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1 Introduction 

 

The transportation of cargo in containers first started in the 19th century, but it was 

not until the 1951 that the first containership was built. Due to lack of standardisation, 

containers had many different sizes and corner fittings from one country to another. In 

the 1970s the International Standardisation Organisation (ISO) caused the revolution 

in international intermodal transportation by launching the standardised TEU. Today 

containerised cargo represents about 90% of non-bulk cargo. Because of their 

relatively high speed and safety of cargo, containerships are chosen to transport many 

goods, from electronics to luxury yachts or even cars. 

The increase in demand for products to be transported led to the growth of size of 

containerships. Although ten years ago the biggest carried about 6000 TEU the 

economic boom of the freight market led the shipowners to order much bigger ships 

creating the category of post panamax containerships. Many vessels can carry even 

10000 TEU with the biggest one, Emma Maersk, being able to carry over 14500TEU. 

It is also said that the growth will only be restricted by the size of Malacca straits, a 

very busy shipping lane which links Indian with Pacific Ocean, creating a new 

category of ship size, the so-called Malaccamax. The dimensions of these ships may 

be about 470m length and 60m width. 

Post panamax containerships were the first of that type of vessels to face the 

problem of parametric rolling. This term was used to describe the phenomenon of 

parametric resonance of a ship resulting in large roll angles. Because of the 

continuous resonance, severe roll motion causes large accelerations resulting in 

damage or even loss of cargo, machinery failure, structural damages and even 

capsizing. 

Parametric rolling is not a new phenomenon for the scientific community. Back in 

1955 J.E Kerwin published a paper indicating the danger of unstable roll motion in 

longitudinal waves. Until recently researchers considered only some small ships with 

marginal stability to be susceptible to parametric rolling. In October 1998 a post 

panamax containership heading from Taiwan to Seattle encountered a severe storm 

which lasted about 11 hours. During the most intense parts of the phenomenon, roll 

 5



angles of 35-40 degrees were reported combined with extreme pitching. The result of 

this incident was the loss of 400 containers and serious damage to another 400. The 

economic casualty was about $100 millions. Figures 1 and 2 depict some of the 

damaged containers indicating the severity of the phenomenon. 

 

 

 
Figure1: Photo of the side of APL China. 

 
Figure 2: Photo of the stern of APL China. 

As it will be analytically described in the next chapter, the main cause of 

parametric rolling is the large fluctuation of stability occurring in longitudinal waves 

combined with the encounter frequency. The hullform, more specifically bow flare 
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and flat transom, is the cause of this fluctuation occurring when the ship is on wave 

crest and then on a wave trough. When on a wave crest the waterplane area is 

dramatically reduced causing loss of transverse stability. The opposite phenomenon 

happens when the ship is on a wave trough. If this fluctuation happens twice within a 

wave period, the ship may face parametric rolling. 

Summarizing we could say that parametric roll happens when a combination of 

environmental, operational and design parameters occur. Concerning the 

environmental wavelength should be comparable to ship length and wave height 

should be rather large. Additionally the encounter frequency has to be twice the roll 

natural frequency. The operational parameters involve the sailing of the ship with a 

small heading angle to the wave direction and the loading of the ship which can result 

in marginal stability. As we will see in chapter 5 the design parameter that plays a 

very significant role is roll damping. 
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2 Critical review 

 

2.1 Introduction 

 
During past years several scientists suggested mathematical models in order to 

study and predict parametric rolling. Most of them focused on finding a precise model 

taking into account only roll motion with the majority of them using Mathieu 

equation. In later years several modeling improvements were introduced: the 

nonlinearity in restoring and/or damping were considered by a number of researchers. 

It has been known that if restoring and/or damping are nonlinear then stable 

oscillations may exist. The nonlinearity may in fact be beneficial, impeding capsize 

by ‘arresting’ the growing oscillation incurred at an instability point. Remarkably, this 

can happen although the nonlinear system may process less restoring at similar angles 

because the change in restoring causes de-tuning from resonance. 

Fewer tried to couple two or more motions of the ship in order to simulate the 

behavior on seas which could cause parametric resonance. In the pages below most 

important of these works are presented so that the reader understands the positive and 

negative points of each and compare them with the one used in the current thesis. 

 

2.2 A note on low cycle resonance of a ship in severe following waves (M. 

Hamamoto Osaka University) 

 

This one degree of freedom model begins its study with the pendulum based 

equation:  

                                             ( )                       (2.2.1) ( , ) 0X X GI J W GZφφ φ ξ φ+ + Κ + ⋅ =�
�� �

 

 
with W being  the weight of the ship and GZ(ξ,φ) righting arm of rolling angle φ and 

the relative position of ξ of ship to waves. 

Much effort is made by the author to find a good approximation of the GZ 

which depends on not only ξ and φ but the hullform, metacentric height GM, wave 

length λ, and wave height H making it almost impossible to describe the complete 

expression of GZ with analytical function. 
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With some calculations in order to approximate GZ curve and some 

manipulations in order to linearize the equation, the author gets to the Mathieu 

equation: 

                                  
2 22

2 1 cos 0e eT ad GM
d T GM

τ
τ π

⎡ ⎤Φ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + Φ⎢ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=⎥                   (2.2.2) 

by using the following relations: 

                                              ( ) ( ) ea tt t eφ −= Φ ⋅ etτ ω=                                           (2.2.3) 

where  is the effective extinction coefficient and T the natural period. This equation 

is a linear differential equation which has the presence of a time-dependent coefficient 

of the rolling motion variable Φ. The solutions to Mathieu’s equation have a property 

of considerable importance in ship rolling problems in that for certain values of the 

period, the solution is unstable. This implies that if the rolling motion takes place in 

an unstable region, the amplitude will grow up. 

ea

The comparison of the results of the numerical solution of the linear model and 

a non-linear one (concerning the GZ curve) follows. The two of them are then 

compared to some experimental results where it is obvious that the non-linear model 

is much more precise than the non-linear one. 

 

2.3 A mathematical model of ship motions leading to capsize in astern waves 

(Masami Hamamoto, Abdul Munif) 

 

A mathematical model used in prediction of ships motions leading to capsize in 

astern waves was developed on the basis of a strip method. The authors suggest a 

model which on one hand couples heave and pitch motions while on the other hand 

couples sway, yaw and roll motions. Taking into account the variation of metacentric 

height in the roll motion the model becomes: 

 

Combined motions of heave and pitch 

( ) cos sin

( ) cos sin
GG

GG G

z G G G C e S e

yy yy G G G C e S e

m m Z Z Z Z Z t t

I J M t M t

ζ θζ θ θ

θ ζθ ζ ζ

ζ ζ ζ θ θ θ ω ω

θ θ θ ζ ζ ζ ω ω

+ + + + + + = Ζ + Ζ                   (2.3.1)

+ + Μ + Μ + Μ + Μ + Μ = +      (2.3.2)

� �� �

� �� �

�� � �� �

�� � �� �
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Combined motions of sway, yaw and roll 

( ) cos sin

( ) cos sin
G

G G

y G G C e S e

zz zz G G C e S e

m m Y Y Y Y Y Y t t

I J t t
η ψ ψ ψφ φ

ψ ψ η η φ φ

η η φ φ ψ ψ ψ ω ω

ψ ψ ψ η η φ φ ω ω

+ + + + + + + = Υ + Υ                 (2.3.3)

+ + Ν + Ν + Ν + Ν + Ν + Ν = Ν + Ν     (2.3.4)

�� �� �� �

�� �� �� �

�� ��� � �� �
�� ��� � �� �

 

( ) 01 cos( )

cos sin

G Gxx xx e G G

C e S e

GMJ W GM t k K K K
GM

K K K t K t

η η ψφ

ψ ψ

φ φ ω ξ φ η η ψ

ψ ψ ω ω

⎡ ⎤Δ
Ι + + Κ + + − + + + +⎢ ⎥

⎣ ⎦
+ = +                                                                            (2.3.5)

� �� � ��

�

�� � �� � ��

�
 

where the hydrodynamic and hydrostatic coefficients are obtained from the ordinary 

strip method and the metacentric height taking into account the variation of righting 

moment in waves given by the equivalent linearization. It should be noted that the last 

equation regarding roll is a linear differential equation with respect to the roll angle φ 

although the unique feature of the equation is the presence of time dependent 

coefficient of the roll angle φ. Furthermore, this kind of equation has a property of 

considerable importance in ship rolling problem, for certain values of the encounter 

frequency eω , the solution is unstable. The unstable encounter frequency may be 

found from unstable solution of Mathieu’s equation, in which unstable roll occurs 

when encounter frequency eω is equal to twice of the natural frequency φω  of roll. 

Several numerical simulations follow having as parameters H/λ (wave steepness) and 

χ (encounter angle). 

 

2.4 Theoritical and experimental study of the nonlinearly coupled heave, pitch 

and roll motions of a ship in longitudinal waves (I.Oh, A.Nayfeh, D.Mook) 

 

In that paper, the authors describe the real situation more accurately than Blocki or 

Nayfeh and Sanchez. Specifically they lift  the restriction of fore-and-aft symmetry, 

add a third degree of freedom (pitch), and consider head and following seas both 

theoretically and experimentally. The heave and pitch motions are assumed to be 

independent of the roll motion, an assumption that was verified experimentally. Due 

to the heave-pitch roll coupling, the amplitudes and frequencies of the heave and pitch 

motions play the role of an effective amplitude and frequency of the parametric 

excitation. The parametric term in the roll equation basically accounts for the time-

dependent variation of the metacentric height. The authors investigate the principal 
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parametric resonance in which the excitation wave frequency is twice the natural 

frequency in roll. 

The equations of motions suggested are: 
2

2

2 ( )

2 ( )
z zz z z Z t

tθ θ

φ

ζ ω

θ ζ θ ω θ

φ ω

+ ⋅ + =                                                                        (2.4.1)

+ ⋅ + = Θ                                                                      (2.4.2)

+

�� �
�� �
��

( )

2 3 3
1 3 32 2

1 ( )
2 z zz z K tφ φθ φ φθ

φ μ φ μ φ α φ

φ φθ φ φθ

+ + − −

Κ + Κ + Κ + Κ =                                        (2.4.3)� � ��

� �

� � ��

 

where zζ and θζ  are damping coefficients; , ,z θ φω ω ω  are the natural frequencies; 

1 3,μ μ are linear and cubic roll damping coefficients,  is the constant cubic stiffness 

coefficient and 

3a

, , ,z zφ φθ φ φθΚ Κ Κ Κ� � � �  are the constant coefficients of the quadratic 

coupling terms. 

Assuming simple harmonic wave excitation, we write: 

0

0

( ) cos

( ) cos( )d

Z t Z t

t t τ

= Ω                                                                                  (2.4.4)

Θ = Θ Ω +                                                                        (2.4.5)
  

where Ω is the frequency of the exciting waves, dτ is the phase delay of the pitch 

moment relative to the heave force, 0Z is a measure of the amplitude of heave 

excitation force, and 0Θ  is a measure of the amplitude of the pitch excitation 

moment. 0Z  and 0Θ  are functions of the wave height as well as the position of the 

mass center in the wave. Since (2.4.1) and (2.4.2) are uncoupled linear equations, they 

are solved as 

cos( )
cos( )

z zz a t
a tθ θ

τ
θ τ

= Ω +                                                                                (2.4.6)
= Ω +                                                                               (2.4.7)

 

where and za aθ  are the amplitudes of heave and pitch respectively, z and θτ τ     are 

the phase lags of heave and pitch relative to excitation wave, and θτ  is a function of 

θζ  and  dτ . 

We consider the case in which the ship is in longitudinal waves so that ( ) 0K t =  in 

equation (2.4.3) 
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Substituting (2.4.6) and (2.4.7) into (2.4.3) we obtain 

[ ]
[ ]

2 3 3
1 3 3 1 3

2 4

2 2 cos( ) cos( )

sin( ) sin( ) ( )
z

z

f t f t

f t f t K t
φ θ

θ

φ ω φ μ φ μ φ α φ τ τ φ

τ τ φ

+ + + − + Ω + + Ω +

+ Ω + + Ω + =                                      (2.4.8)

�� � �

�  

 

where 

1 2

3 4

1 1,
2 2
1 1,
2 2

z z z zf a K f K

f a K f K

φ φ

θ φθ θ φθ

α

α

= − = Ω

= − = Ω

� �

� �

 

 

2.5 Stability analysis of ships undergoing strong roll amplification in head seas 

(M.A.S Neves, C.Rodriguez) 

 

The work presents a new mathematical model with nonlinearities defined up 

to the third order in terms of the heave, pitch, and roll couplings in order to simulate 

strong roll amplifications in head seas. The influence of non linear terms on the 

dynamics of roll parametric resonance appears to be relevant for low metacentric 

conditions and extreme waves. 

The work of Prof. Neves intended to compare the stability of two fishing vessels 

with very similar characteristics but with different sterns.  Uncoupled Mathieu and 

Mathieu Duffing equations and its variants are often used for parametric resonance 

investigations but tend to overpredict the resonant rolling motions. In order to 

overcome these deficiencies this third order mathematical model comprehensively 

couples the heave roll and pitch motions. Coupling coefficients were calculated 

analytically in terms of basic geometric hull characteristics. The results of the 

mathematical model were compared to some experimental results showing good 

agreement. The second order model failed to give finite response. Additionally, the 

dynamic behavior of two similar hulls were compared showing that the hull with flat 

transom was more susceptible in parametric rolling. 
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3 Objectives 

 

The topic of this thesis stems from the recent accidents of post-panamax 

containerships resulting to serious economic losses. The objectives of the thesis were 

(sorted from the most general to the most specific): 

• Study of the phenomenon of the parametric rolling affecting post panamax 

containerships. A problem which has emerged quite recently. 

• Creation and programming of a 3 DOF mathematical model for the 

examination of ship’s behavior in longitudinal waves under conditions 

stimulating the phenomenon of parametric rolling. 

• Numerical solution of the above mentioned model for three different versions. 

The first version is a 1 DOF model taking into account only the roll motion. 

The second is a linear model with cross-coupling of roll, pitch and heave terms 

with the addition of a third order restoring term regarding the roll motion in 

order to get results with finite values. The previous also applies to the first 

model as well. Finally, a more complex version of the model was run in which 

there are up to third order terms with cross-coupling of roll, pitch and heave. 

The response of the three modes under parametric rolling conditions was 

derived in a graphical way while their comparison was an interesting part. 

• Finding of parametric rolling boundaries for each of the three above 

mentioned model with numerical continuation. A plot that would present the 

critical wave height in function with the alpha parameter could very useful 

when designing such a ship. 
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4 Parametric resonance of pendulum 

 

In the following chapter the correlation between a vertically driven pendulum and 

a ship undergoing parametric rolling is discussed. 

 

4.1 The instability 

 

The vertically driven pendulum is the only driven pendulum which has the same 

stationary solutions as the undriven pendulum, φ = 0 and φ = 180°. In the undriven 

case, these solutions are always stable and unstable, respectively. But vertical driving 

can change stability into instability and vice versa. Mainly the destabilization of the 

normally stable equilibrium of the pendulum will be described because is the ine 

having close relation with the thesis.  

 

In order to investigate the stability of a fixed point, we have to linearize the 

equation of motion around a fixed point. For φ = 0 we get the damped Mathieu 

equation: 

 

                       ( )
2

2
02 cos 0e

d d a t
dt dt

φ φγ ω ω φ+ + + =                                    (4.1.1) 

 

The same equation holds for φ = 180° except that 2
0ω  has a minus sign. Thus, one 

studies the Mathieu equation for positive as well as negative values of 2
0ω . Alpha 

parameter plays the role of destabilizing the restoring term as it happens with the 

fluctuation of GM for the ship. The vertical driving is similar to the stability 

fluctuation of the ship due to large longitudinal waves. γ obviously is the damping of 

the oscillation which has the same result as the linear damping of the ship which is 

introduced in the model used in this thesis and which is discussed analytically in 

Chapter “Application” 

Even though the Mathieu equation is a linear differential equation, it cannot be 

solved analytically in terms of standard functions. The reason is that one of the 
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coefficients isn't constant but time-dependent just like the Mathieu equation used for 

parametric rolling prediction.  

The final solutions have the following form: 

                                              ( ) ( ) tt c t eλφ = ⋅                                            (4.1.2) 

where 1( ) ( )c t c t f= + (4.1.3) with f being defined in (4.1.4). The exponent λ is called 

Floquet exponent. It isn't uniquely defined because any factor exp(2πit/f) 2 it fe π  can 

be either absorbed in c(t) or in teλ .  We have a better view of the solutions in Figure 3 

 

Figure 3: Plotting of solutions. 

The solutions shown above are calculated numerically for a certain value of 

the damping constant. Note the small area of stability for negative values of 2
0ω . It 

denotes the possibility of stabilizing the upside-down pendulum. In the undamped 

case, the areas of stability form goes (dashed lines) down to zero. That is, an 

infinitesimal driving amplitude a destabilizes the down-hanging pendulum if the 

parametric resonance condition 

 

                                        0
0 2 2

ff nω
π

≡ =                                                 (4.1.4) 
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is fulfilled, where n is an integer defining the order of parametric resonance. In case 

of damping, a driving amplitude a exceeding a critical value 1/ n
ca γ∼ is necessary for 

destabilization. 

 

4.2 Parametrically excited oscillations 

 

In parametric resonance the amplitude of the unstable solution grows 

exponentially to infinity. Damping does not stop this growth contrary to normal 

resonance caused by an additive driving force. Thus, the nonlinearities in the 

parametrically driven pendulum are necessary for saturation. This saturation is caused 

by the fact that nonlinear oscillators have in general an amplitude-dependent 

eigenfrequency. The growth of the parametrically excited oscillation will shift the 

eigenfrequency out of resonance. For that reason it is essential to introduce some 

nonlinear terms in our model in order to get finite values of roll angles. 
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5 The phenomenon of parametric rolling  

5.1 Ship’s response in longitudinal waves  

 
As mentioned above, parametric rolling is created by the fluctuation of the 

ship’s stability when she is on a wave. When the mid of the ship is on a wave trough 

then the waterplane area is significantly greater than in calm water. In that case, the 

bow and stern have a greater draft than they have when being in still water while the 

midship has a smaller draft. Due to the above the GM has a greater value compared to 

the still water case. On the other hand when the midship is on a wave crest, the bow 

and stern have smaller drafts compared to the still water condition. Due to the fact that 

containerships have hull forms with pronounced bow flare and flat transom results to 

a dramatic change of ship’s GM when facing longitudinal waves. The profile of the 

discussed above waterlines is presented in figure 4 for the former and in 5 for the 

latter case. In figure 6 we can see the waterplane area of the three cases. 

 

 

Figure  4: Form of waterline in wave trough vs in calm water. 

 

Figure 5: Form of waterline in wave crest vs in calm water. 

. 

Figure 6: Form of waterline in wave crest and wave trough vs. in calm water. 
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5.2 Ship’s response in calm water  

 
When an instantaneous force is applied on a ship laying in calm water an 

oscillatory damped motion is set up. The period of these oscillations, usually called 

natural roll period, is a function of ship’s GM and inertia on the roll mode. The 

natural period of the ship tested and will be described in chapter 8 is shown in figure 

7. We can observe that it is about 30 sec. 
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Figure 7: Sample of free roll motions. 

 

When a ship encounters head or following waves there will be no wave excitation 

in the roll mode. The only excitation in this direction would be some wind gusts or 

some small waves not being exactly perpendicular to the ship’s centerline. With the 

above conditions dominating when the roll equilibrium is disturbed e.g an 

instantaneous external force, our ship would roll with its natural frequency. 

 

5.3 Physics of parametric resonance  

 
As described in sub-paragraph 5.1 when a ship sails in head or following seas 

we have stability fluctuation. If this fluctuation occurs twice one natural period, roll 

angles may take significantly large values. There are two conditions that have to be 

satisfied in order to observe severe parametric roll. The first is that the ship’s 

encounter frequency is double the natural frequency. The second is that the external 

excitation (wind gusts)have to be applied when the stability is increasing. With these 

conditions the restoring moment tend to return the ship to its equilibrium position 
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At the end of the first quarter of the period the ship returns to its equilibrium 

position and keeps rolling to the other side because of its inertia. In that critical point 

the midship is on the waves crest with reduced stability which causes a larger roll 

angle due to the smaller restoring moment. In the third quarter midship is on a wave 

trough while reaching equilibrium position creating a restoring moment greater than 

that of still water. To be simpler we could argue that the restoring moment is greater 

than the one needed. This phenomenon is similar to the one described for the first 

quarter. Respectively, in the fourth quarter the behavior is similar to that of the second 

quarter. While the above conditions are being satisfied the roll angle keeps growing 

until other factors start to take effect on the phenomenon. The differences in the roll 

angle development of parametric rolling in comparison with the free roll case are 

presented graphically in the plot of the ABS guide [13]. The fluctuation of GM is 

presented at this diagram as well.  

 

 
Figure 8: Development of parametric roll [13]. 

 

5.4 Influence of roll damping  

 

As we will see below, roll damping plays a significant role on the development 

of parametric roll resonance. Roll damping is created due to the fact that a rolling ship 

generates waves and eddies and experiences viscous drag. The condition that indicates 

the parametric resonance development is the change on roll amplitude after one roll 

period. If the reduction of roll amplitude per period caused by damping is greater than 

the one caused by the changing of stability, then the roll angle will be reduced 

(damped). If the reverse phenomenon occurs then parametric resonance is taking 
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place. The above process is totally affected by the roll damping values. We can 

conclude that for given wave height there is a critical value of roll damping below 

which parametric resonance can occur. 

 

5.5 Summary  

As mentioned in a previous paragraph, GM value is the one of the most important 

parameters which determines the development of parametric rolling. GM is not only a 

parameter indicating the stability of a ship but also influences the natural period. The 

latter is directly connected to the encounter period which is also a function of the 

wave length. Taking into account all the above data, we can conclude that GM is the 

parameter affecting many aspects of parametric rolling. 
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6 Basics of ship motions 

6.1 General 

 

The response of a ship advancing in a seaway is a complicated phenomenon 

involving the interactions between the vessel dynamics and several distinct 

hydrodynamic forces. Therefore, in the following chapter we will concentrate on 

those aspects of theory and that were used by naval architects trying to predict ship 

motions in various conditions. Specifically a linear theory of ship motions will be 

presented in connection with the model used in the present thesis. All ship responses 

are nonlinear to some extent, but in many cases when nonlinearities are small a linear 

theory will yield good predictions. In our case, as we will find out later on our study, 

these nonlinearities play a significant role to the complicated phenomenon of 

parametric rolling. This mainly happens because of the large amplitude of the 

motions. 

A ship sailing at a steady forward speed encountering a sequence of regular 

waves, will move in six degrees of freedom. That is, the ship’s motion can be 

considered to be made up of three translational components, surge, sway and heave, 

and three rotational components, roll, pitch and yaw. Consequently for a randomly 

shaped vessel six nonlinear equations of motion, with six unknowns, must be set up 

and solved simultaneously. However, for slender vessels in low to moderate sea states 

it is possible to assume that the ship motions will be small so that a linear theory 

would give us a good approximation. For the usual case of an unrestrained ship with 

port/star board symmetry, the six nonlinear equations reduce to two sets of three 

linear equations. The vertical- plane or longitudinal motions (surge, heave, pitch) are 

uncoupled from the horizontal plane or transverse motions (sway, roll, yaw). 

 

6.2 The head sea scenario 

 
Parametric rolling occurs mainly in head seas which is the case taken in current 

thesis. As noted in the former subsection, the longitudinal motions of pitch, heave and 

surge of a symmetrical ship in regular waves can be considered separately from the 

transverse modes. Furthermore, it has been found that for most comparatively long 

and slender ships surge has a minor effect and can be neglected. The above assumes 
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that forward speed Uo is constant. The further simplification in this sub-paragraph is 

to consider only the case of head seas, or waves from directly ahead (μ=180 deg). It is 

assumed that both the wave excitation forces and the resultant oscillatory motions are 

linear and harmonic, acting at the frequency of wave encounter, 

                                      
2

0
e

g
U

ωω ω= +                                                  (6.2.1) 

the equations of motion are based on Newton’s second law [1] of motions which in 

one form states that for translational modes the forces acting on a body must equal the 

mass times the acceleration. For the rotational modes the moments acting on the body 

equal the mass moment of inertia times the angular acceleration. Thus, for heave, 3η�� , 

with the origin at the  center of gravity (which must be located at the WL for this 

simple case), 

                                                   3m n F3⋅ =��                                               (6.2.2) 

 and for pitch, 5η��   

                                                  55 5 5I Fη⋅ =��                                              (6.2.3) 

where m is the mass (displacement), 55I  mass moment of inertia about the y axis and 

 and  represent the total force and moment, respectively acting on the body as 

functions of time. For the simplified case, the total force and moment consist mainly 

of fluid forces both hydrostatic and hydrodynamic [1]. (The heave gravitational force 

is balanced by the static buoyancy force in calm water and this defines the 

3F 5F

3 0η =  

position). In a linear theory the fluid forces (and moments) can be conveniently 

divided between the forces due to the waves acting on a restrained ship, i.e. , the 

forces that excite the motions, and the radiation forces due to  the motions of the ship 

in an assumed calm sea. That is, 

                                              3 3( ) ( ) ( )EX HF t F t F t3= +                                     (6.2.4) 

                                     5 5( ) ( ) ( )EX HF t F t F t5= +                                     (6.2.5) 

The excitations for sinusoidal waves are expressed as, 

                                 3 3( ) cos( )EX EX eF t F t 3ω ε= ⋅ +                               (6.2.6) 

                                 5 5( ) cos( )EX EX eF t F t 5ω ε= ⋅ +                               (6.2.7) 
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where 3EXF refers to the amplitude of the heave force and 5EXF  to the amplitude of 

the pitch moment, and where 3ε  and 5ε  are the phase angles between the excitation 

and the waves. 

 

6.3 Coupling of motions 

 
The part of this chapter which has great interest for the thesis analyzes the 

coupling of motions. The accuracy of our calculations is relied on this coupling 

because of the energy transfer among the motions. In the linear theory the 

hydrodynamic radiation forces due to the coupled motions of the vessel in otherwise 

calm water can be expressed in terms that are directly proportional to the vertical 

displacements, velocities and accelerations. For sinusoidal motions, the hydrodynamic 

radiation force and moment can be written as [1], 

                
[

]
3 33 3 33 3 33 3

35 5 35 5 35 5

( ) ( )

( ) ( )
HF A B C

A B C

ω η ω η η

ω η ω η η

= − + + +

+ +

�� �

�� �
                   (6.3.1) 

                 
[

]
5 53 3 53 3 53 3

55 5 55 5 55 5

( ) ( )

( ) ( )
HF A B C

A B C

ω η ω η η

ω η ω η η

= − + + +

+ +

�� �

�� �
                  (6.3.2) 

 

where  ( )jkA ω and ( )jkB ω  are coefficients that are functions of frequency. The minus 

sign is introduced for convenience in the final equations of motion. 

The double-subscript notation for the coefficients jkA , jkB , jkC  is adopted in 

anticipation of each necessary use for the complete 6 degree of freedom case to be 

discussed subsequently. Where the subscripts are the same ( ) a simple 

uncoupled coefficient in the  heave (3) or pitch (5) mode is intended. Where the 

subscripts are different ( ) the meaning is that the k-mode is coupled into the j-

mode (e.g.,

33 33,A B

35 35,A B

35 5A η⋅ ��   represents the force in the heave mode due to a pitch acceleration). 

The final coupled equations of motion for heave and pitch of a vessel in regular 

head seas are obtained by combining Equations (6.2.2), (6.2.3), (6.2.4) and (6.2.5). 

The radiation forces are moved to the left hand side of the equations because they are 

proportional to the unknown motions. Thus, 

33 3 33 3 33 3 35 5 35 5 35 5 3 3( ) cos(EX eA m B C A B C F t )η η η η η η ω ε+ + + + + + = +�� � �� �     (6.3.3) 

 23



 

55 55 5 55 5 55 5 53 3 53 3 53 3 5 5( ) cos(EX eA I B C A B C F t )η η η η η η ω ε+ + + + + + = +�� � �� �    (6.3.4) 

 

The jkA -terms correspond to added mass, in phase with vertical accelerations, the 

jkB -terms to hydrodynamic damping in phase with vertical velocity. Terms involving 

the coefficient jkC  are called restoring forces and moments, representing the net 

hydrostatic buoyancy effects of the ship motions. It should be noted that the jkC  are 

related to the hydrostatic coefficients used in ships stability calculations, i.e., , 

, and  are related to tons per cm immersion, change in displacement per cm of 

trim and moment to trim 1 cm respectively. 

33C

35C 55C

The cross-coupling between heave and pitch results from the coefficients with 

subscripts 35 or 53. For a fore-and-aft symmetric, the cross coupling between heave 

and pitch is very important and must be retained in order to correctly predict the 

motions in head seas at forward speed. 

The terms on the right-hand side of the equations represent the excitations, the 

forces or moments that would act on a restrained ship encountering wave at a forward 

speed Uo. 3EXF  and 5EXF  are the amplitudes of these harmonic forces and 3ε  and 

5ε   the phase angles. In order to apply hydrodynamic theory to obtain expressions for 

the excitation amplitudes the exciting forces and moments are usually subdivided into 

the Froude-Krylov and diffraction excitations. The Froude-Krylov excitations 

represent the integration of the pressure over the body surface that would exist in the 

incident wave system if the body were not present. The diffraction exciting forces and 

moments are caused by the diffraction or modification of the incident waves due to 

the presence of the vessel. The Froude-Krylov forces and moments are sometimes 

used to approximate the total exciting forces. This is a good approximation if the 

wavelength is much longer that the vessel length. For shorter wavelengths the 

approximation is increasingly inaccurate because the diffraction force becomes 

significant. For short waves the diffraction force may become approximately one-half 

of the total exciting force. 

The similarities of the above generic model with the one used in our calculations are 

made clear in the next chapter. 
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6.4 Theory of simple gravity waves 

 
In the hydrodynamic theory of surface waves the following assumptions are 

made: the crests are straight, infinitely long, parallel and equally spaced, and wave 

heights are constant. The wave form advances in a direction perpendicular to the line 

of crests at a uniform velocity, Vc, usually referred to as celerity in order to underline 

that water particles don’t move opposed to the wave form which is the one advancing. 

Such simple waves are usually referred to as two dimensional waves. It is assumed in 

wave theory that water has zero viscosity and is incompressible. It is convenient also 

to assume that, although waves are created by wind forces, atmospheric pressure on 

the water surface is constant after the wave train has been established. 

With surface waves we can visualize the pressure changes and water-particle 

motions affecting the entire body of fluid- theoretically to its full depth. The motion 

of particles under the above ideal conditions can be sufficiently described by the 

velocity potential φ which is defined as a function whose negative  derivative in any 

direction results to the velocity component of the fluid in the same direction. From its 

mathematical expression the necessary wave characteristics can be derived. Some 

manipulations in hydrodynamics can give the velocity potential for two dimensional 

wave in any depth of water and express the resulting wave form by a Fourier series. If 

the accuracy of our calculations can tolerate further simplifications the assumption of 

very small wave amplitudes is introduced resulting to the first-order theory which 

reduces the wave to the first harmonic alone. The simplified potential expression is 

shown below [1]: 

 

                 cosh ( ) sin ( )
sinhC C

k z hV k
kh

φ ζ x V t+
= − ⋅ ⋅ ⋅ −                        (6.4.1) 

 

The origin is taken at the still-water level directly over a hollow, x is the 

horizontal coordinate, positive in the direction of wave propagation, and z is the 

vertical coordinate, positive upward. This positive upward convention is adopted for 

consistency with the work on ship motions to follow, although it differs from some 

references. 
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Also 

( )

2,

W

W

C

is surface wave amplitude half height from crest to trough
L is wave length
h is depth of water

k is the wave number L
V is the wave velocity or celerity
t is time

ζ

π

     −     
   

    

    

      
  

 

 

For the case of deep water (roughly h>LW/2) the ratio: 

cosh ( )
sinh

k z h
kh

+  approaches ekz and the expression for the velocity potential 

becomes:  

                            sin ( )kz
CV e k x V tφ ζ= − ⋅ ⋅ ⋅ − C                                   (6.4.2) 

Hence, the horizontal and vertical components of water velocity at any point 

in deep water are given by 

 

                         cos ( )kz
Cu k V e k x CV t

x
φ ζ∂

= − = ⋅ ⋅ ⋅ ⋅ −
∂

                       (6.4.3) 

and 

                       sin ( )kz
Cw k V e k x

z CV tφ ζ∂
= − = ⋅ ⋅ ⋅ ⋅ −

∂
                         (6.4.4) 

If the path of a particular particle be traced through a complete cycle, it will be 

found that in deep water all particles describe circular paths having radii that are ζ at 

the surface and decrease with depth in proportion to ekz. Strictly, z should here be 

measured the center of the circular path described by the particle. In shallow water the 

particles move in ellipses with a constant horizontal distance between foci and with 

vertical semi-axes varying with depth. At the bottom, the vertical semi-axis is zero, 

and the particles oscillate back and forth on straight lines. 

To determine the foregoing velocities in any particular case, it is necessary to 

derive an expression for wave velocity Vc. Books by Milne-Thompson and Korvin-

Kroukovsky show that the conditions of velocity and pressure at the surface of the 

wave require that 
2

2 0g
x z
φ φ∂ ∂

+ =
∂ ∂

                                                                                         (6.4.5) 
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Inserting equation (6.4.1) for the potential in (6.4.5) it can be shown that  

 

2 tanhC
gV
k

= kh

h

                                                                                         (6.4.6) 

which defines the velocity of a wave in any depth of water. Then in very 

shallow water (roughly h<LW/25) 
2

CV g=                                                                                                    (6.4.7) 

and in deep water (h> LW/2) 

2

2
W

C
gLgV

k π
= =                                                                                          (6.4.8) 

 

For many problems the most important aspect of waves is the distribution of 

pressure below the surface. It is convenient to compute the pressure relative to 

horizontal lines of constant pressure in still water. The elevation ζ of lines of equal 

pressure in a wave relative to the still-water pressure lines is obtained from the 

expression: 

1
g t

φζ ∂
=

∂
                                                                                                 (6.4.9) 

 

which is derived in hydrodynamics texts (Lamb) by means of Bernoulli’s theorem for 

a gravity force acting on a body of fluid under uniform atmospheric pressure, 

assuming that wave height is small. Then for water of any depth: 

 
2 cosh ( ) cos ( )

sinh
C

C
k V k z h k x V t

g kh
ζζ +

= −                                                     (6.4.10) 

 

Since from equation (6.4.6) 
2

tanhCkV kh
g

=  this can be simplified to: 

cosh( ) cos ( )
cosh C

z h k x V t
kh

ζ ζ +
= −                                                               (6.4.11) 
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In deep water (large h) the ratio cosh( )
cosh

z h
kh
+  approaches ekz , and  

 

cos ( )Ck x V tζ ζ= −                                                                                  (6.4.12) 

 

The last equation will be used in this exact form below to describe the wave 

profile which interacts with our ship. It is a function of the relative position of the 

wave to the ship and of time. 
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7  Mathematical Model Used 

 

7.1 Generally 

 
The model used in this thesis was based on the work of Prof. Neves, published 

in various scientific journals, titled as “Stability Analysis of Ships Undergoing Strong 

Roll Amplifications in Head Seas” [4].  

 

Nomenclature 

0
0

20

density of water
roll angular displacement
pitch angular displacement

volume at average hull position
A waterplane area at average hull position
g acceleration of gravity
I transversalxx

ρ
φ
θ

    
    
    

∇       

       

    
   

20

0

nd moment of waterplane area
I longitudinal nd moment of waterplane areayy
J transversal mass moment of inertiaxx
J longitudinal mass moment of inertiayy
m ship mass
x longitudinal coordinate of cf

    

       

      

      

   
     

_

_

_

entroid of waterplane

z heave displacement of the ship
wave elevation
encounter frequencye

x longitudinal position of a transversal station

y half beam of a transversal station

z vertical posiG

ζ
ω

  

      
   

   

       

  −     

   '
_

tion of the ship s centre of gravity

z vertical position of hull volume centroidB
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7.2 System of equations 

( ).. . .. .
.. . .. . 1 12 2

2 2

1 1 1 1 12 3 2 2
2 6 2 2 6

2 2( ) ( ) ( ) ( ) ( ) ( )

m z z z zz z z zz

z z zz zzz z

t z t t z t z t tz zz z W

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z Z

θ θ θ φθ θ θ φφ

θ θ φ φ θθθ θ φφ φφθ θθθ

θ θ φζ ζθ ζ ζ θ φφζ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

3θ +  

( ).. .
.. . 1 12 2

2 2

1 3 ( ) ( ) ( ) ( ) ( )
6

z zz zzxx

z t t t z t zz z

J K K K K K K K

K K K K K K

φ φ φ φ θφ φ θ φφ φ φ φ θφ φ θθφ

φ φθ φ φ φ φθφφφ φθ ζφ ζζφ ζ φ ζφθ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = Κ tW

 

( ).. . .. .
.. . .. . 1 12 2

2 2

1 1 1 1 12 2 2 2
2 2 2 2 6

2( ) ( ) ( ) ( ) ( )

z z z zz z z zzyy

z z zz z

t z t t z t tz z W

J M M M M M M M M

M M M M M M

M M M M M

θ θ θ φθ θ θ φφ

θ θ φ φ θ θθθ θ φφ φφθ θθ θθθ

θ θ φζ ζθ ζ θ φφζ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ +

⋅ + ⋅ + ⋅ + ⋅ =

3θ  

On the right hand of the above equations, ZW(t), KW(t), MW(t), describe the 

wave external excitation in the heave, roll and pitch modes, respectively. On the left 

hand side of the equations, nonlinear restoring terms include dependence on all body 

modes (z, φ, θ) and wave profile ( ζ ). Dots refer to velocities, double dots to 

accelerations. In all modes, coefficients with dotted and double dotted subscripts are 

damping and added masses coefficients, respectively. 

In the numerical implementation of this mathematical model added masses, 

vertical motions dampings and wave external excitations are assumed linear and are 

computed using the software “Seakeeper” of Maxsurf suite of applications. 

At the next page, all the restoring coefficients are presented including the non 

linear coupling ones. 
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7.3 Coefficients 

Hydrostatic restoring coefficients(Calm Water): Linear 

0zZ gAρ=  0zK =  0 0z fM gA xρ= −  

0Zφ =  _ _

0 00 0[ ( )B g xxK g z z Iφ ρ= ∇ − + ] 0Mφ =  

0 0fZ gA xθ ρ= −  0Kθ =  _ _

0 00 0[ ( )B g yy ]M g z z Iθ ρ= ∇ − +

 

 

 

Hydrostatic restoring coefficients (calm water): Second order 

2zz
L

yZ g d
z

ρ ∂
= −

∂∫ x  0zzK =  
2zz

L

yM g x dx
z

ρ ∂
=

∂∫  

0zZ φ =  2
2z

L

yK g y
zφ ρ ∂

= −
∂∫ dx  0zM φ =  

2z
L

yZ g x dx
zθ ρ ∂

=
∂∫  0zK θ =  2

2z
L

yM g x dx
zθ ρ ∂

= −
∂∫  

2
L

yZ g d
zφφ ρ ∂

= −
∂∫ x  0Kφφ =  2

2
L

yM g xy dx
zφφ ρ ∂

=
∂∫  

0Zφθ =  2
2

L

yK g xy
zφθ ρ ∂

=
∂∫ dx  0Mφθ =  

2
2

L

yZ g x dx
zθθ ρ ∂

= −
∂∫  

 
0Kθθ =  

3
2

L

yM g x dx
zθθ ρ ∂

=
∂∫  

 

 

Hydrostatic restoring coefficients (calm water): Third order 

Heave 

0*zzzZ =  0zzZ φ =  0*zzZ θ =  

2

04z
L

yZ g y dx A
zφφ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫  
 

0Zφφφ =  

2

0 04 f
L

yZ g xy dx A x
zφφθ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= − +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫

0*zZθθ =  0Zθθφ =  0*Zθθθ =  
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Roll 

 

0zzzK =  

2

04zz
L

yK g y dx A
zφ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫  
 

0zzK θ =  

 

0zKφφ =  

2
3

00 0 08 2 *∇B Gxx
L

yK g y dx z z
zφφφ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= + Ι − ∇ +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫ 0Kφφθ =

 

 

 

0zKθθ =  

2
2

04 yy
L

yK g x y dx I
zθθφ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫  
 

0Kθθθ =  

 

Pitch 

0*zzzM =  0zzM φ = 0*zzM θ =  

2

0 04z f
L

yM g xy dx A x
zφφ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= − +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫
 

0Mφφφ =

2
2

04 yy
L

yM g x y dx I
zφφθ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫

0*zMθθ =  0Mθθφ =  00 0 02 *B GyyM g I z zθθθ ρ ⎡ ⎤= − ∇ + ∇⎣ ⎦

 

Heave-roll-pitch coupling 

0zZ φθ =  2

0 04z f
L

yK g x y dx A x
zφθ ρ

⎡ ⎤⎛ ⎞∂⎢ ⎥= − +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫
0zM φθ =  

 

 

*Obtained analytically for a wedge-sided ship. It is a good approximation for ships of 

conventional forms, small displacements and smooth transversal curvatures 
2

2

y

z

∂

∂
 at 

the considered water-line. 

 32



Derivatives due to wave passage: Second order 

( ) 2z
L

yZ t g
zζ dxρ ζ∂

=
∂∫  ( ) 0zK tζ =  

( ) 2z
L

yM t g x
zζ dxρ ζ∂

= −
∂∫  

( ) 0Z tζφ =  2
( ) 2

L

yK t g y dx
zζφ ρ ζ∂

=
∂∫  ( ) 0M tζφ =  

( ) 2
L

yZ t g x
zζθ dxρ ζ∂

= −
∂∫  ( ) 0K tζθ =  2

( ) 2
L

yM t g x
zζθ dxρ ζ∂

=
∂∫  

 

Derivatives due to wave passage: Third order 

Heave 

( ) 0*zZ tζζ =  ( ) 0zZ tζζ =  ( ) 0*Z tζζθ =  

( ) 0*zzZ tζ =  ( ) 0zZ tζ φ =  ( ) 0*zZ tζ θ =  

2

( ) 2
L

yZ t g y y
zφφζ dxρ ζ

⎡ ⎤⎛ ⎞∂⎢ ⎥= − +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫
( ) 0*Z tθθζ =  ( ) 0Z tζφθ =  

 

Roll 

( ) 0zK tζζ =  2

2( ) 2
L

yK t g y y d
zζζφ ρ ζ

⎡ ⎤⎛ ⎞∂⎢ ⎥= +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫ x  
( ) 0K tζζθ =  

( ) 0zzK tζ =  2

( ) 4 2z
L

yK t g y y d
zζ φ xρ ζ

⎡ ⎤⎛ ⎞∂⎢ ⎥= − +⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

∫
( ) 0zK tζ θ =  

( ) 0K tφφζ =  ( ) 0K tθθζ =  2

( ) 4 2
L

y
K t g xy xy d

zζφθ xρ ζ
∂

= +
∂

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∫

 

Pitch 

( ) 0*zM tζζ =  ( ) 0M tζζφ =  ( ) 0*M tζζθ =  

( ) 0*zzM tζ =  ( ) 0*zM tζ φ =  ( ) 0*zM tζ θ =  

2

( ) 2
L

y
g xy xy dx

z
M tφφζ ρ ζ

∂
+

∂

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫

( ) 0*M tθθζ =  ( ) 0M tζφθ =  

 33



7.4 System of co-ordinates 

 
Oxyz is a right handed co-ordinate system with axis Oz passing through the 

centre of mass G (also through buoyancy center), Ox pointing forward and plane Oxy 

coinciding with the calm water surface as it is seen in figure 9. Heave motion is 

referenced to point O. A positive heave motion implies in a lower immersed volume. 

The centre of gravity is defined by , coordinate of point g. The vertical coordinate 

of the centre of buoyancy  necessarily will negative. 

Gz

Bz

 

 
Figure 9: The system of co-ordinates used. 
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8 Application 

In order to run the model we had to compute all the necessary coefficients 

presented in the chapter “Mathematical model used” 

All the calculations were made with Excel while added masses and dampings for 

heave and pitch, as well as their coupled coefficients, were derived with Maxsurf 

Seakeeper. Hydrostatic data like Immersed Volume, Displacement, GM, BM, BML, 

Waterplane Area, Waterplane Area Centroid, Transversal and Longitudinal 2nd 

moment of Waterplane Area. All necessary geometric data were obtained by the 

body-plan of the ship using AutoCAD. 

 

8.1 The ship 

 
The Ship that was used in the calculations of this thesis was a 6600TEU Post-

Panamax Containership tested in the towing tank of the National Maritime Research 

Institute of Japan. 

Through the Body Plan we can notice the bow and stern flare which is typical for 

that kind of ships and which is the major reason which creates the parametric 

instability. 

 

 

 
Figure 11: Body plan of the ship. 
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At this point we have to highlight once again the significance of the hull form 

since that is the most important parameter which creates the variation of GM when the 

ship travels in head or following seas. In the next chapter we can see the role of the 

form of the sections to the model used in this thesis. 

The Main Particulars of the ship can be found at the Tab below: 

 

L (m) 286.87 

B (m) 42.8 

D (m) 24 

T (m) 14 

Δ (t) 113,956 

CBB 0.647 

GM (m) 1.08 

KG (m) 18.827 

LCG (m) from amid.+ve for -9.323 

Waterplane area  (m2) 10114 

T0 (natural roll period) (s) 30.26 

ωο (natural roll frequency) 

(rad/s) 

0.2076 

 

 

Some other interesting characteristics of the ship are presented in the next sub-

paragraphs here they are analytically computed in order to be inserted into the 

algorithm 
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8.2 Added masses and dampings 

 
The added masses and dampings were derived with Maxsurf Seakeeper. In 

order to make the necessary hydrodynamic calculations the Hull geometry was 

inserted. Additional input was the ship’s forward speed which was 4 kn and the wave 

heading which was fixed at 180 deg. The following results were obtained: 

 

mass+added mass 33 m zZ+ ��  149.647.024  kg

Inertia+added inertia 55 yyJ M θ+ ��  752.763.959.062 2kg m⋅  

Damping 33 zZ �  72.870.518 kg
s  

Added mass 35 Zθ��  1.810.274.280 kg m⋅  

Damping 35 Zθ�  1767114533 mkg s⋅  

Damping 55 M θ�  380795280003 
2mkg s⋅  

Added inertia 53 zM ��  3706664872 kg m⋅  

Damping 53 zM �  1074248812 mkg s⋅  

 

The added mass of the ship concerning the roll mode can be calculated from 

the following formula: 

 

( )
2

22 279996620000 2
0 2

0

mgGM mgGMJ K kgXX
J KXX

πω φ
φ π

⎛ ⎞
⎜ ⎟= = ⇒ + = =
⎜ ⎟⎜ ⎟ +Τ ⎛ ⎞⎝ ⎠ ⎜ ⎟

⎜ ⎟⎜ ⎟Τ⎝ ⎠

��
��

m⋅  

 
The damping used to the calculations is the linear term. It was computed using 

Vought’s diagram figure 12. The method1 used to calculate the damping Kφ�  gives 

the undimensional sectional damping coefficient. The procedure for the final value 
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included the calculation of the damping for each section and then integration of these 

values along the ship. 

The final value was 
( )

91.6 10 2/

N m

rad s
Kφ

⋅
= ⋅�   

 
Figure12: Vought’s diagram. 

 

8.3 Definition of y
z

⎛ ⎞∂
⎜ ⎟

∂⎝ ⎠
 

The quantity y
z

⎛ ⎞∂
⎜

∂⎝ ⎠
⎟  is the cotangent of the angle presented below in figure 10 

and it is considered always greater than zero in case of a conventional hull form. It 

represents how fast the beam of the ship changes in relation with the draught. It plays 

a significant role on the variation of the stability caused by a long wave passing along 

the ship resulting in a smaller waterplane area. The smaller the waterplane area is the 

smaller the righting arm becomes.  

 

Figure 10: Definition and measurement of y
z

⎛ ⎞∂
⎜ ⎟

∂⎝ ⎠
. 
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The ship was divided to 21 sections which were given from the National 

Maritime Research Institute of Japan. Each section has its x which stands for its 

longitudinal co-ordinate and y  is the half-beam of the section. So, in the integrals 

which are used in the restoring coefficients x and y are measured for each section and 

then numerically integrated in order to get the final result. 

 
8.4 Hydrostatic restoring coefficients 

 
In order to calculate the hydrostatic restoring coefficients (linear, 2nd order and 

3rd order) some geometric characteristics of the vessel were necessary. They are 

presented at the table in the next page: 

 

ρ 1025 3
kg

m  

g 9,81 2
m

s  

0A  10.114  2m

∇  111.176  3m

Δ 113.956.000 t 

gz  4,827 m 

Bz  -6.32 m 

0fx  -13.38m 

 

Another important characteristic of the ship which was imported into the 

model via the restoring coefficients is the hull’s shape at the calm waterline. This 

plays a significant role on the parametric rolling phenomenon keeping in mind that its 

main cause is the variation of the stability due to the flare of stern. Calculating and 

using the derivative y
z

⎛ ⎞∂
⎜

∂⎝ ⎠
⎟ , the model can “feel” this variation of the waterline area 

which results in the variation of the stability. In ships with vertical wall sided hull this 

derivative equals to zero, but on the parts of the ship where the flare becomes 

significant this quantity cannot be neglected. The former quantity is always greater 
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than zero so that that the new waterline area for a positive heave is smaller than the 

original.
0

2
L

A y dx
z z

∂ ∂
⇒ = −

∂ ∂∫   

y
z

⎛ ⎞∂
⎜

∂⎝ ⎠
⎟  was calculated separately for each section and then it was multiplied, 

depending on the coefficient calculated, with the half-beam of its section or its x-

coordinate or their powers. 

The values for each section are presented on the next page: 
Section dy/dz 

0 2.6051 

1 0.8391 

2 0.2493 

3 0.1944 

4 0.0699 

5 0.0349 

6 0.0175 

7 0.0000 

8 0.0000 

9 0.0000 

10 0.0000 

11 0.0000 

12 0.0087 

13 0.0175 

14 0.1584 

15 0.7813 

16 0.7536 

17 0.8098 

18 0.7536 

19 0.4452 

20 0.1405 

 

Having calculated all the above necessary quantities we can now proceed to the 

presentation of the hydrostatic coefficients described at the chapter “Mathematical 

Model Used” 
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Hydrostatic restoring coefficients(Calm Water): Linear 

101.698.799zZ =  0zK =  1.360.729.924zM =  

0Zφ =  1.200.633.579Kφ =  0Mφ =  

1.360.729.924Zθ =  0Kθ =  501.777.639.019Mθ =  

 

 

Hydrostatic restoring coefficients (calm water): Second order 

-2.248.333zzZ =  0zzK =  -28.198.195zzM =  

0zZ φ =  -572.683.808zK φ =  0zM φ =  

-28.198.195zZ θ =  0zK θ =  -30.727.106.142zM θ =  

-572.683.809Zφφ =  0Kφφ =  -35.978.008.003Mφφ =  

0Zφθ =  -35.978.008.003Kφθ =  0Mφθ =  

-30.727.106.143Zθθ =  0Kθθ =  -916.776.984.097Mθθ =  

 

Hydrostatic restoring coefficients (calm water): Third order 

Heave 

0*zzzZ =  0zzZ φ =  0*zzZ θ =  

198.242.332zZφφ =  0Zφφφ =  10.191.624.112Zφφθ =  

0*zZθθ =  0Zθθφ =  0*Zθθθ =  
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Roll 

0zzzK =  198.242.332zzK φ =  0zzK θ =  

0zKφφ =  7.233.976.949**Kφφφ =  0Kφφθ =  

0zKθθ =  2.060.120.263.668Kθθφ =  0Kθθθ =  

 

Pitch 

0*zzzM =  0zzM φ =  0*zzM θ =  

10.191.624.112zMφφ =  0Mφφφ =  2.060.120.263.668Mφφθ =  

0*zMθθ =  0Mθθφ =  1 .040.935.897.781*M θθθ =

 

Heave-roll-pitch coupling 

0zZ φθ =  10.191.624.111zK φθ =  0zM φθ =  

 

 

*Obtained analytically for a wedge-sided ship. It is a good approximation for ships of 

conventional forms, small displacements and smooth transversal curvatures 
2

2

y

z

∂

∂
 at 

the considered water-line. 

 

8.5 Derivatives due to wave passage 

 
Concerning the derivatives due to wave passage, their calculation is made inside the 

algorithm of the model because of the fact that they are time dependant. Analyzing 

the integral inside the coefficient e.g. ( ) 2z
L

yZ t g
zζ dxρ ζ∂

=
∂∫  we make the following 

steps: 

1. We calculate the wave profile cos ( )Ck x V tζ ζ= − at each section. ζ is 

different at each section because of the variable x which is the coordinate of 

the wave related to the ship. t remains as a variable 
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2. We multiply the result of the above calculation with y
z

⎛ ⎞∂
⎜ ⎟

∂⎝ ⎠
 of each section. 

3. Inside the algorithm’s equations we integrate numerically the results for each 

section along the ship’s length. 

  

8.6 Types of calculations 

 
Three types of calculations were made: 

 

One model, whose mass and added mass for the heave motion and inertia and added 

inertia for the pitch mode were artificially set in very big values, would calculate the 

roll angle by taking into account only one degree of freedom. To be called in the 

results as “roll only” 

 

One model with three degrees of freedom which takes into account only the linear 

coupling coefficients and the respective derivatives due to wave passage. To be called 

in the results as “Linear Coupled” 

 

One model with all the coefficients mentioned above taken into account. To be called 

in the results as “Full Coupled” 

 

Important note: On both “Roll only” and “Linear Coupled” models a third order 

restoring term in the roll mode was inserted in order to keep the response of the 

system in finite values. 
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8.7 Numerical calculations 

 

8.7.1 State space transformation 

 

The complete algorithm which was used to solve the system is presented in 

Appendix I. In order to solve numerically our system of non linear second order 

differential equations with Runge Kutta Method we have to make some 

manipulations. We can reduce the order of the equations by inserting more equations. 

System of equations 

( ).. . .. .
.. . .. . 2 2

2 3 2 2

2 2

1 1
2 2

1 1 1 1 1
2 6 2 2 6

( ) ( ) ( ) ( ) ( ) ( )

z z z zz

z zzz z

z zz z W

m z z z z

z z z

t z t t z t z t t

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z Z

θ θ θ φφ

θθ θ φφ φφθ θθθ

ζ ζθ ζ ζ θ φφζ

θ θ θ φ

3θ θ φ φ θ

θ θ φ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

θ +  

( ).. .
.. . 2 2

3

1 1
2 2

1 ( ) ( ) ( ) ( ) ( )
6

z zzxx

z z

z z

z t t t z t z

J K K K K K K K

K K K K K K

φ φ φ φ θφ φ θθφ

φφφ φθ ζφ ζζφ ζ φ ζφθ

φ φ φ φ θφ φ θ φ

φ φθ φ φ φ φθ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = ΚW t

 

( ).. . .. .
.. . .. . 2 2

2 2 2 2

2

1 1
2 2

1 1 1 1 1
2 2 2 2 6

( ) ( ) ( ) ( ) ( )

z z z zzyy

z z

z z W

z z z z

z z z

t z t t z t t

J M M M M M M M M

M M M M M M

M M M M M

θ θ θ φφ

θθ θ φφ φφθ θθ θθθ

ζ ζθ ζ θ φφζ

θ θ θ φ

3θ θ φ φ θ θ

θ θ φ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ +

⋅ + ⋅ + ⋅ + ⋅ =

θ

+

 

 

In our case we have three unknown variables in three second order differential 

equations. We can introduce three new variables: 

p
q
w z

φ

θ

=

=
=

�
�

�
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With these new variables our system is transformed to: 

( ).. . .. . 2 2

2 3 2 2

2 2

1 1
2 2

1 1 1 1 1
2 6 2 2 6

( ) ( ) ( ) ( ) ( ) ( )

z z z zz

z zzz z

z zz z W

m w w q q z z

z z z

t z t t z t z t t

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z Z

θ θ θ φφ

θθ θ φφ φφθ θθθ

ζ ζθ ζ ζ θ φφζ

θ φ

3θ θ φ φ θ

θ θ φ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

� �

θ +  

( ).. . .. . 2 2

2 2 2 2

2

1 1
2 2

1 1 1 1 1
2 2 2 2 6

( ) ( ) ( ) ( ) ( )

z z z zzyy

z z

z z W

q q w w z z

z z z

t z t t z t t

J M M M M M M M M

M M M M M M

M M M M M

θ θ θ φφ

θθ θ φφ φφθ θθ θθθ

ζ ζθ ζ θ φφζ

3

θ φ

θ θ φ φ θ θ

θ θ φ

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

⋅ + ⋅ + ⋅ + ⋅ =

� �

θ

+

+  

which is a non linear first order system of differential equations which can be easily 

solved numerically using Runge Kutta method. With the form of equations presented 

above we may do all the necessary calculations related to the simulation of motions of 

the ship under study. 

8.7.2 Numerical continuation 

To take the next step and run numerical continuation on our system, in order 
to find the boundaries of parametric roll in dependence to the wave height or α, we 
have to make some more changes on the form of our equations. Numerical 
continuation requires the elimination of time in the model. That can be done by 
inserting two more equations known as Fitzhugh-Nagumo: 

( )
( )

2 2

2 2

x x y x x y

y x y y x y

β

β

′ = + − +

′ = − + − +
  

which have the asymptotic solution 
sin( )
cos( )

x t
y t

β
β

=
=

  

In our case β is substituted by encounter frequency ωe . The above conversion of the 

system of equations was made because of the algorithm which is used to continuation 

and requires that time “t” does not exist as a parameter in the system. It is obvious that 

simulation can also be done when inserting Fitzhugh-Nagumo equations but there is 

no reason to do so due to the complexity of the system. 
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8.8 Results of time simulation 

 
Most of the results of time simulation presented in figures 12 to 51 were almost 

presumable. Figures presented at this part of the thesis are for a fix wave height of 8 

meters except these of “Full coupled” which are for wave height of 6 meters. Figures 

13 to 17 of “Roll only” model are shown to be compared with the Figures of Linear 

and Full Coupled plotting roll response. Concerning the models with cross-coupling 

terms, diagrams of pitch and heave are shown as well. As it is stated in “Head-Sea 

Parametric Rolling and Its Influence on Container Lashing Systems (W.N. France)” 

concerning a true accident, during parametric rolling extreme pitching occurs 

indicating that pitch response is also important to know. This also occurs to our model 

as it is made clear in figures 19,22,25,28,31,34,37,40,43,46. Pitch angles 0.02 rad or 

higher are developed during the resonance. These values are quite big significant for a 

ship of that size. With a fast calculation we can see that θ=0.02 rad creates trim: 

tan 2.9
2
Lt mθ= ⋅ =  

Heave diagrams 20,23,26,29,32,35,38,41,44,47 are presented to indicate the energy 

transfer between the motions which cannot be neglected as we can observe that heave 

takes relatively high values too. All the figures derived with numerical simulation are 

presented in Appendix II. 
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Figure 13: Roll only a=0.8 H=8.2m. 

 

 

 46



 

0 50 100 150 200 250 300 350
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t

ph
i

 
Figure 14: Roll only a=0.9 H=8m. 
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Figure 15: Roll only a=1 H=8m. 
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Figure 16: Roll only a=1.1 H=8m. 
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Figure 17: Roll only a=1.2 H=8m. 
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Figure 18: Linear Coupled a=0.8 H=8m Roll. 
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Figure 19: Linear Coupled a=0.8 H=8m Pitch. 
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Figure 20: Linear Coupled a=0.8 H=8m Heave. 
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Figure 21: Linear Coupled a=0.9 H=8m Roll. 
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Figure 22: Linear Coupled a=0.9 H=8m Pitch. 
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Figure 23: Linear Coupled a=0.9 H=8m Heave. 
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Figure 24: Linear Coupled a=1 H=8m Roll. 
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Figure 25: Linear Coupled a=1 H=8m Pitch. 
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Figure 26: Linear Coupled a=1 H=8m Heave. 
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Figure 27: Linear Coupled a=1.1 H=8m Roll. 
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Figure 28: Linear Coupled a=1.1 H=8m Pitch. 
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Figure 29: Linear Coupled a=1.1 H=8m Heave. 
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Figure 30: Linear Coupled a=1.2 H=8m Roll. 
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Figure 31: Linear Coupled a=1.2 H=8m Pitch. 
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Figure 32: Linear Coupled a=1.2 H=8m Heave. 

 53



0 50 100 150 200 250 300 350 400
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

ph
i

 
Figure 33: Full Coupled a=0.8 H=6m Roll. 
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Figure 34: Full Coupled a=0.8 H=6m Pitch.. 
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Figure 35: Full Coupled a=0.8 H=6m Heave. 
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Figure 36: Full Coupled a=0.9 H=6m Roll. 
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Figure 37: Full Coupled a=0.9 H=6m Pitch. 
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Figure 38: Full Coupled a=0.9 H=6m Heave. 
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Figure 39: Full Coupled a=1 H=6m Roll. 
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Figure 40: Full Coupled a=1 H=6m Pitch. 
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Figure 41: Full Coupled a=1 H=6m Heave. 

 56



0 50 100 150 200 250 300 350 400

-0.4

-0.2

0

0.2

0.4

0.6

t

ph
i

 

Figure 42: Full Coupled a=1.1 H=6m Roll. 

0 50 100 150 200 250 300 350 400
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

t

th
et

a

 
Figure 43: Full Coupled a=1.1 H=6m Pitch. 
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Figure 44: Full Coupled a=1.1 H=6m Heave. 
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Figure 45: Full Coupled a=1.2 H=6m Roll. 
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Figure 46: Full Coupled a=1.2 H=6m Pitch. 
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Figure 47: Full Coupled a=1.2 H=6m Heave. 
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8.9 Results of numerical continuation 

 
The following diagrams were derived with numerical continuation to our 

models showing the response of each version for particular wave amplitude. In figure 

48 and 49 we can see the response of “Roll only” and “Linear coupled” model for five 

different values of alpha parameter. We can notice the subcritical region for a=0.8 and 

a=0.9 for both of them. In figure 50 the same type of figure is presented for the “Full 

Coupled” model. In the last case the subcritical region does not appear at the figure 

probably because of some minor defects that may have risen due to the complexity of 

the model. Figure 51 presents the boundaries of parametric rolling for the three 

models. We can use this model to find the wave height which “ignites” parametric 

rolling for a given alpha. All the figures derived with numerical continuation are 

presented in Appendix II. 
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Figure 48: Amplitude of response for the “Roll only” model. 
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Linear coupled
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Figure 49: Amplitude of response for the “Linear coupled” model. 

Full coupled

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.5 0.5 1.5 2.5 3.5 4.5

wave amplitude

φ(
ra

d)

a=0.8
a=0.9
a=1
a=1.1
a=1.2

 
Figure 50: Amplitude of response for the “Full coupled” model. 
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Figure 51: Boundaries of parametric rolling for the three models. 
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9 Further study 

 
9.1 The problem 

As it is discussed in the next chapter, one of the main weaknesses of the model 

consists of the lack of an analytical expression of GZ curve that could be introduced 

into the model. The author of this thesis made a hard effort to find an accurate fitting 

of the GZ curve which would be used in the above model but the results were not the 

ones expected. Unlike other models with 1DOF, the model used in this thesis needs a 

GZ expression that calculates the value of the restoring arm in function with φ, θ, z, 

wave height, position of the ship in relevance with the wave and finally wave length. 

Obviously an accurate fitting of all these variables into one analytical expression 

is very difficult, if not impossible, to be done. In order to simplify the problem, a 

researcher should isolate one or more variables to make the problem easier to 

manipulate. It goes without saying that φ, θ, z cannot be omitted due to the fact that 

they are core variables of the model. Additionally the position of the wave in 

relevance with the ship cannot be omitted either since it is used in the calculations of 

the derivatives due to wave passage. 

On the other hand, wave length is a parameter that can be decided before 

running the algorithm. All the calculations of the GZ curve can be done presuming 

that the ship is on a wave with specific length. If the researcher wants to test the ship 

for a different wave length should run his calculations again calculating GZ with the 

new wave length. The previous procedure results to a fitting which has one less 

variable. Actually this is quite practical keeping in mind that someone would like to 

test a ship for quite a few different wave lengths. 

The big dilemma arises when it comes to wave height. Unfortunately a five 

variable (φ, θ, z, wave position, wave height) fitting is very difficult too. High order 

polynomials could not even predict the trend of the curve, let alone have an accurate 

value. Several other functions (some of them quite complex) did not give the expected 

results either. 
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9.2 A preliminary solution 

 
In order to make a first approach to the solution of the above problem the 

decision of reducing the range of φ was taken. During many unsuccessful trials of 

different functions that could not approximate accurately the GZ curve, the author 

finally “invented” a function that could approximate the GZ curve with very good 

accuracy. The defect of the above function is that gives accurate results by restraining 

the range of φ to 20 degrees. The function consists of a third order polynomial plus a 

sum of seven sinusoidal expressions that inside their arguments have third order 

polynomials of the variables. Its mathematical formula is: 
3 5 7 3 5

1 2 3 4 5
j=1 i=1 1 1 1

( , , , , )= sinj l
ij i k li i k

l i

GZ x x x x x a x b c x p
= =

⎛ ⎞+ ⋅ ⋅ +⎜ ⎟
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Some samples of the results of this fitting are presented below: 
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Figure 52: GZ(φ) fitting for pitch 0.2 deg, Heave -1m, wave phase offset 0.25, wave 

height 5.74m. 
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Figure 53: GZ(φ) fitting for pitch 0 deg, Heave -1m, wave phase offset 0, wave height 

5.74m. 
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Figure 54: GZ(φ) fitting for pitch -0.2 deg, Heave -1m, wave phase offset 0.75, wave 

height 7.17m. 
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Figure 55: GZ(φ) fitting for pitch -0.2 deg, Heave 0m, wave phase offset 0.5, wave 

height 5.74m. 
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We observe that in figures 52,53 where the curvature does not change, the accuracy is 

almost perfect, while on the other hand in figures 54,55 where the curve reaches a 

peak and starts falling, the accuracy is not ideal. 

 

9.3 Summary 

A researcher willing to take things one or more steps further has take into account 

that a quite complex function is needed. Fitting a curve with so many parameters is 

not easy but the final results may worth it. If we find an accurate expression which 

works for many different wave heights and with no restriction to the φ angle, then we 

will do an important step for more accurate prediction of parametric rolling. 
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10 Discussion and conclusions 

 

A 3DOF model was assessed in predicting the response of a ship during  the 

parametric rolling phenomenon. A post-panamax containership was used for the 

calculations, which is a category of ships which suffers more from this severe 

phenomenon.  All the necessary coefficients were calculated from scratch for the 

specific vessel. The “Roll only” model discussed above resembles an uncoupled 

Mathieu type model. For that reason, results are also comparable with such a model. 

Our model has some strengths and some weaknesses either compared to the 

mentioned above models or in an absolute way. Compared to the first model, our 

model examines the phenomenon of parametric rolling taking into account three 

degrees of freedom while the quoted one takes only one. Concerning the second 

model, it couples heave and pitch motions but not roll. This is coupled with sway and 

yaw, something that our model is not able to do. On the other hand our model couples 

roll, pitch and heave with each other. Compared to the third model we have to notice 

that ours has simpler numeric manipulations and couples three motions with each 

other while the quoted one assumes that roll does not interact with heave and pitch. 

Making a closer examination to our model we have to notice a couple of 

weaknesses. The first notification that has to be done is that the model “feels” the hull 

of the ship only at the calm waterline. No matter how much the heave has changed, 

the model assumes that the cotangent of the waterline is the same. Examining a ship 

with considerable flare, we get in some misleading results. The other point of interest 

that should be noted is the real values of GZ curve. In our model the first order 

restoring term, concerning roll, is function of GM at calm water. Introducing second 

and third order terms, we obtain a better accuracy of the restoring of the ship which is 

still not very accurate. When the ship changes its roll and pitch angle or its heave 

displacement, it has a variant GZ value. This could be partially solved with a high 

order fitting of GZ curve which takes into account φ, θ, z, wave height and its position 

related to the ship. 
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The main conclusions are the following: 

 

• The model which takes into account only the roll motion did not have much 

difference at its response compared to the linear coupled model. For a=1.1 and 

a=1.2 the response for the coupled model was a little lower. This is explained 

by the fact that energy transfer occurs among the motions “consuming” energy 

from the roll mode and giving to the two remaining. On the other hand, 

something relevant was expected for a=0.8, 0,9, 1 but for some reasons did not 

happen. 

 

• The “Full coupled” model gave a much lower response which is quite 

reasonable taking into account that terms up to third order helped for more 

accurate calculations of ship motions. Due to the fact that during parametric 

rolling we have large amplitudes of the motions of the ship, third order terms 

play a rather significant role contributing to the accuracy of the model. The 

fact that the results are much lower than in previous models agrees to the 

statement of Prof. Neves (Stability analysis of ships undergoing strong roll 

amplifications in head seas) “It is not uncommon for these models (referring to 

Mathieu type models) to overpredict the resonant rolling motions observed in 

experiments”. 

 

• Interesting results came up also with the numerical continuation which showed 

that the boundaries of the “Linear” models are almost the same. On the other 

hand the curve indicating the boundaries of “Full” model was much lower. 
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Appendix I 

 

The algorithm was programmed in the toolbox of MATLAB Matcont developed in 

Ghent University. The program allows the user to run simulations of his mathematical 

model having as main parameter the time and can then run numerical continuation in 

order to find the boundaries of a specific behavior by isolating time. The algorithm 

consists of the definition of the six variables and the 3 parameters that are used. Then 

all the necessary coefficients, as they were calculated in Chapter 8, are introduced in 

order to be “read” by the system. Finally the system of equations is set in its 

manipulated form described in chapter 8. 

 

w,q,p,z,theta,phi 
omega,wavep,lamda 
 
 
m=113956000 
Zzdot2=35691024 
msinZzdot2= 149647024 
JxxsinKphidot2=27999662000 
JpsipsisinMthetadot2=752763959062 
Kphidot=1600000000 
Zzdot=72870518 
Mtheta=501776521111 
Zthetadot=1767114533 
Zthetadot2=1810274280 
Mthetadot=375660764600 
Mzdot2=3706664872 
Mzdot=1074248812 
Zz=101698798 
Kphi=1200552461 
Ztheta=1360729924 
Mz=1360729924 
Kzzphi=198242332 
Kphiphiphi=7233976949 
Kthetathetaphi=2060120263668 
Zzz=-2248333 
Zztheta=-28198195 
Zphiphi=-572683800 
Zthetatheta=-30727106143 
Kzphi=-572683809 
Kphitheta=-35978008004 
Mzz=-28198195 
Mztheta=-30727106143 
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Mphiphi=-35978008004 
Mthetatheta=-916776984098 
Mphiphiz=10191624112 
Mphiphitheta=2060120263668 
Mthetathetatheta=1040940369414 
Zphiphiz=198242332 
Zphiphitheta=10191624112 
Zthetathetatheta=2721459848 
Kzphitheta=10191624112 
 
Zzetaz0=52389.64364*wavep*cos(-841.6/lamda-omega*t) 
Zzetaz1=16874.71313*wavep*cos(-752.4/lamda-omega*t) 
Zzetaz2=5014.110801*wavep*cos(-663.3/lamda-omega*t) 
Zzetaz3=3909.085207*wavep*cos(-574.11/lamda-omega*t) 
Zzetaz4=1406.263152*wavep*cos(-484.96/lamda-omega*t) 
Zzetaz5=702.2741349*wavep*cos(-395.80/lamda-omega*t) 
Zzetaz6=351.0300832*wavep*cos(-306.64/lamda-omega*t) 
Zzetaz7=0*wavep*cos(-217.48/lamda-omega*t) 
Zzetaz8=0*wavep*cos(-128.32/lamda-omega*t) 
Zzetaz9=0 
Zzetaz10=0 
Zzetaz11=0 
Zzetaz12=175.5016747*wavep*cos(228.31/lamda-omega*t) 
Zzetaz13=351.0300832*wavep*cos(317.47/lamda-omega*t) 
Zzetaz14=3185.190287*wavep*cos(406.63/lamda-omega*t) 
Zzetaz15=15712.04459*wavep*cos(495.79/lamda-omega*t) 
Zzetaz16=15154.34872*wavep*cos(584.95/lamda-omega*t) 
Zzetaz17=16285.1618*wavep*cos(674.1/lamda-omega*t) 
Zzetaz18=15154.34872*wavep*cos(763.27/lamda-omega*t) 
Zzetaz19=8953.771476*wavep*cos(852.42/lamda-omega*t) 
Zzetaz20=2826.346456*wavep*cos(941.58/lamda-omega*t) 
 
Zzetatheta0=7017226.037*wavep*cos(-841.6/lamda-omega*t) 
Zzetatheta1=2020797.522*wavep*cos(-752.4/lamda-omega*t) 
Zzetatheta2=529304.5785*wavep*cos(-663.3/lamda-omega*t) 
Zzetatheta3=357184.8426*wavep*cos(-574.11/lamda-omega*t) 
Zzetatheta4=108539.6088*wavep*cos(-484.96/lamda-omega*t) 
Zzetatheta5=44238.35458*wavep*cos(-395.80/lamda-omega*t) 
Zzetatheta6=17131.32115*wavep*cos(-306.64/lamda-omega*t) 
Zzetatheta7=0*wavep*cos(-217.48/lamda-omega*t) 
Zzetatheta8=0*wavep*cos(-128.32/lamda-omega*t) 
Zzetatheta9=0 
Zzetatheta10=0 
Zzetatheta11=0 
Zzetatheta12=-6377.204354*wavep*cos(228.31/lamda-omega*t) 
Zzetatheta13=-17736.49702*wavep*cos(317.47/lamda-omega*t) 
Zzetatheta14=-206135.9598*wavep*cos(406.63/lamda-omega*t) 
Zzetatheta15=-1239790.303*wavep*cos(495.79/lamda-omega*t) 
Zzetatheta16=-1410824.403*wavep*cos(584.95/lamda-omega*t) 
Zzetatheta17=-1747186.154*wavep*cos(674.1/lamda-omega*t) 
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Zzetatheta18=-1840904.82*wavep*cos(763.27/lamda-omega*t) 
Zzetatheta19=-1214731.31*wavep*cos(852.42/lamda-omega*t) 
Zzetatheta20=-423547.8009*wavep*cos(941.58/lamda-omega*t) 
 
Mzetaz0=7017226.037*wavep*cos(-841.6/lamda-omega*t) 
Mzetaz1=2020797.522*wavep*cos(-752.4/lamda-omega*t) 
Mzetaz2=529304.5785*wavep*cos(-663.3/lamda-omega*t) 
Mzetaz3=357184.8426*wavep*cos(-574.11/lamda-omega*t) 
Mzetaz4=108539.6088*wavep*cos(-484.96/lamda-omega*t) 
Mzetaz5=44238.35458*wavep*cos(-395.80/lamda-omega*t) 
Mzetaz6=17131.32115*wavep*cos(-306.64/lamda-omega*t) 
Mzetaz7=0*wavep*cos(-217.48/lamda-omega*t) 
Mzetaz8=0*wavep*cos(-128.32/lamda-omega*t) 
Mzetaz9=0 
Mzetaz10=0 
Mzetaz11=0 
Mzetaz12=6377.204354*wavep*cos(228.31/lamda-omega*t) 
Mzetaz13=17736.49702*wavep*cos(317.47/lamda-omega*t) 
Mzetaz14=206135.9598*wavep*cos(406.63/lamda-omega*t) 
Mzetaz15=1239790.303*wavep*cos(495.79/lamda-omega*t) 
Mzetaz16=1410824.403*wavep*cos(584.95/lamda-omega*t) 
Mzetaz17=1747186.154*wavep*cos(674.1/lamda-omega*t) 
Mzetaz18=1840904.82*wavep*cos(763.27/lamda-omega*t) 
Mzetaz19=1214731.31*wavep*cos(852.42/lamda-omega*t) 
Mzetaz20=423547.8009*wavep*cos(941.58/lamda-omega*t) 
 
Kzetaphi0=17163371.15*wavep*cos(-841.6/lamda-omega*t) 
Kzetaphi1=6682555.148*wavep*cos(-752.4/lamda-omega*t) 
Kzetaphi2=2090765.871*wavep*cos(-663.3/lamda-omega*t) 
Kzetaphi3=1691226.624*wavep*cos(-574.11/lamda-omega*t) 
Kzetaphi4=626082.4177*wavep*cos(-484.96/lamda-omega*t) 
Kzetaphi5=315630.0872*wavep*cos(-395.80/lamda-omega*t) 
Kzetaphi6=159258.8385*wavep*cos(-306.64/lamda-omega*t) 
Kzetaphi7=0*wavep*cos(-217.48/lamda-omega*t) 
Kzetaphi8=0*wavep*cos(-128.32/lamda-omega*t) 
Kzetaphi9=0 
Kzetaphi10=0 
Kzetaphi11=0 
Kzetaphi12=79847.80389*wavep*cos(228.31/lamda-omega*t) 
Kzetaphi13=157766.9606*wavep*cos(317.47/lamda-omega*t) 
Kzetaphi14=1319058.965*wavep*cos(406.63/lamda-omega*t) 
Kzetaphi15=4784356.858*wavep*cos(495.79/lamda-omega*t) 
Kzetaphi16=2819460.518*wavep*cos(584.95/lamda-omega*t) 
Kzetaphi17=1628516.18*wavep*cos(674.1/lamda-omega*t) 
Kzetaphi18=706933.6982*wavep*cos(763.27/lamda-omega*t) 
Kzetaphi19=133407.6135*wavep*cos(852.42/lamda-omega*t) 
Kzetaphi20=28.26346456*wavep*cos(941.58/lamda-omega*t) 
 
 
Mzetatheta0=939908307.1*wavep*cos(-841.6/lamda-omega*t) 
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Mzetatheta1=241996565.6*wavep*cos(-752.4/lamda-omega*t) 
Mzetatheta2=55874979.22*wavep*cos(-663.3/lamda-omega*t) 
Mzetatheta3=32637050.62*wavep*cos(-574.11/lamda-omega*t) 
Mzetatheta4=8377412.628*wavep*cos(-484.96/lamda-omega*t) 
Mzetatheta5=2786706.67*wavep*cos(-395.80/lamda-omega*t) 
Mzetatheta6=836059.8662*wavep*cos(-306.64/lamda-omega*t) 
Mzetatheta7=0*wavep*cos(-217.48/lamda-omega*t) 
Mzetatheta8=0*wavep*cos(-128.32/lamda-omega*t) 
Mzetatheta9=0 
Mzetatheta10=0 
Mzetatheta11=0 
Mzetatheta12=231728.4746*wavep*cos(228.31/lamda-omega*t) 
Mzetatheta13=896171.9847*wavep*cos(317.47/lamda-omega*t) 
Mzetatheta14=13340500.91*wavep*cos(406.63/lamda-omega*t) 
Mzetatheta15=97828133.41*wavep*cos(495.79/lamda-omega*t) 
Mzetatheta16=131343519.5*wavep*cos(584.95/lamda-omega*t) 
Mzetatheta17=187450360.9*wavep*cos(674.1/lamda-omega*t) 
Mzetatheta18=223627594.8*wavep*cos(763.27/lamda-omega*t) 
Mzetatheta19=164798953.3*wavep*cos(852.42/lamda-omega*t) 
Mzetatheta20=63471602.8*wavep*cos(941.58/lamda-omega*t) 
 
Zphiphizeta0=-2652282.373*wavep*cos(-841.6/lamda-omega*t) 
Zphiphizeta1=-481874.8298*wavep*cos(-752.4/lamda-omega*t) 
Zphiphizeta2=-230856.4361*wavep*cos(-663.3/lamda-omega*t) 
Zphiphizeta3=-224954.0632*wavep*cos(-574.11/lamda-omega*t) 
Zphiphizeta4=-214240.654*wavep*cos(-484.96/lamda-omega*t) 
Zphiphizeta5=-213691.2078*wavep*cos(-395.80/lamda-omega*t) 
Zphiphizeta6=-214038.9675*wavep*cos(-306.64/lamda-omega*t) 
Zphiphizeta7=-213993.601*wavep*cos(-217.48/lamda-omega*t) 
Zphiphizeta8=-214206.7217*wavep*cos(-128.32/lamda-omega*t) 
Zphiphizeta9=-214579.035*wavep*cos(-39.16/lamda-omega*t) 
Zphiphizeta10=-215031.5213*wavep*cos(50/lamda-omega*t) 
Zphiphizeta11=-215031.5213*wavep*cos(139.15/lamda-omega*t) 
Zphiphizeta12=-215031.5213*wavep*cos(228.31/lamda-omega*t) 
Zphiphizeta13=--215031.5213*wavep*cos(317.47/lamda-omega*t) 
Zphiphizeta14=-214780.14*wavep*cos(406.63/lamda-omega*t) 
Zphiphizeta15=-389673.2383*wavep*cos(495.79/lamda-omega*t) 
Zphiphizeta16=-292917.2385*wavep*cos(584.95/lamda-omega*t) 
Zphiphizeta17=-232427.14*wavep*cos(674.1/lamda-omega*t) 
Zphiphizeta18=-146673.368*wavep*cos(763.27/lamda-omega*t) 
Zphiphizeta19=-54201.0619*wavep*cos(852.42/lamda-omega*t) 
Zphiphizeta20=-1045.246709*wavep*cos(941.58/lamda-omega*t) 
 
Kzetazetaphi0=-2652282.373*(wavep*cos(-841.6/lamda-omega*t))^2 
Kzetazetaphi1=-481874.8298*(wavep*cos(-752.4/lamda-omega*t))^2 
Kzetazetaphi2=-230856.4361*(wavep*cos(-663.3/lamda-omega*t))^2 
Kzetazetaphi3=-224954.0632*(wavep*cos(-574.11/lamda-omega*t))^2 
Kzetazetaphi4=-214240.654*(wavep*cos(-484.96/lamda-omega*t))^2 
Kzetazetaphi5=-214903.2626*(wavep*cos(-395.80/lamda-omega*t))^2 
Kzetazetaphi6=-214903.2626*(wavep*cos(-306.64/lamda-omega*t))^2 
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Kzetazetaphi7=--213903.2626*(wavep*cos(-217.48/lamda-omega*t))^2 
Kzetazetaphi8=-214206.7217*(wavep*cos(-128.32/lamda-omega*t))^2 
Kzetazetaphi9=-214579.035*(wavep*cos(-39.16/lamda-omega*t))^2 
Kzetazetaphi10=-215031.5213*(wavep*cos(50/lamda-omega*t))^2 
Kzetazetaphi11=-215031.5213*(wavep*cos(139.15/lamda-omega*t))^2 
Kzetazetaphi12=-215031.5213*(wavep*cos(228.31/lamda-omega*t))^2 
Kzetazetaphi13=--215031.5213*(wavep*cos(317.47/lamda-omega*t))^2 
Kzetazetaphi14=-214780.14*(wavep*cos(406.63/lamda-omega*t))^2 
Kzetazetaphi15=-389673.2383*(wavep*cos(495.79/lamda-omega*t))^2 
Kzetazetaphi16=-292917.2385*(wavep*cos(584.95/lamda-omega*t))^2 
Kzetazetaphi17=-232427.14*(wavep*cos(674.1/lamda-omega*t))^2 
Kzetazetaphi18=-146673.368*(wavep*cos(763.27/lamda-omega*t))^2 
Kzetazetaphi19=-54201.06198*(wavep*cos(852.42/lamda-omega*t))^2 
Kzetazetaphi20=-1045.246709*(wavep*cos(941.58/lamda-omega*t))^2 
 
Kzetazphi0=-5304564.7*wavep*(cos(-841.6/lamda-omega*t)) 
Kzetazphi1=-963749.66*wavep*(cos(-752.4/lamda-omega*t)) 
Kzetazphi2=-461712.87*wavep*(cos(-663.3/lamda-omega*t)) 
Kzetazphi3=-449908.13*wavep*(cos(-574.11/lamda-omega*t)) 
Kzetazphi4=-428481.31*wavep*(cos(-484.96/lamda-omega*t)) 
Kzetazphi5=-429806.5252*wavep*(cos(-395.80/lamda-omega*t)) 
Kzetazphi6=-428077.935*wavep*(cos(-306.64/lamda-omega*t)) 
Kzetazphi7=-427987.202*wavep*(cos(-217.48/lamda-omega*t)) 
Kzetazphi8=-428413*wavep*(cos(-128.32/lamda-omega*t)) 
Kzetazphi9=-429158*wavep*(cos(-39.16/lamda-omega*t)) 
Kzetazphi10=-430063*wavep*(cos(50/lamda-omega*t)) 
Kzetazphi11=-430364*wavep*(cos(139.15/lamda-omega*t)) 
Kzetazphi12=-430364.7*wavep*(cos(228.31/lamda-omega*t)) 
Kzetazphi13=-430364.7*wavep*(cos(317.47/lamda-omega*t)) 
Kzetazphi14=-430364.7*wavep*(cos(406.63/lamda-omega*t)) 
Kzetazphi15=-779346.48*wavep*(cos(495.79/lamda-omega*t)) 
Kzetazphi16=-585834.48*wavep*(cos(584.95/lamda-omega*t)) 
Kzetazphi17=-464854.28*wavep*(cos(674.1/lamda-omega*t)) 
Kzetazphi18=-293346.74*wavep*(cos(763.27/lamda-omega*t)) 
Kzetazphi19=-108402.12*wavep*(cos(852.42/lamda-omega*t)) 
Kzetazphi20=-2090.4934*wavep*(cos(941.58/lamda-omega*t)) 
 
Kzetaphitheta0=-710509315.8*wavep*(cos(-841.6/lamda-omega*t)) 
Kzetaphitheta1=-115411913.0*wavep*(cos(-752.4/lamda-omega*t)) 
Kzetaphitheta2=-48739795.9*wavep*(cos(-663.3/lamda-omega*t)) 
Kzetaphitheta3=-41109455.2*wavep*(cos(-574.11/lamda-omega*t)) 
Kzetaphitheta4=-33071472.8*wavep*(cos(-484.96/lamda-omega*t)) 
Kzetaphitheta5=-26922100.5*wavep*(cos(-395.80/lamda-omega*t)) 
Kzetaphitheta6=-20917681.8*wavep*(cos(-306.64/lamda-omega*t)) 
Kzetaphitheta7=-14896213.4*wavep*(cos(-217.48/lamda-omega*t)) 
Kzetaphitheta8=-8789338.3*wavep*(cos(-128.32/lamda-omega*t)) 
Kzetaphitheta9=-2682463.2*wavep*(cos(-39.16/lamda-omega*t)) 
Kzetaphitheta10=3424411.9*wavep*(cos(50/lamda-omega*t)) 
Kzetaphitheta11=9509017.6*wavep*(cos(139.15/lamda-omega*t)) 
Kzetaphitheta12=15589383.4*wavep*(cos(228.31/lamda-omega*t)) 
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Kzetaphitheta13=21554939.2*wavep*(cos(317.47/lamda-omega*t)) 
Kzetaphitheta14=27814149.8*wavep*(cos(406.63/lamda-omega*t)) 
Kzetaphitheta15=61495892.4*wavep*(cos(495.79/lamda-omega*t)) 
Kzetaphitheta16=54539432.3*wavep*(cos(584.95/lamda-omega*t)) 
Kzetaphitheta17=49872821.1*wavep*(cos(674.1/lamda-omega*t)) 
Kzetaphitheta18=35634881.4*wavep*(cos(763.27/lamda-omega*t)) 
Kzetaphitheta19=14706591.0*wavep*(cos(852.42/lamda-omega*t)) 
Kzetaphitheta20=313275.1*wavep*(cos(941.58/lamda-omega*t)) 
 
Mphiphizeta0=-355254657.9*wavep*(cos(-841.6/lamda-omega*t)) 
Mphiphizeta1=-57705956.49*wavep*(cos(-752.4/lamda-omega*t)) 
Mphiphizeta2=-24369897.96*wavep*(cos(-663.3/lamda-omega*t)) 
Mphiphizeta3=-20554727.61*wavep*(cos(-574.11/lamda-omega*t)) 
Mphiphizeta4=-16535736.4*wavep*(cos(-484.96/lamda-omega*t)) 
Mphiphizeta5=-13461050.25*wavep*(cos(-395.80/lamda-omega*t)) 
Mphiphizeta6=-10458840.89*wavep*(cos(-306.64/lamda-omega*t)) 
Mphiphizeta7=-7448106.681*wavep*(cos(-217.48/lamda-omega*t)) 
Mphiphizeta8=-4394669.134*wavep*(cos(-128.32/lamda-omega*t)) 
Mphiphizeta9=-1341231.588*wavep*(cos(-39.16/lamda-omega*t)) 
Mphiphizeta10=1712205.959*wavep*(cos(50/lamda-omega*t)) 
Mphiphizeta11=4754508.824*wavep*(cos(139.15/lamda-omega*t)) 
Mphiphizeta12=7794691.698*wavep*(cos(228.31/lamda-omega*t)) 
Mphiphizeta13=10777469.62*wavep*(cos(317.47/lamda-omega*t)) 
Mphiphizeta14=13907074.88*wavep*(cos(406.63/lamda-omega*t)) 
Mphiphizeta15=30747946.22*wavep*(cos(495.79/lamda-omega*t)) 
Mphiphizeta16=27269716.15*wavep*(cos(584.95/lamda-omega*t)) 
Mphiphizeta17=24936410.57*wavep*(cos(674.1/lamda-omega*t)) 
Mphiphizeta18=17817440.72*wavep*(cos(763.27/lamda-omega*t)) 
Mphiphizeta19=7353295.476*wavep*(cos(852.42/lamda-omega*t)) 
Mphiphizeta20=156637.5361*wavep*(cos(941.58/lamda-omega*t)) 
 
 
Z=36198080*cos(omega*t+0.16)*wavep-Zzdot*w-Zthetadot*q-Zz*z-Ztheta*theta-
0.5*Zzz*z^2-0.5*Zphiphi*phi^2-0.5*Zthetatheta*theta^2-Zztheta*z*theta-
0.5*Zphiphiz*phi^2*z-0.5*Zphiphitheta*phi^2*theta-(1/6)*Zthetathetatheta*theta^3-
14.19*(Zzetaz0+Zzetaz1+Zzetaz2+Zzetaz3+Zzetaz4+Zzetaz5+Zzetaz6+Zzetaz7+Zze
taz8+Zzetaz9+Zzetaz10+Zzetaz11+Zzetaz12+Zzetaz13+Zzetaz14+Zzetaz15+Zzetaz1
6+Zzetaz17+Zzetaz18+Zzetaz19+Zzetaz20)*z-
14.19*(Zzetatheta0+Zzetatheta1+Zzetatheta2+Zzetatheta3+Zzetatheta4+Zzetatheta5+
Zzetatheta6+Zzetatheta7+Zzetatheta8+Zzetatheta9+Zzetatheta10+Zzetatheta11+Zzeta
theta12+Zzetatheta13+Zzetatheta14+Zzetatheta15+Zzetatheta16+Zzetatheta17+Zzeta
theta18+Zzetatheta19+Zzetatheta20)*theta-
14.19*(Zphiphizeta0+Zphiphizeta1+Zphiphizeta2+Zphiphizeta3+Zphiphizeta4+Zphi
phizeta5+Zphiphizeta6+Zphiphizeta7+Zphiphizeta8+Zphiphizeta9+Zphiphizeta10+Z
phiphizeta11+Zphiphizeta12+Zphiphizeta13+Zphiphizeta14+Zphiphizeta15+Zphiphi
zeta16+Zphiphizeta17+Zphiphizeta18+Zphiphizeta19+Zphiphizeta20)*phi^2*froude
1 
 
K=-Kphidot*p-Kphi*phi-Kzphi*z*phi-Kphitheta*phi*theta-0.5*Kzzphi*z^2*phi-
(1/6)*Kphiphiphi*(phi^3)-0.5*Kthetathetaphi*(theta^2)*phi-Kzphitheta*z*phi*theta-
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14.19*(Kzetaphi0+Kzetaphi1+Kzetaphi2+Kzetaphi3+Kzetaphi4+Kzetaphi5+Kzetaph
i6+Kzetaphi7+Kzetaphi8+Kzetaphi9+Kzetaphi10+Kzetaphi11+Kzetaphi12+Kzetaphi
13+Kzetaphi14+Kzetaphi15+Kzetaphi16+Kzetaphi17+Kzetaphi18+Kzetaphi19+Kzet
aphi20)*phi-
14.19*(Kzetazetaphi0+Kzetazetaphi1+Kzetazetaphi2+Kzetazetaphi3+Kzetazetaphi4+
Kzetazetaphi5+Kzetazetaphi6+Kzetazetaphi7+Kzetazetaphi8+Kzetazetaphi9+Kzetaz
etaphi10+Kzetazetaphi11+Kzetazetaphi12+Kzetazetaphi13+Kzetazetaphi14+Kzetaze
taphi15+Kzetazetaphi16+Kzetazetaphi17+Kzetazetaphi18+Kzetazetaphi19+Kzetazet
aphi20)*phi*froude2-
14.19*(Kzetazphi0+Kzetazphi1+Kzetazphi2+Kzetazphi3+Kzetazphi4+Kzetazphi5+K
zetazphi6+Kzetazphi7+Kzetazphi8+Kzetazphi9+Kzetazphi10+Kzetazphi11+Kzetazp
hi12+Kzetazphi13+Kzetazphi14+Kzetazphi15+Kzetazphi16+Kzetazphi17+Kzetazphi
18+Kzetazphi19+Kzetazphi20)*z*phi*froude3-
14.19*(Kzetaphitheta0+Kzetaphitheta1+Kzetaphitheta2+Kzetaphitheta3+Kzetaphithe
ta4+Kzetaphitheta5+Kzetaphitheta6+Kzetaphitheta7+Kzetaphitheta8+Kzetaphitheta9
+Kzetaphitheta10+Kzetaphitheta11+Kzetaphitheta12+Kzetaphitheta13+Kzetaphitheta
14+Kzetaphitheta15+Kzetaphitheta16+Kzetaphitheta17+Kzetaphitheta18+Kzetaphith
eta19+Kzetaphitheta20)*phi*theta*froude4 
 
M=3814299800*cos(omega*t-1.27)*wavep-Mthetadot*q-Mzdot*w-Mz*z-
Mtheta*theta-0.5*Mzz*z^2-0.5*Mphiphi*phi^2-0.5*Mthetatheta*theta^2-
Mztheta*z*theta-0.5*Mphiphiz*z*phi^2-0.5*Mphiphitheta*phi^2*theta-
(1/6)*Mthetathetatheta*theta^3-
14.19*(Mzetaz0+Mzetaz1+Mzetaz2+Mzetaz3+Mzetaz4+Mzetaz5+Mzetaz6+Mzetaz7
+Mzetaz8+Mzetaz9+Mzetaz10+Mzetaz11+Mzetaz12+Mzetaz13+Mzetaz14+Mzetaz1
5+Mzetaz16+Mzetaz17+Mzetaz18+Mzetaz19+Mzetaz20)*z-
14.19*(Mzetatheta0+Mzetatheta1+Mzetatheta2+Mzetatheta3+Mzetatheta4+Mzetathe
ta5+Mzetatheta6+Mzetatheta7+Mzetatheta8+Mzetatheta9+Mzetatheta10+Mzetatheta
11+Mzetatheta12+Mzetatheta13+Mzetatheta14+Mzetatheta15+Mzetatheta16+Mzetat
heta17+Mzetatheta18+Mzetatheta19+Mzetatheta20)*theta-
14.19*(Mphiphizeta0+Mphiphizeta1+Mphiphizeta2+Mphiphizeta3+Mphiphizeta4+M
phiphizeta5+Mphiphizeta6+Mphiphizeta7+Mphiphizeta8+Mphiphizeta9+Mphiphizet
a10+Mphiphizeta11+Mphiphizeta12+Mphiphizeta13+Mphiphizeta14+Mphiphizeta15
+Mphiphizeta16+Mphiphizeta17+Mphiphizeta18+Mphiphizeta19+Mphiphizeta20)*p
hi^2*froude5 
 
 
 
w'=-((JpsipsisinMthetadot2)*Z-M*Zthetadot2)/(Mzdot2*Zthetadot2-
(JpsipsisinMthetadot2)*(msinZzdot2)) 
q'=-(M*(msinZzdot2)-Mzdot2*Z)/(-m*(JpsipsisinMthetadot2)+Mzdot2*Zthetadot2-
Zzdot2*(JpsipsisinMthetadot2)) 
p'=K/(JxxsinKphidot2) 
z'=w 
theta'=q 
phi'=p 
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Appendix II 
The full series of graphs is presented below showing all the runs of the program that 
were made for the completion of the thesis 
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Roll only a=0.8 H=7.8m 
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Roll only a=0.8 H=9m 
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Roll only a=0.9 H=7m 
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Roll only a=0.9 H=8m 
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Roll only a=1 H=5.4m 
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Roll only a=1 H=6m 
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Roll only a=1 H=8m 
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Roll only a=1.1 H=7m 
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Linear Coupled a=0.8 H=8m Roll 

 83



0 50 100 150 200 250 300 350 400
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t

th
et

a

 
Linear Coupled a=0.8 H=8m Pitch 

0 50 100 150 200 250 300 350 400
-3

-2

-1

0

1

2

3

t

z

 
Linear Coupled a=0.8 H=8m Heave 

 84



0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

ph
i

 
Linear Coupled a=0.8 H=9m Roll 

0 50 100 150 200 250 300 350 400
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

t

th
et

a

 
Linear Coupled a=0.8 H=9m Pitch 

0 50 100 150 200 250 300 350 400
-3

-2

-1

0

1

2

3

t

z

 
Linear Coupled a=0.8 H=9m Heave 

 85



0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t

ph
i

 
Linear Coupled a=0.9 H=6.4m Roll 

0 50 100 150 200 250 300 350 400
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

t

th
et

a

 
Linear Coupled a=0.9 H=6.4m Pitch 

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1

1.5

2

t

z

 
Linear Coupled a=0.9 H=6.4m Heave 

 86



0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t

ph
i

 
Linear Coupled a=0.9 H=8m Roll 

0 50 100 150 200 250 300 350 400
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

t

th
et

a
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