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“There two possible outcomes:
If the result confirms the hypothesis, then you've made a measurement.
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Summary in English

Summary in English

The present thesis is the result of our investigation over the mathematical description of two
“Plate Theories” and the final comparison of the “results” of the two different models of the
plates.

Consequently, the present dissertation is divided into three parts, with the first part (Part A)
dealing with the Classical Plate Theory of the Plate (or Kirchhoff’s Plate Theory - CPT) devel-
oped though the Variational Principles, while the second part (Part B) investigates a more ac-
curate kinematic model for the plates, the so called Third-Order Plate Theory (or Levinson’s
Plate Theory - TSDT). The last is also examined though Variational Principles. These two parts
are the main line of work of this dissertation. However, there is also a third shorter part (Part
C), in which the dispersion relations of the wave propagation through a free (from external
loads) and one-directional infinite medium are derived for each model (Classical and Third-
Order). After that work, there are illustrated the dispersion curves of each model.

Although the structure and rationality of the indexes of each one of the two first parts (Part A
and B) does not differ substantially, we decided to set two of shorter duration introductory
sections in the first pages of each part, because there are substantial differences as for the initial
assumptions, the modelling and consequently the governing equations of motion and the bound-
ary conditions of the plate. However for the sake of completeness, we set the Preface, which is
usually found on the first pages of the thesis. Further, we create a global section regarding the
References combined with this diploma thesis. The section of the references is as usual located
on the end of the dissertation. Also due to the fact that the most of the references include ele-
ments of various theories of plates in order to gain comparable results between each other, there
is no reason to distinguish them into different section at the end of each part. Moreover inside
the sections of each one of the three main parts, there are pointed out specific chapters or sec-
tions of these references inside brackets where regarded appropriate. Note also that the refer-
ences considered as determinant and important to our work on a particular part, can be found
additionally in its introductory section.

The first part (Part A) is divided into eight sections. The first one is an introductory section
presenting the basic definitions of the quantities and the notation used in the sequel. However,
the very importance of this section is the initial assumptions of the CPT and the way the last
are inserted on the kinematic model of the plate. Subsequently, follows the second section, in
which the geometric configuration and the externally applied loads on the (external) surface of
the plate are prescribed. Note that the choice of the aforementioned must be compatible with
the initial assumptions of the modelling, described on the first section. The third section com-
bines all the above descriptions for the model and then the kinematics of the thin plate are
produced. The far most important section of the Part A is the fourth, because though the Vari-
ational Principles the governing equations of motion of the model of the CPT are constructed.
These equations are derived for two different cases. The first case is for an orthotropic but in-
plane anisotropic material and the second is for an orthotropic but in-plane isotropic material.
In the context of the fifth section, the boundary conditions of the model of CPT are derived,
again with the aid of Variational Principles. The equations of motion and boundary conditions,
derived on the fourth and fifth section respectively, are written in terms of some (appropriate
for the problem) thickness-integrated quantities. This fact inserts some confusion on the study
and the application of those relations with physical interpretation. Thus, the sections six and
seven aim to give the governing equations of motion and the boundary conditions of the plate
explicitly in terms of the displacement field of the model. Last but not least, on the section eight
is defined the functional space in which the total mathematical formulation of our problem is
developed.



Summary in English

As for the second part (Part B) of this diploma thesis, it has similar structure with the Part A
composed of eight sections. However, the initial assumptions of the TSDT and consequently
its resulting equations of motion and boundary conditions differ substantially. Of course, there
are common terms (namely exist both on the CPT and TSDT) inside the aforementioned rela-
tions, which are highlighted when regarded useful, due to the fact that the TSDT is essentially
an “extension in accuracy” of the modelling in comparison with the CPT.

The last part (Part C) is subdivided into three sections. On the first section is analyzed the
process of deriving the dispersion relation of CPT. On the second section is prescribed the way
of producing the dispersion relation of the TSDT. The previous are performed in accordance
with the assumption of one-directional wave propagation along the infinite (along the same
dimension) medium (plate). On the third section, we just compare and comment on the results
of the two previous sections.

The present work is supplemented with two appendices, namely the Appendix A and B (located
at the end of this dissertation), where additional information and proofs about the results of the
parts A, B and C are presented. On the Appendix A is analyzed the transformation from the
Cartesian to a curvilinear coordinate system used to derive the full set of boundary conditions
demanded for each one of the two models. Finally on the Appendix B, there are the governing
equations of motion and the dispersion relations as for the First-Order Shear Deformable Plate
Theory (FSDT), in order to compare them with the corresponding equations motion and disper-
sion curves of the models of CPT and TSDT.
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Yovoyn oto EAAqvika (Summary in Greek)

H &v Moyo dummhopotikn epyacio givol To amokdnpo piog diepediviong g mTpog To LobnUatiKd
QoppraAicpd 6vo «Oswpntikodv [poceyyicewv Yo Movtéda [TAakdv» Kot 1 TEAKN GUYKPIon
TOV COTOTEAEGLATOVY) TOV dV0 SLOPOPETIKMDY HOVTEAMV.

YUVETMG, M gV AOY® dtatpiPn yopiletor oe Tpion uépn, ek Twv omoiwv 10 TpdTo (MEpoc A')
dwampaypatevetar v «Kiooowkn Oswpio [Thakdvy (f v Ocwpio [Thakdv tov Kirchhoff)
TOV OVOTTTUGGETOL LEG® TV Metafolkdv Apydv, evd To dgvtepo népog (Mépog B') diepeuva
éva o okPPEG KIVIUOTIKO HOVTELD Y10 TAAKES, amokaAovuevo g «H Tpitng taéng Oswpia
Mokovy (1 Oewpia [Mhakov tov Levinson). H televtoia e€etdletan emiong péow tov
Metapolkdv Apydv. Avtd ta dVo pépn elval 1 KOPLo YPOUUN O0VAELAS VTG TG OoTpPNc.
Qo1000 VIAPYEL Ko Eva Tpito pépog (Mépoc I), pkpdtepng éktacng, 6to omoio didovral ot
OYE0ELG O100TOPAG TNG KVUATIKNG d1000MG HESH £vOG ehenBepov (0o eEmTtepid @opTia) Kot
povooldotata amelpov pécov, yw KaBe povtédo (Khaoowm ko Tpitmg taéng Osompia
[MAax®dv). 'Enerta avamapictovton To Sorypappato TV 6YECE®V d106ToPag Yo KAOe HOVTELO.

Av Kot 1 doun Kat 1 AOYIKY| TOV TEPLEYOUEVAOV TV 600 TPpOTOV pepav (Mépoc A™ kot BY) d¢
SLPEPOVY OVOIACTIKE, ATOPOGILOVE Vo BEGoVE EI0AYWOYIKEG EVOTNTES, MKPOTEPNG EKTOCNC,
OTIG TPMTEG GEAIOEC KAOE PHEPOVC, H1OTL LIAPYOVY OVGUDIOELS SUPOPES OTIC APYIKES VTOOEGELC,
o1 LOVTEAOTOIN G Kol KOTO GUVETELN OTIS EEI0MGELS KIVONG KOl OTIS GUVOPLUKEG GLVONKES
g mAdkoc. Qotdco, yaptv TAnpodNTaS, Tapadétovpe tov [Ipdroyo, o omoiog cuvnbiletarl va
Bpioketal oTig Tp®TEG GEMOEG TV gpyaciwv. [lepatépm, dnpiovpyode Eva amd KOwov yo
OAaL TaL LEPT KEPAANLO Y10, TIG AVOPOPES TOV EUTAEKOVTOL GTNV TTapoLSd dSttpiPr). Ot avapopég
ovvnBwg tomobetovvtar 610 TéA0og TG SwtpPnc. Axoun efoutiog tov yeyovotog OTL M
TEPLOGOTEPES AVOAPOPES TEPEYOVV GTOLYEID. OO TOKIAM HOVTELD TAOK®V TPOKEUEVOL VO,
eEdyovv ocvykpioo amoTeEAEGHATO HETOED OVTMV, OV LIAPYEL AOYOS VO, OO OPICOVUE TIC
avapOPEG GE PO PETIKA £0AP1LA 6TO TEAOC KABe pépovg. Toviletan emiong 6T o1 avaPopEC TOV
Bempovvtal KaBOPIoTIKEG Kol CUAVTIKES Y10 T OOVAEING LG GE €V GLYKEKPIUEVO UEPOG,
mapatiBevTal Kot 6TO EIGAYMYIKO TOV €04P10.

To mpwto pépog (Mépog A') ywpiletor oe okt® evotntec. H mpdtn eivon éva elcaywykod
KePAAao Omov Tapovstaloviat ol facikol opiopol Tov peyeddv Kot o copPoicudg mov Ha
ypnoporombet oty cuvéyetla. Qotdco, 1 HeYOAN onuacio Tov v A0Y® Kepaiaiov £yKetton
oTig apykég vobéoelg g Khaoowmg Oswpiog [Thakdv kot otov TpdTO HEGH TOL 0TO10V
EICEPYOVTAL OTO KIVNUATIKO HOVIEAO NG MAAKOC. XTN GLVEYELN, O0KOAOVLOEl 1O OghTEPO
KEPAAMIO, OTO OmMOl0 TPOSYPAPOVTOL T YEOUETPIKY OUOPPOOT Kol TO €EMTEPIKMOG
emPorlopeva  @option oty emedveler g mAdkoc. Toviletoaw 6T M gmAoyn TOV
npoavapepBévtav Oa tpénet va etvar copPartn pe tig apyikés vmobésels g povielomoinong
OV TEPLYPAPETAL GTO TPAOTO EJAP0. XTO TPITO KEPAANO GLVIVALOVTOL OAES Ol TOPUTAV®D
TEPLYPOPES Y10 TO LOVTEAO KO TOTE TOPAYETOL 1 KIVNUOATIKY TG AenTtNG TAdKOS. To pokpdy
OTUOVTIKOTEPO KEPAAOLO TOV TPMOTOV LEPOLS Etvan TO TETAPTO, O10TL PEGm TV Metafolkdv
Apydv dopovvtar o1 eElomoelg kivnong tov poviéhov g Khaooikmg Oswpiog [TAakmv. Avtég
o1 e€lomaelg Tapdyovat yio 600 dpopeTIKES Tepmtdcels. H mpdn eivar yia éva opBotpomikd
OALG aviGOTPOTIKO 6TO OpllovTIo eminedo VAKO Kot 1 deVTePN Yo v 0pBOTPOTIKO OAAGL
100TPOTIKO 6TO 0PLLOVTIO EMinedO VAIKS. T0 TAAICIHL TOV TEUTTOV KEPAAOIOV, O1 GLVOPLUKES
oLVONKES TOV €V AOY® HOVTELOL TNG TAGKAGS, &dyovtan emiong e T o feia twv Metafolikdv
Apydv. O1 e£lodoelg kivnong Kot 01 GUVOPLOKEG GLUVONKEG TOV TOPAYOVTIOL GTO TETOPTO KoL
TEUTTO KEPAAALO OVTIGTOIY®G, YPAPOVTOL HECH (KATAAANA®V Y100 TO TPOPANUA) TOGOTHTMV
OV TPOKLATOLY OO TNV OAOKANPWOOT KOTAAANA®V peyebdv (Tdoemv) kATl TO TAYOG TNG
nAdkoc. To mopamdve €odyel Kmow cOyyvon TN HEAETN KO TNV EQAPLOYYT] OVTOV TOV
oxécemv pe uoikn epunveia. Ev 1élel, 610 ke@dAaio okt® opiletor 0 cuvapTNGLOKOG YDPOG



Summary in Greek

HEGO GTOV 0T010 AVATTOGGETOL O GUVOAIKOG LOONUATIKOG OPUOAGUOG TOL TPOPANUATOG TOV
HEeAETALLE.

Ocov popd to devtepo pépog (Mépog B') avtig g SumAmpatikng epyaciog, £xel mopopoto
doUN HE TO TPAOTO HEPOC KO OmOTEAEITOL OO OKTD €041, QoTOGO 01 OPYIKEG VITOBEGELS TNG
Tpitg tééng Ocwpiog [Thakdv Kot KATA GUVETELD 01 KOTAANKTIKEG €E10DGES Kiviong Kot
OLVOPLOKEG GUVONKES JAPEPOLY 0VGIMIMS. YTapyovv PéPata kowoi 6pot (dnAadn mov
enpaviovrot kot ota 600 HovTéLa) pésa oTig Tpoavapepbeiceg oyEoels, ol omoiot tovilovtan
omov kpiveton yprowo, e€autiog tov yeyovotog 0tL 1 Tpitng 14éng Ocwpiog mAokadv eival
OVGLIOTIKA pio «ETEKTACT] 6TV OKpiPelon TG poviehonoinong oe cuykpion pe v Khoookn
Ocwpia [TAakwov.

To televtaio pépog (Mépoc I') vrodwpeital oe tpeic evOTNTEG. TNV TPMOTN AVAAVETOL 1|
dwdwoacio eEaymyng tov egicwcemv domopds g Klaoowng Ocwpiag [MTiakdv. Xt
deVTEPT EVOTNTO TPOSYPAPETOL O TPOTOG TAPAYWYNS TNG £EICMONG O1CTOPAS Y10 TO TPITO-
1410 povtédo g mAdkag. Ta mapoamdve yivovtor oe cvpeovio pe v vedbeon g
LOVOJIAGTOTNG KUMOTIKNG S10Topoyng Kotd UKo vog amepov (Kot tnv id1a didotaon)
pécov (mAdkag). Xto tpito KepdAolo, cvykpivovpe amAd Kot oyoAMdlovpe to amoTeAéouaTO
TOV TPONYOVUEVAV dVO.

H ev Myom dwatpif] copmAnpdvetal Kot omd ovo mapoaptipata, oOniadn to Hapdpmmua A’ kot
B® (mov Bpiokovtar oto TéAOG avTNG TG OTpIPng), Omov mapovoidlovtal enurpdchet
TANPOPOpio Kol OOdEIEELS OYETIKA e To. omoteAéopota Tov Mepaov A', BT wou I, X210
[Mapdptnua A avaivetal o petacynuoticpds and 1o Kaptesioavd 610 emkapmvio chotnua
CUVTETAYUEVOV, TO OTOI0 YPNOCLOTOEITOL Y1oL VO TTOPAYOVUE TO GUVOAO TMV GLVOPLOK®DV
ocuvOnk®Vv mov amotovvion Yo kabévo poviého. Ev télel oto TMapdaptnua B, vrdpyovv ot
eClodoelc kivnong kol ot oyéoelg owomopds vy v Ilpdmg taéng Oswpio ITAakwmv,
TPOKEEVOL VO cLYKpLBovV e Tig avtioTores ¢ Khaoowkng katl g Tpitng tééng Osmpiog
[Moakdv.
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Introduction (Preface)

Introduction (Preface)

[References: 1. Reddy J.N. (2007), “Theory and Analysis of Elastic Plates and Shells”/ Chap-
ter 1.1, 2. Love A.E.H. (1994), “A Treatise on the Mathematical Theory”, 4" edition New
York Dover/ Introduction, 3. Timoshenko S., Young D.H. Weaver W. (1974), “Vibration Prob-
lems in Engineering”, 4" edition John Wiley & Sons/ Chapter 5, 4. Babuska I. and Li L.
(1991), “Hierarchic Modeling of Plates”, Journal on Computer & Structures, Pergamon
Press, 5. Szilard R., Dr. —Ing. P.E. (2004), “Theory and Applications of Plate Analysis- Clas-
sical Numerical and Engineering Methods”, John Wiley & Sons,

6. https://en.wikipedia.org/wiki/Mechanician].

Generally speaking, plates are straight, plane two-dimensional structural components whose
one dimension called the thickness of the plate, is much smaller than the other dimensions.
Geometrically, they are bound either by straight or curved lateral boundary. As exactly their
counterparts, the beams, they are not only used as structural components but can also form
complete structures. These structure can be Slab Bridge, floating oil extraction platforms, bar-
rage and seawalls, or even seawave energy harvesting systems, the last of which are one of
the most popular devices nowadays due to the matters concerning energy efficiency and re-
newable sources of energy. Statically plates have free, simply supported and fixed boundary
conditions, including elastic supports and elastic restrains, or, in some cases, even points sup-
port [Figure 1]. The static and dynamic loads carried by plates are predominantly perpendicu-
lar to the horizontal faces of the plate. These external loads are carried by internal bending
and torsional moments as well as by transverse shear forces.

Because of the fact that the loading-carrying action of plates resembles to a certain extent that
of beams, plates can be approximated by gridworks beams. Such an approximation, however,
arbitrarily breaks the continuity of the structure and usually leads to incorrect results unless
the actual two-dimensional behavior of plate is taken correctly into account.

The two-dimensional structural action of plates results in lighter structures and consequently
gives more economical assets. Furthermore, numerous structural configuration require partial
or even complete enclosure that can easily be accomplished by plates without the use of addi-
tional covering, resulting in further savings in materials and labor cost for the erection of the
total structure. As a direct consequence, plates and plate-type structures have gained special
importance and remarkably widespread, engineering applications in recent years. A large
number of structural components in engineering structures are floor and foundation slabs,
lock-gates, thin retaining walls and more specifically as for the naval architecture and marine
engineering structures, we come up against decks of ships, longitudinal and transverse bulk-
heads, double bottom, hatches, and parts of the superstructures of ships and so on. Further,
plates are also indispensable in aerospace industries. The wings and a large part of the fuse-
lage of an aircraft, for example, consists of a slightly curved plate skin with an array of stiff-
ened ribs. Plates are also frequently parts of machineries and other mechanical plate devices.
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Reinforced concrete
slab

{a) Flat slab

Free edge
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edge

(b) Bins {c) Lock- gate

Figure 1: Static Loads

The majority of the plate structures is analyzed by applying the governing equations of the
Theory of Elasticity. However, the “exact” solutions of the various governing differential
equations of plate “theories” (namely, approximation of the real behavior of the plate) can on-
ly be obtained for special boundary and loading conditions. Note that in most cases, the vari-
ous energy methods can yield quite usable analytical solutions for most practical problems.
Almost all the numerical methods are based on the discretization of the plate continuum, but
these methods are not going to occupy us on the context of this quotation, because the usage
of the Calculus of Variations and the arguments of the Variational Principles are going to give
us adequately exact equations of motion and boundary conditions for the kinematic models of
the plate (the presentation of whom is the main part of this dissertation). Although the equa-
tions of motion and boundary conditions are given in a generalized form as will be shown on
the last sections of the Pat A and B, the interested reader could specify and modify them ac-
cording to the shape of the plate and the kind of boundary conditions under consideration.

In all structural analysis the engineer is forced, due to the complexity of any real structure, to
replace the structure by a simplified analysis model equipped only with those important pa-
rameters that mostly influence its static or dynamic response to loads. In plate analysis such
idealizations concern mainly, the geometry of the plate and its supports, the behavior of the
material used and also the type of loads and their way of application.

To proceed to the modelling of the motion of the plate with the specific chosen characteristics
referred above, we have to think about the most efficient way to handle it. Thus, regarding the
plate as a three-dimensional continuum is a highly impractical approach since it would create
almost unbeatable mathematical difficulties. Even if the solution could be easily found, we
have to confront with unfairly painful amount of calculations. Consequently, we distinguish
the plate into four different categories with inherently different structural behavior and differ-
ent governing differential equations of their mathematical modelling. The four plate-types

12
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might be categorized, to same extent, using their slenderness ratio (ratio of thickness to an in-
plane dimension, breadth or length) h/L.

Although, the boundaries between these individual plate types are somewhat fuzzy, we can
attempt to subdivide plates into the following major categories:

e Membranes (h/L < 0.02), are very thin plates without flexural rigidity, carrying

loads by axial and central shear forces. This load — carrying action can be can be ap-
proximated by the stresses only, because of their extreme thickness, their moment re-
sistance is of negligible order.

e Thin Plates (h/L = 0.02-+0.1), are thin plates with flexural rigidity, carrying loads

two dimensionally, mostly by internal (bending and torsional) moments and transverse
shear forces. These loading condition is similar to those of beams.

e Moderately Thick Plates (h/L = 0.1+0.2), are in many respects similar to the thin

plates, with the notable exception that the effects of transverse shear forces on the
normal stress components are also taken into account.

e Thick Plates (h/L > 0.2), have an internal stress condition that resembles to that of
three-dimensional continua (3D Elasticity).

The above cases are illustrated on the Figure 2.

Taking advantage of the above subdivision of the different type of plates, we are going to ana-
lyze two different mathematical models or “theories” of plates. The first one is the usually
applied on engineering problems, Classical Plate Theory (Kirchhoff’s Plate Theory), present-
ed on the Part A of this thesis. This model concerns the case of Thin Plate (above). The sec-
ond is a higher-order plate theory, found on the literature as the Third-Order Shear Defor-
mation Plate Theory or Levinson’s Plate Theory, which is presented on the Part B of this dis-
sertation. This model concerns the case of Moderately Thick Plates (above). Finally, on the
Part C on this thesis there are some applications concerning the dispersion relations and
curves of the two kinematic model for wave propagation through infinite medium.

For completeness reasons, note that the case of Thick Plate (generally three-dimensional or-
thotropic material) will not occupy us here, because there is no practical use of extremely
thick plates in engineering applications, in which the thickness dimension along the vertical
axis to the flat surfaces of the plate influences considerably the in-plane motion of the plate.

13
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Figure 2: Main categories of the plates

A few words about the Comparison of the Kinematic Models:

The classical plate theory and the first-order shear deformation theory are the simplest equiva-
lent single-layer theories, and they adequately describe the kinematic behavior of most lami-
nates. Higher-order theories, such the third-order shear deformation theory, can represent the
motion of the plate better, may not demand shear correction factors and also can yield more
accurate interlaminar stress distributions. However, the disadvantage is that they involve
higher-order stress resultants that are difficult to interpret physically and require considerably
more computational effort. Therefore, such theories should be used only when necessary.

In principle, it is possible to expand the displacement field in terms of the thickness coordi-
nate up to any desired degree. However, the higher than third-order plate theories are mislead-
ing and unusual, due to the algebraic complexity and computational effort involved with these
theories in return for marginal gain in accuracy. The reason for expanding the displacements
up to the cubic term in the thickness coordinate is to appear quadratic variation of the trans-
verse shear strains and transverse shear stress through each layer of the laminated composite
plates. This result avoids the need for shear correction coefficients used in the first-order theo-
ry, fact the insert a relative fault in the approximation due to the demanding experience used
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to predict the appropriate values of this factor and to calibrate adequately the model of the
plate.

There is a great variety of papers on the third-order theories and their applications (some of
them exist on the References of this dissertation). Although many of them seem to differ from
each other on the surface and as a consequence on the boundary conditions deriving from the
analysis of the kinematic model invoking the arguments of the Variational Principles.
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Part A Section 1. Introduction

1. Introduction

1.1. Basic (general) Definition of a plate

Generally speaking, a plate is a structural element with planform dimensions (e.g. length,
breadth) that are large compared to its thickness and is subjected to loads that cause bending
deformation in conjunction with stretching. Usually a plate is regarded as thin plate, when its
thickness is ten times smaller than the smallest in-plane dimension. As shown in Figure 1,
h/L or h/B<0.1 [Reddy J. N. (2007), “Theory and Analysis of Elastic Plates and Shells”/
Chapter 3.1 and Onate E. (2013), “Structural Analysis with the Finite Element Method. Line-
ar Statics: Beams, Plates and Shells | Chapter 6.1].

X3
4 |l 5
. < A7
LRSS | %2
R X mid-suefore
L V(C i
N \‘
X4 %

Figure 1: A usual rectangular plate or thin structural element

Because of the very small thickness, there is no reason to model those problems with 3D Elas-
ticity. The simpler equations of 2D Elasticity, are sufficient in order to analyze the strains and
stresses upon plates.

In addition we assume that the reference system of axes (here: the Cartesian coordinate sys-
tem), namely the origin of the axes, is located on the middle plane of the plate. This plane will
be usually called mid-surface on the next sections and it is regarded as the reference plane for
deriving the kinematic equations of the plate. Also we assume that the mid-surface is equidis-
tant from the upper and lower surface of the plate, which means that each point upon the plate
is described by zero vertical coordinate x, = 0.

As for the material of the plate under consideration, we are going to model two kind of struc-
tural material separately on the below corresponding sections. The first one the orthotropic
but in-plane anisotropic plate and the second one is the orthotropic again but in-plane iso-
tropic plate. Note that the generally isotropic plate will not occupy us on the context of this
quotation due to the ratio of its vertical and in-plane dimensions, as justified on the following
sections.

1.2. Important Assumptions of the classical plate theory (CPT) (Kirchhoff’s plate theo-
ry)

1.2.1. Straight lines perpendicular to the mid-surface (i.e. transverse normals) before defor-
mation remain straight after deformation. This assumption can be called, the straightness as-

sumption.
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1.2.2. The transverse normals do not experience elongation. In view of the small thickness of
the plate, the vertical movement of any point of the plate is identical to that of the point of the
middle surface or alternatively the points along a normal to the middle plane have the same
vertical displacement. This assumption is simply, the inextensibility assumption.

1.2.3. The transverse lines (normals) rotate such that they remain perpendicular to the middle
surface after deformation. This hypothesis is called shortly, the normality assumption. The
normality assumption is also found on the literature as the normal orthogonality condition.
Note that this assumption (condition) only holds for thin plates (thickness/average in-plane
dimensions ratio: h/L or h/B < 0.05). For moderately thick (0.05 < h/L <0.1) and very

thick (h/L > 0.1) plates the distortion of the normal during deformation increases.

1.3. Consequences of Kirchhoff’ s Assumptions

1.3.1. As for the straightness assumption, the rate of change of the planar dimensions of the
plate is small in comparison with the rate of change of the vertical dimension (thickness).
ov ou

: , , are regarded small in comparison
X, OX, OX, 0%

As a consequence, the derivatives

., OwW Ow . . . :
with —, ——. So the first two are neglected to the following calculations. The essential

ox, 0x,
point of this assumption is that the section before and after deformation remains linear,
whereas on other higher-order plate theories we come up i.e. cubic curves (sections). The
symbols of the virtual displacements u ,v, w are apparent below:

Figure 2: The straightness assumption of the cross-section of the plate during its deformation.
As seems on the Figure 2, the cross-section before and after deformation of the plate is illus-
trated with the straight red line.
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1.3.2. As for the inextensibility assumption (section 1.2.2.), we note that the structures are
usually composed of stiff materials. Consequently, the transverse deformation-displacement is

independent of the vertical coordinate X;. This assumption is conceptually the inextensibility
of the cross section.

Thus, g—W:0=>W(X;t) = W(Xp Xyt = Wo(Xy,Xp5h).
X3

1.3.3. The important point of the normality assumption (section 1.2.3.), is that the transverse
shear strains are zero, so that

ou  ow
713 13 8X3 + 8X1 (1)
ov  ow

and Yoz = 2853 = EYRR
3 2

=0 )

According to the normality assumption, the transverse lines (sections) rotate remaining per-
pendicular to the mid- surface after the deformation of the plate.

Keeping the above in mind and taking a look at the Figure 3 (which represents a cross-section
of the plate on x, x,-plane ), we note that the tangent line to the mid-surface of the deformed

plate with the horizontal line of the undeformed mid-surface (or simply the x,-axis) define an
angle ¢, so that,

ow

%,

The first equality is due to the smallness of the rotations of mid-surface and transverse nor-
mals (essential assumption of our model of CPT).

Respectively, the vertical line on the undeformed mid-surface with the vertical line on the
tangent to the deformed mid-surface [at each point (u, w)], create an angle ., so that,

o
OXg4

These angles (., and ¢,) have their sides per two between them vertical, as seem on the Fig-

l91 g tanlgl —

ure 3 with the two continuous and other two dashed lines. Thus, as a geometric consequence
the angles have to be equal each other. Namely,
91:32:>8_W:_8u = 8W+3u =0 S,y =2e, =0

0X, OXg OX,  OXg

Similarly, is proved the Eq. (2),

@:_Buiaij@u:OL(z))hg:ZeB:O
X, OX4 OX, OXg
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I undeformed

l r‘i : ou
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Figure 3: Consequences of the normality assumption during the deformation of the plate

Understanding the physical meaning of the above relationships, in the following paragraphs
we are going to study their application on the kinematic model of the CPT.
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2. Geometric configuration and boundary conditions

The shape of plate considered herein is the one of a homogeneous cylinder having a basis of
arbitrary (smooth) shape, and height (thickness) h, much smaller than the in-plane dimen-
sions. The domain occupied by the plate (the cylinder) is denoted by B. The total boundary
of the plate is denoted by 9B, and consists of lateral boundary (surface) oB 2, and the two

flat faces OB = 9B UAB!™) . One of these two flat surfaces is conventionally called
the upper face, 9B "), and the other is called the lower face, 9B ™). That is

oB = oy upB (",

Another (different) subdivision of the total boundary OB is also useful for our analysis, ac-
cording to the boundary conditions applied to the various parts of it. Thus, we denote by 0B

the parts of the total boundary surface tractions (stresses) are prescribed, and 0B, the parts of
the total boundary on which the displacements are given. Of course,

OB = 0B, U dB,.

Figure 4: Geometry and loading conditions of the plate.

In addition to the above conventions, we remark that the total boundary of the prescribed sur-
face tractions (0B ) includes the boundaries 0B = BN UaB! ") and part of the lat-

eral boundary denoted by 9B{'a"),

Similarly, the total boundary of the given displacements (9B, ) includes the boundaries

B = oD UaB!") and part of the lateral boundary denoted by OB /2",

Now as for the loads set to the formulation of the problem CPT, we consider the following.
First, we assume that on the top or/ and bottom of the plate there is a normal load distribution

q(X,,X,). There is no matter if the algebraic sum of the vertical load g is on the positive or
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negative direction of the x;-axis. Also it is incompatible to the model of CPT to consider this

load on the lateral surface, because it has negligible influence on the boundary conditions due
to the smallness of the thickness of the plate. For this reason the aforementioned load q will

not be treated in curvilinear integrals (as seem on next sections) as the residual external loads
(tractions), but is going to appear on the volume integrals of the variational equations and as a
consequence on the equations of motion of the vibrating plate. Thus, the assumption of the
thin plate results to the fact that the load q is applied on the mid-surface Q of the plate [or

the plane (X, X,, 0)]. Let Q be the common projection of the upper and lower faces of the

plate on its mid-surface. The last is surrounded by the curve 7~ , which is the projection of the
(vertical) lateral boundary of the mid-surface.

Respectively to the above notation, let dw = dx, dx, be an infinitesimal element of the do-
main Q and dy an infinitesimal arc of the curve 7.

Second, at the edge of the plate, we have surface-distributed loads (surface tractions), whose
components are going to be analyzed below.

Generally we have, T(x;t) = Tyo(x), where x €0B; and
To(X) = T1(Xg, X1 X3) €x, T T, (X3, X5, X3) €x, T T3 (X3, Xz X3) €xq

Note that we consider here the surface tractions independent of the time variable.

Now separating the components of the surface tractions along the three axis of the Cartesian
coordinate system, we get

-fl(xl’XZ’XB) = Aro(Xpy Xy) + arg(Xy, Xy) Xz = A7o(y) + arg(¥) X5 (1)
fz(xlixz’x3) = bro(Xy, Xy) + bry(Xy, Xy) X3 = bro(y) + bry(y) X5 2)
f3(X1’X2’X3) = Cro(Xy Xy) = Cro(¥) (3)

The above configuration of the surface tractions, including the arbitrary but appropriate func-
tions a;,, ary, byg, bry and cq, is compatible with the initial assumptions of the kinematic

model of the CPT. Due to the inextensibility assumption (section 1.2.2) and the smallness of
the thickness of the plate, there is no dependence of the tractions along the X;-axis (T}) from

the x, spatial variable. To express the above differently, our model cannot carry shear strains
apart from those existing parallel to X, X, -plane.

The in-plane tractions (fl and fz) are linearly dependent from the x, variable, fact that is

consistent with the normality assumption (section 1.2.3), which restricts each cross-section of
the plate to remain normal to the mid-surface during the deformation.

Highlight also that the notation of the zero sub index is essential for the first part of the right-
hand side of the Egs. (1), (2) and (3), because we want to show the dependence of the a,,

bro, Cqo functions from the curve I (y-arc around the curve) of the lateral boundary, on
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which the x,-variable is zero, whereas the functions a;; and by, notated by unit sub index

declare the linear dependence of the surface tractions T,, T, from the vertical spatial variable.

As for the specific parts of the boundary, where displacements are prescribed, we assume the
following boundary conditions. These kinematic boundary conditions are alternatively called
essential conditions of the problem, because they are considered as a priori constraint affect-
ing the space of the admissible functions and variations of the problem of CPT.

Generally the form of the given displacements is,
u(x;t) = uy(x) = given where x €0B, and
Ug (X) = uy(Xy, Xy, X3) ey, T U,( Xy, Xy, X3) ey, T Us( Xy, Xy, X3) ey,

Note that we consider here the above displacements independent of the time variable.

Now separating the components of the displacement field on the boundary along the three ax-
es of the Cartesian coordinate system, we get

Uy (Xg, Xp, X3) = gy (X, X2) + Ay (Xg, Xp) X3 = agu(7) + ag(¥) Xs, (4)
Up(Xps Xp, X3) = Doy (X1, X5) + by (X, X2) X3 = Doy () + by (7) X3 (5)
Ug(Xq, Xp, X3) = Cou(Xy, X5) = Coyu(7) (6)

The notation follows the same rationality as this of the surface tractions, expressed above. The
only difference is the form of the functions a,,, a;,, by, Py, Coy - HOWever they must be

compatible with the “nature” of our problem, as exactly the above functions a;,, a;;, by,
b, and c;, are.

Further the rightness and compatibility of the above form of the essential conditions, is veri-
fied by the initial assumptions of the modelling of the problem of CPT, and specifically by the
normality and the straightness assumptions of the sections 1.2.3 and 1.2.1 respectively.

In conclusion all the aforementioned boundary and loading conditions, leads to the fact that
parallel to the mid-surface (in-plane motion) there are two contributions. The first are stretch-
ing actions due to loads at the edge of the plate which act parallel to the mid-surface of the
plate. The second contribution is attributed to bending.
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3. Kinematics of Thin Plates

The in-plane displacements (due to the total loads acting on the plate) can be approximated
by a few terms of the Taylor expansion around each point (X,,X,,0) of the mid-surface,
with respect to x, € [-h/2,h/2]. We choose to expand Taylor with respect to X,- axis

(namely along the smallest dimension, -thickness of the plate), since Taylor’s expansions
(polynomials) are adequate approximations only in a small region (—h/2, h/2) around the

central points (X;,X,,0). Thus, the form of the u, v—components of the displacement is as-
sumed of the form:

(x5 —0) du(xy,X,,0;t) +(X3_0)2 d2u(xy, X,,0;t)

U(Xy, X5, Xg 1) = u(Xy, X,,0;t)+

1 OX4 2! 90X,
3 93
Xs—0 0°Uu X, X,,0;t
+ 3 1)
3! 07X,
_ o (Xg—0) v(X;,X,,05t) (X3 —0)% 0% (Xy,X,,05t)
V(X3 Xp, X33t) = V(Xy,X,,0;t) + 1 ox, + ol 97, +
X, —0)* 9% (x,,x,,0;t
L 060790 X 0 2
3! 0 "X,
At this point, using the normality assumption (1.2.3.), we have:
ou  oOw ou ow
713:(9_ —=0=—=—- 3
X;  OX, OXg X,
ov  ow ov ow
7/23:8__‘—_:0#_:__ 4)
X;  OX, OXg OX,

Note that the Egs. (3) and (4) coincidence with the Egs. (1) and (2) of the section 1.3.3, which
have been proved above.

According to the small-strain assumption of the CPT, the higher order derivatives of the rela-
tionships (1) and (2) are neglected.

Thus, neglecting second- and higher-order terms in the expansions (1) and (2), and taking into
account Egs. (3) and (4), we obtain:

OW( Xy, X,,0;t)
U( X, Xy, X35t) = U(Xy,X,,0it) — X5 W
1

OW( Xy, X,,0;t)
V(Xy, X0, Xg:t) = V(Xq, X,,0;1) — Xg o
2

Also the elimination of the higher-order terms in these equations is essential and compatible
with the basic assumptions of our model and specifically with the straightness assumption
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(1.2.1). This hypothesis points out that the in plane displacements u, v are linearly dependent

from the X, variable and they cannot be expressed from higher-order terms, including x;, x3
and so on and so forth.

Adopting the notation

U(Xy, X,,05t) =uq(Xq, X,;t), V(Xq,X5,0;1) =V, (X, X,5t),
and  W(Xy,X,,0;t) =w, (X, X,;t),

we obtain the following model of the displacement field:

OWq (Xq, X3t
U (X3, Xz, X55t) = Ug (Xg,X55t) — Xs% (5)
X1
oWy (Xq, X553t
V(X Xy, Xsit) = Vo (X, Xyt —xs% o
X2
W(Xy, X2, Xg51) = Wo (X1, X3t) (7)

We notice that the Eqg. (7) is compatible with the inextensibility assumption (1.2.2), which
declares that each point of the plate is subjected to the same vertical displacement w;,.

On the basis of Egs. (5) — (7), we conclude that the displacement field (u, v, w) is fully de-

scribed in terms of deformation of the mid-surface (U,,V,, W, ). As far as the strain field, we
have:

Ou(Xy, X,, Xgot)  Oug(Xq, X,t) 0 Wy (Xq, X,:t)
= —X

ey =€, = 8
11 uu axl 8X1 3 ale ( )
o _o V(X X, Xgit) c’)vo(xl,xz;t)_x 02y (Xy, X5;t) ©)
2w OX, OX, s d°X,
OW(X(, X5, Xg;t .
€g =€, = ( 1(‘3x2 Y 5 the above assumption
3
1{6u  ov 1(0u, d*w, v, *w,
Ep=€x=C€yw=Cy =S|l T+ | = 35 — A3 + — X3 =
2(0x, Ox, 2| Ox, OX,0%; 0%, O0X,0%,
10Uy v, W,
2| ox,  Ox 3 Ox,0X,
thus,
ou  ov _ [Ouy OV 0°w,
8 =yp=""+—= + —2X 10
2=l = Tox, | ox, | ox, * O%,0x, (10)
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e, e, e, —e, ifow ov) 1/ Ry B NG|
OB TIWIIWIT 01 0x, | 0%, 28@\/2%\ ENEEES

€, =€4, =€, =€ —1 8—W—|—ﬂ —E&WO &/ XW
13 7 %31 7 ~uw WU_2 8X1 8X3 2 %\ ﬁ)}\s\ 8%1\ 39{3&

Generally refer that on the literature, the model of CPT does not taking for granted the non-
zero in plane displacements (U,,V,). However, in case of the existence of an in-plane exter-
nal loading condition or the assumption of heterogeneous material of the plate, the in-plane
displacements and consequently in-plane strains are nonzero. Thus, due to the assumptions of

the kinematic model presented on the previous sections 1 and 2, our choice of displacement
and strain field is rational.

28



Part A Section 4. Equations of Motion-Variational Principles

4. Equations of Motion- Variational Principles

Now we are going to produce the differential equation of motion of the plate and its boundary
conditions, replacing the expressions of the displacement field to the variational equation and
using the Hamilton’s Principle in Elastodynamics [Athanassoulis G.A. (2016), Hamilton's
Principle in Elastodynamics, NTUA Lecture Notes of Functional Analysis].

We formulate the Elastodynamic Lagrangian function in a constraint form, which means we
impose as a priori constraint the condition u; (X;t) = 0, (X;t) = given, x € 9B, (essential
condition):
L u(-;t) :fff K(u)—U(e) dV+fffiuidS
B 9B+

Next, we have to define the action functional, corresponding to the above Lagrangian func-
tion:
t2

S u(,) = f L u(-;t) dt
4
In order to find the differential equations of the CPT, we have to find the stationary points of

the action functional (Hamilton’s Principle):
tZ

0S U ;ou :§fLu(';t)dt:O, V&ue{

space of admissible
variations

t

t, .
[ f admissibl
§ffff K(u)-U(e) dv dt+5fffTiuidS dt = 0 v5u€{spaceo. a- missi e}
variations
t, B —
t, " .
[ J[[oxwave~ [ [[[oueava+ [ [[7ousa—o,
t B ty B t, 0B, (1)

Y ou € space of admissible variations .

Now we calculate separately the terms of the above variational equation:

4.1. Variation of the Kinetic-Energy Part

The calculation of the kinetic-energy part of the action functional is standard. Integrating by
parts the time integral, we find:

t, t,
5JK:ffff5K(U)dVdt:ffff%pu'i&lidth:
t, B t, B
t,
:—fffpr'ié'uidth,
t, B
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ty
Thus, 83, = —ffffp U, ou, +U,ou, +lzou, dvdt =
ty B
ty
= —ffffp Uou+vVov+wow dVdt, (2
t, B
i

where i = i, —X,—2 V:V—x% (3)
0 "3 %, ' 0~ 73 x,
oow, oow,
ou = oUy—X,4 , OV = OVy—X; 4)
0%, X,
From Egs. (2), (3) and (4), the variation of the Kinetic part takes the form:
. oW, dow,
t, Uy —Xg——|[0Uy —Xj +
1 0%,
§JK:—ffffp< vt =
LB + Vg —X % v %, Sw
0 3 8X2 0 3 Xz 0 0
i s s ow, . 00w, . OW, 00w, N
) Ugou, — X50U — X, U
t oo 3T X, 30 X4 3 OX, 0%,
ML ) ) av dt =
+ VooV, — X, 0V OWg Xo V 85W°+x28W085W0+W Sw
t, B — _— _— _—
0 0 3 08X2 3Y0 8X2 3 8X2 8X2 0 0
i SU AV SV T SW 4 X2 oW, 85W0+3\7\'/0 oW,
U,0U, +V,0V, + W, oW X —
Ly 0“Ho 0“Vo 0“%o 3 ox, Ox, ox, OX,
_ f f f f o LaV dt
‘ L ar 8§W°+5u 8\7\70+V 35W0+§V ow,
170 ox, “ox,  ° ox, ° ox,
t, t,
3 oW, . oW,
5JK:—ffffpuo—x3— dth—ffffPVo—X3—5Vodth—
0X, oX,
t B t; B
tZ tZ
ffff i1,0W,dVdt ffff : Mo |22 vt
— WOW - X3 —— — X, -
PWOW, Pl X3 Ox, 340 ax,
t; B t; B
t2
oW dow
—ffffp[xg—"—xgvo —dvadt (5)
X, )
t, B
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In Eq. (5) there are not only the variations du,, év,, dw,, but also the variation of the first
spatial derivatives (X, X, —derivatives) of éw,. To eliminate the later we perform an inte-

gration by parts with respect to the corresponding spatial variables. These integrations by
parts will generate boundary terms, which will contribute to the construction of the appropri-
ate boundary conditions of the CPT. For further simplification, we neglect for the present cal-

culations the time integral. Thus,

8W0 . ()(3W0

—X
bwo Xy fff 3¥0 ()Xl
ff x3——x3u0]n oW, dS — fff

OB (lat)

X3

2 8 W0 ou,
2 X, . 0X,

](SWOdV : (6a)

fff . 00w, v —
X3 X oV —
5w0 Xy 34, 3Y0 (;)XZ
, 0w ov
ff x3——x3v0 Ny, oW, dS — fff p|x5— % Xy —2|SwW,dV (6b)
00X, X,
()B(Ia)
Consequently, substituting Eqgs. (6a) and (6b) in Eq. (5), we get
t2
—ffffpuo—xs— dth—ffff vo—x3 5vOdth—
28\7‘70 ..
ffffpw ow,dvdt —fff x3 —x3u N, +p|X; —X3Vg [N, |OW, dSdt +
t, Hpiat) 1 2
ffff RR 82\7\‘/0 8u0+8\7 SudV dt —
X — —+—||oW =
p?’ax1 d°X, p38x1 X, 0
.. 8W0
——ffffpuo—x3 dth—ffff PV — x3 5v0dth—
X,
ffff .0 wo+82w0 N au0+a\7 o Vet
W X2 — —t— —
PWo — P X3 92x, P X3 ox, | Ox,
_ plxz— ox,  _xliy|n, TP XZ — ox, — X3V [Ny, [OW, dS dt (6¢c)

t, opla)

Eq. (6¢) can be simplified, by observing that the X; — dependence of all integrands is explicit,

and thus the vertical integration can be performed explicitly. To this end, it is convenient to
define the “mass-moment” quantities:
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h/2
I, = fpx;dxs, i =012..,6.
—h/2
Note that all odd-order ;s are zero. More precisely, we have

I, =1,=1,=0,
h/2 h/2
2 h®
Iozfde3=ph, |2:fpx3dx3=,0§’
—h/2 —h/2
h/2 h/2
1, = f x4 dx h—5 |, = f xSdx, = i
4 P X3 UX3 P80 6 P X3 UX3 P448-
—h/2 —h/2

To treat the volume-integral terms (appearing in the first and second row of the right-most
side of Eq. (6)), we decompose them as follows:

ff ()dV—ffda)f()dxg, do =dx,dX,,

“hy2

where Q is the common projection of the upper and lower faces of the plate on the mid-
surface. Similarly, to treat the terms in the last row of the right-most side of Eq. (6), we have
to decompose the lateral surface integral as follows:

f?f)(-)ds - ffgﬁ(-)dydxg,
o (1t e r

where [ is the curve defined by the projection of the (vertical) lateral boundary on the mid-
surface.

Substituting the above decomposed integrals to the Eq. (6¢), we have the following,

h/2 h/2

ow,
ffff uo—x3 dxgda)dt—ffff vo—x3 5v0dx3da)dt
Q —h/2 % Q —h/2
h/2
ffff 8w0 8W0+ 8u0+0\7 sw- dx. deodt
W X — w, dx; deo dt —
Pl = P3| G o, |0 T, T, ||
Q -h/2
t, h/2
. , OWg
fggf x3 —x3u n,+p X3 — ™ —XgVg [Ny, [OW, dXzdy dt =—>
2
r —h/2
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t2 t2
5JK:—fffloU'o da)dt—ffflo\'i05voda)dt—
t, Q t, Q

t,
oA, OAW,
— lw,—1,|——+——|| 0w, deodt —
J S o Ga e 5o || o
t, Q
t,
fgglawonﬂ On. (ow,dy dt
— — — W
Zaxl X1 Zaxz XZ 0 7
t, T
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4.2. Stress-Strain Relations and Elastic Potential Energy

According to “Athanassoulis G.A. (2016), Hamilton’s Principle in Elastodynamics, NTUA
Lecture Notes of Functional Analysis” and “Athanassoulis G.A. (2017), Elastic potential en-
ergy — Energy function, NTUA Lecture Notes of Functional Analysis”, we have the general
form of the elastic potential energy of the problem,

1 1 . .
U(e) = Eaij(e)eij = ECijk,eijekI ,  Where the strains e,, are expressed in terms of

the displacement field as e;; = % u;+ug; and Gy = Gy (x) are the stiffness coeffi-

cients (material properties).
As for the variation of the elastic potential energy, we derive the following:

Hooke's Law 1st term

1 1

§U(e) — %Cijklé‘ekleij +%O-ij5eij Minor symmetry of matrix of

stiffness coefficients

Hooke's Law 1st term

1 1
oU(e) = Ecklij € 08y +§O'ij o8

sU(e) = %o—klaek,+%aij§eij e, sU(e) = oy 08

Consequently,

1
U(e) :E OCuwluw Towew T 70w’ w T 0w’ wu T 0w w
1 ] ;
=5 011811 + 028 + 033833+ 0 37 93+ 03173 + 01,71, = Voigt Notation
1
:E 0181 +0,6, +03€3+0,),+0575+067¢ (1)
sU(e) = 0,08, +0,08; +03083+0,6) 4 +050)5 + 0676 2

According to the last paragraph, we observe that some of the terms of the elastic potential en-
ergy, are equal to zero. So we derive,

1
U(e):E 018, 10,8, 067 ©)
From (1) and the proof of (2) we have,

5U(e) — (71'5@1+O'2'592+O'6'57/6 (4)

98U (%, X531) ) 020w, (X4, X5;t)
W ok, T 0%,

OOV (X, X3t O 25W, (Xq, X o3t
From (6) of the section 3: Se, = Se,, = e, = Xy, X )—x3 OE v Xzit)
OX, 07X,

From (5) of the section 3: de, = de,; = Se
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dou, 0oV,

d2ow,
_I_
O0X, 0X,

* Ox, O,

From (7) of the section 3: &y =0y, =y, =

4.2.1. Orthotropic, in-plane anisotropic material. Stress- Strain Relations

A wide range of engineering materials, including certain piezoelectric materials and fiber-
reinforced composites (i.e. laminated plates composed of multiple orthotropic layers), are or-
thotropic. By definition an orthotropic material has at least two orthogonal planes of sym-
metry, where material properties are independent of the direction within each plane. Such ma-
terials require nine (9) independent variables (i.e. constants) in their constitutive matrices. In
contrast, a material without any planes of symmetry is fully anisotropic and requires at least
twenty-one (21) elastic constants (due to the symmetry of the constitutive matrices), whereas
a material with an infinite number of symmetry planes (i.e. every plane is a plane of sym-
metry), is isotropic and requires only two elastic constants (Lame’s constants) [ “An Introduc-
tion to Continuum Mechanics”, Chapter 6 (2013), J.N. Reddy and “Theory and Analysis of
Elastic Plates and Shells”, Chapter 3 (2007), J.N. Reddy].

By convention, the nine elastic constants in orthotropic constitutive equations are comprised

of three Young’s modulus of elasticity (E,, E,, E;), three Poisson’s ratios (V,5, Vg, V;,) OF
(V4, Vs, Vg) and three shear moduli (G,3, G, ,Gy,) or (G4, G, ,Gy).

According to the process followed on the Lecture Notes “Stress-Strain Relations: Hooke’s
Law-Orthotropic Materials (First-Principle Approach)”, G.A. Athanassoulis (2016), the three-
dimensional compliance matrix takes the form,

e, _"Eﬁ Ei _\'Eﬁ 000 |[on
eZ 1 2 3 0-2
€1 —% —\I/Eﬁ Ei 0 00O O3
Va4 ! 2 3 Oy
1
Vs 0 0 0 G, O5g
Ve 0 0 0 Gi Te
0 0 0 o1
GlZ

However, in the case of CPT, we keep only the stress-strain relations which represent the two-
dimensional constitutive equations. Thus,

1 Va
€ E, E, |0} 1
= and 75 = —05
€, V2 1l Gs
E, E,

35



Part A Section 4. Equations of Motion —Variational Principles

Note that, in orthotropic materials there is no interaction between the normal stresses o4, 0,

and shear strain y, = 265 = 2e,,. Further, the symmetry of the compliance coefficients

leads directly to the following Symmetry Relations for Poisson rations:

Yie _ Vo
El E2
Now looking forward on the reduced stiffness matrix C , which is the following,
1 Va
E E
c — 1 2 (1)
Ve 1
El EZ

we perform Gaussian elimination (also known as row reduction) in order to express the
stresses in terms of strains [https://en.wikipedia.org/wiki/Gaussian_elimination], as seem be-

low,
1 Vo 1 Va
= = & = 01 -0,
€ E, E;|fo: E, E,
= or
€2 Vi 1 ||lo: Vi 1
El E2 El EZ
and regarding the system of equations, with unknown quantities the stresses oy, o, ,
1 Vo 1 v
—0,——0, =€ — _Ale
E, 2 | B E, L, +vy, Ly —L,
V12 1 V12 1
——o0,+—0, =¢, —— —|e
El E2 El E2 2
1 Vo
E. E. “1 L2
1 2 iv,vy * 772
1-vp vy
0 €, +Vp €
E2
1
= 0 1 Vo
E, € € LxE;—L, .
Lvoy 1-v, Vv, 1-v,Vv, echelon or triangular form
— V2 Va1 Lox.——2 L
vy C
E, €, V€
10 E, vy By o
1 2
1-V,Vy 1-vy,Vy
£ ~ {dentity matrix |
2
2tV € )
0 1 1-v,vy
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E; vy By
o, = e1+ e2
1-vi,vy 1-v,vy i )
Vo E E or in matrix form
12 Ey 2
O, = € + €,
1-v,vy 1-v,vy
E, vy By
O1| 1=vpvy 1=V vy e
o, Vi, B, E, €,
1-vp vy 1-vgvy
. iy E, E,
These results of elastic coefficients Cy=-——:Cp=— " and
1-v, vy 1-v,vy
v,, E . - .
C,, = C, = —=——  due to symmetry of matrix C , are verified according to the

1=V, vy
remarks of the Lecture Notes “Stress-Strain Relations: Hooke’s Law-Orthotropic Materials
(First-Principle Approach)”, G.A. Athanassoulis (2016). Noticing the coefficients C;, C,,,
17Vie Vv and after substituting it on the corre-
E1E2E3
sponding relations (11) of the Lecture Notes, we get,

o Ve 1 E, @
1 -
E,E;A 1V Vy 1=V vy
E 3
EFie e

Ci,, C,; and calculating the quantity A =

1—v
Coun = = = L = = ©)
E.E;A /E/j-E/Vlz\; 1=V vy
E
Vo + v v,, E
C, =C, = 21 /K/V/ _ 21 o 21 E1 (4)

E,E;A %1_\/12\/21 B 1-vp, vy
3 - - oo
£, ELE;

The last relationships verify our results of the stress — strain relationships of an orthotropic but
in-plane anisotropic material, which are finally,

E, Vo By

O = €n €22 ®)
1-v,vy 1-v, vy
V., E E
Oy = 22 €+ Z €25 (6)
1-v,vy 1-v,vy
01, = 06 = G71 = Gy 7 (7)

In addition, we can express the above stresses in terms of displacements, substituting the Egs.
(8), (9) and (10) of the section 3 into the Egs. (5), (6) and (7), as seem below,
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E, [ou,  0%w, vy By [ov, 97w,
Ouy = NP - 73 g2 (8)
oV E, [dug  9°wg E,  [ov, 0w, o
G G ou, 0v, 0°w, 0
O, = O = O = = -+ — 72X
6 12 21 676 6 ox, | ox, 3 Ox,0X, (10)

4.2.2. Orthotropic, in-plane isotropic material. Stress - Strain Relations

The simplest way to derive the stress — strain relations of an orthotropic but in-plane isotropic
material, is to notice and elaborate appropriately the stress — strain relations of the orthotropic
in-plane anisotropic plate. Thus, remembering the matrix of stiffness coefficients (1) of the
section 4.2.1 and the fact that the modulus of elasticity and the elastic coefficients of an elas-
tically isotropic solid body are constant regardless of the rotation of the Cartesian system
[Lecture Notes, “Stress-Strain Relations: Some Formal Considerations on Hooke’s Law ap-
plied to Isotropic Materials” , G.A. Athanassoulis 2015], we have:

From Eq. (2) of the section 4.2.1, C,y = I E >
—V
From Eq. (3) of the section 4.2.1, C,, = 1 E 5
—V
. VE
From Eq. (4) of the section 4.2.1, C, =C, = 2
—V

Consequently, the matrix of the Egs. (1) in the section 4.2.1., is converted to,

E VE o — E e 4 VE o
o — 2 1 _.2|(e 1T bt 78 For the specifi
1 _ 1—v 1—v 1 N 1—v 1—v N or the specific
o, VE E e, o — VE e+ E o model of CPT
1-v? 1-v? 21y Tt 1y ?
. _ _E duy o°w,| VE Ny 9w,
Poa-vi|ox, o | 1-vi|ox, o,
L &
L _ VE duy 9w, E [Ovo d°w,
21-vi|ax, P o | 1-vE|ox, o, ‘
E Ou, E 0°w, VvE 0v, VE 0%w,
01 = 2 —X3 7 52 2 —X3 7 2
1-v* 0x, 1-v° 0%, 1-v© X, 1-v© 0°x, )
_ VE du, . _VE 82w0+ E 0V, . _E 92w,
2 1-v2ax,  C1-v?2 o, 1-vEax, C1-v? 92X,

and the in-plane stress — strain relationships are already apparent.
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As for the shear stress — strain relation, we have obviously

ou, 0V, d°w,

° o7 Ve ox,  0X, * Ox,0x,

(5)

To avoid confusion and possible doubt about the selection of the appropriate stress-strain rela-
tions, we remark that the plate cannot be regarded isotropic with respect to all its directions,
because the plate is in-plane isotropic as aforementioned above. Consequently, the stress-
strain relations are not obtained from the general form of Hooke’s Law for an isotropic, ho-
mogeneous material (continuum) and the Theorem of the most general form of a 4™ order ten-
sor of the book “Continuum Mechanics” [Chandrasekharaiah & Debnath (1994), Section
2.6] is not valid in our case. Thus, the Poisson’s ratio v of the previous relations v is an iden-
tity of the material referred to its planar directions, namely x, and x,-axis. This effect is

quantified by,

e e
22 11
V, = ——= =V, = —— =V

€y €22

In conclusion, is assumed that linear theory is applied and that the material of the plate is ho-
mogenous and isotropic with regard to directions in the x, x,-plane [E. Reissner (1963) “On

the derivation of boundary conditions for the plate theory”, MIT, page 179]. The previous
ascertainment means that the Poisson’s ratio and the modulus of elasticity coincidence on the
directions x, and x, of the material, but differ from the corresponding on the direction of its

X4-axis (vertical direction). Also, as seems on the section 4.2.1 in the context of the CPT, we

keep only the stress-strain relations which represent the two-dimensional constitutive equa-
tions, so that the Poisson’s ration which relates the in-plane with the vertical strains and the
modulus of elasticity and shear modulus on the direction of x,-axis are eliminated and as a

consequence they will not occupy us on this quotation. Thus,

E, =E, =E and G, =G, =Gy, ==0G

In addition to the above and for completeness gift, we refer the so called Lame’s constants A
and z, which are related to the modulus of elasticity E , the shear modulus of elasticity G

and the Poisson’s ratio v, as seems from the following relations [Some Formal Considera-
tions on Hooke’s Law applied to Isotropic Materials”, G.A. Athanassoulis (2015) and “An
Introduction to Continuum Mechanics”, J.N. Reddy (2013), 2™ edition CUP].

— _E and A= vE :
2(1+v) (1-2v)(1+v)

u =G ,
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4.3. Variation of the Elastic Potential Energy

Due to the proof of the previous section (4.2), the only variations appearing on the variation
of the elastic potential energy are the variations of the strains. Note that the variations of
stresses are not appear explicitly on the following relation (or the Eq. (4) of the section 4.2),
because they are a priori included in the variation of the elastic potential energy. This fact is
declared on the section 4.2 by the use of the Hooke’s Law in conjunction with the identity of
symmetry of matrix composed of the stiffness coefficients as well as the contrivances of index
notation.

At this point, we keep in mind the Egs. (8) — (10) of the section 4.2.1 or the Eqgs. (6) - (8) of
the section 4.2.2 and we are not going to replace the last, in order to avoid difficult and time-
consuming calculations. Thus, the relationship (4) is converted to,

odu, 925w,

AoV, 925w,
—X
ox, 9%,

oou, 0oV,
o, 3o
X, 07X,

96w,
_|_
oX, 0%,

* 0%, 0%,

O, +05¢

Finally replacing (4) to the expression of the variation of the elastic potential part, we derive
the last expression:

t, t,
5Juszff5U(e)dth:ffff 0,08, +0,0e,+0,0e, dVdt=
t B t B
t2 t2 t2
dou dov,
[ [[[ o ave [ [[[xso = ovare [ [[[ o ava-
X, OX,
t, B t, B t B
t, ty t
dou, dov,
—ffffx30'2 dth—I—ffffaG - dth—l—ffffaﬁ ——dvdt—
X, 0X,
t B ty B t; B
t,
920w,
_ffffzaex3—[ .
) Jed OX,0X,

On the last equation (1) appear not only the variations ou,, 6v,, ow, but also their X;,x, —

derivatives. To eliminate the later, we perform one or two (by case) integration(s) by parts
with respect to the variable X . This integrations by parts will generate boundary terms kin-
ematic and dynamic, which will contribute to the construction of the appropriate boundary
conditions of the CPT. For further simplification we neglect for the present calculations the
time integral. We have also to be careful about the integration(s) by parts with respect to spa-
tial variable, because the boundary terms of the following relations are related with the natural
boundary conditions of the problem (or dynamic boundary conditions of the elastic continu-
um).

Jou,
5|5ux:fffo-l‘ dVZ
ot OX,

B

oo,
:ffalnxléuodS—ff aTéuodv (2a)
1

op(iat) B

dvdt 1)
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5I§W0,xlxl:fffx3al dV:
B

0o,
:ffx3alnx dS—fffx3— dVv =
' 0%,
opiat)
0%,
:j‘fx3(71nX ds — ffx3—n ds+fffx3 5 (2b)
! 07Xy
op (at) op (at) B
dov,
O, = [ [[[ o2 2av =
o X,
B
fodznx25VodS ff (2c)
(‘)B(Iat)
5|5W0,X2X2 :fff62 X3 dv =
B
Jo,
:L/ifazx3nx2 dS — dv =
op(at)
Jdo,
:ffoz X3Ny, ds — X3y, ds + dv (2d)
op (1at) op (1at)
0ou,
O, = [[[ oo 20V =
o O0X,
B
:ffasn)(Z&uodS—ff (2e)
o (1at) B
0oV,
(susvxszf% av =
o 0X,
ffoen oV, dS — (2f)

o (1at)

In order to derive the final terms of the following volume integral &1, . . , we follow a

different path.
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2

070w,
0:71 72 \Xl ,X2
0%ow
Hf0'6x3 OdV%—Jjj:/‘oy;X3 av. = J, + J, (29)
OX, 0%, dxldx2
2

1

As for the first term J,, we perform integrations by parts firstly according to x, and secondly
according to x, variable, while as for the second term J,, we perform integrations by parts

initially according to x, and subsequently according to x, spatial variable. This concept is

adopted to the following calculations, because we desire to derive boundary conditions with a
“symmetric” formulation between the terms (of the variation of the action functional) with the

same variations (ou,, oV, oW, ) .
Thus,

0 5w0 806 05w, |
OX dx2 8x1 dx2
B (1at)
ds + f f f X, Sw, dV
é?xlax2 °

d&wo
[ e [
026w, dow, dog 0OW,
2_fff06x3 dV—ffaexn 3 d—fff dv =
O0X, 0X, 8x2 0X,

377X,

dB(Iat) dB lat)
o (1at)

ff n dowq ds f n 5 dsS + ﬂf ow, dV
O~ X — W X3 O0W
6 37 °x, 1, 0 a 8X1 0

dB(Iat) dB lat)

Consequently, the equation (15g) is converted to,

Oow,
5l5wo,x1x2 = O-6X3nx ff OgX3N Xy Tds -
og (la) og (@) 1
0 0
[ [ s, 058, X}(;Wo & + fff %75 swy v o
5g (iat) X2

Now using (2a) - (2g), the equation (1) is converted to,
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t, t,
0Jy :fff w(e)dth:ffff 0,08, +0,0e,+0,0e, dVdt=
t, B t, B
t, t,
:ff (O-lnx1+o-6nx2)§u0d8dt+ff (01 XgNy +06X3Ny ) dS dt—

t, gp(lat) t, op(iat)

t,
Jdo, 0o Jdo, 0o,
—+ N, +X; + n, dS dt +
ox,  Ox, | ox, O |

S S
t, t,
+ff (O-an2+o-6nxl)5vod8dt+ff (0, X3N,, +06X3N, ) dS dt—

ty g (a0
ty g a0 ty g a0

t,
80‘1 oo 80‘2
[ [[[ |52+ 50 o dth—ffff 5, AV dt+
t, B
t2
+ffff2 0% X +8201x +8202x ow, dV dt =
ox0x, ° 0%, ° 9%, o " -
t, B
ts h/2 tr h/2
:f§f(alnxl-l—a(snxz)éuodxgdydt+fggf(alxgnxlqtasxsnxz) dx, dy dt—
t, T —h/2 t, T —h/2
tr h/2
f§f 80‘1 80‘6 N 302+806 dx. d dt +
n, +X n X
8x1 x, | Clox,  ox, | 357
t, T —h/2
t, h/2 ts h/2
+f9gf(02nx2+06nx1)5VodX3d7dt+f9§f(02X3nxz+06X3nx1) dx; dy dt—
t, T —h/2 t, T —h/2
h/2 h/2
80‘1 Jo 802
ffff ou dx3det—ffff oV, dx, dS dt +
0X, 6x2 ox, 8x1
Q  —h/2 Q —h/2
h/
ffffzzazaﬁ 20 2oy s, ax ds at ®3)
X X X5 6w, dx
X Ox, o 0%, 9%, o 0P
Q  —h/2

In the Eqg. (3) is followed the same process (as those of the kinetic part) of decomposition of
the volume and surface integrals. Thus, the above relation takes a new form including
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N, Ny hi2 [0 M M hi2 |01
Nyt = {Nyp = f CoptdXy » My = 1My = f Oopp XXy (4)
Ng N, -2 \oy, M M “h2 oy,

Thus, to calculate the variation of the elastic potential energy part, we have to define addition-
ally these stress resultants as,

the thickness-integrated forces (N, N,,, N;,) = (N, N,, Ng)
and the thickness-integrated moments (M, M,,, M;,) = (M, M,, M),

which are called alternatively as stress resultants.

At this point is important to clarify that the above stress resultants are nothing more than “ab-
breviations” of the stress field of the material. By this way, we gather together the compo-
nents of stress field, which are expressed in terms of the displacement field (u,, v,, W),
namely the unknowns, as seems from the Egs. (8) - (10) of the section 4.2.1 or the Egs. (5)
and (8) of the section 4.2.2.

Substituting the Egs. (8) - (10) of the section 4.2.1 or the Egs. (5) and (8) of the section 4.2.2,
into the Eq. (4) of the stress resultants, we can express the thickness-integrated forces and
moments directly in terms of the displacements (ug, Vo, Wy ).

Thus, the last aforementioned relations are going to appear on next sections in order to derive
easier the equations of motion and the boundary conditions of the plate (in terms of the dis-
placement field). Complementarily note that the total number of the resulting scalar equations
of the problem must be the same with the number of unknowns so that our problem has a
unique solution. In that case the number of unknowns is three. Consequently, we expect to

derive three equations from the variational principle, including the unknowns (ug, v,, W),
and finally solve a 3x3 system.

Thus, the equation (3) is converted to:

Jy = fff N.n, +Ngn, ou d}/dH—fEf M n, +Mgn, dydt—
t, I

oM, OM,
Ny, + + ny, dydt+
t, I

ox,  0x,
tZ t2
+f§f N,n, +Ngn, §v0dydt+f9§ M,n, +Mgn, dydt—

{ 0X, 8x2

f [ - f [ e o
O0X, 8x2 8x2
fff 82M1+82M S, deo dt 3)
W, de
8x6*x2 0%x,  9%x, °
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4.4. Virtual Work of the Externally Applied Loads

As for the last terms of the variational equation, we have to calculate the variations of the
externally applied forces, apart from Kinetic and Elastic Potential Energy.

Within the Classical Plate Theory, we assume that there is a normal distributed external load
at the top or/ and bottom surface 9B¢™) of the plate (surface force/ traction at x, =h/2 or/

and x; =—h/2) q(xy,x,;t). At this point we clarify that the normal distributed external
load q is regarded as the algebraic sum between the load at the top and the bottom of the ex-
ternal boundary of the plate (g =0y,, + Apotrom ) 8 €Xactly shown on the reference, M. Ama-

bili (2004), “Nonlinear vibrations of rectangular plates with different boundary conditions:
theory and experiments”, Italy, Journal of Computers & Structures on pp. 2589.
Also it is necessary to quantify the virtual work of the traction field at the edge of the plate.

This work is related to the virtual displacements ou,, ou, and ou,, which are the displace-
ments on the direction of x,-axis, X,-axis and X;-axis respectively.

Thus, the variation of the functional of the external surface traction, due to the surface distrib-
uted load (surface tractions) at the adjacent surface and the horizontally distributed vertical
load q (as illustrated on the following figure, Figure 5), is:

5JT_fffT5u det+ff qow,dew dt =

ti  9Bg
- fff T, 0u, +T,8u, +T,8u; dS dt +
t, 8B_|(_Iat)
é‘\](lat)
fffT su, det+fffT su det+fffq5woda)dt
19 ()B(“” t, B(If)
5J(uf) 6J(|f)

We examine separately the three integrals of the lateral, upper and bottom surface. To simpli-
fy their expressions, we neglect the time integration at this moment.

Due to the basic assumptions of the model of CPT, the second and the third term of the above
variation are eliminated, because of the normality assumption (section 1.2.3), which gives ze-

ro shear strains y,; = 2e,; = 0 and y,3 = 2e,; = 0 all over the plate. This fact is also

obvious from the form of the surface tractions which are prescribed on the section 2 [Egs. (1)
and (2)].
Thus,

s3I0 = 453010 =0 , on the flat surfaces

By this way the only term that remains to be analyzed, on the above variation of the externally
applied loads is the first one.
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0l = fff T,0u, +T,8u, +T,6u, dSdt + fffqdwoda)dt (1)

t, (9B(Iat)

At this point we procced to further study of the Eq. (1) and neglecting again the time integral
to simplify the calculations, we get

5J_I(_|at) — ff 'f1§u1+'f25u2+'|°35u3 dS =
aB_|(_|at)

= ffﬂ(SuldS +fff25u2ds +fff35u3ds =

aB_l(_Iat) aB(Iat) 8B(|at)

ffTéudS+ffT5vdS+ffT5wdS (2)

B(Iat) B(Iat) B(Iat)

XA

Figure 5: Externally applied and horizontally distributed vertical load

Now we assume that we have given surface tractions T,, T,and T, at the specific parts of the

lateral boundary 9B (9B{™)) and using the Egs. (5), (6) and (7) of the section 3, we de-
rive the following,

0ow .
J(Iat)_ff 5u0—x3 ]det+ff Vo — X3 5 Jdet+ffT35wodS:
B (at) B (at) X2 o (at)
ffTéudet—ffo3 dS+ffT§vOdS—
o (lat) o (lat) B (at)
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. oW .
_ ffT2X3 ——2ds +ffT3§WodS @3)
2

B (lat) 9B (lat)

Now as for the form of the given surface tractions T,, T, and T, we recall the configurations

of the section 2. We notice also that the deformation at the edge of the plate during its motion
in conjunction with the externally applied loads must be linearly dependent from the
Xg-variable. This fact is justified due to the same dependence of the in-plane displacements

(u, v) fromthe Xx;-variable.

Further, the quantities which multiply the variations éu,, ov, and ow, inside the integrals

of the Eq. (3), are expected to match with the respective terms of the variation of the Elastic-
Potential Energy part (section 4.3). The last contains boundary terms (surface integrals) simi-
larly linear dependent of the x;-variable.

Taking all the aforementioned into account, we present here for convenience again the form
of the given surface tractions prescribed on the section 2 by the Egs. (1), (2), (3),

-fl = arg(Xy, Xy) +ar(Xg, %) Xg = aro(y) + ar(y) X3 (4a)
-lcz = Do (X1, Xy) + b (X1, X5) X3 = bro(y) + bry(¥) X, (4b)
f3 = Cro (X1, Xy) = Cro(y) (4c)

However, it is essential to note that the above form of the surface traction field is a simplified
approximation of the real values of the surface tractions at each point upon the edge of the
plate as to the Cartesian coordinate system (because on the curvilinear one, these tractions are
going to take a different form as will show on the section 5). Certainly, this approximation is
enough accurate in the context of our problem of CPT (and compatible with our model), be-
cause of the thin plate which permits only small variations on the values of the tractions along
its thickness.

Furthermore, we substitute the Egs. (4a) - (4c) into the Eq. (3) and after that we use the mass-
moment quantities and the process of decomposition of the surface integrals. Thus, the Eq. (3)
is modified as follows,

oW,
s3I = ff rg + ary Xy Uy dS — ff arg + ary X3 Xsa—ds +
X
o (lat) oB (lat) '
oow,
+ ff bry + by X3 Ov,dS — ff bro + briX3 X5 e ds +fch05W0dS =
o (1at) o (lat) 2 oB (lat)
dow, , 0OW,
OX, OX,
g (lat) g (at)
oow, , 0OW,
+ ff broov, + bryXgov, dS — ff DroXg—— + by X5 — das +
X, X,
g (at) sp (at)
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+fch05w0dS =

B (iat)
h/2 h/2
Oow, , 06w,
= Sff arooU, + ar;Xzou, dx;dydt — Eff aToxgaT + ar X3 W dx;dy +
r —hr2 r —hi2 ! !
h/2 h/2
0ow, , 00w,
+ Eff brodVy + bryxgovy dxgdy — Eff broXg—— + bryxg ——— |dx;dy +
OX, OX,
r —hi2 r —hi2

h/2

+ ffcméwodxgdy =

I —h/2

I Oow dow
= f aro—0U, + ap—0U, |dy — f aTo\ ° 4 aTl—Z % ldy +
P P 0%y p o Ox
r r
I dow dow
+ f bro—0V, + bT1k5V0 dy — Ef bTok — le_2 = ldy +
p P p 0, P 0X,
r r
)
- P

= fam_&%d?/ - %aTl —dy + ibTo_5V0 dy —
p p o Ox p
r r
, D5W I,
i g;CTo_é‘Wo dy ()
o

r r

Finally, substituting the Eqg. (5) into the Eqg. (1), we get

d&wo
53, = ffﬁam Suy dy dt — fSE dydt + ffﬁbm vy dydt —
|
—fbeli dydt+f9§cm awodydt+ff gow,dodt  (6)
P
t, I
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4.5. The variational equation of the CPT

Now we are able to substitute the results of separate parts, Eq. (6°) of the section 4.1., (3°) of
the section 4.3. and (6) of the section 4.4. into the variational equation (1) of the section 4.
The next step is to gather separately the different terms according to the kind of their varia-
tions e.g. ou,, ov,, ow,. By this way it is easier to extract the equations of motion and the
boundary conditions of the model of Classical Theory of Plates.

To facilitate the calculations and substitutions, we repeat the equation (1) of the section 4:

tZ t2 t2
ffffaK(u)dv dt—fff SU (e)dV dt+fff‘fi§uids dt =0 (1)
t B t, B t, OB;
Then the equation (1), is converted to:

tZ t2
—ffflol'jo da)dt—ffflo\'ioévoda)dt—
t, O
fff 6 w0 0 AW

X1 X,

ow,
n,, +I28—nX2 oW, dy dt —

X,

t,

ffﬁ(Nlnx +Ngn, ), dydt—fgg(N?_nX +Nghn, )ov, dy dt+
t, t,
f§ n, +| 02 M| dy dt
8X1 8x2 “olox,  oxg | 4
t,
f fSE(M N +Mgn,)  Cdydt +
ty
fff ON, 8N
0X, 8 X5
. fff 282M6+82M1+82M
Ox0%,  0%x,  0°x,

ou, de dt
isdo +fff[8xl -
95
f3§am—5u dydt—fgg L2 ¢ W° dydt+f9§bm—5vo dy dt —

177 6""x,

216v, deodt +

ow, do dt +
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t, ty
|
_ ffﬁlei dydt + ffﬁcm—o dydt + fffq
p p
t ty Q

Swydwdt  (2)

For further simplification, we gather together the terms with surface and curvilinear integrals,
taking care of the kind of variation (ou,, ov, and ow,) of each term. Thus, the final form of

the variational equation of the problem of the CPT is the following. Note that the Eq. (3) be-

low is exactly the same as the variational Eq. (1) of the section 4.

t;
ON ON ON
—fff oty —————2 deodt — fff o Vg — Niz Oz 6V, dodt —
ox,  OX, <9xl oX,
, Q
t
Z o, 0%,| _9°M,, 0M, O°M
—fff LWy — 1, |+ —5— | — 2ot 2 _qléw,dodt -
0%, 0°X, OX, 0%, 07Xy 0°X,
fgg 8w0 ll_8M12 o awo_aMzz_aMlz 0o e dydt -
2ox,  Ox,  ox, | | Pox, ox, x| Op

{ Nyn, +Ngpn, —

I
J9

4
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I,
}au dydt—ff{Mﬂn +Mpyn, +ap,— }
X P | ox
{sznxz—’—Nlanl_bT o }5Vo d7dt_f§l 22Ny, +Mpny +bT1p]

Oow,
dydt —
1

dydt = 0(3)
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4.6 Equations of Motion of the CPT in terms of thickness integrated forces and
moments

Now in order to obtain the equations of motion of the model of CPT, we assume that each
term (under surface or curvilinear integrals) of the Eq. (3) is continuous function of x, and

X,. These terms are multiplied with the variations ou,, ov, and ow, or the spatial deriva-
tives of the last (0w, ) variation. At this point, using the standard arguments of the calculus of

variations [“Calculus of Variations”, 1. M. Gelfand and S. V. Fomin, Lemma 1,
p.9/Sec.3/Chap.1 and Lemma, p.22/Sec.5/Chap.1], we derive the three equations of motion
of the plate.

Accordingly, we first assume that, ou, = dv, = ow, = AW,/ OX, = FSW,/0X; = 0
on the boundary (x e 77), where t is arbitrary. The previous means that the variations and

their spatial derivatives are not vary upon the boundary of the plate and obviously we have
given displacements. Then (3) reduces to just,

tz t2
. ON; 0N, . ONg ON,
—fff lolip———— da)dt—fff I Vg ———— oV, dewdt —
ox, 0Ox, ox,  0OX,
t, Q t, Q
t2
- O*M,  0°M, 0O°M, B .
—~ oWy —1, —q oW, dowdt=0 (3)
t,

xox, 0%, 07X,
Subsequently, we assume that ov, = ow, = 0 onthe domain Q (inside the body of the
plate). Thus,

[

and using the arbitrariness of the variation ou, inside the Qx[t,, t,], we find the first equa-
tion of motion of the plate,

oMW, %W,
7, T ha, |
0%, 07X,

ON, 0N,

0+0
ox, 0Ox,

da)dt:O, V ]

ON ON
X1 X2

for xeQand v te [t;, t,].

Next, we remove the restriction év, = 0 on the domain © and taking into account the equa-
tion (4) which eliminates the first surface integral of (3°). Thus,

fff

And using the arbitrariness of the variation dv, inside the space (2x[t,, t,], we result to the
second equation of motion of the plate,

SVy (X, t)dadt = 0, Vv, (x,1),

VO____
2
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ON ON
-2 2 =0. (5)
oxX,  0X

I0\70
for xe and v te [t,, t,].

Further, removing the restriction ow, = 0 on the surface Q and taking into account the two
previous equations (4) and (5), the result of the equation is (3) is,

tZ
f f f 0%, 04,
, Q

O*My  0°M, O°M,
0%, 0%x,

MOx, 0%, 0°x,

oW, —1, —q | owy(x,t)dedt = 0,

vV ow,(X,t)

Regarding also the arbitrariness of the variation ow, inside the Qx[t,, t,], we extract the
third equation of motion of the plate,
0%, 0%,

_262M12 0°My  90°My,
%%, 0°x,

(NP —
0""0 2 2 2
OX0x, 07Xy 0°X,

=q (6)

Let it be noted that Egs. (4), (5) are identical with the respective results (3.4.15), (3.4.16) of
the book J.N. Reddy (2007) on the page 105. As for the comparison of the equation (6) and
(3.4.17), we note that there is a difference on one term of the (3.4.17), which is not appear on
the equation (6). This difference is easily justified because of another strain field, which is
adopted for the development of the CPT according to J.N. Reddy and takes into account the
geometric nonlinearities i.e. small strains but moderate rotations of transverse normal of the

mid-surface (10°-15°) [J.N. Reddy (2007) “Theory and Analysis of Elastic Plates and
Shells”, page 98 — 99/ Chapter 3].

It is essential to note that, the above system of three equations (4), (5), (6) is solvable, as will
be seen explicitly on the section 6, because the number of unknown quantities is three. This is
a fact due to the definition of the thickness-integrated forces and moments [Egs. (4) of the
section 4.3], which can be expressed directly in terms of the unknowns of the system, namely

the displacement field (u,, vy, W, ), as will be shown on the section 6 again.
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5. Boundary Conditions of CPT in terms of thickness -integrated forces and moments

Inspection of the previous Eq. (3) of the section 4.5 indicates that the quantities with a varia-
tion in the boundary integrals are the primary variables u,, v,, W,, Ow,/0X,, Ow,/0x,
and their specification constitutes the geometric or kinematic (essential) boundary condi-
tions. The mathematical expressions inside the brackets of the integrated quantities, which are
coefficients of the varied quantities, are termed the secondary variables, and their specifica-
tion gives the dynamic (natural) boundary conditions. Therefore, there are primary and sec-
ondary variables of the plate with faces parallel to (x,, X, )—plane.

However, on this step we must not hustle to conclude about the final results of the boundary
conditions of the problem, because at first glance [Variational Equation (3) of the section 4.5]
the number of the boundary terms does not give the desirable number of boundary conditions.
In other words, if the equations of motion are expressed in terms of displacements (as will be
shown on the section 6), they would contain second-order spatial derivatives of u,, v, and

fourth-order spatial derivatives of w,. This implies that there should be only four essential

and four natural boundary conditions, whereas from the Variational Equation (1) below we
note five essential and five natural boundary conditions. This fact is incompatible with our
problem of CPT and must be corrected by specific treatments (section 5.2).

5.1. Variational boundary terms in Cartesian coordinates

Now, we isolate the curvilinear integrals in the Eq. (3) of the section 4.5, in order to illustrate
better the aforementioned boundary terms.

Initially we remove the restrictions éu, = ov, = ow, = AW,/ 0X, = IoW,/0X; = 0
from the boundary. Then, the action functional of the Eq. (3) becomes,

t;
!ff
ty t,
Iy I, | 9dw,
—f§ N,n, +Ngn, —a;,— tou,dydt —f§ M.n, +Mgn, +a;;— — dydt —
1 2 p 1 2 p ()X]_
t, I

t I
t, | t, |
_fi‘[Nznxz‘FNenxl_bTo_o}fSVo dy dt _ff[MZnX2+M6nxl+le_2} dydt =0 (1)
p P
L t, I

We are thinking exactly with the same rationality as on the paragraph 4.5 but at this moment
to derive the boundary terms of the problem. Subsequently, on the section 5.3 we are going to
extract the boundary conditions, which are independent from each other and finally compati-
ble with our problem.

Ny, OM, OM,

? X, O, OX,

Ny, OM, OM,

? X, B ox,  0x,

n,+ ||

|
n,, —cTO—O] dy dt —
Yo

Additionally, note that the above process of deriving the equations of motion and the follow-
ing boundary conditions is explained thoroughly on the Lecture Notes of Functional Analysis,
G.A. Athanassoulis (2016) “Necessary Conditions of Extremum of Functional” and “A fur-
ther study of the Variational Problem as for integral type functional”, as well as on the book
of Gelfand 1.M., Fomin S.V. (1963), “Calculus of Variations”.
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5.2. Transformation of the boundary conditions to a curvilinear boundary system

[References: J.N. Reddy “Theory and Analysis of Elastic Plates and Shells”, Chapter 1.4/ 3.5
and the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and transformation of physi-
cal quantities under rotations of the reference system’].

Recalling the Variational Equation (1) of the section 5.1, which are examined so far as the
possible boundary conditions, we remark the following.

On the one hand, the number of the possible geometrical and natural boundary conditions is
five and five respectively. However, in general the geometrical and natural boundary condi-
tions cannot take place concurrently, which means that the total number of the possible
boundary conditions is five.

On the other hand, the total order of the partial differential equations of motion of the elliptic
problem of the CPT [Eq. (9) of the section 6.1 or Eq. (9) of the section 6.2] is four, since these
equations include fourth-order spatial derivatives of the displacement w,. However, on the

context of this section we are going to occupy with the equations of motion of the plate found
on the section 4.6 and the possible boundary conditions of the section 5.1, which are ex-
pressed in terms of thickness-integrated forces and moments. The only difference between the
equations of motion and the relations of the sections 4.6 / 5.1 and those of the sections 6.1 /
6.2, is that the first include implicitly the displacement field, whereas the second are ex-
pressed explicitly from the displacement field u = (ug, vy, Wy) .

Consequently, we conclude that there is not the right number of primary (geometric) or sec-
ondary (natural) variables associated with the equations of motion governing the bending and
stretching of the plate.

To remedy the aforementioned inconsistency, we will proceed to appropriate techniques,
which are going to be developed on the following sections as well as on the Appendix A.
Note that our struggle is to diminish the number of the boundary conditions from five to four.

First, we transform the appropriate boundary expressions in terms of the displacements, forces
and moments over the edge of the plate (and specifically the arbitrary curve /" surrounding
the mid-surface of the plate). For this purpose the Cartesian orthogonal coordinate system
(X4, X5, X3) is transformed to a local coordinate system (n, s, z), which “follows” the shape

of the arbitrary curve I on the lateral surface of the plate. The expression “follows”, denotes
that the coordinate system (n, s, z) moves on the curve /', so that the n-axis be normal to

the lateral boundary (with a unit normal A) and s-axis be tangential to the same curve (with a
unit tangential vector §). These vectors projected on the Cartesian coordinate system
(Xq, X5, X5 ), are expressed as

n = Ny, €x, T Ny, €x, 1)
§ = Sx, €x, T Sx,€x, (2)

Further, we suppose that the unit normal A is oriented at an angle 9 clockwise from the posi-

tive x,-axis, then its direction cosines are n, = cosd and n, = sing. Similarly, the di-

rection cosines of the vector § are s, = —n, = —sin4 and sy, = n, = cos$ (for
1 2 2 1

additional remark and explanations, see APPENDIX A).

54



Part A Section 5. Boundary Conditions of CPT in terms of thickness-integrated forces & moments

For this reason the aforementioned, local to the edge of the plate, coordinate system (n, s, z)
is denoted as the curvilinear coordinate system and its components the curvilinear coordi-
nates respectively. As for the choice of the previous designation (name) of the transformed
coordinate system under rotation around the vertical axis x; or z, it is essential and meaning-

ful because the direction of the in-plane axes (n, s) is directly adjusted to the shape of the
lateral surface of the plate under consideration.

Further, as known the lateral surface (edge) of the plate is prescribed by the curve 7~ sur-
rounding the mid-surface of the plate and having arbitrary shape as exactly the form of its lat-
eral boundary.

Thus, it is rational (reasonable) to describe the coordinates of the transformed system as cur-
vilinear-dependent, since these coordinates enable us to model the problems of plates with
curved boundaries of arbitrary shape.

After appropriate algebraic calculations and proofs referred extensively to the APPENDIX A,
the final relations connecting the quantities of the Cartesian coordinate system to those of the
curvilinear-dependent are presented below.

As for the displacement field of the problem of the CPT and its variation, we have

Ug = Ny Ugy+ Ny, Ugg 3 and  du, = Ny, SUgy + Ny, SUgg (3)
Vo = =Ny, Ugy+ Ny Ugy (4) and  Svg = —n, SUg, + Ny Sl 4)
w, = 1w, (5) and ow, = 1ow, (5)

Note that the vertical displacement and its variation remains the same during the transfor-
mation, since we occupy with the planar rotation of the x, x,-plane around the vertical axis

X3

As for the derivatives of the ow,, we get

oow, o Oow,, . % ©)
O, ‘i on X2 9s

oow,, _ % . oow,, @)
X, X2 on 1 9s

Finally the relations which transform the stress field from the Cartesian coordinate system to
the curvilinear one, are

_ n2 2
On = nx1 Onn + 2nX1nX2 Ohns + r]x2 Oss (8)
=n? —2n,n + n? (9)
Oz = X Onn Xq Xzo-ns X1 Oss
2 2
O1p = 01 = nXlﬂxz(ass_gnn) + (nxl_nxz) O'ns (10)

By the definition of the thickness-integrated forces and moments, we have similarly with the
transformation of the stress field the following relations,
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Ny = ng Ny 4+ 20, ny Noo +nj N (11)

Ny, = ng Ny, — 2n, ny Noo + ni N (12)

Ny, = Ny =y ny (Ng—=Ny) + (07 —nf )N (13)
and

M, = nfann + 20, Ny Mo + nfz M., (14)

M,, = nfz Mo, — 20, Ny Moo + nflMss (15)

My = My =y ny (Mg—M ) + (g —n; )M (16)

Also before we proceed to the transformation of the boundary terms from the Cartesian to the
curvilinear coordinate system, we have to present the same transformation law of the func-
tions a;o(Xy, X, ), bro(Xg, X5) s @ (Xg, X5), br(Xg, X,), Cro(Xq, X, ), Which describe the form
of the given surface tractions (shown on the section 4.4). Thus, according to the transfor-
mation law (TO) and (T1) of the APPENDIX A, we get the following relations

8rg = Ny Aron + Ny, Aros (17a) and  ar; = N, -ar, + Ny, -arg (17b)
bro = —Ny,@ron + Ny -ares  (17¢) and by, = —ny -ap, + nyarp,  (17d)
Cro = L:Cyq (17e)

where the function of the right-hand side of the above relations (17a) - (17e) have unique in-
dependent argument s, which counts the length of the curve 7. Thus, as explained thorough-

ly by the mathematic definition of the curve on the APPENDIX A, the functions in the curvi-
linear system are written as,

argn = aron(S), args = Args(S), ary, = arq,(8),
arys = ary(8) and Cro = Cro(S)-

In view of the above relations, it is apparent that we have to occupy with the surface integrals
(boundary terms) of the variational equation 3 of the section 4.5, namely the following
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t, ty
I I
—f§ NunX1+N12nXZ—aTO—°}§uodydt —f%{NZZnXZ+N12nxl—bT0—°]6v0dydt -
t, I P t, I r
tZ
f§ oW, OM, OMg
t, I
t;

t;
I, | 00w, I,
—f§ Myn, +Mp,n, +ar;—— dydt —ff M,,n, +Mp,n, +by— dydt
1 2 p ()Xl 2 1 p
t, I

o, OM, M,

2ox, Ox, Ox

n,+ 11

IO
N, —Cro— dy dt —
2ox,  Ox, Ox, 2 TT0 ] 4

t, I

At this point, it is regarded important due to the nature of the problem of CPT and also con-
venient for the calculations, to separate the above equation into three parts and after that to
perform calculations, integrations and so on. The first part includes the in-plane variations
ou, and ov, (first row of the above expression), the second one includes the vertical varia-

tion (second line), whereas the third part is related to the spatial derivatives of the verti-
cal variation oow, /0x, and (third line), that is the variation of the derivatives of
along the boundary curve 7.

The following disjunction and grouping of the boundary terms of the just previous variational
equation, is on purpose. First, the in-plane variations give surely the two of the boundary con-
ditions of the problem of CPT, either they are expressed in terms of the Cartesian or curvilin-
ear coordinates. Second in contrast to the in-plane variations, the boundary conditions associ-
ated with the spatial derivatives of the vertical variation oow, /Ox, and , have to

be merged and finally produce one boundary condition. The last satisfies our demand of total-
ly four boundary conditions for the problem of CPT.

However, the second part including the variation Sw,, is correlated to the third one, as will be

shown on the next paragraphs of this section (5.2).This fact takes place due to the perfor-
mance of by parts integrations to the transformed quantities of the variations oow, / dx, and

, which will give boundary terms explicitly related to the variation ow,,.
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5.2.1. In-plane boundary conditions in the curvilinear boundary coordinates

To simplify the process of transformation of these terms from the Cartesian coordinate system
to the local one, we neglect once again the time integration and further now the curvilinear
integration.

Subsequently, taking apart each boundary condition multiplied with a different component of
the variation of the displacement field and using the Egs. (3°), (4), (5Y), (11)-(13), (17a) and
(17c) we get the below.

I
Nyn, +Npn,, _aTO? ou, =

(n2N,, + 2n, ny

Xy

an + nists)nx1 +

2

= +(nx1nx2 (Ngg—Nyp) + (ni*nfz) an)nx2 - {5u0nnx1+5u05nx2} =

I
0
- (nxl aron t nx2 aT05)7

3 2 2
(nxl_nxlnxz) I\Inn + 2 nxznxl Nss +

= 2 3 |0 {5u0nnx1+5u05nx2} =
+ (3 nxlnxz - nxz)an _(nxl arop + nx2 aTOs);

_ 4 2 .2 2 L2 3 3
- (nxl_nxlnxz) Nnn5u0n+ 2 nxznx1 N555u0n+(3nx1nx2 - nxlnxz) Nn35u0n+

3 3 3 2 2 4
+ (n><lnx2 _nxlnxz)Nnn5u05 + 2 nx2 nx1 N555u03 + (3 ﬂxlﬂxz - nxz)Nn55u05 -

) g ) Lo (19)
— (N, argn + Ny, Ny, aTOs);é‘uOn — (ny, Ny, @ron + Ny, aTOs);alJOS

and
I
NNy, +N12nx1_bT07 oV =

2 2
n I\Inn - 2nxlnszns + nxlnszss +

2 3 2 —
=1t nxlnx2 Nss_nxlnx2 Nnn + (nxl*nxznxl)an - {nx1 5u05_nx2 5u0n} -

|
0
— (=ny, aron + Ny, aTOs);

3 2 2
(nxz_nxlnXZ)Nnn + anlnx2 Nss =+

= 3 5 |0 {nx1 é‘uOs_ r-lxz 5u0n} =
+ (nxl_ 3nxlnxz)an _(nxl aTOS_nX2 aTOn)?
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4 2 2 2 h2 3 3
- = r]xz_nxlnxz Nnné‘uOn - 2nx1nx2 Nss5u0n + 3rlxlnxzi nxlnx2 Nnsé‘UOn +
3 3 3 2 .2 4
+(nx2nx1_nxlnx2)Nnn5u03 + 2 r]xlnxz Nss5u05 - (anlnxz_ nxl)an5u03 +
2 I 2 I (20)
+ nx2 aron T nxlnx2 atos _5u0n - 7nX2nX1 aron T nx1 aros ;5u05
Adding the Egs. (19) and (20), we have
I I
Nyny +Ngjpn, —aro—duy + {Npyn, +Nypn, —brg—rov, =
P P
4 2 .2 4 2 .2 2 .2 2 .2
= (N, —ng N, =N, +ngng ) Ny Sug, +2ng ni —2n; ng +
3 3 3 3 S
+ (Bng Ny, =Ny Ny —ny N+ 30, N )N oug, +
3 3 3 3
+ (nxlnxz—nxlnxz+nxznxl—nxlnxz) +

3 3 2 2 4 4 2 2 .
+(@2ng n, + 2n n )N Sugg+@ny ny —ny +ny — 3n; ni )N Sug, +
2 2 K S
+ (=N, @ron + Ny Ny, 8705 — Ny Bron — Ny Ny, aTOs); Uon —
2 2 K Su. —
— (Ny, Ny, @100 + Ny Bros — Ny Ny 8rgq + Ny Argg) — OUgg =
P

- (n:(‘l _njz ) Nnné‘uOn + W - W +

+ (2 nilnxz + 2nxln§2)an é‘uOn +

+ ( ) +
+ (@03, + 208 n,) Ngg Sugs +( —ny, +ny, ) Nps S +
I
+ (= ni aron T - ni a1on );5U0n -
I
—( + niz aros +n§1 aTOS);5UOS =

[eliminating the zero terms and grouping together those with the same variation]

|
4 4 3 3 2 2 0
= My, Nin 0Uoy + 2nX1nX2 + znxlnxz Nps OUgn + — N, = Ny aTOn;é‘UOn +
|
3 3 4 4 2 2 0 o
+ 2r]xznxl"i_ 2nxlnx2 Nss§u05 + r]xl_nxz Nn55u05 - r]xz + nx1 aTOS_é‘UOs -

I
_ 4 4 3 3 2 2 0
_{ N, =Ny, Npo + 2ngn, +2n,ni Nog — ng +ng aTOn; ouy, +

4 4 3 3 2 2 0
—|—{ N, =Ny, Nog + 200 n, +2nn, Ng — ni +ng ams;}éuOs =

X2
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|
_ 2 2 2 2 2 2 2 2 0
- { nxl _nx2 nxl-’_nx2 Nnn + 2nxlnxz nx1 + nx2 an - nx2 + nxl aton ; §u0n +
+1n2-n2 n24n2 N, +2n,n,n? +n> N, — n> +n? a L su
Xq X, X1 Xy ns Xo Xy X, Xq Ss X, X1 TOs D 0s

However the above relation could be simplified further, by remembering that the normal vec-

tor to the lateral edge of the plate f is unit. Thus, its meter is equal to the unit so that

2 2 .2 2
[nxl +n,, =n, +n, =1L

Consequently, the final form of the above result is,

o
NNy, + NNy _bT0;}5VO =

|
{ Nyn, +Npng _aTo_ol‘5Uo +
Yol

IO

= { nfl_nfz Nnn + anlnx2 an — Arop ;} §u0n +
. @
0

+ { nfl_niz an + 2nx2 nxl Nss — aros ?lé‘UOS

Note that the previous simplification of the results is going to be applied similarly on the next
sections, namely 5.2.2 and 5.2.3, because we come up the same quantity (nf1 +an) inside

the following relations.

On the basis of the above result, we notice that the functions a;,,(s) and a;,(s) are not

correlated inside the brackets multiplied with the variations ou,, and ou, respectively. This

fact is expected because the variations normal and tangent to the lateral surface of the plate,
the ou,, and ou,, respectively, are independent essential conditions and also the quantities

by which they are multiplied are_two independent natural boundary conditions of the problem
of CPT, as seems below

|
2 2 0
N =M, Nan + 2ny ny, Nys = aroq ; (21a)
IO
nfl_niz NnS + 2 nxan]_ NSS = aTOS 7 (21b)
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5.2.2. Transformation of the boundary conditions associated with 9, sw, , 9, Sw, to the
curvilinear coordinate system

To simplify the process of transformation of these terms from the Cartesian coordinate system
to the curvilinear one, we neglect once again the time integration and further now the curvi-
linear integration.

Subsequently, taking apart each boundary condition multiplied with a different component of
the variation of the displacement field and using the Egs. (6), (7), (14)-(16), (17b) and (17d),
we get the following results.

First, as for the first part involving the x, -spatial derivative of the variation sw,

I, | dow,
Myn, +Mpn, +(n, ar, + Ny, aTls)7 %, =
2 2
(nlenn + 2r]xlnszns + nszss)nx:l +
o dow, dow,
- +(nxlnx2 (M ss_Mnn) + (nxl_nxz) Ivlns)nxz + nx1 an - r]xz 9s =
I,
+ (Ny, 8rgy + Ny, 8ry) —
Yol
Ny Moy + 200y Mg + 05 n Mg+
) ) 3 doW, dow,
= ‘+nxlnx2 Mg —M,,) +(nx1nx2_nx2)Mns +r Ny, an — Ny, 95 -
I,
+ (Ny, 8rin + Ny, ary6) ?

[Grouping together the terms with the same thickness-integrated moment multiplied with the
same curvilinear derivative of the Sw, and also separating the unknown terms from the giv-

en]

oW 0owW
:(nj _ni nf)Mnn ° +2n§ n)% M, -
1 1 2 1 2 ()n
OOowW
+ (3nflnxz— nxlnfz) — (nf(lnxzjLn)(ln:X”z)Mrm%0 —
0s
(22)
3 4 2 2 oW,
—2n;n, — (ny, +3n;, N IM s +
) I, oow, ) I_2 oW,

+ (N5, Aran + Ny, Ny Bry)—

Subsequently, as for the second part related to the x,-spatial derivatives of the variation ow,
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I,
Mo,n,, +Mpn, +(=ny ar, + Ny aTls)?]

X2

= +(nx1nx2 (Mss_Mnn) +(nfl_n§2) Mns)nx1+

I,
+ (=ny, aryy + Ny aTls);

X2

2

=t nflnxz Mg —M,,) + (nil_nxznxl) Ms +¢

I,
+ (-Ny, 8ry + Ny aTls);

(n2 Mnn - 2nxlnszns + nslMss)nx2+

3 2 2
n Ivlnn - 2nxlnx2Mns + nxlnszss—i_

[Similarly to the previous, we gather the terms with the same thickness-integrated moment
multiplied with the same curvilinear derivative of the ow, and also separating the unknown

terms from the given]

= ny —nin; Mnnag\:o +2nini M
+ njn,—3n,n} :

+2n;n, + ny —3nini M
+ Ny r]xz T1s n)fz Tin I2 62\;\/0 + n2

Adding now the Egs. (22) and (23), we have
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I,] 00w, I,
Myn, +Mpn, +ar —r— + {Myn, +Myn, +by— =
P X1 P
oW oW
4 2 2 4 2 .2 0 2 .2 0
= nxl_nxlnxz_i_nxz_nxlﬂx2 I\/lnn an + 4'nxlnxz Mss on
3 3 3 3
+ 3n; Ny, — N, N, +n,en, —3n, ng -
OOoW
3 3 3 3 0
— (nxlnX2+nX1nX2—nX2nxl+ nxlnxz)Mrm el
oW
4 2 52 4 2 12 0
_(nX2-|-3nX1nX2—nXl + 3nx1nx2)MnS s

+ (2 nilnxz -2 niznxl) +
+ (N2 apy, + Ny on, aTls)I_2 OoW, _ (M, N, a,. +n2a, )l_z 95w,
on P T p Os
2 I, dow, 2 I, dow,
+ (Ny, Ny, args — N aTln)7 o (N ary, — Ny Ny, am)7 =

[Grouping together again the terms with the same the thickness-integrated quantities of the
same curvilinear direction and of the same derivative of w, on the curvilinear coordinate sys-

tem]

oow Oow
" 2 2 4 0 2 2 0
- nxl_znxlﬂxz_knx2 Mnn on + 4'n><1nx2 Mss on
OoW
3 3 3 3 0
+ 4n;n, —4n,n} — (2nX1nX2+M§‘Z/—n M, i
(n? +6n2n? —n?)M Yo (2n3n 2ndn,)
- x2+ Xg Xy X ns + Xg Xy Xy Xy +
2 ) I, 06w,
+ (N @y + Ny, Ny Brgg + Ny Ny Arge — NG Apg,)— on
o On
2 2 I, dow,
- (nxlnxz Arip + Ny, 8rys — Ny 8rgs £ Ny, Ny, aTln); Js =

[Simplifying the terms inside the brackets concerning the direction cosines n, , n, ]
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OoW,
on
JoW,

3 3 3
+ 4nX1nx2—4nX1nX2 — 2nX1nX2I\/Inn 5%

oow
_ 4 2 .2 4 0 2 .2
= n,—2n,ne+n, M, n + 4n, ne Mg

3 3
+ 2n,n,—2n,n, +

oW

4 2 ~2 4 0

— N, +6n, n. —n, M s
I, dow
2 2 2 0
+ N ar, +2n,, 0, ar, — N ary, an

5 ) I, dow,
— (N}, arys + 20, N Ay, — N Aryg) ; =

X

[Finally we create smarter and shorter forms of the direction cosines inside the brackets and
we conclude to the final curvilinear boundary terms]

_ nfl —nfz ZMnnag\:o + 4nflnf2 Mssai\:o +
+4n,n, nZ —n? —2ndn, Mnnf)i\:o B
— ng+6n;ni —ni M, 6(;\:’0 +2n,n, n: —nf + (24)
+ ((ny, = ny)an, + 20,0, ary) 1, 00w,
p on
— (N, —=ni)an, +2n,n, ary,) I;Z 82\;\/0

On the basis of the above result, remark that the function a;,,(n, s) is related both with the
variation 9ow, /on as well as with the variation doéw, / 0s . Exactly the same is valid for the
function a;, (n,s), which similarly is related both to the variation 9dw,/on and

OOoW, 1 0s.

This configuration is expected because the derivatives of the vertical displacement as well as
the corresponding natural conditions [terms inside the brackets of Eq. (24)], are correlated and
finally they are going to give one boundary condition (as will show on the following sec-

tions).
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5.2.3. Derivation of the boundary terms associated with the variation sw,

Now, taking apart the second line of the boundary terms of the variational equation, this is

repeated on the last paragraph of the section 5.2, we have

t;
ow, oM oM ow oM oM |
f§ 2 > - = — 2 n,+ 11, > - 2 - = Ny, _CTO(Xl’XZ)_O
J J X, 0%, X, X, X, X, P
|5w0,nx1 I5W0:”X2

dy dt

Subsequently, taking apart each term of the above expression multiplied with the direction
cosines (in order to simplify the calculations) and using the Egs. (6), (7), (14)-(16) and (17e),
we get the following results. In addition, note that for the sake of convenience we neglect the

time and curvilinear integrals.

However, due to the complication of the calculations, we present below the derivation of
same terms separately and after that we substitute the results into the 15, , and I, .
1 Xg P X2

Thus,
8WO
ox,

0 0 (252) and L R
X

oM

2 2
+ 2r]xlnxz Mns,n + nxlnx2 Mss,n +

+ ZﬂX:I_n)f2 Mns,s + n):z)z M

SS,S

My,
“ops
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M,, My My
ox, 2 on 1 ps
— —n, — n? —2n,n, M. +n?M +
- X2 8” X, nn X1 Xy ns Xy SS
+n 9 n?z M 2n, n, M nM.. =

X1 gs 2 - X; X Vins + X, 'ss T
= —n>M + 2n, n*M —n, n?M
- X, vinn,n X, ''x, Vi ns,n Xy Uy Vissn
+n, n?>M —2n’n, M +n>M

Xy 'x, Yinns X, X, Vns,s X, V'ss,s
M, M, My,
ox, 1 on 2 9s
= n 9 n,n, M M n>-n?2 M
- 'xq on 1 % ss My, + X, X, ns

n Y n, M M n?-n? M
+ Xy g X1 Xy s ot Xp X, ns
_ n2 3 2
- nx1 nxz Mss,n_Mnn,n + nxl_ nXlnx2 ns,n
+n,n> M. .—M + n, n?>-n® M

Xp X, ss,s nn,s Xy Xy X, ns,s

_|_

(25e)

(25f)

And now substituting the Egs. (25a) - (25f) into the expressions | Swq, N and | Swy, N,
rixg 1Ux2

I = l,{n? Gl N, N Mo _
SWo, Ny, T T2 % Xy Xy 9s
4 3 2 .2
nlenn,n + 2nxlnx2 Mns,n + n><1n><2 Mss,n +
+nen’M, o +2n2n: M n’n, M
Xo tix, Vinn,s Xp X, Vi ns,s + Xp ' 'Xp Viss,s
T2 a2 3 3 [~
o nxlnx2 Mss,n_Mnn,n - (nxlnxz_nxlnxz) Ivlns,n +
3 4 2 52
+ r]xlnx Mss,s_Mnn.s + (nxl_nxlnxz) IVlns,s
ow ow
o 2 0 0
- I2 n)(1 8[’] + Xlnxz 88 +
4 3 2 .2
_nlennn - 2r]xlnsznsn - nxlnszssn -
3 2 2
- nX2n><1Mnn,s - anlnsznss - nxznless,s +
+
2 22 2 52 3 3
+ nxlnx2 Mss,n_nxlnsznn,n + (nxlnxz_nxlnxz) Ivlns,,n -
3 3 4 2 52
r]xlnx Mss,s—i_nxlnsznn,s - (nxl_nxlnxz) IVlns,s
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o] oW
— Iz{nia—no—{— nxlnX _0], +

2 0s

4 3 2 2

_nlennn - 2nxlnxz Musn — n,n > Vlss,n T
3 2 2 3
- W_ anlnx2 Miss — nxznless,s +
* 2 N2 2 .2 3 3 [~

+ n,n 2 ss,n _nxlnsznn,n + (nxlnxz_nxlnxz) Mns,n -

3 3 4 2 N2
- nxlnxz Mss,s +W - (nxl_nxlnxz) |\/Ins,s

4 2 .2 3 3
B nx1 + N, Ny Mnn,n - nxznx1 + nxlnx2 Mss,s -
3 3 4 2 22
— Ny r-]xz + r]xlnxz Mns,n - r]xl + r-]xlnxz Mns,s

and

on 0s
+ ¢ My, — 2nxln)3(2Mnsyn + n? n21 .+
— Ny n32 nn,s + ZninizMns,s - nilnszss,s -
- n; n22 ssn T nilniz |vlnnn - (nilnxz_nxlniz)Mns,n -

X, X nn,n ns,n
2 .2 4 3 3
+ nxlnx + nx2 Mns,s - nxlnx + r]xlnxz Mss,s
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Finally the terms inside the brackets of the initial expression of the present paragraph, take the
following form

0
I5Wo,nx1 + I&wo,nx2 B CTO(S); =

W, v, i, oW, I,
=1,in? — +n,n, — —n2— 4+ n,n, —1t —Cro(s)— —
2 Xq an X1 Xy 95 X5 on Xp o Xp 95 TO
4 2 4 2 3 3 3 3
- (nx1 +n 1, _nx2 - n 71X, ™ nn,n (nx2 r']xl + nxlnxz-l-nxlnx2 + nxlnxz)Mss,s

3 3 3 3 4 2
_(nxlnxz + r]xlnxz—i_nxlnxz + nxlnxz) Mns,n _(nxl +n X, n 7%, nxz)Mns,s

, , OW, ow,
= 1y N, —ng an + 2nX1nX2E - CTO(S)? -

4 4 3 3
- nx1 B nx2 |vlnn,n - 2n><1nx2 + 2nxlﬂx2 Mss,s -
3 3 4 4
- 2r-]xlnxz + 2rlxlﬂxz Mns,n - r]xl - rlx2 Mns,s =
oW ow |
— 2 _ 2 20 — 0t 0
- IZ{ nx1 rlxz 8” + 2 nX1 r]xz 88 CTO(S) o
2 2 2 2 2 2
- nx1 - nx2 nx1 + nx2 Mnn,n - 2nX1nX2 n,, =+ nx2 Msss -
2 2 2 2 2 2
- 2nx nx2 r]xz + r]xl Mnsn o nx1 - nx2 r]xl + r]xz Mnss =
ow ow
_ 2 2 0 0 0
- IZ{ r]xl o nx2 n + 2 X1 X 5o - TO(S)_ -
2 2
o nxl - nx2 Mnn,n - 2nxlnszsss -
2 2
-2 r-]xlnxz Mns,n - nx1 - nx2 M ps.s
or
I + 1 — Cro(8)=2 =
OWg, Ny OWg, Ny TO
ow, ow, Iy
=1,{n2 —n?2 — 4 2n,.n,_—21 — cro(s)— — (26)
2 Xq X, on X1 X, 95 TO P

2 2
- n,—n Mnn,n+Mns,s - 2nxlnx2 Mss,s+Mns,n

X1 X2
At this moment, we ready to compose the final results of the sections 5.2.1, 5.2.2 and 5.2.3 in

order to extract the total number of the boundary conditions of the problem of the CPT. This
is going to be presented explicitly on the next section.
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5.3. The full set of boundary conditions of the problem of CPT
Finally, after reorganizing the curvilinear integrals of the Eq. (1) of the section 5 including

different variations on a more convenient way, we substitute the Egs. (21), (24) and (26) into
the Eq. (1) of the section 5 and we get

f95

| |
{Nnnx +Np,n, - }5% {NZZnXZ+N12nX1— bm?"}&/o dydt +

ow oM ow, oM oM |
f§ 0o u_ 12 n, 1, 0o 22 12 nx_CTO_O dy dt +
2ox, o ox, | ox,  OX, 0%, 2 ol
; 1, ] 05w, l,
+f§‘Munx +Mpn,, +a;— 1 — + {Mypn, +Mpn, +bp— dydt =0 =
p ] Ox ’ ' p
t ni_nx Nnn + 2r]X rlX2 an aTOn O}5uOn +
+ f§ | dsdt +
EE +{ I"If _nfz an + 2nx ny Nss atos ° }6u05
oW, Iy
(n? — 2)—04—2n n —}—CTO(S)——
f9§ { " e Bs P ds dt +
- (n - n )(M nnn+Mns s) 2 nxlnx2 (M ss,s+Mns,n)
0oW oW
2 212 0 2 2 0
(nx1 B nxz) Mnn X, Mss an
oow
+ 4n, n, (n; —n7) —2n;n, M, 5 o _
t, S
0ow
4 2 .2 4 0 2 2
+ ff —(ny, +6n, N —n )M s + 2, n,, (N, —ng) +|dsdt = 0 =
b ., I, déw,
+ ((n, = n})ar, +2n, N, ap,) — -
on
I, 0ow,
- ((ni2 - ni)ans + 20y N, ar)— s
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|
L {(ni_nfz)Nnn + 2r]Xlnxz an aTOn p}é‘uOn

+ ff | dsdt +
b |+ {(nfl—nfz)an +2n, n Ny — arg, — . }5%5
oW |
{(n - f) 4+ 2n, N, —0}_CT0(5)_°_
+ ISE s p ds dt +
2

- _n )(Mnnn Mns,s) 2n n (Msss Mns,n)

t, t
dow
+ fgg(nfl—nfz)zMnnWOdsdt + ffﬁ4nflnfz dsdt +
y I

t2
+J\¢)4nxlnxz(nfl—nfz)l\/lns L dsdt — fSEZn n,M, Cdsdt —
—f%(n +6n2n2 —ni)M Yo dsdt +
t,
+f§2nxln (n? —nXZ)MSS dsdt +
I, dow, 1)
+f56((n —n? Jar, +2n,n, ang) — dsdt —
p on

ty

S

5 I, 00w,
—fgf«n “1)an + 20,0, ap,) L st = 0

Now separating the integrals of the terms including boundary conditions with the variations
08w, /on and 06w, /0s and also neglecting the time integration for reason of simplifica-

tion, we have
2 0ow
o 2 2 0
'M oy = % Ny, —ny, My, N ds (1a)
r
I = §4 n:n; ds (1b)
I
) ) OoW,
b, = Qan,ny, ng —ng M, N ds (1c)
r
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3 Iow, 3
Y :'§Zn)(n)(Mn 5 ds_[ZanX 5WO %—Zn n, . Ow, ds
nn,s 1 2 S 1

r

where the last integral of the right-hand side of the above relation is written as,

0 3 3 8Mnn
—2n Ny . 0w, ds = £2nxlnx2 My, +2n,n, s oW, ds =

I
ty "
0
= fggig 2“31”xz Mnn}éwodsdt + ffﬁ 2n:X*1nX2Mnn'S Sw, ds dt
t, I Vo

Consequently, we get

0
3 n3
IMnn’S = [2 nxlnx2 Mnn5WO §_S X, §WO ds =

= [2 nyn,, MnnﬁwO ffﬁ{% . Mnn}éwo dsdt —

(1d)
— f9§ 2n; N M, 6w, dsdt
t, I
Oow
4 2 2 4 0
IMoes = § ny, +6n, nc —n, M, ds =
r
n{ +6n2n2 —n? I\/InsawO §Q ng +6n2n2 —n! M, ow,ds
2 1 2 1 S 2 1 2 1
r
where the last integral of the right-hand side of the above relation is written as,
a 4 6 2 2 4 M 5 d o a 4 6 2 2 4 M 5 d
% r]xz_‘_ r]xlnxz_nxl ns Wy 0S = % r]xz—l_ r]xlnxz_nxl ns [OWo OS +
r

r

oM
+ Ef{ n{ +6n2n2 —n? 0”5}6W0 ds
2 1 2 1 S

r
Consequently, we get
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IMns,s - ni—l—Gnini-ni Mns5wo],— B §[§ +6n n _n;ll I\/Ins }5WOdS —

r
— f ne +6n;n: —ni M o ow,ds (1e)
r
oW

2 2 0 2 2

IM3&S = 9§2 Ny, Ny, Ny, — Ny, M., s ds [Zn N, Ny, =Ny, MSS§WO]F —
r

8 2 2

i x, N, — N, Mg owgds

where the last integral of the right-hand side of the above relation is written as,

f—Zn N, N —Ng Mg Swyds =

Xy X2

— ﬁzn Ny, Ni —ng M355w0d5+9§2nxlnxz nZz —n2 8“§w0ds

s X2 X1 X2 Xy X2 S
I I

Consequently, we have

2 2 0 2 2
'Mss,s:[znxlnxzn -n 'V'ss5wo]r —f]g% 2ny N, ni —ni M Swyds —

Xy X2

2 2
- ggz Ny, Ny, Ny —Nx, MW, ds (1f)
r
Oow
2 2 2 0
Ié‘WO'n = § nx1 _nx2 aryy + ZnX2 nxl Aty ? an ds =
I
1, ) ) oow, 1
- ? f nx1 Ny, @rin T nX2 Ny, 8r1s on S (19)
t
2 ) dow,
|5W0S - nx2 Ny, Ars +2n,n aryn 9s dsdt =
t, I
I, ) ) oow, d
- ; / nx2 — N, Qs T r]Xln ar1n 95 S =
I
2 2
:;[ Ny, =Ny arys + 20, N, ar, 5Wor -
2
— _ggﬁs x, — Ny ari + 20, N, ar, JOwds (1h)
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The previous choice to perform by parts integrations only along the curve 7, namely follow-
ing the arc s through the tangential derivatives 0dw, /Js, is intentional because it gives the

desirable boundary terms and concurrently by this way the number of the total boundary con-
ditions of the problem is reduced to the desirable. The last is attained by eliminating the de-

rivative 9ow, /0s from the boundary terms, as seems below.

Note also that the direction cosines n, and n, are s-dependent as exactly the functions
Atons A10ss 71ns 71 aNd Cr, (see section 5.2 and APPENDIX A). For this reason, the di-
rection cosines n, = n, (s) and n, = n, (s) are under the derivation inside the inte-
gral terms, which remains after the by parts integrations [Egs. (1a) - (1h)].

Subsequently, we are going to examine two cases. The first one is when the end points of the
closed curve /" coincide or when the terms inside the brackets - _ are equal to zero, name-

ly,
M =M

2 2
nn ns — Mss =N _nx1 arys T 2nx1nx2 arin = 0. (2)

X2

Then the first terms of the right-hand side of the relations (1d), (1e), (1f), (1h) are eliminated,

[2 ndn, Mnnéwo} =
1 2 r

4 2 2 4 —
n,+én,n, —n, M nséwo}r =

_ [2 Ny Ny, N2 —n’ MSS5WOL _

X2 X1 X2

:[ ny _ni Arys + 2Ny Ny, Aryg 5W0L =0 ©)

As for the second case, the terms of the right-hand side of the relations (1d), (1e), (1f), (1h)
are non-zero and we have to take them into account inside the boundary conditions. However,
the last demands the choice of specific parts of the lateral boundary on which the displace-
ments (essential boundary conditions) or the quantities inside the intercalations of the Egs. (3)
(natural boundary conditions) will be prescribed. As we will show below, in case of given
surface tractions along specific parts of the edge of the plate, the above terms (3) could not be
taken equal to zero and we have to treat them properly.

Now, as for the first aforementioned case,

)
Il\/lnn,s - M_ ‘¢10_S{2 nflnXZ}Mnné‘WO ds —
I
t2
- fggz ng n, M, ow,dsdt =
t, I

= — §§{2n3 r]x}l\/lnné‘wods - §2n§ Ny Mnnsé‘WOdS
IS 1 X2 v '

r r
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4 2 .2 4 0 4 s 2 4
IMns,s - [nxz+6n n 2 X1 nS5WO r - fg{nxz+6nX1nX2_nX1}Mns5W0 ds
r

- Eﬁ(nfz+6nflnfz—n;‘l)l\/lns'sﬁwo ds =

r

- _ g;%{nfz +6nflnf2 —n;‘l}Mns Sw, ds — 95 (n;‘2 +6nlenfz—n;‘l)|\/|ns‘S Sw, ds

r r
0
IMes = M —§£{2 Ny Ny, (N2 —n2 )M Sw,ds —
I

— 9§2 Ny, Ny, (N5 — N3 Mg 6W, ds =

r
0
= —§£{2 nxlnxz(nfl - nfz)}M SS 5W0 ds - §2 nxln)(z(r])f1 - nfz)MSS,deo ds
T r
I, 2 2
I5WO,S 7[((nx2 - nx )a‘ X1 "Xy aTlﬂ )5W0 r o
I, 0 2 2
- ; g{(nx2 - nxl)ans + 2 Ny, Ny, Arqn} OWy ds =
T
I, 0 2 2
= — 7 g{(nx2 — nxl)ans +2n, n, arg, } OW, ds

In the last, the relations of 1), - | e T Tt T |5Wo,n and

I 5. revised with the previous results are posed on the Eq. (1), referred above and we ex-
0,s

tract the following,
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. {n;_n;-
<J¢
I +{n2—
a\NO IO
(n? — 2)—°+2n n —}—c (s)— —
+f9§ { T e s T Sw, ds dt +

- (n - n )(M nnn+Mns s) 2 nxlnx2 (M ss,s+Mns,n)

2 tZ
w JOW
+f§(nfl—nfz)2|\/lnn 0dsdt+f§4nflnf2 I\/IqS , Odsdt
t, I /
+f§4n Ny (n —n? M
2 tZ
0
+ f§{£{2 nflnxz}Mnn}éwo dsdt + ffZ n;n M, ow,dsdt +
t, I y I

t, t;

0
- f as{n;‘z +6n; N —n M, dt + f§(n;‘2 +6n7 n; —niIM . Sw,dsdt —

t, t

—ffﬁa{anlnxz(n - n; )}Msséwodsdt—f§2n ny (n -n? M oW, dsdt +

l

5W0
+f9§((n —nZ)ap, + 20, n, ans) ——dsdt +

O dsdt +

+ f i_{( ni)aTls + 2 r]Xlnxz a'Tln}é‘WO dS dt =0 =
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+ fgg{ ny —n; N, +2n,n N, — aTOn;O Sug, dsdt +

|
+ ff’g{ ny —n; N, +2n,n, N — aTOSZO Su,, dsdt +

t, I
ow ow |
2 2 0 0 0
IZ{(nx1 B nxz)a_n + 2 nxlnx2 6_8} B CTO(S); -
X - (nfl - nfz)Mnn,n -2 nxlnszns,n + 2(n§2 +3n§1n52 _nil)Mns,s +
0 0
[ Ple s i My, + 2ndn Mo, + S0 +6n%ng —nZ3M,, ~fow, dsdt +
t, I 5
- Za_s{nxlnxz(ni1 - niz)}M ss 4 nxznflMss,s +
I, o
+ __{(ni2 - nfl)aTls + 20, Ny, &}
p 0s
b [(2 —n2)2M,, +4nZn? +4n, ny (ng —ni)M o+ s
+f9§ . 1, aodsdt:0(4)
YT + (N}, =ng,)an, + 20, N, ary) > n

As seems from the last version of the variational equation, the total number of the boundary
conditions is four natural boundary conditions with primary variables u,,, U, W,

06w, / on, which correspond to four essential boundary conditions respectively. Thus, to de-

rive the essential and natural boundary conditions we follow the process explained below.

Now we invoke the fundamental arguments of the Calculus of Variations in order to extract
the boundary conditions from the last version of the Variational Equation (4) including only
the boundary terms. The following process is presented extensively on the Lecture Notes of
Functional Analysis, G.A. Athanassoulis (2016) “Necessary Conditions of Extremum of Func-

tional” and “A further study of the Variational Problem as for integral type functional”, as
well as on the book of Gelfand I.M., Fomin S.V. (1963), “Calculus of Variations”.

First, we assume that ou,, is arbitrary on the curve /", for arbitrary interval [t,,t,] and
keep the restrictions ou,, = dow,/dn = = 0. Thus, the last equation is converted
to,

tZ
|
ff{ nil_niz Nnn + 2nX1nX2 an - aTOn _0 é‘uOn(S;t)det = 0’
t, I p
VU, (sit)

and using the arbitrariness of the variation ou,, on the curvilinear domain 7" x[t;, t,], we
find the first natural boundary condition of the problem of CPT,
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2 2 I0
n,—ng, Nop +2n, 0, Noo = agg, (4a)

Xy X, nn ns
Yo,

Now, due to the above Eq. (4a) or boundary condition, the Variational Equation (4) is con-
verted to the Eq. (4),

t,
|
+ f§{ ni_nfz an + 2nX2n><1 Nss - aTOs_O]’5UOS det +
P
t, I

on

2 2
-y, = M =20, 0 M

X

ow, oW, I
IZ{ ny —ng — +2n,n, 3—5} —~ CTO(S); _

+ 2 (n)%2 +3n>€1 nfz _n)i)M ns,s T

ns,n
t,
0 3 3 0 2 2 a2 2
+ i+ 2£{nxlnxz}Mnn +2nn M o + E{nX2 +6n, ng —n iMoo — ds dt +
t, I

0
- 2E{nxlnx2 (ni - nfz)}M ss 4 nxznilMss,s +

2 0, >
+ ;8—5{(% =N )apg + 20, n, ar,}

t, n? —n? 2M +4n?n? +4n,n, n?> —n2 M. +
Xy Xz nn Xy X, Xp Xy T X2 ns O
f 951 dow, dsdt =0 (4)
+ sat =
2 2 ) I, on
4 + r]x1 - r]><2 ar; t nx2 r‘xl aris

Yol
Removing the restriction ou,, = 0, assuming the arbitrariness of the function 6u,, and of

the interval [t,, t,] and taking into account the restrictions dow,/on = = 0, we de-
rive the following,

t,
I
f%{ ng—n: N, +2n,n, Ny — aTOs—O}ﬁuOS(s;t)dsdt =0,
1 2 1 p
t, I

YV Sug(s;t)

and using the arbitrariness of the variation ou,, onthe /"x[t;, t,], we get the second natural
boundary condition of the problem of CPT,

2 2 I0
N, =Ny, Nos + 20,0, Ny =agg — (4b)
yo)

X, X, ns X, ' SS

Taking into account the boundary equations (4a) and (4b), the Eq. (4°) remains just with the
terms,
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ow ow I
I,in2 —n2 =2 4 2n,n_ —21—crp(s)— —
1 2 an 1 2 83 0

2 2 2 2 a2 2
- n,—-n 2 Mnn,n - 2nxlanMns,n + 2 nx2 +3nx1nx2 _nxl Mns,s +

0 0
+ Zg{nfglnxz}Mnn +2nin, M, o+ 6—3{nf2 +6n2n? —nZIM  —

8 2 2 3
- 28_5 nxln><2(n><1 _nxz) Mss —4 nxznless,s +

I, o
2 2
+ __{xz - nxl)aTls + anlnx2 arn }

Removing the restriction
the interval [t,, t,] and taking into account the restriction dow,/on = 0, we have

and using the arbitrariness of the variation

E' Xy X2
+ f
2 2
+ nx1 - nxz arqp + 2 nx2 nx1 arys

2 2 2 2 .2 2
—(ng, — r]xz)Mnn,n - 2nx1nx2Mns,n + 2 nx2 +3nx1nx2 _nxl Mns,s +

t,

0 0
f§ + zg{nznxz}Mnn +2nilnx2Mnn,s + E{nfz +6nilnfz _nfl}Mns -
t, I

nZ —n? Mo, +4n>§1n§2 +4nX1nX2 ni _niz Mas + oW
Cdsdt =

I,
ol

= 0, assuming the arbitrariness of the function

o] o}
Iz{nz—n2—°+2nxn s

IO
Xy X2 9n 1 xza_s - CTO(S); -

X1

0
- 28_3{nx1 nxz(nf1 - nfz)}M ss 4 nxznilMss,s +

I, o
+ _8_5{(an - nle)ans + 2N, N, ar,}

v

boundary condition of the problem of CPT,
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ow ow I
I{n2 —n2 — +2n,n, —=1 — cro(s)— —
1 29n 1 2 Ps P
2 2 2 2 .2 2
- nx1 - nx2 Mnn,n -2 nxlnszns,n + 2 nx2 +3nx1nx2 _nx1 Mns,s +
2% 30, M 2nin, M  nz 16nZn? —n? M 4
+ O_S nxlnx nn + nxlnx2 nn,s + O_S nx2 + r]xlnxz _nx1 ns ( C)
29 2 _n2 M 4 S M
- 8_5 nXlnx2 nx1 _nx2 ss nxznx1 sss T
20, 2
+ ;a_s{(nXQ - nxl)aTls + 2 Ny, Ny, arp =0

Finally, taking into account the Egs. (4a), (4b) and (4c), the Eq. (4) remains just with the
following terms,

2

t 2 2 2 2 2 2

2 nx1 _nx2 Mnn +4nxln><2 +4nxlnxz nx1 _nx2 Mns + )
f 95 Mo gsdt =0 (47)

S —
| o
2 2 2 on

o r + nxl - nx2 ary, + 2 r]xz ﬂx1 aris

P

Removing the restriction dow,/on = 0, assuming the arbitrariness of the variation

NN

00w,/ on and of the interval [t,, t,] we derive from the Eq. (4),

t 2 2 2 2 .2 2 2
3 r]X;l _an Mnn +4nx1nX2 +4nX1nX2 an_ _nXZ Mns + aé‘wo(s’t)
f§ I “on dsdt = 0,
2 n
ty I + ni _ni Aty + 2nX2nx1 arys ;
00w, (s;t
LG
on

and using the arbitrariness of the variation dow,/on onthe I"x[t,, t,], we find the fourth
natural boundary condition of the problem of CPT,

2
2 2 2 2 2 2 o
ne —n; M, +4n;n? +4n, N, Ny —ng M=
| (4d)
= n? —-n? a,, —2n, n, a 2
- X, X; - Tln Xy 'ixy, BT1s P

To compare easier the form of each boundary condition and to elaborate their results, we
gather them below

|

2 2 0
Ny, =Ny, Noo + 2nxlnx2 Nns = arop ; (4a)

|

2 2 0
Ny, =Ny, Nps + 2 Ny, Ny, Ngs = aros 7 (4b)
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v,
X2 9s

2 2 2 2 .2 2
— (g, =N IM =20, ne Mo+ 2(ng +3n; ni —ni M o+

) 28w0

% © +2n,n

I
— Cro(s)— —
P

0
nns T 7{nfz —}—6”51 nfz _nfl}M ns (4C)

8 3 3
+ Zg{nxlnxz}Mnn + 2nX1nX2M s

0
- Zg{nx1 nx2 (nfl - nfz)}M ss 4 nxznflMss,s =

l2 0, >
= ;g{(nxl - I’]xz)aTls -2 nx1 Ny, a‘Tln}

(ny —n;)*M,, +4n;n? +4n,n, (ny —ni )M =
, , I, (4d)
= (0}, =n})ap, — 20, N, apg) —
Yo,
Although regarding the second case, where
2ndn, Mnn5w0] = 0 (5a)
1 2 r
n! +6n’>n2> -—n! M Sw,| =0 (5b)
2 1 2 1 r
2n, N, ni —n? MSS5W0] =0 (5¢)
1 2 r
nfz - ni Arys + 2Ny Ny, Argy 5Wo} = 0 (50)
I

we are not mean to give extensionally the boundary conditions in the context of this disserta-
tion, we let a short comment in order to show that after specification of the boundary condi-
tions upon the lateral boundary of the plate these additional terms could give interesting result
in various applications.

Thus, due to the terms (5a)-(5d) we are going to derive a different form of the the Eq. (1),
which includes the terms with given values of thickness-integrated quantities and Sw, upon

the curve 7~ of the edge of the plate.

Substituting the Egs. (1a)- (1h) into the Variational Equation (1) [as done on the previous
case], we get the same results for the terms inside the brackets which multiply each variation
except for the boundary term of the variation ow,,.

The last occurs because there are additional prescribed terms upon the curve 77, which are
described by the expressions (5a)-(5d).

Thus, the last form of the variational equation (4) is invariable as for the previous integrals,
but differs on the last integral as seems below
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I
+ fﬁf{ n2 —n2 N, +2n,n, N, — ag, — Uy, dsdt +
P

OUg dsdt +

1 X2 s

- (n2 - n)%Z)Mnn,n -2 nxlnXZMns,n + 2(”52 +3n§1n52 _nfl)Mns,s =+

X

oW ow |
R

0 0 N
[ Pl 2o min, M+ 2ndn, Mo 2 602 nd —nZIM , — ow, ds t +

0 2 2 3
- 2a{nx1 nxz(nx1 - nxz)}M ss 4 nxznless,s +

|
+ ;_{(nfz - nfl)aTls + 2n, N, an,}

2 2 2 N2 2 2
j‘f X, _nx2 jMnn +4nx1nx2 M +4nxlnxz 61 _nXZDIns + 85W0

2 n
t, I + ((ni1 - nfz)aTln + 2Ny, N, arg) ;
t, ty
_ f[z n;n,, Mnn5wo]rdt - f[(n;‘2 +6n7 n} —n;‘l)Mnséwo}rdt +
tl tl

t; t;

|
+ f[ZnXlnxz(nfl _nfz)Mss5W0]rdt - f—z[((niz _ni)ans + 20 Ny, 8ryy) 6Wo th =0 =
P

ty 51
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t;

t, I
tZ

t, I

t;

-J9

t, I
! 0
- Za_s{nxlnxz(ni1 - niz)}M ss 4 nxznilMss,s +
I, o
+ __{(ni2 - nfl)aTls + 20, Ny, &}
p 0s
2 242 2 2 2 2
t, (nX1 — nxz) M,, +4 Ny, N, +4nxlnxz(nX1 — nXZ)MnS + S5
+ < | L2 dsdt —
2 2 2 an
v T + ((ng, =Ny )ar, + 20N, ar) —
! P
t, [Zni’lnxz Mnné‘wo}r + {nfz +6n7n7 —ni M 5w, LT
- f 2 2 2 P 2 2
| Ny nXQ(nx —ny )Mss é‘WO +— ((nx — Ny )aTls + 2 nxlﬂx2 aTln) 5WO
1 1 2 r ,0 2 1 r

At this point, each reader could decide about the kind of boundary conditions on the curve 7.
This means that has to choose between the free, simply supported or clamped boundary con-

_(n

0 0
+ 2(_)7S{n):31 nxz}Mnn + 2 nil nsznn,s + g{nfz +6n>31 nfz _nil}Mns -

|
+ fgg{(nfl—nfz) Ny + 20y Ny Npog — agg, ;O} Su,, dsdt +

I
+ ffﬁ{(nfl_nfz)’\lns + 20y, n,, Ngg — agg ;0}5%5 dsdt +

ow ow I
2 2 0 0 0
|2{(nx1 n,) an 2Ny Ny, 95 } Cro(s)—

2 2 2 2 52 2
- nxz)Mnn,n -2 nxlnszns,n + 2(nx2 +3nx1nx2 _nxl)Mns,s +

X

ds dt +

dt

0

ditions as well as the two points upon the curve 7", which define the specific natural or essen-
tial boundary conditions. However, as we referred above these cases will not occupy us fur-

ther here.

In conclusion, we manage to remedy the initially unbalanced system of equations and un-

known guantities. This balance ensures that the problem of CPT resulting from the conserva-

tion principles, the constitutive equations and the physically meaningful boundary conditions,

is well — posed in the sense that the solution exists and it is unique.
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6. Equations of motion of the CPT in terms of displacements

As we have aforementioned on the conclusion of the section 4.3, it is time to use the relations
of the stress resultants [Egs. (4) of the section 4.3] and to substitute into them the relations of
stresses in terms of the displacements [Egs. (8) - (10) of the section 4.2.1 or Egs. (5) and (5°)
of the section 4.2.2], meaning to express the stress resultants similarly in terms of the dis-
placement field. Thus, we get the following relationships as seems on the sections 6.1 and 6.2
in case of an orthotropic in-plane anisotropic and orthotropic in-plane isotropic plate respec-
tively.

6.1. Equations of motion of the CPT in terms of displacements for an orthotropic,
in-plane anisotropic material

The thickness-integrated forces of the Eq. (4) of the section 4.3 are converted to the below,
due to the Egs. (8) - (10) of the section 4.2.1,

E, [0u, 0%w, Vo E; |0V, d°w,
—X —X
N, Ny h/2 5 2
v, E, |0u, 0w, E, OV, 0w,
N6 le —h/2
ou, 0V, 0w,
ox, Ox, OX,0X,

E, |0du,l, 82W0\\ . Vo, E; |0vg 1 32W0\N\
1-vppvy | 0% p 0% p 1=V Vy (0%, p 07X, p

| ViE, g ly 0%, N , _E Nyl 0w N }
1-VipVoy |[OXy p 0%%; p 1=V vy [OX, p 07X, p

du, g |1, \ o*w,
Gy |00 0 5 R,
X, OX, | p P 0X,0%,
E, ou, |1y N Vo  E; 0vy 1
1-VipVy 0% p 1=V OXp p
| ViE, 6uol_0 E, (‘3vol_0
1-VpVy OXp p 1=VgVy OX, p
ouy, Ovy| |
Ge | —2+—2|-2
X, OX;| p

And writing the above thickness-integrated forces separately, we get

83



Part A Section 6. Equations of Motion of the CPT in terms of displacements

E,

ou, 1,

vy By

N,y |

N, = — 0
1-vpVy OXp p 1=V vy OX; p
 VupE, dug |, E, v, |,
, = 0 0
1=V vy O p 1=V vy OX, p

oug  Ovg | I

N, = G, Z0, 700

X, OX;| p

D)

(2)

3)

The thickness-integrated moments of the Eq. (4) of the section 4.3 are converted to the below,
due to the Egs. (8) - (10) of the section 4.2.1,

E, 8u0_x 0%w, Vo, E, avo_x 02w,
M M h/2
Ml B Mll B f Vi B, [0y 0w, E, [ov, 0%w,
21 — 2 - T A3 T A3 2
1-v, v, | OX 0°X 1-v;, v,y | OX 0°X
M, M, Y, 12V (9% 1 12Var | 9%, 2
G Oug vy 0w,
° ox, 0x, "sé?xlax2
E, ou, 3 , 0w, N V,, B, [ov, ) _X282W0 ‘
1-Vp vy |O%, 36)2)(1 1=V vy (DX, 382X2
| veE, (0 o? E, (0 o?
B 12 E; Uo 20 Wy 2 Vo 29 W dx. —
~J ox, 22 1 ox, G | T
" — Vi Vo | 0%y X1 Vip Vo1 | OX; X2
ou, OV 0w
o |+ |Xs — 2Ge X} -
ox, 0X, OX, OX,
E, [ou, k - 0%w, Iy v, E; |0y, k - 0°w, I,
1=vpVy |OX p 07X p 1—VipVy [OX, p 02X, p
| VB, (g N otwg 1, E, [ove N 0%wg 1, _
1=V [OXg p 9% p 1=V vy [OX, o 37X, p
Mo No k —2G I 0wy
“lox, ox,| p ® p Ox,0x,
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E, 0%, I, V, B 9%w, 1,
1=V, vy 82X1 P 1-v,vy 62X2 Y
1-VvVy 82)(1 P 1-v,vy 82)(2 Y

I, 02w
—2G, = 0
£ OX,0X,

And writing the above thickness-integrated moments separately, we have

" E, 0°w, I, Vo, B 9%w, I,

' 1-VipVy %% P 1=VppVy 9%%, p

" VpE, 9w, I, E, 0w, I,

L 1, Vy 0%, P 1=vvy 9%, p

l, 0°w
L OX 0%,

From the Eq. (4) of the section 4.5,

. ON;  ONg
U, — - =0=

0X, O0X,

i ) E, 0Ou, | Vo By 0vy o ouy, Ovqy | Iy

u — R R — JE—
00 OX; 1=V, vy OX; p 1-v,v, OX, p ox, ° X, OX| p

; E, (92u0\kjL V, Er 0%, N s ofu, 0%,

u — _ —_ —
Ty o 1—V,V,y 9%, P 1—=V,Vy X, 0X, p ®lo%x, 0x,0x,
oty — E, 0%,  VuE o2V, B %, 0%y | .

) E, 0%, Vo B, 0%, o%u, 0%, 0

u J— — —_— —_—
PRI, %%, 1—=Vp,Vy OX, OX, *lo2x, ox,0x,

(4)

()

(6)

(7)

Note that the above Eq. (7), can be found on the book of J.N. Reddy (2007), “Theory and
Analysis of Elastic Plates and Shells”, on the page 118 of the section 3.8. Thus, the corre-

sponding equation of motion of the book is exactly the following,

2
0°u,

2
0%,

ow, 92w,

0%V,
X, 02X
1 1

OX, OX,

11

12

ow, 0°w,
+
OX, OX,0X,
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d%u, 0%, 0w, ow, Ow, d*w,
—+ + + >
0%, OX 0X, OX 0%, OX, OX; 07X,

ON, . ON,,

+A
°¢ o,  OX,

]: I, U,  (3.8.3)

Subsequently, by using the expressions of the extensional stiffness coefficients A,; of the
page 112 (Egs 3.6.13). Also, comparing our result, namely Eq. (7), to our source, we notice
that there are some additional second derivatives of w, because Reddy regards another strain
field which takes into account the geometric nonlinearities i.e. small strains but moderate ro-
tations of transverse normal of the mid-surface (10°-15°) [J.N. Reddy (2007) “Theory and

Analysis of Elastic Plates and Shells”, page 98 — 99/ Chapter 3]. Finally, the relation (3.8.3)
is converted to,

E,h 0%, v, E;h o 9%,
1-V,Vy 0%,  1-v,V, OX,0X,

d%u %
. 0 + 0
0%, OX 0X,

Gy, h = 1,U,

The last expression coincidence exactly with our result, namely the Eq. (7).

From the Eq. (5) of the section 4.5,
ONg ON,

Vo — — =0=
0o oxX; 0%,
LV 0 6u0+6v0 lo| 0| VB, 0ugly E, oIy 0=
0 x| Clox, x| p OX, | 1=V, Vy OX p 1-v,Vv, OX, p
o%u, 0% Vp,E, 0% E PRV
N A L R NS N
M OXy 07X, | p 1=V Vg X 0% p 1-VipVy 0°%, P

a2 N2
o0u, 0V,
‘ P a2
OX,0x, 07X,

o2 a2

- =0 ®)

_ — —
1-v, Vv, OX,0%, 1-v, vy 09X,

pVy — G

Similarly to the previous note, the Eq. (8) is coincident to the Eq. (3.8.4) of the same book.
Using the same justification, we convert the Eq. (3.8.4) to the following form, which is exact-
ly our result.

d°u v Vi, E,h 9% E,h 9%
1,V, — Ggh L . o| V122 o 2 . 0 _ o (3.8.4)
From the Eq. (6) of the section 4.5,
. oM, 04, d*°M,  O°M,  9°M,
0%, 07X, O0X,0%, 0%, 07X,
0%, O%W 2 1, 0°w
0%, 07X, O0X,0%, £ OX,0X,
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92 E, 0%w, I,

Vo By

2
0wy 1,

9%%; 1=V vy 0% e 1=V, vy %X, P
9% | ViE, 9w, I, E, 0w, I,
- — = —
0%, |1=VipVoy %%, p o 1=VypVy 0%, p |
%, 0w I, 0'w
LWy — 1y |+ —5—| + 4G — ———
00X, 07X, P 0% DX,
E, 0w, 1, vyuE 0w, 1,
1-vipVy 9% p o 1=VpVy 0°%,0%%, p
v, E O'w, | E |
12 %2 — 02 -2 2 2 =q =
1=V vy 0%, 0% p 1=V Vy p
L [9W , 0%)
Wo — 1
0%x, 0%,
. Ggh?® Vi, E,h® V, E;h® 0w,
12 120—Vy,Vy) 12—V, Vy) | 97%, 07X,
E,h® 0w, E,h®
12—V, Vy) %%, 12(1—vy,Vy)
h3 02w, O%W
12 | 0%, 07X,
VipEy = vy By
3 3 3 N4
Ggh Vp,E, h v, Eih 0"w,
+ +
12 12(1—VyVy)  120L—vvy) | 0%%, 0%,
| —_—————
Dip Dy = Va1 Dy
E.h®  9'w E,h®
: : : =q (9)

_|_ —
12—V, Vy) 0%, 12(1—V3,Vy)

On the Eq. (9), we use the expressions of the bending stiffness coefficients of the page 112 of
the aforementioned book of J.N. Reddy, which are presented below by the Egs. (10) for con-
venience, in order to compare easier our resulting equation with the Eq. (3.8.5) of the page

118 of the same book.
E,h®
Dll = A . N
12(1—Vy,Vy)
5 v, E, h?
121V, vy)

E,h®
Dy = —5———,
12(1—V,,Vy)
G, h®
D.. = 10
66 1 (10)
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Similarly with the previous equations of motion, we are not take into account thermal effects
and the elastic foundation, because on frames of CPT, we have made no assumptions relative
to thermal loads. Additionally the term including residual quantities due a different strain
field, defined on the page 98-99, is also eliminated.

Note that the Eq. (3.8.5), is exactly the same, as this which is found on the Chapter 9.1 on the
page 331 of the book of J.N. Reddy (2007), “Theory and Analysis of Elastic Plates and
Shells”. This relation is presented on the [Egs. (9.1.1) and (9.1.2)].

Finally the Eq. (3.8.5) is converted to the following,

4 a4
0" "W, 0w,

Dy—> 2D, + Dgg ———>— — D _ _
1 84X1 12 66 (‘)let)ZXZ 22 %

oM s 82w
M3x2 0%,

+ NUpv5r W) + q =

2., 2.,
0°Wy, 0°W,

— g Wy — 1, | =
00 2 (92X1 62x2
0w, 2D + D 0w, N
1 84X1 12 66 02X102X2 22 q =
I Vi | 07wy 0%y (3.8.5)
— W. — 8.
00 2 82X1 82x2

which is exactly our result , namely the Eq. (9).
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6.2. Equations of motion of the CPT in terms of displacements for an orthotropic,
in-plane isotropic material

The thickness-integrated forces of the Eq. (4) of the section 4.3 are converted to the below,
due to the Egs. (5) and (5°) of the section 4.2.2,

E Ou, E 0°wW, VE 0v, VE 0%w,
2 — X3 2 52 2 — X3 2 52
1-v* 0x; 1-v® 0%, 1-v© X, 1-v© 0°x,
N, Ny h/2 2 2
VE OJu, VE 0°Ww, E 0V, E 0°Ww,
Nop = Ngpp = ] 2 —X3 2 2 2 X3 2 52, [ WXs
1-v© Ox, 1-v© 0%, 1—v*©0X, 1-v*® 07X,
Ng N, —hr2
ou, 0V, O*W,
G|l|—+—|—2%;G
ox, OX, O0X,0%,
El, ou, EN 02w0+ VIGE v, VNE 97w,
pA—VvZ) X, p@A=v?) 0%  pA-v?)x, p@A-v?) d°x,
VI,E du, V\\\E 02w, I,E ov, \\E 02w,
eV 0%, pA-V?) 0%, pU-V?)IX, pU-V?)O°X,|
To %+% _Zke_azwo
p OX, OX, L OX0X,
El, du, VI, E 0v,
pA=V?) 0%y p(A—v?) X,
| VILE 6?u0Jr I,E  Ov,
PV % p-v?) Ox,
o [ouy 0w
p | OX, OX
And expressing the above thickness-integrated forces separately, we have
El ou VI,E ov
Nl: 02 0 0 . 0 (1)
pA=v?) ox;  pL—v7)OX,
VI,E Ou I,E Ov
, = 0 . 0_+_ 0 . 0 (2)
pA=v?) 0%y pA—Vv*) X,
I, [Ou, oOv
Ny = o=, -0 (3)
p | OX, OX

The thickness-integrated moments of the Eq. (4) of the section 4.3 are converted to the below,
due to the Egs. (5) and (5°) of the section 4.2.2,
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E Ou, E 0°W, VE 0v, VE 0%w,
2 —X3 2 92 2 —X3 2 92
1-v*© Ox, 1-v© 0%, 1-v©OX, 1-v* 0°x,
M, My h/2 2 2
VE 0u, VE 07w, E 0v, E 0w,
Mo = My = ] 2 —X3 2 52 2 —X3 2 52y |
1-v© Ox, 1-v© 0%, 1—v*0X, 1-v* 0°x,
M, M, “h/2
ou, v, oW,
G|—+—2|-2x,G
ox, OX, 0X,0%,
E du, , E 9'w, VE L Mo, VE 0wy
1-v2 P ax,  P1-v2 9%, 1-v? Cox, C1-v? 9%,
h/2
VE ou, , VE 0w, E Ny , E 9%,
= ) 7 X3 X3 2 52 7 X3 —X3 2 a2 dx =
1-v O0X, 1-v° 0°%x;, 1-v ox, 1-v® 07X,
—h/2
ou, Ov 0w
G Xg|— +—2|-2x2G—
ox, Ox, 0X,0X,
E\\ ou, El, 0%w, V\\\E v, VI,E 92w,

pA—v?) %

pA—v?) 9%x,

pA—v?) 0%, p@-v?) 0%,

p@A—v?) o

El,

VNE au, VIL,E 62W0+ EN  av, El, 0%,

pA—Vv?) 0%, p@U—V?) O, p@-v?) d%x,
6 [P, o) 1o o w

p|OX, OX, P OX0X,

o*w, VI, E 9%w,

VI,E 9%w,

Cp@—v)) 0%, p-v?) 0%,

El,

2
0 W,

PV 0%, pA-v?) 0%, |

I, E 0%w,

p 1+vOx,0x,

And writing the above thickness-integrated moments separately, we get

El, 0%w,

VI,E 0%w,

1 =

VI,E 0%w,

CpU-v) 9%, p-v?) 0%x,

El, 0%w,

M _
L p-v) 0

pL—v?) 8%x,
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6
P OX0X, ©

Now to derive the equations of motion, in terms of the displacement field for an isotropic ma-
terial, we recall the Egs. (4) — (6) of the section 4.5 and substitute the Egs. (1) — (6). By this
way, we get the following:

From (4) of the section 4.5.,

o ON; 0N
I U, — — =0=
0X, X,
El ou VI, E 0v Gl ou ov
Iouo_a o2 0, o2 o| o O o, Mol _ g
X | p@—Vv?) 0%, p@A—Vv?) OX, p OX, |OX, OX
E ou ov G ou, Ov
NUO - Nz 0 SV — | — N 0 04— 2l=0=
pL—v?) ox | 0%, X, P OX,|0x, 0OX
. E (0% PRY E [0 0%y
,Ouo_ ; (20 vV ;O B (20+; 0 :O (7)
(I1—-v?) 07X, OX, OX, 2(1+v) |0°x, OX,0x,

Let it be highlighted that the Eq. (7) is practically identical with the respective result (3.8.3) of
the book J.N. Reddy (2007) on the page 118. Comparing our result, namely Eq. (7), to our
source, we notice that there are some additional second derivatives of w, because Reddy re-

gards another strain field which takes into account the geometric nonlinearities i.e. small

strains but moderate rotations of transverse normal of the mid-surface (10°-15°) [J.N. Red-

dy (2007) “Theory and Analysis of Elastic Plates and Shells”, page 98 — 99/ Chapter 3]. The
relation (3.8.3) is shown below,

D%, Ow, 0w,
2 + 2
0%, OXxy 07X,

o%v, ow, 0°w,
+ +
OX,0x,  OX, OX,0X,
ONy +3N1T2
ox,  0X,

11 12

d%u, 0%, 0w, ow, Ow,d°w,
—+ + + >
DX, OX 00X, OX 0X, OX,  OX; 07X,

A = oty (383)

In addition, the general “behavior” of the plate indicates that it must be regarded as ortho-
tropic. Consequently, we take into account the extensional stiffness coefficients of the page
111-112 of the reference book, which are given below,
A =N A A
= T 12 = VP
1=V, Vy
E2
Ay, = E_All , Ass = Goh
1
However, the in-plane “behavior” (or alternatively the stress-strain relations between the in-
plane displacements u,, v,) of the plate could be described as isotropic, as justified in the

section 4.2.2. Thus, the previous coefficients could be written as,
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Eh VEh
Ay = 1_v2' Ap = 1_v2 '
Eh

Also, in the frames of the particular problem of the CPT, we assume that there are no thermal
effect, so it is obvious that,

ONy; ON,,

0%, OX,

Summing up the above notifications, the relation (3.8.3) is converted to the following,

vy Do |
e

9%V,

L O 02w |
0%, 0%, //()W

92 Uy a2, \?}q&/)ﬂﬂ/ ?N&K/)n/' aNg N
92X, 8x18x2 /xﬂ(m /\&K X, 0re
9%, 9%V, d%u, 0%,
- - + = I 0, =
9%, O, X, 9%x,  Ox 0X, 00
9%, 0%V, d%u, 0%,
+ + + = pHu, =
7%, %, 0%, 02x, | 0%, 0x, pHU;
82u0Jr RTA . 82u0Jr d%v, 3
= pl
02x, | O%,0x, o2,  oxox, | ©°
The last equation is identical to the Eq. (7).
From (5) of the section 4.5,
ONg ON
lVp——2——2 =0 =
ox,  0X,
ou, Ov VIGE ou E ov
N\VO—Gka o Ho| _ %2 0 N ol _ o=
p OX | OX,  OXy pL—v?) 0x, p(l v?) Ox,
y E 0%u 0%v E d%u v
Uy — 0 += ol | v 0 += o | _ 0 —
2p14V) | Ox 0%, 07X, pA—=vo)| OX,0% 09X,
y E (0%, 0% E (0% 9%
/OVO— ‘20‘*‘; 0 - i20+vi ;0 -0 (8)
2(1+v) | 0%, Ox,0X, X, OX, OX,

On a similar way we are going to show that the relationship (8) is identical to the Eq. (3.8.4)
of the book of J.N. Reddy (2007) “Theory and Analysis of Elastic Plates and Shells”, located

on the Chapter 3 (page 118). However, we convert the equation (3.8.4) to the appropriate
form for our problem, as we done above. Thus,
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d%u, 9%, ow,d*w, aw,d%w,
66 ozt 7, + 2
OX 0X, 07X, OX, 0°%;  OX; 07X,

d%u, ow, d°w,
12 + +
OX, 0%,  OX; OX,0X,

d%v, Ow, 0w, | [ONS ON,,
— + — |- +
0%, 0x, 0°X, ox,  0Ox,

Oty 0%y  Owo 0N MM]

+A,, = 1,V, =

9%u, W

+
o, 0x, 972 X, /X 0¥ X, OX, //@W
v ON,.
+ 0 M/V( 221 = 1,V =
0%X, m ox,
d°u v d%u o2V
0 + . 0 0 + 2_0 = | VO =
OX, 0%, 07X, 00X, 0X, 0°X,
d%u Qv d%u o%v
0 +— 0 0 4 0o ,DJ’{VO
OX, 0%, 0%, 00X, 0%, 9°%x,
o, 0% PRY 9%
g 0+ 0 g 0+ o | PV,
0%, OX 0x, 0°X, OX, OX,
The above equation is identical to the Eqg. (8).
From (6) of the section 4.5,
. oMW, 0%, My I°M;  O°M,
IOWO - |2 2 + 2 - 2 — 5 — > — q = 0 =
0%, 07X, O0X,0X, 0%, 07X,
oM, O I, E 0%w El 0w 0w
oWy — 1 20‘|'20+_2 2 g + 22 40+V2 g
0%, 07X, p 1+Vv 07X, 0°X, pd—v?) | 07X, 0%, 0°X%,
El, 9w, 9w,
Y ot 3 =q4=
pA—=v7) | 0°%X,0%,; 07X,
0%, O El o'w, 0w
oW — 1 20+20 22 40+40‘|’
0%, 09X, pA=vs) | 07, 07X,
I, E EIl, El, 0w
2 2 + vV + > 2 =q=
p 1+4+v p—v?) pl—v ) 0%, 0°X,
oMW, O™ El o'w, 0w
oWo — 1 20+20 22 40+40+
0%, 09X, pA=vs) | 07, 07X,
I, E El 0w
+ 22— +2v 2 | ——2——qg=
p 14+v pA—=v?) ) 0% 0°X,
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. oMW, %W, El, (0w, 0%,
oW — 12— 2 2 4 4
0%, 07X, pA—vs) | 07X, 07X,
2EI2[ 1, ] 0 *w,
=0 =
p \1+v  1-v?) 9%x,0%x, q
%, 9w El o'w, O'w 2E| d'w
oW, — 15 20 20 22 40"‘40 : 122 g =aq4=
0%, 07X, pA=vs) | 07x, 97X, p 1-v® 9%, 0%,
3 0%, oW h® [0*w, 9w
PhWo_ph 20 20+ Ezp/ 4O 40+
12 | 0%,  9°x, AA-v?) 12 | 9%, 9%,
h? 9w
+ 2—E /5 1 9 =(0q =

A 12 1-v? 9%%,0°x,

ohil, ph? [ 0%, . PR . _E h® [ 9"w, . 0w, h® 2E | 0w, _

12 | 0°x,  0°x, @A-v?) 12 | 9%, 9", 12 1-v? 9%x,0%x,
or
ohil, ph? [ 0%, . PR . E h® 0w, . 0w, . 9w, g

12 | 9%x,  0%x, A-v?) 12 | 9%x %%, 0%x,  9%x,
or

3 3
phw, — plg AW, + E1f21 1—1V2 Afw, =g )

The last equation of motion of the vibrating plate [Eq. (9)], there is on the resources;
https://en.wikipedia.org/wiki/Kirchhoff%E2%80%93Love_plate_theory as well as on the
book of Reddy J.N. (2007) “Theory and Analysis of Elastic Plates and Shells”/ Chapter 3/
page 118.

However, there are some terms on the Eq. (3.8.5) of the page 118 of the book “Theory and
Analysis of Elastic Plates and Shells”, which differ from our result, namely the Eq. (9). This
is justified as follows.

Comparing Eg. (9), to our source, we notice that there are some additional terms due to the
use of another strain field which takes into account the geometric nonlinearities i.e. small
strains but moderate rotations of transverse normal of the mid-surface (10°-15°) [J.N. Red-

dy (2007) “Theory and Analysis of Elastic Plates and Shells”, page 98 — 99/ Chapter 3].
These terms are gathered together as seems on the Eq. (3.4.14) of the page 104 of the book,

o ow ow
8_[N11_0+ I\|12 -
X, 0X, X,

To make the comparison easier, we present the Eq. (3.8.5) below,

5 9w, 2 D.. 42D 9w, 2w, N )
— Dyy—— — —_— —— — kw Ug, Vg, W) —
11 84X1 12 66 aleazxz 22 84X2 0 0 0 0

N ow, N ow,

L0
0

N (ug, Vg, Wy) =

2
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2. 2 ..
oW, 0w,

—_— — 3.8.5
d%x,  0°x, f (385)

O*M [ oM, 09°Mj,
B 2 + 2
0X, O0X, 0X, 0°X,
In addition as we referred above, the general “behavior” of the plate indicates that it must be
regarded as orthotropic. Consequently, we take into account the bending stiffness coefficients

of the page 111-112 of the reference book, which are given below,

= loWy, — 1,

E.h®
Dy = — Dy, = vy Dy,
12(1—vy,Vy)
E, Gth3
Dzz - D11v Dee = 12

E
However, the in-plane “behavior” (or alternatively the stress-strain relations between the in-
plane displacements u,, v,) of the plate could be described as isotropic, as justified on the

section 4.2.2. Thus, the previous coefficients could be written as,

_ Eh® _ VER®
T 12a-v?) 2 120-v?)
Eh? Gh?
Do = 57— Des =
12(1—v?) 12

Also, in the frames of the particular problem of the CPT, we assume that there are not at all
thermal effect, so it is obvious that,
O°M}  9°M,  9*M, _ _ _
— = 2 — — 22 — 0 and there is not elastic foundation, k = 0.
07X, 0%, 0%, 07X,
Summing up the above notifications, the relation (3.8.5) is converted to the following,

0w, 0w, 0w,
_ — 2D, 42Dy 5——— — 84X2_%+W—

4 2 2
0%, 0%, 07X,

O°ML L OME T (0% 0w,
— = l,W, — -q=
Mﬁxz d°x, 70 ek, ok, |
0w 0w 0w oMW, 0w
- 40_2 +2 2 g - 40:0W0_|2 20 20
07X, 0%, 07X, 07X, 0%, 07X,
O 4w o*w
: T
97Xy 9%, 0°X,
0wy ) %, 02w,
- %%, loWo = 1 d%x,  0%x 1=
2 1 2
hvi ph® [ 0%, 0%, o'w, 0w, 0 *w,
pAWo = 2 2 Y™ 4 + 2 2
12 | 0°x;, 07X, 0", 07X, 0%, 0%,

The last equation is exactly our result, namely Eq. (9).
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7. Boundary Conditions of the CPT in terms of displacements

Following the same process, as exactly on the section 6, where we derive the equations of mo-
tion in terms of displacements, but at this moment to derive the boundary conditions in terms
of displacements for both cases of the material of the plate.

As we have aforementioned on the conclusion of the section 4.3, we use the relations of the
stress resultants [Egs. (4) of the section 4.3] but now transformed to the curvilinear coordinate
system on which the boundary conditions are derived, as shown below.

Nnn h/2 [O np M nn hi2 | O np
ss [ — Ogs dz Mss = f Ogs zdz (l)
ns EE [ M s EE [

Further, substitute into them the relations of stresses in terms of the displacements [Egs. (8) -
(10) of the section 4.2.1 or Egs. (5) and (5°) of the section 4.2.2] similarly in the curvilinear
form, meaning to express the stress resultants in terms of the displacement field, which is de-
fined for the coordinate system (n, s, z). Note that we deserve to proceed to the analogous

stress-strain relations from the Cartesian to the curvilinear coordinate system, because we
study an orthotropic material regarding the vertical dimension.

Thus, we get the following form of the boundary conditions of the problem of CPT, as seems
on the sections 7.1 and 7.2 in case of an orthotropic in-plane anisotropic and orthotropic in-
plane isotropic plate respectively.

For the sake of convenience, we present again the full set of the boundary conditions of the
CPT in terms of thickness-integrated forces and moments of the section 5.3.

I
2 2 0
N, —Nx, Nan 20y 0y Noo = ag, > (1a)
2-n2 N 2 Ny = lo 1b
nxl_nx2 ns nx2 nx1 ss = Aros ; ( )
ow ow |
2 2 0 0 0
I2 nxl - nx2 an + 2 Xlnx2 9s - CTO(S); -
2 2 2 2 22 2
- nx1 - nx2 I\/Inn,n -2 nxlnszns,n + 2 nx2 +3nxlnx2 _nxl Mns,s +
2.9 3 M 2n3n, M 9 n2 46n2n2 —n2 M (1c)
+ 073 nxlnx2 nn T nxlnx2 nn,s + ({)73 nx2 + nxlnx2 _nxl ns

0 2 2 3
- 2% nxlnx2 nx1 _nx2 Mss -4 nxznless,s =

|

I
P

2 2
{(nx1 - nXQ)aTls -2 nxl nx2 aTln}

Q

S
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2
2 2 2 N2 2 2 _
Ny, — Ny, M., +4nxlnx2 +4nx1nx2 N, — Ny, M, =
3 (1d)
. 2 2
= Ny, =N Aryy — 2Ny, N, Argg s

7.1. The Boundary Conditions of the CPT in terms of displacements for an
orthotropic, in-plane anisotropic material

As for the natural boundary conditions, we follow the same process to get the equations of

motions in terms of displacements, but now using the Egs. (4a), (4b), (4c), (4d) of the section
5.3.

First, taking into account the Egs. (8) - (10) of the section 4.2.1, the substitute into them the
analogous components of the displacement field (u,,, u,,, W,) in order to derive the stress

field (o,,, o, 0,s) applied on the curvilinear coordinate system.

E ou d%w v, E ou 9%w
O-nn _ n On 7 > 0 + sn n 0s 7 . 0 (28.)
1-v, Vs, | On a°n 1-v Ve, | Os 0°s
V.. E ou d°w E ou d°w
O-ss _ ns S On 7 5 0 + S 0s 7 . 0 (Zb)
1-v Ve, | On an 1-v, Ve, | Os o°s
OUg, OUg, 0°w,
c..=0., =G + -2z 2C
ns sn " s on onos (20)

where, (E,, E,) the modulus of elasticity on the directions n, s respectively and G, the
shear modulus of elasticity. In addition, the Poisson’s ratio v, or v, is an identity of the
material referred to its planar directions, namely n and s-axis, defined as

eSS enn
Vg = —— and v, = ——.

€nn e

SS

Substituting the Eqgs. (2a) - (2¢) into the Egs. (1), we get

h/2 h/2

_ f En auOn .y 82;"’0 dz + f VsnEn 8uOs . 62\2/\/0 dz —
1-v, Vg, | On an 1-v Vg, | Os o°s

—h/2 —h/2
_ E, AUy, | _\\ 0w, L Ve E, [0Ouys | _\\1\ W,

PV, vy,) | on P o°n | p—vyevg,)| 05 ° 0%

E ou v, E ou

_ n [On|0 + sn —n ‘Oslo (38.)

pA—Vv,Vs,) On pA—Vv, V) Os
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h/2

N = fGSSdZ =

—h/2

h/2 h/2

— Vis Es f auOn_ 02W0 dz + Es f auOs_ 62W0 dz =
1-Vv, Vq, on d%n 1V, Vs, s d%s
—h/2 —h/2
_ Vs Es auOn IO_\I\\ aZZVO + Es auos|0—\|\i\82\2NO —
pA—=v Vi) | On a°n pl—=v, ve) | Os a°s
_ Vs E Uy, - E. OU o | (3b)
p(l_vnsvsn) on ’ p(l_vnsvsn) ds ’
I (oug, ou 9w
N.= | o,,dz =G f on 0 _ %ldz =
" f ns ne 0s on onos
—h/2 —h/2
o Gns auOn auOs I ZGns aZWO o auOn OuOs I0
- + 0 - Gns P +— _ (SC)
p | 0s on P onos 0s on | p
h/2
M, = fannzdz =
—h/2
i E ou 2%w v.,,E. [ou d°w
_ f n on 52 0 sn —n Osz_zz 0 dz =
J 1= VasVen | 0N d°n 1-v, Vg, | Os 0°s
h/2 9 h/2 2
_ _E f 6u0nz_228:\2/v0 dz + Yon En f 3UOSZ_223\ZNO dz =
1_Vnsvsn7h/2 on an 1-v, Vs, o 0s 0°s
_ E, au(’”\—l 0w, Ve, E, auos\,\—l 0%w, _
pd—v, v, | on 2 9%n pA—v,.v,)| 05 2 9%
E, I 92w, v, E, I PRI (30)
PV Ve) T 0% p-vevg,) T 9%
h/2
M, = stdeZ =
—h/2
h/2 2 5
B f Vis Eq | 0uy, B , 0°W, N E, 8u032_228w0 dz —
J |1 Vas Ve | ON d°n 1V, Vg, | Os d°s
h/2 2 h/2 2
_ VnsEs f auOnz_zzazo dZ—I— Es f aUOSZ_Zza\ZNO dz —
1—vr]svsr]41/2 on an VisVen o, 0s 9°s
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V.. E ou 92w E ou 92w
_ ns =s On}4_I2 20 + S 05}4_|2 20 _
pA—=v Vi) | On a°n pl—v, Vi) | Os 0°s
V.. E R E R
= — e S : |, (3e)

pL—v,ve) Z 9 pl-v,v,) 9%

h/2 h/2 au ou 82W
Mnszfanszdz=Gnsf Mm% 27— Czdz =
0s on onos
—h/2 —h/2
h/2 8u 8[_] h/2 82W
on 0s 2 0
= + zdz —fZG z dz =
”Sf[ ds  oOn ] " onos
—h/2 —h/2
G U, +8u05 E _ZGnshazwo :—ZGnsiaZWO @
0s on | p L Onos p Onos

Note that on the above calculations the z -dependence of all the integrands is explicit as ex-
actly the x,-dependence on the Cartesian coordinate system, because as referred above the

X4, Z axes are parallel during the transformation. Thus, the vertical integration can be per-

formed explicitly and the “mass-moments” quantities are defined as those of the section 4.1.
Consequently,

b2 b2
I, = f.,ox;dx3 = fpzidz, i=012..,6 where,
—h/2 —h/2
I, =1;=1;=0 and
b2 h/2
h3
Iozfpdz:ph, IZZIPZZdZ_'DE
—h/2 —h/2
b2 s b2 ,
| 72°dz = p— . = z2°dz = p—.
* fp Pe0 6 fp P 448
—h/2 —h/2

And finally we are ready to set the results of the Egs. (3a) and (3c) into the first natural
boundary condition (1a),

[ E, 8u0n Vo E, OU

ns sn

ou ou
+2nx1”szn[ oy OS]%_aTOH\ﬁK =
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n n
“ 2 (1_Vnsvsn)

2 2 E, [OUOn U g

As for the second natural boundary condition, taking into account the results of the Egs. (3b)
and (3c), we get

VnsE duOn duOs 0
+2n =a =
274 R (L Vg,) 0N W }g(l v, vsn) s Ny T )5
2 2 g, DUy Es g,  Oug| ab
nxl_nx2 L P 9 + X2 X 9 9 = Aros (4b)
n ( Vnsvsn) n S
Further, substituting the appropriate from the above relations
oW oW |
2 2 0 0 0
Iz[ e = M, o+ 2nxlnng} ~ CTO(S); +
, , E.l, o | 9%w, d°w,
+ n, — ny . 2 sn 2
L 2 p(l—v,Vg) On | 9n 0°s
G| d*w G, | *w
+ 4n, ny nsl2 O °L — 4 n? 4+3n%?n2 —n? nsl2 9 ot -
12 p  on| onods 2 ot ! p 0s| dnds
E, | 82w 22w E,I 2w 92w
_22{ n} n_2 0 o ——| = 2nin, 2 0 2°+vsn —
T p=vegvg) 9°s (Vs V) DS 9%s
+ 2{nz +6n2 nz _nZ}M ns d{nx ny (I’l2 ﬂ )}Mss
s X2 X1 X3 X1 d 1 2% Xy
El ) 2%w,  9%w, I, o
+4n, nd——22 “ly + = 22{n? —n?)a;,, —2n,n, a =
Xy Xy p(l Vi sn) 5 ns an 325 P 85{( Xy xz) T1s X1 X, Tln}

(and after performing the derivations we get the final form of the boundary condition)
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oW o
2 2 0 0
I27 Ny, — Ny, an + 2nX1nX28—s] +
= 2w 23w
+n§_n§ o 3O+Vsn—20+
! 2 pA=VvyVe,) | 9°n ond*s
G, 1, 9%w, G, 1, 9°w,
+4n, n, —= 5 —4n; 4+3n;n; —n; —= — —
p  0°nds p  Ond‘s
; E. I 2w 9°w
- Zi{nf ny } n2 2 : + Vsn 2 =
gs " T p(l—v V)| 9°n 0°s
P E,l, d%w, y 2%w,
W p(L-V,,Vs,) | 959%n 9%

0 9]
+ g{nf2 +6n; n; —niIM o — 2£{nxlnxz(nf1 —nZ )M +

+ 4n,n

= 2w 2w
)::, s 2 {Vns 20 + . 0
L p(—Voe V) 9s0°n 0°s
|2

P

|

|
2 2 0
{(n, —n)ar — 20, N, ar,} + CTO(S);

b}

S (4c)

Last but not least, the substitution of the relations (3d), (3e) and (3f) into the Egs. (1d) results
to the following form of the fourth boundary condition,

2 2
) , 2 E, 0°W, 0w,
n,, — Ny 2 +Vsn 2 +
! 2 1-v, Vg, | O°n 0°s
E o*w, 0*w
2 2 0 0
+ 4nZn’ > ns — — |+ (4d)
Lo l-v Vg, o°n 0°s
d%w
2 2 0o 2 2
+8nX1nX2 nx1 _nxz S onds - r.]xl _n><2 arin +2nX2nx1 aris
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7.2. The boundary conditions of the problem of CPT in terms of displacements for
an orthotropic, in-plane isotropic material

In the context of the section, we follow exactly the same process as shown on the previous
section 7.1 the only difference is the form of the displacement field.

Thus, taking into account the Egs. (5) and (5°) of the section 4.2.2, the components of the dis-

placement field (o, o4, 0,¢) for an in-plane isotropic plate, are
ou d*w ou %w
Onn = E2 -z EZ 20+ VEZ S VEZ 20 (12)
1-v< On 1-v° 9°n 1-v* 0s 1-v® 0°s
VE Ou VE O%w ou 0%w
O = E2 o _ g E2 20+ E2 0 _ 2 EZ 20 (1b)
1-v< 0On 1-v° 9°n 1-v° 0s 1-v° 0°s
OUg,  Oug, d%w,
.. = 0., = — 1c
ne °" 0s on anos (1c)
Subsequently, we set the Egs. (18)- (20) to the Egs. (13) of the section 7.3,
h/2 2 2
N f E OUg, , E 0w, VE 3UOS_Z VE 07w, dz —
" ’ 1—v? on 1-v? 9%n  1-v? 0s 1-v? 9%
—h/2
E  Oug, Iy % E 0°WwW, VE Oug I, % VE 9°w,
=T 2 a- . 2 2 + 2 T T2 2
1-v° on p p 1-v° 0°n 1-v° 0s p p 1l—v° 0°s
__E Mol | vE Holo (23)
1-v° on p 1-v° 0s p
3 E Ou E 0°w E du E 0°w
v v
Nss:f 2 -z 2 20+ 2 S 2 zodzz
s 1-v° on 1-v© 90°n 1-v° 0s 1-v© 0°s
—h/2
h/2 2 2
B f VE Ouy, I, I, vE O W0+ E Ouy, Iy, I, E 0°w, dz —
B ’ 1-v2 an p  pl1-v? 9%n  1-v? 9s p pl-v? 9% B
—h/2
VE Oug, I, % VE 0°w, E Ouy |, % E 0w,
- 2 T 2 2. T 2 T 2 2.
1-v® on p p 1-v° 0°n 1-v 0s p p 1-v° 0°s
ou,, | ou,. |
_ VE on "0 4 E 0s '0 (2b)

1-vZ on p  1-v? Os p
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h/2

ou ou d°w ou
an _ fG On Os_ 0 dZ _ On
0s on onos 0s
—h/2
_G OUg,  Oug I
0s on | p
h/2 2
N _f E Oug, e E 0w, VE OUg,
nn 1-v? on 1-v? 9°n  1-v? 9s

E 0%w, L VE 8u05%

2
1-v2 on p p 1-v? 9%n 1—v
| |

3 E Ou E 82W
Vv Vv
Mss ——f 2 on Z— 22 > 20+
1-v< on 1-v a°n

—h/2

VE 8u0n£_l

s p
E Oug,
1-v? 0Os

VE 0%w, . _E 8u05%

_ _2
1-vZ on p p 1-v? 9%n 1—v?
|

ou ou 2w
M = f on 0s . 5,2 0
0s on onos
—h/2
G I, 0*w,
L Onos

Note that the above relations of the stress-resultants (2a)-(2f), are also found on a similar form
on the paper of BO Haggblad and Klaus-Jurgen Bathe (1990), “Specifications of Boundary
Conditions for Reissner/ Mindlin Plate Bending Finite Elements”.

To the end of the above, we substitute the Eqgs. (2a)-(2f) into the Egs. (4a), (4b), (4c) and (4d)
of the section 5.3 or Egs. (1a), (1b), (1c), (1d) of the section 7, namely the boundary condi-

tions and we derive the following results.

The first boundary condition is converted to,
E Oug, Ig
nx1 _nxz 2 - N 2
1-v° on p 1-v* 0s p
E (Ou ou
5 nf - : Oon +v : 0s
! 2 1-v°| On 0s

VE Oug I,
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The second natural boundary condition, due to the Egs. (2b) and (2c)

ou ou | VE Ou,, |
n? —n? G[ =+ OS]—OJaninxl[ on

E Ouy |y B Iy
Atos

0 = — =
T 0s on | p 1-v? on p  1-v? 3s p P
ou, ou, E ou, ou,
ot G[ (95n N (‘)ns] I e 8nn N c‘)sS — ros (30)

As for the third boundary condition, regarding the appropriate terms from the Egs. (3c), (2e),
(2f),

ow ow I
|z{nf1 - nfz —> 20, _SO} - CTO(S);O +

an )
) , El, 9 [9%w, d%w, Gl, a | 92w,
+ n, —ng I, >— Vv > + 4 Ny Ny, 721 7 —
p@—vo)on| 9°n o°s P oan| dnds
N2
— 4 n? +3n2n?2 —n? Clo 0]9Wo| _
X2 e 50 9s | Onds
El 2w 2w El 2w 2w
—ZQ{ nx} 22 0Ly 2o —annx 223 0 2o
0s p—ve) 0°s t 2 p(l—v©) Os 0°s

0 0
+ a—s(n)f2 +6n;ni —ni)M, . — Za—s{nxlnxz(nf1 —ng BIM +

El, o 0%w, 0d%w, Lo }
+ 4 ann; p(l—Vz)a_S[V 82n + 825 = P a_s‘{ﬁ_n)(z)a'rls_znxlnxz aTln

3 3 a3
) 02 EI2 8WO y 07w, +4GI2 X dZWO B
yo, ' 2nos

e 4 5 9nds
- 22{n3 ) El, [0%w, %W, P El, 2w, +V63W0 L (30
s T pa—v?)| 9%n d%s % 5(1—v?) | 8s0°%n d°s

19} d
+ g{n52+6nflnfz—nfl}MnS — Zg{nx1 (e —NZ M +

, El, 2w, 9w,
+ 4 Ny, Ny, — v —+— =
pl—v) | 9s0°n a°s
I, 9 I
= —2—{(n nfz)ans — 2N, Ny, ar} + Cro(s)—
p 0Os p

Finally, taking into account the Egs. (2¢), (2d), (2e) the Eq. (4d) is converted to
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, , 2 El, [0%w, 0%w, , , EIl, O*w,  0°w,
— N, =Ny 2 2 TV —3 _4nxnx2 2 02 0?2 o
! 2 p@A-vo)| 0°n 0°s ! pl—v )‘ J°n 0%
1, 0%w |
2 2 2 0o _ 2 a2 . J2
— 8nX1nx2 ne, — Ny, G; nds n,, — Ny ar, 2nxznXl Aty . =
, , 2 E [0%w, 02w, , , E o*w, 0°w, |
n, —n, 5 — +V— +4n, n, 5 — —— |+
' 2 1-v°| O0°n 0°s v l-y on 0°s (34)
d°w
2 2 0 2 2
+8nxlnx2 Ny, — Ny, G onos = Ny, —0Ny, 8ry + 2nx2nxl ar1s

In conclusion, we have managed to remedy the aforementioned inconsistency of the system of
equations and unknown quantities, gathering finally the four natural boundary conditions
(4a)-(4d) of the section 7.1 or (3a)-(3d) of the section 7.2 to solve the system of fourth-order
partial differential equations (7)-(9) of the section 6.1 or (7)-(9) of the section 6.2 respective-

ly.
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8. Conclusions

8.1. Functional Spaces

In conclusion, it’s meaningful to refer and verify the functional space in which the action
functional of the Hamilton’s Principle is defined.

We note that the equations of motion (1) - (3) of the section 6, are expressed in terms of the
displacement (u,, v,, W,) and they contain second- order derivatives of u,, v,, t and fourth-
order spatial derivatives of w,. Consequently, the CPT is said to be eight — order plate theory,

because the total spatial differential order of the equations of motion, is eight [Reddy J.N.
2007, “Theory and Analysis of Elastic Plates and Shells”, Chap.3 & Mitchell Griffiths 1980,
“The Finite Difference Method in Partial Differential Equations” J. Wiley & Sons, Chap.2].
Thus, the functional space in which the displacement field is defined has to include up to
fourth — order spatial and second — order time derivatives.

As for the boundary of the domain of virtual displacements, the equations (4°) — (8") of the
sections 6.1 and 6.2 highlight the need of a boundary equipped with at least third — order spa-
tial derivatives (because of the existence of third - order derivative of w ).

Consequently, inside the volume B & R®, must be defined at least the fourth spatial deriva-

tives of U (C *- continuity ) and its second-time derivatives (C 2- continuity ). This means the
existence and the continuity of the fourth spatial and second time derivatives of U.

Upon the boundary 9B, which encloses the space B, we demand the existence and continui-
ty up to the third spatial derivatives of U (C *- continuity).
Thus, the action functional S = S[u(-,-)] is defined on the space of admissible functions

C? [t,t,]—Y ,where Y isthe functional space Y = ucC*B)NC3*B) ,
while the admissible variations su belong to the space C?* [t,,t,]— A , where A isa func-
tional space A = SueC*(B)NC3*(B):su(x) = 0 forxecoB

In addition to the above, note that B = BUOB . is the reference domain B, which consists
of the open set B [interior of B or cI(B)] and its boundary OB .
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1. Introduction
1.1. Definition of the meaning of « Plate » in the context of the specific quotation.

Consider now again a plate of planar dimensions a and b, length and breadth respectively
and thickness h (or height or depth). The previous presented model of CPT, give satisfactory
results in case of thin plate. Consequently, it must be the need of a better and more accurate
plate theory in order to model the kinematics of a thick plate, namely moderately thick plate

(0.05<h/L<0.1) and very thick plates (h/L > 0.1) [Reddy J.N. (2007), “Theory and

Analysis of Elastic Plates and Shells, Chap. 10.1.1], because the CPT underpredicts the
deflections of a thick plate. To overcome this problem, we formulate higher-order plate
theories from which the most popular are the first-order shear deformation plate theory
(FSDT), also called as Reissner/Mindlin Plate Theory and the third-order shear deformation
plate theory (TSDT), also known as Levinson’s Plate Theory.

On the context of this quotation, we choose the TSDT to describe the kinematics of the thick
plate, because the expansion of the displacements up to the cubic term in the thickness
coordinate (as shown on the next sections) is to gain quadratic variation of the transverse
shear strains and stresses through the plate thickness. By this way is approximated the exact
distribution of the transverse shear stresses to the thickness of the plate and consequently is
avoided the need for shear correction coefficients used in the FSDT [Reddy J.N. (2007),
“Theory and Analysis of Elastic Plates and Shells”, Chapter 10.1.3]. The exact and the
assumed distribution of stresses is illustrated on the following figure.

T T,._,’E_q_\__:
Assumed distribution Exact distribution

Figure 1: Shear correction factor and stresses along the edge of the plate

Complementary, note that the Reissner/ Mindlin plate theory is used sometimes for thin plates
situations. However, this model suffer from the so called “shear —locking” defect, which
influence the numerical solution of the problem. This defect is corrected by specific methods,
which are not going to occupy us on the context of this text. [Onate E. (2013), “Structural
Analysis with the Finite Element Method. Linear Statics: Beams, Plates and Shells”, Chapter
6.1, 6.4].

In order to express and develop the relations of the displacement field of the plate, we assume
that the reference system of axes (here: the Cartesian coordinate system OX, X, X5 as seems

on the Figure 2 below), namely the origin of axes, is located on the middle plane of the plate.
This plane will be called as mid-surface on the next sections and it is regarded as the reference
plane for deriving the kinematic equations of the plate. Also we assume that the mid-surface
is equidistant from the upper and lower surface of the plate, which means that each point upon
the plate is described by zero vertical coordinate x; = 0.
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%3
4 \g
L /‘ 7 B
TN E
\)Z/\_\\\\ ; - mid-sucfore
W

Figure 2: Cartesian coordinates and general notation as for the plate

As for the material of the plate under consideration, we are going to model two kind of
structural materials separately on the following appropriate sections. The first one is the
orthotropic but in-plane anisotropic plate and the second one is the orthotropic but in-plane
isotropic plate. Note that the generally isotropic plate, namely with the same material
properties on each direction, has no practical use on the structures and structural elements,
because the stiffness and the material properties of an element (here: the plate) are purposely
created different form one to another direction and proportional to the loading condition on
which the plate is submitted.

1.2. Important Assumptions of the TSDT

On this quotation the assumptions of the straightness and normality of the transverse normal
after deformation are neglected [Reddy (2007), “Theory and Analysis of Elastic Plates and
Shells”, Chap. 10.3].

1.2.1. The straightness assumption

In contrast to the CPT, the TSDT relaxes the kinematic hypothesis of CPT by removing the
straightness assumption, i.e. straight normal to the middle plane before deformation may
become cubic curves after deformation.

1.2.2. The inextensibility assumption

Although a fundamental assumption, which is conserved unchanged from the CPT, is the
inextensibility of the cross section of the plate. Consequently the transverse normals do not
experience elongation. In view of the small thickness of the plate, the vertical movement of
any point of the plate is identical to that of the point of middle surface [Reddy 2007, “Theory
and Analysis of Elastic Plates and Shells, Chap. 3.2].

1.2.3. The normality assumption

In addition, the TSDT relaxes the kinematic hypothesis by removing the normality restriction
(as well as the FSDT or Reissner- Mindlin Plate Theory do generally) and allowing for
arbitrary but constant rotation of transverse normals in comparison with the permanently
transverse normals of the CPT.
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The consequences on the mathematical modelling of the problem of TSDT of the three above

assumptions (“no normality”, “no straightness” and “inextensibility”) are analyzed on the
below paragraph 1.3.

1.3. Consequences of Levinson’s Assumptions

Initially, these consequences are illustrated more schematically on the following figure.
Shown also the main differences between the various kinds of plate theories and the way
passing from the simplest (CPT) to a more complicated mathematical modeling of plates
(TSDT). Thus, Figure 3 illustrates the following,

undeformed
}“II I, ; ............................... {}

. N
i: X,
L ]

CPT

Figure 3: Deformation of the section of a plate according to the CPT, first-order deformation theory
and third-order plate theories

1.3.1. The straightness of the cross-section
The lack of straightness assumption of the transverse normals after deformation, means that
we are able to expand the displacements (U, V, W) as cubic functions along the thickness

coordinate. Thus, as will see on the sequel, we are entitled to keep up to third-order terms on
the Taylor expansion.

1.3.2. The inextensibility of the cross-section

As for the inextensibility of the cross section, we have to refer that the structures are usually
composed of stiff materials. Consequently, the transverse displacement is independent of the
vertical coordinate. This assumption is conceptually the inextensibility of the cross section.
Thus,
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28— 0sw(xit) = Wi Xpit) = Wo(XuXsit) ®
3

This assumption remains valid even for a thick plate, because the slenderness ratio of the plate
h/ L is relatively small by the definition of the plate structure. Besides, this qualification is
the essential difference of a plate from another structural element, such as solid cubes and
cylinders.

1.3.3. The normality of the cross-section

The absence of the normality assumption of the transverse normals after deformation, implies
that the rate of change of planar dimensions (U,, V) of the plate are different from the rate

of change of its vertical dimension (W, ), as seem on the figure below. The respective figure is
valid for the x, x,-section.

Middle plane

Actual deformation
~" of normal

i

Middle plane R r _ Assumed deformation

of normal

Figure 4: The lack of normality assumption on the X; X5 -section of the plate.

The obvious remarks of the above are that, du,/9x; = ow,/9x, and dv,/Ix; = Ow, / IX, .

Mo ¢, and No ¢, Where @,

X3 OX5
and ¢y are the real slopes of the transverse normals of the plate. In addition to the previous

In addition, on the context of the TSDT (or FSDT)

and as a direct consequence Ow, / 9x, = ¢, and ow,/0x, = ¢,. These quantities (¢dy, @)

are going to appear independent of the displacement field (U,, Vo, W,) on the equations of
motion and the boundary conditions of the plate.

1.4. Voigt Notation

On the context of this quotation, it is followed the Voigt—Kelvin notation or contracted
notation, in order to express more smartly the components of stresses and strains. The two-
subscript components C; j of the matrix of stiffness coefficients, are obtained from G jki by

the following change of subscripts:
Especially for the diagonal elements (trace) of the matrix of elastic coefficients, we derive,
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(11 orx;x;) — 1
(22 orx,x,) — 2
(33 orx;x;) — 3

Also regarding that the minor symmetries of the stiffness matrix are valid, we have the
following notation for the off-diagonal elements,

(23 orx,x; or32 orx;x,) — 4
(13 or x;x; or 31 orx;x,) — 5
(12 or x;x, or 21 orx,x,) — 6

It is easily seen that the symmetries of stress and strain tensors lead to the following
symmetries of stiffness (and compliance) coefficients:

Cijkl = Cklij = Cijlk = Cjikl
Sijkl - Sklij - Sijlk = Sjikl

The enormous importance of the minor symmetries of stiffness / compliance coefficients is

that they reduce the number of independent coefficients from 3* = 81 to 6% = 36. Asa
consequence, the generalized Hooke’s Law is simplified further [G.A. Athanassoulis (2016),
Lecture Notes of Functional Analysis, “Elastic Potential Energy- Energy function”].

By this notation the generalized Hooke’s Law relates the six components of stresses to the six
components of strains, as seem below,

01 Cun Cip Ci3 Cy Cis Cy |fey
0, Cu Cpn Cxi Cy Cu Culle;
|93 _ Cyy Cxp Cy Cy Cy Cy |63
Oy B Cu Cp Cu Cu Cu Cuelley
Os Csi Cs Cy Coy Co Cogff€s
Os Ceo Ceo Ces Cou Cos Cool|C6]

[J.N. Reddy 2007, “Theory and Analysis of Elastic Plates and Shells”, Chap. 1.3.6, pp.28].

Thus,

01 = 011 = Oyx,

Oy = 032 = Oy,x,

X3 X3
Oy = O3 = O3 = Oy,x, = Ox,x,
Os5 = O13 =03 = O-xl)(3 = Gx3x1
Og = 012 = 021 = Oy,x, = Oxx,
Ve = 204 = 28y = 285 = 20, , =28,
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X3 Xq X1 X3

2e

= 2e
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2. Geometric Configuration and Loading Conditions

The shape of the plate considered herein is the one of homogeneous cylinder having a basis of
arbitrary (smooth) shape and height (thickness) h, with slenderness ratio 0.05 <h/L <0.1

for moderately thick and h/L > 0.1 for very thick plates. The domain occupied by the plate
(the cylinder) is denoted by B. The total boundary of the plate is denoted by 0B, and con-
sists of the lateral boundary (surface) 0B"*) and the two flat faces
oB(M = oBUD uaB!' "), One of these two flat faces is conventionally called the upper

face, OB ") and the other is called the lower face, 9B!' ") . That is

OB = 9B ot o,

Another (different) subdivision of the total boundary OB is also useful for our analysis, ac-
cording to the boundary conditions applied to the various parts of it. Thus, we denote by 0B
the parts of the total boundary surface tractions (stresses) are prescribed, and 0B, the parts of
the total boundary on which the displacements are given. Of course, we can define

OB = 9B; U OB, .

Figure 1: Geometry and loading conditions of the plate.

In addition to the above conventions, note the total boundary of the prescribed surface trac-
tions (9B, ) includes the boundaries 9B = 9B " UoB!"") and part of the lateral bound-
ary denoted by 9B{®").

Similarly, the total boundary of given displacements (9B, ) includes the boundaries

BN = oB“N UAB! ") and part of the lateral boundary 9B{®".

Now as for the loads set to the formulation of the problem of TSDT, we consider the follow-
ing. First we assume that on the top or/ and bottom surface of the plate there is a normal load
distribution q(x,, X, ). Obviously, this vertical load is horizontally distributed. Also there is

no matter if the algebraic sum of the vertical load g is on the positive or negative direction of
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the x,-axis. Also due to the large thickness of the plate, we have to take into account the con-

tribution of the load g on the boundary conditions except from its influence on the equations
of motion of the plate (as seem on the model of CPT). Consequently, the load q will be treat-

ed in curvilinear integrals (as done with the residual external loads-tractions), from which we
derive the boundary conditions, as well as in volume integrals of the variational equations,
from which we derive the equations of motion of the model of TSDT. These kinds of integrals
and its physical meaning will be presented on next sections. Thus, the assumption of the thick
plate results to the fact that the load q is applied on the mid-surface Q of the plate [or the

plane (x,, X,, 0)]. Let O be a common projection of the upper and lower faces of the plate

on its mid-surface. The last is surrounded by the curve 7", which is the projection of the (ver-
tical) lateral boundary of the mid-surface.
Respectively to the above notation, let dew = dx,; dx, be an infinitesimal element of the do-

main Q and dy an infinitesimal arc of the curve 7.
Second, at the edge of the plate, we have surface distributed loads (surface tractions), whose
components are going to be analyzed below.

These surface-distributed loads on the context of this study are chosen to depend on the plate
thickness h in such a way that the limit problem (h —0), namely the CPT, will produce so-
lutions and boundary conditions that are neither infinite nor zero. This is manage by letting

the g above and the surface tractions below, be proportional to h® [BO HAGGBLAD,

KLAUS-JURGEN BATHE (1990), “Specifications of Boundary Conditions for Reissner/
Mindlin Plate Bending Finite Elements ”, Journal].

Generally we have, T(x;t) = Tyo(x), where x € 0B, and
To(X) = Ty(Xy, X5, Xg) ey, T To(Xy, X5, X3) €y, T T3(Xy, X5, X3) €y,

Note that we consider here the surface tractions independent of the time variable.

Now taking apart from each other the components of the surface tractions along the three axes
of the Cartesian coordinate system, we get

2 3
Ti(Xy, Xp5 X3) = Ar(Xy, Xp) + apy(X, Xy) X3 + A73(Xy, Xp) X3 =

= aro(y) + ar1(¥) X3 + ars(y) x5 (1)

fz(xlrxz’xs) = bro(Xy, X3) + bry(Xy, Xy) X3 + bra(Xy, Xy) Xg =

= bro(¥) + bry(y) X3 + bra(y) X'g ()

f3(X1’ Xy, X3) = Cro(Xy, X3) + Cri(Xy, Xp) X3 + Cra(Xy, Xy) Xg =
= Cro(7) + Cr1(¥) X3 + Cr3(¥) Xg (3)

The above configuration of the surface tractions, including the arbitrary but appropriate func-
tions a;,, ar;, arz, brg, By Prg, Crp, Cry and cy, are compatible with the initial as-

sumptions of the kinematic model of the TSDT. Remark that one of the essential differences
of this model of TSDT in comparison with the model of the CPT, is the existence of shear de-
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formations y,, = 2e,; and y,; = 2e,, except for the in-plane shear deformation
71, = 2e,, (as shown on the following section 3). For this reason the vertical surface trac-

tion (f3) is chosen to be explicitly dependent to x, variable.

However, due to the in extensibility assumption (section 1.2.2) these tractions along the x, -

axis (T) as well as the load s must be equal to zero upon the top and bottom surfaces of the
plateat x; = +h/2.

The in-plane tractions (fl and fz) are dependent up to x3 from the thickness of the plate,

fact that is consistent with the lack of normality and straightness assumption (section 1.2.1
and 1.2.3) in order to follow the deformed cross-section of the plate.

Highlight also that the notation of the notation of the zero sub index is on purpose because for
the first part of the right-hand side of the Egs. (1), (2) and (3), because we want to show the
dependence of the a;,, b;,, ¢y, functions from the curve I” (y-arc around the curve) of

the lateral boundary, on which the x,-variable is zero. In addition, the functions a;,, by,
C, and a;,, bry, Cr, Notated by unit sub index declare the linear and cubic (respectively)
dependence of the these surface tractions from the vertical spatial variable.

As for the specific parts of the boundary, where displacements are prescribed, we assume the
following boundary conditions. These kinematic boundary conditions are alternatively called
essential conditions of the problem, because they are considered as a priori constraint affect-
ing the space of the admissible functions and variations of the problem of TSDT.

Generally the form of the given displacements is,
u(x;t) = uy(x) = given, where x € 9B, and
Uo(X) = Uy(Xy, X5, X3) €y + Up(Xy, Xg, Xg) €y 4 Ug(Xy, X, X3) €y,
Also note that we consider here the above displacements independent of the time variable.
Now separating the components of the displacement field on the boundary along the three ax-

es of the Cartesian coordinate system, we have

3
Up(Xq, Xp, X3) = Qou(Xg, Xp) + @y (X, Xp) X3 + agy(Xg, X,) X3 =

= agy(7) + aw(r) x; + ag () x; (4)

Uy (Xq, Xp0 X3) = Doy (Xg, Xy) 4 by (X, X5) Xg 4 bgy (X, X5) Xs? =

= boy () + by () X5 + by () %3 (5)

3
Us(Xq, Xp, X3) = Cou(Xgs Xp) + Coy(Xq, Xp) X3 + Cay(Xq, Xp) X3 =

= Cou(7) + Ciu(¥) X3 + Cyu(¥) X5 (6)
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The above notation follows the same rationality as this of the surface tractions, expressed
above. The only difference is the form of the functions a,,, a,,, as,, by, by, by, . How-

ever they must be compatible with the “nature” of the problem, as exactly the above functions
arg» bros Cro» @ryy by, Cpy @nd arg, byg, Cpg are.

Further the rightness and compatibility of the above form of the essential conditions, is veri-
fied by the initial assumptions of the modelling of the problem of TSDT, and especially by
the normality and the straightness assumptions of the sections 1.2.3 and 1.2.1 respectively.

In conclusion all the aforementioned boundary and loading conditions, lead to the fact that
parallel to the mid-surface (in-plane motion) there are three contributions. The first are the
stretching actions due to loads at the edge of the plate which act parallel to the mid-surface of
the plate. The second contribution is the bending of the plate due to the x, terms and the third

one is the distortion of the cross-section of the plate due to the x3 terms.
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3. Kinematics of Thick plates

The in-plane displacements (due to the total loads acting on the plate) can be approximated
by a few terms of the Taylor expansion around each point (X;, X,, 0) of the mid-surface,
with respect to x, € [—h/2,h/2]. We choose to expand Taylor with respect to X;-axis

(namely along the smallest dimension, -thickness of the plate), since Taylor’s expansions
(polynomials) are adequate approximations only in a small region (—h/2, h/2) around the

central points (X;, X,, 0). Thus, the form of the U, V-components of the displacement is as-
sumed of the form:

(x3—0) du(xy,X,,0;t) +(X3_O)2 D2U(Xy,X,,0;t)

U(Xq, Xy, Xg5t) = U(Xy,X,,0;t)+

1 X4 21 0%X,
X, —0)2 9% (x,,x,,0;t
(=07 0% 0, X 01 0
3! 07X,
_ o (Xg=0) V(X4 X,,0;t)  (x3—0)% 0%V(Xy, X,,0;t)
V(Xl’XZ’XS’t):V(XllXZaoyt)+ 11 8X3 + 21 aZXS
X, —0)% 9% (xy,x,,0;t
06 =0)° 90X, 01) @
3! 07Xq
Here maintaining until third-order terms and adopting the notation
U(Xy, X,,0;t) =uq (X, X,51), V(X3 X,,0;t) =V, (X, X,51)  and
W( Xy, X,,0;1) =Wy (Xq,X,5t),
we can write more simply the above relations as:
U(Xq, Xp, Xg5t) = Ug(Xy, Xp5t) +XgUgy (X4, X, ;1) +
X5 Uy (Xq, X 1t) -+ X5 Ugg(Xg, X5 5t) 3)
V(Xp X5, X33 ) = V(X Xp58) + X5V (X1, X5 1) +
X3 Voo (Xy, X5 t) -+ X5 Vo3 (Xy, X5 5t) 4)

Further we can modify some of the above terms, taking into account the Figures 3 and 4 of
the section 1.3. Concerning U, v,, we observe that,

ou(Xy,X,, X3 =0;t) ou,
u, (X, X, t) = = = tang, (X, X,:t) ~ @, (X, %X,;t) (5)
1 1 2 8X3 8X3 1 2 1 2
and
OV (X, X5, X3 =0;t) ov
V(X X55t) = - = — = tang, (X3, X55t) =~ ¢, (X, %;;1) (6)

OX4 OX4
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because of the smallness of the angles ¢, and ¢,, which notate the rotations about the 'y

and x-axis respectively [Bo Haggblad, Klaus-Jiirgen Bathe (1990), “Specifications of

Boundary Conditions for Reissner/ Mindlin Plate Bending Finite Elements”, International
Journal for Numerical Methods in Engineering].

Now substituting (5) and (6) on (3) and (4) respectively, we derive the following Egs for the
displacement field of the model of TSDT,

U(Xp, Xp, Xgit) = Ug(Xp, Xp 1)+ X0, (X1, X, 51) +

+ X5 Uy (Xg, X5 5t) 4 X3 Ugg( Xy, X5 5t) (7
V(X3 X, Xg5t) = Vo(Xu Xp 1)+ X5 4y (X1, X, 51) +

+ X5 Vop (X1, X5 3) 4 X5 Vg (Xg, X5 5t) 8
W( Xy, X,,05t) =W, (X, X, 5t) 9

At this point it’s meaningful to make a specific assumption, which is related to the upper and
bottom surfaces of the plate at X, = +h/2.

For any loading condition acting on the plate purely in the vertical direction, the shear stresses
03 and 0,3 on the top and the bottom faces, X; = 4h/2 of the plate should be zero [G.A.

Athanassoulis, Lecture Notes-Functional Analysis, “A variational approach to the third- or-
der Bickford - Reddy Beam Theory ).

h
0'13[X11X2’:t5 = O3

xl,xz,ig] = 0=

05[x1,x2,ig =0,

h
xl,xz,ii] =0 (10)

Thus, this choice of displacement field is expected to satisfy the following stress-free bounda-
ry conditions on the bottom and the top faces of the plate [Reddy J.N. (2007), “Theory and
Analysis of Elastic Plates and Shells”, Chap. 10.3.2.].

Consequently, we have the following kinematic boundary conditions,

e13[x1,x2,ig] = e23[x1,x2,ig] = 0=

h h
2 2
Now substituting the equations (7) and (8) on the known relations of strain-displacements,
ou ow
2=y 3=—+—=0,(X;,X,;t)+
13— 713 ax, | 0%, Gy (X, X5 3t)
ow
+2X5 Uy (Xg, X5 3 t) +3X2 Ug(Xg, Xy t) 4+ — (12)

O0X,
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ov  ow
2e23:723:_ax +_3X =@, (X, X5 t) +
3 2
ow
+2x3v2(x1,x2;t)+3x32v3(x1,x2;t)+aX0 (13)

2

and using the Eq. (10), we derive easily the four following equations as seem subsequently:

e Substituting X; = h/2 on the Eq. (11) we have,

: h : h? 1y 1 Mo 14
¢x(X1’X2’t)"‘ZZUz(Xl’Xz1t)+3TU3(X1!X2’t)+ %, =0 (14a)
e Substituting X; = —h/2 on the Eq. (11) we have,
h h? ow
¢X(X1,Xz:t)—ZZUz(Xl,Xz:t)+3TU3(X1,X2:t)+ 3Xf =0 (14b)

e Substituting X; = h/2 on the Eq. (12) we have,

h h? OW, 14
¢y(X11X2;t)_'_/ZZVZ(Xl’XZ;t)+3TV3(Xl’X2;t)+axz =0 (14c)
e Substituting X; = —h/2 on the Eq. (12) we have,
h h? ow
¢y(X1’Xz?t)—ZEVz(lexz?t)+3TV3(X17X2?t)+ 8)(2 =0 (14d)

Subtracting the Eq. (13a) from (13b), we find
2hu, (X, X,;t) = 0 = u,(x,x,;t) =0 (15a)

Subtracting the Eq. (13c) from (13d), we find

2hv, (X, X,55t) = 0 = v,(x,%x,;t) =0 (15b)
Adding the Egs. (13a) and (13b), we have

Us(Xq, Xp3t) = —3;]%¢X(X1,Xz;t) - %izaa—v):) = - 3% ¢X+aa—v)\:: (16a)
Adding equations (13c) and (13d), we have

0w = = 2, (X it) _3%2_& - - %[m%—& (16b)

To sum up, the final displacement field of the kinematic model of the third-order plate theory
or TSDT, is expressed as:

ow,
O0X,

(17a)

4
U(Xy, Xp, X35t) = Ug(Xq, Xp5t) + X34, (Xp, X5 51) — Xg 3h2[¢x+
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17b
3h? Ox, (170)

. . . 3 4 Wo
V(Xg, X0, Xait) = Vo(Xy, Xp3t) + X300, (X, X55t) — X3 — |4y +—
W(Xy, X5, X331) = W (Xg, X,5t) (17c¢)
At this point, we note that the displacement field (u, v, w) is fully described in terms of de-

formation of the mid- surface (U,, v,, w,) and the slopes of the transverse normal at

X3 = 0 namely (¢y, ¢,).

Thus, after calculations and grouping together separately the terms with the same virtual dis-
placements (Ug, Vo, Wy, @y, @), we derive the following relations of the strains which are

associated with the above displacement field (16a) - (16c).
0p, 0w,
X, 9%,

e—ﬂ—%+xa¢x_xa4
"ox,  ox, Cox,  °3n?

Mo . la 4 18
= — + X3|1— — X a
ox, |7 3n?|ox,  °3h? 9%x, (182)
v OV, g, . 4 [0, 0°w,
22 = o = oo T X3 — X35 3
ox, X, ox, 3h | Ox, 0°x,

ov 4x2 | 0¢ 4 0w
=50 T o X3 on (180)
X5 3h° | 0x, 3h* 0°x,
ow
ey = W _ Mo _ (18¢)
OX4 OX4
[As it was proved at the Eq. (1) of the assumptions of the TSDT, section 1.3.2]
N ow 4x3 ow, | ow,
28 =T SV = ety = T [ x| o,
4x3 oW,
= 1_F <1>y+8—x2 (18d)
u  ow 43 ow, | ow,
26 — — = — —|— _— = x — T X + —
13 = 713 = 7s YRR ¢ h2 [¢ ox, %,
4x3 ow,,
il Ryl | K Sarve (18¢)
1
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ou ov ou, 09 s 4 | 09y 0w,
2e, = = = + = + Xg— — X +
T T T g Tk, ox, | fox,  Pan? | ox, | ox,ox

ov, 8¢y s 4

— X
X, *ox, *3h?

ou oV 4x2 | o 4x2
0 0 3[1_ 3] ¢x X3[1 3

= — + — + X — | -
ox,  0Ox 3h? | 0x, 3h?

5, 9°w
¢y + 0
OX,  OX,0X,

o,  8x5 0°w,

— 18
ox,  3h?% 0x,0x, (180

Note that the previous Egs. (18a) -(18f) are found invariable on the book of Wang C.M., Red-
dy J.N., Lee K.H. (2000) “Shear Deformable Beams and Plates- Relations with Classical So-
lutions”, and specifically on the Chapter 6.4.
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4. Equations of Motion - Variational Principles.

Now we are going to produce the differential equations of motion of the plate and its
boundary conditions, replacing the expressions of the displacement field to the variational
equation and using the Hamilton’s Principle in Elastodynamics [Athanassoulis G.A. (2016),
Hamilton’s Principle in Elastodynamics, NTUA Lecture Notes of Functional Analysis].

We formulate the Elastodynamic Lagrangian function in a constraint form, which means we
impose as a priori constraint the condition U;(X;t) = U;(x;t) = given , X€dB,
(essential condition):

L u(-;t) :fff K(u)—U(e) dV+ff'fiuidS

0By

Next, we have to define the action functional, corresponding to the above Lagrangian
function:

t,

S u(s") :fL u(-;t) dt

t

In order to find the differential equations of the TSDT, we have to find the stationary points of
the action functional (Hamilton’s Principle):

t2
oS u;ou = 5fL u(-;t) dt =0,

t

tz K A space of admissible
5ffff K(u)—U(e) dth+5fffTiuidet:0,V Su € .
variations
t B t, OB;
t2 t2 t2
fffféK(U)dth—fff 5U(e)dth+fff‘fi§uidet:0,
t, B t, B t, OB (1)

YV ou € space of admissible variations

space of admissible
Y ou € .
variations

Now we calculate separately the terms of the above variational equation (1) :

4.1. Variation of the Kinetic-Energy Part

The calculation of the kinetic-energy part of the action functional is standard. Integrating by
parts the time integral, we find:
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t, t,
5JK:fffféK(U)dth:ffff%pui5uidvdt:
t, B B
tZ
:_ffffpl]'ié'uidth,
t, B
t,
Thus, 53, = —ffffp U,ou, +U,ou, +lz;ou,; dvdt =
ty B
t,
= —ffffp Usu+vVov+wsow dV dt (2)
ty B

where the double dots represent the time derivatives of the variations and using the relations
(16a)-(16c) of the section 3,

. _ . _ .. _ A
U(X3, Xp, Xg5t) = Ug(Xy, Xp;t) + X305 (Xp, X0 5t) = X3 — | fy +—— (3a)
3h X,
. _ . _ .. _ s 4 |, 0wy
V(X1 Xp, Xg5t) = Vo (Xg, X5 5t) + X538, (X, X5 3t) = X3 — |4, +—— (3b)
3h o0X,
W(Xq, Xy, Xg:t) = Wy (X, X,s1) (3c)
And their variations are,
3 4 dow,
SU(Xy, X5, X5it) = SUg(Xy, X53t) + X388, (Xy, X531) = X5 —— |5 ¢ (42)
3h X,
s 4 oow,
OV( Xy, X5, Xgit) = OVo(Xy, X 5t) + X350, (Xg, X, 5t) = X3 — |09, (4b)
3h O0X,
OW( Xy, X5, X5:1) =W, (Xq, X,;5t) (4c)

Before proceed to the appropriate substitutions, it’s meaningful to calculate firstly the
products inside the brackets under the volume integral of the Eqg. (2), in order to avoid
confusing calculations.

Thus after careful handling,
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Oow,
)

3 4 3 4
SUg+X30h, — X3 —5
0 33h?

3307 Opy+

j Jr8W
“ox

Uou = |Uy+Xsh, —X

3 4

s e Pt
| 1

O R R A ] e
+3;]i2 §uo+[x§ :2 x§]¢x+ 53;‘;22\/::

Vv = |Vo+X; 9, ng;liz ¢y+g\:(v§ SNo+X3 5, X333;L2[ s, 3;(%:0 -
— v0+[x3 X3 3:2]&y—x33 3:2 z\:(vj SV, +
e e

Now substituting the above results into the eq. (2), we extract a more extensive form of the

Kinetic-energy part of the action functional.

t,
51y = —ffffp (SU+VSV+Wow dV dt =
t, B
tz a.-
) 4. 5 4 OV
= — g+ |x;—x3— |4, —x3 ———
ffffp ° [3 33h2]¢x *3h? ox,
t, B

4 8 16 ) -
Xs—XS%—2]+[X§—X§%—2+X§%—4]¢x +

t, U'O
- ) 5S¢, dVdt —
J SIS bt e 2 I
bR 3h2(733n2 %) ox,
tZ
- e
P30
t, B

ou, dvdt —

s 40
*3h? ox,

) 4 .
—x§u0+[x§%—2—x§‘]¢x + X
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t2
. 4 ). s 4 OW,
- Vo +| X — X3 — |4, — X3 oV, dV dt —
ffffp 0 [3 33h2]¢y 33h% 0x,
ty B
4 8 16 ) -

[ r12]+[x§_xgrsr12+X‘°(’39h4]¢yJr
ffff ) 4V dt —
4 (4 o )0V,

— X3 — X5 |—
T T ox,
4 s 4 OWy | 0ow,
x Vo, + + X dv dt —
ffff Panz ‘ [ 3n? ]¢ *3h2 ox, | ox,

- ffffpwo5wo dv dt 5)

In Eq. (5) there are not only the variations Su,, &v,, OW,, but also the first spatial

derivatives, here the X,;,X, —derivatives of oW,. To eliminate the later we perform an

integration by parts with respect to the corresponding spatial variables. These
integrations by parts will generate boundary terms, which will contribute to the construction
of the appropriate boundary conditions of the TSDT. For further simplification we neglect for
the present calculations the time integral. Thus,

4 6w0
=[] it s o
— ff i_x3u’ +[X6i_x4]¢. _}_Xsi%n ds —
“)p3h2 RO M an2 TP T P an? o, |
opllat
4 , 0l [ . 4 ]64}5X o 4 0%,
— —|—X + —X + X dv 6
f[f’o3h2 * ox, *3n2 PJox,  *3nh? 9%, ©)
4 ) 4 oW, |06w,
Sly, , = —X3V,+ x6——x4] + x5 dv =
OWorka fffp 2| 7370 [33h2 )9 *3h2 ax, | Ox,
B
3 6 4 4G 4+ x8 4 O
ff e x3v0+[x33h—2—x3]¢y 3307 8 n,, owydS —
()B at
4 , OV [ . 4 ]&}y o 4 02,
— —|—X; —+|X — X3 | —+ X3 5W dv 7
f[f’oshz *ox, %32 3ok, i3n? ax, | ™

Consequently, substituting the Egs. (6) and (7) into (5), we get
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t, 1,

= — f fffp Gou+vVov+wow dVdt =

4 3 4 OW,
+ —x3 - "Clsu, dv dt —
ffff o [ 3h ]¢ 33n2 ox, | °
4 8 16 ),
[ 3h2]+[X§_X§3h_2+X§%_4]¢X *
i} 54, dV dt —
ffff +4[64_4](‘9% P
3h?2|"*3n? %) ox,
4 .. 4 OW
- — |- x6——x4] +x8——L2In dSdt +
ffh[)p l [33h2 S )Pt X g g, |
t;  oBl®

dv dt —

3

8u0 o 4 04 . 4 0w,
3h ox,  *3n? 92x,

e
PP

vo[x3—x§i]+(x§—x§‘ 8 X2 16 ]¢y

t,
3h? 3h2 % 9h W dt
B ffffp 4 [ 4 4]8Wo B
i B +— X5 |—
3h

_X_
2{3n2 ™ 73 ox,

oV, dV dt —

4 4 OV,
—Xx3V +[x6—— ] +x8 %, Sw,dSdt +
0 3h 2 Z S3nZox,| 2 °

3h
t OB (Iat)

+ f IS ozl
] f f[fpwomo v dt

od d°W
3— [6 4—x§] Py xs 2 0ol avdt —
2

— X
3 3n? ox,  °3h? 0%,
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tZ
, 41, 3 4 OW
= — Uy +|Xs— X5 —5|d, — X3 —5 Su, dV dt —
ffffp ° [3 33h2]¢ 3h2 ox,
t, B
4 8 .
[ 3h_2]+[X§_ ggh_z 4]¢x
— - S, dV dt —
f JIJ7 ot 2
HETH ST X,
] 4 . 4 OW
t, . —X§Uo+[X§%—2—X§]¢x+X§%—ga—f X,
[ s ot +
. pgla 3h 3. ¢ 4 4l ¢ 4 0
: +|—X3 Vo + X33h_2 X3 |@y + S3n ox, |
o, O 4 od, 0é
3 0 0 6 4 y X
X3 —F— || xS —xg || L+
lox, ' ox, [ *3h? 3][8x2 X,
+ffff i 4V dt —
3h . 4 (0%, o2, 3h2\i\‘/
32| o, 0%, | 4 °
4 4 0w,
— + X3 — X5 — oV, dV dt —
ffff Yo [ 33n?2 ]¢y 3h2 Ox,
, s 4 ) 48 " 16
SIS S ]fﬂ ©
heoF 3n2(3n2 7 73 ox,

Eqg. (8) can be simplified, by observing that the X;-dependence of all integrands is explicit,

and thus the vertical integration can be performed explicitly. To this end, it is convenient to
define the “mass-moment” quantities:
hy/2
I, = fpx;dx3, i=012.,6

—h/2
Note that odd-order “mass-moment” quantities are zero. More precisely, we get

I, =1,=1,=0
hy2 h/2 ,
Iy = fpdx3 = ph I, = fpxgdxs Py
—h/2 —h/2
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h/2 h/2
f h® | q h'
| X2dx, =p— x8dx, = p—
4 P X3 UXs p80 6 fp 3 UR3 P448
—h/2 —h/2

To treat the volume-integral terms (appearing in the first, second, fourth, fifth and sixth row
of the right-most side of Eq. (8)), we decompose them as follows:

ff ()dV—ffda)f()dx3, do—dx, dx,

—h/2

where €2 is the common projection of the upper and lower faces of the plate on the mid-
surface. Similarly, to treat the terms in the third row of the right-most side of the Eq. (8), we
have to decompose the lateral surface integral as follows:

hy/2

(ds = [ peydrax,

E)B('at) —h/Z Ja

where I is the curve defined by the projection of the (vertical) lateral boundary on the mid-
surface.
Substituting the above decomposed integrals to the Eq. (8), we have the following,

h/2

4 (34 O
4+ x5 — %3 ) ————|Su,dx; dewdt —
fffl; 0[3 3h]¢ %3 3n2
Q -
4 , 48 516,
h/2 [ h2]+[X3—X3—3h2—I—X3—9h4]¢x_

5S¢, dx, dodt —

ffff

ERIRE AL
3n? *3h?) ox,

Q —h2
3. s 4 . s 4 OW,
fgth//g _X3u0+[x33h_z_xg]¢x+x33h_28_xl x, T
3h2 4 4 ow
T —h/2 + _X3\-/- _|_[X6__X4]-- _|_X6— 0
sVot|Xs gz % [y FXa g ox, | X
L[ou, oV 4 od, 04
I +[X§—2—X§]ﬁ+ ‘.
ffff 8X1 8x2 3h 8x2 axl
oR 2 . ..
o hpe 3h s 4 [0%1, 9% ~3h?
+ X3 2 2 2 Wo
32| 0%, o, | 4
h/2 a
4 ). . 4 O,
ffff v0+[ h2]¢y 3h28 oV, dx; deodt —

Q

~h/2
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J 4 8 16
h/2 Vo[xs_x3—]+[X§—X§ 3h2 X3 ]¢y

3
dx; deodt =
fff[z +i[3i 6_X4]% 3
Uo|o+[}/ /3h ]¢x /3h a

pz e * ) ox,
f JJ
8 16
Frrte ][. [f'fz;f T
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2isu o dodt—

3h_2 2 O,
4 0w,
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ol OV 4 6 8")(
t, _/ Oty , Mo [|6_2_|4]ﬂ+ ¢ N
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ty Q +|6 > > 5 o IOWO
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t, t,
- [ [[uor00u,00a — [ [ [ 150500, dwet -
ty Q t, Q

t2 .o o
4 ( 4 04, 04, 16 (0%, 0%,
oWy ——| Iy —— 1, || —=+ - Sw, dedt —
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t, Q
t, N
8 16), 4 4 Vg
|, — I +1 R 1,254, dwdt —
fff[ 2 lagpztlogne)? 3h2[ o3z 4 ok, |00 4
t, Q
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8 16), 4 (4 Vg
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t, Q
4 .. 4 0w,
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®3hz )7V ®3n?oax,| *
Uglg ouy, + 14V, ov, +
N 4 4 0¢, 04, 16 @zwo 02\7‘70
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—fff 8 16). 4 4 o, rdodt —
Lo +[|2_|4%_2+|6%_4]¢X+3h2[|63h2_|4]8xl o9t
8 16), 4 (4 oW
1, ] — S e S Y ) )
+[ 2~ lagpz " 69h4]¢y+3h2[3h2 ° 4]8x2
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4.2. Stress — Strain Relations and Elastic Potential Energy

According to “Athanassoulis G.A. (2016), Hamilton’s Principle in Elastodynamics, NTUA
Lecture Notes of Functional Analysis” and “Athanassoulis G.A. (2017), Elastic potential
energy — Energy function, NTUA Lecture Notes of Functional Analysis”, we have the general
form of the elastic potential energy of the problem,

U(e) = %gij(e)eij = %Cijkleijekl ,  Where the strains €,, €,, are expressed in

terms of the displacement field as ¢, = = u,;+u;; and Cjj,, = Gjj, (X) are the

N~

stiffness coefficients (material properties).
As for the variation of the elastic potential energy, we derive the following:

oU(e) = %5aijeij+%o.ij5eij Hooke's Law 1st term

1 1 i i
5U(e) _ ECijkléekleij +§Uij5eij Minor symmetry of matrix of

stiffness coefficients

5U(E) = %Ck”jeijé‘ekl +%O-ij5eij Hooke's Law 1st term

sU(e) = %Uk|5ek|+%‘7ij5eij TS 5U () = oy; 58

Consequently,

1
U(e) :E O %, Cxx, +O_x2xzex2x2 +Gx3x3ex3x3 +Gx2x37x2x3 +O_x3x17x3xl +lex27x1x2 =
1 ] .
=5 OufuT 00l T Oufs T 0nln T ou/atonle = Voigt Notation
1 1
:E 018, +0,8,+0383+0,),+0575+0g76 (1)
1
oU(e) = > 0,06, + 0,08, + 03065+ G 07, + 005+ 076 (2

According to the last paragraph, we observe that some of the terms of the elastic potential
energy, are equal to zero. So we derive,

1
U(e) == 0188+ 0,08, +0,407 4+ 05075 + 0676 ©)

From (1) and the proof of (2) we have,

oU(e)=0,-08,+0,:08,+0,-0y,+05:0y5+04 )¢ (4)

From the Eq. (17a) of the section 3:
oou 4x5 106 0%ow
0 + X3 [1_ 3 ¢x 3 4 0

—X
o,  °3h? 9%,

oe, = oey = (5a)

3h?®

1

From the Eq. (17b) of the section 3:
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OOV, 4x2105 ¢ 4 025w,
Se, = 0e,, = ——+X,|1—— L oxd ——— 5b
? 2 0x, 3[ 3h2| ox, °3h2 9%, (b)
From the Eq. (17d) of the section 3:
4x5 OSW,
Ory = Oyps = 1‘? 6, + ox, (5¢)
From the Eq. (17e) of the section 3:
4x3 OSW,
Oys = Oyyy = l_h_2 SPy+ ox, (5d)
From the Eq. (17f) of the section 3:
5 5 ddu, . oV, s 4x5 105,
= = X —_
76 712 ox, Ox, 3 32 | ox,
4x5 105 8x3 0%ow
+ Xy 1= o : : (5€)
3h OX4 3h“ Ox, 0X,

4.2.1. Orthotropic, in-plane anisotropic material. Stress — Strain Relations

A wide range of engineering materials, including certain piezoelectric materials and fiber-
reinforced composites (i.e. laminated plates composed of multiple orthotropic layers), are
orthotropic. By definition an orthotropic material has at least two orthogonal planes of
symmetry, where material properties are independent of the direction within each plane. Such
materials require nine (9) independent variables (i.e. constants) in their constitutive matrices.
In contrast, a material without any planes of symmetry is fully anisotropic and requires at
least twenty-one (21) elastic constants (due to the symmetry of the constitutive matrices),
whereas a material with an infinite number of symmetry planes (i.e. every plane is a plane of
symmetry), is isotropic and requires only two elastic constants (Lame’s constants) [ “An
Introduction to Continuum Mechanics”, Chapter 6 (2013), J.N. Reddy and “Theory and
Analysis of Elastic Plates and Shells”, Chapter 3 (2007), J.N. Reddy].

By convention, the nine elastic constants in orthotropic constitutive equations are comprised

of three Young’s modulus of elasticity (E,, E,, E, ), three Poisson’s ratios (V,3, V4, Vy,) OF
(V4, Vs, Vg) and three shear moduli (G,3, G4, ,Gy,) or (G4, G5 ,Gg).

According to the process followed on the Lecture Notes “Stress-Strain Relations: Hooke’s
Law-Orthotropic Materials (First-Principle Approach)”, G.A. Athanassoulis (2016), the three-
dimensional compliance matrix takes the form,
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\' \'
1 Va V. 000
E, E, E,
e2 1 2 3 02
7/4 1 2 3 o,
y 1 o
° 0 0 0 Gy . °
(o2
Ve 0 0 0 G_ 6
0 0 0 A
GlZ

However, in the case of the TSDT, we retain only the below stress-strain relations. Thus, we
get

1 Va
€ E; E, o
= and
o) | v 1|l
E, E,
1 1 1
Ya = =04, Vs = — 05, Ve = < 0Og

G, Ge
Note that, in orthotropic materials there is no interaction between the normal stresses o, o,
and shear strains y, = 2e, = 2e,;, 75 = 265 = 28,5, yg = 285 = 2e,,. Further, the

symmetry of the compliance coefficients leads directly to the following Symmetry for Poisson
ratios:

Vip, VY

E, E,

Now following the same path, as exactly seem on the problem of CPT, we derive the below
stress-strain relationships for the case of an orthotropic material,

E V,, E
Oy = - €yt 22 €2 (1)
1=V, vy 1=V, vy
V., E E
Oy = 22 €+ 2 €22 (2)
1=V Vy 1-vivy
Oy = 04 = Gu37,3 = G, (3)
O3 = 05 = G713 = Gy (4)
o1, = 05 = G171, = Ggry (%)

135



Part B Section 4. Equations of Motion- Variational Principles

In the sequel, we express the strains of the above Egs. (1) - (5) in terms of displacements,
substituting the Eqgs. (17a), (17b), (17d), (17e) and (17f) of the section 3 on the (1) - (5).
Finally,

E ou 4x5 10 4 0w
O = - O+X3 — i ¢X—X§ > 0
1-v, Vv, | 0% 3h< | ox, 3h° 0°x,
vV, E; [0vg X 8¢y_X3 4 0%w, @)
1-vp,Vy [0x,  °|7 3h%|ox, ~°3h% 9%k,
Vi, E, |0u, 4x5|0g, 5 4 0w,
O3 = 3|l—— X35
1-vy, Vv, | 0% 3h< | ox, 3h° 0°x,
E2 aVO _4X§ a¢y_x3 4 aZWO (2\)
1-vp,V, [0x,  °|7 3h%|ox, °3h% 9%,
4x2 ow, )
05 = 0y = 0 == Gy, = Cyllo— |l 4y +—— (3)
2
4x2 ow, ]
05 = 03 =04 = Gyyy = Gy 1_F ¢X+6X 4)
1
Og = 0y, = 0y = Ggrg =
ou, v, . 4xZ |09, ax3 |og, 8x3 0*w, -
= Colaw, T | o T @ o 3l oxg o ©)
2 1 2 1 2 1

Note also that the higher-order plate theories are very adequate for studying composite
laminate materials for which shear deformation effects are important [ Ofate E., “Structural
Analysis with the FEM. Linear Statics: Volume 2, Beams, Plates and Shells™]

4.2.2. Orthotropic, in-plane isotropic material. Stress — Strain Relations

The simplest way to derive the stress-strain relations of an orthotropic but in-plane isotropic
material, is to notice and elaborate appropriately the stress — strain relations of the orthotropic
but in-plane anisotropic plate. As exactly shown on the respective sections of the problem of
the CPT, we derive by the same way the following,

E VE o — E e 4 VE e
1| _[1-v? 1-v?||& - R TV TV N For the specific model of TSDT
o, VE E e, VE E we get the Egs. (1) & (2) below
O, = e + 2

1-v? 1-—v? e 1-v?

Thus, the in-plane stress-strain relationships are already apparent.

As for the shear stress-strain relations, we have o, = Gy, , 05 = Gys, 05 = Gy,
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Thus, the stresses are easily obtained from the generalized Hooke’s Law:

E
2 €y +Vey,

CE fou [ #d)og 4 otwy vy (. xd)og, . 4 0wl
1-vZ|ax,  °|7 3n?|ax, °3h? a¥x, o, T 3n?|ox, °3h? o,
ou ov 4x2\(o o, *w R
- Ez STV X1 & V;¢y— giz o o™ (1)
1-v< || Ox, X, 3h< || 9%, X, 3h| 07X, 09X,
E
T2 = 17 Ve, + € =
1—v? Lo en?ax, U3n?ax, | ox, | 3h?|dx, 3h? o,
du, Ov ax2\( o o, 2*w, O*w
= E2 Ve b 2 x|l I i¢y — §i2v2—° —— (2)
1—v 0X;  OX, 3h ox,  OXx, 3h 0%, 09X,
G G 4x5 y ow, -
Op3 = 0y = VY = V7 T
h2 (|7 oOx,
G G 4x 3 y ow, ”
O13 = 05 = V)5 = 2 +—
h2 || ™" Ox,
o, =05 =Gyg =
ou ov 4xZ |0 4x2 o 8x3 9w
_of X Mo g B0y 26100, B 9T
ox, X, 3h* |OX, 3h" | Ox,  3h*" Ox,0x,
ou ov ax2 (o o) 8x3 9%w
oMoy Doy g 120 D, 90y ) B I ©)
X, X, 3h X, X, 3h* Ox, 0x,

In conclusion, note that the same remark have made on the closure of the respective section
4.2.2 of the CPT (Part A), are valid here and used in the model of TSDT developed on this

part (Part B).
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4.3. Variation of the Elastic Potential Part — U (strain energy)

Due to the proof of the previous section 4.2, the only variations appearing on the variation of
the elastic potential energy are the variations of strains and not those of stresses. The
variations of stresses are not appear explicitly on the following relation (or the Eq. 4 of the
section 4.2), because they are a priori included in the variation of the elastic potential energy.
This fact is declared on the section 4.2 by the use of the Hooke’s Law in conjunction with the
identity of symmetry of matrix composed of the stiffness coefficients as well as the
contrivances of the index notation.

Now keeping in mind the Egs. (1) — (5°) of the section 4.2.1 or Egs. (1) - (5) of the section
4.2.2 and we are not going to replace the last, in order to avoid difficult and time-consuming
calculations. Thus, the Eq. (4) of the section 4.2 using (17a) - (17f) is converted to,

259, 34 d2ow,
ox,  °3h? 9%x,

ou(e)=oy 3n2

ddu,, [ 4x3

1

DV, 4xZ105¢, . 4 0%w,
+ + X5 |1— —X
2, T | o, *3n? o,
4x3 OSW, 4x2 OSW,
10,3 1_F o¢,+ Ox, 1013 1_F O, + ox, +
dduy SV 4x5 | 06 L) 8x; 0%6w
—l—O-lz 0 + 0 + X3 1_ 3 ¢X + ¢y _ 32 0 (1)
X, 0%, 3h OX, 0X, 3h*“ Ox, 0,

Finally substituting Eq. (1) to the expression of the variation of the elastic potential part of the
variation of action functional (1) of the section 3, we derive the last expression:

o= e 1))
-jfgfwo%i“:lw SIS el
IS S
 JII oo

0,08, +0,0€,+0,0r,+
1 1 2 2 4 4 dth:

+0:50ys+0407,

Do
¢X|dv dt —
Xy

}dth +

k) 26w
¢]dth —ffff|ax3 4 ]dth

OX, d°X,
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t, t, [
4x5 4x5 | 0sw,
t, B t, B 2
t, t, .
+ffff 1 43 S }dth +ffff [1 4 85W°Jdth+
195|729 9 1951+~ 72 |~
0
t, B n t, B L h %

I o [ o
Al o el 38 e -
_ f f[f ‘GG%%}A\/ : @

In the last Eq. (2) appear only the variations 6 ¢, and &¢,, but the most terms (integrals)
include first or second derivatives of the variations (su,, 6v,, Sw,, 5é,, 5 ¢, ). Apparently,

to eliminate the later we perform (by case) integration(s) by parts with respect to the
spatial variable x. These integrations by parts will generate boundary terms kinematic and
dynamic, which will contribute to the construction of the appropriate boundary conditions of
the TSDT. For further simplification we neglect for the present calculations the time integral.
We have also to pay attention to the integration(s) by parts with respect to the spatial variable,
because the boundary terms of the following relations are related with the natural boundary
conditions of the problem (or dynamic boundary conditions of the elastic continuum). Thus,

odu,
ol g, « szfal dV—ffal5uonX ds —ff (3a)
01 0%,
B ot
4x 0o¢
S5l fffa Xg|lm— | =2 dV =
Oy X1 173 8X1
ffalx3 1-— 5¢an ds —fff—x3 5¢X dv (3b)
5pat) 28

2
3 4 0 §w0 _
8§w 0 Oow
=ffals“z oo - [ S e -
3he 0x, 0X, *3h 0X,

op(iat)

139



Part B Section 4. Equations of Motion- Variational Principles

4 06w
:ffal "I ox °nx1ds -

0
ff S P 5W0nx ds +fff 2 sw, dv
O, %x *an
ooV,
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95 ¢
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4x 2 802
szazxg 3z |20 fff@x g
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PREY)

4x?
: dv

5¢y dv

9
ffaz 5w0xd8+fff2 2 5w, dv
ox, 9%x, *3n?
OoW,
5 sus x, fff0'4 v =

X,

4x3

0
ffa4[ 5 swn, ds— fff [ i P
op(iat)
4x3 oow,
By s — fffas )00y
1

4x3
oW, dV

80‘5
ffas % ) swon, ds — fff

axl
og(Tat)

oou
5'5u0,x2 = HIUG B 04 ﬂ065uonx ds H
2
B
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0oV, :
5'5\/0’)(1 = fffae 5 dv = ffo*sé‘vonxlds —ff (3))
X1
B o) B
4x2 |98
Sl s5p,.%, fffcrexa[ —3 8X¢X dv =
2
X2
- [ o g s g g a0
) 2
4x2 195 ¢
5|5¢y X, fffo'sxs[ _3 pe ! =
1
4x2 806 X2
:ffO'GX3 1_3h_2 5¢ynxld8 fff 6)(1 3 §¢de (3')

op(ia)

8x3 9%ow,
5|5W0,X1,X2 = fff(fs%—zmdv (Sm)
B

As for the different handling of the integral (3m), where going to present it thoroughly below.

Now following the same process (as those of the kinetic part) of decomposition of the volume
and surface integrals, the above relations take a new form including additionally the known
stress resultants (bending moments and shear stresses), the higher-order stress resultants.

N, N, h2 |1 he2 |1
Mt = {My= fall X tdXy = fal X5 pdXs;
P P —h/2 x33, —h/2 Xg
N, N,, h/2 1 he |1
M,t ={M,,t = f0'22 X5 tdXy = fO'Z X5 pdXs5
P, P22 2 X3 -z 3
N N, h/2 1 e |1
Mgt = {M,t = fo*lz X pdXy = f0‘6 X5 pdXs
P P., —hy2 x3 b2 |y3

h/2 h/2
Q. Qa3 1 1
e = el = Lol = Ll
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h/2 h/2
Qs Qi3 1 1
e = ol = ool = Ll

“h/2 “h/2

Thus, to calculate the variation of the elastic potential part, we have to define additionally the
stress resultants as,

the thickness-integrated forces (N,;, N,,, N;,) = (N, N,, Ng),
the thickness-integrated moments (M, M,,,M;,) = (M, M,, My),

the thickness-integrated higher moments (P,;, P,,, P,,) = (P, P,, P;) and

(st’ RlS) = (R4’ R5)’
and finally the shear forces (Q,;, Q;3) = (Q,4, Qs).

which are called alternatively as stress resultants.

The aforementioned higher-order moments are mathematically similar to the conventional
moments. They represent the internal actions between the parts of the thick plate and they are
reckoned across its whole thickness [4.E.H. Love (1944), “A Treatise on the Mathematical
Theory of Elasticity”].

It is essential also to clear that the above stress resultants (as those of the CPT) are nothing
more than “abbreviations” of the stress field of the material. By this way, we gather together
the components of the stress field, which are expressed in terms of the displacement field (u,,

Vo, Wy, ¢y, #,), namely the unknowns, as shown on the Egs. (1°) - (5) of the section 4.2.1
and (1) — (5) of the section 4.2.2.

Consequently, substituting the Egs. (1°) - (5°) of the section 4.2.1 and (1) — (5) of the section
4.2.2, into the relations of stress resultants, we can express the thickness-integrated moments,
forces, higher moments and shear forces in terms of displacement field (u,, vy, Wy, ¢, ¢,).

Thus, the previously referred relations are going to be presented on the appropriate following
sections in order to derive easier the equations of motion and the boundary conditions of the
plate (in terms of displacement field). Further remark that the total number of the resulting
scalar equations of the problem should be the same with the number of unknowns so that our
problem has a unique solution. In our case of the model of TSDT, the number of unknowns is
five. Consequently, we expect to derive five equations from the variational principle,
including the unknowns (u,, vo, Wy, #,, 4, ), and finally solve the 5x5 system.

Now in order to derive the final terms of the previous relations (3a) - (3m), is followed the
same process (as those of the kinetic part) of the decomposition of the volume and surface
integrals. Thus, the above relations take the now form (shown below) including the previously
defined stress resultants.

h/2 h/2

0o,
5|5U01X1 - f%o-lé‘uonxldydxg_ff Wé‘uoda)dx3 =
1

W2 r “h2 o
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= §N15U0 nxl d}/ f (4a)
h/2 h/2 2
0o,
Sl s5g,.x, f,gfa [ — |0, N, dxzdy— fffax x3[ —2 15, dx; do =
—h/2 Q —hp2 !
R o e
- ST ax, ax1 an? |
I
h/2 h/2
X 4 0ow,
S s, %1% %f 3307 o, ——n, dx;dy— 5W0nX dx, dy +
r —he2 r —h/2
h/2 2
0 01
fff 3 5w0 dx; do =
0°x,
o —h2
4 0ow, oP, 4
= QP————n,dy— owyn, d +ff 4c
§ ' 3nh? ox, 513h2 oy, ©7 J2x 3h2 W, dw (4c)
r
o = [[rioun. s [
op(1at)
h/2
§f025V0 v, OXg dy— ff fo-25vodx3da) =
r -2
SEN OVony, dy — f (4d)
h/2 h/2 2
802
N spyx, = ggfazxs[ 5¢y L dxgdy— fff [ 5¢ydx3da)_
r —h/2 Q -hp2
4 oM, 0P, 4
= M,——P,|0¢,n, dy— — 5S¢, d de
»Cﬁ[ * 3’ 2] Py, 47 ff ox, ox,anz| fvee e
r Q
4 06w, oP,
5|5w0,x2,x2 - §P23h_2 X, and7_§a h25W0nX2 dy +
r r
82P 4
3h25W0da) (41)

[calculations similar to the Eq. (4¢)]
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4x2 604 4x3
Sl = ffa4 o e [ e o -
op(lat)
h/2
804 4X3
zgﬁ‘f 1- 5W0 x, dx3 dy — fff oW, dx; do =
8x2
r —h2 Q —h/2
0Q, 8R4 4
- - owgn, d oW, d 4
f[Q4 ] oNy, 47 — ff ox, %, h o dw (49)
r
80‘5 4X3
Sl ffas 3 s, ds - S e -
op(iat)
h/2 h/2
805 4X3
§f05 5W0nx dx; dy— fff oW, dx; do =
le
I —h/2 Q -hp2
4 0Qs ORs 4
= %[QS_RSF]é‘WOnxl d]/—ff —aXl —a—XlF 5W0 dw (4h)
r Q
St — [[avvan, a5 ff
op(iat)
h/2 h/2
§f065uonx dx; dy — fff — 28Uy dx, dew =
I —h/2 o 7h/2
j;N dugn, dy— f (4i)
St — [[[[oaoman, ts- ff
()B(Iat
h/2 h/2
O
§f065v0 x, O3 dy — fff OV, dx; do =

I —h/2 Q

§N ovon, dy— f

—h/2

(4))
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0o 4X§
5I5¢x X, ffO-GX3 5¢X dS fff X3 2

op(lat)

5S¢ AV =

h/2 3 h/2 3
j;f 4x3 s d fff 806 00 4X5 56, dx. d
= Xq — _ w =
TsXs "o gz |0 - ox, 2 ox, an2 |0 O M
I —h/2 Q -—h2
h/2 h/2
4x; 0 3
3h 2 O0X,
T —h/2 Q —h/2
4 oMy 0P 4
= P|My—P,—|5¢,n, dy— - 54, d 4K
%[ 6 63h2] ¢x Xy Y ff 8X2 6X2 3h2 ¢x @ ( )
Q

r

> |5g,dv =

== 15g,n, ds— fffa% [ ;.

h/2

5|5¢yx1 ff0'6x3[

op(la)
h/2

f e

3

T —h/2 —h/2
4 6 OPg 4
= M.—P.—|5¢,n, dy— — od.d 4
95[ : 63h2] g,n, dy ff S g |09 0 @
I Q

In order to derive the final terms of the below volume integral 51, . . . we follow a
different path.

8x3 0? 5W0
6vv Xq, X fff V =
0t ®3h2 Hx , OXq
Ax3 925w 4x3 925w
fff 32 "% fffas %V = J,+J, (4m)
®3h? 8x 6x1 3h? 9x, 0%,

l 2

As for the first term J,, we perform integrations by parts firstly according to x, and second
according to x, variable, while as for the second term J,, we perform integrations by parts
initially according to x, and subsequently according to x, spatial variable. This concept is

adopted to the following calculations, because we desire to derive boundary conditions with a
“symmetric” formulation between the terms (of the variation of the action functional) with the
same variations (Su,, ov,, OW, ).

Thus,
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4x3 0° 9wy 4x3 06w, Do o 4X3 DowW,
oo [t o [t [ e -
®3h2 Ox , OX4 ®3h X, ox, 3n° 0x,
B

op(lat)
4x3 95w do. 4x3 0%, 4x3
ff ——"n, dS ff 6 35w0de+fff S sw,dV =
®3h2 ox OX OX, 0%, 3h
58 {iat) 2 1 1
h/2 h/2
§f 4x3 0w, dx. d gg‘fﬁ% 4x35 d dy +
n, dx — W X
53n? ox, M2t ax, an2 oo Haf7
I —h/2 I —h/2

h/2

+fff8064x35 dx, d
W, X =
N A

Q —hp2

4 0ow, §8P6 4 0°Py 4
=QPy———n, dy— P ——=wW,n d+ﬂ——5w do
§63h2 ox, M7 Jox anz o e Ox,0x, 302

r Q

r

and
4x3 926w 4x3 96w Doy AX3 06w
o [y - [ o [ e -
®3h2 ox 5, OXy ®3h X, 7 ox, 3h" 0x,
oB(1a) B
4x3 96w Doy 4x3 Doy 4x3
ff ——n, dS— ff ° 35W°de+fff ° 2 swydv =
®3h OX, OxX, 3 Ox, 0%, 3h
aBIat)
h/2
ngf 4X3a§w°n ,dx;d §fao_64x35wn dx; dy +
532 ox, a dx, 3nZ O 0 R
I —h/2 I —h/2
h/2 2
0o 4X3
fff — oW, dX; do =
0%, 0x, 3h
Q -h/2
4 0w, OP; 4 0°P; 4
=QPPs——n, dy— §wnxd+f ow, d
fﬁ 5302 ox, 2 S ox,an2 0t 6x18x2 3nz 7h0C?
r r

Consequently, the equation (4m) is converted to,

4
5I§W0,x1,x2 = %PG 3h2

r

0Py 8P
_ X _ n
ox, 7 ax 2

0ow, 85W0

n oW, dy +
ox, 077

% 4

3h?
—ow,d 4m

ff@x 8x13h2 Wo @ (4m)

Now substituting (4a) - (4m) into the equation (2), we derive the following,
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t2 tZ t2
ON
5JU:fff sU(e)dVv dt:fggNléuonx dydt—ff 8—15u0da)dt+
1 Xl
ff[ ]5¢Xn dydt—fff
4 85WO
-PP— —5wn d
f Y3h? ox, fﬁ 0T BT
r
t,
f%N VN, dydt—fff ™ 5v0da)dt+f§[ ]5¢ynxzdydt—
2
‘ oM, 4 0P, 4 06w, oP, 4
— — o¢p,dodt— QP P, — n, d —= —oéwyn, dy—
fff ox, ahiox, | v4? ff; 32 ox, er9gax2 gz 0
t, Q r r
5 f I
p 0°%x, 3h2
fff[ ——R ]5¢X da)dt—l—fff[ ]5¢y dedt +
0Q; R,
fgg[ ~R —]5w0nx dydt—fff Qs ORs 4
0%, 8x1
t, I
I§N Sugn,, d;/dt—ff fiN ovon, dydt—
ff —5V0da)dt—|—f§[ ]5¢X dydt—
fffmﬁ OPs 4 d dt+f9g[ ]5 dydt
J— J— n _
ox, ox, 302|079 Py M, A7
t, Q t, I

t,
oM, OP
S dwdt—f A
Ox, 0%, 3h ® 3n?
P, 2 0P 8
ffﬁ .+ n, §W0dydt—fff — oW, dodt =
3h? 8x1 ox, ™ 0X, 0%, 3h
, Q

5¢X do dt —

8x1 3h X,

3h2

0Q, 4 IR,
X, h? X,

5 |OWo dw dt +

85W0 Iow,
oX, M Ox,

nxz]dde—
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0J, = 4 4 OP 4 OP
? fg‘; [Qs—R5—+ o -

+fff

N,n, +Ngn, Jus+ Non, +Ngn, ov,+

4
M,——P,|n, + -
[ 1 3p2 1] : . 3h 2

3h?

Xy

h?  3h20x, 3h20x,

4 4 OPg 4 OP,

+ —+ +
“h? " 3n%ox, 3h?ox,

Q,—

X2

3h?

3h 3p2 M

ON, ONg
+
ox,  0X

ON, 6N6]
+ 0 5V0+

ox,  0X,

4 oM oM 0P, 4 0P, 4
Qs — 5 Rs—— =~ oot
h Ox, OX, 0X,3h° 0Ox;3h

4 OM, oM, 0P, 4 0P, 4] y
o y

_|_

—R,— - + +
h2 % ox, ox, Ox 3h? Ox,3h?

0Q, R, 4 0Q; ORs 4

Ox, 0Ox,h? 0Ox, 0x, h?
2 2 2 W,
Jr8P1 4+8P6 8+8P2 4
d%x,3h?  Ox,0x, 3h?  9°x, 3nh?
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4.4. Virtual Work of the Externally Applied Loads

As for the last terms of the variational equation, we have to calculate the variations of the
externally applied forces, apart from the Kinetic and Elastic Potential Energy.
Within the Transverse Shear Deformation Theory, we assume that there is a normal distribut-

ed external load at the top or/and bottom surface OB of the plate (surface force/ traction at
x;=h/2 or/ and x, =—h/2) q(x,,x,;t). At this point we clarify that the normal distribut-

ed external load q is regarded as the algebraic sum between the load at the top and the bottom
of the external boundary of the plate (g = g4, + Aporiom)-

Also it is necessary to quantify the virtual work of the traction field at the edge of the plate.
This work is related to the virtual displacements su, ,éu,, du,, ou,, dug, from which the
first three are the displacements on the direction of x,-axis, x,-axis, x,-axis respectively
and the last two are derivatives of the slopes of the in-plane displacements to the vertical x,-
axis. The displacements Su, and Sug, could be analyzed further as illustrated on the figure
below in order to show explicitly their physical meaning.

=]
Middle plane

Actual deformation
" of normal

__Assumed deformation
of normal

Figure 4.4.1: Slopes of the displacement field on the x, X, -plane (similarly for the x, X, -plane).

oow, oow,
+ 6, and Su; = du; = op, =
X, 2

Thus, ou, = SU,; = op, = + 0

. -
OX, '

Note that, the above relations are going to appear again on the appropriate sections, where we
mean to derive the boundary conditions of the problem of TSDT, for reason explained on the
respective section 5.

Now, the variation of the functional of the external surface traction, due to the surface distrib-
uted load (surface tractions) at the adjacent surface and the horizontally distributed vertical
load g (as illustrated on the following figure), is:

tZ tZ
5JT:fffTi5uidet+ff qow, do dt =
t, O

t, 0By
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t,
53, = fff T ou;+T,6u, +T,0us+T,0u, +Tsoug dSdt +

L oBfY
é’Jgat)
t, t,
+ fff T,0u, +T,8u, +T4Sug dS dt + fff T,0u,+T,8u, +T5dug dS dt +
i ppWf) L g0
s34 s3¢"

t;
+ff qow, do dt (1)
t, Q

Note that on the section 2 we have described only the three components of the surface trac-
tions T,, T,, T, on the directions of the three axes on the Cartesian coordinate system. Con-

sequently, the “shear” surface tractions '124 : f5 can be expressed in terms of the given “nor-

mal” surface tractions T,, T,, T,. Through the parallelogram law, we get

T, =T, =a,T, +b,T,, (2a) where a,, b, = constants
T, =T = a1, + b T, (2b) where a;, b, = constants

We examine separately the three integrals of the lateral, upper and bottom surface. To simpli-
fy their expression, we neglect the time integration at this moment.

Due to the stress-free boundary conditions on the bottom and top faces of the plate, we have
v, = 2¢, = 0and y, = 2e; = 0 on the bottom (lower) and top (upper) faces. This fact

is also compatible with the form of the surface tractions which are prescribed on the section 2.
Thus,

5300 = 453400 =0 ,on the flat surfaces

By this way the only term that remains to be analyzed, on the variation of the externally ap-
plied loads is the first one.

53 (a0 — ff T,0u, +T,6u, +T,6u;+T,8u, +T;0uy dS =

0B
= ffflaulds + ffT25u2dS + ffT35u3dS + ffT4§u4dS + ffT55u5ds =
9B (v 9B (av aB (v oB (av oB (v
= ffT16UdS + ffT25vdS + fffgawds + ffT45¢yds + ffT55¢de )
oB () oB (at) B () B () oB ()
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Now we assume that we have given surface tractions T,, T,, T, at the specific parts of the

lateral boundary 9B " (9B{™)) and using the Egs. (17a) - (17c) of the section 3 and the
above Eqgs. (2a) and (2b), we derive the following,

R 4 0ow,
5] ‘(|'Iat) = fle 5UO + X35¢X — X33 3h_2[ ¢X a—Xl ds +
oB g
Oow,
ff Ny + X304, — X3 —|09, + dsS +
OX,
()B(Iat)
+ ffT35w0 ds + ff[aﬁz + b, T4|op, dS + ff[aS'fl + byTo|4, dS =
B 0 (lat) B 0 (lat) B (s (lat)
ffTéu dS+ffT oV, dS+ffT5WOdS+
B(Iat) C)B (lat) ()B (lat)
+ff[Tlx3 — T, x3 3:2 +a,T, +b T]5¢Xd8 -
oB G
) ) 4 ) . 3)
+ff[T2x3 — T2x§3h—2 + a,T, + b4T3] dS —
UB(Iat)
s 4 65W0 s 4 00w,
_ff” e ox, © Tax3 I o,
1 2
B(Iat B(Iat)
X3

Figure 4.4.2: Externally applied and horizontally distributed vertical load.

Now as for the form of the given surface tractions T,, T,, T, we recall the configurations of

the section 2. Remark also that the deformation at the edge of the plate during its motion in
conjunction with the externally can be cubic dependent from the x,-variable. This fact is ra-

tional for our model, because we have the same dependence of the in-plane displacements
(u,v) fromthe x,-variable.
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Further note that, the quantities which multiply the variations ou,, ov,, dw,, o, , o¢, in-

side the surface integrals of the Eq. (3), are expected to match with the respective terms of
the variation of the Elastic-Potential Energy part (section 4.3). The last referred contains
boundary terms (surface integrals) similarly cubic dependent of the x, -variable.

Taking all the aforementioned into account, we present here for convenience again the form
of the given surface tractions prescribed on the section 2 by the Egs. (1) - (3).
Ty(Xp X0 X5) = Aro(Xy, X,) + Ary(Xg, Xp) X + Arg(Xy, X,) X§ =

= aro(y) + ary(y) Xz + ars(y) Xg (1)

fZ(Xl’XZ’X3) = bro(Xy, X)) + bry(Xy, Xy) X3 + bra(Xy, Xy) Xg =

= bro(y) + bry(7) X3 + bra(y) Xg (2)

2 3
Ta(Xgy X5, X3) = Cro(Xy, Xp) + Cri(Xq, Xp) X3 + Cra(Xy, Xp) X3 =

- CTo(J/) + CT1(7) X3 + CT3(7/) Xg (3)

In addition, it is essential to note that the above form of the surface traction field is a simpli-
fied approximation of the real values of the surface tractions at each point upon the edge of
the plate. Certainly, this approximation is enough accurate in the context of our problem of
TSDT (and compatible with our model), because the thick plate can be deformed under the
influence of tractions with larger amplitude (size) along its thickness in comparison with the
thin plate of the CPT.

Subsequently, we substitute the previous Egs. (1) - (3) into the Eq. (3) and after that we use
the mass-moment quantities and the process of decomposition of the surface integrals. Thus,
the Eq. (3) is modified as follows,
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53§ :ff aro + ary X3 + arg X3 S, dS ‘|’ff bro + bry X + bry X3 6V, dS +

oB (av oB (o

+ff Cro + Cry X3 + Cya X5 SW, dS +
0B (a0
2 4 3 4 s 4
AroXg + Ay X3 + 8rg3 X3 — A8roXg + Ay X3 + Arz X3 5 +
+ 3h 54, dS +

3 3
st (T 85 Arg + Ary X3 4 8z X3 + by Crp + Cpy X3 + Cry X3

+ff (bro X3 + bry X5 + by X3) — (broXs + bry X5 + by X3) — 3h2 i _

+ a,(bry + by X3 + by X33) + by(Crg + Cry X3 + Crg Xs)
4 8§W0
ff(aT0X3 + ar Xs + arj X3) o -

1

o8

9B (20

4 06w,
f (bT0X3 + bpy X3 + bz X )3h2 ox, ds
o8 (20
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| 1 |3 | 1 |3 .
5J _(I_Iat):§ —ar, + ale + arj L 5Uod7+§ —bro + by K + by L Vo dy +
p p p p p p
r I
I 1 %
+§ —Cr ‘f’Cle +CT345WOd7/ +
p p p
r
)4 , , 14 , 1| 4
ro=—— + 8ry — + a3 — aro=— t g — + a3 — |57 +
p p p p | 3h
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! ! | K
Ia 0 1 3 0 1 3
p p p p
1 I, I, Z I, le| 4
S o by 1t o le| 2
p p p p p|3h
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+ a,bro— + by ¥— + brg —| + b fCro— + Cry 7 + Cr3 —
p p
fﬁ )4 Lo e, o Ta| 4 00w
— Adro— a a —
TO T1 T3 37 ox,
r
Z | lg| 4 Oow
— Plb o= + by = 4 by, | —dy =
§ TO 0 T1 0 T3 0 3h2 ox, v
r
53 7 — ayq 6u, dy +§_ bro OV, dy +§_CT0 ow, dy +
r IO r I
I, I I, 4 ls 4
ary — + ars T1 3 T3 o2t
P p 3h o 3h
+§ I | og, dy +
r + @5 aro— + b Crg —
p p
I | I 4 I 4 )
2 4 4 6
by — +brg—— byy——5 — by ——5 +
p p p 3h p 3h q
" ! | r
r +a4bT0_0+b4CTO_O
p p
I, lg] 4 0w, SE I lg] 4 Oow,
—@la —Qlbyy — + by —|=—
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I
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Finally, substituting the Eq. (4) into the Eg. (1), we get

| | |
831 = P — ar, duydy +§_0 bro oV, dy ‘f’Eﬁ_OCTo Swody +
p p p
r r
I, I I, 4 ls 4
ary — + ars T1 T o2 T3 52 T
P o 3h p 3h
+§ I I op, dy +
r +a5aTO_0+b5CTO_O
p p
I, l, I, 4 ls 4
bry — +brg— - by — 5 - by ——= +
P p p 3h p 3h
+ | dy —
r + a4 by - ‘I'b4CTo_O
P
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4.5. The variational equation of the TSDT

Now we are able to substitute the results of separate parts, (9) of the section 4.1, (5) of the
section 4.3 and (5) of the section 4.4 into the variational equation (1) of the section 4. The
next step is to gather separately the different terms according to the kind of their variations
e.g. duy, dv,, W, 5¢,, 5p,. By this way it is easier to extract the equations of motion and
the boundary conditions of the model of the TSDT.
To facilitate the calculations and substitutions, we repeat the equation (1) of the section 4:

!f[f&K(U)dth—!f[ w(e)dth+J£[fi5uidet:0

Then the equation (1), is converted to:

Ug o

4 4
loWo =gz |legnz e

ON,

0X,

ONg
O0X,

ON, ONg
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oug + [IgVy—

oV, +
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ox, 0X
0Q, R, 4 Qs IRy 4
X, Ox, h® 0x, 0x, h?
82P1+282P6 d°P,
%, O0x,0%x, 9%x,

.. 4 4 oW,

. | —l,—+
]¢ 3h2[63h2 “]ax1
8M6+8P6 4 0P, 4
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8 16), 4 (4 oW,
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16
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0 W,
2
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For further simplification, we gather together the terms with surface and curvilinear integrals,
taking care of the kind of variation (ou,, dv,, ow,, o¢, and &4, ) of each term. Thus, the

final form of the variational equation of the problem of the TSDT is the following. Note that
the Eqg. (2) below is exactly the same as the variational Eq. (1) of the section 4.
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4.6. Equations of Motion of the TSDT in terms of thickness integrated forces and
moments

Now in order to obtain the equations of motion of the TSDT, we assume that each term (under
surface or curvilinear integral) of the Eq. (2) is continuous function of x, and x,. These

terms are multiplied with the variations &u,, dov,, dw,, &4, and &4, or the spatial
derivatives of ow,. At this point, using the standard arguments of the calculus of variations

[ “Calculus of Variations”, I. M. Gelfand and S. V. Fomin, Lemma 1, p.9/Sec.3/Chap.1 and
Lemma, p.22/Sec.5/Chap.1l and “Introduction to the Calculus of Variations”, Sagan 1969,
p.54 Lemma 2.4], we derive the five equations of motion of the plate.

Accordingly, we first assume that, Su, = ov, = Sw, = AOW,/OX, = DOW, /X, =
o, = o¢, = 0 on the boundary (x € 77), where t is arbitrary. The previous means that

the variations and their spatial derivatives are not vary upon the boundary of the plate and
obviously we have given displacements [“Calculus of Variations”, I. M. Gelfand and S. V.
Fomin, Chap.7, and especially paragraph 36.4]. Then (2) reduces to just,
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Subsequently, we assume that ov, = ow, = og, = op, = 0 onthe domain € (inside
the body of the plate). Thus,

1111

and using the arbitrariness of the variation ou, inside the Qx[t;, t,], we find the first
equation of motion of the plate,

ONg
OX,

) ON,
folo ™5 ™
1

5u0(x;t)ldcodt =0, YV ouy(x;t)

ON;;  ONg,

Ugly ——— — =0 3
00 0X, OX, )

for xeQand Vte [t t,].

Next, we remove the restriction ov, = 0 on the domain Qx[t,, t,] and taking into account
the equation (3), which eliminates the first surface integral (2), we derive

t2

t, Q
And using the arbitrariness of the variation v, inside the space Qx[t,, t,], we result to the
second equation of motion of the plate,

ONg
X,

oVy(Xx;t)dewdt = 0, YV oVy(X;t)

. ON,
| Vg ——2—
OX,
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ON ON
OX, 0X,

for xeQ and V t €[ty t,].

Further, removing the restriction sw, = 0 onthe surface (2 and taking into account the two
previous Egs. (3) and (4), the result of the Eq. (2°) s,

|w—4[| 4_|]8é5y+0¢x 16
070 a2l %32 Y)|ox,  ox, ®9n*

t, -
ffgf 9, R, 4 IQ  Rs4 4

- —— - +
ox,  Ox,h? 0x,  Ox, h? 3n?

2. 2.
O°W, 0°W,

2 2
0%, 0%,

oW, (X;t)dwdt =0
2 2 2 0
0°P, 20°P, 0°P,

%%, 0%, 0%, 9°x,

Vo owg(X;t)

—-q

Regarding also the arbitrariness of variation ow, inside the Qx[t,, t,], we extract the third
equation of motion of the plate,

.. 4 4 16
ot gz legn s “5n
- Q3 + OR,3 4 0Q;3  ORy3 4 4

ox, 0%, h? 0x, 0%, h? 3h?

Iy Py
ﬂ+ 2
ox,  Ox,

_I_
0%x,  0°x,
0°P, 20°P, 0°P,,
D%x,  Ox,0% 92X,

a2, azwo]

=q (5)

Now, remove the restriction ¢, = 0 from the domain €2 and taking into account the three
previous Egs. (3), (4), (5), the result of the Eq. (2°) is the following,

t [| 1,28 ﬁ]& .. [I 4 ](NIO +
2 2 %3n2 ®on*)™* " 3n2| °3n? Y ox,
fff 4 OM, oM, 0P, 4 0P, 4 dodt =0
y U i _ "R _ 1 6 n 6 i 1
Qs —jzfs Ox,  Ox,  Ox,3n2  Ox, 3h?
Vv
Regarding also the arbitrariness of the variation inside the Qx[t,, t,], we extract the

fourth equation of motion of the plate,

|—|i+|£]¢3+4[| 4—|]8\7\"°+
2 7%3n% %on*)™*  3n2( °3n? Y ox,
4 oMy oMy 0P, 4 Py 4
+ Q ——Ry; — - + + —= 0 6
Qs ~ 2R ox,  Ox,  Ox, 3h?  Ox, 3nh? ©

And finally (as for the equations of motion) eliminating the restriction 64, = 0 from the Q
and recalling the previous four Egs. (3), (4), (5) and (6), the result of the Eq. (2°) is,
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: [| |8+|16]¢3’+4[4| |]8W°+
: 2 *3n2 Pon*)™Y  3h2(3n? Y ox,
fff o¢g,(x;t)deodt = 0
4 oM,  OMg 0P 4 oP, 4
t Q +Q4__2R4 - - + 2 2
h X, 0X, 0x, 3h 0x, 3h

WV 5¢,(X;t)

Regarding also the arbitrariness of variation o, inside the QXx[t,, t,], we extract the fifth
equation of motion of the plate,

8

R

16 - 4 (4 oW,
A O
4 OM,, OIMy, 0P, 4 Py, 4
+ — R, — - + + =0 7
Q2 ~ 7 Ras ox,  Ox,  Ox, 3h?  Ox, 3h? "

Let it be noted that Egs. (3) - (7) are identical with the respective results (10.3.14), (10.3.15),
(10.3.16), (10.3.17), (10.3.18) of the book of the J.N. Reddy (2007), “Theory and Analysis of
Elastic Plates and Shells”, chapter 10 on the page 381.

It is essential to note that, the above system of the five equations (3), (4), (5), (6) and (7) is
solvable, as will be proved on the section 6, because the number of unknown quantities is
five. This is a fact due to the definition of the thickness-integrated forces and moments [Egs.
(4) of the section 4.3], which can be expressed directly in terms of the unknowns of the
system, namely the displacement field (u,, vq, Wy, ¢, ¢, ), as will be shown on the section 6

again.
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5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments

Inspection of the above Eq. (2) of the section 4.5 indicates that the quantities with a variation
in the boundary integrals are the primary variables ug, vy, Wy, OW, / Ox;, OW, 1 OX,, &y, @,

and their specification constitutes the geometric or kinematic (essential) boundary
conditions. The mathematical expressions inside the brackets of the integrated quantities,
which are coefficients of the varied quantities, are termed the secondary variables, and their
specification gives the dynamic (natural) boundary conditions. Therefore, there are primary
and secondary variables of the plate with edges parallel to x, x, -coordinates.

On this step similarly with the process followed on the respective section of the Part A, we
must think a bit more about the final results of the boundary conditions of the problem, due to
the unbalance between to possible boundary conditions (after noticing the boundary terms of
the Variational Equation (2) of the section 4.5) and the desirable number of boundary
conditions. To set it differently, if the equations of motion of the model of TSDT are
expressed in terms of displacements (as will be shown on the section 6), they maximum order
derivatives that appear on them are the second-order spatial derivatives of the in-plane
displacements u,, v,, the third-order spatial derivatives of the slopes displacements ¢, , ¢,

and the fourth-order spatial derivative of the vertical displacement w,. The above imply

that the total number of boundary conditions must be four essential and four natural
boundary conditions, whereas from the Variational Equation (1) below we note seven
essential and seven natural boundary conditions. The last is incompatible with our model of
TSDT and must be treated appropriately as will be shown on the section 5.2.

5.1. Variational boundary terms in Cartesian coordinates

Now isolating the curvilinear integrals of the Eq. (2) of the section 4.5, in order to illustrate
clearer the aforementioned boundary terms.

Initially we remove the restrictions su, = Sv, = Sw, = AW, /%, = oW,/ X, = ¢,
= op, = 0 from the boundary. We deserve to isolate these integrals, because the existence of
the Egs. (3) - (7) of the section 4.6. Thus, the action functional (2) becomes,

I I
— fi‘NlnxquNsnxz__o aTojéuOdydt — fgg{NznlerNanz——obTo oV, dydt —
P P

t t, I
4 4
| [Ml hzPl]nxl—k[Mﬁ—Pfssh—2 n,, —
— arp, — + a ar, — —5 — arz3 — —5 + dydt —
ff T1 0 T3 P T1 P 3h2 T3 P 3h2 v
t, | —
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We are thinking exactly with the same rationality as on the section 4.5 but at this time to
derive the boundary terms of the problem. Subsequently, on the section 5.3 we are going to
extract the boundary conditions, which are independent from each other and also compatible
with our problem.

Note that the above process of deriving the equations of motion and the following boundary
conditions is explained thoroughly on the Lecture Notes of Functional Analysis, G.A.
Athanassoulis (2016) “Necessary Conditions of Extremum of Functional” and “A further
study of the Variational Problem as for integral type functional”, as well as on the book of
Gelfand I.M., Fomin S.V. (1963), “Calculus of Variations”.
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5.2. Transformation of the boundary conditions to a curvilinear boundary system

[References: J.N. Reddy “Theory and Analysis of Elastic Plates and Shells”’, Chapter 1.4/ 3.5/
10.3 and the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and transformation of
physical quantities under rotations of the reference system” and Wang C.M., Reddy J.N., Lee
K.H. (2000), “Shear Deformable Beams and Plates-Relations with Classical Solutions”,
Chapter 7.4].

Thinking about the way of combining and grouping together the variations of the
displacement field of the problem of TSDT and as a consequence the boundary terms related
to each one of them and also taking into account the process followed on the respective
sections for the problem of CPT (section 5.2 of Part A), we note that the corresponding
displacements after a potential transformation to a curvilinear boundary system will be,

Cartesian Coordinates Curvilinear Coordinates

Ug Uon
Vo Uos
Wo Wo
ow, /0%, and ow, / dx, w, and dw,/on
Iy by
[y ?s

However, the higher order of the spatial derivatives of the equations of motion of the TSDT is
four and the total number of essential or natural boundary conditions seems to be six and six
respectively, fact that is not auxiliary to solve the system of differential equations of motion.
For this reason, we take another path in order to conclude to a balance between the unknowns
and the equations.

From the Egs. (14a) - (14e) of the section 6.1 and 6.2, we note that the first two equations of
motion, namely the Eqgs. (14a) and (14b) are coupled between each other but decoupled form
the residual three equations of motion, namely Egs. (14c), (14d) and (14e). Also the
previously referred Eqgs. (14c), (14d) and (14e) are coupled between them. To express the
previous differently the components of the displacement field (u,, v,) exist only on the Egs.

(14a) and (14b) of the sections 6.1 or 6.2, whereas the components (w,, ¢, , ¢,) exist only on

the Egs. (14c¢), (14d) and (14e). The last means that the shear deformation (motion) of the
plate is decoupled from its bending deformation (motion) and due to this ascertainment, we
are entitled to study each one of these two “motions” separately and independently.

Actually, as will be shown on the following sections, on the one hand the shear motion has
two essential and two natural boundary conditions related to the displacements u,, and u,

fact that is compatible with the second-order differential equations (14a) and (14b). On the

other hand the bending motion has four essential and four natural boundary conditions
associated to the displacements w,, ow,/dn, ¢, and ¢,, which is also compatible with the

fourth-order differential equations (14c), (14d), (14e).
In addition, all the remarks about the transformation laws existing on the section 5.2 of the
Part A and on the APPENDIX A are exactly the same and are used self-esteem on the

following sections. For the sake of convenience, we repeat the most important transformation
law to this section and after that we formulate some more transformation laws about the
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excess stress components of the displacement field of the TSDT (referred on the section 4.2)
and about the higher-order thickness-integrated moments (referred on the section 4.2). Thus,

Ug = Ny Ugy+ Ny Uge (1) and  Suy = n, SUg, + N, SUg, (1)
Vo = —Ny, Ugy+ Ny Uge (2)  and  6vy = —n, SUg,+ Ny SUgg (2)
w, = 1w, (3) and ow, = 1ow, (3)

But here we have two more components of the displacement field, which are converted to the
curvilinear system by the same transformation law, since the nature of the transformation is
identical to that performed in the context of the CPT. To remember, is a planar rotation
around the vertical axis to the flat surfaces of the plate. For this reason, the x,, z-axes remain

parallel. Consequently,
Gy = Ny Gyt Ny &, (4 and g, = n, ¢, + n,, 5p, 4)

¢y = —Ny, Pn+ Ny, Ps (5) and 5¢y = —Ny, op, + Ny, o, (5).

As for the derivatives of the ow,, we get

oow, o oow,, . % ©)
O, ‘1 on X2 9s

0w, — _n % +n % @)
OX, X2 on 1 9s

Finally the relations which transform the stress field from the Cartesian coordinate system to
the curvilinear one, are

— n? 2
On = r]xl Onn + 2nX1nX2 Ohns + r]x2 Oss (8)
2 2
022 = nx2 Onn — 2nxlnxzo-ns + nxl Oss (9)
2 2
O1p = Oy = Ny Ny, Oss—Opp + Ny, —Nx, Ons (10)

As for the two more stress components of the TSDT, taking into account the above relation
(10) we get

2 2 2
O13= — 03 = nXlnxg 07 Opn T nxl_nx3 Onz = nX1 Onp + nx1 -1 Ohn; (11)
n, n + n2 —n? =-n + n? -1 (12)
O3 = O32 = Xy X3 Oz Oss X, X3 Onz = Xo Oss Xy Os:z

The final results of the last two shear stresses are derived due to the initial assumption of the
in extensibility of the cross section, o,, =0 and due to the planar rotation of the coordinate

system around the vertical axis, the direction cosine as for the vertical axis is n, = cos0=1.

It is also interesting that the shear stresses are transformed with opposite signs.
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By the definition of the thickness-integrated forces and moments, we have similarly with the
transformation of the stress field the following relations,

Ny = ng Ny 4+ 20, ny Noo +nj N (13)

N,, = an Noo — 20, N Noo + nless (14)

Nj, = Ny =ngng Ngg—Ngo 4+ nf—ni N (15)
and

My = n; Mg, + 2n, n, Mo+ nf M (16)

M,, = nfz Mo, — 20, Ny Moo + nflMss (17)

My = My =ngn, M =M, + ni—ni Mg (18)
And also as for the higher-order moment appearing on the model of TSDT,

Py = nfl Pon + 20y Ny Pog + n§2 P, (16")

Py, = ¢ Pyy — 2Ny Ny Pog + nj Py (17)

P, =Py =n,n, P —P, + ni—ni P, (18")

Additionally, with similar way with that of the transformation law of the Egs. (11) and (12),
we get

Q= —Qy =Ny Ny, Q,—Qu + N —n; Q,,=-n,Qu+ n;—-1Q,, (19)
Q3= —0Qy = Ny, Nx, Q,,—Qss + niz *ﬂi Qn, =~ Ny, Qe + nflil Qs (20)
Similarly, are transformed the higher order moments R,; and R,;,

Xp ''Xg TNzz

+ n; -n; R,=-n, R, + n; 1R

nz

n e (19)

Rys = —Rgp =ny Ny R, —R n? —n? R

3 Vzz T ss + X, x, Rnz = Ny, Res + nfl —1R (20°)

Sz

Before we proceed to the transformation of the boundary terms from the Cartesian to the
curvilinear coordinate system, we have to present the same transformation law of the

functions aro(x;,X;), Bro(X, X)), Cro(Xe,X2),  ar(XyXz)s bro(x, %), CralXe, Xz),
ara(Xe X2)s bra(Xu %)y Cra(X X2), a,(Xy, Xp) 0 by(Xy, X)), as(Xy, x,) and bg(xy, x,)
which describe the form of the given surface tractions (shown on the section 4.4). Thus,

according to the transformation law (TQ) and (T1) of the APPENDIX A, we get the following
relations
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8rg = Ny 8ron + Ny, 8ros (21a) and  ar; = N, -ar, + Ny -arg (21b)
Arg = Ny Arzp + Ny, 81 (21c)

bro = =Ny, @ren + Ny -8ros  (21d) and by = —ny -apy, + Ny an,  (21€)
brg = —ny, -8rs, + Ny Argg (211)

Cro = 1Cqy (219) and Cr; = Lcqy (21h)

Cry = LCry (211)

However the functions c;, and c;, have been eliminated from the Variational Equations due

to analysis of the section 4.4, and there not going to appear further after their definition on the
surface traction field of the section 2. Further, we have

a, = Ny az,+ Ny, a,  (21)) and as = Ny ag,+ Ny, as,  (21k)

b, = —ny bg+ ny,, by (211) and bs = —n, b, + n,, bsg (21m)

In the view of the above relation, it is obvious that we have to occupy with the surface
integrals (boundary terms) of the variational equation 2 of the section 4.5, namely the below
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As exactly on the corresponding section of the Part A, it is essential to separate the above
equation into four parts and after that to perform calculations. The first parts will include the
in-plane variations ou, and ov, (first row of the above expression), the second is associated

with the derivatives of the vertical variation dow, /0x, and

(fifth and sixth row),

whereas the third one is related to the vertical variation ow, (fourth row). Further, we have

one more part in which we manage the terms related to the slopes

third row).

and o¢, (second and

As for the aforementioned disjunction of the above expression including all the boundary
terms, we procced to the following separate sections.
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Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments

5.2.1. Transformation of the in-plane boundary conditions to the curvilinear boundary
system

For simplification reasons the of transformation of these terms from the Cartesian coordinate
system to the local one, we neglect once again the time integration and further now the
curvilinear integration.

Subsequently, taking apart each boundary condition multiplied with a different component of
the variation of the displacement field and using the Egs. (1°), (2°), (3°), (13), (14), (15) of the
section 5.2 we get the following. Note that the transformation into curvilinear coordinates is
exactly the same with that of the in-plane boundary conditions of the CPT (section 5.2.1 Part
A). Thus, we will not continue to thorough calculations.

I
Nyn, +Npn, _; arooUy =

4 2 a2

. 2 .2
= N, —ngn, Ny dug,+2n; n

X

. Nssé‘uOn—i_(gnilnx2 B nxlniz) Nn55u0n+
(22)
+ nin, —n,n; N, 8ug +2n;n

I I
2 0 2 0
— Ny @ron + Ny Ny, @rgs — SUgy, — (Ny Ny, 8oy + Ny aTOs)7 SU g

1 N555u05 + (3n31nfz - nfz) Nn35u05_

X

and
I
No,n, +Npn, _? broovy =

2 22 2 a2 3 3
- nxz_nxlnx2 Nnn5u0n_2nx1nx2N555u0n+(3nx1nx2_ nxlnxz)Nn55u0n+
(23)
+n’n,—n®n, N, S8u, +2n°n, N, Su,, —(Bn?n? —n?)N_ Su, +

X, X Xy nn 0Os X; X, U SS 0Os X; Xy Xy ns 0Os

2 IO S 2 IO S
+ nx2 aron t nxl nxz 8ros — OUgy — (_nxz nx1 arop + nxl aTOs); Uos

Summing up the Egs. (22) and (23), we derive

I I
lNllnx1+N12nx2_aT0;}5uO + {N22nx2+N12nx1_bT0;]5VO =

I
2 2 0 N
= l N, =N, Npn + 20, 0y Noo — ag, ;} Sug, + (23°)
2 2 IO
+ nxl_nx2 an + 2 nX2nx1 Nss — Args 7 é‘uOs

The remarks and the explanations done on the respective section 5.2.1 of the Part A are valid
here too. Finally, we extract the_two independent and in-plane natural boundary conditions of
the problem of TSDT using the same arguments of the Calculus of Variations applied on the
Part A in order to derive the corresponding in-plane natural boundary conditions of the CPT.
Thus, we get the following
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Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments

|
2 2 0
nxl_ﬂx2 Nnn + 2 nxlnxz an = @ron ; (243.)
IO
N —ni Ny +2n,n Ng = ag, - (24Db)

Remark once again, that the boundary conditions- Egs. (24a) and (24b) are identically same
with those of the in-plane natural boundary conditions of the model of the CPT. This fact was
expected and rational because the additional assumptions made in the context of the TSDT
influences main differences of the displacement field along the thickness of the plate than
those along the horizontal dimensions of the plate. Consequently, we expect to find
remarkable differences on the residual boundary conditions presented on the next sections
5.2.2,5.2.3and 5.2.4.

Note also that we have so far managed to remedy the unbalance between the number of

boundary conditions and the order of the 2x2 system of the partial differential equations (14a)
and (14b) of the following sections 6.1. or 6.2.
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Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments

5.2.2. Transformation of the boundary conditions associated with 9,6w,, d,6w, to the
curvilinear system

To simplify the process of transformation of these terms from the Cartesian coordinate system
to the curvilinear one, we neglect once again the time integration and further now the curvi-
linear integration.

Subsequently, taking apart each boundary condition multiplied with a different component of
the variation of the displacement field and using the Egs. (6), (7), (16), (17), (18) and (21b),
(21c), (21de), (21f) of the section 5.2 we get the following results.

Note also that the reason why we examine the boundary terms related to the x,, x,-spatial
derivatives of the vertical displacement w, is that after the transformation of these two

boundary terms from the Cartesian to the curvilinear coordinate system and due to the Egs.
(6) and (7) of the section 5.2, each Cartesian derivative of the w, gives derivatives both on

the in-plane curvilinear derivatives along n and s -axis.

As for the first part associated to the x, -spatial derivative of the variation Sw,,

4 I, g || 90w,
§3h_2 Py Ny, +Pyp Ny, —lan ; + arg ; ox, dy =
r

{nS, Pan + 20y Ny, Pog + 0 P, +
4 5 5 aow, oow,
= 3h_2 +{nxlnx2 (Pss _Pnn) + (r]x1 _nxz) Pns}nx2 - nXl an =+ nX2 Js ds =
r I I
4 6
— (Ny, @ryn + Ny, @) — — (Ny Brgq + Ny, v8rge) —
P P
3 2 2
nx1 Pnn + 2nx1nX2 Pns + nx2 nxlpss +
4 ) ) 3 oow, oow,
= 3h_2 +{nx1 ny, (Pss —Po) + (nx1 ny, 7nx2) Pns} - nXl an nX2 9s ds
r I I
4 6
— (Ny, @ryn + Ny, -8ry) — — (Ny Brgq + Ny, c8rg) —
P P
aow,
n;ll I:,nn_|—2nflnx2 Pns+n§2nipss 9
n
oow,
Jr{nf1 nf2 P — nfl nfz P+ (ni’1 N, — nxlnfz) Pns}—an —
I, oW, I OOoW,
4 — (Ny, @7y + Ny, A1) ;nxl “on (Ny, -Brgy + Ny, Arg) ;nxl “an +
3h29§ dow
r +{n§1 r‘|X2 IDnn + anl n)i Pns + niz nxlpss} 9s : +
oW,
+{nx1n§2 Pss_nxlni2 Pnn +(nin§2 _niz)Pns} 95 -
l, 9ow, g Oow,
—(ny, Ny, @i + nfz ‘ary) ; a5 (ny, My, @3 + nfz ‘8rgs) ; s
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Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments

[And now grouping together the terms with the same the thickness-integrated quantities of the
same curvilinear direction and of the same derivative of w, on the curvilinear coordinate sys-

tem, after highlighting each one of them with a different color]

dow oow
4 0 3 0 2 2
nx1 I:)nn an + anlnx2 Pns an + nx2 nx1 +
dow oW
2 2 .2 0 3 3 0
+n 1nx2 - nx1 X, Lan g0 +(nx1 nx2 - nxlnxz) Pns an -
I, oow, I oow,
4 % —(Ny a7y, + nxz'ans);nxl W—(nxl'amn + nxz'aTss);nxl “on .
~ 3h? ; SW, ) ; dsw, a
ro4n Ny Pin 5 +2”x1”x2 + N, Ny, P s
aow, oW,
+nxln32 ss - 32 Pin —}-(nini—ni) -
I, 06w I, Oow
2 4 0 2 6 0
- (nx1 nx2 Ay + nxz‘aTls) _T - (nxlnx2 ‘Argy + nxz'aTas) ; s
ow
(n;‘l—nflnfz)Pnn 0 4 anznf1 +
oW
3 3 0
+ (@n; Ny, —nXlnXZ) Pos e
, ., ls] 96w,
— (N5 Aran + Ny, Ny -8ryg) — + (N} Bray + Ny, Ny 8ra) —1——
p PEO s (250)
B S
3h? 3 2 0OW, 3 s oW,
r +(nX1nX2—nX1nX2)Pm ‘ -|-(nxznxl-+-nxlnx2)PSS 5
+@ngn; —n}) —
(n, n, -a n? .a;.) —+(n, ny -a n .a )I6 9ow,
- Xp Xy T T x, GT1s ;‘1‘ X Xy T3n T x, @T3s ; Js
As for the second part related to the x,-spatial derivative of the variation sw,,
4 1p P by, 14 4 b, 8 dy =
an? > Ny, +Ps Ny — T1;+ TSZ y=
r
nfz Pnn B anlnxzpns + nfl Pss r]xz +
oW oW
2 2 0 0
:3h_29§ + Ny, Ny, P —P,, + N, =Ny, Pos Ny, — {nxl 5 "% an ds =
" l, s
— Ny 8@rys =Ny, -8y — = Ny 8rgg =Ny 8yzq —
p p
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3 2 2
nx2 Pnn - an1 nxzpns + nx1 nx2 Pss +
4 5 5 s dow, 9w,
= n? + N5 Ny, Pss—nxlnx2 P, + (nXl —ng Ny) Pas — Nx, 55 ™% “an ds =
r
Iy 6
(Ny, -8y =Ny, -81yn) — — (Ny -Brgg — Ny, -Argp) ;
oW oW oW
3 0 2 52 0 3 0
nx2 nX1 I::’nn 9s B an1 nx2 Pns + nx1 Xy Pss 9s
oow 0o Jow
3 0 3 0 4 2 2 0

+nx1nxz ST s _nx1 X F>nn 9 + (nxl_nxznxl) Pns 9s B

l, Oow Il 00w

2 4 0 2 6 0

4 i (N}, @ras — Ny, Ny, "@ran) s (N, Bras =Ny, Ny, 8rsp) > s .
3h? . dSW, , 06w, , , 08w,
r _nx2 nX2 "M 9N + an1 nxzpns an B nx1 X, ss T g0 -
02 n? dow, 2 0 aow, 3 By 9w,
S T + X, X, ' nn — ( X Xy g xl) " 9N
l, Oow I, Oow
2 4 0 2 6 0
+ (N, Ny, 8ris =Ny, -8ryp) — an + (ny, Ny, -Brge =N} arg, > on

[And now again by the same way followed on the first part, we gather together the terms with
the same the thickness-integrated quantities of the same curvilinear direction and of the same

derivative of w, on the curvilinear coordinate system, after highlighting each one of them

with a different color]

dow Oow
3 0 2 52 3 0
nx2 r]Xl Pnn 95 - 2nxlnx2 + nxlnx2 S 9
oW oW
3 0 3 0 4 2 .2
+nx1nxz ST 9s _nx1 X, Pan 9 + (nxl_nx2 nxl) -
I, oow I OowW
2 4 0 2 6 0
4 — (N, rgs — Ny, Ny, -@ry) ;—85 — (N}, @ras =Ny Ny, Ara ~os
a 3h2.9§ dsw dsw
3 0 3 0 2 2
"7 M P on 20 M, Pas = M Ny, -
oW JowW
2 2 2 .2 0 3 3 0
_nxlnxz +nx1nx2 "o - (nxlnxz _nxznxl) Pns an
l, dow g dow
2 4 0 2 6 0
+(ny Ny ;o —N; cag,) ——— + (0, Ny -@r5—N; A —
X Xy “Tls X, O Tln D an Xp Xy T3s X, - T3n D an
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oow
n®n, —n’ © 4+2ndn P
03 1 2

SS

oow,

s

L, I ] 95w,
4 — 1 My, 8ris = Ny, Ny 8r1n ;+ N, 8rgs — Ny Ny, 873y s
—29§ ds  (25b)
3h 2 2 4 85W0 2 22
|+ (nxlnx2 _nxz) IDnn T an 2nx1nx2
on
dow
— (n§ Ny, Ny N3) Py .

) 4 ) l¢ | Oow,
+ (nxlnxz'ans_nxz'ann);+(nxlnx2 ‘Args — Ny, "8r3n) —

on
Adding the Eqgs. (25a) and (25b), we have

r

4 I, lg]| 90w,
§3h_21pn n, +Ppny _[aTl ; + ars =
+ éi P,n, +P;n, —|[b |—4 + b I—e
s 3h2 2 X, 6 "'x; T1 D T3 D

dy
adow
4 4 0
nx1 _nxz Pnn an +

oW
3 3 0
+ 2nxlnXz —2nxlnxz PnsW

|

n2-ar, + —nl ap, — +
1 o) 85W0
| on
2 2 6
+ Ny Aran Tt +ny, Ars, —
= ds =
3h? aéw, s s aow,
r +( Pnn? +(2an nX1+2nX an)Pss 9s
+( —ng +ng
2 2 Iy
( + Ny, s t Ny By — 7 + 25w,
- | 0s
+( "‘nfz'aTas"'nfl‘ams_ ;6

[And after simplification of the above sum, highlighting the terms including the direction co-
sines which are eliminated inside the brackets and illustrated for the sake of convenience by
orange color]
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SS

3 3
+ 2n, n,+2n,n, P

igg
3h? ASW

0

+ (n

4
X1

4
_ nxz)

Oow oW
4 4 0 3 3 0
Ny, — Ny, P””—E)n + 2nx1nX2_2nX1nx2 P.s e
| Iy | 06w
2 2 4 2 2 6 0
_{ Ny, 8rin =Ny, "8r1p ;+ Ny, @ran TNy, 8r3n ;} an

ds

aow,
0s

(26)

|6
o 'aT3s) _}
0

|
2 2 4 2 2
_{ Ny, 8ris TNy a1 ; + (N}, -aras TNy

And finally expressing aggregately the previous transformation of the aforementioned bound-
ary terms, we have

§ 4 5 ip I, N lg]| 90w, dy +
— n n, —f{asy; — drqa —
! PR R 12 My, T1 0 T3 0 ax, Y
4 I, I
+ an? P, n,, +Ps Ny —|bry — + byg — dy =
P P
r
oW, OoW,
ni_ni UL +2nx2 Ny ni_nfz s T 9 +
oW,
= ,.o,h_z + 2n><2 nx1 Pss + ( fl niz) - ds
r
I, g | 90w, I, lg| 00w,
_{ann(ni1 _nfz) — 1 8rzp ;} an arys — targs ; s

The right-hand side of the last equation is simplified further due to the meter of normal unit A
where n; +n? =1.

On the basis of the above result, remark that the functions a;;,(n, s), ar3,(n, s) are related
both with the variation 9ow,/0n and are decoupled from the variation dow, / 0s . Exactly
the analogous configuration is valid for the functions a;, (n,s), a;s.(n, s) which are in-
volved only on the variation 9ow, /0s and not at all on the dow, /on.

This configuration could be interpreted from the “nature” influence of the initially assumed
surface traction T, of the section 2, inserted in the model of TSDT.

However, we will not hustle to derive established conclusions about the above, due to the fact
that the above boundary terms are going to be connected with further boundary terms deriving
from those of the variation ow, (as will show on the following sections).
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5.2.3. Transformation of the boundary conditions associated with 6w, to the
curvilinear boundary system

Now, taking apart the fourth row of the boundary terms of the variational equation repeated
on the last paragraph of the section 5.2, we have

[| ﬁ 4 ]¢+ 16%4_(2 —R i+i%+i@n +
ot 3h2 7T fontax, | °  °h? ' 3hZox,  3hZox,|
Iﬁwo,nxl
§ ow, dy
r
16 4 16 oW, 4 4 0Py 4 0P, lo
+|1e=— +1 — +Q,—Ry— + + n, ——
[ oh* 3nh? 4]¢y S9h* ox, Qu—Rupz 3 ox,  3h%dx,| * To
|5W0,an

Subsequently, taking apart each term of the above expression multiplied with the direction
cosines (in order to simplify the calculations) and using the Egs. (4), (5), (6), (7), (16)-(18)
and (19), (20), (19), (20°), (21g) of the section 5.2, we get the following results. In addition,
note that for the sake of convenience we neglect the time and curvilinear integrals.

However, due to the complication of the calculations, we present below the derivation of
same terms separately and after that we substitute the results into the 1, N and 15, N, "
Thus, as for the transformation laws of the time-derivatives of the displacement field

oW, OW, OW, ow, ow, ow,

=n,—— +n, — 27a) and =-n,—+n,— (27b
OX, “on 2 s (272) OX, 2 On L Os (27b)
b = Ny It Ny, & (27d) and ¢, = —n, 4, + n,, 4, (27d)
As for the spatial-derivatives of the thickness-integrated and higher-order moments
0P, 0P, 0P,
o,  ton 2 9s
0, Ln2p fon n P 4+n2P, 40,2 n2P 420, n P, +n’P, =
X1 on “ nn Xy "X, ' ns X, ' SS Xy 9s “ nn Xy Xy 'ns X, & S8
9 (27¢)
:%nP + 2n; n, Py + Ny, 5 XnP +2n, n{ P + 03 P =
P , 0P, P
_ ni‘ nn + 2n§ nX ns . . ns + ni SS
Loon 172 0n ! 0s 2 0s
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JP, JP, JP,
— = -n, — +n, — =
ox, 2. on 1 0s
0 0
= nxz% X Xy Pss —Pan nf -n; Pas +nxla_s X Xy Ps =P + ni*n Pis =

0 2 2 9 2 3 2
:_% Ny, Ny, Pss =Pon + Ny, Ny, =Ny, Pas +£ XXy Pss =Pon + Ny, = Mx My, Pos =
oP,, 0P, oP, oP,, 0P,
. 2 ss YTnn 2 .3 ns 2 ss YTnn 3 2 ns
- [nxl n><2 [ an an + (nx2 n><1 nxz) an }_I_ ‘nxlnxz [ 05 95 + (nx1 nXl nxz)
oP, oP, oP,
o = M, 5 TNy, - =
OX, 2 0n L 0s
0 0
- - nXZ an nf Pan — 2nx1 nxzpns + ni Ps + I’]Xl e nxzz Pin — 2I’]Xlnxzpns + nfl P =
5 an 2 ! 5 s (279)
= “on nfz Pon — 2nxlnfzpns + Nx, nfl Pss +£ Nx, nfz Pon — 2nilﬂxzpns + nil P =
OP OP OP OP OP OP

3 nn 2 ns 2 Yss 2 nn 2 ns 3 Ylss
B —{ on oMo e a—H o5 MuMeTpe t 6‘5}
0P 0P 0P
x  an M s T

0
= nXl% Ny, Nx, Pos—Pan + ni*nfz Pns +nx23_8 Ny, Nx, Ps =P + ni*nfz Ps =
(27h)

él 2 P

nxl Xy SS

3 2 2 2 3 _
—Pu £ nxlfnxl nx2 Pos + o2 nxlnx2 Ps =P + ny, nxlfnx2 Pis =

an an

7]
oP oP oP
o, (S 2 ot o
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And now substituting the Egs. (27a) - (27h) into the expressions 15,  ~and 1, , .
v Xy » HiXo

16 4 16 0w, 4 4 0Py 4 OP
| = [ly— N — 4+ Qs —Rg— + + =
SWo, Ny [69h4 3n2 “]¢ S9h? ox, Qs *h?  3n%2dx, 3nh%dx
16 4 16 0\7\70 8\7\70
= |lg——— LT o IS n,—+n,—|—
[69h4 3h? “] iy Bt Ny, 8 oh* [ ton : s

4
- r]Xlan + (nil -1) an + r]xl RnnF_ (nfl_l)an_ -

el [

3h? on on
4 ) P, OP

* 3Tl [ )
4 | 5 0P, oP o

" 3h_zlnxl on Moo T T e a7

4 2 8Pnn 2 8Pns 3 8Pss .
—%?’h—zlnxznXl s +2n, Ny s +ng, 5 | =

[Taking apart the Q and R moments from the P higher-order moments and after that
performing calculations, gives the following result]

oP
+(n,, ni—ni) ﬁ} +

16 4 16 8\7\70 8\7\'/0
B [|‘59r1_4_3h2 “] Nt N ds Son* [nxlﬁ s | T
) 4 4
- nx:L an + (nxl_l) an + nx1 RnnF_( _1)an hz
n 2 al:)nn n2 aPss 3 n nz) I:)ns
X1 Xy on XX, on Xg Xy Xy an
0P, 5 0P,
N 4 +nx1nX2 9s - xlnxz 9s xl_nxl X, B
3h? OP ) oP B
+ nfl 8an +2nflnx2 6: +nxlnf2 a;s
oP oP oP
+ M, N agn om0, asns s, asss

[Subsequently, we sum up separately the terms with the same thickness-integrated quantities
or its derivatives and the derivatives of the displacements. To handle this grouping easier, we
set different shades analogous to the “kind” of each term]
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Conditions of TSDT in terms of thickness-integrated forces and moments

16 4 . .. 16 oW, ow,
B [|69h4_3h2 I“] M Ot M O Flo gz M n X2 s
2 4 2 4
- nlenn + (nxl_l) an + nX1 RnnF - (nX1_l)R”ZF +
oP (
2 2 3 2
X1 X, 8:]n_nxlnx2 +(nx2_nxz xl) 0;5
OP OP
2 SS 2 nn 3 2
N 4 + nx1 nxz 9s T x X, Os + (nxl_nxl nx2 +
3h? s 0P, , OP, ,
+ g an +2n; Ny, . + Ny Ny, +
0 oP
+ Ny, ni "4 2n, nfz +an asss

Before extracting the final result, we elaborate individually the colorful terms, because the

first two rows of the abov:

e expression do not need further work. Thus,

oP oP
2 nn 3 nn 2 2
xlnx2 on X, on +nxlnx2 _nxlnxz +
oP
3 2 ns 2 ns
4 +(”x2—”x2”x1) N +2“x1”x2 N +
3h2 2 aPSS 3 aPSS 3 2 2
+ nx1 X2 o5 X, 95 'I_(nxl Ny nxz) +2nxlnx2
w2 P e 0Py
X2 "X ps X2 g
oP
2 3
(ny, Ny, +n;) ar:”Jr( +
4 3 ) P, Pon|
= 302 +(nx2+nx1nxz)—0n +( P
oP
2 3 SS 3 2
F 0N ) S (0 +ngng)

[Eliminating the appropriate combinations of direction cosines inside the brackets of the

previous expression, we get the following]

3h® + nin, +n} %+ nd +n,n;
g M Mty a;“]“ Ny Ny, 0y, a@p: )
M e nzanz P e et
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[And due to the unit normal A on the lateral surface of the plate, n +n)f2 =1]

4 oP,, P, 0P
:3h_2{ “Ton e gn e g T M

Consequently, we get the result

| _ |y 16 4
oy = (o gne g7

16 ow, ow,
X Al + r-]X A
9h ton 2 0s

4] Ny, G0+ Ny, s +1¢

4 4
- r]lenn + nil_l an + nx1 RnnF_ nfl_l anh_2 +

4 0P, 0P, 0P,
+ +n n
3h2[ “ on 2 on
and
16 4 . 16 [ OW, N
L sws, n,, :[ 69h—4—3h—2|4] Ny, B — Ny, G + 15 6 on [ % o5 e an | T

4
+ ni_l Qsz_nszss"{_nx2 Rss F_ ni_l RSZF +

4 ) 0P, 0P, 5 , OPps

T gnz| e [ on  on ) e et T
4 , [OPss  OP,, ) . 0P

4+ —1n,n — 4+ n, n? —n +
3hz| [ ds  0s e gs
4 3 apnn 2 apns 2 aF)SS
— 1N 2n, n ———n, n

* 3h? { 2 9n T2 N on X2 % 9n +

oP oP oP

+ iz nX ni nn 2nf nx ns + n)?(, SS _

3h 1% 0s v 0s toos

[Taking apart the Q and R moments from the P higher-order moments and after that
performing calculations, gives the following result]
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[16 4

16 ow, . ow,
®9h* 3n?

|4] Ny, §s— Ny, Py +|69h—4 " s M Hn

4 4
+ ni_l Qsz_ nXZ st+ nX2 Rss F_ I’]2 -1 RSZF +

X1
2 8Pss apnn
n Xy Xp -

3
on on T M T

o e [P P
I T Js

2 3
+ (nXZ nxlinXZ as

-
3 , 0 L o OP
- ng o + 2n, ny n nxznXl n
oP oP oP

2 nn 2 ns 3
\+ nxlnXz s — 2nxlnx2 s + N, s

nn

[Subsequently, we sum up separately the terms with the same thickness-integrated quantities
or its derivatives and the derivatives of the displacements. To handle this grouping easier, we
set different shades analogous to the “kind” of each term]

:[|6$1—64—3;]L2|4] Ny, b — Ny, b +I6;]—64[nxl%—nxz% +
+ ni—1Q,,—n, Qu+ny Rss%— ny —1 Rszhi2 +
’nflnx2 —ngny 8;”]” + Ny =Ny Ny dapl:S
N 4 +nx1 52 agsss_nxl 52 Oznn "‘(nxzni_niz) -
3 — nfz apr:” + 2nxlnfz% - ny, nf1 8;: +
+ Ny, g 022” —2n?n,, +n} dgs“

Before extracting the final result, we elaborate individually the colorful terms, because the
first two rows of the above expression do not need further work. Thus,

oP oP
2 2 3 2 ns 2 ns
N, Ny, — Ny, Ny + Ny =Ny Ny, n + 2n, ng n +
4 oP oP oP oP
711 Nx nf SS_*'“)? SS"*'nx nf fnn_nx ni -+ -
3h L2 0s L 0s 1 "% 0Os v Os
oP oP
+ n,n2—nd —2n’n —nd =" _n?p o
X2 Xy X2 X Xp X2 on XX on
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oP
+ n)3(1+nxlnf2 ns
. 4 2 3 8Pss (‘)Pnn —
“anz| T MM T e os |
oP
3 2 3 2
— n} +nin, — n; +n;n, ar”]”

[Eliminating the appropriate combinations of direction cosines inside the brackets of the
previous expression, we get the following]

4 2 2 0Pn5 2 2 aPSS 2 2 2 2 apnn
= —1in,n n n, N n —n, n n - n, n n =
3h?2 { X1 Xy + X2 9N + X1 X + X1 9s X2 X + Xy X2 X + X9n
_ izl”x Pros n, Pss _ n, _n, %}
3h 1 on 1 0Os 2 2 0n
Subsequently, we get the result
16 4 . .. 16 ow, ow,
L swo, n,, :[|e%—4—%—2|4] Ny, §s— Ny, Py +|69h_4[nxlg— N on +
4 4
2 2
+ r]xl_:L Qsz_nszss—f—nx2 Rss F_ nxl_l RSZF +
4 OP oP oP
+ — nx : ns nX ‘ss _ nx _ nx nn
3h ton 1 0s 2 2 0n

Finally the terms inside the brackets of the initial expression of the present section, take the

following form
I

0
'nX1 ‘l’ Ib‘Wo,nxz.an - CTO(S)?

|5wo,nx1
16 4 . . 16 |, OW, ow,
= [|69h_4_3h_2|4] N, Pnt Ny, Ny & +|69h_4[nxlﬁ M M e | T

2 2 2 2
nlenn + nx1 nxl_l an + nx1 Rnn?_ r]xl nxl_l an h_z_ Cro

2
+ — + NN,

4 OP, ., 0P, P, )
n + n +n +
3h? { 9N X2 ¢

16 4 . .
[Iﬁgh_4_3h_2l4](n§2 $s— Ny, Ny, ¢n)+|69h—4 n

4
+ nxz(nil _1) Qsz o niz st + niz Rss F_

4 apns +non 8Pss _ nz . n2 al:)nn
X X X Xy o5 Xz Xz an

183



Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments

And taking apart the terms with common coefficients, displacements or higher-order
thickness-integrated quantities, we perform calculations and we get

0
ISWOvnxl.nxl + I5Wo:nx2.nX2 - CTO(S); -

16 4 . "
- 69h_4_3h_2|4 nx1 r]xl_nxz ¢n+ nX2 nxl—i_nx2 ¢s +
oW oW I
+|61_64 ny —n; _0"‘anznxl_o]’_cm_O+
9h ! 2.0n 0s P (28)
4 ) , [OP,, OP,s  OP;
— -n +2n,n + +
EY { oo [ on 2] on s
2 2 2 4 2 4
+ nxz(nxl_l)Qsz_ nszss+ nx2 Rss F_ nxz(nxl_l) Rszh_z +
2 _q a2 2 R 4 2 _1\R 4
+ r]xl(nxl )an r]lenn—I_ nxl nnhz r]xl(nxl ) nzh2

which is the analogous context inside the brackets of the curvilinear integral (presented on the
first page of this section) but now expressed on the curvilinear coordinate system.
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5.2.4. Transformation of the boundary conditions associated with the slopes 5 ¢,, 6 ¢,
to the curvilinear system

In the context on the present section, we handle terms associated with the slopes of the

deformed cross section of the plate from the vertical one before the deformation (as explained
on the initial assumptions on the section 1 of the Part B).

Point out that the reason for choosing to examine the boundary terms related to the 5¢,, 6 ¢,
W, , Is that after the transformation of these two boundary terms from the Cartesian to the
curvilinear coordinate system and due to the Egs. (4), (5) or (4°), (5) of the section 5.2, each
displacement ¢, , ¢, produces both of the in-plane curvilinear displacements ¢, and ¢, .

To avoid confusing calculations and faults, we examine separately each one of the boundary
terms of the Variational Equation (referred on the section 5.2), which is related to the & ¢,
and & ¢, respectively.

As for the first boundary term, we substitute into it the Egs. (4), (16), (16°), (8), (18°), (21a),
(21Db), (21c), (219), (21k), (21m) of the section 5.2

4
My—— Pll]nxl+[M12 P12_2]nx2 -
3h
I, I, I, 4 ls 4
ar; — + ars ary — T3 o2 T dy =
f B o p 3h? p 3h?

IO IO

+ agarg— + bs Crg —

P P

nfl Mnn + an nX2 Mns + nfz Mss -
4 Xy +
T nfl Paon + 20y Ny, Prg + nfz Pss
3h
nxlnxz Mssann + N 7n2 Mns B
T 4 nxz o
— 3h_2 Ny, Nx, Pss=Pnn + N Al L Pos
= F Iy Ny 6f, + Ny Op+ds =
‘¢. — Ny g + Nyaryg — — (N Argy + Ny, c8gg) — + 4 O X %s
r P p
I, 4 le 4
+ (), -aryy + Ny, -arg) 7_3h2 + (N argy + an'aTSS)?_g)hz -

IO
- (nxl ag, + nx2 aSS) (ﬂx1 ‘Aron nxz'aTOS)_ -

I

— (ny, bsg —ny bgy) Crp —
o
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3 2 2
n><1Mnn + 2nx1nx2Mns + nx2 nless -
4 s 2 2 -
- 3h 2 n><1 Pon + Zﬂx1 nX2 Pos + r]x2 Ny, Pss

Ny, 0@ + Ny, o0p}ds

|
4
Ny @rin + Ny, c8pg — — (N -apg, + nxz'aTss); +

4 le 4
+ (N -arg, + nxz'aTas);ah_z

Iy
+ Ny arg, + nxz'aTls);ah_z
I
— (N, 85y + Ny, 5) (N -Aroy + nxz'aTOS); -
5

— (ny, bsg =y bsy) crg —
el

At this point, we choose to perform the calculations separately for the boundary terms
multiplied with the variations o ¢, and & ¢, in order to overcome the confusing and

misleading calculations. This step is on purpose thinking than the corresponding boundary
terms resulting from the variation o ¢, are going to be combined with those of the previous

are

expression. Namely, the coefficients of & ¢, (or & ¢,) deriving form the variation
added to those deriving fromthe & ¢, . Thus,

L h
#n
4 3 2 2 4 4 3 2 2
nx1 Mo, + 2n><1 nx2 M, + nxz nx1 My — 3h? nx1 P + 2nxl nxZ Pos + nx2 nx1 P +
n‘n? M, -M n>n,-n.n’> M A a2 opo_p n®n,-n,n’
+ Xy Xy ss —Mp, + XXy g ns 3h2 X; X, ss ~FPnn T Xp Xy X; X,
2 IZ 2 |4
= = N Qpyy + Ny, Ny r@pyg — — Ny -@pgy + Ny Ny 8y — +
1 2 1 1 1 2
Y P
: | . 4
2 s 4 2 6
+ (0, @, + 0y nxz'aTls)_Sh_z + (N} arg, + Ny an'aT3s);3h_2 -

Iy
ol

Iy

2 2
- (nx1 ag, + nx1 nxz aSs) (nx1 “Aron T nx2 'aTOS); - (nx1 nx2 b53 7nx1 bSn) Cro
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| P _
#s
3 2 .2 4 3 2 a2 3
nxl r]><2Mnn + 2nx1nx2 Mns +n ) nx1 Mss - ?’h_z n, Ny F)nn —+ 2n><1nx2 Pns + nx2 nx1 Pss +
3 2 2 4 4 3 2 2 4
+ n)(l n><2 M —M,, + nx1 nx2 _nxz Mgs — 3n2 nxl nxz N n><1 nxz _nx2 Pos —
= 2 2 L 5. d
- r]xl Ny, 8rin + Ny, 8 — — (ﬂxl Ny, 8ran + nxz'aT3s)_ + 95 ds
p p
r I le 4
2 s 4 2 6
+ (Ny, Ny, 8y + N cap) — —— + (0, Ny -Argy + N ar3) — =
3h 3h
2 IO 2 b b IO
- (nxl n><2 asn + ﬂx2 ass) (nx2 ‘Arop T n><2 'aTOS); - (ﬂx2 5s _ﬂxl ﬂx2 5n) Cro ;

As for the second boundary term, we substitute into it the Egs. (5°), (17), (17°), (18), (18"),

(21e), (211), (219), (211) of the section 5.2

4 4
M, _thzz Ny, + M12_P12_3h2 Ny, —
I, I, I, 4 ls 4
§ bT1_+bT3__le__2_bT3__2+ ‘é¢yd7:
p p p 3h p 3h
| =
IO IO
+ a, brg — + by Crg —
P P
niz I\/Inn _an nszns +n§1 Ny Mss -
4 2 *
_ 3h_2 % P, —2n, nXZPnS +n; nXZPSS
ninxz IVlss_Mnn + nil_nxlnfz Mns -
+ 2 +
3h_2 X, Xy Pss —Pon + nxlfnx ﬂx2 Pos
|
2 4
:§ + Ny, c@rgy = Ny rArgg — + (Ny,8rg, — Ny 'aTSS); + {ny, 8¢, —n, 64,}ds
" | !
. 4 s 4
+ (Ny, Ay — nxz'aTln);Sh_z + (Ny -8rgs =Ny, 8rg,) ;3h_2 +
I Iy
+ (Ny, 840+ Ny, 845) (Ny, 8rop — Ny -8710s) ; + (Ny, by =Ny, byg) Cro ;

Similarly to the previous step, we divide the above result to two parts according to the

variations 6 ¢, and S ¢,
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A
$n
3 2 2 3 4 3 2 2 3
o nxz nxl Ivlnn + 2n><1 nszns - nx1 nx2 Mss + 3h2 n><2 nxl Pnn - 2n><1 n><2Pns + nx1 nxzps
~n’n, M —M n! —n>n’> M B n! —n?n? P
X Xy ss— Yinn T Uy X; X, ns +3h2 X, Xy Tss T Tan T My Xp X,
— 2 |2 2 |4
= — Ny Ny, 8rn = Ny Apg — —(Ny Ny, -8y, — N -arg) ; -
" ! !
2 4 4 2 e 4
— (N, -rys — Ny, Ny, aryy) ;Sh_zi (N, 8ras =Ny, Ny, ars) 73h_2 -
2 IO 2 b b IO
- (nx At nx1 Ny a4s) (nx Aron — nxl'aTOS) - (nx 4n nx1 Ny 45) Cro —
1 2 2 1 2
P P
and
19y =
?s
4 3 2 2 4 3 2 2
nxz Mnn - an n><2Mns + Ny, Ny Mss - h2 n><2 Pnn anl nxzpns + nxl nxzpss +
202 M. ~M,, +nin, —n, n° M, ——n2n2 P P n’n, —ng.n
+ny Xy ss nn X, Xp XX, ns_3h2 L%, Tss T Tn + X, Xp X
— 2 2 2 I,
= + N Aty — Ny Ny, varge — + (N @y — Ny Ny vapgg) — +
P P
d | ls 4
2 4 2 6
+ (N, Ny, 8y — Ny -ar1) ;_3h2 + (ny, n,, 'aTss*nxz'aTsn);_ahz

I
Yol

|
2 0 2
+ (nx1 n><2 a4n T nx2 a45) (nxz'aTOn_ nxi'aTOS) ; + (ﬂx2 nXl b4n_ nx2 b4s) Cro

s —

Subsequently, the total expression of the boundary terms associated to the &§¢, on the

Variational Equation of the section 5.2 is given by the sum

b b
Lo = Vgn T 14

And similarly the total expression of the boundary terms associated to the & ¢,
Variational Equation of the section 5.2 is given by the sum

_ 1 ¥ ¢
I¢S_Is+lsy.

1)

on the

)

However, we perform calculations inside the brackets of the integrals of the above
expressions and after that we extract the whole boundary terms on the curvilinear coordinate

system which are related to the variations & ¢, and o ¢, .

As for the Egs. (1), namely the boundary terms related to the & ¢, variation
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Xq nn 1 Xy nn 2 X
3 4 2
+ 2n; ny + N5, Ny, =Ny, Ny - N, —ng N, +2n, ng +
2 2 2 3 3
+ nx2 ny Mg +n nxz Mg — ny nx2 Mg — ny nxz Mgs—
—i(n“P +2n3n, P.. + n2n? —i(2 2 —n?2n? 2P _+M3n_-n_n3)P.) +
3h 2 X; - nn X ns Xy Xy 3h 2 Xy X, X X nn Xq X Xy X, ns
3 2 2 3 3 4 2 .2
+ hz( X, Ny, Fan — 2nx ny Prs + Ny, Ny, + 3h2( X, Xp _nxl nX2 Pon — (nx nx1 nxz) I:)ns) -
2 I2 2 |4
— (N ary, + Ny, Ny cagg) e (), -@ran + Ny Ny, -8rg) +
| 4 | 4
2 4 2 6
+ (N ary, + Ny nx2~am)—3h—2 + (N Arg + Ny, “xz'ams);gh—z -
2 I0 b 2 b I0
— (0, asy+ Ny Ny, asg) (N Brgn + Ny, arg) — — (N, Ny, bgg—ng bg) crg — —
P P
2 IZ 2 |4
- (nx1 nX2 “Arip — nx1 'aTls) - (nx1 nX2 “Argn — nx1 'aT3s) ; -
2 4 4 2 le 4
— (nx1 ‘Args — Ny Ny, “drq,) 7 3h_2 - (nxl Args —Ny Ny, ‘ar3n) ; ?zh_z -
2 s 2 p b b _
— (0, Ay 0y Ny, ay) (N, Bron — Ny Args) — — (N by —ny ny by) cry 7 =

[And grouping together the terms with common unknown quantities and given functions]
2

2

= Ny, Ny, Ny, Ny, —Ny, My, + 2nx1 Ny, Ny, =Ny, Mg +
3 3 4 2 2

+3n, Ny, —n, N —n, + 3n; ng —

A nt_pzp2op 2n? n? 3nn n,n. P
_3h2 Xp X X an T X, X + Xg Xy Uixg Ux, s +
A s n°n, P 2ndn n! —3n%n2 P
+3h2 X, X X, Xy nn + X, X X, 1%, s T

2
- (nxl‘amn + Ny, Ny, @y TNy Ny

n? n, n n? n, n e 4
+ (N Arin + Ny Ny, 8y — Ny Brgg + Ny Ny c8py) — — +
p 3h
2 ls 4
+ (nx1 Brzp T nx1 nxz'aT3s_nx args Ny nX2 aT3n)_ 2
£ 3h
2 0 b 2 b I0
— (N, a5y + Ny Ny, age) (N Brop + Ny, 8rgs) — — (N, Ny, bgg =Ny bgy) Crg ; -
2 I 2 b o
- (nx1 Ay + I’]xl nX2 a4s) (nX2 Arop — nxl'aTOS) ; - (nx1 4n r]xl nxz 45) Cro ; -
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2
2
= Ny, Ny, Ny, Ny, — Ny, M + 2nxlnx2 Ny, — Ny, My, +
3 3 4 2 2
+3n, Ny, —n, N —n, + 3n; ne +
2 2
n 4 _nxl rlxl—i_nx2 r]xl_nxz I:)nn +2nx1nx2 r]xl_nxz -
3h? 4 2 2 3 3
ne, —3n, N, —3n, ny, +n, ny Py

I
2 2 2
- (nxl Arip T nx2 nxl‘aTls +nx1 r‘x2 Ay — nx1 'aTls) ; -

|
2 2 4
- (nxl Aran T Ny nXZ'aT3s +nx1 nxz'aTBn - nxl 'aTss) ; +

I, 4

2 2
+ (nx1 ‘Arin T r']xl nxz Ay — nx1 Ay T r]xl nX2 'aTln) ; 3n2 +
2 2 s 4
+ (N Aray + Ny Ny, By — Ny Brgg +Ny Ny -drg,) ; an?
2 I0 b 2 b I0
- (nx1 asn t+ nx1 nX2 aSS) (nxl Argp t+ nxz'aTOS)_ - (nx1 nxz 5s _nx1 5n) Cro — —
p p
2 I0 2 b b I0
— (N5, a4 + Ny Ny, 8y) (N, Brg, — Ny v8rgs) — — (N by =Ny Ny byg) Crg —
p p

As for the Egs. (2), namely the boundary terms related to the & ¢ variation
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3 3 4 2 .2
nxlnsznn — Ny nx2 Mnn+ nsznn_nxlnx Mnn+
2 .2 2 2 4 3 3 3
+ 2n, n + N, ng, =Ny, + Ny Ny, =Ny, Ny, —2n, n, +
3 2 2 2 .2
+ nznless + nxlnx2 Mss_{—nxlnszss_{—nxlnx2 Mss -
4 3 2 2 3 4 3 2 .2
B 3h 2 nx1 Ny, Pon + 2nx1 nx2 Pos + nx2 Ny, +nx2 Pon — 2nx1 nxzpns + nx1 nx2 o
4 3 3 2 .2 4 3 3 2 .2 2 .2
- 2 \Ulx, Ty —Hx Mx nn X, X, X X, Xy X X ns X, X Ty Tx
h (nln2 nlnzP +(n1n2 N, +N, N nnz)P +n, Ny N Ny,
2 I2 2 |4
— (N, Ny, Bray + N5 -arg) — — (N Ny, Argy + NG cArgg) — +
P P
| 4 | 4
2 4 2 6
+ (Ny, Ny, @1y + nxz'aTls);_shz + (N, Ny, Brgy + nxz’aTss)?—th -
2 I0 2 b b IO
— (ny Ny, ag, + Ny ag) (N, Brop + Ny, s8rgs)— — (N bgg—ny Ny Dg) Crg — +
P P
2 IZ 2 |4
+ (N, 8rip = Ny Ny, Arg) — + (N -@rg, — Ny Ny vArgg) — +
P P
lg 4
2 4 4 2 6
+ (Ny, Ny, Brs — Ny ~8ry,) ; an? + (Ny, Ny, Brgs =Ny -ar3,) ? an?
2 Io b 2 b IO _
+ (nxl nx2 a4n'|'n><z a4s) (nx2 'aTOn_nxl'aTOS)? + (nx2 r]xl 4n_n><2 4s)CT0 7 -

[And grouping together the terms with common unknown quantities and given functions]
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=n,, n;—ng n, 40, M, +2nfn, 0 +n, M, +
+ 3n;n; —nf +n;n, —3n, n} -
annXZJrn;‘z—nXlnjz—nle nfz P. + 2nfznX1 n,, + Ny, +
3h’ + —n? +ndn, +3n2n% —3n, nd P,

I
2 2
— (N, Ny, Aryy + Ny Argg =Ny Apy, + Ny Ny Argg) ; -

|
2 2 4
— (Ny, Ny, Brgy + Ny s8rge =N -8rg, + Ny Ny, Arg) s +

2 2 I, 4
+ (nxl nXZ At T nxz Aris +nX1 an “Arys — nxz 'aTln) ; 3h_2 +
2 2 le 4
* (nXZ Ny, 8ran T My, -8ras TNy, an'aTSS_nxz‘aT3n)?3h_2 -
2 I, 2 | . l,
a (nxl M, 8sn + My, as55) (Ny, Bron + Ny, 8ros) — — (nxz 5s — Ny, Ny, sn) Cro — +
P P
2 o b 2 | I
* (nxl My, 8an Ny, As5) (nxz “Aron — nxl'aTOS) ; T (nxz Ny, Dgn =Ny, 45) Cto ;

Note that the expressions derived above are not expected to “give” additional boundary terms
to the other boundary parts of the Variations Equation (section 5.2). Consequently, these
boundary terms either are expressed to the Cartesian or to the curvilinear coordinate system
are just two alternative forms of the same physical meaning and they express two independent
natural boundary conditions given below.

Exactly the same configuration took place for the in-plane boundary conditions of the
problem of shear deformation (section 5.2.1).

Furthermore to derive a shorter and more comprehensive form of the final boundary
conditions, we notate the given terms, which include functions used to describe the given
surface tractions (defined on the section 2 of the Part B) with smarter symbols after moving
term to the right-hand side of the boundary conditions (deriving as known from the
Variational Equations and by the application of the fundamental argument of the Calculus of
Variations as will be explained thoroughly on the next section 5.3). Thus, we regard the
following
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T5¢n = nx1 nx1—+_nx2 Ay nx1 nXz_nx1 Ars ; +
|4
+ nx1 nx1_+_nx2 ‘Arzy T rlx1 r]xz_nxl Arzs - —
e,
I, 4
— Ny, nxl—'_nx2 Ay T Ny, nxz_nx1 aris ?3h_2 -
n n n n n n I6 —4
- X1 x1+ Xy Aran T Xy Xy Uixg "A13s ;3h2 +
2 I0 b 2 b I0
+ Ny @+ Ny Ny, @sg Ny Brgy + Ny, 8rgs — + (Ny Ny, bgg =Ny Dg) Crg — +
p p
2 IO 2 b b IO
+ (nx1 a4n + r]xl nX2 a4s) (nxz'aTOn - nxl'aTOS) — + (nxl 4n nx1 nX2 45) CTO ;
and
|2
T5¢s - r]xl r]xl—l_nx ‘Argy T r]xl r]XZ_ﬂx aris ; +
|4
+ r‘xl nxl—l_nxz ‘Arzy T rlx1 Ny, =Ny, 813 — —
e,
I, 4
- nx1 nx1+nx Aty t+ nx1 nxz_nx Arys ?3h2 -
n n n n n n I6 —4
- X1 x1+ Xy Aran T Xy Xy Uixg "A13s ;3h2 +
2 I0 b 2 b IO
+ Ny @sy+ Ny Ny, @gg Ny -Argn + Ny, 8rgs — + (N Ny, Pgg =N Dg) Crg — +
p p
2 I0 2 b b I0
+ (N5, @gn + 0y Ny, 8yg) (N, 81, — Ny c8rgs) — + (N by — Ny Ny byg) Crg ;

Thus, as for the natural boundary condition with is multiplied with the variation & ¢, in the
Variational Equation, we have finally

2
2
nxl nxl_nx2 nxl—|_ﬂx2 Mnn + anl nx2 nxz_nx1 Mss +

3 3 4 2 2
+3n, Ny, —n,ng —n, + 3ng ng + (3a)

X

2
2
4 |~ Ny, Ny +Ny, Ny =Ny Pin +2”x1”x2 n, —n,, —
+ — = T5¢7n data

3h? 4 3 2 2 3
— N, N0, ng—=3n, N, —3n,n, P
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And as for the natural boundary condition with is multiplied with the variation & ¢ in the
Variational Equation, we have finally

2
N, Ny, =Ny, N +n,, My +2n0n . n +n. Mg +

X2 Xy

2 2 4 3 3
+ 3n, ng, —n, +n;n,—3n, n, — (3b)

X2
2
2
4 r]xz r]xl_ﬂxz r]x1+nxz I:)nn + 2r]xznxl r]xz_}—nxl -

- — =T data

Y
3h? 4 3 2 2 3 Ps
— N, =N Ny, —3ng ng +3n, ny o P

2 1 X2

Remind that the process of derivation of the above natural boundary conditions (3a) and (3b)
is going to be explained extensively on the subsequent section 5.3, although is exactly the
same present on the Part A in order to gain the natural boundary conditions of the model of

CPT.
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5.3. The full set of boundary conditions of the flexural response (bending) of the TSDT

On this section, we gather all the above results of the sections 5.2.2, 5.2.3 and 5.2.4 and
substitute them into the curvilinear integrals of the Variational Equation of the section 5.2,
after reorganizing the boundary terms by an appropriate way as seem below.

Remember also that in the context of the problem of TSDT, the shear (membrane) stresses (or
strains) are decoupled from those of flexural (bending) stresses (or strains), as said on the
section 5.2. For this reason the in-pane natural boundary conditions [Egs. (24a), (24b) of the
section 5.2.1] will not occupy us further from now on and we are going to extract here only
those related the flexural response of the plate.

For the sake of completeness, we repeat the boundary terms of the Variational Equation of the
section 5.2, expressed on the Cartesian coordinate system.

t2
4 I, lg
—|{P,n, +P, N, —la;; — + a;; —|¢
Lt/jf%z[ 1 My 6 ''x, [ T1 P T3 P
t2
4 I, I's
+ — 1P, Ny, +Ps Ny —|bry — + byy — dydt —
t r3h { “ P

Iow,
0%,

dydt +

~—

[ ﬁ_i| ]¢ +1 ﬁ%
®9h* 3n2 *)7* " Pont ox,
n, +
4 4 OPg 4 0P| ™
t + Qs —Re 5+ oo~ + 5o~
h 3h® 0x, 3h° X,
— f§ 16 A 16 i ow, dydt —
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0, — R 4 4 0P 4 OP,| ™ To
+ Qi Ryt oy
“ 'h? T 3nZax,  3h?ox,
4 4
[Ml—%—Zpl]nX1+[M6_P6%—2]nxz —
; | | I, 4 . 4
2 4 4 6
- ay, — +ayg— —a ——5 — a3 — —5 + dydt —
f§ T1 o T3 o T1 5 3h? T3 5 3h? v
t, | —
| |
+ as ""To_0 + bs Crg —
p p
4 4
[Mz 3h_2P2]nx2+[M6 P63h_2]nx1

| | | |
—fgg by 2 4+ byt — b, _p 2 A 5p, dydt =0 =
p P P

195



Part B Section 5. Boundary Conditions of TSDT in terms of thickness-integrated forces and moments

85W0 ) )
3h2f5/§ +2n, n, P R + N —ng - dsdt —
I, I, | 95w, l, 1] 95w,
- [aTln ni _nfz — t+arz, _} —18r1s — tars —
p p p

16 4
Son* 3n? ¢

16 ) ,  OW, oW, |
*'6%—4{(”*1”*2)% MR Bl

4 2 2 8Pnn
— — (% —n
f§ﬁ+3h [( X2)[8n *

4
+ nxz(ni1 _1) Qsz_ nfz st+ nfz RSS h_z_ nxz(n;_l) R

]{nxl(nxl N )t Ny, (0 40, )0} +

+ tow, dsdt —

0
+2n, n,

4
+ nxl(ni_]‘) Qn. — nlenn+ nfl Ron h_g_ nxl(ni -1 Ro.

nxl(n nxz)(nx1+n ) + an xz(nxzfnxl)Mss +
2
X,

ffﬁ +@3nd n, —n,n; —nj 4+ 3n%n}) + dsdt —

4 —ny (n +ny )(n nxz)Pnn +anlnxz(nxl—nxz) PSS*

- T
an2 3 2 2 3 S
3h — (nX1+nxl ny, —3n, N —3n; Ny ) Py "

X2 Xy
1)
nxz(nxl_nxz)(nxl+nx2)2 + 2n§2 nxl(nxz—l_nxl)Mss +

tZ
- f§ + @3nin; —nj +nin, —3n n’) — 5 ¢, dsdt=0

2 2
4 [Ny, (0 =N )20y 0, ) Py + 207 0, (n, +n,) Py —
N T&/’s

© 3n2 4 3 2 2 3
3h —(ny, —ny n,, = 3ngng +3n, n; )P

X, Xy X

At this moment we take apart the boundary terms multiplied with the variations ow,,

00w, /on and 9ow,/0s in order to perform further calculations. There is no reason to
elaborate the boundary terms of the variations & ¢, and ¢ ¢, furthermore, because it is
obvious then that the last will not contribute to the terms of the variations ow,, dow,/on
and 06w,/ 0s.

Thus, separating the curvilinear integral which includes n,s-derivatives on the variation
ow, and neglecting for the present the residual boundary terms, we have
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2 p 20N g gy
3h2 nxz ns an S +
t, I
; 05 ‘
4 JOW, 4 2
* Sh—szfz“w“xl P gttt g [ - dodt -
[
Iy | dow
2 4 6 0
ar(n. — — 4 agy, — dsdt —
3h2[‘f[ Tln( Xq xz) T3n p} an
f§ + I6 aow, ds dt
ar, a sdt —
3h2 T3s P as
r
16 4 .. ..
[|69h_4 hz 4]{n><1(n><1 nx2)¢n+ nX2 (nx1+nxz)¢s} +
16 ) ,  OW, oW, IO
+I6—[(n -n,)— + 2n,n, — chO
oh* |~ ™ 7 on o s
. 0)
fgg+i(n2n2)%+ +2n,n, ()P Sw, dsdt = 0
3h? & 71 on e
t, -
4
+ nxz(ni1 -1 Q. - nfz Qss + nfz Rss h_zg Ny (n21¥ DR h_ +
4 4
+ nxl(nflfl) anf nian+ nil Rnn h_zf nxl(nf1 71) anh_z

For simplification reasons, we neglect the time integration and we note the following
boundary terms with spatial derivatives on the variations in order to perform by parts
integrations to those with s -derivative on the variation ow,,.

2 2 déw,
e, = Ny, =N, Pan N ds (3a)
I
2 2 9w,
I b :Eﬁan n, n, —n;, P, ,——ds (3b)
ns,n 2 1 1 2 dn
r
| 992 P a5W°o|
Pss s X, ''Xy ' SS 95
I
0
= [2 nxznleSS é‘WO}F— o 2nX2nXl P, ow,ds = (3¢)

- [2 Ny, Ny Pss §WO}F—§% 2n, n, Py ow,ds —fﬁanznlessvs oW, ds

r
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r
= [ ng —ng F—§ ng —ng ds = (3d)
r
2 2 2 2 2 2
= [nxl—nX2 ]F—§ Ny, — Ny, ds—Lc}g Ny, — Ny, ds
I I
I Il | Oow
lswy,n = i‘l arin nfl _niz ;4 + g ;6]’ 3n0 ds (3e)
r
I swy,s = i{ans 8r3s j =
0 0s
a P
| | P | |
= 1Ay, — +8rg — Wy | — P —{arys — + g — OW, ds = (3f)
p rY 0s p p

I I oa I o0a I
= {aTls — + Arg, — OW, _§[ e _6] SW, ds
p p rY s p os p

The previous choice to perform by parts integrations only along the curve 77, namely
following the arc s through the tangential derivatives ddw, /s, is intentional because it

gives the desirable boundary terms and concurrently by this way the number of the total
boundary conditions of the problem is reduced to the desirable. The last is attained by
eliminating the derivative 9ow,/0s from the boundary terms, as seems below.

We assume here that the end points of the closed curve 7° coincide or when terms inside the
brackets - _ are equal to zero, namely,

P, =P, = 4 's g
= = Qrgg — T Args — = (4)
p P

SS

Then the first terms of the right-hand side of the relations (3c), (3d) and (3f) are eliminated,

| |
2nX2 nX1PSS 5WO] - [ ni B n)%z ] = {aTlS _4 + aT3S _6} 5WO = O (5)
r r p p -
Thus,
P

I Pss,s - E 2 an nX1 PSS é‘WO ds — 2 an nX1PSS,S 5WO ds (6)

r r
I = —§ ng —nk ds—§ ng —nZ ds @)

r r
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oa |
I(Swo,s = _f‘l aTsls ;4 -+

8a‘T 3s I
s

yo,

r

—6} Sw,, ds

(8)

Finally, substituting the relations (3a), (3b), (6), (7), (3e), (8) into the Egs. (2), we get

t
w w
3h2f§ % ds dt + %izf§2 n2 P, ——dsdt +
fShZ 2n, n, P ow, dsdt f § s OW, dsdt —
—fg%gf dsdt—f?’%ggnfl— dsdt —
aow Oary | Oa |
f zfﬁ ar,,(n2 —n j)—“ Od dt -+ f 295‘ e 2 T8 8 sw, dsdt —
3h ! 2 3h Js p ds p
16 4 . ..
[ 69h_4 3h2 4]{ﬂ><1(n><1 nx2)¢n+ nx2 (nx1 +nx2)¢s} +
16 ,  OW, 8\7\'/0 I0
+1 ng —ng,)—— + 2n,.n — Cq
69h [( Xq xz) an Xy U Xg 95 }
t2
4 , » | 9Py, dP )
- ffﬁ + e (ny, —ny,) o + +2n, nXl owydsdt =0 =
t, I
+n,(?-1)Q,—n2Q.,+n:R i—n (n? —1) R, i
Xp VX sz X, <SS X, ' 'SS h2 Xy \VUX h
4
+ nxl(nilil) Qn. — nlenn+ nil Rnnﬁf nxl(ni1 DR ZF

[Gathering separately the boundary terms associated to the variations sw,, dow,/on and

also writing the derivatives of the thickness-integrated quantities in a more abbreviate form,
we get the final result of the boundary terms]
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| 16
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+
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dary |
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e) (Ponn +

+
2 2
nx2 Qss + nx2

2 2
nx1 Qnn + nx1

7nx2 ¢n+ nX2 nx1+n

|+

+2 nx2 nxl(Pns,n + Pss,s)} +

X, ¢s

o,
X 9s

8
3n?
4
3h?

X, nx1 ss,s +

2
X3

(2 —n2)

R

ss .2
h2

Rnnpf

darys g

4
ags p

P, +2 n,n

[.6

16
oh*

4
3h?
16

+|69h—4

4 0
—{2n,
3h? d{

,1) Qsz —

_]_) an —

4
3h

o]

{(nxl— n’ )Pnnn+2(n —

2

s

X1

)

Xz
xl}Pss +to 7

2 2
nxz Qss + nx2 Rss Fi

2 2
nx1 an + nx1 Rnn h_z_

aaTls |_4

+ darg, lg
s p

85_

0
0
P

oW, dsdt =0 =

ow, dsdt =0

After this demanding separation, we appear again the boundary terms related to the variations
o ¢, and & ¢ in order to illustrate the total Variational Equation [Eq. (1)] in the final form

on curvilinear coordinates.
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4 l, Iy || 90w,
f3h_2§ nf —n,, P +2 Ny, Ny, nf - Ny, Pns_{aTln Ny ny — +arsy an dsdt —
t, r

16 4 .
69h_4_3h_2 4 X, nxl_nx2 ¢n+ nX2 nxl"'nx2 ¢s +
16 ) , OW, ow,
+lg—Fyn, —n;, — +2n, n, — +
69h4[ Xy Xy an Xo Xy s
4 2 2 2 2
+ 3h_2{(n)<1 - nxz)Pnn,n + Z(nxl - nxz) + 2n>(2 ﬂx1 Pns,n +4n><2 nx1 Pss,s} +
tZ
4 0 4 2 2 -
/9 a7 oM NP g T Mk oW, dsdt —
t, I 4 4
2
+ nxz(nfl_l) Qs — anst_l' niz Rss h_z_ nxz(nx1 D Rsz? +
2 2 2 4 2 4
+ nxl(nx1 -1 Qn: — n><1an + nx1 RnnF_ nxl(nx1 _1)anh_2 -
B P
3n2| os p s p )
t, nxl(nxl_nxz)(nx1+nxz)2 + 2nfl nxz(nxz_nxl)Mss +
- fgg + (@nin, —n,nd —ni+ 3n?n7) + dsdt —
t, I
4 |y (0, =0y )0y +nxz)2 P, +2 n)fl n, (N, —n,) P — .
3h? — (nf +n nd —3nZn2 —3n3n, )P, %
t, nx2 (nx1 _nxz)(nx1 +nx2)2 + 2an nxl(nx2 + nxl) Mss +
- fgg + (8n; n; —ng +nn, —3n,n}) - L5 ¢, ds dt=0
t, I
4 nx2 (nx1 _nxz)z(nx1 +nx2) Pnn + 2 nfz nxl(nx1 +nx2) Pss - T
3h? —(ng,—ny n, —3nin2 +3n, n})P, o

As seems from the last version of the variational equation, the total number of the boundary
conditions is four natural boundary conditions with primary variables ow,/on, w,, ¢, and

¢.. Each of the previous corresponds to four essential boundary conditions. Thus, to derive
the essential and natural boundary conditions we follow the process explained below.

Now we invoke the fundamental arguments of the Calculus of Variations in order to extract
the boundary conditions from the last version of the Variational Equation including only the
boundary terms. The following process is presented extensively on the Lecture Notes of
Functional Analysis, G.A. Athanassoulis (2016) “Necessary Conditions of Extremum of
Functional” and “A further study of the Variational Problem as for integral type functional”,
as well as on the book of Gelfand 1.M., Fomin S.V. (1963), “Calculus of Variations” .

First, we assume that ow, / on is arbitrary om the curve 7", for arbitrary interval [t,, t,] and

keep the restrictions ow, = o6¢, = op, = 0. Thus, the last equation is converted to
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2 2 2 2

) , Iy Il || 9OwW,(s;t)
nxl_nx2 P + 2 Ny, My, nx1 _nx2 Pos =1 @ nx1 _nx2 — targ — ds d

an

t =0

ty
Jad
3h?
t, r
y 0ow,(s;t)
on

and using the arbitrariness of the variation d6w, /on on the curvilinear domain 7" x [t;, t,],

we find the first natural boundary condition as for the flexural response of the problem of
TSDT,

| |
2 2 2 2 _ 2 2 4 6
nxl_nx2 Pnn + 2 r]xz nx1 nx1 - nx2 Pns = 8ty nx1 _nx2 — t Arsy ; (ga)
Now, due to the Eq. (9a), the Variational Equation is diminished to the below
16 4 . .
[I69h—4—3h—zl4] N, Ny —N,, &, + Ny, Ny +ny, o +
16 5 , O oW,
+lg—Fy N —n, — +2n, n, — +
69h4[ X, X, an Xy Xy os
4
* 3h_2 nfl - nfz I:)nn,n +2 nfl o nfz T 2n><z Ny, Pns,n +4nxz My, Pss,s +
t2
4 0 4 -
f§ T 37 5s MM P 3 ne —n:¥. + Low, dsdt +
t, I 4 4
+ nx2 (nfl_l) Qsz_ nfz st+ nfz Rss h_z_ nxz(ni1 _1) Rszh_z +
2 2 2 4 2 4
+ nxl(nx1 _1) an_ nlenn—'_ nx1 RnnF_ nxl(nx1 _1) anh_z -
4 |oa | oda | |
- — ‘Tls _4+ T3s _6 - CTO_O
3h Js p Js p P
2 2
y N Ny, =Ny, Ny +0y + 2nXl N, N, —nNy M, +
+ f§ +3nin, —n,nd —nf+ 3n?nt + dsdt +
t, I 2
4 —ny nx1+nx nxl_nx Pnn +2ninx2 nxl_nx2 Pss -
+3h_2 4 3 2 .2 3 _T5¢”
Ny, + N N, —3n ne —3n, ny Py
2 2
5 N, N, =Ny, N +nyg + 2nX2 n, N, +n, M, +
+ ff + 3n{n; —nj +n’n, —3n n} — L5 ¢, dsdt=0
t I 2 2
nx2 nxl_nx2 nx1+nx Pnn + an2 Ny, Nx +nx1 Pss - T
Y] - op
3n — ng —nin,—3n;n; +3n, n; P, )
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Removing the restriction 6w, = 0, assuming the arbitrariness of the function sw, and of the
interval [t,,t,] and taking into account the restrictions o¢, = ¢, =0, we derive the

following
16 4 .. ..
69h_4_3h_2 4 nx1 nxl_nx2 ¢n+ nxz nxl_{_nx2 ¢s +
16 2 2 dWO 0
*'6%—4[ MM g T2 e |
4
+ 3h_2 n)i_ nf I:)nn,n"—2 nil_ n2 "'an2 nx1 Pnsn"“"ﬂxz n><1 Psss +
ty
4 0 4 N
f§ + 37 o 2n, n, Py +3h—2 nfi—nfz} + oW, (s;t)dsdt =0
t, I 4 4
+ nxz(nfl_l) Qsz_ nfz st+ niz Rss h_g_ nxz(nil_l) Rszh_z +
4
+ nxl(ni1 _1) an_ n)ian—"_ n)i Rnn F_ nxl(n)f1 _1) RHZF -
T R Py B
3h2| 8s p s p )

YV owy(s;t)

and using the arbitrariness of the variation Sw, onthe 7"x[t,, t,], we get the second natural

boundary condition as for the flexural response of the problem of TSDT,

16 4 . .
|69h_4_3h_2|4 nxl nxl_nx2 ¢n+ nx2 n><1—|—n><2 ¢s +
16 5 , OW, ow,
+lg—= — 4+ 2n,n, —
69h4[ o gn 2K Bs
4
+ 3h_2 nil_ ni I:)nn,n"i_ 2 ni_ n22 + 2nx nx1 Pns,n+4nx2 Ny Psss +
4 0 4 2 2
* 37 58 2n,, n, P 37 M M
4
+ nxz(nil_l) Qsz_ nizst"*_ nfz Rss 2 Ny (nfl 1) RSZF +
4

4
+ nxl(ni_l) an_ n)%lan—f— ni I:znnF_

4 |0a I oa I
_ — T1s _4 + T3s _6 + CTO_
3h Js p os p o)

Taking into account the Egs. (9a) and (9b), the Variational Equation remains just with the

terms,
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2

N N, Ny =N, N, +N, + an1 N, N,—N, My +
f§ +3nin, —n,nd —ng+ 3nn’ - dsdt +
b 4 [N (0, 40 )20, —n, )P, —|—2nflnxz(nxl— n,) P —
3n? — (g +n, Ny —3n;n; —3nn, )P, ~ Tonn
" n,, (n, —n )0, +n,)° + 2nf2 n,(n,, +n, )My +
+ f§ + @3n; n; —n; +n;n, —3n,n}) — 5¢. dsdt =0
b T 4 (M, (= )20 +n, )P + an2 n, (N, +n,) P —
 3n? - (n;‘2 —nfl N, — Sni1 nfz +3n, nfz) P, ~ Tops
Removing the restriction = 0, assuming the arbitrariness of the function and of the

interval [t;, t,] and taking into account the restriction 6 ¢, =0, we have

t, nxl(nxl_nxz)(nxl—i_nxz)2 + 2n§1nx2(nxl_nx2)Mss +
f§ +@n;n, —n,nd —n¢+ 3n’n?) + dsdt =0
t, I
4 _nxl(nxl +nx2)2(nx1 _nxz)Pnn +2n>§1 nx2 (nx1 _nxz) Pss - T
a2 - o
3h — (g +n,ny —3n;n; —3nin, )P, "
and using the arbitrariness of the variation onthe /"x[t;, t,], we find the third natural
boundary condition as for the flexural response of the problem of TSDT,
2 2
nxl nx1 _nxz nxl_i_nx2 + 2n><1 nx2 nx2 _nx1 Mss +
+3nin, —n,n; —n;+ 3n%n; + (9c)
2
4 _nx1 nx1 'i_nx2 nx1 _nx2 Pnn 'i_znflnx2 nx1 _nx2 Pss -
o = Ton,

4 3 2 52 3
N, + N, Ny, —3n, ne —3n, ny P

where T Sn defined on the section 5.2.4 and gives the total data terms of the above boundary
condition.

In conclusion, taking into account the Egs. (9a), (9b) and (9c), the Variational Equation
remains just with the following term
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IE;
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4 nxz nx1
3h?®

nxl + nX2
4 3
—n,, +n, n,—3n

2

X3

4 3

X1

2 12
%, My, — 3n, ny +3n, ng

3

P

n

S

2
nxl"'_nx2 I:)nn + an2 nx1 nxz"f—nx1 Pss

o T5¢7s

O¢,dsdt =0

Removing the restriction 6 ¢, = 0, assuming the arbitrariness of the variation ¢ ¢, and of
the interval [t,, t, ], we derive from the above (last) from of the variational equation

. +2nf n,
ffﬁ 3 5S¢, dsdt =0
t, I

2
nxl—}_nx2 Pnn + 2nx2 nx1 nxz_f—nx1 Pss

2 2 3
X nx2 - 3nx1 nx2 + 3nxl nx2 Pns

Xz 1

vV S ¢,

and using the arbitrariness of the variation ¢ ¢, onthe 7"x[t,, t,], we find the fourth natural
boundary condition as for the flexural response of the problem of TSDT,

2

2
nx2 nxl_nx2 ﬂxl—knx2 + 2nx2 nx1 nx2+nx Mss +
2 2 4 3 3
+ 3n, ng, —n, +n;n, —3n,n, — (9d)
2 2
4 nx2 nxl_nx2 nxl_l_nx2 I:)nn + anznx1 nx2+nx1 Pss o
~ 3n2 4 3 2 2 3 = Top,
— Ny, =Ny Ny, — 3nxlnxz+3nxlnx2 P,

where T 50, defined on the section 5.2.4 and gives the total data terms of the above boundary
condition.

To compare easier the form of each natural boundary condition of the flexural response of

model TSDT, we repeat them below

I 6
— (9a)
o

I
2 2 2 2 2 2 4
(nxl_nxz) Pin + 2 Ny, Ny, (nx1 _nxz) Pos = aTln(nxl_nxz) ; + 8rsp
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6. Equations of motion of the TSDT in terms of displacements

As we have aforementioned on the closure of the section 4.3, it is time to use the relations of
the stress resultants (section 4.3) and to substitute into them the relations of stress in terms of
displacements [Egs. (1) - (5") of the section 4.2.1 or Egs. (1) - (5) of the section 4.2.2], in
order to express the stress resultants in terms of the displacement field of the problem of
TSDT. Thus, we get the following relations as seems on the sections 6.1 and 6.2 in case of an
orthotropic but in-plane anisotropic and in case of an orthotropic but in-plane isotropic
material respectively.

6.1. Equations of motion of the TSDT in terms of displacements for an orthotropic, in-
plane anisotropic material

The thickness-integrated forces of the aforementioned relations of the section 4.3 are
converted to the below, due to the Egs. (1°) — (5°) of the section 4.2.1,

Myt = My = fan Xy dX; =
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O0X, 3h° 0°x,

1-v,V, | OX, 3n?

E, ou, |y
1=V Vg | 0% p

Yo 4K oo )4 0tw|
p 3ph?|dx,  p 3n? 9%,

vV E; |0y, 1 % 4% o9, % 4 %

—_ + AN
1=V, vy | OX, p

+

p  3ph?|ox, p 3h% 9%,
E, ou, 1, N Vo, B 0vg |
1-VipVy Xy p 1=V OXp p

D)
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E, [0u, e 4x3 | 09, . 4 0%w,
X _ — — —_—
M1V, vy | OX > 3n?| ax, °3h? 9%,
f< 4 2 Uxg =
“hj2 Va B |0V X, + |x2 Ax3 | 9¢y ;ia Wo
1V, Vy | OX, 3h? | Ox, 3h? 9°x,
E, |ou, K (1, 41,)04, 1, 4 0w, .
1,V | OX, p p 3ph?]dx,  p 3h? 9%,
. VaF (9V0£+ 1, 41,004, 1, 4 9w, |
1-V,Vy | OX, p p  3ph?)ox, p 3h? 9%,
E, l, 41,104, 1, 4 0%w, N
C1-vpvy [l 3ph2)0x,  p 3h% 9%,
VaEs (1o 41,108, 1, 4 0w,
1-v,V, [l o 3ph?)0x,  p 3h% 9%,
E, [0u, s [y 4x2 ) 04, 6 4 02w,
llv, vy (0% 0|70 3h?|ax,  °3h? 9
f 2 2 >dX3 -
2 Va Er |0V &+ |x 4x3 | 99, 6 4 0°Wq
1—V,V,, (0%, ° 3h?| ox, °3h% 9%,
E, au°%+ I, 41,109, 1, 4 02w, .
C1-v,Vy 0%, p p 3ph?]dx,  p 3h? 9%,
. VB, |ov, V4 N I, 41,09, I_eiazwo _
1-V,Vy |OX, p p 3ph?Jox,  p 32 9°x,
E, I, 41, ) 0¢ le 4 0°w, .
C1-vpvy [l 3ph?)ax,  p 3h? 9%,
aEs (L 41 )04, 15 4 0w
1-v,Vy [l p 3ph?)0x,  p 3h% 0°x,
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Further,
N2 N22 h/2 1
M, =M :f022x3dx3_
P, P,, —h/2 X33
Vi, ou,, 4x2 ) 0¢, . 4 0°wg
h/2 T+ X |l=-3= 3302 52 1
1-v,V,y | 0% 3h° | Ox, 3h* 07X,
= f< X3 dX3 =
2 2
—h/2 + EZ 8\/0 1 4£ 6¢y 3i8 WO X3
1-vpV, [OX, O 3h?|ox, °3h?ax, ?
Vi E, |0y n _4L§ ¢y 3i82W0
M2l 1=V, v, | OX, |7 3n? ox, °3nh2 92,
N,, = f , , cdx, =
e 4 E, ov, . 1_4& o9, B 3i8 W,
1-v,vy [0x, |7 3h?| ox, *3h? 92X,
_ VeBs (g ly (M 4606 )5 4 0fwy |
1-V,Vy | 0% p p 3ph?|dx,  p 3h% 9%,
woty (4K o, K o o]
1-V,Vy [ OX, p P 3ph?| ox, p 3h? 9°%x,
_ v, E, du, I_0 E, 0v, I_O
1=V vy O p 1=V OX, p
L G WP\ L
M2l 1=V, vy [ OX O ° 3h?| ox, °3h? 9%,
Moz = f E, [ov ax3 | 04 07w, ||
"2 2 O, 4 x2 2|90y a4 O W
1—Vy,V,y |OX, ° ° 3h?| ox, °3h? 92X,
_ VnE, 8u0£+l_2_ 41, ) 0p 1, 4 0w,
1-VVy | 0% p p  3ph?]ox,  p 3nh? 9%,
E, 8v0£+l_2_4l4 Op, 1 4 Owy|
1—V,Vy |OX, p p  3ph?]ox,  p3h?acx,
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_ VpE, [Iz
1=V vy

Vi, E,

1=V, vy
E,

1-v,vy

_ VB ['4
1=V, vy

E,
1-VipVy

In addition,

4x35 09,

8xs 0°w,

S 3h?fox,

3h? Ox,0x,

3

09,

g,

oX,
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: dx.,
X
x§ 3

u,  ve|le (U 414 ) 09, . 99,
X, X, | p o 3ph?| ox, 0X, ou,
= G, = Y% | 5
B 815 0w, %,
3ph? X, 0x,
[(ou v 45 |(04y 09
hi2 — % + X 2 = -
ox,  Ox 3hejlox,  Ox
M, = fGG‘ . dx; =
“h/2 _ 8& 0" W,
3h2 Ox,0x,
(ouy, v | Y (1, 41, (04, 04,
e O0X, X, | p P 3ph?)lox, O0X,
: 81, 0°w,
3ph? 0x,0x,
& I, 41, \(og, 04, 81,6, 0%w,
- 0 3ph?]| 0x, 0X, 3ph? 0x,0x,
My Ovg| . 4x3|(o¢, 04,
hi2 —— t | X T X3 5 -
ox, X 3he |l ox,  0x
P, = fGe‘ 6 a2 dxy =
—h/2 _ 8& 0" W,
3h2 Ox,0x,
[(u,  ove) (e 4 (00 09,
e OX, X, | p p  3ph?||ox, X,
i 8, 0°w,
3ph? Ox, 0x,
. I, 4l \[0¢, 04,] 8Gsls 0w,
~ *lp  3ph?)lox, OX, 3ph? 0Ox,0x,
And also,
h/2 h/2
Qul _ | Qs f * lax fe & ¢ L o
—= = O e _——_— _
R, Ros) ., Z2xi J, 1TonE 7Y ax,
s 4x2 I, A4l ow
= | 61— ¢, +—2|dx, = G,|-2 - —=2 S
Q4 f 4 h2 ¢y Xg] 3 4 P ph2 ¢y 6X2

211

ov,
0X,

I
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Part B Section 6. Equations of motion of the TSDT in terms of displacements

I ax’ ow, 41, ow,
R4:fG4x G , + ax, dx3:G4I2—W ¢y+a (11)
—h/2
Finally as for the thickness-integrated quantities, we get additionally
Qs Qs h/2 1 h/2 4X§ ow, || [1
= = f0-13 2 dx; = f G, |1 2 Py + 2 dx; <
Rs Ris X3 aXl X3
—h/2 —h/2
" 4x? ow I, 41 ow
= | e |1-—=2| g, +—2|dx, = G, |2 ——2 || g, +—2 12
Q= [, hz][qﬁx e R e s (12
—h/2
T~ X4 ow | 41 oW
R. = | 6. X222 ¢, +—2|dx, = G, | — —2 +—2 13
: L//" |x hz][m o R e s 13

Now, we have already prepare the path to express the equations of motion of the plate
exclusively in terms of the displacement field of the problem of TSDT.

Substituting the Egs. (1) and (7) into the Eq. (3) of the section 4.6 and by substituting

ON ON E ou, | vV, E ov, |
g 1, — u 12:0:U'OI0—8 1 ‘o_o 21 B ‘o_o_

O0X, OX, OX; | 1=V, V,y OX, p 1-v,Vv, OX, p

ou ov, | |
9 [Se Tt o) g o
0X, ox,  0X
. E, 0%, I, Va B 0%, I, d%u, 0%, |1,
Uply — 2. . — = G| 57—+ — =0=
E 9% V,.E, 0% 92U BRY,

,OU.O . 1 . 0 N 21 =1 0 o . 0 + 0 _ 0 (14&)

Substituting the Eqgs. (4) and (7) into the Eq. (4) of the section 4.6,
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ON ON Vi, E, 0Ju, | E ov, |
IV, — 22 12=O:I0v0—8 12E; ‘o_o 2 ‘o_o_
ou Vg | |
_ 9, |Ho Kol lo)_ g
OX, X, OX;| p
. Vp,E, 9%, I, E, 0%, I, d%uy, 9%, 1, .
Vo — — - — = —=U=
Vp,E, 9% E, 0% d%u PRY
Py — 125> 0o 2 ; o . 0 i ol (14b)

Further, we replace the appropriate terms of the Eq. (5) of the section 4.6 with the Egs. (3),

(6), (9), (10), (11), (12) and (13),

4, 4 0y 99, 16 (0%, 0%,
LoWo — —=|le oz —la||zT 5| — Ve oz 52 2
3h 3h ox, 0%, 9h™ | 0°x, 07X
_ Q53 8Rz3i_ 0Qy3 8R13i_ 4 [0%Py 20°P, 0P, _q=
oX,  Ox, h®  0x,  0x, h? 3h%| 9%k, 0Ox,0%, 92X,
N 4 4 3% 0, 16 (0%, 0%,
LWy — =l la|| 7 T Y6 ond| a2 2 o
3h 3h ox, 0%, 9h™ | 0°x, 0°X,
| 41 ow 4 9 41 oW
_iGA[_O_ 22] b+—|| + 5= G4[|2——42 by+— 1| -
X, P, ph X, h< ox, ph X,
B | 41 ow 4 9 | 41 ow
el el oo st o]
X4 p ph O0X, h< 0x, p ph 0%,
E, I, 41, )04, s 4 0°w,
4 52 |1-VpVy [lp 3ph? ) ox, p 3h?% 9%x,
32 0°x| By [(1s 41, )09, s 4 0%w,
1-v,Vy [l p 3ph%)0x,  p 3h% 0%,
_ 4207 | (s Al )[04 04|  8Gls 0'wy |
3h2ox,0x| “|p 3ph?flox,  0x, 3ph? Ox,0x,
VpE, [(I,  4lg )04, s 4 0°w,
4 92 |1-VpVa|lp 3ph? | ox, p 3h? 9%x,
 3h2 9% : g 1| -7
2, Ea (Lo 416108, 15 4 0%,
1-vi,Vy [l 3ph%)0x,  p 3h% 0%,
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3h?( %30 Ylox,  ox, ®9h*|0%x, 0%,
I, 41, a¢y+62w0 4 I, 41, 0¢, 0w,
p  ph?)l dox, 8%, h2l *lp  ph?)| dx, 8%,
l, 4l, 8¢X+82w0 4| l, 41,)[0¢, 0w,
p ph?jlox,  9%x h2| >l ph?)l ox,  9%°x
By (La_ 41 10% ls 4 0|
1-vpVy [l p 3ph%) 0%,  p 3h? 9%,
Va B [(le 41, 0°p, _l_ﬁia“wo
1-v,Vy [l p 3ph?)0%°x,0x,  p 3% 9%,
. 1, 4l 0°p, 9°p, ~ 8G, s 0w,
Lo 3ph?)|0%x,0x,  0x,0%, 3ph? 92x,0%x,
Vi By ([l 4l 0°p, le 4 0w,
1-vi,Vy [l 3ph?)0%x,0%,  p 3h% 9%x,0°x,
E, Iy 416)19%, 15 4 9'w,
1-v,Vy [l 3ph%) 0%,  p 3h% 9%,
4 4 od, 09, 16 (02w, %W,
loWo———|le=—5—14 — g |——+——|-
3h 3h ox,  0X 9h™ | 0°x, 07X
G, 41,) 04, 0*w, +4G4 | 41,94, 0w, B
pl % h¥flox, 9%, ]| ph?l'? h?)lox, 0%,
G, 41,94, W, +4GS | 41,\[0¢, O%w,
pl° h¥)lox, 9%, | ph?? h2)lox, 0%,
4 E, | Al a3¢x_| 4 0w,
3ph?1-v,v, || * 3h%]9°x, °3h% 9%,
4 vuE I_4|6 °, 4 9w, |
3ph?1-v,v, || * 3n2)o%x.0x, °3h%0%x,0°X,
86, Al 0°p, 0°p, 8l 0w, B
3ph?|l * 3h?)|02%x,0x, 02x,0x,| 3h%9%x,0%x,
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Vi, B,

| 41, 0°, 41, 0w, .
Y 3n2 Ja%x,0x, 3n2 9%x,0%x,

4 [1=VipVy
3ph? . E, 416 10°%, 41, 0w,
" 3n2 9%k, 3h% o',

=q (14c)

1=V vy

Subsequently, substituting the Egs. (2), (8), (9), (12) and (13) into the Eq. (6) of the section
4.6, we derive the fourth equation of motion of the TSDT in terms of displacements,

1. —1 i—}—l £]¢ +i[| A4 ]%4_
2 %3n2 0 Pont)™ " 3n?l ®3h? Y ox,
4 oMy OMy, 0P, 4 Py 4

h2 ®  ox, dx,  0x,3n%  Ox, 3h?

8 16 )., 4 4 o
[|2—|43—+|6—]¢X+—2[| |4]—°+

hz " °on* 3n2| ®3n?  ¢) ox,
. I, 41, ow, 4 (1, 41, y ow,
| o h2)| ™ ox h2 °lp h2)| ™ ox
[ E, l, 41,0, 1, 4 9°w,| |
o | 1=vipvy |lp 3ph?)dx,  p 3h% 9%,
Pl VaBi (1 41,104 14 4 %W,
1-v,Vy || o 3ph?] 0x, p 3h? 9%,
9 |a l, 41, \[og, . 0¢,| 81,6, 0°w,
x| *lp 3ph?)lox,  ox 3ph? 0x,0x,
4 9 | 41 o¢, 0 8G. 1, 0%w
+ = —1G, | — ¢+ Pyl _ 0 0
3h* 0x, P, 3ph?]|0xX, 0X, 3ph 0Ox,0x,

E, I, 41, 04, g 4 0°w,
4 o |1=Veva|le 3ph?)ox,  p 3h% 9%,
3h® Ox vV, E; 0, g 4 0°w,
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3n? " fon? 3h2| °3n? X,
l, 4l ow 4 (1, 41 ow
+ GS — - 22 X —= 1.2 s : _42 ¢>< S

p ph X, h ph X,
E, I, 41,109%, 1, 4 9w,

1-Vv,Vy [l 3ph?) 0%,  p 3h% 9%k,
Vu By ([l 41, ) 9%, I, 4 0%w,
1-v,Vy [l o 3ph?) 0%, 0%,  p 3h? 9x,0°X,

. l, 41, \[o%¢, 0%, 81,6, 9w, N

“lp 3ph?)|o%x,  Ox,0x 3ph? 92x,0x,

4 [ (1, 4l
+ — Ge[—4— 62]
P, 3ph

0%, 0%p, 8G,ls 0°w,
D%,  Ox,0x 3ph? 9%x,0x,

E,

[l4 4|2]52¢X s 4 0°w,

1-v,V, || p 3ph%) 0%,  p 3h? 9%

N iz 12V [\ P P 1 2 P 1 3 [ _ (14d)
3h Vu By (1 41, ) 9%, 1 4 9w

1-vpvy (Lo 3ph?)ox 0%,  p

Finally, substituting the Egs. (5), (8), (9), (10) and (11) into the Eq. (7) of the section 4.6, we
derive the last equation of motion of the TSDT in terms of displacements,

1. —1 i+| £]¢ +i[i| _|]%+
2 "%3n% %on*)"Y  3n?(3n? ° *) ox,
4 OM,, OMy, 0P, 4 0P, 4
+ Q. — —R,, — — + + - 0=
Q2 ~ 1z Ras ox,  Ox,  Ox, 3n?  Ox, 3nh?

216



Part B Section 6. Equations of motion of the TSDT in terms of displacements

8 16 ) - 4 ( 4 oW,
anz leant) O Tz lanz e,

l, 41, ow,| 4 4l oW
G,| = - 21— 6,1, - +—
“[p phz][¢y o, | h¥ ‘' ph? 7y X,

[|2 41,

Vi, E,

p 3ph?

o | 1-Vi2Va

O3 E, I, 41, )04, 1, 4 0%w,

1-v,Vy ||l o 3ph?) 0x, p 3h? 9%x,
9 | & l, 41, \(og, 09, 81,G, 0%w,
o, | °lp 3ph?jlox,  ox, 3ph? 9x,0x,

4 9 1, 41,
w2 18| Tz
3h? Ox, p 3ph?]|ox, = ox

[|4 4|6]a¢x ls 4 0°w,

2%, a¢y] 8G, 1, 0w, ]

Vi, B,

Yo, 3ph?

4 9 |1-VVa

IO B (L 4l )0dy 15 4 0wy
1-v,V, [ p 3ph? | ox, p 3h? 9%,
8 16 ) - 4 ( 4 OW,q
L, —ly=——+ls=—|d, + =5 |=5ls— 1| =—
[2 *3h? 69h4]¢y 3h? [3h2 ° “] X,
I, 41, ow, 4 41, ow,
+ G, |l -—= — —G,|l, ——=|| ¢, + -
* ph2][ Y Uox,|  h? P ph? Py X,
Vi B, I, 41, ) 9°9, I, 4 0w,
o v | Tz Tz a2 | T
1-v,Vy L 3ph”) 0Xx,0x, p 3h° 0x,0°X,
E, l, 41, )0%, 1, 4 0w,
1-v,Vy [l 3ph?) 0%k,  p 3h? 9%,
. I, 41, \ o%¢, 9%, 81,6, 9w,
*lp  3ph?)loxox,  9%x, 3ph? 9x,0°x,
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+;L;6Fi_4%] 0%, 0%, 8G,lq amoj
3h2 | °lp Bph?lox,0x,  8%,| B3ph? dx,0°x,
VL E, |(1, 415\ 9%, g 4 Ow,
L4 1—V,Vy [Z_sphz]axzaxl_Z%_zaxzale -
o’ L[g_i]%_'_ﬁiagw
1-vpVy [l 3ph?]0%x, p 3h% 3%,

Let it be noted that the Egs. (14a) - (14e) are practically identical with the respective results of
the book of J.N. Reddy (2004), “Mechanics of Laminated Composite Plates and Shells-

Theory and Analysis” and are especially found on the Chapter 11.

(14e)

6.2. Equations of motion of the TSDT in terms of displacements for an orthotropic, in-

plane isotropic material

The thickness-integrated forces and moments, referred on the section 4.3 are converted to the

below, due to the Egs. (1) — (5) of the section 4.2.2,

Nl N11 h/2 1
Myt = My = ouiXs Xy =
R Py /2 x§’
ou, NV, 4x2\(0g, ¢
—— VvV — |+ X, |1— +v—2L|—
"o |lox, T ox, 3[ sh2||ox,  ox,| ||t
:fl—v2 o o Xy X3 &
2 _— 4 |90°w, vd Wy 2
3h?| 0°%x, 0°%X,
ou v 4x5 | (o 0
h/2 —2 + V—O + Xj 1— z ¢X \" ¢y —
E OX4 O0X, 3h OX, X,
N = ‘,/ﬁl—v2 Y o2 dx; =
2 i~ 4 |10°W, 0w,
3h?| 0°%x, d%x,
hi2 0 a 3 Ps Ps N2 N2
E Ug V, 4x35 || 0, a9, s 4 |0°W, 0w,
= 2 Ta. au + X3_ 2 . +V . - A3 21 A2 2
1-v / 0X, X, 3h< || 0%, X, 3h=| 07X, 0°X,
—h/2
~E du, +V8V0 |_0+ E_ 4% ¢, +V8¢y 4 azwo 5‘2W0 E
1—v? || ox, X, | p o 3ph?||ox, X, | 3h%| 9%x, %%, | p
E |Ou ov, |1
_ > |- 0 v : 0 _O (1)
1—v© | OX, X, | p
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ou ov 4x21(0 0
h/2 —2 V| + X, |1 z 7 v 21
M, = f 5 , , Xy dXg =
1-v 4 [0%w,  9%w,
—h/2 g3
X3 2 2 +Vv 2
3h?| 0%,  0°x,
ou, oV, L. 4x5 (04, 0¢
— 4V — X, + X |1— +v—L|—
ToE lox T ox, )P BT an?lox, o ox,
= fl—vz 52 52 dx; =
—h/2 _X4 4 WO WO
*3nh?| 9%, 0%,
e rl(ou, v axt)(0g, 04 4 (02w, 0w
0 0 2 3 X y 4 0 0
= v X X5 — v —X dx
1—v2f{ O, * X, 2 g O, * o, | *s3h?lox, 9%, ] :
“hy2
_E |[9ug +V8v0 £+ 1, 41, )[04, v8¢y 4 d2w, 82w,
1—v? || ox, X, | p o 3ph?||0x, X, | 3h%| 9%x, d°X,
__E 1, 4l |94, V@qﬁy 4l 0w, 02w,
1-v2|lp 3ph?)|ox, X, | 3h% p|0%x, 9°%x,
[ (ou o 4x2\ (o 0
h/2 _O‘|‘V—O +X3 1- ?; ¢X " ¢y —
E OX, X, 3h O0X, OX,
P, = f . x3dx, =
Rt o4 O%w, 0w,
32| 9%, 0%,
"C(ou,  ov ax\(04,  0¢ 02w,  9%w
= Ezf C v X3 X || v y—giz — 2| dxq
1-v OX, X, 3h OX, X, 3he| 0°x X
2 1 2
E_|[ouo , % %+ I, 4l \[0g,  09,) g a4 [0%w, 9w,
= v UAGET —-° =
1-v2[|ox, O, p | p 3ph?)|0x X, |  p3n%| 9%, %X,
__E (Y e )[04 04y) 4 )s o*w,  0%w,
1-v2|l p 3ph?)|ox, X, | 3h% p|o%x, 0%,
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Further,
N, N, hi2 1
My = My = fo'zz‘xs dx, =
P, P22 ~h/2 x§
ou, OV axz\( o¢, 0¢
h2 V—+ — |+ X, ?2’ V> 1=
E ox,  0X, 3h oX,  OX,
= fl .2 . , X5 rdX; &
L s 4| 0wy 07w, 2
X3 7|V 52 + 2 X3
32| 9%, 07X,
"Cl( ou, ov axz|( o¢, O¢ 4 | 9*w, 9w
N, = Ezf V‘—0+—0+X31— z vV— + y—x33_2 2°+ 20
1-v ox,  OX, 3h oxX,  0X, 3h X 0°X
2 1 2
_E [, 0us  av) s W 4K J0b 08, a4 [ 0%w, 07w,
1—v2|| Ox, %, |p p 3ph?|| Ox;  0x,| 3h%| 9%k, 0°x,
_E V@uo Ny | 1y
C1-v2| Ox, 9%, p
ou, oV 4x5\|[ o 0
h/2 — +— |+ Xs|1— 3 v 7 + 2 -
E oxX,  0OX, 3h oxX,  OX,
M,, = fl—v2 , , X3 OXg =
e s 4| 0wy 0w,
*3n2| 9%, 0%,
E Ll au, v axi\( 04, 04 4 0%w, 0w
= zf Vo X X o |V XS v 7| {0
1-v oXx;  OX, 3h ox,  OX, 3h 0%, 07X,
“hy2
__E |[, 90 9% £+|_2_ 4 )(, 08, 09)) 1o 4 o, 9w, )|
1-v3| Ox, O, ) p |p 3ph?J| Ox, 0x,|] p3h?| 9%, 9%,
E (1o A1) 94  Ody| 14 4 0w, 0°w,
1-v%|| p 3ph?f| 0%, 0x,| p3n?| 9%,  9°x,
ou, 0V, 4x2\( 09, 0¢
V— + — |+ X;|1— v + 2| -
o ax,  ox,| T 3n?| ox,  ox,
1-v . 4 [ 0%w,  9%w,
—h/2 3 v +
3h?| 9%,  9°x,
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h/2
E duy, vy . 3| o4, 04, o 4| 07w, 9%w,
= _— _— — — d —
1-v? f{ Yax, Ta T T |V ox, Tax, | Rt o, ok, ||
“hy2
) o l, 4l ) %) lg| 02 0°
_ E2VUO+ 0£+_4_ 62V¢x+ ¢y_42_ev 2W0+ 2Wo _
1-v X, OX,| p P 3ph Ox,  OX,| 3h° p| 9% 0%,
E (I 41 og, 0 4 .| 0%w, 0O°w
- 2 — ’ {¢y_ 2_6V,20+r20 (6)
1-vilp 3ph ox,  Ox, | 3h° p| 0% 0%,
In addition
N N, h/2 1
Mgt = (M, = falz Xz 10Xy =
P P, —h/2 x 3
du, 8v0 4x% (04, 04
hi2 + X3 1—— 1
8x2 Xy 3he J{Ox,  OX
= fG X5 1 dXs5
2 8x; 0°w, 3
3h? 9x, 0%, 3
ou, v 4x2 |(og,
h/2 S 2+ 3 i 4 + 4
oX,  OX; 3he )| 0%,  OX,
Niz = fG4 3 42 pdxg =
~h/2 _ 8& 0 "W
3h2 Ox, 0x,
My ) o A 09,
OX, Xy | p p  3ph?| dx, 8Xl du,  ovy| 1,
=G =Gl —+ |- O
8% 82W0 dXZ 0X1
 3phZ0x,0x,
ou, OV, . 4xi|[og, 04
——2 4+ Xy + xZ|1- +
"o lox, T ox, | ? 3[ 3h? ||ox, = ox,
M, = fG N dx; =
i _ 8xs 9w,
3h2 Ox, X,
| W L[l 41 (24, 99,
s X, X, | p p 3ph?|ox, 0Ox,
8l, 0%w,
3ph? 9x, 0%,
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ow,

oW, ]

_ o[l 4l a¢x+a¢y . 8l d%w,
p 3ph? ||ox, 0x, 3ph? 0x, 0x,
[ (6u ov 4x% o
hi2 — + x5 + x] 1__32 “
O0X, O0X, 3h* | Ox,
P = fG« 2 6 o2
2 Loyl _Ax 99, 8%y 0w,
|7 3n?|ox,  3nh2 ox,0x,
du, | W [l4 41, ]8¢X ¢,
R _ | — + - 3 _|_ _
_ G oX, X, | p p 3ph®J|Ox, 0x;
8l 9w,
3ph? dx, 0x,
_afle 4T a¢x+a¢y G 8l, 0°w,
o 3ph?|lox, 0Ox, 3ph? 0x, 0x,
And also,
h/2 h/2
Q.4 Qa3 1 4x2 ow,
= = fazs 2 (dXg = f Gll-——F| ¢+
R, R,3 X3 h X,
—h/2 —h/2
" 4x? oW G 4]
= | cl1-=3 +—Ldxy, = = [1,——= 42
Q23 f hz][¢y x, | > pl % n? Py X,
—h/2
i 4x2 Ow G 41
2 3 0 4
- Jola- oo o
—h/2

Finally as for the thickness-integrated quantities, we get additionally

Qs
Rs

Qi

-]

h/2 ¢

:jﬂel_

—h/2

h/2 ¢

—h/2

Qus
Rl3

}:

“h/2

h/2 1 h/2
dx, = G
f 0'13 1X§} 3 f l

h2

“h/2
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(8)
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Note that the above expressions of the thickness-integrated quantities are also exist on the
book of C.M. Wang, J.N. Reddy, K.H. Lee “Shear Deformable Beams & Plates-Relations
with Classical Solutions” and especially on the chapter 6.4.2. Although the appearance of the
Eqgs. (6.4.11a)- (6.4.11j) of the book differ a little from our Egs. (1) - (13), the last are verified
that after appropriate substitutions coincide to the expressions of the reference. For instance,
we present the proof of similarity of the above Eq. (2) and the Eq. (6.4.11a) of the reference.

From the Eq. (2), taking into account the moment quantities 1, = ph , I, = ph?/12 |
I, = ph®/80, 1, = ph’/448 and the flexural rigidity D = Eh®/12(1—v?), we get

" E [(I, 41, 0¢X+ od, 4 1,(0%w,  9%w,
— _ V — —_ —
Y12 p 3ph?)|ox, X, | 3h% p|o%x, 0%,
E |[1 40 4 pnP 0, 0P| 4 1 A 0w, | 0"Wq
1V A 12 347 80 [(oxg  0x, | 3p? F 80 (9%, 9%,
E h3 /{ h3 3¢x+ 09, /( h3 82W0 aZWO
_— —_— V A
1-vZ||12 3 8020/ ox, ox, | 3 8020| 0%, d%x,
8 0 0 0*w PR
— LZ [1_1] ¢X +v ¢y _1 > 0 +v > 0
12(1—v~) 5)| 0x, ox, S| 07X, 07X,
o) o) 0w 0w
_ 4D ‘¢X +v‘—¢y -b — — [reference book]
5 | 0x, OX, 507X 0X,

For a further example, we prove the similarity of the above Eq. (3) and the Eq. (6.4.11b) of
the reference,

0w,  0°w,
N2 +V a2
07Xy 0°X,

_ 4l
3h? p

9, 3}
¢ 09,
X, OX,

[|4 4l
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_E i/”/hs_ 4 /h/f) a¢x+va¢y 4 i/h/s azw0+ 92w,
1-VE|| g 80 34 p7 448 [|Ox,  Ox,| 3pT F 448 |07, 9%,
5 51(0 0 5 (02w d%w
= Ezh——ﬂh qux+v by| 4N V2| =
1-v<|(80 3 448)| 0x, OX, 3 448| 0°x, 07X,
_ER|(h® A h? )[04 04| A h? (0w, 0w,
©1-v2||80 3 448112)|0x,  Ox,| 3 448112| 0%k, = 9%x,
_ _Eh® |(h’2 12 h® (04, Of,| 12 h®[O°W,  O°Wo ||
12(1-v?)[{ 80 3 112} dx, ox, | 3 112| 9%, 0%,
B Eh3 3h2 h2 8¢X +V8¢y h2 82W0 82W0 o
T 120-v¥)|| 20 28)|ax,  Ax,| 28|a%, 9%, ||
2 (9 0 2(9%w 0w
_ Dj|16h ¢X+V¢y_h_zo+vzo:
41 35 |0x, X, 710X, 0°X,
2p (0 0 2p[0%w 0°w
_ |4h°D |94y + v #y|_hD Vs [reference book]
35 | 0x, OX, 28 | 0%, 0°X,

Now following the same way as exactly on the previous section, regarding the orthotropic but
in-plane anisotropic material, we are going to derive the equations of motion in terms of
displacements for the orthotropic but in-plane isotropic material of the problem of TSDT,

Substituting the Egs. (1) and (7) into the Eq. (3) of the section 4.6, we get

ON ON
Ugly — — — —2 =0 =
X, OX,
ou oV, | 1 ou N | |
gl — -2 E2[°+v‘°—°—aeK°+‘°—°:o:»
OX; | 1—v© | Ox, X, | p X, o0X, X, | p
d%u d%v d%u %
Uy — & 2 2 =4 v —| - 2 >+ . 9 =0=
p(l—=v7) | 0°X OX, OX, 0°X, OX, 0%, | p
d%u D%V d%u PRY
pliy — E2 20+V o | E ‘20+ o | _ o | (14a)
(1-v?) | 0°x OX, 0X, 2(14v) | 0°x, OX, OX4

From the Eq. (4) of the section 4.6 in conjunction with the Egs. (4) and (7), we have
ON,, ON,,

I, V, — — =0=
00 OX, 0X,

I\'/'—(9 Ev
0 ax, | 1-v?

?uo N (?vo
Ox, 0%,

9 G ou N oV,
O0X, OX, X,
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0%, 0%,
v
X, 0%, 92X,

E

B d%u, 0%V,
(1-v?)

_.I_
oX, 0%, 9%,

E

g -
P o 2(L+v)

-0 (14b)

It is essential to note that the above two governing Egs. (14a) and (14b) are identical to the
respective governing Egs. (7) and (8) of the analogous section 6.2 of the CPT (Part A). This

fact was expected because as for the in-plane motions the two models (CPT and TSDT) have
negligible differences.

From the Eq. (5) of the section 4.6 in conjunction with the Egs. (3), (6), (9), (10), (11), we
derive the third equation of motion in terms of displacements,

oMW, 04w,
2 + 2
0%, 0%

. 4 4 16
oo = gz|legnz ' " oh*

0 OR,., 4 0 OR,, 4 4
. QZS + 23 Q13 + 13_

OX ox, h?  Ox ox, h2  3h?
2 2 1 1

0y 99,
ox,  OX,

D°Py 20°%P, 0°%P,,
2 + + 2
00X, OX, 0% 09X,

o¢, 04 %W, O
|0W0 _ 42[|6 42_|4] ¢y+ ¢x — 1, 164 . 0 + > 0
3h 3h ox, 0% 9h*|0°x, 07X,
o |ef 41, Owg 4 0 e, 41 ow,
—— =l +— |+ 55— 1= ||| +— || -
8X2|p[ ’ hz][¢y X, h2ox, | p| 7 h? ?y X,

0 |G 41 ow 4 9 |G 41 ow
S TP PR | g T 4 AT | P
X, | p h 0%, he ox, | p h X,

92 E (I, 4l dqﬁx+ od, 4 lg|0%w, 9w, N

—_— V J— R
0%, |1-v? || p 3ph?]| X, X, | 3h% plox, d°X,

4 292 I 41 ¢, 0 8l, 0°w
S Gt 62 ¢ n 9, B 62 ;0
3h OX 5 OX4 p  3ph® JlOx, 0OX, 3ph* Ox, 0x,

N o2 E (1, 4l o¢, 04, 4 lg[ 9w, 9%w,
L v ——— v

%%, |1=v® [ p 3ph?)| Ox, 0Ox,| 3h% p| 9%°x, 9°x,
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. 4 4 8¢.y ¢, 16 (0%, 0%,
LoVl — —|lg=—— 1, - —lo—|—= — | -
3h 3h ox, 0x 9h"|0°x, 9°X
G 41,\| 09,  O%w, 4 G 41\ 09, 07w,
——lo- 2 t =l 2 o
P h || ox,  0%x, h? p h ox, 9%x,
G 41,\[ 0¢, 0%w, 4 G 4\ op, 0°w,
—— o= 2 2|l 2 -
P h ox,  0°x he p h ox, 90X
4 E (la 4 2%, 0°p, 16 E g 2w, 2w,
3h21-v2{p 3ph?)|0%,  9°x,0x,| 9h*1-vZ p|d'x,  9°x,0%x,
_8G (1, 4l 2%, 9°p, 4G 8ly 9w, N
3h? |l p 3ph? Jlo%x,0x,  Ox,0°x, 3h? 3ph? 9°x,0°x,
4 E (1, 4l %, 9%, 16 E g 2w, 2w,
— = Y —|Vv =0 =
3n% 1-v2{ p 3ph? || 9%x,0x, 9%, 9h*1-v? p| 9°x,0%x, 09X, q
. 415)(04, 04| 1614(0%W, 0%,
loWo + 2 ly— 2 o 4 2 2 o
3h 3h2 ) ox, ox, oh* | 9%x, 9%x,
G 81, 161,\(0¢, 7w, G 8l, 161,\[d¢, O°w,
- IO__z 4 Y - IO__z 4 : 2 -
P h h ox,  0°X, P h h ox, 0
4 E | 415)(0%, 9%, 161y, E 9w, 2w,
3h2 p(a—v?) | * 3h?)|8%,  9%x,.0x,| 9h* p(1—v?)| 8%, %%, 0%x,
_8G [, _4l 9%, 9%, 8G 41, 0'w, N
3ph? 'Y 3h?)|0%x,0x,  0x,0%x, 3h? 3ph? 9%x,0%x,
4 E 41, °p, %, 161, E 9w, 9w,
Y N el 3 ! NPT 2 4 =0=
3h* p(1—-v?) 3h O°X, 0%, 07X, 9h™ p(l—v?)| O0°%x,0°% 07X,
e A 4l aéﬁ'y+a¢'5'x 161 [0%W, 9% |
°70 T 32|t 3n?)|ox, ox oh* |9%x,  9°x,
G, 81, 161, 0p, 0w, _ G 81, 161,)( 99, RITR -
pl % h2ht |l ox, 0%, p° h?ht o 0%
_ 4 26| 4l 0°p, 9°p, 161, 2G [0%w, . 0w,
3ph2 1-v | * 3n%]|9%,  0%.0x,| 9ph*1-v|d%,  9%,0%,
_ 86 [, A4l 0°p, 0°p, 8G 41 20%w, N
3ph? | % 3n2)|0%x,0x, 0x,0%x,| 3h? 3ph? 9%x,0%x,
4 26 41, 0°p, 0°%,| 1613 2G 0w, 0w,
- v A | e 3 4] V32 2 4 =a=
3ph® 1-v 3h 0°X, 0% 0°X, 9ph™ 1-Vv | 0°%x,0°%, 07X,
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) 4 41 \(04, 04, 161,02, oW
3h 3h= )| Ox, Ox, 9h™ | 0°x, 07X
G 8l, 161, 0, 0w,
—=|ly——+— +—+ - -
[0 h?  h? Ox, 9%,
8G 1 I 4'6 03¢x 83¢y 03¢y 83¢x
3ph? 1—v | * 3n%)| 0%, 0%, 0%0x, 02x,0x,
321,G 1 |0*w, 0w, 0 *w,
4 roi 2 2. T 3 =4
9ph™ 1-v | 07X 00X, 0% 07X,
or
4 41.\(04, 04, 161
oWy + —|1,— L+ - AW, —
0o 3h2[4 3h2][ax2 ox, | 9nt °
G, 8, 16l a¢y+a¢X+AW -
ol ® h% htf|lox, ox, 0
(14c)
8G 1 0%, 0%, 9%, ¢ |,
3ph21-v | * 3n%)| 0%, 0%, 0%0x, 02Xx,0x,
321,G 1
64 2WO =q
9ph™ 1-—v

At this moment it is convenient to compare the form of the third governing equation of
motion of the TSDT model with the corresponding of the CPT model. Thus, recalling the Eq.

(9) of the section 6.2 of the Part A and finding the common terms of those equations inside
the above Eq. (14c), we get

4 41.\(04, 04, 1 ph®
oWy + —5|1,— Ly - = AW, —
oo 3h2[4 3h2][6x2 ox,| 28 12 °
8l 16I 0
_& lo— 22 ¢y+ 09, +Aw, | —
Yo, h OX,  OXy
3 3 3
8G ) 0%,
I, — y+ : Py + = 4 +
3ph 1-v 6x1 8x2 0°X, 0%, 07X, 0%,
1 1
— AW, =
21 1-v? 0 = A

Consequently, we notice that the red colored terms are exactly the same consisting the Eq. (9)

of the section 6.2 of the Part A, namely the last (third) equation of motion of the model of
CPT.

Substituting the Egs. (2), (8), (9), (12) and (13) into the Eqg. (6) of the section 4.6,
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8 4 4 o,
1, — | ) | — 1 +
[2 ‘3 ]¢ 3n? [ ®3n? ](‘3x1
4 oM oM oP,, 4 oP,, 4
+Q13——2R13— 11_ 12+ 12 . + 11 - :0:>
h X, o0X, ox, 3h 0x, 3h
8 4 (4 W
1, — I ) lg—s — | +
[ 2~ lagnz ¥ ]¢ 3h2 [ 53h? 4] X,
G 8l, 161, ow,
+ =l ——+ o i
p[ o~ hz e )|? X,
E [(l, 41, )\[0%, 0° 4 1,(0°w 0°w
) 2 [_2_ 42] ;2¢ TV fﬁy 2 4V ‘20 -
1- p  3ph”)l0°x, OX, 0%, | 3h 9°x, 0%, 0°X,
NI 0%, 0%, | c 8l a3w0
p 3ph? [|0%x, 0Ox,0x 3ph? 0°x, 0x,

0%, 0%,
dDx, OX,0%,
0°g, 0°

2¢ Ly ¢y 42
0%, 0%, 0%, ~ 3h

8l 03w
—G 6 O’

4 l, 4l
+ — -
3h? p 3ph? 3ph% 0%x,0x,

4 4'6
p 3ph?

3h? ‘1— 0%, 0x,0°X,

6 [0°w, RN ]
+V =0=

8 4 4 ow, G 81, 161, ow,
1, — | ) lg— — 1 —2 + 2, — 2+ 2| g +—>
[2 ‘gz T ]¢ 3h? [63h2 ) ox, p[ I A 1 X,
E (I, 0%, 0%, 4 E .0, 93w,
— R — V - £ J—
1-vilp 3ph?)|0°x,  Ox,0x,| 3h?21-v?® p| 0%, Ox, 0%,

8l, 0w
42 - ‘O +
3ph® 0°x, 0x,

0%, az¢y] 4 _ 8l, 0w,

9%, 9%,
d2%x, 0x,0x

G 1, 41,

p  3ph?
ERS UL
3n? | p 3ph?

E 4 (I,
T 7anz| T aan?
1-v°3h° | p 3ph

+
D%, OX,0%,| 3h?  3ph? 0%x,0x,

2 N2 N3 a3
0°¢, 0%, 0w, ()WO]:O:

v E 16 I
d%x,  Ox,0x,

1-vZoht p

0°x, Ox, 0 °X,
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8l, 161;). 4 41, \ oW, G 8, 16l ow
e e [ L P Bt el LR S e o | LR ewnll B
3h? " oh 3h 3h2 | ox, h h o,
4 E 4l 8G 415 0w,
T i T3onz |4 T3 ot on,
p(L—v7) P X3 OXy

G _8I4+16I6 0%, 0%, __E _8I4+16I6 %, V02¢y PN
pl 2 302 ont o2, x,0x | p(-v)| ? 32 " on* Jlo%x,  Ox,0x,
8l, 161.).. 4 41, ) oW
2 2"” 46 X aqn2 | 4 _g : +
3h?  9h 3h 3h? | ox,
G 81, 161, ow,
+ = |lg——+ .+ +
ol % h? o nt X,
L 8G || CAlg )| 1 0w, v 0w,
3ph?2 | * 3h?|1-v 9k, 1-vdx,0°x,
. 8G C4lg) 9w, G _8I4+16I6 82¢X+ 0%,
3ph? | % 3h?Jo%x,0x, pl| % 3h%  o9n* ]|k, ox,0x,
_EI _8|4 16'6 2 82¢x 2V 62¢y —0 =
pl'? 302 " oon* J|1—vaix, 1-—v x,0x,
8, 161,). 41, oW
Iz__:+ 46 ¢x_i2 |4——2 :
3h?  9h 3h 3h? | ox,
G 8l, 161, oW,
— g —— +— || +— | +
p[ ° h? o hd %,
14d
. 8G |, 41,) 1 [9%w, 0w, (14d)
3ph?2 % 3h? J1-v 0%,  ox,0%,
8l, 161, 0° 0° 0°
_ & I, — :+ 46 2¢x+ : 2¢X Y i =0
P 3h 9h™ Jl 0°x, 1-voO°x, 1-v Ox,0x,

From the Eq. (7) of the section 4.5,

[| —1 i—}—l £]¢ +i[i| — ]%+
2 "%3n?  °on*)”Y  3n2(3n? ° *) ox,
oM oM OP OoP
+ Qs — iszs - = - =+ 42 -+ 42 “=0=
h X, 0X, 3h< 0x, 3h* 0x,
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. i—i—l £¢ _|_i i| _1 O
2 *3n2 0 Pon*)"Y " 3n?(3n? * ) ox,
G 41 ow 4 G 41 ow
s IO__?_2 ¢y+_0 - 2|l 24 y ‘_0 o
P h X, he p h O0X,
0| E I_2_ 41, V0¢X+0¢y __E I_4 4 V02W0 RA B
ox, |1=vZ | p 3ph?|| 0x, Ox, 1-v? p 3n2| 9%, 0°x,
_ 0o (te_ Al )[04 09| . 8l 9°w, .
OX, p 3ph? ||lox, Ox, 3ph? 0x, 0%,
I, 41, (o o) 8l, O°w
_'_izi Glie_ 62 ‘¢x ¢y | 62 I
3h“ 0x, p  3ph” J|Ox, OX, 3ph< 0X, 0%,
4 9 E (1. 4l Va¢x 9, 4 E g 0w, 0w, 0
3n20x, [1-v? | p 3ph? || Ox,  Ox, 3h?1-v? p| 9%, 0%,
8l 161, .. 4 4 oW G 8l 161 ow
'2__i+_f y _2[_2|6_|4]_0+_ '0__22+—44 ¢y+_o -
3h?  9h 3h? (3h X, p h h OX,
__E |, Al ; 0’p, %9, E 41, | 0w, 0w, -
pA—vA | 3h?]| ox,0x,  0°x, p(1—=v?) 3n2 | Ox,0%%, 0%,
G| 4l %9, 0%, 8l, 0w,
p |2 3n%)|ox0x, 02X, 3ph? 0x,0%x,
.G 41, 1615 0%, 0%, 321, 0w,
p |3h2  9h* Jlox,0x, 92X, 9ph* Ox,0°x,
E (41, 161, 0%,  0°p, E 161, 0w, 0w, 0
— Vv — Vv =0=
p@—v?)(3h?  9h* || Ox,0x, 0%, p@=v®) Ot | Ox, 0%, 07x,
8l, 16l;). 4 41 00, G 8l, 161, ow,
1, —— - I, — Ny ——= —
[2 3h2+9h4]¢y 3h2[4 3h2]3x2 ol T T ¢y+8x2 *
4 E 41 9w, 9w, 8G 415) 0w,
+ 2 2 s~z ||V 2 3 + 2 Iy — 2 2,
3he p(1—v“) 3h X, 0%, 0°X, 3ph 3h* ) Ox, 07X,
G 8l, 161\ 9%, 0%, E 8l, 16l 0%, 0%,
- =53 Z 2 - 2|27 on2 i | A 2 =0=
P 3h 9h" J|Ox, 0%, 0°x pl—v*) 3h 9h OX, 0% 07X,

or
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8l, 16l

. 4 414 oW,
2= o2t 4 |Yy T G2 |4 Sn2
3h 9h 3h 3h

OX,

N G | 81, 161, +5W0 N
ol % h?  nt Y ox,
. 8G |, 41\ v 0w, . 1 0w, 0w,
3ph? % 3h?)|1-vox,0%, 1-v %, 0x,0%x,
G _8I4+16I6 0%, 9%y |
pl 2 3h2 on*||ox,0x, 92X,
8l, 16l 0° 0°
_ZG |2— 2_{_ f \" ¢x n 1 2¢y — 0 =
Yo, 3h 9h™ J|1-v OX,0x; 1-v 97X,
8l, 16l1,).. 41,) oW
IZ__2+_f ¢y_ 42 Iy = g :
3h? " 9h 3h 3h? ] ox,
G 8l, 16I4] oW,
+ 2l — | +
p[ ©h? o oht )Y o, "
€
. 8G || CAlg) 1 [ 9w Jr(93W0 -
3ph? [ % 3n?)1-v|ox,0%, 0°,
G 0%, 14+v 0%, 2 0%, 0

8l, 1614
- — |52t 4
P 3h 9h

%, 1-vox,0x, 1-v 9°x,

Let it be noted that the Egs. (14a) - (14e) are practically identical with the respective results of
the book of J.N. Reddy (2004), “Mechanics of Laminated Composite Plates and Shells-
Theory and Analysis” and are especially found on the Chapter 11.
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7. Boundary Conditions of the TSDT in terms of displacements

Following the same process, as exactly on the previous section 6, where we derive the equa-
tions of motion in terms of displacements, but at this moment to derive the boundary condi-
tions in terms of displacements for both cases of the material of the plate.

As we have aforementioned on the conclusion of the section 4.3, we use the relations of the
stress resultants of the section 4.3 and substitute into them the relations of stresses in terms of
the displacements [Eqgs. (1°) - (5°) of the section 4.2.1 or Egs. (1) - (5) of the section 4.2.2],
meaning to express the stress resultants similarly in terms of displacement field of the prob-
lem of TSDT. Consequently, we get the following relations as seems in the sequel on the sec-
tions 7.1 and 7.2 in case of an orthotropic in-plane anisotropic and orthotropic in-plane iso-
tropic material respectively.

As we have aforementioned on the conclusion of the section 4.3, we use the relations of the
stress resultants but now transformed to the curvilinear coordinate system on which the
boundary conditions are derived, as shown below.

Nnn h/2 [O np Mnn hi2 | O nn
N, :f o rdz, M, :f o 12dz,
ns EE [ M s EE [
I:)nn hi2 | O np
3
Post = f o2 dz,
ns 2o
h/2 h/2
Qsz 1 an 1
== GSZ 2 dZ, - Unz 2 dZ
Rsz z an A
“h/2 “h/2

The rationality of deriving the boundary conditions in terms of displacement of the model of
TSDT, is corresponding to those followed on the section 7 of the Part A for the model of
CPT. However due to the much more and difficult calculations demanded here, we are not
going to proceed to final results for the boundary conditions, but we describe accurately the
path should be followed in order to their the final forms.

Thus, substituting into the above thickness-integrated quantities the stress-strain relations,
given on the section 4.2.1 and 4.2.2 for an orthotropic but in-plane anisotropic and an ortho-
tropic but in-plane isotropic material respectively, we manage to express the above stress re-
sultants explicitly in terms of displacement field (of the curvilinear coordinate system).

After that we can get the following form of the boundary conditions of the problem of TSDT,
as seems on the sections 7.1 and 7.2 in case of an orthotropic in-plane anisotropic and ortho-
tropic in-plane isotropic plate respectively.

Note again for convenience reasons that the boundary conditions in terms of thickness-
integrated quantities, which will occupy us on this section are the Egs. (24a) and (24b) of the
section 5.2.1 and the Eqgs. (9a) - (9d) referred on the section 5.3.
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7.1. Boundary Conditions of the TSDT in terms of displacements for an orthotropic, in-
plane anisotropic material

As for the natural boundary conditions, we follow the same process to get the equations of
motions in terms of displacements, but now using the Egs. (24a) and (24b) of the section 5.2.1
and the Eqgs. (9a) - (9d) referred on the section 5.3.

First, taking into account the Eqgs. (1) - (5) of the section 4.2.1, the substitute into them the
analogous components of the displacement field (u,,, u,,, Wy, @,, @) in order to derive

the stress field (o,,, 0, Ohss On,» O, ) applied on the curvilinear coordinate system.

E ou 219 2°w
o, = n 0n_+_21_422 ¢n_z3 42 2O
1-v, v, | On 3h<) on 3h* 0°n
v,,E. [0u 219 2°w
sn &n 0s . 1_422 Ps L3 42 2 0 (1a)
1-v, Vg, | Os 3h< ) Os 3h® 0°s
Vas E [0uy, 42204, 5 4 O°w,
Oy = Z|1-— -2 >
1-Vv, Ve, | On 3h< ) Os 3h* 0°s
E ou 219 2%w
: 03 g1 22 |95 ;5 4 O Mo (1b)
1-v, Vg, | Os 3h<°) 0Os 3he 0°s
422 awo
= = 1-—- +— 1c
O-SZ GZS Sz h2 [¢S 85 ] ( )
4Z2 aWo
= = 1-— +— 1d
an Gzn nz h2 [¢n 8” ] ( )
g, Oy 42% |04, 422 04  82° 9°W,
= =G +—+7|1—— +z|1- - le
Tns T %o T el Toe T Ton 3h? | os 3n? [on  an? oson | O
where, (E,, E,) the modulus of elasticity on the directions n, s respectively and G, G,,,

G,, the shear modulus of elasticity. In addition, the Poisson’s ratio v, or v, is an identity
of the material referred to its planar directions, namely n and s-axis, defined as

e e

SS nn

Vg = — — and v, = ——.

enn eSS

The same are valid for the other Poisson’s ratio v, and v, on the corresponding directions.

Substituting the Egs. (1a)- (1e) into the above relations of the stress resultants,
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dz +

L 42°)0d0 5 4 07w
3h? ) on 3h? 9%n

h/2
v, E

+ - f
1_Vns Vn

—h/2

—7
Js 3h?| s 3h? 932

ou 2)9 02w
03—}—2[1—42 ] ¢s 3 4 o]dZ:

B E, Uy, 41,)09, 4 d%w,
Cp—v,.v,)l an % |t 3% an %3n? 9%n
. Vo B, [Ougs CAl5)0¢ 4 9w _
p—v, v..)l 0s ° |'' 3n%)as  *3n? 9%
_ En I0 8uOn Vsn En I0 8“05 _ En I0 (K)TJOn +Vsn (K)l[JOs (28.)
pl—v, vy,) On pl—v, v,,) Os pA—=v V)l On 0s

The last result is identically same with this of the model of CPT [section 7.1, Part A, Eq.
(3a)]. Similarly, the following result is the same with the corresponding Eq. (3b) of the sec-
tion 7.1, Part A.

h/2

N = fass dz = VisEslo  Olon + = o Qs =
o, pl—v, v,) On pA—v, v, Os (2b)
_ E.l, Vns(’)uOn Jr(’)uoS
pA—v V) on 0s

And also the below is identical to the Eq. (3c) of the section 7.1 of the problem of CPT.

h/2

N B Oug, Ouys| 1y

ns — O s dz = Gns P + P N (20)
0s on | p

—h/2

The above similarities of the stress resultants [Eqgs. (2a), (2b) and (2c)] were expected due to
the same shear deformation of the mid-surface of the plate in the context of each model,
namely the CPT and the TSDT. Remark also that the Egs. (3a), (3b), (3c) lead to the same
boundary conditions as for the problem of shear deformation, as has already been explained
on the section 5.2. Thus, we deserve to present directly the two boundary conditions of the
problem of shear deformation of the model of TSDT which are an alternative form of the Egs.
(24a) and (24b) of the section 5.2.1, specialized here for an orthotropic but in-plane aniso-
tropic material.

OuOn OUOS
0s on

) ) E, U, OU o
X _nx P + Von —
: 2 (I=v, V)l On 0s

]JanXlnX2 Gns[ ]:aTOn (3a)
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OU,, Oug, E

S

G +2n, n \Y;
ns[ 95 on ] X2 A (1*VnsVsn)[ ne

] = aros (3b)

Now, as for the flexural response of the model of TSDT we calculate the residual stress re-

sultants,

47°
3h?

O,

on

. 4 0%wg
3h? 9%n

4 0%w,
*3h% 9%n

94,
] s a

|

_4z2
3h?

Ody
on

os
0s

4 9%w,
3h? 9%

2 4

n

41,
p(l_vns Vsn)

3n2

|

%+[|2

4 0w,

Vsn En

N OU o
p(l— Vs Vsn)

0s

94,

41,
3h?

4 9w,
“3n% 9%

B E 41, v, E, 41,04,

4 9%w,

|

09, lel/R
- V -
][ on Vsn s

_.l_
pL—V, V) 3h? ) Os

02
0w,

_|_
9%n

“3h2 92n

]_

=—" ||I,— . —
pPA—=V, V) 3h“ ) on

E, [I
p(l_vns Vsn

h/2

-

o2
0w,

9%

|

a1,
> 3n?

4
“3n?

99

~%3n? 9%

]:

(4a)

2
0°W,

0s

2
1 47

3h? '

3h?

|

41,

VHS Es

P (1_Vns Vsn)

99

4 0°%w,

d°%s

s " 3h2) as

|

+
P (1_Vns Vsn)
E I, g, ]

P (1_Vns Vsn)

OU o
0s
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h/2

M, = fUnSZdZ =

—h/2

h/2
[8u0n + 8uOs

- ”Sf 0s on

—h/2

G, [aUOn 8U°5]| [ 4|4]a¢n [I 4|4]a¢s 8l, 0%w,
- + 1 2 2

1—

7+ 22

1_4L2]a¢” 2

L 422]3(155 8z4 0°w,
3h2 | Js

3h2 | on  3h2 dsdn

o[l as ' on 3h? | 9s 3h? | on  3h% 9son
G al, \ (0 s, 8l, d°w

_ ﬁ I , — 421 ¢I’] + ¢S . 42 0 (4C)
o, 3h 0s on 3h* dson

Note that on the above calculations the z -dependence of all the integrands is explicit as ex-
actly the x,-dependence on the Cartesian coordinate system, because as referred above the

X5, z axes are parallel during the transformation. Thus, the vertical integration can be per-
formed explicitly and the “mass-moments” quantities are defined as those of the section 4.1.

Consequently, the terms eliminated from the above quantities were due to the following iner-
tia’s

h/2 h/2
I, = fpx;dx3 — fpzidz, i=012..,6 where,
—h/2 —h/2
l,=1,=1,=0 and
h/2 hj2 ) 3
I, = dz = ph, I, = z2°dz = p—,
0 fﬂ P 2 f” P12
—h/2 —h/2
h/2 h/2
hs h'
1, = 2%dz = p—, . = f 2%dz = p—
‘ fp 80 ° o ¥ 48
—h/2 —h/2

Further, as for the higher-order thickness —integrated quantities
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h/2

P, = fannz3dz -

—h/2
h/2

E ou 219 2w
_ n f On 23+Z4 _422 ¢n_ 4 42 20 dz +
1-v, ,Vq, on 3h° ) on 3h* 9°n
—h/2
v. E. (o 472104 4 0w
n sn &n f 0523—|—Z41—L2 s 4_2 20
1-v, Vg, 0s 3h<) Os 3h® 0°s
—h/2
B E, 8u0n| 41,)\04, 4 0%w,
 op—v,v,) | on P Y 3h?)on “3h? 9n
VsnEn 0s 4'6 8¢s 4 82WO
+ st|la—5= a2 a2, | T
p(L—V,Vg,) | Os 3h? ] Os 3h? 9%
E, 41, (04, O, 4 [0%w 0w
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pA—v, vg,) 3h on 0s 3h“| 9°n 0°s
h/2
P, = fasszsdz =
—h/2
v, E. [(ou 2) 9 92w
=B f 0734 24 1—422 L z° 42 —|dz +
1-v, Vg, on 3h=) Os 3h* 0°s
—h/2
E " (ou 472)0¢ 4 O°w
+ S f 0523—|—Z41—L2 s 6_2_20
1-v Vv, 0s 3h*) 0Os 3h® O°s
—h/2
— VnsEs 8u0n .41 4'6 a¢n 4 aZWO
 op-v,v,) | on Y 3n?as %3n? 9%
E ou 41,10 R
+ S Os|3+ |4_ (; ¢s_ ] 42 20 _
pA=V,Ve) | Os 3h2] s 3h? 9%
E 41, (0 o) 0w 0*w
_ _=s I4__(Z {¢S+Vns {¢n _|6 42 20+Vns 2O
pA—v vq,) 3h< )| Os 0s 3h°| 0°s 0°s
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P, = f o, 2°dz =
—h/2
h/2 ) 6 2
o auOn 8“05 3 4 4z 8¢n 8¢s 8z 9 WO
=G, "+ 77| 1-— - =
4 0s on 3h 0s on 3h° dson
—h/2
_ G| [OUgn | QU o Al )(94,  0¢s) 8l 02w, _
o || os on ] ® |'* 3n?las  on| 3h? 9son
_ Cue| [, 416 )[40 Ods) 8l 0w,
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h/2 h/2 4 2 8W G 4l
Z 0 sz 2
Qs :faszdz = Gszf[l_F [‘/%Jrg]dz =, IO_F]
—h/2 —h/2
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(41)
ow,
oW,
¢, + an ] (4h)
ow, )
g+ Y (4i)
oW, | .

Finally, through the substitution of the Eqgs. (4a)- (4j) into the boundary conditions- Egs. (9a) -
(9d) referred on the section 5.3, we could get an alternative form of these conditions ex-
pressed in terms of the displacements for the problem of TSDT and specialized for an ortho-
tropic but in-plane anisotropic plate.

Subsequently, we mean to examine the same boundary conditions but at this time for the case
of an orthotropic, in-plane isotropic material.
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7.2. Boundary Conditions of the TSDT in terms of displacement for an isotropic, in-
plane isotropic material

On this section, we follow the same path as shown on the section 7.1, but for a stress (and
consequently displacement) field.

Thus, taking into account the Egs. (5) and (5°) of the section 4.2.2, the components of the dis-

placement field (o, 0, 015, 04, O,) TOr anin-plane isotropic plate, are
E |(0u,,  Ouy 47%\(0¢, 04, . 4 [9%w, 9w,
= +vV +z|1- +vV -2 +v la
m 1—v2| an ds 3h? | on s 3h?| 92n d%s (a)
E Ouy,  Oug, 4z%)( O¢, Og, . 4| 0%w, 0%w,
= v + +z|1- v + -2 v + » 1b
s 1—v2{ on ds 3n%)| on  Bs 3h?| 9%n 9% (1b)
422 3Wo
o, =G|1-—- +— 1c
sz h2 [¢s as ( )
422 8Wo
Onh, = G 1—F ¢n+ﬁ (ld)
ou ou 239 ) 3 9%w
ops = G Do 27| 422 AN 822 : (le)
0s an 3h 0s an 3h° 0son

Thus, substituting the Egs. (1a) — (1e) into the stress resultant presented on the beginning of
the section 7, we get

h/2

N.,, = fanndz =

—h/2
hi2 ¢

]dz

E AU, O s 422 |( 04, 09 s 4 |9%w, 0 °w,
= +V +z|1- +V -7 — +V
1-v?® f [ on ds 3h?]( on s 3h?| 9°n d%s
—h/2
ou ou 4,)(0 %) d°w d°w
_ E i on _y Mos I+ |1, — 2 ¢n_|_v P i, 42 20+V 2o
pL—v) |l On 0s 3h on 0s 3he| 0°n o°s
El 0 0
_ 02 Uon 1y Uos (2a)
p@—v) | On 0s

Similarly to the previous section 7.1, the in-plane stress resultants N,,, N, and N,  for the

model of the TSDT are the same with the corresponding of the CPT [section 7.2 Part A].
Thus, we give directly the already known results for the other two N, and N,
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T A
—h/2
ou ou
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0s on
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0
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[ on

OU o
+
0s ]

(2b)

(2c)

Thus, as before the in-plane natural boundary conditions for the shear deformation problem of
the model TSDT with in-plane isotropic material are identical to the corresponding of the

model of CPT,
ou ou ou ou
ni _ni E2 {On (Os +2nx nx G [On [Os
! 2 1—v on 0s 1o s on
ou ou ou ou
ni _ni G [On KOs +2 . nx E2 Vv [On KOs
1 2 s on 2 M 1-v on 0s

(32)

(3b)

Now, as for the moments and higher-order thickness-integrated quantities of our case which
are involved on the four natural boundary conditions of the flexural response of the model of

TSDT, we get
h/2
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Note that after comparing the above expressions with the respective of the CPT, we main dif-
ference is the additional terms including the variations of the slopes of the deformed cross

sections of the plate, ¢, and ¢, .
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Finally, through the substitution of the Eqgs. (4a)- (4j) into the boundary conditions- Egs. (9a) -
(9d) referred on the section 5.3, we could get another form of these conditions expressed in
terms of the displacements for the problem of TSDT and specialized for an orthotropic but in-
plane isotropic plate.
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8. Conclusions

8.1. Functional Spaces

In conclusion, we mean to define the functional space in which the action functional of the
Hamilton’s Principle is located.

We remark that the equations of motion (1) — (5) of the section 6.1 or 6.2, are expressed in
terms of the displacement field (u,, v,, wy, ¢,. ¢,) and they 2" order derivatives of u,,

voand t, 4™ order spatial derivatives of w, and 3" order spatial derivatives with respect to
¢, and ¢,. Consequently, the functional space in which the TSDT problem takes place, has
to include up to 4™ order spatial derivatives and up to 2" order time derivatives.

As for the boundary of the domain of virtual displacements, the Egs. (6) - (12) of the section
6.1 or (6) — (12) of the section 6.2 highlight the need of a boundary equipped with at least 3™
order spatial derivatives (because of the existence of 3" order derivative of w, ).

Consequently, inside the volume B € R 3, must be defined at least the 4™ spatial derivative of
the displacement field (C*- continuity) and its second-time derivative (C - continuity).
This means the existence and continuity of the fourth spatial and second time derivatives of
the displacement field.’

Upon the boundary 0B, which encloses the space B, we demand the existence and
continuity up to the third spatial derivatives of U (C 3- continuity).

Thus, the action functional S = S[u(:,-)] is defined on the space of admissible functions
C? [t,t,]—Y ,where Y isthe functional space Y = ueC*B)NnC?*(B) ,

while the admissible variations du belong to the space C? [t,,t,]— A , where A is a
functional space A = Sue C*(B)NC?3*(B):su(x) = 0 forxecoB

In addition to the above, note that B = BUAB, is the reference domain B, which consists
of the open set B [interior of B or cl(B)] and its boundary OB.

8.2. Conjunction between the CPT and the TSDT (or generally the shear deformation
plate theories) and the Beam Theories

[References: 1. C.M. Wang, J.N. Reddy, K.H. Lee (2000), “Shear Deformable Beams and
Plates - Relations with Classical Solutions”, Chapter 7 and Chapter 12, 2. K.J. Bathe, F.
Brezzi (1894) “On the convergence of a four-node plate bending element based on Reissner/
Mindlin plate theory and mixed interpolation”, in J.R. Whitmann(ed.), Proc. MAFELAP
Conference, Brunel University, 3. Bo Haggblag, Klaus-Jurgen Bathe (1990), “Specifications
of Boundary Conditions for Reissner/ Mindlin Plate Bending Finite Elements”, International
Journal for Numerical Methods in Engineering, and especially page 985-986, 4. P.G. Carliet,
P.Destuyner (1979), “Approximation of the three-dimensional models by two-dimensional
models in plate theory”, in R. Glowinski (ed.), Energy Methods in Finite Element Analysis,
Wiley New York, pp. 33-34].

Generally speaking, the TSDT or the FSDT are substantial improvements in the description of
the physical behavior of the plate structures in comparison with the CPT.

In addition, note that the assumptions and the kinematic model of the “plate theories” are
corresponding with the known “beam theories” and at this point we compare them for the
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sake of completeness. Thus, the CPT is the corresponding so called Euler-Bernoulli Beam
Theory. Also the FSDT is analogous to the Timoshenko Beam Theory, whereas the TSDT
occupying us on the previous sections is respective to the Reddy-Bickford Beam Theory.
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Part C Section 1. Wave propagation through infinite medium for the CPT

[Main References: 1. Graff F. Karl (1975), “Wave Motion in Elastic Solids”, Chapter 4.2,
5.1, 8, 2. Diploma Thesis by Feruza Abdukadirovna Amirkulova (2011), Dispersion Relations
for Elastic Waves in Plates and Rods, 3. Papathanasiou_Belibassakis (2014) Hydroelastic
analysis of VLFS based on a consistent coupled-mode system and FEM, Technical Paper, 4.
Liew K.M., Wang C.M., Xiang Y., Kitipornchai S. (1998), “Vibration of Mindlin Plates - Pro-
gramming the p-Version Ritz Method ).

1. Wave propagation through infinite medium for the CPT

Recalling the third equation of motion of the Classical Plate Theory, which is related to the
vertical motion (vibration) of the plate, we are going to remove the horizontally distributed
external load q, in order to study the homogeneous problem of the vibrating plate.

3 ph¥ [ 0%, 0%, E  h® (0w, 0 *w, 0w,
phw, — o2 o2 15 | 52, T4, a2, T3 =0
12 | 0°x, 07X, @—ve) 12 | 07X, 00X 0%, 07X,
or
3 3
phii, — 20 A, + END 1 a2y — g (1)

A W _I_
12 0 12 (1-v?)

To simplify the notation on the following calculations, we write the deflection of the plate in
the x, direction w = w,, and also the direction of the wave propagation is along the x, = x

- axis. Further, regarding the symbols which appear on the section 6.2 of the CPT concerning
the orthotropic but in-plane isotropic material (plate), we have

3 3
ph and D Eh

IZ h, |: e —
v =P 2= o 12(1-v?)

By this way the initial form of the Eq. (1) becomes,

i 2n’ 02V, E  hdo'w,
pNW, — o2 + U2\ 19 A4 =0
12 0°x, (1—-v©) 12 07x,

or
I W, — I, AV, + D A?w, =0 1)

where the Laplace and Biharmonic Operators are expressed only by the x, -spatial derivatives
of the displacement w,, .

Let now assume that the vertical displacement of the plate w is harmonic dependent from the
time and the spatial variable x with an amplitude A. Then we are going to study “under what
conditions can waves of the type

W — Aei(k X—wt) (2)

exist in the plate? ”
Subsequently, substituting the Eq. (2) into the governing equation of motion (1°) we have the
following relation after a few calculations,
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Part C Section 1. Wave propagation through infinite medium for the CPT

o(Hio)?Aiexp(k x—wt) — 1, (ik)*(-io)*Aiexp(k x—ot) +
+ D(ik)*Aiexp(kx—wt) =0 =
0 (Hi®)? Alexpthx=a1) — 1,(ik)*(-iw)® Alexpthx=a1) +
+ D(ik)* Aiexptkx=at) =0 =
—l,0* — 1,k*0* + Dk* =0 =
l,0® + 1,k’0®> — Dk* =0 (3)
Thus, by the Eqg. (3) we manage to express the angular frequency @ of the plate in terms of

the parameter k . The last is called the wavenumber of the wave propagation through the body
of the plate and is usually defined as, k = 2z /A4, where A is the wavelength of the wave

propagation. Also the wave velocity is definedas ¢ = w/ A.

Now is essential to proceed to a non-dimensional form of the above Eqg. (3), in order to plot
the graph of the relation between the frequency » and the wavenumber k under the same
scale. Thus, by the method of non-dimensional analysis and normalization [J. David Logan,
“Applied Mathematics” (1997) by John Wiley & Sons/ A. Papaioannou, “Fluid Mechanics”
(2002) Korali editions] we choose the following way to convert the dimensional quantities

o, k to the non-dimensional @, k .

Let the non-dimensional angular frequency be o =

Also, let the non-dimensional wavenumber be K =

Substituting the dimensional angular frequency and wavenumber, @ = @ Q and k =k K
respectively, into the Eg. (3) we get

2 ~ 4

l, Q% +1, kKK " @Q? ~DKK =0 =

1,207 + 1,k2K2p% Q% — DK*K* =0 —°"

k* =0 (4)

Note that the above Eq. (4) has two degrees of freedom and as a consequence the way to con-
vert it to a non-dimensional form is unique. Thus, we set

I, K? I, 12
— o S oa
I, \/l “\ h? 2)
4
and :322 = fB —° /IB (5b)
0 O 2
or
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n_12 En® 12 E
h2 \12@1-v®) ph h\12(1-v?)p

Finally substituting the relations (5a) and (5b) into the Eq. (4), we derive the following

~ ~ E4 k2
@° +k’@° —k* =0 = &’ = = &> 0=t =&
1+Kk 1+ k?

E 2

J1 + k2

where the negative frequency has no physical interpretation and consequently is rejected. Fi-
nally, we get the dispersion relation (red curve)

B = — (6)

The last expression [Eq. (6)], is the dispersion relation between the dimensionless angular

frequency @ and the dimensionless wavenumber k of the plate, in the context of the problem
of wave propagation through an infinite plate of the Kirchhoff’s model and is illustrated on
the figure below. On the first of the following figures as for the CPT, is illustrated the com-
parison between the initial regarded Kirchhoff’s Plate Theory and the subsequently corrected
Kirchhoff’s Plate Theory. The second one is the above Eq. (6), which is supplied with the ro-
tary inertia term on the governing equation of motion. This term was proposed by the Lord
Rayleigh and gives by far better results as for the physical interpretation of the “Kirchhoff’s
Plate Theory”. Thus, the blue curve of the Figure 1 is the initial regarded Kirchhoff’s Plate
Theory, which derives from the governing equation (1) without the rotary inertia term, as
seems below

Eh® 1 )
hw, + w, =0 7
P 0 12 (1—V2) 0 ()
or l, W, + DA?w, =0 7)

and regarding the same harmonic functions of the vertical displacement w, , we get
l, o> — Dk* =0 (8)

Also we consider the same non-dimensionalization of the Eq. (8) in order to compare its form
with those of the Eq. (3). Thus, we get

~ 4 ~
l, #8Q° —DKK =0 = 1,02@> - DK*k* =0 =

"D
—&* - D
I0
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Part C Section 1. Wave propagation through infinite medium for the CPT

where the negative frequency has no physical interpretation and consequently is rejected. Fi-
nally, we get the dispersion relation (blue curve)

& =k? 9)

Dispersion Curves of frequency for CPT

CPT{Kirchhoff) - Eq. (9)
CPT with rotary inertialRayleigh) - Eq. (8)

o]
T

L2 B n =} =
T T T T T

w non-dimensional angular frequency
]

0 0.5 1 15 2 25 3
k non-dimensional wavenumber
Figure 1: Dispersion Curves of frequency-wavenumber as for the Classical Kirchhoff’s Plate Theory.

Subsequently, there are illustrated the dispersion curves of the non-dimensional phase veloci-
ty of the wave propagation and the non-dimensional wavenumber. Further, it is shown the re-
lation between the non-dimensional group velocity of the wave propagation and the non-
dimensional wavenumber. However, on the last section 3 of this part the comparison of the
models of the plates is related to the CPT with the rotary inertia term, because it is more es-
sential to compare our results of the higher-order plate theories with the “optimized” CPT
with the rotary inertia term. Thus, by definition the non-dimensional phase and group veloci-
ties of the CPT (Rayleigh) are given respectively by the relations

&
C, === = (10)
"k 1rk?

~ ~3 ~
and ¢, =99 _ K42k (11)

g —3
dk ik
and the non-dimensional phase and group velocities of the CPT without rotary inertia term are
the following,

d

oY

=k (12) and c, =

. =2k (13)

Cp=

=~
o
N
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Phase Velocities for CPT

Phase Velocity CPT (Rayleigh) - Eq. (10) .

— — — Phase Velocity CPT - Eqg. {12} -

= M
— o [ o

cp hon-dimensional phase velocity

o
(5]

D 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3

k non-dimensional wavenumber

Figure 2: Dispersion Curves of phase velocity-wavenumber for the Classical (Kirchhoff’s) Plate The-
ory.

Group Velocities for CPT

Group Velocity CPT (Rayleigh) - Eq. (11) .
— — — Group Velocity CPT - Eq. (13) P -~
ar Py
z p
o A
¥}
- e -~
aaf
=] 4 e
= e
o P
t_:'::i -
s 37 -
2 -
= -~
& e
S 2| Y
C
o
b
]
© 1
D 1 1 1 1
15 2 25 3

k non-dimensional wavenumber

Figure 3: Dispersion Curves of group velocity-wavenumber for the Classical Plate Theory.
And finally we gather the curves of the two precious figures in order to compare more effi-
ciently the results of the CPT with and without rotary inertia.
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Phase and Group Velocities for CPT

.5 r .
Phase Velocity CPT (Rayleigh} - Eq. (10} - <
= Group Velocity CPT (Rayleigh) - Eq. (11) -
8 5| |~ — — Phase Velocity CPT - Eq. (12) -
o — — — Group Velacity CPT - Eq. (13} 7
=B -~
3 /
= -~
K] 4 -
i -
£ -
2 -
= 3 - -
g -~ i -
E P -~ - -
E .f’/ - -
[ - -
= )
] -~ -
= - -
E 1 -~ -
& -
D 1 1 1 1 1 1
0 0.5 1 15 2 25 3

k non-dimensional wavenumber

Figure 4: Comparison of the dispersion curves of phase and group velocity-wavenumber for
the CPT.

Further, notice that the behavior of the phase and group velocities for the CPT with rotary in-
ertia is bounded for larger and infinite values of wavenumber. To illustrate this fact better, we
plot again only the phase and group velocities of the CPT with rotary inertia for a wider range
of wavenumber. It is regarded adequate to make the choice for k €[0,10]. Thus, we get the

following figure
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~ Phase and Group Velocities for CPT with rotary inertia

=
ra

-
T

o
o

=
=2

=
=

Phase Velocity CPT (Rayleigh) - Eq. (10}
Group Velocity CPT (Rayleigh) - Eq. (11}

o
[

cp/ocg non-dimensional phase/group velocity

D 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

k non-dimensional wavenumber

Figure 5: Dispersion Curves of phase/group velocity-wavenumber for the CPT with rotary inertia
(Rayleigh).
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Part C Section 2. Wave propagation through infinite medium for the TSDT

2. Wave propagation through infinite medium for the TSDT

As for the model of the Third-Order Shear Deformation Theory, we get the three last equa-
tions of motion (of the total five) because these include the vertical variation w,. These are

the Egs. (14c), (14d), (14e) of the section 6.2 of the Part B of this dissertation.

Subsequently, we are going to express in a shorter form the aforementioned equations in order
to simplify the calculations. Thus, at a first glance some terms in the equations can be gather
together and substitute by a single symbol as seems below.

c, = 4 c, = 3¢, = 4
Y 3h? ? ' h?
Ji=1li—¢, 0
A =1 —Cilig
JO:IO—C4I2 J2:I2—C4I4
Ko = 1, —2¢,1, +c3l,, K, =1,—-2c,1,+cilg,
J,=1,—-c¢c,lg
2

Substituting the necessary results of the above into the Eq. (14c) of the section 6.2 (PART B)
and neglecting the external load in the right-hand side of the same equation, we get

. 04, 04, -
oW, + c,J, ax2y+ax1 —cZlg AW, —
_EK ¢y 09« —
OX X
P 2 X 3 3 3 1)
. 326 1 2°¢, 0’9, 9°¢, 0",
Yo v 0%, 9%, 9%x,.0x, 9%X,0x,
I,G 1
+ 2¢; =
o

Following the same path for the Eq. (14d) of the section 6.2 (PART B), we get

254



Part C Section 2. Wave propagation through infinite medium for the TSDT

ow,
0X,

) M, G
K,é, —c, + 2K

2¢ 4 ¥4 8X1 D 0
0w, 9w,
0%,  Ox 0°%x,
0%y  1+v 0%y | 2 Oh | _
%%, 1-vOox,0x, 1-va?x,

Py + +

- (2)

Csdy

And finally, as for the Eq. (14e),

ow,

+_
Py ox,

OW
o , S,

O, Y

+

Kzéy o C4J4

2G R
P Ox, 0°X,

2G v o 0w, 1 9w,
P 1-vox,0°%x, 1-v 0°x,

G

Yo,

2v 0%, P 0%,

5 =0=
1-vox,0x; 1-v 0°x,

2 2
0% 99,

OX, 0%, 02X, ?

2

_ G
o,

ow,
X,

. N, G
K,d, — ¢, J, 5 0 +;K0

¢, + -

2
3 3
0 W, 0 W,
2 3
OX, 0 X, 07X,

(3)

Csdy

T oA

0%,  1+v 0%, L2 4y | _
9%,  1-v O0x,0%, 1-v 9%,

Gy,

P

Thus, we have managed to create a more abbreviated form of the last three governing equa-
tions of motion of the model of TSDT.

Since there are three degrees of freedom (w,, ¢,, ¢,), this set of equations describes three

wave modes. However, the three above equations of motion can be concentrated to a single
equation in which the three degrees of freedom will be decoupled and consequently we are
able to produce the dispersion relation of the model of TSDT. The previously described way
is usual when we have a system of differential equations and we mean to couple the total
number of them to one single equation. However, at this moment is regarded more efficient
and smart to proceed with an alternative approach of extracting the dispersion relation, be-
cause the decoupling of the three partial differential equations in going to appear directly due
to the initial assumption of the one-dimensional wave propagation along the x, -axis of the

plate, which demands the elimination of the x,-spatial derivatives as shown on the conse-
quence.

As for this alternative approach, we consider the equations (1) with q=0 on the right-hand
side, (2) and (3) directly and we assume solutions of the form
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W, = W(X,,X,;t) = B, e knr=eb (a)
¢X — 82 el(k n~r—a)t) (b)
¢y — B3 el(k n-rfwt) (C)

Thus, the three degrees of freedom of the governing equations (1), (2) and (3) are harmonic
functions of the time and space in the context of the problem of TSDT.

Note that the wave propagates dispersively along the horizontal planes of the plate. Further,
on the above Egs. (a), (b), (c) the vector r denotes the position vector to a point on the plane
of the wave and n is the unit normal vector to the plane of wave ,as shown on the Figure 4.2
of the book of Karl F. Graff, “Wave Motion in Elastic Solids”, pp. 215 presented below.

X

¥y

F1a. 4.2, A propagating plane disturbance in two dimensions.

In the context of this problem we study the in-plane wave propagation inside an in-plane iso-
tropic media. Thus, considering a one-dimensional wave propagation along the x - axis of the
isotropic material, we have only the x -dependence of the harmonic wave.

Consequently, the propagating two-dimensional plane disturbance of the above figure be-
comes one-dimensional by rotating the vector r until it coincide with the x -axis. For such a
disturbance, each particle along the line (“plane”) defined by n-r —wt = constant, where

@ = c A (as defined above) has the same displacement as exactly its neighbor particles. On
a next step, expressing the inter product of the vectors,

- - - - - 1D -
n=1i+mj=cosgi +sing j———n =i
and r=xi+yj—2-r = xi.

we finally get a simple product of the first components of each vector,

n-r = X = X, and substitute it into the Egs. (a), (b), (c)

w— B el kxi-ob (@)
- 1

4 = o (K — 1) )

s, o (K — 1) ©)
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Remind here that k is the wavenumber of the propagation, @ is the angular frequency and ¢
is the phase velocity of the wave propagation.

Further, to reduce the size and the complexity of calculations after the substitution of the Egs.
@), (b)), (c) into the Eqs we procced to some calculations of separate terms existing on the
aforementioned governing equations. Is also obvious that we have zero x, (or y) - spatial

derivatives, which leads to the elimination of the respective terms of the Egs. (1), (2), (3).

Consequently, the final form of the governing equations of the TSDT through the one-

dimensional wave propagation and without externally applied loads (free surface) are the fol-
lowing

od, oW, G

[ Wy + Cyd, — —Cilg—— — —

o %o 494 Ox, 476 (92X1 P

.G 04w
+ 2¢228 1 0

o, 0w
9y, 9Wo

0 2
OX, 07X

26 1 0%, o
p 1-v 9%,

=0

— C4J
e p 1-v 9%,

. Wy, G

K.g —c,J, — + 2K

2¢x 4 ¥ 4 8)(1 p 0
2G 93w, 2G 0%,

T =Gy m Ky =
p(l—V) 0 Xq p(l—V)a Xq

0°¢,
— Y 0 6C
2 a2)(1 ( )

4 Jr8W0
o,

_I_

(6b)

K2¢y+;K0¢y_;K

Note that the above Egs. (6a), (6b) and (6¢) are decoupled. Namely the first two Egs. are cou-
pled and both of them includes two degrees of freedom w, and ¢, , whereas the third one is

decoupled from the aforementioned equations because it includes only the ¢, variable. This

fact was expected due to our initial assumption of the infinite plate along one direction, here
the x,-direction. This consideration leads to the elimination of the lateral (to the direction of

the wave propagation) distortion of the plate, namely ¢, =0 and finally we treat it as a

beam or so called plate strip (since the length of the plate is regarded here very large in com-
parison with its breadth). Thus, we are going to occupy with a 2x2 system and through the
two degrees of freedom w, and ¢, and the Egs. (6a) and (6b), we are going to extract the dis-

persion curve of the problem.
Subsequently, substituting the above calculated derivatives into the Egs. (6a) and (6b) we get
the following results.

First, from the Eq. (6a)

- B, l,®* —iB,¢c,J, o’k — B,c;l,0%k* —

— i 9|<O|<+519K0k2+
P P

1,G
+ i c4J4E%k3+Blzc§ °

p l-v p

ik“ =0 =
1-v
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G

Ly — B, l,®® — BcZl,0%k? + 81;K0 k? —

1-v

G
B,2¢c2 >
el

— i EKok—i C,Jd, @Kk + i c4J4Eik3:0 =
p p 1-v

G

|
26 26 14 —cllyw’k? + 2K,y k?
Y2,

4;1—v

2

(7a)

+ i [c4J4Eik3—9KO k—c,J, 0 k]:O
p 1-v p

From the Eqg. (6b),

G

B, +¢,J,iw°B k + =K, +iB k —
Yo

-K,o

—LC4J4iBlk3 + KZA k? =0 =
p(1—V) p(1-v)

c,J, i0°B k +i81%K0 k —%C4J4i81k3 +

2 G

26 k2 + 2KyB, =0 =
o,

+ Ky, ———
2 p(1-v)

-K,o

iBl[c4J4a)2k +9K0k _ 26

—= ¢, J, k¥ +
p pl-v) * 7 ]

(7b)
+ [Kzikz—Kza)z—}-EKo]:O
p(1-v) p

Subsequently, we note that the above three equations consist a 2x2 system with respect to
three unknowns B,, £, namely the amplitudes of the displacements w,, ¢, respectively.

Equating now the determinant of the coefficients B, to zero in the above system yields

the dispersion relation, as will be shown on end of this section. This is rational because the
sufficient and necessary condition for the existence of non-trivial solution of the aforemen-
tioned system, is its zero determinant.

However, to simplify the form of the above equations, we set specific symbols for the quanti-
ties multiplied with the coefficients B,, =,

|
Y, = c§—6£k4 —l,0® —cZlw’k? + 9Kok2
p l=v p
v, =i c4J4Eik3— 9Kok— C,Jd, %k
p 1-v p
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W, —ilc,d, 0k + SRk — =28 ¢, 3, k"
p p(1-v)
p(1-v) P

By this way the 2x2 system is simplified to the following form,

Y, B + ¥y, =0
VuBy + %y =0

\Pll lP12
lP21 \P22

or

Bl
=0 ¥YB=0

Now the determinant is clear to be written,

det(¥) = VW — YWy = 0
¥y ¥

First, we calculate the quantities inside the brackets of each part ¥ ,, W of the determinant.

Second, we try to isolate some specific expressions (which do not contain the wave number k
or the angular frequency @) inside the aforementioned parts in order to make it easier on the
total relation of the zero determinant to express explicitly the angular frequency through the
wavenumber.

As for the first part (¥ ,),

| | |
_c2 820 26 o 206 26 4 oy o200 26 By e

p(1-v) Y pl-v pl-vp

P

p(1-v)
G 2G G G G

+ =Ky Ky ———k'— ZK,K,0’k? + =K, = Kyk? =
p p(1-v) p p P

(and grouping together the terms with the same size of exponent onthe k and @)

2

|
=c2l, K, _2G kﬁ_cj_‘jﬁszzk“_
p(1-v) p l-v
2G G G
—[|0K2—+cj|6—Ko+—KOK2] +
p(1-v) P p
+cilg K, o' k? + 1,K, 0" — |09K0 +
Y2,
2G? 2G? G, G
p(1-v) p(1-v) p P
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As for the second part (¥ ),

2 2
= 03, 28kt 63,28 Kkt [C4J4L] kG +
pA=v) p-(A-v) p(1-v)
2 2
+ 9K0c4J4w2k2+ G—2K§k2— K, EL%JU«‘ +
P p-1=v)

2 2G w2 k*
p(1-v)
(and grouping together the terms with the same size of exponent on the k and @)

2
+ ¢, Jd, o'k’+c¢,J, %KO w’k? — ¢, J,

2 2
:_c4\]42 4G 02k4—C4J424LK0k4—|—[C4J4A] k® +
p A=) p (A-V) p(1-v)
2
+ 28k, ¢, 9, LS K 4 63, Ptk
p P

Now combining the last two expressions, we get

det(¥) = ¥Y,—¥g =0 =

2 2
|
chGKZ[L] k6—[04J i] ko8 40 okt g ez 28 oy

p(L-v) fp(L-v) p l-v pL=V)
2G G G 2G
—[|0K2—+c§|6—K0+—KOK2] - 22Ky, 9, +
p(1-V) P P P
+c§I6K2a)4k2—c4J42w4k2 +|0K2w4—|oEKo +
Yo
2 2 2
+ CEIBZZL 0 + 0 ZZZLJKA 4 4—246 KO k4 = 0 :>
pe(1-v) p(1-v) d-v)
2
i[ = ] Ius—Jf kﬁ_cf IGKZ_ j s (02k4_
p(l-v) pA=v)
G 2
——[|0K21—+K0c§|6+K2+2c4J4] -
P - 5 8
+cl 1K, =37 0'k® + 1K, 0" — 1y =Ky +
2
+ KOZZL cilg+K,+2c,3, k" =0
P (1-v)

Now in order to proceed to the non-dimensionality of the above dispersion relation, we calcu-
late separately some coefficients which are repeated constantly and also include terms used
previously for the abbreviation of the governing equations of the model of TSDT. By this way
these terms can be written extensively again and after that can be simplified in order to result
to new coefficients that appear explicitly the fundamental units. Thus,
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cilg + K, +2c,3, = +1,—2c,1,+ +2c,1, — =
3
:|2:'0h
12
2 _ 2 2 _
Kolg =32 = l,—2c, 0, +cilg lg— l,—c 1y =
= l,lg—2c, 0, lg +cilZ —1242c, 1,1, —ci1Z =

3 7 2 1, 10

_,0, 12 = 2Eph pth
12 448 6400
Note that the second calculated term form the above two, is of much smaller order since due
to the initial assumption of the moderately thick plate, h'®< h®. However we proceed to the

total calculation of the coefficients of k°, w?k*, , 0" k?, *, ", k* inorder to de-
cide about the size of the contribution of each term to dispersion relation, Eq. (8).

Consequently, we proceed to a specific notation of the aforementioned coefficients through
which we separate the net numbers (dimensionless quantities) from the dimensional parame-
ters of the material or the geometry of the plate, suchas G, p, h. Thus, we insert the coeffi-

~ 29810 °p?h®

CIeNts agy, a4y, 830, @2y, 8y4, Agas gy, 8,40. The rationality of the sub indexes of these
coefficients a;; is that the first index i declares the exponent of the wavenumber (k'

i = 2, 4, 6) and the second shows the exponent of the angular frequency (@', j = 2, 4). By

this way it becomes easier to distinguish the quantities that contribute to the elimination of the
“dimension” from the Eq. (8).

The coefficient of the k °,

2
c’ [—ZG ] lg K, —J7

2
167 5981075 p7 0 =

_ 16
op” o7 (1-v)?

p(1-v)
2
= &2 29810 °h° =
9(1—v)
6 2 6 2
_ %50 10—5h—62 = a,, h—G2
9 (1—v) (1—v)
250
The coefficient of w? k*,
2 1 K, -2 26 _ 18 598105 pApe 4G
pA-V)  op” A 1-v)
_ 4616, 9 107 ph® =
1-v 9
6 6
~ 211910° SN _ 4, Ceh
T 1-v 1-v

The third term ,
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E[IOK 2 +K c I6+K2+2c4J4]:
Yol 1-v
_ & Iy 1, —2c, 1, +cilg 2 Iy —2¢,1, +cil, |2]=
Vo 1-v
_& |0|2—2c4|0|4+c§|0|6i+|0|2—2c2|§+c§|4|2]=
Yo, 1-v
G 2h4 2h4 2h4 2 2h4 2h4 2h4
_G||pthl _pth"  p L|eh _pth e ~
pll 12 30 252 |1— 12 18 60
~ 9[0.054p2h4 i+0.o44p2h4] =
Vo 1-v
4
- <3[0.0541L+o.044]ph4 _ 0054 22NC | goaacpnt =
_V —_

4
~ 108102276 4 4410260t =

- —V

a® a®
_aglz) Gph (Z)Gph4
The coefficient of the w* k?,
2 1,K, —J2 = 298105 p2h*"® = 520810 ° p?h® =a,, p2h°
o T
As for the coefficient of the »*,
oK, = 1y 1, —2c,0,+c2ly = Igl,—2¢c 01, +c2l,l; =
3 5 7
= ph —2 h + h P h* = 5410 h
P2 " “3r2P " 80 Tont” aas ~ |12 30 252)° L
04
As for the coefficient of the ,
G G ) ph* 16 ph®
g~ Ky = lg— 1,—2¢c,1,+c2l, =G| ph? — 4 16
0, 0T 0, 2 » h? 12 h* 80

2 ph?
— G| ph? — Zpn? 4 P
P 3’ 5

The coefficient of the k *,
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2G? )
om cyleg + Ky +2c,J0, =

2G?
- 1,—-2¢c,l,+c2l, —— |, =
0 2'2 24p2(1_v) 2
g1, —2C,15 4¢cil,1, =

n A8 s fr ) aetht ot

12 h? 144 h* 80 12 45 1—v 1—v

_ 2G?
p?(1-v)
2G?

7 (1-v)

Thus, substituting the final and smarter form of the above coefficients into the Eq. (8),

Gph®

heG? G?h*
Pan (g7 K ey K e T KT T -
y Gph? 2 al,2 2 2n4 4 2 )
_agz)ﬁ—i-aéz)Gph kK w® + ag, p°h” " — ay, Gph =0

As a next step we consider the non-dimensional wavenumber k and the non-dimensional an-
gular frequency @, as exactly shown for the Kirchhoff’s Plate Theory. Thus,

o=2 and =X
Q K
and by substituting the above relations to the Eq. (8°), we get
6 2 6 2 14 4 6 4 2
a60h G K2 k6 a4OG h* K k4 _a42 Gph K*"Q k4d)2 +
(1—v) 1-v 1-v
4 2 2
+ a,, p°h®K?Q* k?0* — |al) M + al? Gph4KzQz]k2wZ +
—V
. 202
+oag, p2ht0t et — a, GphlQ?2 o’ = 0 eGP0
agh*GK® a,,Gh?K* _ a,, h*K* _
60 . 2k6+ 40 ' K4 _ 42 k4a32+
g, p Q°(1-V) 82 P Q°(1—V) 8y, (1-V)
a,, ph*K?2Q? _ a h’k? aldh?K?).
24 K2opt — |22 22 K2o? + )
a9, G g, (1-V) Ao
a,, ph?Q?
LI Gt =0
ag, G

For the sake of convenience, we repeat the values of the constants ag,, a,,, a3, a3, a,,,

Ag4, 89, and a,, below.
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g0 21.1910°°
as 21.1910°°
al) 10.80 102
ayy 4.40 107*
ayy 5.298 10>
Y 5.40 102
302 53310°"
a4 8.88 10 2

Subsequently, from the Egs. (5a), (5b) of the section 1 of the present part (Part C), we have

, 12 . 127 s 123
K —F1 ’ K :Fl K :F’
) 12 E 04— 122 E?
Q=7 - 2\2 24"
1-v®)ph (1—-v?)?p?h

Thus, substituting the above dimensional quantities into the coefficients of each terms of the
Eq. (9), namely k°, @%k*, C @t k? @t o7, k*, we get the following separate
results, before we derive the final non-dimensional form of the Eq. (9).

For the coefficient of the term involving k °,

agoh*GK®  agh*G 123 1-v?)ph?
a9, 0 Q°(1-Vv)*  ay,p(l-v)® h 12E
B agh'E 12° (1-v?)ph? a5 127
ag, 0 2(L+V)(1—V)? h® 12E ay, 2(1—V)

For the coefficient of the term including k *,

a,,Gh?K* a, Eh? 122 (1—v2)ph?  6a,
2y, pQi1-Vv) agp2@+v)d-v) h? 12E ag,

The coefficient of k * @? becomes,

a, h*K*  a,h" 122 12%a,,

85, 1—-V) @ (1-Vv) h*  ag, (@-V)

And the coefficient of the term including k 2 ®* is converted to,

a24ph4K2Q2 B a24ph42(1+v) 12 12E Ay 2.122
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As for the coefficient of the term including

anta@n) L (afn a@n\p [ aB @)
ag, (1—V) ap) 2, (1—V) YY) h? ag, (1—V) o2

And finally for the coefficient multiplied with & *,

ag, ph2Q% @y, ph®  12E gy 212

ay, G a,, G (1-v3)ph?  ay, 1-v

Note that all the above results of the coefficients are non-dimensional and the only parameter
which remains is the Poisson’s ratio v. Now, it is time to substitute the above results to the

Eqg. (9).

ago 127 Ko 6a, K4 a,, 12° K452 _l_%2-122

—%9 L K2p% —
8y, 2(1-V) 02 a5, (1-V) app 1-v
@ (2)
a a a .
_ 22 By, +ﬂ212a~)4_ 0
agp (1-V) &g, gy 1V

Subsequently, we use another notation for the coefficients of k°®, @ k*,

o’ , k*, in order to simplify the form of the last dispersion relation. Thus,

c ago 12°  28.62107°

6a
C 20 0.999=1,

K " ay, 20-v) 1-v K* ™ a,
12%a,, 57.25107°° a,, 212> 28.6310°°
chb2 — — , CR2@4 — — ,
ag, (1—V) 1-v g, 1V 1-v
@ (2)
a a
Cras = 22, 822 |, 2.436 0.996 2.436 1
@ g, 1—V)  ag, 1-v 1-v
gy 212 2432
C ~4 p— p—

And after this step, we get the following form of the non-dimensional dispersion relation for
the TSDT,

(10)

The next important stage, is to express the non-dimensional angular frequency @ explicitly as

a function of the non-dimensional wavenumber k , in order to illustrate their relation on spe-
cific plots. To accomplish the previous, we choose to diminish the grade of the polynomial

equation (10) as for the &. Thus, we set @* =y and substitute into the Eq. (10).
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k® + k* — k*y+ k?y? — + yZ—y=0 =
And grouping appropriately the terms in order to solve the binomial equations asto y = &2,

k% + y? — k* + k2 +1y + k® + k® =0

A - B C
The discriminant of the above binomial equation is, A = B? —4 AC and the solutions of the
above equation are

y:—BiJZ - y:—B+JZ or y:—B—JZ -
2A 2 A 2A
<:>CZ)2:M or &

2A
-B —
Rt aN) = L\/K or — L\/Z or or
2A 2A
However now we have to examine which of the four relations between the @& and k give pos-
itive values for the angular frequency @, because the negative values of the @ have no phys-
ical interpretation. Consequently, we mean to keep only the branches with positive values for
the @ and we are going to reject those which give negative values for the aforementioned
quantity. Further, we have to investigate the sign of the quantities under the square roots and
the sign of the discriminant in order to find if we have real or/and imaginary angular frequen-

cies.
As for the coefficients of the binomial equation A, B, C, it is obvious that A>0, B<O0

and C > 0. Subsequently, we investigate the sign of the discriminant A = B?—4 AC , which
is an eighth-order polynomial as shown below.

A= —4 k¥4 2 —2 ~2 k®+
- + 2 —4 k*+ 2 k?+1

By the program Matlab R2013a, choosing the value of Poisson’s ratio v=0.3 (usual value
for a wide range of materials) and the range of non-dimensional wavenumber k €[0,1], we

find that the discriminant A is positive for all values of k inside the interval [0,1]. Thus,

A>0. Note also that if we substitute the values of the coefficients inside the brackets of the
above discriminant, we find that

A= k&4 K4+ K2+ 1

which shows that the discriminant could take negative values for extremely large wave-

numbers, since the only negative coefficient is this of k ®. However wavenumbers of extreme-
ly large size will not occupy us on the wave propagation through plate, since they have not so
clear physical impact on these applications.
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Further, we investigate the sign of the under square root quantities, —B + JA and —B—+/A,
in order to conclude if we have real or imaginary angular frequencies. The first one relation,

y,=-B+JA = K+ K2 +1+

—4 k84 2 —2 —2 k®+
+ +2 —4 k*+ 2 k241

is obviously positive (y, > 0) since we have A>0 and B<0 = —-B>0.

As for the second relation,

y,=-B—vJA= K* + k2 +1-

—4 k®+ 2 -2 —2 k®+
+ +2 —4 k*+ 2 k?+1

it is not clear if y, takes positive or negative values inside the interval k €[0,1]. Consequent-
ly, by the aid of the mathematical package Matlab R2013a once again, we find that y, >0

for all values of k inside the interval [0,1] .

Finally, we conclude that we have only real values of the non-dimensional angular frequen-
cies and further we choose to illustrate only the two positive of the totally four, namely the

B f —B4++/A
O shear = T (11)

and (12)

The relation (11) is illustrated by the red curve, which is the shear branch of the TSDT and
the relation (12) is illustrated by the green curve, which is the flexural branch of the TSDT,
shown on the following figure (Figure 6).

267



Part C Section 2. Wave propagation through infinite medium for the TSDT

Dispersion Curves of frequency for TSDT
3571

el
T

Shear TSDT-Eq.(11)
Flexural TSDT-Eq.{12)

- ra
o P o

w non-dimensional angular frequency
.

<=
&

D 1 1 1 1 1 1
0 0.5 1 15 2 258 3

k non-dimensional wavenumber

Figure 6: Dispersion Curves of frequency-wavenumber as for the Third-Order Shear Deformation
Plate Theory.

The next step is to present the form of phase and group velocity of the wave propagation.
Thus, it is shown the relation between the non-dimensional phase velocity of the wave propa-
gation and the non-dimensional wavenumber and subsequently the relation between the non-
dimensional group velocity of the wave propagation and the non-dimensional wavenumber.
However, here we have two branches as for the phase velocity, namely the shear and the flex-
ural due to the existence of two branches for the angular frequency. For the same reason, we
have two branches for the group velocity, one shear and one flexural. Thus, as for the phase
velocities we get

& . a~)Shear o E —B +\/K (13)
p Shear — IZ - IZ 2 A

1
and C ex —_ = = 14
p fl K K ( )
As for the group velocities, we derive
d@Dgpear 1 1 [aB 1 aA]
Coshear = — = —+t—F—= 15
g Sheal dk \/ﬁ —B—{—\/Z 8k 2\/Z 8k ( )
o _ ¢ _ 1 ! [— ®B__1 %] (16)
ST dk J2A B_Jal 9k 2JA ok
where, 8—%228@—4[8—6C+A8—?] and 28> K,
ok ok ok ok ok
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0B ~ ~ oC ~ ~
—~:—4 k3+2 k and —~:6 k5+4 k3.
ok ok
Phase and Group Velocities for TSDT
25T
Shear Phase Velocity - Eqg. (13)
Flexural Phase Velocity - Eq. (14)
Shear Group Velocity - Eq. (15)
2r — — — Flexural Group Velocity - Eq. (16)
157

-
T

cp/cg non-dimensional phasel/group velocity
]
n

0 1 2 3 4 5 6 7 8 9 10
k non-dimensional wavenumber
Figure 7: Dispersion Curves of phase/group velocity-wavenumber as for the TSDT.

In conclusion, we derive dimensionless dispersion relations of the model of Third-Order
Shear Deformable Plate, which essentially coincide with the model of Bickford-Reddy Beam,
due to the assumption of one-dimensional wave propagation along the infinite dimension of
the plate.
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3. Comparison of the dispersion curves of the models of CPT, FSDT and TSDT

Finally, on the present section taking into account the plots of the previous two sections (sec-
tion 1 and 2 of the Part C) and the corresponding plots of the APPENDIX B (for the
Mindlin’s Plate), we set them into the same figures as for the kind of dispersion relation (fre-
quency, phase or group velocity) in order to compare the results of the three plate models
(CPT, FSDT and TSDT). To compare with more accuracy the models and to acquire a better
sight as for their asymptotic behavior for larger wavenumbers, we are going to present the
aforementioned plots for (an appropriate per case) different range of the wavenumbers. The
last change will not influence the sign of the discriminant and the quantities existing under the
square roots of the frequencies (section 2 of the Part C and APPENDIX B).

Dispersion Curves of frequency

4 ~
CPT with rotary - Eq. (6) -
FSDT - Shear- Eq. (9) of Appendix B -
E:T 357 FSDT - Flexural - Eq. {10) of Appendix B o -
< — — — TSDT - Shear - Eq. (11) -~
i ) A

% 3 | TSDT - Flexural - Eq. (12} -
—
B 25
4
o
c
o
® 2
o
[=]
5 1.5
E
.1?
c 17
(=]
o
= -

0.5f

0 " 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 3.5 4

k non-dimensional wavenumber
Figure 8: Comparison of the frequency-wavenumber dispersion curves.

In order to compare the frequencies of the different “Plate Theories”, we choose the range of
the wavenumber k €[0,4]. This choice is on purpose because the flexural branch of the

TSDT gives good results for small values of k . Especially for k <3 the results of the flexur-
al TSDT coincide with that of the flexural part of FSDT. Thus, the model of FSDT gives bet-
ter results in comparison with the model of TSDT for larger wavenumbers.

Remark also that the two higher-order plate theories examined in the context of this disserta-
tion have identically similar behavior as for the shear branches for a wide range of wave-
numbers.

Further note that the CPT overpredicts the values of frequencies but coincidence with those of
the higher-order plate theories for very small wavenumber near the zero. This fact is obvious
from the above figure (Figure 8), since the unique branch of the CPT is compared with the
flexural branches of the higher-order plate theories. The last is justified and rational because
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the dispersion relation of the CPT contains only the variation w,, which affects the vertical

motion (flexural response) of the plate, whereas the dispersion curves of the FSDT and TSDT
are divided to two branches, one related to the vertical displacement Sw (flexural branch)

and the other associated to the in-plane motion (shear branch) through the displacement 5, .

In the sequel, is given the Figure 9 in which are illustrated the phase velocities of the three
plate models.

Dispersion Curves of Phase Velocity

27
[ CPT with rotary inertia (Rayleigh) - Eg. (10}

1871 FSDT (Mindlin) - Shear - Eq. (11} Appendix B
= | FSDT (Mindlin)-Flexural - Eg. (12) Appendix B
S 1611 — — —TSDT - Shear - Eq. (13)
° * TSDT - Flexural - Eq. (14)
> 44l
@ |
@
= 12T |
a 5\
o e RN R
S 1
[
a 0.8 rF
=
5
L 06
=]
[
Q 0.4

0.2

D 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

k non-dimensional wavenumber
Figure 9: Comparison of the phase velocity-wavenumber dispersion curves.

As for the comparison of the phase velocity, the shear as well as the flexural branches of the
FSDT, TSDT follow the behavior of the dispersion curve of CPT as k — oo . This behavior is
regarded well because for large values of wavenumbers the curves are bounded, fact that as-
sures the rightness of the non-dimensionalization used previously on this part (Part C) and
also the successful choice of the shear correction factor of the model of FSDT. Thus, remark
that the curves of CPT, the shear branch of the FSDT and the TSDT and the flexural branch
of the TSDT converge to the unit as k — oo, whereas the flexural branch of the FSDT con-
verges to the 0.5 as k — oo

However, the shear and flexural branches have remarkably different behavior around the re-
gion of zero wavenumber. This limit process as k — 0 is shown explicitly for the phase ve-

locities of the FSDT on the Appendix B. In the sequel, it will be presented for the phase ve-
locities of the TSDT.

Let k — O first for the Eq. (13),
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Let now Kk — O for the Eq. (14),

-0 L’ Hospital's Rule

[due to the indeterminate forms of the numerator and denominator o as k — 0, we perform

the so called L’ Hospital’s Rule]

.0
lim ——=
i k— 00k ] i o
IZI—>mOCpﬂeX — 1 - IZEnOW -
0 0
ok Ve ok N
= lim
k—0
where,
B
9 -1 _8—~_—1{ aEf 4B 48—(3A}
ok ok 2JA ok ok
Thus,
OB 1 OB OA oC 1 OA
J2A|-—=— ———{2B-=—4—-C—-4-——Al||-2 -B-JA — =
lim e B l[ oK zJZ{ ok ok ok }” \/_./ZAak
flex —
k=0 P 4AJ-B—VA

[due to the indeterminate forms of the numerator and denominator % as k — 0, we perform

once again the so called L’ Hospital’s Rule]
Taking apart the derivatives of the numerator and denominator respectively, we have

oA OC }] 1 0A

0B
Num =2 A B—_4—C—4—Al|l-2 —B— _
um l[ K 2dA { Ok ok J_./ K
B B A C
! [ 0 L { B‘9 4R 48—AH+

~ Al ok 2a oK oK
2
AT N Y RV LN
Ok 4A*? ok Ok oK
+ J2A ) 2
: [a—B] LopLB_4|2AL 08
2A | ok 0% 0% ok Ok
B 1 A} 1 OA 52
T2 T ok +2 B+vA) ——— —=
[5k zJZak],/zAak */_)\/- 2/38k ( x/_)\/—a
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And taking the limit of the numerator as k — 0, we have lim Num = 0.
k—0
The derivative of the denominator is,

OA 0B OA
Denom:4a—E\/—B—\/Z+ 4A;[ L

20/—B—A K 2\/K3_IZ

And similarly taking the limit of the above, we have lim Denom = co.
k—0

2o

Finally, for the phase velocity of the flexural branch we get lemoC o flex =

Subsequently, are presented the group velocities of the three plate models on the following
figure (Figure 10).

Dispersion Curves of Group Velocity
127

=
T

o
=)

=
(=2}

=
=

CPT with rotary inertia {Rayleigh) - Eq. {11}

| — — — F3DT (Mindlin) - Shear - Eq. (13) Appendiz B
FSDT (Mindlin)-Flexural - Eqg. {14} Appendix B
TSDT - Shear - Eqg. (15}

TSDT - Flexural - Eq. (16)

cg non-dimensional group velocity

=
P

D 1 1 1 1 1 1 1 1 1 1
0 2 4 G 8 10 12 14 16 18 20

k non-dimensional wavenumber
Figure 10: Comparison of the group velocity-wavenumber dispersion curves for k €[0,20] .

Comparing the shear branches of the FSDT, TSDT, we note that they follow the behavior of
the dispersion curve of CPT as k — oo . This behavior is regarded well because for large val-
ues of wavenumbers the curves are bounded, fact that similarly to the Figure 9 assures the
rightness of the non-dimensionalization used previously on this part (Part C) and also the suc-
cessful choice of the shear correction factor of the model of FSDT. Thus, remark that the
curves of CPT, the shear branch of the FSDT and the TSDT converge to the unit as k — oo,

whereas the flexural branches of the FSDT and TSDT converges to the 0.5 as k — oo . The
range of wavenumber k €[0,20] is chosen purposely in order to illustrate better the behavior

of the group velocities for infinite wavenumbers, as K — 0.
However, the shear and flexural branches have remarkably different behavior around the re-
gion of zero wavenumber. This limit process as k — 0 is shown explicitly for the group ve-
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locities of the FSDT on the Appendix B. In the sequel, it will be presented for the group ve-
locities of the TSDT. To acquire a better insight of the limit process near the zero wave-
numbers, we represent the same curves again but with a shorter range of the wavenumber on
the horizontal axis, namely k €[0,10] (Figure 11).

Dispersion Curves of Group Velocity
127

-y
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=
=
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=
=21

=
=
T

1 CPT with rotary inertia (Rayleigh) - Eqg. (11}
.: — — — FSDT (Mindlin} - Shear - Eq. (13} Appendix B

cg non-dimensional group velocity

FSDT (Mindlin}-Flexural - Eq. (14) Appendix B

0.2}
| TSDT - Shear - Eq. (15)
| TSDT - Flexural - Eq. (16)
D 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 4 5 6 7 8 9 10

k non-dimensional wavenumber
Figure 11: Comparison of the group velocity-wavenumber dispersion curves for k €[0,10].

Let k — 0 on the Eq. (15) then

0B 1 OA
lim ¢ =
K0 9shear 0«/ «/_B_f_ [8k 2\/_8k]
which is shown easily, since lim — 1-v Iim;— =3 and
’ k—>0«/ 4864 " k-0 gy /A 2
lim [aB 1 8A]
o\ ok 2A ok

Let k — 0 on the Eq. (16) then
0

OB 1 OA .
E 2JZ6_E L' Hospital

lim € = I|m

kogflex OJ_\/T

274



Part C Section 3. Comparison of the dispersion curves of the models of CPT, FSDT & TSDT

lim € = lim —828+ 1 oa 1 0°A
ko 9™ 0 0 0%k 2A¥?2 0k 2JA 0%

eV 2A ++/A)

0°B 1 OA 1 93A

2AB+A) |- T2k = -

_im (B-+n) 0%  2A¥ ok 24A 0%
k—0 oA OB 1 OA
B+VA) A=+ 22
ak( ) ok 2+JA 0K

We perform once again L’ Hospital’s Rule, since the limit continues to be of indeterminate

form

. Taking apart the derivatives of the numerator and denominator of the previous lim-

it, we find that the indeterminate form of the limit has not been eliminated yet. Thus, we con-
clude that after a few more iterations of the L’ Hospital’s Rule we reach the conclusion that

lim € = 0.
K0 g flex
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Appendix A. Transformation from the Cartesian to the local boundary normal-tangent
co-ordinate system

[References: J.N. Reddy “Theory and Analysis of Elastic Plates and Shells”, Chapter 1.4/ 3.5
and the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and transformation of physi-
cal quantities under rotations of the reference system’].

First, we transform the appropriate boundary expressions in terms of the displacements, forces
and moments over the edge of the plate (and specifically the arbitrary curve /° surrounding
the mid-surface of the plate). For this purpose the Cartesian orthogonal coordinate system
(X4, X5, X5) Is transformed to a local coordinate system (n, s, z), which “follows” the shape

of the arbitrary curve I on the lateral surface of the plate. The expression “follows”, denotes
that the coordinate system (n, s, z) moves upon the curve /7, so that the n-axis be normal to

the lateral boundary (with a unit normal ) and s-axis be tangential to the same curve (with
a unit tangential vector §). These vectors projected on the Cartesian coordinate system
(X, X5, X5 ), are expressed as

n = Ny, €x, T Nx, €x, 1)

S = Sx,€x, T Sx,8x, (2
Further, we suppose that the unit normal A is oriented at an angle 9 clockwise from the posi-
tive x,-axis, then its direction cosines are n, = cosd and n, = sing. Similarly, the di-
rection cosines of the vector § are s, = —n, = —sin$ and s,. = n, = c0SY.

1 2 2 1

The Egs. (1) and (2) can be expressed in matrix form as seem below,

{ﬁ} B Ny, Mx,||€x B My, Ny, | [Ex A
§ Sx, Sx,||€x —Ny, Ny ||ex,
and
€x Ny, ——Ny n
1 1 2 .
ey Ny Ny ||$

Also the transverse normal coordinate X, is parallel to the z-axis and the both used coordi-
nate systems [ (X,, X,, X3) and (n, s, z)] are right-hand side.
The entire above are illustrated clear on the following figure (Figure 6),
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Figure 6: Transformation from the global coordinate system (X, X, X5) to the local coordinate system
(nsz).

Subsequently, we set the Figure 7, where is presented the top view of the plate in order to
show the transformation of the components of the displacement field u.

Note that the vector (first order tensor) of the displacement field u, is invariant and inde-
pendent from the coordinate system on which is expressed. However, its components are
frame-dependent, which means that their values with respect to a reference frame differ from
the others with respect to a different frame.

Figure 7: Transformation from the global coordinate system (X, X, X5) to the local coordinate system
shown on the mid- plane (X, X,, 0) .
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On the context of our problem of CPT, we assume that the transformation from (X, x, X5) to

(nsz) is clockwise, whereas the transformation from (nsz) to (X, X, X3) is counterclock-
wise. This fact is going to be verified from the sign of the determinant of the rotation matrix.

Thus, the displacement field is expressed as

U= Ugey + Voey, + Woey, (3)
u= uOne/x1 + UOse/x2 + Woe/x3 (4)
Multiplying both sides of Eq. (3) by e’xl, e’xz, e’x3 , respectively, we obtain

!/ !/ / /
ex,-U = Ug(ey ey ) + Vo(ey -ex ) + Wo(ey -ex,) =

= U,C0S9 + V,c0s(90° +9) + WOW =

= Uycosd — v,sing (5)

e, U = Ug (Y, ex ) + Vo(€h,-ex)) + Wo(el, ey ) =

= U,cos[—(90° —9)] + v,cos3 + W =

= U,Sing + v,cos Y (6)

U = Ug(eh, €y ) + Vo(€h -ex,) + Wo(€l ey ) =

= U, COS(90”) + v, COSEA0%) + w,cos(0°) = w, ()

Further the left-hand side of the Eq. (5), (6) and (7) due to (4),

e, "U = Ug, (8)
e, U = Uy, (9)
el U= w, (10)

Finally substituting the Egs. (8), (9), (10) to the Egs. (5), (6), (7) respectively,

(5) —&, Ug, = UyCOSY — V,sSing
(6) —9 Ugs = UgSING + v,C0s 9

10 —
(7) —F wo=1lwg

Consequently, the rotation matrix of the components of the displacement field
u = (ug, Vo, W,) from the Cartesian coordinate system (x, X, X5) to the local coordinate

system (nsz),is
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cosd —sing 0
a=1_sin% cos% O
0 0 1

And as an additional expression in matrix form,

Uon cosd —sing 0] |Uo Ny, —Nx, 0]ug
Ugsr = |SING  cosd O|ive =[N, N, 01V, (B)

To verify that the above matrix a is a rotational orthogonal matrix, examine its determinant,
det(a) = cos?9 + sin?9 = 1.

The sign of the determinant defines the orientation of the orthogonal reference system, which
in our case is positive, so the (n, s, z) system is right-which coincidence with our initial as-
sumption.

Proceeding to the inverse transformation, we multiply both sides of Eq. (4) by €x, €xy0 Exy

respectively,

exl.u = uon(exl-elxl) + UOS(eXl'e,XZ) + WO(eXl'e/)(3) =

= Ug, Cos(—9) + Uy, cos(90° —9) + WOM =
= Uy, COS$ + Uy Sing (11)

ey -u = uOn(eXZ-e’Xl) + UOS(eXZ-e'xz) + Wo(exz'e/xg) =

= uOncos[—(90°+19)] + UgCos(—3) + WOW =
= —Ug,SING + Uy, COSYG (12)

ex3'u uOn(ex exl) + Ugs (e ex ) + Wo(ex3 ex3) =

= u0n/s€96() + UOSW + wycos(0°) = w, (13)

The left-hand side of the Egs. (11), (12) and (13) due to the Eq. (3),

€y, "U = Ug (14)
ey, U = Vg (15)
ex3-U — WO (16)

Finally, substituting the Egs. (14), (15), (16) to (11), (12) and (13), we get

(11) —4, Ug = Uy, COSY + Uy Sing
(12) —5, Uy = —Ug,SING + Uy COS G
(13) —ae w, = 1-w,
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Consequently, the inverse rotation matrix from (x, x, x;) coordinate systemto (nsz), is

cos$ sing 0
a' =|—sind cos9 0
0 0 1
And in matrix form we have,
Ug cos$ sinG 0] |Ugn Ny, Ny, 0 Ugn
Vot = |—sind cosd O|iuger =|-N, N, 0fiug ©)
W, 0 0 1w, 0 0 1w

Also, as before we have the determinant det(a’) = cos®$ + sin?9 = 1.

In addition, the same rotation law is valid for the variations of the displacements. Thus,

ou, cosd sing 0] [dUg, N, Ny, 0f[sug,
ONg  =|—sing cosd 0]{SUgsr =|—Nn, N, 0{dUg )
SW, 0 0 1]|sw, 0 0 1||ow,

Further recalling the boundary terms of the variational equation (3) of the section 4.5, we no-
tice that there also the spatial derivatives of the variation ow, on the lateral boundary of the

plate, which need to be transformed to the curvilinear coordinate system (nsz). Subsequent-
ly using the transformation law (C"), we get
00w, /on
(D)

00w, [ 0s

nxl nX2

06w, | 9%,
OSW,o 9%, | |=ny, Ny

In addition, remark that the given surface tractions T,, T,, T, defined on the section 4.4 of

this dissertation, are first-order tensors or vectors, which are dependent from the functions
Aro(Xp X))y Bro(X, Xp), ara(Xy, X)), Dra(Xy, X)), Cro(Xq, X,) . Consequently these

functions follow the transformation law of the vector and are transformed to a;,,(s),
A7gs(S), arqp(8), ar45(S), Cro(s), as shown thoroughly above. Thus,

arg cosd sing 0 |@ron Ny, Ny, 0 fag,
brot = |—siNg cosI 0|{arest = —Ny, Ny 0[{aros (T0)
Cro 0 A 0 0 I][Cro

and
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ary| Armn| At1p (T1)
br, Artys Atys

At this point, it is essential to remark the curvilinear dependence of the functions a;,,(s),

cosg sing Ny, Ny,

—sing cos Y —Ny, Ny,

A1gs(S), a71,(S), ar44(8), Cro(s). Incontrast to the respective functions on the Cartesian
coordinate system, the functions a;,,, arqs, a1y, 81y and c;, are dependent from the
variable s. This variable counts the length of the curve 7, which declares the position of a
point around the edge of the plate as to a specific principal point.

In everyday language, a curve is a subset of R? (plane) or R* (geometric space) equipped

with a specific structure. The most of the curves of the R?, which concern now our problem,
can be expressed as graphs of functions, namely

s,f(s):sel=[0,1] ,
where f(s) is a well-posed function, inside the field [0, I] and | is the length of the curve
1.

However, the analytic description of the curve, which is valid for all the curve which is valid
for all the curves inside the spaces R?, R* and in general inside the space R" , is

r=r(s), sel

where r(s) = (x4(8), X,(S), ..., X5 (s)) and especially for a two dimensional-curve we get,

X; = Xy(s)
Xy = Xp(8)

sel

The above description is usually called in the literature, parametric representation of the
curve. Consequently, the same rationality follows the notation of the functions a,,, args.,

8r1y, Args and Crg.

Now we examine the transformation law of stresses, which is identical to the transformation
law of the thickness-integrated forces and moments. This is justified due to the fact that these
forces and moments are integrated along the thickness of a thin plate in the context of the
problem of CPT and are explicitly dependent from the vertical ( x) spatial variable.

It is meaningful to note that the stress matrix (o;;) is a second-order tensor, which leads to
the need of the rotation matrix of two vectors in order to define its rotation.

This transformation has to do with the rotation of the system about the vertical axis X; = z

at an angle ¢, which is the simplest case of transformation (planar rotation). Consequently,
the transformation law of the stresses, is given by the following relation
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6 =ac'a', (17)

where ¢ : are the components of stresses on the Cartesian coordinate system (x,, X,, X5 ) and
¢’ : are the components of stresses on the local coordinate system (nsz).

Further, due to the proof of the Lecture Notes, G.A. Athanassoulis (2016), “Invariances and
transformation of physical quantities under rotations of the reference system”, the rotation
matrix a and is transpose a' are these of the above relations (B) and (C).

The notation of the components of the two stress matrices is,

On 01 0-13 Onn O-ns O,
_ I __ N
G = |0y Oy Oy (B) and O = |[0gy Ogs Oy (E)
031 0-32 0-33 Gzn st O-zz

We calculate the right-hand side of the Eq. (17), substituting the Egs. (B), (C) and (E’),

nXl _nxz 0 Onn Ons OTny nXl an 0
o = | Ny, Ny, 0 Osn Oss Ogy || Ny, Ny 0] =
0 0 1/\Om Oz Oy 0 0 1
Ny,Onn T Nx,0sn Ny, Ons TNy, 055 Ny Op, £Ny 0, Ny, Ny,

0
= [7Nx,0nn TNx Osn Ny, 0ns t Ny Oss Ny On, TNy O, || Ny, Ny 0| =
1

O-zn O-ZS O-ZZ 0 0
N2 ou, +nyn +n,.n +n? —nyen -nlo,, +nio, +nen n +n
x, 9 nn %1%, 9 sn X1 W%, 9 ns x, 9 ss X "%, 9 nn x, 9 sn x, 9 ns X V%, O ss %, O nz X, 9 sz
. 2 2 2 2
- 7nx1nxzo-nn+nxlo-sn7nxzo-ns+nxlnxzass nxzo-nn7n><1nxzo-sn7nxlnx20-ns+nxlo-ss 7nxzo-nz+nxlo-sz
nxlo-szrano-zs *nxzazn+nxlo-zs O

Due to the symmetry of the stress matrix in the context of our problem, we get

2 2 2 2
nxlann +2nx1nx20ns+nxzo-ss Oss —Onp nxlnx2+ nxl_nx2 Ons nxlo-nz +nx20-sz
= NN n? —n? n? 2n, n n? n n
O = | Oss—0Onn My x2+ x, —Mx, Ons x,Onn — &lly, x20n5+ %, O ss - xzo-nz+ x,9 sz
rlxlo-zn +nx20-zs _nxzazn +nxlazs O

Also due to the initial assumptions of the problem of CPT as for the displacement, strain and
stress field of the plate in conjunction with the aforementioned stress matrix o ,
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2 2 2 2
nxlann‘i'znxlnxzans"'nxzass (O'ss_ann)nxlnx2 +(nx1_nxz)o-ns Ny, 1, +nx2%
I 2 2 2 2
o = (O-ss _O-nn)nxlnxz +(nx1 _nxz)o-ns nxzo-nn _2nX1nX26ns +nxlo-ss _nx2 g1 +nxl% =

nxl Din +nxz% _nxz Tin +nxl% 41

2 2 2 2
Ny, O nn +2nxlnx26ns+nxzass (O-ss_o-nn)nxlnxz"’(nxl_nxz)ans 0

2 2 2 2
o = (Gss_o-nn)nxlnxz+(nx1_nxz)ans nxzo-nn_znxlnngns+nxlo-ss 0
0 0 0

And finally we derive the below equations,

a2 2
oy =Ny Ony + 2N, Ny O + Ny, Oss (18a)
_n2 2
O =Ny Opy — 2ny, Ny one + Ny Oss (18Db)
2 2
O1p = Oy = Ny Ny Og—0n, + Ny, =Ny, Ons (18c)

Expressing the Egs. (18a), (18b) and (18c) in matrix form,

2 2
oy N, nL, 2n, ny, .
. 2 2
Ooyt = ny, Ny, —2n, Ny, |10ss (F)
o 2 2 o
12 *nxlnxz nxlnx2 n, *nxz ns

Further, we are going to use the inverse transformation of the stress matrix, in order to express
the components of the stress of the curvilinear coordinate system in terms of the components
of the Cartesian coordinate system. Thus, from rotation law (17) we get the following.

.
6 =ac'a’ % a'c = (@' a)e'a’ = a'c =Ic'a' =
rom the left
T e T xa T o I AT

= aoca=o(a a) From the right aca=0cl =0 =aoca
100

Consequently, after a few calculations and the use unit matrix I = [0 1 0 |, we have the
0 01

inverse transformation law of the stresses,

¢ =a'ca (19)

We calculate now the right-hand side of the Eq. (19), substituting the Egs. (B), (C) and (E),
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n, n. Olloy o5, oipllNy, Ny O
¢ =|-n, n, Olloy o0y oyu|ln, n, O0f=
0 0 1flos 03 033) 0O 0 1
n§10'11+2nx1nx20'12+n52522 (JZZ_Jll)nxlnxz+(n51_n§2)612 Ny, 013 TNy, 023
= (Gzz_all)nxlnxz+(ni_nfz)o-12 nszo-ll_znxlnxzo-12+n§1022 Ny, 0131 Ny 023
Ny, 031 TNy O3 Ny, 031Ny 03 O33

Also due to the initial assumptions of the problem of CPT as for the displacement, strain and
stress field of the plate in conjunction with the aforementioned stress matrix ¢,

2 2 2 2
N, on+2n, N, o5, +N, 0y (05 —op)Ny Ny, + (N} —NL )0, Ny o1 ‘H‘xz%
/ 2 2 2 2
o' = (0, —0ou)Ny Ny, + (N} =N )oy, N, 0n—2N, Ny 01, +N; 0y _nxz%"‘nxl% =

Ny, 74 +nx2% —Ny, o4 +nx1% 043

n§1‘711+2nx1nx2‘712+n52‘722 (02 =) Ny Ny, ’1‘(”51_”52)012 0
¢’ = (Gzz_all)nxlnxz‘1‘(”51_”52)012 nfzan—ZnXlnxzam#—niazz U s
0 0 0
o nf1 niz 2n,ny, |[oy
< 1Oss[— nfz nfl _anlnx2 022 (G)
T s —ny Ny, NNy, Ng—ng |0

Similarly, are expressed the thickness-integrated forces and moments in matrix form,

N11 nfl nfz 2nX1nX2 Nnn
N,,t = ne, ny  —2n,n, [N (H)
le r]x1nx2 r]xlﬂxz nflinfz an
Mll nfl nfz znxlnxz Mnn
M,,t = ny N, —2n,n [{M )
M12 *nxlnxz nxlnx2 niliniz Mns

and the inverse transformation law of the (H) and (I), is exactly the same with the inverse
transformation law of the stress field, namely the (G).
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APPENDIX B: First-Order Shear Deformable Plate Theory (Mindlin’s Plate Theory) —
Governing Equations and Dispersion Curves

[References: Liew K.M., Wang C.M., Xiang Y., Kitipornchai S. (1998), “Vibration of Mindlin
Plates - Programming the p-Version Ritz Method”, Reddy J.N. (2007), “Theory of Elastic
Plates and Shells”, Reddy J.N. (2004), “Mechanics of Laminated Composite Plates and
Shells- Theory and Analysis”’].

The purpose of the present appendix is to extract the non-dimensional form of the dispersion
relation of a one-dimensional wave propagation through an infinite medium, but at this mo-
ment the medium is an elastic plate subjected to the assumptions of the so called Mindlin’s
Plate Theory or First-Order Shear Deformable Plate Theory (FSDT) without externally ap-
plied loads (free surface).

The reason of the above effort is the comparison of the dispersion curves jointly of the three
plate theories (CPT, FSDT, TSDT), which the most commonly used on the analysis of the
motion of the vibrating plates. Except from the above reason, the main parts of this diploma
thesis are dedicated the CPT and TSDT and there is no facts about the FSDT, which the in-
termediate (to the two previous) plate theory as for number geometric constraints during the
deformation of the plate. Thus, the dispersion curve of the FSDT is a way to establish better
our results for the CPT and the TSDT and further to give comments about the advantages and
the disadvantages of each one theory.

According to the literature, and especially taking into account the J.N. Reddy’s results for the
governing equations of the plate in the context of FSDT, we have five equations of motion.
However, as exactly on the TSDT the three of these equations which include the displace-
ments (w,, ¢, ¢,) are going to occupy us on the problem of wave propagation through in-

finite medium. Thus, regarding the Egs. (10.1.33), (10.1.34), (10.1.35) of the book of J.N.
Reddy (2007), “Theory and Analysis of Elastic Plates and Shells” (Chap. 10.1, pp. 366) and
neglecting terms which insert elastic foundation and thermal effects (since there is no such
assumption in the context of our problem) and assuming isotropic material, we get the follow-
ing governing equations of motion,

0°w, 04 22w, 04
x?Gh C 4+ X+ k2Gh 0 L WVl gqg=1,Ww 1
9%, Ox d%x,  OX, f 00 (1)
82 62 3 82 82 8W )
D 2¢X +VD ¢y —l— Gh 2¢X ¢y _K_ZGh 0 +¢X _ |2¢X (2)
9%, OX, 0%, 12 |0°x,  Ox, 0%, X,
0°¢ 0%, Gh*( 0%, 0% ow )
D——~>+vD — + X 4 Yk ?Gh|—2 4+ 4, | =1 3
9°x, Oxy OX, 12 |0x, 0%,  O°x, K X, by 2 Py (3)

where x? is the shear correction factor which is included in the Mindlin’s Plate Theory in
order to correct the distribution of the shear stresses along the thickness of the elastic plate.

According to the chapter 2.3 of the reference Liew K.M., Wang C.M., Xiang Y., Kitipornchai
S. (1998), “Vibration of Mindlin Plates - Programming the p-Version Ritz Method”, the val-
ues of the shear correction factor are dependent on those of the Poisson’s ratio, namely the
shear correction factor is relates to the kind of material. For instance, regarding an isotropic
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plate with Poisson’s ration v=0.3 (which is a usual value for a wide range of materials), the
shear correction factor is k% =0.86.

Note also that the above equations of motion (1), (2) and (3) are found on the book of Graff
Karl F. (1975) “Wave Motion in Elastic Solids” on the chapter 8.3 “Approximate theories for
waves in plates, rods and shells” [Eqs (8.3.30), (8.331) pp. 488], which after expansion of the
Laplace operators and substitution of Marcus moment ® = d¢, / 9x, + ¢, / 9x, conclude

exactly to the same relations. However, in order to establish better our results we extract the
single equation of w,, which includes the previous three [Eqgs (1), (2) and (3)] and represent

the flexural response of the Mindlin’s plate and after that we are going to investigate the val-
ues of shear correction factor, which give the Kirchhoff’s model. Thus, by differentiating the
Eqg. (2) as for x, and the Eq. (3) as for x, and adding the results, we eliminate the Marcus

moment ® = 0¢, / 9x, + 0¢, | Ox, and after that we conclude to the single equation of mo-

tion, given below. This process is also prescribed on the aforementioned reference, Graff Karl
F. (1975) “Wave Motion in Elastic Solids” on the chapter 8.3 “Approximate theories for
waves in plates, rods and shells” pp.488-492 and the Appendix of the reference, “Ship Dy-
namics” (2012), G.A. Athanassoulis, K.A. Belibassakis.

h® . pD . p ph? . . D ph?
DA%w, — 2 Avi, — L= AW, + W, + phw, = q— AQ+
° ° x6¢ ° ot AW =47 EZEn T 127G

. 4
12 ’G 12 q )

Let the shear corrector factor be inclined to infinity x* — 0. Then it is obvious that we con-
clude to the Kirchhoff’s third governing equation of motion related to the vertical vibration of

the plate.
3

DA%w, — /’12 AW+ phWly = g = loW,— I, AW, + DA’w, = q

At this point, we can get the dispersion curve of the wave propagation through the Mindlin’s
plate by substituting the harmonic function of the vertical displacement into the Eq. (4).

However for the sake of consistency with the corresponding section 2 of the Part C, we use
directly the three equations of motion, Eqgs (1), (2), (3) and substitute into them the harmonic
functions of the displacements (w,, #,, ¢,), which due to the previous assumption of the

one-dimensional wave propagation take the following form

; Py =

Further, the boundary of the one-directional infinite plate is free. Thus, q =0.
Taking into account the above, the Eqgs (1), (2) and (3) are converted to

i (kx, — wt)

W= B, e 4 = RICERD)
1 X

i(kx, — ot
e( 1 ot)

o*w, 04,

x2Gh 82X° +a% = 1,V (4a)

1 1
0%, ow, .

D= —« GhaTJrgﬁx = 1,4, (4b)
1 1

Gh? 0% §

o azxy —x*Ghg, = 1,9, (4c)

1
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Remark that the above Egs. (4a), (4b) and (4c) are decoupled. Namely the first two Eqs are
coupled and both of them includes two degrees of freedom w, and ¢, , whereas the third one

is decoupled from the aforementioned equations because it includes only the ¢, variable. This

fact was expected due to our initial assumption of the infinite plate along one direction, here
the x,-direction. This consideration leads to the elimination of the lateral (to the direction of

the wave propagation) distortion of the plate, namely ¢, =0 and finally we treat it as a

beam or so called plate strip (since the length of the plate is regarded here very large in com-
parison with its breadth). Thus, we are going to occupy with a 2x2 system and through the
two degrees of freedom w, and ¢, and the Egs. (4a) and (4b). After substituting the harmonic

functions of the w, and ¢, into the Eqgs. (4a) and (4b),
B, lo*—x°Ghk® +B,ix?Ghk =0 (5a)

B,ix’Ghk + 53, Dk?—x*Gh—1,0* =0 (5b)

Subsequently, we note that the above three equations consist a 2x2 system with respect to
three unknowns B,, £, namely the amplitudes of the displacements w,, ¢, respectively.

Equating now the determinant of the coefficients B, to zero in the above system yields

the dispersion relation. This is rational because the sufficient and necessary condition for the
existence of non-trivial solution of the aforementioned system, is its zero determinant.

At this point, to simplify the form of the above equations, we set specific symbols for the
quantities multiplied with the coefficients B,, =,

¥, = l,0°—xk*Ghk? , ¥, =ix?’Ghk
¥, =ix’Ghk, ¥,, = Dk?—x?Gh—1, "
By this way the 2x2 system is simplified to the following form,

\}’11 Bl + \P12 =0
‘Pz1 Bl + ‘Pzz =0

\Pll \PIZ
lP21 \P22

or

Bl
=0 YB=0

Now the determinant is clear to be written,
det(¥) = ¥, Wy — Wy =0

And after performing a few calculations, the dispersion relation which derives from the gov-
erning equations relates to the vertical motion (vibration) of a plate is the following

Rk“_

ph

h? D h?
—+t— a)zkz—w2+——§ o' =0 (6)
12 x°Gh 12 x°G

As for the residual quantities involved in the Eq. (6), they are explicitly explained on the main
part of this dissertation.

Note also that the Eq. (6) exist on the reference: Graff F. Karl, (1975) “Wave Motion in Elas-
tic Solids ", on the Chapter 8.3 pp. 492 and can be shown exactly if we expand the Laplacian
and Biharmonic Operators.
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At this moment, we have to extract the non-dimensional dispersion curve of the FSDT. Be-
cause of the fact that we expect to compare the results of this appendix to those gained by the
previous work on the Part C (section 1 and 2), it is essential to choose the same non-
dimensional quantities. Consequently, we have the non-dimensional angular frequency and

the non-dimensional wavenumber given as

c?):2 and
Q

~
Il
|

and substituting the above into the Eq. (6), we get

h? D

D
12 x°Gh

— K4K4—
ph

2 K2G

[and using the expressions of K2, K* Q2 and Q* of the section 2- Part C]

D -,12% (h? D 12E 12 _, ~,
T gt o O K-
P kGh|(1l-v)ph“h

12E ., h? p 122 E? 4

S —— J— o =0=
(1—v?)ph? 12 k%G (1-vH)?p?h*

[we examine isotropic material, G=E/2@1+v) and D=E h®/12(1—v?)]

Eh? ~,12%2  [h? Eh32(@1+V) 12E 12 _, ~,
2 k ralll el 2\ .2 2 2.2 @ k*—
12(1-v¥) ph h 12 12(1—-v¥)&’Eh)@—-v?)ph®h
12E ., h®p2(+v) 12°E*

=0=

- 5 @ @
(1—v?)ph? 12 k?E  (@1-v?)?p?h*

k*— 1+#2 &’ k’— @+ %@4 =0
@—v)x K (1—vV)

2
02K2p2K2— Q2 @2+ Z—LQ%“ —0=

()

The last expression [Eq. (7)] is the non-dimensional form of the dispersion relation of the

Mindlin’s Plate Theory.

Subsequently, we have to express the non-dimensional angular frequency @ explicitly as a

function of the non-dimensional wavenumber K, in order to illustrate their graph. The last
takes place by the reduction of the grade of the grade of the polynomial equation (7) as for the

@. Thus, we set @2 =y and substitute into the Eq. (7).

k*— 1+#2 yk2— y+ %yz =0 =
Q—v)x K (l—vV)

And grouping appropriately the terms in order to solve the binomial equations asto y = &2,
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2 ) -, 2k? ~4
—— Y - k +— +1ly + k" =0 (8)
kK (l—v) @-v)x
B — 5 c

The discriminant of the above binomial equation is, A = B? —4 AC and the solutions of the
above equation are

y:—_Bjm/Z & y:—_BJﬂ/Z or y:—_B_\/Z &

2A 2A 2A

= or =

- or ] or [ or

However now we have to examine which of the four relations between the @& and k give pos-
itive values for the angular frequency @, because the negative values of the @ have no phys-
ical interpretation. Consequently, we mean to keep only the branches with positive values for
the @ and we are going to rejected those which give negative values for the aforementioned
quantity. By the aid of the mathematical package Matlab R2013 a, we find two acceptable
branches. This fact was expected because the one branch describes the shear waves and the
other the flexural waves. Further, we have to investigate the sign of the quantities under the
square roots and the sign of the discriminant in order to find if we are have real or/imaginary
angular frequencies.

As for the coefficients of the binomial equation A, B, C, it is apparent that A>0, B<O0

and C > 0. In the sequel, we investigate the sign of the discriminant A = B — 4AC, which
is a fourth-order polynomial as shown below.

L2 S
1—v) x? 1—v) k?

4

A= k*+ 2

1+#2 k?+1
Q—v)x

For usual material in engineering applications, we take the value of Poisson’s ratio and shear

correction factor, v=0.3 and « 2 =0.86 respectively and after that the discriminant is con-
verted to,

A =5.3929k * + 8.6445k*+1 > 0, v k €[0,1]

Further, we investigate the sign of the under square root quantities, —B + JA and —B—+/A,
in order to conclude if we have real or imaginary frequencies. As for the first one,

- 2k?
yi= -B+JA =k?+—"—— 41+
@—v)x
2 ) 8
+ [+ — (2|l ———— k%1
1—v) k? (1—v) k2 (1—v) k2

which is obviously positive (y, >0) since we have B<0 = — B>0 and A>0.
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As for the second relation,

o2
y2:—B—\/Z:k2—|—L2+1—
@—v)x
2 ) 8 2
— [ll1+ = — Skt 2l ———— 1k *+ 1
@—v)x @—v)x Q1-Vv)«

it is not clear if y, takes positive or negative values inside the interval k €[0,1]. Consequent-
ly, by the aid of the mathematical package Matlab R2013a once again, we find that y, >0

for all values of k inside the interval [0,1].

Finally, we conclude that we have only real values of the non-dimensional angular frequen-
cies and further we choose to illustrate only the two positive of the totally four, namely the

(9)

and (10)

The relation (9) is illustrated by the cyan curve, which is the shear branch of the FSDT and
the relation (10) is illustrated by the green curve, which is the flexural branch of the FSDT,
shown on the following figure (Figure 1).

Dispersion Curves of frequency for FSDT
127

Shear FSOT - Eqg. (8)
Flexural FSDT - Eq. (10}

—
Y o oo =
T T T T

w non-dimensional angular frequency
L]

D 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 4 5 G 7 8 9 10

k non-dimensional wavenumber
Figure 1: Dispersion Curves of frequency-wavenumber as for the TSDT (Mindlin’s Plate Theory).
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Further, we give the dispersion relation between the non-dimensional face velocity and the
non-dimensional wavenumber. Also we extract the respective dispersion relation between the
dimensionless group velocity of the wave propagation and the dimensionless wavenumber.
The definition of these velocities is given below and is explained extensively on the Lecture
Notes of Triantafillou G., Belibassakis K.A. (2015), “Basic Principles of Naval and Marine
Hydrodynamics”, NTUA.

However, here we have two branches as for the phase velocity, namely the shear and the flex-
ural due to the existence of two branches for the angular frequency. For the same reason, we
have two branches for the group velocity, one shear and one flexural. Thus, as for the phase
velocities we get

e o Oshear 1
o = . (11)

p Shear

1
and C ex —_ = == 12
p fl K K ( )

As for the group velocities, we derive

; d 1 1 [@+ 1 a_A] (13)
e dk 2A JBaJaldk  2JA K
€,y g = 2t L L [—@——1 %] (14)
Sl dk 2A JCp_yal ok 2JA ok
Where,a—ézzBa—?—4[a—€C+Aa—(~:] and %:O,
ok ok ok ok ok
8_|%:2I2+—4k . and 9C _ 4¢3,
Ok 1—V) & ok

Finally, we have to study the behavior of the curves in region near the zero wavenumber,
k—0.
Let k — O first on the Eq. (11), then

lim
k— 0

lim ¢ =
ke 0 p Shear

7\_z|l—‘
1

We study the limits of the numerator and denominator of the above fraction separately. Thus,

as for the limit lim , We examine its terms isolate.
k— 0
: - 2k?
lim(-B) = lim |K2+—2K"_ 41 =1,
k—0 k—0 @—v)x
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lim VA = lim \/53929k +86445K2+1 =1,
k—

lim2A = lim = 4 .
k—0 k—0x?(1— v) @a—v)

2
Consequently, we get Jimo — | (;_V) [constant]
k— \/
and finally lim ¢ T /@ _
yl{—>0 p Shear — IZ—>OIZ 2 -

lim
P i L k=0 s
ImOCpﬂex - RLOE - IImIZ L' Hospital
om
.0
lim —
lim ¢ k00K = |lim — =
ko Pfex ™ 1 C k—00K B
9 0
— jim ok ok =0
k— 0

Subsequently, let k — 0 on the Eq. (13), then

! [88 L 6_A] and examine isolate the denominator and

Iim —
Ok 24JA 0K

lim ¢ =
M g Shear
k=0 \/ B++/A

numerator, we get lim _B+ 1/ K (1 v) [constant] and
k—>0\/

“[ 18A]_|. L+ olim L 0A
k— 0 Ok 2J_ak k=0 0K k—>02\/_8k
Subsequently, taking apart the terms of the above limit, we derive the following

4k

Iima—? = lim 2k+—2 =0 and
(00K k0 1—v) x
. 1 0OA . 1 0B OA 0C 0B OA oC
lim 28——4 C+A— = lim B— -2 C+A—||=
k—>02\/_(9k k—>02\/_[ [8k ﬂ k—>0\/_[ [ak 8k]]
1 -, 2k? -
— lim——|— K%+ +1l|2k + S 4K
k— 0 /A (1—v) ? (—V)K] [/k/( K (1 V) ”
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= lim

kHO\/_
. -1.0-2-0
B 1

And taking into account the previous limits, the limit value of the shear group velocity near
the zero is,

c2 2k? - 4k . 2 -3
[ T +1][2k+ —(1_V)K2]— 2[M+—K2(1_v)4k ” _

=0

2

= (0+0) —Kz(l—v) =

lim € spear = 1lim

k— 0 k— 0 _B_’_\/Z

2A

1 [aB 1 oA

2J_ K

Last but not least, we examine the limit value on the same region (near the zero wavenumber)
for the flexural group velocity.

I|m C I|m 1 [ %__1 8_A] = lim _ [— CLN 8—A]
9 flex o«/ AJB_Jal ok 2JA0k) k>0 [Cg_yal ok 2JA Ok
2A
As for the numerator of the limit lim € 4, , we have lim [— 98 _ L8—A] = 0 and as
k—0 k-0l Ok 2JA Ok

for the denominator we derive lim = 0. Now, we are going to perform the L’

—B—+A
k— 0 2A
Hospital’s rule which uses the derivatives of the numerator and denominator in order to eval-
uate limits involving indeterminate forms. Thus, taking apart the derivatives of the numerator

and denominator to make the calculations easier,

Iim—azB— L 82A+ 1 _0Al_ _ 2+L_|imiﬂ+|im 1 oA
k=0l 9%k  2JA 0% 4n’ Ok =0 @-v)x?) k—02JA %K k—04 a0 OK
where,
2
im 24 lim BB g B 4|2 Ac p0R0C, ,0C
i L 9%A 7 [ Kok 2ok Tlo% ok ok ok
kﬁoz\/_a K !imonZ JimonZ —
k— Kk—
2
2|20+ 40 | ioalor 21 4]0.0420.0+ 2 .0
@—v)x @-v)x 1-Vv)x oy 4
2-1 (1—v) 2

and

lim — 6A

k—’04\/_ 6k ~||m 4\/_ 4

k—0

Consequently, we get for the limit of the derivative of the numerator,
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0°B 1 93A 1 OA

lim | — - + CLY R M. S 24—L——4—L
k=0 9% 2JA 9%k 4yr’ Ok 1—v) x° 1—v) k2 1-v) x?
As for the derivative of the denominator’s limit jimoﬁg fex » WeE get
k—
im 0| [ZB=VA | _ 1 [_a_B_ 1 8_A]
—ook |\ 2A oJ—B_Jal Ok 2JA Ok

Note again that the previous limit s of indeterminate form, since  lim 2B —JAa =0
k—

and lim|— —— ——= —| = 0. Consequently, we proceed again to the application of the
|Z—>0[ ok 24JA 8k] quently, wep J PP

.0
lim —

1 [ OB 1 OA
k— 00K

L’ Hospital’s rule and we get
= -——— —] = oo. Finally taking all the pre-

—B—\/Z
2A 2J—B—+Aal Ok 2JA Ok

vious results into account, the limit of flexural group velocity near the zero is

lim €, o = lim ———— [—O—B——l O—A] -
(-0 91 o [ Jal Ok 2JA 0K
2A
Phase and Group Velocities for FSDT
2.5
Shear Phase Velocity - Eq. (11)
— — — Flexural Phase Velocity - Eq. (12)
Shear Group Velocity - Eq. (13)
2r — — — Fle=ural Group Velocity - Eq. (14}
15T

=
T

cp/cg non-dimensional phasel/group velocity
o’
tn

0 1 2 3 4 5 6 7 8 9 10
k non-dimensional wavenumber
Figure 2: Dispersion Curves of velocity-wavenumber as for the FSDT (Mindlin’s Plate Theory).
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