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”I have noticed that even people who claim everything is prede-
termined and that we can do nothing to change it, look before
they cross the road.”
Stephen Hawking, 1942-2018
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Abstract

The subjects of this Master thesis is to study the Sachdev-Ye-Kitaev (SYK)
model, focusing on the Conformal Field Theory aspect, viewing it through
the AdS/CFT correspondence. This particular model presents some very
interesting features and thus attracted a lot of attention. It is now solved
and there is ongoing research for its bulk dual.

To begin, the two-point and four-point functions are presented and from
the latter the operators of the model are deduced. These Green’s functions
are studied in the IR limit where conformal symmetry is emergent. Then,
the 6-point and 8-point functions are presented along with their features
that make the model solvable.

Moreover, the effective action of the model and its symmetries are dis-
cussed along with certain reparametrizations and their physical meaning as
Nambu-Goldstone modes. After presenting their Schwarzian action and a
brief introduction to the quantum butterfly effect, the chaotic behaviour
of the model is discussed. Finally, a brief discussion concerning the bulk
dual and SYK-like models is presented. In the appendices, an introduction
to conformal symmetry and the OPE expansion is given and also technical
computations are included.



Περίληψη
Σκοπός της μεταπτυχιακής αυτής εργασίας είναι η μελέτη του μοντέλου

SachdevYe-Kitaev (SYK), εστιάζοντας ιδιαίτερα στην πλευρά της Σύμμορφης
Θεωρίας Πεδίου εφ’όσον το μοντέλο ιδωθεί μέσα από το πρίσμα της AdS/CFT.
Το συγκεκριμένο μοντέλο παρουσιάζει μερικά ιδιαίτερα ενδιαφέροντα χαρακτη-
ριστικά και γι’αυτό έχει τραβήξει την προσοχή της αντίστοιχης επιστημονικής
κοινότητας.

Αρχικά, παρουσιάζονται οι συναρτήσεις δύο και τεσσάρων σημείων και από
την τελευταία συνάγονται οι τελεστές του μοντέλου. Αυτές οι συναρτήσεις
Green μελετώνται στο υπέρυθρο όριο, όπου αναδύεται η σύμμορφη συμμετρία.
Στη συνέχεια, παρουσιάζονται οι συναρτήσεις έξι και οκτώ σημείων μαζί με τα
χαρακτηριστικά τους, τα οποία καθιστούν το μοντέλο επιλύσιμο.

Επιπρόσθετα, συζητιούνται η ενεργός (effective) δράση του μοντέλου μαζί
με τις συμμετρίες της παράλληλα με τις επαναπαραμετροποιήσεις του μοντέλου
και την φυσική ερμηνεία τους ως Nambu-Goldstone τρόπους (modes). Αφού
παρουσιαστεί η Schwarzian δράση τους και δοθεί μια σύντομη εισαγωγή στην
κβαντομηχανική εκδοχή του κβαντικού χάους (ή κβαντικό φαινόμενο της πετα-
λούδας), συζητιέται η χαοτική συμπεριφορά του μοντέλου. Τέλος, γίνεται μια
σύντομη συζήτηση που αφορά το βαρυτικό αντίστοιχο του μοντέλου και τα
διάφορα παρόμοια μοντέλα που έχουν προταθεί. Στα παραρτήματα, εκτός από
μια εισαγωγή στη σύμμορφη θεωρία πεδίου και στη μέθοδο OPE αυτής και στις
σπινοριακές αναπαραστάσεις σε N διαστάσεις, βρίκονται και κάποιοι τεχνικοί
υπολογισμοί της εργασίας.
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Εισαγωγή
Προέλευση και κίνητρα για την μελέτη του SYK
Το μοντέλο Sachdev-Ye-Kitaev προτάθηκε πρόσφατα από τον A. Kitaev [1].
Αποτελεί ένα κβαντομηχανικό μοντέλο που απαρτίζεται από αλληλεπιδράσεις
τετάρτης τάξης μεταξύ N Majorana φερμιονίων. Η Χαμιλτονιανή του δίνεται
από

H =
1

4!

N∑
j,k,l,m

Jjklmxjxkxlxm. (1)

Μπορεί να ιδωθεί ως μια παραλλαγή ενός μοντέλου που προτάθηκε από τους
Sachdev και Ye [15], το οποίο εισήχθη για να περιγράψει έναν μαγνήτη Heisen-
berg με τυχαίες αλληλεπιδράσεις. Η Χαμιλτονιανή του μοντέλου του Sachdev-
Ye είναι

H =
1√
NM

N∑
i>j

JijSiSj , (2)

όπου οι τελεστές Si,Sj ικανοποιούν την άλγεβρα su(M) ενώ οι συντελεστές
Jij είναι τυχαίοι αριθμοί διαλεγμένοι από μια κανονική κατανομή και δηλώνουν
την ισχύ των αλληλεπιδράσεων. Το μοντέλο SY είναι επιλύσιμο στο όριο όπου
N → ∞,M → ∞ και για πρώτη φορά συζητήθηκε στα πλαίσια της ολογραφίας
στο [31], όπου ο Sachdev ανέδειξε την στενή αντιστοιχία μεταξύ ολογραφικών
μετάλλων κοντά σε φορτισμένες AdS μελανές οπές και της κλασματοποιημένης
(fractionalized) υγρής φάσης Fermi του πλεγματικού μοντέλου του Anderson.

To μοντέλο SYK καθίσταται επιλύσιμο στο όριο N → ∞, όπου τα διαγρά-
μματα Feynman αποτελούνται από melonic διαγράμματα για την συνάρτηση
δύο σημείων και από ladder διαγράμματα για την συνάρτηση τεσσάρων σημείων.
Συνεπώς, είναι δυνατόν να εξαχθούν σχετικά απλές εκφράσεις για τις εξισώσεις
Schwinger-Dyson των συναρτήσεων δύο και τεσσάρων σημείων.

Στις χαμηλές ενέργειες (υπέρυθρο όριο), οι συναρτήσεις δύο σημείων είναι
επιλύσιμες και παρουσιάζουν σύμμορφη συμμετρία, η οποία όμως σπάει σε
υψηλότερες ενέργειες. Η συμμετρία αυτή αλλά και το σπάσιμό της εμφανίζονται
και στις συνάρτησεις τεσσάρων σημείων.

Επιπλέον, μελετώντας τις out-of-time-order συναρτήσεις συσχέτισης έχει
αποδειχθεί ότι ο εκθέτης Lyapunov που χαρακτηρίζει τη χαοτική συμπεριφορά
του συστήματος παίρνει τη μέγιστη τιμή του, λL = 2π

β . Σύμφωνα με το [9]
εικάζεται ότι αυτός είναι και ο μέγιστος επιτρεπόμενος εκθέτης Lyapunov για
ένα μεγάλο αριθμό κβαντικών συστημάτων, όπως τα συστήματα με μεγάλο N
των οποίων το μοντέλο SYK είναι ένα παράδειγμα . Το ίδιο όριο είναι αυτό
που συναντάει κανείς σε μια μελανή οπή σε βαρυτικές θεωρίες [11].

Η μέγιστη χαοτική συμπεριφορά, η επιλυσιμότητα και οι ομοιότητες μεταξύ
των συναρτήσεων δύο και τεσσάρων σημείων μίας μελανής οπής Schwarzschild
1+1 διαστάσεων και εκείνων του μοντέλου SYK, οδήγησε τον Kitaev να
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προτείνει αυτό το μοντέλο ως ένα ολογραφικό αντίστοιχο μιας τέτοιας μελανής
οπής η οποία ασυμπτωτικά προσεγγίζει μια AdS μετρική [1].

Η προτεινόμενη δυαδικότητα μεταξύ του μοντέλου SYK και των μαύρων
οπών είναι ένα παράδειγμα της AdS/CFT αντιστοιχίας, μια εικασία δυισμού
μεταξύ ισχυρά συζευγμένων θεωρίων βαθμίδας και βαρυτικών θεωριών σε AdS
χωρόχρονο. Η εικασία αυτή πρωτοεμφανίστηκε στην πρωτοποριακή δημοσίευση
”The Large N Limit of Superconformal Field Theories and Supergravity” από
τον J. Maldacena [18]. Ο βασικός ισχυρισμός της AdS/CFT αντιστοιχίας είναι
ότι οι συναρτήσεις-γεννήτριες των ισχυρών συζευγμένων θεωριών βαθμίδας και
των βαρυτικών θεωριών σε χωρόχρονους AdS είναι ίσες [29]. Αν και η AdS
/ CFT αντιστοιχία δεν έχει αποδειχθεί ρητά, επιτρέπει τη μελέτη των ισχυρά
συζευγμένων θεωριών βαθμίδας εξετάζοντας ασθενώς συνδεδεμένες θεωρίες
βαρύτητας στον AdS χωρόχρονο και αντίστροφα. Αυτό είναι χρήσιμο διότι
οι διαταρακτικές μέθοδοι δεν λειτουργούν σε ισχυρά συζευγμένα συστήματα
λόγω της έλλειψης μιας μικρής παραμέτρου γύρω από την οποία θα εφαρμοστεί
η διαταραχή.

Ως εργαλείο διερεύνησης μαύρων οπών, το μοντέλο SYK παρουσιάζει μερικά
προβλήματα. Ένα από αυτά είναι ότι τα πραγματικά κβαντικά συστήματα
δεν έχουν τυχαίες αλληλεπιδράσεις στις οποίες είναι δύσκολο να αποδοθεί
κβαντική συμπεριφορά. Επομένως δεν είναι άμεσα σαφές εάν το μοντέλο SYK
μπορεί να χρησιμοποιηθεί για τη διερεύνηση των ιδιoτήτων των μαύρων οπών.
Πρόσφατα, προτάθηκε [4, 5] ένα τανυστικό μοντέλο χωρίς αυτές τις τυχαίες
αλληλεπιδράσεις, το οποίο όμως μοιράζεται τα σημαντικότερα χαρακτηριστικά
του μοντέλου SYK.

Μια τελευταία παρατήρηση είναι ότι το μοντέλο SYK δεν μπορεί να θεωρηθεί
ως παράδειγμα της AdS2/CFT1, γιατί όπως θα δούμε η σύμμορφη συμμετρία
είναι αυθόρμητα αλλά και ρητά σπασμένη. Ο κατάλληλος τρόπος για να μελετήσει
κανείς το μοντέλο είναι στα πλαίσια της nAdS2/nCFT1, όπου το n σημαίνει
”σχεδόν (nearly)”. Στη συνέχεια, το βαρυτικό αντίστοιχο θεωρείται ότι είναι
ένα μοντέλο nAdS2 το οποίο παρουσιάζει το ίδιο μοτίβο σπασίματος της
σύμμορφης συμμετρίας [12,23,24].

Σχεδιάγραμμα της εργασίας αυτής
H μεταπτυχιακή αυτή εργασία εστιάζει στην πλευρά που σχετίζεται με την
σύμμορφη θεωρία πεδίου (CFT) του μοντέλου SYK. Στο κεφάλαιο δύο,
εξάγουμε τις εξισώσεις κίνησης του μοντέλου SYK και εξάγουμε τον έλευθερο
διαδότη. Στη συνέχεια μελετάμε την συνάρτηση Green δύο σημείων, χρησιμοποι-
ώντας βασικές τεχνικές των διαταρακτικών θεωρίων, δείχνουμε ότι στο όριο
N → ∞ τα μοναδικά διαγράμματα που συνεισφέρουν είναι αυτά που έχουν
melonic μορφή. Εκμεταλλευόμενοι το χαρακτηριστικό αυτό εξάγουμε τις
εξισώσεις Schwinger-Dyson και στην συνέχεια τις μελετάμε στο όριο των
χαμηλών ενεργειών. Σ’ αυτό το όριο αποδεικνύουμε την αναδύουσα σύμμορφη
συμμετρία και στη συνέχεια διαλέγοντας μια δοκιμαστική συνάρτηση (ansatz)
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για τον διαδότη, μελετάμε πως η συμμετρία αυτή σπάει αυθόρμητα.
Στο κεφάλαιο τρία, συνεχίζουμε την μελέτη μας εστιάζοντας στις συνα-

ρτήσεις Green τεσσάρων σημείων και στα ladder διαγράμματα τα οποία είναι και
τα μοναδικά που συνεισφέρουν. Δείχνουμε ότι τα διαγράμματα αυτά ικανοποιούν
αναδρομικές σχέσεις με κύριο χαρακτηριστικό τον τελεστή kernel ο οποίος δρα
ως γεννήτορας τους. Έπειτα, χρησιμοποιώντας την σύμμορφη συμμετρία στο
όριο των χαμηλών ενεργειών υπολογίζουμε όλες τις απαραίτητες ποσότητες
(όπως οι ιδιοσυναρτήσεις του τελεστή Casimir, οι ιδιοτιμές του kernel και
διάφορα εσωτερικά γινόμενα) οι οποίες μας οδηγούν σε μια τελική έκφραση
για την συνάρτηση τεσσάρων σημείων. Στη συνέχεια αναλύουμε αυτήν την
έκφραση, μέσω θεωρητικών εργαλείων που προέρχονται από τις σύμμορφες
θεωρίες πεδίου και εξάγουμε διάφορες χρήσιμες ποσότητες όπως τις διαστάσεις
διαφόρων τελεστών, τους συντελεστές OPE και τα conformal blocks. Είναι
σημαντικό να επισημάνουμε ότι κατά την διάρκεια όλης αυτής της ανάλυσης
έχουμε σκόπιμα αγνοήσει τις συνεισφορές οι οποίες οδηγούν σε αποκλίσεις.
Φυσικά κάτι τέτοιο δεν είναι αποδεκτό αφού τότε η συνάρτηση τεσσάρων
σημείων στερείται φυσικού νοήματος και στο τέλος του κεφαλαίου αυτού,
κάνουμε μια σύντομη συζήτηση γι αυτό βασιζόμενοι στο [2].

Στο κεφάλαιο τέσσερα, παρουσιάζουμε και μελετάμε τις συναρτήσεις
έξι και οκτώ σημείων ή ισοδύναμα τις συναρτήσεις τριών και τεσσάρων σημείων
κατάλληλων διγραμμικών τελεστών αντίστοιχα. Για την συνάρτηση έξι σημείων,
κατηγοριοποιούμε τα διαγράμματα που συνεισφέρουν σε contact και planar και
παρουσιάζουμε τη συνεισφορά του καθενός. Όσον αφορά τη συνάρτηση οκτώ
σημείων, κάνουμε μια σύντομη συζήτηση για το πως μπορεί κανείς να παράγει
όλες τις συναρτήσεις 2n-σημείων με το να ”κόψει” το melonic διάγραμμα κενού
όσες φορές χρειαστεί. Στη συνέχεια, παραθέτουμε τα διαγράμματα που συνεισφέρουν
στη συνάρτηση οκτώ σημείων μαζί με το ιδιαίτερα σημαντικό γεγονός ότι
είναι απόλυτα καθορισμένα από ποσοτήτες που έχουμε υπολογίσει ήδη στις
συναρτήσεις δύο, τεσσάρων και έξι σημείων. Βασιζόμενοι σ’ αυτό το γεγονός
συζητάμε πως κάτι τέτοιο υπονοεί ουσιαστικά την πλήρη επιλυσιμότητα (με την
έννοια του υπολογισμού κάθε συνάρτησης 2n-σημείων) του μοντέλου SYK.
Σχετικά με το θέμα αυτού του κεφαλαίου, περισσότερες τεχνικές λεπτομέρειες
μπορούν να βρεθούν στο [12].

Στο κεφάλαιο πέντε, μελετάμε την ενεργό δράση του μοντέλου SYK
η οποία εξάγεται αφού εκτελέσουμε την μέθοδο annealed disorder, η οποία
πρακτικά είναι η άμεση ολοκλήρωση ως προς τις τυχαίες μεταβλητές. Στη
συνέχεια αφού ολοκληρώσουμε ως προς τα φερμιόνια και εισάγουμε τα δι-
γραμμικά πεδία G,Σ, βρίσκουμε ότι το μοντέλο παρουσιάζει κλασσική συμπε-
ριφορά στο όριο για μεγάλα N και η ενεργός του δράση δίνει τις ίδιες εξισώσεις
Schwinger-Dyson με αυτές που βρήκαμε στο δεύτερο κεφάλαιο. Ακολούθως,
αποδεικνύουμε τη συμμετρία O(N) της δράσης του μοντέλου SYK και εξάγου-
με το διατηρούμενο ρεύμα μόνο για την ελεύθερη θεωρία αφού αν συμπερι-
λάβουμε τον όρο αλληλεπίδρασης τότε έχουμε μια μη-τοπική δράση για την
οποία δεν ισχύει το θεώρημα της Νoether.
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Στο κεφάλαιο έξι, μελετάμε τις διακυμάνσεις των διγραμμικών πεδίων
γύρω από το σαγματικό σημείο τους ή αλλοιώς τις επαναπαραμετροποιήσεις
τους. Πριν από αυτό, αποδεικνύουμε ρητά την σύμμορφη συμμετρία της δράσης
στο όριο των χαμηλών ενεργειών και θέτουμε υπο συζήτηση το λόγο για τον
οποίο αυτή η συμμετρία σπάει ρητά μακριά από αυτό το όριο. Μετά, θεωρώντας
τις διακυμάνσεις των διγραμμικών πεδίων, φτάνουμε σε μια δράση της οποίας
οι μηδενικοί τρόποι (modes) είναι ουσιαστικά εκείνες οι ιδιοσυναρτήσεις του
kernel που έχουν ιδιοτιμή ένα. Αυτές είναι και οι ιδιοσυναρτήσεις που οδηγούν
σε μια αποκλίνουσα και συνεπώς στερούμενη φυσικού νοήματος συνάρτηση
τεσσάρων σημείων, όπως έχουμε ήδη προαναφέρει. Συζητούμε το φυσικό
νόημα αυτών των μηδενικών τρόπων ως Nambu-Goldstone μποζόνια. Η ερμη-
νεία αυτή βασίζεται στο γεγονός ότι αυτοί οι τρόποι είναι ουσιαστικά παραμετρο-
ποιήσεις του διαδότη μακρία από το όριο που η θεωρία έχει σύμμορφη συμμετρία,
συνεπώς προκύπτουν από το αυθόρμητο σπάσιμο αυτής. Τέλος, παραθέτοντας
κάποια ποιοτικά χαρακτηριστικά που περιμένουμε να έχει η δράση αυτών των
παραμετροποιήσεων καταλήγουμε στην τελική μορφή της η οποία είναι αυτή
της παραγώγου Schwarzian.

Στο κεφάλαιο επτά, παρουσιάζουμε μια ανασκόπηση των βασικών εννοι-
ών του κβαντικού χάους, του scrambling της πληροφορίας και της εικασίας για
την ύπαρξη ενός παγκόσμιου (universal) φράγματος στην τιμή του εκθετικού
του Lyapunov. Έχοντας αναφέρει όλα τα βασικά εργαλεία που θα χρειαστούμε
στην περαιτέρω μας ανάλυση, μελατάμε τις out-of-time-order συναρτήσεις
συσχέτισης του μοντέλου SYK. Καταλήγουμε σε ένα από τα πιο σημαντικά
στοιχεία του μοντέλου: την μέγιστη χαοτική συμπεριφορά του.

Στο κεφάλαιο οκτώ, παρουσιάζουμε εν συντομία μερικές ενναλακτικές
εκδοχές του μοντέλου SYK συνοδευόμενες από τα πλεονεκτήματα τους αλλά
και τα μειονεκτήματα τους. Με αυτό τον τρόπο ο αναγνώστης παίρνει μια
πρώτη ιδέα για την πιθανή κατεύθυνση της μελλοντικής έρευνας γύρω από το
μοντέλο SYK. Στη συνέχεια, γίνεται μια περιληπτική συζήτηση που αφορά το
βαρυτικό αντίστοιχο του μοντέλου και στο τέλος κλείνουμε το κύριο μέρος
της μεταπτυχιακής εργασίας παραθέτοντας κάποια συμπεράσματα που αφορούν
το υπό μελέτη μοντέλο και τα οποία έχουμε εξάγει κατά τη διάρκεια εκπόνησης
της εργασίας αυτής.

ΣταΠαραρτήματα, έχουμε συμπεριλάβει διάφορα κεφάλαια που αφορούν
στοιχεία που θεωρούμε ότι δεν είχαν θέση στο κυρίως μέρος της εργασίας
αλλά είναι απαραίτητα και συνεισφέρουν σε έναν από τους βασικού στόχους
μιας μεταπτυχιακής εργασίας, την πληρότητα της. Συγκεκριμένα, στο Παρά-
ρτημα A, δίνουμε μια αυτοτελή εισαγωγή στις σύμμορφες θεωρίες πεδίου.
Φυσικά, τα περιεχόμενα της ενότητας αυτής μπορούν βρεθούν σε εξαιρετικά
βιβλία και διαλέξεις, από τα οποία μερικά παρατίθενται στο τέλος. ΣταΠαρά-
ρτηματα B,C, βρίσκονται κάποιο τεχνικοί υπολογισμοί οι οποίοι θα αποπροσα-
νατόλιζαν τον αναγνώστη έαν παρατίθονταν στο κύριο μέρος της εργασίας.
Τέλος, στο Παράρτημα D, δίνεται μια εισαγωγή στις σπινοριακές ανα-
παραστάσεις σεN διαστάσεις μαζί με την μεθοδολογία για το πως υπολογίζονται

5



αυτές για το μοντέλο SYK.
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Chapter 1

Introduction

1.1 Origin and Motivation
The Sachdev-Ye-Kitaev model was recently proposed by A. Kitaev [1]. It
a quantum mechanical model with quartic all-to-all interactions between N
Majorana fermions. Its Hamiltonian is

H =
1

4!

N∑
j,k,l,m

Jjklmxjxkxlxm. (1.1)

It can be thought as variant of a model proposed by Sachdev and Ye [15],
which was introduced to describe a Heisenberg magnet with random all-
to-all interactions. The Hamiltonian of the Sachdev-Ye (SY) is given by

H =
1√
NM

N∑
i>j

JijŜiŜj , (1.2)

where the operators Ŝi, Ŝj obey the su(M) algebra and the coefficients Jij
are random numbers chosen from a normal distribution and denote the
strength of the interactions. The SY model is solvable at N → ∞,M → ∞
and was first discussed in connection with holographic correspondence in
[31], where Sachdev showed a close correspondence between holographic
metals near charged AdS black holes and the fractionalised Fermi liquid
phase of the lattice Anderson model.

The SYK model becomes solvable in the N → ∞ limit, where the Feyn-
man diagrams consist of melonic diagrams for the two-point function and
ladder diagrams for the four-point function. Consequently, it is possible to
derive relatively simple expressions for the Schwinger-Dyson equations of
the two-point and the four-point functions.

At low energies (IR limit), the two-point functions are solvable and ex-
hibit conformal symmetry, which, however, is broken at higher energies.
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The conformal symmetry and its breaking at higher energies is also present
at the four-point function.

Furthermore, by studying the out-of-order-time correlators it has been
shown that the Lyapunov exponent that characterizes the chaotic behaviour
of the system takes its maximum value, λL = 2π

β . It has be shown that this
is the maximal allowed Lyapunov exponent for a large number of quantum
systems, such as the large N systems of which the SYK model is an example
[9]. The same bound is saturated by a black hole in Einstein gravity [11].

The maximally chaotic behaviour, the exact solvability and the sim-
ilarities between the two- and four-point functions of a 1+1 dimensional
Schwarzschild black hole and those of the SYK model, led Kitaev to pro-
pose this model as a holographic dual of a Schwarzschild black hole in 1 +
1 dimensional spacetime that is asymptotically AdS [1].

The proposed duality between the SYK model and black holes is an
example of the AdS/CFT correspondence, a conjectured duality between
strongly coupled gauge theories and gravitational theories on the AdS space-
time. The conjecture was introduced in the groundbreaking paper ”The
Large N Limit of Superconformal field theories and supergravity” by Malda-
cena [18]. The main claim of AdS/CFT correspondence is that the generat-
ing functionals of strongly coupled gauge theories and gravitational theories
on the AdS spacetime are equal [29]. Although the AdS/CFT correspon-
dence has not been proven rigorously, it allows the study of strongly coupled
gauge theories by considering weakly-coupled gravitational theories on the
AdS spacetime and vice versa. This is useful because the perturbation meth-
ods do not work with strongly-coupled systems due to the lack of a small
expansion parameter.

As a tool of investigating black holes, the SYK model has a few problems.
One of the main problems is that real quantum systems do not have random
interactions that are averaged over a probability distribution. Therefore it
is not immediately clear if the SYK model can be used to investigate subtler
properties of black holes. Recently, a tensor model without these random in-
teractions has been proposed [4,5], which shares the most important features
of the SYK model without having random interactions.

One final remark, is that the SYK model can not be thought as and
example of AdS2/CFT1 as as we will see the conformal symmetry is spon-
taneously and explicitly broken. The appropriate way to study the model is
to consider it as a nAdS2/nCFT1, where n stand for nearly. Then the bulk
dual is thought to be a nAdS2 model which exhibits the same symmetry
breaking pattern [12,23,24].
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1.2 Outline of this thesis
The focus of this Master thesis is the CFT aspect of the SYK model. In
chapter two, we study the two-point function and show, using standard
perturbation techniques, that in the large N limit the only contribution to
the two-point function comes from melonic diagrams. Taking advantage of
this property we derive the Schwinger-Dyson equations and then study the
IR limit of these equations. We prove the emergent conformal symmetry of
the S-D equations and its spontaneous breaking by the chosen ansatz.

In chapter three, we study the four-point function and the ladder di-
agrams, which are the only ones that contribute to the four-point function.
Then, by using conformal symmetry in the low energy limit, we compute
all the relevant quantities (such as the eigenfunctions/eigenvalues of the
Casimir and the kernel) that lead us to a final expression for the four-point
function. Throughout this chapter as we will mention we avoid the h = 2
contribution that leads to divergences, but in the end we present a short
discussion/review of this particular contribution based on [2].

In chapter four, we present and discuss the six- and eight-point func-
tion, or equivalently the bilinear three- and four-point function respectively.
For the six-point function we categorize the contributing diagrams to contact
and planar diagrams and present the contribution of each one. Consider-
ing the eight-point function, we make a short discussion about how one can
produce all the relevant diagrams for all 2n-point functions by cutting the
vacuum melon diagram. Then, we present the contributing eight-point dia-
grams along with their interesting fact that they are completely determined
by quantities already computed in the two-, four- and six-point functions.
Based on this result, we discuss how such a fact implies the full solvability
of the SYK model. More technical details for the topic presented in this
chapter can be found in [13].

In chapter five, we study the effective action of the model which is
derived by performing the annealed disorder method which practically means
that one directly averages the partition function. Then, by integrating out
the fermion fields and introducing the bilocal field G,Σ we find out the the
model becomes classical in large N and the effective action gives the already
derived S-D equations. Then, we prove the O(N) symmetry of the action
of the model and derive the conserved current only for the free action since
the interaction term is bilocal and thus the Noether theorem is not valid.

In chapter six, we study the fluctuations of the bilocal fields or their
reparametrizations. Before that, we prove rigorously the emergent confor-
mal symmetry of the action in the IR limit and discuss the reason it is
explicitly broken away from this limit. Then by considering the fluctua-
tions of the bilocal fields we end up with an action that its zero modes turn
to be eigenfunctions of the kernel with eigenvalue one. These are exactly
the eigenfunctions that lead to a divergent four-point function. We discuss
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the physical interpretation of these zero modes as Nambu-Goldstone modes.
Then, by imposing some qualitative argument we find that the action of
these reparemetrizations is the Schwarzian derivative.

In chapter seven, we present a review of the basic concepts of quantum
chaos, the scrambling of information and the conjecture about a universal
bound on the Lyapunov exponent. Equipped with these tools, we study the
out-of-time-order correlators of the SYK model, only to find out one of its
most important features: its maximally chaotic behaviour.

In chapter eight, we shortly present some intriguing variants of the
SYK model along with their advantages and problems. Then, a short dis-
cussion is made about the active research for the bulk dual for the model
under study and finally we end the main part of this master thesis by pro-
viding some conclusion about the hallmark features and the problems of the
SYK model.

In appendix A, we review the basic aspects of conformal field theory
as its features are heavily used throughout this work. Although, the con-
text presented in this appendix can be found in many excellent textbooks
and lecture notes, this appendix helps towards one of the main goals of this
thesis, its completeness. In appendices B,C, we have included some tech-
nical computations that would disorient the reader if they were included
in the main part. Finally, in appendix D, we present a short discussion
about spinor representations in various dimensions and how we can find the
appropriate representation for the SYK model.
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Chapter 2

Basic aspects of the
Sachdev-Ye-Kitaev model

2.1 Introduction to the SYK model
The SYK model is a quantum mechanical model in 0+1 dimensions that
consists of a Hamiltonian with random all-to-all interactions between N
Majorana fermions1. The Hamiltonian is given by

H =
1

4!

N∑
j,k,l,m

Jjklmxjxkxlxm. (2.1)

The Majorana fermions xi obey the anticommutation relations {xi, xj} =
2δij , from which we can deduce that these operators are dimensionless and
that x2i = 1. Regarding the variable Jjklm, it is randomly drawn from a
normal/Gaussian distribution and it is time independent. This means that
we study a model with quenched disorder. These variables have dimension
of energy.

We can show that Jjklm is completeley antisymmetric because

Jjklmxjxkxlxm =
1

2
(Jjklmxjxkxlxm + Jkjlmxkxjxlxm)

=
1

2
(Jjklmxjxkxlxm − Jkjlmxjxkxlxm).

and for this sum to be different than zero we must have Jjklm = −Jkjlm.
This property of antisymmetry holds for all possible pairs of indices. It is
important to mention that these variables vanish if 2 or more indices are
the same.

1For more details, see Appendix D
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The Jjklm are drawn from a distribution with

P (Jjklm) =

√
N3

12πJ2
exp
(
−
N3J2

jklm

12J2

)
, (2.2)

where J2
jklm = JjklmJjklm and J2 =

∑N
j,k,l,m JjklmJjklm. To compute the

average Jjklm, we will integrate over the probability distribution (with no
summation over the indices):

Jjklm =

∫ ∞

−∞
d(Jjklm)JjklmP (Jjklm) =

=

√
N3

12πJ2

∫ ∞

−∞
d(Jjklm)Jjklmexp

(
−
N3J2

jklm

12J2

)
= 0,

as an odd function integrated on a symmetric interval. Moreover, we com-
pute

J2
jklm =

∫ ∞

−∞
d(Jjklm)J2

jklmP (Jjklm) =

=

√
N3

12πJ2

∫ ∞

−∞
d(Jjklm)J2

jklmexp
(
−
N3J2

jklm

12J2

)
=

3!J2

N3
,

where we have used the Gaussian integral
∫∞
−∞ dxx2e−ax2

=
√

π
4a3
.

So, we have

Jjklm = 0, (2.3)

J2
jklm =

3!J2

N3
. (2.4)

The Lagrangian (in Euclidean space) of this model is

L =
1

2
xj
dxj
dτ

−H. (2.5)

Using the Euler-Lagrange equations and the anticommutation relations of
the fermions we have:

dL

dxj
− d

dτ

( dL
dẋj

)
= 0

⇔ 1

2
ẋj −

1

3!
Jjklmxkxlxm − (−1

2
ẋj) = 0

ẋj =
1

3!

∑
klm

Jjklmxkxlxm. (2.6)
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2.2 Two-point function
The two-point Green function in Euclidean space is defined as:

Gij(τ) ≡< Txi(τ)xj(0) >≡< xi(τ)xj(0) > θ(τ)− < xi(0)xj(τ) > θ(−τ).
(2.7)

An important quantity that we will use from now on, is the normalized trace
of the above two-point function. We will denote it as:

G0(τ) =
1

N

N∑
i=1

G0,ii. (2.8)

The generating functional for the free Majorana fermion is given by (where
Jj is a source):

Z0[J ] =

∫
Dx1...DxNe

−
∫
dτ
(

1
2
xj

dxj
dτ

+Jjxj

)
= Ne

1
2

∫
dτdτ ′Jk(τ)∆(τ−τ ′)Jk(τ

′).

(2.9)

The propagator ∆(τ − τ ′) satisfies the equation

d

dτ
∆(τ − τ ′) = δ(τ − τ ′). (2.10)

This equation is solved by the function sgn(τ) = 2θ(τ)− 1, so we find that

∆(τ − τ ′) =
1

2
sgn(τ − τ ′).

Now, we are able to compute the two-point function using the equation

G0,ij(τ) =
δij
Z[0]

δ

δJi(τ)

δ

δJj(0)
Z0[J ]|J=0. (2.11)

We have

G0,ij(τ) =
δij
Z[0]

δ

δJi(τ)

[
1

2

∫
dτ ′∆(−τ ′)Jj(τ ′) +

1

2

∫
dτJj(τ)∆(τ)

]

× e
1
2

∫
dτdτ ′Jk(τ)∆(τ−τ ′)Jk(τ

′).

Differentiating once more and setting J = 0 we get

G0,ij(τ) = ∆(τ)δij =
1

2
sgn(τ)δij , G0(τ) =

1

N

N∑
i=1

G0,ii(τ) =
1

2
sgn(τ).
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By Fourier transformation we can calculate G0(ω) with ω = (2n+1)π
β

where ω are the Matsubara frequencies and β the inverse temperature. Thus,
for i = j we have:

G0(ω) =

∫ β

0
dτeiωτG0(τ) =

1

2

∫ β

0
dτeiωτ sgn(τ) =

=
1

2

∫ β

0
dτeiωτ = −1

2

i

ω
(eiωβ − 1) = − 1

iω
.

(2.12)

As expected due to the fermionic nature of the theory, the Green’s function
is odd and antiperiodic (the period being β). Summarizing, we have two
important results:

G0(τ) =
1

2
sgn(τ), (2.13)

G0(ω) = − 1

iω
=

i

ω
. (2.14)

2.3 Two-point function of the full interacting the-
ory for large N

We will now compute the full two-point function of the model using pertur-
bation theory and as we will see due to the large N limit and the disorder
average, we will end up with some simple diagrams.
We have:

< T (xa(τ1)xb(τ2) >=

∫
Dxie

−Sxa(τ1)xb(τ2) =

=

∫
Dxie

−
∫
L0dτxa(τ1)xb(τ2)

(
1−

∫
dτLint +

1

2
(

∫
dτLint)

2 + ...

)
,

(2.15)

where Lint = 1
4!

∑N
j,k,l,m Jjklmxjxkxlxm. We will now compute each term

separately. The first term is the free two-point function as we have showed
in the previous section:∫

Dxie
−

∫
L0dτxa(τ1)xb(τ2) =

1

2
δabsgn(τ1 − τ2). (2.16)

The second term is:∫
Dxie

−
∫
L0dτ

N∑
j,k,l,m

Jjklm
1

4!

∫
dτxj(τ)xk(τ)xl(τ)xm(τ)xa(τ1)xb(τ2) = 0,

(2.17)
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because as we have shown Jjklm = 0. So, in first order we do not have any
contribution to the two-point function.
Next, we will compute the second order term:

1

2

1

4!4!

∫
Dxie

−
∫
L0dτxa(τ1)xb(τ2)

N∑
j,k,l,m,n,p,q,r

JjklmJnpqr

∫
dτ∫

dτ ′xj(τ)xk(τ)xl(τ)xm(τ)xn(τ
′)xp(τ

′)xq(τ
′)xr(τ

′).

(2.18)

We will now use Wick’s theorem and the fact that every contraction gives
G0,ij(τ − τ ′)δij . It is also important to avoid contractions that will result in
giving the same indices in J. For simplicity, we will denote the contraction
showing only the indices of each operator.
Thus, we have:

abjklmnpqr

The first possible contraction is:

abjkllnpqr (2.19)
We end up with the expression:

1

2

4!

4!4!

∫
dτdτ ′

∑
jklmnpqr

JjklmJnpqrδabδjnδkpδlqδmrG0(τ1 − τ2)[G0(τ − τ ′)]4.

(2.20)
This expression gives us the following Feynman diagram, in which after di-
viding by Z0 the vacuum bubble will be eliminated.

τ

τ1

τ ′

τ2

We now move to a different contraction:

abjklmnpqr (2.21)
The expression is:

1

2

S

4!4!

∫
dτdτ ′

∑
jklmnpqr

JjklmJnpqrG0,ajδaj(τ1 − τ)G0,bn(τ
′ − τ2)δbn

×G0,kp(τ − τ ′)δkpG0,lq(τ − τ ′)δlqG0,mr(τ − τ ′)δmr,
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where S is the symmetry factor (in this diagram S = 4 ·4 ·4 ·3 ·2 ·1 ·3 ·2 ·1).
To compute above expression, we will impose the rules that come from

the delta functions and in the end we will compute the disorder average.
Using ∑

klmpqr

δkpδlqδmr = N3,

we end up with the expression
1

2

S

4!4!
N3

∫
dτdτ ′JaklmJbklmG0,aa(τ1 − τ)G0,bb(τ

′ − τ2)[G0(τ − τ ′)]3. (2.22)

We must now compute the disorder average. Using the results (2.3),(2.4)
we have:

JaklmJbklm =

{
Jaklm × Jbklm = 0 if a ̸= b

J2
aklm = 3!J2

N3 if a = b

Finally, we get

3!J2

2

S

4!4!

∫
dτdτ ′G0,aa(τ1 − τ)G0,bb(τ

′ − τ2)[G0(τ − τ ′)]3, (2.23)

which corresponds to the watermelon diagram:

τ τ ′
τ1 τ2

Figure 2.1: The watermelon diagram

Τhe next non-vanishing contribution comes from 1
4!

( ∫
dτLint

)4
, we have

the diagram

τ τ ′
τ1

τ ′′ τ ′′′
τ2

The above diagram corresponds to the following expression:
S

(4!)5

∫
dτdτ ′dτ ′′dτ ′′′

∑
jklmnpqr

∑
cdefghsw

JjklmJNpqrJcdefJghsw

×G0,aj(t1 − τ ′)δaj [G0(τ − τ ′)]3δkpδlqδmrG0,nc(τ
′ − τ ′′)δnc

× [G0(τ
′′ − τ ′′′)]3δdhδesδfwδbgG0,bg(τ

′′′ − τ2).

Again, from the summation of the delta functions we get∑
jklmnpqr

∑
cdefghsw

δkpδlqδmrδdhδesδfw = N6.
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Thus, (ignoring the symmetry factor and the constants from perturbation
theory) we have

N6

∫
dτdτ ′dτ ′′dτ ′′′JaklmJcklmJcdefJbdefG0(τ1 − τ ′)[G0(τ − τ ′)]3G0(τ

′ − τ ′′)

×[G0(τ
′′ − τ ′′′)]3G0(τ

′′′ − τ2).

In order to obtain a non-vanishing result we must set impose now the con-
dition c = b = a. Then, the above expression becomes

(3!)2J4N6

N6

∫
dτdτ ′dτ ′′dτ ′′′G0(t1 − τ ′)[G0(τ − τ ′)]3G0(τ

′ − τ ′′)

×[G0(τ
′′ − τ ′′′)]3G0(τ

′′′ − τ2).

Again, we see that in the large N limit, this diagram contributes to the full
two-point function. From the calculations of the previous two diagrams we
can deduce the rule that every internal propagator that is included between
the 2 vertices that we compute the disorder average contributes a factor
N to the diagram. That means that in 2.1 the three internal propagators
between the vertices τ, τ ′ give a N3 contribution. Keeping this rule in mind,
we examine the following diagram:

a b b a

As we can see, it is the same diagram as before except that the disorder
averages are computed in a different way. doing the same procedure as
before we get:

(3!)2J4

N6

∑
i,j,k,b

δiiδjjδkkδiiδbb

∫
dτdτ ′dτ ′′dτ ′′′G0(t1 − τ ′)[G0(τ − τ ′)]3G0(τ

′ − τ ′′)

×[G0(τ
′′ − τ ′′′)]3G0(τ

′′′ − τ2),

where the indices i, j, k correspond to the internal propagators that connect
the vertices a, b and the index b corresponds to the internal propagator that
connects the vertices b, b. It is crucial to mention that the disorder average
from vertex a to the other vertex a impose the condition that the internal
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propagators from the vertices a → b, b → a must be the same. Because
of this, we get a factor N4 instead of N6 from the summation of the delta
functions. Overall, we get:
(3!)2J4N4

N6

∑
i,j,k,b

δiiδjjδkkδiiδbb

∫
dτdτ ′dτ ′′dτ ′′′G0(t1 − τ ′)[G0(τ − τ ′)]3G0(τ

′ − τ ′′)

×[G0(τ
′′ − τ ′′′)]3G0(τ

′′′ − τ2),

(2.24)

This diagram contributes as 1
N2 and in the large N limit it vanishes. We

can conclude that the only diagram that contribute to the two-point func-
tion in this limit are the ones with the structure of the watermelon diagram.
We demonstrate another diagram:

Now, inspired by 2.1 we define the self energy

Σ(τ1, τ2) = J2G(τ1, τ2)
3. (2.25)

Then, we have the Dyson equation for the full two-point function:
G = G0 +G0ΣG+G0ΣG0ΣG0 + ...

= G0[1 + ΣG0 +ΣG0ΣG0 + ...]

= G0[1− ΣG0]
−1,

(2.26)

where in the last line we have resummed a geometric series. This can also
be written as

G−1 = G−1
0 − Σ, (2.27)

and in frequency space we have:
1

G(ω)
= −iω − Σ(ω). (2.28)
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2.4 Strong coupling limit
As we have seen, the parameter J has dimensions of energy so it is a relevant
coupling. This means that in the IR limit it is strong and we can’t use
perturbation theory. The dimensionless coupling of the theory is βJ . So
the strong coupling limit (at low energies) is defined by J >> ω >> β−1.
In this limit, we can ignore the first term in the right hand side of equation
(2.27). Thus , we have G× Σ = −1. Using Fourier transformation we have
the following equation to solve∫

dτ ′G(τ, τ ′)Σ(τ ′, τ ′′) = −δ(τ − τ ′′). (2.29)

One very interesting consequence of the IR limit is the emergent confor-
mal symmetry of the above equation. In one dimension, every smooth trans-
formation is a conformal transformation so we have Conf(R1) ∼= Diff(R1).
Suppose we make the parametrization τ = f(τ). We suppose the following
equation:

J2

∫
dτ ′G(f(τ), f(τ ′))[G(f(τ ′), f(τ ′′)]3 = −δ(f(τ)− f(τ ′′)). (2.30)

We want to show that if and only if the two-point function transforms as a
conformal two-point function, that means

G(τ, τ ′) = |f ′(τ), f ′(τ ′)|∆G(f(τ), f(τ ′)). (2.31)
where ∆ = 1

4 , then equation (2.29) is invariant under the reparametrization
τ = f(τ).We have (for generality, we replace the interaction appearing in
(2.30) with general q interactions between the fermions):

J2

∫
dτ ′G(τ, τ ′)[G(τ ′, τ ′′)]q−1

= J2

∫
dτ ′|f ′(τ), f ′(τ ′)|∆|f ′(τ ′), f ′(τ ′′)|∆(q−1)G(f(τ), f(τ ′))[G(f(τ ′), f(τ ′′)]q−1

= J2

∫
dτ ′f ′(τ ′) ·

[
f ′(τ)

f ′(τ ′′)

]q−1

f ′(τ ′′)G(f(τ), f(τ ′))[G(f(τ ′), f(τ ′′)]q−1.

We now change the integration variable: f̃ = f(τ ′), df̃ = f ′(τ ′)dτ ′ . Thus,we
get:

J2

∫
dτ ′G(τ, τ ′)[G(τ ′, τ ′′)]q−1

= J2

∫
df̃G(f(τ), f(τ ′))[G(f(τ ′), f(τ ′′)]q−1

[
f ′(τ)

f ′(τ ′′)

]q−1

f ′(τ ′′).

. (2.32)
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Using equation (2.29) we finally get:

J2

∫
dτ ′G(τ), τ ′)[G(τ ′, τ ′′]q−1

= −f(τ ′′)δ(f(τ)− f(τ ′′)) = −δ(τ − τ ′′),

(2.33)

To derive this, we have used the identity 1
|f ′(x0)|δ(x−x0) = δ(f(x)− f(x0)).

Thus, we have proved the emergent conformal symmetry of the propagator
in the strong coupling limit. It is believed that this a necessary and sufficient
condition for the entire model to be a conformal field theory in this limit.

We now give a simple example that justifies this consequence. Suppose
f(τ) = aτ . Using the transformation rules, we have

G(τ, τ ′) =
√
aG(f(τ), f(τ ′).

Plugging this result to equation (1.26) we get

J2

∫
adτ ′G(f(τ), f(τ ′))G(f(τ ′), f(τ ′′) = −1

a
δ(τ − τ ′),

which is the correct transformation of the equation (2.30).
Taking under consideration the emergent conformal symmetry, we use

an ansatz of the form:

G(τ) =
b

|τ |2∆
sgn(τ). (2.34)

By inserting this expression in (1.26) we will determine the constant b. We
have:

J2b4
∫
dτ ′
sgn(τ − τ ′)

|τ − τ ′|2∆
sgn(τ − τ ′′)

|τ − τ ′′|6∆
. (2.35)

We now use the Fourier transformation:
sgn(τ)
|τ |2∆

=

∫
dω

2π
e−iωτ |ω|2∆−1i21−2∆√π Γ(1−∆)

Γ(12 +∆)
sgn(ω).

Thus, (2.35) becomes (for ∆ = 1
4):

−J2b4π

∫
dτ ′

dω

2π

dω′

2π
e−iωτeiω

′τ ′′eiτ
′(ω−ω′)|ω|−

1
2 |ω′|

1
2
Γ(1− 1

4)

Γ(12 + 1
4)

Γ(1− 3
4)

Γ(12 + 3
4)
.

From the properties of Gamma function we get Γ(54) =
Γ( 1

4
)

4 . Using

δ(ω − ω′) =

∫
dτ ′

2π
eiτ

′(ω−ω′),
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the equation (2.29) for the given ansatz becomes:

−4J2b4π

∫
dω

2π
eiω(τ−τ ′) = −δ(τ − τ ′). (2.36)

We now use the Fourier transformation

δ(τ − τ ′′) =

∫
dω

2π
e−iω(τ−τ ′′).

Finally, we find that:
b =

( 1

4J2π

) 1
4
.

For general q, we have

J2bqπ =

(
1

2
− 1

q

)
tan

(
π

q

)
.

The full two-point function (in the strong coupling limit and zero tempera-
ture) is given by:

G(τ) =
( 1

4J2π

) 1
4 sgn(τ)
|τ |2∆

. (2.37)

To get the finite temperature version of the full two-point function, we use
f(τ) = tanπτ

β as a reparametrization. Using the transformation properties
(2.31) we get:

Gβ(τ − 0) =
(π
β

) 1
2
( 1

4J2π

) 1
4
( 1

cos2 πτβ

) 1
4 1√

tanπτ
β

.

The full two-point function for a finite temperature is:

Gβ(τ) =
π

1
4

√
2Jβ

1√
sinπτ

β

sgnτ. (2.38)

2.5 Spontaneous symmetry breaking
It is very important to notice that the ansatz (2.37) we have chosen causes
the spontaneous breaking of conformal symmetry down to SL(2,R). The
SL(2,R) is defined by Moebious transformations of the form

τ → f(τ) =
aτ + b

cτ + d
, ad− bc = 1. (2.39)

The derivative of this transformation is:

f ′(τ) =
1

(cτ + d)2
.
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We will prove now the invariance of G(τ, τ ′) under (2.39). For simplicity, we
take τ ′ = 0. Using the appropriate transformation rule we have:

G(τ, 0) = |f ′(τ), f ′(0)|∆G(f(τ), f(0)) = 1

|cτ + d|2∆
· 1

|d|2∆
sgn(τ)

|aτ+b
cτ+d − b

d |2∆

=
1

|cτ + d|2∆
· 1

|d|2∆
sgn(τ)|d(cτ + d)|2∆

|τ(ad− bc)|2∆
=
sgn(τ)
|τ |2∆

.

(2.40)

But if we apply a transformation f(τ) ∈ Conf(R1) but f(τ) ̸∈ SL(2, R) we
can see that our ansatz is not invariant. For example we take f(τ) = aτ2.
Using the transformation rule we have:

G(τ, τ ′) = |τ |2|τ ′|2 · sgn(aτ
2 − aτ ′2)

|τ2 − τ ′2|2∆
̸= sgn(τ − τ ′)

|τ − τ ′|2∆
. (2.41)

With this two derivations we have proven the spontaneous breaking of the
conformal symmetry which is a landmark feature of the SYK model.
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Chapter 3

Four-point function

In this chapter we will study the four-point function which lead to some
interesting results. As we have seen, in any correlation function the average
over the disorder Ji1,..,iq will give zero unless the indices are equal in pairs.
Keeping this in mind the most general four-point function is

⟨xi(τ1)xi(τ2)xj(τ3)xj(τ4)⟩. (3.1)

Now we consider averaging over i, j indices. Thus, the averaged correlator
is:

1

N2

N∑
i,j=1

⟨T (xi(τ1)xi(τ2)xj(τ3)xj(τ4))⟩ = G(τ12)G(τ34) +
1

N
F(τ1, .., τ4)

(3.2)
where 1

N2 is put for normalization purposes. In the right hand side,we have
the disconnected piece after the contraction of the full propagators plus a
power series in 1/N . The disconnected diagram

τ1 τ3

τ2 τ4

gives a contribution of N2 due to the summation over i, j and together with
the normalization factor 1/N2, it gives a zeroth order contribution in powers
of N .

3.1 Ladder diagrams
We will now analyse the first ladder diagrams that are needed to compute F .
These are diagrams with n rungs. Denoting a diagram with n rungs as Fn,
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we have F =
∑

nFn. The first diagram that contributes to the four-point
function is

τ1 τ3

τ2 τ4

and its expression is given by the product of the propagators

F0(τ1..τ4) = −G(τ13)G(τ24) +G(τ14)G(τ23), (3.3)

where the second term gives the same diagram but with (τ3 ↔ τ4) and a rela-
tive minus sign due to the anticommutation relations that the fermions obey.
The propagators set i = j in the sum (3.2) so this gives an N contribution.
Combined with the factor 1/N2, this diagram gives a 1/N contribution.
Moving to the next diagram we have one rung. The diagram is the followingjii j τ3

τ4

τ1

τ2

τ

τ
0

and the expression is given by:

F1 = J2(q − 1)

∫
dτdτ ′

[
G(τ1 − τ)G(τ2 − τ ′)G(τ − τ ′)q−2

×G(τ − τ3)G(τ
′ − τ4)− (τ3 ↔ τ4)

]
, (3.4)

where we have integrated over the locations of the ends of the rung. This
diagram also contributes 1/N . That is because we get a factor 1/N3 from
the disorder average and we also have a factor of N2 from the internal
propagators and a factor N2 from the sum over the indices i, j. Thus a
factor N divided by N2 ( the normalization factor) gives us at the end a
contribution of 1/N . Another way to check this is by ignoring the sum of i,j
indices and the normalization factor and focus on the rung. Then we get a
factor 1/N q−1 from the disorder average and a factor of N q−2 from the sum
of the internal (q − 2) indices of the internal propagators.

The factor (q−1) comes from the choice of which of the lines coming out
of the interaction vertex should be contracted into a rung and which should
continue on as the side rail. In our case, where q = 4 we get a factor 3. We
will use now the fact that every ladder diagram is produced by multiplication
by a kernel K as we can see in the following figure:

·=
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As we can see we can write a ladder diagram as:

Fn+1(τ1, τ2, τ3, τ4) =

∫
dτdτ ′K(τ1, τ2; τ, τ

′)Fn(τ, τ
′; τ3, τ4), (3.5)

with the kernel being

K(τ1, τ2; τ3, τ4) ≡ −J2(q − 1)G(τ13)G(τ24)G(τ34)
q−2. (3.6)

We can think of the integral transform in the previous equation as matrix
multiplication with the first 2 arguments of the kernel forming one index
and the last 2 arguments forming the index that gets integrated. This way,
the sum of all ladder diagrams is a geometric series.

F =

∞∑
n=0

Fn =

∞∑
n=0

KnF0 =
1

1−K
F0

=
∑
h

Ψh(χ)
1

1− kc(h)

⟨Ψh(χ),F0⟩
⟨Ψh(χ),Ψh(χ)⟩

,

(3.7)

where Ψh(χ) are the eigenfunctions of the Casimir operator and kc the eigen-
values of the kernel. To compute this sum we must first understand how to
diagonalize K. As we can see by the way we have defined the kernel, it is
not symmetric in (τ1, τ2) ↔ (τ3, τ4) because:

K(τ3, τ4, τ1, τ2) = −J2(q − 1)G(τ1, τ3)G(τ2, τ4)G(τ1, τ2)
q−2. (3.8)

However we can define the symmetric version as follows:

K̃(τ1, τ2; τ3, τ4) ≡ |G(τ12)|
q−2
2 K(τ1, τ2; τ3, τ4)|G(τ34)|

2−q
2

= −J2(q − 1)|G(τ12)|
q−2
2 G(τ12)G(τ24)|G(τ34)|

q−2
2 .

(3.9)

Now that we have shown how to symmetrize K, we can deduce that K has
a complete set of eigenvectors. We will consider this kernel to act on the
space of antisymmetric functions of two arguments.

3.2 Using conformal symmetry
What we have said is true for any value of the coupling βJ. Now we will
consider the conformal limit βJ ≫ 1. We can now use the expressions we
have found for Gc(τ). Using these expressions we can see that the kernel
has no J dependence. Indeed:

K ∝ J2

(
1

J2

)1/q ( 1

J2

)1/q ( 1

J2

)q−2/q

∝ J2 1

J2
. (3.10)
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To find the explicit expressions for the kernel we substitute Gc(τ). We have:

Kc(τ1, τ2; τ3, τ4) = − 1

α0

sgn(τ13)sgn(τ24)sgn(τ34)
|τ13|2∆|τ24|2∆|τ34|2−4∆

, (3.11)

where
α0 =

1

(q − 1)J2bq
=

2πq

(q − 1)(q − 2)tan
(
π
q

) . (3.12)

Using this expression we can compute some of the correlators in the confor-
mal limit but we have to be careful because some eigenfunctions of K can
have the eigenvalue Kc = 1 and then the geometric series (3.7) will diverge.
The crucial property to diagonalize the kernel is the use of conformal invari-
ance. We will use the following generators:

D̂ = −τ∂τ −∆, P̂ = ∂τ , K̂ = τ2∂τ + 2τ∆ . (3.13)

We will now derive their commutation relations: For example,

[D̂, K̂] = (−τ∂τ −∆)(τ2∂τ + 2τ∆)− (τ2∂τ + 2τ∆)(−τ∂τ −∆)

= (−2τ2∂τ − τ3∂2τ − K̂∆− 2∆τ)− (−τ2∂τ − τ3∂2τ − K̂∆− 2τ2∂τ

= −τ2∂τ − 2∆τ = −K̂.

Finally, we can see that the generators obey the following commutation
relations:

[D̂, P̂ ] = P̂ , [D̂, K̂] = −K̂, [P̂ , K̂] = −2D̂ . (3.14)

Τhese generators commute with the kernel Kc up to total derivatives with
respect to τ3, τ4. That means:

(D̂1 + D̂2)Kc(τ1, τ2; τ3, τ4) = Kc(τ1, τ2; τ3, τ4)(D̂3 + D̂4) . (3.15)

The same holds for the P̂ and K̂ generators. We will confirm this relation
for the P̂ generators. We have:

(P̂1 + P̂2)Kc(τ1, τ2; τ3, τ4) = Kc(τ1, τ2; τ3, τ4)(P̂3 + P̂4) . (3.16)

The left hand side can be written as
∫
dτ1dτ2(

dKc
dτ1

+ dKc
dτ2

)ua(τ1, τ2), where
ua are the eigenfunctions of the kernel. The right hand side is:∫

dτ3dτ4Kc(τ1, τ2; τ3, τ4)P̂34ua(τ3, τ4) =

∫
dτ3dτ4P̂34(Kc · ua)−∫

dτ3dτ4(P̂34Kc)ua =
d

dτ3
(Kc · ua)|∞−∞ +

d

dτ4
(Kc · ua)|∞−∞−∫

dτ3dτ4(P̂34Kc)ua(τ3, τ4) =
d

dτ3
(Kc · ua)|∞−∞ +

d

dτ4
(Kc · ua)|∞−∞−∫

dτ1dτ2(P̂12Kc)ua(τ1, τ2). (3.17)
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As we can see we get the left hand side plus some total derivatives. We
should be careful about dropping the boundary terms. The commutation
we have shown means that the generators of the conformal algebra take the
solutions of Kua = g(a)ua to new solutions with the same eigenvalue.

We find conformal symmetry to be useful in two ways.

• First, as we have seen F0 is a product of two-point Green functions
which transform in a conformal way. That means that also F0 trans-
forms as a conformal four-point function. That implies that we can
write the ladder diagrams Fn as simple powers times a function of the
invariant cross ratio

χ =
τ12τ34
τ13τ24

.

This will allow us to represent the kernel in the space of function of a
single cross ratio Kc(χ; χ̃) instead of function of τ1, τ2, τ3, τ4.

• Second, it implies that the kernel commutes with the Casimir operator
C1+2 defined as:

C1+2 = (D̂1 + D̂2)
2 − 1

2
(K̂1 + K̂2)(P̂1 + P̂2)−

1

2
(P̂1 + P̂2)(K̂1 + K̂2) .

(3.18)
Using the commutation relations of the generators and the fact that
two generators acting on different times commute we get the expression
for the Casimir:

C1+2 = 2(∆2 −∆)− K̂1P̂2 − P̂1K̂2 + 2D̂1D̂2 . (3.19)

The Casimir is a differential operator with eigenfunctions given by sim-
ple powers times function Ψh(χ). The fact that the kernel commutes
with the Casimir operator tells us that the eigenfunctions Ψh(χ) of the
Casimir are also the exact eigenfunctions of the kernel Kc(χ; χ̃).

3.2.1 The four-point function as a function of cross ratios
In the strong coupling limit, taking advantage of the emergent conformal
symmetry, we deduce that the ladder diagrams Fn will transform as confor-
mal four-point functions:

Fn(τ1, τ2, τ3, τ4) = Gc(τ12)Gc(τ34)Fn(χ) . (3.20)

We use the antisymmetry under τ1 ↔ τ2,τ3 ↔ τ4 ,the symmetry under
(τ1, τ2) ↔ (τ3, τ4) and SL(2) transformations and we can set τ1 = 0, τ3 =
1, τ4 = ∞ and τ2 > 0. The cross ratio now becomes χ = τ2 > 0. Using the
time-ordering in the definition of the four-point averaged correlator we have
the following cases:
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{
+⟨xj(∞)xj(1)xi(χ)xi(0)⟩ if 0 < χ < 1
−⟨xj(∞)xi(χ)xj(1)xi(0)⟩ if 1 < χ <∞

In the region χ > 1 , the correlation function has an extra symmetry.
To see this, we use the following nonstandard map

τ − 2

τ
= tanθ

2
.

The operators for τ = 0, 1,∞ get sent to the points −π,−π
2 ,

π
2 . For τ2 = χ

the operator get sent to some coordinate θ. The symmetry θ → −θ of the
circle translates to χ→ χ

χ−1 . This can be checked as following:

τ2
τ2−1 − 2

τ2
τ2−1

=
τ2−2τ2+2

τ2−1
τ2

τ2−1

=
−τ2 + 2

τ2
= tan−θ

2
, (3.21)

which is the correct transformation. As a consequence of this symmetry,
in the region where χ > 1 we must have F(χ) = F( χ

χ−1). Moreover using
this symmetry we have F(1) = F(∞). This maps the interval 1 < χ < 2
to the range 2 < χ < ∞ with fixed point at χ = 2. This implies that the
full F(χ) can be fully determined once we know the function in 0 < χ < 2,
and that the derivative of F must vanish at χ = 2. This can be checked by
differentiating F(χ) = F( χ

χ−1). We get F ′(2) = −F ′(2), so the derivative
must vanish.
Another advantage is that ladder kernel can be written as

Fn+1(χ) =

∫ 2

0

dχ̃

χ2
Kc(χ, χ̃)Fn(χ) , (3.22)

where Kc(χ, χ̃) is the symmetric kernel in terms of hypergeometric function
as we have shown in chapter 3 of the appendices.
In the following section we will compute the eigenfunctions of the Casimir
operator, the eigenvalues of the kernel and the necessary inner products for
equation (3.7).

3.2.2 Eigenfunctions of the Casimir operator
We will now compute a complete set of eigenfunctions of the Casimir C1+2

with the required properties. We will derive now how the Casimir operator
acts on functions of the cross-ratio. The explicit calculation can be found
on the appendices. We find the following relationship:

C1+2
1

|τ12|2∆
f(χ) =

1

|τ12|2∆
Cf(χ) , (3.23)
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with C ≡ χ2(1 − χ)∂2χ − χ2∂χ. Writing the eigenvalues as h(h − 1), we
have to solve the equation Cf = h(h− 1)f . The general solution is a linear
combination of

χh
2F1(h, h, 2h, χ), χ1−h

2F1(1− h, 1− h, 2− 2h, χ) . (3.24)

We now need to select a from this set a complete basis for functions that
satisfy f ′(2) = 0. Moreover these functions should be normalizable with
respect to the inner product

⟨g, f⟩ =
∫ 2

0

dχ

χ2
g∗(χ)f(χ) . (3.25)

We will use this product to make C hermitian. As we know, the eigenfunc-
tions of a hermitian operator are complete so we will use this fact and try to
make the boundary terms that will occur vanish. The hermiticity condition
is:

0 = ⟨g, Cf⟩ − ⟨Cg, f⟩ =
∫ 2

0
dχ
[
g∗(1− χ)f ′′ − g∗f ′ − (g∗′′(1− χ)f − g∗′f)

]
=
[
g∗(1− χ)f ′ − g∗′(1− χ)f

]′
=
[
g∗(1− χ)f ′ − g∗′(1− χ)f

] ∣∣∣2
0
.

(3.26)

As we have seen f ′(2) = 0, thus the boundary term at χ = 2 vanishes. The
boundary term also vanishes at χ = 0 if we impose that f → 0 faster than
χ1/2. The eigenfunctions (3.24) at χ = 1 have logarithmic divergence as
they can be approximated by f ≈ A + Blog(1 − χ) for χ → 1− and f ≈
C+Dlog(χ−1) for χ→ 1+. Consequently, for this boundary term to vanish
we must impose that A = C,B = D. In other words, the eigenfunctions
must approach χ from χ → 1+ and χ → 1− in the same way. We will now
determine the correct set of eigenfunction with the properties we mentioned.
First, in the region χ > 1 we impose the condition f ′(2) = 0. Using special
hypergeometric identities and a convenient normalization factor we get:

Ψh =
Γ(1/2− h/2)Γ(h/2)√

π
2F1(h/2, h/2, h,

(2− χ)2

χ2
) χ > 1 . (3.27)

In the region χ < 1 we have the linear combination:

Ψh = A
Γ(h)2

Γ(2h)
χh

2F1(h, h, 2h, χ)+B
Γ(1− h)2

Γ(2− 2h)
χ1−h

2F1(1−h, 1−h, 2−2h, χ) .

(3.28)
As we expected from the equation of the Casimir operator, in both region
we have Ψh = Ψ1−h. We can now expand these eigenfunctions for χ = 1+ ϵ
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and χ = 1 − ϵ to study the behaviour around χ = 1 and determine the
factors A, B. We get:

A(h) =
1

tanπh
2

tanπh
2

B = A(1− h) = −tanπh
2

tanπh
2

. (3.29)

The last condition we have to impose is that the eigenfunctions must vanish
as fast as x1/2 as χ approaches 0. We have two types of solutions based on
the fact that h > 1/2.
1. h = 2n, n = 1, 2, 3... .For these values A = 1 and B vanishes.
2.h = 1

2 + is Together with these two sets the eigenfunctions given by
(3.27),(3.28) in the related regions form a complete basis of normalizable
function with the conditions we have imposed.

3.2.3 Eigenvalues of the kernel
Having now computed the eigenfunctions of the Casimir operator, we pro-
ceed to the computation of its eigenvalues. As we have shown, the Casimir
operator commutes with the kernel Kc (3.15), so the Casimir eigenvalues
are also eigenvalues of the kernel. The most intuitive way to compute them
is to solve the equation Kc(χ, χ̃)Ψh(χ̃) = kc(h)Ψ(χ̃), where we have avoided
the integration for simplicity. However, there is a simpler way to get the
answer. We think about the Casimir as acting on two times C1+2. We then
have the equation C1+2Ψh = kc(h)Ψh. The eigenfunctions of the operator
turn to be of the form of a conformal three-point function of two fermions
and an operator of dimension h. Written as linear combination we have:

Ψh(τ1, τ2) =

∫
dτog(τo)f(τ1, τ2),

where f τ0h (τ1, τ2) =
sgn(τ1 − τ2)

|τ1 − τ0|h|τ2 − τ0|h|τ1 − τ2|2∆−h
.

(3.30)

To determine the eigenvalues we have to solve the equation:

kc(h)f
τ0
h (τ1, τ2) =

∫
dτdτ ′Kc(τ1, τ2; τ, τ

′)
sgn(τ − τ ′)

|τ − τ0|h|τ ′ − τ0|h|τ − τ ′|2∆−h
.

(3.31)
Using SL(2,R) symmetry we can move τ0 around also set τ1 = 1, τ2 = 0.
We, then set τ0 to approach infinity. Thus:

kc(h) =

∫
dτdτ ′Kc(1, 0; τ, τ

′)
sgn(τ − τ ′)

|τ − τ ′|2∆−h

= − 1

α0

∫
dτdτ ′

sgn(1− τ)sgn(−τ ′)sgn(τ − τ ′)

|τ − τ ′|2−2∆−h|τ ′|2∆|1− τ |2∆
.

(3.32)

The straightforward way to evaluate this integral is by dividing the integra-
tion regions according to the sign functions. But there is a quicker and more
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elegant way. We make use of:

sgn(τ)
|τ |α

=

∫
dω

2π
e−iωτ c(α)|ω|α−1sgn(ω), c(α) = 2i2−α√π

Γ(1− α
2 )

Γ(12 + α
2 )
.

(3.33)
By using this identity we can write the factor 1/|τ − τ ′|2−2∆−h as a Fourier
transformation. We get:∫

dω

2π
|ω|2−2∆−h−1C(2− 2∆− h)sgn(ω) ∗

∫
dτe−iωτ sgn(1− τ)

|1− τ |2∆

∗
∫
dτ ′eiωτ

′ (−1) · sgn(τ ′)
| − τ ′|2∆

,

where we also have used sgn(−τ ′) = −sgn(τ ′). Changing integration vari-
ables, the second integral can be written as:∫

dτe−iωτ sgn(1− τ)

|1− τ |2∆
=

∫
due−iω(1−u) sgn(u)

|u|2∆
.

Thus we get 2 similar integrals (up to a minus sign) of the form of (3.33).
Thus we use this formula 2 more times and we finally find:

kc =
1

α0

c(2− 2∆− h)

c(2∆− h)
[c(2∆)]2 . (3.34)

Substituting α0 and the coefficients c from (3.33) we get:

kc = −(q − 1)(q − 2)

2q
tan

(
π

q

)
[Γ(1− 1

q )]
2

[Γ(12 + 1
q )]

2

Γ(1q +
h
2 )

Γ(32 − 1
q −

h
2 )

Γ(12 + 1
q −

h
2 )

Γ(1− 1
q +

h
2 )
.

(3.35)
We can express the tangent function in terms of Gamma functions using the
following:

sin(πz) = π

Γ(z)Γ(1− z)
tan

(
π

q

)
=

sin
(
π
q

)
sin
(
π
2 − π

q

) .
Thus,

tan
(
π

q

)
=

Γ(12 + 1
q )Γ(

1
2 − 1

q )

Γ(1− 1
q )Γ

(
1
q

)
Then we can use the identity zΓ(z) = Γ(z + 1) and we can write(

1

2
− 1

q

)
Γ

(
1

2
− 1

q

)
= Γ

(
3

2
− 1

q

)
.
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Substituting the above in (3.35), we finally get the eigenvalues of the kernel:

kc(h) = −(q − 1)
Γ(1− 1

q )Γ
(
3
2 − 1

q

)
Γ(12 + 1

q )Γ
(
1
q

) Γ(1q +
h
2 )

Γ(32 − 1
q −

h
2 )

Γ(12 + 1
q −

h
2 )

Γ(1− 1
q +

h
2 )
. (3.36)

The eigenvalues are real for h = 1
2 + is and h = 2n. Moreover, they satisfy

kc(h) = kc(1−h) as expected. We will now compute them for q=4. We get:

kc(h) = −3
Γ (5/4)

Γ(1/4)

Γ
(
1
4 + h

2

)
Γ
(
3
4 − h

2

)
Γ
(
5
4 − h

2

)
Γ
(
3
4 + h

2

)
We can write

Γ(5/4) =
1

4
Γ(1/4) Γ

(
5

4
− h

2

)
=

(
1

4
− h

2

)
Γ

(
1

4
− h

2

)
and then use sin(πz) = π

Γ(z)Γ(1−z) . We arrive at:

kc(h) = −3

2

tanπ(h−1/2)
2

(h− 1/2)

We summarize some simple cases:

kc(h) = −3

2

tanπ(h−1/2)
2

(h− 1/2)
q = 4 (3.37)

kc(h) =
2

h(h− 1)
q = ∞ (3.38)

kc(h) = −1 q = 2 (3.39)
For the cases q = 4, q = ∞, we get the important result kc(2) = 1.

3.2.4 Relevant inner products
In this section, we will compute all the relevant inner products that are
present in the four-point function. To start, we will compute the norm of
the eigenfunctions ⟨Ψh,Ψh′⟩. For the continuum case h = 1

2 + is we expect
that this inner product will be proportional to δ(s−s′). Such a contribution
can only come from small χ, where we can use the expansion:

2F1(a, b, c, χ) ≈ 1 +
abχ

c
+O(χ2) . (3.40)

Thus, in the small χ region we can replace the hypergeometric functions by
one. The inner product becomes:

⟨Ψh,Ψh′⟩ =
∫ ϵ

0

dχ

χ2
Ψ∗

h ·Ψh′ =

∫ ϵ

0

dχ

χ2

[
A(h)

Γ(h)2

Γ(2h)
χh +B(h)

Γ(1− h)2

Γ(2− 2h)
χ1−h

]∗
·
[
A(h′)

Γ(h′)2

Γ(2h′)
χh′

+B(h)
Γ(2h′)2

Γ(2− 2h′)
χ1−h′

]
(3.41)
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Now we will keep only the finite terms when s → s′ as the other terms will
have no contribution since eigenfunctions with different h must be orthogo-
nal. Thus:

⟨Ψh,Ψh′⟩ ∼
∫ ϵ

0

dχ

χ2

[
A(h′)A(h∗)

Γ(h′)2

Γ(2h′)

Γ(h∗)2

Γ(2h∗)
χh∗+h

+B(h′)B(h∗)
Γ(1− h∗)2

Γ(2− 2h∗)

Γ(1− h′)2

Γ(2− 2h′)
χ1−h∗+1−h′

]
.

(3.42)

Now we will work out the coefficients of χ. It is easy to show that h∗ =
1
2 − is = 1− (12 + is) = 1−h. This means that(in the limit s→ s′) we have

A(h∗)
Γ(h∗)2

Γ(2h∗)
= A(1− h)

Γ(1− h)2

Γ(2− 2h)
= B(h)

Γ(1− h)2

Γ(2− 2h)
. (3.43)

Applying the same relation to the other coefficient, we see that they are the
same as expected. In detail:

A(h)B(h)
Γ(h)2

Γ(2h)

Γ(1− h)2

Γ(2− 2h)
= −tan

2πh

4

Γ(h)2 π
√
2
1−2h

Γ(h)Γ(12 + h)

Γ(1− h)2
√
π2−1+2h

Γ(1− h)Γ(32 − h)

= −tan
2πh

4

π2

sinπh
1

Γ(12 + h)Γ(32 − h)

= −tan
2πh

4

π

sinπh
1

(h− 1
2)Γ(

3
2 − h)Γ(12 − h)

= −πtan
2πh
4

π

sinπh
sinπ(h− 1/2)

π

=
πtan2πh

4

cosπh
sinπh

1

(h− 1/2)
=
πtanπh
4h− 2

.

(3.44)

The inner product becomes:

⟨Ψh,Ψh′⟩ ∼ πtanπh
4h− 2

∫ ϵ

0

dχ

χ

(
χi(s−s′) + χ−i(s−s′)

)
. (3.45)

Making the change of variables u = log(χ), we have:

⟨Ψh,Ψh′⟩ ∼ πtanπh
4h− 2

∫ log(ϵ)

−∞
du
(
eiu(s−s′) + e−iu(s−s′)

)
. (3.46)

Taking the limit ϵ → 1, and changing in the second term the integration
variable to −u we end up with:

⟨Ψh,Ψh′⟩ ∼ πtanπh
4h− 2

∫ +∞

−∞
dueiu(s−s′) ∼ πtanπh

4h− 2
2πδ(s− s′) . (3.47)

Maybe while taking the limit ϵ → 1 we would have anticipated more finite
contributions because we cant set 2F1(a, b, c, χ) ≈ 1 for large χ, but this is
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not the case since based on the requirement of orthogonality the only strong
divergence comes from the point where χ = 0.

Now we will compute the same inner product but for h = 2n. Using the
definition of the Legendre Q function, we can write Ψh(χ) = 2Re[Qh−1(y)],
where y = (2 − χ)/χ. Substituting this expression to the inner product we
have:

⟨Ψh,Ψh′⟩ = 2

∫ ∞

0
dyRe[Qh(y)]Re[Qh′(y)] =

δhh′π2

4h− 2
. (3.48)

The last inner product we need to compute is ⟨Ψh,F0⟩. First we are going
to use the definition of F0 to express it as a function of cross ratios:

F0(χ) =
F0(τ1, τ2, τ3, τ4
G(τ1, τ2)G(τ3, τ4)

= − G(τ1, τ3)G(τ2, τ4
G(τ1, τ2)G(τ3, τ4)

+
G(τ1, τ4)G(τ2, τ3)

G(τ1, τ2)G(τ3, τ4)

= −sgn
(
τ12τ34
τ13τ24

)√∣∣∣∣τ12τ34τ13τ24

∣∣∣∣
+ sgn

(
τ12τ34
τ14τ23

)√∣∣∣∣τ12τ34τ14τ23

∣∣∣∣
= −sgn(χ)

√
|χ|+ sgn

(
χ

1− χ

)√∣∣∣∣ χ

1− χ

∣∣∣∣ .
(3.49)

The overall sign of this expression depends on the value of χ. We have (for
general q, we replace the square root by 2∆):

F0(χ) =

 −χ2∆ +
(

χ
1−χ

)2∆
if 0 < χ < 1

−χ2∆ −
(

χ
1−χ

)2∆
if χ > 1

Now to calculate the inner product ⟨Ψh,F′⟩ we use the following symmetry
F(χ) = F( χ

χ−1) for all χ. This symmetry comes from the integral represen-
tation:

Ψh(χ) =
1

2

∫ ∞

−∞
dy

|χ|h

|y|h|χ− y|h|1− y|1−h
. (3.50)

Moreover we can see from the expression of F0(χ), that it is antisymmetric
under χ → χ

1−χ for 0 < χ < 1 and symmetric under χ → χ
χ−1 for χ > 1.

The inner product becomes:

⟨Ψh,F0⟩ =
∫ 2

0

dχ

χ2
Ψ∗

h(χ)F0(χ) =

∫ 2

0

dχ

χ2
Ψ∗

h(χ)sgn(χ)|χ|2∆

+

∫ 1

0

dχ

χ2
Ψ∗

h(χ)sgn
(

χ

1− χ

) ∣∣∣∣ χ

1− χ

∣∣∣∣2∆ +

∫ 2

1

dχ

χ2
Ψ∗

h(χ)sgn
(

χ

χ− 1

) ∣∣∣∣ χ

χ− 1

∣∣∣∣2∆
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In the second term we can change variables χ → χ
1−χ and use the relevant

symmetries and we get:∫ 1

0

dχ

χ2
Ψ∗

h(χ)sgn
(

χ

1− χ

) ∣∣∣∣ χ

1− χ

∣∣∣∣2∆ =

∫ 0

−∞

dχ

χ2
Ψ∗

h(χ)sgn(χ)|χ|2∆ . (3.51)

The third term, using the appropriate symmetries and changing variables
χ→ χ

χ−1 becomes:∫ 2

1

dχ

χ2
Ψ∗

h(χ)sgn
(

χ

χ− 1

) ∣∣∣∣ χ

χ− 1

∣∣∣∣2∆ =

∫ ∞

2

dχ

χ2
Ψ∗

h(χ)sgn(χ)|χ|2∆ . (3.52)

Thus, we get:

⟨Ψh,F0⟩ =
∫ ∞

−∞

dχ

χ2
Ψ∗

h(χ)sgn(χ)|χ|2∆ =
1

2

∫ ∞

−∞
dχdy

sgn(χ)
|χ|2−h−2∆|y|h|χ− y|h|1− y|1−h

(3.53)

This integral is similar to (3.32). We can make the integration variable
change y = 1

τ , χ = 1
ττ ′ . We then have:∫
dτ

sgn(τ)
|τ |2∆|1− τ |1−h

·
∫
dτ ′

sgn(τ ′)
|τ ′|2∆|1− τ ′|1−h

. (3.54)

Now, we change the integration variables as τ = τ1−1, τ ′ = τ1τ2
τ2−1 in (3.32)/a0

and get the above expression. In the end our inner product becomes:

⟨Ψh,F0⟩ =
a0
2
kc(h) . (3.55)

Another way of solving the previous integral is to divide the regions of
integration and use the Euler beta function.

3.2.5 Summing all ladder diagrams
Now that we have computed all relevant quantities we can use (3.7) to give
an expression for the four-point function. The desired function will be an
integral over continuous values of h and a sum over their discrete values.
Thus, we have:

F(χ) =
∑
h

Ψh(χ)
1

1− kc(h)

⟨Ψh(χ),F0⟩
⟨Ψh(χ),Ψh(χ)⟩

= a0

∫ ∞

0

ds

2π

2h− 1

πtanπh
kc(h)

1− kc(h)
Ψh(χ) + a0

∞∑
n=1

2h− 1

π2
kc(h)

1− kc(h)
Ψh(χ)|h=2n .

(3.56)
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As we have seen before (3.7) for kc(2) = 1 the relevant term (n = 1) in
the sum diverges. This causes a serious problem as the four-point function
should be finite. To avoid this problem we have to treat the divergence
outside the conformal limit. Later, we will briefly discuss this contribution.
In the following we will focus in the h ̸= 2 eigenfunctions. Thus, we have
the expression:

Fh̸=2

a0
=

∫ ∞

0

ds

2π

2h− 1

πtanπh
kc(h)

1− kc(h)
Ψh(χ) +

∞∑
n=2

2h− 1

π2
kc(h)

1− kc(h)
Ψh(χ)|h=2n .

(3.57)
To simplify the expression we use the identity:

2

tanπh =
1

tanπh
2

− 1

tanπ(1−h)
2

. (3.58)

Thus, the integral becomes:∫ ∞

0

ds

2π

h− 1/2

πtanπh
2

kc(h)

1− kc(h)
Ψh(χ)−

∫ ∞

0

ds

2π

h− 1/2

tanπ(1−h)
2

kc(h)

1− kc(h)
Ψh(χ) .

(3.59)
We focus now on the second integral. First, we change the integration
measure from s → −s so we extend the region to all values of s. In the
second step we use the symmetry of the eigenvalues and eigenfunction under
h→ 1− h. In detail:

−
∫ ∞

0

ds

2π

h− 1/2

tanπ(1−h)
2

kc(h)

1− kc(h)
Ψh(χ)

s→−s
= −

∫ 0

−∞

ds

2π

h− 1/2

tanπ(1−h)
2

kc(h)

1− kc(h)
Ψh(χ)

1−h→h
= +

∫ 0

−∞

ds

2π

h− 1/2

tanπ(h)
2

kc(1− h)

1− kc(1− h)
Ψ1−h(χ) = +

∫ 0

−∞

ds

2π

h− 1/2

tanπ(h)
2

kc(h)

1− kc(h)
Ψh(χ) .

(3.60)

In the end, the integral we have is:∫ +∞

−∞

ds

2π

h− 1/2

tanπ(h)
2

kc(h)

1− kc(h)
Ψh(χ) . (3.61)

Now we can manipulate the sum over h = 2n using the residue theorem
and we can write is as a sum over the residues of the poles of 1/tanπh. We
compute:

Res( 1

tanπh, h = 2n) = limh→h0=2n

(
(h− h0)

1

tanπh

)
= limh→h0=2n

cos(πh/2)− (h− h0)������: 0
sin(πh/2)

π
2 cos(πh/2

=
2

π
.

(3.62)
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Of course∑
n=2

2h− 1

π2
|h=2n =

∑
n=2

2

π

(h− 1/2)

π
|h=2n =

∑
n=2

Res

(
(h− 1/2)

πtanπh

)
The expression for the

Fh̸=2

a0
=

∫ +∞

−∞

ds

2π

h− 1/2

tan(πh2 )

kc(h)

1− kc(h)
Ψh(χ)+

∑
n=2

Res

(
(h− 1/2)

πtan(πh2 )

kc(h)

1− kc(h)
Ψh(χ)

)
h=2n

.

(3.63)
This formula can be thought as a single contour integral over the complex
plane h:

1

2πi

∫
C
dh =

∫ +∞

−∞

ds

2π
+

∞∑
n=2

Resh=2n . (3.64)

Examining the expression for Ψh (in both regions) we see that it has poles
on h = 1 + 2n. But these poles are canceled by the zeros that come from
1/tan(πh2 ) at these particular values. Therefore we are left only with the
poles at h = 2n. We can now deform the contour to annihilate the s axis
(vertical line) together with the explicit residues around the poles h = 2n.
This comes with the cost of picking up poles from the equation:

kc(h)

1− kc(h)
. (3.65)

This equation can be solved graphically. For example, for q=4 we have:

kc(h) = −3

2

tanπ(h−1/2)
2

(h− 1/2)
= 1 . (3.66)

The solution are demonstrated graphically in the next figure.
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We can see that the solutions hm are left to 2n. It has been shown that
for q=4 and m», they behave like

hm = 2∆+ 1 + 2m+
3

2πm
. (3.67)

Before getting into more details about how we deform the contour we demon-
strate the whole procedure below.

The way this deformation it is done is by analysing F in two separate
regions.

• In the region χ > 1, we can push the contour rightward to infinity by
picking the poles of kc(hm) = 1. The four-point function becomes:

Fh̸=2 = −a0
∑
hm

Res
(
(h− 1/2)

πtan(πh2 )

kc(h)

1− kc(h)
Ψh(χ)

)
hm

, x > 1,

(3.68)
where the minus sign comes from the fact that we have close the pole
clockwise.

• In the region, 0 < χ < 1, we cannot push the contour to large positive
h. The reason that 2F1(1 − h, 1 − h, 2 − 2h, χ) must have positive
arguments. Thus, we must use the symmetries of the integrand under
h → (1 − h). In the end we get another copy of the A term of (3.28)
and replacing in the sum Γ(h)2

Γ(2h)χ
h
2F1(h, h, 2h, χ) we end up:

Fh̸=2

a0
=

∫ +∞

−∞

ds

2π

h− 1/2

tan(πh2 )

kc(h)

1− kc(h)

Γ(h)2

Γ(2h)
χh

2F1(h, h, 2h, χ)

+
∑
n=2

Res
(
(h− 1/2)

πtan(πh2 )

kc(h)

1− kc(h)

Γ(h)2

Γ(2h)
χh

2F1(h, h, 2h, χ)

)
h=2n

.

(3.69)
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Now we can push the vertical axis to the right and pick up poles at hm,
just like we did in the first region. The four-point function becomes:

Fh̸=2 = N
∑
m=1

c2m[χh
2F1(h, h, 2h, χ)], χ < 1 . (3.70)

where
c2m = −a0

N

(hm − 1/2)

πtan(πh2 )

1

−k′c(hm)

Γ(hm)2

Γ(2hm)
. (3.71)

The N term will prove useful when we want to relate F with the four-
point function given in (3.2). The expression (3.70) is the expected
OPE expansion with the the quantity in brackets being the conformal
blocks.

3.2.6 OPE expansion and operators of the model
Now that we have derived the four-point function, we will study the OPE
of short time limit. The main expression that we will use is (3.70). Before
that we will state the OPE of two Majorana fermions:

1

N

∑
i

xi(τ1)xi(τ2) =
1√
N

∑
n

cnCn(τ12, ∂τ2)On , (3.72)

where cn are the OPE coefficients (3.71), Onare O(N) invariant bilinear
primary operators of the form On ≃

∑
n xi∂

2n+1
τ xi with dimensions hn and

Cn(τ12, ∂τ2) is a function that is fully determined by conformal invariance
and includes the contribution of the descendants of On. In correspondence
with (A.119) we have

Cn((τ12), ∂τ2) = G(τ12)|τ12|hn

(
1 +

1

2
τ12∂τ2 + ...

)
. (3.73)

Now we will focus on the four-point function. When taking the short time
limit |τ12| << 1 and consequently χ→ 0, after replacing the hypergeometric
function of (3.70) by one, we have:

Fh̸=2(τ1, τ2, τ3, τ4) = G(τ12)G(τ34)
∑
m=1

c2n

∣∣∣∣τ12τ34τ23τ24

∣∣∣∣hn

|τ12| << 1 . (3.74)

In addition, if |τ34| << 1 we have( after replacing τ3 with τ4 in τ23):

Fh̸=2(τ1, τ2, τ3, τ4) = G(τ12)G(τ34)
∑
m=1

c2n
|τ12|hn |τ34|hn

|τ24|hn
|τ12| << 1, |τ34| << 1 .

(3.75)
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Using (3.72) twice for the four-point function in the small time limit we get:

Fc =
∑
n,m

cncmCn(τ12, ∂τ2)Cn(τ34, ∂τ4)⟨On(τ2)Om(τ4)⟩ . (3.76)

Comparing this expression with (3.75), we get the two-point function of the
bilinears:

⟨On(τ2)Om(τ4)⟩ =
δn,m

|τ24|2hn
. (3.77)

If we write and the sum the complete series of Cn(τ12, ∂τ2), Cn(τ34, ∂τ4), we
will reproduce the expression (3.70) of the four-point function.

Now, although studying the bulk dual of the SYK model in not included
in the purposes of this thesis, we will make a short comment using the
AdS/CFT dictionary. As we have found from the four-point function, there
is a tower of O(N) invariant, bilinear primary operators with dimensions
hn. In the bulk dual of the theory this translates to massive field ϕn with
mass m2

n = hn(hn − 1). These fields are described by:∫
d2x

√
g
∑
n

(
1

2
(∂ϕn)

2 +
1

2
m2

nϕ
2
n

)
. (3.78)

3.2.7 The h = 2 contribution
Up until now we have avoided the contribution from the h = 2 eigenfunction
of the Casimir operator as it causes divergences. To include them in the four-
point function and get a finite answer we have to treat these eigenfunctions
outside the conformal limit by applying perturbation theory in the non-
conformal correction to the kernel. This correction is a product of the non-
conformal correction δG to the correlators. The small parameter is the
inverse coupling, 1/βJ . This analysis is too technical that it exceeds the
scope of this thesis and here we will only give a review of the calculations.
Full technical details can be found in [2].

The starting point of the analysis is that since we consider non-conformal
corrections to the kernel, the perturbation δK will break the conformal
symmetry. As a consequence, the line and finite temperature can’t be treated
equivalently and the study has to be done in the circle. To do this we use
angular coordinates θ = 2πτ/β with 0 ≤ θ < 2π. Now the kernel is given by
doing he transformation τi = tan

(
θi
2

)
. Next, we find the SL(2,R) generators

that commute with the kernel on the thermal circle. They are

P = e−iθ [∂θ − i/2] , K = −e−iθ [∂θ + i/2] , D = i∂θ . (3.79)

Then we can find the eigenfunctions of the corresponding Casimir with h =
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2. These turn to be:

Ψ2,n =
3

2π2|n|(n2 − 1)

e−in
θ1+θ2

2

sin
(
θ1−θ2

2

)
 sin

(
2 θ1−θ2

2

)
tan

(
2 θ1−θ2

2

) − ncos
(
2
θ1 − θ2

2

) .

(3.80)
With the use of these eigenfunctions and the kernel perturbation δK, we
can find the correction to the eigenvalue k(2, n). It turns to be:

k(2, n) = 1 + k′c(2)
qα|n|
βJ

+O(1/(βJ)2) , (3.81)

where α ≈ 0.1872. Adding all these results, we arrive at the leading contri-
bution to the four-point function:

δF(θ1, ..θ4
G(θ12)G(θ34)

=
6α0

π2αK
βJ

∑
|n|≥2

ein(y
′−y)

n2(n2 − 1)

[sinnx
2

tanx
2

− ncosnx
2

][sinnx′

2

tanx′

2

− ncosnx
′

2

]
,

(3.82)
with

x = θ12, x′ = θ34, y =
θ1 + θ2

2
, y′ =

θ3 + θ4
2

,

and αK = −qk′c(2)αG. This contribution is very large compared to the h ̸= 2
contributions that we have found. The reason is the term βJ . Moreover,
this contribution is not conformal invariant as it is not a function of the cross
ratio. Finally, to be more consistent we have to also include the corrections
δG and the corrections of the term 1/(1 − k(2, n)). To include all these
correction we have to find the second order corrections of the eigenvalues.
This is a very difficult task and up until now only conjectures have been
made [2].
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Chapter 4

Higher-point correlation
functions

Up until now, the two-point and four-point functions have been calculated.
In this chapter we will review the process for calculating the six-point, the
eight-point and eventually all higher-point correlation functions of the SYK
model. This chapter is heavily based on [13].

4.1 Bilinear three-point function
The six-point function of the model can be equivalently viewed as a three-
point function of the bilinear O(N) invariant fermion primaries Ohi

, where
hi denotes the dimension of the operators. The six-point function of the
Majorana fermions is:

1

N3

N∑
i,j,l=1

⟨xi(τ1)xi(τ2)xj(τ3)xj(τ4)xl(τ5)xl(τ6) = ...+
1

N2
S(τ1, .., τ6) + ... ,

(4.1)
with S the lowest order in 1/N with fully connected diagrams. As shown
below, there are 2 classes of diagrams that contribute: the contact diagrams
(left) and the planar diagrams (right).
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Denoting the contribution from contact as S1 and the contribution from
planar as S2, we can write: S = S1 + S2. Using the OPE formalism, the
three-point function of the bilinears is:

⟨O1(τ1)O2(τ2)O3(τ3)⟩ =
1√
N

c123

|τ12|h1+h2−h3 |τ13|h1+h3−h2 |τ24|h4+h2−h1
,

(4.2)
with c123 = c

(1)
123 + c

(2)
123 as it has contributions from contact and planar

diagrams respectively.

4.1.1 Contact diagrams
As shown in the above figure, the contact diagrams are composed of three
four-point functions glued with two interaction vertices connected by q − 3
propagators. Their expression is:

S1 = (q−1)(q−2)J2

∫
dτadτbG(τab)

q−3F(τ1, τ2, τa, τb)F(τ3, τ4, τa, τb)F(τ5, τ6, τa, τb).

It would be more useful to write the conformal blocks of the four-point
function in terms of the operator Cn(τ12, ∂2) as in (3.73). Thus, we write:

F(τ1, τ2, τa, τb) =
∑
n

cnCn(τ12, ∂2)⟨On(τ2)x(τa)x(τb)⟩ , (4.3)

where the three-point function is given by (3.30). Using this formula the
contribution from the contact diagrams becomes:

∑
n1,n2,n3

3∏
i=1

cniCni(τ2i−1,2i, ∂2i)⟨On1(τ2)On2(τ4)On3(τ6)⟩ , (4.4)

where

⟨On1(τ1)On2(τ2)On3(τ3)⟩ = (q−1)(q−2)J2

∫
dτadτbG(τab)

q−3
3∏

i=1

⟨Oni(τi)x(τa)x(τb)⟩.

Now, if we replace the three-point functions of the bilinears given by (4.2)
we get:

⟨On1(τ1)On2(τ2)On3(τ3)⟩ = cn1cn2cn3(q − 1)(q − 2)bqI
(1)
123(τ1, τ2, τ3) , (4.5)

with

I
(1)
123(τ1, τ2, τ3) =

∫
dτadτb

|τab|h1+h2+h3−2

|τ1a|h1 |τ1b|h1 |τ2a|h2 |τ2b|h2 |τ3a|h3 |τ4a|h4
. (4.6)
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We will now present the final result avoiding technical details as they are
out of scope of this thesis. In the end, we end up with

c
(1)
123 = c1c2c3I(1)

123 , (4.7)

where I(1)
123 is the coefficient of I

(1)
123(τ1, τ2, τ3) written as a conformal three-

point function

I
(1)
123(τ1, τ2, τ3) =

I(1)
123

|τ12|h1+h2−h3 |τ13|h1+h3−h2 |τ24|h4+h2−h1
.

The expression that is found for I(1)
123 is:

I(1)
123 =

√
π2h1+h2+h3−1Γ(1− h1)Γ(1− h2)Γ(1− h3)

Γ(2−h1−h2+h3
2 )Γ(2−h1−h3+h2

2 )
[ρ(h1, h2, h3)

+ ρ(h2, h3, h1) + ρ(h3, h1, h2)] ,

(4.8)

where

ρ(h1, h2, h3) =
Γ(h2+h3−h1

2 )

Γ(2−h2+h1+h3
2 )Γ(2−h1−h3+h2

2 )

(
1 +

sin(πh2)
sin(πh3)− sin(πh1 + πh2)

)
.

4.1.2 Planar diagrams
We will now present the contribution of the contact diagrams. As before they
contain three four-point functions glued together in a smooth way. Based
on

we can write the expression:

S2 =

∫
dτadτādτbdτb̄dτcdτc̄F(τ1, τ2, τa, τb̄)D(τbb̄)F(τ3, τ4, τc, τāD(τāa)

× F(τ5, τ6, τb, τc̄)D(τc̄c) ,

(4.9)

where D(τāa) is the inverse propagator that satisfies:∫
dτ0D(τ10)G(τ02) = δ(τ12) . (4.10)
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It is inserted to avoid the over-counting of the external propagators. In the
IR limit D(τ) = −Σ(τ) = −J2G(τ)q−1. This expression comes from the
Schwinger-Dyson equations (2.29). Now, following the same procedure as
before and substituting the fermion four-point function by (4.3), we arrive
at:

⟨O1(τ1)O2(τ2)O3(τ3)⟩ =
∫
dτadτādτbdτb̄dτcdτc̄⟨O1(τ1)x(τa)x(τb̄)⟩D(τbb̄)

· ⟨O2(τ2)x(τc)x(τā)⟩D(τāa)⟨O3(τ3)x(τb)x(τc̄)⟩D(τc̄c) .

(4.11)

Skipping the technical details as we did in the contact diagrams we arrive
at the expression:

⟨O1(τ1)O2(τ2)O3(τ3)⟩ = c1c2c3ξ(h1)ξ(h2)ξ(h3)I
(2)
123(τ1, τ2, τ3) , (4.12)

where
ξ(h) =

1√
π

Γ(2∆+1
2 )

Γ(1−∆)

Γ(1−h
2 )

Γ(h2 )

Γ(2−2∆+h
2 )

Γ(1+2∆−h
2 )

. (4.13)

It is finally found that:

c
(2)
123 = c1c2c3ξ(h1)ξ(h2)ξ(h3)I(2)

123 , (4.14)

where I(2)
123 is once again the coefficient of I

(2)
123(τ1, τ2, τ3) written as a con-

formal three-point function. It is a sum of four generalized hypergeometric
function and its explicit expression can be found in [13].

In summary, the coefficient of the three-point function is a sum over
the coefficients of the contact and the planar diagrams. We can write it as
c123 = c

(1)
123 + c

(2)
123 and in more convenient form as

c123 = c1c2c3I123 . (4.15)

We can read the following contributions. The coefficients c1c2c3 are the ones
that appear when by the OPE formalism two fermions xi are turned into Oi

as it can been seen from (3.72). It reflects the sum of the ladder diagrams.
This particular sum is the one that determines the dimensions hi of Oi.
The second contribution, encoded in I123 is the effect of gluing together the
ladder diagrams. One can say the coefficients c123 are universal since are
determined by an integral with the only parameters being the dimension of
the fermions ∆ and the dimension hi of Oi.

4.2 Bilinear four-point function
4.2.1 Cutting melons
It is noted in [4], that in any large N theory the Feynman diagrams that
will contribute to a 2p-point function are found by drawing all the diagrams
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that contribute to the vacuum energy and then considering all cuts of the
propagators.

That means that a cut gives a diagrams that contributes to the two-point
function (for example the watermelon diagram 2.1). Then a cut of the melon
gives the ladder diagram that contributes to the four-point function. Now
there are two ways to cut a propagator. One may either cut the propagator
along a rail or cut a melon that is along a rung. The first option will give the
six-point planar diagram while the second option will give a contact six-point
diagram. To find the diagrams of the eight-point function, there are four
possible cuts. Regarding the planar diagram, a cut of a melon along a rail
gives a planar diagram contribution to the eight-point function while a cut
of a melon along a rung will give a mixed planar/contact diagram (second
diagram in the figure below). Considering the six-point contact diagram, a
cut along the rail will also give a mixed planar/contact diagram while a cut
along the rung will give a contact/contact contribution to the eight-point
function (third diagram in the figure above).

The same procedure can be used to find the diagrams contributing to
higher-point functions.

4.2.2 Summing the eight-point diagrams
Now that we have outlined the diagrams that will contribute to the eight-
point function, we will list the necessary diagrams that have to be added.
First, we will denote as Es(τ1, .., τ8) the following diagram and ⟨O1(τ1)...O4(τ4)⟩0s
its contribution to the bilinear four-point function

Figure 4.1: Eight-point function

Moreover, we denote E0
S and ⟨O1(τ1)...O4(τ4)⟩0 the planar diagrams with

no exchanged melons such as
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Thus, the four-point bilinear function is given by:

⟨O1(τ1)...O4(τ4)⟩ = (⟨O1(τ1)...O4(τ4)⟩s + (2 ↔ 3) + (3 ↔ 4))

− 1

2

(
⟨O1(τ1)...O4(τ4)⟩0s + (2 ↔ 3) + (3 ↔ 4)

)
.

(4.16)

To justify this equation we demonstrate some of the planar diagrams that
contribute to the eight-point functions. These are

The first line of the above figure are three different channels. The second
line shows the same diagrams although now the exchanged melons are in
the other direction. If there are no exchanged melons then the two lines
demonstrate the same diagrams and a factor 1/2 must be included to avoid
double counting. That justifies the second line of (4.16). The first line of
(4.16) accounts for the sum of all the 6 diagrams. Finally, just as we did for
the four-point function where it is antisymmetric under interchange of the
first two or last fermions, Es(τ1, .., τ8) correspond to the sum of the first and
last diagrams of the first line of the above figure.

4.2.3 Computing ⟨O1(τ1)...O4(τ4)⟩s
We will present the computation for the eight-point function as it is found
in [13]. It follows the same procedure done for the computation of the six-
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point function. The eight-point function can be written:

1

N4

∑
i1,i2,..,i4

⟨xi1(τ1)xi1(τ2)xi2(τ3)xi2(τ4)xi3(τ5)xi3(τ6)xi4(τ7)xi4(τ8)⟩ = ...

+
1

N3
E(τ1, .., τ8) + ... ,

(4.17)

with E(τ1, .., τ8) the lowest order term that contains connected diagrams.
We will focus on the contribution Es(τ1, .., τ8). From the corresponding

figure 4.1, we see that it consists of two six-point functions glued together.
The details of the interactions can be encoded in the piece Score (shaded
circle), which is attached to the three external four-point functions. The
general expression of the six-point functions is:

S(τ1, ...τ6) =
∫
dτa1 ...dτa6

[
F(τ1, τ2, τa1 , τa2)F(τ3, τ4, τa3 , τa4)

· F(τ5, τ6, τa5 , τa6)Score(τa1 , ..., τa6)
]
.

(4.18)

With the use of this expression and the fact that Es(τ1, .., τ8) consists of two
six-point functions glued together we get:

Es(τ1, .., τ8) =
∫
dτa1 ...dτa8dτb1 ...dτb8Score(τa1 , ..., τa6 , τb1 , τb2)Score(τa1 , ..., τa6 , τb3 , τb4)

F(τ1, τ2, τa1 , τa2)F(τ3, τ4, τa3 , τa4)F(τb1 , ..., τb4)F(τ5, τ6, τa5 , τa6)F(τ7, τ8, τa7 , τa8) .

(4.19)

Using now (4.3) we get:

⟨O1(τ1)...O4(τ4)⟩s =
∫
dτa1 ...dτa8dτb1 ...dτb8Score(τa1 , ..., τa6 , τb1 , τb2)Score(τa1 , ..., τa6 , τb3 , τb4)

· ⟨O1(τ1)x(τa1)x(τa2)⟩⟨O2(τ2)x(τa3)x(τa4)⟩F(τb1 , ..., τb4)

· ⟨O3(τ3)(τ3)x(τa5)x(τa6)⟩⟨O2(τ4)x(τa7)x(τa8)⟩ .
(4.20)

To evaluate this challenging integral, we use the representation

Fh̸=2

a0
=

∫
C

dh

2πi

h− 1/2

tan(πh2 )

kc(h)

1− kc(h)
Ψh(χ) =

∫
C

dh

2πi
ρ(h)Ψh(χ) . (4.21)

We will now state the final result avoiding the technical details as it is its
form that we are interested in. In the end, we get:

⟨O1(τ1)...O4(τ4)⟩s =
∫
C

dh

2πi

ρ(h)

c2h

Γ(h)2

Γ(2h)
c12hc34hFh

1234(χ) , (4.22)
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where Fh
1234(χ) is the conformal block of operators O1, ...,O4 and the ex-

changed operator Oh. It is given by the expression:

Fh
1234(χ) =

∣∣∣∣τ24τ14
∣∣∣∣h12
∣∣∣∣τ14τ13

∣∣∣∣h34 1

|τ12|h1+h2 |τ34|h3+h4
χh
2F1(h− h12, h+ h34, 2h, χ) .

(4.23)

Recalling the form c123 = c1c2c3I123, which separates ci that come from the
sum of ladders of the four-point function and I123 which denotes effect of
gluing the ladder to get the six-point function, we can write:

⟨O1(τ1)...O4(τ4)⟩s = c1c2c3c4

∫
C

dh

2πi
ρ(h)

Γ(h)2

Γ(2h)
I12hI34hFh

1234(χ) . (4.24)

4.3 Solving SYK
It is time to recap what we have presented up until now as we have all the
ingredients required to fully solve the SYK model. First of all, from the
analysis of the two-point function we got the fermion dimensions ∆ = 1/q
using the conformal symmetry in the IR limit. Moving to the four-point
function, and studying the ladder diagrams we arrive at the expression for
ρ(h), see (4.21). For the six-point function, we presented an expression with
all the information encoded in c123 = c1c2c3I123. The coeeficients ci, which
are functions depending on ρ(h), were computed in the analysis of the four-
point function, see (3.71). One step further, we presented the eight-point
function. The final expression that is found in (4.24) can be fully determined
only from knowing ∆, ρ(h), I12h. These are the exact expressions computed
from the two, four and six-point functions. Nothing new was added in the
computation. Moreover, it is proved in [13] that all the information about
the higher-point function is encoded in these three parameters. In summary,
once one solves the two,four and six-point functions is then able to solve the
SYK model. It is also stated in [13] that this result is also applicable to any
theory in which higher-point functions are built from four-point functions.
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Chapter 5

Effective action

So far, we have studied our model and derived its basic properties by ana-
lyzing the 2, 4 and higher-point functions. In this chapter we will use the
path integral representation and apart from getting the same Schwinger-
Dyson equations we will also see clearer some other interesting features of
the model like its classical behaviour in large N . This chapter is based
mainly on [2, 33].

5.1 Annealed disorder
The partition function as a path integral is:

Z(Jijkl) =

∫
Dxiexp

−∫ dτ

1

2

∑
i

xi∂τxi +
1

4!

N∑
i,j,k,l

Jijklxixjxkxl

 .
(5.1)

Now we want to do the average over the disorder Jijkl. There are 2 physical
ways to do this and they are equivalent up to order 1/N .

• The annealed disorder method when you average directly the partition
function ⟨Z⟩J while you treat Jijkl as a microscopic variable.

• The replica trick. In this method you average the free energy ⟨logZ⟩J .
This method is more complicated but it bears more physical relevance
in condensed matter theory when you want to describe lattice errors
in crystals.

We will use the annealed disorder method for simplicity. To average the
partition function we to do the Gaussian expectation values. Practically
that means that we have to solve the integral:

⟨Z⟩J =

∫
dJijklexp

(
−
∑
J2
ijkl

23!J2

N3

)
· Z(Jijkl) . (5.2)
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This a Gaussian integral and we will use the formula:∫
dxeax

2+bx =

√
π

a
e−

b2

4a .

As usually the constant factor will be absorbed into the integration measure.
We have to be careful to get the correct numerical factor in the exponent.
We have to include a factor of 4! as for any i, j, k, l since there exist 4! terms
as an effect of the anticommutation rules of the fermions. This term can be
ignored if we write 1

4!

∑N
i,j,k,l =

∑
1≤i<j<k<l≤N . Thus we have:

⟨Z⟩J ∼
∫
Dxiexp

−
∫
dτ

1

2

∑
i

xi∂τxi +
1

2

J2

4N3

∫
dτdτ ′

[∑
i

xi(τ)xi(τ
′)

]4 ,

where we have used

∑
1≤i<j<k<l≤N

(xixjxkxl)(τ)(xixjxkxl)(τ
′) =

1

4!

[∑
i

xi(τ)xi(τ
′)

]4
.

Our next task is to integrate out the fermions. To do this we first introduce
the bilocal field:

G̃(τ1, τ2) =
1

N

N∑
i=1

xi(τ1)xi(τ2) . (5.3)

We can introduce this bilocal field in the path integral by inserting 1 in the
following way:

1 =

∫
DG̃δ

(
NG̃(τ1, τ2)−

1

N

N∑
i=1

xi(τ1)xi(τ2)

)

∼
∫
DG̃Σ̃exp

(
−N

2

∫ ∫
dτdτ ′Σ̃(G̃− 1

N

∑
xi(τ)xi(τ

′))

)
,

(5.4)

where Σ̃(τ1, τ2) plays the role of a Lagrange multiplier. Inserting this ex-
pression in the partition function we get:

⟨Z⟩J ∼
∫
DxiDG̃DΣ̃exp[−

∫
dτ

1

2

∑
i

xi∂τxi

− 1

2

∫ ∫
dτdτ ′N Σ̃(G̃− 1

N

∑
xi(τ)xi(τ

′)) +
J2N

2 · 4

∫ ∫
dτdτ ′[G̃(τ1, τ2)]

4 .

(5.5)

Exploiting this trick we have managed to obtain an exponential that is
bilinear in the fermion fields xi. We use again the Gaussian integral∫

dxe−
1
2
xAx =

√
detA.
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We arrive at:

⟨Z⟩J ∼
∫
DG̃DΣ̃[det(∂τ − Σ̃)]

N
2 exp

(
−N

2

∫ ∫
(Σ̃G̃− 1

4
J2G̃4)

)
=

∫
DG̃DΣ̃e−NI[G̃Σ̃] ,

(5.6)

with

I[G̃, Σ̃] = −1

2
logdet(∂τ − Σ̃) +

∫ ∫
dτdτ ′(Σ̃G̃− 1

4
J2G̃4) . (5.7)

Now, we can clearly see that N plays the role of ℏ−1 and in the large N
limit the model becomes classical. Extremizing this action with respect to
Σ̃, G̃ gives us the classical equations of motion:

δI

δG̃
= 0 ⇔ Σ̃2 = J2G̃ (5.8)

δI

δΣ̃
= 0 ⇔ [∂τ − Σ̃]−1 = G̃, (5.9)

where we have used the identity logdetM = TrlogM . These are exactly the
Schwinger-Dyson equations that we have found in the second chapter.

5.2 O(N) symmetry
In this section we will prove the O(N) symmetry of the SYK model. We will
also derive the conserved current for the free action while for the full action
we will show the absence of such current as an effect of the non-locality of
the action.

5.2.1 Free action
The action for a free Majorana particle is given by:

S =
1

2

∫
dτxi(τ)ẋ

i(τ) . (5.10)

Now we apply a O(N) transformation xi → Oi
j
xj . Its infinitesimal form is:

δxi = ξa(T
a)i

j
xj +O(ξ2) , (5.11)

with (T a) denoting the generators and ξa the constant (for now) parameter
of the transformation. The generators are antisymmetric. This is easily
proven:

OTO = 1 ⇔ eaT
T
a eaTa = 1 ⇔ Ta = −T T

a . (5.12)
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Varying the action under this transformation we get:

δS =
1

2

∫
dτ

(
ξa(T

a)j
i
xj ẋ

i + xi
d

dτ
(ξa(T

a)i
j
xj)

)
=

1

2

∫
dτ

(
ξa(T

a)j
i
xj ẋ

i − 1

2

∫
dτξa(T

a)j
i
xj ẋ

i

)
= 0 ,

(5.13)

where in the last step we have interchanged the indices i, j and used the
antisymmetry of the generators. Now we promote our transformation to be
a local one. That means that now ξ has dependence on time. Varying once
more the action:

δS =
1

2

∫
dτ

(
ξa(τ)(T

a)j
i
xj ẋ

i + xi
d

dτ
(ξa(τ)(T

a)i
j
xj)

)
=

1

2

∫
dτ(∂τξa(τ)) · (xi(T a)i

j
xj)

=
1

2

d

dτ

(∫
dτξa(τ)xi(T

a)i
j
xj
)
− 1

2

∫
dτξa(τ)

d

dτ
(xi(T

a)i
j
xj) .

(5.14)

The first term is 0 as a boundary term and from the second, requiring that
the variation of the action is 0 with respect to this particular transformation,
we can obtain the the conserved current:

ja(τ) =
1

2
xi(τ)(T

a)i
j
xj(τ) . (5.15)

This Noether current can also be derived by the standard formula:

jµ =
∑
n

∂L
∂(∂µϕn)

δϕn
δα

. (5.16)

In our case, we have:

ja =
∂(12xi(τ)ẋ

i(τ))

d(ẋi(τ))

δxi

δξ
=

1

2
xi(τ)(T

a)i
j
xj(τ) . (5.17)

5.2.2 Full action
We now consider the full action of the model as given by:

Z =

∫
DxidJijklexp

(
−
∑
J2
ijkl

23!J2

N3

)
exp

[
−
∫
dτ
(1
2

∑
i

xi∂τxi

+
1

4!

N∑
i,j,k,l

Jijklxixjxkxl

)]
We will now again apply a O(N) transformation but we have to be careful.
As we have seen Jijkl has no dynamics and thus they cannot be treated
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as a quantum mechanic variable. This means that we do not know how
these parameters transform and such a transformation will not yield any a
conserved current. To overcome this obstacle we again use annealed disorder
to integrate them out and then we will apply the desired transformation.
After integration, we have the already computed result:

⟨Z⟩J ∼
∫
Dxiexp

−
∫
dτ

1

2

∑
i

xi∂τxi +
1

2

J2

4N3

∫
dτdτ ′

[∑
i

xi(τ)xi(τ
′)

]4 .

The first term of the exponent is the free action and will add nothing new
to our calculations as we have already seen that it is symmetric under O(N)
transformations. Thus, we will ignore this term. Now we vary the remaining
part of the action:

δS = −1

2

J2

16N3

∫
dτdτ ′[ξa(T

a)kjxk(τ)x
j(τ ′) + ξa(T

a)j
k
xk(τ)x

j(τ ′)]3

= −1

2

J2

16N3

∫
dτdτ ′[ξa(T

a)kjxk(τ)x
j(τ ′)− ξa(T

a)kjxk(τ)x
j(τ ′)]3 = 0 .

(5.18)

Thus, we find that the SYK model has O(N) symmetry. Now we promote
the transformation to be a local one in expectation to find a conserved
current. Doing the same manipulations as in the free theory we arrive at:

δS =
1

2

∫
dτ(∂τξa(τ)) · (xi(T a)ijx

j)

− 1

2

J2

16N3

∫
dτdτ ′(ξa(τ)− ξa(τ

′))3(xk(τ)x
j(τ ′)(T a)kj )

3 .

(5.19)

The first term is of course the one we get from varying the free action. The
second term is the one that comes from the interaction. Unfortunately, we
can not write this term as ξ̇aja so we can by partial integration arrive at a
conserved current. This seems catastrophic as we have an action that has
a continuous symmetry but there is no Noether current associated. But
the crucial point is to observe that Noether theorem is only valid for local
action while our action is clearly bilocal. In the end, Noether theorem is not
violated.
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Chapter 6

Theory of
reparametrizations

Now that that we have derived the effective action of the SYK model, we
are going to use it to expose some interesting properties of the model that
are not clear from the diagrammatic treatment of its two and four-point
functions. First, we are going to examine the emergent conformal symmetry
of this action in the IR limit. Then, we will introduce some fluctuations
of the bilocal fields and obtain their effective action. This action will have
zero modes that are connected to fluctuations of the conformal propagator.
After discussing the physical interpretation of these modes we will derive
the action of this reparametrizations of the conformal propagator.

6.1 Conformal symmetry of the action
As we have seen, there is an emergent conformal symmetry of the Schwinger
Dyson equations in the IR limit. Now, we will examine if this symmetry
also appears in the effective action. In the IR limit we can ignore the kinetic
term ∂τ since it has dimensions of energy. Thus our action becomes (for
general q interactions and ∆ = 1/q):

I[G̃, Σ̃] = −1

2
logdet(−Σ̃) +

∫ ∫
dτ1dτ2[Σ̃(τ1, τ2)G̃(τ1, τ2)−

J2

q
G̃(τ1, τ2)

q].

We take the reparametrizations

τ1 → f(τ1), τ2 → f(τ2).

The transformation rules for the fields are:

G̃(τ1, τ2) = |f ′(τ1), f ′(τ2)|∆G̃(f(τ1), f(τ2)) (6.1)
Σ̃(τ1, τ2) = |f ′(τ1), f ′(τ2)|∆(q−1)Σ̃(f(τ1), f(τ2)) (6.2)
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The first term is easy to see that it is invariant under reparametrizations.
Explicitly we have:
logdet(−Σ̃) → logdet(−|f ′(τ1), f ′(τ2)|∆(q−1)Σ̃(f(τ1), f(τ2)))

= log[|f ′(τ1), f ′(τ2)|∆(q−1)det(−Σ̃(f(τ1), f(τ2)))]

= log[|f ′(τ1), f ′(τ2)|∆(q−1)|f ′(τ1), f ′(τ2)|−∆(q−1)det(−Σ̃(τ1, τ2))]

= logdet(−Σ̃(τ1, τ2)) .

(6.3)
Moving on to the integral we have:∫

|f ′(τ1)||f ′(τ2)|dτ1dτ2
{
G̃(f(τ1), f(τ2))Σ̃(f(τ1), f(τ2))−

J2

q
G̃(f(τ1), f(τ2))

q

}
=

∫
|f ′(τ1)||f ′(τ2)|dτ1dτ2

{
|f ′(τ1), f ′(τ2)|−∆|f ′(τ1), f ′(τ2)|−∆(q−1)

· Σ̃(τ1, τ2)G̃(τ1, τ2)−
J2

q
|f ′(τ1), f ′(τ2)|−q∆G̃(τ1, τ2)

q]

}
.

All the derivatives cancel and thus our action is conformally invariant in IR
limit. Until now, we have seen that the ansatz of the conformal propagator
spontaneously breaks the conformal symmetry down to SL(2,R). The kinetic
term, which we ignored in this limit, is responsible for explicitly breaking
the conformal symmetry away from the strong coupling limit.

6.2 Fluctuations
The classical saddle point solutions of Schwinger-Dyson equations will be
denoted by G,Σ. We will now try to derive an action of fluctuations around
these solutions. Fluctuations are of the form:

G̃ = G+ |G|
2−q
2 g (6.4)

Σ̃ = Σ + |G|
−2+q

2 σ (6.5)
The reason we chose this form for the fluctuations will become obvious later.
We will plug this in the effective action and we will keep only second order
terms in g,σ. The linear terms will yield zero as they are expansion around a
saddle point. Also we can ignore terms that are independent of g, σ because
they wont be integrated and can be thought as constants. We have:

I = −1

2
logdet[∂τ − (Σ + |G|

−2+q
2 σ)] +

1

2

∫
dτ1dτ2

{
(Σ + |G|

−2+q
2 σ)(G+ |G|

2−q
2 g)

− J2

q
(G+ |G|

2−q
2 g)

}
.

(6.6)
We will now treat each term separately:
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• For the first term we will use log(b+ax) = logb+ ax
b − a2x2

2b2
+O(x3) and

the identity logdetA = TrlogA. Also we use the saddle point equation
∂τ − Σ = G−1. Expanding this term and keeping only second order
we have:

−1

2
Tr(−1

2
σ(τ1, τ2)|G(τ1, τ2)|

q−2
2 G(τ1, τ3)G(τ2, τ4)|G(τ3, τ4)|

q−2
2 σ(τ3, τ4)).

This expression can be written using the symmetric kernel we have de-
fined K̃(τ1, τ2; τ3, τ4) = −J2(q− 1)|G(τ12)|

q−2
2 G(τ12)G(τ24)|G(τ34)|

q−2
2

as:

− 1

4J2(q − 1)

∫
dτ1dτ2dτ3dτ4[σ(τ1, τ2)K̃(τ1, τ2; τ3, τ4)σ(τ3, τ4)] . (6.7)

• From the second term the only non trivial contribution is :

Gq(1 +G−1|G|
2−q
2 g)q ≈ Gq((1 + q(q − 1)G−2|G|2−qg2) ≈ (sgnG)q−2 · g(τ1, τ2),

where we have used the definition of sgn function x = sgn(x) · |x|. But
in our model q = 2n so q − 2 ∈ Z. That means that (sgnG)q−2 = 1.

Then the second term becomes:
1

2

∫
dτ1dτ2(σ(τ1, τ2)g(τ1, τ2)−

1

2
J2(q − 1)g2(τ1, τ2)) . (6.8)

To keep our final expression for the partition function readable, from now
one we will use the shorthand notation:

⟨σ|K̃|σ⟩ =
∫
dτ1dτ2dτ3dτ4[σ(τ1, τ2)K̃(τ1, τ2; τ3, τ4)σ(τ3, τ4)],

⟨σ|g⟩ =
∫
dτ1dτ2σ(τ1, τ2)g(τ1, τ2).

Concerning the integration measure we have dΣ̃dG̃ = |G|
2−q
2 |G|

−2+q
2 dσdg =

dσdg. Our action becomes:
I

N
= − 1

4J2(q − 1)
⟨σ|K̃|σ⟩+ 1

2
⟨σ|g⟩ − 1

4
J2(q − 1)⟨g|g⟩ . (6.9)

Inserting this action to our partition function we get:

⟨Z⟩J ∼
∫
Dg̃Dσ̃expN ·

{
− 1

4J2(q − 1)
⟨σ|K̃|σ⟩+ 1

2
⟨σ|g⟩ − 1

4
J2(q − 1)⟨g|g⟩

}
.

(6.10)

Using the Gaussian formula∫
dxe−ax2+bx+c =

√
π

a
e

b2

4a
+c,
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we can integrate out σ to get an action for the fluctuations g of the bilocal
field G̃. We end up with the action:

I(g)

N
=
J2(q − 1)

4
⟨g|K̃−1 − 1|g⟩ . (6.11)

It is important to mention that the above expression is valid for all energies.

6.2.1 Conformal limit and Nambu-Goldstone modes
Now we once again study the action in the conformal limit. We can use the
already known expressions for the conformal propagator and the symmetric
kernel. The action (6.11) can yield zero when g is an eigenfunction of the
symmetric kernel with eigenvalue 1. We will now prove that there exist such
eigenfunctions using the Schwinger Dyson equations.
As we have proved the Schwinger-Dyson equations are invariant under con-
formal transformations. That means that if we take a transformation τ →
τ + ϵ(τ) and Gc is a solution, then also Gc + δϵGc is also a solution. To find
the explicit form of δϵGc we use the transformation rule for the propagator
for f(τ) = τ + ϵ(τ) and expand in powers of ϵ. In detail:

Gc(τ, τ
′) = |f(τ)f(τ ′)|∆Gc(f(τ), f(τ

′))

=
(
1 + ∆ϵ′(τ) + ϵ′(τ ′)

)(
Gc(τ, τ

′) + ϵ(τ)∂τGc(τ, τ
′) + ϵ(τ ′)∂τ ′Gc(τ, τ

′)
)

= Gc(τ, τ
′) +

(
∆ϵ′(τ) + ϵ′(τ ′) + ϵ(τ)∂τ + ϵ(τ ′)∂τ ′

)
Gc(τ, τ

′).

Thus, we have:

δϵGc(τ, τ
′) = (∆ϵ′(τ) + ϵ′(τ ′) + ϵ(τ)∂τ + ϵ(τ ′)∂τ ′)Gc(τ, τ

′) . (6.12)

Now we can plug this transformation in the Schwinger-Dyson equation:∫
dτ ′G(τ, τ ′)Σ(τ ′, τ ′′) = −δ(τ − τ ′′)

=

∫
dτ ′
(
Gc(τ, τ

′) + δϵGc(τ, τ
′)
) (

Σc(τ, τ
′) + δϵΣc(τ, τ

′)
)

=

∫
dτ ′
(
Gc(τ, τ

′) · δϵΣc(τ, τ
′) + Σc(τ, τ

′) · δϵGc(τ, τ
′)
)
= 0 .

(6.13)

For simplicity, we can write:

δϵGc ∗ Σc +Gcδϵ ∗ Σc = 0 , (6.14)

where integration is implied. In the IR limit we can use: Σ = G−1
c and also

the definition Σc = J2Gq−1
c . We can now multiply (actually we involute)

from the right with Gc. Using also the chain rule δϵΣ(Gc) = δGΣ · δϵGc we
have:

δϵGc +Gc ∗ (J2(q − 1)Gq−2
c δϵGc) ∗Gc = 0 . (6.15)
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Using the expression for the kernel:

K(τ3, τ4, τ1, τ2) = −J2(q − 1)G(τ1, τ3)G(τ2, τ4)G(τ1, τ2)
q−2 ,

our equation becomes:
(1−Kc)δϵGc = 0 . (6.16)

We see that δϵGc are eigenfunctions of the kernel with eigenvalue 1. We can
rewrite this expression in a different way to contain the symmetric kernel.
Using our definition (and once again avoid writing the integrals):

1−Kc = 1− K̃c|G(τ12)|
2−q
2 |G(τ34)|

−2+q
2

= |G(τ34)|
2−q
2 − K̃c|G(τ12)|

2−q
2 = (1− K̃)|G|

2−q
2 .

(6.17)

This is a shorthand for:∫
dτ1dτ2K̃c(τ1, τ2; τ3, τ4)|G(τ12)|

2−q
2 δϵGc(τ12) = |G(τ34)|

2−q
2 δϵGc(τ34) .

(6.18)
We just have proven that there exist eigenfunctions of K̃ that have eigen-
value 1. These as we have said above are the ones that make the action 0.
Moreover, we have shown that these eigenfunctions are the reparametriza-
tions of the conformal propagator. The physical interpretation is that these
zero modes are associated with the spontaneous symmetry breaking of the
conformal symmetry of the action down to SL(2,R) by the solution Gc. Thus
these zero modes can be viewed as the associated Nambu-Goldstone modes.

6.3 Action of the reparametrizations
We want to find the action for finite reparametrizations τ → f(τ) when they
are included in the original action. Here we will follow an intuitive argument
inspired by effective field theory. We are searching for an expression of lowest
order in derivatives that is invariant under SL(2,R) transformations. We will
work at zero temperature. We can state that we want an action that satisfies
the following:

• If f ∈ SL(2, R) ↔ f(τ) = aτ+b
cτ+d → S[f ] = 0,

• If f ̸∈ SL(2, R) → S[f ] must be invariant under f → af+b
cf+d .

The first statement follows from the fact that Gc is invariant under SL(2,R)
transformations and hence δSL(2,R)Gc must yield zero. The second statement
follows from the fact that at zero temperature Gc is invariant under SL(2,R)
transformations and therefore the reparametrization action must have an
exact symmetry under these transformations. Putting these statements in
another way we are searching for combination of derivatives of a SL(2,R)
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transformation F that reduces to exactly the same combination of derivatives
in f. We find the first and second derivative of F:

F (τ) =
af(τ) + b

cf(τ) + d

F ′ =
f ′

(cf(τ) + d)2

F ′′ =
f ′′

(cf(τ) + d)2
− 2c(f ′)2

(cf(τ) + d)3

In both these derivative we have a common term 1/(cf(τ) + d)2. Thus we
consider:

F ′′

F ′ =
f ′′

f ′
− 2cf

cf(τ) + d

In the above expression the second term is exactly what we want but the
third term needs to be get rid of. We differentiate once more:

F ′′′ =
f ′′′

(cf(τ) + d)2
− 6cf ′f ′′

(cf(τ) + d)3
+

6c2(f ′)3

(cf(τ) + d)4
. (6.19)

Dividing by F ′ we get:
F ′′′

F ′ =
f ′′′

f ′
− 6cf ′′

(cf(τ) + d)
+

4c2(f ′)2

(cf(τ) + d)2
. (6.20)

This term is similar to F ′′

F ′ . Thus we can square F ′′

F ′ and we get:(
F ′′

F ′

)2

=

(
f ′′

f ′

)2

− 4cf ′′

(cf + d)
+

4c2(f ′)2

(cf + d)2
. (6.21)

We can make the following combination:

F ′′′

F ′ − 3

2

(
F ′′

F ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

≡ {f, τ} . (6.22)

This expression is called the Schwartzian Derivative. It is an operator that
is invariant under SL(2,R) transformation. We are going to prove the above
statement. Suppose

f(τ) =
aτ + b

cτ + d
∈ SL(2, R).

Then we can define u(τ) = f ′(τ−1/2) = cτ + d. Then:

u′′ = 0 ↔ −3

4
(f ′)−5/2f ′′ − 1

2
(f ′)−3/2f ′′′ = 0

↔ −1

2
(f ′)−1/2

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
)

= 0

↔ −1

2
(f ′)−1/2{f, τ} = 0

↔ {f, τ} = 0 .

(6.23)
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In the end, we have found an expression that yields 0 if the reparametrization
is a linear fractional transformation and moreover it is invariant under a
SL(2,R) transformation of the reparametrization. The action can be written
as:

I

N
=

−c
J

∫
dτ{f, τ} . (6.24)

The constant c is found to be (for large q):

c =
1

4q2

We can go now to finite temperature (we map the line to a circle) by f(τ) =
exp(2πiτβ ) or f(τ) = tan(πτβ ). The action becomes:

Iβ
N

=
−c
J

∫ β

0
{exp(2πiτ

β
), τ} =

−c
J

∫ β

0

(
2π2

β2

)
=

−c
J

2π2

β
. (6.25)
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Chapter 7

Chaotic behaviour of SYK
model

So far we have treated the SYK model in zero temperature (β → ∞) and
have only given the related expressions in finite temperature. In this chapter
we are going to study the chaotic behaviour of the SYK model in finite
temperature. First we are going to give a short introduction on the relative
new field of chaotic behaviour of quantum systems and then we are going to
study the chaotic behaviour of the SYK model.

7.1 Chaotic behaviour in Quantum Systems
The chaotic behaviour (or else strong chaos or the butterfly effect) of a
general quantum system can be characterized using a time-separated com-
mutator [W (t), V (0)] between two Hermitian operators W(t) and V(t). This
commutator measures the effect of a perturbation by V(0) on the measure-
ments of W (t) at a later time t and vice versa.One possible measure of such
effects is

C(t) = −⟨[W (t), V (0)]2⟩ = Z−1Tr[eβH [W (t), V (0)]2] , (7.1)

where Z = Tr[e−βH ]. A quantum definition of strong chaos is that

C(t) ∼ 2⟨W (t)W (t)⟩⟨V (0)V (0)⟩ , (7.2)

for large t, regardless the choice of W,V with the restriction that they have
zero thermal one-point function.
To see how the commutator C(t) has a connection with chaos, we can choose
W (t) = q(t) and V (t) = p(t). In the semi classical limit the commutator
becomes a Poisson bracket:

[W (t), V (0)] → iℏ{q(t), p(0)} = iℏ
∂q(t)

∂q(0)
. (7.3)
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We see that the commutator describes the way the position of the system
depends on its initial position or the measure of the divergence between
nearby trajectories. In classical theory, such a a divergence is characterized
by the Lyapunov exponent λL. This quantity is defined by:

|δq(t)| ∼ eλLt|δq(0)| . (7.4)

If we take the limit |δq(t)| → 0, we have:

lim|δq(0)|→0
|δq(t)|
|δq(0)|

=
∂q(t)

∂q(0)
∼ eλLt . (7.5)

We see that, at least in the semi classical approximation, the commutator
[W (t), V (0)] has a direct connection with chaotic behaviour. From a purely
quantum mechanical point of view we can view C(t) as a measure of the
growth of the operator W (t) expressed as a sum of products of basis opera-
tors. For example in an Ising system (in 1-d) these operators are the Pauli
matrices. Evaluating C(t) we find that:

C(t) = 2⟨W 2(t)V 2(0)⟩ − 2⟨W (t)V (0)W (t)V (0)⟩ . (7.6)

At large t, the first term converges to a constant value while the second term
(the out-of-time order correlator) vanishes exponentially. This means that
the increase of C(t) is caused by the decrease of the OTO correlator. From
this, follows the quantum definition of strong chaos (7.2).
Now, we will present another intuitive way that connects the out-of-time-
correlator of 7.6 with quantum chaos. Suppose we have a quantum state
|ψ⟩.

• First, we are going to act on the state with the perturbation V . Then
we evolve our state at time t, we act with W and then we evolve back
to t = 0. This procedure is:

|ψ⟩ → |ψ1⟩ = U(0, t)WU(t, 0)V |ψ⟩ =W (t)V (0) |ψ⟩ . (7.7)

• Now we do the reversal procedure. We evolve our state to t, we act
with W , then we evolve back at t = 0 and then we act with V . This
is translated to:

|ψ⟩ → |ψ2⟩ = V U(0, t)WU(t, 0) |ψ⟩ = V (0)W (t) |ψ⟩ . (7.8)

Now we take the inner product ⟨ψ2|ψ1⟩. This gives the OTO correlator we
are interested in. Moreover, this inner product is, in some sense, a measure
of the similarity between these two states. Thus, the exponential vanishing
of this correlator means that after some time these two states are nothing
alike. These 2 completely different states is a characteristic of the butterfly
effect.

66



7.2 Scrambling of information
Up until now we haven’t given any formal definition of quantum chaos but
intuitively we have tried to connect the growth of 7.6 with concepts of clas-
sical chaos. There is no clear evidence that this commutator is in agreement
with previous work done in the field of quantum chaos. Bearing this in mind,
the main purpose of the work done with OTOC is to search for connections
with scrambling of information either from the black hole perspective or by
the quantum information one. Scrambling of information can be thought as
how fast information about a specific part of the system spreads to the rest
of it.

A nice and relative simple model, proposed in [11] to study such effect is
an ensemble of qubits 1 interacting with an Ising system. Before presenting
the qualitative results of this work, we will recall some useful quantities.

First, we know that the Hilbert space of a composite quantum system
can be written as the tensor product of the Hilbert space of each subsystem:
H = HA ⊗ HB.... Suppose we have only two subsystems A,B in a state
|Ψ⟩. To compute the density matrix of one subsystem we trace out the
degree of freedoms of the other system. For example, ρA = TrB |Ψ⟩ ⟨Ψ|. If
our system is in a mixed (entangled) state then the density matrices of the
subsystems are also mixed states. These states can be thought as ensembles
with the density matrix given by ρ =

∑
k pk |ψk⟩ ⟨ψk|. One famous ensemble

is the canonical:ρ = e−βH . Another way to see if the two subsystems are
entangled is to calculate the von Neumann entropy of a subsystem: SA =
−trB(−ρAlogρA). This entropy is greater than zero if and only if |(⟩Ψ) is
entangled.

Now, suppose we have mixed state but we want to construct a pure one.
This is done by the thermofield double formalism. The trick is to treat our
mixed state ρ as a pure state in larger system. To do this, we consider two
identical copies of a subsystem. Then we consider the thermofield double
state

|TFD⟩ = 1

Z1/2

∑
n

e−βEn/2 |n⟩L |n⟩R . (7.9)

The total density matrix is ρ = |TFD⟩ ⟨TFD|, as expected from a pure
state. Then the density matrix for the subsystem L is given by: ρL =
trRρ = e−βH1 . The thermofield double also plays a crucial role in black hole
physics/information theory and in AdS/CFT [9,11,12].

Another essential quantity for the analysis that we will present below is
the notion of mutual information which is a measure of correlation between
subsystems. For two subsystems A,B it is defined as: I = SA+SB −SA∪B,
with S the von Neumann entropy.

1Particles with 1/2 spin that are frozen in sites and interact among each other because
of their spin
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Now that we have recalled all the neccesary quantities we will expose the
qualitative results of [11]. In this work, they prepare a thermofield double
state with 10 qubits on the left subsystem and 10 on the right. The Ising
Hamiltonian is written in a way that is not integrable. Then the fifth qubit
of the left system is perturbed by σz in the past (at tw and at t = 0 the
state is: ∣∣Ψ′⟩ = e−iHLtwσze

+iHLtw |Ψ⟩ .

Since σz does not commute with the Hamiltonian, the perturbation alters
the state of the system. Then mutual information is calculated for the first
two cubits of the left and the same qubits on the right. The qubit that was
perturbed was not included in the calculation. The plot is shown below:

Figure 7.1: Mutual information (blue line) and spin-spin correlation as a
function of the time of the perturbation.

As we see, the mutual information remains constant for some time and
then suddenly it drops to zero. The constant part is due to the time that the
perturbation on the fifth qubit needs to propagate to the qubits under study.
But as I → 0, we cant learn anything from the qubits of the R subsystem
as the correlations of the thermofield double are destroyed and information
gets scrambled. Moreover, we see that the scrambling effects do not happen
instantly but it depends on how fast the perturbation propagates. The
scrambling time should depend on the size of the system as in a system
with more qubits, the propagation will be slower. In [9] it is stated that the
scrambling time is t∗ ∼ logN , with N the number of qubits. The logarithm
here is another similarity to the classical chaos as we can see from (7.5):

λL = limt→+∞lim|q0|→0

(
1

t
log |δq(t)|

|δq(0)|

)
. (7.10)
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Another interesting fact that we can see from the behaviour of this model
is the similarity with the butterfly effect as in both cases a small effect
changed drastically the correlation between different parts of the system.
Moreover, the vanishing mutual information bears resemblance with the
vanishing OTO correlators.

7.3 A bound on chaos
For many years, the black hole information paradox has been a subject of
interest. Although, we are not going to get into details here, this prob-
lem arises when one tries to study the quantum nature of a black hole.
The unitarity of quantum mechanics does not allow loss of information but
scrambling is allowed. Black holes then scramble information in such a way
that it becomes inaccessible.

A lot of work, such as [11], has focused on quantifying the scrambling of
information inside a black hole, mainly by the notion of mutual information.
Using holography, it has been found [11] that mutual information is an
exponentially decreasing function ∼ e2πtw/b/S of the perturbation time tw.
As we know, S increases with the size of the system (although in black holes
S ∼ N2). Along with the exponential decay of the mutual information we
get the logarithmic law for the scrambling time. Thus, mutual information
reaches zero when

t∗ ∼
β

2π
logS . (7.11)

Recalling that this exponential is the qualitative analogue of the Lyapunov
exponent, we see that in black holes

λL =
2π

β
. (7.12)

Therefore, we can write t∗ ∼ lnS
λL
. This means that a larger system (larger

S) scrambles slower, while the higher the Lyapunov exponent the smaller is
the scrambling time.

As far the size of the system everything is pretty straightforward. But
regarding the Lyapunov exponent as a measure of chaos there isn’t much
information. Why the black hole value λL = 2π

β is important has been re-
cently answered. By using mathematical arguments, concerning the OTOC
function F (t) = ⟨W (t)V (0)W (t)V (0)⟩ as analytic in the complex time con-
tour, a universal bound has been established [9]. The universal bound is
found to be

λL ≤ 2π

β
. (7.13)

This result along with the expression 7.12, promotes black holes as the sys-
tems where scrambling is the fastest. Following the AdS/CFT conjecture,
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for a large N system to have a bulk dual it must certainly saturate this
bound. It also speculated [9] that this saturation is enough for such a sys-
tem to have a bulk dual at least at near horizon region.

7.4 Chaotic behaviour of the SYK model
Having introduced the theoretical tools to study the chaotic behaviour of a
quantum system, now we are going to derive the OTO correlators for the
SYK model. The analysis presented in this section is mainly based on [2].
For our case, we will consider an OTO correlator in real time with the
fermions separated by a quarter of the thermal circle:

F (t1, t2) = Tr[yxi(t1)yxj(0)yxi(t2)yj(0)], y ≡ ρ(β)1/4 . (7.14)

The 1/N contribution of F is determined once again by a set of ladder
diagrams that live on the thermal circle and a pair of real time folds for the
operators xi(t1)xi(t2). Pictorially the time contour we are interested in is:

where the blue dots denote the real time folds. As t1, t2 become large,
these folds grow and in the end the growth of the 1/N part of F is determined
only by the real time part of the contour. Working on real time now, we
have to define the retarded propagators. First, we find the expression for
the propagator in Lorentzian time by setting τ = it in (2.34). Since the
correlator we have computed is not analytic at τ = 0, we have to determine
if we are doing the analytic continuation of τ > 0 or τ < 0. For τ > 0 we
have:

⟨x(t)x(0)⟩ = Gc(it+ ϵ) =b
1

(it+ ϵ)2∆

= b
1

(−1)∆(t− iϵ)2∆
= b

ei∆π

(t− iϵ)2∆
.

(7.15)

But we are interested to find the correlators at finite temperature. This
means we have to do the same but in the expression:

Gβ(τ) =
π

1
4

√
2Jβ

1√
sinπτ

β

sgnτ . (7.16)
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The retarded propagator is defined as:

Gc,R = ⟨x(t)x(0) + x(0)x(t)⟩θ(t) . (7.17)

For finite temperature β, using simple algebra and standard trigonometric
identities we get:

Gc,R = 2bcos(π∆)

[
π

βsinhπt
β

]2∆
θ(t) . (7.18)

To help us analyse this ladder diagram, we define the retarded kernel:

KR(t1, t2, t3, t4) = J2(q − 1)GR(t13GR(t24)Glr(t34)
q−2 . (7.19)

Glr is the Wightman correlator, where the two operators of (2.38)are sepa-
rated, apart from the real time separation, by a half the thermal circle. It’s
expression is given by

Glr(t) = ⟨x(iτ + πβ/2)x(0)⟩ = b

[
π

βcoshπt
β

]2∆
. (7.20)

According to [2], the asymptotic growth of F is determined by the condition
that adding one rung to the ladder does not change the value of the lad-
der. This means that F must be an eigenvector of the retarded kernel with
eigenvalue one. Thus it must satisfy the integral equation:

F (t1, t2) =

∫
dt3dt4KR(t1, t2, t3, t4)F (t3, t4) . (7.21)

To solve this equation an exponentially growing ansatz is used:

F (t3, t4) = f(t3 − t4)e
λL(t3+t4)/2 . (7.22)

The motivation for choosing such an ansatz is that for t3 = t4 = t, F should
be proportional to the Lyapunov exponent, as we have mentioned in (7.1).
In other words,

F (t, t) = Tr[yxi(t)yxj(0)yxi(t)yj(0)] ∼ eλLt . (7.23)

The integral equation becomes:

F (t1, t2) = 4J2(q − 1)bqcos2(π∆)π2
∫ t1

−∞
dt3

∫ t2

−∞
dt4

(
1

coshπt34
β

)2−4∆

·

(
1

βsinhπt24
β

)2∆(
1

βsinhπt13
β

)2∆

f(t3 − t4)e
λL(t3+t4)/2 .

(7.24)
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Solving this equation [2], one finds:

F (t1, t2) =
e−hπ/β(t1+t2)[
coshπt12

β

]2∆−h
, kR(h) =

Γ(3− 2/q)Γ(2/q − h)

Γ(1 + 2/q)Γ(2− 2/q − h)
. (7.25)

As we have said, we are interested in kR = 1. The only solution to this is
h = −1 as once can see. For h = −1 and t1 = t2 = t we have:

F (t, t) = e
2π
β
t
. (7.26)

From this expression and our expectation from theory one can recognize
that λL = 2π

β . This means that the SYK model saturates the universal
bound value for the Lyapunov exponent and according to previously stated
conjectures, it should have a bulk dual.
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Chapter 8

Final remarks

In this final chapter, we are going to present some of the most interesting
varieties of the SYK model along with their important features. Moreover,
a short discussion concerning the bulk dual of the SYK model will be made
and in the end we will close the main part this master thesis by a section
with conclusions.

8.1 SYK-like models
Along with the research concerning the SYK model, there have been pro-
posed interesting models that try to address and encounter its main prob-
lems. There has been a research on supersymmetric SYK models [14]. Sim-
ilarly to the SYK model the full superconformal symmetry is spontaneously
and explicitly broken and there exists also SuperSchwarzian action. The
important difference between the supersymmetric model and SYK is that in
the supersymmetric model the Gaussian variables and not independent.

There is a SYK tensor model studied in [4], [5]. Its main advantage is
the lack of the disorder average (since its lack of dynamics an AdS/CFT in-
terpretation obscure). The SYK-tensor model reproduces the diagrammatic
structure of the original SYK. On the other hand there is no effective action
describing the model and as a consequence there is no Schwarzian action.
The lack of these features is concerning as they consist of basic features of
the SYK model.

There is also a generalized SYK model proposed [6]. This particular
model consists of f flavours of fermions, each occupying Nα sites and ap-
pearing with a qα order in the interaction. It has been shown that in this
model there is always a dimension-two operator in the spectrum of the bi-
linear singlet operators. This implies that there is a conformal symmetry
breaking and maximal chaos in the infrared four-point function.
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Another interest generalization of the SYK model is the 2d QFT ana-
log [7]. The action of this model consists of an unconventional kinetic term
imposed so that the fermion field is dimensionless. As a consequence, the
coupling of the interaction is relevant. This makes the model strongly cou-
pled in IR as the original SYK and in conformal limit the SD equations are
diffeomorphism invariant.

8.2 Search for bulk dual
There is active research on describing the physics of the SYK model as a
two dimensional gravitational theory. The fact that the action of the SYK
model looks like a classical system for the bilocal fields allow us to think of a
field theory defined on two dimensional space. Moreover, in nAdS2 gravity
we have the same pattern of symmetry breaking. Reading the propagating
modes, we get an infinite tower of dimensions but their shift is of order one
and not 1/N . Thus, we can’t view these states as a two particle state in a
weakly interacting bulk dual.

There is another interesting approach [8], [13], [17] that takes advantage
of the solvability of the model in large N . The action is constructed by
massive scalar fields (due to AdS/CFT correspondence) from the bilinear
O(N) operators up to order 1/N . The masses of the fields are related to
the dimensions of the primary operators of the SYK model. Then, the
coefficients of the interactions of the bulk dual are fixed to match the SYK
correlation functions. But there should be a string-like interpretation of
the bulk dual that hasn’t been found. As proposed in [13], the research
to understand the bulk should start with the correlators of large dimension
operators, thus the interaction between very massive bulk fields.

8.3 Conclusions and discussion
In this thesis we have studied the SYK model. Along the way we have
encountered many interesting features of the model. Also in the beginning
of this chapter we have given an overview of various SYK- like model that
there is active research and the current state of the bulk dual of the model.

To conclude this thesis we now list the main reasons that made the SYK
model to attract so much attention:

• The hallmark feature of the model is the emergent conformal symmetry
at strong coupling. This symmetry is spontaneously broken down to
SL(2,R). Moreover, this symmetry is also explicitly broken when we
consider the model away from the IR limit. Due to this breaking,
the reparametrization modes can be thought as Goldstone modes as
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they acquire a non-zero action. This symmetry breaking pattern is
identical to the one found in Jackiw-Teitelboim gravity.1 Taking this
breaking pattern under consideration, the model can be thought as a
nCFT1/nAdS2 example.

• The action of the reparametrization modes is found to be a Schwarzian.
The same action can be found in boundary dynamics of the spacetime
in Jackiw-Teitelboim gravity.

• In the largeN limit the model becomes classical and therefore solvable.
The equation that need to be solved involve the bilocal fields G,Σ.
These fields can be thought as ’living’ in two dimensions.

• The model has O(N) symmetry.

• The model saturates the Lyapunov exponent and thus, it should have
a bulk dual.

• The model has been completely solved as even eight-point functions
have been calculated and the scheme for their calculation can be ex-
panded to higher-point functions.

1As the gravity dual goes beyond the scope of this thesis, there will be given relevant
references for the interested reader at the end.
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Appendix A

Conformal Field Theory

A.1 Conformal transformations
A conformal field theory is a theory that is left invariant under conformal
transformations. In a d-dimensional space-time we define the conformal
transformations as the transformations that leave invariant the metric gµν
up to a local scale factor.

g′µν(x
′) = Λ(x)gµν(x) . (A.1)

For Λ(x) = 1, we have isometries. In the flat space where gµν = ηµν ,
the group of isometries is the Poincare group, a subgroup of the conformal
group. The case where Λ(x) = const. corresponds to scale transforma-
tions/dilatations. These transformations preserve the angle between inter-
secting curves.

An infinitesimal coordinate transformation is expressed as :

xµ → x′µ = xµ + ϵµ(x) , (A.2)

where ϵµ(x) is very small. The metric is a (0,2) tensor and under coordinate
transformations transforms as:

g′µν(x
′) =

∂xa

∂x′µ
∂xb

∂x′ν
gab . (A.3)

Under the previous infinitesimal transformation, we have:

g′µν = (δaµ − ∂µϵ
a)(δbν − ∂νϵ

b)gab

= gµν − (∂µϵν + ∂νϵµ) +O(ϵ2) .
(A.4)

With Λ(x) ≃ 1− f(x), we get

(∂µϵν + ∂νϵµ) = f(x)gµν . (A.5)
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By taking the trace of the previous expression:

f(x) =
2

d
∂ρϵ

ρ . (A.6)

For our purposes, we take gµν = ηµν = diag(1, 1, ..., 1). The treatment will
be identical to Minkowski spacetime too. Once we take the derivative ∂ρ of
(A.5), we have:

(∂ρ∂µϵν + ∂ρ∂νϵµ) = (∂ρf(x))gµν . (A.7)
Permuting (µ↔ ρ) and (ν ↔ ρ), we get

2∂µ∂νϵρ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf . (A.8)

Multiplying by ηµν we get:

2ηµν∂µ∂νϵρ = ηµνηµρ∂νf + ηµνηνρ∂µf − ηµνηµν∂ρf

⇔ 2∂2ϵρ = (2− d)∂ρf .
(A.9)

Differentiating with ∂ν and using ∂2 of (A.5), we end up with:

(2− d)∂µ∂νf = ηµν∂
2f → (d− 1)∂2f = 0 . (A.10)

For the case d = 1, we have no restrictions in f and we will study later this
particular case. The d = 2 is special and we will not study this case in this
thesis. For d > 2 ,the above equation implies that ∂µ∂ν so f is at most linear
in xµ.

f = A+Bµx
µ , (A.11)

with A,B constants. So at the level of ϵ, this implies that ϵ is at most
quadratic in coordinates.

ϵµ = aµ + bµνx
ν + cµνρx

νxρ , (A.12)

with cµνρ = cµρν . Plugging this in (A.5) we get:

∂µ(aν + bµκx
κ + cµκρx

κxρ) + ∂ν(aµ + bµνx
ν + cµνρx

νxρ) =
2

d
∂λϵµη

µλ.
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Comparing the term of the right and left side of the equation we get:

• aµ has no constraints and corresponds to infinitesimal translations.

• bµν = αηµν +mµν with mµν = −mνµ. The trace part corresponds to
an infinitesimal scale transformation (α = 1

db
λ
λ and mµν corresponds

to an infinitesimal Lorentz rotation.

• cµρν = ηµρbν + ηµνbρ − ηνρbµ with bµ = 1
dc

κ
κµ a constant vector.

The last transformation is called Special Conformal Transformation (SCT)
and acts on coordinates as:

xµ → x′µ = xµ + 2(x · b)xµ − bµx2 . (A.13)

The finite versions of the above transformations are:

• Translations: x′µ = xµ + αµ.

• Dilatations: x′µ = axµ.

• Rotations: x′µ =Mµνxν .

• SCT: x′µ = xµ−bµx2

1−b·x+b2x2 .

If we introduce the inversion transformation I such that:

I : xµ → x′µ =
xµ

x2
, (A.14)

with I2 = 1 we can see that the SCT is equivalent with performing an
inversion followed by a translation and then another inversion.

Finally, counting the generators in d dimensions we have: d generators
from translations, d generators from dilatations, d(d−1)

2 generators from ro-
tations and d generators from SCT. So, we have (d+1)(d+2)

2 generators.

A.2 Conformal group
The conformal transformations posses the structure of a group. The com-
position of conformal transformations yields another conformal transforma-
tion and every conformal transformation has an inverse that is a conformal
transformation too. We will now construct a representation of conformal
generators that act on fields/functions.

Given a conformal transformation x → x′ = x′(x) we define the action
on fields Φ(x) as

Φ(x′) ≡ Φ(x) . (A.15)
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We can always write an infinitesimal coordinate transformation as:

x′µ = xµ + ωα
δxµ

δωα
, (A.16)

where ωα is very small. We define the generators Gα of such transformation
as:

δωΦ(x) = Φ′(x)− Φ(x) = −iωαGαΦ(x) . (A.17)
Taylor expanding Φ′(x) we have:

Φ′(x) = Φ(x− ωα
δxµ

δωα
) ≃ Φ(x)− ωα

δxµ

δωα
∂µΦ(x) . (A.18)

In the end we have:
iGαΦ(x) =

δxµ

δωα
∂µΦ(x) . (A.19)

We focus now on the conformal transformations. For translations, x′µ =
xµ + ωνδµν . Thus, δxµ

δωα
= δµν . Putting this in the equation (1.19), we find

that the the generator for the translations is:

Pν = −i∂ν . (A.20)

An infinitesimal Lorentz transformation can be written as:
x′µ = xµ + ωµ

νx
ν = xµ + ωρνη

ρµxν

= xµ +
1

2
(ωρνη

ρµxν + ωνρη
νµxρ) ,

(A.21)

where ωµν = −ωνµ. Using this relation we find that
δxµ

δωρν
=

1

2
(ηρµxν − ηνµxρ).

The generator that corresponds to Lorentz transformation is given by the
expression:

iGρνΦ(x) =
1

2
(ηρµxν − ηνµxρ)∂µ =

1

2
(xν∂ρ − xρ∂ν) . (A.22)

Thus, we get the familiar expression:

Lµν = i(xµ∂ν − xν∂µ) . (A.23)

For a dilatation, we write the infinitesimal transformation as:

x′µ = xµ + αxµ = xµ + αηµνxν . (A.24)

We can easily see that the generator of dilatations is given by:

D = −ixµ∂µ . (A.25)

We summarize the generators of the conformal algebra as differential oper-
ators acting on functions:
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• Translations: Pµ = −i∂µ.

• Rotations: Lµν = i(xµ∂ν − xν∂µ).

• Dilatations: D = −ixµ∂µ.

• Special CT: Kµ − i(2xµx
ν∂ν − x2∂µ).

We can now obtain the conformal algebra:

[D,Pµ] = iPµ.

[D,Kµ] = −iKµ.

[Kµ, Pν ] = 2i(ηµνD − Lµν).

[Lµν , Pρ] = −i(ηµρPν − ηνρPµ).

[Lµν ,Kρ] = −i(ηµρKν − ηνρKµ).

[Lµν , Lρσ] = −i(Lµρηνσ − Lµσηνρ − Lνρηµσ + Lνσηµρ).

[D,Lµν ] = 0.

[Pµ, Pν ] = 0.

[Kµ,Kν ] = 0.

[D,D] = 0
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We define the above generators:

Jµν = Lµν , J−1,µ =
1

2
(Pµ −Kµ).

J−1,0 = D, J0,µ =
1

2
(Pµ +Kµ).

and Ja,b = −Jb,a with a, b ∈ {−1, 0, 1.., d}. The above generators satisfy
the following algebra:

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) , (A.26)

with ηab = diag(−1, 1, ..., 1).
The above relations show the isomorphism between the conformal group

in d dimensions and the SO(d + 1, 1) which has (d+1)(d+2)
2 too. It is im-

portant to notice that the Poincare group together with translations form
a subgroup of the full conformal group. This means that a theory invari-
ant under rotations, translations and dilatations is not necessarily invariant
under the special conformal transformations.

A.2.1 Conformal transformations in d = 1 dimensions
In one dimension there is no definition of angles so we are left with the
transformation. The only transformations we can have are:
• Translations: τ ′ = τ + a

• Dilatations: τ ′ = bτ

• Special conformal transformations: τ ′ = a+ b · τ + c · τ2

Moreover, we can see from equation (A.10) we can conclude that in one
dimension there is no constrain on f,so we can say that every smooth trans-
formation is conformal. In terms of group theory, Conf(R1) ∼= Diff(R1).

A.3 Action on operators
Symmetries in quantum field theory are realized as operators acting on the
Hilbert space (Schrodinger picture) or on local operators (Heisenberg pic-
ture). We follow the second view and we have a multicomponent operator
ϕα(x). In this picture the spacetime dependence is given by:

ϕα(x) = e−iPxϕα(0)e
+iPx . (A.27)

We now take the derivative:
∂µϕα(x) = e−iPx(−iPµϕα(0) + ϕα(0)iPµ)e

iPx

= −iPµϕα(x) + ϕα(x)iPµ

= −i[Pµ, ϕα(x)] .

(A.28)
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From this we obtain the action of the generator on the operator:

[Pµ, ϕα(x)] = i∂µϕα(x) . (A.29)

We will find now the the action of the remaining generators on our operator.
First, we will focus in the stability group, the group that leaves the origin
invariant. In case of the conformal group, it is spanned by Lorentz rotations,
dilatations and special conformal transformations. We define the actions of
these operators at the origin:

[D,ϕα(0)] = i∆ϕα(0). (A.30)
[Lµν , ϕα(0)] = i(Sµν)

β
αϕβ(0). (A.31)

[Kµ, ϕα(0)] = 0. (A.32)

where ∆ is the scaling dimension and Sµν is a spin associated matrix which
is zero for scalar fields. The above transformations are the definition for a
primary operator of scaling dimension ∆. A primary operator is an operator
that is annihilated by a special conformal transformation at the origin.

With the use of (A.27) combined with the conformal algebra we are able
to derive the action the action of the conformal generators on ϕα(x). We
will also use the Haussdorff formula:

e−ABeA = B + [B,A] +
1

2!
[[B,A], A] + ...

For the dilatation operators we get:

[D,ϕα(x)] = De−iPxϕα(0)e
iPx − e−iPxϕα(0)e

iPxD

= e−iPxeiPxDe−iPxϕα(0)e
iPx − e−iPxϕα(0)e

iPxDe−iPxeiPx

= e−iPxD̂ϕα(0)e
iPx − e−iPxϕα(0)D̂e

iPx

= e−iPx[D̂, ϕα(0)]e
iPx ,

(A.33)

where we have defined D̂ = eiPxDe−iPx. Using the Haussdorff formula we
find:

D̂ = D + ixµ[Pµ, D] + ... = D + xµPµ . (A.34)
Thus, we obtain:

[D,ϕα(x)] = i(∆ + xµ∂µ)ϕα(x) . (A.35)

Moving to the generator of rotations we get:

[Lµν , ϕα(x)] = e−iPx[L̂µν , ϕα(0)]e
iPx . (A.36)
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Again, using the Haussdorff formula and the conformal algebra
L̂µν = eiPxLµνe

−iPx = Lµν + [Lµν ,−iPρx
ρ]

= Lµν − (xρηµρPν − xρηνρPµ) .
(A.37)

Finally, we get:
[Lµν , ϕα(x)] = −i(xµ∂ν − xν∂µ)ϕα(x) + i(Sµν)αβϕβ(x) . (A.38)

Following the same procedure for the generator of special conformal trans-
formations we find:
[Kµ, ϕα(x)] = 2ixµ∆ϕα(x) + i(2xµx

ν∂ν − x2∂µ)ϕα(x) + 2ixρ(Sρµ)αβϕβ(x) .
(A.39)

For a primary scalar field Φ(x) of scaling dimension ∆ we find

Φ(x′) → Φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

Φ(x) . (A.40)

The Jacobian of the transformation is given by:∣∣∣∣∂x′∂x

∣∣∣∣ = Λ(x)−d/2 . (A.41)

Thus, we have:
Φ′(x′) = Λ(x)∆/2Φ(x) . (A.42)

A.4 Consequences of conformal invariance
A.4.1 Classical symmetries in quantum field theory
In this section we will study continuous transformations in quantum field
theory. We consider a general action:

S =

∫
ddxL(ϕ, ∂µϕ) . (A.43)

Under a general transformation,
x→ x′ = x′(x).

ϕ→ ϕ′(x′) = F(ϕ(x)).

the action becomes:

S[ϕ′] =

∫
ddxL(ϕ′, ∂µϕ′)

=

∫
ddx′L(ϕ′(x′), ∂′µϕ′(x′))

=

∫
ddx′L(F(ϕ(x)), ∂′µF(ϕ(x)))

=

∫
ddx

∣∣∣∣∂x′∂x

∣∣∣∣L(F(ϕ(x)),
∂xν

∂x′µ
∂νF(ϕ(x))) .

(A.44)
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Now we must specify the conditions under which the actions is invariant
S[ϕ′] = S[ϕ] for a given transformation. Then we can say that the transfor-
mation is a symmetry of the theory at classical level. For start, we consider
translations:

x′µ = xµ + aµ.

ϕ′(x+ a) = ϕ(x)

For those transformations, we have ∂xν

∂x′µ = δµν , J = 1, F = Id. It is trivial
to see that the action is invariant unless it depends explicitly on x.

Next, we consider Lorentz transformations:

xµ =Λµ
νx

ν . (A.45)
ϕ′(Λx) = LΛϕ(x). (A.46)

where Λµ
ν satisfy ηµνΛ

µ
ρΛ

ν
σ = ηρσ and the matrices LΛ form a repre-

sentation of the Lorentz group. The Jacobian of these transformations is
J =

∣∣ ∂x
∂x′

∣∣ = 1.
Thus, the action becomes:

S[ϕ′] =

∫
ddxL(LΛϕ,Λ

−1 · ∂(LΛϕ)) . (A.47)

Suppose ϕ is a scalar field. Then LΛ = 1 and the action is invariant provided
that the derivatives ∂µ are properly contracted.

Now, we analyse scale transformations

x′ = λx→ J =

∣∣∣∣ ∂x∂x′
∣∣∣∣ = λ−d.

ϕ′(λx) = λ−∆ϕ(x).

The transformed action becomes:

S[ϕ′] = λd
∫
ddxL(λ−∆ϕ, λ−1−∆∂µϕ) . (A.48)

For example, the action of a free scalar field is

S[ϕ] =

∫
ddx∂µϕ∂

µϕ . (A.49)

It transforms as:

S[ϕ′] = λd
∫
ddx(λ−1−∆∂µϕ)(λ

−1−∆∂µϕ)

= λd−2−2∆S[ϕ] .

(A.50)

85



For the theory to be invariant under the scale transformation, ∆ = d
2 − 1.

We can also add an interaction of the form

S[ϕ]int =

∫
ddxϕn,

but for the theory to be invariant we must have n = d
∆ = 2d

d−2 . So we can
add a ϕ3 interaction in 6 dimensions or a ϕ4 interaction in four dimensions.

A.4.2 Implications for the stress-energy tensor
For our discussion, we will consider infinitesimal transformations:

x′µ = xµ + ωa
δxµ

δωa
, (A.51)

ϕ′(x′) = ϕ(x) + ωa
δF
δωa

. (A.52)

We consider now the change of the action under these transformations. The
Jacobian changes as follows:

∂x′ν

∂xµ
= δνµ + ∂µωa

δxν

δωa
. (A.53)

Using the identity det(1 +A) ≈ 1 + TrA, we obtain:∣∣∣∣∂x′∂x

∣∣∣∣ = 1 + ∂µωa
δxµ

δωa
. (A.54)

Thus, the transformed action becomes:

S′ =

∫
ddx
(
1 + ∂µωa

δxµ

δωa

)
× L

(
ϕ(x) + ωa

δF
δωa

, [δνµ + ∂µωa
δxν

δωa
](∂νϕ(x) + ∂νωa

δF
δωa

)
)
.

(A.55)

We can now expand the Lagrangian and keep only terms of first derivatives
of ωa. We get:

δS = −
∫
ddxjµaωa, (A.56)

with the current associated to the infinitesimal transformation:

jµa =
( ∂L
∂(∂µϕ)

∂νϕ− δµνL
)δxν
δωa

− ∂L
∂(∂µϕ)

δF
δωa

. (A.57)

The Noether theorem states that to every continuous symmetry of the ac-
tion, we may associate a current that is classically conserved. Assuming now
that the transformation (A.51) is symmetry of the action, that means that
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it leaves the action invariant, and the fields satisfy the equations of motion
then δS = 0 for every variation ωa. We integrate by parts (A.56) and arrive
at the conservation equation:

∂µj
µ
a = 0. (A.58)

We can then define a conserved charges:

Qa =

∫
dd−1xj0a. (A.59)

Then,
∂tQa =

∫
dd−1∂txj

0
a =

∫
dd−1∂ixj

i
a = 0. (A.60)

In the last step, we have assumed that the fields and thus jia vanish suffi-
ciently fast at infinity. We can always redefine the given current as

jµa → jµa + ∂νB
µν , (A.61)

with Bµν = −Bνµ. It is is to see that the redefined current is also conserved
as:

∂µj
µ
a + ∂µ∂νB

µν = ∂µj
µ
a = 0, (A.62)

as the term ∂µ∂νB
µν is the product of derivatives, which are symmetric

under µ↔ ν, with the antisymmetric Bµν and consequently it vanishes.

Energy-momentum tensor
Now we consider an infinitesimal translation xµ → xµ + ϵµ. Then we have

δxµ

δxν
= δµν ,

δF
δϵν

= 0.

Using these relations, we get:

Tµν
c =

∂L
∂(∂µϕ)

∂νϕ− ηµνL, (A.63)

where Tµν
c is the canonical energy momentum tensor. The conservation law

becomes:
∂µT

µν
c = 0. (A.64)

The conserved charge is the momentum:

P ν =

∫
dd−1xT 0ν

c . (A.65)

For example, the energy is:

P 0 =

∫
dd−1xT 00

c =

∫
dd−1x

(∂L
∂ϕ̇

− L
)
=

∫
dd−1xH. (A.66)
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It is found out that when the theory is Poincare invariant, we redefine a
new symmetric tensor.

Tµν
c → Tµν , (A.67)

with Tµν = T νµ. This new tensor is called the Belifante tensor. It is based
on the freedom we have to redefine the energy momentum tensor as:

Tµν = Tµν
c + ∂ρB

ρµν , (A.68)

with Bρµν = −Bµρν . Of course this redefinition does not violate the con-
servation law. The tensor Bρµν is then constructed in such a way that the
antisymmetric part of the redefined Tµν vanishes. For more details, see [27].

We consider now an infinitesimal diffeomorphism:

x′µ = xµ + ϵµ(x). (A.69)

From (A.56), we have:

δS = −
∫
ddxTµν∂µϵν = −1

2

∫
ddxTµν(∂µϵν + ∂νϵµ). (A.70)

Conformal invariance and stress-energy tensor
As we will now see the scale and the conformal symmetry has important
implications for the stress-energy tensor. Suppose we have translation and
Poincare invariance and we impose now conformal invariance. We have
shown that for an infinitesimal conformal transformation:

∂µϵν + ∂νϵµ = ηµνf(x). (A.71)

Thus, equation (A.70) becomes:

δS = −
∫
ddxTµ

µ f(x). (A.72)

For a scale invariant action, we have δS = 0 and f(x) = a. Thus, for scale
invariant theories the stress-energy tensor is traceless, Tµ

µ = 0. For special
conformal transformation, the function f(x) is not arbitrary. But if the
stress-energy tensor is traceless, Tµ

µ = 0 then we have once again δS = 0.
Then, the theory is conformally invariant.

A conformal field theory must have a conserved and symmetric stress energy
tensor (∂µTµν = 0, Tµν = T νµ) that is also tracelessTµ

µ = 0.

88



The free boson
As an example of the above, we will study the Euclidean action for a free
boson. The action is

S[ϕ] =
1

2

∫
ddx∂µϕ∂

µϕ. (A.73)

From equation (A.63), we obtain the stress-energy tensor of the theory:

Tµν = −1

2
ηµν∂κϕ∂

κϕ+ ∂νϕ∂µϕ. (A.74)

Of course, the tensor is already symmetric. It also conserved when we use
the e.o.m ∂µ∂

µϕ = 0. The trace is:

Tµ
µ = ηµνTµν = −1

2
d∂κϕ∂

κϕ+ ∂κϕ∂
κϕ

= −1

2
(d− 2)∂κϕ∂

κϕ.

(A.75)

We see that in d = 2, the trace vanishes and thus the theory is conformally
invariant.

A.4.3 Quantum conformal symmetry: implications for cor-
relators

As we have seen when an action is invariant under some symmetry that
means that the theory has a classical symmetry. Now we will study the
quantum theory. The natural object that we are interested in are the cor-
relation functions:

⟨ϕ(x1)...ϕ(xn)⟩ =
1

Z

∫
[dϕ]ϕ(x1)...ϕ(xn)e

−S[ϕ] . (A.76)

We will assume that the action and the integration measure are invariant.
The fact that the integration measure is invariant is highly non-trivial for
scale transformation because QFT come with a scale (UV-cutoff).

Provided the action has a symmetry we can show that:

⟨ϕ(x′1)...ϕ(x′n)⟩ = ⟨ϕ′(x′1)...ϕ′(x′n)⟩ = ⟨F(ϕ(x1))...F(ϕ(xn))⟩ . (A.77)

Indeed under a transformation∫
[dϕ]ϕ(x′1)...ϕ(x

′
n)e

−S[ϕ] =

∫
[dϕ′]ϕ′(x1)...ϕ

′(xn)e
−S[ϕ′]

=

∫
[dϕ]F(ϕ(x1))...F(ϕ(xn))e

−S[ϕ] .

(A.78)

In the last line we have assumed the invariance of the action and the inte-
gration measure.
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For example, for translations we get:

⟨ϕ(x1 + a⃗)...ϕ(x2 + a⃗)⟩ = ⟨ϕ(x1)...ϕ(xn)⟩ , (A.79)

and we see that the correlators, in a theory with translational invariance,
are only functions of relative positions. Now we consider Lorentz transfor-
mations acting on scalar operators. From equation (A.77) we have

⟨ϕ(Λµ
νx

ν
1)...ϕ(Λ

µ
νx

ν
n)⟩ = ⟨ϕ(x1)...ϕ(xn)⟩ . (A.80)

A.4.4 Conformal invariance constraint on correlators
We assume now that our theory , apart from the Poincare invariance, has
also full conformal invariance. We will focus on correlators of primary scalar
fields. Under a conformal transformation x→ x′ equation (A.77) implies

⟨ϕ(x′1)...ϕ(x′n)⟩ =
∣∣∣∣∂x′∂x

∣∣∣∣−∆1/d

x=x1

....

∣∣∣∣∂x′∂x

∣∣∣∣−∆n/d

x=xn

⟨ϕ(x1)...ϕ(xn)⟩ , (A.81)

or equivalently

⟨ϕ(x1)...ϕ(xn)⟩ =
∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

....

∣∣∣∣∂x′∂x

∣∣∣∣∆n/d

x=x2

⟨ϕ(x1)...ϕ(xn)⟩ . (A.82)

We will now consider the implications of these results in two and four-point
functions.

Two-point function
Taking under consideration Poincare invariance (translations and rotations)
the two-point function is

⟨ϕ1(x1)ϕ2(x2)⟩ = f(|x1 − x2|) . (A.83)

Scale transformations x→ x′ = λx imply

⟨ϕ1(x1)ϕ2(x2)⟩ = λ∆1+∆2⟨ϕ1(λx1)ϕ2(λx2)⟩ . (A.84)

We can deduce that f(x) = λ∆1+∆2f(λx). Then the two-point function
becomes:

⟨ϕ1(x1)ϕ2(x2)⟩ =
C12

|x1 − x2|∆1+∆2
. (A.85)

Now we consider special conformal transformations. They satisfy∣∣∣∣∂x′∂x

∣∣∣∣ = 1

(1− 2b · x+ b2x2)d
. (A.86)
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Introducing γi = 1− 2b · xi + b2x2i we have,∣∣x′i − x′j
∣∣ = |xi − xj |

γ
1/2
i γ

1/2
j

. (A.87)

Then special conformal transformations imply that:

C12

|x1 − x2|∆1+∆2
=

1

γ∆1
1 γ∆2

2

C12

|x′1 − x′2|
∆1+∆2

=
C12

|x1 − x2|∆1+∆2

(γ1γ2)
∆1+∆2

2

γ∆1
1 γ∆2

2

Since γ1 and γ2 are independent, the above equation can be satisfied only
if ∆1 = ∆2. That means that primary fields are correlated only when they
have the same scaling dimension ∆. Introducing the notation x12 = x1−x2,
we arrive at a very important result:

⟨ϕ1(x1)ϕ2(x2)⟩ =

{
0 if ∆1 ̸= ∆2

C12

|x12|2∆
if ∆1 = ∆2 = ∆

Three-point function
We consider three-point functions. In a theory with Poinacare invariance
they can be written:

⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩ =
C123

|x12|a|x23|b|x13|c
. (A.88)

Following the same arguments as before, we can see that scale invariance
now implies:

a+ b+ c = ∆1 +∆2 +∆3. (A.89)
This condition does not completely fix a, b, c and we must impose invariance
under special conformal transformations too. The requirement for invariance
under these transformations is:

C123

|x12|a|x23|b|x13|c
=

(γ1γ2)
a/2(γ2γ3)

b/2(γ1γ3)
c/2

γ∆1
1 γ∆3

2 γ∆3
3

C123

|x12|a|x23|b|x13|c
. (A.90)

Hence, we get:

a+ c = 2∆1, (A.91)
a+ b = 2∆2, (A.92)
b+ c = 2∆3. (A.93)

The solutions for this system are:

a = ∆1 +∆2 −∆3, (A.94)
b = ∆2 +∆3 −∆1, (A.95)
c = ∆3 +∆1 −∆2. (A.96)
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Finally, the three-point function is:

⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩ =
C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆3+∆1−∆2
. (A.97)

As we have no more freedom to normalize Cijk, after normalizing Cij = 1,
we can deduce that Cijk has non-trivial physical meaning.

Four-point function
We move now to the four-point functions which play a crucial role in the
model we study. As we have seen

x′ij =
x2ij
γiγj

. (A.98)

For four points x1, x2, x3, x4 we can construct the following cross ratios that
are left invariant under conformal transformations:

u =
x212x

2
34

x213x
2
24

, υ =
x214x

2
23

x213x
2
24

(A.99)

That said:
⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =

G(u, υ)∏
i<j

∣∣∣x2ij∣∣∣δij , (A.100)

with
∑

i ̸=j δij = ∆i,which is the constrain due to scale transformations.
F (u, υ) can be any function of the cross ratios.
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A.5 Radial quantization and the OPE
A.5.1 Radial quantization
In this section we will study a parallel view of the correlation functions, from
the point of view of Hilbert space and quantum mechanical evolution. In
quantum field theory we can foliate the Minkowskian space-time by surfaces
of equal time. Then, the space-time is composed by the union of infinite
equal time surfaces.
The in states of a Hilbert space can be created by inserting operators in the
past of the surface:

The out states can be created by inserting operators in the future of the
surface:

The correlator among these operators is given by the following inner product

⟨ψout|ψin⟩ = (⟨0|O1O3O2)|(O2O1O3|0⟩).

These states live in a different leaf (different time), so we need to evolve
them with the operator U = e−iP0∆t and the correlator is:

⟨ψout|U |ψin⟩.

The operator P0 commutes with the generators Pµ so we can characterize
the states living on the surfaces by their momenta Pµ|k⟩ = kµ|k⟩.
We now consider a conformal field theory in Euclidean space. It is more
convenient to foliate the space by spheres Sd−1 with the origin at the center.
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Now the in and out states are created by inserting operators inside and
out side of the sphere. For example:

The operator that translates from one sphere to another one of different
radius is the dilatation operator, U = ei∆t, with t = log r. To justify this,
lets look at a metric in Rd in spherical coordinates. We have:

ds2 = dr2 + r2dΩd−1 = r2[
dr2

r2
+Ωd−1]. (A.101)

If we set t = log r, we get:

dr2

r2
+Ωd−1 = dt2 +Ωd−1. (A.102)

This is a metric on R × Sd−1. Consider now that we are studying a CFT
on Rd. Under such rescale the metric should be invariant. Thus, studying
a CFT in R× Sd−1 is equivalent. This map takes circles of constant radius
in Rd to constant t slices on R × Sd−1. Thus, the dilatation operator in
Rd, which maps circles to circles with different radius, corresponds to time
translations on R× Sd−1. It acts just like a Hamiltonian. This discussion
justifies the argument we made above.
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In the sphere, states are now classified by their scaling dimension and
their SO(d) spin. We have:

D |∆⟩ = i∆ |∆⟩ . (A.103)
Lµ,ν |∆, l⟩a = i(Sµ,ν)

b
a |∆, l⟩b . (A.104)

A.5.2 State/operator correspondence
We haven seen that by inserting operators inside the sphere, we generate
states that live on the sphere. To see how this works, we are going to give
some examples:

• First, the vacuum state |0⟩ corresponds to no insertion and has zero
dilatation eigenvalue. Moreover, it is annihilated by all operators
K,L, P .

• Suppose we insert a primary operator ϕ∆(0) at the origin. We get a
state |∆⟩ = ϕ∆(0) |0⟩. We will now find its eigenvalue of the dilatation
operator. We expect it to be ∆. We have:

D |∆⟩ = Dϕ∆(0) |0⟩ = [D,ϕ∆(0)] |0⟩+ ϕ∆(0)D |0⟩
= [D,ϕ∆(0)] |0⟩ = i∆ |∆⟩ ,

(A.105)

as it was expected. Moreover, as we inserted a primary operator, we
expect to have created a primary state. That means that the state
should be annihilated by K̂. Let’s see:

K |∆⟩ = Kϕ∆(0) |0⟩ = [K,ϕ∆(0)] |0⟩+ ϕ∆(0)K |0⟩ = 0 |∆⟩ . (A.106)

Indeed it is.

• Suppose we insert a primary operator ϕ∆(x) but not at the origin. We
then get the state |ψ⟩ = ϕ∆(x) |0⟩. We will show that this state in not
an eigenvalues of the dilatation operator. We have:

|ψ⟩ = ϕ∆(x) |0⟩ = e−iPxϕ∆(0)e
+iPx |0⟩ = e−iPxϕ∆(0)(1 + ixP + ...) |0⟩

= e−iPxϕ∆(0) |0⟩ = e−iPx |∆⟩ =
∑
n

1

n!
(−iPx)n |∆⟩ = |∆⟩ − ixP |∆⟩+ ...

(A.107)

Indeed, the state we created is a superposition of states with different
scaling dimensions/energies. Moreover, we will show that the eigen-
values of Pµ |∆⟩ under the dilatation operator is |∆+ 1⟩. That bares a
close resemblance to the quantum harmonic oscillator and the creation
operator. Let’s justify it:

D(Pµ |∆⟩) = ([D,Pµ] + PµD) |∆⟩ = (iPµ + i∆Pµ) |∆⟩ = i(∆ + 1) |∆⟩ .
(A.108)
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Schematically this can be illustrated as:

|∆⟩ P→ |∆+ 1⟩ P→ |∆+ 2⟩ ... (A.109)

It is also easy to show that the state Pµ |∆⟩ is not a primary state
since it is not annihilated by Kµ. We have:

Kν(Pµ |∆⟩) = [Kν , Pµ] |∆⟩+ PµKν |∆⟩ = [Kν , Pµ] |∆⟩ ̸= 0 (A.110)

We can also check that while Pµ raises the dimension, Kµ lowers it.
We have:

D(Kµ |∆+ 1⟩) = [D,Kµ] |∆+ 1⟩+KµD |∆+ 1⟩
= (−i+ i(∆ + 1))Kµ |∆+ 1⟩ = i∆(Kµ |∆+ 1⟩).

(A.111)

We showed that the state Kµ |∆+ 1⟩ has dimension ∆. That means
that the operator Kµ lowers the dimensions. This is similar to the
annihilation operator in quantum harmonic oscillator. This fact allows
us to justify the existence of a primary state/operators as an axiom
since the dimensions should be bounded from below.
Through these examples we can justify the state/operators correspon-
dence. It says that a state that has dimensions ∆ and it is annihilated
by Kµ corresponds to the insertion of a local primary operator at the
origin. Furthermore, each eigenstate of the dilatation operator is either
a primary or a descendant or even a linear combination of those.

A.5.3 The OPE in CFT
The operator product expansion (OPE) is used in QFT to write a product
of two operators that are close to each other, as a product of local operators
at the middle point. In CFTs we will see that the OPE acquires powerful
properties thanks to the radial quantization.

Let’s consider the insertion of two operators inside a sphere:

φ2(0)
φ1(x)

j i
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They generate the state:

|ψ⟩ = ϕ1(x)ϕ2(0) |0⟩ . (A.112)

Then we can expand this state in a basis of eigenstates of the dilatation
operator |En⟩. Thus,

|ψ⟩ =
∑
n

cn(x) |En⟩ (A.113)

But as we have seen through the state/operator correspondence, each |En⟩
is linear combination of primaries and their derivatives/descendants. We
can write:

ϕ1(x)ϕ2(0) |0⟩ =
∑

primaries

C∆(x, ∂)ϕ∆(0) |0⟩ . (A.114)

This expression has algebraic origin since we have expanded a state in a com-
plete basis. Practically, this means that in contrary with QFT the operators
don’t have to be close, just inside the sphere. Now, we analyse the functions
C∆(x, ∂). For simplicity, we consider only one primary field ϕ∆(0).

ϕ1(x)ϕ2(0) |0⟩ =
const.
|x|k

(ϕ∆(0) + ...) |0⟩ , (A.115)

where the dots stand for descendants and other primaries. We act with the
dilatation on the L.H.S of (A.115). We get:

Dϕ1(x)ϕ2(0) |0⟩ = i(∆ + xµ∂µϕ1(x)ϕ2(0) |0⟩+ i∆2ϕ1(x)ϕ2(0) |0⟩

= i(∆1 +∆2 − k)
const.
|x|k

(ϕ∆(0) + ...) |0⟩ , (A.116)

where in the last line we have used the R.H.S of (A.115). Now, we act with
the dilatation operator on the R.H.S of (A.115).

D
const.
|x|k

(ϕ∆(0) + ...) |0⟩ = i∆
const.
|x|k

(ϕ∆(0) + ...) |0⟩ . (A.117)

Comparing the previous equations we arrive at:

k = ∆1 +∆2 −∆. (A.118)

Next, we focus on the descendant contribution, that is the next order term
of C∆(x, ∂). We have:

ϕ1(x)ϕ2(0) |0⟩ =
const.

|x|∆1+∆2−∆
(ϕ∆(0) + cxµ∂µϕ∆(0) + ...) |0⟩ . (A.119)

As before we use the conformal symmetry to fix the constant c. Now, we will
act with Kµ on both sides of (A.119). This will allow us to use the definition
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of the primary operator, that is the annihilation by Kµ. Moreover, we will
use the transformation rule for a scalar field:

[Kµ, ϕα(x)] = 2ixµ∆ϕα(x) + i(2xµx
ν∂ν − x2∂µ)ϕα(x). (A.120)

Acting on the LHS of (A.119). We get:

Kµϕ1(x)ϕ2(0) |0⟩ = 2ixµ∆1ϕα(x) + i(2xµx
ν∂ν − x2∂µ))ϕ1(x)ϕ2(0) |0⟩

= ixµ(∆1 +∆−∆2)
const.

|x|∆1+∆2−∆
(ϕ∆(0) + ...) |0⟩ .

(A.121)

Acting on the RHS of (A.119) and using [Kµ, Pν ]ϕ∆(0) = KµPνϕ∆(0) =
2iηµν∆ϕ∆(0) and −i[Pµ, ϕα(x)] = ∂µϕα(x), we arrive at:

Kµ

(
const.

|x|∆1+∆2−∆
(ϕ∆(0) + cxµ∂µϕ∆(0) + ...) |0⟩

)
=

const.
|x|∆1+∆2−∆

(2ic∆xµϕ∆(0) + ...).

(A.122)

Comparing again the two sides of the equation, we fix the constant c:

c =
∆1 +∆2 −∆

2∆
. (A.123)

Once again, the conformal invariance fixes the constant. Following this
procedure, we can deduce that conformal invariance fully fixes the function
C∆(x, ∂), up to an overall factor C12∆. It is important to notice that the
function C∆(x, ∂) has dependence only on the scaling dimensions of the
inserted fields and the dimension of the primary.

We consider now a three-point function of primaries and we take the
OPE of the first two operators. We have:

⟨ϕ1(x)ϕ2(0)ϕ∆(z)⟩ =
∑

primaries∆′

C12∆′C∆′⟨ϕ∆′(y)ϕ∆⟩|y=0. (A.124)

Considering the two-point function of the above equation, we have seen that
for the two primaries to be correlated they must have the same dimensions.
Moreover, we assume we have contribution from only one primary. Thus, it
must have dimensions ∆. The three-point function then, becomes:

⟨ϕ1(x)ϕ2(0)ϕ∆(z)⟩ = C12∆C∆⟨ϕ∆(y)ϕ∆⟩|y=0. (A.125)

In the previous section, we have found the expressions for a conformal in-
variant two and three-point function. Thus we can substitute in the above
expression. To determine C∆(x, ∂), we have to expands in powers of x the
three-point function on the L.H.S of A.125. The coefficients C12∆ are the
same that appear in (A.97) and are called OPE coefficients.
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A.5.4 Conformal blocks
Equipped with the function C∆(x, ∂), with successive application of the
OPE, we can fix the building blocks of any correlation function. Let’s see
how this is done for the four-point function. We apply the OPE two times:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑
∆

c12∆C∆(x12, ∂y)⟨ϕ∆(y)ϕ(x3)ϕ(x4)⟩

=
∑
∆

c12∆c34∆

[
C∆(x12, ∂y)C∆(x34, ∂z)⟨ϕ∆(y)ϕ∆(z)⟩

]
.

(A.126)

Since, C∆(x12, ∂y), C∆(x34, ∂z) together with the two-point function are fixed
by conformal invariance, the whole quantity in the brackets is fixed. Recall-
ing, (A.100), we can define:[
C∆(x12, ∂y)C∆(x34, ∂z)⟨ϕ∆(y)ϕ∆(z)⟩

]
=

G∆,l(u, v)

|x12|2∆|x34|2∆
= F∆

1234. (A.127)

The functions G∆,l(u, v) are called conformal blocks and they only depend
on the dimensions of the primaries, their spin l and the dimension ∆ of the
operator appearing during the OPE. In the end, the four-point function can
be written as:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑
∆

c12∆c34∆F∆
1234. (A.128)

We have arrived at a remarkable conclusion.

In a conformal field theory, the dimensions of the primaries along with the
OPE coefficients and the structure of the OPE is enough to write any cor-
relation function.
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Appendix B

The kernel as a function of
cross ratios

As we have seen, the kernel gives the (n+1)-ladder diagram in terms of the
n-ladder diagram.

sgn(τ12)sgn(τ34)
|τ12|2∆|τ34|2∆

Fn+1(χ) = − 1

α0

∫
dταdτb

sgn(τ1α)sgn(τ2b)
|τ2b|2∆|τ1α|2∆|ταb|2−4∆

·sgn(ταb)sgn(τ34)
|ταb|2∆|τ34|2∆

Fn(χ̃)

We will use conformal symmetry to turn this into a one-dimensional integral
equation. As we have seen the cross ratios are:

χ =
τ12τ34
τ13τ24

χ̃ =
τabτ34
τa3τb4

.

Using the conformal symmetry and we take τ1 = 0, τ3 = 1, τ4 = ∞. Thus
we get χ = τ2 and χ̃ = τab

τa−1 . We now replace the τb integration variable by
χ̃. That means that dτb = −dχ̃(τa − 1) so the measure becomes dτadτb =
dτadχ̃(1 − τa). From the definition of χ̃ , we get τb = τa − χ̃(τa − 1). For
simplicity we will write τa = τ and we will use the property that the sgn
function is odd. We now substitute all the above to the initial integral. On
the right hand size (ignoring the integration measure) we have the following
two fractions:

•
sgn(τ1α)sgn(τ2b)

|τ2b|2∆|τ1α|2∆|ταb|2−4∆
=

sgn(−τa)sgn(χ− τb)

|χ− τb|2∆| − τa|2∆|τa − τb|2−4∆

=
−sgn(τ)sgn(χ− τ + χ̃(τ − 1))

| − τ |2∆|χ− τ + χ̃(τ − 1)|2∆|χ̃(τ − 1)|2−4∆

=
−sgn(τ)sgn(χ− χ̃)sgn(1− τ(1−χ̃)

χ−χ̃ )

|τ |2∆|χ− χ̃|2∆|sgn(1− τ(1−χ̃)
χ−χ̃ )|2∆|χ̃(τ − 1)|2−4∆
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•
sgn(ταb)sgn(τ34)
|ταb|2∆|τ34|2∆

=
sgn(τ34)sgn(χ̃(τ − 1))

|χ̃(τ − 1)|2∆|τ34|2∆

Together with the transformed measure we multiply these two terms and
divide their product by sgn(τ12)sgn(τ34)

|τ12|2∆|τ34|2∆ . In the end we get:

Fn+1(χ) =
1

α0

∫
dχ̃

|χ̃|

2
(

|χ| ˜|χ|
|χ− χ̃|

)2∆

sgn(χχ̃)m(χ, χ̃)Fn(χ̃) , (B.1)

where

m(χ, χ̃) = sgn(χ− χ̃)

∫ ∞

−∞
dτ
sgn(τ)sgn(1− τ)sgn(1− τ(1−χ̃)

χ−χ̃ )

|τ |2∆|1− τ |1−2∆|1− τ(1−χ̃)
χ−χ̃ |2∆

. (B.2)
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Appendix C

Casimir operator acting on
cross ratio

In this chapter we are going to derive the way the Casimir operator acts on
function of the cross ratio. Explicitly we will end in:

C1+2
1

|τ12|2∆
f(χ) =

1

|τ12|2∆
Cf(χ) , (C.1)

with C ≡ χ2(1− χ)∂2χ − χ2∂χ. The Casimir operator is given by:

C1+2 = 2(∆2 −∆)−K1P2 − P1K2 + 2D1D2,

where
D = −τ ∂

∂τ
, P =

∂

∂τ
, K = τ2

∂

∂τ
+ 2τ∆.

To derive the desired relationship we are going to use the following:
dχ

dτ1
=
τ34τ23
τ24τ213

,
dχ

dτ2
=
τ34τ41
τ13τ224

,
d

dχ

(
1

|χ− a|b

)
= b(a− χ)|χ− a|−b−2.

First we are going to act with P2 on 1
|τ12|2∆ f(χ). We get:

P2

(
1

|τ12|
f(χ)

)
=

(
2∆τ12

1

|τ12|2∆+2

)
f(χ) +

(
1

|τ12|2∆
· τ34τ41
τ13τ224

)
∂χf(χ)

Then we act on the above result with K1. We arrive at:

K1P2

(
1

|τ12|2∆
f(χ)

)
=

1

|τ12|2∆
f(χ)

(
2∆τ21

1

|τ12|2
− 4∆2τ21

τ212
|τ12|4

− 4∆τ212
τ21

|τ12|4
+ 4τ1∆

2 τ12
|τ12|2

)
+

1

|τ12|2∆
∂χf(χ)

(
2∆τ12

τ21
|τ12|2

τ34τ23
τ24τ213

− 2∆
τ12
|τ12|2

τ34τ41τ
2
1

τ13τ224
+ τ21

τ234
τ224τ

2
13

+ 2∆τ1
τ34τ41
τ13τ224

)
+

1

|τ12|2∆
∂2χf(χ)

(
τ21
τ234τ41τ23
τ324τ

3
13

)
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Moving on to the next term we first act with K2.We get:

K2

(
1

|τ12|2∆
f(χ)

)
= 2∆τ12τ

2
2

1

|τ12|2
1

|τ12|2∆
f(χ)

+ τ22
τ34τ41
τ13τ224

1

|τ12|2∆
∂χf(χ) + 2τ2∆

1

|τ12|2∆
f(χ)

Then, we act with P1. Finally this term gives:

P1K2

(
1

|τ12|2∆
f(χ)

)
=

1

|τ12|2∆
f(χ)

(
2∆τ22

1

|τ12|2
− 4∆2τ22

τ212
|τ12|4

− 4∆τ212
τ22

|τ12|4
− 4τ2∆

2 τ12
|τ12|2

)
+

1

|τ12|2∆
∂χf(χ)

(
2∆τ12

τ22
|τ12|2

τ34τ23
τ24τ213

− 2∆
τ12
|τ12|2

τ34τ41τ
2
2

τ13τ224
+ τ22

τ234
τ224τ

2
13

+ 2∆τ2
τ34τ23
τ24τ213

)
+

1

|τ12|2∆
∂2χf(χ)

(
τ22
τ234τ41τ23
τ324τ

3
13

)
Now, we will compute the final term 2D1D2 following the same procedure.
At first we have:

D2

(
1

|τ12|2∆
f(χ)

)
=

1

|τ12|2∆
f(χ)

(
−∆− 2∆τ2

τ12
|τ12|2

)
+

1

|τ12|2∆
∂χf(χ)

(
−τ2

τ34τ41
τ13τ224

)
Then, we act with 2D1. To make our final computations clearer we write the
expression that occurs by acting with 2(∆2 −∆)−K1P2 − P1K2 + 2D1D2

in terms of f, ∂f, ∂2. The terms proportional to 1
|τ12|2∆ f(χ) are:

2(∆2 −∆)−
(
2∆τ21

1

|τ12|2
− 4∆2τ21

τ212
|τ12|4

− 4∆τ212
τ21

|τ12|4
+ 4τ1∆

2 τ12
|τ12|2

)
−
(
2∆τ22

1

|τ12|2
− 4∆2τ22

τ212
|τ12|4

− 4∆τ212
τ22

|τ12|4
− 4τ2∆

2 τ12
|τ12|2

)
+

(
4∆

τ1τ2
|τ12|2

− 8∆
τ1τ2τ

2
12

|τ12|4
− 4∆2 τ1τ12

|τ12|2
− 8∆2 τ1τ2τ

2
12

|τ12|4

+ 2∆2 + 4∆2 τ2τ12
|τ12|2

)
The last line is the outcome of the action of 2D1D2. Collecting the terms
with the same denominator and using trivial identities, we get:

2∆2 + 4∆2 − 8∆2 + 2∆2 = 0

103



Now, the terms proportional to 1
|τ12|2∆∂χf(χ) are:

−
(
2∆τ12

τ21
|τ12|2

τ34τ23
τ24τ213

− 2∆
τ12
|τ12|2

τ34τ41τ
2
1

τ13τ224
+ τ21

τ234
τ224τ

2
13

+ 2∆τ1
τ34τ41
τ13τ224

)
−
(
2∆τ12

τ22
|τ12|2

τ34τ23
τ24τ213

− 2∆
τ12
|τ12|2

τ34τ41τ
2
2

τ13τ224
+ τ22

τ234
τ224τ

2
13

+ 2∆τ2
τ34τ23
τ24τ213

)
+

(
2∆τ1τ34τ23
τ213τ24

+
4τ1τ2τ34τ23τ12
τ213τ24|τ12|2

− 4τ1τ2τ34τ41τ12
τ13τ224|τ12|2

+
2τ1τ2τ

2
34

τ213τ
2
24

+
2∆τ2τ34τ41
τ13τ224

)
The last line is again the outcome of the action of 2D1D2. Using the defini-
tion of the cross ratio χ = τ12τ34

τ13τ24
which appears in every term of the above

expression we get:

−
������(τ1 − τ2)

2

τ212
χ2 +

∆χ

|τ12|2τ13
(
−2τ21 τ23 − 2τ22 τ23 + 4τ1τ2τ23

)
+

∆χ

τ12τ24

(
− 2τ1τ41 + 2τ2τ41

)
− ∆χ

|τ12|2τ24
(
−2τ21 τ41 − 2τ22 τ41 + 4τ1τ2τ41

)
+

∆χ

τ12τ13

(
− 2τ2τ23 + τ1τ23

)
Working out the expression at the parentheses we arrive at:

− χ2 −
������2∆χτ23τ

2
12

|τ12|2τ13
+

HHHHHH

2∆χτ41τ
2
12

|τ12|2τ24
+

������2∆χτ23τ12
τ12τ13

−
HHHHHH

2∆χτ41τ12
τ12τ24

= −χ2

Finally, we are left with the terms that are proportional to 1
|τ12|2∆∂

2
χf(χ).

These are:

− τ21
τ234τ41τ23
τ324τ

3
13

− τ22
τ234τ41τ23
τ324τ

3
13

+ 2
τ1τ2τ

2
34τ23τ41

τ313τ
3
24

= −τ
2
1χ

2τ41τ23
τ24τ13τ212

− τ22χ
2τ41τ23

τ24τ13τ212
+

2τ1τ2χ
2τ23τ41

τ24τ13τ212

= −τ
2
1χ

3τ41τ23
τ34τ312

− τ22χ
3τ41τ23
τ34τ312

+
2τ1τ2χ

3τ23τ41
τ34τ312

= −χ
3τ41τ23
τ12τ34

,

but
τ41τ23
τ12τ34

=
τ4τ2 − τ4τ3 − τ1τ2 + τ1τ3
τ1τ3 − τ1τ4 − τ2τ3 + τ2τ4

.

Moreover, computing 1− 1/χ we find that:
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− 1

χ
=
τ12τ34 − τ13τ24

τ12τ34
=
τ1τ3 −���τ1τ4 −���τ2τ3 + τ2τ4
τ1τ3 − τ1τ4 − τ2τ3 + τ2τ4

= −−τ1τ2 +���τ1τ4 +���τ3τ2 − τ3τ4
τ1τ3 − τ1τ4 − τ2τ3 + τ2τ4

=
τ41τ23
τ12τ34

.

Thus,

1

|τ12|2∆
∂2χf(χ)

(
−χ3 · (1− 1

χ
)

)
=

1

|τ12|2∆
· χ2(1− χ) . (C.2)

Adding together all the terms corresponding to to f, ∂f, ∂2 we arrive at the
desired expression:

C1+2
1

|τ12|2∆
f(χ) =

1

|τ12|2∆
Cf(χ),

with C ≡ χ2(1− χ)∂2χ − χ2∂χ.
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Appendix D

Spinor representations in
various dimensions

As we have said the Hamiltonian of the SYK model is given by

H =
1

4!

N∑
j,k,l,m

Jjklmxjxkxlxm, (D.1)

while the Majorana fermions xi obey the anticommutation relations

{xi, xj} = 2δij . (D.2)

These fermions are simple matrices, which we are going to build now. These
matrices will satisfy the Clifford algebra {xi, xj} = 2δij , and they will be
representations of the orthogonal group, since we are working on Euclidean
space, for general dimension N . Moreover, the fact that we are dealing with
Majorana fermions implies that we are going to look for Hermitian repre-
sentations, xi† = xi. We will restrict our discussion for even dimensions,
N = 2K.

We can define the following raising and lowering operators:

ci =
1

2
(x2i − ix2i+1), c†i =

1

2
(x2i + ix2i+1). i = 1, ...K − 1. (D.3)

It is trivial to see that they obey the following anticommutation relations:

{ci, cj} = {c†i , c
†
j} = 0, {ci, c†j} = δij . (D.4)

These are exactly the fermion anticommutation relations. We now assume
that there exists a state, |0⟩ which is annihilated by ci and thus, we can
build our basis by acting with c†i on the vacuum. We must be careful and
keep in mind that our basis will be composed by the states created by acting

106



will all the possible ways with c†i , at most once since (c†i )
2 = 0. Thus, our

basis consists of states like

(c†1)
n....(c†K)n |0⟩ , n = 0, 1. (D.5)

The number of the basis states and consequently the dimension of the Hilbert
space will be 2K , corresponding to whether a state is occupied or not. For
example, suppose we have N = 4 → K = 2. We have the following states:

(c†1) |0⟩ ∝ |1⟩ , (D.6)
(c†2) |0⟩ ∝ |2⟩ , (D.7)
(c†1)(c

†
2) |0⟩ ∝ |12⟩ , (D.8)

|0⟩ . (D.9)

As expected, we have 4 orthogonal states that form our basis. For N = 2,
we have the following 2× 2 matrices

x1 =

(
1 0
0 −1

)
, x2 =

(
0 1
1 0

)
. (D.10)

It is trivial to check that these 2 matrices satisfy (D.2). We will now give a
recursion relation for the representation matrices

xKi = xK−1
i ⊗

(
−1 0
0 1

)
, i = 1, 2, ..., N − 2 (D.11)

xKN−1 = I2K−1 ⊗
(
0 1
1 0

)
, (D.12)

xKN = I2K−1 ⊗
(
0 −i
i 0

)
, (D.13)

where Id is the d× d identity matrix. From (D.11), we can see that xKi are
2K × 2K matrices. For more details on this subject see [32]
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