EONIKO MET2OBIO MNMOAYTEXNEIO
>XOAH MHXANOAOTON MHXANIKQN

2UOTNMIKA HOVTEAOTTOINON KAl
aVAAUOT HEYOAAWYV OEOONEVWV VIO TNV
ATTOKPUTTTOYPAPNON MNXOVICHWYV O€&

avOpwWITIVEG ACOEVEIEG

AIAAKTOPIKH AIATPIBH
AHMHTPIOY MEZ2HNH

AirmAwpatovxov MnxavoAdyouv Mnxavikov E.M.T1.

EMIBAENQN:
A. AAEZOINOYAOZ
Ert. KaBnyntng E.M.I1.

ABRiva, AnpiAtog 2018






EONIKO MET2OBIO MNMOAYTEXNEIO
>XOAH MHXANOAOTON MHXANIKQN

2UOTNMIKA HOVTEAOTTOINON KAl
aVAAUOT HEYOAAWYV OEOONEVWV VIO TNV
ATTOKPUTTTOYPAPNON MNXOVICHWYV O€&

avOpwWITIVEG ACOEVEIEG

AIAAKTOPIKH AIATPIBH
AHMHTPIOY MEZ2HNH

AirmAwpatovxov MnxavoAdyouv Mnxavikov E.M.T1.

TPIMEAHZ 2YMBOYAEYTIKH ENTAMEAHZ EZETAZTIKH
ENITPOINH: ENITPOINH:

A. AAEZOMNOYAOZ, Emt. Ka8. E.M.IT. A. AAEZOMNOYAOZ, Emt. Ka8. E.M.IT.
X. MPOBATIAHZ, KaB. E.M.IM. X. MPOBATIAHZ, KaB. E.M.IM.

N. XPONHZ, Av. Ka6. U Michigan N. XPONHZ, Av. Ka6. U Michigan

M. KOAAIA, Av. Ka8. E.K.IT.A.

A. XATZHABPAMIAHZ, KaB. E.M.IT.
. MATZOMNOYAOZ, Av. Ka8. E.M.I.
A. KEKOZ, Kab. E.M.T1.

ABRiva, AnpiAiog 2018



H €ykpion tng d1dakTopikng dlatpiPrig amno tnv Avwtatn ZxoAr MnxavoAoywv Mnxavikwv tou E.M.
MoAuTteyveiou Sev vrtodnAwvel amodoxr Twv yvwpwy Tou cuyypadea (N. 5343/1932, ApBpo 202).



2Tn ylayld pou
Nikn






[TpOAoyog

O okomodg NG mapovoag SIdAKTOPIKAG dlaTPIBAG €ival va arokpurtoypadproel
MNXAVIoPOULG 0 avBpwTIlveG A0BEVEIEG, HECW TNG CLCTNHIKAG HOVTEAOTIOINONG KAl TNG
avaAvong peyalwv dedopevwy. H didaktopikr diatpipry die€nxbn oto epyactriplo Tou
Er. KaBnyntri EMI. Aewvida AAeEoTiovAou, Tou Topea Mnxavoloylikwv Kataokeuwyv
Kal Avtopdatou EAEyxou NG oxoAng MnxavoAoywv Mnxavikwv tov EBvikov Metaofiou
MoAutexveiou. Katd tn O1apkela tng dlatpiPng touv, o cuyypadeag plho&evnBnke kata
Olaotiuata oto Metabolic Engineering and Systems Biology Lab (MESBL) tou
FORTH/ICE-HT otnv MNatpa, EAAGdSa kat oto U.S. Food & Drug Administration (FDA)
otnv Washington DC, HIMA.

O ouyypadeag BeAel va euxaplotnoel yia tnv Ponbeld toug, Toug akoAouvBoug
avBpwrtoug. Tov Xplotodopo MNpofartion, Kab. EMIT kal tov NikéAao Xpovn, Av. Ka8.
Tou lMaveriotnuiov Tov Michigan, yia TIG cUPPBOVAEG TOUG KAB' OAN TNV SIAPKELA TWV
O16akToplkwv artovdwv Tou vrtoPngiov. Tnv Mapia KAama, Principal Researcher tou
MESBL, yia tnv ¢\ofevia tng oto gpyactrnpld g Kal tnv kKabodrjynon tng oTIq
TEXVIKEG TNG MetaBoAopiknig. Tnv Jane Bai, Regulatory Review Scientist - Systems
Pharmacology tou U.S. Food & Drug Administration, yia tnv ¢piro€evia tng oto FDA
Kal TNV KaBodrynon tng otnv €peuva tng Kapdlopvomabelag mou TpoKaAeital ano
$dappaka. Tnv MavayovAa KoAAla, Av. KaB. EKIIA, tov Anuntpio XatlnaPBpauion,
KaB. EMIT, tov MNewpylo MatodémiovAo, Av. KaB. EMIT kal Tov Anuntplo Keko, Kab.
EMI, péAN TNG emTapeAoOLC ETUTPOTING Tou urnoyndiov yia TNV €€€taon Kat
EMOIKOOOUNTIKN KPITIKA TNG owatpiPri¢ tou. OAa ta MPEAN TOL E€pyacTnpiov
EpBlopnxavikng kat 2uotnuikng BloAoyiag touv Ap. Aewvida AAe€dTiIovAou yia tnv
TIOAD €TOIKOSOUNTIKI) CLVEPYAOIA PAG KAl ouveXn LTooTPIEN, ME €8Ik avadopd
otoug: Ap. lwavvn Meld, Aavan KupAn-®Awpov, Aavdan-ZtéAAa Zapeidpn, Ocddwpo
2aKkeAAaporouvAo, Niko KaBaioroulo, Mewpylo Kavakapn kat Asier Antoranz yia tnv
otevn Jag ouvvepyaaoia. TEAOG, 0 cuyypadeag BEAEL va evxaploThoel ToV eMIBAETOVTA
Ap. Newvida AAeEOTIOLAO yla TNV KABodrynon, LTOOTHPLEN KAl E€UTIVELON OTOV

vrtioPpridlo didakTopa Kab' OAn tn Sidpkela Twv SIOAKTOPIKWY TOU GTIOLOWV.
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[MepiAnyn

2UOTNUIKN MOVTEAOTTOINON KAl avAAuon MeyYGAwv OedOPEVWV YIa TNV

QTTOKPUTITOYPA@NOCN MNXAVIOPWY O€ avOPWITIVEG A0BEVEIES

O okomdg NG mapovoag SIOAKTOPIKAG dlaTPIBAG €ival va arokpurtoypadroel
pNXaviopoug oe avBpwriiveg acbeveleg, Kal cuykekplpéva otnv OoteoapBpitida, otnv
petddpaon PloAoyikwy Oedopevwv amd TOV apPoLPaio otov Aavlpwrio, otnv
2KANpuvon Katd TAAKAG, OTOV KAPKIVO TOu AMATog, otnv Kapdlopvomndabela Tmou
poKaAeital arnod Gpappaka Kat atnv pn aAKOoAIKn Atrwdn vooo tou frtatog (MAANH).
2Ta MapakAtw Kepalala replypadovtal Ta EVPHPATA OXETIKA PE TNV KABE avBpwriivn

TAbnon Kal Ol AVTIOTOIXEG EPYATIEG.

Ta televtaia 4 xpoévia, o Anunteng Meaoorvng €xel cuyypaygel 6 dnuoaolevoelg o€
ETOTNHOVIKA TIEPLOOIKA Kal 14 miepAPelg - avakolvwaoelg oe dlebvr) cuvedpla. 'Exel
Hia dnuoaoievon weg MPWTOCG cuyypPadEAS Kal £XEL ETUTUXEL OeikTn h-index 6. Meow Twv
npoomnabelwv yla TNV arokpurroypadnon TwV HPNXAVIOHWV  OladOpPETIKWV
avBpwriivwy acBevelwv, o urioPridLog SIOAKTWP EXEL ATIOKTAOEL ELPEIA KATAVONON OTN
2UCTNULKN JOVTEAOTIOINON KAl avAAuaon YEYAAWV OESOUEVWY, QVETITUEE TIG OIKEG TOU
TMEIPAPATIKEG KAl UTIOAOYIOTIKEG HMEBOOOUG Kal OLVEBAAE OE QPKETA ONUAVTIKA
gupnparta mov neptypagovtal mapardvw. To €pyo Tou aTnV ZKApLvon Katd mAAKag
Tov €kave va erilextei peta&v 6 ard 110 gpyaciwv yia va dwaoel pla cLVTOPN OHIAia
oto International Conference on Systems Biology of Human Disease oto Harvard to
2014. To 2016 ocuvepydotnke pe to U.S. Food and Drug Administration yia tnv
QVATTTLEN PLAG VEAG LTTIOAOYIOTIKNG HEBOGOL yla TNV TPOPRAEPN TNG Kapdlopvordbelag
TIoL TIPOKaAeiTal anod ddppaka pe akpifela 88%, €pevva mouv dnuoocievdnke ato CPT:
Pharmacometrics & Systems Pharmacology. H egpyacia tou mavw otn MAANH
QATTOKAAUYPE €vaV TIOAUTIAPAYOVTIKO PNXAvIopo onuatodotnong kait kepdloe to 10
BpaPBeio and 56 epyaciec oto ouvvedplo NG Etawpeiag ‘Hmatog-lMaykpeatog-

XoAndoépwv 10 2017.
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Ektetapevn MepiAnyn

2UOTNUIKN MOVTEAOTTOINON KAl avAAuon MeyYGAwvV OeDdOPEVWV YIa TNV

QTTOKPUTITOYPA@NOCN MNXAVIOPWY O€ avOPWITIVEG A0BEVEIES

O okomdg NG mapovoag SIOAKTOPIKAG dlaTPIBAG €ival va arokpurtoypadroel
pNXaviopoug oe avBpwriiveg acbeveleg, Kal cuykekplpéva otnv OoteoapBpitida, otnv
petddpaon PloAoyikwy Oedopevwv amd TOV apPoLPaio otov Aavlpwrio, otnv
2KANpuvon Katd TAAKAG, OTOV KAPKIVO TOu AMATog, otnv Kapdlopvomndabela Tmou
poKaAeital arnod Gpappaka Kat atnv pn aAKOoAIKn Atrwdn vooo tou frtatog (MAANH).
Ta KOpla eupriUaTa OXETIKA HE TNV KABe avBpwrilvn 1ABnon Kai epyacia

neplypagovtal mapakaTw.

Méeow TNG €peuvvag otnv ooteoapBpitida anodeixfnke OTL TA Ly} XOvOpPOKUTTAPA
UTIOPOLV va €xouv Loxupr dAeypovwdn - Kal OXl TIPOOTATEVUTIKN - AVTATOKPIoN o€
olagdopa epebiopyata. Me avtd Tov TPOTO, N Onuiovpyia €vog dAeypovwdoug
nepIBAr ovtog otnv apBpwon diatnpeital, emneldry o XovOpog €ival €vag LoToG XwpIg
ayyeia, O ormoiog oTepeiTal ONUAVTIKWY  AVTIPAEYHOVWOWY CUCTATIKWY TOU
nePIPEPIKOV AiPJaTOC KAl auTd HToPEl TEAIKA va odnynoeL oTnVv arolkodounon Tou
LOTOV.

Nna npwtn ¢opd evrormiotnkav ta cvpPdavrta onuatodotnong mouv odnyolv otnv
avénon Twv TPOo-PAeypovwdwV onuAtwv Katda Ttnv  Olyepon Tou TLR,
artoKaAUTTovtag dU0 onuUAvTikeG PAeypovwdelg odoug: To DEFB1 &ivel orjpa peow
Tou urtodoxea tou mpog RACT, ota MAPKs kal teAika evepyorolei To HSP27. To
Flagellin petadidetal peow tou TLR5 oe MYD88 kat aTn CLVEXELQ CLYXWVEVETAL PE TO
povortdatt IL1 péow twv IRAK, TIFA, TRAF6 kal TeAlka evepyortolei Ta onuarta IKB,
MAPK14 kat HSP27.

H OlEyepon Ttwv XovOpOoKULTTAPWY HE TOuG dAeypovwdoug pecolafnteg IL1B kal
Flagellin obnyei ertiong oe uLMEP-EVEPYOTIOINON TWV OXETIKWV HE TNV avartuén
onuatwv CREB kat MAP2K1 kal otnv aneAeuBepwon mpo-avarntuélaKwy KUTOKIVWY,

OAEG OLVOESEPEVEG E TNV LTIEPTPODIA TWV XOVOPOKUTTAPWY KAl TNV OCTEOYEVVEDH.
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H 1oxupr) opoldtnTa PETAEL PNVIoOKOL Kal apBpIlkov LoToL Ttapatnpernénke Katd tnv
OlEyepon auTwv Twv loTwV pe dladopa epebiopata, vnootnpifovrag tnv vrtdbeon OTL
UTTAPXEL ONUAVTIKI ETIKOWVWVIA PETAEL AUTWV TwV OLVO SIAPEPIOPATWY TOU YOVATOG
Kal oL avTipAeypovwoelg Beparteieg mpemnel va AaupBavouv vrtoyn Kat Toug SVOo LoTOUG.
Ale€nxbn petaBoAikry avdiluvon avBpwrilvou 0oTeoapPBPITIKOL apBpIkoL LypPOoUL Kal

evrortiotnkav YETAPBOAITEG TTOL cuvdEovTal Pe ooTeoapOpitida.

Mla To OKOTIO TNG €PELVAG OPOLOTHTWY avBpwriou / apoupaiov, dnuiovpyndNKe pla
Baon 6edopevwyv  TIOAAAMAWYV  OTPWHATWV TIov  TiepAauPave  dedopeva
phosphoproteomics, transcriptomics kat cytokine release, mpogpxoueva arod
$puololoylka PBpoyxika emBnAlakad KOTTapa avlpwriou Kal apoupdaiov Ta ormoia
eKTEONKaV TapAAAnAa oe Tieploootepa ard 50 OwadopeTikd epebiopara vmod
TTAVOHOLOTUTIEG CLVONKEG.

2nUavtikeg odoi onuatodotnong oOwatnerdnkav petay eldwv avBpwrwv Kal
apoupaiwv Pe arokAivovta povo aropovwpeva cuotatikd. Miua e€aipeon ftav ol
OTOXOL TWV PETAYPAPIKWY TIAPAYOVTIWY, TIoL ¢patvotayv 1o SUOKOAO va TipoBAedOoLV.
O napdyovrag petaypadpric CREB1 €6¢eiée tnv 1o apopola cupmepidpopd, arld n
oubvéeon ard to RSK1 ntav mapovoca povo oto avlBpwrivo OIKTUO, yeEYovog TIOU
uTIopEi va e€nynBei arnod to yeyovog OTL ol avBpwriveg toopopdeg Tov RSK1 dev gival
Aertoupyikeg (RSK2, RSK3, RSK4 ). Avtifeta, autd miBavotara dev cupPaivel otoug
apovupaiovg. O Zeniou et al. avadepet 0tL Ta yovidia RSK1 kat RSK3 tou apoupaiou
UTIOPEL va pnv gival oe B€on va avtiotabuioouv MANPWG TNV EAAEPN AelTOoLPYIaG TOL
RSK2.

Anpilovpyndnke €va TePACTIO CLUVOAO SedOPEVWYV yia TN MEAETN TNG ZKANPLVONG KaTA
nAdkag (MS). AnopwBnkav PBMCs amné 250 6oteg (190 MS, 60 Yyieig) kal otn
ouvexela ektednkav oe 20 gpebiopata mou cvpmnepiAduPavav 4 MS ddppaka Kal
HeETPNONKE n amokpion 17 dwodomnpwteivwy (5 'kal 25') kal 22 eKKPIVOPEVWV
KUTOKIVWV (24 wpeg). AuTH n TIPOCEYYION EMETPEPE TOV XAPAKTNPIOHMO TWV OIKTUWV
onpatodOTNONG PE TPOTIO CUYKEKPIPEVO YIa TOV KABe acBevry kal Tnv PoBAedn vEwv

oTOXwWV yla cuvduacoTikn Bepareia yia MS.
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O ouvduaopog fingolimod eite pe avactoAea TAK1 eite pe EGCG emikupwOnke emiong

o€ éva (WIKO POVTENO.

AvaAuon pe xprion 3 kuttapooeslpwyv 3 nriatikoL kapkivou (HCC) mapouciace veeg
UNXQVIOTIKEG QVTIANYPEIC YA TIGC OTOXEUMEVEG QVTIPAEyHOVWOEIG OPACEIS TPLWV
urtooxopevwy nutraceuticals, epigallocatechin gallate (EGCG), fisetin (FIS) kau
eryodictyol (ERI). To EGCG rfitav o 1o anoTeAeopaTIKOG SIapopdwTG TNG EKKPLONG
PpAeypovwdwyv Kutokivwy (rtou akoAouBeital arod FIS kat ERI) kat ta kottapa HEP3B
ATAv Ta KAALTEPA avtarnokplvopeva. MNMapd tnv ponyovuevn ektevr) BiBAloypadia,
auth ATav N PWTN HEAETN oL deixvel TNV EEAIPETIKN IKAVOTNTA ALTAG TNG Evwong va

HELWVEL TAUTOXPOoVA £va eLPL GACHUA KUTOKIVWYV TIoL ekKpivouv ot HCC.

Me pia edpappoyry otnv KapdlopvordBela ToOL TIPoKaAeital arod  $papuaka,
arodeixBnKe OTL N KATAOKELH] CUYKEKPIPMEVWYV POVOTIATIWY oNpatodOTnong Pmopei va
OLAAAGBEL LTTOAOYIOTIKA TOV TPOTIO HPACNG EVOC GAPPAKOL Kal va av€roel Tnv akpifeta
NG mPoPAednc tng Kapdlopvordbelag anod 79% oe 88%, oe oLYKpLON PE TN XPHon
pHOvo Twv transcriptomic dedopevwv.

Xpnowporowwvtag Elastic Net, evrormiotnkav 33 npwteiveg / yovidia, rtou mpoBAEmouV
KaAUtepa Tnv Taflvopnon TnG TOEKOTNTAG OTnv KApdld TIPOKAAOUUEVNG arto
$pappaka.

Ta microRNAs mouv puBuifouv TNV €kdpaon Twv 6 Kopudaiwv predictors eival
OlayvwaoTiknG a&iag yia ¢uolkn) Kapdlakr avernapkela r ernayouevn ard Doxorubicin
kapdlopvonabela. Meta&v avtwy, yia ta miR193-3p kat miR26b-5p mou pubuiCouv 4
kat 3 predictors avtiotolxa, a&ifel va dle€axbolv KAIVIKEG PEAETEG TIPOKEIPMEVOL VA
kaBoplotei eav autd Ta microRNAs eivar xpriola wg in vivo Plodeikteg yia

kapOlopvomnabela mov pokaAeital arnd pappaka.

Mapatnendnke 6Tt n MAANH €xel toAuttapayovTiky ¢puon Kat 6gv LTTAPXEL eviaia
Bepartieia yia OAoug TOLG ULTOTUTIOUG TNG, uroypappidovtag TNV avaykn yua
OLCTNUATIKI TIPOCEYYION Kal €EATOUIKEVPEVEG OEPATIEVTIKEG TIAPEUPATEIC yla TNV
KaAUTEPN Katavonon Kal Bgpareia tng. Autr ATAv N mpwtn $opd Tov pia PJEAETN

OTOoXeLEL OTNV Katavonon tng moAurapayovtikig dovong tng MAANH oto entinmedo
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onuatodotnong pe TN HEAETN 5 povrteAwv emnaywync MAANH oe mpwtoyevn
avBpwrilva NTAaTtoKUTTaPA.

Ta aroteAéopata emBePaiwoav eva peyalo e0pog PIPAOYypaADIKWY EVPNUATWVY Yia
punxaviopoug onpatrodotnong otnv MAANH. EmumA€ov, ot CHK2 kat EPOR €xouv
avadelkbei wg mBava onuavtika onuata mou Jropei va eival evéladpeEpov va
HEAETNOOLV TEpAITEPW adOU €ival €MONG ONUAVTIKOL TTAPAYOVTEG OTNV AvayEvvnon

TOU NMATog.

Ta televtaia 4 xpoévia, o Anunteng Meaoorvng €xel cuyypaygel 6 dnuoaolevoelg o€
ETIOTNHOVIKA TIEPLOOIKA Kal 14 miepAPelg - avakolvwaoelg oe Olebvr) cuvedpla. 'Exel
Hia dnuoaoievon weg MPWTOCG cuyypadEAS Kal £xEL ETUTUXEL OeikTn h-index 6. Meow Twv
npoomnabelwv yla TNV arokpurrtoypadnon Twv HPNXAVIOHWV  OladOpPETIKWV
avBpwriivwy acBevelwv, o urioPridLlog SIOAKTWP EXEL ATIOKTAOEL ELPEIA KATAVONON OTN
2UCTNULKN JOVTEAOTIOINON KAl avAAuaon YEYAAWV OESOUEVWY, AQVETTTUEE TIG OIKEG TOU
TMEIPAPATIKEG KAl UTIOAOYIOTIKEG HMEBOOOUG Kal OLVEBOAAE OE APKETA ONUAVTIKA
gupnparta rov neptypagovtal mapardvw. To €pyo Tou atnV ZKArpuvon Katd mAAKag
Tov €kave va erilextei peta&y 6 ard 110 gpyaciwv yia va dwaoel pla cLVTOPN OHIAia
oto International Conference on Systems Biology of Human Disease oto Harvard to
2014. To 2016 ocuvepydotnke pe to U.S. Food and Drug Administration yia tnv
QVATTTLEN PLAG VEAG LTTIOAOYIOTIKNG HEBOGOL yla TNV TPOPRAEPN TNG Kapdlopvordbelag
TIoL TIPOKaAeiTal anod ddppaka pe akpifela 88%, €pevva mouv dnuoocievdnke ato CPT:
Pharmacometrics & Systems Pharmacology. H egpyacia tou mavw otn MAANH
QATTOKAAUYPE €vaV TIOAUTIAPAYOVTIKO PNXAvIopo onuatodotnong kait kepdloe to 10
BpaPBeio and 56 epyaciec oto ouvvedplo NG Etawpeiag ‘Hmatog-lMaykpeaTtog-
XoAndoépwv 10 2017.
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Kapdlopvortidbela rmpokaAovpevn ano ¢apuaxka

H aobBevela

Ol KAMVIKEG €KONAWOEIC TwV KAPSIOKWV TIAPEVEPYEIWV TIOL oxetiCovtal pe Ta
QVTIKAPKIVIKA $appaka eival TOKIAEG Kal pTopel va Kupaivovtal anod ofeieg
EMayopeveg KaApOIakeG appubuieg ewg nmapdataon dwaotrpatog Q-T, peTABOAEG OTNn
otedaviaia ayyelomabela pe OladoxIK loxaiyia Touv puokapdiov, puokapditida,

niepkapditida, coBapr] CLOTOAIKA SUCAEITOLPYIA Kat SuvnTIKA Bavatndopa cuykory.

Mepapatikd Movtelo

Baowkn peAetn (Kapdlopvokuttapa)

o KapdlopvoKLTTapa Tou MPoEpxovTal anod avlpwriva erayopueva moAvduvaua
BAactokuttapa (Human  Induced  Pluripotent Stem  Cell-Derived
Cardiomyocytes)

o KapdlopvokiTTOPaA TIOL  TPOEPXOVTAlL amod  avBpwriva  ePPpuika
BAactokutTapa (Human Embryonic Stem Cell-Derived Cardiomyocytes)

o [lpwTtoyevry avBpwriiva KapSIoPLOKUTTAPA, ATTOPOVWHEVA ATIO TIG KOIAIEG TNG
Kapdlag evnAikwv (Primary Human Cardiomyocytes, isolated from the

ventricles of the adult heart)

MeA€Tn emaAnBevong (KAPKIVIKE KUTTAPIKEG oelpeg ard CMARP)

e MCF7
e HL60
e PC3

Melpapatika epyaieia

MpokKelTal yia LTTIOAOYIOTIKO €PY0 OTIOU OEV XPNOLUOTIOWBNKAav TEIPAPATIKA EPYAAEiQ.
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YTioAoyloTIKA epyaleia

e Integer Linear Programming formulation yia tov ouvbuvaopo &edopevwv
EKPpaong yovidiwv PE TIPONYOLHIEVN YVWON CUVOECINOTNTAG TIPWTEIVWYV YA TNV
KATAOKELN YOVOTIATIWV CNPatodoTnong.

e Elastic Net Regularization kat dAAeg pebodol pnxavikig pabnong.

2 NUavTika ArtoteAeopata

H kKataokeur) povoTaTiwy onNpatodoTnong UMopel va Kataypayel LTTOAOYIOTIKA TOV
TPOT0 dpAonG evog GapUAKOL Kal va avénoel Tnv akpifela tng mpoPAedng amnod 79%
oe 88%, oe oLyKplon PE TN XPHon HOvo Twv dedopevwyv EkPpaong yovidiwv. Auto
mbavotata odelleTtal otnv TPONYOUPEVN YVWON TwV AAANAETUOPACEWV TWV
BlOAOYIKWV TIPWTEIVWV Kal TOLUG OTOXOLG TwvV GappdKwv Tov AauPavovtal emiong

UTIOYPN yla TNV KATAOKELN TOL €18IKOL SIKTLOU.

Xpnoworowvtag Elastic Net regularization, katadépape va efayayovpe 33
predictors mov TPoPAENMoLV KaALTEPA TNV Ta&lvopnon tnG To&IkOTNTAag GAPUAKWY
TIOL TIPOKAAOULV KAPSIOTOEIKOTNTAG (€iTe TOEIKO yia> 0,1% KALWVIKN ETTTTWON €ITE PN

To&IKO yia <0,1%).

Ta microRNAs mou puBuiCouv TnVv ekdpacn Twv €€ Kopudaiwv predictors pag €xouv
Olayvwaotikn a&ia yia tnv $uolkry Kapdlakr averdpkela ) TNV Kapdlopvomadela Tov
npokaAeital arnd Doxorubicin. Metafy avtwv, To MiR193-3p kalt To MiR26b-5p
puBuiCouv teploocdTEPOULG predictors anod ta aAla pikpoRNAS (TEooepIG Kal TPELG aTto
Toug Kopudaioug predictors pag, avtiotowxa). Mmopei va a&iCel va die€axbouv KAVIKEG
HEAETEG yla va mipoodloplotei eav To MiR193-3p kat To miR26b-5p eival xpriowot in

vivo BlodeiKTeg yla Tnv Kapdlopuomnabela mov ipokKaAeital and pappaka.
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MpoPBAen KapdiopvordBelag mmou mpokaAeital arnd pAappaka

pe pebodouvg Metadppaotikig Zvatnuikng @apuakoloyiag

MepiAnyn

H kapdlopvormdBela mou npokaAeital anod pappaka cupBAAAeL ota vPnAd TocooTa
aroTuxiag Katda tnv avartuén apudkwy. Zuykpivape dVo pebBodoug POPAEPNG pe
povtehortoinon: (1) edpappoyny Elastic Net (EN) oe diadopikd ekppacpeva yovidia
(Differentially Expressed Genes - DEG) petd ano edpappoyr dappdkwv. (2) epapuoyn
AKEPALOUL YPAPUIKOL TIpoypappatiopoL (Integer Linear Programing - ILP) yia tnv
KATAOKELI ONUATOSOTIKWY HOVOTIATIWV Yla KABe $pappdko Eeklvwvtag amod Toug
OTOXOUG TOU GAPHAKOUL TIPOG TIC TIPWTEIVEG TOU POVOTIATIOU, OTOUG TIAPAYOVTEG
uetaypadng kar ota DEG toug oe avBpwriiva KapSIOPUOKUTTAPA KAl OTN CLVEXELA
urtoaiAovtag ta yovidla / mpwteiveg ota diktua onpatodotnong oe EN regression.
Katata&ape 31 dpdpuaka pe Owabeocipotnta DEG oe 13 1o&ikd kat 18 pn tofika
$dappaka pe Paon KAwIKn €vdelen kapdiopvortddelag 0,1%. H BeAtiwpevn pe ILP
povteAortoinon avénoe tnv akpifela mpoPAredng anod 79% oe 88% (evaicBnoia: 88%,
elolkotnta: 89%) pe Leave-one-out cross validation (LOOCV). Ta povonartia
onpatodotTnong Twv GAPPAKWY TIOU KATAOKELAOTNKAV NTav KaAutepol predictors
artd ta DEG. >vudwva pe tnv BiBAloypadia, Ta microRNAs mou avadepetal OTL
puBuiCouv TNV Ekdpacn Twv €L Kopudaiwv predictors pag €xouv dlayvwaTikn a&ia yia
dualkr) Kapllakry avemapkela n  kapdlopuvoridbela TOL TPOKAAeiTal ard TO
Doxorubicin. AutO TO PETAPPACTIKO HOVTEAO TIPOPAEPNG MUTIOPEL va ArmOKAALYEL

rbavoug PlodeiKTEG.

Ewcaywyn

20Bapeg Kal arelAnTIKEG yia Tn {wr) averibupnTeg EVEPYELEG TIPOKAAOUV TNV aroTuyia
oe dladopa otdadla TnNG avantuéng ¢appdkou i KATA TNV TPOTOToiNoN BEPATIEVTIKWY

aywywv. Na mapddelypa, ol avBpaKuLKAIVEG, av Kal €ival AMOTEAECUATIKEG yla TN

Beparteia Kapkivwy, eival yvwoto OTL TTPOKAAOLV pn avacotpePiun, e€apTwuevn aro tn
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86an kapdlotofikoTnTa (TofIKdTNTA OXeTI(OUEVN We TO contractility).? Mpoodara, n
OTOXELHEVN Beparteia pe avaoToAEeiG Kivaong Tupoaoivng (Tyrosine Kinase Inhibitors -
TKIs) emiong npokdheoe tétola TofikOTNTA.? H PoRAEPn TNG MPOKAAOUUEVNG artd
pappaka KapOlOTOEIKOTNTAG MTOPEL va HEIWOEL TO TIOCOOTO ATIOTLXIAG KATA TNV
avantuén pappdkwy Kat va ipowbnoel TNV 1ATPLK akplBeiag.

‘Exouv yivel TTpooTTdBeieg TTPOBAEWNG WE HMOVTEAOTTOINCN yIa  AVETTIBUUNTEG
AVTIOPACEIS PAPUAKWY PHECW TNG EVOWHATWONG TTANPOPOPIWY ATTO BACEIC OEOOUEVWV
Kal BAceig yvwong Twv  PIOAOYIKWY OpacTNPIOTATWY, TNG XNMEIAS Kol Twv
QVETTIBUUNTWY EVEPYEILV PAPPAKWYV.*® QoTdo0, eV £X0LV KATAOKELAOTEL POVTEAA
nPOPAePNG TNG Kapdlopvomdbelag Tou TpoKaAeital arod GApPAKa, XPNOLLOTIOIWVTAG
nmAnpodopieg onuatodotikwy povoratiwv. O Harpaz et al.® vroypdupioe Tn onuacia
NG aflomoinong TOAAAMAWY  TINYWV  yvwong, PloAoyiKwy TIANPodopIwV  Kal
Blolatpikng BiPAloypadiag yia tnv mpoPAedn tTnG ToEIKOTNTAG PAPPAKWY. Z0udwva
HE auTny TNV 18€q, OTO TIAPOV POVTIEAO TIPOPBAEPYNG EVOWHATWVOUNE TIPONYOUHEVN
YVWar, 0TOX0ULG GAPHAKWY Kal EUTIEIPIKA SEOOPEVA, WOTE TO HOVIEAO YAG va UTIOPEL
va rpoaodlopicel Bacikovg predictors arod Tov pnxaviopo dpdong evog papudkou Kal
va €xel ™ duvatotnta va Ponbroel tTov TMPOCdIoPIoPd Kal TNV avartuén veEwv
papudkwv.

a va oupmANPWOOLPE TO KEVO, KATAPTIoape €vav Kataloyo 31 Tokwv Kal pn
TOEIKWV GAPUAKWY TA oTtoia €xouv eEETACTEL TTAVW O avBpwrilva KapdlopvokKLTTapa
Kal £XOUPE TO peTaypadikd Toug TPodiA® 2. EmBewprioape tnv Aiota Kat mpoodsoape
TNV KAWVIK epdavion tng Kapdlopvordbelag mov oxetidetal ye 1o KABe GAPUAKO.
‘Emnteita Oe€fiyape povreloroinon yia va mpoBAEPpoupe TNV TIPOKAAOLPEVN ard Ta
$dappaka autd kapdlopvoridBela. Avo povreAa TPoPAePpng ocuykpibnkav: (1)
epappoyn Elastic Net (EN) oe diadopika ekdppacpeva yovidla (Differentially Expressed
Genes - DEG) peta amnd edpappoyr] apuakwy. (2) epappoyr] akEPAIOL YPAUUIKOU
npoypapypatiopov  (Integer Linear Programing - ILP) yia Tnv Kataokeun
ONUATOSOTIKWY HPOVOTIATIWV Ylia KABe ¢apudko wote va avtikatorrpilel Tov
pnNxaviopo 8pdong tou,? Kat otn cuvéxela LTIoBoAr Twv KOUPWV Twv oe EN regression.
O alyopiBuog ILP formulation® rmepinyeital o éva Siktuo TponyolHEVNG YVWwong yla
TNV ETUKOIVWVIA TIPWTEVWV-TIPWTEIVWYV, TIPWTEIVWV-PeTaypadikwy rapayoviwv (TF)

Kal aAAnAerudpdcewv yovidiwv-TF kal tautorolei TI¢ 0600 TIOU CUVOEOUV TOUG
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otoxoug Tou dapudakou pe ta DEG. To ILP oxt pévo BeAtiotorolel Tn Abon evpeong
Oladpopwv onuatodoTnong evog ¢apudkou aAAd eTtiong evioxvel TNV anodoan Tou
HOVTEAOL TIPOPAEYPNC, ETUTPETIOVTIAG TNV TAUTOTOINON Tou urtocuvolov DEGs mou
elval AEITOLPYIKA OXETIKA PE TOV TPOTIO dpAcng Tou papudkou. Avadepoupe emiong
v PBiBAoypadia yia ta microRNAs mou eival dlayvwoTika yia tnv Kapdlakn
QVETIAPKELQ Kal yia Tnv Kapdlopvordbela mou TpoKaAeital and pappaka, Kabwg
€Miong Kat yia tn pubuilon tng €kdppaong Twv predictors pag pe tnv eAmnida otL Ba
piéovpe Ppwg ota ruBava microRNAs wg in vivo Blodeikteg kKapdlopvonabelag mou

TPoKaAeital and pappaka.

Mg0Bodol

20vtaén KataAoyov GappAaKkwy Kal KAWVIKA eudavion kapdlopuorddelag

TIOVL TIPOKAAEiTAL aATtd PAppaAKa.

[MPOKEIUEVOL VA KATAPTIOOUPE TOV KATAAOYO TWV EYKEKPIMEVWV DAPUAKWY TIOL
npokaAoLv Kapdlopvordbela rov oxetiletal e karola Beparteia, avagpepoduacte ota
National Institutes of Health Common Terminology Criteria for Adverse Events
(¢kdoon 4.03)" kat oto Medical Dictionary for Regulatory Activities' yia 6poug mou
oxetiovtal pe TNV Kapdlopvordbela woTe va KAvoupe text-mine eyKEKPIPEVEG
ETIKETEG PapuaKwv. Ol XpnOolPoTIooLPEVOL Opol TiepIAaUPBavav kapdlopuomnabelq,
KapOLaKr QVeETIAPKELQ, OLPGOPNTIKN KAPJOIaKN avemdpkela, , OLOAEITOLPYiA TNG
ApLOTEPNG KOIAIQG, amoTuXia TNG aploTeEPrG KOIAAG Kal peiwon Tou KAAoOPATOG
e§wbnong NG aplotepng Koliiag (cardiomyopathy, heart failure, congestive heart
failure, cardiac failure, left ventricular dysfunction, left ventricular failure, and
reduction in left ventricular ejection fraction). Ta tp€xovta apxeia PDF tng €TikETAG
ToL K&Be pappdkou (Drugs@FDA?) urtoBAnBnkav os avaiuaon e pia pebodo e€dpueng

Kelevoy (text mining), OMwWG SnUOCIEVONKE TIPONYOLUEVWG.

Ol pepovwpeveg
ouxvotnTeg epdaviong yia kKapdlopvordbela avayvwpiotnkav HE  XELPOKIvNTn
QAropovwaon ETIKETWV PAPPAKWY, ONPOCIELPEVEG avaBewproel VEwV Ppapuakwv

(Drugs@FDA), kaBwg kat SNPOCIEVUEVEG KALVIKEG UEAETEG.
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MovtElo TpoRAEPNg

Pon epyaciwv kat kupiwtepa onueia tTnc EN kat ILP.

Onwg ¢aivetar oto Figure P6-1, ouykpivape &V0 pebddoug mPOPAedYNg pe
pwovtehortoinon: (1) edpappoyny Elastic Net (EN) oe diadopikd ekppacpeva yovidia
(Differentially Expressed Genes - DEG) petd ano edpappoyr dappdkwv. (2) epapuoyn
AKEPALOL YPAPUIKOL TIpoypapuatiopoL (Integer Linear Programing - ILP) yia tnv
KATAOKELN ONUATOOOTIKWVY MPOVOTIATIWV yla KABe apudAko Kal OTn oLvEXeld
urtoaiAovtag ta yovidla / mpwteiveg ota diktua onpatodotnong oe EN regression.
To EN eival xpriouo ota povteAa rmpoPAedng otav ol predictors emepvolv KAt TOAD
TIC TIAPATNPNOEIC EVW TIAPAAANAQ ival og BEON va EVTOTIOEL OTATIOTIKA ONPAVTIKOUG
predictors * To EN regularization eivai xprioo yia tv yoviSIwpATIKr avaluon
gvalodnoiag pappdkov otov Kapkivo.™

Edapuodoape tnv ILP oe otdoxoug DEG kal mpwteivwv €vog dappdkou yia va
HOVTEAOTIOINOOLKE TOV TPOTIO OpdaonG Ttou. Autd Ta Ovo ertineda MANPODOPIWV
ouvoEovTal PECW HETAYWYNG ONPATOG, OTIOL TO ONPa TIPOEPXETAL ATIO OTOXOUG
dappdkwy, Sladidetal evOOKUTTAPIKA PECW €VOG OLVOETOL SIKTUOUL CNUATOSOTIKWY
onuatwy, diEpxetal ard 1o oTpwua Twv TFs kKal TeAlka $pBavel To peTaypadiko
erntinedo DEG. 2xedlaoape TI¢ aAANAeTIOPACEIC 0TO SIKTUO yvWwong XPNOLUOTIOWWVTAG
TOV AOYIKO dpoppailopod,’ o oroiog Mpoadloploe TO EAAXIOTO UTTOCUVOAO TOU SIKTUOU
yla va erutuxel tnv erbuuntr) ouvoeouOTNTA. KATAOKELACAUE TO OUYKEKPLUEVO
OiKTLO onuatodoTnoNng yia kabe pappako xpnotyorolwvtag ILP, énwg dnuoaoievbnke
TIPONYOLHEVWG.®

To ILP Ba evioxvoel TNV IPOoBAETTIKI arntodoaon eMeLdr €XEL TNV IKAVOTNTA va CUAAGPEL
TIC KUTTOPIKEG QTOKPIoeElC o €va GAPHPAKO, va avayvwpioel TO UTIOCUVOAO
onuavtikwv Aettoupylkwv DEG kat va Ponbricel otn Siadoporoinon petay Twv

$pappdkwy Kal va petadppdcel OAa avtd oe PEATIWPEVEG ETIIOOCEIG TIPOPBAEYNG.

OuaAoroinon ovouatoc dapudKou.

Ta ovopata GapuaKwy apxika efopaAlvlOnkav Kal TpoodlopioTnKkav HE TO
avayvwploTiko Tou PubChem yia va diaodaliotei n cuvoxr kata tn AjPn dedopevwv

ard 1o Map Connectivity Map (CMap),® to Drug Toxicity Signature Generation
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Center (DToxS),° to Search Tool for Interactions of Chemicals (STITCH),"” kat tnv

BiBAoypadia.

2UYKEVIPWON OTOXWV GApUAKWYV

S UYKEVTPWOANE TOUG OTOXOUC TWV PEPOVWHEVWY dapudkwy arod to STITCH," kat
Baon 6edopevwy "chemicalprotein links" kal erIAeéEape podvo avBpwriveg MPwreiveg.
O1 npwteiveg Tautormoldnkav and 1o avayvwplotiko SwissProt / EnsEMBL kal
vetadppAoTnKav o€ YyovidlakA oUPBOAQ TNG ETUTPOTING ovopatoAoyiag yovidiwv
HUGO,® xpnowomowwvtag To MakETo R biomaRt, mpokepévou va taiptalouv pe Toug
KOPBOULG Tou SIKTUOL TIPoNyoLHEVNG yvwong '° Xpnolorowrjoaye To apXeio Tou
STITCH “interaction types for links”, aré omou npoodlopicape ta ¢apuaka wg oTl
EVEPYOTIOIOVV ] AVACTEAOLV TIG HEPOVWHEVEG TIPWTEIVEG-OTOXOLG. XPNOLUOTIOIOAE
HOVO €Keiva TIOU ouvdEoUV OeopoLG METAEL C(evywv TIPWTEIVWV-PAPPUAKWY HE

BaBuoAoyia anddoong 0,7.

Nnyec dedousvwy yovidlakNc EKdpaonc Kal XELPLOPOC TOUC.

‘Ortou urtpxav dlabeatpa dedopeva wg Affymetrix probe IDs, Ta probe IDs (Affymetrix
GeneChip Human Genome U133A Array) petadppdotnkav oe HUGO Gene
Nomenclature Committee gene symbols xpnowpormowwvtag To biomaRt package® kat
to hgu133a2?' package otnv yAwooa Tmpoypappatiopod R. e OAeg TIG Aioteg
yoviSiwv dtatnprioape povo ekeiva ta yovidla pe fold change > 2 kat P value < 0.05
obudwva pe €va two-tailed, two-sample, unequal variance Student’s t-test,
TIPOCAPHOCHEVO XWPIOTA ylia TIC Aioteg yovidiwv umep- Kal UTO-€KdpaonG HE
016pBwoaon Bonferroni (P value mpoocapuoopevn yla TIOAAATIAEG CUYKPIOELG).

‘Evag kataloyog 75 dappdakwv pe mpokalovpeva ano ddappako DEGs mou eival
SlaBeolpa and Kapkivika kKutrapa '° oto CMap xpnotpororjénkav yia SlepeuvnTIKh
wovtehortoinon (BAEme Table P6-S1). 'ia t™n die€aywyn oxupng TPOYVWOTIKAG
pHovteAortoinong, e€avtAnoape tn BiBAloypadia kat Ti¢ facelg dedopevwy Kal Bprkape
evav Katdloyo 31 dappakwyv ard ta ormoia Atav diabeoua DEGs enayopeva ano
$pappaka oe avlpwrilva KapSIOPJLOKUTTAPA KAl KAPSIOPLOKUTTAPA TIOU TIPOEPXOVTAL
artd PAactokutTapa Ot dvo Tinyeg Oedopevwyv yia dlatapaxr) TNG YOVISIOKNG

EKPpaong oe KapSIOPUOKUTTAPA TIOU TIpoKaAeital and ¢pappaka Atav: (1) 30
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dappaka ard DToxS, omnouv xpnoworonkav TmpwTtoyevr)  avBpwriva
KapOIOPULOKUTTAPA evnAikwy, Kal (2) otolxeia and tn PBiBAoypadia tov Doxorubicin
HMEAETNUEVO OE KAPOIOPLOKUTTAPA TIOU TIPOEPXOVTAL Ao avBpwrilva BAACTOKUTTAPA.
To peyebog KABe cuvoOAoL OEOONEVWV TIEPIOPIOTNKE KLPIwG ard tn OSlabsoipotnTa
oedopevwy DEG. Na ta 6edopéva tov DToxS, katePaocape ta dedopeva ekdppaon
yovidiou erurtedou dvo, vrtoAoyioape ta fold changes, kpatrjoaue povo ta DEGs pe
fold change > 2 kal Ta ocuyxwvevoaue aro SlaPopPeTIKOLG SOTEG, LTtoAoyilovTag To
pHEéoo opo Twv fold changes kai amokAsiovtag ormoladnnote DEG pe avtiBeteg
KaTevbLVoEIC EKPpaonG.

To Doxorubicin peAetdatal evpewd yla tn docoeapTwuevn KAPSIaKN NG TofkoTNTA
kat cuvrBwg xopnyeitat oe 66on 40-60 mg/m. Meta amnd evoodAEPLa xopriynon 60
mg/m?, n PEYLOTN OUYKEVTPWON oTo MAAopa (Cra) ATAv 630 ng/mL (1,159 nM).%
BAeme Table P6-S2 yia peplkeg PEAETEG TWV PETAYPAPIKWY TIPODIA TOL doxorubicin.
Ma tn povtelornoinon pag, ocuureplAdPape ta dedopeva anod KapSIopPVOKUTTAPA IOV
mpoEpxovtal arnod avlpwriva ernayopeva mmoAvduvapua PAACTOKUTTAPA Ao TOuG
Chaudhari et al.® kat Burridge et al.” Jupriepi\dBape ta Sedopéva YovISIOKNG
ekdppaong ard Burridge et al. ota 100, 1,000, and 10,000 nM kat Tov Chaudhari et
al. ota 156 nM (BAene Supplementary Table S3 at DOI: 10.1002/psp4.12272 yia to

OKETTTIKO).

[Npoadloploudc Tov TPoTIoU dpdonc evoc dapudkou ue xpnon ILP.

Kataokevdoape apxika €va OIKTLO TPONYOUMEVNG YVWONG WG IKpiwpa yia tnv
KATAOKELN €VOG onUATOdO0TIKOU OIKTUOU pappdkou he tn Anyn anod tnv Reactome
NG teAevtaiag €kdoong (€kdoon 2015) Twv "AelTtovpylkKwy AAANAETIIOPACEWY TIOU
npoépyxovrat arnd To Reactome". Onwg Snuooiedoaue mPONYoLUEVWG,®
OLYXWVELOAUE QUTEG TIC QAAANAEmIOPACEI ME TapAyovTeg Metaypadng Kai
KataAn&ape pe €va SIKTLO TIOU KAAUTITEL TA £TTIMESA TWV TMPWTEIVWY, TWV TTAPAYOVTWV
puetaypadng Kal Twv yovidiwv, To omoio mepleixe 64.801 avtidpdoelg, 2.585 npwteiveg
onpatodotnong kat 12.376 yovidia. Edpappdoape 1o ILP yia tn BeAtiotormnoinon tou
OIKTUOUL oNUAatodOTNONG €VOG DAPUAKOL TIAPEXOVTAG WG €i0000 TO IKPIiwUa TIOU
avadpePBnKe Maparndavw Kal Toug oTOXOUG Tou GAPHAKOU.

H Siapopdwon ILP emmAbBnke XxpnoIHMOTIOIWVTAG TO OTOLVTIO BeATioTomnoinong IBM
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ILOG CPLEX pe otoxo tnv PeAtiotoroinon tou SIKTVoL yia kabe ¢pdppako. Me Bdon
TOUG TIEPLIOPLIOPOVGE TIOU PIPOVVTAL TN PETAYWYH ofpatoc® kat mpooappolovtag otnv
e0IKN TepimTwon TOAL peydAwv (> 10.000 koOpPwv) OKTOWV, O aAyoplOpog
€NAXIOTOTIOINCE TNV AVaVTIOTOLXia PETAEL TWV SEQOUEVWV TWV PETPOEWV EKPPACNG
yovidiwv Kal TNG TOTIOAOYIAg TNG TPONYOULHEVNG yvwong Twv povoratiwyv. H €€odog
ATav 1o PEATIOTO OIKTLO ONUATOdOTNONG Yia KABe dAppako, Tipoadlopilovtag TIG
HOPILOKEG AAANAETIIOPACELG TIOL daivovTav va gival AEITOVPYIKEG Pe BAon TNV €icodo
Twv DEG Kal Twv otoxwv Twv pappdkwyv. Huaotav oe B€on va eTiAEEOLE TO EAAXIOTO
HEPOG €VOG OIKTUOL TIPONYOUPEVNG YVWONG yla KABe pAapuako 1ov Ba propovoe va
efnynoel ta oedopéva pag. Aeite 10 Supplementary Document-ILP at DOI:
10.1002/psp4.12272 yia TNV KaAtavonon Tou Tmapadelyyatog Tou SIKTLOUL
onuatodotnong tou ¢appdkov Methotrexate, orwg cuAAapPavetar ard 1o ILP

(ertiong oto Figure P6-S1).

2UYKpivovtac ta povreAa npoAedng: edapudlovtac EN ora DEGs evoc dapudkou

VS. 0TO oNUATOSOTIKO LUOVOTIATL TOU PapUAKOUL OTIWC TIpoKUTITEL Ao To ILP.

["la va kataokevaotei €vag Tivakag yla to EN regression, KaBe pAappaKo onuelwdnke
pe 0 edav eival pn To€IKo Kal pe 1 edv taivopeital wg To€iko. Katatagape ta ¢pappaka
avapePOPEVOL OTIC EYKEKPIPEVEG ETIKETEG ME TA KPITHPIA: «2UXVEG AVETUOUUNTEG
EVEPYEIEG €lval €KEIVEG TIOU OLpPaivouv Ce pia ) TEPIOCOTEPEG TIEPITTWOELS OFE
TouvAaxiotov 1/100 aoBeveiq. Zmavieg averubBuunTeG €VEPYEIEG €ival eKeiveg Tou
eudavitovtar oe 1/100 €wg 1/1000 acBeveig. 2mavia yeyovota eival €Keiva Touv
ovpBaivouv oe Alyotepoug ard 1/1000 acbeveic."AvadepOuevol OTOV OPIOPO TwV
OTtAViwV CLHPBAVTWV TIOL XPNOLYOTIoIOLVTAL OTNV E€Tuchpavon Twv Gapudkwyv Kal
Aaupavovtag unoyn TNV KATAVOUN TWV KALVIKWV TIEPITTWOEWY, TOV AplOpo Twv
papudkwv pe dlaBeoipa dedopeva yoviOlaKAG €KPPAONG KAl TNV ETEPOYEVEIA TWV
KAWVIKWV pEAETWYV, Taflvopnoaue Tta $appaka oe OVO KATNyopieg, TOEKA yia
ovxvotnta >0,1% kal pyn To&Ika yia cuxvotnta <0,1%.

Anpilovpyndnke pla otnAn "KapdloTto&IkoTNTag" e KAIHaKa KAWVIKAG eTtimtwong: 1 yia
"To&ikn" kat 0 yia "pn tofikn". Kabe otnAn avTioTolxel oe €va POvo yovidlo Tiou
ekPppaletal oe TOLAAXIOTOV pia amnod TG Aloteg DEG. 2ta erupépoug deiypata evog

$pappdkov 660nke pia TN 1, -1 n 0 yla va avrkarortpilel TNV mMpog Ta mavw
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PLBULOPEVN, TIPOG TA KATW PLBHICHEVN 11 PN avadepPOUeEVn EKPPACN, avTioTolKa
(MEBodog 1). Ou idleg ouvBnkeg edappootnkav oToug koOpPoug oto  SikTvo
onuatodotnong ILP kabe pappdkou (ueBodog 2).

Katd tn povtelotoinor pag xpnotgortorjoape EN regression Kal TilO CUYKEKPLUEVA
€Va HOVTEAO YPAUMIKAG TapePPoAng pe pwa towvrp EN 1ouv mpoodlopiotnke

xpnotyorolwvtag to makéro R gimnet.

H kavovikoroinon tng EN opiCetal anod dvo
napapeTpoug, alpha kat lambda. To EN eival eva piypa LASSO kat ridge regression
Kal ouvouadlel Toug SVO OPOULG TIOLVAG TOLG Yla TNV TtapdpeTpo alpha. Otav To alpha
eival 0, to EN 6pa wq ridge regression kat 6tav 1o alpha givat 1, to EN 6pa wg LASSO.
210 EN, n mapdpetpog Aauda avtikatortpilel TN CLPPIKVWON TWV CUVTEAECTWY TOUL
povtélov. ‘Otav to lambda 1oovtal pe 0, dev yivetal cUPPIKVWON TWV CUVTEAECTWV
TOU POVTEAOUL, AAAA Ol CLVTEAEOTEG pelwvovTal TIpog 1o 0 (av Kal dev gival akplBwg
ioo pe 0) 600 avéavetal n Tur Tov. AoKipaoape €va VPO TIHwV yia to alpha aré 0
ewg 1 pe Bripa 0.01 kat eruAEgape auTo TIOL EAAXIOTOTIOINCE TO PECO TETPAYWVIKO
opdApa. MNa ekeivn tnv Tn alpha, eruAegape tnv TP Tov lambda mov €dwoe TO
eNAXI0TO YECco odAApa cross validation.

Ma va erukupwoovpe KABe POVTENO, Xpnolporoljoape leave-one-out cross validation
(LOOCV) a¢rivovtag kKABe popa ekTOC Ta dedopeva evog dapuakou (eite DEG eite
OIKTUO onuatodoTnongG Tov Katackevdotnke ard 1o ILP) kal To kKavape autd oe
OAOKANPN TN Alota dapudkwv. Kdbe dpopd vrtoloyioape tnv akpipela, Tnv evaicdnoia
Kal TNV €0IKOTNTA Yla €va POVTEAO TIPOPAePNG Kal eruAeCape Kal avapepape TO
HOVTEAO pE TNV bPnAOTEPN akpiPela padi pe TNV evalcOnaia kat TNV €8IKOTNTA TOU.
Ao TO erAeypevo POVTEAO TIPOPAeYPnG, mpoekuvpav ol predictors (yovidia /
MPWTEiveg) 1oL TPOEPAETIAV  KAAUTEPA TNV TIPOKAAOULPEV amnod  dappaka
kapdlotofikotnta. To receiver operating characteristic (ROC) kal ol KQUTUAEG

precision-recall dnuiovpyrBnkav XxpnolPOoTIOIWVTAG TO AVTIoTOLKO TTAKETOo TNG R.

MeBobog 1 — epappolovtag EN ota DEGs.

Ta amoteAeéopata Twv 75 pappdkwv pe DEGs ard tnv CMap ocuvoyilovtal oto
Supplementary Document-CMap at DOI: 10.1002/psp4.12272. MeTa&L avtwv Twv 75

$pappdkwv pe ta DEG toug and to CMap, 24 dappaka ritav To€lka Kat ta vrtdAoira
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51 pdppaka ATav pn ToIKA.

‘Eva model matrix kataokevdotnke xpnolgorowwvrag ©O&edopeva amd  Ta
KapOIOPUOKUTTAPA, HE TIG 34 tapatnpenoelg (katata&n ToEIkOTNTAG) WG OEIPES Kal TIG
15,016 petaPAnTeEg (Ekdpaon yovidiwv) wg oTHAEG. TO YPAPUIKO HOVTEAO TIPORAEYPNG
KOTAOKELAOTNKE €XOVTAG WG €i00060 OAeG aQUTEG TIC MPETAPANTEC yia TNV
kavovikotioinon EN. Aokipdotnkav 6Aa ta mibava diadopetikd oevapla cutoff (deite
TO $LUANO “summary” oto Supplementary Table S4 at DOI: 10.1002/psp4.12272 yia
Ta aroteAéopyara Twv  SoKwv psccm_34_gen_heart kat Ta AemTOpEPN
aroteAéopata twv 18 povieAwv pe dlagopetika cutoffs oto uAlo “9”). Ta
napadelypa, cutoff 10 orjpaive 611 TPEEAUE TO HOVTEAO XPNOILOTIOIWVTAG HOVO EKEIVA
Ta yovidla mou ekdppdactnkav oe TouvAdxiotov 10 amrd TIc 34 Aioteg, mpdypa 1ov
onuaivel 0Tt N avaAvon dpxloe pe 3.508 yovidla, evw €va cutoff Twv 15 Eekivnoe tnv
availuon pe Ta yovidla mou gudaviotnkav oe TouvAdxiotov 15 amod Tig 34 Aioteg,

onAadn 464 yovidia xpnotgotolnkav wg cutoff.

MeEBobog 2 — epapudlovtag EN otoug KOpPBoug - yovidla/mipwTeiveg Twv

ONUATOOOTIKWY POVOTIATIWY TIOL Kataokevdotnkav pe ILP.

Apxika Ole€nyape €EEPELVNTIKI HOVTIEAOTIOINON XPENOIMOTIOWWVTAG Mla Alota 75
Pappdkwv pe dedopéva yovidlakng ekppaong tou eival diabeoipa oto CMap Kal
KataAn§ape oto oupmepacpa OTL Ta OiKTua onuatodoTnong Twv GAPPAKWY TIOL
npogpxovtal arno ILP &enepacav ta DEG Ttoug katd tnv edappoyry tng EN
kavovikottoinong (BAEme Figure P6-S2 yia ROC kat precision-recall KaumoAeg).

MmopEoape va Ppoupe TIG ALoelg tou ILP yia ¢pdppaka pe dedopeva yoviOlakAG
ekdppaong oe  KapdlopvokutTapa  (Supplementary Table S5 at DOIL:
10.1002/psp4.12272) ek1OG amnod cefuroxime, domperidone kat olmesartan. Avta ta
Tpia ¢pdppaka amopakpLuvonkav arnod autr TNV AoKNon POVTIEAOTIOINONG. 2TO TEAOG,
eixape 31 onpatodoTtika diktua amno 28 pappaka (15 pn to&ika pdppaka kat 13 Toika
dapuaka). BAEne Supplementary Table S5 at DOI: 10.1002/psp4.12272 yia TOUG
KOuBoug yovidiwv / mpwTteivwv oto OIKTLUO onuatodoTnong KABE PEPOVWHEVOL
$pappdkou. Kartaokevdoaue €va model matrix yia ta 31 povordtia / diktua

onuatodotnong  xpnowdorolwvtag — TPodiA  yovidlakng  ekppaong  arod
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KapdlopvoKUTTapa Kal BEtovrag 1 av evag KOpBog 0doL NTav puBUICPEVOG TIPOG TA
navw, -1 av Atav puBplopevog TPoC¢ Ta KATW Kat 0 edv dev urmpxe OTO
BeATioTOTOINPEVO OIKTLO OnuATodOTNONG €VOG dappakov. BAEme 1O UAANO
“summary” tou Supplementary Table S4 at DOI: 10.1002/psp4.12272 yua TQ
artoteAeopata Twv Sokipwv pscecm_34_ILP_heart kal Ta Aenttopepr] anoteAeopata

Twv 31 povreAwv pe dladopeTika cut-offs oto puAlo “10.”

BloAoyikny onuacia twv predictors

Epevvriiocape t™n PiPAloypadia yia microRNAs t1iouv €xouv armodelxBel O1L eival
OlayvwaoTIKoi O€IKTEG KAPOIAKNAG AVETIAPKELAG KAl ETTIONG EPTIAEKOVTAL OTN PLBULON TNG
YOVISLOKNG EKPpaonG. Xpnotulomnolrjoape e€0puén Kelpevou otn BiBAloypadia kat atnv
miRTarBase,” pia Baon 8£S0pévv PE TIEIPAPATIKA EMIKUPWHEVEG AAANAETIIOPATEIG
microRNA-otoxwv, yia pia Aiota pe microRNAs, ta ormoia €xouv avagepBei va
puBuiCouvv TNV €kdppaon Twv Kopudaiwv predictors yovidiwv / MPwTEIiVWV Pag Kal
eMiong €xouv avixveuBei otnv KukAodopia acbevwv pe KaPOIaKr AVETAPKEIQ HE
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OladopeTikO  Pabud cofapdTnTag N aocBevwv pe kKapdlopvordbela TIOUL

nipokaAeital aro to Doxorubicin.?®

ArntoteAéopata

H Alota pappdkwy Kal To TIPodiA ToEIKOTNTAG

O katdAoyog Twv 31 dappdkwy Pe Ta KALWVIKA TOUG TIPOdIA TNG Kapdlopvordbelag
rov oxetiCetal pe tn Beparteia ocuvoyiletal oto Table P6-1. Ale€rx0n ermiong €peuvva
BBAloypadiac yia va oupmAnpwBel N KAWIKG  ouxvotnta  eudaviong
KaPOLOPUOTIABEIAG, AV Ol EYKEKPIUEVEG ETIKETEG PAPUAKWY KAl Ol ONUOCIEVUEVEG
avabewprioslg spappoywv 2 dev eixav TETOlEG TIANPodopiec. Metafd Ttwv 31
$pappdkwy, vrinpxav 13 to&ika dappaka (41,9%) kat vripxav 18 pn To§Ika pdppaxka
(59,1%). Na ta pdppaka yia ta omoia dev avadepdTav n TOEIKOTNTA TTOL oXeTiCeTAl
HE TNV KAPOIOPLOTIABEIQ OTIC ETIKETEG TOULG O KAVEVA QMO TA TUAMATA KAWVIKWV

HEAETWV, TIC EUTEIPIEC HETA TNV KUKAOdOpPIa, TIC TIPOEIOOTIOINCEIC Kal TIG
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nPpodLAAEELG, epsuvrioape eTtiong BIBAOYPAPIKEG KAl SNUOCIELPEVES avaBewpProelg?

yla va KATAANEOLPE OTO CUPTIEPACHA OTL €ival pn To&IkA GApuaKa.

MovtElo TpoRAEPNg

MeBoboc 1 — edpapuodlovtac EN ota DEGs.

Xpnotporowwvtag LOOCV oe oAOkANpn tn Aiota twv 30 dapudkwyv Kal Twv TIpodiA
ekppaong yovidiwv Toug, erutuxaue akpifela 79% kail precision 75%, pe 80%
evacbnoia kat 79% eldIkOTNTA OTAV XPNOIKMOTIOINCAYE AQuUTA Ta yovidla Tou
ekppaotnkav oe TovAaylotov 11 amd tig 34 vroypadeg (cutoff 11 ato puAAO “9” Tou
Supplementary Table S4 at DOI: 10.1002/psp4.12272). Ta anoteAéopata Tng
kKavovikortoinong tng EN ¢aivovrtal oto Figure P6-2a, 2c, kal ta yovidla / mpwteiveg
be pn pndevikoug ouvteleoteg eivalt PHF19, HSPAS, RIF1, CD46, MXRA7, RAB27A,
TOMMZ20, MYO6 kat CCNA2. Ot kaurtoAeg ROC kal ol KautuAeg precision-recall

¢aivovtal oto Figure P6-3 kal Figure P6-S2, avtiotoixa.

MegBoboc 2 - edapudlovrtac EN otouc koéuBouc -  yovidla/mpwteivee Twv

oNUAToOOTIKWVY POVOTIATIWY TIOU KaTtaokevdaotnkav pe ILP.

Me tnv epappoyr) Tou EN kat tov LOOCV, propecape va av€riooupe Tnv akpipfela oto
88%, pe gvaioBnoia 88% kal eldlkotnta 89%, oe cUYKPLON PE TA ATTOTEAECUATA ATIO
Tnv EN regression twv DEG (Supplementary Table S4 at DOI: 10.1002/psp4.12272).
H kavovikortoinon EN ¢aivetar oto Figure P6-2b, 2d. Ta armoteAéopara ya TiG
OoKIpEG pscecm_34_ILP_heart Bpiokovtal oto GUANO “summary” Kal Ta AETTopepPn
artoteAeéopara Twv 31 povteAwv pe cutoff mov kupaivetar artd 1 (5.012 yovidia /
npwTteiveg o TovAdxiotov 1 dappako) ewg 31 (5 yovidia / pwteiveg oe TOLAAXIOTOV
31 urnoypadeg SIKTVOUL) PBpiokovTal oTo UTIOAOYLOTIKO GUANO “10” Tov Supplementary
Table S4 at DOI: 10.1002/psp4.12272. H vynAotepn akpifela, evaicbnoia kai
e€eldikevon erutevxbnkav oe cutoff 10 pe 189 yovidia / mpwTteiveg amd TouAdxioTov
10 Oiktuva onuatodotnong dapuakwyv. Oi kapmvAeg ROC kai precision-recall
¢aivovtal oto Figure P6-3 kal Figure P6-S2, avtiotolxa.

KataAnéape oto cupmépaocpa otL 1o EN-ILP (uEBodog 2) Eemepaoce poévo to EN

(EBOdOG 1) 6Tav edpappootnke otnv idla opada DEG.
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H onuaocia otnv kapdid Twv Kopudaiwv predictors

Xpnowporowwvtag EN kavovikoroinon, yropeoaue va e§ayayouvpe toug predictors -
npwTteiveg / yovidla mov TPOoPAEMoLV KaALTEPA TNV TAlvOpnon TOEIKOTNTAG TNG
KapOLOTOEIKOTNTAG TIoL TIPOoKaAeiTal anod ¢pappaka (eite Tofiko yia> 0,1% KAWIKA
ouvxvotnta eite pn To€KO yia <0,1%). Ot 33 predictors pali pe TOUG PEPOVWHEVOLG
Toug ouvteleoteg ouvoyiCovtar oto Table P6-2. To Siktvo twv kopudaiwv 15
predictors mou erA€yovtal and To povieAo mapouctdletar oto Figure P6-4. H
Kapdlakr) ouvvadela avtwv Twv predictors eEeTACTNKE Kal ouLvOYIoTNKE OTO
Supplementary Table S6 at DOl 10.1002/psp4.12272. Oi predictors 10U
npoodlopiotnkav arnd 10 EN-ILP avravakAovoav Toug BacikouG KUTTAPLKOUG
BloAoylkoUG TapAyovTeg yia KapdloToEIKOTNTA ToU TIPOoKaAeital ard ¢pdapuaka. H
kavovikotioinon EN oto povtélo pag emele€e toug predictors mou mpoPBAepav
KAAUTEPQ TNV TIPOKAAOLUMEVN a0 GAPHAKA KAPSIOTOEIKOTNTA.

Xpnolporoirjoape e§6puEn KelpEVoL o pla Bacn 6edopEVwY yla TNV TEKUNPIwaN Twv
microRNAs® yla ekeiva ou avapepetat 6Tt puBpifouv Toug Kopudaioug predictors
bag kai ertiong avalntrioape otn BiBAloypadia yia va rieplopicovpe tn Aiota oe avta
mouv €xouvv avadepBel OTL €xouv OlayvwoTikn aia yia Kapdlakr averdpkela.
2uvoyiCovtalr oto Table P6-3 o1 kopudaiot 10 predictors kal Ta pePOVWUEVA
puBuloTikA microRNAs 1tou €xouv avadepbei 0TI €xouv dlayvwaoTIKn a&ia yia dualkn
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KapOIaKr QaveMApKELQ N yia kKapdlopuotdBela TIOU TIPOKAAE(Tal amod TO

Doxorubicin.?®

zvdAtnon

Me ta KAWIKA cupPdvta tng mpokalovpevng anod GAappako Kapdlopvordbelag weg
e€aptnuévng petaPAntng, n Tmpocopoiwon EN-ILP avénoe tnv akpifela tng
npoPAedng and 79% oe 88%, o oLykplon Pe Tn povreAoroinon pe EN kat pévo pe
DEG. Autl n PeAtiwpevn mpoPAepn €6ei&e tnv Ikavotnta tou ILP va cuAAdGBel
UTTIOAOYIOTIKA TOV TPOTO O6pAcnG €voG GAPHUAKOL HECW TNG KATAOKELNG TWV

ONUATOSOTIKWYV JOVOTIATIWY TOL YE OKOTIO TNV Jovteloroinon yia ripoPAeelg. To ILP
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MPOOPEPEL TO TIAEOVEKTNHUA TNG EVOWMPATWONG TWV TIPONYOUPEVWY YVWOEWV HAG
OXETIKA HE TIC AAANAETIOPACELG PBIOAOYIKWYV TIPWTEIVWV KAl TOLUG OTOXOUG PAapHAKWY
(Reactome kat STITCH), Toug mapayovteg petaypadnc kat ta DEGs og mpoyvwoTika
Hovtéha. To ILP PBeATioTorolei €miong TtO peEYyEBOG TOU TIPOMIA-OIKTUOL €VOG
$pappdkou. AapBdavovtag to Lapatinib wg mapadelypa, eixe 2.265 DEGs and ta
KapOLOPUOKUTTAPA, evw ard auvto To cbvolo DEG, to ILP diktuo tou mepleAaupave
1.923 KOpBoug, cuurepIAQUBAVOPEVWY TWV OTOXWV TOL, TIPWTEIVWV TIOU EUTTAEKOVTAV
OTNV YETAYWYN onuatodoTnong, mapAayovteg petaypadng kat Aettovpylka DEGs.

O1 33 predictors pali pe TOLG PEPHOVWHEVOLEG BETIKOUG I apvNTIKOUG CLUVTEAECTEG Ba
uropoloav va XpenoworomnBouv yia tTnv TPOPAePn NG <«TOEIKOTNTAG» 1 «uNn
TOEKOTNTAG» yIa €va GAPHPAKO XPNOLUOTIOWWVTAG Ta emtimeda yovidlaknG €kppaong
ard To dikTLO oNUATOSOTNONG TIOU KATaokevAaotnKke Pe To ILP. H rpoPBAemtTikn 1oX0G
TOU pOVTEAOL dappakoAoyiag avtol Ba avénbei pe To TOCO TWV SESOPEVWV OTO
oLvoAo ekmaidevong.

Meta&b Twv 31 papudkwyv Tov xpnotgorolnkav yia tn die€aywyn mpoPAEPewy, n
Katavour Twv Toéikwyv (n513) evavtl Twv pn To§ikwy (n518) Atav arnodekTr, av Kat oxl
1davikr). Meta&L avtwyv, vrfpxav 18 avaotoAeic kivaong (17 TKls kalt 1 avactoA€éag
KIvaong oepivng / Bpeovivng), KATL TTov daivetal va gival EKTOG loopportiag arod tnv
arroPn TNG MoKIAopopdiag tng Katnyopiag papudkwyv. To vemurafenib eival €vag
QVaoTOAEQG KIvaong oepivng / Bpeovivng kat dev eival Toflkog. H katavour twv
TOEKWY (N = 8) Kat pn To&kwv (N = 9) papudkwy petaL Twv 17 TKls Atav arnodektn.
O1 TKls, yevikd, 6ev €xouv €I0IKO OTOXO, €XOLV TIOAAATIAOUG OTOXOUG Kal €XOLV
oxedlaaotei yla va dlatapda&ouv TG 0600¢ onuatodotnong 1ou eival (wTIKAG onpaciag
yla TNV €MRIWoN TwV KAPKIVIKWY KUTTAPWV.?? AVCTUXWGE, APKETEG ATIO AUTEG TIG 0600G
onuatodotnong Tmaifouvv  €miong  €vav  Kpiolpo poAo  otn  PBloAoyia  Twv
KapSlopuokLTTapwv®?; Katd ouvénela, apketd TKls e€aoBeviCouv TNV KapdIlaKn
AelToupyia. 2Ze autd TO TIAQIOLO, TO HPOVTEAO TIPOPAEYPNG Tov dnuiovpynoape Ba
UTIOPOLOE va eival XpHolpo yia tnv ipoBAePn KapdIakng TOEIKOTNTAG YIA HEAAOVTIKEG
VEEC XNUIKEG OVTOTNTEG.

‘ONot ot 15 kopudgaiol predictors €xouv OXETIKEG KAPOIAKEG AelToupyieg eKTOG Tou ZNP
823 (Supplementary Table S5 at DOI: 10.1002/psp4.12272). Eival evdiapepov 1O
yeyovog oTL To CYP3A4 rtav évag onuavtikog predictor Av kat to CYP3A4 bev €xel
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BloAoyIKEG aAANAeTUOPATEIG PE AANOUG TIPOYVWAOTIKOUG TIAPAYOVTEG, OTwG daiveTal
oto Figure P6-4, cival €éva onuavtiko €viupo mou petaBoAilel pappaka. Meta&v Twv
31 pappdkwy, 10 arnd ta 13 (85%) to&ika pdppaka kat 11 arod ta 18 (61%) pn toika
$pappaka petapoAiotnkav arod 1o CYP3A4. Ta to§ika pdappaka rov petaBoAiovral
KaTA KUpLo 1 ektetapevo Tpomno ard 1o CYP3A4 cuurmepieAaPBav ta: amiodarone,
axitinib, cytrabine, dasatinib, doxorubicin, imatinib, ponatinib, sorafenib, sunitinib, kat
vandetanib.?*'*® Ma ta pn to§kA ddppaka, n Aiota eivat: bosutinib, crizotinib,
cyclosporine, domperidone, erlotinib, gefitinib, lapatinib, regorafenib, ruxolitinib,
tofacitinib, kat ursodeoxycholic acid.>*

Oplopevol kopugaiol predictors oxetiCovral PloAoyika pe tnv focal adhesion kinase
(FAK), pia tupootvikny Kivaon mou dev gival urtodoxXEAG Kal N OToia EUTIAEKETAL OTO
SIKTLO TWV CNUATOSOTIKWV TIPWTEIVWYV TTIOL CLVSEoVTAL e TO KuTTapoTAaopa.* Focal
adhesion cuvpnAgypata diadpapatiCovv Kpiolo pOAO GTOV TPOTIO AVTATIOKPLONG TWV
KAAALEQYNHUEVWV KAPOIOPJLOKLTTAPWY OE HUNXAVIKA KAl TWV VELPOOWUIKA epebiopata
Kal otnv avamtugn te Kapdlakng averndpkelac.*® H evepyoroinon Ttou FAK
oladpapartiCel €va poAo oTnVv MPOCAPHOCTIKN aravtnon o€ cardiac afterload kat otnv
QVATTTLEN TWV HUOKUTTAPWYV PECW TNG KivAong Tipwteivng B / otoxou BnAactikwv TnNG
08ou parapukivng.’” H didoraon touv FAK mpokaleitat arno tnv owkoyévela CASP3 n
amomnTwon TwV avepwrivwv (UOIOAOYIKWY KUTTAPWVY,*® Kal ovpPaivel pe TNV
evepyortoinon ™ EPHA2 kat tng p38 mitogen-activated protein kinase katd tn
Olapkela NG erayopevng ard dofalooivn amomTwong plag KapdlaknG KUTTAPIKNG
yoapung.*® H FAK evepyorolei Tnv STAT1 katd tnv mPookOAAnon Kuttapwy,* kat
Oladpapatifel onNUAVTIKO POAO OTN HETAVACTEUON KUTTAPWVY PE Pia amo TIG EVEPYEIEG
TNG VA CUVOEETAL PE TO CUPTIAEYHUA oNUATOOATNONG LTTOSOXEA ALENTIKOL Ttapdyovta
ano agorietalia (PDGFR).*" Ev oAiyolg, ot Kopudaiol predictors gival onuavTikoi yla
va dlatnpnBei ) dualooyikr) Kapdlakr) Aeltoupyia.

20pdwva pe tn PBiBAoypadia, optopeva microRNAs tou puBpiCouv Tnv Ekdppacn Twv
predictors pag €xouv eriong arodelxBei OTL eival dlayvwoTikiAg agiag yia kapdlakn
QVETIAPKELA PE S1aPpopeTIKO Babud coBapdtntag (Table P6-3).7%” Meta&\ avtwy, Ta
miR193-3p kai miR26b-5p pubuifouv mneplocodTEPOLE predictors amod OTI AAAa
HIKPORNAS, TeooepIC Kal TPEIG ard Toug Kopudaioug pag, avriotowxa. Mrmopei va

a&iCel va dle€axBouv TepAITEPW KAIVIKEG HEAETEG Yla va TipoodloploTel eav To MiR193-
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3p kat To miR26b-5p eival xprolpol in vivo Plodeikteg yia kapdlopvordbela mou
npokaAeitar and ¢appaka. H avalntnon otnv PBiBAoypadia amokdAvpe pia
npoodatn peAETN Tou Olepevvnoe KukAodpopouvta microRNAs ce mnaildla pe
EMAyOpEVN arno avlpakukAiveg ofeia kapdiakr BAABN.? AvEnueva miR-29b kat miR-
499 otnv KukAodopia davnke va cuoxetiCovral Ye TNV avgnon Tng Tpomovivng oe avtd
Ta nadld kat tavtororidnkav we duvntikoi Blodeikteg kKapdiopvomnadelag.?? Avth n
napatfipnon TG avgnong tov MiR-29b otnv KapdlopvoTdbela IOV TIPOKAAEiTAL arod
To Doxorubicin di€depe amd Tnv mapatrenon TnG HEIWPEVNG €kdpaong Tou miR-29b-
3p oTo aipa Twv otedaviaiwy KOATIWYV Twv acBevwv Pe KapSIakr averndapkela.”’ To
MiR-29b-3p puBuiCel Tnv €kdppaon evog amod toug Kopudaiovg 10 predictors, Tou
PDGFR-A. AntaitouvTal mepaltepw PEAETEG yla T Slepevvnaon Tou poAou Tov miR-29b
otnv kapdlopvomdbela Tov TPOKAAeiTal and ¢pAapuaka r otn Guolkry Kapdlakn
avendapkela. MNMapodio mov to MiR-27b avagépetat OTL pubpilel v CYP3A4,%% n
avalntnon PBiPAloypadiac dev arnokAAvPe orolecdATOTE avadopeG IOV TIPOTEIVAV
oTL To MiR-27b gival dtayvwoTikng a&iag yia kapdlopvordbela mou poKaAeital arno
$dappaka.

H evowpdtwon Twv KAIVIKWV CUPPBAVTWY PE TOLG TPOTIoUG §pAong evog GapuAKov,
Tov anelkoviletal wg To SIKTLo oNUATodOTNONG TOL yla TIPORAEPN HOVTEAWV gival Eva
OuvaTo OnUEIo TNG MEAETNG paAG. YTIAPXOUV, WOTOCO, OPIOUEVOL TIEPIOPIOUOL aTnV
npoaogyyton pag: (1) Ta pn to€ika ntav eAadpwe TEPIOCOTEPA ATIO TA TOEIKA PAppaKa.
(2) o meploplopodg tou ILP, dnAadrn to 6TL dev e€etaotnkav ol PBpoyxol PBIOAOYIKAG
avatpododotnong Kal OTL €ylvav TIapadoxeG Tov vloBeTnONKav otn dlaTuTIWon ToV
npoPAnuarog, (38) Ta DEGs tou Doxorubicin ota kapdlopuokuttapa fTav aro
OladopeTIKEG TINYEG amd Tta vnoAoirta 30 ¢dppaka kat (4) n TEPLOPIOPEVN
OlaBeoipotnta petaypadikwyv dedopevwy oe KapOIOPLOKUTTAPA. ETITTAEOV, N PEAETN
Hag kKAnpovounoe TIG aduvapieg mouv oxetifovral pe TG Paocelc dedopevwy Kal TIG
Baoelg yvwoewv Tov xpnotgororénkav yia tn yovreAornoinon pag. H enidpaon twv
evdeifewv TNG vOoouL Eemi TWV KAWIKWYV oupPavtwv Kat g cofapdtntag Ing
kapdlopvonabelag rov oxetiletal pe tn Beparteia dev eival KAAA XAPAKTNPLOYEVN.
To povteAo TPOPAePNC TOU ONUIOUPYACAUE TO OTIOI0 EVOWHATWVEL TNV KALVIKN
eMIMTWon TNG Kapdlopvordbelag Tov TPOKAAegital and GAppaka pe To OIKTLO

onpatodoTnonG TOEIKWY Kal pn ToEIKWY GApUAKwWY gival Oxt HOVO Xprolun yia tnv
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MePAITEPW BEATIWON TNG TIPOYVWOTIKAG LOXLOG, AAAA €mtiong evtortiCel oNUAVTIKOUG
predictors - yovidla/TIpwTEIVEG TIOL €XOUV OXETIKEG KAPOLIAKES BIOAOYIKEG AEITOLPYIEG.
Mavw arm '6Aq, ol Kopudaiol predictors yovidiwv/mpwTteivwv puBuiovtal cupdpwva pe
TNV BiBAoypadia arod 1dikd microRNAs 1ou €xouv anodelxbei OTL €xouv OlAYVWOTIKN)
atia yia kapdlakr avernapkela r kapdlopvordbela mou TPoKaAeital and GAappaka.
Autoi ol predictors 6a prtopovoav va gival xprotgol yia va pepovv oto dweg mibava
microRNAs w¢ in vivo Plodeikteg TNG TmMPOKAaAovuevng amnod  dAapPaka

Kapdlopvordbelag.
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Summary

Systems Biology and Big Data Modeling to decipher mechanisms in

Human Disease

The purpose of this PhD Thesis is to decipher mechanisms in human disease, more
specifically Osteoarthritis, Human/Rat Translational Research, Multiple Sclerosis,
Hepatocellular Carcinoma, Drug-Induced Cardiomyopathy and Non-Alcoholic Fatty
Liver Disease (NAFLD). Main findings regarding each human condition and project

are discussed below.

Through research in Osteoarthritis it was demonstrated that healthy chondrocytes
can have a strong inflammatory -rather than protective- response to various stimuli.
In this manner, the generation of an inflammatory environment in the joint is
sustained, because cartilage is an avascular tissue, lacking important anti-
inflammatory components of peripheral blood and this can eventually lead to the
degradation of the tissue.

For the first time, the signaling events that lead to the up-regulation of pro-
inflammatory signals upon stimulation of the TLR were identified, uncovering two
major inflammatory pathways: DEFB1 signals via its receptor to RAC1, to the MAPKs
and ultimately activates HSP27. Flagellin signals through TLR5 to MYD88 and then
merges with the IL1 pathway signaling through IRAK, TIFA, TRAF6 and activates the
IKB, MAPK14 and HSP27 signals.

Stimulation of chondrocytes with inflammatory mediators IL1B and Flagellin also
leads to over-activation of growth-related signals CREB and MAP2K1 and the release
of pro-growth cytokines, all connected to facilitating chondrocyte hypertrophy and
bone ossification.

Strong similarity between meniscus and cartilage cytokine releases was observed
upon stimulation of those tissues with various stimuli, supporting the hypothesis that
significant crosstalk between these two knee compartments exists and anti-

inflammatory therapies should take into consideration both tissues.
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Metabolomic analysis of human osteoarthritic synovial fluid was performed and

metabolites connected to Osteoarthritis were identified.

For the purpose of Human/Rat translational research, a multi-layer systems biology
dataset was generated that was comprised of phosphoproteomics, transcriptomics
and cytokine data derived from normal human and rat bronchial epithelial cells
exposed in parallel to more than 50 different stimuli under identical conditions.
Major signaling pathways were conserved between human and rat species with only
isolated components diverging. An exception was the targets of transcription factors,
which seemed more difficult to predict.

Transcription factor CREB1, showed the best consensus for the edges upstream of
it but the connection from RSK1 was present only in the human consensus network,
which might be explained by the fact that human isoforms of RSK1 have functional
redundancy (i.e. RSK2, RSK3, RSK4). In contrast, this is most likely not the case in
rodents; Zeniou et al. reported that the mouse RSK1 and RSK3 genes may not be

able to fully compensate for the lack of RSK2 function.

A huge dataset was created to study Multiple Sclerosis (MS). 250 donors were
recruited (190 MS, 60 Healthy) and PBMCs were isolated from them, then treated
with 20 stimuli including 4 MS drugs and the response of 17 phosphoproteins (5’ and
25’) and 22 secreted cytokines (24h) was measured. This approach allowed to
characterize the signaling networks in a patient-specific manner and to predict new
targets for combination therapy for MS.

The combination of fingolimod with either a TAK1 inhibitor or EGCG was also

validated in an animal model.

Analysis using 3 Hepatocellular Carcinoma (HCC) cell lines presented new
mechanistic insights into the targeted anti-inflammatory actions of three promising
nutraceuticals, epigallocatechin gallate (EGCG), fisetin (FIS), and eriodictyol (ERI).
EGCG was the most effective modulator of inflammatory cytokine secretion (followed

by FIS and ERI) and HEP3B cells were the best responders. Despite previous
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extensive literature, this was the first study showing the outstanding capability of this

compound to concurrently reduce a wide range of HCC-secreted cytokines.

With an application on Drug-Induced Cardiomyopathy, it was shown that
constructing specific signaling pathways can computationally capture a drug’s mode
of action and increase cardiomyopathy prediction accuracy from 79% to 88%,
compared to just using the transcriptomic data at hand.

Using Elastic Net regularization, 33 protein/gene predictors were extracted, that best
predict the toxicity classification of drug-induced cardiotoxicity.

The microRNAs that reportedly regulate expression of the 6 top predictors are of
diagnostic value for natural heart failure or doxorubicin-induced cardiomyopathy.
Among them, miR193-3p and miR26b-5p reportedly regulated 4 and 3 predictors,
respectively, therefore it might be worthy of clinical studies to determine whether

those micro RNAs are useful in vivo biomarkers for drug-induced cardiomyopathy.

It was observed that Non-Alcoholic Fatty Liver Disease (NAFLD) has a multifactorial
nature and there is no single treatment for all subtypes of NAFLD, highlighting the
need for a systemic approach and personalised therapeutic interventions to better
understand and treat NAFLD. This was the first time that a study aims to understand
the multifactorial nature of NAFLD at the signaling level by studying 5 NAFLD
induction models in primary human hepatocytes.

The results confirmed a large body of literature findings for NAFLD signaling
mechanisms. Furthermore, CHK2 and EPOR have emerged as potential NAFLD
players that may be interesting to study further since they are important factors in

liver regeneration.

Over the last 4 years, Dimitris Messinis has co-authored 6 peer-reviewed publications
and 14 international conference abstracts. He has one first-author publication and
has attained an h-index of 6. Through the efforts to decipher the mechanisms of
different human conditions, the PhD candidate has gained a broad understanding in
Systems Biology and Big Data Modeling, developed his own experimental and

computational methods and contributed to several important findings described
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above. His work in Multiple Sclerosis got him invited among 6 out of 110 abstracts to
give a lightning talk at the International Conference on Systems Biology of Human
Disease at Harvard in 2014. In 2016, he worked with the U.S. Food and Drug
Administration developing a novel computational method to predict drug-induced
Cardiomyopathy with 88% accuracy published in CPT: Pharmacometrics & Systems
Pharmacology. His Cue-signal-response analysis in NAFLD revealed a multifactorial
signaling mechanism and won the 1st prize among 56 submissions at the Panhellenic

conference of Hepato-Pancreato-Biliary Association in 2017.
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Osteoarthritis

The disease

Globally, it is estimated that 242 million people have osteoarthritis.

Osteoarthritis (OA) is the single most common cause of disability in older adults.

OA is a long-term chronic disease characterized by the deterioration of cartilage in
joints which results in bones rubbing together and creating stiffness, pain, and
impaired movement. The disease most commonly affects the joints in the knees,
hands, feet, and spine and is relatively common in shoulder and hip joints. While OA
is related to ageing, it is also associated with a variety of both modifiable and non-
modifiable risk factors, including: obesity, lack of exercise, genetic predisposition,

bone density, occupational injury, trauma, and gender.*

In normal joints, a firm, rubbery material called cartilage covers the end of each bone.
Cartilage provides a smooth, gliding surface for joint motion and acts as a cushion
between the bones. In OA, the cartilage breaks down, causing pain, swelling and
problems moving the joint. As OA worsens over time, bones may break down and
develop growths called spurs. Bits of bone or cartilage may chip off and float around
in the joint. In the body, an inflammatory process occurs and cytokines and enzymes
develop that further damage the cartilage. In the final stages of OA, the cartilage

wears away and bone rubs against bone leading to joint damage and more pain.

Osteoarthritis and Metabolomics

The best OA biomarker candidates are generally molecules or molecular fragments
present in cartilage, bone or synovium and may be specific to one type of joint tissue
or common to them all.

Many currently investigated biomarkers are associated with collagen metabolism in

cartilage or bone, or aggrecan metabolism in cartilage. Other biomarkers are related
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to non-collagenous proteins, inflammation and/or fibrosis. Future avenues for
research include exploration of underlying mechanisms of disease and development
of new biomarkers; technological development; the ‘omics’ (genomics,
metabolomics, proteomics and lipidomics); design of aggregate scores combining a
panel of biomarkers and/or imaging markers into single diagnostic algorithms; and

investigation into the relationship between biomarkers and prognosis.*

Complete metabolomic analysis could greatly benefit clinical Osteoarthritis (OA) by
providing both diagnostic and prognostic biomarkers, as well as elucidate upon the

underlying pathophysiological processes.*

Metabolomics has been employed to detect metabolic perturbations in the urine,
blood, synovium, and synovial fluid (SF) of animal models and patients with OA. Many
of the studies of venous plasma or urine identify metabolites that may be related to
aging, altered muscle mass, and other factors that may confound the unique
signature of a pathologic OA joint. For these reasons, SF may yield the most accurate,

real-time, and joint-specific metabolic profile.*®

OA Synovial Fluid Metabolic Profile

In 2014, a targeted metabolomics study* testing osteoarthritic Synovial Fluid (SF)
using Biocrates AbsolutelDQ p180 kit and UPLC MS FIA was the first to demonstrate
that OA is an heterogeneous disease, consisting of at least three metabolically
distinct subgroups, which are likely due to the differences in carnitine, lipid and
collagen metabolism. More specifically, between the groups of patients there were
significant differences in the ratio of acylcarnitines to free carnitine (CO), the
concentrations of 24 glycerophospholipids and the concentrations of 9 sphingolipids
(6 SM, 3 SM(OH)). The limitation was the absence of healthy SF samples.

SF metabolomics in different forms of arthritis were assessed by NMR in a study*

analysing SF samples from patients with OA, gout, calcium pyrophosphate disease,

spondylarthritis, septic arthritis and rheumatoid arthritis. The abstract reports that a
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distinctive metabolism is observed in septic arthritis whereas metabolites in OA are

similar to those in inflammatory arthritis.

A similar approach was performed in a study*® using usual biochemical tests and
proton magnetic resonance spectroscopy (MRS) analysis, where OA samples
showed a characteristically increased level of N-glucosamine (p < 0.04) and creatine
(P < 0.04) compared to other forms of arthritis (RA, gout, seronegative

spondylarthropathies and septic arthritis).

In a most recent study®, in 2015, testing both normal and OA SF samples, 11
metabolites were found to be significantly responsible for the separation between OA
samples and the controls in the OPLS-DA model based on an NMR/GC-MS
combined dataset. Fructose and citrate were increased in OA SF samples, while O-
acetyl-carnitine, N-phenylacetylglycine, methionine, ethanol, creatine, malate,
ethanolamine, 3-hydroxybutyrate and hexanoylcarnitine were decreased in OA

compared to normal SF.

Examining the role of proteomics in OA pathogenesis®', the proteins ALFA (Fructose-
biphosphate aldolase A) and ENOA (Alpha enolase) are identified to play a role in
cellular metabolism through the glycolysis pathway, specifically ‘fructose

biphosphate breakage’ and ‘pyruvate synthesis’ respectively.

OA Synovial Tissue Metabolic Profile

End-stage OA versus early/no OA cultured synovial tissue samples were examined in
a study® with the following results:

The metabolites (and their associated pathways) increased in end-stage OA were:
Pro-hydroxyproline (Collagen degradation), Acetylcarnitine (Lipid, carnitine, TCA
cycle), Myo-inositol (Lipid, inositol), N-acetylornithine (Urea cycle, AA), Succinate
(TCA cycle), Glutamine (AA, TCA cycle), Urea (Urea cycle, AA), Beta-alanine (AA,
pyrimidine degradation), Uracil (Pyrimidine), Arabitol (Carbohydrate), Catechol sulfate

(Benzoate), P-cresol sulfate (AA).
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The metabolites decreased in end-stage OA were: Gamma-glutamylleucine (Peptide,
glutathione), 4-methyl-2-oxopentanoate (BCAA), 5-oxoproline (AA, glutathione),
Phenylacetlyglycine (AA), 3-methyl-2-oxobutyrate (BCAA), Ornithine (Urea cycle, AA),
Pyridoxate (Vitamin B6), 2-methylbutyroylcarnitine (BCAA).

OA Serum Metabolic Profile

Two sera BCAA metabolite ratios distinguish OA in the knee, in particular, the ratio of
valine to histidine and xleucine to histidine differentiate OA from healthy controls with

a p-value of 0.002.%

Healthy Synovial Fluid donors

Most studies do not use healthy controls when studying SF. (71% of the searched
literature). The ones who do, collect healthy SF through 3 main ways: post mortem,
non-OA controls with other knee disorders and healthy volunteers. Some examples
are: 4h post mortem®®, 24h post mortem®, patients undergoing ligament or meniscal
repair with little or no evidence of OA®, contralateral uninjured knees of patients
undergoing unilateral ACL reconstruction, normal subjects undergoing arthroscopy,
one healthy volunteer®, asymptomatic individuals without radiographic OA paid to
undergo arthrocentesis®®, non-OA controls with other knee disorders: meniscus injury
or discoid meniscus without cartilage defect®’, donors with no prior history within the
past 8 weeks of shoulder surgery, blood dyscrasias, cancer, chondrocalcinosis or

corticosteroid injection®®, healthy volunteers®

Biomarkers in Arthroplasty

Increased / Decreased based on concentration compared to controls.

Osteolysis
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URINE
Increased

Cross-linked N-telopeptides of type | collagen *°

SERUM
Decreased
IL-11
Increased

C-terminal telopeptides of type | collagen ®

Aseptic Prosthetic Loosening

URINE

Increased

Cross-linked N-telopeptides of type | collagen ® &
Deoxypyridinoline  (but ** found no significant difference)

Pyridinoline ®

SERUM / PLASMA

Decreased

C-terminal propeptide of type | procollagen (PICP)
Increased

Cross-linked N-terminal telopeptide (NTx) ®°

ICTP " (but * found no significant difference)

IL6 °® (but °' found no significant difference)

TRAP5b ¢

TNFA ® (but " found no significant difference) (plasma)
IL1B * (but " found no significant difference)

GMCSF °

Osteocalcin ® (but * found no significant difference)

71

Osteoprotegerin (OPG)
RANKL "
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hyaluronic acid "

IL8 % (plasma)

SYNOVIAL FLUID

Increased

IL1B " ™ (both studies compared to OA)
TNFA 7

YKL-40 " (compared to OA)
TRAP ™ (compared to OA)

IL8 "® (compared to OA)

IL10 ® (compared to OA)
Decreased

Osteocalcin ® (compared to OA)
B-crosslaps ® (compared to OA)
bone ALP ® (compared to OA)

SNPs

Increased

GNAS1, TNF-238 A allele, TNF-a promoter (-808G—>A) transition, IL6-174 G allele,
interleukin (IL)-6 (-597) and (-572), MMP-1-promoting gene, C/C genotype for the
MMP1, MT1-MMP, MMP-2, transforming growth factor-betal signal sequence
(29T->C) transitions, A/A genotype for the OPG-163, and MBL "’

Prosthetic Infections

C-reactive protein, erythrocyte sedimentation rate, and interleukin-6

SERUM

Increased

CRP 78 79 80

78 79 80

Erythrocyte sedimentation rate (ESR)
IL6 ®
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IL6 + CRP #
IL6 "® ° (compared to aseptic prosthetic revisions)
TNFA " (compared to aseptic prosthetic revisions)

Procalcitonin ° (compared to aseptic prosthetic revisions)

SYNOVIAL FLUID
Increased

”_6 80 81

TNFA &

IL1B &

Conclusions

Osteolysis markers: Increased Cross-linked N-telopeptides of type | collagen (NTx)

in urine and C-terminal telopeptides of type | collagen (CTX) in serum as well as
decreased IL-11 in serum

Loosening markers: Increased NTx and Pyridinoline in urine, increased NTx, PICP,
TRAP5b, GMCSF, Osteoprotegerin, RANKL, Hyaluronic acid, IL8 in serum, increased
IL1B, TNFA, YKL-40, TRAP, IL8, IL10 and decreased Osteocalcin, B-crosslaps, bone

ALP in synovial fluid when compared to OA patients. Several cytokines have
inconsistent associations

Prosthetic joint infection markers: CRP and ESR [both of which are currently used

clinically in the diagnosis and follow-up of patients with prosthetic joint infections®]

compared to aseptic joint revision controls

Experimental Models

e Cell culture of Primary Human Chondrocytes
e Human Synovial Fluid

e Human Plasma

e Human Meniscus Tissue

e Human Cartilage Tissue
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Experimental Tools

e Cartilage Tissue, Synovial Fluid and Plasma collection from patients

e Chondrocyte isolation and cell culture

e Stimulation with 78 compounds, lysis and collection of cell supernatant

e Measurement with bead-based sandwich ELISA of 17 phosphoproteins and
55 cytokines

e Gas Chromatography - Mass Spectrometry (GC-MS) Metabolomics

Computational Tools

e Integer Linear Programming formulation to combine proteomic data at hand
with prior knowledge of proteins’ connectivity to construct specific signaling
pathways

e Gas Chromatography - Mass Spectrometry analysis to identify metabolites

Main Findings

We demonstrated that healthy chondrocytes can have a strong inflammatory
response to various stimuli (rather than protective). In this manner, the generation of
an inflammatory environment in the joint is facilitated and given that cartilage is an
avascular tissue, lacking important anti-inflammatory components of peripheral
blood®, this environment is sustained, eventually leading to the degradation of the

tissue.

For the first time, we were able to identify the signaling pathways of underreported
pro-inflammatory mediators such as DEFB1 and Flagellin (TLR ligands). Even though
the role of TLR in cartilage inflammation has been studied before, this is the first
attempt to identify the signaling events that lead to the up-regulation of NFKB, HSP27

and other pro-inflammatory signals upon stimulation of the TLR. Two major
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inflammatory pathways were uncovered. We identified that DEFB1 signals via its
receptor to RAC1, to the MAPKs and ultimately activates HSP27. Flagellin signals
through TLR5 to MYD88 and then merges with the IL1 pathway signaling through
IRAK, TIFA, TRAF6 and activates the IKB, MAPK14 and HSP27 signals.

Stimulation with IL1B and Flagellin (two major inflammatory mediators) apart from up-
regulation of inflammatory signals, also leads to over-activation of CREB and
MAP2K1, two growth related signals that are connected to hypertrophy®®. IL1B and
Flagellin apart from directly activating pro-growth signals, also lead to the release of
pro-growth cytokines, facilitating chondrocyte hypertrophy and bone ossification

indirectly.

Strong similarity (up to 73%) between meniscus and cartilage cytokine releases was
observed upon stimulation of those tissues with various stimuli. Our results confirm
that IL-1a, IL-1b and TNF-a, as proinflammatory cytokines, promote systemic
inflammation and thus release of IL-6, IL-8 and GROa in both cartilage and meniscus
tissue. The above findings suggest that meniscus is affected by its inflammatory
environment and responds to it as actively as cartilage, supporting the hypothesis
that significant crosstalk between these two knee compartments exists and anti-

inflammatory therapies should take into consideration both tissues.

We performed metabolomic analysis of human osteoarthritic synovial fluid and

identified several metabolites that are also mentioned in Osteoarthritis literature.

Publication Timeline
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Co-authored Research: Modeling of signaling pathways in
chondrocytes based on phosphoproteomic and cytokine

release data

Please visit DOI of paper [P1] for more information on this chapter.
Abstract

Objective: Chondrocyte signaling is widely identified as a key component in cartilage
homeostasis. Dysregulations of the signaling processes in chondrocytes often result
in degenerative diseases of the tissue. Traditionally, the literature has focused on the
study of major players in chondrocyte signaling, but without considering the cross-
talks between them. In this paper, we systematically interrogate the signal
transduction pathways in chondrocytes, on both the phosphoproteomic and cytokine
release levels.

Methods: The signaling pathways downstream 78 receptors of interest are
interrogated. On the phosphoproteomic level, 17 key phosphoproteins are measured
upon stimulation with single treatments of 78 ligands. On the cytokine release level,
55 cytokines are measured in the supernatant upon stimulation with the same
treatments. Using an Integer Linear Programming (ILP) formulation, the proteomic
data is combined with a priori knowledge of proteins’ connectivity to construct a

mechanistic model, predictive of signal transduction in chondrocytes.
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Results: We were able to validate previous findings regarding major players of
cartilage homeostasis and inflammation (e.g., IL1B, TNF, EGF, TGFA, INS, IGF1 and
IL6). Moreover, we studied pro-inflammatory mediators (IL1B and TNF) together with
pro-growth signals for investigating their role in chondrocytes hypertrophy and
highlighted the role of underreported players such as Inhibin beta A (INHBA), Defensin
beta 1 (DEFB1), CXCL1 and Flagellin, and uncovered the way they cross-react in the
phosphoproteomic level.

Conclusions: The analysis presented herein, leveraged high throughput proteomic
data via an ILP formulation to gain new insight into chondrocytes signaling and the

pathophysiology of degenerative diseases in articular cartilage.

Introduction

Articular cartilage is a connective tissue covering the ends of bones in a joint,
responsible for bearing loads with minimum wear and friction. Cartilage homeostasis
is orchestrated by a complex interplay of anabolic and catabolic processes that take
place in chondrocytes. Chondrocytes are meant to maintain the structure of the tissue
by synthesizing collagen (mostly of type Il) and proteoglycans. However, in
pathological situations, they release matrix metalloproteinases (MMPs) that degrade
the collagen content of the tissue, leading to loss of its structural integrity. Protein
signaling plays a central role to chondrocytes capability to either synthesize cartilage
and maintain its homeostasis or degrade cartilage and promote the inflammatory
response seen in pathologic situations. For example, up-regulation of the SOX9
transcription factor induced by TGFB or FGF stimulation leads to collagen synthesis.
On the other hand, over-activation of NFKB induced by several pathways (e.g.,

8799 |eads to the

Inflammation related pathways or bone development processes
release of MMPs and collagen degradation. Thus, chondrocytes have the potential
for both anabolic and catabolic roles in articular cartilage, and the role they eventually
assume is the one dictated by their signaling mechanisms as a response to their
biochemical microenvironment.

The importance of protein signaling in cartilage homeostasis has been interrogated

before, with most of the studies focusing on the deconvolution of signaling processes
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in chondrocytes and the identification of catabolic mediators. Traditionally, most of
these approaches revolve around few major pathways (such as IL1A/B, TNFA,
TGFA/B, etc.), without taking into account other less known players. Considering that
chondrocyte function and response results as an aggregate of numerous processes
and that even the slightest crosstalk can eventually affect cell behavior, the
systematic study of chondrocytes signaling is of the utmost importance for
uncovering the etiology of degenerative diseases and facilitate the development of
novel therapies® . To this end, high throughput proteomic measurements combined
with computational modeling offer a promising solution. Proteomics technologies
allow the multiplexed quantification of proteins, while computational modeling post-
processes the results in a way that interpretable conclusions can be extracted for the
interrogated system.

Proteomics have been used in the study of degenerative diseases of cartilage in the

past, addressing mostly the following: (1) direct analysis of cartilage protein content®®-

191(2) analysis of cartilage related biological fluids'®'® (Synovial fluid) and (3) study
of chondrocytes secretion upon treatment with catabolic mediators'®'®, In more
detail, proteomic analysis of cartilage explants and chondrocytes has led to the
identification of hundreds of proteins in articular cartilage, as well as characterization
of their expression patterns in normal (control) and disease patients. Findings of this
analysis lead to better understanding of the etiology underlying degenerative
diseases and potential drug targets. Study of chondrocyte secretory behavior may
lead to deeper understanding of the cells’ plasticity to mount and overcome an
inflammatory response; while proteomic analysis of the synovial fluid and plasma has
identified proteins differentially regulated in normal and dis- ease patients and aims
mostly at biomarker discovery.

The applications of proteomics mentioned above, form the basis towards a systems-
level understanding of the processes taking place in chondrocytes; however, they do
not interrogate their signaling mechanisms. To study chondrocytes signaling,
phosphoproteomic data must also be incorporated and by implementing a
mathematical formalism to model how signal propagates from one protein to the next,
construct predictive models of their function.

In this paper, we interrogate the signal transduction mechanisms of primary
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chondrocytes on both the phosphoproteomic and the cytokine release levels upon
stimulation with 78 ligands, including some major players of osteoarthritic
pathophysiology, as well as ligands well characterized for promoting inflammation in
other cells types. Our approach is two-fold. On the experimental front, we use the
xMAP technology to measure the activation level of 17 key phosphoproteins and the
release of 55 cytokines in the cells’ supernatant, upon stimulation with single
treatments of the 78 ligands. Even though the xMAP technology does not provide for
signal multiplexability as high as other proteomic technologies, fast turnaround times
using the Luminex equipment and low requirements in protein content allows the
design of the experiment on 96-well plates, leading to high sample-throughput'®'"’.
On the computational front, an Integer Linear Programming (ILP) formulation is used
to fit a prior knowledge network (PKN) to the proteomic data, resulting in a
mechanistic model, predictive of the function and response of human
chondrocytes'®. The proposed ILP approach is based on Boolean logic to model
signal transduction in the network. Boolean logic assumes protein activation can take
only binary values (ON/OFF) and then uses Boolean gates (AND/OR/NOT) to model
protein connectivity in the signaling network. By adopting Boolean logic and using a
PKN e obtained from literature citations of signaling reactions e as a scaffold, we
construct an initial model of the signal transduction network. Subsequently, the ILP
formulation is used to train this model to the proteomic data, by removing reactions
that contradict the data at hand. In this manner, the optimized model best captures

the signaling patterns of human chondrocytes.

Methods

Chondrocyte isolation, culture and stimulation

Cartilage tissue was obtained from the femoral heads of patients undergoing total hip
arthroplasty because of subcapital femoral fractures. Tissue was isolated using
standard methods. Chondrocytes were isolated by sequential enzymatic digestion
with pronase for 15 min at 37C and 0.4% collagenase Type Il for 4 h at 37C as

previously reported'®. Enzymes were diluted in serum-free Dulbecco’s modified
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Eagle’s medium supplemented with 50 mg/ml gentamycin, 100 mg/ml Kanamycin
and 1.25 mg/ml Fungizone Amphotericin B. Isolated chondrocytes were washed,
strained with 70 mm nylon meshes, and finally seeded at high-density (50,000
cells/well) in 96-well plates resuspended in DMEM high glucose, supplemented with
10% FBS, 100 U/ml Penicillin Streptomycin, 10 mM HEPES and 1% MEM Non-
Essential Amino Acids Solution. Cells were cultured for 24 h (60% confluency) and
were then starved overnight at 37C, 5% CO2, in serum-free DMEM high glucose;
stimulated with single treatments of 78 ligands (see Supplementary Material 1 at DOI:
10.1016/j.joca.2014.01.001) and were finally lysed at 5 and 25 min after stimulation.
The lysates were pooled in a 1:1 ratio before executing the Luminex assay. The library
of 78 ligands was compiled to include some (but not all) of the major players of
cartilage biology together with many underreported ligands, in an attempt to discover
new players of cartilage pathophysiology.

Samples from various donors were used for developing the experimental protocols
and for preliminary studies. However, the computational analysis that follows requires
minimum biological variation for maximum signal to noise ratio; thus, for the final
experiment only samples from a single donor were considered. We expect donor to

donor variability, but that should be in the same levels as with previous studies'’.

Luminex assay

Phosphoproteins

A Luminex 200 system was used, to measure the activation of 17 phosphoproteins
(AKT, JUN, CREB, ERK, GSK3, HISTH3, HSP27, IKB, IRS1S, JNK, MAP2K1,
MAPK14, TP53, RPS6KB1, RPS6KA1, STAT3, STAT6) 5 and 25 min after stimulation,
as described in'”’. The 17 phosphoproteins were chosen based on assay availability

and quality controls performed at early stages of the experimental setup.

Cytokine releases

A library of 55 cytokine releases including most major inflammatory mediators such
as cytokines, chemokines, growth factors, as well as degenerative enzymes (MMPs)
(CCL27, CCL11, FGF2, CSF3, CSF2, CXCL1, HGF, ICAM, IFNA2, IFNG, IL10, IL12,
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IL12P40, IL13, IL15, IL16, IL17, IL18, IL1B, IL1RA, IL2, IL2R, IL3, IL4, IL5, IL6, IL7,
IL8, IL9, CXCL10, LIF, CCL2, CCL7, CSF1, MIF, CXCL9, CCL4L1, CCL4L2, NGF,
PDGFB, CCL5, KITLG, SCGFB, CXCL 12, TNF, LTA, TNFSF 10, VCAM1, VEGF121,
MMP1, MMP10, MMP13, MMP3, MMP8, MMP9) was measured in the supernatant

24 h after stimulation.

Data normalization

Both phosphoprotein and cytokine release data are measured in fluorescent units
and is dependent on the antibody pair used for detection. For instance, MAP2K1
ranged from 280 units (untreated condition) to 6500 units (under EGF), while GSK3
ranged from 500 units (untreated condition) to 1500 units. Variations such as these
do not necessarily reflect that MAP2K1 is more activated than GSK3 but may be
attributed to protein abundance or assay calibration issues. Consequently, two
challenges emerge, firstly, identifying whether a signal is activated or not, and
secondly, normalizing the raw data in a way that the optimization algorithm is not
biased in favor of the highest values'’. Herein we implemented the normalization
procedure introduced in'"": We fitted the measurements of each signal to a bimodal
distribution and for each datapoint, we formed the ratio of the frequencies with
respect to the two modes and passed it to a hill function to map it to [0, 1]. The

normalized data were used by the ILP algorithm.

Construction and pre-processing of the PKN

A PKN was constructed downstream the 78 receptors of interest,based on literature
citations of signaling reactions''’. Several online databases were queried
(Reactome'”?, PathwayCommons'®, KEGG™¥), but most of the reactions were
obtained from Ingenuity (http://www.ingenuity.com/). The PKN was constructed in
such a manner that it includes all interrogated receptors and measured
phosphoproteins.

Upon its construction, the PKN was pre-processed to remove non-observable and

110

non-controllable parts of it according to'"™. Non-observable, are nodes in the pathway
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whose activation state cannot be inferred based on the measured phosphoproteins
(i.e., Nodes, downstream of which there are no measured signals). Non- controllable
are nodes whose activation state cannot be controlled by the imposed perturbations
(i.e., Nodes with no upstream stimuli). Removing non-observable, non-controllable
parts of the pathway facilitates the optimization process by reducing the size of the

pathway.

Optimization of signaling pathways to proteomic data via an ILP

formulation

An ILP formulation was used to fit the PKN to proteomic data by removing reactions

that contradict the data at hand. See also®.

Assume a signaling network G defined as a set of reactions i = 1,..., n, and speciesj = 1,...,ns. Each reaction i is
described by three index sets; the set of reactants R;, the set of inhibitors H; and the set of products P;; R;, H;,

P; c {1,...,ns}. We also define a set of experiments k = 1,...,ne. In each experiment k a set of species J are

Fe{0.1y; j=1,..ng k=1,..n [f =

perturbed with if speciesj in

If =0 xFe {0, 1
experiment k is set to active (ON); J if j is not perturbed. Moreover, we define variables ~ ./ { ' }

Kk
X, =
to denote the predicted activation state of species j in experiment k. ~ ./ if species j is active in
ko
experiment k; ~ J otherwise. If species j is also measured and it is found to be active in experiment k,
km km

then = J , else if it is found to be inactive =/ . We also introduce variables

*e{0,1}; i=1,..,n; k =1,
(.A - l)ornot(:{‘( - 0)

“i
Vi€ {O l } ; I = l yeeey My to denote whether reaction i is present in the network. y; = 1 if reaction i
is present in the network; y; = 0 otherwise.

e n" to denote whether reaction i is active

in experiment k. Finally, we define variables
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Starting from the perturbed nodes, the signal is propagated downstream following the rules of Boolean logic.
Thus,
K
1. Areaction i will take place in experiment k ("i - ] ) if and only if it is present in the network (y; = 1), all

¥ = 1; VjeR

reactants are present (i.e., ./

Xk =0; Vje H;

i) and no inhibitors are present (i.e.,

J

2. If areaction i takes place all downstream species will be activated (i.e.,

K =1, VjeP; k = l,...,n(,)

-
.\J-\— - 1 'k —
3. A species; will be active (i.e., J ) if and only if a reaction i takes place (i.e., <1 ) where this
. k — 0
species is a product (i.e., JE Pf); otherwise j will be inactive (i.e.,  / )-

The rules above may be formulated as linear constraints in the following manner (math

equation 1):

.\'f"z[:"; j=1,...n:; k=1,..n,

z* < \'fj VieR; i=1,....n; k=1,....n,

Zy <1—=xf; VjeH;i=1,..n; k=1,..,n,

zZ; 2 yi+ Z(\f— l) -3 (\J,‘) i=1,...n; k=1,...n,
je R; je H;

_\‘;"2:" VjeP; i=1,...n; k=1,...,n,

xE< Y 4 j=1,..n; k=1,...n

The aim of the formulation is to identify the optimal values of y; variables to minimize
the mismatch between experimental data and model predictions. Additionally,
because a number of solutions may exist with the same optimal objective value, the
size of the solution is also minimized to harvest the one incorporating the fewest

reactions see also'®. Thus, the following objective function is used (Math equation 2).
Z [‘f\ \,f _ '\,ff.m

+ Z ,8,'_\‘,'
j.k i

Equations ((1), (2)) define an ILP, where (1) are the constraints of the formulation and

(2) is the objective function to be minimized. The ILP is solved using Gurobi29 under
GAMS30 (General Algebraic Modeling System, http://www.gams.com/). Finally,
variables x and z may be relaxated to [0, 1] to speed up the optimization procedure

without affecting the optimal solution, see'®.
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Results

Phosphoproteomic level

Phosphoproteomic measurements

Chondrocytes were stimulated with single treatments of 78 ligands while measuring
the activation level of 17 key phosphoproteins via xMAP technology. The
phosphoproteomic dataset is plotted in Figure P1-1 via DataRail toolbox'"®. Figure
P1-1 is a collection of subplots representing the time course of the 17 signals from
the unstimulated state to the average early response under each of the imposed
ligands. The filling color in each subplot corresponds to the normalized value of the
signal. Activated signals are plotted in red.

As shown in Figure P1-1, a large number of stimuli raised a significant response in
chondrocytes, activating at least one phosphoprotein signal. As positive control
observations, well known players such as IL1B, TNF, EGF, TGFA, INS, IGF1 and IL6
responded as expected from previous studies. The pro-inflammatory mediators IL1B
and TNF activated IKB, HSP27, MAPK14 (p38) and JUN, already known to promote
inflammation in cartilage, together with pro-growth signals such as CREB, ERK,
GSK3, IRS1 and MAP2K1 (MEK12), validating their role in chondrocyte
hypertrophy''®. On the other hand, pro-growth stimuli such as EGF, TGFA and INS
activated only anabolic pathways, leaving inflammation related signals unaffected.
Apart from the major players, a number of underreported stimuli are found to affect
chondrocytes signaling including INHBA (Inhibin beta A), ADIPOQ (Adiponectin),
DEFB1 (Defensin beta 1), BTC (Betacellulin), CXCL1, HBEGF, IL19, CXCL10,
ODN2006 (Toll Like Receptor (TLR)9 ligand), NOG (Noggin) and Flagellin. A detailed
description of the screened stimuli and their role in cartilage physiology is given in
[Supplementary Material 1 at DOIl: 10.1016/j.joca.2014.01.001]. See also the

Discussion section.

Pathway construction based on the ILP formulation

The ILP formulation is used to train the PKN to the phosphoproteomic data of Figure
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P1-1, resulting in an integrative model, predictive of the signal transduction
mechanisms of human chondrocytes. In more detail, the formulation removed all
reactions from the PKN that contradicted the data at hand in an attempt to minimize
the difference between model predictions and experimental data. The optimized
network is shown in Figure P1-2. With thick black edges, we plotted the reactions
that are validated by the data and with gray edges the reactions that contradicted the
data and were removed by the ILP algorithm. An in-depth analysis of the ILP
performance and experimental validation of model predictions in the neighborhood
of MAPK14, HSP27 and IKB signals is shown in [Supplementary Material 2 at DOI:
10.1016/j.joca.2014.01.001].

Figure P1-2 validates the key findings of Figure P1-1 and previous reports in the
literature: Major inflammatory mediators such as IL1B and TNF, signal through their
receptors to IKB, MAPK14, HSP27 and JUN. IL1B also activates CREB and MAP2K1
(growth related signals) via TRAF6, in good accordance to the phosphoproteomic
data of Figure P1-1 and the literature'"”. Pro-growth stimuli such as TGFA, BTC, EGF,
IGF1, INS and FGF2 signal through GRB2 to SOS, RAS and from there either to
MAP2K1 (MEK12) via RAF1, or signal through PI3K to AKT and to CREB. IL6 activates
mostly STAT3 via JAK1. On the other hand, the signaling pathways of CXCL1,
HBEGF, DEFB1, Flagellin and INHBA were uncovered for the first time in
chondrocytes. CXCL1, a small cytokine of the CXC family, binds to CXCR2 and
activates RPS6KA1. HBEGF, a ligand of the EGFR, signals via the same path- ways
as EGF, BTC and TGFA. DEFB1, a TLR ligand, signals through TLR4 to RAC1 and
from there to the MAPKSs and finally activates HSP27 demonstrating pro-inflammatory
action. Flagellin, also a TLR ligand, signals through TLR5 to MYD88 and then merges
with the IL1 pathway activating major inflammatory signals, CREB and MAP2K1.
INHBA, a ligand of the TGFBR, signals via the MAPKs to activate JNK and P53.

Experimental validation of the HSP27, MAPK14, and IKB connectivity in the solution.

To validate the results of the ILP formulation, we chose a neighborhood of the
optimized network and performed follow up experiments; this is the neighborhood
around the HSP27, MAPK14 and IKB signals. As shown in Figure P1-2, HSP27,
MAPK14 and IKB are activated by two pathways that overlap at NIK, one originating
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from IL1B and Flagellin that signals via IRAK, TIFA, TRAF6 and NIK, and a second
one originating from TNF that signals via TNFRSF1B, TRAF2 and NIK. Then, from NIK
a pathway activates IKB via IKBKB and another activates MAPK14 and HSP27 via
MAP2K6 and MAPKAPKS (node “OR” is an auxiliary node). Note that HSP27 is
downstream of MAPK14, while it is also activated by an independent pathway via
MAPK11, MAP2K4, MAP3K5 and RAC1, but this pathway is only functional under the
DEFB1 stimuli. For the rest of the stimuli (IL1B, Flagellin, TNF), HSP27 is activated via
MAPK14.

As a follow-up experiment we perturbed the cells with major activators of HSP27,
MAPK14 and IKB signals, in combination with small molecular inhibitors to block key
signaling proteins, while monitoring HSP27 and IKB activation in an attempt to
validate the connectivity of these three nodes in the solution. As activators, we used
IL1B and TNF. (1) IL1B to stimulate the first pathway to NIK and (2) TNF to stimulate
the second pathway to NIK as described above. As inhibitors, we used a potent
MAPK14 inhibitor (PHA- 818637 at 100 nM) and a PI3K inhibitor (PI-103 at 10 mM).
The activation of HSP27 and IKB was measured at three time points (5, 15 and 25
min), using the Luminex xMAP technology as described in the Methods section.
Results are plotted in Figure P1-4.

Figure P1-4 (A) shows how the inhibition of MAPK14 affects HSP27. In good
accordance to model predictions, inhibition of MAPK14 caused a significant
decrease of HSP27 activation, since the ILP placed the HSP27 signal directly
downstream of MAPK14. Note that in the initial network (gray edges in Figure P1-2)
a number of alternative pathways are included for HSP27 activation upon stimulation
with IL1B and TNF that do not go through MAPK14 (e.g., IL1B / IL1R2 / IRAK / TIFA
/ TRAF6 / MAP3K5 / MAP2K4 / MAPK11 / MAPKAPKS5 / HSP27, or TNF / TNFRSF1B
/ TRAF2 / NIK / MAP2K3 / MAPK11 / MAPKAPKS5 / HSP27), however, these were
removed by the ILP algorithm as non-functional in the interrogated cell type, and
HSP27 was placed directly downstream of MAPK14. On the other hand, the inhibition
of PIBK had no effects on HSP27 activation, also in good accordance to model
predictions, where the MAPK14, HSP27 and IKB pathway is completely
disconnected from PI3K. Finally, Figure P1-4 (B) shows how IKB activity is affected
by MAPK14 and PI3K inhibition. In good accordance to model predictions, IKB is not
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affected by either MAPK14 or PI3K inhibition, since IKB is regulated by a different
pathway than MAPK14 and is also disconnected from PI3K. Thus, the follow up
experiments of Figure P1-4 validate the connectivity of HSP27, MAPK14 and IKB in

the optimized network.

Cytokine release level

Chondrocytes were stimulated with single treatments of 78 ligands while measuring
the release of 55 cytokines. The cytokine release data is shown in Figure P1-3, which
is a collection of subplots representing the time course of the 55 signals from the
unstimulated state to 24 h, for each of the imposed ligands. The filling color in each
subplot corresponds to the normalized value of the signal.

As shown in Figure P1-3, a large number of the imposed stimuli promoted significant
cytokine release in chondrocytes. The strongest inducers were FSTL1 (a TLR 6/2
agonist), GDF5, HKSA (TLR2 ligand), IL1A, IL1B, IL6, LPS, PAM3CSK4 (TLR 1/2
agonist), POLYIC (TLR3 agonist), Flagellin (TLR5 agonist), TNF and LTA (a member
of the TNF superfamily). Most of them have already been proven to exhibit pro-
inflammatory action; however, there are a number of underreported players such as
GDF5 and LTA. As positive controls, we observe that major inflammatory mediators
such as IL1A and IL1B raised an extensive inflammatory response inducing the
release of most of the measured cytokines. Moreover, IL1A, IL1B together with many
of the inflammatory mediators mentioned above were found to induce the release of
MMPs (mainly MMP13 and MMP1) known to degrade the collagen content of the
tissue. Finally, we observe that pro-growth stimuli did not induce any significant

cytokine releases.

Discussion

In this paper, we have presented a rigorous approach for the study of signal
transduction in chondrocytes on a systems level. We interrogated their signaling
mechanisms, downstream 78 receptors of interest, on both the phosphoproteomic

and the cytokine release levels and also employed an ILP formulation to construct a

60



predictive model of their signaling processes. On the experimental front, we adopted
the xXMAP technology to measure 17 key phosphoproteins and the release of 55
cytokines in the supernatant, upon stimulation with single treatments of the 78
ligands. These ligands were selected to stimulate major osteoarthritic degradation
pathways. On the computational front, we implemented an optimization formulation,
based on the modeling of signal transduction via Boolean logic, to train a PKN to the
proteomic data by removing reactions that appear not to be functional in primary
chondrocytes.

The analysis presented herein, was able to validate previous findings regarding major
players of cartilage homeostasis and inflammation (e.g., IL1B, TNF, EGF, TGFA, INS,
IGF1 and IL6); highlight the role of underreported players such as INHBA, DEFB1,
CXCL1 and Flagellin in chondrocyte signaling; identify their signaling pathways and
uncover the way they cross-react in the phosphoproteomic level. Even though most
of the effects of the interrogated stimuli on the measured phosphoproteins or
cytokine releases have been reported before, this is the very first attempt to our
knowledge to leverage high throughput proteomic data via a bioinformatics approach
and identify which of the signaling pathways reported in literature are functional in
primary human chondrocytes and orchestrate their response to external
perturbations. On this front regarding the underreported players DEFB1 and Flagellin:
We identified that DEFB1 signals via its receptor to RAC1, to the MAPKs and
ultimately activates HSP27. Flagellin signals through TLR5 to MYD88 and then
merges with the IL1 pathway signaling through IRAK, TIFA, TRAF6 and activates the
IKB, MAPK14 and HSP27 signals. Moreover, we were able to validate part of the
DEFB1 and Flagellin pathways in the neighborhood around the MAPK14, HSP27 and
IKB signals via an independent follow up experiment (see Supplementary Material 2
at DOI: 10.1016/j.joca.2014.01.001), proving the predictive power of the proposed
ILP algorithm and reliability of model predictions. On the other hand, the lack of data
in the remaining part of these pathways implies the ambiguity of the solution from the
TLRs to the neighborhood of MAPK14, HSP27 and IKB, requiring tedious follow up
experiments to validate that exceeds the scope of this work. Below we discuss our

findings in the context of degenerative diseases such as osteoarthritis (OA).
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Inflammatory mechanisms

OA has a strong inflammatory component®

. Our analysis of cytokine release data
(see Figure P1-3) extensively validates the role of chondrocytes in inflammation: In
Figure P1-3, chondrocytes are found to release cytokines and MMPs upon
stimulation with major inflammatory mediators (IL1B and TNF), in good accordance
to literature reports; but also, upon stimulation with underreported ligands. Moreover,
taking into account that the tissues used for our analysis came from healthy donors,
our findings suggest even healthy cells have the potential to demonstrate a strong
inflammatory response (rather than protective). In this manner, the generation of an
inflammatory environment in the joint is facilitated and given that cartilage is an
avascular tissue, lacking important anti-infammatory components of peripheral
blood®, this environment is sustained, eventually leading to the degradation of the
tissue.

The inflammatory mechanisms of chondrocytes were also studied on the
phosphoproteomic level. Using an ILP formulation, for the first time we were able to
identify the signaling pathways of underreported pro-inflammatory mediators such as
DEFB1 and Flagellin (TLR ligands). Even though the role of TLR in cartilage
inflammation has been studied before, this is the first attempt to identify the signaling
events that lead to the up-regulation of NFKB, HSP27 and other pro-inflammatory
signals upon stimulation of the TLR. In more detail, two major inflammatory pathways
were uncovered: the first activating IKB via NIK, and the second activating HSP27 via
MAPK11 and MAPK14 dependent mechanisms. Moreover, cross-talks of the TLR

with other major inflammatory and pro-growth pathways were uncovered.

Chondrocyte hypertrophy and proliferation

During OA, proliferation and hypertrophic differentiation of chondrocytes occur.
These processes resemble to skeletal development by endochondral ossification
mechanisms''®. They refer to the gradual differentiation of chondrocytes and
subsequent release of BMPs that leads to matrix remodeling. Our analysis of the

phosphoproteomic data sheds light into these mechanisms. As seen in Figure P1-1,
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stimulation with IL1B and Flagellin (two major inflammatory mediators) apart from up-
regulation of inflammatory signals, also leads to over-activation of CREB and
MAP2K1, two growth related signals that are connected to hypertrophy®® (IL1B also
activates ERK, GSK3 and IRS1 but this is not shown in the network).

The mechanism of CREB and MAP2K1 activation was uncovered by the ILP algorithm
and is shown in the network of Figure P1-2. IL1B and Flagellin signal through
overlapping pathways to IRAK, TIFA and then to TRAF6. From TRAFG either activate
pro-inflammatory signals or go through RAC1 to activate CREB and MAP2K1.
Moreover, inspection of the cytokine release data of Figure P1-3 reveals another
potential mechanism IL1B and Flagellin induce chondrocyte hypertrophy: Both IL1B
and Flagellin induce the release of FGF2 known to play a role in endochondral
ossification'® and CXCL1, a chemokine that induces chondrocyte hypertrophy'™*'%°.
IL1B additionally induces the release of CSF3 (another pro-growth factor). Thus, IL1B
and Flagellin apart from directly activating pro-growth signals via the pathways
discussed above, also lead to the release of pro-growth cytokines, facilitating

chondrocyte hypertrophy and bone ossification indirectly.

Innate immune response in OA TLR signaling

The role of TLR signaling in OA is becoming of increasing significance as the
community attempts to identify the etiology underlying the pathogenesis of the
disease. TLRs belong to the family of pattern-recognition receptors and play a pivotal
role in the activation of the innate immune system in response to invading microbial
components™. TLR stimulation elicits strong release of pro-inflammatory
cytokines'; while only recently human articular chondrocytes were shown to express
TLRs™ ™ In this paper, we addressed TLR signaling extensively by screening 10
TLR ligands (DEFB1, HKSA, Imiquimod, Flagellin, LPS, ODN2006, PAM3CSK4,
POLYIC, SSRNA40 and FSTL1). On the cytokine release level 6 of them (FSTLA1,
HKSA, LPS, PAM3CSK4, POLYIC and Flagellin) were found to raise a strong
inflammatory response, validating the significance of TLR stimulation in joint
inflammation. However, on the phosphoproteomic level only DEFB1 and Flagellin

signaled through pathways monitored by the 17 phosphoprotein signals. DEFB1
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signaled via TLR4 to RAC1 and from there to the MAPKSs, eventually activating
HSP27. Flagellin signaled via a pathway overlapping with IL1B and as discussed
above, activated most inflammatory signals together with MAP2K1 and CREB.

Overall, the proposed approach successfully addressed the construction of a
predictive model of the signaling mechanisms in human chondrocytes. We
interrogated signal transduction on both the phosphoproteomic and cytokine release
levels, upon stimulation with 78 factors of interest, including most major players of
osteoarthritic pathophysiology, as well as ligands important for other cell types. Our
analysis validated previous findings in chondrocytes signaling, elucidated the role of
underreported players and identified cross-talks on the phosphoproteomic level,
highlighting the pleiotropic role of major players in cartilage homeostasis and

inflammation.

Meniscus — Cartilage paracrine crosstalk in osteoarthritis

Please visit abstract [A1] in section “Abstracts in International Conferences” for more

information on this chapter.
Introduction

Meniscus plays an essential role in knee joint function providing stability and load
transmission. In osteoarthritis (OA), a joint disease characterized by chronic synovitis
and cartilage degeneration, pathological changes in the menisci are observed.
However, whether menisci contribute to the progression of OA, the underlying
mechanism for meniscus-cartilage communication is still unclear. In this study, we
analyzed systematically the response of meniscus and cartilage explants to a number
of inflammatory mediators, in order to reveal their response similarity and highlight

potential crosstalks and interactions.

Methods
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OA cartilage and the lateral meniscus were harvested from two patients undergoing
total knee arthroplasty. Meniscus and cartilage disks (3 mm diameter) were
stimulated with inflammatory mediators ((IL-1q, IL-1B, IL-12a, CSF2) (50 ng/ml), (TNF-
a, IL-6, CXCL7, IL-8, CCL2, CXCL10, IFN-y, IL-3, MIA2, IL-4) (100 ng/ml) and GROa
(500 ng/ml)) for 24 h. For each condition the release of different proteins (IL-1q, IL-
1B, TNF-q, IL-6, CXCL7, GROaq, IL-8, CCL2, CXCL10, IFN-y, IL-3, IL-12a, MIA-2,
CSF2, IL-4) was measured in the supernatant using custom multiplexed assays on a

Luminex FlexMap 3D instrument.
Results

In both tissues the major inflammatory players (IL-1a, IL-1B, TNFa) were the strongest
stimuli as expected. Meniscus responses were the same up to 73 and 50% with the
cartilage ones for the first and the second donors respectively. Interestingly,
meniscus under certain stimuli (IL-1qa, IFN-y, CSF2, IL-8) responded differently than

cartilage by releasing five different cytokines while cartilage did not.
Conclusions

Our results indicate that meniscus is affected by its inflammatory environment and
responds to it as actively as cartilage. Moreover, the release of different cytokines
from meniscus and cartilage suggests that meniscus can be an active player in the
progression of OA. These data support the hypothesis that significant crosstalk
between these two knee compartments exist and anti-inflammatory therapies should

take into consideration both tissues.

An integrated proteomic and metabolomic approach to

investigate cartilage degeneration

Please visit abstract [A4] in section “Abstracts in International Conferences” for more

information on this chapter.
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Cartilage degeneration as a feature of osteoarthritis (OA) is one of the most common
causes of pain and disability in middle-aged and older people. The percentage of
population above 45 years of age affected with OA is estimated to increase from
26.6% (2012) to 29.5% by 2032 due to the aging of the population and the obesity
epidemic. Most research studies in OA focus on single therapeutic targets, disease
processes or level of molecules, thus omics data have never been integrated in a

systematic way.

Articular cartilage and synovium explants, whole cell extract of articular chondrocytes
or mesenchymal stem cells, supernatant of articular cartilage explants, articular
chondrocytes, osteoclasts or synovium-derived cells in culture, articular cartilage
vesicles, synovial fluid (SF), plasma, serum and urine have all been studied on the
proteomic front and a subset of those for their metabolomic signature. However, no
more than three of those types of samples have been examined in a single study
using the same assay type. By using samples from various tissues, we avoid focusing

only on the biochemical changes that occur in the joints.

As a case study, we combined proteomic and metabolomic assays (multiplex bead-
based sandwich ELISA xMAP technology and gas chromatography mass
spectrometry), to measure the phosphoproteomic signature, cytokine release and
metabolomic signature of untreated and treated with IL1B cultured chondrocytes,
along with the proteomic and metabolomic signature of the same donor’s synovial

fluid and plasma.

Following this multi-omics approach, we had to include additional quality control
check points to ensure the highest possible dataset quality and therefore the validity
of results. In particular, we need to be able to address challenges such as acquiring
multiple samples from the same donor at the same time, using the exact same
samples for all experiments (cell line passage, timelines in cell culture), merging

protocols of all omics assays while meeting the sample handling prerequisites for
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every assay and having strictly fixed parameters across assays, such as time points

and doses of any applied stimuli.

Besides ensuring robustness of the dataset, in the case of OA, we have to take into
account the scarce availability of healthy human cartilage, synovium and SF samples
and examine the clinical profile data of donors in order to expand the dataset while
gaining knowledge about factors such as medication that can alter the omics data.

In conclusion, we believe that omics data acquired by multiple samples while
avoiding the above-mentioned pitfalls, can be integrated in a multi-level dataset
which may help us understand complex biological systems and multifactorial

diseases such as OA.

Metabolomics analysis of Synovial Fluid samples

Synovial Fluid samples (The Donors used were donor #68 and donor #94 - please
see all sample information in Table A4-1) were run in a Gas Chromatography Mass
Spectrometry system and analyzed to specify which metabolites were present in the

samples.

The Metabolomic analysis process involves creating a table matching your
chromatograph with the lab’s history of identified Metabolite Derivates. Marked as
dm_X are unknown metabolites that have possibly not identified before from this lab.

The full table is presented in Table A4-2.

We identified several metabolites also mentioned in the chapter of this thesis:
“Osteoarthritis and Metabolomics” > “OA Synovial Tissue Metabolic Profile”. All
identified metabolites are shown on Table A4-3. With green and red color are shown
similarities with literature, for upregulation and downregulation of those metabolites

respectively.

Sample collection from Chondrocyte cell culture
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We also isolated and prepared chondrocytes for metabolomics measurement, but we

did not complete measurement and analysis. The procedure is described below.

The following protocol was based on the “Adherent Hela cells - Collection” protocol
of Metabolic Engineering and Systems Biology Lab (MESBL), FORTH/ICE-HT.

1) Seed chondrocytes on a 10cm Petri dish (~78.5 cm2 cell growth area) and continue
culture until reaching 80% confluency.

2) At the end of the stimulation period (if any), place the dish on ice and remove 1ml
of the supernatant. Add this 1ml to 1ml ice-cold HPLC-grade MtOH. This is the cell
culture supernatant sample.

3) Wash 3 times with 10ml ice-cold PBS and remove 1ml of the 3rd wash. Add this
1ml to 1ml ice-cold HPLC-grade MtOH. This is the 3rd PBS wash sample, acquired
for quality control purposes.

4) Completely aspirate the PBS and add 2ml ice-cold HPLC-grade MtOH to the cells.
5) Move the liquid across the plate for ~1’ and then collect the 2ml.

6) Place all samples at -80C.

Notes:

1) The flasks’ surface should not be tissue-culture treated and ideally should not have
any coating substances. For this preliminary experiment we used Corning #430641
flasks (75 cm2 cell growth area, tissue culture treated according to this process:
http://www.corning.com/lifesciences/us_canada/en/technical_resources/surfaces/c
ulture/stc_treated_polystyrene.aspx).

2) The chondrocytes should be always from the exact same passage for all Donors.
For this preliminary experiment we used freshly thawed P3 cells (P4) from Donor #94.
3) The cells must be scrapped. For this preliminary experiment we didn’t scrape the
cells.

4) Normally, for each experiment we culture one more Petri dish for RIPA - Bradford

assay to evaluate protein content. For this preliminary experiment we did not do that.
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For this preliminary experiment, we seeded freshly thawed P3 chondrocytes (P4)
isolated from Donor #94 into 2 flasks (Corning #430641) with 20ml culturing medium
(DMEM, 10% FBS, 1% PS) per flask, changing the medium every 2-3 days until
reaching confluency 80%. Then, we changed the cell supernatant of one flask with
medium containing 50ng/ml IL1B and the other flask with the normal culturing
medium, incubated the cultures for 24h and then proceeded with the above protocol

by placing the flasks on ice and following the rest of the steps.
Metabolite extraction for chondrocyte whole cell extracts

1) Add 0.1ug ribitol per mg of protein content in the sample.

2) Add 0.2ug glucose per mg of protein content in the sample.

3) Gently mix.

4) Place in waterbath at 70-75C for 20 minutes. Precipitation of big molecules is
observed.

5) Add HPLC-grade H20, same volume as the MtOH.

6) Gently mix.

7) Centrifuge at 10000g for 10 minutes at 4C.

8) Carefully collect the supernatant without taking any of the precipitated proteins.

)

)
9) Transfer the supernatant in a glass, pre-weighted tube.
10) Weigh the tube and calculate the mass of dry metabolites
1

11) Seal the tube with parafilm and keep at 4C until measurement

Derivatization of metabolites and transfer for measurement

There are two tips for each chemical in the hood: tips for transfer and tips for samples.
The bold blue line of the tip goes to the syringe.

Keep samples with aluminum foil around them and keep them open as less time as

possible.

Preparation of MeOx
MeOx 90’ 40C
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Alfa Aesar A19188, CAS 593-56-6
weigh powder, dilute at 20ug/ml with Pyridine

easily evaporates

Preparation of MSTFA
MSTFA 9h+ 30C
Alfa Aesar A13141, CAS 24589-78-4

Transfer with tip for transfer from bottle into your vial.

Derivatization

1) Run sample in SpeedVac for 30 minutes.

2) Add MeOx using MeOx tip for samples and leave in incubator at 40C for 90
minutes.

3) Add MSTFA using MSTFA tip for samples and leave in incubator at 40C for 9 hours.
4) Gently mix tapping with finger.

Transfer
1) Wash syringe with pyridine
2) Transfer the sample without disturbing the precipitant into the dark vial

3) Cap the vial firmly using crimper

Vials (2ml)

Agilent Technologies

Part No.: 5181-3376 (vials)
Part No.: 5182-0871 (caps)
Part No.: 5183-2085 (inserts)
11mm Crimper

11mm Decapper

Samples transferred to MESBL

The samples transferred to MESBL for potential metabolomic analysis were:
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1) supernatant of donor #94 chondrocytes treated with 50ng/ml IL1B for 24h [total
vol. 2ml]

2) 3rd wash PBS of case 1 [total vol. 2ml]

3) MtOH lysate of case 1 [total vol. 2ml]

4) supernatant of donor #94 chondrocytes untreated [total vol. 2ml]
5) 3rd wash PBS of case 4 [total vol. 2ml]

6) MtOH lysate of case 4 [total vol. 2ml]

7) culturing medium (DMEM, 10% FBS, 1% PS) [total vol. 2ml]

8) synovial fluid from Donor #68 [total vol. 1.5ml]

9)

10

synovial fluid from Donor #94 [total vol. 1.5ml]
) blood plasma from Donor #68 [total vol. 1.5ml]
)

11) blood plasma from Donor #94 [total vol. 1.5ml]

- Samples 1-6 were prepared according to the protocol described above “Sample
collection from Chondrocyte cell culture®.

- Sample 7 was prepared by adding 1ml of the culturing medium to 1ml ice-cold
HPLC-grade MtOH.

- Samples 8-9 did not have MtOH added. Those samples were prepared according

to the following steps:
Synovial fluid samples preparation

1) The samples are travelling from Larissa to Athens in RT conditions during winter or
icepack during summer (which can also be considered RT). We get the samples in
syringe or urobox, usually 24h after acquisition from the donor

2) Transfer 1.5ml in an eppendorf microcentrifuge tube

3) Spin down at 14000G, 15’, 4C

4) Observe a small pellet which is the synoviocytes. Transfer the supernatant into an
eppendorf microcentrifuge tube

5) Store at -80C
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- Samples 10-11 did not have MtOH added. Those samples were prepared according

to the following steps:

Plasma samples preparation

1) The samples are travelling from Larissa to Athens in RT conditions during winter or
icepack during summer (which can also be considered RT). We get the samples as
2ml blood in the pink cap vacutainer (EDTA), usually 24h after acquisition from the
donor

2) Dilute the blood 1:1 with PBS (W/O Ca+) by adding 2ml PBS into a 15ml Falcon
tube

3) Carefully add the PBS-blood mix on top of 3ml Ficoll present in another 15ml
Falcon tube

4) Spin down at 400G, 15, 4C

5) Plasma is in the supernatant, which is the first of 3 phases. Transfer 1.5ml in an
eppendorf microcentrifuge tube

6) Store at -80C

Equipment and reagents

VARIAN CP-3800 GAS CRHROMATOGRAPH
VARIAN Saturn 2200 GC / MS / MS

HPLC grade H20

Water (UV-HPLC) PAI-ACS

Panreac 361074.1612

MtOH

Methanol (HPLC-gradient grade) PAI-ACS
Panreac 221091.1612

Pyridine

Vendor: SDS CAS: 110.86.1 Catalog: 0671016
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The role of inflammatory mediators in meniscus and cartilage

crosstalk in osteoarthritis

Please visit abstract [A6] in section “Abstracts in International Conferences” for more

information on this chapter.

Purpose

Osteoarthritis (OA) is a common degenerative joint disorder causing cartilage
degradation, pain and disability. Lately it is characterized as a whole joint disease as
it affects the structure and functionality of all tissue components, such as the menisci.
Meniscus plays an essential role in knee joint function providing stability and load
transmission. During OA the balance between catabolic and anabolic processes in
the cartilage tissue is disturbed favouring catabolism through the cytokines and
Matrix Metalloproteinases (MMPs) that are present in the synovial fluid of patients
with mild or severe OA. In this study, we examine how meniscus and cartilage
explants react to a number of inflammatory mediators, in order to reveal their

response similarity and highlight potential crosstalks and interactions.

Methods

OA cartilage and the menisci were harvested from patients undergoing total knee
arthroplasty. Meniscus and cartilage disks (3 mm diameter) were stimulated with
inflammatory mediators [IL-1a, IL-1b, IL12a, CSF2 (50 ng/ml), TNF-a, IL-6, CXCL7,
IL-8, CCL2, CXCL10, IFN-g, IL-3, MIA2, IL-4 (100 ng/ml) and GROa (500 ng/ml)] for
24 h. For each condition the release of different proteins [IL-1a, IL-1b, TNF-a, IL-6,
CXCL7, GROa, IL8, CCL2, CXCL10, IFN-g, IL-3, IL-12a, MIA-2, CSF2, IL-4] was
measured in the supernatant after 24 hours using custom multiplexed assays on a
Luminex FlexMap 3D instrument. Histological sections were prepared in order to
assess the osteoarthritic grade of the tissues used. Datarail toolbox was used for data

handling and visualization.
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Results

In general, there was strong similarity between meniscus and cartilage releases; the
major inflammatory players (IL-1a, IL-1b, TNFa) were the strongest stimuli as
expected, in both tissues. Under these cytokines cartilage disks released IL-6,
CXCL7, GROa, IL-8, and CCL2. Meniscus responses were the same up to 73% and
50% with the cartilage ones for the first and the second donors, respectively.
Meniscus under certain stimuli (IL-1a, IFN-g, CSF2, IL-8) responded differently than

cartilage by releasing five different cytokines that cartilage did not.

Conclusions

Until now, little is known about meniscus reaction to cartilage protein expression or
to the high cytokines concentration of the synovial fluid after trauma or OA. Our
results confirm that IL-1a, IL-1b and TNF-a, as proinflammatory cytokines, promote
systemic inflammation and thus release of IL-6, IL-8 and GROa in both cartilage and
meniscus tissue. The above findings suggest that meniscus is affected by its
inflammatory environment and responds to it as actively as cartilage, supporting the
hypothesis that significant crosstalk between these two knee compartments exists
and anti-inflammatory therapies should take into consideration both tissues. Further
investigations should be done to unveil the exact communication mechanisms

between meniscus and the other joint tissues.
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Human - Rat Translational Research

The disease

Animal models are important tools in drug discovery and for understanding human
biology in general. However, many drugs that initially show promising results in
rodents, fail in later stages of clinical trials. Understanding the commonalities and
differences between human and rat cell signaling networks can lead to better

experimental designs, improved allocation of resources and ultimately better drugs.

Experimental Model

e Culture of Normal Rat Bronchial Epithelial (NRBE) Cells
e Culture of Normal Human Bronchial Epithelial (NHBE) Cells

Experimental Tools

e Cell culture of NRBE and NHBE

e Stimulation with 52 compounds, lysis and collection of cell supernatant

e Total RNA was isolated from NHBE and NRBE cells using the QIAGEN RNeasy
96 Kit

e Measurement with bead-based sandwich ELISA of 17 phosphoproteins and
55 cytokines

e Measurement of mMRNA samples with Affymetrix® HG-U133 Plus2 or Rat 230
2.0 GeneChips

Computational Tools

e We crowdsourced the problem to combine the data at hand with prior

knowledge of proteins’ connectivity to construct specific signaling pathways
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for human and rat organisms.

Main Findings

A multi-layer systems biology dataset was generated that was comprised of
phosphoproteomics, transcriptomics and cytokine data derived from normal human
(NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50
different stimuli under identical conditions. This unique multi-omics dataset is of great
value for the computational community to develop new modelling capabilities to
address the important topic of species translatability at different molecular levels of
the human and rat bronchial epithelial cellular system. A better understanding of the
range of applicability of the translation concept will impact the predictability of
signaling responses, mode of action and efficacy of drugs in the field of systems
pharmacology as well as increase the confidence in the estimation of human risk from

rodent data in the context of toxicological risk assessment.

Animal models are important tools in drug discovery and for understanding human
biology in general. However, many drugs that initially show promising results in
rodents, fail in later stages of clinical trials. Understanding the commonalities and
differences between human and rat cell signaling networks can lead to better
experimental designs, improved allocation of resources and ultimately better drugs.

Our analysis showed that major signaling pathways were conserved between the two
species with only isolated components diverging, as in the case of RSK1. Overall, the
consensus between inferred edges was relatively high with the exception of the
downstream targets of transcription factors, which seemed more difficult to predict.
Transcription factor CREB1, showed the best consensus for the edges upstream of
it but with a couple of differences between human and rat: the connection from RSK1
was present only in the human consensus network'®, whereas the connection from
PRKACA was present only in the rat consensus network'®. The prevalence of RSK1
interactions in human might be explained by the fact that human isoforms of RSK1
have functional redundancy (i.e. RSK2, RSK3, RSK4). In contrast, this is most likely

not the case in rodents; Zeniou et al.”®” reported that the mouse RSK7 and RSK3
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genes may not be able to fully compensate for the lack of RSK2 function.

Publication Timeline

[P2] 10 June 2014, Nature Scientific Data
The species translation challenge — A systems biology perspective on human and rat

bronchial epithelial cells

[P3] 7 October 2014, Bioinformatics
A crow-sourcing approach for the construction of species-specific cell signaling

networks

Co-authored Research: The species translation challenge - A
systems biology perspective on human and rat bronchial

epithelial cells

Please visit DOI of paper [P2] for more information on this chapter.
Abstract

The biological responses to external cues such as drugs, chemicals, viruses and
hormones, is an essential question in biomedicine and in the field of toxicology and
cannot be easily studied in humans. Thus, biomedical research has continuously
relied on animal models for studying the impact of these compounds and attempted
to ‘translate’ the results to humans. In this context, the SBV IMPROVER (Systems
Biology Verification for Industrial Methodology for PROcess VErification in Research)
collaborative initiative, which uses crowd-sourcing techniques to address
fundamental questions in systems biology, invited scientists to deploy their own
computational methodologies to make predictions on species translatability. A multi-
layer systems biology dataset was generated that was comprised of

phosphoproteomics, transcriptomics and cytokine data derived from normal human
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(NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50
different stimuli under identical conditions. The present manuscript describes in detalil
the experimental settings, generation, processing and quality control analysis of the
multi-layer omics dataset accessible in public repositories for further intra- and inter-

species translation studies.

Background & Summary

Animal models have been used intensively to understand biological mechanisms
associated with diseases and to unravel toxic effects of drugs or environmental
agents. Biological processes in mice or rats have been generally assumed to reflect
biological processes in humans under analogous conditions. A natural question in
this context is the degree to which biological perturbations observed in rodents can
be translated to humans. Such knowledge is important since it can reduce

uncertainties in species extrapolations (Figure P2-1).

The Systems Biology Verification for Industrial Methodology for Process Verification
in Research (SBV IMPROVER) initiative*®'#° (https://www.sbvimprover.com/) opened
a challenge called Species Translation Challenge (STC) to the scientific community
to identify compound-specific biological mechanisms of actions (MoA) that are
common to different species, in this case, humans and rats. The challenge consisted
of four sub-challenges whereby the interspecies pathway perturbation prediction
challenge sought to explore whether responsive gene sets and related processes in
humans can be inferred based upon the corresponding data in rats.

To address the question of species translatability at different molecular layers of the
biological system in the context of STC, an experiment was designed to generate
human and rat multi-layer datasets consisting of phosphoproteomics,
transcriptomics and cytokine level measurements. To ensure that the generated
datasets were comparable and that the proof of concept predictions across species
was valid, experiments with well-controlled conditions were designed and conducted
using an in vitro system. This chemical testing strategy is aligned with the effort to

‘Replace, Reduce, Refine’ animal experiments (the ‘3R’ approach)
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(http://incp.jrc.ec.europa.eu/our_activities/alt-animal-testing-safety-assessment-
chemicals/alternative-testing-strategies-progress-report-2009.-replacing-reducing-
and-refining-use-of-animals-in-research) and to use more appropriate cell-based
assays that have the potential to provide more relevant data on the effects of short-
and long-term exposure to toxicants. Primary normal human bronchial epithelial cells
(NHBE) and primary normal rat bronchial epithelial cells (NRBE) were exposed in
parallel to various types of stimuli, which were selected ensuring a broad perturbation
spectrum of the cellular system, under identical experimental conditions (duration of
exposure, concentration of stimuli and cell culture parameters).

The challenge aimed to investigate whether the phosphorylation signals could be
inferred from gene expression data within species (reverse engineering) and the
translatability of phosphorylation signals across species, and also to better
understand the level at which translation across species is more robust (e.g.,
individual molecules, predefined gene sets representative of canonical pathways or
higher-order processes). These questions have been articulated around four sub-
challenges proposed to the scientific community
(https://www.sbvimprover.com/challenge-2/challenge-2-challenge). The second
SBV IMPROVER symposium was held in Greece at the end of October 2013 to
announce the results of the Species Translation Challenge and to discuss the topic
extensively with all participants (http://www.bio-itworld.com/2013/11/8/sometimes-
you-can-trust-rat.ntml; http://www.genomeweb.com/informatics/improver-species-
translation-challenge-results-released; http://www.americanlaboratory.com/913-
Technical-Articles/149618-Results-are-in-for-the-Second-sbv-IMPROVER-
Challenge-on-Species-Translation/).

The present manuscript describes the experimental design, optimization steps and
data quality checks necessary to generate a multi-layer systems biology data
compendium suitable for computational crowd-sourcing challenges such as the
Species Translation Challenge. The experimental settings and protocols as well as
the generation, processing and quality control analysis of the raw data are detailed.
The raw data (168 and 164 CEL files for human and rat respectively) and processed
data (e.g., normalized gene expression data) are freely available in public repositories

such as ArrayExpress for transcriptomics data (Data Citation 1: ArrayExpress E-
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MTAB-2091). Human and rat proteomics data are deposited in the figshare public
repository (Supplementary Table 1 at DOI: 10.1038/sdata.2014.9) (Data Citation 2:
Figshare http://dx.doi.org/10.6084/m9.figshare.960097).

The unique multi-omics dataset presented in this manuscript is of great value for the
computational community to develop new modelling capabilities to address the
important topic of species translatability at different molecular levels of the human
and rat bronchial epithelial cellular system. A better understanding of the range of
applicability of the translation concept will impact the predictability of signaling
responses, mode of action and efficacy of drugs in the field of systems pharmacology
as well as increase the confidence in the estimation of human risk from rodent data
in the context of toxicological risk assessment. It provides a unique translational
compendium with applicability in systems biology and toxicology, fully aligned with

the Tox21 initiatives'®.

Methods

Cell culture

NHBE cells were purchased from Lonza (Catalog number CC-2540, Lonza Inc.,
Switzerland). These cells, obtained from different Caucasian, disease-free and non-
smoker donors, were isolated from airway (tracheal/bronchial) epithelial tissue
located above the bifurcation of the lungs. NRBE cells were purchased from CHI
Scientific Inc. (Catalog number 4-61391, Maynard, Maryland, USA) and isolated from
pooled tracheobronchial tissue of adult inbred AGA rats. The stocks of NHBE and
NRBE cells were stored in liquid nitrogen with 10% (v/v) dimethylsulfoxyde (DMSO).
Vials of stock cells were rapidly thawed and diluted in 20ml of bronchial epithelial cell
growth medium with supplements (Lonza, BulletKit CC-3170). Both cell types were
seeded in flasks (T75) coated with rat tail collagen type | from BD (catalog number:
354236) and grown in the same growth medium with supplements at 37.0+1°C in a
humidified incubator with 5.0+0.5% CQO2 in air. After 24h, the medium was changed
and cells were regularly checked during proliferation using a microscope. Once
reaching confluence, cells were split into subcultures. Briefly, cells were washed with
HEPES Buffered Saline Solution, then trypsinized with Trypsin/EDTA that was
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neutralized using a Trypsin Neutralizing Solution (TNS) (The 3 solutions are included
in Clonetics™ ReagentPack™ from Lonza; catalog number CC-5034). Cells were
expanded for 10 days (including 1 split) to reach the final number needed for
screening or main experiments. Cells were seeded into pre-coated rat tail collagen
type | 96-well plates (BD BioCoat™, catalog number: 356649) testing different cell
densities ranging from 2,500 to 50,000 cells per well (in 100pl). The range of optimal
seeding densities was determined by microscopic inspection to be 25,000-35,000
cells/well (80-90% confluence). However, optimal yield of RNA extraction used for
transcriptomics analysis was obtained with 50,000 cells/well corresponding to 100%
confluency. For the screening of the main experiment, cells were re-suspended in
bronchial epithelial cell growth medium with supplements and seeded at a cell density
of 50,000 cells/well in pre-coated rat tail collagen type | 96-well plates (BD BioCoat™,
catalog number: 356649). After 24h, NHBE and NRBE were treated in parallel with

selected stimuli or DME.

Systems biology data generation

Due to the high number of stimuli and experimental conditions described above, the
main phase was conducted in two experiments (40 stimuli used for the experiment 1
and 12 stimuli for the experiment 2) to generate all samples required to produce the

entire systems biology dataset.

Measurements of phosphoproteomics and cytokines using xXMAP beads

For phosphoproteomics measurements, NRBE and NHBE cell cultures were removed
from the incubator and placed on ice. The cells were washed with 100pl of ice-cold
phosphate-buffered saline (PBS) and cells were lysed using 60ul of Tris-HCL
supplemented with inhibitors of proteases and phosphatases in a 96-well plate on ice
for 20min. The plates were incubated overnight at —20°C and then rapidly thawed in
a 37°C water bath for 2min, followed by sonication. Cell debris was removed
following a centrifugation at 2700xg for 20min at 4°C. For cytokines measurements,
cell supernatants were collected 24h post-treatment. For the bead-based enzyme-
linked immunosorbent assay (ELISA) procedure, 50ul of non-diluted cell lysates or

supernatants were incubated with the xMAP beads (4000 beads/well for each protein)
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for 1.5h to capture target proteins with specific antibodies coupled to the beads. The
beads were washed twice with 100pul of PBS. The beads were then incubated for 1.5h
with 20ul of detection antibodies targeting different epitopes than the bead-coupled
capture antibodies (average concentration, 1ug/ml) followed by washing steps.
Subsequently, 50pul of streptavidin-phycoerythrin (PE) (at a final concentration of
5ug/pl) were added and the mixture was incubated for 20min. The beads were then

washed and re-suspended in 130pul of PBS-bovine serum albumin (BSA) assay buffer.

Transcriptomics

Total RNA was isolated from NHBE and NRBE cells using the QIAGEN RNeasy 96 Kit

(Catalog number 74181). For each sample, isolated RNA was quantified using the
Nanodrop 1000 Spectrophotometer (Thermo Scientific) and quality checked using
the Agilent 2100 Bioanalyzer. Twenty nanograms of total RNA were reverse-
transcribed into cDNA and amplified using the NuGEN™ Ovation™ RNA
Amplification System V2 (Catalog humber 3100-A01). The cDNA was then purified
using magnetic beads (Agencourt RNAClean XP, Catalog number A63987 from
Beckman Coulter GmbH, Krefeld, Germany) to remove unincorporated nucleotide
triphosphates, salts, enzymes and inorganic phosphates. Purified cDNA was
quantified, quality checked and fragmented (at least 3.75ug of cDNA is needed) with
a combined chemical and enzymatic reaction, and finally labeled using enzymatic
attachment of nucleotides coupled to biotin. Fifty microliters of fragmented and
labeled cDNA were added to 170ul of Master Mix Hybridization Cocktail Assembly
(Affymetrix GeneChip® Hybridization, Wash, and Stain Kit; Catalog number 900720).
After denaturation reaction (2min at 99°C and 5min at 45°C) followed by
centrifugation at Vmax for 1min, 200ul of the cDNA cocktail were hybridized on
Affymetrix® HG-U133 Plus2 or Rat 230 2.0 GeneChips. The arrays were incubated in
the GeneChip® Hybridization Oven 645 (Catalog number 00-0331) for 18+2h at 45°C
with a rotation speed of 60rpm. After the hybridization step, the arrays were washed
and stained on a Fluidics Station FS450 (Catalog number 00-0335) using Affymetrix®
GeneChip Command Console™ Software (AGCC software version 3.2) with protocol
FS450_0004. Finally, the arrays were scanned using the GeneChip® Scanner 3000
7G (Catalog number 00-0210).
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Raw images from the scanner were saved as DAT files. Using the AGCC Viewer
software application, each image was checked for artifacts, overall intensity
distribution, checkerboards at the corners, a central cross to ensure adequate grid
alignment and readability of the array name. The AGCC Viewer software automatically
gridded the DAT file image and extracted probe cell intensities into a CEL file. The
CEL files were further processed (MAS5.0) with Affymetrix® Expression Console™
software (version Build 1.3.1.187) for a first quality check of the data. Materials and
reagent kits were purchased from Affymetrix, Inc. (Santa Clara, CA, USA), NuGen
(San Carlos, CA, USA) and QIAGEN GmbH (Hilden, Germany).

Due to the high number of samples collected for experiment 1, it was not possible to
process all samples at once. Therefore, mMRNA samples were processed in three
batches (samples were randomized within each batch). Each batch contained human
and rat mRNAs (in triplicate) for a subset of randomly selected stimuli among those
tested (Figure P2-2). The same DME control mRNA samples (four replicates) were
re-hybridized for each batch. For experiment 2, all mMRNA samples were processed
together at a single point in time. This included the DME control mRNA samples (four

replicates) obtained for this second experiment (Figure P2-2).

Data Records

Phosphoproteomics and cytokine data

Raw data processing, normalization and active signals analysis

Phosphoproteomics and cytokine release data were measured using xMAP
technology on a Luminex FlexMAP3D® system and the software used was the
Luminex XPONENT® for FLEXMAP3D®, Version 4.2. Custom software was
developed to analyse the raw data following the standard LXB format data extraction
(http://cran.r-project.org/web/packages/Ixb/README.html). Following data
acquisition, the raw measurements corresponding to the fluorescence intensity of
each bead for each individual analyte (protein), were exported. At least 100 events
(counts) were measured for each analyte. The median statistic (median fluorescence

intensity, MFI) less sensitive to outliers was chosen to summarize data as a
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representative value of the protein measurements upon Luminex recommendations.
To remove the effects of non-specific binding of proteins to beads in lysates, negative
control ‘naked’ beads (BSA-coated beads devoid of antibody that corresponds to
Control B) were prepared using standard coupling procedures. Phycoerythrin-coated
beads were also prepared and used as positive control (Control A). Both positive and
negative control beads were mixed with the other beads in the multiplex assay. The
signal intensities of the negative control beads were found to positively correlate with
the signal intensities of the phosphoproteins, which were corrected using a robust

linear regression on all replicates™"

. The dependent variable was the signal intensity
of a phosphoprotein across stimuli and DME controls (including replicates), and the
independent variable was the signal intensity of the ‘naked’ bead (robust Tukey
biweight regressions were calculated with data from experiments 1 and 2,
independently). The final normalized signal intensity values for phosphoproteins were
taken as the ratio between the residuals and the Root Mean Square Error (RMSE) that
resulted from the regression fit. The cytokine data corresponded to the median of the
distribution of bead signal intensities measured for each protein in all supernatant
samples. In the context of the supernatant, the chance of non-specific binding was
reduced when compared to the cell lysate context. Therefore, it was not necessary,
to use ‘naked’ beads (control B) to control for this effect. The median signal intensity
values were normalized by calculating z-scores for each cytokine across all stimuli
including DME controls. This score was independently calculated for experiment 1
and 2 by taking the ratio of difference between the signal and the mean as well as
and the standard deviation calculated for one cytokine across stimuli. For
phosphoproteins and cytokines, normalized values beyond 3 standard deviations

were considered as active signals.

Quality control analysis

Both individual signals and clusters of signals were examined to achieve the highest
quality of the datasets. For each analyte, the final reported signal value was the
median of the distribution of individual bead counts because it is less sensitive to
outliers and distribution skewness. The minimum number of beads that should be

counted for each analyte was also an important parameter to ensure robustness and
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reliability of the reported median. The effect of the minimum number of beads
required to detect a robust signal was investigated by bootstrapping analysis. The
analysis showed that the bead count could greatly affect the reported median,
particularly for those with low protein concentrations. Therefore, to further increase
robustness, the minimum bead count was increased from 25-50 beads to 100 beads.
Furthermore, the distribution of raw (bead signal) measurements for each analyte was
examined to evaluate skewness and bi-modality. If the distribution of a bead signal
was significantly distorted, the analyte was excluded from the dataset. Finally, to
evaluate the precision as well as the robustness of the dataset, each measurement
was performed in triplicate while the measurement of the control state (basal level—
no treatment) that is crucial in determining the fold increase of the signal from the
basal level, was performed in six-plicate. The variability of the replicates of each
signal (expressed as median coefficient of variation (CV) across all conditions) served
as an estimate of the measurement precision (Supplementary Figure 1 at DOI:
10.1038/sdata.2014.9). RPS6 was excluded for further analysis due to high median
CV (Supplementary Figure 1 at DOI: 10.1038/sdata.2014.9).

Data storage
The data are reported as the median of bead signal intensities for each

phosphoprotein or cytokine of the panel that have been measured in each sample.
For each stimulus, at least 3 sample replicates have been measured for the main
experimental phase (Supplementary Table 1 at DOI: 10.1038/sdata.2014.9). The DME
control included 5 to 6 sample replicates depending on the experiment. For the
screening phase, a single sample was measured for each phosphoprotein and
stimulus (Supplementary Table 2 at DOI: 10.1038/sdata.2014.9). Supplementary
Table 1 at DOI: 10.1038/sdata.2014.9 (Results of proteomics data including
phosphoproteomics and cytokine level measurements for NHBE and NRBE cells
exposed to 52 stimuli) and 2 (Results of phosphoprotein measurements in NHBE and
NRBE using antibody-bead based assays for the experimental screening of 270
stimuli) have been deposited in the Figshare public repository (Data Citation 2:
Figshare http://dx.doi.org/10.6084/m9.figshare.960097).
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Gene expression data

Raw data processing and normalization

For each species, all CEL files were processed and normalized together using GC
robust multiarray averaging (GCRMA)™>'®, The data were processed using the
GCRMA R package (v2.32) from Bioconductor.

Quality control analysis and differential gene expression analysis

The quality of the chip was assessed at the probe- and probeset-levels by generating
different diagnostic plots (chip images, probe-signal intensity distribution, pseudo-
images, NUSE (Normalized Unscaled Standard Error) and RLE (Relative Log
Expression) plots, correlation matrix) (Supplementary Figure 2 at DOI:
10.1038/sdata.2014.9). Chips exceeding a NUSE median value of 1.05 were
considered to be outliers and excluded. Remaining CEL files were re-normalized
together per species using GCRMA. The Principal Component Analysis (PCA) of
normalized expression data revealed batch effects in both the human and rat gene
expression datasets, which were expected, because the samples were processed as
distinct batches (Supplementary Figure 2i and j at DOI: 10.1038/sdata.2014.9). No
batch correction was done. Instead, batches were treated separately in all analyses.
This was made possible by the presence of corresponding ‘DME control’ samples (at
least four replicates) within each batch. Differentially expressed genes were identified
by comparing normalized data from DME control with data from each stimulus using
limma R-package from Bioconductor. Provided as Supplementary Figure 3 and 4 at
DOI: 10.1038/sdata.2014.9, volcano plots indicate the magnitude and the confidence
of gene expression regulation for each stimulus (relative to DME control) in human

and rat cells, respectively.

Data storage
The raw (CEL. files) and processed (matrices of human and rat gene expression

normalized separately; values correspond to log2 expression) gene expression data
(Data Citation 1: ArrayExpress E-MTAB-2091) have been submitted to ArrayExpress

database (http://www.ebi.ac.uk/arrayexpress/) and are available with the accession
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number E-MTAB-2091. Metadata were stored in a MAGE-TAB file (SDRF and IDF

tabs) supportive of MIAME format for microarray data'.

Technical Validation

The large multi-omics dataset was generated from in vitro cultures to feasibly test a
large number of stimuli that were needed to perturb various biological pathways
under controlled conditions in both human and rat systems.

Immortalized cell lines have been used in the scientific community for decades in
different cellular assays due to their commercial availability at very affordable prices
and the ease to culture them. While immortalized cell lines often originate from
primary cells/tissues, they have gone through significant mutations, leading to
genotypic and phenotypic drifting and eventually to the loss of tissue specific
function. In a systems biology perspective, genetic and phenotypic modifications of
cell lines have an impact on genome-wide expression profiles and probably also on
other large-scale omics approaches and thus could bias data aimed to understand
how cellular responses may translate from one species to another*"*°. For example,
it has been shown that the expression profile of primary airway epithelial cells and
immortalized cells were different since their expression profiles did not group
together using an unsupervised hierarchical clustering approach'®. Therefore,
despite the wide use of immortalized cells, it was decided to work with primary cells
that constitute more suitable in vitro models to mimic in vivo behaviour.

Bronchial epithelial cells were selected as the cell system used for our experiments.
The choice for these primary cell types was driven by the fact that these primary cells
are at the critical interface between the body and the external environment and were
commercially available in both species.

The detailed experimental workflow is described in Figure P2-3a starting from the
optimization phase to the execution of the main experiment that generated the final
datasets for the challenge. The experimental workflow involves various steps,
including (i) optimization of the cell culture and experimental conditions; (ii) validation
of protein assays (Figure P2-3b); (iii) identification, screening and selection of stimuli;

and (iv) generation, processing and quality control of omics data.
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[-Optimization experiments

Optimization of the cell culture and experimental conditions

Adaptation and optimization of the cell culture conditions originally provided by the
vendor for both NHBE and NRBE cells were conducted to avoid spurious differences
not associated with the origin of the cells as described in detail in the ‘Methods’

section.

Bead assay optimization for phosphoprotein and cytokine measurements

Using Luminex’s xXMAP technology (Luminex Corp, Austin, TX, USA) and ProtATonce
multiplex assay optimization (ProtATonce, Athens, Greece), sandwich antibody
multiplex assays were employed for the acquisition of both phosphoproteomics and
cytokine data. Distinct sets of colour-coded beads with a unique colour-ID formed
the solid support for antibody coupling to enable the binding of specific sample
proteins on the beads (Supplementary Table 3 at DOI: 10.1038/sdata.2014.9). A
biotinylated detection antibody and a streptavidin-reporter dye (phycoerythrin)
completed the sandwich enzyme-linked immunosorbent assay (ELISA). The Luminex
analyser works as a fluorescence-activated-cell-sorting instrument that
simultaneously measures the intensity of the reporter dye and identifies the colour-ID
of the bead. The xMAP technology enables the measurement of up to 500 different
analytes in a single sample but antibody cross-reactivity limits the simultaneous
measurements of analytes to a few dozen. Because the quality of the data is
dependent on the quality of antibodies with minimum cross-reactivity (high specificity
and minimal background noise), a large number of antibodies from several vendors
was purchased and first validated for the xMAP technology according to a six-step
process: 1) antibodies were screened to identify optimal antibody pairs, 2) antibodies
were captured on different colour-coded magnetic microspheres and the capturing
efficiency was confirmed, 3) detection antibodies were biotinylated, and successful
biotinylation was confirmed, 4) the concentrations of the capture and detection

antibodies were optimized, 5) multiplexability issues caused by the cross-reactivity
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of antibodies were identified, 6) the assays were optimized to specific sample
requirements (Figure P2-3b).

The quality of the antibodies was validated by performing cross-reactivity (assess the
specificity of an antibody) experiments in which single purified recombinant proteins
were measured using the whole panel of beads (http://www.protatonce.com/#!assay-
development/czoq). The antibody selection was based on an optimization algorithm
that selected the maximum number of best-performing antibodies and retained the
largest possible multiplexability without compromising the signal-to-noise ratio (SNR)
(calculated as the ratio between the signal measured for a single purified recombinant
protein and the average of signals measured in wells that do not contain the
recombinant protein corresponding to background signal). Every antibody was tested
against every possible antigen/antibody substrate to create a large matrix
representing the specificity of each antibody to each substrate. An optimization
problem was formulated to identify antibody pairs with the lowest possible off-target
specificity. So if xie {0, 1} is the decision whether to include antibody i in the final
assay and Ci,j is the specificity of antibody i for substrate j, then the problem to solve
is: minx}i,jxixjCi,j. The problem was bound to yield a multiplex assay of size N (Y ixi=N)
and iteratively solve the problem for every N. Finally, the largest multiplex assay that
yielded an acceptable background signaling level was selected. The antibodies
selected were then tested for their sensitivity to their target protein and those that
gave large signal to noise ratios were selected for the final experiments.

This procedure was only possible for phosphoproteomics experiments for which
recombinant phosphorylated proteins were available. An alternative solution was to
use cell lysates generated from cells exposed to prototypical stimuli known to
modulate the phosphorylation of measured proteins. Signal-to-noise ratio (SNR) was
used as an assay quality indicator. SNR values, which ranged from 5 to 1700 (no unit),
strongly depend on the affinity and concentration of capture and detection
antibodies. Multiplexed assays were optimized for the bronchial epithelial cell lysates
and supernatants. When low signals were obtained, the concentration of detection
antibody was increased to compensate for the low signals. In the absence of signal
for all treatments and conditions, the assay was removed. In total, 41 different

multiplexed assays for phosphoproteomics were evaluated and 19 met the criteria
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described above and were further used in the main experiment (Table P2-1). Eighty
cytokine assays were evaluated out of which 22 cytokine assays were selected for

the main experiment (Table P2-2).

Phosphoproteomics and cytokine assay variability assessment for NHBE

cells

Potential sources of variability when measuring both phosphoproteins and cytokines
were investigated including the inter-donor variability (for human derived primary

cells) as well as different factors contributing to the technical variability''.

Inter-donor variability

Inter-donor variability was investigated in NHBE cells from four different donors under
the same conditions. These cells were stimulated with human TNF-alpha (100ng/ml)
for 20min to measure phosphoprotein HSP27 levels or Polyl:C (10ug/ml) and for 4h
to measure the secretion of CXCL10 protein (n=8 wells of treated cells per donor and
n=4 wells of untreated cells per donor). The experiment demonstrated that the donor-
to-donor variability was low. Coefficients of variation equal to 11 and 24% for HSP27
and CXCL10, respectively, were calculated together with the mean and standard
deviation of the signal values measured in lysates of NHBE cells from the four donors.
The main source of variability originated from one particular donor with systematic
lower signals for HSP27 and CXCL10. NHBE cells from two donors, which gave
similar results for HSP27 and CXCL10, were pooled 1+1 to obtain sufficient cells for

the main phase.

Technical variability

As variability may arise from pipetting errors during cell plating, cell lysis or various
ELISA technique steps, for each donor, samples from eight different wells were
processed identically in parallel. The measurement of the phosphorylated HSP27 and
CXCL10 level in these samples were used to quantify well-to-well variability from the
same donor. The coefficients of variation for HSP27 measurement after TNF-alpha

treatment ranged from 6 to 33%. For CXCL10 measurement, the coefficients of
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variation ranged from 7 to 14%.

To assess the variability of the ELISA technique, HSP27 was measured in 12 samples
derived from a mixed pool of NHBE cell lysates that were prepared from cells treated
with human TNF-alpha (100ng/ml) for 20min. A coefficient of variation equal to 7%
was observed.

Reading the same well several times lowered the fluorescence intensity due to a
photo-bleaching effect which prevented to determine the instrument variability.
Overall, the technical variability resulting from sample handling and the methods used
to determine phosphoprotein and cytokine levels was lower than biological variability,

ensuring robustness of data.

Optimization of the experimental design for the phosphoproteomics

measurements

To capture the highest number of protein phosphorylation events linked to pathways
perturbed upon stimulus exposure, it was essential to determine the optimal time
points to harvest both cell types for the main experimental phase. To select these
time points, NHBE and NRBE cells were cultured in parallel under the optimized
conditions as previously determined followed by exposure to seven prototypical
stimuli: TNF-alpha, TGF-alpha, insulin, IL-6, IL1-alpha, IL1-beta, IFN-gamma and a
vehicle control (Dulbecco’s Modified Eagle’s Medium; DME). The concentration of
each stimulus was chose based on literature review as described in Step 2 of the
study workflow (Figure P2-3a). Five different time points were selected (0, 5, 15, 20
and 25min) to measure 41 different phosphoproteins that were plotted using a
modified version of DataRail'® (Figure P2-4). For each of the time point, the fold
increase of each signal was calculated as compared to the basal level. The two time
points (5 and 25min) with the maximum number of activated signals and the largest
fold increase for both cell types were selected as the optimal time points for
phosphoproteomics measurements in the main experiment. The selection of 5 and

25min was also consistent with earlier studies done with hepatocytes'*.

[I-Stimulus selection process
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The goal of the Species Translation challenge was to understand and provide insight
on how far the translation concept can be applied between rodents and humans at
various layers of biological molecules measured in vitro. This implied to activate or
repress a large range of pathways/biological functions to ensure broad perturbation
coverage of the biological system. Therefore, Figure P2-4 illustrates our strategy in
selecting various stimuli to perturb as many pathways as possible and how an initial
experiment was performed to screen various phosphorylated proteins following
stimuli exposure. This strategy provided a final selection of stimuli active in human,

rat or both species to be used for the main experiment.

Stimulus selection by in silico analysis and literature review

The following criteria were considered for the initial selection of potential candidate
stimuli, including 1) stimuli that modulate the activity of transcription
factors/regulators; 2) classical stimuli known to target specific pathways; and 3)
stimuli with heterogeneous downstream effects. Computational and manual curation

approaches were undertaken to achieve an appropriate selection (Figure P2-5).

Stimuli that modulate the activity of transcription factors/requlators

Transcription factors/regulators directly regulate the transcription of target genes.
Querying of databases containing biological knowledge, such as the Ingenuity
database (Ingenuity® Systems, www.ingenuity.com), enabled the identification of
compounds that could modulate the activity of transcription factors/regulators
expressed in the tissues/cells (lung, lung cells, lung cell lines, lung tissue, small airway
epithelial cells, airway epithelium and airway epithelial cells) and organisms of interest
(human, mouse and rat). Overall, 710 compounds were identified that could modulate
the activity of 182 transcription factors/regulators. Compounds that modulate the
activity of many different transcription regulators (e.g., beta-estradiol) were prioritized

and retained in the initial stimulus list.

Stimuli known to target specific pathways

Prototypical stimuli that have been extensively used as proxy tools to perturb
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(activate or inhibit) specific pathways were identified from the literature and selected
(e.g., rapamycin, an inhibitor of the mTor pathway; lipopolysaccharide, an activator
of the NFkB signaling pathway; and tunicamycin, an inducer of the unfolded protein
response). Some cytokines and growth factors were also selected because they

target very specific pathways.

Stimuli with heterogeneous downstream effects

Analysis of the connectivity map (CMAP) large-scale expression compendium
enabled the selection of compounds that induce heterogeneous downstream

effects'

. The CMAP dataset is a collection of genome-wide gene expression profiles
that represent the transcriptional responses of five different human cell lines (HL60,
MCF7, PC3, SKMEL5 and ssMCF7) to 1,309 different compounds (small active
molecules) or control vehicles following 6h of exposure (12h for a specific subset of
compounds)'. Interestingly, Lorio and colleagues have constructed a ‘drug network’
partitioned into communities using the CMAP dataset'*. Drugs within a community
were clustered together on the basis of similar regulation patterns of gene expression,
suggesting an analogous mode of actions. This ‘drug network’ was leveraged to
identify drugs/compounds with heterogeneous downstream effects by computing a
between- versus within-community (B/W) average distance ratio. Compounds with
the highest ratios were prioritized during the screening of the stimuli. Including the
review of the scientific literature, a total set of 270 stimuli were selected for in vitro

testing as described below.

In vitro stimulus screening

In vitro screening was performed to identify a subset of stimuli that could elicit
responses in NHBE and NRBE cells, which then would be used for the main
experiment (Figure P2-5). This in vitro screening was performed by measuring the
phosphorylation levels of proteins from the lysates of NHBE and NRBE cells that were
exposed to 270 compounds for 5min. For each of the 270 compounds, the
concentration was manually curated from the literature or through a semi-automated

literature-mining approach (Supplementary Table 2 at DOI: 10.1038/sdata.2014.9
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deposited in the Figshare public repository). Briefly, the Google search engine was
used to query the names and common aliases of the 270 compounds found in the
HUGO database (for cytokines and growth factors) followed by the concentration
units (i.e., ‘mg/ml’, ‘ng/ml’, ‘mM’, ‘uM’, ‘nM’). The concentrations were automatically
extracted from the top 100 results and plotted on a histogram. A rounded value 20%

above the median of the histogram was chosen as the final concentration.

Final stimulus selection for the main experiment

Out of 270 compounds that were originally used in the screening of
phosphoproteomics, the most potent compounds were selected for the main
experiment. These compounds, including activators/inhibitors, were chosen based
on (i) the number of phosphorylation signals that were affected, (i) the strength of
their responses (maximum fold increase of the activated signals), (iii) the diversity of
the affected pathways, and (iv) and downstream gene expression changes (see
paragraph ‘Stimuli with heterogeneous downstream effect’) (Supplementary Table 2
at DOI: 10.1038/sdata.2014.9 deposited in the Figshare public repository). With
respect to these criteria for the final selection of stimuli, the following analysis was
performed. The screening phase included one biological replicate for each
stimulus/protein/species, therefore, a statistical analysis could not be performed and
an alternative approach was followed. For each protein, a fold change of the signal
was calculated comparing the phosphorylation signals measured for compound-
treated cells and for unstimulated cells (control). Subsequently, a number of
thresholds ranging from 1.25 to 2.0-fold (i.e. 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.60,
1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95 and 2.0-fold) were used to binarize signals as
active or non-active. For example, a threshold of 2.0 implies that an increase of 2-
fold or higher was required for the signal to be considered activated. For each
threshold, the number of signals considered as up- and down-regulated was
calculated for each stimulus across all phosphoproteins. This number was used as a
score to sort the stimuli from the most to the less potent. The most potent stimuli
were prioritized also with respect to the other criteria (mentioned above) for the final

selection of stimuli (Supplementary Table 4 at DOI: 10.1038/sdata.2014.9).
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[l1-Main experiment

The cell culture and experimental conditions established for NHBE and NRBE cells
during the optimization phase were applied in the main experiment. Both NHBE and
NRBE cells were seeded in 96-well plates on day one and incubated overnight at
37°C in 5% CO2. The cells were starved in bronchial epithelial cell basal medium
(Lonza) for 4h and then exposed, in parallel, to 52 different stimuli or to a control
medium (DME), which is the standard culture medium for these cells. The cells were
collected and lysed at different time points (5 and 25min for phosphoproteins
measurement, 6h for gene expression measurement) and supernatants were
collected at 24h for cytokine release measurement in the supernatants. The cells were
exposed to each stimulus in triplicate, or in 5-plicates and 6-plicates for the DME
controls. To avoid spatial confounding effects, the stimuli and DME controls were
randomly distributed throughout the 96-well plate.

Datasets for the main experiment were generated from two sets of independent
experiments: 75% of the stimuli (40 compounds) were tested first; whereas, the
remaining 25% (12 compounds) were tested in a second experiment. For each
experiment DME controls were included. The final STC compendium contains a

collection of phosphoproteomics, transcriptomics, and cytokine data.

Co-authored Research: A crowd-sourcing approach for the

construction of species-specific cell signaling networks
Please visit DOI of paper [P3] for more information on this chapter.
Abstract

Motivation: Animal models are important tools in drug discovery and for
understanding human biology in general. However, many drugs that initially show

promising results in rodents, fail in later stages of clinical trials. Understanding the
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commonalities and differences between human and rat cell signaling networks can
lead to better experimental designs, improved allocation of resources and ultimately
better drugs.

Results: The SBV IMPROVER Species-Specific Network Inference challenge was
designed to use the power of the crowds to build two species-specific cell signaling
networks given phosphoproteomics, transcriptomics and cytokine data generated
from NHBE and NRBE cells exposed to various stimuli. A common literature-inspired
reference network with 220 nodes and 501 edges was also provided as prior
knowledge from which challenge participants could add or remove edges but not
nodes. Such a large network inference challenge not based on synthetic simulations
but on real data presented unique difficulties in scoring and interpreting the results.
Because any prior knowledge about the networks was already provided to the
participants for reference, novel ways for scoring and aggregating the results were
developed. Two human and rat consensus networks were obtained by combining all
the inferred networks. Further analysis showed that major signaling pathways were
conserved between the two species with only isolated components diverging, as in
the case of ribosomal S6 kinase RPS6KA1. Overall, the consensus between inferred
edges was relatively high with the exception of the downstream targets of

transcription factors, which seemed more difficult to predict.

Introduction

Unveiling the inner workings of cell signaling networks is one of the long-standing
challenges of systems biology. Small-scale versions of these networks have been
built edge by edge using classic laboratory techniques such as immunoprecipitation,
which has resulted in a large body of literature describing various gene and protein
interactions. Although successful in their initial scope, these methods do not scale up
to the genome level and are difficult to combine into a larger network, because of the
different contexts in which they were originally reported. Organism, cell type,
experiment timing and other conditions are crucial for determining whether an edge
exists in a signaling network.

The advent of large-scale assays that can simultaneously measure the activity of
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thousands of genes has circumvented these aforementioned issues by enabling
purely data-driven methods to infer large-scale networks. Various algorithms have
been developed, including models based on Bayesian networks', mutual
information’*, regression'’, neural networks'*, Boolean networks® and differential
equations'*®. Despite these advances, there is no clear best method. Each method
has strengths and limitations influenced by how the methodology addresses the fact
that network inference is inherently an underdetermined problem in the majority of
cases'™®"'. However, it has been observed that the aggregation of different network
inference methods generates high-quality robust results'®.

Efforts to catalog and compare network inference algorithms have occurred in the
form of data prediction competitions such as the ones organized by the Dialogue for
Reverse Engineering Assessments and Methods (DREAM) consortium'™?. DREAM
challenges participants to reconstruct cell signaling networks from gene expression
datasets. Predicted networks are then evaluated based on a subset of known
interactions, or the complete network in cases where the corresponding gene
expression data were generated in silico (i.e. simulated).

DREAM is part of a larger group of successful crowd-sourcing initiatives in systems
biology alongside CASP [critical assessment of protein structure prediction'®], CAFA

*4] CAPRI [critical assessment of

[critical assessment of function annotation
prediction of interactions™’], FlowCAP [critical assessment of automated flow
cytometry data analysis techniques'™®] and Foldit [predicting protein structure with a
multiplayer online game'’]. In the same spirit as these academic initiatives, sbv
IMPROVER is a crowd-sourcing-based methodology for the verification of research
in an industrial setting’®. In its second instalment, it challenges the research
community to solve four problems related to the translation of molecular biology
findings between rat and human model systems'®.

Here we present the analysis of the Species-Specific Network Inference challenge,
part of the sbv IMPROVER Species Translation set of challenges
(https://www.sbvimprover.com). For this challenge, participants were asked to infer
human- and rat-specific networks given phosphoprotein, gene expression and
cytokine data (Figure P3-1). The organizers also provided a common reference

network from which participants had to generate the two networks by adding and
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removing edges. The purpose of this challenge was to augment and refine the

reference map in a species-specific manner using data-driven approaches.

Methods

Evaluation of inferred networks

Most of the prior knowledge regarding the interactions between elements in the cell
signaling network was already incorporated in the reference map provided to the
challenge participants. Hence, this information could not have been used as a gold
standard against which to evaluate inferred networks. To circumvent this issue, we
proposed that the true ranking of the submissions be viewed as a prediction problem
in itself by combining different scoring strategies. Rank-based aggregation of
individual predictions has been shown to provide robust results on par with the best

performing methods in other data prediction challenges'®®

. Drawing from this
result, the predicted networks were evaluated using softer methods that did not
involve the use of a gold standard where the final ranks were derived by simply
averaging the ranks obtained using the different scoring strategies.

The first scoring method involved the use of a published network inference algorithm??
to generate a ‘silver standard’ network against which all submissions were evaluated.
This is mainly a pruning algorithm, hence only the subnetworks that intersected the
reference network were scored. The following metrics were considered for this
purpose: the z-score of the Jaccard similarity (JS), Matthews correlation coefficient
(MCC) and the difference between the true-positive rate and false-positive rate (TPR-
FPR)'. In addition, two versions of the silver standard were generated: one that was
trained on only the data available to the participants and one that also made use of
part of the dataset that was kept hidden from participants and used as the gold
standard in the other Species Translation challenges.

For another scoring method, the write-ups describing the methodology used for
making the predictions were scored based on the following criteria: rigor, defined as
the soundness of the proposed methodology based on valid statistics, arguments

and premises without gaps in a logical, well-defined sequence of procedural steps;
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originality, defined as novelty in concept when compared with existing methods and
typical approaches in the field; and practical implementation, defined as the ability to
instantiate the proposed methods with existing or clearly described novel algorithms
and commonly used computer architectures, the use of data sources commonly
available to the field and a reasonable execution time. Three independent evaluators
blindly assigned scores ranging from 1 (very poor) to 5 (very good) for each criterion,
and then the final score was obtained by adding these points and then averaging

among the evaluators.

The reference network

The reference network represents an ensemble of canonical pathways and was built
following a top-down multi-layer hierarchical architecture starting with the stimulus
layer through multiple signaling cascades to the transcription factor (TF) and secreted
cytokine layers (Supplementary Data at DOI: 10.1093/bioinformatics/btu659). Only
stimuli with known mode of action present in subset A (training dataset) were included
in the reference network.

The signaling cascade layer connected stimuli to latent (i.e. not measured) and
measured (phosphoproteins) nodes representative of a membrane-to-nucleus protein
signaling cascade (i.e., from stimuli to TF via kinase proteins). The identification and
prioritization of latent nodes and edges (connectivity between stimuli, latent nodes
and measured nodes) were conducted using various biological pathway databases

163

(e.g. KEGG, Biocarta) and the ensemble network published by™, embodying the
union of several online pathway databases. The network was traversed using a depth-
first search algorithm, computing its transitive closure and identifying paths. Latent
nodes that were not transitively connected to a stimulus or a measured node were
removed. Additional latent nodes were identified based on topological features of the
ensemble network. These highly connected nodes (counting the largest amount of
incoming and outgoing connections) with a minimum overlap between them were
identified using standard k-means clustering and integrated in the reference network.
For the TF layer, TFs corresponding to a subset of measured nodes and selected

latent nodes were connected to a subset of target genes. These genes were identified
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using the Transcriptional Regulatory Element Database'®*'®.

The cytokine layer was constructed by connecting target genes to corresponding
measured cytokines. The final step included a manual verification and curation of the
reference network to prune and refine it using literature reviews and various pathway

databases (e.g. Biocarta, KEGG).

The silver standard network

The construction of the silver standard networks was based on a method developed
by Mitsos et al. The outline of this approach is to use Boolean logic to model signal
transduction and integer linear programming (ILP) to fit the model to the data. In
particular, Boolean logic was used to represent signal transduction in a prior
knowledge network (i.e. reference network) to create a model capable of predicting
the state of a node in a given experiment. Because Boolean models are limited to
qualitative predictions, discretization of the experimental data was necessary. The
discretization of the datasets was done by use of double threshold functions. In
particular, the thresholds were set at +2-fold changes for the gene expression data,
+3 standard residuals for the phosphoproteomics data and +2 standard residuals for
the cytokine data. The initial choice of thresholds was done in accordance with the
processing methods used for the different data types as described in'®. In addition,
a sensitivity analysis was performed to ensure that the final network would be robust
on slight variations of the thresholds.

ILP was further used to combine the Boolean model with the experimental data by
formulating an optimization problem that sought to minimize the mismatches
between the predictions derived from the final network and the data at hand. The
optimization procedure was performed by removing reactions from the reference
network that were contradicted by the data and thus created a smaller data-specific
network. More details about the silver standard model are available in the

Supplementary Data at DOI: 10.1093/bioinformatics/btu659.

The consensus network
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The predictions from each of the M challenge participants can be organized as a
binary vector xj=(x1j,x2j,...,xNj) where j=1...M and N is the total number of possible
edges, while the unknown gold standard network is represented as the vector
y=(y1,y2,...,yN). Each element xij or yi can either be 1 (edge exists) or 0 (edge does
not exist).

Let PT be the probability that a method predicts the existence of an edge given that
the edge exists, and PF the probability of predicting the existence of an edge given
that the edge does not exist. If Xiand Y are random variables with realizations
xj and y, respectively, then XilY=1~BernoulliPT) and XilY= 0 ~Bernoulli
(PF). Assuming that the predictions are independent given the true edge label, then
the conditional distributions of the sum X=X1+X2+...+4XM are modeled by the
Binomial distributions:

Pr(X=k|Y=1)=(Mk)PKT(1-PT)M-k (1)

Pr(X=k|Y=0)=(Mk)PkF(1-PF)M-k (2)

where K is effectively the number of ‘votes’ received by an edge. Therefore, the
probability density function that k teams picked the same edge is as follows:
Pr(X=k)=ENPr(X=k|Y=1)+N-ENPr(X=k|Y=0) (3)

where E is the number of true edges.

The Equations (1) and (2) assume the performance of predictions is constant,
modeled by parameters PT and PF; however, this is not true in practice. The variation
in prediction performance between different algorithms can be modeled by imposing
PT and PF to follow Beta distributions, normally used to model random variables
limited to intervals of finite length. Consequently, the conditional probability functions
in Equations (1) and (2) become the Beta-Binomial compound distributions:
Pr(X=k|Y=1) = (Mk)B(k+a1, M-k+b1)B(a1,b1) (4)

Pr(X=k|Y=0) = (Mk)B(k+a2, M-k+b2)B(a2,b2) (5)

where PT follows the beta distribution B (a1, b1) with shape parameters a1 and b1,
and PF follows the beta distribution B(a2,b2) with shape parameters a2 and b2.

The model described by the Equations (3), (4) and (5) can be fitted to the distribution
of the data comprising the number of times each edge was present among the
different proposed networks. An optimal consensus network can be reconstructed

using all the predictions by finding the minimum number of votes per edge that
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satisfies the condition Pr(Y = 1|X = k) > Pr(Y = 0|X = k). This threshold can be easily
found by numerically solving the following equation:
r(Y=1|X=k)Pr(Y=0|X=k)=Pr(X=k|Y=1)Pr(Y=1)Pr(X=k|Y=0)Pr(Y=0)=1 (6)

where Pr(Y = 1) and Pr(Y = 0) are prior probabilities related to the true number of
edges in the network:

Pr(Y=1) = EN (7)

Pr(Y=0) = 1-EN (8)

Results

The described methodology for building the reference network created a directed
graph with 220 nodes and 501 edges organized into cascading layers where the
edges are oriented from the top to the bottom layers. At the top is the stimulus layer
that contains a subset of the compounds used to generate the training data, followed
by receptor, adaptor, signaling, TF, target and cytokine layers (Supplementary Data
at DOI: 10.1093/bioinformatics/btu659). It is interesting to note that not all the TFs
are reachable from all the stimuli nodes. The addition of a top stimuli layer to an
otherwise generic network introduces the notion of context to pathways that are only
active under certain conditions.

By mapping the nodes from the reference network to the genes from the canonical
pathways listed in the Molecular Signature Database v3.1'®", we observe a diverse
representation of cellular processes. Among the most common were cell growth and
survival (EGF, INSULIN, PDGF and RAS), interleukin (IL7R, IL3 and IL4), inflammatory
response (NFKB) and cell signaling (MAPK) as shown in Figure P3-2.

Comparison of predicted networks

Challenge participants were allowed to add or remove edges from the reference
network, although they were not allowed to add extra nodes. The purpose of this was
to make submissions comparable and to put some boundaries that were relevant to
the experiments performed. It is interesting to note that most proposed networks

were built by removing edges from the reference network rather than adding
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additional interactions, which led to a bigger consensus on the existence of edges
that were already part of the reference network. (Supplementary Data at DOI:
10.1093/bioinformatics/btu659). The median number of edges of the proposed
networks was 406 for human and 429 for rat compared with 501 edges of the
reference network.

In the case of the silver standard, two versions of the networks were considered: one
that relied only on the training dataset and numbered 131 edges for human and 175
for rat, and one that used the full dataset (training and testing sets) and numbered
114 edges for human and 162 edges for rat. The JS between the two silver standards
was 0.50 for human and 0.67 for rat. However, when using the two silver standard
versions to evaluate the submissions, the scores obtained were very similar
(Supplementary Data at DOI: 10.1093/bioinformatics/btu659). This led to the decision
to use only the first proposal, which used the same data as the challenge participants.
The heatmaps in Figure P3-3 show the similarity between predicted networks
together with the silver standard using MCC in the space of the reference network
edges. Both panels suggest an emerging pattern where a few of the networks are
more similar to each other and to the silver standard. The same can be observed
when looking at the number of edges that overlaps between the different networks
(Supplementary Data at DOI: 10.1093/bioinformatics/btu659). These are the networks
that were ranked higher independent of the scoring metric used (i.e., JS, MCC or
TPR-FPR) (Supplementary Data at DOI: 10.1093/bioinformatics/btu659).

The second method for evaluating submissions used the scores obtained by the
accompanying write-ups describing the algorithms used to build the species-specific
networks.  The  scores listed in  Supplementary Data at DOI:
10.1093/bioinformatics/btu659 are separated by criterion (originality, rigor, practical
implementation) and show remarkable consistency between reviewers. In the end,
the final ranking was calculated by averaging the ranks obtained by each team for the
two scoring methods and are listed in Supplementary Data at DOI:
10.1093/bioinformatics/btu659.

All the predicted networks can be used to construct a consensus network by keeping
the edges chosen by at least a predetermined number of teams. Supplementary Data

at DOI: 10.1093/bioinformatics/btu659 shows how all the participating teams would
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have fared against a consensus network constructed using different thresholds from
three to seven teams. Because two of the teams had similar entries (Figure P3-3),
one of them was discarded (Team 93) to avoid bias when the consensus network was
built. It is worth noting that the top performing teams determined by consensus
scoring using large thresholds (Teams 116 and 55) were the same as the ones that
were the challenge best performers according to Supplementary Data at DOI:
10.1093/bioinformatics/btu659. In contrast, the performance of lower ranked teams

was less consistent between the different scoring strategies.

Optimal consensus network

The optimal threshold for building the consensus network was determined by fitting
the model described in Section 2 (Equations 3, 4, and 5) followed by solving Equation
6. The data used for the fit were assembled by counting the number of ‘votes’
received by each edge in the reference network from the participating teams
(excluding Team 93) and the silver standard network. This was performed separately
for human and rat networks, and then the resulting datasets were mixed to improve
the fit. Maximizing the log likelihood function of the mixture of two beta-binomial
distributions (Equation 3) for different mixing constants led to Pr(Y = 7) = 0.16, Pr(Y =
0) = 0.84 (Figure P3-4A) and shape parameters a; = 8.77e+06, b; = 1.95e+06, a, =
3.46e+06 and b, = 1.57e+06. Using this result and after solving Equation 6, it was
found that it takes approximately eight votes to verify the condition Pr(Y = 7|X = k) >
Pr(Y = 0|X = k). This result can also be visualized in Figure P3-4B by tracing the
intersection of the two mixture components depicted in black.

The model was tested on two additional datasets and showed a good overall fit
(Supplementary Data at DOI: 10.1093/bioinformatics/btu659). In the first case, the
edge counts shown in Figure P3-4B were extended to all possible edges, including
the ones not present in the reference network. In the second case, a completely new
set of network predictions was obtained from DREAM 3%, For this challenge, 27
participants had to predict de novo a synthetic network with 50 nodes and 82 edges

from simulated gene expression data without knowing the identity of the nodes.
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Conservation and divergence of human and rat cell signaling networks

Using the threshold determined in the previous section, two consensus networks
were built for human and rat using the networks predicted by participants together
with the silver standard. The individual edges that resulted are depicted in
Supplementary Data at DOI: 10.1093/bioinformatics/btu659 and color-coded based
on their presence in the human, rat or both consensus networks. The number and the
size of the resulting connected components are listed in Supplementary Data at DOI:
10.1093/bioinformatics/btu659. Two of these subnetworks are shown in Figure P3-
5 panels A and B as examples of predicted differences between human and rat cell
signaling networks. Although there were plenty of edges that were active only in
human or rat, these differences were rather isolated. The differences between human
and rat did not scale up to the level of pathways or other higher levels of organization,
as will be reinforced in the following analysis.

For any group of edges, a consensus score can be calculated by averaging the
individual scores associated with each edge, which is simply the percentage of times
the edge was predicted to exist. Here we assume that consensus between
participants regarding an edge is associated with higher probability that the edge is
real. The panel C in Figure P3-5 shows the average consensus scores of the edges
between consecutive layers for human and rat together with the associated standard
errors. Although there were no significant differences between human and rat, the
overall consensus for the edges downstream of TFs seemed to be much lower than
the rest, suggesting that these edges were more difficult to predict. The consensus
scores of the edges in the canonical pathways listed in Figure P3-2 also showed no
significant differences between human and rat (Supplementary Data at DOI:
10.1093/bioinformatics/btu659).

The conservation of phosphoprotein activity was measured by calculating the
average consensus score of all edges adjacent to a phosphoprotein node
(Supplementary Data at DOI: 10.1093/bioinformatics/btu659). From all the proteins
measured, RPS6KA1 had a significantly higher consensus score in human (P-value =
0.0161) and WNK1 had a significantly higher consensus score in rat (P-value =

0.0498). Similarly, the conservation of TF activity was assessed by calculating the
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consensus score of the edges upstream of a TF (Supplementary Data at DOI:
10.1093/bioinformatics/btu659) and then downstream of it (Supplementary Data at
DOI: 10.1093/bioinformatics/btu659). Edges upstream of STAT7 had a higher
consensus score in human than in rat (P-value = 0.0004), whereas edges downstream
of MYC also showed a higher consensus score in human (P-value = 0.0287).
Significantly higher consensus scores in rat were found for edges downstream of
TCF3, GLI2 and SMADS (P-values = 8.8-e06, 0.0287 and 0.0156).

Discussion

The scope of sbv IMPROVER Species Translation challenges was to assess the limits
of using rat models to predict human biology in the specific context of bronchial
epithelial cells exposed to various stimuli. Along these lines, the rationality behind the
Network Inference challenge was to build two species-specific cell signaling
networks starting from a generic literature-inspired network and using high-
throughput proteomics and transcriptomics data to add or reject edges. This
challenge differed from other challenges because it did not come with a gold standard
(i.e. the true human and rat networks are unknown) and this posed difficulties in
scoring and interpreting the results. The current work details how the aforementioned
issues were addressed together with the lessons learned from organizing and
curating such a challenge.

Despite the apparent top-down organization of the reference network, some
feedback loops were present consistent with the structure of known pathways.
However, the challenge experiments were designed to capture a broad area of the
signaling network and not feedback mechanisms. The latter would have required a
different experimental setup with more samples collected at later time points, as
feedback loops tend to be more prominent at longer time scales.

Without a gold standard, individual scoring criteria can potentially be useful in
separating poor performers from good performers but can also have flaws. The silver
standard is biased by the choice of algorithm used to generate it, and the quality of
the write-ups does not always predict the best performing algorithms. It is thus

advisable to combine the rankings resulting from individual scoring methods to
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reduce bias. The best performers obtained in this manner were the same as the ones
obtained by comparing predictions with a consensus network built by aggregating
the submissions from all participants. This result suggests that consensus scoring
could be used as a legitimate scoring strategy for future challenges where a gold
standard is absent.

The network aggregation procedure described in this article provides a statistically
sound way of merging predicted networks or any other binary predictions given a
sufficiently large sample space. This is especially useful when a clear way of
assessing the best performing method is absent. However, even when one can
accurately determine the best algorithm for performing a specific task, the result
might be context dependent. It has been shown that disease classifiers vary greatly

169

in performance when applied to different datasets Aggregating multiple

predictions has been proven to generate a more robust outcome on par with the best
performing methods'®'®,

The generation of a consensus prediction can potentially have benefits beyond that
of robustness and performance, particularly in the absence of a gold standard. The
data shown in Supplementary Data at DOI: 10.1093/bioinformatics/btu659 suggest
that predictions can be scored against a consensus network instead of using a silver
standard, with similar top rankings when an appropriate threshold is used.
Consensus scoring can thus avoid any bias caused by the choice of algorithm for the
silver standard; however, it could be sensitive to outliers (e.g. predictions that are
much better than the rest), or multiple correlated predictions caused by collaborating
teams or the use of similar methods.

The predicted networks were aggregated using a mixture of two beta-binomial
distributions as shown in Section 2. To find the optimal threshold for determining the
existence of an edge, a two-step process was used. First, the distribution in Equation
3 was fitted to the consensus data; then the minimum number of teams k was
determined for which Pr(Y = 7|X = k) > Pr(Y = 0|X = k). From the first step, the value of
the mixture constant Pr(Y = 7) (Equation 7) can give an indication of the proportion of
true edges in the reference network which in this case was 16%. Despite this, the
solution to the second step resulted in consensus networks with 7.4% edges for

human and 6.7% edges for rat out of all the reference network edges. This result
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suggests that less than half of the potential regulatory connections were discovered
and more challenge participants were needed to increase statistical power and
reconcile the two estimates of the number of true edges.

Despite these limitations, the consensus network shown in Supplementary Data at
DOI: 10.1093/bioinformatics/btu659 displays some interesting patterns, some of
which are shown in Figure P3-5A and B. Overall, the cAMP-responsive element-
binding protein 1, also known as CREB7, showed the best consensus for the edges
upstream of it (Supplementary Data at DOI: 10.1093/bioinformatics/btu659) but with
a couple of differences between human and rat: the connection from RPS6KAT was
present only in the human consensus network'®, whereas the connection from
PRKACA was present only in the rat consensus network'®®. The prevalence of
RPS6KAT (a.k.a. RSKT1) interactions in human (Supplementary Data at DOI:
10.1093/bioinformatics/btu659) might be explained by the fact that human isoforms
of RSK1 have functional redundancy (i.e. RPS6KA3 [RSK2]; RPS6KA2 [RSK3]; and
RPS6KA6 [RSK4]). In contrast, this is most likely not the case in rodents; Zeniou et
al." reported that the mouse RSK7 and RSK3 genes may not be able to fully
compensate for the lack of RSK2 function.

The consensus results also suggest a preference for JAK7 activation through EGFR
for human and the PDGFR complex for rat. Direct interaction between JAK7 and IRS1
has been reported in cultured human peripheral blood T cells'. In rat, however, the
interaction seems to be indirect through proteins SOCS2, SOCS3 and JAK2'""'72,
Other conserved interactions include IFNGR1 to JAK2 and JAK2 to STAT5A, which
are parts of the interferon gamma pathway known to be conserved across vertebrate
species'’®.

Additional references are provided for the majority of edges from the consensus
networks and are available as  Supplementary Data at DOI:
10.1093/bioinformatics/btu659. These references are categorized by organism and
tissue context as follows: airway cells, non-lung cells and lung cancer epithelial cells.
Although numerous pathway databases are widely available, they are too generic and
lack specific context when displaying an interaction. The purpose of this challenge
was to fine tune one of these generic networks based on data collected from

bronchial primary cells exposed to specific stimuli (compounds). When comparing
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the resulting consensus network to networks obtained from the Ingenuity Pathway
Analysis tool (IPA: www.ingenuity.com), we observe a steady increase in precision as
the number of votes required for an edge increases (Supplementary Data at DOI:
10.1093/bioinformatics/btu659), culminating at eight votes as predicted by the model
in Equation 6. The maximum precision obtained is 0.33 for the human network and
0.09 for the rat network. However, this could be explained by the relatively few edges
identified in IPA for human (69) and especially rat (26) (the number of edges drastically
decreased if a filter on cell/tissue type was applied), as well as the lack of proper
context provided by tissue specificity and stimuli. The IPA networks as well as the
consensus networks are available as Supplementary Data at DOIL:
10.1093/bioinformatics/btu659.

Overall, the fact that fewer suitable edge additions existed in most inferred networks
(Supplementary Data at DOI: 10.1093/bioinformatics/btu659) indicates that the
reference network contains probably most of the true active pathways in both
species. However, as observed by the large number of edge removals, it also
contains many inactive pathways. In other words, the phosphoproteins represented
by network nodes were less responsive to some stimuli than expected from the
reference network. Furthermore, because most participants (and all top performers)
used the reference network in their models it is likely that expert/prior knowledge was
critical for optimal network construction.

The methods used by the participants to solve the challenge were varied and included
Bayesian networks, Boolean networks, mutual information, lasso and elastic net,
ANOVA and various heuristics (more details on the individual algorithms are available
in the Supplementary Data at DOI: 10.1093/bioinformatics/btu659). It is interesting to
note that different flavors of the same method, in this case Bayesian networks, do
not perform similarly when applied to the same problem. When designing a prediction
algorithm, a multitude of choices were made, ranging from various constants and
priors to learning criteria and regularization options, which can lead to vastly different
outcomes. This justifies efforts, such as the sbv IMPROVER challenges or any of the
other crowd-sourcing initiatives such as DREAM or CASP, to try and establish best

practices in the ever-changing field of computational biology.
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Multiple Sclerosis

The disease

Multiple Sclerosis (MS) is an autoimmune disease that affects the brain and spinal
cord. An estimated 2,500,000 around the world have MS and there is not yet a cure
for the disease. Even though significant progress is currently being made in MS
research, the pathogenesis of the disease has not been comprehensively understood.
A great number of pathological mechanisms responsible for the disease have been
described, involving hundreds of genes and proteins altering multiple processes and
signaling pathways. By understanding how current MS therapies work in biological

networks, more effective therapies can be designed.

Experimental Model

e Peripheral blood mononuclear cells (PBMCs)

Experimental Tools

e Blood from 255 donors was collected.

e PBMCGCs isolation and culture.

e Stimulation with 20 compounds, lysis and collection of cell supernatant.

e Measurement with bead-based sandwich ELISA of 17 phosphoproteins at 5

and 25 minutes and 22 secreted cytokines at 24 hours post stimulus.

Computational Tools

The PhD candidate was not involved in the computational analysis of this dataset.
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Main Findings

We created a huge dataset for Multiple Sclerosis: 250 donors (190 MS, 60 Healthy),
20 stimuli (Pro-inflammatory or pro-oxidant stimuli, immunomodulatory stimuli,
neuroprotectants or anti-oxidants, disease modifying drugs from MS: Dimethyl
Fumarate, Fingolimod, Teriflunomide, IFNB1a/Rebif), 17 phosphoproteins (5’ and
25’), 22 cytokines (24h). Our approach allows to characterize the signaling networks
in a patient-specific manner and to predict new targets for combination therapy for
MS.

The combination of fingolimod with either a TAK1 inhibitor or EGCG was validated in

an animal mode.

Publication Timeline
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Construction of a drug-induced phosphoprotein/cytokine

dataset in clinical samples for Multiple Sclerosis

Please visit abstract [A2] in section “Abstracts in International Conferences” for more

information on this chapter.

Multiple Sclerosis (MS) is an autoimmune disease that affects the brain and spinal
cord. An estimated 2,500,000 around the world have MS and there is not yet a cure
for the disease. Even though significant progress is currently being made in MS
research, the pathogenesis of the disease has not been comprehensively understood.
A great number of pathological mechanisms responsible for the disease have been
described, involving hundreds of genes and proteins altering multiple processes and
signaling pathways. By understanding how current MS therapies work in biological
networks, more effective therapies can be designed. On this front, the CombiMS
consortium (http://combims.eu/) is developing computational and experimental tools
to improve the therapeutic options of MS in the future.

A milestone in this consortium is to evaluate how current and “promising” MS drugs
work at the signaling level in different patient populations. Peripheral blood
mononuclear cells (PBMCs) from approximately 255 donors were collected from
several European medical centers. The PBMCs were plated in 96 well plates and 20
stimuli & drugs were applied. Using custom multiplex assays, 17 phosphoproteins
plus 2 control beads were measured at 5 and 25 minutes and 22 cytokines plus two
control beads at 24 hours post stimulus.

To ensure the highest possible data quality, a kit was developed to include all
reagents needed in order to isolate PBMCs from one donor and then plate, stimulate

and lyse them. Sample collection controls were applied in the stimuli set to evaluate
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errors in sample processing whereas two custom xMAP bead sets were used to
evaluate errors in the bead-based ELISA procedure and instrument measuring
variability.

Phosphoproteomic and cytokine data will be combined with SNP data and clinical
profiles (i.e. responders, non-responders, therapeutic intervention) in a computational
framework which will help to understand MS more thoroughly and systematically. As
a first step, the phosphoproteomic dataset will be used for the construction of a
detailed map of the signaling pathway differences between MS and healthy donors,
which can help generate a model of MS pathogenesis and improve our understanding

of the disease.

Co-authored Research: Signaling networks in MS: A systems-

based approach to developing new pharmacological therapies

Please visit DOI of paper [P4] for more information on this chapter.
Abstract

The pathogenesis of multiple sclerosis (MS) involves alterations to multiple pathways
and processes, which represent a significant challenge for developing more effective
therapies. Systems biology approaches that study pathway dysregulation should
offer benefits by integrating molecular networks and dynamic models with current
biological knowledge for understanding disease heterogeneity and response to
therapy. In MS, abnormalities have been identified in several cytokine-signaling
pathways, as well as those of other immune receptors. Among the downstream
molecules implicated are Jak/Stat, NF-Kb, ERK1/3, p38 or Jun/Fos. Together, these
data suggest that MS is likely to be associated with abnormalities in apoptosis/cell
death, microglia activation, blood-brain barrier functioning, immune responses,
cytokine production, and/or oxidative stress, although which pathways contribute to
the cascade of damage and can be modulated remains an open question. While

current MS drugs target some of these pathways, others remain untouched. Here,
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we propose a pragmatic systems analysis approach that involves the large-scale
extraction of processes and pathways relevant to MS. These data serve as a scaffold
on which computational modeling can be performed to identify disease subgroups
based on the contribution of different processes. Such an analysis, targeting these
relevant MS-signaling pathways, offers the opportunity to accelerate the

development of novel individual or combination therapies.

Introduction

Multiple sclerosis (MS) is a chronic disease that is known to involve both inflammatory
and neurodegenerative responses. Despite the significant progress made in recent
decades, we are still relatively far from achieving a comprehensive understanding of
the pathogenesis of this disease. The revolution in molecular biology, immunology
and genetics, along with the development of new high-throughput technologies, has
driven the production of large amounts of data in recent years. However, while
numerous genes and proteins have been associated with the disease, significant
gaps remain in the quest to understand the pathological mechanisms responsible for
MS. Although there is still hope that new studies will reveal specific genes, proteins
or cells that will explain an important proportion of the causes of the disease, what is
urgently needed is to integrate the available and any future data into a comprehensive
dynamic picture of MS™,

Unfortunately, knowing that a gene or cell type is associated with MS is far from
providing an explanation about the disease. This is related to the fact that to date no
mutated genes associated with MS have been found, although new sequencing
studies are under way that may change this fact, and therefore such genes do play

75 Moreover, in a

the physiological role expected of them, complicating the analysis
complex disease such as MS, genes, proteins and cells dynamically interact with
each other in response to the stimuli and challenges the immune and nervous system
face'’®. This quantitative and dynamic information is extremely difficult to capture
from patients and even from animal models. Second, each individual harbors a
different genetic background and also the development of the immune and nervous

system is customized for their environment during development, being one of the
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bases of disease heterogeneity. Therefore, without the integration of molecular
information in pathways and considering molecular and cellular heterogeneity, it will
be difficult to achieve a good understanding of the pathogenesis of MS. At the
individual patient level, it will be critical to collect personalized data to customize the
analysis to pave the way toward stratified medicine.

Systems biology approaches may offer important benefits integrating current
biological knowledge with clinical information and data on therapeutic responses,
thereby allowing models to be generated that might help explain the pathogenesis of
the disease'’®'”". Therefore, in this review we will focus on how a systems biology
approach applied to medicine (systems medicine) from the pathway perspective,
incorporating molecular information about MS pathogenesis and drug targets, could
improve our understanding of the disease and help in the development or

identification of new improved therapies.

Pathways regulating MS pathogenesis: A puzzleof the immune system,

the central nervous system (CNS) and missing pieces

Decades of cellular and molecular research in the field of MS have revealed many
genes, proteins and cell subpopulations of the immune system associated with the
disease, and such information has expanded massively with the new omics
technologies. In order to identify the pathways involved in a given disease, abundant
information is available in databases such as the Gene-Disease Association
Database, the Protein Sequence Database, the Comparative Toxicogenomics
Database, the Online Mendelian Inheritance in Man, the Genetic Association
Database, or the Literature- derived Human Gene-Disease Network. Moreover,
genetic susceptibility for MS has been revealed by genome-wide association studies
(GWAS) and the ImmunoChip study in MS, which have identified more than 100

178,179’ Wthh

single-nucleotide polymorphisms (SNPs) associated with the disease
have been implicated mainly in immune system pathways (leukocyte activation,
apoptosis, and positive regulation of macro-molecule metabolism, Janus kinase/
signal transducers and activators of transcription (Jak/Stat) signaling pathway, acute

180

myeloid leukemia, and T cell receptor signaling)'™. Moreover, several data- bases
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containing information about pathways are available, such as the Kyoto Encyclopedia
of Genes and Genomes (KEGG), Reactome, the PathwayCommons or the
ConsensusPathDB. Finally, chemoinformatic resources such as DrugBank, ChEMBL
and Drug Information Online contain information about drugs, including their targets
within human pathways. By combining the information available in these databases,
more than 40 pathways associated with MS can be found (Figure P4-1(a)). The overall
picture obtained reveals the involvement of a wide range of cellular processes and
pathways implicated: apoptosis/cell death, microglia activation, blood-brain barrier
functioning, immune response, cytokine production, or oxidative stress. In addition,
the search of these cellular processes can be combined with the targets of MS
treatments, such as fingolimod, dimethyl-fumarate or interferon-beta (IFNf). The tar-
gets of these therapies can be included by identifying the pathways that link them to
the processes above, namely lipid-mediated signaling and its crosstalk with survival
and nuclear factor (NF)-Kb pathways, anti- oxidant pathways and the Stat-mediated
IFNB response, respectively. Interestingly, pathway analysis revealed certain
processes that are not yet targeted by current therapies, e.g. the Notch pathway'®'-
'8 Another pathway related to MS is vitamin D metabolism, and at present there are

several trials testing the efficacy of vitamin D supplementation'’.

New roles in MS of components in known pathways

Once data are retrieved from databases, bioinformatic tools allow identification of
interactions between genes, proteins and cells that can be used as hypotheses
(Figure P4-1(b)). For instance, and of pivotal clinical importance, these tools help to
study the involvement of CNS pathways in MS pathogenesis. MS is a condition
associated with substantial neuronal and axonal damage, and this neurodegeneration

probably drives long-term neurological disability'®°

. Hence, pathways that are related
to neuronal death and axonal damage may be of particular interest for the
development of neuroprotective therapies, an approach pursued for decades without
success to date, including apoptosis, oxidative stress, or microglia activation.
Potential neuroprotective therapies under development are aimed to target such

pathways such as green tea catechin epigallocatechin-gallate, trophic factors,
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methylthioadenosine or drugs enhancing remyelination "%,

Patient-to-patient genetic variabilityhinders understanding of signaling

pathways involved in MS

It is striking that the recent massive genetic studies (e.g. GWAS, ImmunoChip) explain

so little of individual disease risk'"®'"

. It is also surprising that no single MS
therapeutic yet has had well-validated genetic stratification. We believe that this fact,
common to many complex diseases, is at least in part due to the lack of a functional,
network-based perspective of the pathogenesis of the disease. Signaling networks
are very robust to variation in cells and their environment to enable cellular
functioning. For instance, it has been shown that even clonal populations strongly
vary in the concentration of the same protein'®. The cellular function regulated by
that protein needs to remain unaltered for healthy cellular behavior, therefore a
number of network motifs grant robustness to signaling networks such as negative

feedback loops™'

. Other variations to which signaling pathways can be robust are
genetic polymorphisms. Therefore, including genotyping data when modeling
signaling pathways of MS patients is key to understanding MS pathogenesis.
Furthermore, some pathways may not be etiologically relevant because they are
associated due to co-segregation of alleles with diseases. One approach for
integrating the role of genetic susceptibility in systems biology methods is by
considering that risk alleles mildly modify the parameters governing the functioning
of the pathways. Therefore, one single allele may not have a significant effect in a
given pathway, but the collection of all the risk alleles in a given individual may
influence the function of immune pathways to the level of producing autoimmune
activation. These considerations may help to improve the prediction of autoimmune
response at the individual level. The same reasoning may apply to the fact that no
drug stratifies by any single risk allele, although this may change if new therapies
target MS-associated genes and one of the alleles modulates the biological effects
of the drug.

In summary, understanding how each individual’s genetic polymorphisms lead to

their specific signaling network activity would enable characterization of the different
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MS phenotypes. This would, however, suggest a further question: How does patient-
to-patient variability in signaling activity affect drug efficacy? To answer this question,
signaling networks need to be elucidated not only depending on donor genetic
variability, but also in a cell-specific manner, thereby determining how each pathway
contributes to the cell phenotype (pro-inflammatory, degeneration, repair), and to
identify the missing steps (molecules and interactions) that participate in such MS
pathways. For example, interleukin (IL)-10 is one of the main immunosuppressor
cytokines but clinical trials with IL-10 failed to show benefits in MS, probably because
IL-10 receptor signaling is at least partially deregulated in immune cells'®, and this
can influence the individual response. We envision that a fine mapping of specific
pathways such as cytokines pathways in specific cell types (e.g. CD4, CD8, B cells)
in parallel with large high-throughput studies will allow us to improve pathway
annotation. Coupled computational modeling and experimental validation will enable
characterization of signaling networks in a cell-type-, donor- and genetic variant-

specific manner, as reviewed in detail below.

Other challenges in pathway analysis

The fact that database searches identify many path- ways associated with MS in
immune cells might suggest that there is significant cross-talk between the major
pathways within the same cell, with important proteins participating in several
signaling cascades (Jak/Stat, NF-Kb, extracellular signal-regulated kinase (ERK)1/2,
p38, Jun/Fos). Crosstalk within pathways in the same cell is complex and thus difficult
to study based only on existing experiments. Second, there is a substantial gap in
our understanding of how such crosstalk interactions are translated into a cell-type-
specific response at the system level (e.g. IFNb produces different effects on
macrophages and T cells, which are related to different clinical effects). Third, it is
particularly difficult to make sense out of the existing MS data, since it is a disease
that affects arguably the two most complex tissues/ organ systems in our body, i.e.
the immune system and the CNS, as described above. Fourth, annotation of gene
function is still incomplete, and the role of the same genes in the CNS is often even

less well under- stood or as yet unknown. For example, tumor necrosis factor-alpha
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(TNFa) may have detrimental effects on the immune system in MS but it might also
be beneficial in the CNS during remyelination'. Indeed, TNFa promotes
oligodendrocyte progenitor proliferation, as well as remyelination, which probably
explains why the application of the TNF-antagonist Lenercept produced an
unexpected deterioration of MS'. Finally, a principal limitation in pathway analysis
using existing data for functional annotation is that these approaches do not provide
a mechanistic model that can be simulated, hence hindering the prediction of novel
signaling mechanisms. To solve the challenges described here, combined analysis of
newly acquired experimental data and mathematical models can be used'®. Next, we

review in detail such predictive models.

Predictive and mechanistic models to understandMS pathogenesis and

therapies

The past decade has seen an explosion in the information regarding the cellular
networks that transmit and process signals from the cell’s environment. To gain novel
understanding of the basic mechanisms that the cell uses to integrate these signals,
as well as how such mechanisms are impaired by disease, mechanistic—
mathematical —models are a powerful tool'*®. The first step to mathematical modeling
is a literature search to gather the current understanding regarding the molecular
process of interest, in this case MS. To that end, we can query public resources, a
process that yields the pathways known to be involved in MS, which in turn are
combined to form a signaling network. Signaling networks can be used as initial
scaffolds on which we can formulate mechanistic hypotheses and evaluate similarity
with experimental data and disease-driven changes (Figure P4-2, upper row).
Therefore, experimental data need to be acquired that measure as many readouts as
possible relevant to the disease of study, i.e. present in the signaling network. To that
end, phosphoproteomic measurements are key in the analysis of signaling pathways
because measuring abundance of phosphorylated proteins closely indicates
propagation of a signal through a pathway and can be used in functional models'®’.
Previous work in the field has provided clear examples that phosphoproteomic

analysis is able to provide accurate models of some pathways in cells such as
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hepatocytes'®. Bead-based enzyme-linked immunosorbent assays (ELISAs) of
XMAP technology (Luminex, Austin, TX) are well suited for this task, enabling
measurement of the abundance of a large number of phosphorylated proteins in the
above-mentioned MS pathways in immune cells of individual patients of different
cohorts. Combining phosphoproteomics with genotyping in mathematical models,
both the activity of MS pathways and the genetic variability that may explain the
patient- to-patient difference in terms of response to treatment can be studied
(Figure P4-2, upper row). Once a signaling network has been assembled via literature
search, and the data to compare it have to been measured, mathematical approaches
enable formalization of the net- work as a mechanistic model. Intuitively, the
formulation as a mathematical model of such a signaling network addresses two
limitations: They are neither specific to individual patients (or even often to specific
cell types), nor are they computable, i.e. can be used to predict the outcome of
perturbations with drugs and ligands.

Several mathematical modeling approaches have become well established in the field
of systems biology and can be applied to signaling pathways, ranging from logic to
physicochemical models'®. The lack of quantitative information for building the
models can be bridged by using logic (Boolean) modeling, which includes only causal
information and that, because of this simplicity, has many fewer parameters
(quantitative properties) to evaluate. This advantage can be used to represent large
signaling networks that can be generated with limited data®®. To implement logic
models, tools such as CellNOpt''° enable formalization of the signaling network as a
logic model and subsequent simulation. Next, these tools enable calibration of the
model, which is performed by changing the network topology, i.e. the shape of the
network in terms of the interactions between the present signaling intermediates.
These changes consist of introducing or removing interactions, and systematic
comparison of the simulations on different topologies against the experimental data
predicts the topology that best fits the data. The simplicity in logic modeling that
enables simulation of large networks at the same time hinders highly detailed
modeling of small networks. In more detailed analyses, appropriate tools are
physicochemical models that describe the underlying biochemical reactions

explicitly'>?°?% Here the model parameters are quantitative characteristics such as
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kinetic rates of the reactions that they represent, which are revealed by model
calibration against the experimental data. In both modeling approaches, the main
challenge lies in calibrating the model in order to make the model specific for MS,
while at the same time determining the factors contributing to patient-to-patient
variability. To address patient-to-patient variability, instead of starting from a single
signaling network, one solution is to calibrate an ensemble of networks featuring a
high number of different starting topologies in order to test many different hypotheses
that are compared separately to the xMAP and genotype of individual patients®®,
including in these signaling topologies the mechanisms that grant robustness to
signaling pathways, such as negative feedback loops. Thereby, we could determine
which of the ensemble of topologies best fits each individual patient (Figure P4-2,
middle row). Overall, the modeling of signaling pathways in MS, using either logic
networks or mathematical models, offers the opportunity to predict new signaling
mechanisms that help us better understand disease pathogenesis. For example, a
recent mathematical model of the type 1 IFN pathway revealed the translocation of
Stat-1 to the nucleus as the most critical step in the signaling of IFNb, a finding that
could not be predicted solely based on molecular analysis but required dynamic

simulations®®*.

Drug development and combination therapy in predictive models of MS

One obvious question is if recent technological developments have provided a large
amount of data about MS, why is drug discovery still so complex and provides such
limited results? Although the limitations of the drug-discovery process have been

reviewed in detail®®

, several specific issues regarding how biological information is
translated into models of the disease and pathways are of importance. In the process
of developing useful pathway models for drug development it is critical to take into
consideration many aspects that at present are not well covered, such as (i) the
availability of quantitative and kinetic data from human/patients, (ii) integration of
individual heterogeneity and genetic background for defining the response to therapy,
or (iii) the need to develop approaches for integrating and simulating complex

networks of not just cells but also tissues. As described in Figure P4-2, here we
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propose that coupling several omics and genotyping to mathematical models of
signaling networks can address these issues. Further, existent drugs can be
repurposed to target MS-related components by including their targets in a signaling
network that can then be formalized as a mathematical model and simulated. This
would enable the testing of millions of different options in terms of topology of
signaling networks, therapeutic regimens, and drug/target combinations. This should
allow the prediction of the signaling mechanisms by which these existing drugs could
be repurposed to MS, discarding therapeutic approaches that may not work and
pointing to the ones that deserve careful experimental and clinical testing.

Given the complexity and heterogeneity of MS, combination therapies that modulate
various pathogenic pathways simultaneously are an attractive treatment strategy*.
A synergistic effect of two drugs with different mechanisms of action may potentially
improve efficacy, safety and tolerability. By contrast, defining the optimal
combination of drugs requires a more comprehensive understanding of the networks
of pathways in different cells initiating and driving the progression of MS, an effort
that can be addressed using systems biology techniques®”. The integration of
clinical, biological and pharmaceutical data in computational models that reproduce
the complexity of such diseases can be used to identify synergistic effects by
evaluating the downstream effects of drugs®®.

Finally, another significant challenge in improving drug development is predicting side
effects of therapies.

Predictive toxicity was something highly theoretical until recently, but in the last years
new significant insights have been provided by developing new algorithms combining
drug databases and safety databases. Prior knowledge extracted from such
databases can be introduced in mathematical models (Figure P4-2) that are starting
to provide useful predictions regarding potential side effects that can be tested in
preclinical or early clinical phases of drug development®®?°, However, this complex

issue is still far from being solved.

Conclusions

The pathogenesis of MS is complex, involving hundreds of genes and proteins that
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act in numerous path- ways and evolve along a time and disease progression, each
of which can contribute to the phenotype. These genes and proteins may respond
distinctly to different therapies, and even behave differently in different patients. In
order to integrate current knowledge and generate a comprehensive model of MS
pathogenesis, pathway analysis represents a promising strategy. Combining
experimental and medical data with distinct systems biology approaches should
provide new insights on disease pathogenesis, allowing us to screen in silico new
drugs for repurposing, as well as testing combinations of drugs, before exposing

patients to therapy.

Prediction of combination therapy based on logic modeling of

the immune cells signaling network in Multiple Sclerosis

Signal transduction deregulation is a hallmark of many complex diseases, such as
multiple sclerosis (MS), and subsequently a therapeutic target. Here, we performed
ex vivo multiplexed phosphoproteomic assays in PBMCs from 190 MS patients either
untreated or treated with fingolimod, natalizumab, interferon-beta, or glatiramer
acetate or the experimental therapy epigallocatechin gallate (EGCG); and 60 matched
healthy controls. Fitting a prior knowledge-based network of MS related pathways
using logic modeling yielded a signaling network specific for the disease and for each
drug. We then established a co-druggability score based in the pathway topology for
each drug’s signaling network and identified kinase interactions whose activity could
be reverted to healthy-like status by combination therapy. Our method predicted
several combinations with approved MS drugs, being the interaction of IKKB by TAK1
co-druggable with all approved drugs. The combination of fingolimod with either a
TAK1 inhibitor or EGCG was validated in the animal model of MS. Our approach
allows to characterize the signaling networks in a patient-specific manner and to

predict new targets for combination therapy for MS and other complex diseases.

Subjects and clinical cohorts
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We recruited 255 subjects including 190 patients with MS and 60 healthy controls,
matched for age and sex with the RRMS group, in a multi-centric study in four MS
centers (Hospital Clinic Barcelona — IDIBAPS (n=69), Karolinska Institute (n=64),
University of Zurich (n=40) and Charite University (n=82)) (Table S6). Patients fulfilled
McDonald 2005 criteria (37) and disease subtype was defined using Lublin criteria
(388). Patients were allowed to receive any therapy and should be stable in such
therapy for the previous 6 months. Patients were recruited by their neurologist after

signing informed consent. The study was approved by the IRB of each clinical center.

Processing and measurement of samples

A unified standard operating procedure for PBMCs isolation, stimulation and lysis, as
well as sample storing and shipping was developed along with a kit (plates) with
reagents and buffers that were produced in a single facility (ProtAtOnce) and ship to
all participating centers. The reagents were prepared from a single batch and plates
were prepared from a single batch for each stimulus. Quality controls were carried
out to ensure that the reagents remain stable for 3 months.

XMAP assays were developed by ProtAtOnce (Athens, Greece) and were
standardized to minimize error. We optimized assays from a list of 70 candidates and
obtained a final list of 17 phosphoproteins which display a good signal to noise ratio
to be measured in the in vitro assays: AKT1, CREB1, FAK1, GSK3A, HSPB1, IKBA,
JUN, MKO03, MK12, MP2K1, PTN11, STAT1, STAT3, STAT5A, STAT6, TF65, WNK1.
We used a set of 21 stimuli, which included pro-inflammatory or pro-oxidant stimuli
(Anti-CD3, concanavaline A (conA), H202, IFNG, IL1A, IL6, LPS, NaCl, PolylC, TNFA),
immunomodulatory stimuli (IFNB1a, S1P, vitD3) neuroprotectants or anti-oxidants
(BDNF, EGCG, INS), disease modifying drugs from MS (DMF, FTY, Teriflunomide,
IFNB1a (Rebif), and a culture media as control. Samples were collected at baseline

(time 0) and after 5 and 25 min.
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Multiplex High Throughput screening for Drug Discovery:
Application for mechanism-based biomarker discovery in

Multiple Sclerosis

Please visit abstracts [A7-10] in section “Abstracts in International Conferences” for

more information on this chapter.

High throughput screening (HTS) has become an invaluable tool in drug discovery.
Current HTS platforms are based on the measurement of very few reporter assays
and lose the mechanistic picture on how compounds work on cells. Multiplex HTS
can measure a large number of intracellular and extracellular signals and thus provide
mechanism-based insight in biomarker discovery.

Multiple Sclerosis (MS) is an autoimmune disease affecting the brain and spinal cord.
There is not yet a cure for the disease while 2,5 million people around the world have
MS. Several pathological mechanisms for MS have been described, involving
alterations in multiple processes and signalling pathways.

Our goal is to evaluate how current MS drugs and compounds with a therapeutic
potential work at the signalling level in different patient populations. By understanding
how current MS drugs work on patient-specific biological networks, more effective
therapies can be designed that take into account the uniqueness of each patient’s
response in treatment and biomarkers can be developed to stratify patients.

For the production of this dataset, we used High-Throughput Screening (HTS) with
custom cell signalling assays (by ProtATonce), that allow screening of thousands of
samples at the proteomic and phosphoproteomic level at a very small fraction of the
cost compared to off-the-shelf reagents. Strict quality control check points were
embedded to the collection-to-measurement pipeline in order to evaluate errors in
sample collection, sample preparation, ELISA procedure and instrument variation.
Collection kits were prepared and shipped to 4 clinical centres across EU in order to
collect peripheral blood mononuclear cells (PBMCs) from 255 donors. The cells were

plated and stimulated at 3 time points with 20 compounds and drugs. We collected
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cell lysates and cell supernatants to simultaneously quantify in the samples 17
phosphoproteins and 22 secreted proteins respectively.

This dataset is analysed with systems biology algorithms in order to construct
patient-specific signalling pathways and develop biomarkers for MS. Machine
learning and optimization algorithms were employed to quantify patient-based drug
efficacy and predict responders from non-responders. In summary, multiplex high
throughput screening and systems biology algorithms introduce a mechanistic insight

in biomarker discovery and pave a new way for pharmaceutical research.
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Hepatocellular Carcinoma

The disease

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide,
with a high rate of metastasis. Despite major improvements in HCC management
(resection, transplantation, radiofrequency ablation, chemoembolization, sorafenib
therapy), long-term survival remains poor?'"?'2, Therefore, there is an urgent need to
identify novel HCC chemopreventive and/or therapeutic agents able to protect
populations at high risk and/or improve prognosis of patients following curative

treatment?'®.

Experimental Model

¢ Human Hepatocellular Carcinoma cell lines HEP3B, HEPG2 and HUH7

e Human umbilical vein endothelial cells (HUVEC)

Experimental Tools

e Matrigel for migration and invasion assays

e MTT assay for viability assessment

e Cell culture of standard cell lines

e Stimulation, lysis and collection of cell supernatant

e Measurement with bead-based sandwich ELISA

Computational Tools

e Integer Linear Programming formulation to combine proteomic data at hand

with prior knowledge of proteins’ connectivity to construct specific signaling
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pathways

Main Findings

Our integrated analysis presents new mechanistic insights into the targeted anti-
inflammatory actions of three promising nutraceuticals, epigallocatechin gallate
(EGCQ), fisetin (FIS), and eriodictyol (ERI), thus setting the basis for innovative HCC
chemopreventive and/or therapeutic interventions. Our results demonstrated EGCG
as the most effective modulator of inflammatory cytokine secretion (followed by FIS
and ERI) and HEP3B cells as the best responders. Despite previous extensive
literature®'**'®, this is the first study to our knowledge showing the outstanding
capability of this compound to concurrently reduce a wide range of HCC-secreted

cytokines.

Publication Timeline

[P5] 1 June 2015, CPT: Pharmacometrics & Systems Pharmacology
Network-Based Analysis of Nutraceuticals in Human Hepatocellular Carcinomas

Reveals Mechanisms of Chemopreventive Action

Co-authored  Research:  Network-Based  Analysis  of
Nutraceuticals in Human Hepatocellular Carcinomas Reveals

Mechanisms of Chemopreventive Action

Please visit DOI of paper [P5] for more information on this chapter.
Abstract

Chronic inflammation is associated with the development of human hepatocellular

carcinoma (HCC), an essentially incurable cancer. Anti-inflammatory nutraceuticals
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have emerged as promising candidates against HCC, yet the mechanisms through
which they influence the cell signaling machinery to impose phenotypic changes
remain unresolved. Herein we implemented a systems biology approach in HCC cells,
based on the integration of cytokine release and phosphoproteomic data from high-
throughput xXMAP Luminex assays to elucidate the action mode of prominent
nutraceuticals in terms of topology alterations of HCC-specific signaling networks.
An optimization algorithm based on SigNetTrainer, an Integer Linear Programming
formulation, was applied to construct networks linking signal transduction to cytokine
secretion by combining prior knowledge of protein connectivity with proteomic data.
Our analysis identified the most probable target phosphoproteins of interrogated
compounds and predicted translational control as a new mechanism underlying their
anti-cytokine action. Induced alterations corroborated with inhibition of HCC-driven

angiogenesis and metastasis.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide,
with a high rate of metastasis. Despite major improvements in HCC management
(resection, transplantation, radiofrequency ablation, chemoembolization, sorafenib
therapy), long-term survival remains poor?'"?'2, Therefore, there is an urgent need to
identify novel HCC chemopreventive and/or therapeutic agents able to protect
populations at high risk and/or improve prognosis of patients following curative
treatment®®.

Compelling evidence has established that inflammation plays a critical role in tumor
progression?'®?", HCC, a typical example of inflammation-related cancer, slowly
progresses on a background of chronic inflammation mainly triggered by exposure
to infectious agents (hepatotropic viruses), toxic compounds (ethanol), or dietary
carcinogens (aflatoxins, nitrosamines). Inflammatory cytokines have been shown to
play a prominent role in mediating changes within the tumor or tumor
microenvironment through abnormal regulation of signaling pathways that influence
crucial cancer-promoting processes such as cell proliferation, survival, angiogenesis,

and metastasis®’®. On the other hand, the neoplastic cell itself can advance the
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development of local inflammation, as many of the most frequently activated
oncogenes (RAS, MYC) could elicit a transcriptional program leading to the
expression of various inflammatory mediators that lead to tumor immune escape and
expansion?'®,

At the genome level, HCC is characterized by several aberrations which underlie

dysregulation of multiple steps in cell signaling pathways?"®

. Therefore, modulation of
a single gene product or signaling cascade is unlikely to mediate an efficient
therapeutic outcome. Hence, current research efforts have been focused on
developing multi-targeted therapies using novel high-throughput technologies®®.
Nutraceuticals (a term coined from "nutrition" and "pharmaceutical”) i.e., compounds
in dietary sources with disease chemopreventive/chemotherapeutic activities, have
been proved to possess such multi-targeting properties and reduced side effects,
thus providing a suitable alternative in achieving alleviation of various cancers®'*#".
Despite the emerging social and economic interest in nutraceuticals®?, there is not
yet a global mechanistic understanding of their action mode to provide a scientifically
solid support for their clinical use.

Identifying the detailed mode of action of active compounds is a major endeavor
today, as is evident by the large number of publications on off-target effects of drugs
that made it to the market even decades ago and whose off-target effects remained
unknown?®???®, Typically, the identification of a drug mode of action is carried out
either via bioactivity assays, which screen the effect of the compound on key cellular
processes (proliferation/viability, etc.) or via kinase assays, which screen the binding
of the interrogated compound on a kinase panel®*?*. However, even if the drug
interactions are easy to obtain, the chain effects happening in the cells because of
the inhibition of a certain kinase is not trivial to predict, as it is orchestrated to a great
extent by the properties and robustness of the signaling mechanisms of the specific
cell type. Herein, we developed a novel methodology that leverages multi-
combinatorial proteomic data from multiplex antibody assays and screens the effects
of selected nutraceuticals on three human HCC model cell lines both on the basal
level of cytokines release and phosphoproteins activity, but also on perturbation with
prototypical cell growth and inflammation signaling stimuli, in an attempt to capture

alterations induced by each interrogated compound on key signaling pathways. To
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this end, we employ an optimization algorithm based on the SigNetTrainer software
that combines the proteomic data with prior knowledge of protein interactions (e.g.,
from online pathway databases), identifies the signaling reactions that are functional
based on the data at hand, thus deconvoluting compound effects, and facilitates their
mechanistic interpretation as topology alterations of cell-type-specific signaling
pathways'. Furthermore, we use experimental models of cancer metastasis and
angiogenesis to ensure the biological importance of compound-imposed alterations.
Our integrated analysis presents new mechanistic insights into the targeted anti-
inflammatory actions of three promising nutraceuticals, epigallocatechin gallate
(EGCQ), fisetin (FIS), and eriodictyol (ERI), thus setting the basis for innovative HCC

chemopreventive and/or therapeutic interventions.

Methods

Plant-derived nutraceuticals

Nutraceuticals (Supplementary Table S1 at DOI: 10.1002/psp4.40) were purchased
from Carl Roth (Karlsruhe, Germany), or Sigma (St. Louis, MO). Stocks were prepared
in dimethyl sulfoxide (DMSO; Sigma) and stored at -20°C. Working dilutions
contained up to 0.1% v/v DMSO.

Cell cultures

HEP3B, HEPG2 (ATCC, Manassas, VA), and HUH7 (provided by J. Wands, Brown
University) cells were maintained as described before®””. To obtain HCC conditioned
medium (HCC-CM), confluent cultures were treated with test compound or DMSO for
24 hours, thoroughly washed twice with phosphate-buffered saline (PBS) and
incubated for 24 hours in starvation medium, i.e., serum-free medium containing
0.25% bovine serum albumin (BSA). Supernatant was then collected and stored at
—-80 °C. Human umbilical vein endothelial cells (HUVEC) were isolated and maintained

up to passage four as previously described®®.
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To assess the potential cytotoxicity of test compounds, cells were treated as
specified for each of the following biological assays and the number of viable cells

was measured by the MTT method as described before®.

XMAP assays

HCC cells, seeded the day before at 3 x 10 cells/well into a 96-well plate, were
serum-starved for 4 hours and then treated with selected nutraceuticals or DMSO at
the indicated concentration (Table P5-1) for 2 hours. Cells were then exposed to
stimuli (PeproTech, Rocky Hill, NJ) at saturated levels®': interleukin (IL)-6 (0.1 ug/ml),
tumor necrosis factor A (TNFA) (0.1 pg/ml), IL1A (0.02 pg/ml), IL1B (0.01 pg/ml), tumor
growth factor A (TGFA) (0.2 pg/ml), or insulin (INS) (1.72 pug/ml), for either 22 hours
(cytokine measurements) or 15 minutes (phosphoprotein measurements) as indicated

by previous studies®

and pilot experiments (Supplementary Figure S1 at DOI:
10.1002/psp4.40). Cell supernatants and lysates were then collected and stored at
—-80°C until use. Total protein concentrations were quantified using the BioRad Dc
Protein Assay kit (Hercules, CA).

XMAP assays were performed on a Luminex-200 platform (Luminex, Austin, TX) using
custom cytokine/ phosphoprotein antibody-coupled beads (ProtATonce, Athens,
Greece). A custom 28-plex was used to detect the levels of selected cytokines in cell
supernatant (see Supplementary Table S2 at DOI: 10.1002/psp4.40 for full name,
classification, and biological role). A custom 15-plex was used to determine in cell
lysates the levels of test phosphoproteins: ribosomal protein S6 kinase alpha-1
(RSK1), heat shock protein beta-1 (HSPB1, alternate name HSP27), cAMP-
responsive element-binding protein-1 (CREB1), protein kinase B (AKT1), p38
mitogen-activated protein kinase (P38MAPK), mammalian target of rapamycin (TOR),
glycogen synthase kinase-3 beta (GSK3B), dual specificity mitogen-activated protein
kinase kinase-1 (MEK1), extracellular signal-regulated kinase-1 (ERK1), Src homology
2 domain-containing protein-tyrosine phosphatase-2 (SHP2), c-Jun N-terminal
kinase-2 (JNK2), dual specificity mitogen-activated protein kinase kinase 6 (MP2K®6),
ribosomal protein S6 (RPS6), p70 ribosomal S6 kinase (P70S6K), and nuclear factor-
kappa B (NFKB). Custom antibody-coupled beads were technically validated as
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described before® (

10.1002/psp4.40).

Supplementary Figures S2-S5, Supplementary Table S3 at DOI:

XMAP data processing

Signaling datasets were analyzed and plotted using Datarail, an opensource MATLAB
(MathWorks, Natick, MA) toolbox'"°. For modeling, the fold change of the signals
relatively to the unstimulated state, i.e., DMSO-MEM, was computed and then data
were discretized to [0, —1,1], where 1 denotes signal increase >1.5 or 2-fold, -1
denotes signal decrease >1.5 or 2-fold, and O denotes any signal activation in
between. The thresholds were selected based on the platforms sensitivity (see
Supplementary Material at DOI: 10.1002/psp4.40) and previous studies®**'. Data
discretization is vital before proceeding with the construction of compound-specific
signaling networks, since the applied SigNetTrainer methodology implements a
qualitative approach in the modeling of signal transduction and can only handle the

above-mentioned values for protein activation [-1, 0, 1].

Construction of compound-specific signaling networks

A canonical pathway was constructed downstream of the five stimuli and in the
neighborhood of 15 measured phosphoproteins. First, the stimuli receptors were
identified, and then canonical pathways downstream of these receptors were
extracted from several online databases including Pathway Commons, KEGG, and
Ingenuity, with most of the interactions obtained from Ingenuity. Subsequently, the
receptor-specific pathways were merged together into a signaling network, and the
Floyd-Warshall algorithm was used to identify the observable-controllable part of this
network. Observables are defined as all network nodes that are upstream of the
measured phosphoproteins (thus, their activation value can be inferred based on the
value of the signals downstream). Controllables are defined as all network nodes that
are downstream of stimuli used (thus, their activation value can be controlled by the

stimuli upstream). All nodes and corresponding reactions that are either
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nonobservable or noncontrollable were removed from the network, because the
Integer Linear Programming (ILP) algorithm cannot handle them properly.
Subsequently, the canonical pathway was augmented with compound-target
interactions obtained from PubChem (Supplementary Table S5 at DOI:
10.1002/psp4.40) and with hypothetical phosphoprotein>cytokine release
interactions to result in an integrated network that describes both levels (intracellular
and extracellular) of signal transduction. Finally, the signaling network was trained to
compound-specific data via an adapted variant of SigNetTrainer, an ILP formulation
that detects and removes inconsistencies between network predictions and data at
hand. Details of the formulation, model code, and datasets are provided as
Supplementary Material at DOI: 10.1002/psp4.40.

Migration, invasion, and tube-like formation assays

Cell invasion and migration were evaluated as described before*® using an 8 ym-
pore size membrane BioCoat Matrigel Invasion (BD Biocoat, BD Biosciences, Franklin
Lakes, NJ) and migration (ThinCerts, Greiner Bio-One International, Kremsmuenster,
Austria) chambers, respectively. Serum-starved cells (3-5 x 10%cells/well) migrated
towards HCC-CM or starvation medium for 24 hours (HCC) or 6 hours (HUVEC).
Migrating/invading cells were photographed and manually counted. Formation of
HUVEC tube-like structures in the presence of HCC-CM or starvation medium was

assessed on growth factor-reduced Matrigel and quantified as previously®*.

Statistical analysis

Data were analyzed by Mann-Whitney test with significance levels of P < 0.05, using
GraphPad Prism 5.00 for Windows (GraphPad Software, San Diego, CA). Data are

presented as means+SEM of the indicated number of observations.

Results
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Collection of released cytokine data

Since HCC cells have been shown to express a number of proinflammatory cytokines
and growth factors, we examined whether nutraceuticals with known anti-
inflammatory properties might be able to modulate their secretion pattern. HCC-
effective compounds were chosen from a library of 23 nutraceuticals based initially
on preliminary HCC cell proliferation/viability experiments determining the range of
effective non-cytotoxic concentrations (Supplementary Table S1 at DOIL:
10.1002/psp4.40) and next on pilot xXMAP assays evaluating the effect of 14 chosen
compounds (selected as potent HCC cell proliferation inhibitors that represented
major structural classes of nutraceuticals), on the levels of 13 cytokines upon
induction with a stimuli mixture (Supplementary Figure S6 at DOI: 10.1002/psp4.40).
Finally, nutraceuticals found to be active in at least one cell line were included in a
more extensive XMAP analysis at selected concentrations (Table P5-1), which
although high in some cases (POH, NAR, EGCG) did not affect normal endothelial cell
proliferation (unpublished observations). Multiplex cytokine assays concomitantly
determined the release of 28 cytokines (Supplementary Table S2 at DOI:
10.1002/psp4.40), constitutively or upon stimulation with IL6, TNFA, IL1B, TGFA, or
INS. As shown in Figure P5-1, some cytokines (CXCL16, IL8, GROA, CCL20, NGAL,
HAVR1) were highly expressed by HCC cells, whereas administration of stimuli,
especially IL1B and TNFA, further enhanced their basal levels or triggered the
secretion of numerous other cytokines. EGCG treatment proved to be the most
effective in reducing the expression (basal and/or induced) of 13 out of 28 test
cytokines, without affecting others (e.g., CCL20, PLGF, HAVR1, MIA2, NGAL, PDGF),
thus excluding nonspecific cytotoxicity. FIS, ERI, QUE, CUR, POH, and NAR
displayed (in order of efficacy) a less broad inhibitory action. Overall, we noticed that
HEP3B were the most sensitive cells to compound treatment (see Supplementary
Table S4 at DOI: 10.1002/psp4.40 for a summary of data).

Collection of signaling phosphoprotein data
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Next, we analyzed the impact of EGCG, FIS, and ERI (selected based on their
cytokine-reducing activities; Supplementary Table S4 at DOI: 10.1002/psp4.40) on
the levels of 15 phosphoproteins. As shown in Figure P5-2, (a) HEP3B, (b) HEPG2,
and (c) HUH7 cells generally displayed a remarkable divergence regarding their
response to both compounds and stimuli. In HEP3B cells, which were again found to
be the most responsive, EGCG, FIS, and to a lesser extent ERI downregulated the
basal levels of phosphorylated AKT1, TOR, GSK3B, P70S6K, RPS6, P38MAPK,
JNK2, MP2K6, and NFKB. Furthermore, EGCG decreased both the constitutive and
stimulated phosphorylation of SHP2, whereas it increased the basal and induced
expression of phosphorylated CREB1 and HSPB1. In HEPG2, FIS was found to
attenuate most of the phosphoproteins (SHP2, AKT1, GSK3B, TOR, P70S6K, RPS6,
MP2K6, P3BMAPK, JNK2, NFKB). Finally, in HUH7 only a weak inhibition in certain
phosphoproteins was observed in response to FIS and ERI, whereas, unexpectedly,
EGCG upregulated the levels of phospho-AKT1, GSK3B, RPS6, P38MAPK, and
NFKB. Immunoblotting performed in cell lysates from EGCG-treated HCC cells for
phospho-AKT1 confirmed these multiplex data (Supplementary Figure S7a at DOI:
10.1002/psp4.40). Furthermore, as the active non-phosphorylated GSK3B is a known

negative regulator of beta-catenin stability*

, we predicted and experimentally
confirmed that the levels of the stable active form of beta-catenin were altered by
EGCG according to the phospho-AKT1/GSK3B modification pattern (Supplementary
Figure S7b at DOI: 10.1002/psp4.40) in each HCC cell line, thus indicating a

differential targeting of the WNT/beta-catenin signaling®*“.

Integrated data analysis to decipher compound action mechanisms

Since HEP3B cells provided the broadest datasets due to their high sensitivity to
imposed perturbations, we subsequently constructed compound-specific signaling
networks that combined existing knowledge with HEP3B phosphoproteomic and
cytokine release data employing an adapted version of our SigNetTrainer
methodology and a sensitivity analysis for a range of thresholds (see Methods and
Supplementary Material at DOI: 10.1002/psp4.40).
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As a result, we visualized how EGCG (Figure P5-3), FIS (Figure P5-4), and ERI
(Figure P5-5), modulated signal transduction and cytokine secretion in interrogated
cells under basal conditions (Figures P5-3a, 4a, and 5a) or following subsequent
exposure to stimuli (Figures P5-3b, 4b, and 5b). Our network-based analysis
confirmed or rejected existing information (black and gray-colored edges,
respectively) and furthermore enriched the canonical pathway with new interactions
(blue-colored edges), thus predicting potential nutraceutical-targeted pathways. A
major mechanism designated for EGCG and FIS is through inhibition of the
PIBK/PIP3/PDK1/P70S6K/RPS6 pathway with potential involvement of AKT1/TOR
signaling blockade (Figures P5-3, 4, solid and dashed black edges, respectively), in
accordance with existing literature (Supplementary Table S5 at DOI:
10.1002/psp4.40) and current data showing attenuation of AKT1, TOR, P70S6K, and
RPS6 activation by these compounds. Regarding ERI, the inhibition of the same
pathway downstream of PDK1 (blue edge, Figures P5-5a) emerged for the first time
in HEP3B cells. Most important, the fact that the blockade of this particular signaling
cascade by all test compounds is well correlated with their inhibitory effects on the
release of a number of cytokines (EGCG: CXCL7, CXCL16, CXCL10, IL17A, FIS:
CXCL7, CXCL10, CXCL11, ERI: CXCL10) pointed to the prediction of a common
cytokine downregulating mechanism through eventual inhibition of the translation
factor RSP6 (blue edges, Figures P5-3, 4, and 5). This major network prediction was
further validated by independent real-time quantitative reverse transcription-
polymerase chain reaction (RT-PCR) and western blot analyses (Supplementary
Figure S7c, d at DOI: 10.1002/psp4.40) focusing on CXCL10, as this cytokine was
connected with RPS6 in the networks of all three compounds. We found that
nutraceutical treatment: (a) did not reduce CXCL10 mRNAs levels, (b) did not further
decrease compared to vehicle control the total CXCL10 protein levels under
conditions of protein synthesis blockade, hence indicating no effect on protein
degradation machinery, while (c) reduced the total CXCL10 levels under conditions
of proteasome-mediated protein degradation blockade, thus indicating an effect on
new protein synthesis. Overall, these results supported the conclusion that the
observed reduction in CXCL10 protein levels is not attributed to either a decrease in

gene transcription or protein degradation but is rather causally linked to a
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translational downregulation of cytokine expression via RPS6 inhibition, as predicted

by our network analysis.

On the other hand, only signaling alterations specific for the examined cancer cell
type were maintained in the network. For instance, the PAK/RAF1/MEK1/ERK1
pathway was removed from the relevant network (Figure P5-3b) as not being
involved in the action mode of EGCG in HEP3B cells because prior knowledge
(Supplementary Table S5 at DOI: 10.1002/psp4.40) was not confirmed by our data
for MEK1 and ERK1 in the case of EGCG (gray edges, Figure P5-3a).

Prevention of HCC-induced metastasis and angiogenesis

To assess the biological significance of changes imposed by EGCG, FIS, and ERI on
HCC-secreted factors (including cytokines shown in Figure P5-1, Supplementary
Table S4 at DOI: 10.1002/psp4.40), we next applied a chemotaxis model of
metastasis, where naive HCC cells were allowed to migrate and/or invade Matrigel-
coated membranes towards HCC-CM collected from compound pre-treated
cultures. As shown in Figure P5-6 a, b, HCC-CM from vehicle-treated cells (CTL)
significantly induced cancer cell migration and Matrigel invasion, respectively,
compared to basal starvation medium, thus confirming that factors released from
HCC cells act as strong stimulators of the metastatic process. However, this effect
was reversed in HCC-CM collected from cells pre-exposed to compounds. Likewise,
we examined the responsiveness of HUVEC to HCC-secreted signaling mediators.
We found that HCC-CM from vehicle-treated cells (CTL) strongly induced HUVEC
motility (Figure P5-6c¢), invasiveness (Figure P5-6d) and differentiation into tube-like
structures (Figure P5-6e), compared to basal starvation medium. However, these
proangiogenic attributes were significantly abrogated when HUVEC were challenged
with HCC-CM from compound pre-treated cultures. Overall, the cytokine-reducing
activity of EGCG, FIS, and ERI (Figure P5-1, Supplementary Table S4 at DOI:
10.1002/psp4.40) correlated with their capability to inhibit tumor-driven

prometastatic and proangiogenic phenotypes (Figure P5-6).
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Discussion

Plant-derived compounds have always been an important source for the
development of new drugs in pharmaceutical research®°. However, their clinical use
is limited by the fact that, in the majority, these compounds do not have a known set
of target proteins but they act on many different levels, thus making the identification
of their detailed action mechanism very difficult if at all possible. In this work by using
the Luminex xMAP system as a drug-discovery platform, we screened several anti-
inflammatory nutraceuticals for their ability to modulate the cytokine release and
phosphoproteomic response of HCC cells, constitutively or upon perturbation with
signaling stimulators that are actively involved in human hepatocarcinogenesis®®.
Then, by applying an integrated multi-combinatorial analysis of the high-throughput
proteomic data we provided novel mechanistic insights into the mode of action of
most promising compounds.

Like the majority of neoplastic cells, HCC secrete an array of inflammatory cytokines
that exert their multiple, partially overlapping functions (mitogenic, motogenic,
angiogenic) in a para-/autocrine manner via binding to their appropriate receptors?®.
Our results demonstrated EGCG as the most effective modulator of inflammatory
cytokine secretion (followed by FIS and ERI) and HEP3B cells as the best responders.
Despite previous extensive literature®*?', this is the first study to our knowledge
showing the outstanding capability of this compound to concurrently reduce a wide
range of HCC-secreted cytokines, including a group of C-X-C motif ELR-positive
(CXCL7, CXL16, GROA, IL8) as well as ELR-negative (CXL10, CXCL11) chemokines
and interleukins (IL4 and IL17A), all known to be critical modulators of tumor
microenvironment. In fact, CXCL7, GROA, and IL8, identified as CXCR2 ligands, have
been shown to strongly promote tumor growth and angiogenesis®’, whereas soluble
CXCL16 acting through the CXCL16/CXCR6 axis has been proved to induce cancer

invasion and metastasis®®

. Overexpression of CXL10 by malignant cells has been
reported to desensitize CXCRS3 in lymphocytes from HCC patients resulting in tumor
escaping from host defense mechanisms®®, while activation of the CXCL11/CXCR7

pathway has been related to HCC progression®”. Concerning IL4 and IL17A, they
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have been connected with suppression of cancer immunosurveillance and promotion
of metastasis®'?*,

At the phosphoproteomic level, xXMAP measurements in treated cells, besides
confirming previous knowledge, thus supporting the validity of the applied method,
uncovered some new interesting molecular targets such as SHP2, CREB, and
HSPB1. Particularly, SHP2 tyrosine phosphatase has emerged as a key nodal point
in cytokine and growth factor-induced signaling; therefore, its inhibition by EGCG and
FIS in HEP3B and HEPG2 cells is expected to drastically influence the activation state
of several downstream effectors, including JAK, STAT, and PI3K**. In consistency,
EGCG and FIS were found capable of inhibiting the phosphorylation of important
components of PISK axis (AKT1, GSK3B, TOR, P70S6K, RPS6), which is known to
be abnormally activated in various cancers, including HCC, promoting cell survival,
invasion and angiogenesis®*®. Regarding phospho-CREB and HSPB1 upregulation,
although data interpretation merits further experimental investigation, the available
literature supports that phosphorylated CREB can competitively inhibit NFKB
activation, thereby restricting proinflammatory responses®?®, whereas phosphorylated
HSPB1 can mediate growth suppression in human HCC?*"?%,

At the computational front, we adapted our previously described SigNetTrainer
formulation to construct compound-specific signaling networks in HEP3B cells that
linked intracellular activity (phosphosignaling) to cellular function (cytokine release),
thus revealing mechanisms of compound actions on the basis of topology alterations
of key signaling pathways. In contrast to previous mechanistic studies using kinase
assays, the proposed methodology is able to capture not only the compound effects
on specific target kinases but also how the signaling machinery in its entirety is
affected by this compound. A novel outcome of our computational analysis, which
we further validated experimentally, is the prediction of a common negative control
mechanism underlying the downregulation of several of the aforementioned
cytokines, through ultimate inhibition of the translational factor RPS6 via
PIBK/PIP3/PDK1/P70S6K and/or AKT1/TOR signaling obstruction. Since aberrant
MRNA translation plays a pivotal role in cancer progression, modulating the activation
status of essential components of the protein synthetic machinery, such as RPS6, is

expected to have a more general impact on cancer homeostasis®*”. Because the
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construction of networks was based on data restricted in the neighborhood of five
receptors and 15 measured phosphoproteins, some potential nutraceutical targets
with importance for cancer growth, such as, for example, the AMP-dependent protein
kinase®°, were omitted. Despite this limitation, our proposed systems methodology
is the first effort to obtain, on a systems scale, mechanistic cues into the mode of
action of HCC inhibitory nutraceuticals.

At the phenotypic level, changes in HCC-secreted factors mediated by EGCG, FIS,
and HES (including the above-mentioned reduction of crucial prometastatic and
proangiogenic cytokines), were found eventually to be essential, as they restricted in
vitro the capability of treated cancer cells to transmit prometastatic and
proangiogenic signals to other cancer cells, as well as to their context tumor
vasculature, respectively. These results further support the potential effectiveness of
these compounds to prevent HCC expansion through restriction of tumor
neovascularization and metastasis®’.

In conclusion, in this study by combining high-throughput protein profiling and
network-based analysis of inflammatory and phosphoproteomic HCC responses, we
were able to provide important preclinical evidence and molecular insight for use of
most promising nutraceuticals in novel chemopreventive and/or therapeutic

interventions for HCC.
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Drug-Induced Cardiomyopathy

The disease

The clinical manifestations of anti-cancer drug associated cardiac side effects are
diverse and can range from acutely induced cardiac arrhythmias to Q-T interval
prolongation, changes in coronary vasomotion with consecutive myocardial
ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially

fatal heart failure.’

Experimental Model

Primary study (Cardiomyocytes)
e Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
e Human Embryonic Stem Cell-Derived Cardiomyocytes

e Primary Human Cardiomyocytes, isolated from the ventricles of the adult heart

Verification study (Cancer cell lines from CMAP)

e MCF7
e HL60
e PC3

Experimental Tools

This is a computational project where no experimental tools were used.

Computational Tools

e Integer Linear Programming formulation to combine gene expression data at

hand with prior knowledge of proteins’ connectivity to construct specific
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signaling pathways
e Elastic Net Regularization and other methods of predictive modelling and
machine learning

e Text mining

Main Findings

Constructing specific signaling pathways can computationally capture a drug’s mode
of action and increase prediction accuracy from 79% to 88%, compared to just using
the transcriptomic data at hand. This is probably because of prior knowledge of
biological protein interactions and drug targets are taken also into account to

construct the drug-specific network.

Using EN regularization, we were able to extract 33 protein/gene predictors that best
predict the toxicity classification of drug-induced cardiotoxicity (either toxic for

>0.1% clinical incidence or nontoxic for <0.1%).

The microRNAs that reportedly regulate expression of our six top predictors are of
diagnostic value for natural heart failure or doxorubicin-induced cardiomyopathy.
Among them, miR193-3p and miR26b-5p reportedly regulated more predictors than
other microRNAs, and regulated four and three of our top predictors, respectively. It
might be worthy of clinical studies to determine whether miR193-3p and miR26b-5p

are useful in vivo biomarkers for drug-induced cardiomyopathy.

Publication Timeline

[P6] 17 January 2018, CPT: Pharmacometrics & Systems Pharmacology
Translational systems pharmacology-based predictive assessment of drug-induced

cardiomyopathy
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Co-authored Research: Translational Systems Pharmacology-
Based Predictive Assessment of Drug-Induced

Cardiomyopathy

Please visit DOI of paper [P6] for more information on this chapter.

Abstract

Drug-induced cardiomyopathy contributes to drug attrition. We compared two
pipelines of predictive modeling: (1) applying elastic net (EN) to differentially
expressed genes (DEGs) of drugs; (2) applying integer linear programming (ILP) to
construct each drug’s signaling pathway starting from its targets to downstream
proteins, to transcription factors, and to its DEGs in human cardiomyocytes, and then
subjecting the genes/proteins in the drugs’ signaling networks to EN regression. We
classified 31 drugs with availability of DEGs into 13 toxic and 18 nontoxic drugs
based on a clinical cardiomyopathy incidence cutoff of 0.1%. The ILP-augmented
modeling increased prediction accuracy from 79% to 88% (sensitivity: 88%;
specificity: 89%) under leave-one-out cross validation. The ILP-constructed signaling
networks of drugs were better predictors than DEGs. Per literature, the microRNAs
that reportedly regulate expression of our six top predictors are of diagnostic value
for natural heart failure or doxorubicin-induced cardiomyopathy. This translational

predictive modeling might uncover potential biomarkers.
Introduction

Serious and life-threatening drug-induced adverse events cause drug attrition at
various stages of drug development or modification of treatment regimens. For
instance, anthracyclines, although effective to treat cancers, are known to cause
irreversible, dose-dependent cardiotoxicity (contractility-related toxicity).? Most
recently, targeted therapy with tyrosine kinase inhibitors (TKIs) also cause such

toxicity.? The ability to predict drug-induced cardiotoxicity may reduce drug attrition
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and advance precision medicine.

Predictive modeling of adverse drug reactions by integrating information across
databases and knowledgebase of biological activities, chemistry, and adverse drug
reactions has been undertaken.>® However, no predictive models of drug-induced
cardiomyopathy utilizing signaling network information have been constructed.
Harpaz et al.® stressed the importance of harnessing multiple sources of knowledge,
biological information, and biomedical literature for predicting drug toxicity. In line
with this notion, we reported herein predictive modeling by integrating prior
knowledge, drug targets, and empirical data in order to enable the model to identify
key predictors from a drug’s mode of action, and to have the potential to inform lead
identification and development.

To fill in the gap, we compiled a list of 31 toxic and nontoxic drugs that were
transcriptomically profiled in human cardiomyocytes®®; manually curated and
compiled their clinical incidence of treatment-related cardiomyopathy; and
conducted predictive modeling of drug-induced cardiomyopathy. Two predictive
models were compared: (1) applying elastic net (EN) to gene expression data; and (2)
applying integer linear programming (ILP) to construct a drug’s signaling network to
reflect its mechanism of action,’ and then subjecting the nodes in individual drugs’
signaling networks to EN regression. The ILP formulation® navigates a prior
knowledge network of protein-protein, protein-transcription factor (TF), and TF-gene
interactions, and identifies the pathways that connect a drug’s targets to its
differentially expressed genes (DEGs). The ILP not only optimizes the solution of
finding a drug’s signaling pathways but also enhances performance of predictive
modeling by enabling identification of the subset of DEGs that are functionally
relevant to a drug’s mode of action. We further referenced literature for the
microRNAs, which are reportedly of diagnostic value for heart failure and for drug-
induced cardiomyopathy, as well as also regulating the expression of our predictors
in hopes of shedding light on potential microRNAs as in vivo drug-induced

cardiomyopathy biomarkers.

Methods
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Compilation of drugs and their clinical incidence of drug-induced

cardiomyopathy.

To compile the list of approved drugs that cause treatment-related cardiomyopathy,
we referenced the National Institutes of Health Common Terminology Criteria for
Adverse Events (version 4.03)° and the Medical Dictionary for Regulatory Activities'
for cardiomyopathy-related terms to text-mine approved drug labels. The terms used
included cardiomyopathy, heart failure, congestive heart failure, cardiac failure, left
ventricular dysfunction, left ventricular failure, and reduction in left ventricular ejection
fraction. The current drug label PDF files (Drugs@FDA?) were processed using a text-
mining analysis pipeline, as published previously.' Individual rates of occurrence for
cardiomyopathy were extracted by manual curation of drug labels, published
redacted new drug application reviews (Drugs@FDA), as well as published clinical

studies.

Predictive modeling

Workflow and highlights of EN and ILP.

As shown in Figure P6-1, we compared two pipelines of predictive modeling. For
pipeline 1, we applied EN to DEGs of a drug. For pipeline 2, we applied ILP to
construct each drug’s signaling pathway, and then subjected the genes/proteins in
each drug’s signaling network to EN regression.

The EN is useful for predictive modeling when predictors greatly outnumber
observations while simultaneously being able to identify statistically significant
predictors.™ The EN regularization is useful for analyzing genomics of drug sensitivity
in cancer.™

We applied ILP to a drug’s DEGs and protein targets to model its mode of action.
These two levels of information are connected via signal transduction where the
signal originates at drug targets, propagates intracellularly via a complex network of
signaling cascades, passes through the layer of TFs, and finally reaches the
transcriptomic level of DEGs. We modelled the interactions in the knowledge network

by using the logic formalism,'® which identified the minimum subset of the network to
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achieve the desired connectivity. We constructed the specific signaling network for
each drug using an ILP formulation, as published previously.’

The ILP will enhance predictive performance because it has the ability to capture
cellular responses to a drug, to identify the subset of important functional DEGs, and

to help differentiate between compounds and translate into improved performance.

Drug name normalization.

Drug names were first normalized and identified by the PubChem compound
identifier to ensure consistency when downloading data from Connectivity Map
(CMap),”® Drug Toxicity Signature Generation Center (DToxS),° Search Tool for

Interactions of Chemicals (STITCH),"” and literature.

Compilation of drug targets.

We compiled the targets of individual drugs from STITCH,'” and the “chemicalprotein
links” database and selected only human proteins. The proteins were identified by
the SwissProt/EnsEMBLidentifier, and translated into HUGO Gene Nomenclature
Committee gene symbols,® using the R biomaRt package, in order to match with the
nodes in the prior-knowledge network.” We used STITCH’s “interaction types for
links” data file, from where we identified the drugs as activating or inhibiting individual
target proteins. We used only those associating links between protein-drug pairs with

an evidence score of 0.7.

Gene expression data sources and handling.

Wherever data were available in Affymetrix probe IDs, the probe IDs (Affymetrix
GeneChip Human Genome U133A Array) were translated into HUGO Gene
Nomenclature Committee gene symbols using the biomaRt package® and
hgu133a2®' packages in R, an open source statistical computing graphics systems.
Across all the gene lists, we kept only those genes with fold change > 2 and P value
< 0.05 by a two-tailed, two-sample, unequal variance Student’s t-test, adjusted
separately for the up and down gene lists with Bonferroni correction (P value adjusted
for multiple comparisons).

A list of 75 drugs with drug-induced DEGs available from cancer cells'®in CMap were
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used for exploratory modeling (see Table P6-S1). To conduct robust predictive
modeling, we exhausted literature and databases and found a list of 31 drugs of
which drug-induced DEGs in human cardiomyocytes and stem cells-derived
cardiomyocytes were available. The two data sources for drug-induced perturbation
of gene expression in cardiomyocytes were: (1) 30 drugs from DToxS, where primary
human adult cardiomyocytes were used; and (2) literature data of doxorubicin studied
in human stem cell-derived cardiomyocytes. The size of each dataset was mainly
constrained by the availability of DEGs data. For DToxS data, we downloaded the
level two gene expression data, calculated the fold changes, kept only those DEGs
with achange > 2 and merged them from different donors by averaging the fold
changes while excluding any DEGs with opposite directions of fold change among
donors.

Doxorubicin is widely studied for its dose-dependent cardiac toxicity, and is
commonly dosed at 40-60 mg/m. Following intravenous 60 mg/m?, its peak plasma
concentration (Cmax) Was 630 ng/mL (1,159 nM).** See Table P6-S2 for a few studies
of transcriptomic profiles of doxorubicin. For our modeling, we included the data from
human-induced pluripotent stem cells-derived cardiomyocytes by Chaudhari et al.?
and Burridge et al.” We included the gene expression data by Burridge et al. were at
100, 1,000, and 10,000 nM and those by Chaudhari et al. were at 156 nM (see
Supplementary Table S3 at DOI: 10.1002/psp4.12272 for the rationale).

Identifying a drug’s mode of action using ILP.

We first built a prior-knowledge network as a scaffold for constructing a drug’s
signaling network by downloading from Reactome the latest version (version 2015) of
the “Functional interactions derived from Reactome.” As published previously,® we
merged those interactions with transcription factors and obtained a network across
the protein, transcription factor, and gene levels, which contained 64,801 reactions,
2,585 signaling proteins, and 12,376 genes. We applied ILP to optimize a drug’s
signaling network by providing as the input the scaffold mentioned above and its
targets.

The ILP formulation was solved using IBM ILOG CPLEX optimization studio for the

objective of optimizing a drug’s network. Based on the constraints that mimic signal
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transduction® and adjustment to the specific case of very large (>10,000 nodes)
networks, the algorithm minimized the mismatch between the data of gene
expression measurements and the prior knowledge pathway topology. The output
was the optimal signaling network of a drug, identifying the molecular interactions
that seemed to be functional based on the input of DEGs and drug targets. We were
able to select the minimum part of a prior-knowledge network for each drug that
could explain the data in hand. See Supplementary Document-ILP at DOI:
10.1002/psp4.12272 for understanding the example of methotrexate signaling
network captured by ILP (also in Figure P6-S1) and how the proposed ILP

formulation works.

Comparing predictive modeling by applying EN to a drug’s DEGs vs. to its ILP

signaling network.

To construct a matrix for EN regression, a drug was marked with O if classified as
nontoxic and marked 1 if classified as toxic. We classified drugs by referencing
approved labels for the criteria of “frequent adverse events being those occurring on
one or more occasions in at least 1/100 patients; infrequent adverse events being
those occurring in 1/100 to 1/1,000 patients; rare events being those occurring in less
than 1/1,000 patients.” Referencing the definition of rare events used in drug labelling
and considering the distribution of clinical incidence, the number of drugs with gene
expression data available, and the heterogeneity of clinical studies, we classified
drugs into two classes, toxic for those with incidence >0.1% and nontoxic for those
with incidence <0.1%.

A column of “cardiotoxicity” was created with the clinical incidence score: 1 for
“toxic” and 0 for “nontoxic.” Each column corresponded to a single gene expressed
in at least one of the DEGs signatures. Individual DEGs of a drug were assigned a
value of 1, -1, or 0 to reflect upregulated, downregulated, or not reported, respectively
(pipeline 1). The same assignments were applied to the nodes in each drug’s ILP
signaling network (pipeline 2).

In our modeling, we used EN regression, and more specifically a linear regression
model with an EN penalty determined using the R package glmnet.* The EN

regularization is defined by two parameters, alpha and lambda. The EN regression is
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a mixing of LASSO and ridge regression and combines their two penalty terms for
the alpha parameter. When alpha equals 0, EN performs as ridge regression and
when alpha equals 1, EN performs as LASSO. In EN, the lambda parameter reflects
shrinkage of the model’s coefficients. When lambda equals 0, no shrinkage of the
model’s coefficients is performed but the coefficients decrease toward 0 (although
not exactly equal 0) as its value increases. We tried a range of values for alpha from
0 to 1 by a 0.01 step and selected the one that minimized the mean squared error.
For that alpha value, we selected the value of lambda that gave the minimum mean
cross-validated error.

To validate each model, we used leave-one-out cross validation (LOOCV) by leaving
a drug’s signature out one at a time (either DEGs or signaling network constructed
from ILP) and did so across the whole list of drugs. Each time we calculated the
accuracy, sensitivity, and specificity for a predictive model, and selected and
reported the model with the highest accuracy along with its precision, sensitivity, and
specificity. From the chosen predictive model, we extracted the predictors
(genes/proteins) that best predicted drug-induced cardiotoxicity. The receiver
operating characteristic (ROC) and precision-recall curves using the R package with

the former plotted in smooth curve.

Pipeline 1 — applying EN to DEGs

The results of 75 drugs with DEGs from CMap are summarized in Supplementary
Document-CMap at DOI: 10.1002/psp4.12272. Among these 75 drugs with their
DEGs from CMap, 24 drugs were toxic and the remaining 51 drugs were nontoxic.

A model matrix was constructed using cardiomyocyte data, with the 34 observations
(toxicity classification) as rows and 15,016 variables (gene expression) as columns.
The predictive linear model was constructed by having as input all these variables for
EN regularization. We tried all possible different cutoff scenarios (see the spreadsheet
“summary” of Supplementary Table S4 at DOI: 10.1002/psp4.12272 for the results of
the psccm_34_gen_heart trials and the detailed results of 18 models with different
cutoffs in the spreadsheet “9”). For example, a cutoff of 10 meant that we ran the

model by using only those genes that were expressed in at least 10 of the 34
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signatures, meaning that the analysis started with 3,508 genes, whereas a cutoff of
15 started the analysis with the genes that appeared in at least 15 of the 34

signatures, meaning 464 genes were used as the cutoff.

Pipeline 2 — applying EN to gene/protein nodes in ILP-constructed

signaling networks.

We first performed exploratory modeling using a list of 75 drugs with gene expression
data available in CMap and concluded that signaling networks of drugs derived from
ILP outperformed their DEGs when applying EN regularization (see Figure P6-S2 for
ROC and precision-recall curves).

We were able to find the ILP solutions for drugs with gene expression data in
cardiomyocytes (Supplementary Table S5 at DOI: 10.1002/psp4.12272) except
cefuroxime, domperidone, and olmesartan. These three drugs were removed from
this modeling exercise. At the end, we had 31 signaling networks from 28 drugs (15
nontoxic drugs and 13 toxic drugs). See Supplementary Table S5 at DOI:
10.1002/psp4.12272 for the gene/protein nodes in the signaling network of each
individual drugs. We built a model matrix for the 31 signaling pathways/networks by
using gene expression profiles from cardiomyocytes and by assigning 1 if a pathway
node was upregulated, -1 if it was downregulated, and 0 if it was not present in a
drug’s optimized signaling network. See the spreadsheet “summary” of
Supplementary Table S4 at DOI: 10.1002/psp4.12272 for the results of the
psccm_34_ILP_heart trial and the detailed results of 31 models with different cut-offs

in the spreadsheet “10.”

Biological context of predictors

To gain translational insight, we searched literature for microRNAs that have been
shown to be diagnostic markers of heart failure and also involved in regulation of gene
expression. We mined literature and miRTarBase,” a database of experimentally
validated microRNA-target interactions, for a list of microRNAs, which have been

individually reported to regulate expression of our top gene/protein predictors, and
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also been reportedly detected in the circulation of patients with heart failure with a

26,27

varying degree of severity or of patients with doxorubicin-induced

cardiomyopathy.?®

Results

The list of drugs and toxicity profile.

The list of 31 drugs with their clinical profiles of treatment-related cardiomyopathy is
summarized in Table P6-1. Literature search was also conducted to supplement
clinical incidence of cardiomyopathy, if approved drug labels and published
application reviews?® did not have such information. Among the 31 drugs, there were
13 toxic drugs (41.9%) and there were 18 nontoxic drugs (59.1%). For those drugs
without mention of cardiomyopathy-related toxicity described in their labels
throughout the sections of clinical studies, post-marketing experiences, and
warnings and precautions, we also searched literature and published reviews?® to

reach the conclusion that they are nontoxic drugs.

Predictive modeling

Applying EN to DEGs (pipeline 1).

Using LOOCYV across the whole list of 30 drugs and their gene expression signatures,
we achieved 79% accuracy and 75% precision, with 80% sensitivity and 79%
specificity when using those genes that were expressed in at least 11 of the 34
signatures (a cutoff of 11 in spreadsheet “9” of Supplementary Table S4 at DOI:
10.1002/psp4.12272). The results of EN regularization are shown in Figure P6-2a,
2c, and the genes/proteins with non-zero coefficients are PHF19, HSPAS8, RIF1,
CD46, MXRA7, RAB27A, TOMM20, MYO6, and CCNA2. The ROC curves and

precision-recall curves are shown in Figure P6-3 and Figure P6-S2, respectively.

Applying EN to the gene/protein nodes in ILP-constructed signaling networks

(pipeline 2).
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By applying EN regression and LOOCV, we were able to increase both prediction
accuracy and precision to 88%, with 88% sensitivity, and 89% specificity, compared
with the results from EN regression of DEGs (Supplementary Table S4 at DOI:
10.1002/psp4.12272). The EN regularization is shown in Figure P6-2b, 2d. The result
for the psccm_34_ILP_heart trial is in the spreadsheet “summary” and the detailed
results of 31 models with a cutoff ranging from 1 (5,012 genes/proteins in at least 1
drug) to 31 (5 genes/proteins in at least 31 network signatures) are in spreadsheet
“10” of Supplementary Table S4 at DOI: 10.1002/psp4.12272. The highest accuracy,
sensitivity, and specificity were achieved at cutoff of 10 with 189 genes/proteins from
at least 10 drugs’ signaling networks. The ROC and precision-recall curves are shown
in Figure P6-3 and Figure P6-S2, respectively.

We concluded that EN-ILP (pipeline 2) outperformed EN alone (pipeline 1) when
applied to the same set of DEGs.

Cardiac context of top predictors

Using EN regularization, we were able to extract the protein/gene predictors that best
predict the toxicity classification of drug-induced cardiotoxicity (either toxic for
>0.1% clinical incidence or nontoxic for <0.1%). The 33 protein/ gene predictors
along with their individual coefficients are summarized in Table P6-2. The network of
the top 15 genes/ proteins selected by the model is presented in Figure P6-4.
Cardiac relevance of these predictors was reviewed and summarized in
Supplementary Table S6 at DOI: 10.1002/psp4.12272. The protein and gene
predictors identified by EN-ILP reflected the key cellular biological factors for drug-
induced cardiotoxicity. The EN regularization in our predictive modeling selected the
protein/gene predictors that best predicted drug-induced cardiotoxicity.

We mined an evidence-based database of microRNAs® for those that reportedly
regulate our top predictors, and also referenced literature to narrow the list to those
that are reportedly of diagnostic value for heart failure. Summarized in Table P6-3
are our top 10 predictors and their individual regulating microRNAs that have

26,27

reportedly been of diagnostic value for natural heart failure or for doxorubicin-

induced cardiomyopathy.?®
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Discussion

With the clinical incidence of drug-induced cardiomyopathy as a dependent variable,
ILP-enhanced predictive modeling increased prediction accuracy from 79% to 88%,
compared to modeling with EN and DEGs alone. This improved prediction signified
the ability of ILP to computationally capture a drug’s mode of action through
constructing its signaling pathways for the purpose of predictive modeling. ILP offers
the advantage of integrating our prior knowledge of biological protein interactions
and drug targets (Reactome and STITCH), transcription factors, and DEGs into
predictive modeling. ILP also optimizes the size of a drug’s network signature in
addition to capturing the signaling pathways of a drug. Take Lapatinib as an example,
it had 2,265 DEGs from cardiomyocytes, whereas from this set of DEGs, its ILP
network consisted of 1,923 nodes, including its targets, proteins involved in its
signaling transduction, transcription factors, and functional DEGs.

The 33 gene/protein predictors along with their individual positive or negative
coefficients could be used to predict “toxic” or “nontoxic” for a drug by linear
summation using their individual levels of expression (either upregulation (1) or
downregulation (-1)) from its ILP-constructed signaling network. The predictive power
of this system’s pharmacology predictive model will increase with the amount of data
in the training set.

Among the 31 drugs used to conduct predictive modeling, the distribution of toxic
(n513) vs. nontoxic (n518) classification was acceptable, although not ideal. Among
them, there were 18 kinase inhibitors (17 TKls and 1 serine/ threonine kinase
inhibitor), which might seemingly be off-balance from the perspective of the diversity
of drug class. Vemurafenib is a serine/threonine kinase inhibitor and not toxic. The
distribution of toxic (n = 8) and nontoxic (n = 9) drugs among the 17 TKls was
acceptable. TKils, in general, lack target specificity, have multiple targets, and were
designed to disrupt the signaling pathways that are vital to cancer cell survival.?®
Unfortunately, several of these signaling pathways also play a critical role in
cardiomyocyte biology®; consequently, several TKls impair cardiac function. Within

this context, our predictive modeling could be useful for predicting cardiac toxicity
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for future new chemical entities.

All top 15 gene/protein predictors have relevant cardiac functions except ZNF 823
(Supplementary Table S5 at DOI: 10.1002/psp4.12272). Interestingly, CYP3A4 was
an important predictor. Although CYP3A4 does not have biological interactions with
other predictors, as shown in Figure P6-4, it is a major drug metabolizing enzyme.
Among the 31 drugs, 10 of 13 (85%) toxic drugs and 11 of 18 (61%) nontoxic drugs
were metabolized by CYP3A4. The toxic drugs that are primarily or extensively
metabolized by CYP3A4, included amiodarone, axitinib, cytrabine, dasatinib,
doxorubicin, imatinib, ponatinib, sorafenib, sunitinib, and vandetanib.?*'-** For
nontoxic drugs, they are bosutinib, crizotinib, cyclosporine, domperidone, erlotinib,
gefitinib, lapatinib, regorafenib, ruxolitinib, tofacitinib, and ursodeoxycholic acid.>*
Some top predictors are biologically associated with focal adhesion kinase (FAK), a
nonreceptor protein-tyrosine kinase, which is involved in the cytoskeleton-associated
network of signaling proteins.** Focal adhesion complexes play a critical role in how
cultured cardiomyocytes respond to mechanical and neurohormonal stimuli, and in
the development of heart failure.*® FAK activation plays a role in the adaptive
response to cardiac afterload and in myocyte growth via the protein kinase
B/mammalian target of rapamycin pathway.®” The FAK cleavage is mediated by
CASP3 family during apoptosis of human normal cells,* and occurs with activation
of EPHA2 and p38 mitogen-activated protein kinase during doxazosin-induced
apoptosis of a cardiac cell line.*® FAK activates STAT1 during cell attachment,* and
plays a role in cell migration with one of its actions being associated with platelet-
derived growth factor receptor (PDGFR) signaling complex.”’ In short, the top
predictors are important to maintain normal cardiac function.

Per literature, some microRNAs that reportedly regulated expression of our predictors
have also been shown to be of diagnostic value for heart failure with a varying degree
of severity (Table P6-3).**” Among them, miR193-3p and miR26b-5p reportedly
regulated more predictors than other microRNAs, and regulated four and three of our
top predictors, respectively. It might be worthy of clinical studies to determine
whether miR193-3p and miR26b-5p are useful in vivo biomarkers for drug-induced
cardiomyopathy. Literature search uncovered a recent study that investigated

circulating microRNAs in children with anthracycline-induced acute heart injury.
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Elevated miR-29b and miR-499 in the circulation seemed to correlate with troponin
elevation in these children, and were identified as potential cardiomyopathy
biomarkers.?® This observation of miR-29b elevation in doxorubicin-induced
cardiomyopathy differed from an observation of decreased expression of miR-29b-
3p in the coronary sinus blood of patients with heart failure.*” The MiR-29b-3p
regulates expression of one of our top 10 predictors, PDGFR-A. Further studies are
needed to investigate the role of miR-29b in drug-induced cardiomyopathy or in
natural heart failure. Even though miR-27b reportedly regulated CYP3A4,%* literature
search did not uncover any reports that suggested miR-27b to be of diagnostic value
for drug-induced cardiomyopathy.

Integrating clinical incidence with the modes of action of a drug, which is depicted as
its signaling network, for predictive modeling is a strength of our study. There are,
however, some limitations in our approach: (1) nontoxic slightly outhumbered toxic
drugs; (2) limitation of ILP where no biological feedback controls were considered
and assumptions adopted in ILP formulation; (3) DEGs of doxorubicin in
cardiomyocytes were from different sources than the rest of 30 drugs; and (4)
availability of transcriptomic profiling data in cardiomyocytes. Furthermore, our study
inherited the shortcomings associated with the databases and knowledge base used
for our modeling. The impact of disease indications on the incidence and severity of
treatment-related cardiomyopathy is not well characterized.

Our predictive modeling of integrating clinical incidence of drug-induced
cardiomyopathy with the signaling network of toxic and nontoxic drugs not only is
useful for further improving its predictive power, but also identifies important
gene/protein predictors that have relevant cardiac biological functions. Above all, the
top genes/protein predictors are reportedly regulated by specific microRNAs that
have been shown to be of diagnostic value for heart failure or drug-induced
cardiomyopathy. These predictors might be useful for shedding light on potential

microRNAs as in vivo biomarkers of drug-induced cardiomyopathy.
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Non-Alcoholic Fatty Liver Disease

The disease

Non-alcoholic fatty liver disease (NAFLD) is the most common liver condition in the
world, estimated to be by 2030 the most frequent indication for liver transplantation.
NAFLD is a multifactorial disease and its cause and progression mechanisms are still

not completely understood.

Experimental Model

e Primary Human Hepatocytes

Experimental Tools

e Collection of liver from patients

¢ Isolation of Primary Human Hepatocytes and cell culture

e Stimulation, lysis and collection of lysates

e Measurement with bead-based sandwich ELISA for phosphoproteins

e High content screening: Nile Red stain with Hoechst 33342 as a counterstain
Computational Tools

e Integer Linear Programming formulation to combine proteomic data at hand
with prior knowledge of proteins’ connectivity to construct specific signaling
pathways

e Enrichment analysis
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Main Findings

Since 2014, researchers have suggested in-depth study of signal transductions in
order to provide novel solutions in curing or preventing NAFLD.** Today, NAFLD has
become a threat to public health mainly because of the obesity epidemic and it is well
understood that it’s a multifactorial disease. To our knowledge, this is the first study
that aims to understand the multifactorial nature of NAFLD at the signaling level by

studying 5 NAFLD induction models in primary human hepatocytes.

Our results confirm a large body of literature findings for NAFLD signaling
mechanisms. Furthermore, CHK2 and EPOR have emerged as potential NAFLD
players that may be interesting to study further since they are important factors in

liver regeneration®®.

The observed multifactorial nature of the disease suggests that there is no single
treatment for all subtypes of NAFLD, highlighting the need for a systemic approach

and personalised therapeutic interventions to better understand and treat NAFLD.

Publication Timeline

[A11] 3-5 March 2017, Athens, Greece
Primary human hepatocyte models for NAFLD/NASH based on phosphoproteomics.

[A12] 7 April 2017, Athens, Greece
Primary human hepatocyte models for NAFLD/NASH based on phosphoproteomics.

[A13] 7-8 November 2017, Amsterdam, Netherlands
Development of a new drug repositioning platform for Non-Alcoholic Fatty Liver

disease through network analysis.

[A14] 9-11 November 2017, Rome, ltaly

Network based drug repositioning for Non-Alcoholic Fatty Liver Disease.
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Co-authored Research: Cue-signal-response analysis reveals

multifactorial signaling mechanism of NAFLD in vitro.
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Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver
condition in the world, estimated to be by 2030 the most frequent indication for liver
transplantation. NAFLD is a multifactorial disease and its cause and progression
mechanisms are still not completely understood. The main aim of this study is to

unveil different potential signaling mechanisms of NAFLD.

163



Results: Amiodarone, Free Fatty Acids, Tamoxifen, Tetracycline and Valproic acid
were employed as 5 NAFLD induction models in an in vitro platform to study the
disease using primary human hepatocytes. NAFLD induction was monitored by Nile
red staining. For each NAFLD-induction model, the signaling mechanism was
interrogated by measuring 17 phosphorylated protein targets and pathway
optimization algorithm was employed to construct signaling networks. Pathway
findings were integrated with gene expression enrichment analysis to shed light into
the mechanism of each in vitro approach to induce NAFLD. 5 NAFLD induction
models were developed and showed strong lipid accumulation as evident by Nile red
staining. Significant phosphoproteomic deregulations of CREB1, ERK1, MEK1, P53
and NFKB came in agreement with in vivo and in vitro literature findings whereas
CHK2 and EPOR have arisen as important in signaling pathways of NAFLD and are
related to hepatic regeneration.

Conclusions: In this study, we induced NAFLD on primary human hepatocytes with 5
models that correspond to clinical causes of the disease. All models revealed strong
NAFLD phenotype that was originated from diverse signaling mechanisms. Our
results suggest a multifactorial mechanism in NAFLD progression involving significant

signaling pathway deregulations.

Introduction

Non-alcoholic fatty liver disease (NAFLD) has a prevalence of up to 30% in developed
countries® and is considered as the hepatic manifestation of the metabolic
syndrome. NAFLD is defined by the presence of hepatic steatosis in the absence of
excess alcohol consumption (<21 units in men, <14 units in women, were 1 unit =
10ml) and represents a spectrum of clinical conditions, ranging from simple steatosis
and Non-Alcoholic Steatohepatitis (NASH) to fibrosis, cirrhosis and hepatocellular

carcinoma®?®

. The cause and disease progression mechanisms of NAFLD are still not
completely understood®?,?*’. NAFLD can be induced by lifestyles such as a high-fat
diet but also by drugs and there is a great interest for reliable in vitro models to

capture all clinical phenotypes of NAFLD.
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Several in vitro models have been employed to study NAFLD and explore its steatotic
mechanisms. Free Fatty Acids (FFA) has been used extensively. On this front, primary
human hepatocytes are exposed to elevated concentrations of FFA that results in
increased intracellular accumulation of lipid droplets similar to those observed in
patients with NAFLD and NASH?®. Induction of reversible intrahepatic lipid
accumulation has been also connected with drugs from a range of therapeutic
categories, including antiarrhythmics such as Amiodarone (AMI), antibiotics such as
Tetracycline (TET), estrogen receptor modulators like Tamoxifen (TMX), and also
antiepileptics such as Valproic Acid (VPA).?*° Regarding VPA, it is the most prescribed
antiepileptic drug worldwide and it is the chemical analogue of valeric acid. VPA
causes NAFLD through weight gain, hyperinsulinemia and insulin resistance.?® It has
been suggested that VPA causes microvesicular steatosis through VPA-CoA
inhibition of hepatic carnitine palmitoyl-transferase |, an important enzyme in
mitochondrial fatty acid beta-oxidation. Thus, this mechanism, supporting the
evidence of weight gain frequently observed in patients under VPA therapy, has been
described as potentially pivotal in drug-induced hepatotoxicity.”®’ AMI is the most
commonly prescribed antiarrhythmic drug.?® Long-term Amiodarone administration
is known to cause several hepatic side effects through an ambiguous mechanism,

such as dose dependent effect on mitochondria.?®®

It is known that mitochondrial 3-
oxidation and oxidative phosphorylation are inhibited by AMI which results in
microvesicular steatosis, apoptosis and necrosis of the hepatocytes.?® Interestingly,
a similar nut less hepatotoxic drug, Dronedarone, has been proven to also inhibit the
mitochondrial B-oxidation at the same extent,*®® suggesting that other mechanisms
are involved. Another marker of AMI’s steatotic effect is phospholipidosis, caused by
increased triglyceride influx.?® TET was among the first drugs found to cause dose-
related microvesicular steatosis by increasing triglyceride biosynthesis and inhibiting
mitochondrial fatty acid B-oxidation.”® TMX is a selective estrogen receptor,
considered as a gold standard for breast cancer therapy. TMX is known to cause
macrovesicular steatosis and phospholipidosis by decreasing triglyceride secretion,
impairing mitochondrial [B-oxidation and progressively depleting hepatic

mitochondrial DNA.?%®
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A range of cellular systems have been employed to capture NAFLD clinical
phenotypes in vitro. HepG2s have been used extensively in liver research and AMI,
TET and VPA have been assessed as steatogenic compounds by flow cytometry®®.
In addition, primary rat hepatocytes and gene expression analysis®”® have been used
to analyse the effect of TET, TMX and VPA. A canine primary hepatocyte culture
model was also developed®’ to detect drug-induced steatosis from TET.

Signaling pathways and the phosphorylation of proteins during signal propagation
are proximal to many disease-causing signaling mechanisms'’, thus
phosphoproteomic measurements are becoming increasingly important in drug
discovery. On this front, systems pharmacology approaches are becoming
increasingly important to decipher NAFLD mechanisms through multi-omic data
generation and analysis®’®. In order to construct signaling pathways from signaling
data a prior knowledge network, experimental data and an optimization algorithm are
needed®®. Prior knowledge networks can be found in databases such as Reactome™.
The ILP formulation®®' is an optimization algorithm that can analyze such a “prior
knowledge” network of protein interactions along with phosphoproteomic
experimental data, and identify the pathways that best describe the data at hand.
This process has been shown to lead to a better understanding of several diseases’
mechanisms®”® and provide useful insights relevant to a drug’s mode of action.?”

It has been suggested®? that in-depth understanding of liver cells signaling in the
NAFLD pathogenesis process will contribute to the prevention and treatment of
NAFLD. In this study, we developed 5 NAFLD-induction mechanisms on primary
human hepatocytes and we combined multi-omics data and computational tools to
unveil different potential mechanisms of NAFLD. Our cue-signal-response analysis
comprised of 5 cues for NAFLD induction, gene expression and phosphoproteomics
data for signal analysis, and nile-red staining for monitoring hepatocyte steatotic
response. Our platform sheds a light on the multifactorial nature of NAFLD

mechanisms.

Methods

Workflow
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Primary human hepatocytes were isolated from histologically normal liver fragments
of adult donors undergoing liver resection with standard operating procedures and
approved ethics protocols. A summary of the experimental and computational
workflow is visualized on Figure P7-1. The isolated hepatocytes were cultured and
NAFLD induction was performed via 24h treatment with 5 different steatogenic
compounds: Amiodarone (AMI), Free Fatty Acids (FFA), Tetracycline (TET), Tamoxifen
(TMX) or Valproic Acid (VPA). Following assessment of cell viability, verification of lipid
droplet formation was assessed. To assess signaling pathway activity, NAFLD-
induced cells were treated with a cocktail of activators of major signaling pathways
(EGF, IL1A, IL6, LPS) and lysed for protein isolation. xMAP assay was performed to
quantify phosphorylated proteins in each sample and the results were analyzed with
a pathway optimization tool in order to construct signaling networks and delve into
the mechanism of each in vitro NAFLD-induction model. This work was followed by
enrichment of the pathways and comparison analysis with gene expression data from

literature. The detailed steps of the process is listed below.

Primary Human Hepatocytes Isolation

Primary human hepatocytes were isolated by collagenase perfusion of histologically
normal liver fragments using standard operating procedures®”® from adult donors
undergoing resection for liver metastasis from colorectal cancer, and approved ethics
protocols. Informed consents were obtained from all subjects (2nd Department of
Surgery “Aretaieio” Hospital, 1st Department of Propaedeutic Surgery, Hippokration
General Hospital and 2nd Department of Propaedeutic Surgery, Laiko Hospital,

School of Medicine, National and Kapodistrian University of Athens, Greece).

Cell Culture and NAFLD induction

Primary human hepatocytes were thawed and seeded in 96-well plates (Corning®
Costar®, 3599) coated with Rat Tail Collagen | (BD Biosciences) at a plating

concentration of 50,000 cells per well in cell culture medium (Biopredic International).
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All compounds were prepared and diluted according to the manufacturer’s protocol.
In detail, palmitic acid, oleic acid and sodium valproate were diluted in 100% ethanol
and added to cell culture medium at 1% v/v. Tamoxifen citrate (Cayman Chemicals,
11629), Amiodarone hydrochloride (Cayman Chemicals, 15213) and Tetracycline
hydrochloride (Cayman Chemicals, 14328) were diluted in DMSO and added to cell
culture medium at 0,1% v/v. A mixture of exogenous FFA in molar ratio 1:2 Palmitic
Acid: Oleic Acid (Cayman Chemicals, 90260, 10006627 respectively) and Valproic
acid Sodium Salt (Cayman Chemicals 13033) were diluted in Ethanol. Primary Human
Hepatocytes were exposed for 24h to 100 — 1000 uM FFA, 1 - 10 mM Valproic Acid,
2 — 10 uM Tamoxifen, 1 — 10 pM Amiodarone, 20 — 400 uM Tetracycline and their

vehicles respectively.

High Content Screening

The formation of intracellular lipid droplets was verified using high content screening;
lipid droplets were stained with 2ug/ml Nile Red fluorescent probe (Thermo Fisher
Scientific, N1142). Hoechst 33342 (Thermo Fisher Scientific, H3570) was used for
counterstaining the cell nucleus at 5ug/ml concentration. Images were acquired by
JuLI™ Stage Real-Time CHR (Cell History Recorder) (NanoEnTek), using the channels
DAPI (Excitation 390/40, Emission 452/45) and RFP (Excitation 525/50, Emission

580), under 20x optical magnification.

Resazurin Viability Assay - Viability dosage curves

Resazurin is a non-fluorescent compound and is reduced by the intracellular NADH
of live cells to resorufin, which is highly fluorescent*’®. Resazurin was added to cell
culture medium at 10 pg/mL and incubated for 2 hours in a 37C, 5% CO2, humidified
incubator. Fluorescence was measured at wavelength Ex560nm/Em590nm using
Varioskan™ LUX multimode microplate reader (Thermo Scientific™). Cell viability
was expressed as a percentage of treated to untreated cells. Dose-viability curves

and ICyo calculation was performed with a 4-parameter logistic model using the
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GraphPad Prism 7.0 software. 1C, compound concentrations (cell viability greater

than 90%) were selected for further experiments.

Bicinchonic Acid Assay to measure total protein content

Micro BCA™ Protein Assay Kit (Thermo Fisher Scientific, 23235) was used to
measure the protein content of the lysates in order to adjust their concentrations to
the same levels across samples before phosphoproteomic measurement. BSA
(Bovine Serum Albumin) was used for standard curve construction. Absorbance was
measured at 562nm using the Varioskan™ LUX multimode microplate reader (Thermo

Scientific™).

Phosphoproteomic sample preparation and multiplex antibody-based
ELISA

In order to prepare samples for a systematic study of the cell signaling networks,
based on previous research'?, a mix of stimuli EGF, IL6, IL1A and LPS was used to
activate different hepatocellular pathways simultaneously. 24 hours before this
stimulation the cells were treated with the five NAFLD-inducing compounds and their
vehicles, DMSO and Ethanol. 25 minutes after stimulation the cells were lysed. The
selection of 25minutes was consistent with numerous earlier studies done, for
example with primary hepatocytes®' or other cell lines®”’. Lysis buffer optimized for
phosphoproteomic measurements (ProtAtOnce Ltd) was wused along with
protease/phosphatase inhibitor mix (ProtAtOnce Ltd) and Phenylmethanesulfonyl
fluoride (PMSF; SIGMA, P4626). xMAP assays were performed on a Luminex
FlexMAP 3D platform (Luminex, Austin, TX). 17 phosphorylated protein targets were
measured in this multiplex antibody-based ELISA. The custom phosphoprotein
antibody-coupled beads were developed by ProtAtOnce Ltd. (Athens, Greece). The
phosphorylated proteins’ UNIPROT names and their phosphorylation residues
targeted by our assays were: AKT1 (S473), CHK2 (T68), CREB1 (S133), EPOR (Y426),
ESR1 (S118), HSPB1 (S78/S82), IKBA (S32/S36), JUN (S63), KS6B1 (T389), MK03
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(T202/Y204), MP2K1 (S217/S221), P53 (S46), PRGR (S294), PTN11 (Y542), STAT3
(Y705), STAT6 (Y641), TF65 (S536).

Construction and analysis of signaling pathways

A prior-knowledge network including all signaling pathway information was
downloaded from Reactome. The top 25 targets for Amiodarone, Free Fatty Acids
(Palmitic Acid & Oleic Acid), Tamoxifen and Valproic Acid were acquired from
STITCH", a platform pooling together all interactions between proteins and small
molecules and rating them based on the available evidence. Only the targets relative
to organism Homo sapiens were selected. Then, all targets, enzymes and
transporters were acquired from DrugBank, following a search in the extended
STITCH database for proteins that were not in the top 25 but were reported in
DrugBank. Based on the descriptions “Activation”, “Inhibition”, “Binding” or
“Catalysis” reported in STITCH, and the descriptions “Agonist”, “Antagonist”,
“Inhibitor”, “Substrate” or “Inducer” reported in DrugBank, each target as was
characterized as “activated” or “inhibited” from the specific compound. The targets
with the higher statistical significance of the stimuli used were also acquired from
STITCH. Once the target lists and prior-knowledge networks were compiled, results
from experimental phosphoproteomics measurements for each compound were
applied to an integer linear programming (ILP) formulation, to create compound-
specific signaling networks. The ILP formulation was solved using IBM ILOG CPLEX

optimization studio®’.

Enrichment analysis and signature comparison visualization

In order to visualize the high-dimensional data, multidimensional scaling was
performed using cmdscale from R package ‘stats’?’® to construct a 2D plot of the
compounds’ mechanisms for visualization purposes.

Expression data for NAFLD patients with Gene Expression Omnibus (GEO) accession
number GSE49541 were used®”®. The data were created from liver biopsy tissue RNA

analysis. 40 gene expression profiles with mild NAFLD (fibrosis stage 0-1) and 32 with
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advanced NAFLD (fibrosis stage 3-4) were analyzed with GEO2R to find differentially
expressed genes. Gene Ontology (GO) using the Term Enrichment Service, powered
by PANTHER?® provides 8 different annotation data sets, which were all used to
collect annotation terms for our analysis: PANTHER Pathways, Protein Class, GO-
Slim Molecular Function (MF), GO-Slim Biological Process (BP), GO-Slim Cellular
Component (CC) and the GO complete ontologies MF, BP, CC.

Results

Dose response curves and calculation of IC10

Resazurin viability assay was used for the construction of dose-viability curves and
tha calculation of IC+, for all five compounds used to induce NAFLD (Figure P7-S1):
90.56 + 1.099 pM for Amiodarone, 591.07 + 1.389 uM for Free Fatty Acids, 150.3 +
1.483 uM for Tetracycline, 17.71 + 1.488 pM for Tamoxifen and 6200.8 + 2.109 pM
for Valproic Acid.

Confirmation of NAFLD induction via High Content Screening

The formation of intracellular lipid droplet formation was verified high content
screening, more specifically Nile Red stain with Hoechst 33342 as a counterstain
(Figure P7-2).

XMAP phosphoproteomic assays results

Student’s t-test was performed across the four donors’ sample measurements,
comparing the DMSO or Ethanol vehicles with the Amiodarone, Free Fatty Acids,
Tetracycline, Tamoxifen and Valproic Acid treatments. Fold increase was calculated
by dividing the average across the four donors treated cells by the respective average
of control.

Phosphoproteomic results are summarized on Figure P7-3A. Amiodarone

significantly increased (1.27-fold, p-value 0.029) phosphorylated Erythropoietin
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receptor (EPOR). The Free Fatty Acids stimulation significantly increased (1.32-fold,
p-value 0.012) the phosphorylated Transcription factor p65 (TF65), while Tamoxifen-
stimulated cells were observed to have increased phosphorylated cellular tumor
antigen p53 (P53) at 1.47-fold, p-value 0.007, Serine/threonine-protein kinase Chk2
(CHK2) at 1.27-fold, p-value 0.027 and cyclic AMP-responsive element-binding
protein 1 (CREB1) at 1.37-fold, p-value 0.005. Finally, Valproic Acid treatment
significantly increased phosphorylation of TF65 at 1.41-fold, p-value 0.016, Dual
specificity mitogen-activated protein kinase kinase 1 (MP2K1) at 1.42-fold, p-value
0.015 and Mitogen-activated protein kinase 3 (MK03) at 1.64-fold, p-value 0.010.

Signaling Pathways Analysis

The NAFLD-inducing compounds’ targets from STITCH and DrugBank, a prior-
knowledge network from Reactome and our phosphoproteomic measurements
formulated an optimization problem solved with an ILP formulation. The algorithm
minimized the mismatch between our experimental data and the prior knowledge
network. Each signaling pathway (Figure P7-S2) describe the compound’s
mechanism of action. The proteins involved in those pathways and their
corresponding networks are combined and presented on Figure P7-4. Those
networks visualize the identified molecular interactions that appear to be functional

based on our experimental results.

Signature comparison and enrichment analysis

Using all experimental data available for each of the five compounds, a 2D plot was
created using multidimensional scaling in order to visualize how closely related they
are (Figure P7-3B).

Regarding the enrichment analysis, 72 gene expression profiles with mild or
advanced NAFLD from liver biopsy tissue RNA dataset GSE495412"° were compared
with GEO2R to find differentially expressed genes important in the progression of
NAFLD disease. Then, the list of top 250 genes of highest fold change were analyzed

with Gene Ontology (GO) enrichment tool to find GO annotations. The gene lists
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corresponding to the pathway nodes of AMI, FFA, TET, TMX, VPA were also analyzed
for GO annotations. The GO annotations that are present in the analyzed dataset
GSE49541 and at least one of the compounds’ pathways are shown on Table P7-S1
including their fold enrichment. GO:0030335 (positive regulation of cell migration),
G0:2000147 (positive regulation of cell motility), GO:0051272 (positive regulation of
cellular component movement) and GO:0040017 (positive regulation of locomotion)
were significantly enriched only in the GSE49541, FFA and VPA lists. GO:0071229
(cellular response to acid chemical) and GO:0001101 (response to acid chemical)
were significantly enriched in GSE49541 and TMX lists. GO:0042060 (wound healing)
and GO:0009611 (response to wounding) were significantly enriched in GSE49541
and VPA lists.

Discussion

NAFLD has been described as an extremely complex disease, representing the
convergence of several signaling networks and various phenotypes that will require
study from many perspectives.”®' In this study, 5 clinical phenotypes of NAFLD were
translated into 5 different in vitro models of primary human hepatocytes. Following a
Systems Pharmacology experimental design, our experiments revealed irregular
phosphorylation patterns caused by AMI, FFA, TMX and VPA stimulation of
hepatocytes and significant (p value < 0.05) deregulations (>1.25-fold increase or
decrease) were observed in the phosphorylation of intracellular proteins TF65, P53,
CHK2, CREB1, EPOR, MP2K1 and MKO03. The phosphorylation patterns were in good
agreement with the literature: Phosphorylated TF65, also known as NFKB or RELA
was significantly increased under FFA and VPA guided induction of NAFLD and came
in agreement with activation patterns of TF65 that have been observed in obese
patients®® and rats with induced NAFLD?®. VPA stimulation also significantly
increased phosphorylation of MP2K1 and MKO0S3, both very important components of
the MAPK pathway. MP2K1, also known as MAP2K1 or MEK1 is an essential
component of the MAPK/RAS-signaling module. Interestingly, MAP2K1 has been
shown to export PPARG from the nucleus and PPARs are modulating hepatic

triglyceride accumulation, a hallmark of NAFLD development.?® Also, inhibition of
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MP2K1 pathway in the liver has been shown to ameliorate Insulin resistance.?®® MKO03,
also known with its gene names MAPKS or ERK1, has been shown to be significantly
increased upon lipid accumulation induction.?® Two further interesting
phosphoproteomic deregulations were observed in the TMX stimulation group.
Phosphorylated P53 and CREB1 were both significantly increased under TMX
treatment. P53 is coded by the gene TP53, a tumor suppressor gene. It can induce
growth arrest or apoptosis depending on the cell type and physiological
circumstances. P53 becomes activated in response to DNA damage, oxidative stress
and many other situations of stress. It is involved in cell cycle regulation, negatively
regulating cell division by controlling a set of genes required for the process. It has
been proved that the stage of liver steatosis increases the expression of pro-
apoptotic proteins in hepatocytes, mainly P53.*” CREB1 is a transcription factor
involved in different cellular processes. Experiments have indicated a potential role
for CREB1 antagonists as therapeutic agents in enhancing insulin sensitivity in the
liver.?® Other researchers have suggested that CREB1 is a potential therapeutic
target for hepatic insulin resistance associated with NAFLD and they were also able
to show that CREB knockdown in rodent models decreased hepatic triglyceride
content.?® On top of the phosphoproteomic results that were in good agreement of
other researchers’ work, two further irregular phosphorylation patterns were identified
for CHK2 and EPOR which our findings suggest to be linked to NAFLD mechanisms.
Phosphorylated CHK2 and EPOR were found significantly increased under TMX and
AMI induction of NAFLD respectively. CHK2 is coded by the gene CHEK2 and is
required for checkpoint-mediated cell cycle arrest, apoptosis in response to the
presence of DNA double-strand breaks and activation of DNA repair. The gene
CHEK2 gene can be seen on a pathway figure depicting the protein-protein
interaction network for the differentially expressed genes between healthy and obese
samples and normal controls in a publication about NAFLD but is not further explored
by the authors.*® EPOR mainly mediates erythropoietin-induced erythroblast
proliferation and differentiation. EPOR was one of four hepcidin regulators whose
expression was found altered in mice fed with a high-fat diet, but not further studied

1

in the publication.?" Further investigation is needed to uncover how those

phosphorylated proteins may play a role in NAFLD progression.
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As expected due to the multifactorial nature of NAFLD, significant differences were
observed among the compounds used to induce NAFLD. On Figure P7-3B, an
attempt in visualization of those differences using all collected phosphoproteomic
data and multi-dimensional scaling to plot them in 2 dimensions. VPA appears to be
closer to FFA than to the other compounds. VPA is an analog of the natural fatty acid
valeric acid, therefore it is expected to cluster together with FFA in this graph. The
similarities observed on AMI and TET can be attributed to the fact that both these
compounds disrupt mitochondrial functions that lead to blockage of triglyceride
secretion. On the contrary, TMX’s steatogenic effects arise from increased fatty acid
biosynthesis and subsequently increased triglyceride formation. Nevertheless, further
investigations are needed to describe the observed similarities on NAFLD induction
of these compounds.

The enrichment of GSE49541 data®® (differentially expressed genes important to
advancing NAFLD progression) was also compared with the enrichment of AMI, FFA,
TET, TMX and VPA pathways. Four GO terms from three different GO biological
process categories (cellular process, localization and locomotion) were enriched only
in the GSE49541, FFA and VPA lists, all pointing to the same process of cell
movement, while migration is known to be enhanced by FFA treatment.”* Two GO
terms about response to acid chemical and three GO terms regarding development
of the circulatory system were enriched only in the GSE49541 and TMX lists. TMX
has been linked with circulatory system regulation and is known to have
cardiovascular effects.?® Finally, there was a response to wound enrichment of two
GO terms, appearing in the GSE49541 and VPA lists. Interestingly, VPA has been

294

proven to induce cutaneous wound healing in vivo.” It should also be noted that

5

EPOR plays an important role during wound healing®®® while CHK2 expression

correlates with the peak cellular activity during liver regeneration.?*®

Conclusions

Since 2014, researchers have suggested in-depth study of signal transductions in
order to provide novel solutions in curing or preventing NAFLD.** Today, NAFLD has

become a threat to public health mainly because of the obesity epidemic and it is well
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understood that it’s a multifactorial disease. To our knowledge, this is the first study
that aims to understand the multifactorial nature of NAFLD at the signaling level by
studying 5 NAFLD induction models in primary human hepatocytes. Our results
confirm a large body of literature findings for NAFLD signaling mechanisms.
Furthermore, CHK2 and EPOR have emerged as potential NAFLD players that may
be interesting to study further since they are important factors in liver regeneration®*°.
The observed multifactorial nature of the disease suggests that there is no single
treatment for all subtypes of NAFLD, highlighting the need for a systemic approach

and personalised therapeutic interventions to better understand and treat NAFLD.

List of Abbreviations

NAFLD: Non-alcoholic Fatty Liver Disease
NASH: Non-Alcoholic Steatohepatitis
FFA: Free Fatty Acids

AMI: Amiodarone

TET: Tetracycline

TMX: Tamoxifen

VPA: Valproic Acid

EGF: Epidermal growth factor

IL1A: Interleukin 1A

IL6: Interleukin 6

LPS: Lipopolysaccharide

DMSO: Dimethyl sulfoxide

GEO: Gene Expression Omnibus
GO: Gene Ontology

MF: Molecular Function

BP: Biological Process

CC: Cellular Component

EPOR: Erythropoietin receptor

TF65: Transcription factor p65

P53: Cellular tumor antigen p53
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CHK2: Serine/threonine-protein kinase Chk2
CREB1: Cyclic AMP-responsive element-binding protein 1
MP2K1: Dual specificity mitogen-activated protein kinase kinase 1

MKOS3: Mitogen-activated protein kinase 3

Development of a new drug repositioning platform for Non-

Alcoholic Fatty Liver disease through network analysis.

Please visit abstract [A13] in section “Abstracts in International Conferences” for

more information on this chapter.

Non-alcoholic fatty liver disease (NAFLD) is defined as the presence of hepatic
steatosis in the absence of excess alcohol consumption and is considered the
hepatic manifestation of the metabolic syndrome. It is considered to be the most
common pathological condition of the liver, but its cause and progression
mechanisms are still not completely understood, partially because of the lack of
sufficient in vitro models. There is no therapy approved specifically for NAFLD by
FDA). The aim of this project is to develop a platform for drug repositioning in
NAFLD/NASH by combining novel in vitro models of primary human hepatocytes with
network-based analysis of gene expression and xMAP data.

For the in vitro induction of NAFLD, primary human hepatocytes (pHH) were exposed
to free fatty acids (palmitic acid, oleic acid) and to the steatogenic compounds
amiodarone, tamoxifen, tetracycline and valproic acid. The presence of steatosis was
assessed using high content screening; lipid droplets were stained with Nile Red
fluorescent probe and Hoechst 33342 was used for counterstaining cell nucleus. In
addition, 17 phosphorylated protein targets were measured and signaling networks
were constructed, in an attempt to shed a light into the mechanism of each in vitro
approach to induce NAFLD.

A network-based computational approach was employed to suggest compounds for
NAFLD. NAFLD-related networks were identified through (i) gene set analysis (GSA)
and (i) multiplex phosphoproteomic data. The common pathways with the

aforementioned steatogenic compounds, used to induce NAFLD in vitro, were found
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through DrugBank and MSig database. To suggest compounds that reverse the
disease mechanism, the steatogenic compounds were used with the Connectivity
Map database. The most promising compounds for drug repositioning were identified
in the intersection between patient-derived and drug-derived networks.

In this work, we have successfully developed NAFLD-induced in vitro models driven
by steatogenic compounds. xXMAP phosphoproteomic data and pathway analysis
identified deregulations of CREB1, ERK1, MEK1, P53 and NFKB that came in
agreement with literature whereas the involvement of CHK2 and EPOR pathways
seems to be unknown mechanisms for steatosis. Our drug reposition platform
suggested 10 potential candidates that were tested in our in-vitro models.
Interestingly, 5 of them have shown that can reverse in-vitro NAFLD. 3 of them are

already in clinical trials whereas 2 more show very promising therapeutic potential.
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Phosphoproteomic data: The time course of the phosphoprotein signals from the
unstimulated state to the average early response is illustrated. The rows correspond
to the 17 phosphoproteins measured and the columns to the 79 ligand treatments
(including the No-ligand treatment). In each subplot, the first point shows the
unstimulated activity of the respective signal (zero time point); the second point
shows the raw measurement of the signal (in fluorescent units) 5 p 25 min after
stimulation; while the color code corresponds to the normalized value (between 0 and
1) of the signal. The numbers on the right-hand side of the figure show the maximum

phosphorylation value of each signal in fluorescent units.
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Figure P1-2

Optimized pathway: The signal transduction network upon optimization via the ILP
formulation. Green rectangular nodes correspond to the imposed ligands, gray elliptic
nodes to the measured phosphoproteins, gray rectangle nodes to the measured
cytokine releases and clear (white) elliptic nodes to latent signaling proteins in the
network. The optimization procedure trains the PKN by removing reactions that
contradict the proteomic data at hand. Thick black edges denote the reactions
validated by the data; gray edges denote the reactions that contradicted the data and

were removed by the ILP algorithm.
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Figure P1-3
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Cytokine release data: The time course of the cytokine releases from the unstimulated
state to 24 h is illustrated. The rows correspond to the 55 cytokine releases measured
in the supernatant and the columns to the 79 ligand treatments (including the No-
ligand treatment). In each subplot, the first point shows the unstimulated
concentration of the respective cytokine in the supernatant (zero time point); the
second point shows the raw measurement of the signal (in fluorescent units) 24 h
after stimulation; while the color code corresponds to the normalized value (between
0 and 1) of the signal. The numbers on the right-hand side of the figure show the

maximum phosphorylation value of each signal in fluorescent units.
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Figure P1-4
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Effects of the MAPK14 and PI3K inhibition on the activity of IKB and HSP27 upon
stimulation with IL1B and TNF: Inhibition of MAPK14 clearly decreases HSP27 activity
upon IL1B and TNF stimulation, validating that HSP27 is activated in a MAPK14
dependent manner, in good accordance to model predictions. IKB activity is not
blocked neither by MAPK14 nor PI3K inhibition validating that IKB is activated by an
independent pathway. The numbers on the left correspond to the raw

phosphorylation value of the measured signals in fluorescent units.
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Figure P2-1

Predict human impact
and then validate
with human data

cellular cellular
model model

Concept of translatability.
The arrows indicate potential routes of translation between in vitro and in vivo

systems and/or across species.
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Figure P2-2
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Schema of the mMRNA processing to generate the gene expression dataset avoiding
confounding effects between species and between DME controls and treatment

conditions.
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Figure P2-3
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Overall experimental workflow. (a)- Experimental steps followed to generate the STC
multi-layer omics dataset compendium for translational systems biology. (b)- Pipeline
for the development and optimization of antibody-based multiplexed assays (detailed

description of step 2 ‘Validation of protein assays’).
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Figure P2-4
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The determination of optimal time points for phosphoproteomics measurements in
NHBE and NRBE: Human and rat bronchial epithelial cells were treated with seven
stimuli at five different time points (0, 5, 15, 20 and 25min). The time course of the
raw data (fluorescent intensity: Fl) for each phosphoprotein was plotted in subplots
using a modified version of DataRail. The solid fill colours (yellow, green, purple,
grey/black) of the time course correspond to different signal behaviour over time
according to the DataRail colouring scheme. Yellow colour corresponds to transient
activity (FI increases and then decreases), green colour corresponds to sustained
activity (FI increases and remains active), purple colour corresponds to late activity
(FI starts stable and then increases) and grey/black to no change (FI

increase/decrease compare to basal level at 0 time point less than 50% across all

186



time points - the darker the grey colour the bigger the average Fl). In the majority of
experiments, maximum phosphoprotein activation in NHBE cells was found at 5 (red)
and 25 (blue) minutes, whereas NRBE cells were maximally activated at 20 (green)
and 25 (blue) minutes. Thus, 5 and 25min were selected as the optimal time points

for both cell types.

Figure P2-5
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The process of selection of the stimuli used to generate the dataset for the Species
Translation Challenge: The selection processes involve various steps, including in

silico analysis, literature review, and phosphoproteomics screening.

187



Figure P3-1
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Overview of the Network Inference Challenge. Participants are provided with a
reference network together with Affymetrix gene expression and Luminex
phosphoproteomics and cytokine data derived from human and rat bronchial
epithelial cells. The goal is to generate two separate networks for human and rat by

adding and removing edges from the reference network using the data provided
Figure P3-2

EGF
INSULIN
RAS
IL1R
PDGF
MAPK
NFKB
IL3
CERAMIDE
IL4

0 0.2 0.4 0.6

Pathway coverage

Canonical pathway

The top 10 canonical pathways represented in the reference network. The pathways

are ordered by the proportion of genes present in the reference network
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Figure P3-3
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The predicted networks for human (A) and rat (B) were compared with the silver
standard and against each other using MCC. Only edges present in the reference

network were considered

Figure P3-4
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(A) The beta-binomial mixture weight can be calculated by maximizing the log-
likelihood function. (B) Using this value, the fitted mixture is shown in red together
with the individual-weighted components in black. Only edges present in the

reference network were used in this case

189



Figure P3-5
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Panels A and B show two example subnetworks of the consensus network where in
blue are human-specific edges, in red rat-specific edges and in black edges common
to both species. Depicted in gray are edges from the original reference network that
did not gather sufficient consensus between participants. Panel C shows the average
consensus score of the edges between a layer and the next one downstream from it

for human and rat networks
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Figure P4-1
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Signaling pathways associated with multiple sclerosis (MS). (a) An example of the

pathways implicated in MS that can be identified from databases. The right column
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shows the heat map of the pathways associated with MS and the left columns the
heat map of the pathways associated with each of the drugs. On the right, each
cluster is followed by the list of the pathways it includes (in bold the pathways
specifically target by a drug). Blue squares: known mechanisms of action for a given
drug. (b) Integration of signaling pathways implicated in MS in network models: The
genes/proteins associated with MS are displayed in orange, drugs are in green, and

the main MS pathways targeted by therapies are in yellow.
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Pipeline for the identification of new therapies based on the modeling of signaling
pathways associated with multiple sclerosis (MS) and MS drugs. Flow from first to
second row panels: Experimental set-ups, such as proteomics and genotyping, can
be tailored to interrogate MS-specific signatures in terms of phosphoproteomics
(rows, phosphorylation profile of specific proteins e.g. XMAP assays; Columns, MS-
related treatments) and the risk variants. A literature search enables MS- and
immune-specific pathways to be compiled and drug-protein networks can be
assembled (the hot scale shows the density of proteins in the signaling pathways,
and the upper layer shows green and blue clusters of proteins targeted by MS-related
drugs). Flow from second to third row panels: Logic and dynamic models can be
constructed based on MS- and immune-specific signaling pathways. In order to
study how signaling is deregulated in MS, one model can be calibrated against a
patient-specific dataset, thereby yielding an ensemble of patient-specific models that
enables common signaling mechanisms and those that explain patient-to-patient
variability to be discriminated. In parallel, the signaling pathways and drug-protein
networks can be used as an input for machine-learning approaches in order to
reposition existing drugs that can be used to infer new drug indications or to predict
toxicity. From new drug indication to model: Literature search of existing drugs and
their targets, combined with search of those targets in MS-specific networks yields
MS-specific drug-protein networks, which suggests new drug indications by
identifying the interactions from drug targets to MS networks. These newly indicated
drugs can then be introduced in the predictive models to understand their

mechanisms of action in order to select those drugs with the best potential efficacy.
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Figure P5-1

@) oo

CXCL16
CXCL11
CxL10
13
L4
(8]}
L8
IL17F
IL17A
TNFA
IL1A
GROA
I3
CCL26
CCL20
PDGFB
PLGF

Cytokines - HEP3B cells

CXcL11
CXL10
13
Le
[R]:]
[[F:}
IL17F
IL17A
TNFA
IL1A
GROA
I3

Cytokines - HEPG2 cells
(uiejoud |BJO | /S)UN 80UBDSBION|H) BN|BA Xe|

(¢) oxour
cxcLie
cxeL
cxL10
L13
ILa
Le
ILs
L17F
IL17A
TNFA
LA
GROA
L3
coLze
ccLzo
POGFB

AL H

§3aguags

Cytokines - HUH7 cells

§

P9}

38

Cytokine xMAP datasets from (a) HEP3B, (b) HEPG2, and (c) HUH7 cells. Rows
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represent

measurements

(mean values)

of secreted cytokines 24 hours

posttreatment. Columns correspond to treatment with indicated stimulus or minimum

essential medium (MEM). Column blocks designate treatment with indicated

compound or DMSO vehicle. Black color highlights signals that exceeded a 2-fold

threshold alteration compared to DMSO-MEM. Mean values+SEM (2-3 experiments)

and data transformation of fluorescence units to pg/ml are provided in Appendices |

and Il of the Supplementary Material, respectively.

Figure P5-2
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Phosphosignaling xXMAP datasets from (a) HEP3B, (b) HEPG2, and (c) HUH7 cells.
Rows represent measurements (mean values) of phosphoproteins at 15 minutes
following stimulation. Columns correspond to treatment with indicated stimulus or
minimum essential medium (MEM). Column blocks designate treatment with
indicated compound or DMSO vehicle. Black color highlights signals that exceeded
a 1.5-fold threshold alteration compared to DMSO-MEM. Mean values+SEM (2-3

experiments) are provided in Appendix Il of Supplementary Material.

Figure P5-3

Compound-specific signaling networks in HEP3B cells treated with EGCG under (a)
basal and (b) stimulated conditions. Compound-phosphoprotein expression-cytokine
release pathways were constructed from xMAP data and a reference network with
canonical pathways using an adapted SigNetTrainer method. Black, opaque edges
correspond to interactions that were found to be functional based on the data at hand
and were conserved in the solution. Gray edges correspond to interactions that were
found to contradict with the data and were thus removed from the solution. Black
dashed edges correspond to interactions that may be functional or not, depending
on the data discretization threshold used. The thickness of the dashed lines
corresponds to the number of solutions (for different thresholds) that support the
respective interaction. Blue edges correspond to interactions that were added by the
algorithm for explaining patterns in the data that could not be fitted with solely
removing interactions from the canonical pathway. Abbreviations are explained in

Appendix IV of the Supplementary Material.
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Figure P5-4
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Compound-specific signaling networks in HEP3B treated with FIS under (a) basal and

(b) stimulated conditions (see legend to Figure P5-3 for details).
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Figure P5-5
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Compound-specific signaling networks in HEP3B treated with ERI under (a) basal and

(b) stimulated conditions (see legend to Figure P5-3 for details).

199



Figure P5-6

In vitro metastasis
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Preventive potential of test compounds on HCC-induced metastasis and
angiogenesis. HCC cells (a,b) or HUVEC (c,d) loaded onto migration or Matrigel
invasion chambers chemotactically moved towards starvation medium (BASAL) or
HCC-CM from DMSO-vehicle (CTL), EGCG, FIS, or ERI pretreated cancer cells. (e)
HUVEC differentiation on Matrigel-coated plates in presence of starvation medium
(BASAL) or HCC-CM from DMSO-vehicle (CTL), EGCG, FIS, or ERI pretreated cells.
Results show mean percentage of CTL+SEM of migrating/invading cells (n=10) or
tube-like structures (n=15; *P <0.05; P < 0.01; P < 0.001). Representative
microphotographs from HEP3B metastasis (a,b) and HEP3B-induced angiogenesis
(c—e) assays are shown on the right panels; magnification x100 (a,b,e) or x200 (c,d);

scale bars=200 pm (a,b,e) or 100 um (c,d).

Figure P6-1

Gene Expression Data (Peer-
reviewed publications, DToxS,
Connectivity Map)

\

Signaling Network}

Construction with
ILP Formulation

Pipeline 1 | | Pipeline 2

Linear Regression
with Elastic Net

Regularization

Predict Incidence of Extract Features
Clinical Drug-Induced (genes) that best
Cardiomyopathy predict heart failure

Workflow of predictive modeling. We built datasets using gene expression data and
we compared two pipelines to predict clinical drug-induced cardiomyopathy and
extract features that best predict such toxicity. Running the Gene Expression Data at
hand through a linear regression model with elastic net regularization or constructing
signaling networks from the data before modeling using an integer linear

programming (ILP) formulation. DToxS, Drug Toxicity Signature Generation Center.
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Figure P6-2

LOOCV mean squared error

alpha parameter alpha parameter
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Coefficients

(c) Log Lambda (d) Log Lambda

Plots of elastic net regularization results. (a and b) Show selection of the alpha
parameter in the elastic net regularization by minimizing the leave-one-out cross
validation (LOOCV) mean squared error to extract the features (genes) that best
predict clinical incidence of cardiomyopathy. (c and d) Show the number of variables
kept in the model, with a vertical line showing the optimal number for maximization
of accuracy. a and c refer to the results of analyzing gene expression data only,
whereas b and d correspond to the results of analyzing drugs’ signaling networks
obtained from integer linear programming formulation analysis. Each of the plotted
lines in ¢ and d corresponds to a variable (for example, a specific gene’s expression)
and shows how its coefficient changes with the log lambda parameter of elastic net.
The vertical line shows the optimal number of parameters kept and their coefficients

for maximization of accuracy.
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Figure P6-3

(@) PSCCMgenesROCcurve  (b) PSCCM ILP ROC curve
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Receiver operating characteristic (ROC) curves. (@) ROC curve from modeling
differentially expressed genes (DEGs) using elastic net (EN) and (b) ROC curve from
modeling by subjecting these DEGs to integer linear programming (ILP) to construct
their individual drugs’ signaling networks and then subject these networks to EN.

PSCCM, human cardiomyocytes.
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Figure P6-4
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Interactions among the top 15 gene/protein predictors. Interactions among the top

15 genes/proteins selected by our model to best predict cardiomyopathy using
cardiomyocytes data are depicted as a network using the STITCH website for
visualization. Small nodes correspond to protein of unknown 3D structure and large
nodes to known or predicted. Edges represent protein-protein associations and the
intensity of the line is proportional to the confidence score of each association. The
confidence score is calculated by combining the probabilities from all evidence

channels and is corrected for random observation probability.
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Figure P6-S1

PRKACA

To better illustrate how the proposed ILP formulation works, we examined the mode
of action of methotrexate (MTX). Let’s focus on a small part of it involving TP53,
PRKACA and ATF3 transcription factors (a similar rationale applies to the rest of its
network). MTX activated TP53, and TP53 in turn blocked PNO1 and VNN1 genes via
direct interactions, and blocked PIGU and HSD17B7 genes via activating PLK1,
PRKACA and ATF3. The above is driven by MTX-induced under-expression of PNO1,
VNN1, HSD17B7 and PIGU genes. ILP tried to explain these under-expressions,
navigate the prior knowledge network of protein interaction, and identify a pathway

connecting MTX (via one of its targets) with these 4 genes.
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Figure P6-S2
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Panels A and C are the precision-recall curves for the same set of CMap differentially
expressed genes that were modelled using Elastic Net (EN) alone and an integer linear
programming(ILP)-EN combination), respectively. Panels B and D are the ROC curves
for the same set of CMap genes that were modelled using EN alone and ILP-EN,

respectively.

206



Figure P7-1

Primary Human Hepatocyte (pHH) Primary Human Hepatocyte (pHH)
Isolation seeding in collagen | coated
96-well plates

Primary Human Hepatocyte (pHH)
treatment with FFAs, VPA, AMI,
TMX and TET
(24 hours)

Viability measurement
High Content Screening of lipid droplets
Cell lysis

Pathway and
enrichment analyses

XMAP assay
Multiplex bead-based ELISA

o -.
Workflow of experiments and computational analysis. Primary human hepatocytes
were and cultured. NAFLD induction was performed using Amiodarone, Free Fatty
Acids, Tetracycline, Tamoxifen or Valproic Acid. The cultures were assessed for
viability and lipid droplet formation. Cells from all were treated with a combination of
stimuli and lysed. XMAP assay was performed to quantify phosphorylated proteins

and the results were analyzed to construct signaling pathways.
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Figure P7-2

Cell culture medium Treatment with DMSO 0,1%  20x

Treatment with EtOH 1% 20x Treatment with AMI 20uM 20x

Treatment with FFAs 500uM 20x Treatment with TMX 8uM 20x

Treatment with VPA 6mM 20x

Treatment with TET 150uM 20x

High content screening under 20x optical magnification: Intracellular lipid droplets
stained with Nile Red with Hoechst 33342 counterstaining of the cell nuclei. The 8
images correspond to primary human hepatocyte culture treated with AMI
(Amiodarone), FFA (Free Fatty Acids), TMX (Tamoxifen), VPA (Valproic Acid) and TET

(Tetracycline) along with 3 diluent controls: Cell culture medium, DMSO and Ethanol.
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Figure P7-3
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A: Phosphoproteomic results. Fold increase was calculated by dividing the average
across the four donors treated cells by the respective average of control. Cells were

treated with the NAFLD-inducing compounds AMI (Amiodarone), FFA (Free Fatty
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Acids), TMX (Tamoxifen), VPA (Valproic Acid). The Uniprot names of phosphoproteins
measured are shown on the table.

B: Comparison of NAFLD in vitro models. All experimental data available for each of
the five compounds were used as a vector and multidimensional scaling (mds) was

applied to create a 2D plot for visualization purposes.

Figure P7-4
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Signaling networks of Amiodarone, Free Fatty Acids, Tetracycline, Tamoxifen and
Valproic Acid, presented on the same graph with a different edge color for each

compound. Light purple is used for stimuli nodes and light green is used for

phosphoprotein nodes we measured.
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Figure P7-S1
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Compound IC5 (uM) 1Cs (M)
Amiodarone Free Fatty Acids Amiodarone 1402 1.0471 90.56%1.099
150 150 Tamoxifen 2153+£1.041 17.71+1.488
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Dose response curves and table summarizing the IC10 concentrations for the
compounds Amiodarone (AMI), Tamoxifen (TMX), Tetracycline (TET), Valproic Acid
(VPA) and Free Fatty Acids (FFA). Primary Human Hepatocytes were used in cell

culture and Resazurin assay was used to assess viability, which was expressed as a
percentage of treated to untreated cells.

Figure P7-S2

Signaling networks visualizing the phosphoproteomic mechanism of each NAFLD-
induction in vitro model. Networks A-E correspond to Amiodarone, Free Fatty Acids,

Tetracycline, Tamoxifen and Valproic Acid. Light green nodes are the proteins we
measure for phosphorylation activity.
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C: Tetracycline
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E: Valproic Acid
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Mivakeg | Tables

SMS or VIAL TAG |donor cells/tissue sample type sample | MtOH | ribitol | glucose | H20O | total | used | empty tube | tube after MSTFA | splitratio | deriv| 217 319 notes
ul ug ug ul ul ul mg mg ul hrs | ribitol | ribitol | Glu1 | Glu2 [ K
IL1B_CELLS_17h 94 | chondrocytes 24h 50ng/ml IL1B | whole cell extract 2000 | 0.5 1 2000 | 4000 | ~3500 | 13007.7 | 13012.2 300 1:40 17 | 2869 | 935 | 3437 | 632 | 5.44
IL1B_CELLS_18h 18 | 3096 | 933 | 3219 | 627 | 5.13
IL1B_CELLS_19h 19 | 3189 | 923 | 3067 | 684 | 4.48
CTRL_CELLS_12h 94 chondrocytes untreated whole cell extract 0 2000 | 0.5 1 2000|4000 | ~3500| 13094.0 | 13097.8 3.8 150 300 1:40 12 | 2866 | 933 | 3210 | 577 | 5.56
CTRL_CELLS_13h 13 | 2991 | 890 | 3295 | 582 | 5.66
CTRL_CELLS_14h 14 | 3167 | 1046 | 3631 | 596 |6.09
IL1B sup 94 | chondrocytes 24h 50ng/ml IL1B supernatant 1000 | 3000 [ 10 20 3000 7000 | 1500 | 13034.9 13039.0 41
IL1Bsup B 1500 13030.7 13034.1 3.4
CTRL sup 94 chondrocytes untreated supernatant 1000 | 3000 [ 10 20 3000 | 7000 | 1500 | 13078.1 13082.5 4.4
CTRL sup B 1500 | 129279 | 12931.1 3.2
IL1B wash 94 | chondrocytes 24h 50ng/ml IL1B PBS wash 1000 | 3000 | 10 20 3000 | 7000 | 1500 | 13069.2 | 13070.9 1.7
IL1B wash B 1500 | 13068.3 | 13070.4 21
CTRL wash 94 chondrocytes untreated PBS wash 1000 | 3000 [ 10 20 3000 | 7000 | 1500 | 13156.5 13157.4 0.9
CTRL wash B 1500 | 130526 | 13056.2 36
P94_1 94 blood plasma 100 300 | 0.1 0.2 300 | 700 | ~500 | 129555 | 12957.1 1.6
P94_10h 94 blood plasma 100 300 | 0.1 0.2 300 | 700 | ~500 | 13013.9 | 13015.2 1.3 150 300 1:40 10
P94_11h 11
P94_12h 12
P68_16h blood plasma 100 300 | 0.1 0.2 300 | 700 | ~500 | 13081.5 | 13085.6 4.1 150 300 1:40 16 hemolysis
P68_17h 17
P68_18h 18
P68_2 plasma 100 300 | 0.1 0.2 300 | 700 | ~500 | 13021.8 | 13025.2 34 hemolysis
SF94_1 94 100 300 | 0.1 0.2 300 | 700 | ~300 | 13025.2 | 13025.1 -0.1
SF94_100_9%h 94 100 300 | 0.1 0.2 300 | 700 | ~300 | 131742 | 131742 0.0 150 300 1:40 9 425 115 | 1084 | 257 (4.22
SF94_100_10h 10 441 119 | 1226 | 205 | 5.98
SF94_200_13h 94 200 300 | 0.2 04 300 | 800 | ~300 | 129242 | 129254 1.2 150 300 1:40 13 812 | 222 | 2051 | 465 [4.41
SF94_200_14h 14 750 181 | 2106 | 383 [5.50
X OA synovial fluid synovial fluid 100 300 | 0.1 0.2 300 | 700 X 12960.5 X X X X not enough
SF68_2 OA synovial fluid synovial fluid 100 300 | 0.1 0.2 300 | 700 | ~200 | 12776.3 | 12775.8 -0.5 SF68_1+2
SF68_200_17h OA synovial fluid synovial fluid 200 300 | 0.2 04 300 | 800 | ~300 | 13125.7 | 13125.2 -0.5 150 300 1:40 17 415 117 | 1379 | 248 | 5.56
SF68_200_18h 18 356 117 | 1518 | 258 [ 5.88
SF_68_100.200_8h OA synovial fluid synovial fluid 100 500 10 20 500 (1100 100 200 1:40 8 3420 | 945 | 5197 | 798 |6.51 | run by Kate
SF_68_100.200_%h 9 | 3581 | 996 | 4182 | 828 [5.05
SF_68_100.200_10h 10 | 3597 | 974 | 4940 | 755 | 6.54
SF_94_1h 94 OA synovial fluid synovial fluid 100 500 10 20 500 (1100 50 100 1:40 1 9491 | 2844 | 11354 | 2201 | 5.16 | run by Kate
SF_94_2h 2 [11090 | 3022 | 13325 | 2501 | 5.33
SF_94_6h 6 [10191|2999 | 11757 | 2488 | 4.73
SF_94_7h 7 | 11036 | 3077 | 12740 | 2830 | 4.50
SF_94_9h 9 5122 | 1481 | 9747 | 1863 [ 5.23
SF_94_10h 10 316 113 | 3955 | 819 [4.83

Table A4-1: The samples transferred to MESBL for potential metabolomic analysis
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Table A4-2

Unknown peak with matching ions yellow: used fhat as Quanion in Method
S o et~ yrerr— oy BT
Known Metabolite Derivative
dm_1 4085 14438 1448 | 149 unknown
dm_2 4541 688 628 | 229 unknown
dm_3 4876 549 549 | %69 unknown
m_3/C_008 4992 1839 1839|1338 unknown same ions as 5558 (MSTFA)
dm_4 5082 1550 155.0 unknown
tralling tale 5314 1280 838 1
MSTFA 5558 1
kown_100 6010 1149 114.9 | 1400 | 1200 B sew ions s =7.198 {Lacisie) matches ln
dm_S 6513 3550 3550 | 2670 | 356.1 unknown
K_6 6745 1459 1459 | 1330 | 2490 | 1189 unknown 133 ion same as +7.198 (Lactaie)
Lactate 2TMS 7198 590 | 1330|1310 1750 1
P0743 / Unknown 97 7470 1228 1228 | 929 |1248| M9 10 unknown
Alanine2 TMS 8037 3
P0901 /Unknown 125 9068 2039 2039 | 1490 1 unknown double peak
dm_6 9097 1310 1310 unknown double paak
Valine 1 TMS 377 3
Pyruvate 2 TMS 9605 989 | 1580|1149 1
2-hydroxybutanoic Acid 10.182 1
P1091 / Unknown 99 10.945 2200 1330 | 2200 | 2349|2049 | 1900 | 1600 | 590 | 890 | 1 unknown
P1099/f 12 11.022 1740 1740 wvery close to previous peak
Valine 2 TMS 11.163 2180
Ethanolamine 3 TMS 1nas7| 140 749 [ 1700 3410 4200 341is fom an atctpeak coming nextin
dm_7 11.949 2120 2120|5218 | 1220
Glycerol 3TMS 12194 2048 2179 590
P 1229 /Unknown 126 12326 2280 2280|1100 | 1839 | 770 | 1338 | 2850
Leucine 2 TMS 12815
P1295 13138 70.0 700 | 1029|1719 | 1440
Isoleucine 2 TMS 13.460 2580
Glycine 3 TMS 13614 589 | 859
dm_8 14.132 2160 2000|2160 | 890 | 1888 Harin's P1391has the ions 89 + 189
Serine 2 TMS 14.287
Proline 1 TMS 14479 216 is sharp with count 19
Phosphoric Acid 4 TMS 14.700 3870 3140 2112
Threonine 2 TMS 14.881
Urea 15.103 2050 1312 992 | 590
dm_9 15.466 2921 2921|2029 | 200
P1552/f_105 15.543 1741 740 | 1170 1338|1839 | 2849 | 1741
dm_10 15.698 2810 281.0 | 4150 | 3270
dm_11 15.801 1990 199.0 carry over74and 117
Threonine 3 TMS 15.904 Harinquanion: 2912 + 2179
Fumarate 2TMS 16.059
Succinate 2TMS 16.240
dm_12 16.511 known arffact (kwn_31)
B-alanine 3TMS 16.925
75 17.234
3,4 Dihydroxybutyrate 3 TMS 17.480
P1753 17.570
Erythritol 4 TMS 17.815
dm_13 17.957 1460 1460 | 899 | 1300 unknown
P1863? /Unknown 108 18.667 | 116842201 |2201] 1162 3 | unknown | SUHESPIESST2/Estclsn ke 2 dowle
K_136 18.719 1160 116.0 | 1900 | 1599 3 unknown
Isoleucine 3 TMS 19.378 1270 2319 | 700 999 | 1629 | 334.0 | 2620 3 -
dm_14 19.533 S50 3550|4010 | 3270|3851 unknown
dm_15 19.674 2920 2920|2170 | 2450|2650 unknown
a_34/f 79 19.765 2179 2920|3200 | 217.9 | 2481 | 1740 unknown
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not open with supposed Quanion 260 , but

Hydroxyproline 2 TMS 20.229 2599 2 ions and fme
Threonic Acid 4 TMS 20.449 3190 2170 | 2199 supposed Quanlon is not good
dm_16 20552 5.0 5.0 | 1039 | 609 | 1410
a_39/x_2/U_032 21.068 2632 2632
dm 17 21107 2210 2210
Methionine 2 TMS 211472
x_3 (camy over) 21.197 7.9 719 | 2109
Cysteine NNO 21.327
dm_18 21.417 170 177.0 | 2070
x4 21753 1149 1149 [ 32291 | 3141 (creatinine 3 TMS)
Ribitol (217) 2139
Ribitol (319) 22139
Xylitol (NQ) 23| 270 |2170|3190[117.1]120.1 | 3320 2050 e fos s Ttk Chasiork Yol (NQ)
N-acetoglutamic acid 2TMS 22.346 5809 Christoniki’s name:
K_47 24| 1880 |1880|2170( 098 fird of faree peaks afier oxol, having 217 in
Glutamate 3TMS 2694 3630 | %60 mg&.mm;#sz?m
P2284 22| 1m0 1730 | 355.1 | 428.9 | 2628 | 3410 [ 1470
Pyroglutamate 2 TMS 23.069 2141 Hamn quanon: 2300 » 1559/ lon 147 higher at
Rhamnose MeOX2 4 TMS nny 1599 notgood peaks
K_s2 ness| 3161 3161 | 1710 | 417.9 | 2000
Phenylalanine 2 TMS 2793
P2427 /Unknown 120 24050| 2020 |2920|1200|217.0|3330] 1979 T L e ar oo
dm_19 u2n7| 210 2210|388
P2445 /£ 21 4205| 2920 |2020|2170|3330 simdarions to 1= 24050 found at expected
P2433 24.385 1420 1420|1858 | 216.0 | 2880
Asparagine 3 TMS 24.824 | 231.0+2580 1880 258 is dosbls pesk and Quanion is slenet
dm_20 24953 132 1328 | 1028 2170
Ornithine 4 TMS 25.147
P25541 2s67s| 2109 |2109|3040 304 has a smaller butmuch betier peak
Fructose MeOX 1 25.997 2170 1330 Harin's Quanion: 307 (also good)
Sorbitol 26.063 1291 1570 | 1599 S0 has 2170 from prévious peak and there is
Fructose MeOX 2 26.331 3068 2170 1330 2 aiso opens with 217 as Frucose 1
Glucose MeOX 1 26.526 2
[U-13C] Glucose MeOX 1 26.526 2
Glucopyranose MeOX 1 26.653 2
Citrate 26783 1 this peak is hidden in e following peak
Glucose MeOX 2 26.796 2
[U-13C] Glucose MeOX 2 26.796
Glutamine 3TMS 27.031 2450 | 2201 2030
Lysine 4 TMS 27159 | 1744 431
unknown K_62/f 94 7315 1741 174.1 | 2000 unknown
Galacturonic acid MeOX 1 27.881 250 double peak
dm_21 27045 | 422 189.0 | 157.0 [ 2009 | 273.1 | 4922 unknown apens nicely with 492 2
Gluconate 6 TMS 28.048 3331 double psak
chiro- or scyllo- inositol 2280 3181 318.1 3051 unknown small peak on e hill of e next big peak
Glucopyranose MeOX 2 28.345 2171
dm_22 28537 2050 2050 | 189.1 | 2729 urknown """‘:.;“:_’L‘:';cﬁﬂ-""‘"'“"'
P2893 me39| 3931 3931|3320 unknown  |° >t 1ough / Chastonikinas diferent ions butthe
myo-inositol 6 TMS 29.093
P2922 2223 3610 2170|3610 1570|1200 [ 2440 (3321 1491 unknown | only in Harini's ist/ 361 opens beterindeed
128 2428 280 |2840)2002 unknown
P2957 20571 2041 204.1 | 3191 | 217.0 | 1570 | 2200 | 1492 | 1291 unknown
Tyrosine 3TMS 20.637 1790 3822 - fiat peak
dm_23 2765| 3690 369.0 [ 2050 | 221.0 | 3550 unknown 221 and 355 ¥om previous peak
P2997 2957 3610 157.0 | 217.0 | 189.0 | 1290 | 1029 [ 319.0 | 3610 unknown
dm_24 0063 1869 1869 | 5082 | 2620 unknown abit noisy
dm_25 30243 2931 2931|2370 | 4226 unknown
Tyrosine 2TMS 30.411
P3046 30.450 2039 2039 (3190|2170 unknown
dm 26 798| 2210 2210 unknown ”"‘”W“"wm

pegk Thers are also
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dm_27 30.824 4838 4288 | 3550
31248_Hexadecanolcacid_1 TMS | 30.889 [ 749 | 1850 [ 550 | 570 1 nmm loms ot e nxipesk (X).979) which s

dm_28 3443 266.1 2661 | 2370 | 327.0 unknown 179 and 369.1 peaking a bitbehind
P3188 370 210 3270|749 | 929 | 969 | 829 | 1109 unknown
dm_29 31973 1490 1490 unknown
kwn_109 32244 210 2210|3689 | 2050 | 2070 unknown 281 falls a bit behind

P3263 /Unknown 115 32618 170 1289 | 1170 | 27.2 1 unknown Chrsoniki ion: 1282
dm_30 32.851 4431 4431 unknown
dm_31 29ns 2174 217.1| 1890 unknown 2052 falls a bit behind
P3307 3083| 4200 |4200|5030(221.0|2810| 2092 unknown | PI07hes quein 818 o acemo ey |
dm_32 nNs 2020 2020 | 547.1 unknown 319.1a bit behind, 217 not 0 good
dm_33 33.651 5474 5474|5514 | 838 | 2171 unknown
dm_34 34.064 1490 1490 unknown
Paa23 M218| w12 |4412]4562]3822 3672 unknown | P23 s quanion 11, which & compleily
dm_35 M| 1170 1170|1200 |12 749 | 1850 2071 & onalier posk ls Gilowing (34401) wih e

Linoleic acid 34.580 nr2 749 2452 :-

dm_36 35.216 550 3550 bad peak
dm_37 35.616 2020 2020
dm_38 36.158 2020 2020|392
dm_39 w27 1650 165.0
dm_40 37.281 4290 4200 very bad peak

Eicosanoic acid 1 TMS 37.436 170 360.2 117 is very weak for Quanion

K_105 (Arachidonic acid) 3r.720 170 789 | 548 | 67.0 | 909 | 1170|1750 | 1200 | 770 unknown
dm_41 wm 2020 2020
R v T ) ) ) D ot
dm_42 38.920 2591 2501|2040 | 2170|3610
a_7s 39.423 2852 2852 unknown not sure
P3960 39.578 ma2 3n.2| 2000 unknown
P3967 39.694 4804 361.0 | 4804 unknown 480.4is a bt weak for Quanion
P3991 39.888 2391 2301 unknown
P4232 41991 2039 2039|310 | 2170 unknown

b_35/1_50/d_68/A_227 (u_086) |42314 992 39922030 unknown
dm_43 47.876 1m0 1790|1050 | 91.0 | 1030 | 770 |217.1 | 1710 | 1570
Tocopherol 1 TMS 48712 1
Cholesterol 4829 [ 120.1 | 3533 2853 1




chromatogra. SF 94 3h|[SF 94 4nh 94 100 50 | 594w wn o4 100 1 | sPaq_wa_wn | & ga 0 200 | 57_@_vosm 2 | # . s6esm e e 200 1m | sPwa 200 wn |
Donor -> 94 94 94 94 94 94 68
sam -> 0
MtOH (ul) >
ribitol (ug) = 0.1 01 0.2 02
lucos e > 0.2 02 04 04
MeOX (ul) > 50 |50 150
MSTFA -> 00 [F100 300 300
deriv > 6 . 7 10 13 | 14 18
Peak#| RT Peak Name an lons AVG AVG AVG AVG AVG
88 26.520 Glucose MeOX 1 319.2 107.27 | 107.74 | 107.51 1306.52 | 1110.15 | 1208.33 W 1071.79 | 1410.16 | 1240.97 131.85 | 121.48 | 131.82 | 128.38 1288.47 | 126597 | 1277.22
15.027 Urea 189.1 79.67 8003 79.85 B41.74 | 72917 | 78546 66662 | 871.64 | 769.13 61.37 58.74 63.28 61.13 556.78 | 538.04 | 54741
92 26.797 Glucose MeOX 2 319.2 20.53 2043 20.48 24745 | 206.73 | 22709 19292 | 262.98 | 22795 2518 23.99 2683 25.33 23755 | 234.61 | 23608
1 7.166 Lactate 2 TMS 117 28.40 2840 28.40 25327 | 22242 | 23784 18621 | 251.41 | 21881 1556 14.44 1543 15.14 12891 117.90 | 12340
33 14.701 Phosphoric Acid4 TMS 299.3 25.87 2617 26.02 25438 | 199.35 | 22686 97.91 141.10 | 11950 2945 26.36 2893 28.24 12204 | 128.32 | 12518
25 12.315 P1229/ Unk nown 126 228 054 0.54 0.54 14509 | 118.98 | 13203 64.52 85.49 75.00 1.38 137 1.50 142 11351 117.12 | 11531
26.773 Citrate 2731 787 7.98 7.93 48.23 4356 45.90 40.94 56.25 48.59 7.96 703 8.00 766 45.17 41.30 43.24
18 10.168 2-hydroxybutanoic Acid 1909+1170 692 6.98 6.95 66.81 55.89 61.35 51.18 68.13 59.66 1.89 1.78 2.06 191 16.41 1598 16.19
29 13.612 Glycine 3 TMS 174.1 458 4.28 443 37.69 3252 35.11 28.99 38.45 33.72 5.51 515 5.58 541 43.90 4123 42.57
73 23.064 Pyroglutamate 2 TMS 155.9 414 4.17 4.15 28.54 2657 27.56 24.12 32.69 28.41 4.78 445 4.94 473 39.28 4279 41.04
107 | 29.569 57 2041 209 2.35 2.22 26.34 2353 24.93 28.56 39.18 33.87 3.96 386 4.16 399 38.48 3483 36.65
20 11.019 f 12 174 086 0.89 0.87 43.74 38.73 41.24 20.38 24.59 22.49 2.42 227 2.56 242 35.56 2522 30.39
19 10.924 1 /Unknown 99 220 131 1.51 1.41 24 .48 18.89 21.69 30.95 39.83 35.39 9.13 849 9.94 919 24.96 2399 24.47
12 7470 Unknown 97 122.8 008 0.08 0.08 31.67 2767 29.67 14.38 19.15 16.77 0.26 025 0.24 025 24.22 2501 24.62
8 6.010 kwn 100 114.9 016 0.10 0.13 30.32 2468 27.50 12.99 19.95 16.47 0.44 040 0.43 042 23.87 2401 23.94
101 | 28.345 Glucopyranose MeOX 2 204 205 2.16 2.10 40.29 3461 37.45 15.48 20.27 17.87 2.28 207 2.26 220 097 0.82 090
86 26.052 Sorbitol 319 205 211 2.08 19.8 17.38 18.63 16.76 22.13 19.45 1.95 1.70 2.00 188 17.07 1584 16.45
29.100 myo-inos itol 6 TMS 305.2 239 2.37 2.38 21.0 17.30 19.20 16.35 22.54 19.44 1.74 1.74 1.82 177 14.25 13.77 14.01
26.514 Fructose Me OX 2 306.8 08 0.09 0.08 33.7 0.45 17.10 0.64 23.87 12.26 2.87 208 2.46 247 0.30 3511 17.70
16 9.387 Valine 1 TMS 719 1.72 1.86 1.79 12.05 11.83 11.94 11.85 16.85 14.35 1.08 118 0.84 103 965 13.72 11.69
90 | 26.647 Glucopyranose MeOX 1 204 15 1.57 1.56 25.70 2182 23.76 9.38 14.22 11.80 1.52 165 1.83 167 165 215 1.90
89 |26.516 [U-13C] Glucose MeOX 1 323 3.74 4.01 3.88 9.35 9.29 932 8.80 12.76 10.78 4.86 364 4.59 436 10.44 11.33 10.88
95 27.161 Lysine 4 TMS 174.1 299 2.65 2.82 10.23 1007 10.15 12.02 15.70 13.86 3.36 345 3.90 357 14.87 2.16 852
1 4.070 dm_1 144.8 024 0.19 0.21 15.61 12.75 14.18 7.00 10.18 8.59 0.61 054 0.52 056 11.63 1166 11.65
15 9.082 dm_6 131 143 1.61 1.52 13.79 1155 12.67 10.74 14.80 12.77 0.96 100 0.98 098 589 7.76
76 23.788 Phenylalanine 2 TMS 217.9 193 1.81 1.87 947 8.46 897 8.90 12.52 10.71 1.38 137 1.38 137 8.80 8.87
117 | 30.885 |31248 He xadecanoic acid_1 117 294 3.50 3.22 10.68 1005 10.36 5.46 4.85 5.16 6.72 577 6.28 625 445 7.90
24 12.179 Glycerol 3 TMS 204.8 101 1.05 1.03 10.41 8.37 9.39 7.64 11.28 946 0.88 088 0.93 090 828 8.75
lnm.w.: Fructose Me OX 1 217 160 1.61 1.60 6.91 5.89 640 12.45 15.90 14.17 0.52 049 147 083 513 5.84
17 9.587 Pyruvate 2 TMS 173.9 130 1.40 1.35 802 6.98 750 9.06 12.48 10.77 0.70 066 0.62 066 517 4.35 4.76
21 11.149 Valine 2 TMS 144 138 0.79 1.09 892 7.47 8.20 6.80 7.77 729 1.87 173 1.82 181 768 4.48 6.08
13 8.004 Alanine 2 TMS 116 110 0.53 0.81 9.10 7.57 8.34 7.46 8.80 8.13 1.48 147 1.59 151 6.27 3.58 492
130 | 34.287 dm_35 117 304 3.14 3.09 453 5.34 493 4.75 9.02 6.89 3.70 342 3.67 359 3N 6.00 495
22 11.358 Ethanolamine 3 TMS 859 087 0.71 0.79 553 4.64 509 6.25 8.28 727 0.75 072 0.59 069 555 7.03 6.29
34 14.889 Threonine 2 TMS 1300+2190 068 0.77 0.72 595 4.72 5.33 5.38 6.76 6.07 0.83 086 0.89 086 6.38 6.40 6.39
66 22.135 R 1(217) 217 362 3.77 3.70 391 3.56 373 3.78 5.07 442 3.55 348 3.60 354 366 3.49 358
31 14.287 Serine 2 TMS 116 0.71 0.68 0.69 589 5.11 550 4.88 6.92 5.90 0.31 063 0.78 057 575 6.15 595
7 5.506 MSTFA 183.9 027 0.25 0.26 786 6.36 711 2.9 3.80 3.35 0.67 065 0.68 067 643 6.44 644
108 | 29.638 Tyrosine 3 TMS 217.9 167 1.61 1.64 5.35 5.45 540 6.05 8.01 7.03 0.76 057 0.94 076 561 0.00 281
luﬂoww Glutamine 3 TMS 156 177 1.63 1.70 283 2.77 280 4.06 6.02 504 1.31 139 1.60 144 469 5.16 493
96 27.317 1741 060 0.87 0.73 498 2.02 350 2.98 0.00 149 0.54 087 0.54 065 523 1028 7.76
5 5.068 155 029 0.27 0.28 445 4.05 425 2.36 3.03 270 0.84 083 0.92 086 408 4.08 408
71 22.688 246.1 074 0.74 0.74 398 3.09 354 3.18 4.22 3.70 0.61 060 0.67 063 402 2.92 347
10 6.745 145.9 009 0.00 0.05 759 0.00 380 2.89 3.40 3.14 0.00 000 0.27 009 524 4.19 472
68 22.135 217 019 0.18 0.18 391 3.58 374 2.30 1.96 213 3.55 017 0.39 137 311 3.49 3.30
14 9.036 Unk nown 125 203.9 083 1.05 0.94 363 3.29 346 1.91 2.72 231 1.20 125 1.58 135 395 1.28 262

Table A4-3: Metabolomics analysis of Synovial Fluid samples - Identified Metabolites

SUM AVG
3962.42
224297
73693
62360
52581
32431
15332
14606
12123
10588
10167

97.40
92.15
71.38
68.47
60.53
58.49
56.79
49.61
40.80
40.68
39.22
38.92
35.19
34.76
31.76
31.17
29.30
28.49
25.04
2446
23.72
23.46
2013
19.37
18.97
18.61
17.83
17.64
15.90
14.13
1217
12.07
1.79
10.73
10.67
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26 [12.804 Leucine 2 TMS 158 0.3 326 | 280 | 303 88 28 0 089 | O 348 | 2.46
114_| 30.45C P3046 203.9 0.0 77 45 | 161 .36 76 06 030 | o. 437 | 428
150 | 48.85 Cholosterol 368.3 44 000 | 000 | 000 0.00 .00 00 489 | 40 : 000 | 0.00

I s Ornithine 4 TMS 142 0.4 96 1.77 186 1.89 66 28 084 | 09 .99 373 | 254
45 23 175 228 0.2 281 2.64_| 273 1.29 76 53 065 | 06 66 220 | 269
52 |19.378 Isoloucine 3 TMS 231.9 0.23 363 | 3.02 | 333 174 | 233 | 204 007 | 021 | 017 180 | 1.74
129 |34.218 441.2 0.62 109 | 141 125 377 | 518 | 447 0.00 | 004 | 0.08 160 | 0.00
93| 26.796 323 0.89 220 1.55 | 187 200 | 232 | 216 078 | 072 | 070 185 | 0.88
148 | 47.908 179 3.89 000 | 000 | 000 000 | 000 | 000 248 | 147 | 2.38 000 | 0.00
80 | 24.385 142 0.58 266 1.95 | 231 1.22 1.67 | 145 022 | 021 | 033 150 | 1.32
48 [17.815 Erythritol 4 TMS 217 0.20 182 1.68 175 156 | 213 | 184 006 | 014 | 0.17 1.33 1.56
28 | 13.460 Isoleucine 2 TMS 158 0.16 159 | 1556 | 157 1.49 165 | 157 037 | 039 | 046 164 1.04

[T EsE T Rbhelaas | 319 1.00 1.00 1.00 1.00 1.00 1.00_|_1.00 1.00 100 | 1.00 1.00 1.00
105 | 29.223 P2922 361 0.38 164 145 | 156 1.25 168 | 147 028 | 032 | 035 139 | 1.00
57 |20.449 |  Threonic Acidd TMS 292 0.22 207 155 | 181 160 | 207 | 183 000 | 005 | 005 066 | 0.64
61 |21.172 Methionine 2 TMS 176 0.04 1.35 120 | 128 1.15 1.84 | 150 024 | 022 | 024 116 1.46
118_|31.443 dm_28 266.1 0.29 155 110 | 133 1.24 1.81 152 015 | 047 | 0.6 070 | 0.96
40| 15.904 Threonine 3 TMS 217.9 0.05 129 | 1.4 122 0.63 116 | 090 017 | 045 | 022 183 1.48
54 | 19.674 dm_15 292 0.14 133 | 099 | 116 1.01 140 | 120 0.1 009 | 012 105 | 0.89
102_| 28.537 dm_22 205 3.31 0C 0.00 00 000 | 000 | 000 0.19 000 | 0.00
97 | 27.881 | Galacturonic acid MeOX 1 3331 0.17 0C 30 65 1.26 A7 36 0.14 . 1. 14
4| 4992 183.9 0.10 [ 26 14 0.74 .00 7 0.21 2 . 06 28
59 |21.068 5 263.2 0.1 214 | 0.0 0 1.26 .00 63 0.00 18 A€ 000 97
. 765 217.9 0.0 53 1.56 54 0.46 70 58 011 0 12 0.1 0.00

7 543 174.1 0.0 89 | 0.7 80 0.49 69 59 0.00 0 00 0.76 0.78
47 570 174.0+248.1 0.0 88 | 0.72 80 0.00 70 35 0.00 0 00 07 0.80
113 | 30411 Tyrosine 2 TMS 179 0.37 00 0.00 00 0.00 .00 00 0.00 0 .0C 000 2.86
72| 22.862 P2284 173 0.00 00 | 0.0 00 0.00 33 A7 0.21 A . 132 1.41
131_| 34.580 Linoleic acid 337.2 0.22 57 | 0.39 48 0.26 E 28 0.1 A 08 000 | 045
121_| 32.244 kwn_109 221 0.15 34| 0.39 37 0.22 . 0.3 3 34 000 | 027
99 | 28.048 Gluconate 6 TMS 292.1 0.04 A7_|_0.30 23 0.0¢ 5 : 0.04 0 08 060 | 044
79| 24.295 P2445 /1 _21 0.10 : 0. 27 0.4 X 0.00 0 ) 000 | 0.

4 24.05( P2427 / Unk nown 120 0.1 0C 0. 0.39 .64 0.00 0 L0C 0.0 0.2
30| 1a. dm_8 € 0.0 0C 0. . 0.28 49 39 0.00 0 ) 02 0.2
36| 15.466 dm_9 292.1 0.0 . 0.00 0 0.37 50 A4 0.00 0 0 028 | 0.30
60 | 21.107 dm_17 221 0.0 0C 0.39 20 0.00 29 A5 0.19 2 . 035 | 0.14
139 | 37.771 dm_41 202 0.30 000 | 060 | 030 0.00 | 000 | 000 012 | 018 | 0.16 000 | 0.00
100 | 28.280 | chiro-or scyllo-nosito 318.1 0.10 000 | 000 | 000 109 | 000 | 054 000 | 000 | 0.09 000 | 0.00
103 | 28.939 P2893 393.1 0.08 000 | 000 | 000 115 | 000 | 058 000 | 000 | 000 000 | 0.00
32| 14.479 Proline 1 TMS 142042160 0.12 000 | 000 | 000 000 | 000 | 000 030 | 037 | 047 000 | 0.00
140_| 38.403 Sucrose 361 0.05 000 | 054 | 027 000 | 043 | 007 0.01 003 | 0.09 000 | 0.00
27 | 13.138 P1295 70 0.44 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 000 | 0.00
78| 24.217 dm_19 221 0.09 000 | 000 | 000 037 | 000 | 0.9 022 | 046 | 0.11 000 | 0.0
106 | 29.428 1 28 284 0.08 044 | 000 | 022 000 | 026 | 043 000 | 000 | 0.00 000 | 0.00
43 [16.511 dm_12 117 0.45 000 | 000 | 000 000 | 000 | 000 000 | 000 | 0.00 000 | 0.00
53 | 19.533 dm_14 355 0.1 000 | 000 | 000 000 | 000 | 000 0.31 031 | 0.4 000 | 0.0

I 6240 Succinate 2 TMS 246.8 0.02 0415 0.26 020 0.19 000 | 009 0.03 002 | 0.00 0.00 0.00
143 |39.578 371.2 0.28 000 | 000 | 000 000 | 000 | 000 0.1 003 | 0.06 000 | 0.0
112_|30.243 2931 0.04 54 0.00 27 0.00 .00 00 0.00 00 .0C 000 | 0.00
9 | 6513 dm_ 356 0.0¢ 0C 0.00 00 0.00 .00 00 0.22 2 000 | 0.0
110 | 29.957 P2997 36 0. 0C 0.00 00 0.00 .00 00 0.0 04 ) 000 | 0.0
38 | 15.698 dm_10 28 0. 0C 0.00 00 0.00 .00 00 0.29 0 0 000 | 0.0
119 | 31.870 P3188 327 0. 00 | 0.0 0.00 .00 00 0.04 0 .05 000 | 0.00
149 [48.712 Tocopherol 1 TMS 502.6 0.28 00 | 0.00 00 0.00 .00 00 0.06 0 .00 000 | 0.00
145 | 39.888 P3991 239.1 0.16 00 | 0.00 00 0.00 .00 00 0.00 0 .00 000 | 0.00
50 |18.667 | P1663/ Unknown 108 116.8+229.1 0.14 000 | 000 | 000 000 | 000 | 000 000 | 000 | 021 000 | 0.00

10.54
940
919
868
758
746
733
6.98
591
586
5.36
512
500
490
455
439
41
400
359
346
346
329
285
232
218
195
180
168
132
116
113
097
094
09
085
083
082
068
061
056
046
046
045
042
038
038
034
030
030
025
022
021
020
016
014
014
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109 ]29.765 dm_23 369 0 05 | 00 0.0¢ 0.00 ! 00| 0.0C 0.00 0.09 06 08 | 008 000 00
20.229 | Hydroxyproline 2 TMS 67.9 A 12 | 041 0.0 0.00 ! 00 |_0.0¢ 0.00 0.00 0 00 000 000 100

116 | 30.824 dm_27 428.8 0 06| 00 0.0¢ 0.00 I 0C 0.0¢ 0.00 0.03 0 12 007 0. 00
125 | 33.083 P3307 429 04 03| 00 0.0¢ 0.00 I ; 0.0¢ 0.03 0.07 0 04 006 0. 00
58 | 20.552 dm_16 56 10 09 | _0.10 0.0 0.00 ! 0 0.0¢ 0.00 0.00 0 00 000 000 100
81 | 24.824 Asparagine 3 TMS 2310+2560 W 007 | 0.06 | 0.07 000 | 000 | 000 000 | 0.00 | 000 004 | 000 | 000 | 001 000 | 0.00
123 | 32.851 dm_30 443.1 001 | 003 | 002 000 | 000 | 000 008 | 000 | 004 000 | 000 | 004 | 001 000 | 0.00
23 | 11.949 dm_7 212 003 | 003 | 003 000 | 000 | 000 000 | 000 | 000 000 | 009 | 004 | 005 000 | 000
7022436 K_47 188 003 | 003 | 003 000 | 000 | 000 007 | 000 | 003 003 | 000 | 000 | 001 000 | 000
39 |15.801 dm_11 199 001 | 000 | o001 000 | 000 | 000 000 | 000 | 000 000 | 008 | 011 | 006 000 | 000
126 |33.315 dm_32 202 006 | 007 | o007 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.00
I 6025 B-alanine 3 TMS 248 007 | 006 | 006 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 000
62 |21.197 x_3 (carry over) 719 008 | 003 | 006 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 000
147 |42.314 | b 3571 50 /d 66/ A 22 399.2 005 | 005 | 005 000 | 000 | 000 000 | 000 | 000 000 | 001 | 000 | 000 000 | 0.00
134 | 36.158 dm_38 202 004 | 006 | 005 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.00
69 |22.346 | N-acetoglutamic acid 2 TM 174.1 000 | 0.00 | 0.0 000 | 000 | 000 000 | 007 | 004 002 | 000 | 000 | 001 000 | 0.0
51 [18.719 K_136 116 000 | 008 | 004 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.0
64 |21.417 dm_18 177 004 | 004 | 004 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 000
41_[16.059 Fumarate 2 TMS 245 000 | 005 | 002 000 | 000 | 000 000 | 000 | 000 000 | 000 | 004 | 001 000 | 0.0
49 [17.957 dm_13 146 003 | 004 | 004 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.0
63 |21.327 Cysteine NNO 220 001 | 002 | 002 000 | 000 | 000 000 | 000 | 000 004 | 000 | 000 | 001 000 | 000
127 | 33.651 dm_33 547.4 0 02 | 002 0. 0.00 ! 00 | 000 | 000 0.00 0 00 000 000 00
74_|23.237 | Rhamnose MeOX2 4 TMS 277 0 04 | 002 0. 0.00 ! 00 | 000 | 000 0.00 0 0 000 000 .00
133 | 35.616 dm_37 202 0 04 | 002 0. 0.00 ! 00 | 000 | 000 0.00 0 0 000 000 00
46| 17.480 | 3.4Dihydroxybutyrate 3 T 188.8 003 | 000 | o001 000 | 000 | o 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.00
98 492.2 001 | 002 | o001 000 | 000 | o 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.0
115 221 000 | 003 | o001 000 | 000 | o 000 | 0.00 | 000 000 | 000 | 000 | 000 000 | 0.0
132 55 00 00 | 0.00 0. 0.00 ! 00 | 0.0¢ 0.00 0.04 0 00 | 001 000 00
2 8.8 00 00 | 0.00 04 0.00 ! 00 |_0.0¢ 0.00 0.00 0 00 | 000 000 00
54.9 0 00 | 0.00 0.0 0.00 I 00 | 0.0¢ 0.00 0.00 0 00 | 000 0.0 00

[ 4.9 0 0 0.00 0. 0.00 I 00| 0.0¢ 0.00 0.00 0 0C 000 0. 00
65 114.9 00 0 0.00 0. 0.00 ! 00| 0.0¢ 0.00 0.00 0 0C 000 000 00
75 316.1 00 00 | _0.00 0.0 0.00 ! 00| 0.0¢ 0.00 0.00 0 0 000 000 100
82 2. 00 00 | _0.00 0.0¢ 0.00 I 0C 0.0¢ 0.00 0.00 0 0 000 0.0¢ 00
84 210. 00 00| _0.00 0.0¢ 0.00 I 0 0.0¢ 0.00 0.00 0 X 000 0.0¢ 00
111 86. 00 00| _0.00 0.0 0.00 I 0 0.0 0.00 0.00 0 X 000 000 100
120 149 000 | 000 | 0.0 000 | 000 | 000 000 | 0.00 | 000 000 | 000 | 000 | 000 000 | 0.0
122 117 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 000
124 217.1 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 000
128 149 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 000
135 165 000 | 000 | 0.00 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 000
136 429 000 | 000 | 0.0 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.00
137 117 000 | 000 | 0.00 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.0
138 117 000 | 000 | 0.0 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.0
141 259.1 000 | 000 | 0.0 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.00
142 285.2 000 | 000 | 0.0 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.00
144 480.4 000 | 0.00 | 0.0 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.0
146 203.9 000 | 000 | 0.0 000 | 000 | 000 000 | 000 | 000 000 | 000 | 000 | 000 000 | 0.0

013
012
012
012
010
008
008
008
007
007
007
006
006
005
005
004
004
004
004
004
003
002
002
002
001
001
001
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
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Table P2-1

Common Residue Uniprot ID Human UniprotID Rat Protein name

name (Target)

AKT1 473 P31749 P47196 RAC-alpha serine/threonine-
protein kinase

CREBL1 5133 P16220 P15337 Cyclic AMP-responsive element-
binding protein 1

EGFR Y1068 P00533 QI9WTS1 Epidermal growth factor receptor

ERK1 (MAPK3)  T202/Y204 P27361 P21708 Mitogen-activated protein kinase 3

FAK1 Y397 Q05397 035346 (FADK 1) Focal adhesion kinase 1

GSK3B S21/S9 P49841 P182§2tg()5$K-3 Glycogen synthase kinase-3 beta

HSP27 (HspB1) S78 P04792 P42930 (HspBl1) Heat shock protein beta-1

IKBA $32/536 P25963 Qszgﬁé;k& NF-kappa-B inhibitor alpha

JNK2 (MAPK9)  T183/Y185 P45984 P49183)(MAPK Mitogen-activated protein kinase 9

MEK1 Q01986 (MAPKK  Dual specificity mitogen-activated

(MAPKK1) S217/s221 Q02750 1) protein kinase kinase 1

MKK6 Dual specificity mitogen-activated

(MAPKKS) S207/T211 et Q92506 (-) protein kinase kinase 6

NFKB S536 Q04206 088619 (-) Transcription factor p65

Q16539 (MAPK P70618 (MAPK  Mitogen-activated protein kinase

P3BMAPK TI80/Y182 14/015750 (MAPK11)  14)/(MAPK11)  14/11

P53 S46 P04637 P10361 Cellular tumor antigen p53

RPS6KB1 Ribosomal protein S6 kinase beta-

(P70S6K, S6K1) T421/S424 P23443 P67999 1

RPS6 $235/S236 P62753 P62755 40S ribosomal protein S6

RPS6KAL Ribosomal protein S6 kinase

(RSK1) S380 Q15418 Q63531 alpha-1

SHP2 Y542 Q06124 P41499 Tyrosine-protein phosphatase
non-receptor type 11

WNK1 T60 QOH4A3 QQJIHT Serine/threonine-protein kinase

WNK1

Final phosphoproteomics assay panel.
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Table P2-2

Target Uniprot ID UniprotID Name
Human Rat
CCL2 (MCP-1) P13500 P14844 C-C motif chemokine 2
CCL20 (MIP3- P78556 P97884 C-C motif chemokine 20
alpha)
CCL3 (MIP1-alpha) P10147 P50229 C-C motif chemokine 3
CCL5 P13501 P50231 C-C motif chemokine 5
CNTF P26441 P20294 Ciliary neurotrophic factor
CRP P02741 P48199 C-reactive protein
CXL10 (IP10) P02778 P48973 C-X-C motif chemokine 10
EGF P01133 P07522 Pro-epidermal growth factor
GROA (CXCL1) P09341 P14095 Growth-regulated alpha protein
o ot HEsAvnscllarecetord ()
ICAM1 P05362 Q00238 Intercellular adhesion molecule 1
IFNG P01579 P01581 Interferon gamma
IL10 P22301 P29456 Interleukin-10
IL1A P01583 P16598 Interleukin-1 alpha
IL1B P01584 Q63264 Interleukin-1 beta
IL6 P05231 P20607 Interleukin-6
LYAM1 P14151 P30836 L-selectin
NGF P01138 P25427 Beta-nerve growth facto
AGER (RAGE) 015109 063495 fedc\;apntzerd glycosylation end product-specific
TNFA P01375 P16599 Tumor necrosis factor
VEGFB P49765 035485 Vascular endothelial growth factor B
X3CL1 P78423 055145 Fractalkine

Final cytokine assay panel.
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Table P5-1

Nutraceutical

Major functions

Reference

HCC-effective
concentrations

xMAP assay selected
concentrations

QUE (flavonol)

POH (monoterpene)

FIS (flavonol)

CUR (polypheno)

EGCG (polyphenol)

ERI (flavonone)

NAR (flavonone)

« antioxidant

« antiproliferative

« anti-inflammatory
« antimetastatic

« antiproliferative

o anti-inflammatory
« proapoptotic

« antiangiogenic

« antiproliferative

o anti-inflammatory
« antioxidant

« antiangiogenic

o anti-inflammatory
« antioxidant

« anti-inflammatory
« antioxidant

« antiproliferative

« antianglogenic

« anti-inflammatory
« antioxidant

« antiproliferative

« antiproliferative

« anti-inflammatory
« proapoptotic

10, 21

10

10

23,24

21

10-50 uM

025-1 mM

10-50 uM

10-25 uM

50-200 pM

10-50 pM

10-200 uM

25 M

500 pM

10 uM

15 uM

50-200 uM

25 M

100 yM

Selected nutraceuticals tested against HCC cells. A complete list of tested

nutraceuticals is shown in Supplementary Table S1, at DOI: 10.1002/psp4.40.
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Table P6-1

Drug name Classification Reference®

Afatinib 0 Drugs @FDA and literature search
Alendronate 0 Drugs @FDA and literature search
Amiodarone 1 Drugs @FDA

Axitinib 1 Drugs @FDA

Bosutinib 0 Drugs @FDA and literature search
Cefuroxime 0 Drugs @FDA and literature search
Crizotinib 0 Drugs @FDA and literature search
Cyclosporine 0 Drugs @FDA and literature search
Cytarabine 1 NIH DailyMed

Dasatinib 1 Drugs @FDA

Diclofenac 1 Drugs @FDA

Domperidone o* Not approved by FDA
Doxorubicin 1 Drugs @FDA

Diethylpropion 0 Drugs @FDA and literature search
Erlotinib 0 Drugs @FDA and literature search
Gefitinib 0 Drugs @FDA and literature search
Imatinib 1 Drugs @FDA

Lapatinib 0 Drugs @FDA

Methotrexate 0 Drugs @FDA and literature search
Olmesartan 0 Drugs @FDA and literature search
Paroxetine 1 Drugs @FDA

Ponatinib 1 Drugs @FDA

Regorafenib 0 Drugs @FDA and literature search
Ruxolitinib 0 Drugs @FDA and literature search
Sorafenib 1 Drugs @FDA

Sunitinib 1 Drugs @FDA

Tofacitinib 0 Drugs @FDA and literature search
Trametinib 1 Drugs @FDA and literature search
Ursodeoxycholic acid 0 Drugs @FDA and literature search
Vandetanib 1 Drugs @FDA

Vemurafenib 0 Drugs @FDA and literature search

FDA, US Food and Drug Administration; NIH, National Institutes of Health.
Note: Toxic: 1 (clinical incidence > 0.1%), and nontoxic: 0 (clinical incidence
<0.1%). https://dailymed.nim.nih.gov/dailymed/

“Domperidone was profiled by Drug Toxicity Signature Generation Center
(DtoxS) and toxicity information was from http//www.hc-sc.ge.ca/dhp-mps/

medeff/reviews-examens/domperidone-eng.php.

The list of drugs with gene expression in cardiomyocytes and their cardiotoxicity

classification
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Table P6-2

Gene/protein Coefficient Gene/protein Coefficient Gene/protein Coefficient Gene/protein Coefficient
CYP3A4 -0.39 TOP2A -0.11 FLI1 -0.03 H2AFX

ZNF823 0.29 MAX 0.09 TCF12 -0.03 IRF1

CASP3 0.20 JUND -0.08 AHR 0.03 MAP3K5

HJURP -0.19 MAPK12 -0.07 BCR 0.03 E2F1

EPHA2 -0.19 RXRA 0.07 GATA3 0.03 SMOC2

STAT1 -0.17 HOXA5 -0.07 SMC3 0.02 CYP2D6

SP2 0.15 STAT5A -0.05 EDN1 0.02

PDGFR-A -0.12 TCF7L2 0.05 FOXF2 -0.02

TRIM28 -0.12 NR4A2 -0.03 CTCFL -0.02

Nodes from drugs’ signaling networks constructed using integer linear programming (ILP) included proteins (targets and protein-protein interactions) and genes

(differentially expressed). The gene/protein nodes from ILP were then subjected to elastic net regularization.

Predictors with non-zero coefficients from modeling/analysis of cardiomyocyte data

Table P6-3

Predictors Regulating microRNAs® that are of diagnostic value

CYP3A4 No information

ZNF823 miR193-3p (|)

CASP3 miR-375°, miR-26b-5p (|); miR-30e-5p (1), let-7a-5p (1)

HJURP miR-671-5p (1)

EPHA2 miR-26b-5p (]), miR-193b-3p (|); miR-16-5p ()

STAT1 miR 145-5p (|)

SP2 miR-29a-3p (|), miR-638"

PDGFR-A miR-140-5p (|); miR-26b-5p (|); miR-29b-3p ();
181a-5p (1); miR-1233 (1)

TRIM28 miR-423-5p (inconsistent reports), miR-193b-3p (),
miR-183-3p (), miR-92a-3p (|)

TOP2A miR-193b-3p (|), miR-21-5p (1)

Top 10 predictors and their corresponding regulating microRNAs that are reportedly
of diagnostic value for heart failure

(a) Regulating microRNAs are from Chou et al.?** (http://mirtarbase.mbc.nctu.edu.tw).
(b) Differentiating heart failure with reduced ejection fraction from heart failure with
preserved ejection fraction. T and | represent elevation and decrease, respectively,

compared to healthy controls.
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Table P6-S1

Alprostadil Fluoxetine Propofol
Amiodarone Flurbiprofen Propranolol
Amitriptyline Gefitinib Raloxifene
Azacitidine Hydralazine Reserpine
Budesonide lloprost Riluzole
Bupropion Imatinib Risperidone
Capsaicin Imipramine Rosiglitazone
Carbamazepine |Indometacin Selegiline
Carmustine I[rinotecan Simvastatin
Chloroquine Ketoconazole Sulfasalazine
Chlorpromazine |Levodopa Sulindac
Cimetidine Menadione Tamoxifen
Citalopram Mesalazine Testosterone
Clomipramine |Metformin Tetracycline
Clotrimazole Methotrexate Thalidomide
Clozapine Miconazole Theophylline
Colchicine Minocycline Thioridazine
Daunorubicin Mitoxantrone Tretinoin
Decitabine Naloxone Trifluoperazine
Desipramine Nifedipine Troglitazone
Diclofenac Omeprazole Valproic Acid
Dinoprostone Orlistat Verapamil
Doxorubicin Pioglitazone Vinblastine
Doxycycline Prednisolone Vorinostat
Etoposide Probenecid Zidovudine

The list of 75 drugs used for exploratory modeling.
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Table P6-S2

Year [First Author |CMs  [Doxorubicin nM [DOXh |wash d |expression data level availability [Original Name
HTS (llumina Modeling Doxorubicin-induced Cardiotoxicity in
2016 |Maillet hESC (1000, 2500 16 0 R not available Human Pluripotent Stem Cell Derived-
HiSeq 2500) -
Cardiomyocytes
100, 1000, array (HG- up/down reg, FC, p- Human induced pluripotent stem cell-derived
hESC 10000 U133_Plus_2) |value cardiomyocytes recapitulate the predilection of
2016 |Burridge 24 0 brea§t ca.n(.:er patients to doxorubicin-induced
) cardiotoxicity.
hiPsc 11000 HTS (lumina gene expression https://www.ebi.ac.uk/arrayexpress/experiments/
HiSeq 2000) E-GEOD-79413/
2016 |Holmgren |[hESC |50, 150, 450 microRNA MicroRNAs as potential biomarkers for
doxorubicin-induced cardiotoxicity
MicroRNAs as early toxicity signatures of
2016 [Chaudhari |[hiPSC |156 microRNA doxorubicin in human-induced pluripotent stem
cell-derived cardiomyocytes
48,144 |0, 8,12 |2 (HG- up/down regulation  |!dentification of genomic biomarkers for
U133_Plus_2) anthracyclineinduced cardiotoxicity in human
2015 |Chaudhari |hiPSC |156 iPSC-derived cardiomyocytes: an in vitro
RT-PCR (84  |up/down reg, FC,p- |repeated exposure toxicity approach for safety
48 0 targetgenes) |value assessment
array (HuGene Identification of novel biomarkers for doxorubicin-
2015 |Holmgren [hESC |50, 150, 450 24,48 (12 ST 2y0) deregulation induced toxicity in human cardiomyocytes
’ derived from pluripotent stem cells.

Studies of transcriptomic profiles of doxorubicin.
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Table P7-S1

TOP250 @ AMI | FFA | TET | TMX | VPA
G0:0019838 growth factor binding
P00005 4.38 20.12 | 13.41 | 17.66 Angiogenesis
G0:0042127| 2.5 543 | 6.22 | 842 | 6.11 | 6.59 HMregulation of cell proliferation
G0:0051241| 2.49 587 | 665 | 7.2 5.84 | 6.35 Wnegative regulation of multicellular organismal process
G0:0051240| 2.19 575 | 659 | 6.2 | 6.13 | 7.29 Rpositive regulation of multicellular organismal process
G0:0051094| 2.34 6.63 | 6.16 | 7.49 | 7.75 RWpositive regulation of developmental process
G0:0030335| 4.38 10.98 12.35 Qpositive regulation of cell migration
G0:2000147| 4.59 10.54 11.85 @positive regulation of cell motility

G0:0051272| 4.47 10.26 11.54 H@positive regulation of cellular component movement
G0:0032879| 2.1 3.56 | 4.93 | 4.26 | 551 | 5.13 Jregulation of localization

G0:0040017| 4.46 9.83 11.05 @positive regulation of locomotion

G0:2000145| 4.14 6.75 | 6.75 7.36 Mregulation of cell motility

G0:0051239| 1.91 376 | 46 | 5.02 | 422 | 513 Rregulation of multicellular organismal process
G0:2000026| 2.33 545 | 545 | 422 | 6.29 Hregulation of multicellular organismal development
G0:0050793| 2.04 492 | 516 | 54 5.63 Pregulation of developmental process

G0:0071229| 6.02 15.6 cellular response to acid chemical

G0:0001101| 4.88 15.52 response to acid chemical

G0:0022008| 2.19 6.56 | 4.63 6.63 @neurogenesis

G0:0065008| 1.74 348 | 3.61 | 3.28 | 3.75 | 3.63 Hregulation of biological quality
G0:0048522| 1.58 3.1 3.28 | 3.75 | 3.81 | 3.36 QWpositive regulation of cellular process
G0:0032502| 1.98 269 | 348 | 2.75 | 417 | 2.77 Wdevelopmental process

G0:0040012| 3.79 6.88 6.75 Mregulation of locomotion
G0:0048518| 1.53 2.98 | 3.02 | 3.44 | 3.38 | 3.07 Wpositive regulation of biological process
G0:0072359| 3.78 6.98 | 5.91 Qcirculatory system development

G0:0007275| 1.88 2.71 | 317 | 2.93 | 2,57 | 3.19 Wmulticellular organism development
G0:0048856| 1.84 264 | 295 | 2.84 | 249 | 2.97 Ranatomical structure development

G0:0002376| 2.91 3.89 | 4.1 4.49 Eimmune system process

G0:0048869| 1.81 3.57 | 3.57 | 2.85 | 3.58 Hcellular developmental process
G0:0048731 2 347 | 3.06 | 2.68 | 3.64 Qsystem development

G0:0051128 | 2.1 4.25 3.51 | 4.29 Qregulation of cellular component organization
G0:0042060| 3.81 10.22 @wound healing

G0:0032501| 1.56 221 | 253 | 2.61 | 2.29 | 2.57 Emulticellular organismal process
G0:0001568 | 4.22 8.87 blood vessel development

G0:0009611 | 3.34 9.41 Qresponse to wounding

G0:0030154| 1.83 3.64 | 3.48 3.66 M cell differentiation

G0:0001944| 4.18 8.43 vasculature development

G0:0007399| 2.64 4.98 4.93 Enervous system development

G0:0072358| 4.1 8.26 cardiovascular system development
G0:0048513| 1.87 3.32 | 3.32 3.67 M animal organ development

G0:0048468| 2.5 4.69 4.8 Qcell development

G0:0040011 | 6.18 5.5 Qlocomotion

G0:0030334| 4.21 7.25 RWregulation of cell migration

R-HSA-42244 3.58 7.02 W Axon guidance

G0:0051270| 3.88 6.72 Qregulation of cellular component movement
G0:0000902| 3.35 6.8 P cell morphogenesis

G0:0005515 172 | 1.78 | 1.83 | 1.7 | 1.79 Rprotein binding

G0:0065007 1.7 1.65 | 1.75 | 1.71 | 1.67 Qbiological regulation

G0:0044087| 2.88 6.01 regulation of cellular component biogenesis
G0:0044459| 1.75 3.87 3.21 plasma membrane part

G0:0030030| 2.54 5.37 Hcell projection organization

G0:0006928 | 2.25 5.2 movement of cell or subcellular component
G0:0009888| 2.45 4.61 Qtissue development

G0:0009653| 2.69 4.27 Qanatomical structure morphogenesis
G0:0009987 1.4 14 1.4 1.4 QP cellular process

G0:0005488 1.42 1.42 1.38 @binding

G0:0005737 1.56 Qcytoplasm

List of GO annotation terms (1st column) and their description (last column). The other
columns contain the fold enrichment of the specific annotation term for the
GSE49541 dataset analyzed with GEO2R (please see Results for further details)
labelled “TOP250” and the gene lists corresponding to the pathway nodes of AMI,
FFA, TET, TMX and VPA.
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Meniscus — Cartilage paracrine crosstalk in osteoarthritis

Published in “Bone Abstracts” DOI:10.1530/boneabs.3.PP183

Authors: Stavroula Samara, Elisavet Chatzopoulou, loannis Melas, Dimitris Messinis,

Zoe Dailiana, Panagoula Kollia, Leonidas Alexopoulos

Introduction: Meniscus plays an essential role in knee joint function providing stability
and load transmission. In osteoarthritis (OA), a joint disease characterized by chronic
synovitis and cartilage degeneration, pathological changes in the menisci are
observed. However, whether menisci contribute to the progression of OA, the
underlying mechanism for meniscus-cartilage communication is still unclear. In this
study we analyzed systematically the response of meniscus and cartilage explants to
a number of inflammatory mediators, in order to reveal their response similarity and
highlight potential crosstalks and interactions.

Methods: OA cartilage and the lateral meniscus were harvested from two patients
undergoing total knee arthroplasty. Meniscus and cartilage disks (3 mm diameter)
were stimulated with inflammatory mediators ((IL-1qa, IL-13, IL-12a, CSF2) (50 ng/ml),
(TNF-q, IL-6, CXCL7, IL-8, CCL2, CXCL10, IFN-y, IL-3, MIA2, IL-4) (100 ng/ml) and
GROa (500 ng/ml)) for 24 h. For each condition the release of different proteins (IL-
1q, IL-1B3, TNF-q, IL-6, CXCL7, GROaq, IL-8, CCL2, CXCL10, IFN-y, IL-3, IL-12a, MIA-
2, CSF2, IL-4) was measured in the supernatant using custom multiplexed assays on
a Luminex FlexMap 3D instrument.

Results: In both tissues the major inflammatory players (IL-1q, IL-13, TNFa) were the
strongest stimuli as expected. Meniscus responses were the same up to 73 and 50%
with the cartilage ones for the first and the second donors respectively. Interestingly,
meniscus under certain stimuli (IL-1a, IFN-y, CSF2, IL-8) responded differently than

cartilage by releasing five different cytokines while cartilage did not.
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Conclusions: Our results indicate that meniscus is affected by its inflammatory
environment and responds to it as actively as cartilage. Moreover, the release of
different cytokines from meniscus and cartilage suggests that meniscus can be an
active player in the progression of OA. These data support the hypothesis that
significant crosstalk between these two knee compartments exist and anti-

inflammatory therapies should take into consideration both tissues.

[A2] 17-19 June 2014, Boston MA, USA

International Conference on Systems Biology of Human Disease

Construction of a drug-induced phosphoprotein/cytokine dataset in clinical samples
for Multiple Sclerosis

Authors: Vicky Pliaka, Dimitris E Messinis, Theodore Sakellaropoulos, Ekaterina
Kotelnikova, Tomas Olsson, Jesper Tegner, Roland Martin, Dimitris Tzeranis,
Friedemann Paul, Julio Saez-Rodiguez, Marti Bernardo-Faura, loannis N Melas, Jose
Manuel Mas, Laura Artigas, Elena Schwartz, llya Mazo, Sophia Stamatatou, Mar

Masso, Albert Zamora, Pablo Villoslada, Leonidas G Alexopoulos

Multiple Sclerosis (MS) is an autoimmune disease that affects the brain and spinal
cord. An estimated 2,500,000 around the world have MS and there is not yet a cure
for the disease. Even though significant progress is currently being made in MS
research, the pathogenesis of the disease has not been comprehensively understood.
A great number of pathological mechanisms responsible for the disease have been
described, involving hundreds of genes and proteins altering multiple processes and
signaling pathways. By understanding how current MS therapies work in biological
networks, more effective therapies can be designed. On this front, the CombiMS
consortium (http://combims.eu/) is developing computational and experimental tools
to improve the therapeutic options of MS in the future.

A milestone in this consortium is to evaluate how current and “promising” MS drugs
work at the signaling level in different patient populations. Peripheral blood
mononuclear cells (PBMCs) from approximately 255 donors were collected from
several European medical centers. The PBMCs were plated in 96 well plates and 20

stimuli & drugs were applied. Using custom multiplex assays, 17 phosphoproteins
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plus 2 control beads were measured at 5 and 25 minutes and 22 cytokines plus two
control beads at 24 hours post stimulus.

To ensure the highest possible data quality, a kit was developed to include all
reagents needed in order to isolate PBMCs from one donor and then plate, stimulate
and lyse them. Sample collection controls were applied in the stimuli set to evaluate
errors in sample processing whereas two custom xXMAP bead sets were used to
evaluate errors in the bead-based ELISA procedure and instrument measuring
variability.

Phosphoproteomic and cytokine data will be combined with SNP data and clinical
profiles (i.e. responders, non-responders, therapeutic intervention) in a computational
framework which will help to understand MS more thoroughly and systematically. As
a first step, the phosphoproteomic dataset will be used for the construction of a
detailed map of the signaling pathway differences between MS and healthy donors,
which can help generate a model of MS pathogenesis and improve our understanding

of the disease.

[A4] 18-20 September 2014, Patras, Greece

MET-GR lll workshop: Metabolic and Protein Network analysis in Systems Biology
An integrated proteomic and metabolomic approach to investigate cartilage
degeneration

Authors: Dimitris E Messinis, Vaia Pliaka, Stavroula Samara, Zoe Dailiana, Panagoula

Kollia, Maria | Klapa, Leonidas G Alexopoulos

Cartilage degeneration as a feature of osteoarthritis (OA) is one of the most common
causes of pain and disability in middle-aged and older people. The percentage of
population above 45 years of age affected with OA is estimated to increase from
26.6% (2012) to 29.5% by 2032 due to the aging of the population and the obesity
epidemic. Most research studies in OA focus on single therapeutic targets, disease
processes or level of molecules, thus omics data have never been integrated in a
systematic way.

Articular cartilage and synovium explants, whole cell extract of articular chondrocytes

or mesenchymal stem cells, supernatant of articular cartilage explants, articular
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chondrocytes, osteoclasts or synovium-derived cells in culture, articular cartilage
vesicles, synovial fluid (SF), plasma, serum and urine have all been studied on the
proteomic front and a subset of those for their metabolomic signature. However, no
more than three of those types of samples have been examined in a single study
using the same assay type. By using samples from various tissues, we avoid focusing
only on the biochemical changes that occur in the joints.

As a case study, we combined proteomic and metabolomic assays (multiplex bead-
based sandwich ELISA xMAP technology and gas chromatography mass
spectrometry), to measure the phosphoproteomic signature, cytokine release and
metabolomic signature of untreated and treated with IL1B cultured chondrocytes,
along with the proteomic and metabolomic signature of the same donor’s synovial
fluid and plasma.

Following this multi-omics approach, we had to include additional quality control
check points to ensure the highest possible dataset quality and therefore the validity
of results. In particular, we need to be able to address challenges such as acquiring
multiple samples from the same donor at the same time, using the exact same
samples for all experiments (cell line passage, timelines in cell culture), merging
protocols of all omics assays while meeting the sample handling prerequisites for
every assay and having strictly fixed parameters across assays, such as time points
and doses of any applied stimuli.

Besides ensuring robustness of the dataset, in the case of OA, we have to take into
account the scarce availability of healthy human cartilage, synovium and SF samples
and examine the clinical profile data of donors in order to expand the dataset while
gaining knowledge about factors such as medication that can alter the omics data.
In conclusion, we believe that omics data acquired by multiple samples while
avoiding the above mentioned pitfalls, can be integrated in a multi-level dataset which
may help us understand complex biological systems and multifactorial diseases such
as OA.

[A6] 30 April - 3 May 2015, Seattle, WA, USA
OARSI World Congress on Osteoarthritis 2015
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The role of inflammatory mediators in meniscus and cartilage crosstalk in
osteoarthritis

Published in Osteoarthritis and Cartilage DOI: 10.1016/j.joca.2015.02.488

Authors: Z.H. Dailiana, E.l. Chatzopoulou, S. Samara, I.M. Melas, M. Hantes, S.

Varitimidis, D. Messinis, P. Kollia, L.G. Alexopoulos.

Purpose: Osteoarthritis (OA) is a common degenerative joint disorder causing
cartilage degradation, pain and disability. Lately it is characterized as a whole joint
disease as it affects the structure and functionality of all tissue components, such as
the menisci. Meniscus plays an essential role in knee joint function providing stability
and load transmission. During OA the balance between catabolic and anabolic
processes in the cartilage tissue is disturbed favouring catabolism through the
cytokines and Matrix Metalloproteinases (MMPs) that are present in the synovial fluid
of patients with mild or severe OA. In this study we examine how meniscus and
cartilage explants react to a number of inflammatory mediators, in order to reveal
their response similarity and highlight potential crosstalks and interactions. Methods:
OA cartilage and the menisci were harvested from patients undergoing total knee
arthroplasty. Meniscus and cartilage disks (3 mm diameter) were stimulated with
inflammatory mediators [IL-1a, IL-1b, IL12a, CSF2 (50 ng/ml), TNF-a, IL-6, CXCL7,
IL-8, CCL2, CXCL10, IFN-g, IL-3, MIA2, IL-4 (100 ng/ml) and GROa (500 ng/ml)] for
24 h. For each condition the release of different proteins [IL-1a, IL-1b, TNF-a, IL-6,
CXCL7, GROa, IL8, CCL2, CXCL10, IFN-g, IL-3, IL-12a, MIA-2, CSF2, IL-4] was
measured in the supernatant after 24 hours using custom multiplexed assays on a
Luminex FlexMap 3D instrument. Histological sections were prepared in order to
assess the osteoarthritic grade of the tissues used. Datarail toolbox was used for data
handling and visualization.

Results: In general, there was strong similarity between meniscus and cartilage
releases; the major inflammatory players (IL-1a, IL-1b, TNFa) were the strongest
stimuli as expected, in both tissues. Under these cytokines cartilage disks released
IL-6, CXCL7, GROa, IL-8, and CCL2. Meniscus responses were the same up to 73%
and 50% with the cartilage ones for the first and the second donors, respectively.

Meniscus under certain stimuli (IL-1a, IFN-g, CSF2, IL-8) responded differently than
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cartilage by releasing five different cytokines that cartilage did not. Conclusions: Until
now, little is known about meniscus reaction to cartilage protein expression or to the
high cytokines concentration of the synovial fluid after trauma or OA. Our results
confirm that IL-1a, IL-1b and TNF-a, as proinflammatory cytokines, promote systemic
inflammation and thus release of IL-6, IL-8 and GROa in both cartilage and meniscus
tissue. The above findings suggest that meniscus is affected by its inflammatory
environment and responds to it as actively as cartilage, supporting the hypothesis
that significant crosstalk between these two knee compartments exists and anti-
inflammatory therapies should take into consideration both tissues. Further
investigations should be done to unveil the exact communication mechanisms
between meniscus and the other joint tissues. Acknowledgments: Funded by
European Union (European Social Fund e ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) e Research Funding Program: Thalis. Investing in

knowledge society through the European Social Fund.

[A7] 5-8 May 2015, Berlin, Germany

European Pharma Summit

Signalling pathway-based screening for drug discovery: an application in Multiple
Sclerosis

Authors: Dimitris E Messinis, Vicky Pliaka, Sophia Stamatatou, Theodore

Sakellaropoulos, combiMS consortium, Leonidas G Alexopoulos

Multiple Sclerosis (MS) is an autoimmune disease affecting the brain and spinal cord.
There is not yet a cure for the disease while 2,5 million people around the world have
MS. Several pathological mechanisms for MS have been described, involving
alterations in multiple processes and signalling pathways.

Our goal is to evaluate how current MS drugs and compounds with a therapeutic
potential work at the signalling level in different patient populations. By understanding
how current MS drugs work on patient-specific biological networks, more effective
therapies can be designed that take into account the uniqueness of each patient’s

response in treatment and biomarkers can be developed to stratify patients.
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For the production of this dataset, we used High-Throughput Screening (HTS) with
custom cell signalling assays (by ProtATonce), that allow screening of thousands of
samples at the proteomic and phosphoproteomic level at a very small fraction of the
cost compared to off-the-shelf reagents. Strict quality control check points were
embedded to the collection-to-measurement pipeline in order to evaluate errors in
sample collection, sample preparation, ELISA procedure and instrument variation.
Collection kits were prepared and shipped to 4 clinical centres across EU in order to
collect peripheral blood mononuclear cells (PBMCs) from 255 donors. The cells were
plated and stimulated at 3 time points with 20 compounds and drugs. We collected
cell lysates and cell supernatants to simultaneously quantify in the samples 17
phosphoproteins and 22 secreted proteins respectively.

This dataset was analysed with pathway optimization tools for the construction of
detailed signalling pathway maps for each donor which can help reveal the drugs’
mode of action and efficacy in correlation with differences in the patient population.
The therapeutic potential of compounds that their phosphoproteomic signature
matches that of existing drugs will be evaluated and the data will be combined with
SNP data and clinical profiles in an attempt to develop biomarkers to distinguish

between responder and non-responder to treatment patients.

[A8] 8-9 June 2015, Berlin, Germany

16th Annual Drug Discovery Leaders Summit and 3rd Annual Discovery Chemistry &
Drug Design Congress

Multiplex High Throughput screening for Drug Discovery: Application for mechanism-
based biomarker discovery in Multiple Sclerosis

Authors: Dimitris E Messinis, Vicky Pliaka, Sophia Stamatatou, Theodore

Sakellaropoulos, combiMS consortium, Leonidas G Alexopoulos

High throughput screening (HTS) has become an invaluable tool in drug discovery.
Current HTS platforms are based on the measurement of very few reporter assays
and lose the mechanistic picture on how compounds work on cells. Multiplex HTS
can measure a large number of intracellular and extracellular signals and thus provide

mechanism-based insight in biomarker discovery.
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In this study, we employed a dual phosphoprotein and cytokine multiplex high
throughput screening using a Luminex FlexMap 3D system with custom assays by
ProtATonce. Seeking biomarkers in Multiple Sclerosis (MS), Luminex assays were
developed to monitor the mode of action of 20 drugs in 255 donors at the signalling
(17plex) and cytokine (22plex) level. Collection kits were prepared and shipped to
clinical centres across EU in order to collect peripheral blood mononuclear cells
(PBMCs) from donors. This dataset is analysed with systems biology algorithms in
order to construct patient-specific signalling pathways and develop biomarkers for
MS. Machine learning and optimization algorithms were employed to quantify patient-
based drug efficacy and predict responders from non-responders. In summary,
multiplex high throughput screening and systems biology algorithms introduce a
mechanistic insight in biomarker discovery and pave a new way for pharmaceutical

research.

[A9] 1-3 July 2015, Avignon, France

51% International Conference on Medicinal Chemistry RICT Drug Discovery and
Selection Understanding Targets and Mechanisms

Signalling pathway-based screening for drug discovery: an application in Multiple
Sclerosis

Authors: Dimitris E Messinis, Vicky Pliaka, Sophia Stamatatou, Theodore

Sakellaropoulos, combiMS consortium, Leonidas G Alexopoulos

Multiple Sclerosis (MS) is an autoimmune disease affecting the brain and spinal cord.
There is not yet a cure for the disease while 2,5 million people around the world have
MS. Several pathological mechanisms for MS have been described, involving
alterations in multiple processes and signalling pathways.

Our goal is to evaluate how current MS drugs and compounds with a therapeutic
potential work at the signalling level in different patient populations. By understanding
how current MS drugs work on patient-specific biological networks, more effective
therapies can be designed that take into account the uniqueness of each patient’s

response in treatment and biomarkers can be developed to stratify patients.
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For the production of this dataset, we used High-Throughput Screening (HTS) with
custom cell signalling assays (by ProtATonce), that allow screening of thousands of
samples at the proteomic and phosphoproteomic level at a very small fraction of the
cost compared to off-the-shelf reagents. Strict quality control check points were
embedded to the collection-to-measurement pipeline in order to evaluate errors in
sample collection, sample preparation, ELISA procedure and instrument variation.
Collection kits were prepared and shipped to 4 clinical centres across EU in order to
collect peripheral blood mononuclear cells (PBMCs) from 255 donors. The cells were
plated and stimulated at 3 time points with 20 compounds and drugs. We collected
cell lysates and cell supernatants to simultaneously quantify in the samples 17
phosphoproteins and 22 secreted proteins respectively.

This dataset was analysed with pathway optimization tools for the construction of
detailed signalling pathway maps for each donor which can help reveal the drugs’
mode of action and efficacy in correlation with differences in the patient population.
The therapeutic potential of compounds that their phosphoproteomic signature
matches that of existing drugs will be evaluated and the data will be combined with
SNP data and clinical profiles in an attempt to develop biomarkers to distinguish

between responder and non-responder to treatment patients.

[A10] 6-8 July 2015, Heidelberg, Germany

International Conference on System Biology of Human Disease

Patient-specific signalling pathway analysis for Multiple Sclerosis

Authors: Dimitris E Messinis, Vicky Pliaka, Sophia Stamatatou, Theodore

Sakellaropoulos, combiMS consortium, Leonidas G Alexopoulos

Multiple Sclerosis (MS) is an autoimmune disease affecting the brain and spinal cord.
There is not yet a cure for the disease while 2,5 million people around the world have
MS. Several pathological mechanisms for MS have been described, involving
alterations in multiple processes and signalling pathways.

Our goal is to evaluate how current MS drugs and compounds with a therapeutic
potential work at the signalling level in different patient populations. By understanding

how current MS drugs work on patient-specific biological networks, more effective
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therapies can be designed that take into account the uniqueness of each patient’s
response in treatment and biomarkers can be developed to stratify patients.
Collection kits were prepared and shipped to 4 clinical centres across EU in order to
collect peripheral blood mononuclear cells (PBMCs) from 255 donors. The cells were
plated and stimulated at 3 time points with 20 compounds and drugs. We collected
cell lysates and cell supernatants to simultaneously quantify in the samples 17
phosphoproteins and 22 secreted proteins respectively. Strict quality control check
points were embedded to the collection-to-measurement pipeline in order to evaluate
errors in sample collection, sample preparation, ELISA procedure and instrument
variation.

The resulting dataset was analysed with pathway optimization tools for the
construction of detailed signalling pathway maps for each donor which can help
reveal the drugs’ mode of action and efficacy in correlation with differences in the
patient population. The therapeutic potential of compounds that their
phosphoproteomic signature matches that of existing drugs will be evaluated and the
data will be combined with SNP data and clinical profiles in an attempt to develop
biomarkers to distinguish between responder and non-responder to treatment

patients.

[A11] 3-5 March 2017, Athens, Greece

Hepato-Pancreato-Biliary Greek Association Conference

Primary human hepatocyte models for NAFLD/NASH based on phosphoproteomics.
Authors: Danai Stella Zareifi, Dimitris E Messinis, Angeliki Minia, Vaia Pliaka, Jan
Rozanc, Manoussos M Konstadoulakis, Konstantinos J Bramis, Efstathios A

Antoniou, Leonidas G Alexopoulos

Non-alcoholic fatty liver disease (NAFLD) is the most common liver condition in the
world, with a prevalence of up to 30% in developed countries. NAFLD is defined by
the presence of hepatic steatosis in the absence of excess alcohol consumption and
represents a spectrum of disease, from simple steatosis and Non-Alcoholic
Steatohepatitis (NASH) to fibrosis, cirrhosis and hepatocellular carcinoma. The cause

and disease progression mechanisms of NAFLD are still not completely understood.
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Researchers have tried to understand the disease through multi-omic approaches
but there is no study -to our knowledgeexploring the signal transduction level, while
phosphoproteomic measurements are becoming very important in drug discovery. In
vitro exposure of primary human hepatocytes to increasing concentrations of free
fatty acids (FFA) results in increased intracellular accumulation of lipid droplets similar
to those observed in patients with NAFLD and NASH. We prepared a mixture of
exogenous FFA in ethanol in molar ratio 1:2 Palmitic Acid: Oleic Acid respectively, as
it has been done before in a study using Huh7 cells. However, instead of cancer cells,
we cultured primary human hepatocyte cells, isolated from healthy resected human
liver tissue. The cells were exposed to increasing concentrations of the FFA mixture
(100-1000uM). The formation of intracellular lipid droplets was verified using high
content screening; lipid droplets were stained with Nile Red fluorescent probe and
Hoechst 33342 was used for counterstaining cell nucleus. After a 24h treatment, we
lysed the cells, measured the protein content of the lysates and adjusted the samples
to the same concentration. After pooling 5 replicates of each FFA concentration, we
measured 19 phosphorylated protein targets using Luminex technology (multiplex
antibody-based ELISA). We found that the phosphorylation level of heat shock
protein beta-1 (HSPB1) was three-fold less than the control. Other scientists have
recently shown that HSPB1 is down-regulated in NASH. Moreover, we show irregular
phosphorylation patterns in IKBA, AKT1, WNK1, FAK1 and STAT6, most of which
play a role in NAFLD/NASH mechanism. The present study pinpoints the signaling
alterations of FFA-induced NAFLD.

[A12] 7 April 2017, Athens, Greece

Panhellenic Congress of Biomedical Technology

Primary human hepatocyte models for NAFLD/NASH based on phosphoproteomics.
Authors: Danai Stella Zareifi, Dimitris E Messinis, Angeliki Minia, Vaia Pliaka, Jan
RozZzanc, Manoussos M Konstadoulakis, Konstantinos J Bramis, Efstathios A

Antoniou, Leonidas G Alexopoulos

Non-alcoholic fatty liver disease (NAFLD) is the most common liver condition in the

world, with a prevalence of up to 30% in developed countries. NAFLD is defined by
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the presence of hepatic steatosis in the absence of excess alcohol consumption and
represents a spectrum of disease, from simple steatosis and Non-Alcoholic
Steatohepatitis (NASH) to fibrosis, cirrhosis and hepatocellular carcinoma. The cause
and disease progression mechanisms of NAFLD are still not completely understood.
Researchers have tried to understand the disease through multi-omic approaches
but there is no study -to our knowledgeexploring the signal transduction level, while
phosphoproteomic measurements are becoming very important in drug discovery. In
vitro exposure of primary human hepatocytes to increasing concentrations of free
fatty acids (FFA) results in increased intracellular accumulation of lipid droplets similar
to those observed in patients with NAFLD and NASH. We prepared a mixture of
exogenous FFA in ethanol in molar ratio 1:2 Palmitic Acid: Oleic Acid respectively, as
it has been done before in a study using Huh7 cells. However, instead of cancer cells,
we cultured primary human hepatocyte cells, isolated from healthy resected human
liver tissue. The cells were exposed to increasing concentrations of the FFA mixture
(100-1000uM). The formation of intracellular lipid droplets was verified using high
content screening; lipid droplets were stained with Nile Red fluorescent probe and
Hoechst 33342 was used for counterstaining cell nucleus. After a 24h treatment, we
lysed the cells, measured the protein content of the lysates and adjusted the samples
to the same concentration. After pooling 5 replicates of each FFA concentration, we
measured 19 phosphorylated protein targets using Luminex technology (multiplex
antibody-based ELISA). We found that the phosphorylation level of heat shock
protein beta-1 (HSPB1) was three-fold less than the control. Other scientists have
recently shown that HSPB1 is down-regulated in NASH**. Moreover, we show
irregular phosphorylation patterns in IKBA, AKT1, WNK1, FAK1 and STAT6, most of
which play a role in NAFLD/NASH mechanism. The present study pinpoints the
signaling alterations of FFA-induced NAFLD.

[A13] 7-8 November 2017, Amsterdam, Netherlands
Conference of Luminex, 3rd xXMAP Connect
Development of a new drug repositioning platform for Non-Alcoholic Fatty Liver

disease through network analysis.
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Authors: Danae S. Zareifi, Nafsika Chala, Dimitris E. Messinis, Asier Antonaz, Angeliki
Minia, Vaia Pliaka, Jan Rozanc, Manoussos M. Konstadoulakis, Konstantinos J.
Bramis, Efstathios A. Antoniou, Eirini Pantiora, Andreas Polydorou, Antonios Vezakis,

Georgios Fragulidis, Leonidas G. Alexopoulos

Non-alcoholic fatty liver disease (NAFLD) is defined as the presence of hepatic
steatosis in the absence of excess alcohol consumption and is considered the
hepatic manifestation of the metabolic syndrome. It is considered to be the most
common pathological condition of the liver, but its cause and progression
mechanisms are still not completely understood, partially because of the lack of
sufficient in vitro models. There is no therapy approved specifically for NAFLD by
FDA). The aim of this project is to develop a platform for drug repositioning in
NAFLD/NASH by combining novel in vitro models of primary human hepatocytes with
networkbased analysis of gene expression and xMAP data.

For the in vitro induction of NAFLD, primary human hepatocytes (pHH) were exposed
to free fatty acids (palmitic acid, oleic acid) and to the steatogenic compounds
amiodarone, tamoxifen, tetracycline and valproic acid. The presence of steatosis was
assesed using high content screening; lipid droplets were stained with Nile Red
fluorescent probe and Hoechst 33342 was used for counterstaining cell nucleus. In
addition, 17 phosphorylated protein targets were measured and signaling networks
were constructed, in an attempt to shed a light into the mechanism of each in vitro
approach to induce NAFLD.

A network-based computational approach was employed to suggest compounds for
NAFLD. NAFLD-related networks were identified through (i) gene set analysis (GSA)
and (i) multiplex phosphoproteomic data. The common pathways with the
aforementioned steatogenic compounds, used to induce NAFLD in vitro, were found
through Drugbank and MSig database. To suggest compounds that reverse the
disease mechanism, the steatogenic compounds were used with the Connectivity
Map database. The most promising compounds for drug repositioning were identified
in the intersection between patient-derived and drug-derived networks.

In this work, we have successfully developed NAFLD-induced in vitro models driven

by steatogenic compounds. xXMAP phosphoproteomic data and pathway analysis
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identified deregulations of CREB1, ERK1, MEK1, P53 and NFKB that came in
agreement with literature whereas the involvement of CHK2 and EPOR pathways
seems to be unknown mechanisms for steatosis. Our drug reposition platform
suggested 10 potential candidates that were tested in our in-vitro models.
Interestingly, 5 of them have shown that can reverse in-vitro NAFLD. 3 of them are

already in clinical trials whereas 2 more show very promising therapeutic potential.

[A14] 9-11 November 2017, Rome, Italy

First NAFLD Summit, European Association of Liver Disease

Network based drug repositioning for Non-Alcoholic Fatty Liver Disease

Authors: Danae S. Zareifi, Nafsika Chala, Dimitris E. Messinis, Asier Antonaz, Angeliki
Minia, Vaia Pliaka, Jan Rozanc, Manoussos M. Konstadoulakis, Konstantinos J.
Bramis, Efstathios A. Antoniou, Eirini Pantiora, Andreas Polydorou, Antonios Vezakis,

Georgios Fragulidis, Leonidas G. Alexopoulos

Introduction: Non-alcoholic fatty liver disease (NAFLD) is the most common
pathological condition of the liver. Many pharmacological agents have been tested
for the management of the disease, but there is no therapy approved specifically for
NAFLD by the US Food and Drug Administration. On this front, drug repositioning
(DR) offers an accelerated route for drug discovery. Aims: The aim of this project is
to suggest a platform for drug repositioning in NAFLD by combining novel in vitro
models of primary human hepatocytes with network-based analysis of gene
expression data from NAFLD patients.

Material and Methods: To induce NAFLD in vitro, primary human hepatocytes were
exposed to free fatty acids (FFAs, palmitic and oleic acid) and to the steatogenic
compounds amiodarone (AMI), tamoxifen (TMX), tetracycline (TET) and valproic acid
(VPA). The formation of intracellular lipid droplets was verified using high content
screening; lipid droplets were stained with Nile Red fluorescent probe, Hoechst
33342 was used for staining cell nucleus. The intracellular ROS production was
measured using the fluorescent substrate CM-H2DCFDA. A network-based

computational approach was employed to suggest compounds for NAFLD.
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Briefly, gene expression networks derived from NAFLD patients were matched with
drug-induced networks in an effort to identify drugs that affect the NAFLD-
mechanisms. NAFLD-related networks were identified through gene set analysis
(GSA) of two microarray datasets from GEO-NCBI. Common pathways with the
steatogenic compounds used to induce NAFLD in vitro were found through Drugbank
and MSig databases. To suggest compounds that reverse the disease mechanism,
the steatogenic compounds were used with the Connectivity Map database. The
promising compounds for DR are considered to belong in the intersection of GSA-
derived and drug-derived networks.

Results: Lipid droplet accumulation and ROS production was present in all in vitro
models, as it is observed in patients with NAFLD. The in silico analysis for DR
identified Naftifine, Pralidoxime, Fusidic acid, Raloxifene, Oxprenolol, Dipivrefin,
Metoprolol, Estrone sulfate, Physostigmine, Cefmetazole and Diflorasone as
promising compounds for NAFLD treatment.

Conclusions: We have successfully developed NAFLD-induced in vitro models using
the steatogenic compounds FFAs, VPA, TMX, TET and AMI. We have identified
mechanisms of NAFLD pathogenesis through gene set analysis. The efficacy of the
resulting compounds from the DR platform is being tested on the NAFLD in vitro

models.
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Construction of a drug-induced phosphoprotein/cytokine
dataset in clinical samples for Multiple Sclerosis

Vicky Pliaka®’, Dimitris E Messinis”®", Theodore Sakellaropoulos’, Ekaterina Kotelnikova', Tomas Olsson?, Jesper Tegner?, Roland Martin®,
Dimitris Tzeranis”?, Friedemann Paul®, Julio Saez-Rodiguez®, Marti Bernardo-Faura®, loannis N Melas®”#, Jose Manuel Mas®, Laura Artigas®,
Elena Schwartz'®, llya Mazo'®, Sophia Stamatatou®, Mar Masso'’, Albert Zamora'", Pablo Villoslada', Leonidas G Alexopoulos”®

*Equal contributors / 'IDIBAPS - Hospital Clinic of Barcelona, Spain / 2Department of Neurology and *Unit of Computational Medicine, Department of Medicine, Center for
Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Sweden / “University of Zurich, Switzerland / °NeuroCure Clinical Research Center, Charité
University Medicine Berlin, Berlin, Germany / *European Molecular Biology Laboratory, European Bioinformatics Institute, UK / "National Technical University of Athens,
Greece / *ProtATonce Ltd, Athens, Greece / °Anaxomics Biotech, Barcelona, Spain / '?Ariadne Diagnostic, Rockville, MD, US / "'Bionure Farma SL, Barcelona, Spain.

Multiple sclerosis is an autoimmune disease that affects the brain and spinal cord. About two and a half million people around the world have MS and there is not yet a
cure for the disease. Current therapies for MS are not effective and they target only part of the immune response.

Combination

Therapies for
-> Multiple
Sclerosis

In order to be able to develop combination therapies
for MS, we first need to understand how current MS
therapies work in biological networks.

For this purpose, by adopting a systems approach, we
tried to build an as extensive and multi-level dataset as
possible.

Scope of the project E
4

k

evelopment

Dataset d  understanding of MS

Biological Networks

Pipeline for Dataset Development
255 Donors X 20compounds X 17ph22CYt0kines@z4h

osphoproteins @ 5’ & 2!

s = 300000 data points

Collection of supernatants at Measurement of all samples
p-24h post stimulus and lysates B  for 22 cytokines and 17
at 5'& 25’ post stimulus phosphoproteins

Extraction of peripheral blood
mononuclear cells (PBMCs) from
255 MS and healthy blood donors

| Stimulation with 20 currently
in-use and potential drugs

'Those three steps were all completed using the kit developed

Kit Development Quality Control Check Points &

In order to provide every medical center with re-
agents of the exact same batch, we created kits
for PBMC isolation, plating, stimulation and lysis.

During this project we had to have a great variety of quality control check
points in order to ensure the highest possible data quality of the dataset

v Preparation of all reagents and stimuli in a single batch and

= subsequent split into 300 kits delivered to 4 countries

\ Training workshop to ensure that all experimentalists follow

- the exact same protocol during isolation, stimulation and lysis

All reagents for isolation and drugs for stimulation were pre-
pared in a single batch and were split into 300 kits.

« Randomization of all samples before measurement

2 ot ) Various hidden positive control stimuli among the drugs to

" detect potential experimentalists errors during stimulation
) Control signals during measurements that can detect
" biological noise or instrument error

We got foam sheets and cut them in a way to fit 7 Exclusion of any donors that did not provide the required

all the tubes and vials needed for 1 donor’s i i i - number of PBMCs during plating of cells

PBMCs isolation, gluing them together to create  Finally, the kits were assembled and sent to our medical part- - ) .

foam cases for safe shipment and we also de- ners while we also organized a training workshop where we (A Exclusion of any measurements that during the data

signed boxes for -80 degrees, 4 degrees and followed the agreed protocol to make sure that all experimen- 7 acquisition process were considered by our algorithms

room temperature shipments. talists are on the same page and are familiar with the kits. to not be robust

Bulk Assay Development & Measurements Final Dataset & Analysis

We used Luminex xMAP assays, developed by ProtATonce for phosphoproteomic and cytokine signals specific for
Multiple Sclerosis. Those signals were optimized for the measurement of PMBC samples. By performing bulk assay
development for 100s of plates we were able to produce this dataset at a fraction of the cost of commercial reagents.

The resulting 200 Donors that passed every quality control test and
were measured both for cytokines and phosphoproteins, resulted in a
dataset of more than 300000 data points. The assays for such a
dataset could cost more than a million euros in terms of commercial

AKT1 (S473) STAT3 (Y705)]  Signals (Abs on microspheres)
EEI20 NG IL8 MK12 (T183/Y185) [STA o =1 = reagents cost.
CCL3 | IL12A | PROK1 FAKA (Y397) | MKO3 (T202/Y204) |STA

CCL5 IL1A TNF10 GSK3A (S21) |MP2K1 (S217/S221) | TI

Those phosphoproteomic and cytokine data will be combined with

HSPB1 (S78/S82)

CXL10 | IL1B | TNF12

XL 1020 TNFA STAT1 (Y701) SNP data and clinical profiles in a computational framework which will
TXL16 L3 TNRO Custom Phosphoproteomic help to understand MS more thoroughly and systematically.
GROA | _IL4 Panel ) )

As a first step, the phosphoproteomic dataset will be used for the
ICAM1 IL6 combiMS measurements

construction of a detailed map of the signaling pathway differences
Custom Cytokine Panel between MS and healthy donors, which can help generate a model of
MS pathogenesis and improve our understanding of the disease.
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Introduction

4

PROT
AT
ONCE

THE ART IN MULTIPLEXED ASSAYS

Cartilage degeneration as a feature of osteoarthritis (OA) is one of the most common causes of pain and disability in middle-aged and older people. [1]

Most research studies in OA focus on single therapeutic targets, disease processes or level of molecules, thus omics data have never been integrated in a systematic way.

Many different types of samples have been studied in osteoarthritis research (articular cartilage and synovium explants, whole cell extract of articular chondrocytes or mesenchymal stem cells,
supernatant of articular cartilage explants, articular chondrocytes, osteoclasts or synovium-derived cells in culture, articular cartilage vesicles, synovial fluid, plasma, serum and urine), but no
study has integrated data from more than three samples examined with the same assay, generating the need for a more systematic, multi-omics, multi-sample investigation of osteoarthritis.

Sources of data

Towards an integration of several omics data shown
below, in this case study we measured samples using
proteomic (phosphoproteomic and cytokine release)
and metabolomic approaches.
A. Genomics
B. Transcriptomics
C. Proteomics

PROT

AT

L
L)
{: ONCE

Ik AR ISR PR 235908

Using ProtATonce’s multiplex custom assays based on
XMAP technology, we were able to measure 17
phosphoproteins in cell lysates and 36 secreted
proteins in culture supernatants using only 50ul of
sample.

D. Metabolomics

Using MESBL's Saturn 2200 GC-ion trap MS (Varian Inc,
currently Bruker/Agilent), we were able to measure the
metabolomic signatures of chondrocyte whole cell
extracts, culture supernatants, plasma and synovial
fluid samples of osteoarthritic patients.

E. Clinical Profiles

By examining the clinical profile data of donors we
can further expand the dataset while gaining
knowledge about factors such as medication that can
alter the omics data.

Quality Control

When following a systematic approach, it is very
important to include sufficient quality control check
points to ensure the highest possible dataset quality
and therefore the validity of results. In particular, we
need to be able to address challenges such as:

acquiring multiple samples from the same donor at
the same time

using the exact same samples for all experiments (cell
line passage, timelines in cell culture)

merging protocols of all omics assays while meeting
the sample handling prerequisites for every assay

having strictly fixed parameters across assays, such as
time points and doses of any applied stimuli

n

Il Sources of samples

1Buckwalter, J.A. and H.J. Mankin, Instr Course Lect, 1998.47: p. 487-504.
I Refe rences (2] Lamers, R.J,, et al,, Osteoarthritis Cartilage, 2005. 13(9): p. 762-8.

By using samples from various tissues, we avoid focusing
only on the biochemical changes that occur in the joints.
Some of the samples relative to osteoarthritis research are
presented below:

A. Cartilage
obtain cartilage - evaluate state - jsqlate chondrocytes

<,

V. e, :
N

L,

Having cartilage explants in tissue culture or chondrocytes
in cell culture, we can collect the culture’s supernatant or
lyse the cells to collect lysate.

B. Synovial Fluid

Synovial fluid can be found in the
cavities of synovial joints and can
be collected during surgery or by
arthrocentesis.

‘Synovial — [

=%

C.Blood

Both blood serum and blood plasma can be used as
samples. In this case study we examined blood plasma
from osteoarthritic donors.

serum lasma

e e

D. Urine

Metabolomic analysis of urine reveals differences between
osteoarthritic and healthy donors. [2]
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Il Our case study

As a case study, we combined proteomic and
metabolomic assays (multiplex bead based sandwich
ELISA - XMAP technology and gas chromatography -
mass spectrometry), to measure the phosphoproteomic
signature, cytokine release and metabolomic signature
of untreated and treated with IL1B cultured
chondrocytes, along with the proteomic and
metabolomic signature of the same donor’s synovial
fluid and plasma.

col2 The columns on the left visu-
cols AKTH X .
colLs alize (DataRail software) the
CoNTF CREB! :
w cytokine release (left) and
s FAKI . .
s phosphoproteomic  signa-
GSK3A N
DCE:;c ture (right) of chondrocytes
HSPB1 N
FST untreated and treated with
GROA IKBA
(CAMT IL1B.
NG SN
1L12A
L1g K12 Legend
Li7F
1A MKG3
118
20 WP2K1
122
Ty PTN11
L4 STATY untreated wn le e
s unireate
s R secreted ‘phosphorylated
1 proteins proteins
NRG1 STATS
F;Sﬁ: STATs Blue or green corresponds to activation
RETN (significant  up-regulation of the
51048 TFE5 protein between the unstimulated and
i WhKT stimulated state). Red corresponds to
TNF12 down-regulation of the corresponding
TNFA BSA . o ;
protein. Y axis is Fluorescence Intensity,
e PE while X axis is time of treatment.

The OA donor used in proteomic experiments is donor 1.
We also analyzed another OA donor s synovial fluid and
plasma, which is donor 2.

I | | e
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Synovial fluid chromatograph, donor 1 and donor 2

Ul h
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Plasma chromatograph, donor 1 and donor 2
]

e e J‘\\J o “
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Chondrocyte whole cell extract, donor 1, untreated cells, IL 1B treated cells

Conclusions

We believe that omics data acquired by multiple samples
while ensuring that all quality control check points have
been met, can be integrated in a multi-level dataset that
may help us understand complex biological systems and
multifactorial diseases such as OA.

For this purpose, we intend to focus on gathering
proteomic, metabolomic and other omics data
examining in parallel as many samples of tissues relative
to OA as possible and then integrating those data in a
computational framework which will help to understand
OA more thoroughly and systematically.




Abstract A7

Signalling pathway-based screening for Drug Discovery: an application in Multiple Sclerosis
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@Om_ Our goal is to evaluate how current MS drugs and
compounds with a therapeutic potential work at the
signalling level in different patient populations. By
understanding how current MS drugs work on
patient-specific biological networks, more effective
therapies can be designed that take into account the
uniqueness of each patient’s response in treatment

and biomarkers can be developed to stratify patients.

sample collection

kit development

In order to provide every medi-
cal center with reagents of the
exact same batch

technicians workshop

We organized a training workshop where
we followed the agreed protocol to make
sure that all experimentalists are on the
same page and are familiar with the kits.

— _ .._w_o_ooammq:_o_mmnnc.m:.o:
plating of PBMCs

-+ compound stimulation

T

lysate collection

shipping of samples
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University of @Ib,_u_ ._. m
Zurich™

SANAXOMICs  dionure

sample measurement

255 donors of PBMCs

20 compounds for PBMC stimulation
22 secreted proteins measured @ 5’ 25’
17 phosphoproteins measured @ 24h
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CXLi6 | I3 | TTNRS | [HSPB1 (578/582) | WNKA (T60) \hbr
e TKBA (S32/S36) | _STATA (Y701) . |

ProtATonce platform
custom Luminex assays for selected targets

multiplex high-throughput screening

matrix optimization

fraction of the cost of commercial reagents

contact: di.messinis@gmail.com
+306936767643

STAT3 (V708)] =~ ———m

Multiple Sclerosis (MS) is an autoimmune disease affecting the
brain and spinal cord. There is not yet a cure for the disease while
2,5 million people around the world have MS. Several
pathological mechanisms for MS have been described, involving
alterations in multiple processes and signalling pathways.

data analysis
patient-specific signalling response

Single patient
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pathway analysis

This dataset is being analyzed with pathway optimization tools for
the construction of detailed signalling pathway maps for each donor.
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Abstract A10 (similar with Abstract A8, A9)

Patient-specific signalling pathway analysis for Multiple Sclerosis
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Multiple sclerosis is an autoimmune disease that affects the brain and spinal cord. About two and a half million people
around the world have MS and there is not yet a cure for the disease. Current therapies for MS are not effective and

i ntrod uctlon they target only part of the immune response. Our goal is to evaluate how current MS drugs and compounds with a
therapeutic potential work at the signalling level in different patient populations. By understanding how current MS
drugs work on patient-specific biological networks, more effective therapies can be designed that take into account
the uniqueness of each patient’s response in treatment and biomarkers can be developed to stratify patients.

sample collection and processing technicians workshop

We organized a training workshop
where we followed the agreed protocol
to make sure that all experimentalists
are on the same page and are familiar
with the kits.

kit development

In order to provide every medi-
cal center with reagents of the
exact same batch

[ |, == blood sample acquisition
; " plating of PBMCs

compound stimulation

assay development cell supernatant collection
custom Luminex assays for selected targets lysate collection
We used Luminex xMAP assays, developed by ProtATonce for . .
phosphoproteomic and cytokine signals specific for MS. Those sh|pp|ng of sa mples

signals were optimized for the measurement of PMBC samples.

sample measurement

255 donors of PBMCs

20 compounds for PBMC stimulation
22 secreted proteins measured @ 5’ 25’
17 phosphoproteins measured @ 24h
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CXL 1 TNF12 FAK1 (Y397) MKO3 (T202/Y204) EATG (Y641)
CXL L2 TNFA TF65 (S536)

CXL1 IL3 TNRS. m
Sron = IKBA (532/536) | STATA (Y701) 0o

data analysis

athway analysis
patient-specific signalling response P y Y

| This dataset is being analyzed with pathway optimization tools for the
. - Sholepatent construction of detailed signalling pathway maps for each donor.
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SVM models

We developed SVM models to
predict a patient’s response to
treatment  with  Multiple
Sclerosis drugs.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common liv-

er condition in the world, with a prevalence of up to 30% in developed
countries!. NAFLD is defined by the presence of hepatic steatosis in the
absence of excess alcohol consumption and represents a spectrum

of disease, from simple steatosis and Non-Alcoholic Steatohepatitis
(NASH] to fibrosis, cirrhosis and hepatocellular carcinoma2. The cause
and disease progression mechanisms of NAFLD are still not complete-
ly understood34. Researchers have tried to understand the disease
through multi-omic approaches® but there is no study -to our knowl-
edge- exploring the signal transduction level, while phosphoproteomic
measurements are becoming very important in drug discovery®. In vi-
tro exposure of primary human hepatocytes to increasing concentra-
tions of free fatty acids (FFA) results in increased intracellular accumu-
lation of lipid droplets similar to those observed in patients with NAFLD
and NASH?.

Aim

In vitro induction of NAFLD/NASH in a new in vitro model of primary
human hepatocytes, by exposing to increasing concentrations of free
fatty acids (FFA), in order to conduct a proteomic profiling of the dis-

ease's underlying mechanism.

Methods

Primary Human Hepatocytes, isolated from
healthy resected human liver tissue
seeding in 96-well plates
Incubation 24h

FFA treatment
mixture of exogenous FFA in ethanol in molar
ratio 1:2
Palmitic Acid: Oleic Acid respectively
Incubation 24h

Lipid droplets Imaging using
fluorescent dyes Nile Red and ELISA Expression of
Hoechst 33342 phosphoproteins and cyto-
JuLI™ Stage Real-Time CHR (Cell kines
History Recorder) Luminex xMAP® TECHNOLOGY

Multiplex Antibody-based

Cell Viability Assay
using Resazurin
Varioskan™ LUX multimode mi-
croplate reader

ROS Production using fluo

genic substrate CM-H2DCFDA

Varioskan™ LUX multimode mi-
croplate reader
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Results
1. High Content Screening

Negative control

reatment with 400pM FFAS

Treatment with 500uM FFAs

Treatment with etOH (1%) reatment with 900uM FFAs

Verification of formation of intracellular lipid droplets; lipid droplets were stained with Nile Red fluo-
rescent probe and Hoechst 33342 was used for counterstaining cell nucleus.
2. Image Analysis

Intracellular fat accumulation

3. Assessment of viability

FFAs Dose-Viability Curve
%

1000

Viability%

500

Number of Lipid dropletsicell
s 8

20 2 3
log[FFA Concentration], M

2. Dose dependent intracellular fat accumula-
tion was quantified from the obtained images
using CellProfiler open source software. Data
are expressed as mean+SEM of three indepen-
dent experiments.

Treatment

4. Assessment of ROS production

- Intracellular ROS Production

3. Dose-Viability curves constracted using 4 pa-
rameter logistic regression (EC50=307+1.377).
Data are expressed as mean=SEM of three in-
dependent experiments.

4.Fluorescence was normalized by g of pro-
tein. Treatment with H202 was used as positive

PSS S E S
FE R control. Data are expressed as mean=SEM of
T T
three independent experiments.
5. Proteomics
Secreted Proteins.
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Discussion

In the present work we describe an in vitro model able to mimic most
of the processes observed in vivo in NAFLD/NASH, as shown by the in-
creased intracellular fat accumulation, and intracellular ROS produc-
tion that reflects defected antioxidant defenses.

We observed significant reduction of the phosphorylation of AKT1,

that has been previously reported to downregulate in liver steatosis.8
Moreover, we show irregular phosphorylation patterns in IKBA, JUN,
STAT6 and WNKI1 as well as in the secretion of TNFA, TNF10 ad TNFG.

4 Pettinelli, P, Obreg n, A. M. & Videla, L. A. Molecular mechanisms of steatosis in nonalcoholic fatty liver disease. Nutr. Hosp. 26, 441-50
5Wruck, W. et al. Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes. Sci. Data 2, 150068 (2015).
6 Morris, M. K., Chi, A, Melas, . N. & Alexopoulos, L. G. Phosphoproteomics in drug discovery. Drug Discov. Today 19, 425432 (2014)

7.Than, N.N. &Newsame P.N. A concisereview o non-alcoholic faty ver disease. Atherosclerosis 29, 192-202 (2015)

8 Hur, W. eta of microRNA-451 in non-al inhibits fatty acid-induced proinflammatory cytokine production
through lheAMPK/AKTpthway Int. J. Biochem. Cell Biol. 64, 265-276 (2015)
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Abstract A13

Construction of a new drug repositioning platform
for Non-Alcoholic Fatty Liver disease through
network analysis
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common
pathological condition of the liver, with a prevalence of up to 30% in
developed countries'2. Many pharmacological agents have been
tested for the management of the disease, but there is no therapy
approved specifically for NAFLD/NASH by the US Food and Drug -
Administration (FDA)?3. On this front, drug repositioning (DR) offers
an accelerated route for drug discovery. T

METHOD

AIM

The aim of this project is to suggest a platform for drug repositioning
in NAFLD/NASH by combining novel in vitro models of primary
human hepatocytes with network-based analysis of gene expression
data from NAFLD patients.

A)Network-based drug repositioning workflow

B) NAFLD in vitro models — Experimental Design

now i o

RESULTS

Pathway Analysis from microarray data sets

Affected Pathways Steatosi Vs, Hoalthy Affected Pathways NASH Vs. Hoalthy

Example of heat map of affected pathways derived from Functional Class Scoring of 2 microarray datasets"* (GEO-NCBI)
Rows represent known pathways acquired from the annotated databases. For each Gene Set Analysis and pathways 5 p-value
classes are obtained: 1) “distinct_up”, of pathways with differentially up-regulated genes, 2) “mixed_up’, of pathways with less
differentially up-regulated genes, 3) ‘non_directional’, of pathways differentially requlated, 4) ‘mixed_down’, of pathways with
less differentially down-regulated genes, and 5) “distinct_down’, of pathways with differentially down-regulated genes. Data are
presented as St(-logy,(Pvalue) of a pathway for each p-value class.

NAFLD induction on Primary Human Hepatocytes

B) Intracellular ROS Production

2

o
0N DHSO PBS H:0: FFA W

c) Phosphoproteomic Measurements

A) Intracellular lipid droplet accumulation after 24h exposure of Primary Human Hepatocytes to Free Fatty Acids (FFAS; oleic
and plamitic acid), Amiodarone (AMI), Tamoxifen (TMX), Tetracycline (TET) and Valproic Acid (VPA). Lipid droplets were
stained with Nile Red fluorescent probe and Hoechst 33342 was used for counterstaining cell nucleus. Images were acquired
by JuLI™ Stage Real-Time CHR (Cell History Recorder) (NanoEnTek) under 20x optical magnification.

B) Fold change of intracellular ROS production after 24h exposure of primary human hepatocytes to FFAs, VPA, TMX, AMI and
TET. The intracellular ROS production was measured using the fluorescent substrate CM-H,DCFDA. Fluorescence was
measured using Varioskan™ LUX multimode microplate reader (Thermo Scientific™) and normalized by g of protein.
Treatment with H,0, was used as positive control. Data are expressed as mean SEM of three independent experiments.

C) Heat map of fold change of 12 phosphoproteins compared to the controls. Data are presented as fold change
of Mean Fluorescence intensity (MFI) compared to the respective controls. Protein expression was quantified using
Luminex xMap assays in FLEXMAP 3D (Luminex).

Screening of Compounds from Drug Repositioning Platform

Treatment with etOH 1%

A T

Treatment with COMPG Treatment with FFA

Treatment with FFA and COMP7

Treatment with COMP7 Treatment with FFA
Treatment with COMP8 Treatment with TMX

Treatment with COMP4 Treatment with AMI

B) Image Analysis

R y—: ’ (
conp1 FFA X X v X v v
conpg REPDAPI

comps -I= . ™ X X X ? 2

cones -
veou [ I

RSPy
SEILFS
&
L

> no steatosis present
foct
2 under furher investigation

A) Intracellular lipid droplet presence after 24h exposure of HUH7 to FFAs, AMI, TMX, TET and VPA followed by 24h
treatment with the drug repositioning compounds (coded COMPX) from LOPACS24 ibrary (Sigma-Aldrich). Lipid droplets
were stained with Nile Red fluorescent probe and Hoechst 33342 was used for counterstaining cell nucleus. Images were
acquired by JuLI™ Stage Real-Time CHR (Cell History Recorder) (NanoEnTek) under 20x optical magnification. B)
Heatmap of image analysis results (MATLAB). Data are presented as RFP intensity/DAPI intensity of lipid droplets and cell
nuclei respectively. C) Summary of the preliminary screening of drug repositioning compounds.

CONCLUSIONS

(VPA), Tamoxifen (TMX), Tetracycline (TET) and Amiodarone (AMI).

Ivermectin)
3) 16 of these compounds are novel findings

The efficacy of the 23 compounds is being tested on the NAFLD-induced in vitro models.

+ Development of NAFLD-induced in vitro models of Primary Human Hepatocytes and hepatocellular cell lines
driven by Free Fatty Acids (FFAs; palmitic and oleic acid) and the steatogenic compounds Valproic acid

Identification of NAFLD pathogenesis mechanisms through gene set analysis of microarray datasets.

Development of a network-based drug repositioning platform for NAFLD, that could be expanded for other

treatment of NAFLD (Fusidic acid, Quinacrine, Resveratrol, Sirolimus, Estrone sulfate, Raloxifene,
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the
most common pathological condition of the liver,
with a prevalence of up to 30% in developed
countries’2. Many pharmacological agents have
been tested for the management of the disease,
but there is no therapy approved specifically for
NAFLD/NASH by the US Food and Drug
Administration (FDA)?3. On this front, drug
repositioning (DR) offers an accelerated route for
drug discovery.

AIM

The aim of this project is to suggest a platform for
drug repositioning in NAFLD/NASH by combining
novel in vitro models of primary human
hepatocytes with network-based analysis of gene
expression data from NAFLD patients.

METHOD

Network-based drug repo:

ning workflow

Goup2

Gopd | G

RESULTS

Pathway Analysis from microarray data sets

Alfectod Pathways Steatosis V. Heattry

Alfoctod Pathways NASH Vs, H

Example of heat map of affected pathways derived from Functional Class Scoring of 2 microarray
datasets** (GEO-NCBI). Rows represent known pathways acquired from the annotated databases. For
each Gene Set Analysis and pathways 5 p-value classes are obtained: 1) “distinct_up® , of pathways

with differentially up-regulated genes, 2) ‘mixed_up", of pathways with less differentially up-regulated
genes, 3) ‘non_directional’, of pathways differentially regulated, 4) ‘mixed_down’, of pathways with less
differentially down-regulated genes, and 5) “distinct_down", of pathways with differentially down-
regulated genes. Data are presented as St(-log (Pvalue) of a pathway for each p-value class.

NAFLD induction on Primary Human Hepatocytes

>

Intracellular ROS Production

A) Intracelluler lipid droplet accumulation after 24h exposure of Primary Human Hepatocytes to Free
Fatty Acids (FFAS; oleic and plamitic acid), Amiodarone (AMI), Tamoxifen (TMX), Tetracycline (TET) and
Valproic Acid (VPA). Lipid droplets were stained with Nile Red fluorescent probe and Hoechst 33342
was used for counterstaining cell nucleus. Images were acquired by JuLI™ Stage Real-Time CHR (Cell
History Recorder) (NenoEnTek) under 20x optical magnification.

B) Fold change of ntracellular ROS production after 24h exposure of primary human hepatocytes fo
FFAS, VPA, TMX, AMI and TET. The intracellular ROS production was measured using the fluorescent
substrate CM-H,DCFDA. Fluorescence was measured using Varioskan™ LUX multimode microplate
reader (Thermo Scientific™) and normalized by ug of protein. Treatment with H,0, was used as positive
control. Data are expressed as mean +SEM of three independent experiments.

Screening of Compounds from Drug Repositioning Platform

Treatment vith COMP4

> no ststoss praent
osfect

A) Intracellular lipid droplet presence after 24h exposure of HuHT to FFAs, AMI, TMX, TET and VPA
followed by 24h treatment with the drug repositioning compounds (coded COMP) from LOPAC
library (Sigma-Aldrich). Lipid droplets were stained with Nile Red fluorescent probe and Hoechst
33342 was used for counterstaining cell nucleus. Images were acquired by JuLI™ Stage Real-Time
CHR (Cell History Recorder) (NanoEnTek) under 20x optical magnification. B) Heatmap of image
analysis results (MATLAB). Data are presented as RFP intensity/DAPI intensity of ipid droplets and
cell nuclei respectively. ) Summary of the preliminary screening of drug repositioning compour

CONCLUSIONS

Development of NAFLD-induced in vitro models of Primary
Human Hepatocytes and hepatocellular cell lines (HuH7,
Hep3B, HepG2, FOCUS) driven by Free Fatty Acids (FFAs;
palmitic and oleic acid) and the steatogenic compounds
Valproic acid (VPA), Tamoxifen (TMX), Tetracycline (TET) and
Amiodarone (AM

Identification of NAFLD pathogenesis mechanisms through
gene set analysis of microarray datasets.

Development of a network-based drug repositioning platform
for NAFLD, that could be expanded for other diseases.

Identification of 56 compounds for drug repositioning:

1) 33 of these compounds are known hepatotoxic compounds
2) 7 of these compounds are already on clinical trials or have
been used in vivo on mouse models for the treatment of
NAFLD (Fusidic acid, Quinacrine, Resveratrol, Sirolimus,
Estrone sulfate, Raloxifene, Ivermectin)

3) 16 of these compounds are novel findings

The efficacy of the 23 compounds is b
NAFLD-induced in vitro models.

g tested on the

More microarray data sets are under analysis.
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Dimitris E Messinis (DEM), as a PhD candidate, contributed as an author in the
following publications, numbered P1 to P6. For P1, DEM constructed the prior
knowledge network. For P2, DEM wrote the manuscript, performed the experiment
and generated the data. For P3, DEM performed the experiment and generated the
data. For P4, DEM designed the research, performed the experiment and generated
the data. For P5, DEM performed the research and analysed the data. For P6, DEM
wrote the manuscript, designed the research and performed the research. P7
manuscript has been submitted and DEM wrote the manuscript, designed the
research and performed the research.

For source of funding, conflict of interest declarations, other author contributions and

disclaimers please visit the publications using the DOI provided.

[P1] IN Melas*, AD Chairakaki*, El Chatzopoulou*, DE Messinis, T Katopodi, V Pliaka,
S Samara, A Mitsos, Z Dailiana, P Kollia, LG Alexopoulos “Modeling of signaling
pathways in chondrocytes based on phosphoproteomic and cytokine release data”,
* equal contributors

Osteoarthritis and Cartilage 2014 DOI: 10.1016/j.joca.2014.01.001

Objective: Chondrocyte signaling is widely identified as a key component in cartilage
homeostasis. Dysregulations of the signaling processes in chondrocytes often result
in degenerative diseases of the tissue. Traditionally, the literature has focused on the
study of major players in chondrocyte signaling, but without considering the cross-
talks between them. In this paper, we systematically interrogate the signal
transduction pathways in chondrocytes, on both the phosphoproteomic and cytokine
release levels.

Methods: The signaling pathways downstream 78 receptors of interest are
interrogated. On the phosphoproteomic level, 17 key phosphoproteins are measured

upon stimulation with single treatments of 78 ligands. On the cytokine release level,
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55 cytokines are measured in the supernatant upon stimulation with the same
treatments. Using an Integer Linear Programming (ILP) formulation, the proteomic
data is combined with a priori knowledge of proteins’ connectivity to construct a
mechanistic model, predictive of signal transduction in chondrocytes.

Results: We were able to validate previous findings regarding major players of
cartilage homeostasis and inflammation (e.g., IL1B, TNF, EGF, TGFA, INS, IGF1 and
IL6). Moreover, we studied pro-inflammatory mediators (IL1B and TNF) together with
pro-growth signals for investigating their role in chondrocytes hypertrophy and
highlighted the role of underreported players such as Inhibin beta A (INHBA), Defensin
beta 1 (DEFB1), CXCL1 and Flagellin, and uncovered the way they cross-react in the
phosphoproteomic level.

Conclusions: The analysis presented herein, leveraged high throughput proteomic
data via an ILP formulation to gain new insight into chondrocytes signaling and the

pathophysiology of degenerative diseases in articular cartilage.

[P2] C Poussin, C Mathis, LG Alexopoulos, DE Messinis, RHJ Dulize, V Belcastro, IN
Melas, T Sakellaropoulos, K Rhrissorrakrai, E Bilal, P Meyer, M Talikka, S Boué¢, R
Norel, JJ Rice, G Stolovitzky, NV Ivanov, MC Peitsch & J Hoeng “The species
translation challenge—A systems biology perspective on human and rat bronchial
epithelial cells”

Nature Scientific Data 2014 DOI: 10.1038/sdata.2014.9

The biological responses to external cues such as drugs, chemicals, viruses and
hormones, is an essential question in biomedicine and in the field of toxicology and
cannot be easily studied in humans. Thus, biomedical research has continuously
relied on animal models for studying the impact of these compounds and attempted
to ‘translate’ the results to humans. In this context, the SBV IMPROVER (Systems
Biology Verification for Industrial Methodology for PROcess VErification in Research)
collaborative initiative, which uses crowd-sourcing techniques to address
fundamental questions in systems biology, invited scientists to deploy their own
computational methodologies to make predictions on species translatability. A multi-

layer systems biology dataset was generated that was comprised of
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phosphoproteomics, transcriptomics and cytokine data derived from normal human
(NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50
different stimuli under identical conditions. The present manuscript describes in detalil
the experimental settings, generation, processing and quality control analysis of the
multi-layer omics dataset accessible in public repositories for further intraand inter-

species translation studies.

[P3] E Bilal*, T Sakellaropoulos*, Challenge Participants, IN Melas, DE Messinis, V
Belcastro, K Rhrissorrakrai, P Meyer, R Norel, A Iskandar, E Blaese, JJ Rice, MC
Peitsch, J Hoeng, G Stolovitzky, LG Alexopoulos & C Poussin “A crow-sourcing
approach for the construction of species-specific cell signaling networks”, *equal
contributors

Bioinformatics 2014 DOI: 10.1093/bioinformatics/btu659

Motivation: Animal models are important tools in drug discovery and for
understanding human biology in general. However, many drugs that initially show
promising results in rodents fail in later stages of clinical trials. Understanding the
commonalities and differences between human and rat cell signaling networks can
lead to better experimental designs, improved allocation of resources and ultimately
better drugs.

Results: The sbv IMPROVER Species-Specific Network Inference challenge was
designed to use the power of the crowds to build two species-specific cell signaling
networks given phosphoproteomics, transcriptomics and cytokine data generated
from NHBE and NRBE cells exposed to various stimuli. A common literature-inspired
reference network with 220 nodes and 501 edges was also provided as prior
knowledge from which challenge participants could add or remove edges but not
nodes. Such a large network inference challenge not based on synthetic simulations
but on real data presented unique difficulties in scoring and interpreting the results.
Because any prior knowledge about the networks was already provided to the
participants for reference, novel ways for scoring and aggregating the results were
developed. Two human and rat consensus networks were obtained by combining all

the inferred networks. Further analysis showed that major signaling pathways were
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conserved between the two species with only isolated components diverging, as in
the case of ribosomal S6 kinase RPS6KA1. Overall, the consensus between inferred
edges was relatively high with the exception of the downstream targets of

transcription factors, which seemed more difficult to predict.

[P4] E Kotelnikova*, M Bernardo-Faura®, G Silberberg, NA Kiani, DE Messinis, IN
Melas, L Artigas, E Schwartz, | Mazo, M Masso, LG Alexopoulos, JM Mas, T Olsson,
J Tegner, R Martin, A Zamora, F Paul, J Saez-Rodriguez & P Villoslada “Signaling
networks in MS: A systems-based approach to developing new pharmacological

therapies”, * equal contributors
Multiple Sclerosis Journal 2015 DOI: 10.1177/1352458514543339

The pathogenesis of multiple sclerosis (MS) involves alterations to multiple pathways
and processes, which represent a significant challenge for developing more-effective
therapies. Systems biology approaches that study pathway dysregulation should
offer benefits by integrating molecular networks and dynamic models with current
biological knowledge for understanding disease heterogeneity and response to
therapy. In MS, abnormalities have been identified in several cytokine-signaling
pathways, as well as those of other immune receptors. Among the downstream
molecules implicated are Jak/Stat, NF-Kb, ERK1/3, p38 or Jun/Fos. Together, these
data suggest that MS is likely to be associated with abnormalities in apoptosis/cell
death, microglia activation, blood-brain barrier functioning, immune responses,
cytokine production, and/or oxidative stress, although which pathways contribute to
the cascade of damage and can be modulated remains an open question. While
current MS drugs target some of these pathways, others remain untouched. Here,
we propose a pragmatic systems analysis approach that involves the large-scale
extraction of processes and pathways relevant to MS. These data serve as a scaffold
on which computational modeling can be performed to identify disease subgroups
based on the contribution of different processes. Such an analysis, targeting these
relevant MS-signaling pathways, offers the opportunity to accelerate the

development of novel individual or combination therapies.
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[P5] M Michailidou, IN Melas, DE Messinis, S Klamt, LG Alexopoulos, FN Kolisis and
H Loutrari “Network-Based Analysis of Nutraceuticals in Human Hepatocellular
Carcinomas Reveals Mechanisms of Chemopreventive Action”

CPT: Pharmacometrics & Systems Pharmacology 2015 DOI: 10.1002/psp4.40

Chronic inflammation is associated with the development of human hepatocellular
carcinoma (HCC), an essentially incurable cancer. Anti-inflammatory nutraceuticals
have emerged as promising candidates against HCC, yet the mechanisms through
which they influence the cell signaling machinery to impose phenotypic changes
remain unresolved. Herein we implemented a systems biology approach in HCC cells,
based on the integration of cytokine release and phospoproteomic data from
highthroughput xXMAP Luminex assays to elucidate the action mode of prominent
nutraceuticals in terms of topology alterations of HCC-specific signaling networks.
An optimization algorithm based on SigNetTrainer, an Integer Linear Programming
formulation, was applied to construct networks linking signal transduction to cytokine
secretion by combining prior knowledge of protein connectivity with proteomic data.
Our analysis identified the most probable target phosphoproteins of interrogated
compounds and predicted translational control as a new mechanism underlying their
anticytokine action. Induced alterations corroborated with inhibition of HCC-driven

angiogenesis and metastasis.

[P6] DE Messinis, IN Melas, J Hur, N Varshney, LG Alexopoulos and JPF Bai
“Translational systems pharmacology-based predictive assessment of drug-induced
cardiomyopathy”

CPT: Pharmacometrics & Systems Pharmacology 2018 DOI: 10.1002/psp4.12272

Drug-induced cardiomyopathy contributes to drug attrition. We compared two
pipelines of predictive modeling: (1) applying elastic net (EN) to differentially
expressed genes (DEGs) of drugs; (2) applying integer linear programming (ILP) to
construct each drug’s signaling pathway starting from its targets to downstream
proteins, to transcription factors, and to its DEGs in human cardiomyocytes, and then

subjecting the genes/proteins in the drugs’ signaling networks to EN regression. We
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classified 31 drugs with availability of DEGs into 13 toxic and 18 nontoxic drugs
based on a clinical cardiomyopathy incidence cutoff of 0.1%. The ILP-augmented
modeling increased prediction accuracy from 79% to 88% (sensitivity: 88%;
specificity: 89%) under leave-one-out cross validation. The ILP-constructed signaling
networks of drugs were better predictors than DEGs. Per literature, the microRNAs
that reportedly regulate expression of our six top predictors are of diagnostic value
for natural heart failure or doxorubicin-induced cardiomyopathy. This translational

predictive modeling might uncover potential biomarkers.

[P7 - Submitted] Cue-signal-response analysis reveals multifactorial signalling
mechanism of NAFLD in vitro.

Authors: Dimitris E Messinis, Danai-Stella Zareifi, Angeliki Minia, Vaia Pliaka, Eirini V
Pantiora, Andreas A Polydorou, Antonios | Vezakis, Georgios P Fragulidis,
Manoussos M Konstadoulakis, Konstantinos J Bramis, Efstathios A Antoniou,

Leonidas G Alexopoulos

Non-alcoholic fatty liver disease (NAFLD) is the most common liver condition in the
world, estimated to be by 2030 the most frequent indication for liver transplantation.
NAFLD is a multifactorial disease and its cause and progression mechanisms are still
not completely understood. The main aim of this study is to unveil different potential
signaling mechanisms of NAFLD.

Amiodarone, Free Fatty Acids, Tamoxifen, Tetracycline and Valproic acid were
employed as 5 NAFLD induction models in an in vitro platform to study the disease
using primary human hepatocytes. NAFLD induction was monitored by Nile red
staining. For each NAFLD-induction model, the signaling mechanism was
interrogated by measuring 17 phosphorylated protein targets and pathway
optimization algorithm was employed to construct signaling networks. Pathway
findings were integrated with gene expression enrichment analysis to shed light into
the mechanism of each in vitro approach to induce NAFLD.

5 NAFLD induction models were developed and showed strong lipid accumulation as
evident by Nile red staining. Significant phosphoproteomic deregulations of CREB1,

ERK1, MEK1, P53 and NFKB came in agreement with in vivo and in vitro literature
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findings whereas CHK2 and EPOR have arisen as important in signaling pathways of
NAFLD and are related to hepatic regeneration.

In this study, we induced NAFLD on primary human hepatocytes with 5 models that
correspond to clinical causes of the disease. All models revealed strong NAFLD
phenotype that was originated from diverse signaling mechanisms. Our results
suggest a multifactorial mechanism in NAFLD progression involving significant

signaling pathway deregulations.
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Dimitris E. Messinis

di.messinis@gmail.com | +30 6936767643
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learning new skills. | also enjoy traveling, cooking, playing tennis, and playing music (bass

guitar, drums, and piano).
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