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Πρόλογος

Η έρευνα για την εν λόγω διατριβή πραγματοποιήθηκε στο εργαστήριο του
Αναπληρωτή Καθηγητή της σχολής Μηχανολόγων Μηχανικών του Ε.Μ.Π Λεω-
νίδα Γ. Αλεξόπουλου στον τομέα κατασκευών και αυτομάτου ελέγχου. Κατά την
διάρκεια του διδακτορικού μου επισκέφθηκα και συνεργάστηκα με τα εξής ερ-
γαστήρια/οργανισμούς: Ευρωπαϊκό κέντρο βιοπληροφορικής (ΕΒΙ) στο Κέιμπριτζ
του Ηνωμένου Βασιλείου, ομοσπονδιακός οργανισμός τροφίμων και φαρμάκων
των ΗΠΑ (FDA), Illumina Inc., και νοσοκομείο Langone του πανεπιστημίου της
Νέας Υόρκης (NYU Langone Health). Η χρηματοδότηση της έρευνα έγινε κυ-
ρίως μέσω του προγράμματος ERC “Investing in knowledge society through the
European Social Fund” (Grant no. ERC-11/MIS:374071) καθώς και με πόρους του
εκάστοτε οικοδεσπότη οργανισμού.

Θα ήθελα να ευχαριστήσω πολύ τους ακόλουθους ανθρώπους για την βοήθεια
τους. Αρχικά την διεθνή επιστημονική κοινότητα και την κοινότητα ανοιχτού λογι-
σμικού για την ανιδιοτελή προσφορά τους σε εργαλεία και δεδομένα. Όλα τα μέλη
του εργαστηρίου Εμβιομηχανικής της σχολής Μηχανολόγων Μηχανικών του ΕΜΠ
μεταξύ 2012 και 2018 και ιδιαίτερα τους Δημήτρη Μεσσήνη, Δανάη Κιρλή, Γιώργο
Κανακάρη, Δημήτρη Τζεράνη, Σταυρούλα Σαμαρά, Ilona Binenbaum, Κατερίνα
Σκορδά, Αγγελική Μήνια, Ορφέα Αηδονόπουλο, Jan Rozanc και Asier Antoranz
Martinez για την συνεργασία ή/και τις εποικοδομητικές συζητήσεις μας καθώς
και τις Σοφία Σταματάτου και Γεωργία Μοσχοπούλου για την υποστήριξη. Από
το Εθνικό Ίδρυμα Ερευνών (ΕΙΕ) τους ερευνητές Αριστοτέλη Χατζηιωάννου και
Νίκη Χονδρογιάννη για τις συμβουλές τους και τη συνεργασία μας. Από την IBM
τον Erhan Bilal και από την PMI την Carine Poussin για τη συνεργασία μας στον
διαγωνισμό SBV Improver. Όλα τα μέλη του Saez-Rodriguez group στο EBI και
ιδιαίτερα τον Καθηγητή Julio Saez-Rodriguez για την φιλοξενία και την καθοδή-
γηση του καθώς και τον μεταδιδακτορικό φοιτητή Marti Bernado Faura για τη
συνεργασία μας. Από τον FDA την Jane Bai για τη φιλοξενία της και τον Timothy
Herod για τη συνεργασία μας. Όλα τα μέλη του τμήματος βιοπληροφορικής της
Illumina Inc. και ιδιαίτερα τους ερευνητές Miao He, Jennifer Becq, και Επαμει-
νώνδα Φριτζίλα για την καθοδήγηση τους. Όλα τα μέλη των Aifantis και Tsirigos
Lab στο NYU Langone Health και ιδιαίτερα τους Iannis Aifantis για την φιλοξε-
νία, Αριστοτέλη Τσιρίγο για την καθοδήγηση καθώς και τους διδακτορικούς και
μεταδιδακτορικούς φοιτητές Igor Dolgalev, Nicolas Coudray, Χαρίλαο Λαζάρη,
Yixiao Gong, Matthew Witkowski, Anastasia Tikhonova για τη συνεργασία μας.
Τους καθηγητές της σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστη-
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μών του Ε.Μ.Π, Δημήτρη Φουσκάκη και Μιχαήλ Λουλάκη για τη συνεργασία
μας και την κατανόηση που μου έδειξαν. Τα μέλη της τριμελούς συμβουλευτικής
επιτροπής Χριστόφορο Προβατίδη και Σωκράτη Τσαγγάρη για την υποστήριξη
τους και τα μέλη της επταμελούς εξεταστικής επιτροπής για την κριτική τους.
Τα μέλη της γραμματείας της σχολής Μηχανολόγων Μηχανικών και ειδικά τις
Δήμητρα Πουλά και Δήμητρα Δαρδαμάνη για την υποστήριξη τους όλα αυτά τα
χρόνια.

Τέλος, θα ήθελα να ευχαριστήσω ιδιαίτερα τους ακόλουθους: Τον επιβλέποντα
καθηγητή μου Λεωνίδα Αλεξόπουλο, για την καθοδήγηση και την πνευματική
ελευθερία που μου παρείχε. Τον Ιωάννη Μελά, με τον οποίο συνεργάστηκα στο
ΕΜΠ, EBI και FDA, για τις συζητήσεις μας, που διάνθισαν όλες τις ιδέες της
παρούσας εργασίας. Την οικογένεια μου και τη Μαρίνα που με στήριξαν υλικά
και ψυχικά καθ’ όλη την διάρκεια των σπουδών μου. Όλοι οι προαναφερθέντες
της παραγράφου έχουν προσφέρει, εν γνώσει τους, πολύ περισσότερα από όσα
θα μπορούσα να τους ανταποδώσω και για αυτό τους είμαι ευγνώμων. Η παρούσα
εργασία δεν θα ήταν δυνατή χωρίς αυτούς.

Θεόδωρος Σακελλαρόπουλος
Αθήνα, Μάιος 2018



Περίληψη

Η εν λόγω διδακτορική διατριβή πραγματεύεται την μοντελοποίηση κυτταρι-
κών σηματοδοτικών μονοπατιών με χρήση μεθόδων βελτιστοποίησης, με σκοπό
την κατανόηση της διαφοροποίηση των κυττάρων μεταξύ φυσιολογικών και πα-
θολογικών καταστάσεων και εφαρμογές στη συστημική φαρμακολογία. Ο υποψή-
φιος διδάκτωρ ανέπτυξε μεθόδους Ακέραιου Γραμμικού Προγραμματισμού (ΑΓΠ/ILP)
για να εξερευνήσει συστηματικά την συνδεσμολογία των κόμβων που απαρτίζουν
το δίκτυο μονοπατιών και να προτείνει μοντέλα που περιγράφουν συσχετίσεις
που έχουν παρατηρηθεί πειραματικά. Οι αλγόριθμοι που αναπτύχθηκαν παρέ-
καμψαν μερικούς σημαντικούς περιορισμούς που είχαν παραδοσιακά οι σχετικοί
αλγόριθμοι που έκαναν χρήση ILP τεχνικών όπως η αδυναμία μοντελοποίησης
πειραμάτων με άγνωστη αρχική κατάσταση, η αδυναμία να εξερευνήσουν κυκλικά
δίκτυα καθώς και η έμμεση μοντελοποίηση της παρουσίας ή μη σχετικών πρωτεϊ-
νών. Κατά τη διάρκεια της διατριβής του ο υποψήφιος διδάκτωρ χρησιμοποίησε
τους αλγόριθμους αυτούς για να μελετήσει ποικίλα βιολογικά φαινόμενα όπως η
μεταφρασιμότητα των σηματοδοτικών δικτύων μεταξύ ποντικών και ανθρώπων,
οι μηχανισμοί με τους οποίους διάφορα φάρμακα προκαλούν βλάβη στον πνεύ-
μονα, κοινά μοτίβα τοξικότητας φαρμάκων σε διαφορετικά όργανα καθώς και η
κυτταρική γήρανση. Αποτελέσματα της έρευνας αυτής δημοσιεύτηκαν σε έγκριτα
επιστημονικά περιοδικά και διεθνή συνέδρια.
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Εκτεταμένη Περίληψη

Εισαγωγή
Συστημική Βιολογία είναι ένα μοντέλο βιολογικής έρευνας που προάγει την

ολιστική περιγραφή των υπό μελέτη μοντέλων εν αντιθέσει με την “παραδοσιακή”
Βιολογία που εστιάζει την περιγραφή των επιμέρους στοιχείων. Η φιλοδοξία για
μία ολιστική κατανόηση των βιολογικών συστημάτων δεν είναι καινούργια, αλλά
μόνο τις τελευταίες δύο δεκαετίες με την ραγδαία ανάπτυξη των τεχνολογιών
μοριακής μέτρησης κατέστη δυνατή η συλλογή του απαραίτητου όγκου πληρο-
φορίας που απαιτεί ένα τέτοιο εγχείρημα. Ο Δρ. Κιτάνο, ένας εκ των “πατέρων”
της σύγχρονης αναγέννησης του τομέα, υποδεικνύει 4 κατευθύνσεις αυτής της
έρευνας:

• αναγνώριση της δομής του υπό μελέτη συστήματος
• προσδιορισμός των δυναμικών του ιδιοτήτων
• ανάπτυξη τεχνικών για τον έλεγχο του συστήματος
• ανάπτυξη μεθόδων για τον σχεδιασμό νέων συστημάτων

Η παρούσα διατριβή εστιάζει στην μελέτη της κυτταρικής συμπεριφοράς μέσω
της αναγνώρισης της δομής των σηματοδοτικών δικτύων του κυττάρου.

Το κύτταρο μοντελοποιείται ως ένα σύστημα πρωτεϊνών και γονιδίων. Η κα-
τάσταση του συστήματος περιγράφεται από τη συγκέντρωση και τη μορφή των
πρωτεϊνών καθώς και την έκφραση των γονιδίων που το αποτελούν. Οι πρω-
τεΐνες είναι μακρομόρια, η μορφή και η συγκέντρωση των οποίων ρυθμίζει τις
μακροσκοπικές ιδιότητες του κυττάρου, ενώ τα γονίδια είναι κομμάτια του γε-
νετικού υλικού του κυττάρου, η έκφραση των οποίων ρυθμίζει την παραγωγή
πρωτεϊνών. Το σύστημα αυτό βρίσκεται μέσα σε ένα περιβάλλον από το οποίο
δέχεται “σήματα” τα οποία επεξεργάζεται και ανταποκρίνεται αλλάζοντας την
κατάσταση του.

Τα σηματοδοτικά δίκτυα είναι ο μηχανισμός μέσω του οποίου το κύτταρο
επεξεργάζεται και ανταποκρίνεται σε πληροφορίες από το περιβάλλον του. Συ-
γκεκριμένα, το κύτταρο επικοινωνεί με το περιβάλλον του κυρίως μέσω ειδικών
πρωτεϊνών που καλούνται υποδοχείς. Οι πρωτεΐνες αυτές, κατά πλειονότητα,
προεξέχουν εκατέρωθεν της κυτταρικής μεμβράνης και όταν έρθουν σε επαφή με
κάποιο περιβαλλοντικό ερέθισμα αλλάζουν μορφή. Η αλλαγή αυτή αναγνωρίζεται
με τη σειρά της από τις γύρω πρωτεΐνες και διαδίδεται μέσω μίας αλληλουχίας
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βιοχημικών αντιδράσεων μέχρι τον πυρήνα του κυττάρου όπου επηρεάζει την έκ-
φραση των γονιδίων και εν τέλει αλλάζει τη συνολική κατάσταση του κυττάρου.

Μία από τις σημαντικότερες σηματοδοτικές αντιδράσεις είναι αυτή της (απο)-
φωσφορυλίωσης, κατά την οποία μία πρωτεΐνη αποκτά (χάνει) μία φωσφορική
ομάδα με αποτέλεσμα να αλλάξει η μορφή της. Η αλλαγή αυτή, “ενεργοποιεί” (ση-
ματοδοτικά) την πρωτεΐνη. Οι αντιδράσεις αυτές καταλύονται από ειδικά ένζυμα:
τις κινάσες για την φωσφορυλίωση και τις φωσφατάσες για την αποφωσφορυ-
λίωση. Για την παρούσα διατριβή, η μέτρηση των φωσφορυλιωμένων πρωτεϊνών
έγινε με τη τεχνική bead-based sandwich ELISA. Η τεχνική αυτή επιτρέπει την
μέτρηση ενός προκαθορισμένου πλήθους πρωτεϊνών σε πολλά δείγματα.

Ο όρος γονιδιακή έκφραση αναφέρεται στη διαδικασία κατά την οποία μέρος
του γενετικού κώδικα (γονίδιο) μεταγράφεται σε RNA και βγαίνει από τον πυ-
ρήνα με σκοπό να μεταφραστεί σε πρωτεΐνη. Ως ένταση της έκφρασης ορίζεται
το πλήθος των αντιγράφων RNA το οποίο είναι ανάλογο της συγκέντρωσης της
παραγόμενης πρωτεΐνης. Για τις ανάγκες αυτής της διατριβής χρησιμοποιήθηκαν
μετρήσεις τύπου μικροσυστοιχίας DNA από δημόσιες βάσεις δεδομένων. Οι τεχνι-
κές αυτές έχουν τη δυνατότητα να μετρούν την έκφραση ενός προκαθορισμένου
αριθμού γονιδίων σε πολλά δείγματα.

Η αναγνώριση της δομής των σηματοδοτικών δικτύων συνίσταται στην πε-
ριγραφή των σηματοδοτικών αντιδράσεων μεταξύ πρωτεϊνών και γονιδίων. Προς
αυτή την κατεύθυνση, έχουν αναπτυχθεί πολλές τεχνικές. Οι σημαντικότερες για
την αναγνώριση πρωτεϊνικών αντιδράσεων είναι η yeast-two-hybrid (Y2H) και οι
AP-MS, CoFrac-MS που βασίζονται στην τεχνολογία της φασματομετρίας μάζας
(Mass Spectrometry). Για τον προσδιορισμό των αντιδράσεων μεταξύ πρωτεϊνών
(μεταγραφικοί παράγοντες) και γονιδίων επίσης έχουν αναπτυχθεί πολλές τεχνο-
λογίες οι σημαντικότερες των οποίων βασίζονται στην τεχνική της ανοσοκατα-
κρήμνισης χρωματίνης (chromatin immunoprecipitation (ChIP-X)).

Οι τεχνικές αυτές έχουν δεχθεί κριτική για την ακρίβεια και την ευαισθησία
τους, αλλά ο πιο σημαντικός περιορισμός τους δεν είναι τεχνικός αλλά θεμελιώ-
δης. Τα σηματοδοτικά δίκτυα δεν είναι στατικές οντότητες οι οποίες μπορούν να
μετρηθούν αν χρησιμοποιηθούν αρκετοί πόροι, αλλά μεταβάλλονται και προσαρ-
μόζονται ανά κύτταρο και στις συνθήκες του περιβάλλοντος.

Μέθοδοι

Έχουν αναπτυχθεί πολλές μέθοδοι που χρησιμοποιούν τον κατάλογο των γνω-
στών αντιδράσεων σαν ένα δίκτυο πρότερης γνώσης (Prior Knowledge Network
– PKN) και το προσαρμόζουν σε πειραματικά δεδομένα που περιγράφουν την
απόκριση, ως αλλαγή στην κατάσταση, των υπό μελέτη κυττάρων σε εξωτερικά
ερεθίσματα. Με αυτό το τρόπο επιτυγχάνουν όχι μόνο την αναγνώριση των ει-
δικών σηματοδοτικών δικτύων, αλλά και περιορίζουν το θόρυβο των μετρήσεων
μέσω της σύμπλεξης τους.
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Για την παρούσα διατριβή, αναπτύχθηκαν δύο τέτοιες μέθοδοι. Η μέθοδος Συ-
νέπειας Επιρροών (Sign Consistency Method – SCM) και η μέθοδος Αντίστροφου
Αιτιακού Λογισμού (Reverse Causal Reasoning – RCR). Οι μέθοδοι αυτές μοντε-
λοποιούν τη διαδικασία σηματοδότησης σαν ένα σύστημα λογικών εξισώσεων.
Όπως όλα τα μοντέλα που βασίζονται στη λογική, στοχεύουν σε μία ποιοτική
περιγραφή του συστήματος και αντισταθμίζουν τη “θυσία” στη διακριτική τους
ικανότητα με το γεγονός ότι δε χρειάζονται πολύ μεγάλο όγκο δεδομένων συγκρι-
τικά με άλλες πιο ρεαλιστικές μεθόδους.

Οι μέθοδοι που αναπτύχθηκαν γενικεύουν και εξελίσσουν μία σειρά μεθό-
δων στις οποίες έχει συμβάλει το εργαστήριο Συστημικής Βιοϊατρικής της σχολής
Μηχ. Μηχ. του ΕΜΠ. Συγκεκριμένα, και οι δύο μέθοδοι χρησιμοποιούν Γράφους
Επιρροής (interaction or influence graph (IG)) για να μοντελοποιήσουν το δίκτυο
και το μοντέλο της συνέπειας επιρροών για τον μηχανισμό διάδοσης σήματος.
Τέλος, όπως και στις προηγούμενες δημοσιεύσεις, χρησιμοποιείται η τεχνική του
ακέραιου γραμμικού προγραμματισμού για την επίλυση των προβλημάτων βελτι-
στοποίησης που σχεδιάζονται.

Οι Γράφοι Επιρροής είναι προσημασμένοι κατευθυνόμενοι γράφοι G = (N,A, σ)
όπου: N το σύνολο των κόμβων, A το σύνολο των ακμών, και σ : A → {+1,−1}.
Οι κόμβοι του γράφου αντιστοιχούν σε πρωτεΐνες ή γονίδια ενώ οι ακμές σε αντι-
δράσεις μεταξύ του. Το πρόσημο της ακμής υποδεικνύει την επιρροή που ασκεί ο
μητρικός κόμβος στον θυγατρικό. Συγκεκριμένα, οι κόμβοι του δικτύου μπορούν
να βρεθούν σε μία εκ των τριών πιθανών καταστάσεων: υπερδιέγερσης (+1) που
σημαίνει αύξηση στην συγκέντρωση των φωσφοπρωτεϊνών ή στην έκφραση των
γονιδίων, υποδιέργερσης (-1) που είναι η αντίστροφη κατάσταση, ή στην βασική
κατάσταση (0) που υποδηλώνει καμία αλλαγή στην κατάσταση του κόμβου ως
αποτέλεσμα της σηματοδότησης. Η επιρροή που ασκεί ένας μητρικός κόμβος
στους θυγατρικούς του εξαρτάται από το πρόσημο της συνδέουσας ακμής σ(a).

Για να είναι συνεπείς δύο κόμβοι που συνδέονται με ακμή πρέπει να βρίσκο-
νται στην ίδια κατάσταση αν η ακμή είναι θετικά προσημασμένη και αντίθετα αν
είναι αρνητικά. Για να είναι ένας γράφος ασθενώς συνεπής, τότε πρέπει κάθε
κόμβος να είναι συνεπής με τουλάχιστον έναν από τους μητρικούς του κόμβους.
Ένας συνεπής γράφος ερμηνεύει ποιοτικά τη διαδικασία διάδοσης σήματος κα-
θώς για κάθε κόμβο υπάρχει ένα μονοπάτι αιτιακών σχέσεων που εξηγεί την
κατάσταση του με βάση κάποιο αρχικό ερέθισμα. Επομένως, στόχος και των 2
προτεινόμενων μεθόδων είναι να βρουν το συνεπή γράφο ο οποίος ερμηνεύει
καλύτερα τα πειραματικά αποτελέσματα.

Η μέθοδος SCM διατυπώνει το πρόβλημα της ανεύρεσης του βέλτιστου συνεπή
γράφου ως πρόβλημα ακέραιου γραμμικού προγραμματισμού. Συγκεκριμένα, ψά-
χνει όλα τα υποσύνολα του PKN για να βρει αυτό το οποίο μπορεί να προσο-
μοιώσει βέλτιστα τις καταστάσεις των διαφόρων κόμβων όπως αυτές μετρήθηκαν
πειραματικά. Οι περιορισμοί του προβλήματος κωδικοποιούν το μοντέλο συνε-
πών επιρροών και εξασφαλίζουν ότι ο γράφος μπορεί να σημανθεί με τρόπο
συνεπή ενώ η αντικειμενική συνάρτηση κωδικοποιεί την απόσταση μεταξύ της
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προσομοιωμένης και της πειραματικά προσδιορισμένης κατάστασης των κόμβων
που μετρήθηκαν.

Σε προηγούμενες διατυπώσεις του προβλήματος, η αναζήτηση για το βέλτι-
στο υπο-δίκτυο γινόταν μόνο επί του συνόλου των ακμών. Στη διατύπωση που
αναπτύχθηκε για αυτή τη διατριβή, η αναζήτηση γίνεται και επί του συνόλου
των κόμβων. Η αλλαγή αυτή δεν επηρεάζει το σύνολο των λειτουργικά ισοδύνα-
μων λύσεων. Τα βασικά οφέλη που αποφέρει είναι ότι πρώτον, επιτρέπει στον
ερευνητή μεγαλύτερη ελευθερία να ενσωματώσει την πρότερη γνώση του στο
σύστημα κατευθύνοντας τη λύση, και δεύτερον, καθιστά τη διαδικασία της βελ-
τιστοποίησης πιο ρεαλιστική καθώς υπάρχουν φυσικά γεγονότα που μπορούν
να οδηγήσουν στην πλήρη αδρανοποίηση μίας πρωτεΐνης ή γονιδίου.

Ένας άλλος σημαντικός περιορισμός αυτής της μεθόδου ήταν η αδυναμία της
να διερευνήσει δίκτυα που είχαν βρόχους ανατροφοδότησης (feedback loops), διότι
βρόχοι μπορούν να μεταβούν σε μία μη βασική κατάσταση χωρίς να λάβουν σήμα
από κάποιο ερέθισμα από το υπόλοιπο δίκτυο. Στη διατύπωση που αναπτύχθηκε
για αυτή τη διατριβή, επιπλέον περιορισμοί έχουν εισαχθεί οι οποίοι αποτρέπουν
αυτή την παρενέργεια.

Η δεύτερη μέθοδος που αναπτύχθηκε RCR λύνει το πρόβλημα της ανεύρεσης
του βέλτιστου συνεπή γράφου για την περίπτωση που το αρχικό ερέθισμα είναι
άγνωστο. Για την μέθοδο SCM, απαιτούνται πειράματα κατά τα οποία τα κύτ-
ταρα διεγείρονται τεχνητά, συνήθως με κυτοκίνες, και εν συνεχεία μετράται η
απόκρισή τους, ως αλλαγή στην συγκέντρωση κάποιων φωσφοπρωτεϊνών ή την
έκφραση κάποιων γονιδίων. Παρ’όλα αυτά, πολλές φορές η γενεσιουργός αιτία
της κυτταρικής απόκρισης δεν είναι γνωστή αλλά η “απόκριση” μπορεί να με-
τρηθεί σαν διαφορά μεταξύ ενός πληθυσμού ελέγχου και ενός “αποκρίνοντος”,
για παράδειγμα μεταξύ υγιών και καρκινικών κυττάρων. Η μέθοδος RCR γενικεύει
περαιτέρω την μέθοδο SCM ώστε να μπορεί να μοντελοποιήσει και αυτά τα πειρά-
ματα. Συγκεκριμένα, η αρχική διέγερση, η οποία θεωρείτο γνωστή προηγουμένως,
μετατρέπεται σε μεταβλητή η οποία συμμετέχει στην διαδικασία εύρεσης του βέλ-
τιστου γράφου. Επειδή αυτή η αλλαγή αυξάνει πολύ τους βαθμούς ελευθερίας
του προβλήματος, απαιτείται η χρήση επιπλέον περιορισμών για να διασφαλι-
στεί ότι οι λύσεις δεν θα είναι τετριμμένες. Οι περιορισμοί αυτοί έχουν στόχο να
περιορίσουν τον αριθμό των πιθανών “αιτιών” και το μέγεθος του δικτύου και
μπορούν να επιβληθούν ως αυστηρά όρια ή/και ως επιπλέον κόστη στη αντικει-
μενική συνάρτηση.

Εφαρμογές
Στη συνέχεια περιγράφονται 3 εφαρμογές στις οποίες έγινε χρήση των μεθό-

δων που περιγράφηκαν για την ανίχνευση σηματοδοτικών δικτύων. Τα δίκτυα
αυτά χρησιμοποιήθηκαν στη συνέχεια για να διευρυνθούν οι σημαντικότεροι συ-
ντελεστές της κυτταρικής απόκρισης ή για να προταθούν πιθανές φαρμακευτικές
αγωγές που θα επαναφέρουν τα κύτταρα σε υγιή κατάσταση.
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Η πρώτη εφαρμογή που περιγράφεται αφορά τη διαδικασία της κυτταρι-
κής γήρανσης. Για αυτή την εφαρμογή, ως βιολογικό μοντέλο χρησιμοποιήθηκαν
ανθρώπινοι πρωτογενείς ινοβλάστες. Μετρήθηκε η συγκέντρωση 18 φωσφοπρω-
τεϊνών σε νεαρά και γηρασμένα κύτταρα κατόπιν διέγερσης των κυττάρων με 6
διαφορετικές κυτοκίνες. Τα νεαρά κύτταρα διπλασιάζονταν κάθε μέρα ενώ τα
γηρασμένα δεν είχαν διπλασιαστεί για ένα μήνα. Για τις φωσφοπρωτεΐνες αυτές,
προηγούμενες έρευνες είχαν δείξει ότι συμμετέχουν στη γήρανση και στον πολλα-
πλασιασμό των κυττάρων. Η κατάσταση κάθε πρωτεΐνης προσδιορίστηκε κατό-
πιν σύγκρισης της συγκέντρωσής της με την αντίστοιχη κυττάρων που δεν είχαν
διεγερθεί με κάποιο ερέθισμα. Σε συνδυασμό με το PKN από τη βάση αντιδράσεων
MetaCore χρησιμοποιήθηκε μια παραλλαγή της μεθόδου SCM για να ανιχνευτεί
το σηματοδοτικό δίκτυο των 2 κυτταρικών πληθυσμών. Η παραλλαγή συνίστατο
στην σύζευξη των αντιδράσεων των 2 δικτύων. Συγκεκριμένα, θεωρήθηκε ότι οι
διαφοροποιήσεις κατά τη γήρανση οφείλονται σε μείωση της έκφρασης των γο-
νιδίων οπότε το σύνολο το αντιδράσεων θα έπρεπε να είναι κοινό και τα δίκτυα
να διαφέρον μόνο ως προς το σύνολο των κόμβων. Οι διαφορές των δύο δικτύων
επαλήθευσαν προηγούμενες μελέτες που κατέδειξαν υποτονική απόκριση στην
παρουσία ινσουλίνης και ισχυρή ενεργοποίηση του NFKB και των συναφών λει-
τουργιών κατά την διέγερση με IL1A και TNF. Επιπλέον, η δομή των δικτύων είχε
διαφορές που δεν είχαν αναφερθεί στη σχετική βιβλιογραφία όπως ο κεντρικός
ρόλος που παίζει η SRC, η οποία φαίνεται να είναι ανενεργή στα γηρασμένα κύτ-
ταρα, στη ρύθμιση πολλών πρωτεϊνών που σχετίζονται με τον πολλαπλασιασμό
των κυττάρων.

Για τη δεύτερη εφαρμογή που περιγράφεται χρησιμοποιήθηκε η μέθοδος RCR
για να αναλυθεί ο “μηχανισμός λειτουργίας” της φαρμακολογικής τοξικότητας
στον πνεύμονα και να προταθούν πιθανές θεραπείες. Συγκεκριμένα, επιλέχθηκαν
200 φάρμακα από τη βάση δεδομένων Pneumotox τα οποία έχουν τη δυνατότητα
να προκαλέσουν ασθένεια του πνεύμονα. Στη συνέχεια οι πιθανοί στόχοι αυτών
των φαρμάκων ανακτήθηκαν από την βάση δεδομένων STICH. Τέλος, χρησιμο-
ποιήθηκε η βάση CMap, η οποία περιγράφει διαφορές στην γονιδιακή έκφραση
1000 γονιδίων σε 5 κυτταροσειρές πριν και μετά την επώασή τους με αυτά τα
φάρμακα. Με βάση αυτές τις πληροφορίες και σε συνδυασμό με ένα PKN από
τη βάση Reactome, δημιουργήθηκε ένα σηματοδοτικό δίκτυο για κάθε φάρμακο
το οποίο ερμηνεύει την παρατηρούμενη αλλαγή στην γονιδιακή έκφραση. Επειδή
και τα 200 φάρμακα μπορούν να προκαλέσουν ασθένεια του πνεύμονα, αναλύ-
θηκε η τομή των 200 δικτύων και ανιχνεύτηκαν 2 υπο-δίκτυα τα οποία ήταν
συστηματικά υπέρ ή υπό διεγερμένα. Για την επαλήθευση των αποτελεσμάτων,
χρησιμοποιήθηκε ο αλγόριθμος GUIDE για να κατασκευάσει έναν ανεξάρτητο δί-
κτυο με βάση τα ίδια δεδομένα και παρατηρήθηκε ότι τα 2 αποτελέσματα είχαν
στατιστικά σημαντική αλληλοκάλυψη. Στη συνέχεια, με παρόμοιο τρόπο κατα-
σκευάστηκαν σηματοδοτικά δίκτυα και για τα υπόλοιπα, μη-τοξικά, φάρμακα
που ήταν κοινά στις STICH και CMap έτσι ώστε να βρεθούν φάρμακα που να
επάγουν την αντίστροφη κατάσταση στα υπο-δίκτυα που αναφέρθηκαν. Τα κα-
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λύτερα 40 προτεινόμενα φάρμακα, ελέγχθηκαν από φαρμακολόγο η οποία παρα-
τήρησε ότι τα περισσότερα έχουν τη δυνατότητα να βελτιώσουν την κατάσταση
κυρίως λόγο της αντιφλεγμονώδους δράσης τους.

Για την τρίτη εφαρμογή, ακολουθήθηκε η ίδια διαδικασία όπως και στη δεύ-
τερη αλλά αυτή τη φορά για να προταθούν φάρμακα για την αντιμετώπιση της
μόλυνσης από το βακτήριο του άνθρακα. Χρησιμοποιήθηκαν τα ίδια μη-τοξικά
φάρμακα όπως και στη δεύτερη εφαρμογή. Για την μελέτη των συνεπειών της μό-
λυνσης από άνθρακα στην γονιδιακή έκφραση χρησιμοποιήθηκαν δεδομένα από
4 έρευνες από την βάση GEO. Αφού κατασκευάστηκε το σηματοδοτικό δίκτυο
που μοντελοποιεί την κυτταρική απόκριση στις τοξίνες που εκκρίνει το βακτήριο,
με χρήση της μεθόδου RCR, αναζητήθηκαν φάρμακα που να αντιστρέφουν την
απόκριση αυτή. Η αναζήτηση έγινε συγκρίνοντας τα δίκτυα των φαρμάκων και
του άνθρακα, και τα φάρμακα ταξινομήθηκαν από το καλύτερο στο χειρότερο
ανάλογα με την απόστασή τους από την πλήρη αντιστροφή του δικτύου του
άνθρακα. Για επαλήθευση έγινε και πάλι βιβλιογραφική έρευνα για τα φάρμακα
που ήταν στη κορυφή και στον πάτο της κατάταξης καταλληλότητας. Και για
τις δύο κατηγορίες τα αποτελέσματα κρίθηκαν λογικά, καθώς πολλά από τα
φάρμακα που ήταν ψηλά στην λίστα είχαν ήδη προταθεί και από άλλες μελέτες,
ενώ αντίθετα φάρμακα που ήταν χαμηλά στη λίστα είχαν παρόμοιους στόχους
με αυτούς του βακτηρίου οπότε αναμένεται να είχαν παρόμοιες συνέπειες στα
κύτταρα.
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Chapter 1

Biological Background

This chapter is a non-technical summary of the biological concepts and techniques
that are discussed in the following chapters. Its main goal is to present the ideas
of Systems Biology and how they are implemented in practice. It also offers a
quick overview of the experimental data and techniques utilised for this thesis.

This chapter is not a full and detailed description of the subjects it discusses.
Tomes of Biology, which the author does not claim to have read or understand
fully, are summarized in a few paragraphs! Biology researchers may find this
chapter useful in order to understand the abstractions that the author is assuming.
Readers without a biology training but interested in learning are referred to the
cited literature or the molecular biologist of their area.

1.1 Systems Biology
The term “Systems Biology” was initially coined by Hiroaki Kitano [1], [2] to de-
scribe a holistic model for biological research. Contrary to “traditional” molecular
biology, this new model does not focus on characterizing individual molecular
entities, like genes and proteins, but instead on how these entities interact to form
a biological system1, whose functional characteristics cannot be attributed to any
particular entity but are emergent. Systems Biology is not a new idea [3], but
before the advent of modern molecular technologies it was not possible to gather
the required mass and granularity of data required for this type of research. The
major challenge in the road for a systems level understanding of biology is that it
requires insights from a diverse range of disciplines like biology [4], mathematical
modeling [5], control theory [6] as well as specialized knowledge for the application
at hand, like pharmacology [7], [8].

Kitano, inspired by control theory, indicated 4 requirements and/or research
directions towards a system level understanding of biology:

1The definition of “system” depends on the scale of the phenomena studied. For example, an
organism is a system of tissues and each tissue is a system of cells etc.

1
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1. identification of system structure
2. determination of system dynamic properties
3. develop methods to control them
4. develop techniques to design or alter systems

System structure comprises of interaction networks between the molecular entities
involved as well as a high-level description of how these networks control the
system’s properties and behavior.

This thesis focuses on the cell as the system under study and develops methods
for the identification of its structure. The cell is modelled as a complex sys-
tem inside an unknown biochemical environment. It receives signals from the
environment which it processes and responds by changing its state2. As a first
approximation, the cell is composed of proteins and genes. Proteins are macro-
molecules whose shape and concentration controls the macroscopic properties of
the cell, while genes are pieces of genetic material that determine the shape of the
proteins. Consequently, the state of the cell is described by the concentration and
shape of the proteins and genes that comprise it.

1.2 Signaling Networks
The processing of environmental information is carried out by the signaling net-
work of the cell, i.e. a series of biochemical interactions between the proteins inside
it. In more detail, the cell communicates with its environment either via small
molecules that can permeate its membrane or though specialized proteins, called
receptors, that protrude from the membrane in both directions. In both cases,
the information is recorded as a change in the shape of the proteins that came
in touch with the environment, which constitutes a partial differentiation of the
cell’s state. This change affects other proteins in proximity and thus propagates
inside the cell affecting proteins and genes until the system reaches a new steady
state. This process constitutes the cell’s response to the environmental change3.

A reductionist approach to cell response focuses on identifying signaling path-
ways controlling an elementary function of the cell. The term “signaling pathway”
describes a roughly linear cascade of interactions between a small number of pro-
teins. A Systems Biology approach, focusing on the networks that control more
complex functions, became attainable only during the last decade (Fig. 1.1) through
the emergence of modern high-throughput technologies that can measure multiple
cellular components (multi-omics) in an unbiased way. The following sections
describe the technologies used for the applications of this thesis.

2This model is evidently naive since it overlooks the fact that cells typically live in colonies
thus their state and the state of their environment is coupled to a degree and feedback interactions
occur.

3It is interesting to note that information is “processed” and “stored” in the same medium,
namely the network of proteins inside the cell. For a more in depth treatment of this idea [see 9]
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Figure 1.1: Schematic representation of signaling via tyrosine kinase receptor as
it was known in 1990 and 2010. Reprinted from [10]

1.2.1 Protein Phosphorylation
The term “phosphorylation” refers to the process of appending one or more phos-
phate groups (PO4

3– ) to a protein’s structure. Phosphorylation is catalyzed by
enzymes called kinases. The reverse process is called dephosphorylation and is cat-
alyzed by enzymes called phosphatases. Because of the strong negative charge of a
phosphate group, (de)phosphorylation has significant consequences on a protein’s
shape and consequently its function and ability to interact with other proteins [11,
Chapter 3]. It’s estimated that between 1/3 and 2/3 of all proteins can be phospho-
rylated. The scale and intensity of its effects makes phosphorylation one of the
most important modifications that a protein can undergo during the signaling pro-
cess, especially for eukaryotic cells. Moreover, disruptions in the phosphorylation
process have been linked with several pathologies [12] and many drugs interven-
ing in the processes by targeting kinases of phosphatases have been approved,
especially for targeted cancer therapies (e.g. Sorafenib, Crizotinib, Erlotinib)

Technologies to measure phosphorylated proteins can be grouped into two main
categories: MS-based and tag-based. The two categories span the trade-off between
high-throughput and multiplexability 1.2. MS-based technologies can measure ev-
ery protein in a sample but their ability to measure multiple samples is hindered
by the complexity of the protocol and post-processing analysis. On the other hand,
tag-based technologies use antibodies or aptamers4 to measure a pre-specified set
of proteins, but they can measure them across multiple samples in parallel. For
more details about protein measuring technologies [see 13].

4Antibodies are proteins produced by the immune system of an organism in order to attach
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Figure 1.2: Protein Measuring Technologies Reprinted from [13]. Schematic rep-
resentation of the operating range of the major protein measuring technologies. Abbre-
viations not discussed in the text: Western Blot (WB), Enzyme-Linked Immunosorbent
Assay (ELISA), Reverse Phase Protein Array (RPPA), High-Content Screening (HCS),
fluoresence-based Flow Cytometry (Flow-Cyt.), Mass Spectrometry (MS), Mass Cytometry
(CyTOF)

For the applications presented in this thesis the xMAP™ technology was uti-
lized. xMAP is tag-based technology based on antibodies. In particular, it uses two
sets of antibodies per protein. One set is coupled with a fluorescent dye (phyco-
erythrin) to render the proteins detectable while the other set is immobilized on
color-coded, magnetic micro-beads which are used to discriminate the proteins and
pull them down from the sample. At the moment of writing, the theoretical upper
limit to the number of proteins that can be measured in parallel is 500, as many
as the different bead colors, but in practice this number is limited by the quality
of available antibodies. Antibodies that bind to multiple proteins (low specificity)
can affect their measurement by other antibodies and increase the noise. Finally,
xMAP can distinguish between phoshorylated and unphosphorylated proteins by
using antibodies specific to either form of the same protein.

and identify to pathogenic molecules (antigens). Aptamers are small molecular chains design to
recognize other molecules with a complementary structure.
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1.2.2 Gene Expression
The genetic material (DNA) of a cell resides in its nucleus and it contains the
information necessary for the creation of the proteins that make up cell behavior.
This information is stored in segments of the DNA called genes5. The translation
of genes to proteins is an elaborate process that involves transcription of the
information of the gene onto RNA, a part of the genetic material that can wander
inside the cell. A gene is “expressed” when it is transcribed to RNA in order to
produce the encoded protein. The intensity of the gene expression is defined to be
the number of RNA copies produced which is proportional to the production of
the protein [14].

Gene expression measuring technologies present the same trade-offs between
high-throughput and multiplexability as their protein counterparts. Here, sequenc-
ing technologies allow the unbiased measurement of every RNA fragment in the
sample, at the cost of fewer samples, while DNA microarrays can quantify a pre-
specified set of genes in more samples. Measuring protein concentration is also an
indirect way of measuring gene expression, but direct measurement technologies
are more mature and genes are more stable entities and easier to amplify than
proteins and thus easier to quantify.

For the application presented in this thesis, publicly available data from mi-
croarray experiments were utilized. The working principle of this technology is
the same with that of tag-based technologies for protein quantification. Instead of
antibodies or aptamers, oligonucleotides, small sequences of DNA code, are used
to immobilize their complementary sequence on a substrate and then a fluorescent
dye is used to quantify the captured fragments. In fact, the xMAP technology can
be used to measure gene expression, although in this case the limit of 500 bead
colors is more important.

1.2.3 Protein-Protein Interactions
The three most important technologies for the identification of protein-protein
interactions (PPIs) in large scale are: yeast-two-hybrid (Y2H) [15] and the two
mass spectrometry (MS) based techniques affinity purification (AP-MS) [16] and
co-fractionation (CoFrac-MS) [17].

The Y2H technology is used to screen for binary protein-protein interactions. Its
working principle (see Figure 1.3) is to link the presence or absence of an interaction
with the expression of a reporter gene. In particular, the two interrogated proteins
are slightly modified (hybrids) by being linked to the two domains of a transcription
factor. One of them (Bait) is linked with the DNA binding domain and the
other (Prey) with the activation domain. If the two proteins interact then the
transcription factor is assembled and can activate the gene expression process.

5All the proteins are encoded by genes, but not all genes encode proteins. Moreover, there are
post-translational modifications that further affect the final form of the protein
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Figure 1.3: Schematic Representation
of Y2H technique. Adapted from [18, fig.
3.21]. X and Y are the interrogated proteins.
Plasmids are used to modify the proteins and
append the binding domain (BD) and the acti-
vation domain (AD). Abbreviations: UAS: Up-
stream Activating Sequence, TM: Transcrip-
tion Machinery.
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Traditionally, the expression of the reported gene was linked to the survival of
a yeast colony, but nowadays other technologies can be used. An important
limitation of this method is that the interactions have to take place in yeast and
not the host organism of interest. This is because yeast survival is used as a
marker for the interaction.

On the other hand, MS-based technologies can detect interaction inside any
cell without the need to modify them. For AP-MS proteins are purified6 from the
cell and tagged. Then they are mixed with other purified proteins to form protein
complexes which are then passed through an MS to be identified. For CoFrac-MS,
protein complexes are extracted directly from the cells through extensive fraction-
ation with different biochemical techniques and then passed through an MS to
identify their components. The main limitation of these methods is that not all
pairs of proteins in a complex interact and there is no way of discriminating
between protein interactions and protein associations.

Over the last decade, these techniques have lead to a dramatic increase of the
number of known or suspected interactions. From 5000 in 2005 [19] to 14000 in
2014 [20] using Y2H and more than 20000 in 2015 using AP-MS [21], [22].

This increase in size has raised concerns because the resulting datasets are
characterized by low repeatability that some researchers attribute to high rates of
false positive calls [23]–[25], while other argue that is due to low sensitivity and
complementarity of the methods [26]. Common countermeasures for this problem
include running validation experiments, usually with low-throughput technologies
of higher accuracy, and/or manual curation of the results by experts.

1.2.4 Protein-Gene Interactions
As explained in Section 1.2.2, genes are “expressed” by being transcribed to RNA.
This process is carried out by a specialized protein complex called RNA polymerase
which controls transcription. However, RNA polymerase by itself cannot bind to
the DNA molecule to initiate the process. Other proteins, collectively known as
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transcription factors, help initiate the process by binding to the DNA and providing
a platform for RNA polymerase. The term transcription factor is even broader
than that and includes every protein that can regulate gene expression either by
promoting or suppressing it. Transcription factors are part of the signaling process
and the most common form of gene control.

Many technologies have been developed to identify transcription factors and
their regulating genes. The most prominent one is ChIP-seq [27] and its variants
like ChIP-PET [28], ChIP-chip [29], and DamID [14]. The operating principle of all
these technologies is to “freeze” the DNA at a specific time point, then fragment
it and then use antibodies to pull down the proteins attached to it along with the
DNA fragments they were attached to. Proteins are identified by the antibodies
used while the DNA fragments are sequenced (for ChIP-seq) and aligned.

1.3 Data Bases
The following databases were utilised for the work presented in this thesis:

• Protein interactions
– Metacore private database. Entries are manually selected and annotated
by experts.

– Reactome [30] public database compiled from open access sources. En-
tries are checked by experts.

• Transcription factors
– ChEA [31] open access list of protein genes interactions compiled from
literature.

– Transfac [32] private database. Partial access is granted free of charge
for academic users

– Jaspar [33] public database of protein gene interactions across multiple
organisms.

• Drugs
– Pneumotox [34] list of 892 drugs and chemical compounds associated
with drug-induced lung disease

• Gene expression
– Connectivity Map [35] pilot study measuring gene expression for 5
cell-lines upon perturbation with drugs and other chemical compounds.

– Gene Expression Omnibus (GEO) [36] public database where everyone
can upload primary and processed data from his/her study.





Chapter 2

Mathematical Modeling

In Chapter 1, the main components of the cell’s signaling system, as well as the
technologies shedding light upon them, were described. This chapter focuses on
combining the wealth of generated data into models that can “explain” and predict
cell behavior. The presentation begins with a short review of the relevant literature
and culminates with the description of the two models formulated by the author.
The goal of the review is not to provide an unbiased and complete description
of the literature but to illustrate the trajectory of the ideas that morphed into the
models presented in this thesis. In the following chapters, 3 real world applications
of these models are presented.

2.1 Literature Review
Mathematical models serve a dual role with respect to signaling networks. On
the one hand, they explain cell behavior in terms of how the different components
interact to give rise to it. In this regard, they can be used to make prediction about
future responses to changes in the environment or suggest possible interventions
when the signaling process is deregulated. On the other hand, they act as a noise
filter. As explained in Chapter 1, the technologies used to probe the cell can be
prone to high rates of false positive and/or negative errors. Fitting a model, that is
conceptually consistent, to data, that may not be, can act as a noise filter, provided
that Nature is consistent with the model’s expectations of her.

Models are of particular importance in deciphering the network structure of
the signaling process. As described in Section 1.2.3, all the major technologies for
identifying interactions have accuracy issues. But, even if the accuracy was in-
creased, signaling networks would still be context-dependent and no static/generic
list of interactions would suffice to describe them.

As a result, many algorithms have been proposed for deciphering the network
structure by adapting the set of known interactions (interactome), to data generated
by perturbation experiments in order to produce a network specific to the cells
under investigation [10]. Perturbation experiments are designed to highlight the

9
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dependencies between the nodes of a network. Their design consists of perturbing
the cells, with cytokines1 and/or other biochemical stimuli, and measuring the
response of some key nodes of the signaling network (example Figure 2.1). The
algorithms then proceed to reconstruct the connectivity of the signaling network
to satisfy the observed dependencies using the interactome to guide them through
and narrow down the search space.

Response:

Transient

LateAbsent

Sustained

IRS1

AKT

MEK1

ERK12

p90RSK

CREB

p70S6

p38

HSP27

Ikb

J NK12

cJ UN

p53

GSK3

Hist.H3

STAT3

STAT6

Control IFNγ TNFα IL1α IL6 IGF-I TGFα LPS

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Stimuli

R
e
a
d

o
u
ts

Control
No inhibitor

MEK1/2
PD325901

p38
PHA818637

PI3K
ZSTK474

GSK3α/β
InhXI

mTOR
Rapamycin

IKK
BMS345541

J NK1/2
SP600125

1 2 3 4 5 6 7 8

Inhibitors

Figure 2.1: Example of combinatorial perturbation experiment Adapted from [37,
Fig. 2]. Cells were perturbed with a combination of cytokines and kinase inhibitors, and
the cells’ response in terms of 17 proteins was measured. Rows represent measurements of
17 intracellular proteins (readouts) assayed at t = 0, 30min, and 3h (relative to stimulus
addition), and columns represent different stimuli. For each combination of stimulus and
readout, one of seven inhibitors was applied as indicated in the schematic below the
data. Data are coded to highlight no induction (relative to basal activity; gray), transient
induction (peaking at 30min; yellow), sustained induction (equal at 30min and 3h; green),
or late induction (peaking at 3h; purple).

The first step towards developing a model for the signaling process is select-
ing the appropriate formalism. A major factor contributing to this decision is
the granularity of the available data and of the desired mechanistic description.

1Cytokines are small proteins secreted by cells in order to communicate with their environment.
They bind to cell receptors and initiate the signaling process.
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For this work, two logic-based models were developed together with appropriate
optimization methods for fitting them (Section 2.2). Logic models occupy a middle
ground with the respect to the granularity of mechanistic description, between the
naturalistic ODE models and pure correlation based models [10, Fig. 2]. Although
logic models can describe some aspects of the dynamic behavior of the network,
the models presented in this thesis aim for a qualitative description of the static
structure of the network. To do so, they use phosphoproteomic or gene expression
data to refine the topology of a prior knowledge network assembled from generic
interactions available in databases (see Section 1.3). Both models are based on
the same signal transduction mechanism and, when fitted, yield a network of
protein-protein and protein-gene interactions that best describes the observed cell
response. In the applications presented in the following chapter, these networks are
then analysed and compared in order to identify key components characterizing
cell behavior.

2.1.1 Logic Models

Logic networks have been one of the first formalisms used to model cell systems
even before the rise of modern Systems Biology [38]. As an abstraction they have
been appealing because they are easy to compose and analyse compared to the
more realistic system of differential equations. They provide a qualitative descrip-
tion of the system and as a result have less free parameters to determine than
their quantitative counter-parts and thus they are robust to noise and do not re-
quire large volumes of data [39]. However, reconstructing Boolean networks from
experiments on a proteome scale is a challenging discrete optimization problem
and has only been pursued over the last decade.

One of the first studies on Boolean networks was by Saez-Rodriguez et al. [40].
There the authors started with a directed graph, which they used to model the
state of every node as an unknown Boolean function of its predecessors. In
order to identify the functions, they used perturbation experiments and a genetic
algorithm (GA) to search the space of all Boolean functions using AND and OR
gates. NOT gates, necessary for modeling inhibitory effects, have to be pre-specified
but the user. Upon convergence, the connectivity of the network was computed
by connecting nodes that were linked by a Boolean function. In the same year,
Mitsos et al. [41] proposed an Integer Linear Programming (ILP) formulation for the
same problem. The main difference between the two formulations, is that the ILP
formulation does not search over all possible Boolean function but instead selects
from a list of pre-specified candidates. However, it is significantly faster than the
GA approach, due to its non-random search strategy, and can provide optimality
guarantees. Both approaches also included a form of (soft) sparsity constraints to
penalize large networks. Later, Sharan and Karp [42] suggested an ILP formulation
that can learn any Boolean function between a node and its predecessors. Other
approaches used to tackle the same problem include Constraint Based Modeling
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(CBM) [43] and Answer Set Programming (ASP) [44], both of which can learn any
Boolean function.

All the models described so far use controlled perturbation experiments in
which the stimuli that initiate the signal transduction process are known a priori.
Fraenkel, Huang, and their collaborators [45]–[47] have developed a family of
models using the theory of prize-collecting Steiner tree that reconstructs a Boolean
network as well as the most probable source of the signals based only on the change
of state of some nodes. The prize-collecting Steiner tree problem begins with a
weighted tree and a set of terminal nodes and the goal is to identify that tree
that optimizes a cost function involving the weights of the arcs and the “prizes”
of the nodes. The original formulation of the problem considers only undirected
graphs but the authors have extended to the directed case as well [47], however
at the cost of increasing the complexity and thus compromising the optimality
guarantees of their approach. Another limitation of this approach is that it cannot
learn arbitrary Boolean functions, each arc is treated as an independent IF-THEN
clause (the most common case). Instead, its main advantage is that it can be used
to infer the cause of change between two set of cells, usually normal and diseased,
by using their differences as the result of a signaling cascade.

Apart from Boolean networks, another logic-based tool for modeling signaling
networks is interaction graphs (IG) [48]. Interaction graphs are signed directed
graphs where each arc is labeled with a sign to indicate the relationship between
the joining nodes. Negative arcs model events like dephosphorylation or protein
cleavage. This abstraction, uses a more expressive 3-value logic to model the state
of each node: up-, down-, and un-regulated (+1, -1, and 0 respectively). Melas et
al. [49] used IGs together with an ILP formulation to learn a signaling network by
refining a prior knowledge IG to simulate a set of perturbation experiments. Instead
of Boolean functions, they used sign consistency to determine the state of a node
from its potential predecessors. Sign consistency is a set of rules describing the
valid configuration of node values for an IG. The general framework is discussed
in [50] but the authors in [49] used a simpler version (described in Section 2.2.1).
A major difference between Boolean functions and the sign consistency rules is
that the latter is not deterministic but allows for some ambiguity in the results.
Finally, the authors also proposed an ILP formulation to identify the Minimal
Correction Set, i.e. a set of arcs that when included in the recovered network can
reproduce the experimental outcome exactly.

Most of the method described in this section, except those by Fraenkel and
Huang, require as input a directed acyclic graph (DAG). This is a fundamental
limitation for this type of problem. A cycle in the network can self-activate, due
to circular logic, regardless of the event that initiated the signaling process which
renders the signaling network unidentifiable because there is no way to decouple
the two events. In most cases, the authors manually curated the networks to
remove cycles before passing them to the algorithm. In [43], the authors developed
a heuristic approach to remove them during the preprocessing. Removing cycles
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during the preprocessing, either manually or through heuristics, is not a principled
approach because it can block the access to some section of the search space and
thus lead to biased results. A more principled approach is to include the constraint
of “no-cycles” into the problem’s constraints and let the optimization process handle
it. In [44] the authors do follow this approach. In all cases, including those of
Fraenkel and Huang, the resulting networks are acyclic.

2.2 Contributions
The main contribution of this thesis is the development of two new methods for
reconstructing logic network using perturbation experiments and prior knowledge
about the connectivity of the involved nodes. Both models build upon and expand
the work of Melas et al. [49]. In particular, they use IGs and the rules of sign
consistency to model signal transduction and an ILP formulation to learn the
connectivity from the data. Despite the fact the ILP problems are known to be
NP-hard, they have been proven efficient for this type of problems. The names of
the two methods are:

• Sign Consistency Method (SCM)

• Reverse Causal Reasoning Method (RCRM)

2.2.1 Sign Consistency Method
This method, which was published in [51], builds and expands upon the work
of [49]. In the original formulation, the algorithm searches over the power set2 of
all arcs to find the set that defines the sign consistent network that best describes
the experimental data. This formulation expands the search space to include the
power set of nodes. Although this change appears to increase the space a lot,
the new solutions are “functionally equivalent” to the previous ones, in the sense
that an “outside observer” that only sees the network’s response to external stimuli
cannot tell whether the algorithm removed a node or all the edges incident to it.

From the optimizers point of view, this change allows it to make bigger leaps
inside the search space and thus converge faster to an area of higher payoffs.
On the other hand, once it gets to this area, the convergence may slow down
because of the multiplicity of equally good solutions. However, in practice, many
times the optimization process is terminated before the optimizer converges close
to the global minimum. Moreover, for interactome scale networks, the user may
take advantage of this feature in combination with the ambiguity allowed by the
sign consistency formulation and optimize only over the nodes, of which there are
typically much fewer than arcs, and achieve a good approximation of the optimal
network that can be then optimized separately.

2The set of all subsets of a set including the empty set and the set itself
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From a researcher’s point of view, there are two main benefits from introducing
the nodes into the optimization process. First, nodes can be assigned weights to
bias the solution towards our prior knowledge about their presence in the network
or not. Second, the framework is more flexible and can include more complicated
scenarios like knocking-down nodes or coupling the reactions/nodes of one cell
type to another and optimize only over the nodes/reactions (see application in
Chapter 3). Because the optimizer has two ways to search for a solution, imposing
hard constraints on one of them is less likely to render the problem unsolvable.

Preliminaries

This method assumes that the prior knowledge network (PKN) is given in the
form of a sign directed graph G = (N,A, σ). Sign directed graphs, also known
as interaction graphs, extend the notion of directed graphs by assigning a sign to
every arc σ : A → {−1,+1}. The nodes (N) of an IG can assume one of three
possible states: up-regulated (+1), down-regulated (−1) and unperturbed/basal state
(0). The sign of an arc represents the effect or influence the parent-node exerts
on the child-node (see 2.2.1). To allow for more complicated scenarios to be
modeled, each node and arc is associated with a possibly empty set of inhibitors
In and Ia respectively. These may correspond to actual inhibitors, like drugs and
small molecules which can inhibit particular reactions or other types of inhibition
such as shRNA or CRISPR which can knock-down nodes completely. Inhibitors
function as switches that force their associated elements to their basal state when
activated. To keep the problem description concise the inhibitor sets are defined
as In, Ia ⊆ N × {−1, 1}, ie that they can be described by the state of some nodes
of the graph.

Apart from prior knowledge about the connectivity, the method also requires
a set of experimentally observed dependencies in order to refine the PKN so as
to simulate them as closely as possible. Dependencies can be observed via per-
turbation experiments where some nodes of the network are perturbed (set in a
non-basal state) and the state of some other nodes is recorded. In the context of
signaling networks, these experiments correspond to measuring the phosphoryla-
tion status of intra-cellular proteins upon perturbing the cells. It’s assumed that
these experiments capture a steady-state shift.

Experiments are modeled as a set E of tuples. Each tuple e ∈ E consists of
two functions; a perturbation function pe : N → {−1, 0, 1} indicating which nodes
are initially perturbed and me : Me → [−1, 1] indicating the state of the measured
nodes in experiment e Me ⊆ V . A perturbation of zero indicates an unperturbed
node, to force a node to assume the state zero an inhibitor for the corresponding
node must be added. On the other hand, a measurement of zero is not equivalent
to no measurement, that is why me are not defined over all nodes N . Another
important distinction between pe and me is that the first maps to discrete values
indicating that perturbations are known with certainty while measurements are
not. The image of me is a “fuzzy” relaxation of the three distinct states where
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the distance from each discrete value {−1, 0, 1} is inversely proportional to the
modeler’s belief that the node measured was in the corresponding state.

Sign Consistency

Signal transduction is simulated via the rules of sign consistent labeling of nodes.
A sign consistent labeling l : N → {−1, 0, 1} abides by a set of rules that restrict the
possible state-combinations of adjacent nodes. First, in a perturbation experiment,
every perturbed node must be labeled with the intended sign.

∀n ∈ N : pe(n) ̸= 0 ⇒ l(n) = pe(n) (2.1)

Second, the state of every non-perturbed node must be equal to the state of at
least one of its predecessors multiplied by the sign of the connecting arc.

∀v ∈ N : pe(v) = 0 ⇒ ∃a = (u, v) ∈ A : l(v) = σ(a)l(u) (2.2)

These rules produces a “weakly consistent” network.

ILP Formulation

This section describes a mixed integer program to prune the original PKN in
order to identify a subnetwork that can be labeled sign consistently in a way that
minimizes the divergence between labels and measured states. The main idea
of the formulation is to use the constraints in order to force a sign consistent
labeling and then use decision (binary) variables to select nodes and arcs in order
to minimize the objective function

Variables are indexed by n ∈ N to indicate the node, a ∈ A to indicate the arc
and e ∈ E to indicate the experiment. For each node n, a binary variable vn is
introduced to model whether it is part of the optimal sub-network. To model its
state in experiment e, two binary variables are introduced x+

n,e and x−
n,e modeling

whether the node is up or down regulated respectively. For each arc a, a binary
decision variable ya is introduced to model whether it belongs to the optimal sub-
network and two continuous variables z+a,e and z−a,e to model whether, in experiment
e, the signal originated from an up or a down regulated node. The asymmetry in
the x and z variables, the former being a decision variable while the latter not,
is meant to accommodate the degrees of freedom that sign consistency allows. In
particular, the fact that each node does not have to be consistent with all of its
predecessors allows the optimizer to select the label that would result in a better
overall fit. The relationship between the x and z variables is summarized visually
in Figure 2.2.

The constraints modeling sign consistency can be grouped into two main groups,
those regulating the state of the nodes and those regulating the state of the arcs.
For notational convenience, the symbols sa and ta are used to indicate the source
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Figure 2.2: Reaction Modeling Positive and negative effects are modeled by different
variables and the dependencies between them characterize the reaction.

and target node of an arc a and ± to indicate “double” constraints both for the
positive and negative variables involved.

Arc constraints:

z+a,e + z−a,e ≤ ya (2.3a)
z±a,e ≤ x±

sa,e (2.3b)
z±a,e ≤ 1− xs

i,e, ∀i, s ∈ Ia (2.3c)

z±a,e ≥ ya + x±
sa,e − 1−

∑
i,s∈Ia

xs
i,e (2.3d)

0 ≤ z±a,e ≤ 1 (2.3e)

These must hold for every arc a ∈ A in every experiment e ∈ E. The first four
constraints implement an AND gate of necessary and sufficient conditions for an
arc a to transduce a signal in experiment e. The three conditions are; first, the arc
must be included in the final sub-network, second, the source node must be in the
appropriate state and third no inhibitors should be active. If all of these conditions
are satisfied then the fourth, constraint ensures that the arc will become active.
The first and the last constraints also ensure that z+ and z− behave as mutually
exclusive binary variables. The reason zs do not have to be declared as binary
variables is that their value is uniquely determined for every combination of the
actual decision variables of the problem.

For every node n ∈ N and every experiment e ∈ E the following constraints
must hold:
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Node constraints:

x+
n,e + x−

n,e ≤ vn (2.4a)

x±
n,e ≤

∑
a∈A:ta=n

z±σ(a)
a,e + 1(pe(n) = ±1) (2.4b)

x±
n,e ≤ 1− xs

i,e, ∀i, s ∈ Iv (2.4c)

x+
n,e + x−

n,e ≥ vn + z±σ(a)
a,e − 1−

∑
i,s∈Iv

xs
i,e, ∀a ∈ A : ta = n (2.4d)

x±
n,e ≥ 1(pe(n) = ±1) (2.4e)

where 1 is the identity function (equals 1 when the condition is met).

Again, the first four constraints implement an AND gate of necessary and suffi-
cient conditions for a node to be up or down regulated. These conditions are; first,
the node must be included in the final sub-network, second, unless it’s perturbed,
at least one reaction must activate it and third, no inhibitor should be active. If
all three requirements are met, then the fourth constraint will force the node to
assume a non-basal state. The first constraint also enforces mutual exclusivity be-
tween the two active states of a node, as it cannot be both up and down regulated.
The fifth constraint guarantees that the perturbed nodes have the intended state
and initiates the signaling process.

The sum at the left-hand side of the fourth constraint allows the optimizer an
extra degree of freedom in labeling a node. In particular, unless forced by another
constraint, a node can become either up or down regulated regardless of the sign
of z, and the optimizer has to decide the best option. If there are no conflicting
influences then there is no decision to be made since the second constraint would
have already forced one of the two x variables to zero. Because of this constraint,
xs have to be binary variables, unlike the zs.

Finally, to produce the sub-graph that best simulates the data an appropriate
objective function must be defined. A common choice is that of least-squared dif-
ference between the observed me(n) and the predicted value xne = x+

n,e−x−
n,e of node

n in experiment k. The objective is then to minimize the function (xn,e −me(n))
2

across all experiments, which is equivalent to the following linear function:∑
e∈E

∑
n∈Me

(xn,e −me(n))
2 =∑

e∈E

∑
n∈Me

(1− 2me(n))x
+
n,e + (1 + 2me(n))x

−
n,e

(2.5)

Where the square terms are dropped because the xs only assumes the values 0
and 1. Extra terms can be added to incentivize sparsity on the solution vectors or
prioritize the inclusion of some arcs and/or nodes.
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Cycle Removal

The final subnetwork will always be an acyclic graph rooted at the perturbed nodes
and branching towards the measured nodes. Nonetheless, the prior knowledge
network may contain loops. Loops present a challenge for logic-based methods
since they can be self-activated without external perturbation. Because the up
and down regulated states are mutually exclusive, negative feedback loops are
automatically handled by the constraints presented thus far. However, for the
case of positive feedback loops an extra set of constraints and variables have to
be introduced. In particular, for every node n ∈ N a variable dn and the following
constraints are introduced:

Cycle constraints:

dta ≥ dsa + 1 + (ya − 1)M ∀a ∈ A (2.6a)
0 ≤ dn ≤ M ∀n ∈ N (2.6b)

In the presence of a cycle, these constraints will push the d variables involved
to grow without bound. Thus, by bounding them up by M , the optimizer is forced
to break the cycle by removing some arcs. M represents a big constant and can
be thought of as the longest distance between any pair of nodes and thus the best
“uninformative” value is M = |N | − 1, corresponding to a path spanning all the
nodes. It’s also worth mentioning that every node will have a larger d variable
than all its predecessors and thus the order of the d variables corresponds to a
topological ordering of the nodes which is only defined for acyclic graphs.

2.2.2 Reverse Causal Reasoning Method
This method was first described in [52], here it is slightly adjusted to its more
general form and also some variables are renamed for notational consistency. It is
based on the same ILP formulation as the Sign Consistency Method (Section 2.2.1)
with slight adjustments in order to address the scenario where the source of
perturbation is unknown. The main adjustment consists of introducing another
set of variables to indicate whether a specific node is an initiator of a signaling
cascade. Figure 2.3 depicts a toy example that illustrates the main ideas of the
method.

ILP formulation

All the parameters, variables, and constraints from Section 2.2.1 are still in place.
This Section describes only the adjustments made to the previous formulation.

In the Sign Consistency Model, the initial perturbation in experiment e was
known a priori as the function pe(n). For this method, the function pe(n) is
replaced with two sets of binary variables p+n,e and p−n,e indicating whether node
n initiated a signaling cascade in experiment e by being up- or down-regulated
respectively.
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Figure 2.3: Illustrative example of the Reverse Causal Reasoning Method (A) A
PKN and a set of measured nodes is provided. Red arcs represent negative interactions
while node shape indicates different levels of biological hierarchy. Squares represent source
candidates. (B) The algorithm leverages searches for a sign consistent labeling to simulate
the observed states. (C-F) The algorithm continues its search over all the possible paths
and selects the one that makes the fewest assumptions (minimum number of nodes and
sources)

These variables replace the perturbation function in constraints 2.4b and 2.4e
as follows:

x±
n,e ≤

∑
a∈A:ta=n

z±σ(a)
a,e + p±n,e

x±
n,e ≥ p±n,e

Another constraint, that is implicitly imposed, is that of mutual exclusivity. This is
taken care through the constraints already present for the x variables. In particular,
the scenario where both p+n,e and p−n,e are set to 1 would result in forcing both x+

n,e

and x−
n,e to 1 which has already been ruled out as a possibility by constraint 2.4a.

Sparsity constraints are important for this formulation. If the number of active
or perturbed nodes is not restricted somehow, the optimizer would opt for the
trivial solution of simply perturbing all the observed nodes to achieve a perfect
score. These constraints can be imposed on either the x or the p variables in
a soft manner as weights in the objective function, as is the case with the Sign
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Consistency formulation. So the objective function becomes:∑
e∈E

∑
n∈Me

(xn,e −me(n))
2 + λx|xn,e|+ λp|pn,e| (2.7)

where |xn,e| = x+
n,e + x−

n,e and |pn,e| = p+n,e + p−n,e

λx and λp define the trade-off between accuracy and sparsity. Typically, λp is
set higher than λx to allow the optimizer some leeway to form the network but not
include many “source” nodes. It is also typical to have some idea of which -few-
nodes are the possible stimuli, like known drug targets for example, in which case
all the other p variables can be fixed at 0.

2.3 Expansion and Future Work
This section describes some practical issues and limitations encountered when
implementing the 2 models and how they can be addressed.

2.3.1 Probabilistic Networks
For both models, a solution consists of an interaction graph together with the
appropriate sign-consistent labeling. When sparsity incentives are included, this
solution is usually the unique optimal solution. However, focusing on a single
solution can lead to overconfident conclusions. Thus many times some solution
averaging scheme is required.

The simplest such scheme simply averages the value of each decision variable
(v, y, x, p) over a set of available solutions weighted by their objective values.
Obviously, the objective values have to undergo some transformation to become
proper weights since smaller ones must contribute more and they may have dif-
ferent signs. The simplest of these transformation is a linear map to [0, 1], where
the smallest values are mapped to 1 and the largest ones to 0 or some small con-
stant to avoid ignoring them completely. Moreover, care must be taken in order
to make sure that the networks are not “functionally equivalent”. For example, in
absence of sparsity incentives, any node or arc unconnected to an active node can
be added to the solution and yield an equally good solution, since the objective
function only depends on the x values of the measured nodes. For this case, extra
constraints can be added of the form:

ya ≤
∑

z+a + z−a , ∀a ∈ A

vn ≤
∑

x+
n + x−

n , ∀n ∈ N

to ensure that arcs and nodes are included only when required.
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There are 2 ways to generate a set of solutions. First, the solutions generated
during the optimization process can be stored3. Second, once the optimal solution
has been reached, a new ILP problem can be formulated where the original objective
function is constrained to be less than the optimal objective value, scaled by some
relaxation factor. The new problem needs no objective function since the goal is
just to find valid networks that are close the optimal. In practice, most modern
solver have built-in routines that allow them to populate the solution pool according
to multiple criteria.

Although this averaging scheme makes intuitive sense, users must be aware
that this is not a proper probabilistic but a rather ad hoc approach. In particular,
the sub-optimal solutions are generated via a deterministic process and the only
guarantee of convergence is that the space of possible solutions is finite.

Thus, further study is required to understand the properties of these probabilis-
tic networks. Some interesting vectors of research might include:

1. determining a rough estimate of how many solutions are required per variable
for its probability to converge

2. studying how robust are the probabilities to changes in the normalization
process that determines the objective function

3. taking into account the correlation between the variables and how they con-
verge.

2.3.2 Hybrid & Dynamic Networks
The models described in this dissertation are based on two major simplifications:
the response is discrete and the resulting network is acyclic. Generalizing these
simplifications pushes the two models and their underlining framework to their
limit. This sub-section briefly discuss alternatives to both of these.

As mentioned above, the acyclic constraints are necessary for the formulation to
behave properly since cycles can be auto-activated. However, many real networks
do have cycles and use them to regulate cell behavior [53]. In some applications,
omitting the cycles makes sense because the cells are not allowed enough time
to respond, for example, if the cells start in an hyper-inactive state, eg after they
have been starved, and the response is measure only minutes after the original
stimulation. In this case, it is reasonable to assume that the signal did not have
time to traverse the whole cycle once.

An “easy” workaround, to include cycles in the final network, is to expand the
state-space and include simple cycles as nodes. These nodes must have an arc
to/from every other node down/up stream of the cycle. If the number of cycles is

3When the Simplex algorithm is used to solve the problem, the solution is recovered as the final
term in a sequence of solution of reducing cost.
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small this approach would work but the number of cycles can be exponential in
the number of nodes and thus prohibitive.

The most important challenge that cycles pose is not the technical problem of
self-activation but the fundamental problem of “time”. An implicit assumption for
both SCM and RCRM is that the cells transition between two steady-states in a
single time-step, before and after the signal has been “processed”. Cycles break this
assumption by encoding extra time steps, namely the time-points when the signal
reaches one of their nodes for a second time. Thus it is the author’s belief that
a proper solution to this problem cannot be achieved within the given framework,
unless time is modeled explicitly. No such line of research is known to the author.

On the other hand, the discretization assumption is more nuanced. It can
be though of as an approximation of the sigmoid behavior of many biological
processes which tend to saturate at very low or high stimulation. Consequently,
it is only limiting in the gray “middle area”. A possible workaround could be
to replace the threshold-activation-function with sigmoid-functions similar to the
work of Mitsos et al. [54] for Boolean networks.

For the case of RCRM, an interesting approach is to allow the state of the
measured nodes to be continuous and reformulate the problem as a network flow
problem [55, Chapter 7], where the “demand” of the measured nodes has to be
covered by some unknown perturbations. The challenge of this approach is that the
states can assume both positive and negative values and thus the relevant theory
and algorithms cannot be applied directly. In particular, network flow requires
that the “flow of signal” coming in and going out of a node must be equal. So in
the case where “negative signal” is allowed, a node can generate signal without
being a designated stimulus (pne = 0) by simply balancing the positive and negative
signals.

The author does not known of any published method based on either of these
ideas.



Chapter 3

Replicative Senescence

This chapter presents the work published in [51]. In this work, the authors utilize
a special form of the Sign Consistency Model (SCM), presented in Section 2.2.1,
in order to elucidate changes in the network of human primary fibroblast cells
(HFL-1) as they age. The chapter follows the original work closely with only slight
modifications to match the nomenclature and previous content of this thesis.

3.1 Introduction

As discussed in Chapters 1 and 2, models describing the cell’s signaling process
is a core aspect of Systems Biology research. A common approach is to combine
prior knowledge about the (static) connectivity of the signaling proteins with high-
throughput (dynamic) data in order to come up with a network specific to the
activity under study. However, to the best of the author’s knowledge, the methods
proposed thus far in order to reconstruct signaling networks focus on selecting a
subset of the known reactions that can optimally simulate the observed behavior.
This approach is justified for two main reasons. First, as discussed Section 1.2.3,
reactions are context dependent and some argue that currently available databases
include a lot of false positive ones. Second, cells can be probed in the presence of
inhibitors, like drugs or small molecules, that inhibit specific reactions and thus
the effect of these interactions can be evaluated directly.

However, signaling networks can also be altered in cells by the presence or
absence of the involved proteins, either because the cell under-expresses them or
researchers have knocked them down, using CRISPR or shRNA for example. In
this chapter, the Sign Consistency Model (SCM) described in Section 2.2.1 is used
to reconstruct the signaling networks of human primary fetal lung fibroblast cells
(HFL-1) as they undergo replicative senescence. In the case of aging, the reactions
involved are expected to remain unaffected by the process and only the expression
of the involved entities should be affected.

23
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3.2 Materials and methods

3.2.1 Experiments

We maintained human primary fetal lung fibroblasts (HFL-1) in culture from a
young stage until they reached a terminally senescent (old) stage after 50 replica-
tion cycles. In the young stage the cells were replicating every day while in the
old stage they had not replicated for a month. Cells were seeded in 96-well plates
at 20000 cells/well 24 hours prior to stimulation. After 24 hours cells were stimu-
lated by adding the stimulants to the cell medium at a concentration calculated to
reach the target concentration in the cell supernatant. Cell lysates were collected
at 5 and 25 minutes following the cytokine stimulation. The 5 and 25 minute time
points were identified in a preliminary experiment as the optimal time points to
capture early phosphorylation activities. A panel of 18 phosphoproteins upon stim-
ulation with 6 cytokines was used to interrogate the cells. The panel was selected
to represent known proliferation and senescence regulating pathways. Stimulant
concentrations were selected after pre-screening experiments. All measurements
were done in triplicates. The cytokines used to stimulate the cells and their tar-
get concentrations were: EGF (100ng/ml), IL1A (50ng/ml), TGFA (200ng/ml), TNF
(100ng/ml), IGF1 (200ng/ml) and INS (1000ng/ml). The interrogated proteins were:
AKT1, CREB1, PTK2, GSK3A, HSPB1, NFKBIA, JUN, MAPK12, MAPK3, MAPK9,
MAP2K1, TP53, PTPN11, STAT1, STAT3, STAT5, STAT6 and RELA. Basal protein
phosphorylation was measured in absence of any stimulant in DME cell medium.

HFL-1 human primary embryonic lung fibroblasts were purchased from ECACC
(ECACC 89071902). Cells were cultured in Dulbecco’s modified Eagle’s (DME)
medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum (Invitrogen), 100 units/mL penicillin, 100 μg/mL streptomycin, and 2 mM
glutamine (complete medium) and maintained in a Binder Incubator at 37°C, 95%
air, 5% CO2. HFL-1 fibroblasts were seeded at a density of 2 × 105 cells per 75
cm2 flask, were subcultured at a split ratio of 1:2 when cells reached confluence,
until they entered senescence at about 50 CPD, as described before [56]. In all
experimental procedures described below early passage (young; CPD < 25) and late
passage (senescent CPD > 50) HFL-1 cultures were used. Cells were fed approxi-
mately 16 hours prior to the assay and cell number were determined in duplicates
using Coulter Z2 counter (Beckman Coulter, Nyon Switzerland). The cytokines
used for stimulation were purchased from Peprotech (PeproTech, NJ, USA), IGF1
(100–11), EGF (AF–100–15), IL1A (200–01A) TGFA (100–16A), TNF (300–01A) and
insulin (INS I9278) was obtained from Sigma-Aldrich (Sigma-Aldrich, Shanghai,
P.R. China). Measurements were carried out in 96-well plates using Luminex’s
xMAP technology with custom assays by ProtATonce Ltd.



3.3. RESULTS 25

3.2.2 Network Construction
The median fluorescent intensity was used to summarize the results of the Luminex
measurements. To map values to the [−1, 1] interval required by the algorithm,
fold changes were computed between the cytokine-stimulated state and the basal
state (DME) and passed through the Gaussian error function. The two time points
(5 and 25 minutes) were aggregated into a single “early” time point by taking the
maximum absolute value which is analogous to an OR gate. See A for more details
about data pre-processing.

The prior knowledge network (PKN) was assembled by combining pathways
from the MetaCore database. In particular, pathways that contain at least one of
the stimuli used or readout measured were included. Then, nodes that are not
controllable, meaning that there was neither path from a stimuli nor to a signal,
were filtered out. These steps do not affect the final outcome since the solver would
have eliminated them during the pre-processing because, from its perspective, their
state is fixed at zero. The network was further curated by removing reactions with
unknown effects or few evidence. These interventions do bias the solution but
they were justified in order to avoid overfitting.

Finally, the SCM was used to reconstruct the signaling networks for young and
senescent cells. The two cells were not fitted independently though. As explained
in Section 3.1, the reactions involved are expected to remain unaffected by the
process and only the expression of the involved entities should be affected. In
order to achieve this effect, two instances of the SCM were formulated but only
a single instance of y variables, representing the reactions included in the final
networks, was used for both networks while for all other variables two instances,
one for young and one for senescent cells, were defined. The ILP formulation is
otherwise identical to the one presented in Section 2.2.1. The two networks were
fitted together.

3.3 Results
Figure 3.1 summarizes the measured states me of every phosphoprotein mea-
sured upon stimulation with every cytokine both for young and senescent cells.
As expected, young cells are much more responsive across the board. We ob-
served that the signaling proteins that are involved in proliferation including
AKT Serine/Threonine Kinase 1 (AKT1), cAMP Responsive Element Binding Pro-
tein 1 (CREB1), Mitogen-Activated Protein Kinase Kinase 1 (MAP2K1), Mitogen-
Activated Protein Kinases 3 and 9 (MAPK3, MAPK9), Protein Tyrosine Kinase
2 (PTK2), Protein Tyrosine Phosphatase, Non-Receptor Type 11 (PTPN11) and Sig-
nal Transducer and Activator of Transcription (STAT) family members 1, 3 and 5
(STAT1, STAT3, STAT5) are substantially more activated in young than senescent
cells. Senescent cells show a higher activation of STAT6 when stimulated by EGF
or IL1A. Stimulation with EGF also provides a higher response in senescent than
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young cells in the NFKB Inhibitor Alpha (NFKBIA), RELA, STAT3, STAT6 and
Tumor Protein P53 (TP53) and overall it seems that EGF is the growth factor
that senescent cells are most responsive to. Notably, Glycogen Synthase Kinase
3 Alpha (GSK3A), TP53, STAT1, STAT5 and MAPK9 respond in opposite ways in
young and senescent cells across multiple stimulants. Heat Shock Protein Family
B Member 1 (HSPB1) and Jun Proto-Oncogene (JUN) are more responsive in young
cells as well.
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Figure 3.1: Cell Response to different stimuli Panels correspond to measure phos-
phoproteins. On the x-axis is their measured status (-1: down-regulated, 1: up-regulated)
and on the y-axis the stimuli used in every experiment.

To gain a more mechanistic insight into what drives this change in response, we
run our algorithm for young cells, replicating every day, and old cells that have
entered the senescence state. The resulting networks are shown in Figure 3.2,
while the predicted status of the signals is shown in Figure 3.3. As expected
senescent cells appear unresponsive to insulin (INS) and insulin-like growth factor
1 (IGF1) because their insulin receptor (INSR) appears to be unresponsive (absent).
Moreover, signaling through the TNF receptor 1 (TNFRSF1A) is also absent in
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senescent cells. As a result, the SRC proliferative pathway that is active in young
cells, leading to activation of proteins involved in cell growth and proliferation
such as AKT1, STAT1, STAT5, and PTK2, is completely deactivated in senescent
cells. On the other hand, NFKBIA is highly down-regulated by upstream inhibitors,
Conserved Helix-Loop-Helix Ubiquitous Kinase (CHUK) and Inhibitor Of Nuclear
Factor Kappa B Kinase Subunit Beta (IKBKB), and RelA/p65 is highly up-regulated
in senescent cells which leads to activation of NFKB signaling that establishes and
maintains cellular senescence. Both Janus Kinase 1 (JAK1) and Janus Kinase 2
(JAK2) appear to be inactive in young cells and active in senescent cells leading
to inhibition of NFKBIA and activation of STAT6. Several MAP kinases are
only active in senescent cells including MAP3K1, MAP2K2, MAP2K4, MAPK1
and MAPK14. Another important transcription factor that remains inactive in
senescent cells is CREB1, known to play a significant role in cellular aging [57].
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Figure 3.3: Network Predictions Every tile corresponds to a stimulus-signal combi-
nation. The tile color corresponds to the predicted status of the signal while the color of
the enclosed disk corresponds to the measured status. Predicted status is discrete while
measured status is continuous.

3.3.1 Sensitivity Analysis

Technical variability for bead-based phosphorylation assays has been studied before
in [58], where they estimated the coefficient of variance due to the experimental
protocol and pipetting errors to average in the range of 5–15%. To access the
impact of such variability in our results, we generated artificial datasets by adding
noise to our MFI readouts and rerun the analysis. We repeated this processes 10
times for three different levels of noise 5, 10 and 15%, and computed the Jaccard
similarity index of the resulting network with the original network. We observed
that a CV of 5% has virtually no effect on the results while for larger values the
networks start to diverge but not significantly. The results are summarized in
Figure 3.4.
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Figure 3.4: Sensitivity Analysis 10 randomized datasets were generated for each noise
level and the optimal network were reconstructed and compared with the original dataset.
The comparison was based on the presence of reactions (y), species (v) or both.

3.4 Discussion
In this chapter, an adaptation of the SCM, described in Section 2.2.1, was pre-
sented. The changes made allowed the method to model an evolving system like
cellular aging. For the case study presented, the reaction set was constrained to
be the same across both young and senescent cells while the node set was allowed
to vary. The opposite configuration could have been implemented just as easily.
The configuration used allowed networks to differ only due to changes in the
expression levels of the proteins while also allowing more data points to inform
which reactions should be included. More generally, within the presented frame-
work, one can impose soft or hard constraints on nodes and/or reactions without
necessarily compromising the accuracy of the model, since the two mechanisms
allow the optimizer to work around them if necessary.

The sensitivity analysis performed illustrated that the set of reactions included
in the final network is more sensitive to noise than the set of nodes, despite the
fact that reactions were constrained to be the same for the 2 populations. This
is probably due to their moderate effect on the overall connectivity compared to
the effect of removing a node from the network. Thus extending the scope of
optimization to nodes as well as reactions renders the model less sensitive to
overfitting.
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As with the original SCM framework, the proposed formulation can handle
both positive and negative interactions as well as cycles in the prior knowledge
network transparently. However, the resulting networks are acyclic so it cannot
capture dynamic behavior of the network. Also, as is the case with all logic-based
approaches, it lacks the ability to describe the kinetic aspects of the network [39].
Because of the MIP implementation, the networks constructed are optimal with
respect to the proposed framework or at least within a pre-specified distance from
optimal [55]. Moreover, modern MIP libraries like CPLEX and Gurobi, allow the
enumeration of multiple Pareto-optimal or near optimal, solutions. When tested
with synthetic data that respected sign consistency, it was able to reconstruct the
generated signatures in every occasion (data not shown).

The number of variables/constraints required is O(2k(N+A)) where N,A is the
number of nodes and interactions in the PKN and k is the number of experiments
simulated. Although up and down regulation are not independent, they require
their own variables and constraints to be implemented properly so that is why
2 appears in the model. Depending on the infrastructure and the number of
experiments the proposed method can handle networks for thousands of species.
Practical experience indicates the most important parameter, in terms of running
time, is the number of experiments k. Lastly from a computational point of view,
the number of proteins is typically only a fraction of the number of reactions
resulting in a possibly significant shrinkage of the search space, if the optimization
is carried over the proteins only.

To demonstrate this framework, the signaling networks of cells aging in vitro
was reconstructed. In particular, 18 phosphoproteins were measured and their
fold-change, in concentration upon stimulation with 6 cytokines, was computed
for young and senescent cells. The MetaCore database was used to assemble the
pool of possible interactions.

The two networks were compared and we observed classical changes associ-
ated with senescence such as insulin resistance and strong activation of the NFKB
pathway in response to IL1A and TNF stimulation, which has been associated with
the senescence-associated secretory phenotype (SASP) [59]. The activity of JAK1
and JAK2 in senescent cells is one potential driver of the SASP through inhibition
of NFKBIA and activation of STAT6. STAT6 has been found to be involved in
the induction of cellular senescence by [60]. Various studies have proposed that
the SASP can be suppressed through inhibition of the JAK pathway in senescent
cells [61]. Stress activated MAP kinases cascades are also known to play an impor-
tant role in cellular senescence [62]. The insulin and IGF1 signaling (IIS) pathway
is a highly studied pathway in aging. The attenuation of IIS has been shown to
promote longevity and extend the lifespan of various organisms [63]. However, IIS
is also known to decline during normal and accelerated aging [64]. The recovered
networks suggest that the attenuation of the IIS is mediated through the inacti-
vation of the INSR. A central driver of cell proliferation in young cells, SRC is
completely inactive in senescent cells, leading to inactivation of various proteins
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involved in cell proliferation. It is interesting to mention that the SRC pathway
has been associated specifically with geriatric cancers, with a higher probability of
being deregulated in elderly patients [65], [66]. Analysis of microarray data from
the same experiment (paper in preparation, data not shown) confirms the perturba-
tion of EGFR and INSR signaling, as well as perturbation of downstream signaling
by SRC in senescent cells, while the cellular response to IL1A is increased. In
young cells the transcriptomic data demonstrate JAK1 and JAK2 inhibition.





Chapter 4

Drug Induced Lung Disease

This chapter presents the work published in [52]. In this work, the authors utilize
a special form of the Reverse Causal Reasoning framework (RCR), presented in
Section 2.2.2, in order to elucidate the modes of action (MoA) of drug-induced
lung disease. The chapter follows the original work closely with only slight mod-
ifications to match the nomenclature and previous content of this thesis.

4.1 Introduction
The identification and understanding of a drug’s mode of action (MoA) is at
the core of pharmacology. For the many drugs that target signal transduction
processes, this requires an understanding of the MoA at the signaling level and
in the specific tissue where the drug is to be used, along with other tissues that
may be subject to off-target effects. Understanding this could have an enormous
impact in many aspects of drug development and public health [67].

Ideally, one would have dedicated phosphoproteomic or chemoproteomic experi-
ments [68], where thousands of proteins and their post-translational modifications,
like phosphorylation, are measured upon perturbation with the interrogated drug
and its MoA would be identified in terms of altered proteins. However, phospho-
and chemoproteomic data are still scarce in the literature, and few datasets exist
that screen drugs on different panels of cell lines in a consistent experimental
setup, including culturing conditions, concentrations, time of stimulation etc.

In contrast, such data upon perturbation exist abundantly at the gene expression
level [35], and they are an invaluable resource for comparative studies of drugs and
cell lines, enabling the use of computational modeling for predicting drug efficacy
or identifying potential drugs for repositioning [69]. Thus, the development of
novel approaches that leverage gene expression datasets to identify drug modes of
action, is an important question. Most computational methodologies for identifying
drug modes of action based on gene expression data use one of the following two
workflows.

The first workflow starts with differentially expressed genes identified upon

33
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perturbation with the interrogated drug, and subsequently, enrichment analysis is
performed to identify biological processes, signaling pathways, or other gene sets
that are highly enriched in the differentially expressed genes and thus, are likely to
be deregulated by the interrogated drug. The gene sets could be either GO terms or
genes that are deregulated upon perturbation with known stimulants [70]. Because
enrichment based strategies ignore the complex gene interactions that may drive
cellular response, hybrid methods have also been proposed that take into account
information from pathway maps to improve their prediction [71].

Other approaches are primarily based on the incorporation of prior knowledge
of signaling networks, either from protein-protein interaction (PPI) data or causal
links, or transcription regulation in addition to the gene expression data [45],
[72], [73]. For example, in the work by Zarringhalam et al. [73], the Selventa
Knowledge-Base was used that includes causal, condition specific relationships
between signaling proteins and gene expressions, and a Bayesian inference ap-
proach was used to identify subsets of this knowledge base that are most probably
active in the specific biological context. They were able to identify the key regula-
tors that govern gene expression, but they could only capture limited mechanistic
aspects of the intermediates in signal transduction, i.e. how signal propagates from
one protein to the next before translating into the gene expression level. In an-
other work [74], a PPI network was used to represent protein connectivity, and an
enrichment analysis method was implemented to infer the activity of transcription
factors and signaling proteins based on the observed gene expression signatures.
Similarly, Huang et al. [45] used a PPI network to represent protein connectivity,
and implemented a Prize Collecting Steiner Tree (PCST) algorithm to identify min-
imum sub-trees of the PPI network that connect differentially expressed genes or
proteins, discovering the backbone networks that are most probably functional in
the specific biological context. In more detail, the PCST algorithm addresses the
problem of connecting into a Steiner arborescence tree as much of the differen-
tially expressed genes (or proteins) as possible, while minimizing the number of
edges in the tree. The PCST does not impose the requirement that all differentially
expressed genes/proteins are included in the solution, but the algorithm identifies
only a subset of those, whose connectivity is also strongly supported by the net-
work, thus offering robust predictions even when noisy data are used. Also, the
PCST can be formulated as an integer linear programming (ILP) problem, which
can be solved efficiently allowing the interrogation of genome-wide networks.

The use of PPI networks offers clear advantages over strictly data driven meth-
ods. Firstly, these methods combine gene expression data-sets with the wealth of
published high throughput interaction data, making model predictions more bio-
logically relevant. Secondly, the identification of network topologies implicated in
drug response is easier to be interpreted, as it offers mechanistic insight into the
drug’s MoA. Finally, the use of networks allows the generation of predictions for
signaling molecules that are not directly measured, for example the nearest neigh-
bors of the measured genes/proteins. Nevertheless, the use of PPI networks has
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its own shortcomings. PPIs are undirected; thus, the direction of signal flow from
one protein to the next is not easily identifiable. While the original formulation
of PCST considered undirected networks, extensions have been proposed [47] to
include directionality in the networks and to generalize from a single tree that
connects together all differentially expressed genes (or proteins), to forests, that
permit different, unconnected neighborhoods of the PPI network to be functional
at the same time. As more complexity is incorporated in the formulation, a global
solution becomes intractable, forcing the of use heuristic methods in the optimiza-
tion, risking a suboptimal solution. Moreover, even these PCST extensions cannot
incorporate signed data and interactions (positive vs. negative effects), while these
effects are key in defining the mechanisms underlying signal transduction.

In this chapter, a methodology is introduced for the identification of drug
mode of action, based on gene expression data and prior knowledge of protein
connectivity in the form of a genome wide, directed signaling network. In the heart
of the methodology lies the reverse causal reasoning framework (RCR), described
in Section 2.2.2, modified at key points to address the complexity of large-scale
signaling networks. The methodology combines gene expression data with a Prior
Knowledge Network (PKN) based on signed and directed causal interactions as
those that can be curated from the literature, and it identifies sub-graphs of the
PKN that appear to be functional based on the data at hand.

To illustrate the value of this approach, the identification of the modes of action
of drugs that are known to induce lung injury is addressed. Drug induced lung
injury is a major safety concern and more than 800 drugs are listed as potential
inducers [34] of lung injury including asthma, fibrosis, and interstitial pneumonia.
Thus, understanding the molecular mechanisms underlying Drug Induced Lung
Disease (DILD) may have an impact in drug development and in public health. In
this work, the MoA of 200 drugs that are known to induce respiratory problems
is identified, in terms of signaling networks that start at the drug targets, go
through the signaling level, and terminate at the genomic level with the regulation
of genes that are differentially expressed upon perturbation with the toxic drugs.
Subsequently, the drug specific pathways are merged together into a signaling
network (i.e. DILD network) that captures the signaling mechanisms underlying
DILD. Moreover, to demonstrate the predictive power of model predictions, its
findings are used to suggest promising drugs for repositioning.

4.2 Analysis

4.2.1 Workflow
The proposed method attempts to identify the drug’s MoA based on gene expres-
sion data and prior knowledge of drug targets, protein connectivity and transcrip-
tion regulation. The workflow of the proposed method is shown in Figure 4.1.
First, pharmacological targets are identified from the STITCH database [75], and
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differentially expressed genes upon perturbation with the interrogated drugs are
identified from the Connectivity Map [35]. Subsequently, an algorithm based on
the RCR framework is used to identify functional interactions that model signal
transduction from the drug targets to the differentially expressed genes. The iden-
tified pathways are functional sub-graphs of a genome wide signaling network, and
originate at the drug targets, span across the signaling level, go through the af-
fected transcription factors and terminate at the genomic level with the regulation
of the differentially expressed genes (see also Figure 4.2).

Figure 4.1: DILD Workflow. Drugs that induce respiratory problems are extracted from
Pneumotox. Pharmacological targets are identified from STITCH and their gene expression
profiles from the Connectivity Map. Over- and under-expressed genes are identified using
the rank matrix of the Connectivity Map. Then, the proposed ILP formulation is applied to
identify signaling pathways connecting drug targets and over- and under-expressed genes.
The drug specific signaling networks are merged into a DILD network that is subsequently
used for suggesting potential drugs for repositioning to treat DILD.

In more detail, in the context of DILD, The Pneumotox database [34] is used to
extract the drugs that cause lung injury. Pharmacological targets are extracted from
STITCH and their gene expression profiles from the Connectivity Map, resulting
in a list of 200 lung-toxic drugs with known drug-target interactions and gene
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Figure 4.2: Identification of drug’s MoA. in terms of drug induced signaling network
alterations via the proposed ILP algorithm. First, A Prior Knowledge Network (PKN) is
constructed by merging prior knowledge of protein connectivity and transcription regula-
tion. Then, the proposed ILP algorithm is implemented to identify subsets of the PKN that
appear to be functional based on the data at hand. The resulting pathways start at the drug
targets, span across the signaling level, go through the layer of transcription factors and
terminate at the genomic level with the regulation of the differentially expressed genes.

expression profiles. Then, the Reactome Functional Interaction network [76] is used
to connect drug targets, transcription factors and gene expressions as illustrated
in Figure 4.1. Subsequently, the proposed ILP formulation identifies a functional
sub-graph of the Reactome network, connecting drug targets and genes that are
differentially expressed upon perturbation with the lung-toxic compounds.

In particular, the ILP constructs a signaling network per toxic compound. At
the end the drug-specific pathways are pooled together into a signal transduction
network that captures the molecular mechanisms underlying DILD (DILD net-
work). Finally, to demonstrate the biological relevance of the DILD network, it is
leveraged to identify potential drugs for repositioning that will reverse the disease
phenotype. To this end, all remaining drugs in cMAP that are not lung-toxic are
considered, and their targets are extracted from STITCH. If drug targets overlap
with the DILD network, then the drug specific pathways of these drugs are com-
puted using the ILP algorithm, and the drugs are ranked based on how much their
pathways disrupt the DILD network. Drugs that significantly disrupt the DILD
network are considered candidates for repositioning.

4.2.2 Lung-toxic Drugs
Lung toxic drugs were obtained from the Pneumotox database [34]. Pneumotox
includes 892 chemicals known to induce lung injury. To obtain a better perspective
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on the kind of drugs included in this list, chEMBL was used to extract their
nominal pharmacological effects. Table B.3 includes the most frequent nominal
pharmacological effects.

As a positive control observation, DNA inhibitors are at the top of the table.
This is expected since DNA inhibitors are often used as anti-neoplastic agents
and are inherently toxic. COX inhibitors are also at the top of the table. This
is in good accordance with the literature where it has been reported that a range
of COX inhibitors and other NSAIDs, frequently used as analgesics, may cause
respiratory problems [77]. Beta-1 adrenergic receptor antagonists are also suspected
of inducing respiratory distress, since Beta adrenergic receptors are found to be
desensitized in lung injury [78]. Finally, Tubulin inhibitors may contribute to lung
injury via inducing oxidative stress [79]. For the rest of the pharmacological effects
there is no clear mechanism that elucidates the etiology underlying lung disease,
and the adverse events are sporadic.

Next, the known targets of the toxic drugs were extracted from the STITCH
database. STITCH includes all known targets of drugs, both the nominal phar-
macological targets and other molecules they may interact with, based on direct
experimental data, the available literature, or computational predictions. The iden-
tified drug targets will be used to model the interaction of the interrogated drugs
with the cell’s signaling machinery, and they are the potential starting points of
the drug’s MoA. Of the 892 toxic chemicals, only the ones that have known targets
in STITCH and also known gene expression signatures in the Connectivity Map
will be processed further, thus resulting in a total of 200 compounds/ drugs. The
list is included in Supplementary Information of the original paper.

Finally, the gene expression signature of each drug was computed using the rank
matrix of Connectivity Map (cMAP) dataset. For each toxic drug in Pneumotox, the
top and bottom 1% of the genes were extracted from the rank matrix. All genes were
pooled together and the frequency with which they are over- and under- expressed
across all drugs was calculated. The 5% most frequently over- and under-expressed
genes were extracted as the most significantly over- and under-expressed genes
upon perturbation with the toxic compounds. The differentially expressed genes
were used here as a readout of the cellular response upon perturbation with the
interrogated drugs, and they are going to serve as the endpoints of the identified
drug modes of action.

The lists of over-expressed and under-expressed genes are included in the Sup-
plementary Information of the original paper. Subsequently, gene ontology (GO)
enrichment analysis was performed to identify biological processes enriched in dif-
ferentially expressed genes. Top results are included in the Appendix B.2 as well.
Over-expressed genes are enriched in pro-apoptotic processes. This is expected,
as a big part of the lung toxic compounds are chemotherapeutics or generally
anti-neoplastic agents and are expected to be toxic. The list also included terms
related to blood vessel development which is in good accordance with the literature,
where vascular development has been reported to take place in Acute Lung Injury
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(ALI) [80]. The VEGF gene in particular is over-expressed in 12% of the lung toxic
drugs. On the other hand, the GO terms corresponding to the under-expressed
genes are related to cell cycle, nuclear division, mitosis etc. These processes are
expected to be disrupted by toxic compounds, resulting in lung injury.

4.2.3 Identification of drug’s MoA
Here, the method described in Section 4.4.1 was employed to identify the mode
of action of the 200 lung-toxic drugs in the Pneumotox list, based on their gene
expression signatures from the Connectivity Map and prior knowledge of protein
connectivity, drug targets and transcription regulation. At the end, all drug specific
signaling networks were pooled together to obtain a signaling network that best
captures the molecular mechanisms underlying drug induced lung injury i.e. DILD
network.

Every drug’s MoA was identified in terms of a signaling network starting at the
drug targets, extracted from STITCH, spanning across the signaling level, going
through the layer of transcription factors and terminating at the gene expression
level with the regulation of the differentially expressed genes. The ILP algo-
rithm identified the minimum subset of the PKN, that achieves the desired targets
to gene expression connectivity. In this context, the drug targets correspond to
the interface of the drugs with the cell’s signaling machinery, and the differen-
tially expressed genes represent the cellular response upon perturbation with the
interrogated drugs. Thus, the identified signaling networks constitute Cue-Signal-
Response models [81], capturing cells response to the toxic drugs.

Case Study: Imatinib

A simple case study for Imatinib is presented, to best illustrate how the proposed
method identifies the drug MoA, in terms of a signaling network that originates
at the drug targets, spans across the proteomic level and terminates at the gene
expression level.

Imatinib is a tyrosine kinase inhibitor used in the treatment of multiple cancers,
and is also known to induce acute lung injury as one of its adverse effects. Its
nominal pharmacological targets are BCR-ABL, PDGFR and cKIT. Imatinib has
also been shown to interact with 296 proteins according to STITCH. Moreover, its
gene expression signature is included in the Connectivity Map.

The resulting network is shown in Figure 4.3. Only 22 out of the 296 known
targets were conserved in the solution. The method in an attempt to minimize the
size of the network, conserved only the nodes that are required to propagate the
signal from the drug targets to the differentially expressed genes. In this specific
case, the observed gene expressions can be explained using only the 22 targets,
thus the remaining drug targets were removed.

The transcription factors conserved in the Imatinib specific network were chosen
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Figure 4.3: Imatinib’s MoA. Nodes in green correspond to drug targets, nodes in yellow
correspond to transcription factors. The black rings around the nodes indicate that the
corresponding proteins are up-regulated and the red rings indicate that the corresponding
proteins are down-regulated. The differentially expressed genes upon perturbation with
Imatinib are not shown in the network for the sake of clarity, however, there are differen-
tially expressed genes downstream of all the transcription factors in the network and their
differential expression has the same sign as the regulation of the respective transcription
factor.

in a similar way. The method conserved only the transcription factors that were
required to propagate the signal to the differentially expressed genes. For example,
NFKB1 was conserved with a positive sign, represented with a black asterisk in
Figure 4.3, because downstream of NFKB1 there are 2 genes that are over-expressed
upon perturbation with Imatinib (CFLAR and PIK3CD). Since NFKB1 is not one
of the targets of Imatinib, the algorithm also conserved PIK3R1, which is known
to interact with Imatinib, to activate NFKB1 via the PIK3R1 → NFKB1 interaction.
Moreover, the NFKB1 → FOS interaction was conserved to activate FOS inducing
the expression of ETV5 and TNRC6B genes. NFKB1 also activates RARA. RARA
serves to express the NCOA2 gene that according to the connectivity Map is over-
expressed upon perturbation with Imatinib. FOS also interacts with MTOR and
from there activates RELA facilitating the expression of PPARA and MMP14 genes.



4.2. ANALYSIS 41

Even though the reaction FOS → MTOR is not necessary to activate MTOR, since
MTOR is one of Imatinib targets, this reaction was present in the PKN and its
presence cannot be disproved based on the experimental data. Moreover, the ILP
minimizes the number of included nodes, not the number of reactions, thus the
reaction FOS → MTOR was conserved in the solution.

Similar logic applies to the down-regulated nodes in the Imatinib specific net-
work. For example the transcription factor MYC was conserved with a negative
sign, shown with red asterisk in Figure 4.3, because 12 genes downstream of MYC
are under-expressed upon perturbation with Imatinib. MYC is not one of Imatinib
targets, thus signal has to originate from another target upstream of MYC, such
as MAPK14 (P38 protein). Down-regulation of MAPK14 also leads to the down-
regulation of STAT3, CREB1, MEF2A and JUN, all of which are transcription
factors and have downstream genes that are down-regulated upon perturbation
with Imatinib. There are some interactions that appear to be redundant, for exam-
ple the downregulation of MAPK14 from JAK1 and RAF1, however, because both
proteins are down-regulated directly from Imatinib and there is an interaction
between them in the PKN, the ILP cannot disprove the presence of that reaction,
it was thus conserved in the solution. The rest of the nodes and interactions are
justified in a similar way.

4.2.4 Construction of the DILD network

All the drug specific signaling networks were pooled together to obtain a signaling
network that best captures the molecular mechanisms underlying drug induced
lung injury i.e. DILD network. The network is shown in Figure 4.4. It includes a
total of 2197 nodes and 6480 reactions. In the same Figure, an analytic showing
the significance of the included nodes is plotted. The nodes of the network cor-
respond to different coordinates on the x-axis and the y-axis corresponds to the
number of drug specific pathways where each node is either up- or down-regulated.
Consistently up-regulated nodes at the proteomic level are placed on the left of
the figure, while down-regulated nodes are placed on the right.

Even though there is significant drug to drug variability in the signaling path-
ways, there are nodes that are consistently up- or down-regulated, and the sig-
naling processes related to these nodes may play a key role in drug induced lung
injury. The network modules consisting of the strongly up- and down-regulated
nodes, defined as nodes present in 5 or more of the drug specific pathways, were
extracted from the DILD network and plotted separately in Figures 4.5 and 4.6
respectively.

As shown in the consistently up-regulated network module of Figure 4.5, a
number of proteins related to DNA damage, apoptotic signaling, stress response
and inflammation are present. For example TP53, CASP3, BCL2, BAX, CASP6,
BCL2L1, CASP8, CASP9, BID, PARP1, CFLAR, GADD45A, FASLG, DDIT3,
NFKB1, ATF2, ATF4, TNFRSF10A, TNFRSF10B, TNFAIP3, RIPK2, HSPD1, HSP90AA1,
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Figure 4.4: DILD network and analytics. (A). DILD network. It includes a total of
2,197 nodes and 6,480 reactions. Yellow nodes represent differentially expressed genes and
grey nodes represent signaling proteins including drug targets and transcription factors.
The size of the nodes corresponds to the number of solutions where this node is active.
Thus, most significant nodes are plotted bigger. (B). An analytic showing the significance
of the included nodes. The nodes of the network correspond to different coordinates of
the x-axis and the y-axis corresponds to the number of drug specific pathways where each
node is either up- or down-regulated. Consistently up-regulated nodes are placed on the
left of the figure, while down-regulated nodes are placed on the right. There are nodes
that are consistently up- or down-regulated, and the signaling processes related to these
nodes may play a key role in drug induced lung injury.

HSF1, HSPA6, IFNG, HIF1A and PTEN. Moreover, proteins with a broad role in
signaling including JUN, CREB and FOS are present. The above findings are ex-
pected and are in good accordance with the Gene Ontology enrichment analysis
applied on the differentially expressed genes, as discussed in Section 4.2.2, where
the list of over-expressed genes was highly enriched in biological processes related
to cell death and apoptosis (see Table B.1).

The proposed algorithm leveraged the differential gene expressions and prior
knowledge of protein connectivity and transcription regulation and identified the
signaling networks underlying the observed gene expression signatures. Since
the gene expression data revealed a strong correlation with biological processes
related to cell death and apoptosis, the signaling networks that yield this response
are DNA damage and apoptotic signaling networks as shown in Figure 4.5. Pro-
apoptotic and response to DNA damage pathways are also known to be implicated
in various forms of lung injury [82]. The agreement of the signaling networks of
Figure 4.5 with the biological processes related to the differentially expressed genes
(Table B.1), also validates that the breaching of the signaling and gene expression



4.2. ANALYSIS 43

Figure 4.5: Consistently up-regulated module of the DILD network. Including only
the nodes that are up-regulated in five or more of the drug specific signaling networks.
Transcription factors are plotted in yellow. Differentially expressed genes have been omitted
from the figures for the sake of clarity. The size of the nodes corresponds to the number
of drug-specific pathways where the respective node is up-regulated.

levels via the layer of transcription factors is accurate. Apart from the DNA
damage and apoptosis pathways, proteins related to calcium signaling are present,
such as FASLG, FOS, IL4 and JUN, which is in agreement with the literature
where hypercalcemic activity has been observed in lung injury [83].

Since the ILP algorithm is agnostic to the biological function of the included
proteins, and only uses the experimental data to identify subsets of the PKN that
are functional in the specific biological context, it is expected that under-reported
proteins appear. These may constitute novel findings, or they may be an artifact
of the PKN structure, or the prior knowledge of transcription regulation. For
example, EP300 is a transcription factor and it facilitates the expression of 108
differentially expressed genes in the DILD network. Moreover, it takes part in
signaling and interacts with 170 proteins in the DILD network, thus, it appears
to have a central role. The 108 differentially expressed genes connected to EP300
may also be expressed by another TF that is not included in the PKN, thus the
ILP is forced to use the EP300 protein to fit these gene expressions, even though
this is not the true mechanism.

These advantages and pitfalls exist in all unbiased approaches. In this context,
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EP300 is known to play a role in the WNT/β-catenin pathway which is found
to induce IL1B expression and be implicated in Interstitial Pulmonary Fibrosis,
one of the lung injury phenotypes [84]. Moreover, a GO enrichment analysis on
the target genes of EP300 found over-representation of programmed cell death
and other apoptotic processes. In particular 42 genes related to apoptosis are
expressed by EP300, which implies its potential role in pro-apoptotic response and
consequently drug induced lung injury.

In Figure 4.6, the network module of the consistently down-regulated proteins
is shown. A number of proteins related to pro-growth and pro-survival path-
ways are present, such as MYC, E2F1, E2F6, CDK1, RAF1, SRF, RPS6A3, and
MAPK7. This is in good accordance with the Gene Ontology enrichment analysis
performed on the differentially expressed genes, discussed above, where the list
of under-expressed genes was highly enriched in biosynthetic and metabolic pro-
cesses, and also processes affecting the cell cycle. Here, the signaling networks
underlying these biological processes are shown, as these were computed by the
ILP algorithm based on the gene expression data. The under-expression of pro-
growth, pro-survival and cell cycle pathways in lung injury has also been reported
in literature [85].

Apart from the major pro-growth pathways, TOP2A (DNA topoisomerase 2A)
is also consistently down-regulated. This is expected as a large number of the lung
toxic drugs are DNA inhibitors and target TOP2A. Finally, a number of proteins
related to female hormone signaling are present in the network (ESR1, ESR2).
This is in good accordance with the literature where estradiol and other estrogen
receptor agonists are found to ameliorate the symptoms and protect against lung
injury [86].

A number of unrelated proteins are also present in Figure 4.6, such as MEF2A
and GABPA. MEF2A mediates cellular functions mostly in the skeletal and cardiac
muscle development. However, it is also found to play a diverse role in controlling
cell growth survival and apoptosis via the MAPK14 (P38) signaling network. In
good accordance with the literature, in Figure 4.6, MEF2A is activated by MAPK14.
Moreover, MEF2A facilitates the expression of 28 genes, and also participates in
signaling by interacting with 19 other proteins. GABPA is also found to play a
significant role in the DILD network, expressing 40 genes and interacting with 8
proteins.

4.2.5 Drug Candidates for DILD

This section demonstrates the predictive power of the proposed method and the
biological relevance of its predictions, by leveraging the DILD network to identify
potential drugs for repositioning to treat DILD, using the 1109 non-toxic drug of
the Connectivity Map.

First, the targets and gene expression profiles of the non-toxic drugs were ex-
tracted from STICH and cMAP respectively. Then, drug specific signaling networks
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were computed for all drugs whose targets overlap with the DILD network. Fi-
nally, the drugs were ranked according to how much their pathways disrupt the
DILD network. A drug was considered to disrupt the DILD network if its sig-
naling network up-regulates proteins that are down-regulated in the network or
down-regulates proteins that are up-regulated in the network. The top 40, most
highly ranked drugs are listed in the Appendix B.1 together with their indication
and relevant information supporting their usability for treating DILD. The drugs
at the top of the list are in good accordance with our previous reports and have
also been shown to ameliorate the symptoms of lung injury.

For example, ciclosporin is an immunosuppressant drug widely used in or-
gan transplantation. It reduces the activity of the immune system by interfering
with the activity of T cells. It is also effective in rheumatoid arthritis and severe
psoriasis, both of them are auto-immune disorders with a strong inflammatory
component. Moreover, it has been shown to be an effective treatment for in-
terstitial lung disease of unknown etiology [87]. Its signaling pathway is shown
in Figure 4.7. There were proteins strongly up-regulated in the DILD network,
and implicated in apoptotic and inflammatory processes, that are down-regulated
by ciclosporin and vice versa. For example, the proteins TP53, TRIM28, RELA,
HIF1A, FOS and JUN that were consistently up-regulated upon perturbation with
the lung toxic drugs, they are down-regulated upon perturbation with ciclosporin.
Moreover, the proteins RPS6KA3 and SRF, related to cell cycle and consistently
down-regulated upon perturbation with the toxic compounds, are up-regulated
upon perturbation with ciclosporin. In total, ciclosporin up-regulated 13 proteins
that were down-regulated in the DILD network: CCNB2, ESR2, NFE2L2, NFYA,
RAD21, RB1, REL, RPS6KA3, SRF, TAF1, TFDP1, YBX1, YY1, and down-regulated
20 proteins that were up-regulated in the DILD network: AURKA, BHLHE40,
BUB1B, CCNA2, CCNG2, CTBP2, FOS, HBP1, HIF1A, JUN, POLR2E, RAD50,
RELA, RUNX1, SMC3, STAT1, TCF12, TP53, TP53BP1, and TRIM28, indicating a
potential disease modifying action.

Apart from ciclosporin, the flavonols quercetin and genistein, ranked third and
sixth in the list, have strong anti-inflammatory action and have been shown to be
beneficial in pulmonary disease. The protective effect of flavonoids in lung injury
has been reported previously [88]. Resveratrol (ranked 4th) is another plant extract
that has been shown to alleviate COPD injury in rats [89]. Tretinoin, ranked second
in the list, is another immunosuppressant, and has been shown to ameliorate the
symptoms of oxygen induced lung injury in the newborn rat [90]. However, it has
also been reported in FactMed to have caused traumatic lung injury in at least
one patient out of 957 reports of any other side effects of tretinoin. Of the 933
physicians that expressed their opinion on the report, 295 were highly suspicious
of tretinoin as the cause of the incident.

Apart from the immunosuppressants and other anti-inflammatory drugs in the
list, the estrogen diethylstilbestrol is also present (ranked 7th). Even though di-
ethylstilbestrol has not been shown to treat DILD, it is expected to upregulate ESR1

http://factmed.com/index.html
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and ESR2, that according to our predictions are consistently down-regulated in
DILD (see Figure 4.6). Moreover, estradiol and other estrogen receptor agonists
are found to ameliorate the symptoms and protect against lung injury [91], im-
plying diethylstilbestrol could be a novel finding of this analysis [92]. In similar
fashion, dinoprostone (prostaglandin E2), ranked 16th in the list, has been found
to significantly disrupt the DILD network, which is in good accordance with our
previous analysis where we identified that Prostaglandin-endoperoxide synthase 2
(also known as COX-2) is consistently down-regulated in lung injury. In addition,
dinoprostone has been found to protect against lung fibrosis [93], [94]. Similar
observations can be made for other drugs in the list.

4.2.6 Validations
For this section, an independent statistical method is applied to validate the DILD
network. To this end, the GUIDE algorithm is used [95], [96]. GUIDE is an
algorithm that builds a classification and regression tree model to predict the
values of one or more response variables (Y1, Y2, . . . ) from the values of the pre-
dictor variables (X1, X2, . . . ). It can also produce an importance score for each Xi.
Classification and regression trees were also shown to predict oral absorption in
humans based on predictors of chemical substructures [97].

The drug targets from STITCH were used as predictor variables (Xi) and the
differential gene expressions for each drug were used as response variables (Yi).
GUIDE was used to construct regression trees, modeling how drug targets corre-
late statistically with the differential gene expressions. Since GUIDE is agnostic
to the protein connectivity in the PKN, it cannot construct functional mechanistic
pathways, but can produce scores for the drug targets that represent their impor-
tance in predicting the observed gene expression signatures. Drug targets with
importance score greater than 1 are considered significant and their overlap with
the nodes in the DILD network is computed using the hypergeometric CDF.

Of the 78 drug targets identified by the GUIDE algorithm to be important for
predicting differential gene expression, that are also present in the PKN, 71 of
them have been conserved by the ILP algorithm in the DILD network. The DILD
network includes 1150 signaling nodes, out of 2585 signaling nodes originally
included in the PKN. Thus, the p-value of the enrichment of the DILD network in
the drug targets identified by GUIDE, as calculated using the hypergeometric CDF
to be 1.2466 × 10−19. The significant overlap between the proposed method and
GUIDE predictions, further establishes the statistical significance of the method
results.

4.3 Conclusions
In this work, an approach is presented based on an ILP formulation that combines
available gene expression data with prior knowledge of protein connectivity and
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transcription regulation, in the form of a prior knowledge network, to identify
subsets of the network that appear to be functional based on the data.

As a case study the identification of the MoA of drugs that are known to induce
lung injury is addressed, and a signaling network is constructed spanning across
both the signaling and gene expression levels, through a layer of transcription fac-
tors, that elucidates the signaling mechanisms underlying drug induced lung injury
(DILD). Manual inspection of the DILD network revealed that pathways related
to DNA damage, inflammation and apoptosis are consistently up-regulated, while
pathways related to cell cycle are down-regulated. This is in good accordance with
the GO enrichment analysis performed on the differentially expressed genes upon
perturbation with the toxic compounds, that uncovered biological processes related
to cell death highly enriched in the over-expressed genes, and processes related to
cell cycle highly enriched in the under-expressed genes. This indicates the success-
ful breach of the signaling and genomic levels through the layer of transcription
factors. Pathways related to DNA damage, inflammation and apoptosis have also
been reported in the literature to be implicated in lung injury [82], while pathways
related to cell cycle have been reported to be under-expressed [85].

Moreover, an independent classification and regression trees (CART) analysis
was performed using the GUIDE algorithm, that identified the most important
drug targets for predicting the observed gene expressions. The CART predictions
significantly overlapped with the ILP predictions, thus supporting the relevance of
the drug specific signaling networks.

Finally, to demonstrate its usability, the DILD network produced was leveraged
to identify suitable drugs for repositioning to treat lung injury. To this end, drugs
whose targets overlap with the DILD network were considered, and their signaling
networks were constructed via the same method. The drugs were ranked according
to how much their pathways disrupt the DILD network, indicating a potential
disease modifying action. Most drugs at the top of the list are good candidates
for treating DILD. They have strong anti-inflammatory action and many of them
have also been shown to ameliorate the symptoms and/or protect against lung
injury. Nevertheless, before claiming that the candidate drugs treat DILD, follow
up experiments should be performed to better characterize their action.

A key feature of our proposed method for reconstructing signaling networks
based on gene expression data, and fundamental for its predictive power, is working
with directed, signed signaling reactions, rather than undirected, unsigned PPIs
and the ability of our ILP algorithm to efficiently handle this information. When
working with PPI networks, the lack of directionality and sign of the interactions
makes it difficult to interpret the results. In most cases connectivity metrics are
employed such as node centrality, betweenness, communicability, etc. to evaluate
the significance of every node in the network. However, these metrics fail to
capture the mechanistic component of the signal flow.
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4.4 Methods

4.4.1 ILP formulation
The ILP formulation used for this study is similar in nature to the reverse causal
reasoning formulation described in Section 2.2.2. Slight adjustments were made
in order to facilitate the fitting process due to the size of the PKN and the number
of networks fitted. In particular, all the y variables, modeling the inclusion of arcs
in the final network, were set to 1 and the optimization was carried over only over
the power-set of the nodes.

Hard sparsity constraints were imposed on the p variables, modeling the can-
didates for roots of the drug networks, to include only known or suspected drug
targets from STITCH. Moreover, soft sparsity constraints were imposed on all
nodes as weights. The trade-off between accuracy and sparsity was set to 5:1, i.e.
removing 5 nodes was valued equally to allowing 1 mismatch.

Finally, because there were not multiple experiments per network (one-shot
learning) the distinction between activation (x) and inclusion (v) in the network
did not make sense so the 2 variables were merged.

4.4.2 Construction of Prior Knowledge Network
The Prior Knowledge Network (PKN) is used to represent prior knowledge of
protein connectivity and transcription regulation and serves as a scaffold for the
ILP algorithm presented above. It was constructed by merging the Functional
Interaction Network (FIN) by Reactome [76] and information on transcription
regulation in the form of set of transcription factor regulons, i.e. sets of targeted
genes, assembled from public available resources, such as ChEA [31], Transfac [32],
and Jaspar [33].

Before using the FIN other networks were considered including the Human
Signaling Network [98], Signalink [99], and the network by [25]. The FIN was
chosen because it offered the best coverage of the transcription factors for which
there is an available regulon, while being the sparsest of all, facilitating the perfor-
mance of the ILP algorithm. The FIN consists of 209988 functional interactions
between 10956 proteins. The regulons implement 16043 interactions between 153
transcription factors and 12376 target genes.

Before merging, undirected and unsigned interactions were removed, as well as
interactions that were predicted computationally without experimental validation.
Interactions between proteins that appear not to be expressed, or take part in the
signaling processes, in the lung tissue were also removed. The final PKN included
only nodes that appear in the lung-specific network published by Guan et al. [100]
The resulting PKN spans across the proteomic and genomic levels going through
a layer of transcription factors and includes a total of 64801 reactions between
2585 signaling proteins and 12376 genes.
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Figure 4.6: Consistently down-regulated module of DILD network. Module of the
DILD network including only the nodes that are down-regulated in five or more of the
drug specific signaling networks. Transcription factors are plotted in yellow. Differentially
expressed genes have been omitted from the figures for the sake of clarity. The size of the
nodes corresponds to the number of drug-specific pathways where the respective node is
down-regulated.
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Figure 4.7: Ciclosporin MoA. Nodes in green correspond to drug targets, nodes in yel-
low correspond to transcription factors. The black rings around the nodes indicate that the
corresponding proteins are up-regulated and the red rings indicate that the correspond-
ing proteins are down-regulated. The differentially expressed genes upon perturbation
with ciclosporin are not shown in the network for the sake of clarity, however, there are
differentially expressed genes downstream of all the transcription factors in the network
and their differential expression has the same sign as the regulation of the respective
transcription factor.



Chapter 5

Anthrax Infection

This chapter presents the work published in [101]. The chapter follows the original
work closely, with slight changes to ensure a uniform style for this thesis.

This was a follow up study of the work presented in Chapter 4. The same
method was used to identify the mode of action of pulmonary lung infection, and
non lung-toxic drugs were screened and prioritized as candidates for reposition-
ing, with an approach similar to the one described in Section 4.2.5. The results
were validated with a literature review. The author was supported by an ORISE
fellowship for this work.

5.1 Introduction
The potential use of B. anthracis (Gram positive) as a weapon of bioterrorism,
combined with recent outbreaks and isolated cases of anthrax infection in the
US [102], [103] and Europe [104], has focused the developed world’s attention on
this lethal bacterium. Notably, the mortality rate during invasive anthrax infection
and the development of shock has been exceptionally high when compared to more
commonly encountered bacteria [105], [106].

Production of lethal toxin (LT) and edema toxin (ET) is closely associated with
the pathogenesis of B. anthracis infection [107] and the development of shock [108].
LT and ET are both binary type toxins consisting of protective antigen (the compo-
nent necessary for host cell uptake of each toxin’s toxic moiety through a membrane
anthrax toxin receptor identified in human cells [109]) and lethal factor (LF) for
LT and edema factor (EF) for ET [108]. Lethal factor is a metalloproteinase [110]
which cleaves and inactivates mitogen-activated protein kinase kinases (MAPKK,
including MAPKK’s 1, 2, 3, 4, 6 and 7) [111], [112] and also activates host cell
inflammasome formation [112], [113]. Edema factor has calmodulin dependent
adenyl-cyclase activity and increases intracellular cAMP concentrations to high
levels [114].

Increasing evidence suggests that both LT and ET target and disrupt the func-
tion both of mononuclear and macrophage (mononuclear) cells participating in the
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host innate and adaptive immune responses and of endothelial cells maintaining
vascular integrity and function. While disruption of macrophages by LT and ET
is believed to play an important role in propagating early B. anthracis infection,
disruption of endothelial cell function likely contributes to the highly resistant
shock which can develop in some patients with anthrax.

In particular, for LT evidence suggest that:

• impairs adaptive immunity in dendritic cells [115]

• impairs innate and adaptive immunity, as well as vascular barrier integrity
by inhibiting the MAPK pathway [116]

• induces a concentration and time depedent increase in vascular permeabil-
ity [117]

• activates the host’s innate immune responses in alveolar macrophages [118]

• damages endothelial barrier and vascular integrity by decreasing the activity
of p38 and MK2 and reduced phosphorylation of HSP27 [119]

• causes apoptosis and reduces production of inflammatory cytokines in PBMCs [120]

and for ET:

• induces cAMP accumulation and damages antimicrobial activity in human
monocytes [121]

• impairs the immune response in cooperation with LT [122]

• inhibits T-cell activation in mice [123]

• inhibits endothelial cell chemotaxis via Epac [124]

• suppresses human macrophage phagocytosis by deregulating cAMP-dependent
kinase pathways [125]

• induces trans-endothelial cell macro-aperture (TEM) tunnels by affecting
cAMP signaling [126]

Identifying effective agents that are capable of blocking the pathogenic effects
of LT and ET on mononuclear and endothelial cell function and could be ap-
plied clinically, would improve the management of this highly lethal infection. To
achieve this goal, the present study was designed to utilize reported data regard-
ing the known effects of LT and ET on intracellular molecular targets in either
mononuclear or endothelial cells, as well as the mechanisms of action of drugs to
identify the already approved drugs that might serve as therapies for anthrax.

The approach of Chapter 4 was employed to computationally construct the
mode of action (signaling network) for each anthrax toxin and for each drug by
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utilizing its molecular targets and differentially expressed genes, as well as the prior
knowledge of protein interactions. We mined published studies and GEO [36] for
the gene expression data generated from human macrophages or peripheral blood
mononuclear cells (PBMCs) following exposure to B. anthracis spores or to lethal
toxin or edema toxin. For drugs, we used the differentially expressed genes from
Connectivity Map [35]. We then computationally identified and scored the drugs
for their ability to reverse the actions of anthrax lethal and edema toxins. To
validate our results, we searched the literature for evidences to determine whether
the top 10 and bottom 10 drugs among the 474 drugs/compounds computationally
ranked were supported by literature reports, see Figure 5.1 for workflow.

Figure 5.1: Drug reposition for Anthrax infection workflow. First, construction
of anthrax networks and individual drug networks. Second, computationally scoring in-
dividual drugs by computing the distance between anthrax networks and individual drug
networks. Third validation of computed scores and rankings by referencing the literature.
Gene expression data from GEO were used, prior knowledge network of protein interac-
tion and molecular targets of anthrax toxins in host cells for anthrax networks. Individual
drugs’ networks were constructed with gene expression data from Connectivity Map, prior
knowledge network of proteins and their respective targets from STITCH
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5.2 Analysis

5.2.1 Anthrax Functional Network
To construct the signaling network describing anthrax toxicity, the method de-
scribed in Section 4.4.1 was employed, where genes that were differentially ex-
pressed upon stimulation with anthrax toxins were combined with the PKN from
Chapter 4 and molecular targets of anthrax toxins. The “core” of the resulting
network is shown if Figure 5.2.

Figure 5.2: The anthrax network of lethal toxin and edema toxin constructed to reflect
the modes of action of anthrax in human macrophages upon exposure to anthrax spores.
For spatial convenience, the network doesn’t include the genes that were used to fit it.

To identify differentially expressed genes, 6 GEO studies were collected, in
which human cells were treated with anthrax of any form. These were:

1. GSE14390: Alveolar macrophages treated with anthrax spores
2. GSE34407: Peripheral monocytes treated with lethal toxin
3. GSE12131: Umbilical vein endothelial cells treated with lethal toxin
4. GSE17777: Microvascular endothelial cells treated with edema toxin
5. GSE4478: Peripheral monocytes treated with lethal toxin
6. GSE12533: Peripheral monocytes treated with protective antigen

The datasets used were by Dozmorov et al. [127], where HAM cell where treated
with B. anthracis spore, and by Chauncey et al. [128] where PBMCs were treated
directly with lethal toxin. The genes reported as differentially expressed by the
authors were used directly (no meta-analysis) and all other included in the studies
but not reported were considered to be at the basal state.
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The HAM dataset consisted of 280 significantly perturbed genes in total, 205
up and 75 down regulated, while for the PBMC dataset consisted of 407, 309 up
and 98 down regulated. The data are shown in the Supplementary Material of the
published version. Genes that were not present in the PKN or were not reachable
by any known target of anthrax toxins were eventually filtered out. The final lists
for the two datasets consisted of 132 genes for the HAM dataset, 101 up and 31
down, and 320 genes for PBMC, 45 up and 275 down.

Anthrax targets were selected based on the studies cited in Section 5.1. For the
HAM cells treated with anthrax spores, the targets of both LT and ET were included
while for the PBMCs only those of ET. As mentioned above, LT is shown to cleave
MAP2Ks, but it also targets NLRP1. NOD-like receptor (NLRP1) was reportedly
targeted and cleaved by LT, consequently activating inflammasome in rodents [129].
Though the role of NLRP1 in activating the inflammasome in human cells is not
clearly defined [130], NLRP1 was included because NLRP1 inflammasome activity
is involved in human diseases [131]. ET’s “nominal” target is cMAP which is not
included in the PKN. However, cMAP regulates protein kinase A (PKA) [108] and
Epac (a Rap1 guanine-nucleotide-exchange factor [132]), so these were used instead
as targets.

5.2.2 Repurposing Candidates
This study focuses on the human alveolar macrophage (HAM) dataset because
B. anthracis disables the host’s immune defense system and is most deadly if
inhaled. For the reference and comparison, the combined Peripheral Blood Mono-
cytes (PBMC) datasets were analysed as well.

To identify drug candidates for repurposing, the drug networks developed for
DILD in Chapter 4 were used. The development process is described in Sec-
tion 4.2.2. Out of the 652 drug networks only 474 had some overlap with the
anthrax network. Each drug’s network activity, i.e. the state of its nodes, was
compared to that of the anthrax activity. Drugs were ranked according to their
similarity with the “reverse” anthrax activity. Reverse activity denotes the activity
vector multiplied by −1. The squared Euclidean distance was used as a compar-
ison metric, in order to penalize synergies, i.e. nodes with the same sign in both
anthrax and drug networks. The top and bottom 10 drugs are shown in Tables 5.1
and 5.2 respectively.

5.3 Validation
The anthrax network of the HAM cells was compared with the DILD network up
and down regulated modules (Figures 4.5 and 4.6) for overlap. Both activities take
place in the lung and also cells of the immune system are engaged in activities
across all organs. The overlap of the 2 was highly significant, the p-value of the

http://dx.doi.org/10.3390/toxins9030099


56 CHAPTER 5. ANTHRAX INFECTION

hypergeometric test was 1.51× 10−11. This piece of evidence, further supports the
premise that drugs suitable to treat DILD can be used for anthrax infection as
well.

The ranking of the drugs was validated with a literature review. In particular,
literature reports were mined and referenced for the drugs/compounds that have
been shown to have in-vitro effectiveness against anthrax or for relevant biological
activities to evaluate our computational rankings of the top 10 and bottom 10 drugs.
The main resource used is a report by Sanchez et al [140] in which a large number
of known drugs were shown to render anthrax antitoxic protection of cells.

A list of drugs/compounds was compiled that has been reported to possess in-
vitro potency against LT or ET-induced toxicity or increased animal survival. The
drugs included

• Bepridil, a calcium channel blocker, and isotretinoin, sb-203580, propafenone,
h-89, and sb-202190 [140]

• Chloroquine [155]
• Niclosamide [156]
• other calcium channel blockers like Verapamil and Nitrendipine [144]
• Simvastatin and Fluvastatin [133]
• MG-132 [157]
• antibiotics [158]–[160] like

– Doxycycline
– Ciprofloxacin
– Chloramphenicol
– Ampicillin
– Penicillin
– Clindamycin
– Imipenem
– Vancomycin
– Clarithromycin
– Rifampcin
– Neomycin

Several other calcium channel blockers that were reported to protect cells from
lethal toxin [140] were not on the list of 474 drugs/compounds that were ranked
owing to lack of gene expression data.

Sanchez et al[140] showed a potency rank order of

1. Bepridil
2. Nicardipine
3. SB-203580, SB-202190
4. Isotretinoin, Propafenone, Retinoic acid, Tretinoin, H-89

Bepridil, SB-203580, SB-202190, Isotretinoin, Propafenone, and H-89 were among
the 474 drugs/compounds considered, with all of them ranked top 100 except h-89
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and sb-202190 that were ranked outside the top 100 drugs. In the proposed ranking
their order is:

1. Bepridil
2. Isotretinoin
3. sb-203580
4. Propafenone
5. h-89
6. sb-202190.

Most interestingly, Bepridil is ranked 8th and simvastatin 4th out of the 474
drugs/compounds, their top rankings were in agreement with the reports that both
drugs were potent in increasing cell survival following exposure to LT [133], [140].

In Table 5.1, next to the top 10 candidate drugs a possible mode of action for
alleviating the effects of anthrax infection is listed as mined by the literature.

On the other hand, the modes of action of the bottom 10 drugs listed in
Table 5.2 include activities similar to those of anthrax toxins, including reduction
of MAPK activities or increase of intracellular level of cAMP. Notable exceptions
are Monastrol, Ebselen and Genistei. Monastrol arrested cells in mitosis [147]
which is unlikely to provide protection for cells under attack by anthrax toxins. It
is not clear why Ebselen and Genistein were placed in the bottom 10. In could be
due to an error of the approach or another unknown mechanism.

5.4 Discussion
Among the top 10 drugs (Table 5.1, Bepridil and Simvastatin have been reported to
significantly increase in-vitro cell viability; the other 8 drugs had relevant biological
evidence suggestive of their protective actions against anthrax toxin toxicities. On
the other hand, 7 out of the bottom 10 drugs do not have the ability to increase
cell survival upon exposure to anthrax toxins, for details see Table 5.2.

Both LT and ET damage endothelium integrity and cardiovascular function
leading to fatal shock and tissue injury [161], [162]. Fenofibrate, the top drug
candidate, is a cholesterol-modifying drug and activates PPARα receptors, and
could presumably protect the vascular system from anthrax LT and ET toxicities
since PPARα receptors play a key role in endothelial function [163], [164]. Most
significantly, PPARα and γ ligands activate MAPKs [165]. Fenofibrate’s ranking
indicates that the computational approach revealed its direct effect at counteracting
the toxic actions of LT and ET at their molecular targets.

Simvastatin is reportedly a bactericidal, though at a concentration much higher
than its therapeutic range observed in humans when used for lowering choles-
terol [166]. Several statins increased macrophage viability upon exposure to LT
through inhibiting Rho GTPase and activating MAPK signaling pathways [133].
Although simvastatin was ranked in the top 10, rankings of other statins beyond
300 by our approach require further investigations.
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Ca2+ is required for the toxicity of lethal toxin [144], and calcium channel
blockers including Verapamil and Nitrendipine at 100 µM and Bepridil at a con-
centration between 0.125 and 12.5 µM increased cell survival when exposed to LT.
Bepridil was reported to be more potent than Verapamil and Nitrendipine which
is in agreement with the suggested ranking. Mephenytoin, an active analogue of
Phenytoin that inhibited Ca2+ transport into the cells was also ranked high (6th).
Finally, Ifosfamide, an antineoplastic agent, caused increased renal excretion of
Ca2+ [146], which could lead to depletion of Ca2+.

Cotinine was ranked among the top 10; such ranking seemed to be consis-
tent with the reports that nicotine and its active metabolite, cotinine, activated
the mitogen-activated protein kinase pathway [137], [138], an action opposite to
that of LT [111], [167]. Cotinine reportedly increased intracellular Ca2+ concentra-
tion [168], which would contradict what has been observed for calcium blockers
mentioned above, and could not have benefited its anti-anthrax toxin activities.
However, it activation of MAPK pathway is right at the molecular targets of LT.
Ranking Cotinine in the top 10 implied that immediate activation of MAPKs was
important, which is consistent with the basis of our computational scoring of a
drug/compound’s anti-anthrax toxin ability.

Sotalol decreased cAMP, which is contrary to the toxic action of ET. Beta block-
ers including Betaxolol, Bisoprolol, Carvedilol, Metoprolol, Nadolol, Propranolol,
Sotalol, and Timolol decreased cAMP accumulation [145]. Among these drugs,
Sotalol, Metoprolol and Propranolol were among the 474 drugs/compounds ranked
in this study. Sotalol was reported as a more potent reducer of the rate of cAMP
accumulation than Metoprolol and Propranolol which were equal [145]. Since ET
increased cAMP, the effects of these beta blockers on reducing cAMP accumulation
could be beneficial to cell survival. Interestingly, in the proposed ranking Sotalol
is 9th, Metoprolol 13th and Propranolol 109th. Further studies would be needed to
understand whether they have other mechanisms that can be beneficial.

Dihydroergotamine is a 5-HT 1B/1D agonist [135]; stimulation of 5-HT 1B/1D
receptors activated MAPK and reduced cAMP level [136], shedding light on a
possible mechanism of dihydroergotamine in antagonizing anthrax toxins. Our
ranking of Meloquine in the top 10 could be linked to the fact that it is an analogue
of chloroquine and chloroquine reportedly protected cells from LT toxicity [155].
Amantadine reportedly cancelled activation of p38/MAPK [139]. Since p38/MAP
kinase inhibitors, like SB-203580 and SB-202190, protected cells from LT-mediated
cytotoxicity [140]; such action of Amantadine can render protective effects like
p38/MAP kinase inhibitors.

On the opposite side, out of the 474 drugs/compounds, the bottom 10 compounds
included Monastrol, Colforsin, Berberine, Withaferin-a, Arecoline, Ebselen, and
Genisten.

As highlighted in Table 5.2, Berberine and Apigenin inhibited MAPK, thereby
enhancing LT toxicity. Withaferin-a, Arecoline, and Beclomethasone also have
the capability. Withaferin-a, Arecoline, and Beclometasone reportedly activated
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p38 MAPK, an action that is opposite to that of p38 MAPK inhibitors shown to
increase cell survival upon exposure to LT [140].

Colforsin reportedly increased intracellular cAMP [148], an action similar to
that of ET. Monastrol arrested mitosis [147], likely causing harm to the cells rather
than increasing their survival. As for Enilconazole, it is not clear how our com-
putation ranked it in the bottom 10.

Ebselen activated MAPK p44/42 [152] and so did Genisten [153]. Since MAPK
p44/42 are downstream of the MAPK pathway; such a downstream activation
might not offer any protection resulting in these two compounds being ranked in
the bottom 10.

Ciprofloxacin is an antibiotic that has been approved for treating Anthrax dis-
ease. The antibiotics in the top 100 drugs included Amoxicillin, Spectinomycin,
Ciprofloxacin, Alvespimycin, Amphotericin-b, Doxycycline, Troleandomycin, Ben-
zylpenicillin, and Roxithromycin. Since the presented approach is designed to
utilize the modes of action of drugs/compounds at the molecular level for their
anthrax antitoxicity activities, the rankings of these antibiotics are indicative of
molecular-level interactions between these antibiotics with anthrax activity net-
works in addition to their bactericidal effects on B. anthracis.

Considering the number of drugs reported by Sanchez et al [140] in the top
100 ranked drugs, the technical merit of our computational approach is worthy
of further research. That been said, the computation also took into consideration
the effect of ET while Sanchez only focused on LT, which could be the reason for
their differences. Regardless of design differences, the extent of agreement of the
computed results and the literature is encouraging. Most importantly, the top 10
drugs are worthy of study for their clinical utility in treating anthrax disease, and
could be used with antibiotics for the best clinical treatment outcomes if proven
therapeutically beneficial.
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Table 5.1: Top 10 drug candidates sorted by their squared Euclidean distance to the
reverse anthrax activity

Drug Biological Evidences

Fenofibrate Cross talks between mevalonate pathway and
PPARα; inhibition of LT cytotoxicity by statins me-
diated via inhibiting Rho GTPase and activating
PPARα [133], [134]

Dihydroergotamine 5-HT 1B/1D agonist Stimulation of 5-HT 1B/1D recep-
tors activated MAPK and reduced cAMP level [135],
[136]

Cotinine Activated mitogen-activated protein kinases [137],
[138]

Simvastatin Statins inhibited LT cytotoxicity by inactivating Rho
GTPase [133]

Amantadine Cancelled activation of p38MAPK. p38MAPK kinase
inhibitors protected cells from LT-mediated cytotox-
icity [139], [140]

Mephenytoin a derivative of phenytoin which inhibits active trans-
port of Ca2+ via enterocytes, and Ca2+ channel in the
brain [141], [142]

Mefloquine Mefloquine is an analogue of chloroquine that had
in-vitro activity protecting cells from LT toxicity
[143]

Bepridil Calcium channel blocker; Ca2+ is required for LT
toxicity [140], [144]

Sotalol Decreased intracellular accumulation of cAMP, an
action that is opposite to that of ET [145]

Ifosfamide Increased renal recreation of Ca2+ that can lead to
disturbance of Ca2+ homeostasis and depletion of
Ca2+ [146]
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Table 5.2: Bottom 10 drug candidates sorted by their squared Euclidean distance to
the reverse anthrax activity

Drug Biological Evidences

Monastrol Arresting cells in mitosis [147]
Colforsin An agonist of adenyl cyclase that converts ATP

to cAMP. Such action would increase intracellular
cAMP and synergistically increase ET toxicity [148]

Berberine Reduces activation of MAPK signaling by chikun-
gunya virus [149]

Withaferin-a Activates p38 MAPK [150]
Arecoline Antagonist P38 MAPK inhibitors [151]
Ebselen Inhibits ASK1-p38 MAPK-p35 and JUK signaling

and activated MPAK p44/42 [152]
Genistein Activates MAPK p44/42 [153]
Apigenin Inhibits MAPK. An action similar to LT [119]
Beclometasone Activates p38 MAPK [140], [154]
Enilconazole Antifungal drug for animals [Merk veterinary man-

ual]





Appendix A

Replicative Senescence

A.1 Data Description
As described in the main manuscripts, data were collected using the Luminex
Xmap technology. The cells response to 6 different stimuli (wells) was measured
at 2 time points (5 and 25 minutes) with respect to 19 phosphoproteins. The
experimental results are summarized in luminex_measurements.csv, available in
the Supplementary Information of [51]. A sample of the table is shown in Table A.1.

Table A.1: Aging data sample

Age Time Stimulus Bead MFI Count

p27r1 25 IGF1 PE 16424 512
p27r1 25 EGF STAT3 1798 230
r30 25 IL1A STAT1 834 170
p27r1 5 EGF AKT1 9448 162
p27r1 5 IL1A STAT5 1668 100
p27r1 5 TGFA STAT5 2277 107
r30 25 IL1A HSPB1 25515 229
p27r1 5 EGF STAT1 3890 104
r30 25 EGF STAT1 909 173
r30 5 IGF1 NFKBIA 5588 277

The columns of the table are:

• Age describing the “age” of the cells:

– p27r1 means that cells have undergone 27 duplications and are replicat-
ing every day

– r30 means that the cells haven’t replicated for 30 days. This happened
after 51 duplications.
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• Time is the time point of the measurement in minutes

• Stimulus the stimulus used to perturb the cells. DME corresponds to no
stimulus.

• Bead the measured bead. Apart from the 19 phosphoproteins, there are 2
control beads PE and BSA (see later discussion)

• MFI the median fluorescent intensity of the measurement

• Count the number of beads comprising the measurement.

The readouts and stimuli used were:

• Stimuli: EGF, IL1A, TGFA, TNF, IGF1, INS, DME (control)

• Readouts: AKT1, CREB1, PTK2, GSK3A, HSPB1, NFKBIA, JUN, MAPK12,
MAPK3, MAPK9, MAP2K1, TP53, PTPN11, PRKAR2A, STAT1, STAT3, STAT5,
STAT6, RELA

An overview of the raw data is shown in Figure A.1:

A.2 Quality Control
The quality of the data was evaluated based on three check-points:

1. The sample size

2. A positive control bead (PE)

3. A negative control bead (BSA)

The bead count of a measurement represents its sample size. For this study,
the experimental protocol specified the minimum bead count to 100 beads. This
threshold was not met all the time and measurements with bead count less than
35 were removed from subsequent analysis.

The distribution of every the sample sizes for every protein is presented as
box-plots in Figure A.2. No measurements were below the required limit.

To evaluate possible fluctuations in the intensity of the detection-laser, a posi-
tive control bead was utilized. This bead was covered with Phycoerythrin (PE), the
fluorescent proteins used to tag the captured proteins. The MFI distribution of the
PE bead was examined for outliers and its overall stochasticity. The distribution
of PE across wells is shown in Figure A.3. The Shapiro-Wilk test failed to reject
(p-val = 0.81) the normality hypothesis.

To evaluate the fluctuations of the non-specific binding, a negative control
bead was utilized. This bead was covered with Bovine Serum Albumin (BSA), the
protein used to coat the surface of the beads not covered by antibodies. The MFI
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Figure A.2: Bead count per analyte the protocol specified 100 beads but sometimes
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Figure A.3: Distribution of positive control per well

distribution of BSA across wells is shown in Figure A.4. Again, the Shapiro-Wilk
test fails to reject the normality hypothesis (pval = 0.08).
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Figure A.4: Distribution of negative control per well

So overall, no wells were removed from the data-set and no corrections were
made in this stage.

A.3 Data Normalization
To run out algorithm, data need to be mapped into the [−1, 1] interval, where −1
indicated down-regulation and 1 up-regulation.

To do this, we compared the effect stimuli had on cells against cells that
were left untreated. For every condition, the fold change with respect to its
control (DME) was computed. The two time-points were merged by discarding the
smallest absolute fold change. The new single time-point was representative of the
cells’ “early response”. An overview of the aggregated fold-changes is presented
Figure A.5 and in more detail in Figure A.6.

Because, the input for the main algorithm must lie in the [−1, 1] interval, we
normalize the fold changes using the Gaussian Error funtion. There is a variety
of sigmoid function that can achieve the desired outcome but erf was selected
because:

1. It’s symmetric around 0
2. It’s smooth
3. It respects some useful heuristic used in previous studies [40], [41], i.e. it’s

practically ±1 for log-fold-changes close to ±1 and close to ±0.5 for log-fold-
change close to ±0.5.

An overview of the final data-set is shown as a heatmap in Figure A.7.
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Appendix B

Drug Induced Lung Disease

B.1 Top Drug Candidates
1. Ciclosporin (119): Anti-inflammatory. For treatment of transplant (kidney, liver,

and heart) rejection, rheumatoid arthritis, severe psoriasis. Shown to be effective
treatment for interstitial lung disease of unknown etiology [87].

2. Tretinoin (115): Immunosuppressor. For the induction of remission in patients with
acute promyelocytic leukemia (APL), French-American-British (FAB) classification
M3 (including the M3 variant); For the topical treatment of acne vulgaris, flat warts
and other skin conditions (psoriasis, ichthyosis congenita, icthyosis vulgaris, lamel-
lar icthyosis, keratosis palmaris et plantaris, epidermolytic hyperkeratosis, senile
comedones, senile keratosis, keratosis follicularis (Darier’s disease), and basal cell
carcinomas.); For palliative therapy to improve fine wrinkling, mottled hyperpigmen-
tation, roughness associated with photodamage.

3. Quercetin (108): Flavonol. Has anti-inflammatory properties. Used to prevent the
progression of obstructive pulmonary diseases [169].

4. Resveratrol (92): Experimental, being investigated for the treatment of Herpes labi-
alis infections (cold sores). Has anti-inflammatory and antioxidant effects. Has
been shown to alleviate COPD lung injury in rats [89].

5. Paracetamol (91): For temporary relief of fever, minor aches, and pains. Demon-
strates weak anti-inflammatory action. Has been shown to be potentially induce
asthma in long term use [170].

6. Genistein (88): Flavonoid. Has anti-inflammatory action. Currently being studied
in clinical trials as a treatment for prostate cancer. Reverses Severe Pulmonary
Hypertension and Prevents Right Heart Failure in Rats [171].

7. Diethylstilbestrol (78): Estrogen. For the treatment of hypertension, angina, and
cluster headache prophylaxis.

8. Copper sulfate (78)

71
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9. Fulvestrant (76): For the treatment of hormone receptor positive metastatic breast
cancer in postmenopausal women with disease progression following anti-estrogen
therapy.

10. Wortmannin (73): Used in research. Has been shown to reduce immediate-type
allergic response and late phase pulmonary inflammation induced by allergen chal-
lenge in the ovalbumin-sensitised Brown Norway rat [172].

11. ly-294002 (70): Potent inhibitor of phosphoinositide 3-kinases (PI3Ks). Has been
shown to reduce allergic airway inflammation in rats. [173].

12. Melatonin (69): Used orally for jet lag, insomnia, shift-work disorder, circadian
rhythm disorders in the blind, and benzodiazepine and nicotine withdrawal. Evi-
dence indicates that melatonin is likely effective for treating circadian rhythm sleep
disorders in blind children and adults. May be effective for treating sleep-wake cycle
disturbances in children and adolescents with mental retardation, autism, and other
central nervous system disorders. It may also improve secondary insomnia associ-
ated with various sleep-wake cycle disturbances. Demonstrates anti-inflammatory
activity in the CNS. Reduces lung oxidative stress in patients with chronic obstruc-
tive pulmonary disease [174].

13. Celastrol (68): Plant extract. Potent antioxidant and anti-inflammatory drug.

14. Cyclic Adenosine monophosphate (65): Targets potassium/sodium HNC chan-
nel 2, PRKAR1A, PRKAR2B, Adenylate cyclase, Cyclic nucleotide-gated potassium
channel mll3241, cAMP-activated global transcriptional regulator CRP. Decreases
pulmonary edema in experimental acid-induced lung injury [175].

15. sb-202190 (63): Targets P38MAPK

16. Dopamine (63): For the correction of hemodynamic imbalances present in the shock
syndrome due to myocardial infarction, trauma, endotoxic septicemia, open-heart
surgery, renal failure, and chronic cardiac decompensation as in congestive failure.
Has immunomodulatory action. Has been shown inhibit pulmonary edema through
the VEGF-VEGFR2 axis in a murine model of acute lung injury [176].

17. Dinoprostone (62): Prostaglandin E2. Up-regulation of PGE2 expression protects
against the development of fibrosis after lung injury. [94].

18. Acetylsalicylic acid (62): Aspirin. For use in the temporary relief of various forms
of pain, inflammation associated with various conditions (including rheumatoid
arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis,
and ankylosing spondylitis), and is also used to reduce the risk of death and/or
nonfatal myocardial infarction in patients with a previous infarction or unstable
angina pectoris. Was found to improve outcome in animal models of acute lung
injury [177].

19. sb-203580 (61): Targets P38MAPK
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20. Rottlerin (61): Experimental, conductance potassium channel (BKCa++) opener.
May cause pulmonary edema in vivo [178].

21. Sulfinpyrazone (60): For the treatment of gout and gouty arthritis

22. Staurosporine (60): LCK, PIM1, ITK/TSK, SYK, MAPK2, GSK3B, CSK, CDK2,
PIK3CG, PDPK1, PRKCQ.

23. Nocodazole (59): Targets Hematopoietic prostaglandin D synthase

24. Chrysin (59): Plant extract. Suppresses inflammation. Attenuates allergic airway
inflammation in mice. [179].

25. Pirinixic acid (58): Experimental, under investigation for prevention of severe car-
diac dysfunction, cardiomyopathy and heart failure as a result of lipid accumulation
within cardiac myocytes.

26. Lidocaine (58): A local anesthetic and cardiac depressant used as an antiarrhythmia
agent. Demonstrates anti-inflammatory action. Attenuates acute lung injury induced
by a combination of phospholipase A2 and trypsin [180].

27. Ketoconazole (58): For the treatment of the following systemic fungal infections:
candidiasis, chronic mucocutaneous candidiasis, oral thrush, candiduria, blastomy-
cosis, coccidioidomycosis, histoplasmosis, chromomycosis, and paracoccidioidomy-
cosis. Has been tested for early treatment of acute lung injury and acute respiratory
distress syndrome in a randomized controlled trial, but was ineffective. [181].

28. Kanamycin (58): For treatment of infections where one or more of the following are
the known or suspected pathogens: E. coli, Proteus species (both indole-positive and
indole-negative), E. aerogenes, K. pneumoniae, S. marcescens, and Acinetobacter
species.

29. Arachidonic acid (58): Targets fatty acid-binding protein, Prostaglandin G/H syn-
thase 1.

30. Thioridazine (57): For the treatment of schizophrenia and generalized anxiety dis-
order.

31. Nortriptyline (57): For the treatment of depression, chronic pain, irritable bowel
syndrome, sleep disorders, diabetic neuropathy, agitation and insomnia, and mi-
graine prophylaxis.

32. Cycloheximide (57): Experimental, inhibitor of protein biosynthesis in eukaryotic
organisms.

33. Furosemide (56): For the treatment of edema associated with congestive heart fail-
ure, cirrhosis of the liver, and renal disease, including the nephrotic syndrome. Also
for the treatment of hypertension alone or in combination with other antihyperten-
sive agents.
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34. Clioquinol (56): Withdrawn. Used as a topical antifungal treatment.

35. Zaprinast (55): unsuccessful clinical drug candidate that was a precursor to the
chemically related PDE5 inhibitors, such as sildenafil, which successfully reached
the market.

36. Thiamazole (55): For the treatment of hyperthyroidism, goiter, Graves disease and
psoriasis. Has anti-inflammatory action.

37. Ouabain (55): For the treatment of atrial fibrillation and flutter and heart failure.

38. Indometacin (55): For moderate to severe rheumatoid arthritis including acute
flares of chronic disease, ankylosing spondylitis, osteoarthritis, acute painful shoul-
der (bursitis and/or tendinitis) and acute gouty arthritis. Has been shown to atten-
uate lung injury in surfactant-deficient rabbits [182].

39. Chenodeoxycholic acid (55): For patients with radiolucent stones in well-opacifying
gallbladders, in whom selective surgery would be undertaken except for the presence
of increased surgical risk due to systemic disease or age. Chenodiol will not dissolve
calcified (radiopaque) or radiolucent bile pigment stones.

40. Kaempferol (54): Targets UDP-glucuronosyltransferase 3A1. Has anti-inflammatory
action. Has preventive and curative effects in TH2-driven allergic airway dis-
ease [183].

B.2 Enrichment Tables

Table B.1: GO terms enriched in genes from up-regulated DILD module. Threshold
for inclusion is p value less than 0.001.

Up-regulated module

Regulation of programmed cell death
Regulation of cell death
Regulation of apoptosis
Response to organic substance
Positive regulation of programmed cell death
Positive regulation of cell death
Regulation of transcription from RNA polymerase II promoter
Positive regulation of apoptosis
Response to inorganic substance
Negative regulation of apoptosis
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Table B.2: GO terms enriched in genes from down-regulated DILD module.
Threshold for inclusion is p value less than 0.001.

Down-regulated module

Cell cycle phase
Cell cycle process
Mitotic cell cycle
Cell cycle
m phase
Intracellular transport
Organelle fission
Interphase of mitotic cell cycle
Positive regulation of programmed cell death
Positive regulation of cell death
Interphase
Regulation of cell cycle
Positive regulation of apoptosis
M phase of mitotic cell cycle
Cell division
Nuclear division
Mitosis
Cellular response to stress
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Table B.3: Most frequent nominal pharmacological effects of Pneumotox drugs from
chEMBL. The frequency of the corresponding modes of action across all the drugs in
cMAP is also shown.

Number of Drugs

Effect Pneumotox cMAP

DNA inhibitor 27 62
Cyclooxygenase 1,2 inhibitor 18 31
Sodium channel alpha subunit blocker 15 47
Serotonin 2a (5-HT2a) receptor antagonist 11 24
GABA-A receptor modulator 11 15
Norepinephrine transporter inhibitor 10 19
Serotonin transporter inhibitor 9 38
Glucocorticoid receptor agonist 9 50
Beta-1 adrenergic receptor antagonist 9 15
Mu opioid receptor agonist 8 8
Bacterial penicillin-binding protein inhibitor 8 36
Angiotensin-converting enzyme inhibitor 8 8
Bacterial 70S ribosome inhibitor 7 33
Tubulin inhibitor 7 12
PPAR agonist 7 9
D2-like dopamine receptor antagonist 7 17
Beta-2 adrenergic receptor antagonist 7 26
Progesterone receptor agonist 5 12
Voltage-gated L-type calcium channel blocker 5 15
Type-1 angiotensin II receptor antagonist 5 8
RNA inhibitor 5 6
Arachidonate 5-lipoxygenase inhibitor 4 4
Thymidylate synthase inhibitor 4 4
Serotonin 2c (5-HT2c) receptor antagonist 4 12
Serotonin 1d (5-HT1d) receptor agonist 4 4
Norepinephrine transporter releasing agent 4 18
HMG-CoA reductase inhibitor 4 10
FK506-binding protein 1A inhibitor 4 4
Dopamine transporter inhibitor 4 17
Dihydrofolate reductase inhibitor 4 7
Androgen Receptor agonist 3 8
Adrenergic receptor alpha-2 agonist 3 7
Vitamin k epoxide reductase inhibitor 3 4
Ferriprotoporphyrin IX inhibitor 3 6
Cytochrome P450 51 inhibitor 3 9
Bacterial dihydropteroate synthase inhibitor 3 16
Androgen Receptor antagonist 3 8
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