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Introduction

B Develop computational systems capable of:

» Hearing — Automatic Speech Recognition (ASR)
» Feeling? — Speech Emotion Recognition (SER)

B ASR vs SER
» ASR is about What you say?
» SER is about How you say it?
B SER importance and applications:

» Build adaptive Human Computer Interaction interfaces
» Call centers, personal robot assistants, etc.

B How to build a SER system?

» Extract representative sets of acoustic features
» Select and train a classification model
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Outline

1 Investigating how different timescales affect the
performance of SER systems for:
» Feature extraction
» Model inference
2 Finding novel nonlinear acoustic features for SER
» Exploiting recurrence dynamics of reconstructed phase
spaces
» Performance increment of SER systems based on
conventional features
3 Developing a new algorithm for nonlinear dimensionality
reduction
» Derivative free optimization
» Application to SER
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Timescales of Emotional Inference
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Idea Outline

B Assumption: SER performance depends on the timescale
of emotion feature extraction
B Types of timescales of inferring emotional content

» Frame ~ 30 milliseconds

» Phoneme = 90 milliseconds

» Speech segment ~ 1 — 3 seconds
» Utterance

B How timescales affect SER performance for different:

» Features — Extraction
» Models — Inference
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Feature Extraction Timescales:
Local & Global (1IS10 [23]) Features

B Selected Feature Sets (Left) & Statistical Functions (Right)
» Low Level Descriptors (LLDs)

Global-Features
Local Applied e :
LLDs 1st Delta | Features | Functional Sets* ‘ Stans'l!cal Funclpns H Set ‘
RMS Energy 7 7 3 position max/min
Quality of Voice v v X arithmetic mean, standard deviation
ZCR v v X skewness, kurtosis
jiF:te' 'E)";;' ;‘ j 2 linear regression coefficient 1/2
itter . " .
Shimmer Local X 7 A Quadratic & Absolutg linear regression error || A
FO by SHS 7 7 AC quartile 1213
Loudness v v AB quartile range 2-1/3-2/3-1
Probability of Voicing v v AB percentile 99
’:’;‘gé’yl (f?;] ; j ﬁ'g up-level fime 75/90
s[0- s - -
TSP Frequency [0-7] 7 X B percentile 1, percentile range 1-99 B
log MFB [0-7] 7 x B OnSets Number, Duration C
FO Envelope v X A,B

[23] Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Miller, C., Narayanan, S., “The INTERSPEECH
2010 Paralinguistic Challenge,"INTERSPEECH, pp. 2794-2797, 2010
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From Sub-Utterance Features to Utterance Inference

B Recurrent Neural Network (RNN)

» Modeling sequences of vectors {xj} o (timesteps)
» Each timestep corresponds to a frame or a segment
» Multiple timesteps — backward gradient flow problem?

Unrolling RNN
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Long Short Term Memory (LSTM) unit

St1 . ‘E
t
Sigmoid‘
T‘ Sigmoid

B Resistant to: [ Submodule ] Equation Update
) Forget gate f; = o(Wy - (hy_1]|x) +by)

Vanishing and exploding gradient [~ = =™ i =o(W. (B illx) + by
NPULGAIe | o) — janh(We - (he_i||xe) + bg)

B Understanding longer State S, =h G 08
time-dependencies pctvation || =PI ey
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Direct Approach using Frame-level Features

Emotion
Softmax Layer
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Segment-Based Approach using Global Features

B Global Features:
Compute statistical
functionals over
extracted LLDs and
create static-length

-

r t hi
[ Timesteps from Statistical J

1 of
k3 1 T T b
Global Feature Extraction '

Statistical Functionals |

[ZJ.M Lnl] [.-.lm,LJs]
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Speech Segment Duration
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representation

LSTM Trained with
Global Features
over Segments
(1582 features per
segment)
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Utterance-Based Approach using Global Features

SVM
1 B Global Features: Compute
statistical functionals over
[ Statistical Utterance ] extracted LLDs and create
Representation

static-length representation
(1582 features per utterance)

B Support Vector Machine (SVM)
Trained with Global Features
over the whole Utterance

Global Feature Extraction )

Statistical Functionals

Tt 1 r * f
[25rns LLDs] [BOrns LLDs

\ J

Utterance Duration
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Investigating Timescales: Experimental Setup

B Database: IEMOCAP
» 5 Sessions: 2 speakers per session (1 Male, 1 Female)
» 4490 emotional utterances
» 4 Emotions: Angry (1103), Sad (1084), Happy (595),
Neutral (1708)

B Evaluation Schema:

» Leave One Session Out (LOSO): 5 folds (4 train, 1 test)
» Test: 1 speaker for validation and the other for testing
» Repeat in reverse and compute the average

B Evaluation Metrics:

» Weighted Accuracy (WA): Percentage of correct
classification decisions

» Unweighted Accuracy (UA): Average of accuracies of all
emotional classes
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Evaluation Results: LSTM with Local Features
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Evaluation Results: LSTM with Global Features

66— S B Best for segments
corresponding to 3
seconds

B Phoneme (0.5s)
timescales do not
contain sufficient
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Proposed Models Comparison with the Literature

\ Model [ TypeofFeatures | WA (%) [ UA(%) |
Best LSTM [35] Spectrogram 61.71 58.05
BLSTM-SUA [66] LLDs 59.33 49.96
BLSTM-WPA [65] LLDs 63.5 58.8
BLSTM-ELM [61] || LLDs chunks of 250ms | 62.85 63.89

| Model || Type of Features | WA (%) | UA(%) |
SVM IS10 over the whole utterance 53.54 49.23
LSTM LLDs chunks of 90ms 59.14 54.2
LSTM || IS10 over 3 seconds segments | 64.16 60.02

B State-of-the-art results on IEMOCAP using a simple LSTM
[35] Fayek, H., M., Lech, M. and Cavedon, L., (in press), “Evaluating deep learning architectures for Speech Emotion
Recognition,” Neural Networks, vol. 92, pp. 6068, 2017.
[66] Huang, C., W., Narayanan, S., “Attention Assisted Discovery of SubUtterance Structure in Speech Emotion
Recognition,” in Proceedings of INTERSPEECH, 2016, pp. 1387-1391.
[65] Mirsamadi, S., Barsoum, E. and Zhang, C., (in press), “Automatic Speech Emotion Recognition Using Recurrent
Neural Networks With Local Attention,” in Proceedings of ICASSP, 2017, pp. 2227-2231.
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Integrating Nonlinear Recurrence Dynamics
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Motivation

B Linearity Assumptions in Voice Modeling:
» Short-term speech signals (=~ 30 ms) are stationary

e Everything that uses a Fourier transformation
e Mel Frequency Cepstral Coefficients (MFCCs), etc.

» Linear Predictive Coding (LPC)
B Too good to be true
B The process of speech production is generally nonlinear

» Modulations of the speech airflow and turbulence
» Biphonation (two independent pitches)
» Nonlinear laryngeal vibrations
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Recurrence Properties of Speech

B Recurrence properties of speech dynamics
» Reconstruct the phase space of each speech frame
» Recurrence structures from the co-evolution of trajectories
» Integrate the emerging recurrence patterns?

s(i) s(i+21)° s(i+T1)

05

Time-domain representation
of the speech frame Reconstructed Phase Space
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Reconstruction of the Phase Space (PS)

B |dea (Intelligible Realm, Phaedrus by Plato ~ 370 BC):

» Observed signal s is only a projection of the true signal s*
» Approximate PS using time-delayed versions of s

B Definition of the PS trajectory:
x(i) = [s(i),s(i + 7), ..., s(i + (de — 1)7)]

B Estimate 7 using Average Mutual Information (AMI):

o palsi), s+ )
Zp” ST lega D) p(s 1 1)

B Estimate d. using False Nearest Neighbors (FNN):

Dy, 11(x(i),x(4)) — Dy, (x(i), x(5))
Dy, (x(@),x(4))
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Computation of Recurrent Plots (RPs)

E. Tzinis

B RP: Thresholded distance matrix from PS orbits {x(i)}Y,

Ri (e q) = O(e — [[x(i) — x(j)llg)

B Setting threshold parameter e:

1 Ad-hoc selection

2 Based on stabilizing recurrence density

3 Based on a fixed ratio of the standard deviation of points
B Setting norm parameter ¢:

» Manhattan: ¢ = 1, Euclidean: ¢ = 2, Supremum: ¢ = o
B Recurrence structures are based on points and lines

B Example of an L-length diagonal line (of ones):

k=L

(1= Ri-1-1)(1 = Rirrirgrrr) [ [ Rivrgrr =1
k=1
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What’s Special About These Visualizations?

B RPs can visualize the identity of the underlying dynamics!
» They have not yet been utilized for SER

i ) -
| i i i A f. e e, N
Wﬂwmmm I"' :'J u'l '”w' I‘.\".. '. m,ﬁ,mﬂ.-un',.%“':-"W"* T v

Recurrence plots for different types of systems. From left to right: random noise, periodic oscillations with two
frequencies, deterministic chaotic system and autoregressive process.
https://en.wikipedia.org/wiki/Recurrence_plot
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Analysis of Speech Dynamics using RPs

(Left): RP of a 30ms frame contained in the excitation of vowel /e/ inside an angry utterance
(Right): RP of Lorenz96 system displaying chaotic behavior
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Intuition behind RPs for Emotional Speech

Speaker's JK Raw Phone /ae/ in Speech

v\@{'r
B Pitch-periodic motifs v/

B Single isolated points —
strong fluctuation X

B Small diagonal lines —
chaos dynamics v/

B Some bowed lines —
changing of dynamics v/

A Wm MMWM g

B White bands —
nonstationary data
(rare states) v/

Mzutral

Speaker |K

~ speaker's JE Raw Phone /ae/ In Speech

Neulral
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Recurrence Quantification Analysis (RQA) Feature Set

RQA Measure Formulation
N
Recurrence Rate % Z Ri;
ij=1
N
1Py(1
Determinism M
Sia, ()
Max Diagonal Length max {ll} ")
1Py(1
Average Diagonal Length M
YLy, Pall)
N
, B,
Diagonal Entropy 2 N (Pd(l)>
N
o, LPy(
Laminarity i =tm T L
T, P )
Max Vertical Length maz({l;} ")
o, LPy(
Trapping Time 721;""‘ )
izer, Poll)
N
) P, Ny
Vertical Entropy I; Tvln( Vo (l))
Max White Vertical Length mﬂz({lz}i}i”l)
) . S LPu(l)
Average White Vertical Length %
Zz wm Py(l)
White Vertical Entropy pa N P (l))

Statistical Functions

min
max
arithmetic mean
median
variance
skewness
kurtosis
range

Lsts Bths 25¢n, 50ths e, 95en, 99, percentiles

25 — 50, 50 — 75 and 25 — 75 quartile ranges
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Experimental Setup

B Datasets
1 Surrey Audio-Visual Expressed Emotion (SAVEE)
e 480 utterances, 7 emotions
2 Berlin Database of Emotional Speech (Emo-DB)
e 535 utterances in German, 7 emotions
3 IEMOCAP
e 5 Sessions (2 speakers each), 4 Emotions, 5531 utterances
(Angry, Sad, Happy + Excited, Neutral)
B Approaches on different timescales
» Utterance-based: SVM and Logistic Regression (LR)
» Segment-based: Attention-Bidirectional LSTM (A-BLSTM)
(1 second segments, 0.5 overlap)
B Evaluated feature sets:
» (Proposed) RQA: 432 features
» [S10: 1582 features
» (RQA +1S10): 2014 features
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Bidirectional LSTM (BLSTM)

B Using opposite time-direction flows for {xj};f[’:o (timesteps)
» Concatenate activations h; = E)t||iT,t

k5. . O 4
&

— 571
s - i op Sra i < S5y % |'so'

iixEI i _: .JK\: _:(: ------------ -
Simple RNN =[ == mim

™ (™™ Il

=[5 S[¥] 5[]

Xo X1 XT-1 Xt

Bidirectional RNN
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Attention-based BLSTM (A-BLSTM)

B Focusing only on the most important timesteps of {Xj}?:[)
» Trainable and normalized attention vector a

T

B Output: Y " a; © hy
=0

Output

Attention Mechanism
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Speaker Dependent (SD) Experiments

SAVEE Emo-DB

WA UA WA UA _
SVM 771 745 884 872 W Utterance-based

LR 744 718 874 8.3 M (PS-N) Per-Speaker
ROA SVM 660 630 81.8 804 N lizati
LR 644 611 819 799 z-Normalization

SVM 773 755 90.1 88.9
RQA+IST0 R 802 779 933 929 W Ofold
[37] Spectrogram  SAE 754 - 883 - cross-validation
[49] LLDs Stats ESR 76.3 73.4 88.7 87.9

B (RQA+IS10) set yields improvement compared to 1S10:
» 3.1% in WA and 3.4 % in UA for SAVEE
» 4.9% in WA and 5.7 % in UA for Emo-DB
B Improvement compared to models in the literature of up to:
» 4.8% in WA and 5.0 % in UA for SAVEE
» 5.0% in WA and 4.5% in UA for Emo-DB

[37] Q. Mao, M. Dong, Z. Huang, and Y. Zhan, “Learning salient features for speech emotion recognition using
convolutional neural networks,IEEE Transactions on Multimedia, vol. 16, no. 8, pp. 2203-2213, 2014.

[49] Y. Sun and G. Wen, “Ensemble softmax regression model for speech emotion recognition,’Multimedia Tools and
Applications, vol. 76, no. 6, pp. 8305-8328, 2017.

Features Model

IS10
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Speaker Independent (SI) Experiments

SAVEE  Emo-DB
Features Model WA UA WA UA
10 SVM 475 456 797 74

LR 485 431 761 719

SVM 456 411 709 642

RQA LR 477 423 711 674

SVM 525 506 821 769

RQA+IS10 LR 540 538 801 775
[19]LLDs Stats  ESR 51.5 49.3 824 78.7
[143) WSFHM+IS10  SVM 500 - 817 -

B Utterance-based
B (PF-N) Per-Fold
z-Normalization

B One-speaker-out
cross-validation

B (RQA+IS10) set yields improvement compared to 1S10:
» 5.5% in WA and 8.2% in UA for SAVEE
» 2.4% in WA and 3.2 % in UA for Emo-DB
B Improvement compared to models in the literature of up to:
» 4.0% in WA and 4.5% in UA for SAVEE
» 0.4% in WA for Emo-DB

[49] Y. Sun and G. Wen, “Ensemble softmax regression model for speech emotion recognition,’Multimedia Tools and
Applications, vol. 76, no. 6, pp. 8305-8328, 2017.
[143] Y. Sun, G. Wen, and J. Wang, “Weighted spectral features based on local hu moments for speech emotion
recognition,”Biomedical signal processing and control, vol. 18, pp. 80-90, 2015.

E. Tzinis
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LOSO Experiments on IEMOCAP

PSN PFN GN .

Features Model A UA WA UA WA UA B Consistent
SVM 583 609 589 601 592 605 imoprovemen

IS10 LR 575 612 546 57.9 535 57.5 proveme t
A-BLSTM 620 651 626 650 62.8 65.0 using the
SVM 529 546 53.1 538 53.1 537

RQA LR 522 548 526 540 528 543 fused set
ABLSTM 556 59.3 56.6 583 56.7 58.7 compared to
SVM 593 618 592 604 595 60.7 1S10

RQA+IS10 LR 583 620 556 587 545 587
ABLSTM 627 658 630 652 629 655 | Siate-of-the-

[27] MFB CNN - 618 - - - -

(28] IS10 DBN - - - - 609 624 art on

[35] SP CNN - - - - 648 609

[36) GFS  BLSTM - - 505 51.9 - - IEMOCAP

[27] Z. Aldeneh and E. M. Provost, “Using regional saliency for speech emotion recognition,in Proceedings of
ICASSP, 2017, pp. 2741-2745.

[28] R. Xia and V. Liu, “A multi-task learning framework for emotion recognition using 2d continuous space,iEEE
Transactions on Affective Computing, vol. 8, no. 1, pp. 3-14, 2017.

[35] H. M. Fayek, M. Lech, and L. Cavedon, “Evaluating deep learning architectures for speech emotion
recognition,’Neural Networks, vol. 92, pp. 60-68, 2017.

[36] S. Ghosh, E. Laksana, L.-P. Morency, and S. Scherer, “Representation learning for speech emotion
recognition.in Proceedings of INTERSPEECH, 2016, pp. 3603-3607.
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Pattern Search MDS
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Dimensionality Reduction

B Huge dimensionality of IV feature vectors

» High-dimensional representations Y € RV*P

» Are all these features mandatory for an apt representation?
B Could we find a lower dimensional space or manifold

embedded in this space X € RV*¥ where L < D ?

» Preserve the geometry of the given data Y € RV*P

» Producing competitive classification accuracies for SER
B Why?

» \ Training time

» " Accuracy ? (Curse of Dimensionality)

» Visualization

E. Tzinis School of ECE NTUA
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Multidimensional Scaling (MDS)

B Multidimensional Scaling (MDS)
» Searching for a solution preserving the pairwise distances
of the high dimensional space, e.g., d;;(X) ~ d;;(Y)
> Minimizing Stress:

raw DX’ DY Z wz] l] l] (Y)]Q

» Could be extended to geodesic distances
» Until now: Iterative algorithms based on gradient descent or
minimizing a majorization convex function, e.g., SMACOF

B Gradient-free MDS?

» Better solutions

» Faster convergence

» Proof of convergence

» Application on SER

E. Tzinis
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Pattern Search MDS

: procedure MDS(Dy, L, r(?)) B Target distance

: k<0 ix D
: X® « UNIFORM(N x L) matrix Dy

1
2

" (k) *)
4: D™ « DISTANCE MATRIX(X (")) i
5 o® < [(Dy D®) B Target embedding
6.

7

8

9

622;1) oo dimension L
e H ;
while r(5) > & do Bl lteration index k
if =1 — e(®) < ¢. (k) then [ | D(k) — dij (X(k’))
(k)
10: r®) TT m =
11: S + SEARCH._DIRECTIONS(r("), L) o (Dv.D®
12: forallz ¢ X(*) do raw(Dy, ' ) N
13: X, e B Search radius r*
OPTIMAL_MOVE(X(* 2.8 e(F))
14: o(k=1) (k) Bl Search moves
121 ;2’;;;— e; independently for
: =X int x. (k)
17- k— k1 each pointx; € X
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Search Directions and Optimal Moves

1: function SEARCH_DIRECTIONS(r, L)
2. St«r.1p
3: S™T «— —r-Ip
4:  return ST||S™

2

+y

1: function OPTIMAL.MOVE(X ), z, S, ¢) =
2: e e
3 forall s ¢ S do
4: Tx+s B Search over Cartesian
5: X + UPDATE_POINT(X ), z, &) coordinates
6: ]? + DISTANCE_MATRIX(X) B Move along optimal s if it reduces
7 €< oraw(Dy, D) the loss (min D+, D)
8 if ¢ < e* then € 10ss (min oraw (Dy, )
9: e, X* — 6, X B Else do not move that point
10:  return X*, e* B Complexity O(N2L) per epoch

E. Tzinis School of ECE NTUA
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: procedure GPS_SOLVER(x(?), A(®), c(9))
. k=-—1
do
k=k+1
s — EXPLORE(P (¥, x(¥)| A(k)y
P = f ) s — ™)
it o) < 0 then
D (R (k)

else
(k1) _ (k)

AT _yppATE(AR) | p(F))
c*+ _yppaTE(C(®), p(*))
while convergence criterion == False

oo Rw

W 2o

E. Tzinis

General Pattern Search (GPS) Methods

Goal: Minimize f : R" — R

Solution: x* = argmin f(x)
x€R™

Nonsingular basis B € R™*"™
Generating matrix: C(®) = (@) 1,(F)
wk) — [M(k) _ M(k)], M) ¢ gnxn
0 € L) (non-movement)

Pattern matrix: P(*) = BC*)
Step-length parameter: A (%)

Trial Move: st*) = A(’“)pgk)

i

Unsuccessful iterations: A1) < A(F)
Successful iterations: A1) > A()

School of ECE NTUA
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Pattern Search MDS Expressed as GPS Instance

Name GPS Formulation Pattern Search MDS Formulation
Variable and N z = vee(XT) ¢ RNV-L
Search Space z = [mu,.. 1L, e TN, o ENL] T
Objective Function f:R* 5 R Z(d” (z) — d;j(Dy))?
i
Solution x* = argmin f(x) z* = mln g(z)
xER™ zcRN
Nonsingular basis B B=1Iy..=e1,...en.L]
Generator Matrix c*) C=[Iyr —In.r O
Pattern Matrix Pk P=BC=¢C
Step-length parameter A Search Radius r(¥)

Trial Move
Unsuccessful iterations

Successful iterations

AR+~ AK)
AKRFD > A(K)

S 1)

2
pe1) (k)

E. Tzinis
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Proof of Convergence

B If the following hold then: Jim inf IVfE) =0
—+o0

1 Let L(x(?) = {x: f(x) < f(x(°))} be closed and bounded, f is
continuously differentiable on the union of the open balls U B(a,n)

acL(x*)

2 sgk) — A(k)pgk) =A®BM® —M® LK)

3 If among the exploratory moves a(*) at iteration k selected from the
columns of the matrix A B[M®*) — M(*)] exist at least one move that
leads to success, i.e., f(x*) + a) < f(x(*)), then the EXPLORE_MOVES()
subroutine will return a move s(®) such that f(x®*) +s(*)) < f(x*)).

B Indeed Pattern Search MDS converges to a fixed point
1 Stress function is continuously differentiable everywhere on the union of
open balls except of the edge case where x; = x; [177]
2 sl(.k) = r(k)fJEk)
3 Each epoch searches over all columns of ¥ = In.. —In.L]

[177] V. Torczon, “On the convergence of the multidirectional search algorithm,”SIAM journal on Optimization, vol. 1,
no. 1, pp. 123-145, 1991.
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Manifold Geometry Reconstruction

Pattern search MDS(25 sec)  _MDS SMACOF(S0 sec) MDS (pmpesed)(s 9 sec) MDS SMAcuml sec)
Original Manifold

‘“ﬁ @ g w

A7

Original Manifold

Truncated SVD(0.0041 sec) ) Isomap(7.5 SEC! LLE(U 98 sec) ) _Tmncated. SVD(0.011 sec) Isomap(8.1 sec) . . LLE(1 sec)
| € 3k 4
. 5% # »
i o2 gy ¢»
‘ HessianLLE(1.4 sec) MB’mﬁEdI.LE(I 2 SECJ ) ) LTSA(1.3 sec) HessianLLE(1.7 sec) ModifiedLLE(1.4 sec) o L"SA(l 4 sec)

et
¥y &P n

Swissroll Twin Peaks
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Robustness to Noisy Data

Original Manifold

¥ |

Truncated SVD(0.0019 sec)

Pattern search MDS(5 sec)

MDS SMACOF(30 sec)

Isomap(6.8 sec)

N i:LEYO,'éQ‘s‘eC‘; )

HessianLLE did not run

. L
&

ModifiedLLE(0.93 sec)

CUTsALLseq)

Original Manifold

Truncated SVD(0.0019 sec

HessianLLE did not run

Pattern search MDS(3.6 s«

)

MDS SMACOF(12 sec)

0

Isomap(5.9 sec)

_ LEO58sed

O

ModifiedLLE(0.85 sec)

O

| UTsAM1sed

Clusters + Gaussian Noise

Toroid Helix + Gaussian Noise
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Robustness to Missing Data

Pattern search MDS(33 sec) ~ MDS SMACOF(1e+02 sec)

io

ttern search MDS(17 sec) MDS SMACOF(19 sec)
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SER on Emo-DB with Reduced 1IS10 and KNN

Pattemn Search MDS MDS SMACOF
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SER on Emo-DB with Reduced RQA and KNN
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SER on Emo-DB with Reduced (RQA+IS10) and KNN
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3D Embeddings from 2 IEMOCAP Speakers

From left to right: Pattern Search MDS, MDS SMACOF, Spectral Clustering, LLE, ISOMAP, Truncated SVD
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Comparison on Utterance Level SER

E. Tzinis

Features Dimensionality L | Classifier EmoDB | IEMOCAP
Reduction Method WA UA | WA UA

1582 | SVM | 79.7 743|592 605

1582 LR 761 719|535 575

1S10 - 1582 | KNN |69.9 64.1 531 557

Pattern Search MDS | 10 KNN | 657 59.9 |53.8 55.2

Pattern Search MDS | 25 KNN | 704 635|545 56.8

432 SVM [ 709 642|531 537

432 LR 711 671|528 54.3

RQA - 432 KNN | 56.9 484|469 488

Pattern Search MDS | 10 KNN | 60.0 52.7 | 464 47.2

Pattern Search MDS | 25 KNN 58.8 509 | 47.6 49.3

2014 | SVM | 821 769|595 60.7

2014 LR 80.1 775|545 587

RQA+IS10 - 2014 | KNN | 724 659|526 55.1
Pattern Search MDS | 10 KNN |69.9 631|529 544

Pattern Search MDS | 25 KNN | 744 688|549 572
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Future Work
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