Manifold Learning & Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

Efthymios Tzinis

School of Electrical and Computer Engineering (ECE), National Technical University of Athens (NTUA), Greece

School of ECE NTUA

Manifold Learning and Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

E. Tzinis

Introduction

Develop computational systems capable of:

- ► Hearing → Automatic Speech Recognition (ASR)
- ► Feeling? → Speech Emotion Recognition (SER)

ASR vs SER

- ASR is about What you say?
- SER is about How you say it?
- SER importance and applications:
 - Build adaptive Human Computer Interaction interfaces
 - Call centers, personal robot assistants, etc.
- How to build a SER system?
 - Extract representative sets of acoustic features
 - Select and train a classification model

Outline

E. Tzinis

- 1 Investigating how different timescales affect the performance of SER systems for:
 - Feature extraction
 - Model inference
- 2 Finding novel nonlinear acoustic features for SER
 - Exploiting recurrence dynamics of reconstructed phase spaces
 - Performance increment of SER systems based on conventional features
- 3 Developing a new algorithm for nonlinear dimensionality reduction
 - Derivative free optimization
 - Application to SER

Timescales of Emotional Inference

E. Tzinis

School of ECE NTUA

Manifold Learning and Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

4/48

Idea Outline

E. Tzinis

Assumption: SER performance depends on the timescale of emotion feature extraction

Types of timescales of inferring emotional content

- Frame ≈ 30 milliseconds
- ▶ Phoneme ≈ 90 milliseconds
- Speech segment $\approx 1 3$ seconds
- Utterance

How timescales affect SER performance for different:

- ► Features → Extraction
- ▶ Models → Inference

Feature Extraction Timescales: Local & Global (IS10 [23]) Features

Selected Feature Sets (Left) & Statistical Functions (Right)
 Low Level Descriptors (LLDs)

LLDs	1st Delta	Local Features	Global-Features Applied Functional Sets*
RMS Energy	√	√	X
Quality of Voice	 ✓ 	~	X
ZCR	√	~	×
Jitter Local	X	√	A
Jitter DDP	X	√	A
Shimmer Local	X	√	A
F0 by SHS	√	√	A,C
Loudness	✓	√	A,B
Probability of Voicing	 ✓ 	~	A,B
HNR by ACF	√	√	A,B
MFCCs[0-14]	√	√	A,B
LSP Frequency [0-7]	√	X	A,B
log MFB [0-7]	√	X	A,B
F0 Envelope	√	×	A,B

Statistical Functions			
position max/min			
arithmetic mean, standard deviation			
skewness, kurtosis			
linear regression coefficient 1/2			
Quadratic & Absolute linear regression error			
quartile 1/2/3			
quartile range 2-1/3-2/3-1			
percentile 99			
up-level time 75/90			
percentile 1, percentile range 1-99	В		
OnSets Number, Duration	С		

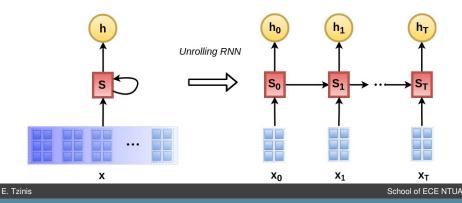
[23] Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Müller, C., Narayanan, S., "The INTERSPEECH 2010 Paralinguistic Challenge," *INTERSPEECH*, pp. 2794–2797, 2010

E. Tzinis

From Sub-Utterance Features to Utterance Inference

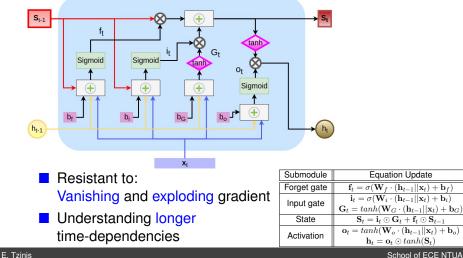
Recurrent Neural Network (RNN)

- Modeling sequences of vectors $\{\mathbf{x}_j\}_{j=0}^T$ (timesteps)
- Each timestep corresponds to a frame or a segment
- $\blacktriangleright \quad \text{Multiple timesteps} \rightarrow \text{backward gradient flow problem?}$

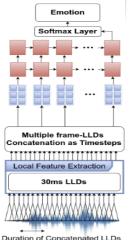


Manifold Learning and Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

Long Short Term Memory (LSTM) unit



Direct Approach using Frame-level Features

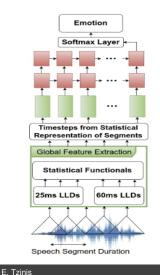


E. Tzinis

Local Features: Frame-LLDs

 LSTM Trained with Concatenated Local Features

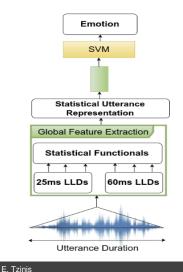
Segment-Based Approach using Global Features



Global Features: Compute statistical functionals over extracted LLDs and create static-length representation

 LSTM Trained with Global Features over Segments (1582 features per segment)

Utterance-Based Approach using Global Features



- Global Features: Compute statistical functionals over extracted LLDs and create static-length representation (1582 features per utterance)
- Support Vector Machine (SVM) Trained with Global Features over the whole Utterance

Investigating Timescales: Experimental Setup

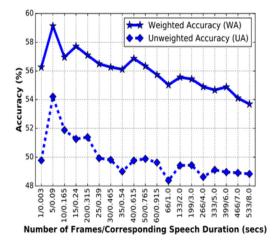
Database: IEMOCAP

- 5 Sessions: 2 speakers per session (1 Male, 1 Female)
- 4490 emotional utterances
- 4 Emotions: Angry (1103), Sad (1084), Happy (595), Neutral (1708)
- Evaluation Schema:
 - Leave One Session Out (LOSO): 5 folds (4 train, 1 test)
 - Test: 1 speaker for validation and the other for testing
 - Repeat in reverse and compute the average
- Evaluation Metrics:

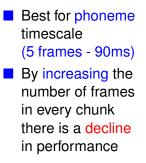
E. Tzinis

- Weighted Accuracy (WA): Percentage of correct classification decisions
- Unweighted Accuracy (UA): Average of accuracies of all emotional classes

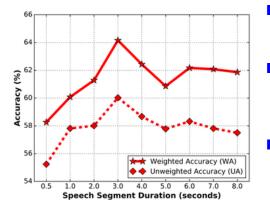
Evaluation Results: LSTM with Local Features



E. Tzinis



Evaluation Results: LSTM with Global Features



E. Tzinis

Best for segments corresponding to 3 seconds

- Phoneme (0.5s) timescales do not contain sufficient emotional context
- Utterance (6-8s) time-scales reduce LSTM's expressiveness

Proposed Models Comparison with the Literature

Model	Type of Features	WA (%)	UA(%)
Best LSTM [35]	Spectrogram	61.71	58.05
BLSTM-SUA [66]	LLDs	59.33	49.96
BLSTM-WPA [65]	LLDs	63.5	58.8
BLSTM-ELM [61]	LLDs chunks of 250ms	62.85	63.89

Model	Type of Features	WA (%)	UA(%)
SVM	IS10 over the whole utterance	53.54	49.23
LSTM	LLDs chunks of 90ms	59.14	54.2
LSTM	IS10 over 3 seconds segments	64.16	60.02

State-of-the-art results on IEMOCAP using a simple LSTM

[35] Fayek, H., M., Lech, M. and Cavedon, L., (in press), "Evaluating deep learning architectures for Speech Emotion Recognition," Neural Networks, vol. 92, pp. 60–68, 2017.

[66] Huang, C., W., Narayanan, S., "Attention Assisted Discovery of SubUtterance Structure in Speech Emotion Recognition," in Proceedings of INTERSPEECH, 2016, pp. 1387–1391.

[65] Mirsamadi, S., Barsoum, E. and Zhang, C., (in press), "Automatic Speech Emotion Recognition Using Recurrent Neural Networks With Local Attention," in Proceedings of ICASSP, 2017, pp. 2227–2231.

[61] Lee, J. and Tashev, I., "High-level feature representation using recurrent neural network for speech emotion

School of ECE NTUA

E. Tzinis

Integrating Nonlinear Recurrence Dynamics

E. Tzinis

School of ECE NTUA

Manifold Learning and Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

16/48

Motivation

E. Tzinis

Linearity Assumptions in Voice Modeling:

- ▶ Short-term speech signals (≈ 30 ms) are stationary
 - Everything that uses a Fourier transformation
 - Mel Frequency Cepstral Coefficients (MFCCs), etc.
- Linear Predictive Coding (LPC)

Too good to be true

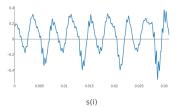
The process of speech production is generally nonlinear

- Modulations of the speech airflow and turbulence
- Biphonation (two independent pitches)
- Nonlinear laryngeal vibrations

Recurrence Properties of Speech

Recurrence properties of speech dynamics

- Reconstruct the phase space of each speech frame
- Recurrence structures from the co-evolution of trajectories
- Integrate the emerging recurrence patterns?



Time-domain representation

of the speech frame

E. Tzinis

s(i) s(i) s(i) s(i+2\tau)⁰ s(i+2\tau)⁰ s(i+1)

Reconstructed Phase Space

Reconstruction of the Phase Space (PS)

Idea (Intelligible Realm, Phaedrus by Plato ≈ 370 BC):

- Observed signal s is only a projection of the true signal s*
- Approximate PS using time-delayed versions of s

Definition of the PS trajectory:

$$\mathbf{x}(i) = [s(i), s(i+\tau), ..., s(i+(d_e-1)\tau)]$$

Estimate τ using Average Mutual Information (AMI):

$$\mathcal{I}(\mathbf{s},\tau) = \sum_{i=1}^{N-\tau} p_b(s(i), s(i+\tau)) \cdot \log_2\left[\frac{p_b(s(i), s(i+\tau))}{p_b(s(i)) \cdot p_b(s(i+\tau))}\right]$$

Estimate d_e using False Nearest Neighbors (FNN):

$$R_{FNN}^{\hat{d}_e}(\mathbf{x}(i), \mathbf{x}(j)) = \frac{\mathbf{D}_{\hat{d}_e+1}(\mathbf{x}(i), \mathbf{x}(j)) - \mathbf{D}_{\hat{d}_e}(\mathbf{x}(i), \mathbf{x}(j))}{\mathbf{D}_{\hat{d}_e}(\mathbf{x}(i), \mathbf{x}(j))}$$

E. Tzinis

Computation of Recurrent Plots (RPs)

RP: Thresholded distance matrix from PS orbits $\{\mathbf{x}(i)\}_{i=1}^N$

 $\mathbf{R}_{i,j}(\epsilon,q) = \Theta(\epsilon - ||\mathbf{x}(i) - \mathbf{x}(j)||_q)$

Setting threshold parameter ϵ :

- 1 Ad-hoc selection
- 2 Based on stabilizing recurrence density

3 Based on a fixed ratio of the standard deviation of points

Setting norm parameter q:

E. Tzinis

▶ Manhattan: q = 1, Euclidean: q = 2, Supremum: $q = \infty$

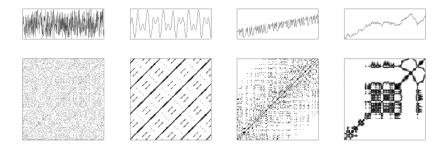
Recurrence structures are based on points and lines

Example of an *L*-length diagonal line (of ones):

$$(1 - \mathbf{R}_{i-1,j-1})(1 - \mathbf{R}_{i+L+1,j+L+1}) \prod_{k=1}^{k=L} \mathbf{R}_{i+k,j+k} = 1$$

What's Special About These Visualizations?

RPs can visualize the identity of the underlying dynamics!
 They have not yet been utilized for SER



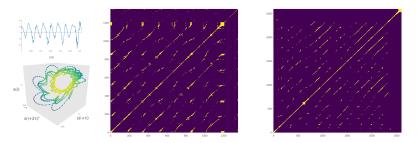
Recurrence plots for different types of systems. From left to right: random noise, periodic oscillations with two frequencies, deterministic chaotic system and autoregressive process. https://en.wikipedia.org/wiki/Recurrence_plot

E. Tzinis

School of ECE NTUA

Manifold Learning and Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

Analysis of Speech Dynamics using RPs



(Left): RP of a 30ms frame contained in the excitation of vowel /e/ inside an angry utterance (Right): RP of Lorenz96 system displaying chaotic behavior

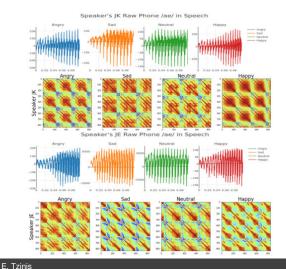
School of ECE NTUA

Manifold Learning and Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

E. Tzinis

22/48

Intuition behind RPs for Emotional Speech



- Pitch-periodic motifs √
- Single isolated points \rightarrow strong fluctuation **X**
- Small diagonal lines \rightarrow chaos dynamics \checkmark
- Some bowed lines \rightarrow changing of dynamics \checkmark
- Vertical-horizontal lines \rightarrow laminar states \checkmark
- White bands \rightarrow nonstationary data (rare states) \checkmark

Recurrence Quantification Analysis (RQA) Feature Set

RQA Measure	Formulation
Recurrence Rate	$\frac{1}{N^2} \sum_{i,j=1}^{N} \mathbf{R}_{i,j}$
Determinism	$\frac{\sum_{l=d_m}^{N} lP_d(l)}{\sum_{l=d_m}^{N} lP_d(l)}$
Max Diagonal Length	$max(\{l_i\}_{i=1}^{n})$
Average Diagonal Length	$\frac{\sum_{l=d_m}^{N} lP_d(l)}{\sum_{l=d_m}^{N} P_d(l)}$
Diagonal Entropy	$\sum_{l=d_m}^{N} \frac{P_d(l)}{N_d} ln(\frac{N_d}{P_d(l)})$
Laminarity	$\frac{\sum_{l=v_m}^{N} lP_v(l)}{\sum_{l=v_m}^{N} lP_v(l)}$
Max Vertical Length	$\max(\{l_i\}_{i=1}^{N_v})$
Trapping Time	$\frac{\sum_{l=v_m}^{N} lP_v(l)}{\sum_{l=v_m}^{N} P_v(l)}$
Vertical Entropy	$\sum_{l=v=v}^{N} \frac{P_v(l)}{N_v} ln(\frac{N_v}{P_v(l)})$
Max White Vertical Length	$\max_{max}(\{l_i\}_{i=1}^{N_w})$
Average White Vertical Length	$\frac{\sum_{l=w_m}^{N} lP_w(l)}{\sum_{l=w_m}^{N} P_w(l)}$
White Vertical Entropy	$\sum_{l=w_m}^{N} \frac{P_w(l)}{N_w} ln(\frac{N_w}{P_w(l)})$

E. Tzinis

ſ	Statistical Functions					
ł						
	min					
	max					
	arithmetic mean					
	median					
	variance					
	skewness					
	kurtosis					
	range					
	1_{st} , 5_{th} , 25_{th} , 50_{th} , 75_{th} , 95_{th} , 99_{th} percentiles					
	25-50, 50-75 and $25-75$ quartile ranges					

432 Features

Experimental Setup

- Datasets
 - 1 Surrey Audio-Visual Expressed Emotion (SAVEE)
 - 480 utterances, 7 emotions
 - 2 Berlin Database of Emotional Speech (Emo-DB)
 - 535 utterances in German, 7 emotions
 - 3 IEMOCAP
 - 5 Sessions (2 speakers each), 4 Emotions, 5531 utterances (Angry, Sad, Happy + Excited, Neutral)

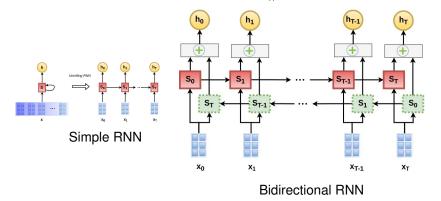
Approaches on different timescales

- Utterance-based: SVM and Logistic Regression (LR)
- Segment-based: Attention-Bidirectional LSTM (A-BLSTM) (1 second segments, 0.5 overlap)
- Evaluated feature sets:
 - (Proposed) RQA: 432 features
 - IS10: 1582 features
 - (RQA + IS10): 2014 features

Bidirectional LSTM (BLSTM)

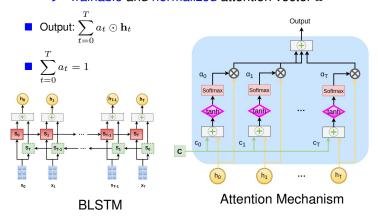
E. Tzinis

Using opposite time-direction flows for {x_j}^T_{j=0} (timesteps)
 ▶ Concatenate activations h_t = h_t || h_{T-t}



Attention-based BLSTM (A-BLSTM)

Focusing only on the most important timesteps of $\{\mathbf{x}_j\}_{j=0}^T$ Trainable and normalized attention vector **a**



School of ECE NTUA

E. Tzinis

Speaker Dependent (SD) Experiments

Features	Model	SA	/EE	Emo-DB		
reatures	woder	WA	UA	WA	UA	
IS10	SVM	77.1	74.5	88.4	87.2	
1310	LR	74.4	71.8	87.4	86.3	
RQA	SVM	66.0	63.0	81.8	80.4	
nQA	LR	64.4	61.1	81.9	79.9	
RQA+IS10	SVM	77.3	75.5	90.1	88.9	
NQA+ISTU	LR	80.2	77.9	93.3	92.9	
[37] Spectrogram	SAE	75.4	-	88.3	-	
[49] LLDs Stats	ESR	76.3	73.4	88.7	87.9	

Utterance-based

(PS-N) Per-Speaker z-Normalization

5-fold cross-validation

(RQA+IS10) set yields improvement compared to IS10:

- 3.1 % in WA and 3.4 % in UA for SAVEE
- 4.9% in WA and 5.7% in UA for Emo-DB

I Improvement compared to models in the literature of up to:

- 4.8% in WA and 5.0% in UA for SAVEE
- 5.0 % in WA and 4.5 % in UA for Emo-DB

 [37] O. Mao, M. Dong, Z. Huang, and Y. Zhan, "Learning salient features for speech emotion recognition using convolutional neural networks, IEEE Transactions on Multimedia, vol. 16, no. 8, pp. 2203–2213, 2014.
 [49] Y. Sun and G. Wen, "Ensemble softmax regression model for speech emotion recognition,"Multimedia Tools and Applications, vol. 76, no. 6, pp. 8305–8328, 2017.

E. Tzinis

School of ECE NTUA

28/48

Speaker Independent (SI) Experiments

Features	Madal	SA	/EE	Emo-DB		
reatures	Model	WA	UA	WA	UA	
IS10	SVM	47.5	45.6	79.7	74.3	
1310	LR	48.5	43.1	76.1	71.9	
RQA	SVM	45.6	41.1	70.9	64.2	
nQA	LR	47.7	42.3	71.1	67.1	
RQA+IS10	SVM	52.5	50.6	82.1	76.9	
nQA+ISIU	LR	54.0	53.8	80.1	77.5	
[49] LLDs Stats	ESR	51.5	49.3	82.4	78.7	
[143] WSFHM+IS10	SVM	50.0	-	81.7	-	

Utterance-based

- (PF-N) Per-Fold z-Normalization
- One-speaker-out cross-validation

(RQA+IS10) set yields improvement compared to IS10:

- 5.5% in WA and 8.2% in UA for SAVEE
- 2.4 % in WA and 3.2 % in UA for Emo-DB

Improvement compared to models in the literature of up to:

- 4.0% in WA and 4.5% in UA for SAVEE
- 0.4% in WA for Emo-DB

[49] Y. Sun and G. Wen, "Ensemble softmax regression model for speech emotion recognition,"Multimedia Tools and Applications, vol. 76, no. 6, pp. 8305–8328, 2017.

[143] Y. Sun, G. Wen, and J. Wang, "Weighted spectral features based on local hu moments for speech emotion recognition,"Biomedical signal processing and control, vol. 18, pp. 80–90, 2015.

E. Tzinis

School of ECE NTUA

29/48

LOSO Experiments on IEMOCAP

Frature	Madal	PS	S-N	PF	-N	G	-N	-
Features	Model	WA	UA	WA	UA	WA	UA	Consistent
	SVM	58.3	60.9	58.9	60.1	59.2	60.5	improvement
IS10	LR	57.5	61.2	54.6	57.9	53.5	57.5	
	A-BLSTM	62.0	65.1	62.6	65.0	62.8	65.0	using the
	SVM	52.9	54.6	53.1	53.8	53.1	53.7	fused set
RQA	LR	52.2	54.8	52.6	54.0	52.8	54.3	
	A-BLSTM	55.6	59.3	56.6	58.3	56.7	58.7	compared to
	SVM	59.3	61.8	59.2	60.4	59.5	60.7	IS10
RQA + IS10	LR	58.3	62.0	55.6	58.7	54.5	58.7	1310
	A-BLSTM	62.7	65.8	63.0	65.2	62.9	65.5	State-of-the-
[27] MFB	CNN	-	61.8	-	-	-	-	
[28] IS10	DBN	-	-	-	-	60.9	62.4	art on
[35] SP	CNN	-	-	-	-	64.8	60.9	IEMOCAP
[36] GFS	BLSTM	-	-	50.5	51.9	-	-	IEMOCAP

[27] Z. Aldeneh and E. M. Provost, "Using regional saliency for speech emotion recognition, in Proceedings of ICASSP, 2017, pp. 2741–2745.

[28] R. Xia and Y. Liu, "A multi-task learning framework for emotion recognition using 2d continuous space, ĨEEE Transactions on Affective Computing, vol. 8, no. 1, pp. 3–14, 2017.

[35] H. M. Fayek, M. Lech, and L. Cavedon, "Evaluating deep learning architectures for speech emotion recognition,"Neural Networks, vol. 92, pp. 60–68, 2017.

[36] S. Ghosh, E. Laksana, L.-P. Morency, and S. Scherer, "Representation learning for speech emotion recognition.ïn Proceedings of INTERSPEECH, 2016, pp. 3603–3607.

Pattern Search MDS

E. Tzinis

School of ECE NTUA

Manifold Learning and Nonlinear Recurrence Dynamics for Speech Emotion Recognition on Various Timescales

31/48

Dimensionality Reduction

Huge dimensionality of N feature vectors

- High-dimensional representations $\mathbf{Y} \in \mathbb{R}^{N \times D}$
- Are all these features mandatory for an apt representation?
- Could we find a lower dimensional space or manifold embedded in this space $\mathbf{X} \in \mathbb{R}^{N \times L}$, where $L \ll D$?
 - Preserve the geometry of the given data $\mathbf{Y} \in \mathbb{R}^{N \times D}$
 - Producing competitive classification accuracies for SER
- Why?

E. Tzinis

- Training time
- Accuracy ? (Curse of Dimensionality)
- Visualization

Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)

- Searching for a solution preserving the pairwise distances of the high dimensional space, e.g., $d_{ij}(\mathbf{X}) \approx d_{ij}(\mathbf{Y})$
- Minimizing Stress:

$$\sigma_{raw}^2(\mathbf{D}_{\mathbf{X}}, \mathbf{D}_{\mathbf{Y}}) = \sum_{i \ i} w_{ij} [d_{ij}(\mathbf{X}) - d_{ij}(\mathbf{Y})]^2$$

- Could be extended to geodesic distances
- Until now: Iterative algorithms based on gradient descent or minimizing a majorization convex function, e.g., SMACOF
- Gradient-free MDS?
 - Better solutions
 - Faster convergence
 - Proof of convergence
 - Application on SER

School of ECE NTUA

33/48

Pattern Search MDS

E. Tzinis

- Target distance matrix D_Y
- Target embedding dimension L
- Iteration index k
- $\square \mathbf{D}^{(k)} = d_{ij}(\mathbf{X}^{(k)})$
- $e^{(k)} = \sigma_{raw}(\mathbf{D}_{\mathbf{Y}}, \mathbf{D}^{(k)})$
- Search radius $r^{(k)}$
- Search moves independently for each point $\mathbf{x}_i \in \mathbf{X}^{(k)}$

L)

Search Directions and Optimal Moves

- 1: function SEARCH_DIRECTIONS(r, L)
- 2: $\mathbf{S}^+ \leftarrow r \cdot \mathbf{I}_L$
- 3: $\mathbf{S}^- \leftarrow -r \cdot \mathbf{I}_L$ 4:
 - return $S^+ || S^-$

$$2: e^* \leftarrow e$$

3: for all
$$s \in \mathbf{S}$$
 do
4: $\tilde{x} \leftarrow x + s$

$$\tilde{x} \leftarrow x + s$$

5:
$$\mathbf{\tilde{X}} \leftarrow \mathsf{UPDATE}_\mathsf{POINT}(\mathbf{X}^{(k)}, x, \tilde{x})$$

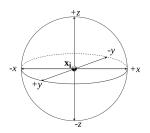
6: $\mathbf{D} \leftarrow \mathsf{DISTANCE}_\mathsf{MATRIX}(\tilde{\mathbf{X}})$

7:
$$\tilde{e} \leftarrow \sigma_{raw}(\mathbf{D}_{\mathbf{Y}}, \mathbf{D})$$

8: if
$$\tilde{e} < e^*$$
 then

9:
$$e^*, \mathbf{X}^* \leftarrow \tilde{e}, \tilde{\mathbf{X}}$$

10: return X^* . e^*



- Search over Cartesian coordinates
- Move along optimal *s* if it reduces the loss (min $\sigma_{raw}(\mathbf{D}_{\mathbf{Y}}, \mathbf{D}^{(k)})$)
- Else do not move that point
- Complexity $\mathcal{O}(N^2L)$ per epoch

General Pattern Search (GPS) Methods

E. Tzinis

Goal: Minimize $f : \mathbb{R}^n \to \mathbb{R}$

Solution:
$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} f(\mathbf{x})$$

- Nonsingular basis $\mathbf{B} \in \mathbb{R}^{n \times n}$
- Generating matrix: $\mathbf{C}^{(k)} = [\mathbf{\Psi}^{(k)} \ \mathbf{L}^{(k)}]$

$$\Psi^{(k)} = [\mathbf{M}^{(k)} - \mathbf{M}^{(k)}], \mathbf{M}^{(k)} \in \mathbb{Z}^{n \times n}$$

- **0** \in **L**^(k) (non-movement)
- **Pattern matrix:** $\mathbf{P}^{(k)} = \mathbf{BC}^{(k)}$
- Step-length parameter: $\Delta^{(k)}$
- Trial Move: $\mathbf{s}_i^{(k)} = \Delta^{(k)} \mathbf{p}_i^{(k)}$
- Unsuccessful iterations: $\Delta^{(k+1)} < \Delta^{(k)}$
- Successful iterations: $\Delta^{(k+1)} \ge \Delta^{(k)}$

Pattern Search MDS Expressed as GPS Instance

Name	GPS Formulation	Pattern Search MDS Formulation			
Variable and	$\mathbf{x} \in \mathbb{R}^n$	$\mathbf{z} = vec(\mathbf{X}^T) \in \mathbb{R}^{N \cdot L}$			
Search Space		$\mathbf{z} = [x_{11},, x_{1L},, x_{N1},, x_{NL}]^T$			
Objective Function	$f:\mathbb{R}^n\to\mathbb{R}$	$g(\mathbf{z}) = \sum (d_{ij}(\mathbf{z}) - d_{ij}(\mathbf{D}_{\mathbf{Y}}))^2$			
		i,j			
Solution	$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$	$\mathbf{z}^* = \min_{\mathbf{z} \in \mathbb{R}^{N \cdot L}} g(\mathbf{z})$			
Nonsingular basis	в	$\hat{\mathbf{B}} = \mathbf{I}_{N \cdot L} = [\mathbf{e}_1,, \mathbf{e}_{N \cdot L}]$			
Generator Matrix	$\mathbf{C}^{(k)}$	$\hat{\mathbf{C}} = [\mathbf{I}_{N \cdot L} \ -\mathbf{I}_{N \cdot L} \ 0]$			
Pattern Matrix	$\mathbf{P}^{(k)}$	$\hat{\mathbf{P}}\equiv\hat{\mathbf{B}}\hat{\mathbf{C}}\equiv\hat{\mathbf{C}}$			
Step-length parameter	$\Delta^{(k)}$	Search Radius $r^{(k)}$			
Trial Move	$\mathbf{s}_i^{(k)} = \Delta^{(k)} \mathbf{p}_i^{(k)}$	$\mathbf{s}_i^{(k)} = r^{(k)} \hat{\mathbf{p}}_i^{(k)}$			
Unsuccessful iterations	$\Delta^{(k+1)} < \Delta^{(k)}$	$r^{(k+1)} = \frac{1}{2}r^{(k)}$			
Successful iterations	$\Delta^{(k+1)} \ge \Delta^{(k)}$	$r^{(k+1)} = r^{(k)}$			

School of ECE NTUA

E. Tzinis

Proof of Convergence

- If the following hold then: $\lim_{k \to +\infty} \inf ||\nabla f(\mathbf{x}^{(k)})|| = 0$
 - 1 Let $L(\mathbf{x}^{(0)}) = {\mathbf{x} : f(\mathbf{x}) \le f(\mathbf{x}^{(0)})}$ be closed and bounded, f is continuously differentiable on the union of the open balls $\bigcup_{\mathbf{a} \in L(\mathbf{x}^*)} B(\mathbf{a}, \eta)$

2
$$\mathbf{s}_{i}^{(k)} = \Delta^{(k)} \mathbf{p}_{i}^{(k)} = \Delta^{(k)} \mathbf{B}[\mathbf{M}^{(k)} - \mathbf{M}^{(k)} \mathbf{L}^{(k)}]$$

3 If among the exploratory moves $\mathbf{a}^{(k)}$ at iteration k selected from the columns of the matrix $\Delta^{(k)}\mathbf{B}[\mathbf{M}^{(k)} - \mathbf{M}^{(k)}]$ exist at least one move that leads to success, i.e., $f(\mathbf{x}^{(k)} + \mathbf{a}) < f(\mathbf{x}^{(k)})$, then the EXPLORE_MOVES() subroutine will return a move $\mathbf{s}^{(k)}$ such that $f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)}) < f(\mathbf{x}^{(k)})$.

Indeed Pattern Search MDS converges to a fixed point

1 Stress function is continuously differentiable everywhere on the union of open balls except of the edge case where $\mathbf{x}_i = \mathbf{x}_j$ [177]

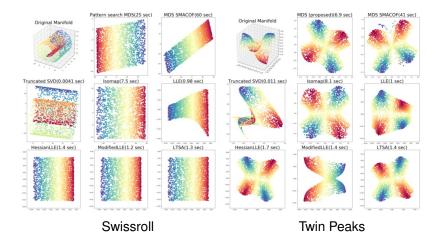
2
$$\mathbf{s}_{i}^{(k)} = r^{(k)} \hat{\mathbf{p}}_{i}^{(k)}$$

3 Each epoch searches over all columns of $\hat{\Psi} = [\mathbf{I}_{N \cdot L} \ - \mathbf{I}_{N \cdot L}]$

[177] V. Torczon, "On the convergence of the multidirectional search algorithm," SIAM journal on Optimization, vol. 1, no. 1, pp. 123–145, 1991.

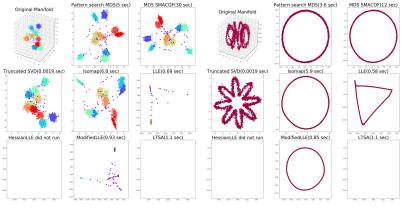
E. Tzinis

Manifold Geometry Reconstruction



E. Tzinis

Robustness to Noisy Data

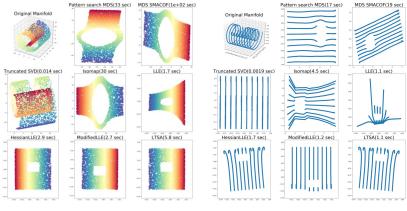


Clusters + Gaussian Noise

Toroid Helix + Gaussian Noise

E. Tzinis

Robustness to Missing Data

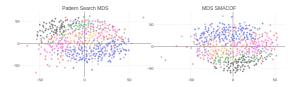


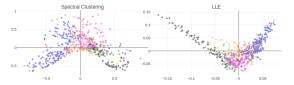
Swisshole

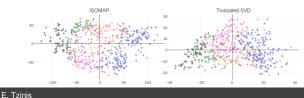
Spiral Hole

E. Tzinis

SER on Emo-DB with Reduced IS10 and KNN

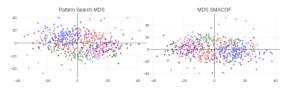


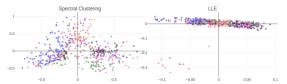




School of ECE NTUA

SER on Emo-DB with Reduced RQA and KNN



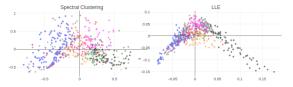


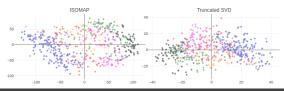
E. Tzinis

School of ECE NTUA

43/48

SER on Emo-DB with Reduced (RQA+IS10) and KNN





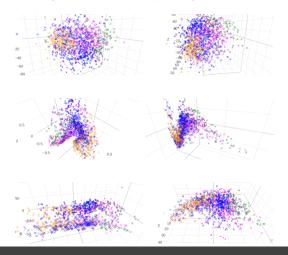
UA: 68.8 %

E. Tzinis

School of ECE NTUA

3D Embeddings from 2 IEMOCAP Speakers

From left to right: Pattern Search MDS, MDS SMACOF, Spectral Clustering, LLE, ISOMAP, Truncated SVD



E. Tzinis

School of ECE NTUA

Comparison on Utterance Level SER

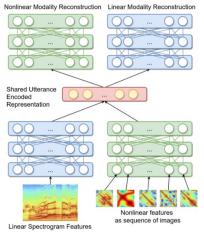
Features	Dimensionality	L	Classifier	EmoDB		IEMOCAP	
	Reduction Method	L		WA	UA	WA	UA
IS10	-	1582	SVM	79.7	74.3	59.2	60.5
	-	1582	LR	76.1	71.9	53.5	57.5
	-	1582	KNN	69.9	64.1	53.1	55.7
	Pattern Search MDS	10	KNN	65.7	59.9	53.8	55.2
	Pattern Search MDS	25	KNN	70.4	63.5	54.5	56.8
RQA	-	432	SVM	70.9	64.2	53.1	53.7
	-	432	LR	71.1	67.1	52.8	54.3
	-	432	KNN	56.9	48.4	46.9	48.8
	Pattern Search MDS	10	KNN	60.0	52.7	46.4	47.2
	Pattern Search MDS	25	KNN	58.8	50.9	47.6	49.3
RQA+IS10	-	2014	SVM	82.1	76.9	59.5	60.7
	-	2014	LR	80.1	77.5	54.5	58.7
	-	2014	KNN	72.4	65.9	52.6	55.1
	Pattern Search MDS	10	KNN	69.9	63.1	52.9	54.4
	Pattern Search MDS	25	KNN	74.4	68.8	54.9	57.2

School of ECE NTUA

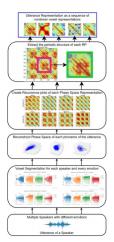
E. Tzinis

Future Work

E. Tzinis



Bimodal Autoencoder



Extract Periodic RP Motifs

School of ECE NTUA

- Efthymios Tzinis and Alexandros Potamianos, "Segment-based speech emotion recognition using recurrent neural networks," *in Affective Computing and Intelligent Interaction (ACII), 2017 Seventh International Conference on. IEEE*, pp. 190–195, 2017.
- 2 Efthymios Tzinis †, Giorgos Paraskevopoulos †, Christos Baziotis, and Alexandros Potamianos, "Integrating recurrence dynamics for speech emotion recognition,"*in Proceedings of INTERSPEECH (in press)*, 2018.
- 3 Giorgos Paraskevopoulos †, Efthymios Tzinis †, Emmanuel-Vasileios Vlatakis-Gkaragkounis, and Alexandros Potamianos, "Pattern Search Multidimensional Scaling," *Under Review for Journal of Machine Learning Research (JMLR), arXiv:1806.00416*, 2018.

† Both authors contributed equally in this work