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Περίληψη 

Η πρόοδος της τεχνολογίας στους τομείς των υπολογιστών, αισθητήρων και 

συσκευών απεικόνισης καθιστά τα περιβάλλοντα Εικονικής Πραγματικότητας 

διαρκώς ρεαλιστικότερα και οικονομικότερα. Οι άνθρωποι μπορούν πλέον με ευκολία 

να εμβυθιστούν σε Εικονικά Περιβάλλοντα μέσω οπτικών μέσων. 

Ωστόσο, για να καταστεί εφικτή η πλήρης εκμετάλλευση των πλεονεκτημάτων που 

προσφέρουν αυτές οι τεχνολογίες, είναι σημαντικό να παρέχουν τη δυνατότητα 

ελέγχου ενός «εικονικού σώματος» εντός του περιβάλλοντος, και ιδιαίτερα των άνω 

άκρων. Η ενσωμάτωση της κίνησης των χεριών σε τέτοιου είδους περιβάλλοντα όχι 

μόνο αυξάνει την αίσθηση εμβύθισης του χρήστη στο περιβάλλον, άλλα ανοίγει νέες 

διόδους για την εξερεύνηση και διάδραση με το περιβάλλον. Επιπρόσθετα, διευρύνει 

τις δυνατότητες προσφοράς εκπαίδευσης και αρωγής ανθρώπων σε ποικίλα 

καθήκοντα. 

Χρησιμοποιώντας τρείς Αδρανειακούς Αισθητήρες Κίνησης (Inertial Measurement 

Units, IMUs) και έναν μικροεπεξεργαστή Arduino Nano, αναπτύξαμε ένα πλήρες 

σύστημα ανίχνευσης κίνησης του άνω άκρου, από τον ώμο έως και την παλάμη. Το 

σύστημα αυτό χρησιμοποιήθηκε σε συνδυασμό με μία κάσκα Oculus Rift DK2 και ένα 

περιβάλλον σχεδιασμένο με την Unity Game Engine για τη δημιουργία ενός 

καθήκοντος «σκοποβολής» σε Εικονικό Περιβάλλον. Το παραπάνω σύστημα 

επέτρεπε τον πλήρη έλεγχο ενός εικονικού χεριού εντός του περιβάλλοντος μέσω της 

κίνησης του χεριού του χρήστη στον πραγματικό κόσμο. 

Στην παρούσα εργασία παρουσιάζεται μια σειρά πειραμάτων τα οποία σχεδιάστηκαν 

με σκοπό να διερευνηθεί εάν η ορατότητα των κινήσεων του χεριού εντός ενός 

Εικονικού Περιβάλλοντος αυξάνει την απόδοση του χρήστη σε κιναισθητικά 

καθήκοντα εντός του περιβάλλοντος αυτού. Επεκτείνοντας τα παραπάνω, 

διερευνούμε επιπλέον το βαθμό στον οποίο το άτομο μπορεί να αφομοιώσει μια 

εικονική αναπαράσταση του άκρου του στην αντιληπτή εικόνα του σώματός του, και 

στη συνέχεια να ενσωματώσει την αναπαράσταση αυτή στο ανάλογο κινησιακό 

σχήμα , καθώς και την ταχύτητα και ευκολία με την οποία συμβαίνει η αφομοίωση 

αυτή.  

Τα αποτελέσματα των πειραμάτων παρέχουν στοιχεία σχετικά με την επίδραση της 

ορατότητας του χεριού στην επίδοση και την καμπύλη εκμάθησης στο καθήκον. Δεν 

παρατηρήθηκε σημαντική συσχέτιση ανάμεσα στην ορατότητα και την επίδοση. Η 

επικρατούσα υπόθεση ήταν ότι αυτό οφείλεται στη φύση του πειραματικού 

καθήκοντος. Για τον λόγο αυτό το καθήκον διαφοροποιήθηκε, επιτρέποντας τη 

διερεύνηση των αλλαγών στη στρατηγική και τα αποτελέσματα των χρηστών. 

  



 
 

  



 

 
 

 

Executive Summary 

Advances in computing, sensor and display technology mean that immersive virtual 
and augmented reality environments are becoming increasingly more realistic and 
affordable. Humans can now easily experience virtual environments (VEs) through 
visual means. 

However, in order to reap the full range of benefits these technologies can offer, it is 
of essence to provide the ability to control an avatar body within a VE and especially 
the upper limbs. The integration of arm movements in such environments both 
increases the immersion of the user, and opens new pathways for exploring and 
interacting with the VE. Moreover, it allows for increased capabilities in training and 
assisting humans in various tasks. 

Using three MPU9250 IMUs and an Arduino Nano microprocessor, we developed a 
wearable system for unobtrusively tracking the movement of the arm from the 
shoulder up to and including the palm. The system was used in conjunction with an 
Oculus Rift DK2 and an environment designed in the Unity Game Engine, to create a 
VE “shooting target practice” task. The above setting allowed a virtual arm to be 
completely controlled by the movements of the user’s arm in the real world with 
negligible lag. 

In this thesis a series of experiments will be presented, designed to determine 
whether the visibility of one’s limb movements in real time in a VE, improves the 
effectiveness in the execution of sensorimotor tasks within that environment. 
Extending from the above, we also explore the degree to which a human can 
assimilate a virtual representation of their arm with their body image, and 
subsequently incorporate this representation into their body schemas, as well as the 
speed and ease with which that assimilation occurs. 

The results of the experiments provide evidence on the effect of avatar arm visibility 
on the users’ performance and learning curve in the VE task. Visibility did not appear 
to have a significant effect on performance. Our assumption is that this is related to 
the nature of the experimental task. For this reason the experimental task was 
changed, allowing us to explore the diversification of the subjects’ strategy and 
results.  
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Introduction 

1 Introduction  

Advances in computing and display technology have rendered Virtual Reality a 

rapidly evolving field of research, with a constantly growing number of applications 

and an increasingly commonplace presence in everyday life. VR environments ant 

technologies are constantly becoming ever more inexpensive and readily accessible 

to humans, and seeing use for purposes exceeding entertainment. 

The interest of the scientific community in Virtual Environments (VEs) has been both 

extensive and manifold, concerning issues ranging from the possible applications of 

such technologies in various aspects of life to the psychological effect that virtual 

stimuli can have on users. 

The present thesis revolves around two main objectives 

The first of these was the re-design and adaptation of an innovative technology 

originally developed for measuring the angles of the wrist and forearm by the NTUA 

Lab of Cognitive Ergonomics, for use inside VR environments. This included the 

construction and programming of a functional prototype, as well as the development 

of a VE in which the prototype could be tested. 

Secondly, after the completion of the above, a series of experiments were designed 

and conducted, with the aim of both evaluating the prototype and exploring certain 

issues regarding limb visibility and performance inside VEs. Namely, it was 

hypothesised that the ability to see, as well as control, the entirety one’s upper limbs 

inside a VE would have a positive effect on the performance and experience of the 

humans operating the system. This hypothesis challenges the practice currently 

employed by various existing VR systems, which tend to display only the hands and 

fingers (e.g. Oculus Rift, HTC Vive, and Manus VR). 
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Theoretical background: VR and Avatar Bodies 

2 Theoretical background: VR and Avatar 
Bodies 

In this section, the theoretical basis for this thesis is presented. The concepts of 

immersion and presence are explained as used in the context of VEs. Moreover, the 

term “avatar body” and its meaning are introduced. Research related to the 

representation and control of body parts within immersive VEs is also presented. 

 

2.1 Immersion & Presence 
 

Immersion is a crucial factor when judging the quality of a Virtual Environment (VE). 

As described by Slater & Wilbur (1997), immersion is a distinct concept from 

presence. Presence describes the user’s psychological sense of being inside the 

virtual world and is a central goal of Virtual Reality (Steuer, 1992). Immersion, by 

contrast, refers to the ability of the utilised technology to create “an inclusive, 

extensive, surrounding and vivid illusion of reality” (Slater & Wilbur, 1997)—

essentially a world providing the user with a sense of presence. It is worth noting at 

this point that while an increase in immersion is often observed to have an analogous 

effect on the performance of users in tasks within the VE, no such conclusion can be 

drawn regarding an increased sense of presence. This is attributed to the fact that 

while increased immersion results in an increase of the quality of the virtual world, 

allowing for better performance in tasks within it, increased presence regards the 

similarity of the actions performed in the real and virtual worlds and as such has no 

effect on the performance in these tasks. (Slater et.al, 1996) 

 

2.2 Avatar Body 
 

One of the main components of immersion is self-representation within the VE—what 

we call a virtual or avatar body. An avatar body is both a part of the environment 

perceived by the user, and a representation of that user’s physical body within the 

VE. For the sense of self-representation to be complete, a match is required between 

the user’s proprioceptive feedback about the movements of their physical body and 

those performed by the avatar body—essentially, the ability to control the avatar 

body by one’s own movements. To achieve this, of course, real-time tracking of the 

head and body movements of the person operating in the VE is required, as well the 

ability to translate these movements into the corresponding ones for the avatar body 

with minimal lag.  

An avatar body need not be similar in appearance and anatomy to the user’s physical 

body. As has been demonstrated by research and asserted by users of VR 

applications, humans can experience an illusion of ownership of bodies largely 

different from their own, and adapt their existing body schemas to facilitate these 

bodies. This observation merits research, as it not only provides insight into the 

function of human cognition, but also allows humans to incorporate novel training and 

interaction schemes within VEs. 
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2.3 Related research - immersive VR with First Person 

integrated body parts  
 

Avatar body representation and control in VEs allows for many types of research in 

various fields such as game development, H-R collaboration, training, medical 

rehabilitation, ergonomics, etc. Examples of such research include: 

 

Lange et.al (2011), used the PrimeSense depth sensor technology (also utilised in 

the Microsoft Kinect) to develop and evaluate a game-based rehabilitation tool for the 

balance training of adults after neurological injury. Wittmann et. al (2015) developed 

a VR therapy game that continuously estimates the patient’s arm reachable three-

dimensional (3D) workspace based on Inertial Measurement Units (IMUs). Luo et. al 

(2011), created an interactive VR system for both arm and hand rehabilitation 

utilising both optical linear encoders (OLEs) and IMUs. Osumi et. al (2017) 

developed a quantitative method to measure movement representations of a 

phantom upper limb, and investigated whether short-term neurorehabilitation with a 

VR system would restore voluntary movement representations and alleviate phantom 

limb pain (PLP), using a combination of the Microsoft Kinect and Leap Motion. 

Merians et. al (2009) developed a complex system capable of exercising the arm and 

hand together or in isolation, providing for both unilateral and bilateral hand and arm 

activities in three-dimensional space. The system incorporated CyberGlove 

instrumented gloves for hand tracking and a CyberGrasp exoskeleton for haptic 

effects in a number of VR simulations. Moreover, MRI imaging was used to observe 

the engaged areas of the brain, in order to test the feasibility of using VE-based 

sensory manipulations to recruit select sensorimotor networks.  

All of the above research yielded encouraging results regarding the rehabilitation of 

patients, as well as gaining positive feedback from both patients and clinicians, thus 

demonstrating the applicability of combining motion tracking technologies and VR 

environments for rehabilitation purposes, and especially for offering a solution for the 

at-home rehabilitation of patients, in an enjoyable environment. 

Heidicker et. Al (2017) studied the effect of avatar appearance and motion control on 

communication and interaction in social virtual reality scenarios within immersive 

VEs. To that end, three different types of avatar in different VEs were compared. The 

results demonstrated that motion control of avatar bodies plays an important role in 

the sense of presence within the VE, with full body avatars with full motion control 

exhibiting the best results regarding co-presence and behavioural interdependence. 

It is worth noting however that avatars consisting of head and hands with motion 

control showed better results than complete avatar bodies with pre-defined 

animations. A question left open for future research by the paper was how many and 

which body parts have to be visible to reproduce or even surpass that degree of co-

presence. 

Specifically regarding the field of Ergonomics/Human Factors, by studying the 

relationship between an avatar body and the person operating it, it is possible to 

draw valuable conclusions regarding issues such as: 

 The correlation between avatar body control and task effectiveness in a VE  

 The user’s ability to assimilate a virtual representation of their body with their 

real-world body image 
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 The ability to subsequently incorporate this representation into their body 

schemas. 

 For example, Kilteni et.al (2013) observed that subjects’ behavioral and movement 

patterns within a VE can change depending on the visual aspects of an avatar body 

within said VE, by simulating a drumming task with avatar bodies of different skin 

tones and clothing. Moreover, it was observed that a stronger body ownership illusion 

corresponded with a greater behavioral change of the subjects. Slater et.al (2010) 

studied the illusion of ownership of an avatar body different than the subjects’ 

physical one, demonstrating that a virtual female body that appears to substitute the 

male subjects' own bodies was sufficient to generate a body transfer illusion. 

In a different study, Kilteni et. al (2012) studied the ability of subjects to incorporate 

an avatar body exhibiting asymmetries in comparison to their physical one into their 

body schemas. This was achieved by creating elongating one the users’ virtual arms 

to up to 4 times their normal length, and using questionnaire scores and defensive 

withdrawal movements in response to a threat to measure the degree of ownership 

of that arm experienced by the users. Results showed that users experienced a 

sense of ownership towards the elongated limb and were able to adapt their 

responses to this unnatural body image. That illusion did decline, however, with the 

length of the virtual arm, especially when the virtual arm exceeded three times the 

length of the physical one.  

Won et al. presented congruent results by examining the concept of “homuncular 

flexibility”—the idea that humans can learn to control bodies different from their own 

by changing the relationship between tracked and rendered motion. To that end, the 

researchers conducted two different experiments. In one, the movements of the 

upper and lower limbs of the users real and virtual were remapped, making the 

physical arms control the virtual legs and vice versa, or attributing far increased 

range-of-motion to the virtual legs than the arms. In the other, a third arm was added 

to the avatar body, controlled by the rotation of the users’ physical arms. The results 

of both experiments demonstrated that subjects were able to adapt their body 

schemas to the virtual bodies’ capabilities, quickly learning how to utilise their more 

flexible limbs in the first experiment and their “third arm” in the second one to achieve 

better performance in tasks when compared to “normal” body representations. 
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3 Review of Motion Tracking Technology  
 

3.1 Importance of arm tracking 
 

The upper limbs play a paramount role in the experience of a VR user’s avatar body, 

as they provide the main tool for interacting with the environment. In light of this, 

various technologies have been developed to incorporate the arms’ movement into 

the VE, utilising different approaches, each with its own benefits and limitations.  

 

3.2 Existing systems 
 

In this section, some of the most popular VR technologies are presented, along with 

their working principles and approach regarding position and movement tracking. 

 

3.2.1 Microsoft Kinect 
 

 

Figure 1: Microsoft Kinect 

 

The Microsoft Kinect, originally released in November 2010, is a motion sensing 

device that allows the user to interact with a computer or gaming console (namely the 

Xbox 360/One) without need of a controller, using gestures and spoken commands. 

While the Kinect itself is not, strictly speaking, a VR technology, since it does not 

display a VE to the user, it has been used extensively in conjunction with other 

systems such as the Oculus Rift (presented below) due to its motion tracking 

capabilities. 

The Kinect achieves motion tracking by combining the data acquired from two 

sensors: 

i) An RGB camera 

ii) An IR emitter and an IR sensor 
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The working principle is as follows: A speckle pattern of infrared laser light is first 

projected onto the scene by the IR emitter. The IR sensor acquires the reflected 

pattern and analyses with structured light algorithms in order to compute the depth 

map of the scene. In other words, a depth value is assigned to each pixel of the 

image. The Kinect combines this with the information acquired by the RGB camera, 

in order to produce information about the red, green and blue colours and the 

distance from the sensor for each pixel of the image. 

The acquired map is then segmented in order to recognize human silhouettes. Body 

parts are inferred using a randomized decision forest, learned from over one million 

training examples (Berliner et al., 2010; Shotton, 2011) and matched to one of 15 

body models. From the knowledge of location and attitude of body parts, the position 

of the articular joints between them are computed (Valentini, 2012). 

While the Kinect’s motion tracking capabilities are impressive, its design makes it 

subject to certain limitations. Namely, the objects (or users) tracked need to be within 

Line-of-Sight of the camera and IR sensor at all times. This means that users need to 

stand in front of the sensors when operating Kinect-based systems, and be directly 

“visible” by them (not standing behind objects) otherwise the sensing system suffers 

from occlusions. Moreover, the speckle pattern projected by the IR emitter is 

corrupted by natural light, rendering the Kinect incapable of being used outdoors. It is 

also worth noting that, due to a lack in popularity, the Kinect was recently 

discontinued by Microsoft 

 

 

 

 

3.2.2 Oculus Rift 
 

 

Figure 2: Oculus Rift 
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The Oculus Rift is perhaps the most well-known VR technology currently available to 

consumers. Initially funded via a Kickstarter campaign started in 2012, Oculus 

released two Development Kits (DKs) in 2013 and 2014, and finally released the first 

consumer version on March 28, 2016. The Rift hardware includes a Head-Mounted 

Display (HMD), an IR sensor consisting of a specially filtered camera in the form of a 

desk lamp, as well as two handheld controllers known as Oculus Touch. 

The Oculus Rift approach to motion tracking is based on the Constellation system. 

The Rift HMD as well as the Oculus Touch controllers are fitted with a series of 

precisely positioned infrared LEDs under or above the surface, set to blink in a 

specific pattern. The pattern is recorded by the infrared sensor which is usually 

placed on the user’s desk. By knowing the configuration of the LEDs on the objects 

and the pattern at which they blink, the system can determine the position of each 

LED as a point in space. By combining these points to create a 3D wire frame, it is 

able to pinpoint the precise position and orientation of the tracked device (HMD or 

controller) with sub-millimeter accuracy and near-zero latency. This data is combined 

with information obtained through gyroscopes and accelerometers embedded in the 

devices, as well as prediction algorithms, to provide continuous position and 

orientation tracking. Due to this architecture, previous versions of the Rift suffered 

from occlusions when the user was facing away from the sensor, as the system was 

unable to track the LEDs. This was tackled in the consumer version, however, with 

the inclusion of tracking LEDs in the back of the headset. 

It should be noted that two separate IR sensors are required to track the HMD and 

Touch controllers at the same time, since a single sensor could be easily confused 

and occluded by one or more of the Touch controllers and hence block tracking of 

the other controller, the headset, or both.  

Moreover, the Oculus IR sensors are still prone to occlusion issues, since any object 

(walls, furniture, or even the user’s hands) interposed between the sensor and the 

tracked devices “hides” the LEDs from the sensor, resulting in a loss of tracking data. 

Furthermore, since Constellation is limited by the resolution of the cameras, at a 

certain distance away from the camera the devices take up too few pixels and the 

system can no longer identify the individual points corresponding to each LED. 
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Figure 3: Oculus IR Sensor 
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3.2.3 HTC Vive 
 

 

Figure 4: HTC Vive 

 

The HTC Vive is a virtual reality headset developed by HTC and Valve 

Corporation.Τhe first Consumer version of the device was released on April 5th, 

2016. 

Its main advantage over previous existing systems is the ability to provide room-scale 

VR with motion tracking, allowing the user to move in space freely. 

This is implemented by what Vive names “Lighthouse” technology. The technology’s 

working principle is similar to that of Constellation, with a few important differences. 

The Vive headset and controllers are accompanied by a pair of “base stations” or 

“beacons", which provide the means for positional tracking of both the HMD and 

controllers. These need to be placed within the room where the Vive will be used at 

an elevated height. The stations emit pulses of non-visible light from stationary 

Infrared LED arrays within them, along with two laser beams, which sweep the room 

at periodic intervals (60 fps). The HMD and controllers feature a large number of 

photosensors (37 on the headset, 24 on each controller) which detect the light 

emitted from the base stations, both the LED pulses and the beams. By measuring 

the time elapsed between detecting and LED pulse and a laser beam, the position of 

each photosensor in space can be determined. By combining data from enough of 

these sensors, as well as an accelerometer-gyroscope combination within the 

headset, it is possible for the Vive’s software to pinpoint both the position and 

orientation of the headset and controllers in 3D space.  

By positioning the base stations higher than the level at which the user operates the 

HMD and controller, Vive manages to omit occlusion issues, since the beacons are 

able to “look down” at the entirety of the room without being obstructed by interposing 

objects. Moreover, even if one of the beacons is unable to detect the equipment, 

correct placement of the other one should ensure accurate tracking (see Fig. 5) In 

addition to the above, since the tracking technology is not dependent on any form of 

camera, rather utilising simple clocks and light detectors, the resolution issues 

https://en.wikipedia.org/wiki/Virtual_reality_headset
https://en.wikipedia.org/wiki/HTC
https://en.wikipedia.org/wiki/Valve_Corporation
https://en.wikipedia.org/wiki/Valve_Corporation
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appearing in the Oculus hardware are not encountered by Vive. The obvious 

downside to this is the requirement for proper placement of the base stations within 

the space where the system is used. 

 

Figure 5: Correct placement of the Vive Base Stations 
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3.2.4 Manus VR 

 

Figure 6: Manus VR 

 

The Manus VR is one of the latest additions to VR motion tracking, and focuses on 

incorporating the movements of the fingers and palm into a VE. The gloves contain 

two flexible analog sensors to track the movement of each finger, as well as one 

9DOF Inertial Measurement Unit (IMU) which tracks the orientation of the thumb, and 

another for the orientation of the hand’s dorsal surface. Details as to how the data 

from these sensors is processed remain unreleased, as does the final product. A 

video was recently released demonstrating a combination of Manus VR with the Vive 

HTC controller, to provide full arm and hand control to the user. 
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4 Development of a Motion Tracking System 

 

4.1 Hardware/Wearable 
 

As part of this thesis, a motion tracking system was developed, capable of tracking 

the movement of the human arm beginning from the shoulder up to and including the 

palm.  

The wearable system was based on the one previously constructed by Michael 

Karakikes (2017), with a number of changes made to accommodate the needs of the 

current research. It consists of three MPU 9250 IMUs connected to an Arduino Nano 

with 24AWG wires (the connections are explained in section 5.1.2, 

“Wiring/Connections”) and mounted on a fingerless glove and elbow patch. The main 

characteristics which favored the selection of IMU technology are: 

 Inexpensiveness  

 Small size, non-intrusiveness  

 No obstruction of the user’s movement 

 Sufficiency of accuracy and precision, for arm motion tracking and 

visualisation(< 3°)  

 Availability of prototyping platforms  

 Portability, ability for wireless communication 

 Independent function from specific VR equipment (HMDs, software, etc.) 

 

Figure 7: Proprietary Motion Tracker 
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Although various systems implementing arm tracking in VR already exist, with the 

most popular and recently developed ones being described above, the system 

developed by our lab retains certain benefits not found in existing systems. The main 

advantage it provides is the fact that it can function independently from any type of 

position tracking technology or display. The data from the IMUs goes directly from 

the Arduino to the PC, without needing to be within Line-Of-Sight of any externally 

mounted camera or position tracker, rendering it entirely portable. This characteristic 

would make it usable not only within various different VR environments, but in 

augmented and real world applications as well, requiring only access to a computer 

in order to send and receive data, a process which can be achieved wirelessly.  

This feature, stemming from the fact that the system was not originally designed to 

be used in VR, is not found in any of the aforementioned motion tracking systems. 

Even the Vive, despite its impressive accuracy, depends on the light-emitting base 

stations to provide “room-scale VR”. The system presented here, by contrast, can be 

used in different rooms or even outdoors, as long as wireless support is provided. In 

this manner, it paves the way for what we have dubbed “world-scale” VR and, 

perhaps more importantly, AR applications. It is worth noting here that the Manus 

VR, although its functional details are unclear, seems to utilise technologies which 

also function without need of external position tracking. This could mean that, by 

combining it with our proprietary motion tracking system, we would be able to provide 

complete tracking of the arm and hand on world-scale applications. 

Moreover, since IMUs are very inexpensive to obtain, the system has a very low 

construction cost; excluding the equipment required to perform the soldering 

connections, the cost required to build the existing prototype was 15€ (4€ for the 

Arduino, 3x3€ for the sensors, 2€ for the glove and elbow patch). It should be noted 

that this does not come at the expense of accuracy, since IMUs are capable of 

delivering adequately accurate measurements of a human arm’s motions, as is made 

evident by their use in commercial VR in systems such as the Oculus Rift, HTC Vive 

and Manus VR, as well as related research such as the rehabilitation-oriented 

systems presented in section 3.3, “Related Research” (Merians et. al 2009, Wittmann 

et. al. 2015, etc) 

This system was used to control the movement of a virtual human arm, in a virtual 

environment created with the Unity Game Engine, and displayed to the user through 

the Oculus DK2 Head-Mounted Display (HMD) explained in depth in section ??.??, 

“Environment Design” 

 

4.1.1 Components 
 

4.1.1.1 Arduino Nano  
For this project, a version of the Arduino Nano v3.0 (Fig. 8) board was used as a host 

processor device, to capture IMU measurements and process them, in order to 

calculate the orientation and movements of the user’s arm. The board was powered 

through a Micro-USB connection with a PC. The same connection was used to 

exchange data with the computer via the serial monitor included in the Arduino 

software, which allows simple textual data to be sent to and from the board. The 

Arduino receives data from the three MPU 9250 IMUs utilising I2C communication 

through the A4 (SDA) and A5 (SCL) pins. I2C communication is supported by the 



 

17 
 

Development of a Motion Tracking System 

appropriate libraries. The Arduino Integrated Development Environment (IDE) was 

used for writing the code used in the project and uploading it to the processor.  

 

Figure 8: Arduino Nano V3.0 
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4.1.1.2 MPU 9250 
The MPU 9250, produced by InvenSense, is a 9-axis Motion Processing UnitTM 

(MPU), meaning that it combines an accelerometer, gyroscope and magnetometer 

for position, orientation and acceleration tracking. It additionally contains an 

embedded Digital Motion Processing (DMP) unit, which can acquire the data from 

these sensors, process those utilising data fusion algorithms, and return position and 

orientation information. 

A breakout board of the chip was used to better facilitate prototyping and connection 

to the Arduino. The board (seen in Fig 9), also denotes the IMU’s X and Y axes. The 

Z axis can be inferred from these by the right-hand rule.  

 

Figure 9: MPU 9250 
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4.1.1.3 Oculus Rift DK2 
The HMD used in conjunction with the motion tracking system was an Oculus Rift 

DK2 (Fig. 10). The DK2, released on July 24, 2014, is the predecessor of the Rift’s 

first consumer iteration. The DK2 connects to the computer via an HDMI cable and 

two USB 3.0 ports (one for the HMD and one for the IR position tracker). It was 

calibrated using the Oculus Configuration Utility. The HMD was used to project the 

developed VE to the user, as well as track the position of the user’s head within the 

environment.  

 

Figure 10: Oculus Rift DK2 

 

 

4.1.2 Wiring/ Connections 
 

Initially, a prototype of the system was built on a Solder-less breadboard, for the 

purpose of testing the connections and functionality of the system. The Wiring code 

for the Arduino was tested and developed further using this prototype to suit the 

needs of the project. The prototype was also kept in place during later phases of 

development, and used as a tool for verifying any changes to the code or wiring prior 

to implementation. 
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Figure 11: Solderless circuit 

After ensuring the system’s functionality with the current configuration, the circuit was 

soldered permanently. Stranded core wires were used, owing to their flexibility which 

would allow the mobility of the subject wearing the system. Small solderable 

breadboards were soldered to female pins, within which each sensor and the Arduino 

were fitted, allowing for the removal of any malfunctioning component from the circuit 

without the need to de-solder and re-solder it .Header length was clipped, to reduce 

size.  
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Figure 12: Soldered Circuit 

The connections required for each of the IMUs are presented in the following Table: 

 

Table 1: Connections between MPU 9250 & Arduino 

MPU 9250 Arduino Nano 

VCC 5V 
GND GND 
SCL A4 
SDA A5 
AD0 D3/5/7 

 

In the above connections, the A4 and A5 pins on the Arduino are used to implement 

I2C communication between the board and the IMUs. The same pins can be used for 

communicating with all three IMUs at once, with A4 being the “Clock” (SCL) and A5 

the “Data” (SDA) pin. Pins D3, D5 and D7 are used for selecting the I2C address of 

each of the IMUs (see section 5.2, Code Development), and are each connected to 

the AD0 pin on one of the IMUs. 

 

4.1.3 Placement on the arm 
 

The position of the sensors on the body was determined by both empirical 

observation of upper limb joint and skin movement, and previous research (Chen X. , 
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2013; Buchholz & Wellman, 1997; Leonard, et. al 2005; Smeragliuolo et al. 2016; 

Oberländer, 2015, (Karakikes, 2017). Namely: 

One sensor (IMU 1) was placed of the dorsal surface of the palm, approximately over 

the third metacarpal bone 

One sensor (IMU 2) was placed on the dorsal surface of the forearm, over the wrist 

joint 

One sensor (IMU 3) was placed on the dorsal surface of the upper arm, over the 

elbow joint 

 

Figure 13: Placement 
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Each of the sensors captures the motion of one “segment” of the arm—IMU 1 

captures the movement of the palm, IMU 2 that of the forearm and IMU 3 that of the 

upper arm 

 

4.1.4 Placement justification  
 

The placement of the sensors was based on the aforementioned research as well as 

on the experience of our lab’s personnel due to previous related projects. The work 

of Michael Karakikes (2017) had determined the correct placement of sensors for the 

measurement of wrist and forearm angles, and therefore palm and forearm 

orientation. 

 As indicated, to measure the movements of the palm, it is adequate for a sensor to 

be placed over the metacarpal bones of the hand. This placement ensures that the 

motions originating at the wrist (flexion/extension and radial/ulnar deviation) are 

accurately read by the IMU, but not influenced by the movement of the rest of the 

arm (e.g. the fingers or forearm).  

For the accurate measurement of the forearm’s pronation or supination, the second 

sensor needs to be closer to the wrist than the elbow joint, since the effect of the 

motion is far more pronounced on the lower part of the forearm. The same sensor 

can be used to effectively measure the elbow’s flexion and extension, since the 

forearm cannot perform such movements independently from the elbow.  

As regards the movements of the shoulder and upper arm, it was theorised that by 

mounting the third IMU close to the elbow joint, the motions originating at the 

shoulder joint would be clearly pronounced, as was the case with the 

pronation/supination of the forearm. This hypothesis was experimentally tested, and 

the measurements were indeed accurate, so the placement was maintained. 

 

4.1.5 Mounting on the Arm 
 

After reviewing a number of solutions, including using Velcro to mount the sensors 

and processor to the glove and elbow patch (as previously done by Karakikes, 2017), 

it was decided to use LegoTM bricks to mount the sensors. This solution offered the 

ability to quickly mount/dismount the sensors on the glove & elbow patch, while 

simultaneously providing increased stability over the Velcro patches, as well as the 

ability to very accurately calibrate the sensors, as explained below. Moreover, since 

the glove & patch are elastic, it was possible to shift the position of the sensors to 

accommodate the differences in shape and size of each user’s arms, while still 

maintaining their alignment. 



24 
 

 

Figure 14: Mounting 

 

4.1.6 Setup 
 

Every time the system is initialised, the following setup process is executed 

First, the sensors are attached to a large LegoTM brick with their Y axis facing forward 

and their Z axis facing up, as shown in the image, and allowed to rest for approx. 10 

seconds. The sensors’ X-Y needs to be parallel to each other during that time, and 

their Z axis parallel to the ground (Fig. 15). This is required in order to calibrate the 

sensors, since their magnetometer data is not obtained by the code, rendering their 

reference system random (around the gravity axis) each time they are initialized. 

Moreover, their coordinate systems need to be “matched” to those of the virtual arm 

in the VE controlled by the motion tracker, which starts at an extended (facing 

forward) position. This process is repeated every time the system is initialised, as 

well as when measurement error (“drift”) has been accumulated. 

Following that, the sensors are attached to the glove and elbow patch worn by the 

user. The user is asked to extend their arm in front of them, and the sensors are 

aligned with the user’s extended arm position, in order to provide correct 

measurements. This is done to ensure the position of the virtual arm controlled by the 

sensors’ motion matches that of the user’s arm when that motion starts. 
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Figure 15: Calibration Setup 

 

4.2 Code Development (Software) 
 

The code developed for this thesis was required to cover two main objectives 

a) Acquisition of real-time motion data from the three IMUs mounted on the 

user’s arm 

b) Translation of that data into movement of a virtual avatar arm within the 

developed VE, which was used to conduct experiments 

 

To fulfill objective (a), the Arduino IDE was used to develop and test code, utilising 

I2C communication, as well as a number of libraries, especially the I2C devlib by Jeff 

Rowberg (jrowberg) which provides various functions for reading the data from the 

IMUs and displaying them in different formats (quaternions, Euler angles, yaw-pitch-

roll, etc.) as well as the MPU6050_Wrapper library by GitHub user eadf which allows 

for periodically changing the I2C addresses used by the sensors.  

Regarding objective (b), an environment was initially designed using the Processing 

IDE, utilising the OculusRiftP5 library by Sunao Hashimoto (kougaku) wherein the 

functionality of the virtual arm could be tested. 

However, with the aid of Petros Kontrazis, a different environment was ultimately 

constructed using the Unity Game Engine (henceforth referred to simply as “Unity”). 

Unity offers various advantages over Processing, such as easier head-tracking, 

generally increased—and simpler to implement— VR support, increased 
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communication capabilities with the Arduino, as well as a more realistic and easily 

customisable environment. 

Owing to the fact that the system was initially designed to function with Processing 

and later changed to Unity, a number of different solutions were tested and 

implemented regarding the acquisition of data from the sensors, and various scripts 

were changed within the Unity Scene to fine-tune the environment’s functions and 

obtain the necessary experimental data. 

In this section, the functionality of the main program is explained, together with the 

data exchange methods between Arduino and Unity. This program obtains the 

motion data from the three IMUs, transfers that data to Unity, and translates it into 

movement of the virtual arm. The code itself is presented in appendix A. 

The changes made to scripts within Unity are described in section 6, “Environment 

Design”, but not specifically presented in the form of C# code (as that would result in 

a needlessly large appendix). The program written for the Processing IDE is also not 

presented here, since it was not used in the final project. 

 

4.2.1 Arduino IDE  
 

The code for the Arduino Microprocessor has one main function: Obtaining the data 

from each IMU in the form of Quaternions, and printing these Quaternions to the 

Serial Port. This is achieved by reading raw data from the IMU’s Digital Motion 

Processing (DMP) unit, and translating that data to readable quaternions using the 

dmpGetQuaternion function, provided with I2Cdevlib. For distinguishing between the 

three IMUs, a modified version of the MPU6050_Wrapper library is used, which 

“rotates” between reading each IMU after a set amount of time. This functionality was 

required because the MPU9250 can only obtain one of two I2C addresses: 0x68 or 

0x69, depending on the logic level on pin AD0. Therefore, in order to simultaneously 

use more than two IMUs, these addresses need to be “rotated” and the motion data 

needs to be read from each of the IMUs in order.  

The used library achieves that by providing “high” voltage for one AD0 pin and “low” 

voltage for all other AD0 pins (or vice versa). This forces one of the MPUs acquire a 

different address than the others, making it easy to read data from. Subsequently, 

the addresses change again, and the next MPU is made available for reading. This 

way, the MPUs are read one at a time, but with a very short time interval, more than 

adequate for the purpose of measuring the motions of the human arm. 

The final developed program reads data from one IMU at a time, and then prints that 

data to the serial port in a single line, separated by commas and preceded by the 

number 1, 2 or 3 to distinguish between IMUs. 

 

4.2.2 Unity  
 

On the other side of the loop, the script motionControl.cs running in Unity reads the 

data sent to the Serial Port by the Arduino and translates it to movement of the 

corresponding game object. This is achieved by reading one line of data at a time 

from the open Serial Port, splitting that line into separate strings  whenever a comma 
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is encountered, and parsing these scripts as integer (for the IMU identifier 1,2 or 3) or 

floating point variables (for the actual Quaternion data). These variables are then 

stored in 3 Quaternion objects (pre-existing in Unity) changing their order and 

orientation as required for the coordinate systems of the IMUs and the Unity 

environment to match (the correspondence appears in Table 2). Finally, the 3 joints 

of the virtual arm within Unity are each rotated according to the corresponding 

Quaternion, creating an accurate representation of the user’s arm movements. 

 

Table 2: Correspondence between MPU9250 & Unity coordinate systems 

Unity MPU9250 

X -X 

Y -Z 
Z -Y 

 

Notes 

1) The I2Cdevlib as well as the MPU6050_Wrapper libraries, used with the 

Arduino IDE, are not developed for the MPU 9250 but rather its predecessor, 

the MPU 6050.The reason for their use is two-fold. Firstly, since the 9250 is a 

fairly new unit, the existing libraries for using it with an Arduino are few and do 

not cover the needs of the current project. This necessity, coupled with the 

fact that the libraries for the 6050 could be used with ease to obtain accurate 

data from the DMP, resulting in simpler code and lessening the computational 

load on the Arduino, led to the decision of using the aforementioned libraries. 

 

2) Due to the above decision, and owing to the fact that the MPU 6050 did not 

include a magnetometer, the magnetometer data is not read by the utilised 

libraries. This means that the sensors have no reference regarding their 

orientation in the XY plane at the beginning of the experiment, necessitating 

that they be allowed to rest before being used, in order to determine the world 

reference frame (as described in section 5.1.6, “Setup”). This was not an 

important hindrance in our case, as the time that the sensors were resting 

was used for the purpose of explaining the experimental process and setup to 

the subjects (see section 7, Experimental Design). 

 

3) The used code allows for determining offsets for each of the sensors, in order 

to expedite the calibration process. However, these offsets are determined by 

the sensors’ internal architecture, and need to be determined by dedicated 

algorithms, or otherwise estimated by iteratively testing various values. For 

that reason, as well as the fact that time for calibration was rather plentiful in 

our case (as described above), the offsets were left to the value of 0.0 in the 

code. 

 

4) To minimise the lag between the movements of the real and virtual arm, the 

motionControl script was assigned to a separate processing thread from the 

rest of the processes. This was required because if allowed to run in a serial, 

rather than parallel, manner, the IMU measurements were displayed with a 

cumulative delay in the Unity environment, resulting in increased lag and 

making the virtual arm unresponsive. 
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5) The scripts as well as the virtual arm developed in the Unity environment are 

completely standalone. This means that they can be “removed” from the 

existing VE and placed into any other Unity-based environment, allowing for 

expedient and efficient use of the motion tracking system outside the 

developed scene. 

 

 

An overview of the designed system can be seen in the figure below. The VR 

environment’s design and functionality are explained in detail in section 6, 

“Environment Design” 

 

Figure 16: Working Principle of Motion Tracking System 
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5 Environment Design 

The experiment conducted as part of this thesis was originally intended to be a VR 

“catch” task. The reason for this choice is that catching a flying object required the 

user to implement hand-eye coordination in a short amount of time, and reflexively 

move their arm in space. It was theorised that this would allow us to effectively study 

the level of incorporation of an avatar body which can be achieved in such 

environments. However, after designing such a task in the Processing environment, it 

was realised that the environment suffered from a lack in realism, due to the absence 

of haptic feedback when catching the flying object; moving their arm to catch 

something and then clicking a button to achieve the actual “grabbing” of it seemed 

confusing to users.  

In light of this, it was decided to change the task from catching flying objects to 

shooting randomly appearing targets. The reasoning behind this was that trying to 

quickly aim and shoot at a target appearing at a random point in space would impose 

hand-eye coordination requirements on the user similar to those of the catching task. 

Moreover, clicking a button to simulate releasing a projectile from a gun seemed 

more lifelike, to researchers and users alike, than grabbing an object. 

As mentioned above, the above task was also initially designed using the Processing 

language, and then re-adapted using the Unity Game Engine. Only the second game 

environment—the one used in the final experiment—is presented here.  

 

5.1 Original Scene 
 

The environment’s background and most of the objects were originally found in the 

free Unity Asset VR Samples, and namely from that Asset’s “Target Arena 360” 

scene.  

That scene consists of a 360o environment, with the player positioned centrally with 

their viewpoint coincident with the Main Camera (first person perspective). The player 

is unable to change their position within the environment, but they are capable of 

rotating around their axis and moving their head in order to look “behind” them in the 

environment, utilising the head tracking capability of the Oculus HMD. The scene’s 

original functionality was as follows: 

 

5.1.1 Intro 
 

First, the player is presented with an intro screen, providing instructions on how the 

game is played (see Fig 17). Within that screen, the player can see a rigid, extended 

arm holding a gun, and a red rectangular reticle positioned where the gun is aiming. 

By moving their head around, the player can aim the reticle wherever they are 

looking. The arm moves to follow that movement. Positioned centrally on the screen 

underneath the instructions, is a grey box with the phrase “Ok, I got it!” displayed 

within. By holding their gaze over that box and holding down the left mouse button, 

the box “fills up” with a fuchsia colour, and the player can start the game.  
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Figure 17: Game Intro 

 

5.1.2 Main Game  
 

During the main “phase” of the game, targets spawn around the player in random 

locations within the environment (see Fig 18). The player has 1 minute to shoot as 

many targets as possible. By using the direction of their gaze to move the reticle over 

the targets and clicking the left mouse button, the player causes a laser beam to fire 

from the gun held in the displayed arm. When the beam hits the targets they shatter, 

and the player’s score increases by 1 point. The score is displayed on the screen 

during this phase, together with a blue curve representing the time remaining. When 

that time runs out, the game is over. If not hit, the targets remain on the screen for 2 

seconds before disappearing. There is a script running behind the scene determining 

the desired number of targets which should be on-screen at any time, and reducing 

or increasing the probability of a new target spawning depending on how many 

already exist.  

 

Figure 18: Main Game 
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5.1.3 Outro 
 

When the time runs out, any existing targets disappear and the player is presented 

with an outro screen, displaying their score as well as the current high score (Fig 19). 

The rectangular reticle is replaced with a circular one, and the player is prompted to 

hold down the left mouse button to play again. If they choose to do so, the reticle 

“fills” up and the player is redirected to the intro screen, from where they can start the 

game again. 

 

Figure 19: Game Outro 

 

5.2 Adaptations to the needs of the project 
 

The scene was changed appropriately to accommodate the needs of the experiment. 

The most important changes made to the environment were: 

The original rigid arm existing in the environment was replaced with a jointed arm 

created for the purposes of the experiment, controlled by the signal from the three 

IMUs on the user’s arm. This arm was created using simple capsule and sphere 

objects found in the Unity Game Engine, since our focus was directed more towards 

it being capable of accurately capturing the movements of the user than to it being 

aesthetically pleasing or realistic. Each capsule represents a segment of the arm 

(palm, forearm, and upper arm), and each sphere one of the arm’s joints (wrist, 

elbow and shoulder). The signal from each IMU controls the position and orientation 

of the arm’s corresponding joint—the IMU mounted on the upper arm controls the 

shoulder, the one mounted on the forearm controls the elbow, and the one on the 

palm controls the wrist. The capsules and spheres are connected via parent-child 

object relations starting from the shoulder and moving down to the palm. This way 

the movement of the virtual arm corresponds to the movement of the user’s arm in 

the real world—for example, if the user rotates their forearm about the elbow, the 

wrist and palm move as well, but if the user simple flexes or extends their wrist while 

keeping the rest of the arm immobile, the same movement will occur on the virtual 

arm.  
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Figure 20: Replacement of the existing arm 

The aiming system was redesigned so that the player uses their arm to aim, instead 

of their gaze as per the original design. This was done by repositioning the origin of 

the scene’s Raycaster (the component that projects a “ray” to the aiming position) 

from the Main Camera to the end-effector of the virtual arm (a small sphere object 

positioned at the end of the “palm” capsule). This way, the scene’s aiming reticle is 

positioned on the point in the background where the palm is pointing at, rather than 

wherever the player is looking. This change was made in order to force the players to 

utilise the movement of their arm while aiming. This was required in order to obtain 

useful data from the conducted experiment (described in section 6, “Experimental 

Design”). Namely since the hypotheses tested in the experiment focus on the motion 

of the arm within the VE, it was of paramount importance that the users aim with their 

arms. If they were able to aim using the direction of their gaze instead, the arm’s 

movements would be rendered irrelevant to the task, and therefore any data obtained 

from the measurements of these movements would carry no significance 

whatsoever. 

The origin of the laser beam was also placed at the arm’s end-effector, in order to 

visually demonstrate this change in the aiming mechanism to the player. 

The aiming reticle appearing in the scene was removed in order to shift the users’ 

focus more towards the movement of their arm, rather than a moving point on the 

screen.  The circular reticle described above (see “Outro”) was maintained during the 

intro phase, to aid the users in understanding how the aiming system works and in 

starting the game. The circular reticle was chosen over the rectangular one simply 

due to its larger size—it was easier for the users to spot during their first contact with 

the environment. 

The spawn mechanism of the targets was changed so that only one target spawns at 

a time and remains on-screen for 10 seconds, rather than 2, before de-spawning (if 

not shot down). The purpose of this was to compel the users to search around the 

environment in order to find the target, as it was theorised that would increase the 

observed hand-eye coordination activity, as well as the movement of the users’ arm, 

during the experiment. The targets’ lifespan was increased in order to provide 

enough time for the users to locate and shoot them. The original thought was to 

make the lifespan “infinite” (60 seconds), but this plan was abandoned after 

observing certain users getting “stuck” on targets they couldn’t reach, during the pre-

experiment runs. 
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Figure 21: Original & Adapted Scene 

A script was added to implement the control of the jointed arm, receiving the data 

from the Arduino via serial communication and translating them to movement of the 

arm in the environment, as explained above. 

Several changes were made to the existing scripts in order to obtain the desired data 

while running the experiment (see “Experimental Design”). 
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6 Experimental Design 

 

6.1  Subject Distribution 
 

The experiment was initially designed to test whether a correlation exists between 

the visibility of the virtual arm and the test subjects’ performance in the task. It was 

decided that the 22 subjects would be divided into two groups, one containing 12 and 

the other 10 participants, henceforth referred to as Group A & Group B, respectively. 

Group A consisted of 6 male and 6 female participants, while group B consisted of 5 

male and 5 female participants. Participants were aged 20 to 29. The subjects’ 

experience in First Person Shooter games varied from none to very high. 

 

6.2  Runs and conditions 
 

The experiment would consist of two “runs” for each subject. Each run was defined 

as a 1-minute period during which the subjects use a laser beam fired from the end 

of the virtual arm to shoot down targets spawning in a 360o radius around them. The 

task was completed from a standing position, ensuring that each subject had 

sufficient space to rotate around their axis, in order to reach targets appearing behind 

them, without being obstructed by the control and display devices. Between runs, the 

subjects were asked to fill out a questionnaire regarding their experience during the 

experiment 

Group A would first complete the experiment with full visibility of the arm, fill in the 

questionnaire after this first run, and subsequently run the experiment again, this time 

having visibility of only the wrist and palm. Group B would complete the runs in the 

opposing order, initially viewing the arm from the wrist down, and, after completing 

the (modified) questionnaire, re-run the experiment with a visible arm. 

This was decided based on the assumption that the subjects would accumulate 

experience on the task during their first run, and consequently exhibit increased 

performance in their second run. To compensate for that learning effect, the above 

division was implemented. At the same time, this allowed for testing an increased 

number of subjects in each of the test conditions, since participants in both groups 

would eventually complete the experiment both with and without visibility of their 

arms. The completion of the questionnaire was also placed between the two runs to 

avoid the possibility of the subjects being biased by experiencing both test conditions 

and favouring the one in which they performed better. 

However, during test runs before the start of the experiments, it quickly became 

apparent that the beam, rather than the arm, was the primary tool used for aiming by 

most subjects. In light of that information, a third run was added to the experiment, in 

which the subjects no longer had visibility of the beam. The visibility of the arm was 

determined accordingly to the groups’ second run, therefore Group A had visibility 

from the wrist down, whereas Group B had visibility of the full arm.  

The test conditions for each group and run are shown in the table below. Runs with 

identical testing conditions are signified by common (blue or green) shading of the 
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cells. Note that, in the conditions where the beam was invisible, only ten subjects 

experienced each condition, as opposed to twenty for the previous two (visible 

beam). 

The addition of a fourth run, where the arm’s visibility would again be reversed with 

the beam remaining invisible, was rejected under the assumption that subjects would 

have accumulated fatigue due to the repeated runs at that point, which might 

influence their results. 

 

Table 3: Test Conditions per Group & Run 

 Run 1 Run 2 Run 3 

 
Group A 

Arm Visible 
 

Beam Visible 

Arm Invisible 
 

Beam Visible 

Arm Invisible 
 

Beam Invisible 

 
Group B 

Arm Invisible 
 

Beam Visible 

Arm Visible 
 

Beam Visible 

Arm Visible 
 

Beam Invisible 

 

The aim of this third run was to determine whether the usefulness of the arm’s 

visibility was dependent on the nature of the task. It was theorised that, by removing 

the beam, the task of shooting targets was made not only harder, but different from 

the original, and more akin to real-world shooting, therefore forcing the subjects to 

adopt a different strategy for completing it. That means, of course, that any 

comparison of data between the first two runs and this third one is deemed invalid, as 

they originate from dissimilar tasks.  

 

6.3  Experimental Process for each subject 
 

Each subject completed the experiment as follows: Firstly, the equipment used for 

the experiment and its usage was briefly described to them (HMD, Motion tracker). 

This time was also used to calibrate the Motion Tracker. Following that, the HMD was 

mounted and fitted on their head, allowing them to see the Unity environment. They 

were prompted to look and move around, in order to ensure the HMD’s cables did not 

obstruct their movement.  While doing that, the experimental task was described to 

them, omitting the changes made in subsequent runs. The Motion Tracker was then 

mounted on their arms, and they were given a few (~10) seconds to understand the 

movement of the virtual arm within the environment, using the circular reticle 

described in section 6, “Environment Design”. It was explained to the subjects that 

this reticle would disappear while running the actual experiment. Finally, the mouse 

was handed to the subjects, and they were allowed to begin the experiment.  

After finishing their first run, the HMD was removed and the subjects were asked to 

complete the questionnaire corresponding to their group, with the examiner available 

nearby to answer any questions. The motion tracker was not removed during this 

process, except in the cases when recalibration was required, since it did not impede 
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the subjects’ movements. After completing the questionnaire, the HMD was mounted 

on the subjects’ head again, the changes made for the following run (rendering the 

arm visible or invisible) were explained (and observed by the subjects), and the 

subjects were allowed to run the experiment again. After this run was completed too, 

the HMD was removed for a short while to allow the subjects’ eyes to relax and, 

when deemed necessary, the Motion Tracker was recalibrated. Finally, the control 

and display mechanisms were mounted again, the changes made (removal of the 

beam) were explained, and the experiment was run again. Finally, after the 

completion of this final run, the equipment was removed from the subjects. 

 

6.4  Data acquired from subject 
 

6.4.1 Objective Data 
 

From the twenty subjects, the following data was received for each of the runs 

 Number of shots Fired 

 Number of targets hit 

 Shots Fired off-target between subsequent hits 

 Time (in seconds) each target remained on screen before disappearing 

(whether hit or naturally de-spawning) 

 Position (XYZ) of the arm’s end-effector during the experiment. 

This data was used to conduct various types of analyses, described in section 8, 

“Results”  

 

6.4.2 Questionnaire, subjective experience data 
 

The questionnaire filled out by the users was used for the purpose of extracting 

information regarding the users’ subjective experience of the experimental task, such 

as user satisfaction, adaptation to the environment, usability of the virtual arm, etc. 

The questionnaire was loosely based on the presence questionnaire by Witmer & 

Singer (1998), and adapted to suit the needs of the current experiment. The answers 

were given on a Linkert scale of 1 to 7. Each of the A and B groups was presented 

with a different version of questions 4 and 5 (“visible” for Group A, “invisible” for 

Group B) in order to gauge the effect of the arm’s visibility on the users’ subjective 

experience. The questionnaire is presented below, translated into English 

 

1) How much delay did you experience between your movements and their 

representation in the Virtual Environment? 

1-None        7-Very large 

 

2) How much did the motion tracker and HMD interfere with your performance in 

the designated task? 
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1-Not at all        7-Very much 

 

3) How capable in moving within the environment and interacting with it did you 

feel at the end of the experiment? 

1-Not at all        7-Very much 

 

4) How much harder or easier was the task made by the fact that your arm was 

invisible/visible? 

1-Much harder       7-Much easier 

 

5) How much was the naturalness of your interactions with the environment 

decreased or increased by the fact that your arm was invisible/visible? 

1-Severely decreased      7-Severely increased 

 

6) How experienced are you in playing such games (First Person Shooters)? 

1-Not experienced at all      7-Very experienced 

 

To supplement these results, the users were asked to freely comment on their 

experience after the culmination of the tests. Some such observations are presented 

below 

“The beam was more helpful for aiming than the arm” 

“When the beam was removed, I was forced to align my arm with the target to hit” 

“I mainly used my wrist to aim, I felt surer that way, like I had better control” 

“During the first run, I was aiming normally. During the third run, I used my arm as a 

controller of the virtual arm” 

It is clear that these comments echo the hypotheses and observations made during 

the pre-experiment runs in the VE; subjects tend to aim using the beam as a guiding 

mechanism, and, when that is removed, re-adapt their strategy in order to hit the 

targets. Most users also commented that the experience was overall enjoyable, and 

many stressed the importance of accurate measurement by noting that they got 

confused when the representation of their movements was delayed or inaccurate 

(due to drift). 
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7 Results 

The data acquired from the subjects was used to draw a number of different 

conclusions regarding 

 the importance of the arm’s visibility in performance 

 the assimilation of the virtual arm by the users, and the speed with which that 

assimilation occurred 

 the speed with which the users adapted to the virtual environment and the 

task they were asked to complete 

 the differences in strategy and results after the task was differentiated 

(removal of the beam) 

 

7.1 Scores per Run 
 

Firstly, as regards the scores (targets hit) of the groups in each of the runs, the 

following data was acquired: 

 

Table 4: Scores per Group & Run 

 

 

 

 

 

 

 

 

 

Group 1 Run 1 Run 2 Run 3  Group 2 Run 1 Run 2 Run 3 

F1 10 9 7  F1 9 12 1 
F2 10 15 10  F2 6 9 0 
F3 8 12 2  F3 6 11 2 

F4 10 11 14  F4 5 9 5 
F5 7 14 2  F5 14 13 8 
F6 9 15 3  M1 16 15 13 

M1 6 8 1  M2 10 16 7 
M2 8 15 11  M3 14 15 6 
M3 9 10 8  M4 7 11 6 
M4 10 18 2  M5 5 11 6 

M5 8 15 3  Average 9.2 12.2 5.4 

M6 12 13 1      
Average 8.92 12.92 5.3      
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The scores of Groups A and B in each of the runs were compared using a two-

sample unequal variance t-test and found to not be statistically different. Rather, the 

average scores of each group are impressively similar throughout in the first, second 

and third runs. We are thus led to believe that the arm’s visibility has no significant 

effect on the performance of the subjects, as theorised. It is also obvious that 

familiarisation with the task improves performance, as seen by the fact that the 

scores for Run 2 are higher than those in Run 1. Removal of the beam, on the other 

hand, has an adverse effect on performance, as it forces the subjects to re-adapt 

their strategy, and increases the difficulty of the task. Still, the two groups exhibit very 

similar results on this run as well, indicating that the arm’s visibility is not of 

paramount importance even after modifying the task. 

7.2 Target On-screen Time charts 
 

After these preliminary results were demonstrated, the following plots were produced. 

These show the time (in seconds) each target remained on screen before 

disappearing or being shot down on the Y axis, plotted during the total run-time of the 

experiment, displayed on the X-axis. In these graphs, each blue point corresponds to 

a target. If that target was shot down, it lies underneath the 10-second gridline. The 

targets above that line were not hit by the players, instead de-spawning naturally. 

The trend lines were obtaining by using linear regression on the data. Linear 

regression was chosen as a simple evaluation tool for observing trends appearing in 

the data, due to the lack of any sort of information as to what kind of formula would 

best represent the learning effect. The results are presented for each of the groups 

separately, as well as for both groups on the same axes, for the first two runs of the 

experiment. It is repeated at this point that Runs 1 & 2 were analysed separately from 

Run 3, as they concern differentiated experimental tasks. 
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Chart 1: Target Time on Screen, Group A, Runs 1 & 2 
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Chart 2: Target Time on Screen, Group B, Runs 1 & 2 
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Chart 3: Target Time on Screen, Groups A & B, Runs 1 & 2 

 

The presented results are intended to demonstrate the learning effect occurring 

during the experiment. While the data is scattered, the linear regression trend lines 

indicate the following: 

During the first run, targets stay on-screen for decreasing amounts of time as the 

experiments progresses, meaning that they are shot down faster and naturally de-

spawn less frequently towards the end of the experiment, compared to the start.  

During the second run, that effect is no longer observed; targets remain on-screen for 

an amount of time that does not increase or decrease during the run. That amount is 

approximately equal to the amount of time that targets stay on-screen at the end of 

the first run (~4s). A t-test was conducted, comparing of the mean values of the 
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(considered as a set value) by the corresponding group, demonstrating that these 

values can indeed be considered statistically identical. 

These observations were further strengthened by evaluating the p-value of the 

regression curves. For all cases, the first run showed a significant decreasing trend 

(p-value <0.05), while the second did not (p-value > 0.05). All p-values are presented 

in the following table 

Table 5: P-values of Linear Regression trend-lines, Runs 1 & 2 

 Run 1 Run 2 

Group A 0.0041 0.1409 
Group B 0.0307 0.3733 
Groups A & B 0.0004 0.6743 

 

It is theorised that these findings illustrate the learning effect experienced by 

subjects: during the first run, subjects progressively familiarise with the experimental 

environment, leading to an increase in performance, which however reaches a 

plateau during the second run. This speaks as to the speed with which the users 

incorporate the virtual arm’s movement into their body schemas; each of the runs 

lasts for 1 minute, yet that time is enough for the subjects to learn how to use the 

virtual arm effectively to achieve their goals. This assimilation occurs regardless of 

whether the arm is visible or invisible, as can be seen by evaluating the “plateau” 

values reached by each group at the end of the first run, which, as has been stated, 

are statistically identical to the mean value achieved during the second run. These 

values were again compared using t-tests, assuming both equal and unequal 

variances and found to not be significantly different in all cases. 

 

The same analysis was conducted for the third run, producing the plots displayed 

below:  

 



 

45 
 

Results 

 

Chart 4: Target Time on Screen, Groups A & B, Run 3 
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In these graphs, an increasing trend can be observed  in the time that targets remain 

on-screen during the experiment. This result is due to a statistical artefact, originating 

from the combination of two factors: 

Firstly, it can be easily observed that the top-left corners of the graph is devoid of 

data. This is entirely reasonable given the nature of the axes: since the X axis 

represents the total time elapsed since the start of the experiment, and the Y axis the 

time for which each target remained on the screen, it is impossible for data to exist in 

that corner—it would mean that a target had been on-screen since before the start of 

the experiment. Nevertheless, the concentration of data in that area attributes a 

clearly visible increasing trend to the chart. M 

Moreover, it is evident that in the third run, a large number of targets during the third 

run were never shot down, instead remaining on-screen and de-spawning naturally 

after 10 seconds (easily observable especially in the third graph by the large number 

of points over the 10-second gridline), much more so than in the previous two. This 

can simply be attributed to the increased difficulty of the task during this run. 

However, this means that the graphs contain greatly reduced useful data when 

compared to the ones obtained from the first and second runs, since missed targets 

simply form a “horizontal line” of data points at the 10-second mark, providing no real 

imformation regarding the evolution of a trend. 

The combination of the increasing trend in the first 10 seconds elapsed with the lack 

of data “within” the chart, create the “illusion” of an increase in the targets’ lifespan. In 

light of that, the plots were recreated, omitting the data regarding the first ten 

seconds. The new plots are presented below: 
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Chart 5: Target Time on Screen, Groups A & B, Run 3, 10 to 60 seconds 
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It can easily be seen that by removing the data regarding the first 10 seconds, the 

increasing trend previously appearing on the data has disappeared, a result 

confirmed by the p-values of the new trendlines (Table 6). However, no decreasing 

trend is observed either. This could be attributed to a number of reasons. Our 

prevalent hypotheses are that either 

a) The modified task was too difficult for the participants to be able to  adapt/ 

develop their strategy for effectively completing it in 1 minute, or 

b) The participants had already achieved the maximum level of familiarisation 

with the virtual arm and its control mechanism, and therefore exhibited the 

same  “plateau” effect observed in the second run 

It is worth noting that these two hypotheses are somewhat contradictory. Further 

experimentation on the modified task is necessary to determine which, if any, of the 

above hypotheses is true. 

Table 6: P-values of Linear Regression trend-lines, Run 3 

 Run 3 

Group A 0.8195 

Group B 0.8948 

Groups A & B 0.6554 

 

 

7.3 Shots per Target charts 
 

The next step was confirming the above results using the data regarding the shots 

fired by each player. It was already known which of the shots fired by the players 

were on-target, making it easy to determine how many shots were required to shoot 

down each of the targets. However, as no restriction was imposed on the number of 

shots the players could fire, the total number of shots fired in each run by each player 

varied wildly, ranging from 16 to 93. To offset that effect, the following procedure was 

used: the shots fired to hit of the targets were “normalised” by dividing them with the 

total number of shots fired during the run. Missed targets were ignored during this 

procedure.Therefore, if a subject were to shoot 3 times at a target but miss it, and 

afterwards shoot 4 times before hitting the next target, the algorithm would divide all 

of these 7 shots with the total number of shots fired during the subject’s run. Few 

such cases were observed however, especially in the first two runs, and therefore the 

results can be considered unaffected by them. 

It was theorised that the resulting plots would mirror the tendency shown in the target 

screen-time plots; as the subjects became more familiar with the task, they would 

need fewer shots to hit each of the targets. That was not the case however, as 

demonstrated below:  
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Chart 6: Normalised Shots between Hits, Groups A & B, Runs 1, 2 & 3 
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As is made obvious by the above graphs, no significant trend is observed during any 

of the runs. The increasing trend seemingly observed in the third run was deemed 

insignificant due to a high p-value of the regression line (see Table 7). Similar results 

were observed in the graphs representing each group and run separetely, (not 

presented here to maintain conciseness.) 

Table 7: P-values of Linear Regression trend-lines, Shots per Target charts 

 Run 1 Run 2 Run 3 

Groups A & B 0.9129 0.3743 0.0854 

 

Our prevalent hypothesis for the interpretation of these results stems from the fact 

that the targets appear randomly in 3D space during the experiment. We theorise 

that the location of the target, rather than the skill of the test subject, is the defining 

factor  determining the amount of shots required to hit it. This conclusion was drawn 

based on the observation that nearby targets were much easier for subjects to hit 

than faraway ones, especially in the third run were the beam was removed. Further 

testing is deemed necessary to support this hypothesis. 

 

7.4 End Effector Position Data 
 

As mentioned before, the Position of the virtual arm’s end-effector was also tracked 

during the experiment. This was done by placing a small spherical object at the end 

of the capsule representing the palm, and acquiring its transformation vector for each 

frame of the experiment’s duration. This data was used to obtain the length of the 

curves traced by the virtual arm during the experiment. To achieve this, the data was 

imported into Matlab, wherein it were parsed as XYZ position vectors. Each of these 

vectors was then subtracted from the following one, thus determining the vector 

representing the length traced by the arm between the two positions in space. The 

norm of this last vector was then computed and added to the overall length of the 

curve. By doing this for all data points, the full length of the curve for each run was 

obtained. 

It was initially theorised that  the results would show an increase in curve length 

during the third run of the experiment. This hypothesis was based on the observation 

that test subjects would more often than not change the way they moved during the 

third run. Namely, during the first two runs when the beam was visible, many subjects 

would retain their upper arm and forearm in an approximately fixed position, instead 

using the movement of their wrist to aim, and recalibrating their shots after seeing the 

point in space that the beam would reach. By contrast, during the third run, subjects 

were unable to use that mechanism, as the beam was rendered invisible. Therefore, 

they would attempt to aim at targets by extending their physical arm in an attempt to 

align the virtual arm with the target in the VE. This movement seemed to have a 

much larger range-of-motion than the one seen in previous runs, leading us to 

assume that the corresponding curves would exhibit longer length. The results did 

not confirm this hypothesis, however. As can be seen in Table 8, the third runs have 

the shortest average curve length of all, as well as the shortest of the three runs for 
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each subject. Even in the rare cases where it exhibits longer length than the first or 

second runs, it still remains shorter than the other one. 

 

Table 8: Curve Lengths per Group & Run 

 

 

There are two proposed explanations for this: 

i) Because the length measured corresponds to the end of the virtual arm’s 

palm, it is heavily affected by the movements of the wrist. As a result, the 

many small-range movements at the wrist during the first runs accumulate 

to provide a larger length when compared to much fewer but larger-range 

motions of the whiole arm observed during the third one 

 

ii) The largest contribution to the overall curve length is not actually provided 

by aiming at one target, but rather by the large movements of the arm 

when moving from one target to the next. As a result, the second run, 

which usually exhibits the highest number of targets hit, contains more of 

these movements than any of the other two, especially the third one 

Group 1 Run 1 Run 2 Run 3  Group 2 Run 1 Run 2 Run 3 

F1 67.46 81.69 67.71  F1 79.80 88.90 74.42 

F2 101.92 107.17 83.63  F2 59.17 65.31 81.99 

F3 75.25 90.32 52.45  F3 110.54 90.70 67.81 

F4 82.62 84.42 69.67  F4 77.37 63.70 52.03 

F5 80.78 72.47 64.91  F5 60.59 57.51 37.28 

F6 65.89 91.59 57.15  M1 70.70 68.80 40.25 

M1 55.30 76.87 52.23  M2 72.04 73.32 45.82 

M2 89.74 64.59 68.99  M3 67.76 80.93 40.36 

M3 81.51 75.95 67.90  M4 70.67 68.59 62.70 

M4 89.54 81.14 55.71  M5 58.45 82.40 75.43 

M5 89.84 78.37 61.49  Average 72.71 74.02 57.815 

M6 84.99 84.80 54.64      

Average 80.40 82.45 63.04      
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(where the scores are usually lowest), thus resulting in a larger overall 

curve length. 

 

The seconds explanation seems more probable to our research team at this point. 

However, both of these hypotheses will be tested by future experiments. 

 

7.5 Questionnaire data 
 

The results from the questionnaire generally illustrated a positive user experience 

during the experiment. The answers to each question are displayed in column chart 

form, followed by explanatory comments. 

 

Question 1: How much delay did you experience between your movements 

and their representation in the Virtual Environment?  

1-None              7-Very large 

 

Chart 7: Questionnaire Answers, Question 1 

 

12 out of 22 subjects felt that they experienced a very small delay or no delay at all  

in the translation of their movements into the VE, while only 2 commented that the 

delay was above average and still not “very large”. 
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Question 2: How much did the motion tracker and HMD interfere with your 

performance in the designated task?  

1-Not at all             7-Very much 

 

Chart 8: Questionnaire Answers, Question 2 

18 out of 22 subjects were not at all or very slightly obstructed by the motion tracker 

and HMD during their movement (the users’ comments illustrate that this obstruction 

was mainly attributed to the HMD’s cable, especially for taller users). 
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Question 3: How capable in moving within the environment and interacting 

with it did you feel at the end of the experiment?  

1-Not at all           7-Very much 

 

Chart 9: Questionnaire Answers, Question 3 

16 out of 22 subjects felt they became skilled in moving and interacting with the VE 

by the end of the experiment. However, the subjects belonging to the first group 

reported a higher level of adaptation than those in the second group 

This disparity was further illustrated by questions 4 and 5, presented below 
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Question 4: How much harder or easier was the task made by the fact that 

your arm was invisible/visible?  

1-Much harder         7-Much easier 

 

Chart 10: Questionnaire Answers, Question 4 

 

 

Question 5: How much was the naturalness of your interactions with the 

environment decreased or increased by the fact that your arm was 

invisible/visible?  

1-Severely decreased       7-Severely increased 

 

Chart 11: Questionnaire Answers, Question 5 
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The results make evident the fact that subjects belonging to Group A found that the 

visibility of their arms increased both their performance and the naturalness of their 

interactions, whereas those in Group B report the opposite effect occuring owing to 

the fact that their arms were invisible. This leads to the conclusion that, while the 

visibility of the arm seems to have had no significant effect on the users’ objective 

measures of performance, it does seriously affect satisfaction—namely,users prefer 

being able to see their whole arm in the VE, rather than just the wrist and palm. This 

finding echoes the results of previous research, such as Heidicker et. Al (2017), 

whose findings illustrate that full body avatars with full motion control exhibit better 

results in social VR environments, and Mohler et.al (2008), who demonstrated that 

full-body avatars improve the users’ ability to judge distance in immersive VEs 

 

Question 6: How experienced are you in playing such games (First Person 

Shooters)?  

1-Not experienced at all          7-Very experienced 

 

Chart 12: Questionnaire Answers, Question 6 

 

The answers to Question 6 are presented in order to provide a complete picture of 

the data, although this was a demographic question and does not particularly affect 

the above data 
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8 Conclusions 

The results of the experiment described above echo the findings of pre-existing 

research in the field. Namely, it is clearly demonstrated that the ability to control 

one’s arms plays a paramount role in increasing task performance in VEs, regardless 

of whether the limbs are entirely visible (same as results from Heidicker et.al 2017) . 

Visibility of an avatar body is still of essence, however, as it substantially increases 

the subjective sense of presence in the environment experienced by the users. This 

could be compared to the conclusion drawn by Slater et. al (1996) in “Immersion, 

presence, and performance in virtual environments: An experiment with tri-

dimensional chess.” The researchers wrote: 

“We argue that although increased immersion may well improve performance in 

certain tasks due to the higher quality and quantity of information available, there is 

no particular reason to expect presence to improve performance. “ 

In the particular case of the target practice tasks, since the level of immersion 

remained equal throughout tests, the results were very similar, despite the variance 

in the experienced presence. 

Our emergent hypothesis that the importance of visibility is dependent on the nature 

of the task was not confirmed by the results of the experiments—subjects exhibited 

similar results between groups in the third run as well as the first two. No definite 

conclusion can be drawn as regards the general validity of the hypothesis, however, 

since it remains undetermined whether the visibility of the arm plays a paramount 

role in a different kind of task 

Moreover, both the objective and subjective results provided by the experiment and 

questionnaires, as well as the corresponding analyses, clearly demonstrate the fact 

that IMU technology is a viable tool for human motion tracking in VR and AR 

environments. While this has already been indicated by its use in rehabilitation 

research, (such as Merians et. al 2009,Wittmann et. al. 2015, etc, also mentioned 

above), this thesis sheds light on the applicability of this technology in various other 

fields, such as game development, training, remote machine operation, industrial 

applications, etc. 
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Future work 

9  Future work 

Our intention is to continue our work in this field in two main directions 

Firstly, the improvement of our proprietary motion tracking system is a crucial step in 

furthering research. By incorporating magnetometer measurements, determining the 

exact offsets of each sensory unit and fine-tuning the code for both the Arduino and 

Unity, we hope to achieve vastly reduced drift errors and calibration times, as well as 

eliminate or at least minimise the need to recalibrate the sensors as often as is 

required now. Following that, our intent is to expand our design to include the 

movements of the second arm,as well as the fingers, progressing toward complete 

body tracking in a VE. Our hope is that due to its ease of use, reduced demands in 

processing power, and minimal obstructions to the user’s movements, the developed 

system can replace or enhance existing tools used for avatar body control in VR 

environments.Moreover, by incorporating other technologies, such as haptic 

feedback devices, into our design schemes, we will be able to vastly expand our 

ability to simulate different tasks in the existing (or another) VE. 

Secondly, by utilising the VE developed during this thesis, combined with our lab’s 

expertise in the field of cognitive Ergonomics, we propose to create a number of 

simulations of different tasks requiring the use of one’s arm and hand motions in VR, 

and continue the experimentation process started by the presented shooting task. In 

this manner, we hope to be able to determine the answer to questions raised by this 

thesis, such as the importance of limb visibility in VR environments and the 

dependence of said importance on the nature of the task. In addition to that, 

however, we intend to create and evaluate simulations of various different tasks, for 

purposes exceeding Ergonomics/Human Factors research. For example, simulations 

of industrial situations incorporating Human-Robot Interaction can be designed, 

building on the work of Matsas & Vosniakos (2015), or of tasks requiring tele-

operation of machinery. It is our belief that such applications can be used both as a 

testbed for experimentally evaluating theoretical advances in various fields of 

research, and as a tool for training humans for the corresponding real-world tasks. 
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Appendix A: Code 

A.1 Arduino Sketch 
 

The following Sketch, running in the Arduino Microprocessor, obtains the data from 

the MPU9250 and translates it into the form of quaternions. Afterwards, these 

quaternions are passed through Unity through the serial port. 

 

//This sketch obtains the data from the DMP of 3 MPU6050 or 9250 

units, translates it into Quaternions, 

//and writes them to the serial port to be read by Unity. 

 

//The number of printouts here as well as in the MPU6050_Wrapper and 

DeathTimer libraries has been minimised 

//because they were causing error and warning messages in Unity, and 

slowing the process. 

 

// I2Cdev and MPU6050 must be installed as libraries, or else the 

.cpp/.h files 

// for both classes must be in the include path of your project 

 

#include "I2Cdev.h" 

#include "MPU6050_Wrapper2.h" 

#include "TogglePin.h" 

#include "DeathTimer2.h" 

#include "MatrixMath.h" 

 

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE 

implementation 

// is used in I2Cdev.h 

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 

#include "Wire.h" 

#endif 

 

// define the output as a Quaternion, to be read by Unity 

#define OUTPUT_READABLE_QUATERNION 

 

// if using 3 MPUs, create and array 

const bool useThirdMpu = true; 

MPU6050_Array mpus(useThirdMpu ? 3 : 1); 

 

//define the pins where the MPUs are connected 

#define AD0_PIN_0 3  // Connect this pin to the AD0 pin on MPU#1 

#define AD0_PIN_1 5  // Connect this pin to the AD0 pin on MPU#2 

#define AD0_PIN_2 7  // Connect this pin to the AD0 pin on MPU#3  

 

#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6) 

 

#define OUTPUT_SERIAL Serial 

 

uint8_t fifoBuffer[64]; // FIFO storage buffer 

 

// orientation/motion vars 

Quaternion q;        // [w, x, y, z]         quaternion container 
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TogglePin activityLed(LED_PIN, 100); 

DeathTimer deathTimer(5000L); 

 

// ================================================================ 

// ===                      INITIAL SETUP                       === 

// ================================================================ 

 

void setup() { 

  // join I2C bus (I2Cdev library doesn't do this automatically) 

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 

  Wire.begin(); 

  Wire.setClock(400000); // 400kHz I2C clock. Comment this line if 

having compilation difficulties 

#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE 

  Fastwire::setup(400, true); 

#endif 

 

  // initialize serial communication 

  // (9600 rate chosen because Unity can "catch up" to it, but it's 

  // really up to you depending on your project) 

  Serial.begin(9600); 

 

  while (!Serial) 

    ; // wait for Leonardo enumeration, others continue immediately 

 

  // initialize device 

  mpus.add(AD0_PIN_0); 

  if (useThirdMpu){ 

  mpus.add(AD0_PIN_1); 

  mpus.add(AD0_PIN_2); 

  } 

   

  mpus.initialize(); 

 

  // configure LED for output 

  pinMode(LED_PIN, OUTPUT); 

   

 

  // load and configure the DMP 

  mpus.dmpInitialize(); 

 

  // supply your own offsets here, scaled for min sensitivity 

  MPU6050_Wrapper* currentMPU = mpus.select(0);  // offsets for IMU#1 

 currentMPU->_mpu.setXGyroOffset(0.0); 

  currentMPU->_mpu.setYGyroOffset(0.0); 

  currentMPU->_mpu.setZGyroOffset(-50.0); 

  currentMPU->_mpu.setXAccelOffset(0.0); 

  currentMPU->_mpu.setYAccelOffset(0.0); 

  currentMPU->_mpu.setZAccelOffset(0.0); 

  if (useThirdMpu) { 

    currentMPU = mpus.select(1);    // offsets for IMU#2 

currentMPU->_mpu.setXGyroOffset(0.0); 

  currentMPU->_mpu.setYGyroOffset(0.0); 

  currentMPU->_mpu.setZGyroOffset(0.0); 

  currentMPU->_mpu.setXAccelOffset(0.0); 

  currentMPU->_mpu.setYAccelOffset(0.0); 

  currentMPU->_mpu.setZAccelOffset(0.0); 

 

    currentMPU = mpus.select(2);    // offsets for IMU#3 

currentMPU->_mpu.setXGyroOffset(0.0); 
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  currentMPU->_mpu.setYGyroOffset(0.0); 

  currentMPU->_mpu.setZGyroOffset(0.0); 

  currentMPU->_mpu.setXAccelOffset(0.0); 

  currentMPU->_mpu.setYAccelOffset(0.0); 

  currentMPU->_mpu.setZAccelOffset(0.0); 

  } 

  mpus.programDmp(0); 

  if (useThirdMpu){ 

    mpus.programDmp(1); 

    mpus.programDmp(2); 

  } 

} 

 

// ==========================================================  

// === handleMPUevent function ===  

// ========================================================== 

 

void handleMPUevent(uint8_t mpu) { 

 

  MPU6050_Wrapper* currentMPU = mpus.select(mpu); 

  // reset interrupt flag and get INT_STATUS byte 

  currentMPU->getIntStatus(); 

 

  // check for overflow (this should never happen unless our code is 

too inefficient) 

  if ((currentMPU->_mpuIntStatus & 

_BV(MPU6050_INTERRUPT_FIFO_OFLOW_BIT)) 

      || currentMPU->_fifoCount >= 1024) { 

    // reset so we can continue cleanly 

    currentMPU->resetFIFO(); 

    //Serial.println(F("FIFO overflow!")); 

    return; 

  } 

   

  // otherwise, check for DMP data ready interrupt (this should 

happen frequently) 

  if (currentMPU->_mpuIntStatus & _BV(MPU6050_INTERRUPT_DMP_INT_BIT)) 

{ 

 

    // read and dump a packet if the queue contains more than one 

    while (currentMPU->_fifoCount >= 2 * currentMPU->_packetSize) { 

      // read and dump one sample 

     // Serial.print("DUMP"); // this trace will be removed soon 

      currentMPU->getFIFOBytes(fifoBuffer); 

    } 

 

    // read a packet from FIFO 

    currentMPU->getFIFOBytes(fifoBuffer); 

 

#ifdef OUTPUT_READABLE_QUATERNION 

 

    // obtain the Quaternion values from the DMP 

    currentMPU->_mpu.dmpGetQuaternion(&q, fifoBuffer); 

      

    //Print the number 1, 2 or 3 to distinguish between IMUs 

    if (mpu==0){ 

      OUTPUT_SERIAL.print('1'); 

    }else if(mpu==1){ 

      OUTPUT_SERIAL.print('2'); 

    }else{ 

      OUTPUT_SERIAL.print('3'); 
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    } 

    //simply print the Quaternion Values to the Serial Port, 

seperated by commas 

    OUTPUT_SERIAL.print(","); 

    OUTPUT_SERIAL.print(q.w); 

    OUTPUT_SERIAL.print(","); 

    OUTPUT_SERIAL.print(q.x); 

    OUTPUT_SERIAL.print(","); 

    OUTPUT_SERIAL.print(q.y); 

    OUTPUT_SERIAL.print(","); 

    OUTPUT_SERIAL.println(q.z); 

     

#endif 

 

 

  } 

} 

 

// ================================================================ 

// ===                    MAIN PROGRAM LOOP                     === 

// ================================================================ 

 

void loop() { 

 

  static uint8_t mpu = 0; 

  static MPU6050_Wrapper* currentMPU = NULL; 

  if (useThirdMpu) { 

    for (int i=0;i<3;i++) { 

      mpu=(mpu+1)%3;  

      currentMPU = mpus.select(mpu); 

      if (currentMPU->isDue()) { 

        handleMPUevent(mpu); 

      } 

    } 

  } else { 

    mpu=0; 

    //choose the MPU that is due to be read 

    currentMPU = mpus.select(mpu); 

    if (currentMPU->isDue()) { 

      //read from MPU 

      handleMPUevent(mpu); 

    } 

  } 

 

  int incomingByte = 0;   // Incoming from serial 

 

  // If incoming data is available in the serial 

  if (Serial.available() > 0) { 

    incomingByte = Serial.read();   // read the incoming byte 

  } 

 

  activityLed.update(); 

  deathTimer.update(); 

} 
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A.2 Unity Script 
 

The following script, running in the Unity environment, obtains the quaternion data 

transmitted to the serial port by the Arduino, and translates it into the movement of 

the virtual arm. 

 

using UnityEngine; 

using System.Collections; 

using System.IO.Ports; 

using System.Threading; 

 

public class Oculus_motionControl : MonoBehaviour { 

 

 public GameObject joint1,joint2,joint3; 

 public float ardW, ardX, ardY, ardZ; 

 public int mpu; 

 public string dataFromArduino; 

 private bool shouldExit = false; 

 string[] sInput = new string[5] {"0", "0", "0", "0", "0" }; 

 public Vector3 axis=Vector3.zero; 

 public float angle; 

 public GameObject tracker; 

 public Vector3 curr; 

 SerialPort mySerialPort = new SerialPort ("COM1", 9600); 

 

 Quaternion quat1= new Quaternion(1,0,0,0); 

 Quaternion quat2= new Quaternion(1,0,0,0); 

 Quaternion quat3= new Quaternion(1,0,0,0); 

 

 

 

 void Start () 

 { 

  curr = tracker.transform.position; 

  Thread myThread = new Thread (new ThreadStart 

(ThreadWorker)); 

  myThread.Start(); 

  mySerialPort.Open (); 

 

 } 

 

 void Update () 

 { 

  if (mySerialPort.IsOpen == true) { 

   if (sInput.Length == 5) { 

    mpu = int.Parse (sInput [0]); 

    ardW = float.Parse (sInput [1]);  

  

    ardX = float.Parse (sInput [2]); 

    ardY = float.Parse (sInput [3]); 

    ardZ = float.Parse (sInput [4]); 

    if (mpu == 1) { 

     quat1.w = ardW; 

     quat1.x = -ardX; 

     quat1.y = -ardZ; 

     quat1.z = -ardY; 

    } else if (mpu == 2) { 
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     quat2.w = ardW; 

     quat2.x = -ardX; 

     quat2.y = -ardZ; 

     quat2.z = -ardY; 

    } else if (mpu == 3) { 

     quat3.w = ardW; 

     quat3.x = -ardX; 

     quat3.y = -ardZ; 

     quat3.z = -ardY; 

 

    } 

 

    joint1.transform.rotation = quat1; 

    joint2.transform.rotation = quat2; 

    joint3.transform.rotation = quat3; 

 

    curr = tracker.transform.position; 

   } 

  } else { 

   Debug.Log ("Connect the serial Port"); 

  } 

 

 } 

 void ThreadWorker () 

 { 

  while (shouldExit == false) { 

   try{ 

   dataFromArduino = mySerialPort.ReadLine (); 

   sInput = dataFromArduino.Split (','); 

   }catch(System.Exception){ 

   } 

  } 

 } 

 

 void OnApplicationQuit() 

 {   

  mySerialPort.Close (); 

  shouldExit = true; 

 } 

} 

 

 

 

 



 

 
 

 

 


