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Abstract

In this study, a novel smart algorithm for the management of the power flows of an
islandic power system was developed and integrated into the dynamic simulation of the
system’s model. The system under investigation is composed of Diesel Generators and
a PV farm while a Battery Energy Storage System (BESS) is proposed, in order to
support the developed algorithm’s implementation. In particular, a predictive energy
management (EMS) algorithm was developed, capable of load smoothing and peak
shaving of the maximum demand values, simultaneously. In this way, the maximum
demand of the island’s system, was covered from stored renewable energy, while the
operation of the diesel engines remained stable, diminishing the ramp up and the steep
gradients before the night hours’ peak demand. Additionally, considering the system’s
ability for energy storage as a result of the BESS installation, a portion of the PV energy
produced in daylight time period could be shifted for later use and therefore the diesel
engines could avoid abrupt load changes. The prediction ability of the algorithm was
based on a developed feedforward artificial neural network, which was capable of short-
term load forecasting. Through this, it was possible to estimate an hourly based
trajectory for the diesel generators operation and acquire the BESS setpoints which
would result in the desired peak shaving and smoothing level. Subsequently, the
islandic power system was modeled in APROS software and the algorithm was
integrated into the system dynamic simulation. In order to better represent the storage
capacity and the degradation effects, a nonlinear detailed model was employed for the
battery operation, including charge and discharge control loops, while the rest of the
power system was modelled in the energy flow level. A rule-based strategy was also
developed in APROS software through basic modules, which was tasked with the
implementation of the setpoints obtained from the developed management algorithm.
The simulation results proved that from the application of the proposed algorithm, a
smoother diesel generator operation and peak shaving is achievable. Under this scope,
the diesel engines could be rated at lower maximum capacity while the renewable
energy penetration to the grid was increased.
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Extevng lepiinyn

2V mapoHoo SUTAMUATIKY epyacia, HeAeTHONKE 1 eXidpAON TG EVOOUATOONG EVOG
‘¢Eumvou’ adyopiBpov dtayelplong CLGTHLOTOS OMOONKEVONG NAEKTPIKNG EVEPYELNG,
o Asrtovpyion €VOC UN-OlOGLVOESEUEVOD VNIOIOTIKOD MAEKTPIKOD Owktdov. To
TEAEVTOIO amoTEAEITAL OO GVGTNHO ATOONKELONG EVEPYELNG LE GVGTOLYIEG UTATAPIDV
(BESS), Diesel miextpomopaywyd Cevyn kor éva @otofoAtaikd mapko (PV).
YuyKekpléva, ovamtiyonke TpoPAenTiKOg aAyOpIOLog dlayeiplong TOV GUGTAHOTOC
amofnkevong, o omoiog eiye ®G KVPLO okomd TNV eEOHAAVVOT NG Agttovpyiag TV
Diesel unyavaov, v peylotonoinon g 61€icdVeNG AVOVEDGIUNG EVEPYELLS OTO SIKTVLO
KO TNV HEI®MOT TOV HEYIGTOV POPTIOVL TOV KAAOVVTOL VO KAADYOLV O UNYAVEG. ZYETIKAL
pe v wavotnto tpoPieync tov aAdyopibupov, oxedldotnke Eva vELP®VIKO S1KTLO
(ANN), pe o omoio emitedyOnke N TPOPAEYN TG KOUTOANG POPTIOVL TOV EXOUEVOL 24-
®pov og wptaia Baor. o v avantuén Tov vevpwviko, ypnoyLorotndnKay to wptoic
dedopéva Beppokpaciog Kot GopTiov Tov VNGLOTIKOD GLGTHLOTOS TMV TEAELTOI®MV 3
etov (2014, 2015, 2016). Ta mpodTa 600 £t YpnoyoromdnKav yo TV dodtkacio
EKTTOLOEVONG TOV OIKTVOV EVOD TO TEAEVLTOHO £TOG YPNCLOTOONKE Yo TNV EKTIUNON TNG
amotedeopatTikdTTog TG TPOPAeYNGS. ' To teAevTaio €10, TO VELPOVIKO SIKTLO
KOTAQEPE VaL EMTOYEL LEGO AOAVTO o)ETIKO opdipa (MAPE) w¢ mpog v mparypotikn
emota xpovooelpd goptiov 1.751%. Xt ocvvéyela, pe Bdon v mpoPAeym, €yve
eKTiUMoN ™G TPOYLIS TV oNUElDV AgLTOVPYING TOV GUUPATIKOV NAEKTPOTAPOYWYDV
unyavav (Diesel) tov vnoiob, yio kdbe dpa ™ NUEPIC, ETCL MOTE VAL IKOVOTOIOVVTOL
Ol QITOLTAOELS Y10, 1) TTEPIKOTH TOV KOPLPAOV TG KAUTOANG Poptiov ko i) eEopdivvon
NG KAUTOANG. ZuyKeKpPUEVa, avorTuyOnke alyopiBog o omoiog émaipve oav dedopéval
€10000V TV TPOPAEYT TOV POPTIOV, OTWG VTN TPOKVTTEL OO TO VELPMVIKO O1KTLO,
Vv Topayoyn towv PV 1ng endpuevng nuépag Kot TV TN TEPIKOTNG TNG KOPLeNe. Me
Baon to wpomyovpeva dedopéva E1GOO0V KOl KOTOTLY GUYKEKPLUEVNG O1001KAGTIOG,
éPyale ocav ££000 v Topeia Asttovpyiag TV GLUPATIKGOV LOVAS®V Tapay®YNG KaODS
KO TIG TIES 1o00¢ oL Oa émpene va. amobnkevtodv 6to cvotnuo uratopiov (BESS)
kéBe opa g nuépac. Katd v apywonoinon tov aAiyopiBuov avtov, o omoiog
exteleiton yia KaOe nuépa tov étovg, Bempeiton Eva eminedo 1oyvOG (TOL OVOUAGTNKE
offset), mdvmw oto omoio mpoaotiBetal N cuvolikn mapaywyn Twv PV, evd tavtdypova
TEPIKOTTOVTOL Ol OryUEC Asttovpyiog Tav punyavov. To enimedo offset, petafdreton
(av&avetonr oTAOOKE) KATO TNV ETOVOANTTIKY Ol001Kacio Tov aAyopifuov Ko
TOVTOYPOVE GVUTTAPACVPEL Loll TOV TNV KOUTOAN Tapaymyng Tov PV, dnuovpydvog
£T01 (o VEQ «OVVOETIKNY KOUTOAN GUVOMKNG TOPAY®YNG EVEPYELNG, 1 OTOilo KATOoln
oTiypn epeavifel onueion Topng pe TV KAUmOAN Tov eoptiov ¢ dwog nuépac. H
dwdkacio avtn cuveyiletol mepetaipm pe Tov 1010 Tpdmo, PEXPIS GTOV Vo dnpovpynOet
L0 «TEYVN T TEPIOTELN EVEPYELOG, 1] OTTOT0L ATOONKEVETOL GTO GVGTNLLO LTOTAPUDY KO
npooeyyilel pe v eldyiom Betikn dapopd, To Tocd evépyelog mov Oa xpelaoTel Yo
va KaAveBel 1 aryun Tov optiov mov Ba akolovdnoel apydtepa v 101 nuépa. H
ekTipumon g enidpoong Tov adyopiBpov ot Agttovpyic TOVL GLGTHUATOG, £YIVE HECH
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NG WOVTEAOTOINGNG TOVL VNOIOTIKOV OIKTUOV KOl TNG EKTEAEONG OUVOUIKNG
TPOGOUOI®ONG TG Aettovpyiag Tov, oto Aoywouikd Advanced Process Simulator
(APROS). T'ta. v kaAbtepn duvath TPOGOUOImoT TG AEITOVPYIOG Kot TNG SUVOLIKNG
CLUTEPLPOPES TOV GLOTHLATOS ATOONKEVLGONG EVEPYELNG, YPOUOTONONKE OVAAVTIKO
UN-YPOUUIKO NAEKTPIKO LOVTELOD, EVD TO DTTOAOLTO OIKTLO LOVTELOTOMONKE G EMIMEDO
evepyelokav podv. Emiong, oto duvapikd poviélo Tov VNoLOTIKOD GUGTHLOTOG,
EVOOUATOONKE £€Vo EMOTMTIKO GUOTNUO O)EIPIONG TOV POM®V 1oYVOG KOl TV
Kat@AAN AV Bpoyymv eréyyov (Energy Management System - EMS), pe Bdomn to omoio
opiotnke kot pvBuictnke m Agrtovpyio TOV S0POPOV VTOGLOTNUATOV, KOTO TN
dugpkela G dvvapikng mpocopoimons. Ta omoTEAESHOTO TOV TPOCOUOIDGEDV
£0e1&av OTL LE TNV €QOPUOYN TNG TPOTEWVOLEVNS LeBodoAoYing, etvar duvath 1 emitevén
opolotepng Aettovpyiog Tmv Diesel unyovodv kabdg axdun Kot 1 ovIKatdoTaost Toug
amod UNYoveS HIKPOTEPNS 1oYV0G, VM TOWTOYXpova Peitiddnke m a&lomoinorn g
TOPAYOUEVNG MAEKTPIKNG €VEPYELDS OO TO QMTOPOATAIKO TAPKO, EMTPEMOVTIOG
HeyoAvTEPN Oleicduon Tig vuytepvég dpeg ayuns. Ev katakAeidt, cOppova pe v
dwdwkacio Tov akolovOnOnke oty mopovca epyacia, TpoTeiveTarl Eva EVOTOUNUEVO
TAOIcl0  avAmTUENG KOl QOKIUNG TPOPAENTIKAOV SLEPIOTIKOV  oAyopiBuwv, ue
EPOPLLOYN] OE EVEPYEIONKO GLOTNUOTION, OTO OO0 EVOMUATMOVETOL T OLVOLLKN
TPOCOUOIMGT KOl Ol OVTIGTOLXES SLOTAEELS EAEYYOL KOl avTopaTIcHoV. Mg tov Tpdmo
avtd emtvyydvetal 1 kaAvtepn dakpifwon g enidpaong T€Towwv adyopifuwv o
Aertovpyia evOG EVEPYELOKOD GUGTNUATOC, VIO UETOPAAAOUEVES GLVOTKEC.
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1 Introduction

1.1 Background Information

Nowadays, fundamental concepts related with energy production and consumption are
continuously evolving and being reformed towards the forthcoming energy revolution
based on smart energy networks predominance. Due to constant environmental
regulations and limitations, energy utilities are enforced to implement changes and alter
their policy in order to achieve a more sustainable and renewable based operation [1].
This task may be more feasible for large scale, highly interconnected grids, but this is
not the case for smaller islanded grids, where renewable production can be a significant
proportion compared to the total system production and excess energy cannot be
exported. Through this perspective, islands’ power networks, that resemble the future
structure of distributed microgrids in islanded operation, are highly dependent on
precise forecasts and storage solutions, since grid stability and production/consumption
balancing are met exclusively by the local power generation. This is primarily
dependent on diesel generators. Abrupt changes in load conditions and sudden impulses
of renewable energy injections into the grid, are usually counterbalanced by
commissioning more diesel generators for peak hour demand, forcing them to
experience cold start-ups or to operate in variable power setpoints which result in fuel-
consuming ramp-ups. Both of these operational conditions are strongly related to high
operating costs and reduced diesel engine lifetime, which in turn have a negative effect
on grid operators illustrated by the high cost of the produced electricity. In addition, as
Chua et al. stated in [2], commercial and industrial customers are subject to monthly
maximum demand charges which can be as high as 30% of the total electricity bills,
thus peak shaving can be an efficient way to reduce those charges and relieve diesel
generators from cost-intensive and energy-demanding ramps-up, accelerating from
base to the peak load.

Concerning the aforementioned inherent difficulties in operating islanded grids and
managing the power flows between production and consumption, battery energy
storage systems (BESS) have proved to be a very promising option for smoothening
those instabilities and enabling higher renewable power penetration simultaneously.
Such a system can be inter-connected to the energy grid, providing ancillary services
with frequency control or load smoothening by peak shaving during the hours of the
day with high demand (i.e. midday hours) with stored energy from day periods with
relatively lower demand (i.e. night hours). However, the most suitable operation
strategy of the BESS, which is determined by a centralized Energy Management System
(EMS), is related with the shape of the load profile of the system and the type of
renewable power generation. Thus, for an islandic power system, where the load profile
presents a high peak in late night hours and high photovoltaic (PV) generation in
daylight hours, peak shaving with BESS energy stored from PV generation seems a
rational approach. Specifically, this is the case for most South European islands where
the load profile is shaped mainly from activities related to tourism at night hours rather
than energy devouring industries that operate during the daylight hours.

10
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1.2 An overview of Smart Grids

Smart Grids (SG) are regarded as the next generation of power generation, transmission
and distribution grids considering their capability of bidirectional power flow. This
ability has been attributed to the renewable power sources and energy storage systems
integration. As the number of decentralized renewable producers is constantly
increasing, the need for higher capacities of the transmission system, that can afford the
power congestion can be clearly noticed. Thus, the conventional power grids have to
adapt to the constantly evolving environment by integrating smart energy management
solutions and bidirectional operation. Also, energy storage systems and demand
response techniques should have a great impact on the grid stability under uncertain
power production and consumption. The future trends associated with SG are
summarized according to [3] to the following:

e Creating a grid that is more efficient secure, reliable and controllable to enhance
the data exchange capabilities

e Instant control capabilities and self-healing resources

e Easy integration of individual micro-generation units

e Fast distribution of smart technologies such as remote control, autonomous
operating, sustainable and interactive communication

e Integration of smart appliances and consumer devices that can be controlled via
demand response operation

At the following figure (Figure 1), the basic topology of a SG with all the
communication and data exchange pathways is presented. Common issues that are
related with smart grids secure control and operation are related with grid stability
(frequency-voltage regulation), balancing the power generation with the demand, the
impulse renewable power penetration which needs to be directly compensated and the
ability for self-sufficiency. These issues are commonly faced by load forecasting,
predictive and optimization algorithms, while during the recent years, more and more
energy storage systems are integrated into large smart grids.

Regarding the smart grids concept, a smart control and management system is necessary
in order to achieve the most efficient and optimized BESS operation. Thanks to recent
development in time-series forecasting and the possibility to access a big amount of
data related with the power system operation, an EMS could implement a predictive
strategy based on consumption/production forecasts and an objective function
minimization. Therefore, load forecasting is a necessary stepping stone in order to
achieve better energy dispatch planning, which is of great significance for the stable
operation of conventional generators.

11
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Figure 1: Smart grid basic topology [3]

1.3 Aim of this study

Regarding the present study, a novel predictive algorithm for peak shaving and diesel
engine operation smoothing is proposed. This algorithm is combined with a load
forecasting method and then integrated into a microgrid simulation model, that includes
a detailed non-linear battery representation. In this way, the isolated power system of a
South-European island is examined and the developed predictive open loop EMS is
integrated into a dynamic simulation model. Compared to the studies mentioned in the
previous section, the novel aspect of this study is the combined attributes of a machine
learning method for load forecasting and a developed tailored made optimization
algorithm with a custom modelled EMS and the dynamic simulation of a detailed
Lithium (Li) battery model in Apros software. Therefore, a complete simulation
framework for isolated power systems is proposed, combining load forecasting,
predictive EMS algorithms and dynamic simulation models. Aim of this study is the
development of a smart predictive control architecture for a BESS, based on load
forecasting, for the optimum integration of PV power into an islanded power grid,
through peak demand shaving and smoothening of the load curve.

12
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2 Literature Review

2.1 Load Forecasting Techniques

Many studies concerning short term load forecasting for power grids implementing
numerous methodologies and algorithms from the field of time-series forecasting have
been published so far. Among them, various versions of ANNs have proved to be a
common approach [4,5,6] and is also adopted in this study. In order to evaluate the
performance of neural networks and their capability to forecast accurately, some
statistical indicators are used such as Mean Squared Error (MSE), Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE) with the last being the most
common for comparison actions [6]. In [7], Satish et al. proposed a combined synergy
consisting of two ANNSs, one for basic day ahead load forecasting and one for peak and
valley forecasting, highlighting the strong correlation of temperature with load.
Brodowski et al. [8] implemented a day ahead hybrid load forecasting using a divide
and conquer hierarchical approach. The whole dataset was partitioned into smaller ones
and each subproblem was resolved with a different ANN model. Their model is
depicted in the figure below.

Dynamically
weighted mean:
weight dependent on . Neural Network, trained on whole dataset
sample s

gt = Neural Net\‘vorks. tré:med on defined part of dataset
Figure 2: Structure of a hierarchical approximator variant with different ANN sub models combined together
for a single hour power load forecast [8]

The Fuzzy C-means method was used for clustering the load data points and Principal
Component Analysis (PCA) analysis for selecting the most suitable input features for
each network. The combined result was considered as the final prediction. In this way
they claimed to achieve lower MAPE than classic ANNs or Bagged NNs. In [9,10]
authors achieved day ahead load forecasting using Kalman filtering combined with
fuzzy logic. Specifically, in [9] a fuzzy rule-based logic was used to estimate Kalman
filter parameters for structuring a fuzzy linear load model capable of 1h ahead
predictions. This method could also be successively used for up to 60 days ahead
predictions. Markoulakis et al. [10] used a Kalman filter to calculate the coefficients of
a recurrent load model and discrete ANFIS networks for each hour in order to achieve
1h ahead forecasts. The ANFIS model is depicted below.
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Output load, hour (i), day (j)

Figure 3:ANFIS network model for load forecasting, combining ANN structure with fuzzy rules [10]

In [11] the hourly load curve of Spanish power system was modelled as a linear function
of low and high frequency components considering a Long-Term Demand Model
(LTDM) based on macroeconomic parameters for low frequency and calendar,
temperatures, daylight effects for high frequency components respectively. The model
was used to forecast long-term annual peak and trough demand values and showed an
overall improvement in MAPE compared with a NARX model which was used for
validation. Ghasemi et al. [12] proposed a simultaneous load and price forecast using a
multilevel algorithm with feature selection for inputs and optimization of the
NLSSVM-ARIMA model parameters using Artificial Bee Colony. A Flexible Wavelet
Packet Transform (FWPT) was used for price/load signal processing which resulted in
better regression accuracy for the forecasting of those highly correlated variables.
Thus, it was possible to find the proper actions that should be done on the Demand Side
Management (DSM) in order to shape the load profile appropriately towards the
minimization of the electricity cost. A Single-layer feedforward network was developed
in [13] for hour and day ahead PV production forecasting whereas in [14] a weather
forecasting platform was developed, including several forecasting algorithms among
them neural networks, for solar irradiance forecasting.

2.2 Energy Management System (EMS) Algorithms

2.2.1 Residential EMS

Predictive Energy Management Systems (EMS) is based on high quality forecasting of
electricity demand and renewable energy production, which is used for solving
optimization problems related with operational setpoints and cost minimization. In the
residential sector such systems have been integrated into small scale BESS, as in [15],
where forecast-based algorithms with dynamic PV power feed-in limitations (in order
to avoid curtailment) were formulated as linear optimization problems and used for
optimal power use in a house. In this way, many operating strategies of battery charging
and discharging could be accomplished, leading to increased self-sufficiency and less
curtailed PV energy. In [16] a reactive power management algorithm was implemented
to account for load forecasting uncertainties by introducing a range for the state of
charge (SoC) planned trajectory which was obtained in terms of electricity cost
minimization with increased battery lifetime and grid relief compensation. Another
study was focused [17] on load forecasting for increasing battery’s lifetime in PV-
Battery interconnected residential network, whereas in [18] a Kalman load model was
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developed for load forecasting based on past load values, temperatures and number of
occupants in the house. In [19] MPC was implemented for a PV and battery residential
system with load forecasting based on ANNs and in [20] a FLC (Fuzzy Logic
Controller) was used for active power control which resulted in load profile
smoothening, while the proposed fuzzy EMS compensated for forecast errors.

2.2.2  Power grid level EMS

The implementation of such predictive energy management systems for large isolated
power systems and grid scaled BESS can be more challenging due to inherent
difficulties related with system stability. In studies such as [21], load forecasting was
used for a system with high PV penetration. Implementation of a parallel-series
Complex Value NN and a splined-based load forecasting showed better results
compared to a trivial persistence predictor. Thus, it was possible for a grid-scaled BESS
operation to be optimized. The BESS connection to the system is depicted in the figure
below.

BESE 1IMVA
DC RS O_ Transmission
1MW > ig i
AC Grid
1.1MWHR Sc 3} :
7.2 /12.47kv 12.47 / 69kV

480V
| Distribution Grid

Fig. 3. BESS connection to distribution grid system.
Figure 4: BESS connection to the distribution grid system topology [22]

In other studies, [22, 23, 24] a simple linear regression model for load forecasting has

been implemented in order to achieve optimal operation of a grid-scaled BESS for the
power network of Hawaii island, considering also the large number of installed PV
capacity on rooftops at the distribution grid. Two methods were introduced and
compared for BESS power flow control, one based on dynamic programming and
optimized SoC trajectory generation and one with real time control based on smoothing
level and time period. This is also depicted in the following figure.

——S0C target : :
0.9 - — -SO0C reached
‘ )

SOcC

0 :; é é 1‘2 1i5 1‘8 2‘1 2‘4
Time (Hour)
Figure 5:Target and achieved state of charge trajectories for the BESS operation [22]

By this approach, the flattening of the load curve by minimizing its deviation from a
smoothing level was accomplished and curtailment issues from additional renewable
generation were encountered. Both of the proposed methods were tested for 108 days
and although load peak shaving and dampening of load fluctuations were achieved, the
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BESS model was not detailed enough to include all the dynamic characteristics of
charging/discharging processes. On the contrary, implementing an advanced load
forecasting method resulted into better results compared to the first approach [24].
Halfmann et al. [25], implemented a predictive real-time BESS control based on load
forecasting with ANNSs to provide both peak shaving and primary frequency control for
the Germany power system simultaneously. In this way, the network fee for the
customers was reduced by achieving a greater value for Full Load Equivalent through
peak shaving. Sossan et al. [26] combined a utility scale BESS with the dispatchable
feeder concept for a university campus consisting of dispatchable buildings loads with
considerable PV generation. The dispatch planning was formulated as a trajectory
tracking problem which was solved using MPC for real-time feedback control of the
BESS dispatch power, while at the same time compensating for day ahead load forecast
errors, (as in the present study). Load forecasting was implemented using a vector-
autoregression technique based on similar days and by incorporating a NWM
(Numerical Weather Model. However, the authors highlighted the possibility for a
better performing forecasting tool to be plugged in their control structure. The relation
of forecast-based strategies with dispatch planning was also remarked by Mazzola et
al. [27], investigating the impact of forecast accuracy on the operational cost of an
isolated microgrid, the operation setpoints of which were obtained through a predictive
optimization model. Load forecasts of different quality were produced which were then
used by a rolling-horizon strategy for the next day and by solving a MILP optimization
problem they obtained generation schedules. BESS module was modelled by
HOMMER’s software KiBaM set of equations while the operating cost of diesel
generators was assumed to be proportional to the power output. Even though this may
be considered as a common approach, it does not take into account the diesel engine
efficiency variations in partial load during variable/transient operating conditions.
Predictive energy management systems for a microgrid consisting of grid-tied BESS
with PV generation were also examined in [28, 29] where load and PV generation
forecasts were provided as input and used in combination with an optimization problem
for minimizing renewable curtailment power or grid consumption and consequently the
electricity cost. However, the ability for power exchange with the main power grid
interconnection presents an operating advantage over isolated microgrids. Lujano-
Rojas et al. [30], introduced a data driven ARMA model for wind power generation and
load management in order to minimize the daily fuel consumption of a diesel generator
via a BESS and controllable loads, for a small hybrid power system in Spain. A
cascaded central long-term EMS down to a short-term balancing EMS were simulated
by Colas et al. [31]. Load consumption was estimated according to the relevant daily
time-period patterns and day ahead scheduling was obtained, while at the same time
supercapacitors were used by a local EMS for primary frequency control. An
application for peak shaving was reported by Kalkhambkar et al. [32] who used an
improved energy loss minimization to a 34-bus system with the application of GWO
algorithm while in [33] the size of the BESS was the subject of an optimization
procedure for reducing electricity cost in a university via peak shaving.

17



“Smoothing of a non-interconnected island's power system load curve, with the use of a
predictive BESS controller”

3 Artificial Neural Network forecasting module

3.1 General Overview

Artificial neural Networks (ANNS) are intelligent systems that are successfully used to
solve complicated problems in many different applications such as curve fitting,
forecasting, pattern recognition, identification, classification, speech, vision and control
systems [34]. ANN structure is based on our understanding of biological nervous
system [35]. Neurons are the basic structural units of human’s nervous system, which
receive inputs in form of electrical signals from the different types of human body
sensors (vision, hearing, touching, taste, smelling), combine them in some way and
perform a generally nonlinear operation on them to produce the final result [36] This
result is also in form of an electrical signal, which is then passed to the human body
actuators in order to perform an action. The way that the neurons will process the inputs
is based on their structure and the repetition frequency of a particular task. In this way
the concept of learning is adopted from the nervous system and given specific input
data, this system will try to adjust its structure in order to produce the required result.
However, the extra value of this learning system is its ability to generalize the rules that
builds based on specific input data and apply them to solve similar problems that have
never been tackled before.

ANN models fundamentally comprise of multiple connected neurons and nodes. Each
neuron is structured from three basic components that interact with each other and
together they form the basic processing unit of a neural network. Those are the summing
junction, the activation function and the threshold value. These basic processing units
are interconnected and communicate through the different connection channels which
consist of the neuron incoming input signals, the corresponding weights and bias of
each input, and the output signals leaving the neuron. From this description it is clear
that each neuron can be arranged as a three-layer module which consists of an input
layer, a hidden layer and an output layer [37]. The structure and the operation of a neural
network described above, is better and more thoroughly explained in the following.

3.1.1 Basic ANN structure

For a basic ANN structure, an input is conveyed through a connection channel which
is multiplied by a specific weight value and then a bias is applied to the result in order
to construct the activation function argument. The weight value acts as a scaling factor
for each input while the biases impose a constant value to the weighted sum of the
inputs, affecting the value of the argument of the activation function. Thus, it is possible
to claim that the weight of each input affects its significance to each node for the output
calculation and the biases allow for the shifting operation of the activation function to
the left or right. Preventing the error surface from constantly passing through the zero
point, may be critical for successful learning. In this way, every possible function can
be approximated with an appropriate combination of non-linear similar functions,
regardless of its shape, patterns or linearity Based on the previous description, the basic
equations used by neural networks can be derived. Therefore, for n input signals xx, the
activation function argument u; is calculated for the j neuron, by using n input nodes as
given in Equation 1
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n
Equation 1
k=1

In order to generate the output yj, the input argument u; is transformed through a transfer
function f(u) that can be linear or nonlinear. Each neuron output can be calculated as
the weighted sum of the neuron’s inputs, which are also outputs from a previous
network layer, and after being filtered from the activation function. This can be
mathematically expressed by the Equation 2 and in vector form for all the neurons of a
layer by Equation 3.

n
Y =f <Z Wiy, — bj) Equation 2
k=1

5= Qi) = f(WJ? + I;) Equation 3
where n is the number of the input signals, Wik is the weight which corresponds to the
strength of the connection channel (synapse) connecting input k to neuron j, and 4; is
the applied bias. It is a common approach to describe the neural network equations in
matrix/vector form as it allows us to use a more compact equation structure for many
inputs - many outputs systems, as the layers of the network are. The activation function
transforms the input to a predetermined output range of values, by which it is possible
to map the effect of an input signal combination to the output of a processing unit
(neuron). Thus, it is possible to estimate how “active” or how close to the threshold
limits each neuron is under a certain input array. The simplest form of activation
function for this purpose is the step function which takes the value of zero under a
specified threshold input value and the value of one from that point and after. In this
way, the neuron is inactive for input values less equal than the threshold and fully active
for greater input values. However, this logic has a drawback which lies on the abrupt
change of a neuron’s state around the threshold value, allowing for two possible states
and not any intermediate state. This problem can be faced with the use of a linear
activation function which maps the input to the output with a specified analogy,
allowing for a continuous range for the output value and not a binary one. Although
this function solves the problem of discontinuity, it is not suited for curve fitting
problems, as it is not able to approximate in detail the curvature of highly nonlinear
shaped, such as sinewaves. These problems were countered with the introduction of
non-linear, continuous and differentiable functions such as the logistic activation
function or the hyperbolic tangent activation function which takes values in the range
of [-1,1]. Other less commonly used activation functions include the ramp, the Gaussian
and the arctan functions. In the following figure (Figure 6), the activation functions
described above are illustrated based on [38].
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Figure 6: Commonly used activation functions [38]

Nowadays, a transfer function which has gained a lot of popularity especially for
classification problems, is the rectified linear unit (ReLU). This has proved to give very
satisfying results for deep learning applications and has recently been adopted for use
in convolutionary neural networks (CNN). Recent advances in neural networks have
been focused on the development/modification of activation functions that are
integrated in neural network models and aim for better results. Such an advancement is
the leaky ReLU function which is an updated version of the original ReLU. Despite the
variety of the existing activation functions there are not unbreakable rules that must be
respected in order to obtain the best possible results, as each function is directly related
to the type of the problem under investigation. Nevertheless, based on rules of thumb
and gained experience from other researchers the ReLU and sigmoid transfer functions
seem to bring the best results in most cases. Regarding the present thesis, the choice of
the activation function used in the developed neural network model was based on the
literature [4, 5, 7, 8] and suited for forecasting and curve fitting problems. Thus, the
logistic sigmoid transfer function presented in the following equation (Equation 4) was
chosen for the hidden layer of the developed network and a linear function was adopted
for the output layer. For further information about the structure and activation functions
of neural networks, the reader should refer to [1, 38].

1 Equation 4
1+e™™

f&) =

Each layer is composed of many neurons that receive input from a previous layer and
based on Equations [1-4] an output vector y is computed and passed to the subsequent
layer until it reaches the output layer. Then the output of the last layer, which is also
the output of the network, is compared with the target output vector . In this way, the
error vector ¢ is created, containing the values of the differences of the network’s output
with the target values ¢ = t — y. In the following figure (Figure 7), the structure of the
developed model is presented.
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Figure 7: Basic feedforward ANN configuration with neuron’s interconnections and activation functions

3.1.2 Training Process and Learning methods

The learning strategy is an algorithm that can be used to change and thereby train the
network, so the network produces a desired output for a given input [39, 40]. Training
is an important step of developing a neural network. It can be explained as the process
of modifying the connection weights, in some orderly fashion, using a suitable learning
method. The network uses a learning mode in which an input is presented to the network
along with the desired output and the weights are adjusted so that the network attempts
to produce the desired output. The weights, after training, contain meaningful
information whereas before training they are random and have no meaning [40, 41].
Basically, there are three simple learning techniques which are unsupervised,
supervised and reinforcement learning [42]. Because of the deficiency of back
propagation training algorithms, faster algorithms such as LM and SCG learning
algorithms are extensively preferred.

Supervised Learning

In this learning technique, inputs and targets are introduced to the network and the
output is obtained. Then the error is calculated by comparing the output and target
values. This process which is called an “epoch”, is applied to the whole training dataset
and is repeated until the error reduces to an acceptable value [34]. Then, once all the
vectors of the training set have been used by the training algorithm, it can be claimed
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that “one epoch has passed”. In order to minimize the total error, the weights and biases
between the input, output and hidden layers are updated at each epoch. In this way, the
error is then propagated backward from the output layer to the input layer, a process
which is named “backpropagation”. (see Figure 7)

Unsupervised Learning

This method describes the training process of a network that does not require the
matching of the networks output with a target vector. During this training session, the
NN receives as its input many different excitations or input patterns and it arbitrarily
organizes the patterns in different categories based on their similarity. When a stimulus
is later applied, the NN provides an output response indicating the class/category to
which the stimulus belongs. In case that any of the existing classes is not appropriately
suited to the input, then a new class is generated. In this way, the NN decides on its
own the distinguishing features that will be used for the classification of the objects
presented to the network or even the prediction of a time series from raw data.
Concerning the reasons explained above, this type of training is mostly used for
classification or clustering problems.

Reinforced Learning

This type of training has currently gained much popularity, especially when combined
with deep neural networks, the layers of which are dedicated to specific feature
recognition. Unlike the previous technique, in this methodology there is a metric for
the performance evaluation of the network under development which indicates whether
the actual NN output is the same with the target output. In this way the response
obtained from the network is biased to match a certain output and in order to achieve
this, the generated error signal is on the form of a binary pass or fail option. Regarding
the error of the NN output, the parameters are readjusted to achieve the desired output
in a more brute-force aspect, not even considering an acceptable range, bearing the
danger of non-ending training process. Thus, special care should be given when this
method is applied.

3.2 Levenberg-Marquardt training algorithm

The Levenberg—Marquardt algorithm blends the steepest descent method and the
Gauss—Newton algorithm that are described below. Fortunately, it inherits the speed
advantage of the Gauss—Newton algorithm and the stability of the steepest descent
method. It’s more robust than the Gauss—Newton algorithm, because in many cases it
can converge well even if the error surface is much more complex than the quadratic
situation. Although the Levenberg—Marquardt algorithm tends to be a bit slower than
Gauss—Newton algorithm (in convergent situation), it converges much faster than the
steepest descent method. The basic idea of the Levenberg—Marquardt algorithm is that
it performs a combined training process: around the area with complex curvature, the
Levenberg—Marquardt algorithm switches to the steepest descent algorithm, until the
local curvature is proper to make a quadratic approximation; then it approximately
becomes the Gauss—Newton algorithm, which can speed up the convergence
significantly [43]. In this part, the derivation of the LM algorithm will be presented in
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four parts: (1) steepest descent algorithm, (2) Newton’s method, (3) Gauss-Newton’s
algorithm, and (4) LM algorithm.

In the following we declare that X is the input vector applied to the network, y[M] is
the output vector with M elements ( 24 in the present study), W[N] is the weight vector
which contains (encapsulates) all the network weights and biases from each layer (N
elements in total), k index refers to the iteration of the training algorithm which
corresponds to the epoch of the training (as mentioned in 3.1.2) and E(w, X) is the total
error function which is described as a mean squared function

L& L& L&
— 3T .3 — 2 _a\ (2 _3 )= Equation 5
E—FZeg-ep —ﬁZ(tp_yP) (& =) —ﬁz Z €pm q
p=1 p=1 p=1

m=1

where P is the number of training data batches used and p is the corresponding index
for each training pattern applied. For better understanding, we mention that for the case
studied in this thesis, a single data batch is composed of the same number of elements
as the number of input variables (80). The error vector €, for each batch is a vector
containing m elements, which are calculated as the differences between the target and
network output values, which are also m dimension vectors. From the above, it can be
derived that the number of the data points D used for training is equal to number of the
training batches P times the number of the input variables and therefore D = P x 80.

Steepest Descent Algorithm

The steepest descent algorithm is a first-order algorithm. It uses the first-order
derivative of total error function to find the minima in error space. Normally, gradient
g is defined as the first-order derivative of total error function

g= O_E — [6E OF O T Equation 6
ow dw; 0w, Owy

With the definition of gradient g in the previous equation (Equation 6), the update rule
of the steepest descent algorithm could be written as

W1 = Wi — agy Equatlon 7

where « is the learning constant (step size). The training process of the steepest descent
algorithm is asymptotic convergence. Around the solution, all the elements of gradient
vector would be very small and there would be a very tiny weight change.

Newton’s Method

Newton’s method assumes that all the gradient components g4, g5, ..., gy are functions
of weights and all weight are linearly independent:

g1 = Fi(wy, wy, ..., wy)
92 = F,(W, wy, ..., wy) Equation 8

gn = Fy(wy,wy, ..., wy)
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where F;, F,, ... Fy, are nonlinear relationships between weight and related gradient
components. Then, by unfolding each g; (i=1,2,...,N) in the previous system of
equations and taking the first-order Taylor approximation we have:

( 091 091 091
= —A —A A
g1 gl,O + an W4 + aWZ %) + + aWN Wy
09> 09; 09, E ;
~ _J2 _JZz ey 92 quation 9
{ G2 = g0+t aw, Aw; + aWZAWZ + 4+ wn Awy
dgn dgn dgn
LgN ~ g0t _6W1 Aw; + _6w2 Aw, + -+ _GWN Awy

By combining the definition of gradient vector g in Equation 6, it could be determined
that

g9k, O°E _
dg; ~ (awj) B aIw; Equation 10

And by inserting the Equation 10 to Equation 9 we get
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Comparing with respect to steepest descent method, the second order derivatives of the
total error function need to be calculated for each component of gradient vector. In
order to get the minima of the total error function E (w, X), each element of the gradient
vector should be zero. Therefore, by setting the left sides of the Equation 11 all zero
and combining with Equation 6 we get

(O 0%k 0k O
an B gl,O ~ anz W1 anaWZ W2 anaWN W
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Regarding the above system of equations, there are N equations for N variables so that
all Aw; can be calculated. Then, considering the solution of the above system, the
weight space can be updated iteratively. The above set of equations can also be written
in matrix form as
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Where the formulated square matrix is the Hessian matrix:

[ o _0%E ]
| awz 7 Gwiowy|
H = I V:V1 1, NI Equation 14
l 0°E 0°E J
owyow, owp
By combining Equation 6 with Equation 12 and Equation 13 we get:
—g = HAW and so Aw = —H™'g Equation 15
Therefore, the update rule for Newton’s method is
Wity = W — H LG, Equation 16

Since the Hessian matrix H contains the second-order derivatives of the total error
function, it gives a proper and more detailed evaluation on the change of the gradient
vector compared to simple steepest descent method. By comparing Equation 6 and
Equation 16 it is possible to observe that the inverted Hessian matrix is similar to the
learning constant. However, in Newton’s method this learning constant is constantly
adapted based on the total error function.

Gauss-Newton Algorithm

One of the basic drawbacks of the Newton’s method is that the Hessian matrix should
be calculated at each iteration of the solving procedure for the weight vector updating.
This operation is accompanied with a higher complexity and generally more
computational time is necessary. In order to simplify this calculating process, the
Jacobian matrix J is introduced as
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By replacing the error definition to Equation 5, then Equation 6 can be rewritten as

1
o 0E _ a(ﬁ 5:1 Ym=1 ez%.m) _ Zp: i depm Equation 18
9i aWi aWi

Combining Equation 17 and Equation 18, the relationship between Jacobian matrix J
and gradient vector g would be

g=1Jé Equation 19
where the error vector é has the following form
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As a basic assumption of Newton’s method, is that the Hessian matrix can be
approximated with the help of Jacobian matrix as

H=~]T] Equation 20

From the above and by combining Equation 16, Equation 19 and Equation 20 the update
rule of the Gauss-Newton method is derived as

Wisr = Wi — Ui k) "kl Equation 21

Obviously, the advantage of the Gauss-newton algorithm over the Newton’s method
(Equation 16) is that the former does not require the calculation of second-order
derivatives of the total error function, by introducing the Jacobian matrix J instead.
However, the Gauss-Newton algorithm still faces the same convergence problem like
the Newton algorithm for complex error space optimization. Mathematically, the
problem can be interpreted as the matrix J7J may not be reversible.
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Levenberg-Marquardt Algorithm

In order to make sure that the approximated Hessian matrix J7J is invertible, the
Levenberg—Marquardt algorithm introduces another approximation for the Hessian
matrix:

H=~]JT]+ul Equation 22

Where, 1 is called combination coefficient and is always possible and I is the identity
matrix.

From Equation 22 it is possible to observe that the elements on the main diagonal of
the approximated Hessian matrix will be positive numbers. Therefore, with this
approximation, it can be ensured that the matrix H is always reversible. By combining
the last equations (Equation 21 and Equation 22), the update rule of the Levenberg-
Marquardt Algorithm can be presented as

Wie1 = Wi — Ui + 1) 7 € Equation 23

As the combination of the steepest descent algorithm and the Gauss-Newton algorithm,
the Levenberg-Marquardt algorithm switches between the two algorithms during the
training process. When the combination coefficient « is very small (nearly zero),
Equation 23 is approaching to Equation 21 and Gauss-Newton algorithms is practically
implemented. When the combination coefficient x is very large, Equation 23
approximates the Equation 7 and the steepest descent method is practically applied.

3.3 Developed ANN model structure and training

3.3.1 Theisland under investigation

A forecasting model is a necessary subsystem that needs to be implemented in a
predictive energy management algorithm capable of compensating future events. In this
study, such a model was developed for future consumption values forecasting by
implementing a simple single-hidden layer feedforward neural network. At this point,
it is crucial to clarify that the original target island for which the proposed methodology
of this thesis should be applied, was the Greek island of Astypalaia. This island was
chosen based on the combination of its basic pattern appearing in the load curve (Figure
19), which is described by the highly peaked load values at night hours when there is
not PV energy production, and the relatively high amount of installed PV panels.
However, this island could not be adopted for this study, due to the fact that there were
not available data for the load curve of past years, from the system operator. This
drawback was significant regarding the development of the neural network module,
which demands a high amount of past data in order to be trained appropriately.

This main drawback was resolved by the following trick. Since there were available
data for the isolated power system of the Portugal island of Madeira, for 3 years’ time
period, it was decided to downscale those data to the magnitude of the power system of
Astypalaia. This was achieved by deciding a scaling and applying it to the load curve

+360
of Madeira’s system. (Raw Datayggeira [GWh] — New Datasyntnetic isiana[MW])
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Therefore, an “reference” island was created (Figure 9) with the location of Madeira
and the demand curve at the order of magnitude of Astypalaia.
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Figure 8: Summer load profile pattern of Astypalaia’s system compared to Madeira’s system
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Figure 9: The “synthetic” island generation and the corresponding grid points of the Numerical Weather
Model (NWM) for the temperature data

3.3.2 Data preprocessing

The first step for developing a neural network model concerns the data preprocessing.
This refers to a set of actions that need to be applied to the dataset in order to divide the
dataset to appropriate subsets and prepare the data format, in order to be inserted to the
training algorithm described in 3.2. Provided that the purpose of the developed neural
network module was to forecast the next day’s load curve by estimating the demand
values at a 24-hour basis for a whole year operation, the training dataset should be
appropriately prepared. For this reason, at least a whole year of operation should be
included in the training dataset in order to capture all the appearing patterns and
periodicities. Based on this fact, the dataset of the load values which was provided by
the grid operator of the island, was divided to the training set which contained load data
from the years 2014 and 2015, and the test set which contained data for the year 2016.
Regarding the termination criterion of the training process, the training dataset was
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further partitioned to include the validation dataset, which accounted for about 4% of
the whole training set.

A strong correlation between the trend of the load curve and the temperature data of the
island was observed, making the latter as an appropriate input for the developed neural
network model. The hourly temperature data was produced by the long validated CFSR
[44] numerical weather model (NWM) from representative grid points displayed in
Figure 9 near the most-highly inhabited areas of the island for the years examined, so
that the correlation of weather phenomena with electricity consumption to be
intensified.
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Figure 10: Yearly time period load curve correlation with temperature, for the test case system

The network’s structure was chosen based on the well-known Kolmogorov theorem
[45]. According to this, a single layer of hidden neurons with the appropriate number
of perceptrons is considered to be enough for any function fitting problem, which is the
case in our study. The inputs of the feedforward neural network were determined based
on common input variables for similar networks referred in load forecasting studies and
after a trial-and-error iterative procedure. Therefore, the inputs that were found to give
the best results in terms of the MAPE defined as:

N
MAPE — lz |F0recsted Load; — True Load,; Equation 24
N True Load;

are summarized to the following:

) 48 values of the hourly consumption data of the two previous days,

i) 24 values of previous day temperature data,

iii) 7 binary values corresponding to the day of the week and

iv) 1 binary variable which was used as an index for weekend days and working
days.

V) The network output consisted of a 24-variable vector containing the next
day’s forecasted load values.
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In Equation 24 N is the number of data point used for the test dataset. The structure
of the developed network is schematically depicted in Figure 11.
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Figure 11: Developed network structure and data flow

The input variables before the training procedure were scaled in the interval [0, 1] based
on Equation 25 so that every input has the same weighting despite the different physical
scales that are related with the type of input variable. For the same reasons, the binary
values were chosen to be 0 or 1.

b—a .
X=a+ ( ) (x — X)), where [a,b] = [0,1] Equation 25

(xmax - xmin)

3.3.3 Network Training

For the purpose of developing the neural network applied in this study, a supervised
learning method was implemented. With this methodology of training, the input
stimulus that it is applied to the network’s neurons results in an output response which
is compared with a prior desired output, namely the target signal. If the actual response
differs from the target response, the neural network generates an error signal which is
then used to calculate the appropriate correction that should be made to the network’s
synaptic weights. This is repeated until the actual output matches the target output,
considering a validation subset of the dataset, whose output should be in an acceptable
error range compared to the target response. This process is depicted in the following
picture, where the developed network model is trained.
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Figure 12: Training termination criteria and gradient vs epochs

The figure above (Figure 12), represents the training process of the network. As the
backpropagation procedure is deployed, the gradient of the error is constantly
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diminished, while at the same time the mu factor (parameter « in Equation 23) is also
minimized to a specific value, accelerating the training process, as described in 3.2.
Regarding the termination criterion of the training, 6 check values of the networks
output from the validation dataset were used and only after 6 successful test the training
was terminated. In the following picture (Figure 13) the performance of the trained
network is depicted. At this point, it is important to be stated that the developed network
was initially trained in the way described above making it possible to acquire more
accurate initial values for the weight and biases. Then the network was re-trained
following the same process, given the acquired initial state. The plots presented in
Figure 12 and Figure 13, correspond to the re-training process of the network, which is
also the reason for the relatively low number of epochs. The performance of the network
was based on the mean square error between the network’s output and the actual value.
As it is possible to observe, the blue line representing the training set is always below
the red line representing the test dataset. This fact is in accordance with the MAPE
measured for the aforementioned datasets where the training dataset stands for a lower
MAPE value than the test set. This is because the training dataset was already used
while the network was developed, thus its inputs are already known to the networks
compared to the test dataset whose values have never been introduced to the network
before.

Best Validation Performance is 0.0026824 at epoch 6
0% F

m—Train

= Vfalidation
Test
Best
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1074 = : : . . .
0 2 4 5] 8 10 12
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Figure 13: Mean squared error vs epochs for the re-training of the network

For the training procedure, as it was stated above, data from years 2014 and 2015 were
used in a backpropagation algorithm based on the Levenberg-Marquardt error
minimization algorithm. The mean squared error (MSE) was used as a termination
criterion for the training procedure. The evaluation of the network output with the target
values was determined with the correlation coefficient R as it is shown in Figure 15.
The MSE parameter was first calculated for the validation data set, chosen to be around
4% of the training set, and then the overall network’s performance was evaluated for
the test set which was not ever used in the training process.

Network structure comparison

After determining the network’s structure, a parametric investigation was conducted,
regarding the number of neurons of the hidden layer that resulted in the best possible
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MAPE. For this reason, the number of neurons at the hidden layer was varied and after
the network’s weights and biases were randomly initialized, it was trained and
simulated to monitor the MAPE for each case. The results are depicted in Figure 14.
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Figure 14: Parametric investigation of the neurons number in the hidden layer

As it can be observed, the number of neurons that resulted in the best MAPE was 20.
From the above analysis, it was found that the MAPE was strongly affected from the
neuron number, as it was improved for increasing the neuron number. Under 15 hidden
neurons, the network was not satisfactory in terms of forecasting capability whereas in
the range of [15-20], the network resulted in better MAPE values. However, as long as
the training process requires an initialization step for the weight values, which is based
on a random generator, it is characterized from stochasticity. For this reason, the
parametric investigation was limited to the results of Figure 14. Moreover, the purpose
of this study was not to achieve the best possible forecasting model but to present the
synergetic effects of forecasting, optimization and dynamic simulation of the system.

After the network configuration procedure was completed and the best results were
achieved, the correlation coefficient defined as

R2—1_ iy — 6)? Equation 26
()3

was found to be R=0.99189, which considered as an acceptable value. In particular,
from the following scatter plot it is possible to observe that the majority of the data
points of the whole dataset (training, validation, test) are concentrated in the
neighborhood of the perfect forecast line. The perfect forecast line is the straight line
with an inclination of 45 degrees and represent the equality of the network’s output
with the actual value.
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Figure 15: Test dataset achieved results metrics a) error histogram distribution, b) correlation coefficient

Further analysis on the network’s performance can be evaluated from the residual plots
and the histogram of the error values. As it is clear from the figure below, the variation
of the error signal of the train dataset is less than the variation of the test dataset, though
there is no specific correlation. This is an indication of good generalization aspect of
the network, while there is no bias to certain values neither a particular trend. This is
also depicted on the histogram of the errors of the test dataset, which present the
expected normal distribution.
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Figure 16: Error residual signals for the test and the train datasets

Thereinafter, the outputs were scaled back to their physical scales, the overall network’s
performance was evaluated for the test set and a MAPE=1.715% was achieved. The
results of the load forecast are presented in detail in the following section.

3.3.4 Network achieved results

With the network’s configuration determined and after the training process, the ANN
model was deployed and tested for the test dataset (year 2016). In the following figure
(Figure 17), the complete dataset, including the training and testing sets, is compared
with the model’s predicted outputs. Specifically, with the blue color, the training set is
depicted and with the red color the test set is marked.
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Figure 17: Training, test and validation data vs model output

As it is obvious from the above figure, there are multiscale patterns ranging from yearly
down to daily timescales. The yearly based pattern is the most easily distinguished
pattern, as the load values are generally higher during winter time periods and lower
during summer time periods. This fact is justified from the weather effect on the
consumption, as it was also illustrated in Figure 10. In this way, lower ambient
temperature is generally correlated with higher consumption, excluding the situation of
extremely high temperatures, which are noticed at the late summer periods, where the
load curve takes high values. This fact is attributed to the use of heat pumps and air
conditioning which are activated during summer. In the following figure, a zoom is
applied to the test dataset, so that the result of the ANN forecasting is better visualized.
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Figure 18: Actual vs forecasted load data for the test set (year 2016)
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From the figure above, it is clearly depicted that there are intra-year patterns, which are
related with the weeks of the year. Thus, the signal is repeated with a specific structure
for each week of the year which is directly observable. It can also be stated that the
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developed model has a very good overall efficiency and pattern capturing capability, as
the orange curve (Forecasted values) is almost similar to the blue curve (True values).
This is better illustrated in the following figure, where the intra-week patterns are
depicted.
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Figure 19: Actual vs forecasted load data for a typical winter week of the test set

From the above figure, the greater depth of detail of the developed network is depicted,
where the separate actual data points at each hour are clearly illustrated. A whole week
is presented starting from Sunday and as it can be noticed, the weekend days have a
lower maximum value compared to the rest of the weekdays. This trend of the load
curve is a common future to similar power systems and is explained by the significance
of the industry/commercial sector in the total demand of the system. Thus, a region
(island) with developed industry will be more affected by this pattern compared to a
touristic region which the load curve is dominated by the residential sector.

After the prediction module with the ANN was prepared, the next step was its
integration with the developed optimization algorithm described in the following
section.
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4 Optimization algorithm for peak shaving and load
smoothing

In this chapter, an algorithm was developed to be integrated into the energy
management system of the islandic power network, that could upgrade its operation by
providing renewable energy in a more secure and stable way and by peak shaving the
maximum demand values. The developed algorithm was suited for the specific island
case investigated in this study but could be also implemented with few modifications
to other similar power systems, where the load curve presents similar patterns. In the
following section, the algorithm is described in detail.

4.1 Algorithm Description

4.1.1 Problem Description

After the load forecasting module was configured and tested, the demand values of the
next day at an hourly basis could be predicted. This ability was taken into account for
the development of a predictive Energy Management System (EMS) algorithm that
could be used for the “smartening” of the power system, considering a more stable and
robust operation. The facts that the load curve’s most frequent shape and pattern was
characterized by highly peaked values at late night hours and that the type of installed
renewable sources was PV, were considered for the decision of the operational modes
of the developed algorithm. In an effort to visualize the total load curve with its basic
patterns during the test year (year 2016), Figure 20 is presented.
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From this figure, it can be proved that there are two demand spikes for the most of the
year. The first demand spike is detected during the morning hours where everyone
wakes up and starts consuming energy and the other is detected during the evening
hours where most people return from work and once again they begin to consume
energy in their homes. Considering the shape of the load profile, it can be concluded
that especially for the winter period, the peaked values of load are detected during the

Days of Year 0 o Hours of Day

Figure 20: Ensemble of the load curves of the island for a complete year (2016)
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night hours where the renewable installed PV power is not available. From Figure 20,
it can be shown that the island’s power system has maximum peak demand values about
1.3-1.5 MW, which are currently covered by conventional diesel generators that operate
at low partial loads. The installed capacity of PV power is approximately 300 kW,
accounting for around 20% of the peak values. Regarding the above, it is rational to
consider the following targets be countered by the algorithm:

1. Peak shaving of the maximum demand values of each day of the year

2. Smoothing the operation of the diesel engines during the off-peak hours

3. Avoiding the “duck” shape evolution to the load curve, concerning the
constantly increasing PV power penetration to the grid

4. Ensuring 100% renewable energy penetration

Concerning the point 3, the “duck” shape is presented in the following figure (Figure
21) and is a trend that is constantly evolving and affecting the net load power curve.
The net load power curve is defined as the total load curve subtracting the PV power
production curve. The resulting curve (which is named net load curve) is the one that
will have to be covered by the rest thermal-conventional power production units. As
more and more solar PV are integrated into the grid, it starts dramatically suppressing
net load during midday, when the sun is out. The net load curve sags in the middle of
the day (like a belly) and then swoops back up when the sun goes down (like a neck).
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Figure 21: The “duck” net load curve, illustrating steep ramp needs and overgeneration risk [46]

The figure above was taken from the system service operator of California [46] and the
“duck” shape evolving through the years from the increasing PV power generation is
depicted. It is also clear that this effect is accompanied by an overgeneration risk which
is due to the technical minimum operating point of the thermal units. The “duck” shape
is also directly related to the need for higher ramp rates because of the sudden load
change. These effects will have a negative impact on the stable and smart operation of
a future isolated grid with high renewable penetration. The main idea for encountering
the above effects and achieving a smoother, robust system operation was to take
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advantage of the load forecasting ability and to combine it with an energy storage
system (ESS) in order to save a specific amount of energy that could be injected to the
power grid later. For the purpose of this study and based on the fact that battery energy
storage systems (BESS) have recently made a resonant entrance to the power market
and are constantly evolving [47], such a system was considered for the storage ability
needed in our case study.

4.1.2 Synthetic Power Curve

Regarding the above concerns, a BESS capable of saving renewable energy when it is
not required and releasing it at night peak demands is a meaningful strategy. However,
a BESS should operate with an optimum plan in order to be appropriately integrated
into the system and minimize the pay-back period of the investment. In addition,
considering that this would be a grid-scale BESS and that the installed renewable
capacity in the island, for the time being, is not high enough to cover the load curve at
any point, the PV energy storage should be optimized. At this point, for the purpose of
explaining the algorithm flow, it was considered that the PV production curve for the
whole year at an hourly basis, was already obtained and could be used from the
algorithm. More details about the PV power curve production and the way that it was
generated can be found in the next chapter where the system modelling is described.

The first step of the algorithmic procedure, was to determine the inputs. Those were
decided to be the 24 variables vector, which contained the demand values of the next
day, as they were predicted from the ANN model and the 24 variables vector containing
the hourly values of the total PV energy production of the corresponding day. Then the
peak reduction level was decided and set to be at 0.1 MW less than the maximum
demand value of each day. This value was determined based on the load curve data
observation and was evaluated from the values of the peak region relatively to the mid-
day load values. However, this parameter could be subjected to optimization in an
upgraded version of the algorithm and in this way, it could be matched for each day
specifically instead of taking an average constant value. After the peak reduction level
or peak shaving level was determined, based on the load forecasting of the next day,
the area to be removed after the peak reduction was calculated. This is better visualized
in the following figure (Figure 22). In this figure, the load curve of the next day is
depicted with the solid line and the peak reduction level that is decided to be
implemented, is represented with the dashed line. This line, should cross the load curve
at two separate points and in this way a closed area is shaped. This region, which is
basically the area under the load curve subtracting the area under the dashed line and is
depicted as the grey region in Figure 22, corresponds to the total energy that will be
eliminated after the algorithm operation and the generation of the new diesel engines
setpoints. It is also clear from the units of the two axes of Figure 22 that the
aforementioned area, represents the energy values based on the following definition:
t2

Ei2[MWh] =f P(t)dt Equation 27

t1
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Figure 22: Peak reduction level and the corresponding area between t: and tz

With the above input parameters defined, the next step was the creation of the combined
curve. For this, the “offset” value concept was necessary. The offset value was defined
as a constant load value and at the first step of the algorithm it was initially set equal to
the base load value, defined as the minimum of the daily load curve. This, offset value
was used for the initial combined curve generation, which was later updated during the
iterations of the algorithm. The combined curve was defined as i) the summation of the
load curve and the PV power curve for the load values that were smaller than the offset
value and ii) as the summation of the PV power curve with the offset value, for the load
values that were greater than the offset value. This is also mathematically described as
below:

p ' [MW] _ {PPV + Pioqa fOT' Pioqa < Poffset Equation 28
combined PPV + Poffset: fOT Pload = Poffset

4.1.3 The “elevator” concept

After the initialization of the algorithm parameters and providing the input values
described in the previous section, the next step was the implementation of the “elevator”
concept. This was basically the core process of the algorithm according to which the
desired effects could be obtained. At this point, we highlight that the main output of the
algorithm was a 24-variable vector containing the diesel engines operating setpoint
values for each hour of the next day. This was actually the dispatch planning for the
power generation concerning the unit commitment of the next day.

Initially, as it was stated earlier, the offset value was considered at the base load which
was the minimum of the daily load. The PV production curve was then superimposed
to this offset level and in this way, the offset value was used as a carrier for the total
PV power generation curve. The offset level was constantly increasing by a constant
step value which was set equal to dP=1 kW. This process was repeated until sufficient
surplus area was created. The surplus area was defined as the amount of energy that
was overproduced compared to the demand of the corresponding time period. The
procedure of updating the offset value is depicted in Figure 23. In this way, the offset
level acted as an “elevator” for the PV production curve and at the same time as an
upper limit for the diesel operation during the off-peak hours.
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Figure 23: The elevator concept with the corresponding cross points

From the figure above, the process of updating the offset value is described. Initially,
the first offset value Poff [1] is set equal to the minimum of the daily load curve. Then,
the PV power production curve, the magenta curve, was added to this line and after
each update it is transferred upwards, until the first cross point (cross point I) between
the offset line and the load curve, was noticed to be at the sunlight time period. This
condition was necessary to be satisfied because if the curves were intersected before,
then it would be impossible to “generate” an artificial surplus, because the offset would
still be very low, as it may be observed in Figure 23. Regarding the cross points as they
are depicted in Figure 23, it is possible to observe two separate regions. The one region
is defined from the cross points Il and 111 and the other from the cross points 111 and V.
The first region defines an area in which the combined curve resulting from the updates
of the offset would be under the load curve, meaning that the demand values would be
higher than the total energy produced for the specified time period and therefore the
BESS should provide an additional amount of energy. For the second region (points 111
and 1V), the inverse would be happening meaning that the instantaneous produced
energy would be greater than the total demand and consequently the BESS should be
able to store additional energy. The situation described above is depicted in Figure 23
for the cases Poff [n] where n corresponds to the number of iteration. At this point it
should be clarified that concerning the region created from the points I to Il1, in case
that the BESS cannot provide the necessary power, then the diesel generator should
violate the upper limit rule defined by the offset value and maintain the balance of the
system. The process described above should be repeated until the value Poff [N] was
reached. This would mean that the net energy (energy to be stored to the BESS minus
the energy to be provided by it) should be at least equal to the total energy that would
be needed later for the peak shaving to be applied. The above process is also explained
from the following figure (Figure 24).
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Figure 24: The equivalent areas generated by the “elevator” technique and the equilibrium pursuit

Regarding the figure above, (Figure 24) it can be derived that each update of the offset
level, resulted in a new artificially created surplus area, which was calculated as the net
difference E11-E12 for the blue case or E21-E2. for the orange case, as depicted above.
At this point, it is important to be stated that the variables Ex represent energy values
[MWh] which are also area values under the Power vs Time curve. From this point of
view, for the blue case, the net difference would be negative E11-E12 <0, meaning that
not sufficient surplus energy would have been created and the offset level should be
updated. In this way, after updating the offset level, the method resulted in the orange
case, in which the net difference would be positive E21-E22 >0. After each update, the
aim of the developed algorithm was to converge to the target value, E21-E22> Epeak. The
termination criterion of the algorithm could be represented by E21-E2> = Epeak Within an
acceptable convergence bandwidth described with the variable . Thus, this iterative
procedure was terminated when the net surplus was at least equal with the peak shave
area (green area). The aforementioned statement could be described mathematically as:
t2

Pload dt

tiy -
(Pcompined — Proaa) dt = f Equation 29

t %1

where ¢ was considered around 1073, t; and tiv the cross points depicted in Figure 23,
and t1 and t. the cross points defined by the peak shaving level, depicted in Figure 22.
In order to calculate the above areas as more accurately as possible, a linear
interpolation was considered between the hourly values of demand and production,
which in general is quite close to the true case. Specifically, as it can be noticed in the
following figure (Figure 25), the intervals in which the above areas where calculated
were discretized in a fine way (N intervals from the following equation) so that the area
calculation, which was based on the trapezoid rule, could be accurate enough for our
purpose. The integrals of the corresponding areas were numerically calculated based on
the following way:
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Figure 25: Numerical discretization and integration of the interval that corresponds to the surplus energy generation

The overall algorithm described in the above sections is depicted through the following

flowchart.
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Figure 26: Developed algorithm flowchart
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4.2 Acquired diesel engines setpoints

The developed algorithm described in the previous section, was applied to each day of
the year under investigation (i.e. year 2016) and was based on the load forecasting for
the same year. The main target was to be implemented via an Energy Management
System which would operate the power system of the island in a prescribed/predefined
optimal and robust way. This was achieved by planning the diesel generators operation
and integrating it with the BESS operation in a predictive way, considering the ultimate
targets of the supervisory system, summarized in 4.1.1. The developed algorithm, was
also capable of storing only renewable energy produced from the PV panels, as long as
the storage could be initiated only when there was enough surplus energy. In this way,
a 100% renewable penetration could be guaranteed, devoid of technical minimum
limitations or sudden load changes. From the following figure, it is possible to observe
the residual ¢ during the algorithm calculations for the days of the year. It is quickly
proved that the algorithm converges to the specified target value almost for every day
of the year, excluding 7 days (35, 94, 97, 241, 248, 290, 301). In these days, considering
the safety of the system, the algorithm specified a higher surplus energy from the one
that would be really needed.
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Figure 27: Error residuals predicted from the algorithm, for a whole year operation

Thus, it is possible to set a new 24-hour based operation plan for the diesel generators
consisting of the offset value that is achieved from the algorithm and the new shaved
peak, which were also the outputs of the procedure. In the following sections the results
of the algorithm are presented for indicative days from different seasons of the year,
with the corresponding comments.

4.2.1 Algorithm outputs for different time periods

The whole year could be divided into two basic time periods, the winter time period
and the summer period. This division is based on the pattern appearing to the load curve
of a typical day during each season. The winter time period pattern is depicted in Figure
22 whereas the summer time period pattern is depicted in the figure below (Figure 28).
It can be noticed that during the winter time period, the load curve presents the pattern
that was suitable for the implementation of the developed algorithm whereas the pattern
of the summer time period was not ideally suited. This was due to the fact that the curve
was not peaked during the late evening hours, as was the case with the winter pattern,
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but instead it was constantly at high levels of load values. This fact was attributed to
the intensive use of cooling and air conditioning of the industrial equipment during the
hot days of summer with relatively higher temperatures compared to the winter time
period. In this way, the concept of PV energy storage in a previous time period, that
could be used later during the peak hours, was not applicable. This was due to the fact
that the peak values of the load were present during the morning and midday hours,
were the PV generation could be directly injected to the grid.
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Figure 28: Summer time period load profile pattern and the corresponding peak shaving area

Winter time period

For the period of the year that was related with months 1-3 and 9-12, the winter time
period pattern was mostly noticed. For these cases, the algorithm predicted the results

as they are depicted below. Specifically, in the figure below (Figure 29), results are
presented for day 35 (February).
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Figure 29: Resulting curves from the algorithm, for day 35
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In the figure above, the combined curve that the developed algorithm prescribed, is
directly recognizable as the magenta curve. It is also possible to observe the high and
low limits of the offset value, marked with the green and the red lines respectively.
These are the lowest and highest demand values of the day, which define the range of
possible values that the offset variable could gain. For that specific day of the year, a
relatively smooth PV production curve accompanied by a smooth load curve can be
noticed, which is mainly characterized by its peaked values late at the evening (hour
20:00). However, the PV production is maximized earlier in the same day, during the
morning - afternoon time period (11:00-13:00). At this time period, a curved section of
the plot is followed from a hollow one which is overlapped from the combined curve.
In this way, an excess surplus energy amount is possible to be artificially created. Part
of this energy is used instantaneously in order to cover partially the current demand
values and the rest of it is intended for storage in the battery, in order to be available
later on the peak hours. This fact is better explained in the following figures.
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Load and PV area when sunlight exists
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Figure 30: Artificially created excess energy and the corresponding demand, for day 35

From the above figure, it is possible to observe the area between the load curve and the
offset value, as defined from the developed algorithm for a typical winter day. The
corresponding load profile is presented in Figure 29. The red area represents the amount
of energy that will be needed to be covered from the current PV energy production,
assuming a perfect forecast for the load curve of the next day. This assumption is based
on the fact that given the load curve of the next day and the PV power generation, the
developed algorithm estimates the offset value, which is interpreted from the diesel
engine operation perspective, as the maximum allowed value, regarding the time period
[08:00-18:00]. Thus, the red area of Figure 30 a, which is generated for every day with
a similar winter demand profile, is generally partially covered from the current PV
power production or even from stored energy in the battery system. In case neither of
these power sources is capable of matching the demand of this area, a violation of the
upper barrier posed for the diesel engine from the offset value is necessary, so that the
system balance is preserved. In Figure 30 b, two regions are depicted. The orange region
which corresponds to the red area above and the yellow region which corresponds to
the excess energy area to be stored for later peak shaving capability. The orange area is
actually the overlapping of the combined curve with the load curve and the offset line
barrier whereas the yellow area is the net surplus energy and corresponds to the section
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of the magenta line in Figure 29 which is over the load curve. As it is possible to notice,
both of these areas are suddenly interrupted at the right end at about 17:40. This fact is
attributed to the transition of the combined curve to values lower than the current
demand values and since the excess energy to be stored has to be renewable (i.e. PV
power) the storing capability is interrupted, in order to avoid storing grid energy in the
battery. The possibility to store power from the grid has been investigated in other
studies [48,49,50] and is considered to achieve better results when combined with a
time of use (TOU) tariff and an electrical power price daily profile. Nevertheless, in
this study, this effect is not allowed and stored energy of the BESS is forced to be
renewable, in order to inject clean renewable energy to the power grid of the island and
consequently improving the renewable penetration. From the following figure, the
diesel engine planning is possible to observe.
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Figure 31: Diesel engine operation before and after the algorithm’s implementation, for day 35
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In the above figure, (Figure 31), the diesel engine planned operation is plotted with red
cross line. The blue line at the same plot, represents the load curve (as also depicted in
Figure 29) and the green line represent the net load curve of the same day. At this point,
it is considered as a good option to remind that the net load is defined as the total load
of a single day subtracting the renewable power generation that corresponds to this day.
Thus, the green dashed line is related with the operation of the diesel engine of the
island in case that the whole PV generated power could be injected into the grid, the
time that it is produced. As this may be possible for a flexible small-scale power grid,
this is not the case for a large power grid which is interconnected with many
conventional thermal power plants. This is due to the achieved technical minimum
operation that is prescribed for these units and the related start-up and shut-down
dynamic operation modes. The last, are related with rapid and abrupt changes in the
loading state of the thermal units which are subject to technical limitations. This in turn,
may result in curtailment issues and valuable renewable energy is not injected into the
grid, for stability reasons. This drawback is countered by the developed algorithm, as
long as a stable diesel operation with predefined ramp-ups is achieved. At the same
time, the renewable power production is ensured and smoothly integrated with the
diesel and BESS operation. However, the developed algorithm may present an
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additional advantage over larger power grids with high inertia, achieving a robust
operation by scaling up the aforementioned benefits. For our case of the islandic power
system, the operational setpoints of the diesel engines are depicted with the red dashed
line in Figure 31 and as it is evident, it is smoother compared to the green line. In this
way, sudden changes in loading of the diesel engines resulting from the uncertain PV
power production are avoided while at the same time the ramping rate is diminished
regarding the peak shave of the night hours. In the figures below, the results that are
achieved from the algorithm are presented for other winter type load profiles.
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Figure 32: Algorithm output curves, for winter day 63

In Figure 32 and Figure 33, the combined curves and the diesel operation planning for
two different winter days, as it is outputted from the algorithm, is presented.
Specifically, in Figure 32 results are presented for a winter day before summer while in
Figure 33 results are presented for a winter day after the summer time period. For the
load profiles of those days, it can be easily observed that the “duck” phenomenon is
intensified and this has a significant effect to the diesel net load operation, which is
depicted from the green lines. For both cases, and especially for day 255, a highly
curved valley is located right before the night hours peak demand. This effect is directly
related with the high ramp rate needed to be covered by the diesel engines in a relatively
short time period. This ramp up of the diesel engines is associated with higher fuel
consumption during acceleration while at the same time it is considered an important
factor for extra stressing of the engine. Thus, this dynamic behavior may result in a
higher maintenance cost and more frequent component failure.

Regarding Figure 32 and Figure 33, another fact to be noticed is related with the
combined curve during the morning hours [08:00-12:00]. As it can be observed, during
these time periods the load curve is over the combined curve, meaning that the total
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produced power at that time period will be insufficient and additional power will be
needed. This fact is associated with the combined effect of the morning peak demand
that can be observed in the load profile with the relatively lower PV power production
in the morning hours, compared to midday hours.
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Figure 33: Algorithm output curves, for day 255

However, despite the issue of the early hours, which will be faced with additional
power, the algorithm still considers the net surplus PV energy to be equal with the peak
energy demand for later use and this fact is well depicted in the following figure for
day 63
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Figure 34: Day 63 net surplus energy area

As it is possible to observe in Figure 34, the load area between the load curve and the
offset value, for the time period of the PV power generation, is not constantly under the
corresponding area of the PV energy produced. Because of this, in Figure 34 a, the blue
area which is located among the hours 09:40-13:00 is negative meaning that for this
time period the total demand will be greater than the current PV power production. This
is also depicted in Figure 34 b where the orange area overlaps the yellow area for the
same time period. However, the situation is reversed during the time period 13:00-18:00
where the system is capable of overproduction and consequently artificial surplus
energy is created. This is also illustrated from the same figure (Figure 34 b) where the
yellow area is over the orange area representing the demand energy at that specific
period.

Summer time period

In the section above, the operation of the developed algorithm is described for the load
curve pattern which are more frequently observed during the winter time period where
the peak demand is displaced at the evening hours where there is not PV power
production. Though this is the case for the winter time period for the specific islandic
power system under investigation, the same pattern is also observed during the summer
time period for many islandic power systems. For small-scale systems in which the load
is commonly shaped by the residential factor and the touristic activities, the peak
demand is constantly placed at the night hours, when the majority of those activities
requires energy consumption. Nevertheless, in order to observe the behavior of the
algorithm during the summer time period for the power system investigated in this
study, the algorithm was executed for a whole year period, including each day of the
year. The results that can be found in the following figures are consistent with what was
expected from the beginning, as long as the current version of the algorithm is suited
for the load profiles depicted in Figure 22. The load profile which was mostly observed
during the summer time period is presented in Figure 28. As it is obvious, the shape of
the load curve during this day is not similar with the winter profile as a single peak area
is not distinguished, especially during the night hours. This can be further explained
from the dashed line which separates the peak shaving area to be calculated so that the
algorithm takes the necessary actions to output the appropriate offset level as described
above. Following the same logic, the algorithm resulted in the following results,
depicted in the figures below.
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Figure 35: Algorithm output curves, for a summer day (195)

Results are presented for the middle day of the summer which is 15 July and correspond
to day 195 of the year. From the figures above, it is possible to observe that the
combined curve is formulated as it was described from the algorithm and based on
Equation 28. Because of this, the offset value is decided to be placed in a position by
which enough surplus energy will be created to cover the peak demand region.
However, the peak demand includes a whole area between the hours 09:00-22:30 as it
can be observed in Figure 28 and it is not deferred compared to the maximum PV power
generation which is located among the hours 12:00-14:00 (Figure 35). For this reason,
although the algorithm predicts the necessary offset value to store the appropriate
amount of energy in the BESS for later use, the stored energy cannot be used later on
the day as long as the peak is happening at the same time period with the storage time
period. This fact can be also further explained from the concept of storing PV energy
to be used when it is actually required, while for the summer days, the time period in
which this energy is required coincides (collides) with the PV power production time
period. Thus, there is no need for storing the energy and instead this energy could be
used instantaneously. The only possible scenario for storing energy in a similar case
could arise from the technical minimum of the diesel generators and to avoid
curtailment. In this scenario, the BESS should anticipate the extra amount of energy
and should inject it back to the grid during the late-night hours. Nevertheless, as it is
possible to observe in Figure 35, the diesel operation can be still smoothed and the peak
shaving ability of the system is preserved.
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5 Modelling of the island’s power system

After the development of the prediction module with the artificial neural network model
and the development of the energy management algorithm that supervised the power
flows of the system, the next step was to model the system configuration and its basic
components, so a dynamic model of the system is created. This model should integrate
the above modules and should combine the dynamic simulations with the proposed
predictive strategy, as developed in the previous section. In this way, a complete
framework could be simulated and the combined effects of a dynamic model and an
energy management system could be investigated.

5.1 General System Configuration

The complete system configuration and the proposed methodology are depicted in the
following figure.
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Figure 36: Islandic power system configuration and proposed methodology

From the figure above, it can be noticed that the objective of the operation of the
different system components, that needs to be satisfied from the central EMS, concerns
the system stability and balance. This objective constitutes the main priority of the
system’s operational algorithm, while in a secondary level aims for the implementation
of the logic described in the previous chapter (4.1.1). The power system’s balance is
modelled as the congregation of the signal flows coming from the various energy
system components, representing the individual power flows that have to be in an
equilibrium so that the balance of the system is preserved. This can be mathematically
formulated with the following expression:

Np N¢
Equation 31
Presiquar () = Z Pinflow,i(t) - Z Poutflow,i(t) ¢ f
i=1 i=1

where in the above equation N,, = 3 stands for the different possible energy injections
to the grid from each energy production system which are the diesel engines, the PV
system and the BESS, while N, = 2 stands for the different possible energy sinks which

52



“Smoothing of a non-interconnected island's power system load curve, with the use of a
predictive BESS controller”

are the system’s load and the storage energy to the BESS. In the above equation, a
relaxation variable is also defined as ¢ for the system balance, allowing for small and
sudden perturbations in the balance of the system, which are associated with control
actions and deviations in a very small-time scale compared to the hourly-based analysis
which is implemented for the power system simulation. The balance of the system
should be preserved at each time step of the simulation and in cases that this is not
possible with the current configuration, the BESS should compensate for restoring the
balance and if even this is not feasible, then the diesel engines should be operated
appropriately, as it will be described in a later chapter. At this point we summarized the
system’s basic parameters in the following table.

Table 1: Technical specifications of the power system under investigation

Maximum load demand [MW] 1.5
Installed PV power [KWp] 300
Diesel engine maximum power [MW] 2
Battery maximum power injections [kKW] 159
Battery capacity [Ah] 2000
Power electronic (inverter losses) 10%

In the above table, the basic characteristics of the power system under investigation
depicted in Figure 36 are presented. At this point, it is important to be emphasized, that
the BESS selection was based on typical values for grid scale battery applications and
the primary concern was to simulate a BESS in the order of magnitude with the
demands of the system. However, the BESS size was not optimized to match the system
requirements in the most efficient or economically feasible way, as this is a topic for
another study. Thus, the BESS module presented in our simulations was used to
simulate the storage capability of the system and it was focused on the dynamic
behavior modelling of similar systems, integrated into a complete operational
framework. Further details about the BESS are given in a next section of this chapter.
The diesel module was operated based on the setpoints acquired from the developed
algorithm of the previous chapter (4.1) and at a smaller time scale, based on the real
time controls of the system, to preserve the balance. The PV module was introduced to
the system modelling as a timeseries of PV power generation for each day of the year
under investigation (2016), considering the system losses from the power conversion
and the power electronics associated with its operation. In the following section, a detail
representation of the PV system modelling is presented.

5.2 Photovoltaic power production modelling

In this section, the simulation platform for generating PV energy production data is
described. Regarding the purpose of this study, the PV simulation was a necessary input
to the developed algorithm and had to be considered as an input in a previous step from
the total system simulation. This fact can be explained by the combined curve described
in 4.1.2, where the PV generation data is necessary to be superimposed to the offset
level in order to evaluate the corresponding areas of interest. Thus, the solar energy data
were generated before the algorithm implementation for the year under investigation
(2016) and were considered as perfect forecast for the purpose of the system simulation.
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This was decided for the better assessment of the quality of load forecasting, integrated
into a supervisory energy management system, as it is proposed in this study.

The simulation platform used in this study to estimate the solar energy production data
was based on the model developed by [51]. This simulation platform, the operation of
which is described below, is comprised of an open-source code available at the website
[www.reneables.ninja.com]. Screenshots of the website application used for the data
generation of this study can be found in the following figures.
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Figure 37: Renewable ninja PV power production, data generation process

From the figures above, it is possible to observe the graphical application developed
from [51] for the data generation. The first step for this is the determination of the point
of interest, for which data needs to be generated. As it can be observed from Figure 37,
for our case, the point selected was chosen to be in a close distance from the island’s
capital city (Funchal). In that way, it was possible to represent the installed residential
PV modules, which are mainly placed at inhabited areas, with an equivalent PV plant
located at the same geographical area. At this point, it is important to be stated that the
different points for which the data could be generated, were limited to the grid
resolution of the simulation platform. The data generated from other intermediate points
were basically extrapolated values between the calculation nodes across a specific
geographical region. For this reason and taking into account the relatively short
distances of the island’s morphology, the point which was selected for data generation
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in our study, was a representative data point for the whole island. As a next step for the
data generation process, the user defined inputs were considered. From Figure 37, those
inputs can be observed and are summarized for our specific case study in the following:

e Weather Dataset to be used: MERRA
e Selected year for data generation: 2016
e |Installed Capacity: 300 kW

e System Loss: 10%

e Tracking capability: 2-axis tracking

e Tilt: 0°

e Azimuth: 180°

The above parameters were chosen based on the following criteria. The MERRA
dataset was chosen instead of the other possible dataset SARAH, due to the better
generalization effect of this dataset for worldwide located countries and not specifically
for European countries. In other words, this dataset (as it is also proposed from the
developers of the platform) is most favorably suited for international data generation
whereas the other dataset which is more suitable for European countries. The year of
the data was set as the year under investigation (2016) which was also the test year of
the developed ANN model. In the figure below, the process of the PV data generation
from the simulation platform is presented:
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Figure 38: Overview of the approach used to model PV power output [51]

Based on the configuration depicted in the figure above, the following methodology
was adopted for calculating the PV output.

The installed capacity was approximately equal to the total installed capacity of the
island (Astypalaia) considering that the panels have a tilt angle of zero and an azimuth
angle of 180. The tilt angle corresponds to a horizontal plane solar panel, meaning that
the panels is placed on a horizontal rooftop for example. The azimuth angle was chosen
appropriately (180°) in order to correspond to a southward facing direction. Then, with
those inputs, the simulator is capable of producing a timeseries of PV energy production
data, based on the basic modelling equations presented below. At this point, it is
important to give the following definitions
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e Direct Normal Irradiation (DNI): It is the amount of solar radiation received per
unit area by a surface that is always held perpendicular (normal) to the rays that
come in a straight line from the direction of the sun at its current position in the
sky

e Diffuse Horizontal Irradiation (DHI): It is the amount of radiation received per
unit area by a surface (not subject to any shade or shadow) that does not arrive
on a direct path from the sun but has been scattered by molecules and particles
in the atmosphere and comes equally from all directions.

During the PV output calculation, the simulator is provided with both direct and global
irradiance, from the corresponding MERRA dataset and then the irradiance on the plane
of the PV panel can be estimated. In case of a fixed azimuth angle and tilt angle, the
plane incidence angle is given by

a = cos™(sin(h) - cos(t) + cos(h) - sin(t) + cos(a, — as)) Equation 32

where h is the sun altitude, op is the panel azimuth, t is the panel tilt and os is the sun
azimuth angle. Then, the direct and diffuse plane irradiance can be computed from the
global irradiance as follows

_ lgjrp - cos(a)

Lyirp = T Equation 33
cos( — as)
1+ cos(t) 1 — cos(t) Equation 34
Lairp = laifn — + a(lgirp + laif,n) A a—

where a is the surface albedo (set equal to 0.3). The model can also simulate tracking
systems with single or two axes of rotation, as it was the case selected for our
simulations. Finally, the power output from a given panel could be calculated from the
in-plane irradiance determined in the previous step. This could be done with the
following set of equations [52]

I o _
Pov (Ips Tmoa) = Prv,stc 'ﬁ Nrer(lp, T") Equation 35
p,ST

Mret(l,', T') =1+ kyInL," + ky (In1,")? Equation 36
+T'(ks + kyInL," + ks (In1,")?) + keT'

where Ppy stc IS the power at standard test conditions (STC) of Ip stc=1000 W/m2, and
Tmodstc=25°C, nrel is the instantaneous efficiency while I," and T’ are normalized

parameters to STC values I,," = IpI:TC and T' = Tpoa — Tmoastc- The coefficients ki-

ks are estimated from a fitting model based on experimental data measured at many
different sites. The instantaneous relative efficiency depends on the instantaneous
irradiance and module temperature Tmod. Under slowly changing conditions, the module
temperature can be estimated from the ambient temperature and the irradiation in the
following way:
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Tnoa = Tamp + CTIp Equation 37
The coefficient cr describes how much the PV module is heated by the solar radiation

The system loss coefficient was considered at around 10%. Additional losses are caused
by the PV system's components, primarily the inverter (which converts a panel's DC
output into AC power for on-site use or exporting to the power grid), and these are
estimated with an additional static loss. In addition to temperature data, the DTI data
contain DC and AC output. They therefore allow estimating inverter efficiencies. The
mean efficiency across all sites is 0.90, with a standard deviation of 0.04. This suggests
a reasonable assumption for inverter losses is 10%, which is used for all simulation
results presented here. This is a conservative assumption since the systems in the DTI
dataset are about 15 years old, and newer inverters may perform better [51]. In the
following figure, the simulator input irradiance (orange time series) and the output PV
energy (yellow time series) are depicted
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Figure 39: Solar irradiation and PV power production data, for the year 2016

As it is possible to observe in the figure above, the yellow data series has a direct
correlation with the orange data series in an almost linear way, which is also validated
from Equation 35. It is also clear that during the summer time period, the PV output
energy is maximized compared to the winter time periods, which are characterized from
lower mean values and some days of partial or complete cloud covering. This clouding
factor effect can be noticed from the sudden drops of the irradiance level, which is most
of the time accompanied by a drop in the PV energy output. For greater detail and to
illustrate the variation of the PV output for a single day, the next figure is presented.
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Figure 40: Typical week PV power output

As it can be noticed in the figure above, the solar energy is maximized during the
midday hours of each day, while sudden and small-time scale effect such as a sudden
cloud motion covering the panels may affect the smoothness of the PV energy
production pattern. However, this fact comes in agreement with the more realistic point
of view of this thesis, as these solar data are generated based on experimental data
measurements, model calibration and data assimilation. The battery module component
is discussed in detail in the following section.

5.3 Battery Energy Storage Modelling

In this section, the battery modelling of the battery energy system is described. The
battery model was based on the modelling methodology of the Lithium battery module
of Apros simulation software and are described in the next section. Apros simulation
platform, is a dynamic process simulation software developed by VTT Fortum, which
is based on built in modules, representing different areas subsystems, ranging from
chemical and thermal systems to electrical ones. This allows for integrated multi-
domain analysis and simulation while at the same time, control and automation systems
can be integrated to the physical models. In this way, it is possible to simulate complete
system models in a more realistic approach, estimate the dynamic performance of the
system and evaluate different operating scenarios and centralized management
algorithms. In the following section, the battery electrical model with the corresponding
parameters, adopted in our study are presented.

5.3.1 Electrical model of the battery system

The lithium battery is a module type for the simulation of one-phase DC energy storage
and DC energy injection. There are two operational modes associated with this module,
charging and discharging. The battery module, is actually a DC voltage source modeled
with a current source, a variable internal resistance network and an energy charging
level indicator (counter). The battery is discharged or charged according to i) the
voltage level of electrical node that connects battery with the rest of the system and ii)
the remaining capacity (amount of stored energy) of the battery. If the capacity of the
battery is greater than zero (>0) and the voltage of the connection node of the battery is
below the open circuit voltage of the battery, the battery is discharged (it produces
electricity). If the capacity of the battery is less than the maximum capacity and the
voltage of the connection node of the battery is above the open circuit voltage of the
battery, the battery is charged (it consumes electricity). The internal resistance of the
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battery is calculated according to the input properties of the component and the current
is adjusted to get the correct open circuit voltage. The basic modelling equations of the
Lithium battery module are described below. The single cell circuit model depicted in
Figure 41 is translated into the following differential equation for the node voltage as a
function of time:

du, .
U(t) = Voc — Rseries + Reycte "1 — (1 — Ctransient d_ts) “Rerg, — Equation 38

dUy
(I - Ctransient,long W) ' Rtr_ln + AE(T)

In the following figure the internal resistance network of the battery model is presented.
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Figure 41: Battery’s equivalent resistance circuit diagram

Regarding the possibility to combine many battery cells in series and in parallel
connection in order to obtain battery cell arrays for higher capacitance and power levels,
the corresponding current values are given by

_m-1 Equation 39
I =——1
m
Ieen=1-1, Equation 40

The variables above are also depicted in the following multi-cell diagram of the battery
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Figure 42: Multi cell equivalent circuit diagram, of the battery module

Regarding the variables from the previous equations, the following are clarified

U,: refers to the voltage over the transient short resistance

U,;: refers to the voltage over the transient long resistance

n: refers to the number of cells in series (n=199 in this study)

m: refers to the number of cells in parallel (stack size is n x m) (m=169 in this study)

In order to simplify Equation 38 for numerical stability reasons in Apros simulation
platform, the following equation is adopted instead

U(t) =Vocn— %(Rseries + Rcycle + Rtr_sh + Rtr_ln) I+n- AE(T)

Equation 41

In the above equation, Rseries iS responsible for the instantaneous voltage drop in battery
terminal voltage. The other component of series resistor, Reycle, is used to explain the
increase in the battery resistance with cycling. The components Ry sh and Ry 1n Of the
battery RC network are responsible for short and long-time transients in battery internal
impedance respectively [53]. The term 4E(T) is related with the battery temperature
and its effect on voltage and is estimated from experimental data based on the following

plot

Figure 43: Battery’s depe
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In the figure above, the blue dots represent the experimental data values and the red line
presented below corresponds to the fitter model, which is then used in Equation 41.

AE(T) = 3.938- e 57° —0.003426 -T2+ T — 97.96 Equation 42

Regarding the open circuit voltage and the resistance of the battery’s network model,
the state of charge of the battery (SoC) needs to be calculated. The battery SOC can be
expressed as

SO0C = SOCipir — f(ibat/cusable)dt Equation 43

The SOC can consequently be calculated by dividing the current capacity of the battery
with the maximum capacity s follows

Equation 44

SO0C =

Cm ax

Then, the open circuit voltage of a single cell can be calculated. The open circuit voltage
and the internal resistances of the battery network model, depend on the state of charge,
the battery temperature and user-given coefficients, as it is described from the following
set of equations

Voc(S0C) = voc, - €¥°259C + vocs + voc, * SOC + vocs.SOC? Equation 45
+ v0ce.SOC3 + AE(T)

Rseries = Rs1€%s259C + Ry Equation 46
Equation 47

Rseries_n =N Rgeries q

Rir sn = Res1€R652%9C 4+ Ry Equation 48
Equation 49

Rtr_sh_n =n- Rtr_sh q

Rer in = Ryp€Rt12%0C 4+ Ry Equation 50
Equation 51

Rtr_ln_n =n: Rtr_ln

where in the above equations sh stands for short and In stands for long. The cyclic
resistance depends on the number of full cycles (Neqv) and is given from the following
equations

Reyete = ks - /Neqv Equation 52

Reycie n =M Reycte Equation 53
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The capacity of the battery is updated after each time step according to the current
flowing from or to the battery as
. At Equation 54
Ct)=C(t—-4t) -1 3600

where At is the simulation step in seconds. At this point it is important to be stated that
in order to simulate the dynamic behavior of the BESS in detail, taking into account the
small-time scales of the transient electrical physical phenomena, the simulation step
was decided to be much smaller compared to the hourly based time scale of the power
variables of the grid under investigation. For this reason, a linear approximation was
considered for the intra-hourly values for the concerned variables of the simulation. The
chosen time step was At=0.2 s and the coefficient 3600 was used in Equation 54 for unit
conversion as long as the unit of time is seconds and the unit of the capacity is ampere-
hours (Ah).

The capacity of the battery was limited between the values 0 and the maximum capacity
which is set as an initial parameter. This fact is in line with the current trends of the
batteries industry, which is constantly upgrading the materials, the structure and the
quality of the produced batteries. This results in an overall efficiency upgrade and
allows for the development of deep charge/discharge batteries, maximizing its useful
capacity and consequently the capabilities of a BESS. In order to better simulate the
degradation of the battery’s material and its ability for energy storage, a capacity fade
model was integrated into the battery model of this study. Capacity fading refers to the
irreversible loss in the usable capacity of a battery due to time, temperature and cycle
number. Generally, a battery is considered to be usable until reaching the 80% of its
initial capacity [54, 55]. So that, modeling the capacity fading is important for
predicting the remaining life of the battery. The irreversible loss causing capacity fading
is associated with degradation of the battery, and the loss occurs whether the battery is
inactive (so-called “calendar life” losses) or exercised (“cycle life” losses) [56]. Both
calendar and cycle life losses of a battery appear to be linear with time and dramatically
increase with increasing temperature [55]. Therefore, the effect of temperature must be
considered while modeling the capacity fading for a battery. The calendar and cycle life
losses lead to a capacity correction factor to determine the remaining usable battery
capacity. Thus, the capacity fading was modelled considering the correlation between
the battery temperature and capacity. In this way, the maximum capacity of the battery
was calculated as a fraction of the nominal capacity considering both calendar and
charging losses, based on the following equations

Cmax = Chom * CCF Equation 55

CCF=1—(fg+fa) Equation 56

where CCF is the capacity correction factor and represents the aging of the battery, fs
is the lifetime storage loss fraction and fq is the lifetime cycle loss fraction. The loss
fractions are integrated over the simulated time period and in this way the integral of
the storage loss fraction is calculated as
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sty dt Equation 57
= L, - eRT - q
fs fs 1€ 100 - 2592000

The parameter R is the gas constant (8314 J/kmolK) and the coefficient 3592000 is used
for time unit conversion from months to seconds. The lifetime storage loss fraction is
updated according to the formula

sly dt Equation 58
= - At ' RT )
fa(t) = fa(t )+ sl e 100 - 2592000

The losses per cycle can be then represented according to

d
0S0Ccycle 3t 0S0Ccycle Equation 59

=k Noyp + k, = = (k,N +k2)%
ONegy eqv ot eqv ot

Where in the previous equation ki and k» are constants and the equivalent number of
full cycles, integrated over the simulated time period can be calculated based on the
following equation

1 .
o f 5 Upael Equation 60
¢® = | 3600 - Crony

Then, the number of full cycles can be updated according to the next formula

1 .
2 [ pacl Equation 61

N, t) =N, t—A4t) + —
eqv( ) eqv( ) + 3600 - Cmax

Next, the lifetime cycle loss fraction can be updated with the formula
fa(t) = foq(t — At) + [Neqv(t) +k, (Neqv(t) — Negu(t — At))] Equation 62

The coefficients ki, k2, ks in the above equations, depend on the temperature of the
battery and further detail can be found in [52]. Summarizing the above, the battery
modelling in Apros software is based on the equivalent electrical network and is
described from equations [41-61]. In the next section, the control configuration of the
BESS is presented.

5.3.2 Control configuration of the BESS

For the implementation of a complete simulation framework based on forecasting
capability, as it is proposed in this study, a top to bottom approach should be followed
for the development of the management algorithm responsible for controlling the power
system operation. In the previous sections the supervisory algorithm was developed
(4.1) that was responsible for the generation of the operational planning of the diesel
engines, regarding the next day. This was achieved by the developed network, taking
into account the predictions of the demand values of the next day. (3.3.4). The diesel
engines operation planning was achieved by the developed algorithm. In that way, the
next day’s setpoint planning was estimated, in order to achieve the peak shaving and
the load curve smoothing. This planned diesel setpoint information was directly related
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with the operation of the battery, which should track a planned power delivery
trajectory, which was also derived from the algorithm.

From the above it is evident that the operation of the BESS was predefined based on
the prediction module and the algorithm. However, the planned trajectory could not be
implemented in the real dynamic operation of the power system for the following
reasons. At first, the power system’s demand values were slightly different from the
forecasted demand values which can be attributed to the neural network errors. Despite
the overall good quality of the network prediction, which resulted in a satisfactory mean
absolute percentage error (MAPE=1.715%) for the year of the simulation (2016), when
focusing on specific load values, the error could be higher relatively to the overall
system performance. Thus, during the dynamic simulation of the power system with a
fine time resolution, the instantaneous errors of the forecasting module could result in
significant deviations from the expected values and consequently the balance of the
system could be risked. Another source of error regarding the dynamic simulation of
the power system with the integration of the supervisory algorithm comes from the
current state of the battery system. As long as the detailed BESS model described in the
previous section (5.3.1) was not considered from the algorithm that generated the
setpoint values, it was not possible to estimate the different possible states of the battery
during the setpoint calculation. The variables that have the most direct and significant
impact on the state of the battery are the current capacity C, the state of charge (SOC)
and the maximum possible current injection. The last limitation comes from the
maximum possible power delivery from the battery. Another important factor that could
not be estimated before the dynamic simulation was the aging impact and the
degradation of the battery’s maximum capacity.

For the reasons described above, it is clear that in order to preserve the system balance
and to track in the best possible way the predefined system operation, a real time control
system should be employed. This would basically monitor the system for sudden
changes and consider the appropriate actions to be made for restoring the balance. In
the following figure, it is possible to observe the control system configuration adopted
in this study.

In the figure below, a schematic representation of the real time charge / discharge
controller of the BESS is presented. As it can be noticed, a cascade configuration was
introduced, which was based on simpler proportional-integral single input single output
controllers. This setup was adopted based on the simplicity of its structure and the
commonly available PI controllers in industry. From Figure 44 it is possible to observe
that there are two different controllers, one for the charging process control and another
for the discharge process control. Both of them acquire their setpoints based on the
output of a centralized controller which is responsible for regulating the system
residual. The power system residual can be found in Equation 31 and is basically an
indicator of the excess or shortage of energy in the power system. Thus, the setpoint of
this controller was set to zero (0) so that the error is regulated and the balance of the
system is preserved.

64



“Smoothing of a non-interconnected island's power system load curve, with the use of a
predictive BESS controller”

Charge controller modeled
as a current source

< ] controlled by voltage
%
BESS Control Diagram 3
o ... BESS model
LS R1 .,
1S —
g v Rseries
S <
© <
Residual = 0 L
T Reycle :;)
Charge =
> Pl
Y Mode \ pansiashor r Riransient_shért
O— pI — -
X ischaracl \ vansi;?z_long 1 i\ R(,awem_,o;;‘g
7] Pl Equivalent cwrcui"'tv.._ \ Eli

§ \ oo

3 — _ 1

z ! 2 o)

o ! .

Current Regulation I — e
BESS Power

v
Discharge current regulated by
the model of a controllable load

Figure 44: BESS control system configuration

Then, the central controller fed its output to the other controllers which were devoted
to the current regulation of the battery. Specifically, the discharge process was modeled
with a controllable load whose equivalent circuit is depicted in Figure 44. In this way,
the discharge current injected from the battery to the grid was regulated by changing
the value of the internal resistance of the controllable load and consequently, the
appropriate amount of power was injected into the grid. Regarding the charging mode,
the power that was stored inside the battery was controlled by regulating the charging
current with the help of a voltage controlled current source. In this way, a DC
controllable source model was used for the current regulation task during charging. The
corresponding equivalent circuit of the adopted DC source model, is depicted in Figure
44. This is basically a circuit composed of an ideal voltage source, a resistor, an
operational amplifier and a MOSFET power electronic module, operated as a linear
regulator.

At this point we present the basic equation describing the action of a PI controller, as a
transfer function (filter) and as it was numerically calculated in each time step of the
simulation in Apros software.

kyps + ki Equation 63

kc Discrete
CO(t) = k.- e(t) + Ff e(t)dt —=

l

K - scale - At .
CO(k) =K -scale-e(k) + CO(k—1) + — Equation 64
i
(e(k) —e(k - 1))
2
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From the above equations we have the following:

e CO(k): Controller Output signal at time step k

e ¢e(Kk): controller error at current time step k, defined as SP-MV, where SP is the
setpoint value and MV is the measured variable

e k¢ the controller gain

e K: discrete controller gain

e kp: the proportional gain

e ki the integral gain

e Ti: the reset time [s]

e At : simulation time step [s]

The controller gain is related with the integral parameters as follows

ke Equation 65

The scaling factor that is used during the controller calculation in Apros, is defined as

Max CO — Min CO
Max MV — Min MV

Equation 66

scale =

The parameters that were used for the simulation of this study were calibrated based on
the trial and error method, conducting experiments and observing the response of the
system. The parameters with which the best response was achieved are presented in the
following table.

Table 2: Controller parameters

. . Time Max. Min Max Min
Controller | Operation | Gain
const. meas. meas. | output | output
Residual Direct 1 1 1000 -100 1000 0
Charge Direct 1 10 100000 0 900 750
Discharge | Direct 1 1 1000000 0 1000000 0

For better understanding of the table above, the following are clarified. The direct
operation of the controllers means that they produce a proportional output based on the
input, with the same direction. Thus, for greater error values, greater output is produced.
The time constant is counted in seconds time units. The output value of the charge
controller corresponds to Voltage units, the output of the discharge controller
corresponds to Watts and the output of the residual controller to kiloWatts. The residual
controller was configured with a negative minimum measurement limit, to account for
possible negative residual energy measurements, while the other controllers’
measurements limits, based on their physical representation, lied in the positive range.
The achieved response plots are presented in the following figures.

The achieved response plots are presented in the following figures.
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Figure 45: System’s response after the control system implementation
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From the figures above, it is possible to observe that the controllers are capable of quick
balance restoration with a relatively short response time and low overshoot.
Specifically, the SOC and the residual power are simultaneously plotted and the
transition from charging to discharging states of the BESS and vice versa is remarked.
Also, a detailed view is presented, from which it is possible to observe the system

behavior after a discharge command.

In the following chapter, the system modelled in Apros software and simulation results

are presented.
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6 Power system model dynamic simulations

In this chapter, the dynamic simulation of the model described above integrated with
the predictive BESS controller is presented. The input parameters that were considered
for the dynamic model development in Apros software, were based on the modelling
equations of the previous chapter, the forecasted power demand output from the neural
network module and the diesel engine predicted setpoint trajectory. Then, the
corresponding dynamic equations were solved and the dynamic behavior of the system
was observed. As it will be discussed in detail in the following section, the simulations
indicated that the initial goals set at the beginning, namely peak shaving and smoothing
of the system load curve, could be achieved.

6.1 Apros model description

The model of the power system that was described in a previous chapter was
implemented in Apros simulation platform considering the following modelling
guidelines. Thus, for a dynamic simulation, the selection of suitable control structures
is essential in order to accurately describe the behavior of smart power grids during
transients. The automation components, explained below [57], include measuring
devices, analogue and binary modules, signal sources and controllers. For the better
understanding of the developed Apros model, the modules used are identified and
discussed in detail in the following section.

6.1.1 Apros modules description

Measuring devices

Measuring devices collect data on the physical properties and transmit them in analogue
signals. The output signal of a measuring device can be used as an input signal for a
control structure or for other purposes such as operation monitoring or data recording.
The most significant variables that can be measured during the simulation of a power
grid, include the current and voltage magnitudes, the state of charge of a battery and
other related variables. Those devices maybe depicted in Figure 48.

Analogue modules

Analogue modules are used to modify analogue signals. In these modules, the output
signal is always analogue, but in addition to the analogue input signal, a binary signal
may be found for controlling tasks. The analogue modules can be divided in three
groups, namely basic, static and dynamic modules. These are explained in detail in the
following sections.

> Static modules

Analogue static modules include delay, memory, switch, deadband, hysteresis, limiter,
Max and Min selector, polyline and square root. Some of the static modules such as
deadband and limiter are a source of discontinuity, which in return may result in
numerical instability of the simulation. However, those were suitably used in our
simulations as it was necessary for the logic implementation of the energy management
system. The basic analogue modules used in our simulation are presented below:
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> Basic analogue modules

Analog basic modules are adder, multiplier, divider, mean value, setpoint and signal
splitter. The adder module is applied to add or subtract the signals Yin,1£Yin,2=£... £ Vin,.
The multiplier module can be used for a multiplication of analogue signals as Yin,1 * Yin,2
*...* vini. An amplifier is a special case of the multiplier module and used to amplify
the input signal yin by a factor of KP. The result is you=kp* yin. The term “setpoint”
refers to the target value of a variable. The set-point module may have two operation
modes (normal and tracking). In normal operation, the output signal is constant. For
example, the control system of the power system, aims for maintaining a constant
setpoint of zero residual energy, so that the balance is preserved, while the charge and
discharge slave controllers are constantly tracking the setpoint that the upper controller
imposes.

> Analogue Switch module

The switch module can be considered as a selector between two analogue signals. It has
two analogue input signals, a binary input signal and an analogue output signal. The
output signal follows the first input signal, if the binary input is TRUE and follows the
second input signal, if the binary input is FALSE. This can be described mathematically
with the help of the following equation:

Yous = {yin,b for ypin =10 Equation 66
out Yin, 2, for ypim =1

> Analog limiter module

A limiter limits the signal yin,1 within a predefined range using a high limit value Lhign
and a low limit value Liow. If the value of the input signal is between the given limits,
the value of the output signal follows the value of the input signal. These can be
expressed as:

Yin1 fOT Llow < YVin1 < Llow
Yout = Liow fOT' Yini < Liow
Lnign for Yin1 > Lnign

Equation 67
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Figure 46: Apros analogue modules
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Binary modules

Binary modules (Boolean logic elements) are required for selection purposes in many
control circuits. In such modules, the input can be binary or / and analogue signals,
while the output is always binary. Therefore, when an expression is evaluated by binary
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modules, the output signal is ether zero or unity (zero means FALSE and unity means
TRUE). The most relevant binary modules used in the dynamic simulation of a power
grid are explained below.

» Basic binary modules

In the following figure, the basic binary modules (AND, OR and NOT) are depicted.
The logical operator “AND” is applied in order to perform a logical operation AND for
binary signals. The output signal is TRUE, when all input signals are in TRUE state. If
one of the input signals is in FALSE state, the output signal is FALSE. This can be
described from the following equation:

_ {0; for Y1 =00rypm, =0 Equation 68
Yout Tl for Yipa = 1and yp, =1

Using the logical operator “NOT?”, the state of the binary input signal can be inverted.
It has only one input signal and one output signal and is operated based on the equation

_ {0; for yn =1 Equation 69
Your =11, for ypm=0

» Binary switch module

The switch module is a selector between two binary signals. It has two input binary
signals, an output binary signal and an input binary control signal. The state of the
output signal follows the state of either of the two input signals depending on the control
signal and can be mathematically expressed as

Yint,  fOr Yeon =1 Equation 70

Your = {yin,ZJ fOT Ycon = 0

> Limit value checker module

The limit value checker compares the analogue input value to a given limit value LV,
resulting in the following output signal:

e FALSE, if the value of the analogue input signal is greater than the given limit
value

e TRUE, if the value of the analogue input signal is smaller than the given limit
value.

This relation can be expressed mathematically using the following equation:

= {O‘ for ym =LV Equation 71
Yout = 1, for yi, <LV
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Electrical node, switch, load and source

The main function of the electrical node is to connect the electrical modules to each
other. The switch is located between two electrical nodes of the electrical circuit. The
order of nodes is insignificant, but they have to be same type, either DC or AC nodes.
The switch is controlled by a logical input. If the input signal is in TRUE state, the
switch is closed. In this case, the switch is a kind of a transparent module type, i.e. the
electrical nodes on both sides of the switch have the same voltage. If the input signal is
in FALSE state, the switch is open and there is no connection through this module to
another node. In addition to the above modules, the DC source module was also used
to model the connection of the BESS to the power system. This is actually a voltage
controlled current source where the voltage setpoint can be set. In this way and
considering the internal resistance of the source, the circuit current is calculated. This
current is the same that is responsible for charging the battery system. Thus, for
adjusting the amount of power that will be stored into the battery, the voltage of the DC
source was controlled which in turn regulated the current injected into the battery. The
reverse process was followed for the battery discharge where the connected load to the
node of the battery, (as depicted in Figure 48) was controlled by changing the active
load setpoint, which in turn affected the resistance of the load and finally the current
drawn from the battery. In this way, the discharge power could be controlled with the
Apros modules presented in Figure 48. The relation between the active load value and

the resistance is given in the following equation
Y, = i = ﬂ Equation 72
PTR,V?

where Y is the admittance (the reverse of resistance R.), P. the active load power and
VL the nominal voltage of the node which is connected with the Apros load module as
it can be noticed in Figure 48. In the figure below, the basic Apros electrical modules
described above are depicted.
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Figure 48: Apros electrical network modules
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6.1.2 Signal based EMS algorithm in Apros

Combining the signal and electrical modules described above, it was possible to
develop the system model in Apros software platform. It was also possible to model the
energy management system that supervised the system operation, based on the
previously developed strategy. In Figure 49, the complete Apros model is depicted.
From this picture it is possible to observe the following basic subsystems: the system
inputs, the power system balance, the battery model, the charge and discharge
controllers and the EMS. The balance of the system, was modeled as a signal adder that
was responsible for the summation of all the incoming signals which represented power
flows. The result, which was named as residual for our simulation, was considered as
an output signal and was then fed to the balance of system controller. The BESS was
modelled based on the Lithium battery module with the corresponding set of equations
described in 5.3.1. The battery charger with the DC source and the load was modeled
as described in the previous section (6.1.1) and finally the EMS was modeled as
described in detail below.

In the following table, the whole EMS operation is described as a truth table. The
different possible states of the system are investigated and the corresponding logic
controllers take the corresponding values. It must also be stated that for all Apros binary
modules, the output emerging from the bottom port is the logical reverse of the output
of the upper port. For the better understanding of the operational modes of the system
the table below with the Figure 49 have to be simultaneously observed. It is also
important to state for nomenclature reason that from the Figure 49 and the following
table it is Pofr = Psp and it is basically the input that encapsulates the diesel power
setpoint as derived from the algorithm of section 4.2.

Table 3: Truth table for the EMS operation, corresponding to Figure 49

Charging Mode (State = False) / Discharge Mode (State = True)
System Check PV Check

(Poy + Pep — P, > 0) (Ppy > 0.001) State MODE
TRUE TRUE FALSE CHARGE
FALSE TRUE TRUE DISCHARGE
TRUE FALSE TRUE DISCHARGE
FALSE FALSE TRUE DISCHARGE

Idling Mode (AND = False)

System Surplus Check Psp > Py, Psp =P,

(1Pey + Psp — Pl > 0.1) | (Pep — P, > 0.001) | (Pp > Py | 0 | MODE
TRUE FALSE TRUE TRUE -
TRUE TRUE FALSE | FALSE | IDLE
FALSE TRUE FALSE | FALSE | IDLE
FALSE FALSE TRUE FALSE | IDLE

The above conditional controllers are explained below. The complete Apros model
figure is presented in the next page.
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Table 4: Description of the logic controllers used in Apros EMS model

Logic Controller Purpose/Description Condition
1. | System Check Check the balanC(_e of system and the Py + Pop— P, > 0
residual
Check whether there is available PV
2. PV Check energy Ppy > 0.001
3 State Responsible for changing the switch _ {0, for charge
' positions in the electrical network | Yout = |1, for discharge
Responsible for detection of diesel
4 System setpoint matching the demand and |Ppy + Psp — P;| > 0.1 and
" | Surplus Check | not charging the battery with non- Psp — P, < 0.001
renewable energy
AND- : - .
Responsible for the idling state 0, for idle
5. selectorl- f1h Yout = .
selector? management of the battery 1, for noidle

The logic controllers that based on their operation the system changes states and which
are also depicted in Figure 49 and referred to Table 3 are the following: System Check,
PV Check, State, System Surplus Check (Pot = PL), AND-selectrorl-selector2The
condition in which the state is not described as true or false in Table 3 but instead the
value is dashed, is due to the fact that this state is mainly related with the charging state,
which is the task of other logic controller.

Fal
gPSP — P, < 0.001 ,the diesel power is very close to the demand and therefore

additional PV energy is produced, which in turn means that charging mode should be
selected. In all the other cases, either the system is balanced and therefore there is no
need for energy storage or supply, or the excess energy attributed to diesel
overproduction. For both of the cases described above, the battery should remain in
idling mode.

Regarding the Figure 49 it is remarked that the signals are distinguished in binary and
analog ones based on their color. The blue connections represent analog values signals
while the red or green lines represent binary signal values. The coloring is based on the
current signal value. Therefore, the red signals represent false values and the green
signals true values. The electrical circuit connections are also colored in blue since
analogue values are also transferred through them. The only exception is the battery
connection which is colored as black line.

Concerning the controller 1, its main operation is related with the check of the balance
between produced and consumed energy in the system. Specifically, the sum of the PV
power and the setpoint power at each time step is the same variable as the combined
curve which was produced from the algorithm of section 4.1.2. The controller 2 is
devoted for tracking the hours of the day that PV power is produced, while the controller
3 is responsible for executing the command of charging or discharging by integrating
the logic circuit with the electrical circuit. The controller 4 is tasked with the detection
of diesel power overproduction compared to the current demand. This is important
because in case that the diesel power is greater than the demand value, then the system
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should not consider a charging mode because the battery should store only renewable
energy. However, this is implemented by a threshold value, in order to clearly
distinguish the situations when the diesel is capable of providing the predicted power
and when this cannot be achieved and further or less power should be used. The use of
the absolute value function is applied in order to detect energy excess with simultaneous
overproduction of diesel engines, or just to represent the system balance, at the same
time. Then, the appropriate command is passed to the battery system via the controllers
who regulate the battery power. The threshold values at the mathematical conditions of
Table 4 are in kilowatts [KW]. For unit consistency and greater accuracy, the power
signal flows are given as kilowatts [kW] at the input section. Any necessary unit
conversion (i.e. W to kW) is implemented with the help of analogue gains (described in
6.1.1). The controller 5 checks the mismatch of the diesel setpoints with the current
demand with the help of a small threshold value. The input demand values are the true
load values and not the forecasted demand values. The controller 5, is responsible for
the idling state of the battery and is activated when the state should transit from charging
or discharging mode to idling mode and vice versa.

Another issue to be discussed regarding the charge and discharge controllers of the
Apros model depicted in Figure 49 is related with the setpoints. As it can be observed,
the measured value (which is transferred through a value transmitter module) that enters
the controller module is first passed through an analogue selector module, the operation
of which is described in 6.1.1. In the selector, the two analogue inputs are i) the setpoint
value of the controller and ii) the analogue value of the current measurement. This
configuration was selected so that when a specific controller is not used during a
specific time period in the simulation, the measurement value follows the setpoint
value. In this way, the controller deviation is forced to be zero which means that no
control action is calculated on its output. However, if this configuration was not used,
then the moment that the controller would be turned on and off, the control deviation
would be instantaneously very big, resulting in impulse control spikes in the output.
This could affect the system behavior, especially for the transition times and especially
when the controller is used once again in the simulation.

One last think to be considered is that the controllers used in Apros have built in anti-
windup protection that prevents them from going into saturation mode. This
phenomenon is related with the actuator limited range of values and the integrator
which is continuously integrating the constantly increasing control error (deviation).
This flaw is countered with the control integral term reset, when the controller output
reaches its limit values. In this way, the integral term of the PI controller is set back to
zero instead of building up more and more error, for the constantly increasing deviation.

In the following section, the results of the dynamic simulation of the model described
above, are presented in detail.

6.2 Dynamic simulation results

6.2.1 System operation results for short time periods

After the system model configuration is completed, the power system yearly operation
is simulated with the rules and the operational strategies mentioned before. Thus, it is
possible to estimate the performance of the predictive EMS algorithm regarding the
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impact of load forecasting to the real time operation of the BESS. As it was described
in the previous section, the system power balance was used as a criterion for power
generation-consumption balancing and it was monitored in order to be constantly zero
(i.e. no over/under production was allowed). For that reason, the battery power
delivered to the system was controlled according to this specification. However, at
specific times over the year period, the power balance was not achieved due to isolated
large forecast errors or operational limitations owed to the state of charge of the battery.
This surplus or deficit of energy was considered to be compensated by the diesel
engines supposing a flexible operation with small deviations around their base
scheduled operating point, as forecasted. A good overall performance of the system was
obtained with a significant success in smoothening the load curve around the engines
predicted operating points. As it makes clear in Figure 50, the new achieved operation
of the diesel engines consisted of basically two levels, one related with the offset
obtained from the optimization algorithm and one owed to successful peak shaving
implementation. In this picture, the indicative simulation results for a one-week
duration are presented, making possible the comparison of two different operational
strategies of the diesel engines. The first approach namely “OLD Diesel” corresponds
to the net load curve which is related with the diesel engine operation if the system
could absorb all possible PV energy production, meaning zero curtailment, despite the
lack of load forecasting. The second approach namely “NEW Diesel” corresponds to
the proposed methodology.
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Figure 50: Dynamic simulation results for a typical winter week

According to the previous figure, it is clear that the NEW Diesel operation curve is
much smoother than the OLD one while the produced PV energy is completely
absorbed by the system by supplying the artificially achieved excess PV power at the
time periods of peak shaving. This ensures that all renewable energy produced is
supplied to the grid resulting in a predicted and planned zero curtailment.

In Figure 51 the achieved results during a single day operation of the week presented
in Figure 50 are shown. As it is evident, with the proposed methodology the diesel
engines operate in a more monotonic mode, owed to the calculated offset level and it is
possible to avoid in a great extent the valleys and crests due to the PV generation at the
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specified time-periods. These time varying, and unplanned operating conditions are
eliminated with the proposed BESS operation and this has a significant improvement
to the magnitude and the gradient of the engine’s ramp-up for the following peak event
(Figure 51). Under this scope, a more precise dispatch planning of the diesel engines
can be obtained and the allocation of fewer additional engines to cover the ramp-up of
the load curve can be achieved. In addition, the acceleration rate of the engines, depicted
through the gradient of their operation at Figure 50 is decreased. The arrows in Figure
51 are used to illustrate the variation of the diesel operation for both the old and the
new case, in increasing and decreasing power production to meet the changing demand.
Provided that this is directly related with immense fuel consumption decreasing this
gradient results in a less aggressive engine operation and a more cost-effective fuel
consumption.
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Figure 51: Dynamic simulation results for a single day operation

The effect of the ramp-up reduction is associated with the simultaneous reduction of
the new peak maximum demand value that the diesel engine should encounter, via the
relatively higher diesel engine operation during the off-peak time periods. This fact is
attributed to the offset level which was decided by the algorithm and the constant
setpoints imposed for the corresponding time period. In case of absence of the storage
system, then in order to have zero curtailment and inject all possible PV produced
power to the grid. Therefore, the net load that would correspond to the diesel power
generation, would be unstable and constantly changing, based on the amount of PV
power injected. This effect could be intensified or weakened depending on the day of
the year, the season, the weather phenomena and the load profile of the specific day.
However, by implementing this methodology, a predictive operation of the diesel
engines combined with the BESS is possible to overcome the aforementioned
instabilities and at the same time reduced the maximum power injected from them to
the grid. This effect, considering the generally decentralized renewable production and
the dispersion of PV panels could have a great impact on the maximum demand charges
which is considered as a mutual benefit for the utility that provides the energy and the
customer that is charged based on the peak demand and the energy mix of the current
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time. Another effect of the methodology proposed, considering the result behavior of
the system depicted in Figure 50 and Figure 51, which will be discussed in detail to the
next chapter, is related with the dispatch operation of the diesel units. This could also
have an economic impact on the electricity price and combined with the higher
renewable penetration for each hour of the day, could further decrease the cost of
electricity of the system.

6.2.2 System operation result for the whole year

Although the operational strategy proposed in this study is suited for special cases, as
it was aforementioned in previous chapter section (4.2.1), the simulation conducted in
Apros software referred to a whole year operation. In this way, the same operational
strategy, which was decided based on the developed predictive algorithm was also
applied for the summer time periods during which the load profile was not ideally suited
for the specific algorithm implementation. Nevertheless, the system was simulated for
all the year and the total results are presented below with the help of the yearly
distributions.

In the following figure, the plots of the state of charge of the battery and the residual
power described in previous section (5.1) and specifically with Equation 31, resulted
from the whole year simulation of the system, are presented.
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Figure 52: Residual and SoC plots, for the whole year operation
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From the figure above, it is possible to observe SoC values represented with the green
line and the residual values with the blue line. The SoC takes values in the range of
[0,1] meaning that when it is 0, the battery is empty and when it is 1, the battery is fully
charged. Along the whole year operation, there are some instances that the battery is
fully discharged due to large forecast which are correspond to greater peak energy
demand than predicted. Also, the efficiency degradation effect and the limited rates of
charging and discharging power are also related with the aforementioned instances.
Nevertheless, there are two main regions that are clearly distinguished in Figure 52, the
one is the central region which is described by high values of the SoC and corresponds
to the summer time period and the other are the two side regions that are described from
lower SoC values and correspond to the winter time periods. These regions are derived
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from the different daily load profiles characterizing those seasons and the logic of the
developed supervisor algorithm. Therefore, during the summer time period, the battery
is at the majority of the time fully charged and cannot be discharged later when the peak
demand occurs, because this peak demand is happening at the same time period with
the storing time period. This is also the reason that the residual energy is larger and in
the direction of overproduction, meaning that the system has a relatively high amount
of excess energy and the diesel engines should be operated in lower loading conditions.
However, these issues could be resolved by allowing the system’s battery to be
discharged during the night hours but this should be studied in conjunction with the
diesel operation limits. Regarding the system operation at the winter time periods,
during which the developed algorithm works better, it can be observed that the state of
charge of the battery is constantly swinging between higher and lower values. As long
as the average maximum SoC at these time periods is around 75%, it can be stated that
the battery’s capacity size could be decreased, allowing for a smaller battery to be
integrated. However, this could also be optimized in another studied, as described in
detail in the last chapter.

In order to further evaluate the performance of the methodology developed in this thesis
for the whole year operation, (though it is better applicable when the peak demand is
misaligned with PV production which is the case for winter periods), a statistical
indicator is employed. Specifically, the kurtosis feature is calculated for the reference
case (Diesel + PV) and the case proposed (Diesel + BESS + Predictive EMS) by
implementing the following formulas:

kurtosis = Zh=1 (e(R) — xm)* Equation 73
(K - 1)xstd4
o = =1 (x(l) — xp)? Equation 74
std — K—1
v .
Xy = Ez x(k) Equation 75
k=1

where x(k) is a signal valuefor k=1,2, ...,K, and K is the number of data points, xsw the
standard deviation and xm the mean value. This feature which is commonly used in
vibration analysis for bearings health monitoring, expresses the quality of the data
values distribution around the mean value of the dataset. The latter has a direct relation
with the concertation of the data values around some central values and therefore it can
be an indicator of the peak frequency of the signal. Thus, a signal with a high frequency
of peaked values will typically have a greater kurtosis value compared to a smoother
signal. Therefore, the quantification of the results of this approach is accomplished
through the calculation of the kurtosis feature for the signals of interest in our study.
Therefore, for the signals “NEW Diesel” and “OLD Diesel” depicted in Figure 50 and
as obtained from the simulations, the kurtosis values are:
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Kurtosis oLp-Diesel: 2.5416
kurtosis new-Diesel: 2.1319

This reduction in kurtosis, accompanied by the probability distributions of the same
signals is depicted in the following figure.
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Figure 53: Distribution of OLD and NEW diesel operation

This reduction of the kurtosis implies an improved performance of the power system
for the whole year duration. In particular, observing the latter figure, two areas are
easily distinguished: The one is related with the peak reduction success level as the
frequencies around the peak demand values are considerably decreased, whereas the
other area is related with the level of smoothness of the diesel engine operation. The
intermediate power demand values with the proposed configuration are more uniformly
distributed compared to the frequency distribution of the previous case.

In the next chapter, the results for the BESS and the diesel engines behavior related
with the implemented methodology, are presented.
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7 Diesel and BESS operation under the proposed EMS

In this chapter, the results for the operation of the Diesel and the BESS are presented.
After the simulation of the Apros model was completed, it was possible to investigate
the operation of the diesel engines and the battery. The island’s existing diesel engines
were investigated in terms of unit commitment and loading capabilities while the
battery’s operation was compared to the ideal trajectory predicted from the developed
algorithm.

7.1 Diesel Engine Operation

In order to assess the diesel engine operation as predicted from the simulation of the
system, in a more realistic way, the existing and operating diesel engines at the island
of Astypalaia were investigated. The island of Astypalaia was decided (relatively to the
island of Madeira), because this information was possible to be retrieved more easily
and the order of the magnitude of the investigated “synthetic island” was closer to the
demand values of Astypalaia. This is better described in section 4.1.1. The diesel engine
model used in Astypalaia is the Mitsubishi S16R-PTA with a rated capacity of 1.275
kW and maximum gross delivered power 1.100 kW. The summer maximum achievable
delivered power is 1.000 kW. This difference is associated with the higher ambient
temperatures observed in the summer time period and the fact that the specific engine
model is air-cooled. In order to cover the current demand of Astypalaia, two of the
aforementioned engine models are used. The engine mechanical drawing is depicted
below.

Figure 54: Islands diesel engine drawing

Then, the operation strategy of the diesel generators should be identified. This was due
to the fact that there are two main operational strategies that are mostly applied in order
to operate a system of diesel generator machines. With the first strategy (load
following), a full load operation of as many diesel generators as possible is implied
while the peak and valleys are anticipated through spinning reserve diesel generators
that are operated in partial load conditions. In the second approach (load sharing), all
of the possible diesel generators are operated simultaneously and the total load is
divided equally among them. This means that the diesel generators may be operated at
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partial load for relatively higher amount of time and especially for the load values which
correspond to the switch off and on level of additional generators. This transition region
is very important for the power system because the starting up of a unit is a task usually
related with higher operational costs emerging from i) higher fuel consumption due to
ramping and dynamic effects and ii) higher maintenance cost related with the
interrupted operation of the engine. However, there is not a rule of thumb for which
strategy should be preferred, as it is highly depended on the size of the power system,
the renewable portion of generated power and the load curve pattern. Thus, the strategy
to be followed should be evaluated based on the aforementioned attributes and the
number and the size of the existing diesel engines. Regarding the strategy adopted by
the two diesel generators on the island under investigation, the operational strategy that
is followed is depicted in the following figure.

Diesel Engines
Operational Strategy

PrLoap
(Demand)

PLoap>Pnom

1 Diesel Generator ON 2 Diesel Generators ON

NO
PrLoap> Pmin PLoap> Pmin

Poc = Pmin Ppc =PrLoap Ppg1,2 = Pumin PpGiz2 =

PLoap
2

Figure 55: Operational strategy algorithm for the diesel engines of the island

At first, the total demand PLoap of the next hour is regarded as an input to the algorithm.
Then this is compared to the nominal power Pnowm in order to evaluate the number of
the units that will be active. For values less than the nominal power of a single
generator, one diesel engine is operated. Then the demand value to be covered by the
engine is compared to the minimum allowed power which is considered at the 75% of
the engine’s nominal power which was set as 1000 kW. Subsequently, the value of the
power that the generator will provide is decided based on this limitation. For the case
that the total demand is not possible to be covered by a single generator, both of them
are operated with the same logic described above. The total load should be equally
divided between the engines so that they are well balanced in terms of loading.
However, if the partial loading resulting from the balancing action implies an operating
point below the technical minimum, then each of the diesel engines is operated on the
technical minimum and the rest of the load is considered as dump load.

It should be stated that the technical minimum and the limits of operation, was set equal
to 75% of the nominal load, for efficiency reasons. This value of the technical
minimum, has been empirically proved and validated from the real system operators
and although the current technical minimum of the diesel engines is 50%, they are
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mostly operated over 75% so that the fuel consumption does not reach very high limits.
However, in this way the range of flexibility of the units is highly limited and this could
negatively affect the dynamic system behavior at changing loads such as the ramping
up for the peak demand cover or the PV generation time period where the diesel engines
should decrease their power output. In this study, no dynamic model of the diesel fuel
consumption was implemented, though this could be a topic for a future study.
However, the dynamic operation of a diesel engine, especially for the concept of this
study, could show significant results regarding the smoother operation achieved by the
developed algorithm, as it is depicted in Figure 50. Thus, the diesel engines were
considered as static models, as in the unit commitment problem formulation.

In order to evaluate the fuel consumption regarding the operational strategy described
above and depicted in Figure 55 the technical specifications of the engines were
retrieved from the manufacturer. The most important attribute of a diesel generator that
concerns the fuel consumption is the specific fuel consumption curve. This is basically
a representation of the engine’s varying efficiency relatively to the loading factor. For
calculating this curve, some data points were used from the manufacturer and then a
curve fitting for those data was estimated.

Fuel Curve
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Figure 56: Specific Fuel Curve fitted on manufacturers data

As it can be noticed from the figure above, the specific fuel consumption in terms of
fuel mass per energy unit, is higher for lower power delivery of the engine. This is
associated with the relatively lower efficiency at lower loading factors compared to the
region around the nominal loading. According to [50, 58, 59], the function that
describes the fuel consumption of the diesel engine can be represented as a linear
function of its power output. Regarding this thesis, the fuel consumption of the diesel
engines was calculated using the specific fuel curve depicted in the figure above and
the linear interpolation which was implemented to approximate the model described
previously. In this way, the equation of the fuel consumption which was derived from
data presented in Figure 57 was

F@)=fi-PO+f Equation 76

where F is the fuel consumption at every hour of the year, P is the current power
delivery of each diesel engine, fi and fc are the constants that are related with the
operating fuel consumption per power unit and the fuel used to maintain the engine
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spinning respectively. In the figure below, the linear relation of the fuel consumption
with the engine loading factor is presented.
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Figure 57: Linear correlation between the fuel consumption and the loading factor

Based on the operational strategy depicted in Figure 55 and the fuel consumption
depicted in Figure 57, it was possible to estimate the diesel engine operation for the
OLD and NEW cases, as described in 6.2.1. The unit commitment diagram is depicted
in the following figure, for the two cases mentioned before.
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Figure 58: Unit commitment for the diesel operation, under the proposed methodology

In the figure above, Pqg1 and Pqg. are the power produced by the first and the second
diesel generator respectively. As it can be noticed, from the corresponding encircled
regions, in the NEW case the operation is much smoother compared to the OLD case,
where the second unit has to be switched off in the time periods of enhanced PV power
production. In turn, this unit should be restarted later to provide additional energy for
the peak time periods. This fact is associated with an additional constant cost which is
incurred each time that the diesel power generator starts up or shuts down. In addition,
this variable operation deteriorates the engine’s health, compared to a more scheduled
and constant operation, as it is achieved with the proposed method. Regarding the fuel
consumption, it was found that the turning point for which the fuel consumption
calculated based on Equation 76, is less than the old case is the setting of the new
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allowable technical minimum to 0.728. This conclusion is justified based on the fact
that the peak reduction which implies less maximum instantaneous fuel consumption is
compensated from the smooth diesel operation which implies higher fuel consumption
to preserve. However, the total cost of electricity production is not only related with the
fuel cost but also with the higher maintenance cost and the variable operation of the
diesel engines of the previous case. The peak fuel reduction is also depicted in the figure
below.
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Figure 59: Instantaneous fuel consumption for the OLD and NEW cases

As it can be observed from the figure above, the peak demand reduction is combined
with the peak fuel consumption of the diesel engine. However, one fact that affects the
fuel consumption and is not predicted from this static analysis, is related with the
dynamic phenomena for the loading impulse changes of the diesel engines, which are
inevitable when the PV production is maximized. From this perspective, many possible
options could be adopted, considering the proposed operation methodology, that will
enhance the fuel reduction. This could be a downsizing of the diesel engines or the
abolition of one diesel engine. Considering the scenario of one diesel engine operation,
the fuel consumption was calculated for the first 4000 hours of one-year operation, in
order to assess the winter time period only and it was found that the fuel consumption
could be decreased by decreasing the technical minimum based on the following
diagram.

Fuel Reduction [kg]

0.65 0.67 0.69 0.71 0.73 0.75

Technical Minimum Limit

Figure 60: Single diesel generator operation — new technical minimum
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7.2 Battery Storage System Operation

The results of the simulation from the battery perspective are presented in this section.
The BESS was operated based on the system of switches and the energy management
system developed in section 6.1.2, determining the target for the power injections from
or to the battery system and the corresponding time periods. From the figure below, it

is possible to observe the battery power delivery and state of charge variation patterns
for a nine days period.
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Figure 61: Battery behaviour for 8 days’ time period

As it can be noticed from the figure above, the PV power is simultaneously plotted with
the main operational attributes of the battery. The state of charge variation follows a
constant trend which is described from increasing SOC for the hours of PV production
and decreasing or stable SOC for specific time periods right after the PV power
generating time periods. This pattern is highly compatible with the logic developed by
the algorithm, which implied a charging time period when and only when PV power is
available, while the battery system could discharge in different time periods. However,
the highest amount of power delivery from the BESS should be right after the last hour
of PV production, which is also the case depicted in Figure 61. For a detailed view, the
same results are presented for a single day period, in the figure below.
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Figure 62: Single day operation BESS results

It is revealed that during the time period of PV production, the BESS stores energy that
it is supplied later on during the peak demand. For that reason, the SoC of the BESS is
around its daily maximum values right before the peak demand event and subsequently
it supplies the daily maximum power when the peak demand event is reached. From
the relative position of the vertical lines of Figure 62, it is clear that the maximum PV
energy production precedes the maximum value of the battery’s SoC, which in turn is
followed from the maximum value of the power delivered from the BESS. The latter,
is also achieved at the same time of the maximum peak demand value, which is another
indication that the peak demand is satisfied from the stored renewable energy.

In order to assess the ability of the developed algorithm (section 4.1), which was
implemented via the energy management system in Apros simulation platform (section
6.1.2) to predict a reasonable behavior of the battery system, the scheduled and the
resulted battery power trajectories were compared. In Figure 63, the injected and
absorbed power flows from or to the battery system are presented. The injected power
is regarded as a positive battery power value while the absorbed energy, associated with
storage is represented by the negative battery power values. Specifically, in the figure
below the two aforementioned trajectories are plotted on the same diagram for the day
63 of the year, which corresponds to a typical winter day. The results concerning the
combined power production curve, the energy to be stored and the preplanned system
operation for day 63, which were emerged from the developed algorithm, are presented
in Figure 32 and Figure 34 respectively. Regarding Figure 63, the red dashed line
represents the scheduled trajectory of the battery, which is predicted based on the load
forecasting of the next day and the algorithmic procedure for storing enough energy to
cover the peak area in a later time period. The black solid line corresponds to the true
battery usage after the system was simulated with the real time control and the energy
management systems integrated.
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Figure 63: Battery actual vs scheduled power flows for day 63

In the figure above, it can be observed that the scheduled battery profile is similar to
the actual profile that was monitored during the system’s dynamic simulation. In
particular, the two profiles present the same patterns and trends regarding the time
periods of charging and discharging the battery system, while a delay associated with
the actual case compared to the scheduled can be noticed. This can be attributed to the
real time dynamics of the system which are mainly affected from two major aspects.
The first is related with the current battery status, concerning the variables operational
limits and gradients and the response time of the battery’s dynamic behavior. The
second aspect is related with the true demand values that are faced from the battery
system that can be slightly different from the forecasted values, based on which its
operation was planned. However, the overall battery behavior seems to follow the
mainstream daily profile which is characterized from storing the artificially generated
excess of renewable energy during the sunlight time periods and injecting it back to the
grid during the peak demand time periods. In addition, the maximum injected power
which can be observed from the battery in Figure 63, coincides with the scheduled peak
hour demand. Furthermore, the actual injected power observed from Figure 63, is very
close to the scheduled power injection value, which was estimated as the peak reduction
level in section 4.1.1, equal to 0.1 MW of the daily maximum power demand, as the last
was predicted from the neural network.

In the following chapter the cumulative conclusions and proposed future work are
presented.
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8 Conclusions and Future work

8.1 Basic conclusions

In this study, a predictive energy management system (EMS) based on load forecasting
was introduced and integrated with the operation of a battery energy storage system
(BESS) for peak demand reduction and load smoothening of a South-European islanded
power grid. The results of the combined synergy of prediction and a new developed
algorithm with real time control of the BESS, revealed that the peak shaving with
renewable energy load levelling and smoothening in conjunction with a better diesel
generators scheduling, can be achieved.

Specifically, the load forecasting was realized by implementing a single-hidden layer
feedforward neural network for day ahead hourly predictions and a good estimation of
the next day’s load patterns was achieved. The results obtained with the developed
artificial neural network (ANN) model were satisfying, despite of the simplicity of its
structure and the number of input variables. The training algorithm used in this study,
(Levenberg-Marquardt) adaptively varied the parameter updates between the gradient
descent and the Gauss-Newton methods, in an effort to find the global optimum in a
robust way. In addition, the number of neurons of the developed network was subject
to investigation in order to preserve the number of neurons that resulted in the lowest
possible error between the model’s output and real data. The forecasting quality of the
network was identified with the evaluation (calculation) of a commonly used index
(metric) in machine learning algorithms, called mean absolute percentage error
(MAPE). The training of the developed neural network module was based on the hourly
demand values for two consecutive year time periods (2014, 2015) and the model was
able to predict the daily load curve of the next day, on an hourly basis, for the test year
(2016). In this way, the machine learning and specifically the structure of an ANN was
proved as a reliable tool for load forecasting. A basic conclusion that could be derived
from the performance of the ANN model, is that a relatively simple structure with small
amount of computational resources and required calculations time, should be
satisfactory for short term load forecasting.

The forecasted load curve was then used as an input for an optimization algorithm
which was also developed under the scope of this thesis. This novel algorithm used as
input variables the forecasted load and the PV power generation of the next day, while
the peak load reduction could also be determined. The PV power production was
estimated based on a well-validated data driven mathematical model and, in this way,
it was possible to generate renewable power production time series. The installed
capacity of renewable power for the island was estimated to be 300 kW while the peak
demand values could reach 1.3-1.5 MW. The developed algorithm was adjusted to
counterbalance the high peak demand of the night hours, which was the most common
pattern associated with the island’s power curve during the winter time period, as it is
the case for other similar power systems. This pattern is primarily related with abrupt
load changes and steep gradients which are formed due to the deferment of the peak
renewable power generation with the peak demand values.
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Consequently, the developed algorithm was assigned to search for an appropriate
operational level for the diesel generators which could result in load smoothing and
peak shaving of the maximum demand values simultaneously. This was achieved with
the introduction of an iterative process by which an artificially created excess of
renewable energy could be stored in a battery storage system, during the sunlight time
periods. This amount of energy, which was expressed as the area under the
corresponding power curves, should be requested later from the system to cover the
demand associated with the peak load time period. The optimum operating level of the
diesel generators that would result in enough energy surplus for storage, was evaluated
as the algorithm’s output. This iterative procedure would be then terminated only after
the surplus energy would be equal to the peak energy demand. After the algorithm was
terminated, the diesel and the battery operation setpoints were retrieved and were then
used as inputs for the dynamic simulations. The algorithm proved to be stable for the
majority of the days that it was executed, achieving an equilibrium between the peak
demand and the stored energy. However, during the summer time period, although the
results obtained were aligned with the general concept, the method was not efficient as
the demand coincided with the peak PV power generation.

Thereafter, a dynamic model of the power system was developed in Apros simulation
platform and the system operation was investigated. Although the aforementioned
developed algorithm was better suited to a particular winter pattern of the load curve,
the system was simulated for a whole year time period and the corresponding results
were obtained. The developed model was based on analog and binary signals that
represented the power flows and the control actions related with the system’s operation.
In this way, a centralized energy management system could be integrated into the
dynamic simulations which would implement the strategy of the supervisor algorithm,
as mentioned before. Nevertheless, the battery model used in this simulation was
detailed enough in order to consider the non-linearities of the charging and discharging
processes, the capacity losses related to the cycling usage and the aging of the battery
and the transient behavior concerning the current flow. For the better representation of
the system’s dynamics, an appropriate control structure was employed, that
implemented the low level real time controls. A cascade feedback control loop was
implemented with separate PI controllers that regulated the injected or absorbed battery
power by adjusting the current flows and tracking the scheduled setpoints. At the same
time, the balance of the system was also regulated by the BESS which would respond
to sudden changes in the state of the system, if this was achievable. Otherwise the diesel
generators should ensure the balance of the system, by violating their scheduled
operation. These issues, that were mostly related with the dynamic behavior of the
battery and the forecasting errors associated with the ANN model were compensated
by this general setup. Thus, the centralized EMS could supervise the setpoints of the
different energy systems of the island, which would then be achieved through specific
task dependent controllers.

The system was simulated for a whole year and except from the peak shaving of the
load curve by using stored renewable PV energy, a significant reduction in the
variability in diesel generators operation was also achieved. This was also highlighted
in the corresponding curves that were obtained from the simulation but also from the
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reduction of the kurtosis factor, which was used as a signal smoothening factor. The
proposed method reinforced the power grid ability to integrate renewable power in a
more robust and planned way, leading to predefined zero curtailment and possible cost
reduction through fuel savings. This was also depicted though the diesel generators
operation that proved to be more stable leading to less start up and ramp up operations
for the constantly variable loading conditions. With the implementation of the method
proposed in this thesis, the load curve of the islands power system was smoothed while
the new maximum demand values were covered by renewable energy instead of
conventional. The method could also be implemented in similar power systems that
are characterized by peak demand during the night hours and a considerable amount of
installed PV power.

8.2 Future work

Considering the proposed simulation framework with the implementation of a
predictive energy management system, developed in the framework of this thesis, there
are many possible future steps that could improve the method and have a positive
impact on the overall procedure.

At first, the neural network’s input variables could be investigated by considering many
different combinations, including further weather data such as rainfall, wind and
cloudiness and special days recognition. Also, the implementation of a NARX
(nonlinear autoregressive model with exogenous inputs) could be investigated, instead
of the developed feedforward ANN model. Another important factor that could be
considered during the forecasting process, could be the development of a classification
algorithm for finding special days that present a different profile compared to the
standard similar days. In this way, the forecasting module could be improved and a
better MAPE could be achieved. The possibility of implementing other machine
learning methods for load forecasting could also be investigated. These could be either
statistical methods such as support vector regression (SVR) or artificial intelligence
methods such as deep neural networks.

Regarding the developed optimization algorithm, the following upgrades could be
implemented. Initially, the peak shaving level which is considered as a constant input
parameter for the current version of the algorithm, could be subjected to an optimization
process, achieving the maximum possible peak shaving for each day of the year. This
could be different for each day and it would be mostly influenced by the load and PV
power production profiles. Another issue that would greatly update the developed
algorithm would be the integration of a pattern recognition algorithm. This would
basically identify the load curve profile of the next day and then decide in an automatic
way whether the profile is suitable for the current algorithm implementation or not. In
case that the identified load profile would be inappropriate, (i.e. summer days’ time
period), then another technique should be employed that would not abuse the battery
operation and store energy unnecessarily. The pattern recognition could be
implemented with a symbolic aggregate approximation (SAX) algorithm.

Another issue that could be considered for improvement of the overall methodology, is
related to the implementation of PV power production forecasting based on previous
data. This could enhance the overall methodology, by eliminating the need for PV
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power forecast to be inserted as input time series, while this could be achieved from a
similar algorithm, as the developed load forecasting module. In addition, the
optimization of the battery size could significantly improve the capital cost of the BESS
system and integrate the design with the operation of the system. Also, the fuel
consumption of the diesel generators incorporated into a techno economical study,
could enlighten the economic feasibility of the proposed configuration, leading to the
reduction of the number and capacity of the existing diesel generators. Last but not
least, a better tuning of the real time charge controllers or the implementation of
advanced control, could slightly improve the systems dynamic behavior, though this is
considered as a secondary effect.
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