3.63481	-2.1499					2.87975	0
						3.23973	0
						3.23973	0
						3.59971	0
						3.59971	0

Table 3.50. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	380.328	-328.267

Figure 3.26 Fluctuation colored curve for shear stresses in three paths, A-B, C-D, E-F

		Anal(1)-(2)					
S12(c	entral)	S1	2(1)	S1	2(2)	thin shells	
0	-23.7395	0	54.4917	0	50.7199	0	3.556
0	-23.8041	0.3802	67.1849	0.3801	62.0218	0	3.510
0.3635	-38.2057	0.7608	65.7031	0.7603	59.0860	0.35996	3.463
0.7269	-52.4815	1.1411	43.3892	1.1404	37.6419	0.71992	3.417
1.0905	-47.3707	1.5216	28.3259	1.5206	23.1918	1.07988	3.370
1.4539	-37.1079	1.9019	13.8048	1.9007	9.3564	1.43985	3.323
1.8174	-26.3361	2.2824	1.3462	2.2809	-2.5114	1.79982	3.277
2.1809	-14.6345	2.6627	-11.1631	2.6611	-14.3294	2.15979	3.230
2.5444	-2.1727	3.0432	-26.1155	3.0413	-28.4486	2.1598	3.183
2.9078	7.9885	3.4235	-22.2880	3.4216	-25.3009	2.51977	3.137
3.2714	10.2603	3.8035	-11.1107	3.8022	-14.5724	2.51978	3.090
3.6348	8.6249					2.87975	3.043
3.6348	8.7277					2.87975	2.997

Table 3.51. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.23973	2.950
3.23973	2.903
3.59971	2.857
3.59971	2.903

1.2.3. Μοντέλο RH2 σε πακτωμένες διατομές και 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα, ενώ θεωρούμε ότι ξεκινάει από θερμοκρασία 20°C. Ακόμη, θεωρείται και ομοιόμορφη πίεση κατά μήκος των σωλήνων.

do(mm)	60.3						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
RH2	1	28.35	3.6	0	506	1.23E-05	179200

Table 3.52. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises stresses	1860.575	636.988

Figure 3.27 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.53.	Mises	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytic	al solu	tion										

		Applytical							
Mises(c	entral)	Mise	s(1)	Mise	s(2)	Allan	Anaiyucai		
0	1225.48	0	1346.51	0	1152.63	0	1141.742		
0	1211.7	0.38017	1355.28	0.380058	1141.74	0.376341	1164.194		
0.363465	1216.65	0.760692	1376.31	0.760222	1115.19	0.752686	1186.645		
0.726845	1223.98	1.14095	1392.35	1.14023	1095.68	1.12903	1209.097		
1.09032	1226.41	1.52143	1404.49	1.52042	1083.7	1.50538	1231.548		
1.45371	1227.14	1.90171	1422.23	1.90048	1068.14	1.88173	1254		
1.81719	1228.93	2.28216	1438.46	2.28066	1055.32	2.25807	1276.452		
2.18059	1231.82	2.66246	1461.09	2.66078	1038.01	2.63442	1298.903		
2.54408	1235.49	3.04287	1472.82	3.04097	1032.83	3.01078	1321.355		

2.9075	1238.28	3.42312	1502.96	3.42124	1013.78	3.38713	1343.806
3.271	1239.29	3.80317	1537.09	3.80177	987.848	3.76348	1366.258
3.63442	1239.41						
3.63442	1247.16						

Table 3.54. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	-189.848	-2175.370

Figure 3.28 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.55. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus							Anal	lytical	
S11(c	entral)	S1	L1(1)	S	11(2)	thin	shells	thicl	k shells
0.000	0.3431	0.000	42.4679	0.000	-37.5735	0.000	0.0000	0.000	-4.7326
0.000	1.1659	0.380	71.5032	0.380	-64.1622	0.360	0.0000	0.360	-4.2096

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

0.363	0.7238	0.761	109.6900	0.760	-98.4569	0.720	0.0000	0.720	-3.6866
0.727	-0.0465	1.141	125.7030	1.140	-112.0030	1.080	0.0000	1.080	-3.1636
1.090	-1.4610	1.521	137.7690	1.520	-122.0200	1.440	0.0000	1.440	-2.6406
1.454	-2.6287	1.902	148.3590	1.900	-130.3560	1.800	0.0000	1.800	-2.1176
1.817	-2.3102	2.282	155.9050	2.281	-135.8090	2.160	0.0000	2.160	-1.5946
2.181	-1.0484	2.662	160.5330	2.661	-138.4850	2.520	0.0000	2.520	-1.0716
2.544	1.1823	3.043	155.1740	3.041	-132.0770	2.880	0.0000	2.880	-0.5486
2.908	3.1475	3.423	105.0340	3.421	-85.5075	3.240	0.0000	3.240	-0.0256
3.271	4.8676	3.803	62.8048	3.802	-46.7233	3.600	0.0000	3.600	0.0000
3.634	5.9894								
3.634	5.2716								

Table 3.56. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	-157.510	-2186.599

Figure 3.29 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.57. Axial Stresses along the thickness with units in (MPa), for	r the three paths from
Abaqus and the Analytical solution	
Abaqus	thin shells

		thin shells						
S22	2(central)	S2	2(1)	S2	2(2)	Analytical		
0.000	-1200.5700	0	-1130.6500	0	-1259.1600	0.000	-1670.443	
0.000	-1185.7300	0.38017	-1122.9100	0.380058	-1265.5700	0.000	-1599.506	
0.363	-1190.7000	0.760692	-1129.7800	0.760222	-1261.8400	0.360	-1528.569	
0.727	-1199.1000	1.14095	-1147.7900	1.14023	-1251.7600	0.720	-1457.633	
1.090	-1204.4300	1.52143	-1160.9000	1.52042	-1245.2500	1.080	-1386.696	
1.454	-1208.0900	1.90171	-1180.8600	1.90048	-1232.5000	1.440	-1315.759	
1.817	-1211.6100	2.28216	-1200.2300	2.28066	-1219.9800	1.800	-1244.822	
2.181	-1215.3700	2.66246	-1228.5900	2.66078	-1199.4200	2.160	-1173.886	
2.544	-1218.9000	3.04287	-1250.3500	3.04097	-1185.0300	2.160	-1102.949	
2.908	-1221.1900	3.42312	-1327.9100	3.42124	-1123.9500	2.520	-1032.012	
3.271	-1221.5200	3.80317	-1402.8000	3.80177	-1062.8700	2.520	-961.075	
3.634	-1221.0800					2.880	-890.139	
3.634	-1226.8000					2.880	-819.202	
						3.240	-748.265	
						3.240	-677.328	
						3.600	-606.392	

3.600

-535.455

п

 Table 3.58.
 Maximum and minimum values for hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	354.251	-1518.073

Figure 3.30 Fluctuation colored curve for hoop stresses in three paths, A-B, C-D, E-F

Table 3.59. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		thin shells						
S33(central)		S33	(1)	S33	(2)	Analytical		
0.000	46.7764	0	333.541	0	-201.333	0.000	41.443	
0	48.005	0.38017	340.885	0.380058	-209.112	0	41.443	
0.363465	45.795	0.760692	343.011	0.760222	-214.082	0.359956	41.443	
0.726845	41.8984	1.14095	335.299	1.14023	-210.965	0.719918	41.443	

1.09032	38.7851	1.52143	328.016	1.52042	-207.894	1.07988	41.443
1.45371	36.2838	1.90171	318.411	1.90048	-202.487	1.43985	41.443
1.81719	34.3154	2.28216	308.232	2.28066	-196.337	1.79982	41.443
2.18059	32.609	2.66246	294.611	2.66078	-186.954	2.15979	41.443
2.54408	31.3264	3.04287	279.964	3.04097	-176.602	2.1598	41.443
2.9075	30.4006	3.42312	234.861	3.42124	-139.832	2.51977	41.443
3.271	30.0389	3.80317	196.234	3.80177	-107.503	2.51978	41.443
3.63442	30.1271					2.87975	41.443
3.63442	34.7481					2.87975	41.443
						3.23973	41.443
						3.23973	41.443
						3.59971	41.443
						3.59971	41.443

Table 3.60. Maximum and minimum values for shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	386.902	-334.841

104

Figure 3.31 Fluctuation colored curve for shear stresses in three paths, A-B, C-D, E-F

Table 3.61.	Shear	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	e Analytic	al solu	tion	l									

	Anal(1)-(2)							
S12(c	entral)	S12	2(1)	S12	2(2)	thin shells		
0	-23.7864	0	54.3143	0	50.5374	0	6.7595	
0	-23.8538	0.3802	66.8997	0.3801	61.7244	0.360	5.408	
0.3635	-38.3144	0.7607	65.2840	0.7602	58.6475	0.720	4.056	
0.7268	-52.7178	1.1410	42.9268	1.1402	37.1560	1.080	2.704	
1.0903	-47.7216	1.5214	27.8473	1.5204	22.6855	1.440	1.352	
1.4537	-37.5354	1.9017	13.3453	1.9005	8.8659	1.800	0.000	

1.8172	-26.7929	2.2822	0.9349	2.2807	-2.9559	2.160	-1.352
2.1806	-15.0785	2.6625	-11.4962	2.6608	-14.6961	2.520	-2.704
2.5441	-2.5653	3.0429	-26.3420	3.0410	-28.7039	2.880	-4.056
2.9075	7.6896	3.4231	-22.3944	3.4212	-25.4309	3.240	-5.408
3.2710	10.1002	3.8032	-11.1562	3.8018	-14.6413	3.600	-6.7626
3.6344	8.5497						
3.6344	8.6497						

1.3.1. Μοντέλο RH2 σε κλειστές διατομές στις άκρες των σωλήνων και ομοιόμορφη πίεση κατά μήκος των σωλήνων.

do(mm)	60.3						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
RH2	1	28.35	3.6	5.23	0	1.23E-05	179200

Table 3.62.	Maximum and	l minimum	values	for Mise	s Stresses,	, exported	from Abaqus
-------------	-------------	-----------	--------	----------	-------------	------------	-------------

	Max value (MPa)	Min value (MPa)
Mises stresses	43.022	29.947

Figure 3.32 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.63.	Mises	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytic	al solu	tion										

Abaqus					Analytical		
Mises(central)		Mises(1)		Mises(2)		Analytical	
0	40.3355	0	42.9914	0	37.6827	0	40.3334
0	40.3517	0.188764	42.7232	0.188178	37.3981	0.360	40.3334
0.17997	40.0772	0.377531	42.1755	0.376356	36.8558	0.720	40.3334
0.359942	39.534	0.377546	42.1754	0.564535	36.3655	1.080	40.3334
0.539916	39.0029	0.566298	41.6049	0.752715	35.9012	1.440	40.3334
0.71989	38.4845	0.755066	41.0322	0.940895	35.4484	1.800	40.3334
0.899865	37.9781	0.943839	40.4688	1.12907	35.0082	2.160	40.3334
1.07985	37.4828	0.943865	40.4687	1.31725	34.5765	2.520	40.3334
1.25982	36.9978	1.13261	39.9133	1.50544	34.1543	2.880	40.3334
1.43979	36.5221	1.13264	39.9132	1.69362	33.7401	3.240	40.3334
1.61977	36.0553	1.32138	39.3684	1.8818	33.3347	3.600	40.3334
1.79975	35.5969	1.51016	38.8327	2.06998	32.9375		
1.97973	35.1468	1.69893	38.3069	2.25817	32.5494		
2.15971	34.7047	1.69897	38.3068	2.44635	32.1699		
2.33969	34.2704	1.88771	37.7899	2.63453	31.8007		
2.51967	33.8439	1.88774	37.7898	2.82271	31.4404		
2.69965	33.4249	2.07649	37.2817	3.0109	31.0935		
2.69966	33.3866	2.07652	37.2816	3.19908	30.7553		
2.87964	33.0136	2.26526	36.781	3.38727	30.4411		
2.87964	32.9739	2.45404	36.288	3.57545	30.1535		
3.05962	32.5681	2.45407	36.2879	3.76363	30.01		
3.05962	32.6097	2.64282	35.801				
3.2396	32.2133	2.64285	35.8009				
3.41958	31.7769	2.83161	35.3206				
3.41958	31.8244	3.02041	34.8435				

3.59957	31.6318	3.20917	34.3727
3.59957	31.5824	3.39795	33.8973
		3.58674	33.4135
		3.77552	33.1735

Table 3.64. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	0.068	-5.406

Figure 3.33 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.65. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

D....

		Aba		Analytical						
S11(ce	S11(central) S11(1)			S11	L(2)	thin	shells	thick shells		
0.000	-5.0674	0.000	-5.1715	0.000	-4.9657	0.000	0.0000	0.000	-4.7326	
0.000	-5.0673	0.189	-5.0812	0.188	-4.7452	0.360	0.0000	0.360	-4.2096	
0.180	-4.9115	0.378	-4.8525	0.376	-4.3616	0.720	0.0000	0.720	-3.6866	
0.360	-4.6032	0.566	-4.5695	0.565	-4.0465	1.080	0.0000	1.080	-3.1636	
0.540	-4.3019	0.755	-4.2826	0.753	-3.7459	1.440	0.0000	1.440	-2.6406	
0.720	-4.0079	0.944	-3.9976	0.941	-3.4541	1.800	0.0000	1.800	-2.1176	
0.900	-3.7208	1.133	-3.7167	1.129	-3.1688	2.160	0.0000	2.160	-1.5946	
1.080	-3.4397	1.321	-3.4416	1.317	-2.8882	2.520	0.0000	2.520	-1.0716	
1.260	-3.1642	1.510	-3.1718	1.505	-2.6125	2.880	0.0000	2.880	-0.5486	
1.440	-2.8937	1.699	-2.9079	1.694	-2.3409	3.240	0.0000	3.240	-0.0256	
1.620	-2.6280	1.888	-2.6492	1.882	-2.0739	3.600	0.0000	3.600	0.0000	
1.800	-2.3670	2.076	-2.39555	2.070	-1.8112					

1.980	-2.1105	2.265	-2.14611	2.258	-1.5536
2.160	-1.8585	2.454	-1.90077	2.446	-1.30086
2.340	-1.6109	2.643	-1.65788	2.635	-1.05448
2.520	-1.3678	2.83161	-1.41765	2.823	-0.81403
2.700	-1.1289	3.02039	-1.17644	3.011	-0.58323
2.880	-0.8945	3.20917	-0.93417	3.199	-0.36207
3.060	-0.6644	3.39795	-0.68072	3.387	-0.16186
3.240	-0.4368	3.58674	-0.37048	3.575	-0.03844
3.41958	-0.2159	3.77552	-0.19366	3.764	-0.00543
3.59957	-0.106368				

Table 3.66. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	22.428	18.853

Figure 3.34 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.67.	Axial	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	e Analytic	cal solu	tion	l									

			thir	n shells								
S22(ce	S22(central)		(1)	S22	(2)	Analytical						
0.000	20.8498	0	21.2809	0	20.4357	0.000	20.68298					
0.000	20.8443	0.188764	21.2179	0.188178	20.4432	0.360	20.68298					
0.180	20.8256	0.377531	21.1491	0.376356	20.4223	0.720	20.68298					
0.360	20.7886	0.377546	21.1491	0.564535	20.4094	1.080	20.68298					
0.540	20.7534	0.566298	21.0975	0.752715	20.4281	1.440	20.68298					
0.720	20.7215	0.566319	21.0975	0.940895	20.4492	1.800	20.68298					
0.900	20.6929	0.755091	21.0213	1.12907	20.4801	2.160	20.68298					
1.080	20.6673	0.943839	20.9478	1.31725	20.5129	2.520	20.68298					
1.260	20.6437	1.13261	20.8680	1.50544	20.5506	2.880	20.68298					
1.440	20.6217	1.51019	20.7067	1.69362	20.5906	3.240	20.68298					
1.440	20.6217	1.69893	20.6238	1.8818	20.6346	3.600	20.68298					
1.620	20.6007	1.88771	20.5379	2.06998	20.6815							

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

1.800	20.5805	1.88774	20.5379	2.25817	20.7328
1.980	20.561	2.07649	20.4499	2.44635	20.7875
2.160	20.542	2.07652	20.4499	2.63453	20.8478
2.340	20.5237	2.26529	20.358	2.82271	20.9106
2.520	20.5059	2.45407	20.2628	3.0109	20.981
2.700	20.4888	2.64285	20.1623	3.19908	21.0463
2.880	20.4724	2.83161	20.0586	3.38727	21.127
3.060	20.4234	3.02041	19.9475	3.57545	21.126
3.2396	20.3988	3.20917	19.8397	3.76363	21.0702
3.41958	20.3732	3.39795	19.718		
3.59957	20.4193	3.58674	19.6698		
3.59957	20.36	3.77552	19.6949		

Table 3.68. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	44.466	34.354

Figure 3.35 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

	-		thin she	ells				
S33(ce	ntral)	S33	(1)	S33	(2)	Analytical		
0.000	41.4051	0	44.432	0	38.3272	0.000	41.186	
0	41.425	0.188764	44.2097	0.188178	38.2201	0	41.186	
0.17997	41.2644	0.377531	43.8015	0.376356	37.9814	0.359956	41.186	
0.359942	40.9464	0.377546	43.8015	0.564535	37.7314	0.719918	41.186	
0.539916	40.6348	0.566298	43.424	0.752715	37.4931	1.07988	41.186	
0.7199	40.3298	0.755066	43.0495	0.940895	37.2594	1.43985	41.186	
0.899875	40.0314	0.943839	42.6841	1.12907	37.0329	1.79982	41.186	
1.07984	39.7394	1.13261	42.3242	1.31725	36.8116	2.15979	41.186	
1.07985	39.7394	1.32141	41.9712	1.50544	36.5963	2.1598	41.186	
1.25982	39.4535	1.51016	41.624	1.69362	36.3863	2.51977	41.186	
1.4398	39.1735	1.69897	41.2825	1.8818	36.1817	2.51978	41.186	
1.61977	38.8992	1.88771	40.9466	2.06998	35.9822	2.87975	41.186	
1.79975	38.6304	1.88774	40.9466	2.25817	35.7879	2.87975	41.186	

Table 3.69. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

				-			
1.97973	38.3669	2.07649	40.616	2.44635	35.5983	3.23973	41.186
2.15971	38.1086	2.26529	40.2903	2.63453	35.4135	3.23973	41.186
2.33969	37.8552	2.45404	39.9698	2.82271	35.2326	3.59971	41.186
2.51967	37.6068	2.64282	39.6539	3.0109	35.0557	3.59971	41.186
2.69965	37.363	2.83163	39.3433	3.19908	34.879		
2.87964	37.1239	3.02041	39.0375	3.38727	34.7048		
3.05962	36.8452	3.20918	38.7399	3.57545	34.487		
3.2396	36.611	3.39795	38.4481	3.76363	34.3538		
3.41958	36.3808	3.58674	38.2022				
3.59957	36.2666	3.77552	38.1022				

Table 3.70. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	0.134	-0.545

Figure 3.36 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.71.	Shear	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytic	al solu	ition										

		Anal(1)-(2)						
S12(ce	entral)	S12	2(1)	S12	2(2)	thin shells		
0	-0.0109	0	-0.2144	0	-0.2280	0.000	-0.0899	
0	-0.0108	0.1888	-0.3160	0.1882	-0.3325	0	-0.30209	
0.1800	-0.0269	0.3775	-0.4290	0.3764	-0.4470	0.35996	-0.51432	
0.3599	-0.0701	0.5663	-0.4601	0.5645	-0.4776	0.71992	-0.72656	
0.5399	-0.1300	0.7551	-0.4881	0.7527	-0.5065	1.07988	-0.93879	
0.7199	-0.1965	0.9438	-0.5038	0.9409	-0.5226	1.43985	-1.15102	
0.8999	-0.2605	0.9439	-0.5038	1.1291	-0.5332	1.79982	-1.3633	

1.0799	-0.3162	1.1326	-0.5139	1.3173	-0.5359	2.15979	-1.23597
1.2598	-0.3611	1.3214	-0.5163	1.5054	-0.5323	2.1598	-1.10863
1.4398	-0.3945	1.5102	-0.5125	1.6936	-0.5213	2.51977	-0.98129
1.6198	-0.4171	1.6989	-0.5015	1.8818	-0.5036	2.51978	-0.85395
1.7998	-0.4296	1.6990	-0.5015	2.06998	-0.4785	2.87975	-0.72661
1.9797	-0.4327	1.8877	-0.4839	2.25817	-0.4464	2.87975	-0.59927
2.15971	-0.426894	2.07652	-0.45906	2.44635	-0.4064	3.23973	-0.47193
2.33969	-0.41223	2.26529	-0.42749	2.63453	-0.3594	3.23973	-0.34459
2.51967	-0.388465	2.45404	-0.38854	2.82271	-0.304	3.59971	-0.21725
2.69965	-0.354946	2.64282	-0.34295	3.0109	-0.2413	3.59971	-0.0899
2.87964	-0.310641	2.83161	-0.28978	3.19908	-0.1704		
3.05962	-0.253683	3.02039	-0.23018	3.38727	-0.0873		
3.2396	-0.183917	3.39795	-0.08789	3.57545	-0.0257		
3.41958	-0.0981238	3.58674	-0.03112	3.76363	-0.0083		
3.59957	-0.0509945	3.77552	-0.01365				

1.3.2. Μοντέλο RH2 σε κλειστές διατομές, ενώ 506°C αναπτύσσονται σε όλη τη παρειά των σωλήνων και θεωρείται ότι ξεκινάει από θερμοκρασία 20°C.

do(mm)	60.3						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
RH2	1	28.35	3.6	0	506	1.23E-05	179200

	Table 3.72.	Maximum and	minimum	values	for Mises	Stresses,	exported	from Ab	aqus
--	-------------	-------------	---------	--------	-----------	-----------	----------	---------	------

	Max value (MPa)	Min value (MPa)
Mises Stresses	274.186	7.640

Figure 3.37 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.73. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Abaqus				Analytical	
Mises(ce	entral)	Mises(1)	Mise	s(2)	AII	alytical
0	50.8067	0	209.81	0	203.557	0	27.95186
0	58.8443	0.379843	209.074	0.379624	205.487	0.360	27.1535
0.362633	75.501	0.759819	194.938	0.759107	199.547	0.720	26.3552
0.725266	91.2126	1.13972	175.624	1.13866	187.944	1.080	25.5568
1.0879	82.911	1.51966	168.51	1.51819	184.523	1.440	24.7585
1.45055	67.9139	1.89956	169.767	1.89776	187.739	1.800	23.9601
1.81319	52.5128	2.2795	175.572	2.2773	193.451	2.160	23.1618
2.17583	37.1595	2.65939	190.92	2.65689	206.119	2.520	22.3634
2.53848	25.7095	3.0393	202.574	3.03647	214.622	2.880	21.5651
2.90113	23.4426	3.41911	228.488	3.41616	232.497	3.240	20.7667
3.26379	24.2149	3.79871	254.762	3.79607	251.721	3.600	19.96839
3.62644	23.3937						
3.62644	16.416						

Table 3.74. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	166.794	-172.002

Figure 3.38 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.75. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus							Analytical				
S11(central) S11(1)		S11(2)		thin shells		thick shells					
0.000	-0.2269	0.000	38.4243	0.000	-34.8714	0.000	0.0000	0.000	-5.2300		
0.000	0.2447	0.380	64.2705	0.380	-58.3862	0.360	0.0000	0.360	-4.1840		
0.363	-0.3789	0.760	98.0600	0.759	-88.9172	0.720	0.0000	0.720	-3.1380		
0.725	-1.6106	1.140	111.9300	1.139	-101.3900	1.080	0.0000	1.080	-2.0920		

1.088	-3.3981	1.520	122.2810	1.518	-110.6820	1.440	0.0000	1.440	-1.0460
1.451	-4.9717	1.900	131.2840	1.898	-118.4750	1.800	0.0000	1.800	0.0000
1.813	-5.1751	2.280	137.4900	2.277	-123.7400	2.160	0.0000	2.160	1.0460
2.176	-4.5045	2.659	141.1120	2.657	-126.4560	2.520	0.0000	2.520	2.0920
2.538	-2.9266	3.039	135.6080	3.036	-121.1830	2.880	0.0000	2.880	3.1380
2.901	-1.6033	3.419	89.9954	3.416	-147.8750	3.240	0.0000	3.240	4.1840
3.264	-0.4817	3.419	12.0958	3.416	-81.1873	3.600	0.0000	3.600	5.2300
3.626	0.4133	3.799	51.8117	3.796	-46.3938				
3.626	-0.4745								

Table 3.76. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	44.466	34.354

Figure 3.39 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.77. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		A	baqus			thin shells		
S22(central)	S22	2(1)	S22	2(2)	Analytical		
0.000	27.6597	0	87.2683	0	-23.3043	0.000	74.0582	
0.000	40.7588	0.379843	94.4917	0.379624	-28.6469	0.360	61.3059	
0.363	36.2311	0.759819	88.7349	0.759107	-25.0955	0.720	48.5535	
0.725	28.5809	1.13972	73.1715	1.13866	-15.9860	1.080	35.8012	
1.088	23.8414	1.51966	62.0527	1.51819	-10.0773	1.440	23.0489	
1.451	20.8074	1.89956	44.9254	1.89776	1.2947	1.800	10.2966	
1.813	18.0759	2.2795	28.4246	2.2773	12.4621	2.160	-2.4558	
2.176	15.2498	2.65939	3.9229	2.65689	30.6082	2.520	-15.2081	
2.538	12.7427	3.0393	-14.5684	3.03647	43.3750	2.880	-27.9604	
2.901	11.4697	3.41911	-83.0727	3.41616	96.9794	3.240	-40.7128	
3.264	12.0279	3.79871	-149.5790	3.79607	150.5900	3.600	-53.4651	
3.626	12.8583							
3.626	7.5895							

Table 3.78. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	266.059	-231.570

Figure 3.40 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.79. Mises	s Stresses along the thic	kness with	units in	(MPa),	for the	three]	paths	from
Abaqus and th	e Analytical solution							
	Abaqus				t	hin sh	ells	
600/ I I)	622(4)		22/2)					

		thin shells						
S33(cei	ntral)	S33	(1)	S33	(2)	Analytical		
0.000	-3.81	0	246.886	0	-214.786	0.000	0	
0	-2.5755	0.379843	254.046	0.379624	-221.308	0	0	
0.362633	-4.2542	0.759819	257	0.759107	-225.173	0.359956	0	
0.725266	-7.1711	1.13972	251.134	1.13866	-222.017	0.719918	0	
1.0879	-9.361	1.51966	245.631	1.51819	-218.911	1.07988	0	
1.45055	-10.97	1.89956	238.035	1.89776	-213.775	1.43985	0	
1.81319	-12.068	2.2795	229.89	2.2773	-208.003	1.79982	0	
2.17583	-12.911	2.65939	218.652	2.65689	-199.403	2.15979	0	
2.53848	-13.355	3.0393	206.426	3.03647	-189.947	2.1598	0	
2.90113	-13.476	3.41911	166.868	3.41616	-157.308	2.51977	0	
3.26379	-13.088	3.79871	132.711	3.79607	-128.712	2.51978	0	

3.62644	-12.624
3.62644	-9.0635

2.87975	0
2.87975	0
3.23973	0
3.23973	0
3.59971	0
3.59971	0

Table 3.80. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	77.529	-104.654

Figure 3.41 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.81. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus	Anal(1)-(2)

S12(centra	l)	S12(1)		S12(2)		thin	shells
0	-23.7410	0	47.3063	0	42.8806	0	74.0582
0	-23.7981	0.3798	58.7348	0.3796	52.5358	0	61.3059
0.3626	-36.4576	0.7598	57.3389	0.7591	49.7995	0.35996	48.5535
0.7253	-49.0071	1.1397	37.2851	1.1387	30.9367	0.71992	35.8012
1.0879	-44.4554	1.5197	23.5995	1.5182	18.1931	1.07988	23.0489
1.4506	-35.3524	1.8996	10.3535	1.8978	5.9557	1.43985	10.2966
1.8132	-25.7921	2.2795	-1.0877	2.2773	-4.6061	1.79982	-2.4558
2.1758	-15.5084	2.6594	-12.6323	2.6569	-15.1853	2.1598	-15.2081
2.5385	-4.6254	3.0393	-26.3809	3.0365	-27.8937	2.87975	-27.9604
2.9011	4.1712	3.4191	-23.5114	3.4162	-25.6127	3.23973	-40.7128
3.2638	5.9734	3.7987	-13.7751	3.7961	-16.6181	3.59971	-53.4651
3.6264	4.4778						
3.6264	4.5249						

1.3.3. Μοντέλο RH2 σε κλειστές διατομές και 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα, ενώ θεωρούμε ότι ξεκινάει από θερμοκρασία 20°C. Ακόμη, θεωρείται και ομοιόμορφη πίεση κατά μήκος των σωλήνων.

do(mm)	60.3						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
RH2	1	28.35	3.6	5.23	506	1.23E-05	179200

Table 3.82.	Maximum and	l minimum	values	for	Mises	Stresses,	exported	from Abaqus
							r	

	Max value (MPa)	Min value (MPa)
Mises stresses	301.782	13.810

Figure 3.42 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Abaqus and the Analytical solution										
	Analytical									
Mises(c	entral)	Mises(1)		Mise	s(2)	Andiytical				
0	56.7855	0	253.096	0	0 167.35		211.227			
0	60.9681	0.379803	249.846	0.379583	171.911	0.376341	211.700			
0.362595	77.4477	0.759738	234.369	0.759028	168.223	0.752686	212.174			
0.725191	93.109	1.1396	216.197	1.13855	156.562	1.12903	212.647			
1.08779	85.1411	1.51951	208.442	1.51804	154.338	1.50538	213.120			
1.4504	70.4563	1.89938	207.945	1.89758	159.634	1.88173	213.594			
1.81301	55.1878	2.27928	211.538	2.27708	167.46	2.25807	214.067			
2.17562	39.8979	2.65914	223.96	2.65665	182.5	2.63442	214.540			
2.53824	27.9448	3.03903	233.659	3.03619	192.41	3.01078	215.013			
2.90087	24.495	3.41881	259.135	3.41586	209.968	3.38713	215.487			
3.26349	23.7087	3.79839	285.066	3.79575	228.925	3.76348	215.960			
3.62612	21.9716									
3.62612	26.4591									

Table 3.83. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

 Table 3.84.
 Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	166.133	-176.134

Figure 3.43 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.85.	Mises	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytic	al solu	tion										

		Abaqus	Analytical						
S11(d	S11(central) S11(1)		S11(2)		thin shells		thick shells		
0.000	-5.1460	0.000	33.4633	0.000	-39.7894	0.000	0.0000	0.000	-4.7326
0.000	-4.6746	0.380	59.5996	0.380	-62.9881	0.360	0.0000	0.360	-4.2096
0.363	-4.9902	0.760	93.9746	0.759	-92.9152	0.720	0.0000	0.720	-3.6866
0.725	-5.6201	1.140	108.4260	1.139	-104.8230	1.080	0.0000	1.080	-3.1636
1.088	-6.8320	1.520	119.3370	1.518	-113.5700	1.440	0.0000	1.440	-2.6406
1.450	-7.8545	1.899	128.8780	1.898	-120.8340	1.800	0.0000	1.800	-2.1176
1.813	-7.5301	2.279	135.6020	2.277	-125.5890	2.160	0.0000	2.160	-1.5946

1		1		1		1			
2.176	-6.3529	2.659	139.7240	2.657	-127.8130	2.520	0.0000	2.520	-1.0716
2.538	-4.2875	3.039	134.7060	3.036	-122.0660	2.880	0.0000	2.880	-0.5486
2.901	-2.4941	3.419	89.3287	3.416	-148.5240	3.240	0.0000	3.240	-0.0256
3.263	-0.9183	3.419	11.8690	3.416	-81.3974	3.600	0.0000	3.600	0.0000
3.626	0.2004	3.798	51.5946	3.796	-46.6033				
3.626	-0.6892					-			

Table 3.86. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	154.876	-152.272

Figure 3.44 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

		Aba	qus			thin s	hells
S22(c	entral)	S22(1)	S2	22(2)	Analy	/tical
0,000	-5,1460	0	88,2336	0,000	-23,6355	0,000	20,593
0,000	-4,6746	0,379803	95,3387	0,380	-28,9478	0,000	20,593
0,363	-4,9902	0,759738	89,3706	0,759	-25,3459	0,360	20,593
0,725	-5,6201	1,1396	73,6075	1,139	-16,1718	0,720	20,593
1,088	-6,8320	1,5195	62,2749	1,518	-10,1725	1,080	20,593
1,450	-7,8545	1,8994	44,9242	1,898	1,3060	1,440	20,593
1,813	-7,5301	2,2793	28,1824	2,277	12,6018	1,800	20,593
2,176	-6,3529	2,6591	3,41751	2,657	30,8987	2,160	20,593
2,538	-4,2875	3,0390	-15,3626	3,036	43,8432	2,160	20,593
2,901	-2,4941	3,4188	-84,1972	3,416	97,6605	2,520	20,593
3,263	-0,9183	3,7984	-150,8840	3,796	151.389	2,520	20,593
3,626	0,2004					2,880	20,593
3,626	-0,6892					2,880	20,593
						3,240	20,593
						3,240	20,593
						3,600	20,593
						3,600	20,593

Table 3.87. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.88. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	310.832	-193.835

Figure 3.45 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.89. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		thin shells					
S33(central)		S33(1)		S33(2)		Analytical	
0.000	37.8377	0	292.049	0	-176.796	0.000	41.443
0	39.0315	0.379803	298.799	0.379583	-183.557	0	41.443
0.362595	37.0332	0.759738	300.961	0.759028	-187.898	0.359956	41.443
0.725191	33.4886	1.1396	294.341	1.13855	-185.199	0.719918	41.443
1.08779	30.6944	1.51951	288.107	1.51804	-182.524	1.07988	41.443

1.4504	28.5033	1.89938	279.804	1.89758	-177.797	1.43985	41.443
1.81301	26.8453	2.27928	270.971	2.27708	-172.409	1.79982	41.443
2.17562	25.4616	2.65914	259.063	2.65665	-164.17	2.15979	41.443
2.53824	24.4961	3.03903	246.183	3.03619	-155.055	2.1598	41.443
2.90087	23.8717	3.41881	205.979	3.41586	-122.733	2.51977	41.443
3.26349	23.7729	3.79839	171.498	3.79575	-94.2901	2.51978	41.443
3.62612	23.9973					2.87975	41.443
3.62612	27.6787					2.87975	41.443
						3.23973	41.443
						3.23973	41.443
						3.59971	41.443
						3.59971	41.443

Table 3.90. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	77.241	-104.926

Figure 3.46 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Abaqus						Anal(1)-	(2)
S12(c	entral)	S1	2(1)	S1	.2(2)	thin she	lls
0	-23.7864	0	54.3143	0	50.5374	0	86.609
0	-23.8538	0.3802	66.8997	0.3801	61.7244	0	86.609
0.3635	-38.3144	0.7607	65.2840	0.7602	58.6475	0.35996	86.609
0.7268	-52.7178	1.1410	42.9268	1.1402	37.1560	0.71992	86.609
1.0903	-47.7216	1.5214	27.8473	1.5204	22.6855	1.07988	86.609
1.4537	-37.5354	1.9017	13.3453	1.9005	8.8659	1.43985	86.609
1.8172	-26.7929	2.2822	0.9349	2.2807	-2.9559	1.79982	86.609
2.1806	-15.0785	2.6625	-11.4962	2.6608	-14.6961	2.15979	86.609
2.5441	-2.5653	3.0429	-26.3420	3.0410	-28.7039	2.1598	86.609
2.9075	7.6896	3.4231	-22.3944	3.4212	-25.4309	2.51977	86.609
3.2710	10.1002	3.8032	-11.1562	3.8018	-14.6413	2.51978	86.609
3.6344	8.5497					2.87975	86.609
3.6344	8.6497					2.87975	86.609
						3.23973	86.609
						3.23973	86.609
						3.59971	86.609
						3.59971	86.609

Table 3.91. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.3. Συνδυασμός υλικών SH2

Figure 3.47 The internal radius and the thickness of the combination RH2

do(mm)	44.5						
ν	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
cup	1	10.1	6.2	25.0	0	0.0000121	185100
5112	2	19.1	0.3	25.8	0	0.0000179	154300

Table 3.92. Properties for the combination of materials RH2 where, R_i : middle radius, H_i : thickness, p_i : internal pressure, ΔT : temperature difference, E: Young's modulus, v: Poisson's ratio, α : linear expansion coefficient and some properties from Abaqus discrimination

Table 3.93. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises stresses	102.788	50.541

Figure 3.48 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.94. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	۸n	alutical					
Mises(central)		Mises	(1)	Mise	s(2)	Andiytical	
0	90.1985	0	102.6	0	90.5207	0	93.89447
0	90.2398	0.363496	100.798	0.363541	89.0128	0.63	92.31781
0.314887	88.6811	0.363536	100.798	0.727083	86.0823	1.26	90.74114
0.314912	88.681	0.727003	97.2705	1.09063	83.3153	1.89	89.16448

0.629791	85.6459	0.727073	97.2698	1.09064	83.3152	2.52	87.58782
0.944706	82.7705	1.09062	93.9123	1.45419	80.6986	3.15	86.01115
1.25968	80.0476	1.45416	90.7402	1.81773	78.2227	3.78	84.43449
1.57456	77.4735	1.81771	87.7441	2.1813	75.8779	4.41	82.85783
1.57461	77.4731	2.18126	84.9144	2.54483	73.6562	5.04	81.28117
1.8895	75.0406	2.54482	82.241	2.54486	73.656	5.67	79.7045
1.88954	75.0403	2.90837	79.714	2.90839	71.5492	6.3	78.12784
2.20444	72.7417	3.27193	77.3247	3.27195	69.5498		
2.51939	70.5684	3.6355	75.0647	3.27197	69.5497		
2.83436	68.5121	3.99906	72.9265	3.63551	67.6508		
3.14931	66.5653	4.36263	70.9033	3.63553	67.6507		
3.46424	64.7206	4.72619	68.9888	3.99907	65.8457		
3.46426	64.7205	5.08976	67.1777	4.36265	64.1282		
3.7792	62.9708	5.45333	65.4651	4.7262	62.4926		
4.09416	61.3095	5.81684	63.8473	4.72622	62.4926		
4.40912	59.7311	6.18043	62.3206	5.08977	60.9334		
4.72408	58.2297	6.54405	60.8825	5.08978	60.9334		
5.03905	56.7038	6.90761	59.5354	5.45334	59.4455		
5.35402	55.3426	6.90763	59.5353	5.8169	58.0241		
5.35402	55.4378	7.27121	58.8851	6.18047	56.6647		
5.66899	54.1378			6.54404	55.3632		
5.98395	52.8958			6.90761	54.116		
6.29893	52.2888			7.27118	53.5056		

Table 3.95. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	-0.353	-25.007

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

Figure 3.49 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.96.	Radial	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytica	al solu	tion										

		ŀ	Abaqus		Analytical				
S11(central)	S	11(1)	S1:	1(2)	thin	shells	thic	k shells
0.000	-24.7554	0.000	-24.8767	0.000	-24.7998	0.000	0.0000	0.000	-25.8
0.000	-24.7550	0.363	-23.9585	0.364	-23.8394	0.360	0.0000	0.360	-23.6315
0.315	-23.8048	0.364	-23.9584	0.727	-21.9700	0.720	0.0000	0.720	-21.4629
0.315	-23.8048	0.727	-22.1118	1.091	-20.1957	1.080	0.0000	1.080	-19.2944
0.630	-21.9420	1.091	-20.2862	1.454	-18.5057	1.440	0.0000	1.440	-17.1258
0.630	-21.9417	1.454	-18.5402	1.818	-16.8941	1.800	0.0000	1.800	-14.9573
0.945	-20.1503	1.818	-16.8818	2.181	-15.3569	2.160	0.0000	2.160	-11.9659
1.260	-18.4288	2.181	-15.3084	2.545	-13.8904	2.520	0.0000	2.520	-8.9744
1.575	-16.7835	2.545	-13.8183	2.908	-12.4913	2.880	0.0000	2.880	-5.9829
1.890	-15.2182	2.908	-12.4065	3.272	-11.1566	3.240	0.0000	3.240	-2.9915
2.204	-13.7326	3.272	-11.0692	3.272	-11.1565	3.600	0.0000	3.600	0.0000
2.519	-12.3235	3.636	-9.8016	3.636	-9.88326				
2.834	-10.9864	3.999	-8.5996	3.999	-8.66865				
3.149	-9.7169	4.363	-7.4584	3.999	-8.6686				
3.464	-8.5108	4.726	-6.3738	4.363	-7.51025				
3.779	-7.3641	5.090	-5.3413	4.726	-6.40566				
4.094	-6.2736	5.453	-4.3564	5.090	-5.35268				
4.409	-5.2361	5.817	-3.4151	5.090	-5.35264				
4.72	-4.24912	6.180	-2.51191	5.453	-4.34914				
5.04	-3.31025	6.180	-2.51178	5.8169	-3.39303				
5.35	-2.41756	6.544	-1.64381	6.18047	-2.4823				
5.67	-1.5695	6.908	-0.8093	6.54404	-1.61511				
5.98	-0.76491	7.271	-0.40007	6.90761	-0.7905				
6.3	-0.37342			7.27118	-0.38878				

 Table 3.97.
 Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	3.387	-2.930

Figure 3.50 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.98. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus	thin shells

S22	(central)	S22	(1)	S22(2)		Analytic	al
0.000	-2.0638	0	-1.0112	0	-2.3974	0.000	0
0.000	-2.0761	0.363496	-0.9200	0.363541	-2.2385	0.000	0
0.315	-1.8466	0.363536	-0.9200	0.727083	-1.9404	0.360	0
0.630	-1.4246	0.727003	-0.6965	1.09063	-1.6682	0.720	0
0.945	-1.0830	1.09062	-0.5123	1.09064	-1.6682	1.080	0
0.945	-1.0829	1.45416	-0.4046	1.45418	-1.4133	1.440	0
1.260	-0.8205	1.81771	-0.3230	1.45419	-1.4133	1.800	0
1.575	-0.6179	2.18126	-0.2745	1.81773	-1.1745	2.160	0
1.575	-0.6178	2.54482	-0.2459	1.81775	-1.1745	2.160	0
1.890	-0.4550	2.90837	-0.2395	2.18128	-0.9463	2.520	0
2.204	-0.3168	3.27193	-0.2509	2.1813	-0.9462	2.520	0
2.204	-0.3168	3.6355	-0.2818	2.54483	-0.7251	2.880	0
2.519	-0.1937	3.99906	-0.3310	2.90839	-0.50709	2.880	0
2.519	-0.193726	4.36263	-0.4003	3.27195	-0.28946	3.240	0
2.834	-0.0796657	4.72619	-0.4901	3.27197	-0.28944	3.240	0
2.834	-0.0796554	5.08976	-0.6028	3.63551	-0.06953	3.600	0
3.149	0.0296583	5.45333	-0.7402	3.63553	-0.06951	3.600	0
3.464	0.137412	5.81684	-0.9049	3.99907	0.154692		
3.779	0.246167	5.81691	-0.90498	4.36264	0.384999		
4.094	0.358202	6.18043	-1.1008	4.36265	0.385009		
4.409	0.475601	6.18048	-1.10083	4.7262	0.62272		
4.72	0.600406	6.54402	-1.3301	4.72622	0.622729		
5.04	0.7347	6.54405	-1.33012	5.08978	0.868984		
5.35	0.807227	6.90761	-1.60984	5.45334	1.12447		
5.35	0.880677	6.90763	-1.60986	5.8169	1.3897		
5.67	1.04076	7.27121	-1.76688	6.18047	1.66468		
5.98	1.11023			6.54404	1.94951		
5.98	1.21768			6.90761	2.24314		
6.3	1.31072			7.27118	2.39182		

Table 3.99. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	87.555	49.596

Figure 3.51 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.100. Hoop	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus and the	Analytic	cal solu	tion										

		thin	shells				
S33(ce	ntral)	S33	(1)	S33	(2)	Analytical	
0.000	74.6221	0	87.5467	0	74.8185	0	78.2190
0	74.661	0.363496	86.3489	0.363541	73.9848	0.63	78.2190
0.314887	73.7918	0.363536	86.3488	0.727083	72.3599	1.26	78.2190
0.629791	72.0975	0.727003	84.0534	1.09063	70.8217	1.89	78.2190
0.944706	70.4862	0.727073	84.053	1.09064	70.8217	2.52	78.2190
0.944754	70.4859	1.09062	81.9017	1.45418	69.3677	3.15	78.2190
1.25963	68.9507	1.45416	79.8548	1.81773	67.9919	3.78	78.2190

1.25968	68.9505	1.81771	77.9138	1.81775	67.9919	4.41	78.2190
1.57456	67.4874	2.18126	76.0676	2.18128	66.6901	5.04	78.2190
1.57461	67.4872	2.54482	74.3116	2.1813	66.69	5.67	78.2190
1.8895	66.0939	2.90837	72.6384	2.54483	65.4575	6.3	78.2190
1.88954	66.0937	3.27193	71.0429	2.54486	65.4575		
2.20444	64.7678	3.6355	69.5193	2.90839	64.2902		
2.20448	64.7677	3.99906	68.0628	2.90841	64.2902		
2.51939	63.5064	4.36263	66.6684	3.27195	63.1842		
2.83434	62.3069	4.72619	65.3322	3.27197	63.1842		
3.14931	61.1659	5.08976	64.0497	3.63551	62.1358		
3.46424	60.081	5.45333	62.8176	3.99907	61.1416		
3.7792	59.0488	5.81684	61.6322	4.36264	60.1982		
4.09416	58.0667	5.81691	61.632	4.7262	59.3025		
4.40912	57.1322	6.18043	60.4899	5.08977	58.4518		
4.72408	56.2428	6.18048	60.4897	5.08978	58.4517		
5.03905	55.3961	6.54402	59.3876	5.45334	57.643		
5.35402	54.5902	6.54405	59.3875	5.8169	56.8738		
5.66898	53.6906	6.90761	58.3177	6.18047	56.1415		
5.98395	53.093	6.90763	58.3177	6.54404	55.4439		
6.29893	52.5922	7.27121	57.7892	6.90761	54.7782		
6.29893	52.737			7.27118	54.4529		

Table 3.101. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	0.365	-1.732

Figure 3.52 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.102. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus						Anal(1)-(2)	
S12(central)		S12(1)		S12(2)		thin shells	
0	-0.0396	0	-0.5920	0	-0.0608	0	4.7535
0	-0.0393	0.3635	-0.9127	0.3635	-0.1045	0.39375	4.1593
0.3149	-0.0951	0.7270	-1.3194	0.7271	-0.1769	0.7875	3.5651
0.6298	-0.2314	1.0906	-1.4787	1.0906	-0.2305	1.18125	2.9709
0.9447	-0.3941	1.4542	-1.5874	1.4542	-0.2734	1.575	2.3768
1.2596	-0.5466	1.8177	-1.6457	1.8178	-0.3032	1.96875	1.7826
1.5746	-0.6705	2.1813	-1.6742	2.1813	-0.3204	2.3625	1.1884
1.8895	-0.7621	2.5448	-1.6748	2.54483	-0.3256	2.75625	0.5942
2.2044	-0.8246	2.9084	-1.6533	2.90841	-0.32	3.15	0.0000
2.5194	-0.8621	3.2719	-1.6109	3.27197	-0.3049	3.54375	-0.5942
2.83434	-0.878382	3.6355	-1.5499	3.63551	-0.2821	3.9375	-1.1884
3.14929	-0.875862	3.9991	-1.4712	3.99907	-0.2531	4.33125	-1.7826
3.46424	-0.856303	4.3626	-1.3757	4.36265	-0.2197	4.725	-2.3767
3.7792	-0.820885	4.7262	-1.2639	4.7262	-0.1834	5.11875	-2.9709
4.09416	-0.770344	5.0898	-1.1363	5.08978	-0.1462	5.5125	-3.5651
4.40912	-0.705094	5.4533	-0.9931	5.45334	-0.1098	5.90625	-4.1593
4.72408	-0.649313	5.8168	-0.8343	5.8169	-0.0761	6.3	-4.7535
5.03905	-0.530676	6.18048	-0.6595	6.18047	-0.0467		
5.35402	-0.420982	6.54402	-0.46758	6.54404	-0.0234		
5.66899	-0.295506	6.90763	-0.24825	6.90761	-0.0081		
5.98395	-0.153309	7.27121	-0.1296	7.27118	-0.0028		
6.29893	-0.077886						

2.1.2. Μοντέλο SH2 σε ανοιχτές διατομές, με άρθρωση στη συγκόλληση, ενώ 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα και θεωρείται ότι ξεκινάει από θερμοκρασία 20°C.Ιδιότητες:

do(mm)	44.5						
ν	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
SH2	1	19.1	6.3	25.8	0	0.0000121	185100
	2					0.0000179	154300

Table 3.103. Properties for the combination of materials SH2

Table 3.104. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses Mises	260.891	0.088

Figure 3.53 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.105. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	٨٣	alutical					
Mises(c	entral)	Mises(1)		Mise	s(2)	Analytical	
0	46.2016	0	199.575	0	175.93	0	173.4593
0	50.92	0.486949	196.166	0.487972	173.415	0.63	173.4593
0.422605	72.1856	0.974001	183.7	0.975831	163.306	1.26	173.4593
0.845215	94.5082	1.461	167.836	1.46375	149.988	1.89	173.4593
1.26782	89.8336	1.948	154.671	1.95167	138.868	2.52	173.4593
1.69044	79.1001	2.43498	143.511	2.43963	129.426	3.15	173.4593
2.11305	69.9303	2.92196	135.336	2.92757	122.497	3.78	173.4593
2.53566	62.3229	3.40893	130.497	3.41554	118.368	4.41	173.4593
2.95828	54.5324	3.89591	129.038	3.9035	117.073	5.04	173.4593
3.3809	45.2723	4.38287	130.996	4.39149	118.647	5.67	173.4593
3.80351	34.9356	4.86983	135.669	4.87948	122.519	6.3	173.4593
4.22614	24.3831	5.35675	142.595	5.36752	128.248		
4.64876	16.0623	5.84363	151.653	5.85559	135.814		
5.07138	12.3689	6.33046	160.914	6.34373	143.192		
5.494	12.3175	6.8171	197.749	6.83208	174.386		
5.91663	13.3052	7.30373	230.172	7.32045	202.285		
6.33925	13.8532					-	
6.33925	7.84282						

Table 3.106. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 11 direction	124.722	-130.992

Figure 3.54 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Abaqus						Analytical				
S11(o	central)	S	11(1)	S	S11(2)		thin shells		thick shells	
0.000	-0.8847	0.000	13.6854	0.000	-12.0853	0.000	0.0000	0	-25.8000	
0.000	0.9817	0.487	25.9680	0.488	-23.0214	0.360	0.0000	0.63	-23.2200	
0.423	-0.1927	0.974	46.3190	0.976	-41.1269	0.720	0.0000	1.26	-20.6400	
0.845	-1.8524	1.461	59.9916	1.464	-53.3977	1.080	0.0000	1.89	-18.0600	
1.268	-4.5998	1.948	70.6486	1.952	-63.1373	1.440	0.0000	2.52	-15.4800	
1.690	-7.8639	2.435	80.0667	2.440	-71.8466	1.800	0.0000	3.15	-12.9000	
2.113	-9.2277	2.922	88.3684	2.928	-79.5928	2.160	0.0000	3.78	-10.3200	
2.536	-9.9811	3.409	95.6583	3.416	-86.4347	2.520	0.0000	4.41	-7.7400	
2.958	-9.1943	3.896	101.5890	3.904	-92.0398	2.880	0.0000	5.04	-5.1600	
3.381	-8.0525	4.383	105.7650	4.391	-96.0368	3.240	0.0000	5.67	-2.5800	

Table 3.107. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.804	-6.7005	4.870	107.4400	4.879	-97.7454	3.600	0.0000	6.3	0.0000
4.226	-4.9992	5.357	105.1740	5.368	-95.8558				
4.649	-3.4942	5.844	97.0462	5.856	-88.6141				
5.071	-1.6480	6.330	60.9583	6.344	-110.944				
5.494	-1.4815	6.330	11.4954	6.344	-96.4594				
5.917	0.4837	6.817	11.4810	6.832	-96.4306				
6.339	2.9302	6.817	-14.2763	6.832	-45.3087				
6.339	-2.7711	7.304	17.5337	7.320	-16.3344				

Table 3.108. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 22 direction	133.611	-172.936

Figure 3.55 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

		A	baqus			thin shells	
S22(central)		S22(1)		S22	(2)	Analytical	
0.000	0.7467	0	73.3653	0	-57.3520	0	0
0.000	21.9171	0.486949	79.8573	0.487972	-62.0024	0.63	0
0.423	16.7446	0.974001	82.7479	0.975831	-64.2418	1.26	0
0.845	8.2382	1.461	78.0874	1.46375	-61.8768	1.89	0
1.268	3.5277	1.948	73.8115	1.95167	-59.9453	2.52	0
1.690	1.9531	2.43498	66.9802	2.43963	-55.6772	3.15	0
2.113	0.8689	2.92196	58.6004	2.92757	-49.8233	3.78	0
2.536	-0.2424	3.40893	48.2412	3.41554	-42.0102	4.41	0
2.958	-2.0262	3.89591	36.4402	3.9035	-32.7267	5.04	0
3.381	-3.9786	4.38287	22.8598	4.39149	-21.7154	5.67	0
3.804	-5.8853	4.86983	7.6230	4.87948	-9.1237	6.3	0
4.226	-7.2698	5.35675	-10.5248	5.36752	6.0977		
4.649	-8.5509	5.84363	-33.0518	5.85559	25.21		
5.071	-8.3431	6.33046	-65.0916	6.34373	52.6181		
5.494	-7.0904	6.8171	-142.0870	6.83208	120.038		
5.917	-4.9280	7.30373	-199.3610	7.32045	170.486		
6.339	-2.3955						
6.339	-10.0766						

Table 3.109. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.110. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 33 direction	243.004	-212.565

Figure 3.56 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

	Abaqus						
S33(cer	ntral)	S33(1)		S33(2)		Analytical	
0.000	-3.7158	0	226.507	0	-197.184	0	0
0	-0.1404	0.486949	227.747	0.487972	-198.342	0.63	0
0.422605	-2.316	0.974001	225.969	0.975831	-197.421	1.26	0
0.845215	-5.8751	1.461	220.042	1.46375	-193.432	1.89	0
1.26782	-8.5876	1.948	213.534	1.95167	-188.944	2.52	0
1.69044	-10.533	2.43498	206.153	2.43963	-183.625	3.15	0
2.11305	-11.784	2.92196	198.273	2.92757	-177.756	3.78	0
2.53566	-12.86	3.40893	189.802	3.41554	-171.252	4.41	0
2.95828	-13.651	3.89591	180.777	3.9035	-164.146	5.04	0
3.3809	-14.336	4.38287	170.936	4.39149	-156.214	5.67	0
3.80351	-14.891	4.86983	160.026	4.87948	-147.24	6.3	0
4.22614	-15.128	5.35675	147.147	5.36752	-136.437		
4.64876	-15.338	5.84363	131.164	5.85559	-122.791		
5.07138	-14.951	6.33046	107.905	6.34373	-102.603		
5.494	-14.731	6.8171	66.613	6.83208	-66.163		
5.91663	-13.682	7.30373	39.7105	7.32045	-42.33		
6.33925	-12.275						
6.33925	-3.6592						

Table 3.111. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.112. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 12 direction	60.011	-94.862

Figure 3.57 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.113. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	Ana	al(1)-(2)					
S12(ce	entral)	S1:	2(1)	S12	(2)	thi	n shells
0	-26.5788	0	24.5059	0	22.3876	0	22.7793
0	-26.6446	0.4869	35.2840	0.4880	31.9755	0.63	18.2234
0.4226	-39.9601	0.9740	43.9957	0.9758	39.3752	1.26	13.6676

0.8452	-54.0559	1.4610	39.6318	1.4638	35.0639	1.89	9.1117
1.2678	-51.4915	1.9480	34.6056	1.9517	30.3781	2.52	4.5559
1.6904	-45.1850	2.4350	29.3821	2.4396	25.5678	3.15	0.0000
2.1131	-39.8136	2.9220	24.4731	2.9276	21.0924	3.78	-4.5559
2.5357	-35.3647	3.4089	19.8054	3.4155	16.8371	4.41	-9.1117
2.9583	-30.9096	3.8959	15.2047	3.9035	12.6385	5.04	-13.6676
3.3809	-25.6040	4.3829	10.7617	4.3915	8.5604	5.67	-18.2234
3.8035	-19.4735	4.8698	6.1257	4.8795	4.2808	6.3	-22.7793
4.2261	-12.9583	5.3568	2.1218	5.36752	0.53329		
4.6488	-6.4989	5.8436	-2.1746	5.85559	-3.5077		
5.0714	-0.9501	6.3305	-1.0410	6.34373	-2.7007		
5.4940	2.3490	6.8171	5.8937	6.83208	3.64169		
5.9166	2.6962	7.3037	8.8576	7.32045	6.52325		
6.3393	2.1072						
6.33925	2.14773						

2.1.3. Μοντέλο SH2 σε ανοιχτές διατομές, με άρθρωση στη συγκόλληση και 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα, ενώ θεωρούμε ότι ξεκινάει από θερμοκρασία 20°C. Ακόμη, θεωρείται και ομοιόμορφη πίεση κατά μήκος των σωλήνων. Ιδιότητες:

do(mm)	44.5						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
cup	1	10.1	6.2	25.0	426	0.0000121	185100
5112	2	19.1	0.3	23.8	430	0.0000179	154300

Table 3.114. Properties for the combination of materials SH2

Table 3.115. Maximum and minimum values for	or Mises Stresses, exported	from Abaqus
---	-----------------------------	-------------

	Max value (MPa)	Min value (MPa)
Mises Stresses direction	299.228	9.242

Figure 3.58 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.116. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus							
Mises(c	entral)	Mise	Mises(1) Mises(2)		Mises(2)		laiyticai
0	102.279	0	296.778	0	95.347	0	94.12946
0	100.784	0.486814	289.019	0.487842	98.296	0.63	94.06716
0.422484	112.97	0.973745	270.475	0.975581	95.0959	1.26	94.00487

0.84498	124.775	1.46063	251.049	1.46339	84.5887	1.89	93.94257
1.26748	119.362	1.94753	234.422	1.95121	76.2889	2.52	93.88028
1.69	109.608	2.43441	219.848	2.43907	70.2454	3.15	93.81798
2.11252	100.74	2.92131	207.937	2.92692	67.7799	3.78	93.75569
2.53505	93.029	3.4082	198.9	3.41481	69.2484	4.41	93.69339
2.95759	85.133	3.8951	192.844	3.90269	73.99	5.04	93.6311
3.38013	76.5943	4.38199	189.931	4.39061	81.4093	5.67	93.5688
3.80268	68.0494	4.86889	189.874	4.87854	90.2449	6.3	93.50651
4.22524	60.2139	5.35576	192.563	5.36651	99.6703		
4.6478	54.4343	5.84259	198.233	5.85453	109.461		
5.07037	50.44	6.32938	205.856	6.34262	116.544		
5.49294	48.0932	6.81598	239.746	6.83092	148.374		
5.91552	45.5356	7.30258	269.51	7.31924	177.813		
6.3381	43.616						
6.3381	59.2973						

Table 3.117. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	120.097	-148.147

Figure 3.59 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.118. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus					Analytical				
S11(S11(central)		11(1)	S	S11(2)		shells	thic	k shells
0.000	-25.2747	0.000	-10.7818	0.000	-36.6368	0.000	0.0000	0.000	-14.9573
0.000	-23.4162	0.487	2.8113	0.488	-46.2843	0.360	0.0000	0.360	-14.9573
0.422	-23.2850	0.974	25.6881	0.976	-61.9130	0.720	0.0000	0.720	-14.9573
0.845	-22.4384	1.461	41.7063	1.463	-71.8970	1.080	0.0000	1.080	-14.9573
1.267	-22.8619	1.948	54.5391	1.951	-79.5109	1.440	0.0000	1.440	-14.9573
1.690	-23.9676	2.434	65.9730	2.439	-86.2324	1.800	0.0000	1.800	-14.9573
2.113	-23.3318	2.921	76.1458	2.927	-92.1157	2.160	0.0000	2.160	-14.9573
2.535	-22.2226	3.408	85.1749	3.415	-97.2079	2.520	0.0000	2.520	-14.9573
2.958	-19.7023	3.895	92.7259	3.903	-101.1670	2.880	0.0000	2.880	-14.9573
3.380	-16.9400	4.382	98.4147	4.391	-103.6150	3.240	0.0000	3.240	-14.9573
3.803	-14.0704	4.869	101.5070	4.879	-103.8640	3.600	0.0000	3.600	-14.9573
4.225	-10.9476	5.356	100.5700	5.367	-100.598				
4.648	-8.1067	5.843	93.6942	5.855	-92.0597				
5.070	-5.0047	6.329	58.2174	6.343	-113.763				
5.493	-3.6546	6.329	9.8779	6.343	-98.0991				
5.916	-0.5719	6.816	9.8659	6.831	-98.0678				
6.338	2.4177	6.816	-14.8134	6.831	-45.8351				
6.338	-3.2907	7.303	17.0041	7.319	-16.8565				

 Table 3.119. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 22 direction	181.206	-212.269

Figure 3.60 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.120. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus						thin shells	
S22(c	entral)	S22(1)	S22	(2)	Analytical	
0.000	1.3177	0	75.1063	0	-57.9662	0	0
0.000	22.5501	0.486814	81.4302	0.487842	-62.5573	0.63	0
0.422	17.3312	0.973745	84.0375	0.975581	-64.7248	1.26	0

0.845	8.7324	1.46063	79.1425	1.46339	-62.3069	1.89	0
1.267	3.9287	1.94753	74.6289	1.95121	-60.2919	2.52	0
1.690	2.2622	2.43441	67.5612	2.43907	-55.9238	3.15	0
2.113	1.0930	2.92131	58.9371	2.92692	-49.9475	3.78	0
2.535	-0.0985	3.4082	48.3233	3.41481	-41.9913	4.41	0
2.958	-1.9587	3.8951	36.2521	3.90269	-32.5405	5.04	0
3.380	-3.9859	4.38199	22.3824	4.39061	-21.3360	5.67	0
3.803	-5.9697	4.86889	6.8332	4.87854	-8.5216	6.3	0
4.225	-7.4320	5.35576	-11.6538	5.36651	6.95524		
4.648	-8.7951	5.84259	-34.5515	5.85453	26.3613		
5.070	-8.6737	6.32938	-66.9970	6.34262	54.1088		
5.493	-7.5136	6.81598	-144.4590	6.83092	121.936		
5.916	-5.4528	7.30258	-201.9860	7.31924	172.607		
6.338	-2.9730						
6.338	-10.2516						

Table 3.121. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 33 direction	330.605	-139.515

156

Figure 3.61 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.122. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus						thin sl	hells
S33(ce	ntral)	S33	(1)	S33	(2)	Analy	tical
0.000	76.3202	0	313.094	0	-124.037	0	78.632
0	79.7427	0.486814	312.751	0.487842	-126.272	0.63	78.632
0.422484	76.2468	0.973745	307.937	0.975581	-127.441	1.26	78.632
0.84498	70.1382	1.46063	299.205	1.46339	-125.401	1.89	78.632
1.26748	65.0554	1.94753	290.088	1.95121	-122.714	2.52	78.632
1.69	60.9037	2.43441	280.272	2.43907	-119.064	3.15	78.632
2.11252	57.5947	2.92131	270.114	2.92692	-114.741	3.78	78.632
2.53505	54.5985	3.4082	259.507	3.41481	-109.67	4.41	78.632
2.95759	52.012	3.8951	248.476	3.90269	-103.894	5.04	78.632
3.38013	49.6447	4.38199	236.745	4.39061	-97.1962	5.67	78.632
3.80268	47.5119	4.86889	224.053	4.87854	-89.3676	6.3	78.632
4.22524	45.7929	5.35576	209.489	5.36651	-79.6269		
4.6478	44.1872	5.84259	191.91	5.85453	-66.9667		
5.07037	43.2591	6.32938	167.134	6.34262	-47.6911		
5.49294	42.2376	6.81598	124.391	6.83092	-12.0907		
5.91552	42.1134	7.30258	96.7769	7.31924	11.3406		
6.3381	42.9494						
6.3381	52.1134						

Table 3.123. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Strains in 12 direction	59.160	-95.440

Figure 3.62 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.124.	Shear	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	e Analytic	cal solu	tion										

			Anal	(1)-(2)			
S12(c	entral)	S12(1)		S12	(2)	thin shells	
0	-26.6708	0	24.2177	0	22.0883	0	19.4812
0	-26.7374	0.4868	34.8150	0.4878	31.4827	0.63	19.4812
0.4225	-40.1458	0.9737	43.2681	0.9756	38.6071	1.26	19.4812
0.8450	-54.4545	1.4606	38.7798	1.4634	34.1624	1.89	19.4812
1.2675	-52.1141	1.9475	33.6852	1.9512	29.3997	2.52	19.4812
1.6900	-45.9834	2.4344	28.4377	2.4391	24.5573	3.15	19.4812
2.1125	-40.7247	2.9213	23.5388	2.9269	20.0846	3.78	19.4812
2.5351	-36.3339	3.4082	18.9095	3.4148	15.8617	4.41	19.4812
2.9576	-31.8929	3.8951	14.3708	3.9027	11.7209	5.04	19.4812

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

3.3801	-26.5658	4.3820	10.0096	4.3906	7.7227	5.67	19.4812
3.8027	-20.3824	4.8689	5.4711	4.8785	3.5425	6.3	19.4812
4.2252	-13.7844	5.3558	1.5780	5.36651	-0.0887		
4.6478	-7.2145	5.8426	-2.5982	5.85453	-3.9978		
5.0704	-1.5273	6.3294	-1.3343	6.34262	-3.0436		
5.4929	1.9382	6.8160	5.7472	6.83092	3.461		
5.9155	2.4814	7.3026	8.7892	7.31924	6.42676		
6.3381	1.9984						
6.3381	2.03628						

2.2.1 Μοντέλο SH2 σε ανοιχτές διατομές, όπου θεωρείται και ομοιόμορφη πίεση κατά μήκος των σωλήνων. Ιδιότητες:

do(mm)	44.5						
ν	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
รมว	1	10.1	6.2	25.0	0	0.0000121	185100
302	2	19.1	0.3	25.8	0	0.0000179	154300

Table 3.125. Properties for the combination of materials SH2

Table 3.126. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises stresses	133.547	15.026

Figure 3.63 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.127. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

			Applytical				
Mises(c	entral)	Mise	s(1)	Mise	s(2)	Ar	laiyticai
0	90.4903	0	96.3089	0	84.8638	0	90.52742
0	90.6173	0.484294	93.865	0.484334	82.8423	0.63	90.52742
0.419871	88.4031	0.484332	93.8648	0.968675	78.9461	1.26	90.52742
0.839727	84.1401	0.968604	89.1652	1.45302	75.3389	1.89	90.52742
1.25963	80.2004	0.968671	89.1646	1.93738	71.9934	2.52	90.52742
1.6795	76.5507	1.45302	84.8141	2.4218	68.878	3.15	90.52742
2.09942	73.1523	1.93738	80.7783	2.90612	65.9735	3.78	90.52742
2.51933	69.9848	2.42174	77.032	3.39056	63.2591	4.41	90.52742
2.93923	67.025	2.90611	73.5481	3.87488	60.7205	5.04	90.52742
3.35915	64.2577	3.39049	70.304	4.35927	58.3424	5.67	90.52742
3.77908	61.6679	3.87488	67.2783	4.84367	56.1128	6.3	90.52742
4.19901	58.8796	4.35928	64.4529	5.32811	54.0207		
4.19902	59.24	4.84368	61.8112	5.81247	52.057		
4.61895	56.5945	5.32808	59.3389	6.29688	50.214		
5.03889	54.4495	5.81242	57.0237	6.7813	48.4862		
5.45883	52.8123	5.8125	57.0233	7.26571	47.6504		
5.87877	50.9207	6.29686	54.8536				
6.29872	50.0034	6.29691	54.8534				
		6.78131	52.8201				
		6.78133	52.82				
		7.26576	51.8365				

Table 3.128. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	21.753	-30.150

Figure 3.64 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.129. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Ał		Analytical					
S11(c	entral)	S	11(1)	S1	1(2)	thin	shells	thick	shells
0.000	-24.3255	0.000	-24.4189	0.000	-24.4384	0	0.0000	0	-25.80
0.420	-23.0300	0.484	-23.1179	0.484	-23.1484	0.63	0.0000	0.63	-23.22
0.840	-20.5555	0.484	-23.1178	0.969	-20.6719	1.26	0.0000	1.26	-20.64
1.260	-18.2711	0.969	-20.6081	1.453	-18.3890	1.89	0.0000	1.89	-18.06
1.680	-16.1548	0.969	-20.6077	1.937	-16.2665	2.52	0.0000	2.52	-15.48
2.099	-14.1752	1.453	-18.2738	2.422	-14.2820	3.15	0.0000	3.15	-12.90
2.519	-12.3259	1.937	-16.1083	2.906	-12.4223	3.78	0.0000	3.78	-10.32
2.939	-10.5902	2.422	-14.1019	3.391	-10.6753	4.41	0.0000	4.41	-7.74
3.359	-8.9639	2.906	-12.2396	3.875	-9.0329	5.04	0.0000	5.04	-5.16
3.779	-7.4393	3.390	-10.5087	4.359	-7.48745	5.67	0.0000	5.67	-2.58
4.199	-6.0058	3.875	-8.8960	4.844	-6.03253	6.3	0.0000	6.3	0.00
4.619	-4.5991	4.359	-7.3899	5.328	-4.66373				
5.039	-3.3896	4.844	-5.9788	5.812	-3.37718				
5.459	-2.1668	5.328	-4.6525	6.297	-2.17226				
5.879	-1.0535	5.812	-3.4012	6.781	-1.0516				
6.29872	-0.5157	5.813	-3.4010	7.26571	-0.51248				
		6.297	-2.2146						
		6.297	-2.2144						
		6.781	-1.0849						
		7.266	-0.53352]					

Table 3.130. Maximum and r	ninimum	values	for Axial	Stresses,	exported	from Abaqus	
							_

Max value ((MPa)	Min value	(MPa)

			thin	shells			
S22(0	central)	S22	(1)	S22	(2)	Anal	ytical
0.000	15.5981	0	16.6138	0	14.4536	0	23.466
0.420	15.4790	0.484294	16.4580	0.484334	14.5143	0.63	23.466
0.840	15.3477	0.968671	16.2063	0.968675	14.5886	1.26	23.466
1.260	15.2605	1.45302	16.0015	0.968699	14.5886	1.89	23.466
1.680	15.2082	1.93738	15.7901	1.45306	14.6447	2.52	23.466
2.099	15.1705	2.42174	15.5796	1.93738	14.7312	3.15	23.466
2.519	15.1395	2.90611	15.3608	2.42175	14.8327	3.78	23.466
2.939	15.1107	3.39049	15.1319	2.90612	14.9549	4.41	23.466
3.359	15.0834	3.87488	14.8877	2.90617	14.9549	5.04	23.466
3.779	15.0604	4.35928	14.6252	3.39056	15.0961	5.67	23.466
4.199	15.0387	4.84368	14.3403	3.87494	15.2598	6.3	23.466
4.619	14.8725	5.32808	14.0300	4.35933	15.4475		
5.039	14.7977	5.81242	13.6909	4.84372	15.6627		
5.46	14.99	5.8125	13.6909	5.32811	15.9084		
5.88	14.9801	6.29686	13.3209	5.81251	16.1885		
6.3	14.9764	6.29691	13.3209	6.29691	16.5077		
		6.78133	12.9159	6.7813	16.8685		
		7.26576	12.7036	7.26571	17.0592		

Table 3.131. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.132. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	85.719	-23.707

Figure 3.66 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.133. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Aba	qus			thin sl	hells
S33(ce	ntral)	\$33	(1)	\$33	(2)	Analytical	
0.000	79.2608	0	85.6084	0	72.8983	0	78.219
0	79.4033	0.484294	84.048	0.484334	71.8271	0.63	78.219
0.419857	78.0944	0.484332	84.0479	0.968699	69.7464	1.26	78.219
0.839748	75.5769	0.968604	81.0593	1.45302	67.8067	1.89	78.219
1.25961	73.2462	0.968671	81.0589	1.93743	66.0127	2.52	78.219
1.6795	71.0846	1.45302	78.3001	2.42175	64.3503	3.15	78.219
1.67952	71.0845	1.93738	75.7321	2.90617	62.8092	3.78	78.219
2.09941	69.077	2.42174	73.3375	3.3905	61.3797	4.41	78.219
2.51932	67.206	2.90611	71.0979	3.87488	60.0527	5.04	78.219
2.93923	65.4604	3.39049	68.9991	4.35927	58.8202	5.67	78.219
3.35915	63.8277	3.87488	67.0277	4.84372	57.6751	6.3	78.219
3.77908	62.299	4.35928	65.1724	5.32807	56.6109		
4.19901	60.5243	4.84368	63.4231	5.81251	55.6215		
4.19902	60.8657	5.32808	61.7708	6.29688	54.7012		
4.61895	59.1468	5.81242	60.2079	6.7813	53.8428		
5.03889	57.8482	5.8125	60.2077	7.26571	53.4282		
5.45883	56.6228	6.29686	58.7273				
5.87877	55.9434	6.29691	58.7271				
6.29872	54.9001	6.78131	57.3224				
6.78133	57.3223	6.78133	57.3223				
		7.26576	56.6378				

Table 3.134. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	41.701	-41.702

Figure 3.67 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Al	Abaquis and the Analytical solution								
		Anal(2	1)-(2)						
S12(c	entral)	S12	2(1)	S12	2(2)	thin s	hells		
0	-0.0547	0	-0.2766	0	-0.2948	0	-0.7721		
0	-0.0546	0.4843	-0.4546	0.4843	-0.4828	0.63	-0.7721		
0.4199	-0.1382	0.4843	-0.4547	0.9687	-0.7459	1.26	-0.7721		
0.8397	-0.3384	0.9686	-0.7054	0.9687	-0.7459	1.89	-0.7721		
1.2596	-0.5597	1.4530	-0.8223	1.4530	-0.8678	2.52	-0.7721		
1.6795	-0.7365	1.9374	-0.8856	1.9374	-0.9359	3.15	-0.7721		
2.0994	-0.8519	2.4217	-0.9065	1.9374	-0.9359	3.78	-0.7721		
2.51933	-0.913945	2.9061	-0.8952	2.4218	-0.9612	4.41	-0.7721		
2.93923	-0.932832	3.3905	-0.8567	2.90617	-0.9539	5.04	-0.7721		
3.35915	-0.918231	3.8749	-0.7957	3.3905	-0.9186	5.67	-0.7721		
3.77908	-0.872817	4.3593	-0.7161	3.87494	-0.8596	6.3	-0.7721		
4.19901	-0.788113	4.8437	-0.6213	4.35927	-0.78				
4.19902	-0.798487	5.3281	-0.5145	4.84367	-0.6826				
4.61895	-0.686979	5.8124	-0.3985	4.84372	-0.6826				
5.03889	-0.557918	5.8125	-0.3985	5.32807	-0.5699				
5.45883	-0.39998	6.78133	-0.14514	5.81247	-0.4437				
5.45883	-0.406218	7.26576	-0.0761	6.29691	-0.3064				
5.87877	-0.21425			6.7813	-0.1591				

Table 3.135. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

6.29872 -0.110059

7.26571 -0.0825

2.2.2 Μοντέλο RH2 σε πακτωμένες διατομές, ενώ 506°C αναπτύσσονται σε όλη τη παρειά των σωλήνων και θεωρείται ότι ξεκινάει από θερμοκρασία 20°C. Ιδιότητες:

do(mm)	44.5						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
6112	1	10.1	6.2	0	126	0.0000121	185100
5112	2	19.1	0.3	0	430	0.0000179	154300

Table 3.136. Properties for the combination of materials SH2

	Max value (MPa)	Min value (MPa)
Mises stresses	3995.304	639.380

Figure 3.68 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

		Applytical						
Mises(co	entral)	Mise	s(1)	Mise	s(2)		Analytical	
0	1073.45	0	1147.66	0	1037.49	0	963.8854348	
0	1053.65	0.486852	1147.21	0.487933	1035.84	0.63	986.646	
0.423413	1059.02	0.973818	1151.03	0.975747	1027.57	1.26	1009.407	
0.846832	1067.11	1.46073	1156.5	1.46362	1018.44	1.89	1032.168	
1.27025	1069.02	1.94766	1160.57	1.95149	1011.9	2.52	1054.929	
1.69367	1067.35	2.43455	1166.57	2.4394	1004.11	3.15	1077.690	
2.11709	1066.76	2.92146	1173.8	2.9273	995.742	3.78	1100.451	
2.54052	1066.8	3.40836	1182.63	3.41522	986.347	4.41	1123.212	
2.96394	1068.54	3.89528	1192.33	3.90313	976.592	5.04	1145.973	

Table 3.138. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.38737	1070.66	4.38217	1202.88	4.39106	966.498	5.67	1168.734
3.8108	1072.98	4.86907	1213.61	4.87899	956.674	6.3	1191.536854
4.23424	1075.21	5.35593	1224.58	5.36698	947.095		
4.65767	1077.4	5.84276	1235.76	5.85499	937.88		
5.08111	1078.69	6.32953	1246.01	6.34309	930.192		
5.50454	1078.01	6.81612	1286.04	6.83138	896.04		
5.92798	1077.76	7.30269	1321.23	7.3197	865.278		
6.35142	1087.66					-	

Table 3.139. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	245.722	-2057.732

Figure 3.69 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Abaqus							Ana	alytical	
S11(d	central)	S11(1)		S11(1) S11(2)		thin shells		thick shells	
0.000	3.4871	0.000	17.6346	0.000	-7.3290	0.000	0.0000	0.000	-25.8000
0.000	5.3408	0.487	30.5085	0.488	-18.8610	0.360	0.0000	0.360	-25.8000
0.423	4.1696	0.974	51.8353	0.976	-37.9532	0.720	0.0000	0.720	-25.8000
0.847	2.5058	1.461	66.1447	1.464	-50.8814	1.080	0.0000	1.080	-25.8000
1.270	-0.3053	1.948	77.2663	1.951	-61.1183	1.440	0.0000	1.440	-25.8000
1.694	-3.6395	2.435	87.0655	2.439	-70.2457	1.800	0.0000	1.800	-25.8000
2.117	-5.0149	2.921	95.6779	2.927	-78.3381	2.160	0.0000	2.160	-25.8000
2.541	-5.7681	3.408	103.2220	3.415	-85.4637	2.520	0.0000	2.520	-25.8000
2.964	-4.9472	3.895	109.3440	3.903	-91.2804	2.880	0.0000	2.880	-25.8000
3.387	-3.7832	4.382	113.6410	4.391	-95.4063	3.240	0.0000	3.240	-25.8000
3.811	-2.4021	4.869	115.3480	4.879	-97.1391	3.600	0.0000	3.600	-25.8000
4.234	-0.6642	5.356	112.9750	5.367	-95.1201				
4.658	0.8668	5.843	104.5550	5.855	-87.5442				
5.081	2.7588	6.330	81.6161	6.343	-66.7238				
5.505	2.9054	6.816	43.4813	6.831	-31.8194				
5.928	4.9107	7.303	22.2527	7.320	-12.3485				
6.351	7.4305								
6.351	1.5090								

Table 3.140. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.141. Maximum and minimum values for Axial Stresses, exported from Abaqus

	1	,						
		A		thi	n shells			
S22	2(central)	S2	2(1)	S2	S22(2)		Analytical	
0.000	-1068.4800	0	-990.3180	0	-1131.1000	0	-976.514	-1204.22
0.000	-1046.3900	0.486852	-983.9260	0.487933	-1136.1900	0.63	-976.514	-1204.22
0.423	-1051.9400	0.973818	-981.6560	0.975747	-1138.8900	1.26	-976.514	-1204.22
0.847	-1061.1000	1.46073	-987.2570	1.46362	-1136.6400	1.89	-976.514	-1204.22
1.270	-1066.3400	1.94766	-992.4680	1.95149	-1134.7700	2.52	-976.514	-1204.22
1.694	-1068.3900	2.43455	-1000.3400	2.4394	-1130.4000	3.15	-976.514	-1204.22
2.117	-1069.9600	2.92146	-1009.8400	2.9273	-1124.3400	3.78	-976.514	-1204.22
2.541	-1071.5900	3.40836	-1021.4000	3.41522	-1116.2000	4.41	-976.514	-1204.22
2.964	-1073.9100	3.89528	-1034.4700	3.90313	-1106.4800	5.04	-976.514	-1204.22
3.387	-1076.4100	4.38217	-1049.4000	4.39106	-1094.9300	5.67	-976.514	-1204.22
3.811	-1078.8800	4.86907	-1066.0700	4.87899	-1081.6800	6.3	-976.514	-1204.22
4.234	-1080.8100	5.35593	-1085.7800	5.36698	-1065.65			
4.658	-1082.6600	5.84276	-1110.0700	5.85499	-1045.49			
5.081	-1082.9800	6.32953	-1144.2200	6.34309	-1016.64			
5.505	-1082.22	6.81612	-1225.1900	6.83138	-945.896			
5.928	-1080.54	7.30269	-1285.2500	7.3197	-892.972			
6.351	-1078.19							
6.351	-1085.64							

Table 3.142. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.143. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	-189.848	-2175.370

Figure 3.71 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

		thin shells					
\$33(ce	ntral)	S33	(1)	S33(2)		Analytical	
0.000	4.44306	0	256.472	0	-213.348	0	0
0	7.12817	0.486852	257.078	0.487933	-214.257	0.63	0
0.423413	4.71869	0.973818	253.9	0.975747	-212.68	1.26	0
0.846832	0.72425	1.46073	246.48	1.46362	-207.894	1.89	0
1.27025	-2.3855	1.94766	238.528	1.95149	-202.603	2.52	0
1.69367	-4.6961	2.43455	229.735	2.4394	-196.464	3.15	0
2.11709	-6.2866	2.92146	220.485	2.9273	-189.773	3.78	0
2.54052	-7.6906	3.40836	210.679	3.41522	-182.44	4.41	0
2.96394	-8.7941	3.89528	200.352	3.90313	-174.497	5.04	0
3.38737	-9.7837	4.38217	189.228	4.39106	-165.711	5.67	0
3.8108	-10.632	4.86907	177.043	4.87899	-155.856	6.3	0
4.23424	-11.146	5.35593	162.863	5.36698	-144.111		
4.65767	-11.628	5.84276	145.509	5.85499	-129.419		
5.08111	-11.487	6.32953	120.661	6.34309	-107.937		
5.50454	-11.515	6.81612	77.104	6.83138	-69.499		
5.92798	-10.678	7.30269	48.8165	7.3197	-44.4111		
6.35142	-9.3446						
6.35142	2.48713						

Table 3.144. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.145. Maximum and minimum values for Shear Stresses, exported from Abaqus

Figure 3.72 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

		Anal(1)-	(2)				
S12(ce	entral)	S12	2(1)	S12(2)		thin she	lls
0	-26.7137	0	25.3897	0	23.3280	0	8.269
0	-26.7793	0.4869	36.3296	0.4879	33.0818	0.63	8.112
0.4234	-40.8167	0.9738	44.9768	0.9757	40.3560	1.26	7.954
0.8468	-55.8010	1.4607	40.2233	1.4636	35.5295	1.89	7.796
1.2703	-53.3981	1.9477	34.9051	1.9515	30.4253	2.52	7.638
1.6937	-47.0701	2.4346	29.4731	2.4394	25.2836	3.15	7.480
2.1171	-41.6513	2.9215	24.4361	2.9273	20.5728	3.78	7.323
2.5405	-37.1045	3.4084	19.7050	3.4152	16.1662	4.41	7.165
2.9639	-32.4561	3.8953	15.0879	3.9031	11.8886	5.04	7.007
3.3874	-26.8485	4.3822	10.6750	4.3911	7.8066	5.67	6.849
3.8108	-20.3195	4.8691	6.0977	4.8790	3.5849	6.3	6.691

Table 3.146. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

1 2212	12 22/0		2 2100	E 26600	0 0017
4.2342	-15.5540	5.5559	2.2109	5.50090	-0.0017
4.6577	-6.3661	5.8428	-1.9197	5.85499	-3.8056
5.0811	-0.3169	6.3295	-0.3662	6.34309	-2.4515
5.5045	3.4049	6.8161	7.3251	6.83138	4.82933
5.9280	4.0442	7.3027	10.6863	7.3197	8.21392
6.3514	3.5627				
6.35142	3.60065				

2.2.3 Μοντέλο RH2 σε πακτωμένες διατομές και 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα, ενώ θεωρούμε ότι ξεκινάει από θερμοκρασία 20°C. Ακόμη, θεωρείται και ομοιόμορφη πίεση κατά μήκος των σωλήνων. Ιδιότητες:

do(mm)	44.5						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
cup	1	10.1	6.2	25.0	426	0.0000121	185100
5112	2 19.1 6.3 25.8 4		430	0.0000179	154300		

Table 3.147. Properties for the combination of materials SH2

	Table 3.148.	Maximum	and minimum	values for	Mises	Stresses,	exported	from Abaqus
--	--------------	---------	-------------	------------	-------	-----------	----------	-------------

	Max value (MPa)	Min value (MPa)
Mises stresses	-4052.937	622.576

177

Figure 3.73 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Abaqus							alutical
Mises(c	entral)	Mises(1)		Mises(2)		AI	laiyticai
0	1089.21	0	1182.29	0	1035.85	0	983.4171
0	1069.41	0.486719	1180.4	0.487801	1035.11	0.63	1006.105
0.423277	1074.52	0.973564	1181.41	0.975497	1028.58	1.26	1028.794
0.846568	1082.15	1.46036	1184.5	1.46326	1020.92	1.89	1051.482
1.26987	1083.84	1.94718	1186.62	1.95103	1015.61	2.52	1074.17
1.69318	1082.05	2.43399	1190.88	2.43884	1008.93	3.15	1096.858
2.1165	1081.27	2.92081	1196.57	2.92665	1001.55	3.78	1119.546
2.53982	1081.11	3.40763	1204.04	3.41448	993.042	4.41	1142.235
2.96316	1082.59	3.89447	1212.58	3.90231	984.063	5.04	1164.923
3.3865	1084.46	4.3813	1222.15	4.39018	974.628	5.67	1187.611
3.80985	1086.55	4.86813	1232.09	4.87805	965.33	6.3	1210.299
4.23321	1088.58	5.35494	1242.47	5.36597	956.118		
4.65657	1090.61	5.84172	1253.28	5.85393	947.087		
5.07994	1091.77	6.32845	1263.49	6.34197	939.221		
5.50331	1091.06	6.815	1303.4	6.83021	904.954		
5.92669	1090.76	7.30153	1338.37	7.31849	874.299		
6.35007	1090.31						
6.35007	1101.16						

Table 3.149. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.150. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	248.706	-2071.802

Figure 3.74 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Abaqus							Analy	rtical	
S11(central)	S11(1)		S11(2)		thin shells		thick shells	
0.000	-21.1568	0.000	-7.0721	0.000	-32.1505	0	0.0000	0	-25.80
0.000	-19.3107	0.487	7.1097	0.488	-42.3768	0.63	0.0000	0.63	-23.22
0.423	-19.1692	0.974	30.9598	0.975	-58.9620	1.26	0.0000	1.26	-20.64
0.847	-18.3128	1.460	47.6169	1.463	-69.5803	1.89	0.0000	1.89	-18.06
1.270	-18.7865	1.947	60.9183	1.951	-77.6722	2.52	0.0000	2.52	-15.48
1.693	-19.9500	2.434	72.7378	2.439	-84.7945	3.15	0.0000	3.15	-12.90
2.117	-19.3154	2.921	83.2260	2.927	-91.0089	3.78	0.0000	3.78	-10.32
2.540	-18.1965	3.408	92.5143	3.414	-96.3712	4.41	0.0000	4.41	-7.74
2.963	-15.6339	3.894	100.2620	3.902	-100.5310	5.04	0.0000	5.04	-5.16
3.387	-12.8417	4.381	106.0780	4.390	-103.0970	5.67	0.0000	5.67	-2.58
3.810	-9.9360	4.868	109.2080	4.878	-103.3630	6.3	0.0000	6.3	0.00
4.233	-6.7701	5.355	108.1740	5.366	-99.964				
4.657	-3.8971	5.842	101.0160	5.854	-91.0906				
5.080	-0.7439	6.328	79.2722	6.342	-69.0563				
5.503	0.5924	6.815	42.2701	6.830	-33.0214				
5.927	3.7200	7.302	21.5929	7.318	-13.0054				
6.350	6.7844								
6.350	0.8579								

Table 3.151. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.152. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	-189.848	-2175.370

Figure 3.75 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

			thin she	lls				
S22	2(central)	S2	2(1)	S2	2(2)	Analytical		
0.000	-1052.5100	0	-973.2260	0	-1116.2800	0	-953.048	-1180.753
0.000	-1030.3700	0.486719	-967.0070	0.487801	-1121.3000	0.63	-953.048	-1180.753
0.423	-1035.9600	0.973564	-965.0210	0.975497	-1123.9200	1.26	-953.048	-1180.753
0.847	-1045.2100	1.46036	-970.8510	1.46326	-1121.6200	1.89	-953.048	-1180.753
1.270	-1050.5500	1.94718	-976.2920	1.95103	-1119.6600	2.52	-953.048	-1180.753
1.693	-1052.6800	2.43399	-984.3960	2.43884	-1115.2000	3.15	-953.048	-1180.753
2.117	-1054.3300	2.92081	-994.1240	2.92665	-1109.0200	3.78	-953.048	-1180.753
2.540	-1056.0300	3.40763	-1005.9300	3.41448	-1100.7400	4.41	-953.048	-1180.753
2.963	-1058.4300	3.89447	-1019.2600	3.90231	-1090.8600	5.04	-953.048	-1180.753
3.387	-1061.0000	4.3813	-1034.4700	4.39018	-1079.1200	5.67	-953.048	-1180.753
3.810	-1063.5400	4.86813	-1051.4400	4.87805	-1065.6600	6.3	-953.048	-1180.753
4.233	-1065.5500	5.35494	-1071.4700	5.36597	-1049.38			
4.657	-1067.4700	5.84172	-1096.1100	5.85393	-1028.94			
5.080	-1067.8700	6.32845	-1130.6500	6.34197	-999.775			
5.503	-1067.2100	6.815	-1212.0300	6.83021	-928.667			
5.927	-1065.6100	7.30153	-1272.3100	7.31849	-875.557			
6.350	-1063.3200					-		
6.350	-1070.37							

Table 3.153. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.154. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	361.677	-2890.528

Figure 3.76 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

			thin sl	hells			
\$33(ce	ntral)	\$33	(1)	\$33	(2)	Analytical	
0.000	84.8253	0	343.141	0	-139.557	0	78.632
0	87.3698	0.486719	342.16	0.487801	-141.555	0.63	78.632
0.423277	83.6327	0.973564	335.941	0.975497	-142.094	1.26	78.632
0.846568	77.0741	1.46036	325.715	1.46326	-139.284	1.89	78.632
1.26987	71.5803	1.94718	315.153	1.95103	-135.821	2.52	78.632
1.69318	67.0504	2.43399	303.925	2.43884	-131.377	3.15	78.632
2.1165	63.3901	2.92081	292.399	2.92665	-126.257	3.78	78.632
2.53982	60.0548	3.40763	280.459	3.41448	-120.381	4.41	78.632
2.96316	57.1446	3.89447	268.127	3.90231	-113.791	5.04	78.632
3.3865	54.4635	4.3813	255.116	4.39018	-106.263	5.67	78.632
3.80985	52.0279	4.86813	241.152	4.87805	-97.575	6.3	78.632
4.23321	50.0229	5.35494	225.291	5.36597	-86.9158		
4.65657	48.1372	5.84172	206.347	5.85393	-73.2337		
5.07994	46.9559	6.32845	179.992	6.34197	-52.6915		
5.50331	45.6796	6.815	135.003	6.83021	-15.1311		
5.92669	45.3355	7.30153	106.018	7.31849	9.53248		
6.35007	46.0943						
6.35007	58.431						

Table 3.155. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.156. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	-189.848	-2175.370

Figure 3.77 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

	Ar	nal(1)-(2)						
S12(c	entral)	S1	2(1)	S12	2(2)	thin shells		
0	-26.7689	0	25.1282	0	23.0577	0	16.41264	
0	-26.8356	0.4867	35.8804	0.4878	32.6095	0.63	16.09729	
0.4233	-40.9571	0.9736	44.2633	0.9755	39.6018	1.26	15.78195	
0.8466	-56.1457	1.4604	39.3873	1.4633	34.6454	1.89	15.46660	
1.2699	-53.9696	1.9472	34.0025	1.9510	29.4676	2.52	15.15126	
1.6932	-47.8216	2.4340	28.5478	2.4388	24.2971	3.15	14.83592	
2.1165	-42.5184	2.9208	23.5216	2.9267	19.5914	3.78	14.52057	
2.5398	-38.0322	3.4076	18.8296	3.4145	15.2193	4.41	14.20523	
2.9632	-33.4010	3.8945	14.2749	3.9023	11.0010	5.04	13.88988	
3.3865	-27.7759	4.3813	9.9441	4.3902	6.9999	5.67	13.57454	
3.8099	-21.1989	4.8681	5.4645	4.8781	2.8781	6.3	13.25920	
4.2332	-14.1367	5.3549	1.6962	5.36597	-0.5926			
4.6566	-7.0627	5.8417	-2.3226	5.85393	-4.2661			
5.0799	-0.8795	6.3285	-0.6430	6.34197	-2.7704			
5.5033	3.0061	6.8150	7.1862	6.83021	4.66117			
5.9267	3.8417	7.3015	10.6210	7.31849	8.12386			
6.3501	3.4671					-		
6.35007	3.50242							

Table 3.157. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

2.3.1 Μοντέλο RH2 σε κλειστές διατομές στις άκρες των σωλήνων και ομοιόμορφη πίεση κατά μήκος των σωλήνων. Ιδιότητες:

do(mm)	44.5						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
cu o	1	10.1	6.2	25.0	0	0.0000121	185100
3112	2	19.1	0.3	25.8	0	0.0000179	154300

Table 3.158. Properties for the combination of materials SH2

Table 3.159. Maximum and minimum values for Mises Stresses, exported from	n Abaqus
---	----------

	Max value (MPa)	Min value (MPa)
Mises stresses	95.410	47.665

Figure 3.78 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.160. Mises	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus and the	Analytic	al solut	tion										

	٨٢	alutical					
Mises(central)		Mises(1)		Mise	s(2)	AI	lalytical
0	90.4328	0	95.3126	0	85.808	0	91.06868
0	90.5126	0.484297	92.8722	0.484334	83.7722	0.63	91.06868
0.419839	88.283	0.484334	92.8721	0.968702	79.839	1.26	91.06868
0.839694	83.9918	0.968608	88.1878	1.45303	76.1979	1.89	91.06868
0.839713	83.9916	0.968674	88.1872	1.93743	72.8299	2.52	91.06868
1.25956	80.0358	1.45302	83.8519	2.42181	69.6985	3.15	91.06868

1.67943	76.3786	1.93738	79.822	2.90613	66.7856	3.78	91.06868
1.67945	76.3784	2.42175	76.0764	2.90618	66.7852	4.41	91.06868
2.09932	72.9734	2.90613	72.5856	3.39051	64.071	5.04	91.06868
2.09934	72.9733	3.39051	69.3261	3.39057	64.0707	5.67	91.06868
2.51921	69.7994	3.8749	66.2743	3.8749	61.5419	6.3	91.06868
2.93911	66.8301	4.35929	63.4095	4.35929	59.1856		
3.35901	64.0528	4.8437	60.7123	4.35934	59.1853		
3.77891	61.4535	5.3281	58.1651	4.84368	56.9928		
4.19883	59.0153	5.81245	55.7517	4.84373	56.9926		
4.61875	56.4155	5.81252	55.7514	5.32808	54.9556		
5.03867	54.2493	6.29689	53.4552	5.32813	54.9554		
5.4586	52.5609	6.29694	53.4549	5.81249	53.0683		
5.87852	50.2776	6.78133	51.2704	5.81252	53.0682		
6.29845	49.7407	6.78136	51.2702	6.2969	51.3303		
		7.26579	50.2065	6.78133	49.7297		
				7.26573	48.9604		

Table 3.161. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	0.068	-5.406

Figure 3.79 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.162. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Ab	aqus				Analy	ytical	
S11(c	central)	S	11(1)	S1	1(2)	thin	shells	thick	shells
0.000	-24.3271	0.000	-24.4297	0.000	-24.4287	0	0.0000	0	-25.8
0.420	-23.0312	0.484	-23.1379	0.484	-23.1285	0.63	0.0000	0.63	-23.22
0.420	-23.0312	0.484	-23.1378	0.969	-20.6350	1.26	0.0000	1.26	-20.64
0.840	-20.5573	0.969	-20.6430	1.453	-18.3399	1.89	0.0000	1.89	-18.06
1.260	-18.2742	0.969	-20.6427	1.937	-16.2083	2.52	0.0000	2.52	-15.48
1.679	-16.1592	1.453	-18.3187	1.937	-16.2081	3.15	0.0000	3.15	-12.9
1.679	-16.1591	1.937	-16.1603	2.422	-14.2159	3.78	0.0000	3.78	-10.32
2.099	-14.1798	2.422	-14.1594	2.906	-12.3503	4.41	0.0000	4.41	-7.74
2.519	-12.3304	2.906	-12.3013	3.391	-10.599	5.04	0.0000	5.04	-5.16
2.519	-12.3303	3.391	-10.5733	3.391	-10.5988	5.67	0.0000	5.67	-2.58
2.939	-10.5935	3.875	-8.9623	3.875	-8.95382	6.3	0.0000	6.3	0
3.359	-8.9660	4.359	-7.4563	4.359	-7.40729				
3.779	-7.4401	4.844	-6.0437	4.359	-7.40713				
4.199	-6.0052	5.328	-4.7134	4.844	-5.95369				
4.199	-5.9284	5.812	-3.4547	5.328	-4.5893				
4.619	-4.6571	5.813	-3.4545	5.813	-3.31084				
5.039	-3.3451	6.297	-2.2535	6.297	-2.12262				
5.039	-3.3868	6.297	-2.2533	6.781	-1.02608				
5.459	-2.1642	6.781	-1.1024	7.26573	-0.49985				
5.879	-1.0515	6.781	-1.10236						
6.29845	-0.512495	7.266	-0.53967						
6.29845	-0.51114								

Table 3.163. Maximum and minimum values for Axial Stresses, exported from Abaqus

		Max value ((MPa)	Min value (MPa)
--	--	-------------	-------	-------------	------

Figure 3.80 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.164. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus	thin shells

S22(ce	entral)	S22	(1)	S22	(2)	An	alytical
0.000	39.5309	0	40.4553	0	38.4945	0	39.10952
0.000	39.5053	0.484297	40.3077	0.484334	38.5601	0.63	39.10952
0.420	39.4320	0.484334	40.3077	0.968702	38.6392	1.26	39.10952
0.840	39.3078	0.968608	40.0766	1.45303	38.6957	1.89	39.10952
0.840	39.3078	0.968674	40.0766	1.93739	38.7818	2.52	39.10952
1.260	39.2291	1.45302	39.8950	2.42175	38.8805	3.15	39.10952
1.679	39.1867	1.93738	39.7063	2.42181	38.8805	3.78	39.10952
1.679	39.1867	2.42175	39.5196	2.90613	38.9978	4.41	39.10952
2.099	39.1589	2.90613	39.3255	2.90618	38.9978	5.04	39.10952
2.099	39.1589	3.39051	39.1225	3.39051	39.1321	5.67	39.10952
2.519	39.1377	3.8749	38.9051	3.8749	39.287	6.3	39.10952
2.519	39.1377	4.35929	38.6707	4.35934	39.4638		
2.939	39.1182	4.8437	38.4153	4.84368	39.6661		
3.359	39.1	5.3281	38.1368	4.84373	39.6661		
3.779	39.0862	5.81245	37.8328	5.32808	39.8958		
4.199	39.0742	5.81252	37.8328	5.32813	39.8958		
4.199	38.9879	6.29689	37.5045	5.81249	40.1557		
4.619	39.0652	6.29694	37.5045	5.81252	40.1557		
4.619	38.9305	6.78133	37.1677	6.2969	40.447		
5.039	38.8674	6.78136	37.1676	6.78131	40.7504		
5.039	39.0601	7.26579	37.0002	7.26573	40.9004		
5.459	38.7975						
5.4586	39.0585						
5.87852	38.7182						
6.29845	38.6752						
6.29845	39.0654						

Table 3.165. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	85.087	53.087

Figure 3.81 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.166. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus					thin s	hells	
S33(ce	ntral)	S33	(1)	S33	(2)	Analy	tical
0.000	79.154	0	84.9964	0	73.3127	0	78.219
0	79.2755	0.484297	83.4534	0.484334	72.2339	0.63	78.219

0.419839	77.9681	0.484334	83.4533	0.968678	70.1363	1.26	78.219
0.839694	75.4539	0.968608	80.5002	0.968702	70.1363	1.89	78.219
0.839713	75.4538	0.968674	80.4998	1.45306	68.178	2.52	78.219
1.25956	73.1264	1.45302	77.7766	1.93739	66.366	3.15	78.219
1.25958	73.1263	1.93738	75.2427	2.42175	64.6851	3.78	78.219
1.67943	70.9684	2.42175	72.8809	2.42181	64.6849	4.41	78.219
1.67945	70.9683	2.90613	70.673	2.90613	63.1259	5.04	78.219
2.09932	68.9645	3.39051	68.6047	2.90618	63.1257	5.67	78.219
2.09934	68.9644	3.8749	66.663	3.39051	61.6778	6.3	78.219
2.51921	67.0971	4.35929	64.8368	3.39057	61.6777		
2.51922	67.0971	4.8437	63.1161	3.8749	60.3324		
2.93911	65.3552	5.3281	61.4928	3.87495	60.3323		
2.93912	65.3552	5.81245	59.9597	4.35929	59.0812		
3.35901	63.7261	5.81252	59.9595	4.84368	57.9168		
3.77891	62.2011	6.29689	58.5122	4.84373	57.9167		
4.19883	60.7715	6.29694	58.512	5.32808	56.8322		
4.61875	59.4292	6.78133	57.1494	5.32813	56.8321		
4.61875	59.1243	6.78136	57.1494	5.81249	55.8206		
5.03867	57.8317	7.26579	56.4892	6.2969	54.8737		
5.4586	56.6123			6.29692	54.8736		
5.87852	55.8649			6.78131	53.9781		
6.29845	55.3239			7.26573	53.5412		

Table 3.167. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	0.318	-1.003

Figure 3.82 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.168. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	Abaqus									
S12(ce	entral)	S12(1)		S12	(2)	thir	shells			
0	-0.0323	0	-0.2771	0	-0.2967	0	-0.4131			
0	-0.0320	0.4843	-0.4529	0.4843	-0.4825	0.63	-0.4131			
0.4198	-0.1028	0.4843	-0.4529	0.9687	-0.7367	1.26	-0.4131			
0.4199	-0.1028	0.9686	-0.6959	0.9687	-0.7367	1.89	-0.4131			

0.8397	-0.2848	0.9687	-0.6959	1.4530	-0.8466	2.52	-0.4131
1.2596	-0.4991	1.4530	-0.8032	1.9374	-0.9051	3.15	-0.4131
1.6795	-0.6734	1.9374	-0.8594	2.4218	-0.9228	3.78	-0.4131
2.0993	-0.7884	2.4218	-0.8753	2.90618	-0.9101	4.41	-0.4131
2.5192	-0.8514	2.9061	-0.8608	3.39051	-0.8712	5.04	-0.4131
2.9391	-0.8732	3.3905	-0.8206	3.8749	-0.8103	5.67	-0.4131
3.3590	-0.8635	3.8749	-0.7592	4.35934	-0.7305	6.3	-0.4131
3.77891	-0.824744	4.3593	-0.6801	4.84373	-0.6342		
4.19883	-0.758462	4.8437	-0.5866	5.32808	-0.5248		
4.61875	-0.657291	5.3281	-0.4824	5.81249	-0.4035		
5.03867	-0.537218	5.8125	-0.3700	6.2969	-0.2765		
5.4586	-0.387536	5.8125	-0.3700	6.29692	-0.2765		
5.87852	-0.205282	6.2969	-0.2555	6.78131	-0.1459		
6.29845	-0.107293	6.2969	-0.2555	7.26573	-0.0782		
		6.7813	-0.1370				
		6.78136	-0.13697				
		7.26579	-0.07447				

2.3.2 Μοντέλο RH2 σε κλειστές διατομές, ενώ 506°C αναπτύσσονται σε όλη τη παρειά των σωλήνων και θεωρείται ότι ξεκινάει από θερμοκρασία 20°C. Ιδιότητες:

do(mm)	44.5						
ν	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
cup	1	10.1	6.2	0	426	0.0000121	185100
502	2	19.1	0.3	U	430	0.0000179	154300

Table 3.169. Properties for the combination of materials SH2

Table 3.170. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises stresses	267.921	3.6003

Figure 3.83 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.171. Mises Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	Applytical						
Mises(c	entral)	Mise	s(1)	Mise	s(2)	AI	
0	62.5995	0	193.129	0	189.678	0	59.49243
0	76.2981	0.486951	189.744	0.487974	187.665	0.63	59.008
0.422578	91.5234	0.974008	175.581	0.975835	179.89	1.26	58.52357
0.845156	106.795	1.46101	156.986	1.46376	169.463	1.89	58.03914
1.26773	101.961	1.94801	141.153	1.95168	160.909	2.52	57.55472
1.69032	93.1026	2.43499	126.516	2.43963	154.417	3.15	57.07029
2.1129	85.5492	2.92198	114.325	2.92758	150.486	3.78	56.58586
2.53549	79.3846	3.40895	105.049	3.41555	149.283	4.41	56.10144
2.95807	72.4658	3.89593	99.3272	3.90351	150.515	5.04	55.61701
3.38066	64.5927	4.38289	97.6801	4.39151	154.067	5.67	55.13258
3.80325	56.227	4.86985	99.783	4.8795	159.287	6.3	54.64816
4.22584	48.8538	5.35678	105.124	5.36754	165.836		
4.64843	43.3947	5.84366	113.574	5.85561	173.679		
5.07103	41.3017	6.33049	122.72	6.34376	181.055		
5.49362	42.3012	6.81714	158.875	6.8321	212.571		
5.91621	43.2073	7.30377	190.72	7.32048	240.769		
6.33881	43.9364						
6.33881	32.8886						

Table 3.172. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	124.463	-130.941

Figure 3.84 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

Table 3.173. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Analytical								
S11(central)	S	11(1)	S	S11(2)		thin shells		thick shells	
0.000	-0.9831	0.000	13.5968	0.000	-12.1926	0	0.0000	0	-25.8	
0.000	0.8834	0.487	25.8579	0.488	-23.1071	0.63	0.0000	0.63	-23.22	
0.423	-0.2917	0.974	46.1734	0.976	-41.1771	1.26	0.0000	1.26	-20.64	
0.845	-1.9525	1.461	59.8224	1.464	-53.4244	1.89	0.0000	1.89	-18.06	
1.268	-4.6984	1.948	70.4619	1.952	-63.1463	2.52	0.0000	2.52	-15.48	
1.690	-7.9608	2.435	79.8655	2.440	-71.8408	3.15	0.0000	3.15	-12.9	
2.113	-9.3251	2.922	88.1550	2.928	-79.5747	3.78	0.0000	3.78	-10.32	
2.535	-10.0793	3.409	95.4348	3.416	-86.4067	4.41	0.0000	4.41	-7.74	
2.958	-9.2945	3.896	101.3570	3.904	-92.0044	5.04	0.0000	5.04	-5.16	

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

3.381	-8.1542	4.383	105.5280	4.392	-95.9972	5.67	0.0000	5.67	-2.58
3.803	-6.8040	4.870	107.2010	4.880	-97.7055	6.3	0.0000	6.3	0
4.226	-5.1047	5.357	104.9370	5.368	-95.8212				
4.648	-3.6013	5.844	96.8193	5.856	-88.5924				
5.071	-1.7574	6.330	60.7731	6.344	-110.892				
5.494	-1.5909	6.330	11.3748	6.344	-96.431				
5.916	0.3720	6.817	11.3604	6.832	-96.4022				
6.339	2.8153	6.817	-14.3612	6.832	-45.3525				
6.339	-2.8772	7.304	17.4063	7.320	-16.4215				

Table 3.174. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	218.122	-170.007

Figure 3.85 Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

Table 3.175. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		A	baqus			thin shells		
S22(central)		S22	.(1)	S22	(2)	An	alytical	
0.000	39.8897	0	112.2980	0	-18.0333	0	39.10952	
0.000	61.0263	0.486951	118.7930	0.487974	-22.6687	0.63	39.10952	
0.423	55.8672	0.974008	121.7060	0.975835	-24.8925	1.26	39.10952	
0.845	47.3845	1.46101	117.0790	1.46376	-22.5237	1.89	39.10952	
1.268	42.6930	1.94801	112.8360	1.95168	-20.5903	2.52	39.10952	
1.690	41.1351	2.43499	106.0420	2.43963	-16.3259	3.15	39.10952	
2.113	40.0682	2.92198	97.7013	2.92758	-10.4798	3.78	39.10952	
2.535	38.9750	3.40895	87.3846	3.41555	-2.67908	4.41	39.10952	
2.958	37.2104	3.89593	75.6286	3.90351	6.58838	5.04	39.10952	
3.381	35.2772	4.38289	62.0961	4.39151	17.5794	5.67	39.10952	
3.803	33.3902	4.86985	46.9102	4.8795	30.1469	6.3	39.10952	
4.226	32.0251	5.35678	28.8178	5.36754	45.3384			
4.648	30.7636	5.84366	6.3534	5.85561	64.4125			
5.071	30.9899	6.33049	-25.6109	6.34376	91.7676			
5.494	32.2602	6.81714	-102.4640	6.8321	159.065			
5.916	34.4393	7.30377	-159.6370	7.32048	209.423			
6.339	36.9783							
6.339	29.2899							

 Table 3.176. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	44.466	34.354

Figure 3.86 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.177. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		thin shells					
S33(central)		S33	(1)	S33	S33(2) Analytical		cal
0.000	-3.9845	0	225.444	0	-196.563	0	0.000
0	-0.3758	0.486951	226.706	0.487974	-197.733	0.63	0.000
0.422578	-2.5444	0.974008	224.977	0.975835	-196.839	1.26	0.000
0.845156	-6.0908	1.46101	219.101	1.46376	-192.883	1.89	0.000
1.26773	-8.7918	1.94801	212.644	1.95168	-188.427	2.52	0.000

1.69032	-10.727	2.43499	205.313	2.43963	-183.141	3.15	0.000
2.1129	-11.968	2.92198	197.48	2.92758	-177.306	3.78	0.000
2.53549	-13.035	3.40895	189.055	3.41555	-170.835	4.41	0.000
2.95807	-13.817	3.89593	180.076	3.90351	-163.762	5.04	0.000
3.38066	-14.493	4.38289	170.279	4.39151	-155.864	5.67	0.000
3.80325	-15.04	4.86985	159.413	4.8795	-146.925	6.3	0.000
4.22584	-15.268	5.35678	146.579	5.36754	-136.158		
4.64843	-15.471	5.84366	130.644	5.85561	-122.553		
5.07103	-15.078	6.33049	107.441	6.34376	-102.415		
5.49362	-14.851	6.81714	66.229	6.8321	-66.0499		
5.91621	-13.796	7.30377	39.3759	7.32048	-42.264		
6.33881	-12.387						
6.33881	-3.8906						

Table 3.178. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	44.466	34.354

Figure 3.87 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.179. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

		Aba	aqus			Ana	al(1)-(2)	
S12(c	entral)	S1	2(1)	S12	2(2)	thi	n shells	
0	-26.5608	0	24.4808	0	22.3580	0	89.8301	-89.8300534
0	-26.6265	0.4870	35.2537	0.4880	31.9401	0.63	89.8301	-89.8300534
0.4226	-39.9161	0.9740	43.9682	0.9758	39.3447	1.26	89.8301	-89.8300534
0.8452	-53.9799	1.4610	39.6182	1.4638	35.0525	1.89	89.8301	-89.8300534
1.2677	-51.4094	1.9480	34.6021	1.9517	30.3823	2.52	89.8301	-89.8300534
1.6903	-45.1037	2.4350	29.3858	2.4396	25.5845	3.15	89.8301	-89.8300534
2.1129	-39.7341	2.9220	24.4811	2.9276	21.1181	3.78	89.8301	-89.8300534
2.5355	-35.2890	3.4090	19.8152	3.41555	16.8687	4.41	89.8301	-89.8300534
2.9581	-30.8410	3.8959	15.2146	3.90351	12.6734	5.04	89.8301	-89.8300534
3.3807	-25.5465	4.3829	10.7701	4.39151	8.59581	5.67	89.8301	-89.8300534
3.8033	-19.4307	4.8699	6.1315	4.8795	4.31454	6.3	89.8301	-89.8300534
4.22584	-12.9326	5.3568	2.1226	5.36754	0.56155			
4.64843	-6.49173	5.8437	-2.1802	5.85561	-3.4876			
5.07103	-0.96122	6.3305	-1.0622	6.34376	-2.7003			
5.49362	2.32253	6.8171	5.8443	6.8321	3.6093			
5.91621	2.65902	7.3038	8.7932	7.32048	6.47375			
6.33881	2.06602							
6.33881	2.10691							

2.3.3 Μοντέλο RH2 σε κλειστές διατομές και 506°C αναπτύσσονται σε όλη τη παρειά του σωλήνα, ενώ θεωρούμε ότι ξεκινάει από θερμοκρασία 20°C. Ακόμη, θεωρείται και ομοιόμορφη πίεση κατά μήκος των σωλήνων.

do(mm)	44.5						
v	0.3	Ri(mm)	Hi(mm)	pi(N/mm^2)	∆T(°C)	a[°C^(-1)]	E[Mpa]
C112	1	10.1	6.2	25.0	426	0.0000121	185100
542	2	19.1	0.3	25.8	436	0.0000179	154300

Table 3.180. Properties for the combination of materials SH2

Table 3.181. Maximum and minimum values for Mises Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Mises stresses	294.182	16.485

Figure 3.88 Fluctuation colored curve for Mises stresses in three paths, A-B, C-D, E-F

Table 3.182.	Mises	Stresses	along	the	thickness	with	units	in	(MPa),	for	the	three	paths	from
Abaqus	and the	Analytic	al solu	tion										

	Applytical						
Mises(c	entral)	Mise	s(1)	Mise	s(2)	AI	laiyticai
0	100.342	0	288.266	0	111.23	0	91.40976
0	105.967	0.486819	280.323	0.487843	114.13	0.63	91.32805
0.422455	116.556	0.973752	260.316	0.975586	113.565	1.26	91.24633
0.844922	126.008	1.46064	238.832	1.4634	107.296	1.89	91.16461
1.26739	120.002	1.94754	220.254	1.95121	102.708	2.52	91.0829
1.68988	110.677	2.43443	203.257	2.43908	100.667	3.15	91.00118
2.11237	101.978	2.92133	188.603	2.92693	101.629	3.78	90.91946
2.53487	94.3047	3.40822	176.491	3.41482	105.594	4.41	90.83775
2.95738	85.6719	3.89513	167.294	3.90271	111.79	5.04	90.75603
3.37989	76.14	4.38202	161.358	4.39063	119.821	5.67	90.67431
3.80241	66.1009	4.86892	158.694	4.87856	128.746	6.3	90.5926
4.22494	56.666	5.35579	159.293	5.36653	138.07		
4.64747	48.8431	5.84263	163.612	5.85455	147.624		
5.07001	43.6566	6.32941	170.578	6.34265	154.859		
5.49255	41.8584	6.81602	202.952	6.83094	186.949		
5.9151	39.5051	7.30262	231.452	7.31927	216.366		
6.33765	37.8675						
6.33765	48.2246						

Table 3.183. Maximum and minimum values for Radial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 11 direction	119.844	-148.094

Figure 3.89 Fluctuation colored curve for Radial stresses in three paths, A-B, C-D, E-F

		baqus	Analytical						
S11(central)	S	11(1)	S11(2)		thin shells		thick shells	
0.000	-25.3606	0.000	-10.8587	0.000	-36.7304	0	0.0000	0	-25.8
0.000	-23.5021	0.487	2.7125	0.488	-46.3569	0.63	0.0000	0.63	-23.22
0.422	-23.3720	0.974	25.5531	0.976	-61.9511	1.26	0.0000	1.26	-20.64
0.845	-22.5272	1.461	41.5471	1.463	-71.9124	1.89	0.0000	1.89	-18.06
1.267	-22.9501	1.948	54.3617	1.951	-79.5094	2.52	0.0000	2.52	-15.48
1.690	-24.0548	2.434	65.7805	2.439	-86.2167	3.15	0.0000	3.15	-12.9
2.112	-23.4200	2.921	75.9405	2.927	-92.0884	3.78	0.0000	3.78	-10.32
2.535	-22.3122	3.408	84.9590	3.415	-97.1712	4.41	0.0000	4.41	-7.74
2.957	-19.7944	3.895	92.5016	3.903	-101.124	5.04	0.0000	5.04	-5.16
3.380	-17.0342	4.382	98.1846	4.391	-103.568	5.67	0.0000	5.67	-2.58

Table 3.184. Radial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

3.802	-14.1668	4.869	101.2740	4.879	-103.817	6.3	0.0000	6.3	0
4.225	-11.0464	5.356	100.3390	5.367	-100.557				
4.647	-8.2076	5.843	93.4726	5.855	-92.0316				
5.070	-5.1083	6.329	58.0372	6.343	-113.705				
5.493	-3.7585	6.329	9.7623	6.343	-98.0649				
5.915	-0.6785	6.816	9.7502	6.831	-98.0337				
6.338	2.3077	6.816	-14.8935	6.831	-45.8738				
6.338	-3.3917	7.303	16.8816	7.319	-16.9383				

Table 3.185. Maximum and minimum values for Axial Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 22 direction	220.156	-172.544

Table 3.186. Fluctuation colored curve for Axial stresses in three paths, A-B, C-D, E-F

	Abaqus and the Analytical solution								
		thins	shells						
S22(c	entral)	S22(1)		S22	(2)	Analytical			
0.000	40.4618	0	114.0390	0	-18.6457	0	39.110		
0.000	61.6603	0.486819	120.3670	0.487843	-23.2217	0.63	39.110		
0.422	56.4551	0.973752	122.9970	0.975586	-25.3732	1.26	39.110		
0.845	47.8804	1.46064	118.1350	1.4634	-22.9512	1.89	39.110		
1.267	43.0961	1.94754	113.6550	1.95121	-20.9339	2.52	39.110		
1.690	41.4466	2.43443	106.6250	2.43908	-16.5692	3.15	39.110		
2.112	40.2950	2.92133	98.0406	2.92693	-10.6006	3.78	39.110		
2.535	39.1219	3.40822	87.4695	3.41482	-2.65654	4.41	39.110		
2.957	37.2812	3.89513	75.4436	3.90271	6.77841	5.04	39.110		
3.380	35.2734	4.38202	61.6222	4.39063	17.9627	5.67	39.110		
3.802	33.3096	4.86892	46.1242	4.87856	30.753	6.3	39.110		
4.225	31.8668	5.35579	27.6930	5.36653	46.2				
4.647	30.5236	5.84263	4.8584	5.85455	65.5678				
5.070	30.6637	6.32941	-27.5112	6.34265	93.2623				
5.493	31.8416	6.81602	-104.8300	6.83094	160.967				
5.915	33.9193	7.30262	-162.2560	7.31927	211.547				
6.338	36.4058								
6.338	29.1197								

Table 3.187. Axial Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Table 3.188. Maximum and minimum values for Hoop Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 33 direction	329.467	-138.893

Figure 3.90 Fluctuation colored curve for Hoop stresses in three paths, A-B, C-D, E-F

Table 3.189. Hoop Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

Abaqus						thin s	hells
S33(ce	ntral)	S33	(1)	S33	(2)	Analy	tical
0.000	76.0182	0	311.995	0	-123.446	0	78.219
0	79.4741	0.486819	311.675	0.487843	-125.693	0.63	78.219
0.422455	75.9859	0.973752	306.911	0.975586	-126.888	1.26	78.219
0.844922	69.8915	1.46064	298.233	1.4634	-124.879	1.89	78.219
1.26739	64.8216	1.94754	289.168	1.95121	-122.224	2.52	78.219

				-			-
1.68988	60.6817	2.43443	279.403	2.43908	-118.606	3.15	78.219
2.11237	57.3835	2.92133	269.294	2.92693	-114.315	3.78	78.219
2.53487	54.3979	3.40822	258.735	3.41482	-109.277	4.41	78.219
2.95738	51.8213	3.89513	247.749	3.90271	-103.533	5.04	78.219
3.37989	49.4636	4.38202	236.065	4.39063	-96.868	5.67	78.219
3.80241	47.3401	4.86892	223.417	4.87856	-89.0734	6.3	78.219
4.22494	45.6299	5.35579	208.9	5.36653	-79.369		
4.64747	44.0327	5.84263	191.369	5.85455	-66.7488		
5.07001	43.1122	6.32941	166.65	6.34265	-47.5223		
5.49255	42.0984	6.81602	123.988	6.83094	-11.9969		
5.9151	41.9807	7.30262	96.4241	7.31927	11.3876		
6.33765	42.8188						
6.33765	51.8632						

Table 3.190. Maximum and minimum values for Shear Stresses, exported from Abaqus

	Max value (MPa)	Min value (MPa)
Stresses in 12 direction	44.466	34.354

Figure 3.91 Fluctuation colored curve for Shear stresses in three paths, A-B, C-D, E-F

Table 3.191. Shear Stresses along the thickness with units in (MPa), for the three paths from Abaqus and the Analytical solution

	Abaqus						
S12(ce	entral)	S12(1)		S12(2)		thin shells	
0	-26.6538	0	24.1915	0	22.0575	0	24.7876
0	-26.7203	0.4868	34.7839	0.4878	31.4465	0.63	19.8301
0.4225	-40.1028	0.9738	43.2401	0.9756	38.5763	1.26	14.8726
0.8449	-54.3793	1.4606	38.7657	1.4634	34.1509	1.89	9.9151
1.2674	-52.0327	1.9475	33.6815	1.9512	29.4038	2.52	4.9576
1.6899	-45.9025	2.4344	28.4411	2.4391	24.5740	3.15	0.0000
2.1124	-40.6456	2.9213	23.5464	2.9269	20.1102	3.78	-4.9575
2.5349	-36.2585	3.4082	18.9190	3.41482	15.8932	4.41	-9.9150
2.9574	-31.8248	3.8951	14.3803	3.90271	11.7556	5.04	-14.8725
3.3799	-26.5088	4.3820	10.0174	4.39063	7.75791	5.67	-19.8300
3.8024	-20.3401	4.8689	5.4763	4.87856	3.57586	6.3	-24.7876
4.22494	-13.7594	5.3558	1.5780	5.36653	-0.0608		
4.64747	-7.2081	5.8426	-2.6045	5.85455	-3.9784		
5.07001	-1.53933	6.3294	-1.3564	6.34265	-3.0438		
5.49255	1.91058	6.8160	5.6966	6.83094	3.42775		
5.9151	2.44295	7.3026	8.7236	7.31927	6.37633		
6.33765	1.95584						
6.33765	1.99405						

Κεφάλαιο 4. Σύγκριση της Αναλυτικής λύσης και της Μοντελοποίησης με Πεπερασμένα στοιχεία

4.1.Η διαταραχή των τάσεων κατά μήκος των σωλήνων (pertrubation)

Παρατηρείται ότι η προσομοίωση της διαταραχής, έτσι όπως ορίζεται από τον Saint Venant, (η απόσταση της διαταραχης είναι ίση με την ελάχιστη διάσταση της διατομής) δεν καλύπτει το παρόν πρόβλημα. Κάνοντας, λοιπόν, μια ανάλυση, χρησιμοποιώντας την παραδοχή ότι η διαταραχή των τάσεων σταματά σε απόσταση x, εκεί όπου μηδενίζεται η τέταρτη παράγωγος της ομογενούς μου λύσης για ημιάπειρες αγωγούς (Βλ.Παράρτημα Α.2), βρίσκω τα εξής:

<u>Κλειστές διατομές</u>

<u>Για την πίεση:</u>

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1272	12 9569	3.2715	-6.1730	-12.3459
0.1272	-12.6508		-6.1731	-12.3462
0.1172	72 4076	16 0670	-6.7030	-13.4060
0.1172	-72.4070	10.90/9	-6.7032	-13.4065

<u>Για την θερμοκρασία:</u>

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1266	001 4050	222 0022	-6.1948	-12.3896
0.1262	-901.4950	227.8833	-6.2300	-12.4600
0.1166	2119 1262	570.3461	-6.7236	-13.4473
0.1164	-2440.1502		-6.7582	-13.5163

Για την πίεση και την θερμοκρασία:

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1264	004 2470	228.3344 -	-6.1988	-12.3976
0.1261	-904.3479		-6.2401	-12.4802
0.1166	2615 1719	615.7695	-6.7266	-13.4532
0.1163	-2043.1748		-6.7654	-13.5308

Ανοιχτές διατομές

<u>Για την πίεση:</u>

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1272	15 1262	3.8489	-6.1732	-12.3463
0.1272	-15.1202		-6.1734	-12.3468
0.1172	95 1014	10.0622	-6.7033	-13.4067
0.1172	-65.1914	19.9022	-6.7038	-13.4076

<u>Για την θερμοκρασία:</u>

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1265	004 4754	228.4483	-6.1975	-12.3951
0.1261	-904.4754		-6.2371	-12.4742
0.1166	2448 2060		-6.7237	-13.4474
0.1164	-2446.2000	570.5565	-6.7582	-13.5164

Για την πίεση και την θερμοκρασία:

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1264		220 2244	-5.7369	-11.4738
0.1261	-957.2005	220.3344	-5.7783	-11.5565
0.1165	7650 1070	E71 0022	-6.0091	-12.0182
0.1163	-2030.4878	571.0023	-6.0479	-12.0959

<u>Πακτωμένες διατομές</u>

<u>Για την πίεση:</u>

Σταθερά (κυματαριθμός)	d) Mo <my< th=""><th>Qo</th><th></th><th>total (mm)</th></my<>	Qo		total (mm)
βi[1/mm]			Perturbation x(mm)	
0.1272	12 7645	3.5025	-6.1730	-12.3461
0.1272	-13.7045		-6.1732	-12.3464
0.1172	77 5200	10 1656	-6.7031	-13.4062
0.1172	-77.5209	10.1000	-6.7035	-13.4069

Για την θερμοκρασία:

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1262	004 4754	220 4402	-6.2053	-12.4106
0.1258	-904.4754	220.4405	-6.2574	-12.5148
0.1164	2448 2060	E 70 2E 92	-6.7332	-13.4664
0.1160	-2440.2000	570.3583	-6.7835	-13.5669

Για την πίεση και την θερμοκρασία:

Σταθερά (κυματαριθμός) βi[1/mm]	d) Mo <my< th=""><th>Qo</th><th>Perturbation x(mm)</th><th>total (mm)</th></my<>	Qo	Perturbation x(mm)	total (mm)
0.1262	1245 5091	313.7313	-6.2067	-12.4133
0.1257	-1243.3081		-6.2606	-12.5211
0.1164	2428 6050	798.8770	-6.7338	-13.4677
0.1160	-3438.0950		-6.7844	-13.5689

Οπώς εξάγεται, αν και αναλυτική λύση για την περιοχή διαταραχής των τάσεων δεν είναι τόσο ακριβής, σίγουρα προσφέρει πολύ καλύτερα αποτελέσματα από αυτά της θεωρίας Saint Venant. Πιο αναλυτικά, οι τάσεις Mises και οι περιφερειακές τάσεις προσομοιώνονται αρκετά καλά, όπως και οι αξονικές, ενώ οι διατμητικές όχι και τόσο.

Όσων αφορά τις διατομές εξάγονται τώρα τα εξής:

111

a) Mises

Results of Mises Stresses	x(mm)	Points	Abaqus (MPa)
Pipe (1)	0	point A	47.0976
Fipe (1)	3.6	point B	39.2614
Ding (2)	0	point C	40.5067
Pipe (2)	3.6	point D	33.8961
Wolding	0	point E	43.8138
weiding	3.6	point F	36.6867

Diagram 4.1. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

Στο παραπάνω Diagram 4.1 βλέπουμε τις τάσεις Mises που αναπτύσσονται από το Abaqus και έπειτα την αναλυτική λύση που δόθηκε. Παρατηρούμε ότι με κάποιο ανεκτό σφάλμα οι τιμές των τάσεων στα σημεία Α και Β της (1) σωλήνα και της (2) σωλήνας, στο Abaqus και στην αναλυτική λύση είναι αρκετά κοντά.

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Dino (1)	0	point A	-4.9478
Fipe (1)	3.6	point B	-0.2237
Dipo (2)	0	point C	-4.8899
Pipe (2)	3.6	point D	-0.2075
Wolding	0	point E	-4.9051
weiding	3.6	point F	-0.2149

Diagram 4.2. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

Στο παραπάνω Diagram 4.2 βλέπουμε τις ακτινικές τάσεις που αναπτύσσονται στην προσομοίωση του Abaqus, έπειτα στην αναλυτική λύση, κάνοντας παραδοχή για παχιά κελύφη και τέλος, τις μηδενικές ακτινικές τάσεις στη θεωρία λεπτών κελυφών. Παρατηρείται ότι ενώ στην αναλυτική λύση έγινε η υπόθεση για λεπτά κελύφη, παρόλα αυτά αναπτύσσονται κάποιες τάσεις κατά την ακτινική διεύθυνση, πράγμα που υπονοεί ότι οι Κλασικές Θεωρίες Ελαστικότητας για το παρόν πρόβλημα δεν ικανοποιούν απόλυτα την προσέγγιση αυτού.

c) S22

Results of S22 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	0.9170
	3.6	point B	-1.2688
Pipe (2)	0	point C	-0.3564
	3.6	point D	0.7927
Welding	0	point E	0.3002
	3.6	point F	-0.2002

Diagram 4.3. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

Στο παραπάνω Πίνακα και σχήμα βλέπουμε τις αξονικές τάσεις που αναπτύσσονται στην προσομοίωση του Abaqus, τοπικά στην διεπιφάνεια των 2 υλικών και τις μηδενικές αξονικές τάσεις στις ανοιχτές διατομές. Παρατηρείται ότι, ενώ στην αναλυτική λύση δεν υπάρχουν αξονικές τάσεις, παρόλα αυτά στην προσομοίωση αναπτύσσονται κάποιες τάσεις κατά την αξονική διεύθυνση, πράγμα που δηλώνει ότι έχουμε ένα τριδιάστατο μοντέλο και όχι διδιάστατο.
d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	44.8067
	3.6	point B	38.5045
	0	point C	37.6918
Pipe (2)	3.6	point D	34.1773
Welding	0	point E	41.2786
	3.6	point F	36.4788

Diagram 4.4. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

Στο παραπάνω Πίνακα και σχήμα βλέπουμε τις περιφερειακές τάσεις που αναπτύσσονται στην προσομοίωση του Abaqus, αναλυτικά στην διεπιφάνεια των 2 υλικών, χρησιμοποιώντας την θεωρία για λεπτά και παχιά κελύφη, αντίστοιχα, στις ανοιχτές διατομές. Παρατηρείται ότι, στην αναλυτική λύση για λεπτά κελύφη δεν υπάρχουν διακυμάνσεις στις περιφερειακές τάσεις, υπάρχει διακύμανση των τάσεων κατά την διεύθυνση αυτή, όπως επίσης και στην προσομοίωση του Abaqus. Πάντως σε κάθε περίπτωση αντιλαμβανόμαστε τις ασυνέχειες που δημιουργούνται, επάνω στη ραφή των δύο υλικών.

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-0.1560
	3.6	point B	-0.0757
Pipe (2)	0	point C	-0.1593
	3.6	point D	-0.0825
Welding	0	point E	-0.0795
	3.6	point F	-0.0867

Diagram 4.5. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

Παραπάνω βλέπουμε τις διατμητικές τάσεις που αναπτύσσονται όπως αυτές εξάγονται από την αναλυτική λύση, την προσομοίωση στο Abaqus σε πολύ κοντινή απόσταση από την συγκόλληση. Παρατηρείται ότι όντως η κατανομή των διατμητικών τάσεων είναι παραβολική επάνω στη συγκόλληση, όπως επίσης και συνεχής, καθώς η σχε είναι συνεχής.

a) Mises

112

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dina (1)	0	point A	216.776
Ріре (1)	3.6	point B	275.087
Dine (2)	0	point C	194.507
Pipe (2)	3.6	point D	232.727
Wolding	0	point E	42.2086
vveiding	3.6	point F	13.7736

Diagram 4.6. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-104.5900
Pipe (1)	3.6	point B	-52.0682
Pipe (2)	0	point C	-54.4334
	3.6	point D	-81.1662
Wolding	0	point E	-0.1518
vveiding	3.6	point F	-0.3993

Diagram 4.7. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-44.0752
	3.6	point B	130.1840
Pipe (2)	0	point C	-44.0752
	3.6	point D	130.1840
Welding	0	point E	7.0150
	3.6	point F	-13.1459

Diagram 4.8. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
	0	point A	247.549
Fipe (1)	3.6	point B	133.105
Pipe (2)	0	point C	-215.233

	3.6	point D	-128.953
) Ministry	0	point E	-3.69207
weiding	3.6	point F	-8.96661

Diagram 4.9. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipo(1)	0	point A	47.4200
Pipe (1)	3.6	point B	-13.7390
Pine (2)	0	point C	43.0085
Pipe (2)	3.6	point D	-16.5948
Wolding	0	point E	-23.7508
weiding	3.6	point F	4.5842

Diagram 4.10. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

113

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	260.502
	3.6	point B	304.83
Pipe (2)	0	point C	158.273
	3.6	point D	209.399
Wolding	0	point E	56.374
weiding	3.6	point F	37.2997

Diagram 4.11. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	33.5929
	3.6	point B	51.7629
Pipe (2)	0	point C	-39.7799
	3.6	point D	-46.629
Welding	0	point E	-5.0720
	3.6	point F	-0.6147

Diagram 4.12. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	67.7569
	3.6	point B	-171.9110
Pipe (2)	0	point C	-44.4058
	3.6	point D	130.9840
	0	point E	7.3019
Welding	3.6	point F	-13.3605

Diagram 4.13. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	292.717
	3.6	point B	171.896
Pipe (2)	0	point C	-177.239
			•

	3.6	point D	-94.5282
Welding	0	point E	37.9603
	3.6	point F	27.7793

Diagram 4.14. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses	x(mm)	Point	Abaqus (Mpa)
Dine (1)	0	point A	47.2555
Pipe (1)	3.6	point B	-13.8049
Pipe (2)	0	point C	42.8442
	3.6	point D	-16.6901
Walding	0	point E	-23.8441
vveiding	3.6	point F	4.4975

Diagram 4.15. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

121)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	44.112
	3.6	point B	34.7567
Pipe (2)	0	point C	37.8876
	3.6	point D	30.3421
Welding	0	point E	41.0226
	3.6	point F	32.5735

Diagram 4.16. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-5.1408
Pipe (1)	3.6	point B	-0.151047
Dipo(2)	0	point C	-5.0018
Pipe (2)	3.6	point D	-0.0543534
Wolding	0	point E	-5.0683
vveiding	3.6	point F	-0.107021

Diagram 4.17. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	0.9170
	3.6	point B	-1.2688
Dipo(2)	0	point C	-0.3564
Pipe (2)	3.6	point D	0.7927
Wolding	0	point E	0.3002
vveiding	3.6	point F	-0.2002

Diagram 4.18. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	44.7374
	3.6	point B	38.2516
Pipe (2)	0	point C	44.7374
	3.6	point D	38.2516
Welding	0	point E	41.4285
	3.6	point F	36.2703

Diagram 4.19. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-0.1560
Pipe (1)	3.6	point B	-0.0757
Pipe (2)	0	point C	-0.1593
	3.6	point D	-0.0825
Wolding	0	point E	-0.0795
weiding	3.6	point F	-0.0867

Diagram 4.20. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

122)

a) Mises

Results of Mises Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	1330.44
	3.6	point B	1524.89
Pipe (2)	0	point C	1151.33
	3.6	point D	983.693
Welding	0	point E	1217.04
	3.6	point F	1238.76

Diagram 4.21. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	47.5867
Ріре (1)	3.6	point B	63.1694
Pipe (2)	0	point C	-32.5509
	3.6	point D	-46.4560
Wolding	0	point E	5.3991
weiding	3.6	point F	5.5860

Diagram 4.22. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-1141.8700
ripe (1)	3.6	point B	-1411.9900
Dipo(2)	0	point C	-1269.2000
Pipe (2)	3.6	point D	-1073.8500
Wolding	0	point E	-1211.1800
weiding	3.6	point F	-1236.9300

Diagram 4.23. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Ripo (1)	0	point A	288.43
Pipe (1)	3.6	point B	157.424
Pipe (2)	0	point C	-239.767
	3.6	point D	-142.228
Wolding	0	point E	4.93839
vveiding	3.6	point F	-2.14994

Diagram 4.24. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	54.4917
Fipe (1)	3.6	point B	-11.1107
	0	point C	50.7199
Pipe (2)	3.6	point D	-14.5724
Wolding	0	point E	-23.7395
weiding	3.6	point F	8.7277

Diagram 4.25. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

123)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	1346.51
	3.6	point B	1537.09
Pipe (2)	0	point C	1152.63
	3.6	point D	987.848
Welding	0	point E	1225.48
	3.6	point F	1247.16

Diagram 4.26. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	42.4679
Pipe (1)	3.6	point B	62.8048
Pipe (2)	0	point C	-37.5735
	3.6	point D	-46.7233
Wolding	0	point E	0.3431
weiding	3.6	point F	5.2716

Diagram 4.27. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-1130.6500
Pipe (1)	3.6	point B	-1402.8000
Pinc (2)	0	point C	-1259.1600
Pipe (2)	3.6	point D	-1062.8700
Wolding	0	point E	-1200.5700
weiding	3.6	point F	-1226.8000

Diagram 4.28. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	333.541
	3.6	point B	196.234
Pipe (2)	0	point C	-201.333
	3.6	point D	-107.503
Welding	0	point E	46.7764
	3.6	point F	34.7481

Diagram 4.29. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pinc(1)	0	point A	54.3143
Pipe (1)	3.6	point B	-11.1562
Pinc(2)	0	point C	50.5374
Pipe (2)	3.6	point D	-14.6413
Wolding	0	point E	-23.7864
weiding	3.6	point F	8.6497

Diagram 4.30. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

131)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	42.9914
	3.6	point B	33.1735
Pipe (2)	0	point C	37.6827
	3.6	point D	30.01
Welding	0	point E	40.3355
	3.6	point F	31.5824

Diagram 4.31. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Pinc(1)	0	point A	-5.1715
Pipe (1)	3.6	point B	-0.1937
Pipe (2)	0	point C	-4.9657
	3.6	point D	-0.0054
Welding	0	point E	-5.0674
	3.6	point F	-0.1064

Diagram 4.32. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
	0	point A	21.2809
Pipe (1)	3.6	point B	19.6949
Bino (2)	0	point C	21.2809
Pipe (2)	3.6	point D	19.6949
Wolding	0	point E	20.8498
weiding	3.6	point F	20.36

Diagram 4.33. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pinc(1)	0	point A	44.432
Pipe (1)	3.6	point B	38.1022
Pipe (2)	0	point C	38.3272
	3.6	point D	34.3538
Welding	0	point E	41.4051
	3.6	point F	36.2666

Diagram 4.34. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-0.1560
	3.6	point B	-0.0757
Pipe (2)	0	point C	-0.1593
	3.6	point D	-0.0825
Welding	0	point E	-0.0795
	3.6	point F	-0.0867

Diagram 4.35. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

132)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	209.81
	3.6	point B	254.762
Pipe (2)	0	point C	203.557
	3.6	point D	251.721
Welding	0	point E	50.8067
	3.6	point F	16.416

Diagram 4.36. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	38.4243
	3.6	point B	51.8117
	0	point C	-34.8714
Pipe (2)	3.6	point D	-46.3938
Walding	0	point E	-0.2269
weiding	3.6	point F	-0.4745

Diagram 4.37. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe(1)	0	point A	87.2683
Pipe (1)	3.6	point B	-149.5790
Dine (2)	0	point C	-23.3043
Pipe (2)	3.6	point D	150.5900
Wolding	0	point E	27.6597
weiding	3.6	point F	7.5895

Diagram 4.38. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	246.886
	3.6	point B	132.711
Pipe (2)	0	point C	-214.786
	3.6	point D	-128.712
Welding	0	point E	-3.81
	3.6	point F	-9.06354

Diagram 4.39. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	47.3063
Pipe (1)	3.6	point B	-13.7751
Dipo(2)	0	point C	42.8806
Pipe (2)	3.6	point D	-16.6181
Wolding	0	point E	-23.7410
weiding	3.6	point F	4.5249

Diagram 4.40. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

133)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	253.096
	3.6	point B	285.066
Pipe (2)	0	point C	167.35
	3.6	point D	228.925
Wolding	0	point E	56.7855
Weiding	3.6	point F	26.4591

Diagram 4.41. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	33.4633
Pipe (1)	3.6	point B	51.5946
Pino(2)	0	point C	-39.7894
Pipe (2)	3.6	point D	-46.6033
Wolding	0	point E	-5.1460
vvelding	3.6	point F	-0.6892

Diagram 4.42. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22			
Stresses	x(mm)	Point	Abaqus (Mpa)
Pipo(1)	0	point A	88,2336
Fipe (1)	3,6	point B	-150,8840
Pipo(2)	0	point C	-23,6355
Pipe (2)	3,6	point D	151.389
Wolding	0	point E	-5,1460
weiding	3,6	point F	-0,6892

Diagram 4.43. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dinc(1)	0	point A	292.049
Pipe (1)	3.6	point B	171.498
	0	point C	-176.796
Pipe (2)	3.6	point D	-94.2901
Welding	0	point E	37.8377
	3.6	point F	27.6787

Diagram 4.44. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	54.3143
Pipe (1)	3.6	point B	-11.1562
Dipo(2)	0	point C	50.5374
Pipe (2)	3.6	point D	-14.6413
Wolding	0	point E	-23.7864
weiding	3.6	point F	8.6497

Diagram 4.45. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

211)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	102.6
	3.6	point B	58.8851
Pipe (2)	0	point C	90.5207
	3.6	point D	53.5056
) M/aldina	0	point E	90.1985
weiding	3.6	point F	52.2888

Diagram 4.46. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

245

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Ripo (1)	0	point A	-24.8767
Pipe (1)	3.6	point B	-0.40007
Bino(2)	0	point C	-24.7998
Pipe (2)	3.6	point D	-0.388782
Welding	0	point E	-24.7554
	3.6	point F	-0.373421

Diagram 4.47. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-1.0112
	3.6	point B	-1.76688
	0	point C	-2.3974
Pipe (2)	3.6	point D	2.39182
Welding	0	point E	-2.0638
	3.6	point F	1.31072

Diagram 4.48. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	87.5467
Pipe (1)	3.6	point B	57.7892
	0	point C	74.8185
Pipe (2)	3.6	point D	54.4529
Welding	0	point E	74.6221
	3.6	point F	52.737

Diagram 4.49. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-0.5920
Pipe (1)	3.6	point B	-0.129602
Pipe (2)	0	point C	-0.0608
	3.6	point D	-0.00281781
Molding	0	point E	-0.0396
weiding	3.6	point F	-0.077886

Diagram 4.50. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

212)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Bino (1)	0	point A	199.575
Pipe (1)	3.6	point B	230.172
Pipe (2)	0	point C	175.93
Fipe (2)	3.6	point D	202.285
Walding	0	point E	46.2016
vveiding	3.6	point F	7.84282

Diagram 4.51. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	13.6854
Pipe (1)	3.6	point B	17.5337
Pipe(2)	0	point C	-12.0853
Fipe (2)	3.6	point D	-16.3344
Wolding	0	point E	-0.8847
vverunig	3.6	point F	-2.7711

Diagram 4.52. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses	x(mm)	Point	Abaqus (Mpa)
Dipo(1)	0	point A	73.3653
Pipe (1)	3.6	point B	-199.3610
$\mathbf{D}_{ine}^{i}(2)$	0	point C	-57.3520
Pipe (2)	3.6	point D	170.486
Wolding	0	point E	0.7467
weiding	3.6	point F	-10.0766

Diagram 4.53. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Ripo (1)	0	point A	226.507
Pipe (1)	3.6	point B	39.7105
	0	point C	-197.184
Pipe (2)	3.6	point D	-42.33
Wolding	0	point E	-3.71582
weiding	3.6	point F	-3.65923

Diagram 4.54. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	24.5059
ripe (1)	3.6	point B	8.8576
Dime(2)	0	point C	22.3876
Pipe (2)	3.6	point D	6.52325
Wolding	0	point E	-26.5788
weiding	3.6	point F	2.14773

Diagram 4.55. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

213)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dino (1)	0	point A	296.778
Pipe (1)	3.6	point B	269.51
Dina (2)	0	point C	95.347
Pipe (2)	3.6	point D	177.813
Wolding	0	point E	102.279
weiding	3.6	point F	59.2973

Diagram 4.56. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b)	S11
~ /	

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-10.7818
Pipe (1)	3.6	point B	17.0041
Pino(2)	0	point C	-36.6368
Pipe (2)	3.6	point D	-16.8565
Wolding	0	point E	-25.2747
vveiding	3.6	point F	-3.2907

Diagram 4.57. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	75.1063
Pipe (1)	3.6	point B	-201.9860
Pipe (2)	0	point C	-57.9662
	3.6	point D	172.607
)Molding	0	point E	1.3177
weiding	3.6	point F	-10.2516

Diagram 4.58. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	313.094
Pipe (1)	3.6	point B	96.7769
Pipe (2)	0	point C	-124.037
	3.6	point D	11.3406
Wolding	0	point E	76.3202
weiding	3.6	point F	52.1134

Diagram 4.59. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	24.2177
	3.6	point B	8.7892
Dime(2)	0	point C	22.0883
Pipe (2)	3.6	point D	6.42676
Wolding	0	point E	-26.6708
weiding	3.6	point F	2.03628

Diagram 4.60. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

221)

a) Mises

Results of Mises Stresses	x(mm)	Point	Abaqus (Mpa)
	0	point A	96.3089
Pipe (1)	3.6	point B	51.8365
Pipe (2)	0	point C	84.8638
	3.6	point D	47.6504
Welding	0	point E	90.4903
	3.6	point F	50.0034

Diagram 4.61. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-24.419
Pipe (1)	3.6	point B	-0.534
Dipo (2)	0	point C	-24.438
Pipe (2)	3.6	point D	-0.512
Wolding	0	point E	-24.326
weiding	3.6	point F	-0.516

Diagram 4.62. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	16.6138
	3.6	point B	12.7036
Pipe (2)	0	point C	14.4536
	3.6	point D	17.0592
Welding	0	point E	15.5981
	3.6	point F	14.9764

Diagram 4.63. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	85.6084
	3.6	point B	56.6378
Pipe (2)	0	point C	72.8983
	3.6	point D	53.4282
Welding	0	point E	79.2608
	3.6	point F	57.3223

Diagram 4.64. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-0.2766
	3.6	point B	-0.076098
Pipe (2)	0	point C	-0.2948
	3.6	point D	-0.0824584
Welding	0	point E	-0.0547
	3.6	point F	-0.110059

Diagram 4.65. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

222)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	1147.66
	3.6	point B	1321.23
Pipe (2)	0	point C	1037.49
	3.6	point D	865.278
Wolding	0	point E	1073.45
weiding	3.6	point F	1087.66

Diagram 4.66. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	17.6346
	3.6	point B	22.2527
Pipe (2)	0	point C	-7.3290
	3.6	point D	-12.3485
Walding	0	point E	3.4871
vveidilig	3.6	point F	1.5090

Diagram 4.67. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-990.3180
Pipe (1)	3.6	point B	-1285.2500
Dime(2)	0	point C	-1131.1000
Pipe (2)	3.6	point D	-892.972
Wolding	0	point E	-1068.4800
weiding	3.6	point F	-1085.64

Diagram 4.68. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	256.472
	3.6	point B	48.8165
Pipe (2)	0	point C	-213.348
	3.6	point D	-44.4111
Welding	0	point E	4.44306
	3.6	point F	2.48713

Diagram 4.69. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	25.3897
Pipe (1)	3.6	point B	10.6863
Pipe(2)	0	point C	23.3280
ripe (2)	3.6	point D	8.21392
Wolding	0	point E	-26.7137
weiding	3.6	point F	3.60065

Diagram 4.70. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

223)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	1182.29
	3.6	point B	1338.37
Pipe (2)	0	point C	1035.85
	3.6	point D	874.299
Welding	0	point E	1089.21
	3.6	point F	1101.16

Diagram 4.71. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	-7.0721
Pipe (1)	3.6	point B	21.5929
Dipo(2)	0	point C	-32.1505
Pipe (2)	3.6	point D	-13.0054
Wolding	0	point E	-21.1568
weiding	3.6	point F	0.8579

Diagram 4.72. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22			
Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-973.2260
ripe (1)	3.6	point B	-1272.3100
Dipo(2)	0	point C	-1116.2800
Pipe (2)	3.6	point D	-875.557
Wolding	0	point E	-1052.5100
weiding	3.6	point F	-1070.37

Diagram 4.73. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	343.141
	3.6	point B	106.018
Pipe (2)	0	point C	-139.557
	3.6	point D	9.53248
Welding	0	point E	84.8253
	3.6	point F	58.431

Diagram 4.74. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dino (1)	0	point A	25.1282
Pipe (1)	3.6	point B	10.6210
Ding(2)	0	point C	23.0577
Fipe (2)	3.6	point D	8.12386
Wolding	0	point E	-26.7689
vveiding	3.6	point F	3.50242

Diagram 4.75. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

231)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	95.3126
	3.6	point B	50.2065
Pipe (2)	0	point C	85.808
	3.6	point D	48.9604
Welding	0	point E	90.4328
	3.6	point F	49.7407

Diagram 4.76. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-24.4297
	3.6	point B	-0.53967
	0	point C	-24.4287
Fipe (2)	3.6	point D	-0.49985
Wolding	0	point E	-24.3271
weiding	3.6	point F	-0.51114

Diagram 4.77. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22			
Stresses	x(mm)	Point	Abaqus (Mpa)
Dipo (1)	0	point A	40.4553
Pipe (1)	3.6	point B	37.0002
Dipo(2)	0	point C	38.4945
Pipe (2)	3.6	point D	40.9004
Wolding	0	point E	39.5309
weiding	3.6	point F	39.0654

Diagram 4.78. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	84.9964
	3.6	point B	56.4892
Pipe (2)	0	point C	73.3127
	3.6	point D	53.5412
Welding	0	point E	79.154
	3.6	point F	55.3239

Diagram 4.79. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	-0.2771
	3.6	point B	-0.0745
Pipe (2)	0	point C	-0.2967
	3.6	point D	-0.0782
Wolding	0	point E	-0.0323
vveiding	3.6	point F	-0.1073

Diagram 4.80. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

232)

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	193.129
	3.6	point B	190.72
Pipe (2)	0	point C	189.678
	3.6	point D	240.769
Malding	0	point E	62.5995
vveiding	3.6	point F	32.8886

Diagram 4.81. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses			Abaqus
	x(mm)	Point	(Mpa)
Pipe (1)	0	point A	13.5968
	3.6	point B	17.4063
Pipe (2)	0	point C	-12.1926
	3.6	point D	-16.4215
Welding	0	point E	-0.9831
	3.6	point F	-2.8772

Diagram 4.82. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22			
Stresses	x(mm)	Point	Abaqus (Mpa)
Pipo(1)	0	point A	112.2980
Pipe (1)	3.6	point B	-159.6370
Dina (2)	0	point C	-18.0333
Pipe (2)	3.6	point D	209.423
Wolding	0	point E	39.8897
weiding	3.6	point F	29.2899

Diagram 4.83. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe(1)	0	point A	225.444
Pipe (1)	3.6	point B	39.3759
Pinc(2)	0	point C	-196.563
Pipe (2)	3.6	point D	-42.264
Wolding	0	point E	-3.98451
weidling	3.6	point F	-3.89058

Diagram 4.84. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Bing (1)	0	point A	24.4808
Pipe (1)	3.6	point B	8.7932
Bino(2)	0	point C	22.3580
Fipe (2)	3.6	point D	6.47375
Wolding	0	point E	-26.5608
Weiding	3.6	point F	2.10691

Diagram 4.85. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

1221
2331
-00,

a) Mises

Results of Mises Stresses			
	x(mm)	Point	Abaqus (Mpa)
Ripo (1)	0	point A	288.266
Pipe (1)	3.6	point B	231.452
Bino (2)	0	point C	111.23
Pipe (2)	3.6	point D	216.366
Wolding	0	point E	100.342
vveiding	3.6	point F	48.2246

Diagram 4.86. Mises stresses along the thickness of the pipes and the analytical solution line with linear interpolation

b) S11

Results of S11 Stresses	x(mm)	Point	Abaqus (Mpa)
Ding (1)	0	point A	-10.8587
Pipe (1)	3.6	point B	16.8816
Dina (2)	0	point C	-36.7304
Pipe (2)	3.6	point D	-16.9383
Walding	0	point E	-25.3606
weiding	3.6	point F	-3.3917

Diagram 4.87. Radial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

c) S22

Results of S22			
Stresses			
	x(mm)	Point	Abaqus (Mpa)
Dine (1)	0	point A	114.0390
Pipe (1)	3.6	point B	-162.2560
Dipo(2)	0	point C	-18.6457
Pipe (2)	3.6	point D	211.547
Wolding	0	point E	40.4618
weiding	3.6	point F	29.1197

Diagram 4.88. Axial stresses along the thickness of the pipes and the analytical solution line with linear interpolation

d) S33

Results of S33 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Ding (1)	0	point A	311.995
Pipe (1)	3.6	point B	96.4241
Dino (2)	0	point C	-123.446
Pipe (2)	3.6	point D	11.3876
Wolding	0	point E	76.0182
vvelding	3.6	point F	51.8632

Diagram 4.89. Hoop stresses along the thickness of the pipes and the analytical solution line with linear interpolation

e) S12

Results of S12 Stresses			
	x(mm)	Point	Abaqus (Mpa)
Pipe (1)	0	point A	24.1915
Pipe (1)	3.6	point B	8.7236
Pipe (2)	0	point C	22.0575
Fipe (2)	3.6	point D	6.37633
Wolding	0	point E	-26.6538
vveiding	3.6	point F	1.99405

Diagram 4.90. Shear stresses along the thickness of the pipes and the analytical solution line with linear interpolation

Κεφάλαιο 5. Κόπωση, ρηγμάτωση και Θραυστομηχανική

5.1. Έναρξη πλαστικοποίησης και ρηγμάτωση

Η αρχή της πλαστικοποίησης γίνεται όταν οι κύριες τάσεις, σε μονοαξονικό εφελκυσμό, γίνουν ίσες με την τάση διαρροής του υλικού, δηλαδή:

$$\left|\sigma_{1,2}^{(i)}\right|_{A,B} = \sigma_{y} \tag{5.1}$$

Πέραν των τάσεων, όπως αυτές προκύπτουν από τα αναλυτικά πεδία, οι διεπιφάνειες των υλικών, όπου οι ελαστικές τους ιδιότητες αλλάζουν απότομα, οδηγεί στην ενίσχυση αυτών των τάσεων και την ανάπτυξη πολύ συγκεκριμένων περιοχών, όπου εμφανίζεται αυτή η συγκέντρωση τάσεων.

Τα πιθανά σενάρια που ακολουθούν στη συνέχεια, περιλαμβάνουν δύο μεγάλες κατηγορίες:

a. Τοπική πλαστικοποίηση εφόσον η Mises τάση υπερβεί το όριο διαρροής, στην υψηλότερη θερμοκρασία λειτουργίας του δοκιμίου ή και στην χαμηλότερη, εφόσον υπάρξει ανατροπή της θερμικής φόρτισης $(\sigma_y|_{T=0})$. Στην περίπτωση αυτή η κατασκευή μας προστατεύεται μέσω της πλαστικοποίησης.

Figure 5.1. Maximun mises values at the highest and lowest operating temperatures for RH2

Figure 5.2. Maximun mises values at the highest and lowest operating temperatures for SH2

	(Mpa)	(MPa)	After heating (⁰ C)	After cooling(⁰ C)
RH2	43.0215	322.21	506	20
SH2	95.4102	299.228	436	20
Rp _{0.2}	450	450	500	20

Figure 5.3. Maximun mises values at the highest and lowest operating temperatures for RH2 and SH2

Οι τάσεις Mises λένε ότι ποτέ δεν πρόκειται να μπει σε πλαστικότητα σε καμία από τις δύο περιπτώσεις.

b. Η εναλλακτική μορφή αστοχίας στην συγκεκριμένη περίπτωση, ενδέχεται να εμφανιστεί λόγω ρηγμάτωσης του υλικού. Στην περίπτωση αυτή, εξετάζουμε τις ορθές τάσεις και εφόσον αυτές είναι ισχυρά εφελκυστικές, τότε στην περιοχή που εμφανίζονται πιθανολογούμε την εμφάνιση κάποιας μικρορωγμής. Ιδιαίτερα, εξετάζονται οι διεπιφάνειες των υλικών (Interfaces). Οι ορθές τάσεις εάν είναι εφελκυστικές σηματοδοτούν μια πιθανή εμφάνιση και επέκταση ρωγμών κάθετα σε αυτές. Ξεκινώντας να βλέπουμε όλες τις ορθές τάσεις κατά την 22 διεύθυνση, εξάγουμε για κάθε διατομή τα εξής:

		Extreme axial stress S22 (Mpa)									
		ανοιχτές διατομές				πακτωμένες			κλειστές		
	Mat.	111	111 112		113	121	122	123	131	132	133
	1	πολύ μικρές	εξωτερικά	-167,568	-168,139			πολύ μικρές	-146,552	-108,939	
рцэ	2	πολύ μικρές	εσωτερικά	-69,076	-69,3278	cutó	εκτός σχεδιασμού	πολύ μικρές	-48,2476	-48,5001	
КПΖ	1	πολύ μικρές	εσωτερικά	94,9816	95,873	EKLO		πολύ μικρές	115,408	116,298	
	2	πολύ μικρές	εξωτερικά	126,241	127,002			πολύ μικρές	146,662	147,422	
		211	21	2	213	221	221 222 223		231	232	233
	1	πολύ μικρές	εξωτερικά	-209,726	-212,269	outó			πολύ μικρές	220,958	-172,544
сцр	2	πολύ μικρές	εσωτερικά	-93,9524	-94,1569	EKLOG	εκτος σχεοιασμου		πολύ μικρές	188,533	-54,8067
312	1	πολύ μικρές	εσωτερικά	113,917	115,276	outó			πολύ μικρές	203,664	154,184
	2	πολύ μικρές	εξωτερικά	179,115	181,206	EKTO	, σχεσια	ισμου	πολύ μικρές	267,921	220,156

Οι ρωγμές είτε προϋπάρχουν, είτε προκύπτουν λόγω κόπωσης. Στη συνέχεια δε, είναι ενδεχόμενο είτε να συνεχίσουν να αυξάνονται είτε να σταματήσουν (να έχουνε δεσμευτεί). Συνήθως σταματούν όταν συναντήσουν μπροστά τους φθίνον πεδίο τάσεων (όπως εδώ) και ακόμη καλύτερα όταν συναντήσουν θλιπτικό πεδίο τάσεων.

Ιδιαίτερα δυσμενής είναι οι ρωγμές που είτε υπάρχουν, είτε δημιουργούνται στο εσωτερικό του σωλήνα διότι θα απιτηθεί ειδικός έλεγχος για τον εντοπισμό τους, συνοδευόμενος από πολλά τεχνολογικά και οικονομικά προβλήματα.

Figure 5.4. Vulnerable regions due to tensile hoop stresses, for cracking growth

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

Οι διατμητικές τάσεις είναι σημαντικές για τις διεπιφάνειες των υλικών γιατί τότε είναι πιθανό να αναπτυχθεί ρωγμή. Στις περιπτώσεις που υπάρχει ισχυρή διάτμηση εξετάζουμε και την αντίστοιχη κάθετη τάση στο επίπεδο της διάτμησης.

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

Figure 5.5. Vulnerable regions due to shear stresses, for cracking growth

c. Προφανώς σε περίπτωση που δεν υπάρχουν αρχικά ρωγμές, με εξαίρεση τις διεπιφάνειες, ο σχεδιασμός μας εντοπίζεται στην εύρεση κύκλων φόρτισης που οδηγεί σε ανάπτυξη μικρορωγμών. Το φαινόμενο αυτό συνιστά την κόπωση του υλικού (fatigue) και μάλιστα το πρώιμο στάδιό της. Αυτό, λοιπόν, που από φυσικής πλευράς ερευνάται είναι εάν οι αρχικές κρυσταλλικές ατέλειες του υλικού, παρόλο που δεν δημιουργούν μακροσκοπικά πλαστικότητα, αναδιατάσσονται, πολλαπλασιάζονται και δημιουργούν περιοχές κυκλικής ολίσθησης, σε πολύ μικρές κλίμακες. Αυτό το φαινόμενο, το διερευνούμε μόνο φαινομενολογικά[†] (Ατέλειες-Dislocations-εξαρμώσεις).

Αν είχαμε κάποια υπόνοια για κατασκευαστικές ατέλειες, σύμφωνα και με τις συνθήκες φόρτισης, θα ήτανε χρήσιμη η εύρεση των μέγιστων κυρίων τάσεων,κυρίως βέβαια για την ένταση των πεδίων στα σημεία αυτά, παρά για σενάρια φθοράς, όπως φαίνεται στα παρακάτω σχήματα:

[†] Η έναρξη της κόπωσης στα μέταλλα χαρακτηρίζεται από την αυτοοργάνωση των εξαρμόσεων σε επίπεδα τα οποία στη συνέχεια εξελίσσονται σε επίπεδα ολίσθησης (persistent slip bands). Αυτά τα επίπεδα ολίσθησης εμφανίζονται κοντά σε ελεύθερες επιφάνειες και σε διεπιφάνειες.

Figure 5.6. Values and locations of Maximum Principal Stress

Επομένως, χρειαζόμαστε φαινομενολογικούς νόμους που να συνδέουν τις τάσεις με τον αριθμό κύκλων φόρτισης-αποφόρτισης. Δείχνει η πιο ζόρικη περίπτωση να είναι η ανοιχτή διατομή.

5.2. Εκτίμηση ζωής βάση των κύκλων φόρτισης

Stress-based Fatigue of Materials

Εύρος τάσεων (stress range): $\Delta \sigma = \sigma_{max} - \sigma_{min}$ Μέση τάση (mean stress): $\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$ Εύρος τάσεων (stress Amplitude): $\sigma_a = \frac{\Delta \sigma}{2}$ Αναλογία τάσεων (stress Ratio): $R = \frac{\sigma_{min}}{\sigma_{max}}$ Αναλογία εύρους (amplitude Ratio): $A = \frac{\sigma_a}{\sigma_m}$

In all Directions, uniaxial for one stress direction: σ_{xx} , σ_{yy} , σ_{zz} .

Stress life curve (S-N curve)

Αριθμός κύκλων φόρτισης (number of cycles for failure): N_f

Αποτελεσματικό εύρος τάσεων (effective stress amplitude):

$$\bar{\sigma}_{a} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{xxa} - \sigma_{yya})^{2} + (\sigma_{yya} - \sigma_{zza})^{2} + (\sigma_{zza} - \sigma_{xxa})^{2} + 6(\sigma_{xya}^{2} + \sigma_{xya}^{2} + \sigma_{xya}^{2})}$$

Effective mean stress:

$$\bar{\sigma}_m = \sigma_{xxa} + \sigma_{yya} + \sigma_{zza}$$

Ισοδύναμη πλήρως αντιστρεφόμενη τάση (equivalent completely revearsed uniaxial stress), κατά Morrow:

$$\bar{\sigma}_{ar} = \frac{\sigma_a}{1 - \frac{\bar{\sigma}_m}{\sigma_f}'}$$

Ενώ, σύμφωνα με την μέθοδο Smith-Watson and Topper:

$$\bar{\sigma}_{ar} = \sqrt{\bar{\sigma}_{max}\bar{\sigma}_a}$$

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

283

Όπου, $\bar{\sigma}_{max} = \bar{\sigma}_m + \bar{\sigma}_a$ Θα πρέπει ο λόγος $\frac{\bar{\sigma}_m}{\sigma_{f'}} > 0$ και $\bar{\sigma}_m + \bar{\sigma}_a > 0$ γιατί αλλιώς δεν έχω νόμο. Οι σταθερές του υλικού που πρέπει να προσδιοριστούν είναι οι:

 σ_f' [MPa] και b[-]

Ενώ,

$$N_f = \frac{1}{2} \left(\frac{\bar{\sigma}_{ar}}{\sigma_f'} \right)^{-\frac{1}{b}}$$

Σύμφωνα με τη μέθοδο του Morrow αλλά και των Smith-Watson and Topper, κάνοντας δηλαδή αντικατάσταση τους παραπάνω τύπους στις διατομές μου, όπως φαίνεται στο Παράρτημα Α.7, εξάγω τα εξής:

Table 5.1. Number of cycles for failure, Nf, according to method Morrow and Smith-Watson and Topper if b=0.0762 or b=0.12

Nf	b	113	123	133	213	223	233
	0.0762	4790680	It doesn't hold	9014150	46686472	It doesn't hold	45969429
Morrow	0.12	13557	It doesn't hold	20254	57552	It doesn't hold	56989
Smith-	0.0762	32228	It doesn't hold	17503	168556	It doesn't hold	34601
and Topper	0.12	566	lt doesn't hold	384	1618	lt doesn't hold	592

Σημειώνεται ότι η σ_{min} είναι 0, ενώ οι σταθερές σ_f' [MPa] και b[-] δεν είναι γνωστές. Για την σ_f' υποθέτουμε ότι είναι το μισό της αντοχής στη κάθε θερμοκρασία, δηλαδή $\sigma'_f = \frac{1}{2}\sigma_y$, ενώ για την b γίνεται μια εκτίμηση γιατί δεν έχουμε επαρκή στοιχεία για αυτήν. Ενδεικτικά, κάποιες τιμές του b, ανάλογα με το υλικό φαίνονται στον πίνακα του Παραρτήματος Α.8. Τέλος, η μεθοδολογία του Morrow δέχεται μια πολύ καλή προσέγγιση της υδροστατικής πίεσης, που εάν είναι μικρή ή και αρνητική ανεβάζει τους κύκλους ζωής.

5.3. Κόπωση λόγω εμφάνισης και διάδοσης μικρορωγμών

Στην πιθανή εμφάνιση μιας μικρορωγμής που μπορεί να προέρχεται είτε από κατασκευαστική ατέλεια κατά την συγκόλληση, είτε από συσσώρευση παραμενουσών μικροπλαστικών παραμορφώσεων, τότε στο άκρο αυτής της μικρορωγμής αναπτύσσονται κατά τη θεωρία της ελαστικότητας άπειρες τάσεις. Στην πραγματικότητα άπειρες τάσεις δεν μπορούν να υφίστανται και επομένως η αντοχή του υλικού καθορίζεται από μια άλλη μετρική, που είναι ο συντελεστής έντασης των τάσεων (stress intensity factor), K [MPa√m]. Στην περίπτωση της κόπωσης προφανώς ενδιαφέρει η μεταβολή αυτού, δηλαδή το ΔK, ΔK=K_{max}- K_{min} και ο αντίστοιχος λόγος αυτού $R = \frac{Kmin}{Kmax}$, (ΔK, R), κατά αντιστοιχία, με αντίστοιχες ποσότητες που απαντώνται στην κόπωση μέσω τάσεων, (Δσ, R).

Στην περίπτωση που εξετάζουμε στην παρούσα εργασία θεωρείται $K_{min}=0$, κατά συνέπεια $\Delta K=K_{max}$, R=0.

Η κόπωση όταν μελετάται μέσω ρηγμάτωσης χρειάζεται σαν πειραματικά δεδομένα, καμπύλες που συνδέουν την διαφορική μεταβολή του μήκους της ρωγμής: $\frac{d\alpha}{dN}$, όπου α: μήκος της ρωγμής, Ν: κύκλοι φόρτισης, σε σχέση με τη μεταβολή του συντελεστή έντασης των τάσεων ΔΚ και του λόγου R, όπως φαίνεται και στο παρακάτω Figure. Οι καμπύλες αυτές εξαρτώνται κυρίως από το υλικό, αλλά και από τις περιβαλλοντικές συνθήκες που εκτελούνται αυτά τα πειράματα (θερμοκρασία και υγρασία).

Stress Intensity Factor Range, AK

Figure 5.7. Schematic of experimental data that connect the difference of stess intensity factor with the crack length expansion, during cycling

Τα πειραματικά δεδομένα οδηγούν σε τρεις περιοχές ενδιαφέροντος:

- a. $\Delta K < \Delta K_{th}$, όπου το ΔK_{th} είναι το κατώφλι του συντελεστή εντάσεως των τάσεων σε κόπωση (fatique threshold). Στην περίπτωση αυτή δεν έχουμε καμία αύξηση της ρωγμής λόγω κόπωσης.
- b. $\Delta K \ge \Delta K_c$, όπου το ΔK_c είναι ο κρίσιμος συντελεστής έντασης των τάσεων (critical stress intensity factor). Στην περίπτωση αυτή η θραύση είναι ανεξέλεκτη (εντελώς ασταθής).
- c. $\Delta K_{\text{th}} < \Delta K \le \Delta K_c$, όπου η περιοχή αυτή λέγεται και περιοχή του νόμου του Paris (Paris Law). Στην περιοχή αυτή η αύξηση της ρωγμής $\frac{d\alpha}{dN}$ συνδέεται λογαριθμηκά με το ΔK σύμφωνα με την σχέση:

$$\frac{d\alpha}{dN} = C(\Delta K)^m$$

Οι συντελεστές C και m εξαρτώνται κυρίως από το υλικό. Στην συγκεκριμένη περίπτωση ενδεικτικά:

Steel	$C(\frac{mm/cycle}{(MPa\sqrt{m})^m})$	m
Ferritic-Perlitic	6.89*10 ⁻⁹	3.00
Martensitic	1.36*10 ⁻⁷	2.25
Austenitic	5.61*10 ⁻⁹	3.25

Κάποιες τιμές του ΔK_{th} =7MPa \sqrt{m} και ΔK_c =70MPa \sqrt{m} για χάλυβες.

Σχετικά με τον υπολογισμό του συντελεστή έντασης τάσεων ακολουθήθηκε η μεθοδολογία Leis.B.N. 1985 κατά την οποία χρησιμοποίειται μία ελαστική λύση η οποία επεκτείνεται και στην περίπτωση όπου η ρωγμή εγκλωβίζεται όταν υπάρχει ανελαστικότητα (πλαστικότητα). Ο σχετικός τύπος είναι:

$$\Delta K = 1.12 \, \Delta \varepsilon \, E \sqrt{\pi \alpha}$$

Ο τύπος αυτός είναι εμπειρικός, με τον συντελεστή 1.12 να είναι ένας διορθωτικός συντελεστής προερχόμενος από την γεωμετρία, ΔΕ είναι η μετοβολή της τροπής από τα πεπερασμένα στοιχεία (ελαστο-πλαστικής ανάλυσης) στην κάθετη διεύθυνση ως προς τη ρωγμή α. Στην παρούσα περίπτωση επειδή έγινε μόνο ελαστική ανάλυση θεωρούμε ότι:

$$\Delta \varepsilon E = \Delta \sigma$$

Θα πρέπει να διακρίνουμε τρεις περιπτώσεις για το Δσ ανάλογα με τις δύο περιπτώσεις που μπορούν να κατευθυνθούν οι μικρορωγμές:

286

1) Εάν η ρωγμή είναι κάθετη στην διεύθυνση των περιφερειακών τάσεων (hoop stresses), τότε:

$$\Delta \sigma = \Delta \sigma_{\theta \theta}$$

 Εάν η ρωγμή είναι κάθετη στην διεύθυνση των αξονικών τάσεων (axial stresses), τότε:

$$\Delta \sigma = \Delta \sigma_{xx}$$

Ας υποθέσουμε το εξής σενάριο: ότι μία ρωγμή αναπτύσσεται όπως φαίνεται στο παρακάτω σχήμα:

Στόχος είναι εάν αναπτυχθεί κάποια ρωγμή να μην φτάσει ποτέ στο επίπεδο να γίνει ίση με α_c . Όση η ρωγμή είναι εγκιβωτισμένη, δηλαδή $\alpha \ll \alpha_c$, θα υπάρχει ρηγμάτωση αλλά θα είναι απαθής.

Εάν η ατέλεια είναι $\alpha > \alpha_c$, είναι επικίνδυνη. Εικάζουμε ότι οι ελεγχτικοί μηχανισμοί θα την εντοπίσουν.

Στο χειρότερο σενάριο θα πρέπει να εξετάσουμε τους κύκλους φόρτισης που απαιτούνται σε μία υποθετική ρωγμή που ξεκινά από ένα κατώφλι μήκους που δίνεται από τον τύπο:

$$\Delta K = 1.12 \,\underbrace{\Delta \varepsilon E}_{\Delta \sigma} \sqrt{\pi \alpha_{th}}$$
(5.1.)

Λύνοντας ως προς το α_{th} μπορούμε να έχουμε μια αρχική εκτίμηση υποθετικής αρχικής ρωγμής.

Οι μέγιστες εφελκυστικές τάσεις που αναπτύσσονται φαίνονται στον παρακάτω Πίνακα:

(MPa)	113		133	
sxx	133.82	1 mat. Inside	153.743	1 mat. Inside
	134.487	2 mat. Outside	155.355	2 mat. Outside
sθθ	309.081	1 mat. Inside	308.382	1 mat. Inside

(MPa)	213		233	
SXX	118.502	1 mat. Inside	157.252	1 mat. Inside
	181.206	2 mat. Outside	220.156	2 mat. Outside
sθθ	330.605	1 mat. Inside	329.467	1 mat. Inside

Έτσι, αν υποθέσουμε ότι ΔK_{th} =7MPa \sqrt{m} και ΔK_c =70MPa \sqrt{m} αλλά και τα παραπάνω $\Delta \sigma$, από τον τύπο 5.1 εξάγουμε τα α_{th} και α_c :

	113		133	
ath	(m)	(mm)	(m)	(mm)
	0.000694	0.694333	0.000526	0.526041
	0.000687	0.687463	0.000515	0.515181
	0.000130	0.130156	0.000131	0.130747
	213		213	
	(m)	(mm)	(m)	(mm)
	0.000885	0.885439	0.000503	0.502826
	0.000379	0.378674	0.000257	0.256536
	0.000114	0.113760	0.000115	0.114548

		113	133	
ас	(m)	(mm)	(m)	(mm)
	0.069433	69.433349	0.052604	52.604084
	0.068746	68.746335	0.051518	51.518083
	0.013016	13.015640	0.013075	13.074712
	213		233	
	(m)	(mm)	(m)	(mm)
	0.088544	88.543932	0.050283	50.282609
	0.037867	37.867359	0.025654	25.653647
	0.011376	11.376046	0.011455	11.454769
Επειδή σε κάθε περίπτωση $\alpha_c \geq H$ αυτό σημαίνει ότι η ρωγμή ποτέ δεν θα γίνει κρίσιμη. Αν, λοιπόν, συμβεί αυτό, τότε οι κύκλοι ζωής του συστήματός μας, απαιτούν ολοκλήρωση του νόμου του Paris με αρχική τιμή το α_{th} για N=0 και τελική τιμή το $\alpha=H$ για N=N_f. Δηλαδή,

$$\frac{d\alpha}{dN} = C(\Delta K)^{m}$$

$$\Rightarrow \frac{d\alpha}{dN} = C(1.12 \ \Delta \sigma \sqrt{\pi \alpha})^{m}$$

$$\xrightarrow{\mu \epsilon \theta \sigma \delta \sigma \varsigma \ \chi \omega \rho \iota \zeta \sigma \mu \epsilon \tau \omega \sigma \lambda \eta \tau \omega \nu} \frac{d\alpha}{\alpha^{\frac{m}{2}}} = dN(C1.12^{m} \ \Delta \sigma^{m} \pi^{m})$$

$$\Rightarrow \int_{\alpha_{th}}^{H} \alpha^{-\frac{m}{2}} da = N_{f}(C1.12^{m} \ \Delta \sigma^{m} \pi^{m})$$

$$\Rightarrow N_{f} = \frac{1}{C1.12^{m} \ \Delta \sigma^{m} \pi^{m}} \left[\alpha^{-\frac{m}{2}+1} \frac{1}{1-\frac{m}{2}} \right]_{\alpha_{th}}^{H}$$

$$\boxed{\Rightarrow N_{f} = \frac{1}{(\frac{1}{1-\frac{m}{2}})C1.12^{m} \ \Delta \sigma^{m} \pi^{m}} \left[H^{1-\frac{m}{2}} - \alpha_{th}^{1-\frac{m}{2}} \right]}$$

Nf (number of cycles for failure)									
113	133	213	213						
3675	3031	5154	3289						
3651	2985	2581	1827						
937	941	861	866						

Έγινε, επιπλέον, η παραδοχή ότι έχουμε ομογενές υλικό. Συμπερασματικά, καταδεικνύεται η ευαισθησία των προβλημάτων στις διάφορες σταθερές που συνδέονται με το Νόμο του Paris και κατεξοχήν με τον συντελεστή m ο οποίος ελέγχει ουσιαστικά την ταχύτητα της κόπωσης. Τα αποτελέσματα αυτών των κύκλων δείχνουν το αν η ρωγμή ξεκινήσει από ένα μήκος α_{th} έχει τους παραπάνω κύκλους ζωής.

Πέρα από τις μεθοδολογίες των Morrow, Smith-Watson and Topper και αυτής με το αρχικό μήκος ρωγμής, υππάρχει και αυτή των I.S.Raju και J.C. Newman,Jr. Απλά για την περίπτωσή μας, το αρχικό μήκος ρωγμής που εκτιμάται από τους παραπάνω, σε σχέση με την ακτίνα της κατασκεύης είναι μεγαλύτερο και έτσι δεν υπάρχει λόγος να εξεταστεί.

Κεφάλαιο 6. Συμπεράσματα και Προτάσεις

Συμπερασματικά, έγινε η προσπάθεια ανάλυσης ενός υπαρκτού προβλήματος της θερμομηχανικής. Στην παρούσα, λοιπόν, ανάλυση καταδεικνύεται η απουσία πειραματικών δεδομένων για τα συγκεκριμένα υλικά, ιδίως για τον συνδυασμό αυτών των δύο και την επιβολή συνδυασμένης πίεσης και θερμοκρασίας.

Η παρούσα αναλυτική λύση συνεισφέρει στον γενικότερο σχεδιασμό μιας κατασκευής και παρέχει μια φόρμουλα κλειστών λύσεων και μια εποπτεία για να προχωρήσει κάποιος στον σχεδιασμό. Έπειτα, με την χρήση των πεπερασμένων στοιχείων και την σύγκριση αυτών των δύο λύσεων καθορίζεται το πλαίσιο για το κατά πόσο πέφτουν κοντά οι λύσεις και πόσο καλά προσεγγίζεται το θέμα. Διακρίνουμε μια αδυναμία πλήρους προσέγγισης γιατί το πρόβλημα αυτό δεν μπορεί να προσεγγισατεί ικανοποιητικά ως αξονοσυμμετρικό σε δύο διαστάσεις, αλλά ανάγεται σε ορισμένα σημεία σε τρισδιάστατο θέμα.

Εν πολλοίς, η αντοχή της κατασκευής εξαρτάται από τις ατέλειες που θα δημιουργηθούν κατά την συγκόλληση, αλλά και αυτές που θα προϋπάρχουν από την κατασκευή. Κατά πόσο θα μπορέσουν να γίνουν αντιληπτές εγκαίρως και τι πλάνο συντήρησησης θα ακολουθηθεί. Ακόμη, σημαντικό ρόλο για τις κατασκευές παίζει πλέον και το κάθε πόσο θα πρέπει να σταματούν και να μπαίνουν και πάλι σε λειτουργία (switch on-off). Κάτι τέτοιο, καθώς φαίνεται, επιχειρείται για περιβαλλοντικούς κυρίως λόγους και ανεβάζει το κόστος συντήρησης, λειτουργίας και αντικατάστασης των κατασκευών.

Παράρτημα A.1. Γενική λύση της εξίσωσης ισορροπίας, της αξονοσυμμετρικής φόρτισης, κυλινδρικού κελύφους (2.58).

Διαφορική εξίσωση ισορροπίας:

$$D^{(i)}\frac{d^{4}n^{(i)}}{dx^{4}} + \underbrace{\frac{E^{(i)}H_{p''}^{(i)}}{\left(R_{p''}^{(i)}\right)^{2}}n^{(i)}}_{(a\pi\delta\,\iota\sigma\rho\rho\sigma\pi(a\,\kappa\epsilon\lambda)\phi\rho\upsilon\varsigma)} = 0$$
(A.1.1)

Ορίζουμε μία σταθερά (''κυματαριθμός''):

$$\beta^{(i)} = \left[\frac{3(1 - (\nu^{(i)})^2)}{\left(R_{p''}^{(i)} H_{p''}^{(i)}\right)^2}\right]^{1/4}$$
(A.1.2)

Σημείωση: $\beta^{(i)} > 0$, i=1,2 και γενικά $\beta^{(1)} \neq \beta^{(2)}$.

Η διαφορική εξίσωση (Α.1.1) είναι ομογενής και έχει γενική λύση, (Timoshenko,1989):

$$n^{(i)}(x) = \exp[\beta^{(i)}(x)] \left\{ C_1^{(i)} \cos\left(\beta^{(i)}(x)\right) + C_2^{(i)} \sin\left(\beta^{(i)}(x)\right) \right\} + \exp[-\beta^{(i)}(x)] \left\{ C_3^{(i)} \cos\left(\beta^{(i)}(x)\right) + C_4^{(i)} \sin\left(\beta^{(i)}(x)\right) \right\}$$
(A.1.3)

Στην περίπτωση που τα κελύφη είναι i=1,2 είναι ημιάπειρα, (όπως στην δική μας περίπτωση), $x \ge 0$, τότε η ομογενής λύση (A.1.3) απλουστεύεται στην:

$$n^{(i)}(x) = \exp\left[-\beta^{(i)}(x)\right] \left\{ C_3^{(i)} \cos\left(\beta^{(i)}(x)\right) + C_4^{(i)} \sin\left(\beta^{(i)}(x)\right) \right\}$$
(A.1.4)

Χρησιμοποιώντας τις συνθήκες φόρτισης M_0 και Q_0 , αλλά και την αρχή δράσης-αντίδρασης, η τελική λύση είναι:

$$n^{(i)}(x) = \frac{\exp[-\beta^{(i)}(x)]}{2(\beta^{(i)})^3 D^{(i)}} \Big[\beta^{(i)} M_0 \left(\sin\left(\beta^{(i)}(x)\right) - \cos\left(\beta^{(i)}(x)\right) \right) \\ - Q_0 \cos\left(\beta^{(i)}(x)\right) \Big]$$
(A.1.5)

Όπου $D^{(i)}$ η καμπτική ακαμψία του σωλήνα i=1,2:

3 Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

293

$$D^{(i)} = \frac{E^{(i)} \left(H_{p''}^{(i)}\right)^3}{12(1-(\nu^{(i)})^2)}$$
(A.1.6)

Σημείωση: $D^{(i)} > 0$ και $D^{(1)} \neq D^{(2)}$.

Στο σύνορο x = 0 η λύση είναι:

$$n^{(i)}(0) = -\frac{1}{2(\beta^{(i)})^3 D^{(i)}} (\beta^{(i)} M_0 + Q_0)$$
(A.1.7)

Η κλίση των επιφανειακών παραμορφώσεων στο σύνορο x = 0 είναι:

$$\frac{d n^{(i)}}{dx}(0) = \frac{1}{2(\beta^{(i)})^2 D^{(i)}} \left(2\beta^{(i)} M_0 + Q_0 \right)$$
(A.1.8)

Σημείωση: $\frac{d n^{(i)}}{dx}(0) \ge 0$ και $\frac{d n^{(1)}}{dx}(0) \neq \frac{d n^{(2)}}{dx}(0)$ Ενώ όταν $x \to \infty$ τότε $n^{(i)} \to 0$, οπότε και $R_{p'''} \to R_{p''}^{(i)}$

Αλλά στο $x \to 0$ η κοινή ακτίνα της συγκόλ
λησης είναι:

$$R_{p'''} = R_{p''}^{(i)} - n^{(i)}(0)$$
(A.1.9)

Mε i=1,2.

<u>Παράρτημα A.2.</u> How deep are the perturbations?

Η γενική μου λύση, για ημιάπειρες σωλήνες είναι η εξίσωση Α.1.4.:

$$n^{(i)}(x) = \exp\left[-\beta^{(i)}(x)\right] \left\{ C_3^{(i)} \cos\left(\beta^{(i)}(x)\right) + C_4^{(i)} \sin\left(\beta^{(i)}(x)\right) \right\}$$

Παραγωγίζοντας:

$$\begin{aligned} \frac{dn(x)}{dx} &= -\beta \exp\left[-\beta^{(i)}(x)\right] \left\{ C_3^{(i)} \cos\left(\beta^{(i)}(x)\right) + C_4^{(i)} \sin\left(\beta^{(i)}(x)\right) \right\} \\ &+ \exp\left[-\beta^{(i)}(x)\right] \left\{ -\beta C_3^{(i)} \sin\left(\beta^{(i)}(x)\right) + \beta C_4^{(i)} \cos\left(\beta^{(i)}(x)\right) \right\} \right\} \\ \frac{d^2 n(x)}{dx^2} &= 2\beta^2 \exp\left[-\beta^{(i)}(x)\right] \left\{ C_3^{(i)} \sin\left(\beta^{(i)}(x)\right) + C_4^{(i)} \cos\left(\beta^{(i)}(x)\right) \right\} \\ \frac{d^3 n(x)}{dx^3} &= -2\beta^3 \exp\left[-\beta^{(i)}(x)\right] \left\{ C_3^{(i)} \sin\left(\beta^{(i)}(x)\right) - C_4^{(i)} \cos\left(\beta^{(i)}(x)\right) \right\} \\ &+ 2\beta^3 \exp\left[-\beta^{(i)}(x)\right] \left\{ C_3^{(i)} \cos\left(\beta^{(i)}(x)\right) + C_4^{(i)} \sin\left(\beta^{(i)}(x)\right) \right\} \\ \frac{d^4 n(x)}{dx^3} &= -4\beta^4 \exp\left[-\beta^{(i)}(x)\right] \left\{ C_3^{(i)} \cos\left(\beta^{(i)}(x)\right) + C_4^{(i)} \sin\left(\beta^{(i)}(x)\right) \right\} \end{aligned}$$

Οι σταθερές $C_3^{(i)}$ και $C_4^{(i)}$, μπορούν να προσδιοριστούν με χρήση των συνθηκών φόρτισης στην αρχή των σωλήνων, ως:

$$C_3^{(i)} = \frac{1}{2\beta^3 D} \left(\beta^{(i)} M_0 + Q_0 \right)$$

Και

$$C_4^{(i)} = \frac{M_0}{2\beta^2 D}$$

Οπότε:

$$\frac{d^4 n(x)}{dx^3} = -4\beta^4 \exp\left[-\beta^{(i)}(x)\right] \left\{ \frac{1}{2\beta^3 D} \left(\beta^{(i)} M_0 + Q_0\right) \cos\left(\beta^{(i)}(x)\right) + \frac{M_0}{2\beta^2 D} \sin\left(\beta^{(i)}(x)\right) \right\}$$

Οι διαταραχές αρχίζουν και εξασθενούν και στη συνέχεια μηδενίζονται όταν η τέταρτη παράγωγος της ομογενούς εξίσωσης μηδενίζεται σε απόσταση x. Όπου το x εξάγεται εάν:

$$-4\beta^4 \exp\left[-\beta^{(i)}(x)\right] = 0$$

Που η εκθετική συνάρτηση δεν μηδενίζεται κάπου, άρα δεν υφίσταται κάποια λύση.

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

295

Ή εάν:

$$\frac{1}{2\beta^3 D} \left(\beta^{(i)} M_0 + Q_0\right) \cos\left(\beta^{(i)}(x)\right) + \frac{M_0}{2\beta^2 D} \sin\left(\beta^{(i)}(x)\right) = 0$$
$$\Rightarrow \tan\beta x = \frac{\beta^{(i)} M_0 + Q_0}{\beta^{(i)} M_0}$$

Οπότε,

$$x = \frac{1}{\beta} \tan^{-1} \left(1 + \frac{Q_0}{\beta^{(i)} M_0} \right)$$

Να σημειωθεί ότι η εύρεση της απόστασης x συμβαίνει μόνο στην ελαστικότητα και με την προϋπόθεση της συνέχειας, για να αποφευχθούν τυχόν απροσδιοριστίες.

Παράρτημα Α.3.

Σημείωση: οι τάσεις σ_{yy} και σ_{xy} , σ_{yx} είναι συνεχής. Οι τάσεις, όμως, σ_{xx} , $\sigma_{\theta\theta}$ δεν είναι απόλυτο ότι είναι συνεχείς. Στην δική μας περίπτωση, βέβαια, είναι.

Παράρτημα Α.5.

 $R_p = \frac{d_0}{2} - \frac{e}{2}$

Όπου,

 $H_p = e$

•••

ΔΙΕΥΘΥΝΣΗ ΜΕΛΕΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΘΕΡΜΟΗΛΕΚΤΡΙΚΩΝ ΕΡΓΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΕΡΓΩΝ

ΔΙΕΥΘΥΝΣΗ ΜΕΛΕΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΘΕΡΜΟΗΛΕΚΤΡΙΚΩΝ ΕΡΓΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΕΡΓΩΝ

ΑΤΜΟΠΑΡΑΓΩΓΟΣ ΥΠΟ ΕΞΕΤΑΣΗ

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

ΠΛΗΡΟΦΟΡΙΕΣ ΠΡΟΒΛΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ 2

Δύο αυλοί ατμού, κατασκευασμένοι από κράματα διαφορετικού συντελεστή θερμικής διαστολής συγκολλούνται με περιφερειακή ραφή:

	KPAMA 1 (max α - 10 ⁻⁶ K ⁻¹)	ΚΡΑΜΑ 2 (max α - 10 ⁻⁶ K ⁻¹)	ΘΕΡΜΟΚΡΑΣΙΑ ΑΤΜΟΥ ([°] C)	ΠΙΕΣΗ ΑΤΜΟΥ (bar)
RH2	X10CrMoVNb9-1	X10CrNiCuNb18-9-3	506	53,1
IN	(≃ 12)	(~ 18)		
SH2	X10CrMoVNb9-1	X10CrNiCuNb18-9-3	436	268,3
IN	(≃ 12)	(~ 18)		

- Σωλήνας εισόδου υπερθέρμου (SH2): 44,5 X 6,3 mm,
- Σωλήνας εισόδου αναθέρμου (RH2): 60,3 X 3,6 mm

Λεπτομέρεια συγκόλλησης αυλών υπερθέρμου (SH2):

Λεπτομέρεια συγκόλλησης αυλών αναθέρμου (RH2):

ΜΗΧΑΝΙΚΕΣ – ΘΕΡΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΚΡΑΜΑΤΩΝ

X10CrNiCuNb 18-9-3 (Steel grade no. 1.4907)

VdTÜV-Werkstoffblatt WB550 12.2012

9.1.1 Values of tensile test at storage condition acc. to DIN EN ISO 6892-1

Type of	Type of Orientation of		R _{p1,0}	R _m	A
manufacture	manufacture Probe		[MPa]	[MPa]	[%]
All	longitudinal	235	270	590 bis 850	35

9.1.2 Values of tensile test at higher temperature acc. to DIN EN ISO 6892-2

				Т	emper	atur [°C]			
Value	100	100 200 300 400 500 550 600 650 [MPa]								
R _{p0,2}	205	180	170	160	150	145	140	135	135	125
R _{p1,0}	230	205	195	185	175	170	165	160	160	150
Rm	530	490	485	480	455	440	405	370	320	280

9.2.3 Modulus of Elasticity (dynamic) The given values are reference values

Temperature [°C]	20	100	200	300	400	500	600	700	750
E-Module [GPa]	189	182	174	165	156	149	141	134	130

9.2.4 Average linear coefficient of expansion (Referencetemperature 20 °C)

Between 20 [°C] and[°C]	100	200	300	400	500	600	700	750
Coefficient of expansion [10 ⁻⁶ · K ⁻¹]	16,4	17,1	17,5	17,8	18,1	18,4	18,6	18,7

X10CrMoVNb9-1 (Steel grade no. 1.4903)

Steel gra	Steel grade			Tensile properties at room temperature										
Steel name	Steel	U	pper yield stren R _{eH} or R _{p0,2} fo	Tensile strength Rm	Elongation A min.									
	number	T ≤ 16	16 < T ≤ 40	40 < T ≤ 60	60 < T ≤ 100		I.	t						
		MPa ⁹	MPa ⁹	MPa ⁹	MPa ⁹	MPa ⁹								
X10CrMoVNb9-1	1.4903	450	450	450	450	630 to 830	19	17						

Table 5 — Minimum proof strength Rp0.2 at elevated temperature

Steel g	Irade	Wall thickness				Mini	mum pro	oof strer	ngth Rpp.	, MPa			
		mm					at a te	mperate	ure of °C		-		-
Steel name	Steel number		100	150	200	250	300	350	400	450	500	550	600
X10CrMoVNb9-1	1 4903	< 100	410	395	380	370	360	350	340	320	300	270	215

Steel Designation Densi				Modulus of elasticity at					Mean coefficient of thermal expansion between 20 °C and						
			20.10	100 °C	200 °C	300 °C	400 °C	500 °C	600 °C	100 °C	200 °C	300 °C	400 °C	500 °C	600°C
		1922 3	20 0	1.000	1	CPa		·				10-4	* K ⁻¹		
Name	Number	kg/dm*	20 0			GPa			1		1.000	10-4	x K ⁻¹	123	126

Thermal conductivity 20°C -> 26 W/m°C

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΠΛΟΠΟΙΗΜΕΝΟΥ ΘΕΡΜΟ-ΜΗΧΑΝΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ

- Ελαστική πλαστική παραμόρφωση κραμάτων με μεταβαλλόμενες με την θερμοκρασία μηχανικές και θερμικές ιδιότητες.
- Αύξηση εσωτερικής πίεσης (-εξωτερική ατμοσφαιρική) αυλού από 0 bar στην προδιαγεγραμμένη πίεση ατμού.

ΕΠΙΔΙΩΚΟΜΕΝΟ ΑΠΟΤΕΛΕΣΜΑ

- 1. Υπολογισμός θερμικών τάσεων.
- 2. Εκτίμηση ανάπτυξης ρωγμών.

<u>Ο υπολογισμός πίεσης-θερμοκρασίας εισόδου υπερθέρμου 2 (SH2) είναι δυνατόν να γίνει κάνοντας την ακόλουθη παραδοχή (η οποία επαρκεί για υπολογισμούς θερμικών τάσεων ελαστο-πλαστικού υλικού, χωρίς ιξώδη συμπεριφορά):</u>

T_{SH2 INLET} = T_{HP OUTLET} *(436/603) ^OC

 $P_{SH2 \, INLET} = P_{HP \, OUTLET} * (268,3/258) bar (διαφορά πίεσης, μείον την εξωτερική ατμοσφαιρική πίεση)$

<u>Ο υπολογισμός πίεσης-θερμοκρασίας εισόδου αναθέρμου 2 (RH2) είναι δυνατόν να γίνει κάνοντας την ακόλουθη παραδοχή (η οποία επαρκεί για υπολογισμούς θερμικών τάσεων ελαστο-πλαστικού υλικού, χωρίς ιξώδη συμπεριφορά):</u>

 $T_{RH2 \text{ INLET}} = T_{RH \text{ OUTLET}} * (506/610) ^{\circ}C$

P_{RH2 INLET} = P_{RH OUTLET} *(53,1/52,3) bar (διαφορά πίεσης, μείον την εξωτερική ατμοσφαιρική πίεση)

Την χρονική στιγμή t=0 min:

 $T_{SH2 \text{ INLET}} = T_{RH2 \text{ INLET}} = 100 \,^{\circ}\text{C}$

P_{SH2} INLET = P_{RH2} INLET = 0 bar

<u>Την χρονική στιγμή t=1100 min</u>

T_{SH2 INLET} = 436 °C

P_{SH2 INLET} = 268,3 bar

T_{RH2 INLET} = 506 °C

P_{SH2 INLET} = 53,1 bar

Παράρτημα Α.7.

Μεταβολή ακτίνας σωλήνα υπερθέρμου, SH2:

Μεταβολή ακτίνας σωλήνα αναθέρμου, RH2:

Παράρτημα Α.7.

Σύμφωνα με τη μέθοδο του Morrow:

a. Για b=0.0762

11	13		N	Aaterial	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	srr	91.6377		
187.887	93.9435	93.9435	syy	SXX	-168.839		
			SZZ	sӨӨ	187.887		
R	А		szxy	srx	-23.3534		
0	1						
				şα	322.2093774		
şf	150						
				şm	55.34285		
				σ ar	510.5943567		
				şm/şf	0.368952333	>0	
				Nf	4790680.293		

12	3			Material	1	2	welding
				κόμβος		239	
			SXX	srr		-2186.6	
			syy	SXX		-120.348	
			SZZ	sӨӨ		-1518.07	
R	А		szxy	srx		205.559	
0	1						
				şα		1860.5756	
Δσ	σM	σα					
1726.58	863.29	863.29		şm		-1912.509	
şf	75			σ ar		70.210084	
					şm/şf	-25.50012	<0
			1	Nf	Δεν	υφίσταται ο	τύπος

13	33			Material	1	2	welding
		_		κόμβος	1		
Δσ	σM	σα	sxx	srr	-147.824		
187.457	93.7285	93.7285	syy	SXX	91.393		
			SZZ	sθθ	187.457		
R	А		szxy	srx	-23.3759		
0	1						
				şα	301.7822148		
şf	150						
				şm	65.513		

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

	σ ar	535.7905029	
	şm/şf	0.436753333	>0
Ν	lf	9014149.541	

2	13			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	SXX	srr	115.276		
330.605	165.3025	165.3025	syy	SXX	1.92842		
			SZZ	sθθ	330.605		
R	А		szxy	Srx	44.4088		
0	1						
				şα	299.2285042		
şf	150						
				şm	223.90471		
					-		
				σ ar	607.3263211		
				şm/şf	1.492698067	>0	
				Nf	46686472.42		

22	23			Material	1	2	welding
				κόμβος		5	
			SXX	srr		-4780.55	
		syy	SXX		-1276.72		
		SZZ	sθθ		-2890.53		
R	А		szxy	Srx		1549.15	
0	1						
				şα		3673.4694	
Δσ	σM	σα					
4052.94	2026.47	2026.47		şm		-2083.625	
şf	78			σar		132.55334	
					şm/şf	-26.71314	<0
			Nf		Δεν	υφίσταται ο	τύπος

2	33			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	SXX	srr	154.184		
329.467	164.7335	164.7335	syy	SXX	1.8372		
			SZZ	sθθ	329.467		
R	А		szxy	Srx	44.3685		
0	1						
				şα	294.1822107		
şf	170						
				şm	242.7441		

σ	σar	-687.491849	
şn	şm/şf	1.427906471	>0
Nf		45969429.45	

b. Για b=0.12

1:	13		N	Aaterial	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	SXX	91.6377		
187.887	93.9435	93.9435	syy	srr	-168.839		
			SZZ	sӨӨ	187.887		
R	А		szxy	srx	-23.3534		
0	1						
				şα	322.2093774		
şf	150						
				şm	55.34285		
				σar	510.5943567		
				şm/şf	0.368952333	>0	
				Nf	13557.39553		

12	3			Material	1	2	welding
		-		κόμβος		239	
			SXX	SXX		-2186.6	
			syy	srr		-120.348	
			SZZ	sθθ		-1518.07	
R	А		szxy	STX		205.559	
0	1						
				şα		1860.575649	
Δσ	σM	σα					
1726.58	863.29	863.29		şm		-1912.509	
şf	75			σ ar		70.21008392	
					şm/şf	-25.50012	<0
				Nf	Δεν υφίσταται ο τύπος		

13	33			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	SXX	-147.824		
187.457	93.7285	93.7285	syy	srr	91.393		
			SZZ	sθθ	187.457		
R	А		szxy	Srx	-23.3759		
0	1						
				şα	301.7822148		
şf	150						
				şm	65.513		
				σ ar	535.7905029		
				şm/şf	0.436753333	>0	
				Nf	20253.55545		

2	13			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	SXX	SXX	115.276		
330.605	165.3025	165.3025	syy	srr	1.92842		
			SZZ	sθθ	330.605		
R	А		szxy	srx	44.4088		
0	1						
				şα	299.2285042		
şf	150						
				şm	223.90471		
					-		
				σar	607.3263211		
				şm/şf	1.492698067	>0	
				Nf	57551.99396		

22	23			Material	1	2	welding
				κόμβος		5	
			sxx	SXX		-4780.55	
			syy	srr	srr		
			SZZ	sӨӨ		-2890.53	
R	А		szxy	srx		1549.15	
0	1						
				şα		3673.469388	
Δσ	σM	σα					
4052.94	2026.47	2026.47		şm		-2083.625	
şf	78			σar		132.5533394	
					şm/şf	-26.713141	<0
				Nf Δεν υφίσταται ο τύπος			

2	33			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	SXX	154.184		
329.467	164.7335	164.7335	syy	srr	1.8372		
			SZZ	sӨӨ	329.467		
R	А		szxy	srx	44.3685		
0	1						
				şα	294.1822107		
şf	170						
				şm	242.7441		
				σ ar	-687.491849		
				şm/şf	1.427906471	>0	
				Nf	56989.1184		

Σύμφωνα με τη μέθοδο των Smith-Watson and Topper:

с. Гиа b=0.0762

11	L3			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	srr	91.6377		
187.887	93.9435	93.9435	syy	SXX	-168.839		
			SZZ	sӨӨ	187.887		
R	А		szxy	srx	-23.3534		
0	1						
				şα	322.2093774		
şf	150						
				şm	55.34285		
				σ ar	348.7848451		
				şm/şf	0.368952333	>0	
				Nf	32228.46738		

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

	şm/şf	-25.5001	<0
Nf	Δεν	<mark>υφίσταται ο τ</mark>	τύπος

13	33			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	srr	-147.824		
187.457	93.7285	93.7285	syy	SXX	91.393		
			SZZ	sӨӨ	187.457		
R	А		szxy	SrX	-23.3759		
0	1						
				şα	301.782		
şf	150						
				şm	65.513		
				σar	332.931		
				şm/şf	0.43675	>0	
				Nf	17502.8		

2	13			Material	1	2	welding
				κόμβος	1]	
Δσ	σM	σα	sxx	srr	115.276		
330.605	165.3025	165.3025	syy	SXX	1.92842		
			SZZ	sθθ	330.605		
R	А		szxy	srx	44.4088		
0	1						
				şα	299.2285042		
şf	150						
				şm	223.90471		
				σar	395.6467733		
				şm/şf	1.492698067	>0	
				Nf	168555.8683		

22	23			Material	1	2	welding
				κόμβος		5	
			sxx	srr		-4780.55	
		syy	SXX		-1276.72		
			SZZ	sθθ		-2890.53	
R	А		szxy	SIX		1549.15	
0	1						
				şα		3673.469	
Δσ	σM	σα					
4052.94	2026.47	2026.47		şm		-2083.63	
şf	78			σ ar		2416.66	
					şm/şf	-26.7131	<0
			Nf Δεν υφίσταται ο τύτ			τύπος	

Ανάλυση τάσεων-παραμορφώσεων συγκόλλησης

2	33			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	srr	154.184		
329.467	164.7335	164.7335	syy	SXX	1.8372		
			SZZ	sθθ	329.467		
R	А		szxy	SIX	44.3685		
0	1						
				şα	294.182		
şf	170						
				şm	242.744		
				σ ar	397.434		
				Nf	34600.6		

d. Για b=0.12

11	L3			Material	1	2	welding
		-		κόμβος	1		
Δσ	σM	σα	sxx	srr	91.6377		
187.887	93.9435	93.9435	syy	SXX	-168.839		
			SZZ	sӨӨ	187.887		
R	А		szxy	Srx	-23.3534		
0	1						
				şα	322.2094		
şf	150						
				şm	55.34285		
				σ ar	348.7848		
				şm/şf	0.368952	>0	
				Nf	566.0519		-

12	3			Material	1	2	welding
				κόμβος		239	
			SXX	SXX		-2186.6	
			syy	srr		-120.348	
			SZZ	sθθ		-1518.07	
R	А		szxy	Srx		205.559	
0	1						
				şα		1860.575649	
Δσ	σM	σα					
1726.58	863.29	863.29		şm		-1912.509	
şf	75			σ ar			
					şm/şf	-25.50012	<0
	Νf Δεν υφίσταται ο τύπος						ύπος

13	33			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	SXX	-147.8		
187.457	93.7285	93.7285	syy	srr	91.393		
			SZZ	sθθ	187.46		
R	А		szxy	srx	-23.38		
0	1						
				şα	301.78		
şf	150						
				şm	65.513		
				σar	332.93		
				şm/şf	0.4368	>0	
				Nf	384.15		-

2	13			Material	1	2	welding
				κόμβος	1		
Δσ	σM	σα	sxx	SXX	115.276		
330.605	165.3025	165.3025	syy	srr	1.92842		
			SZZ	sθθ	330.605		
R	А		szxy	srx	44.4088		
0	1						
				şα	299.2285		
şf	150						
				şm	223.9047		
				σ ar	395.6468		
				şm/şf	1.492698	>0	
				Nf	1618.477		

22	23			Material	1	2	welding
				κόμβος		5	
			SXX	SXX		-4780.55	
		syy	srr		-1276.72		
			SZZ	sθθ		-2890.53	
R	А		szxy	SrX		1549.15	
0	1						
				şα		3673.469388	
Δσ	σM	σα					
4052.94	2026.47	2026.47		şm		-2083.625	
şf	78			σ ar		2416.659821	
						-	
					şm/şf	26.71314103	<0
				Nf	Δεν υφίσταται ο τύπος		

2	33			Material	1	2	welding
		-		κόμβος	1		
Δσ	σM	σα	sxx	SXX	154.18		
329.467	164.7335	164.7335	syy	srr	1.8372		
			SZZ	sθθ	329.47		
R	А		szxy	Srx	44.369		
0	1						
				şα	294.18		
şf	170						
				şm	242.74		
				σar	397.43		
				Nf	592.16		

Παράρτημα Α.8.

Material (steels)	b(-)	σ _γ (Mpa)	σu (Mpa)
AISI (normalized)	-0.14	227	415
Man-Ten (hot rolleed)	-0.115	322	557
RQC-100 (rolledQ&I)	-0.0648	683	758
AISI 4142 (Q&T,450 HB)	-0.0762	1584	1757
AISI 4340 (aircraft quality)	-0.0977	1103	1172

Παράρτημα Α.9.

<u>Παράρτημα Α.10.</u> Σκληρομέτρηση Vickers

a) Μακροσκοπική κατάσταση8 σειρές / κυκλικό έλεγχο

16 / σειρά

b) Τοπικά γύρω από την συγκόλληση
9 σειρές / κυκλικό έλεγχο

8 / σειρά

c) Κοπή κατά την περίμετρο της συγκόλλησης και στο μέσον αυτής
 3 σειρές / κυκλικό έλεγχο

8 / σειρά

- d) Κοπή κατά μήκος των σωληνώσεων (σε 4 τεταρτημόρια)
 2 σειρές / τεταρτημόριο
- 3 στην συγκόλληση

4 σε κάθε σωλήνα

Μέτρηση καμπυλοτήτων μετά την κοπή

Βιβλιογραφία:

- 1. A. Agramal and A.M. Karlsson, 2006. Obtaining mode inixity for a biomaterial interface crack using the virtual crack closure technique. Int. Journal of Fracture. Vol: 141:75-98.
- 2. J.H. Argyris, J. Szimmat, K.J. William, 1982. Computational Aspects of Welding stress Analysis, Computer Methods in Applied Mevhanics and Engineering, vol. 33, Issues 1-3, pp. 635-666.
- 3. M.F. Ashby, 1992. Physical modelling of materials problems. Material Science and Technology, 8:102-111.
- 4. L. Börjesson and L.E. Lindgren, 2001. Simulation of multipass welding with simultaneous computation of material properties, appear in ASME J. Eng. Mater. & Technol., vol.123, pp. 106-111.
- 5. B.A. Boley and J.H. Weiner, 1960. Theory of Thermal Stresses. J. Wiley.
- 6. S. Brown and H. Song, 1992. Implications of three-dimensional numerical simulations of welding of large structures, Welding Journal, vol. 114, pp. 55s-62s.
- 7. S. Brown and H. Song, 1993. Rezoning and dynamic substructuring techniques in FEM simulations of welding processes, J. Eng. for Industry, vol. 115, pp. 415-422.
- 8. J. Cañas, R. Picón, F. Paris, J.I. Del Rio, 1996. A one-dimensional model for the prediction of residual stress and its relief in welded plates. International Journal of Mechanical Sciences, vol. 38, Issue 7, pp.735-751.
- 9. U. Chandra, 1985. Determination of residual stresses due to girth butt welds in pipes. Transactions of ASME, Journal of Pressure Vessel Technology, 107:178-184.
- 10. E. Charkaluk, A. Bignonne, A. Constantinescu and Dang Van K., 2002. Fatigue design of structures under thermomechanical loadings. Fatigue and Fracture of engineering materials and structures, Prentice Hall.
- 11. Y. Chen and I.C. Sheng, 1992. Residual stress in weldment. Journal of Thermal Stresses. 15:53-69.
- 12. S. Denis, E. Gautier, A. Simon & G. Beck, 1985. Stress-phase-transformation interactions - basic principles, modelling, and calculation of internal stresses, Materials Science and Technology, vol. 1, pp. 805-814.
- 13. N.E. Dowling, 1993. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fractures and Fatigue, Prentice Hall.
- 14. M.H. El Haddad, K.N. Smith and T.H. Topper, 1979. Fatigue crack propagation of short cracks, Journal of Enginnering Materials and Technology. Vol:101:42-46.
- 15. Z. Feng, 1994. A computational analysis of thermal and mechanical conditions for weld solidification cracking. Welding in the world. 33:340-347.
- 16. F.D. Fischer, G. Reisner. E. Werner, K. Tanaka, G. Gaillenand and T. Antretter, 2000. A new view on transformation induced plasticity (TRIP). Int. J. Plastisity, 16:723-748.

- E. Friedman, 1975. Thermomechanical analysis of welding process using finite element method. Transactions of ASME Journal of Pressure Vessel Technology, 97:206-213.
- 18. J. Goldak, M. Biddy, I. Moore, R. House and B. Patel, 1986. Computer modeling of heat flow in welds. Metallurgical Transactions B,17B:578-600.
- 19. H. Granjon, 1991. Fundamentals of Welding Metallurgy, Abington Publishing, Cambringe.
- 20. H.D. Hibbitt and P.V. Marcal, 1973. A Numerical Thermo-Mechanical Model for the Welding and Subsequent Loading of a Fabricated Structure, Computers & Structures, vol.3, pp.1145-1174.
- 21. J.K. Hong, C.L. Tsai and P.Dong, 1988. Assessment of numerical procedures for residual stress analysis of multipass welds, Welding Journal, 77:372s-382s.
- 22. B.K. Jones, A.F. Emery and J. Marburger, 1993. An analytical and experimental study of the effects of welding parameters on fusion welds, Welding Journal, 72: 515-595.
- 23. J.B. Leblond and J. Devous, 1984. A new kinetic model for anisothermal metallurgical transformation in steels including effects of austenite grain size. Acta Metallurgica, 32: 137-146.
- B.N. Leis, 1985. Displacement controlled fatigue crack growth in inelastic notch fields: Implications for short cracks. Engineering Fracture Mechanics. Vol.22:279-293.
- 25. L.E. Lindgren, H.D. Häggblad, J. M. J. McDill and A.S. Oddy, 1997. Automatic remeshing for three-dimensional finite element simulation of welding, Computer Methods in Applied Mechanics and Engineering, vol. 147, pp. 401-409.
- 26. L.E. Lindgren, 2001. Finite Element Modeling and simulation of Welding Part 1: Increased Complexity, Journal of Thermal Stresses, 24:2, 141-192, DOI: 10.1080/01495730150500442.
- L.E. Lindgren, 2001. Finite Element Modeling and simulation of Welding Part 2: Improved Material Modeling, Journal of Thermal Stresses, 24:3, 195-231, DOI: 10.1080/014957301300006380.
- L.E. Lindgren, 2001. Finite Element Modeling and simulation of Welding Part 3: Efficiency and Integration, Journal of Thermal Stresses, 24:4, 305-334, DOI: 10.1080/01495730151078117.
- 29. L.E. Lindgren, H. Runnemalm and M. Näsström, 1999. Numerical and experimental investigation of multipass welding of a thick plate. Int. Journal for Numerical methods in Engineering, 44:1301-1316.
- K.W. Mahin, W. Winters, T. M. Holden, R. R. Hosbons and S. R. MacEwen, 1991. Prediction and measurements of residual elastic strain distributions in gas tungsten arc welds, Welding Journal, vol. 70, no. 9, pp. 245s-260s.
- 31. K. Masubuchi Analysis of Welded Structures Pergamon Press.
- 32. P. Michaleris and A. DeBiccari, 1997. Prediction of welding distortion, Welding Journal, 76:172s-181s.

- 33. Y.V.L.N. Murty, G. Venkata Roo and P. Krishna Iyel, 1996. Numerical simulation of welding and quenching processes using transient and thermo-elasto-plastic formulations. Computers and Structures, 60:131-154.
- A.S. Oddy, J.M. McDill, 1999. Burn through prediction pipeline welding. Int. Journal of Fracture. 97:249-261.
- 35. A.S. Oddy, J.M. McDill and L. Karlsson, 1996. Microstructural predictions including arbitrary thermal histories reanterization, and carbon segregation effects. Can. Metallurgical Q. 35:237-283.
- 36. V.J. Papazoglou and K. Masubuchi, 1982. Numerical Analysis of thermal stresses during welding including phase transformation effects. ASME J. Pressure Vessel Technology, 104: 198-203.
- 37. P. Paris and F. Erdogan, 1963. A critical analysis of crack propagation laws. Journals of Engineering. Vol:85: 528-533.
- 38. G. Ravichandran, V. P. Raghupathy, N. Ganesan and R. Krishnakumar, 1997. Prediction of axis shift distortion during circumferential welding of thin pipes using the finite element method, Welding Journal, January, pp. 39s-55s.
- 39. J. Ronda and G.J. Oliver, 2000. Consistent thermo-mechano-metallurgical model of welded steel with unified approach to derivation of phase evolution laws and transformation included plasticity. Computer Methods in Applied Mechanics and Engineering. 189:361-418.
- 40. D. Rosenthal, 1941. Mathematical Theory of Heat Distribution during Welding and Cutting, Welding Journal, vol. 20, pp. 220-234.
- 41. H. Runnemalm and S. Hyun, 2000. Three-dimensional welding analysis using an adaptive mesh scheme, Computer Methods in Applied Mechanics and Engineering, vol. 189, pp. 515-523.
- 42. E.F. Rybicki, R.B. Stonesifer and R.J. Olson, 1981. Stress intensity factors due to residual stresses in thin-walled girth-welded pipes. ASME J. Pressure Vessel Technoly. 103:66-75.
- 43. I. Ryohei, O. Shigetaka & M. Masahito, 2017. Numerical analysis of residual stress distribution generated by welding after surface machining based on hardness variation in surface machined layer due to welding thermal cycle, Welding International, 31:2, pp.111-121, DOI: 10.1080/09507116.2016.1223202.
- 44. I.C. Sheng and Chen, 1992. Modeling welding by surface heating, ASME Journal of Engineering Materials and Technology, 114:439-449.
- 45. M. Shibahara, H. Serizawa and H. Murakawa, 1999. Finite element method for hot cracking using temperature dependent interface elements, JWRI, 28:47-53.
- 46. J.C. Simo and T.J.R. Hughes, 1997. Computational Inelasticity, Springer Verlag.
- 47. K.N. Smith, P. Watson and T.H. Topper , 1970. A stress-strain function for the fatigue of metals. Journal of Materials, vol.4: 767-778.
- 48. Y. Sugimura, L. Grondin and S. Suresh, 1995. Fatigue crack growth at arbitrary angles to biomaterial interfaces. Script Metallurgica et Materialia. Vol:33:2007-2012.
- 49. S. Suresh, 1998. Fatigue of Materials, 2nd ed. Cambridge University Press.
- 50. S. Suresh and R.O. Richie, 1984. Propagation of short fatigue cracks. Int. Materials Reviews. Vol.29:445-475.
- 51. S. Suresh, Y. Sugimura and Tschegg, 1992. The growth of a fatigue crack approaching a perpendicularly-oriented, biomaterial interface. Script Metallurgica et Materialia. Vol.
- 52. B. Taljat, B. Radhakrishnan, T. Zacharia, 1997. Numerical analysis of GTA welding process with emphasis on post-solidification phase transformation effects on residual stresses. Materials Science and Engineering A, vol. 246, pp. 45-54.
- 53. L. Tall, 1964. Residual stresses in Welded plates-a theoretical study, Welding Journal, 43:10s-23s.
- 54. K. Abdel-Tawab, A.K. Noor, 1999. Uncertainty analysis of welding residual stress fields. Computer methods in applied mechanics and engineering, vol. 179, pp. 327-344.
- 55. P. Tekriwal, J. Mazumder, 1988. Finite Element Analysis of Three-Dimensional Transient Heat Transfer in GMA Welding. Welding research supplement, vol. 67, pp. 150-156.
- 56. S.P. Timoshenko, S. Woinowsky-Krieger, Second Edition. 1989. Theory of Plates and Shells, Mc Graw-Hill International Editions.
- 57. S. Vaidyanathan, A.F. Todaro and I. Finie, 1973. Residual stresses due to circumferential welds. Transactions of ASME Journal of Engineering Materials and Technology, 95:233-237.
- 58. S. Vaidyanathan, H. Weiss and I. Finnie, 1973. A further study of residual stresses in circumferential welds. Transactions of ASME Journal of Engineering Materials and Technology, 95:238-242.
- 59. A.G. Varias and A.R. Massih, 2002. Hydride-induced embrithement and fracture in metals-effect of stress and temperature distribution. Journal of the Mechanics and Physics of Solids, vol. 50: 1469-1510.
- 60. A.G. Varias, N.P. O'Dowd, R.J. Asaro and C.F. Shih, 1990. Failure of biomaterial interfaces. Materials Science and Engineering. A.126:65-93.
- 61. Z.Wang and T. Inoue, 1985. Viscoplastic constitutive relation incorporating phase transformation-application to welding. Materials Science and Technology, 1:899-903.
- 62. L.Wikander, L. Karlsson, M. Näsström and P. Webster, 1994. Finete element simulation and measurement of welding residual stresses. Modelling Simulation Material Science, Eng.2: 845-864.
- 63. D. Ye, O. Hertel and M. Varmumald, 2008. A unified expression of elastic-plastic notch stress-strain calcucation in bodies subjected to multiaxial cyclic loading. Int. Journal of Solids and Structures, vol. 45: 6177-6189.
- 64. Zhigang Wang & T. Inoue, 1985. Viscoplastic constitutive relation incorporating phase transformation application to welding. Materials Science and Technology, vol. 1, pp.899-903.