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Abstract

In this thesis, the feasibility of using model predictive control in a hybrid diesel-electric

marine powerplant is investigated. The effort was concentrated in designing a Model Pre-

dictive Controller (MPC) without using any commercially available MPC software, like the

Model Predictive Control Toolbox (MatLAB) in order to create a fully customizable, fully

parametric controller which could be used in the experimental facility of LME, NTUA. The

work consists of two main parts. The first part is the design of the controller, as this is

mathematically described in the available literature and the second part is the experimental

evaluation of the controller in the experimental testbed of LME, NTUA.

Model Predictive Controller is a model-based controller which adopts a more natural

approach than other classic controllers. With the help of its internal model it tries to

predict the future behaviour of the system and compute the optimal sequence of control

actions during a finite time horizon. This approach is called ”natural” because this is the

way a human would operate when asked to handle a problem. Before acting it would consider

a number of possible future outcomes during a period of time and choose the control action

which would lead to the best one of them. In this work the MPC is used to control a

Hybrid Diesel- Electric marine powertrain by using the electric motor to control the excaust

gases quality. The experiments conducted included variable load conditions with constant

reference tracking of two variants of the same controller. The results were compared with

previously done work.
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Chapter 1

Introduction

As fuel prices keep rising and environmental regulations regarding emissions become even

stricter and enforced in constantly more areas of the world [SECAs- ECAs] (see Figure 1.1 )

the need for an alternative form of propulsion has risen. The solutions vary in the industry

with the more widely applied until now being Dual Fuel engines, multiple-stage turbocharg-

ing, variable geometry turbochargers (VGT) as well as excaust gases’ processing devices

such as scrubbers, excaust gas recirculation (EGR) systems and others.

Figure 1.1: Emission Controlled Areas (ECAs) around the world.

Nowadays, coming mainly from the automotive industry, another alternative seems

promising, this of the Hybrid Diesel- Electric powerplants. In this approach the diesel

internal combustion engine (ICE) is assisted when needed by an electric motor. In the ap-

plications tested by the industry there are different operation modes when even the electric

9
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motor can operate alone for limited periods of time, powered by batteries. A hybrid plant

offers great flexibility, instant load taking capability, reduced visible smoke under all con-

ditions as well as built-in redundancy, reduced maintenance due to less cylinder-hours and

reduced stress to the components. The overall efficiency is increased, the system is easily

upgradable, for example with an increased battery capacity as well as easily optimized and

tuned for a wide range of applications. Another great advantage, is that the plant can

operate without issues at low propeller loads and speeds, operation points when internal

combustion engines, especially the larger ones suffer. Moreover the engine and energy stor-

age system can supply power at the same time, thus enabling an instant power boost in the

output if needed. Finally any load fluctuations are absorbed by the energy storage system,

allowing stable operation of the machinery, as well providing energy recovery options dur-

ing slowing-down for instance. A proposed installation of a hybrid system can be seen in

Figure 1.2 and Figure 1.3.

Figure 1.2: Installation of Hybrid propulsion system.

Vessels with variable operation profiles have very large potential for fuel savings as well

as operation optimization regarding emissions and are therefore good candidates to install a

hybrid system on. The key to the hybrid power system is that it allows the engines, dual-fuel

or diesel to run at optimal load. A key element, therefore, is the control algorithms that

determine how to share the load between power sources. When the vessel has peaks in power

requirement, especially in bad weather the electric motor, powered by a battery pack, can

respond to these loads, resulting in a much more stable load on the engines. In that way

the engines become more efficient and consumption and emissions can be reduced.
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Figure 1.3: A Diesel- Electric Hybrid system.

In applications tested in practice by Wärtsilä and DNV, on the platform supply vessel

”Viking Lady” the results have been promising. A reduction in fuel consumption by 15%

has been measured with projection going up to 20%. Moreover, the nitrogen oxide (NOx)

emissions were down by 25%. In 2015 the car ferry MF Folgefonn was retrofitted into a full

scale hybrid and plug-in hybrid ferry. The ferry services the connection between the islands

of Stord, Tysnes and Huglo in Norway. MF Folgefonn is now unique in terms of having all

types of electrical power solutions in one vessel; it can be run as conventional diesel electric,

as hybrid electric and plug-in hybrid. In hybrid operation the savings in fuel consumption

in optimised mode is 10-20%. Emissions will be reduced by 30%, as a result of both the

reduced fuel consumption and the improved operational profile for the combustion engines

on board. In plug-in hybrid operation the fuel savings will be 20-30%, and in pure plug-in

operation the potential is 100%. [20]

As mentioned above in a complex system like a hybrid one the need for a sophisticated

control system arises in order to manage the power split between the different units, as well

as optimize the performance in terms of various, sometimes contradicting, optimization ob-

jectives. In the current study we will focus on one of the most aggressive operational states

of a diesel engine, in terms of emissions and fuel consumption, that of the transient load op-

eration. During these load transients the engine operates far from its optimal point, stressing

all its components and affecting drastically the exhaust gas quality and fuel consumption.

Based on the above content, in this work we will try to control these parameters by

eventually controlling the combustion quality. As a result of the lean combustion, λ value,

which represents the air-to-fuel ratio in the cylinder to stoichiometric air-to-fuel ratio drops
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Figure 1.4: The Hybrid powered vessel ”Viking Lady”

with a consequent rise of the pollutant emissions of the engine1. A hybrid diesel-electric

configuration could be used in order to assist the engine operation during transient loading

conditions and enhance the total performance index of the powerplant. We will treat the

diesel engine as a ”black box” only controlled by its speed governor, trying to keep constant

engine speed. By observing the λ values (primarily) as well as other parameters (fuel con-

sumption, NOx, exhaust gas opacity) we can use the electric motor and decrease the load

of the diesel engine.

Diesel engines have relatively low engine-out emissions. In particular, hydrocarbon and

carbon monoxide can usually be neglected. The main pollutant species in the exhaust

gas are nitrogen oxide NOx and particulate matter (PM), see Figure 1.5. The air/fuel

ratio is one primary factor that affects the formation of pollutants. Since Diesel engines

are load- controlled by variations of the air/fuel ratio, this parameter plays an even more

important role here than for homogeneous-charge (Spark Ignition) engines. Other important

parameters are injection timing and pressure, as well as the EGR rate but we will not deal

with these issues in this study as mentioned above. [17]

The system is Single Input-Multiple Output, with some of the outputs being just mea-

sured and others controlled, the single input being the control command on the electric

motor. In order to cope with such a system a Model Predictive Controller (MPC) was cho-

sen to be designed and implemented. The success of MPC in industrial applications is due

to its ability to handle processes with many manipulated and controlled variables and con-

1

λ =
FAR

FARstoich
, FAR =

mair

mfuel



13

Figure 1.5: Engine-out emission of Nitrogen oxide (NOx) , hydrocarbon (HC), and partic-

ulate matter (P.M) of a direct-injection Diesel engine as a function of air/fuel ratio.

straints in a rather systematic manner. Furthermore, MPC allows an objective function to

be optimized by the controller. Other advantageous MPC features are the capability of deal-

ing with time delays, of taking advantage from future information, and of rejecting measured

and unmeasured disturbances. It is noteworthy that MPC embodies both (receding horizon)

optimization and feedback adjustment. Model predictive control has been applied,amongst

others, to diesel engines control, catalyst control, transmission control, and Hybrid Electric

Vehicles (HEV) / Plug-in Hybrid Elecric Vehicles (PHEV) power management [12].

Thesis Structure

This thesis consists of three main parts.

• Theoretical investigation of the way a Model Predictive Controller can be constructed

in order to account for the internal model of the plant, constraints of various types

on a number of outputs or inputs, measured or unknown or un-modelled disturbances

on either the inputs or the outputs as well as state estimation. Since it is a known

weakness of the MPC that its capabilities can be limited due to the computational

effort required for solving the on-line optimization problem, special care has been taken

so that the program is light as possible and yet fully parametric.

• Simulations were done, firstly on a known model/system from the literature in order

to test the initial performance of the controller and then on the model of the HIPPO-1

experimental facility of the Laboratory of Marine Engineering / NTUA in order to

validate the controller, tune it and move to the next phase of experiments

• Full scale experiments were conducted at the experimental test-bed HIPPO-1, fol-

lowing the simulations of the model on a variety of load patterns. The results were

analysed, evaluated and compared to previous works done.
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Chapter 2

Theoretical Backround

2.1 SISO Model

2.1.1 Concept

Model Predictive Controller is a model-based controller which attempts to compute the

optimal sequence of the control moves in order to achieve an optimal control performance of

a plant over a finite prediction horizon. As MPC can predict the future behavior of a system

and plan an optimal control strategy, at the same time it can be aware of the limits and the

constraints of the plant, hence reacting very differently to a disturbance which pushes the

output towards the constraint compared to what it would do in response to a disturbance

which pushes he plant away from it. Consequently, it is possible by adopting MPC strategy

to operate a plant very close to its limits of operation[1].

The basic idea of MPC regarding a SISO plant is presented in Fig. 2.1 [7].

The current time interval is labeled as k. At the current time the measured plant output

is y(k); the previous history of the output trajectory is also shown. s(k) denotes the set-

point trajectory, which should ideally be followed by the output. The reference trajectory r

defines the ideal trajectory that the output should follow in order to return to the set-point

trajectory. This reference trajectory is a function of the controller tuning parameters. The

current error value is defined as e(k) = s(k)−y(k) and is formed over the prediction horizon

Hp as

e(k + i|k) = s(k)− ŷ(k + i|k), i = 1 : Hp (2.1)

The notation (k+i|k) indicates that the future value of a signal is depended on the conditions

at time k. The trajectory ŷ(k+i|k) is the controller prediction of the output value according

to its internal model responding to the future sequence of the inputs û(k + i|k), i = 1 : Hu

15
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Figure 2.1: Concept of Model Predictive Controller, from [7]

of the controller, where Hu ≤ Hp is the control horizon and defines the acceptable control

moves within the prediction horizon. The indication û means that the estimated value of

u(k+ i|k) may be different from the actual input value u(k+ i) that will be applied at time

interval k + i.

The concept of the MPC is to find the most promising control strategy of the input

trajectory, so that fits as good as possible the output trajectory to its reference, according

to the conditions at time k.

Once the optimal input trajectory has been selected, the first control move u(k) = u(k|k)

is applied to the plant, until the new measurement y(k + i) of the output is available in

order to devise the new optimal control strategy at time (k + 1) over the new horizon

i = 2 : (Hp + 1). This strategy, where the Hp-length horizon slides by one sample interval

at each step, is called receding horizon strategy [1].

2.1.2 Design and Implementation

The first step into designing and implementing Model Predictive Control, is to design

and control a Single Input- Single Output system of low order since it is the simplest system

to control. In this case a SISO system is assumed and it is introduced in Transfer Function

form, either continuous or discrete.

In the beginning the plant in transfer function form is introduced. It can have either

continuous or discrete form. In the first case the discrete plant is created and then the
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corresponding polynomials are extracted. In the second case the discrete transfer function

polynomials are explicitly introduced without any need for further process. It is important

to be consistent with the sampling interval ’ts’ introduced in the beginning of the algorithm.

Next, the unit step input response needs to be calculated. In oder to do that the

transfer function polynomials need to be transformed into a difference equation form. More

specifically we have

H(z) =∆
B(z)

A(z)
=
b0 + b1z

−1 + ...+ bMz
−M

1 + a1z−1 + ...+ aNz−N
(2.2)

By using the 2 properties of the z-transform, linearity and the time-shift theorem 1 we can

write down the z-transform in difference equation form

y(n) = b0u(n) + b1u(n− 1) + ...+ bMu(n−M)− a1y(n− 1)− ...− aNy(n−N) (2.3)

By observing the equation we can clearly see the dependence of the order of the plant as

well as the relationship between the orders of B(z) and A(z) with the response delay to new

inputs. For instance for the simple case of the unit step input response, assuming initial

conditions=0, for the following plant there is a lag of 2 time steps before the system reacts

to the input.

H(z) =
1

z2 + z + 1
=

z−2

z−2 + z−1 + 1
(2.4)

which in difference equation form becomes

y(n) = u(n− 2)− 1− y(n− 1)− y(n− 2) (2.5)

Special care has to be taken when defining the input vector u(t). In order to reduce its

dimensions we set as [M+1x1], where ’M’ are the steps to the past needed to compute each

new response state, u(1) is the newest input and u(M+1) is the oldest. So, with each new

time step, all elements have to be transposed to one position to the past ie. u(i) −→ u(i+1).

For example in the case discussed above the unput vector will be:

1 Theorem: For any x ∈ CN and any integer ∆ ,

DFTk[Shift∆(x)] =
∆ ∑N−1

n=0 x(n−∆)e−j2πnk/N = e−jωk∆X(k).

The shift theorem is often expressed in shorthand as

x(n−∆)←→ e−jωk∆X(ωk).

The shift theorem suggests that a delay in the time domain corresponds to a linear phase term in the fre-

quency domain. More specifically, a delay of ∆ samples in the time waveform corresponds to the linear phase

term e−jωk∆ multiplying the spectrum, where ωk =
∆

2πk/N .Note that spectral magnitude is unaffected by

a linear phase term. That is,
∣∣e−jωk∆X(k)

∣∣ = |X(k)| .



18 CHAPTER 2. THEORETICAL BACKROUND


0

0

0

 t=0−−→


0

0

1

 t=1−−→


0

1

1

 t=2−−→


1

1

1

 t=3−−→ ....
t=Hp−−−→


1

1

1

 (2.6)

Where Hp is the prediction horizon used for the controller.

What is essentially needed are the values of the step input response at the predetermined

coincidence points, defined by the user into the vector:

p =
[
p1, p1, ..., pc

]
(2.7)

These points are then used for the matrix Θ which is later used for the computation of the

optimal sequence of inputs. Matrix Θ is defined as follows

Θ =


s(p1) s(p1 − 1) . . . s(1) 0 . . . . . . . . . 0

s(p2) s(p2 − 1) . . . . . . . . . s(1) 0 . . . 0
...

...
...

...
...

...
...

...
...

s(pc) s(pc − 1) . . . . . . . . . . . . . . . . . . s(pc −Hu + 1)

 (2.8)

Where s(pk) is the unit step input response at the corresponding coincidence point pk and

Hu is the control horizon ie. the time steps within the prediction horizon in which the

control input is allowed to change. As it is clear from this formulation is that the prediction

horizon Hp does not in itself affect the calculation of the control inputs since it usually

is Hu < Hp. What actually plays the most significant role is the number of the specified

coincidence points and their position in time.

Next the prediction loop and the plant simulation are implemented. More specifically first

we calculate the free response trajectory. That is the trajectory that the plant would take,

if the control input remained unchanged since the last time step. The reference trajectory

is also calculated. This represents the desired trajectory in order to reach the set-point

trajectory. Both are also calculated at the coincidence points exclusively and are defined as

follows

Yf =


ŷf (k + p1|k)

ŷf (k + p2|k)
...

ŷf (k + pc|k)

 , T =


r̂(k + p1|k)

r̂(k + p2|k)
...

r̂(k + pc|k)

 (2.9)

where

r̂(k + pi|k) = s(k + i)− e
−iTs
Tref ε(k) (2.10)

The reference trajectory in this case approaches the setpoint trajectory exponentially

from the current output value. The constants Ts and Tref represent the sampling time and

speed of response respectively and is essentially the ’time constante’ of the exponential.
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The predicted output would be Y = Yf + Θ∆U , where ∆U is the sequence of inputs

applied to the plant inside the prediction horizon with regard to the last applied input

u(k|k). Since we want to achieve Y = T but we don’t have enough variables to do so exactly

we solve the system in a ’least squares’ sense and hence we get.

∆U = Θ \ [T − Yf ] (2.11)

It is important to note that the way we choose the coincidence points affects greatly the

stability of the final solution. If the coincidence points are chosen to be at an early stage

of the response of the system then the matrix Θ is sparse. This leads to a rank deficient

matrix leading to problems regarding inverting it and finding a solution. For example, for a

given system we have the following options of coincidence point vectors with their resulting

Θ matrices

p =


1

2

3

 =⇒ Θ =


0 0 0 0 0

1.3695 0 0 0 0

2.5812 1.3695 0 0 0



p =


3

5

7

 =⇒ Θ =


2.5812 1.3695 0 0 0

4.6017 3.6532 2.5812 1.3695 0

6.1833 5.4408 4.6017 3.6532 2.5812


(2.12)

In the end, the first element of the matrix ∆U is applied to the plant and the cycle

repeats itself for the next time step.
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2.2 The Model

In the controller designed and implemented in the current thesis, a discrete-time, lin-

earized state-space model of the plant is assumed in the following form

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cyx(k)

z(k) = Czx(k)

(2.13)

where x(k) in the n-dimensional state vector,u(k) is the l-dimensional input vector, y(k)

is the my-diamensional vector of the measured outputs and z(k) is the mz-diamensional

vector of the outputs to be controlled. In this work we assume that all outputs are to be

controlled in some way, either directly by the control input u(k) or by keeping them within

certain boundaries (see Ch. 2.6 ). We shall then assume that Cz = Cy = C.

It has to be noted that the state-space model used in Eq. 2.13 is derived from the

linearised continuous state-space model

ẋ = Acx+Bcu

y = Cx
(2.14)

The discretization of the LTI model presented above is performed by assuming using

zero-order hold on the inputs u and a sample time of Ts. Then we have

A = eAc Ts = L−1{(sI −Ac)−1}t=Ts

B =

(∫ Ts

τ=0

eAc τdτ

)
Bc = A−1

c (A− I)Bc, Det(Ac) 6= 0
(2.15)

In order to account for any time delays of the model, a Padé approximation is used of

appropriate order.
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2.3 The Unconstrained Controller

The cost function to be minimized, subject to a QP or least squares solution is the

following

V (k) =

Hp∑
i=Hw

||ẑ(k + i|k)− r(k + i)||2Q(i) +

Hu−1∑
i=0

||∆û(k + i|k)||2R(i) (2.16)

Where ẑ are the outputs to be controlled and r(k+i) is the reference trajectory.

Equation 2.16 can be written in a more compact form

V (k) = ||Z(k)− T (k)||2Q + ||∆U(k)||2R (2.17)

The weighting matrices Q, R consist of the symmetric matrices Q(i), R(i) which corre-

spond to each time step i. However it is common practice (for simplicity reasons) that Q(i),

R(i) are constant throughout the prediction cycle and hence take the form

Q =


Q(Hw) 0 . . . 0

0 Q(Hw + 1) . . . 0
... . . .

. . .
...

0 . . . . . . Q(Hp)

 , Q(i) = Q(j), i, j = Hw, . . . ,Hp (2.18)

R =


R(0) 0 . . . 0

0 R(1) . . . 0
... . . .

. . .
...

0 . . . . . . R(Hu − 1)

 , R(i) = R(j), i, j = 0, . . . ,Hu − 1 (2.19)

Matrix Z can also be written in an expanded form by taking into account the following

properties

x̂(k + i|k) = Aix(k) +

i−1∑
j=0

AjBû(k + (i− 1− j)|k), i = 1, . . . Hp

û(k + i|k) = u(k − 1) +

i∑
j=0

∆û(k + i|k), i = 1, . . . Hu − 1

(2.20)

Matrix Z takes then the following form:

Z = Ψx(k) + Υu(k − 1) + Θ∆U(k) (2.21)

Where matrices Ψ, Υ, Θ can be proven that have the following form by taking into

consideration Equation 2.20
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Ψ =



CZ 0 . . . . . . 0

0
. . .

. . . 0
...

...
. . . CZ

. . .
...

... 0
. . .

. . . 0

0 . . . . . . 0 CZ





A
...

AHu

...

AHp


, Υ =



CZ 0 . . . . . . 0

0
. . .

. . . 0
...

...
. . . CZ

. . .
...

... 0
. . .

. . . 0

0 . . . . . . 0 CZ





B
...
...
...∑Hp−1

i=0 AiB



Θ =



CZ 0 . . . . . . 0

0
. . .

. . . 0
...

...
. . . CZ

. . .
...

... 0
. . .

. . . 0

0 . . . . . . 0 CZ





B 0 . . . 0

AB +B B . . .
...

... . . . . . .
...

... . . . . . .
...∑Hp−1

i=0 AiB . . . . . .
∑Hp−Hu

i=0 AiB


(2.22)

This formulation in theory looks clear, however the elements of the matrices above are

matrices themselves which complicates the algorithmic implementation. By using Equa-

tion 2.21 into Equation 2.17 we get

V (k) = ||Θ∆U(k)− E(k)||2Q + ||∆U(k)||2R (2.23)

Where:

E(k) = T (k)−Ψx(k)−Υu(k − 1) (2.24)

The last element that needs to be calculated in order to be able to solve Equation 2.23

with respect to ∆U is the tracking error E(k) from Equation 2.24 . The only unknown is

the matrix T (k) that has to be specified by the user. The state vector at time ’k’ and the

last control input at time ’k-1’ are considered to be known. Hence we have

T (k) =


r̂(k +Hw|k)

...

r̂(k +Hp|k)

 (2.25)

where

r̂(k + i|k) = s(k + i)− e
−iTs
Tref ε(k) (2.26)

As discussed in the previous section the constants Ts and Tref represent the sampling

time and speed of response respectively. The set-point trajectory s(k+ i) is usually constant

throughout the prediction horizon. However the case in which it is variable should be also

investigated. The term ε(k) is the error at the beginning of each prediction cycle.
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Another approach is to set r̂(k + i|k) = s(k + i) and then define the behaviour ot the

reference trajectory through the weighting matrices Q, R. This is the preferred approach in

the controlled designed in this thesis since it allows for more flexibility regarding the tuning

of the controller. The elements [k + i] of the reference trajectory vector T (k) should have

the corresponding dimensions of the output vector y(k) which means that

y → m× 1⇒ r̂(k + i|k)→ m× 1 (2.27)

The matrix T (k) has dimensions m(Hp −Hw + 1)× 1 with

T (k, i) = T (k, i+ λm), λ = 1, . . . ,Hp −Hw, i = 1, . . . ,m (2.28)

In order to achieve the initialization the set-point vector r̂(k|k) at time ’k’ we then project

it in the prediction horizon as follows

T (k) = r̂(k|k)


Im

Im
...

Im

 (2.29)

It must be noted that in practice the state vector x(k) may be unknown and must be

therefore be estimated. This issue is discussed in a following chapter section 2.8
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2.4 Matrix Formulation

In this section before we proceed with the computation of the optimum input some

Matrix Properties and Linear algebra concepts used above are explained.

It can be shown that every linear least squares problem is in fact a QP problem as follows

1

2
‖Qx− c‖2 =

1

2
(Qx− c)T (Qx− c) =

1

2

(
xTQTQx− xTQT c− cTQx+ cT c

)
Since cT c is a fixed quantity it is sufficient to solve the QP problem

f(x) =
1

2
xTAx+ qTx

where A = QTQ and q = −QT c

In this case, as explained above the cost function to be minimized is

V (k) = ||Z(k)− T (k)||2Q + ||∆U(k)||2R

The notation ||Z(k)− T (k)||2Q represents the quadratic form, subject to Q which can be

calculated as follows

||Z(k)− T (k)||2Q = [Z(k)− T (k)]TQ[Z(k)− T (k)] (2.30)

The cost function can be then written into the following form

V (k) = [Z(k)− T (k)]TQ[Z(k)− T (k)] + ∆U(k)TR∆U(k) (2.31)

We can then find matrices SQ and SR such that STQSQ = Q and STRSR = R. Then

Equation 2.31 becomes

V (k) = [Z(k)− T (k)]TSTQSQ[Z(k)− T (k)] + ∆U(k)TSTRSR∆U(k) (2.32)

The following known matrix properties have to be reminded.

||AB||2 = (AB)T (AB), (AB)T = BTAT (2.33)

By using the properties introduced in eq.2.33 we have∥∥∥∥∥∥
SQ[Z(k)− T (k)]

SR∆U(k)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
SQ[Θ∆U(k)− E(k)]

SR∆U(k)

∥∥∥∥∥∥
2

(2.34)

The optimum solution ∆U(k)opt is therefore the one that in the ’least squares’ sense

satisfies the equation SQ[Θ∆U(k)− E(k)]

SR∆U(k)

 = 0 (2.35)
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Which in turn leads to the solution, using Matlab notation

∆U(k)opt =

SQΘ

SR

 \
SQE(k)

0

 (2.36)

For the next time step we use the part of the solution above corresponding to the first

step. If the number of plant inputs is ′l′ then we just use the first ′l′ rows of the vector

∆U(k)opt which is

∆u(k)opt =
[
Il, 0l, . . . , 0l

]
∆U(k)opt (2.37)

From the formulation above it is clear that the only variable entity is the matrix E(k).

All others are constant and are dependant only on the dynamic characteristics of the plant.

It would therefore be useful and computationally more efficient to evaluate them only once

off-line. In order to solve Equation 2.34 it is required that both matrices have the same

number of rows. We can therefore omit the term E(k) for the time being since it only affects

the number of columns and then pick the first ′l′ rows of the solution, multiply it by E(k)

and compute the next control input. One way to implement this is by evaluating a constant

’Gain’ KMPC defined as follows

KMPC = K(1 : l, :), K =

SQΘ

SR

 \
SQ

0

 (2.38)

And

∆u(k)opt = KMPC E(k) (2.39)

All that remains is to apply the next control input to the plant which will be

u(k)opt = ∆u(k)opt + u(k − 1) (2.40)
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2.5 The Constrained Controller

As discussed in the chapter above the function to be minimised remains the same and

is given by Eq. 2.34. As far as the constraints are concerned we can assume constraints on

the ∆U(k), U(k) and Z(k) since these have to do with actuator rates, actuator limits and

plant limits respectively.

The constraints, initially of the form xmin < X < xmax can take the following form

E

∆U(k)

1

 ≤ 0 (2.41)

F

U(k)

1

 ≤ 0 (2.42)

G

Z(k)

1

 ≤ 0 (2.43)

Since the cost function is minimised with respect to ∆U(k) it is convenient to express all

the constrain inequalities ie. Equation 2.41, Equation 2.42 and Equation 2.43 as functions

of ∆U(k). The detailed steps can be found in the literature [1] and the end result is the

following 
F

ΓΘ

W

∆U(k) ≤


−F 1u(k − 1)− f

−Γ[Ψx(k) + Υu(k − 1)]− g

w

 (2.44)

Where

F =
[
F 1, . . . , FHu

]
, Fi =

Hu∑
j=1

Fj (2.45)

While Γ is defined so that G = [Γ, g] and W so that E = [W,−w]. As far as the

optimization problem is concerned we can recall Eq. 2.34 and rewrite it in the QP problem

formulation

min
∆U(k)

∥∥∥∥∥∥
SQ[Z(k)− T (k)]

SR∆U(k)

∥∥∥∥∥∥
2

= min
∆U(k)

∥∥∥∥∥∥
SQ[Θ∆U(k)− E(k)]

SR∆U(k)

∥∥∥∥∥∥
2

s.t Eq.2.44 (2.46)

The second expression in Eq. 2.46, if expanded gives

min
∆U(k)

[∆U(k)TΘT − E(k)T ]Q[Θ∆U(k)− E(k)] + ∆U(k)TR∆U(k)⇒

min
∆U(k)

E(k)TQE(k)− 2∆U(k)TΘTQE(k) + ∆U(k)T [ΘTQΘ +R]∆U(k)
(2.47)

The term E(k)TQE(k) is independent of ∆U(k) (see Equation 2.24) and can therefore be

considered as constant, not interfering with the position of the minimum of Equation 2.47.
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Table 2.1: Matrices

Matrix Dimensions Other Comments

U lHu × 1 control inputs

∆U lHu × 1 ∆ of control inputs

Z m(Hp −Hw + 1)× 1 controlled outputs

G lHu × 1 2ΘTQE(k)

Θ m(Hp −Hw + 1)× lHu prediction matrix

Q m(Hp −Hw + 1)×m(Hp −Hw + 1) weighting matrix → output

E(k) m(Hp −Hw + 1)× 1 tracking error

H lHu × lHu ΘTQΘ +R

Then Equation 2.47 can be brought in the following form, being consistent with the formu-

lation of a QP problem

min
∆U(k)

∆U(k)TH∆U(k)−∆U(k)TG+ const s.t Equation 2.44 (2.48)

Here G = 2ΘTQE(k) and H = ΘTQΘ +R

To sum up the matrices used so far can be seen in Table 2.1

As we can see from Tbl. 2.1 some interesting properties arise due to the special form of

the matrices used. Since G and ∆U are actually vectors it holds that

∆U(k)TG = GT∆U(k)

∆U(k)TΘTQE(k) = E(k)TQΘ∆U(k) (see Equation 2.47)
(2.49)

So Equation 2.47 can be re-written in the following form

min
∆U(k)

∆U(k)TH∆U(k)−GT∆U(k) s.t Equation 2.44 (2.50)

By using a standard QP optimisation routine such as the ’quadprog’ provided by Matlab

we can find the minimum for each time step and compute the optimal solution. It has to be

noted that the formulation above describes and solves the ’hard constrained’ problem. In

that case there is always the risk of the solution being ’infeasible’. In order to counteract

that, various methods are proposed, as discussed in a following chapter.
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2.6 Constraints

2.6.1 Hard Constraints

In order to get the final form of Inequalities 2.41, 2.42 and 2.43 we start from a more

basic form witch corresponds directly to the constraints of the problem. For constraints on

∆U(k),for example, given that there are l inputs that is:



min1

min2

...

...

minl


≤



∆u1

∆u2

...

...

∆ul


≤



max1

max2

...

...

maxl


(2.51)

In order for Equation 2.52 to make sense it is safe to assume that mini < 0 and maxi > 0.

It would also make sense that mini = −maxi but we will not take that into consideration

in the case discussed here. We then work by splitting Ineq. 2.52 in its 2 parts. Hence we

have 

min1

min2

...

...

minl


≤



∆u1

∆u2

...

...

∆ul


,



∆u1

∆u2

...

...

∆ul


≤



max1

max2

...

...

maxl


(2.52)

By rearranging terms we get

E1 =



1
min1

0 . . . . . . . . . . . . 0

0 1
min2

0 . . . . . . . . . 0

0 0 1
min3

0 . . . . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . . . . 0 1
minl


(2.53)

And

E2 =



1
max1

0 . . . . . . . . . . . . 0

0 1
max2

0 . . . . . . . . . 0

0 0 1
max3

0 . . . . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . . . . 0 1
maxl


(2.54)
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We then have that

E =

E1 -1

E2 -1

 : E



∆u1

∆u2

∆u3

...

∆ul

1


≤



0

0
...
...
...

0


, -1 =


−1
...
...

−1

 (2.55)

The approach presented above holds for control horizon Hu = 1 which is almost always

not the case. In the general case we have to define vector ∆û(k + i|k) at time step step ’i’

in a similar manner to Eq. 2.25 such that:

∆û(k + i|k) =



∆u1

∆u2

∆u3

...

∆ul


, 0 ≤ i ≤ Hu − 1

and ∆U =


∆û(k|k)

∆û(k + 1|k)
...

∆û(k +Hu− 1|k)



(2.56)

For Hu > 1 the matrix E

E =



E1 0 0 . . . . . . 0 -1

E2 0 0 . . . . . .
... -1

0 E1 0 . . . . . .
...

...

0 E2 0 . . .
. . .

...
...

... 0
. . .

...
...

...
...

...
...

...
...

... 0
...

...
...

. . .
. . .

. . . E1 -1

0 . . . . . . . . . 0 E2 -1



(2.57)

We can then get Ineq. 2.42 as introduced above.

Now we have to work accordingly for the constraints regarding the control input u.

The only difference is that in this case there is no ’logical’ limitation to the values of the

control input like in the case of ∆u. We therefore have to consider all possible cases regarding

the values of the constraints. So, we define the following matrices as we did in equations
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2.53- 2.57.

F1 =



f1(min1) 0 . . . . . . . . . 0 k1,1

0 f1(min2) 0 . . . . . . 0 k1,2

0 0 f1(min3) 0 . . . 0 k1,3

...
...

...
...

...
...

...

0 . . . . . . . . . 0 f1(minl) k1,l





u1

u2

u3

...

ul

1


≤



0

0

0
...

0



where f1(mini) =


1/mini, if mini < 0

−1/mini, if mini > 0

−1, if mini = 0

⇒

f1(mini) =

−1/|mini|, if mini 6= 0

−1, if mini = 0

(2.58)

The same logic applies also for the right part of the inequality (matrix F2). We then

have

f2(maxi) =


−1/maxi, if maxi < 0

1/maxi, if maxi > 0

1, if maxi = 0

(2.59)

We then have that:

F =

F1 k1

F2 k2

 , k1 =


k1,1

k1,1

...

k1,l

 , and k2 =


k2,1

k2,1

...

k2,l

 (2.60)

Where

k1,i =


−1, if mini < 0

1, if mini > 0

0, if mini = 0

and k2,i =


1, if maxi < 0

−1, if maxi > 0

0, if maxi = 0

(2.61)

Equation 2.62 can be written in the following alternative, computationally more conve-

nient form

k1,i =

mini/|mini|, if mini 6= 0

0, if mini = 0
and

k2,i =

−maxi/|maxi|, if maxi 6= 0

0, if maxi = 0

(2.62)
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Similarly with Equation 2.57 for Hu > 1 we get

F =



F1 0 0 . . . . . . 0 k1

F2 0 0 . . . . . .
... k2

0 F1 0 . . . . . .
...

...

0 F2 0 . . .
. . .

...
...

... 0
. . .

...
...

...
...

...
...

...
...

... 0
...

...
...

. . .
. . .

. . . F1 k1

0 . . . . . . . . . 0 F2 k2



(2.63)

We can then quite easily get Equation 2.42.

Finally we can work accordingly for the last kind of constraints on the controlled outputs

Z(k). Since Z(k) has as well no logical limits we could definitely know beforehand, matrix

G would have the same form as F . It is worth noting that matrices E,F,G can be computed

off-line and only once at the beginning of the program, contributing to the overall efficiency

of the controller.

2.6.2 Soft Constraints

The hard-constrained controller, as it occurs in practice, is relatively easy to become

infeasible. Thus in the literature [1], [4] it is recommended to implement a soft constrained

approach, especially on the controlled output constraints since they may incorporate unmod-

elled dynamics or interdependent outputs/ states which may be make the system unable to

satisfy all constraints at the same time. In order to achieve this we introduce the non

negative slack variable εk and the corresponding tuning factors Vmin, Vmax and modify the

constraints introduced above in the following way (For output z(k + i|k) for example)



min1 − εVmin1

min2 − εVmin2

...

...

minm − εVminm


≤



u1(k + i|k)

u2(k + i|k)
...
...

um(k + i|k)


≤



max1 + εVmax1

max2 + εVmax2

...

...

maxm + εVmaxm


, ε ≥ 0 (2.64)
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By following the same methodology as above, we modify Equation 2.42 such that it incor-

porates the slack variable ε by introducing the following matrix

VF =

VF1

VF2

 , VF1 =


Vmin1

f1(min1)

Vmin2
f1(min2)

...

Vminl
f1(minl)

 , VF2 = −


Vmax1

f2(max1)

Vmax2
f2(max2)

...

Vmaxl
f2(maxl)

 (2.65)

So for Hu=1 the inequality condition regarding the control input u becomesF1 k1

F2 k2

u(k + i|k)

1

+

VF1

VF2

 ε ≤ 0 (2.66)

We then, as in the previous section generalise for Hu > 1 and formulate accordingly in order

to get the variables to-be-optimised in a manageable form.

FU + VF ε ≤ 0 , VF =



VF1

VF2

...

VF1

VF2


(2.67)

By applying the same steps to all the other constraints we eventualy reach the following

inequality, similar to the one introduced in Equation 2.44.


F VF

ΓΘ VG

W VE

0(Hu times) −1


∆U(k)

ε

 ≤


−F 1u(k − 1)− f

−Γ[Ψx(k) + Υu(k − 1)]− g

w

0

 (2.68)

The QP problem can be then accordingly formulated as follows

min
∆U(k),ε

[
∆U(k)T ε

]H 0

0 wε

∆U(k)

ε

−[GT 0
]∆U(k)

ε

 s.t Equation 2.68 (2.69)

This equation gives in turn the familiar form of the penalty cost function, modified by

the term regarding the constraint violations.

min
∆U(k),ε

∆U(k)TH∆U(k)−GT∆U(k) + wεε
2 s.t Equation 2.68 (2.70)
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Example

In this example we examine a simple case of quadratic cost function and the behaviour

of the soft boundary, according to the penalising weight wε of the slack variable ε. The cost

function examined is the following:

min
x1,x2

xT

1 0

0 1

x , s.t x1 ≥ 10, x2 ≥ 5 (2.71)

The 3d plot of the cost function is displayed in Figure 2.2

10

5
0

20

x
1

10 0

40

60

8

80

6

100

C
o

s
t 

F
u

n
c
ti
o

n
 V

a
lu

e

4

120

140

x
2

2

160

-50

180

-2

200

-4
-6

-8 -10-10

Figure 2.2: Cost Function.

In Figure 2.3 we can see the contour plot of the cost function as well as the boundaries

imposed. The global minimum of the unconstrained problem is marked with the cross (+)

, and the minimum of the constrained problem is marked with the circle (©).
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Contour Plot of Cost Function
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Figure 2.3: Contours of the Cost Function.

The soft constrained problem, according to the methodology introduced above would be:

min
x1,x2,ε

[
x1 x2 ε

]
1 0 0

0 1 0

0 0 wε



x1

x2

ε

 , s.t x1 ≥ 10, x2 ≥ 5, ε ≥ 0 (2.72)

In Figure 2.4 one can observe the behaviour of the solution, depending on the weight

wε. For wε = 0 the controller is essentially unconstrained as ε is let free to take any value

necessary in order to reach the global minimum. As the weight wε → ∞ the solution

asymptotically reaches the boundary imposed and consequently ε→ 0.
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2.7 Incorporating Disturbances

2.7.1 Measured Input Disturbances

In the case where measured disturbances exist, we can consider them as inputs to the

original plant, provided that we can estimate the impact they have to the plant’s response.

These disturbances cannot, however, be manipulated in any way and so they need to be

treated differently than the ones calculated through the QP solver discussed in the chapters

above. The incorporation of these disturbances in the model can result in a more accurate

control and therefore a control input sequence able to compensate for their existence in the

first place. We shall then modify the model as follows in order to include the disturbance

vector dm(k). We can also assume that we have state estimation,hence the ”ˆ” notation

States : x̂(k + i|k) = Ax̂(k|k) +Bu(k) +Bddm(k) (2.73)

Measured Outputs : ŷ(k|k) = Cyx̂(k|k) (2.74)

Controlled Outputs : ẑ(k|k) = Czx̂(k|k) (2.75)

In the formulation above we assume that the disturbances have no effect on the outputs

until some time after it has been measured and for this reason Dd = 0.

Since the calculation of the next state vector changes we have to modify the expres-

sions connected with the prediction and consequently with the tracking error expression

introduced above in Equation 2.21 and Equation 2.24. We then have:

Z = Ψx(k) + Υu(k − 1) + Θ∆U(k) + Ξ Dm(k) (2.76)

where

Ξ =



CZ 0 . . . . . . 0

0
. . .

. . . 0
...

...
. . . CZ

. . .
...

... 0
. . .

. . . 0

0 . . . . . . 0 CZ





Bd 0 . . . . . . 0

ABd Bd . . .
...

... . . . . . .
...

... . . . . . .
...

AHp−1Bd AHp−2Bd . . . Bd


(2.77)

The disturbance vector Dm(k) in its initial form is

Dm(k) =


dm(k)

d̂m(k + 1|k)
...

d̂m(k +Hp − 1|k)

 (2.78)
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Usually we cannot have beforehand knowledge of the future behaviour of the disturbances

except for some specific cases. For instance if we know that the disturbances have the form of

some sort of noise with known probabilistic characteristics (white noise for instance) we could

then randomly evaluate some future values which, though not accurate, could be a better

choice than considering the disturbances as constant throughout the prediction horizon. In

the literature [1] and in the Model Predictive Control Toolbox [4] the second approach is

adopted. However both cases should be examined in cases where it is thought to be feasible.

The only remaining change required is to modify the expression for the ’tracking error’ E(k)

as follows

E(k) = T (k)−Ψx(k)−Υu(k − 1)− Ξ Dm(k) (2.79)

2.7.2 Output Disturbances

We now have to deal with a more realistic case, in which we do not have full state

measurement, inaccurate plant model or disturbances acting on the output. These can all

be modelled as unmeasured output disturbances. At time ’k’ we cannot now what the

disturbance d(k) is but we can form an estimate d̂(k|k) of it through the plant model that

we have, allowing us to make a prediction ŷ(k|k − 1). We therefore have

d̂(k|k) = y(k)− ŷ(k|k − 1) = y(k)− Cx̂(k|k − 1) (2.80)

In order to continue we need to make the assumption that the disturbance will remain

unchanged throughout the prediction horizon. For relatively small step sizes and prediction

horizons this assumption can be accurate enough. We then can calculated the updated

predicted outputs of the plant as follows

ẑ(k + i|k) = Cx̂(k + i|k) + d̂(k + i|k), d̂(k + i|k) = d̂(k|k) (2.81)

By keeping the notation introduced in Eq. 2.21 we can calculate the new output predic-

tion matrix Z as follows, including the disturbance vector Dm introduced in Eq. 2.78

Z = Ψx̂(k) + Υu(k − 1) + Θ∆U(k) + Ξ D(k),

Ξ = [Ξ 1], D(k) = [Dm(k) Dout(k)]T
(2.82)

We can then use the above to modify Eq. 2.79 in order to take into account the unmea-

sured output disturbances

E(k) = T (k)−Ψx̂(k)−Υu(k − 1)− Ξ D(k) (2.83)

We must note that since we use the actual output of the plant, we also need to know

or estimate the actual state vector x̂(k). In order to do this we must use an observer to

calculate the full state vector. In this case a Kalman Filter is implemented as shown in the

figure bellow.
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We can see that the Kalman Filter has as inputs the last control command u(k) and the

last measurement of the plant output y(k). It can then calculate the full state vector x̂(k).

The MPC Controller uses this vector as input along with the reference vector yref and the

various disturbances, in the form presented above.
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2.8 State Estimation- Kalman Filter

For a discrete state-space plant of the form of Eq. 2.13 the equations of the steady-state

Kalman filter are given as follows.

• Measurement update:

x̂ [k|k] = x̂ [k|k − 1] +M(yv [k]− Cx̂ [k|k − 1])

• Time update:

x̂ [k + 1|k] = Ax̂ [k|k] +Bu [k]

In these equations:

• x̂ [nk|k − 1] is the estimate of x [k], given past measurements up to yv [k − 1].

• x̂ [k|k] is the updated estimate based on the last measurement yv [k].

Given the current estimate x̂ [n|n], the time update predicts the state value at the next

sample n + 1 (one-step-ahead predictor). The measurement update then adjusts this pre-

diction based on the new measurement yv [n+ 1]. The correction term is a function of the

innovation, that is, the discrepancy between the measured and predicted values of y [n+ 1].

This discrepancy is given by:

yv [k + 1]− Cx̂ [k + 1 |k ]

The innovation gain M is chosen to minimize the steady-state covariance of the estimation

error, given the noise covariances:

E
(
w [k]w[k]

T
)

= Q ; E
(
v [k] v[k]

T
)

= R N = E
(
w [k] v[k]

T
)

= 0

The time and measurement update equations are combined into one state-space model,

the Kalman filter:

x̂[k + 1|k] = A(I −MC) x̂[k|k − 1] +
[
B AM

] u [k]

yv [k]


ŷ [k| k] = C (I −MC) x̂[k|k − 1] + CMyv[k]

This filter generates an optimal estimate ŷ [k|k] of yk. Note that the filter state is

x̂ [k|k − 1].
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2.9 Controller Architecture

To implement all of the above the controller has been designed in the Matlab and

Simulinkr environment. The first part consist of the offline computation of the prediction

matrices and the second part of the implementation along with the plant model and other

simulation parameters decided by the user. The Controller in simulink is shown in figure

2.5. The inputs are marked with the blue circles, whereas the output is marked with the

red circle. One can observe three basic components.

Figure 2.5: The MPC Controller in Simulink.
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• The prediction

Figure 2.6: The Prediction Component.

In this part of the controller, the reference input is projected to the prediction horizon via

Gain-Block ”refi”, which is a matrix of suitable dimensions as described in Equation 2.29.

Then the similar procedure is followed for the control input usim as well as the state es-

timate xhat produced by the Kalman Filter. The Gain-Block ”ksi” essentially implements

Equation 2.77, slightly modified in order to compute at once the whole disturbance vector,

comprised of the measured and estimated disturbances. Finally the tracking error is com-

puted as well as with the second term of the cost function, as described in section 2.5 and

in Equation 2.50. As discussed before, all gain matrices are computed off-line in order to

simplify the on-line calculations in an effort to make the controller faster. For large sim-

ulation times, and to avoid re-running the initial setup program the tuning could be done

also on-line. This, however, would be problematic for large MIMO systems which would

require different tuning parameter values for each input or output. As far as the imputs of

the various blocks are concerned these are either given by the user such as the reference, or

calculated on-line such as the control command, the state vector and the disturbance vector.

More specifically the last two have to be estimated from the measured inputs from the plant

as discussed in the following paragraph.
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• State and Disturbance Estimation

Figure 2.7: The Estimators Component.

This part of the controller is consisted of two sub-systems as illustrated in figure 2.7.

The first one, illustrated in green is the Kalman Filter calculating the state estimate xhat

or x̂ as was the notation used in section 2.8. The second one is the block estimating the

total disturbance as is shown in the figure bellow

Figure 2.8: Disturbance Estimation.

In order to calculate the unmeasured disturbances, such as the disturbances on λ a

discrete model of the plant is used. This can also calculate any model-plant mismatch and

treat it as a disturbance, taking it into consideration in the calculation of the prediction

which comes after.
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• The QP Solver

Figure 2.9: The QP Solver Component.

Finally the last component of the controller is the QP solver itself, which given all

the inputs by the previous components, combined with the constraints imposed by the

user calculates the optimal control command and feeds it to the plan. The essence of this

component is the routine that solves the QP problem, calculating the optimal input. For

this two alternatives have been used

1. Routine ”quadprog”

This routine is part of the Matlab Optimization Toolbox [8] and uses an Interior- Point-

Convex algorithm to solve the Quadratic Programming problem. This routine is used

in most of the simulations since it is stable and reliable. Especially in the case of the

Soft- Constrained MPC, no infeasibility was recorded in any scenarios being tested for

the purpose of this thesis. This routine is however not available for standalone code

generation and could not therefore be compiled into C/C# which is required by the

D-Space controller of the experimental testbed of LME

2. Routine ”quadprog2”

This routine is a Convex Quadratic Programming solver, written by Michael Kleder,

featuring the freeware optimizer SOLVOPT, written by Alexei Kuntsevich and Franz

Kappel and are available for free use online through the MathWorks website. This

routine is exclusively written in Matlab code and after some modifications is suitable

for standalone code generation into C/C# in order for the experiment to be carried

out. However it has been observed that it is not as stable as the routine ”quadprog”
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reaching infeasibility even at specific soft-constrained cases. Nevertheless apart from

the cases that the solver does not manage to yield a solution, there have not been

recorded any significant differences on solution times and solution values between the

two controllers.



Chapter 3

Experimental Facility

The HIPPO-1 hybrid diesel-electric power plant consists of a internal combustion engine

(ICE) in parallel connection to an electric motor (EM). In this configuration the rotational

speed of the ICE and the EM are identical and the supplied torque add together to meet

the total torque demand applied by a hydrodynamic water brake (WB). The experimental

hybrib powertrain of LME is presented in Fig. 3.1 and 3.2 .

Figure 3.1: The HIPPO-1 hybrid diesel-electric testbed of LME.

45
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Figure 3.2: The HIPPO-1 hybrid diesel-electric testbed of LME. Between the internal com-

bustion engine (right) and the electric motor (left) stands the water brake next to its con-

troller board
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3.1 Mechanical Componets

The ICE is a turbocharged CATERPILLAR 6-cylinder 10.3-liter 4-stroke marine diesel

engine, model 3671B, producing 425 kW at 2300 rpm. According to the speed reference

and the deviation of the speed measurement, the electronic control unit (ECU) of the ICE

controls the fuel injection in the cylinders in closed loop control, using controller in the form

of look-up tables. The installed sensors and measured variables in the diesel engine are

presented in Fig. 3.3

Figure 3.3: The HIPPO-1 diesel engine installed sensors and measured variables.

The EM is a standard AC asychronous-induction 3-phase motor, with a rated power

of 112 kW, type IE1-K21R 315 S4, manufactured by VEM. The electric torque output is

regulated by a frequency inverter (Fr Inv) under closed loop control. The electrical panel of

the frequency inverter is shown in picture 3.4.

The water brake of HIPPO-1 installation is manufactured by AVL Zöllner Gmbh, type

9n 38F, with 1200 kW load capacity, operating up to 4000 rpm. The water brake consists

of two parts, the stator and the rotor, which is driven by the engine shaft. Between the two

WB parts, the water level is regulated in order to produce the requested torque demand.

The WB is controlled by a H∞ controller designed at LME1.

1C. Gkerekos. 2015. Experimental Modeling and Robust Controller Design for the Transient Loading of

a Marine Diesel Engine. Diploma Thesis
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Figure 3.4: The Electric Motor frequency Inverter of HIPPO-1 at LME.
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3.2 Sensors and Data Acquisition System

The installed sensors in the diesel engine are presented in Fig. 3.3. The NOx and λ

values are provided by a SmartNOx sensor in the manifold downstream of the turbocharger

(TC), manufactured by NGK. Exhaust gas opacity is measured by a AVL 439 opacimeter

in the exhaust duct of the CAT engine. Fuel mass flow measurements are provided by two

ABB Coriolis flow-meters, one at supply and one at return fuel lines. TC speed and intake

manifold pressured are also measured.

The platform for the Data Acquisition and control of the powertrain is based on the

dSpace DS1103 (Fig. 3.6) controller board, with rapid control prototyping capability, pro-

grammed under the MATLAB/Simulink environment.

Figure 3.5: The engine control room. WB control board in front and the monitoring system

of the hybrid plant on the right. Behind the safety glass, HIPPO-1 powertrain can be

distinguished

A picture of the powertrain monitoring screen in the control room (Fig. 3.5) at LME

is shown in Fig. 3.7, where all the utilities of the monitoring and the control board are

presented.
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Figure 3.6: The HIPPO-1 dSpace monitoring and control board.

Figure 3.7: The HIPPO-1 monitoring and control screen.



Chapter 4

Simulation results

4.1 An example from Literature

In this section we will present an example from literature [1] in which the MPC controller

designed above is implemented in a state-space model, describing the dynamics of a Cessna

Citation aircraft.

Figure 4.1: Cessna Citation Aircraft.

The continuous State-Space model of the plant as defined in Equation 2.14 consists of

51
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the following matrices A, B, C and D

A =


−1.2992 0 0.98 0

0 0 1 0

−5.4293 0 −1.8366 0

−128.2 128.2 0 0

 , B =


−0.3

0

−17

0



C =


0 1 0 0

0 0 0 1

−128.2 128.2 0 0

 , D =


0

0

0



(4.1)

The system has as an input the elevator angle and as outputs the altitude of the aircraft

as well as the pitch angle and altitude rate. In this case we will experiment with different

tuning parameters and controller designs, starting by using the unconstrained controller,

then the hard constrained and finally the soft constrained approach.

4.1.1 Unconstrained MPC

In this case we will use the controllers described in section 2.3.Obviously this is not a

realistic case since constraints must be imposed in at least the control input, as the actuators

have their own physical limits. We will use this however to determine at a first glance the

performance of the controller.

The tuning parameters used in this case are:

Q =


1 0 0

0 100 0

0 0 1

 , R = 107, Hu = 1, Hp = 30

As we can see in Figure 4.2 and Figure 4.3, displaying the results of the simulation, the

altitude is one order of magnitude greater than the other outputs. This fact has to be taken

into account when choosing the proper weights. Another approach would be to scale all

outputs and inputs down to the same magnitude by using scale factors, as it is proposed in

[4].

As we can see, the controller manages to control successfully the plant in both increasing

and decreasing the altitude set-point Moreover we have to note that the altitude tracking

error dominates the other 2 outputs, the pitch angle and the altitude rate errors, during

most of the transient, so that the pitch angle and altitude rate depart from their set-points

in order to allow the altitude error to be reduced. As the required altitude os acquired,

all three outputs settle rapidly to their set-points This behaviour is entirely a result of the

numerical values of the errors which arise, as mentioned above.
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Figure 4.2: Results of the Unconstrained MPC Controller (altitude and control input).

If the primary output to-be-controlled was another one, then proper scaling and/or mod-

ification of the weighting matrices would be the only way to get around this problem. We

can also see that the pitch angle takes relatively large values, which is the reason why con-

straints need to be imposed as we will see in the next section.
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Figure 4.3: Results of the Unconstrained MPC Controller (pitch angle and rate).

4.1.2 Hard- Constrained MPC

In this case we will impose hard constraints, examine 2 cases with different control

horizons Hu and observe how this difference in the tuning of the controller affects the

solution. For both cases the weights were:

Q =


1 0 0

0 100 0

0 0 1

 , R = 109
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The boundaries imposed where:



−0.01

−5o

−6o

−∞

−15 m/s


≤



∆u

u

pitch angle

altitude

altitude rate


≤



0.01

5o

6o

∞

15 m/s


There has to be noted that there is no reason to impose boundaries on the altitude since

it is the primary controlled output and it is bound by the setpoint. Boundaries would be

needed in case of large oscillations around the setpoint trajectory or in the case of large

overshoot. This however can also be controlled through the weights Q, R. Now the results

of the 2 cases mentioned above are presented in Figure 4.4 and Figure 4.5.

• Case 1: Hp = 30, Hu = 1

In this case the results of the simulation are presented in Figure 4.4 and Figure 4.5
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Figure 4.4: Results of the Constrained Controller, Case 1 (altitude and control input).
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Figure 4.5: Results of the Constrained Controller, Case 1 (pitch angle and rate).

We can see that the controller respects the bounds imposed by the user on all con-

straints. We can also observe that due to the control horizon set to Hu = 1 the con-

troller is somewhat conservative and thus approaches the boundary but never reaches

it since it does not have much freedom in choosing the control input sequence. So as

the boundaries tend to be violated the controller takes proactive action in order to

prevent that. Due to the constraints we can also see that the plant reaches is desig-

nated set-point, as far as the altitude is concerned, much slower in comparison to the

previous case (see subsection 4.1.1).
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In Figure 4.6 we can see the behaviour of ∆u with respect to its boundary. As we can

see in the constraints regarding ∆u is also respected.
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time (sec)

-0.01

-0.005

0

0.005

0.01

Upper Limit

Lower Limit

Figure 4.6: ∆u, Case 1.

• Case 2: Hp = 30, Hu = 3

In this case we will investigate a more computationally demanding case, in which the

control horizon is Hu = 3. As we will see at the end of this chapter the QP solver

requires significantly more time to compute each control input at each time step. The

results are presented in Figure 4.7 and Figure 4.8.

As it is obvious from Figure 4.7 and Figure 4.8, the plant reaches its boundaries, since

the controller has more freedom and can be more aggressive. The plant response is also

faster as far as the altitude is concerned, since the pitch angle reaches its maximum

value for large periods of time. We can also observe that the control input sequence is

more complicated as a result of the larger freedom of the controller, due to the longer

prediction horizon. As soon as a constraint tends to be violated, the controller takes

immediate action in order to prevent the violation. This allows the controller to stay

closer to the constraints and results in a better overall performance.

The behaviour of ∆u is presented in Figure 4.9
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Figure 4.7: Results of the Constrained Controller, Case 2 (altitude and control input).

In this case we can see that the constraints are respected as well. Moreover, being

consistent with the behaviour of the control input, this also is more aggressive than in

Case 1
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Figure 4.8: Results of the Constrained Controller, Case 2 (pitch angle and rate).
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Figure 4.9: ∆u, Case 2.
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4.1.3 Soft - Constrained MPC

In this section we will discuss the implementation of the Soft-Constrained MPC in the

plant described by Equation 4.1. As it is obvious from the figures in subsection 4.1.2 the

pitch angle reaches quite easily its constraints. We could therefore relax them in order to

allow the controller to slightly violate them for a brief period of time. By this we ensure

that the QP problem is always feasible which in turn makes the controller reliable under

any circumstances.

The additional tuning parameters in this case are the weight on the slack variable wε and

the tuning factors V as described in Equation 2.64 and Equation 2.70. These were chosen

so that we have slight violations, ensure feasibility in any case but keep the plant close to

its boundaries at all times. The values of these tuning parameters were

wε = 3 105, V =


Vf

Ve

Vg

 =


0

0

[0.01; 0; 1]T


This means that the constraints on u and ∆u are hard and that the constraints on the

outputs are soft. More specifically the constraint on the pitch angle is set to be harder than

the one on the altitude rate. However the violation on the pitch angle is larger than the

one on the altitude rate because the first reaches the boundary and tends to cross it as it is

demonstrated in Figure 4.7 and in Figure 4.8:
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Figure 4.10: Results of the Soft - Constrained Controller (altitude and control input).

As we can see the plant is again controlled successfully, and the boundaries are being

slightly violated as expected. The controller is also less aggressive than in Case , subsec-

tion 4.1.2 and the response is also faster as the aeroplane can reach its altitude at a greater

rate.
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Figure 4.11: Results of the Soft - Constrained Controller (pitch angle and rate).

In this case it is also useful to observe the values of the slack variable ε in Figure 4.12

along with ∆u as in the previous cases.
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Figure 4.12: Results of the Soft - Constrained Controller for parameters ε and ∆u
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As expected the slack variable takes non-zero values during the periods of time when

violations occur, with value proportional to the violation. We have to note that the slack

variable is ’chosen’ by the controller so that the QP problem is always feasible.
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4.1.4 Calculating Performance

In this final section we will discuss briefly the computational speed of the controller. It

is of vital importance for the controller to be able to estimate the next control input faster

than the pre-set time step. If this is not the case, then controller does not have enough time

for the control input computation and then the system will fail.

The results presented bellow correspond to a system with the following characteristics

and during the same conditions regarding the general load of the system

• CPU: Intel Core i5-7200U @ 2.50 GHz, 2701 Mhz, 2-core, 4 logical processors

• RAM: 8GB DDR4, 2400 MHz

• OS: Windows 10, x64

Table 4.1: Speed Comparison

Case Prediction Horizon Hp Control Horizon Hu Time/loop

Unconstrained - - 2.21 10−5 sec

Constrained (Hard)
30 1 0.0083 sec

30 3 0.0236 sec

Constrained (Soft) 30 3 0.0218 sec

As we can see, as the control horizon increases, so does the computation time required for

each control input. There is also considerable difference between the unconstrained and the

constrained problem. That is because in the unconstrained case the program has to solve

a simple linear algebra problem, in the constrained case, the solution of the QP problem is

added. Finally we can see that the soft constrained problem is solved a little faster than the

respective hard constrained. That is because in the soft constrained problem it is easier and

consequently faster to find a solution that satisfies the constraint since this lies in a broader

field of feasible solutions.
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4.2 The Hybrid Integrated Propulsion Power-plant (HIPPO)

Simulation

In this Section we will discuss the results of the simulations at the experimental facility of

the Laboratory of Marine Engineering (NTUA) on the test-bed setup HIPPO 1 as presented

in chapter 3

In this case we used a Multiple Input-Single Output (MI-SO) model (model: m73) with

measured disturbances as inputs, unmodelled disturbances on the outputs as well as output

delays, incorporated in the continuous-time State-Space model. The model was derived

with system identification methods and experiments presented in previous work [11]. The

continuous state-space plant is the following (Equation 4.2)

a =


x1 x2

x1 0.07556 −1.739

x2 3.093 −1.946

 , b =


FrInvCmd ErrorEngSpeed

x1 0.3254 0.001003

x2 −0.7647 0.0005494



c =

 x1 x2

λ 30 1.166

 , d =

 FrInvCmd ErrorEngSpeed

λ 0 0



Output Delays = 0.8 sec

(4.2)

In this model the ’FrInvCmd’ is the command in the Frequency Inverter of the electric

motor and is the manipulated variable of the plant whereas ’ErrorEngSpeed’ is the

EngineSpeed− SpeedSetpoint error and is considered to be the Measured Disturbance

of the plant, acting as an input as well.

The fuel injection of the ICE in the hybrid powertrain is independently controlled by

the ECU. The ECU uses the speed deviation from the speed reference, as described by Eq.

(4.3) in order to inject more or less fuel in the cylinders in order to maintain the engine

speed, accelerate or slow down, according to the speed reference (SERef ). So the dSE

measurement could be a precursor of the λ value change, which could help a model based

controller predict a change in the output trajectory1 and act preventively.

dSE = SE − SERef (4.3)

The characteristics-dynamics of the system discussed here can be observed in Figure 4.13 and

Figure 4.14, consisting of the pole-map of the model as well as the Bode-plot respectively.

1trajectory here denotes the sequence of a signal, as this evolves in time.
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Figure 4.13: m73 Model Poles.
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Figure 4.14: m73 Bode Plot.

As we can see both poles of the model lie in the left-hand side of the plane, making the

model stable. Moreover as we can observe from the Bode-Plots there are large delays and

the phase is increasing as a linear function of frequency in both inputs The output delays
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are modelled with a Padé approximation of fourth (4) order. The comparison between the

approximation and the model is presented in Figure 4.15:
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Figure 4.15: Step Input Comparison.

The approximation describes very well the step-response-input behaviour of the initial

model, especially with respect to the response derived from the frequency inverter command.

The State- Space Model after the Padé approximation is the following:
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a =



x1 x2 x3 x4 x5 x6

x1 −25 −17.578 −6.409 −4.0053 240 9.328

x2 16 0 0 0 0 0

x3 0 16 0 0 0 0

x4 0 0 4 0 0 0

x5 0 0 0 0 0.07556 −1.739

x6 0 0 0 0 3.093 −1.946



b =



FrInvCmd ErrorEngSpeed

x1 0 0

x2 0 0

x3 0 0

x4 0 0

x5 0.3254 0.001003

x6 −0.7647 0.000549



c =

 x1 x2 x3 x4 x5 x6

λ −6.25 0 −1.602 0 30 1.166



d =

 FrInvCmd ErrorEngSpeed

λ 0 0



(4.4)

In this case, since we have validated the performance of the controller (section 4.1) we

can move straight to the simulation of the soft-constrained controller of the full plant, as

was implemented in the Simulink environment. The model of the hybrid power plant as well

as the waterbrake is considered to be known from previous work at LME [11]. The whole

Simulink model is presented in Figure 4.16 and the HIPPO-1 Figure 4.17.

The simulation model consists of a signal builder, providing the plant with the required

setpoints, in total torque demand and engine speed (RPM). Then there is the plant

model, comprised of all the subsystems of the HIPPO-1 testbed, and the respective controller

for the water brake. Finally there is the MPC controller in question getting the required

data as inputs from the plant as well as the λ setpoint value (constant) and computing the

command to the frequency inverter FrInvCmd. The tuning parameters in this case are

only the weights Q, R since the only constraint is imposed on the control command which
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Figure 4.16: The Simulink Model.

Figure 4.17: The HIPPO-1 Simulink Model.

is a hard constraint, as discussed in section 2.6. We will discuss 2 cases of tuning, one of a

’fast’ controller and one of a ’slow’ controller, depending on the weights. For the first case

the weights then are:

• Case 1 - Fast Controller

Q = 2, R = 30, Hu = 1, Hp = 15

We can see that since the model has only one controlled output and one measured input

the weights degenerate into single numbers. However we will observe how other parameters

of the plant behave as well, although they are not directly controlled by the controller. Such

parameters are the Manifold Absolute Pressure (MAP), Diesel engine torque, electric motor

torque and engine speed. As mentioned above the water brake torque and engine speed are

controlled by separate controllers, whose performance will not be investigated here. The

results of the simulation are presented in Figure 4.18 and Figure 4.19
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By observing Figure 4.18 we can first see that the controller manages to keep the λ values

at the set-point value during the transients and the high-load periods. During the low-load

periods the ICE operates at higher than intended λ values which means that it produces

exhaust gases with low content in fuel which is not an unwanted operating state. We can

observe that at these periods of time the controller gives zero command to the frequency

inverter. The lower constraint in the control command represents a negative signal, which

would turn the electric motor into a generator, absorbing power from the ICE. We can also

observe that during the transients the control command reaches its upper boundary, since

the controller is quite fast but only for sort periods of time.

As far as the torque is concerned we can see that the electric motor is supplementing the

ICE as intended during the high-load periods by ”regulating” the λ values to the intended

set-point. We can also see that the electric motor is completely shutting down during the

periods that its contribution is not needed.

As far as the engine speed behaviour shown in Figure 4.19 is concerned, we can see that

the engine speed changes in various ranges. During the transients, the speed varies widely;

when the torque of the engine reaches a steady state, then the engine speed settles as well.

However, as was also seen in practice, the engine speed has a constant error regarding its

set-point, which has to do with the speed controller of the ICE. The deviation is however

negligible and is not an issue of further discussion.

The MAP values have the expected behaviour as well. These are however neither con-

trolled nor constrained in any way. We can simply observe that as the load rises, the MAP

also rises.

• Case 2 - Slow Controller

Q = 2, R = 350000, Hu = 1, Hp = 15

In this case we examine a much slower controller, in terms of how fast the ∆u is allowed

to change. We can see that the corresponding weight R is 4 orders of magnitude larger than

the one in the previous case. All other parameters have remained the same since their values

were proven to be satisfactory in terms of speed and overall performance Moreover larger

prediction horizons Hp do not have a significant impact on the control. On the other hand,

larger Control Horizons Hu > 3 were proven to make the control input very oscillating since

the degrees of freedom increase largely and the controller looses its accuracy.

The results of the simulation are presented in Figure 4.20 and Figure 4.21:
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We can see that the control input follows indeed a more ”conservative/cautious” trajec-

tory. As a result large changes are avoided and the controller never reaches the boundaries

imposed. The plant is, however, successfully controlled and the λ values reach their set-

point. We could in fact argue that the overall performance is better since the settling time

appears to be slightly lower. However we could not expect the controller to behave in a

satisfactory way in cases of more frequent changes in power demand and in more complex

overall scenarios. We can also sea that the ICE has a larger drop in torque during the

transients from high torque to low torque demand due to slower response of the control

input with still has non zero values after the transient has occurred This happens because

the MPC controller assumes constant reference trajectory. If it took into account the future

reference trajectory then this problem could be eliminated. However in practice this is not

feasible since the future torque demand could not be known beforehand. Respectively, we

can also see a larger increase in ICE torque during the transient from low torque demand

to high torque demand since the response of the controller is slower and can not catch up

with the large change of the system state.

The slower response of the controller leads to larger overshoots of the λ values as it can

be seen from the second diagram of Figure 4.20. This is a direct result of the behaviour of

the ICE during the transients as described before. As far as the Engine Speed and MAP

behaviour is concerned we can see in Figure 4.21 that larger oscillations occur with the ICE

operating farthest from the set-point engine speed
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Chapter 5

Experimental Results

In this Chapter we will discuss the results of the experiments conducted at the exper-

imental facility of the Laboratory of Marine Engineering (NTUA) on the test-bed setup

HIPPO 1. We will then compare them to the simulation results presented in section 4.2.

The controllers tested were tuned so that they resemble the ones used for the simulations.

Thus, a fast and a slow controller were used and the behaviour of the plant was assessed

in real time. In both cases the results are compared with the MPC controller MPC401

[11], created with the Model Predictive Control Toolbox provided by Simulink [4]. The

tuning was roughly the same based on the average values the different parameters take

since the way the weights are introduced in the two controllers is different and an exact

computation of the equivalent weights is not possible. The MPC controller created by the

Simulink Toolbox incorporates scaling factors and therefore the weights introduced by the

user are normalized in a way. On the other hand in the MPC controller in question the

weights are introduced in their final values so no scaling is needed. The advantage of that

is the simpler algorithm since no scaling factors need to be calculated. However the user

need to have an idea of the values the different parameters are going to take in order to

tune the controller properly and set the rough order of magnitude of the weights accordingly.

The controllers used were the following

• Case 1- Fast Controller

Q = 2, R = 35, Hu = 1, Hp = 30

Firstly we examine the fast controller which has almost identical weights as the Case 1

examined in section 4.2. The only difference is the twice as long Prediction Horizon Hp.
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However we do not expect it to be the root of the differences between the simulation and

the model since the unmodelled dynamics of the plant are expected to have a larger impact.

In order to test the performance of the controller a load cycle of alternating load was

imposed. The cycle consisted of 2 low load periods of 350 Nm for about 30 seconds and 2

high load periods of 500 Nm of about 30 seconds with 15 second resting periods of 200 Nm

between them where the controller is expected to be inactive. The results are presented in

Figure 5.1, Figure 5.2 and Figure 5.3.
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As we see, initially in Figure 5.1 the custom MPC manages to successfully control the

plant. We can also see that it is a little faster than MPC401 in the way the control input

behaves. Our controller reaches almost immediately the boundary during the high-load

cycle. The controller MPC401 reaches the boundary as well, later in the cycle but for a

longer period of time. The end result is that the plant controlled by Custom MPC reaches

faster the λ set-point value of ”3”. As we would expect from a faster controller the λ values

are more oscillating when the Custom MPC is used. We can also observe that since the

controller has no way for predicting the change in torque, it can not pro-actively compensate

for the transient behaviour, hence the same drop/ overshoot of λ in both cases.

As far as Figure 5.2 is concerned we can see that the experiments agree with the simu-

lations in the behaviour ot the Engine Speed. We observe that the ICE operates constantly

at slightly higher rpm than the set-point value. As far as the MAP values are concerned,

we can see here as well as in the simulations the ”spikes” that occur during the transients.

However the behaviour is much more oscillating since there is a number of unmodelled, non-

linear dynamics that were not accounted for in the simulation model. The same goes for

the Electric Motor torque as well. The dynamics of the electric motor appear to be slower

than these of the model and the behaviour is more oscillating. Interestingly, due to the

different tuning of the controllers there appears to be a phase difference in the behaviour of

the plant between the two controllers. Finally we observe that there is a smaller overshoot

in the Electric Motor torque, when the Custom MPC is used, which leads in the smoother

operation of the whole plant.

In Figure 5.3 we can see how the NOx in the exhaust gases behave during the different

loading cycles. First of all we observe that they follow the behaviour of λ with ”spikes” of

very high values during the transient from low to higher torque. In this phase of the operation

we could expect higher particulate matter and lower opacity as well (black smoke). However

these were not measured in the current study. During the un-loading of the system the NOx

values decrease dramatically as the λ increases, meaning that the mixture of exhaust gases

is more rich in atmospheric air. In general we see that the NOx amount in the exhaust gases

is kept under a constant limit, the same in both cases, although not directly controlled by

either of the controllers. Only during the transients from lower to higher torque demand the

Custom MPC brings the NOx values slightly faster down in comparison to the MPC 401.

As far as the fuel consumption is concerned, we can see an unexpected behaviour between

the two controllers. Although the ICE and the electric motor operate roughly at the same

points under the same conditions, the values that the Fuel Consumption seems to settle

during the various load cycles appears to be a lot different between the two cases. However

the way the fuel consumption is measured is not exact and the measurement results should

be treated with caution.
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In order to evaluate the performance of the two controllers more accurately we could

calculate the error as follows

E =

∫ t=τ

t=0

(λ− setpoint)2 dt, setpoint = 3 (5.1)

The error is displayed in Figure 5.4

0 20 40 60 80 100 120 140 160 180

time [sec]

0

20

40
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ǫ
2
d
t

Custom MPC

MPC 401

Figure 5.4: Error of the two controllers

We can see that during the low-load cycles the difference is very small. However when

we move to the high-load cycles then the difference becomes significant. We can therefore

come to the conclusion that the Custom MPC has a better performance in this particular

case.

• Case 2- Slow Controller

Q = 2, R = 27 104, Hu = 1, Hp = 30

In this case we will examine a slower controller, in terms of response speed since the

weight on ∆u is much larger than in the previous case. We will compare it with the faster

Custom MPC used in the case presented above and discuss the differences. The loading

cycles are the same as in the previous case. The results are presented Figure 5.5, Figure 5.6

and Figure 5.7.
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First of all, from Figure 5.5 we can see that the slower controller manages to control

successfully the plant. As expected the controller in question reacts much slower than the

faster one in terms of ∆u. This does not seem to be a problem for small changes in the

torque demand. Instead in these cases the slower MPC yields a better result as far as the

speed that the λ values approach their set-point value. However, during the high-load cycles

as well as during the de-loading of the hybrid plant the behaviour seems to be a lot worse.

During the de-loading there is small time period of about 2 seconds in which the slower

controller continues to operate the electric motor, thus overshooting the λ values before it

reacts and ”cuts” the control input to the electric motor. During the high-load cycle it is

obvious that the slower MPC does not have enough time to react which therefore leads to

a very oscillating behaviour that cannot be accepted since the controller reaches a steady

state much later than the faster MPC, almost 12 seconds. On the other hand the slower

controller since it is moving much more ”cautiously” than the faster one, never reaches the

boundaries, which could be a desired behaviour for some applications.

Moving on to Figure 5.6 we can see, as expected that when controller by the slower MPC

the plant needs a lot more time to reach its steady state as fas as the Electric Motor Torque

is concerned. As a result the plant operates farther from its RPM set-point, being more

oscillating as well, especially during the high-load cycles. This is definitely an undesirable

behaviour which can lead to damaging components of the plant.

As far as Figure 5.7 is concerned we can see that the plant controlled with the faster MPC

has lower NOx emission during all phases of the experiment. An interesting point in this

figure is the values the Fuel Consumption takes. We can see that the consumption measured

during the experiment with the slower MPC is comparable with the consumption measured

in the experiments with the MPC 401 examined in the previous case. This strengthens

our initial assumption that the measurements of the experiment in which the faster MPC

was used are inaccurate. However it is obvious that with the way the fuel consumption

is measured, the large oscillations in the operation point of the hybrid plant during its

operation with the slower MPC cannot be seen.

In general we can see that the faster MPC controls the plant in all aspects of the oper-

ation much better than the slower one. It is therefore not necessary to compare the error

between the two controllers to evaluate their performance as was done in the previous case

we examined.
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Chapter 6

Conclusions

In this thesis the feasibility of designing and implementing a MPC controller in order to

control a hybrid Diesel- Electric marine powerplant was investigated. First the controller

was designed according to the available literature and then was tested in simulations as well

as full-scale experiment successfully. The controller was able to handle a variety of input

and output constraints, account for modelled an unknown disturbances and generally handle

multi-variable problems. During the development the need for future work, additions and

modifications arose.

• The need for on-line tuning became apparent during the experiments. The controller

could be modified in order to support on-line weight definition and prediction/ control

horizons. This could make the controller much more flexible and allow the testing in

a much broader field of conditions.

• During the development of the controller and especially during the experiments the

importance of a robust, reliable and fast QP optimizing tool became obvious. The QP

optimizer should also built in a way so that it would be flexible and compatible with

a variety of computational platforms. It is strongly recommended that a specialized

QP optimizer should be developed and incorporated into the current controller. The

development of such an optimizer would also make the controller much more flexible

and more easily customizable for each application.

• On a more general note, this study does note account for the overall efficiency rate

of the plant in terms of energy delivered / energy used. A study on this matter

would greatly complete the picture we have about the hybrid diesel-electric plant and

investigate how the different tuning parameters and controller set-up act not only on

emissions but also on the overall performance. In order to do that the fuel consumption

on the diesel engine as well as the electric current on the electric motor should be

89
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precisely measured. With the current setup this was not possible as was mentioned in

chapter 5.

• Finally a plant also powered by batteries would be an evolutionary step of the ex-

perimental facility, since the charge-discharge cycles of batteries would complicated

the task of the controller even further but also bring the plant closer to the marine

applications of hybrid plants found today on-board ships.
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