Ay
£
g?

poh
_
\
i,
NPOMHOEV S
\J B ——
1§L!!P?0P05

EOviko Metoofro ITolvteyveio

>xoAn HAektporoywv Mnyovikov

Kot Mnpyoavikov YToAoylotov

Topeag Teyvoroyiog ITAnpogopikng ko
YmoAoylot®v

Epyaotnplio Mukpodmoloylotodv Kot
Ynorokov Zootnpatowy

Resource Management Techniques for Embedded
Architectures executing Deep Neural Networks

Texvikég Awxyeiprong Iopwv yia BaOia Nevpwvikd Aiktuo ov
ektedovviat oe Evoopatopéveg Apyttektovikég

AITTAQMATIKH EPTAYIA

®OIBOY TXIMIIOYPAAY

Emiprénov : Anunrplog Zodvpng

AvanAnpwtig Kabnyntng E.M.IL

ABnva, Iovviog 2018

EOviko Metoofro ITolvteyveio

>xoAn HAektporoywv Mnyovikov

Kot Mnpyoavikov YToAoylotov

Topeag Teyvoroyiog ITAnpogopikng ko
YmoAoylot®v

Epyaotnplio Mukpodmoloylotodv Kot
Ynorokov Zootnpatowy

\A’)

c“\,
FQK:’:’-}F'B
POMHOEVS .
— E
W==El

3

)

Resource Management Techniques for Embedded
Architectures executing Deep Neural Networks

Texvikég Awaxeiprong IHopwv yiox Babiwx Nevpwviké Aiktoa mtov
ekteAoVvTal oe Evoopatopéveg ApXLTEKTOVIKEG

AIIIAQMATIKH EPTAXIA

®OIBOX TXIMIIOYPAAX

Emiprénov : Anunrplog Zodvpng
AvamAnpwtig Kabnyntg E.M.IL

EykpiOnke amd tnv tpipedn) e€etaotikn emtpomnr) nv 18n Iovviov 2018.

Anpntplog Zobvtpng Kuopad Iexpeotln T'ewpyrog I'kodpoag
Avaminpotig Kabnyntig EMIL. Kabnyntrg E.M.IL Enixovpog Kabnyntig E.M.IL.

ABnva, Iovviog 2018

doifog ToymovpAag

At opoatovyog HAextpoAdyog Mrnyovikog kot Mnyavikog YToloylotov
E.M.IL

Copyright © ®oifog ToymovpAdg, 2018.
Me empOAiagn mavtog dikanwpatog. All rights reserved.

Amayopedeton 1 avtiypogn, omobrikevon kot dtavoprn tng moapovoog epyaciog, €€
OAOKANPOUL 1] TUAHATOS OUTHG, Yl eurmoplkd okomd. Emtpémeton 1 avatdmwon,
amofnkevon kot Stavopr yir okomd Un kepOOCKOTLKO, €KTOLOEVTIKNG 1) EPEVVITIKNG
@boMG, LTTO TNV TPoLTOOeoT VO VAPEPETOL 1) TINYT] TTPOEAEVLONG Kol Vo dLaTnpeiTal TO
Topov pnvope. Epotrpata mov agopoiv tn xprion tng epyaciog ylo kepdockomikd cKomo
TpémeL v artevOOVOVTAL TPOG TOV GLYYPOPEQ.

Ot amoYelg Ko T CUPTEPACHATA TTOL TEPLEXOVTAL G AVTO TO EYYPOPO eKPPALOVV TOV

ovyypagéa ko dev mpémel va eppnvevdel OTL avTiTpocwebovy TIg enionpeg Oéoelg Tov
EBvikob Metoofiov IToAvteyveiov.

[TepiAnyn

To tedevtaio xpovia, 6TO emMOTNHOVIKO TTedI0 TNG PNYAVIKNG pabnong, mpoypoto-
TOLOVVTOL EKTETOPEVES EPELVES YOPw amtd T Texvntd Nevpwvikd Atktva (TNN). Tae TNN
QIOTEAOVV LITOAOYLOTIKA HOVTEAQ, EPTTVEVGHEVA ATTO PLOAOYLKOVG OPYXVIGHOUGS, TA OTTOLo
EXOLV KATAPEPEL VAL ETEPAGOLY GE ATOOOGT] TLG TTPOTYOOHEVEG HOPPES TEXVITHG VONHO-
o0VNG, YO XPKETA aTd T TPOPARHATR TNG HNXOVIKAG paBnong. Mia vokatnyopio Twv
TNN eivon oo Zoveliktikd Nevpowvikd Aiktoa (ENA), mov eppavilovv peyddn emtuyio
OTNV WTOTEAEGUATLKT ETTIAVCOT) TPOPANHATOV TNG OPAGTIG LITOAOYLOTOV, OTWG elval 1) ava-
yvopion mel®dv, GTEPEOCKOTLKT] OpACT) K.O

T TOAAG otd T cVYYpOVEL TPOPATHOT TNG OPACTG VTTOAOYLGTOV LITAPYEL HEYAAN
emOupia Yo eKTEAEGT) TTPOTELVOHEVOV ADCEWMV G EVOWOHATOHEVES TAATPOPHES, TTOL SivoLV
ELPOAOT) GTNV KATAVAAWOT) eVEPYELAC, EQOGOV OAa delxvouv Twg To Atadiktvo Twv Ilpay-
patev O kuplapynoel T eTOpEV X pOVLL.

210)0G NG TapoLong JUTAMHATIKNG epyaciog elval 1 avarrtugn evOG CUGTNHATOG
ekTéAeong ENA, Yyl Tov eVeOHATOpHEVO TToAveTeEepyaotn) Myriad2. ITio avalvtikd, n Myriad2
EXEL WG HEYOADTEPO TTAEOVEKTNHA TNV XAUNAT] KATAVAAWGT] EVEPYELOG, VA HOVASAL LITO-
Aoytopo®. I var emitdyel auTd T YopokTnpLloTikd, n Myriad2 cuvictatal arnd 12 VLIW
eme€epynoTéG, XTLIOHEVOUG YOP® arrd pia pikpry adAd ko ypryopn pvipn. H vAomoinon puog
LTTOdOUNG eKTENEOTG OeV elval atAr] LITOBeoT), OTAV Kavelg €xeL TNV TOSOGT] KL TNV KOLTL-
VOAWOT) eVEPYELXG WG Kuplopya KpLthpLa. Ao Tn @Oon Toug, Toe ENA oo todv HeTapopd
HEYAANG TOGOTNTOG OedOpHEVOV, He TO PEYADTEPO TTPOPANHA VoL eiVOL 1] ATTOTEAECHATLKT
dwatrpnon vymAov pvBpov porig dedopévwv mpog tovg 12 eneepyaotég. Katd cvvéneia,
QUTLTELTOUL TTPOCEKTLIKOG GXESLAGHOG O TNV TOTODETNOT TV OESOHEVOV KOL TOV KOSLKX GTLG
dudpopeg tepapyieg pvpng. YYnAn arddoom kot YoUUNAY KOTOVAA®GCT) PITOpEl Vo eTLTED-
xOel pOVOV edv OpPLOPEVOL TUHHOT TOV CLGTHHATOG eKTEAESTS LAOTTONO00V o€ supPolikn
YAdooa, kabotovtag amapaitntn tnv epfabuven otig Wiontepdtnteg Tov LALKOL. TéAog,
TO YEYOVOG OTL TO GUGTNHA €LVAL TTOAVETEEEPYATTIKO, AVEAVEL TNV TTOAVTTAOKOTNTO LKOHO
TEPLOCOTEPO.

Ye peydho Pabpod, o mapordve TpofARpATO GLVAVTOVTOL 68 K&DE EVOOPATWHEVO
eneepyaotn, CUVENOG oL TPOTeLVOpEVeG HeBodoloyleg kol Tpooeyyicelg mov akoAovBoo-
vtou €xouv medio epappoyng ¢€w amd n Myriad2.

AéEerg kAerd

Mnyovikn pabnomn, Zvvehiktikd vevpwvikd diktva, Evoopatwpéva cvotipata, [loAvere-
EepyaoTikd cvotnpate, Myriad 2

Abstract

During the recent years, the scientific field of machine learning has made an extended
research effort towards the development of Artificial Neural Networks (ANN). ANNs are bi-
ologically inspired computational models, which have managed to exceed the performance
of previous forms of artificial intelligence for a lot of machine learning tasks. A subcate-
gory of ANNs are Convolutional Neural Networks (CNN), that show great success in the
effective solution of computer vision problems, such as pedestrian detection, stereoscopic
vision etc.

For many of the contemporary computer vision problems, there is a great desire to be
able to come up with ways so that their solutions can be executed in embedded platforms.
These platforms pay great attention to energy consumption, since the Internet of Things
will most likely prevail in the coming years.

The goal of this thesis is to develop a CNN engine for the Myriad2 embedded processor.
Specifically, the greatest advantage of this processor is the low energy consumption, per
unit of computation. In order to achieve such characteristics, Myriad2 comprises of 12 VLIW
processors, built around a small yet fast memory block. Implementing such an engine is not
an easy task, especially when somebody is driven by performance and energy consump-
tion as leading criteria. Naturally, CNNs require the transfer of large amount of information.
This makes the task of keeping a high rate of data flow towards the 12 processors the ma-
jor problem. Consequently, a careful data and code placement design across the various
memory hierarchies is required. High performance and low energy can be achieved only
if some parts of the engine are implemented in assembly language, which requires delving
into hardware subtleties. Finally, the fact that the system is multiprocessing increases the
complexity even further.

To a great extent, the problems above arise in every embedded processor, making the

suggested methodologies and approaches applicable outside the scope of Myriad2.

Key words

Machine learning, Convolutional neural networks, embedded systems, Multicore systems,
Myriad 2

Evyaplotieg

H napotoa dimlwpatikn epyacio mpaypatorowifnke oto Epyastripio Mikpoimolo-
ylotov kot Pnelakev ZooTtnpatev g ZxoAng Hlektpoldoywv Mnyoavikev kot Mnyovi-
KoV Yrohoyiotodv tov EBvikod Metoofiov IToAvteyxveiov amod tov Iodvio tov 2017 éwg tov
IoVvio Tov 2018.

Katapydc, 0 0ela va evyapiotiow tov emiPAémovta kabnyntn pov k. Anpitpro Xoo-
VTPT Yl TNV evkopio oL Hov £dwaoe va JoLAEYw e éva Waitepa evOLEPOV Kol oVY-
xpovo O¢pa. Emtiong Oa n0ela vor evyoaplotriiow OAOVG TOVG EPEVVITEG TOV EPYORGTNPLOL YiX
TIG EVYAPLOTEG OTLYHES KaL TNV LILOoTNPLEN KaBOAN TN Stdpkelx ALTNG TNG SLITAWUATIKTG.

Télog, oAokANpOVOVTRG éva TTepLTETELOOEG KePAAO TG {wng Hov, O Beda var aupte-
POG® €€ OAOKAN POV TN SUTAWHATIKY) AUTT, GTX ATOPX TTOL GE AUTH TNV TOPELa pe aTrpLEay
pe ovidroTédeta, kKaBévag pe ducd Tov TPOTO, SLOTL XWPIG eKelva, OAa OG0 GTiHEpa ElvaL eL-

KTA 1] TeTeleopéva, O Emheav oTn opaipa TG paviaciog.

®oifog TowmovpAdg,

ABnva, 18n Iovviov 2018

Contents

IepiAnym o L e 5
Abstract 7
Evxaplotieg 9
Contents 11
Listof Tables 15
Listof Figures 17
1. Texvikég Awaxeipiong [Iopwv otnv Ektédeon Babiwv Nevpwvikov Atktdwv

o EVoopotwpéveg ApXLTEKTOVIKEG 21
1.1 Hpnxovikp pabnom o oo oo 21
1.1.1 To eldn ng unyavikng pébnoeng L 21
1.1.2 Toa&wvounon otnv emtnpodpevn adnon L. 23
1.1.3 IToAwdpopnon otnv emtnpobpevn pabnen 24
1.2 ZUVEMKTIKX VEUPWVIKA OLKTUO . . . o v o v v oo e e e e e e e e e 25
1.2.1 Awtafn tov dedopéveov oe Eva ZNA . L 26
1.2.2 ZvvnBeg otpwoelg mov xpnoipomotodvtal ota INA . .. L L L L. 27
1.3 Caffe: Zvvehiktikn Apyitektovikn yix [priyopn Evoopdtwen 28
1.3.1 Exmaidevomn evOgOKTOOUL 28
1.4 Tlolveme€epyootikd SoOCMyriad 2 L. 29
1.4.1 Tevik& XOUPAKTNPLOTIKA . « o o v v v v e e e e e e e e e e e e e 29
1.5 EAeyxktig DMA tngpviung CMX oo oo oo 32
1.6 MeBodoloyiot KAL VAOTTOINGT) o o o v oo 32
1.6.1 H Python diemopn NG eQOappoyng oo 34
1.6.2 O drayelplotig TNG EKTEAECNC TOL OIKTOOL . . o o v v o o v v e 36
1.6.3 YmoloyloTikég HEBOSOL TNG EPAPHOYNAG - « « v v v v v o e e 36
1.7 AELOAOYNOT TNGUAOTIOINGMG « « o v v v v e e e e e e e e e e e e 38
1.7.1 Apywomoinon tng drodikaoiog a€loAdynong 38
1.7.2 EEepedvnon Tou xOpov oYedOHOD . . . L. L 39

2.

12

Introduction to Machine Learning and Neural Networks 43

2.1 Machinelearning 43
2.1.1 Types of machinelearning 43
2.1.2 Supervised learning classification 0oL 45
2.1.3 Supervised learning regression 46
2.2 Convolutional Neural Networks 47
221 DataarrangementinaCNN 47
2.22 Common layersusedtobuild CNNs 48
Caffe Framework and Myriad2 Embedded platform 51
3.1 Caffe: Convolutional Architecture for Fast Feature Embedding 51
311 Layers 51
3.1.2 Network training 52
3.2 Myriad 2 multicore SoC L 53
33 CMXDMAController. 56
3.4 Myriad2 Development Kit oL 56
3.41 MDK Components 57
Overview of the CNN Engine 59
4.1 Anabstractview L 59
4.2 Introduction to the Python Interface 60
43 Introduction to the Network Manager 62
4.4 Introduction to the Computational Engine 63
4.5 Evaluated Convolutional Neural Networks 64
451 Alexnet 64
452 ZFNet 65
453 VGG 65
454 NiN-ImageNet 67
455 Googlenet. 67
45.6 SqueezeNet 70
Management and Configurationof CNNs 73
5.1 Configuring the hardware for the application 73
5.1.1 SettingupRTEMS 73
5.1.2 Setting up Myriad2 SoC 78
5.2 Configuring the dynamic memorymap 83
5.3 How layersaredescribed Lo oL 85
5.3.1 The Layer Class definition 85
5.3.2 The Layer Class execution method 89
5.4 The network architecture inside Myriad2 90

6.

7.

8.

54.1 The network dynamicarray 91

5.4.2 The weights and biases of the network 92
5.5 The Network Manager 93
5.6 ThelInferencemode 95
5.6.1 The Single Processormode 95
5.6.2 The Dual Processormode 96
57 TheProfilingmode 98
5.8 Optimization and Evaluation of the C++ LEON Framework 102
5.8.1 Optimization techniques 102
582 Evaluation 102
Vision Computational Libraries 105
6.1 The Local Response Normalization layer (LRN) 105
6.1.1 Definitionandusage of LRN 105
6.1.2 LRNDMA Algorithm 108
6.1.3 LRN Generic Computational Algorithm 112
6.1.4 Hyperparameter specific assembly algorithm 114
6.1.5 Iterative method design for float exponent calculation 116
6.2 TheConcatlayer. 118
6.2.1 Definition and usage of Concat 118
6.2.2 Implementation specifics L0 119
6.3 Direct Convolution 1x1 implementation 120
Library generation interface00 123
7.1 The library generation function 123
7.1.1 Caffe and library lists initialization 124
7.1.2 Bottom nodes extraction 125
7.1.3 Parallel networks configuration 125
7.14 Appending to libraries and writing files 128
7.2 Library compilation and execution 0oL 129
7.3 Interface user level abstraction oo 131
Design Space Exploration interface 133
8.1 Pareto optimal points generation oL 133
8.1.1 Definition of Paretopoints 133
8.1.2 Pareto algorithm implementation 134
8.2 Pruning of the Design Space 138
8.2.1 Pruninglemma L 139
8.2.2 Discrete layer pruning oL 141
8.2.3 Recursive pruning 142

8.3 Exploration for concurrent layer execution 144

9. Evaluation and Experimental Results 149
9.1 LRNEvaluation 149

9.2 DMA Engine Evaluation 153
9.2.1 Increasing computationalload 153

9.2.2 Constant computationalload 157

93 CNNEvaluation 158
9.3.1 Evaluationsetup 158

9.3.2 Computational scalability 158

9.3.3 Design Space Exploration 160

10. Future Worko 165
Bibliography 167

14

List of Tables

1.1 Aemtopépeleg TV VELPWVIKOV SIKTOWV TTOL X propomotiOnkay yio tnv aflohdoynon 38
1.2 ABpolotikd amotelécpata Tov TpOToL Prpatog tng pebodoroyiag 41

1.3 Z0ykplon peto€d Tuxoiog TAPOUETPOTOLN GG Ko BEATIOTA TPOCAPHOCHEVNG

TopopeTpomoinong ot XNA. . . L L L L 41
5.1 Alexnet profile output for execution time 100
5.2 Alexnet profile output for average power consumption 101
8.1 Execution time of two GoogLenet’s parallel layers (ms) 145

9.1 Execution time (ms) and average power consumption (mW) of LRN C im-
plementation 150

9.2 Execution time (ms) and average power consumption (mW) of LRN Assem-

bly implementation 151
9.3 Time spent in LRN layers for GoogLenet, AlexNet, ZFNet 153
9.4 Details of CNNs used for evaluation 158
9.5 Cumulative output results of the 1st step of the methodology 162

9.6 Comparison between straightforward and fine-tuned CNN implementations 162

15

List of Figures

1.1 Ta 2 Baowkd idn g pnxovikng padnong 22
1.2 Avadwkr) Ta€vopnon otny emtnpoopevny pabnen ... L L. L 23
1.3 Linear regression in supervised learning 24

1.4 Tlopaderypo tomoroyiag évog NN katdAANAOL Yo avay v pLo XELpOYpop®V

UNOloV . . o o 25
1.5 Awxtopn evog 6ykov dedopévwv elc0dov 4 x4 X 3. Amtoteleitan otd 3 prTpec,

IOV OVTLOTOLYOUV OTX 3 KOVAALX TNG ELKOVOG .+« « v v v v v o e e e e e 26
1.6 Iapaderypa katnyoplomoinong Yneiwv tov cvuvorov dedopévov MNIST,

070U To pITAe 0pBOYDVLIX VOTTAPLETODV GTPOCELS KL T KiTpLva 0pBoydvia

OVATTOPLETOVY T OEQOPEVA TTOV TTALPAYOVTAL KL TPOPODOTOVVTAL O AVTEG. 29

1.7 Emoxomnon tov vAkod tTng Myriad2o Lo 30
1.8 AemtopepécTepn eMOKOMNOT TOL VALKOU TG Myriad2 31
1.9 CMXDMA eleyktigngMyriad2 oL 33
1.10 Overview of the CNN implementation. 34
1.11 Python Atemtapn} o 35
1.12 O SLoyeLlploThG TOV CUVEAKTIKOV VEVPOVIK®OV SIKTO®V o 37
1.13 Extéleonota SHAVES 38
1.14 Brjpa 1 tng peBodoroyiog: BEATIOTN TPOGAPHOYT TV VELPOVIKOV SLKTO®V
otqvMyriad2 40
1.15 Amoteléoparta tng pebodoroyiog: Trade-offs petald xpovou exkTéAeonc, KATAVAA®GTG
evépyelag kot akpifeiog tpofAeyng peta€d twv dixpdpwv ENA. 41
2.1 Machine learning basic types overview 44
2.2 Binary classification in supervised learning 45
2.3 Linear regression in supervised learning 46
2.4 Example topology of a CNN suitable for handwritten digit recognition . . 47

2.5 Cross-section of an input volume of size: 4 X 4 x 3. It comprises of the 3

color channel matrices of the input image. 48

3.1 MNIST digit classification example of a Caffe network. Blue boxes represent
layers and yellow octagons represent data blobs produced by or fed into the

layers 52

18

3.2
3.3
34

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2

8.1
8.2
8.3
8.4
8.5

Overview of Myriad2 hardware 54

More detailed overview of Myriad2 hardware 55
CMX DMA engine of Myriad2 56
Overview of the CNN implementation. 60
The High-level Python framework 61
Abstract view of the Network Manager running on LEON processors . . . 62
The Shave execution concept 64
Alexnet architectureo Lo 65
ZFNetlayout 66
VGG architecture table Lo 66
NiN convolutional layer concept 67
Architecture of GoogLenet’s inception block 68
Overview of GoogLenet’s structure 69
SqueezeNet benchmarking against other CNN architectures 70

Macroarchitectural view from SqueezeNet architecture; Left: SqueezeNet;

Middle: SqueezeNet with simple bypass; Right: SqueezeNet with complex

bypass 71
Overview of the Class Layers implementation 87
Dual processor mode algorithm flowchart 97
Profile mode algorithm flowchart 99
LRN Within Channel 106
LRN Across Channels flowchart 107
LRN Activationoutput Lo 108
N input channels distributed among 3SHAVES 111
Concat usage overview on GoogleNet’s inception block 118

Implementation of Concat using LEON DMA Transactions on GoogleNet . 119

Concat implementation with offline Python precompute on GoogleNet . . 120
Dfference between kernel 3 and kernel 1 121
Swap buffering on linear networks or linear subnets 126
Swap buffering on parallel blocks 126
Pareto frontsample 134
Pareto front of Lenet-MNIST 138
Discrete layer pruning example on 6 layers 141
NiN-Imagenet network pruned with discrete layer pruning 142

lustration of the data flow of the pruned network with recursive pruning

technique 143

8.6
8.7

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

9.12

Pareto plot of SqueezeNet using recursive pruning

Concept of how two GoogLenet’s layers were effectively executed concur-

LRN layers C and Assembly time comparison
LRN layers C and Assembly energy comparison
Only-DMA algorithm benchmark
DMA transaction and pixel computation benchmark
Pixel computation only benchmark,
Increasing load benchmarks comparison
Distributed load benchmark 0oL
Framework instantiation in Intel/Movidius Myriad2
Scalability of convolution in Myriad2
Scalability of fully connected in Myriad2
Output of the 1st step of the methodology: Fine tuning of CNN implemen-
tationsonanedgedeviceo
Output of the methodology: Trade-offs between execution time, energy con-

sumption and accuracy between various CNNs

19

KepaAaio 1

Texvikég Awaxxeiprong Ilopwv otnv ExtéAeon
BaOiwv Nevpwvikov Atktomv o€

Evoopatopéveg ApXLTEKTOVIKEG

1.1 H pnxovikn paOnon

>1n obyyxpovn emoxn otnv omola {ovpe, vtdpyel apbovia diobécipuwy dedopévwv, Ta
omola Ppiokovtal oe dopnpévn 1 adopuntn popen. Katd to devtepo piod tov 200v aumdva,
TEONKOV OL eMGTNHOVIKES PACELS TNG HNXAVIKAG HABnong, evog kAGdov tou mediov Tng
TEXVNTNAG VONHOCUVNG, OV €XEL WG OTOXO TNV avamTuEn avTtodidakTtwv alyopiBpwv, ot
ormotol eivon oe Béon va avtAovv yvoon amd ta dabéoipa dedopéva. Eidomorog dropopd
TNG PNXOAVIKNG HAON oG OITO TLG TTPOTYOUHEVES TTPOCEYYITELS Elva TO YEYOVOG OTL dev Tt~
teitar avBpoTIVN TOpEPPOoT Y TN HOVTEAOTTOINGT] TWV KOAVOV®OV TTOL TEPLYPAPOLY TX
LTtO peAétn dedopéva. AvtiBéTwg, ol idtot oL adyopiBpol eivar oe Béon va kataokevdlovy
KoL va BEATLIOVOUV T povTéAa TTepLypa@ng TV dedopévmv. Extog atd to peyddo eviiapé-
POV TNG HNXAVIKNG HAONONG 0T EMLOTNHOVLKT) ATTOYT), OL EQAPHOYES TTOV TPOCPEPEL GTNV
KoOnpepvr Cwn etvan emtiong aloonpeiontes. [o mapaderypa, 1 pnyovikn pabnon eivai o
AOYOG TTOL LTTAPYOLY ATOTEAECPATLKEG UMY AVES avalnTNoNG, ELOTLOTH AOYLOHLKE avaL-

YVQOPLOTG YOV KOl ELKOVOG, EDPLEGTEPA LVTOVOHX POUTTOT k.ot [1].

1.1.1 T €1dn Tng unXavikng pabnong

Avtr) 1) vtoevoTNTA B TAPOLCLAGEL GLVOTTTIKG T Tplar €181 punyavikng padnong: Emi-

tnpovpevn p&dnon, Evioyvtikn pabnon ko Mn emtnpodpevn pabnon.

o Emtnpotuevy pabnon: O xOpLog otd)0g 6TV emiTnpovpevn padnon eivoe 1 expddnon
EVOG HOVTENOU - KAvOVTaG XPNoT) deSOUEVWV EKTTAOEVOTNG [LE ETLKETEG - TTOV ETLTPETEL

NV Tpaypatomoinomn npofAéPenv oe véa dedopéva.

e Evioyvrikij udbnon: Exel wg otdX0 TNV av@mtu€n evog ouothpatog (TpakTopa) Tou
BeAtidvel tnv amddoot) Tov kaBdg aAAnAemidpd pe To TEPLPAALOV. XTNV EVIOYULTLKN

paOnon, n TAnpoopicr oYETIKA pe TNV TPEXOLO KATAGTAOT) TOL TePLPAAAOVTOG

21

mepthopPavel emmAéov kot éva onpa emtPpafevong, mov poviehomolel TOGO KaAT
elvor 1) pi dpdiom tov mpaktopa. Katd ovvémeia, péoa amd tnv adAnienidpoct tov
e To mepaArov, o mpakTopag eivar oe Béon va padet pio celpd od dpacelg Tov

€XOLV WG OTOXO TNV HeyloTomoinot g emPpafevotg tov.

e Mpn emitnpovuevy pabnon: Ttnv emtnpovpevn pabnor - katd tn didpkela ekmaidev-
OT)G TOV HOVTEAOV - 1) CWOTH TAVTNGOT ELVOL YVOOTH €K TWV TTIPOTEPWV, EVKD GTNV EVL-
oxvTikn pabnon opileton éva orjpa emtPpaPevong yio TIG EVEPYELEG TOL TPAKTOPCL.
Qo71600, GTNV Un emTnpovpeVn padnomn, ta dedopéva eite dev Sabétovv eTikéTec,
elte éyouvv dyvwaotn dopr). Kavovtag yprion TV Texvikdv auTng Tng Hopeng padn-
ong, vapyet n duvatdoTnTa e€epedvnong NG Sopng Twv dedopévav, e 6TOXO TNV
eEaywyn Xprong TAnpoeopiag, dixwg TNV Tapoxn YVOONG TOL ATALTEITOL OTLG
dvo mopaTTdve Katnyopleg pnyavikng padnong.

H ewcova 1.1, mopoakdto, topovotalel pia sOvoyn tov d0o Pacitk®dv eL0®OV HNYAVIKNG

pabnong.

s L

. CLASSIFICATION
SUPERVISED g }
LEARNING
Develop predictive
medel based on both “ W.
input and sutput data
J REGRESSION

MACHINE LEARNING

LN "
<
UNSUPERVISED p 3
LEARNING
Group and interpret ﬁ CLUSTERING
data based only L)

on input data
A

Yxnua 1.1: Ta 2 Baoikd eidn tng pnyovikng pabnong

2Ny emopevn voevotnta o Oépata tov Ba sulnTnBovV popoLV povaya To 160G TNG
emTnpovpevng padnong. o mopdderypo, 6TV mTePITTOGT TOL AOYLIGHLIKOD TTOL GLATPAPEL
spam e-mail, o TpOTTOGg TPOGEYYLENG TOL TPOPATHATOG Elvarl Vo EKTTALOEVTEL £Vl VEVPWVLKO
dikTvo YpnooToLOdVTAG Evav adyopLOpo emiTnpovpevng Habnong tave ce éva cOVOAO
antd katnyopromonpévev e-mail. Too mail avtd Ba eivor 0pB& katnyopromonpéva wg ko-
VoviKa 1} wg kakOfovia. Méow tng padnong oto cdvoro awtd, To SikTvo Bo propet petd vou
npoPAéPet av kditolo dAlo mail eivon kavovikod 1} Oxt. Eva tétoto tpoPAnpa, pe Eexwplotég

Kkatnyopieg mpoPAePng, ovopdleton TpoPAnpa ta€ivopnong (classification task).

22

1.1.2 Toa&wounon otnv emitnpovpevn padnon

H to€ivopnon eivon pia vtokatnyopio tng emitnpoopevng pédnong, otnv omoio 6to-
X0G elva 1 TpoPAeyn tng kA& G/KaTnyopiag VoG VEOL VTLKELLEVOD, PACEL TAAXLOTEPWV
nopatnprioenv [2]. H ta€ivopunorn evog avTikelpévou oe pia KT yopia yiveton pe Tnv ové-
Oeomn pLOG eTIKETAG OE AVTO, e TIG ETLKETES VAL elvorl JLOLKPLTEG KoL 1) OLOTETAYHEVES TLHEG,

To povtédo mpoPAeyng To omoio pobaivel Evag alyoplOpog emLTnpPoOHEVNG U OVIKNG
paOnong propel vo avabéoel omoladnmoTe eTKETA, OV EPPAVIOTNKE 0TO GUVOAO dedo-
HéVeV katd TN didpkela tng ekmaidevong, o€ éva véo pun taEvopnpévo avtikeipevo. Eva
TUTTLKO TTOPASELYHA ELVOL 1) AVOYVOPLOT) XELPOYPAPOV XOXPOKTHPWV. ZE QUTI TNV TEPL-
TTWOT], Eval GOVOAO dedopEVV eKTALOEVOTG TTOL TTEPLEXEL XELPOYPAPO TTOPASELYHATOL YLoL
K&Be ypppa Tov ahpaPnrtov eivon éva onpeio exkivnong. Emerta, edv o xpriotng elodyet
EVOL XELPOYPOUPO XOPAKTHPAL, HECW HLAG CLGKELTG EL0OSOV, TO PoVTELO TTPOPAeYNg Ot ei-
vo oe B€on Vo EKTIUNOEL TO CWOTO YPAUHX TOL APaBnTov pe kol akpifeia. Qotodco,
0 alyopiBpog de Ba eivon oe Béon va avayvwpicel emttuxwg omotodrote ad ta Yneic

HNOEV edG eVVEQ, EAV QLTA OEV LITAPYOLV GTO GUVOAO eKTTALSEVCTG TOV.

A
b Y
\
LY
ALY
Y
— A
A
X -\
2] = _=»
- -_—
- @ LY
= wm = N
= i \
L
>
Xq

Yxnuo 1.2: Avadikn tavopnon otnv emitnpoipevn padnon

To oxnpa 1.2 amotumevel TV Wéa NG dvadikng Tavopunong, vtobétovtag OTL €xouV
do0el 27 Selypata kot 10 0T@do NG ekmaidevong: 15 delypato EXovv TNV eTKETA TNG
apvnTikng katnyopiog (cVpPoro TANV) ko 12 delypoata £xovv TV eTikéTa TNG OeTikng Kot
nyopiog (cVpPforo ouv). Xe avtd T0 GEVAPLO, TO GOVOAO dedopévmv eivar Stodidotato, To
oroio onpaivel 6tL k&Oe deiypa epmepiéyel SV TIéG: X1 Ko Xo. Evag adyopibpog (emitnpoo-
HEVNG) HNXOVIKNG HAONonG ptopel va xprioytomoin et yio vo pabet éva kavova - To Ovopo

TNG ATTOPUCTC TTOL ALVATTOPLOTATAL HE TT) HOOPT) SLOAKEKOUHEVT] YPOULT) - TTOUL Stoywpilet TLG

23

dvo katnyopieg kot Takvopet o véa dedopéva o pio atd TG kaetnyopieg dedopévwv Twv

TILAOV X7 KO X3.

1.1.3 IIaAwdpounon otnv emitnpoiduevn padnon

H mtponyotpevn vroevotnta €de1e TS 0 6TOX0G TNG TAELVOUNGNG elvor 1) aevaBeoin
Sratetaypévav etiketov o avtikeipeva [2]. Eva devtepo eidog tng emitnpovpevng padn-
ong eivat 1 TPOPAEYN cLVEXDV TOTEAEGUATWV, TTOV €Vl YVWOETO 6TOV KAGDO TNG oTo-
TIOTIKNG OG OVAALGT] TTOALVEPOUNONG. ZTNV av&AvcoT) TaAvdpounong, vtobétovpe 6TL di-
vovtal éva TAN0og amd petafAntég mpoPAeyng ko o cvvexng peTaPANTI adKpLONG
(amotéheopar). ZtOX0G elvat 1) e0peot) P oxEoNG HeTaED TV PeTaAANTOV TpoPAedng mov
emitpénel Tnv poPAeyn evog anotedéopatog. Ia mapaderypa, ag viwroBécouvpe 6TL O¢Aovpe
vatpoPAéPoupe Toug fabpots Twv pabntov 6To Sty viopa Tov podnpotikov. Eav vmap-
XEL L OYECT) HETOED TOL XPOVOUL TTOL XPLEPDONKE GTN HEAETT) YL TO SLOLYDOVIOH KOL TWV
BoaBpwv mov éAaPav ot padntég mov to ypajav, o prropovoe va ypnotponoindei wg ov-
voho dedopévev ekmaidevong ylo Tnv ekpddnon evog poviéhov. To povtédo, dedopévou
TOL XPOVOL HEAETNG TTOL GkOTEVEL VI eTeVdVOEL £vag PeAAOVTIKOG podn TG, TpoPAémel To

BoBpod mov B AaPer 6TO CLYKEKPLHEVO SLYDVIGHCL.

4 —
Datapoints . .
Regression e

3

2

1

0 fF—— | | | |

0.2 0.4 0.6 0.8 1.0

Yxnua 1.3: Linear regression in supervised learning

24

To oynpa 1.3 amotum@vel TNV W€ TNG YPAPULKAG TAALVOPOpNONG. AeSOpEVWV pHLOG e-
TafAnTtng TpoPAeyng x kot piag peTafAnTng amokplong y, oxedialetor pio evbeio ypappn
7ov “toupldlel” ot dedopéva ko EAAYLGTOTOLEL TNV TOGTAOT) - TTOL GLVIOWG eivor 1) péom
T TOV TETPAYDOVOL TNG TOOTACTG - HETAED TV delypdtwv ko TG Ypoppns. Emneita,
QTN 1) YPOHUN XproLpoToteitot yix vo tpoPAéPet tn petafAntn amodkpiong oe véa dedo-

pEVQL.

1.2 ZoveAlKTiK& VEVPWVIKY dIKTLX

Eva Zuveliktikd Nevpovikd Aiktvo (ENA) amotedei puog edikr} tooloyia texvnto
VELPWVLKOL JLKTVOV, 1) OTTOLXL ELVOLL EMITTVEVCHEVT) ALTTO TOV OTITLKO EYKEPOALKO PAOLO T®V
{Owv. OLTapApPeTPOL AVTOV TWV TOTOAOYLOV pLOUicTNKOY KATAAANAX otd Tov Yann LeCun
oTIG apxéG ToL 1990 [3], wote va propécovy T Aboovv TpoPArHata TNV OpAGT) LITOAO-
yotov. Enl tng ovoiag, éva ENN eivon éva povtédov TNA mov éxel oxediaotel amokAel-
OTIKA YLt TNV AVOYVOPLOT] SLeSLACTATOV aVTIKEHEVQV, Ttapovotdlovtag LYNAO Pabpod
AVOALOLWOTNG GUHTEPLYOPAS KT TNV peTdBeoT, kKApdKkwon, oTpéPAwon Ko dAAeg mo-

POHOPPOCELSG TNG ELGOSOV.

C| S| E: S: m n:
input feawre maps feature maps feature maps feature maps output
32x 32 28 x 28 14 % 14 10 x 11} 5% 5

________ N o TN

E— i y O 18! -
TE NN NG

AN\ o, N

convolution \ subsampling convolution | %2 \\ e fully \
" subsampling \\ connected \
feature extraction classification

Yxnpe 1.4: Iapaderypo tomoroyiog évog ZNN katdAAnlov yia avayvoplon xelpoypo-
Qv Yneiov

e £V CUVEALKTLKO VELPWVLKO dikTLO K&Be vevpwvag AopPdvel k&toleg eL.60d0VG, TTpory-
HOTOTTOLEL piot HOONHATIKT] TTPAEN KO TPOLPETLKA T GLVOJEVEL ATTO HLOL YPOHPLKOTHTCL.
OMo to dikTvo éxel WG 6TOXO Vo TOELVOUTOEL pioe elkOVa o€ kKdmolx katnyopia Baoel Twv
gltkovooTolyeiwv tng. OAN 1) yvoOoT Tov eQaPROCTIKE OTA TEXVITA VEVPWOVLIKA dikTua e€ot-
KoAovBel vau oy et ko va epoppoletor ota ENA. Eidomoldg doepopd TV opyLTEKTOVIKOV
2NA eivai To yeyovog 0Tt k&vouv T pnth vtoBecn OTL 1) elc0d0g elval pLa ELKOVA, YEYOVOG

IOV ETLTPETEL TNV KOILIKOTOLNGT) OPLOHEVOV LOLOTATWV GTNV XPYLTEKTOVLKT) TOUG.

25

1.2.1 Awxtaén tov dedopévov oe éva INA

To ZNA ekpetadledovTon To Yeyovog OTL 1) l0080G aumoteAeitan amd elkOVES KoL TEPLO-
pLLOLY TNV APYLTEKTOVIKT) TOUG e TPOTO TTOL VAL EXEL TEPLOGOTEPO VONH [4]. Zuykekpipévar,
oe avtiBeon pe éva kavovikd TNA, ot otpwaoelg evog INA opyavavovtal o€ 3 SLacTACELS:
Adtog, vVPog, Paboc. Tia mapdderypa, 32 X 32 RGB eikdveg e1.06800 avotaplotodv éva
OyKo el60dov 1oV €xel Staothoelg 32 X 32 X 3 (mAdtog, vYog, B&bog avtictorya). Ot vev-
pOVEG G Pl oTPWOOT elval cuVIEdePEVOL PHOVO HE PLX JLKPT] TTEPLOXT) TNG TTPOTYOOHEVNG
oTPWONG, o€ avTiBeom e OAOVG TOLG VELPOVEG TNG TTPOTYOVHEVNG OTPOGTG TTOL GUVAVTA-
ToL 6 TIG TA pwG oLVdedepéveg otpidoelg. H meplopiopévn, tomikr cuvdeotpotnta tewv XNA
Bo amocagnviotel cvvtopa. Evag 3A 6ykog elcddov ametkoviletar 6to oxpa 1.5 yio pio
4 x 4 RGB ewkovo. Znpeldote 0TL To €0POS TOV TIHOV 6ToV 3A OyKko €100d0V pmopel vo
puBpiotel, wote va Pondnoel oty ekmaidevon tov duktvov. H diadikacio petacynpoatt-
ooV TV dedopEVWV £LlGOSOU - TPOTOL LT TPoPodoTnBoiv 6To XNA - ©®GeTe Vo €xouv TNV

emlOupnTr popon), Aéyetan mpoemeEepyacia.

2. 3 Colour Channels

P

v

Height: 4 Units
(Pixels)

Width: 4 Units
(Pixels)

Yxnpa 1.5: Atxtopr) evog 0ykov dedopévwv elcddov 4x4x3. Amotedeitar amd 3 pnTpeg,
7OV AVTLGTOLYOUV GTX 3 KAVAALLL TG ELKOVOLG

Katd ovvéneila, éva INA amoteleitor amd otpodoels, e Tnv kobepior var £XeL pa oA
dtemapn. MetaoxnpatiCet éva 3A 6yko e.06dov oe éva 3A Oyko €680V, XPTCLHOTOLOVTOG

OLVOPTNOELG TTOL LITOPEL VAL EXOLV 1) O)L TAPAPETPOUG.

26

1.2.2 XvuviRBeig otpwoelg Tov xpnoiponrotovvtat ota XNA

Yndpyovv Tpia eidn 6TPOGEWDV TOL XPNCLOTOLODVTAL YIO TT) SOUNGCT) APXLTEKTOVIK®OV
YNA: Zvvehiktikéc otpidoelg, Pooling Layer, and ITANpwg ovvdedepéveg otpidoeig [5]. H
tehevtado eivor o pe arvtr) Tov cuvavta kaveig oto kavovikd TNA. Avtég oL Tpelg oTpd-
oelg otolpalovtal e prox aAAniovyio, dote va Tapdouv evOlapEPOVCEG APYLTEKTOVIKEG.
Yrapyet emiong ko) Ztpodon Ewoddov, mov dev eivon timote meplocdTeEPo otd TOV TAW-
TOTIKO PeTXOXNUATIONO, dnAadn) 1 €€000g tng eivor 1) dio pe TNV €ic0d0 NG AvTég oL

OTPWOOCELG AVOADOVTOL TTALPOKATW:

o Y1pcdon Eioédov: Epmepiéyel ta dedopéva 160800, mTov popet eivat oL THEG TV E1KO-
VOO TOLYELWV TNG ELKOVOAG ELGOSOL 1) TO ATOTEAEGHA TNG TtpoeneEepyaaiag avTodv. To
Ba&Boc tnc oTpwdong elcddov mpémel var idLo pe To TAN00G TV KAVAALOV TNG ELKOVAG

e160800.

o Yvveliktik Xtpaon: O vitoloyicel TNV E£080 TwV VELPOVWYV TTOL elvort cuVOedepEvoL
HE TOTLKEG TEPLOYES TNG eLlc0dov. K&be vmoloylopog yivetou oe éva pkpod mopdBupo
otnv ntpodcoy (ov opilel To TAXTOG Kot TO DYOC) Tov Oykov eLaddov, ALK o€ OO
0 B&Bog Tov dykou elcddov. To f&bog Tov dykov elcddov e€aptdton artd To TANBog

TOV QIATPOV TTOL TAPEXOVTAL TNV GTPOCT] WG KL ETLTAEOV TTOUPAPETPOG.

e X1pcdon Pooling: Oa mpoaypoatomotjoet po vitodetypatoAn i f/kat eEopdAvvon kot

pnkog Tov Pabouvg Tov 6ykov elcddov.

o [TAijpwg ovvdedeuévn Xtpdon Omwg eivarl Hdn yvwoto amd to TNA, k&be vevpovog

O€ QLTI TN OTPWOT) CLUVOEETAL e OAX TOL GTOLXELX TOV OYKOU €LGOJOL TNG OTPWOTNG.

o X1pcdon ReLU: EQoppolel pia cuvaptnon evepyonoinot otolxeio Tpog aToLyelo, TNV
f(x) = max(0, x) ov eppavilel KATOPAL 670 PNdév. AvTH) 1) OTPOOT XPTCLLOTOLELTAL
pe okomod tnv vrofornfnon tng exmaidevong Tov diktdov Kol Tapdyel otV €€000

€V OYKO TTOU €xel SO TATELS 1OLEG e VTEG TOV OYKOUL €LGOSOU.

e X1pidon LRN: E@appolel éva eidog “mAevpikig 6LOTOANG” HEG® TNG KOVOVLKOTIOLN-

ONG TAV® O YELTOVIKEG TTEPLOYEG ELKOVOCTOLYELWV.

o Y1pcdon Concat: uvdéel oelplorkd TOANL SLa@opeTLKd PITAOK L6080V G éva eviaio

prtAok e€6dov.

Kat’ avtd tov tpomo, ta ENA petacynpatiCovv v eikdova etoddov kabng avtn Sia-
oxilel T oTpdoelg tov. Etol petatpémnel tnv €ilcodo amd elkovooTolyEio 6€ ETIKETES TTOV
QVTUTPOCGMITEDOLY TNV KATNYOPLX OTNV 0ol eKTHATHL OTL acvrjkouv. Emonpadiveton 6TL
KOQITOLEG OTPWOTELG TEPLEXOLV/OITOUTOVV TTAPOAUETPOUGS, EVED AAAEG OYL. ZUYKEKPLUEVQL, 1) CL-
VEAMKTIKT Kot TAPwG cLVIESEPEVT) OTPOOT] PeETAOYXNHATICEL TNV €lG0J0 ATATOVTOG ETTL-

TAEOV TIG TIHES TV Pop®dV (Kot TNG TOAWOTG) SLacLVSEGEWV TV VELPOVW®Y. ATtO TNV GAAN

27

pepia, ReLU kou Pooling otpidor epappolet pio yvooTr Ui Tapapetpikn cvvaptnor. Ot
TOPAPETPOL TWV GUVEALKTIKOV KOl TAT)PWG GLVOEIEPEVOV GTPOGEWV ekTTadevovToL 0ELo-

TOLOVTOG TN podnpatikn texvikn PeAtiotonoinong g katdfaong pe tn pébodo tng kAl-
ong.

1.3 Caffe: Yvvediktikn Apxitektovikn yia Iprniyopn
Evowpdtwon

To Caffe eivar éva cLYKPOTNHEVO KL TPOTOTOLNOLHO TAALGLO AOYLGHLKOD, TTOV TTopé-
XEL GTOUG XPTOTEG TOV Lot GELPA ATtd aAyopiBpovg pnyavikng pabnong, kabag emiong kot
Hlt GLAAOYT) QIO HOVTEAQ ALVAPOPAS. AUTO TO AOYLOHLKO LTTOoTNPileL TNV ekmaidevon kot
ekTéleoT) TANOOPAG GUVEAKTIKOV SLKTOWV YEVIKOD GKOTOV, dvOvTaG ELPOCT) GTNV ATTOo-
dotwotnTa Kot TV ToyvtnToe. To Caffe ocvvnpeiton ko avanticoetal amd to Berkeley
Vision and Learning Center (BVLC) ko arotelel kevplkd epyadeio oe epevuvnTikd mpo-
TCeKT 1 PLOPNYAVIKEG EPAPHOYES HEYAANG KALLAKOG GTOVG TOHELS TNG OPACTC LITOAOYL-

oOTAOV, TNG enelepyaciog PUOLKAG YADOCOG KoL TwV TOAVHES®V [6].

1.3.1 Exrnaidevon evog ductvov

To Caffe exmoudevel Tar pOVTEAQ Y PTOLHOTOLOVTAS TOV AAYOPLOHO YpryopNG 1} KavovL-
KNG oToyaotikng katafaong pe tn pébodo g kAiong. To oxnua 1.6 Tapovodlet éva Tu-
TLKO TopadeLypo dktvou (Yo Tnv Te€vopnon Yneiov otd To cbvoro dedopévwv MNIST)
Koté TN @don tng ekmaidevong caffe pio otpdon dedopévaov Aapfdvel Tig elkdveg Kot TLG
ETIKETEG TOVG OO TO OKANPO dicko, TpoodoTel Tor dedopEva SPEGOV TOAAATADV GTP®-
OEWV, OTWG €lval 1) GLVEALEN, Kol TPoPodoTel TO TEAKO amoTé- Aecpa mpoPAedng o pix
OTPOOT] KOTNYOPLOTOLNGNG. AUTH 1) GTPOCT) LITOAOYLLEL TO GPRALA KATIYOPLOTTOLNOTG KoL
TIG KALoeLg Tov ekatdeovv 6A0 T0 dikTLO, pe 0KOo TN BEATIOTOTOINGT) TWV TAPAPETPWV
tov. To ouykekpipévo mapadetypa propet va Ppebel otov mnyaio kodika tov Caffe, otn
dwxdpopn examples/lenet/lenet_train.prototxt. H eme€epyacia tov dedopévwv yivetal oe
HIKpEG opadeg ov Tpopodototvtal oto dikTvo oelprakd. Kpioyo otn exmaidevon eivar n
pLBpLoT ToL PLOROY eEacBévnong Tng expddnong, n oppun kot ta oTiyptdTuTa. To TeAev-

Talo EMLTPETOVV TH) TOOCT) KOL GUVEXLOT) TNG EKTTAidEVLOTG TOV SIKTVOV.

28

Yxnpo 1.6: apdaderypo katnyopromoinong Yneinwv tov cuvorov dedopévwv MNIST, 6mov
T pithe opBoydvio avartoploTolv GTPOCELS Kot Ta Kitpiva opBoydviar ava-
TOPLETOOV Tat SedOPEVAL TTOL TOPAYOVTAL KOL TPOPOSOTOVVTAL GE QUTEG.

1.4 TIloAveneEepyootikd SoC Myriad 2

1.4.1 Tevikd XOpoKTNPLOTIKY

T TV LAOTTOLNGT) TOL GLGTHHATOG EKTEAEGTIG GUVEALKTIKOV SIKTOWV emAéxOnKe 1) ev-
ocwpaTOpEVN TAaT@Oppa Myriad2 [7]. To cuykekpipévo SoC avantocoetal amd tr) Movidius
Ltd, n omoia mpoéopata éywve pérog tng opadog Perceptual Computing Group tng Intel,
pe oTOXO TNV EMIGTELOT TNG ONULOLPYING EVPYPLOV CUCKEVWOV GE EPAPHOYES OPACTG VITO-
Aoylotov. H Myriad2 katagépvel va tpoc@épel vPnAn ammddoon oe epappoyEG TNG Opa-
OTNG VTTOAOYLOTMOV, KATW OTTO EXLTEPLKA TTEPLOPLOTIKEG GLVONKEG KATAVAAWOTG LoxVoC. 'V
avTo TO AOYO, aroTelel TOV TPAOTO eme€epyaath Opacng LIOAOYLGTGOV - Vision Processing
Unit (VPU) - mov 6toxelel 0TV eNLTAYLVOT EVOOUATOHEVOV EQUPUOYDV.

To xvploTepa yapaktnplotikd tng Myriad2 eivau:

o Zyedlaopog oAl yopunAng woybog: Kavovtdag tn katdAAnAn yio xpriorn e @opnTeég

OUCKEVEG, TTOL 1] LUTOVOUL TNG PITATAPLAG Elval KLpLapyT) TTOPAHETPOC.

e Emefepyactng vPning amddoong: Aivovtog tn SuvatoTnTa eKTEAECTG TWV LITOAO-

YLOTIKX QUTOULTNTIKOV GOYYXPOVOV EPUPHOYDV TNG OPACTG VITOAOYLOTOV.

e Evélktn apyirextovikr: Hlapéxovrag mpocPacn oTIG AeTTOPEPELEG TNG ALPXLTEKTO-
VIKTG, OL TTPOYPOPHATIOTEG eival o€ BEoT Vo BEATIOTOTOLCOLY TIG EQAPHOYES TOVG

OKOHO TTEPLGTOTEPO.

e Mikpég guokég diaotdoelg: Qote va eiva eQIKTH 1) eVowp&TwoT g Yneidag oe

OTOLAONTTOTE POPTTI) CUGKELT).

M teprypopr) vymAot emiédov Tov LALKOL tng Myriad2 diveton oto oxnpa 1.7. Amod
avTo, elvat Pavepd Twg 1o cuykekpLpévo SoC dwabétel 14 emelepyactéc. O dvo emekepya-
otég ota defLd Tov oxnpatog eival OepeAlwdadg dropopeticol atd Touvg 12 emeepyaoTé
ota apiotepd. ITo avadvtikd, ol ene€epyaotég pe to dvopa “CPU” vAomolovv tnv 32-bit

SPARC apyttektovikt], Tov avijkel oTnVv otkoyévela emefepyoctov RISC.

M Aemtopepéotepn meprypopr) akolovbel otn cuvéyela:

29

30

- ~

[IMU][SD][WIFI]

R

Sensor

Interfaces

Hardware Accelerators

Image Signal Processing

SHAVE
Vector

Processors
x12

MA2x5x Intelligent Memory Fabric
System Example
-

Yxnua 1.7: Emoxomnon Tov vAkot tng Myriad2

e Leon OS: Eivau 0 évag a6 tovg eme€epyactéc SPARC. Avnkel oto vtostotnpo CPU

sub-system (CSS) mov éxeL oyediootel ©OTE Vo elval 1) KOPLX HOVASAL ETTLKOLVOVIOG
KoL EAEYYOL e TOV eEWTEPLKO KOOHO, OVTAG EPOJLAGHEVO e To akOAovOa TepLpe-
petakd cvotnpata entkovoviag: 12C, 12S, SPI, UART, GPIO, ETH kot USB3.0. H po-
vada eléyyouv touv CSS eivar o eme€epyaothic Leon OS (LOS), mov Siabéter apretd
peyaheg kpveég pvnpeg L1 (32 KB) ko L2 (256 KB), emitpémovrag tn duvatotnta

EKTENEOTIG EVOG HOVTEPVOL AELTOVPYLKOD GUGTHHATOG Tpaypotikot Xpovov (RTOS).

Leon RT: Amotelel To devtepo amd tovg emeEepyootég SPARC. Avijkel 610 vITOOD-
otnpa Media sub-system (MSS), poe Sopikn povada mov emitpénel v dteodvdeon
HE GLOKEVEG ELKOVOG, OTIWG atloBnTrpeg etcovag, 08oveg LCD, eheyktég HDMI x.Am..
Tovtdxpova, To MSS eivar vebBuvo yi to Edeyxo @pidTpwv (6mwg 1.X. To DeBayer)

vAoToLNpéVwV 6To LALKO, Tov Stateifevton amd tnv Myriad2.

SIPP: IIpokertan yior évar tdLotaryr PNy aviopd VALKOU/AOYLGHLKOD TTOV XPT|GLHLOTTOLEL-
Ta ato 1 Myriad2, pe 6komo tnv amrodotikr) §popoAdynom epyociodv YneLokig eme-
Eepyaoiag etcovag. AvTtog 0 PNYOVIGHOG elval Baclopévog ot eme€epyacio HOPPNG
OCWANVOONG KL XPNOLHOTTOLEL Tt PIATpa LALKOD oL Ttapéyovtal ad Tnv Myriad2,
woTe vou emLtOyeL TNV ToyUTepn duvarth ektédeot). To vtocvotnpa SIPP ametkcovile-

Tl 6To oy 1.7 pe TopTokall Xpwpa.

Microprocessor Array (UPA): Eivow n apyitektovikr povada tng Myriad2 mov ov-
ykporteieta and tovg 12 Very Long Instruction Word (VLIW) Stavuopartikotg ere-
Eepyootég SHAVE (BA. oxnpa 1.8), tn CMX pvrpn SRAM peyébovg 2 MB ko pept-

KEG OUKOHO HOVADES, €K TwV OTOLwV oL 7o onpovtikég elvarl: H e€edikevpévy DMA

||
Software Controlled I/O Multiplexing

MIPI INTERFACES

SPI, USB3, |12C, 12S, LCD, CIF, UART, ETHERNET, ETC.
x12 lanes s = LSk

Intelligent Memory Fabric

| 12 Vector VLIW ,,SHAVE" Processors |

KNI I I

Myriad 2 MA2x5x Block Diagram

£n-
o
=D
=

Yxnpa 1.8: AemtopepéoTepn) eMOKONNOT TOL LALKOV NG Myriad2

engine kot 1 256 KB L2 kpvgn pvrjun mov eiva kowvn yia tovg SHAVE ene€epyaotéc.
O o1)0g ToL UPA elvon v vtootnpiet tnv avamtugn eEedicevpévov alyopiBpwv,
OV QUITALTOVVTOL OO TTOAAEG EPAPHOYES OPACTIG VITOAOYLOTOV KOL HIXOVIKAG Wi
Onong, kabag emiong Kot AAAWVY LITOAOYLOTIKA ATALTNTIKOV adyopiBpwv. Kabévog
oo Toug VLIW eme€epyaotég eivon oe Béon va edéyyel moAAamtAég dopuicég povadec,
ot ortoieg draBétovv Suvartotnteg SIMD, yio peyoddTepo TapoAANALGHO KoL StekTte-
POLOTIKT LKAVOTNTA, TOGO Ge eminedo dOIKNG povadag, 660 Kot o€ emimedo emefep-
yootn. KaBepio oo Tig povadeg Tov eneEepyaotr) propel va ektedeitan Tavtdypova,
otov 8o kOKkAo pohoylov. Ot SHAVE vrootnpilovv evtorég SIMD yia Sidpopoug
TOTOLG, OTWG: 8 bits akepaiovg, 16 bits akepaiovg, 32 bits akepaiovg, 16 bits apiBpovg

KNG vrodiactoAng, 32 bits aptBpovg KvnThg LITOSLAGTOANG.

CMX: IIpokerton ovvtunon tov “Connection Matrix”, To omoiov dikoodoyeiton amd
T0 yeyovog 0Tt j CMX astoteAeitor ammd apkeTég pkpotepeg povadeg SRAM, pe oo-
voAuko péyeBog ta 2 MB. Kabe ene€epyaotrig SHAVE éxel Eexwplotég O0peg yia mtpo-
ofaon oe pioe cvykekpyévn eéto twv 128KB tng pvrung CMX. Svvenag, ta 12x 128
KB = 1536 KB xpnoipomototvtol pe ToV KaADTEPO SLVATO TPOTO ATTO TOVG TTUPTIVEG
SHAVE, evo ta vorouta 512 KB tng pvripng CMX memory xproLponolodvToL oo
aAAeg povadeg. Zvviotatol 1) Xpron Tev mopoartdve 512 KB arnd ta giltpa vAtkobd
7OV eival evowpatowpéva oto SIPP 1) atd kploya KOppaTio KOSIKK oL TPEmeL v
EKTEAOVVTOL OGO TO SLUVATO YPNYOPOTEPX, KOL GUVETTAOG deV PITOpoLV va TomobeTn-

Bovv otn pvnun DDR.

31

e DDR: Eivou n peyod0tepn povado wentikng pvipng wov diabéter n Myriad2, pe to pé-
ye00g tng va eivar 128MB 1) 512MB, avaloyng pe tnv éxdoomn avabewprnong tov SoC.
H xvuprotepn Stoxgpopd petafd tng Myriad2 ko GAAwv ene€epyactav eivae 1 0éor Tng
DDR. Xtn Myriad2, n DDR Bpicketot evtog tov SoC, ®oTd00 1) pvipn eivot tomobe-
TNHEVT €KTOG TNG YNPidag, ToL oNpaivel OTL OL 14 eme€epy0cTEG X PTOLILOTOLOVY TOV

1d10 €AEYKTN YLO VOl TNV TPOGTLEAAGOULV.

1.5 EAeyktng DMA tng pvnung CMX

Avtog o eheyktng Pploketon avapesa Tov dtavlov MXI twv 128-bit ko Tng pvrpng
CMX [8]. Hapéyetr petapopég dedopévwv vymAot edpoug {dvng peta&d tng CMX ko tng
DDR, mpog omotadrmote katevBuvon. EmutAéov, vtootnpilel petopopég dedopévwv amod
DDR ce DDR xat andé CMX ce CMX. To oxnpa 1.9 mapovoidlel éva vPnAov emimédov
dudypoppoa tng DMA engine.

H DMA engine povtelomotel v peta@opd dedopévav pécw docoAnPiodv. Mmopodv
VoL CLVLTTAPYOLV £€mG Kol TéEaoepLlg ouvdedepéveg Aloteg ad docoAnyieg TavtdXpova, TO
ormoio onpaivel 6TL 1) tkaevotnTa eEumnpetnpng docoAn Yoy atd tnv DMA engine Sev eivat
amepLoplotn. O TpoypappaTioThg propet evkoAx va Eemtepioel T puotkd opta Tng DMA

engine, otv TNV xpropomnolel diywg péTpo.

1.6 MeBodoloyix kot VAoTOiINGN

H mpotewvopevn epappoyn mov vAomoufnke yior Tnv Topodoo SUTAOHATIKY) GTOXEVEL
otV SnpLovpyla eVOG EVEPYELOLKA XITOOTLKOD, KXL TALTOXPOVO DITOAOYLOTLKA LoXLPO HI)-
XOVIOHO YLt GUVEALKTIKA VELPWVLKGA Sk TLO Kol prtopel va ypnotpoonOel yia tnv emtidvon
TpoPAnpaTev Taflvopnong 1y va a&loloyel tnv artddoon SIKTO®V XP1CLHOTOLOVTOG
WG XWOPO oxedGHOD TO XPOVO EKTENECTC, TNV KATAVAAWOT) EVEPYELXG, TNV OTTOLTOVHEVT]
HVARN 1§} TO TO0G00TO evoTo)iag evog dikTOoL otV TaEvopno. o k&Be pio amwd Tig mTot-
PATAV®D AELTOVPYLEG, DLOLPOPETIKES TEXVIKES EKTEAEOTIG €XOVV OXEDLXOTEL KoL €YLVE TTPO-
ondBeia yior To oxedraopd opHdv Kot artodoTikdv adyopiBpwy yia Tnv enilvon avtov
TV eEEOIKEVIEVOVY TPOPANpHATOY. Me avTdV TOV TPOTO, 1) eQappoyn kabicTatol, cuve-
TN G, OTOOTLKT] KAl OAOKAN PWHEVT).

H vAomoinon amoteleiton amd tpioe kuplapyo pépn, kabéva amd ta omola e€vmnpe-
tel évav Tedelwg Stopopetikd okomd: Mia diemagr) mpoypappatiopot epappoydv (AIIE)
VYNAOD emLITESOU, VOV SLOXELPLOTH) TWV VELPWVLKOV SIKTOWV TTOL eKTEAELTAL GTOV emeEep-
YOG TH] YEVIKOD GKOTOV TOU EVOWHATWOHEVOV, KOl TEAOG XITO TLG XOUNAOD emLtédov vIToAo-

ylotikég PipAiobnkec.

32

Slice Ports
Shave Spare Slice Ports CMX Slice
L
CMX
CMX DMA Control
Reqgisters

i

MXI Bus
Media Subsystem DDR Subsystem

Yxnua 1.9: CMX DMA eAeyktng tng Myriad2

210 oxnpa 1.10 gaivetan pio Sty poplaTikn emLOKOMTNGT OAOKANPNG TNG LAOTTOINGTG.
O xpriotng divel g elcodo Ta apyelor TOL TEPLYPAPOVV TO HOVTEAO TOV VELPWVLKOD SLKTOOV
(o€ popon ovpPatn pe To Cafte), padi pe pio etkova. Emtiong o xprotng Hécw TwV 0PLOPATOV
NG demaprc, opilel tn Aertovpyla Tov OéAel va exteléoel KaDOG KoL TO APYLTEKTOVIKA

XOPOKTNPLOTIKA TOV EVOOHATWHEVODL TToUL Bat ekTeEAéEGOLY TO diKTVO.

33

User Input

11 N

E Caffe o ff Itf i
affe platform profiling
nputimage) | @01050) (e

@ python High-level API

- =

CNN Description
memory allocation, weights, kernel sizes, ...

= =

CNN Deployment and Execution
I I

CNN Manager | Execution
jE : optimal(s)
=] —--
£ f 00---QCNN mapN

HW utnhzatlon

Library of layer
implementations

=3

|
> .U""CNN map1 <-|-V: Pareto
I H
I
|
I
I
|
|
|
|
|
|

HW utilization
@ @». > || &
e, || D @D | | Lo
! u i | @
- Li CNN; : Platform resources| | CNN;
O e : # processing units | | Implementations
L e)
i ° i = || = L | H = o
8 ! > 0| b
' s 1CNNy ! merge results x . o
| @ e | s .
| energy i >

L enerlgy i energy

Yxnpa 1.10: Overview of the CNN implementation

1.6.1 H Python Siemapn tng epoappoyng

H evoopatopéva mhatpoppa Myriad2, wg eveopatopévo 1ducot okomon, dev mopéyel
OTOV XPNOTH KATTOLX SLETTOQPT] ETTLKOLVWVING, (OOTE ekeivog va mepvaeL oplopata 1| apyeio
KOTQ TNV EKTEAECT) HLOG EPAPHOYNG. AUTO OHALVEL, OTL XWPIG TNV KATAGKELT) KATOLAG LOLO-
TUTNG dlemaPng, elval addvaTov va XTLoTel Pl yevikevpévn epappoyn omov Bo SroPfalet
0710101 TTOTE HOVTELD VELPWVLKOD SLKTVOL MGTE VO PITopécel va dnpLovpyroel To SikTvo
KoL Vo TO ek TeAECEL. QG €K TODTOU, YL VO HITOPETEL KATTOLOG VO TTePLY paeL £var SIKTLO pEc

otnv Myriad, Oa émpeme va ypapel yelpokivnto dekddeg YPOaPHES TTNYOLIOL KOSLKO OGTE Vo

34

QVOKOTAOKEVAGEL TNV TANPOPopior TOL SLKTVOL Kol va To ekTeAéoel. Avth 1) dwdikacia,
oe peyaha diktua, 6mwg yio mtapadetypo To "GoogleNet”, extog 0TL ammaitel XIALASeG ypop-
HEC KOOLKA KOl TTOAANEG DPEG TPOTOTTOLNONG TOL KWK, Dewpel emiong wg dedopévo OTL
0 TPOYPOUPPATIOTAG EXEL TAT)PY entiyvwoT tov low-level pnyaviopod mov extedeiton péoa
0TO EVOWUATWHEVO.

Eivar mpogpavég, 0Tt avtn 1) péBodog eivan e€opeTikd Pn-orodoTIKT) KoL 1) EDPECT) PLOG
aodOTIKNG KoL YEVIKEVHEVNG Ao G elvan emttakTiky) avaykn. H avaykn avtr, odnynoe
o dnpovpyia prog vymAov-emurédov dieapng, vAomoinpévn oe Python. H diemtagpr) avtn
TPOGPEPEL EVOL GOVOAO OLTTO TTPOYPOUHATIOTIKA EPYXAELQ TTOV CLPOPOVV TLG TTOPOHETPOVG
TNG OPYLTEKTOVLKTG TTOL O eKTeAETEL TO SLKTULO, 1) ETTLAOYT) TWV LITOAOYLOTLKOV TTOPWV TTOVL
B xpnopomonBoiv kat tnv emhoyn tng Aettovpylag mov O epappocTel 6TO eKAGTOTE
diktvo. Télog, 1 Siemagr) avtr Topayel Eva cOVOAO amd mnyaiovg kadikeg kat PLpArodrn-
KEG TTOL TIEPLEXOLV OAEG TIG AUTTAPALTNTES TTANPOPOPLEG, O AVAYVOGSLIT - otd T Myriad -
HOPYPT], DOTE VO KATOOKELAOTEL KO Vo ekTeAeoTel To dikTvo.

1o oxnpa 1.11, mapovcidletal Paocikr) Aettovpyia tng diemapng oe Python.

Framework functionality

Z;;Ef; “““ % | I Caffe B 4
\input E&E specs :: input specs /,
Single Inference

|mplementatlon

Exec. t|me
<Energy].l)

v
|
| DSE for system

resources utilization |!

|
: Pareto ° :
I_curve ’ |
|

QZ)SE profiling results [=)

|
| |
' |
| v = |
|

Analysis %@, '
| ysis |
' |
' |
' |
' |
' [

v
(Pareto curve oo]

Yxnuo 1.11: Python Awemagn

35

1.6.2 O dwaxelploTng TNG EKTELEONG TOV S1KTVOV

To dedtepo dopkd otoryeio tng CNN Engine mov vAomotOnke eivar o dioxelplotig
TOV VEVPOVIKOV SIKTO®V €VTOG TOL evowpatwpévov. Eva koppdtt tov mnyaiov kddko
OV QPO PX TOV dLoryeLpLoT) outoTeleital oo éva cOoTNpHX KAdGewVv (AAT), oL omoleg mept-
YPOPOULV OAat T SLALPOPETLKA €101 OTPOGEWV TOL Y PTGLLOTOLOVVTAL GTA CUYXPOVA CLVE-
MKTIKG veupwvka diktua, podi pe Tig e€eldLkeVPEVES LOLOTNTEG, XOUPAKTIPLOTIKA KoL AgL-
Tovpyieg TOVG. ExTOG atd TV mepLypagpt) TV 6TPOCE®V, it SIupOPETIKT) KAAGT) TOL avoL-
TOPLOTA TOV DL ELPLOTT) TOL OLKTVOL OpLleTarl KoL X proLplomoLeitat yior v otofnikevel Tnv
TANPOPOpior TOL VELPWVLKOD SLKTVLOV, Vo ePaPUOLeL kKaTtola atd TG Stabéopeg TeXVIKEG
EKTEAEOTG KOL VAL TPOTTOTIOLEL, otV Y PeLdleTarL, TIG TapopéTpoug k&be oTpdong (.. To €idog
NG oLVEAENG Tov Ba ektedeotel). O dwayelplotng yvopilel OAeg TIG amapaitnteg TAN-
pogopieg Tov StkTOOL TTOL Bt ekTEAéTEL, QO TIG v TOpTO TTaparyOnoeg PLpAtodnKkeg Kkan
TNyaiovg KOdLKeG oL TpoékvyPav amd Tnv demayt), Onwg eEnynodnke vopitepa.

Aedopévou otL 1 Srayeipion evog dikTOOV, TOL AToTeEAELTAL ATTO o GELPA SLAPOPETLKDV
KOPPWV (OTPDOCELS) HE KOLVE XAPAKTNPLOTIKA, ELVOL 1) ETILTOHY HLOG OVTIKELLEVOGTPOPOVG
npdkAnong, 6Ao to framework ov atotedel TNV TEPLYPOPT) TWV GTPOGEWV KoL TOL dLoryeL-
ptotn éxovv vAomoinBel oe C++ ko ekteAovvTon atovg emeEepyoctég LEON OS ko LEON
RT. O master eme€epyaotng eivor 0 LEON OS, evd 6e TepUTTdoeLg Tov omaltodvToL Ko oL
dvo (Aettovpyia “profiling” ko “dual processor”), tote divetar evroln ko otov LEON RT
va evepyomonfel yia va oupPader otn droxétevon twv KOpPwV 6To moAveneEepyacTikd
ovotnpo. O devTepog Adyog mov dtadéxOnke 1) C++ yia Tnv emtidvon avtod Tov {nTrpatog,
elval 1 KALOKOOLOTNTA TTOL TPOCPEPEL VAL AVTIKELLEVOOTPOPES AoyLoptko: Extog 0TL
oL VTTO-KAGoELG elvor EDKONNL ETTEKTAGHEG DO TE VA TTPOCPEPOLV TTEPLOGOTEPES AELTOVPYiEG
1 L0 TOAAEG OTPWOCELG, AV KATTOLOG TLG XPNOLLOTOLOEL WG XVLTOTEAELS OOLKEG PHOVADEG,
prtopet v tpocsBécel TOAAES akOpo aAANAoeEapTdpeVEG AetTovpyleg, YwPIS va XpelacTel
vo paBet oe fdbog Tov TpOTO TOL AVTEG OL KAAGELG AELTOVPYOLV.

To oxpa 1.12 Seiyvel piot GLUVOTTIKY AITOYn TV SLVATOV AELTOLVPYLOV EKTEAEGTG KOL

amopacewv Tov dtaxelptoth mov tpéxel atov LEON OS ene€epyaot.

1.6.3 YmoAloyiwotikég péBodot Tng epoppoyng

Téhog, n ovoia tng CNN Engine kpOfetal micw amd TIG LITOAOYLOTIKEG POUTIVESG OL
0TI0LEG TPEXOLY OTO TOAVETEEEPYATTIKO GUGTNHA TOL EVOWOHATOHEVOL. [l TO 6KOTTO QLTO,
éxouvv avamtuyBOel BéATIOTOL XAYOPLOpOL HETAPOPAG TLVAKWOV PETOED TOV PVIHOV, KAOOG
Kot poutiveg otnv e€edikevpévn yAdooo assembly tov evowpatwpévov. Ot Tapakdtw

OTPWOELS, COHPwV e Tao TpOTLTa Tov ~Caffe”, elvo vAomTopéveg ko vitootnpilovtan

oo TNV €QAPHOYT:

36

MYRIAD
LEON OS LEON RT
Network Manager
- Parallel_dispatcher()
Energy_measurement()
Activated only in PROFILE
and DUAL_CPU modes

4

L Z—
We?ights/ I/0 Computation
E(l)ass_elz}r sharedbUfferS > CMX foraries
memory DDR SHAVES

!

Inference Output

’rofile output

v format)

Yxnpo 1.12: O Suo elploTtig TV GUVEALKTIKOV VELPOVLIKOV JIKTOWV

Convolution (Direct kot Im2Col teyvikég)

Pooling

e RelLU

Fully Connected/Inner Product
e LRN-Across Channels

Concat

1o oxnpa 1.13 paiveton) facikr) vootportia mov dopeital To ToAveneEepyaoTiKd GO-
oTNHO:

H CMX pvnjun, ov xpnopomnoteiton ord toe SHAVES (rtuprivec) yia vow aroBnkevoet o
dedopéva, elval ILKPOGKOTLKY) G& GXECT] HE TO TEPAGTLO OYKO deSOUEVWVY GTA OOl TTPETTEL
VoL €QOPHOGTOVY 0L LIToAOYLGTLKOL atAyopLOpoL. Eopévwg,) Bacikr) apyr) tng vAomoinong
elvoll vor @€pvel TUNHATO OTTO TOLG TEPAOTLOVG Tivakeg, o€ YOPOULGS, KaL va T LIToAoYilel
wote v ta emoTpéPel tiow oty pvrun DDR. EmutAéov, to tpripa kddika Tov cuvaptr-
oewVv twv SHAVE éyel petagepBet otnv DDR, obtwg wote va pn xpetactel v decpedoel
oA UTIO YOpo TG CMX. O xwpog avtog Ba xpnotpomoinBel oxedOv AToKAELGTIKA YL TNV
amodnkevon mvakwv. AvEavovtag to dadéoyo péyebog yia mivokeg, PELOVEL TIG eV
MPeig mov mpémel va AdPouv xwpa wote va épBouv OAa Ta block, kaBdg kot Tig peTopopég

ortd TN pia pvrpn oTnv GAAn.

37

SHAVEs utilize local buffers to store intermediate results

Computations
bootstrap code

e e SHAVE 11

SHAVEs read
Computations Computations bootsirap
bootstrap code bootstrap code instructions

from CMX

o L

Data storage Data storage

Data storage

CMX for SHAVE 0 CMX for SHAVE 1 CMX for SHAVE 11

Yxnpo 1.13: Extéleon ota SHAVES

1.7 A&woAoynon tng vAomoinong

1.7.1 Apywomnoinon tng dwadikaciag agloAoynong

H vlomoinon a&loloyndnke xpnopomotdvtag 6 SLa@opeTikd GUVEALKTIKA VEVPWOVLIKG
dikTva, Tao ool apovsLdlovy peydAn motkiAopop@ia pHeTaED TOVG, WG TPOG TNV TOAL-
miokotnTa: AlexNet, GoogleNet, NiN-imagenet, SqueezeNet, VGG and ZFnet. Ta dixtux

avtd emAéxOnkay pe Bdon 2 kprtnpro:

e No amoiteiton Evo evp PAGHA AITTO VITOAOYLGTIKOVG TTOPOULG, £TGL MOGTE Var topHovv
QITOTEAEGHATOL TOL OTTOLAL VAL SLAPEPOVY CTHAVTIKA WG TTPOG TO XPOVO EKTEAECTC, TNV

KOTOVAA®GOT) evépyelag Kot Tnv akpifeia TpoPreyng.

e Noa Bewpovvtal evpéwg dradedopéva, GUYXpOvVa VELPWVLKA SLKTLA KoL VO XP1OLHO-
TTOLOVVTOUL OTLG TEXVOAOYLKQ EEEALYHEVEG EPAPHOYES QLVALYVIDPLOTIG ALVTLKELHEVOV KOl
TaELVOUNONG ELKOVWV.

CNN input image output vector #layers #memory(MB) Error rate

AlexNet [277 x 277 x 3] [1 x 1000] 13 117 17

GoogleNet [277 x 277 x 3] [1 x 1000] 83 16.6 7

NiN-imagenet [277 x 277 x 3] [1 x 1000] 16 15.5 17.5

SqueezeNet [277 x 277 x 3] [1 x 1000] 38 4.68 19.7

VGG [277 x 277 x 3] [1 x 1000] 16 276 8

ZFnet [277 x 277 x 3] [1 x 1000] 13 121 16.5
IMivakog 1.1: AeTTOPEPELEG TWV VELPOVIKOV SIKTOWV OV XPNOLHoTotOnkay yiow tnv

a&loAdynon

38

Ytov mivaka 1.1 @aivovtol To YopoKTNPLoTIKA TV SIKTO®V Tov avagépOnkay. Kot
Ta 6 dikTua Xpropomoloy Tig idleg dloTdoeLg ELGOSOL KaL elval EKTAOEVHEVO GTO GET
dedopévwv “ImageNet” yia Tov idto aplBpod kAdoewv e£ddov, emopéveg pmopodv va Xpi-
otpomonovv evalAdE to éva pe To GAro. O aplBpdg TV 6TPOGEWV SLPEPEL CNHAVTLKA,
amno 13 otpwoelg (AlexNet and ZFnet) wg kot 83 (GoogleNet). IIpopavag, to idio toybet kot
YLOL TLG QUTOULTTCELG G € VI, TTOL OVapEPETAL 6TO PEYEDOGC TTOL AT OAODV, GTNV KEVTPLKH
HVAIN TOL GLOTHHATOG, Ta PPN KoL OL TOADCELS TV SIKTOWV. Miot okOpr GTHAVTIKT pLe-
TpIKn eivan To top 5 mocootd Adbovg TpoPAeyng, mov molkiddel oo 19.7 (SqueezeNet) wg
8 (VGG). H mportewvopevn peBodoroyio oty mapovoa duthwpotikn Oa ypnoyomowmn et yio
va i) Tpoc@épel PEATIOTA TPOCAPUOCHEVES TTOPAPETPOUS VLo TA JIKTLA OTNV TAATPOPHX
Myriad xou ii) v emidei€er Ta trade-off mov vtdpyovv petad Tov YpodVOL ekTEAEONC KoL

TNG KATAVAAWOTG EVEPYELNG HETOED LTAOV TWV PEATIOTA TTPOCAPHOGHEVOV GUVIVAGHDV.

1.7.2 Egepedvnon 1ov x®pov oXeS1oopov

H mpotewvopevn peBodoroyia yioe Tnv ekTéAecT) TV SIKTOWV EPAPHOCTNKE OTA 6 TPOCL-
vapepBévta diktva Tou ivaka 1.1. H ¢é€0d0g Tov mpidTou Tpfpatog tng pebodoroyiog gai-
vetow oto oxNpa 1.14. Ta dwypdppoata Pareto yio kabe vevpwvikd diktvo yia tov xpovo
EKTENEOTG WG TTPOG TNV KATAVAAWGT) EVEPYELXG TTAPEYOVTAL XVTOPATWG atd To framework
7oL vAoTotel TNV peBodoroyio. Kabe onpelo ot daypappota eivar pio vAomoinon tng
QPXLTEKTOVLKTG TOL SLKTVOL TTOL XPTGLHOTIOLEL Evay dtoupopeTikd péyeBog ad vIToAoYLoTL-
KoUG mOpovg. Me GAda Aoyia, éva cet amd pubpicelg yio kamolo dikTuo dtopépel amd éva

Ao oeT, 6TOVG aplBpovg ML VWV oL Ba eteEepyacTOOY TOLAAXLGTOV it GTPOGCT).

39

AlexNet execution time vs. energy GoogleNet execution time vs. energy NiN-imagenet execution time vs. energy

123500
333000

123000 332000 336100

331000

336000
330000

9y consumption (my)

320000 335900

Energy consumption (mj)

Ener

121500 328000

335800
327000

121000

978 98.0 982 984 9.6 236 237 238 230 240 241 2440 2445 2450 2455 2460 2465 247.0
Execution time (ms) Execution time (ms) Execution time (ms)

(a) AlexNet: Execution time (b) GoogleNet: Execution (c) NiN-imagenet: Execution
vs. energy time vs. energy time vs. energy

SqueezeNet execution time vs. energy VGG execution time vs. energy ZFnet execution time vs. energy

976000 »,
137000 W
127000

974000
136000

126500 £ 972000

jon (my)

135000

S

prion

126000

sum;

134000
£ 968000

consumption (my)

125500

Energy consumpt
9y co

> 133000
£ 966000 g

Ener

125000 964000 “ 132000

962000 131000

124500

960000
866 868 8.0 872 874 87.6 8.8 880 882 586 588 9 504 596 990 991 992 993 994 995 996
Execution time (ms) Execution time (ms) Execution time (ms)

(d) SqueezeNet: Execution (¢) VGG: Execution time vs. (f) ZFnet: Execution time vs.
time vs. energy energy energy

Yxnua 1.14: Brpa 1 tng pebodoroyiog: BéATioTn mTpooappoyr Twv VELPOVIKOV dKTO®V
otnv Myriad2

Trade-offs petafl Tov YpOVOUL eKTEAEGTG KO TNG KATAVAAWDGTNG EVEPYELOG TTOPALTIPOD-
VTOL & ONEG TIG APYLTEKTOVIKEG VEVPWOVIKOV JIKTO®V. Me pia Lo TPOGEKTIKN HOTLE, elvart
€0KOAQ VTIANTITO OTL OL TTLO VTTOAOYLOTIKA EVTOVES OTPWOCELS, OTWG TPOKVITEL OO T
QITOTEAECPATA, ELVOL OL GUVEALKTIKEG GTPAOCELG, TO OTTOL0 elva avapevopevo. Ilpaypart, ot
peTprioelg delyvouv OTL otd TO GUVOALKO XPOVO eKTEAEGTIG TV SLKTVWV TOL TTivaka 1.1, To
68% WG 99% CMATAAATOL GE GUVEALKTIKEG OTPOCELG. ATTO TN GTLYHT TTOUL 1) GUVEALEN elvat
UTTOAOYLOTIKG TTOAVTAOKT) TTPAEN, cuviBwg o PéATIoTOg aptBpog uprvev eivon 11 1 12.
[Moporo avTd, TOAAEG POPEG LTOG 0 aPLlBPOC TTLPN VLV deVv elvol TAVTA 0 ATTSOTIKOTEPOG
WG TTPOG TNV KOTOVAAWGCT) EVEPYELOG.

Mia evdiapépovoa tapatipnon eivor to yeyovog ot to AlexNet, NiN-imagenet, VGG
Ko ZFnet eivon ovpmdeypéva oe opadec. T amoteAéopata deiyvouv OTL OL LAOTTOLNCELS
TTOL AVIKOLV GTO {810 CUUTTAEYHQ, Ol GUVEALKTIKEG GTPWOOELG £XOUV akpLPag TIg idleg ma-
popéTpovg (otnv mepimtwon pog tov o apBpd mupnvwv). Exel mov diopépovv, eivar
OTLG LTTOAOUTEG GTPAOCELS, OTWG YL TToPASELYHO GTN 6TPWOT pooling kai tn otpwon fully
connected, oL 07T0leC £XOLV GUOXETIOTLKX HIKPOTEPO AVTIKTUIIO GTO XPOVO EKTEAEGTIG 1] TNV
evépyela. Ao Tnv GAAN TAEVPA, VAOTIOLNOELG TTOL AVIKOUV GE SLOPOPETLIKA CUUTTAEYHATAL,
TelVOUV var £XOLV SLAPOPETLKEG TAPUPETPOVG HETOED AVTIOTOLYWV GUVEAKTIKOV GTP®-

OEWV.

40

IMivakag 1.2: ABpoloTikd amoteAéopata ToL TPOTOL Pripatog tng pebodoloyiag

AlexNet GoogleNet NiN-imagenet SqueezeNet VGG ZFnet

Exec. time (ms) 97.69 203.05 243.96 78.08 585.66 98.93
% Exec. time gain 2.3 17.73 1.2 11.47 1.72 0.65
Energy consumption (J) 120.9 286.9 335.7 109.9 960.7 130.3
% Energy gain 1.2 13.8 0.12 13.6 153 5.1

IMivakag 1.3: Z0ykpion peto&d Tuxaiog TopapHeTPOTOinong Kot PEATIOTA TPOGAPHUOCHE-
vng mopopetponoinong oto XNA.

AlexNet GoogleNet NiN-imagenet SqueezeNet VGG ZFnet

Exec. time 12 VPUs (ms) 98.16 238.6 244 87 587.2 99.1
Exec. time fine-tuned (ms) 97.6 203.5 243 78 585.6 98.9
% Exec. time gain 0.48 14.9 0.01 10.37 0.27 0.19
Energy 12 VPUs (J) 133.7 343.6 337 129.3 1004 141.2
Energy fine-tuned (J) 120.9 286.9 335.7 109.9 960.7 130.3
% Energy gain 9.56 16.61 0.6 18.34 10.83 8.46

O mivaxag 1.2 deiyvel To péylota kEPON GTO XPOVO EKTEAECNC KAL TNV KATAVAAWGT)
evépyelag HeTaED TNG YPNYOPOTEPNG KoL TNG artodoTikOTEPNG VAOTOINoNG Y k&be ZNA,
T0 omoio ayyiletl 10 5.3%. Taw amoteAécpata Tov devTepov Pripatog tng pebodoroyiog mo-
povcialovton otnyv eikova 1.15. Atxypappato Pareto moapovoialovv ta trade-off petaod
TOL XPOVOUL EKTEAEGT|G, TNG KATAVAAWONG evépyelag ko TG akpifetag mpoPieyng. H et-

kova 1.15a Seiyvel tnv kaptOAn Pareto wg mpog To xpovo ekTEAECTC KL TNV KATAVAA®GT)
EVEPYELOG.

Pareto curve execution time vs. Pareto curve execution time vs. accuracy

energy consumption

I
o
S

SqueezeNet Pareto curve energy consumption vs. accuracy
*

-

]

]
N
3

£150 . $ zFnet * N AlexNet
S1as @14 i 16 s *
a K] i " 1ZFnet
E a0 - : 512 | $!
2 . ‘ 3 ! £ i
S13s ' = 12 i . [!
?130 sq:;?z‘e . — . [— -+ GoogleNet i j - -+ GoogleNet *
& 125 (perf) toe S _¢ (en) 4 2
SqueezeNet (en) 2 ;
120 0 0 200 400 600 800 1000 1200
80 85 %0 95 ~ 100 105 110 0 100 200 300 400 500 600 700 Energy consumption (mJ)
Execution time (ms) Execution time (ms)
L _) (c) Energy consumption vs.
(a) Execution time vs. energy (b) Execution time vs.
. accuracy
consumption accuracy

Yxnpo 1.15: AnoteAéopata tng pebodoroyiag: Trade-offs peta&d xpovov extéleonc, ka-
TAVOAWGOTG eVEPYeLag kol akpifelag mpoPAeyng peta&d twv dixpdpwv ENA.

41

Chapter 2

Introduction to Machine Learning and Neural

Networks

This chapter begins with an overview of artificial neural networks and continues with
the description of convolutional neural networks. By the end of this chapter the reader
should have a basic understanding of neural networks, which is required for subsequent

chapters.

2.1 Machine learning

In this age of modern technology, there is one resource that exists in abundance: a large
amount of structured and unstructured data. In the second half of the twentieth century,
machine learning evolved as a subfield of artificial intelligence that involved the devel-
opment of self-learning algorithms to gain knowledge from that data in order to make
predictions. Instead of requiring humans to manually derive rules and build models from
analyzing large amounts of data, machine learning offers a more efficient alternative for
capturing the knowledge in data to gradually improve the performance of predictive mod-
els, and make data-driven decisions. Not only is machine learning becoming increasingly
important in computer science research but it also plays an ever greater role in the every-
day life. Thanks to machine learning, robust e-mail spam filters, convenient text and voice
recognition software, reliable web search engines, challenging chess players, and, hopefully

soon, safe and efficient self-driving cars are a reality [1].

2.1.1 Types of machine learning

This subsection takes a look at the three types of machine learning: supervised learning,

unsupervised learning and reinforcement learning.

e Supervised Learning: The main goal in supervised learning is to learn a model from
labeled training data that allows to make predictions about unseen or future data.
Here, the term supervised refers to a set of samples where the desired output signals

(labels) are already known

43

e Reinforcement Learning: The goal is to develop a system (agent) that improves its per-
formance based on interactions with the environment. Since the information about
the current state of the environment typically also includes a so-called reward signal,
reinforcement learning can be thought of as a field related to supervised learning,.
However, in reinforcement learning this feedback is not the correct ground truth la-
bel or value, but a measure of how well the action was measured by a reward function.
Through the interaction with the environment, an agent can then use reinforcement
learning to learn a series of actions that maximizes this reward via an exploratory

trial-and-error approach or deliberative planning

e Unsupervised Learning: In supervised learning, the right answer is known before-
hand when the training of the model is performed, and in reinforcement learning,
a measure of reward for particular actions by the agent is defined. In unsupervised
learning, however, the data are unlabeled or have unknown structure. Using unsu-
pervised learning techniques, it is possible to explore the structure of the data, in
order to extract meaningful information without the guidance of a known outcome

variable or reward function

Figure 2.1 presents an overview of the two major types of machine learning.

i I

. CLASSIFICATION
SUPERVISED kg J
LEARNING
Develop predictive
model based on hath e)
input and output data
J REGRESSION

MACHINE LEARNING N /
!
UNSUPERVISED - Y
LEARNING
T) | CLUSTERING
data based anly L S

an input data
J

Figure 2.1: Machine learning basic types overview

The focus of subsequent sections will be solely on supervised learning. Considering
the example of e-mail spam filtering software: The approach is to train a model using a
supervised machine learning algorithm on a corpus of labeled e-mail, mail that are correctly
marked as spam or not-spam - to predict whether a new e-mail belongs to either of the two
categories. A supervised learning task with discrete class labels, such as in the previous
e-mail spam-filtering example, is also called a classification task. Another subcategory of

supervised learning is regression, where the outcome signal is a continuous value.

44

2.1.2 Supervised learning classification

Classification is a subcategory of supervised learning where the goal is to predict the
categorical class labels of new instances based on past observations [2]. Those class labels
are discrete, unordered values that can be understood as the group memberships of the
instances. The previously mentioned example of e-mail spam detection represents a typi-
cal case of a binary classification task, where the machine learning algorithm learns a set
of rules in order to distinguish between two possible classes: spam and non-spam e-mail.
However, the set of class labels does not have to be of a binary nature.

The predictive model learned by a supervised learning algorithm can assign any class
label that was presented in the training dataset to a new, unlabeled instance. A typical
example of a multi-class classification task is handwritten character recognition. Here, a
training dataset that consists of multiple handwritten examples of each letter in the alphabet
would be the starting point. Now, if a user provides a new handwritten character via an
input device, the predictive model will be able to predict the correct letter in the alphabet
with certain accuracy. However, the machine learning system would be unable to correctly
recognize any of the digits zero to nine, for example, if they were not part of the training

dataset.

A
b Y
\
\
\
\
— A
[
X -\
2] = =\
— -_—
- @= A"
= e =
- — LY
N\
>
X4

Figure 2.2: Binary classification in supervised learning

Figure 2.2 illustrates the concept of a binary classification task given 27 training samples:
15 training samples are labeled as negative class (minus signs) and 12 training samples are
labeled as positive class (plus signs). In this scenario, the dataset is two-dimensional, which
means that each sample has two values associated with it: x; and x, .Now, a supervised

machine learning algorithm can be used to learn a rule - the decision boundary represented

45

as a black dashed line - that can separate those two classes and classify new data into each

of those two categories given its x; and x, values.

2.1.3 Supervised learning regression

The previous section showed that the task of classification is to assign categorical, un-
ordered labels to instances [2]. A second type of supervised learning is the prediction of con-
tinuous outcomes, which is also called regression analysis. In regression analysis, a number
of predictor (explanatory) variables and a continuous response variable (outcome) is given,
and the goal is to find a relationship between those variables that allows the prediction of
an outcome. For example, assume that there is interest in predicting the Math SAT scores
of students. If there is a relationship between the time spent studying for the test and the
final scores, it could be used as training data to learn a model that given the study time,

predicts the test scores of future students who are planning to take this test.

Datapoints . .
Regression

Figure 2.3: Linear regression in supervised learning

Figure 2.3 illustrates the concept of linear regression. Given a predictor variable x and
a response variable y, a straight line is fitted to this data that minimizes the distance - most
commonly the average squared distance - between the sample points and the fitted line.
Then, the intercept and slope learned from this data is used to predict the outcome variable

of new data.

46

2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a special type of artificial neural network
topology, that is inspired by the animal visual cortex and tuned for computer vision tasks
by Yann LeCun in early 1990s [3]. It is a multi-layer perceptron, which is an artificial neural
network model, specifically designed to recognize two-dimensional shapes. This type of

network shows a high degree of invariance to translation, scaling, skewing, and other forms

of distortion.
C 1 S 1 C: S: I n:
mnpul feature maps feature maps Teature maps feature maps cutput
32x 32 28 x 28 14 % 14 10 x 11) 5x 5

oy - - t \.;'-‘..'.
5x5 %2 %5 m e
. . . | N
convolution \ subsampling convolution 2x2 \\ o fully \
subsamplin \ connected
N o cubsampling N\ comnected N\

feature extraction classification

Figure 2.4: Example topology of a CNN suitable for handwritten digit recognition

In a CNN each neuron receives some inputs, performs a mathematical operation and
optionally follows it with a non-linearity. The whole network still expresses a single score
function: from the raw image pixels on one end to class scores at the other. Also, CNNs still
have a loss function (e.g. softmax) on the last (fully-connected) layer and all the knowledge
developed for regular ANNSs still applies. The main difference of CNN architectures is that
they make the explicit assumption that the inputs are images, which allows the encoding
of certain properties into the architecture. The position invariance of the features makes
it possible to reuse most of the results of the feature extractor, this makes a CNN very

computationally efficient for object detection tasks.

2.2.1 Data arrangement in a CNN

CNNs take advantage of the fact that the input consists of images and they constrain
the architecture in a more sensible way [4]. In particular, unlike a regular ANN, the layers
of a CNN have neurons arranged in 3 dimensions: width, height, depth. Note that the word
depth here refers to the third dimension of an activation volume, not to the depth of a
regular ANN, which can refer to the total number of layers in the network. For example, 32

x 32 RGB input images represent an input volume of activations, that has dimensions 32 x

47

32 x 3 (width, height, depth respectively). The neurons in a layer will only be connected to a
small region of the layer before it, instead of all of the neurons in a fully-connected manner.
The constrained, local connectivity of CNNs will be clarified shortly. An input 3D volume
is shown in figure 2.5 for a 4 x 4 RGB image. It is noted that the range of values in the 3D
volume can be adjusted to assist the training of the network. The process of manipulating
the input data, prior to feeding them to the CNN; in order to bring them to the desired form

is called preprocessing.

"\ 3 Colour Channels

b

v

Height: 4 Units
(Pixels)

Width: 4 Units
(Pixels)

Figure 2.5: Cross-section of an input volume of size: 4 x 4 x 3. It comprises of the 3 color
channel matrices of the input image.

As aresult,a CNN is made up of layers, each one having a simple interface. It transforms
an input 3D volume to an output 3D volume using some function that may or may not have

parameters.

2.2.2 Common layers used to build CNNs

There are three main types of layers to build CNN architectures: Convolutional Layer,
Pooling Layer, and Fully-Connected Layer [5]. The latter is exactly as seen in regular ANNS.
These three layers are stack interchangeably to produce interesting architectures. There is
also the Input Layer, which is nothing more than the identity transform, i.e. its output is

the same as its input. These layer are analyzed briefly below:

e Input Layer: Holds the raw pixel values of the input image. The depth of the Input
Layer volume matches the number of channels of the input image. Also, the spatial

dimensions of the input volume match the dimensions of the input image.

48

e Convolutional Layer: Will compute the output of neurons that are connected to local
regions in the input. Each computation is a spatial (width, height) convolution be-
tween their weights and a small region they are connected to in the input volume.
The depth of the output volume depends on the numbers of filters that is given to the

layer as an extra parameter.

e Pooling Layer: Will perform a downsampling operation along the spatial dimensions
(width, height).

e Fully Connected (FC) Layer As with ordinary ANNs and as the name implies, each
neuron in this layer will be connected to all the elements in the input volume of the

layer.

e ReLU Layer: Will apply an elementwise activation function, namely f(x) = max(0, x)
thresholding at zero. This layer is used for helping the network training and leaves

the size of the input volume unchanged.

e LRN Layer: Will perform a kind of “lateral inhibition” by normalizing over local input

regions.

e Concat Layer: Will concatenate its multiple input blobs to one single output blob.

In this way, CNNs transform the original image layer by layer from the original pixel
values to the final class scores. Note that some layers contain parameters and other do
not. In particular, the convolutional/fully-connected layers perform transformations that
are a function of not only the activations in the input volume, but also of the parameters
(the weights and biases of the neurons). On the other hand, the ReLU/pooling layers will
implement a fixed function. The parameters in the convolutional/fully-connected layers are

trained with gradient descent.

49

Chapter 3

Caffe Framework and Myriad2 Embedded
platform

his chapter is going to introduce basic terminology about the software and the hard-
ware used that make up the CNN implementation. The reader is strongly suggested to pay
attention to this chapter, since subsequent chapters will make references to notions defined

here.

3.1 Caffe: Convolutional Architecture for Fast Feature
Embedding

Caffe provides multimedia scientists and practitioners with a clean and modifiable frame-
work for state-of-the-art deep learning algorithms and a collection of reference models. The
framework is a BSD-licensed C++ library with Python and MATLAB bindings for training
and deploying general-purpose convolutional neural networks and other deep models ef-
ficiently on commodity architectures. Caffe fits industry and internet-scale media needs
by CUDA GPU computation, processing over 40 million images a day on a single K40 or
Titan GPU (~ 2.5 ms per image). By separating model representation from actual imple-
mentation, Caffe allows experimentation and seamless switching among platforms for ease
of development and deployment from prototyping machines to cloud environments. Caffe
is maintained and developed by the Berkeley Vision and Learning Center (BVLC) with
the help of an active community of contributors on GitHub. It powers ongoing research
projects, large-scale industrial applications, and startup prototypes in vision, speech, and

multimedia [6].

3.1.1 Layers

Caffe stores and communicates data in 4-dimensional arrays called blobs. Blobs pro-
vide a unified memory interface, holding batches of images (or other data), parameters, or
parameter updates. A Caffe layer is the essence of a neural network layer: it takes one or

more blobs as input, and yields one or more blobs as output. Layers have two key respon-

51

sibilities for the operation of the network as a whole: a forward pass that takes the inputs
and produces the outputs, and a backward pass that takes the gradient with respect to the
output, and computes the gradients with respect to the parameters and to the inputs, which
are in turn back-propagated to earlier layers. Caffe provides a complete set of layer types
including: convolution, pooling, inner products, nonlinearities like rectified linear and lo-
gistic, local response normalization, elementwise operations, and losses like softmax and
hinge. These are all the types needed for state-of-the-art visual tasks. Coding custom layers

requires minimal effort due to the compositional construction of networks.

3.1.2 Network training

Caffe trains models by the fast and standard stochastic gradient descent algorithm. Fig-
ure 3.1 shows a typical example of a Caffe network (for MNIST digit classification) during
training [6]: a data layer fetches the images and labels from disk, passes it through multiple
layers such as convolution, pooling and rectified linear transforms, and feeds the final pre-
diction into a classification loss layer that produces the loss and gradients which train the
whole network. This example is found in the Caffe source code at examples/lenet/lenet_-
train.prototxt. Data are processed in mini-batches that pass through the network sequen-
tially. Vital to training are learning rate decay schedules, momentum, and snapshots for

stopping and resuming, all of which are implemented and documented.

Figure 3.1: MNIST digit classification example of a Caffe network. Blue boxes represent
layers and yellow octagons represent data blobs produced by or fed into the
layers

In the context of the CNN implementation in Myriad2, the training of the network is
performed by Caffe in an x86 machine. Afterwards, the blobs containing the trained param-
eters are copied and then placed inside the DDR of Myriad2. As a result, the implementation
has all the required parameters for performing the forward pass, although this time the ex-

ecution is performed on the specialized hardware of Myriad2.

52

3.2 Mpyriad 2 multicore SoC

The target platform of implementation is the Myriad2 System-on-Chip (SoC) process-
ing unit [7]. It is developed by Movidius Ltd, that recently joined Intel’s Perceptual Com-
puting Group to accelerate adoption of visually intelligent devices. Myriad2 delivers high-
performance machine vision and visual awareness in severely power-constrained environ-
ments. For that reason, it is the world’s first Vision Processing Unit (VPU) that specifically

targets embedded applications. The main characteristics of Myriad2 are:

e An ultra-low power design: For mobile and connected devices where battery life is
critical, Myriad2 provides a way to combine advanced vision applications in a low
power profile. This enables new vision applications in small form factors that could

not exist before.

e A high-performance processor: Bringing vision technologies in connected devices
closer to the capabilities of human vision is what Myriad2 is all about. It enables

advanced vision applications that are impossible with conventional processors.

e A programmable architecture: The flexibility for developers to implement differenti-
ated and proprietary applications is fundamental to Myriad2. The provided optimized
software libraries give device manufacturers the ability to differentiate, not duplicate,

at the core level.

e A small-area footprint: To conserve space inside mobile, wearable, and embedded de-
vices, Myriad 2 was designed with a very small footprint that can easily be integrated

into existing products.

A high level view of the hardware is shown in figure 3.2. From there, it is seen that
Myriad2 SoC contains fourteen different processors. The two processors on the right are
fundamentally different from the twelve vector processors on the left. In fact, the proces-
sors named “CPU” are of 32-bit SPARC architecture, which belongs to the RISC family of

processors.

A more detailed view follows below [9]:

e Leon OS: Is one of the SPARC CPUs. It belongs to the CPU sub-system (CSS) that
has been designed to be the main communication and control unit with the outside
world via the external communication peripherals: I2C blocks, 12S blocks, SPI blocks,
UART, GPIO, ETH and USB3.0. The control unit of this block is the Leon OS (LOS)
RISC processor, but in this block the Leon owns much bigger L1 (32 KB) and L2 (256
KB) caches, which allows to put a modern RTOS on it. This block also offers an AHB

53

54

- ~

[IMU][SD][WIFI]

R

Sensor

Interfaces

Hardware Accelerators

Image Signal Processing

SHAVE
Vector

Processors
x12

MA2x5x Intelligent Memory Fabric
System Example
-

Figure 3.2: Overview of Myriad2 hardware

DMA engine for more optimal data transfer via the external peripherals. Beside han-
dling the external interfaces and communication, Leon OS could also control SHAVE

processors imaging algorithms

Leon RT: Is the second of the SPARC CPUs. It belongs to the Media sub-system (MSS),
an architectural unit designed for allowing external connections with imaging de-
vices (camera sensors, LCDs, HDMI controllers etc.) as well as allowing use of the
Hardware (HW) filters available in Myriad2. As such it is comprised by the MIPI,
LCD, CIF interfaces, the SIPP HW filters and well as the AMC block which enables
connections between these and CMX (SRAM) memory. Coordinating frame input and
controlling the pipelines set in place usually require some effort. As such the Myriad2
platform offers the Leon RT RISC as part of the MSS. Leon RT (LRT) is a RISC pro-
cessor with a fair amount of L2 cache memory (32 KB). Leon RT is only one arbiter
away from any Interface or HW filter register settings so it can efficiently change
any required parameters of the MSS blocks with the minimum amount of delay due

to bus arbitration.

SIPP: Is a proprietary software/hardware mechanism used by the Myriad2 proces-
sor to achieve highly optimized scheduling of Image Signal Processing (ISP) pipeline
functionality. This mechanism is responsible for utilizing the HW filters provided
by Myriad2 to achieve the best performance possible. This component is the orange

block shown in figure 3.3.

A small-area footprint: To conserve space inside mobile, wearable, and embedded de-
vices, Myriad 2 was designed with a very small footprint that can easily be integrated

into existing products.

||
Software Controlled I/O Multiplexing

MIPI INTERFACES

SPI, USB3, |12C, 12S, LCD, CIF, UART, ETHERNET, ETC.
x12 lanes s E = = LSk

Intelligent Memory Fabric

| 12 Vector VLIW ,,SHAVE" Processors |

KNI I I

Myriad 2 MA2x5x Block Diagram

£n-
o
=D
=

Figure 3.3: More detailed overview of Myriad2 hardware

e Microprocessor Array (UPA): Is the unit in Myriad 2 holding the 12 Very Long Instruc-
tion Word (VLIW) SHAVE vector processors (see figure 3.4), the 2 MB CMX SRAM
memory and a few other blocks from which the most important are: the specialized
DMA engine and the 256 KB L2 cache memory available to the SHAVE cores. This
unit’s main purpose is to provide support for customized code required by many com-
puter vision and machine learning applications, as well as any other general compu-
tation intensive algorithms. Each VLIW processor controls multiple functional units
which have SIMD capability for high parallelism and throughput at a functional unit
and processor level. Each of these units can be launched in parallel in a single in-
struction. SHAVEs support SIMD instructions on multiple types, including but not
limited to: 8 bits integers, 16 bits integer, 32 bits integer, 16 bits float, 32 bits float

e CMX: Stands for Connection Matrix, which belies the fact it is comprised of several
smaller SRAM blocks reaching a total of 2 MB. Each SHAVE processor has preferential
ports into a 128 KB slice of the CMX memory. As such, 12x128 KB = 1536 KB are
preferentially used by SHAVE cores but the remaining 512 KB of CMX memory are
generally usable by any other units. The recommended usage for these 512 KB is for
HW SIPP filters usage or Leon OS timing critical code which would otherwise not be
able to be kept in DDR.

e DDR:Is the largest volatile available memory unit of Myriad2 and has a size of 128MB

or 512 MB, depending on the revision. The main difference between this and other

55

platforms is that Myriad2 comes with DDR inside the SoC. However it memory is

off-chip, meaning that the 14 processors use a single DDR controller to access it.

3.3 CMX DMA Controller

The CMX DMA resides between the 128-bit MXI bus and CMX memory [8]. It provides
high bandwidth data transfers between CMX and DDR in either direction. It also supports
data transfers from DDR back to DDR or from CMX to CMX, allowing data to be relocated
within the same physical location. Figure 3.4 shows a high level description of the DMA
engine. The unit of work in the DMA engine is expressed though transaction tasks. Up to
four linked lists of transactions are maintained in system memory, thus the DMA capabil-
ity of serving transactions is not unlimited and can be easily flooded with requests if the

programmer makes unregulated use of it.

Slice Ports
Shave Spare Slice Ports CMX Slice
L
CMX
CMX DMA Control
Reqgisters

i

MXI Bus
Media Subsystem DDR Subsystem

Figure 3.4: CMX DMA engine of Myriad2

3.4 Mpyriad2 Development Kit

The Myriad2 Development Kit (MDK) comprises common code which includes both

drivers and components, and some example applications [9]. Also, the MDK provides an

56

extensive build system - based on the GNU Makefile - that offers the means to build an
application, the means to configure it and some functional targets, such as make, make run

and make start_server.

3.4.1 MDK Components

This subsection provides a brief description of the reusable components included in
the MDK [9]. Components are located under the mdk/common/components directory and
selectively included in projects through the Makefile. A detailed description of each compo-
nents can be found to the header file comments within each component. For the purposes
of CNN implementation, an essential component is the KernelLib/MvCV, i.e. the Movidius
Computer Vision kernel library. This library contains optimized assembly SHAVE routines
for performing convolution, pooling and other related operations that are important to the

implementation of the CNN.

57

Chapter 4

Overview of the CNN Engine

In this chapter, a brief and abstract explanation will be given regarding the functionality
of the CNN Engine as well as the framework that supports it. The purpose of this section is
to provide a reader with a good insight of how the different components of the engine fit
together and get a good understanding of its functionalities before proceeding to the next

chapters, in which each component is explicitely and thoroughly described.

4.1 An abstract view

The proposed CNN Engine and framework aims to provide an energy efficient, yet
resource-powerful computational mechanism for Convolutional Neural Networks and can
be used to execute networks for inference related problems or profile networks on different
architectures and perform design space exploration on certain metrics like performance,
energy consumption, memory footprint and prediction rate. For each of these subsets of
the implementation, different execution techniques have been implemented and notable
algorithms have been designed to solve challenges related to the specialized nature of the
problem and provide a consistent, efficient and well-rounded application.

The implementation is divided into three major components, each one serving a totally
different purpose: The high-level API (Application Programming Interface), the CNN Man-
ager and the low-level DMA and Computational routines, each of which will be analyzed
in depth in the next chapters.

Figure 4.1 shows a high-level view of the CNN implementation framework. The user
input is the network architecture (in a format compatible with Caffe), the input image(s),

platform specifications and/or profiling results.

59

Input Image

User Input

Caffe

Caffe
prototxt model

Y

.LOG

platform profiling
specifications results

< =

@ python

High-level API

- =

CNN Description

memory allocation, weights, kernel sizes, ...

= =

CNN Deployment and Execution

I
Platform resources| |
processing units |

I

merge results

| CNN Manager | Execution

<t |00 0CNN map1| &> Pareto |
= o | : | | optimal(s)
1V | 00---OCNN mapN|| | !
HW uhhzatlon I | | cee E
. Library of layer i
£ P : implementations : | ! !
2 > L
HW utilization | - @ | i i
L @& | d-d |
R @ C | b T |

I

I

I

|

7‘/

Te---D

exec. time

energy

Figure 4.1: Overview of the CNN implementation

4.2

The Myriad embedded platform, being a purpose-specific chip does not provide to the
user a communication interface which could be used to receive arguments and parse files on
run-time. This means that it is not possible to provide the prototxt and caffemodel files (the
”Caffe” CNN description as explained in previous chapter) to the engine, for the network
to be deployed. As a consequence, in order for the network description to be given inside
Myriad, one should manually write hundreds of lines of code to reconstruct the network

and execute it on this embedded platform: The execution of a different network, especially

60

Introduction to the Python Interface

a large one like "GoogleNet” would require hours of code modification, taking for granted
that the user is fully aware of the code running under the hood. It is obvious that this
method is extremely inefficient and it was vital to find a solution. The necessity to create a
generalized engine, which would be able to deploy any possible network providing abstract
features to the user, gave birth to the high-level API This API, developed in Python, provides
a set of functions accessible to developers for the configuration of CNN implementations,
the utilization of hardware resources and the selection between different operation modes.
The interface generates a set of CNN Description source files that contain information about
the low-level CNN implementation on the underlying platform.

In figure 4.2, the basic principles of the python framework are presented.

Framework functionality

/ Caffe _ﬁ;_ “# | I/Caffe B M)
\input E&E specs I\ input specs /|
) 4 v

| |

Single Inference | :

implementation || resources utilization :
| h 4

|

: |

I |

I |

v
Pareto ?‘” e
curve S0
______________ l

QZ)SE profiling results =)

|
| |
' |
I v = |
|

Analysis X®, '
| ysis {5 :
' |
' |
' |
' |
' |

DSE for system

v

[Pareto curve oo)

Figure 4.2: The High-level Python framework

61

4.3 Introduction to the Network Manager

Another major component of the engine is the CNN Manager. A part of the manager
is consisted of abstract data types that describe the different layer types that are used in
Convolutional Neural Networks, with their specific properties, characteristics and abstract
methods. Apart from the layer description, a network manager class is defined and used to
store the network, deploy an execution mode selected from a variety of modes and alter
layer parameters (e.g. the convolution method used). The manager receives all appropriate
network information from the auto-generated libraries produced by the Python interface,
as explained above.

Since the handling of a network consisting of a set of nodes (layers) is the epitome of
object oriented problems, the manager is purely written in C++ and is executed primarily
on LEON OS. In "profiling” and dual cpu” mode, both LEON OS and LEON RT are used to
handle the network and dispatch it to the shaves. Another reason C++ was chosen for this
sector of the application was the code scalability that it offers: Using these classes and data
types as black boxes, it is very easy for someone to extend the application, without needing
to understand in depth the implementation techniques of the existing structures.

Figure 4.3 presents an abstract view of the possible execution branches, actions and de-

cisions taken by the Manager running on LEON processors.

MYRIAD
LEON OS LEON RT
Network Manager
Parallel_dispatcher()
Energy_measurement()
X Activated only in PROFILE
and DUAL_CPU modes
i
Weights/ /0 Computation
biases buffers PN ; :
LOS-LRT shared oor | CMX libraries
e SHAVES

}

Inference Output Raw Profile outpu

Figure 4.3: Abstract view of the Network Manager running on LEON processors

62

As shown in the figure above, the output of the application varies in respect to the ex-
ecution mode selected by the user through the Interface. In profiling” mode the output
is a file in csv format, which contains raw information about execution time and average
power consumption, for each possible layer using each possible computational method and
number of processing units. This csv file can be used by the user to obtain immediate in-
formation for specific layers or can be fed back to the Interface to conduct Design Space
Exploration and produce optimal configurations and smart execution insights for that spe-
cific network. In all other modes, the application output is the network output maps, which

consist the prediction of the network for a possible input image given.

4.4 Introduction to the Computational Engine

Finally, the essence of the CNN Engine is hidden behind its computational routines
running on the VLIW processors, the shaves. Optimized DMA algorithms and heavy-duty
routines written in Myriad Assembly are deployed, to provide the network inference of a
specific image, or a set of images. The following "Caffe” compatible layers are supported by

the implementation:

e Convolution (Direct and Im2Col techniques)

Pooling

e ReLU

Fully Connected/Inner Product
e LRN-Across Channels

e Concat

In figure 4.4 the basic concept of the SHAVE configuration are shown:

63

SHAVEs utilize local buffers to storeintermediate results

s e e SHAVE 11

I

SHAVEs read
Computations Computations Computations bootstrap
bootstrap code bootstrap code bootstrap code instructions
from CvIX

Data storage Data storage Data storage

CMX for SHAVE O CMX for SHAVE 1 CMX for SHAVE 11

Figure 4.4: The Shave execution concept

The CMX memory used by the SHAVES to store data is tiny in comparison to the enor-
mous amount of data they need to apply computation to. Therefore, the concept of the
implementation is to bring chunks of the blobs to be calculated from the main memory
(DDR) to the CMX in rounds. Moreover, the code segment of the SHAVE functions has
been moved to DDR in order to spare valuable memory space inside the CMX for the blobs,
increasing the capacity and reducing the loops needed for all the blocks to be transferred
back and forth inside the DDR memory.

4.5 Evaluated Convolutional Neural Networks

4.5.1 Alexnet

Alexnet is a Deep Convolutional Neural Network [10] for image classification that won
the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, com-
pared to 26.2% achieved by the second-best entry. Alexnet has 8 layers. The first 5 are con-
volutional and the last 3 are fully connected layers. In between there are also some ‘layers’
called pooling and activation.

The highlights of this network are:

e Use of Relu instead of Tanh to add non-linearity, accelerating the speed by 6 times at

the same accuracy

e Use of dropout instead of regularisation to deal with overfitting. However the training

time is doubled with the dropout rate of 0.5

64

e Overlap pooling to reduce the size of network. It reduces the top-1 and top-5 error

rates by 0.4% and 0.3%, repectively
e Local Response Normalization layer was firstly introduced in Alexnet

e "Group” technique was implemented to reduce in half learnable parameters on mem-

ory greedy convolutional layers

%\:ﬁ_l_
|““‘ N

~,
(=]
Bl
=
(=}

ag \dense

-
et

224\
\

Max
pooling

128

N\

Max
pooling

192

128 Max
pooling

128 A\
i3 \ |\ AARE gy
A A e A k4 1 J
\ Y \
|| 3\ 1% S S I S,
N J 13 } e 13 dense dense
\

2048

2048

Figure 4.5: Alexnet architecture

The network has 62.3 million parameters, and needs 1.1 billion computation units in a
forward pass. We can also see convolution layers, which accounts for 6% of all the parame-
ters, consumes 95% of the computation. The output classifier of Alexnet has dimensions of

1000x1, receiving 3x227x227 images as input.

4.5.2 ZFNet

ZFNet is a CNN that won the ILSVRC 2013 and was implemented by Matthew Zeiler
and Rob Fergus [11]. ZFNet is an It was an improvement on AlexNet by tweaking the ar-
chitecture hyperparameters. More specifically, this mode was able to generalize well to
other datasets except from Imagenet: when the softmax classifier is retrained, it convinc-
ingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets. The
dimensions of the input image fed to ZFNet is 3x256x256, whereas the output classifier is
1000x1.

453 VGG

This architecture was created by VGG group, Oxford University [12]. It makes the im-
provement over AlexNet by replacing large kernel-sized filters (11 and 5 in the first and
second convolutional layer, respectively) with multiple 3x3 kernel-sized filters one after
another. With a given receptive field (the effective area size of input image on which out-

put depends), multiple stacked smaller size kernel is better than the one with a larger size

65

image size 224 110 26 13 13 13

filter size 7 & 3 Jr 3
1 384 1 384 256
\256 N N N
stride 2 96 33 max 3x3 max <
313 max pool| | contras pool| |contrast pool 4096 class
stride 2 norm. stride 2| |norm. stride 2 units| unit softmax
5
w3 55
N lz 6 @,3 6 256
Input Image N w256
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer?7 Output

Figure 4.6: ZFNet layout

kernel because multiple non-linear layers increases the depth of the network which enables
it to learn more complex features, and that too at a lower cost.

For example, three 3x3 filters on top of each other with stride 1 has a receptive size of
7, but the number of parameters involved is 3*9C? in comparison to 49C? parameters of
kernels with a size of 7. Here, it is assumed that the number of input and output channel
of layers is C.Also, 3x3 kernels help in retaining finer level properties of the image. The

network architecture is given in figure 4.7.

ConvNet Confi g:uratlon

A A-LRN B C D E
1T weight 1T weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB 1mage)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
| LRN conv3-64 conv3-64 conv3-64 ‘ conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
| | conv3-128 | conv3-128 | conv3-128 ‘ conv3-128
maxpool

conv3-256 | conv3-256 | conv3-236 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256

conv3-256

maxpool
conv3-312 | conv3-312 | conv3-512 | conv3-312 | conv3-512 | conv3-312
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512

convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-312 | conv3-312 | conv3-512 | conv3-312 | conv3-512 | conv3-312
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Figure 4.7: VGG architecture table

66

VGG is a memory intensive neural network as only the first out of three fully connected
layers contain a weight array with dimensions 512x7x7x4096. The input image given to VGG

is again 3x224x224 and the output classifier’s dimension is 1000x1.

4.5.4 NiN-ImageNet

NiN (Network in Network) isa CNN implemented by Min Lin, Qiang Chen and Shuicheng
Yan [13]. They proposed a novel deep network structure to enhance model discriminabil-
ity for local patches within the receptive field. The conventional convolutional layer uses
linear filters followed by a nonlinear activation function to scan the input. Instead, they
built micro neural networks with more complex structures to abstract the data within the
receptive field. They instantiated the micro neural network with a multilayer perceptron,
which is a potent function approximator.

The feature maps are obtained by sliding the micro networks over the input in a similar
manner as CNN; they are then fed into the next layer. Deep NIN can be implemented by
stacking mutiple of the above described structure. With enhanced local modeling via the
micro network, it is possible to utilize global average pooling over feature maps in the
classification layer, which is easier to interpret and less prone to overfitting than traditional
fully connected layers. They demonstrated the state-of-the-art classification performances
with NIN on CIFAR-10 and CIFAR-100, and reasonable performances on SVHN and MNIST

datasets.

(a) Linear convolution layer (b) Mlpconv layer

Figure 4.8: NiN convolutional layer concept

4.5.5 GoogLenet

While VGG achieves a phenomenal accuracy on ImageNet dataset, its deployment on
even the most modest sized GPUs is a problem because of huge computational require-
ments, both in terms of memory and time. It becomes inefficient due to large width of

convolutional layers.

67

For instance, a convolutional layer with 3X3 kernel size which takes 512 channels as
input and outputs 512 channels, the order of calculations is 9x512x512.

In a convolutional operation at one location, every output channel (512 in the example
above), is connected to every input channel, and this is called dense connection architec-
ture. GoogLenet builds on the idea that most of the activations in deep network are either
unnecessary (value of zero) or redundant because of correlations between them [14]. There-
fore most efficient architecture of a deep network will have a sparse connection between
the activations, which implies that all 512 output channels will not have a connection with
all the 512 input channels. There are techniques to prune out such connections which would
result in a sparse weight/connection. But kernels for sparse matrix multiplication are not
optimized in BLAS or CuBlas(CUDA for GPU) packages which render them to be even
slower than their dense counterparts.

So GoogLenet devised a module called inception module that approximates a sparse
CNN with a normal dense construction(shown in the figure). Since only a small number of
neurons are effective as mentioned earlier, width/number of the convolutional filters of a
particular kernel size is kept small. Also, it uses convolutions of different sizes to capture
details at varied scales(5x5, 3x3, 1x1).

Another salient point about the module is that it has a so-called bottleneck layer (1x1
convolutions in figure 4.9). It helps in massive reduction of the computation requirement

as explained below.

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions ‘
1x1 convolutions }) [

1x1 convolutions 1x1 convolutions 3x3 max pooling
_;—l
—

Previous layer

Figure 4.9: Architecture of GoogLenet’s inception block

Let us take the first inception module of GoogLenet as an example which has 192 chan-
nels as input. It has just 128 filters of 3x3 kernel size and 32 filters of 5x5 size. The order

of computation for 5x5 filters is 25x32x192 which can blow up as we go deeper into the

68

network when the width of the network and the number of 5x5 filter further increases. In
order to avoid this, the inception module uses 1x1 convolutions before applying larger sized
kernels to reduce the dimension of the input channels, before feeding into those convolu-
tions. So in first inception module, the input to the module is first fed into 1x1 convolutions
with just 16 filters before it is fed into 5x5 convolutions. This reduces the computations to
16x192+25x32x16. All these changes allow the network to have a large width and depth.

Another change that GoogLenet made, was to replace the fully-connected layers at the
end with a simple global average pooling which averages out the channel values across the
2D feature map, after the last convolutional layer. This drastically reduces the total number
of parameters. This can be understood from Alexnet, where FC layers contain approx. 90%
of parameters. Use of a large network width and depth allows GoogLenet to remove the
Fully Connected layers without affecting the accuracy. It achieves 93.3% top-5 accuracy on
ImageNet and is much faster than VGG.

Figure 4.10: Overview of GoogLenet’s structure

69

4.5.6 SqueezeNet

SqueezeNet is another Convolutional neural networks that was designed to reduce the
number of learnable parameters in comparison to Alexnet, while keeping the accuracy in
high standards [15]. The techniques deployed to the design of SqueezeNet might resemble
up to a point GoogleNet’s inception block, which was described above.

The main ideas of SqueezeNet are:

e Using 1x1 (point-wise) filters to replace 3x3 filters, as the former only 1/9 of compu-

tation.

e Using 1x1 filters as a bottleneck layer to reduce depth to reduce computation of the

following 3x3 filters.

e Downsample late to keep a big feature map.

Figure 4.12 shows the advantages of SqueezeNet against other famous CNN Architec-

tures:

CNN Compression Data Original — Reduction in Top-1 Top-5
architecture Approach Type Compressed Model Size Model Size vs. ImageNet ImageNet
AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD [5] 32 bit 240MB — 48MB 5x 56.0% 79.4%
AlexNet Network 32 bit 240MB — 27TMB 9x 57.2% 80.3%
Pruning 11]
AlexNet Deep Compres- 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
sion [10]
SqueezeNet None 32 bit 4.8MB S0x 57.5% 80.3%
(ours)
SqueezeNet Deep 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
(ours) Compression
SqueezeNet Deep 6 bit 4.8MB — 047MB 510x 57.5% 80.3%
(ours) Compression

Figure 4.11: SqueezeNet benchmarking against other CNN architectures

The building brick of SqueezeNet is called fire module, which contains two layers: a
squeeze layer and an expand layer. A SqueezeNet stacks a sum of fire modules and a few
pooling layers. The squeeze layer and expand layer keep the same feature map size, while
the former reduce the depth to a smaller number, the latter increase it. The squeezing (bot-
toleneck layer) and expansion behavior is common in neural network architectures. An-
other common pattern is increasing depth while reducing feature map size to get high level

abstract.

As shown in the above figure, the squeeze module only contains 1x1 filters, which means
it works like a fully-connected layer working on feature points in the same position. In other
words, it does not have the ability of spatial abstract. As its name says, one of its benifits

is to reduce the depth of feature map. Reducing depth means the following 3x3 filters in

70

convl

!

96

v

maxpool/2
s —
fire2 lﬂ‘ﬂlﬁl
128 €
fire3
128— |
‘ fire4 l [nunv‘.l.x:l]

256
maxpool/2

re5
256

]
fire6 | (convid]
| 384 ¢ |

1=
1-IJ;.—-

—

§

384 —l
[fire8] [wnle:l.]
512 512
maxpool/2 maxpool/2 maxplonllz
[fies] [fireo |
512 512 512
1000 1000 1000
global avgpool global avgpool global avgpool

"labrador
retriever
i dog"

Figure 4.12: Macroarchitectural view from SqueezeNet architecture; Left: SqueezeNet; Mid-
dle: SqueezeNet with simple bypass; Right: SqueezeNet with complex bypass

3

the expand layer has fewer computation to do. It boosts the speed as a 3x3 filter need as 9
times computation as a 1x1 filter. By intuition, too much squeezing limits information flow;
too few 3x3 filters limits space resolution. Finally, SqueezeNet’s input image dimensions is

3x227x227 and output classifier’s dimensions is 1000x1.

71

Chapter 5

Management and Configuration of CNNs

In this chapter the implementation of the Network Manager, including its interaction
with the computational engine and the interface, will be carefully described. For brevity
reasons, the implementation and any algorithms presented will be given as shortened pseu-
docodes in order to avoid unnecessary lines of code that have to do with the syntax specifics
of C++.

5.1 Configuring the hardware for the application

This section is concerned about the proper way to configure the Myriad2 hardware
as well as the Real Time Operating System (RTOS) that will be used as a manager for the
memory and processor resources, like the heap size, the scheduling policy and the frequency
of the system clocks. The operating system that will be used is RTEMS, which is specifically
designed for embedded system applications.

Care must be taken, because there are multiple drivers involved in the process. The
configuration process is complicated and any minor errors or deficiencies could result to
increased chip power consumption, abated performance, unexpected memory behavior or
errors initializing the chip components leading to stalls. Therefore the programmer is en-
couraged to delve into the details of the driver implementations for better understanding
of the code provided by the MDK.

5.1.1 Setting up RTEMS

Time Executive for Multiprocessor Systems or RTEMS is an open source Real Time Op-
erating System (RTOS) that supports open standard application programming interfaces
(API) such as POSIX. It is used in space flight, medical, networking and many more embed-
ded devices using processor architectures including ARM, PowerPC, Intel, Blackfin, MIPS,
Microblaze and more.

RTEMS is designed for real-time, embedded systems and to support various open API
standards including POSIX and pITRON. The API now known as the Classic RTEMS API
was originally based upon the Real-Time Executive Interface Definition (RTEID) specifica-

73

tion. It includes a port of the FreeBSD TCP/IP stack as well as support for various filesystems
including NFS and the FAT filesystem.

In POSIX terminology, it implements a single process, multithreaded environment. This
is reflected in the fact that RTEMS provides nearly all POSIX services other than those
which are related to memory mapping, process forking, or shared memory. RTEMS closely
corresponds to POSIX Profile 52 which is "single process, threads, filesystem” [16].

RTEMS is provided in precompiled form by Movidius. In order to activate RTEMS, the

following lines of Makefile code are necessary:

MV_SOC OS = rtems
RTEMS_BUILD_NAME = b_prebuilt

Listing 5.1: Makefile snippet

The next step is to write the code for setting up RTEMS itself, which is independent
of the target platform (Myriad2 in this case). The schema proposed for accomplishing this
involves the creation of a new directory leon/Configuration. Afterwards the code presented

in source code 4.2 is required.

#include <rtems.h>

#include “rtems_config.h”

static void Fatal extension(Internal_errors_Source the_source,
bool is_internal ,
uint32_t the_error){

switch (the_source){

case RTEMS_FATAL_SOURCE_EXIT:
if (the_error)
printk (> Exited with error code %lu\n”, the_error);
break;
case RTEMS FATAL_SOURCE_ASSERT:
printk ("%s : %d in %s \n”,

((rtems_assert_context

*

)the_error)—>file ,

*

((rtems_assert_context)the_error)—>line ,

*

((rtems_assert_context)the_error)—>function) ;
break ;
case RTEMS_FATAL_SOURCE_EXCEPTION:
rtems_exception_frame_print ((const rtems_exception_frame *)
the_error);
break;
default:
printk ("\nSource %d Internal %d Error %lu 0x%lX:\n”,

the_source, is_internal , the_error, the_error);

74

break ;
}

return ;

Listing 5.2: RTEMS configuration source file

This piece of code is mandatory and its form is suggested by the examples of the MDK.

Its purpose is to define the behavior of RTEMS in case of failure. Such failure could be a
driver malfunction or an unhandled hardware exception. In line 1 the main header file of

RTEMS is included, which contains default configurations like the heap size or the thread

scheduling policies.

Notice the include statement in line 2. This is an important line that defines a large part
of the hardware configuration. The version of RTEMS shipped with the MDK comes with

a board support package (BSP) that is capable of configuring Myriad2 with simple RTEMS

directives. These directives are presented in the source code 4.3.

#ifndef LEON_RTEMS_CONFIG_H_
#define LEON_RTEMS_CONFIG_H_

#ifndef _RTEMS_CONFIG_H_
#define _RTEMS_CONFIG_H_

>

#include “app_config.h”
#if defined (__RTEMS__)
#if !defined (__CONFIG__)
#define _ CONFIG__
#define CLOCKS_NONE 0

#define CONFIGURE_INIT

#ifndef RTEMS_POSIX_API
#define RTEMS_POSIX_API

#endif
#define CONFIGURE_MICROSECONDS PER_TICK 1000
#define CONFIGURE_TICKS PER_TIMESLICE 10

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_POSIX_INIT THREAD_TABLE

#define CONFIGURE_MINIMUM_TASK_STACK_SIZE (41024)
#define CONFIGURE_MAXIMUM_TASKS

#define CONFIGURE_MAXIMUM_POSIX_THREADS
#define CONFIGURE_MAXIMUM_POSIX_MUTEXES
#define CONFIGURE_MAXIMUM_POSIX_KEYS
#define CONFIGURE_MAXIMUM_POSIX_SEMAPHORES
#define CONFIGURE_MAXIMUM_SEMAPHORES

R T T TN

75

#define CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES 38

#define CONFIGURE_MAXIMUM_POSIX_TIMERS

#define CONFIGURE _MAXIMUM_TIMERS

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_MAXIMUM_USER_EXTENSIONS 1

#define CONFIGURE_INITIAL_EXTENSIONS { .fatal = Fatal_extension }

static void Fatal_extension (
Internal errors_Source the source ,
bool is_internal ,
uint32_t the _error

)

void POSIX_Init (void *args);

#include <rtems/confdefs.h>

#endif // __CONFIG__
#endif // __RTEMS__

BSP_SET _CLOCK(OSC_CLOCK_KHZ, // Reference oscillator used
APP_CLOCK KHZ, // PLL0O Target Frequency
1, // Master Divider Numerator
1, // Master Divider Denominator
CSS_CLOCKS, //CSS Clocks
MSS_CLOCKS, // MSS Clocks
UPA_CLOCKS, // UPA Clocks
CLOCKS_NONE, // SIPP Clocks
CLOCKS_NONE // AUX Clocks

)

BSP_SET_L2C_CONFIG(1, // Enable (1) / Disable (0)
L2C_REPL_LRU, // Either L2C_REPL_LRU (default),
/1l L2C_REPL_PSEUDO_RANDOM,
// L2C_REPL_MASTER_INDEX_REP
/1 or L2C_REPL_MASTER_INDEX_MOD
0, // Cache ways
L2C_MODE_COPY_BACK, // Either L2C_MODE_COPY_BACK
I or L2C_MODE_WRITE_TROUGH
0, // Number of MIRR registers to program
NULL // Array of MTRR configuration

)
#endif // _RTEMS_CONFIG H_
#endif // LEON_RTEMS CONFIG H_

Listing 5.3: RTEMS configuration header file

The main feature of source code 4.3 is the configuration of the different clocks of the

Myriad2 SoC. Lines 48-57 configure the various clocks. In particular, the

76

OSC_CLOCK_KHZ statement declares the main frequency that is commonly set to 480 or
600 MHz. The next three lines declare the frequency of the DDR RAM, which (the frequency)
must be compatible with the main frequency. Currently the DDR is set up at the maximum
possible frequency. The next lines enable or disable specific units inside the Myriad2 hard-
ware.

In lines lines 58-68 configure the L2 cache of the Leon OS processor. The comments in
the source code explain these lines in detail. However some reference to MTRR is needed.
Memory Type Range Registers (MTRRs) are a set of processor supplementary capabilities
control registers that provide system software with control of how accesses to memory
ranges by the CPU are cached. It uses a set of programmable model-specific registers (MSRs)
which are special registers provided by most modern CPUs.

The statements in these lines are actually macros, which are defined in the file app_-

config.h included in line 6. Indeed this header file contains this information and is presented

below
#define APP CLOCK KHZ (600000)
#define OSC_CLOCK KHZ (12000)

#define CSS_CLOCKS (\
DEFAULT _CORE_CSS_DSS_CLOCKS |\
DEV_CSS_GETH |\
DEV_CSS_I2C0)
#define UPA_CLOCKS (DEV_UPA_SHO |
DEV_UPA_SH1 |
DEV_UPA_SH2 |
DEV_UPA_SH3 |
DEV_UPA_SH4 |
DEV_UPA_SH5 |
DEV_UPA_SH6 |
DEV_UPA_SH7 |
DEV_UPA_SHS |
DEV_UPA_SH9 |
DEV_UPA_SH10 |
DEV_UPA_SH11 |
DEV_UPA_SHAVE L2 |
DEV_UPA_CDMA |
DEV_UPA_CTRL)
#define MSS_CLOCKS (DEV_MSS_APB_SLV |
DEV_MSS_APB2_CTRL |
DEV_MSS_RTBRIDGE |
DEV_MSS_RTAHB_CTRL |
|
|
|
|

— s = - -

DEV_MSS_LRT
DEV_MSS_TIM
DEV_MSS_LRT DSU
DEV_MSS_LRT L2C

— - - = = = = -

77

DEV_MSS_LRT ICB |\
DEV_MSS_AXI_BRIDGE | \
DEV_MSS_MXI_CTRL)

Listing 5.4: app_config.h snippet

5.1.2 Setting up Myriad2 SoC

the Shaves Cache. The initialization of cache that is performed in source code 4.3 is only for
the Leon OS processor. The CNN implementation also requires the initialization of the cache
subsystem used by the SHAVE processors. For this reason, it provides a far more advanced

software driver that is capable of separating the cache into several partitions. Source code

A very important configuration needed to be done on the Myriad2 chip is the setup of

4.5 contains the necessary commands.

#define L2CACHE_CFG (SHAVEL2C_MODE_NORMAL)

int InitShaveL2C (void){

s32 sc;
sc = OsDrvShaveL2Cachelnit (L2CACHE_CFG) ;
if (sc) {

puts (” OsDrvShaveL2Cachelnit failed ”);

return sc;

sc = OsDrvShaveL2CResetPartitions () ;
if (sc) {
puts (”OsDrvShaveL2CResetPartitions failed”);

return sc;

return OS_MYR DRV _SUCCESS;

78

Listing 5.5: app_config.c shave cache initialization function

To understand the necessity of the source code 4.5, some clarification is required. The
driver responsible for setting up the partitions works in the following manner: It keeps an
internal structure that describes the partitioning schema. This structure is reset and then
built as the programmer desires. Afterwards, the partition schema is instantiated into the
hardware with another driver call that will be shown shortly. The macro L2ZCACHE_CFG

configures the cache behavior. The available options are:

e SHAVEL2C_MODE_DIRECT: In this mode the L2 cache acts as a 128KB SRAM at
address 0x40000000.

e SHAVEL2C_MODE_NORMAL: In this mode the L2 cache acts as a cache only for the
0x80000000-0xbftffftt address space of DDR.

e SHAVEL2C_MODE_BYPASS: In this mode the L2 cache is bypassed completely.

e SHAVEL2C MODE_CACHED_ALL: In this mode the L2 cache acts as a cache for the
full DDR address space.

According to the requirements of the CNN implementation, the most suitable choice
is SHAVEL2C_MODE_NORMAL. Details suggesting this choice are given in the following
chapter, which describes how cache can be efficiently used by the SHAVEs.

Finally, the actual set up of the partitions is shown in source code 4.6:

int ConfigShaveL2C (void) {

s32 sc;

int last_part_id = —1;

sc = OsDrvShaveL2CGetPartition (SHAVEPART128KB, &last_part_id);
if (sc) {

puts (> OsDrvShaveL2CGetPartition failed”);

return sc;

}
for (int i = 1; i <= 6; i++) {
sc = OsDrvShaveL2CGetPartition (SHAVEPART16KB, &last_part_id);
if (sc) {
puts (” OsDrvShaveL2CGetPartition failed”);
return sc;
}
}

for (int i = 0; i < 12; i++) {
sc = OsDrvShaveL2CSetNonWindowedPartition(i, 0,
NON_WINDOWED_INSTRUCTIONS_PARTITION) ;
if (sc) {
puts (” OsDrvShaveL2CSetNonWindowedPartition failed ”);

return sc;

79

}
for (int i = 0, partld = 1; i < 6; i += 2, partld++) {
sc = OsDrvShaveL2CSetNonWindowedPartition (i, partld,
NON_WINDOWED_DATA_PARTITION) ;
if (sc) {
puts (" OsDrvShaveL2CSetNonWindowedPartition failed”);

return sc;

sc = OsDrvShaveL2CSetNonWindowedPartition(i+1, partld,
NON_WINDOWED_DATA_PARTITION) ;
if (sc) {
puts (" OsDrvShaveL2CSetNonWindowedPartition failed”);

return sc;

}

}

sc = OsDrvShaveL2CacheAllocateSetPartitions () ;

if (sc) {
puts (”OsDrvShaveL2CacheAllocateSetPartitions failed”);
return sc;

}

for (int i = 0; i <= last_part_id; i++) {
sc = OsDrvShaveL2CachePartitionInvalidate (1) ;
if (sc) {
puts (" OsDrvShaveL2CachePartitionInvalidate failed”);

return sc;

}
return OS_MYR DRV _SUCCESS;

Listing 5.6: app_config.c snippet on shave cache partitions configuration

The source code 4.6 configures the L2 cache of the SHAVEs using 7 out of 8 partitions.
The first partition is set to be 128KB, while the next 7 partitions are set to be 16KB each.
This makes a total of 224KB of cache, while the total cache size is 256KB.

More precisely:

e Lines 17-22 assign the instruction port of each SHAVE to point to the first partition.
This means that the first partition is going to be used as instruction cache and will be
shared among all SHAVEs.

e Lines 25-37 assign the Load-Store Unit (LSU) (or data) port of each SHAVE to point to

one of the six remaining partitions. In particular, every pair of consecutive SHAVEs

80

will have their LSU port pointing at the same partition. SHAVE 0 and 1 will use the

second partition, ..., SHAVE 10 and 11 with use the seventh partition.

e Lines 38-42 will instantiate the cache configuration defined in the previous lines. This

means the internal data structure of the cache driver is stored to hardware registers.

e Finally, lines 43-49 invalidate the cache, in order to make sure there are no stale cache

entries in the memory hierarchy of the SHAVEs

Another very important configuration needed to be done on the chip is the setup of

Myriad2 Power islands on the system. There are 20 power islands in the Myriad2 chip.

Power islands can be turned off to save dynamic and leakage power if not in use. For a

CNN implementation this is a very handy feature and can be exploited to lower the power

required to process an input image. Several operations are I/O bounded, meaning that there

is not gain in parallelizing their execution across all the 12 SHAVEs. In such case, turning

power islands off can be only a benefit. Source code 4.7 shows that the Myriad2 turns all

SHAVES off during the initialization process.

int InitClocksAndMemory (void) {

u32 sc;
tyAuxClkDividerCfg appAuxClkCfg[] = {{AUX CLK MASK UART,
CLK_SRC REFCLKO, 96, 625}, {0, 0, 0, 0},};

sc = OsDrvCprlnit () ;
if (sc) {
puts (" OsDrvCprlnit failed ”);

return sc;

}
sc = OsDrvCprOpen () ;
if (sc) {
puts (7 OsDrvCprOpen failed”);
return sc;
}
sc = OsDrvCprAuxClockArrayConfig (appAuxClkCfg) ;
if (sc) {
puts (”OsDrvCprAuxClockArrayConfig failed”);
return sc;
}

DrvDdrInitialise (NULL) ;

sc = OsDrvCprSysDeviceAction (UPA_DOMAIN, DEASSERT_RESET, UPA_CLOCKS) ;

if (sc) {
puts (7 OsDrvCprSysDeviceAction failed”);

return sc;

81

sc = OsDrvCprSysDeviceAction (MSS_DOMAIN, DEASSERT_RESET, MSS_CLOCKS) ;

if (sc) {
puts (”OsDrvCprSysDeviceAction failed”);

return sc;

sc = OsDrvCprTurnOffShaveMask(—1);
if (sc) {
puts (”OsDrvCprTurnOffShaveMask failed”);

return sc;

}
OsDrvCprPowerTurnOfflsland (POWER_ISLAND_MSS_CPU) ;

OsDrvCprPowerTurnOfflIsland (POWER_ISLAND_MSS_AMC) ;
OsDrvCprPowerTurnOffIsland (POWER_ISLAND_MSS_SIPP) ;
sc = OsDrvCprPowerTurnOffIsland (POWER_ISLAND_USB)
if (sc) {

puts (> OsDrvCprPowerTurnOffIsland failed ”);

return sc;

5

}
return OS_MYR DRV _SUCCESS;

Listing 5.7: app_config.c snippet regarding power management

Some explanations for source code 4.7 are:

e Line 6 initializes the Clock-Power-Reset (CPR) driver that controls the power islands
of the Myriad2 chip.

e Line 21 initializes the DDR. The purpose of this line is to reset the DDR content. This
helps during development time, since values from previous runs are not preserved,

assisting the programmer to track bugs

e Finally, some power islands are turned off. More precisely, all the SHAVEs and the
USB unit are turned off. However, there is a caveat. In order for the power islands
to work properly, it is important to enable all required power islands beforehand.
For example, since all the SHAVEs are required for the CNN implementation, the
source code 4.3 in conjunction with the snippet 4.4 enables all SHAVEs in advance.
However, afterwards, the CPR drivers turns them off, making it possible to turn them
back on when necessary. If the programmer tried to enable the SHAVEs though the
CPR driver without configuring them using the RTEMS BSP routine, an error would

occur.

5.2 Configuring the dynamic memory map

In order to create the memory map described previously, the GNU Linker needs to be

used [17]. The linker script only describes how each slice of CMX memory is split for data

and code and defines the regions of memory used by Leon OS and Leon RT.

MEMORY
{

SHV0_CODE (wx) ORIGIN = 0x70000000 + 0 * 128K, LENGTH = 4K
SHV0 DATA (w) ORIGIN = 0x70000000 + 128K + 4K, LENGTH = 124K
SHV1 CODE (wx) ORIGIN = 0x70000000 + 1 * 128K, LENGTH = 4K
SHV1 DATA (w) ORIGIN = 0x70000000 + 1 * 128K + 4K, LENGTH = 124K
SHV2 CODE (wx) ORIGIN = 0x70000000 + 2 * 128K, LENGTH = 4K
SHV2 DATA (w) ORIGIN = 0x70000000 + 2 * 128K + 4K, LENGTH = 124K
SHV3 CODE (wx) ORIGIN = 0x70000000 + 3 * 128K, LENGTH = 4K
SHV3 DATA (w) ORIGIN = 0x70000000 + 3 * 128K + 4K, LENGTH = 124K
SHV4 CODE (wx) ORIGIN = 0x70000000 + 128K, LENGTH = 4K
SHV4 DATA (w) ORIGIN = 0x70000000 + 128K + 4K, LENGTH = 124K
SHV5 CODE (wx) ORIGIN = 0x70000000 + 5 * 128K, LENGTH = 4K
SHV5 DATA (w) ORIGIN = 0x70000000 + 5 * 128K + 4K, LENGTH = 124K
SHV6_CODE (wx) ORIGIN = 0x70000000 + 6 * 128K, LENGTH = 4K
SHV6_DATA (w) ORIGIN = 0x70000000 + 128K + 4K, LENGTH = 124K
SHV7 CODE (wx) ORIGIN = 0x70000000 + 128K, LENGTH = 4K
SHV7 DATA (w) ORIGIN = 0x70000000 + 128K + 4K, LENGTH = 124K
SHV8 CODE (wx) ORIGIN = 0x70000000 + 128K, LENGTH = 4K
SHVS DATA (w) ORIGIN = 0x70000000 + 8 * 128K + 4K, LENGTH = 124K
SHV9 CODE (wx) ORIGIN = 0x70000000 + 128K, LENGTH = 4K
SHV9 DATA (w) ORIGIN = 0x70000000 + 9 * 128K + 4K, LENGTH = 124K
SHV10 CODE (wx) : ORIGIN = 0x70000000 + 10 * 128K, LENGTH = 4K
SHV10 DATA (w) ORIGIN = 0x70000000 + 10 * 128K + 4K, LENGTH = 124K
SHV11 CODE (wx) : ORIGIN = 0x70000000 + 11 * 128K, LENGTH = 4K
SHV11 DATA (w) ORIGIN = 0x70000000 + 11 * 128K + 4K, LENGTH = 124K
CMX_DMA_DESCRIPTORS ORIGIN = 0x78000000 + 12 * 128K , LENGTH =

128K

53

CMX_OTHER (wx) : ORIGIN = 0x70000000 + 13 * 128K , LENGTH =
128K

LOS (wx) : ORIGIN = 0x80000000, LENGTH = 2M
LRT (wx) : ORIGIN = 0x80200000 LENGTH = 2M

DDR DATA (wx) : ORIGIN = 0x80000000 + 4M, LENGTH = 500M

INCLUDE myriad2_leon_default_elf.ldscript
INCLUDE myriad2_shave_slices.ldscript
INCLUDE myriad2_default_general purpose_sections.ldscript

Listing 5.8: Application memory map

With this script the following arrangement is made:
e 128KB of CMX are used explicitly by the DMA Engine.

e 128KB of CMX are used for other purposes. In particular, this space consists the un-
cached area of CMX and will be used for placing shared parameters used by the
SHAVEs

e 2MB of DDR are used by the Leon OS and the RTEMS operating system to be handled

accordingly.

e 2MB of DDR are used by the Leon RT for its code, stack segment and dynamic mem-

ory.

e Finally, 500MB, which are the vast majority of the DDR, are used for placing param-
eters/weights of the CNN.

84

5.3 How layers are described

In this section there will be a step by step explanation of how layers are implemented
inside the Engine by LEON OS and what characteristics each type of layer must have for

the application to process the information correctly.

5.3.1 The Layer Class definition

First of all, all types of computational layers have some common characteristics and
behavior as their purpose in terms of network architecture is more or less the same. There-
fore, the most efficient design that could be used for their implementation was the usage
of a parent class holding all the common characteristics and a set of subclasses for each
distinct functionality and differentiation on class members and methods. C++ is ideal for
similar software designs and that is one of the reasons that this language was chosen for
the implementation of LEON manager [18][19]. Finally, holding different layers in different
subclasses under a parent class provides a major advantage: It is possible to store different
layers in the same container (e.g. an array), whose type can be the type of the parent class.
In that way, polymorphism is fully exploited and C++ provides significant performance
benefits over the use of C.

The following source code provides the code used to implement the abstract layer types:

class Layers{
public:
inline Layers () {}
virtual ~Layers () {}
virtual u64 execute(u8 *bottom_output_buffer, ulé &bottom_channels,
ul6 &bottom_input_height, ulé &bottom_input_width);

protected:

}s

class Input : public Layers{
public:

inline Input(Input arguments);
~Input () ;
u64 execute(u8 *bottom_output_buffer, ulé &bottom_channels,

ul6 &bottom_input_height, ulé &bottom_input_width);
IF

class Convolution : public Layers{

public:

85

inline Convolution(Convolution arguments);
~Convolution () ;
u64 execute(u8 *bottom_output_buffer, ulé &bottom_channels,
ul6é &bottom_input_height, ulé &bottom_input_width);

private:

}s

class Pooling : public Layers{
public:
inline Pooling(Pooling arguments);
~Pooling ()
u64 execute(u8 *bottom_output_buffer, ulé &bottom_channels,
ul6 &bottom_input_height, ulé &bottom_input_width);

private:

}s

class InnerProduct : public Layers{

public:

inline InnerProduct(Inner product arguments);
~InnerProduct () {}
u64 execute(u8 *bottom_output_buffer, ulé &bottom_channels,
ulé6 &bottom_input_height, ulé &bottom_input_width);

private:

}s

class Lrn : public Layers{

public:
inline Lrn(LRN arguments) ;
~Lrn () ;
u64 execute(u8 *bottom_output_buffer, ulé &bottom_channels,
ulé6 &bottom_input_height, ulé &bottom_input_width)
private :
}s

class Concat : public Layers{

86

override

o |public:

71 inline Concat(Concat arguments);

~Concat () {}

73 u64 execute(u8 *bottom_output_buffer, ulé &bottom_channels,

74 ulé6 &bottom_input_height, ulé &bottom_input_width);

Listing 5.9: Layer data types inside LEON OS and LEON RT

The code presented above provides an overview of the Class implementation. It should
be noted that these classes are mainly used by LEON OS when creating and executing the
network, but in "PROFILE” and "DUAL_PROCESSOR” modes they are used by LEON RT as

well. Figure 5.1 offers an intuitive view of the implementation.

Layers |
‘ Class Layers Hmembers

l l i

subclass

Conwvolution subclass Pﬂﬂ.l‘mg = E R RN subclass Concat
Subclass | ||Subciass (SEEEEE | Subclass | | Subclass | Subclass | Subclass | | Subclass | | Subclass |
method method W method method members method method members

Figure 5.1: Overview of the Class Layers implementation

As shown above, apart from the constructors and destructors, the basic functionality
of layers is to call a method called "execute”. When this method is called from the caller,
then the parent class overrides to the appropriate “execute” method, in respect to the type
of layer. The execution methods in all layers, use their private members as well as three
arguments passed by reference, which deal with information about the previous layer that
is used as an input to the current layer. The execution method will be explained just below.

Before that, the private members, which are identical to the respective constructor ar-

guments will be presented and explained below:

Class "Layer” parameters:

e Output buffer: A pointer holding the address in which the layer calculation output

will be stored

87

e DDR function: An unsigned integer that represents the function that will be used
from the computational library inside the SHAVES

e Shaves used: How many shaves will be used for the computation of this specific layer

e Bottom node: An unsigned integer indicating which node from the network array is

the parent layer of the current layer executed
e input height, input width and channels: Dimensions of the input blob

These parameters are protected members of the parent class because they are common
among all different subclasses and therefore it is more efficient to store them in the parent
class. They are declared as protected, because private members of a parent class are not
inherited to the child classes and declaring them public, would be a design mistake, as
hiding class parameters ensures application abstractness.

Following up, the subclass-specific parameters are presented. Input and Concat layers
are not mentioned as they are a special kind of layers: Input is used only as a reference to
the starting point point of the network and its purpose is to provide to the next layer the
appropriate dimensions of the blob. Therefore, the only arguments needed to its constructor
is three integers regarding the blob dimensions and a pointer to its input buffer containing
the input image. These members as explained are provided by the parent class and therefore
Input’s private member field is empty. Concat informs the following nodes of the network
that a block with layers in parallel has finished and concatenates their blobs. However, this
is done offline through the interface using a special algorithm which will be presented in

following chapters.

Subclass "Convolution” parameters:
e Weight pointer: Pointing to the address of the weights of this layer
e Bias pointer: Pointing to the address of the biases of this layer

e Kernel size, Stride, Pad and Group: Special convolutional hyper-parameters provided

by the network designer

e RelU flag: An unsigned integer providing information about whether an inline ReLU

will be performed after the computation

Subclass "Pooling” parameters:

e Pooling method: Variable indicating about the type of pooling performed: MAX, Av-

erage or Stochastic

88

e Kernel size, Stride and Pad: Pooling layer hyperparameters provided by the network

designer

Subclass “InnerProduct” parameters:
e Weight pointer: Pointing to the address of the weights of this layer
e Bias pointer: Pointing to the address of the biases of this layer

e RelU flag: An unsigned integer providing information about whether an inline ReLU

will be performed after the computation

Subclass LRN” parameters:
e Local size: Integer indicating the vertical kernel of the computation

e Alpha and Beta: Hyperparameters provided by the designer

5.3.2 'The Layer Class execution method

A pseudocode of the "execution” method of the layers is presented below. Note that it is
not needed to present all execution methods of the layers, as they are using different data
types and number of variables for their initialization, but they all follow the same basic

principle: To initialize the SHAVES to perform the computation.

uint_64t Subclass :: execute (
u8 *bottom_output_buffer, ulé &bottom_channels,
ul6 &bottom_input_height, ulé &bottom_input_width) {

initialize variables(hyperparameters, pointers and buffers)
place them in appropriate structs inside CMX Uncached area
Initialize SHAVE masks

Initialize timers

Divide output maps to be computed by the number of SHAVES

for (number of shaves used){

Reset SHAVES and set the stack
Start the SHAVES
}
Wait the SHAVES to finish execution
Stop the SHAVES
Turn of SHAVES mask to preserve energy

89

return cpu_cycles;

Listing 5.10: Layer execution method algorithm

5.4 The network architecture inside Myriad2

In this section the format of the information inside Myriad2 about the network architec-
ture will be presented. As explained in the previous chapter, the interface is fully automated
and generalized: It can read Caffe compatible prototxt files and convert them to source code
readable by the LEON OS structures. In this section, all source codes that consist the neural
network in appropriate format, for the application, will be explained.

There are four types of information the Network manager needs to obtain in order to

create and dispatch the network to the SHAVES:
e The number and type of layers that consist the Neural Network

e The way they are interconnected (Linear network, recursive network or network with

parallel blocks)
e The layer specifics/hyper-parameters

e The weights and biases of Convolutional and Fully Connected filters which occured

after training the network on a dataset

All this information is computed by the Python interface and provided in source code

format to be compiled inside Myriad. There are five files that are produced by this process:

e “network.cpp”: Contains a C++ method which creates a dynamic vector and pushes
back layer objects one by one. Their parameters are computed by the interface using

specific algorithms on the prototxt and caffemodel files
e “network.h”: Header file for network.cpp”

e "weight_data.c”: Source file containing static pre-initialized arrays containing large

amounts of data regarding the weights and biases of the Neural Network
e “weight_data.h”: Header file of "weight_data.c”

e "network_defines.h”: Contains conditional flags and architecture insights of the net-
work. This file is part of the optimization process done on the manager and will be

explained later in this chapter

90

5.4.1 The network dynamic array

The main idea behind the implementation of the LEON manager was to store all layers
inside a linear array in order to efficiently iterate over each layer to execute the network.

"network.cpp” is the auto-generated code that makes this possible and is shown below:

create_network () {
network . store (Input ((u8”)(&data_input), 3, 224, 224));
network. store (Convolution ((u8*)(&branch_output_buffer_0_0), 0, 10, (
u8*)(&convl_7x7_s2_weights), (u8*)(&convl_7x7_s2_biases), 64, 112,

112, 7, 2, 3, 1, 12, 1));

network . store (Pooling ((u8*)(&branch_output_buffer_0_1), 1, 10, 64,
56, 56, 3, 2, 0, 33, pooling. MAX));

network . store (Lrn ((u8*)(&branch_output_buffer_0_0), 2, 10));

network. store (InnerProduct ((u8*)(&branch_output_buffer_0_1), 82, 10,
(u8*)(&loss3_classifier_weights), (u8*)(&loss3_classifier_biases),
1000, 0));

return network;

Listing 5.11: network.cpp file for GoogleNet

This method presented above is over-simplified because providing too many technical

details regarding the C++ syntax would make the understanding of how this file works
too complex. The logic of this method is simple: A dynamic array resembling the neural
network is initialized. Then, each layer, one by one, are placed dynamically at the end of

the array. The method, then, returns the network array to the caller instance.

91

5.4.2 The weights and biases of the network

As already explained, "weigh_data.c” and "weight_data.h” contain all appropriate in-

formation about the weight and bias arrrays of the Neural Network as shown below:

#define DDR_BUFFER __attribute__ ((section”(.ddr_direct.”data),aligned (16))
)

fpl16 DDR_BUFFER input_data[1"1*50%50] = {

15636, 15521, 15681,

s

fp16 DDR_BUFFER convl_7x7_s2_weights[32*1*5*5] = {
13040, 13579, 13540,

}s

fpl16 DDR_BUFFER conv1_7x7_s2_biases[32] = {

47182, 45891, 47157,

}s

fp16 DDR_BUFFER inception_3a_3x3_reduce_weights[20071152] = {
11484, 40758, 9013,

}s

fpl16 DDR_BUFFER inception_3a_3x3_reduce_biases[200] = {
43883, 39963 , 43263,

}s

Listing 5.12: Snippet from weight_data.c

The section .ddr_direct.data is placed at the region DDR_DATA by the MDK build sys-
tem. Also, the access to the data is un cached, making sure no caches are used without
explicitly stated by the programmer.

It is reiterated that the source code presented is compiled by the Leon compiler. As a
result, the fp16 data type is actually an alias for uint16_t. That is why the data defined by
the arrays are integer numbers. These integers are in fact the binary representation of 16-bit

floating point numbers

92

5.5 The Network Manager

It is easily understood at this point, that the concepts described in the previous sections
(configuration, memory map and layer class definition) are the underlying core of the LEON
Framework. Though the structures explained are more than enough to dispatch the network
to the SHAVES and execute it, a manager running on a higher level of abstraction was
necessary, in order to render the LEON framework versatile on different execution modes
and also more abstract and user friendly.

For the reasons explained above, another class called "Network_manager” was created.
This class calls the “create_network” function through its constructor and holds the net-
work array in its private members. It is responsible for calling each layer’s constructors
and destructors on creation and free of the network.

The class definition of the manager is presented below:

class Network_Manager {
public:

inline Network_Manager () ;

~Network_Manager () ;

void execute () ;

void network_output () ;

#ifdef PROFILE

void shave_profile () ;
void profile_output();
#endif

private:
u64 network_cycles = 0;
#ifdef PROFILE
double *power_consumption[12];
u64 *cpu_cycles[12];
#endif

}s

Listing 5.13: The Network Manager class

The manager has two basic functionalities: Execution of the network (which actually
means providing inference on an input image) and profiling. As presented, the choice of
whether execution or profiling mode will be deployed, depends on the value of a conditional
flag. This conditional flag, is declared inside the Makefile and is tweaked in respect to the

user input arguments provided to the Python Interface.

93

94

A brief description of the class definition of Network Manager:

The constructor initializes the network by calling the “create_network” method. If
PROFILE mode is chosen, then “cpu_cycles” and "power_consumption” arrays are

initialized appropriately to store layer information occured from the profiling process

The destructor is responsible for destructing each layer explicitely, as well as any
pointers and dynamic arrays allocated to the heap, in order to ensure correct memory

management

“execute” method iterates over all elements of network array, calling their virtual

“execute” method

“network_output” method outputs the results from the execution of the Neural Net-

work on a specific image

“Shave_profile” executes the layers one-by-one for all available configurations, mea-
sures execution time and average power consumption and stores this information on

the respective arrays

“profile_output” outputs the profile information and measurements and dumps a CSV

file in readable format.

5.6 The Inference mode

In this section the algorithms that are responsible for executing the network and pro-
viding the inference to the output will be explained. There are two sub-modes in Inference
mode: "Single Processor” inference and "Dual Processor” inference. The latter is concerned
with the usage of both LEON OS and LEON RT dispatching layers simultaneously in the
SHAVE array.

5.6.1 The Single Processor mode

The former CNN implementation, as well as the implementation demonstrated by Mo-
vidius, Intel followed the principle of using LEON OS processor to dispatch layers to the
SHAVE array in a linear way: A layer is prepared, pre-processed and sent to the SHAVES
for computation. The SHAVES return the output calculations to its output buffer, which will
be fed as an input to the next layer of the network. This basic way is called in this CNN
implementation “Single Processor” execution mode.

The algorithm used in this mode is very simple and is provided below:

#if LINEAR
for (each layer in network_map) {
network_cycles+=layer —>execute ((layer —1)—>output_buffer ,
(layer —1)—>channels ,
(layer —1)—input_height
(layer —1)—>input_width)
}
#else
for (each layer in network_map) {
network_cycles+=layer —>execute ((layer —>bottom_node)—>output_buffer ,
(layer —>bottom_node)—>channels ,
(layer —>bottom_node)—input_height
(layer —>bottom_node)—>input_width)
}

#endif

Listing 5.14: Single Processor inference implementation

To begin with, network_cycles increments in each iteration, adding the execution cycles
needed for each layer. Thus, the total execution time is computed in the end of the execution.
Second, there are two conditional branches with similar for loops. In cases where a network
is linear, then by default layers are organized inside the network array in successive order.
But that is not the case with Neural networks with complex architecture, containing layers

in parallel (e.g. GoogleNet).

95

The CNN implementation is fully generalized on any type of layers and this conditional
flag takes care of both consistency and performance: If a network is linear then only the first
iteration is chosen by the compiler on compile-time and at the same time it is faster iterating
only over layers than searching for the "bottom_node” layer member in each iteration. The
second “for” loop, which is compiled only when LINEAR flag is set to false, could also
execute a linear network, at the minor performance drawback of searching the bottom

node of each layer instead of selecting the previously iterated layer.

5.6.2 The Dual Processor mode

Throughout the processing of this thesis, a whole new idea was born about dispatching
layers to the SHAVES, regarding networks with layers organized in parallel blocks. Since
each parallel branch is independent from the others, a semi-stochastic algorithm was de-
signed and implemented to run on the interface and explore possible configurations, using
both LEON processors as managers dispatching layers simultaneously to the SHAVES by
allocating complementary number of SHAVES, that could provide better performance than
using maximum number of SHAVES and dispatching layers in a linear manner. This al-
gorithm proved to be a major success of this thesis and will be thoroughly explained in
a following chapter. This subsection is concerned about the way that, given that parallel
configurations have been explored, how can they be deployed on Myriad and how both
processors are co-ordinated.

This implementation relies on the use of custom semaphores. The only way to establish
communication between these two processors in Myriad2 is through the declaration of a
shared memory space. Therefore, standard semaphores or POSIX locks cannot be used. In
this implementation, two variables, one for each processors, are exploited as multi-state
semaphores.

In figure 5.2 a full flowchart of the algorithm is presented. Flowchart was chosen instead
of providing code because it is more clear and easy to understand how the synchronization

of the two processors is achieved.

96

LRT_semaphore

————— LI L E— e < T

Roa nd_cycles

|
Leonos ' !h 1 I LEON RT

LOS_configs() I I LOS_configs()

LRT_boot_sig

wake_LRT()

|
|
|
|
|
|
|
|
|
Create_LOS_ | Create_LRT_
subnet() I I | subnet()
|
|
|
|
|
|
|
|
4

LOS_subnet.size

No
Set_LOS_sem
(event_handI

er) I I

Layer(N).
execute()

Set_LRT_sem

(event_handl
Layer(N)

Layer(N).

[I
default 1

LOS_cycles+=Layer(
N)

execute()

Get_LRT_sem() d fl t
erau

Set_LRT_sem(5) Set_Round_cycles Set_LRT_sem(5)
Round_time=max(L Round_time=max(L
0S_cycles, 0S_cycles,
LRT_cycles) LRT_cycles)

Get_LOS_sem() Get_LOS_sem()

LOS_cycles=0
Round_cycles=0 Round_cycles=0
set_LOS_sem(5)

Figure 5.2: Dual processor mode algorithm flowchart

97

5.7 The Profiling mode

The most important part of this Thesis was to create a framework able to conduct pro-
filing on Convolutional Neural Networks and perform Design Space Exploration on them,
taking into consideration metrics like execution time and energy consumption. The pur-
pose of this, would be to give information to embedded architecture designers or users us-
ing CNNss for inference applications, about the optimal configurations, in terms of number
of processing units or way of executing layers, for each network. This is of major impor-
tance because state-of-the-art applications, using Neural networks, need to be as efficient
as possible in order to be deployed to edge devices, like drones, smartphones and portable
computers in order to save time and energy.

In this section a part of the algorithm which was designed to perform that operation
will be described.

Profiling mode consists of two parts: The Myriad2 part and the Python interface part.
The network manager deployed in the LEON OS framework is responsible for dispatching
the layers to the SHAVES and extracting information about the execution time and average
power consumption for each layer and possible configuration available. Then, a CSV file
containing all this information, in raw format, is exposed by the manager to the Python
interface. The interface uses this information and applies a set of algorithms to extract
valuable information about the optimization of the network.

The following steps are being made in order to trigger the Profiling mode: The user pro-
vides the appropriate argument regarding this mode. Then, the Python Interface generates
the Neural Network libraries and moves them inside the application directories. Then, the
Interface compiles the application setting as true a conditional flag inside the Makefile, re-
sulting in the compilation of a different branch of code of the Network Manager. The same
conditional flag inside the LEON OS code, is used as a condition to call the appropriate
methods that will commence the profiling of the network.

The manager calls the profiling method. Firstly, after the network is created, the manager
iterates over each distinct layer and dispatches it for execution for all possible number of
SHAVES, storing the execution time on an appropriate array. For the power consumption
measurement, the process needed to be done is more complex. Myriad2 power measurement
API exploits both LEON processors in the following manner: LEON OS commands LEON
RT to execute a piece of instructions or activate the SHAVES, and at the same time LEON
OS probes all power sampling rails of the board in order to measure the momentary power
consumption. LEON OS samples all rails continuously, until a kill signal is received by LEON
RT, having reached the end of execution. Then the sampling terminates and the average is
calculated. This process is done for every SHAVE number combination of each layer and is

illustrated in the figure 5.3 below.

98

LEON OS

Configure

layer

Thread 1 Thread 2

v

Initialize
board driver

Set_sampling
_semaphore(
1)

et_sampling_s
emaphore(1)

Rails
Yes

Wake up
LEON RT

Broadcast
layer to
shared
memory

LEON RT
stopped?

sampling

Stop Signal

+

Thread Join
Calculate
Average

Power

LEON RT

LRT_boot_sig
nal()

et_sampling_s
emaphore()

Set_setting_s
emaphore(1)

Execute layer

et_sampling_s
emaphore()

Set_setting_s
emaphore(0)

LEON_RT_kill
_signal()

Figure 5.3: Profile mode algorithm flowchart

In tables 5.1 and 5.2 a sample output from profiling mode for Alexnet, regarding execu-

tion time and power consumption respectively, is provided.

99

Alexnet profile output for execution time

Table 5.1

| ID-Type SHAVES || 1 2 3 4 5 6 7 8 9 10 11 12
1-Convolution 188.347283 | 94.574138 | 69.006598 | 55.942502 | 48.558965 | 44.488375 | 40.832002 | 39.936248 | 37.654518 | 36.793235 | 35.816438 | 35.826485
2-LRN 7.770548 | 3.926377 | 2.667983 | 2.032187 | 1.680010 | 1.419407 | 1.268830 | 1.132187 | 1.039367 | 0.941543 | 0.871443 | 0.803340
3-Pooling 0.656877 | 0.387178 | 0.304605 | 0.239732 | 0.230412 | 0.223545 | 0.222852 | 0.218522 | 0.228772 | 0.222322 | 0.217302 | 0.218958
4-Convolution 86.144493 | 43.115018 | 28.989892 | 21.588535 | 17.552892 | 14.552535 | 12.548358 | 10.870782 | 9.842598 | 8.864388 | 8.164575 | 7.509935
5-LRN 5105547 | 2.595163 | 1.792137 | 1.367487 | 1.140257 | 0.986750 | 0.835623 | 0.754367 | 0.707160 | 0.647047 | 0.597750 | 0.565680
6-Pooling 0.870422 | 0.437082 | 0.308862 | 0.258545 | 0.226432 | 0.203228 | 0.200292 | 0.189282 | 0.182745 | 0.192288 | 0.186782 | 0.180735
7-Convolution 122.607587 | 61.673092 | 41.913468 | 31.324632 | 25.370362 | 21.583155 | 18.701352 | 16.433805 | 15.065072 | 13.672425 | 12.568668 | 12.045382
8-Convolution 92.036237 | 46.312138 | 31.147538 | 23.532965 | 19.155398 | 16.077522 | 14.032698 | 12.361908 | 11.233668 | 10.263815 | 9.457838 | 8.926478
9-Convolution 61.539147 | 30.952795 | 20.932415 | 15.727958 | 12.836808 | 10.818032 | 9.426592 | 8.359202 | 7.486345 | 6.949828 | 6.347965 | 6.022222
10-Pooling 0.654788 | 0.329415 | 0.223862 | 0.169352 | 0.149875 | 0.132282 | 0.124925 | 0.117258 | 0.116332 | 0.117715 | 0.117252 | 0.117382
11-InnerProduct || 45.983922 | 24.108270 | 19.128707 | 20.132467 | 19.137397 | 19.285393 | 19.540033 | 20.018530 | 19.179573 | 19.424837 | 19.263687 | 19.196363
12-InnerProduct || 21.944573 | 11.309963 | 8.408787 | 9.094047 | 8.846503 | 8.477237 | 8.773227 | 9.065593 | 8.751287 | 8.838767 | 8.813887 | 8.567057
13-InnerProduct 5365720 | 2.770780 | 2.062973 | 2.239040 | 2.303140 | 2.071863 | 2.179723 | 2.116227 | 2.128257 | 2.199463 | 2.130760 | 2.118223

100

Table 5.2: Alexnet profile output for average power consumption

| ID-Type SHAVES | 1 2 3 4 5 6 7 8 9 10 11 12
1-Convolution 570.29 | 642.13 | 706.15 | 759.92 | 811.32 | 851.95 | 895.64 | 915.56 | 953.67 | 985.08 | 1016.40 | 1040.79
2-LRN 570.93 | 634.48 | 696.64 | 757.94 | 817.56 | 880.48 | 940.94 | 991.2 | 1043.35 | 1092.72 | 1145.01 | 1198.91
3-Pooling 700.27 | 841.62 | 951.13 | 1064.93 | 1129.55 | 1177.7 | 1207.82 | 1260.93 | 1292.87 | 1323.68 | 1372.95 | 1419.58
4-Convolution 598.02 | 676.95 | 753.16 | 834.8 | 911.22 | 996.55 | 1070.51 | 1157.89 | 1223.63 | 1307.7 | 1369.61 | 1449.61
5-LRN 5817 | 6483 | 717.81 | 782.82 | 843.55 | 905.07 | 955.63 | 1016.75 | 1075.66 | 1136.29 | 1193.38 | 1242.35
6-Pooling 658.67 | 796.24 | 924.27 | 1017.97 | 1110.58 | 1193.12 | 1229.34 | 1291.07 | 1353.71 | 1348.51 | 1405.81 | 1465.43
7-Convolution 609.82 | 699.69 | 791.38 | 880.89 | 969.25 | 1056.26 | 1144.47 | 1221.65 | 1305.76 | 1383.21 | 1447.39 | 1522.64
8-Convolution 610.47 | 696.31 | 781.68 | 867.49 | 951.51 | 1036.14 | 1120.08 | 1195.26 | 1274.61 | 1349.39 | 1411.81 | 1486.29
9-Convolution 611.08 | 699.28 | 789.56 | 880.37 | 967.98 | 1054.26 | 1137.77 | 1225.98 | 1298.03 | 1379.81 | 1442.48 | 1513.78
10-Pooling 613.7 | 699.54 | 785.91 | 867.23 | 932.83 | 995.01 | 1040.07 | 1091.32 | 1126.23 | 1153.23 | 1183.1 | 1213.28
11-InnerProduct | 811.9 | 1096.78 | 1244.69 | 1245.83 | 1312.58 | 1361.5 | 1378.06 | 1413.61 | 1475.87 | 1497.48 | 1549.25 | 1598.4
12-InnerProduct | 803.68 | 1078.58 | 1255.6 | 1249.3 | 1308.94 | 1372.86 | 1382.81 | 1419.36 | 1484.68 | 1500.39 | 1543.34 | 1601.89
13-InnerProduct | 804.92 | 1081.79 | 1260.23 | 1256.89 | 1299.79 | 1380.58 | 1382.74 | 1435.16 | 1491.46 | 1494.51 | 1551.1 | 1597.54

101

5.8 Optimization and Evaluation of the C++ LEON

Framework

In this section the optimizations made on the LEON C++ Framework will be presented.
These optimizations led to dramatic increase in performance of the LEON execution and
provided augmented code flexibility and scalability. Then, a short evaluation of this frame-

work will be provided in comparison with the older version of the CNN Engine.

5.8.1 Optimization techniques

The most important step done on the LEON OS code, given the object oriented nature of
the challenge faced, was the development of the framework in C++. This, not only made the
code more efficient due to the nature of the language, but also provided abstract libraries
making future extensions of the engine a lot easier.

The following actions were done in order to make the application more efficient in terms

of application memory footprint, execution time and application consistency:

e Inlining layer constructors and one-liner methods

e Usage of "emplace_back” method instead of "push_back” for constructing the net-

work (See C++ documentation for method differences)

e Static DDR allocation on compile-time for weights, biases and output buffers instead

of dynamic allocation
e Usage of STL iterators on loops instead of dereferenced pointers

e Usage of conditional flags to compile only the code semgnent regarding the mode

selected and the layers included

e Reduced CMX uncached data segment by changing struct data types passed to SHAVES

5.8.2 Evaluation

For the evaluation process of this framework running on LEON OS, its metrics are com-

pared with the former CNN framework.
e Network creation and layer dispatch time reduced by 40%

The comparison of the total LEON OS execution time between this and the former im-
plementation was conducted using "CIFAR-10” Neural Network, as it was one of the few
small CNNs that were supported by the former Engine. The total time needed by the older

version was 15 ms, whereas this time reduced to 9 ms on the newer version written in C++.

102

e The total memory segment needed by LEON OS was reduced by 97%

The total memory assigned to LEON OS was set to 64 MB, because the data segment was
used dynamically to allocate space for the output buffers of each layer of the network. There
was explicit allocation for the output buffer of each layer, leading to enormous memory al-
location only for buffers, even on small layers. Deploying large networks, like "GoogLenet”,
would be impossible with this method.

In the newer Engine version, the memory segment used by LEON OS is 2MB, which
offers a x32 reduction. The output buffers are statically allocated on DDR on the initiation
of the application, leading to better performance. In linear networks only two output buffers
are used, which are used as swap buffers. This means that, on each execution round, one
buffer is used as input and the other as output, with their role switching layer after layer.
In layers with blocks in parallel, there are more buffers used. The size and the count of the
buffers is precomputed offline by the Interface, where a specific algorithm computes the
exact size and count needed for the application. This is very critical when deploying state-
of-the-art CNNs like "Alexnet” or "VGG” that need massive amount of memory to store

their weight and bias arrays.
e Framework able to support large variety of networks

The current LEON OS implementation, in co-operation with the Python interface, is able
to execute any possible CNN, just by providing a "prototx”t and “caffemodel” file through
the user arguments. The C++ framework on its own, is easily generalized to as many types
of layers a possible without modifying any existing code, due to the architecture of the

“Layers” abstract Class implemented. This makes it fully compatible with "Caffe”.

103

Chapter 6

Vision Computational Libraries

One of the purposes of this thesis was to achieve generalization in multiple different
CNNs. However, each network provides different features and exploits data in a different
way with the others. Therefore, a wide variety of layer types are used, as well as a broad
range of convolutional kernels. Also, the layer architecture of a network varies from one
another. There are linear networks, in which each node is connected only with a previous
layer and a next layer, and there are non-linear networks, where one layer can feed blobs
to multiple different layers, creating branches that are trained to extract different features
each. As a consequence, extensions had to be made to the computational engine to support

a large variety of state of the art networks that are used today in computer vision tasks.

6.1 The Local Response Normalization layer (LRN)

6.1.1 Definition and usage of LRN

In neurobiology, there is a concept called “lateral inhibition”. This refers to the capacity
of an excited neuron to subdue its neighbors. A significant peak is definitely wanted, so
that a form of local maxima is achieved. This tends to create a contrast in that area, hence
increasing the sensory perception. Increasing the sensory perception is helpful in blobs of
CNNs because sensitivity on desired pixels, that will be filtered afterwards, is increased,
thus increasing output accuracy.

Local Response Normalization (LRN) layer implements the discussed lateral inhibition.
This layer is useful when dealing with ReLU neurons. This is because ReLU neurons have
unbounded activations and LRN is needed to normalize that. High frequency features with
a large response need to be detected and if normalization occurs around the local neighbor-
hood of the excited neuron, it becomes even more sensitive as compared to its neighbors
[20].

At the same time, it will dampen the responses that are uniformly large in any given
local neighborhood. If all the values are large, then normalizing those values will diminish
all of them. So basically this inhibition is encouraged in order to boost the neurons with

relatively larger activations [10].

105

There are two types of normalizations available in Caffe. You can either normalize
within the same channel or you can normalize across channels. Both these methods tend
to amplify the excited neuron while dampening the surrounding neurons. When the nor-
malization occurs within the same channel, it is like considering a 2D neighborhood of
dimension N x N, where N is the size of the normalization window. You normalize this
window using the values in this neighborhood. If normalization happens across channels,
a neighborhood will be considered along the third dimension but at a single location. You
need to consider an area of shape N x 1 x 1. Here 1 x 1 refers to a single value in a 2D matrix
and N refers to the normalization size.

"WITH_CHANNEL” mode, as is named in Caffe engine, is almost never used, because it
provides insignificant normalization on input blobs. To be more specific, no contemporary

and widely reputed CNN is currently using this kind of Local Response Normalization.

mput neurons

Soos first hidden layer
EHE

e —)

Figure 6.1: LRN Within Channel

On the other hand, "ACROSS_CHANNELS” LRN is widely used among networks like,
"GoogLenet” and "Alexnet”.

The formula for the computation of LRN is as follows:

in_pizl,,
j=min(N—1,i+5") '
(T4) (in_pixt,)?)P

j:ma:p((],if%

.4 o
oul_pix, , =

106

Where:

e in_pix(i,x,y) represents the ith convolution kernel’s output (after ReLU) at the posi-

tion of (x,y) in the feature map

e out_pix(i,x,y) represents the output of local response normalization, and of course

it’s also the input for the next layer
e out_pix(i,x,y) is the number of channels of the input blob

e 1 rislocal ratio, hyperparameter of LRN layer and indicates the adjacent normaliza-

tion kernel number. Most CNN5s use local ratio equal to 5

e « and P are layer hyperparameters alpha and beta. Most CNNs use alpha equal to
0.0001 and beta equal to 0.75

Figure 6.2 illustrates thoroughly how LRN works, when applied after a convolutional

filter paired with ReLU linear neuron:

; ® aixy
i th kernel 2t afi-n/2, x,) b(i, x, 3}
® At the position; (x, y)
Input Feature Map At the position: (x, y) At the position: (x, y)
o Lo
o o—]

T 0/7
_H_H_‘_H_H\‘——; o

i Summation of the
i Squares of
i Output of ReLU

¢

: . 1 ReLU: max(0, x)
i Spatial Convelution :

i
Local Receptive Field E ! Y i Output of Local Response Normalization
[: '
Output of Spatial Conv. 1 R Y | B 2
Connections ‘ ! by =,/ k+a Z (ry)
Five Adj t Ci Kernel: *
ive Adjacent Conv, Kernels
4 Output of ReLU

Figure 6.2: LRN Across Channels flowchart

Having explained what exactly is LRN, a graph representation (6.3) will be provided to
give an intuitive understanding of the output and effect of LRN on input blobs. Keep in
mind that, because the LRN happens after ReLU, the inputs should all be no less than 0.

Be noted that the x axis represents the summation of the squared output of ReLU, rang-
ing from 0 to 1000, and the y axis represents out_pix(i, x, y) divides in_pix(i, x, y). The
hyper-parameters are set default for this evaluation. So, the real out_pix(i, x, y)’s value

should be the the y axis’s value multiplied with the in_pix(i, x, y). Since the slope at the

107

0.6 T T

0.3

ik + a*sumisx™2])
=] =
) =9
—

=)
Pud
T
;

[N E

—

D'ﬂi} 200 400 GO0 o0 1000

sumix ™ 2]

Figure 6.3: LRN Activation output

beginning is very steep, little difference among the inputs will be significantly enlarged

and exactly this is where the competition happens.

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> def Irn(x):
y =1/ (2 + (10e—4) * x ** 2) ** 0.75
return y

>>> input = np.arange(0, 1000, 0.2)

>>> output = lrn(input)

>>> plt.plot(input, output)

>>> plt.xlabel (’sum(x"2)’)

>>> plt.ylabel(’1 / (k + a * sum(x"2))’)

>>> plt.show ()

Listing 6.1: Python code used for generating LRN output plot

6.1.2 LRN DMA Algorithm

The LRN implementation is consisted of two code sectors: The parallelized DMA algo-
rithm and the computational routine. While the assembly routine is critical to the perfor-
mance of the layer, the DMA algorithm is equally important because a smart implemen-

tation can provide fruitful grounds for the computation to be efficiently parallelized and

108

deployed.

Firstly, it is necessary to describe shortly the CMX DMA engine. The DMA engine is uti-
lized extensively inside the computational nodes, transferring data between CMX and DDR.
Therefore, understanding the functionality of the DMA engine exposed by the respective
driver is essential. Each DMA transfer is performed thought the issue of a transaction. For
the purposes of the CNN implementation, 2D transactions are needed, since the transferred
data are shaped as images.

There are several driver functions for declaring 2D transactions:

e dmaCreateTransaction: This is the simplest form and can only copy contiguously laid
data and place them contiguously at the destination. For example, such function is

useful when transferring complete image channels.

e dmaCreateTransactionSrcStride: This form can copy non-contiguously laid data and

place them contiguously at the destination.

e dmaCreateTransactionDstStride: This form can copy contiguously laid data and place

them non-contiguously at the destination.

e dmaCreateTransactionFullOptions: This form is the most general. It can copy non-

contiguously laid data and place them non-contiguously at the destination.

The latter function is used to create DMA transactions in LRN implementation because
it provides the possibility to use striding techniques and isolate chunks of the image that
need to be processed by each SHAVE.

A snippet using the driver is shown below, where an contiguous 2D rectangle is trans-
ferred from DDR to CMX.

ref[0]=dmaCreateTransactionFullOptions (

id ,

&task [0]

input_address+image_offset , // source

local_input , // destination
number_of_pixels*channels, //byte length
number_of_pixels , // source line width
number_of_pixels , // dest line width
image_offset , // source stride
number_of_pixels); // destination stride

dmaStartListTask (ref[0]);

Listing 6.2: DMA transaction example

109

Where:

e input_address+pixel_offset is the starting source address that each SHAVE will read

e local_input is the local SHAVE input buffer that will be used as input to the compu-

tation
e number_of pixels*channels is the total pixels that will be processed by the SHAVE

e number_of_pixels is accordingly the number of pixels that will be processed by the
SHAVE per channel

e image_offset is the stride that will be applied to the starting input address and incre-

ments as the SHAVE brings blocks in order to index the next unprocessed block

The LRN implementation is parallelized among any possible number of SHAVES used
for any possible input image. When an input image needs to be normalized, the distribution
of its blobs among the SHAVES is not done in regard of the input channels but rather trans-
versely. Simply put, imagine an input blob of dimensions C x H x W (Channels x Height
x Width) that is going to be processed by seven SHAVES. Then, each SHAVE is going to

process the following amount of pixels:

H+«W

Pizels_per_shave = C - (7)

Of course, each SHAVE pointer indexing to the starting address of the frame that is
going to process, has an accordingly calculated offset, leading to each processor computing
a different chunk of the blob.

To generalize for any input blob to be normalized, with a variable number of SHAVES,

the pixel frame that each SHAVE is going to calculate is defined by the following formula:

| HxW
Pizels_per_shave = C' - (NumbGT of_shaves

Whereas the offset of the input pointer of each SHAVE is defined as:

mput_of fset = shave_id_per_shave

Where shave_id ranges from 0 to 11, since the maximum number of SHAVES is 12. To
better visualize this distribution, imagine a 2D matrix divided in N blocks with the same
amount of pixels and expand this very same pattern in all the channels of the input image

that will be normalized. In that perspective, these chunks can be seen as independent sub

110

images with the same number of channels and smaller 2D dimensions. In figure 6.4 an

example of 3 SHAVES processing different chunks of an N-channel input blob is shown.

= SHAVE 1 —

Figure 6.4: N input channels distributed among 3 SHAVES

The DMA Algorithm designed inside the SHAVES follows one basic principle, which
proved to be useful on certain circumstances: There is a threshold which is dependent to
the data segment available to each SHAVE, which the processor uses to decide if the sub
image to be processed, will be brought all at once, or if it will be brought in blocks. This is
a very crucial decision as the pattern of the computation hugely differs. In order to decide,

the SHAVE examines the following condition:

memory_pool — 4 - 1024

channels - 4 < number_of_pixels

If this condition is false, then the SHAVE decides that the block that is assigned to
compute, can be brought in one piece. In that case, only two DMA Transactions are created:
One for bringing the block to CMX and another to return it to DDR after the computation
has happened. This, although simple thought, kept low the code complexity in cases where
the input image is small enough, keeping low the execution time of LRN.

On the other hand, if the above condition is true, then the processor adapts to a way
different behaviour. The sub-image is divided into balanced pixel batches and three buffers
are allocated: two as inputs and one as output. The idea of the algorithm is that the first pixel
batch is loaded to the first input buffer. Then, while the first input buffer is processed by the

assembly routine and written to output buffer, a second DMA transaction is called to bring

111

the second block to the second input buffer. This described pattern is iterated over all batches
of the block that need to be processed by each SHAVE, until the whole image is processed.
The two input buffers alternate their roles in each iteration. This is achieved through a
switching mechanism that is complemented after each iteration and defines which buffer

will be loaded and which will be computed and written to the output.

while (pixel_offset < last_pixel){
dma(input_address, local_input[buffer_switch%2]
compute (input_pointer [(buffer_switch +1) %2]
dma(local_output, input_address)

pixel_offset += pixels_per_batch;
buffer_switch = (buffer_switch + 1) % 2;

Listing 6.3: Main loop of DMA routine

As it can be seen, pixel_offset, which is used for offsetting input and output and for
controlling the loop, is incremented by a pixel batch after each iteration. On the last iteration

the value of this variable will be equal to last_pixel, leading the loop to an end.

6.1.3 LRN Generic Computational Algorithm

The most important part of a layer implementation inside Myriad2, taking into account
the performance and the energy consumption, is the computational routine used. For the
scope of this implementation, two algorithms for the layer computation were designed:
A generic one, written in C, able to perform computation on any type of local_ratio hy-
perparameter and a specialized Myriad2 assembly routine, executing with the local_ratio
statically set to 5. This is because every state-of-the-art CNN that is used today, and was
also used to evaluate this implementation, uses local_ratio equal to 5. Therefore, the C im-
plementation is neither efficient in terms of execution time and power consumption, nor
useful except only extremely rare circumstances. However, for the generity of the CNN
compatibility, this function is also included in the computational library.

In the following page, the C algorithm that performs the generic LRN computation is

provided and explained:

112

void LRN_AcrossChannels(fp16 ** input, fpl16** output,

ulé6 channels, ulé6 pixel_batch ,
u8 local_ratio, fplé alpha, fpl6 beta){
// variable declaration (...)
for (u32 pix = 0; pix < pixel_batch; pix++){
for (u32 ch = 0; ch < channels; ch++){

sum = 0;

low_margin = ch—(local_ratio/2);

low_margin = (low_margin < 0 ? 0 : low_margin);
up_margin = (((channels — 1) < (ch + (local_ratio / 2)

+ (local_ratio % 2) — 1)) ? (channels — 1)
ch + (local_ratio / 2)

+ (local_ratio % 2) — 1);
current_input_pixel = input[0][ch * pixel_batch + pix];
for (int 1 = low_margin; 1 < (up_margin + 1); 1++){

squares = input[0][(pixel_batch)*(l) + pix];
squares *= squares;
sum += squares;

}

current_output_pixel = current_input_pixel

*

/ pow((1 + (alpha / local_ratio) sum), beta);

output[0][ch * pixel_batch + pix] = current_output_pixel;

}

return ;

Listing 6.4: LRN generic C implementation

Where:

e fp16™* input is float-16 pointer to pointers to the input of the chunk to be processed

e fp16™* output is float-16 pointer to pointers to the output where the computed chunk

will be stored
e u16 channels is the number of channels that the normalization will be applied
e ul6 pixel_batch is the number of pixels for which the computation is responsible

e u8 local_ratio, fp16 alpha and fp16 beta are the layer’s hyperparameters affecting

the value of the output computation

It should be noted that in Myriad2, there are custom data type abbreviations. "fp16” type

is a shortcut for “half” and "u16”, "u8” are shortcuts for "uint_16t” and "uint_8t” respectively.

113

6.1.4 Hyperparameter specific assembly algorithm

The algorithmic section that defines, almost exclusively, the efficiency and the perfor-
mance of the LRN implementation, is the Myriad assembly routine for implementing the
computational method of the layer.

In order to save time and instructions, this implementation does not take the layer hy-
perparameters as arguments, but rather these are set to the default values used in all neural
networks, including "GoogLenet”, "Alexnet” and "ZFNet”. More specifically "local_ratio” is
equal to 5, "alpha” t0 0.0001 and beta to 0.75.

The assembly algorithm follows a very different structure from the generic implemen-
tation, using loop unrolling and loop tiling techniques, leading to better performance in
overall. The SHAVES are VLIW (Very Long Instruction Word) processors, which means
that they are able to process data in vectors and parallelize the fetching of many instruc-
tions at the same time. For that reason, the assembly routine of the same implementation,
in comparison with the analogous C function, can be as much as 30 times faster. Compar-
ison and evaluation of these two functions will be provided in the chapter regarding the
experimental results of the CNN engine.

In the following listing, the algorithm of the assembly implementation for LRN-specific
function is given. It is given as pseudocode, as the Myriad2 ISA and assembly commands

are classified by Movidius, Intel.

arguments: fpl16** input, fpl6** output, ulé6 channels, ul6 total_pixels)

start:

load input address

load output address
register local_ratio = 5
register alpha = 0.0001
register beta = 0.75

loop_on_whole_picture:

load input_address to temp_input_register

load output_address to temp_output_register

load first pixel_batch to register_1

temp_input_address += 4 elements

load second pixel_batch to register_2

temp_input_address += 4 elements

114

compute first pixel_batch

load third_pixel_batch to register_3

temp_input_address += 4 elements

compute second pixel_batch

store first pixel_batch to output

temp_output_address += 4

load fourth pixel_batch to register_4

temp_input_address += 4

compute third pixel_batch

store second pixel_batch to output

temp_output_address += 4

store third pixel_batch to output

temp_output_address += 4

channel counter = 4

main_loop:

load (K+1) pixel_batch to register_5

temp_input_address += 4

compute K pixel_batch

store K pixel_batch to output

temp_output_address += 4

// slide registers holding input

register_1 = register_2

register_2 register_3

register_3 register_4

register_4 register_5

channel counter += 1

repeat if channel_counter < N channels
final_pixels:
compute (N—1) channel

store (N—1) channel to output

temp_output_address += 4

115

compute N channel
store N channel to output

temp_output_address += 4

pixel _counter += 4
if pixel_counter < total_pixels: repeat

else end

Listing 6.5: LRN specialized assembly routine

6.1.5 Iterative method design for float exponent calculation

As already shown in previous subsection, the LRN mathematical computation includes
floating point numbers raised in the power of floats (e.g. 2.247'7). This computation might
be easily done using the C function "pow(base, exponent)” which is included in "math.h”
library. However, this utility is obviously not available to use in Myriad2 bare-metal assem-
bly language and even if it were, it would be nowhere near efficient.

Furthermore, the ISA of Myriad2 does not include any instructions available to float-
ing point-16 numbers that are concerned with float powers. The only given instructions
similar to raising to powers is the multiplication and divide instructions and the square
root. Therefore, without designing a heuristic method to implement float-raised to-float
mathematical operation, it is impossible to write a generalized, to layer hyperparameters,
assembly routine for the LRN layer due to this ISA deficiency.

To tackle this challenge, a custom iterative method was designed from scratch that very
efficiently converges, in floating point-16 accuracy, after three to five iterations, providing
a very efficient way to perform this computation in assembly.

Below, the iterative formula is provided. Suppose that the base of the float power is a
float number represented as “a.b” and the float power as "c.d”. a and c represent the digits
left of the decimal point whereas b and d represent the decimal point digits. For example in
the number 2.24142: a=2 b=24, c=1, d=42.

flab, ed) = (a.b)° - f(Va.b,8-0.d)

Where:

116

And therefore can be computed by Myriad2 Instruction Set Architecture.

An example is provided in order to evaluate this iterative method. Suppose that, with
the help of this iterative formula, 3.8791%?% needs to be computed. Using a high precision
calculator, this mathematical expression is equal to 22.38515608.

Using the iterative method:

0.293-8
3.879122% — 3.87912 . (\/\/3.8791> = 3.8791 - 3.8791 - (1.184653)>34 =

0.344-8
15.047416 - (1.184653)%34 = 15.047416 - 1.1846532 - (\/1.184653> =

0.344-8
21.11758584- (1.0214071)%72 = 21.11758584- (1.0214071)2- (\/\/ 1.0214071) -
22.03139581 - (1.002651156)%72 = 22.148368 - (1.00033)5-916

iteration_output = 22.148368

Notice that after only 3 iterations the output number has converged effectively close to
the originally computed number, reaching almost its 99%. Floating point-16 numbers have
nowhere near the 32-bit or 64-bit precision and therefore the termination criteria of the
iterative method could be set to a slightly bigger deviation than 1%.

For this numerical iteration to translated to algorithm and be successfully deployed
to Myriad2, a recursive algorithm was design to represent this numerical procedure. The
algorithm is presented below and uses only multiplication, divide and square root, as these

are the only tools provided by the ISA for this specific functionality.

calculate_float_power (num, exponent):

diff = 1-num;
if diff < 0:
diff *= —1

if diff < 0.0005:
return 1;
else:
for i=0 —> int(exponent):
result *= num;
exponent —= int (exponent);
*

result *= calculate_float_power (sqrt8 (num), 8*exponent);

return result;

Listing 6.6: Recursive algorithm for calculating float number raised to float power

117

6.2 The Concat layer

6.2.1 Definition and usage of Concat

Another important layer used in state-of-the-art Convolutional Neural Networks is the
“Concat” layer. Concat is a utility layer that concatenates its multiple input blobs to one sin-
gle output blob [21]. The need for using Concat occurs on networks with parallel branches
of different layers that need to be merged at a specific point. Such example is "GoogLenet”,

which contains the inception blocks, and "SqueezeNet”.

Usually, data in caffe is stored in 4D blobs: BxCxHxW (that is, batch size by channel
by height by width). If there are two blobs B1xC1xH1xW1 and B2xC2xH2xW2 Concat
is used to concatanate them along their channel dimension to form an output blob with
C=C1+C2. This is only possible iff B1=B2=B and H1=H2=H and W1=W2=W, resulting with
Bx(C1+C2)xHxW.

Figure 6.5 shows the way Concat concatanates input blobs on GoogleNet’s inception

block structure.

cixhxw csxhxw
| cxhxw 3 | caxhxw
]

Concat output buffer
11 2] 13 | L4 |
Outputsize: (c1+c2+c3+cd4)xhxw

Figure 6.5: Concat usage overview on GoogleNet’s inception block

118

6.2.2 Implementation specifics

Since Concat is a utility layer, there is no need for intensive computation to happen
and therefore the SHAVES are not needed to perform any operations. As it has already
been stated, the Python Interface uses as few data buffers as possible for the blobs. In par-
allel layer branches, the interface defines different swap buffers for each distinct branch
that it recognizes, as they have independent data flows. However, distinct swap buffers for
each branch are necessary, because at the end of the parallel block, these buffers will be
concatanated with a Concat layer.

The most obvious way of implementing the functionality of Concat layer inside the
CNN engine would be to have LEON OS processor perform DMA transactions, one for
each layer, storing in order, one by one, the input blobs of a Concat layer to its data buffer.
This implementation sounds much less complex than the rest of vision computational layers
and therefore it could be an accepted solution.

The concept of this solution is shown in figure 6.6 below:

Figure 6.6: Implementation of Concat using LEON DMA Transactions on GoogleNet

However, an extremely efficient way of implementing Concat was designed, eliminat-
ing any possible overhead its computation could add to the engine. The implementation
is included in the library generation function performed by the Python interface, avoiding
unnecessary memory accesses and data transfers: The input layers of each Concat are of-
fline identified and they write their output directly to the Concat buffer, instead of their

owns. In figure 6.7 the current implementation of Concat can be seen:

119

| buffer_2_0 |

| concat_bufferfd1+d2] |

concat buffer

buffer_1_0 | | concat_bufferfdl] |

d2=c2xhxw

| concat buffer[0] |

dl=clxhxw

Figure 6.7: Concat implementation with offline Python precompute on GoogleNet

As it can be seen, not only does the execution overhead of Concat is eliminated on
run-time, but also the number of the data buffers needed to store the blob information are

reduced, thus reducing the total amount of memory needed on the embedded system.

6.3 Direct Convolution 1x1 implementation

Although the Convolution layer in the former CNN Engine was already implemented,
there was no computational routine available neither by the engine nor by the Movidius
MDK for Convolution with kernel equal to 1 (Convolution 1x1). This kernel is extremely
important as it is lately used in most Deep CNNss, like GoogleNet and SqueezeNet.

1x1 convolution was first introduced in this paper titled Network in Network [13]. In
this paper, the author’s goal was to generate a deeper network without simply stacking
more layers. It replaces few filters with a smaller perceptron layer with mixture of 1x1 and
3x3 convolutions. In a way, it can be seen as “going wide” instead of “deep”, but it should
be noted that in machine learning terminology, ‘going wide’ is often meant as adding more
data to the training. Combination of 1x1 (x F) convolution is mathematically equivalent to
a multi-layer perceptron.

Although 1x1 convolution is a ‘feature pooling’ technique, there is more to it than just
sum pooling of features across various channels/feature-maps of a given layer. 1x1 convo-
lution acts like coordinate-dependent transformation in the filter space. It is important to
note here that this transformation is strictly linear, but in most of application of 1x1 con-
volution, it is succeeded by a non-linear activation layer like ReLU. This transformation is

learned through the (stochastic) gradient descent. But an important distinction is that it

120

(a) Convolution with kernel of size 3x3 (b) Convolution with kernel of size 1x1

Figure 6.8: Dfference between kernel 3 and kernel 1

suffers with less over-fitting due to smaller kernel size (1x1).

Figure 6.8 above presents the difference on the output maps between 3x3 and 1x1 filter-
ing.

The computational routine that implements 1x1 Convolution inside the engine was writ-
ten in Myriad2 assembly language. The explanation of the routine arguments as well as the

pseudo algorithm of the implementation are given below.

e half*” in is float-16 pointer to pointers to the input of the chunk to be processed

e half™* out is float-16 pointer to pointers to the output where the computed chunk

will be stored

e half conv[1] represents the convolution kernel. This array parameter requires the
same number of elements as the size of convolution. The 5 x 5 convolution would

require 25 array elements. In this case, it is only one element (1x1).

e inWidth defines the width of the input line. Because the assembly routine utilizes
SIMD instructions, it is important to bare in mind that inWidth needs to be a multiple
of 8. If this is not the case, usually inWidth is rounded down to the closest multiple
of 8, however this is not always the case (there is a discrepancy among the MDK

routines)

121

i | //void Convolutionlx1l_asm (half** in,

2 half** out,

3 half conv[1],
| u32 inWidth)

5 | Convolutionlx1l asm:

load input address
8 load output address
9 load first input block

10 load kernel address
12 loop_counter = inWidth / 8
1 | loop:

16 if loop_counter = 0

17 jump to the_end

18 else

19 load K+1 block from input_address

2 input_address += 8
2 multiply K block with kernel

2 store block K to output_address

output_address += 8

27 loop_counter —= 1

28 jump to loop

30 the_end:
si | multiply K+1 block with kernel
store block K to output_address

3 | end

Listing 6.7: Convolution 1x1 algorithm

122

Chapter 7

Library generation interface

The final and equally important part of this thesis was the design and implementation
of an interface capable of automating many different tasks into one package. To accomplish
this task, Python was used as a programming language, because of the caffe module exposed
by the caffe engine in this language. Therefore, it was the only language that could be used
to exploit the caffe compatible model descriptions, meaning the -prototxt and -caffemodel
files of a CNN.

The Python interface currently uses a wide set of different algorithms, but the tasks that

it is used for can be divided into two categories:

e The generation and compile of network libraries

e The design space exploration of a network, in regard to execution time and energy

consumption.

In this chapter, the first branch of the interface will be explained.

7.1 'The library generation function

As already explained, this function is responsible for providing an abstract way to the
user or the designer, to import any possible CNN into the Myriad2 engine either for infer-
ence or for profiling purposes. In this section, the algorithms used in this function will be
analyzed.

The following snippet provided, contains the body of the library generator function as
much abstract as possible, divided in sub-functions. Each sub-function will be explained in

a different subsection in order for the function to be easier to understand.

123

def library_generator (prototxt, caffemodel, image):

initialize_caffe ()
initialize_library_lists ()

initalize_variables ()

for index, one_layer in enumerate(network_layers):
find_bottom_nodes_of_layer ()
check_if_parallel ()
append_layer_to_libs ()

write_lib_lists_to_files ()

return

Listing 7.1: Abstract overview of library_generator function

7.1.1 Caffe and library lists initialization

The caffe module needs to be initialized inside the body of the function in order for its

members to be used. The following snippet of code is used to initalize the framework.

caffe .set_mode_cpu ()
network = caffe.Net(prototxt, caffemodel, caffe.TEST)

network_list = []

Listing 7.2: Caffe module initialization

In line 1 the instruction initializes Caffe on cpu mode. There is the choice of "gpu_mode”
which is mainly used for network training and other computationally intensive tasks. Line
2 provides the network description as arguments to the "Net” method of caffe, and assigns
to the variable network” a list of dictionaries containing all the layers of the network with
their attributes.

Before iterating over all layers of the network the library lists that will be used, as
well as some variables, need to be initialized first. These variables are mainly lists that the
information about the network will be appended to, and variables that will server their

purposes on the different algorithms used inside the "for” loop.

124

7.1.2 Bottom nodes extraction

After the initialization of the framework, a loop that iterates over all network layers
follows. The layers iterate with the same order as in the prototxt file, which is created by
the network designer. No special precautions and conditions are taken about the order of
the layers, because the Caffe framework takes care of the layers being in the appropriate
order. If the prototxt file contains layers that are not in the correct format (e.g. one after
another in a linear network) then the Caffe initialization exits with an error code.

The first task that a layer does inside the loop is to register its own id inside a list, that
will be read by the next layer, which will be searching its parent node’s id. Then, as already
implied, the layer is searching for the id of its parent. In case the layer is of type 'Input’,

then it skips this search, as Input layers are always the first nodes of the network.

bottom_list = []
top_to_id.append(my_id)
if layer_type != ’Input ’:
for previous in layer_bottoms:
for i, j in enumerate(top_to_id):
if j == previous:
bottom = i

bottom_list.append(bottom)

Listing 7.3: Bottom node search

In each iteration the bottom list is re-initialized. The bottom id is necessary to be known
for each layer, because it is provided as an argument to its class constructor, indicating the

node of the network that feeds that specific layer’s input.

7.1.3 Parallel networks configuration

The library generation function uses a swap buffering technique on linear networks in
order to allocate inside Myriad2 as fewest and smallest blob buffers as possible. To be more
specific, for linear networks the interface defines only two blob buffers which are used
alternately. This, in practice, means that half of the layers read their input from
buffer_0 and write their output to buffer_1, whereas the rest read their input from buffer_1
and write their output to buffer_0.

The size of buffer_0 will be defined as equal to the size of the biggest blob, from layers
of the subnet that this buffer is responsible for. The same applies for the complementary
buffer. This technique ensures that not a byte more than those needed will be allocated for
storing output blobs. In the following figure 7.1, it is obvious how this couple of buffers is

used on linear networks or linear subnets of parallel networks.

125

buffer_ 0 1 buffer_0_1

Figure 7.1: Swap buffering on linear networks or linear subnets

In cases where a network splits up on a specific point to multiple branches of layers,
then the swap buffering technique, using two buffers, is ineffective. In such cases, swap
buffering is again used, but on N couples of swap buffers, one for each parallel branch of
the network. The split up of the network to parallel branches is recognized by the interface
when a ”Split” layer is met [22]. The coming of a Concat layer while iterating, indicates the
end of a parallel block and the algorithm returns to the previous policy, using only a couple
of buffers for the blobs, however starting from the complementary one in regard to the
last used before the split layer (this is a very important note because otherwise unwanted
data overwrite might occur). Figure 7.2 illustrates the extension on networks with parallel

branches.

buffer 0 0 buffer 0 O

buffer 0 1 buffer 0 1
buffer 0 0 o o
buffer_ 4 0 buffer 4 1
----- >
N+7
buffer 0 1
buffer 3 0 buffer 3 1
buffer 2 0 buffer 2 1
> N+4
buffer_ 1 0

Figure 7.2: Swap buffering on parallel blocks

126

Do not forget, however, that except from the algorithm that is applied on parallel blocks
to define the swap buffers, another branch of the code searches for parent nodes of Concat
layer, in order to implement the pre-computation of this layer, as described in section 5.2

and figure 6.7, so keep that in mind.

The snippet of the code that implements the ideas described above is given:

if layer_type == ’Split ’:
split_position = id — 1
split_buffer_index = branch_buffer_index

if layer_type != ’Concat ’:
if bottom_vector[0] == split_position:
branch_buffer index = 0
branch counter += 1
branch_list.append ({ Id ’: id, ’'Branch’: branch_counter, ’Index’
branch_buffer_index})
else:
for node in branch list:
if node[’Id’] == bottom_vector [0]:
node[’Id’] = id
branch_buffer_index = node[Index’] " 1
node[’Index’] = branch_buffer_index
branch_counter = node[Branch ’]
else:

<reset all variables and lists >

if split_position >0:
net iterator=id
while network.layer.layer_type!="Concat ’:
net iterator+=1
for bottom in network.layer[net_iterator].bottom:
if str(bottom)==layer_name:
local _counter=0
local_buffer_index=split_buffer_index
buffer_offset_str="[" + str(2*buffer_offset) + ’]°
buffer_offset+=layer_data.shape[1]"
layer_data.shape[2]*
layer_data.shape[3]

Listing 7.4: Configuration on parallel blocks inside networks

127

7.1.4 Appending to libraries and writing files

In each iteration, the iterated layer appends all its attributes and characteristics to the

library lists that will be written to the library source files at the end of the function. There is

different kind of information that each layer need to append to the library lists or provide

to the rest of the network:

128

Input layer appends its constructor with the input dimensions to a list that will be
written to "network.cpp” (see Chapter 4). Also an array with the pixels of input image,

if provided, in raw floating point-16 format is appended to the weight file

Convolution and Fully Connected layers append a constructor with their attributes
to the network list, as well as two arrays each to the weight file, containing the

weights and the biases of the layers

Pooling and LRN do not use weights and biases for their computation, therefore ap-
pend only a constructor command. When the layer is LRN, its hyperparameters are
checked in order to decide if the generic C computation will be used or the spe-
cialized assembly routine, as explained in previous chapter. The difference between
these two possible routes, lies between the existence of two different constructors,
using constructor overloading, that hold a different set of attributes for each case.
The same applies to pooling layers for the different kinds of pooling (max, average

or stochastic)

ReLU is an in-line layer and therefore it is applied to the Convolution or the Fully
Connected layer as a post-computation normalization. It is not implemented as a
discrete layer. This is also how Caffe handles this layer. As a result, when a ReLU
layer is met, the function updates the bottom node constructor’s variable regarding

the in-line existence of ReLU, activating it.

Split is a hidden layer produced by the Caffe computational engine, to indicate that
a certain layer feeds multiple layers, initiating a block of layers in parallel branches.
Split layer is used by our framework to identify parallel blocks and to perform com-
putations required to calculate the number and the memory size of the layer data

buffers required.

Concat is used to determine the end of a parallel block and calculate the correct
amount of buffers needed for this block, as explained before. In the end of the it-
eration, the Concat layer appends a pointer to its data buffer along with its blob

dimensions to the network list, in order to be effectively constructed inside Myriad2.

Dropout is a layer used only in training [23]. However, it is broadly used and therefore
the library generator function identifies it and updates the id variables accordingly,

in order for this layer to be effectively ignored.

7.2 Library compilation and execution

In this section, another part of the interface regarding the application initialization will
be discussed. In order to provide high-level abstraction to the user and automate all tasks
that have to do with the compile and execution of the engine, a function was designed to
move the libraries to the correct directories and initialize the Movidius debug server.

The function uses process parallelization (fork, execve and SIGALARMS) to setup the
application and also initialize the server. It is fairly easy to understand and is provided and

explained below.

def compile_and_execute(clean_flag , server, network_name, profile_flag):
move files to the appropriate directories

if server:
try:
fork_process = os.fork ()
server PID = 0
if fork_process == 0:
try:
start server

exit
except subprocess.CalledProcessError:
try:
get server PID
kill server
except subprocess.CalledProcessError:
pass
try:
get compile process PIDs
for pid in make_pid_list:
kill every make process
except subprocess.CalledProcessError:
pass
kill parent process
exit

else:

check if clean compile given
check the mode given (single processor, dual processor, profile)
compile

check if server is up

129

run application

wait until termination

kill child process
except KeyboardInterrupt:
if server_PID != 0:
kill server
if fork_process > 0:
kill child process

exit

else:

check if server is up
compile
run app

exit

130

Listing 7.5: Server setup and app compilation using forks and SIGALARMS

The above code works in the following manner:

Library source files are moved to the appropriate directories

If the user provides an argument instructing the interface to setup the server, then a
fork is called. In any other case, the interface checks that the server is up and running

(since the user has already set it up manually), compiles and runs the application

The child process occured from the fork, initializes the MoviDebugServer. If the server
is already initialized, then this process tries to kill it, as well as the compilation process

of the parent process and the parent process itself, and exits with an error code

The parent process compiles the application. If a “clean” argument is given by the user,
then cleans the object file directory of the application, in order to perform a “clean
compile”. The mode selected is also checked. Remember that there are three different

modes: Single processor inference, dual processor inference and profile mode

The parent process checks if the server is activated. If not then it kills all pending

processes, as well as the child process and exits with an error code

The application is compiled and then executed. The parent process waits until applica-
tion termination and then kills the child process, checks if all processes are correctly

terminated and then exits

In the whole process there is a check for a Keyboard interrupt. In that case, it is
ensured that no zombie processes are left. In the case of keyboard interrupt, the parent
process takes care of killing the server (if initiated), the child process and any pending

“make” processes. Then the parent process exits.

7.3 Interface user level abstraction

In this section, the available user arguments and the functionalities of the interface will
be explained. The creation of the arguments was done with the usage of “argparse” package.

The following arguments are available:

e - -prototxt/ -p
e - -caffemodel / -¢

e - -image / -i

- -shaves / -s [default: 10]

- -profile / -pr [choices: high_resolution / low_resolution]
e - —clean/ -cl

e - -server / -sv [choices: keep_log / silent]

e - -analyse_only / -an

o - -refeed / -re [choices: performance / efficiency]

The - -prototxt and - -caffemodel arguments are accompanied with paths to the accord-
ing files and are required by the interface for any mode selected. - -image specifies the path
to an input image that will be infered by the engine. There is also an argument which sets
the global number of SHAVES used for all layers of the network. It should be noted that
optimal SHAVE configurations per layer are only accessible through profile logs that are
refed to the engine using the - -refeed argument. The user can also choose the mode. By
using the argument - -profile, the interface switches to profile mode, selecting either high
resolution profiling or low resolution. By default, the inference mode is chosen.

The - -clean argument is used to instruct the interface to perform a clean compile and
- -server is chosen to fork processes and setup the MoviDebugServer, as explained above.
Finally, if a user has already profiled a network and holds its raw profile data and wants to
perform a design space exploration on this data skipping the profiling part, he can choose
the - -analyse_only option. The - -refeed argument is used to adapt an optimal config-
uration (fastest or most efficient) to the engine. It is important to note that if a network
contains parallel blocks and it is found by the exploration algorithms that dual processor

mode is faster, then by default this mode is deployed.

131

Chapter 8

Design Space Exploration interface

The other major task that the Python interface accomplishes is the manipulation of the
raw profile data of networks in order to provide insights about optimal Myriad2 configu-
rations. The metrics that are considered in these configurations are the execution time in
regard to the energy consumption. Remember that by saying "raw profile data”, tables like
5.1 and 5.2 are meant. These tables contain performance and power consumption informa-
tion for each isolated layer and each amount of SHAVES used for it. The interface combines
this data to export network configurations and suggestions about the order of execution of

layers and plots to visualize these suggestions.

8.1 Pareto optimal points generation

8.1.1 Definition of Pareto points

Pareto optimal points are generated by the interface, in order to visualize the optimal
network configurations on Myriad2, in terms of execution time and total energy consump-
tion. According to the formal definition Pareto efficiency or Pareto optimality is a state
of allocation of resources from which it is impossible to reallocate so as to make any one
individual or preference criterion better off without making at least one individual or pref-
erence criterion worse off. The Pareto frontier is the set of all Pareto efficient allocations,
conventionally shown graphically. It also is variously known as the Pareto front or Pareto

set.

In other words, in multi-objective optimization, when the different objectives are con-
tradictory, an optimal solution is said Pareto optimal when it is not possible to improve an
objective without degrading the others. A Pareto optimal solution can then be seen as an
optimal trade-off between the objectives. The set of all Pareto optimal solutions is called
the Pareto front as it usually graphically forms a distinct front of points. Solutions which
do not lay on the Pareto front are called Pareto dominated solutions. The figure 8.1 shows

a typical convex Pareto front obtained when minimizing two objectives concurrently.

133

' ' ‘SUMMARY_PARETO"
‘points.cat”
0.008 - s
Dominated solutions
e
~ 0006 | |
[«}]
> o
'_.: -
(@]
K
o .
O o004 r Pareto Optimal .
solutions
o
i
0002 | R -
L
L)
* e e
® e e e
0 L L L 1
0 D 20 30 40 50
Objective 1

Figure 8.1: Pareto front sample

8.1.2 Pareto algorithm implementation

Some steps were made in order to implement the pareto criterion on the design space

of a CNN. First of all, the raw data from the csv file need to be inserted to an appropriate
Python structure.

network_profile_file = open(network_profile, ”r”)
profile_list = []

for line in network_profile_file:
profile_list.append(line)
del profile_list [0:2]

network_profile_file.close ()

Listing 8.1: Reading the raw data profile table

The snippet above, reads the CSV file that contains all raw information about the layers
of a network and appends it to a list, called “profile_list”. The first two elements contain
junk information included in the CSV file (the axis names) and therefore they are deleted.

Afterwards, a list of dictionaries is created. Each element of that list is a dictionary

134

that represents a layer, and holds 4 lists: A list for execution time, energy consumption,
operation of the computation (e.g. Conv-Direct) and number of shaves used. These four

lists are iterated concurrently.

for iteration , line in enumerate(profile_list):
line = line.split(’\t’)
list_of_plane_points = []
shaves_list = []
time_list = []

energy_list = []

operation_list = []
try:
if int(line[0]) == layer_list[len(layer_list) — 1][’Id ’]:

for line_offset in range(2, 14):
shaves_list.append(line_offset — 1)
operation_list.append(str(line[1]))
time_list.append(float(line[line_offset]))
energy_list.append(float(line[line_offset + 13]) * float(line][
line_offset]))
layer_list[len(layer_list >shaves’] += shaves_list
Operation’] += operation_list

1[
len(layer_list 11
][’Time’] += time list
1T

)
layer_list[)
layer_list[len(layer_list)
layer_list[len(layer_list) Energy’] += energy_list
else:
for line_offset in range(2, 14):
shaves_list.append(line_offset — 1)
operation_list.append(str(line[1]))
time_list.append(float(line[line_offset]))
energy_list.append(float(line[line_offset + 13]) * float(line][
line_offset]))
layer_list.append({’Id’: int(line[0]), ’shaves’: shaves_list, ’
Operation ’: operation_list, ’Time’: time_list, ’Energy’: energy_list})
except IndexError:
for line_offset in range(2, 14):
shaves_list.append(line_offset — 1)
operation_list.append(str(line[1]))
time_list.append(float(line[line_offset]))
energy_list.append(float(line[line_offset + 13]) * float(line][
line_offset]))
layer_list.append({’Id ’: int(line[0]), ’shaves’: shaves_list,

5

Operation ’: operation_list, ’Time’: time_list, ’Energy’: energy_list})

del profile_list [:]

Listing 8.2: Appending profile list to appropriate dictionaries

135

Notice that the code above is designed to recognize infinite number of different convolu-
tion methods (e.g. Direct and Im2Col and Winograd etc), and combine them appropriately
to generate optimal configurations taking them all into account for each layer, meaning
that this is a generalized implementation for any number of different computations per
layer and can work as is for any future extension.

Now that the layer_list contains all information for each discrete layer in appropriate
format and order, the only thing left before applying the Pareto optimality criterion, is
to take all linear combinations between these 4 lists of each layer and produce network
configurations, instead of layer configurations.

This is achieved with the following snippet:

for node in layer_list:
aligned_time_list.append(node[Time’])
aligned_energy_list.append(node[’ Energy ’])
aligned_operation_list.append(node[Operation '])
aligned_shave_list.append(node[’shaves ’])

for time_network_config in product(*aligned_time_list):
time sum = 0
for time_layer_config in time_network_config:
time_sum += time_layer_config

time_config_list.append(time_sum)

for energy_network_config in product(”aligned_energy_list):
energy_sum = 0
for energy_layer_config in energy_network_config:
energy_sum += energy_layer_config

energy_config_list.append(energy_sum)

for operation_network_config in product(®aligned_operation_list):
operation_sum = ’’

for operation_layer_config in operation_network_config:
operation_sum += {0} — .format(str(operation_layer_config))

operation_config_list.append(operation_sum)

for shave_network_config in product(*aligned_shave_list):
shave sum = ’°

for shave_layer_config in shave_network_config:

shave_sum += {0} —.format(str (shave_layer_config))

shave_config_list.append(shave_sum)

Listing 8.3: Combining the layer data into network configurations

It is worth mentioning that combining the lists of each layer, with all possible combi-

136

nations, leads to four lists that each one contains 12V elements, where N is the number of
layers combined. The base of the exponent is obviously twelve, since the size of each layer
sub-list is a size of twelve (standing for 12 SHAVES).

Finally, the lists that hold all the possible configurations within the feasible region, can

be fed to the criterion, in order for the optimal configurations to be produced.

energy_pareto_points.append(energy [0])
time_pareto_points.append(time [0])
operation_pareto_points.append(operation[0])

shave_pareto_points.append(shave[0])

energy [0]
y_reference = time[0]

x_reference

for x, y, op, shv in zip(energy, time, operation, shave):
if x < x_reference:
energy_pareto_points.append(x)
time_pareto_points.append(y)
operation_pareto_points.append(op)
shave_pareto_points.append(shv)
x_reference = x

y_reference =y

Listing 8.4: Applying pareto criterion to the design space

Now there are distinct lists that contain the optimal configurations, and those that con-
tain all the non-optimal configurations. These lists are exploited in order to plot this infor-

mation and also append them to a config_log file.

fig_pareto = plt.figure ()

plt.plot(layer_energy_sub_points, layer_time_sub_points, ’rx’, mew = 0.5,
ms = 4.0)

plt.plot(energy_pareto_points, time_pareto_points, ’b’, linewidth =
'0.87)

plt.plot(energy_pareto_points, time_pareto_points, ’bx’, mew = 0.8, ms =
4.0, mfc = ’none’)

plt.grid(b = True, which = ’'major’, axis = ’both’, linestyle = '——’,
linewidth = ’0.6°, animated = True)

fig_pareto.suptitle ({0} Pareto Plot Time/Energy ’ . format(str (network_name
)))

plt.xlabel (’Energy consumption (mJ))

plt.ylabel (’Execution time (ms) ’)

fig_pareto.savefig (’./{0} _pareto_plot.png’. format(str (network_name)), dpi
= 1200)

Listing 8.5: Applying pareto criterion to the design space

137

Zoomed Pareto Plot Time/Energy

0.60

0.58 A

0.56 A

0.54 A

Execution time (ms)

0.52 A

n
|
1
n
|
1
1
1 1
n |
| |
1 |
1 1
1 1 |
n | |
| | | |
1 1 1 |
n | | |
0.50 L— ; . : ; ; 1
700 710 720 730 740 750 760 770
Energy Consumption (m]j)

Figure 8.2: Pareto front of Lenet-MNIST

8.2 Pruning of the Design Space

As already mentioned, the size of the design space that occurs by calculating all linear
combinations from N layers is 12 elements. It is obvious that this size increases sharply,
leading very soon to sizes that no modern computer or memory can withstand. For example,
the design space of Lenet-MNIST, which is considered a tiny CNN consisted of only six
layers, needs 4-12° 32-bit elements to be stored. This is equal to 45.56 MB of memory, which
is already a considerable size, taking into account how small Lenet is.

However, this size escalates extremely quickly. Alexnet, a small to medium sized net-
work, is consisted of thirteen layers. The design space of that network, as a result is equal to
4-32-12'3 Bytes or 1.63 x 107 Gigabytes. It is obvious that this size is enormously huge and
under no circumstances can it be either stored in any RAM, or calculated by any high-end
processor. GoogleNet, which is considered the largest widely used CNN, is consisted of 74
computational layers (not including utility layers like Concat). With 74 layers, the design

space has a size of 4 -32 - 127 = 9.26 x 108! Bytes, which is an unimaginable number!

138

This serious challenge is a heavy obstacle in the effort of finding optimal configurations
of CNNss, as any widely used CNN with high accuracy uses at least 12 or 13 layers, therefore
the necessity to tackle this problem was critical. In order to solve this problem, I came up
with a lemma which is described and proved in the next subsection. Using this lemma, two
different pruning algorithms were implemented and effectively succeeded to perform fast

design space exploration, independable to the amount of layers a network was consisted

of.

8.2.1 Pruning lemma

Case: Let a set named set A, which includes n N-subsets Ny, No, , N,,, so as
N; UNy U.... UN,, = A. Each of these subsets contains k-dimensional points
(dy, da,, di). Suppose a different set B. Set B is consisted of the points that represent
all the possible linear combinations that occur, if one point from each subset N; is chosen
and summed across dimensions with every possible point from the other N-subsets. For
example, if a; is a k-dimensional point belonging to Ny, a; belongs to N ... a,, belongs to

N,,, then there is only one point b in set B which is k-dimensional and is equal to:

;

by = aft +adt + ... +adl

bip =a? +ad? + .. +a

bar = ad* + adF + ... + a®
\

Since the points in set B are k-dimensional, the pareto optimality criterion can be applied

onto them, regarding all k-dimensions.

Lemma: If j N-subsets, with j < n, are combined to produce a set of k-dimensional
points, then, imperatively, a group of them will be pareto optimal against the others on
the k-dimensional design space. Then, it is impossible for the combinations that led to non-
optimal points of this subgroup (of the j N-subsets), to belong in a pareto optimal combi-

nation of set B.

Proof: Let C1, C2 two combinations of j N-subsets, j < n and C1 being pareto optimal
in k-dimensional space against C2. Then, according to the definition of pareto optimality

criterion:

139

(

C1{' + C13" + ... + C1;dl < C2{' + C2§' + ... + C20
C1P + C1f + .. + Clyd2 < O2F + 2 + ... + O2

(C1* + C1 + .+ CLydk < C2fF + C24F + ..+ O2F

Any possible sub-combination L from the other (n-j) N-subsets, if combined with either

sub-combination C1 or C2, gives a valid set A combination contained in set B.

For every L sub-combination combined with C1 and C2, leading to L1 and L2 combi-
nations included in set B, the following is obviously true because of the former inequality

above:

C1{' +C13' + ..+ CLydl + LY + LY, + .. + L <
C2f' +C28' + ..+ C2I' + LI} + LY, + ... + L
Clf? +C1$ 4+ ...+ CLd2 + LY + LE, + ... + LP <
C2P +C2P + ...+ C2P + LB + LY, + ... + L

C1{*+ C13" + ...+ Clydk + L%, + L%y + ... + L <
(C2fF + O + ..+ C20F + L% + LY, + . + LiF

Which is equivalent to:

;

L14 < [,241
L192 < [242

L1% < [27%
\

Which, using the definition of pareto optimality, means that combination L1 is pareto

optimal, in the k-dimensional design space, against L2.

In practice, this means to the design space exploration task of the interface, that it is
possible to divide the network into sub-groups of layers and apply the pareto optimality cri-
terion distinctively into these small sub-groups, in order to a-priori exclude a large amount
of sub-combinations. Then, the pruned sub-groups can be combined together to provide the

optimal configurations of the whole network.

140

8.2.2 Discrete layer pruning

The first algorithm designed to implement the pruning of sub-networks is the discrete
layer pruning algorithm. This algorithm applies the pareto optimality criterion on each
layer, which means that it splits the network into unity sub-groups, that contain only
one layer. Among the twelve possible points of a layer, only the pareto optimals are kept,
whereas the others are excluded. Then, the pruned layers are combined together for the
computation of the network pareto optimals. In figure 8.3 the significant reduction in the

design space is shown.

X X X X = 2085984
Layer pruning
X X X X = 240

Figure 8.3: Discrete layer pruning example on 6 layers

This technique proved to be very effective on CNNs like VGG, AlexNet and medium
sized networks. However, even this algorithm, when applied to large networks, like GoogLenet,
could not reduce the design space up to the point on which its size could be computable
and still remained prohibitive large.

Figure 8.4 provides the pareto plot of NiN-ImageNet, pruned with discrete layer pruning
technique. Blue crosses represent the optimal points, whereas the red points represent the

pruned non-optimal points.

141

nin Pareto Plot Time/Energy

336100 A

336000 A

335900 - % %

Energy consumption (mj)

335800 A %

%

244.0 244.5 245.0 245.5 246.0 246.5 247.0
Execution time (ms)

Figure 8.4: NiN-Imagenet network pruned with discrete layer pruning

8.2.3 Recursive pruning

A more sophisticated technique designed to approach globally the problem of the size
of the design space is the recursive pruning algorithm. This algorithm implements binary
search trees (BST) and a recursive function which instantiates new leaves. This algorithm
eliminates fully non-optimal pareto points and outputs only optimals.

The main idea of this algorithm is that each node decides if the number of layers that it
holds produce a design space whose size is computable. If not, the node divides the network
that it holds into two chunks and provides through a recursion the left subnet to its left
child-leaf and the right subnet to its right child-leaf. This recursion goes on until the leaves
receive small enough chunks of network, capable to produce a computable size of design
space. Then this space is produced and pruned, The leaf returns the computed pruned chunk
to its parent. The idea of the algorithm is shown in figure 8.5 below:

In the code below, an abbreviated form of this described algorithm is provided.

142

full network pruned network

L F LY

F % i 1
F L] I]
¥ ¥ [1
I i I i

Figure 8.5: Illustration of the data flow of the pruned network with recursive pruning tech-

nique

def recursive_pareto_pruning(time_list, energy_list, operation_list,

shave_list):

pareto_points_length = 1

initialize_lists ()

calculate_size_of_the_design_space

if design_space_size < (12""4 + 1):
generate_all_possible_combinations ()
calculate_pareto_optimal_points ()

else:

call recursive_pareto_pruning(left_subnet)
call recursive_pareto_pruning (right_subnet)
combine_left_and_right_subnet ()
generate_all_possible_combinations ()
calculate_pareto_optimal_points ()

return time_pareto_points, energy_pareto_points,

operation_pareto_points, shave_pareto_points

Listing 8.6: Recursive pareto algorithm illustration

143

In figure 8.6 the output of recursive pruning and design space exploration on "SqueezeNet”

is shown:

squeezenet Pareto Plot Time/Energy

88.2 A

88.0 A

87.8 A

ms)

(

87.6

87.4 A

87.2 A

Execution time

87.0 A

86.8 -

86.6

124500 125000 125500 126000 126500 127000
Energy consumption (m))

Figure 8.6: Pareto plot of SqueezeNet using recursive pruning

8.3 Exploration for concurrent layer execution

In Myriad2, the prevailed method of applying computations to the SHAVES, such as
deploying deep neural networks, is to dispatch layers only from LEON OS to the SHAVES,
one at a time. Most of the times, the number of SHAVES needed to achieve the best bal-
ance between execution time and energy consumption is the maximum available. This fact
reinforces the attitude of using only LEON OS, since all SHAVES are utilized at once.

However, LEON RT was being unused in this dispatching design. In networks with par-
allel branches of layers, where the explicit data flows are independent from one another,
this could be very inefficient. So, I came up with the following question: Instead of execut-
ing layers one-by-one using the maximum number of SHAVES, what if we used half of the
SHAVES to execute one layer and the other half to execute another data-independent layer?
The underlying premise of this question was that maybe it would be faster to execute con-
currently two layers with lower number of SHAVES, despite that their personal time would
be increased, rather than executing each with the maximum number of SHAVES and sum-
ming their times. This is because in the concurrent case, the total time would be t = max(t,
t;), which means that there could be a very efficient overlap in their executions, leading to

this time being lower than t;™" + ¢,

144

Table 8.1: Execution time of two GoogLenet’s parallel layers (ms)

IDTypeSHAVES [1 [2 [3 | 4 [5 [6 | 7] 8 [9 [10 | 11 [12

46-Conv_Direct [5428 [2718 | 1818 [13.67 [1097 | 917 [803 | 699 | 628 [556 | 519 [468
46-Conv_Im2Col || 361.24 | 176.97 | 153.02 | 154.32 | 142.56 | 140.72 | 136.67 | 131.49 | 1165 | 99.26 | 9936 | 82.15
50-Conv_Direct | 32.27 [1608 | 1125 | 822 | 653 | 563 | 519 | 433 | 428 35 305 | 3.5
50-Conv_Im2Col [1141 | 569 | 387 | 371 334 | 332 | 313 | 314 | 301 2.9 2.9 2.93

Notice that this technique is rather concerned with re-ordering the execution queue
than changing the computation itself. Applying this method to Googlenet and Squeezenet
led to a reduction in both execution time and energy consumption of up to 14% and 7%

respectively. A real concept of the idea is shown in figure 8.7 and table 8.1.

Layer 50 Im2Col Convolution

g A —> SHAVE 0
‘ LEON OS —> SHAVE_1

SHAVE 2

SHAVE 3
SHAVE 4

Layer 46 Direct Conolution
SHAVE 5
SHAVE 6
SHAVE 7
LEOM RT SHAVE_8
SHAVE 9
SHAVE 10

SHAVE_11

Figure 8.7: Concept of how two GoogLenet’s layers were effectively executed concurrently

As seen from the example above, if one managing processor was used (LEON OS) to
dispatch layers to the SHAVES, then layer 46 would be dispatched, allocating 12 SHAVES
and “direct” method of Convolution. Then, layer 50 would be dispatched, using "Im2Col”
method of Convolution, allocating again 11 SHAVES. This combination is the fastest and

the total execution time would be:

tlz’nea'r = t};g + tég =4.68 + 2.9 = 7.58ms

On the other hand, on these specific layers, as an example, the concurrent exploration
algorithm would produce a parallel configuration like the one shown in figure ??. If layer

46 with direct Convolution and 10 SHAVES, was dispatched at the same time with layer 50

145

with Im2Col Convolution and 2 SHAVES, then the total execution time would be:

toaratiel = maz(tye, t2y) = maz(5.56,5.69) = 5.69ms

It can be seen that, although the execution times of the individual layers were raised,
they were utilized in a more efficient manner leading to an extraordinary reduction of 25%
in their total execution time.

This algorithm takes advantage of any asymmetries between the layers that are in paral-
lel branches and tries to find the best split-up among the RISC processors as well as the best
order in which the layers must be organized and executed in order to achieve maximum
performance. The concurrent dispatch is organized in rounds. Rounds do not necessarily
contain only one layer per processor. It is a very common output of the algorithm, that
while LEON OS executes one layer, LEON RT dispatches sequentially three different layers
on the complementary SHAVES left.

The managing Python interface is responsible for reading the exported data and perform
this special kind of exploration. Firstly, if the network is organized in blocks with layers
in parallel, then these blocks are identified and stored exclusively, in order for this algo-
rithm to be applied to each block separately. Then, each block is treated as a directed graph
on which several graph-walking strategies are applied. These strategies are concerned with
two parameters: A) How heavy or light must be the next node to be inserted and B) whether
the last layers inserted in each traversal round must be kept or not to achieve the maximum
execution overlap between the RISC processors. The algorithm includes an iteration feed-
back, which means that iteration by iteration, for each block, the algorithm converges to a
local minima, providing the fastest graph traversal found.

An abstract pseudocode of the algorithm is provided:

For each parallel block in network:
For each valid branch configuration among N RISC CPUs:
For each graph traversal strategy:
While layers inserted < total layers in block:
Choose a reference layer. This layer belongs to one RISC CPU.
Choose one coupling layer from every other RISC CPU.
If there are not any other layers left:
Execute reference layer alone
Else :
For each processing unit number configuration among reference and
coupling layers:
While round times of all CPUs are not overlapping over a specific
percentage:
Add one more layer to the CPU with the lowest round time

Among the latter iterations , choose the configuration with the lowest

146

execution time
Remove from the network the executed layers
Store the block traversal rounds and the total execution time
Among every branch configuration and graph traversal strategy

iterations , choose the fastest

Listing 8.7: Concurrent exploration algorithm

147

Chapter 9

Evaluation and Experimental Results

This chapter evaluates the CNN implementation, conducting a range of measurements
with respect to different parameters. The explanation of the results will try to give a deeper

insight on the limits posed by the hardware and the implementation itself.

9.1 LRN Evaluation

In this section, the LRN implementation performance will be analyzed, in order to ex-
amine its computational efficiency. Both the generic C function and the specific assembly
routine will be benchmarked.

In tables 9.1 and 9.2 below, benchmarks, for the execution time and the average power
consumption of the C and assembly implementation, for the LRN layers of "GoogLenet”
(G1 and G2) and "AlexNet” (A1 and A2) are provided.

149

LRN layer SHAVES | 1 2 3 4 5 6 7 8 9 10 11 12
LRN_G1(64x56x56) || 559.254 | 620.19 | 679.672 | 739.094 | 797.083 | 851.77 | 909.555 | 951.161 | 990.169 | 1029.976 | 1063.484 | 1087.498
LRN_G2(192x56x56) | 559.352 | 620.407 | 680.558 | 739.52 | 794.679 | 858.315 | 909.749 | 942.764 | 989.155 | 1037.528 | 1051.573 | 1093.513
LRN_A1(96x55x55) || 558.911 | 620.593 | 680.684 | 736.399 | 798.98 | 850.844 | 903.505 | 948.651 | 981.836 | 1029.645 | 1061.77 | 1093.083
LRN_A2(256x27x27) || 558.774 | 619.791 | 680.265 | 737.771 | 798.56 | 859.768 | 912.331 | 955.426 | 990.337 | 1031.576 | 1065.101 | 1095.205
LRN layer SHAVES | 1 2 3 4 5 6 7 8 9 10 11 12|
LRN_G1(64x56x56) || 159.9094 | 80.0401 | 53.382 | 40.082 | 32.156 | 26.897 | 23.98 | 21.966 | 20.501 | 19.189 | 18.409 | 17.702
LRN_G2(192x56x56) || 480.591 | 240.387 | 160.4 | 12036 | 96.541 | 80.741 | 71.201 | 65.82 | 61.21 | 57.473 | 55.04 | 53.89
LRN_A1(96x55x55) || 231.583 | 115.857 | 77.336 | 58.084 | 46.65 | 39.06 | 34.463 | 31.277 | 28.902 | 27.792 | 26.567 | 24.889
LRN_A2(256x27x27) || 149.017 | 74.639 | 49.762 | 37.493 | 30.013 | 25.059 | 22.031 | 20.435 | 19.039 | 17.845 | 17.059 | 16.325

Table 9.1: Execution time (ms) and average power consumption (mW) of LRN C implemen-

tation

150

LRN layer SHAVES | 1 2 3 4 5 6 7 8 9 10 11 12
LRN_G1(64x56x56) | 584.977 | 648.436 | 713.156 | 776.737 | 83531 | 897.076 | 958.01 | 1015.175 | 1070.671 | 1123.518 | 1183.017 | 1236.038
LRN_G2(192x56x56) | 582.417 | 647.702 | 714.395 | 779.622 | 844.132 | 908.222 | 976.85 | 1030.046 | 1095.75 | 1144.16 | 1207.782 | 1262.034
LRN_A1(96x55x55) | 582.216 | 646.479 | 709.77 | 772.63 | 833.433 | 897.006 | 959.39 | 1012.004 | 1065.209 | 1116.59 | 1169.967 | 1224.901
LRN_A2(256x27x27) | 587.957 | 657.748 | 729.161 | 796.095 | 856.176 | 919.854 | 971.253 | 1036.457 | 1096.091 | 1156.752 | 1216.643 | 1266.461
LRN layer SHAVES | 1 2 3 4 5 6 7 8 9 10 11
LRN_G1(64x56x56) | 5382 | 2725 | 1.863 | 1421 | 1177 | 1.015 | 0872 | 0771 | 0706 | 0.646 | 0.603 | 0.565
LRN_G2(192x56x56) | 16.374 | 8228 | 5557 | 4.202 | 3.435 | 2925 | 2515 2.29 2.053 | 1.945 | 1.768 | 1.659
LRN_A1(96x55%55) 7.77 3.926 | 2.667 | 2.033 | 1679 | 1418 | 1268 | 1.133 | 1.037 | 0942 | 0871 | 0.803
LRN_A2(256x27x27) | 5.105 | 2596 | 1791 | 1367 | 1.141 | 0.987 | 0.835 | 0.754 0.71 0.647 | 0597 | 0.565

Table 9.2: Execution time (ms) and average power consumption (mW) of LRN Assembly

implementation

151

As one can see, the difference in performance between the C and the assembly imple-

mentation is enormous, constituting the C function obsolete in any performance conscious

application of the CNN engine. A chart comparison of the two computational methods for
’GoogLenet”, "AlexNet” and "ZFNet” is given in figures 9.1 and 9.2.

53 RO5057

(%]
¥
=]
=]
[re]
I=i]
]
(%]

471

17,70236

7, 710084988

1659687 0,803347 0,565913 £,80385
||
LRN_G2 (192x56x56)

0,565623

LRN_G1 (54x56056)

0,175303

LRN_AZ [256x27x27)

LRN_A1 (96x55x55) LRN_ZF1 (96x55x55) LRN_ZF2 (256x13x13)

Figure 9.1: LRN layers C and Assembly time comparison

19251,29113

695,1318356 43827 £84 0210602
—

LRN_AT (96x35%55)

850,8611868
—

LRN_ZF1 (26x55%55)

W16,7068544

LRN_A2 (256x27x27)

214,454031

LRMN_G1 (54x56x56) LRN_G2 [192x56x56) LRN_ZF2 (256x13x13)

Figure 9.2: LRN layers C and Assembly energy comparison

Using the assembly implementation, the following table 9.3 shows the time needed

to execute all LRN layers compared to the total network execution time, in "GoogLenet”,

“AlexNet” and "ZFNet”. It can be seen that the implementation is very efficient. Not only the

time of the layer itself is low, but also it is insignificant compared with the total execution

time of these networks.

152

] H LRN layers\ total layers \ LRN time (ms) \ total time (ms) \ % LRN time

GoogLenet 2 83 2.23 203.053 1.09
AlexNet 2 13 1.369 97.69 1.4
ZFNet 2 13 0.976 98.94 0.98

Table 9.3: Time spent in LRN layers for GoogLenet, AlexNet, ZFNet

9.2 DMA Engine Evaluation

The CMX DMA controller resides between the 128-bit MXI bus and CMX memory(8]. It
provides high bandwidth data transfers between CMX and DDR in either direction. It also
supports data transfers from DDR back to DDR or from CMX to CMX, allowing data to be
relocated within the same physical location.

The unit of work in the DMA engine is expressed though transaction tasks. Up to four
linked lists of transactions are maintained in system memory, thus the DMA capability of
serving transactions is not unlimited and can be easily flooded with requests if the pro-
grammer makes unregulated use of it.

In this section, the serving capacity of the DMA engine will be evaluated, in order to
address its bottleneck. Two types of experiments were conducted to evaluate the DMA

Engine:

e Increasing computational load as SHAVE number increases, keeping load per SHAVE

constant

e Keeping computational load constant as SHAVE number increases, distributing it

among the processors

9.2.1 Increasing computational load

In this case, it is obvious that if the DMA Engine could theoretically serve infinite re-
quests and was independent for each distinct SHAVE, it would be expected for the total
execution time to remain constant, as an increase in the SHAVE processors is accompanied
with a proportionate increase in load. To evaluate this statement, three SHAVE algorithms

were benchmarked:

e Only DMA transactions algorithm
e DMA transactions combined with SHAVE-independent calculations
e Only SHAVE calculations

153

These algorithms were selected, in order to evaluate how and in what extent does the
DMA Engine affect the SHAVE computations. In figure 9.3, the performance for the algo-
rithm using only DMA transactions is shown. The vertical axes represents the percentage

of increase or decrease using as a reference the execution time for 1 SHAVE processor.

DMA only

Ul

0% -—— g —— = —
1 2 3 4 5 & 7 B 9 10 11 12

g [egsured == ges= Expected

Figure 9.3: Only-DMA algorithm benchmark

It can be seen that the DMA Engine experiences a flooding in requests as the number
of SHAVES rise. This graph, indicates the linear behavior of the controller. The rise is very
sharp, however this is reasonable as the SHAVE algorithm consists only of DMA transac-
tions, therefore any bottleneck in these transactions heavily affects the performance.

The next benchmark is conducted on an algorithm that performs both DMA transactions

and pixel calculations on the blocks and is presented in figure 9.4.

154

DMA and computation

500%

e

Sy

30U

200%

100%

0% — o e i ——y—— — iy ———— . — oy —
1 2 3 4 5 G 7 B 9 10 11 12

-100%

g [egsured == ge= Expected

Figure 9.4: DMA transaction and pixel computation benchmark

As in the first case, again there is an increase in the execution time, despite the fact that
it would be expected to remain constant. This increase is not as steep as it was before and
this is because in this case, the DMA transactions affect the total algorithm by a smaller
percentage, since each SHAVE does not only conduct DMA requests, but also performs
matrix multiplications and additions.

Finally, an algorithm using only pixel calculations is benchmarked. In this case, the
DMA Engine is not used at all and therefore, we expect the execution time to remain con-
stant as the number of SHAVES increases. However, it can be noticed in figure 9.5 that,
again, there is a smaller increase as the amount of SHAVES rises. This is very interesting, as
it shows that despite the fact the SIMD processors are considered theoretically independent,

there still is a resource that is used in common by all of them.

155

Computation only

180%

160%

140%

120%

100%

BO%

60%

40%

20%

0%

-20%

-40%

g [|o@sUred == ge= Expected

Figure 9.5: Pixel computation only benchmark

A comparison of the percentage increases for all three benchmarks is provided in figure

9.6, to give an insight of each benchmark’s rate of increase.

500%
BOO%
700%
600%
500%
A00%
300%
200%
100%

0%

-100%

g OV A _onily gDV A_and_computation =g COM putation_only

Figure 9.6: Increasing load benchmarks comparison

156

9.2.2 Constant computational load

In this case, the computational load remains constant, and each time, the number of
SHAVES increases by one. This leads to a gradual reduction in the load per SHAVE, dis-
tributing the load more efficiently among the processors. Therefore, an analogous decrease
in the execution time would be expected as the number of SHAVES increases. Although, the
increasing number of DMA requests as the processing units increase, alters this expected
behavior.

The algorithm that was benchmarked contains DMA requests the bring a block of mem-
ory to the CMX slices and computation on this block. As the number of SHAVES increases,
the size of the block that each processor needs to compute, decreases. In figure 9.7 the

performance of this algorithm is shown.

, -.....___.___.—
= = -

1 2 3 4 5 g 7 :

=]
=
=]

11 12

g TeEUred == g expected

Figure 9.7: Distributed load benchmark

It can be seen that the measured curve strongly diverges from the expected. This devia-
tion indicates the influence of the DMA engine bottleneck on the algorithm. Furthermore,
the diminishing trend of the measured line shows that increasing the number of SHAVES on
that particular algorithm, has a stronger influence on performance, than the flooding that
occurs by the increasing DMA requests. Therefore, the conclusion of these benchmarks is
that a designer should take care to write algorithms that contain as few DMA transactions
as possible and also maximize the useful computations done on each block brought to the
SHAVE local memory. In that way, one can fully exploit the advantages of the Myriad2
SIMD processors.

157

9.3 CNN Evaluation

9.3.1 Evaluation setup

The framework is evaluated using 6 CNNs of various complexity: AlexNet, GoogleNet,
NiN-imagenet, SqueezeNet, VGG and ZFnet. The CNNs have been selected based on the

following 2 criteria:

e To require various amount of computational resources and to provide significantly

different execution time, energy consumption and accuracy results.

e To be considered state-of-the-art and be widely used for image recognition tasks.

CNN input image output vector #layers #memory(MB) Error rate
AlexNet [277 x 277 x 3] [1 x 1000] 13 117 17
GoogleNet [277 x 277 x 3] [1 x 1000] 83 16.6 7
NiN-imagenet [277 x 277 x 3] [1 x 1000] 16 15.5 17.5
SqueezeNet [277 x 277 x 3] [1 x 1000] 38 4.68 19.7
VGG [277 x 277 x 3] [1 x 1000] 16 276 8

ZFnet [277 x 277 x 3] [1 x 1000] 13 121 16.5

Table 9.4: Details of CNNs used for evaluation

Table 9.4 shows the specifications of the above CNNs. All CNNs use the same input and
are trained using ImageNet dataset for the same number of output classes, therefore they
can be used interchangeably. The number of layers significantly ranges, from 13 (AlexNet
and ZFnet) to 83 (GoogleNet). The same applies to the memory requirements, which refers
the size that the weights and biases occupy in the global memory. Another important met-
rics is the top 5 error rate of each CNN, that ranges from 19.7 (SqueezeNet) to 8 (VGG). The
proposed methodology will be used i) to provide fine-tuned implementations of the above
CNNs in Intel/Movidius device and ii) to demonstrate trade-offs between the execution

time, energy consumption and between the fine-tuned CNN implementations.

9.3.2 Computational scalability

Execution time was measured using recommended functions provided by the Myriad
development kit. Energy consumption has been accurately calculated by using on-chip sen-
sors that measure the current that flows through various power rails, provided by the Myr-
iad2 evaluation board. Energy consumption measurement process is managed by the LEON
RT, as shown in Figure 9.8. All experimental results refer to CNN inference execution time
and operations are performed under the IEEE 754 fp16 standard. The hardware specification
which is been explored in the context of this work is the number of Myriad VPUs in which
each CNN layer is implemented.

158

High-level API }-»{ CNN description

source
Myriad 2 J files
LEON RT LEON OS
Power CNN
measurements manager

AA
CMX DDR

data buffers DMA -
computational | f—— We.lg hts /
libraries biases
E I 3L
1VPU| ‘VPU‘ ‘VPU 3 I/O buffers |«
0 1 12 |

Figure 9.8: Framework instantiation in Intel/Movidius Myriad2

120 . PR .
::g Convolution scalability in Myriad Convolution energy consumption in Myriad

160

[
o
o

s
n 8
g 140 z 80
< 120 £
E 100 2 60
- c
g % 8 40
"3 60 >
2
g 40]
X S 20
0 0
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Number of processing units Number of processing units

(a) Convolution execution time vs. number (b) Convolution energy consumption vs.
of processing units number of processing units

Figure 9.9: Scalability of convolution in Myriad2

Before applying the CNN deployment methodology in Myriad, we examine the scalabil-
ity of the convolution and the fully connected layers. Figures 9.9 shows the execution time
and the energy consumption of a 3x3 convolution, as the number of processing units in-
creases gradually. Although the execution time continues to drop up to 12 cores, the energy
consumption decreases up to 11 cores, while it slightly increases when using 12 cores.

With respect to the scalability of the fully connected layer (Figure 9.10), the execution
time drops up to 4 VPUs. By utilizing more than 4 VPUs, the energy increases, without

improvement in the execution time.

159

(%
o
o

0.7 Fully connected energy consumption in Myriad

Fully connected scalability in Myriad

)
&
o

0.6

(m
B
o
o

0.5

w oW
o O
S o

0.4

N
u
o

0.3

=
wu
o

0.2

Execution time (ms)

[
o
o

0.1

Energy consumption
N
[=]
o

o
[0
o o

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Number of processing units Number of processing units

(a) Fully connected execution time vs. num- (b) Fully connected energy consumption vs.
ber of processing units number of processing units

Figure 9.10: Scalability of fully connected in Myriad2

The execution time of convolutions is usually optimal on 11 or 12 VPUs. The reason, is
the fact that since the convolution is computationally intensive, the execution time is dom-
inated by the exploitation of parallelism and the communication overhead is only a small
amount of the total execution time, even though a large number of VPUs is employed.
On the other hand, in the fully connected, the computation part is trivial and the execu-
tion time is dominated by the communication overhead. Therefore, utilizing more than 3-4
VPUs it only adds communication overhead, with trivial benefits from the exploitation of
parallelism.

The above experiments underlying the need for exploration in order to identify the most
efficient utilization of hardware resources for each layer. It is not possible for developers to
be aware of the exact amount of VPUs in which each layer should be implemented in order

to minimize execution time and energy consumption, without applying DSE techniques.

9.3.3 Design Space Exploration

The proposed CNN deployment methodology has been applied to the implementation
of the 6 CNNs of Table 9.4 on Intel/Movidius Myriad2. The output of the the first step of
the methodology is shown in Figure 9.11. The Pareto plots for each CNN architecture for
execution time vs. energy consumption are automatically provided by the framework that
supports the methodology. Each point in each plot is a CNN implementation that utilizes
a different amount of hardware resources. In other words, a CNN implementation differs

from another one in the fact that at least one CNN layer utilizes a different number of VPUs.

160

AlexNet execution time vs. energy GoogleNet execution time vs. energy NiN-imagenet execution time vs. energy

123500
333000

123000 332000 336100

)
)

§ 122500 5
£

£ 336000
£

f

330000
€ 122000 g §
> 3 320000 3 335900

121500 328000
335800

S ———T 327000
121000

978 98.0 982 984 9.6 236 237 238 239 240 241 2440 2445 2450 2455 2460 2465 247.0
Execution time (ms) Execution time (ms) Executi

(a) AlexNet: Execution time (b) GoogleNet: Execution (c) NiN-imagenet: Execution
vs. energy time vs. energy time vs. energy

SqueezeNet execution time vs. energy VGG execution time vs. energy ZFnet execution time vs. energy

976000

127000
974000

137000 W
136000 ‘

£ 126500 972000

)
my)

c £ 135000

970000

mp

£ 126000

onsump:

H £ 134000
£ 968000 2

4
8 125500 3
: 3 133000

< 132000
131000
960000

866 868 8.0 872 874 87.6 8.8 880 882 586 588 590 502 504 596 990 991 992 993 994 995 996
Execution time (ms) Execution time (ms) Execution time (ms)

& 966000
125000 964000

962000
124500

(d) SqueezeNet: Execution (¢) VGG: Execution time vs. (f) ZFnet: Execution time vs.
time vs. energy energy energy

Figure 9.11: Output of the 1st step of the methodology: Fine tuning of CNN implementa-
tions on an edge device

Trade-offs between execution time and energy consumption are identified for all CNN
architectures. Detailed examination of results shows that the most computationally inten-
sive layers are the convolution layers, as expected. Indeed, experiments shows that 68% up
to 99% of the execution time of the CNNs of Table 9.4 is spent in convolution. Since con-
volution is a compute-bound operation, the corresponding layers tend to utilize 11 or 12
VPUs. However, as shown earlier in Figure 9.9b that is not always the most energy efficient
solution.

An interesting observation is the fact that in AlexNet, NiN-imagenet, VGG and ZFnet,
the implementations are clustered in groups. The results show that in the implementations
that belong to the same cluster, the convolution layers have the exact same configuration
(i.e. the corresponding convolution layers use the same number of VPUs). However, they
differ in the number of VPUs used by the rest of the layers, such as the pooling and the
fully connected, which have a relatively small impact in the execution time.

On the other hand, for the implementations that belong to different clusters, the con-
volution layers have different configurations. For example, AlexNet has 5 convolution lay-
ers. All the implementations of the bottom-right cluster (the most energy efficient) in the
AlexNet Pareto curve in Figure 9.11a utilize 11 VPUs for the 1st layer and 12 for the rest
ones. The implementations within this cluster differ in the number of VPUs utilized by a
pooling layer. However, the implementations in the cluster above this one utilize 11 VPUs
for the 3rd convolution, as well. Since the implementation of convolution has major impact

both in the execution time and in the energy consumption, even a change in the imple-

161

mentation of a single convolutional layer only, affects the execution time and the energy

consumption much more than the pooling and fully connected layers.

Table 9.5: Cumulative output results of the 1st step of the methodology

AlexNet GoogleNet NiN-imagenet SqueezeNet VGG ZFnet

Exec. time (ms) 97.69 203.05 243.96 78.08 585.66 98.93
% Exec. time gain 2.3 17.73 1.2 11.47 1.72 0.65
Energy consumption (J) 120.9 286.9 335.7 109.9 960.7 130.3
% Energy gain 1.2 13.8 0.12 13.6 1.53 5.11

Table 9.5 shows the maximum gains in execution time and energy consumption between
the most high performance and the most energy efficient implementations in each CNN,
which reach 5.3%. The results of the second step of the methodology are presented in Figure
9.12. Pareto plots that demonstrate trade-offs between execution time, energy consumption
and accuracy are presented. Figure 9.12a shows the Pareto curve for execution time vs.
energy. The most efficient implementation in terms of execution time is the SqueezeNet,
implemented for high performance (as obtained by the 1st step of the methodology). The
rest of the Pareto points are the SqueezeNet and AlexNet, both tuned for energy efficiency.
For instance, GoogleNet provides 258.6ms execution time and 7% error rate. However, by
using SqueezeNet, error rate increases significantly, but execution time decreases by 65%.
Similarly, switching from GoogleNet to AlexNet developers can trade accuracy (error rate

increases from 7% to 17%) for energy consumption, which decreases by 63%.

Table 9.6: Comparison between straightforward and fine-tuned CNN implementations

AlexNet GoogleNet NiN-imagenet SqueezeNet VGG ZFnet

Exec. time 12 VPUs (ms) 98.16 238.6 244 87 587.2 99.1
Exec. time fine-tuned (ms) 97.6 203.5 243 78 585.6 98.9
% Exec. time gain 0.48 14.9 0.01 10.37 0.27 0.19
Energy 12 VPUs (J) 133.7 343.6 337 129.3 1004 141.2
Energy fine-tuned (J) 120.9 286.9 335.7 109.9 960.7 130.3
% Energy gain 9.56 16.61 0.6 18.34 10.83 8.46

162

160 Pareto curve execution time vs. 2 Pareto curve execution time vs. accuracy

energy consumption 20 SqueezeNet
155 . A
E : - 18 |
E1s0 b — -
= ,//’/'»,‘/%‘M e 16 Lf ZFnet
%145 e 1 214 :
£ T | S12 !
3 140 t S |
2 . ; =10 L
S 135 ' Y | .
B Squeeze . [— - GoogleNet
§ 130 Netw . AlexNet 6
Wy | (perf) e---———— oo ¢ (en) 4
x
SqueezeNet (en) 2
120 : | o
80 85 90 95 100 105 110
S 0 100 200 300 400 500 600 700
Execution time (ms) Execution time (ms)
(a) Execution time vs. energy consumption (b) Execution time vs. accuracy

Pareto curve energy consumption vs. accuracy

* AlexNet
18 — .

s
\IZFnet

Error rate
=
o

————— —* GoogleNet

0 200 400 600 800 1000 1200
Energy consumption (mJ)

(c) Energy consumption vs. accuracy

Figure 9.12: Output of the methodology: Trade-offs between execution time, energy con-
sumption and accuracy between various CNNs

To further examine the benefits of DSE methodologies in comparison with straight-
forward solutions, Table 9.6 shows the execution time and energy consumption results of
implementing all CNN layers in 12 VPUs. We consider the implementation on 12 VPUs as
the baseline for comparison, since it is the one in which all available resources are fully
utilized. The results show that by fine-tuning resource utilization through DSE, the exe-
cution time slightly improves in comparison with the straightforward approach. However,
the energy consumption decreases significantly, up to 9%. This highlights the importance of
fine-tuning CNN implementations, as performed by the 1st step of the methodology, before

identifying trade-offs between execution time, energy and accuracy.

163

Chapter 10

Future Work

Throughout the course of the implementation of the CNN engine, several problems
were confronted. The major goal of this thesis was to create general solutions as computa-
tionally efficient as possible and applicable to a wide range of CNN implementations and
architectures. Another important purpose served by this implementation, was to be used as
the foundation of new software engineering tasks, introducing new features on the engine.
These features could be extensions of the current design principle (e.g. extending to new
layers) or exploit more hardware units and sensors of Myriad2 to provide new run-time
capabilities.

For a future extension, the following seem to be of the greatest importance:

o Extend the supported Caffe layers. Although all major layers needed to deploy state-
of-the-art Convolutional Neural Networks have already been implemented, there are
also some secondary layers that are used in a specialized CNN category, mainly used
for speech recognition: R-CNNs (Recurrent CNNs or RNNs). The layers needed to be

implemented for these networks are the ”Scale”, "Crop” and "Eltwise” (element-wise)
layers [24].

e Exploit Myriad2 sensors for run-time adaptation. Myriad2 contains on-chip camera
module, as well as battery level and proximity sensor. The camera could be used to
extend the engine to a real-time object recognition application with a specific fps rate.
The sensors could be used to create a real-time adaptation: Low-battery levels would
lead the application to switch to more conservative configurations, or even switch to
lighter networks, whereas a motion estimation algorithm could put the application
to sleep if the camera’s pictures on a specific time frame are alike, as this would mean

that the camera is still.

e [mplement more convolutional techniques. Designing new convolution methods (e.g.
Winograd) would increase the design space and lead to a bigger variety of possible
layer configurations. This could lead to major performance gains, since convolution

layers are the major building block of CNNss.

165

Bibliography

[1]

[10]

[11]

Sebastian Raschka. Python machine learning : unlock deeper insights into machine
learning with this vital guide to cutting-edge predictive analytics. Packt Publishing,
Birmingham, UK, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep convolutional network
evaluation on the intel xeon phi: Where subword parallelism meets many-core. Master

Thesis, Eindhoven University of Technology, 2016.
Gaurav Raina. Deep learning. MIT Press, 2016. http://www.deeplearningbook.org.

Convolutional Neural Networks (CNNs): An Illustrated Explanation. http:
//xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-

explanation/, accessed June 5, 2018.

Andrej Karpathy. Stanford university cs231n: Convolutional neural networks for vi-

sual recognition.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrel. Caffe: Convolutional architecture for fast feature embedding. ArXiv e-

prints, 2014.

Myriad 2 MA2x5x Vision Processor. https://uploads.movidius.com/1463156689-2016-04-
29 _VPU_ProductBrief.pdf, accessed June 5, 2018.

Movidius Ltd. In Movidius Myriad2 MA245x Databook (under non-disclosure license).

Movidius Ltd. Movidius myriad2 development kit: Programmer’s guide (under non-

disclosure license).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097-1105. Curran Associates, Inc., 2012.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-

works. In Computer Vision and Pattern Recognition. arXiv:1311.2901, 2013.

167

[12]

168

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv:1409.1556, 2015.
Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv:1312.4400, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. arXiv:1409.4842, 2014.

Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost.
arXiv:1412.1710, 2014.

Kaiming He and Jian Sun. Open group pilots embedded real-time posix conformance

testing. 2005.
Kaiming He and Jian Sun. Linkers and loaders. San Francisco, Calif. u.a, 2000.
Bjarne Stroustrup. In The C++ Programming Language. Addison-Wesley, 1985.

David Mayhew and Dov Bulka. In Efficient C++: Performance Programming Techniques.
Addison-Wesley, 1999.

http://caffe.berkeleyvision.org/tutorial/layers/lrn.html, accessed June 5, 2018.
http://caffe.berkeleyvision.org/tutorial/layers/concat.html, accessed June 5, 2018.
http://caffe.berkeleyvision.org/tutorial/layers/split.html, accessed June 5, 2018.
http://caffe.berkeleyvision.org/tutorial/layers/dropout.html, accessed June 5, 2018.
http://caffe.berkeleyvision.org/tutorial/layers.html, accessed June 5, 2018.

S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R. Nemani. Deepsat

- a learning framework for satellite imagery. ArXiv e-prints, 2015.

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Tables
	List of Figures
	Τεχνικές Διαχείρισης Πόρων στην Εκτέλεση Βαθιών Νευρωνικών Δικτύων σε Ενσωματωμένες Αρχιτεκτονικές
	Η μηχανική μάθηση
	Τα είδη της μηχανικής μάθησης
	Ταξινόμηση στην επιτηρούμενη μάθηση
	Παλινδρόμηση στην επιτηρούμενη μάθηση

	Συνελικτικά νευρωνικά δίκτυα
	Διάταξη των δεδομένων σε ένα ΣΝΔ
	Συνήθεις στρώσεις που χρησιμοποιούνται στα ΣΝΔ

	Caffe: Συνελικτική Αρχιτεκτονική για Γρήγορη Ενσωμάτωση
	Εκπαίδευση ενός δικτύου

	Πολυεπεξεργαστικό SoC Myriad 2
	Γενικά χαρακτηριστικά

	Ελεγκτής DMA της μνήμης CMX
	Μεθοδολογία και υλοποίηση
	Η Python διεπαφή της εφαρμογής
	Ο διαχειριστής της εκτέλεσης του δικτύου
	Υπολογιστικές μέθοδοι της εφαρμογής

	Αξιολόγηση της υλοποίησης
	Αρχικοποίηση της διαδικασίας αξιολόγησης
	Εξερεύνηση του χώρου σχεδιασμού

	Introduction to Machine Learning and Neural Networks
	Machine learning
	Types of machine learning
	Supervised learning classification
	Supervised learning regression

	Convolutional Neural Networks
	Data arrangement in a CNN
	Common layers used to build CNNs

	Caffe Framework and Myriad2 Embedded platform
	Caffe: Convolutional Architecture for Fast Feature Embedding
	Layers
	Network training

	Myriad 2 multicore SoC
	CMX DMA Controller
	Myriad2 Development Kit
	MDK Components

	Overview of the CNN Engine
	An abstract view
	Introduction to the Python Interface
	Introduction to the Network Manager
	Introduction to the Computational Engine
	Evaluated Convolutional Neural Networks
	Alexnet
	ZFNet
	VGG
	NiN-ImageNet
	GoogLenet
	SqueezeNet

	Management and Configuration of CNNs
	Configuring the hardware for the application
	Setting up RTEMS
	Setting up Myriad2 SoC

	Configuring the dynamic memory map
	How layers are described
	The Layer Class definition
	The Layer Class execution method

	The network architecture inside Myriad2
	The network dynamic array
	The weights and biases of the network

	The Network Manager
	The Inference mode
	The Single Processor mode
	The Dual Processor mode

	The Profiling mode
	Optimization and Evaluation of the C++ LEON Framework
	Optimization techniques
	Evaluation

	Vision Computational Libraries
	The Local Response Normalization layer (LRN)
	Definition and usage of LRN
	LRN DMA Algorithm
	LRN Generic Computational Algorithm
	Hyperparameter specific assembly algorithm
	Iterative method design for float exponent calculation

	The Concat layer
	Definition and usage of Concat
	Implementation specifics

	Direct Convolution 1x1 implementation

	Library generation interface
	The library generation function
	Caffe and library lists initialization
	Bottom nodes extraction
	Parallel networks configuration
	Appending to libraries and writing files

	Library compilation and execution
	Interface user level abstraction

	Design Space Exploration interface
	Pareto optimal points generation
	Definition of Pareto points
	Pareto algorithm implementation

	Pruning of the Design Space
	Pruning lemma
	Discrete layer pruning
	Recursive pruning

	Exploration for concurrent layer execution

	Evaluation and Experimental Results
	LRN Evaluation
	DMA Engine Evaluation
	Increasing computational load
	Constant computational load

	CNN Evaluation
	Evaluation setup
	Computational scalability
	Design Space Exploration

	Future Work
	Bibliography

