EONIKO METZOBIO NOAYTEXNEIO
2XOAH MHXANOAOIN QN MHXANIKQN
TOMEAZ BIOMHXANIKHZ AIOIKHZHZ &
ENIXEIPHZIAKHZ EPEYNAX

Development and evaluation of a wearable
motion tracking system for sensorimotor tasks
iIn VR environments

AvVATITUEN KAl AaloAOYNOoN EVOC EVOUOUEVOU
OUOTRAMATOG AViXVEUONG Kivnong yia KivaiodnTika
KaBnkovTa o€ TTEPIBAAAOVTA EIKOVIKNAG
TTPAYMATIKOTNTAG

AirrAwpaTiki Epyacia
MoupeAdTtog Avdpéag

EmBAéTTwyY KaBnyntng:
NaBavanA A.

ABrva
deBpoudplog 2018

EuxapioTieg

H Trapouoa AimAwpatiki Epyacia onuatodoTei, EKTOG ATTo TTEPAG TWV TTPOTITUXIOKWY
pMou oTtroudwyv, TNV OAOKARPWON TOU WEYOAUTEPOU, TTIBAVOTATA TOU TTOIOTIKOTEPOU
EYXEIPAMATOG Pou w¢ @oItnTAG. QOoTé00, To eyxeipnua autd de Ba PTTopousE va
amodWwoEl KAPTTOUG XwpPig TN oUuPBOAR evlog apiBuou avBpwTiwy, Ol OTToioI
ouvéBaAAlav, o0 KaBévag pe Tov OIKO Tou EeEXwPIoTO TPOTTO, OTNV TTPAYHATWON AUTAG
NG epyaciag. AutoUg Toug avBpwTToug BEAW va guxapioTiow €INKPIVE 0€ autd TO
onueio.

MpwTioTwg, BéAW va euxapioThow Tov emRAETTOVTA KAONYNTA K. AnuATen NabavanA.
AT6 Tnv TTPWTN OUlATNON OXETIKA PE TN OITTAWMATIKA €pyacia auTh, PEXPI Kal TNV
TEAEUTAIO NPEPO TNG CUYYPAPNG TG, €TTEDEIEE KABNUEPIVA TTPOBEoN va CUVOPAEI
APIEPWVOVTAG XPOVO, EVEPYEID KAl TTPAYHOTIKO evdlapépov oe KABe véa uttdBeon n
¢NTNUa TTou TTPOKUTITE. MAPOTI TO YVWOTIKO QVTIKEIMEVO TNG EPYACiag dev CUUTTITITE
EVTEAWG HE TO ETTIOTNHOVIKO TOU TTEDIO, TTAPEIXE AVEANITTA UTTOOTAPIEN PE KABE duvaTd
TPOTTO € KABE KOPPATI TNG, AAAG KAl ACTEIPEUTN UTTOUOVA ATTEVAVTI OTOV KATAIYIOHO
EPWTNOEWYV GTOV OTTOI0 TOV UTTERAAAQ.

2Tn ouvéxela, BEAw va ekPpdow TNV EUYVWHOOUVN HOU OTO UTTOAOITTO TTPOCWTTIKO
NG povadag Epyovopiag. Z1ov KwaoTta Kika yia TNV ouveiopopd Tou o€ KABe {ATnua
OXETIKO HE TO oXeDIAOUO KAl TNV KATACKEUN TOU CUGCTHUATOS Kal Tou TTePIBAAAOVTOG,
Kal TNV adIaAeITTTn dIdbeon Tou va CUMPMPETEXEI O avTaAAayr] 10£WV Kal aTTOWEWYV
OXETIKA PE KABE PéPOG TNG epyaaiag. 21o AoiCo Wapdkn yia TiG TTOAUAPIBUES QOPES
TTOU aQIEPWOE TO XPOVO Kal TO XWPO £PYOOiag Tou yia TV UTTOOTAPIEN AUTAG TNG
epyaciag, TTPOCPEPOVTAG YVWON, UTTOPOVA KAl €TTOIKOOOWNTIKN KPITIK O KABE TNG
Brua.

Kupiwg duwg BEAW va euxapioTAow OAO To TTPOCWTTIKO TNG Jovadag Epyovopiag yia
TNV IKAVOTNTA TOUG Va ONMIOUPYOUV £va KAIa epyaciag o QIAIKG Kal EUXAPIoTO aTT
0600 Ba ptropolca TToTE va uTToBécw. H oTAoN KAl N UTTOOTAPIEN TOUG KATAPEPE VA
Kataotioel T dladikacia TnG ouyypa@ng autig NG OITTAWMOTIKAG Mia auBevTIKa
€UXApIOTN eUTTEIPIA, TNV OTTOIO Ba AVAKOAW PE Xapd& aTo PEAAOV.

KAgivovtag, suxapiotw Oepud dAoug 6O0OUG CUUMETEIXaVY OTA TTEIPAPATA, KABWG Kal
TOUG CUMQ@OITNTEG Kal QIAOUG TTOU ME UTTOOTAPIEOV TTOIKIAOTPOTIWG KAB' OAn Tn
SIGPKEIa TWV OTTOUBWYV POU Kal AuTAG TNG SITTAWUATIKAG. I181aiTepn pveia agifel capug
o010 MixdAn Kapakiké, Tou O1Toiou n DOUAELIa Kal TTPOTPOTTI ATTOTEAECE EUTTVEUCT KAl
EQAATNPIO YIa TNV TTapolca epyacia, kal atov MéTpo Kovrpadr] yia TNV onUavTIKOTATN
ouveIoQopAa Tou 0T oxediaon Tou EikovikoU MepiBdAAovTog.

MepiAnyn

H 1po0odo¢ Tng TeEXVOAOYIOG OTOUG TOMEIC TWV UTTOAOYIOTWY, aioOnThpwy Kal
OUOKEUWV aTTelkOviong Kabiotd T1a TrepIBdAAovta Eikovikhg TMpayhaTikoTnTag
OIaPKWG PEAAICTIKOTEPA KAl OIKOVOMIKOTEPA. O1 AvBpwTTol UTTOPOUV TTAEOV E EUKOAIQ
va euBuUBIoToUV o€ Eikovikd MepIBAAAovTa PECW OTITIKWY HECWV.

QoT1600, yIa va KaTtaoTel €QIKTH N TTAAPNG EKPETAAAEUCN TWV TTAEOVEKTNUATWY TTOU
TIPOCPEPOUV AUTEG Ol TEXVOAOyieg, eival onuavTikd va Trapéxouv Tn duvardtnta
EAEYXOU €VOG «EIKOVIKOU CWHATOG» €VTOG Tou TTePIBAAAOVTOG, Kal 181aiTEpa TWV Avw
akpwv. H evowpudTwaon NS Kivnong Twv XepIwv o€ TéTolou €idoug trepIBAAlovTa OxI
MOvo augdvel Tnv aioBnon eufubiong Tou XprnoTtn oTo TTePIBAAAOV, AAAa avoiyel véeg
01600ug yia Thv gepelvnon kai di1adpacn Pe To TTePIBAAAov. ETITTpooBeTa, dicupuvel
TIG OuvaTOTNTEG TTPOCQOPAG EKTTAIOEUONG KAl APWYNG avBpWTTWY OE TTOIKIAA
KaBAKovTa.

XpnolpotrolwvTtag Tpeic Adpaveiakoug AioBntipeg Kivnong (Inertial Measurement
Units, IMUS) kai évav pikpoeTTegepyaoTr] Arduino Nano, avatrtuape éva TTANPES
oUoTNPa avixveuong Kivnong Tou avw AKpou, atrd Tov WHOo £wg Kal TNV TTaAdun. To
ouoTnua autd xpnoidoTroindnke o€ ouvouaouo ue pia kdoka Oculus Rift DK2 kai éva
mepIBAANov oxedlaouévo pe Tnv Unity Game Engine yia 1 dnuioupyia &vog
kKabAkovTog «okoToBoAfc» o€ Eikovikd [MepiBdAhov. To Tmapammdvw oUoTNUO
ETTETPETTE TOV TTARPN £AEYXO £VOG EIKOVIKOU XEPIOU €VTOG ToU TTEPIBAAAOVTOG HECW TNG
Kivnong Tou Xeplou TOU XPrOTN OTOV TTPAYMATIKO KOCUO.

2Tnv TTapouca epyacia TTapoucIAdeTal YIa OEIpA TTEIPAUATWY Ta OTToIa OXEDIAOTNKAV
ME OKOTTO va diepeuvnBei €Gv n opatdTNTA TWV KIVIOEWV TOU XEPIOU EVTOG €VOG
EikovikoU [MepiBdAloviog augdvel Tnv amédoon Tou XPAOTR o€ KivaiodnTiké
KabAkovTa €eviog Tou TTEPIBAAAOVTOG auTou. ETTekTeivoviag Ta TTOPATTAVW,
Olgpeuvoupe emmAéov TO BaBud oTOV OTIOI0 TO ATOPO MTTOPEI VO QQOUOIWCEl HIO
EIKOVIKI] avatrapdoTacn Tou AKPOU TOU OTNV AVTIANTITH €IKOVA TOU CWHATOS TOU, Kal
OTN OUVEXEID VA EVOWMATWOElI TNV AVATTAPACTOCN authl OTo avdAoyo KIvNoiako
oXNMa , KABWG Kal TNV TaxUTNTa KAl EUKOAIQ PE Tnv oTToia cupBaivel n agouoiwaon
auTn.

Ta ammoTeAéopaTa TWV TTEIPOUATWY TTAPEXOUV OTOIXEIA OXETIKA YE TNV ETTIOPACN TNG
0pPATOTNTAG TOU XEPIOU OTNV £TTIOOCN KaI TNV KAPTIUAN eKkudOnong oT1o Kabrikov. Agv
TTapPATNPNONKE GNUAVTIKA CUCXETION avdueoa oTnv opaTtdtnta Kai Tnv etmidoon. H
emKpaToloa uUTTOBeon nATav OTI AQuTO O@EiAeTal 0T QUON TOU TTEIPANATIKOU
kKabAkovTtog. MNa Ttov Adyo autd TO KABAKOV BIaQOPOTIOINONKE, ETMITPETTOVIAG TN
Olepelivnon Twv aAAaywyv oTn OTPATNYIKA KOl TA ATTOTEAECHATA TWV XPNOTWV.

Executive Summary

Advances in computing, sensor and display technology mean that immersive virtual
and augmented reality environments are becoming increasingly more realistic and
affordable. Humans can now easily experience virtual environments (VES) through
visual means.

However, in order to reap the full range of benefits these technologies can offer, it is
of essence to provide the ability to control an avatar body within a VE and especially
the upper limbs. The integration of arm movements in such environments both
increases the immersion of the user, and opens new pathways for exploring and
interacting with the VE. Moreover, it allows for increased capabilities in training and
assisting humans in various tasks.

Using three MPU9250 IMUs and an Arduino Nano microprocessor, we developed a
wearable system for unobtrusively tracking the movement of the arm from the
shoulder up to and including the palm. The system was used in conjunction with an
Oculus Rift DK2 and an environment designed in the Unity Game Engine, to create a
VE “shooting target practice” task. The above setting allowed a virtual arm to be
completely controlled by the movements of the user's arm in the real world with
negligible lag.

In this thesis a series of experiments will be presented, designed to determine
whether the visibility of one’s limb movements in real time in a VE, improves the
effectiveness in the execution of sensorimotor tasks within that environment.
Extending from the above, we also explore the degree to which a human can
assimilate a virtual representation of their arm with their body image, and
subsequently incorporate this representation into their body schemas, as well as the
speed and ease with which that assimilation occurs.

The results of the experiments provide evidence on the effect of avatar arm visibility
on the users’ performance and learning curve in the VE task. Visibility did not appear
to have a significant effect on performance. Our assumption is that this is related to
the nature of the experimental task. For this reason the experimental task was
changed, allowing us to explore the diversification of the subjects’ strategy and
results.

Contents

5

6

QLI (o o [N = PP ii
LI 0 L3 1= o] = iii
Table Of Charts. .. .o e e iii
INEFOAUCTION .. 1
Theoretical background: VR and Avatar Bodiesccoooeeeviiiiiiiiiiiiieeeecceeiiin, 3
2.1 IMMErSION & PrESENCEo i i e e e e e 3
2.2 AVALAI BOOY ... 3
2.3 Related research - immersive VR with First Person integrated body parts .. 4
Review of Motion Tracking Technology..........ccccovveiiiiiiiiiccc e, 7
3.1 Importance of arm tracking.........ccooeeeeiiiieee e 7
3.2 EXISHNG SYSIEIMS ..ottt e e 7
00 A |V [Tox 1o s [o 7
T © Tl U | L1 FS =1 1 S 8
T T o I O 1 PR 11
3.24 MANUS VR L.ttt e e e e e e e aees 13
Development of a Motion Tracking SYStemcccceviieiiiiiiiiiiiiiee e, 15
4.1 Hardware/Wearableouuuiiiiieeiieece et e e e 15
4.1.1 (000 a1 oo 011 o] K= 16
4.1.2 Wiring/ CONNECLIONSuuuiiiiieeiieeeiice e e et eeaeeaanees 19
4.1.3 Placement onthe armooouuiiiii i 21
4.1.4 Placement JUSHIFICAtIONuuuuuuuiuieiiiiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeee 23
415 Mounting on the ArM ... e 23
4.1.6 Y= (U] o PP PP PPPT P PSRPP 24
4.2 Code Development (SOftWare)ccoovviiiiiiiiiiiiii 25
0 O Y (o (U1 o 1 26
R U 1 o1 P 26
ENVIrONMENT DESIGNcooeieeeeeeeeee e 29
5.1 Original SCENE ... 29
5.1.1 L0110 TP TP UOPPPTRRPPPIN 29
5.1.2 Y= 1T I 7= T 1= USSP 30
5.1.3 L 111 o PSPPSR 31
5.2 Adaptations to the needs of the project ... 31
EXPerimental DEeSIQNouuuui e 35
6.1 Subject DIStriDULION ... 35
6.2 RUNS @Nd CONAITIONS.... .o i i e 35

6.3 Experimental Process for each subject ... 36

6.4 Data acquired from SUDJECTccooiiiiiii 37
6.4.1 ODJECHVE DALAccevvveiiiiiiiiiiiiieeeeeeeeeeeeeee e 37
6.4.2 Questionnaire, subjective experience data............cccoeeeeeriiiiiiiiinnneeenn. 37

A = (10 RS 39

7.1 SCOIES PEI RUN ..t e e 39

7.2 Target On-screen TimMe ChartS........coooveei e 40

7.3 Shots per Target CharsS..........couiiiiii i 48

7.4 End Effector POSItioN Dataooiieeiiiiiiiiiiiie e 50

7.5 QUESHIONNAIIE AA.ot i e eeiiieiiiiiee e e e e e e e e e e 52

ST O] oo 11][] 1S 57
S T 1 (1 (=R o] PR 59
10 BiDHOGrapRYoeeeeieieeee e 61
PN o] 01T g1 [0t q A @ To [TSP 63
Al Arduin SKEICN.....cciiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 63
N © [011V Tod £ | S PP P PP PPPPPPPPPPPP 67

A. Table of Figures

Figure 1: MiCroSOft KINECT......ccio o e e e e e aeaees 7
FIgure 2: OCUIUS RIft. ..o e e et e e e e aaanes 8
FIgure 3: OCUIUS IR SENSOKccoiiiiiiiicee et e e e eeaeeeanees 10
FIQUIE 4: HTC VIV ... ettt e e e e e e e e e aaeee 11
Figure 5: Correct placement of the Vive Base Stations.............cccceeveeiiiieeeeeeeeeeee, 12
Figure 6: ManUS VR ... 13
Figure 7: Proprietary Motion TraCker ... 15
Figure 8: Arduino Nan0 V3.0 ..o 17
Figure 9: MPU 9250 ... e e e e e et eaeeeanee 18
Figure 10: OculuS RIft DK2.... ..o e e e e e eeeees 19
Figure 11: Solderless CIrCUILc.oeiiiiiiii e e e e eeeees 20
Figure 12: Soldered CiFCUIL.........cooeiiiiieiai e e e e e e e e eeeeees 21
Figure 13: PlaCementcoooi i 22
Figure 14: MOUNTINGcoooiiiiieeeeee e 24
Figure 15: Calibration SEtUP.......coooi i 25
Figure 16: Working Principle of Motion Tracking System.............ccccovvviiiiiiiieeeeiennn, 28
FIgure 17: Game INIIOcoooiieeeeeeee e 30

FIgUre 18: Main GammME......uuuuiii i et e e e et e e e e e e e e e e tt e e e e e aaeeeannes 30

FIQUrE 19: GamE OULIO ..uuuuueii e eee et e e ettt s e e e e e e e e et s e e e e e e e eeartaa e e e eeaeeennnes 31
Figure 20: Replacement of the existing armcccooooiiiiiiiiiii e, 32
Figure 21: Original & Adapted SCENEcooeiiiiiii i 33

B. Table of Tables

Table 1: Connections between MPU 9250 & Arduino..........ccceevvveeiiiiiiiiiiiiiieeeeee 21
Table 2: Correspondence between MPU9250 & Unity coordinate systems.............. 27
Table 3: Test Conditions per Group & RUN............ouiiiiiiiiiieiiiiees e 36
Table 4: Scores per Group & RUNoooiiiiiii e 39
Table 5: P-values of Linear Regression trend-lines, RUNS 1 & 2............ccccceeeeenn.. 44
Table 6: P-values of Linear Regression trend-lines, RUN 3.........cccoooevvvviiiiiiiiinneeennn, 48
Table 7: P-values of Linear Regression trend-lines, Shots per Target charts 50
Table 8: Curve Lengths per Group & RUNuuiiiiiiiiiiiiiiiiiieee 51

C. Table of Charts

Chart 1: Target Time on Screen, Group A, RUNS 1 & 2......ccooeeiiiviiiiiiiiiieeeeeeeiiinn, 41
Chart 2: Target Time on Screen, Group B, RUNS 1 & 2........cccoviiiiiiiiiiiiiieeecciiiinn, 42
Chart 3: Target Time on Screen, Groups A& B, Runs 1 & 2ccccceeeviiiiiiiiiiiinnnnnn. 43
Chart 4: Target Time on Screen, GroupsS A & B, RUN 3oiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 45
Chart 5: Target Time on Screen, Groups A & B, Run 3, 10 to 60 seconds 47
Chart 6: Normalised Shots between Hits, Groups A& B, Runs 1,2 & 3.................. 49
Chart 7: Questionnaire Answers, QUESHION L........ccovvveviiiiiiiieeeee e 52
Chart 8: Questionnaire Answers, QUESHION 2.......cccciviiiieiiiiii e e e eeeeen 53
Chart 9: Questionnaire Answers, QUESHION 3.......cccoiiiiii i e 54
Chart 10: Questionnaire Answers, QUESTION 4........cocuuiiiiiiiiii e 55
Chart 11: Questionnaire Answers, QUESHION 5......ccooviii i e 55
Chart 12: Questionnaire Answers, QUESHION B...........cevvvviiiiieeeiiieiiee e 56

Introduction

1 Introduction

Advances in computing and display technology have rendered Virtual Reality a
rapidly evolving field of research, with a constantly growing number of applications
and an increasingly commonplace presence in everyday life. VR environments ant
technologies are constantly becoming ever more inexpensive and readily accessible
to humans, and seeing use for purposes exceeding entertainment.

The interest of the scientific community in Virtual Environments (VES) has been both
extensive and manifold, concerning issues ranging from the possible applications of
such technologies in various aspects of life to the psychological effect that virtual
stimuli can have on users.

The present thesis revolves around two main objectives

The first of these was the re-design and adaptation of an innovative technology
originally developed for measuring the angles of the wrist and forearm by the NTUA
Lab of Cognitive Ergonomics, for use inside VR environments. This included the
construction and programming of a functional prototype, as well as the development
of a VE in which the prototype could be tested.

Secondly, after the completion of the above, a series of experiments were designed
and conducted, with the aim of both evaluating the prototype and exploring certain
issues regarding limb visibilty and performance inside VEs. Namely, it was
hypothesised that the ability to see, as well as control, the entirety one’s upper limbs
inside a VE would have a positive effect on the performance and experience of the
humans operating the system. This hypothesis challenges the practice currently
employed by various existing VR systems, which tend to display only the hands and
fingers (e.g. Oculus Rift, HTC Vive, and Manus VR).

Theoretical background: VR and Avatar Bodies

2 Theoretical background: VR and Avatar
Bodies

In this section, the theoretical basis for this thesis is presented. The concepts of
immersion and presence are explained as used in the context of VEs. Moreover, the
term “avatar body” and its meaning are introduced. Research related to the
representation and control of body parts within immersive VEs is also presented.

2.1 Immersion & Presence

Immersion is a crucial factor when judging the quality of a Virtual Environment (VE).
As described by Slater & Wilbur (1997), immersion is a distinct concept from
presence. Presence describes the user’s psychological sense of being inside the
virtual world and is a central goal of Virtual Reality (Steuer, 1992). Immersion, by
contrast, refers to the ability of the utilised technology to create “an inclusive,
extensive, surrounding and vivid illusion of reality” (Slater & Wilbur, 1997)—
essentially a world providing the user with a sense of presence. It is worth noting at
this point that while an increase in immersion is often observed to have an analogous
effect on the performance of users in tasks within the VE, no such conclusion can be
drawn regarding an increased sense of presence. This is attributed to the fact that
while increased immersion results in an increase of the quality of the virtual world,
allowing for better performance in tasks within it, increased presence regards the
similarity of the actions performed in the real and virtual worlds and as such has no
effect on the performance in these tasks. (Slater et.al, 1996)

2.2 Avatar Body

One of the main components of immersion is self-representation within the VE—what
we call a virtual or avatar body. An avatar body is both a part of the environment
perceived by the user, and a representation of that user’s physical body within the
VE. For the sense of self-representation to be complete, a match is required between
the user’s proprioceptive feedback about the movements of their physical body and
those performed by the avatar body—essentially, the ability to control the avatar
body by one’s own movements. To achieve this, of course, real-time tracking of the
head and body movements of the person operating in the VE is required, as well the
ability to translate these movements into the corresponding ones for the avatar body
with minimal lag.

An avatar body need not be similar in appearance and anatomy to the user’s physical
body. As has been demonstrated by research and asserted by users of VR
applications, humans can experience an illusion of ownership of bodies largely
different from their own, and adapt their existing body schemas to facilitate these
bodies. This observation merits research, as it not only provides insight into the
function of human cognition, but also allows humans to incorporate novel training and
interaction schemes within VEs.

2.3 Related research - immersive VR with First Person
integrated body parts

Avatar body representation and control in VEs allows for many types of research in
various fields such as game development, H-R collaboration, training, medical
rehabilitation, ergonomics, etc. Examples of such research include:

Lange et.al (2011), used the PrimeSense depth sensor technology (also utilised in
the Microsoft Kinect) to develop and evaluate a game-based rehabilitation tool for the
balance training of adults after neurological injury. Wittmann et. al (2015) developed
a VR therapy game that continuously estimates the patient’'s arm reachable three-
dimensional (3D) workspace based on Inertial Measurement Units (IMUs). Luo et. al
(2011), created an interactive VR system for both arm and hand rehabilitation
utilising both optical linear encoders (OLEs) and IMUs. Osumi et. al (2017)
developed a quantitative method to measure movement representations of a
phantom upper limb, and investigated whether short-term neurorehabilitation with a
VR system would restore voluntary movement representations and alleviate phantom
limb pain (PLP), using a combination of the Microsoft Kinect and Leap Motion.
Merians et. al (2009) developed a complex system capable of exercising the arm and
hand together or in isolation, providing for both unilateral and bilateral hand and arm
activities in three-dimensional space. The system incorporated CyberGlove
instrumented gloves for hand tracking and a CyberGrasp exoskeleton for haptic
effects in a number of VR simulations. Moreover, MRI imaging was used to observe
the engaged areas of the brain, in order to test the feasibility of using VE-based
sensory manipulations to recruit select sensorimotor networks.

All of the above research yielded encouraging results regarding the rehabilitation of
patients, as well as gaining positive feedback from both patients and clinicians, thus
demonstrating the applicability of combining motion tracking technologies and VR
environments for rehabilitation purposes, and especially for offering a solution for the
at-home rehabilitation of patients, in an enjoyable environment.

Heidicker et. Al (2017) studied the effect of avatar appearance and motion control on
communication and interaction in social virtual reality scenarios within immersive
VEs. To that end, three different types of avatar in different VEs were compared. The
results demonstrated that motion control of avatar bodies plays an important role in
the sense of presence within the VE, with full body avatars with full motion control
exhibiting the best results regarding co-presence and behavioural interdependence.
It is worth noting however that avatars consisting of head and hands with motion
control showed better results than complete avatar bodies with pre-defined
animations. A question left open for future research by the paper was how many and
which body parts have to be visible to reproduce or even surpass that degree of co-
presence.

Specifically regarding the field of Ergonomics/Human Factors, by studying the
relationship between an avatar body and the person operating it, it is possible to
draw valuable conclusions regarding issues such as:

e The correlation between avatar body control and task effectiveness in a VE
e The user’s ability to assimilate a virtual representation of their body with their
real-world body image

Theoretical background: VR and Avatar Bodies

e The ability to subsequently incorporate this representation into their body
schemas.

For example, Kilteni et.al (2013) observed that subjects’ behavioral and movement
patterns within a VE can change depending on the visual aspects of an avatar body
within said VE, by simulating a drumming task with avatar bodies of different skin
tones and clothing. Moreover, it was observed that a stronger body ownership illusion
corresponded with a greater behavioral change of the subjects. Slater et.al (2010)
studied the illusion of ownership of an avatar body different than the subjects’
physical one, demonstrating that a virtual female body that appears to substitute the
male subjects' own bodies was sufficient to generate a body transfer illusion.

In a different study, Kilteni et. al (2012) studied the ability of subjects to incorporate
an avatar body exhibiting asymmetries in comparison to their physical one into their
body schemas. This was achieved by creating elongating one the users’ virtual arms
to up to 4 times their normal length, and using questionnaire scores and defensive
withdrawal movements in response to a threat to measure the degree of ownership
of that arm experienced by the users. Results showed that users experienced a
sense of ownership towards the elongated limb and were able to adapt their
responses to this unnatural body image. That illusion did decline, however, with the
length of the virtual arm, especially when the virtual arm exceeded three times the
length of the physical one.

Won et al. presented congruent results by examining the concept of “homuncular
flexibility”—the idea that humans can learn to control bodies different from their own
by changing the relationship between tracked and rendered motion. To that end, the
researchers conducted two different experiments. In one, the movements of the
upper and lower limbs of the users real and virtual were remapped, making the
physical arms control the virtual legs and vice versa, or attributing far increased
range-of-motion to the virtual legs than the arms. In the other, a third arm was added
to the avatar body, controlled by the rotation of the users’ physical arms. The results
of both experiments demonstrated that subjects were able to adapt their body
schemas to the virtual bodies’ capabilities, quickly learning how to utilise their more
flexible limbs in the first experiment and their “third arm” in the second one to achieve
better performance in tasks when compared to “normal” body representations.

Review of Motion Tracking Technology

3 Review of Motion Tracking Technology

3.1 Importance of arm tracking

The upper limbs play a paramount role in the experience of a VR user’s avatar body,
as they provide the main tool for interacting with the environment. In light of this,
various technologies have been developed to incorporate the arms’ movement into
the VE, utilising different approaches, each with its own benefits and limitations.

3.2 Existing systems

In this section, some of the most popular VR technologies are presented, along with
their working principles and approach regarding position and movement tracking.

3.2.1 Microsoft Kinect

Figure 1: Microsoft Kinect

The Microsoft Kinect, originally released in November 2010, is a motion sensing
device that allows the user to interact with a computer or gaming console (namely the
Xbox 360/0One) without need of a controller, using gestures and spoken commands.
While the Kinect itself is not, strictly speaking, a VR technology, since it does not
display a VE to the user, it has been used extensively in conjunction with other
systems such as the Oculus Rift (presented below) due to its motion tracking
capabilities.

The Kinect achieves motion tracking by combining the data acquired from two
Sensors:

i) An RGB camera
i) An IR emitter and an IR sensor

The working principle is as follows: A speckle pattern of infrared laser light is first
projected onto the scene by the IR emitter. The IR sensor acquires the reflected
pattern and analyses with structured light algorithms in order to compute the depth
map of the scene. In other words, a depth value is assigned to each pixel of the
image. The Kinect combines this with the information acquired by the RGB camera,
in order to produce information about the red, green and blue colours and the
distance from the sensor for each pixel of the image.

The acquired map is then segmented in order to recognize human silhouettes. Body
parts are inferred using a randomized decision forest, learned from over one million
training examples (Berliner et al., 2010; Shotton, 2011) and matched to one of 15
body models. From the knowledge of location and attitude of body parts, the position
of the articular joints between them are computed (Valentini, 2012).

While the Kinect’'s motion tracking capabilities are impressive, its design makes it
subject to certain limitations. Namely, the objects (or users) tracked need to be within
Line-of-Sight of the camera and IR sensor at all times. This means that users need to
stand in front of the sensors when operating Kinect-based systems, and be directly
“visible” by them (not standing behind objects) otherwise the sensing system suffers
from occlusions. Moreover, the speckle pattern projected by the IR emitter is
corrupted by natural light, rendering the Kinect incapable of being used outdoors. It is
also worth noting that, due to a lack in popularity, the Kinect was recently
discontinued by Microsoft

3.2.2 Oculus Rift

Figure 2: Oculus Rift

8

Review of Motion Tracking Technology

The Oculus Rift is perhaps the most well-known VR technology currently available to
consumers. Initially funded via a Kickstarter campaign started in 2012, Oculus
released two Development Kits (DKs) in 2013 and 2014, and finally released the first
consumer version on March 28, 2016. The Rift hardware includes a Head-Mounted
Display (HMD), an IR sensor consisting of a specially filtered camera in the form of a
desk lamp, as well as two handheld controllers known as Oculus Touch.

The Oculus Rift approach to motion tracking is based on the Constellation system.
The Rift HMD as well as the Oculus Touch controllers are fitted with a series of
precisely positioned infrared LEDs under or above the surface, set to blink in a
specific pattern. The pattern is recorded by the infrared sensor which is usually
placed on the user’s desk. By knowing the configuration of the LEDs on the objects
and the pattern at which they blink, the system can determine the position of each
LED as a point in space. By combining these points to create a 3D wire frame, it is
able to pinpoint the precise position and orientation of the tracked device (HMD or
controller) with sub-millimeter accuracy and near-zero latency. This data is combined
with information obtained through gyroscopes and accelerometers embedded in the
devices, as well as prediction algorithms, to provide continuous position and
orientation tracking. Due to this architecture, previous versions of the Rift suffered
from occlusions when the user was facing away from the sensor, as the system was
unable to track the LEDs. This was tackled in the consumer version, however, with
the inclusion of tracking LEDs in the back of the headset.

It should be noted that two separate IR sensors are required to track the HMD and
Touch controllers at the same time, since a single sensor could be easily confused
and occluded by one or more of the Touch controllers and hence block tracking of
the other controller, the headset, or both.

Moreover, the Oculus IR sensors are still prone to occlusion issues, since any object
(walls, furniture, or even the user’s hands) interposed between the sensor and the
tracked devices “hides” the LEDs from the sensor, resulting in a loss of tracking data.
Furthermore, since Constellation is limited by the resolution of the cameras, at a
certain distance away from the camera the devices take up too few pixels and the
system can no longer identify the individual points corresponding to each LED.

Figure 3: Oculus IR Sensor

10

Review of Motion Tracking Technology

3.2.3 HTC Vive

Figure 4: HTC Vive

The HTC Viveis avirtual reality headsetdeveloped by HTC and Valve
Corporation.The first Consumer version of the device was released on April 5th,
2016.

Its main advantage over previous existing systems is the ability to provide room-scale
VR with motion tracking, allowing the user to move in space freely.

This is implemented by what Vive names “Lighthouse” technology. The technology’s
working principle is similar to that of Constellation, with a few important differences.
The Vive headset and controllers are accompanied by a pair of “base stations” or
“beacons”, which provide the means for positional tracking of both the HMD and
controllers. These need to be placed within the room where the Vive will be used at
an elevated height. The stations emit pulses of non-visible light from stationary
Infrared LED arrays within them, along with two laser beams, which sweep the room
at periodic intervals (60 fps). The HMD and controllers feature a large number of
photosensors (37 on the headset, 24 on each controller) which detect the light
emitted from the base stations, both the LED pulses and the beams. By measuring
the time elapsed between detecting and LED pulse and a laser beam, the position of
each photosensor in space can be determined. By combining data from enough of
these sensors, as well as an accelerometer-gyroscope combination within the
headset, it is possible for the Vive’s software to pinpoint both the position and
orientation of the headset and controllers in 3D space.

By positioning the base stations higher than the level at which the user operates the
HMD and controller, Vive manages to omit occlusion issues, since the beacons are
able to “look down” at the entirety of the room without being obstructed by interposing
objects. Moreover, even if one of the beacons is unable to detect the equipment,
correct placement of the other one should ensure accurate tracking (see Fig. 5) In
addition to the above, since the tracking technology is not dependent on any form of
camera, rather utilising simple clocks and light detectors, the resolution issues

11

https://en.wikipedia.org/wiki/Virtual_reality_headset
https://en.wikipedia.org/wiki/HTC
https://en.wikipedia.org/wiki/Valve_Corporation
https://en.wikipedia.org/wiki/Valve_Corporation

appearing in the Oculus hardware are not encountered by Vive. The obvious
downside to this is the requirement for proper placement of the base stations within
the space where the system is used.

5 Metres

Figure 5: Correct placement of the Vive Base Stations

12

Review of Motion Tracking Technology

3.2.4 Manus VR

Figure 6: Manus VR

The Manus VR is one of the latest additions to VR motion tracking, and focuses on
incorporating the movements of the fingers and palm into a VE. The gloves contain
two flexible analog sensors to track the movement of each finger, as well as one
9DOF Inertial Measurement Unit (IMU) which tracks the orientation of the thumb, and
another for the orientation of the hand’s dorsal surface. Details as to how the data
from these sensors is processed remain unreleased, as does the final product. A
video was recently released demonstrating a combination of Manus VR with the Vive
HTC controller, to provide full arm and hand control to the user.

13

14

Development of a Motion Tracking System

4 Development of a Motion Tracking System

4.1 Hardware/Wearable

As part of this thesis, a motion tracking system was developed, capable of tracking
the movement of the human arm beginning from the shoulder up to and including the
palm.

The wearable system was based on the one previously constructed by Michael
Karakikes (2017), with a number of changes made to accommodate the needs of the
current research. It consists of three MPU 9250 IMUs connected to an Arduino Nano
with 24AWG wires (the connections are explained in section 5.1.2,
“Wiring/Connections”) and mounted on a fingerless glove and elbow patch. The main
characteristics which favored the selection of IMU technology are:

¢ Inexpensiveness

e Small size, non-intrusiveness

¢ No obstruction of the user's movement

o Sufficiency of accuracy and precision, for arm motion tracking and
visualisation(< 3°)

o Availability of prototyping platforms

o Portability, ability for wireless communication

¢ Independent function from specific VR equipment (HMDs, software, etc.)

Figure 7: Proprietary Motion Tracker

15

Although various systems implementing arm tracking in VR already exist, with the
most popular and recently developed ones being described above, the system
developed by our lab retains certain benefits not found in existing systems. The main
advantage it provides is the fact that it can function independently from any type of
position tracking technology or display. The data from the IMUs goes directly from
the Arduino to the PC, without needing to be within Line-Of-Sight of any externally
mounted camera or position tracker, rendering it entirely portable. This characteristic
would make it usable not only within various different VR environments, but in
augmented and real world applications as well, requiring only access to a computer
in order to send and receive data, a process which can be achieved wirelessly.

This feature, stemming from the fact that the system was not originally designed to
be used in VR, is not found in any of the aforementioned motion tracking systems.
Even the Vive, despite its impressive accuracy, depends on the light-emitting base
stations to provide “room-scale VR”. The system presented here, by contrast, can be
used in different rooms or even outdoors, as long as wireless support is provided. In
this manner, it paves the way for what we have dubbed “world-scale” VR and,
perhaps more importantly, AR applications. It is worth noting here that the Manus
VR, although its functional details are unclear, seems to utilise technologies which
also function without need of external position tracking. This could mean that, by
combining it with our proprietary motion tracking system, we would be able to provide
complete tracking of the arm and hand on world-scale applications.

Moreover, since IMUs are very inexpensive to obtain, the system has a very low
construction cost; excluding the equipment required to perform the soldering
connections, the cost required to build the existing prototype was 15€ (4€ for the
Arduino, 3x3€ for the sensors, 2€ for the glove and elbow patch). It should be noted
that this does not come at the expense of accuracy, since IMUs are capable of
delivering adequately accurate measurements of a human arm’s motions, as is made
evident by their use in commercial VR in systems such as the Oculus Rift, HTC Vive
and Manus VR, as well as related research such as the rehabilitation-oriented
systems presented in section 3.3, “Related Research” (Merians et. al 2009, Wittmann
et. al. 2015, etc)

This system was used to control the movement of a virtual human arm, in a virtual
environment created with the Unity Game Engine, and displayed to the user through
the Oculus DK2 Head-Mounted Display (HMD) explained in depth in section ??.??,
“Environment Design”

4.1.1 Components

4.1.1.1Arduino Nano

For this project, a version of the Arduino Nano v3.0 (Fig. 8) board was used as a host
processor device, to capture IMU measurements and process them, in order to
calculate the orientation and movements of the user's arm. The board was powered
through a Micro-USB connection with a PC. The same connection was used to
exchange data with the computer via the serial monitor included in the Arduino
software, which allows simple textual data to be sent to and from the board. The
Arduino receives data from the three MPU 9250 IMUs utilising 12C communication
through the A4 (SDA) and A5 (SCL) pins. 12C communication is supported by the

16

Development of a Motion Tracking System

appropriate libraries. The Arduino Integrated Development Environment (IDE) was
used for writing the code used in the project and uploading it to the processor.

S e v - :
FEPREFEY oA

Figure 8: Arduino Nano V3.0

17

4.1.1.2MPU 9250

The MPU 9250, produced by InvenSense, is a 9-axis Motion Processing Unit™
(MPU), meaning that it combines an accelerometer, gyroscope and magnetometer
for position, orientation and acceleration tracking. It additionally contains an
embedded Digital Motion Processing (DMP) unit, which can acquire the data from
these sensors, process those utilising data fusion algorithms, and return position and
orientation information.

A breakout board of the chip was used to better facilitate prototyping and connection
to the Arduino. The board (seen in Fig 9), also denotes the IMU’s X and Y axes. The
Z axis can be inferred from these by the right-hand rule.

Figure 9: MPU 9250

18

Development of a Motion Tracking System

4.1.1.30culus Rift DK2

The HMD used in conjunction with the motion tracking system was an Oculus Rift
DK2 (Fig. 10). The DK2, released on July 24, 2014, is the predecessor of the Rift's
first consumer iteration. The DK2 connects to the computer via an HDMI cable and
two USB 3.0 ports (one for the HMD and one for the IR position tracker). It was
calibrated using the Oculus Configuration Utility. The HMD was used to project the
developed VE to the user, as well as track the position of the user’s head within the
environment.

Figure 10: Oculus Rift DK2

4.1.2 Wiring/ Connections

Initially, a prototype of the system was built on a Solder-less breadboard, for the
purpose of testing the connections and functionality of the system. The Wiring code
for the Arduino was tested and developed further using this prototype to suit the
needs of the project. The prototype was also kept in place during later phases of
development, and used as a tool for verifying any changes to the code or wiring prior
to implementation.

19

Figure 11: Solderless circuit

After ensuring the system’s functionality with the current configuration, the circuit was
soldered permanently. Stranded core wires were used, owing to their flexibility which
would allow the mobility of the subject wearing the system. Small solderable
breadboards were soldered to female pins, within which each sensor and the Arduino
were fitted, allowing for the removal of any malfunctioning component from the circuit
without the need to de-solder and re-solder it .Header length was clipped, to reduce
size.

20

Development of a Motion Tracking System

Figure 12: Soldered Circuit

The connections required for each of the IMUs are presented in the following Table:

Table 1: Connections between MPU 9250 & Arduino
MPU 9250 Arduino Nano

VCC 5V
GND GND
SCL Al
SDA A5
ADO D3/5/7

In the above connections, the A4 and A5 pins on the Arduino are used to implement
I2C communication between the board and the IMUs. The same pins can be used for
communicating with all three IMUs at once, with A4 being the “Clock” (SCL) and A5
the “Data” (SDA) pin. Pins D3, D5 and D7 are used for selecting the 12C address of
each of the IMUs (see section 5.2, Code Development), and are each connected to
the ADO pin on one of the IMUs.

4.1.3 Placement on the arm

The position of the sensors on the body was determined by both empirical
observation of upper limb joint and skin movement, and previous research (Chen X. ,

21

2013; Buchholz & Wellman, 1997; Leonard, et. al 2005; Smeragliuolo et al. 2016;
Oberlander, 2015, (Karakikes, 2017). Namely:

One sensor (IMU 1) was placed of the dorsal surface of the palm, approximately over
the third metacarpal bone

One sensor (IMU 2) was placed on the dorsal surface of the forearm, over the wrist
joint

One sensor (IMU 3) was placed on the dorsal surface of the upper arm, over the
elbow joint

Figure 13: Placement

22

Development of a Motion Tracking System

Each of the sensors captures the motion of one “segment” of the arm—IMU 1
captures the movement of the palm, IMU 2 that of the forearm and IMU 3 that of the
upper arm

4.1.4 Placement justification

The placement of the sensors was based on the aforementioned research as well as
on the experience of our lab’s personnel due to previous related projects. The work
of Michael Karakikes (2017) had determined the correct placement of sensors for the
measurement of wrist and forearm angles, and therefore palm and forearm
orientation.

As indicated, to measure the movements of the palm, it is adequate for a sensor to
be placed over the metacarpal bones of the hand. This placement ensures that the
motions originating at the wrist (flexion/extension and radial/ulnar deviation) are
accurately read by the IMU, but not influenced by the movement of the rest of the
arm (e.g. the fingers or forearm).

For the accurate measurement of the forearm’s pronation or supination, the second
sensor needs to be closer to the wrist than the elbow joint, since the effect of the
motion is far more pronounced on the lower part of the forearm. The same sensor
can be used to effectively measure the elbow’s flexion and extension, since the
forearm cannot perform such movements independently from the elbow.

As regards the movements of the shoulder and upper arm, it was theorised that by
mounting the third IMU close to the elbow joint, the motions originating at the
shoulder joint would be clearly pronounced, as was the case with the
pronation/supination of the forearm. This hypothesis was experimentally tested, and
the measurements were indeed accurate, so the placement was maintained.

4.1.5 Mounting on the Arm

After reviewing a number of solutions, including using Velcro to mount the sensors
and processor to the glove and elbow patch (as previously done by Karakikes, 2017),
it was decided to use Lego™ bricks to mount the sensors. This solution offered the
ability to quickly mount/dismount the sensors on the glove & elbow patch, while
simultaneously providing increased stability over the Velcro patches, as well as the
ability to very accurately calibrate the sensors, as explained below. Moreover, since
the glove & patch are elastic, it was possible to shift the position of the sensors to
accommodate the differences in shape and size of each user's arms, while still
maintaining their alignment.

23

Figure 14: Mounting

4.1.6 Setup

Every time the system is initialised, the following setup process is executed

First, the sensors are attached to a large Lego™ brick with their Y axis facing forward
and their Z axis facing up, as shown in the image, and allowed to rest for approx. 10
seconds. The sensors’ X-Y needs to be parallel to each other during that time, and
their Z axis parallel to the ground (Fig. 15). This is required in order to calibrate the
sensors, since their magnetometer data is not obtained by the code, rendering their
reference system random (around the gravity axis) each time they are initialized.
Moreover, their coordinate systems need to be “matched” to those of the virtual arm
in the VE controlled by the motion tracker, which starts at an extended (facing
forward) position. This process is repeated every time the system is initialised, as
well as when measurement error (“drift”) has been accumulated.

Following that, the sensors are attached to the glove and elbow patch worn by the
user. The user is asked to extend their arm in front of them, and the sensors are
aligned with the user's extended arm position, in order to provide correct
measurements. This is done to ensure the position of the virtual arm controlled by the
sensors’ motion matches that of the user’s arm when that motion starts.

24

Development of a Motion Tracking System

Figure 15: Calibration Setup

4.2 Code Development (Software)

The code developed for this thesis was required to cover two main objectives

a) Acquisition of real-time motion data from the three IMUs mounted on the
user’'s arm
b) Translation of that data into movement of a virtual avatar arm within the

developed VE, which was used to conduct experiments

To fulfill objective (a), the Arduino IDE was used to develop and test code, utilising
I2C communication, as well as a number of libraries, especially the 12C devlib by Jeff
Rowberg (jrowberg) which provides various functions for reading the data from the
IMUs and displaying them in different formats (quaternions, Euler angles, yaw-pitch-
roll, etc.) as well as the MPU6050_Wrapper library by GitHub user eadf which allows
for periodically changing the 12C addresses used by the sensors.

Regarding objective (b), an environment was initially designed using the Processing
IDE, utilising the OculusRiftP5 library by Sunao Hashimoto (kougaku) wherein the
functionality of the virtual arm could be tested.

However, with the aid of Petros Kontrazis, a different environment was ultimately
constructed using the Unity Game Engine (henceforth referred to simply as “Unity”).
Unity offers various advantages over Processing, such as easier head-tracking,
generally increased—and simpler to implement— VR support, increased

25

communication capabilities with the Arduino, as well as a more realistic and easily
customisable environment.

Owing to the fact that the system was initially designed to function with Processing
and later changed to Unity, a number of different solutions were tested and
implemented regarding the acquisition of data from the sensors, and various scripts
were changed within the Unity Scene to fine-tune the environment’s functions and
obtain the necessary experimental data.

In this section, the functionality of the main program is explained, together with the
data exchange methods between Arduino and Unity. This program obtains the
motion data from the three IMUs, transfers that data to Unity, and translates it into
movement of the virtual arm. The code itself is presented in appendix A.

The changes made to scripts within Unity are described in section 6, “Environment
Design”, but not specifically presented in the form of C# code (as that would result in
a needlessly large appendix). The program written for the Processing IDE is also not
presented here, since it was not used in the final project.

4.2.1 Arduino IDE

The code for the Arduino Microprocessor has one main function: Obtaining the data
from each IMU in the form of Quaternions, and printing these Quaternions to the
Serial Port. This is achieved by reading raw data from the IMU’s Digital Motion
Processing (DMP) unit, and translating that data to readable quaternions using the
dmpGetQuaternion function, provided with 12Cdevlib. For distinguishing between the
three IMUs, a modified version of the MPU6050_Wrapper library is used, which
“rotates” between reading each IMU after a set amount of time. This functionality was
required because the MPU9250 can only obtain one of two 12C addresses: 0x68 or
0x69, depending on the logic level on pin ADO. Therefore, in order to simultaneously
use more than two IMUs, these addresses need to be “rotated” and the motion data
needs to be read from each of the IMUs in order.

The used library achieves that by providing “high” voltage for one ADO pin and “low”
voltage for all other ADO pins (or vice versa). This forces one of the MPUs acquire a
different address than the others, making it easy to read data from. Subsequently,
the addresses change again, and the next MPU is made available for reading. This
way, the MPUs are read one at a time, but with a very short time interval, more than
adequate for the purpose of measuring the motions of the human arm.

The final developed program reads data from one IMU at a time, and then prints that
data to the serial port in a single line, separated by commas and preceded by the
number 1, 2 or 3 to distinguish between IMUs.

4.2.2 Unity

On the other side of the loop, the script motionControl.cs running in Unity reads the
data sent to the Serial Port by the Arduino and translates it to movement of the
corresponding game object. This is achieved by reading one line of data at a time
from the open Serial Port, splitting that line into separate strings whenever a comma

26

Development of a Motion Tracking System

is encountered, and parsing these scripts as integer (for the IMU identifier 1,2 or 3) or
floating point variables (for the actual Quaternion data). These variables are then
stored in 3 Quaternion objects (pre-existing in Unity) changing their order and
orientation as required for the coordinate systems of the IMUs and the Unity
environment to match (the correspondence appears in Table 2). Finally, the 3 joints
of the virtual arm within Unity are each rotated according to the corresponding
Quaternion, creating an accurate representation of the user’'s arm movements.

Table 2: Correspondence between MPU9250 & Unity coordinate systems

Unity MPU9250
X -X
Y -Z
Z -Y

Notes

1) The 12Cdevlib as well as the MPU6050_ Wrapper libraries, used with the
Arduino IDE, are not developed for the MPU 9250 but rather its predecessor,
the MPU 6050.The reason for their use is two-fold. Firstly, since the 9250 is a
fairly new unit, the existing libraries for using it with an Arduino are few and do
not cover the needs of the current project. This necessity, coupled with the
fact that the libraries for the 6050 could be used with ease to obtain accurate
data from the DMP, resulting in simpler code and lessening the computational
load on the Arduino, led to the decision of using the aforementioned libraries.

2) Due to the above decision, and owing to the fact that the MPU 6050 did not
include a magnetometer, the magnetometer data is not read by the utilised
libraries. This means that the sensors have no reference regarding their
orientation in the XY plane at the beginning of the experiment, necessitating
that they be allowed to rest before being used, in order to determine the world
reference frame (as described in section 5.1.6, “Setup”). This was not an
important hindrance in our case, as the time that the sensors were resting
was used for the purpose of explaining the experimental process and setup to
the subjects (see section 7, Experimental Design).

3) The used code allows for determining offsets for each of the sensors, in order
to expedite the calibration process. However, these offsets are determined by
the sensors’ internal architecture, and need to be determined by dedicated
algorithms, or otherwise estimated by iteratively testing various values. For
that reason, as well as the fact that time for calibration was rather plentiful in
our case (as described above), the offsets were left to the value of 0.0 in the
code.

4) To minimise the lag between the movements of the real and virtual arm, the
motionControl script was assigned to a separate processing thread from the
rest of the processes. This was required because if allowed to run in a serial,
rather than parallel, manner, the IMU measurements were displayed with a
cumulative delay in the Unity environment, resulting in increased lag and
making the virtual arm unresponsive.

27

5) The scripts as well as the virtual arm developed in the Unity environment are
completely standalone. This means that they can be “removed” from the
existing VE and placed into any other Unity-based environment, allowing for
expedient and efficient use of the motion tracking system outside the
developed scene.

An overview of the designed system can be seen in the figure below. The VR
environment’s design and functionality are explained in detail in section 6,
“Environment Design”

-y

VR
Headset

S ™ = mm L N

. Motion |
: tracker s

(L)VR Environment)

= = = =
“ - =

Figure 16: Working Principle of Motion Tracking System

28

Environment Design

5 Environment Design

The experiment conducted as part of this thesis was originally intended to be a VR
“catch” task. The reason for this choice is that catching a flying object required the
user to implement hand-eye coordination in a short amount of time, and reflexively
move their arm in space. It was theorised that this would allow us to effectively study
the level of incorporation of an avatar body which can be achieved in such
environments. However, after designing such a task in the Processing environment, it
was realised that the environment suffered from a lack in realism, due to the absence
of haptic feedback when catching the flying object; moving their arm to catch
something and then clicking a button to achieve the actual “grabbing” of it seemed
confusing to users.

In light of this, it was decided to change the task from catching flying objects to
shooting randomly appearing targets. The reasoning behind this was that trying to
quickly aim and shoot at a target appearing at a random point in space would impose
hand-eye coordination requirements on the user similar to those of the catching task.
Moreover, clicking a button to simulate releasing a projectile from a gun seemed
more lifelike, to researchers and users alike, than grabbing an object.

As mentioned above, the above task was also initially designed using the Processing
language, and then re-adapted using the Unity Game Engine. Only the second game
environment—the one used in the final experiment—is presented here.

5.1 Original Scene

The environment’s background and most of the objects were originally found in the
free Unity Asset VR Samples, and namely from that Asset's “Target Arena 360"
scene.

That scene consists of a 360° environment, with the player positioned centrally with
their viewpoint coincident with the Main Camera (first person perspective). The player
is unable to change their position within the environment, but they are capable of
rotating around their axis and moving their head in order to look “behind” them in the
environment, utilising the head tracking capability of the Oculus HMD. The scene’s
original functionality was as follows:

5.1.1 Intro

First, the player is presented with an intro screen, providing instructions on how the
game is played (see Fig 17). Within that screen, the player can see a rigid, extended
arm holding a gun, and a red rectangular reticle positioned where the gun is aiming.
By moving their head around, the player can aim the reticle wherever they are
looking. The arm moves to follow that movement. Positioned centrally on the screen
underneath the instructions, is a grey box with the phrase “Ok, | got it!” displayed
within. By holding their gaze over that box and holding down the left mouse button,
the box “fills up” with a fuchsia colour, and the player can start the game.

29

Ok, | got it!

Figure 17: Game Intro

5.1.2 Main Game

During the main “phase” of the game, targets spawn around the player in random
locations within the environment (see Fig 18). The player has 1 minute to shoot as
many targets as possible. By using the direction of their gaze to move the reticle over
the targets and clicking the left mouse button, the player causes a laser beam to fire
from the gun held in the displayed arm. When the beam hits the targets they shatter,
and the player’s score increases by 1 point. The score is displayed on the screen
during this phase, together with a blue curve representing the time remaining. When
that time runs out, the game is over. If not hit, the targets remain on the screen for 2
seconds before disappearing. There is a script running behind the scene determining
the desired number of targets which should be on-screen at any time, and reducing
or increasing the probability of a new target spawning depending on how many
already exist.

Figure 18: Main Game

30

Environment Design

5.1.3 Outro

When the time runs out, any existing targets disappear and the player is presented
with an outro screen, displaying their score as well as the current high score (Fig 19).
The rectangular reticle is replaced with a circular one, and the player is prompted to
hold down the left mouse button to play again. If they choose to do so, the reticle
“fills” up and the player is redirected to the intro screen, from where they can start the
game again.

Game Qverl
High Score Your Score
41 41

Hold FIRE to play agai
gain!
Press BACK to return to the men

Figure 19: Game Outro

5.2 Adaptations to the needs of the project

The scene was changed appropriately to accommodate the needs of the experiment.
The most important changes made to the environment were:

The original rigid arm existing in the environment was replaced with a jointed arm
created for the purposes of the experiment, controlled by the signal from the three
IMUs on the user's arm. This arm was created using simple capsule and sphere
objects found in the Unity Game Engine, since our focus was directed more towards
it being capable of accurately capturing the movements of the user than to it being
aesthetically pleasing or realistic. Each capsule represents a segment of the arm
(palm, forearm, and upper arm), and each sphere one of the arm’s joints (wrist,
elbow and shoulder). The signal from each IMU controls the position and orientation
of the arm’s corresponding joint—the IMU mounted on the upper arm controls the
shoulder, the one mounted on the forearm controls the elbow, and the one on the
palm controls the wrist. The capsules and spheres are connected via parent-child
object relations starting from the shoulder and moving down to the palm. This way
the movement of the virtual arm corresponds to the movement of the user’'s arm in
the real world—for example, if the user rotates their forearm about the elbow, the
wrist and palm move as well, but if the user simple flexes or extends their wrist while
keeping the rest of the arm immobile, the same movement will occur on the virtual
arm.

31

Original Replaced

Figure 20: Replacement of the existing arm

The aiming system was redesigned so that the player uses their arm to aim, instead
of their gaze as per the original design. This was done by repositioning the origin of
the scene’s Raycaster (the component that projects a “ray” to the aiming position)
from the Main Camera to the end-effector of the virtual arm (a small sphere object
positioned at the end of the “palm” capsule). This way, the scene’s aiming reticle is
positioned on the point in the background where the palm is pointing at, rather than
wherever the player is looking. This change was made in order to force the players to
utilise the movement of their arm while aiming. This was required in order to obtain
useful data from the conducted experiment (described in section 6, “Experimental
Design”). Namely since the hypotheses tested in the experiment focus on the motion
of the arm within the VE, it was of paramount importance that the users aim with their
arms. If they were able to aim using the direction of their gaze instead, the arm’s
movements would be rendered irrelevant to the task, and therefore any data obtained
from the measurements of these movements would carry no significance
whatsoever.

The origin of the laser beam was also placed at the arm’s end-effector, in order to
visually demonstrate this change in the aiming mechanism to the player.

The aiming reticle appearing in the scene was removed in order to shift the users’
focus more towards the movement of their arm, rather than a moving point on the
screen. The circular reticle described above (see “Outro”) was maintained during the
intro phase, to aid the users in understanding how the aiming system works and in
starting the game. The circular reticle was chosen over the rectangular one simply
due to its larger size—it was easier for the users to spot during their first contact with
the environment.

The spawn mechanism of the targets was changed so that only one target spawns at
a time and remains on-screen for 10 seconds, rather than 2, before de-spawning (if
not shot down). The purpose of this was to compel the users to search around the
environment in order to find the target, as it was theorised that would increase the
observed hand-eye coordination activity, as well as the movement of the users’ arm,
during the experiment. The targets’ lifespan was increased in order to provide
enough time for the users to locate and shoot them. The original thought was to
make the lifespan “infinite” (60 seconds), but this plan was abandoned after
observing certain users getting “stuck” on targets they couldn’t reach, during the pre-
experiment runs.

32

Environment Design

Figure 21: Original & Adapted Scene

A script was added to implement the control of the jointed arm, receiving the data
from the Arduino via serial communication and translating them to movement of the
arm in the environment, as explained above.

Several changes were made to the existing scripts in order to obtain the desired data
while running the experiment (see “Experimental Design”).

33

34

Experimental Design

6 Experimental Design

6.1 Subject Distribution

The experiment was initially designed to test whether a correlation exists between
the visibility of the virtual arm and the test subjects’ performance in the task. It was
decided that the 22 subjects would be divided into two groups, one containing 12 and
the other 10 participants, henceforth referred to as Group A & Group B, respectively.
Group A consisted of 6 male and 6 female participants, while group B consisted of 5
male and 5 female participants. Participants were aged 20 to 29. The subjects’
experience in First Person Shooter games varied from none to very high.

6.2 Runs and conditions

The experiment would consist of two “runs” for each subject. Each run was defined
as a 1-minute period during which the subjects use a laser beam fired from the end
of the virtual arm to shoot down targets spawning in a 360° radius around them. The
task was completed from a standing position, ensuring that each subject had
sufficient space to rotate around their axis, in order to reach targets appearing behind
them, without being obstructed by the control and display devices. Between runs, the
subjects were asked to fill out a questionnaire regarding their experience during the
experiment

Group A would first complete the experiment with full visibility of the arm, fill in the
guestionnaire after this first run, and subsequently run the experiment again, this time
having visibility of only the wrist and palm. Group B would complete the runs in the
opposing order, initially viewing the arm from the wrist down, and, after completing
the (modified) questionnaire, re-run the experiment with a visible arm.

This was decided based on the assumption that the subjects would accumulate
experience on the task during their first run, and consequently exhibit increased
performance in their second run. To compensate for that learning effect, the above
division was implemented. At the same time, this allowed for testing an increased
number of subjects in each of the test conditions, since participants in both groups
would eventually complete the experiment both with and without visibility of their
arms. The completion of the questionnaire was also placed between the two runs to
avoid the possibility of the subjects being biased by experiencing both test conditions
and favouring the one in which they performed better.

However, during test runs before the start of the experiments, it quickly became
apparent that the beam, rather than the arm, was the primary tool used for aiming by
most subjects. In light of that information, a third run was added to the experiment, in
which the subjects no longer had visibility of the beam. The visibility of the arm was
determined accordingly to the groups’ second run, therefore Group A had visibility
from the wrist down, whereas Group B had visibility of the full arm.

The test conditions for each group and run are shown in the table below. Runs with
identical testing conditions are signified by common (blue or green) shading of the

35

cells. Note that, in the conditions where the beam was invisible, only ten subjects
experienced each condition, as opposed to twenty for the previous two (visible
beam).

The addition of a fourth run, where the arm’s visibility would again be reversed with
the beam remaining invisible, was rejected under the assumption that subjects would
have accumulated fatigue due to the repeated runs at that point, which might
influence their results.

Table 3: Test Conditions per Group & Run

Run 1

Run 2

Run 3

Group A

Group B

Arm Visible

Beam Visible

Arm Invisible

Beam Visible

Arm Invisible

Beam Visible

Arm Visible

Beam Visible

Arm Invisible

Beam Invisible

Arm Visible

Beam Invisible

The aim of this third run was to determine whether the usefulness of the arm’s
visibility was dependent on the nature of the task. It was theorised that, by removing
the beam, the task of shooting targets was made not only harder, but different from
the original, and more akin to real-world shooting, therefore forcing the subjects to
adopt a different strategy for completing it. That means, of course, that any
comparison of data between the first two runs and this third one is deemed invalid, as
they originate from dissimilar tasks.

6.3 Experimental Process for each subject

Each subject completed the experiment as follows: Firstly, the equipment used for
the experiment and its usage was briefly described to them (HMD, Motion tracker).
This time was also used to calibrate the Motion Tracker. Following that, the HMD was
mounted and fitted on their head, allowing them to see the Unity environment. They
were prompted to look and move around, in order to ensure the HMD’s cables did not
obstruct their movement. While doing that, the experimental task was described to
them, omitting the changes made in subsequent runs. The Motion Tracker was then
mounted on their arms, and they were given a few (~10) seconds to understand the
movement of the virtual arm within the environment, using the circular reticle
described in section 6, “Environment Design”. It was explained to the subjects that
this reticle would disappear while running the actual experiment. Finally, the mouse
was handed to the subjects, and they were allowed to begin the experiment.

After finishing their first run, the HMD was removed and the subjects were asked to
complete the questionnaire corresponding to their group, with the examiner available
nearby to answer any questions. The motion tracker was not removed during this
process, except in the cases when recalibration was required, since it did not impede

36

Experimental Design

the subjects’ movements. After completing the questionnaire, the HMD was mounted
on the subjects’ head again, the changes made for the following run (rendering the
arm visible or invisible) were explained (and observed by the subjects), and the
subjects were allowed to run the experiment again. After this run was completed too,
the HMD was removed for a short while to allow the subjects’ eyes to relax and,
when deemed necessary, the Motion Tracker was recalibrated. Finally, the control
and display mechanisms were mounted again, the changes made (removal of the
beam) were explained, and the experiment was run again. Finally, after the
completion of this final run, the equipment was removed from the subjects.

6.4 Data acquired from subject

6.4.1 Objective Data

From the twenty subjects, the following data was received for each of the runs

= Number of shots Fired

= Number of targets hit

= Shots Fired off-target between subsequent hits

= Time (in seconds) each target remained on screen before disappearing
(whether hit or naturally de-spawning)

= Position (XYZ) of the arm’s end-effector during the experiment.

This data was used to conduct various types of analyses, described in section 8,
“‘Results”

6.4.2 Questionnaire, subjective experience data

The questionnaire filled out by the users was used for the purpose of extracting
information regarding the users’ subjective experience of the experimental task, such
as user satisfaction, adaptation to the environment, usability of the virtual arm, etc.
The questionnaire was loosely based on the presence questionnaire by Witmer &
Singer (1998), and adapted to suit the needs of the current experiment. The answers
were given on a Linkert scale of 1 to 7. Each of the A and B groups was presented
with a different version of questions 4 and 5 (“visible” for Group A, “invisible” for
Group B) in order to gauge the effect of the arm’s visibility on the users’ subjective
experience. The questionnaire is presented below, translated into English

1) How much delay did you experience between your movements and their
representation in the Virtual Environment?

1-None 7-Very large

2) How much did the motion tracker and HMD interfere with your performance in
the designated task?

37

1-Not at all 7-Very much

3) How capable in moving within the environment and interacting with it did you
feel at the end of the experiment?

1-Not at all 7-Very much

4) How much harder or easier was the task made by the fact that your arm was
invisible/visible?

1-Much harder 7-Much easier

5) How much was the naturalness of your interactions with the environment
decreased or increased by the fact that your arm was invisible/visible?

1-Severely decreased 7-Severely increased

6) How experienced are you in playing such games (First Person Shooters)?

1-Not experienced at all 7-Very experienced

To supplement these results, the users were asked to freely comment on their
experience after the culmination of the tests. Some such observations are presented
below

“The beam was more helpful for aiming than the arm”
“When the beam was removed, | was forced to align my arm with the target to hit”
“I mainly used my wrist to aim, | felt surer that way, like | had better control”

“During the first run, | was aiming normally. During the third run, | used my arm as a
controller of the virtual arm”

It is clear that these comments echo the hypotheses and observations made during
the pre-experiment runs in the VE; subjects tend to aim using the beam as a guiding
mechanism, and, when that is removed, re-adapt their strategy in order to hit the
targets. Most users also commented that the experience was overall enjoyable, and
many stressed the importance of accurate measurement by noting that they got
confused when the representation of their movements was delayed or inaccurate
(due to drift).

38

7 Results

Results

The data acquired from the subjects was used to draw a number of different
conclusions regarding

o the importance of the arm’s visibility in performance

e the assimilation of the virtual arm by the users, and the speed with which that
assimilation occurred

e the speed with which the users adapted to the virtual environment and the

task they were asked to complete

o the differences in strategy and results after the task was differentiated
(removal of the beam)

7.1 Scores per Run

Firstly, as regards the scores (targets hit) of the groups in each of the runs, the
following data was acquired:

Group 1
F1
F2
F3
F4
F5
F6
M1
M2
M3
M4
M5
M6

Average

Table 4: Scores per Group & Run

Runl Run2 Run3

10 9 7
10 15 10
8 12 2
10 11 14
7 14 2
9 15 3
6 8 1
8 15 11
9 10 8
10 18 2
8 15 3
12 13 1

8.92 1292 53

Group 2
F1
F2
F3
F4
F5
M1
M2
M3
M4
M5

Average

Runl Run2 Run3

9 12 1
6 9 0
6 11 2
5 9 5
14 13 8
16 15 13
10 16 7
14 15 6
7 11 6
5 11 6

9.2 12.2 5.4

39

The scores of Groups A and B in each of the runs were compared using a two-
sample unequal variance t-test and found to not be statistically different. Rather, the
average scores of each group are impressively similar throughout in the first, second
and third runs. We are thus led to believe that the arm’s visibility has no significant
effect on the performance of the subjects, as theorised. It is also obvious that
familiarisation with the task improves performance, as seen by the fact that the
scores for Run 2 are higher than those in Run 1. Removal of the beam, on the other
hand, has an adverse effect on performance, as it forces the subjects to re-adapt
their strategy, and increases the difficulty of the task. Still, the two groups exhibit very
similar results on this run as well, indicating that the arm’s visibility is not of
paramount importance even after modifying the task.

7.2 Target On-screen Time charts

After these preliminary results were demonstrated, the following plots were produced.
These show the time (in seconds) each target remained on screen before
disappearing or being shot down on the Y axis, plotted during the total run-time of the
experiment, displayed on the X-axis. In these graphs, each blue point corresponds to
a target. If that target was shot down, it lies underneath the 10-second gridline. The
targets above that line were not hit by the players, instead de-spawning naturally.
The trend lines were obtaining by using linear regression on the data. Linear
regression was chosen as a simple evaluation tool for observing trends appearing in
the data, due to the lack of any sort of information as to what kind of formula would
best represent the learning effect. The results are presented for each of the groups
separately, as well as for both groups on the same axes, for the first two runs of the
experiment. It is repeated at this point that Runs 1 & 2 were analysed separately from
Run 3, as they concern differentiated experimental tasks.

40

Results

Group A, Run 1

[any
N

I
1

(o]

Target Lifespan (s)

70
Experiment Runtime (s)

Group A, Run 2

[uny
N

=
o
®
®

(4

(o))
®

Target Lifespan (s)

Experiment Runtime (s)

Chart 1: Target Time on Screen, Group A, Runs 1 & 2

41

Group B, Run 1

[any
N

=

o) o
®
®
®
®
®
®

Target Lifespan (s)

Experiment Runtime (s)

O T T T T T T 1
0 10 20 30 40 50 60 70
Experiment Runtime (s)
Group B, Run 2
/\12
0
~ 10 ° ® ® '
% . ° o * o o0
Q8 g e ® ?
8 2 ° o o °* Y
w— 6 3 S e o° e °
= s ° °og 8. ° °
= 4 % o9 o_ o o0 ® o
3) ' S ° e © ® _o
o o ° ° o, % 4
22 LU $. e % o
|"_U 4 ® 8 e []
O T T T T . T T 1
0 10 20 30 40 50 60 70

Chart 2: Target Time on Screen, Group B, Runs 1 & 2

42

Results

Groups A& B, Run 1

[any
N

)
!

Target Lifespan (s)

Experiment Runtime (s)

4

b

O T T T T T T 1

0 10 20 30 40 50 60 70
Experiment Runtime (s)
Groups A & B, Run 2

12
0
‘;10 “‘ ® e

[A
g 8 : o * 2 : o —* :
) e _o L X PS (4
L 6 ‘._:#0_.4._. o, o8°
5 sse % o oo
+— 4 @
(] o 00y
2, o?:'o“'o el s’
[

|c—lj \f °s L °

O T T T T . T T 1

0 10 20 30 40 50 60 70

Chart 3: Target Time on Screen, Groups A & B, Runs 1 & 2

The presented results are intended to demonstrate the learning effect occurring
during the experiment. While the data is scattered, the linear regression trend lines
indicate the following:

During the first run, targets stay on-screen for decreasing amounts of time as the
experiments progresses, meaning that they are shot down faster and naturally de-
spawn less frequently towards the end of the experiment, compared to the start.

During the second run, that effect is no longer observed; targets remain on-screen for
an amount of time that does not increase or decrease during the run. That amount is
approximately equal to the amount of time that targets stay on-screen at the end of
the first run (~4s). A t-test was conducted, comparing of the mean values of the
second run for each group with the estimated value reached at the end of the first run

43

(considered as a set value) by the corresponding group, demonstrating that these
values can indeed be considered statistically identical.

These observations were further strengthened by evaluating the p-value of the
regression curves. For all cases, the first run showed a significant decreasing trend
(p-value <0.05), while the second did not (p-value > 0.05). All p-values are presented
in the following table

Table 5: P-values of Linear Regression trend-lines, Runs 1 & 2

Run 1 Run 2
Group A 0.0041 0.1409
Group B 0.0307 0.3733
Groups A& B 0.0004 0.6743

It is theorised that these findings illustrate the learning effect experienced by
subjects: during the first run, subjects progressively familiarise with the experimental
environment, leading to an increase in performance, which however reaches a
plateau during the second run. This speaks as to the speed with which the users
incorporate the virtual arm’s movement into their body schemas; each of the runs
lasts for 1 minute, yet that time is enough for the subjects to learn how to use the
virtual arm effectively to achieve their goals. This assimilation occurs regardless of
whether the arm is visible or invisible, as can be seen by evaluating the “plateau”
values reached by each group at the end of the first run, which, as has been stated,
are statistically identical to the mean value achieved during the second run. These
values were again compared using t-tests, assuming both equal and unequal
variances and found to not be significantly different in all cases.

The same analysis was conducted for the third run, producing the plots displayed
below:

44

Results

Group A, Run 3
12
o
‘;10 W
([J
% 8 ° ° «° ° ¢ -
Q ([J o
— 6 e D —
1 -—-'7. ® o . " ° ° °
"q'j 4 .‘ & P L %% .] ¢
® [TY Py () ®] []
9 21g o °q ° «® . °
g : :
O T T T T T T T 1
0 10 20 30 40 50 60 70
Experiment Runtime (s)
Group B, Run 3
12
o
7:’10 . . o .
3 8 c. e .
0 ¢ ¢ * —— -
g ° w (]
2 4 5’ - ¢ ® L :)
IC:G 2 S ¢ ° ¢
O ! T T T T T T 1
0 10 20 30 40 50 60 70
Experiment Runtime (s)
Groups A& B, Run 3
12
»
~10 -
% °o ® [° o P
o 8 M oo . oS % -
D 6 . ® o —
= w. ® P
54 ’..o :“:o‘...o ,.... u:'._.._o—
o e ©009° ®ogo ® o
E ’ .. o .:) : ¢ ¢ .. .;.. .ﬁ. ... (]
O ’ T T T T T T 1
0 10 20 30 40 50 60 70
Experiment Runtime (s)

Chart 4: Target Time on Screen, Groups A & B, Run 3

45

In these graphs, an increasing trend can be observed in the time that targets remain
on-screen during the experiment. This result is due to a statistical artefact, originating
from the combination of two factors:

Firstly, it can be easily observed that the top-left corners of the graph is devoid of
data. This is entirely reasonable given the nature of the axes: since the X axis
represents the total time elapsed since the start of the experiment, and the Y axis the
time for which each target remained on the screen, it is impossible for data to exist in
that corner—it would mean that a target had been on-screen since before the start of
the experiment. Nevertheless, the concentration of data in that area attributes a
clearly visible increasing trend to the chart. M

Moreover, it is evident that in the third run, a large number of targets during the third
run were never shot down, instead remaining on-screen and de-spawning naturally
after 10 seconds (easily observable especially in the third graph by the large number
of points over the 10-second gridline), much more so than in the previous two. This
can simply be attributed to the increased difficulty of the task during this run.
However, this means that the graphs contain greatly reduced useful data when
compared to the ones obtained from the first and second runs, since missed targets
simply form a “horizontal line” of data points at the 10-second mark, providing no real
imformation regarding the evolution of a trend.

The combination of the increasing trend in the first 10 seconds elapsed with the lack
of data “within” the chart, create the “illusion” of an increase in the targets’ lifespan. In
light of that, the plots were recreated, omitting the data regarding the first ten
seconds. The new plots are presented below:

46

[any
N

Results

Group A, 10to 60 s

0
\C’]_O L @ 00 000 0 0 000 00 000 00 Geo o o000
[

@®© 8 °) °
% ® N ® °
L 6 M
= °
| o {] (] [) ®
— 4 P ® ® (] Py uif_.—
) ® PY L Y ° @ ° °
o 5 ° 3 ° ° d %
@ . ¢ ® °
|_

O T T T T T T 1

10 20 30 40 50 60 70
Experiment Runtime (s)
Group B, 10to 60 s

12
—
n
~ 10
c °) (])
8 8 r e ®
n © °
O —
— 6 ® rY "
: ® . (] o ®
g : . . * e
= o © o0 o0y, o @
E 2 o .! .%
|_

O T T T T T T 1

10 20 30 40 50 60 70

Experiment Runtime (s)

e
o o N

Target Lifespan (s)

Groups A& B,10to 60 s

L & 000 00000 0 o000 00 000 N0 OO
o ©® ® ® () . PY
P e o . o« ° s
° o o0 " o -
° o 0© ® °
e ® ¢ ¢ °
b+ 0.0.... : * e : Q:
o0
o:° ®e . i oo .0 0.‘ o® o
° L e
10 20 30 40 50 60

Experiment Runtime (s)

Chart 5: Target Time on Screen, Groups A & B, Run 3, 10 to 60 seconds

47

It can easily be seen that by removing the data regarding the first 10 seconds, the
increasing trend previously appearing on the data has disappeared, a result
confirmed by the p-values of the new trendlines (Table 6). However, no decreasing
trend is observed either. This could be attributed to a number of reasons. Our
prevalent hypotheses are that either

a) The modified task was too difficult for the participants to be able to adapt/
develop their strategy for effectively completing it in 1 minute, or

b) The participants had already achieved the maximum level of familiarisation
with the virtual arm and its control mechanism, and therefore exhibited the
same “plateau” effect observed in the second run

It is worth noting that these two hypotheses are somewhat contradictory. Further
experimentation on the modified task is necessary to determine which, if any, of the
above hypotheses is true.

Table 6: P-values of Linear Regression trend-lines, Run 3

Run 3
Group A 0.8195
Group B 0.8948
Groups A& B 0.6554

7.3 Shots per Target charts

The next step was confirming the above results using the data regarding the shots
fired by each player. It was already known which of the shots fired by the players
were on-target, making it easy to determine how many shots were required to shoot
down each of the targets. However, as no restriction was imposed on the number of
shots the players could fire, the total number of shots fired in each run by each player
varied wildly, ranging from 16 to 93. To offset that effect, the following procedure was
used: the shots fired to hit of the targets were “normalised” by dividing them with the
total number of shots fired during the run. Missed targets were ignored during this
procedure.Therefore, if a subject were to shoot 3 times at a target but miss it, and
afterwards shoot 4 times before hitting the next target, the algorithm would divide all
of these 7 shots with the total number of shots fired during the subject’s run. Few
such cases were observed however, especially in the first two runs, and therefore the
results can be considered unaffected by them.

It was theorised that the resulting plots would mirror the tendency shown in the target
screen-time plots; as the subjects became more familiar with the task, they would
need fewer shots to hit each of the targets. That was not the case however, as
demonstrated below:

48

0.45

O
N

0.35

er Target
o
w

S
0.25

o
N

0.15

0.05

Norm. Shots p
o
o =

Results

Groups A& B, Run 1

20 30 40 50 60 70
Experiment Runtime (s)

o
N

0.35

er Target
o
w

per

o o

© b O N
= 01 N Ol

0.05

Norm. Shots
o

Groups A& B, Run 2

20 30 40 50 60 70
Experiment Runtime (s)

Groups A& B, Run 3

.] ~ [) Py o

® _
i P ® 4.:.74'—ﬂ.—__.
wos o‘p' ,8' Woonp * 00’ Phecete © Wolo °

Norm. Shots per Target
o
D

0

10

20 30 40 50 60 70
Experiment Runtime (s)

Chart 6: Normalised Shots between Hits, Groups A & B, Runs 1,2 & 3

49

As is made obvious by the above graphs, no significant trend is observed during any
of the runs. The increasing trend seemingly observed in the third run was deemed
insignificant due to a high p-value of the regression line (see Table 7). Similar results
were observed in the graphs representing each group and run separetely, (not
presented here to maintain conciseness.)

Table 7: P-values of Linear Regression trend-lines, Shots per Target charts

Run 1 Run 2 Run 3
Groups A& B 0.9129 0.3743 0.0854

Our prevalent hypothesis for the interpretation of these results stems from the fact
that the targets appear randomly in 3D space during the experiment. We theorise
that the location of the target, rather than the skill of the test subject, is the defining
factor determining the amount of shots required to hit it. This conclusion was drawn
based on the observation that nearby targets were much easier for subjects to hit
than faraway ones, especially in the third run were the beam was removed. Further
testing is deemed necessary to support this hypothesis.

7.4 End Effector Position Data

As mentioned before, the Position of the virtual arm’s end-effector was also tracked
during the experiment. This was done by placing a small spherical object at the end
of the capsule representing the palm, and acquiring its transformation vector for each
frame of the experiment’'s duration. This data was used to obtain the length of the
curves traced by the virtual arm during the experiment. To achieve this, the data was
imported into Matlab, wherein it were parsed as XYZ position vectors. Each of these
vectors was then subtracted from the following one, thus determining the vector
representing the length traced by the arm between the two positions in space. The
norm of this last vector was then computed and added to the overall length of the
curve. By doing this for all data points, the full length of the curve for each run was
obtained.

It was initially theorised that the results would show an increase in curve length
during the third run of the experiment. This hypothesis was based on the observation
that test subjects would more often than not change the way they moved during the
third run. Namely, during the first two runs when the beam was visible, many subjects
would retain their upper arm and forearm in an approximately fixed position, instead
using the movement of their wrist to aim, and recalibrating their shots after seeing the
point in space that the beam would reach. By contrast, during the third run, subjects
were unable to use that mechanism, as the beam was rendered invisible. Therefore,
they would attempt to aim at targets by extending their physical arm in an attempt to
align the virtual arm with the target in the VE. This movement seemed to have a
much larger range-of-motion than the one seen in previous runs, leading us to
assume that the corresponding curves would exhibit longer length. The results did
not confirm this hypothesis, however. As can be seen in Table 8, the third runs have
the shortest average curve length of all, as well as the shortest of the three runs for

50

Results

each subject. Even in the rare cases where it exhibits longer length than the first or
second runs, it still remains shorter than the other one.

F1

F2

F3

F4

F5

F6

M1

M2

M3

M4

M5

M6

Table 8: Curve Lengths per Group & Run

Groupl |Runl Run2 Run3 Group2 |Runl Run2 Run3
67.46 81.69 67.71 F1 79.80 88.90 74.42
101.92 107.17 83.63 F2 59.17 65.31 81.99
75.25 90.32 52.45 F3 110.54 90.70 67.81
82.62 8442 69.67 F4 77.37 63.70 52.03
80.78 72.47 64.91 F5 60.59 57.51 37.28
65.89 9159 57.15 M1 70.70 68.80 40.25
55.30 76.87 52.23 M2 72.04 73.32 45.82
89.74 64.59 68.99 M3 67.76 80.93 40.36
8151 7595 67.90 M4 70.67 68.59 62.70
89.54 8114 55.71 M5 58.45 8240 75.43
89.84 78.37 61.49 Average | 72.71 74.02 57.815
84.99 84.80 54.64

Average | 80.40 8245 63.04

There are two proposed explanations for this:

)

Because the length measured corresponds to the end of the virtual arm’s
palm, it is heavily affected by the movements of the wrist. As a result, the
many small-range movements at the wrist during the first runs accumulate
to provide a larger length when compared to much fewer but larger-range
motions of the whiole arm observed during the third one

The largest contribution to the overall curve length is not actually provided
by aiming at one target, but rather by the large movements of the arm
when moving from one target to the next. As a result, the second run,
which usually exhibits the highest number of targets hit, contains more of
these movements than any of the other two, especially the third one

51

(where the scores are usually lowest), thus resulting in a larger overall
curve length.

The seconds explanation seems more probable to our research team at this point.
However, both of these hypotheses will be tested by future experiments.

7.5 Questionnaire data

The results from the questionnaire generally illustrated a positive user experience
during the experiment. The answers to each question are displayed in column chart
form, followed by explanatory comments.

Question 1: How much delay did you experience between your movements
and their representation in the Virtual Environment?

1-None 7-Very large

Question 1

, W II II N N
1 2 3 4 5

6 7

S

w

N

=

B Group A EGroupB

Chart 7: Questionnaire Answers, Question 1

12 out of 22 subjects felt that they experienced a very small delay or no delay at all
in the translation of their movements into the VE, while only 2 commented that the
delay was above average and still not “very large”.

52

Results

Question 2: How much did the motion tracker and HMD interfere with your
performance in the designated task?

1-Not at all 7-Very much

Question 2

1 2 3 4 5

B Group A EGroupB

w

N

=

Chart 8: Questionnaire Answers, Question 2

18 out of 22 subjects were not at all or very slightly obstructed by the motion tracker
and HMD during their movement (the users’ comments illustrate that this obstruction
was mainly attributed to the HMD’s cable, especially for taller users).

53

Question 3: How capable in moving within the environment and interacting
with it did you feel at the end of the experiment?

1-Not at all 7-Very much

Question 3

5 l i
0 l I I -
2 3 4 5 6 7

B Group A EGroupB

S

w

N

=

Chart 9: Questionnaire Answers, Question 3

16 out of 22 subjects felt they became skilled in moving and interacting with the VE
by the end of the experiment. However, the subjects belonging to the first group
reported a higher level of adaptation than those in the second group

This disparity was further illustrated by questions 4 and 5, presented below

54

Results

Question 4: How much harder or easier was the task made by the fact that
your arm was invisible/visible?

1-Much harder 7-Much easier

Question 4

1 2 3 4 5 6 7

B Group A EGroupB

w

N

=

o

Chart 10: Questionnaire Answers, Question 4

Question 5: How much was the naturalness of your interactions with the
environment decreased or increased by the fact that your arm was
invisible/visible?

1-Severely decreased 7-Severely increased

Question 5

4 |] | |
0 L .
1 2 3 4 5 6 7

B Group A EGroupB

w

N

=

Chart 11: Questionnaire Answers, Question 5

55

The results make evident the fact that subjects belonging to Group A found that the
visibility of their arms increased both their performance and the naturalness of their
interactions, whereas those in Group B report the opposite effect occuring owing to
the fact that their arms were invisible. This leads to the conclusion that, while the
visibility of the arm seems to have had no significant effect on the users’ objective
measures of performance, it does seriously affect satisfaction—namely,users prefer
being able to see their whole arm in the VE, rather than just the wrist and palm. This
finding echoes the results of previous research, such as Heidicker et. Al (2017),
whose findings illustrate that full body avatars with full motion control exhibit better
results in social VR environments, and Mohler et.al (2008), who demonstrated that
full-body avatars improve the users’ ability to judge distance in immersive VEs

Question 6: How experienced are you in playing such games (First Person
Shooters)?

1-Not experienced at all 7-Very experienced

Question 6

2
: -l l-
0

2 3 4 5 6 7

B Group A EGroupB

Chart 12: Questionnaire Answers, Question 6

The answers to Question 6 are presented in order to provide a complete picture of
the data, although this was a demographic question and does not particularly affect
the above data

56

Conclusions

8 Conclusions

The results of the experiment described above echo the findings of pre-existing
research in the field. Namely, it is clearly demonstrated that the ability to control
one’s arms plays a paramount role in increasing task performance in VEs, regardless
of whether the limbs are entirely visible (same as results from Heidicker et.al 2017) .
Visibility of an avatar body is still of essence, however, as it substantially increases
the subjective sense of presence in the environment experienced by the users. This
could be compared to the conclusion drawn by Slater et. al (1996) in “Immersion,
presence, and performance in virtual environments: An experiment with tri-
dimensional chess.” The researchers wrote:

“We argue that although increased immersion may well improve performance in
certain tasks due to the higher quality and quantity of information available, there is
no particular reason to expect presence to improve performance. “

In the particular case of the target practice tasks, since the level of immersion
remained equal throughout tests, the results were very similar, despite the variance
in the experienced presence.

Our emergent hypothesis that the importance of visibility is dependent on the nature
of the task was not confirmed by the results of the experiments—subjects exhibited
similar results between groups in the third run as well as the first two. No definite
conclusion can be drawn as regards the general validity of the hypothesis, however,
since it remains undetermined whether the visibility of the arm plays a paramount
role in a different kind of task

Moreover, both the objective and subjective results provided by the experiment and
guestionnaires, as well as the corresponding analyses, clearly demonstrate the fact
that IMU technology is a viable tool for human motion tracking in VR and AR
environments. While this has already been indicated by its use in rehabilitation
research, (such as Merians et. al 2009,Wittmann et. al. 2015, etc, also mentioned
above), this thesis sheds light on the applicability of this technology in various other
fields, such as game development, training, remote machine operation, industrial
applications, etc.

57

58

Future work

9 Future work

Our intention is to continue our work in this field in two main directions

Firstly, the improvement of our proprietary motion tracking system is a crucial step in
furthering research. By incorporating magnetometer measurements, determining the
exact offsets of each sensory unit and fine-tuning the code for both the Arduino and
Unity, we hope to achieve vastly reduced drift errors and calibration times, as well as
eliminate or at least minimise the need to recalibrate the sensors as often as is
required now. Following that, our intent is to expand our design to include the
movements of the second arm,as well as the fingers, progressing toward complete
body tracking in a VE. Our hope is that due to its ease of use, reduced demands in
processing power, and minimal obstructions to the user's movements, the developed
system can replace or enhance existing tools used for avatar body control in VR
environments.Moreover, by incorporating other technologies, such as haptic
feedback devices, into our design schemes, we will be able to vastly expand our
ability to simulate different tasks in the existing (or another) VE.

Secondly, by utilising the VE developed during this thesis, combined with our lab’s
expertise in the field of cognitive Ergonomics, we propose to create a number of
simulations of different tasks requiring the use of one’s arm and hand motions in VR,
and continue the experimentation process started by the presented shooting task. In
this manner, we hope to be able to determine the answer to questions raised by this
thesis, such as the importance of limb visibility in VR environments and the
dependence of said importance on the nature of the task. In addition to that,
however, we intend to create and evaluate simulations of various different tasks, for
purposes exceeding Ergonomics/Human Factors research. For example, simulations
of industrial situations incorporating Human-Robot Interaction can be designed,
building on the work of Matsas & Voshiakos (2015), or of tasks requiring tele-
operation of machinery. It is our belief that such applications can be used both as a
testbed for experimentally evaluating theoretical advances in various fields of
research, and as a tool for training humans for the corresponding real-world tasks.

59

60

Bibliography
10 Bibliography

Buchholz, B., & Wellman, H. (1997). Practical Operation of a Biaxial Goniometer at
the Wrist Joint. Human Factors , 39, 119-129.

Chen, X. (2013). Human motion analysis with wearable inertial sensors. Ph.D.
dissertation, University of Tennessee.

Heidicker, P., Langbehn, E., & Steinicke, F. (2017, March). Influence of avatar
appearance on presence in social VR. In 3D User Interfaces (3DUI), 2017 IEEE
Symposium on (pp. 233-234). IEEE.

Karakikes M. (2017). Development and Evaluation of a Wearable Motion Tracking
System, to Support Hand-Tool Design, Diploma Thesis, National Technical University
of Athens

Kilteni, K., Bergstrom, 1., & Slater, M. (2013). Drumming in immersive virtual reality:
the body shapes the way we play. IEEE transactions on visualization and computer
graphics, 19(4), 597-605.

Kilteni, K., Normand, J. M., Sanchez-Vives, M. V., & Slater, M. (2012). Extending
body space in immersive virtual reality: a very long arm illusion. PloS one, 7(7),
e40867.

Lange, B., Suma, E. A., Newman, B., Phan, T., Chang, C. Y., Rizzo, A., & Bolas, M.
(2011, July). Leveraging unencumbered full body control of animated virtual
characters for game-based rehabilitation. In International Conference on Virtual and
Mixed Reality (pp. 243-252). Springer, Berlin, Heidelberg.

Leonard, L., Sirkett, D., Mullineux, G., Giddins, G. E., & Miles, A. W. (2005).
Development of an in-vivo method of wrist joint motion analysis . Clinical
Biomechanics , 20, 166-171.

Luo, Z., Lim, C. K, Chen, I. M., & Yeo, S. H. (2011). A virtual reality system for arm
and hand rehabilitation. Frontiers of Mechanical Engineering, 6(1), 23-32.

Matsas, E. & Vosniakos, GC. (2015). Design of a virtual reality training system for
human-robot collaboration in manufacturing tasks. Int J Interact Des Manuf (2017)
11:139.

Merians, A. S., Tunik, E., & Adamovich, S. V. (2009). Virtual reality to maximize
function for hand and arm rehabilitation: exploration of neural mechanisms. Studies
in health technology and informatics, 145, 109.

Mohler, B. J., Bllthoff, H. H., Thompson, W. B., & Creem-Regehr, S. H. (2008,
August). A full-body avatar improves egocentric distance judgments in an immersive
virtual environment. In Proceedings of the 5th symposium on Applied perception in
graphics and visualization (p. 194). ACM.

Oberlander, K. (2015). Inertial Measurement Unit (IMU) Technology. Inverse
Kinematics: Joint Considerations and the Maths for Deriving Anatomical Angles.

Osumi, M., Ichinose, A., Sumitani, M., Wake, N., Sano, Y., Yozu, A., ... & Morioka, S.
(2017). Restoring movement representation and alleviating phantom limb pain

61

through short-term neurorehabilitation with a virtual reality system. European journal
of pain, 21(1), 140-147.

Riva, G., Bacchetta, M., Baruffi, M., & Molinari, E. (2002). Virtual-reality-based
multidimensional therapy for the treatment of body image disturbances in binge
eating disorders: a preliminary controlled study. IEEE Transactions on Information
Technology in Biomedicine, 6(3), 224-234.

Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments
(FIVE): Speculations on the role of presence in virtual environments. Presence:
Teleoperators and virtual environments, 6(6), 603-616.

Slater, M., Linakis, V., Usoh, M., Kooper, R., & Street, G. (1996, July). Immersion,
presence, and performance in virtual environments: An experiment with tri-
dimensional chess. In ACM virtual reality software and technology (VRST) (Vol. 163,
p. 72). New York, NY: ACM Press.

Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First person
experience of body transfer in virtual reality. PloS one, 5(5), e10564.

Smeragliuolo, A. H., Hill, N. J., Disla, L., & Putrino, D. (2016). Validation of the Leap
Motion Controller using markered motion capture technology . Journal of
Biomechanics , 49, 1742-1750.

Steuer, J. (1992). Defining virtual reality: Dimensions determining
telepresence. Journal of communication, 42(4), 73-93.

Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A
presence questionnaire. Presence, 7(3), 225-240.

Wittmann, F., Lambercy, O., Gonzenbach, R. R., van Raai, M. A., Hover, R., Held, J.,
... & Gassert, R. (2015, August). Assessment-driven arm therapy at home using an
IMU-based virtual reality system. In Rehabilitation Robotics (ICORR), 2015 IEEE
International Conference on (pp. 707-712). IEEE.

Won, A. S., Bailenson, J., Lee, J., & Lanier, J. (2015). Homuncular flexibility in virtual
reality. Journal of Computer-Mediated Communication, 20(3), 241-259.

62

Appendix A: Code

Appendix A: Code
A.1 Arduino Sketch

The following Sketch, running in the Arduino Microprocessor, obtains the data from
the MPU9250 and translates it into the form of quaternions. Afterwards, these
guaternions are passed through Unity through the serial port.

//This sketch obtains the data from the DMP of 3 MPU6050 or 9250
units, translates it into Quaternions,
//and writes them to the serial port to be read by Unity.

//The number of printouts here as well as in the MPU6050 Wrapper and
DeathTimer libraries has been minimised

//because they were causing error and warning messages in Unity, and
slowing the process.

// I2Cdev and MPU6050 must be installed as libraries, or else the
.cpp/.h files
// for both classes must be in the include path of your project

#include "I2Cdev.h"

#include "MPU6050 Wrapper2.h"
#include "TogglePin.h"
#include "DeathTimer2.h"
#include "MatrixMath.h"

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO WIRE
implementation

// 1s used in I2Cdev.h

#1if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO WIRE

#include "Wire.h"

#endif

// define the output as a Quaternion, to be read by Unity
#define OUTPUT READABLE QUATERNION

// if using 3 MPUs, create and array

const bool useThirdMpu = true;

MPU6050 Array mpus (useThirdMpu ? 3 : 1);

//define the pins where the MPUs are connected

#define ADO _PIN 0 3 // Connect this pin to the ADO pin on MPU#1
#define ADO PIN 1 5 // Connect this pin to the ADO pin on MPU#2
#define ADO PIN 2 7 // Connect this pin to the ADO pin on MPU#3
#define LED PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
#define OUTPUT SERIAL Serial

uint8 t fifoBuffer([64]; // FIFO storage buffer

// orientation/motion wvars
Quaternion qg; /] w, %, v, 2] quaternion container

63

TogglePin activityLed(LED PIN, 100);
DeathTimer deathTimer (5000L) ;

//
[/ === INITIAL SETUP ===
//
void setup() {

// join I2C bus (I2Cdev library doesn't do this automatically)
#1f IZCDEV_IMPLEMENTATION == IZCDEV_ARDUINO_WIRE

Wire.begin();
Wire.setClock (400000); // 400kHz I2C clock. Comment this line if
having compilation difficulties

#elif IZCDEV_IMPLEMENTATION == IZCDEV_BUILTIN_FASTWIRE
Fastwire::setup (400, true);
#endif

// initialize serial communication

// (9600 rate chosen because Unity can "catch up" to it, but it's
// really up to you depending on your project)
Serial.begin(9600) ;

while (!Serial)
; // wait for Leonardo enumeration, others continue immediately

// initialize device
mpus.add (ADO_PIN 0);
if (useThirdMpu) {
mpus.add (ADO_PIN 1);
mpus.add (ADO_PIN 2);
}

mpus.initialize();

// configure LED for output
pinMode (LED_PIN, OUTPUT);

// load and configure the DMP
mpus.dmpInitialize();

// supply your own offsets here, scaled for min sensitivity
MPU6050 Wrapper* currentMPU = mpus.select(0); // offsets for IMU#l
currentMPU-> mpu.setXGyroOffset (0.0);
currentMPU-> mpu.setYGyroOffset (0.0);
currentMPU-> mpu.setZGyroOffset (-50.0);
currentMPU-> mpu.setXAccelOffset (0.0);
currentMPU-> mpu.setYAccelOffset (0.0);
currentMPU-> mpu.setZAccelOffset (0.0);
if (useThirdMpu) {
currentMPU = mpus.select (1) ; // offsets for IMU#2
currentMPU-> mpu.setXGyroOffset (0.0);
currentMPU-> mpu.setYGyroOffset (0.0)
currentMPU-> mpu.setZGyroOffset (0.0)
currentMPU-> mpu.setXAccelOffset (0.0
currentMPU-> mpu.setYAccelOffset (0.0
currentMPU-> mpu.setZAccelOffset (0.0

’

) 4
)7
) -

’

currentMPU = mpus.select (2); // offsets for IMU#%3
currentMPU-> mpu.setXGyroOffset (0.0);

64

Appendix A: Code

’

currentMPU-> mpu.setYGyroOffset (0.0
currentMPU-> mpu.setZGyroOffset (0.0
currentMPU-> mpu.setXAccelOffset (0.
currentMPU-> mpu.setYAccelOffset (0.
currentMPU-> mpu.setZAccelOffset (0.
}
mpus .programbDmp (0) ;
if (useThirdMpu) {
mpus.programDmp (1) ;
mpus .programbDmp (2) ;
}
}

)
)
) -

’

)
)
0
0
0

//
// === handleMPUevent function ===
//

void handleMPUevent (uint8 t mpu) {

MPU6050 Wrapper* currentMPU = mpus.select (mpu) ;
// reset interrupt flag and get INT STATUS byte
currentMPU->getIntStatus () ;

// check for overflow (this should never happen unless our code is

too inefficient)
if ((currentMPU-> mpulntStatus &
_ BV (MPU6050 INTERRUPT FIFO OFLOW BIT))
| | currentMPU-> fifoCount >= 1024) {

// reset so we can continue cleanly
currentMPU->resetFIFO() ;
//Serial.println(F("FIFO overflow!"));
return;

}

// otherwise, check for DMP data ready interrupt (this should
happen frequently)

if (currentMPU-> mpulntStatus & BV (MPU6050 INTERRUPT DMP INT BIT))

{

// read and dump a packet if the queue contains more than one

while (currentMPU-> fifoCount >= 2 * currentMPU-> packetSize)
// read and dump one sample
// Serial.print ("DUMP"); // this trace will be removed soon
currentMPU->getFIFOBytes (fifoBuffer) ;

}

// read a packet from FIFO
currentMPU->getFIFOBytes (fifoBuffer) ;

#ifdef OUTPUT READABLE QUATERNION

// obtain the Quaternion values from the DMP
currentMPU-> mpu.dmpGetQuaternion (&g, fifoBuffer);

//Print the number 1, 2 or 3 to distinguish between IMUs

if (mpu==0) {
OUTPUT SERIAL.print ('1');
}else if (mpu==1) {
OUTPUT_SERIAL.print('Z');
telse(

OUTPUT SERIAL.print('3");

{

65

}
//simply print the Quaternion Values to the Serial Port,

seperated by commas

#e

}
//
//

vO

66

OUTPUT SERIAL.print

OUTPUT SERIAL.print(g.w);
OUTPUT SERIAL.print ;

OUTPUT_SERIAL.print
OUTPUT_SERIAL.print
OUTPUT SERIAL.print (",");
OUTPUT SERIAL.println(qg.z);

(

(
OUTPUT SERIAL.print (","

(

(

(

ndif

=== MAIN PROGRAM LOOP

id loop () {

static uint8 t mpu = 0;
static MPU6050 Wrapper* currentMPU = NULL;
if (useThirdMpu) {
for (int 1i=0;i<3;i++) {
mpu= (mpu+l) $3;
currentMPU = mpus.select (mpu) ;
if (currentMPU->isDue ()) {
handleMPUevent (mpu) ;
}
}
} else {
mpu=0;
//choose the MPU that is due to be read
currentMPU = mpus.select (mpu) ;
if (currentMPU->isDue()) {
//read from MPU
handleMPUevent (mpu) ;
}
}

int incomingByte = 0; // Incoming from serial

// If incoming data is available in the serial
if (Serial.available() > 0) {
incomingByte = Serial.read(); // read the incoming byte

}

activityLed.update () ;
deathTimer.update () ;

A.2 Unity

Appendix A: Code

Script

The following script, running in the Unity environment, obtains the quaternion data
transmitted to the serial port by the Arduino, and translates it into the movement of

the virtual arm.

using UnityEngine;

using System.
using System.
using System.

public class

public
public
public
public
privat
string

Collections;
I0.Ports;
Threading;
Oculus_motionControl MonoBehaviour {
GameObject jointl,joint2,joint3;

float ardW, ardX, ard¥, ardz;

int mpu;

string dataFromArduino;
e bool shouldExit = false;
[] sInput = new string[5] {"O0O",

"O", "O",

"O", "O"

public Vector3 axis=Vector3.zero;
public float angle;

public GameObject tracker;

public Vector3 curr;

SerialPort mySerialPort = new SerialPort ("COM1", 9600);
Quaternion quatl= new Quaternion(l,0
Quaternion quat2= new Quaternion (1,0
Quaternion quat3= new Quaternion(1l,0

~

o O o
~

o O o

void Start ()
{

curr = tracker.transform.position;

Thread myThread = new Thread (new ThreadStart
(ThreadWorker)) ;

myThread.Start () ;

mySerialPort.Open ();

}

void Update ()
{

if (mySerialPort.IsOpen == true) {
if (sInput.Length == 5) {

mpu = int.Parse (sInput [0]);
ardW = float.Parse (sInput [1]);
ardX = float.Parse (sInput [2]);
ardY = float.Parse (sInput [3]);
ardZz = float.Parse (sInput [4]);
if (mpu == 1) {

quatl.w = ardw;

quatl.x = -—-ardX;

quatl.y = -ardZz;

quatl.z = -ardY¥;
} else if (mpu == 2) {

67

quat2.w = ardwW;
quat2.x = -—-ardX;
quat2.y = -ardZ;
quat2.z = -ardY¥;
} else if (mpu == 3) {
quat3.w = ardwW;
quat3.x = -ardX;
quat3.y = -ardZ;
quat3.z = -ardy¥;

jointl.transform.rotation quatl;
joint2.transform.rotation = quat2;
joint3.transform.rotation = quat3;

curr = tracker.transform.position;

}
} else {

Debug.Log ("Connect the serial Port");
}

}
vold ThreadWorker ()

{

while (shouldExit == false) {
try{
dataFromArduino = mySerialPort.ReadLine ();

sInput = dataFromArduino.Split (',");
}catch (System.Exception) {
}

}

void OnApplicationQuit ()

{
mySerialPort.Close ();
shouldExit = true;

