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Abstract

In this work 1 we investigate Speech Emotion Recognition (SER) by following three different ap-

proaches which are outlined below. For the evaluation of each approach, we use multiple datasets and

experimental setups which are also followed by the literature. Moreover, both utterance-based and

segment-based classification methods are followed where each emotional utterance is represented by

one feature vector and a list of vectors, respectively.

First, we explore the efficacy of various time-scales (frame, phoneme, word or utterance) for de-

ciding the emotional content of a speech utterance for both Low Level Descriptors (LLDs) (local fea-

tures) and statistical functionals (global features). By combining Recurrent Neural Networks (RNNs)

and statistical functionals over segments that roughly correspond to the duration of a couple of words,

we report state-of-the-art results on IEMOCAP. Purportedly, choosing the appropriate time-scale is

key for high performing SER systems.

In addition, we investigate the performance of features that can capture nonlinear recurrence dy-

namics embedded in the speech signal for SER. Reconstruction of the phase space of each speech

frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which

can be measured by performing Recurrence Quantification Analysis (RQA). These measures are ag-

gregated by using statistical functionals over segment and utterance periods. We report SER results

for the proposed feature set on three databases using different classification methods. When fusing

the proposed features with traditional feature sets, we show an improvement in unweighted accu-

racy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks,

respectively, over the baseline feature set. Following a segment-based approach we demonstrate state-

of-the-art performance on IEMOCAP using an attention-based Bidirectional RNN.

Finally, we reduce the dimensionality of acoustic features used for SER by usingmanifold learning

algorithms. In essence, we present a novel algorithm for nonlinear manifold learning using derivative-

free optimization techniques, namely, Pattern Search MDS. By using General Pattern Search (GPS)

formulation we are able to provide theoretical convergence guarantees up to first order stationary

points for the proposed algorithm. Moreover, we demonstrate practical improvements of the proposed

algorithm in terms of computational efficiency, convergence rate and solution accuracy on various

experimental setups. Our results suggest that our algorithm is capable of finding solutions to the

general problem of multidimensional scaling (MDS) under multiple setups. In accordance with our

focus on SER, we evaluate Pattern Search MDS as briefly discussed next. Each emotional utterance is

represented by a feature vector lying in a high dimensional space. In order to reduce the dimensionality

of these emotional feature vectors, we try to approximate an underlying low-dimensional manifold in

which the initial pairwise distances are also preserved. We show that a significant reduction in terms of

input dimensionality and training time can be achieved by simultaneously maintaining SER accuracy

at a competitive level.

Key words

Nonlinear recurrence dynamics, deep learning, machine learning, speech emotion recognition, recur-

rence plot, multidimensional scaling, manifold learning

1 Papers: [1], [2], [3], [4] have been conducted under the development of this thesis.
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Chapter 1

Introduction

1.1 Emotion Perception

Emotions play a crucial role on the communication interplay of human beings. Discrete emotions

reflect the inner affective state of the speaker at the current moment and by being able to perceive this

information, the corresponding human engaging in the dialogue is able to provide more empathetic

answers [8]. Emotions are expressed using primarily facial gesticulations, body movements and vocal

cues. For example, when engaging in a dialogue with a person who is crying then by interpreting the

social signal of a sad face with tears and the trembling voice, one is capable of following a soothing

approach in order to communicate his message.

Some of the most prominent emotions are anger, fear, disgust, happiness, sadness and surprise

which are aptly described in the “Big-Six” emotion model introduced by Ekmann [9]. On the other

hand, some psychological models propose the discrimination of emotions based on two axis of “va-

lence” and “activation” [10]. In this model, each emotion is mapped to a specific area of the two-

dimensional space produced by the two aforementioned axis as can be seen in Figure 1.1. Similarly,

other models are creating a three dimensional space by also utilizing an “attention-rejection” axis in

order to properly codify the emotional map [11].

The majority of these models are originated from a biological or a psychological point of view

in order to describe emotions and human behaviors. An arousing question is how we could actually

validate the efficacy of these models or even utilize them in real case scenarios and how these models

are extended under various information modalities (image, audio, text, etc.).

1.2 Emotion in Speech Signals

Speech is one of the most common channels of emotion expression and sometimes is the most con-

venient one. For instance, in a conversation by phone or other means where one cannot see the facial

expression of his/her co-speaker. During the past years, researchers tried to find correlations between

characteristics of vocal cues and emotions which are conveyed. Under this method of processing

emotional speech a variety of ordered relationships have been proposed between acoustic features and

emotions. In essence, these relationships are qualitative indicators of how each emotion is mapped in

the range of values provided by a speech feature.

Some relationships are quite intuitive such as an angry utterance wouldmore probably yield higher

energy content than a sad utterance. Of course there is an undeniable variation between different

speakers but without loss in generalization we can conclude that in general emotions which are ranked

higher in arousal/activation axis would also rank higher in terms of energy content [12]. In this con-

text, SER can be viewed as a more difficult task and instead an easier one is tried to be solved which

is continuous emotion recognition. Based on the previous statements about the axes of arousal and

valence we could assume that each emotion could be aptly represented in the 2D plane of these contin-

uously valued axes. Thus, we could try to predict for each emotional utterance its respective score on

each one of this axis and after that we would assume that we could assign the corresponding discrete

emotion. Furthermore, the fundamental frequency of the vocal tract or pitch as it is called is also a
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Figure 1.1: Two dimensional emotion map using activation and valence [5]

good discriminator between some basic emotions. Essentially, pitch corresponds to the frequency of

the oscillations that the vocal fold produces under speech generation and thus a higher tone in voice

is directly correlated to the instantaneous pitch value. Speech signals containing fear or anger tend to

exhibit very high pitch values while signals containing sadness or disgust are mapped in lower values

of the fundamental frequency [13]. Although these mappings cannot provide an objective criterion for

discriminating emotions they were the sparkling lights in the journey of emotion recognition because

of their easy interpretation.

However, emotions also correlate with specific areas of values from acoustic features which are

not as intuitive as the ones described previously. For instance in [14] a thorough and exhaustive

study is performed for finding correlations with a variety of acoustic features and basic emotions. For

example, higher speaking rate might indicate an emotion expression of anger, fear or disgust while on

the contrary lower values might correspond to sadness or happiness. Abrupt changes in pitch values

over time might represent stressed conditions or anger compared to smooth transitions which are more

likely to be found in utterances of happiness or fear.

In order to objectively analyze the emotional content of speech signals we cannot use these well

studied yet qualitative relationships between acoustic features and underlying emotions. In such a

vaguely defined area as emotion perception, qualitative discriminators are often subject to debate and

cannot offer a solution in real case scenarios where the affective state of a speaker would need to

be inferred. We need to be able to encode emotional information from speech in such a way that

facilitates real time emotion recognition and can generalize in multiple speakers. In this context,

the quantitative analysis of emotions in speech signals seems more a necessity than a subject to a

philosophical argument.
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1.3 Automatic Speech Emotion Recognition

In this section we provide an initial motivation from the theoretical models of emotion perception

to quantified methods of affective computing and some applications of the latter in Section 1.3.1.

Moreover, we discuss some of the most widely used set of acoustic features and classification methods

which are proposed in literature in Sections 1.3.2 and 1.3.3, respectively. By the term method here we

refer to the combination of the feature extraction strategy alongside its combination with a use of a

classifier which is used to predict the corresponding emotional label for the testing utterance. Finally,

in Section 1.3.4, we briefly detail some state-of-the-art approaches for Speech Emotion Recognition

(SER) which are presented in literature. From now onwhenwe use the term SERwe refer to automatic

speech emotion recognition which is performed in a computational setup instead of using a theoretical

framework for interpreting emotional context.

1.3.1 Motivation

Extensive analysis of human perception and generation of emotion has provided substantial intuition

for the implementation of artificial models which are able to capture behavioral signals [15]. Building

emotionally aware Human-Machine Interfaces (HMIs) ultimately relies on understanding the under-

lying dynamics of the affective cues and integrating cognition in an HMI. Consequently, the goal of

autonomous Speech Emotion Recognition (SER) is to build a machine which is capable of interacting

with humans and adeptly interpreting and utilizing affective signals from speech. All these models

belong to the wider class of Artificial Intelligence (AI) models. The latter is originated under a multi-

disciplinary context like neuroscience, physics, biology, psychology and last but not least computer

science. In this study we follow a computational approach but we should not be oblivious to the

significant contribution of other disciplines in order to be able to build SER models.

Building upon the transition from the abstract nature of emotions to a quantitative approach where

all the information should be coded in a vector of zeros and ones we need to recall some of the potential

usages of an SER system. For example, SER is key for building intelligent adaptive HMI’s to the

affective state of the user, especially in cases like call centers where no other information modality is

available [16]. In general, automatic dialogue systems which are empathetic to the inner state of the

user are vital assets to a vast amount of applications including surveillance and tutoring agents [17].

Going a step further, capturing the affective state of a speaker could be utilized for even higher level

predictions such as engagement of a user in a certain dialogue interplay [4].

Specifically, in [4] we have studied an automatic classifier for deciding whether a child is suf-

fering from Autism Spectrum Disorder (ASD). We integrated an innovative psychological model for

determining the true engagement level for every utterance of the dyad parent-child interplay. We

performed a binary classification experiment by using a multimodal Support Vector Machine (SVM)

trained on acoustic, linguistic and dialogue features derived from our introduced dataset with video

recordings. We showed that Typically Developing (TD) children demonstrated a more deterministic

behavior model than ASD children while parent’s video-related features were found to be the best

predictors for child’s engagement level. The resulting paper provides deeper insight in the social and

cognitive structures of children withASD. In general, the aforementioned studies display only a small

fraction of what affective computing could give back to humanity [18].

1.3.2 Acoustic Features

One of the most demanding problems in SER is finding a representative set of emotion features and the

optimal time-scale for emotional context extraction. Prosodic, spectral and voice quality Low Level

Descriptors (LLDs), extracted from speech frames, have been extensively used for SER [19]. Some of

the most widely used LLDs or local features are Mel Frequency Cepstral Coefficients (MFCCs), pitch

or fundamental frequency, short-time energy from frames, Zero Crossing Rate (ZCR) and Harmonic

to Noise Ratio (HNR). All these LLDs are extracted directly from speech frames corresponding to
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windows of 20− 100ms. Thus, in order to be able to provide a temporal aggregation of the emotional
information for longer periods of speech than frames, global features are used. The latter set of features

is calculated as statistical functionals over local features for the given utterance or speech-segment

[20].

During the past years, a variety of LLDs, extracted on a frame level and later aggregated using

statistics or modeled directly as a sequence of frames, has been proposed in the literature as capable

of capturing emotional content [19]. The main bulk of work in acoustic feature extraction has been

revolving around paralinguistic analysis of speech signals primarily derived from prosodic and spectral

representations [21]. Some other features like jitter and shimmer have also been shown to provide

additional information for the classification of human speaker styles and arousal levels [22] and used

later for SER [23]. All these handcrafted features have been thoroughly tested for their paralinguistic

properties and their efficacy on capturing emotional content from speech. An exemplary basis of the

most essential approaches existing in the paralinguistic domain is given by Schuller and Batliner in

[24].

Some features sets, containing most of the aforementioned descriptors as well as a set of statis-

tical functionals which are applied over them have yielded impressive classification accuracies on

SER tasks. One of the first compact feature sets presented was a 384 acoustic feature vector in Inter-
speech 2009 Paralinguistic Challenge [25] (IS09 Feature Set). This set consisted of the LLDs referred

previously in this section and resulted in accuracies of up to 70.1% and 65.1% for a 2-class and 5-
class emotion classification tasks on Fau-Aibo dataset [26]. A much bigger set of 1582 features has
been introduced in Interspeech 2010 (IS10 Feature Set) by Schuller [23] where it was tested on age,

gender and level of interest recognition tasks. In this set, some extra descriptors like jitter, shimmer,

voicing probability, line spectral pairs and log Mel Frequency-banks have been added to the LLDs of

the previous work. Surprisingly, this set is still used and yields state-of-the-art results even in todays

approaches [2], [27], [28]. To this end, a much wider set of speech features has been introduced in

a subsequent paralinguistic challenge of Interspeech 2013 [29] presenting a 6373-dimensional fea-
ture vector (IS13 Feature Set) for each utterance. The proposed feature set has been assessed under

recognition of emotions, autism, affect and social signals from vocal cues.

In addition, some works combine different feature sets for emotion classification by combining

different modalities or feature sets extracted from a different domain. For example, in [30] three

different information modalities have been utilized for feature extraction, namely, text, audio and

image. The final emotional utterance representation consists of the concatenation of the three feature

vectors which serves as input for the classifier. Notably, image multimodal approach is not directly

related to SER as it includes an information channel which cannot be captured solely by audio but

it falls under the general task of automatic emotion recognition. Moreover, linguistic information

could be captured from audio by building the acoustic model and language models in order to perform

Automatic Speech Recognition (ASR) [6]. In this frame, acoustic features have been concatenated

with linguistic features for improving the performance of SER systems [31]. The concatenation of

these feature vector is often called “early fusion” or just “fusion”.

Other works are using much more compact feature sets for SER. In [32] a subset of the aforemen-

tioned IS10 feature set [23] are used for domain adaptation on SER tasks. Moreover, because of the

huge dimensionality of the proposed feature sets, many approaches include a dimensionality reduction

technique in order to lessen the computational load in the training process. Namely, we recall that in

some works some linear dimensionality reduction techniques are employed such as Principal Com-

ponent Analysis (PCA) [33]. In the later work PCA is performed over a vector of pitch and energy

based features in order to minimize the dimensionality of the input vectors but to also boost the final

classification accuracy. Furthermore, different feature selection techniques have also flourished under

the huge dimensionality of the proposed feature sets for SER. For instance, in [34] Ensemble Random

Forest to Trees (ERFTrees) have been introduced for the selection of the most representative features

as well as nonlinear dimensionality reduction techniques for reducing the input space of vectors used

for SER.
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In the same context of minimal speech processing and feature extraction, there is a necessity of

reducing the total time of feature extraction and data preprocessing in general. To this end, in [35],

each emotional utterance is represented only by its spectrogram and thus minimal speech processing is

required. In essence, a Fourier transformation is applied for the whole process of data preparation and

feature extraction before the final training/testing process comes in front. Spectrogram representations

have also been used from glottal source signals for the final emotion classification in a more general

representation learning approach [36]. Another common feature extraction technique is to utilize an

autoencoder in order to automatically extract salient features from spectral representations such as

Mel Filterbanks (MFBs) [27], spectrograms from raw signal [37] or glottis [36].

Other less popular feature extraction methods are based on transforming the input signal using a

different analysis than Fourier or Cepstrum. For instance, in [38] a wavelet packet transformation is

employed for a later feature extraction. Wavelets are defined by coefficients which are parameters to

be tuned during the training phase of optimizing a cost function such as the entropy between emotional

classes. The wavelet coefficients are capable of capturing the information of low-level frequencies

close to human speech generation frequencies [39]. Moreover, in [40] Teager Energy Operator is used

for SER which is a nonlinear operator oftenly used for estimating truthfully the energy of the source

filter under AM-FM modulation process [41]. Some other nonlinear features have also been tested on

SER tasks which are derived from the phase space of speech signals [42] and the instantaneous phase

and amplitude of the speech frame [43]. Nonlinear features for SER is actually the main concept of

Chapter 4. Specifically, in Section 4.2, we discuss in much detail other approaches which are also

employing nonlinear analysis of speech signals for SER.

Recently, significantly less time-consuming preprocessing approaches have been introducedwhere

the conventional speech features are supplemented by the raw signal representations. Surprisingly, in

[44] only the raw signal representation of each emotional utterance is used as the input feature vector

and simultaneously competitive results have been reported on continuous emotion recognition.

1.3.3 Classification Methods

On the one hand, extracting features capable of capturing the emotional state of the speaker is a chal-

lenging task for SER but this is only a fraction of the configurations that needs to be set in order to

specify the holistic approach which will be followed for the final classification. The selection of the

appropriate classifier, the way it will be trained, transfer learning and other techniques between dif-

ferent models and other parameters are also essential parts in order to perform SER. Thus, the grid

space one has to search before he concludes for their approach becomes vast, if we acknowledge the

fact that new models capable of modeling speech frames as well as other models which are keenly

connected to models from other domains such as text and image. For instance, Convolutional Neural

Networks (CNNs) were firstly introduced for image recognition of handwritten digits [45] but have

been used extensively for SER by using as input the spectrogram of emotional utterances [35]. In this

section we do not aim to exhaustively present all the historical contributions of other researchers in

SER but we focus on displaying some of the most prominent ones in terms of novelty. In the next

section (Section 1.3.4) we will cover similar aspects but in term of efficacy and focusing mainly on

findings which yield the best classification accuracies for SER.

Proposed SER approaches mainly differ on the aggregation and temporal modeling of the input

sequence of LLDs or in other words local features corresponding to frame-representations. We can

easily divide SER approaches to three main categories. Namely, 1) utterance-based 2) segment-based

and 3) direct approaches which are explained below inmuchmore detail. For each category we present

some of the most resilient approaches in terms of performance on SER tasks.

Utterance-based approaches: In these approaches, emotional utterances are first split into over-

lapping frames which is a common speech processing technique in order to extract short-term features

[6]. For each frame a set of LLDs are extracted and then they are aggregated over the whole utterance

length by applying statistical functionals and consequently creating a global statistical representa-

tion for each emotional utterance. This final representation is used as an input for a classifier which is
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trained on a selected fraction of the dataset and tested on the rest of the available utterances. Utterance-

based approaches are themost straightforward to implement but combinedwith robust classifiers show

good results for a variety of SER tasks [20]. For instance, using only utterance-level statistics from

pitch-related LLDs and Gaussian Mixture Models (GMMs) for the final classification yield a recog-

nition accuracy of up to 77% [46]. A similar approach is to use a Support Vector Machine (SVM)

classifier with utterance-based statistics [47]. The IS09 feature set was tested on a variety of emo-

tional speech databases with a multi-class SVM for the final prediction of each emotional label [25].

Moreover, IS10 feature set has been assessed on SER usingmultiple pair-wise SVMs for discrete emo-

tion classification [23]. The same feature set has also been utilized for integrating gender information

in the aforementioned IS10 feature set using DenoisingAutoencoders (DAEs) and next an SVM is ap-

plied for SER [48]. Moreover an Ensemble Softmax Regression (ESR) classification model has been

utilized with utterance-based statistics similar to IS10 feature set [49]. Finally, a multi-task learn-

ing approach where a Deep Belief Neural (DBN) network is trained on discrete SER and continuous

emotion recognition as a regression on arousal and valence using as input the same IS10 feature set

[28].

Segment-based approaches: An approach of this category is pretty similar with an utterance

based approach despite that the statistics are not directly applied to the whole utterance length. In-

stead the frames of the whole utterance are grouped in speech segments which are generally shorter

in duration than the whole utterance itself. In this context, each speech segment is represented by a

set of statistical functionals which are applied on LLDs which are extracted from the frames which

belong to the specific time duration. Segment-based approaches have showcased that computation of

statistical functionals over LLDs in appropriate timescales yields a significant performance improve-

ment for SER systems [50], [2]. However, in these approaches the input of each emotional utterance

is a sequence of vectors and thus a new challenge in training process occurs. Modeling of the input

sequence of feature vectors is not a trivial task on SER tasks. Amajority voting technique is employed

in [51] where the decision of the final emotional label is based on the posterior probabilities of a GMM

classifier which is trained and testing on a subsentence level. In contrast, this assumption does not

hold in general because an angry utterance is more closely related to an event driven inference rather

than the expectation of noticing angry content in all frames of a given utterance. In [52], a hybrid

implementation including a simple Artificial Neural Network (ANN) from utterance-based statistics

as well as a Hidden Markov Model (HMM) in order to acquire information from voiced speech seg-

ments. In [53], Provost introduced a variable window length approach for capturing emotional speech

in sub-utterance scale. For every window, the presence of an affective cue (Emotion Profile (EP)) was

estimated and the final emotion flowwasmodeledwith a trajectory which served as input for anHMM.

The fusion of EPs and LLDs in a hierarchical correlation model with multiple layers corresponding

to each type of feature drawn from a different timescales, was used in [54]. Namely, utterance, sub-

utterance and frame level feature representations were extracted for each emotional utterance and used

on different layers of the hierarchical models. Emotion probabilities of every layer’s unit were fed in

an SVM classifier proposing a naive way of performing transfer learning [55] on SER. In other words

posterior probabilities corresponding to each emotional class were learned under a different timescale

and used in order to perform the final classification on utterance-level.

Direct approaches: The temporal aggregation of frame-level features using statistical function-

als over speech segments or the whole utterance is not an optimal way of preserving the emotional

content which is conveyed by a vocal cue [27]. Thus, this category of SER approaches usually refers

to the direct modeling of emotional information derived from frame-LLDs or even raw signal itself.

Consequently, the complexity of this problem is closely related to the huge length of the sequence

which is supposed to be modeled. Many regions inside an utterance correspond to silence or a neu-

tral state of speaker affective state which should be ignored for the final emotion classification [56].

Firstly, HMMs have been utilized in order to model the sequence of frame-level LLDs [57]. How-

ever, with the advent of deep learning, a lot of things in the way of modeling sequences of feature

vectors has changed [58]. State-of-the-art results have been reported in many tasks such as image
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classification/segmentation, ASR, object detection, etc [59] all these models have been also utilized

for SER. Progressively, deeper architectures which independently learned abstract emotional context

from simple local features, were applied. Namely, Deep Neural Networks (DNNs) [60], Extreme

Learning Machines (ELMs) [61],[62], CNNs [35] and Recurrent Neural Networks (RNNs) [63] were

trained on LLDs vectors corresponding to 1 or more consecutive frames. A special RNNmodel which

is capable of preserving long term dependencies of input sequences and called Long Short-TimeMem-

ory (LSTM) unit [64] has been extensively used for SER tasks trained on frame-level features [65],

[66]. In the latter two approaches, an attention mechanism on top of the LSTM boosts the recognition

accuracy by providing a saliency detection mechanism over the huge input sequence [67]. In this way,

the weights (which values are learned during training) of the attention layer are used for this purpose.

Thus, regions of the input sequence corresponding to silent frames or a neutral affective state are

weighted-off from the process of emotional classification. LLDs which were used in the aforemen-

tioned studies are similar to the ones discussed in the previous section (Section 1.3.2) consisting of

frame descriptors falling under the three main categories of voice quality, pitch and spectrum. Conse-

quently, the decision time-scale for each emotional state was based on frame level (30ms) or phoneme

level (10-30 concatenated LLDs-vectors). In other approaches such as [44], a one-dimensional CNN

is used from the raw input signal for continuous emotion recognition on both activation and valence

axes.

1.3.4 State-of-the-Art Approaches

Recently, DNNs alongside with ELMs were employed [60]. LLDs were extracted from frames and

were concatenated in chunks of 265ms. The highest energy segments were fed into a DNN and emo-

tion class posterior probabilities were computed for each one of them. Statistics of these probabilities

were fed into the ELM kernel for utterance-level classification, while the model was tested on the

Interactive Emotional Dyadic Motion Capture (IEMOCAP) [68] database. Metallinou et al. [63]

demonstrated the significance of using Bi-directional LSTMs (BLSTMs) and generally RNNs for in-

tegrating long-term temporal context in SER by experimenting in activation-valence space. Lee et al.

[61] proposed an RNN-Connectionist Temporal Classification (CTC) schema in which every frame

can be assigned to all emotional classes and an extra NULL label for silence frames. They applied

ELM over BLSTM and showed significant improvement on the IEMOCAP by relatively boosting the

accuracy around 12%.

Contemporary SER work also focuses on classifying emotion by utilizing spectrogram features

with minimal speech processing. In [36] Ghosh et al. introduced innovative ways for training a

BLSTM, like representation and transfer learning. The former is based on glottal flow signals while

the latter learns emotion representation from activation-valence space, both methods were tested on

improvised and scripted utterances. In a multi-task learning setup Xia et al. [28] has successfully uti-

lized activation-valence information and reported state of the art results with their DBN over utterance

based representations. Furthermore, multi-task learning has also been utilized with DNNs on a cross

corpus experimental setup showing the great generalization potential of these methods [69]. Last but

not least, transfer learning has also been investigated by combining progressive neural networks in

SER tasks in one of the latest studies [70].

Building upon the tremendous expressiveness of RNNs and the necessity for emphasizing emotionally-

dense frames of speech, attention models were deployed for SER. In [66] promising scores were pre-

sented on IEMOCAP.An attention-based BLSTM was employed for a better conceptual of emotional

sub-utterances and yielded absolute improvement of 1.46% in accuracy from no attention model.

Finally, Misramadi et al. [65] extracted frame-wise raw spectral features and LLDs for training a

BLSTM. They demonstrated that LLDs outperform raw spectral features and used a weighted pooling

layer with attention on top, in order to deal with the voting of emotional-irrelevant frames. In addi-

tion, a variety of pooling methods was compared, over the last hidden layer, for the final utterance

classification.

In a recent study [35], different deep implementations were compared. Models were trained on
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spectrogram features and state-of-the-art results on IEMOCAPwere reported using CNN. In this con-

text, CNNs [27] have been employed for SER towards a utilization of a minimal feature set of MFBs

capable of preserving salient representations from frame-level descriptors. Additionally, convolu-

tional Sparse Auto-Encoders (SAE) for learning salient features from spectrograms of emotional ut-

terances have also been studied [37] under multiple SER experimental setups. In the latter approach,

the learned feature vectors corresponds to weights of the convolutional filters after the application of

a kernel able to preserve local invariant feature vectors. These vectors serve as input for an SVM

training and testing.

The aforementioned feature sets, classification methods and state-of-the-art approaches comprise

only a fraction of the assorted methods existing in the literature. Because the purpose of this study is

not solely related to an exhaustive review of all the available methods, we suggest the reader to search

additional information about literature works in review publications such as [19], [20] and [21].

1.4 Challenges

Although a variety of new challenges have been continuously spawning as newmodels and approaches

are invented in order to build more effective SER models, we are focused on three main problems

which have always been confusing SER research for years. These challenges are briefly explained

below as well as their arousing questions for the complexity and the potential of actually finding a

“well-rounded” solution to the problem.

1.4.1 Timescales of Decision

In general, affective content could be captured in different timescales. The structure of the human

auditory cortical processing model is highly contingent to this kind of functioning [71]. Human audio

perception could be adequately modeled with a multidimensional spectro-temporal receptor of emitted

sounds [71]. This is indicative of the process which brain undertakes in order to recognize vocal

cues and consequently, interpret higher level information which is conveyed. Different timescales are

focusing on different aspects of this information which is communicated. It is essential to understand

the caveats of each timescale in order to build resilient SER models.

As we have mentioned in the previous Section 1.3.3, segment-based and direct approaches are

facing the problem of modeling a sequence of features in order to train a model which can predict the

emotional content of an utterance. Each time-step of the input sequence of vector could correspond

to a timescale which characterizes the level from which the decision of the emotional label is drawn.

This timescale which is also referred as time-level [50] could correspond to a speech duration of a

frame, a phoneme, a syllable, a word, a speech segment of arbitrary length or even the utterance itself.

Although the architecture of each model alters significantly the encoding of the input sequence of

feature vectors, the basis of the utterance decision is nonetheless configured by the corresponding

timescale of each input vector.

Recalling SER approaches in the literature, we can see that different timescales have been used for

extracting acoustic features. However, the selection of each timescale for the extraction of each feature

set (local or global features) is not yet analyzed carefully. This might lead to an ad-hoc selection of

the respective time-scale as well as a counter intuitive way of manipulating emotional speech when

the approach is based on sub-utterance frames or segments. For example, by following a segment-

based approach for feature extraction and then applying an SVM on each segment in order to infer

the corresponding emotion label for each one is not representative of human inference of emotions.

Specifically, if an utterance consists of segments of 3 seconds and only one speech frame contains a
manifestation of anger then the whole utterance should be characterized as angry despite that all the

other included segments are neutral. If the selected aggregation function in order to infer the emotional

label is a majority function [51] then the classification would be deemed to predict a neutral utterance

instead of an angry one. The same problem exists for direct approaches where each frame of 20ms is
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forced to vote for the existing emotion in this timescale [61] by running an Expectation Maximization

(EM) algorithm for the classification of all frames. How could we be sure that a frame of some

milliseconds could enclose discriminatory information of a happy manifestation?

(a) RNN classification using only activa-

tions from the final time-step

(b) RNN Classification using the activations

of all time-steps after an affine trans-

formation which is applied by weighted

pooling

(c) Symbol Map

Figure 1.2: Emotional Classification using different RNN architectures.

Recently used models such as: HMMs [52] and RNNs [65] are modeling the input sequence of

feature vectors without explicitly demanding the classification result from each time-step of the input

sequence. These models during the training procedure are encoding the emotional information of

the sequence by penaltizing the prediction error produced by the activations of their output layer.

Although a variety of RNN architectures differ significantly from each other in terms of the temporal

aggregation which is applied in order to infer the emotional content for each utterance. In figure 1.2

two of the most widely known types of RNN architectures are displayed. In Figure 1.2a, it is evident

that only the activations of the final time-step contribute to the decision of the emotional class. On the

contrary, in Figure 1.2bm the activations from all time-steps affect the final classification decision.

Although, we should not be oblivious to the fact that RNN architectures like LSTMs could adeptly

encode information of the input sequence of features in the activations of the final time-step and thus

the former architecture is widely used [64]. However, if the input sequence is quite lengthy then the

information encoding flow is not as smooth as it is expected to be. For example, assuming that input

features correspond to LLDs extracted from 20ms frames with 0.5 overlapping ratio, then an utterance
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of 4 seconds would contain a total number of 400 feature vectors. If some indicative frame level LLDs
of an anger utterance are found at the beginning of the sequence and after that all the residual frames

represent a neutral affective state then at the end of the sequence where the emotional decision is based

the contribution of the former frames would be diminished [72]. This is why bidirectional RNNs [63]

and attention mechanisms [66] are employed in order to alleviate this informational forgetting through

multiple iterations of timesteps.

In essence, all of the proposed architectures in the literature could reduced to these two types

of architectures [65], depicted in Figures 1.2a and 1.2b. For example, an attention model would be

just another weighted pooling strategy which is used in order to specify the weights for each time-

step. Consequently, how the corresponding activations of each time-step would contribute to the final

emotional decision after the application of a softmax layer. The emotional content is not solely inferred

by the model itself but the set of representative features which are extracted under a specific timescale.

Notably, the timescale from which we draw the decision for the emotional content is closely related

to the timescale of the input features despite the fact that RNNs seem to capture dependencies on

multivariate timescales . The aforementioned RNN architecture do not change this timescale between

the subsequent layers as CNNs do with max/mean and other pooling layers in between [73].

Considering the combination of the variety of acoustic features (local and global) which are ex-

tracted on different timescales some very interesting questions arise and are not yet fully explored.

• The timescale for inferring emotional content is different for each feature set?

• How could we determine a satisfactory timescale for each type of feature sets that could aptly

capture emotional information?

• If we concatenate some feature vectors of each feature type and feed the RNN with a much

smaller sequence of vectors could we boost our recognition accuracy?

1.4.2 Nonlinear Phenomena in Speech Production

The model of speech production has been extensively reviewed and analyzed through all these years

[74]. In Figure 1.3 1, the physiological system of human speech production is displayed. In essence,

lungs are corresponding to the source of the power in this system which are producing the airflow.

The respiratory system produces vibrations of the vocal folds in the larynx if the airflow is pressed

through the glottis or a transient impulse for non-vowel verberation. The produced air vibrations are

later filtered by the vocal tract which corresponds to the larynx, the pharynx and the nasal activity.

Tongue, jaws, lips and velum function as articulators which alter the resonance characteristics of the

upper part of the system [74].

From a more technical point of view we can model the aforementioned speech generation system

with a source-filter model as defined in [6] which is also depicted in Figure 1.4. Although a vari-

ety of different models have been proposed in order to aptly reflect the true underlying dynamics of

the speech generation system, we focus on the most common one which is the source-filter model

[75]. The hardest component of the aforementioned model is the vocal fold in terms of analysis and

formulation. Essentially, the turbulences, birfurcations and fluctuations emerging from biophysical

processes result in certain chaotic phenomena in vocal production system [76]. Aperiodic vibrations

of the vocal folds might be tempting to characterize them as random perturbations but instead they are

exhibiting an entirely deterministic nature lying in the chaotic regime [77]. In fact, all these sounds

correspond to a basin of attraction in their corresponding state-spaces (the space including all possible

states of a system) [78]. The latter space is governed by periodic structures which are exhibiting recur-

rence patterns which are indicative of the true nature of the system under analysis [79]. The intrinsic

nonlinearity of the vocal folds has also been studied for pathological conditions using narrow-band

spectrograms [80]. The latter results shows that the nature of the dynamics of the vocal folds is truly

nonlinear and it is not just a part of a general hypothesis of the system.

1 Figure 1.3 was found in: http://sail.usc.edu/~lgoldste/General_Phonetics/Source_Filter/test.html
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Figure 1.3: Human System of Speech Production

Most of the feature sets described in Section 1.3.2 are based on LLDs which are extracted under

the assumption of a linear source-filter model of speech generation. However, vocal fold oscilla-

tions and vocal tract fluid dynamics often exhibit highly nonlinear dynamical properties which might

not be aptly captured by conventional LLDs [76]. The fact that it is much easier to extract acoustic

features with the assumption of linearity and stationarity of the signal, as Fourier transformation de-

mands, makes nonlinear representations of speech to be completely neglected in traditional feature

sets. Moreover, conventional feature sets contain pitch features which are related to the estimation of

the fundamental frequency of the vocal tract. However, in speech production only vowels are related

to periodicity regions from a dynamical system viewpoint. Silence frames between two phonemes that

are pronounced correspond to random noise as well as fricative consonants in which their underlying

dynamics correspond to chaotic patterns [81]. Both the aforementioned phonemes are causing noisy

output in pitch related features which assume periodicity inside the extraction frame.

We could analyze the dynamical properties of the speech production system like any nonlinear

dynamical system. In order to do so, one of the most prominent methods is the reconstruction of its

phase space [82]. The latter space is actually an embedding of the initial signal representation in time

domain to a higher dimensional space using time-delayed versions of the signal and is also called

state-space. Intuitively, this is a more expressive representation of the same dynamical system which

is very complex in the time domain but could be unfolded using more dimensions and appropriate

time delays for the specific system [78]. For instance, in Figure 1.5 the representation of phoneme

/a/ is displayed in time domain (left) and the corresponding state-space reconstruction (right). From

the displayed phase space of Figure 1.5, it is quite evident that the embedded trajectories of the state-

space are displaying recurrence behavior especially when the corresponding signal in time domain
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Figure 1.4: Source Filter Model of Speech Production [6]

exhibits periodicity. The trajectories which appear to be similar in the phase space or parallel under a

local scale reflect the co-evolution of states for the system which is analyzed. The latter is ultimately

displayed when attractors appear at the reconstructed phase space of the signal. Attractors are sets of

numerical values toward which a system tends to evolve, for a wide variety of starting conditions of the

system [83]. This asymptotic behavior of trajectories around strange attractors could be informative

of the recurrence properties of the underlying dynamics of the system which is a speech frame in our

case. However, recurrence cannot be aptly captured using only estimations of the most prominent

frequencies but these visualizations underpin the exploitation of the complex structures using tools

able to capture this information and utilize it for speech processing. Especially in SER tasks, where

turbulences are much more prominent in emotional voice signals we should also try to capture this

information for boosting the performance of our SER systems.

Figure 1.5: A phone /a/ and its corresponding phase space exhibiting recurrence dynamics [7]

Considering the nonlinear nature of the vocal fluid dynamics, one practical challenge is to find a

set of nonlinear features which can aptly capture emotional information by taking into account the true

identity of the underlying dynamics. Recurrence information of the Phase Space (PS) or state-space of

speech signals is highly indicative of the true nature of the underlying dynamics and can capture non-

linear dependencies of the input data [84]. Although a variety of nonlinear features has been studied

for SER such as: Teager Energy Operator (TEO) [40], modulation features from instantaneous ampli-

tude and phase [43] as well as geometrical measures from PS orbits [42], the recurrence information

of the PS has not yet been investigated. Some emerging questions and challenges are the following:
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• Is it possible to extract nonlinear recurrence information from speech signals in order to utilize

it as acoustic information?

• How can we integrate nonlinear recurrence information for SER?

• Recurrence information and nonlinear analysis could boost the accuracy of SER systems?

1.4.3 Curse of Dimensionality and Dimensionality Reduction

Although the aforementioned feature sets in Section 1.3.2 have been shown to adeptly capture emo-

tional content from speech signals, their feature space is quite huge and it is growing as new features

are added to the previous sets. For example, the works of Schuller in [25], [23], [29] has been have

been increasing the size of the proposed features for paralinguistic tasks from the previous reference.

Namely, the initial 384 features [25] have been expanded to 1582 [23] and consequently resulting to
6373 feature vectors in [29]. Although the newly added features might capture significant emotional
information independently, it would be quite possible that they do not offer any further discriminatory

ability to the whole set of features. Of course we cannot be sure about the contribution of each fea-

ture to the recognition accuracy as the latter approach would demand an exhaustive search over the

combinations produced by the power set of the feature set.

The models which these features are trained on are suffering from what is called the “Curse of

Dimensionality” [85]. The latter problem refers to phenomena of decline in performance metrics,

numerical instability, sparsity and dissimilarity of the input data when the model is trained on high-

dimensional data. The enormous amount of feature dimensions could be catastrophic for the training

process of a model because of the exponentially increased (in terms of the input dimensions) time and

samples required for the process.

To this end, many feature selection techniques have been proposed [34] as well as a variety of

dimensionality reduction techniques [86]. In the former approach, a subset of the whole set of features

is selected using a heuristic based on average mutual information or entropy between some feature

sets. On the contrary, in general dimensionality reduction techniques seek to find a lower dimensional

representation x ∈ Rn of the initial high dimensional features lying in x ∈ RD, where usuallyD >> n
and simultaneously preserving the geometrical properties of the high dimensional space. However,

reduced dimensions of the input space loose their physical meaning as the dimensionality reduction

algorithm produces the higher dimensional representation irrespective of the true physical properties of

the output space. Some algorithms, like PCA [33], try to produce the low dimensional representations

by using linear combinations of the initial features’dimensions while other nonlinear methods suggest

to reconstruct a nonlinear manifoldM which retains the intrinsic geometry of the high dimensional

space. The latter approach is often called “manifold learning” and it has been extensively used in a

variety of domains where the dimensionality of the input data exceeds the computational limits posed

by the architectural caveats of our hardware which is used to approximate numerically the manifold

M [87].

If the high dimensional input data RD can be described by a low dimensional manifoldM which

is embedded in a lower dimensional space of Rn then we can significantly lower the computational

complexity and time of our models by reconstructing this manifold. This is often true for audio, text,

image andmultimedia data where the input vectors are described by high dimensional vectors in which

the true informational units could be sparse. As a result, we could approximate the underlying data

distribution p(X), where X is the input data. by taking advantage of the various manifold learning

methods. Interestingly, most of these manifold learning techniques are not based on the labels of the

input data in order to infer the input distribution p(X).

In rare cases where the input data distribution can be aptly approximated using 2-dimensional

or 3-dimensional target spaces we gain a more intuitive representation of the distribution. Generally

speaking, this is not true in high dimensional spaces where the visualization of the manifolds and

the resulting spaces is missing. Without loss of generality, we focus on the visualization of different
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data sources using t-Distributed Stochastic Neighbor Embedding (t-SNE) manifold learning algorithm

[88].

Figure 1.6: Learned two dimensional manifolds using t-SNE with different parametrization for a va-

riety of sounds

For example, we can get a deeper insight of the underlying probability distribution of MFCCs

which are probably the most common features used in speech processing. In Figure 1.6 2 a learned

2-dimensional manifold from 512 sound files is created using t-SNE for various configurations and as

input vectors statistical functionals which are applied over frame-based MFCC representations. The

two parameters of t-SNEwhich are dispersed across the vertical and horizontal axes are the complexity

and the number of iterations which will be forced to run, respectively. Now each sound waveform

is represented with a 2-D vector instead of a 13 · Nstats, where Nstats is the number of statistical

functionals applied on all frames represented by 13 MFCCs. It is evident that we can utilize this

lower dimensional manifold which preservers the geometrical properties and structure of the high-

dimensional feature space in order to perform clustering or classification with a much more squashed

and less sparse feature space. In Figure 1.6 we can see that different areas of interest emerge in

the two dimensional plane while points are gathering in specific areas. Presumably, points in the 2-

2 Figure was found in: http://alexanderfabisch.github.io/t-sne-in-scikit-learn.html
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dimensional planes which seem to lie close enough or lie in adjacent regions would follow a similar

behavior in the high dimensional space. Consequently, we could actually visualize the discriminatory

ability of MFCCs if these features are actually making the corresponding classes linearly separable in

the high-dimensional space.

Building upon that, we can take advantage of the reduction of the input space and its dimensions in

order to visualize the regions where the samples of each class are lying. Purportedly, if all the samples

of each class are lying in areas which are easily separated on sight then the input distribution p(X)
of the high-dimensional feature vectors could be approximated using only a 2-dimensional manifold

M. Although, our focus lies in speech processing and especially SER we present the results of 2-

dimensional learned manifolds by using t-SNE on both image recognition and text classification in

Figures 1.7 3 and 1.8 4, respectively.

In Figure 1.7, the images of MNIST dataset [89] which are 28 × 28 images of handwritten dig-
its are used as input for the t-SNE. The input vector of 784 pixels for each image is reduced to a

2-dimensional vector with a nonlinear manifold learning procedure. As shown in the Figure 1.7 the

learned manifold does provide a strong on-sight indication that this manifold learning technique pro-

duces 2-dimensional representations where the classes of all samples are linearly separable between

them. In order to offer a framework for classification we need to run the manifold learning algorithm

first on the high-dimensional input, get the low-dimensional new representations learned and after that

evaluate any classifier on the representations with reduced dimensions. Moreover, the same applies

in other domains such as text classification where the input features correspond to vector representa-

tions of the words. In Figure 1.8, the learned 2-dimensional vectors after t-SNE application upon the

initial word-embeddings is displayed for a batch of words belonging to various contexts. As it is also

evident by a visual inspection of the figure, words in similar contexts are displayed similar in the 2-

dimensional map. This is a strong-indication that the inducedword embeddings contain discriminative

information about the context in which each word belongs but under a sparse representation, in terms

of the density of the included information. All in all, we can assume that we can extend these methods

for SER and possibly reduce the dimensionality of the used acoustic features drastically without losing

much in terms of recognition performance.

It is essential that the input data offer a sufficient sampling of the underlying distribution in order

to be able to reconstruct the low dimensional manifoldM. Otherwise, manifold learning approaches

like any other machine learning technique would be deemed unsuccessful. Although we utilized only

t-SNE for the previous visualization analysis, there are a vast amount of different manifold algorithms

presented in literature and we do not know which one would yield the most resilient solution for

acoustic features used in SER tasks. There is no win-all algorithm for manifold learning but instead

an interesting trade-off between expressiveness, required memory and running time is noticed [86].

Finding a robust manifold learning approach is closer to a more global machine learning problem

because of the generality of solutions provided which can be adequately used in different tasks (as we

saw previously with t-SNE) without any assumption about the actual identity of the source data used

as input.

Nevertheless, most of the algorithms proposed in literature are based on the computation of deriva-

tives which are computationally inefficient and less scalable on problems where smoothness cannot

be assumed. Specifically, the majority of these algorithms reduce this problem to the optimization of a

deterministic loss function f . Given this minimization objective, they usually employ gradient-based
methods to find a global or a local optimum. In many situations, however, the loss function is non-

differentiable or estimating its gradient may be computational expensive. Additionally, gradient-based

algorithms usually yield a slow convergence; multiple iterations are needed in order to minimize the

loss function.

All the aforementioned analysis arises a huge set of challenges which are yet to be met and ques-

tions to be answered.

3 Figure was found in: https://medium.com/@LeonFedden/comparative-audio-analysis
4 Figure was found in: http://colah.github.io/posts/2015-01-Visualizing-Representations/
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Figure 1.7: 2D manifold of MNIST dataset learned using t-SNE

• Could we provide a novel, expressive and simultaneously efficient manifold learning approach

in order to perform nonlinear dimensionality reduction?

• Could we avoid the computation of derivatives without loosing the ability of the manifold ap-

proximation?

• How can we provide a theoretical proof for the convergence of an algorithm of this kind?

• Does this algorithm provide a general solution for deviant data-sources without making any

assumption about the source where the feature vectors are extracted?

• Experimentation on acoustic feature sets for SER data does offer a significant improvement?

• Can we use the proposed manifold learning algorithm in order to provide visualizations of the

2-dimensional maps of different emotions, produced by a nonlinear dimensionality reduction

of the input acoustic features?

• Would these emotional maps from acoustic features be similar to the ones provided in Figures

1.7 and 1.8 and provide insightful qualitative information about the features in use?
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Figure 1.8: 2D manifold of word embeddings for a variety of context words

1.5 Goals and Contributions

The goals of this thesis are driven by the questions posed in Section 1.4 for all the sub-areas of interest.

In other words, the success of this thesis could be rated based on:

• Whether our approaches, remarks and results give the answers to the questions posed in Section

1.4.

• If the challenges are met and tackled down for the full spectrum of our interest, as they are

described in 1.4.

This thesis has a threefold contribution which can be succinctly described by the following:

1. We investigate the effectiveness of the choice of the appropriate timescale when using

RNNs for SER tasks: We show that, the choice of the appropriate time-scale for LLDs (local

features) and statistical functionals (global features) is key for a high performing SER system.

We assess our approach using both local and global features and evaluate the performance at

various time-scales (frame, phoneme, word or utterance). The analysis on various timescales
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provides both qualitative and quantitative insights about how different feature sets capture the

information on different timescales. We show that for RNN models, extracting statistical func-

tionals over speech segments that roughly correspond to the duration of a couple of words pro-

duces optimal accuracy. We report state-of-the-art SER performance on the IEMOCAP corpus

at a significantly lower model and computational complexity.

2. We introduce a new set of nonlinear features which are able to capture patterns of recur-

rence dynamics and evaluate them under different models and SER tasks: We investigate

the performance of features that can capture nonlinear recurrence dynamics embedded in the

speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase

space of each speech frame and the computation of its respective RP reveals complex structures

which can be measured by performing RQA. These measures are aggregated by using statistical

functionals over segment and utterance periods. We report SER results for the proposed feature

set on three databases using different classification methods. When fusing the proposed fea-

tures with traditional feature sets, e.g., [23], we show an improvement in unweighted accuracy

of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks,

respectively, over the baseline [23]. Following a segment-based approach we demonstrate state-

of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network with an

attention mechanism on top.

3. We propose a novel algorithm for manifold learning which is based on derivative-free op-

timization instead of the conventional gradient-based approaches, namely pattern search

multi-dimensional scaling (MDS). The latter approaches necessitate the computation of the

gradient of a loss function in order to select the optimal movement in the exploration space.

However, our algorithm does not require smoothness properties of the objective function which

is to be minimized as well as any assumption about the differentiability of it. Specifically, we

propose an extension of the classical MDS method, where instead of performing gradient de-

scent, we sample and evaluate possible “moves” in a sphere of fixed radius for each point in

the embedded space. A fixed-point convergence guarantee can be shown by formulating the

proposed algorithm as an instance of General Pattern Search (GPS) framework. Evaluation on

both clean and noisy synthetic datasets shows that pattern search MDS can accurately infer the

intrinsic geometry of manifolds embedded in high-dimensional spaces. Additionally, experi-

ments on real data, even under noisy conditions, demonstrate that the proposed pattern search

MDS yields competitive to the state-of-the-art results on a variety of tasks such as image classi-

fication and semantic similarity of text embeddings. For SER experiments we utilize the feature

sets described in Section 4 as well as their combination and visualize the learned 2-dimensional
emotional maps of these acoustic feature set.

1.6 Thesis Organization

The remainder of this thesis is organized as follows. We divide the aforementioned contributions

(see Section 1.5) to three Chapters 3, 4, 5. Each chapter can be considered self-contained in terms of

notation, related work around the topic which analyzes, experiments and conclusions which are drawn

from the results of the former. This model of organization has been selected because of the diverge

methods, models and issues that are presented in each chapter.

Firstly, in Chapter 2, we introduce some basic mathematical notation (Section 2.1), we analyze

some classification methods and the supervised setup within we are using them (Section 2.2). We

also present the mathematical formulation and the usage of RNNs as well as how they are structured

and combined with attention mechanisms and bidirectional topologies (Section 2.3). Moreover, we

present the formalization for the PS reconstruction, the extraction of RPs and their corresponding

RQA measures in Sections 2.4.1, 2.5 and 2.6, respectively. In Sections 2.7 and 2.8 we provide the
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mathematical formulation for multidimensional scaling (MDS) and General Pattern Search (GPS)

methods, correspondingly.

The first part of this work consists of the analysis of SER systems under different timescales and

especially for RNN based SER systems. The aforementioned analysis is covered in Chapter 3 where

we analyze the efficacy of different timescales when using RNNs for SER. Some prior motivation for

this part of the work is given in Section 3.1 and an extensive review as well as a qualitative analysis

of the methods for global and local acoustic feature extraction techniques is presented in Section

3.2. Furthermore, the proposed SER schemes are discussed in Section 3.3 while the preparation for

conducting experiments with those architectures is conferred in Section 3.4. The final results and

findings on how the decision timescale affects SER performance as well as a comparison with the

literature is presented in Section 3.5.

The second part of this thesis consists Chapter 4 in which we explore the integration of nonlinear

acoustic features which are reflecting the intricate recurrence dynamics of emotional speech. Specifi-

cally, in Section 4.1 we discuss the ideas which driven this approach while in Section 4.2 we list some

of the most prominent approaches for utilizing information extracted from RPs and in general non-

linear speech features for SER. In Sections 4.3 and 4.4, we specify how the PS and RP are computed

for each speech frame and we provide qualitative findings for these structures for different speakers

and emotional manifestations. We rigorously define the acoustic feature sets that will be extracted

for SER and the classification methods that we will employ in Sections 4.5 and 4.6, respectively. We

present the datasets that we use for the evaluation of all three feature sets under all SER experiments

as well as the final results compared with approaches in the literature in Section 4.7.

The last part of this thesis is comprised of Chapter 5 where we propose Pattern Search MDS in

order to perform gradient-free nonlinear dimensionality reduction. In Section 5.1 we discuss the ideas

which driven this approach while in Section 5.2 we briefly discuss some of the most prominent ap-

proaches found in literature in order to perform dimensionality reduction. We describe the proposed

algorithm in section 5.3 and we also propose some of the approximations in order to make our algo-

rithm terminate faster as well as discussing some emerging trade-offs in Section 5.4. We reduce the

proposed algorithm to the general class of GPS methods in Section 5.5 and we prove its convergence

theoretically using proved theorems for the unified GPS framework in Section 5.6. We assess our

algorithm for assorted recognition tasks and geometry preserving tasks for the solution provided by

our algorithm in Section 5.7. Specifically, we test our algorithm for SER using identical experimental

setups and sets of acoustic features that were introduced in Chapter 4 (see Section 5.7.7). Last but not

least, we provide a comparison for the produced manifolds in R2 and R3 from various dimensionality

reduction methods in Section 5.8.

Finally, the denouement of this thesis is Chapter 6 where we summarize the conclusions we have

drawn from the analysis of all the previous Chapters (see Section 6.1) as well as we point out some

possible feature directions that could be based on this work (see Section 6.2).
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Chapter 2

Technical Background

2.1 Notation

We denote real, integer and natural numbers as R, Z, N, respectively. Scalars are represented by no-
boldface letters, vectors appear in boldface lowercase letters and matrices are indicated by boldface

uppercase letters. All vectors are assumed to be column vectors unless they are explicitly defined as

row vectors. For a vector z ∈ Rn, ‖z‖1 =
∑n

i=1 |zi| is its `1 norm and ‖z‖2 =
√∑n

i=1 z
2
i is its `2

norm, where zi is the ith element of z. Moreover, the latter notation could be defined either as z(i). By
A ∈ Rn×m we denote a real-valued matrix with n rows andm columns. Additionally, the jth column
of the matrix A and its entry at ith row and jth column are referenced as aj and aij , respectively. We

can also define the entry of a matrix A at ith row and jth column as Aij but this would be specifically

defined for each equation separately. The trace of the matrix A appears as tr(A) and its Frobenious

norm as ||A||F =
√∑n

i=1

∑m
j=1 a

2
ij . The square identity matrix with n rows is denoted as In ∈ Rn×n.

For the matrices A ∈ Rn×m and B ∈ Rn×m we indicate their Hadamard product as A � B. The n-
ary Cartesian product over n sets S1, ..., Sn is denoted by {(s1, ..., sn) : si ∈ Si. 1 ≤ i ≤ n}
Finally, X(k) refers to the estimate of a variable X at the kth iteration of an algorithm. We define the

conditional probability of the event Ω given that the event Ω′ has already happened with: p(Ω|Ω′). In
order to make the notation easier for the mapping of functions f : R→ R in vectors of real numbers

x = [x1, ..., xn] , we assume that the direct application of the function to the vector we use f(x) as the
intuitive extension of function f to the Rn where f(x) = [f(x1), ..., f(xn)]. We denote with a||b the
concatenation of vectors a and b. We define the element-wise multiplication for two vectors a and b

with a� b.

2.2 Classification Models

In this section we will analyze the classification models which are used in this thesis. In this work,

when we confront a classification task then we will assume a supervised machine learning task where

the label Yi of each sample xi of the training set is known. Generally speaking, there are many other
setups where some labels are known (semi-supervised learning) as well as setups where no label of

the input data is available on the training time (unsupervised learning) [58]. After we train our model,

we evaluate our model using a separate subset of the available data which is called “testing set”. No

instances should belong to both the “training” and “testing” sets.

2.2.1 Loss Function

We optimize the parameters θ of our model by minimizing an objective function J (θ) (also called
loss function). In supervised training, the loss function is also defined by the training Xtrain and their

corresponding labels Ytrain. In SER and other tasks we usually have more than two discrete classes

for our data and thus we are using a categorical cross entropy as our objective function which we are

trying to minimize. For instance, if we have N training samples and C emotional labels, then we can
convert the categorical labels to one-hot vectors of length C. In the latter representation, each vector
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has zeros everywhere else except of the index which corresponds to the categorical label of a sample

xk. Namely, we convert the categorical label as follows:

Yk → yk = [0, ..., 1︸︷︷︸, ..., 0]
corresponding label index c

(2.1)

Now index c in this vectorized representation represents the same class as Yk which is the true an-
notated label corresponding to sample xk. In this supervised learning setup, each sample corresponds

to a tuple of 1) a data-vector representation xk and 2) its vectorized label representation yk.

Assuming that our model is trained on a set ofN data samples {(xk, yk)}Nk=1 the prediction ŷk for

kth tuple is defined as the posterior probability for all the available classes C given the parameters of
the model θ and its data-vector representation xk. If we define as h(xk,θ) the activations of our model
which are used for the inference of the label of a given sample xk we can assume that the predicted

distribution vector ŷk is defined element wise by the respective posteriors probabilities:

ŷk = [p(ŷk,1|θ, xk), ..., p(ŷk,C |θ, xk)] (2.2)

Hence, the loss function for the kth sample is shown next:

J (θ)k = −yk · log(ŷk) (2.3)

More or less, the prediction vector of our model corresponds to the likelihood of the corresponding

posteriors for each class. If we would like to optimize the parameters of our model by maximizing the

likelihood of our model we could easily do it by reversely minimizing the average of the negative log

likelihood from all the availableN training samples. The objective function is shown in the following

equation:

J (θ) = − 1

N

N∑
k=1

yk · log(ŷk) (2.4)

Where N is the number of the training samples. Essentially, the aforementioned equation is par-

ticularly useful when training NNs using the value of the loss function J (θ) for computing the error
at the final error of the NN in terms of the classification decisions which made for the N samples. In

most cases we do not use the whole dataset in every iteration of the training process but instead we

compute the error over subsets of the training set (these sets are often called batches when our model

is a neural network). In order to learn the optimal parameters for our models we could employ any

parameter optimizer which is based on the computation of the gradient ∇θJ (θ) for finding a local
minima or either tries to find the local minima by directly moving points (see next Section 2.8). If our

model is an NN the most widely used algorithm in order to optimize its weights is backpropagation

[90]. In brief, the error computed by the partial derivatives of each layer configures the alteration

of the weights of the subsequent layer by following the exact similar procedure computing chains of

partials derivatives in respect of the parameters to be tuned.

All in all, the loss function J (θ) is just a heuristic method in order to be able to approximate a
local minima for the nonlinear minimization problem which generally it cannot be solved by any al-

gorithm in polynomial time (these types of problems are called NP-problems). Moreover, the feature

space of the data samples {xi}Ni=1 is generally complex and nonlinear. The extracted feature-vectors

are entangled in subspaces where the vectors which are lying in these subspaces belong to different

classes. Hence, the problem of finding the optimal discriminatory regions of the high-dimensional

input space becomes non-trivial and requires a careful consideration of both feature extraction and

model optimization [59]. For instance, in Figure 1.7 it is evident that the feature vectors which cor-

respond to digits of “9” and “4” are not linearly separable and thus the discriminatory region is much

harder to find than other regions for other digit-pairs such as “0” and “7” which seem to be completely

unrelated from their representation on the 2-dimensional plane.
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Building upon that, a variety of different classification models have been employed in order to find

these discriminatory regions over any feature space. We will provide the mathematical formulation of

the classification models which we are using in this work as well as a brief explanation of how they

work.

2.2.2 Support Vector Machines (SVMs)

As we have previously mentioned, feature vectors of each class live entangled with feature vectors

from other classes and thus they are not linearly separable. In other words, one cannot easily find

a hyperplane of the input feature space serving as a classification boundary for data belonging to

each class of the training set. SVMs are trying to find maximum-margin hyperplanes in order to

create these classification boundaries between the vectors of each class [91]. Hence, each binary

classification problem can be reduced to finding the separating hyperplane which has the maximum

margin between the distance of the nearest points of each class (A distance of a point to a hyperplane

is just the length of the projection of this point vertically to the hyperplane).

In a more rigorous way we can define a binary classification problem for a sequence ofN training

samples {(xk,Yk)}Nk=1 where Yk ∈ {−1, 1}. We can assume that the parameters θ of an SVM is

the coefficients of the decision hyperplane which are to be found. SVMs are solving the following

problem:

min
θ,b,ζ

1
2θ

Tθ + C
∑N

i=1 ζi

constrains : Yi(θTφ(xi) + b) ≥ 1− ζi
(2.5)

where C > 0 is a regularization term for configuring the penalty term of wrongly classified in-

stances (practically feature vectors x which do not follow the constraints of Equation 2.5 and φ(·) is
a nonlinear map which is used in order to transform the input data-vectors. To this end, in order to

acquire nonlinear relations between data points we can perform the kernel trick [92] using the afore-

mentioned maps φ(·). This allows the SVM training algorithm to fit the maximum-margin hyperplane

in a transformed feature space which the boundaries between the two classes are much easier to be

found than in the initial input space. Furthermore, as the classification boundaries are hyperplanes

then the support vectors would be parallel with the alteration of the constant (θTφ(xi) + b = 1 and
θTφ(xi) + b = −1). Then the distance between those support vectors would be 2

||θ|| . This is an extra
verification of why Equation 2.5 serves as the objective function of an SVM.

Since we apply the kernel trick K(xi, xj) = φ(xi)
Tφ(xj)), we can convert the problem defined

above to its dual and also use the new transformations of the feature space.

min
α

1
2α

TQθ − 1TNα

constrains :
∑N

i=1 Yiαi = 0
0 ≤ αi ≤ C, i ∈ {1, .., N}

(2.6)

where Qi,j = YiYjK(xi, xj) and 1N = [1, 1, ..., 1] is a vector of ones in RN space.

Hence, the decision boundary would be defined by the following equation:

sgn(

N∑
i=1

YiαiK(xi, x) + b)) (2.7)

where b is the intercept of the defined model and sgn(·) is the function of sign where −1 corre-
sponds to negative values and 1 to positive ones as well as 0 for zero-values.

A list of kernel functions K(xi, xj) which are widely used:

• Linear kernel: 〈xi, xj〉

• Polynomial kernel of degree d and a bias parameter r: (γ〈xi, xj〉+ r)d

43



• Radial Base Function (RBF) kernel regularization parameter γ: exp(−γ||xi − xj||2)

• Sigmoid kernel with regularization parameter γ and a bias parameter r: tanh(γ〈xi, xj〉+ r)

We can easily extend the previous formulation of binary decision SVMs in multi-class problems

by simply training separate binary classifiers for all the classes available in the training data. After

that, the binary classifier with the maximum confidence score is selected as the final decision of the

multinomial SVM. This method is also called “one-versus-rest”.

2.2.3 Logistic Regression (LR)

A simpler classification algorithm is Logistic Regression (LR) classifier in which the parameters of

the model θ again correspond to coefficients of a hyperplane likewise in SVMs (see Section 2.2.2).

We can utilize the formulation defined in the previous subsections of Section 2.2 in order to portray

the mathematical foundations of LR classifier.

We will again describe the simple problem for a binary classifier which has a similar setup and

formulation as described in Section 2.2.2. The N training samples {(xk,Yk)}Nk=1 consist the input

feature vectors and labels where Yk ∈ {0, 1}. The activation of the LR classifier is determined by

applying a sigmoid function (see Equation 2.8 below) over the fitted line in order to get the final

classification decision.

sigmoid(z) =
1

1 + e−z
(2.8)

The activation of LR for a given vector x would be defined as follows:

hθ(x) = sigmoid(θT x) =
1

1 + e−θT x
(2.9)

The loss function to be minimized while fitting the LR to the training data is the following:

1

2
||θ||q + C

N∑
i=1

log(exp(−Yi(θT xi + b)) + 1) (2.10)

whereC > 0 and b represent the coefficients of penaltization of wrong classifications and the intercept
of the hyperplane (same as Section 2.2.2). || · ||q is the norm used to define the distance between

feature vectors which is to be penaltized during the training process (for q = 1 and q = 2 we compute
Manhattan `1 and Euclidean `2, respectively). The second part of the above objective function is

the exact same as the one described in Section 2.2.1 while the first one regularizes the amplitude of

the parameters in order to avoid numerical stability errors due to the large numerical values which

might be produced during the optimal line inference. In order to find the parameter values for the

LR classifier we then again need to minimize the loss function (see Equation 2.10) by computing the

gradient of this loss function and try to fit LR under maximum likelihood with stochastic gradient

descent [93].

2.2.4 K-Nearest Neighbors (KNNs)

KNN is a non-parametric classifier. By this we mean that no parameters of this model are available to

tune or optimize as well as that KNN does not make any assumptions about the probability distribution

of the input data. There is actually no training process at all. For a given vector x′ we would like to
estimate its corresponding labelY ′. In order to do this we just need to compute theK nearest neighbors

to the test vector x′. We can define the set of theK nearest neighbors as shown next:

U = argmin
i
||xi − x′||q (2.11)
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where xi is the ith sample of the training data. || · ||q is the norm used to define the distance metric

between the test vector and any training sample (for q = 1, q = 2 or q =∞ we compute Manhattan,

Euclidean or Supremum norm, respectively).

Now for the aforementioned set of nearest neighbors we find the label which is represented by the

majority of the data vectors {xi | i ∈ U}. Hence, the corresponding label data of the input vector is
estimated using the labels of the nearest neighbors, in terms of the distance metric we have selected,

inside the space of the training feature vectors.

2.3 Recurrent Neural Networks (RNNs)

Going a step beyond simplemodels which require fixed-length representations of the input data, RRNs

show their supremacy when they are used with input sequences. Namely, we alter the definition of

the supervised problem by converting the input for the ith sample from just a vector xi to a sequence

of vectors {xij}Tj=1 where T is the number of timesteps or the length of the input sequence of feature

vectors. This is particularly useful when modeling input data like audio and text where the underlying

time dependencies completely alter the procedure of inferring information in classification setups and

more [59]. The core functionality of an RNN is to infer the underlying dynamics of the input sequence

temporal behavior by keeping an internal state and updating it for different timesteps.

In essence, RNNs are creating replicas of a cell generator with different parameters over different

timesteps. In this way, the recurrence connections could be seen as connections between hidden nodes

of the same level while input and output represent connections with subsequent layers. This is exactly

the topology of any typical DNN except that RNN can be optimized using specific timesteps and not

across the full timelength of the unrolled model. RNNs need to be set with the maximum length which

could be used either as test or training in prior to the utilization of the model itself.

A simple visualization of an RNN is displayed in Figure 2.1. The input vector x could also be

seen as a sequence of vectors {xj}Tj=0 which are parts of the initial feature vector. It is evident that

the recurrent connections are transferring information for the State S vectors as new timesteps are

computed. In this way, every activation corresponding to the instance of the RNN cell at timestep

t is computed using information from the previous state St−1 as well as the current input vector xt.

So actually unrolling an RNN is just a way of better visualizing the behavior and the underlying

mechanisms of this NN but the core functionality is the same in both representations. The overall

architecture of an RNN is formed as a directed graph along the sequence of the input vectors.

Figure 2.1: Unrolling of a Recurrent Neural Network with an input sequence of T + 1 timesteps

It is easy to infer that we could stack piles of RNN layers on top of each other by simply connecting

the activation of each cell at timestep t, which is ht, as an input to the next RNN layer for the same
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timestep. By this we create deep recurrent networks which are able to better encode the informational

flow between the vectors of the input sequence and infer higher level attributes which might not be

adequately inferred using shallow networks [59].

2.3.1 Long Short Term Memory (LSTM) unit

Building upon the RNN topology, it is limpid that every aspect of this NN facilitates the temporal

modeling of the input sequence. However, the long-term dependencies of the input sequence {xj}Tj=0

can be problematic as the computation which is performed arises highly complex composition of

functions and nonlinear behavior. The recurrent topology of the network entails the computation

of the gradient and its flow over multiple timesteps which yields the famous problem of vanishing

or exploding gradient when the error is tried to be propagated backwards for the optimization of

the network parameters [72]. One way for tackling this problem and enabling an effective way of

construction and training of an RNN is the LSTM unit [64] which has a forget gate in order to be able

to clip very small and very high gradient values. In Figure 2.2 the block diagram of an LSTM cell is

displayed which will be analyzed further below.

Figure 2.2: Block Diagram of a Long Short-Time Memory unit

The multipliers represented with gray “x” inscribed in circles consist the core elements of the

LSTM architecture are the following:

1. The forget gate controls the informational flow for the history from previous timesteps St−1

2. The input gate controls the informational flow for the input vector xt at the current timestep

3. The output gate controls the information flow from the current state St (which has been already

computed) to the final activation of the cell ht at the current timestep

Going a step deeper in the functionality of the LSTM cell which will be used extensively for the

experimental setup of this thesis we will analyze the architecture displayed in Figure 2.2.

First of all the multiplications are performed element-wise for the input vectors. Moreover the

rectangle with a green plus represents any aggregation function for two or more input vectors like:

concatenation, element-wise average, multiplication, adding, maximum or minimum. The application
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of the nonlinear functions sigmoid(·) and tanh(·) are represented by a green rectangle and a purple
rhombus, respectively. The activations for the current timestep ht and the previous timestep ht−1

serve as the output and one of the inputs of this cell, respectively. In addition they are depicted using

yellow circles. Finally, the state vectors St and St−1 represent the weights of the neural network which

are able to save internally the state for each timestep and follow a similar input/output explanations

as previously. Moreover, the current timesteps are colored using darker colors comparing to the same

vectors which serve as input for the cell at timestep t in order to show the time dependence between

these pairs. The biases b are just vectors with numbers which are added to the final vector represen-

tation when the latter are passed from an aggregation function. The same schematic representation is

followed in all figures in this Section. We will also elaborate on each element of the block diagram

using strict mathematical formulation below.

The forget gate is modeled as follows:

ft = sigmoid(Wf · (ht−1||xt) + bf ) (2.12)

where Wf represents the weights vectors corresponding to the forget gate, and bf is the respective

bias. In this way, the output will be a number between zero and one which the former corresponds

to forget the input of the previous activation. In contrast, a value of 1 in this gate represents that

the information of the previous activation ht−1 alongside with the information from the current input

vector xt would be fully considered for the computation of the state of this LSTM. The same applies

for all the other gates which are displayed in Figure 2.2.

The input gate controls the informationwhichwill flow from the activation of the previous timestep

ht−1 alongside with the information from the current input vector xt when we are trying to update the

current state weights St. These are modeled using the following equations:

it = sigmoid(Wi · (ht−1||xt) + bi) (2.13)

Gt = tanh(WG · (ht−1||xt) + bG) (2.14)

where WG and Wi represent the weights of the network for the gate of the input informational

flow control as well as the respective biases bi and bG.

In order to be able to compute the updates on for the current state St we are adding the information

which has been controlled by the aforementioned gates (input and forget gates). Namely the current

state is computed as shown next:

St = it �Gt + ft � St−1 (2.15)

Next in order to compute the output at the current timestep t, we need to combine the precomputed
state vector St after a nonlinear function tanh(·) is applied as well as information from the input vector

and the activation from the previous timestep at the output gate multiplier. Specifically, the following

equations express the activation vector at the current timestep:

ot = tanh(Wo · (ht−1||xt) + bo) (2.16)

ht = ot � tanh(St) (2.17)

2.3.2 Bidirectional LSTM

Although LSTMs are able to encode temporal dependencies from input sequences of vectors it is

quite common that the length of the input sequence is quite long in order to be trained adequately

using backpropagation. The main problem is that the temporal dependence when training very long

sequences is diminishing as sequential computations over multiple timesteps alter the gradient flow

[65] and consequently the informational flow. In order to tackle this problem we can encode the input
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sequence from the beginning to the end (forward RNN) and also in reverse (backward RNN) and in

the end combine the activations of the two RNN layers in order to find the output activation for each

timestep. We will focus only on Bidirectional LSTMs (BLSTMs) because we only use the LSTM unit

for our RNN models.

In Figure 2.3, a BLSTM architecture is depicted with both forward and backward LSTM layers

combined in order to produce the corresponding activation. The red rectangles with solid perimeter

correspond to the forward architecture which is also evident from the direction of the recurrent acti-

vations and consequently the informational flow. On the other hand, backward LSTM cells for each

timestep are represented using green rectangles with dotted lines as perimeter.

Figure 2.3: Bidirectional LSTM layer

Specifically, we combine the two architectures by separately computing the forward activation−→
h t at timestep t as well as the corresponding backward activation

←−
h T−t and concatenating them for

computing the final activation at each timestep. To this end, the activation at timestep t is simply the

concatenation of the aforementioned vectors, namely: ht =
−→
h t||
←−
h T−t. The same applies for all the

T + 1 timesteps of the input sequence. We can extend the BLSTM architecture topology by stacking

extra BLSTM layers on top by just connecting the activations from the forward architecture
−→
h t to the

input of the next forward LSTM layer. We do the same for the backward architecture by connecting←−
h T−t to the input of an LSTM layer which is one level higher. Finally, we postpone the concatenation

of both activations at the current timestep to the last layer of the BLSTM architecture.

2.3.3 Attention Mechanism

An attention mechanism is applied over the sequence of hidden state vector which are drawn from

the top layer of an RNN in order to provide a mechanism for focusing on specific parts of the input

sequence which might be more indicative for the final classification or regression. Specifically a

context vector C is used in order to enable the attention mechanism to learn what to attend based on

the current input sequence as well as the encoded information so far [67]. Hence, the output of this
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layer will be able to neglect useless activations from timesteps which are completely uninformative

for the classification or regression purpose we utilize the RNN architecture. For example, in SER we

expect that input sequences of short segment feature vectors will contain irrelevent information at the

beginning and the ending timesteps which might be neglected by the attention mechanism by learning

weights which are close to zero. These segments might correspond to silence durations which are

typical to the start and end times of utterances.

In Figure 2.4 an attention mechanism is depicted by using a context vector C and the input se-

quence of the RNN activations {ht}Tt=0. We represent the softmax function with a light red rectangle

without perimeter. The softmax value of an input vector x with length T +1 would be given element-
wise by the following equation:

softmax(x)k =
exk∑T
t=0 e

xt
, 0 ≤ k ≤ T (2.18)

Figure 2.4: Attention Mechanism for given activations from an RNN

In order to truly understand how the attention mechanism work it is essential to specify how the

context vector is computed. The context vector C is computed as the average of all activations from

all timesteps, formally we would write:

C =
1

T + 1

T∑
t=0

ht (2.19)
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For each timestep we combine the context vector and the corresponding input hidden state vector

as follows in order to get the internal representation r:

r = tanh(Wc · (ht||ct) + bc) (2.20)

whereWc and bc are the trainable parameters of the attention layer.

The attention layer learns the corresponding attentive weights α for all the timesteps using the

previously defined internal vector r, as follows:

a = softmax(r) (2.21)

Hence the vector αwill contain the corresponding weights in order to multiply for getting the final

output representation of the attention layer. Namely, the output would be defined as:
∑T

t=0 at � ht.

It easy to infer that if we sum all the values from the attention vector α we would get one as a result.

This is indicative of the process we follow where all the vectors of the input sequence are normalized

to one like a probability vector.

2.3.4 Attention-based Bidirectional LSTMs

If we combine the BLSTM architecture which was presented in Section 2.3.2 with an attention mech-

anism (see previous Section 2.3.4) we are able to create an Attention-based BLSTM (A-BLSTM).

Specifically, we need to connect the outputs of the final layer of a BLSTM to the input of the attention

layer in order to get the final output representation vector for the input sequence. Now we can forward

the output vector of the overall architecture to subsequent layers in order to perform classification or

regression using discrete or continuous labels, respectively. Following the notation from the previous

Sections, we combine the hidden state of the final timestep hT =
−→
h T ||
←−
h 0 (which is able to encode

the information from the input sequence) with the output vector of the attention mechanism in order

to get the final representation of the input sequence.

2.4 Phase Space Reconstruction

2.4.1 Definition

x(i) = [s(i), s(i+ τ), ..., s(i+ (de − 1)τ)] (2.22)

where de is the embedding dimension of the reconstructed PS and τ is the time lag. If the embedding
theorem holds and the aforementioned parameters are set appropriately, then the orbit defined by the

points {x(i)}Ni=1 would truthfully preserve invariant quantities of the true underlying dynamics which

are assumed to be unknown [82]. In the study of dynamical systems, the delay embedding theorem

specifies the conditions under which the dynamics of the original system s? can be reconstructed from

a sequence of observations {x(i)}Ni=1 of the state of the dynamical system. Asuccessful reconstruction

preserves the properties of the true dynamical system s? that do not change under smooth changes in

its coordinates such as diffeomorphisms. However it is not assured that the geometrical properties of

the attractor are not identical to the ones of the approximated manifoldM.

Multitude of researches have been trying to identify optimal parameters for the reconstruction

of the PS. In accordance with [78], parameters τ and de for each speech frame can be estimated

individually by using Average Mutual Information (AMI) [94] and False Nearest Neighbors (FNN)

[95], respectively. Both approaches and extensive analysis for the selection of the aforementioned

parameters will be presented in next sections.

2.4.2 Average Mutual Information (AMI)

First of all, Average Mutual Information (AMI) is a measure of nonlinear correlation between the

given signal {s(i)}Ni=1 and a time delayed version of this signal by τ samples e.g., {s(i+ τ)}N−τ
i=1 . If
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we want to be precise we have to use the same number of samples for each signal and thus we consider

the signals {s(i)}Ni=τ+1 and {s(i+ τ)}N−τ
i=1 .

Formally, the AMI for a signal {s(i)}Ni=1 and a specified time-lag τ as shown next:

I({s(i)}Ni=1, τ) =

N−τ∑
i=1

pb(s(i), s(i+ τ)) · log2[
pb(s(i), s(i+ τ))

pb(s(i)) · pb(s(i+ τ))
] (2.23)

where pb(s(i), s(i+τ)) defines the joint probability function which is derived from the histogram

of values of the signal {s(i)}Ni=1 as well as the marginal probabilities pb(s(i)) and pb(s(i + τ)).
Specifically, the values of these probabilities are computed over some specified number of bins. In

this work, we use Nbins = 32. Any digital signal has discrete integer values, thus, we notate smax

and smin = −smin the maximum and minimum integer values that a discretized signal could take,

respectively. Without loss of generality we could assume that the values that a digital signal could take

are equally distributed for negative and positive integers. In order to extract the probability distribution

we need the histogram of the initial signalH({s(i)}Ni=1, smax, Nbins) which is defined for each bin as
the number of indexes of the input signal for which the values of the signal are lying inside that bin.

Prior to that we define the following sets which divide the signal into the aforementioned Nbins:

Ak = {i ∀i ∈ {1, ..., N} | [s(i) + smax] div 2smax = k − 1} (2.24)

where a div b defines the integer division between the numbers a and b and k ∈ {1, ..., Nbins}
is the index of the bin. Moreover, in order to sustain a more easier to read notation we define the

corresponding bin-index for each sample of the input signal s(i) using the following notation:

indA(s(i)) = [s(i) + smax] div 2smax + 1 (2.25)

Consequently, we describe equivalently the sets {Ak}Nbins
k=1 using the latter notation as shown

below:

Ak = {i ∀i ∈ {1, ..., N} | indA(s(i)) = k} (2.26)

Additionally, we could define the value for the kth bin as follows:

H({s(i)}Ni=1, smax, Nbins, k) = card(Ak) (2.27)

where card(Ak) defines the cardinality of the set or the number of the elements of the setAk and

again k ∈ {1, ..., Nbins} is the index of the corresponding bin. However, in our case we also need to
create the corresponding set for all the available pairs of indexes i and i+ τ which are reflecting the
correlation of the values of the signal for the specified time-lag Similarly, we define a set for all the

available pairs of the input signal as defined below:

Bjk = {i ∀i ∈ {1, ..., N} | indA(s(i)) = j, indA(s(i+ τ)) = k} (2.28)

where k ∈ {1, ..., Nbins} is again the index of the corresponding bin.
In this context, we can easily define the marginal probabilities pb(s(i)) for all the indexes of the

input signal {s(i)}Ni=1 individually using the aforementioned sets {Ak}Nbins
k=1 , as shown next:

pb(s(i)) =
card(AindA(s(i)))∑Nbins

k=1 card(Ak)
(2.29)

Likewise in the previous equation we can specify also the joint probabilities pb(s(i), s(i+ τ)) for
all the indexes of the input signal and their corresponding index-pairs which are delayed by τ samples
as shown below:

pb(s(i), s(i+ τ)) =
card(BindA(s(i)),indA(s(i+τ)))∑Nbins

j=1

∑Nbins
k=1 card(Bjk)

(2.30)

51



2.4.3 Takens Theorem

In order to successfully unfold the dynamics of the system we need to specify the embedding dimen-

sion de for the points of the reconstructed PS. In order to do so we should be careful that for the selected
embedding dimension the aforementioned “embedding theorem” holds. This theorem is also called

“Takens-theorem” which suggests that if we increase the embedding dimension de or equivalently the
number of time-lagged versions of the given signal then the dynamics of the approximated manifold

M which is comprised of the points {x(i)}Ni=1 becomes much more deterministic. Specifically, there

should be a diffeomorphism φ :M→ Rde that maps the approximated manifold of points {x(i)}Ni=1

into Rde by simultaneously preserving that the gradient of the mapping φ has full rank [82]. The

aforementioned statements hold if:

de ≥ 2dBCD(M) + 1 (2.31)

where dBCD corresponds to the box counting dimension of the approximated smooth manifold

M:

dBCD(M) = lim
ε→0

log(N(ε))

log(1ε )
(2.32)

where N(ε) is the number of boxes of side length equal to ε which are required to cover the

manifoldM.

In other words, the embedding dimension de should be large enough in order to successfully unfold
the dynamics of the state-space of the original system. Otherwise, it would be possible that trajectories

of the reconstructed phase space to be collapsed in close regions and thus the points {x(i)}Ni=1 lying on

the resulting manifoldM could mistakenly appear as neighbors while this is not true for the original

system.

2.4.4 False Nearest Neighbors (FNN)

In order to specify the embedding dimension de we will use the criterion of false nearest neighbors
[95]. By using this criterion we gradually increase the embedding dimension and compute a ratio

which is indicative of the number of neighbors for each point of the trajectory. In essence, we com-

pute the distances Dd̂e
(x(i), x(j)) and Dd̂e+1(x(i), x(j)). These distances correspond to the values of

the distance metrics between the points x(i) and x(j) of the reconstructed phase space trajectory for
different embedding dimensions. If we assume that the approximated manifoldM will be embedded

in the euclidean space Rd̂e then we could define the distance metric between the points x(i) and x(j)
as follows:

Dd̂e
(x(i), x(j)) = ||x(i)− x(j)||2 =

√√√√d̂e−1∑
k=0

[s(i+ k · τ)− s(i+ k · τ)]2 (2.33)

Now for all the points we compute the relative percentage of change for the distance between

any pair of points on the phase space trajectory when we use an extra dimension for the embedding

dimension. Namely we compute:

Rd̂e
FNN (x(i), x(j)) =

Dd̂e+1(x(i), x(j))− Dd̂e
(x(i), x(j))

Dd̂e
(x(i), x(j))

(2.34)

When the average value of the above ratio matrix Rd̂e
FNN over all its values exceeds a value of

(0.10 − 0.15) then this means that there is a big difference on the distance between the points of the
PS orbit x(i) and x(j) when we add an extra dimension. As a result, this means that point x(i) has a
false neighbor when we use an embedding dimension of d̂e instead of a bigger one d̂e+1. Ideally, we
would like to estimate an embedding dimension de which achieves a number of false nearest neighbors
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which is as close to zero as possible. Although there is a trade-off because as we increase the number

of dimensions which are used for the embedding we also increase the dimensions of the input data

to be analyzed. This is also an example of the general problem of the “curse of dimensionality” (see

Section 1.4.3). Generally speaking, a ratio value of false nearest neighbors for a selected embedding

dimension around 10% seems sufficient for the reconstruction of the dynamics [78].

2.5 Recurrence Plots (RPs)

Given a PS trajectory {x(i)}Ni=1 we analyze the recurrence properties of these states by calculating the

pairwise distances and thresholding these values in order to compute the corresponding RP [96].

Sometimes we do not proceed with the thresholding in order to produce plots with continuous val-

ues which are basically the visualization of locally normalized distance matrices. These plots some-

times are also called unthresholded recurrence plots or continuous recurrence plots [84]. Formally,

we could write the distance between the two points as follows:

Dq(x(i), x(j)) = ||x(i)− x(j)||q (2.35)

where || · ||q is the norm used to define the distance between any two trajectory points x(i) and
x(j). Specifically, for q = 1, q = 2 or q =∞we compute Manhattan, Euclidean or Supremum norm,

respectively. Generally speaking, the distance matrix could represent any valid norm.

RPs are binary square matrices and are defined element-wise as shown next:

Ri,j(ε, q) = Θ(ε− ||x(i)− x(j)||q) (2.36)

where Θ(·) is the Heaviside function and ε is the thresholding value. Thus, matrix R consists of ones

in areas where the states of the orbit are close and zero elsewhere. The measure of proximity is defined

by threshold ε for which multiple selection criteria have been studied [97]. We consider three criteria

depending on: 1) a fixed ad-hoc threshold value, 2) a fixed Recurrence Rate (RR) as defined in the

next Equation 2.40 (e.g., For RR = 0.15 we set ε according to a fixed probability of the pairwise
distances of PS’s points P (||x(i) − x(j)||q < ε) = 0.15, 1 ≤ i, j,≤ N ), and 3) a fixed ratio of the

standard deviation σ of points {x(i)}Ni=1, e.g., ε = 5σ [98]. For fixed values of ε and q we denote as
Ri,j the respective entry of the RP matrix for simplicity of notation.

The main structures emerging in RPs and we are able to capture consist of lines and point of the

binary matrix. It is essential to understand the main categories of lines which are able to quantify

information about an RP:

An L-length diagonal line (of ones) is defined by:

(1− Ri−1,j−1)(1− Ri+L+1,j+L+1)
k=L∏
k=1

Ri+k,j+k = 1 (2.37)

An L-length vertical line is described by:

(1− Ri,j−1)(1− Ri,j+L+1)
k=L∏
k=1

Ri,j+k = 1 (2.38)

An L-length white vertical line (of zeros) is defined as:

Ri,j−1Ri,j+L+1

k=L∏
k=1

(1− Ri,j+k) = 1 (2.39)

Of course a single point would correspond to an entry of the binary matrix R but without be-

longing to one the previously mentioned categories of lines. So any structure of RPs based on single
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points would correspond to a noisy image filled with isolated points similar to images produced when

inducing pepper noise.

We also denote with Pd(l), Pv(l) and Pw(l) the histogram distributions of lengths of diagonal,

vertical and white vertical lines, respectively. Hence, the total number of these lines are correspond-

ingly Nd =
∑

l≥dm
Pd(l), Nv =

∑
l≥vm

Pv(l) and Nw =
∑

l≥wm
Pw(l), where dm = 2, vm = 2

and wm = 1 define the minimum lengths for each type of line [84].

All these structures reflect the recurrence dynamics of the system under analysis by the diverging

patterns for each system type. In Figure 2.5 1 we can see four different type of systems that are captured

from their one-dimensional time-series representations and how their corresponding RPs look like. It

is evident that RPs reflect the dynamics of each type of system by different structures on lines and

points. Noisy data would also result in RPs with uncorrelated structure (noisy images). Periodicity is

also evident in the second image for both frequencies by watching the parallel to the diagonal lines

which reflect the co-evolution of the orbits of the PS’s trajectories for subsequent time-frames. Finally,

the autoregressive process and determinism of the time-series are evident by the existence of extreme

events around the binary plot by some areas which are activated and others who are not. Generally

speaking, the texture of these images are representative of the underlying system.

Figure 2.5: Recurrence Plots for Different Types of Systems. From left to right: random noise, pe-

riodic oscillations with two frequencies, deterministic chaotic system and autoregressive

process.

2.6 Recurrence Quantification Analysis (RQA)

As we have discussed in the previous Section 2.5 RPs reflect some properties of the systems under

analysis which are closely related to the recurrence dynamics which the system exhibits as evolving

in time. However, these images have could be used for qualitative analysis of the true identity of the

system but could be also utilized for extracting quantitative measurements in order to discriminate the

underlying systems which will be analyzed.

2.6.1 RQAMeasures

The measures we extract from the RPs are based on patterns from diagonal, vertical lines similar to

the definitions of the previous Section 2.5. According to this we define some RQA measures which

will be extracted from each N ×N RP and will be used in this work.

Recurrence Rate (RR): which is a measure of the density of points in the RP. RR defines the

1 Figure was found in: https://en.wikipedia.org/wiki/Recurrence_plot
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probability that a similar state recurs to its neighbourhood in PS.

RR =
1

N2

N∑
i,j=1

Ri,j (2.40)

Determinism (DET): the ratio of diagonal lines of at least length lmin to the total number of

points of the RP. Processes with less correlated time-series or or time-series with chaotic behavior

would exhibit very short diagonals on their RPs. On the other hand, purely deterministic processes

would lead to longer diagonals and less isolated points on their RPs.

DET =

∑N
l=dm

lPd(l)∑N
l=1 lPd(l)

(2.41)

Max Diagonal Length (Lmax): the maximum length of a diagonal line found. Lmax reflects the

inverse of the exponential divergence of the trajectories of the PS. For longer diagonals. If the trajec-

tories of the PS are diverging fast then we expect to see shorter diagonals structures and consequently

lower values for Lmax.

Lmax = max({li}Nd
i=1) (2.42)

Average Diagonal Length (L): the average length of all diagonal lines found on the RP. Intu-

itively, a diagonal line of length l means that trajectories are co-evolving during l samples but they
correspond to different times of the system evolution. These lines indicate how different trajectories

diverge during the evolution of the system and as time passes by. This average length is actually the

mean time that we can predict the next recurrence of states from the state we observe now.

L =

∑N
l=dm

lPd(l)∑N
l=dm

Pd(l)
(2.43)

Diagonal Entropy (DENTR): refers to the Shannon entropy of the probability of finding a diag-

onal line of length exactly equal to l. This entropy of diagonal lines reflects the complexity of the RP.
Hence, we would expect that for unvoiced speech segments or white noise regions this value would

be close to zero as well as the complexity of the system under analysis.

DENTR =

N∑
l=dm

Pd(l)

Nd
ln(

Nd

Pd(l)
) (2.44)

Laminarity (LAM): the ratio of vertical lines of at least length umin to the total number of points

of the RP. These vertical structures represent the existence of laminar phases that the underlying system

exhibits without indicating the time-periods which they occur.

LAM =

∑N
l=vm

lPv(l)∑N
l=1 lPv(l)

(2.45)

MaxVertical Length (Vmax): the maximum length of all vertical lines found on the RP. Indicates

the maximum time-period that the underlying system will stay in a laminar state.

Vmax = max({li}Nv
i=1) (2.46)

Trapping Time (TT): the average length of all vertical lines found on the RP. Reflects the mean

time of the laminar phases of the system recurring under the specified frame of analysis.

TT =

∑N
l=vm

lPv(l)∑N
l=vm

Pv(l)
(2.47)
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Vertical Entropy (VENTR): refers to the Shannon entropy of the probability of finding a vertical

line of length exactly equal to l. This entropy of vertical lines reflects the distribution of time-periods
for which the system abides in laminar phases.

V ENTR =
N∑

l=vm

Pv(l)

Nv
ln(

Nv

Pv(l)
) (2.48)

Max White Vertical Length (Wmax): the maximum length of all white lines found on the RP.

White areas or band are indicative of abrupt change of dynamics. Thus, longer white vertical lines

indicate the existence of rare events on the RP that might not be predicted using information from

previous trajectories of the PS.

Wmax = max({li}Nw
i=1) (2.49)

Average White Vertical Length (AWVL): the average length of all white lines found on the RP.

The average time-periods between abrupt changes of the system, from one state to the other.

AWV L =

∑N
l=wm

lPw(l)∑N
l=wm

Pw(l)
(2.50)

White Vertical Entropy (WENTR): refers to the Shannon entropy of the probability of finding a

white vertical line of length exactly equal to l. This entropy of white vertical reflects the distribution
of time-periods that abrupt changes of the dynamics of the underlying system occur.

WENTR =
N∑

l=wm

Pw(l)

Nw
ln(

Nw

Pw(l)
) (2.51)

2.7 Multidimensional Scaling (MDS)

2.7.1 Classical MDS

Classical MDS was first introduced in [99] and can be formalized as follows. Given the matrix con-

sisting of pairwise distances or dissimilarities {δij}1≤i,j≤N between N points in a high dimensional

space, the solution to Classical MDS is given by a set of points {xi}Ni=1 which lie on the manifold

M ∈ RL and their pairwise distances are able to preserve the given dissimilarities {δij}1≤i,j≤N as

faithfully as possible. Each point xi ∈ RL, 1 ≤ i ≤ N corresponds to a column of the matrix

XT ∈ RL×N . The embedding dimension L is selected as small as possible in order to obtain the

maximum dimensionality reduction but also to be able to approximate the given dissimilarities δij by

the Euclidean distances dij(X) = ||xi − xj ||2 =
√∑L

k=1(xik − xjk)2 in the embedded space RL.

The proposed algorithm uses a centeringmatrixH = IN− 1
N 1TN1N in order to subtract the mean of

the columns and the rows for each element. Where 1N = [1, 1, ..., 1] a vector of ones inRN space. By

applying the double centering to the Hadamard product of the given dissimilarities, the Gram matrix

B is constructed as follows:

B = −1

2
HT (∆�∆)H (2.52)

It can be shown (Ch. 12 [100]) that classical MDSminimizes the Strain algebraic criterion in Equation

2.53 below:

||XXT − B||2F (2.53)

The eigendecomposition of the symmetric matrix B gives us B = VVT and thus the new set of points

consisting the embedding in RL are given by the first L positive eigenvalues of , namely X = VL.

This solution provides the same result as Principal Component Analysis (PCA) applied on the vector
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in the high dimensional space [101]. Classic MDS was originally proposed for dissimilarity matrices

which can be embedded with good approximation accuracy in a low-dimensional Euclidean space.

However, matrices which correspond to embeddings in Euclidean sub-spaces [102], Poincare disks

[103] and constant-curvature Riemannian spaces [104] have also been studied.

2.7.2 Metric MDS

Metric MDS describes a superset of optimization problems containing classical MDS. Shepard has in-

troduced heuristic methods to enable transformations of the given dissimilarities δij [105], [106] but
did not provide any loss function in order to model them [107]. Kruskal in [108] and [109] formal-

ized the metric MDS as a least squares optimization problem of minimizing the non-convex Stress-1

function defined in Equation 2.54 shown next:

σ1(X, D̂) =

√√√√∑N
i=1

∑N
j=1(d̂ij − dij(X))∑N

i=1

∑N
j=1 d

2
ij(X)

(2.54)

where matrix D̂with elements d̂ij represents all the pairs of the transformed dissimilarities δij that are
used to fit the embedded distance pairs dij(X).

In essence, d̂ij = F(δij) where F is usually an affine transformation d̂ij = α + βδij for un-
known α and β. Additionally, monotone and polynomial regression transformations are employed for
nonmetric-MDS, as well as, a wider family of transformations [110]. Kruskal proposed an iterative

gradient-based algorithm for the minimization of σ1 since the solution cannot be expressed in closed
form. Assuming that ˆdij = δij the algorithm iteratively tries to find the coordinates of points X which

are lying in the low embedding space RL. Trivial solutions (X = 0 and D̂ = 0) are avoided by the

denominator term in Equation 2.54.

A weighted MDS raw Stress function is defined as:

σ2
raw(X, D̂) =

N∑
i=1

N∑
j=1

wij(d̂ij − dij(X))
2 (2.55)

where the weights wij are restricted to be non-negative; for missing data the weights are set equal to

zero. By setting wij = 1,∀1 ≤ i, j ≤ N one can model an equal contribution to the Metric-MDS

solution for all the elements.

2.7.3 SMACOF

SMACOF which stands for Scaling by Majorizing a Complex Function is a state-of-the-art algorithm

for solving metric MDS and was introduced in [111]. By setting d̂ij = δij in raw stress function

defined in Equation 2.55, SMACOF minimizes the resulting stress function σ2
raw(X).

σ2(X) =

N∑
i=1

N∑
j=1

wij(δ
2
ij − 2δijdij(X) + d2ij(X)) (2.56)

The algorithm proceeds iteratively and decreases stress monotonically up to a fixed point by optimiz-

ing a convex function which serves as an upper bound for the non-convex stress function in Equa-

tion 2.56. An extensive description of SMACOF can be found in [100] while its convergence for a

Euclidean embedded space RL has been proven in [112].

Let matrices U and R(X) be defined element-wise as follows:

uij =

{
−wij i 6= j∑

k 6=iwik i = j
(2.57)
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rij =


−wijδijd

−1
ij (X) i 6= j, dij(X) 6= 0

0 i 6= j, dij(X) = 0∑
k 6=i rik i = j

(2.58)

The stress function in Equation 2.56 is converted to the following quadratic form:

σ2(X) =
N∑
i=1

N∑
j=1

wijδ
2
ij − 2tr(XTR(X)X) + tr(XTUX) (2.59)

The quadratic can be minimized iteratively as follows:

T (X, X̂(k)) =
N∑
j=1

wijδ
2
ij − 2tr(XTR(X̂(k))X̂(k)) + tr(XTUX) (2.60)

X̂(k+1) = argmin
X

T (X, X̂(k)) = U†R(X̂(k))X̂(k) (2.61)

where X̂(k) is the estimate of matrix X at the kth iteration and U† is Moore-Penrose pseudoinverse

of U. Noticeably, the term
∑N

i=1

∑N
j=1wijδ

2
ij corresponds to a constant which is defined only by the

initial weight matrixW and the given dissimilarities δij . At iteration k the convex majorizing convex
function touches the surface of σ at the point X̂(k). By minimizing this simple quadratic function in

Equation 2.60 we find the next update which serves as a starting point for the next iteration k+1. The
solution to the minimization problem is shown in Equation 2.61. The algorithm stops when the new

update yields a decrease σ2(X̂(k+1))− σ2(X̂(k)) that is smaller than a threshold value.

2.8 General Pattern Search (GPS) methods

2.8.1 GPS formulation

The unconstrained problem of minimizing a continuously differentiable function f : Rn → R is

formally described as

x∗ = argmin
x∈Rn

f(x) (2.62)

Next we present a short description of iterative GPS minimization of Equation 2.62 based on [113,

114]. First we have to define the following components:

• A basis matrix that could be any nonsingular matrix B ∈ Rn×n.

• A matrix C(k) for generating all the possible moves for the kth iteration of the minimization
algorithm

C(k) = [M(k) −M(k) L(k)] = [Ψ(k) L(k)] (2.63)

where the columns of M(k) ∈ Zn×n form a positive span of Rn and L(k) contains at least the

zero column of the search space Rn.

• A pattern matrix P(k) defined as

P(k) = BC(k) = [BM(k) − BM(k) BL(k)] (2.64)

where the submatrix BM(k) forms a basis of Rn.
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In each iteration k, we define a set of steps {s(k)i }mi=1 generated by the pattern matrix P
(k) as shown

next:

s
(k)
i = ∆(k)p

(k)
i , P(k) = [p

(k)
1 , ..., p(k)m ] ∈ Rn×m (2.65)

where p
(k)
i is the ith column of P(k) and defines the direction of the new step, while ∆(k) configures

the length towards this direction. If the pattern matrix P(k) contains m columns, then m ≥ n + 1
in order to positively span the search space Rn. Thus, a new trial point of GPS algorithm towards

this step would be x
(k+1)
i = x(k) + s

(k)
i where we evaluate the value of the function f to minimize.

The success of a new trial point is decided based on the condition that it takes a step towards further

minimizing the function f , i.e., f(x(k)+ s
(k)
i ) > f(x(k+1)). The steps of a GPS method are presented

in Algorithm 1.

Algorithm 1 General Pattern Search (GPS)

1: procedure GPS_SOLVER(x(0),∆(0), C(0), B)

2: k = −1
3: do

4: k = k + 1
5: s(k) = EXPLORE_MOVES(BC(k), x(k), ∆(k))

6: ρ(k) = f(x(k) + s(k))− f(x(k))
7: if ρ(k) < 0 then
8: x(k+1) = x(k) + s(k) . Successful iteration
9: else

10: x(k+1) = x(k) . Unsuccessful iteration

11: ∆(k+1),C(k+1) = UPDATE(C(k), ∆(k), ρ(k))
12: while convergence criterion == False

To initialize the algorithm we select a point x(0) ∈ Rn and a positive step length parameter∆(0) >
0. In each iteration k, we explore a set of moves defined by the EXPLORE_MOVES() subroutine at
line 5 of the algorithm. Pattern search methods described using a GPS formalism mainly differ on

the heuristics used for the selection of exploratory moves. If a new exploratory point lowers the

value of the function f , iteration k is successful and the starting point of the next iteration is updated
x(k+1) = x(k) + s(k) as shown in line 8, else there is no update. The step length parameter ∆(k) is

modified by the UPDATE() subroutine in line 11. For successful iterations, i.e., ρ(k) < 0, the step
length is forced to increase in a determistic way as follows:

∆(k+1) = λ(k)∆(k), λ(k) ∈ Λ = {τw1 , ..., τw|Λ|}
τ > 1, {w1, ..., w|Λ|} ⊂ N, |Λ| < +∞

(2.66)

where τ and wi are predefined constants that are used for the ith successive successful iteration. For
unsuccessful iterations the step length parameter is decreased, i.e., ∆(k+1) ≤ ∆(k) as follows:

∆(k+1) = θ∆(k), θ = τw0 , τ > 1, w0 < 0, (2.67)

where τ and the negative integer w0 determine the fixed ratio of step reduction. Note that the gen-

erating matrix C(k+1) could be also updated for unsuccessful/successful iterations in order to contain

more/less search directions, respectively.

2.8.2 GPS Convergence

GPS methods under the aforementioned defined framework have some important convergence prop-

erties shown in [113, 114, 115, 116, 117] and summarized here. For any GPS method which satisfies

the specifications of Hypothesis 1 on the exploratory moves one may be able to show convergence for

Algorithm 1.
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Hypothesis 1 (Weak Hypothesis on Exploratory Moves): The subroutine EXPLORE_MOVES() as de-
fined in Algorithm 1, line 5 guarantees the following:

• The exploratory step direction for iteration k is selected from the columns of the pattern matrix
P(k) as defined in Equation 2.65 and the exploratory step length is∆(k) as defined in Equations

2.66, 2.67.

• If among the exploratory moves a(k) at iteration k selected from the columns of the matrix

∆(k)B[M(k) −M(k)] exist at least one move that leads to success, i.e., f(x(k) + a) < f(x(k)),
then the EXPLORE_MOVES() subroutine will return a move s(k) such that f(x(k)+s(k)) < f(x(k)).

Hypothesis 1 enforces some mild constraints on the configuration of the exploratory moves produced

by Algorithm 1, line 5. Essentially, the suggested step s(k) is derived from the pattern matrix P(k),

while the algorithm needs to provide a simple decrease for the objective function f . Specifically, the
only way to accept an unsuccessful iteration would be if none of the steps from the columns of the

matrix ∆(k)B[M(k) −M(k)] lead to a decrease of the objective function f . Based on this hypothesis
one can formulate Theorem. 1 as follows:

Theorem 1: Let L(x(0)) = {x : f(x) ≤ f(x(0))} be closed and bounded and f continuously differ-
entiable on a neighborhood of L(x(0)), namely on the union of the open balls

⋃
a∈L(x(0))

B(a, η) where

η > 0. If a GPS method is formulated as described in Section 2.8.1 and Hypothesis 1 holds then for
the sequence of iterations {x(k)} produced by Algorithm 1

lim
k→+∞

inf ||∇f(x(k))|| = 0

For the proof of this Theorem we refer the reader to [113].

As shown in [118] one can construct a continuously differentiable objective function and a GPS

method with infinite many limit points with non-zero gradients and thus even Theorem. 1 holds, the

convergence of ||∇f(x(k))|| is not assured. However, the convergence properties of GPS methods can
be further strengthened if additional criteria are met. Specifically, a stronger hypothesis on exploratory

moves Hypothesis 2 regulates the measure of decrease of the objective function for each step produced

by the GPS method, as follows:

Hypothesis 2 (Strong Hypothesis on Exploratory Moves): The subroutine EXPLORE_MOVES() as de-
fined in Algorithm 1, line 5 guarantees the following:

• The exploratory step direction for iteration k is selected from the columns of the pattern matrix
P(k) as defined in Equation 2.65 and the exploratory step length is∆(k) as defined in Equations

2.66, 2.67.

• If among the exploratory moves a(k) at iteration k selected from the columns of the matrix

∆(k)B[M(k) −M(k)] exist at least one move that leads to success, i.e., f(x(k) + a) < f(x(k)),
then the EXPLORE_MOVES() subroutine will return a move s(k) such that:
f(x(k) + s(k)) ≤ min

a(k)
f(x(k) + a(k)).

Hypothesis 2 enforces the additional strong constraint on the configuration of the exploratory moves,

namely that the subroutine EXPLORE_MOVES()will do noworse than produce the best exploratorymove
from the columns of the matrix∆(k)B[M(k)−M(k)]. Based on this hypothesis and by adding require-
ments restricting the exploration step direction and length for the GPS method, one can formulate

Theorem. 2 which is also presented here without proof.

Theorem 2: Let L(x(0)) = {x : f(x) ≤ f(x(0))} be closed and bounded and f continuously differ-
entiable on a neighborhood of L(x(0)), namely on the union of the open balls

⋃
a∈L(x(0))

B(a, η) where
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η > 0. If a GPS method is formulated as described in Section 2.8.1, lim
k→+∞

∆(k) = 0, the columns of

the generating matrices C(k) are bounded by norm and Hypothesis 2 holds then for the sequence of

iterations {x(k)} produced by Algorithm 1

lim
k→+∞

||∇f(x(k))|| = 0

The additional requirements specify that: 1) the generating matrix C(k) should be norm bounded in

order to produce trial steps from Equation 2.65 that are bounded by the step length parameter ∆(k)

and 2) lim
k→+∞

∆(k) = 0 that can be easily met by selecting Λ = {1} in Equation 2.67; this also guar-

antees a non increasing sequence of ∆(k) steps [113]. Although these criteria provide much stronger

convergence properties, we are faced with a trade off between the theoretical proof of convergence

and the efficiency of heuristics in finding a local optimum.

Both theorems 1 and 2 provide a first order optimality condition if their specifications hold. Al-

though the latter theorem premises much stronger convergence results, step-length control parameter

∆(k), provides a reliable asymptotic measure of first-order stationarity when it is reduced after unsuc-

cessful iterations [114].
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Chapter 3

Timescales of Decision for Speech Emotion Recognition

This chapter is an extended version of the published paper [2] in International Conference onAffective

Computing and Intelligent Interaction (ACII) which has taken place in San Antonio, Texas, USA,

October 23-26 2017. If the reader needs to cite parts of this chapter then it would be preferred to use

the following reference:

• Efthymios Tzinis and Alexandros Potamianos. “Segment-based speech emotion recognition
using recurrent neural networks.” In Affective Computing and Intelligent Interaction (ACII),

2017 Seventh International Conference on, pp. 190-195. IEEE, 2017.

3.1 Motivation

As we have previously discussed in Section 1.4 a speech signal encloses information in different

timescales. focusing on SER task we can easily infer that different sets of acoustic features could be

activated in different timescales. Hence, the performance of the SER system in use is sensitive to this

configuration. Although the timescale at which frame-based features are concatenated or statistical

segment-based features are extracted has substantial implications for SER performance, little progress

has been made towards this direction [53], [54]. Considering the expressiveness of RNNs when they

aremodeling series of feature vectors and their close relationwith the timescale which is correspondent

to the input feature vectors, it is essential to analyze the effectiveness of different timescales on RNN-

based SER systems. Specifically, the appropriate decision timescale from which RNNs can explore a

more abstract sequential representation either from local or global features.

3.2 Acoustic Features

In this section we will present some methods we used in order to extract the acoustic local and global

features sets for our approach, as described in Sections 3.2.3 and 3.2.4. Local features correspond

to raw values of LLDs and model each utterance using these feature vectors directly. On the other

hand, in order to extract global features we need to first extract LLDs and after that apply statistical

functionals over speech-segments. Now In this context, each emotional utterance would be modeled

using a sequence of one or more statistical representations of the included segments. In Section 3.2.1

we are highlighting some preprocessing strategies we follow and experiment on, prior to the feature

extraction process based on LLDs from frames. Additionally, in Section 3.2.2 we analyze the key

mechanism of Voice Activity Detection (VAD) for OpenSMILE and other frameworks. In order to

extract the aforementioned features we used OpenSMILE framework [119] which is also used in many

other works in literature as well.

3.2.1 Pre-Processing

Conventional acoustic feature extraction techniques are based on breaking the signal which is to be

analyzed into overlapping frames of (10ms-100ms) in order to extract the required LLDs [120]. For
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each speech frame we are applying a Hamming window of the same length as shown next.

sw(i) =

{
s(i) · w(i) c− W

2 ≤ i ≤ c+ W
2

0 otherwise
(3.1)

where sw corresponds to the windowed signal, c is the center index around which the window
function will be applied. The corresponding window has a length of W samples. It is easy to infer

that the corresponding frame would also have a length equal to W as all the other areas would be

zeroed. Although a variety of windows have been proposed for digital signal processing, in this work

we will use a hamming window which is defined as follows:

wH(i) =

{
0.54 + 0.46 · cos(π·iW ) c− W

2 ≤ i ≤ c+ W
2

0 otherwise
(3.2)

As well as a Gaussian window which could be approximated as shown next:

wG(i) =

{
G(i)− G(−0.5)[G(i+W

2
)+G(i−W

2
)]

G(−0.5+W
2
)+G(−0.5−W

2
)

c− W
2 ≤ i ≤ c+ W

2

0 otherwise
(3.3)

where G(·) is defined as the Gaussian in the next Equation:

G(i) = e(
i−W

4 +0.5

0.2
)2 (3.4)

Again,W defines the length of the specified window.

After the aforementioned procedure we can accumulate the windowed speech frames and process

them individually. In this context, we assume that these frames contain frequency information below

4kHz, which is an acceptable assumption for speech signals [6]. We use a pre-emphasis filter in order

to boost the information which is conveyed in higher frequencies and suppress the respective in lower

ones which could be areas of silence or noise. The pre-emphasis filtering is defined as shown next:

spe(i) = s(i)− α · s(i− 1) (3.5)

where α is considered constant and equal to 0.975 [23].
After this process we are able to perform various feature extraction methods which are based on

spectral, cepstral or voice quality features domain in order to get a static feature representation of

LLDs for each frame. The process we described above is similar for all the LLDs extracted in all

the subsequent sections of this thesis but the configurations of the frame length or the overlapping

between the frames could be changed. Thus, we will refer to this configuration by changing the

required parameters.

3.2.2 Voice Activity Detection

Silence frames also exist inside an a speech signal which might produce misleading values in their

feature vector representations and thus leading the SER system to falsely classify the whole utterance.

In order to nullify the effect of silence frames in the sequence of feature vectors we need a Voice

Activity Detection (VAD) mechanism. There are many implementations of VAD like WebRTC Voice

Activity Detector 1 or the one which also included inside OpenSMILE toolkit [119].

We can see the effectiveness of Google’s WebRTC when we assess it on utterances from the

BERLIN emotional speech database (EmoDB) [121] in Figure 3.1. In the aforementioned figure,

a variety of VAD masks produced under different selections of the parameters “Fd” and “Agg” are

displayed. These parameters correspond to the time in ms the frames will be processes and the ag-

gressiveness on which a frame would be considered a speech frame or a silent one. We can see that

1 Source code has been developed by Google and is freely available for download and non-commercial usage here:

https://github.com/wiseman/py-webrtcvad
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different parametrizations produce different VAD masks for each of the 4 utterances which are dis-

played. A longer window takes into account a wider and consequently a more smooth region of the

speech signal in order to infer if speech is included and thus it would be more likely to produce a

positive result. On the contrary, shorter frames might not contain speech at all and thus some regions

of non-speech might be reflected in the VAD mask although a consonant is emitted. An aggressive

technique would provide much more regions of voice because fricative and low-energy consonants

might be confusing for the VAD system. On the other hand, a less aggressive technique might produce

regions with non-speech as vocal ones. The latter result could be alleviated by introducing smoothing

filtering before the final result of the VAD mask.

(a) (b)

(c) (d)

Figure 3.1: WebRTC VAD evaluation on EmoDB utterances.

As we have mentioned earlier, in our work we utilize OpenSMILE in order to extract our acoustic

feature sets. To this end, we use two of the built-in VAD mechanisms. The first one is based on an

LSTM unit for the inference using pitch and energy LLDs on frame level and it has been trained on

a movie dataset. On the other hand, a more naive approach is to extract the probability of voice for

each frame and then threshold it in order to acquire the regions of speech inside the signal. Both

of these VAD architectures are depicted in Figure 3.2. It is evident that the LSTM-based method

suffers from the missing data of this dataset which is evaluated. Namely, the LSTM VAD has been

trained on different samples with presumably different noise and recording conditions rather than the

ones existing in EmoDB. This is why we select the more naive VAD mechanism which is based on

voicing probability and a threshold in order to infer the final mask for voice/silent regions of the

each emotional utterance. Moreover, we notice that frame level pitch descriptor is higher in the same

areas as probability of voicing. This indicates that even ad-hoc thresholds applied on the latter value
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can aptly describe regions of speech and discriminate between areas of silence. The selected voice

probability cut-off threshold is specifically set so high (0.85) in Figure 3.2, in order to provide the
time-series of the latter feature under a suboptimal value. It is clear that with a qualitative analysis of

a threshold we can aptly adjust the value of the threshold for our purposes.

Figure 3.2: OpenSMILE VAD mechanisms based on probability of voicing and pre-trained LSTM

We also present a brief analysis over some values of thresholds for the frame-level descriptor of

probability of voicing under the same utterance. In Figure 3.3 we can see the speech signal plotted

alongside its corresponding voicing probability feature series for all its frames of (30ms). As we raise

the threshold we can see that regions of speech are neglected and the produced VAD mask, based on

the value of probability of voicing, does not include them. In this context we believe that a threshold

value close to 0.35 would adequately satisfy our purpose. It should be noted, that this is another

heuristic method of finding a threshold where it could suffer significantly for other speech databases.

However, the purpose of this study is not related to search every parameter in the grid space emerging

from the feature extraction procedure and thus we will not analyze this subject further.

(a) voicing cut-off 0.35 (b) voicing cut-off 0.45 (c) voicing cut-off 0.6

Figure 3.3: OpenSMILE VAD based on different cut-offs from voice probability
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Table 3.1: Local Features

(RMS) Root Mean Square, (ZCR) Zero Crossing Rate, (HNR) Harmonics to Noise Ratio, (DDP)

Difference of Difference of Periods, (LSP) Line Spectral Pairs, (SHS) Sub-Harmonic Sum, (ACF)

Autocorrelation Function, (MFCCs) Mel Frequency Cepstral Coefficients.

Selected LLDs Including 1st Delta

RMS Energy X
Quality of Voice X

ZCR X
Jitter Local 7

Jitter DDP 7

Shimmer Local 7

F0 by SHS X
Loudness X

Probability of Voicing X
HNR by ACF X
MFCCs[0-14] X

Total: 25 Total: 22

3.2.3 Local Features

In this chapter we refer to Local features as the raw LLDs which are extracted on a frame-level in order

to model each emotional utterance. In this section we will provide a brief analysis on how different

LLDs are extracted and which of them will be used for our experiments. It is significant to note that

multiple LLDs are extracted in this work. In this section we are only considered about LLDs which

are used directly as an input to our SER models.

We break each emotional utterance in 30ms frames with 15ms step size and window them (see

Equation 3.1) with a Hamming window as defined in Equation 3.2. After windowing we also apply a

pre-emphasis filtering as defined in Equation 3.5.

We extract 25 LLDs for every frame and we also extract the derivatives for all of them (except

jitter and shimmer). The latter features already describe perturbation measures of frequency and am-

plitude instability, respectively. Thus they are closely related with the notion of the difference which

is the discrete equivalent of derivative (practically a delta value). Taking a delta of a delta value might

produce much noisy and extravagant values which can be catastrophic for the training process. How-

ever, for jitter we extract a similar measure which is computed as a difference of difference for the

value of jitter across different periods.

The selected LLDs are drawn from cepstral, spectral, energy and voice quality which are the most

prominent clusters of acoustic features. Specifically, we extract: Root Mean Square (RMS) energy

of the windowed frame, quality of voicing, Zero Crossing Rate (ZCR), Harmonics to Noise Ratio

(HNR) by using Autocorrelation Function (ACF) of the speech frame, jitter and jitter Difference of

Difference of Periods (DDP). Moreover, we extract: local shimmer, Fundamental Frequency (F0)

using Sub-Harmonic Sum (SHS), loudness, probability of voicing and Mel Frequency Band (MFB)

and MFCCs. The aforementioned selected features are also presented in Table 3.1 in a more compact

format. The second column indicates if we also append the delta value of the corresponding feature

between this value and the corresponding contained in the previous frame. A check-mark symbol X
indicates that the delta value is also appended in the final feature vector while an x-mark 7 reflects the

opposite.

Now every frame feature vector is endowed with 47 local-attributes. Because of the large num-

ber of local features, the most prominent LLDs are selected [61], [65], [27]. we refer the reader to

extenssive descriptions of how these aforementioned LLDs are extracted [19], [20], [120]. Conse-
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quently, each emotional utterance will be represented as a sequence of LLD-vectors extracted from all

frames included in it. Of course the length of this sequence of feature vectors would not be the same

across different utterances.

3.2.4 Global Features

In this chapter we refer to Global Features as the values of statistical functionals over speech segments

of any duration which are applied over LLDs extracted from frames. Obviously, the frame-level

feature extraction process would be similar to the one described in the previous section (see Section

3.2.3). After the feature extraction on a frame level we are applying sets of statistical functionals in

order to get the final sequence of statistical feature vector representations. The length and the stride

of the segments would define the number of feature vectors in each sequence. In the edge case where

the segment durations would be equal to the total duration of each utterance, then the sequence would

be deprecated into one feature vector. Generally speaking, a speech segment could be consider any

time interval inside an utterance which is shorter than the utterance itself and longer than a duration

corresponding to a typical frame of 10ms-100ms.

We follow a similar procedure with Schuller et al. [23] who extracted a robust set of emotional

features. The attributes for the corresponding speech segments are based on LLDs which are extracted

from frames, enriched with other LLDs as well. This extension of contained LLDs is applicable to this

case because of the temporal aggregation of these values using statistical functionals. We could not

include all these features in the previous set of Local features because of the increased dimensionality

of the input sequence which would be caused.

Different LLDs require different window sizes for proper extraction. In short, we extracted pitch

by using a Gaussian window of 60ms and 10ms step size, while for all the other LLDs we use a

Hamming window of 25ms and 10ms step size. This process is followed because pitch requires a
much wider window length for a good estimation of the prominent frequency of the speech signal.

We could not follow a similar approach in the previous section (Section 3.2.3) mainly because the

modeled sequence obtained by local features had to be extracted under a predefined window length.

Although in this approach we can easily extract LLDs using multi-scale approaches in order to adapt

each window size to a specific LLD.

To this end, we apply statistical functions on frame-level LLDs. In order to obtain the global

features per speech-segment we use a variety of statistical functionals which are applied over each

LLD value across the duration of the selected segment. The statistical functionals which are used

correspond to ranges, position of extreme values, percentiles and other statistical values which are able

to capture how each attribute or frame-level LLD is changing its value inside the selected segment.

An overview of the selected statistical functionals to be applied are presented in Table 3.2 alongside

with their corresponding grouping. We will use the symbol of each grouping in order to specify later

the set of the statistical functionals which are applied to each frame-level LLD.

Now that we have the sets of the statistical functionals which will be applied towards the extraction

of the statistical representations of the speech segments we are able to apply them over frame-level

LLDs as well as their corresponding delta-values. Namely, the delta values are first computed between

consecutive frames inside the speech segment which is to be analyzed and after that one statistical

value corresponds to a value from the sequence of frame-level LLDs in this segment.

We use similar frame-level LLDs as in the previous section 3.2.3 and after that we apply the

statistical functionals. However, in order to follow the feature extraction method described in [23],

we use the same LLDs and we excluded RMS short time energy, quality of voicing and ZCR. We

also appended other LLDs such as the first 8 Line Spectral Pairs (LSP), the first 8 coefficients from

the Mel Filter-banks (MFBs) and the envelope of the fundamental frequency F0. For some of the

aforementioned LLDs we also extract their deltas from their consecutive frames which is also evident

in Table 3.3. The procedure of feature extraction is similar to the one described previously while

only the last part alters here where the statistical functionals are applied for the last step of the feature

extraction procedure.

68



Table 3.2: Sets of Statistical Functionals for Global Features

Statistical Functions Set

position of maximum

A

position of minimum

arithmetic mean

standard deviation

skewness

kurtosis

linear regression coefficient 1/2

Quadratic regression error

Absolute linear regression error

quartile 1/2/3

quartile ranges 2-1/3-2/3-1

percentile 99

up-level time 75/90

percentile 1
B

percentile range 1-99

OnSets Number
C

Duration

Table 3.3: Global Features

(HNR) Harmonics to Noise Ratio, (DDP) Difference of Difference of Periods, (LSP) Line Spectral

Pairs, (SHS) Sub-Harmonic Sum, (ACF) Autocorrelation Function, (MFCCs) Mel Frequency

Cepstral Coefficients and (MFBs) Mel Filter-banks.

Selected LLDs 1st Delta Functional Sets*

Jitter Local 7 A

Jitter DDP 7 A

Shimmer Local 7 A

F0 by SHS X A,C

Loudness X A,B

Probability of Voicing X A,B

HNR by ACF X A,B

MFCCs[0-14] X A,B

LSP Frequency [0-7] X A,B

log MFB [0-7] X A,B

F0 Envelope X A,B

*Statistical Functional Sets (A,B,C) are defined in Table 3.2.

The list of the selected LLDs alongside with their statistical functional sets are displayed in Table

3.3. In the first column, the selected LLDs are listed which will be extracted from each frame. The

second column indicates if we also append the delta value of the corresponding feature between this

value and the corresponding contained in the previous frame. A check-mark symbol X indicates that

the delta value is also appended in the final feature vector while an x-mark 7 reflects the opposite.

Under the column “Functional Sets” we can see the corresponding symbol defined in the previous Ta-

ble 3.2 that indicates the respective set of statistical functions which will be applied on each sequence

of frame-level LLDs. As a result, every speech segment is now represented with a fixed-length vector

of 1582 features which is the same as the one proposed in [23]. For an utterance-based classification
method (see Section 1.3.3) the sequence of vectors would be deprecated into a single 1582-d vector.
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3.3 Approaches on Different Timescales

The core of our approach lies in investigating emotion decision scales for different combinations of

feature sets and timescales which they are aggregated. Consecutive frames with local features can

be concatenated and consequently change the emotion decision-scale. For example, consider that

a concatenation of 5 frames may represent a sad emotion but each frame independently might not.

Accordingly, emotion decision-scale is sensitive to the speech segment’s duration on which global

features are extracted. A speech segment can be considered as a timespan longer than a frame (e.g.

the whole speech utterance could serve as a segment). We focus on the impact that number of concate-

nated frames and segments’ duration have on SER systems which are based on RNN architectures and

especially LSTMs. Thus, we find the appropriate decision time-scale for local and global features,

respectively.

Next, we divide our approaches to three setups which are practically corresponding to the three

main subcategories of SER classification approaches as described in Section 1.3.3.

1. In the first one, we extract Local features on a frame-level (as described in Section 3.2.3) and

we try to infer the emotional utterance directly using the input sequence to feed our LSTM. This

approach is described in Section 3.3.1 and corresponds to the “discrete” approach following the

terminology of Section 1.3.3.

2. In the second one, we extract Global features (as described in Section 3.2.4) over various seg-

ment durations of an utterance and try to infer the emotional utterance using the input sequence

of segment statistics to feed our LSTM. This approach is described in Section 3.3.2 and corre-

sponds to the “Segment-Based” approach following the terminology of Section 1.3.3.

3. In the last one, we extract Global features (as described in Section 3.2.4) over the whole utter-

ance. Now we only have one feature vector that we use as input for an SVM classifier. This

approach is described in Section 3.3.3 and corresponds to the “Segment-Based” approach fol-

lowing the terminology of Section 1.3.3.

3.3.1 Frame-Based

We employ an LSTM RNN as described in [64] and train it with multiple timesteps which correspond

in concatenated LLDs. In essence, the input sequence for our LSTM consists of consecutive frame-

level features which are concatenated over a selected timescale. For example, if we want to aggregate

LLDs over a timescale corresponding to a phoneme then after the extraction of local features (see

Section 3.2.3) for each frame, we concatenate all frame-level LLDs using windows of 100ms. Specif-
ically, because the local features are extracted using frames of 30ms with 15ms overlap, each window
would be a concatenated vector of 6 frame-level LLD feature vectors.

Each window of concatenated LLDs would correspond to a timestep of the input sequence. These

fixed-length vectors of attributes correspond to different timesteps and vary between utterances. For

each sequence of timesteps, representing an emotional utterance, the expected output is an emotion

label (this is often called many-to-one training [66]). During the training process we train our LSTM

using instances from all the available emotions. Likewise in any supervised Machine Learning (ML)

problem, in the training process we are given the sequence of the concatenated LLDs {x0, ..., xT−1}
as input and a discrete emotion y which is the corresponding label. We consider T to be equal to the

number of concatenated LLD-vectors which are included in a specific utterance. By using multiple

input sequences and backpropagating the error of each prediction during the training process we are

able to train our RNN and test it on samples which were not used for training.

RNNs can adequately encode the information enclosed in a sequence of timesteps and produce

the expected output on the last timestep. In our case, information about the emotional content would

be encoded over all concatenated LLD feature vectors and on the final timestep, the model makes a

prediction about the most prominent emotion of a given utterance. When LSTM layers are stacked,
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Figure 3.4: Frame-Based Approach using LSTM trained on sequences of concatenated frame-level

LLDs

the output of every layer is fed as an input in the subsequent layer. Our LSTM has 2 hidden layers

and practically each layer activates the next one in this sequence. On top of the final timestep repre-

sentation there is a dense output layer which leads to a softmax layer in order to infer the emotional

category of the input sequence.

An overview of the whole process is presented in Figure 3.4. Each small blue square corresponds

to a vector of local features, extracted from a frame. The cyan rectangle containing multiple LLD-

vectors (6 in Figure) corresponds to a timestep of the input sequence xi. A red square with the con-

nections with the previous and the subsequent layers as well as the recurrent connections indicates an

unrolled LSTM unit over the timesteps of the input sequence. The activations of the last timestep are

given as input to a dense layer with a number of hidden nodes Nh equal to the number of emotional

classes. The prediction is based on the output of the latter layer (which is practically Nh posterior

probabilities corresponding to each emotional class) after the application of a softmax function in or-

der to get an one-hot prediction vector. The predicted class will be activated (1 in the respective entry
of the vector) while all the other classes would have zeros at their respective indexes.
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Figure 3.5: Segment-Based Approach using LSTM trained sequences of segment global statistical

features computed over

3.3.2 Segment-Based

An LSTM is trained in this approach which has the exact same architecture described in the previ-

ous Section 3.3.1. Although the differences between the two approaches revolve around the feature

extraction procedure and the formation of the input sequence. In the Segment-Based approach we

firstly create overlapping segments from the utterance of longer durations than the ones used for the

extraction of LLDs. Next, we align all the frames which belong to each segment and extract LLDs

similar to the ones described in the previous section. Specifically, each segment is represented with a

global feature vector after the global feature extraction process is applied (see Section 3.2.4).

The overall classification scheme with the breaking into segments, the global feature extraction

and the3 final classification using LSTM, is depicted in Figure 3.5. It is evident that the LSTM ar-

chitecture is similar to the one presented for the LSTM trained on local features from concatenated

LLDs (see Figure 3.4) but the input sequence formation has been altered. Specifically, each input

timestep corresponds to a 1582-dimensional vector as described in 3.2.4 which is represented with a
green rectangle. We notice that the timescale on which the decision of the emotional content is drawn,

after the encoding of the input sequence, is the exact same as the one under which the global features

are extracted.
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Figure 3.6: Utterance-Based Approach using SVM trained on utterance statistical features

3.3.3 Utterance-Based

In this approach we extract global features as previously mentioned (see Sections 3.3.2, 3.2.4) but

we do not break each utterance into overlapping segments. We apply statistical functionals over the

LLD-vectors sequence of the whole utterance. Now each emotional utterance is represented with only

one feature vector consisting of 1582 attributes. An SVM with a Radial Base Function (RBF) kernel

is built and trained on these feature vectors. The overall classification scheme is presented in Figure

3.6.

3.4 Experimental Setup

In this section we provide the experimental setup that we follow in our experiments in order to evaluate

our methods on different timescales. We describe the dataset we use and the evaluation scheme we use

in order to measure the performance of our systems in Sections 3.4.1 and 3.4.2, respectively. More-

over, we discuss the experimental framework for each of the three timescale-approaches, described in

the previous section 3.3, in Sections 3.4.3, 3.4.4 and 3.4.5.
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3.4.1 Dataset

For the experiments we use the IEMOCAPdatabase. This database contains audio and visual data from

5 sessions. In each session 2 people (one Male and one Female) perform an acted or an improvised

dialogue. For each utterance, 3 human annotators labeled it with a categorical emotion label. We

choose only the utterances for which at least 2 out of 3 annotators had similar opinion. Specifically, our

dataset comprises of audio signals from 4 emotional categories: angry (1103 utterances), sad (1084
utterances), happy (595 utterances) and neutral (1708 utterances). In total we have 4490 emotional
utterances. The emotions we kept are the same setup as other experimental setups in the literature

[66], [36], [61].

3.4.2 Performance Measurement

We employ a Leave One Session Out (LOSO) schema for testing our models, same as [66], [61], [36].

In each fold (5 in total), one session is used for test and the remaining 4 for train. For every session

we test, one speaker is used for validation set and the other for testing. We repeat the experiment by

reversing the validation and test sets. The average accuracy from the two speakers is included for the

final assessment. All features are normalized by the global mean and the standard deviation from the

samples of the dataset. Evaluation is performed by using:

1. Weighted Accuracy (WA) which is the percentage of correct classification decisions over the

test set

2. UnweightedAccuracy (UA) which is the average percentage of accuracies obtained over each

emotional class

The latter performance metric is used in order to provide a much more reliable accuracy metric

for an imbalanced dataset like the one we use here. For example, in the edge case that we have a

classifier that naively votes “neutral” for all emotional utterances, this is often calledmajority classifier

and is widely used for binary classification problems [4]. In this case, a majority classifier for the

aforementioned subset of IEMOCAP database (see previous Section 3.4.1) would yield a 38.04%WA

but only 25% UA.

3.4.3 LSTM Trained on Frame Level LLDs

As we have previously mentioned in Section 3.3.1 we train an LSTM with two hidden layers. In

Section 2.3.1 we offered an extensive explanation of the main LSTM block and how it can be stacked

in order to construct deeper architectures like the ones we use here. The two hidden layers have cell

sizes of 512 and 256 neurons each. A softmax layer for classifying the 4 emotional categories is placed
on top of the final timestep as it is shown in Figure 3.4. We have noticed that performance does not

increase when we add extra hidden layers. If we increase the number of neurons on each cell we also

increase quadratically the complexity of our model because of the connections between the subsequent

layers as well as the probability of overfitting of our model [122]. Overfitting is practically to tune

the parameters of our LSTM optimally for the training set and thus the discriminatory regions of the

learned parameters are closely tightened to optimize the regions of the training set. In this way, the

learned weights of our LSTM would loose their generalization attribute. Practically, the instances of

the test set would be classified wrongly because the discriminatory regions of the classes are optimally

trained for the training set but cannot be extended in order to include the instances of the test set.

In order to prevent overfitting in our LSTM, we chose to regularize our model by applying dropout

on the connections of our Neural Network (NN). Applying dropout on the connections of our NN can

be viewed as a procedure where a subset of NN’s weights is selected randomly and all units in this

set are dropped as well as their connections during training. It has been shown that dropout is an

efficient technique for preventing a NN from overfitting [123]. Nevertheless, applying dropout ratio

in RNNs is not as easy as all the other architectures such as DNNs and CNNs where only feed-forward
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connections are existent. In accordance with [124], we regularize our LSTM by applying a dropout

rate of Dr=0.5, only on the non-feedback connections of the LSTM. Furthermore, the performance of

our LSTM is not further increased when we try different dropout rates.

The model is optimized by minimizing the categorical cross-entropy metric, by using Nadam op-

timizer [125], which is basically Adam optimizer with Nesterov momentum. Base value of learning

rate is set to αbase = 0.002. The number of training epochs is set to 100 but early stopping is applied
when the loss function of the validation set does not improve for 10 consecutive epochs. The config-

uration which yields the best sum of WA and UA on the validation set is selected. Moreover, batch

normalization layers are discarded because of their undesirable effects on faster convergence when

they are applied on recurrence connections of an LSTM [126]. Batch normalization is essentially the

idea of using statistical values of the activations produced on the forward step between batches of

training or testing data. In each layer these statistics are used in order to z-normalize the activations of

the current layer and consequently lead all values to a range where gradients are not exploding neither

converge to zero. The samples used for training are not vast in order to use all these techniques for

faster convergence of our network. On the contrary, as we describe next, our main problem is how to

avoid overfitting because our LSTM converges immensely fast. Additionally, batch size is set equal to

400, in order to fit in the memory of our Graphical Processor Unit (GPU). The aforementioned LSTM
architecture was implemented using Keras [127] over a Theano [128] back-end.

After the extraction of LLDs as described in Section 3.2.3 we concatenate them in chunks corre-

sponding to longer durations (see Figure 3.4). Consecutive frame-vectors are concatenated in chunks

of different lengths and are fed in the LSTM. The length of each chunk is the number of consecutive

frame-vectors that it contains. Evaluation is performed for chunk-lengths that correspond to frame

(30ms), phoneme (90ms-300ms) and longer segments of speech (400ms-8sec) time-scales for deduc-
ing the emotional label. The learning rate for local extracted LLDs is given by the following equation:

αlocal =
αbase

NFrames
(3.6)

where the initial or base learning rate is set to αbase = 0.002 and NFrames correspond to the number

of frames which are included in each chunk of LLD-vectors.

This learning rate is employed because when we increase the number of LLDs in each chunk then

a reverse proportional decrease would be reflected on the length of the timesteps given as input to our

LSTM. In this context, the number of connections in our NN is stabilized and we reduce the number

of the timesteps. By doing this, we notice that our LSTM quickly overfits. Hence we employed the

aforementioned heuristic technique in order to avoid this problem on all the corresponding timescales

on which we concatenate the frame-level LLDs.

3.4.4 LSTM Trained on Statistical Features

For this experiment, global-statistical features are extracted as described in Section 3.2.4. We are

using segments of lengths (0.5s-8s) with an overlap ratio of OL=0.5 between them. The training

procedure which is followed here is the similar to the one described in the previous Section 3.4.3. The

architecture of the LSTM used is actually the same as the one we use for training with concatenated

frame-level LLDs, which is also evident by comparing the Figures 3.4 and 3.5. However, we select

a different method in order to adapt the learning rate for global-statistical features. Using the same

αbase = 0.002, the initial learning rate is given by the following equation:

αglobal =
αbase ·OL

100 · Tsegment
(3.7)

where Tsegment is the duration in seconds of each segment which is used to extract the global

features from.
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3.4.5 SVM Trained on Utterance Level Statistical Features

As described in Section 3.2.4 statistical features are extracted from the whole utterance which now

serves as the only segment. We use an RBF kernel and regularize gamma coefficient γ with the number
of features for every utterance. Namely:

γ =
1

1582
(3.8)

For an extensive explanation of how all these parameters configure the multiclass SVM classifier

we refer the reader to the previous Section 2.2.2. In order to optimize our model we select the grid

space of our SVM to be equal to the set of values for cost coefficient C which lie in the [0.001, 60]
interval. For every test speaker, the cost coefficient C value which yields the best sum ofWAand UA

for the corresponding validation speaker is chosen. All other hyperparameters are set to their default

values (we refer the reader to the exact LibSVM implementation [129]).

3.5 Experimental Results and Discussion

3.5.1 Optimal Timescales for LSTM Trained on Local Features

Results for the local feature training experiment are displayed on Figure 3.7. It is evident that a

concatenation of 5 frames’LLDs yields the best performance in bothWAand UAmetrics. This corre-

sponds to phoneme time-scale (100ms) decision for the emotional context. As we are increasing the

number of frames in every chunk, we change the decision scale to larger scales (1-8s) and notice a

gradual decline in both metricsWAand UA.We assume that this decline in performance metrics might

be occurring because LLDs misrepresent silent frames of speech and when they are concatenated for

long speech durations, they drive the RNN to misleading abstractions for the emotional manifesta-

tion of utterances. Moreover, when the decision is made on frame level, silent frames are mistakenly

characterized by the same emotion label as higher energy frames. It is also evident that because of the

imbalanced distributions of the emotional utterances we always achieve slightly better WA compared

to the UA.

We could assume that the peak for both performance metrics of WA 59.14% and UA 54.2%,
when training the LSTM with chunks of LLDs corresponding to time durations of 100ms consist of
an optimal decision timescale for this type of features. Presumably, when using chunks of only one

frame in each chunk, then we widen the length of the input sequence {xi}Ti=0 for a sequence with

T + 1 timsteps. This could cause the problem we have previously discussed in Sections 2.3.3 and

2.3.2 where the informational flow for the emotional dynamics are vanishing through the multitude

of timesteps leading to probably a much less resiliet SER system because of the loss when trying

to tune the weights using backpropagation on all these timesteps. Although, the core idea of our

approach is not to implement themost resilient RNN architecture with extramechanismswith attention

mechanisms or multiple RNNs in order to cope with this problem. These experimental results offer

a valuable qualitative insight on how we can obtain superior performance when we use simple RNN

models. To this end, the combination of the aforementioned mechanisms and architecture with the

optimal timescale of the input features could potentially lead to a robust estimate for the selection of

the SER model when using frame-level LLDs.

We should also not be oblivious to the fact that because the computation of the gradient and the

update of weights is performed sequentially through the timesteps of the input sequence it would

be much more convenient for the training process to have as much fewer timesteps as we could.

However, when the vector of each timestep is very high in dimensions we expect to see that the

network cannot aptly encode the dependencies between all those features in different timesteps with

the same number of trainable parameters. This is also evident from the results we present in figure

3.7 where the architecture of the RNN remains stable while we concatenate multiple frame-level LLD

vectors in each timestep. In the edge case of 533 concatenated frames we see that we obtain very low
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Figure 3.7: Weighted Accuracy (WA) and Unweighted Accuracy (UA) of LSTM trained on various

lengths of concatenated frames with local features

performance on both metrics WA and UAmainly because of the reason we mentioned earlier. On the

contrary, phoneme scales seem to be adequately preserve emotional information and provide a good

solution for the trade-off between the length of the modeling sequence and the accuracy of the model.

3.5.2 Optimal Timescales for LSTM Trained on Global Features

The results of the experiment where the LSTM is trained on global features are shown in Figure 3.8.

Results in Figure 3.8 demonstrate the effect of training an LSTM with global features over different

time-scales. Statistical features on syllable (0.5s) and utterance (6-8s) time-scales do not perform as

well as words (3-4 seconds) time-scales. Speech segments which downscale to phoneme level dura-

tions do not enclose sufficient emotional information when we represent them with global statistical

features. On the other hand, when we extract global features from nearly the whole utterance, poor

results are obtained. It is important to notice that if an utterance exceeds the time duration of the

selected segment we zero pad the former in order to create signal vectors with length at least equal

to the one of the selected segment. The misrepresentation of global features for longer durations are

probably due to the statistical misrepresentation of the whole emotion utterance when using so little in

numbers timesteps for our input sequences from which we want to infer the emotional content. If the

number of the input timesteps are relatively low then it would be impossible to learn the long and short

term dependencies between those feature vectors for each timestep. This is practically the same trade

off which we discussed earlier where we would like to obtain the least number of timesteps which can

facilitate the faster convergence but without leading to misrepresentations of the emotional content

for the utterance.

Deriving higher level statistical functions from multiple LLDs over speech segments, leads to a

more salient representation of underlying emotional dynamics. Moreover, by combining the efficacy
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Figure 3.8: Weighted Accuracy (WA) and Unweighted Accuracy (UA) of LSTM trained on global

features over various segments durations

of an LSTM to interpret the long-short term dependencies and the aforementioned statistical repre-

sentation over speech segments on word-timescales, we obtain the best performance in both WA and

UA metrics. This is another indication that the notion of choosing the appropriate timescales is key

for SER systems when they follow a segment-based approach with global features.

3.5.3 Comparison Between Timescales

As we have extensively discussed in previous sections we follow all three approaches of a more direct

LSTM trained on frame-level LLDs, a segment based approach on global features extracted from

speech-segments as well as an utterance based approach using SVMs. The results of the best models

for each category are presented in Table 3.4.

Table 3.4: Accuracy of Proposed Models on Various Timescales

Model Type of Features WA (%) UA(%)

SVM Statistical over the whole utterance 53.54 49.23

LSTM LLDs chunks of 90ms 59.14 54.2

LSTM Statistical over 3 seconds segments 64.16 60.02

It is evident that the segment-based approach provides a far more resilient SER model. Overall,

concatenation of multiple LLDs at SER tasks necessitates the existence of a mechanism that confines

the influence of non-emotional frames [60], [66]. The need of such a mechanism can be avoided

by employing statistical representation on a word time-scale. Intuitively, this resembles the human
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Table 3.5: Accuracy of Models in the Literature and Proposed Model

Model Type of Features WA (%) UA(%)

Best LSTM [35] Spectrogram 61.71 58.05

BLSTM-SUA [66] LLDs 59.33 49.96

BLSTM-WPA [65] LLDs 63.5 58.8

BLSTM-ELM [61] LLDs chunks of 250ms 62.85 63.89

LSTM Global features Section 3.2.4 over 3 seconds 64.16 60.02

Weighted Pooling Attention (WPA), Sub-Utterance Attention (SUA)

system of emotional deduction by taking into consideration information from a couple of words.

Our proposed LSTM model, trained on statistical features over a 3 seconds speech segment, ob-

tains a relative improvement of 5.02% in WA (59.14%→ 64.16%) and 5.82% (54.2%→ 60.02%) in

UAfrom the best performing LSTM trained directly on LLDs and 10.62% inWA(53.54%→ 64.16%)

and 10.79% (49.23%→ 60.02%) in UA from an utterance level decision SVM. (see Table 3.4).

3.5.4 Comparison with the Literature

Comparable literature models are presented in Table 3.5. Our model surpasses all attention based

RNNs: weighted pooling attention BLSTM [65] in both WA and UA by 0.66% and 1.22%, sub-

utterance attention based BLSTM [66] in both WA and UA by 4.83% and 10.06%, respectively. Au-

thors in [61] test their model only on improvised scripts which is a subset of the IEMOCAP database

and as it is demonstrated in [36] they tend to give higher scores inWAandUA.Moreover, they test only

on one of the speakers for each IEMOCAP session without specifying which one is used for the final

assessment. Despite that, our simple LSTM scores 1.31% higher inWA from their proposed BLSTM-

ELM model. Finally, the current state-of-the-art approach in [35] was obtained by exclusively using

the final session as a validation set and testing only on the other 4. We should also notice that in this

publication, authors have merged the excitement class with the happy instances which is beneficial in

terms of performance in UAmetric. Nevertheless, their proposed CNN architecture yields very sim-

ilar results (64.78% WA and 60.89% UA) to ours (64.16% WA and 60.02% UA). Irregardless of the

exclusion of sessions, our model clearly outperforms all simple RNN architectures (LSTM, BLSTM)

reported in the literature. Comparing with the best RNN-LSTM architecture reported in [35], we

obtain a relative improvement of 2.45% in WA and 1.97% in UA.
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Chapter 4

Modeling Nonlinear Recurrence Dynamics for Speech

Emotion Recognition

This chapter is an extended version of the paper [1] which it has been selected for oral presentation

at Interspeech 2018: Conference of the International Speech Communication Association which has

been planed to take place in Hyderabad, India, September 2-6 2018. If the reader needs to cite parts of

this chapter then it would be preferred to use the following reference (or the most updated one under

the same title and author specified):

• Efthymios Tzinis †, Giorgos Paraskevopoulos †, Christos Baziotis, and Alexandros Potamianos,
“Integrating recurrence dynamics for speech emotion recognition,” in Proceedings of INTER-

SPEECH, (in press), 2018.

†Both authors contributed equally in this work

4.1 Motivation

As it has already been mentioned previously in Section 1.4.2 nonlinear phenomena in speech pro-

duction mechanisms are key aspects of understanding the variations in speech generation process and

utilize them for our purposes. Specifically, highly nonlinear oscillations of the vocal folds constitute

analysis of the nonlinear dynamics of voice a key aspect to understand speech and emotions which the

latter might carry. Some of these phenomena like modulations oh the speech airflow and various tur-

bulences, octave jumps, noise concentrations as well as biphonation which is actually the existence of

sub-harmonics in the frequency domain encompass some of the most indicative facts that the linearity

assumption of the source-filter model might not hold. Consequently, the stationarity of the speech

frames in order to perform Fourier analysis is vital for the latter approach but questionable in general.

It might be particularly beneficial for SER systems to exploit this kind of nonlinear information in

order to achieve better performance.

Building upon capturing the nonlinear dynamics of speech in short-term windows, it is crucial

to underpin the process of nonlinear analysis from speech signals. Nonlinear analysis of a speech

signal through the reconstruction of its corresponding Phase Space (PS) lies in embedding the signal

in a higher dimensional space where its dynamics are unfolded [78]. The state-space is constructed

by using time-delayed versions of the signal, aligning them, concatenating them and then using the

concatenated vector as the reconstructed PS representation. The reconstructed PS of the signal is just

another approximation of the true dynamics of the signal for which we always try to best estimate the

parameters of the time-delay and embedding dimension in order to make a successful unfolding of the

underlying dynamics. Recurrent patterns of these orbits are indicative attributes of system’s behavior

(see discussion in Section 1.4.2 and especially Figure 1.5 in order to validate the recurrence dynamics

of a speech frame) and can be analyzed using Recurrence Plots (RPs) [96]. RPs are just local distance

matrices which are able to preserve the recurrence information of the system under analysis. To this

end, Recurrence Quantification Analysis (RQA) provides complexity measures for an RP which are

capable of identifying system’s transitions between chaotic and order regimes [84].
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4.2 Related Work

Despite the great progress in SER (see Section 1.3.4 for some state of the art approaches), most con-

temporary approaches completely neglect the nonlinear aspects voice dynamics for the sake of making

the feature extraction process less time consuming and following more direct approaches with mini-

mum speech processing involved. However, there are various works where nonlinear analysis using

PS and other methods have been utilized for SER which are briefly discussed below.

Apart from the PS analysis, other approaches follow different methods in order to extract nonlin-

ear features from emotional utterances. In [130] modulation spectral has been extracted in order to

capture both acoustic frequency, and the temporal modulation frequency components over the instan-

taneous phase and amplitude for SER tasks. The combination with conventional feature sets was quite

beneficial for the performance of the models. To this end, in [43] micro-modulation features from in-

stantaneous amplitude and phase have been investigated and evaluated on Berlin database [121] as

well as their combination with MFCCs. In the same context of modulations of speech signals Tea-

ger Energy Operator (TEO) has been utilized for SER [40]. TEO is a nonlinear operator applied on

time-series and especially speech signals. It has had many interesting applications in various fields of

digital signal processing as well as a simple and efficient definition and implementation. On of the

most successful applications of TEO has been the demodulation of AM-FM signals which has been a

fruitful area of research during the previous years [41].

Considering the classical analysis of time series using reconstructed phase spaces we can see a

vast amount of work which has been focused on how to apply this analysis for SER. In [131] a neural

network was trained using a set of handcrafted features which are drawn from the representation

of the signal in the reconstructed PS are used. The features used for training the NN are actually

statistical functionals applied on frame-level nonlinear descriptors. The descriptors used were some

of them which have been widely used in ASR [78]. Correlation entropy, Lempel-Ziv complexity,

the first minimum of the mutual information, Shannon entropy, Correlation dimension and the Hurst

exponent were used for discrimination between anger, fear and neutral emotional utterances from

Berlin database [121]. A qualitative finding of this study was that emotional utterances associated

with fear, and anger show more noisy and complex structures than the ones associated with neutral

state. Moreover, in [42] a variety of geometrical measures from reconstructed PS orbits have reported

significant improvement on SER when combined with conventional feature sets. Specifically from

each PS on frame-level some measures have been calculated such as: distance to the centroid of

the attractor, the length of trajectory legs, current angle between consecutive trajectory legs and the

distance of points to the identity line and after that sets of statistical functionals have been applied for

the final classification using SVM.

Although the latter approaches are quite interesting and provide insightful results about the non-

linear behavior of speech signals of emotional utterances, the recurrence properties of the latter are

still not utilized for SER. RPs from reconstructed phase spaces are able to capture some of the most

prominent aspects of the underlying dynamical system [84] and thus they could be used for the anal-

ysis of emotional speech utterances as well. However, the information from RPs have not yet been

utilized for SER tasks. As an exception to the previous statement in [132] RQAmeasures which are

extracted from RPs of reconstructed phase spaces of speech frames have been shown to be statistically

significant for the discrimination of emotions. Although the statistical analysis involved different pa-

rameters of the reconstructed PS and RQA measures used widely for analyzing RPs [79], an actual

SER experimental setup is missing. This is quintessential because the statistical significance shown

in a study could be quite misleading for a real case where one needs an autonomous system perform-

ing emotion classification. Specifically, the pair wise statistical analysis cannot substitute the true

experimental setup using all features and specific models which can be used in the real world.

On the contrary, the recurrence information from RPs and especially feature obtained by perform-

ing RQAhave been extensively used in many other areas and applications which are also related with

emotion recognition but not from speech. For instance, in [133] an analysis of time-series and com-

plex networks using recurrence plots has been presented. Complex network measures were shown

82



to represent structural aspects of dynamical systems that are complementary to those characterized

by other methods of time series analysis. Moreover, in [134] RQAwas utilized to measure structural

coupling and synchronization in natural and clinical verbal interactions. In [135] body motion data

were analyzed for finding deception using dynamical signatures extracted from RPs. their results in-

dicated that continuous fluctuations of deceptive movements in the upper face as well as the arms, are

characterized by dynamical properties of less stability and more complexity which was reflected in the

respective RQAmeasures. Additionally, in [136] RQA has been employed for identifying dynamical

patterns of brain stimuli and emotion classification of the respective ElectroEncephalogram Signals

(EEGs). Interestingly, PS trajectories display higher periodicity during exciting negative while in

positive emotions the underlying system is highly chaotic. The findings of the aforementioned study

suggests that RQA has the potential to discover differences of brain signal features in response to an

emotional stimulus which is quite intriguing if one thinks if this could also apply to emotional signals

from speech.

In contemporary approaches, various other approaches have been studied for the efficient extrac-

tion of the recurrence properties of signals. For instance, in [137] new RPs are extracted for different

frequency scales in order to analyze the recurrence properties of the input signal by utilizing a multi-

timescale approach. In other works, nonlinear recurrence information has also been extracted directly

from RPs without the utilization of RQA measures. Specifically, in [138] a CNN was trained using

RPs for general time-series classification task and shown that this method provides a resilient method

for classifying both stationary and non-stationary time-series.

4.3 Reconstructing Phase Spaces from Speech Signals

4.3.1 Unfolding of the True Dynamics of Speech

In general, it is assumed that speech signals since they are generated from such a complicated and

highly nonlinear system such as the human speech production mechanism (see Section 1.4.2) they

carry latent characteristics of the underlying dynamics of the generator system which is still unknown

[78]. In other words, it is assumed that the sampled speech signal {s(i)}Ni=1 which is a 1-dimensional
function of time could represent a projection of the true system {s?(i)}Ni=1 where s

?(i) ∈ Rd? ∀1 ≤
i ≤ N . We assume that d? corresponds to the dimensions of the vector which is the representative of
the true dynamical system under analysis. Essentially, we would like to reconstruct the dynamics and

invariant properties of the unknown system {s?(i)}Ni=1 by using only its one-dimensional projection

{s(i)}Ni=1.

Equivalently, we could gain a more intuitive insight for the concepts of the reconstruction of

the true dynamics by presenting a paradigm in real-life. Imagine a sphere with radius ρ lying in a 3-
dimensional space and then projecting it onto a 2-dimensional plane. This would result in a circle with
also radius ρ. If one could only see the projection in a 2-dimensional plane, it would not be possible
to understand that this projection corresponds to a sphere lying in a 3-dimensional space. Moreover,

if we project vertically a cup of tee with a circular bottom of radius ρ lying in a 3-dimensional space
onto the same plane and checking the resulting circle we would end up with an identical shape like

the one produced by the projection of the sphere. It would also be impossible to distinguish the initial

3-dimensional object from which this circle has been derived as its projection. Now imagine that the

initial 3-dimensional object represents the true dynamics of each type of system and the projection on

the two dimensional plane is what we can see. In this case, we have two types of systems: the cup

system and the sphere system but the observable representation is common (circle on the plane) and

we cannot be sure about which system generated this projection. Although, it would quite useful to

gain information about which object has been used for the projection with just observing projections

with nuance differences which can be utilized towards the determination of the corresponding original

system.

Going back to our purpose, we seek to disclose the true dynamical aspects of the speech production
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when emotions are in play. Purportedly, if we could capture dynamical aspects such as recurrence

patterns from the attractors of emotional speech frames and aggregate them we could build more

resilient SER systems. In this context, we need to find ways in order to be able to reconstruct, partially

at least, the true dynamics of the system by unfolding them in higher dimensions. It is evident that

this process is not trivial and careful consideration of all the variables for this reconstruction should

be made. As shown next we will define how we can reconstruct locally the phase space of each

speech-frame in order to use this information for extracting emotional content from the viewpoint of

dynamical signatures.

4.3.2 Definition

Given a speech frame with N samples {s(i)}Ni=1 we reconstruct its corresponding PS trajectory by

computing de time-delayed versions of the original speech frame by multiples of time lag τ and cre-
ating the vectors lying in Rde as specified in the Equation 2.22.

In order to reconstruct the PS of each speech frame we need to specify the two parameters of time-

lag τ and the embedding dimension de. In the following Sections 4.3.3 and 4.3.5 we will analyze fully
how these parameters are selected as well as some qualitative results by changing these parameters for

different durations of speech segments. In Section 4.3.6 we provide some PS visualization of various

segments.

4.3.3 Estimating time-lag parameter

In order to estimate the time-lag parameter τ for the number of samples of delay that will be enforced
for the input signal {s(i)}Ni=1 we are using the AMI criterion I(τ) (see definition in Section 2.4.2) in
order to select an adequate time-lag τ for our input signal. The function I(τ) : N → R would map

all selected integer values for τ to real numbers, indicating the corresponding mutual information for
each time-lag.

In Figure 4.1 we provide an example of AMI for a speech segment of 200ms. It is evident that for
small time-lags there is generally higher mutual information while for very big values we can see that

the opposite is true. Moreover, the periodicity inAMI plot corresponds to recurrence properties of the

speech-segment for certain time-lags which indicate not only linear but also nonlinear correlations.

Figure 4.1: Average Mutual Information for a speech-segment of 0.2 seconds
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4.3.4 Analyzing AMIs for Different Speakers and Emotions

In Figure 4.2 a variety of inverse AMI plots are displayed for different speakers and emotions for the

phoneme /ae/. The utterances used for this Figure are drawn from Surrey Audio-Visual Expressed

Emotion (SAVEE) Database [139] by following the same aliases for the speakers and available emo-

tions. We can see that the AMIS are decreasing (in the plot the inverse of AMIs is displayed) because

of the declining correlations of the input signals. The similarities among speakers or emotions of the

AMI function are evident. for example, for the speaker JK the sad and neutral expressions of /ae/

are much more similar than the other two emotions displayed. Additionally, the angry utterances for

both speakers DC and JK seem quite similar. However, these functions are extracted as measures

for estimating the parameters of the PS. Hence, these heuristic algorithms for estimating parameters

cannot be used directly for the classification of emotions.

Figure 4.2: Inverse AMI plots for Different Speakers and Emotions for the phoneme /ae/

In order to avoid extreme events of ultimate correlations of the values of {s(i)}Ni=1 and {s(i +
τ)}Ni=1 or cases where the two signals are completely uncorrelated. These two types of cases typically

correspond to values that are very small or very big, respectively. In order to avoid such extreme

cases, we select the time-lag τ based on the first local minima of the AMI I(τ). More formally, we

select the following time-lag:

τ = min{τ̂ | I(τ̂) < min(I(τ̂ + 1), I(τ̂) < I(τ̂ − 1))} (4.1)
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This process of selecting the first τ which locally minimizes theAMI function I(τ)would produce
different results for each length of a speech segment. Thus, if we try to break each utterance in frames

or segments we will work independently on each of these time-periods for the reconstruction of the

corresponding PS. thus it would be important to further analyze how the time-lag parameter would be

estimated using various durations for breaking into speech segments/frames.

In Figure 4.3 we have selected an angry utterance of 3 seconds and we run the previous algorithm
in order to estimate the optimal time-lag for the reconstruction of the phase spaces for various time-

durations of speech segments and frames. The initial signal was sampled at 44100 kHz because it
is also a sample of the SAVEE dataset. We have confined the search for the optimal τ by setting a

maximum τmax = 16. As the time duration of the segments increases, we can see that either τ = 1 or
τ = 16because the correlation in between the same signal is defined by a monotonous function which
is not creating any local minimum in such a small number of available time-lags to search in. However,

the most prominent results of this figure is that for the timescales which correspond to time-frames of

around 20ms (which are the ones which are also used as well in traditional speech processing [6]) the
distribution of the selected time lags is not dispersed over the two extreme values for time-lags. This

is indicative of the different time-lags that will be selected for different frames which might contain

silence periods, vowels or fricative sounds.

Figure 4.3: Selected time-lags for an angry utterance of 3 seconds for various time-durations

4.3.5 Estimating embedding dimension parameter

For this section wewill assume that the time-lag τ is also estimated as it has been shown in the previous
Section 4.3.3 or it is estimated otherwise. Now that we have set the time-lag τ we should also specify
the number of the multitude of the time-lagged vectors that we will use for the reconstruction of the
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phase space of the given signal {s(i)}Ni=1. This crucial because as we have previously mentioned

(see Sections 2.4.4 and 4.3) the unfolding dynamics of the input signal should aptly preserve the

invariant quantities of the original complex generator system s?. This is applicable only if the selected

dimensions de of the reconstructed phase space are able to unfold the dynamics without collapsing
trajectories of the approximated manifoldM.

For the estimation of the embedding dimensions we will use the False Nearest Neighbors (FNN)

heuristic method as it described in the previous Section 2.4.4. In order to gain an insight of how the

percentile of the false nearest neighbors changes as we add more dimensions for the reconstruction

of the phase space we plot these numbers for different lengths of speech-segments. In Figure 4.4,

we present the percentiles of the total number of the false nearest neighbors as we add an extra di-

mension to the reconstruction of the PS from the previous number of dimensions. This plot refers to

the segmentation of the initial emotional utterance of 3 seconds which was also used in our previous
experimentation for estimating the selected time-lag τ for each segment individually (see Figure 4.3).
Specifically, in Figures 4.4a and 4.4b we present the percentiles of the FNN for an estimation of the

time-lag by the first local minimum ofAMI and an ad-hoc selection of time-lag τ = 1, respectively. It
is quite clear that in the first method 4.4a the percentiles of the false nearest neighbors is quite smaller

than the ones presented in 4.4b because of the estimation of the time-lag parameter τ based on the

local minimum of AMI instead of using ad-hoc values. Noticeably, this statement holds for most of

the durations of segments presented. In both diagrams we can see that as we increase the number of

dimensions, the number of FNN converges to zero, which is in accordance with our intuition as well as

the mathematical description of the algorithm (see Section 2.4.4). Additionally, we can qualitatively

reassure our belief that for de = 3 we have an adequate number of FNNs which is smaller than 20%.

In general, we do not care about longer speech segments than the ones which correspond to the

frame-timescales cause this is the timescale from which we would like to extract the local PS orbits of

the speech frames. This is quite reassuring as our method indicates that we could actually reconstruct

the local recurrence dynamics from each speech frame by using only 3 dimensions for the reconstruc-
tion of its local PS. In other words, as the number of FNN does not decrease significantly by adding

an extra 4th dimension we can assume that the dynamics of the true system s? would be aptly un-

folded and described using an embedded manifoldM∈ R3. The latter result is also crucial as we can

visualize these unfolded dynamics.

4.3.6 Reconstructing Phase Spaces for Various Speech Segments

After we have set the parameters of each PS we want to approximate, we should proceed with the

actual reconstruction of this attractor. We employ the Equation 2.22 and we use the previously defined

parameters of time-lag τ and embedding dimensions de in order to represent each sample with a de-
dimensional vector lying on the reconstructed manifoldM∈ R3.

In Figure 4.5, a variety of different reconstructed phase space trajectories are displayed for various

phonemes of speech. From this digramwe can clearly see the reconstructed attractors as there are areas

that the trajectories are asymptotically evolving around. Each attractor also indicates the recurrence

underlying dynamics of each vowel that are actually very similar from a topological point of view

but completely different from the perspective of dynamical systems. In other words some topological

signatures such as the wholes of each attractor might remain the same between all 4 reconstructed
phase spaces but these structures are quite dissimilar from the viewpoint of how the orbits are evolving

through time. For example, in Figure 4.5b the states of the PS are evolving parallel to each other by

creating a “vortex” at the center of the attractor which could also be captured by a projection on a two-

dimensional plane. On the contrary, the reconstructed dynamics of Figures 4.5a and 4.5c have states

which are evolving in parallel but also vertically displaying a different aspect of dynamics than the

previous example. Finally, we can see that the reconstructed PS of Figure 4.5 has orbits that display

no harmonic oscillations or evolution. This is an indicative measure of a noisy dynamical system or

in the worst case scenario an unsuccessful unfolding of the dynamics of the underlying system.

In either case, it is evident that the recurrence properties of all these points lying on the recon-
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(a) Selected time-lag τ based on the first local minimum of AMI

(b) Ad-hoc selection of time-lag τ = 1

Figure 4.4: Percentiles of false nearest neighbors for various embedding dimensions and speech seg-

ments of different time-durations

structed manifoldM ∈ R3 are very indicative of the nature of each dynamical system and might be

exploited for extracting nonlinear dependencies for speech signals in general and consequently for

SER.
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(a) (b)

(c)
(d)

Figure 4.5: Reconstructed Phase Spaces of Speech Frames of Vowels

4.4 Recurrence Plots (RPs) from Speech Frames

After we have gained an insight of how the reconstructed PS orbits would look like on the embed-

ded space, we should consider ways for extracting useful information about them by exploiting the

emerging recurrence structures. One of the most appropriate tools in order to visualize the recurrence

properties that each PS exhibits are Recurrent Plots (RPs) [84]. In this short analysis of how RPs are

extracted from local reconstructed PSs, we will analyze both unthresholded or continuous RPs and

binary or thresholded RPs (see definition in Section 2.5).

In essence, the continuous diagrams are equal to the distance matrix under any specified norm of

the PS (e.g., Euclidean, Supremum, Manhattan). The continuity is inferred from the fact that the latter

diagrams are comprised of values which are continuous based on the selected metric. Specifically, we

would like to normalize the output of these continuous RPs in range [0, 1]. In order to do so we can
normalize each continuous RP by the maximum distance from all the pair-wise distances between any

two trajectory points x(i) and x(j). Formally, we notate the continuous RP with CR and we define

this symmetric matrix element-wise as follows:

CRi,j =
1− Dq(x(i), x(j))

max
1≤î,ĵ≤N−(de−1)τ

{Dq(x(̂i), x(ĵ))}
=

1− ||x(i)− x(j)||q
max

1≤î,ĵ≤N−(de−1)τ
{||x(̂i)− x(ĵ)||q}

(4.2)

where || · ||q is the norm used to define the distance between any two trajectory points x(i) and
x(j). Specifically, for q = 1, q = 2 or q = ∞ we compute Manhattan, Euclidean or Supremum
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norm, respectively. If we would like to extract the resulting binary RPs from the previous continuous

RPs we simply threshold these values depending on one of the aforementioned criteria for selecting

the thresholding value ε (see Section 2.6 for a more extensive discussion about various methods for
specifying the way of thresholding as well as the value of threshold).

(a) /ae/ Phoneme of Speaker JE in time domain for each emotion type

(b) Continuous Recurrence Plot for /ae/ Phoneme of Speaker JE for each emotion type

(c) /ae/ Phoneme of Speaker JK in time domain for each emotion type

(d) Continuous Recurrence Plot for /ae/ Phoneme of Speaker JK for each emotion type

Figure 4.6: Vowel /ae/ in time domain and its corresponding Recurrence Plot for different speakers

and their emotional manifestations
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4.4.1 From Phonemes To Recurrence Plots

We focus on the visualization of the Continuous RPs for speech-frames timescales that correspond to

phonemes and more specifically vowels that exhibit highly recurrence dynamics. In order to gain a

more intuitive insight of how these speech signals are represented on the time-domain and on their

continuous RPs images we need to compare them side by side.

In Figure 4.6, we compare the representations of /ae/ syllable for both time-domain and continuous

RPs representations for two speakers of SAVEE dataset [139] for 4 different emotions, namely: angry,
sad, neutral and happy which correspond to the respective columns of the grid of the images. It is

evident that for both speakers the /ae/ representation in time-domain is pretty much alike. This also

holds for the similarities of the time-domain representations between different emotions.

On the other hand, the continuous RPs representations of the speech signals is quite different for

both speakers JK and JE. We notice some interesting patterns on the texture of the resulting images

which are periodic with a pattern which is repeated across the diagonal line. It is limpid that the small

subgraph of these images which is repeated across the main diagonal exhibits a spatial periodicity

equal to the fundamental frequency of the voice (pitch). This is exemplary of the main problem

of RP representations which remain strictly correlated with the fundamental frequencies existing on

the speech signal. We can also see some more substructures which are displayed on these periodic

subgraph images and display the existence of subharmonic oscillations of voice which is often called

biphonation and is a highly nonlinear phenomenon on the vocal tract (see Section 1.4.2). However,

if we focus on the representations of continuous RPs for speakers JE and JK individually, it is quite

clear that the displayed structures are distinct among distinct emotions.

The displayed subgraph-image which is periodically repeated across the image has a structure

which is strongly related with the identity of the speaker. Namely, for speaker JE we see that this

substructure resembles a small fork while for the other speaker JK it is much more similar to a cactus.

If we could draw somemore general conclusions from these visualizations we could see that in general

the happy and the angry RP representations for both speakers seem to be quite more dense than the

other emotions for which /ae/ vowel is emitted. This could be indicative of the recurrence properties

of how the vowel is phoned across different emotional conditions and consequently a key to build a

better SER system by utilizing such information.

4.4.2 The Effectiveness of PS’s Parameters for the Extraction of RPs

We should also analyze the efficacy of the parameters of the reconstructed PS which might also be

reflected on the extraction of the corresponding RPs. Because the process is performed sequentially

for a given signal we need to be careful of how the parameters of each processing block are creat-

ing misleading representations of the subsequent processing blocks. In a previous study [42], it was

shown that the embedding dimension de is not a crucial parameter for the RP representations and

especially for the binary ones. Presumably, this happens because the RP representations capture the

recurrence properties of the time-series under study without even requiring the reconstruction of the

PS. However, the unfolding of the dynamics of the time-series using higher dimensions disentangles

the recurrence patterns which are displayed over RPs mainly because the periodic parts of the orbits

would be displayed more correlated comparing to the uncorrelated parts of the orbits if the image

is normalized. For instance, if we have de numbers which occur approximately with the same peri-
odicity as the time-lag τ , which we have already selected for the reconstruction of the PS, then the
corresponding entries of the continuous RPwould be much closer to one than before. This amplifying

of the edges of the image around entries with higher periodicity is further enhanced because other

points which in general are not correlated with each other, the unfolding of the dynamics by the PS

reconstruction pushes these differences to be much more evident. However, the time-lag parameter

of τ samples between the time-lagged versions of the signal which are used to embed the dynamics

play an important role in the final continuous RP representation.

In Figure 4.7, we use all the speakers from SAVEE database [139] for the same utterance and we
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segment the utterance in order to acquire the aligned frames for the excitation of vowel /ae/ under

different emotional conditions. Again, the selected emotional labels are the same the ones we used in

the previous analysis, namely: angry, sad, neutral and happy. All the continuous RP representations

are extracted using the orbits of a 3-dimensional PS of the input frame corresponding to the vowel /ae/.
If we do not use a time-lag (see Figure 4.7a) in order to embed the dynamics then the RPrepresentations

seem to bemuchmore correlatedwith each other for all points even thoughwe perform a normalization

with the longest distance of these local pair-wise distances. Moreover, we see that as we increment

the selected time-lag parameter tau we see that all the points are becoming much more uncorrelated

until only the most correlated patterns are close to one (brown areas on Figure 4.7d) with all the

others to be much closer to zero (blue areas on Figure 4.7d) than in the other Figures 4.7a, 4.7b and

4.7c. Presumably this is the indication that the true dynamics of the input signal still remain collapsed

without the appropriate embedding. If we further increase the time-delay then we expect to see ones

only in the of the main diagonal which is the opposite case. Hence, the time-lag parameter has a

significant impact on how the resulting RP will look like.

(a) Recurrence Plots using τ = 0 (b) Recurrence Plots using τ = 7

(c) Recurrence Plots using τ = 25 (d) Recurrence Plots using τ = 50

Figure 4.7: Extracting Continuous RPs for vowel /ae/ for all SAVEE speakers and their emotional

manifestations
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4.4.3 Emerging Chaotic Structures behind RPs of Phonemes?

As we have previously mentioned, the recurrence signatures of time-series are important for under-

standing the true underlying dynamics and identities of these signals. As we have previously men-

tioned in Section 2.5, these classes of systems could be divided to autoregressive, random noise,

periodic and chaotic dynamics. So the question is how the overall process of RP extraction works and

if we can actually acquire information from those recurrence patterns about the dynamics of the true

system s??

In Figure 4.8, the overall process of extracting a binary RP is displayed as well as a comparison

of two RPS which are extracted from different kind of systems. Specifically, we segment an angry

emotional utterance and isolate a 30ms speech frame as shown in Figure 4.8a that is included inside
the time-span of the excitation of vowel /e/. After that, we reconstruct the PS of the given frame as

explained in previous Sections 2.5 and 4.3 by estimating the parameters of time-lag τ and embedding
dimension de. In addition, we apply the equation of binary RPs (see Equation 2.36) by selecting an
ad-hoc threshold value of ε = 0.15 in order to produce the final binary image. This process until here
presents a full visualization of the whole sequential process of the nonlinear feature extraction which

is introduced in this Section.

We have also simulated a known system for its complex dynamics that it displays under different

configurations and we created its binary RP representation by using the evolution through time of

the states of the variables of the system. We have used Lorenz96 system [140] by using NLor = 50
variables for modeling it with an initial position of zero and a force of F = 5 units which is applied at
a specified position when the system is in equilibrium. If we let the system dynamics evolve through

time we expect to see a chaotic behavior after a few units of discrete time. The dynamical model of

Lorenz96 is formulated using the equations derived from the following equation:

dz(i)

dt
= [z(i+ 1)− z(i− 2)]z(i− 1)− z(i) + F (4.3)

If we want to simulate in a computer the above equation, we have to convert the time derivative

to discrete difference of consecutive by just inserting an index about the number of time units that

each variable exists. Namely, if we are at the tth evolution of the system the vector of variables would

be represented as zt. Moreover, the discretized equation would be similarly defined by the following

expression:

zt(i) = [zt−1(i+ 1)− zt−1(i− 2)]zt−1(i− 1) + F (4.4)

where the following initial conditions are preserved

z(i) = z(i mod NLor), i ∈ N ∩ [0, NLor] (4.5)

where a mod b defines the reminder from the integer division between the numbers a and b. Finally,
the corresponding binary RP with an ad-hoc threshold ε = 0.1 is displayed in Figure 4.8d. As it

has been shown the recurrence properties of this binary image displays small intermittent diagonals

parallel to the main diagonal which is indicative of the existence of chaotic regimes that the Lorenz96

system explores [140].

All in all, emerging small-scale structures based on lines of ones or zeros reflect the dynamic be-

havior of the system. For instance, diagonal lines indicate both similar evolution of states for different

parts of PS’s orbit and deterministic chaotic dynamics of the system [84]. This is also depicted in

Figures 4.8c and 4.8d when comparing them side by side. It is evident that both systems have diago-

nals parallel to the main diagonal with a fundamental frequency which is prominent for both systems.

In addition, these intermittent diagonal lines in both systems are indications of highly nonlinear phe-

nomena in the oscillations of both systems. Thus, RP representations reveal common aspects for the

dynamics of different systems using a similar display on the binary image. In other words, differ-

ent dynamical systems display similar behavior in terms of dynamics and recurrence properties which
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(a) Time-domain representation of the speech frame

(b) Reconstructed Phase Space (m = 3, τ = 7)

(c) Binary Recurrence Plot using a threshold of ε =
0.15 and a Manhattan norm for measuring the dis-

tance between points on the PS

(d) Binary Recurrence Plot of Lorenz96 system dis-

playing chaotic behavior

Figure 4.8: Extracting the RP of a 30ms frame contained in the excitation of vowel /e/ and under-
standing the underlying dynamics by comparison

they are displayed aptly on RP representations. In this case, the production of the human speech under

an “angry” emotional stimulation seems to resemble the dynamics of the theoretical Lorenz96 system

which displays chaotic nature in its dynamics.

4.5 Acoustic Feature Extraction

Likewise in the previous Chapter 3 we use acoustic feature sets in order to perform the final SER. We

extract the acoustic features for two methods of classification, namely: utterance and segment-level.

Both classification methods are identical to the ones we described in previous Sections 3.3.2 and 3.3.3

in terms of the feature extraction but in this setup we use different classification models. We introduce

the new nonlinear feature set (RQA feature set) based on RQAmeasures which is described in Section

4.5.2. As a baseline feature set we extract the same features as described in Section 3.2.4 and we call
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it “IS10” feature set [23]. Finally, the fused feature set is described in Section 4.5.3 and includes the

features from both the previously aforementioned feature sets.

4.5.1 Baseline Feature Set (IS10 Set)

We use the IS10 feature set [23], in which 1582 features are extracted corresponding to statistical

functionals applied on various LLDs. The extraction is performed for both segment and utterance

based approaches using openSMILE toolkit [119]. A further analysis on this feature set is provided in

a previous Section 3.2.4.

4.5.2 Proposed Nonlinear Feature Set (RQA Set)

The proposed RQA feature set for a given speech segment or utterance is extracted as described next.

First, we break the given speech signal into overlapping frames with an overlap ratio of OL =
0.5. For each frame we reconstruct its PS trajectory as defined in Equation 2.22. We select for the

reconstruction of each PS the time-lag parameter τ and the embedding dimension de as described in
Sections 2.4.2 and 2.4.4, respectively.

Next, for each PS orbit, its respective RP is computed as a binary image from the distances between

the points of the trajectory as explained in Section 2.5. In order to select the threshold value ε in order
to create its binary image, we use one of the following criteria based on: 1) a fixed ad-hoc threshold

value, 2) a fixed Recurrence Rate (RR) or 3) a fixed ratio of the standard deviation σ of points on the

PS trajectory (a more lengthy explanation of the criteria has been given in Section 2.5 but can be also

found in the literature [84]).

In order to quantify the complex structures of the RP, a list of RQA measures is extracted in

order to create a static-length RQA representation for each frame. The selected RQA measures are

presented in Table 4.1 while their corresponding qualitative analysis of these measures ahas already

been given in Section 2.6.1. Now each speech-frame is represented by a 12-dimensional feature vector
corresponding to the values of the aforementioned RQAmeasures.

Representations for speech-segments and utterances containing multiple frames are obtained by

applying a set of 18 statistical functionals over all 12-dimensional frame-attributes from the included

speech frames as well as their deltas. The selected 18 statistical functionals which are used are pre-
sented in Table 4.2. Thus, a 432 = 18 · 24 feature-vector is obtained for each speech-segment or

utterance of emotional speech.

4.5.3 Fused Feature Set (RQA + IS10 Feature Set)

Because the two feature sets (RQA, IS10) are extracted for any given duration of a speech-frame or

utterance they can be combined using a simple concatenation of the two statistical representations.

Namely, when we refer to the fused feature set (RQA + IS10 Feature Set) we would refer to a 2014-
dimensional feature vector which has been created by the aligned concatenation of the IS10 (1582
features) and RQA (432 features) feature vectors.

4.6 Classification Methods

In order to assess the performance of the proposed RQAand IS10 feature sets as well as their fusion, we

experiment on approaches on various time-scales. Specifically, we investigate both utterance-based

and segment-based SER as outlined below.

4.6.1 Utterance-Based

For each utterance we obtain its statistical representation by extracting the corresponding feature set

as described in Section 4.5. For the final emotion classification we employ an SVM with Radial
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Table 4.1: RQAMeasures extracted from each RP

Name Formulation

Recurrence Rate 1
N2

∑N
i,j=1Ri,j

Determinism

∑N
l=dm

lPd(l)∑N
l=dm

lPd(l)

Max Diagonal Length max({li}Nd
i=1)

Average Diagonal Length

∑N
l=dm

lPd(l)∑N
l=dm

Pd(l)

Diagonal Entropy
∑N

l=dm
Pd(l)
Nd

ln( Nd
Pd(l)

)

Laminarity

∑N
l=vm

lPv(l)∑N
l=vm

lPv(l)

Max Vertical Length max({li}Nv
i=1)

Trapping Time

∑N
l=vm

lPv(l)∑N
l=vm

Pv(l)

Vertical Entropy
∑N

l=vm
Pv(l)
Nv

ln( Nv
Pv(l)

)

Max White Vertical Length max({li}Nw
i=1)

Average White Vertical Length

∑N
l=wm

lPw(l)∑N
l=wm

Pw(l)

White Vertical Entropy
∑N

l=wm

Pw(l)
Nw

ln( Nw
Pw(l))

Table 4.2: Sets of Statistical Functionals for RQA Feature Set

Statistical Functions

min

max

arithmetic mean

median

variance

skewness

kurtosis

range

1st, 5th, 25th, 50th, 75th, 95th, 99th percentiles
25− 50, 50− 75 and 25− 75 quartile ranges

Base Function (RBF) kernel and one-versus-rest LR classifier. An extensive analysis as well as the

mathematical formulation of both of these models can be found in Section 2.2.2 for the SVM and in

Section 2.2.3 for the LR classifier. Cost coefficient C lies in the interval [0.001, 30] for both SVM
and LR models which is the only hyper-parameter to be tuned. Both models are implemented using

scikit framework [141].

4.6.2 Segment-Based

We break each utterance in segments of 1.0 seconds duration and 0.5 seconds stride, in accordance
with the segment-based approach of the previous Section 3.3.2. For each speech segment we extract

the feature sets described in Section 4.5 and as a result each utterance is now represented by a sequence

of statistical vectors corresponding to different time steps. This sequence is fed as an input to a Long

Short Time Memory (LSTM) unit for emotion classification. An extensive description of an LSTM

96



model can be found in 2.3.1. SER can be formulated as a many-to-one sequence learning where

the expected output of each sequence of segment features is an emotional label derived from the

activations of the last hidden layer [66].

Specifically, we employ an Attention-based Bidirectional LSTM (A-BLSTM) architecture [65]

where the decision for the emotional label is derived from a weighted aggregation of all timesteps. An

extensive analysis of this model can be found in Sections 2.3.4. Furthermore, the network topology

of a Bidirectional LSTM is described in Section 2.3.2 as well as how the attention mechanism works

when applied on top of an RNN architecture which has been analyzed in Section 2.3.3. We implement

this architecture in pytorch [142]. In addition, the grid space of hyper-parameters consists of the

following parameters:

• number of layers {1, 2}

• number of hidden nodes {128, 256}

• input noise [0.3, 0.8]

• dropout rate [0.3, 0.8]

• learning rate [0.0002, 0.002].

4.7 Experiments

We evaluate our proposed feature set under three different SER tasks described next. We also compare

our results with the most relevant experimental setups reported in literature. For all tasks, we report:

WeightedAccuracy (WA) and UnweightedAccuracy (UA) which are describe in the previous Section

3.4.2.

We test a variety of frame durations {20, 30, 50} ms from which RPs are computed. For the

configuration of the RPwe explore the sets of parameters detailed in Section 2.5. Specifically, we test

Manhattan, Euclidean and Supremum norms as well as multiple selection criteria for the threshold

value ε, depending on ad-hoc threshold setting, fixed recurrence rate and fixed σ. The respective ratio
parameter for the three aforementioned criteria lies in [0.05, 0.5].

After an extensive study of the RQA Feature set configuration parameters, we conclude that best

results on SER tasks are obtained using a frame duration of 20ms for extracting RPs. In addition, the
best performing parameters for the RP configuration seem to be a Manhattan norm with a threshold

setting depending on a fixed recurrence rate lying in [0.1, 0.2].

4.7.1 Datasets

The following databases are used in our experiments:

1. SAVEE: Surrey Audio-Visual Expressed Emotion (SAVEE) Database [139] is composed of

emotional speech voiced by 4 male actors. SAVEE includes 480 utterances (120 utterances per
actor) of 7 emotions i.e., 60 anger, 60 disgust, 60 fear, 60 happiness, 60 sadness, 60 surprise
and 120 neutral.

2. Emo-DB: Berlin Database of Emotional Speech (Emo-DB) [121] contains 535 emotional sen-
tences in German, voiced by 10 actors (5 male and 5 female). Specifically, 7 emotions are

included i.e., 127 anger, 45 disgust, 70 fear, 71 joy, 60 sadness, 81 boredom and 70 neutral.

3. IEMOCAP: IEMOCAP database [68] contains 12 hours of video data of scripted and impro-
vised dialog recorded from 10 actors. Utterances are organized in 5 sessions of dyadic interac-
tions between 2 actors. For our experiments we consider 5531 utterances including 4 emotions
(1103 angry, 1636 happy, 1708 neutral and 1084 sad), where we merge excitement and happi-

ness class into the latter one [27], [28], [35], [36].
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4.7.2 Speaker Dependent (SD)

We evaluate RQAfeatures on SAVEE and Emo-DB following the utterance-based approach described

in Section 4.6.1. In this setup we apply per-speaker z-normalization (PS-N) and split randomly utter-
ances in train and test sets. Accuracies using 5-fold cross-validation are summarized on Table 4.3 for
the best performing classifier hyper-parameter values.

The fused set achieves significant performance improvement over the baseline IS10 feature set for

both datasets. On SAVEE, WA is improved by 3.1% (77.1% → 80.2%) and UA by 3.4% (74.5% →
77.9%). We also achieve an improvement of 4.9% (88.4% → 93.3%) and 5.7% (87.2% → 92.9%)
for WA and UA, respectively on Emo-DB. The feature set used in [49] is extracted over cepstral,

spectral and prosodical LLDs similar to the ones used in IS10 [23]. Noticeably, they achieve similar

performance to ours when we use only IS10 but our fused set with LR outperforms on both Emo-DB

(5% in UA and 4.6% in WA) and SAVEE (4.5% in UA and 3.9% in WA). The proposed combination

of features and LR also surpasses a Convolutional SAE approach [37] in terms of WA by 5% on

Emo-DB and 4.8% on SAVEE. Presumably, RQA measures contain information closely related to

speaker-specific emotional dynamics not captured by conventional features.

Table 4.3: SD results on SAVEE and Emo-DB. (ESR) Ensemble Softmax Regression

Features Model
SAVEE Emo-DB

WA UA WA UA

IS10
SVM 77.1 74.5 88.4 87.2

LR 74.4 71.8 87.4 86.3

RQA
SVM 66.0 63.0 81.8 80.4

LR 64.4 61.1 81.9 79.9

RQA+IS10
SVM 77.3 75.5 90.1 88.9

LR 80.2 77.9 93.3 92.9

[37] Spectrogram SAE 75.4 - 88.3 -

[49] LLDs Stats ESR 76.3 73.4 88.7 87.9

4.7.3 Speaker Independent (SI)

Again, we follow the utterance-based approach described in Section 4.6.1 on both SAVEE and Emo-

DB datasets but we do not make any assumptions for the identity of the user during training. We use

leave-one-speaker-out cross validation, where one speaker is kept for testing and the rest for training.

The mean and standard deviation are calculated only on training data and used for z-normalization
on all data. From now on we refer to this normalization as Per Fold-Normalization (PF-N). Table 4.4

presents accuracies averaged over all folds for the best performing classifier hyper-parameter values.

In comparison with the baseline IS10 feature set, the fused feature set obtains an absolute im-

provement of 5.5% and 8.2% on SAVEE as well as 2.4% and 3.2% on Emo-DB in terms of WA and

UA, respectively. Furthermore, our fused set achieves higher performance on SAVEE (3.5% in WA

and 4.5% in UA) and slightly lower in Emo-DB compared to [49]. In [143] Weighted Spectral Fea-

tures based on Hu Moments (WSFHM) are fused with IS10 on utterance-level which is similar to our

approach. In direct comparison using the same model (SVM) we surpass the reported performance

in terms of WA by 2.5% and 0.4% on SAVEE and Emo-DB, respectively. In addition, both RQA and

IS10 sets achieve quite low performance on SAVEE. However, their combination yields an impres-

sive performance improvement of 5.5% (48.5% → 54.0%) in WA and 10.7% (43.1% → 53.8%) in
UA over IS10 when we use LR. Our results suggest that RQAmeasures preserve invariant aspects of

nonlinear dynamics occurring in emotional speech and are shared across different speakers.
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Table 4.4: SI results on SAVEE and Emo-DB. (ESR) Ensemble Softmax Regression

Features Model
SAVEE Emo-DB

WA UA WA UA

IS10
SVM 47.5 45.6 79.7 74.3

LR 48.5 43.1 76.1 71.9

RQA
SVM 45.6 41.1 70.9 64.2

LR 47.7 42.3 71.1 67.1

RQA+IS10
SVM 52.5 50.6 82.1 76.9

LR 54.0 53.8 80.1 77.5

[49] LLDs Stats ESR 51.5 49.3 82.4 78.7

[143] WSFHM+IS10 SVM 50.0 - 81.7 -

4.7.4 Leave One Session Out

In this task, we assume that the test-speaker identity is unknown but we are able to train our model

considering other speakers who are recorded in similar conditions. We evaluate on both utterance and

segment-based methods (described in Section 4.6.2) on IEMOCAP. Given our assumption, we treat

each of the 5 sessions as a speaker group [68]. We use LOSO in order to create train and test folds.

In each fold, we use 4 sessions for training and the remaining 1 for testing. For the testing session
we use one speaker as testing set and the other for tuning the hyper-parameters of our models. We

repeat the evaluation by reversing the roles of the two speakers. In the final assessment, we report

the average performance obtained in terms of WA and UA obtained from all speakers [27], [28], [36].

In order to be easily comparable with the literature we follow three different normalization schemes.

We use the aforementioned PS-N and PF-N schemes as well as Global z-normalization (G-N). In

G-N we calculate the global mean and standard deviation from all the available samples in the dataset

and perform z-normalization over them. Results on IEMOCAP for the three different normalization

schemes are demonstrated on Table 4.5.

Aconsistent performance improvement is shown for all combinations of normalization techniques

and employed models when the fused set is used instead of IS10. Specifically, for SVM the fused set

yields a relative improvement varying from 0.3% to 1.0% inWAand from 0.2% to 0.9% in UAunder

all normalization strategies. The same applies for LR (inWAfrom 0.8% to 1.0% and in UAfrom 0.3%
to 1.0% ) as well as for A-BLSTM (in WA from 0.1% to 0.7% and in UA from 0.2% to 0.7%). In
accordance with our intuition [2], a segment-based approach usingA-BLSTM surpasses all utterance-

based ones in WA from 3.4% to 8.4% and in UA from 3.8% to 6.8% for all normalization schemes,

when the fused set is used. This is really important as the introduced RQA set provides a resilient

feature representation of emotional utterances on a variety of time-scale approaches.

In [27] low level Mel Filterbank (MFB) features are fed directly to a CNN. In [36] a stacked

autoencoder is used to extract feature representations from spectrograms of glottal flow signals and

then a BLSTM is used for classification. We surpass both reported results by 0.2% in UA for [27] and

by a margin of 8.7% inWAand 8.5% in UAfor [36], respectively even with simple models. Compared

to a multi-task DBN trained for both discrete emotion classification and for valence-activation in [28],

we report 2.0% higher WAand 3.1% higher UA.We also report 4.6% higher UA and 1.9% lower WA

compared to CNNs over spectrograms [35]. We assume that this inconsistency in performance metrics

occurs because a slightly different experimental setup is followed where the final session is excluded

from testing [35].
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Table 4.5: LOSO results on IEMOCAP. (GFS): Glottal Flow Spectrogram, (SP): Spectrogram.

Features Model
PS-N PF-N G-N

WA UA WA UA WA UA

IS10

SVM 58.3 60.9 58.9 60.1 59.2 60.5

LR 57.5 61.2 54.6 57.9 53.5 57.5

A-BLSTM 62.0 65.1 62.6 65.0 62.8 65.0

RQA

SVM 52.9 54.6 53.1 53.8 53.1 53.7

LR 52.2 54.8 52.6 54.0 52.8 54.3

A-BLSTM 55.6 59.3 56.6 58.3 56.7 58.7

RQA + IS10

SVM 59.3 61.8 59.2 60.4 59.5 60.7

LR 58.3 62.0 55.6 58.7 54.5 58.7

A-BLSTM 62.7 65.8 63.0 65.2 62.9 65.5

[27] MFB CNN - 61.8 - - - -

[28] IS10 DBN - - - - 60.9 62.4

[35] SP CNN - - - - 64.8 60.9

[36] GFS BLSTM - - 50.5 51.9 - -
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Chapter 5

Pattern Search Multidimensional Scaling

This chapter is an extended version of the paper [3] which can be found online at https://arxiv.

org/abs/1806.00416. If the reader needs to cite parts of this chapter then it would be preferred to

use the following reference (or the most updated one under the same title and authors specified):

• Giorgos Paraskevopoulos †, Efthymios Tzinis †, Emmanuel-Vasileios Vlatakis-Gkaragkounis,
and Alexandros Potamianos, “Pattern Search Multidimensional Scaling,” arXiv:1806.00416,

2018.

†Both authors contributed equally in this work

5.1 Motivation

As we have previously discussed in Section 1.4, the features we use for all classification problems

could lead to huge vector representations which makes it extremely challenging to train our models in

terms of the time and memory which is required for the overall process. The same applies to our prob-

lem which is emotional recognition. In previous Sections 4.5.1, 4.5.2 and 4.5.3 we have seen that each

speech-segment or utterance uses vectors lying in R1582 (IS10 Feature set), R432 (RQA Feature set)

and R2014 (RQA + IS10 Feature set), respectively. In this context, we seek to find low-dimensional

representations which are able to preserve the initial pair-wise distances of the high-dimensional repre-

sentations. In this way, we seek to approximate a low-dimensional manifoldM∈ RL where L < 20
and we are still able to get the same results in terms of accuracy performance. In order to aptly describe

this low-dimensional representation which can capture the pair-wise correlations between the high-

dimensional vectors we need to also integrate the nonlinear dependencies of the input feature space.

This problem is known as non-metric multidimensional scaling (MDS) or nonlinear dimensionality

reduction (NLDR) task. The majority of these nonlinear dimensionality reduction algorithms are ac-

tually minimizing a loss function f . Given this minimization objective, they usually employ gradient-
based methods to find a global or a local optimum. In many situations, however, the loss function is

non-differentiable or estimating its gradient may be computational expensive. Additionally, gradient-

based algorithms usually yield a slow convergence; multiple iterations are needed in order to minimize

the loss function. Inspired by the recent progress in derivative-free optimization tools, we propose an

iterative algorithm which treats the non-metric MDS task as a derivative-free optimization problem.

5.2 Related Work

Some dimensionality reduction algorithms suppose that the low-dimensional representations of data

can be obtained using linear dimensionality reduction techniques like Principle Components Analysis

(PCA) [144] but this is not true when we deal with data for real cases such as SER. In real case

scenarios, such a linearity assumption may be too strong and can lead to misleading representations

of the input data. In this context, a significant progress has been made towards manifold learning

algorithm for taking into account the nonlinear structure of the input data.

Representative manifold learning algorithms include Isometric Feature Mapping (ISOMAP) [145,

146, 147, 148, 149], Landmark ISOMAP [150, 151],Locally Linear Embedding (LLE) [152, 153,
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154, 155, 156], Modified LLE [157] Hessian LLE [158, 159], Semidefinite Embedding [160], [161],

[162], [163], Laplacian Eigenmaps (LE) [164, 152, 165], Local Tangent Space Alignment (LTSA)

[166], Spectral Clustering [167], t-SNE [88] etc. ISOMAP uses a geodesic distance to measure the

geometric information within a manifold. LLE assumes that a manifold can be approximated in a Eu-

clidean space and the reconstruction coefficients of neighbors can be preserved in the low-dimensional

space. LE uses an undirected weighted graph to preserve local neighbor relationships. Hessian LLE

obtains low-dimensional representations by applying eigenanalysis on a Hessian coefficient matrix.

LTSAutilizes local tangent information to represent the manifold geometry and extends this to global

coordinates. Finally, SDE attempts to maximize the distance between points that do not belong in

a local neighborhood. In addition, a common nonlinear method for dimensionality reduction is the

kernel extension of PCA [168] which is also similar to the Spectral Clustering in which a Gaussian

Kernel element-wise is used and after that a K-means algorithm is applied in order to divide data

into clusters. Finally, t-SNE is well suited for the visualization of the learned manifolds (for 2D and

3D spaces) from high-dimensional data by iteratively minimizing a non-convex objective function

through gradient descent.

A wide class of derivative-free algorithms for nonlinear optimization has been studied and ana-

lyzed in [169] and [170]. GPS methods consist a subset of the aforementioned algorithms which do

not require the explicit computation of the gradient in each iteration-step. Some GPS algorithms are:

the original Hooke and Jeeves pattern search algorithm [171], the evolutionary operation by utilizing

factorial design [172] and the multi-directional search algorithm [173], [174]. In [113], a unified the-

oretical formulation of GPS algorithms under a common notation model has been presented as well

as an extensive analysis of their global convergence properties. Local convergence properties have

been studied later by [114]. Notably, the theoretical framework as well as the convergence properties

of GPS methods have been extended in cases with linear constrains [117], boundary constrains [115]

and general Lagrangian formulation [116].

5.3 Algorithm Description

5.3.1 Formulation

The key idea behind the proposed algorithm is to treat MDS as a derivative-free problem, using a

variant of general pattern search optimization to minimize a loss function. The input to pattern search

MDS is a N × N target dissimilarity matrix T and the target dimension L of the embedding space.

An overview of the algorithm shown in Algorithm 2 is presented next.

The initialization process of the algorithm consists of: 1) random sampling of N points in the

embedded space and construction of the matrixX(0) = [x
(0)
1 , x

(0)
2 , ..., x

(0)
N ] ∈ RN×L, 2) computing the

embedded space dissimilarity matrix D(0), where the element d
(0)
ij is the Euclidean distance between

vectors x
(0)
i and x

(0)
j of X(0), and 3) computing the initial approximation error e(0) = f(T,D(0)),

where e is the element-wise mean squared error (MSE) between the two matrices. The functional f
that we attempt to minimize is the normalized square of the Frobenius norm of the matrix T−D, i.e.,

f(T,D) = (1/N2)||T− D||2F . Equivalently one may express f element-wise as follows:

f(T,D) =
1

N2

N∑
i=1

N∑
j=1

(tij − dij)
2, where T,D ∈ RN×N (5.1)
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Algorithm 2 Pattern Search MDS

1: procedureMDS(T, L, r(0))
2: k← 0 . k is the number of epochs
3: X(k)← UNIFORM(N × L)
4: D(k)← DISTANCE_MATRIX(X(k))

5: e(k)← f(T,D(k))
6: e(k−1)← +∞
7: r(k)← r(0)

8: while r(k) > δ do
9: if e(k−1) − e(k) ≤ ε · e(k) then
10: r(k)← r(k)

2

11: S← SEARCH_DIRECTIONS(r(k), L)
12: for all x ∈ X(k) do

13: X∗, e∗← OPTIMAL_MOVE(X(k),x,S,e(k))
14: e(k−1) ← e(k)

15: e(k)← e∗

16: X(k)← X∗

17: k = k + 1

5.3.2 Search Directions

Following the initialization steps, in each epoch (iteration), we consider the surface of a hypersphere

of radius r around each point x
(k)
i . The possible search directions lie on the surface of a hypersphere

along the orthogonal basis of the space, e.g., in the case of 3-dimensional space along the directions
±x,±y,±z on the sphere shown in Figure 5.1. This creates the search directions matrix S and is

summarized in Algorithm 3

Figure 5.1: Sphere of radius r around point x
(k)
i and possible search directions

Algorithm 3 Define search directions

1: function SEARCH_DIRECTIONS(r, L)
2: S+← r · IL
3: S−←−r · IL
4: S← [S

+

S− ]
5: return S

5.3.3 Move Alongside the Optimal Direction

Each point is moved greedily along the dimension that produces the minimum error. At this stage,

we only consider moves that yield a monotonic decrease in the error function. Algorithm 4 finds the
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optimal move that minimizes e(k) = f(T,D(k)) for each new point x̃ and moves X in that direction.

Note that when writing s ∈ S, the matrix S is considered to be a set of row vectors.

Algorithm 4 Find optimal move for a point

1: function OPTIMAL_MOVE(X(k), x, S, e)
2: e∗ ← e
3: for all s ∈ S do

4: x̃← x+ s
5: ~X← UPDATE_POINT(X(k), x, x̃) . Update x point of X(k) with x̃
6: D← DISTANCE_MATRIX(~X)

7: ẽ← f(T, D)

8: if ẽ < e∗ then
9: e∗← ẽ
10: X∗← ~X

11: return X∗, e∗

5.3.4 Computation of the Error

The resulting error e∗ is computed after performing the optimalmove for each point inX(k). If the error

decrease hits a plateau, we halve the search radius and proceed to the next epoch. This is expressed

as shown next:

e(k) − e∗ < ε · e(k) (5.2)

where ε is a small positive constant, namely the error decrease becomes very small in relation to e(k).
The process stops when the search radius r becomes very small, namely r < δ, where δ is a small
constant, as shown in Algorithm 2.

5.3.5 Complexity

The complexity of the core algorithm is O(N2L). This is explained as: for each epoch we search
across 2L dimensions for N points. In each search we also need O(N) operations to update the

distance matrix as we move all points independently for each epoch.

5.4 Approximations and Optimizations

Next, a set of algorithmic optimizations are presented which improve the execution time or the so-

lution quality of Algorithm 2. Noticeably, in some cases both optimizations in time and evaluation

performance is achieved using these optimizations/approximations. We also present ways to improve

the execution time by searching for an approximate solution, as well as, discuss ways to utilize parallel

computation for parts of the algorithm.

5.4.1 Tolerance for “Bad” Moves

In the main algorithm we propose (see Section 5.3) we restrict the accepted moves so that the error de-

creases monotonically. This is a reasonable restriction that also provides us with theoretical guarantees

of convergence. Nonetheless, in our experimental setting, we observed that if we relax this restriction

and allow each point to always make the optimal move, regardless if the error (temporarily) increases

the algorithm converges faster to better solutions. The idea of allowing greedy algorithms to make

some “bad” moves in hope to get over local minima can be found in other optimization algorithms,

Simulated Annealing [175] being the most popular. To implement this one can modify line 13 in

Algorithm 2 to:
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X∗, e∗← OPTIMAL_MOVE(X(k), x, S, +∞)

5.4.2 Updating the Current Dissimilarity Matrix

In line 6 of Algorithm 4 we observe that we recompute the dissimilarity matrix after we make a move

for each point. This can be avoided because each move modifies only one point x
(k)
i , therefore only

the row d
(k)
i,: and column d

(k)
:,i of the dissimilarity matrix D(k) are affected. Furthermore only one

dimension l of the vector x
(k)
i is modified by the move, i.e., only element x

(k)
i,l of matrix X(k). In

detail, the element di,j that stores the dissimilarity between points xi and xj should be updated as

follows for the move from x
(k)
i,l to x

(k+1)
i,l for i 6= j:

d
(k+1)
i,j =

√(
d
(k)
i,j

)2 − (
x
(k)
i,l − x

(k)
j,l

)2
+
(
x
(k+1)
i,l − x

(k+1)
j,l

)2
(5.3)

5.4.3 Randomized Direction Selection

It follows from the need to search for the optimal move across the embedding dimensions L, that the
complexity of the algorithm has a linear dependency on L. A large value of L will harmfully affect

the execution time of the algorithm. An approximate technique to alleviate this problem is to perform

a random sampling of K < L directions over all possible directions in the L dimensional space.

After that, we define the optimal move for each point in the same way as before but by comparing the

errors on the loss function using only the selected K directions. In this way, we are able to select a

“good” direction instead of the optimal. Instead of 2L moves per epoch one would consider only 2K
directions in order to compute the new estimate of the error. In this case, the overall complexity per

epoch would be O(N2K) instead of O(N2L).
Presumably, there might be better strategies in order to select theK directions than the naive ran-

dom sampling of all possible directions in theL dimensional space. As the geometry of the embedding

space starts becoming apparent, after a few epochs of the algorithm, it makes sense to increasingly

bias the search towards the principal component vectors of the neighborhood of the point that is be-

ing moved. For instance, in Hooke and Jeeves pattern search algorithm [171] an increased step is

performed towards the direction which yielded a sufficient decrease on the loss function from the

previous epoch.

5.4.4 Estimating a Starting Radius

An important parameter for our algorithm is the starting radius r(0). This parameter controls how broad

the search will be initially and has an effect similar to the learning rate of gradient-based optimization

algorithms. Aconservative choice for initial radius will lead the algorithm to converge slowly to a local

optimum. Whereas, a high value would most probably cause the error to overshoot by simultaneously

making the algorithm harder to converge to a local minima. A simple technique to automatically find a

good starting radius is to use binary search between zero and an adequately large value. In particular,

we set the starting radius to an arbitrary value, perform a dry run of the algorithm for one epoch and

observe the effect on error. If the error increases we halve the radius. Otherwise we double it and

repeat the process. This process is allowed to run for a small number of epochs. The starting radius

found using this technique is a not too pessimistic or too optimistic estimate of the best parameter

value.

5.4.5 Parallel Implementation

Another way to boost the execution time is to utilize parallel computation to speed up parts of the

algorithm. In our case we can parallelize the search for the optimal moves across the embedding

dimensions using the map-reduce parallelization pattern. Specifically, we can map the search for
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candidate moves to run in different threads and store the error for each candidate move in an array

e = [e1, e2.., e2L]. In other words, the process of computing the optimal direction for each point is
completely unrelated to all the other points and thus it can be completely parallelized. After the search

completes we can perform a reduction operation (min) to find the optimal move and the optimal

error X∗, e∗. For our implementation we used the OpenMP parallelization framework [176]. The

parallel implementation of the algorithm led to a significant speedup in execution time by reducing it

to 25− 50% of the initial time required to run.

5.5 GPS Formulation of Pattern Search MDS

Pattern Search MDS belongs to the general class of GPS methods and can be expressed using the

unified GPS formulation introduced in Section 2.8. Next, we express our proposed algorithm and

associated objective function under this formalism.

First, we restate the problem ofMDS in a vectorized form. We usematrix with elements {δij}1≤i,j≤N

that expresses the dissimilarities between N points in the high dimensional space. The set of points

{xi}Ni=1 lie on the low dimensional manifoldM ∈ RL and form the column set of matrix XT . The

matrix X ∈ RN×L will be now vectorized as an one column vector as shown next:

xi = [xi1, ..., xiL]
T ∈ RL, 1 ≤ i ≤ N

z = vec(XT ) = [x11, ..., x1L, ..., xN1, ..., xNL]
T

(5.4)

Now our new variable z lies in the search spaceRN ·L. The distance between any two points xi and
xj of the manifoldM remains the same but is now expressed as a function of the vectorized variable

z. Namely, dij(X) = ||xi − xj || =
√∑L

k=1(xik − xjk)2 = dij(z). To this end, our new objective

function to minimize g is the MSE between the given dissimilarities δij and the euclidean distances
dij in the low dimensional manifoldM as defined in Equation 5.5 shown next:

g(z) =
1

N2

N∑
i=1

N∑
j=1

(dij(z)− δij)
2, z ∈ RN ·L (5.5)

Consequently, the initial MDS is now expressed as an unconstrained non-convex optimization

problem which is expressed by minimizing the function g over the search space of RN ·L (Equation

5.6). Specifically, the L coordinates for all N points on the manifoldM now serve as degrees of

freedom for our solution.

z∗ = min
z∈RN·L

g(z) (5.6)

Now that we have formulated the problem and the variable z in the appropriate format we can

match each epoch of our initial algorithm with an iteration of a GPS method. Therefore, the moves

produced by our algorithm form a sequence of points {z(k)}. Moreover, we are going to define the

matrices B,C(k),P(k) for our algorithm as in Equations 2.63, 2.64. The choice of our basis matrix B

is the identity matrix as shown in Equation 5.8.

ei = [0, .., 1︸︷︷︸, ..., 0]
index i

T , 1 ≤ i ≤ N · L (5.7)

B = IN ·L = [e1, ..., eN ·L] (5.8)

While the identity matrix is non singular and its columns span positively the search space RN ·L,
we also define M(k) as the identity matrix. In Equation 5.9 matrix Ψ(k) represents the movement

alongside the unit coordinate vectors of RN ·L. Nevertheless, our generating matrix Ĉ also comprises

of all the remaining possible directions which are generated by the set {−1, 0, 1}. In total, we have
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3N ·L−2 ·N ·L extra direction vectors inside the corresponding matrix L(k) as it is shown in Equation

5.10.

M(k) = M̂ = IN ·L ∈ ZN ·L×N ·L

Ψ(k) = Ψ̂ = [M̂ − M̂]
(5.9)

Ŝ = {−1, 0, 1}
L(k) = L̂

L̂ = {v̂ : v̂ ∈ Ŝ × ...× Ŝ︸ ︷︷ ︸
N ·L

∧ v̂ /∈ {e1, ..., eN ·L}}
(5.10)

According to Equations 5.9, 5.10, we construct the full pattern matrix P(k) in Equation 5.11 in a

similar way to Equation 2.64. For our algorithm the pattern matrix is is equal to our generating matrix

C(k) = Ĉ which is also fixed for all iterations. Conceptually, the generating matrix Ĉ contains all the

possible exploratory moves while a heuristic is utilized for evaluating the objective function g only
for a subset of them.

C(k) = Ĉ = [Ψ̂ L̂] = [M̂ − M̂ L̂]

P(k) = P̂ ≡ BĈ ≡ Ĉ
(5.11)

Finally, we configure the updates of the step length parameter for each class of both successful

and unsuccessful iterations as they were previously described in Equations 2.66, 2.67, respectively.

Recalling the notation of Section 2.8.1, ŝ(k) is the step which is returned from our exploratory moves

subroutine at kth iteration. For the successful iterates g(z(k) + ŝ(k)) < g(z(k)) we do not further

increase the length of our moves by limiting Λ = {1} as follows:

∆(k+1) = ∆(k), if f(z(k) + ŝ(k)) < f(z(k)) (5.12)

Similarly, for the unsuccessful iterations g(z(k)+ ŝ(k)) ≥ g(z(k))we halve the distance by a factor
of 2 by setting θ = 1

2 as it is shown next:

∆(k+1) =
1

2
∆(k), if f(z(k) + ŝ(k)) >= f(z(k)) (5.13)

A short description of our algorithm as a GPS method for solving the problem stated in Equa-

tion 5.6 follows: In each iteration, we fix the optimal coordinate direction for each one of the points

lying on the low dimensional manifold xi ∈ M, 1 ≤ i ≤ N . For each internal iteration of Algo-

rithm 4, if the optimal direction produces a lower value for our objective function g we accumulate this
direction and move alongside this coordinate of theRN ·L. Otherwise, we remain at the same position.
As a result, the exploration of coordinates for the new point xi+1 begins from this temporary position.

This greedy approach provides a potential one-hot vector as described in Equation 5.7 if the iterate

is successful or otherwise, the zero vector 0 ∈ RN ·L. The final direction vector ŝ(k) for kth iteration
is computed by summing these one-hot or zero vectors. At the kth iteration, the movement would be
given by a scalar multiplication of the step length parameter ∆(k) with the final direction vector in a

similar way as defined in Equation 2.65. This provides a simple decrease for the objective function g
or in the worst case represent a zero movement in the search space RN ·L. Regarding the movement
across ŝ(k), it is trivial to show that this reduction of the objective function g is an associative oper-
ation. In other words, accumulating all best coordinate steps for each point {xi}Ni=1 and performing

the movement at the end of the kth iteration (as GPS method formulation requires) produces the same
result as taking each coordinate step individually. Finally, pattern search MDS terminates when the

step length parameter ∆(k) becomes smaller than a predefined threshold.
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5.6 Convergence of Pattern Search MDS

Now that we have expressed pattern search MDS using the unified GPS framework we can also uti-

lize the Theorems stated in Section 2.8 in order to prove the convergence properties of the proposed

algorithm.

First of all, the objective function g is indeed continuously differentiable around all points of the
search space RN ·L except of the points where xi = xj . But this case can be handled by alterating

a bit the set of minimizers Z? in order to include the points of L(z0) where xi = xj , where g is not
differentiable [177]. In essense, the theorem will still hold as the objective function would be con-

tinously differentiable on the set of open balls
⋃

a∈L(z(0))
B(a, η) where η > 0. Moreover, the pattern

matrix P̂ in Equation 5.11 contains all the possible step vectors provided by our exploratory moves

routine. Thus, all of our exploratory moves are defined by Equation 2.65. In each iteration we eval-

uate the trial steps alongside all coordinates for all the points xi ∈ M, 1 ≤ i ≤ N . In our restated

problem definition (see Section 5.5), this is translated to searching all over the identity matrices IN ·L
and −IN ·L of the search space RN ·L. But from our definition of the first columns of our generating

matrix in Equation 5.9 this corresponds to checking all the potential coordinate steps provided by

Ψ̂ = [IN ·L − IN ·L]. Consequently, if there exists a simple decrease when moving towards any of
the directions provided by the columns of Ψ̂ then our algorithm also provides a simple decrease. This

result verifies that Hypothesis 1 is true for the exploratory moves. By combining the differentiabil-

ity of our objective function g and Hypothesis 1, Theorem 1 holds for pattern search MDS. Hence,

lim
k→+∞

inf ||∇f(z(k))|| = 0 is guaranteed.

Trying to further strengthen the convergence properties of the proposed algorithm, we note that

most of the requirements of Theorem 2 are met but we fail to meet the specifications of Hypothesis 2

for the minimum decrease provided by the the columns of Ψ̂. However, our generating matrix Ĉ =
[ĉ1, ..., ĉ3N·L ] is indeed bounded by norm because ||ĉj ||1 ≤ N ·L, 1 ≤ j ≤ 3N ·L. By halving the step
length parameter for the unsuccessful iterations we also ensure that lim

k→+∞
∆(k). In order to meet the

specifications of Theorem 2 we would need a quadratic complexity ofO((N ·L)2) in order to ensure
that each iteration provides the same decrease in function g as the decrease provided by the “best”
column of Ψ̂. This is formally stated at the second part of Hypothesis 2. If we modify our algorithm

in order to meet these requirements we would not be able to implement all the optimizations proposed

in Section 5.4 and the overall runtime would be dramatically increased.

5.7 Experiments

5.7.1 Tuning the hyperparameters

We present some guidelines on how to set the hyperparameters for the proposed algorithm and report

the values used in the experiments that follow. Specifically:

• The constant ε in line 9 of Algorithm 2 determines when the move radius r is decreased. By
setting ε to a value very close to 0, e.g., 10−10, the search will take more epochs but the solution

will be closer to the local optimum. If we relax ε to a value around 10−2, we can do a coarse

exploration of the search space that will produce a rough solution in a small number of epochs.

In our experiments we set ε = 10−4 that provides a good trade-off between solution quality

and fast convergence for the datasets used. However, the selection of this value has been made

empirically.

• We experimentally found that if L is large, we may only search 50% of the search dimensions

and still get a good solution, while significantly reducing the execution time. In this context,

we randomly sample a new search space for each epoch.
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• The proposed algorithm is relatively robust to the choice of the initial size of the move search

radius. However, the choice of r(0) does affect convergence speed. In this context, We show the

convergence for an example run of the classical Swissroll for various cases of a starting radius.

Evidently, the best-case seems to be r(0) = 32, a pessimistic one would be r(0) = 1 and an
optimistic one: (r(0) = 65536) starting radius in Figure 5.2.

Figure 5.2: Convergence plot for different starting radii

5.7.2 Manifold Geometry Reconstruction

The key assumption in manifold learning is that input data lie on a low-dimensional, non-linear man-

ifold, embedded in a high-dimensional space. Thus non-linear dimensionality reduction techniques

aim to extract the low-dimensional manifold from the high dimensional space. For our experiments we

use a variety of geometric manifold shapes and compare the proposed MDS to other, well-established

dimensionality reduction techniques.

One should note that MDS algorithms with Euclidean distance matrices as input, might not be

able to infer data geometry, thus we need to provide as input a geodesic distance matrix. This matrix

is computed by running Djikstra’s shortest path algorithm on the Nearest Neighbors graph trained

on the input data. For our experiments we sample 3000 points on 11 3D shapes and reduce them

to 2 dimensions using pattern search MDS, SMACOF MDS [111], truncated SVD [178], Isomap

[145, 146, 147, 148, 149], Local Linear Embedding (LLE) [152, 153, 154, 155, 156], Hessian LLE

[158, 159], modified LLE [157] and Local Tangent Space Alignment (LTSA) [166].

The geodesic distance matrices provided to pattern search MDS and SMACOFMDS is computed

using Djikstra’s algorithm on KNN (nearest neighbor) graphs (An extensive review of KNN algorithm

has been given in a previous section 2.2.4). We list the times it took each method to run. Noticeably,

pattern search MDS is faster than SMACOF MDS for all of the experiments we conduct.

We present 4 characteristic shapes selected from the ones we tested which are lying entangled

on R3 and we seek to find 2D manifolds which preserve the geometry of the data. In Figure 5.3 we

provide the results we obtain by the reconstructedmanifolds of all dimensionality reduction algorithms

as well as pattern search MDS, for each one of the selected 4 shapes.
On the first shape, we examine the classical swissroll, where a 2D plane is “rolled” in 3D space

and the target is to extract the original 2D plane. Results are presented in Figure 5.3a. We observe that

linear dimensionality reduction techniques like truncated SVD have trouble unrolling the swissroll.
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Also LLE introduces a lot of distortion to the constructed plane. Similarly, in Figure 5.3c, Truncated

SVD also has a problem because of the nonlinear entanglement of the data on 3D space. LLE also

has trouble because it introduces curvature to plane because of the local coordinate system which is

constructed for each point.

Next, we examine how the algorithms handle sparse distance matrices. To this end, we generate

a dataset of 3D non-overlapping clusters with a line connecting the centroids, where sparsity of the

distance matrix follows because the vast majority of the points are very closely sampled inside the

clusters. Agood mapping should preserve the cluster structure in lower dimensions. In Figure 5.3b we

see that the truncated SVD and the MDS family of algorithms (proposed, SMACOF, Isomap) produce

good results, while the LLE variants can’t handle sparsity in distance matrices very well. In particular

Hessian LLE and LTSA do not produce any output because of numerical instability. Specifically,

in Hessian LLE the matrices used for the computation of the null space become singular, while in

LTSAthe resulting point coordinates become infinite as we seek to perform eigenvalue decomposition.

Pattern searchMDS does not rely on eigenvalue computation or equation system solvers and therefore

it is numerically stable.

Finally, we showcase how the algorithms perform with transitions from dense to sparse regions

with a toroidal helix shape in Figure 5.3d. We can see that five methods, including pattern search

MDS, unroll the shape into the expected 2D circle, while truncated SVD provides a daisy-like shape.

Hessian LLE and LTSA collapse the helix into multiple overlapping circles.

5.7.3 Semantic Similarity

Construction of semantic network models consists of representing concepts (e.g., words, audio, etc.)

as vectors in a, possibly high-dimensional, spaceRn. The relations between concepts are quantified as

the distances, or inversely the cosine similarities, between semantic vectors. The semantic similarity

task aims to evaluate the correlation of the similarities between concepts in a given semantic space

against a set of ground truth similarity values provided by human annotators.

We evaluate the performance of the dimensionality techniques investigated also in Section 5.7.2

for the semantic similarity task. We use the MEN [179] and SimLex-999 [180] semantic datasets as

ground truth. Both datasets are provided in the form of lists of word pairs, where each pair is associated

with a similarity score. This score was computed by averaging the similarities provided by human

annotators. We consider these annotations as ground truth labels in order to evaluate and compare the

efficacy of our algorithm on how it preserves the similarity between word-embeddings on the learned

low-dimensional manifold. The initial high-dimensional semantic word vectors are 300-dimensional
GloVe vectors constructed by [181] using a large Twitter corpus. We reduce the dimensionality of the

vectors to the target dimension L < 300 and calculate the Spearman correlation coefficient between
the human provided and the automatically computed similarity scores. Results are summarized in

Table 5.1 for L = 10. We observe that LLE yields the best results for MEN, while pattern search

MDS performs best for SimLex-999. In addition, we observe that nonlinear dimensionality reduction

techniques can significantly improve the performance of the semantic vectors in some cases.

5.7.4 Image classification

The next set of experiments aims to compare the proposed algorithm to other dimensionality reduction

methods for KNN classification (see Section 2.2.4 for an extensive description of KNN nonparametric

classification) using a real image dataset. We choose to use MNIST as a benchmark dataset which

contains 70, 000 handwritten digit images. We selected a random subset of 1000 images and reduced
the dimensionality from 784 to 20. Performance of the models is evaluated on 1 − NN classifica-

tion and using 10-fold cross-validation. The evaluation metric is macro-averaged F1 score. Table 5.2
summarizes the results. Observe that dimensionality reduction using pattern search MDS and Trun-

cated SVD can improve classification performance over the original high-dimensional data. Pattern

110



(a) Swissroll (b) Clusters of Points in 3 dimensions

(c) Twin Peaks (d) Toroid-Helix

Figure 5.3: Comparison of pattern search MDS with other dimensionality reduction algorithms for

reconstructing 2D- manifolds from 3D artificial data

Dimensionality reduction Dimensions MEN SimLex-999

- 300 0.635 0.177

Pattern Search MDS 10 0.596 0.242

MDS SMACOF 10 0.632 0.221

Isomap 10 0.625 0.132

Truncated SVD 10 0.562 0.140

LLE 10 0.657 0.172

Hessian LLE 10 0.157 0.004

Modified LLE 10 0.643 0.158

LTSA 10 0.154 0.004

Table 5.1: Comparison of pattern search MDS with other dimensionality reduction algorithms for the

semantic similarity task with word-embeddings
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search MDS yields the best results overall. Hessian LLE, Modified LLE and LTSA did not run due to

numerical instability.

Method Dimensions MNIST 1-NN F1 score

Original MNIST 784 0.861

Pattern Search MDS 20 0.878

MDS SMACOF 20 0.857

Isomap 20 0.829

Truncated SVD 20 0.871

LLE 20 0.813

Hessian LLE 20 −
Modified LLE 20 −

LTSA 20 −

Table 5.2: Comparison of pattern search MDS with other dimensionality reduction algorithms for the

MNIST dataset

5.7.5 Speed of Convergence Evaluation

Next, we compare speed of convergence of pattern search MDS and MDS SMACOF, in terms of

numbers of epochs. To this end we will consider the experiments of Sections 5.7.2 and 5.7.3 and

present comparative convergence plots.

We see the convergence plots for the cases of swissroll, 3D clusters, toroid helix in Figure 5.4a, 5.4b

and 5.4c, respectively. The convergence plot for the word semantic similarity task is shown in Fig-

ure 5.4d. The plots are presented in y-axis logarithmic scale because the starting error is many orders

of magnitude larger than the local minimum reached by the algorithms.

For all cases, we observe that pattern search MDS converges very quickly to a similar or better

local optimum while MDS SMACOF hits regions where the convergence slows down and then re-

covers. These saw-like structure of the pattern search plots are due to the fact that we allow for “bad

moves” as detailed in Section 5.4.1.

5.7.6 Robustness to Noise

In this set of experiments we aim to demonstrate the robustness of pattern search MDS when the input

data are corrupted or noisy. To this end two cases of data corruption are considered: additive noise as

well as missing data.

Robustness to Additive Noise

In this set of experiments, we inject Gaussian noise of standard deviation (σ) to the input data and
use the dissimilarity matrix calculated on the noisy data as input to each one of the dimensionality

reduction algorithms evaluated.

Specifically, for the synthetic data of Section 5.7.2, we follow a qualitative evaluation by showing

the unrolled manifolds for high levels of noise. We perform dimensionality reduction for swissroll,

toroid helix and 3D clusters for increasing noise levels. We report results for the highest possible

noise deviation where one or more techniques still produce meaningful manifolds. Beyond these

values of σ the original manifolds become corrupted and the output of all methods is dominated by

noise. Figs. 5.5a, 5.5b, 5.5c show the results for noisy swissroll with σ = 0.3, 3D clusters with
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(a) Swissroll (b) Clusters

(c) Toroid-Helix (d) Semantic Similarity

Figure 5.4: Convergence comparison of pattern search MDS and MDS SMACOF for reconstruction

of geometrical shapes and semantic similarity task

σ = 0.4 and toroid helix with σ = 0.07 respectively. Overall, the pattern search MDS, followed by

SMACOF MDS and Isomap are more robust to additive noise.

For the experiments for noise injection for semantic similarity task, we inject different levels of

Gaussian noise in the original word vectors and evaluate the correlation on both MEN and Simlex-

999 datasets (same as the ones we used in the experiments with the clean word-embeddings in Section

5.7.3). Results are presented in Table 5.3. We observe that the relative performance of the algorithms

is maintained under noise injection, except for LLE which cannot handle high amounts of noise. LLE

is achieving the best correlation values on MEN at σ = 0.01 and σ = 0.1, while pattern search MDS

achieving the best performance on Simlex-999.

Robustness to Missing Data

In many real case scenarios a part of the data might not be available during training time and they

are missing. We need to estimate the robustness of pattern search MDS when a part of the data is not

available.

For this experiment, we create two new synthetic datasets, namely a dense and a sparse swissroll

with a hole as shown in Figure 5.6. In Fig 5.6a, we show the performance of the various algorithms

applied to a dense swissroll with a hole in the middle. As we can see only Hessian LLE, modified

LLE and LTSA are able to reconstruct the shape correctly, while MDS algorithms result in distortion

around the hole. This is due to the non-convexity we introduced to the space when adding the hole.

This distortion can still be observed (to a lesser degree) in the sparse variation shown in Figure 5.6b.
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(a) Swissroll + Gaussian Noise (b) Clusters + Gaussian Noise

(c) Toroid Helix + Gaussian Noise

Figure 5.5: Comparison of pattern search MDS with other dimensionality reduction methods for the

reconstruction of 2D- manifolds from 3D artificial data injected with Gaussian noise

For the sparse data case, we observe that LLE methods result in distortion around the edges.

These preliminary experiments indicate that LLE variations can handle better non-convexities in

input data, whileMDS variations can handle sparse data better. This is because LLEmethods are based

on inferring and combining local data geometry, while MDS methods are inferring global geometry.

5.7.7 Dimensionality Reduction for Speaker Independent SER

In this section, we apply pattern search MDS for reducing the dimensionality of the acoustic fea-

ture sets presented in Sections 4.5.1 (IS10 Feature set: 1582 Features), 4.5.2 (RQA Feature set 432
Features) and 4.5.3 (Fused Feature set: 2014 Features). We evaluate the proposed NLDR algorithm

compared to other algorithms for SER under Speaker Independent (SI) experimental setup on an ut-

terance level. For a more extensive description of this setup we refer to the previous Section 4.6.1.

For our experiments we use the EmoDB [121] emotional database as described in Section 4.7.1 con-
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Method Dimensions MEN SimLex-999

σ = 0.01 σ = 0.1 σ = 0.5 σ = 0.01 σ = 0.1 σ = 0.5

Original GloVe 300 0.635 0.619 0.431 0.178 0.169 0.077

pattern search MDS 10 0.593 0.597 0.462 0.249 0.315 0.204

MDS SMACOF 10 0.633 0.620 0.462 0.229 0.222 0.123

Isomap 10 0.622 0.613 0.497 0.134 0.124 0.079

Truncated SVD 10 0.562 0.551 0.380 0.140 0.136 0.039

LLE 10 0.659 0.649 0.369 0.175 0.166 0.052

Hessian LLE 10 0.156 0.144 0.023 0.005 0.04 0.018

Modified LLE 10 0.635 0.633 0.489 0.158 0.162 0.096

LTSA 10 0.155 0.141 0.020 0.06 0.04 0.002

Table 5.3: Comparison of pattern search MDS with other dimensionality reduction methods for se-

mantic similarity task using injected with noisy word-embeddings

(a) Swisshole (b) Spiral Hole

Figure 5.6: Comparison of pattern search MDS with other dimensionality reduction methods for

shapes with holes and non-convex regions

sisting of 7 emotions. We seek to lower the dimensions of these utterance-level representations by

simultaneously not loosing much of the descriptive nature of the input features. In order to identify

the true discriminatory ability of the input features we use a nonparametric model in order to assess

the learned low-dimensional manifoldM. Specifically, we use KNN (see Section 2.2.4) with various

numbers of neighbors in order to infer the label for an unknown sample. In essence in order to eval-

uate the accuracy of the low-dimensional manifold representations, we use a variety of values for the

parameter K of nearest neighbors that we take into consideration during testing. Namely we choose

K to lie in the set: K ∈ {1, 5, 9, 13, 17, 21}. Then the unknown label is inferred form the respective

labels of its neighbors. We report both performance metric of WA and UA similar to the previous

experimental setup presented in Section 4.7.3. All in all, for each experiment described below, we

run each dimensionality reduction algorithm without knowing the labels of the dataset. Next, for each

fold we consider one speaker as the test speaker and all the others for training. KNN is applied with

the training labels to be the ones of the speakers from the training set. We report the average accuracy

obtained from each fold when all the utterances from all speakers have been assessed without taking
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care of the number of samples for each speaker.

Using IS10 Feature Set

In Table 5.4, we present the results from a variety of dimensionality reduction algorithms when using

the IS10 feature set for SI SER for a variety of configurations of the target dimensionL and the number

of nearest neighborsK. IS10 Features under the column method, means that no other dimensionality

reduction is performed and KNN is applied directly over the 1582 feature space. For the row of the

matrix with zeros, the respective dimensionality reduction algorithm did not produce any results using

the default parameters. For each target dimension L ∈ {2, 10, 25} we notate with bold the highest
results obtained when testing all dimensionality reductions under a specified number of K selected

nearest neighbors. We also highlight with blue the best results that are obtained over all possible

configurations of dimensionality reduction methods and K selected nearest neighbors when looking

for the inference of an unknown sample from the test set.

It is evident that this feature set offers quite descriptive representations across different speakers

for recognizing emotional manifestations. Using KNN from this feature space produces results of up

to 69.9% inWAand 64.1% in UA. However, we can achieve similar performances to the initial feature

set by using only 10 dimensions or even surpass this performance on bothWAandUAby using only 25
dimensions, instead of using 1582, when we use the appropriate dimensionality reduction algorithm
before applying KNN. In 2 dimensions, the best performing algorithms for dimensionality reduction
are Spectral Clustering for WA and LLE for UA in most of the cases. The 2-dimensional manifolds
learned from the former method achieves a WA of up to 53.1% when using K = 13 while when we
search K = 17 neighbors over the manifolds of the latter method we obtain an accuracy of 47.4%
in UA. Moreover, when we increase the target dimensions to 10 we notice that the best results in

WA are again obtained when employing Spectral Clustering with K = 17 (67.4%) but also in UA
with K = 17 (61.2%). Although, for different values of K neighbors the best results are obtained

by different methods. When we further increase the target dimensions to 25, we acquire the best
performance in WA with K = 17 (71.4%) and in UA with K = 17 (65.5%) when using SMACOF.

The aforementioned performance scores surpass the best performance of the initial feature space of

1582 features by 1.5% and 2.8% in WA and UA, respectively. These results indicate that the input

features can be aptly described by manifolds of lower dimensions and still provide discriminatory

ability for SI SER.

Using RQAFeature Set

In Table 5.5, we present the results from a variety of dimensionality reduction algorithms when using

the RQA feature set for SI SER for a variety of configurations of the target dimension L and the

number of nearest neighborsK. The notation is similar to the one explained before.

Comparing the RQAfeature set with the IS10 feature set we conclude that the former provides less

information for discriminating emotions, which is similar to the findings in Section 4.7.3 for SI SER.

Using KNN from this feature space produces results of up to 56.9% inWAand 48.4% inUA. However,

we can easily surpass this performance on both WA and UA by using only 10 dimensions, instead of
using 432, when we use the appropriate dimensionality reduction algorithm before applying KNN. In

2 dimensions, the best performing algorithm for dimensionality reduction seems to be LLE for both

WAandUAmetrics in most of the cases except of some cases that spectral Clustering performs slightly

better. The 2-dimensional manifolds learned from the LLEmethod achieve aWAof up to 48.2%when

usingK = 13. On the other hand, Spectral Clustering provides the best results for UA (41.5%) when
we search K = 21 neighbors over the manifolds of the latter method. We should not be oblivious

to the fact that when we increase significantly the number of neighbors we do not provide any useful

results for the discriminatory ability of the features even if we achieve higher results. In essence, when

we dramatically increase the neighbors we search the data-representations might be collapsed with one
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Method L

Number of Nearest Neighbors

Weighted Accuracy (WA) Unweighted Accuracy (UA)

1 5 9 13 17 21 1 5 9 13 17 21

IS10 Features 1582 61.0 68.8 69.7 69.1 69.9 69.9 58.2 62.2 64.1 62.4 62.7 62.5

Pattern Search MDS

2

43.4 44.9 46.2 46.5 49.5 49.9 40.9 40.0 41.1 41.2 44.9 44.9

Modified LLE 40.4 44.7 46.3 48.5 49.6 49.7 40.3 41.1 42.1 44.4 44.6 42.8

Spectral Clustering 42.4 49.2 51.8 53.1 50.9 52.5 37.3 42.2 45.3 47.3 43.8 44.8

LTSA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MDS SMACOF 39.7 46.7 44.7 47.0 48.7 49.5 37.4 42.5 38.9 41.5 43.0 43.8

Truncated SVD 41.7 44.6 44.8 46.8 47.1 49.3 39.7 41.0 40.6 41.8 42.1 44.1

Hessian LLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISOMAP 44.6 48.4 49.7 50.2 48.7 49.0 41.2 43.5 44.9 44.0 41.3 41.6

LLE 41.3 47.6 51.1 51.2 51.6 52.1 38.6 44.0 45.7 46.3 47.4 46.1

Pattern Search MDS

10

55.2 64.5 64.7 63.2 65.7 64.3 50.5 58.4 58.6 57.7 59.9 58.0

Modified LLE 59.6 63.4 62.4 63.2 63.8 64.4 54.8 56.0 55.6 56.1 57.3 57.1

Spectral Clustering 59.4 64.1 66.1 65.4 67.4 66.1 55.7 58.5 60.8 58.9 61.2 59.2

LTSA 48.5 49.1 52.5 53.2 53.8 53.2 43.9 43.4 46.6 47.9 47.2 47.0

MDS SMACOF 53.6 62.9 64.2 63.7 64.7 67.3 49.3 56.3 57.1 57.5 58.6 60.9

Truncated SVD 56.3 63.0 64.1 66.1 64.6 64.6 52.3 56.9 57.7 59.7 58.8 58.1

Hessian LLE 48.8 49.3 52.5 53.2 53.8 53.2 44.1 43.6 46.6 47.9 47.2 47.0

ISOMAP 57.6 64.9 64.7 64.2 64.5 62.9 52.3 59.1 56.7 56.3 56.7 55.2

LLE 54.3 58.2 57.8 59.5 58.9 60.5 49.4 53.4 51.7 53.5 52.8 54.4

Pattern Search MDS

25

59.0 66.3 69.3 70.4 69.7 71.0 54.9 59.3 62.4 63.5 62.2 63.8

Modified LLE 55.2 58.7 65.3 67.0 66.2 66.4 51.2 53.4 62.9 61.0 63.2 62.7

Spectral Clustering 54.2 60.2 61.2 61.7 61.7 62.9 51.7 55.7 55.9 56.5 55.2 57.2

LTSA 55.2 57.0 60.2 59.1 62.2 59.2 50.6 50.3 53.1 51.8 54.9 52.3

MDS SMACOF 62.2 69.9 69.8 69.4 71.4 71.3 57.0 62.9 62.5 62.7 65.5 65.5

Truncated SVD 61.6 66.5 68.4 67.2 66.4 68.9 56.2 60.1 61.3 60.6 60.1 61.6

Hessian LLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISOMAP 58.9 64.5 65.9 65.3 67.0 66.0 54.1 59.0 58.3 57.5 58.5 58.6

LLE 54.9 58.0 60.8 62.5 62.2 63.4 50.1 52.9 55.4 56.9 57.1 57.5

Table 5.4: Comparison of pattern search MDS with other dimensionality reduction methods for

Speaker Independent Speech Emotion Recognition using IS10 Feature Set

another and still achieve better results. This means that a more sophisticated parametric model could

still not be able to disentangle the geometries in order to aptly classify samples from the test set.

Moreover, when we increase the target dimensions to 10we notice that we achieve the best results
in both WA and UA when using the proposed algorithm Patter Search MDS. Specifically, we obtain

WA of up to 60.0% with K = 17 as well as 52.7% in UA with K = 13. For values of of K = 1
and K = 5 LLE seems to properly capture the geometry of the data. These performance scores

significantly outperform the best performance scores of the initial feature space of 432 features by
3.1% and 2.3% in WA and UA, respectively. In this context, we notice the opposite phenomenon

of the collapsed data representations which is might be that the low dimensional manifolds might be

comprised of small connected components belonging to the same emotional class without being able

to preserve the global structure of the data. This could be the case that LLE might perform slightly

better than pattern search MDS but overall the representations of the latter might be proven to be more
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Method L

Number of Nearest Neighbors

Weighted Accuracy (WA) Unweighted Accuracy (UA)

1 5 9 13 17 21 1 5 9 13 17 21

RQA Feature Set 432 51.8 56.5 56.2 56.5 56.9 55.4 47.3 48.4 47.8 47.1 48.1 46.9

Pattern Search MDS

2

34.8 40.6 39.4 43.1 43.5 44.1 29.4 32.4 31.3 34.1 35.7 34.7

Modified LLE 35.5 40.5 39.7 41.4 41.3 40.8 30.0 34.4 33.2 36.1 36.6 35.9

Spectral Clustering 37.6 42.1 43.6 44.9 45.6 47.9 35.1 36.2 36.7 38.4 38.5 41.5

LTSA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MDS SMACOF 32.6 40.7 38.4 41.2 42.7 42.9 27.7 34.3 30.9 32.7 33.9 33.7

Truncated SVD 29.2 42.8 43.5 43.7 45.0 45.2 25.9 36.7 35.1 35.9 37.0 39.0

Hessian LLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISOMAP 39.8 43.1 44.8 48.2 47.5 47.9 35.4 35.5 36.1 40.1 38.7 39.1

LLE 31.8 34.3 37.1 38.3 37.8 38.5 28.4 27.2 28.9 29.8 28.9 29.2

Pattern Search MDS

10

48.1 57.5 58.5 59.9 60.0 59.4 41.5 48.7 51.3 52.7 52.5 51.4

Modified LLE 48.6 54.0 57.0 55.5 54.4 54.2 44.5 45.6 49.5 47.1 44.9 43.6

Spectral Clustering 47.3 53.3 52.7 54.6 55.4 55.2 42.9 44.9 44.0 47.5 47.1 47.5

LTSA 34.9 41.1 43.3 43.2 45.2 43.9 28.5 33.7 35.7 34.6 36.9 35.6

MDS SMACOF 47.6 55.8 57.0 57.5 57.7 57.5 41.6 46.8 48.5 49.1 49.7 48.5

Truncated SVD 47.6 54.3 53.5 54.4 55.1 53.5 43.2 46.6 47.0 44.6 45.6 44.2

Hessian LLE 34.9 41.1 43.3 43.2 45.2 43.9 28.5 33.7 35.7 34.6 36.9 35.6

ISOMAP 48.1 51.3 52.2 52.5 51.9 52.6 43.6 42.8 42.7 44.5 43.6 44.3

LLE 51.2 58.0 57.1 57.6 58.8 58.2 45.2 48.8 47.5 49.5 50.4 48.0

Pattern Search MDS

25

51.2 56.0 58.6 58.5 58.8 58.1 45.1 48.6 49.8 49.3 50.9 48.7

Modified LLE 46.8 55.2 55.8 55.7 56.1 56.7 41.5 49.2 49.1 48.8 48.8 49.7

Spectral Clustering 49.3 55.1 54.0 57.2 56.0 56.6 42.8 47.7 45.9 48.3 48.3 49.2

LTSA 50.0 53.5 54.0 53.9 56.5 56.2 44.3 45.0 45.7 45.6 47.4 46.9

MDS SMACOF 50.5 58.1 57.3 57.4 56.7 57.2 45.6 51.1 48.3 48.6 46.8 47.7

Truncated SVD 49.5 57.4 57.9 57.9 57.8 58.5 42.7 49.6 49.2 48.9 48.8 51.5

Hessian LLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISOMAP 50.4 54.1 53.1 52.6 53.8 54.0 44.1 46.9 46.1 44.3 45.1 46.4

LLE 49.5 52.8 55.8 56.3 56.6 58.7 44.5 46.1 49.4 50.0 49.6 52.0

Table 5.5: Comparison of pattern search MDS with other dimensionality reduction methods for

Speaker Independent Speech Emotion Recognition using RQA Feature Set

resilient and scalable for training using multiple data.

When we further increase the target dimensions to 25, we notice a small decline on performance
in both WA and UA metrics. The best performance for these dimensions is obtained with K = 17
(58.8%) using pattern search MDS and with K = 21 (52.0%) using LLE, for WA and UA, respec-

tively. The aforementioned performance scores still surpass the best performance of the initial feature

space of 432 features by 1.9% and 1.6% in WA and UA, respectively. These results indicate that

the input features can be aptly described by manifolds of much lower dimensions and still provide

discriminatory ability for SI SER.

Using the Fused Feature Set (RQA + IS10)

In Table 5.6, we present the results from a variety of dimensionality reduction algorithms when using

the Fused feature set (RQA+ IS10) for SI SER under a variety of configurations of the target dimension
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L and the number of nearest neighborsK. The notation is similar to the one explained before.

Method L

Number of Nearest Neighbors

Weighted Accuracy (WA) Unweighted Accuracy (UA)

1 5 9 13 17 21 1 5 9 13 17 21

RQA + IS10 2014 62.4 69.3 72.3 70.9 72.4 72.0 58.4 63.7 65.9 63.8 65.1 65.0

Pattern Search MDS

2

45.7 51.7 50.3 51.9 51.5 50.3 39.5 44.7 42.8 44.9 44.4 42.9

Modified LLE 42.2 46.6 46.8 49.5 51.1 48.7 39.6 40.4 39.9 44.1 47.9 41.6

Spectral Clustering 43.0 48.0 52.0 51.8 52.5 52.2 39.5 41.3 45.7 45.1 45.1 45.0

LTSA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MDS SMACOF 43.5 50.1 50.1 51.2 50.5 50.9 39.4 44.5 43.3 44.5 44.2 44.1

Truncated SVD 41.5 41.7 47.2 48.6 49.6 52.0 36.4 36.3 41.9 44.5 43.2 45.2

Hessian LLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISOMAP 42.5 46.4 45.6 46.9 47.4 47.8 38.0 39.5 38.8 39.3 39.8 39.7

LLE 43.5 47.3 53.1 51.3 54.2 53.5 40.6 44.0 48.1 46.9 49.7 48.6

Pattern Search MDS

10

56.7 66.1 69.1 68.8 69.7 69.9 51.5 59.6 63.1 61.6 62.6 62.9

Modified LLE 59.3 66.9 66.5 68.0 66.4 66.1 53.5 59.3 58.5 60.5 58.7 58.5

Spectral Clustering 55.6 64.5 65.2 67.6 66.9 65.9 51.5 59.2 59.1 61.1 60.3 59.0

LTSA 39.2 44.4 47.1 47.5 48.9 48.9 34.0 37.3 39.5 40.2 42.4 41.2

MDS SMACOF 58.2 66.1 65.9 66.6 67.6 68.5 52.6 58.4 57.8 58.8 59.4 61.4

Truncated SVD 57.9 65.9 66.2 66.9 66.8 66.8 52.3 58.6 58.8 59.2 59.4 59.1

Hessian LLE 39.2 44.4 47.1 47.5 48.9 48.9 34.0 37.3 39.5 40.2 42.4 41.2

ISOMAP 62.5 68.0 67.5 67.3 67.8 66.7 57.7 61.1 57.7 58.1 58.7 57.6

LLE 60.9 62.4 62.2 64.1 62.7 63.0 55.7 54.5 53.9 56.5 55.1 54.2

Pattern Search MDS

25

62.1 68.3 71.4 73.0 74.4 74.1 57.6 61.3 65.4 66.5 68.8 68.6

Modified LLE 59.7 62.4 66.5 66.6 66.7 66.7 55.4 57.5 61.0 60.9 59.4 59.6

Spectral Clustering 59.3 65.4 67.7 66.3 67.4 67.3 53.7 59.1 60.5 58.6 61.2 59.3

LTSA 57.4 61.3 63.8 62.9 61.8 61.0 54.6 52.9 55.9 54.3 53.7 52.4

MDS SMACOF 60.8 70.7 73.6 73.9 74.0 72.9 57.2 64.0 66.7 66.7 66.2 65.0

Truncated SVD 61.4 70.9 72.5 73.0 71.9 71.4 55.5 64.4 64.3 65.3 64.3 63.5

Hessian LLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ISOMAP 64.4 69.8 68.3 68.5 68.1 67.7 58.5 62.5 60.3 58.9 59.6 58.7

LLE 59.6 62.0 61.6 62.5 63.3 64.5 55.0 56.0 56.1 57.9 57.2 59.4

Table 5.6: Comparison of pattern search MDS with other dimensionality reduction methods for

Speaker Independent Speech Emotion Recognition using the Fused (RQA + IS10) Fea-

ture Set

In accordance to our findings in previous Section 4.7.3 for SI SER, we notice that we still get a

better performance on both accuracymetrics ofWAandUAcompared to the previous feature sets when

using the Fused Feature set. Applying KNN directly on the representations of the fused set produces

results of up to 72.4% in WA and 65.9% in UA. However, we can easily surpass this performance

on both WA and UA by using only 25 dimensions, instead of using 2014, when we use the pattern
searchMDS before applyingKNN. In 2 dimensions, the best performing algorithms for dimensionality
reduction seems to be pattern search MDS and LLE for both WA and UAmetrics. The 2-dimensional
manifolds learned from the LLE method achieve a WAof up to 54.2% when usingK = 17 and a UA
of 49.7% for an equal number of neighbors. This huge decline in performance metrics is indicative

that 2 dimensions cannot capture the full discriminatory ability of the data under any configuration of
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nearest neighbors and dimensionality reduction algorithm.

Moreover, when we increase the target dimensions to 10 we notice that we achieve much better
results in both WA and UA when using the proposed algorithm Patter Search MDS for most of the

values ofK, similar to the ones of the previous results for RQASet solely (see Table 5.5). Specifically,

we obtain WA of up to 69.9% withK = 21 as well as 63.1% in UAwithK = 9 using pattern search
MDS. For values of of K = 1 and K = 5 LLE seems to better capture the geometry of the data

than the proposed algorithm. This indicates that pattern search MDS is a resilient method to preserve

emotional information from utterance level representations even if the target space is quite low on

dimensions.

When we further increase the target dimensions to 25, we acquire the best performance in WA
with K = 17 (74.4%) and in UA with K = 17 (68.8%) when using pattern search MDS before ap-

plying KNN. These performance scores outperform the best performance scores of the initial feature

space of 2014 features by 2.0% and 2.9% inWAand UA, respectively. Recalling the best performance

we obtained under the same experimental setup of SI SER experiments using EmoDB database for

evaluation, as presented in Table 4.4, we obtained 82.1%WAusing SVM and 77.5% using LR. Com-

paring the results achieved by our best configurations here, the combination of a NLDR algorithm and

KNN yields a lower performance by 7.7% inWAand 8.7% in UA. However, this can be compensated

when looking at the number of features where the SER system was trained (25 instead of 2014) and
that KNN is one of the simplest models compared to much more complex classifiers such as SVM

and LR. Hence, these results indicate that even one of the simplest non-parametric models which is

KNN (see Section 2.2.4 for explanation) can perform competitively against parametric models such

as SVM and LR (see Sections 2.2.2 and 2.2.3 for the description of these models) when using NLDR

algorithms prior to classification. Noticeably, these findings suggest that more sophisticated SER

models could use as a preprocessing step NLDR algorithms in order to facilitate the training proce-

dure of their parameters without loosing the expressiveness of the input features and focusing only on

the salient parts of these representations.

5.7.8 Comparing (Pattern Search MDS + KNN) to Utterance Level Parametric

Models

In this section, we present the best results which are obtained from the combination of Pattern Search

MDS with KNN classifier for SER and compare them with the results presented in previous Sections

4.7.3 and 4.7.4. The presented results include all the combinations of feature sets of RQA and IS10

as presented in previous Sections. Except of the experiments presented before about SI SER using

EmoDB, we also perform similar experiments to (Leave One Session Out) LOSO with IEMOCAP

database using the same utterance level feature extraction pipelines (see Section 4.7.4). We perform

Global Normalization (GN) before applying pattern search MDS for reducing the dimensions.

We present the results of all the experiments by using Pattern SearchMDS combinedwith KNN for

SER as well as we transfer the results on the same utterance level experimental setups from Sections

4.7.3 and 4.7.4 in Table 5.7. The feature sets are the same as the ones which were used in previ-

ous Sections: 4.7.2, 4.7.3 and 4.7.4, namely: IS10, RQA and the Fused Feature Set (RQA + IS10).

The first two rows corresponding to each feature set refers to the best results obtained for EmoDB

and IEMOCAP under Speaker Independent (SI) and Leave One Session Out (LOSO) utterance level

experimental setups presented in previous Sections. In the latter two rows corresponding to each fea-

ture set, the best results obtained by a KNN with K ∈ {k | k ≤ 40and k mod 4 = 1} after
applying Pattern Search MDS in order to reduce the dimensions from the initial feature set to 10 or
25. L corresponds to the target dimension of pattern search MDS while for the first two rows, where

no dimensionality reduction is applied (this is notated by a “-” under the “dimensionality Reduction

Method” column), this column specifies the dimensions of each utterance level representation.

The results displayed on Table 5.7 signify the importance of applying proper dimensionality re-

duction before applying an utterance level classifier for SER. In general, the combination of pattern

search MDS and the non-parametric classifier KNN does not yield better results than the application
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Table 5.7: Comparison of (Pattern Search MDS + KNN) to Utterance Level Parametric Models

Features
Dimensionality

L Classifier
EmoDB IEMOCAP

Reduction Method WA UA WA UA

IS10

- 1582 SVM 79.7 74.3 59.2 60.5

- 1582 LR 76.1 71.9 53.5 57.5

- 1582 KNN 69.9 64.1 53.1 55.7

Pattern Search MDS 10 KNN 65.7 59.9 53.8 55.2

Pattern Search MDS 25 KNN 70.4 63.5 54.5 56.8

RQA

- 432 SVM 70.9 64.2 53.1 53.7

- 432 LR 71.1 67.1 52.8 54.3

- 432 KNN 56.9 48.4 46.9 48.8

Pattern Search MDS 10 KNN 60.0 52.7 46.4 47.2

Pattern Search MDS 25 KNN 58.8 50.9 47.6 49.3

RQA+IS10

- 2014 SVM 82.1 76.9 59.5 60.7

- 2014 LR 80.1 77.5 54.5 58.7

- 2014 KNN 72.4 65.9 52.6 55.1

Pattern Search MDS 10 KNN 69.9 63.1 52.9 54.4

Pattern Search MDS 25 KNN 74.4 68.8 54.9 57.2

of an SVM or LR classifier over the initial utterance level feature vectors. For all feature set we notice

that by an SVM classifier over the initial feature vectors outperform the best combination of Pattern

Search MDS and KNN by margins of 7.7% − 10.9% in WA and 8.1 − 11.5% in UA for EmoDB SI

experiment as well as by 4.7 − 5.5% in WA and 3.5 − 4.4% in UA for IEMOCAP. Likewise, when

an LR model is applied over the initial feature vectors instead, we get similar margins that the latter

approach outperforms the best combination of Pattern Search MDS and KNN. Although, there are

some cases where the proposed algorithm with KNN combined produce better results for IEMOCAP

experiment compared to LR. Namely, inWA 53.5%→ 54.5%when using IS10 Feature Set and again

in WA 54.5% → 54.9% when using the Fused Feature Set. This is quite intriguing if we take into

consideration that with 10 or 25 dimensions of the input features and employing only a nonparametric
KNN for SER does not perform any kernel tricks like SVM and LR models in order to create discrim-

inatory hyperplanes. Thus, a decline in performance is acceptable when we reduce the feature space

to ≈ 0.5− 1% of its initial dimensionality.

Additionally, the decline in both performance metrics of WA and UA when using Pattern Search

MDS with KNN instead of more sophisticated utterance level models like SVM and LR is much more

evident in EmoDB experiment while in IEMOCAP the performance obtained is much more compara-

ble to the best one. Presumably, this can be explained because in EMoDB experiment we only have 535
samples in order to construct the low-dimensional manifold representation with 7 emotional classes
instead of the IEMOCAP experiment where 5531 instances are available for only 4 emotional classes.
In this context, the distribution of the input data which we try to approximate in low-dimensions using

pattern search MDS would be sparsely sampled and thus the reconstruction of the manifold would

most probably be harder to perform. Noticeably, in all cases, the simple KNN over the reduced in size

representations yields better performance in both metrics compared to the case where we apply KNN

directly over the initial feature representations.

5.8 Visualizing Emotional Manifolds from Utterance Level Acoustic

Features

In this Section we visualize some 2D and 3D manifolds which were produced after applying NLDR

algorithms over the acoustic feature sets that were used in SI SER experiments in the previous Section
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5.7.7. We would like to present an insight of how these representations look like in order to draw

some qualitative reassurances of the results presented in Tables 5.4, 5.5, 5.6 and 5.7 as well as how

each dimensionality reduction method works, especially for the proposed one. For each visualization

we select the algorithm that yielded the best performances for the previous SI SER experiments on

EmoDB (see Tables 5.4, 5.5, 5.6). Namely, we analyze the manifolds produced by Pattern Search

MDS, MDS SMACOF, Spectral Clustering, LLE, ISOMAP and Truncated SVD from left to right and

from top to bottom.

5.8.1 IS10 2D Manifolds for EmoDB

In Figure 5.7, we present the 2-dimensional manifolds obtained using the IS10 utterance-level feature
set on all utterances of EmoDB (all 7 emotions are included).

Figure 5.7: Comparison of the produced 2D Manifolds when applying dimensionality reduction

methods to IS10 acoustic feature representations for EmoDB

All the methods displayed produce manifolds where manyclasses are collapsed to one another. For

example, the instances of happiness and anger seem to overlap in all learned manifolds. Moreover,
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some classes like anxiety/fear seem to be dispersed over the manifold indicating that the dynamics of

this class have not been disentangled using this feature set in order to reflect this on a 2-dimensional
map. LLE and Spectral Clustering seem to provide orthogonal and curved manifolds, respectively,

which are comprised with regions of discrete emotions that are quite discrete in between the different

emotional classes without avoiding the overlap between some classes. this is also depicted in the

performance obtained by these methods using KNN in Table 5.7. In addition, Pattern Search MDS

produces a manifold very similar to MDS SMACOF, in terms of topology and how all emotional

classes are represented.

5.8.2 RQA 2D Manifolds for EmoDB

In Figure 5.8, we present the 2-dimensional manifolds obtained using the RQAutterance-level feature

set on all utterances of EmoDB (all 7 emotions are included).

Figure 5.8: Comparison of the produced 2D Manifolds when applying dimensionality reduction

methods to RQA acoustic feature representations for EmoDB

In general, these manifolds are consisted of much more emotional regions that overlap than the

123



ones obtained when using IS10. Although, this is completely related to the expressiveness of each

feature type and in accordance with our findings in previous Sections of this thesis we have concluded

that RQA is less descriptive than IS10 feature set when they are evaluated individually (see Tables

4.4, 4.5 and 5.7). There is a complete collapse of the samples distribution for LLE method which is

also evident by the performance obtained using KNN (see Table 5.5). It is quite evident that for RQA

representations, ISOMAP performs significantly well in creating regions with merely only one or two

emotions and this is also depicted in both WA and UA performance metrics in Table 5.5. The regions

of the same emotional samples are not so homogeneous for Pattern Search MDS, Truncated SVD and

MDS SMACOF.

5.8.3 Fused Feature Set (RQA + IS10) 2D Manifolds for EmoDB

In Figure 5.9, we present the 2-dimensionalmanifolds obtained using the Fused (RQA+ IS10) utterance-
level feature set on all utterances of EmoDB (all 7 emotions are included).

Figure 5.9: Comparison of the produced 2D Manifolds when applying dimensionality reduction

methods to Fused (RQA + IS10) acoustic feature representations for EmoDB
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For the Fused feature set we notice that all methods produce 2-dimensional representations which
are comprised of quite disentangled regions of emotional instances. However, Pattern Search MDS,

LLE and Spectral Clustering seem to provide the best one because of the adjacency of samples that

belong to each class. This is also verified by the performance of KNN classification presented in

Table 5.6. Although, ISOMAP produces well interconnected regions of emotional classes, overall

the produced emotional map contains large holes and sparse regions which is also depicted in its

performance. Presumably, this is caused due to the misrepresentations of geodesic distances over

the distances computed directly from the distances of the points on the Euclidean Space. Finally,

Truncated SVD also produces a map in which the regions for each emotional class are quite dense

within classes but without avoiding the overlapping regions between similar expressed emotions.

5.8.4 Fused Feature Set (RQA + IS10) 3D Manifolds for 2 Male Speakers of

IEMOCAP

Building upon drawing some qualitative conclusions about how these low-dimensional manifolds are

constructed for each dimensionality reduction algorithm, we will add one more dimension to the target

dimensionL. We would also like to see the behavior of these algorithms with a higher number of sam-

ples and under different speakers. We isolate twomale speakers from IEMOCAPdatabase, namely the

male speakers from the first two sessions and we plot the learned 3-dimensional manifolds for all the
aforementioned dimensionality reduction methods in Figure 5.10. We follow the same experimental

setup as described in previous Section 4.7.1 for taking a subset of IEMOCAP dataset considering only

5531 utterances including 4 emotions (1103 angry, 1636 happy, 1708 neutral and 1084 sad), where
we merge excitement and happiness class into the latter one. Moreover, we only consider the fused

feature set (RQA+ IS10) because of its descriptive nature for SER. In this way, we can focus on these

representations by taking into consideration many more samples from the distribution.

In this setup we notate with discrete symbols of “x” and “spheres” the emotional representations

corresponding to each male speaker from the first and the second IEMOCAP session, respectively.

We can see that for example, ISOMAP fails to map the distributions of the same emotional classes for

both speakers. There are two disconnected regions that correspond to different speakers if we look

closer in Figure 5.10 (down and left). Presumably, these disconnected regions are created because of

some dominant features like pitch and energy that dominate other features as well in high dimensional

feature space. In this context, when we compute the geodesic distances over all points utterances of the

same speaker contain speaker related information that yields a closer connectivity between samples

of the same speaker. This could also lead to significant decline in performance of SER system for

which, the generalization beyond speaker related information is a necessity for accurate inference.

In addition, MDS SMACOF and Pattern Search MDS again produce very similar results to el-

lipsoids which is in accordance to the previous findings about the learned 2-dimensional manifolds
when using the Fused Feature Set (see Figure 5.9). In this context, LLE also seems to construct the low

dimensional manifold using a translation, rotation, and rescaling of local data which are exactly the

operations to which the weights that LLE defines for each data point are invariant. Spectral clustering

follows a similar pattern when reconstructing the manifold on 3D to the previously shown manifold

on 2D with the curved surface manifold over the samples (see Figure 5.9). This is directly related

to the handcrafted kernel that spectral Clustering uses in order to normalize the global affinity matrix

between the points of the high-dimensional space.
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Figure 5.10: Comparison of the produced 3D Manifolds when applying dimensionality reduction

methods to Fused (RQA+ IS10) acoustic feature representations for 2Male Speakers of

IEMOCAP
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Chapter 6

Epilogue

6.1 Conclusions

We draw some conclusions from this work which can be divided into three main categories corre-

sponding to Chapters 3, 4 and 5, respectively. Hence, we will list the most profound conclusions we

drew from the work presented in this thesis in respect to the Chapters referred above. The conclusions

below are ultimately related to the questions posed in the corresponding Sections 1.4.1, 1.4.2, 1.4.3.

specifically, the conclusions below are presented in such a way that some answers could be given to

aforementioned questions, considering the work which has been made towards the conduction of this

diploma thesis.

6.1.1 Conclusions from Chapter 3

We have shown that the time-scale on which we extract features for SER, has profound effect on RNNs

performance. LLDsworkwell on a time-scale that roughly corresponds to phoneme level. Conversely,

statistical features remarkably encode emotional context on a time-scale that corresponds to word

level. In our proposed LSTM model, we extract statistical features over segments of speech which

correspond to a couple of words and we report state-of-the-art results on the IEMOCAPdatabase, with

a much lower computational complexity and without employing extra attention mechanisms.

6.1.2 Conclusions from Chapter 4

We investigated the usage of nonlinear RQAmeasures extracted from RPs for SER. The effectiveness

of these features has been tested under both utterance-based and segment-based approaches across

three emotion databases. The fusion of nonlinear and conventional feature sets yields significant per-

formance improvement over traditional feature sets for all SER tasks; the performance improvement is

especially large when speaker identity is unknown. The fused data set improves on the state-of-the-art

for SER under most testing conditions, classification methods and datasets. Noticeably, the experi-

ments show that the proposed RQA feature set can be adequately used on its own for SER and without

any utilization of a feature selection scheme or dimensionality reduction algorithm. As a result, we

believe that, recurrence analysis of speech signals is a promising direction for SER research.

6.1.3 Conclusions from Chapter 5

We propose pattern search MDS, a novel algorithm for nonlinear dimensionality reduction, inspired

by gradient-free optimization methods. Pattern search MDS is formulated as an instance of the wider

family of GPS methods, thus providing theoretical guarantees of convergence up to a fixed point.

Additional optimizations further improve the performance of our algorithm in terms of computational

efficiency, robustness and solution quality. The qualitative evaluation against other popular dimen-

sionality reduction techniques for both clean and noisymanifold geometry shapes indicates that pattern

search MDS can accurately infer the intrinsic geometry of manifolds embedded in high-dimensional

spaces. Furthermore, the comparison of convergence characteristics against SMACOF MDS show
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that pattern search MDS converges in fewer epochs to similar or better solutions. Experiments on

real data yield comparable to state-of-the-art results both for a lexical semantic similarity task and on

MNIST for KNN classification. Open-source implementations of pattern search MDS and the data

generation process are provided to facilitate the reproducibility of our results.

When we consider an experimental setup for SI SER, our findings suggest that the proposed algo-

rithm can aptly capture the dissimilarities of the input feature space and embed it in a low-dimensional

manifold. Compared to other dimensionality reduction algorithms we notice that in most cases pattern

search MDS provides the best results among all the other methods for SI SER. Presumably, RQA rep-

resentations have a highly nonlinear structure between different classes of emotions and this is why

linear dimensionality reduction algorithms fail to preserve those invariants on low dimensional repre-

sentations. The learned representations obtained from NLDR methods can still preserve the discrim-

inatory ability of the high-dimensional space for all configurations and feature sets and even surpass

it on WA and UA performance metrics using KNN. The same applies when we assess our algorithm

towards LOSO experiments using IEMOCAP dataset. All these experiments have been performed for

all the combinations of feature sets proposed in in Sections 4.5.1 (IS10 Feature set: 1582 Features),
4.5.2 (RQA Feature set 432 Features) and 4.5.3 (Fused Feature set: 2014 Features). We consistently

notice that KNN classifier performs better when we use the proposed algorithm compared to the ini-

tial high-dimensional representations of emotional utterances. Last but not least, we provide some

visualizations from the learned manifolds of emotional utterances of 2D and 3D Euclidean spaces in

order to get a qualitative insight of the pros and the cons of applying each dimensionality reduction

algorithm for reducing the dimensions of utterance level representations.

6.2 Future Work

In the context of extracting better nonlinear representations from RPs in order to improve the perfor-

mance of SER systems, we could try to isolate the invariant features from these representations which

is the small periodic subgraph of the images. As we have previously mentioned, one of the main chal-

lenges is to capture invariant dynamical signatures of each speech frame (see Section 1.4.2). Vowels

are dominated by the fundamental frequency of the speaker and thus, we would like to get rid off

these speaker related features in our nonlinear representations from RPs. An outline of the proposed

feature extraction scheme is presented in Figure 6.1. First, we perform vowel segmentation in order to

focus only on the most frequency dominated regimes of the speech signal. The rest feature extraction

pipeline is identical to the one which has been presented in previous Section 4.5.2 until the part of

extracting the periodic subgraph from each RP. After that, each speech segment or even utterance of

emotional speech can be represented by a sequence of these RP subgraphs which would hopefully

preserve structures indicative of the nature of each emotional manifestation. Last but not least, con-

tinuous RP representations are already energy normalized and under the proposed feature extraction

algorithm, we could extract much more resilient nonlinear features for SER without dominating our

feature representations with speaker related attributes.

In addition, we can also try to better fuse the information from different acoustic feature sets for

buildingmore robust SER systems. As we have seen in Sections 4.7.2, 4.7.3, 4.7.4 and 5.7.7, the Fused

feature set (RQA+ IS10) yielded significant improvement over IS10 and RQA feature sets. However,

the simple concatenation of the two feature representations is the most naive way of combining in-

formation which is extracted from different sources. In this context, we can build upon the previous

idea of extracting a sequence of periodic-free RP subgraphs from the vowels of each speech segment

or utterance and combine them with spectral representations (essentially a sequence of Fourier trans-

formations from all the speech frames included in the speech segment). The combination of both

information channels (linear and nonlinear representations) could be effectively made by using a bi-

modal autoencoder like the one presented in Figure 6.2. We train an autoencoder which is based on

the reconstruction of both modalities when only only one modality is available each time. With this

technique, the proposed framework would be able not only to reconstruct the missing information
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Figure 6.1: Isolating periodic subgraphs from RPs in order to extract pitch-invariant representations

for SER

modality but would also obtain a resilient representation within the intermediate layer called “Shared

Utterance Encoded Representation” which would condense salient information from both channels.

Each of one of the two parts of the Autoencoder could implement any DNN or RNN architecture but

should be identical among its mirror counterparts. Namely, the blue part of the autoencoder (down-left

and bottom-right) would be penaltized not only by the error of reconstructing itself (“Linear Modal-

ity Reconstruction”) but also from the reconstruction of the dual information channel (“Nonlinear

Modality Reconstruction”). Similar things would apply to the nonlinear dual counterpart of the net-

work (green). Hopefully, the intermediate representation would encode salient emotional information

at the end of the training process and could be used as an input vector for subsequent layers of deeper

SER systems.
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Figure 6.2: Bimodal Autoencoder for combining spectral and nonlinear representations of speech

signals

Considering some next steps for the proposed Pattern Search MDS 5.3, future work will also

focus on improving runtime performance and scalability of the proposed algorithm. Specifically, an

approach for decreasing the computational complexity per epoch would be to narrow down the search

space of possible moves as the geometry of the embedding space becomes more apparent by biasing

the moves towards the principal component vectors of the neighborhood of the point that is being

moved. This can be viewed as a combination of pattern search and gradient descent, where the search

space of moves is wide at the beginning and then gets increasingly biased towards the direction of the

gradient. Our algorithm can scale to large numbers of points by utilizing Landmark points [150] or fast

approximations to MDS [182]. These approaches aim to alleviate the computational and memory cost

of computing the full distance matrix, by approximating the data geometry using smaller submatrices.

Moreover, stochastic approximations like stochastic SMACOF [183] can be adapted to pattern search

MDS.

We also plan to provide more in-depth theoretical insights and ways to enable pattern search MDS

to capture complex geometrical properties of input data. We aim to perform a detailed analysis on how

heuristics and especially allowing for “badmoves” affect the performance of pattern searchMDS. Fur-

thermore, in Sections 5.7.2 and 5.7.6 we showcased that MDS can better handle sparse data and LLE

can better handle non-convexity and missing data. This makes sense, as MDS takes into account the

global geometry of the embedding space, while LLE focuses on the geometry of local neighborhoods.
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We plan to combine the cost functions of these approaches to infer both global and local geometry of

the low dimensional data manifold. Another way to increase the expressiveness of the algorithm is

to investigate a wider variety of distance metrics, and specifically non-symmetrical distance metrics,

motivated by cognitive sciences [184].

131





Bibliography

[1] E. Tzinis, G. Paraskevopoulos, C. Baziotis, andA. Potamianos, “Integrating recurrence dynam-

ics for speech emotion recognition,” in Proceedings of INTERSPEECH (in press), 2018.

[2] E. Tzinis andA. Potamianos, “Segment-based speech emotion recognition using recurrent neu-

ral networks,” in Affective Computing and Intelligent Interaction (ACII), 2017 Seventh Inter-

national Conference on. IEEE, 2017, pp. 190–195.

[3] G. Paraskevopoulos, E. Tzinis, E.-V. Vlatakis-Gkaragkounis, and A. Potamianos, “Pattern

search multidimensional scaling,” arXiv:1806.00416, 2018.

[4] A. Chorianopoulou, E. Tzinis, E. Iosif,A. Papoulidi, C. Papailiou, andA. Potamianos, “Engage-

ment detection for children with autism spectrum disorder,” in Acoustics, Speech and Signal

Processing (ICASSP), 2017 IEEE International Conference on. IEEE, 2017, pp. 5055–5059.

[5] K. Nesbitt, K. Blackmore, G. Hookham, F. Kay-Lambkin, and P. Walla, “Using the startle eye-

blink to measure affect in players,” in Serious Games Analytics. Springer, 2015, pp. 401–434.

[6] L. R. Rabiner and B.-H. Juang, Fundamentals of speech recognition. PTR Prentice Hall

Englewood Cliffs, 1993, vol. 14.

[7] A. Jafari, F. Almasganj, and M. N. Bidhendi, “Statistical modeling of speech poincaré sections

in combination of frequency analysis to improve speech recognition performance,” Chaos: An

Interdisciplinary Journal of Nonlinear Science, vol. 20, no. 3, p. 033106, 2010.

[8] P. M. Niedenthal, L. W. Barsalou, P. Winkielman, S. Krauth-Gruber, and F. Ric, “Embodiment

in attitudes, social perception, and emotion,” Personality and social psychology review, vol. 9,

no. 3, pp. 184–211, 2005.

[9] R. R. Cornelius, The science of emotion: Research and tradition in the psychology of emotions.

Prentice-Hall, Inc, 1996.

[10] T. C. Schneirla, “An evolutionary and developmental theory of biphasic processes underlying

approach and withdrawal.” 1959.

[11] H. Schlosberg, “Three dimensions of emotion.” Psychological review, vol. 61, no. 2, p. 81,

1954.

[12] K. R. Scherer, “Vocal affect expression: A review and a model for future research.” Psycholog-

ical bulletin, vol. 99, no. 2, p. 143, 1986.

[13] I. Fónagy and K. Magdics, “Emotional patterns in intonation and music,” STUF-Language

Typology and Universals, vol. 16, no. 1-4, pp. 293–326, 1963.

[14] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, and J. G. Tay-

lor, “Emotion recognition in human-computer interaction,” IEEE Signal processing magazine,

vol. 18, no. 1, pp. 32–80, 2001.

[15] C. E. Izard, Human emotions. Springer Science & Business Media, 2013.

133



[16] V. Petrushin, “Emotion in speech: Recognition and application to call centers,” in Proceedings

of Artificial Neural Networks in Engineering, vol. 710, 1999.

[17] C. M. Lee and S. S. Narayanan, “Toward detecting emotions in spoken dialogs,” IEEE Trans-

actions on speech and audio processing, vol. 13, no. 2, pp. 293–303, 2005.

[18] R. W. Picard et al., “Affective computing,” 1995.

[19] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emotion recognition: Features,

classification schemes, and databases,” Pattern Recognition, vol. 44, no. 3, pp. 572–587, 2011.

[20] S. G. Koolagudi and K. S. Rao, “Emotion recognition from speech: a review,” International

journal of speech technology, vol. 15, no. 2, pp. 99–117, 2012.

[21] C.-N. Anagnostopoulos, T. Iliou, and I. Giannoukos, “Features and classifiers for emotion

recognition from speech: a survey from 2000 to 2011,” Artificial Intelligence Review, vol. 43,

no. 2, pp. 155–177, 2015.

[22] X. Li, J. Tao, M. T. Johnson, J. Soltis, A. Savage, K. M. Leong, and J. D. Newman, “Stress

and emotion classification using jitter and shimmer features,” in Acoustics, Speech and Signal

Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 4. IEEE, 2007, pp.

IV–1081.

[23] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers, C. Müller, and S. Narayanan,

“The interspeech 2010 paralinguistic challenge,” in Proceedings of INTERSPEECH, 2010, pp.

2794–2797.

[24] B. Schuller and A. Batliner, Computational paralinguistics: emotion, affect and personality in

speech and language processing. John Wiley & Sons, 2013.

[25] B. Schuller, S. Steidl, and A. Batliner, “The interspeech 2009 emotion challenge,” in Tenth

Annual Conference of the International Speech Communication Association, 2009.

[26] S. Steidl, Automatic classification of emotion related user states in spontaneous children’s

speech. University of Erlangen-Nuremberg Erlangen, Germany, 2009.

[27] Z. Aldeneh and E. M. Provost, “Using regional saliency for speech emotion recognition,” in

Proceedings of ICASSP, 2017, pp. 2741–2745.

[28] R. Xia and Y. Liu, “Amulti-task learning framework for emotion recognition using 2d contin-

uous space,” IEEE Transactions on Affective Computing, vol. 8, no. 1, pp. 3–14, 2017.

[29] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval, M. Chetouani,

F. Weninger, F. Eyben, E. Marchi et al., “The interspeech 2013 computational paralinguis-

tics challenge: social signals, conflict, emotion, autism,” in Proceedings INTERSPEECH

2013, 14th Annual Conference of the International Speech Communication Association, Lyon,

France, 2013.

[30] E. Mower, M. J. Mataric, and S. Narayanan, “A framework for automatic human emotion clas-

sification using emotion profiles,” IEEE Transactions on Audio, Speech, and Language Pro-

cessing, vol. 19, no. 5, pp. 1057–1070, 2011.

[31] B. Schuller, R. Müller, M. Lang, and G. Rigoll, “Speaker independent emotion recognition by

early fusion of acoustic and linguistic features within ensembles,” in Ninth European Confer-

ence on Speech Communication and Technology, 2005.

134



[32] J. Deng, Z. Zhang, F. Eyben, and B. Schuller, “Autoencoder-based unsupervised domain adap-

tation for speech emotion recognition,” IEEE Signal Processing Letters, vol. 21, no. 9, pp.

1068–1072, 2014.

[33] C.M. Lee, S. Narayanan, and R. Pieraccini, “Recognition of negative emotions from the speech

signal,” inAutomatic Speech Recognition and Understanding, 2001. ASRU’01. IEEEWorkshop

on. IEEE, 2001, pp. 240–243.

[34] J. Rong, G. Li, andY.-P. P. Chen, “Acoustic feature selection for automatic emotion recognition

from speech,” Information processing & management, vol. 45, no. 3, pp. 315–328, 2009.

[35] H. M. Fayek, M. Lech, and L. Cavedon, “Evaluating deep learning architectures for speech

emotion recognition,” Neural Networks, vol. 92, pp. 60–68, 2017.

[36] S. Ghosh, E. Laksana, L.-P. Morency, and S. Scherer, “Representation learning for speech emo-

tion recognition.” in Proceedings of INTERSPEECH, 2016, pp. 3603–3607.

[37] Q. Mao, M. Dong, Z. Huang, andY. Zhan, “Learning salient features for speech emotion recog-

nition using convolutional neural networks,” IEEE Transactions on Multimedia, vol. 16, no. 8,

pp. 2203–2213, 2014.

[38] J. C.Vasquez-Correa, T.Arias-Vergara, J. R. Orozco-Arroyave, J. Vargas-Bonilla, and E. Noeth,

“Wavelet-based time-frequency representations for automatic recognition of emotions from

speech,” in Proceedings of the 12. ITG Symposium on Speech Communication, 2016, pp. 1–5.

[39] F. Shah et al., “Wavelet packets for speech emotion recognition,” in Advances in Electrical,

Electronics, Information, Communication and Bio-Informatics (AEEICB), 2017 Third Interna-

tional Conference on. IEEE, 2017, pp. 479–481.

[40] R. Sun and E. Moore, “Investigating glottal parameters and teager energy operators in emotion

recognition,” in Affective Computing and Intelligent Interaction, 2011, pp. 425–434.

[41] D. Dimitriadis, P. Maragos, and A. Potamianos, “Auditory teager energy cepstrum coefficients

for robust speech recognition,” in Ninth European Conference on Speech Communication and

Technology, 2005.

[42] A. Shahzadi, A.Ahmadyfard, A. Harimi, and K. Yaghmaie, “Speech emotion recognition using

nonlinear dynamics features,” Turkish Journal of Electrical Engineering &Computer Sciences,

vol. 23, no. Sup. 1, pp. 2056–2073, 2015.

[43] T. Chaspari, D. Dimitriadis, and P. Maragos, “Emotion classification of speech using mod-

ulation features,” in Proceedings of Signal Processing Conference (EUSIPCO), 2014, pp.

1552–1556.

[44] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou, B. Schuller, and

S. Zafeiriou, “Adieu features? end-to-end speech emotion recognition using a deep convo-

lutional recurrent network,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE

International Conference on. IEEE, 2016, pp. 5200–5204.

[45] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,

“Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1,

no. 4, pp. 541–551, 1989.

[46] C. Busso, S. Lee, and S. Narayanan, “Analysis of emotionally salient aspects of fundamental

frequency for emotion detection,” IEEE transactions on audio, speech, and language process-

ing, vol. 17, no. 4, pp. 582–596, 2009.

135



[47] C. Busso, Z. Deng, S. Yildirim, M. Bulut, C. M. Lee, A. Kazemzadeh, S. Lee, U. Neumann,

and S. Narayanan, “Analysis of emotion recognition using facial expressions, speech and mul-

timodal information,” in Proceedings of the 6th international conference on Multimodal inter-

faces. ACM, 2004, pp. 205–211.

[48] R. Xia, J. Deng, B. Schuller, andY. Liu, “Modeling gender information for emotion recognition

using denoising autoencoder,” in Acoustics, Speech and Signal Processing (ICASSP), 2014

IEEE International Conference on. IEEE, 2014, pp. 990–994.

[49] Y. Sun and G. Wen, “Ensemble softmax regression model for speech emotion recognition,”

Multimedia Tools and Applications, vol. 76, no. 6, pp. 8305–8328, 2017.

[50] B. Schuller and G. Rigoll, “Timing levels in segment-based speech emotion recognition,” in

Proceedings of INTERSPEECH, 2006.

[51] J. H. Jeon, R. Xia, and Y. Liu, “Sentence level emotion recognition based on decisions from

subsentence segments,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE In-

ternational Conference on. IEEE, 2011, pp. 4940–4943.

[52] X. Mao, L. Chen, and L. Fu, “Multi-level speech emotion recognition based on hmm and

ann,” in Computer Science and Information Engineering, 2009 WRI World Congress on, vol. 7.

IEEE, 2009, pp. 225–229.

[53] E. M. Provost, “Identifying salient sub-utterance emotion dynamics using flexible units and

estimates of affective flow,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on. IEEE, 2013, pp. 3682–3686.

[54] C.-H.Wu,W.-B. Liang, K.-C. Cheng, and J.-C. Lin, “Hierarchical modeling of temporal course

in emotional expression for speech emotion recognition,” in Affective Computing and Intelli-

gent Interaction (ACII), 2015 International Conference on. IEEE, 2015, pp. 810–814.

[55] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and

data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[56] A. Chorianopoulou, P. Koutsakis, and A. Potamianos, “Speech emotion recognition using af-

fective saliency.” in INTERSPEECH, 2016, pp. 500–504.

[57] A. Nogueiras, A. Moreno, A. Bonafonte, and J. B. Mariño, “Speech emotion recognition us-

ing hidden markov models,” in Seventh European Conference on Speech Communication and

Technology, 2001.

[58] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61,

pp. 85–117, 2015.

[59] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.

[60] K. Han, D. Yu, and I. Tashev, “Speech emotion recognition using deep neural network and

extreme learning machine,” in Fifteenth Annual Conference of the International Speech Com-

munication Association, 2014.

[61] J. Lee and I. Tashev, “High-level feature representation using recurrent neural network for

speech emotion recognition,” 2015.

[62] Z.-Q. Wang and I. Tashev, “Learning utterance-level representations for speech emotion and

age/gender recognition using deep neural networks,” in Acoustics, Speech and Signal Process-

ing (ICASSP), 2017 IEEE International Conference on. IEEE, 2017, pp. 5150–5154.

136



[63] A.Metallinou, M.Wollmer,A. Katsamanis, F. Eyben, B. Schuller, and S. Narayanan, “Context-

sensitive learning for enhanced audiovisual emotion classification,” IEEE Transactions on Af-

fective Computing, vol. 3, no. 2, pp. 184–198, 2012.

[64] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[65] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech emotion recognition using recur-

rent neural networks with local attention,” in Proceedings of ICASSP, 2017, pp. 2227–2231.

[66] C.-W. Huang and S. S. Narayanan, “Attention assisted discovery of sub-utterance structure in

speech emotion recognition.” in Proceedings of INTERSPEECH, 2016, pp. 1387–1391.

[67] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align

and translate,” CoRR, vol. abs/1409.0473, 2014.

[68] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang, S. Lee, and

S. S. Narayanan, “Iemocap: Interactive emotional dyadic motion capture database,” Language

resources and evaluation, vol. 42, no. 4, p. 335, 2008.

[69] B. Zhang, E. M. Provost, and G. Essl, “Cross-corpus acoustic emotion recognition with multi-

task learning: Seeking common ground while preserving differences,” IEEE Transactions on

Affective Computing, 2017.

[70] J. Gideon, S. Khorram, Z. Aldeneh, D. Dimitriadis, and E. M. Provost, “Progressive neural

networks for transfer learning in emotion recognition,” arXiv preprint arXiv:1706.03256, 2017.

[71] N. Mesgarani, M. Slaney, and S.A. Shamma, “Discrimination of speech from nonspeech based

on multiscale spectro-temporal modulations,” IEEE Transactions on Audio, Speech, and Lan-

guage Processing, vol. 14, no. 3, pp. 920–930, 2006.

[72] Y. Bengio and P. Frasconi, “Credit assignment through time: Alternatives to backpropagation,”

in Advances in Neural Information Processing Systems, 1994, pp. 75–82.

[73] N. van Noord and E. Postma, “Learning scale-variant and scale-invariant features for deep

image classification,” Pattern Recognition, vol. 61, pp. 583–592, 2017.

[74] K. Honda, “Physiological processes of speech production,” in Springer handbook of speech

processing. Springer, 2008, pp. 7–26.

[75] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. Costello, and I. M. Moroz, “Exploiting non-

linear recurrence and fractal scaling properties for voice disorder detection,” BioMedical En-

gineering OnLine, vol. 6, no. 1, p. 23, 2007.

[76] H. Herzel, “Bifurcations and chaos in voice signals,” Applied Mechanics Reviews, vol. 46,

no. 7, pp. 399–413, 1993.

[77] W. T. Fitch, J. Neubauer, and H. Herzel, “Calls out of chaos: the adaptive significance of

nonlinear phenomena in mammalian vocal production,” Animal behaviour, vol. 63, no. 3, pp.

407–418, 2002.

[78] V. Pitsikalis and P. Maragos, “Analysis and classification of speech signals by generalized frac-

tal dimension features,” Speech Communication, vol. 51, no. 12, pp. 1206–1223, 2009.

[79] C. L. Webber Jr and J. P. Zbilut, “Recurrence quantification analysis of nonlinear dynamical

systems,” Tutorials in contemporary nonlinear methods for the behavioral sciences, pp. 26–94,

2005.

137



[80] H. Herzel, D. Berry, I. Titze, and I. Steinecke, “Nonlinear dynamics of the voice: signal anal-

ysis and biomechanical modeling,” Chaos: An Interdisciplinary Journal of Nonlinear Science,

vol. 5, no. 1, pp. 30–34, 1995.

[81] S. S. Narayanan and A. A. Alwan, “A nonlinear dynamical systems analysis of fricative con-

sonants,” The Journal of the Acoustical Society of America, vol. 97, no. 4, pp. 2511–2524,

1995.

[82] T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology,” Journal of statistical Physics, vol. 65,

no. 3-4, pp. 579–616, 1991.

[83] G. Boeing, “Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity

and the limits of prediction,” Systems, vol. 4, no. 4, 2016.

[84] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis of

complex systems,” Physics reports, vol. 438, no. 5-6, pp. 237–329, 2007.

[85] R. Bellman, “Adaptative control processes,” 1961.

[86] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality reduction: a compara-

tive,” J Mach Learn Res, vol. 10, pp. 66–71, 2009.

[87] L. Cayton, “Algorithms for manifold learning,” Univ. of California at San Diego Tech. Rep,

vol. 12, no. 1-17, p. 1, 2005.

[88] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning

research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[89] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun. com/exdb/mnist/,

1998.

[90] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural networks for

perception. Elsevier, 1992, pp. 65–93.

[91] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,”

IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18–28, 1998.

[92] M. Aizerman, E. M. Braverman, and L. Rozonoer, “Theoretical foundations of potential func-

tion method in pattern recognition,” Automation and Remote Control, vol. 25, pp. 917–936,

1964.

[93] M. B. Christopher, PATTERN RECOGNITIONANDMACHINE LEARNING. Springer-Verlag

New York, 2016.

[94] A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual

information,” Physical review A, vol. 33, no. 2, p. 1134, 1986.

[95] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for

phase-space reconstruction using a geometrical construction,” Phys. Rev. A, vol. 45, pp.

3403–3411, 1992.

[96] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence plots of dynamical systems,” EPL

(Europhysics Letters), vol. 4, no. 9, p. 973, 1987.

[97] S. Schinkel, O. Dimigen, and N. Marwan, “Selection of recurrence threshold for signal detec-

tion,” The european physical journal special topics, vol. 164, no. 1, pp. 45–53, 2008.

138



[98] M. Thiel, M. C. Romano, J. Kurths, R. Meucci, E. Allaria, and F. T. Arecchi, “Influence of ob-

servational noise on the recurrence quantification analysis,” Physica D: Nonlinear Phenomena,

vol. 171, no. 3, pp. 138–152, 2002.

[99] W. S. Torgerson, “Multidimensional scaling: I. theory and method,” Psychometrika, vol. 17,

no. 4, pp. 401–419, Dec 1952.

[100] I. Borg and P. J. F. Groenen, Modern multidimensional scaling: theory and applications.

Springer, 2005.

[101] J. C. Gower, “Some distance properties of latent root and vector methods used in multivariate

analysis,” Biometrika, vol. 53, no. 3-4, pp. 325–338, 1966.

[102] M.A.A. Cox andT. F. Cox, “Multidimensional scaling on the sphere,” inCompstat, D. Edwards

and N. E. Raun, Eds. Heidelberg: Physica-Verlag HD, 1988, pp. 323–328.

[103] A. Cvetkovski and M. Crovella, “Low-stress data embedding in the hyperbolic plane using

multidimensional scaling,” Appl. Math, vol. 11, no. 1, pp. 5–12, 2017.

[104] H. Lindman and T. Caelli, “Constant curvature riemannian scaling,” Journal of Mathematical

Psychology, vol. 17, no. 2, pp. 89–109, 1978.

[105] R. N. Shepard, “The analysis of proximities: Multidimensional scaling with an unknown dis-

tance function. i.” Psychometrika, vol. 27, no. 2, pp. 125–140, Jun 1962.

[106] ——, “The analysis of proximities: Multidimensional scaling with an unknown distance func-

tion. ii,” Psychometrika, vol. 27, no. 3, pp. 219–246, Sep 1962.

[107] P. Groenen and I. Borg, “Past, present, and future of multidimensional scaling,” Visualization

and Verbalization of Data, pp. 95–117, 2014.

[108] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypoth-

esis,” Psychometrika, vol. 29, no. 1, pp. 1–27, Mar 1964.

[109] ——, “Nonmetric multidimensional scaling: A numerical method,” Psychometrika, vol. 29,

no. 2, pp. 115–129, Jun 1964.

[110] S. L. France and J. D. Carroll, “Two-way multidimensional scaling: A review,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 5, pp.

644–661, 2011.

[111] J. D. Leeuw, I. J. R. Barra, F. Brodeau, G. Romier, and B. V. C. (eds, “Applications of convex

analysis to multidimensional scaling,” in Recent Developments in Statistics. North Holland

Publishing Company, 1977, pp. 133–146.

[112] J. de Leeuw, “Convergence of the majorization method for multidimensional scaling,” Journal

of Classification, vol. 5, no. 2, pp. 163–180, Sep 1988.

[113] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal on optimization,

vol. 7, no. 1, pp. 1–25, 1997.

[114] E. D. Dolan, R. M. Lewis, and V. Torczon, “On the local convergence of pattern search,” SIAM

Journal on Optimization, vol. 14, no. 2, pp. 567–583, 2003.

[115] R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained minimization,”

SIAM Journal on Optimization, vol. 9, no. 4, pp. 1082–1099, 1999.

139



[116] A. R. Conn, N. I. M. Gould, and P. Toint, “A globally convergent augmented lagrangian algo-

rithm for optimization with general constraints and simple bounds,” SIAM Journal on Numer-

ical Analysis, vol. 28, no. 2, pp. 545–572, 1991.

[117] R. M. Lewis and V. Torczon, “Pattern search methods for linearly constrained minimization,”

SIAM Journal on Optimization, vol. 10, no. 3, pp. 917–941, 2000.

[118] C. Audet, “Convergence results for generalized pattern search algorithms are tight,” Optimiza-

tion and Engineering, vol. 5, no. 2, pp. 101–122, Jun 2004.

[119] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent developments in opensmile, the mu-

nich open-source multimedia feature extractor,” in Proceedings of the 21st ACM International

Conference on Multimedia, 2013, pp. 835–838.

[120] L. R. Rabiner, R. W. Schafer et al., “Introduction to digital speech processing,” Foundations

and Trends® in Signal Processing, vol. 1, no. 1–2, pp. 1–194, 2007.

[121] F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss, “A database of german

emotional speech,” in Ninth European Conference on Speech Communication and Technology,

2005.

[122] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information and computer

sciences, vol. 44, no. 1, pp. 1–12, 2004.

[123] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A

simple way to prevent neural networks from overfitting,” The Journal of Machine Learning

Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[124] J. Bayer, C. Osendorfer, D. Korhammer, N. Chen, S. Urban, and P. van der Smagt, “On fast

dropout and its applicability to recurrent networks,” arXiv preprint arXiv:1311.0701, 2013.

[125] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[126] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, andY. Bengio, “Batch normalized recurrent neural

networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International

Conference on. IEEE, 2016, pp. 2657–2661.

[127] F. Chollet et al., “Keras,” 2015.

[128] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins,

D. Warde-Farley, I. Goodfellow, A. Bergeron et al., “Theano: Deep learning on gpus with

python,” in NIPS 2011, BigLearning Workshop, Granada, Spain, vol. 3. Citeseer, 2011.

[129] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM transactions

on intelligent systems and technology (TIST), vol. 2, no. 3, p. 27, 2011.

[130] S. Wu, T. H. Falk, and W.-Y. Chan, “Automatic speech emotion recognition using modulation

spectral features,” Speech communication, vol. 53, no. 5, pp. 768–785, 2011.

[131] P. Henríquez, J. B. Alonso, M. A. Ferrer, C. M. Travieso, and J. R. Orozco-Arroyave, “Nonlin-

ear dynamics characterization of emotional speech,” Neurocomputing, vol. 132, pp. 126–135,

2014.

[132] A. Lombardi, P. Guccione, and C. Guaragnella, “Exploring recurrence properties of vowels for

analysis of emotions in speech,” Sensors & Transducers, vol. 204, no. 9, p. 45, 2016.

140



[133] R.V. Donner, M. Small, J. F. Donges, N.Marwan,Y. Zou, R. Xiang, and J. Kurths, “Recurrence-

based time series analysis by means of complex network methods,” International Journal of

Bifurcation and Chaos, vol. 21, no. 04, pp. 1019–1046, 2011.

[134] F. Orsucci, R. Petrosino, G. Paoloni, L. Canestri, E. Conte, M. A. Reda, and M. Fulcheri,

“Prosody and synchronization in cognitive neuroscience,” EPJ Nonlinear Biomedical Physics,

vol. 1, no. 1, p. 6, 2013.

[135] N. D. Duran, R. Dale, C. T. Kello, C. N. Street, and D. C. Richardson, “Exploring the movement

dynamics of deception,” Frontiers in psychology, vol. 4, p. 140, 2013.

[136] A. Goshvarpour,A.Abbasi, andA. Goshvarpour, “Dynamical analysis of emotional states from

electroencephalogram signals,” Biomedical Engineering: Applications, Basis and Communi-

cations, vol. 28, no. 02, p. 1650015, 2016.

[137] T. Tošić, K. K. Sellers, F. Fröhlich, M. Fedotenkova, A. Hutt et al., “Statistical frequency-

dependent analysis of trial-to-trial variability in single time series by recurrence plots,” Fron-

tiers in systems neuroscience, vol. 9, p. 184, 2016.

[138] N. Hatami, Y. Gavet, and J. Debayle, “Classification of time-series images using deep convo-

lutional neural networks,” in Tenth International Conference on Machine Vision (ICMV 2017),

vol. 10696. International Society for Optics and Photonics, 2018, p. 106960Y.

[139] S. Haq and P. Jackson, “Speaker-dependent audio-visual emotion recognition,” in Proceedings

Int. Conf. on Auditory-Visual Speech Processing (AVSP’08), Norwich, UK, Sept. 2009.

[140] N. Marwan, J. Kurths, and S. Foerster, “Analysing spatially extended high-dimensional dy-

namics by recurrence plots,” Physics Letters A, vol. 379, no. 10, pp. 894 – 900, 2015.

[141] F. Pedregosa, G. Varoquaux,A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learn-

ing Research, vol. 12, pp. 2825–2830, 2011.

[142] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[143] Y. Sun, G.Wen, and J.Wang, “Weighted spectral features based on local hu moments for speech

emotion recognition,” Biomedical signal processing and control, vol. 18, pp. 80–90, 2015.

[144] K. F. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,” The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp.

559–572, 1901.

[145] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric framework for nonlinear

dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[146] M. Bernstein, V. D. Silva, J. C. Langford, and J. B. Tenenbaum, “Graph approximations to

geodesics on embedded manifolds,” 2000.

[147] H. Zha and Z. Zhang, “Isometric embedding and continuum isomap,” in Proceedings of the

20th International Conference on Machine Learning (ICML-03), 2003, pp. 864–871.

[148] D. L. Donoho and C. Grimes, “Image manifolds which are isometric to euclidean space,” Jour-

nal of Mathematical Imaging and Vision, vol. 23, no. 1, pp. 5–24, Jul 2005.

[149] R. Pless, “Image spaces and video trajectories: Using isomap to explore video sequences.” in

ICCV, vol. 3, 2003, pp. 1433–1440.

141



[150] V. Silva and J. B. Tenenbaum, “Sparse multidimensional scaling using landmark points,” 01

2004.

[151] V. D. Silva and J. B. Tenenbaum, “Global versus local methods in nonlinear dimensionality

reduction,” in Advances in Neural Information Processing Systems 15. MIT Press, 2003, pp.

705–712.

[152] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data repre-

sentation,” Neural Comput., vol. 15, no. 6, pp. 1373–1396, Jun. 2003.

[153] L. Cayton and S. Dasgupta, “Robust euclidean embedding,” in Proceedings of the 23rd Inter-

national Conference on Machine Learning, ser. ICML ’06. NewYork, NY, USA:ACM, 2006,

pp. 169–176.

[154] L. K. Saul and S. T. Roweis, “Think globally, fit locally: Unsupervised learning of low dimen-

sional manifolds,” Journal of Machine Learning Research, vol. 4, pp. 119–155, 2003.

[155] F. Sha and L. K. Saul, “Analysis and extension of spectral methods for nonlinear dimensionality

reduction,” in Proceedings of the 22Nd International Conference on Machine Learning, ser.

ICML ’05. New York, NY, USA: ACM, 2005, pp. 784–791.

[156] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and

clustering,” in Advances in Neural Information Processing Systems 14, T. G. Dietterich,

S. Becker, and Z. Ghahramani, Eds. MIT Press, 2002, pp. 585–591.

[157] Z. Zhang and J. Wang, “Mlle: Modified locally linear embedding using multiple weights,” in

Advances in neural information processing systems, 2007, pp. 1593–1600.

[158] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality reduction via tangent

space alignment,” SIAM journal on scientific computing, vol. 26, no. 1, pp. 313–338, 2004.

[159] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding techniques for

high-dimensional data,” Proceedings of the National Academy of Sciences, vol. 100, no. 10,

pp. 5591–5596, 2003.

[160] K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image manifolds by semidefinite

programming,” International journal of computer vision, vol. 70, no. 1, pp. 77–90, 2006.

[161] K. Q. Weinberger, B. Packer, and L. K. Saul, “Nonlinear dimensionality reduction by semidef-

inite programming and kernel matrix factorization.” in AISTATS. Citeseer, 2005.

[162] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev., vol. 38, no. 1, pp.

49–95, Mar. 1996.

[163] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999.

[164] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and

clustering,” in Advances in neural information processing systems, 2002, pp. 585–591.

[165] ——, “Convergence of laplacian eigenmaps,” in Advances in Neural Information Processing

Systems 19, B. Schölkopf, J. C. Platt, and T. Hoffman, Eds. MIT Press, 2007, pp. 129–136.

[166] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality reduction via tangent

space alignment,” SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313–338, Jan. 2005.

[167] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in

Advances in neural information processing systems, 2002, pp. 849–856.

142



[168] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel eigen-

value problem,” Neural computation, vol. 10, no. 5, pp. 1299–1319, 1998.

[169] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review of algorithms and

comparison of software implementations,” Journal of Global Optimization, vol. 56, no. 3, pp.

1247–1293, Jul 2013.

[170] M. Avriel, Nonlinear programming: analysis and methods. Courier Corporation, 2003.

[171] R. Hooke and T. A. Jeeves, ““ direct search” solution of numerical and statistical problems,” J.

ACM, vol. 8, no. 2, pp. 212–229, Apr. 1961.

[172] G. E. Box, “Evolutionary operation: Amethod for increasing industrial productivity,” Applied

statistics, pp. 81–101, 1957.

[173] V. J. Torczon, “Multidirectional search: a direct search algorithm for parallel machines,” Ph.D.

dissertation, Rice University, 1989.

[174] J. J. E. Dennis and V. Torczon, “Direct search methods on parallel machines,” SIAM Journal

on Optimization, vol. 1, no. 4, pp. 448–474, 1991.

[175] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” science,

vol. 220, no. 4598, pp. 671–680, 1983.

[176] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory program-

ming,” IEEE computational science and engineering, vol. 5, no. 1, pp. 46–55, 1998.

[177] V. Torczon, “On the convergence of the multidirectional search algorithm,” SIAM journal on

Optimization, vol. 1, no. 1, pp. 123–145, 1991.

[178] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a matrix,”

Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis,

vol. 2, no. 2, pp. 205–224, 1965.

[179] E. Bruni, N. K. Tran, and M. Baroni, “Multimodal distributional semantics,” J. Artif. Int. Res.,

vol. 49, no. 1, pp. 1–47, Jan. 2014.

[180] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating semantic models with (gen-

uine) similarity estimation,” Computational Linguistics, 2015.

[181] C. Baziotis, N. Pelekis, and C. Doulkeridis, “Datastories at semeval-2017 task 4: Deep lstm

with attention for message-level and topic-based sentiment analysis,” in Proceedings of the

11th International Workshop on Semantic Evaluation (SemEval-2017). Vancouver, Canada:

Association for Computational Linguistics, August 2017, pp. 747–754.

[182] T.Yang, J. Liu, L.Mcmillan, andW.Wang, “Afast approximation tomultidimensional scaling,”

in In Proc. of the IEEE Workshop on Computation Intensive Methods for Computer Vision,

2006.

[183] K. Rajawat and S. Kumar, “Stochastic multidimensional scaling,” IEEE Transactions on Signal

and Information Processing over Networks, vol. 3, no. 2, pp. 360–375, 2017.

[184] E. Pothos and J. Busemeyer, “A quantum probability explanation for violations of symmetry in

similarity judgments,” in Proceedings of the Annual Meeting of the Cognitive Science Society,

vol. 33, no. 33, 2011.

143





Appendix A

Abbreviations

(ACF): Autocorrelation Function

(AI): Artificial Intelligence

(AMI):Average Mutual Information

(ANN): Artificial Neural Network

(ASD): Autism Spectrum Disorder

(ASR):Automatic Speech Recognition

(AWVL): Average White Vertical Length

(BLSTMs): Bidirectional Long Short Time Memory units

(CNNs): Convolutional Neural Networks

(CTC): Connectionist Temporal Classification

(DAEs): Denoising Autoencoders

(DBN): Deep Belief Network

(DDP): Difference of Difference of Periods

(DENTR): Diagonal Entropy, recurrence quantification analysis measure

(DET): Determinism, recurrence quantification analysis measure

(DNNs): Deep Neural Networks

(EEGs): ElectroEncephalogram Signals

(ELMs): Extreme Learning Machines

(EM): Expectation Maximization algorithm

(EP): Emotion Profile

(ESR): Ensemble Softmax Regression classifier

(FNN): False Nearest Neighbors heuristic method

(GFS): Glottal Flow Spectrogram

(GMMs): Gaussian Mixture Models

(GN): Global Normalization

(GPS): General Pattern Search

(GPU): Graphical Processor Unit

(HMIs): Human-Machine Interfaces

(HMM): Hidden Markov Model

(HNR): Harmonics to Noise Ratio frame level feature

(IEMOCAP): Interactive Emotional Dyadic Motion Capture database

(ISOMAP): Isometric Feature Mapping nonlinear dimensionality reduction algorithm

(KNNs): K-Nearest Neighbors nonparametric classifier

(L): Average Diagonal Length, recurrence quantification analysis measure

(LAM): Laminarity, recurrence quantification analysis measure

(LE): Laplacian Eigenmaps

(LLDs): Low Level Descriptors extracted from speech frames

(LLE): Local Linear Embedding

(LOSO): Leave One Session Out evaluation scheme

(LR): Logistic Regression classifier

(LSP): Line Spectral Pairs
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(LSTM): Long Short Time Memory unit

(LTSA): Local Tangent Space Alignment

(MDS): Multidimensional Scaling algorithm for nonlinear dimensionality reduction

(MFBs): Mel Filterbanks, frame level feature

(MFCCs): Mel Frequency Cepstral Coefficients frame level feature

(ML): Machine Learning

(MSE): Mean Squared Error loss function

(NLDR): Nonlinear Dimensionality Reduction task

(NN): Neural Network

(PCA): Principle Components Analysis dimensionality reduction algorithm

(PS): Phase Space or state space of a system under analysis

(RBF): Radial Base Function kernel

(RMS): Root Mean Square loss function

(RNNs): Recurrent Neural Networks

(RP): Recurrence Plot

(RQA): Recurrence Quantification Analysis, complexity measures extracted from a recurrence plot

(RR): Recurrence Rate

(SAE): Sparse Auto-Encoders

(SAVEE): Surrey Audio-Visual Expressed Emotion Database

(SD): Speaker Dependent evaluation scheme

(SER): Speech Emotion Recognition task

(SHS): Sub-Harmonic Sum

(SI): Speaker Independent evaluation scheme

(SP): Spectrogram

(SUA): Sub-Utterance Attention for a recurrent neural network

(SVD): Singular Value Decomposition

(SVM): Support Vector Machine classifier

(TD): Typically Developing children

(TEO): Teager Energy Operator

(TSNE): t-Distributed Stochastic Neighboring Embedding

(TT): Trapping Time, recurrence quantification analysis measure

(UA): Unweighted Accuracy performance metric

(VAD): Voice Activity Detection mechanism

(VENTR): Vertical Entropy, recurrence quantification analysis measure

(WA): Weighted Accuracy performance metric

(WENTR): White Vertical Entropy, recurrence quantification analysis measure

(WPA): Weighted Pooling Attention mechanism for recurrent neural networks

(WSFHM): Weighted Spectral Features based on Hu Moments

(ZCR): Zero Crossing Rate
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