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Summary in English 
 

 

Summary in English 
 

The present thesis is the result of our investigation over the mathematical description of two 

“Plate Theories” and the final comparison of the “results” of the two different models of the 

plates. 
 

Consequently, the present dissertation is divided into three parts, with the first part (Part A) 

dealing with the Classical Plate Theory of the Plate (or Kirchhoff’s Plate Theory - CPT) devel-

oped though the Variational Principles, while the second part (Part B) investigates a more ac-

curate kinematic model for the plates, the so called Third-Order Plate Theory (or Levinson’s 

Plate Theory - TSDT). The last is also examined though Variational Principles. These two parts 

are the main line of work of this dissertation. However, there is also a third shorter part (Part 

C), in which the dispersion relations of the wave propagation through a free (from external 

loads) and one-directional infinite medium are derived for each model (Classical and Third-

Order). After that work, there are illustrated the dispersion curves of each model.  
 

Although the structure and rationality of the indexes of each one of the two first parts (Part A 

and B) does not differ substantially, we decided to set two of shorter duration introductory 

sections in the first pages of each part, because there are substantial differences as for the initial 

assumptions, the modelling and consequently the governing equations of motion and the bound-

ary conditions of the plate. However for the sake of completeness, we set the Preface, which is 

usually found on the first pages of the thesis. Further, we create a global section regarding the 

References combined with this diploma thesis. The section of the references is as usual located 

on the end of the dissertation. Also due to the fact that the most of the references include ele-

ments of various theories of plates in order to gain comparable results between each other, there 

is no reason to distinguish them into different section at the end of each part. Moreover inside 

the sections of each one of the three main parts, there are pointed out specific chapters or sec-

tions of these references inside brackets where regarded appropriate. Note also that the refer-

ences considered as determinant and important to our work on a particular part, can be found 

additionally in its introductory section.  
 

The first part (Part A) is divided into eight sections. The first one is an introductory section 

presenting the basic definitions of the quantities and the notation used in the sequel. However, 

the very importance of this section is the initial assumptions of the CPT and the way the last 

are inserted on the kinematic model of the plate. Subsequently, follows the second section, in 

which the geometric configuration and the externally applied loads on the (external) surface of 

the plate are prescribed. Note that the choice of the aforementioned must be compatible with 

the initial assumptions of the modelling, described on the first section. The third section com-

bines all the above descriptions for the model and then the kinematics of the thin plate are 

produced. The far most important section of the Part A is the fourth, because though the Vari-

ational Principles the governing equations of motion of the model of the CPT are constructed. 

These equations are derived for two different cases. The first case is for an orthotropic but in-

plane anisotropic material and the second is for an orthotropic but in-plane isotropic material. 

In the context of the fifth section, the boundary conditions of the model of CPT are derived, 

again with the aid of Variational Principles. The equations of motion and boundary conditions, 

derived on the fourth and fifth section respectively, are written in terms of some (appropriate 

for the problem) thickness-integrated quantities. This fact inserts some confusion on the study 

and the application of those relations with physical interpretation. Thus, the sections six and 

seven aim to give the governing equations of motion and the boundary conditions of the plate 

explicitly in terms of the displacement field of the model. Last but not least, on the section eight 

is defined the functional space in which the total mathematical formulation of our problem is 

developed.  
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Summary in English 
 

 

 

As for the second part (Part B) of this diploma thesis, it has similar structure with the Part A 

composed of eight sections. However, the initial assumptions of the TSDT and consequently 

its resulting equations of motion and boundary conditions differ substantially. Of course, there 

are common terms (namely exist both on the CPT and TSDT) inside the aforementioned rela-

tions, which are highlighted when regarded useful, due to the fact that the TSDT is essentially 

an “extension in accuracy” of the modelling in comparison with the CPT. 
 

The last part (Part C) is subdivided into three sections. On the first section is analyzed the 

process of deriving the dispersion relation of CPT. On the second section is prescribed the way 

of producing the dispersion relation of the TSDT. The previous are performed in accordance 

with the assumption of one-directional wave propagation along the infinite (along the same 

dimension) medium (plate). On the third section, we just compare and comment on the results 

of the two previous sections. 
 

The present work is supplemented with two appendices, namely the Appendix A and B (located 

at the end of this dissertation), where additional information and proofs about the results of the 

parts A, B and C are presented. On the Appendix A is analyzed the transformation from the 

Cartesian to a curvilinear coordinate system used to derive the full set of boundary conditions 

demanded for each one of the two models. Finally on the Appendix B, there are the governing 

equations of motion and the dispersion relations as for the First-Order Shear Deformable Plate 

Theory (FSDT), in order to compare them with the corresponding equations motion and disper-

sion curves of the models of CPT and TSDT. 
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Summary in Greek 
 

 

Σύνοψη στα Ελληνικά (Summary in Greek) 
 

Η εν λόγω διπλωματική εργασία είναι το αποκύημα μίας διερεύνησης ως προς το μαθηματικό 

φορμαλισμό δύο «Θεωρητικών Προσεγγίσεων για Μοντέλα Πλακών» και η τελική σύγκριση 

των «αποτελεσμάτων» των δύο διαφορετικών μοντέλων. 
 

Συνεπώς, η εν λόγω διατριβή χωρίζεται σε τρία μέρη, εκ των οποίων το πρώτο (Μέρος Α`) 

διαπραγματεύεται την «Κλασσική Θεωρία Πλακών» (ή την Θεωρία Πλακών του Kirchhoff) 

που αναπτύσσεται μέσω των Μεταβολικών Αρχών, ενώ το δεύτερο μέρος (Μέρος Β`) διερευνά 

ένα πιο ακριβές κινηματικό μοντέλο για πλάκες, αποκαλούμενο ως «Η Τρίτης τάξης Θεωρία 

Πλακών» (ή Θεωρία Πλακών του Levinson). Η τελευταία εξετάζεται επίσης μέσω των 

Μεταβολικών Αρχών. Αυτά τα δύο μέρη είναι η κύρια γραμμή δουλειάς αυτής της διατριβής. 

Ωστόσο υπάρχει και ένα τρίτο μέρος (Μέρος Γ`), μικρότερης έκτασης, στο οποίο δίδονται οι 

σχέσεις διασποράς της κυματικής διάδοσης μέσω ενός ελεύθερου (από εξωτερικά φορτία) και 

μονοδιάστατα άπειρου μέσου, για κάθε μοντέλο (Κλασσική και Τρίτης τάξης Θεωρία 

Πλακών). Έπειτα αναπαρίστανται τα διαγράμματα των σχέσεων διασποράς για κάθε μοντέλο. 
 

Αν και η δομή και η λογική των περιεχομένων των δύο πρώτων μερών (Μέρος Α` και Β`) δε 

διαφέρουν ουσιαστικά, αποφασίζουμε να θέσουμε εισαγωγικές ενότητες, μικρότερης έκτασης, 

στις πρώτες σελίδες κάθε μέρους, διότι υπάρχουν ουσιώδεις διαφορές στις αρχικές υποθέσεις, 

στη μοντελοποίηση και κατά συνέπεια στις εξισώσεις κίνησης και στις συνοριακές συνθήκες 

της πλάκας. Ωστόσο, χάριν πληρότητας, παραθέτουμε τον Πρόλογο, ο οποίος συνηθίζεται να 

βρίσκεται στις πρώτες σελίδες των εργασιών. Περαιτέρω, δημιουργούμε ένα από κοινού για 

όλα τα μέρη κεφάλαιο για τις Αναφορές που εμπλέκονται στην παρούσα διατριβή. Οι αναφορές 

συνήθως τοποθετούνται στο τέλος της διατριβής. Ακόμη εξαιτίας του γεγονότος ότι η 

περισσότερες αναφορές περιέχουν στοιχεία από ποικίλα μοντέλα πλακών προκειμένου να 

εξάγουν συγκρίσιμα αποτελέσματα μεταξύ αυτών, δεν υπάρχει λόγος να διαχωρίσουμε τις 

αναφορές σε διαφορετικά εδάφια στο τέλος κάθε μέρους. Τονίζεται επίσης ότι οι αναφορές που 

θεωρούνται καθοριστικές και σημαντικές για τη δουλείας μας σε ένα συγκεκριμένο μέρος, 

παρατίθενται και στο εισαγωγικό του εδάφιο. 
 

To πρώτο μέρος (Μέρος Α`) χωρίζεται σε οκτώ ενότητες. Η πρώτη είναι ένα εισαγωγικό 

κεφάλαιο όπου παρουσιάζονται οι βασικοί ορισμοί των μεγεθών και ο συμβολισμός που θα 

χρησιμοποιηθεί στην συνέχεια. Ωστόσο, η μεγάλη σημασία του εν λόγω κεφαλαίου έγκειται 

στις αρχικές υποθέσεις της Κλασσικής Θεωρίας Πλακών και στον τρόπο μέσω του οποίου 

εισέρχονται στο κινηματικό μοντέλο της πλάκας. Στη συνέχεια, ακολουθεί το δεύτερο 

κεφάλαιο, στο οποίο προδιαγράφονται η γεωμετρική διαμόρφωση και τα εξωτερικώς 

επιβαλλόμενα φορτία στην επιφάνεια της πλάκας. Τονίζεται ότι η επιλογή των 

προαναφερθέντων θα πρέπει να είναι συμβατή με τις αρχικές υποθέσεις της μοντελοποίησης 

που περιγράφεται στο πρώτο εδάφιο. Στο τρίτο κεφάλαιο συνδυάζονται όλες οι παραπάνω 

περιγραφές για το μοντέλο και τότε παράγεται η κινηματική της λεπτής πλάκας. Το μακράν 

σημαντικότερο κεφάλαιο του πρώτου μέρους είναι το τέταρτο, διότι μέσω των Μεταβολικών 

Αρχών δομούνται οι εξισώσεις κίνησης του μοντέλου της Κλασσικής Θεωρίας Πλακών. Αυτές 

οι εξισώσεις παράγονται για δύο διαφορετικές περιπτώσεις. Η πρώτη είναι για ένα ορθοτροπικό 

αλλά ανισοτροπικό στο οριζόντιο επίπεδο υλικό και η δεύτερη για ένα ορθοτροπικό αλλά 

ισοτροπικό στο οριζόντιο επίπεδο υλικό. Στα πλαίσια του πέμπτου κεφαλαίου, οι συνοριακές 

συνθήκες του εν λόγω μοντέλου της πλάκας, εξάγονται επίσης με τη βοήθεια των Μεταβολικών 

Αρχών. Οι εξισώσεις κίνησης και οι συνοριακές συνθήκες που παράγονται στο τέταρτο και 

πέμπτο κεφάλαιο αντιστοίχως, γράφονται μέσω (κατάλληλων για το πρόβλημα) ποσοτήτων 

που προκύπτουν από την ολοκλήρωση κατάλληλων μεγεθών (τάσεων) κατά το πάχος της 

πλάκας. Το παραπάνω εισάγει κάποια σύγχυση στη μελέτη και την εφαρμογή αυτών των 

σχέσεων με φυσική ερμηνεία. Εν τέλει, στο κεφάλαιο οκτώ ορίζεται ο συναρτησιακός χώρος 
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Summary in Greek 
 

 

μέσα στον οποίο αναπτύσσεται ο συνολικός μαθηματικός φορμαλισμός του προβλήματος που 

μελετάμε.  
 

Όσον φορά το δεύτερο μέρος (Μέρος Β`) αυτής της διπλωματικής εργασίας, έχει παρόμοια 

δομή με το πρώτο μέρος και αποτελείται από οκτώ εδάφια. Ωστόσο οι αρχικές υποθέσεις της 

Τρίτης τάξης Θεωρίας Πλακών και κατά συνέπεια οι καταληκτικές εξισώσεις κίνησης και 

συνοριακές συνθήκες διαφέρουν ουσιωδώς. Υπάρχουν βέβαια κοινοί όροι (δηλαδή που 

εμφανίζονται και στα δύο μοντέλα) μέσα στις προαναφερθείσες σχέσεις, οι οποίοι τονίζονται 

όπου κρίνεται χρήσιμο, εξαιτίας του γεγονότος ότι η Τρίτης τάξης Θεωρίας πλακών είναι 

ουσιαστικά μία «επέκταση στην ακρίβεια» της μοντελοποίησης σε σύγκριση με την Κλασσική 

Θεωρία Πλακών.  
 

Το τελευταίο μέρος (Μέρος Γ`) υποδιαιρείται σε τρείς ενότητες. Στην πρώτη αναλύεται η 

διαδικασία εξαγωγής των εξισώσεων διασποράς της Κλασσικής Θεωρίας Πλακών. Στη 

δεύτερη ενότητα προδιαγράφεται ο τρόπος παραγωγής της εξίσωσης διασποράς για το τριτο-

τάξιο μοντέλο της πλάκας. Τα παραπάνω γίνονται σε συμφωνία με την υπόθεση της 

μονοδιάστατης κυματικής διαταραχής κατά μήκος ενός άπειρου (κατά την ίδια διάσταση) 

μέσου (πλάκας). Στο τρίτο κεφάλαιο, συγκρίνουμε απλά και σχολιάζουμε τα αποτελέσματα 

των προηγούμενων δύο.  
 

Η εν λόγω διατριβή συμπληρώνεται και από δύο παραρτήματα, δηλαδή το Παράρτημα Α` και 

Β` (που βρίσκονται στο τέλος αυτής της διατριβής), όπου παρουσιάζονται επιπρόσθετη 

πληροφορία και αποδείξεις σχετικά με τα αποτελέσματα των Μερών Α`, Β` και Γ`. Στο 

Παράρτημα Α` αναλύεται ο μετασχηματισμός από το Καρτεσιανό στο επικαμπύλιο σύστημα 

συντεταγμένων, το οποίο χρησιμοποιείται για να παράγουμε το σύνολο των συνοριακών 

συνθηκών που απαιτούνται για καθένα μοντέλο. Εν τέλει στο Παράρτημα Β, υπάρχουν οι 

εξισώσεις κίνησης και οι σχέσεις διασποράς για την Πρώτης τάξης Θεωρία Πλακών, 

προκειμένου να συγκριθούν με τις αντίστοιχες της Κλασσικής και της Τρίτης τάξης Θεωρίας 

Πλακών. 
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Introduction (Preface) 

 

 

Introduction (Preface) 

 

[References: 1. Reddy J.N. (2007), “Theory and Analysis of Elastic Plates and Shells”/ Chap-

ter 1.1, 2. Love A.E.H. (1994), “A Treatise on the Mathematical Theory”, 4th edition New 

York Dover/ Introduction, 3. Timoshenko S., Young D.H. Weaver W. (1974), “Vibration Prob-

lems in Engineering”, 4th edition John Wiley & Sons/ Chapter 5, 4. Babuska I. and Li L. 

(1991), “Hierarchic Modeling of Plates”, Journal on Computer & Structures, Pergamon 

Press, 5. Szilard R., Dr. –Ing. P.E. (2004), “Theory and Applications of Plate Analysis- Clas-

sical Numerical and Engineering Methods”, John Wiley & Sons,  

6. https://en.wikipedia.org/wiki/Mechanician]. 

 

Generally speaking, plates are straight, plane two-dimensional structural components whose 

one dimension called the thickness of the plate, is much smaller than the other dimensions. 

Geometrically, they are bound either by straight or curved lateral boundary. As exactly their 

counterparts, the beams, they are not only used as structural components but can also form 

complete structures. These structure can be Slab Bridge, floating oil extraction platforms, bar-

rage and seawalls, or even seawave energy harvesting systems, the last of which are one of 

the most popular devices nowadays due to the matters concerning energy efficiency and re-

newable sources of energy. Statically plates have free, simply supported and fixed boundary 

conditions, including elastic supports and elastic restrains, or, in some cases, even points sup-

port [Figure 1]. The static and dynamic loads carried by plates are predominantly perpendicu-

lar to the horizontal faces of the plate. These external loads are carried by internal bending 

and torsional moments as well as by transverse shear forces.  
 

Because of the fact that the loading-carrying action of plates resembles to a certain extent that 

of beams, plates can be approximated by gridworks beams. Such an approximation, however, 

arbitrarily breaks the continuity of the structure and usually leads to incorrect results unless 

the actual two-dimensional behavior of plate is taken correctly into account. 
 

The two-dimensional structural action of plates results in lighter structures and consequently 

gives more economical assets. Furthermore, numerous structural configuration require partial 

or even complete enclosure that can easily be accomplished by plates without the use of addi-

tional covering, resulting in further savings in materials and labor cost for the erection of the 

total structure. As a direct consequence, plates and plate-type structures have gained special 

importance and remarkably widespread, engineering applications in recent years. A large 

number of structural components in engineering structures are floor and foundation slabs, 

lock-gates, thin retaining walls and more specifically as for the naval architecture and marine 

engineering structures, we come up against decks of ships, longitudinal and transverse bulk-

heads, double bottom, hatches, and parts of the superstructures of ships and so on. Further, 

plates are also indispensable in aerospace industries. The wings and a large part of the fuse-

lage of an aircraft, for example, consists of a slightly curved plate skin with an array of stiff-

ened ribs. Plates are also frequently parts of machineries and other mechanical plate devices.  
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Figure 1: Static Loads 

 

The majority of the plate structures is analyzed by applying the governing equations of the 

Theory of Elasticity. However, the “exact” solutions of the various governing differential 

equations of plate “theories” (namely, approximation of the real behavior of the plate) can on-

ly be obtained for special boundary and loading conditions. Note that in most cases, the vari-

ous energy methods can yield quite usable analytical solutions for most practical problems. 

Almost all the numerical methods are based on the discretization of the plate continuum, but 

these methods are not going to occupy us on the context of this quotation, because the usage 

of the Calculus of Variations and the arguments of the Variational Principles are going to give 

us adequately exact equations of motion and boundary conditions for the kinematic models of 

the plate (the presentation of whom is the main part of this dissertation). Although the equa-

tions of motion and boundary conditions are given in a generalized form as will be shown on 

the last sections of the Pat A and B, the interested reader could specify and modify them ac-

cording to the shape of the plate and the kind of boundary conditions under consideration. 
 

In all structural analysis the engineer is forced, due to the complexity of any real structure, to 

replace the structure by a simplified analysis model equipped only with those important pa-

rameters that mostly influence its static or dynamic response to loads. In plate analysis such 

idealizations concern mainly, the geometry of the plate and its supports, the behavior of the 

material used and also the type of loads and their way of application. 
 

To proceed to the modelling of the motion of the plate with the specific chosen characteristics 

referred above, we have to think about the most efficient way to handle it. Thus, regarding the 

plate as a three-dimensional continuum is a highly impractical approach since it would create 

almost unbeatable mathematical difficulties. Even if the solution could be easily found, we 

have to confront with unfairly painful amount of calculations. Consequently, we distinguish 

the plate into four different categories with inherently different structural behavior and differ-

ent governing differential equations of their mathematical modelling. The four plate-types 
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might be categorized, to same extent, using their slenderness ratio (ratio of thickness to an in-

plane dimension, breadth or length) /h L . 

Although, the boundaries between these individual plate types are somewhat fuzzy, we can 

attempt to subdivide plates into the following major categories: 
 

• Membranes ( / 0.02h L ), are very thin plates without flexural rigidity, carrying 

loads by axial and central shear forces. This load – carrying action can be can be ap-

proximated by the stresses only, because of their extreme thickness, their moment re-

sistance is of negligible order. 
 

• Thin Plates ( / 0.02 0.1h L ), are thin plates with flexural rigidity, carrying loads 

two dimensionally, mostly by internal (bending and torsional) moments and transverse 

shear forces. These loading condition is similar to those of beams. 
 

• Moderately Thick Plates ( / 0.1 0.2h L ), are in many respects similar to the thin 

plates, with the notable exception that the effects of transverse shear forces on the 

normal stress components are also taken into account. 
 

• Thick Plates ( / 0.2h L ), have an internal stress condition that resembles to that of 

three-dimensional continua (3D Elasticity). 
 

The above cases are illustrated on the Figure 2. 

 

Taking advantage of the above subdivision of the different type of plates, we are going to ana-

lyze two different mathematical models or “theories” of plates. The first one is the usually 

applied on engineering problems, Classical Plate Theory (Kirchhoff’s Plate Theory), present-

ed on the Part A of this thesis. This model concerns the case of Thin Plate (above). The sec-

ond is a higher-order plate theory, found on the literature as the Third-Order Shear Defor-

mation Plate Theory or Levinson’s Plate Theory, which is presented on the Part B of this dis-

sertation. This model concerns the case of Moderately Thick Plates (above). Finally, on the 

Part C on this thesis there are some applications concerning the dispersion relations and 

curves of the two kinematic model for wave propagation through infinite medium.  
 

For completeness reasons, note that the case of Thick Plate (generally three-dimensional or-

thotropic material) will not occupy us here, because there is no practical use of extremely 

thick plates in engineering applications, in which the thickness dimension along the vertical 

axis to the flat surfaces of the plate influences considerably the in-plane motion of the plate. 
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Figure 2: Main categories of the plates 

 

A few words about the Comparison of the Kinematic Models: 

The classical plate theory and the first-order shear deformation theory are the simplest equiva-

lent single-layer theories, and they adequately describe the kinematic behavior of most lami-

nates. Higher-order theories, such the third-order shear deformation theory, can represent the 

motion of the plate better, may not demand shear correction factors and also can yield more 

accurate interlaminar stress distributions. However, the disadvantage is that they involve 

higher-order stress resultants that are difficult to interpret physically and require considerably 

more computational effort. Therefore, such theories should be used only when necessary.  
 

In principle, it is possible to expand the displacement field in terms of the thickness coordi-

nate up to any desired degree. However, the higher than third-order plate theories are mislead-

ing and unusual, due to the algebraic complexity and computational effort involved with these 

theories in return for marginal gain in accuracy. The reason for expanding the displacements 

up to the cubic term in the thickness coordinate is to appear quadratic variation of the trans-

verse shear strains and transverse shear stress through each layer of the laminated composite 

plates. This result avoids the need for shear correction coefficients used in the first-order theo-

ry, fact the insert a relative fault in the approximation due to the demanding experience used 
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to predict the appropriate values of this factor and to calibrate adequately the model of the 

plate. 
 

There is a great variety of papers on the third-order theories and their applications (some of 

them exist on the References of this dissertation). Although many of them seem to differ from 

each other on the surface and as a consequence on the boundary conditions deriving from the 

analysis of the kinematic model invoking the arguments of the Variational Principles.  
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PART A: 

CLASSICAL THEORY OF PLATES 





Part A Section 1. Introduction 

 

 

1.  Introduction 

 

1.1.  Basic (general) Definition of a plate 
 

Generally speaking, a plate is a structural element with planform dimensions (e.g. length, 

breadth) that are large compared to its thickness and is subjected to loads that cause bending 

deformation in conjunction with stretching. Usually a plate is regarded as thin plate, when its 

thickness is ten times smaller than the smallest in-plane dimension. As shown in Figure 1, 

/h L  or / 0.1h B  [Reddy J. N. (2007), “Theory and Analysis of Elastic Plates and Shells”/ 

Chapter 3.1 and Onate E. (2013), “Structural Analysis with the Finite Element Method. Line-

ar Statics: Beams, Plates and Shells”/ Chapter 6.1]. 

 

 
 

Figure 1: A usual rectangular plate or thin structural element 

 

Because of the very small thickness, there is no reason to model those problems with 3D Elas-

ticity. The simpler equations of 2D Elasticity, are sufficient in order to analyze the strains and 

stresses upon plates. 

In addition we assume that the reference system of axes (here: the Cartesian coordinate sys-

tem), namely the origin of the axes, is located on the middle plane of the plate. This plane will 

be usually called mid-surface on the next sections and it is regarded as the reference plane for 

deriving the kinematic equations of the plate. Also we assume that the mid-surface is equidis-

tant from the upper and lower surface of the plate, which means that each point upon the plate 

is described by zero vertical coordinate 3 0x . 

As for the material of the plate under consideration, we are going to model two kind of struc-

tural material separately on the below corresponding sections. The first one the orthotropic 

but in-plane anisotropic plate and the second one is the orthotropic again but in-plane iso-

tropic plate. Note that the generally isotropic plate will not occupy us on the context of this 

quotation due to the ratio of its vertical and in-plane dimensions, as justified on the following 

sections. 

 

1.2.  Important Assumptions of the classical plate theory (CPT) (Kirchhoff’s plate theo-

ry)  

 

1.2.1. Straight lines perpendicular to the mid-surface (i.e. transverse normals) before defor-

mation remain straight after deformation. This assumption can be called, the straightness as-

sumption. 
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1.2.2. The transverse normals do not experience elongation. In view of the small thickness of 

the plate, the vertical movement of any point of the plate is identical to that of the point of the 

middle surface or alternatively the points along a normal to the middle plane have the same 

vertical displacement. This assumption is simply, the inextensibility assumption. 

 

1.2.3. The transverse lines (normals) rotate such that they remain perpendicular to the middle 

surface after deformation. This hypothesis is called shortly, the normality assumption. The 

normality assumption is also found on the literature as the normal orthogonality condition. 

Note that this assumption (condition) only holds for thin plates (thickness/average in-plane 

dimensions ratio: /h L  or / 0.05h B ). For moderately thick ( 0.05 / 0.1h L ) and very 

thick ( / 0.1h L ) plates the distortion of the normal during deformation increases. 

 

1.3.  Consequences of Kirchhoff’ s Assumptions  
 

1.3.1. As for the straightness assumption, the rate of change of the planar dimensions of the 

plate is small in comparison with the rate of change of the vertical dimension (thickness). 

As a consequence, the derivatives 
1 2 2 1

, , , 
u v u v

x x x x
 are regarded small in comparison 

with 
1 2

, 
w w

x x
. So the first two are neglected to the following calculations. The essential 

point of this assumption is that the section before and after deformation remains linear, 

whereas on other higher-order plate theories we come up i.e. cubic curves (sections). The 

symbols of the virtual displacements u  , v , w  are apparent below:  
 

 

Figure 2: The straightness assumption of the cross-section of the plate during its deformation. 

As seems on the Figure 2, the cross-section before and after deformation of the plate is illus-

trated with the straight red line.  
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1.3.2. As for the inextensibility assumption (section 1.2.2.), we note that the structures are 

usually composed of stiff materials. Consequently, the transverse deformation-displacement is 

independent of the vertical coordinate 3x . This assumption is conceptually the inextensibility 

of the cross section.  
 

Thus,  1 2 0 1 2

3

0 ( ; ) ( , ; ) = ( , ; )
w

w t w x x t w x x t
x

x . 

 

1.3.3. The important point of the normality assumption (section 1.2.3.), is that the transverse 

shear strains are zero, so that  
 

13 13

3 1

2 0
u w

e
x x

         (1) 

and     23 23

3 2

2 0
v w

e
x x

      (2) 

 

According to the normality assumption, the transverse lines (sections) rotate remaining per-

pendicular to the mid- surface after the deformation of the plate.  

Keeping the above in mind and taking a look at the Figure 3 (which represents a cross-section 

of the plate on 
1 3-planex x ), we note that the tangent line to the mid-surface of the deformed 

plate with the horizontal line of the undeformed mid-surface (or simply the 
1-axisx ) define an 

angle 
1  so that, 

1 1

1

tan
w

x
   

The first equality is due to the smallness of the rotations of mid-surface and transverse nor-

mals (essential assumption of our model of CPT). 

Respectively, the vertical line on the undeformed mid-surface with the vertical line on the 

tangent to the deformed mid-surface [at each point ( , )u w ], create an angle 
2  so that, 

2 2

3

tan
u

x
   

These angles (
1  and 

2 ) have their sides per two between them vertical, as seem on the Fig-

ure 3 with the two continuous and other two dashed lines. Thus, as a geometric consequence 

the angles have to be equal each other. Namely, 
 

1 2 13 13

1 3 1 3

.(1)
0 2 0

Eqw u w u
e

x x x x
    

 

Similarly, is proved the Eq. (2), 
 

23 23

1 3 1 3

.(2)
0 2 0

Eqw u w u
e

x x x x
  
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Figure 3: Consequences of the normality assumption during the deformation of the plate 

 

 

 

Understanding the physical meaning of the above relationships, in the following paragraphs 

we are going to study their application on the kinematic model of the CPT.  
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2.  Geometric configuration and boundary conditions  
 

The shape of plate considered herein is the one of a homogeneous cylinder having a basis of 

arbitrary (smooth) shape, and height (thickness) h , much smaller than the in-plane dimen-

sions. The domain occupied by the plate (the cylinder) is denoted by B .  The total boundary 

of the plate is denoted by B , and consists of lateral boundary (surface) ( )latB , and the two 

flat faces 
( ) ( ) ( )f u f l fB B B . One of these two flat surfaces is conventionally called 

the upper face, ( )u fB , and the other is called the lower face, ( )l fB . That is  
 

 
( ) ( ) ( )lat u f l fB B B B .  

 

Another (different) subdivision of the total boundary B  is also useful for our analysis, ac-

cording to the boundary conditions applied to the various parts of it. Thus, we denote by TB  

the parts of the total boundary surface tractions (stresses) are prescribed, and uB  the parts of 

the total boundary on which the displacements are given. Of course,  
 

T uB B B . 

 

 
Figure 4: Geometry and loading conditions of the plate. 

 
 

In addition to the above conventions, we remark that the total boundary of the prescribed sur-

face tractions ( TB ) includes the boundaries 
( ) ( ) ( )f u f l fB B B  and part of the lat-

eral boundary denoted by ( )lat
TB . 

Similarly, the total boundary of the given displacements ( uB ) includes the boundaries  

( ) ( ) ( )f u f l fB B B   and part of the lateral boundary denoted by 
( )lat
uB . 

 

Now as for the loads set to the formulation of the problem CPT, we consider the following. 

First, we assume that on the top or/ and bottom of the plate there is a normal load distribution 

1 2
( , )q x x . There is no matter if the algebraic sum of the vertical load q  is on the positive or 
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negative direction of the 3-axisx . Also it is incompatible to the model of CPT to consider this 

load on the lateral surface, because it has negligible influence on the boundary conditions due 

to the smallness of the thickness of the plate. For this reason the aforementioned load q  will 

not be treated in curvilinear integrals (as seem on next sections) as the residual external loads 

(tractions), but is going to appear on the volume integrals of the variational equations and as a 

consequence on the equations of motion of the vibrating plate. Thus, the assumption of the 

thin plate results to the fact that the load q  is applied on the mid-surface   of the plate [or 

the plane 1 2( , , 0)x x ]. Let   be the common projection of the upper and lower faces of the 

plate on its mid-surface. The last is surrounded by the curve  , which is the projection of the 

(vertical) lateral boundary of the mid-surface. 

Respectively to the above notation, let 1 2d dx dx  be an infinitesimal element of the do-

main   and d  an infinitesimal arc of the curve  . 

 

Second, at the edge of the plate, we have surface-distributed loads (surface tractions), whose 

components are going to be analyzed below.  
 

Generally we have,   0( ; ) ( ) , tT x T x   where TBx     and  

 

1 2 30 1 1 2 3 2 1 2 3 3 1 2 3
ˆ ˆ ˆ( ) ( , , ) ( , , ) ( , , )x x xT x x x T x x x T x x xT x e e e  

 

Note that we consider here the surface tractions independent of the time variable. 
 

Now separating the components of the surface tractions along the three axis of the Cartesian 

coordinate system, we get 
 

1 1 2 3 0 1 2 1 1 2 3 0 1 3
ˆ ( , , ) ( , ) ( , ) ( ) ( )T T T TT x x x a x x a x x x a a x     (1) 

 

2 1 2 3 0 1 2 1 1 2 3 0 1 3
ˆ ( , , ) ( , ) ( , ) ( ) ( )T T T TT x x x b x x b x x x b b x     (2) 

 

3 1 2 3 0 1 2 0
ˆ ( , , ) ( , ) ( )T TT x x x c x x c         (3) 

 

The above configuration of the surface tractions, including the arbitrary but appropriate func-

tions 0Ta , 1Ta , 0Tb , 1Tb  and 0Tc  is compatible with the initial assumptions of the kinematic 

model of the CPT. Due to the inextensibility assumption (section 1.2.2) and the smallness of 

the thickness of the plate, there is no dependence of the tractions along the 3-axisx  ( 3T̂ ) from 

the 3x  spatial variable. To express the above differently, our model cannot carry shear strains 

apart from those existing parallel to 1 2x x -plane. 

The in-plane tractions ( 1T̂  and 2T̂ ) are linearly dependent from the 3x  variable, fact that is 

consistent with the normality assumption (section 1.2.3), which restricts each cross-section of 

the plate to remain normal to the mid-surface during the deformation. 
 

Highlight also that the notation of the zero sub index is essential for the first part of the right-

hand side of the Eqs. (1), (2) and (3), because we want to show the dependence of the 0Ta , 

0Tb , 0Tc  functions from the curve   ( -arc around the curve)  of the lateral boundary, on 
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which the 3x -variable is zero, whereas the functions 1Ta  and 1Tb  notated by unit sub index 

declare the linear dependence of the surface tractions 1T̂ , 2T̂  from the vertical spatial variable. 

 

As for the specific parts of the boundary, where displacements are prescribed, we assume the 

following boundary conditions. These kinematic boundary conditions are alternatively called 

essential conditions of the problem, because they are considered as a priori constraint affect-

ing the space of the admissible functions and variations of the problem of CPT. 
 

Generally the form of the given displacements is,  
 

0( ; ) ( ) giventu x u x  ,  where uBx    and  

 

1 2 30 1 1 2 3 2 1 2 3 3 1 2 3( ) ( , , ) ( , , ) ( , , )x x xu x x x u x x x u x x xu x e e e  

 

Note that we consider here the above displacements independent of the time variable. 
 

Now separating the components of the displacement field on the boundary along the three ax-

es of the Cartesian coordinate system, we get 
 

1 1 2 3 0 1 2 1 1 2 3 0 1 3( , , ) ( , ) ( , ) ( ) ( )u u u uu x x x a x x a x x x a a x  ,   (4) 

 

2 1 2 3 0 1 2 1 1 2 3 0 1 3( , , ) ( , ) ( , ) ( ) ( )u u u uu x x x b x x b x x x b b x     (5) 

 

3 1 2 3 0 1 2 0( , , ) ( , ) ( )u uu x x x c x x c          (6) 

 

The notation follows the same rationality as this of the surface tractions, expressed above. The 

only difference is the form of the functions 0ua , 1ua , 0ub , 1ub , 0uc . However they must be 

compatible with the “nature” of our problem, as exactly the above functions 0Ta , 1Ta , 0Tb ,  

1Tb  and 0Tc  are.  

 

Further the rightness and compatibility of the above form of the essential conditions, is veri-

fied by the initial assumptions of the modelling of the problem of CPT, and specifically by the 

normality and the straightness assumptions of the sections 1.2.3 and 1.2.1 respectively. 
 

In conclusion all the aforementioned boundary and loading conditions, leads to the fact that 

parallel to the mid-surface (in-plane motion) there are two contributions. The first are stretch-

ing actions due to loads at the edge of the plate which act parallel to the mid-surface of the 

plate. The second contribution is attributed to bending.  
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3.  Kinematics of Thin Plates  
 

The in-plane displacements (due to the total loads acting on the plate) can be approximated 

by a few terms of the Taylor expansion around each point 1 2
( , ,0)x x  of the mid-surface, 

with respect to 3
[ ]/ 2, / 2x h h . We choose to expand Taylor with respect to 3- axisx  

(namely along the smallest dimension, -thickness of the plate), since Taylor’s expansions 

(polynomials) are adequate approximations only in a small region ( / 2, / 2)h h  around the 

central points 1 2( , ,0 )x x . Thus, the form of the , u v components of the displacement is as-

sumed of the form:  
 

2 2
3 1 2 3 1 2

1 2 3 1 2 2
3 3

( 0) ( , ,0; ) ( 0) ( , ,0; )
( , , ; ) ( , ,0; )

1! 2!

x u x x t x u x x t
u x x x t u x x t

x x

3 3
3 1 2

3
3

0 , ,0;

3!

x u x x t

x
       (1) 

2 2
3 1 2 3 1 2

1 2 3 1 2 2
3 3

( 0) ( , ,0; ) ( 0) ( , ,0; )
( , , ; ) ( , ,0; )

1! 2!

x v x x t x v x x t
v x x x t v x x t

x x

3 3
3 1 2

3
3

( 0) ( , ,0; )

3!

x v x x t

x
       (2) 

 

At this point, using the normality assumption (1.2.3.), we have:  

 

13

3 1 3 1

0
u w u w

x x x x
          (3) 

23

3 2 3 2

0
v w v w

x x x x
          (4) 

 

Note that the Eqs. (3) and (4) coincidence with the Eqs. (1) and (2) of the section 1.3.3, which 

have been proved above. 

 

According to the small-strain assumption of the CPT, the higher order derivatives of the rela-

tionships (1) and (2) are neglected.  

 

Thus, neglecting second- and higher-order terms in the expansions (1) and (2), and taking into 

account Eqs. (3) and (4), we obtain:  

 

1 2

1 2 3 1 2 3

1

( , ,0; )
( , , ; ) ( , ,0; )

w x x t
u x x x t u x x t x

x
  

1 2

1 2 3 1 2 3

2

( , ,0; )
( , , ; ) ( , ,0; )

w x x t
v x x x t v x x t x

x
  

 

Also the elimination of the higher-order terms in these equations is essential and compatible 

with the basic assumptions of our model and specifically with the straightness assumption 
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(1.2.1). This hypothesis points out that the in plane displacements , u v  are linearly dependent 

from the 3x  variable and they cannot be expressed from higher-order terms, including 2
3x , 3

3x  

and so on and so forth. 

 

Adopting the notation  

 

1 2 0 1 2( , ,0; ) ( , ; )u x x t u x x t ,  1 2 0 1 2( , ,0; ) ( , ; )v x x t v x x t ,  

and      1 2 0 1 2( , ,0; ) ( , ; )w x x t w x x t ,  

 

we obtain the following model of the displacement field:  

 

0 1 2

1 2 3 0 1 2 3

1

( , ; )
( , , ; ) ( , ; )

w x x t
u x x x t u x x t x

x
       (5) 

0 1 2

1 2 3 0 1 2 3

2

( , ; )
( , , ; ) ( , ; )

w x x t
v x x x t v x x t x

x
       (6) 

1 2 3 0 1 2( , , ; ) ( , ; )w x x x t w x x t           (7) 

 

We notice that the Eq. (7) is compatible with the inextensibility assumption (1.2.2), which 

declares that each point of the plate is subjected to the same vertical displacement 0w . 

 

On the basis of Eqs. (5) – (7), we conclude that the displacement field ( , , )u v w  is fully de-

scribed in terms of deformation of the mid-surface 0 0 0( , , )u v w . As far as the strain field, we 

have:  

 
2

1 2 3 0 1 2 0 1 2

11 3 2
1 1 1

( , , ; ) ( , ; ) ( , ; )
uu

u x x x t u x x t w x x t
e e x

x x x
     (8) 

2
1 2 3 0 1 2 0 1 2

22 3 2
2 2 2

( , , ; ) ( , ; ) ( , ; )
v v

v x x x t v x x t w x x t
e e x

x x x
     (9) 

1 2 3

33

3

( , , ; )
0 the above assumptionww

w x x x t
e e

x
  

2 2
0 0 0 0

12 21 3 3

2 1 2 2 1 1 1 2

2
0 0 0

3

2 1 1 2

1 1

2 2

1

2

u v vu

u w v wu v
e e e e x x

x x x x x x x x

u v w
x

x x x x

 

thus,  
2

0 0 0

12 12 3

2 1 2 1 1 2

2 2
u v wu v

e x
x x x x x x

 .     (10) 
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Generally refer that on the literature, the model of CPT does not taking for granted the non-

zero in plane displacements 0 0( , )u v . However, in case of the existence of an in-plane exter-

nal loading condition or the assumption of heterogeneous material of the plate, the in-plane 

displacements and consequently in-plane strains are nonzero. Thus, due to the assumptions of 

the kinematic model presented on the previous sections 1 and 2, our choice of displacement 

and strain field is rational.  
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4.  Equations of Motion- Variational Principles 
 

Now we are going to produce the differential equation of motion of the plate and its boundary 

conditions, replacing the expressions of the displacement field to the variational equation and 

using the Hamilton’s Principle in Elastodynamics [Athanassoulis G.A. (2016), Hamilton’s 

Principle in Elastodynamics, NTUA Lecture Notes of Functional Analysis].  

 

We formulate the Elastodynamic Lagrangian function in a constraint form, which means we 

impose as a priori constraint the condition ˆ( ; ) ( ; )i iu t u t givenx x , uBx  (essential 

condition):  
 

ˆL ( ; ) ( ) ( )

T

i i

B B

t K U dV T u dSu u e    

 

Next, we have to define the action functional, corresponding to the above Lagrangian func-

tion: 
2

1

( , ) L ( ; )

t

t

S t dtu u   

In order to find the differential equations of the CPT, we have to find the stationary points of 

the action functional (Hamilton’s Principle):  
2

1

2 2

1 1

space of admissible

 variations

space of admissible

 variations

; L ( ; ) 0 ,

ˆ( ) ( ) 0 ,

T

t

t

t t

i i

t B t B

S t dt

K U dV dt T u dS dt

   

  

u u u u

u e u

  

     

2 2 2

1 1 1

space of admissible variations

ˆ( ) ( ) 0,

.

T

t t t

i i

t B t B t B

K dV dt U dV dt T u dS dt  



u e

u

     (1) 

 

 

Now we calculate separately the terms of the above variational equation: 

 

4.1.  Variation of the Kinetic-Energy Part  
 

The calculation of the kinetic-energy part of the action functional is standard. Integrating by 

parts the time integral, we find: 

      

2 2

1 1

2

1

1
( )

2

,

t t

K i i

t B t B

t

i i

t B

J K dV dt u u dV dt

u u dV dt

   

 

u
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Thus,  

2

1

1 1 2 2 3 3

t

K

t B

J u u u u u u dV dt       

   

2

1

t

t B

u u v v w w dV dt    ,        (2) 

where   
0

0 3

1

w
u u x

x
,    

0

0 3

2

w
v v x

x
         (3) 

            
0

0 3

1

w
u u x

x


  ,   

0

0 3

2

w
v v x

x


  .        (4) 

 

From Eqs. (2), (3) and (4), the variation of the kinetic part takes the form:  

2
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0 3 0 3

1 1

0 0
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2 2
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


 
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0 0 0 02
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t
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3 0 0 0 0
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 
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0 3 0 3
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02
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3 00
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w
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3 3 0
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t

t B
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w
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In Eq. (5) there are not only the variations 0u , 0v , 0w , but also the variation of the first 

spatial derivatives ( 1 2,x x derivatives) of 0w . To eliminate the later we perform an inte-

gration by parts with respect to the corresponding spatial variables. These integrations by 

parts will generate boundary terms, which will contribute to the construction of the appropri-

ate boundary conditions of the CPT. For further simplification, we neglect for the present cal-

culations the time integral. Thus,  
 

0 1

02
, 3 3 0

0

11

w x

B

w
I x x u d

x

w
V

x
 


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2
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3 3 0 3 32
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1
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w w u
x x u n dS x x dV

x
w w
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   , (6a) 

 

0 2

02
, 3 3 0

0

22

w x

B

w
I x x v d

x

w
V

x
 


  

           
2

( )

2
0 0 02 2

3 3 0 3 32
2 2

0 0

2lat

x

BB

w w v
x x v n dS x x dV

x
w w

xx
   . (6b) 

 

Consequently, substituting Eqs. (6a) and (6b) in Eq. (5), we get  
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0 02 2
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1
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2
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t
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t B
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1
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1 21 2

t
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w w u v
x x w dV dt
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1 1
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1
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0
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t

t B

w w
u x dV dt v x dV dt
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w w u v
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w

u v




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

  

2

1 2

1
( )

0 02 2
3 3 0 3 3 0 0

1 2
lat

t

x x

t B

w w
x x u n x x v n w dS dt

x x
       (6c) 

 

Eq. (6c) can be simplified, by observing that the 3x dependence of all integrands is explicit, 

and thus the vertical integration can be performed explicitly. To this end, it is convenient to 

define the “mass-moment” quantities:  
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2

3 3

2

,   0, 1, 2, ..., 6

h

i
i

h

I x dx i .  

Note that all odd-order iI ’s are zero. More precisely, we have  
 

1 3 5 0I I I ,  
 

2

0 3

2

= ,

h

h

I dx h      

2
3

2
2 3 3

2

= ,
12

h

h

h
I x dx    

 

2
5

4
4 3 3

2

= ,
80

h

h

h
I x dx    

2
7

6
6 3 3

2

=
448

h

h

h
I x dx  .   

 

To treat the volume-integral terms (appearing in the first and second row of the right-most 

side of Eq. (6)), we decompose them as follows:  
 

2

3

2

( ) ( )

h

B h

dV d d x



,      1 2d d x d x ,  

 

where   is the common projection of the upper and lower faces of the plate on the mid-

surface. Similarly, to treat the terms in the last row of the right-most side of Eq. (6), we have 

to decompose the lateral surface integral as follows:  
 

( )

2

3

2

( ) ( )

lat

h

h Γ
B

d S d d x ,  

 

where Γ  is the curve defined by the projection of the (vertical) lateral boundary on the mid-

surface.  

 

Substituting the above decomposed integrals to the Eq. (6c), we have the following, 
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4.2.  Stress-Strain Relations and Elastic Potential Energy 
 

According to “Athanassoulis G.A. (2016), Hamilton’s Principle in Elastodynamics, NTUA 

Lecture Notes of Functional Analysis” and “Athanassoulis G.A. (2017), Elastic potential en-

ergy – Energy function, NTUA Lecture Notes of Functional Analysis”, we have the general 

form of the elastic potential energy of the problem, 
 

1 1
( ) ( )

2 2
i j i j i j k l i j k lU e C e ee e     ,    where the strains k le  are expressed in terms of 

the displacement field as ,

1

2
i j i j j,ie u u  and ( )i j k l i j k lC C x  are the stiffness coeffi-

cients (material properties). 

As for the variation of the elastic potential energy, we derive the following: 
 

Hooke's Law 1st term

Minor symmetry of matrix of

stiffness coefficients

Hooke's Law 1st term

1 1
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e

dummy indexes1 1
( ) ( )

2 2
k k l i j i j i j i jlU e e U e     e e

  

 

Consequently,  
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1
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2

1
Voigt Notation

2

uu uu vv vv ww ww vw vw wu wu uv uvU e e e
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        

        
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1 1 2 2 3 3 4 4 5 5 6 6

1

2
e e e                 (1) 

 

1 1 2 2 3 3 4 4 5 5 6 6( )U e e e            e        (2) 
 

According to the last paragraph, we observe that some of the terms of the elastic potential en-

ergy, are equal to zero. So we derive, 
 

1 1 2 2 6 6

1
( )

2
U e e   e          (3) 

From (1) and the proof of (2) we have, 
 

1 1 2 2 6 6( )U e e      e          (4) 

 

From (5) of the section 3: 
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From (6) of the section 3: 

2
0 1 2 0 1 2

2 22 3 2
2 2

( , ; ) ( , ; )
vv

v x x t w x x t
e e e x

x x

 
     

34



Part A Section 4. Equations of Motion –Variational Principles 

 

 

From (7) of the section 3: 

2
0 0 0

6 12 3

2 1 1 2

2uv

u v w
x

x x x x

  
     

 

4.2.1.  Orthotropic, in-plane anisotropic material.  Stress- Strain Relations 
 

A wide range of engineering materials, including certain piezoelectric materials and fiber-

reinforced composites (i.e. laminated plates composed of multiple orthotropic layers), are or-

thotropic. By definition an orthotropic material has at least two orthogonal planes of sym-

metry, where material properties are independent of the direction within each plane. Such ma-

terials require nine (9) independent variables (i.e. constants) in their constitutive matrices. In 

contrast, a material without any planes of symmetry is fully anisotropic and requires at least 

twenty-one (21) elastic constants (due to the symmetry of the constitutive matrices), whereas 

a material with an infinite number of symmetry planes (i.e. every plane is a plane of sym-

metry), is isotropic and requires only two elastic constants (Lame’s constants) [“An Introduc-

tion to Continuum Mechanics”, Chapter 6 (2013), J.N. Reddy and “Theory and Analysis of 

Elastic Plates and Shells”, Chapter 3 (2007), J.N. Reddy].  

By convention, the nine elastic constants in orthotropic constitutive equations are comprised 

of three Young’s modulus of elasticity ( 1
E , 2E , 3E ), three Poisson’s ratios ( 2 3

v , 31v , 12v ) or  

( 4v , 5v , 6v ) and three shear moduli ( 23G , 31G  , 12G ) or ( 4G , 5G  , 6G ). 

According to the process followed on the Lecture Notes “Stress-Strain Relations: Hooke’s 

Law-Orthotropic Materials (First-Principle Approach)”, G.A. Athanassoulis (2016), the three-

dimensional compliance matrix takes the form,  
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However, in the case of CPT, we keep only the stress-strain relations which represent the two-

dimensional constitutive equations. Thus,  
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     and     6 6

6

1

G
    

 

35



Part A Section 4. Equations of Motion –Variational Principles 

 

 

Note that, in orthotropic materials there is no interaction between the normal stresses 1 2,    

and shear strain 6 6 122 2e e . Further, the symmetry of the compliance coefficients 

leads directly to the following Symmetry Relations for Poisson rations: 

12 21

1 2

v v

E E
  

Now looking forward on the reduced stiffness matrix C  , which is the following,  
 

21

1 2

12

1 2
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1

v

E E
C

v

E E

        (1) 

 

we perform Gaussian elimination (also known as row reduction) in order to express the 

stresses in terms of strains [https://en.wikipedia.org/wiki/Gaussian_elimination], as seem be-

low, 
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and regarding the system of equations, with unknown quantities the stresses 1 2,   ,  
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1 21 1

1 1 2

12 21 12 21

12 2 2
1 22

12 21 12 21

1 1
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E v E
e e

v v v v

v E E
e e
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 or in matrix form  

         

1 21 1

1 12 21 12 21 1

122 2 2 2
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E v E
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v E E e

v v v v
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These results of elastic coefficients 1

11

12 211

E
C

v v
 , 2

22

12 211

E
C

v v
 and  

21 1

12 21

12 21

due to symmetry of matrix 
1

v E
C C C

v v
, are verified according to the  

remarks of the Lecture Notes “Stress-Strain Relations: Hooke’s Law-Orthotropic Materials 

(First-Principle Approach)”, G.A. Athanassoulis (2016). Noticing the coefficients 11C , 22C ,  

12C , 21C  and calculating the quantity 12 21

1 2 3

1 v v

E E E
 and after substituting it on the corre-

sponding relations (11) of the Lecture Notes, we get,  
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The last relationships verify our results of the stress – strain relationships of an orthotropic but 

in-plane anisotropic material, which are finally, 
 

1 21 1

11 11 22

12 21 12 211 1

E v E
e e

v v v v
          (5) 

12 2 2
11 2222

12 21 12 211 1

v E E
e e

v v v v
          (6) 

 

12 6 12 12 6 6
G G              (7) 

 

In addition, we can express the above stresses in terms of displacements, substituting the Eqs. 

(8), (9) and (10) of the section 3 into the Eqs. (5), (6) and (7), as seem below, 
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2 2
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11 3 32 2
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2 2
12 2 0 0 2 0 0

2 2 3 32 2
12 21 1 12 21 21 2

1 1

v E u w E v w
x x

v v x v v xx x
      (9) 

 

2
0 0 0

6 12 21 6 6 6 3
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G G x
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4.2.2.  Orthotropic, in-plane isotropic material.  Stress - Strain Relations 
 

The simplest way to derive the stress – strain relations of an orthotropic but in-plane isotropic 

material, is to notice and elaborate appropriately the stress – strain relations of the orthotropic 

in-plane anisotropic plate. Thus, remembering the matrix of stiffness coefficients (1) of the 

section 4.2.1 and the fact that the modulus of elasticity and the elastic coefficients of an elas-

tically isotropic solid body are constant regardless of the rotation of the Cartesian system 

[Lecture Notes, “Stress-Strain Relations: Some Formal Considerations on Hooke’s Law ap-

plied to Isotropic Materials” , G.A. Athanassoulis 2015], we have: 
 

From Eq. (2) of the section 4.2.1,  11 21
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v
 

From Eq. (3) of the section 4.2.1,  2 2 21

E
C

v
 

From Eq. (4) of the section 4.2.1,   12 21 21

v E
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v
 

 

Consequently, the matrix of the Eqs. (1) in the section 4.2.1., is converted to, 
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    (5) 

 

and the in-plane stress – strain relationships are already apparent. 
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As for the shear stress – strain relation, we have obviously  
 

2
0 0 0

6 6 6 6 3

2 1 1 2

2
u v w

G G G x
x x x x

        (5`) 

 

To avoid confusion and possible doubt about the selection of the appropriate stress-strain rela-

tions, we remark that the plate cannot be regarded isotropic with respect to all its directions, 

because the plate is in-plane isotropic as aforementioned above. Consequently, the stress-

strain relations are not obtained from the general form of Hooke’s Law for an isotropic, ho-

mogeneous material (continuum) and the Theorem of the most general form of a 4th order ten-

sor of the book “Continuum Mechanics” [Chandrasekharaiah & Debnath (1994), Section 

2.6] is not valid in our case. Thus, the Poisson’s ratio v  of the previous relations v  is an iden-

tity of the material referred to its planar directions, namely 1x  and 2x -axis. This effect is 

quantified by, 

22

1

11

11 22

2 21v v
e e

e e
v  

 

In conclusion, is assumed that linear theory is applied and that the material of the plate is ho-

mogenous and isotropic with regard to directions in the 1 2-planex x  [E. Reissner (1963) “On 

the derivation of boundary conditions for the plate theory”, MIT, page 179]. The previous 

ascertainment means that the Poisson’s ratio and the modulus of elasticity coincidence on the 

directions 1x  and 2x  of the material, but differ from the corresponding on the direction of its 

3-axisx  (vertical direction). Also, as seems on the section 4.2.1 in the context of the CPT, we 

keep only the stress-strain relations which represent the two-dimensional constitutive equa-

tions, so that the Poisson’s ration which relates the in-plane with the vertical strains and the 

modulus of elasticity and shear modulus on the direction of 3-axisx  are eliminated and as a 

consequence they will not occupy us on this quotation. Thus, 
 

1 2E EE   and 12 21 6G G G G  

 

In addition to the above and for completeness gift, we refer the so called Lame’s constants   

and  , which are related to the modulus of elasticity E , the shear modulus of elasticity G  

and the Poisson’s ratio v , as seems from the following relations [Some Formal Considera-

tions on Hooke’s Law applied to Isotropic Materials”, G.A. Athanassoulis (2015) and “An 

Introduction to Continuum Mechanics”, J.N. Reddy (2013), 2nd edition CUP]. 
 

                    G          ,          
2(1 )

E
G

v
             and             

(1 2 )(1 )

v E

v v
 . 
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4.3.  Variation of the Elastic Potential Energy  

 

Due to the proof of the previous section (4.2), the only variations appearing on the variation 

of the elastic potential energy are the variations of the strains. Note that the variations of 

stresses are not appear explicitly on the following relation (or the Eq. (4) of the section 4.2), 

because they are a priori included in the variation of the elastic potential energy. This fact is 

declared on the section 4.2 by the use of the Hooke’s Law in conjunction with the identity of 

symmetry of matrix composed of the stiffness coefficients as well as the contrivances of index 

notation. 
 

At this point, we keep in mind the Eqs. (8) – (10) of the section 4.2.1 or the Eqs. (6) - (8) of 

the section 4.2.2 and we are not going to replace the last, in order to avoid difficult and time-

consuming calculations. Thus, the relationship (4) is converted to, 
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Finally replacing (4) to the expression of the variation of the elastic potential part, we derive 

the last expression: 
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On the last equation (1) appear not only the variations 0u , 0v , 0w  but also their 1 2,x x

derivatives. To eliminate the later, we perform one or two (by case) integration(s) by parts 

with respect to the variable x . This integrations by parts will generate boundary terms kin-

ematic and dynamic, which will contribute to the construction of the appropriate boundary 

conditions of the CPT. For further simplification we neglect for the present calculations the 

time integral. We have also to be careful about the integration(s) by parts with respect to spa-

tial variable, because the boundary terms of the following relations are related with the natural 

boundary conditions of the problem (or dynamic boundary conditions of the elastic continu-

um).  
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In order to derive the final terms of the following volume integral 
0 1 2,w x xI  , we follow a 

different path.  
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As for the first term 1J , we perform integrations by parts firstly according to 1x  and secondly 

according to 2x  variable, while as for the second term 2J , we perform integrations by parts 

initially according to 2x  and subsequently according to 1x  spatial variable. This concept is 

adopted to the following calculations, because we desire to derive boundary conditions with a 

“symmetric” formulation between the terms (of the variation of the action functional) with the 

same variations 0 0 0( , , )u v w   .  

Thus,  
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Consequently, the equation (15g) is converted to, 
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Now using (2a) - (2g), the equation (1) is converted to, 

 

42



Part A Section 4. Equations of Motion-Variational Principles 

 

 

2 2

1 1

2 2

1 2 1 2

1 1

1 2

( ) ( )

1 1 2 2 6 6

1 6 1 3 6 3

1 6 2 6

3 3

1 2 2 1

0

0

1

( )

( ) ( )

lat lat

t t

U

t B t B

t t

x x x x

t tB B

x x

J U dV dt e e e dV dt

n n dS dt x n x n dS dt

x n x n

x

x x

u
w

x x



       

   





  

e

2

1

2 2

2 1 2 1

1 1

2 2

1 1

( )

( ) ( )

0

2 6 2 3 6 3

1 6 2 6

1 2 2 1

0

2

0

0

0( ) ( )

lat

lat lat

t

t B

t t

x x x x

t tB B

t t

t B t B

dS dt

n n dS dt x n x n dS dt

dV dt dV dt
x x

w
v

v
x x

u

w

x
   

  










2

1

2 2 2
6 1 2

3 3 32 2
1 2 1 2

02

t

t B

wx x x dV dt
x x x x

  
   

2 2

1 2 1 2

1 1

2

1 2

1

/2 /2

1 6 3 1 3 6 3 3

/2 /2

/2

1 6 2 6

3 3 3

1 2 2 1
/2

2

0

0

0

1

( ) ( )

(

t th h

x x x x

t h t h

t h

x x

t h

n n dx d dt x n x n dx d dt

x n x n dx d dt
x x

w

x

x

x

u

w

     

 




 







 



2 2

2 1 2 1

1 1

2 2

1 1

/2 /2

6 3 2 3 6 3 3

/2 /2

/2

0

/2

1 6 2 6

3 3

1 2 2 1

0

2

/2

0

2

0

/

) ( )

t th h

x x x x

t h t h

t th h

t h t h

n n dx d dt x n x n dx d dt

dx dS dt

v

dx dS dt
x x x x

x

v

w

u

   


 
 



 



 

 

2

1

/2
2 2 2

6 1 2

3 3 3 32 2
1 2 2

/2

0

1

2

t h

t h

x x x dx dS dt
x x x x

w
  



       (3) 

 
 

In the Eq. (3) is followed the same process (as those of the kinetic part) of decomposition of 

the volume and surface integrals. Thus, the above relation takes a new form including  
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Thus, to calculate the variation of the elastic potential energy part, we have to define addition-

ally these stress resultants as, 

the thickness-integrated forces 11 22 12 1 2 6( , , ) ( , , )N N N N N N   

and the thickness-integrated moments 11 22 12 1 2 6( , , ) ( , , )M M M M M M , 

which are called alternatively as stress resultants. 
 

At this point is important to clarify that the above stress resultants are nothing more than “ab-

breviations” of the stress field of the material. By this way, we gather together the compo-

nents of stress field, which are expressed in terms of the displacement field 0 0 0( , , )u v w , 

namely the unknowns, as seems from the Eqs. (8) - (10) of the section 4.2.1 or the Eqs. (5) 

and (8) of the section 4.2.2.  

Substituting the Eqs. (8) - (10) of the section 4.2.1 or the Eqs. (5) and (8) of the section 4.2.2, 

into the Eq. (4) of the stress resultants, we can express the thickness-integrated forces and 

moments directly in terms of the displacements 0 0 0( , , )u v w . 

Thus, the last aforementioned relations are going to appear on next sections in order to derive 

easier the equations of motion and the boundary conditions of the plate (in terms of the dis-

placement field). Complementarily note that the total number of the resulting scalar equations 

of the problem must be the same with the number of unknowns so that our problem has a 

unique solution. In that case the number of unknowns is three. Consequently, we expect to 

derive three equations from the variational principle, including the unknowns 0 0 0( , , )u v w , 

and finally solve a 3x3 system. 
 

Thus, the equation (3) is converted to: 
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4.4.  Virtual Work of the Externally Applied Loads 
 

As for the last terms of the variational equation, we have to calculate the variations of the 

externally applied forces, apart from Kinetic and Elastic Potential Energy. 

Within the Classical Plate Theory, we assume that there is a normal distributed external load 

at the top or/ and bottom surface ( )fB  of the plate (surface force/ traction at 3 2x h  or/ 

and 3 2x h ) 1 2( , ; )q x x t . At this point we clarify that the normal distributed external 

load q  is regarded as the algebraic sum between the load at the top and the bottom of the ex-

ternal boundary of the plate ( top bottomq q q ), as exactly shown on the reference, M. Ama-

bili (2004), “Nonlinear vibrations of rectangular plates with different boundary conditions: 

theory and experiments”, Italy, Journal of Computers & Structures on pp. 2589. 

Also it is necessary to quantify the virtual work of the traction field at the edge of the plate. 

This work is related to the virtual displacements 1u , 2u  and 3u , which are the displace-

ments on the direction of 1-axisx , 2-axisx  and 3-axisx  respectively.  

Thus, the variation of the functional of the external surface traction, due to the surface distrib-

uted load (surface tractions) at the adjacent surface and the horizontally distributed vertical 

load q  (as illustrated on the following figure, Figure 5), is:  
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We examine separately the three integrals of the lateral, upper and bottom surface. To simpli-

fy their expressions, we neglect the time integration at this moment. 

Due to the basic assumptions of the model of CPT, the second and the third term of the above 

variation are eliminated, because of the normality assumption (section 1.2.3), which gives ze-

ro shear strains 23 232 0e  and 13 132 0e  all over the plate. This fact is also 

obvious from the form of the surface tractions which are prescribed on the section 2 [Eqs. (1) 

and (2)]. 

Thus,  
( ) ( ) 0u f l f
T TJ J    , on the flat surfaces 

 

By this way the only term that remains to be analyzed, on the above variation of the externally 

applied loads is the first one. 
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At this point we procced to further study of the Eq. (1) and neglecting again the time integral 

to simplify the calculations, we get 
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Figure 5: Externally applied and horizontally distributed vertical load 

 

 

Now we assume that we have given surface tractions 1T̂ , 2T̂ and 3T̂  at the specific parts of the 

lateral boundary ( )latB  
( )( )lat
TB  and using the Eqs. (5), (6) and (7) of the section 3, we de-

rive the following, 
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Now as for the form of the given surface tractions 1T̂ , 2T̂  and 3T̂ , we recall the configurations 

of the section 2. We notice also that the deformation at the edge of the plate during its motion 

in conjunction with the externally applied loads must be linearly dependent from the 

3-variablex . This fact is justified due to the same dependence of the in-plane displacements 

( , )u v  from the 3-variablex . 
 

Further, the quantities which multiply the variations 0u , 0v  and 0w  inside the integrals 

of the Eq. (3), are expected to match with the respective terms of the variation of the Elastic-

Potential Energy part (section 4.3). The last contains boundary terms (surface integrals) simi-

larly linear dependent of the 3-variablex . 

Taking all the aforementioned into account, we present here for convenience again the form 

of the given surface tractions prescribed on the section 2 by the Eqs. (1), (2), (3), 
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ˆ ( , ) ( , ) ( ) ( )T T T TT b x x b x x x b b x     (4b) 

3 0 1 2 0
ˆ ( , ) ( )T TT c x x c         (4c) 

 

However, it is essential to note that the above form of the surface traction field is a simplified 

approximation of the real values of the surface tractions at each point upon the edge of the 

plate as to the Cartesian coordinate system (because on the curvilinear one, these tractions are 

going to take a different form as will show on the section 5). Certainly, this approximation is 

enough accurate in the context of our problem of CPT (and compatible with our model), be-

cause of the thin plate which permits only small variations on the values of the tractions along 

its thickness. 
 

Furthermore, we substitute the Eqs. (4a) - (4c) into the Eq. (3) and after that we use the mass-

moment quantities and the process of decomposition of the surface integrals. Thus, the Eq. (3) 

is modified as follows, 
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Finally, substituting the Eq. (5) into the Eq. (1), we get 
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4.5. The variational equation of the CPT  
 

Now we are able to substitute the results of separate parts, Eq. (6`) of the section 4.1., (3`) of 

the section 4.3. and (6) of the section 4.4. into the variational equation (1) of the section 4. 

The next step is to gather separately the different terms according to the kind of their varia-

tions e.g. 0u , 0v , 0w . By this way it is easier to extract the equations of motion and the 

boundary conditions of the model of Classical Theory of Plates. 

To facilitate the calculations and substitutions, we repeat the equation (1) of the section 4: 
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For further simplification, we gather together the terms with surface and curvilinear integrals, 

taking care of the kind of variation ( 0u , 0v  and 0w ) of each term. Thus, the final form of 

the variational equation of the problem of the CPT is the following. Note that the Eq. (3) be-

low is exactly the same as the variational Eq. (1) of the section 4. 
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4.6  Equations of Motion of the CPT in terms of thickness integrated forces and  

       moments 

 

Now in order to obtain the equations of motion of the model of CPT, we assume that each 

term (under surface or curvilinear integrals) of the Eq. (3) is continuous function of 1x  and 

2x . These terms are multiplied with the variations 0u , 0v  and 0w  or the spatial deriva-

tives of the last ( 0w ) variation. At this point, using the standard arguments of the calculus of 

variations [“Calculus of Variations”, I. M. Gelfand and S. V. Fomin, Lemma 1, 

p.9/Sec.3/Chap.1 and Lemma, p.22/Sec.5/Chap.1], we derive the three equations of motion 

of the plate.  

 

Accordingly, we first assume that, 0 0 0 0 2 0 1/ / 0u v w w x w x      

on the boundary ( )x , where t  is arbitrary. The previous means that the variations and 

their spatial derivatives are not vary upon the boundary of the plate and obviously we have 

given displacements. Then (3) reduces to just, 
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  (3`) 

 

Subsequently, we assume that 0 0 0v w   on the domain   (inside the body of the  

plate). Thus,  
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and using the arbitrariness of the variation 0u  inside the 1 2[ , ]t t , we find the first equa-

tion of motion of the plate,  

11 12

0 0

1 2

0
N N

I u
x x

.       (4) 

for x  and t  [ 1t , 2t ].  

 

Next, we remove the restriction 0 0v  on the domain   and taking into account the equa-

tion (4) which eliminates the first surface integral of (3`). Thus,  
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And using the arbitrariness of the variation 0v  inside the space 1 2[ , ]t t , we result to the 

second equation of motion of the plate, 
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for x  and t  [ 1t , 2t ]. 

 

Further, removing the restriction 0 0w  on the surface   and taking into account the two 

previous equations (4) and (5), the result of the equation is (3`) is,  
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Regarding also the arbitrariness of the variation 0w  inside the 1 2[ , ]t t , we extract the 

third equation of motion of the plate, 
 

2 2 2 2 2
0 0 12 11 2 2
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w w M M M
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x xx x x x

   (6) 

 

Let it be noted that Eqs. (4), (5) are identical with the respective results (3.4.15), (3.4.16) of 

the book J.N. Reddy (2007) on the page 105. As for the comparison of the equation (6) and 

(3.4.17), we note that there is a difference on one term of the (3.4.17), which is not appear on 

the equation (6). This difference is easily justified because of another strain field, which is 

adopted for the development of the CPT according to J.N. Reddy and takes into account the 

geometric nonlinearities i.e. small strains but moderate rotations of transverse normal of the 

mid-surface (10 - 15 )o o
 [J.N. Reddy (2007) “Theory and Analysis of Elastic Plates and 

Shells”, page 98 – 99/ Chapter 3].  
 

It is essential to note that, the above system of three equations (4), (5), (6) is solvable, as will 

be seen explicitly on the section 6, because the number of unknown quantities is three. This is 

a fact due to the definition of the thickness-integrated forces and moments [Eqs. (4) of the 

section 4.3], which can be expressed directly in terms of the unknowns of the system, namely 

the displacement field 0 0 0( , , )u v w , as will be shown on the section 6 again.  
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5.  Boundary Conditions of CPT in terms of thickness -integrated forces and moments  
 

Inspection of the previous Eq. (3) of the section 4.5 indicates that the quantities with a varia-

tion in the boundary integrals are the primary variables 0u , 0v , 0w , 0 1/w x , 0 2/w x  

and their specification constitutes the geometric or kinematic (essential) boundary condi-

tions. The mathematical expressions inside the brackets of the integrated quantities, which are 

coefficients of the varied quantities, are termed the secondary variables, and their specifica-

tion gives the dynamic (natural) boundary conditions. Therefore, there are primary and sec-

ondary variables of the plate with faces parallel to 1 2( , )x x plane.  

 

However, on this step we must not hustle to conclude about the final results of the boundary 

conditions of the problem, because at first glance [Variational Equation (3) of the section 4.5] 

the number of the boundary terms does not give the desirable number of boundary conditions. 

In other words, if the equations of motion are expressed in terms of displacements (as will be 

shown on the section 6), they would contain second-order spatial derivatives of 0u , 0v  and 

fourth-order spatial derivatives of 0w . This implies that there should be only four essential 

and four natural boundary conditions, whereas from the Variational Equation (1) below we 

note five essential and five natural boundary conditions. This fact is incompatible with our 

problem of CPT and must be corrected by specific treatments (section 5.2). 

 

5.1.  Variational boundary terms in Cartesian coordinates 
 

Now, we isolate the curvilinear integrals in the Eq. (3) of the section 4.5, in order to illustrate 

better the aforementioned boundary terms.  
 

Initially we remove the restrictions 0 0 0 0 2 0 1/ / 0u v w w x w x      

from the boundary. Then, the action functional of the Eq. (3) becomes, 
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We are thinking exactly with the same rationality as on the paragraph 4.5 but at this moment 

to derive the boundary terms of the problem. Subsequently, on the section 5.3 we are going to 

extract the boundary conditions, which are independent from each other and finally compati-

ble with our problem. 
 

Additionally, note that the above process of deriving the equations of motion and the follow-

ing boundary conditions is explained thoroughly on the Lecture Notes of Functional Analysis, 

G.A. Athanassoulis (2016) “Necessary Conditions of Extremum of Functional” and “A fur-

ther study of the Variational Problem as for integral type functional”, as well as on the book 

of Gelfand I.M., Fomin S.V. (1963), “Calculus of Variations”. 
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5.2. Transformation of the boundary conditions to a curvilinear boundary system 
 

[References: J.N. Reddy “Theory and Analysis of Elastic Plates and Shells”, Chapter 1.4/ 3.5 

and the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and transformation of physi-

cal quantities under rotations of the reference system”]. 
 

Recalling the Variational Equation (1) of the section 5.1, which are examined so far as the 

possible boundary conditions, we remark the following.  
 

On the one hand, the number of the possible geometrical and natural boundary conditions is 

five and five respectively. However, in general the geometrical and natural boundary condi-

tions cannot take place concurrently, which means that the total number of the possible 

boundary conditions is five. 
 

On the other hand, the total order of the partial differential equations of motion of the elliptic 

problem of the CPT [Eq. (9) of the section 6.1 or Eq. (9) of the section 6.2] is four, since these 

equations include fourth-order spatial derivatives of the displacement 0w . However, on the 

context of this section we are going to occupy with the equations of motion of the plate found 

on the section 4.6 and the possible boundary conditions of the section 5.1, which are ex-

pressed in terms of thickness-integrated forces and moments. The only difference between the 

equations of motion and the relations of the sections 4.6 / 5.1 and those of the sections 6.1 / 

6.2, is that the first include implicitly the displacement field, whereas the second are ex-

pressed explicitly from the displacement field 0 0 0( , , )u v wu . 
 

Consequently, we conclude that there is not the right number of primary (geometric) or sec-

ondary (natural) variables associated with the equations of motion governing the bending and 

stretching of the plate. 
 

To remedy the aforementioned inconsistency, we will proceed to appropriate techniques, 

which are going to be developed on the following sections as well as on the Appendix A. 

Note that our struggle is to diminish the number of the boundary conditions from five to four. 

 

First, we transform the appropriate boundary expressions in terms of the displacements, forces 

and moments over the edge of the plate (and specifically the arbitrary curve   surrounding 

the mid-surface of the plate). For this purpose the Cartesian orthogonal coordinate system 

1 2 3( , , )x x x  is transformed to a local coordinate system ( , , )n s z , which “follows” the shape 

of the arbitrary curve   on the lateral surface of the plate. The expression “follows”, denotes 

that the coordinate system ( , , )n s z  moves on the curve  , so that the -axisn  be normal to 

the lateral boundary (with a unit normal n̂ ) and -axiss  be tangential to the same curve (with a 

unit tangential vector ŝ ). These vectors projected on the Cartesian coordinate system 

1 2 3( , , )x x x , are expressed as 
 

1 1 2 2
ˆ x x x xn nn e e         (1) 

 

1 1 2 2
ˆ x x x xs ss e e         (2) 

 

Further, we suppose that the unit normal n̂  is oriented at an angle   clockwise from the posi-

tive 1-axisx , then its direction cosines are 
1

cosxn   and 
2

sinxn  . Similarly, the di-

rection cosines of the vector ŝ  are 
21

sinxxs n   and 
12

cosxxs n   (for 

additional remark and explanations, see APPENDIX A). 
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For this reason the aforementioned, local to the edge of the plate, coordinate system ( , , )n s z  

is denoted as the curvilinear coordinate system and its components the curvilinear coordi-

nates respectively. As for the choice of the previous designation (name) of the transformed 

coordinate system under rotation around the vertical axis 3x  or z , it is essential and meaning-

ful because the direction of the in-plane axes ( , )n s  is directly adjusted to the shape of the 

lateral surface of the plate under consideration.  
 

Further, as known the lateral surface (edge) of the plate is prescribed by the curve   sur-

rounding the mid-surface of the plate and having arbitrary shape as exactly the form of its lat-

eral boundary.  
 

Thus, it is rational (reasonable) to describe the coordinates of the transformed system as cur-

vilinear-dependent, since these coordinates enable us to model the problems of plates with 

curved boundaries of arbitrary shape. 
 

After appropriate algebraic calculations and proofs referred extensively to the APPENDIX A, 

the final relations connecting the quantities of the Cartesian coordinate system to those of the 

curvilinear-dependent are presented below.  

As for the displacement field of the problem of the CPT and its variation, we have 
 

1 20 0 0n sx xu nun u  (3) and 
1 20 0 0n sx xnu u n u     (3`) 

 

2 10 0 0n sx xnv nu u   (4) and 
2 10 0 0n sx xn nv u u     (4`) 

 

0 01w w    (5) and   0 01w w    (5`) 

 

Note that the vertical displacement and its variation remains the same during the transfor-

mation, since we occupy with the planar rotation of the 1 2-planex x  around the vertical axis 

3x .  

 

As for the derivatives of the 0w , we get 
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2 1

0 0 0

2

x x

w w
n n

w

x n s
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       (7) 

 

Finally the relations which transform the stress field from the Cartesian coordinate system to 

the curvilinear one, are  
 

1 21 2

2
11

2 2nn ns s sx xx xn n n n         (8) 

 

2 11 2

2
22

2 2nn ns s sx xx xn n n n         (9) 

 

1 21 212 21
2 2( ) ( )x xs s nn nsx xn n n n         (10) 

 

By the definition of the thickness-integrated forces and moments, we have similarly with the 

transformation of the stress field the following relations, 
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1 21 2
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2 2nn ns s sx xx xn n nN nN N N      (11) 

 

2 11 2

2
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1 21 2

2
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2
2 ( ) ( )s s nn nx sxx xN N N Nn n n Nn     (13) 

and 

 

1 21 2

2
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2 2nn ns s sx xx xn n nM nM M M      (14) 

 

2 11 2

2
22

2 2nn ns s sx xx xn n nM nM M M      (15) 

 

1 21 2

2
1 21

2
2 ( ) ( )s s nn nx sxx xM M M Mn n n Mn     (16) 

 

Also before we proceed to the transformation of the boundary terms from the Cartesian to the 

curvilinear coordinate system, we have to present the same transformation law of the func-

tions 0 1 2, ( )Ta x x , 0 1 2, ( )Tb x x , 1 1 2, ( )Ta x x , 1 1 2, ( )Tb x x , 0 1 2, ( )Tc x x , which describe the form 

of the given surface tractions (shown on the section 4.4). Thus, according to the transfor-

mation law (T0) and (T1) of the APPENDIX A, we get the following relations 

 

1 20 0 0T T n T sx xn na a a  (17a) and 
1 21 1 1T T n T sx xn na a a          (17b) 

 

2 10 0 0T T n T sx xb a n an  (17c) and 
2 11 1 1T T n T sx xb a n an       (17d) 

 

     0 01T Tc c   (17e) 

 

where the function of the right-hand side of the above relations (17a) - (17e) have unique in-

dependent argument s , which counts the length of the curve  . Thus, as explained thorough-

ly by the mathematic definition of the curve on the APPENDIX A, the functions in the curvi-

linear system are written as, 

 

0 0 ( )T n T na a s ,   0 0 ( )T s T sa a s ,   1 1 ( )T n T na a s , 

1 1 ( )T s T sa a s    and   0 0( )T Tc c s . 

 

In view of the above relations, it is apparent that we have to occupy with the surface integrals 

(boundary terms) of the variational equation 3 of the section 4.5, namely the following 
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At this point, it is regarded important due to the nature of the problem of CPT and also con-

venient for the calculations, to separate the above equation into three parts and after that to 

perform calculations, integrations and so on. The first part includes the in-plane variations 

0u  and 0v  (first row of the above expression), the second one includes the vertical varia-

tion 0w  (second line), whereas the third part is related to the spatial derivatives of the verti-

cal variation 0 1/w x  and 0 2/w x  (third line), that is the variation of the derivatives of 

0w  along the boundary curve  .  

 

The following disjunction and grouping of the boundary terms of the just previous variational 

equation, is on purpose. First, the in-plane variations give surely the two of the boundary con-

ditions of the problem of CPT, either they are expressed in terms of the Cartesian or curvilin-

ear coordinates. Second in contrast to the in-plane variations, the boundary conditions associ-

ated with the spatial derivatives of the vertical variation 0 1/w x  and 0 2/w x , have to 

be merged and finally produce one boundary condition. The last satisfies our demand of total-

ly four boundary conditions for the problem of CPT. 

 

However, the second part including the variation 0w  is correlated to the third one, as will be 

shown on the next paragraphs of this section (5.2).This fact takes place due to the perfor-

mance of by parts integrations to the transformed quantities of the variations 0 1/w x  and 

0 2/w x , which will give boundary terms explicitly related to the variation 0w .  
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5.2.1. In-plane boundary conditions in the curvilinear boundary coordinates 

 

To simplify the process of transformation of these terms from the Cartesian coordinate system 

to the local one, we neglect once again the time integration and further now the curvilinear 

integration.  

Subsequently, taking apart each boundary condition multiplied with a different component of 

the variation of the displacement field and using the Eqs. (3`), (4`), (5`), (11)-(13), (17a) and 

(17c) we get the below. 
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Adding the Eqs. (19) and (20), we have 
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[eliminating the zero terms and grouping together those with the same variation] 
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However the above relation could be simplified further, by remembering that the normal vec-

tor to the lateral edge of the plate n̂  is unit. Thus, its meter is equal to the unit so that  
 

1 2 1 2

2 2 2 2 1x x x xn n n n . 

 

Consequently, the final form of the above result is, 
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Note that the previous simplification of the results is going to be applied similarly on the next 

sections, namely 5.2.2 and 5.2.3, because we come up the same quantity (
1 2

2 2

x xn n ) inside 

the following relations. 

 

On the basis of the above result, we notice that the functions 0 ( )T na s  and 0 ( )T sa s  are not 

correlated inside the brackets multiplied with the variations 0nu  and 0su  respectively. This 

fact is expected because the variations normal and tangent to the lateral surface of the plate, 

the 0nu  and 0su  respectively, are independent essential conditions and also the quantities 

by which they are multiplied are two independent natural boundary conditions of the problem 

of CPT, as seems below 

 

1 2 1 2

02 2
02 Tnn nx n sx x x

I
n n n n aN N


              (21a) 

 

11 2 2

02 2
02 x T sx x n s s sx

I
n n n n aN N


              (21b) 

 

60



Part A Section 5. Boundary Conditions of CPT in terms of thickness-integrated forces & moments 

 

 

5.2.2. Transformation of the boundary conditions associated with 
1 0 2 0,w w   to the  

           curvilinear coordinate system  

 

To simplify the process of transformation of these terms from the Cartesian coordinate system 

to the curvilinear one, we neglect once again the time integration and further now the curvi-

linear integration.  

Subsequently, taking apart each boundary condition multiplied with a different component of 

the variation of the displacement field and using the Eqs. (6), (7), (14)-(16), (17b) and (17d), 

we get the following results. 

 

First, as for the first part involving the 1x -spatial derivative of the variation 0w  
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[Grouping together the terms with the same thickness-integrated moment multiplied with the 

same curvilinear derivative of the 0w  and also separating the unknown terms from the giv-

en]  
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Subsequently, as for the second part related to the 2x -spatial derivatives of the variation 0w   
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[Similarly to the previous, we gather the terms with the same thickness-integrated moment 

multiplied with the same curvilinear derivative of the 0w  and also separating the unknown 

terms from the given]  
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 (23) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adding now the Eqs. (22) and (23), we have 
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[Grouping together again the terms with the same the thickness-integrated quantities of the 

same curvilinear direction and of the same derivative of 0w  on the curvilinear coordinate sys-

tem] 
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[Simplifying the terms inside the brackets concerning the direction cosines 
1 2
, x xn n ] 
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[Finally we create smarter and shorter forms of the direction cosines inside the brackets and 

we conclude to the final curvilinear boundary terms] 
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On the basis of the above result, remark that the function 1 ( , )T na n s  is related both with the 

variation 0 /w n  as well as with the variation 0 /w s . Exactly the same is valid for the 

function 1 ( , )T sa n s , which similarly is related both to the variation 0 /w n  and 

0 /w s . 

This configuration is expected because the derivatives of the vertical displacement as well as 

the corresponding natural conditions [terms inside the brackets of Eq. (24)], are correlated and 

finally they are going to give one boundary condition (as will show on the following sec-

tions).  
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5.2.3.  Derivation of the boundary terms associated with the variation 0w  

 

Now, taking apart the second line of the boundary terms of the variational equation, this is 

repeated on the last paragraph of the section 5.2, we have 
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Subsequently, taking apart each term of the above expression multiplied with the direction 

cosines (in order to simplify the calculations) and using the Eqs. (6), (7), (14)-(16) and (17e), 

we get the following results. In addition, note that for the sake of convenience we neglect the 

time and curvilinear integrals.  

However, due to the complication of the calculations, we present below the derivation of 

same terms separately and after that we substitute the results into the 
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, xw nI   and 
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And now substituting the Eqs. (25a) - (25f) into the expressions 
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Finally the terms inside the brackets of the initial expression of the present paragraph, take the 

following form 
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At this moment, we ready to compose the final results of the sections 5.2.1, 5.2.2 and 5.2.3 in 

order to extract the total number of the boundary conditions of the problem of the CPT. This 

is going to be presented explicitly on the next section. 
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5.3.  The full set of boundary conditions of the problem of CPT 

 

Finally, after reorganizing the curvilinear integrals of the Eq. (1) of the section 5 including 

different variations on a more convenient way, we substitute the Eqs. (21), (24) and (26) into 

the Eq. (1) of the section 5 and we get 
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Now separating the integrals of the terms including boundary conditions with the variations 

0 /w n  and 0 /w s  and also neglecting the time integration for reason of simplifica-

tion, we have 
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where the last integral of the right-hand side of the above relation is written as,  
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where the last integral of the right-hand side of the above relation is written as,  
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The previous choice to perform by parts integrations only along the curve  , namely follow-

ing the arc s  through the tangential derivatives 0 /w s , is intentional because it gives the 

desirable boundary terms and concurrently by this way the number of the total boundary con-

ditions of the problem is reduced to the desirable. The last is attained by eliminating the de-

rivative 0 /w s  from the boundary terms, as seems below. 

Note also that the direction cosines 
1xn  and 

2xn  are s -dependent as exactly the functions 

0T na , 0T sa , 1T na , 1T sa  and 0Tc  (see section 5.2 and APPENDIX A). For this reason, the di-

rection cosines 
1 1

( )x xn n s  and 
2 2

( )x xn n s  are under the derivation inside the inte-

gral terms, which remains after the by parts integrations [Eqs. (1a) - (1h)]. 

 

Subsequently, we are going to examine two cases. The first one is when the end points of the 

closed curve   coincide or when the terms inside the brackets 


 are equal to zero, name-

ly, 
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Then the first terms of the right-hand side of the relations (1d), (1e), (1f), (1h) are eliminated, 
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As for the second case, the terms of the right-hand side of the relations (1d), (1e), (1f), (1h) 

are non-zero and we have to take them into account inside the boundary conditions. However, 

the last demands the choice of specific parts of the lateral boundary on which the displace-

ments (essential boundary conditions) or the quantities inside the intercalations of the Eqs. (3) 

(natural boundary conditions) will be prescribed. As we will show below, in case of given 
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taken equal to zero and we have to treat them properly.  
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In the last, the relations of 
,nn nMI , 

,s s nMI , 
,ns nMI , 

,nn sMI , 
,ns sMI , 

,s s sMI , 
0,nwI  and 

0,swI  revised with the previous results are posed on the Eq. (1), referred above and we ex-

tract the following, 
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As seems from the last version of the variational equation, the total number of the boundary 

conditions is four natural boundary conditions with primary variables 0nu , 0su , 0w , 

0 /w n , which correspond to four essential boundary conditions respectively. Thus, to de-

rive the essential and natural boundary conditions we follow the process explained below. 
 

Now we invoke the fundamental arguments of the Calculus of Variations in order to extract 

the boundary conditions from the last version of the Variational Equation (4) including only 

the boundary terms. The following process is presented extensively on the Lecture Notes of 

Functional Analysis, G.A. Athanassoulis (2016) “Necessary Conditions of Extremum of Func-

tional” and “A further study of the Variational Problem as for integral type functional”, as 

well as on the book of Gelfand I.M., Fomin S.V. (1963), “Calculus of Variations”. 

 

First, we assume that 0nu  is arbitrary on the curve  , for arbitrary interval 1 2[ , ]t t  and 

keep the restrictions 0 00 / 0s w n wu  . Thus, the last equation is converted 

to, 
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and using the arbitrariness of the variation 0nu  on the curvilinear domain 1 2[ , ]t t , we 

find the first natural boundary condition of the problem of CPT, 
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Now, due to the above Eq. (4a) or boundary condition, the Variational Equation (4) is con-

verted to the Eq. (4`), 
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Removing the restriction 0 0su , assuming the arbitrariness of the function 0su  and of 

the interval 1 2[ , ]t t  and taking into account the restrictions 00 0/w n w  , we de-

rive the following, 

 

2

11 2

1

2

02 2
0 0 (2 0; )

t

x T sx x

t

n s s s sx

I
n n n n a ds dN N u s t t




 , 

         0 ( ; )su s t  

 

and using the arbitrariness of the variation 0su  on the 1 2[ , ]t t , we get the second natural 

boundary condition of the problem of CPT, 
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Taking into account the boundary equations (4a) and (4b), the Eq. (4`) remains just with the 

terms, 
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Removing the restriction 0 0w , assuming the arbitrariness of the function 0w  and of 

the interval 1 2[ , ]t t  and taking into account the restriction 0 / 0w n , we have 
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and using the arbitrariness of the variation 0w  on the 1 2[ , ]t t , we find the third natural 

boundary condition of the problem of CPT, 
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Finally, taking into account the Eqs. (4a), (4b) and (4c), the Eq. (4``) remains just with the 

following terms, 
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Removing the restriction 0 / 0w n , assuming the arbitrariness of the variation 

0 /w n  and of the interval 1 2[ , ]t t  we derive from the Eq. (4```), 
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and using the arbitrariness of the variation 0 /w n  on the 1 2[ , ]t t , we find the fourth 

natural boundary condition of the problem of CPT, 
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To compare easier the form of each boundary condition and to elaborate their results, we 

gather them below 
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Although regarding the second case, where  
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we are not mean to give extensionally the boundary conditions in the context of this disserta-

tion, we let a short comment in order to show that after specification of the boundary condi-

tions upon the lateral boundary of the plate these additional terms could give interesting result 

in various applications. 
 

Thus, due to the terms (5a)-(5d) we are going to derive a different form of the the Eq. (1), 

which includes the terms with given values of thickness-integrated quantities and 0w  upon 

the curve   of the edge of the plate.  
 

Substituting the Eqs. (1a)- (1h) into the Variational Equation (1) [as done on the previous 

case], we get the same results for the terms inside the brackets which multiply each variation 

except for the boundary term of the variation 0w . 

The last occurs because there are additional prescribed terms upon the curve  , which are 

described by the expressions (5a)-(5d). 

Thus, the last form of the variational equation (4) is invariable as for the previous integrals, 

but differs on the last integral as seems below 
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At this point, each reader could decide about the kind of boundary conditions on the curve  . 

This means that has to choose between the free, simply supported or clamped boundary con-

ditions as well as the two points upon the curve  , which define the specific natural or essen-

tial boundary conditions. However, as we referred above these cases will not occupy us fur-

ther here. 

 

In conclusion, we manage to remedy the initially unbalanced system of equations and un-

known quantities. This balance ensures that the problem of CPT resulting from the conserva-

tion principles, the constitutive equations and the physically meaningful boundary conditions, 

is well – posed in the sense that the solution exists and it is unique. 
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6.  Equations of motion of the CPT in terms of displacements 
 

As we have aforementioned on the conclusion of the section 4.3, it is time to use the relations 

of the stress resultants [Eqs. (4) of the section 4.3] and to substitute into them the relations of 

stresses in terms of the displacements [Eqs. (8) - (10) of the section 4.2.1 or Eqs. (5) and (5`) 

of the section 4.2.2], meaning to express the stress resultants similarly in terms of the dis-

placement field. Thus, we get the following relationships as seems on the sections 6.1 and 6.2 

in case of an orthotropic in-plane anisotropic and orthotropic in-plane isotropic plate respec-

tively. 

 

6.1.  Equations of motion of the CPT in terms of displacements for an orthotropic,  

         in-plane anisotropic material 
 

The thickness-integrated forces of the Eq. (4) of the section 4.3 are converted to the below, 

due to the Eqs. (8) - (10) of the section 4.2.1, 
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And writing the above thickness-integrated forces separately, we get 
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The thickness-integrated moments of the Eq. (4) of the section 4.3 are converted to the below, 

due to the Eqs. (8) - (10) of the section 4.2.1, 
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And writing the above thickness-integrated moments separately, we have 
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From the Eq. (4) of the section 4.5, 
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Note that the above Eq. (7), can be found on the book of J.N. Reddy (2007), “Theory and 

Analysis of Elastic Plates and Shells”, on the page 118 of the section 3.8. Thus, the corre-

sponding equation of motion of the book is exactly the following, 
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Subsequently, by using the expressions of the extensional stiffness coefficients i jA  of the 

page 112 (Eqs 3.6.13). Also, comparing our result, namely Eq. (7), to our source, we notice 

that there are some additional second derivatives of 0w  because Reddy regards another strain 

field which takes into account the geometric nonlinearities i.e. small strains but moderate ro-

tations of transverse normal of the mid-surface (10 - 15 )o o  [J.N. Reddy (2007) “Theory and 

Analysis of Elastic Plates and Shells”, page 98 – 99/ Chapter 3]. Finally, the relation (3.8.3) 

is converted to, 
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The last expression coincidence exactly with our result, namely the Eq. (7). 
 

From the Eq. (5) of the section 4.5, 
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Similarly to the previous note, the Eq. (8) is coincident to the Eq. (3.8.4) of the same book. 

Using the same justification, we convert the Eq. (3.8.4) to the following form, which is exact-

ly our result. 
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From the Eq. (6) of the section 4.5, 
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On the Eq. (9), we use the expressions of the bending stiffness coefficients of the page 112 of 

the aforementioned book of J.N. Reddy, which are presented below by the Eqs. (10) for con-

venience, in order to compare easier our resulting equation with the Eq. (3.8.5) of the page 

118 of the same book. 
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Similarly with the previous equations of motion, we are not take into account thermal effects 

and the elastic foundation, because on frames of CPT, we have made no assumptions relative 

to thermal loads. Additionally the term including residual quantities due a different strain 

field, defined on the page 98-99, is also eliminated. 
 

Note that the Eq. (3.8.5), is exactly the same, as this which is found on the Chapter 9.1 on the 

page 331 of the book of J.N. Reddy (2007), “Theory and Analysis of Elastic Plates and 

Shells”. This relation is presented on the [Eqs. (9.1.1) and (9.1.2)]. 
 

Finally the Eq. (3.8.5) is converted to the following, 
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which is exactly our result , namely the Eq. (9). 
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6.2.  Equations of motion of the CPT in terms of displacements for an orthotropic,  

         in-plane isotropic material 
 

The thickness-integrated forces of the Eq. (4) of the section 4.3 are converted to the below, 

due to the Eqs. (5) and (5`) of the section 4.2.2, 
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And expressing the above thickness-integrated forces separately, we have 
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The thickness-integrated moments of the Eq. (4) of the section 4.3 are converted to the below, 

due to the Eqs. (5) and (5`) of the section 4.2.2, 
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And writing the above thickness-integrated moments separately, we get 
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Now to derive the equations of motion, in terms of the displacement field for an isotropic ma-

terial, we recall the Eqs. (4) – (6) of the section 4.5 and substitute the Eqs. (1) – (6). By this 

way, we get the following: 
 

From (4) of the section 4.5., 
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Let it be highlighted that the Eq. (7) is practically identical with the respective result (3.8.3) of 

the book J.N. Reddy (2007) on the page 118. Comparing our result, namely Eq. (7), to our 

source, we notice that there are some additional second derivatives of 0w  because Reddy re-

gards another strain field which takes into account the geometric nonlinearities i.e. small 

strains but moderate rotations of transverse normal of the mid-surface (10 - 15 )o o
 [J.N. Red-

dy (2007) “Theory and Analysis of Elastic Plates and Shells”, page 98 – 99/ Chapter 3]. The 

relation (3.8.3) is shown below, 
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In addition, the general “behavior” of the plate indicates that it must be regarded as ortho-

tropic. Consequently, we take into account the extensional stiffness coefficients of the page 

111-112 of the reference book, which are given below, 
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However, the in-plane “behavior” (or alternatively the stress-strain relations between the in-

plane displacements  0u , 0v ) of the plate could be described as isotropic, as justified in the 

section 4.2.2. Thus, the previous coefficients could be written as, 
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Also, in the frames of the particular problem of the CPT, we assume that there are no thermal 

effect, so it is obvious that, 
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Summing up the above notifications, the relation (3.8.3) is converted to the following, 
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The last equation is identical to the Eq. (7). 
 

From (5) of the section 4.5, 
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On a similar way we are going to show that the relationship (8) is identical to the Eq. (3.8.4) 

of the book of J.N. Reddy (2007) “Theory and Analysis of Elastic Plates and Shells”, located 

on the Chapter 3 (page 118). However, we convert the equation (3.8.4) to the appropriate 

form for our problem, as we done above. Thus, 
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The above equation is identical to the Eq. (8). 

 

From (6) of the section 4.5, 
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The last equation of motion of the vibrating plate [Eq. (9)], there is on the resources; 

https://en.wikipedia.org/wiki/Kirchhoff%E2%80%93Love_plate_theory as well as on the 

book of Reddy J.N. (2007) “Theory and Analysis of Elastic Plates and Shells”/ Chapter 3/ 

page 118. 
 

However, there are some terms on the Eq. (3.8.5) of the page 118 of the book “Theory and 

Analysis of Elastic Plates and Shells”, which differ from our result, namely the Eq. (9). This 

is justified as follows.  
 

Comparing Eq. (9), to our source, we notice that there are some additional terms due to the 

use of another strain field which takes into account the geometric nonlinearities i.e. small 

strains but moderate rotations of transverse normal of the mid-surface (10 - 15 )o o
 [J.N. Red-

dy (2007) “Theory and Analysis of Elastic Plates and Shells”, page 98 – 99/ Chapter 3]. 

These terms are gathered together as seems on the Eq. (3.4.14) of the page 104 of the book,  
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To make the comparison easier, we present the Eq. (3.8.5) below, 
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In addition as we referred above, the general “behavior” of the plate indicates that it must be 

regarded as orthotropic. Consequently, we take into account the bending stiffness coefficients 

of the page 111-112 of the reference book, which are given below, 
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However, the in-plane “behavior” (or alternatively the stress-strain relations between the in-

plane displacements 0u , 0v ) of the plate could be described as isotropic, as justified on the 

section 4.2.2. Thus, the previous coefficients could be written as, 
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Also, in the frames of the particular problem of the CPT, we assume that there are not at all 

thermal effect, so it is obvious that, 
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Summing up the above notifications, the relation (3.8.5) is converted to the following, 
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The last equation is exactly our result, namely Eq. (9). 
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7.  Boundary Conditions of the CPT in terms of displacements 
 

Following the same process, as exactly on the section 6, where we derive the equations of mo-

tion in terms of displacements, but at this moment to derive the boundary conditions in terms 

of displacements for both cases of the material of the plate. 
 

As we have aforementioned on the conclusion of the section 4.3, we use the relations of the 

stress resultants [Eqs. (4) of the section 4.3] but now transformed to the curvilinear coordinate 

system on which the boundary conditions are derived, as shown below. 
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Further, substitute into them the relations of stresses in terms of the displacements [Eqs. (8) - 

(10) of the section 4.2.1 or Eqs. (5) and (5`) of the section 4.2.2] similarly in the curvilinear 

form, meaning to express the stress resultants in terms of the displacement field, which is de-

fined for the coordinate system ( , , n s z ). Note that we deserve to proceed to the analogous 

stress-strain relations from the Cartesian to the curvilinear coordinate system, because we 

study an orthotropic material regarding the vertical dimension.  
 

Thus, we get the following form of the boundary conditions of the problem of CPT, as seems 

on the sections 7.1 and 7.2 in case of an orthotropic in-plane anisotropic and orthotropic in-

plane isotropic plate respectively.  
 

For the sake of convenience, we present again the full set of the boundary conditions of the 

CPT in terms of thickness-integrated forces and moments of the section 5.3. 
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7.1.  The Boundary Conditions of the CPT in terms of displacements for an  

        orthotropic, in-plane anisotropic material 
 

As for the natural boundary conditions, we follow the same process to get the equations of 

motions in terms of displacements, but now using the Eqs. (4a), (4b), (4c), (4d) of the section 

5.3. 
 

First, taking into account the Eqs. (8) - (10) of the section 4.2.1, the substitute into them the 

analogous components of the displacement field ( 0nu , 0 su , 0w ) in order to derive the stress 

field ( , , nn s s n s   ) applied on the curvilinear coordinate system.  
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where, ( , n sE E ) the modulus of elasticity on the directions n , s  respectively and nsG  the 

shear modulus of  elasticity. In addition, the Poisson’s ratio n sv  or s nv  is an identity of the 

material referred to its planar directions, namely n  and -axiss , defined as 
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Substituting the Eqs. (2a) - (2c) into the Eqs. (1), we get 
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Note that on the above calculations the z -dependence of all the integrands is explicit as ex-

actly the 3x -dependence on the Cartesian coordinate system, because as referred above the 

3, x z axes are parallel during the transformation. Thus, the vertical integration can be per-

formed explicitly and the “mass-moments” quantities are defined as those of the section 4.1.  

Consequently,  
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And finally we are ready to set the results of the Eqs. (3a) and (3c) into the first natural 

boundary condition (1a), 
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As for the second natural boundary condition, taking into account the results of the Eqs. (3b) 

and (3c), we get 
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Further, substituting the appropriate from the above relations 
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(and after performing the derivations we get the final form of the boundary condition) 
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Last but not least, the substitution of the relations (3d), (3e) and (3f) into the Eqs. (1d) results 

to the following form of the fourth boundary condition, 
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7.2.  The boundary conditions of the problem of CPT in terms of displacements for  

         an orthotropic, in-plane isotropic material 

 

In the context of the section, we follow exactly the same process as shown on the previous 

section 7.1 the only difference is the form of the displacement field.  
 

Thus, taking into account the Eqs. (5) and (5`) of the section 4.2.2, the components of the dis-

placement field ( , , nn s s n s   ) for an in-plane isotropic plate, are 
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Subsequently, we set the Eqs. (18)- (20) to the Eqs. (13) of the section 7.3, 
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Note that the above relations of the stress-resultants (2a)-(2f), are also found on a similar form 

on the paper of BO Haggblad and Klaus-Jurgen Bathe (1990), “Specifications of Boundary 

Conditions for Reissner/ Mindlin Plate Bending Finite Elements”. 

 

To the end of the above, we substitute the Eqs. (2a)-(2f) into the Eqs. (4a), (4b), (4c) and (4d) 

of the section 5.3 or Eqs. (1a), (1b), (1c), (1d) of the section 7, namely the boundary condi-

tions and we derive the following results. 

 

The first boundary condition is converted to, 
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The second natural boundary condition, due to the Eqs. (2b) and (2c) 
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As for the third boundary condition, regarding the appropriate terms from the Eqs. (3c), (2e), 

(2f), 
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Finally, taking into account the Eqs. (2c), (2d), (2e) the Eq. (4d) is converted to 
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In conclusion, we have managed to remedy the aforementioned inconsistency of the system of 

equations and unknown quantities, gathering finally the four natural boundary conditions 

(4a)-(4d) of the section 7.1 or (3a)-(3d) of the section 7.2 to solve the system of fourth-order 

partial differential equations (7)-(9) of the section 6.1 or (7)-(9) of the section 6.2 respective-

ly. 
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8. Conclusions 
 

8.1. Functional Spaces 
 

In conclusion, it’s meaningful to refer and verify the functional space in which the action 

functional of the Hamilton’s Principle is defined. 
 

We note that the equations of motion (1) - (3) of the section 6, are expressed in terms of the 

displacement 0 0 0( , , )u v w  and they contain second- order derivatives of 0 0, , u v t  and fourth- 

order spatial derivatives of 0w . Consequently, the CPT is said to be eight – order plate theory, 

because the total spatial differential order of the equations of motion, is eight [Reddy J.N. 

2007, “Theory and Analysis of Elastic Plates and Shells”, Chap.3 & Mitchell Griffiths 1980, 

“The Finite Difference Method in Partial Differential Equations” J. Wiley & Sons, Chap.2]. 

Thus, the functional space in which the displacement field is defined has to include up to 

fourth – order spatial and second – order time derivatives.  
 

As for the boundary of the domain of virtual displacements, the equations (4`) – (8`) of the 

sections 6.1 and 6.2 highlight the need of a boundary equipped with at least third – order spa-

tial derivatives (because of the existence of third - order derivative of 0w ).  

Consequently, inside the volume 
3B R , must be defined at least the fourth spatial deriva-

tives of u  (
4- continuityC ) and its second-time derivatives (

2- continuityC ). This means the 

existence and the continuity of the fourth spatial and second time derivatives of u . 
 

Upon the boundary B , which encloses the space B , we demand the existence and continui-

ty up to the third spatial derivatives of u  (
3- continuityC ). 

Thus, the action functional [ ( , )]S S u  is defined on the space of admissible functions  
2

1 2[ , ]C t t Y , where Y  is the functional space 4 3( ) ( )Y C B C Bu , 

while the admissible variations u  belong to the space 2

1 2[ , ]C t t A , where A  is a func-

tional space 4 3( ) ( ) : ( ) 0 for A C B C B B u u x x  . 
 

In addition to the above, note that B B B , is the reference domain B , which consists 

of the open set B  [interior of B  or ( )cl B ] and its boundary B . 
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1.  Introduction 
 

1.1.  Definition of the meaning of « Plate » in the context of the specific quotation. 
 

Consider now again a plate of planar dimensions a  and b , length and breadth respectively 

and thickness h  (or height or depth). The previous presented model of CPT, give satisfactory 

results in case of thin plate. Consequently, it must be the need of a better and more accurate 

plate theory in order to model the kinematics of a thick plate, namely moderately thick plate  

( 0.05 / 0.1h L ) and very thick plates ( / 0.1h L ) [Reddy J.N. (2007), “Theory and 

Analysis of Elastic Plates and Shells, Chap. 10.1.1], because the CPT underpredicts the 

deflections of a thick plate. To overcome this problem, we formulate higher-order plate 

theories from which the most popular are the first-order shear deformation plate theory 

(FSDT), also called as Reissner/Mindlin Plate Theory and the third-order shear deformation 

plate theory (TSDT), also known as Levinson’s Plate Theory. 
 

On the context of this quotation, we choose the TSDT to describe the kinematics of the thick 

plate, because the expansion of the displacements up to the cubic term in the thickness 

coordinate (as shown on the next sections) is to gain quadratic variation of the transverse 

shear strains and stresses through the plate thickness. By this way is approximated the exact 

distribution of the transverse shear stresses to the thickness of the plate and consequently is 

avoided the need for shear correction coefficients used in the FSDT [Reddy J.N. (2007), 

“Theory and Analysis of Elastic Plates and Shells”, Chapter 10.1.3]. The exact and the 

assumed distribution of stresses is illustrated on the following figure.  
 

 
Figure 1: Shear correction factor and stresses along the edge of the plate 

 

Complementary, note that the Reissner/ Mindlin plate theory is used sometimes for thin plates 

situations. However, this model suffer from the so called “shear –locking” defect, which 

influence the numerical solution of the problem. This defect is corrected by specific methods, 

which are not going to occupy us on the context of this text. [Onate  E. (2013), “Structural 

Analysis with the Finite Element Method. Linear Statics: Beams, Plates and Shells”, Chapter 

6.1, 6.4]. 
 

In order to express and develop the relations of the displacement field of the plate, we assume 

that the reference system of axes (here: the Cartesian coordinate system 1 2 3O x x x  as seems 

on the Figure 2 below), namely the origin of axes, is located on the middle plane of the plate. 

This plane will be called as mid-surface on the next sections and it is regarded as the reference 

plane for deriving the kinematic equations of the plate. Also we assume that the mid-surface 

is equidistant from the upper and lower surface of the plate, which means that each point upon 

the plate is described by zero vertical coordinate 3 0x . 
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Figure 2: Cartesian coordinates and general notation as for the plate 

 

As for the material of the plate under consideration, we are going to model two kind of 

structural materials separately on the following appropriate sections. The first one is the 

orthotropic but in-plane anisotropic plate and the second one is the orthotropic but in-plane 

isotropic plate. Note that the generally isotropic plate, namely with the same material 

properties on each direction, has no practical use on the structures and structural elements, 

because the stiffness and the material properties of an element (here: the plate) are purposely 

created different form one to another direction and proportional to the loading condition on 

which the plate is submitted.  

 

1.2.  Important Assumptions of the TSDT 
 

On this quotation the assumptions of the straightness and normality of the transverse normal 

after deformation are neglected [Reddy (2007), “Theory and Analysis of Elastic Plates and 

Shells”, Chap. 10.3]. 

 

1.2.1. The straightness assumption 
 

In contrast to the CPT, the TSDT relaxes the kinematic hypothesis of CPT by removing the 

straightness assumption, i.e. straight normal to the middle plane before deformation may 

become cubic curves after deformation.  

 

1.2.2. The inextensibility assumption 
 

Although a fundamental assumption, which is conserved unchanged from the CPT, is the 

inextensibility of the cross section of the plate. Consequently the transverse normals do not 

experience elongation. In view of the small thickness of the plate, the vertical movement of 

any point of the plate is identical to that of the point of middle surface [Reddy 2007, “Theory 

and Analysis of Elastic Plates and Shells, Chap. 3.2]. 

 

1.2.3. The normality assumption 
 

In addition, the TSDT relaxes the kinematic hypothesis by removing the normality restriction 

(as well as the FSDT or Reissner- Mindlin Plate Theory do generally) and allowing for 

arbitrary but constant rotation of transverse normals in comparison with the permanently 

transverse normals of the CPT.  
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The consequences on the mathematical modelling of the problem of TSDT of the three above 

assumptions (“no normality”, “no straightness” and “inextensibility”) are analyzed on the 

below paragraph 1.3. 
 

1.3.  Consequences of Levinson’s Assumptions 
 

Initially, these consequences are illustrated more schematically on the following figure. 

Shown also the main differences between the various kinds of plate theories and the way 

passing from the simplest (CPT) to a more complicated mathematical modeling of plates 

(TSDT). Thus, Figure 3 illustrates the following,  

 
Figure 3: Deformation of the section of a plate according to the CPT, first-order deformation theory 

and third-order plate theories 
 

1.3.1. The straightness of the cross-section 
 

The lack of straightness assumption of the transverse normals after deformation, means that 

we are able to expand the displacements ( , , u v w) as cubic functions along the thickness 

coordinate. Thus, as will see on the sequel, we are entitled to keep up to third-order terms on 

the Taylor expansion. 
 

1.3.2. The inextensibility of the cross-section 
 

As for the inextensibility of the cross section, we have to refer that the structures are usually 

composed of stiff materials. Consequently, the transverse displacement is independent of the 

vertical coordinate. This assumption is conceptually the inextensibility of the cross section.  

Thus,  
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1 2 0 1 2

3

0 ( ; ) ( , ; ) = ( , ; )
w

w t w x x t w x x t
x

x       (1) 

 

This assumption remains valid even for a thick plate, because the slenderness ratio of the plate 

/h L  is relatively small by the definition of the plate structure. Besides, this qualification is 

the essential difference of a plate from another structural element, such as solid cubes and 

cylinders.  

 

1.3.3. The normality of the cross-section 
 

The absence of the normality assumption of the transverse normals after deformation, implies 

that the rate of change of planar dimensions ( 0u , 0v ) of the plate are different from the rate 

of change of its vertical dimension ( 0w ), as seem on the figure below. The respective figure is 

valid for the 2 3x x -section. 

 

 
Figure 4: The lack of normality assumption on the 1 3x x -section of the plate. 

 

The obvious remarks of the above are that, 
0 3 0 1/ /u x w x  and 

0 3 0 2/ /v x w x . 

In addition, on the context of the TSDT (or FSDT)  0

3

x

u

x
   and  0

3

y

v

x
 , where x  

and y  are the real slopes of the transverse normals of the plate. In addition to the previous 

and as a direct consequence 
0 1/ xw x   and 0 2/ yw x  . These quantities ( x , y ) 

are going to appear independent of the displacement field ( 0u , 0v , 0w ) on the equations of 

motion and the boundary conditions of the plate.  
 

1.4.  Voigt Notation 
 

On the context of this quotation, it is followed the Voigt–Kelvin notation or contracted 

notation, in order to express more smartly the components of stresses and strains. The two- 

subscript components i jC  of the matrix of stiffness coefficients, are obtained from i j k lC  by 

the following change of subscripts:  

Especially for the diagonal elements (trace) of the matrix of elastic coefficients, we derive, 
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1 1(11 or ) 1x x  

2 2(22 or ) 2x x  

3 3(33 or ) 3x x   
 

Also regarding that the minor symmetries of the stiffness matrix are valid, we have the 

following notation for the off-diagonal elements, 
 

2 3 3 2(23 or or 32 or ) 4x x x x   

1 3 3 1(13 or  or  31 or ) 5x x x x   

1 2 2 1(12 or  or  21 or ) 6x x x x   
 

It is easily seen that the symmetries of stress and strain tensors lead to the following 

symmetries of stiffness (and compliance) coefficients: 
 

i j k l k l i j i j l k j i k lC C C C   

i j k l k l i j i j l k j i k lS S S S   
 

The enormous importance of the minor symmetries of stiffness / compliance coefficients is 

that they reduce the number of independent coefficients from 
43 81  to 

26 36 . As a 

consequence, the generalized Hooke’s Law is simplified further [G.A. Athanassoulis (2016), 

Lecture Notes of Functional Analysis, “Elastic Potential Energy- Energy function”]. 

By this notation the generalized Hooke’s Law relates the six components of stresses to the six 

components of strains, as seem below, 
 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36

4 41 42 43 44 45 46

5 51 52 53 54 55 56

6 61 62 63 64 65 66

C C C C C C e

C C C C C C e

C C C C C C e

C C C C C C

C C C C C C

C C C C C C













3

4

5

6

e

e

e

 

 

[J.N. Reddy 2007, “Theory and Analysis of Elastic Plates and Shells”, Chap. 1.3.6, pp.28]. 
 

Thus,  
 

1 11 11 x x     

2 22 22 x x     

3 33 33 x x     

2 3 3 24 23 32 x x x x       

1 3 3 15 13 31 x x x x       

2 1 1 26 12 21 x x x x       

2 3 3 24 4 23 322 2 2 2 2x x x xe e e e e   
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3 1 1 35 5 31 132 2 2 2 2x x x xe e e e e   

1 2 2 16 6 12 212 2 2 2 2x x x xe e e e e   
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2. Geometric Configuration and Loading Conditions 
 

The shape of the plate considered herein is the one of homogeneous cylinder having a basis of 

arbitrary (smooth) shape and height (thickness) h , with slenderness ratio 0.05 / 0.1h L  

for moderately thick and / 0.1h L  for very thick plates. The domain occupied by the plate 

(the cylinder) is denoted by B . The total boundary of the plate is denoted by B , and con-

sists of the lateral boundary (surface) ( )latB , and the two flat faces 
( ) ( ) ( )f u f l fB B B . One of these two flat faces is conventionally called the upper 

face, ( )u fB , and the other is called the lower face, ( )l fB . That is 
 

( ) ( ) ( )lat u f l fB B B B . 
 

Another (different) subdivision of the total boundary B  is also useful for our analysis, ac-

cording to the boundary conditions applied to the various parts of it. Thus, we denote by TB  

the parts of the total boundary surface tractions (stresses) are prescribed, and uB  the parts of 

the total boundary on which the displacements are given. Of course, we can define 
 

T uB B B . 

 

 
Figure 1: Geometry and loading conditions of the plate. 

 

In addition to the above conventions, note the total boundary of the prescribed surface trac-

tions ( TB ) includes the boundaries ( ) ( ) ( )f u f l fB B B  and part of the lateral bound-

ary denoted by 
( )lat
TB . 

Similarly, the total boundary of given displacements ( uB ) includes the boundaries  

( ) ( ) ( )f u f l fB B B  and part of the lateral boundary 
( )lat
uB . 

 

Now as for the loads set to the formulation of the problem of TSDT, we consider the follow-

ing. First we assume that on the top or/ and bottom surface of the plate there is a normal load 

distribution 1 2( , )q x x . Obviously, this vertical load is horizontally distributed. Also there is 

no matter if the algebraic sum of the vertical load q  is on the positive or negative direction of 
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the 3x -axis. Also due to the large thickness of the plate, we have to take into account the con-

tribution of the load q  on the boundary conditions except from its influence on the equations 

of motion of the plate (as seem on the model of CPT). Consequently, the load q  will be treat-

ed in curvilinear integrals (as done with the residual external loads-tractions), from which we 

derive the boundary conditions, as well as in volume integrals of the variational equations, 

from which we derive the equations of motion of the model of TSDT. These kinds of integrals 

and its physical meaning will be presented on next sections. Thus, the assumption of the thick 

plate results to the fact that the load q  is applied on the mid-surface   of the plate [or the 

plane ( 1 2, , 0x x )]. Let   be a common projection of the upper and lower faces of the plate 

on its mid-surface. The last is surrounded by the curve  , which is the projection of the (ver-

tical) lateral boundary of the mid-surface. 

Respectively to the above notation, let 1 2d dx dx  be an infinitesimal element of the do-

main   and d  an infinitesimal arc of the curve  . 

 

Second, at the edge of the plate, we have surface distributed loads (surface tractions), whose 

components are going to be analyzed below. 
 

These surface-distributed loads on the context of this study are chosen to depend on the plate 

thickness h  in such a way that the limit problem ( 0h ), namely the CPT, will produce so-

lutions and boundary conditions that are neither infinite nor zero. This is manage by letting 

the Sq  above and the surface tractions below, be proportional to 3h  [BO HAGGBLAD , 

KLAUS- JURGEN  BATHE (1990), “Specifications of Boundary Conditions for Reissner/ 

Mindlin Plate Bending Finite Elements”, Journal]. 
 

Generally we have,   0( ; ) ( )tT x T x ,  where TBx  and 

 

1 2 30 1 1 2 3 2 1 2 3 3 1 2 3
ˆ ˆ ˆ( ) ( , , ) ( , , ) ( , , )x x xT x x x T x x x T x x xT x e e e   

 

Note that we consider here the surface tractions independent of the time variable. 
 

Now taking apart from each other the components of the surface tractions along the three axes 

of the Cartesian coordinate system, we get 
 

3
1 1 2 3 0 1 2 1 1 2 3 3 1 2 3
ˆ ( , , ) ( , ) ( , ) ( , )T T TT x x x a x x a x x x a x x x   

3
0 1 3 3 3( ) ( ) ( )T T Ta a x a x          (1) 

 
3

2 1 2 3 0 1 2 1 1 2 3 3 1 2 3
ˆ ( , , ) ( , ) ( , ) ( , )T T TT x x x b x x b x x x b x x x   

3
0 1 3 3 3( ) ( ) ( )T T Tb b x b x          (2) 

 
3

3 1 2 3 0 1 2 1 1 2 3 3 1 2 3
ˆ ( , , ) ( , ) ( , ) ( , )T T TT x x x c x x c x x x c x x x  

3
0 1 3 3 3( ) ( ) ( )T T Tc c x c x          (3) 

 

The above configuration of the surface tractions, including the arbitrary but appropriate func-

tions 0Ta , 1Ta , 3Ta , 0Tb , 1Tb , 3Tb , 0Tc , 1Tc  and 3Tc  are compatible with the initial as-

sumptions of the kinematic model of the TSDT. Remark that one of the essential differences 

of this model of TSDT in comparison with the model of the CPT, is the existence of shear de-
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formations 13 132e  and 23 232e  except for the in-plane shear deformation 

12 122e  (as shown on the following section 3). For this reason the vertical surface trac-

tion ( 3T̂ ) is chosen to be explicitly dependent to 3x  variable. 
 

However, due to the in extensibility assumption (section 1.2.2) these tractions along the 3x -

axis ( 3T̂ ) as well as the load Sq  must be equal to zero upon the top and bottom surfaces of the 

plate at  3 / 2x h . 

 

The in-plane tractions ( 1T̂  and 2T̂ ) are dependent up to 
3
3x  from the thickness of the plate, 

fact that is consistent with the lack of normality and straightness assumption (section 1.2.1 

and 1.2.3) in order to follow the deformed cross-section of the plate. 
 

Highlight also that the notation of the notation of the zero sub index is on purpose because for 

the first part of the right-hand side of the Eqs. (1), (2) and (3), because we want to show the 

dependence of the 0Ta , 0Tb , 0Tc  functions from the curve   ( -arc  around the curve) of 

the lateral boundary, on which the 3x -variable is zero. In addition, the functions 1Ta , 1Tb , 

1Tc  and 3Ta , 3Tb , 3Tc  notated by unit sub index declare the linear and cubic (respectively) 

dependence of the these surface tractions from the vertical spatial variable. 
 

As for the specific parts of the boundary, where displacements are prescribed, we assume the 

following boundary conditions. These kinematic boundary conditions are alternatively called 

essential conditions of the problem, because they are considered as a priori constraint affect-

ing the space of the admissible functions and variations of the problem of TSDT. 
 

Generally the form of the given displacements is, 
 

0( ; ) ( )t givenu x u x ,   where uBx  and  

 

1 2 30 1 1 2 3 2 1 2 3 3 1 2 3( ) ( , , ) ( , , ) ( , , )x x xu x x x u x x x u x x xu x e e e  

 

Also note that we consider here the above displacements independent of the time variable. 

Now separating the components of the displacement field on the boundary along the three ax-

es of the Cartesian coordinate system, we have 
 

3
1 1 2 3 0 1 2 1 1 2 3 3 1 2 3( , , ) ( , ) ( , ) ( , )u u uu x x x a x x a x x x a x x x  

3
0 1 3 3 3( ) ( ) ( )u u ua a x a x          (4) 

 
3

2 1 2 3 0 1 2 1 1 2 3 3 1 2 3( , , ) ( , ) ( , ) ( , )u u uu x x x b x x b x x x b x x x  

3
0 1 3 3 3( ) ( ) ( )u u ub b x b x          (5) 

 
3

3 1 2 3 0 1 2 1 1 2 3 3 1 2 3( , , ) ( , ) ( , ) ( , )u u uu x x x c x x c x x x c x x x  

3
0 1 3 3 3( ) ( ) ( )u u uc c x c x          (6) 
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The above notation follows the same rationality as this of the surface tractions, expressed 

above. The only difference is the form of the functions 0ua , 1ua , 3ua , 0ub , 1ub , 3ub . How-

ever they must be compatible with the “nature” of the problem, as exactly the above functions  

0Ta , 0Tb , 0Tc , 1Ta , 1Tb , 1Tc  and 3Ta , 3Tb , 3Tc  are. 

 

Further the rightness and compatibility of the above form of the essential conditions, is veri-

fied by the initial assumptions of the modelling of the problem of TSDT, and especially by 

the normality and the straightness assumptions of the sections 1.2.3 and 1.2.1 respectively.  
 

In conclusion all the aforementioned boundary and loading conditions, lead to the fact that 

parallel to the mid-surface (in-plane motion) there are three contributions. The first are the 

stretching actions due to loads at the edge of the plate which act parallel to the mid-surface of 

the plate. The second contribution is the bending of the plate due to the 3x  terms and the third 

one is the distortion of the cross-section of the plate due to the 
3
3x  terms. 
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3.  Kinematics of Thick plates  

 

The in-plane displacements (due to the total loads acting on the plate) can be approximated 

by a few terms of the Taylor expansion around each point ( 1x , 2x , 0) of the mid-surface, 

with respect to 3
[ ]/ 2, / 2x h h . We choose to expand Taylor with respect to 3x -axis 

(namely along the smallest dimension, -thickness of the plate), since Taylor’s expansions 

(polynomials) are adequate approximations only in a small region ( / 2, / 2)h h  around the 

central points ( 1x , 2x , 0). Thus, the form of the , u v -components of the displacement is as-

sumed of the form: 
 

2 2
3 1 2 3 1 2

1 2 3 1 2 2
3 3

( 0) ( , ,0; ) ( 0) ( , ,0; )
( , , ; ) ( , ,0; )

1! 2!

x u x x t x u x x t
u x x x t u x x t

x x
  

3 3
3 1 2

3
3

( 0) ( , ,0; )

3!

x u x x t

x
        (1) 

 
2 2

3 1 2 3 1 2

1 2 3 1 2 2
3 3

( 0) ( , ,0; ) ( 0) ( , ,0; )
( , , ; ) ( , ,0; )

1! 2!

x v x x t x v x x t
v x x x t v x x t

x x
  

3 3
3 1 2

3
3

( 0) ( , ,0; )

3!

x v x x t

x
        (2) 

 

Here maintaining until third-order terms and adopting the notation  

1 2 0 1 2( , ,0; ) ( , ; )u x x t u x x t , 1 2 0 1 2( , ,0; ) ( , ; )v x x t v x x t    and  

1 2 0 1 2( , ,0; ) ( , ; )w x x t w x x t ,  

 

we can write more simply the above relations as: 
 

1 2 3 0 10 13 21 2( , , ; ) ( , ; ) ( , ; )u x x x t u x x u tx x xt   

2 3
3 02 1 2 3 03 1 2( , ; ) ( , ; )x u x x t x u x x t      (3) 

1 2 3 0 10 13 21 2( , , ; ) ( , ; ) ( , ; )v x x x t v x x v tx x xt   

2 3
3 02 1 2 3 03 1 2( , ; ) ( , ; )x v x x t x v x x t      (4) 

 

Further we can modify some of the above terms, taking into account the Figures 3 and 4 of 

the section 1.3. Concerning 1u , 1v , we observe that, 

 

1 2 3 0

1 1 2 1 2

3

1 2

3

( , , 0; )
( , ; ) tan ( , ( , ; ); )x x

u x x x t u
u x x t x x t

x
x x

x
t     (5) 

and 

1 2 3 0

1 1 2 1 2

3

1 2

3

( , , 0; )
( , ; ) tan ( , ( , ; ); )y y

v x x x t v
v x x t x x t

x
x x

x
t     (6) 
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because of the smallness of the angles x  and y , which notate the rotations about the y  

and -axisx  respectively [Bo Haggblad , Klaus-Jürgen Bathe (1990), “Specifications of 

Boundary Conditions for Reissner/ Mindlin Plate Bending Finite Elements”, International 

Journal for Numerical Methods in Engineering]. 
 

Now substituting (5) and (6) on (3) and (4) respectively, we derive the following Eqs for the 

displacement field of the model of TSDT, 
 

1 2 3 0 2 11 3 2( , , ; ) ( , ; ( , ;) )xu x x x t u x x tt x x x   

2 3
3 02 1 2 3 03 1 2( , ; ) ( , ; )x u x x t x u x x t      (7) 

1 2 3 0 2 11 3 2( , , ; ) ( , ; ( , ;) )yv x x x t v x x tt x x x   

2 3
3 02 1 2 3 03 1 2( , ; ) ( , ; )x v x x t x v x x t      (8) 

1 2 0 1 2( , ,0; ) ( , ; )w x x t w x x t           (9) 
 

At this point it’s meaningful to make a specific assumption, which is related to the upper and 

bottom surfaces of the plate at 3 2x h . 

For any loading condition acting on the plate purely in the vertical direction, the shear stresses 

13  and 23  on the top and the bottom faces, 3 2x h  of the plate should be zero [G.A. 

Athanassoulis, Lecture Notes-Functional Analysis, “A variational approach to the third- or-

der Bickford - Reddy Beam Theory”]. 
 

13 1 2 23 1 2, , , , 0
2 2

h h
x x x x   

5 1 2 4 1 2, , , , 0
2 2

h h
x x x x       (10) 

 

Thus, this choice of displacement field is expected to satisfy the following stress-free bounda-

ry conditions on the bottom and the top faces of the plate [Reddy J.N. (2007), “Theory and 

Analysis of Elastic Plates and Shells”, Chap. 10.3.2.]. 

Consequently, we have the following kinematic boundary conditions, 
 

13 1 2 23 1 2, , , , 0
2 2

h h
e x x e x x  

5 1 2 4 1 2, , , , 0
2 2

h h
e x x e x x     (11) 

 

Now substituting the equations (7) and (8) on the known relations of strain-displacements, 
 

13 13 1 2

3 1

2 ( , ; )x

u w
e x x t

x x
    

02
3 2 1 2 3 3 1 2

1

2 ( , ; ) 3 ( , ; )
w

x u x x t x u x x t
x

  (12) 
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23 23 1 2

3 2

2 ( , ; )y

v w
e x x t

x x
   

02
3 2 1 2 3 3 1 2

2

2 ( , ; ) 3 ( , ; )
w

x v x x t x v x x t
x

    (13) 

 

and using the Eq. (10), we derive easily the four following equations as seem subsequently: 
 

• Substituting 3 2x h  on the Eq. (11) we have, 

1 2( , ; ) 2x x x t
2

h 2
0

2 1 2 3 1 2

1

( , ; ) 3 ( , ; ) 0
4

wh
u x x t u x x t

x
              (14a) 

 

• Substituting 3 2x h  on the Eq. (11) we have, 

1 2( , ; ) 2x x x t
2

h 2
0

2 1 2 3 1 2

1

( , ; ) 3 ( , ; ) 0
4

wh
u x x t u x x t

x
               (14b) 

 

• Substituting 3 2x h  on the Eq. (12) we have, 

1 2( , ; ) 2y x x t
2

h 2
0

2 1 2 3 1 2

2

( , ; ) 3 ( , ; ) 0
4

wh
v x x t v x x t

x
              (14c) 

 

• Substituting 3 2x h  on the Eq. (12) we have, 

1 2( , ; ) 2y x x t
2

h 2
0

2 1 2 3 1 2

2

( , ; ) 3 ( , ; ) 0
4

wh
v x x t v x x t

x
              (14d) 

 

Subtracting the Eq. (13a) from (13b), we find 
 

22 1 1 222 ( , ; ) 0 ( , ; ) 0hu x x t u x x t                 (15a) 

 

Subtracting the Eq. (13c) from (13d), we find 
 

22 1 1 222 ( , ; ) 0 ( , ; ) 0hv x x t v x x t                 (15b) 

 

Adding the Eqs. (13a) and (13b), we have 

0

3 1 2

0

1 22 2
1

2
1

4 4
( , ; )

3 3

4
( , ; )

3
x x

w
u

w
x x t

xh h
x x t

xh
              (16a) 

 

Adding equations (13c) and (13d), we have 

0

3 1 2

0

1 22 2
2

2
2

4 4
( , ; )

3 3

4
( , ; )

3
y y

w
v

w
x x t

xh h
x x t

xh
              (16b) 

 

To sum up, the final displacement field of the kinematic model of the third-order plate theory 

or TSDT, is expressed as: 

03
1 2 3 0 1 2 3 1 2 3 2

1

4
( , , ; ) ( , ; ) ( , ; )

3
x x

w
u x x x t u x x t x x x t x

xh
              (17a) 
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03
1 2 3 0 1 2 3 1 2 3 2

2

4
( , , ; ) ( , ; ) ( , ; )

3
y y

w
v x x x t v x x t x x x t x

xh
              (17b) 

1 2 3 0 1 2( , , ; ) ( , ; )w x x x t w x x t                  (17c) 

 

At this point, we note that the displacement field ( , , )u v w  is fully described in terms of de-

formation of the mid- surface ( 0u , 0v , 0w ) and the slopes of the transverse normal at 

3 0x  namely ( x , y ). 

 

Thus, after calculations and grouping together separately the terms with the same virtual dis-

placements 0 0 0( , , , , )x yu v w   , we derive the following relations of the strains which are 

associated with the above displacement field (16a) - (16c). 
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x x

                   (18c) 

 

[As it was proved at the Eq. (1) of the assumptions of the TSDT, section 1.3.2] 
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Note that the previous Eqs. (18a) -(18f) are found invariable on the book of Wang C.M., Red-

dy J.N., Lee K.H. (2000) “Shear Deformable Beams and Plates- Relations with Classical So-

lutions”, and specifically on the Chapter 6.4. 
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4.  Equations of Motion - Variational Principles. 
 

Now we are going to produce the differential equations of motion of the plate and its 

boundary conditions, replacing the expressions of the displacement field to the variational 

equation and using the Hamilton’s Principle in Elastodynamics [Athanassoulis G.A. (2016), 

Hamilton’s Principle in Elastodynamics, NTUA Lecture Notes of Functional Analysis]. 

We formulate the Elastodynamic Lagrangian function in a constraint form, which means we 

impose as a priori constraint the condition ˆ( ; ) ( ; )i iu t u t givenx x  , uBx  

(essential condition): 

ˆL ( ; ) ( ) ( )

T

i i

B B

t K U dV T u dSu u e   

Next, we have to define the action functional, corresponding to the above Lagrangian 

function: 

2

1

( , ) L ( ; )

t

t

S t dtu u   

In order to find the differential equations of the TSDT, we have to find the stationary points of 

the action functional (Hamilton’s Principle):  
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i i
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2 2 2
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space of admissible variations

T

t t t

i i

t B t B t B

K dV dt U dV dt T u dS dt  



u e

u

(1) 

 
 

Now we calculate separately the terms of the above variational equation (1) : 
 

4.1.  Variation of the Kinetic-Energy Part 

The calculation of the kinetic-energy part of the action functional is standard. Integrating by 

parts the time integral, we find: 
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where the double dots represent the time derivatives of the variations and using the relations 

(16a)-(16c) of the section 3, 
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1 2 3 0 1 2( , , ; ) ( , ; )w x x x t w x x t         (3c) 
 

And their variations are, 
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Before proceed to the appropriate substitutions, it’s meaningful to calculate firstly the 

products inside the brackets under the volume integral of the Eq. (2), in order to avoid 

confusing calculations. 

Thus after careful handling, 
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Now substituting the above results into the eq. (2), we extract a more extensive form of the 

kinetic-energy part of the action functional. 
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In Eq. (5) there are not only the variations 0u , 0v , 0w , but also the first spatial 

derivatives, here the 1 2,x x derivatives of 0w . To eliminate the later we perform an 

integration by parts with respect to the corresponding spatial variables. These 

integrations by parts will generate boundary terms, which will contribute to the construction 

of the appropriate boundary conditions of the TSDT. For further simplification we neglect for 

the present calculations the time integral. Thus,  
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Consequently, substituting the Eqs. (6) and (7) into (5), we get 
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Eq. (8) can be simplified, by observing that the 3x -dependence of all integrands is explicit, 

and thus the vertical integration can be performed explicitly. To this end, it is convenient to 

define the “mass-moment” quantities: 
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Note  that odd-order “mass-moment” quantities are zero. More precisely, we get 
 

1 3 5 0I I I   

 
2

0 3

2

= ,

h

h

I dx h        

2
3

2
2 3 3

2

= ,
12

h

h

h
I x dx    

129



Part B Section 4. Equations of Motion- Variational Principles 

 

 

2
5

4
4 3 3

2

= ,
80

h

h

h
I x dx      

2
7

6
6 3 3

2

=
448

h

h

h
I x dx  . 

 

To treat the volume-integral terms (appearing in the first, second, fourth, fifth and sixth row 

of the right-most side of Eq. (8)), we decompose them as follows: 
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where   is the common projection of the upper and lower faces of the plate on the mid-

surface. Similarly, to treat the terms in the third row of the right-most side of the Eq. (8), we 

have to decompose the lateral surface integral as follows:  
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where   is the curve defined by the projection of the (vertical) lateral boundary on the mid-

surface.  

Substituting the above decomposed integrals to the Eq. (8), we have the following, 
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4.2.  Stress – Strain Relations and Elastic Potential Energy 
 

According to “Athanassoulis G.A. (2016), Hamilton’s Principle in Elastodynamics, NTUA 

Lecture Notes of Functional Analysis” and “Athanassoulis G.A. (2017), Elastic potential 

energy – Energy function, NTUA Lecture Notes of Functional Analysis”, we have the general 

form of the elastic potential energy of the problem, 
 

1 1
( ) ( )

2 2
i j i j i j k l i j k lU e C e ee e     ,    where the strains k le  k le  are expressed in 

terms of the displacement field as 
,

1

2
i j i j j,ie u u  and ( )i j k l i j k lC C x  are the 

stiffness coefficients (material properties). 

As for the variation of the elastic potential energy, we derive the following: 
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Consequently, 
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According to the last paragraph, we observe that some of the terms of the elastic potential 

energy, are equal to zero. So we derive, 
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From (1) and the proof of (2) we have, 
 

  

   (4) 

 
 

From the Eq. (17a) of the section 3: 
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From the Eq. (17b) of the section 3: 
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From the Eq. (17d) of the section 3: 
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From the Eq. (17e) of the section 3: 
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From the Eq. (17f) of the section 3: 
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4.2.1.  Orthotropic, in-plane anisotropic material. Stress – Strain Relations 
 

A wide range of engineering materials, including certain piezoelectric materials and fiber-

reinforced composites (i.e. laminated plates composed of multiple orthotropic layers), are 

orthotropic. By definition an orthotropic material has at least two orthogonal planes of 

symmetry, where material properties are independent of the direction within each plane. Such 

materials require nine (9) independent variables (i.e. constants) in their constitutive matrices. 

In contrast, a material without any planes of symmetry is fully anisotropic and requires at 

least twenty-one (21) elastic constants (due to the symmetry of the constitutive matrices), 

whereas a material with an infinite number of symmetry planes (i.e. every plane is a plane of 

symmetry), is isotropic and requires only two elastic constants (Lame’s constants) [“An 

Introduction to Continuum Mechanics”, Chapter 6 (2013), J.N. Reddy and “Theory and 

Analysis of Elastic Plates and Shells”, Chapter 3 (2007), J.N. Reddy].  

By convention, the nine elastic constants in orthotropic constitutive equations are comprised 

of three Young’s modulus of elasticity ( 1
E , 2E , 3E ), three Poisson’s ratios ( 2 3

v , 31v , 12v ) or  

( 4v , 5v , 6v ) and three shear moduli ( 23G , 31G  , 12G ) or ( 4G , 5G  , 6G ). 

According to the process followed on the Lecture Notes “Stress-Strain Relations: Hooke’s 

Law-Orthotropic Materials (First-Principle Approach)”, G.A. Athanassoulis (2016), the three-

dimensional compliance matrix takes the form,  
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However, in the case of the TSDT, we retain only the below stress-strain relations. Thus, we 

get  
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Note that, in orthotropic materials there is no interaction between the normal stresses 1 , 2  

and shear strains 4 4 232 2e e , 5 5 132 2e e , 6 6 122 2e e . Further, the 

symmetry of the compliance coefficients leads directly to the following Symmetry for Poisson 

ratios: 

12 21

1 2

v v

E E
  

Now following the same path, as exactly seem on the problem of CPT, we derive the below 

stress-strain relationships for the case of an orthotropic material, 
 

1 21 1

11 11 22

12 21 12 211 1

E v E
e e

v v v v
          (1) 

 

12 2 2
11 2222

12 21 12 211 1

v E E
e e

v v v v
          (2) 

 

23 4 23 23 4 4
G G              (3) 

 

13 5 13 13 5 5
G G               (4) 

 

12 6 12 12 6 21
G G               (5) 
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In the sequel, we express the strains of the above Eqs. (1) - (5) in terms of displacements, 

substituting the Eqs. (17a), (17b), (17d), (17e) and (17f) of the section 3 on the (1) - (5). 

Finally,  
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Note also that the higher-order plate theories are very adequate for studying composite 

laminate materials for which shear deformation effects are important [ Onate  E., “Structural 

Analysis with the FEM. Linear Statics: Volume 2, Beams, Plates and Shells”] 

 

4.2.2. Orthotropic, in-plane isotropic material. Stress – Strain Relations 

 

The simplest way to derive the stress-strain relations of an orthotropic but in-plane isotropic 

material, is to notice and elaborate appropriately the stress – strain relations of the orthotropic 

but in-plane anisotropic plate. As exactly shown on the respective sections of the problem of 

the CPT, we derive by the same way the following, 
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For the specific model of TSDT 1 1 1 1

we get the Eqs. (1) &
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 (2) below
  

 

Thus, the in-plane stress-strain relationships are already apparent. 

 

As for the shear stress-strain relations, we have  4 4G   , 5 5G   , 6 6G  . 
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Thus, the stresses are easily obtained from the generalized Hooke’s Law: 
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In conclusion, note that the same remark have made on the closure of the respective section 

4.2.2 of the CPT (Part A), are valid here and used in the model of TSDT developed on this 

part (Part B). 
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4.3.  Variation of the Elastic Potential Part – U (strain energy) 
 

Due to the proof of the previous section 4.2, the only variations appearing on the variation of 

the elastic potential energy are the variations of strains and not those of stresses. The 

variations of stresses are not appear explicitly on the following relation (or the Eq. 4 of the 

section 4.2), because they are a priori included in the variation of the elastic potential energy. 

This fact is declared on the section 4.2 by the use of the Hooke’s Law in conjunction with the 

identity of symmetry of matrix composed of the stiffness coefficients as well as the 

contrivances of the index notation. 
 

Now keeping in mind the Eqs. (1`) – (5`) of the section 4.2.1 or Eqs. (1) - (5) of the section 

4.2.2 and we are not going to replace the last, in order to avoid difficult and time-consuming 

calculations. Thus, the Eq. (4) of the section 4.2 using (17a) - (17f) is converted to, 
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Finally substituting Eq. (1) to the expression of the variation of the elastic potential part of the 

variation of action functional (1) of the section 3, we derive the last expression: 
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In the last Eq. (2) appear only the variations x   and y  , but the most terms (integrals) 

include first or second derivatives of the variations (
0 0 0, , , , x yu v w       ). Apparently, 

to eliminate the later we perform (by case) integration(s) by parts with respect to the 

spatial variable x . These integrations by parts will generate boundary terms kinematic and 

dynamic, which will contribute to the construction of the appropriate boundary conditions of 

the TSDT. For further simplification we neglect for the present calculations the time integral. 

We have also to pay attention to the integration(s) by parts with respect to the spatial variable, 

because the boundary terms of the following relations are related with the natural boundary 

conditions of the problem (or dynamic boundary conditions of the elastic continuum). Thus,  
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As for the different handling of the integral (3m), where going to present it thoroughly below. 
 

Now following the same process (as those of the kinetic part) of decomposition of the volume 

and surface integrals, the above relations take a new form including additionally the known 

stress resultants (bending moments and shear stresses), the higher-order stress resultants.  
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Thus, to calculate the variation of the elastic potential part, we have to define additionally the 

stress resultants as, 
 

the thickness-integrated forces 11 22 12 1 2 6( , , ) ( , , )N N N N N N ,  

 

the thickness-integrated moments 11 22 12 1 2 6( , , ) ( , , )M M M M M M , 

 

the thickness-integrated higher moments 11 22 12 1 2 6( , , ) ( , , )P P P P P P  and  

23 13 4 5( , ) ( , )R R R R , 

 and finally the shear forces 23 13 4 5( , ) ( , )Q Q Q Q , 

 

which are called alternatively as stress resultants. 
 

The aforementioned higher-order moments are mathematically similar to the conventional 

moments. They represent the internal actions between the parts of the thick plate and they are 

reckoned across its whole thickness [A.E.H. Love (1944), “A Treatise on the Mathematical 

Theory of Elasticity”]. 
 

It is essential also to clear that the above stress resultants (as those of the CPT) are nothing 

more than “abbreviations” of the stress field of the material. By this way, we gather together 

the components of the stress field, which are expressed in terms of the displacement field ( 0u , 

0v , 0w , x , y ), namely the unknowns, as shown on the Eqs. (1`) - (5`) of the section 4.2.1 

and (1) – (5) of the section 4.2.2. 
 

Consequently, substituting the Eqs. (1`) - (5`) of the section 4.2.1 and (1) – (5) of the section 

4.2.2, into the relations of stress resultants, we can express the thickness-integrated moments, 

forces, higher moments and shear forces in terms of displacement field ( 0u , 0v , 0w , x , y ). 
 

Thus, the previously referred relations are going to be presented on the appropriate following 

sections in order to derive easier the equations of motion and the boundary conditions of the 

plate (in terms of displacement field). Further remark that the total number of the resulting 

scalar equations of the problem should be the same with the number of unknowns so that our 

problem has a unique solution. In our case of the model of TSDT, the number of unknowns is 

five. Consequently, we expect to derive five equations from the variational principle, 

including the unknowns ( 0u , 0v , 0w , x , y ), and finally solve the 5x5 system. 

 

Now in order to derive the final terms of the previous relations (3a) - (3m), is followed the 

same process (as those of the kinetic part) of the decomposition of the volume and surface 

integrals. Thus, the above relations take the now form (shown below) including the previously 

defined stress resultants. 
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[calculations similar to the Eq. (4c)] 
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In order to derive the final terms of the below volume integral 
0 1 2, ,w x xI  , we follow a 

different path.  
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As for the first term 1J , we perform integrations by parts firstly according to 1x  and second 

according to 2x  variable, while as for the second term 2J , we perform integrations by parts 

initially according to 2x  and subsequently according to 1x  spatial variable. This concept is 

adopted to the following calculations, because we desire to derive boundary conditions with a 

“symmetric” formulation between the terms (of the variation of the action functional) with the 

same variations 0 0 0( , , )u v w   . 

Thus,  
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Consequently, the equation (4m) is converted to, 
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Now substituting (4a) - (4m) into the equation (2), we derive the following, 
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4.4.  Virtual Work of the Externally Applied Loads 
 

As for the last terms of the variational equation, we have to calculate the variations of the 

externally applied forces, apart from the Kinetic and Elastic Potential Energy. 

Within the Transverse Shear Deformation Theory, we assume that there is a normal distribut-

ed external load at the top or/and bottom surface 
( )fB  of the plate (surface force/ traction at 

3 2x h  or/ and 
3 2x h ) 1 2( , ; )q x x t . At this point we clarify that the normal distribut-

ed external load q  is regarded as the algebraic sum between the load at the top and the bottom 

of the external boundary of the plate (
top bottomq q q ). 

 

Also it is necessary to quantify the virtual work of the traction field at the edge of the plate. 

This work is related to the virtual displacements 
1u  ,

2u , 3u , 4u , 5u , from which the 

first three are the displacements on the direction of 1x -axis, 2x -axis, 3x -axis respectively 

and the last two are derivatives of the slopes of the in-plane displacements to the vertical 3x -

axis. The displacements 4u  and 5u , could be analyzed further as illustrated on the figure 

below in order to show explicitly their physical meaning. 
 

 
Figure 4.4.1: Slopes of the displacement field on the 1 3x x -plane (similarly for the 2 3x x -plane). 

 

Thus, 
2

0

4 23

2

y x

w
u u

x


      and  

1

0

5 13

1

x x

w
u u

x


    . 

 

Note that, the above relations are going to appear again on the appropriate sections, where we 

mean to derive the boundary conditions of the problem of TSDT, for reason explained on the 

respective section 5. 
 

Now, the variation of the functional of the external surface traction, due to the surface distrib-

uted load (surface tractions) at the adjacent surface and the horizontally distributed vertical 

load q  (as illustrated on the following figure), is: 

 

2 2

1 1

0
ˆ

T

t t

T i i

t B t

J u dS dt q w d dt   



  
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2
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q w d dt 
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     (1) 

 

Note that on the section 2 we have described only the three components of the surface trac-

tions 1T̂ , 2T̂ , 3T̂  on the directions of the three axes on the Cartesian coordinate system. Con-

sequently, the “shear” surface tractions  4T̂ , 5T̂  can be expressed in terms of the given “nor-

mal” surface tractions 1T̂ , 2T̂ , 3T̂ . Through the parallelogram law, we get 

 

4 23 4 2 4 3
ˆ ˆ ˆ ˆT T a T b T ,  (2a)            where 4 4, constantsa b  

5 13 5 1 5 3
ˆ ˆ ˆ ˆT T a T b T ,   (2b)            where 5 5, constantsa b  

 

We examine separately the three integrals of the lateral, upper and bottom surface. To simpli-

fy their expression, we neglect the time integration at this moment.  

Due to the stress-free boundary conditions on the bottom and top faces of the plate, we have 

4 42 0e  and 5 52 0e  on the bottom (lower) and top (upper) faces. This fact 

is also compatible with the form of the surface tractions which are prescribed on the section 2. 

Thus,  
 

( ) ( ) 0u f
T

l f
TJ J    ,on the flat surfaces 

 

By this way the only term that remains to be analyzed, on the variation of the externally ap-

plied loads is the first one. 
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Now we assume that we have given surface tractions  1T̂ , 2T̂ , 3T̂  at the specific parts of the 

lateral boundary ( )latB ( ( )lat
TB ) and using the Eqs. (17a) - (17c) of the section 3 and the 

above Eqs. (2a) and (2b), we derive the following, 
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Figure 4.4.2: Externally applied and horizontally distributed vertical load. 

 

Now as for the form of the given surface tractions 1T̂ , 2T̂ , 3T̂ , we recall the configurations of 

the section 2. Remark also that the deformation at the edge of the plate during its motion in 

conjunction with the externally can be cubic dependent from the 3x -variable. This fact is ra-

tional for our model, because we have the same dependence of the in-plane displacements 

( , )u v  from the 3x -variable. 
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Further note that, the quantities which multiply the variations 0u , 0v , 0w , x , y  in-

side the surface integrals of the Eq. (3), are expected to  match with the respective terms of 

the variation of the Elastic-Potential Energy part (section 4.3). The last referred contains 

boundary terms (surface integrals) similarly cubic dependent of the 3x -variable. 

 

Taking all the aforementioned into account, we present here for convenience again the form 

of the given surface tractions prescribed on the section 2 by the Eqs. (1) - (3). 
 

3
1 1 2 3 0 1 2 1 1 2 3 3 1 2 3
ˆ ( , , ) ( , ) ( , ) ( , )T T TT x x x a x x a x x x a x x x  

3
0 1 3 3 3( ) ( ) ( )T T Ta a x a x        (1) 

 
3

2 1 2 3 0 1 2 1 1 2 3 3 1 2 3
ˆ ( , , ) ( , ) ( , ) ( , )T T TT x x x b x x b x x x b x x x  

3
0 1 3 3 3( ) ( ) ( )T T Tb b x b x        (2) 

 
3

3 1 2 3 0 1 2 1 1 2 3 3 1 2 3
ˆ ( , , ) ( , ) ( , ) ( , )T T TT x x x c x x c x x x c x x x  

3
0 1 3 3 3( ) ( ) ( )T T Tc c x c x        (3) 

 

In addition, it is essential to note that the above form of the surface traction field is a simpli-

fied approximation of the real values of the surface tractions at each point upon the edge of 

the plate. Certainly, this approximation is enough accurate in the context of our problem of 

TSDT (and compatible with our model), because the thick plate can be deformed under the 

influence of tractions with larger amplitude (size) along its thickness in comparison with the 

thin plate of the CPT. 
 

Subsequently, we substitute the previous Eqs. (1) - (3) into the Eq. (3) and after that we use 

the mass-moment quantities and the process of decomposition of the surface integrals. Thus, 

the Eq. (3) is modified as follows, 
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Finally, substituting the Eq. (4) into the Eq. (1), we get 
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4.5. The variational equation of the TSDT 
 

Now we are able to substitute the results of separate parts, (9) of the section 4.1, (5) of the 

section 4.3 and (5) of the section 4.4 into the variational equation (1) of the section 4. The 

next step is to gather separately the different terms according to the kind of their variations 

e.g. 
0u , 

0v , 
0w , 

x , 
y . By this way it is easier to extract the equations of motion and 

the boundary conditions of the model of the TSDT. 

To facilitate the calculations and substitutions, we repeat the equation (1) of the section 4: 
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Then the equation (1), is converted to: 
 

1 6 2 6

0 0 0 0

1 2 2 1

2 2
0 0

0 0 6 4 62 2 4 2 2
2 1 2 1

4 4 5

2

0 0

2 2 1

4 4 16

3 3 9

4

y x

N N N N
u I I v

x x x x

w w
I w I I I

x xh h h x x

Q R Q

x x xh

u v

 



5

2
1

2 2 2
1 6 2

2 2 2
2 11 2

0

2 4 6 6 42 4 2 2
1

1 6 6 1

5 52 2
1 2 2 1

0

4

24

3

8 16 4 4

3 9 3 3

4 4 4

3

x

R

x h

P P P
q

x xh x x

w
I I I I I

xh h h h

M M P P
Q R

x x x x

w

h h





2

0

2 4 6 6 42 4 2 2
2

2 6 6 2

4 42 2 2
2 1 1 2

3

8 16 4 4

3 9 3 3

4 4 4

3 3

y

y

x

h

w
I I I I I

xh h h h

M M P P
Q R

x x x xh h h











2

1

t

t

d dt



  

156



Part B Section 4. Equations of Motion- Variational Principles 
 

 

2 2

1 2 1 2

1 1

1 2

0 0

1 6 0 2 6 0

1 1 6 62 2

2 4 4 6

1 3 1 32 2

0 0

0

5 0 5 0

0

4 4

3 3

4 4

3 3

t t

x x T x x T

t t

x x

T T T T

T T

I I
N n N n a d dt N n N n b d dt

M P n M P n
h h

I I I I
a a a a

h h

I I

u

a a

v

b c

 

 
 



   







2

1

2 12 2 6 62 2

2 4 4 6

1 3 1 32 2

0 0

4 0 4 0

4 4

3 3

4 4

3 3

t

t

x x

T T T T

T T

x d dt

M P n M P n
h h

I I I I
b b b b

h h

I I
a b b c





   

 

 

2

1

0

6 4 64 2 4
1

6 1

5 5 2 2 2
2 1

6 44 2

16 4 16

9 3 9

4 4 4

3 3

16 4

9 3

x

y

t

t

y

d dt

w
I I I

xh h h

P P
Q R

x xh h h

I I
h h



 





1xn

2

1

1 2

0

6 4
2 0

0

6 2

4 4 2 2 2
1

0

2

4 6

1 6 1 32

16

9

4 4 4

3 3

4

3

t

t

T

x x T T

d dt
w

I
xh I

c
P P

Q R
x xh h h

I I
P n P n a a

h

w







 



2xn

2

1

2

2 1

1

0

4 06

22
2

6 3

1

1

4
0

3

t

t

t

x x T T

t

d dt

I I
P n P n b b

w

x
d dt

w

x

h
















 

For further simplification, we gather together the terms with surface and curvilinear integrals, 

taking care of the kind of variation ( 0u , 0v , 0w , x  and y ) of each term. Thus, the 

final form of the variational equation of the problem of the TSDT is the following. Note that 

the Eq. (2) below is exactly the same as the variational Eq. (1) of the section 4. 
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4.6.  Equations of Motion of the TSDT in terms of thickness integrated forces and  

        moments 
 

Now in order to obtain the equations of motion of the TSDT, we assume that each term (under 

surface or curvilinear integral) of the Eq. (2) is continuous function of 
1x  and 

2x . These 

terms are multiplied with the variations 
0u , 

0v , 
0w , 

x  and 
y  or the spatial 

derivatives of 0w . At this point, using the standard arguments of the calculus of variations 

[“Calculus of Variations”, I. M. Gelfand and S. V. Fomin, Lemma 1, p.9/Sec.3/Chap.1 and 

Lemma, p.22/Sec.5/Chap.1 and “Introduction to the Calculus of Variations”, Sagan 1969, 

p.54 Lemma 2.4], we derive the five equations of motion of the plate. 
 

Accordingly, we first assume that, 0 0 0 0 2 0 1/ /u v w w x w x    

0x y   on the boundary ( x ), where t  is arbitrary. The previous means that 

the variations and their spatial derivatives are not vary upon the boundary of the plate and 

obviously we have given displacements [“Calculus of Variations”, I. M. Gelfand and S. V. 

Fomin, Chap.7, and especially paragraph 36.4]. Then (2) reduces to just, 
 

159



Part B Section 4. Equations of Motion- Variational Principles 
 

 

2 2

1 1

1 6 2 6

0 0 0 0

1 2 2 1

2 2
0 0

0

0 0 6 4 62 2 4 2 2
2 1 2

0

4 4 16

3 3 9

t t

t t

y x

N N N N
u I d dt I v d dt

x x x x

w w
I w I I I

x xh h

u v

h x

 









 

2

1

1

4 4 5 5

2 2
2 2 1 1

2 2 2
1 6 2

2 2 2
2 11 2

2 4 6 6 42 4 2 2

0

4 4

24

3

8 16 4 4

3 9 3 3

t

t

x

x

Q R Q R
d dt

x x x xh h

P P P
q

x xh x x

I I I I I
h h

w

h h







2

1

0

1

1 6 6 1

5 52 2 2
1 2 2 1

0

2 4 6 6 42 4 2 2
2

2 6 6 2

4 42 2
2 1 1 2

4 4 4

3 3

8 16 4 4

3 9 3 3

4 4 4

3 3

t

y

x

t

w

x
d dt

M M P P
Q R

x x x xh h h

w
I I I I I

xh h h h

M M P P
Q R

x x x xh h

  





2

1 2

0y

t

t

d dt

h

 



       (2`) 

 

Subsequently, we assume that 0 0 0x yv w     on the domain   (inside  

the body of the plate). Thus,  
 

2

1

1 6

0 0 0

1 2

( ; ) 0

t

t

N N
u I d dt

x x
u t 



x ,  0( ; )u t x  

 

and using the arbitrariness of the variation 0u  inside the 1 2[ , ]t t , we find the first 

equation of motion of the plate, 
 

11 12

0 0

1 2

0
N N

u I
x x

        (3) 

for x  and t  [ 1t , 2t ]. 

 

Next, we remove the restriction 0 0v  on the domain  [ 1t , 2t ] and taking into account 

the equation (3), which eliminates the first surface integral (2), we derive  
 

2

1

2 6

0 0

2

0

1

( ; ) 0

t

t

N N
I v d dt

x x
v t 



x ,  0( ; )v t x  

 

And using the arbitrariness of the variation 0v  inside the space  [ 1t , 2t ], we result to the 

second equation of motion of the plate, 
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22 12

0 0

2 1

0
N N

I v
x x

       (4) 

for x  and 1 2[ , ]t t t . 

 

Further, removing the restriction 0 0w  on the surface   and taking into account the two 

previous Eqs. (3) and (4), the result of the Eq. (2`) is,  
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Regarding also the arbitrariness of variation 0w  inside the  [ 1t , 2t ], we extract the third 

equation of motion of the plate,  
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Now, remove the restriction 0x  from the domain   and taking into account the three 

previous Eqs. (3), (4), (5), the result of the Eq. (2`) is the following,  
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Regarding also the arbitrariness of the variation x  inside the  [ 1t , 2t ], we extract the 

fourth equation of motion of the plate,  
 

0

2 4 6 6 42 4 2 2
1

8 16 4 4

3 9 3 3
x

w
I I I I I

xh h h h
   

11 12 12 11

13 132 2 2
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And finally (as for the equations of motion) eliminating the restriction 0y  from the   

and recalling the previous four Eqs. (3), (4), (5) and (6), the result of the Eq. (2`) is, 
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Regarding also the arbitrariness of variation y  inside the  [ 1t , 2t ], we extract the fifth 

equation of motion of the plate,  
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Let it be noted that Eqs. (3) - (7) are identical with the respective results (10.3.14), (10.3.15), 

(10.3.16), (10.3.17), (10.3.18) of the book of the J.N. Reddy (2007), “Theory and Analysis of 

Elastic Plates and Shells”, chapter 10 on the page 381. 
 

It is essential to note that, the above system of the five equations (3), (4), (5), (6) and (7) is 

solvable, as will be proved on the section 6, because the number of unknown quantities is 

five. This is a fact due to the definition of the thickness-integrated forces and moments [Eqs. 

(4) of the section 4.3], which can be expressed directly in terms of the unknowns of the 

system, namely the displacement field ( 0 0 0, , , , x yu v w   ), as will be shown on the section 6 

again. 
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5.  Boundary Conditions of TSDT in terms of thickness-integrated forces and moments  
 

Inspection of the above Eq. (2) of the section 4.5 indicates that the quantities with a variation 

in the boundary integrals are the primary variables 0 0 0 0 1 0 2, , , / , / , , x yu v w w x w x    

and their specification constitutes the geometric or kinematic (essential) boundary 

conditions. The mathematical expressions inside the brackets of the integrated quantities, 

which are coefficients of the varied quantities, are termed the secondary variables, and their 

specification gives the dynamic (natural) boundary conditions. Therefore, there are primary 

and secondary variables of the plate with edges parallel to 1 2x x -coordinates. 
 

On this step similarly with the process followed on the respective section of the Part A, we 

must think a bit more about the final results of the boundary conditions of the problem, due to 

the unbalance between to possible boundary conditions (after noticing the boundary terms of 

the Variational Equation (2) of the section 4.5) and the desirable number of boundary 

conditions. To set it differently, if the equations of motion of the model of TSDT are 

expressed in terms of displacements (as will be shown on the section 6), they maximum order 

derivatives that appear on them are the second-order spatial derivatives of the in-plane 

displacements 0u , 0v , the third-order spatial derivatives of the slopes displacements x , y  

and the fourth-order spatial derivative of the vertical displacement 0w . The above imply 

that the total number of boundary conditions must be four essential and four natural 

boundary conditions, whereas from the Variational Equation (1) below we note seven 

essential and seven natural boundary conditions. The last is incompatible with our model of 

TSDT and must be treated appropriately as will be shown on the section 5.2. 

 

5.1.  Variational boundary terms in Cartesian coordinates  
 

Now isolating the curvilinear integrals of the Eq. (2) of the section 4.5, in order to illustrate 

clearer the aforementioned boundary terms.  

 

Initially we remove the restrictions 0 0 0 0 1 0 2/ / xu v w w x w x       

0y  from the boundary. We deserve to isolate these integrals, because the existence of 

the Eqs. (3) - (7) of the section 4.6. Thus, the action functional (2) becomes, 
 

2 2

1 2 1 2

1 1

1 2

0 0

1 6 0 2 6 0

1 1 6 62 2

2 4 4 6

1 3 1 32 2

0 0

0

5 0 5 0

0

4 4

3 3

4 4

3 3

t t

x x T x x T

t t

x x

T T T T

T T

I I
N n N n a d dt N n N n b d dt

M P n M P n
h h

I I I I
a a a a

h h

I I

u

a a

v

b c

 

 
 



   







2

1t

x

t

d dt



  

  

163



Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments 

 

 

2 1

2

1

2 2 6 62 2

2 4 4 6

1 3 1 32 2

0 0

4 0 4 0

4 4

3 3

4 4

3 3

x x

t

T T

t

T T

yT T

M P n M P n
h h

I I I I
b b b b d dt

h h

I I
a b b c



 
   

 

  

 

0

6 4 64 2 4
1

6 1

5 5 2 2 2
2 1

0

6 4 64 2 4
2 0

6 2

4 4 2 2 2
1 2

16 4 16

9 3 9

4 4 4

3 3

16 4 16

9 3 9

4 4 4

3 3

x

y

w
I I I

xh h h

P P
Q R

x xh h h

w
I I I

xh h h I

P P
Q R

x xh h h





1

2

x

x

n

n

2

1

0

0

t

t

T

w d dt

c







 

 

2

1 2

1

2

2 1

1

0

1

0

2

4 6

1 6 1 32

4 6

2 6 1 32

4

3

4
0

3

t

x x T T

t

t

x x T T

t

I I
P n P n a a d dt

h

I I
P n P n b b d dt

h

w

w

x

x





 


 





 (1) 

 

We are thinking exactly with the same rationality as on the section 4.5 but at this time to 

derive the boundary terms of the problem. Subsequently, on the section 5.3 we are going to 

extract the boundary conditions, which are independent from each other and also compatible 

with our problem. 
 

Note that the above process of deriving the equations of motion and the following boundary 

conditions is explained thoroughly on the Lecture Notes of Functional Analysis, G.A. 

Athanassoulis (2016) “Necessary Conditions of Extremum of Functional” and “A further 

study of the Variational Problem as for integral type functional”, as well as on the book of 

Gelfand I.M., Fomin S.V. (1963), “Calculus of Variations”. 
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5.2.  Transformation of the boundary conditions to a curvilinear boundary system 
 

[References: J.N. Reddy “Theory and Analysis of Elastic Plates and Shells”, Chapter 1.4/ 3.5/ 

10.3 and the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and transformation of 

physical quantities under rotations of the reference system” and Wang C.M., Reddy J.N., Lee 

K.H. (2000), “Shear Deformable Beams and Plates-Relations with Classical Solutions”, 

Chapter 7.4]. 
 

Thinking about the way of combining and grouping together the variations of the 

displacement field of the problem of TSDT and as a consequence the boundary terms related 

to each one of them and also taking into account the process followed on the respective 

sections for the problem of CPT (section 5.2 of Part A), we note that the corresponding 

displacements after a potential transformation to a curvilinear boundary system will be,  
 

Cartesian Coordinates  Curvilinear Coordinates 

0u   0nu   

0v   0su   

0w   0w  

0 1/w x   and  0 2/w x   0w   and  0 /w n   

x   n   

y   s   

 

However, the higher order of the spatial derivatives of the equations of motion of the TSDT is 

four and the total number of essential or natural boundary conditions seems to be six and six 

respectively, fact that is not auxiliary to solve the system of differential equations of motion. 

For this reason, we take another path in order to conclude to a balance between the unknowns 

and the equations.  
 

From the Eqs. (14a) - (14e) of the section 6.1 and 6.2, we note that the first two equations of 

motion, namely the Eqs. (14a) and (14b) are coupled between each other but decoupled form 

the residual three equations of motion, namely Eqs. (14c), (14d) and (14e). Also the 

previously referred Eqs. (14c), (14d) and (14e) are coupled between them. To express the 

previous differently the components of the displacement field ( 0u , 0v ) exist only on the Eqs. 

(14a) and (14b) of the sections 6.1 or 6.2, whereas the components ( 0w , x , y ) exist only on 

the Eqs. (14c), (14d) and (14e). The last means that the shear deformation (motion) of the 

plate is decoupled from its bending deformation (motion) and due to this ascertainment, we 

are entitled to study each one of these two “motions” separately and independently.  
 

Actually, as will be shown on the following sections, on the one hand the shear motion has 

two essential and two natural boundary conditions related to the displacements 0nu  and 0su , 

fact that is compatible with the second-order differential equations (14a) and (14b). On the 

other hand the bending motion has four essential and four natural boundary conditions 

associated to the displacements 0w , 0 /w n , n  and s , which is also compatible with the 

fourth-order differential equations (14c), (14d), (14e). 
 

In addition, all the remarks about the transformation laws existing on the section 5.2 of the 

Part A and on the APPENDIX A are exactly the same and are used self-esteem on the 

following sections. For the sake of convenience, we repeat the most important transformation 

law to this section and after that we formulate some more transformation laws about the 
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excess stress components of the displacement field of the TSDT (referred on the section 4.2) 

and about the higher-order thickness-integrated moments (referred on the section 4.2). Thus,  
 

1 20 0 0n sx xu nun u  (1) and 
1 20 0 0n sx xnu u n u     (1`) 

 

2 10 0 0n sx xnv nu u   (2) and 
2 10 0 0n sx xn nv u u     (2`) 

 

0 01w w    (3) and   0 01w w    (3`) 

 

But here we have two more components of the displacement field, which are converted to the 

curvilinear system by the same transformation law, since the nature of the transformation is 

identical to that performed in the context of the CPT. To remember, is a planar rotation 

around the vertical axis to the flat surfaces of the plate. For this reason, the 3x , z -axes remain 

parallel. Consequently, 
 

1 2x n sx xn n     (4) and 
1 2x n sx xn n       (4`) 

 

1 2y n sx xn n     (5) and 
1 2y n sx xn n      (5`). 

 

As for the derivatives of the 0w , we get 

 

1 2

0 0 0

1

x x

w w
n n

w

x n s

  
       (6) 

2 1

0 0 0

2

x x

w w
n n

w

x n s

  
       (7) 

 

Finally the relations which transform the stress field from the Cartesian coordinate system to 

the curvilinear one, are  
 

1 21 2

2
11

2 2nn ns s sx xx xn n n n         (8) 
 

2 11 2

2
22

2 2nn ns s sx xx xn n n n         (9) 

 

1 21 212 2
2

1
2

s s nn n sx xx xn n n n         (10) 

 

As for the two more stress components of the TSDT, taking into account the above relation 

(10) we get 
 

1 3 11 3 1

2 2
13

2
31 1x xz z nn n z nn zx nx x xn n n n n n        (11) 

 

2 3 12 3 2

2 2
23

2
32 1x xz z s s n z s s zx sx x xn n n n n n        (12) 

 

The final results of the last two shear stresses are derived due to the initial assumption of the 

in extensibility of the cross section, 0z z  and due to the planar rotation of the coordinate 

system around the vertical axis, the direction cosine as for the vertical axis is 
3

cos0 1xn . 

It is also interesting that the shear stresses are transformed with opposite signs.  

166



Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments 

 

 

By the definition of the thickness-integrated forces and moments, we have similarly with the 

transformation of the stress field the following relations, 
 

1 21 2

2
11

2 2nn ns s sx xx xn n nN nN N N      (13) 

 

2 11 2

2
22

2 2nn ns s sx xx xn n nN nN N N       (14) 

 

1 21 212 2
2

1
2

s s nn n sx xx xnN N N Nn n nN     (15) 

and 
 

1 21 2

2
11

2 2nn ns s sx xx xn n nM nM M M      (16) 

 

2 11 2

2
22

2 2nn ns s sx xx xn n nM nM M M      (17) 

 

1 21 212 2
2

1
2

s s nn n sx xx xnM M M Mn n nM    (18) 

 

And also as for the higher-order moment appearing on the model of TSDT,  
 

1 21 2

2
11

2 2nn ns s sx xx xn n nP nP P P                (16`) 

 

2 11 2

2
22

2 2nn ns s sx xx xn n nP nP P P                (17`) 

 

1 21 212 2
2

1
2

s s nn n sx xx xnP P P Pn n nP              (18`) 

 

Additionally, with similar way with that of the transformation law of the Eqs. (11) and (12), 

we get 
 

1 3 11 3 1

2 2
13

2
31 1x xz z nn n z nn zx nx x xn n n n n nQ Q Q Q Q Q Q  (19) 

 

2 3 12 3 2

2 2
23

2
32 1x xz z s s n z s s zx sx x xn n n n n nQ Q Q Q Q Q Q  (20) 

 

Similarly, are transformed the higher order moments 13R  and 23R ,  

 

1 3 11 3 1

2
13 31

2 2 1z z nn n z nn nx x zxx x xR R R Rn n n n n nR R R         (19`) 

 

2 3 12 3 2

2
23 32

2 2 1z z s s n z s s sx x zxx x xR R R Rn n n n n nR R R       (20`) 

 

Before we proceed to the transformation of the boundary terms from the Cartesian to the 

curvilinear coordinate system, we have to present the same transformation law of the 

functions 0 1 2, ( )Ta x x , 0 1 2, ( )Tb x x , 0 1 2, ( )Tc x x , 1 1 2, ( )Ta x x , 1 1 2, ( )Tb x x , 1 1 2, ( )Tc x x , 

3 1 2, ( )Ta x x , 3 1 2, ( )Tb x x , 3 1 2, ( )Tc x x , 4 1 2, ( )a x x , 4 1 2, ( )b x x , 5 1 2, ( )a x x  and 5 1 2, ( )b x x  

which describe the form of the given surface tractions (shown on the section 4.4). Thus, 

according to the transformation law (T0) and (T1) of the APPENDIX A, we get the following 

relations 
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1 20 0 0T T n T sx xn na a a  (21a) and 
1 21 1 1T T n T sx xn na a a          (21b) 

    
1 23 3 3T T n T sx xn na a a               (21c) 

 

2 10 0 0T T n T sx xb a n an  (21d) and 
2 11 1 1T T n T sx xb a n an       (21e) 

    
2 13 3 3T T n T sx xb a n an               (21f) 

 

0 01T Tc c   (21g)  and   1 11T Tc c              (21h) 

    3 31T Tc c                   (21i) 

 

However the functions 1Tc  and 3Tc  have been eliminated from the Variational Equations due 

to analysis of the section 4.4, and there not going to appear further after their definition on the 

surface traction field of the section 2. Further, we have 
 

1 24 4 4n sx xa nan a  (21j)  and   
1 25 5 5n sx xa nan a     (21k) 

1 24 4 4n sx xnb nb b  (21l)  and  
1 25 5 5n sx xnb nb b  (21m) 

 

In the view of the above relation, it is obvious that we have to occupy with the surface 

integrals (boundary terms) of the variational equation 2 of the section 4.5, namely the below 
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As exactly on the corresponding section of the Part A, it is essential to separate the above 

equation into four parts and after that to perform calculations. The first parts will include the 

in-plane variations 0u  and 0v  (first row of the above expression), the second is associated 

with the derivatives of the vertical variation 0 1/w x  and 0 2/w x  (fifth and sixth row), 

whereas the third one is related to the vertical variation 0w  (fourth row). Further, we have 

one more part in which we manage the terms related to the slopes x   and y   (second and 

third row).  
 

As for the aforementioned disjunction of the above expression including all the boundary 

terms, we procced to the following separate sections. 
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5.2.1.  Transformation of the in-plane boundary conditions to the curvilinear boundary  

            system 
 

For simplification reasons the of transformation of these terms from the Cartesian coordinate 

system to the local one, we neglect once again the time integration and further now the 

curvilinear integration.  

Subsequently, taking apart each boundary condition multiplied with a different component of 

the variation of the displacement field and using the Eqs. (1`), (2`), (3`), (13), (14), (15) of the 

section 5.2 we get the following. Note that the transformation into curvilinear coordinates is 

exactly the same with that of the in-plane boundary conditions of the CPT (section 5.2.1 Part 

A). Thus, we will not continue to thorough calculations. 
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Summing up the Eqs. (22) and (23), we derive 
 

1 2 2 1

1 2

11 2

1 2

2

0

0

0 0

11 12 0 22 12 0

02 2

0

0

0

02 2
0

2

2

n n

x x T x x T

T nx x

x T s

n s

n s s s sx x

nx x

x

I I
N v

N N

N N

un N

u

n a N n N n b

I
n n n n a

I
n n n n a

u

 













            (23`) 

 

The remarks and the explanations done on the respective section 5.2.1 of the Part A are valid 

here too. Finally, we extract the two independent and in-plane natural boundary conditions of 

the problem of TSDT using the same arguments of the Calculus of Variations applied on the 

Part A in order to derive the corresponding in-plane natural boundary conditions of the CPT. 

Thus, we get the following 
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1 2 1 2

02 2
02 Tnn nx n sx x x

I
n n n n aN N


              (24a) 

 

11 2 2

02 2
02 x T sx x n s s sx

I
n n n n aN N


              (24b) 

 

Remark once again, that the boundary conditions- Eqs. (24a) and (24b) are identically same 

with those of the in-plane natural boundary conditions of the model of the CPT. This fact was 

expected and rational because the additional assumptions made in the context of the TSDT 

influences main differences of the displacement field along the thickness of the plate than 

those along the horizontal dimensions of the plate. Consequently, we expect to find 

remarkable differences on the residual boundary conditions presented on the next sections 

5.2.2, 5.2.3 and 5.2.4. 
 

Note also that we have so far managed to remedy the unbalance between the number of 

boundary conditions and the order of the 2x2 system of the partial differential equations (14a) 

and (14b) of the following sections 6.1. or 6.2. 
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5.2.2.  Transformation of the boundary conditions associated with 1 0w , 2 0w  to the  

           curvilinear system 
 

To simplify the process of transformation of these terms from the Cartesian coordinate system 

to the curvilinear one, we neglect once again the time integration and further now the curvi-

linear integration.  
 

Subsequently, taking apart each boundary condition multiplied with a different component of 

the variation of the displacement field and using the Eqs. (6), (7), (16), (17), (18) and (21b), 

(21c), (21de), (21f) of the section 5.2 we get the following results.  
 

Note also that the reason why we examine the boundary terms related to the 1 2, x x -spatial 

derivatives of the vertical displacement 0w , is that after the transformation of these two 

boundary terms from the Cartesian to the curvilinear coordinate system and due to the Eqs. 

(6) and (7) of the section 5.2, each Cartesian derivative of the 0w  gives derivatives both on 

the in-plane curvilinear derivatives along n  and s -axis. 
 

As for the first part associated to the 1x -spatial derivative of the variation 0w , 
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[And now grouping together the terms with the same the thickness-integrated quantities of the 

same curvilinear direction and of the same derivative of 0w  on the curvilinear coordinate sys-

tem, after highlighting each one of them with a different color] 
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As for the second part related to the 2x -spatial derivative of the variation 0w , 
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[And now again by the same way followed on the first part, we gather together the terms with 

the same the thickness-integrated quantities of the same curvilinear direction and of the same 

derivative of 0w  on the curvilinear coordinate system, after highlighting each one of them 

with a different color] 
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Adding the Eqs. (25a) and (25b), we have 
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[And after simplification of the above sum, highlighting the terms including the direction co-

sines which are eliminated inside the brackets and illustrated for the sake of convenience by 

orange color] 
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And finally expressing aggregately the previous transformation of the aforementioned bound-

ary terms, we have 
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The right-hand side of the last equation is simplified further due to the meter of normal unit n̂  

where 
1 2

2 2 1x xn n . 

 

On the basis of the above result, remark that the functions 1 ( , )T na n s , 3 ( , )T na n s  are related 

both with the variation 0 /w n  and are decoupled from the variation 0 /w s . Exactly 

the analogous configuration is valid for the functions 1 ( , )T sa n s , 3 ( , )T sa n s  which are in-

volved only on the variation 0 /w s  and not at all on the 0 /w n . 
 

This configuration could be interpreted from the “nature” influence of the initially assumed 

surface traction 1T̂  of the section 2, inserted in the model of TSDT. 
 

However, we will not hustle to derive established conclusions about the above, due to the fact 

that the above boundary terms are going to be connected with further boundary terms deriving 

from those of the variation 0w  (as will show on the following sections).  
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5.2.3.  Transformation of the boundary conditions associated with 0w  to the  

              curvilinear boundary system 
 

Now, taking apart the fourth row of the boundary terms of the variational equation repeated 

on the last paragraph of the section 5.2, we have 
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Subsequently, taking apart each term of the above expression multiplied with the direction 

cosines (in order to simplify the calculations) and using the Eqs. (4), (5), (6), (7), (16)-(18) 

and (19), (20), (19`), (20`), (21g) of the section 5.2, we get the following results. In addition, 

note that for the sake of convenience we neglect the time and curvilinear integrals.  
 

However, due to the complication of the calculations, we present below the derivation of 

same terms separately and after that we substitute the results into the 
0 1
, xw nI   and 

0 2
, xw nI  .  

 

Thus, as for the transformation laws of the time-derivatives of the displacement field 
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As for the spatial-derivatives of the thickness-integrated and higher-order moments 
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And now substituting the Eqs. (27a) - (27h) into the expressions 
0 1
, xw nI   and 

0 2
, xw nI  , 
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[Taking apart the Q  and R  moments from the P  higher-order moments and after that 

performing calculations, gives the following result] 
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[Subsequently, we sum up separately the terms with the same thickness-integrated quantities 

or its derivatives and the derivatives of the displacements. To handle this grouping easier, we 

set different shades analogous to the “kind” of each term] 
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Before extracting the final result, we elaborate individually the colorful terms, because the 

first two rows of the above expression do not need further work. Thus,  
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[Eliminating the appropriate combinations of direction cosines inside the brackets of the 

previous expression, we get the following] 
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Consequently, we get the result  
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[Taking apart the Q  and R  moments from the P  higher-order moments and after that 

performing calculations, gives the following result] 
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[Subsequently, we sum up separately the terms with the same thickness-integrated quantities 

or its derivatives and the derivatives of the displacements. To handle this grouping easier, we 

set different shades analogous to the “kind” of each term] 
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Before extracting the final result, we elaborate individually the colorful terms, because the 

first two rows of the above expression do not need further work. Thus,  
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[Eliminating the appropriate combinations of direction cosines inside the brackets of the 

previous expression, we get the following] 
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Subsequently, we get the result  
 

  

 

 

 

 

 

 

 

 

 

Finally the terms inside the brackets of the initial expression of the present section, take the 

following form 
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And taking apart the terms with common coefficients, displacements or higher-order 

thickness-integrated quantities, we perform calculations and we get 
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which is the analogous context inside the brackets of the curvilinear integral (presented on the 

first page of this section) but now expressed on the curvilinear coordinate system. 
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5.2.4.  Transformation of the boundary conditions associated with the slopes x  , y    

            to the curvilinear system 
 

In the context on the present section, we handle terms associated with the slopes of the 

deformed cross section of the plate from the vertical one before the deformation (as explained 

on the initial assumptions on the section 1 of the Part B).  
 

Point out that the reason for choosing to examine the boundary terms related to the x  , y   

0w , is that after the transformation of these two boundary terms from the Cartesian to the 

curvilinear coordinate system and due to the Eqs. (4), (5) or (4`), (5`) of the section 5.2, each 

displacement x , y  produces both of the in-plane curvilinear displacements n  and s . 
 

To avoid confusing calculations and faults, we examine separately each one of the boundary 

terms of the Variational Equation (referred on the section 5.2), which is related to the x   

and y   respectively. 
 

As for the first boundary term, we substitute into it the Eqs. (4`), (16), (16`), (8), (18`), (21a), 

(21b), (21c), (21g), (21k), (21m) of the section 5.2 
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At this point, we choose to perform the calculations separately for the boundary terms 

multiplied with the variations n   and s   in order to overcome the confusing and 

misleading calculations. This step is on purpose thinking than the corresponding boundary 

terms resulting from the variation y   are going to be combined with those of the previous 

expression. Namely, the coefficients of n   (or s  ) deriving form the variation x   are 

added to those deriving from the y  . Thus,  
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As for the second boundary term, we substitute into it the Eqs. (5`), (17), (17`), (18), (18`), 

(21e), (21f), (21g), (21l) of the section 5.2 
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Similarly to the previous step, we divide the above result to two parts according to the 

variations n   and s    
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and 
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Subsequently, the total expression of the boundary terms associated to the n   on the 

Variational Equation of the section 5.2 is given by the sum 
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n n n
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
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And similarly the total expression of the boundary terms associated to the s   on the 

Variational Equation of the section 5.2 is given by the sum 
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s s s
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   .      (2) 

 

However, we perform calculations inside the brackets of the integrals of the above 

expressions and after that we extract the whole boundary terms on the curvilinear coordinate 

system which are related to the variations n   and s  . 

 

As for the Eqs. (1), namely the boundary terms related to the n   variation 
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[And grouping together the terms with common unknown quantities and given functions] 
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As for the Eqs. (2), namely the boundary terms related to the s   variation 
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[And grouping together the terms with common unknown quantities and given functions] 
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Note that the expressions derived above are not expected to “give” additional boundary terms 

to the other boundary parts of the Variations Equation (section 5.2). Consequently, these 

boundary terms either are expressed to the Cartesian or to the curvilinear coordinate system 

are just two alternative forms of the same physical meaning and they express two independent 

natural boundary conditions given below.  
 

Exactly the same configuration took place for the in-plane boundary conditions of the 

problem of shear deformation (section 5.2.1). 
 

Furthermore to derive a shorter and more comprehensive form of the final boundary 

conditions, we notate the given terms, which include functions used to describe the given 

surface tractions (defined on the section 2 of the Part B) with smarter symbols after moving 

term to the right-hand side of the boundary conditions (deriving as known from the 

Variational Equations and by the application of the fundamental argument of the Calculus of 

Variations as will be explained thoroughly on the next section 5.3). Thus, we regard the 

following 
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Thus, as for the natural boundary condition with is multiplied with the variation n   in the 

Variational Equation, we have finally 
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And as for the natural boundary condition with is multiplied with the variation s   in the 

Variational Equation, we have finally 

 

 

Remind that the process of derivation of the above natural boundary conditions (3a) and (3b) 

is going to be explained extensively on the subsequent section 5.3, although is exactly the 

same present on the Part A in order to gain the natural boundary conditions of the model of 

CPT. 
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5.3.  The full set of boundary conditions of the flexural response (bending) of the TSDT 

 

On this section, we gather all the above results of the sections 5.2.2, 5.2.3 and 5.2.4 and 

substitute them into the curvilinear integrals of the Variational Equation of the section 5.2, 

after reorganizing the boundary terms by an appropriate way as seem below.  
 

Remember also that in the context of the problem of TSDT, the shear (membrane) stresses (or 

strains) are decoupled from those of flexural (bending) stresses (or strains), as said on the 

section 5.2. For this reason the in-pane natural boundary conditions [Eqs. (24a), (24b) of the 

section 5.2.1] will not occupy us further from now on and we are going to extract here only 

those related the flexural response of the plate.  
 

For the sake of completeness, we repeat the boundary terms of the Variational Equation of the 

section 5.2, expressed on the Cartesian coordinate system. 
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At this moment we take apart the boundary terms multiplied with the variations 0w ,  

0 /w n  and 0 /w s  in order to perform further calculations. There is no reason to 

elaborate the boundary terms of the variations n   and s   furthermore, because it is 

obvious then that the last will not contribute to the terms of the variations 0w , 0 /w n  

and 0 /w s . 

Thus, separating the curvilinear integral which includes n , s -derivatives on the variation 

0w  and neglecting for the present the residual boundary terms, we have 
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For simplification reasons, we neglect the time integration and we note the following 

boundary terms with spatial derivatives on the variations in order to perform by parts 

integrations to those with s -derivative on the variation 0w . 
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The previous choice to perform by parts integrations only along the curve  , namely 

following the arc s  through the tangential derivatives 0 /w s , is intentional because it 

gives the desirable boundary terms and concurrently by this way the number of the total 

boundary conditions of the problem is reduced to the desirable. The last is attained by 

eliminating the derivative 0 /w s  from the boundary terms, as seems below. 
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Then the first terms of the right-hand side of the relations (3c), (3d) and (3f) are eliminated, 
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Finally, substituting the relations (3a), (3b), (6), (7), (3e), (8) into the Eqs. (2), we get 
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[Gathering separately the boundary terms associated to the variations 0w , 0 /w n  and 

also writing the derivatives of the thickness-integrated quantities in a more abbreviate form, 

we get the final result of the boundary terms] 

199



Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments 

 

 

2

2 11 2 1 2 1 2

1

1 1 2 1 2

2 11 2

2

4 62 2 2 2 2 2
1 32

6 44 2

0 02 2

0

6 4

4
2

3

16 4

9 3

16
( ) 2

9

t

x x T n T nx x x x x x

t

x x x n x x s

x xx x

n n sn

x

I I
n n n n n n a n n a ds dt

h

I I n n

P
w

P
n

n n n n
h h

w w
I n n n n

n sh


 



 

2 11 2

2 1 2 1

1 2 1 2

2 21 2 2 1

2 2

2

2 2

2 2 2 2

2 2

,,

2 2 2 2

2 2

,

,,

,

)

{

4
{( ) ( 2 (

3

4 8
2

3 3

4 4
( )

3 3

4 4
( 1) ( 1)

)}

{

}

}

s s s

s s s

nn x xx x

x x

n s s

n s n s s

x x

x x x x

x s z

s s

s s s s x s zx x x

n s nn

x

P

P P

n n n n
h

n n n n
h h

n n n n
h h

n n Q n Q n R

P

n n R
h

P P

P P
s

h

s

1 11 1 1 1

2 2 2 2

2 2

1 4 3 6 0

02

4 4
( 1) ( 1)

4

3

x n z nn nn x n zx x x x

T s T s

T

n n Q n Q n R n n R
h h

a I a I I
c

s sh   

2

1

0 0

t

t

dw s dt





  

 
2

2 11 2 1 2 1 2

1

1 1 2 1 2

2 11 2

2

4 62 2 2 2 2 2
1 32

6 44 2

0 02 2
6 4

04
2

3

16 4

9 3

16
2

9

t

x x T n T nx x x x x x

t

x x x n x x s

x xx x

n snn

x

I I
n n n n n n a n n a ds dt

h

I I n n n n n n
h h

P
w

P

w w
I n

s

n

n n n
nh


 

 



2 1 2 11 2 1 2

2 1 1 2

2 21 2 2 1

1 1 1

2 2 2 2

2

2 2

2 2

2 2 2 2

2 2

2

,,

2

, ,

4
{ ) 2( ) 2 4

3

4 4
2 } }

3 3

4 4
( 1) ( 1)

( 1

}

{

)

(

{

s s s

s s

x x x xx x x x

x x x x

x s z s s s s x s zx x

n s n

x x

x n z

s nnn n

s

nx

s

nx

n

n n n n n n n n
h

n n n n
h h

n n Q n Q n R n n R
h h

n n Q n

P

P

P

P
s s

P P

Q

2

1

11 1

2 2

2 2

1 4 3 6 0

02

0 0

4 4
( 1)

4

3

t

t

nn x n zx x

T s T s

T

ds dt

n R n n R
h h

a I a I I
c

sh

w

s





  

 

After this demanding separation, we appear again the boundary terms related to the variations 

n   and s   in order to illustrate the total Variational Equation [Eq. (1)] in the final form 

on curvilinear coordinates. 
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As seems from the last version of the variational equation, the total number of the boundary 

conditions is four natural boundary conditions with primary variables 0 /w n , 0w , n  and 

s . Each of the previous corresponds to four essential boundary conditions. Thus, to derive 

the essential and natural boundary conditions we follow the process explained below. 
 

Now we invoke the fundamental arguments of the Calculus of Variations in order to extract 

the boundary conditions from the last version of the Variational Equation including only the 

boundary terms. The following process is presented extensively on the Lecture Notes of 

Functional Analysis, G.A. Athanassoulis (2016) “Necessary Conditions of Extremum of 

Functional” and “A further study of the Variational Problem as for integral type functional”, 

as well as on the book of Gelfand I.M., Fomin S.V. (1963), “Calculus of Variations”. 

First, we assume that 0 /w n  is arbitrary om the curve  , for arbitrary interval 1 2[ , ]t t  and 

keep the restrictions 0 0n sw   . Thus, the last equation is converted to  
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and using the arbitrariness of the variation 0 /w n  on the curvilinear domain 1 2[ , ]t t , 

we find the first natural boundary condition as for the flexural response of the problem of 

TSDT, 
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Now, due to the Eq. (9a), the Variational Equation is diminished to the below 
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Removing the restriction 0 0w , assuming the arbitrariness of the function 0w  and of the 

interval 1 2[ , ]t t  and taking into account the restrictions 0n s  , we derive the 
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and using the arbitrariness of the variation 0w  on the 1 2[ , ]t t , we get the second natural 

boundary condition as for the flexural response of the problem of TSDT, 

1 1 2 1 2

2 11 2

2 1 2 11 2 1 2

2 1 1

26 44 2

0 02 2

,

6 4

,
2 2 2 2

2 ,

2 2

,

16 4

9 3

16
2

9

4
2 2 4

3

4 4
{2

3 3

s s sn s

x x x

n

n x x s

x xx x

x x x xx x x x

x sx

n n s nn s

xs

xI I n n n n n n
h h

w w
I n n n n

n sh

n n n n n n n n
h

n n n

P

sh

P

h

P

s

P

P

 

2

2 21 2 2 1

1 11 1 1 1

2 2

2 2 2 2

2 2

2 2 2 2

2 2

1 4 3 6 0

02

}

4 4
( 1) ( 1)

4 4
( 1) ( 1)

4

3

x

x s z s s s s x s zx x x x

x n z n n n n x n zx x x x

T s T s

T

n sn

n n Q n Q n R n n R
h h

n n Q n Q n R n n R
h h

a I a I I
c

s sh

P

 

 (9b) 

 

Taking into account the Eqs. (9a) and (9b), the Variational Equation remains just with the 

terms,  
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Removing the restriction 0n  , assuming the arbitrariness of the function n   and of the 

interval 1 2[ , ]t t  and taking into account the restriction 0s  , we have 
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and using the arbitrariness of the variation n   on the 1 2[ , ]t t , we find the third natural 

boundary condition as for the flexural response of the problem of TSDT, 
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where 
n

T  defined on the section 5.2.4 and gives the total data terms of the above boundary  

condition. 

 

In conclusion, taking into account the Eqs. (9a), (9b) and (9c), the Variational Equation 

remains just with the following term 
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Removing the restriction 0s  , assuming the arbitrariness of the variation s   and of 

the interval 1 2[ , ]t t , we derive from the above (last) from of the variational equation  
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and using the arbitrariness of the variation s   on the 1 2[ , ]t t , we find the fourth natural 

boundary condition as for the flexural response of the problem of TSDT, 
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where 
s

T  defined on the section 5.2.4 and gives the total data terms of the above boundary  

condition. 

 

To compare easier the form of each natural boundary condition of the flexural response of 

model TSDT, we repeat them below 
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6.  Equations of motion of the TSDT in terms of displacements 
 

As we have aforementioned on the closure of the section 4.3, it is time to use the relations of 

the stress resultants (section 4.3) and to substitute into them the relations of stress in terms of 

displacements [Eqs. (1`) - (5`) of the section 4.2.1 or Eqs. (1) - (5) of the section 4.2.2], in 

order to express the stress resultants in terms of the displacement field of the problem of 

TSDT. Thus, we get the following relations as seems on the sections 6.1 and 6.2 in case of an 

orthotropic but in-plane anisotropic and in case of an orthotropic but in-plane isotropic 

material respectively.  

 

6.1. Equations of motion of the TSDT in terms of displacements for an orthotropic, in- 

       plane anisotropic material 
 

The thickness-integrated forces of the aforementioned relations of the section 4.3 are 

converted to the below, due to the Eqs. (1`) – (5`) of the section 4.2.1, 
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Further,  
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In addition,  
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And also,  
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Finally as for the thickness-integrated quantities, we get additionally 
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Now, we have already prepare the path to express the equations of motion of the plate 

exclusively in terms of the displacement field of the problem of TSDT. 
 

Substituting the Eqs. (1) and (7) into the Eq. (3) of the section 4.6 and by substituting  
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Substituting the Eqs. (4) and (7) into the Eq. (4) of the section 4.6,  
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Further, we replace the appropriate terms of the Eq. (5) of the section 4.6 with the Eqs. (3), 

(6), (9), (10), (11), (12) and (13), 
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Subsequently, substituting the Eqs. (2), (8), (9), (12) and (13) into the Eq. (6) of the section 

4.6, we derive the fourth equation of motion of the TSDT in terms of displacements, 
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Finally, substituting the Eqs. (5), (8), (9), (10) and (11) into the Eq. (7) of the section 4.6, we 

derive the last equation of motion of the TSDT in terms of displacements,  
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Let it be noted that the Eqs. (14a) - (14e) are practically identical with the respective results of 

the book of J.N. Reddy (2004), “Mechanics of Laminated Composite Plates and Shells- 

Theory and Analysis” and are especially found on the Chapter 11. 

 

6.2. Equations of motion of the TSDT in terms of displacements for an orthotropic, in- 

       plane isotropic material 
 

The thickness-integrated forces and moments, referred on the section 4.3 are converted to the 

below, due to the Eqs. (1) – (5) of the section 4.2.2, 
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And also,  
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Finally as for the thickness-integrated quantities, we get additionally 
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Note that the above expressions of the thickness-integrated quantities are also exist on the 

book of C.M. Wang, J.N. Reddy, K.H. Lee “Shear Deformable Beams & Plates-Relations 

with Classical Solutions” and especially on the chapter 6.4.2. Although the appearance of the 

Eqs. (6.4.11a)- (6.4.11j) of the book differ a little from our Eqs. (1) - (13), the last are verified 

that after appropriate substitutions coincide to the expressions of the reference. For instance, 

we present the proof of similarity of the above Eq. (2) and the Eq. (6.4.11a) of the reference. 
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For a further example, we prove the similarity of the above Eq. (3) and the Eq. (6.4.11b) of 

the reference, 
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Now following the same way as exactly on the previous section, regarding the orthotropic but 

in-plane anisotropic material, we are going to derive the equations of motion in terms of 

displacements for the orthotropic but in-plane isotropic material of the problem of TSDT, 

 

Substituting the Eqs. (1) and (7) into the Eq. (3) of the section 4.6, we get 
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From the Eq. (4) of the section 4.6 in conjunction with the Eqs. (4) and (7), we have 
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(14b) 

 

 

 

It is essential to note that the above two governing Eqs. (14a) and (14b) are identical to the 

respective governing Eqs. (7) and (8) of the analogous section 6.2 of the CPT (Part A). This 

fact was expected because as for the in-plane motions the two models (CPT and TSDT) have 

negligible differences. 

 

 

From the Eq. (5) of the section 4.6 in conjunction with the Eqs. (3), (6), (9), (10), (11), we 

derive the third equation of motion in terms of displacements, 
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At this moment it is convenient to compare the form of the third governing equation of 

motion of the TSDT model with the corresponding of the CPT model. Thus, recalling the Eq. 

(9) of the section 6.2 of the Part A and finding the common terms of those equations inside 

the above Eq. (14c), we get 
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Consequently, we notice that the red colored terms are exactly the same consisting the Eq. (9) 

of the section 6.2 of the Part A, namely the last (third) equation of motion of the model of 

CPT. 
 

Substituting the Eqs. (2), (8), (9), (12) and (13) into the Eq. (6) of the section 4.6, 
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From the Eq. (7) of the section 4.5, 
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Let it be noted that the Eqs. (14a) - (14e) are practically identical with the respective results of 

the book of J.N. Reddy (2004), “Mechanics of Laminated Composite Plates and Shells- 

Theory and Analysis” and are especially found on the Chapter 11. 
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7. Boundary Conditions of the TSDT in terms of displacements 
 

Following the same process, as exactly on the previous section 6, where we derive the equa-

tions of motion in terms of displacements, but at this moment to derive the boundary condi-

tions in terms of displacements for both cases of the material of the plate. 
 

As we have aforementioned on the conclusion of the section 4.3, we use the relations of the 

stress resultants of the section 4.3 and substitute into them the relations of stresses in terms of 

the displacements [Eqs. (1`) - (5`) of the section 4.2.1 or Eqs. (1) - (5) of the section 4.2.2], 

meaning to express the stress resultants similarly in terms of displacement field of the prob-

lem of TSDT. Consequently, we get the following relations as seems in the sequel on the sec-

tions 7.1 and 7.2 in case of an orthotropic in-plane anisotropic and orthotropic in-plane iso-

tropic material respectively. 
 

As we have aforementioned on the conclusion of the section 4.3, we use the relations of the 

stress resultants but now transformed to the curvilinear coordinate system on which the 

boundary conditions are derived, as shown below. 
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The rationality of deriving the boundary conditions in terms of displacement of the model of 

TSDT, is corresponding to those followed on the section 7 of the Part A for the model of 

CPT. However due to the much more and difficult calculations demanded here, we are not 

going to proceed to final results for the boundary conditions, but we describe accurately the 

path should be followed in order to their the final forms. 
 

Thus, substituting into the above thickness-integrated quantities the stress-strain relations, 

given on the section 4.2.1 and 4.2.2 for an orthotropic but in-plane anisotropic and an ortho-

tropic but in-plane isotropic material respectively, we manage to express the above stress re-

sultants explicitly in terms of displacement field (of the curvilinear coordinate system). 
 

After that we can get the following form of the boundary conditions of the problem of TSDT, 

as seems on the sections 7.1 and 7.2 in case of an orthotropic in-plane anisotropic and ortho-

tropic in-plane isotropic plate respectively.  
 

Note again for convenience reasons that the boundary conditions in terms of thickness-

integrated quantities, which will occupy us on this section are the Eqs. (24a) and (24b) of the 

section 5.2.1 and the Eqs. (9a) - (9d) referred on the section 5.3. 

 

 

232



Part B Section 7. Boundary Conditions of the TSDT in terms of displacements 

 

 

7.1.  Boundary Conditions of the TSDT in terms of displacements for an orthotropic, in- 

        plane anisotropic material 
 

As for the natural boundary conditions, we follow the same process to get the equations of 

motions in terms of displacements, but now using the Eqs. (24a) and (24b) of the section 5.2.1 

and the Eqs. (9a) - (9d) referred on the section 5.3. 
 

First, taking into account the Eqs. (1`) - (5`) of the section 4.2.1, the substitute into them the 

analogous components of the displacement field ( 0nu , 0 su , 0w , n , s ) in order to derive 

the stress field ( , , nn s s n s   , n z , s z ) applied on the curvilinear coordinate system.  
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where, ( , n sE E ) the modulus of elasticity on the directions n , s  respectively and nsG , n zG , 

s zG  the shear modulus of elasticity. In addition, the Poisson’s ratio n sv  or s nv  is an identity 

of the material referred to its planar directions, namely n  and -axiss , defined as 
 

s

n s
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nn

e
v

e
  and 

n

s n

n

s s

e
v

e
. 

 

The same are valid for the other Poisson’s ratio n zv  and s zv  on the corresponding directions.  

 

Substituting the Eqs. (1a)- (1e) into the above relations of the stress resultants, 
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The last result is identically same with this of the model of CPT [section 7.1, Part A, Eq. 

(3a)]. Similarly, the following result is the same with the corresponding Eq. (3b) of the sec-

tion 7.1, Part A. 
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And also the below is identical to the Eq. (3c) of the section 7.1 of the problem of CPT. 
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The above similarities of the stress resultants [Eqs. (2a), (2b) and (2c)] were expected due to 

the same shear deformation of the mid-surface of the plate in the context of each model, 

namely the CPT and the TSDT. Remark also that the Eqs. (3a), (3b), (3c) lead to the same 

boundary conditions as for the problem of shear deformation, as has already been explained 

on the section 5.2. Thus, we deserve to present directly the two boundary conditions of the 

problem of shear deformation of the model of TSDT which are an alternative form of the Eqs. 

(24a) and (24b) of the section 5.2.1, specialized here for an orthotropic but in-plane aniso-

tropic material. 
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Now, as for the flexural response of the model of TSDT we calculate the residual stress re-

sultants, 
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Note that on the above calculations the z -dependence of all the integrands is explicit as ex-

actly the 3x -dependence on the Cartesian coordinate system, because as referred above the 

3, x z axes are parallel during the transformation. Thus, the vertical integration can be per-

formed explicitly and the “mass-moments” quantities are defined as those of the section 4.1.  
 

Consequently, the terms eliminated from the above quantities were due to the following iner-

tia’s  
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Further, as for the higher-order thickness –integrated quantities  
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Finally, through the substitution of the Eqs. (4a)- (4j) into the boundary conditions- Eqs. (9a) - 

(9d) referred on the section 5.3, we could get an alternative form of these conditions ex-

pressed in terms of the displacements for the problem of TSDT and specialized for an ortho-

tropic but in-plane anisotropic plate.  
 

Subsequently, we mean to examine the same boundary conditions but at this time for the case 

of an orthotropic, in-plane isotropic material. 
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7.2.  Boundary Conditions of the TSDT in terms of displacement for an isotropic, in- 

         plane isotropic material 
 

On this section, we follow the same path as shown on the section 7.1, but for a stress (and 

consequently displacement) field. 
 

Thus, taking into account the Eqs. (5) and (5`) of the section 4.2.2, the components of the dis-

placement field ( , , nn s s n s   , nz , s z ) for an in-plane isotropic plate, are 
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Thus, substituting the Eqs. (1a) – (1e) into the stress resultant presented on the beginning of 

the section 7, we get 
 

/2

/2

/2
2 22

0 0 0 03

2 2 2 2 2

/2

0 0

02

4 4
1

1 3 3

(1 )

h

n n

h

n n

h

n s n s

h

n s

d z

u u w wE z
v z v z v d z

n s n sv h h n s

u uE
v I

n sv

N 

 



2 2
3 0 0

1 32 2 2 2

4 4

3 3

n sI w w
I v I v

n sh h n s

 

0 0 0

2(1 )

n sE I u u
v

n sv
         (2a) 

 

Similarly to the previous section 7.1, the in-plane stress resultants nnN , s sN  and nsN  for the 

model of the TSDT are the same with the corresponding of the CPT [section 7.2 Part A]. 

Thus, we give directly the already known results for the other two s sN  and nsN  
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Thus, as before the in-plane natural boundary conditions for the shear deformation problem of 

the model TSDT with in-plane isotropic material are identical to the corresponding of the 

model of CPT, 
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Now, as for the moments and higher-order thickness-integrated quantities of our case which 

are involved on the four natural boundary conditions of the flexural response of the model of 

TSDT, we get 
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Note that after comparing the above expressions with the respective of the CPT, we main dif-

ference is the additional terms including the variations of the slopes of the deformed cross 

sections of the plate, x  and y . 
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Finally, through the substitution of the Eqs. (4a)- (4j) into the boundary conditions- Eqs. (9a) - 

(9d) referred on the section 5.3, we could get another form of these conditions expressed in 

terms of the displacements for the problem of TSDT and specialized for an orthotropic but in-

plane isotropic plate.  
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8. Conclusions 

 

8.1. Functional Spaces 
 

In conclusion, we mean to define the functional space in which the action functional of the 

Hamilton’s Principle is located.  
 

We remark that the equations of motion (1) – (5) of the section 6.1 or 6.2, are expressed in 

terms of the displacement field (
0u , 

0v , 
0w , 

x , 
y ) and they 2nd order derivatives of 

0u , 

0v and t , 4th order spatial derivatives of 
0w  and 3rd order spatial derivatives with respect to 

x  and 
y . Consequently, the functional space in which the TSDT problem takes place, has 

to include up to 4th order spatial derivatives and up to 2nd order time derivatives. 
 

As for the boundary of the domain of virtual displacements, the Eqs. (6) - (12) of the section 

6.1 or (6) – (12) of the section 6.2 highlight the need of a boundary equipped with at least 3rd 

order spatial derivatives (because of the existence of 3rd order derivative of 
0w ).  

Consequently, inside the volume 
3B , must be defined at least the 4th spatial derivative of 

the displacement field ( 4- continuityC ) and its second-time derivative ( 2- continuityC ). 

This means the existence and continuity of the fourth spatial and second time derivatives of 

the displacement field.’ 

Upon the boundary B , which encloses the space B , we demand the existence and 

continuity up to the third spatial derivatives of u  ( 3- continuityC ). 

Thus, the action functional [ ( , )]S S u  is defined on the space of admissible functions  
2

1 2[ , ]C t t Y , where Y  is the functional space 4 3( ) ( )Y C B C Bu , 

while the admissible variations u  belong to the space 2

1 2[ , ]C t t A , where A  is a 

functional space 4 3( ) ( ) : ( ) 0 for A C B C B B u u x x  . 

In addition to the above, note that B B B , is the reference domain B , which consists 

of the open set B  [interior of B  or ( )cl B ] and its boundary B . 

 

8.2. Conjunction between the CPT and the TSDT (or generally the shear deformation 

plate theories) and the Beam Theories 
 

[References: 1. C.M. Wang, J.N. Reddy, K.H. Lee (2000), “Shear Deformable Beams and 

Plates - Relations with Classical Solutions”, Chapter 7 and Chapter 12, 2. K.J. Bathe, F. 

Brezzi (1894) “On the convergence of a four-node plate bending element based on Reissner/ 

Mindlin plate theory and mixed interpolation”, in J.R. Whitmann(ed.), Proc. MAFELAP 

Conference, Brunel University, 3. Bo Haggblag, Klaus-Jurgen Bathe (1990), “Specifications 

of Boundary Conditions for Reissner/ Mindlin Plate Bending Finite Elements”, International 

Journal for Numerical Methods in Engineering, and especially page 985-986, 4. P.G. Carliet, 

P.Destuyner (1979), “Approximation of the three-dimensional models by two-dimensional 

models in plate theory”, in R. Glowinski (ed.), Energy Methods in Finite Element Analysis, 

Wiley New York, pp. 33-34]. 
 

Generally speaking, the TSDT or the FSDT are substantial improvements in the description of 

the physical behavior of the plate structures in comparison with the CPT.  
 

In addition, note that the assumptions and the kinematic model of the “plate theories” are 

corresponding with the known “beam theories” and at this point we compare them for the 

243



Part B Section 8. Conclusions 

 

 

sake of completeness. Thus, the CPT is the corresponding so called Euler-Bernoulli Beam 

Theory. Also the FSDT is analogous to the Timoshenko Beam Theory, whereas the TSDT 

occupying us on the previous sections is respective to the Reddy-Bickford Beam Theory. 
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PART C: 

DISPERSION CURVES 

& 

COMPARISON OF THE KINEMATIC MODELS 





Part C Section 1. Wave propagation through infinite medium for the CPT 

[Main References: 1. Graff F. Karl (1975), “Wave Motion in Elastic Solids”, Chapter 4.2, 

5.1, 8 , 2. Diploma Thesis by Feruza Abdukadirovna Amirkulova (2011), Dispersion Relations 

for Elastic Waves in Plates and Rods, 3. Papathanasiou_Belibassakis (2014) Hydroelastic 

analysis of VLFS based on a consistent coupled-mode system and FEM, Technical Paper, 4. 

Liew K.M., Wang C.M., Xiang Y., Kitipornchai S. (1998), “Vibration of Mindlin Plates - Pro-

gramming the p-Version Ritz Method”]. 

1. Wave propagation through infinite medium for the CPT

Recalling the third equation of motion of the Classical Plate Theory, which is related to the 

vertical motion (vibration) of the plate, we are going to remove the horizontally distributed 

external load q , in order to study the homogeneous problem of the vibrating plate. 
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To simplify the notation on the following calculations, we write the deflection of the plate in 

the 3x  direction 0w w  and also the direction of the wave propagation is along the 1x x

- axis. Further, regarding the symbols which appear on the section 6.2 of the CPT concerning 

the orthotropic but in-plane isotropic material (plate), we have 

0I h , 
3
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h
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
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By this way the initial form of the Eq. (1) becomes, 
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or 

0 2
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where the Laplace and Biharmonic Operators are expressed only by the 1x -spatial derivatives 

of the displacement 0w . 

Let now assume that the vertical displacement of the plate w  is harmonic dependent from the 

time and the spatial variable x  with an amplitude A . Then we are going to study “under what 

conditions can waves of the type 

( )i k x t
w A e

 (2) 

exist in the plate? ” 

Subsequently, substituting the Eq. (2) into the governing equation of motion (1`) we have the 

following relation after a few calculations, 
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Thus, by the Eq. (3) we manage to express the angular frequency   of the plate in terms of 

the parameter k . The last is called the wavenumber of the wave propagation through the body 

of the plate and is usually defined as, 2 /k   , where   is the wavelength of the wave 

propagation. Also the wave velocity is defined as /c   . 

 

Now is essential to proceed to a non-dimensional form of the above Eq. (3), in order to plot 

the graph of the relation between the frequency   and the wavenumber k  under the same 

scale. Thus, by the method of non-dimensional analysis and normalization [J. David Logan, 

“Applied Mathematics” (1997) by John Wiley & Sons/  A. Papaioannou, “Fluid Mechanics” 

(2002) Korali editions] we choose the following way to convert the dimensional quantities 

, k  to the non-dimensional , k . 
 

Let the non-dimensional angular frequency be  





. 

Also, let the non-dimensional wavenumber be 
k

k
K

. 

 

Substituting the dimensional angular frequency and wavenumber,     and k k K  

respectively, into the Eq. (3) we get 
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Note that the above Eq. (4) has two degrees of freedom and as a consequence the way to con-

vert it to a non-dimensional form is unique. Thus, we set 
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Finally substituting the relations (5a) and (5b) into the Eq. (4), we derive the following 
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where the negative frequency has no physical interpretation and consequently is rejected. Fi-

nally, we get the dispersion relation (red curve) 
 

2

21

k

k
          (6) 

 

The last expression [Eq. (6)], is the dispersion relation between the dimensionless angular 

frequency   and the dimensionless wavenumber k  of the plate, in the context of the problem 

of wave propagation through an infinite plate of the Kirchhoff’s model and is illustrated on 

the figure below. On the first of the following figures as for the CPT, is illustrated the com-

parison between the initial regarded Kirchhoff’s Plate Theory and the subsequently corrected 

Kirchhoff’s Plate Theory. The second one is the above Eq. (6), which is supplied with the ro-

tary inertia term on the governing equation of motion. This term was proposed by the Lord 

Rayleigh and gives by far better results as for the physical interpretation of the “Kirchhoff’s 

Plate Theory”. Thus, the blue curve of the Figure 1 is the initial regarded Kirchhoff’s Plate 

Theory, which derives from the governing equation (1) without the rotary inertia term, as 

seems below 
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or 00
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0 0I Dw w         (7`) 
 

and regarding the same harmonic functions of the vertical displacement 0w  , we get 
 

2 4
0 0I D k          (8) 

 

Also we consider the same non-dimensionalization of the Eq. (8) in order to compare its form 

with those of the Eq. (3). Thus, we get 
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where the negative frequency has no physical interpretation and consequently is rejected. Fi-

nally, we get the dispersion relation (blue curve) 
 

2k          (9) 
 

 
Figure 1: Dispersion Curves of frequency-wavenumber as for the Classical Kirchhoff’s Plate Theory. 

 

Subsequently, there are illustrated the dispersion curves of the non-dimensional phase veloci-

ty of the wave propagation and the non-dimensional wavenumber. Further, it is shown the re-

lation between the non-dimensional group velocity of the wave propagation and the non-

dimensional wavenumber. However, on the last section 3 of this part the comparison of the 

models of the plates is related to the CPT with the rotary inertia term, because it is more es-

sential to compare our results of the higher-order plate theories with the “optimized” CPT 

with the rotary inertia term. Thus, by definition the non-dimensional phase and group veloci-

ties of the CPT (Rayleigh) are given respectively by the relations 
 

21
p

k
c

k k


         (10) 

 

and 
3

3
2

2

1
g

d k k
c

dk k


        (11) 

and the non-dimensional phase and group velocities of the CPT without rotary inertia term are 

the following, 
 

pc k
k


  (12)  and  2g

d
c k

dk


 (13) 
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Figure 2: Dispersion Curves of phase velocity-wavenumber for the Classical (Kirchhoff’s) Plate The-

ory. 
 

 
Figure 3: Dispersion Curves of group velocity-wavenumber for the Classical Plate Theory. 

And finally we gather the curves of the two precious figures in order to compare more effi-

ciently the results of the CPT with and without rotary inertia. 
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Figure 4: Comparison of the dispersion curves of phase and group velocity-wavenumber for 

the CPT. 
 

 

Further, notice that the behavior of the phase and group velocities for the CPT with rotary in-

ertia is bounded for larger and infinite values of wavenumber. To illustrate this fact better, we 

plot again only the phase and group velocities of the CPT with rotary inertia for a wider range 

of wavenumber. It is regarded adequate to make the choice for [0,10]k . Thus, we get the 

following figure  
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Figure 5: Dispersion Curves of phase/group velocity-wavenumber for the CPT with rotary inertia 

(Rayleigh). 
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2. Wave propagation through infinite medium for the TSDT 
 

As for the model of the Third-Order Shear Deformation Theory, we get the three last equa-

tions of motion (of the total five) because these include the vertical variation 0w . These are 

the Eqs. (14c), (14d), (14e) of the section 6.2 of the Part B of this dissertation.  

Subsequently, we are going to express in a shorter form the aforementioned equations in order 

to simplify the calculations. Thus, at a first glance some terms in the equations can be gather 

together and substitute by a single symbol as seems below. 
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Substituting the necessary results of the above into the Eq. (14c) of the section 6.2 (PART B) 

and neglecting the external load in the right-hand side of the same equation, we get 
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Following the same path for the Eq. (14d) of the section 6.2 (PART B), we get 
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And finally, as for the Eq. (14e), 
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Thus, we have managed to create a more abbreviated form of the last three governing equa-

tions of motion of the model of TSDT. 
 

Since there are three degrees of freedom ( 0w , x , y ), this set of equations describes three 

wave modes. However, the three above equations of motion can be concentrated to a single 

equation in which the three degrees of freedom will be decoupled and consequently we are 

able to produce the dispersion relation of the model of TSDT. The previously described way 

is usual when we have a system of differential equations and we mean to couple the total 

number of them to one single equation. However, at this moment is regarded more efficient 

and smart to proceed with an alternative approach of extracting the dispersion relation, be-

cause the decoupling of the three partial differential equations in going to appear directly due 

to the initial assumption of the one-dimensional wave propagation along the 1x -axis of the 

plate, which demands the elimination of the 2x -spatial derivatives as shown on the conse-

quence. 

 

As for this alternative approach, we consider the equations (1) with 0q  on the right-hand 

side, (2) and (3) directly and we assume solutions of the form  
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Thus, the three degrees of freedom of the governing equations (1), (2) and (3) are harmonic 

functions of the time and space in the context of the problem of TSDT. 
 

Note that the wave propagates dispersively along the horizontal planes of the plate. Further, 

on the above Eqs. (a), (b), (c) the vector r  denotes the position vector to a point on the plane 

of the wave and n  is the unit normal vector to the plane of wave ,as shown on the Figure 4.2 

of the book of Karl F. Graff, “Wave Motion in Elastic Solids”, pp. 215 presented below. 
 

 
 

In the context of this problem we study the in-plane wave propagation inside an in-plane iso-

tropic media. Thus, considering a one-dimensional wave propagation along the x - axis of the 

isotropic material, we have only the x -dependence of the harmonic wave. 
 

Consequently, the propagating two-dimensional plane disturbance of the above figure be-

comes one-dimensional by rotating the vector r  until it coincide with the x -axis. For such a 

disturbance, each particle along the line (“plane”) defined by constanttn r , where 

c   (as defined above) has the same displacement as exactly its neighbor particles. On 

a next step, expressing the inter product of the vectors,  
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and      
1 D
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we finally get a simple product of the first components of each vector,  

 

1x xn r  and substitute it into the Eqs. (a), (b), (c) 
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Remind here that k  is the wavenumber of the propagation,   is the angular frequency and c  

is the phase velocity of the wave propagation. 
 

Further, to reduce the size and the complexity of calculations after the substitution of the Eqs. 

(a`), (b`), (c`) into the Eqs we procced to some calculations of separate terms existing on the 

aforementioned governing equations. Is also obvious that we have zero 2x  (or y ) - spatial 

derivatives, which leads to the elimination of the respective terms of the Eqs. (1), (2), (3). 

Consequently, the final form of the governing equations of the TSDT through the one-

dimensional wave propagation and without externally applied loads (free surface) are the fol-

lowing 
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Note that the above Eqs. (6a), (6b) and (6c) are decoupled. Namely the first two Eqs. are cou-

pled and both of them includes two degrees of freedom 0w  and x , whereas the third one is 

decoupled from the aforementioned equations because it includes only the y  variable. This 

fact was expected due to our initial assumption of the infinite plate along one direction, here 

the 1x -direction. This consideration leads to the elimination of the lateral (to the direction of 

the wave propagation) distortion of the plate, namely  0y  and finally we treat it as a 

beam or so called plate strip (since the length of the plate is regarded here very large in com-

parison with its breadth). Thus, we are going to occupy with a 2x2 system and through the 

two degrees of freedom 0w  and x  and the Eqs. (6a) and (6b), we are going to extract the dis-

persion curve of the problem.  
 

Subsequently, substituting the above calculated derivatives into the Eqs. (6a) and (6b) we get 

the following results. 
 

First, from the Eq. (6a) 
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From the Eq. (6b), 
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Subsequently, we note that the above three equations consist a 2x2 system with respect to 

three unknowns 1B , 2B , namely the amplitudes of the displacements 0w , x  respectively. 
 

Equating now the determinant of the coefficients 1B , 2B  to zero in the above system yields 

the dispersion relation, as will be shown on end of this section. This is rational because the 

sufficient and necessary condition for the existence of non-trivial solution of the aforemen-

tioned system, is its zero determinant. 
 

However, to simplify the form of the above equations, we set specific symbols for the quanti-

ties multiplied with the coefficients 1B , 2B ,  
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By this way the 2x2 system is simplified to the following form,  
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Now the determinant is clear to be written,  
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First, we calculate the quantities inside the brackets of each part A , B  of the determinant. 

Second, we try to isolate some specific expressions (which do not contain the wave number k
or the angular frequency  ) inside the aforementioned parts in order to make it easier on the 

total relation of the zero determinant to express explicitly the angular frequency through the 

wavenumber. 
 

As for the first part ( A ), 
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(and grouping together the terms with the same size of exponent on the k  and  ) 
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As for the second part ( B ), 

 

12 21

22
2

4 4 4 4 0 4 42

2 2
2

0 4 4 0 0 4 42 2

2 2

4 4 4 4 0 4

2 4 4 6

2 2 2 4

4 2 2 2 2
4

4

2 2 2

(1 ) (1 )(1 )

2

(1 )

2

(1 )

B

G G G
c J c J K c J

v vv

G G G
K c J K K c J

v

G G
c J c J K c J

v

k k k

k k k

k k k





 

  

 





  

 

 

(and grouping together the terms with the same size of exponent on the k  and  ) 
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Now combining the last two expressions, we get 
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Now in order to proceed to the non-dimensionality of the above dispersion relation, we calcu-

late separately some coefficients which are repeated constantly and also include terms used 

previously for the abbreviation of the governing equations of the model of TSDT. By this way 

these terms can be written extensively again and after that can be simplified in order to result 

to new coefficients that appear explicitly the fundamental units. Thus,  
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Note that the second calculated term form the above two, is of much smaller order since due 

to the initial assumption of the moderately thick plate, 10 3h h . However we proceed to the 

total calculation of the coefficients of 6k , 2 4k , 2 2k , 4 2k , 4 , 2 , 4k  in order to de-

cide about the size of the contribution of each term to dispersion relation, Eq. (8).  

Consequently, we proceed to a specific notation of the aforementioned coefficients through 

which we separate the net numbers (dimensionless quantities) from the dimensional parame-

ters of the material or the geometry of the plate, such as G ,  , h . Thus, we insert the coeffi-

cients 60a , 42a , 
1
2 2a , 

2
2 2a , 24a , 04a , 02a , 40a . The rationality of the sub indexes of these 

coefficients i ja  is that the first index i  declares the exponent of the wavenumber (
ik , 

2, 4, 6i ) and the second shows the exponent of the angular frequency (
j , 2, 4j ). By 

this way it becomes easier to distinguish the quantities that contribute to the elimination of the 

“dimension” from the Eq. (8). 
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The coefficient of 2 4k , 
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The third term 2 2k , 
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As for the coefficient of the 4 , 
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As for the coefficient of the 2 , 
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The coefficient of the 
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Thus, substituting the final and smarter form of the above coefficients into the Eq. (8), 
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As a next step we consider the non-dimensional wavenumber k  and the non-dimensional an-

gular frequency  , as exactly shown for the Kirchhoff’s Plate Theory. Thus,  
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and by substituting the above relations to the Eq. (8`), we get 
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  (9) 

 

 

For the sake of convenience, we repeat the values of the constants 60a , 42a , 
(1)
2 2a , 

(2)
22a , 24a , 

04a , 02a  and 40a  below. 
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60a  521.19 10   

42a  521.19 10   

(1)
2 2a  210.80 10   

(2)
22a  24.40 10   

24a  55.298 10   

04a  25.40 10   

02a  15.33 10   

40a  28.88 10   

 

Subsequently, from the Eqs. (5a), (5b) of the section 1 of the present part (Part C), we have 
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h
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E

v h
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2 2
4
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12

(1 )

E

v h
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Thus, substituting the above dimensional quantities into the coefficients of each terms of the 

Eq. (9), namely  
6k , 2 4k , 2 2k , 4 2k , 

4 , 2 , 
4k , we get the following separate 

results, before we derive the final non-dimensional form of the Eq. (9). 
 

For the coefficient of the term involving  
6k , 
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For the coefficient of the term including 
4k , 
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4
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The coefficient of 4 2k   becomes,  
 

22
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4
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And the coefficient of the term including 2 4k   is converted to, 
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As for the coefficient of the term including 2 2k  , 
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And finally for the coefficient multiplied with 
4 ,  
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Note that all the above results of the coefficients are non-dimensional and the only parameter 

which remains is the Poisson’s ratio v . Now, it is time to substitute the above results to the 

Eq. (9). 
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Subsequently, we use another notation for the coefficients of 
6k , 2 4k , 2 2k , 4 2k , 

4 , 2 , 
4k , in order to simplify the form of the last dispersion relation. Thus,  
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And after this step, we get the following form of the non-dimensional dispersion relation for 

the TSDT, 
 

 

(10) 

 
 

The next important stage, is to express the non-dimensional angular frequency   explicitly as 

a function of the non-dimensional wavenumber k , in order to illustrate their relation on spe-

cific plots. To accomplish the previous, we choose to diminish the grade of the polynomial 

equation (10) as for the  . Thus, we set 2 y  and substitute into the Eq. (10). 
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And grouping appropriately the terms in order to solve the binomial equations as to 2y  , 
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The discriminant of the above binomial equation is, 2 4B AC  and the solutions of the 

above equation are  
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However now we have to examine which of the four relations between the   and k  give pos-

itive values for the angular frequency  , because the negative values of the   have no phys-

ical interpretation. Consequently, we mean to keep only the branches with positive values for 

the   and we are going to reject those which give negative values for the aforementioned 

quantity. Further, we have to investigate the sign of the quantities under the square roots and 

the sign of the discriminant in order to find if we have real or/and imaginary angular frequen-

cies. 

As for the coefficients of the binomial equation A , B , C , it is obvious that 0A , 0B  

and 0C . Subsequently, we investigate the sign of the discriminant 2 4B AC , which 

is an eighth-order polynomial as shown below. 
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By the program Matlab R2013a, choosing the value of Poisson’s ratio 0.3v  (usual value 

for a wide range of materials) and the range of non-dimensional wavenumber [0,1]k , we 

find that the discriminant   is positive for all values of k  inside the interval [0,1] . Thus, 

0 . Note also that if we substitute the values of the coefficients inside the brackets of the 

above discriminant, we find that 
 

8 4 22.3367 6.1729 8.96 1k k k   
 

which shows that the discriminant could take negative values for extremely large wave-

numbers, since the only negative coefficient is this of 
8k . However wavenumbers of extreme-

ly large size will not occupy us on the wave propagation through plate, since they have not so 

clear physical impact on these applications. 
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Further, we investigate the sign of the under square root quantities, B   and B  , 

in order to conclude if we have real or imaginary angular frequencies. The first one relation,  
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is obviously positive ( 1 0y ) since we have 0  and 0 0B B . 
 

As for the second relation,  
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it is not clear if 2y  takes positive or negative values inside the interval [0,1]k . Consequent-

ly, by the aid of the mathematical package Matlab R2013a once again, we find that 2 0y  

for all values of k  inside the interval [0,1] . 
 

Finally, we conclude that we have only real values of the non-dimensional angular frequen-

cies and further we choose to illustrate only the two positive of the totally four, namely the  
 

2
Shear

B

A



        (11) 

 

and   
2

flex

B

A



        (12) 

The relation (11) is illustrated by the red curve, which is the shear branch of the TSDT and 

the relation (12) is illustrated by the green curve, which is the flexural branch of the TSDT, 

shown on the following figure (Figure 6). 
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Figure 6: Dispersion Curves of frequency-wavenumber as for the Third-Order Shear Deformation 

Plate Theory. 
 

The next step is to present the form of phase and group velocity of the wave propagation. 

Thus, it is shown the relation between the non-dimensional phase velocity of the wave propa-

gation and the non-dimensional wavenumber and subsequently the relation between the non-

dimensional group velocity of the wave propagation and the non-dimensional wavenumber. 

However, here we have two branches as for the phase velocity, namely the shear and the flex-

ural due to the existence of two branches for the angular frequency. For the same reason, we 

have two branches for the group velocity, one shear and one flexural. Thus, as for the phase 

velocities we get  
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As for the group velocities, we derive 
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Figure 7: Dispersion Curves of phase/group velocity-wavenumber as for the TSDT. 

 

In conclusion, we derive dimensionless dispersion relations of the model of Third-Order 

Shear Deformable Plate, which essentially coincide with the model of Bickford-Reddy Beam, 

due to the assumption of one-dimensional wave propagation along the infinite dimension of 

the plate. 
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3. Comparison of the dispersion curves of the models of CPT, FSDT and TSDT 
 

Finally, on the present section taking into account the plots of the previous two sections (sec-

tion 1 and 2 of the Part C) and the corresponding plots of the APPENDIX B (for the 

Mindlin’s Plate), we set them into the same figures as for the kind of dispersion relation (fre-

quency, phase or group velocity) in order to compare the results of the three plate models 

(CPT, FSDT and TSDT). To compare with more accuracy the models and to acquire a better 

sight as for their asymptotic behavior for larger wavenumbers, we are going to present the 

aforementioned plots for (an appropriate per case) different range of the wavenumbers. The 

last change will not influence the sign of the discriminant and the quantities existing under the 

square roots of the frequencies (section 2 of the Part C and APPENDIX B). 
 

 
Figure 8: Comparison of the frequency-wavenumber dispersion curves. 

 

In order to compare the frequencies of the different “Plate Theories”, we choose the range of 

the wavenumber [0, 4]k . This choice is on purpose because the flexural branch of the 

TSDT gives good results for small values of k . Especially for 3k  the results of the flexur-

al TSDT coincide with that of the flexural part of FSDT. Thus, the model of FSDT gives bet-

ter results in comparison with the model of TSDT for larger wavenumbers. 
 

Remark also that the two higher-order plate theories examined in the context of this disserta-

tion have identically similar behavior as for the shear branches for a wide range of wave-

numbers.  
 

Further note that the CPT overpredicts the values of frequencies but coincidence with those of 

the higher-order plate theories for very small wavenumber near the zero. This fact is obvious 

from the above figure (Figure 8), since the unique branch of the CPT is compared with the 

flexural branches of the higher-order plate theories. The last is justified and rational because 
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the dispersion relation of the CPT contains only the variation 0w , which affects the vertical 

motion (flexural response) of the plate, whereas the dispersion curves of the FSDT and TSDT 

are divided to two branches, one related to the vertical displacement 0w (flexural branch) 

and the other associated to the in-plane motion (shear branch) through the displacement x . 
 

In the sequel, is given the Figure 9 in which are illustrated the phase velocities of the three 

plate models. 

 
Figure 9: Comparison of the phase velocity-wavenumber dispersion curves. 

 

As for the comparison of the phase velocity, the shear as well as the flexural branches of the 

FSDT, TSDT follow the behavior of the dispersion curve of CPT as k . This behavior is 

regarded well because for large values of wavenumbers the curves are bounded, fact that as-

sures the rightness of the non-dimensionalization used previously on this part (Part C) and 

also the successful choice of the shear correction factor of the model of FSDT. Thus, remark 

that the curves of CPT, the shear branch of the FSDT and the TSDT and the flexural branch 

of the TSDT converge to the unit as k , whereas the flexural branch of the FSDT con-

verges to the 0.5  as k . 
 

However, the shear and flexural branches have remarkably different behavior around the re-

gion of zero wavenumber. This limit process as 0k  is shown explicitly for the phase ve-

locities of the FSDT on the Appendix B. In the sequel, it will be presented for the phase ve-

locities of the TSDT. 
 

Let 0k  first for the Eq. (13), 
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Let now 0k  for the Eq. (14), 
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[due to the indeterminate forms of the numerator and denominator 
0

0
 as 0k , we perform 

once again the so called L’ Hospital’s Rule] 
 

Taking apart the derivatives of the numerator and denominator respectively, we have 
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And taking the limit of the numerator as 0k , we have 
0

lim 0
k

Num . 

The derivative of the denominator is, 
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k k kB



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And similarly taking the limit of the above, we have 
0

lim
k

Denom . 

 

Finally, for the phase velocity of the flexural branch we get 
0

0
lim 0p flex
k

c . 

 

Subsequently, are presented the group velocities of the three plate models on the following 

figure (Figure 10). 

 
Figure 10: Comparison of the group velocity-wavenumber dispersion curves for [0,20]k . 

 

Comparing the shear branches of the FSDT, TSDT, we note that they follow the behavior of 

the dispersion curve of CPT as k . This behavior is regarded well because for large val-

ues of wavenumbers the curves are bounded, fact that similarly to the Figure 9 assures the 

rightness of the non-dimensionalization used previously on this part (Part C) and also the suc-

cessful choice of the shear correction factor of the model of FSDT. Thus, remark that the 

curves of CPT, the shear branch of the FSDT and the TSDT converge to the unit as k , 

whereas the flexural branches of the FSDT and TSDT converges to the 0.5  as k . The 

range of wavenumber [0,20]k  is chosen purposely in order to illustrate better the behavior 

of the group velocities for infinite wavenumbers, as k .  

However, the shear and flexural branches have remarkably different behavior around the re-

gion of zero wavenumber. This limit process as 0k  is shown explicitly for the group ve-
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locities of the FSDT on the Appendix B. In the sequel, it will be presented for the group ve-

locities of the TSDT. To acquire a better insight of the limit process near the zero wave-

numbers, we represent the same curves again but with a shorter range of the wavenumber on 

the horizontal axis, namely [0,10]k  (Figure 11). 
 

 
Figure 11: Comparison of the group velocity-wavenumber dispersion curves for [0,10]k . 
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We perform once again L’ Hospital’s Rule, since the limit continues to be of indeterminate 

form 
0

0
. Taking apart the derivatives of the numerator and denominator of the previous lim-

it, we find that the indeterminate form of the limit has not been eliminated yet. Thus, we con-

clude that after a few more iterations of the L’ Hospital’s Rule we reach the conclusion that 
 

0
lim 0g flex
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c . 
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Appendix A.  Transformation from the Cartesian to the local boundary normal-tangent  

                        co-ordinate system  

 

[References: J.N. Reddy “Theory and Analysis of Elastic Plates and Shells”, Chapter 1.4/ 3.5 

and the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and transformation of physi-

cal quantities under rotations of the reference system”]. 

 

First, we transform the appropriate boundary expressions in terms of the displacements, forces 

and moments over the edge of the plate (and specifically the arbitrary curve   surrounding 

the mid-surface of the plate). For this purpose the Cartesian orthogonal coordinate system 

1 2 3( , , )x x x  is transformed to a local coordinate system ( , , )n s z , which “follows” the shape 

of the arbitrary curve   on the lateral surface of the plate. The expression “follows”, denotes 

that the coordinate system ( , , )n s z  moves upon the curve  , so that the -axisn  be normal to 

the lateral boundary (with a unit normal n̂ ) and -axiss  be tangential to the same curve (with 

a unit tangential vector ŝ ). These vectors projected on the Cartesian coordinate system 

1 2 3( , , )x x x , are expressed as 
 

1 1 2 2
ˆ x x x xn nn e e         (1) 

 

1 1 2 2
ˆ x x x xs ss e e         (2) 

 

Further, we suppose that the unit normal n̂  is oriented at an angle   clockwise from the posi-

tive 1-axisx , then its direction cosines are 
1

cosxn   and 
2

sinxn  . Similarly, the di-

rection cosines of the vector ŝ  are 
21

sinxxs n   and 
12

cosxxs n  . 

The Eqs. (1) and (2) can be expressed in matrix form as seem below, 

 

1 2

2 1

1 2 1 1

1 2 2 2

ˆ

ˆ

x x x

x

x x

x x x

x

x x

n n

s s

n n

n n

e en

s e e
      (A) 

 

and 
 

1

2

1 2

2 1

ˆ

ˆ

x x

x x

x

x

n n

n n

e n

e s
       (A`) 

 

Also the transverse normal coordinate 3x  is parallel to the -axisz  and the both used coordi-

nate systems [ 1 2 3( , , )x x x  and ( , , )n s z ] are right-hand side. 

The entire above are illustrated clear on the following figure (Figure 6), 
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Figure 6: Transformation from the global coordinate system 1 2 3( )x x x  to the local coordinate system 

( )ns z . 
 

 

Subsequently, we set the Figure 7, where is presented the top view of the plate in order to 

show the transformation of the components of the displacement field u .  

Note that the vector (first order tensor) of the displacement field u , is invariant and inde-

pendent from the coordinate system on which is expressed. However, its components are 

frame-dependent, which means that their values with respect to a reference frame differ from 

the others with respect to a different frame.  

 

 
Figure 7: Transformation from the global coordinate system 1 2 3( )x x x  to the local coordinate system  

shown on the mid- plane 1 2( , , 0)x x . 
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On the context of our problem of CPT, we assume that the transformation from 1 2 3( )x x x  to 

( )n s z  is clockwise, whereas the transformation from ( )n s z  to 1 2 3( )x x x  is counterclock-

wise. This fact is going to be verified from the sign of the determinant of the rotation matrix.  

 

Thus, the displacement field is expressed as 
 

1 2 30 0 0x x xu v wu e e e        (3) 

 

1 2 30 0 0n sx x xu u wu e e e        (4) 

 

Multiplying both sides of Eq. (3) by 
1 2 3
, , x x xe e e , respectively, we obtain  

 

1 1 1 1 2 1 30 0 0( ) ( ) ( )x x x x x x xu v we u e e e e e e  

0 0 0cos cos(90 ) cos(90 )o ou v w   

0 0cos sinu v          (5) 

 

2 2 1 2 2 2 30 0 0( ) ( ) ( )x x x x x x xu v we u e e e e e e  

0 0 0cos[ (90 )] cos cos(90 )o ou v w   

0 0sin cosu v          (6) 

 

3 3 1 3 2 3 30 0 0( ) ( ) ( )x x x x x x xu v we u e e e e e e  

0 cos(90 )ou 0 cos(90 )ov 0 0cos(0 )ow w     (7) 

 

Further the left-hand side of the Eq. (5), (6) and (7) due to (4), 
 

1 0 nx ue u          (8) 

2 0 sx ue u          (9) 

3 0x we u          (10) 

 

Finally substituting the Eqs. (8), (9), (10) to the Eqs. (5), (6), (7) respectively, 
 

0 0 0
(8)

cos s5) i( nnu u v   
 

0 0 0
(9)

sin c6) o( ssu u v   
 

0 0
(10)

1(7) w w  

 

Consequently, the rotation matrix of the components of the displacement field

0 0 0( , , )u v wu  from the Cartesian coordinate system 1 2 3( )x x x  to the local coordinate 

system ( )n s z , is  
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cos sin

sin cos

1

0

0

0 0

 

 a  

 

And as an additional expression in matrix form, 
 

1 2

2 1

0 0 0

0 0 0

0 0 0

00

0 0

cos sin

sin cos

1 10 0 0 0

n

s

x x

x x

u u u

u v v

w w

n n

n n

w

 

     (B) 

 

To verify that the above matrix a  is a rotational orthogonal matrix, examine its determinant, 
 

2 2det( ) cos sin 1 a .  
 

The sign of the determinant defines the orientation of the orthogonal reference system, which 

in our case is positive, so the ( , , )n s z  system is right-which coincidence with our initial as-

sumption. 

 

Proceeding to the inverse transformation, we multiply both sides of Eq. (4) by 
1 2 3
, , x x xe e e , 

respectively,  
 

1 1 1 1 2 1 30 0 0( ) ( ) ( )n sx x x x x x xu u we u e e e e e e  

0 0 0cos( ) cos(90 ) cos(90 )o o
n su u w   

0 0cos sinn su u          (11) 

 

2 2 1 2 2 2 30 0 0( ) ( ) ( )n sx x x x x x xu u we u e e e e e e  

0 0 0cos (90 ) cos( ) cos(90 )o o
n su u w   

0 0sin cosn su u          (12) 

 

3 3 1 3 2 3 30 0 0( ) ( ) ( )n sx x x x x x xu u we u e e e e e e  

0 cos(90 )o
nu 0 cos(90 )o

su 0 0cos(0 )ow w      (13) 

 

The left-hand side of the Eqs. (11), (12) and (13) due to the Eq. (3), 
 

1 0x ue u          (14) 

2 0x ve u          (15) 

3 0x we u          (16) 

 

Finally, substituting the Eqs. (14), (15), (16) to (11), (12) and (13), we get 
 

0 0 0
(14)

cos s(1 in1) n su u u   

0 0 0
(15)

sin cos(12) n su u u   

0 0
(16)

(13) 1w w  
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Consequently, the inverse rotation matrix from 1 2 3( )x x x  coordinate system to ( )n s z , is  

 

cos sin

sin cos

1

0

0

0 0

T

 

 a  

And in matrix form we have, 
 

1 2

2 1

0 0 0

0 0 0

0 0 0

cos sin

sin cos

1 1

00

0 0

0 0 0 0

n n

s s

x x

x x

nu u u

v u u

n

n n

w w w

 

     (C) 

 

Also, as before we have the determinant 2 2det( ) cos sin 1T  a . 

 

In addition, the same rotation law is valid for the variations of the displacements. Thus,  
 

1 2

2 1

0 0 0

0 0 0

0 0 0

cos sin

sin cos

1

00

0 0

0 0 0 0 1

n n

s s

x x

x x

u u un

v u un

w

n

w

n

w

  

  

  

 

    (C`) 

 

 

Further recalling the boundary terms of the variational equation (3) of the section 4.5, we no-

tice that there also the spatial derivatives of the variation 0w  on the lateral boundary of the 

plate, which need to be transformed to the curvilinear coordinate system ( )n s z . Subsequent-

ly using the transformation law (C`), we get 

 

1 2

2 1

0 1 0

0 2 0

/ /

/ /

x x

x x

n n

n n

w x w n

w x w s

 

 
    (D) 

 

In addition, remark that the given surface tractions 1T̂ , 2T̂ , 3T̂  defined on the section 4.4 of 

this dissertation, are first-order tensors or vectors, which are dependent from the functions 

0 1 2( , )Ta x x , 0 1 2( , )Tb x x , 1 1 2( , )Ta x x , 1 1 2( , )Tb x x , 0 1 2( , )Tc x x . Consequently these 

functions follow the transformation law of the vector and are transformed to 0 ( )T na s , 

0 ( )T sa s , 1 ( )T na s , 1 ( )T sa s , 0( )Tc s , as shown thoroughly above. Thus,  

 

1 2

2 1

0 0 0

0 0 0

0 0 0

cos sin

sin

00

0 0

0 0 0

cos

1 0 1

T T n T n

T T s T s

T T T

x x

x x

n na a a

b a a

c c

n n

c

 

              (T0) 

 

and 
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1 2

2 1

1 1 1

1 1 1

cos sin

sin cos

T T n T n

T T s T s

x x

x x

n n

n n

a a a

b a a

 

 
              (T1) 

 

At this point, it is essential to remark the curvilinear dependence of the functions 0 ( )T na s , 

0 ( )T sa s , 1 ( )T na s , 1 ( )T sa s , 0( )Tc s . In contrast to the respective functions on the Cartesian 

coordinate system, the functions 0T na , 0T sa , 1T na , 1T sa  and 0Tc  are dependent from the 

variable s . This variable counts the length of the curve  , which declares the position of a 

point around the edge of the plate as to a specific principal point.  
 

In everyday language, a curve is a subset of 2  (plane) or 3  (geometric space) equipped 

with a specific structure. The most of the curves of the 2 , which concern now our problem, 

can be expressed as graphs of functions, namely 

 

, ( ) : [0, ]s f s s I l , 
 

where ( )f s  is a well-posed function, inside the field [0, ]l  and l  is the length of the curve 

 . 
 

However, the analytic description of the curve, which is valid for all the curve which is valid 

for all the curves inside the spaces 2 , 3  and in general inside the space N , is  

 

( )sr r ,  s I  

 

where 1 2( ) ( ( ), ( ), ..., ( ))Ns x s x s x sr  and especially for a two dimensional-curve we get, 

 

1 1

2 2

( )

( )

x x s

x x s

s I

 

 

The above description is usually called in the literature, parametric representation of the 

curve. Consequently, the same rationality follows the notation of the functions 0T na , 0T sa , 

1T na , 1T sa  and 0Tc . 

 

Now we examine the transformation law of stresses, which is identical to the transformation 

law of the thickness-integrated forces and moments. This is justified due to the fact that these 

forces and moments are integrated along the thickness of a thin plate in the context of the 

problem of CPT and are explicitly dependent from the vertical ( 3x ) spatial variable. 
 

It is meaningful to note that the stress matrix ( i j ) is a second-order tensor, which leads to 

the need of the rotation matrix of two vectors in order to define its rotation.  
 

This transformation has to do with the rotation of the system about the vertical axis 3x z  

at an angle  , which is the simplest case of transformation (planar rotation). Consequently, 

the transformation law of the stresses, is given by the following relation 
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T
σ aσ a ,         (17) 

 

where :σ  are the components of stresses on the Cartesian coordinate system 1 2 3( , , )x x x and        

:σ  are the components of stresses on the local coordinate system ( )n s z . 

 

Further, due to the proof of the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and 

transformation of physical quantities under rotations of the reference system”, the rotation 

matrix a  and is transpose T
a are these of the above relations (B) and (C). 

 

The notation of the components of the two stress matrices is, 
 

11 12 13

21 2 2 23

31 32 33

  

  

  

  (E) and  

n n n s n z

s n s s s z

z n z s z z

  

  

  

   (E`) 

 

We calculate the right-hand side of the Eq. (17), substituting the Eqs. (B), (C) and (E`), 

 

 

1 2 1 2

2 1 2 1

1

0 0

0 0

0 0 0 0 1

n n n s n z

s n s s s z

z n z s z z

x x x x

x x x x

n n n n

n n n n

  

  

  

σ  

 

1 2 1 2 1 2

2 1 2 1 2 2 11

1 2
0

0

0 0 1

n n s n n s s s n z s z

n n s n n s s s n z s z

z n z s z z

x x x x x x

x x x x x x

x x

x x

n n n n n n

n n n n n n

n n

n n

     

     

  

 

 

1 2 2 1

1 2 2 1

1 2 1 2 1 2

1 2 1 2 2 1

1 2 2

1 2 1 2

1 2 1 2

1

2 2 2 2

2 2 2 2

nn s s nn s s n z s zx x x x

nn s s nn s s n z s zx x x x

z n z s z n z s

s n n

z z

s s n n s

s n n s s n n s

x x x x

x x x x

x x x x x x

x x x x x x

x x x x

n n n n n n n n n n

n n n n n n n n n n

n n n n

n n n n

n n n n

   



     

     

 



  

 

 

Due to the symmetry of the stress matrix in the context of our problem, we get 
 

1 2 1 2

1 2 2 1

1 2 1 2

1 2 2 1

1 2 2

1 2

1

1 2

2 2 2 2

2 2 2 2

2

2

n n s s s s n n n z s zn sx x x x

s s n n n n s s n z s zx x x x

z n z s

n s

n s n s

z n z s z z

x x x x

x x x x

x x x

x

x x

x

xn n

n

n n n n n n n n

n n n n n n n n

n n n

n

n

     

  



  

   









 

Also due to the initial assumptions of the problem of CPT as for the displacement, strain and 

stress field of the plate in conjunction with the aforementioned stress matrix σ , 
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1 2 1 21 2 1 2 1

2 2 2 22 ( ) ( )nn ns s s s s nn ns n zx x x xx x x x xn n n n n n n n n      



2 s zxn 

1 2 2 11 2 1 2 2

2 2 2 2( ) ( ) 2s s nn ns nn ns s s n zx x x xx x x x xn n n n n n n n n      
1 s zxn 

1 z nxn 
2 z sxn 

2 z nxn 
1 z sxn  z z

1 2 1 2

1 2 2 1

1 2 1 2

1 2 1 2

2 2 2 2

2 2 2 2

2 ( ) ( ) 0

( ) ( ) 2 0

0 0 0

n n n s s s s s n n n sx x x x

s s n n n s n n n s s sx x x x

x x x x

x x x x

n n n n n n n n

n n n n n n n n

     

       

 

And finally we derive the below equations, 
 

1 21 2

2
11

2 2nn ns s sx xx xn n n n                 (18a) 

 

2 11 2

2
22

2 2nn ns s sx xx xn n n n                 (18b) 

 

1 21 212 2
2

1
2

s s nn n sx xx xn n n n                 (18c) 

 

Expressing the Eqs. (18a), (18b) and (18c) in matrix form,  
 

1 2

2 1

1 2

1 2

1 2

1 2 1 2

11

2

2 2

2 2

2

2

2
12

2

2

nn

s s

n s

x x

x x

x x

x x

x x

x x x x

n n n n

n n n n

n n n n n n

 

 

 

    (F) 

 

Further, we are going to use the inverse transformation of the stress matrix, in order to express 

the components of the stress of the curvilinear coordinate system in terms of the components 

of the Cartesian coordinate system. Thus, from rotation law  (17) we get the following. 

 

from the left

from the right

( )

( )

T
T T T T T T

T T T T

a

a

σ aσ a a σ a a σ a a σ I σ a

a σ a σ a a a σ a σI aσ σ a
  

 

Consequently, after a few calculations and the use unit matrix 

1 0 0

0 1 0

0 0 1

I , we have the 

inverse transformation law of the stresses, 

 
T

σ a σ a        (19) 

 

We calculate now the right-hand side of the Eq. (19), substituting the Eqs. (B), (C) and (E), 
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1 2 1 2

1 2 1 2

2 1 2 1

1 22 2 11

1

11 12 13

21 2 2 23

31 32 33

2 2 2 2
11 2 2 2 2 11 13 23

2 2 11

12 12

0 0

0 0

0 0 0 0

( ) ( )

(

1 1

)

2

x x x

x x x x

x

x x x x

x x x xx x

x

n n n n n n n n

n n n n

n n

n

n

n

n

n



 





  

  

     

 

σ

1 2 2 12 2 1

1 2 2 1

1 2

2 2 2 2
11 2 2 13 23

31 32

12 12

31 32 33

( ) 2x x x xx x x

x x x

x

x

xn n n n n n n

n n n n

n n   

   

 



 

Also due to the initial assumptions of the problem of CPT as for the displacement, strain and 

stress field of the plate in conjunction with the aforementioned stress matrix σ , 

 

1 2 1 222 11 1

2 2 2 2
11 22 2212 111 132( ) )2 (

x x x xx xx x xn n n n n nn nn      

σ

2 23xn 

1 2 2 11 2 21 212 1
2 2 2 2

22 11 11 22 12 3( ) ( ) 2
x x x xxx x xxn n n n n nn nn    

1 23xn 

1 31xn 
2 32xn 

2 31xn 
1 32xn  33

 

1 2 1 2

1 2 2 1

1 2

1 2

1 2

1 2

2 2 2 2
11 2 2 2 2 11

2

12 12

1
2 2 2

2 2 11 12 121 2 2

( ) ( ) 0

( ) ( ) 0
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Similarly, are expressed the thickness-integrated forces and moments in matrix form, 
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and the inverse transformation law of the (H) and (I), is exactly the same with the inverse 

transformation law of the stress field, namely the (G). 
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APPENDIX B: First-Order Shear Deformable Plate Theory (Mindlin’s Plate Theory) –  

                           Governing Equations and Dispersion Curves 
 

[References: Liew K.M., Wang C.M., Xiang Y., Kitipornchai S. (1998), “Vibration of Mindlin 

Plates - Programming the p-Version Ritz Method”,  Reddy J.N. (2007), “Theory of Elastic 

Plates and Shells”,  Reddy J.N. (2004), “Mechanics of Laminated Composite Plates and 

Shells- Theory and Analysis”]. 

 

The purpose of the present appendix is to extract the non-dimensional form of the dispersion 

relation of a one-dimensional wave propagation through an infinite medium, but at this mo-

ment the medium is an elastic plate subjected to the assumptions of the so called Mindlin’s 

Plate Theory or First-Order Shear Deformable Plate Theory (FSDT) without externally ap-

plied loads (free surface).  
 

The reason of the above effort is the comparison of the dispersion curves jointly of the three 

plate theories (CPT, FSDT, TSDT), which the most commonly used on the analysis of the 

motion of the vibrating plates. Except from the above reason, the main parts of this diploma 

thesis are dedicated the CPT and TSDT and there is no facts about the FSDT, which the in-

termediate (to the two previous) plate theory as for number geometric constraints during the 

deformation of the plate. Thus, the dispersion curve of the FSDT is a way to establish better 

our results for the CPT and the TSDT and further to give comments about the advantages and 

the disadvantages of each one theory. 
 

According to the literature, and especially taking into account the J.N. Reddy’s results for the 

governing equations of the plate in the context of FSDT, we have five equations of motion. 

However, as exactly on the TSDT the three of these equations which include the displace-

ments ( 0w , x , y ) are going to occupy us on the problem of wave propagation through in-

finite medium. Thus, regarding the Eqs. (10.1.33), (10.1.34), (10.1.35) of the book of J.N. 

Reddy (2007), “Theory and Analysis of Elastic Plates and Shells” (Chap. 10.1, pp. 366) and 

neglecting terms which insert elastic foundation and thermal effects (since there is no such 

assumption in the context of our problem) and assuming isotropic material, we get the follow-

ing governing equations of motion, 
 

2 2
0 02 2

0 02 2
1 21 2

x yw w
G h G h q I w

x xx x

 
       (1) 

 

2 2 2 23
02

22 2
1 2 1 2 11 2

12

x y x y

x x

wG h
D v D G h I

x x x x xx x

   
      (2) 

 

2 2 2 23
02

22 2
1 2 1 2 22 1

12

y x x y

y y

wG h
D v D G h I

x x x x xx x

   
      (3) 

 

where 2  is the shear correction factor which is included in the Mindlin’s Plate Theory in 

order to correct the distribution of the shear stresses along the thickness of the elastic plate.  
 

According to the chapter 2.3 of the reference Liew K.M., Wang C.M., Xiang Y., Kitipornchai 

S. (1998), “Vibration of Mindlin Plates - Programming the p-Version Ritz Method”, the val-

ues of the shear correction factor are dependent on those of the Poisson’s ratio, namely the 

shear correction factor is relates to the kind of material. For instance, regarding an isotropic 
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plate with Poisson’s ration 0.3v  (which is a usual value for a wide range of materials), the 

shear correction factor is 2 0.86 . 
 

Note also that the above equations of motion (1), (2) and (3) are found on the book of Graff 

Karl F. (1975) “Wave Motion in Elastic Solids” on the chapter 8.3 “Approximate theories for 

waves in plates, rods and shells” [Eqs (8.3.30), (8.331) pp. 488], which after expansion of the 

Laplace operators and substitution of Marcus moment 1 2/ /x yx x   conclude 

exactly to the same relations. However, in order to establish better our results we extract the 

single equation of 0w , which includes the previous three [Eqs (1), (2) and (3)] and represent 

the flexural response of the Mindlin’s plate and after that we are going to investigate the val-

ues of shear correction factor, which give the Kirchhoff’s model. Thus, by differentiating the 

Eq. (2) as for 1x  and the Eq. (3) as for 2x  and adding the results, we eliminate the Marcus 

moment 1 2/ /x yx x   and after that we conclude to the single equation of mo-

tion, given below. This process is also prescribed on the aforementioned reference, Graff Karl 

F. (1975) “Wave Motion in Elastic Solids” on the chapter 8.3 “Approximate theories for 

waves in plates, rods and shells” pp.488-492 and the Appendix of the reference, “Ship Dy-

namics” (2012), G.A. Athanassoulis, K.A. Belibassakis. 
 

3

2

3 2
2

0 0 0 02 20 212 12 12

h D h D h
D w w w w w q q q

G G Gh G
h

   





  
       (4) 

 

Let the shear corrector factor be inclined to infinity 
2 0 . Then it is obvious that we con-

clude to the Kirchhoff’s third governing equation of motion related to the vertical vibration of 

the plate.  
3

2
0 0 0

12

h
D w w hw q


   

2
0 0 2 0 0I w I w D w q   

 

At this point, we can get the dispersion curve of the wave propagation through the Mindlin’s 

plate by substituting the harmonic function of the vertical displacement into the Eq. (4). 

However for the sake of consistency with the corresponding section 2 of the Part C, we use 

directly the three equations of motion, Eqs (1), (2), (3) and substitute into them the harmonic 

functions of the displacements ( 0w , x , y ), which due to the previous assumption of the 

one-dimensional wave propagation take the following form 
 

1
1

( )i k x t
w eB


,       1

2

( )
x

i k x t
B e


 ,  1

3

( )
y

i k x t
B e


  

 

Further, the boundary of the one-directional infinite plate is free. Thus, 0q . 

Taking into account the above, the Eqs (1), (2) and (3) are converted to  
 

2
02
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11

xw
G h I w

xx


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2
02

22
11

x

x x

w
D G h I

xx


          (4b) 

 

23
2

22
1

12

y

y y

G h
G h I

x


           (4c) 
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Remark that the above Eqs. (4a), (4b) and (4c) are decoupled. Namely the first two Eqs are 

coupled and both of them includes two degrees of freedom 0w  and x , whereas the third one 

is decoupled from the aforementioned equations because it includes only the y  variable. This 

fact was expected due to our initial assumption of the infinite plate along one direction, here 

the 1x -direction. This consideration leads to the elimination of the lateral (to the direction of 

the wave propagation) distortion of the plate, namely  0y  and finally we treat it as a 

beam or so called plate strip (since the length of the plate is regarded here very large in com-

parison with its breadth). Thus, we are going to occupy with a 2x2 system and through the 

two degrees of freedom 0w  and x  and the Eqs. (4a) and (4b). After substituting the harmonic 

functions of the 0w  and x  into the Eqs. (4a) and (4b),  

2 2 2
1

2
20 0B I iG h hBk G k        (5a) 

 

2 2
2 21

2 2 0G h k D k G h IBiB         (5b) 

Subsequently, we note that the above three equations consist a 2x2 system with respect to 

three unknowns 1B , 2B , namely the amplitudes of the displacements 0w , x  respectively. 
 

Equating now the determinant of the coefficients 1B , 2B  to zero in the above system yields 

the dispersion relation. This is rational because the sufficient and necessary condition for the 

existence of non-trivial solution of the aforementioned system, is its zero determinant. 
 

At this point, to simplify the form of the above equations, we set specific symbols for the 

quantities multiplied with the coefficients 1B , 2B ,  
 

2 2
11 0

2I h kG  ,   
2

12 Gi kh   

2
21 Gi kh  ,    

2
22

22
2kD G h I    

 

By this way the 2x2 system is simplified to the following form,  
 

211 12

21 2

1

21 2

0

0

BB

B B

 

 
   or   

111 12

21 2 2 2

0 0
B

B

 

 
Ψ B   

 

Now the determinant is clear to be written,  
 

11 22 12 21( ) 0det    Ψ  
 

And after performing a few calculations, the dispersion relation which derives from the gov-

erning equations relates to the vertical motion (vibration) of a plate is the following  
 

 

                          (6) 

 

 
 

As for the residual quantities involved in the Eq. (6), they are explicitly explained on the main 

part of this dissertation. 
 

Note also that the Eq. (6) exist on the reference: Graff F. Karl, (1975) “Wave Motion in Elas-

tic Solids”, on the Chapter 8.3 pp. 492 and can be shown exactly if we expand the Laplacian 

and Biharmonic Operators. 

4 2 2 2 4
2 2

2 2
0

12 12

D h D h

h G h
k k

G



 
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
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At this moment, we have to extract the non-dimensional dispersion curve of the FSDT. Be-

cause of the fact that we expect to compare the results of this appendix to those gained by the 

previous work on the Part C (section 1 and 2), it is essential to choose the same non-

dimensional quantities. Consequently, we have the non-dimensional angular frequency and 

the non-dimensional wavenumber given as  
 





   and   

k
k

K
  

 

and substituting the above into the Eq. (6), we get 

 

4 4 2
2 2

2 2

2 2 2 2 2 4 4 0
12 12

k K K
D h D h

h G h G
k


 

  
     

 

[and using the expressions of 2K , 4K  2  and 4  of the section 2- Part C] 
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[we examine isotropic material, / 2 (1 )G E v  and 3 2/12 (1 )D E h v ] 
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                            (7) 

 

 

The last expression [Eq. (7)] is the non-dimensional form of the dispersion relation of the 

Mindlin’s Plate Theory. 
 

Subsequently, we have to express the non-dimensional angular frequency   explicitly as a 

function of the non-dimensional wavenumber k , in order to illustrate their graph. The last 

takes place by the reduction of the grade of the grade of the polynomial equation (7) as for the 

 . Thus, we set 2 y  and substitute into the Eq. (7). 
 

4 2 2

2 2

2 2
1 0

(1 ) (1 )v v
k y k y y

 
  

 

And grouping appropriately the terms in order to solve the binomial equations as to 2y  , 
 

4 2 2 2
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2

2 2
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v
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2
2

2 4

2 2

2 2
1 0

(1 ) (1 )
C

A B

k
k k

v
y y

v 
     (8) 

 

The discriminant of the above binomial equation is, 2 4B AC  and the solutions of the 

above equation are  
 

2 2

2

2
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2 2 2
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or o
2

r or

2

2 2

B

A

B B

B B B

B
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
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




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However now we have to examine which of the four relations between the   and k  give pos-

itive values for the angular frequency  , because the negative values of the   have no phys-

ical interpretation. Consequently, we mean to keep only the branches with positive values for 

the   and we are going to rejected those which give negative values for the aforementioned 

quantity. By the aid of the mathematical package Matlab R2013 a, we find two acceptable 

branches. This fact was expected because the one branch describes the shear waves and the 

other the flexural waves. Further, we have to investigate the sign of the quantities under the 

square roots and the sign of the discriminant in order to find if we are have real or/imaginary 

angular frequencies. 

As for the coefficients of the binomial equation A , B , C , it is apparent that 0A , 0B  

and 0C . In the sequel, we investigate the sign of the discriminant 2 4B AC , which 

is a fourth-order polynomial as shown below. 
 

2

4 2

2 2 2

2 8 2
1 2 1 1

(1 ) (1 ) (1 )
k k

v v v  
  

 

For usual material in engineering applications, we take the value of Poisson’s ratio and shear 

correction factor, 0.3v  and 
2 0.86  respectively and after that the discriminant is con-

verted to, 
 

4 25.3929 8.6445 1 0k k , [0,1]k  
 

Further, we investigate the sign of the under square root quantities, B   and B  , 

in order to conclude if we have real or imaginary frequencies. As for the first one, 
 

2
2

1 2

2

4 2

2 2 2

2
1

(1 )

2 8 2
1 2 1 1

(1 ) (1 ) (1 )

k
y B k

v

k k
v v v


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

 

 

which is obviously positive ( 1 0y ) since we have 0 0B B  and 0 . 
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As for the second relation,  
2

2
2 2

2

4 2

2 2 2

2
1

(1 )

2 8 2
1 2 1 1

(1 ) (1 ) (1 )

k
y B k

v

k k
v v v



  



 

 

it is not clear if 2y  takes positive or negative values inside the interval [0,1]k . Consequent-

ly, by the aid of the mathematical package Matlab R2013a once again, we find that 2 0y  

for all values of k  inside the interval [0,1] . 
 

Finally, we conclude that we have only real values of the non-dimensional angular frequen-

cies and further we choose to illustrate only the two positive of the totally four, namely the  
 

2
Shear

B

A



         (9) 

 

and   
2

flex

B

A



        (10) 

The relation (9) is illustrated by the cyan curve, which is the shear branch of the FSDT and 

the relation (10) is illustrated by the green curve, which is the flexural branch of the FSDT, 

shown on the following figure (Figure 1). 
 

 
Figure 1: Dispersion Curves of frequency-wavenumber as for the TSDT (Mindlin’s Plate Theory). 
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Further, we give the dispersion relation between the non-dimensional face velocity and the 

non-dimensional wavenumber. Also we extract the respective dispersion relation between the 

dimensionless group velocity of the wave propagation and the dimensionless wavenumber. 

The definition of these velocities is given below and is explained extensively on the Lecture 

Notes of Triantafillou G., Belibassakis K.A. (2015), “Basic Principles of Naval and Marine 

Hydrodynamics”, NTUA.  
 

However, here we have two branches as for the phase velocity, namely the shear and the flex-

ural due to the existence of two branches for the angular frequency. For the same reason, we 

have two branches for the group velocity, one shear and one flexural. Thus, as for the phase 

velocities we get  
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Shear

p Shearc
k k
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and   
1

2

flex

p flexc
k

B

Ak
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As for the group velocities, we derive 
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where, 2 4
B A C

B C A
k k k k


  and  0

A

k
 , 

 

2

4
2

(1 )

B k
k

vk 
   and  34

C
k

k
. 

 

Finally, we have to study the behavior of the curves in region near the zero wavenumber, 

0k . 

Let 0k  first on the Eq. (11), then  

0
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0

lim
1

lim lim
l
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k A
c
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
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We study the limits of the numerator and denominator of the above fraction separately. Thus, 

as for the limit 
0 2

lim
k

B

A


, we examine its terms isolate.  

 

2
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2
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Consequently, we get 
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Second, let 0k  on the Eq. (12), then  
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Subsequently, let 0k  on the Eq. (13), then 
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 and examine isolate the denominator and 

numerator, we get 
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Subsequently, taking apart the terms of the above limit, we derive the following 
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And taking into account the previous limits, the limit value of the shear group velocity near 

the zero is,  

2
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Last but not least, we examine the limit value on the same region (near the zero wavenumber) 

for the flexural group velocity.  
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As for the numerator of the limit 
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 and as 

for the denominator we derive 
0

lim 0
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
. Now, we are going to perform the L’ 

Hospital’s rule which uses the derivatives of the numerator and denominator in order to eval-

uate limits involving indeterminate forms. Thus, taking apart the derivatives of the numerator 

and denominator to make the calculations easier, 
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Consequently, we get for the limit of the derivative of the numerator, 
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As for the derivative of the denominator’s limit 
0

lim g flex
k

c , we get  

0

1 1
lim

2 22k

B B

Ak k kB

 


 

Note again that the previous limit is of indeterminate form, since 
0

lim 2 0
k

B    

and 
0

1
lim 0

2k

B

k k




. Consequently, we proceed again to the application of the  

 

L’ Hospital’s rule and we get  
 

0

1 1
lim

2 22k

B B

Ak k kB

 


. Finally taking all the pre-

vious results into account, the limit of flexural group velocity near the zero is  
 

0 0

1 1
lim lim 0

2

2

g flex
k k

B
c

k kB

A




. 

 

 
Figure 2: Dispersion Curves of velocity-wavenumber as for the FSDT (Mindlin’s Plate Theory). 
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