
The Resumption Monad Transformer and
its Implementation in JavaScript
Diploma Thesis Presentation

Georgios Sakkas

Supervisor: Nikolaos S. Papaspyrou, Associate Professor NTUA
July 6, 2018

National Technical University of Athens
School of Electrical and Computer Engineering

Introduction

Introduction

Resumptions are a valuable tool in the analysis and design of
semantic models for concurrent programming languages, in which
computations consist of sequences of atomic steps that may be
interleaved.

In this work we define a Resumption Monad Transformer (RMT) in
JavaScript and we investigate how this can be a low-overhead and
extremely modular way to define the denotational semantics of a
simple imperative language, which has side-effects and supports
concurrency.

Georgios Sakkas RMTs in JavaScript 1

Monads and Monad Transformers

Monads

A monad is essentially a triple ⟨M,unitM,bindM⟩ consisting of a type
constructor M and a pair of polymorphic functions that must satisfy
the three monad laws. In functional we have:

return :: a→ M a (unitM)
>>= :: M a→ (a→ M b) → M b (bindM)

Types constructed by monad M denote computations.

• The type M a denotes computations returning values of type a.
• The result of return v is a computation returning the value v.
• The result of m >>= f is the combined computation of m,
returning v, followed by computation f v.

Georgios Sakkas RMTs in JavaScript 2

MultiMonads and StrongMonads

It is also useful to distinguish two subclasses of monads with
additional features.

class Monad m => MultiMonad m where
(+|+) :: m a -> m a -> m a

class Monad m => StrongMonad m where
(+:+) :: m a -> m b -> m (a, b)

• +|+ indicates an option between two alternative computations.
• +:+ indicates a combination of two simultaneous computations.
• Their exact behavior depends on a monad’s definition.

Georgios Sakkas RMTs in JavaScript 3

Monad Transformers

• Monad transformers are similar to regular monads, but they are
not standalone entities: instead, they modify the behavior of an
underlying monad.

• Monad transformers are mappings between monads and they
are implemented as higher-order type constructors of kind
(⋆ → ⋆) → ⋆ → ⋆.

• The intuition behind them is that, if T is a monad transformer
and m is a monad, then T m is also a monad and its properties
are defined in terms of the properties of m.

Georgios Sakkas RMTs in JavaScript 4

States and State Monads

Program State

• The notion of state is a very important one in the study of the
impure languages.

• A state is an element of a type which supports two main
operations, load and store, for retrieving and updating the
contents of a variable in memory.

• A distinguished element of this type is the initial state,
typically a state with all variables uninitialized.

Georgios Sakkas RMTs in JavaScript 5

State Monad

• A class of monads that are aware of the state is also useful.
Therefore we need a state monad.

• Class StateMonad supports two operations as an interface
between computations and the state.

class Monad m => StateMonad s m where
setState :: (s -> s) -> m s
getState :: m s
getState = setState id

Georgios Sakkas RMTs in JavaScript 6

State Monad Transformer

• A monad transformer D s can be defined as follows.
• Parameter m specifies the monad representing the stateless
computations.

newtype D s m a = D (s -> m (a, s))

instance Monad m => Monad (D s m) where
return v = D (\s -> return (v, s))
D r >>= f = D (\s -> r s >>= \(v’, s’) ->

let D r’ = f v’ in r’ s’)

Georgios Sakkas RMTs in JavaScript 7

State Monad Transformer

• Monads constructed using D are aware of the state.
• Monad D s m is an instance of StateMonad for state type s.

instance Monad m => StateMonad s (D s m) where
setState f = D (\s -> return (s, f s))

• With the identity monad Id for stateless computations, we end
up with the conventional direct semantics monad M.

type M a = D S Id a

Georgios Sakkas RMTs in JavaScript 8

Resumptions

Resumptions

• Resumptions are constructs which split a computation in a
single atomic step (to be executed first) and a resumed part,
which corresponds to the rest of the computation.

• Resumptions can model interleaved computations and
therefore are a denotational model of concurrency.

• So, resumptions can be used in a monadic style to define the
semantics of concurrent programming languages.

Georgios Sakkas RMTs in JavaScript 9

Traces and Interleaving

• A natural model of concurrency is the trace model.

• Threads are (potentially infinite) streams of atomic operations.

• The meaning of concurrent thread execution defined as the set
of all their possible thread interleavings.

Georgios Sakkas RMTs in JavaScript 10

Interleaving Example

• For example, two simple threads a = [a0,a1] and b = [b0], where
a0, a1 , and b0 are atomic operations.

• The concurrent execution of threads a and b, a ∥ b, is denoted
by the set of all their possible interleavings.

• traces(a ∥ b) = {[a0,a1,b0], [a0,b0,a1], [b0,a0,a1]}

Georgios Sakkas RMTs in JavaScript 11

Resumptions

The most basic resumption monad contains only a notion of
sequencing atomic steps and nothing else:

data R a = Computed a | Resume (R a)

The resumption monad must have:

instance Monad R where
return = Computed
(Computed v) >>= f = f v
(Resume r) >>= f = Resume (r >>= f)

Georgios Sakkas RMTs in JavaScript 12

Resumptions

• Resumptions not enough for imperative languages.

• States must be introduced to allow side-effects.

• Define a resumption monad transformer that can be used to
”lift” a state monad.

Georgios Sakkas RMTs in JavaScript 13

Resumption Monad Transformers

The resumption monad transformer is defined similarly as:

data R m a = Computed a | Resume (m (R m a))

For the resumption monad transformer we have:

instance Monad m => Monad (R m) where
return = Computed
(Computed v) >>= f = f v
(Resume m) >>= f = Resume (m >>= \r ->

return (r >>= f))

Georgios Sakkas RMTs in JavaScript 14

Resumption Monad Transformers

• Parameter m of RMT is a monad representing computations.
• A computation of type R m a is either a computed value of type
a or a computation of type m (R m a), which produces a
resumption, just like resumptions.

• A version of monad M which allows interleaved computations
can be defined by applying R to the direct semantics monad.

type M a = R (D S Id) a

• Two functions to convert between computations of type R m a
and m a are needed.

Georgios Sakkas RMTs in JavaScript 15

RMT Additional Operations

The first fully evaluates a resumption by performing all atomic steps.

run :: Monad m => R m a -> m a
run (Computed v) = return v
run (Resume m) = m >>= run

The second produces a computation with just one atomic step.

step :: Monad m => m a -> R m a
step m = Resume (m >>= (return ◦ Computed))

Georgios Sakkas RMTs in JavaScript 16

RMTs and Interleaving

Returning to the trace model with the two threads a = [a0,a1] and
b = [b0], we have:

1. Resume (a0 >>= return (Resume (a1 >>= return (

Resume (b0 >>= return (Computed ()))))

2. Resume (a0 >>= return (Resume (b0 >>= return (

Resume (a1 >>= return (Computed ()))))

3. Resume (b0 >>= return (Resume (a0 >>= return (

Resume (a1 >>= return (Computed ()))))

Here, >>= and return are the bind and unit operations of the state
monad.

Georgios Sakkas RMTs in JavaScript 17

RMTs in JavaScript

RMTs in JavaScript

• Every monad is defined as a class in JavaScript.

• Monad transformers are functions that take a monad m as an
argument and return a new class that defines the new monad.

• The ”monad” classes have a constructor, a static method unit
and a method bind.

Georgios Sakkas RMTs in JavaScript 18

RMTs in JavaScript

For example the implementation of the simple Identity monad:

class IdentityM {
constructor(x) { this.valueId = x; }
static unit(x) { return new IdentityM(x); }
bind(f) { return f(this.valueId); }

}

Georgios Sakkas RMTs in JavaScript 19

RMTs in JavaScript

The implementation of the Resumption Monad Transformer:

function ResumptionT(M) {
return class RM {

constructor(computed, Mnd, a) {
// true -> "Computed", false -> "Resume"
this.status = computed;
this.Mnd = Mnd;
this.value = a;

}
...

}
}

Georgios Sakkas RMTs in JavaScript 20

RMTs in JavaScript

function ResumptionT(M) {
return class RM {

...
static unit(x) { return Computed(x); }
bind(f) {

if (this.status)
return f(this.value);

else
return Resume(this.Mnd.bind(r =>

M.unit(r.bind(f))));
}
...

}
}

Georgios Sakkas RMTs in JavaScript 21

RMTs in JavaScript

function ResumptionT(M) {
return class RM {

...
runR() {

if (this.status)
return M.unit(this.value);

else
return this.Mnd.bind(r => r.runR());

}

static stepR(Mnd) {
return Resume(Mnd.bind(x => M.unit(RM.unit(x))));

}
}

}

Georgios Sakkas RMTs in JavaScript 22

A modular semantics of
concurrency

Semantics of Concurrency

Consider the simple sequential imperative language:

s ::= x := e | s ; s | if e then s else s | while e do s

The language of expressions e is the following.

e ::= x | e + e | e ∗ e | … | x ++ | … | e < e | e == e | …

Georgios Sakkas RMTs in JavaScript 23

Semantics of Concurrency

The semantic function is straightforward. For example:

[[]] :: [[s]] -> M a
[[x := e]] =

[[e]] >>= \n -> setState (store i n) >>= \s ->
return n

[[if e then s1 else s2]] =
[[e]] >>= \c -> if c then [[s1]] else [[s2]]

[[e1 + e2]] =
[[e1]] >>= \v1 -> [[e2]] >>= \v2 -> return v1+v2

Georgios Sakkas RMTs in JavaScript 24

Semantics of Concurrency

Let us now introduce concurrency in our language:

s ::= … | s ∥ s | ⟨s⟩

The semantic function is:

[[s1 ∥ s2]] =
[[s1]] +:+ [[s2]] >>= \p -> return ()

[[⟨s⟩]] =
step (run [[s]])

Georgios Sakkas RMTs in JavaScript 25

Benchmarks

Benchmarks

Our benchmark algorithms include:

1. sieve: The simple algorithm for the sieve of Eratosthenes
2. pi: A pi approximation algorithm
3. primality: A simple primality test algorithm
4. insert: Insertion sort
5. reduce: The reduction of a given array
6. mat-vec: Matrix-vector multiplication
7. comb: Enumerating all possible combinations (m comb n)

Georgios Sakkas RMTs in JavaScript 26

Benchmarks

1. Each benchmark was executed 100 in the NodeJS framework for
the sequential and the concurrent tests separately.

2. The average execution times were measured for each
benchmark.

3. As a metric of our performance, we use the overhead that the
concurrent execution has.

4. A baseline case is needed to compare results.

Georgios Sakkas RMTs in JavaScript 27

JavaScript Promises

Promises

• JavaScript Promises have similar semantics to resumptions.

• Promises are used for asynchronous computations, but are
used as a concurrent model in JavaScript.

• Three mutually exclusive states: pending, fulfilled and rejected.

Georgios Sakkas RMTs in JavaScript 28

Promises

If e is a Promise object then the following operations for working
with Promises are defined:

• Promise() creates a new Promise object e.
• Promise.resolve(e2) resolves a Promise e1 to the value of e2.
• e1.then(e2) schedules Promise e2 to be executed after the
Promise e1 is resolved.

• Promise.all([ei]), where [ei] is an iterable of Promises ei, creates
a new Promise object e which is resolved when all of the
iterable’s Promises are resolved.

Georgios Sakkas RMTs in JavaScript 29

Results

Benchmark time averages

Figure 1: Weighted run-time averages by algorithm time complexity

Georgios Sakkas RMTs in JavaScript 30

Benchmark overhead averages

Figure 2: Weighted overheads averages by algorithm time complexity

Georgios Sakkas RMTs in JavaScript 31

Largest inputs

Benchmark Method Rank of input
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

sieve RMT 198.78 204.33 212.94 212.19 217.04 201.24 205.64 202.45 207.22 210.19
Prom. 203.82 241.00 243.75 268.17 255.58 292.53 294.35 301.67 327.87 336.59

pi RMT 50.87 50.75 51.69 49.87 51.66 50.00 50.28 51.00 50.94 51.18
Prom. 197.89 156.15 136.10 104.25 106.44 119.67 124.86 155.10 153.43 191.92

primality RMT 54.45 82.96 71.36 76.47 83.60 83.26 81.84 90.48 94.85 95.54
Prom. 313.10 327.19 322.14 350.54 341.14 345.28 351.66 332.46 351.79 341.01

insert RMT 249.43 247.53 246.27 238.66 235.99 241.69 233.94 245.79 245.84 249.87
Prom. 560.55 573.52 579.80 590.20 576.71 575.68 593.31 587.44 476.16 411.09

reduce RMT 80.03 86.20 81.78 82.41 81.01 83.87 82.19 81.74 83.03 82.81
Prom. 140.00 132.81 182.28 187.10 189.63 188.00 216.62 225.71 240.63 228.59

mat-vec RMT 272.79 304.81 294.50 276.67 301.52 321.10 330.15 316.46 342.87 331.45
Prom. 313.98 265.17 315.90 358.57 357.06 298.53 398.56 299.30 402.65 381.15

comb RMT 30.01 82.59 67.23 66.20 82.82 76.30 72.21 117.01 104.80 103.80
Prom. 63.65 129.30 158.25 87.44 90.58 94.78 105.20 117.22 134.19 131.13

Table 1: Overheads for the ten biggest inputs for every benchmark tested

Georgios Sakkas RMTs in JavaScript 32

Average overheads per input

Figure 3: Average overheads for the ten biggest inputs of each benchmark

Georgios Sakkas RMTs in JavaScript 33

Conclusions

Conclusions

• The resumption monad transformer implementation
outperformed Promises.

• Resumption monad transformers can a low-overhead and
extremely modular constructs for the semantics of concurrency.

• Generator functions can be used to import laziness in bind
functions in the future .

Georgios Sakkas RMTs in JavaScript 34

Thank you!

Any questions?
Georgios Sakkas RMTs in JavaScript 34

	Introduction
	Monads and Monad Transformers
	States and State Monads
	Resumptions
	RMTs in JavaScript
	A modular semantics of concurrency
	Benchmarks
	JavaScript Promises
	Results
	Conclusions

