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Abstract

Resumptions are a valuable tool in the analysis and design of semantic models for concurrent
programming languages, in which computations consist of sequences of atomic steps that
may be interleaved. Briefly, a resumption is either a computed value of some domain or an
atomic computation that produces a new resumption. In an appropriate category of semantic
domains we define a monad transformer R which, given an arbitrary monad M that represents
the atomic computations, constructs a monad R(M) for interleaved computations. What is
more, monad transformers allow monads to be constructed in a “layered” fashion. This
allowed us in our work, if, for example, D is the state monad transformer, to implement the
direct semantics approach, where R(M)(D) will be a monad aware of a state and resumptions.
Therefore, if M is chosen to be the power-domain monad P (this can be the list monad in
Haskell in order to accumulate results) we can define the semantics of concurrent programming
languages where the interleaving of computations is allowed.

Furthermore, we use our introduced Resumption Monad Transformer (RMT) to define the
denotational semantics of a simple imperative language featuring non-determinism and con-
currency. This language is being implemented on JavaScript and is actually a subset of it.
We then define our own version of monads and monad transformers in JavaScript in order to
implement resumption monad transformers efficiently. Additionally, we can now define new
operators that let us extend this simple language and insert non-determinism and interleaving
of computations into it. Our goal is to evaluate the results of RMTs on a single-threaded lan-
guage, that doesn’t support concurrency natively, and show that they can be a low-overhead
and very expressive approach for the semantics of concurrency. We did tests in JavaScript
to prove these points, where programs are written on plain JavaScript and in our language
that uses RMTs. We also compare their performance against the JavaScript Promises, whose
semantics resemble those of our resumption monad transformer.

Key words

Programming Languages, Concurrent Programming, Denotational Semantics, Functional
Programming, Monads, Resumptions, Monad Transformers, JavaScript.
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Chapter 1

Introduction

1.1 Concurrency and concurrent programming languages

1.1.1 Concurrency and concurrent systems

Parallel computers are the predominant systems nowadays. Computer systems that only
provide a single stream of computations, like single-core CPUs, have now become scarce.
Parallel systems are the most obvious example of concurrent systems. Concurrent systems
are the ones that allow many different applications or activities, that are called threads
in the field of concurrency, to be executed simultaneously. Those threads usually need to
communicate with each other in order to finish the overall task at hand correctly. The theory
of concurrency involves the study of such communicating systems and the models used for
that reason.

Concurrent systems are therefore more complicated than their sequential counterparts to
examine and reason about. In a sequential program execution, each computation - i.e. a basic
operation - will be done ”one at a time”, while in a concurrent execution many computations
might happen ”together”. What that means is that each program execution has its individual
state - i.e the variables and their values, whereas in a concurrent execution each thread
may have its (more or less) independent state. But those thread states must necessarily
communicate with each other as mentioned before. Consequently different combinations of
them may arise. The number of the state combinations grows exponentially with the number
of threads compared to the sequential ones’ linear growth. Such problems are described in
[Bust90].

Concurrent systems may also exhibit nondeterminism, which is the case of a concurrent
execution of the same code with the same input resulting in different outputs. Nondetermin-
istic systems are therefore in principle untestable and only with formal understanding and
reasoning we can predict deterministic properties of such systems.

A concurrent system may also be deadlocked, which is the case of a concurrent execution of a
program leading in no thread making any progress due to waiting to communicate with each
other, but nothing towards that is happening. Deadlock is one of the primary concerns when
dealing with concurrent systems.

Another misbehavior a concurrent system may exhibit is livelock. Externally it may seem
like deadlock since no actual progress is made, but livelock is basically an infinite unbroken
sequence of internal computations.

Understanding such misbehaviors of concurrent systems is essential for analyzing concurrency
and finding formal methods for it. Since mathematical models and software engineering
techniques designed for sequential systems are usually inadequate for modeling the subtleties
of concurrency, different ones must be developed for the purpose of concurrency.
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1.1.2 Concurrent programming languages and their semantics

Programming languages allowing the user to utilize systems such as the aforementioned con-
current ones, can be defined as concurrent programming languages. Those languages usually
have built-in facilities that allow the users to write effortlessly concurrent programs, like
Cilk (where parallel programming can be considered as subset of concurrent programming)
[Blum96] or Erlang [Arms93]. These concurrent facilities may involve multi-threading, mes-
sage passing, shared resources (including shared memory) or futures and promises. Many
techniques have been exploited in order to mathematically formalize these facilities and de-
fine the semantics of concurrent programming languages [dBak96], [Rosc97]. One of these
formal semantic models that have been long studied [Mogg90], [dBak96], [Papa00], [Papa01],
[Harr04] as a model of interleaved computations for the semantics of concurrent programming
languages are resumptions.

In this work we defined a Resumption Monad Transformer (RMT) and implemented it in
JavaScript alongside with a simple imperative language to determine its performance. RMTs
were fist introduced by [Mogg90] as a part of a unified approach to the denotational semantics
of programming languages based on monads.

1.1.3 Concurrency in JavaScript

JavaScript in almost each of its implementations is single-threaded and does not support con-
currency natively. Some frameworks though can be used to exploit concurrency in JavaScript
as mentioned also here [Nami15].

One of the most common case nowadays in asynchronous computation for JavaScript are
Web Workers. A Web Worker is basically a thread running JavaScript in the background,
bringing bring actor style [Bake77] threads to the web. The worker thread can perform tasks
without interfering with the user interface. Once created, a worker can send messages to the
JavaScript code that created it by posting messages to an event handler specified by that
code (and vice versa). This message exchange is borrowed from actors.

While Web workers achieve their design goal of offloading long-running computations to
background threads, they are not suitable for the development of scalable compute-intense
workloads due to high cost of communication and low level of abstraction.

Another framework introducing concurrency in JavaScript is Intel Labs’ River Tail [Labs16],
which enables data parallelism in web applications. River Trail gently extends JavaScript with
simple deterministic data-parallel constructs that are translated at runtime into a low-level
hardware abstraction layer. The central component of River Trail is the ParallelArray type.
ParallelArray objects are essentially ordered collections of scalar values that can represent
multi-dimensional collections of scalars. All ParallelArray objects have a shape that succinctly
describes the dimensionality and size of the object. ParallelArrays are immutable once they
are created and are manipulated by invoking methods on them, which produce and return
new ParallelArray objects. Finally, ParallelArrays provide an API for using functions like
map, reduce, filter etc on them.

River Tail basically introduces the well-known map-reduce paradigm into JavaScript with Par-
allelArrays. While this paradigm is well-established, its semantics remain somewhat obscure
and difficult for the average developer to comprehend and integrate into their applications,
in order to exploit its true potential.

While the above frameworks provide some concurrency in JavaScript applications, the built-
in JavaScript Promises provide a nicer and more accessible framework. Promises are objects
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that are native in most JavaScript implementations nowadays [Prom15]. A Promise is used as
a placeholder for the eventual results of a deferred (and possibly asynchronous) computation
[Lori17]. Any Promise object is in one of three mutually exclusive states: fulfilled, rejected,
and pending. A Promise is said to be settled if it is not pending, i.e. if it is either fulfilled
or rejected. A Promise is resolved if it is settled or if it has been ”locked in” to match the
state of another Promise. Attempting to resolve or reject a resolved Promise has no effect.
An unresolved Promise is always in the pending state. A resolved Promise may be pending,
fulfilled or rejected.

If e is a Promise object then the following operations for working with Promises are defined:

• Promise() creates a new Promise object e.

• Promise.resolve(e2) resolves a Promise e1 to the value of e2.

• e1.then(e2) schedules Promise e2 to be executed after the Promise e1 is resolved.

• Promise.all([ei]), where [ei] is an iterable of Promises ei, creates a new Promise object
e which is resolved when all of the iterable’s Promises are resolved.

Utilizing the above operations Promises can be created and be chained one after another in
order to be used for asynchronous applications. If they are used properly, Promises can model
concurrent programming and provide a way of interleaved computations. Their semantics and
abstraction are closely related to this work (RMTs). We make a comparison of both them
later in this thesis.

1.2 Goals and contributions

The goals of this thesis are driven by the implementation of a semantics model for concur-
rency in real-life programming languages, like JavaScript. New tools are needed to define
the semantics of concurrent programming languages, which allow the parts of a program
that execute simultaneously to interact with one another, typically using the same memory
variables.

Resumptions have long been suggested as a model of interleaved computation in the semantics
of concurrent programming languages. In brief, a resumption is either a computed value of
some domain D or an atomic computation that produces a new resumption.

In this work, we extend a structured generalization of this technique presented in [Papa01].
We allow the atomic steps to perform any type of computation, represented by an arbitrary
monad M over an appropriate category of semantic domains. Thus, we define the Resumption
Monad Transformer R, which transforms monad M to a new monad R(M) representing
interleaved computations. The resumption monad transformer is utilized in this work in
order to express the semantics of a simple deterministic language.

The contributions of this thesis are threefold:

1. We present the theory and the necessary technical background for the reader
to understand the denotational semantics of concurrent programming languages. Fur-
thermore, a theoretical framework for the Resumption Monad Transformers (RMTs) is
presented here, based on the aforementioned background.
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2. We investigate the performance of RMTs on single-threaded programming lan-
guages that do not support concurrency natively. For this purpose we implemented
RMTs in JavaScript and tested them in seven different benchmarks. Those bench-
marks consist of algorithms of different time complexities (i.e O(n), O(n logn), O(n2),
O(2n)). For a better understanding of our results, we compare them to JavaScript’s
built-in Promises, which can model a concurrent computing model if handled in a
proper fashion.

3. We finally present a simple imperative and deterministic language (a small but
effective subset of JavaScript) whose denotational semantics are implemented using
our RMT. This programming language is also extended with some operators that
provide a low-overhead and easy-to-use framework to run computations in an interleaved
manner.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 contains the basic mathe-
matical background for the reader to understand the semantics of concurrency and the rest
of this thesis. It also includes a mathematical definition of Monads, Monad Transformers
and Domain theory. Chapter 3 presents the definitions of RMTs and the necessary theory
behind them. Chapter 4 describes our implementation of RMTs in JavaScript and how their
used to define the denotational semantics of a simple imperative language. In Chapter 5 our
benchmark algorithms are defined and we display our benchmark results of our RMT imple-
mentation, alongside with a performance comparison with Promises. Finally, in Chapter 6
we give our conclusions about RMTs and about their possible future directions.
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Chapter 2

Mathematical background

In this chapter we plainly summarize the mathematical background that is necessary for the
reader to comprehend the rest of the thesis. For a more informative introduction and the
proofs of the theorems, the reader is referred to the related literature that is mentioned below.

2.1 Category theory

Category theory was developed in an attempt to unify simple abstract concepts that were
applicable in many branches of mathematics. Excellent introductions to category theory
and its applications in Computer Science can be found in [Pier90, Gogu91, Pier91, Aspe91,
Barr96].

Definition 2.1.1 A category C is a collection of objects and a collection of arrows satisfying
the following properties:

• For each arrow f there is a domain object dom(f) and a codomain object codom(f),
and by writing f : x→ y it is indicated that x = dom(f) and y = codom(f).

• For every pair of arrows f : x→ y and g : y → z there is a composite arrow g◦f : x→ z.

• Composition of arrows is associative, i.e. for all arrows f : x → y,
g : y → z and h : z → w it is h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• For each object x there is an identity arrow idx : x→ x.

• Identity arrows are identities for arrow composition, i.e. for all arrows f : x → y it is
f ◦ idx = id y ◦ f = f .

Definition 2.1.2 Two objects x and y of category C are isomorphic if there are arrows
f : x→ y and g : y → x such that f ◦ g = id y and g ◦ f = idx. The pair of arrows f and g
are called an isomorphism.

Properties of categories are commonly presented using commuting diagrams. A diagram is
a graph whose nodes are objects and whose edges are arrows. A diagram commutes if for
every pair of nodes and for every pair of paths connecting these two nodes the composition
of arrows along the first path is equal to the composition of arrows along the second. An
example of a commuting diagram, implying that g ◦ f = h, is shown below.
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a
f - b

c

g

?

h

-

Definition 2.1.3 A functor F from category C to category D, written as
F : C → D, is a pair of mappings. Every object x in C is mapped to an object F (x) in
D and every arrow f : x → y in C is mapped to an arrow F (f) : F (x) → F (y) in D.
Moreover, the following properties must be satisfied:

• F (idx) = idF (x) for all objects x in C.

• F (g ◦ f) = F (g) ◦ F (f) for all arrows f : x→ y and g : y → z in C.

Definition 2.1.4 An endofunctor on category C is a functor F : C→ C.

Definition 2.1.5 If F : C → D and G : D → E are functors, then their composition is a
functor G◦F : C→ E. It is defined by taking (G◦F )(x) = G(F (x)) and (G◦F )(f) = G(F (f)).

Definition 2.1.6 For every category C, an identity functor Id C : C → C can be defined by
taking Id C(x) = x and Id C(f) = f .

Note that if F : C → C is an endofunctor and n is a positive natural number, the notation
Fn : C → C can be used for the composition of F with itself n times. The notation can be
extended so that F 0 = Id C.

Theorem 2.1.1 Functors preserve isomorphisms.

Theorem 2.1.2 Identity functors are identities for functor composition, that is, if F : C→ D
is a functor, then F ◦ Id C = Id D ◦ F = F

Definition 2.1.7 If F : C→ D and G : C→ D are functors, then a natural transformation
η between F and G, written as η : F →̇ G is a family of arrows in D. In this family, an
arrow ηx : F (x) → G(x) in D is defined for every object x in C. Moreover, the following
diagram must commute:

x F (x)
ηx- G(x)

y

f

?
F (y)

F (f)

? ηy - G(y)

G(f)

?

2.2 Monads and monad transformers

The notion of monad, also called triple, is not new in the context of category theory. In
Computer Science, monads became very popular in the 1990s. The categorical properties
of monads are discussed in most books on category theory, e.g. in [Barr96]. For a compre-
hensive introduction to monads and their use in denotational semantics the user is referred
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to [Mogg90]. A somehow different approach to the definition of monads is found in [Wadl92],
which expresses the current practice of monads in functional programming. The two ap-
proaches are equivalent. In this thesis, the categorical approach (presented here) is used
for the definition of monads, since it is much more elegant, and the functional approach
(presented in Section 2.4) is used for describing the semantics of programming languages.

Definition 2.2.1 A monad on a category C is a triple ⟨M,η, µ⟩, where
M : C → C is an endofunctor, η : Id C →̇ M and µ : M2 →̇ M are natural transforma-
tions. For all objects x in C, the following diagrams must commute.

M(x)
ηM(x)- M2(x) �M(ηx)

M(x)

M(x)

µx

?�
id M

(x
)

id
M
(x) -

M3(x)
M(µx)- M2(x)

M2(x)

µM(x)

?
µx - M(x)

µx

?

The transformation η is called the unit of the monad, whereas the transformation µ is called
the multiplication or join.

The commutativity of these two diagrams is equivalent to the following three equations,
commonly called the three monad laws:

µx ◦ ηM(x) = idM(x) (1st Monad Law)
µx ◦M(ηx) = idM(x) (2nd Monad Law)
µx ◦M(µx) = µx ◦ µM(x) (3rd Monad Law)

Definition 2.2.2 If C is a category, a monad transformer on C is a mapping between monads
on C.1

2.3 Domain theory

The theory of domains was established by Scott and Strachey, in order to provide appro-
priate mathematical spaces on which to define the denotational semantics of programming
languages. Introductions of various sizes and levels can be found in [Scot71, Scot82, Gunt90,
Gunt92]. Various kinds of domains are commonly used in denotational semantics, the ma-
jority of them based on complete partial orders (cpo’s). The variation used here is one of the
possible options.

Definition 2.3.1 A partial order, or poset, is a set D together with a binary relation ⊑ that
is reflexive, anti-symmetric and transitive.

Definition 2.3.2 A subset P ⊆ D of a poset D is bounded if there is a x ∈ D such that
y ⊑ x for all y ∈ P . In this case, x is an upper bound of P .

1 Many options for the definition of monad transformers have been suggested in literature. Given a category
C, monads on C and monad morphisms (which have not been defined in this thesis) form a category
Mon(C). Monad transformers can be defined as mappings between objects in Mon(C), as endofunctor on
Mon(C), as premonads on Mon(C) (i.e. endofunctors with a unit), and as monads on Mon(C). In this
thesis we have selected the first option.
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Definition 2.3.3 The least upper bound of a subset P ⊆ D, written as
⊔
P , is an upper

bound of P such that,
⊔
P ⊑ x for all upper bounds x of P .2

Definition 2.3.4 A subset P ⊆ D of a poset D is directed if every finite subset F ⊆ P has
an upper bound x ∈ P .

Definition 2.3.5 A poset D is complete if every directed subset P ⊆ D has a least upper
bound. A complete partial order is also called a cpo.

Definition 2.3.6 A domain is a cpo D with a bottom element, written as ⊥. For all elements
x ∈ D, it must be ⊥ ⊑ x.

Definition 2.3.7 Every set S defines a flat domain So, whose underlying set is S ∪ {⊥ }
and in which x ⊑ y iff x = y or x = ⊥.

A number of useful domains can be defined at this point. The trivial domain O is the flat
domain that corresponds to the empty set; it contains a single element ⊥. A useful domain
with a single ordinary element is U = {u }o. The natural numbers under their usual ordering
≤ form a poset ω which is not a cpo, since it is directed and does not have a least upper
bound.

Definition 2.3.8 If D is a poset, an ω-chain (xn)n∈ω in D is a set of elements xn ∈ D such
that n ≤ m implies xn ⊑ xm.

Definition 2.3.9 A function f : D → E between posets D and E is monotone if x ⊑ y
implies f(x) ⊑ f(y).

Definition 2.3.10 A function f : D → E between posets D and E is continuous if it is
monotone and f(

⊔
P ) =

⊔
{ f(x) | x ∈ P } for all directed P ⊆ D.

Definition 2.3.11 A function f : D → E between domains D and E is strict if f(⊥) = ⊥.

Definition 2.3.12 A relation ⊑ can be defined for functions between domains D and E as
follows. If f, g : D → E, then f ⊑ g iff f(x) ⊑ g(x) for all x ∈ D.

Theorem 2.3.1 The set of continuous functions between D and E under the relation of
Definition 2.3.12 is a domain. This domain is denoted by D → E.

Definition 2.3.13 An element x ∈ D is a fixed point of a function f : D → D if x = f(x).

Theorem 2.3.2 If D is a domain and f : D → D is continuous, then f has a least fixed
point fix(f) ∈ D, i.e. fix(f) = f(fix(f)) and fix(f) ⊑ x for all x such that x = f(x).
Furthermore, fix(f) =

⊔
n∈ω fn(⊥).

Theorem 2.3.3 For all n ∈ ω, let fn : A → B. Let x ∈ A. Then, if the least upper bound
on the left hand side exists, it is

(⊔
n∈ω fn

)
(x) =

⊔
n∈ω fn(x).

Theorem 2.3.4 Domains and continuous functions form a category Dom.

To simplify presentation, in category Dom we often omit the parentheses surrounding a
function’s argument, i.e. we write f x instead of f(x).

2 The notation a ⊔ b is used as an abbreviation of
⊔
{ a, b }.
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Definition 2.3.14 A functor F : Dom→ Dom is locally monotone if f ⊑ g implies F (f) ⊑
F (g), for all domains A and B and for all functions f, g : A→ B.

Definition 2.3.15 A functor F : Dom→ Dom is locally continuous if it is locally monotone
and F (

⊔
P ) =

⊔
{F (f) | f ∈ P } for all domains A and B and for all directed P ⊆ A→ B.

Definition 2.3.16 If D and E are domains, then the product D × E is a domain. The
elements of D × E are the pairs ⟨x, y⟩ with x ∈ D and y ∈ E, and the ordering relation is
defined as ⟨x1, y1⟩ ⊑ ⟨x2, y2⟩ ⇔ x1 ⊑D x2 ∧ y1 ⊑E y2.

Definition 2.3.17 If D × E is a product domain, two continuous projection functions fst :
D×E → D and snd : D×E → E can be defined by taking fst ⟨x, y⟩ = x and snd ⟨x, y⟩ = y.

Definition 2.3.18 If D and E are domains, then the separated sum D + E is a domain.
The set of elements of D + E is:

{ ⟨x, 0⟩ | x ∈ D } ∪ { ⟨y, 1⟩ | y ∈ E } ∪ {⊥D+E }

The ordering relation is defined separately for each of the three distinct subsets of D+E, i.e.
⟨x1, 0⟩ ⊑ ⟨x2, 0⟩ ⇔ x1 ⊑D x2 and ⟨y1, 1⟩ ⊑ ⟨y2, 1⟩ ⇔ y1 ⊑E y2. In addition, ⊥D+E ⊑ z for
all z ∈ D + E.

Definition 2.3.19 If D+E is a sum domain, two continuous injection functions inl : D →
D + E and inr : E → D + E can be defined by taking inl x = ⟨x, 0⟩ and inr y = ⟨y, 1⟩.

Definition 2.3.20 If D, E and F are domains and f1 : D → F and f2 : E → F are
continuous functions, a strict continuous function [ f1, f2 ] : D + E → F can be defined as:

[ f1, f2 ](z) =


⊥F , if z = ⊥D+E

f1(x) , if z = ⟨x, 0⟩
f2(y) , if z = ⟨y, 1⟩

Theorem 2.3.5 Let A, B and C be domains, f : A → C and g : B → C continuous
functions. Then [ f, g ] ◦ inl = f and [ f, g ] ◦ inr = g.

Theorem 2.3.6 Let A and B be domains. Then [ inl , inr ] = idA+B.

Theorem 2.3.7 Let A1, B1, C1, A2, B2 and C2 be domains. Let f1 : B1 → C1, f2 : A1 →
B1, g1 : B2 → C2 and g2 : A2 → B2 be continuous functions. Then [ f1 ◦ f2, g1 ◦ g2 ] =
[ f1, g1 ] ◦ [ inl ◦ f2, inr ◦ g2 ].

Theorem 2.3.8 Let A, B, C and D be domains, f : C → D, g1 : A → C and g2 : B → C
continuous functions. If f is strict, then f ◦ [ g1, g2 ] = [ f ◦ g1, f ◦ g2 ].

Power-domains are the domain-theoretic equivalent of power-sets. They have been introduced
as a tool for modeling the semantics of non-deterministic programs and have been widely used
for the semantics of concurrency. In this thesis we avoid a full definition of power-domains;
the reader is referred to [Gunt92] for a detailed definition and a study of their categoric and
domain-theoretic properties.3

3 We also ignore the fact that the entire category Dom of Scott domains is not appropriate for the definition
of power-domains. One of the categories SFP (of sequences of finite posets) or Bif (of bifinite domains),
which are closed subcategories of Dom, should be used instead. The reader is again referred to [Gunt92].
Notice, however, that the results presented in Chapter 3 equally apply to all closed subcategories of Dom,
including Dom itself. We only use power-domains in Section 4.4.
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Definition 2.3.21 Let D be a domain. We write D
♮ for the (convex) power-domain of D.

Definition 2.3.22 Let D and E be domains and f : D → E a continuous function. We can
define a continuous function f

♮
: D

♮ → E
♮.

Theorem 2.3.9 By taking P (D) = D
♮ and P (f) = f

♮ we can define an endofunctor P :
Dom→ Dom, which is called the power-domain functor.

Definition 2.3.23 Let D be a domain. We can define a continuous function {| · |} : D → D
♮,

which is called the power-domain singleton function.

Definition 2.3.24 Let D be a domain. We can define a continuous binary operation ∪♮
:

D
♮ ×D

♮ → D
♮, which is called the power-domain union. Furthermore, this binary operation

is associative, commutative and idempotent.

Definition 2.3.25 Let D be a domain. We can define a continuous function
∪♮

: D
♮♮ → D

♮,
which is called the power-domain big union function.

Theorem 2.3.10 The power-domain singleton is a natural transformation between the iden-
tity functor Id Dom and the power-domain functor P .

Theorem 2.3.11 The power-domain big union is a natural transformation between the func-
tors P 2 and P .

Theorem 2.3.12 The power-domain functor P with the power-domain singleton as the unit
and the power-domain big union as the join define a monad P, which is called the power-
domain monad.

2.4 Monads in functional programming

An alternative approach to the definition of monads has become very popular in the functional
programming community. According to this, a monad on category Dom is defined as a
triple ⟨M,unitM, ∗M⟩. In this triple, M is a domain constructor, unitM : D → M(D) is a
continuous function and ∗M : M(A) × (A → M(B)) → M(B) is a binary operation. These
triples ⟨M,unitM, ∗M⟩ are often aliased as ⟨M, returnM ,bindM ⟩ in functional programming
languages like Haskell.

In the semantics of programming languages, domains constructed by monad M typically
denote computations, e.g. the domain M(D) denotes computations returning values of the
domain D. The result of unitM v is simply a computation returning the value v and the
result of m ∗M f is the combined computation of m, returning v, followed by computation
f(v). Monad transformers are useful to transform between different types of computations
[Lian95].

The following equations connect a monad ⟨M,unitM, ∗M⟩ defined using the functional ap-
proach with a monad ⟨M,η, µ⟩ defined using the categorical approach.

unitM = η
m ∗M f = (µ ◦M(f)) m

η = unitM
µ = λm. m ∗M id
M(f) = λm. m ∗M (unitM ◦ f)

In the functional approach, the three monad laws can be formulated as follows.
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m ∗M unitM = m
(unitM v) ∗M f = f v
m ∗M (λ v. (f v) ∗M g) = (m ∗M f) ∗M g

An interesting remark is that these three laws are enough to prove that the equivalent
⟨M,η, µ⟩, as defined above, is indeed a monad, i.e. that M is a functor (preserves function
identities and composition) and that η and µ are natural transformations.

In this setting, it is useful to define two special classes of monads, equipped with additional
operations that are useful for modeling the semantics of concurrency in programming lan-
guages.

Definition 2.4.1 A multi-monad is a monad M with a binary operation
∥M : M(D)×M(D)→M(D), where D is a domain.

Definition 2.4.2 A strong monad is a monad M with a binary operation ▷◁M : M(A) ×
M(B)→M(A×B), where A and B are domains.

The binary operation ∥ of a multi-monad is used to express disjunction in computations. In
other words, if M is a multi-monad, D is a domain and m1,m2 ∈M(D) are two computations,
the computation m1 ∥ m2 indicates a (possibly non-deterministic) option between m1 and
m2. Moreover, the binary operation ▷◁ of a strong monad is used to express conjunction
in computations. Let M be a strong monad, let A and B be domains. If m1 ∈ M(A) and
m2 ∈ M(B) are two computations, the computation m1 ▷◁ m2 indicates that both m1 and
m2 will be performed and their results will be paired. The option here relates to the order,
if any, in which the two computations will be performed.
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Chapter 3

Resumption monad transformers

The notion of execution interleaving is a well known one in the theory of concurrency. In this
context, computations are considered to be sequences of atomic steps the nature of which
depends on our notion of computation. In isolation, these atomic steps are performed one
after another until the computation is complete. Given two computations A and B, an
interleaved computation of A and B consists of an arbitrary merging of the atomic steps that
constitute A and B. Interleaving easily extends to more than two computations. The atomic
steps of any computation must still be executed in the right order, but this process can be
interrupted by the execution of atomic steps belonging to other computations.

Our primary goal is to define a monad transformer R capable of modeling generic interleaved
computations. In this way, if we are given a monad M which models the computations
taking place at the atomic steps, we can obtain a monad R(M) which models interleaved
computations of such atomic steps. One possible solution to this problem is to use the long
suggested technique of resumptions, illustrated in [dBak96, Schm86] for specific instances of
M .

Generalizing this technique, the domain R(M)(D) of resumptions must satisfy the following
isomorphism:

R(M)(D) ≃ D +M(R(M)(D))

In this domain, atomic steps are arbitrary computations defined by M . The left part of the
sum represents an already evaluated result, i.e. a computation that consists of zero atomic
steps. The right part represents a computation that requires at least one atomic step. The
result of this atomic step is a new element of the resumption domain.

In this chapter we formally define the Resumption Monad Transformer as presented in
[Papa01], where all the proofs for the following theorems and lemmata can be found. We
start by considering an arbitrary locally continuous monad M on Dom. The rest of the chap-
ter is organized as follows. In Section 3.1 we define an endofunctor RM : Dom → Dom. In
Section 3.2 we define two natural transformations unit : Id →̇ RM and join : R2

M →̇ RM

and in Section 3.3 we prove that ⟨RM ,unit , join ⟩ satisfies the three monad laws. In this way
we define the monad transformer R. Next, in Section 3.4 we prove that R(M)(D) satisfies the
aforementioned isomorphism by constructing the two components he and hp of the isomor-
phism. Finally, in Section 3.5 we define a few additional operations on domains constructed
by R(M), which will be handy in specifying the semantics of concurrent programming lan-
guages.
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3.1 Functor RM

We start by defining for each domain D an endofunctor FM,D : Dom → Dom, and some
auxiliary functions. The domain R(M)(D) that we are trying to define is a fixed point of
FM,D.

Definition 3.1.1 Let D, A and B be domains and f : A → B a continuous function. We
define the following mappings:

FM,D(X) = D +M(X)
FM,D(f) = [ inl , inr ◦M(f) ]

Lemma 3.1.1 FM,D(f) ◦ inr = inr ◦M(f)

Theorem 3.1.1 FM,D : Dom→ Dom is a functor.

It is not hard to prove that the functor FM,D is locally monotone and locally continuous.
This result comes easily, since monad M has these two properties and FM,D is defined in
terms of M , using only basic domain operations which preserve monotonicity and continuity.

Lemma 3.1.2 Functor FM,D : Dom→ Dom is locally monotone.

Lemma 3.1.3 Functor FM,D : Dom→ Dom is locally continuous.

The two functions ιe and ιp are useful in the definition of RM (D). They define an embedding
and a projection between the domains O and FM,D(O).

Definition 3.1.2 Let D be a domain. We define the pair of continuous functions ιe : O →
FM,D(O) and ιp : FM,D(O)→ O to be equal to ⊥.

Therefore, it can be proved that:

Lemma 3.1.4 ιp ◦ ιe = id O

Lemma 3.1.5 ιe ◦ ιp ⊑ id FM,D(O)

We proceed by defining a mapping of objects and a mapping of functions, which will define
the endofunctor RM : Dom → Dom at the end of this section. This is the key definition of
[Papa01] that we use in the rest of this thesis.

Definition 3.1.3 Let D be a domain. The domain RM (D) is the set

RM (D) = { (xn)n∈ω | ∀n ∈ ω. xn ∈ Fn
M,D(O) ∧ xn = Fn

M,D(ι
p)(xn+1) }

with its elements ordered pointwise:

(xn)n∈ω ⊑RM (D) (yn)n∈ω ⇔ ∀n ∈ ω. xn ⊑Fn
M,D(O) yn

30



The elements of the domain RM (D) are infinite sequences, indexed by the set of natural
numbers ω. The n-th element of the sequence is an element of the domain Fn

M,D(O). Such
elements represent finite approximations of resumption computations: if a given resumption
computation terminates in less than n steps, its n-th approximation is able to compute the
result accurately; otherwise it produces ⊥. The condition xn = Fn

M,D(ι
p)(xn+1) states that

the elements of the infinite sequence must indeed be approximations: the result of projecting
the (n + 1)-th approximation (an element of Fn+1

M,D(O)) to an element of Fn
M,D(O) must be

equal to the n-th approximation.

Before we can define the mapping of functions that corresponds to RM , it is necessary to
define a few families of auxiliary functions. The first is the family of functions fD

m,n which
map between different approximations of a resumption computation.

Definition 3.1.4 Let D be a domain. For all m,n ∈ ω, we define a function fD
m,n :

Fm
M,D(O)→ Fn

M,D(O) by:

fD
m,n = id Fn

M,D(O) , if m = n

fD
m,n+1 = fD

m,n ◦ Fn
M,D(ι

p) , if m ≤ n

fD
m+1,n = Fm

M,D(ι
e) ◦ fD

m,n , if m ≥ n

So, the following lemmata hold:

Lemma 3.1.6 For all m,n ∈ ω, fD
m,n ◦ Fn

M,D(ι
p) ⊑ fD

m,n+1.

Lemma 3.1.7 For all (xn)n∈ω ∈ RM (D) and for all m,n ∈ ω, fD
m,n xn ⊑ xm.

The families of µe
n and µp

n functions also define mappings between resumption computations
and their approximations. The former embeds an approximation requiring less than n steps
to an element of the domain RM (D), while the latter projects an element of the domain
RM (D) to its n-th approximation.

Definition 3.1.5 Let D be a domain, n ∈ ω, z ∈ Fn
M,D(O) and (xm)m∈ω ∈ RM (D). We

define the pair of functions µe
n : Fn

M,D(O) → RM (D) and µp
n : RM (D) → Fn

M,D(O) as
follows:

µe
n z = (fD

m,n z)m∈ω
µp
n (xm)m∈ω = xn

We are now ready to define the mapping of functions required by the functor RM . Instead
of defining this mapping directly in terms of elements of the resumption domain RM (D), we
use the family of functions ζA,B

n and define it in terms of the finite approximations.

Definition 3.1.6 Let A and B be domains and let f : A→ B be a continuous function. For
all n ∈ ω we define a strict continuous function ζA,B

n f : Fn
M,A(O)→ Fn

M,B(O) by:

ζA,B
0 f = ⊥
ζA,B
n+1 f = [ inl ◦ f, inr ◦M(ζA,B

n f) ]

Definition 3.1.7 Let A and B be domains and let f : A→ B be a continuous function. We
define a continuous function RM (f) : RM (A)→ RM (B) by:

RM (f) (xn)n∈ω = (ζA,B
n f xn)n∈ω
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The central result of this section is Theorem 3.1.2 in which we prove that RM is a functor.
For doing so, we make use of the following lemmata, whose proofs can again be found in
[Papa01].

Lemma 3.1.8 For all n ∈ ω, µe
n ◦ Fn

M,D(ι
p) ⊑ µe

n+1.

Lemma 3.1.9 Let A and B be domains, f : A → B a continuous function. Then for all
n ∈ ω,

ζA,B
n+1 f ◦ inr = inr ◦M(ζA,B

n f)

Lemma 3.1.10 For all x ∈ RM (D), (µp
n x)n∈ω = x.

Lemma 3.1.11 For all m,n ∈ ω, µp
m ◦ µe

n = fD
m,n.

Lemma 3.1.12 For all n ∈ ω, µp
n ◦ µe

n = id Fn
M,D(O).

Lemma 3.1.13 For all n ∈ ω, µe
m ◦ µ

p
n ⊑ id RM (D).

Lemma 3.1.14 Let A and B be domains, f : A → B a continuous function. Then for all
n ∈ ω,

µp
n ◦RM (f) = ζA,B

n f ◦ µp
n

Lemma 3.1.15 Let A be a domain. Then for all n ∈ ω, ζA,A
n idA = id Fn

M,A(O).

Lemma 3.1.16 Let A, B and C be domains, f : A → B and g : B → C continuous
functions. Then for all n ∈ ω, ζA,C

n (g ◦ f) = ζB,C
n g ◦ ζA,B

n f .

We can now proceed with the proof of Theorem 3.1.2.

Theorem 3.1.2 RM : Dom→ Dom is a functor.
Proof We must prove that RM preserves identities and the composition of continuous
functions.

1. Let X be a domain and (xn)n∈ω ∈ RM (X).
RM (idX) (xn)n∈ω

= ⟨ Definition of RM (3.1.7) ⟩
(ζX,X

n idX xn)n∈ω
= ⟨ Lemma 3.1.15 ⟩

(id Fn
M,X(O) xn)n∈ω

= ⟨ Identity function ⟩
(xn)n∈ω

= ⟨ Identity function ⟩
id RM (X) (xn)n∈ω

2. Let A and B be domains, f : A → B and g : B → C continuous functions and
(xn)n∈ω ∈ RM (X).

RM (g ◦ f) (xn)n∈ω
= ⟨ Definition of RM (3.1.7) ⟩
(ζA,C

n (g ◦ f) xn)n∈ω
= ⟨ Lemma 3.1.16 ⟩

((ζB,C
n g ◦ ζA,B

n f) xn)n∈ω
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= ⟨ Composition ⟩
(ζB,C

n g (ζA,B
n f xn))n∈ω

= ⟨ Definition of RM (3.1.7) ⟩
RM (g) (ζA,B

n f xn)n∈ω
= ⟨ Definition of RM (3.1.7) ⟩

RM (g) (RM (f) (xn)n∈ω)
= ⟨ Composition ⟩
(RM (g) ◦RM (f)) (xn)n∈ω □

3.2 Unit and join

Having defined RM as a functor, we now define the two monad operations unit and join .
For each one, it is proved in [Papa01] that it is a natural transformation.

The unit function maps an element d ∈ D to a resumption computation, using the family of
auxiliary functions η. All approximations in the resumption computation are equal to inl d
(except for the trivial approximation of zero steps).

Definition 3.2.1 Let D be a domain. For all n ∈ ω we define a continuous function
ηDn : D → Fn

M,D(O) by:

ηD0 = ⊥
ηDn+1 = inl

Definition 3.2.2 Let D be a domain and d ∈ D. We define the function unitD : D →
RM (D) by:

unitD d = (ηDn d)n∈ω

The following lemma is useful in proving that unit is a natural transformation.

Lemma 3.2.1 Let A and B be domains, f : A → B a continuous function. Then, for all
n ∈ ω,

ζA,B
n f ◦ ηAn = ηBn ◦ f

Which can be used to prove the following:

Theorem 3.2.1 unit : Id →̇ RM is a natural transformation.
Proof Let A and B be domains and f : A→ B a continuous function. We must show that
unitB ◦ f = RM (f) ◦ unitA. Let a ∈ A.

(unitB ◦ f) a
= ⟨ Composition ⟩

unitB (f a)
= ⟨ Definition of unit (3.2.2) ⟩
(ηDn (f a))n∈ω

= ⟨ Composition ⟩
((ηDn ◦ f) a)n∈ω

= ⟨ Lemma 3.2.1 ⟩
((ζA,B

n ◦ ηAn ) a)n∈ω
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= ⟨ Composition ⟩
(ζA,B

n (ηAn a))n∈ω
= ⟨ Definition of RM (3.1.7) ⟩

RM (f) (ηAn a)n∈ω
= ⟨ Definition of unit (3.2.2) ⟩

RM (f) (unitA a)
= ⟨ Composition ⟩

(RM (f) ◦ unitA) a □

The definition of the join function requires the family of functions ξ which associate corre-
sponding approximations in the domains RM (D) and D.

Definition 3.2.3 Let D be a domain. For all n ∈ ω we define a strict continuous function
ξDn : Fn

M,RM (D)(O)→ Fn
M,D(O) by:

ξD0 = ⊥
ξDn+1f = [µp

n+1, inr ◦M(ξDn ) ]

Definition 3.2.4 Let D be a domain and (xn)n∈ω ∈ R2
M (D). We define the function joinD :

R2
M (D)→ RM (D) by:

joinD (xn)n∈ω = (ξDn xn)n∈ω

The following lemmata are necessary for proving that join is a natural transformation.

Lemma 3.2.2 Let D be a domain. Then for all n ∈ ω,
ξDn+1 ◦ inr = inr ◦M(ξDn )

Lemma 3.2.3 Let A and B be domains, f : A → B a continuous function. Then for all
n ∈ ω,

ξBn ◦ ζ
RM (A),RM (B)
n (RM (f)) = ζA,B

n f ◦ ξAn

And finally it can be proved that:

Theorem 3.2.2 join : R2
M →̇ RM is a natural transformation.

Proof Let A and B be domains and f : A→ B a continuous function. We must show that
joinB ◦RM (RM (f)) = RM (f) ◦ joinA. Let (xn)n∈ω ∈ R2

M (A).

(joinB ◦RM (RM (f))) (xn)n∈ω
= ⟨ Composition ⟩

joinB (RM (RM (f)) (xn)n∈ω)
= ⟨ Definition of RM (3.1.7) ⟩

joinB (ζ
RM (A),RM (B)
n (RM (f)) xn)n∈ω

= ⟨ Definition of join (3.2.4) ⟩
(ξBn (ζ

RM (A),RM (B)
n (RM (f)) xn))n∈ω

= ⟨ Composition ⟩
((ξBn ◦ ζ

RM (A),RM (B)
n (RM (f))) xn)n∈ω

= ⟨ Lemma 3.2.3 ⟩
((ζA,B

n f ◦ ξAn ) xn)n∈ω
= ⟨ Composition ⟩

(ζA,B
n f (ξAn xn))n∈ω

= ⟨ Definition of RM (f) (3.1.7) ⟩
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RM (f) (ξAn xn)n∈ω
= ⟨ Definition of join (3.2.4) ⟩

RM (f) (joinA (xn)n∈ω)
= ⟨ Composition ⟩

(RM (f) ◦ joinA) (xn)n∈ω □

3.3 Monad R(M)

In this section we show that functor RM together with the natural transformations unit and
join defines a computational monad, in the sense of [Mogg89]. The three first theorems of
this section verify the three monad laws and the following lemmata are necessary for proving
them. The fourth theorem proves that the defined monad satisfies the mono requirement.
Let D be a domain.

Lemma 3.3.1 For all n ∈ ω, ξDn ◦ η
RM (D)
n = µp

n.

Lemma 3.3.2 For all n ∈ ω, µp
n+1 ◦ unitD = inl .

Lemma 3.3.3 For all n ∈ ω, ξDn ◦ ζ
D,RM (D)
n unitD = id Fn

M,D(O).

Lemma 3.3.4 For all n ∈ ω, µp
n ◦ joinD = ξDn ◦ µ

p
n.

Lemma 3.3.5 For all d ∈ ω, ξDn ◦ ζ
R2

M (D),RM (D)
n joinD = ξDn ◦ ξ

RM (D)
n .

We can now proceed by proving the three monad laws.

Theorem 3.3.1 (1st Monad Law) joinD ◦ unitRM (D) = id RM (D)

Proof Let (xn)n∈ω ∈ RM (D). Then

(joinD ◦ unitRM (D)) (xn)n∈ω
= ⟨ Composition ⟩

joinD (unitRM (D) (xn)n∈ω)
= ⟨ Definition of unit (3.2.2) ⟩

joinD (η
RM (D)
n (xm)m∈ω)n∈ω

= ⟨ Definition of join (3.2.4) ⟩
(ξDn (η

RM (D)
n (xm)m∈ω))n∈ω

= ⟨ Composition ⟩
((ξDn ◦ η

RM (D)
n ) (xm)m∈ω)n∈ω

= ⟨ Lemma 3.3.1 ⟩
(µp

n (xm)m∈ω)n∈ω
= ⟨ Definition of µp

n (3.1.5) ⟩
(xn)n∈ω

= ⟨ Identity ⟩
id RM (D) (xn)n∈ω □
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Theorem 3.3.2 (2nd Monad Law) joinD ◦RM (unitD) = id RM (D)
Proof Let (xn)n∈ω ∈ RM (D). Then

(joinD ◦RM (unitD)) (xn)n∈ω
= ⟨ Composition ⟩

joinD (RM (unitD) (xn)n∈ω)
= ⟨ Definition of RM (3.1.7) ⟩

joinD (ζ
D,RM (D)
n unitD xn)n∈ω

= ⟨ Definition of join (3.2.4) ⟩
(ξDn (ζ

D,RM (D)
n unitD xn))n∈ω

= ⟨ Composition ⟩
((ξDn ◦ ζ

D,RM (D)
n unitD) xn)n∈ω

= ⟨ Lemma 3.3.3 ⟩
(id Fn

M,D(O) xn)n∈ω

= ⟨ Identity ⟩
(xn)n∈ω

= ⟨ Identity ⟩
id RM (D) (xn)n∈ω □

Theorem 3.3.3 (3rd Monad Law) joinD ◦RM (joinD) = joinD ◦ joinRM (D)

Proof Let (xn)n∈ω ∈ R3
M (D). Then

(joinD ◦RM (joinD)) (xn)n∈ω
= ⟨ Composition ⟩

joinD (RM (joinD) (xn)n∈ω)
= ⟨ Definition of RM (3.1.7) ⟩

joinD (ζ
R2

M (D),RM (D)
n joinD xn)n∈ω

= ⟨ Definition of join (3.2.4) ⟩
(ξDn (ζ

R2
M (D),RM (D)

n joinD xn))n∈ω
= ⟨ Composition ⟩

((ξDn ◦ ζ
R2

M (D),RM (D)
n joinD) xn)n∈ω

= ⟨ Lemma 3.3.5 ⟩
((ξDn ◦ ξ

RM (D)
n ) xn)n∈ω

= ⟨ Composition ⟩
(ξDn (ξ

RM (D)
n xn))n∈ω

= ⟨ Definition of join (3.2.4) ⟩
joinD (ξ

RM (D)
n xn)n∈ω

= ⟨ Definition of join (3.2.4) ⟩
joinD (joinRM (D) (xn)n∈ω)

= ⟨ Composition ⟩
(joinD ◦ joinRM (D)) (xn)n∈ω □

Having established that RM satisfies the three monad laws, we can now conclude the defini-
tion of the resumption monad transformer R.

Definition 3.3.1 The resumption monad transformer R is defined by the mapping R(M) =
RM .

We now prove that R(M) is a computational monad, as defined in [Mogg89], and therefore
useful as an equational model of computations in the semantics of programming languages.

Theorem 3.3.4 R(M) is a computational monad, i.e. it satisfies the mono requirement.
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Proof Let D be a domain. We must show that unitD is a monomorphism, i.e. we must show
that for all domains E and for all continuous functions f, g : E → D, unitD ◦ f = unitD ◦ g
implies f = g. Consider an arbitrary x ∈ E. Then, we have

unitD (f x) = unitD (g x)
⇔ ⟨ Definition of unit (3.2.2) ⟩
(ηDn (f x))n∈ω = (ηDn (g x))n∈ω
⇔ ⟨ Equality of infinite sequences is defined pointwise ⟩
∀n ∈ ω. ηDn (f x) = ηDn (g x)
⇔ ⟨ Definition of η (3.2.1), the case n = 0 is trivial ⟩

inl (f x) = inl (g x)
⇔ ⟨ inl is an injection ⟩

f x = g x □

3.4 Isomorphism

Let D be a domain. In this section, we define the pair of functions he and hp that establish
the isomorphism between domains RM (D) and D + M(RM (D)). Using these functions, it
is possible to define an operation in one of these two domains and obtain the corresponding
operation on the other domain by applying he and hp appropriately.

The definition of the embedding function he is straightforward. We make use of a family of
auxiliary functions θ, which construct the necessary approximations.

Definition 3.4.1 For all n ∈ ω we define a strict continuous function θDn : FM,D(RM (D))→
Fn
M,D(O) by:

θD0 = ⊥
θDn+1 = [ inl , inr ◦M(µp

n) ]

Definition 3.4.2 Let z ∈ FM,D(RM (D)). We define a continuous function he : FM,D(RM (D))→
RM (D) by:

he z = (θDn z)n∈ω

On the other hand, the definition of the projection function hp is more complicated. It first
requires the definition of an additional domain QM (D) whose elements are infinite sequences
of computations yielding approximations (we will call them approximate computations for
short). We also find it helpful to define a family of auxiliary functions σ for associating
elements of QM (D) with approximations in RM (D).

Definition 3.4.3 The domain QM (D) is the set

QM (D) = { (zn)n∈ω | ∀n ∈ ω. zn ∈M(Fn
M,D(O))

∧ zn = M(Fn
M,D(ι

p))(zn+1) }

with its elements ordered pointwise:

(zn)n∈ω ⊑QM (D) (wn)n∈ω ⇔ ∀n ∈ ω. zn ⊑M(Fn
M,D(O)) wn
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Definition 3.4.4 Let (zm)m∈ω ∈ QM (D). For all n ∈ ω, we define a continuous function
σD
n : QM (D)→ Fn

M,D(O) by:

σD
0 (zm)m∈ω = ⊥

σD
n+1 (zm)m∈ω = inr zn

Furthermore, the definition of hp requires the proof of Lemma 3.4.1, which states that el-
ements of RM (D) come in three distinct forms. Its proof can again be found at [Papa01].
This lemma is crucial in the definition of hp and in the proofs of several theorems that follow.

Lemma 3.4.1 Let (xn)n∈ω ∈ RM (D). Then exactly one of the following is true:

1. For all n ∈ ω, xn = ⊥.
2. There exists a t ∈ D such that for all n ∈ ω, xn = ηDn t.
3. There exists a (zm)m∈ω ∈ QM (D) such that for all n ∈ ω, xn = σD

n (zm)m∈ω.

We can now proceed with the definition of hp, based on the three cases of Lemma 3.4.1. For
the first two cases, the definition is easy. In the third case, each approximate computation
zn is mapped to a computation M(µe

n) zn ∈ M(RM (D)) and the least upper bound of this
infinite series of computations is taken.

Definition 3.4.5 We define the function hp : RM (D)→ FM,D(RM (D)) by case analysis on
its argument (xn)n∈ω based on Lemma 3.4.1:

1. If for all n ∈ ω, xn = ⊥, then
hp (xn)n∈ω = ⊥

2. If there exists a t ∈ D such that for all n ∈ ω, xn = ηDn t, then
hp (xn)n∈ω = inl t

3. If there exists a (zm)m∈ω ∈ QM (D) such that for all n ∈ ω, xn = σD
n (zm)m∈ω, then

hp (xn)n∈ω = inr

(⊔
n∈ω

M(µe
n) zn

)

In order to ensure that the least upper bound in the third case of the previous definition
exists, we need Lemma 3.4.2 which states that M(µe

n) zn form an ω-chain.

Lemma 3.4.2 Let (zn)n∈ω ∈ QM (D). For all n ∈ ω,
M(µe

n) zn ⊑ M(µe
n+1) zn+1

The following lemmata are necessary for proving the central theorems of this section.

Lemma 3.4.3 For all t ∈ D, for all n ∈ ω, θDn (inl t) = ηDn t.

Lemma 3.4.4 For all w ∈M(RM (D)), for all n ∈ ω,
θDn (inr w) = σD

n (M(µp
m) w)m∈ω

Lemma 3.4.5
⊔
n∈ω

µe
n ◦ µp

n = id RM (D)

Lemma 3.4.6 For all w ∈M(RM (D)),
⊔
n∈ω

M(µe
n ◦ µp

n) w = w.
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Lemma 3.4.7 Let (zm)m∈ω ∈ QM (D). For all m ∈ ω,
⊔
n∈ω

M(fD
m,n) zn = zm.

At this point, we can proceed to Theorem 3.4.1 and Theorem 3.4.2, our central results in this
section. These two theorems conclude that functions he and hp define indeed an isomorphism
between the domains RM (D) and D +M(RM (D)).

Theorem 3.4.1 hp ◦ he = id FM,D(RM (D))

Proof Let z ∈ FM,D(RM (D)) = D +M(RM (D)). By case analysis on z.

1. Case z = ⊥. Then
(hp ◦ he) z

= ⟨ Assumption ⟩
(hp ◦ he) ⊥

= ⟨ Composition ⟩
hp (he ⊥)

= ⟨ Definition of he (3.4.2) ⟩
hp (⊥)n∈ω

= ⟨ Definition of hp (3.4.5) ⟩
⊥

= ⟨ Assumption ⟩
z

2. Case z = inl t for some t ∈ D. Then
(hp ◦ he) z

= ⟨ Assumption ⟩
(hp ◦ he) (inl t)

= ⟨ Composition ⟩
hp (he (inl t))

= ⟨ Definition of he (3.4.2) ⟩
hp (θDn (inl t))n∈ω

= ⟨ Lemma 3.4.3 ⟩
hp (ηDn t)n∈ω

= ⟨ Definition of hp (3.4.5) ⟩
inl t

= ⟨ Assumption ⟩
z

3. Case z = inr w for some w ∈M(RM (D)). Then
(hp ◦ he) z

= ⟨ Assumption ⟩
(hp ◦ he) (inr w)

= ⟨ Composition ⟩
hp (he (inr w))

= ⟨ Definition of he (3.4.2) ⟩
hp (θDn (inr w))n∈ω

= ⟨ Lemma 3.4.4 ⟩
hp (σD

n (M(µp
m) w)m∈ω)n∈ω

= ⟨ Definition of hp (3.4.5) ⟩

inr

(⊔
n∈ω

M(µe
n) (M(µp

n) w)

)
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= ⟨ Composition ⟩

inr

(⊔
n∈ω

(M(µe
n) ◦M(µp

n)) w

)
= ⟨M is a functor ⟩

inr

(⊔
n∈ω

M(µe
n ◦ µp

n) w

)
= ⟨ Lemma 3.4.6 ⟩

inr w
= ⟨ Assumption ⟩

z □

Theorem 3.4.2 he ◦ hp = id RM (D)

Proof Let (xn)n∈ω ∈ RM (D). By case analysis on (xn)n∈ω based on
Lemma 3.4.1:

1. If for all n ∈ ω, xn = ⊥, then
(he ◦ hp) (xn)n∈ω

= ⟨ Assumption ⟩
(he ◦ hp) (⊥)n∈ω

= ⟨ Composition ⟩
he (hp (⊥)n∈ω)

= ⟨ Definition of hp (3.4.5) ⟩
he ⊥

= ⟨ Definition of he (3.4.2) ⟩
(θDn ⊥)n∈ω

= ⟨ Definition of θ (3.4.1) ⟩
(⊥)n∈ω

= ⟨ Assumption ⟩
(xn)n∈ω

= ⟨ Identity ⟩
id RM (D) (xn)n∈ω

2. If there exists a t ∈ D such that for all n ∈ ω, xn = ηDn t, then
(he ◦ hp) (xn)n∈ω

= ⟨ Assumption ⟩
(he ◦ hp) (ηDn t)n∈ω

= ⟨ Composition ⟩
he (hp (ηDn t)n∈ω)

= ⟨ Definition of hp (3.4.5) ⟩
he (inl t)

= ⟨ Definition of he (3.4.2) ⟩
(θDn (inl t))n∈ω

= ⟨ Lemma 3.4.3 ⟩
(ηDn t)n∈ω

= ⟨ Assumption ⟩
(xn)n∈ω

= ⟨ Identity ⟩
id RM (D) (xn)n∈ω
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3. If there exists a (zm)m∈ω ∈ QM (D) such that for all n ∈ ω, xn = σD
n (zm)m∈ω, then

(he ◦ hp) (xn)n∈ω
= ⟨ Assumption ⟩

(he ◦ hp) (σD
n (zm)m∈ω)n∈ω

= ⟨ Composition ⟩
he (hp (σD

n (zm)m∈ω)n∈ω)
= ⟨ Definition of hp (3.4.5) ⟩

he

(
inr

(⊔
n∈ω

M(µe
n) zn

))
= ⟨ Definition of he (3.4.2) ⟩(

θDn

(
inr

(⊔
n∈ω

M(µe
n) zn

)))
n∈ω

= ⟨ Lemma 3.4.4 ⟩σD
n

(
M(µp

m)

( ⊔
n′∈ω

M(µe
n′) zn′

))
m∈ω


n∈ω

= ⟨M(µp
m) is continuous ⟩σD

n

( ⊔
n′∈ω

M(µp
m) (M(µe

n′) zn′)

)
m∈ω


n∈ω

= ⟨ Composition ⟩σD
n

( ⊔
n′∈ω

(M(µp
m) ◦M(µe

n′)) zn′

)
m∈ω


n∈ω

= ⟨M is functor ⟩σD
n

( ⊔
n′∈ω

M(µp
m ◦ µe

n′) zn′

)
m∈ω


n∈ω

= ⟨ Lemma 3.1.11 ⟩σD
n

( ⊔
n′∈ω

M(fD
m,n′) zn′

)
m∈ω


n∈ω

= ⟨ Lemma 3.4.7 ⟩
(σD

n (zm)m∈ω)n∈ω
= ⟨ Assumption ⟩

(xn)n∈ω
= ⟨ Identity ⟩

id RM (D) (xn)n∈ω □

3.5 Additional operations

In this section we define two functions, step and run , which convert a non interleaved com-
putation of type M(A) to an interleaved computation of type R(M)(A) and vice-versa. The
names of these functions indicate their behavior. The first converts a whole computation to
a single atomic step in an interleaved computation. The second runs the whole sequence of
atomic steps of an interleaved computation without allowing other computations to inter-
vene. Both functions are very helpful in specifying the semantics of concurrent programming
languages.
In the rest of this section, we assume that ⟨M,η, µ⟩ is a monad and that D is a domain.
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Definition 3.5.1 stepD : M(D)→ R(M)(D) is the continuous function defined by:

stepD = he ◦ inr ◦M(he ◦ inl )

Definition 3.5.2 runD : R(M)(D)→M(D) is the continuous function defined by:

runD = fix (λ g. [ ηD, µD ◦M(g) ] ◦ hp)

The following theorem states that the composition of run and step , in this order, yields
identity. The reverse composition does not yield identity, since it forces an interleaved com-
putation to be executed in one atomic step (it will be used in Section 4.4 for this exact
purpose).

Theorem 3.5.1 runD ◦ stepD = idM(D)

Proof

runD ◦ stepD

= ⟨ Unfolding fix in the definition of runD (3.5.2) ⟩
[ ηD, µD ◦M(runD) ] ◦ hp ◦ stepD

= ⟨ Definition of stepD (3.5.1) ⟩
[ ηD, µD ◦M(runD) ] ◦ hp ◦ he ◦ inr ◦M(he ◦ inl )

= ⟨ Theorem 3.4.1 ⟩
[ ηD, µD ◦M(runD) ] ◦ id FM,D(RM (D)) ◦ inr ◦M(he ◦ inl )

= ⟨ Composition with identity ⟩
[ ηD, µD ◦M(runD) ] ◦ inr ◦M(he ◦ inl )

= ⟨ Theorem 2.3.5 ⟩
µD ◦M(runD) ◦M(he ◦ inl )

= ⟨M is a functor ⟩
µD ◦M(runD ◦ he ◦ inl )

= ⟨ Unfolding fix in the definition of runD (3.5.2) ⟩
µD ◦M([ ηD, µD ◦M(runD) ] ◦ hp ◦ he ◦ inl )

= ⟨ Theorem 3.4.1 ⟩
µD ◦M([ ηD, µD ◦M(runD) ] ◦ id FM,D(RM (D)) ◦ inl )

= ⟨ Composition with identity ⟩
µD ◦M([ ηD, µD ◦M(runD) ] ◦ inl )

= ⟨ Theorem 2.3.5 ⟩
µD ◦M(ηD)

= ⟨M is a monad, 2nd Monad Law ⟩
idM(D) □

Function prom , which lifts a computation of type R(M)(D) to a computation of type
M(R(M)(D)), is useful in the rest of this section where we establish that R(M)(D) can
be defined as a multi-monad and a strong monad. These two properties of R(M)(D) will also
be used in Section 4.4.

Definition 3.5.3 promD : R(M)(D)→M(R(M)(D)) is the continuous function defined by:

promD = [ ηRM (D) ◦ inl , idM(RM (D)) ] ◦ hp

Let us now assume that M is a multi-monad and that ∥M is a non-deterministic option
operator for computations represented by monad M . It is easy to extend this behavior to
the monad R(M).
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Definition 3.5.4 Let M be a multi-monad. Let D be a domain. We define the binary
operation ∥R(M) : R(M)(D)× R(M)(D)→ R(M)(D) by:

x ∥R(M) y = he (inr (prom x ∥M prom y))

Monad R(M) with ∥R(M) is a multi-monad.

Furthermore, we can introduce a way to create a new interleaved computation of type
R(M)(A × B) given two existing computations of types R(M)(A) and R(M)(B). Here we
prefer to use monads M and R(M) in the functional way. If one of the two computations
does not require the execution of any atomic step, i.e. if one of the two computations has
already been completed, then the other computation is executed and the two results are
combined. Otherwise, if both computations require at least one atomic step, we choose
non-deterministically which computation will start executing.

Definition 3.5.5 Let M be a multi-monad. Let A and B be domains. We define the binary
operation ▷◁R(M) : R(M)(A)× R(M)(B)→ R(M)(A×B) by:

▷◁R(M) = fix (λ g. λ ⟨x, y⟩.
[λ vx. y ∗R(M) (λ vy. unitR(M) ⟨vx, vy⟩), λmx.

[λ vy. x ∗R(M) (λ vx. unitR(M) ⟨vx, vy⟩), λmy.

he (inr (mx ∗M (λx′. unitM (g ⟨x′, y⟩)) ∥M
my ∗M (λ y′. unitM (g ⟨x, y′⟩)))) ] (hp y) ] (hp x))

Monad R(M) with ▷◁R(M) is a strong monad.
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Chapter 4

An implementation of RMT

In this section we present our implementation of the Resumption Monad Transformer (RMT)
in JavaScript. Firstly, in Section 4.1 we will define the basic monads needed to later define
our semantics of a simple imperative JavaScript-like language. In Section 4.2 we define the
State Monad and the State Monad Transformer that we will need to introduce side-effects
in our simple imperative language. Then, in Section 4.3 we define in JavaScript the RMT
described in Chapter 3 alongside with its additional operations from Section 3.5, which will
be necessary for the running programs in our semantics. Finally, we use our implementation
of the RMT to define the semantics of our concurrent language.

4.1 Monads

4.1.1 Identity monad

A reasonable choice for stateless computations and left-to-right evaluation order in our se-
mantics is the Identity monad.
class IdentityM {

constructor(x) { this.valueId = x; }
static unit(x) { return new IdentityM(x); }
bind(f) { return f(this.valueId); }

}

Listing 4.1: Identity monad

4.1.2 List monad

To enable ambiguity in our expressions’ evaluation we cannot use the Identity monad. A
monad supporting multiple results must me used instead. The power-domain monad, often
mentioned as the List monad in functional programming languages, is the obvious choice
here. The List monad must be an instance of the multi-monad class and support a ”union”
of different computation results, which is achieved with the multi method defined below.
class ListM {

constructor(l) { this.values = l; }
static unit(x) { return new ListM([x]); }
bind(f) {

return new ListM([].concat.apply([], this.values.map(x => f(x).values)));
}
static multi(m1, m2) { return new ListM([].concat(m1.values , m2.values)); }

}

Listing 4.2: List monad
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4.1.3 Set monad

As an extend to the List monad, we define the Set monad. The Set monad basically has the
same interface with the List monad but, instead of concatenating the results, it keeps track
of the same ones alongside with a counter of their appearances. The implementation depends
heavily on the State we used, which we will define in Section 4.2.1.
class SetM {

constructor(t, d) { this.type = t; this.values = d; }
static unit(x) {

return new SetM(false , {[x]: [1, x]});
}
bind(f) {

let d = [];
for (let [key, val] of this.values) {

for (let [k, v] of f(key).values) {
if (d.length == 0) {

d.push([k, v]);
}
else {

for (var i = 0; i < d.length; i++) {
if (cmpStates(k.state , d[i][0].state))

d[i] = [d[i][0], d[i][1] + 1];
else

d.push([k, v]);
}

}
}

}
return new SetM(this.type, d);

}
static multi(m1, m2) {

let d = m1.values;
for (let [key, val] of m2.values) {

if (d.length == 0) {
d.push([key, val]);

}
else {

for (var i = 0; i < d.length; i++) {
if (cmpStates(key.state , d[i][0].state))

d[i] = [d[i][0], d[i][1] + val];
else

d.push([key, val]);
}

}
}
return new SetM(m1.type, d);

}
}

Listing 4.3: Set monad

4.2 Monads and states

4.2.1 States

The notion of state is a very important one in the study of impure languages. A state is
an element of a type which supports two main operations, load and store, for retrieving
and updating the contents of a variable in memory. A distinguished element of this type is
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the initial state, typically a state with all variables uninitialized. We first define a simple
stack-based State and then we present two different versions of it that proved to have better
performances in our tests.
class State {

store(x, value) {
return new StateUpdated(x, value , this);

}
}

class StateInitial extends State {
constructor() {

super();
this.values = {};

}
load(x) {

show("Undefined variable", x);
return undefined;

}
}

class StateUpdated extends State {
constructor(x, value , parent) {

super();
this.x = x;
this.value = value;
this.parent = parent;
// Only for SetM
this.values = parent.values;
this.values[x] = value;

}
load(x) {

return x === this.x ? this.value : this.parent.load(x);
}

}

Listing 4.4: A simple stack-based State

class ArrayState {
constructor() {

this.values = {};
}
store(x, value) {

this.values[x] = value;
return this;

}
load(x) {

if (x in this.values) {
return this.values[x];

} else {
show("Undefined variable", x);
return undefined;

}
}

}

Listing 4.5: A simple State using an array

class MapState {
constructor() {

this.values = new Map();
}
store(x, value) {

this.values.set(x, value);
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return this;
}
load(x) {

if (this.values.has(x)) {
return this.values.get(x);

} else {
show("Undefined variable", x);
return undefined;

}
}

}

Listing 4.6: A simple State using JavaScript’s Map

4.2.2 State monad

The class of monads that are aware of the state is obviously necessary for our implementa-
tions. Class StateM supports two operations as an interface between computations and the
state. Method modify updates the state by applying its argument function and returns a
computation of the old state. Method get simply returns a computation of the current state.
class StateM {

constructor(fun) { this.runState = fun; }
static pair(x, s) { return {value: x, state: s}; }
static unit(x) { return new StateM(s => pair(x, s)); }
bind(f) {

return new StateM(s => {
let p = this.runState(s);
return f(p.value).runState(p.state)});

}
static get() { return new StateM(s => (pair(s, s))); }
static modify(f) { return new StateM(s => (pair(s, f(s)))); }

}

Listing 4.7: State monad

4.2.3 State monad transformer

It is also useful to define a monad transformer implementing the direct semantics approach.
For every state type s given as a parameter, the State monad transformer can be defined as
follows. Parameter M specifies the monad representing the stateless computations.
function StateT(M) {

return class SM {
constructor(fun) { this.runState = fun; }
static pair(x, s) { return {value: x, state: s}; }
static unit(x) { return new SM(s => M.unit(this.pair(x, s))); }
bind(f) {

return new SM(s =>
this.runState(s).bind(p => f(p.value).runState(p.state)));

}
static get() { return new SM(s => M.unit(this.pair(s, s))); }
static modify(f) { return new SM(s => M.unit(this.pair(s, f(s)))); }
static multi(m1, m2) {

return new SM(s => M.multi(m1.runState(s), m2.runState(s)));
}

}
}

Listing 4.8: State monad transformer
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Monads constructed using StateT are aware of the state and therefore monad StateT(M) is
an instance of State monad for a state type s. We notice here that if in the StateT(M) we
use the Identity monad, we get the simple StateM defined in Subsection 4.2.2.

4.3 RMT in JavaScript

In this section we define the resumption monad transformer which implements the tree-
like branching semantics we defined in Chapter 3. Resumptions are constructs which split
a computation in a single atomic step (to be executed first) and a resumed part, which
corresponds to the rest of the computation. A resumption therefore can be either Computed
or has to be Resumed.

Our original implementation is the following one. This implementation is an exact trans-
lation of the definitions we gave in Chapter 3 in JavaScript. But due to too many object
instantiations and too much information kept in each object, we found that our optimized
version, presented later in this section, works a lot better. What is more, the original version
actually takes a monad M as an argument, but as this is always the State Monad in our tests,
we incorporate this in our optimized version to exploit better method implementations.

function ResumptionT(M) {
return class RM {

constructor(computed , Mnd, a) {
// true -> "Computed", false -> "Resume"
this.status = computed;
this.Mnd = Mnd;
this.value = a;

}
static unit(x) { return new RM(true, undefined , x); }
bind(f) {

if (this.status) {
return f(this.value);

}
else {

return new RM(false , this.Mnd.bind(r => M.unit(r.bind(f))),
undefined);

}
}
static get() { return RM.stepR(M.get()); }
static modify(f) { return RM.stepR(M.modify(f)); }

static runR(R) {
if (R.status) return M.unit(R.value);
else return R.Mnd.bind(RM.runR);

}

static stepR(Mnd) {
return new RM(false , Mnd.bind(x => M.unit(RM.unit(x))), undefined);

}

static multi(m1, m2) {
return new RM(false , M.multi(M.unit(m1), M.unit(m2)), undefined);

}
}

}

Listing 4.9: Original resumption monad transformer
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4.3.1 Resumption monad transformer

We define here the superclass that implements the optimized version of our RMT. This
class will be extended from the classes of the Computed RMTs and the Resumed parts of
them. As we defined in subsection 3.5 RMTs have two additional operations in order to
execute our semantics. The stepR method produces a computation of just one atomic step,
therefore it is defined here as a static method. The runR and bind methods are different
for each class, therefore they are later defined in each of them. We also implement the get
and modify methods of the StateM, which here lift the RMT computations into state-aware
ones, providing this way an interface between resumptions and the State monad. Finally,
resumptions must be an instance of multi-monads, therefore we define the multi method
which implements the necessary ∥R(M) operation.
class ResumM {

static unit(x) { return new Computed(x); }
static get() {

return new Resume(
new StateM(s => ({value: (new Computed(s)), state: s})));

}
static modify(f) {

return new Resume(
new StateM(s => ({value: (new Computed(s)), state: f(s)})));

}
static stepR(Mnd) {

return new Resume(new StateM(s => {
let p = Mnd.runState(s);
return {value: new Computed(p.value), state: p.state} }));

}
static multi(m1, m2) {

return new RM(false , StateM.multi(StateM.unit(m1), StateM.unit(m2)),
undefined);

}
}

Listing 4.10: Resumption monad transformer

4.3.2 Case of Computed

The implementation of the Computed resumptions is presented here. A computed resumption
stores its computed value and the bind method applies the argument function on that value.
The runR method has no atomic steps to evaluate in a computed resumption therefore it just
returns a new state monad with the computed value of the current resumption.
class Computed extends ResumM {

constructor(a) { super(); this.value = a; }
bind(f) { return f(this.value); }
runR() { return StateM.unit(this.value); }

}

Listing 4.11: Computed RMT

4.3.3 Case of Resume

The implementation of the Resumed resumptions is presented here. A resumed resumption
stores a computation within its monad parameter and the bind method applies the argu-
ment function on that computation. The runR method fully evaluates the resumption by
performing all the atomic steps of the given resumption.
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class Resume extends ResumM {
constructor(Mnd) { super(); this.Mnd = Mnd; }
bind(f) {

return new Resume(new StateM(s => {
let p = this.Mnd.runState(s);
return {value: p.value.bind(f), state: p.state}}));

}
runR() {

return new StateM(s => {
let p = this.Mnd.runState(s);
return p.value.runR().runState(p.state)});

}
}

Listing 4.12: Resumed RMT

4.3.4 Resumptions as strong monads

Since the aforementioned implementation of resumptions must also be an instance of strong-
monads, we have to equip them with the ▷◁R(M) operation mentioned in subsection 3.5. The
following implementation is again an optimized version used for our benchmarks that chooses
randomly a path of all the possible interleavings.
function InterleaveTensor(m1, m2) {

if (m1.Mnd && m2.Mnd) {
if (Math.random() <= 0.5)

return new Resume(
new StateM(s => {

let p = m1.Mnd.runState(s);
return {value: InterleaveTensor(p.value , m2), state: p.state}

}));
else

return new Resume(
new StateM(s => {

let p = m1.Mnd.runState(s);
return {value: InterleaveTensor(m2, p.value), state: p.state}

}));
} else if (m2.Mnd) {

return new Resume(new StateM(s => {
let p = m2.Mnd.runState(s);
return {value: p.value.bind(v2 => new Computed([m1.value , v2])),

state: p.state}}))
} else {

return new Resume(new StateM(s => {
let p = m1.Mnd.runState(s);
return {value: p.value.bind(v1 => new Computed([v1, m2.value])),

state: p.state}}))
}

}

Listing 4.13: Interleaving with non-deterministic choice but executing one path

For the baseline executions of our benchmarks that use just the State Monad, we followed a
simple left-to-right evaluation enforced by the simple following code.
function LeftRightTensor(m1, m2) {

return m1.bind(v1 =>
m2.bind(v2 =>
StateM.unit([v1, v2])));

}

Listing 4.14: Simple left-to-right evaluation
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4.4 A modular semantics of concurrency

4.4.1 The example language

Consider the simple sequential imperative language whose abstract syntax is given below.

s ::= skip | x := e | s ; s | if e then s else s | while e do s

It features an empty statement, assignment, sequential composition of statements, a structure
for conditional and one more for while loops. The symbol x ∈ Var represents a variable.

The language of expressions e is the following.

e ::= n | x | e + e | e ∗ e | e / e |… | x ++ |… | e < e | e == e |…

The language of expressions e consists of all the numbers and variables, the common op-
erations like addition, subtraction, etc., increment and decrement operations and all basic
logical expressions like <, <=, ==, etc.. Here, we omitted defining some of them since their
semantics will be defined the same way in our implementation. The symbol n ∈ Num rep-
resents a number, which can either be an integer or a real number. The symbol x ∈ Var
again represents a variable and is here used to access the value of a variable in our language.

4.4.2 The example language semantics

We define the denotational semantics of this language, assuming that the values of expressions
are elements of the semantic domain V. The program state, mapping variables to their current
values, is an element of the domain S = Var→ V.

As a provision for what will follow, we define a monad transformer D implementing the direct
semantics approach.1 If M is a monad, we define the monad D(M) as:

D(M)(D) = S→M(D × S)
unitD(M) v = λσ. unitM ⟨v, σ⟩
m ∗D(M) f = λσ. m σ ∗M (λ ⟨v, σ′⟩. f v σ′)

State computations created by the direct semantics monad transformer are functions (elements
of D(M)(D)) that take the initial program state (an element of S) and return a stateless
computation that yields the computed value (an element of D) and the final program state
(an element of S). The implementations of unitD(M) and ∗D(M) carry out the propagation of
the program state.

We also define an operation for the assignment of values to variables.2

storeD : Var→ V→ D(M)(U)
storeD x v = λσ. unitM ⟨u, σ{x 7→ v}⟩

By taking the identity monad Id as the argument of D, we obtain the monad M that models
our simple notion of computation (ordinary direct semantics).

1 This is the state monad transformer, as defined in [Lian95, Lian98].
2 If A and B are domains, f : A → B, a ∈ A and b ∈ B, we use the notation f{a 7→ b} to denote a function
f ′ : A → B such that f ′(a) = b and, for all x ̸= a, f ′(x) = f(x).
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M = D(Id)

The meaning of a statement s is a computation [[s ]] of type M(U). Non-termination is
represented by the bottom element. We also assume that the meaning of an expression e is
a computation [[e ]] of type M(V). The semantic function for the statements of our simple
imperative language is completely straightforward.

[[skip ]] = unit u
[[x := e ]] = [[e ]] ∗ (store x)
[[s1 ; s2 ]] = [[s1 ]] ∗ (λu. [[s2 ]])
[[ if e then s1 else s2 ]] = [[e ]] ∗ (λ b. if b then [[s1 ]] else [[s2 ]])
[[while e do s ]] = fix (λ g. [[e ]] ∗ (λ b.

if b then [[s ]] ∗ (λu. g) else unit u))

The semantics function for the expressions is also pretty straightforward.

[[n ]] = unit n
[[x ]] = load x
[[e1 + e2 ]] = [[e1 ]] ∗ (λu1. [[e2 ]] ∗ (λu2. unit u1 + u2))
[[e1 ∗ e2 ]] = [[e1 ]] ∗ (λu1. [[e2 ]] ∗ (λu2. unit u1 ∗ u2))
…
[[x ++]] = [[x ]] ∗ (λu. store x (u+ 1))
…
[[e1 < e2 ]] = [[e1 ]] ∗ (λu1. [[e2 ]] ∗ (λu2. unit u1 < u2))
[[e1 == e2 ]] = [[e1 ]] ∗ (λu1. [[e2 ]] ∗ (λu2. unit u1 == u2))
…

In our implementation in JavaScript, we define a class for each token of our abstract syntaxes
for statements s and expressions e. Those classes have a constructor method for keeping their
token parameters (e.g. in the statement x := e we keep the string of the variable x and the
expression e) and the sem method which implements each token’s semantics.

For example, the semantics of the if statement are implemented like this:
class StmtIf {

constructor(e, s1, s2) { this.cond = e; this.then = s1; this.else = s2; }
sem(M) {

return this.cond.sem(M).bind(c =>
c ? this.then.sem(M) : this.else.sem(M));

}
}

The implementation of the while statement is the following:
class StmtWhile {

constructor(e, s) { this.cond = e; this.body = s; }
sem(M) {

return fix(g => this.cond.sem(M).bind(c => c ? this.body.sem(M).bind(g) :
M.unit()));

}
}

The while statement uses the fixed-point combinator, which we define like the following code
in our implementation.
let fix = fun => fun(() => fix(fun));
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4.4.3 Concurrency in the example language

Let us now introduce non-determinism and concurrency in our language, by extending it with
three new constructs.

s ::= … | s ⊕ s | s ∥ s | ⟨s⟩

Operator ⊕ executes exactly one of the statements that are given as its operands. The
selection is non-deterministic. On the other hand, operator ∥ executes both statements that
are given as its operands in an interleaved way. Finally, the construct ⟨s⟩ executes the
statement s in a single atomic step, with no interleaving permitted during its execution.

Before we proceed with the semantics of our extended language, we have to modify the
definition of M. By choosing the power-domain monad P as the argument of D, we obtain a
multi-monad that can support non-determinism.

M = D(P)

The option operator ∥M is defined as:

m1 ∥M m2 = λσ. (m1 σ) ∪♮
(m2 σ)

where ∪♮ is the union operation on power-domains.

In the semantics of the extended language, we use the monad R(M) to model interleaved
computations. According to Definition 3.5.4, R(M) is a multi-monad equipped with a non-
deterministic option operator ∥R(M) . Also, according to Definition 3.5.5, R(M) is a strong
monad and operator ▷◁R(M) can be used to model the interleaving of computations. Further-
more, the store operation can easily be lifted onto the new domain of computations.

storeR : Var→ V→ R(D(M))(U)
storeR x v = step (storeD x v)

The equations defining the meaning of existing language constructs do not require any
changes, except for the implicit change that the meanings of statements and expressions
are now elements of the semantic domains R(M)(U) and R(M)(V) respectively. On the other
hand, the semantics of the additional constructs can be easily expressed in terms of R(M)
operations.

[[s1 ⊕ s2 ]] = [[s1 ]] ∥R(M) [[s2 ]]
[[s1 ∥ s2 ]] = ([[s1 ]] ▷◁R(M) [[s2 ]]) ∗ (λ p. unit u)
[[⟨s⟩ ]] = step (run [[s ]])

The above operators ⊕, ∥ and the construct ⟨s⟩ of our extended example language are simply
implemented as follows:
class ExprChoice {

constructor(e1, e2) { this.left = e1; this.right = e2; }
sem(M) { return M.multi(this.left.sem(M), this.right.sem(M)); }

}

class ExprInterleave {
constructor(e1, e2) { this.left = e1; this.right = e2; }
sem(M) { return M.tensor(this.left.sem(M), this.right.sem(M)); }

}
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class ExprUnit {
constructor(e) { this.body = e; }
sem(M) { return M.stepR(this.body.sem(M).runR()); }

}

We also implemented an alternative of the ∥ operator, which have the same semantics but
take an array of statements instead of two. The use of this operator will be more clear in the
benchmark of 5.1.6 were we create more than two threads.
class ExprInterleaveMany {

constructor(arr) { this.array = arr; }
sem(M) {

return M.get().bind(s =>
M.tensorMany(s.load(this.array).map(x => x.sem(M)), 0));

}
}

This operator also uses a modified version of the tensor function of RMTs that executes the
given array of threads in a cyclic manner. Its implementation is the following:
function InterleaveTensorMany(threads , id) {

let not_computed = threads.reduce(((x, y, id) => x + (y.Mnd ? 1 : 0)), 0);
let num_of_threads = threads.length;
let i = id == num_of_threads ? 0 : id;
while (threads[i].Mnd === undefined) {

i += 1;
if (i == num_of_threads) i = 0;

}
if (not_computed > 1) {

return new Resume(
new StateM(s => {

let p = threads[i].Mnd.runState(s);
threads[i] = p.value;
return {value: InterleaveTensorMany(threads , i + 1), state: p.

state}
}));

} else {
return new Resume(new StateM(s => {

let p = threads[i].Mnd.runState(s);
return {value: p.value.bind(v => {

let results = threads.map(x => x.value);
results[i] = v;
return new Computed(results)

}), state: p.state}}))
}

}

The aforementioned denotational semantics of our example language are used to execute our
benchmarks presented in Section 5.1. The monad transformer D implementing the direct
semantics approach, which is described at the start of this section, with the identity monad
Id as its argument, is used to evaluate our baseline sequential programs. Then, by choosing
the power-domain monad P as the argument of D, we obtain a multi-monad that can support
non-determinism, and passing that as M to the monad R(M), we can model interleaved
computations and use that for our concurrent benchmarks.
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Chapter 5

Performance results

5.1 Benchmarks

In this section we describe all the algorithms that were used to measure the performance of
our RMT implementation and the baseline implementations with Promises. All benchmarks
were written in JavaScript and were executed in the Node.js run-time environment [Node18],
using version 10.3.0. The benchmarks are basically simple and common algorithms of various
time complexities e.g. O(n), O(n logn), O(n2), O(2n). We provide here the pseudocode for
both the sequential and the concurrent versions of our benchmark implementations.

In order to evaluate the run-time performance of our RMT implementation for the purpose
of this thesis, the algorithms described below were written using our semantics. The Sequen-
tial ones were executed with our semantics, passing them as a parameter the State Monad
Transformer lifting the Identity Monad, and for the Concurrent ones, passing them the RMT
lifting the same transformer as their sequential counterparts.

For the benchmark baselines, we used the same algorithms implemented in plain JavaScript
for the Sequential versions and transformed the same code using JavaScript’s Promises for
the Concurrent ones. The core implementation though remains the same in both RMT and
Promises versions.

5.1.1 Sieve of Eratosthenes

Our first benchmark is the classic algorithm for the sieve of Eratosthenes. It has a time com-
plexity of O(n loglogn) and the basic loop can be broken into two (or more) separate threads
for the concurrent version. The common sequential algorithm is presented in Algorithm 1. In
the concurrent algorithm - Algorithm 2 - two threads are created that have the same body as
the while loop in 1, but start on different numbers and have a step of 2 in each iteration. The
problem here is reading or writing the global array primes, where the results of whether the
relative index is prime or not is kept. A lock must be present in order to avoid race conditions
and secure that the same operations as the sequential one will be executed. In our semantics,
this can be simply done using our unit operator, while in the promises implementation we
have to keep the whole operation of reading or writing in one atomic step inside a separate
promise in order to achieve the same results.

57



Algorithm 1 Sequential sieve of Eratosthenes
1: procedure SeqSieve(n)
2: primes← [true] ∗ n
3: j ← 4
4: while j <= n do
5: primes[j]← false
6: j ← j + 2
7: end while
8: i← 3
9: while i <=

√
n do

10: if primes[i] is true then
11: j ← i2

12: while j <= n do
13: primes[j]← false
14: j ← j + i
15: end while
16: end if
17: i← i+ 2
18: end while
19: return [i | i ∈ [1..n], primes[i] is true]
20: end procedure

Algorithm 2 Concurrent sieve of Eratosthenes
1: function Fork(start)
2: ilocal ← start
3: while ilocal <=

√
n do

4: if ⟨primes[ilocal] is true⟩ then
5: jlocal ← ilocal

2

6: while jlocal <= n do
7: ⟨primes[jlocal]← false⟩
8: jlocal ← jlocal + ilocal
9: end while

10: end if
11: ilocal ← ilocal + 4
12: end while
13: end function

14: procedure ConcSieve(n)
15: primes← [true] ∗ n
16: j ← 4
17: while j <= n do
18: primes[j]← false
19: j ← j + 2
20: end while
21: thread1 ← Fork(3)
22: thread2 ← Fork(5)
23: run (thread1 ∥ thread2)
24: return [i | i ∈ [1..n], primes[i] is true]
25: end procedure
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5.1.2 Pi approximation

Our second benchmark is a simple algorithm to approximate Pi. It has a time complexity
of O(n) and the basic loop can be broken into two separate threads for the concurrent
version. The sequential algorithm is presented in Algorithm 3. In the concurrent algorithm
- Algorithm 4 - two threads are created that have the same body as the while loop in 3, but
start on different numbers (1 and 2) and have a step of 2 in each iteration. That way we can
avoid in the concurrent version the check if i is even or odd. Each thread runs either for the
odds or the evens separately. The problem here is the same as the sieve above 2; reading or
writing the global variable pi, where the approximation of pi is kept. In our semantics, we
simply use again our unit operator, while in the promises implementation we have to keep
the whole operation of reading or writing in one atomic step inside a separate promise in
order to achieve the same results.

Algorithm 3 Sequential approximation of Pi
1: procedure SeqPi(loops)
2: i← 1
3: pi← 4
4: while i < loops do
5: temp← 4/(i ∗ 2 + 1)
6: if i mod 2 == 0 then
7: pi← pi+ temp
8: else
9: pi← pi− temp

10: end if
11: i← i+ 1
12: end while
13: return pi
14: end procedure
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Algorithm 4 Concurrent approximation of Pi
1: function Thread1
2: ilocal ← 2
3: while ilocal < loops do
4: ⟨pi← pi+ 4/(ilocal ∗ 2 + 1)⟩
5: ilocal ← ilocal + 2
6: end while
7: end function

8: function Thread2
9: ilocal ← 1

10: while ilocal < loops do
11: ⟨pi← pi− 4/(ilocal ∗ 2 + 1)⟩
12: ilocal ← ilocal + 2
13: end while
14: end function

15: procedure RmtPi(loops)
16: pi← 4
17: thread1 ← Thread1
18: thread2 ← Thread2
19: run (thread1 ∥ thread2)
20: return pi
21: end procedure
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5.1.3 Primality test

Our third benchmark is a classic primality test for a given integer. It has a time complexity
of O(

√
n) and again the basic loop can be broken into two separate threads for the concurrent

version. This test was of course executed for very large primes. The sequential algorithm
is presented in Algorithm 5. In the concurrent algorithm - Algorithm 6 - two threads are
created that have the same body as the basic while loop in 5, but start on different numbers
and each thread does half of the check avoiding some operations.

Algorithm 5 Sequential primality test
1: procedure SeqPrimalityTest(n)
2: result← true
3: if n <= 16 then
4: if n == 2 or n == 3 or n == 5 or n == 7 or n == 11 or n == 13 then
5: result← false
6: end if
7: else
8: if ((n mod 2 == 0) or (n mod 3 == 0) or
9: (n mod 5 == 0) or (n mod 7 == 0)) then

10: result← false
11: else
12: i← 10
13: while i2 <= n do
14: if ((n mod (i+ 1) == 0) or (n mod (i+ 3) == 0) or
15: (n mod (i+ 7) == 0) or (n mod (i+ 9) == 0)) then
16: result← false
17: i← n+ 1
18: end if
19: i← i+ 10
20: end while
21: end if
22: end if
23: return result
24: end procedure
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Algorithm 6 Concurrent primality test
1: function Fork(start)
2: ilocal ← start
3: while ilocal

2 <= n do
4: if (n mod ilocal == 0) or (n mod (ilocal + 2) == 0) then
5: result← false
6: ilocal ← n+ 1
7: iother ← n+ 1
8: end if
9: ilocal ← ilocal + 10

10: end while
11: end function

12: procedure RmtPrimalityTest(n)
13: result← true
14: if n <= 16 then
15: if n == 2 or n == 3 or n == 5 or n == 7 or n == 11 or n == 13 then
16: result← false
17: end if
18: else
19: if ((n mod 2 == 0) or (n mod 3 == 0) or
20: (n mod 5 == 0) or (n mod 7 == 0)) then
21: result← false
22: else
23: thread1 ← Fork(11)
24: thread2 ← Fork(17)
25: run (thread1 ∥ thread2)
26: end if
27: end if
28: return result
29: end procedure
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5.1.4 Insertion sort

Our fourth benchmark is insertion sort. It basically has a time complexity of O(n2), specifi-
cally in our case, where the tests consist of arrays reversely sorted. The sequential algorithm
is presented in Algorithm 7. For the concurrent versions we run the same sequential algo-
rithm, but without any threads actually interleaving. This way we can calculate the overhead
that our implementation and promises have over their sequential counterparts on executing
the same number of computations.

Algorithm 7 Insertion sort
1: procedure Insert(A)
2: i← 0
3: while i < A.length do
4: value← A[i]
5: j ← i
6: while j > 0 and value < A[j − 1] do
7: A[j]← A[j − 1]
8: j ← j − 1
9: end while

10: A[j]← value
11: i← i+ 1
12: end while
13: return A
14: end procedure

5.1.5 Array reduction

Our fifth benchmark is a simple reduction of a given array, in order to get the sum of the
array elements. It has, of course, a time complexity of O(n) and again the basic loop can be
broken into two separate threads for the concurrent version. This test was of course executed
for large arrays. The sequential algorithm is presented in Algorithm 8. In the concurrent
algorithm - Algorithm 9 - two threads are created that have the same while loop as in 8, but
each thread tackles a different half of the array. The result is stored in a global variable x,
so again we have to ”lock” x to avoid data races.

Algorithm 8 Sequential reduce of array
1: procedure SeqReduce(A)
2: x← 0
3: i← 0
4: while i < A.length do
5: x← x+A[i]
6: i← i+ 1
7: end while
8: return x
9: end procedure
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Algorithm 9 Concurrent reduce of array
1: function Fork(start, finish)
2: ilocal ← start
3: while ilocal < finish do
4: ⟨x← x+A[ilocal]⟩
5: ilocal ← ilocal + 1
6: end while
7: end function

8: procedure RmtReduce(A)
9: x← 0

10: n← A.length
11: thread1 ← Fork(0, n/2)
12: thread2 ← Fork(n/2, n)
13: run (thread1 ∥ thread2)
14: return x
15: end procedure

5.1.6 Matrix-vector multiplication

Our sixth benchmark is a matrix-vector multiplication of a given matrix and a given vector,
which has a time complexity of O(n2). The sequential algorithm is presented in Algorithm
10. In the concurrent algorithm - Algorithm 11 - each thread performs a vector-vector
multiplication. Therefore, in this benchmark we create dim threads, where dim is the number
of rows in the input matrix, and store them in a vector threads. As for the final result, each
thread keeps its result stored in a different position of the global vector y, so no ”locks”
are needed here. But we must define a way for that many threads in the vector threads to
be executed. For the promises version we can use Promise.all(threads) but in the RMT
version we have to define a similar operator. runMany does exactly that. It executes the
threads basic computations in a cyclical manner as Promise.all() is expected to do, and has
similar semantics as run but for an array of threads, as shown in the comment of line 15 in
Algorithm 11.

Algorithm 10 Sequential matrix-vector multiplication
1: procedure SeqMatrixVectorMult(A, x)
2: y ← [0] ∗A.NumOfRows
3: for i← 0; i < A.NumOfRows; i← i+ 1 do
4: temp← 0
5: for j ← 0; j < A.NumOfColumns; j ← j + 1 do
6: temp← temp+A[i][j] ∗ x[j]
7: end for
8: y[i]← temp
9: end for

10: return y
11: end procedure
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Algorithm 11 Concurrent matrix-vector multiplication
1: function Fork(id)
2: yid ← 0
3: Aid ← A.Row(id)
4: for jid ← 0; jid < Aid.length; jid ← jid + 1 do
5: yid ← yid +Aid[jid] ∗ x[jid]
6: end for
7: y[id]← yid
8: end function

9: procedure RmtMatrixVectorMult(A, x)
10: y ← [0] ∗A.NumOfRows
11: y ← [null] ∗A.NumOfRows
12: for i← 0; i < A.NumOfRows; i← i+ 1 do
13: threadi ← Fork(i)
14: end for
15: runMany threads ▷ run foldl(λx.λy. x ∥ y, threads, skip)
16: return y
17: end procedure

5.1.7 Combinations

Our last benchmark is finding all different combinations of size m out of n numbers (range 1
to n for our tests). It has a time complexity of O(2n) since our algorithm simply enumerates
all possible combinations. The sequential algorithm is presented in Algorithm 12. As we
did in Algorithm 7, for the concurrent versions we run the same sequential algorithm but
without any threads actually interleaving, in order to just calculate the overhead of our
implementations.

Algorithm 12 Combinations (m comb n)
1: procedure Combinations(m,n)
2: bits← 1
3: results← []
4: while bits <= 2n − 1 do
5: if num. of 1s in binary representation of bits is m then
6: results.push(list of 1s indexes in binary representation of bits)
7: end if
8: bits← bits+ 1
9: end while

10: return x
11: end procedure
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5.2 Results

5.2.1 Performance test results

Each benchmark described in Section 5.1 was executed 100 times and their average run-times
are presented here. Additionally, we present the overhead that our RMT programs have over
their simple sequential counterparts in separate figure for each benchmark.
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(a) Run-times

(b) Overhead

Figure 5.1: Sieve of Eratosthenes
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(a) Run-times

(b) Overhead

Figure 5.2: Approximation of Pi
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(a) Run-times

(b) Overhead

Figure 5.3: Primality test
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(a) Run-times

(b) Overhead

Figure 5.4: Insertion sort
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(a) Run-times

(b) Overhead

Figure 5.5: Reduce of array
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(a) Run-times

(b) Overhead

Figure 5.6: Matrix-vector multiplication
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(a) Run-times

(b) Overhead

Figure 5.7: Combinations (m comb n)
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5.2.2 Cumulative results

In this subsection we present the cumulative results of our implementations and compare
them with the relative Promises benchmark baselines.

Figure 5.8: Weighted run-time averages by algorithm time complexity

In figure 5.8 we present a weighted run-time mean for each benchmark. The weights we
used for each benchmark depend on their algorithm’s time complexity. In Section 5.1, we
mentioned the time complexity in big-O notation for each algorithm. For the weight of each
input we substitute that time complexity with the relative input each time and then use that
result as a weight. The same weights were also used in Figure 5.9, but there, we also present
the overheads that the Promises implementation had.

In Figure 5.9, we can see that our RMT generally achieved smaller overheads than the relative
Promises baselines. In some cases (pi, primality, insert), where a lot of computations are
encapsulated in Promises or RMTs relatively, we observe that the promises implementation
produces a lot more overhead concluding that creating a great number of Promises objects,
does not scale as good as in the case of our RMT. In the case of matrix-vector multiplication,
we get very similar results due to the number of threads created in this performance test.
In that test we use Promise.all() to run all threads in the promises implementation and
runMany in the RMT one. Although here, we also have a great number of Promises created,
Promise.all() achieves a slightly more efficient scheduling than runMany, resulting in an
overhead much closer to the RMT one than expected.
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Figure 5.9: Weighted overheads averages by algorithm time complexity
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Table 5.1 shows the exact results for the ten biggest inputs we could run during our tests.
We can see that RMTs outperform Promises in every benchmark expect the matrix-vector
multiplication. However, those overheads are close and the reason that Promises are that
close may be that our runMany is not as optimizes as Promise.all().

Benchmark Method Rank of input
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

sieve RMT 198.78 204.33 212.94 212.19 217.04 201.24 205.64 202.45 207.22 210.19
Prom. 203.82 241.00 243.75 268.17 255.58 292.53 294.35 301.67 327.87 336.59

pi RMT 50.87 50.75 51.69 49.87 51.66 50.00 50.28 51.00 50.94 51.18
Prom. 197.89 156.15 136.10 104.25 106.44 119.67 124.86 155.10 153.43 191.92

primality RMT 54.45 82.96 71.36 76.47 83.60 83.26 81.84 90.48 94.85 95.54
Prom. 313.10 327.19 322.14 350.54 341.14 345.28 351.66 332.46 351.79 341.01

insert RMT 249.43 247.53 246.27 238.66 235.99 241.69 233.94 245.79 245.84 249.87
Prom. 560.55 573.52 579.80 590.20 576.71 575.68 593.31 587.44 476.16 411.09

reduce RMT 80.03 86.20 81.78 82.41 81.01 83.87 82.19 81.74 83.03 82.81
Prom. 140.00 132.81 182.28 187.10 189.63 188.00 216.62 225.71 240.63 228.59

mat-vec RMT 272.79 304.81 294.50 276.67 301.52 321.10 330.15 316.46 342.87 331.45
Prom. 313.98 265.17 315.90 358.57 357.06 298.53 398.56 299.30 402.65 381.15

comb RMT 30.01 82.59 67.23 66.20 82.82 76.30 72.21 117.01 104.80 103.80
Prom. 63.65 129.30 158.25 87.44 90.58 94.78 105.20 117.22 134.19 131.13

Table 5.1: Overheads for the ten biggest inputs for every benchmark tested

In Figure 5.10, we present the average overheads of all the benchmarks for the ten biggest
inputs that we used for each one, when we executed the performance tests. For this purpose,
we first normalize each benchmark’s overheads separately, which means that we transform
the data to have a mean of 0 and a standard deviation of 1. This way, we ignore temporally
the magnitude of the overheads and thus can find the mean of each input (i.e. the mean of
all benchmarks’ 1st input) caring only about the actual distances between the data. Then we
do the reverse procedure of the normalization and transform the result’s mean to be equal to
the average of all benchmarks’ means and the standard deviation to be equal to the average
of of all benchmarks’ standard deviations (which is also the error shown in Figure 5.10).

Using the aforementioned technique, we produce the above lines which are basically indepen-
dent of the benchmarks and the benchmarks’ inputs. Thus we compare their actual distances
and their slopes to see how our RMT and the Promises implementations behave generally.
We observe that the promises give bigger overheads across the whole line and not even the er-
rors of the two lines intersect. We also notice that the RMT line has a smaller slope than the
Promises line meaning that the RMTs actually scale better than the promises implementation
as the input sizes increase.
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Figure 5.10: Average overheads for the ten biggest inputs of each benchmark
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Chapter 6

Epilogue

6.1 Conclusions

In this thesis, we defined a general theoretical framework for formalizing the denotational
semantics of interleaved computations in concurrent programming. We present here our
conclusions for the Resumption Monad Transformers. We showed that resumptions can
be a modular expression of the semantics of concurrency. The modularity of resumptions
allowed us to easily define the semantics of our example language and extend it with new
operations that introduce concurrency on such a language. But apart from its application in
the semantics of concurrency, the resumption monad transformer proposed here can be used
in the semantics of deterministic languages with unspecified evaluation order, such as C.

The main contribution of this thesis though, is the performance results of RMTs. We showed
with our implementation of the RMTs that resumptions are low-overhead constructs that can
be used to define the semantics of concurrency. Our comparison with JavaScript’s Promises
showed that we outperformed them by 100%, making RMTs a reasonable choice for defining
the denotational semantics of concurrent programming languages and to be used in real-world
applications.

6.2 Future work

Future research should investigate in detail the lifting properties of the resumption monad
transformer, i.e. the exact way in which operations supported by the monad of atomic
computations M can be passed on to the monad of resumptions R(M).

Additionally, a further expansion of this work should include an even better implementation
of Resumption Monad Transformers. JavaScript nowadays has implemented in its core gen-
erator functions. Generator functions allow to lazily produce results with yield rather than
returning them in a function. This could be much useful in our implementation of bind in
the Resumption Monad Transformers.

Another direction that would be interesting, is implementing Resumption Monad Trans-
formers in another language. Perhaps we could utilize better tools implementing them in a
compiled language like C++. JavaScript also allows using libraries compiled from C++ as
add-ons, which could give even better performance results.
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