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Περίληψη

Το παίξιμο τυχερών παιγνίων είναι ένα από τα χαρακτηριστικά της ανθρώπινης

φύσης από την αρχαιότητα και η ρουλέτα ειδικότερα είναι ένα από τα πιο δημοφιλή

παιχνίδια στη σημερινή εποχή.

Η τεχνολογία αλυσίδας συναλλαγών τα τελευταία δέκα χρόνια έχει φέρει επα-

νάσταση σε πολλές πτυχές της ζωής μας εισάγοντας τα κρυπτονομίσματα καθώς και

άλλες καινοτόμες κατασκευές, όπως τα έξυπνα συμβόλαια.

Ο συνδυασμός των δύο έχει εξεταστεί και έχουν προταθεί διάφορες κατασκευές,

αλλά όλες είναι κεντροποιημένες ή απαιτούν εμπιστοσύνη σε κάποιο επίπεδο, απαιτούν

αμοιβές και δεν προσφέρουν επιλογές όσον αφορά το παιχνίδι στους συμμετέχοντες.

Στο πρωτόκολλό μας αντιμετωπίζουμε αυτά τα προβλήματα και τα επιλύουμε.

Παρουσιάζουμε ότι δημιουργώντας μια πλευρική αλυσίδα σε οποιαδήποτε αλυσίδα

συναλλαγών ο καθένας μπορεί να δημιουργήσει το δικό του παιχνίδι. Επίσης, χρησι-

μοποιώντας ένα σχήμα υπογραφής παράλληλα με το σχήμα κρυπτογράφησης ElGamal
και τη συνάρτηση κατακερματισμού SHA256 , αποδεικνύουμε την τυχαιότητα του α-

ποτελέσματος στο μοντέλο τυχαίου μαντείου. Περιλαμβάνουμε επίσης ένα μηχανισμό

αποκατάστασης για την τιμωρία των παικτών που αποκλίνουν από το πρωτόκολλο και

ενός αλγορίθμου για την εξασφάλιση της ακεραιότητας των περιουσιακών στοιχείων

των παικτών. Από όσο γνωρίζουμε, αυτό είναι το πρώτο πλήρος αποκεντρωμένο, μη-

δενικής εμπιστοσύνης και μηδενικής προμήθειας κρυπτογραφικό πρωτόκολλο το οποίο

εκτελεί ένα παιχνίδι ρουλέτας, παρέχοντας επιλογές σε σχέση με τα τυχερά παιχνίδια

.

Λέξεις Κλειδιά

τυχερά παίγνια, τεχνολογία αλυσίδας συναλλαγών, πλευρικές αλυσίδες





Abstract

Gambling has been one of the traits of human nature since the beginning of
time and roulette in particular is one of the most popular games today.

Blockchain technology for almost ten years now has revolutionized many aspects
of our lives introducing cryptocurrencies as well as other innovative constructions
such as smart contracts.

The combination of the two has been examined and various constructions have
been proposed but all of them are either centralized or require trust at some level,
require fees and do not offer choices with respect to gambling to players. In our
protocol we address these problems and solve them.

We show that by generating a sidechain to any blockchain everyone can create
his own game. Also, by using a signature scheme alongside the ElGamal encryp-
tion scheme and the hash function SHA256 we prove the randomness of the result
in the random oracle model. We include as well a recovery scheme for penalizing
players who deviate from the protocol and an algorithm to ensure the integrity of
the players’ assets. To the best of our knowledge this is the first fully-decentralized,
zero-trust, zero-fee cryptographic protocol which executes a game of roulette, pro-
viding options with respect to gambling.

Keywords

gambling, blockchain technology, sidechain,





Ευχαριστίες

Η διπλωματική αυτή αποτελεί προσωπική επιλογή του συγγραφέα και είναι ένα

έργο για το οποίο δαπανήθηκαν πολλές ημέρες και ακόμα περισσότερες νύχτες με-

λέτης, αναζήτησης και αδιεξόδων μέχρι να φτάσει στο επίπεδο των προσδοκιών του

συγγραφέα. Η ολοκλήρωση της δεν θα ήταν δυνατή εάν δεν υπήρχαν συγκεκριμένα

άτομα που μου παρείχαν την απαραίτητη υποστήριξη τόσο ψυχολογική αλλά και σε

επίπεδο γνώσεων.

Αρχικά, θα ήθελα να ευχαριστήσω τον καθηγητή και επιβλέποντα αυτής της δι-

πλωματικής κ. Παγουρτζή, ο οποίος ήταν αρωγός της συγκεκριμένης εργασίας και

προσέφερε τη βοήθεια του καθ΄ όλη την διάρκεια της με όλους τους δυνατούς τρόπους.

Τον καθηγητή κ. Παπαδόπουλο για τις χρησιμότατες γνώσεις του στο κομμάτι

των blockchains κυρίως, αλλά όχι μόνο, το ανιδιοτελές ενδιαφέρον του για τη

συγκεκριμένη διπλωματική και την πολύτιμη βοήθεια που μου παρείχε.

Τέλος, θα ήθελα να ευχαριστήσω τους φίλους μου και κυρίως την οικογένεια μου

για την αμέριστη στήριξη τους σε κάθε μου βήμα.





Contents

1 Περιγραφή Πρωτοκόλλου 1

1.1 Εισαγωγή . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Πρωτογενείς Διαδικασίες . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Κρυπτογράφηση Ελ-Γκαμάλ . . . . . . . . . . . . . . . . . . . 2

1.2.2 Ψηφιακές Υπογραφές . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Τεχνολογία Αλυσίδας Συναλλαγών . . . . . . . . . . . . . . . . . . . 3

1.4 Πλευρικές Αλυσίδες . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Το Παιχνίδι . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Το Πρωτόκολλο . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Γενίκευση πρωτκόλλυ σε άλλα παιχνίδια . . . . . . . . . . . . . . . . 9
1.8 Συμπεράσματα και μελλοντική εργασία . . . . . . . . . . . . . . . . . 9

2 Introduction 11
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Cryptographic background 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Discrete logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Diffie-Hellman key exchange . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Commitment schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Zero Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 El-Gamal encryption scheme . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Blockchain Technology 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Bitcoin - The first blockchain . . . . . . . . . . . . . . . . . . . . . 25
4.3 Post-Bitcoin blockchains . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Permissions and specialization . . . . . . . . . . . . . . . . . . . . . 27
4.5 Smart Contracts and Ethereum . . . . . . . . . . . . . . . . . . . . 28
4.6 Consensus algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Pegged Sidechains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.8 SPV proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Cryptographic Protocols 37
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Verification of protocols . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Ideal/ Real paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



5.4 Random oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 On-chain and off-chain protocols . . . . . . . . . . . . . . . . . . . . 41

6 Our construction 42
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Game overview . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.2 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.3 Digital signatures . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.4 Algorithm Calcplayers . . . . . . . . . . . . . . . . . . . . . 43

6.3 Idea from naive to smart . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 The Roulette Functionality FRoullete . . . . . . . . . . . . . . . . . . 46
6.5 Roulette protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Stateful contract functionality FSC . . . . . . . . . . . . . . . . . . 49
6.7 Security of πroulette . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.8 Generalization to other games . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusions 53

ii



List of Figures

1.1 Σχήμα κωδικοποίησης ElGamal [1] . . . . . . . . . . . . . . . . . . . 2

1.2 Protocol πRoulette . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Protocol πRoulette (continuation) . . . . . . . . . . . . . . . . . . . . 8

4.1 Example two-way peg protocol. . . . . . . . . . . . . . . . . . . . . 34

6.1 Algorithm CalcPlayers . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Functionality FRoulette . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Protocol πRoulette . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Protocol πRoulette (continuation) . . . . . . . . . . . . . . . . . . . . 48
6.5 Functionality FSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iii



List of Tables

4.1 Generalized vs. Specialized blockchains and Permissioned vs. Permissionless.[2] 28
4.2 Consensus algorithms for usage in blockchains. Adapted from [3] . . 32

iv



Κεφάλαιο 1

Περιγραφή Πρωτοκόλλου

Εισαγωγή

Η τεχνολογία πάντα έπαιζε σημαντικό ρόλο στην ανθρώπινη ιστορία. Ολόκληρες

εποχές έχουν λάβει το όνομά τους από σημαντικά τεχνολογικά άλματα όπως η λίθινη

εποχή και η εποχή του χαλκού. Τα τελευταία 20 χρόνια διανύουμε αναμφίβολα την

εποχή του διαδικτύου. Πρόκειται για μία εποχή που μπορεί να χαρακτηριστεί εξίσου

από την ψηφιοποίηση των πάντων, από το κομμάτι των επικοινωνιών, από όπου και

ξεκίνησε κιόλας, μέχρι τα βιβλία και τους πίνακες εκμάθησης σε σχολεία. Η χρήση της

τεχνολογίας όμως, όπως και οποιουδήποτε άλλου πράγματος στον κόσμο, εξαρτάται

από το χειριστή της. Οπότε, είναι καθίκον μας όχι μόνο να αναπτύσουμε τεχνολογικά

κορυφαία προιόντα αλλά και να διασφαλίζουμε πως αυτά λειτουργούν ¨σωστά¨, προς

όφελος του κοινωνικού συνόλου. Κλασσικό παράδειγμα της διττής χρήσης του διαδι-

κτύου παραδείγματος χάριν, παρατηρείται στο κομμάτι των επικοινωνιών. Ορισμένοι

τη χρησιμοποιούν για να έρθουν σε άμεση επαφή με απομακρυσμένα πρόσωπα, ενώ

άλλοι για να κάνουν επιθέσεις σε διάφορες υπηρεσίες και να διαπράτουν απάτες, χρη-

σιμοποιώντας διαφορετικά τις ίδιες δυνατότητες. Αυτή η εργασία προσανατολίζεται

στο να παρέχει μία νέα δυνατότητα στο χώρο των τυχερών παιχνιδίων.

Εαν κάποιος τη χρονική περίοδο της συγγραφής της παρούσας εργασίας επιθυ-

μούσε να εμπλακεί σε ένα τυχερό παιχνίδι θα είχε τρεις επιλογές. Να είναι παίκτης

είτε σε κάποιο αναλογικό καζίνο, είτε σε κάποιο ψηφιακό που δε χρησιμοποιεί αλυ-

σίδα συναλλαγών, είτε σε κάποιο που χρησιμοποιεί. Στην πρώτη και στη δεύτερη

περίπτωση ο παίκτης θα έπρεπε να εμπιστευτεί το εν λόγω καζίνο ως προς τη διαδι-

κασία υπολογισμού του αποτελέσματος. Αυτό συμβαίνει διότι ο ίδιος για εμπορικούς

λόγους κυρίως δε θα είχε πρόσβαση για επιθεώρηση ούτε στις αναλογικές ρουλλέτες,

ούτε στον κώδικα που παράγει τα ψευδοτυχαία αποτελέσματα. Μόνο στην περίπτωση

που χρησιμοποιείται τεχνολογία αλυσίδας συναλλαγών μπορεί ο παίκτης να επιβεβαι-

ώσει τα αποτελέσματα και ουσιαστικά τη διαδικασία παραγωγής τους. Ωστόσο το

ένα ζήτημα που δε μπορεί να αντιμετωπιστεί στην τρίτη περίπτωση, είναι ο ¨άχρηστος

χώρος’ πάνω στην αλυσίδα. Αυτό σημαίνει πως κατά την εκτέλεση ενός πρωτοκόλ-

λου ρουλλέτας τα μηνύματα που ανταλάσουν οι παίκτες αποθηκεύονται στην αλυσίδα,

αλλά μετά την ολοκλήρωση του παιχνιδιού αυτά τα δεδομένα δεν έχουν καμία ουσια-

στική αξία και παραμένουν άχρηστα καθώς λόγω της δομής της τεχνολογίας αλυσίδας

δε μπορούν να διαγραφούν ποτέ. Τέλος, ένα αρνητικό και των τριών υπάρχουσων

επιλογών αποτελεί η πληρωμή επιπλέον δασμών των παικτών για τη συντήριση αυτών

των κεντροποιημένων εταιριών που παρέχουν τις υπηρεσίες τυχερών παιγνίων.
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Αναγνωρίζοντας τις αδυναμίες των υπάρχουσων επιλογών, λοιπόν, στόχος της

συγκεκριμένης εργασίας αποτελεί η δημιουργία ενός αποκεντροποιημένου πρωτόκολ-

λου ως προς το παιχνίδι της ρουλλέτας που θα έχει μηδενική προμήθεια, μηδενική

εμπιστοσύνη, σε ένα πλήρως αποκεντροποιημέο περιβάλλον, παρέχοντας εππιπλέον

επιλογές ως προς τον τρόπο παιχνιδιού του τζογαδόρου.

Πρωτογενείς Διαδικασίες

Πριν παρουσιαστεί το πρωτόκολλο, χρειάζεται να αναλυθούν μερικές κρυπτογρα-

φικές πρωτογενείς διαδικασίες. Αρχικά, θα παρουσιαστεί το κρυπτογραφικό σχήμα

που χρησιμοποιείται, έπειτα θα εξηγηθούν οι ψηφιακές υπογραφές, που είναι ζωτι-

κό κομμάτι του πρωτοκόλλου μας και εν τέλει θα αναλυθεί η τεχνολογία αλυσίαδας

συναλλαγών μαζί με την τεχνολογία των πλευρικών αλυσιδών.

Κρυπτογράφηση Ελ-Γκαμάλ

Το ΕλΓκαμαλ κρυπτοσύστημα παρουσιάστηκε το 1984 και η ασφάλειά του βασίζε-

ται σε ένα δυσεπίλυπτο πρόβλημα που ονομάζεται ¨πρόβλημα του διακριτού λογαρίθ-

μου¨. Πιο συγκεκριμένα βασίζεται στην ανταλλαγή κλειδιού Diffie- Hellman, οπότε

ορίζεται σε μια κυκλική ομάδα 〈g〉 ενός πρώτου τάξης m. Το σχήμα παρουσιάζεται

εκτενέστερα στο παραπάνω σχήμα(1.1).

Εικόνα 1.1: Σχήμα κωδικοποίησης ElGamal [1]

Ψηφιακές Υπογραφές

Η κρυπτογραφία, ωστόσο, δεν περιορίζεται στην κωδικοποίηση ή αποκωδικοποίη-

ση μηνυμάτων. Μία από τις άλλες της μορφές είναι η αυθεντικοποίηση μηνυμάτων. Ο

τρόπος με τον οποίο επιτυγχάνεται αυτό είναι με τη χρήση ψηφιακών υπογραφών. Η

δημιουργία μιας ψηφιακής υπογραφής απαιτεί έναν συνδυασμό πληροφοριών σχετικά
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με το ίδιο το μήνυμα και το μήνυμα του υπογράφοντος. Επειδή οι ψηφιακές πληρο-

φορίες μπορούν να αντιγραφούν και να επικολληθούν, θα πρέπει να υπάρξει σύνδεση

μεταξύ του μηνύματος και της ίδιας της ψηφιακής υπογραφής.[4][5] Διαφορετικά, ο

παραλήπτης μπορεί να τροποποιήσει το μήνυμα πριν εμφανίσει το ζεύγος υπογραφής

μηνύματος σε έναν δικαστή. Ακόμη χειρότερα, θα μπορούσε να επισυνάψει την υπο-

γραφή σε οποιοδήποτε μήνυμα, καθόσον είναι αδύνατο να ανιχνευθεί η ηλεκτρονική

«κοπή» και «επικόλληση». Συνεπώς, οι ακόλουθες επιθυμητές ιδιότητες μπορούν να

εξαχθούν από μια ψηφιακή υπογραφή:

• Η ψηφιακή υπογραφή πρέπει να είναι εξαρτόμενη από το μήνυμα.

• Μόνο ο δημιουργός ενός ηλεκτρονικού μηνύματος μπορεί να υπολογίσει τη

σωστή ψηφιακή υπογραφή.

• Οποιοσδήποτε λαμβάνει ένα μήνυμα και την αντίστοιχη ψηφιακή υπογραφή μπο-

ρεί να την επιβεβαιώσει και εν συνεχεία να είναι βέβαιος πως για την καταγωγή

και την ακεραιότητα του μηνύματος.

Σύμφωνα με τα παραπάνω προκύπτουν οι ακόλουθοι ορισμοί για τα δομικά στοιχε-

ία του σχήματος των ψηφιακών υπογραφών. Ψηφιακή υπογραφή είναι ένα μαθηματικό

σχήμα το οποίο αποδεικνύει τη γνησιότητα ενός ψηφιακού κειμένου ή μηνύματος

και την ταυτότητα του συγγραφέα του. Αλγόριθμος παραγωγής ψηφιακών υπογρα-

φών είναι η μέθοδος η οποία ακολουθείται για την παραγωγή ψηφιακών υπογραφών.

Αλγόριθμος επαλήθευσης ψηφιακών υπογραφών είναι ο αλγόριθμος που εξασφαλίζει

τη γνησιότητα της ψηφιακής υπογραφής. ΄Ενα σχήμα ψηφιακών υπογραφών απο-

τελείται από έναν αλγόριθμο παραγωγής υπογραφών και έναν σχετικό αλγόριθμο

επαλήθευσης.[4] Μια διαδικασία υπογραφής ψηφιακών υπογραφών συνίσταται σε έναν

αλγόριθμο παραγωγής ψηφιακών υπογραφών, σε συνδυασμό με την μέθοδο μορφο-

ποίησης των δεδομένων σε μηνύματα. Μια διαδικασία επαλήθευσης ψηφιακών υπο-

γραφών αποτελείται από έναν αλγόριθμο επαλήθευσης, μαζί με μια μέθοδο ανάκτησης

δεδομένων από το μήνυμα που χρειάζεται να υπογραφεί.

Τεχνολογία Αλυσίδας Συναλλαγών

Δεν υπάρχει, προς γνώση του συγγραφέα ένας καθολικός ορισμός και μετάφρα-

ση για τον όρο ”blockchain”. Στην εργασία αυτή αναφερόμενοι σε ¨τεχνολογία

αλυσίδας συναλλαγών’ αναφερόμαστε στον Αγγλικό όρο ’ blockchain technology ¨.

Πολλοί χρησιμοποιούν το Bitcoin ως εφαλτήριο για ννα εξηγήσουν τον όρο, από

την αρχαιότερη εφαρμογή, τα κρυπτονομίσματα. Πολλοί ορισμοί έχουν δοθεί προσπα-

θώντας να αποσαφινηστεί πλήρως η ορολογία. Μία επιτροπή μέσα στον οργανισμό

ISO που ασχολείτε με το θέμα δεν έχει κάποιο καταληκτικό εποτέλεσμα προς το

παρόν αλλά περιγράφει το blockchain ως: ¨ένα κοινό, αμετάβλητο βιβλίο που μπορεί

να καταγράφει συναλλαγές σε διάφορες βιομηχανίες, [...]. Πρόκειται για μια ψηφιακή

πλατφόρμα που καταγράφει και επαληθεύει τις συναλλαγές με διαφανή και ασφαλή

τρόπο, καταργώντας την ανάγκη για μεσάζοντες και αυξάνοντας την εμπιστοσύνη

μέσω του ιδιαίτερα διαφανούς χαρακτήρα της’ [6]. Η ΙΒΜ προτείνει έναν παρόμοιο

ορισμό λέγοντας ότι ένα blockchain είναι ένας κοινός, αμετάβλητος ηγέτης για την

καταγραφή του ιστορικού των συναλλαγών’[7]. Για λόγους απλότητας θα κινηθούμε
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γύρω από αυτή την περιγραφή και θα θεωρήσουμε πως όλα τα δεδομένα που απο-

θηκεύονται στην αλυσίδα είναι υπό μορφή συναλλαγών. Για να εμβαθύνουμε λίγο

περισσότερο, όμως, πρέπει να διασπάσουμε δομικά την τεχνολογία πρώτα. Αρχικά,

λοιπόν, μία αλυσίδα συναλλαγών είναι ένα δίκτυο μεταξύ χρηστών. Αυτοί, μπορούν

να χωριστούν σε δύο κατηγορίες, τους πελάτες και τους μεταλλωρύχους( σημαντι-

κό αποτελεί πως αυτός ο διαχωρισμός δεν είναι αποκλειστικός, δηλαδή ένας πελάτης

μπορεί να είναι και μεταλλωρύχος και ανάστροφα).

• Πελάτης: ΄Ενας χρήστης που χρησιμοποιεί το δίκτυο για να εκτελέσει και να

λάβει πληρωμές αναλόγως τις επιθυμίες του.

• Μεταλλωρύχος: ΄Ενας χρήστης που προσπαθεί να λύσει ένα πρόβλημα υπο

τη μορφή: Δοσμένου του α βρες β ούτως ώστε Γ(β)=α. Εάν βρει τη λύση,

τότε αυτός εκπέμπει σε όλο το δίκτυο τη λύση μαζί με το αμέσως δημιουργηθέν

block που περιέχει τις συναλλαγές που θέλει να ενσωματώσει ο ίδιος.

Κάθε block από κατασκευής δείχνει στο αμέσως προηγούμενό του και συνεπώς

δημιουργείται με αυτόν τον τρόπο η αλυσίδα. ΄Ολοι οι χρήστες λοιπόν, αποδεχόμενοι

τη λύση πυο τους εκπέμπεται έχουν μία καθολική όψη της αλυσίδας συναλλαγών και

συμφωνούν στην εγκυρώτητά της.

Υπάρχει η περίσπτωση, ωστόσο, ένας κόμβος του δικτύου να έχει μία διαφορετική

όψη της αλυσίδαςμ, διότι δύο τουλάχιστον από τους γείτονές του, του εξέπεμψαν

διαφορετικές λύσεις και άρα έχει ένα πρόβλημα απόφασης ως προς το ποια λύση θα

δεχτεί. ΄Ενας απλός κανόνας υπάρχει για την επίλυση αυτών των διαμαχιών: Κάθε

κόμβος συνεχίζει να δουλεύει στην όψη της αλυσίδας που έχει, μέχρις ότου λάβει

μία η οποία είναι μεγαλύτερη. Σε αυτή την περίπτωση, σταματά να εργάζεται στην

προηγούμενη και συνεχίζει στην τελευταία. Αυτό βεβαιώνει πως σε βάθος χρόνου

μία και μόνο μία αλυσίδα θα υπερτερύσει αν η πλειοψηφία των μεταλλωρύχων είναι

τίμιοι.

Είναικορυφαίας σημασίας να τονιστεί το ότι οι χρήστες ενός δικτύου καταλήγουν

σε βάθος χρόνου σε μία κκοινή αλυσίδα, σημαινεί ουσιαστικά πως καταλίγουν σε μία

και μόνο μία κοινή αλήθεια μεταξύ των, που δε μπορεί να αμφισβητηθεί από κανέναν

εντός του δικτύου. ΄Ετσι, το πρωτόκολλο κάθε αλυσίδας συναλλαγών είναι, στην

πραγματικότητα, ένα πρωτόκολλο συμφωνίας συναίνεσης. Το πιο ενδιαφέρον κομμάτι

αυτής της αλήθειας είναι η σκληρότητα της αναστρεψιμότητας της αλυσίδας. Προκει-

μένου ένας αντίπαλος να αλλάξει ένα από τα block , ας πούμε το κ-τελευταίο block
, πρέπει να κάνει όλη την προηγούμενη δουλειά (εύρεση νέων λύσεων κ-φορές) και

να βγάλει ολοκαίνουργια (κ + 1) block για να πείσει όλους τους άλλους κόμβους

να δεχτούν τη δική του αλυσίδα ως τη μεγαλύτερη και επομένως την αληθινή. Εάν

δεχθούμε την ειλικρινή πλειοψηφία στο δίκτυο αυτό ισχύει με πιθανότητα 1/2k+1
και

προφανώς, αυτή η πιθανότητα καθίσταται αμελητέα καθώς η υπολογιστική δύναμη

του αντιπάλου μειώνεται επίσης ή όσο βαθύτερα θέλει να αλλάξει κάτι στην αλυ-

σίδα. Ουσιαστικά, ο μηχανισμός που εξηγείται παραπάνω, καθιστά πιο δαπανηρή την

πλαστογράφηση μιας συναλλαγής από το δυνητικό κέρδος. Χωρίς έναν κατάλληλο

αλγόριθμο για την επίτευξη συναίνεσης για το blockchain , δεν θα υπήρχε εμπιστο-

σύνη στο blockchain-system του Bitcoin , αφού οποιοσδήποτε με πρόσβαση στην

ιστορία των συναλλαγών (όλοι οι κόμβοι) θα μπορούσε να ξαναγράψει το ιστορικό

και να το δημοσιεύσει ως το πραγματικό.
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Επομένως, ο ακόλουθος ορισμός φαίνεται να καλύπτει όλα τα παραπάνω, δηλαδή

τις κύριες πτυχές ενός blockchain . Μία αλυσίδα συναλλαγών είναι μια κατανεμημένη

αρχιτεκτονική υπολογιστών όπου ένας υπολογιστής ονομάζεται κόμβος εάν συμμε-

τέχει στο δίκτυο. Κάθε κόμβος έχει πλήρη γνώση όλων των συναλλαγών που έχουν

συμβεί, οι πληροφορίες μοιράζονται. Οι συναλλαγές ομαδοποιούνται σε blocks που

προστίθενται διαδοχικά στην κατανεμημένη βάση δεδομένων. Μόνο ένα block κάθε

φορά μπορεί να προστεθεί και για να προστεθεί ένα νέο block πρέπει να περιέχει μια

μαθηματική απόδειξη που να επαληθεύει ότι ακολουθεί ακολουθία από το προηγούμε-

νο block . Τα block συνδέονται μεταξύ τους με χρονολογική σειρά. Ο παραπάνω

ορισμός είναι πολύ ευρύς και καλύπτει όλες σχεδόν τις υπάρχουσες υλοποιήσεις των

αλυσίδων συναλλαγών.

Πλευρικές Αλυσίδες

Οι πλευρικές αλυσίδες είναι η έννοια των παράλληλων αλυσίδων συναλλαγών που

επιτρέπουν τη μεταβίβαση περιουσιακών στοιχείων από ένα blockchain σε ένα άλλο.

Η ιδέα ανακοινώθηκε επισήμως το 2014 από την Blockstream , μια ιδιωτική εταιρεία

που αποτελείται από πολλά από τα μέλη της ομάδας ανάπτυξης του Bitcoin . Ενώ η

ιδέα προέρχεται από το Bitcoin , η ευρύτερη θεωρία πίσω από τις πλευρικές αλυσίδες

εφαρμόζεται σε οποιοδήποτε σχέδιο αλυσίδας. Αρχικά, η πρόθεση των πλευρικών α-

λυσίδων ήταν να επιτρέψει τη μεταφορά bitcoins σε άλλα blockchains , επιτρέποντας

έτσι στις πλευρικές αλυσίδες να λειτουργήσουν ως εναλλακτικά συστήματα κρυπτονο-

μισμάτων χωρίς να απαιτείται η κοπή νέων κερμάτων. Ωστόσο, ο αρχικός σχεδιασμός

πλευρικής αλυσίδας ανακαλύφθηκε ότι περιέχει μη τετριμμένα ελαττώματα ασφαλείας.

Εν τω μεταξύ, τα νέα σχέδια βρίσκονται σε εξέλιξη, αλλά κατά τη στιγμή της γραφής

δεν έχουν φθάσει σε ωριμότητα ή παραγωγή.[8]

Παρόλα αυτά, η μεταφορά στοιχείων από μία αλυσίδα σε μία άλλη, είναι στην

πραγματικότητα ήδη εφικτή από το σχεδιασμό του sidechain . Η ιδέα είναι αρκετά

απλή, με την εισαγωγή μιας λειτουργίας που ονομάζεται αμφίδρομη σύνδεση, τα πε-

ριουσιακά στοιχεία θα επιτρέπεται να μεταφέρονται από ένα blockchain σε ένα άλλο

και πίσω. Μια από τις βασικές αρχές της αμφίδρομης σύνδεσης είναι ότι είναι αδύνατο

να επιστραφούν περισσότερα στοιχεία στην «μητρική αλυσίδα» από όσα προέρχονται

από αυτήν, οπότε ο συνολικός αριθμός περιουσιακών στοιχείων της μητρικής αλυ-

σίδας δεν μπορεί να τεθεί σε κίνδυνο. ΄Ετσι, νέοι κανόνες μπορούν να εφαρμοστούν

στην πλευρική αλυσίδα χωρίς να δημιουργούν ενδεχόμενο πρόβλημα για τη μητρική

αλυσίδα.

Οι πλευρικές αλυσίδες μπορούν να επεκτείνουν τη λειτουργικότητα ενός γονικού

blockchain εισάγοντας νέα χαρακτηριστικά στην πλευρική αλυσίδα. Για παράδειγμα,

επειδή μια εξουσιοδοτημένη αλυσίδα μπορεί να χρησιμοποιεί ένα μερισματικό σχήμα

ψηφιακών υπογραφών ως μοντέλο συναίνεσης, αυτό επιτρέπει σχεδόν άμεση επιβε-

βαίωση χρόνων μίας αρχικά μη εξουσιωδοτημένης αλυσίδας, όπως το bitcoin. ΄Ε-

να παράδειγμα τέτοιας πλευρικής αλυσίδας είναι αυτό της πλευρικής αλυσίδας Liq-
uid, που διατηρείται από το Blockstream για διάφορες συναλλαγές Bitcoin.[9] ΄Αλλα

παραδείγματα χαρακτηριστικών των πλευρικών αλυσίδων που μπορούν δυνητικά να

προσφέρουν νεές δυνατότητες σε η εξουσιωδοτημένα δίκτυα είναι στοιχεία όπως η

υποστήριξη πολλαπλών τύπων περιουσιακών στοιχείων από διαφορετικές αλυσίδες

συναλλαγών που υπάρχουν σε αμοιβαίες πλευρικές αλυσίδες, όπως τα έξυπνα συμ-
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βόλαια.

Το Παιχνίδι

Η ρουλλέτα αποτελεί ένα από τα πιο δημοφιλή παιχνίδια σε κάθε καζίνο. Το

παιχνίδι έχει μερικούς βασικούς κανόνες και παίζεται σε γύρους. Αρχικά, υπάρχουν

37 νούμερα στα οποία μπορεί κάποιος να στοιχηματίσει και το κάθε ένα έχει απόδοση

36. Αυτό σημαίνει πως ο ιδιοκτήτης του παιχνιδιού έχει πλεονέκτημα έναντι των

άλλων παικτών 2,7�. Παιχνίδι παίζεται ως ακολούθως: Οι παίκτες ποντάρουν το

ποσό που επιθυμούν, ο ιδιοκτήτης του παιχνιδιού χρησιμοποιεί ένα τρόπο παραγωγής

τυχαίων αποτελεσμάτων (παραδείγματος χάριν στο αναλογικό καζίνο το γύρισμα μιας

μπίλιας σε ένα λείο,κεκλινόμενο, κυκλικό κουλουάρ, που στο εσωτερικό του έχει 37

διαχωρισμένες θέσεις. Σε όποια από αυτές πέσει η μπίλια, αποτελεί και το αποτέλεσμα

του γύρου. Αυτό το παιχνίδι θα προσπαθήσουμε να περιγράψουμε στο πρωτόκολλό

μας παρακάτω.

Το Πρωτόκολλο

Το πρωτόκολλο βασίζεται στην παρακάτω ιδέα. Υπάρχει μία αλυσίδα συναλλαγών

και όποιος χρήστης της θέλει να δημιουργήσει το δικό του παιχνίδι της ρουλέττας,

δημιουργεί μία πλευρική αλυσίδα την Roulettechain . ΄Οποιος θέλει να παίξει στο εν

λόγω παιχνίδι, μεταφέρει κεφάλαιο από τη μητρική αλυσίδα στην Roulettechain . Τα

blocks δημιουργούνται από τον μόνο μεταλλορύχο της αλυσίδας και δημιουργό της

RM . Για να επικοινωνήσουν οι παίκτες τις επιθυμίες τους στέλνουν υπογεγραμμένα

τα μηνύματά τους στον RM . Το παιχνίδι παίζεται σε γύρους, όπου ένας γύρος περι-

γράφεται στο πρωτόκολλο. Υπάρχει ο αλγόριθμος Calcplayers για να υπολογίζονται

σε κάθε γύρο οι παίκτες που μπορούν να συμμετέχουν στο πρωτόκολλο. Η τυχαιότη-

τα του αποτελέσματος διασφαλίζεται από μία δίπλευρη πράξη, χρησειμοποιώντας τη

συνάρτηση κατακερματισμού SHA256 και τον τελεστή ⊕. Επίσης, ένας μηχανισμός

ασφαλείας υπάρχει για να είναι βέβαιο πως αν κάποιος από τους παίκτες ξεφύγει από

τη ροή του πρωτοκόλλου, θα τιμωρηθεί. Για τα παραπάνω, τέλος, ισχύουν και τρεις

υποθέσεις, το ότι υπάρχει τίμια πλειοψηφία στη μητρική αλυσίδα, ότι αυτή έχει ζωτι-

κότητα και ευρωστία καθώς ακόμα πως υπάρχει και ένας τίμιος παίκτης σε κάθε γύρο

του προτωκόλλου. Το πρωτόκολλο που έχει ως στοιχεία του τους παίκτες Playeri
με τον Player0 να είναι ο RM, το αντίστοιχα κεφάλαιο του καθενός balance[i], τα
αιτήματα των παικτών requests[n] τέλος τα πονταρίσματα beti[j] που οδηγούν στα

αποτελέσματα του γύρου resultk[i], παρατίθεται στο παρακάτω σχήμα.
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Protocol πRoulette

Protocol πRoulette is executed by n players with identities (id0 ,. . . , idn), pa-
rameterized by a timeout limit τ and interacting with the stateful contract
functionality FSC . We assume that the parties agree on a generator g of a
group G of order p for the El-Gamal encrypion scheme EGE and also on a
EUF-CMA secure digital signature scheme SIG. Moreover, a nonce unique to
each protocol execution and protocol round(e.g. a hash of the public proto-
col transcript up to the current round) is implicitly attached to every signed
message to avoid replay attacks.
Recovery Triggers: Whenever a signature is published, its validity is
tested. If the test fails, the party proceeds to the recovery phase. The same
happens if a party does not receive an expected message until a timeout limit τ.

Request phase: For i = 0, . . . , n, the party with idi proceeds as follows:

• Verifies information in the previous block, secretkey[i], that is the other
player’s secret key as well as resultk[i] for the previous (k) round.

• Generates the keys of the signature scheme
(SIG.vki , SIG.ski) ← SIG.Gen (1λ ).

• Uses the keys above forn the encryption scheme, such as,
EGE.ski = SIG.ski and EGE.pki = SIG.vki

• Sends:

– Check-in: (Check-in,M, walletadressi SIG.vki ), where M is the
maximum sum of money intended to be played for the round and
walletaddressi points to the transaction of a block in Roulettechain
from where the money would be bet, if she wants to play.

Figure 1.2: Protocol πRoulette
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• Or else:

– Check-out: (Check-out, balance, σ) to FSC , where σ contains all
signatures on balance, waits for confirmation from FSC and stops
execution, otherwise.

• RM, that is, Player0 with id0 publishes request[i] on the sidechain.

Calculating plyers phase:

• Each player verifies information in the previous block, that is the other
player’s request.

• Player0 runs Algorithm CalcPlayers to determine the players of the
round Pi and publishes them on the sidechain alongside her queue[0].

Betting phase:

• Each player verifies information in the previous block, that is players for
the round and queue[0].

• Each Playeri updates their queue[i].

• Each player chooses a randomness r and sends her betsi[j]= Encr(mij)
where m includes information about the number intended to be bet on
alongside the respective sum of money.

• Player0 publishes betsi[j] on the sidechain.

Tallying result phase:

• Each player verifies information in the previous block, that is the betsi[j].

• Each player sends his EGE.ski to Player0.

• Player0 decrypts betsi[j] and calculates
resultk[i] = (SHA256(

∑m
j=1(Dec(Encr(mi,j)) ⊕ (Dec(Encr(m0,j)))) mod

37.

• Player0 publishes resultk[i] and secretkey[i] = EGE.ski on the sidechain
.

Recovery request: If a party Pi enters the recovery phase at any step of a
given phase, it halts the execution of the protocol and sends a message (report,
Playeri, ski, Blockz) to FSC , where Blocki is the block that contains infor-
mation on which the verification test failed and thus contains forged or false
data.

Figure 1.3: Protocol πRoulette (continuation)
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Γενίκευση πρωτοκόλλου σε άλλα παιχνίδια

Σε αυτή την ενότητα συζητάμε άλλα παιχνίδια που μπορούν να εκτελεστούν από

πρωτόκολλα που έχουν κατασκευαστεί με τον ίδιο τρόπο, δηλαδή έχοντας μία αλυσίδα

συναλλαγών από ένα μπλοκ του οποίου ένας χρήστης ξεκινά μια πλευρική αλυσίδα,

εκτελώντας το παιχνίδι σε ένα πρωτόκολλο εκτός αλυσίδας και αποθηκεύοντας μόνο

ζωτικής σημασίας πληροφορίες σχετικά με αυτό πάνω της. Με τον σχεδιασμό αυτόν,

το πλησιέστερο παιχνίδι στη ρουλέτα είναι οι λαχειοφόρες αγορές, επειδή και οι τα

δυο μοιράζονται τους ίδιους μηχανισμούς με τις πιο διαφορετικές πτυχές τους να απο-

τελούν οι πληρωμές των παικτών. Θα μπορούσε κανείς να υποστηρίξει ότι η ρουλέτα

είναι μια ξεχωριστή περίπτωση παιχνιδιών λαχειοφόρων αγορών και αυτό δεν θα ήταν

αναληθές. Αυτό σημαίνει πρακτικά, πως με την αλλαγή μόνο τον τρόπο παραγωγήες

αποτελεσμάτων και του αλγορίθμου για τον υπολογισμό των παικτών, σύμφωνα με

τον αριθμό των επιλογών που έχουν οι παίκτες και τη μέγιστη απόδοση κάθε στοι-

χήματος, μπορεί κανείς να κατασκευάσει το πρωτόκολλο λαχειοφόρου αγοράς της

επιλογής τους χωρίς να χρειάζεται να αλλάξει τίποτα άλλο από το σχεδιασμό μας.

Τα ζάρια μπορούν επίσης να θεωρηθούν ένα παιχνίδι κοντά στη ρουλέτα. Στην

πραγματικότητα, η μόνη διαφορά που έχουν είναι αυτή της έγχυσης τυχαιότητας στο

παιχνίδι. Εφ ΄όσον κάποιος τροποποιεί ανάλογα των αποδόσεων και τις επιλογές των

παικτών θα είναι σε θέση να εκτελέσει το παιχνίδι των ζαριών επίσης.

Τέλος, μια άλλη εφαρμογή αυτού του τύπου πρωτοκόλλου είναι σε συγκεκριμένα

παιχνίδια τράπουλας. Αυτό οφείλεται στο γεγονός ότι τα παιχνίδια ¨ένας εναντίων

ενός’ συναντόνται συνήθως στα παιχνίδια τράπουλας και από το γεγονός ότι χρη-

σιμοποιώντας μια συμβολοσειρά 256 δυαδικών ψηφίων μπορούν να αναπαρασταθούν

όλες οι ανακατεμένες τράπουλες (52! <2256
). Το blackjack είναι ένα παιχνίδι που

θα μπορούσε να εκτελεστεί από το πρωτόκολλό μας με κάποιες παραπάνω μικροαλλα-

γές, οι σημαντικότερες των οποίων είναι ότι θα χρειαζόταν μια φάση ρυθμίσεων για

το ανακάτεμα της τράπουλας μετά τη φάση υπολογισμού των παικτών και μια φάση

εκτέλεσης χεριού μετά από αυτό. Φυσικά ο αλγόριθμος και οι πληρωμές θα πρέπει

επίσης να διορθωθούν.

Συμπεράσματα και μελλοντική εργασία

Σε αυτή τη διπλωματική παρουσιάστηκε ένα νέο πρωτοποριακό πρωτόκολλο για

το παιχνίδι της ρουλέτας. Συγκεκριμένα, χρησιμοποιήθηκε μια συνδεδεμένη πλευρική

αλυσίδα στην οποία αποθηκεύτηκαν κρίσιμες πληροφορίες σχετικά με την εκτέλε-

ση του παιχνιδιού μαζί με έναν μηχανισμό ανάκτησης για την επιβολή κυρώσεων στις

αποκλίσεις παικτών από το πρωτόκολλο. ΄Ολα τα αποτελέσματα βασίζονται στο επιχε-

ίρημα της μη διακρισιμότητας, για παράδειγμα, οι παίκτες περιορίζονται στο τι μπορούν

να διακρίνουν ή αν το θέσουμε θετικά οι παίκτες χρειάζονται αρκετές πληροφορίες

για να είναι σε θέση να διακρίνουν το σενάριο στο οποίο βρίσκονται.

Μια σειρά ανοικτών ερωτήσεων προκύπτουν από αυτή την εργασία και περιγράφο-

νται παρακάτω:

• Υλοποίηση του πρωτοκόλλου σε κρυπτοοικονομικό σύστημα μέσω έξυπνων

συμβολαίων.

• Γενίκευση του πρωτοκόλλου ώστε να μπορεί να εκτελεί γενικά ‘ένας εναντίον
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ενός’ τυχερά παιχνίδια.

• Βελτιστοποίηση του μηχανισμού για τη μεταφορά περιουσιακών στοιχείων από

μία αλυσίδα συναλλαγών σε μία άλλη.
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Chapter 2

Introduction

Technology has always played an important role in human history. Whole
eras were named after the technological advancements that shaped them. For
example tool making technologies defined three large periods of human history,
the stone, bronze and iron age. It is no exaggeration to say that for the last twenty
years we are living in the age of the Internet. However, as with any technological
achievement, whether its use is for better or for worse, is entirely determined by the
ones who use it. Internet is not an exception to this rule. In the past few years,
it was made clear, especially after the Snowden leaks that through the Internet
one can achieve massive privacy violations with little effort. Therefore, it is not
only in our hands to guard and support the fair use of this technology, but our
responsibility as well to keep advancing its security in new, innovative ways that
will ultimately improve one’s everyday life. This work is towards this direction and
tries to explore and combine in a unique way, some new capabilities of the Internet
that were only in the sphere of our imagination till the last 10 years.

The milestone mentioned above is no other than the invention of the blockchain.
Its impact has been growing exponentially since the first blockchain -the Bitcoin-
was released in 2009 by Satoshi Nakamoto and has gathered the attention of nu-
merous scholars as well as entrepreneurs. As of 2014 more and more companies are
exploring the option of adopting blockchain technology in order to boost the secu-
rity of some or even every aspect of their services. IBM, Walmart, Maersk, British
Airways and UPS are some of the early innovators that have already adopted
blockchains and numerous others are on their way, no matter the field of their
expertise. Blockchain is best known from and associated closely with the Bitcoin,
so one may naturally assume that a blockchain is just a decentralized payment
system. In reality though, its most favored aspect -and the one industry is greatly
interested in- is that it maintains a public transaction ledger in a distributed man-
ner, in fact consisting the communication protocol of a blockchain a decentralized
consensus agreement protocol. Conclusively, this means that there exists a net-
work where its nodes have limited trust over each other and yet they can agree on
a common truth.

Motivation

A case where trust is almost considered a prerequisite is gambling. While using
a service either analog or digital the user is trusting the gaming company at some
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level to execute the game randomly and with no bias towards him. In the case
of analog casinos or even house games total trust is required. The same holds for
e-gambling platforms that do not use blockchain as the digital mechanism used for
the random generation of the numbers is not publically available for profitability
reasons and as a result, the randomness of the outcome cannot be verified from
the user.

Blockchain’s consensus agreement protocol is bringing new light in some ob-
scure problems concerning communication and provides new opportunities to boost
security in some others. Namely, the mental poker problem which was stated in
1979 by A.Shamir et all. was not solvable up until lately by B.David et all. in
2018. Although this, previous work, is a breakthrough in cryptographic protocols,
its implementation is in the static scenario and covers only card games. Further-
more, online casinos using blockchain like FunFair, Dao or Sp8de have blockchain
implemented in their services but they require fees in addition to the gambling bet
of the players. It came to our attention, thus, that there exists no decentralized,
zero-trust, zero-fee, cryptographic protocol for games such as roulette or lotteries,
especially in the dynamic scenario.

In this work we will construct a blockchain based cryptographic protocol to
execute the game of roulette. We will need a blockchain on which we shall build a
pegged sidechain. The communication of the players is being done over the insecure
private network of the sidechain in which crucial information is stored and message
verification is achieved through a secure signature scheme. The outcome of every
round is being determined by a commitment scheme between the players and there
exists a recovery mechanism for correcting wrongdoings, when a player deviates
from the protocol. In addition, the setup of the table for every round is calculated
by an algorithm to ensure maximum resources on the table at any given round,
while respecting priority of sitting. Finally there will be no fees needed when
someone intends to participate in any game or intends to host a game. Therefore
the scope of this work is to introduce a fully-decentralized, zero-trust, zero-fee
cryptographic protocol which executes a game of roulette, providing options with
respect to gambling.

Outline

The rest of the thesis is organized as following. Chapter 2 analyzes thoroughly
both the “blockchain” and its “pegged sidechain”. Focus will be given into their
constructions, their uses as well as their interoperability. Moving on, in Chapter
3 cryptographic protocols are being introduced, their designing issues and security
properties are explored. Moreover, the adversary model is being analyzed and
lastly the differences between on-chain and off-chain protocols. Chapter 4 contains
our construction which executes the game of roulette and its generalization to other
games. More precisely, we will see who interacts with the protocol, the progress
of the idea behind the protocol, the protocol πRoulette and how this protocol with
some twists can execute other games as well. Finally, in Chapter 5 conclusions and
future work are stated.
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Chapter 3

Cryptographic background

Introduction

The roots of cryptography can be traced back to thousands of years. When
Julius Caesar sent messaged his generals, he didn’t trust his messengers. So he
replaced every A in his messages with a D, every B with an E, and so on through
the alphabet. Only someone who knew the “shift by 3” rule could decipher his
messages. So the types of data can be distinguished from the previous example.
Data that can be read and understood without any special measures is called
plaintext or cleartext. The method of disguising plaintext in such a way as to
hide its substance is called encryption. Encrypting plaintext results in unreadable
gibberish called ciphertext. You use encryption to make sure that information
is hidden from anyone for whom it is not intended, even those who can see the
encrypted data. The process of reverting ciphertext to its original plaintext is
called decryption.

Cryptography is the science of using mathematics to encrypt and decrypt data.
Cryptography enables you to store sensitive information or transmit it across in-
secure networks (like the Internet) so that it cannot be read by anyone except
the intended recipient. While cryptography is the science of securing data, crypt-
analysis is the science of analyzing and breaking secure communication. Classical
cryptanalysis involves an interesting combination of analytical reasoning, appli-
cation of mathematical tools, pattern finding, patience, determination, and luck.
Cryptanalysts are also called attackers.

Cryptography has been advanced through the ages little by little, but since
the invention of the Internet its advancement has been exponential. Some of the
cryptographic primitives developed till the time of the writing of this thesis are
explained below and will be crucial in understanding our construction.

Discrete logarithm

We shall now state three assumptions that are commonly used in cryptographic
schemes based on a discrete log setting.

• The Discrete Logarithm (DL) assumption for group 〈g〉 states that it
is hard to compute x given a random group element gx .
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• The Diffie-Hellman (DH) assumption for group 〈g〉 states that it is hard
to compute gxy given random group elements gx and gy.

• The Decisional Diffie-Hellman (DDH) assumption for group 〈g〉 states
that it is hard to distinguish gxy from a random group element gz given
random group elements gx and gy.

The DH assumption is sometimes called the Computational Diffie-Hellman
(CDH) assumption to stress the difference with the DDH assumption. Evidently,
these assumptions satisfy: DL⇐ DH⇐ DDH.[10] Therefore, it is better if a scheme
can be proved secure under just the DL assumption.[4] It turns out, however, that
in many cases the security can only be proved under the DH assumption, or even
only under the DDH assumption.

Diffie-Hellman key exchange

The Diffie-Hellman key exchange protocol enables two parties A and B to arrive
at a shared key K by exchanging messages over a public channel. Key K remains
unknown to any eavesdropper. The protocol runs as follows. Suppose parties A
and B have agreed upon a group Gn = 〈 g〉 , where we require n to be prime. Party
A picks a value xA ε Zn uniformly at random, and sends hA = gxA to party B.
Similarly, party B picks a value xB ε Z

∗
n uniformly at random, and sends hB = gxB

to party A. Upon receipt of hB , party A computes key KAB = hxAB . Similarly,
party B computes KBA = hxBA . Clearly, K = KAB = KBA is a shared key for A
and B, which means (i) that it is the same for A and B, and (ii) that it is a private
key (only known to A and B), and (iii) that the key is actually equal to gxAxB ,
hence uniformly distributed.

A passive attacker (eavesdropper) learns the values hA = gxA and hB = gxB .
Under the DL assumption, it is hard to determine xA and xB from hA and hB ,
respectively. However, this does not guarantee that the value of K = hxBA cannot
be determined given just hA and hB . To exclude this possibility we need the DH
assumption. A stronger assumption is needed to ensure that an eavesdropper does
not learn any information whatsoever on K. In general, an eavesdropper may learn
some partial information on K, while full recovery of K is infeasible. For example,
an eavesdropper might be able to determine the parity of K, viewing K as an
integer, which would mean that the eavesdropper learns one bit of information. To
exclude such possibilities we need the DDH assumption.

The Diffie-Hellman protocol only withstands passive attacks. A first, but gen-
eral, idea to obtain a key exchange protocol withstanding active attacks is to
authenticate the communication between A and B. For instance, we may assume
that A and B know each other’s public keys in a digital signature scheme. There
are many solutions to this problem, but only few have been proved correct [11].
We will not give a formal security analysis at this point. The protocol is as follows.
Party A picks xAεZ

∗
n uniformly at random, and sends hA = gxA along with a signa-

ture on (hA , B) to party B. Similarly, party B picks xBεZ
∗
n uniformly at random,

and replies with hB = gxB along with a signature on (hA, hB, A) to party A. As
before, the agreed upon key is K = gxAxB . A protocol of this type is secure under
the DDH assumption, also assuming that the digital signature scheme is secure.
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Commitment schemes

The functionality of a commitment scheme is commonly introduced by means
of the following analogy. Suppose you need to commit to a certain value, but you
do not want to reveal it right away. For example, the committed value is a sealed
bid in some auction scheme. One way to do this is to write the value on a piece of
paper, put it in a box, and lock the box with a padlock. The locked box is then
given to the other party, but you keep the key. At a later time, you present the
key to the other party who may then open the box, and check its contents.

An immediate application of commitment schemes is known as “coin flipping
by telephone.” Two parties, say A and B, determine a mutually random bit as
follows. Party A commits to a random bit bAε R {0, 1} by sending a commitment
on bA to party B. Party B then replies by sending a random bit bBε R {0, 1} to
A. Finally, party A opens the commitment and sends bA to B. Both parties take
b=bA ⊕ bB as the common random bit.

If at least one of the parties is honest, the resulting bit b is distributed uniformly
at random, assuming that A and B cannot cheat when revealing their bits. Note
that party B sees the commitment of A before choosing its bit bB , so no information
on bit bA should leak from the commitment on bA. Similarly, party A could try to
influence the value of the resulting bit b (after seeing the bit bB) by opening the
commitment on bA as a commitment on 1−bA . Clearly, party A should not be
able to “change its mind” in such a way.

Generating mutually random bits is a basic part of many protocols. Commit-
ments are used as an auxiliary tool in many cryptographic applications, such as
zero-knowledge proofs and secure multi-party computation. [11]

A commitment scheme consists of two protocols, called commit and reveal,
between two parties, usually called the sender and the receiver. In many cases,
the protocols commit and reveal can be defined in terms of a single algorithm,
requiring no interaction between the sender and receiver at all. Such commitment
schemes are called non-interactive. More precisely, by definition:

Let commit : {0, 1}k{0, 1}∗ ⇒ {0, 1}∗ be a deterministic polynomial time
algorithm, where k is a security parameter. A (non-interactive) commitment
scheme consists of two protocols between a sender and a receiver:

Commit Phase. A protocol in which the sender commits to a value x
ε{0, 1}∗ by computing C = commit(u, x), where u εR{0, 1}k , and sending C
to the receiver. The receiver stores C for later use.

Reveal Phase. A protocol in which the sender opens commitment C
= commit(u, x) by sending u and x to the receiver. The receiver com-
putes commit(u, x) and verifies that it is equal to the previously received
commitment.

In the special case that the committed value is a bit, that is, x εR{0, 1}, one
speaks of a bit commitment scheme. The security requirements for a bit commit-
ment scheme are the following. The commitment must be binding, i.e., for any
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adversary E, the probability of generating u, u’ εR{0, 1}k satisfying commit(u,
0) = commit(u’ , 1) should be negligible (as a function of k). Furthermore, the
commitment must be hiding, i.e., the distributions induced by commit(u, 0) and
commit(u, 1) (with u εR{0, 1}k ) are indistinguishable.

Moreover, one makes the following distinctions. A commitment scheme is called
computationally binding if the adversary E is restricted to be a p.p.t. algorithm.
If no such restriction is made (in other words, the adversary may be unlimitedly
powerful), the scheme is called information-theoretically binding. Similarly, if the
distributions induced by commit(u, 0) and commit(u, 1) are computationally indis-
tinguishable the scheme is called computationally hiding and the scheme is called
information-theoretically hiding if these distributions are statistically (or even per-
fectly) indistinguishable.

The security properties are easily extended to the case that x is an arbitrary
bit string. Note that the above security requirements only cover attacks by either
the sender or the receiver. For example, suppose party A acts as the sender and
party B acts as the receiver, and A sends a commitment C to B. Then there is
no guarantee that B will notice if an attacker replaces C by a commitment C’ =
commit(u’ , x’ ) during the commit protocol, and replaces u, x by u’ , x’ during the
reveal protocol. Such attacks may be stopped by using an authenticated channel
between A and B. [11]

A natural question is whether there exists a commitment scheme which is both
information-theoretically binding and information-theoretically hiding. The fol-
lowing informal argument shows that such a scheme cannot exist.

Consider any bit commitment scheme which is information-theoretically bind-
ing. For such a scheme there cannot exist any u, u’ such that commit(u, 0) =
commit(u’ , 1), because then the (unlimitedly powerful) sender would be able to
compute both u and u’ , and open the commitment at its liking. However, if the
sender commits to 0, say, using C = commit(u, 0) for some u, the (unlimitedly
powerful) receiver will notice, by exhausting the finite set of possibilities, that there
does not exist any u’ with C = commit(u’, 1), hence the receiver knows that the
committed bit must be 0.

Zero Knowledge Proofs

In mathematics and in life, we often want to convince or prove things to others.
Typically, if one knows that X is true, and she wants to convince another person
of that, she tries to present all the facts she knows and the inferences from those
facts imply that X is true. A simple example of that is the following:

Let’s suppose that there exists to entities Alice and Bob and Alice wants to
prove to Bod that she knows that 26781 is not a prime. The knowledge of that
derives from the factoring she knows, that is 113 times 237 equals 26781. So she
presents these factors to Bod and thus, demonstrates that she knows a factoring
pair of 26781.

Now, a typical byproduct of a proof is that you gained some knowledge, other
than that you are now convinced that the statement is true. In the example
before, not only are you convinced that 26781 is not a prime, but you also learned
its factorization.
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However, A zero knowledge proof tries to avoid it.[12] In a zero-knowledge proof
Alice will prove to Bob that a statement X is true, Bob will completely convinced
that X is true, but will not learn anything as a result of this process. That is, Bob
will gain zero knowledge.

Zero knowledge proofs were invented by Goldwasser, Micali and Rackoff (GMR)
[13]. Zero-knowledge proofs (and interactive proofs in general, also introduced in
that paper) turned out to be one of the most beautiful and influential concepts in
computer science, with applications ranging from practical signature schemes to
proving that many NP-complete problems are hard even to approximate.

The motivation behind their development was double: One was philosophical:
the notion of a proof is basic to mathematics and to people in general. It is a very
interesting quesiton whether a proof inherently carries with it some knowledge or
not. The other one is practical: zero knowledge proofs have foundmany applica-
tions. Most practical applications fall into two types:

Protocol design: A protocol is an algorithm for interactive parties to achieve
some goal. For example, we saw the Diffie-Hellman key exchange protocol. In
that protocol, we assume that both parties follow the instructions of the protocol,
and the only thing we worried about was a passive easvesdropping adversary Eve.
However, in crypto we often want to design protocols that should achieve security
even when one of the parties is “cheating” and not following the instructions. This
is a hard1e problem since we have no way of knowing the exact way the party will
cheat. One way to avoid cheating is the following: If Alice runs a protocol with
Bob, to show Bob she is not cheating she will send Bob all the inputs she had,
and then Bob can verify for himself that if one runs the prescribed instructions on
these inputs, you will indeed get the outputs (messages) that Alice sent. However,
this way will be often unacceptable to Alice: the only reason they are running
this protocol is that they don’t completely trust each other, and the inputs she
had may be secret, and she does not want to share them. Zero-knowledge offer
a solution to this conundrum. Instead of sending her inputs, Alice will prove in
zero knowledge that she followed the instructions. Bob will be convinced, but will
not learn anything about her inputs he did not know before. In fact, we will see
that it is possible to do this in a very general way, applying essentially to all cryp-
tographic protocols. Thus, a general technique (invented by Goldreich, Micaliand
Wigderson , GMW) is to design a cryptographic protocol first assuming everyone
will follow the instructions, and then “force” them to follow instruction using a
zero knowledge proof system.

Identification scheme: A somewhat simpler and more direct application is
to identification schemes. Suppose that we want to control access to a database.
One way to do that is to give authorized people a secret PIN number, and have a
box on the door where type the PIN number on that box. (A more convenient but
essentially equivalent way is that the authorized people have a card that transmits
the PIN number to the box.) A drawback of this approach is that the box remains
outside all the time, and if someone could examine the box, they would perhaps
be able to view its memory and extract the secret keys of all people. Thus, from
a security standpoint, it is much better if the box contains no secret information
at all, and even if someone installed a “fake box” they would not learn anything
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about the secret PIN. Zero-knowledge proofs help us in the following way.

• Have the box contain an instance of a hard problem. For example, the box
can contain a composite number n without its factorization.

• Give the authorized people the solution to the instance. For example, they
can get the factorization of n to n = p ∗ q.

• The authorized people will prove to the Box they know the factorization in
zero knowledge. (Of course, there is a question of how do you prove that you
know something, but this was also shown by GMR (and further developed
by others.)

Zero knowledge is an elusive concept in the sense that not only it’s not clear how
to construct such things, it’s also not clear even how to define such creatures. We
will start by explaining some of the generalizations to the notion of proofs that are
needed. Then, we will give an example for a zero knowledge proof for a particular
family of statements (or in more standard terms, for a particular language). We
will then talk about the definition of zero knowledge proofs. Next lecture we will
see that the extremely useful fact, shown by GMW, that any NP-statement can be
proven in zero knowledge.

The standard mathematical notion of a proof is the following: you have axioms
and inference rules, and the proof for x is a string π that derives x from the axiom
using the inference rules.

• A proof system is sound if you can never derive false statements using it.
Soundness is a minimal condition, in the sense that unsound proof systems
are not very interesting.

• A proof system is complete if you can prove all true statements using it.
Similarly, we say it is complete for a family L of true statements, if you can
prove all statements in L using it.

Thus the traditional notion assumes that the proof π is a static string that
was written down somewhere and anyone can verify. A valid proof gives absolute
certainty that the statement is true. GMR generalized this notion to think of a
proof as a game between a prover and a verifier. The game can be interactive,
where the verifier asks questions and the prover answers, and the goal of the game
is for the prover to convince the verifier that the statement is true. They even
further generalized it to the notion of a probabilistic proof system. That is, the
verifier does not convinced with absolute certainty that the statement is true but
“only” with 99.999 �certainty. What is crucial here is that no matter what the
prover does and how she tries to cheat, if the statement is false she will fail with
this probability. One example for a probabilistic interactive proof is proving that
Alice can distinguish between Coke and Pepsi using the following protocol: Alice
turns her back, Bob flips a coin and puts either Coke or Pepsi into a paper cup
according the result, Alice tastes and announces whether she thinks it was Coke
or Pepsi. If they repeat this k times and Alice always answers correctly then Bob
can conclude with 1− 2−k probability that she really can tell the difference. [14]
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El-Gamal encryption scheme

In 1984 Taher ElGamal presented a cryptosystem which is based on the Discrete
Logarithm Problem discussed in the last section.[15] It relies on the assumption
that the DL cannot be found in feasible time, while the inverse operation of the
power can be computed efficiently. The original public key system proposed by
Diffie and Hellman requires interaction of both parties to calculate a common
private key. This poses problems if the cryptosystem should be applied to com-
munication systems where both parties are not able to interact in reasonable time
due to delays in transmission or unavailability of the receiving party. Thus ElGa-
mal simplified the Diffie-Hellman key exchange algorithm by introducing a random
exponent k. This exponent is an replacement for the private exponent of the re-
ceiving entity. Due to this simplification the algorithm can be used to encrypt
in one direction, without the necessity of the second party to take actively part.
The key advance here is that the algorithm can be used for encryption of electronic
messages, which are transmitted by the means of public store-and-forward services.
In this section, the ElGamal cryptosystem will be introduced to the reader.

Firstly, the key generation mechanism is explained. As discussed above, the
basic requirement for a cryptographic system is at least one key for symmetric
algorithms and two keys for asymmetric algorithms. The key generation steps are
similar to the general scheme explained above. With ElGamal, only the receiver
needs to create a key in advance and publish it. Following our naming scheme from
above, we will now follow Bob through his procedure of key generation. Bob will
take the following steps to generate his keypair:

• Prime and group generation: First Bob needs to generate a large prime
p and the generator g of a multiplicative group Z∗

p of the integers modulo p.

• Private key selection: Now Bob selects an integer b from the group Z by
random and with the constraint 1 ≤ b ≤ p − 2. This will be the private
exponent.

• Public key assembling: From this we can compute the public key part g
b mod p. The public key of Bob in the ElGamal cryptosystem is the triplet
(p, g, gb ) and his private key is b.

• Public key publishing: The public key now needs to be published using
some dedicated keyserver or other means, so that Alice is able to get hold of
it.

Now, the encryption scheme works as follows. To encrypt a message M to Bob,
Alice first needs to obtain his public key triplet (p, g, gb ) from a key server or by
receiving it from him via unencrypted electronic mail. There is no security issue
involved in this transmission, as the only secret part, b, is sent in gb . Since the
core assumption of the ElGamal cryptosystem says that it is infeasible to compute
the discrete logarithm, this is safe.

For the encryption of the plaintext message M , Alice has to follow these steps:

• Obtain the public key: As described above, Alice has to acquire the public
key part (p, g, gb ) of Bob from an official and trusted keyserver.
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• Prepare M for encoding: Write M as set of integers (m1,m2, . . . ) in the
range of {1, . . . , p− 1}. These integers will be encoded one by one.

• Select random exponent: In this step, Alice will select a random expo-
nent k that takes the place of the second party’s private exponent in the
Diffie-Hellman key exchange. The randomness here is a crucial factor as the
possibility to guess the k gives a sensible amount of the information necessary
to decrypt the message to the attacker.

• Compute public key: To transmit the random exponent k to Bob, Alice
computes g k mod p and combines it with the ciphertext that shall be sent
to Bob.

• Encrypt the plaintext: In this step, Alice encrypts the message M to
the ciphertext C. For this, she iterates over the set created in step 2 and
calculates for each of the mi:

ci = m1 ∗ (gb)k

The ciphertext C is the set of all ciwith0 ≤ i ≤ |M |. The resulting encrypted
message C is sent to Bob together with the public key gk mod p derived from the
random private exponent. Even if an attacker would listen to this transmission,
and in a second step would also acquire the public key part g b of bob from a
keyserver, he would still not be able to derive gb ∗ k as can be seen from the
Discrete Logarithm problem. [16] Elgamal advises to use a new random k for each
of the single message blocks mi . This greatly improves security, as knowledge of
one message block mj does not lead the attacker to the knowledge of all other m i
. The reason for this ability is that if c1 = m1 ∗ (gb)kmodpandc2 = m2 ∗ (gb)kmodp,
from knowing only m1 the next part of the message m2 can be calculated by the
following formula:

m1

m2
= c1

c2

After receiving the encrypted message C and the randomized public key g k ,
Bob has to use the encryption algorithm to be able to read the plaintext M . This
algorithm can be divided in a few single steps:

• Compute shared key: The ElGamal cryptosystem helped Alice to define
a shared secret key without Bobs interaction. This shared secret is the com-
bination of Bobs private exponent b and the random exponent k chosen by
Alice. The shared key is defined by the following equation:

(gk)p−1−b = (gk)−b = b−bk

• Decryption: For each of the ciphertext parts ci Bob now computes the
plaintext using:

mi = (gk)−b ∗ cimodp

After combining all of the mi back to M he can read the message sent by Alice.
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Digital Signatures

As stated before cryptography is not explicitly restricted to encryption. One
of its other forms is authentication, which is another fundamental property of
cryptographic schemes. The way to achieve authentication mostly lies with digi-
tal signatures. Devising a digital signature requires a combination of information
concerning the message itself and that of the signer. Because digital information
can be cut copied and pasted, there should be a link between the message and
the digital signature itself.[4][5] Otherwise, the recipient could modify the message
before showing the message-signature pair to a judge. Even worse, he could attach
the signature to any message whatsoever, since it is impossible to detect electronic
‘cutting’ and ‘pasting’.[17] The following desirable properties can therefore be de-
duced from a digital signature:

• The signature is message dependent.

• Only the originator of an electronic message can compute the correct digital
signature.

• Anyone who receives a message and a digital signature can verify the signa-
ture and consequently be certain of the origin and integrity of the message.

This is were the one-way function enters. The one-way function can make a
unique fingerprint of a message. This unique fingerprint is then encrypted with
the trap-door one-way function. This is called the digital signature. The signature
is message dependent because of the unique digital fingerprint and it is uniquely
bound to the issuer because of the encryption with the unique private key.

For our scenarios we suppose that A and B (also known as Alice and Bob) are
as the encryption key of X, two users of a public-key cryptosystem. If we denote
Ex then we will distinguish the encryption and decryption procedures of A and B
with EA, DA, EB, DB[18].

If Alice wants to send a signed message to Bob, then the digital signature, is
computed as follows:

• Of the plaintext a unique fingerprint is calculated with the help of a one-way
function, h(p).

• The result of the calculation is then “signed” with her private key DA. Thus,
the digital signature now consist of: DA(h(p)).

• Alice then sends the plaintext, DA along with her signature, DA(h(p)) , to
Bob.

Bob will do the following after receiving the message:

• Of the plaintext he will calculate the unique fingerprint with the help of the
same one-way function, h(p).

• He will then decrypt the unique fingerprint with the help of the public key
of Alice, EA, which is available in the public file, EA(DA(h(p))).
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• Bob will then compare the value of his calculation with the value calculated
by Alice. If the two match then the message has been signed by Alice and
the message is unaltered.

Alice cannot later deny having send message, P, because only she could have
signed the message. Furthermore, she, or anyone else, can not modify plaintext P
because a message P’ would produce a different signature. Bob on the other hand
cannot use the signature for any other message because it is unique.
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Chapter 4

Blockchain Technology

Introduction

There exists, to the knowledge of the author, no single, formal definition of
blockchain technology, which is generally accepted. Many use Bitcoin as a starting
point, explaining blockchain technology by its first application, cryptocurrency.
However, there are systems that are not captured very well by that definition and
still are generally classified as blockchains. As for alternative definitions there is
one by Vitalik Buterin, the founder of Ethereum: “ a blockchain is a magic com-
puter that anyone can upload programs to and leave the programs to self-execute,
where the current and all previous states of every program are always publicly
visible and which carries a very strong cryptoeconomically secured guarantee that
programs running on the chain will continue to execute in exactly the way that the
blockchain protocol specifies.” [6]. The definition of blockchain made by Buterin
is not very rigorous or technical and is certainly not identical to Bitcoin, but man-
ages to include many characteristics of blockchain systems. An attempt to classify
different blockchain technologies was made by Okada, Yamasaki and Bracamonte
in 2017[19], but it fails to provide a satisfactory definition. A technical committee
has been formed within ISO to define areas for standardisation [20]. They have
yet to publish a formal definition but do describe the blockchain as: a shared,
immutable ledger that can record transactions across different industries, [...]. It
is a digital platform that records and verifies transactions in a transparent and se-
cure way, removing the need for middlemen and increasing trust through its highly
transparent nature. IBM proposes a similar definition saying that a blockchain is
a shared, immutable ledger for recording the history of transactions[7].

All the above definitions cover some but not all, not even the most, aspects of
a blockchain. For simplistic reasons we assume, for now, that all data stored in a
blockchain are in the form of transactions. To gain a better insight on what it is
and how it operates one must break it down. First and foremost, a blockchain is
a P2P network. Its users can be separated into two categories, the clients and the
miners (keeping in mind that a node may be both at different times, according to
her wishes).

• Clients: A user that is using the network to execute and receive payments
acoording to her wishes. In order to make a transaction, the sum is needed
alongside the addresses of the sender and the receiver. Moreover, an addi-
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tional fee is required that will be given to the miner for including the desired
transaction into her freshly mined block.

• Miner: A user that is trying to solve an one-way function (OWF). This
means that miners are given a value y=f(x), where f is an OWF and they are
trying to find x. This is being done by brute forcing inputs into the OWF
until the desirable output is presented or until receiving the solution from
another node of the network. If a solution is found, the miner broadcasts
it to the whole network as well as the newly minted block which contains
the transactions she wished to include in it. Should the network accept this
block, then she gets a reward in addition to the fees from the transactions
that were included.

Each minted block, by design, points to its immediate ancestor, thus form-
ing the ”chain of blocks”, or rather the blockchain. All users conclusively upon
receiving the solution and the data stored in the latest block, have a universal
understanding of the blockchain and are agreeing to its validity.

There is a case though when a node of the network has a view of the blockchain
and is receiving a different one from some of her neighbors. This is leading to a
conflict because each node must decide which one trully is ”the blockchain”. To
dissolve this dispute a simple rule is exercized: each node keeps working on the
view of the chain she has, unless she receives one which is longer. In that case she
throws the former away and starts working on the latter. This ensures that in the
long run one and only chain will remain if and only if the majority of the nodes
are so-called honest.

Another substantial aspect of the blockchain ecosystem is the payment of the
miners. Block reward as well as average transactions fees differ from chain to
chain and their values are generally not constant through time. For example,
Bitcoin’s block reward was at the first block 50BTC and now is at 12.50BTC with
their respective average transaction fees 0.0001BTC and 0.7640BTC with an all-
time maximum of 55.16BTC at 22/12/17. Ethereum also has fluctuations with
block reward being at start 5.01163ETH and now 4.35727ETH with their average
transaction fees being 0.0566 and 5.528ETH which is also the all-time maximum
for this blockchain.

Finally, of utmost importance is the fact that the one and only chain, which
each and every node can agree upon, is a truth that is indisputable for all the
nodes participating in the network. So, the protocol of every blockchain is, in
fact, a consensus agreement protocol. The most interesting part of this truth is
the hardness of the reversability of the blockchain. In order for an adversary to
change one of the blocks, let’s say the k-last block, he must do all the previous
work (finding new solutions k-times for the OWF) and come up with brand new
(k+1)-blocks in order to convince all the other nodes to accept his blockchain
as the biggest and therefore the true one. If we assume honest majority in the
network this holds with probability 1/2k+1 and obviously, this probability becomes
negligible as the computing power of the adversary diminishes as well or the deeper
she wants to meddle in the blockchain. Essentially, the mechanism explained above,
makes it more expensive to fake a transaction than the potential gain. Without
an appropriate algorithm for establishing consensus on the blockchain, there could
be no trust in the blockchain-system of Bitcoin, since anyone with access to the
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history of transactions (all nodes), could re-write history and publish it as the true
one.

So, the following definition seems to cover all of the above, that is the main
aspects of a blockchain. A blockchain is a distributed computing architecture where
a computer is called a node if it is participating in the blockchain network. Every
node has full knowledge of all the transactions that have occurred, information is
shared. Transactions are grouped into blocks that are successively added to the
distributed database. Only one block at a time can be added, and for a new block
to be added it has to contain a mathematical proof that verifies that it follows in
sequence from the previous block. The blocks are connected to each other in a
chronological order. The above definition is a very wide one, encompassing almost
all existing implementations of blockchains.

Bitcoin - The first blockchain

Blockchain technology stems from the seminal white paper[21], outlining how
the cryptocurrency Bitcoin could be constructed. Bitcoin solved a very important
problem in the field of electronic money called double-spending. This problem is
refering to one trying to buy two separate items while using the same monetary
tokens. Up until the invention of the blockchain, as well as nowadays for everyone
not using a cryptocurrency, this was solved through a central authority, such as
a bank or another trusted third party. To decentralize this procedure Nakamoto
proposed a time-stamp server, which ensures all transactions are appearing chrono-
logically in the data structure called ”the blockchain”. So, the blockchain of the
Bitcoin is a chain of linked blocks containing transactions from one user to another
as shown in the figure below.

In Bitcoin, users do not have accounts or account balances but instead sign
transactions using their private key. Each bitcoin is linked to a public key through
an unspent transaction output (UTXO) and the user who possesses the correspond-
ing private key is the owner and can control the usage of it. The UTXO is there
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because, in Bitcoin, all coins sent to an address have to be spent, even if the user
actually doesn’t want to spend the entire amount. It is however, possible to split
a transaction. Assume that a certain address contains 3 XBT (abbreviation for
the Bitcoin currency), and the owner of the private key to that address, i.e. the
owner of the bitcoins, wants to pay 1 XBT to another address. The new 1 XBT
transaction will use the entire 3 XBT as input and the 3 XBT are thereby spent.
So, the change in this transaction, the 2 XBT, will be sent back to the same user
but as a new input using a new address. A user who has taken part in payments,
whether as payer or payee, will have a collection of addresses, all summing up to
the total balance of her wallet.

The block holds transactions between users. In order for a transaction to be
considered valid it has to be included in a block. For the creation of the blocks,
the author(s) proposes the use of a Proof-of-Work (PoW) algorithm (finding the
solution to a problem, as explained above) for establishing consensus on which
chain is the correct one. This establishes an incentive for users to be correct in the
validation of transactions. Especially in Bitcoin’s blockchain, this is being done
through solving the SHA-256 hash function for some output parameterized by a
security parameter λ . This parameter is designed to change the hardness of the
given value so as, in average, one block being generated every ten minutes. More
precisely, a miner tries to find x in order to satisfy y=SHA-256(x), where y ends
in λ zeros. For example, if there is a radical advancement in the computational
power of even one miner, then the system will dynamically change the parameter
accordingly as to maintain the balance intended by its creator(s).

Historically, the first blockchain to be used was Bitcoin, therefore, there was
at first no distinction between Bitcoin and blockchain. All initial applications for
blockchain were within cryptocurrencies or financial processes. Many blockchain-
based use cases are still within the financial sector, but the benefits of disinterme-
diation of trust have proven to be useful in other areas as well. This was brought
forth by the advent of Ethereum, a Bitcoin-like cryptocurrency but with added
functionality for smart contracts.

Post-Bitcoin blockchains

Some properties of Bitcoin have been abstracted and rebuilt into what is now
called blockchain technology or distributed ledger technology. While still maintain-
ing the main properties of Bitcoin, new blockchains are often more flexible in their
applications and what actions they allow. It is a technology very much under de-
velopment where new approaches and applications are being published frequently,
most often through white papers published by start-ups or a group of corporate
researchers[22]. Still the basics of blockchain remain the same, it is a distributed,
time-stamped database with consensus-establishing peers.
Blockchain technology is characterised by the following traits:

• Distributed: Nodes are considered equal in the sense that they all have a
full copy of the entire history of the database. There can also be less equal
nodes, also called lightweight nodes, which only have a couple of the last
blocks stored locally. Generally, communication between nodes is done over
the Internet with private-key cryptography.
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• Time-stamped: Since every block of transactions is hashed into all the
subsequent blocks, it becomes increasingly difficult to change history the
further away in time the current block is. The blockchain at hand becomes
a provably correct auditing tool.

• Consensus: Nodes establish one truth about which version of the database is
the correct one through a consensus-algorithm. This serves to validate trans-
actions as well as to discourage for example double-spending attacks. The
type of consensus-algorithm being used is highly dependent on the structure
and purpose of the blockchain.

Permissions and specialization

As the development of blockchain technology progressed past Bitcoin, two dif-
ferent options developed as to who should be allowed to participate in the validation
and observing of the network. The dichotomy is essentially between permissioned
and permissionless blockchains, although there is in some cases some flexibility for
hybrid solutions to be implemented. A blockchain which exists openly on the in-
ternet is called permissionless, classic examples of such are Bitcoin and Ethereum.
This type of structure is what was defined in the Section 2.2. However, the more
actions that are allowed, the more possibilities to hack the blockchain there are.
This was seen during the infamous DAO-hack where approximately USD50 million
were siphoned from an ether fund. [23]. Also, since the data on the blockchain is
open to anyone who wishes to join the network, data has to be kept completely
anonymised (as not completely successfully attempted by Bitcoin,Vasek and Moore,
2015 ) if it’s necessary to keep it private. Since, in some cases, it is not possible to
anonymise all the data or it is simply not desirable that everyone can participate
in a network, permissioned blockchains were developed.

The principle of permissioned blockchains is that there is a regulation of who is
allowed to join and participate in the network. This can be done by a consortium
of companies, governmental agencies or other organisations, either by inviting new
members one by one, or by predefining a set of criteria. The benefits, besides
the increase in privacy, include the potential for more flexibility in adapting the
network, better scalability and faster transactions. Sometimes, depending on the
consensus algorithm at play, permissioned blockchains can be more susceptible to
unintended changes of its history. In other words, the speed, privacy and scalability
are sometimes being traded for immutability and censorship-resistance[3]. This
is because a permissioned blockchain doesn’t necessarily require a PoW-consensus
algorithm, but can use one with less resource expenditure, thus making the process
of concurrency easier.

Blockchains can also be created more or less flexible, or specific, in what ac-
tions are permitted on them. For example, Bitcoin and most coins, is an example
of highly specialized chains with one purpose - to safely transmit the tokens of the
cryptocurrency. On the other hand, there is Ethereum, with a virtual machine
built in, as well as the possibility to deploy smart contracts in a turing-complete
manner. Ethereum was explicitly created to allow for the creation of decentralised
applications (DApps), and has at the time of writing this thesis, roughly 1700
applications listed on https://www.stateofthedapps.com/. Ethereum is, however,
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Specialization\Permission Permissionless Permissioned

General Purpose Ethereum Monax’s eris-db

Specialized Bitcoin Multichain

Table 4.1: Generalized vs. Specialized blockchains and Permissioned vs. Permissionless.[2]

permissionless and isn’t the right platform for all DApps, necessarily. In table 2.1
the matrix of permissionless/ permissioned and generalized/specialized blockchains
is shown with examples of a blockchain or platform for each category. A gener-
alized blockchain is one which is not optimised for performing one specific task,
in opposition to a specialized one that is. Both Ethereum and Bitcoin are per-
missionless, but on the permissioned spectrum, there is the multi-purpose eris-db
from Monax and the specialized Multichain platform. Eris-db is a blockchain client
containing a permissions layer, an implementation of the EVM and uses by default
Tendermint consensus, although that can be modified. Tendermint is a Proof-of-
Validation (PoV) algorithm, where scarce tokens are deposited and are threatened
to be deleted if voting is dishonest. Eris-db is different from MultiChain in that,
MultiChain is a fork from the Bitcoin Core source code and is in many ways op-
timised to work with the Bitcoin network. Multichain is specialized because it
is optimised to perform transactions, whereas Monax is built to supply a great
number of services. It does not, however, mean that it is not possible to build cus-
tomised services on Multichain, or high-performance payment systems on Monax,
just that it is made easier by design. It doesn’t use PoW, but has a type of algo-
rithm where the maximum amount of votes that a miner can cast during a specific
timeframe is limited.[24]

Smart Contracts and Ethereum

The name smart contracts is arguably a misnomer since they are in fact neither
smart nor contracts in the common sense. Smart contracts are, in the context of
blockchain, simply logic that is published on a blockchain, can receive or perform
transactions like any address (transactions may be rejected or require special ar-
guments to function) and can act as an immutable agreement. The purpose of
smart contracts is to act as a ”computerised transaction protocol that executes
terms of a contract”[25] and was first coined by cryptographer Nick Szabo. The
basic idea, is that certain parts of contracts can be included in software in such a
way that the breach of them is either expensive or impossible. Smart contracts are
sometimes confused with Ricardian contracts, which is the digital recording and
connection to other systems of a contract at law. This is not what is meant by
smart contracts, since they do not need to be legal in any way, nor connected to
outside systems. One could however, find value through the connection of smart
contracts with Ricardian ones to ”outsource” functionality of legal contracts to
smart ones.

According to Szabo, contracts need to have some specific characteristics to be
defined as, truly, smart. These characteristics are: visibility, online enforceability,
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verifiability and privity. Visibility (Szabo uses the term observability) means that
participants in the contract should be able to see each other’s performance of the
terms of the contract, or to be able to prove the fulfilment of their own terms
to other participants. It is also referring to the visibility of actions taken by the
logic in the contract; a Point-Of-Sale screen showing the amount to be paid to the
customer but omitting the fact that data is being saved from the credit card is an
example of such a hidden action. Online enforceability refers to making certain
that the terms of a contract are being fulfilled. The measures that can be taken in
order to achieve this can be categorised into proactive and reactive ones. Proactive
measures seek to make it technically impossible to breach terms or to allow either
party to drop out of the contract if there is a valid breach on another part. Reactive
measures deter malicious behaviour through reputation or enforcement, but also by
recovering potential assets after breach of contract. Smart contracts also need to be
verifiable, or auditable, should there be a conflict. Lastly, smart contracts should
be as private as possible, meaning that knowledge and control of data involved in
a smart contract should only be available to participants if necessary.

One might notice that the objectives of smart contracts just mentioned; visibil-
ity, online enforceability, verifiability and privity, results in two separate directions.
Privity is exerting a controlling force over the contracts, wanting to minimise open-
ness to outside parties. Diametrically opposed, there are the other three objectives,
visibility, enforceability and verifiability, which require access to contractual data
to be handed out to participants or auditors. Therefore, an optimum must be
found where as little information and control as possible is given to external par-
ties, yet the possibility to verify, observe and enforce is still available. In 1997,
before blockchain technology and advances in zero-knowledge proofs, as well as,
secure multi-party computations, Szabo’s solution to the optimisation problem
was to trust an intermediary, a third party, such as an auditor.[26][27] A problem
of that approach is that by inducing judgement in the system, on one hand luck is
induced and on the other it becomes automatically semi-decentralized. Nowadays,
though, there exist the tools to eliminate such entities from our design maintainng
all the desired properties of the smart contract in question.

The Ethereum platform is a general blockchain, with a virtual machine (Ethereum
Virtual Machine, EVM) to run smart contracts. Since the environment exists only
on the blockchain in the form of a virtual machine, the smart contracts are com-
pletely isolated from network, file-system or other processes on the node machines.
A high-level, Turing complete language was created to write smart contracts with
on Ethereum. However, that language, Solidity, has now become standard also for
other platforms with smart contract capabilities. Solidity is similar to JavaScript
in syntax, but is written in a completely different style. After a contract has been
written in Solidity, it is compiled into EVM bytecode and then deployed at a spe-
cific Ethereum address. To deploy and interact with smart contracts on Ethereum
however, a special JavaScript RPC-library is used alongside a web API.3. Be-
cause smart contracts programming started with Ethereum and Solidity, it is still
a discipline under development. The Solidity language has a number of known pe-
culiarities and a list of changes to come, meaning that code being written now may
not be fully functional with the next update. There are a couple of programming
best practices that are specific to smart contracts development, gathered in the
(relatively) short time that Solidity has been in use. There are two main reasons
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behind the extra considerations of security that should be taken into account for
smart contracts development; Solidity contracts are likely to process the ownership
of valuable tokens, items or rights to something; the execution of smart contracts
occurs on a blockchain, meaning that all participants can observe it and the source
code for it. Common security guidelines that have been gathered during the short
time that Solidity has been used are:

• Damage Control: If possible, the amount of tokens stored in a smart
contract should be limited since, if the source code, the platform or the
compiler would contain a bug, then the tokens may be stuck in the contract.

• Modularity: Smart contracts should be kept as tiny and simple as possible.
Local variables and length of functions should be limited to keep the contracts
as readable as possible. The more modular the contracts are, the easier it is
to improve a system of smart contracts.

• Check-Effects: Functions should perform precondition checks at the first
step of the algorithm. Then, as a second step, changes to state-variable
should be made. Finally interactions with other contracts should occur.

Consensus algorithms

Consensus algorithms are of the highest relevance to blockchain technology
since the purpose of Bitcoin was to transfer value in an unregulated, distrusting
environment, where a sure way of validating transactions was needed. The goal of
the consensus algorithm is to ensure a single history of transactions exists and that
the history in question does not contain invalid or contradictory transactions. For
example, that no account is attempting to spend more than the account contains,
or to double-spend. In Table 2.2, different important consensus algorithms are
compared to each other. Below, a brief introduction to a few of them is given, but
for more details, the reader is referred to[21][28].

Bitcoin solved the consensus problem by announcing a target for each new
block. This target has to be equal or more than the hash of the previous block, the
hash of the current block and a variable nonce. Since the output of the hashing
function is evenly distributed, it’s impossible to create a block such that it will
be easy to reach the target, with certainty. Therefore, there is a race between the
mining computers in the network to find the right nonce. Once a target is reached,
the mining computer broadcasts that block to the network and other participants
validate the transactions. If enough validating nodes find the transactions to add
up, they agree upon that block being added to the blockchain. This procedure is
called proof-of-work (PoW). Since the goal is, not to give too much power to a single
person or organisation, a limited resource has to be chosen which will be spent upon
voting for the validity of a block. In PoW, that resource is computing power[28].
Since computing power is getting cheaper and more available with Moore’s Law
and cloud computing, the difficulty of the hashing problem is regulated according
to the frequency with which the previous problems were solved. A common critique
of PoW is however, that the ”waste” of computing power also means a large waste
of energy. There are miners who only mine in winter, and use the exhaust heat
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from the mining farm to warm up their house. What this essentially means is that
miners are forced to pool resources into what can ultimately be a handful of giant
Bitcoin farms, thus having centralised the decentralised network. Additionally,
Bitcoin does not have a very high throughput of transactions since the block time
stays constant at about 10 minutes and block size as well (about 1 MB). The
energy waste and throughput are two reasons why alternatives have emerged. The
most relevant are Proof-of-Stake (PoS) and Tendermint which are very similar.
Neither uses computing power as a scarce resource, but rather the ownership of
the inherent tokens of the blockchain. The principle is that owners of tokens put
a certain amount of tokens at ”stake” by betting on the version of the blockchain
that they believe is the correct one. This will increasingly incentivise validators
to behave according to the rules depending on how much they possess. Validators
in the Tendermint consensus algorithm are nodes who take turns proposing blocks
of transactions and then vote on them. If a block fails to get enough votes, the
protocol moves to the next validator to propose a block. To successfully commit
a block, there are two stages that need to be passed: pre-commit and pre-vote.
A block is committed when more than 2/3 of validators pre-commit for the same
block on the same round. As long as no more than 1/3 of validators are byzantine,
it is impossible for conflicting blocks to be committed at the same height of the
blockchain. Tendermint can be modified to act as a Proof-of-Stake algorithm by
assigning different ”weights” to the votes of different validators. In PoS, there is
an attack, or a problem, called the nothing-at-stake-attack. The core of it is that
there is no reason why a validator couldn’t bet on all different proposed versions,
thus being certain to win. The Ethereum wiki-page explains it as: an attacker may
be able to send a transaction in exchange for some digital good (usually another
cryptocurrency), receive the good, then start a fork of the blockchain from one
block behind the transaction and send the money to themselves instead, and even
with 1�of the total stake the attacker’s fork would win because everyone else is
mining on both.
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Consensus
Algo-
rithm

Resource
being used

Benefits Drawback Examples

PoW Computing
power

Trustless,
im-
mutable,
highly de-
centralized

Energy
consump-
tion,
trans-
action
output

Bitcoin

PoS Ownership
of fixed
ammount
of tokens

efficient in
energy and
through-
put, scal-
able

Nothing-
at-stake
problem

Cardano

Delegated
PoS

Ownership
of scarce
tokens
and peer
reputation

Allegedly
more effi-
cient than
PoS

Voter ap-
athy in
elections
can lead to
excessive
centraliza-
tion and
reduced
robustness

BitShares

Proof-
of-
Validation
(PoV)

Security
deposit
of scarce
tokens
subject
to burn if
voting dis-
honestly

Has the
benefits of
PoS with-
out almost
any of its
drawbacks

Nothing-
at-stake
prob-
lem still
persists

Eris-Db

Table 4.2: Consensus algorithms for usage in blockchains. Adapted from [3]

Pegged Sidechains

Sidechains are the concept of parallel blockchains that allow assets from one
blockchain to be transferred into another. The concept was formally announced
in 2014 by Blockstream, which is a private company consisting of many of the
Bitcoin core development team members. While the concept originated from Bit-
coin, the broader theory behind sidechains is applicable to any blockchain design.
At first, the intention of sidechains was to enable the transfer of bitcoins to other
blockchains, thus enabling sidechains to act as alternative cryptocurrency systems
without requiring the minting of new coins. However, the initial permissionless
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sidechain design was discovered to contain non-trivial security flaws. Meanwhile,
newer designs are currently under development, but have at the time of writing
not reached maturity or production.[8]

Nevertheless, transferring assets from one blockchain to a permissioned blockchain
is in fact already workable by the sidechain’s design. The idea is fairly simple, with
the introduction of a function called a two-way peg, assets will be allowed to be
transferred from one blockchain to another and back. One of the key principles of
the two-way peg is that it is impossible to return more assets to the ”parent chain”
than what originated from it, thus, the total number of assets in the parent chain
cannot be compromised by the implementation of the peg. Thus, any new rules
can be implemented in the sidechain without posing a risk to the parent chain.

Sidechains can extend the functionality of a parent blockchain by introducing
new features on the sidechain. For example, since a permissioned sidechain can
leverage a threshold signature scheme consensus model, this allows for near-instant
confirmation times of an originally permissionless token such as the bitcoin. One
example of such a sidechain is the sidechain Liquid, maintained by Blockstream for
various Bitcoin exchanges.[9] Other examples of features sidechains can potentially
bring to permissionless networks are things such as supporting multiple asset types
from different blockchains to exist on a mutual sidechain such as smart contracts.

A two-way peg can be either symmetric or assymetric. In the first case, assets
are locked on the parent chain through the means of multi-party escrow, meaning
that they are sent to an address which requires a multisignature to unlock. This
multisignature is formed by the permissioned entities on the sidechain. When the
assets on the parent chain are in escrow, the sidechain can allow the creation of
these assets on its own blockchain. In order to reintroduce the assets from the
sidechain on the parent chain, the owners of the assets on the sidechain must
prove that they have destroyed the coins on the sidechain by sending them to an
unspendable address.[29] When this proof is provided, the permissioned entities on
the parent chain release the same amount of assets from the parent chain escrow.
The proof provided for this whole scheme is a simplified payment verification proof
(or SPV proof).[8] Essentially, an SPV proof is composed of a list of blockheaders
demonstrating proof-of-work and a cryptographic proof that an output was created
in one of the blocks. This allows verifiers to check that some amount of work has
been committed to the existence of an output. Such a proof may be invalidated
by another proof demonstrating the existence of a chain with more work which
does not include the block which created the output. So the symmetric peg works
as follows: to transfer parent chain coins into sidechain coins, they are sent to a
special output on the parent chain that can only be unlocked by an SPV proof of
possession on the sidechain. The two blockchains need to be synchronized and in
order to achieve that, the definition of two waiting periods is needed.

• Confirmation period: The duration for which a coin must be locked on
the parent chain before it can be transferred to the sidechain. A typical
confirmation period would be on the order of a day or two in the originally
proposed idea.

• Contest period: A duration in which a newly-transferred coin may not be
spent on the sidechain. A typical contest period would also be on the order
of a day or two in the originally proposed idea.
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Figure 4.1: Example two-way peg protocol.

The assymetric peg, on the other hand, works somewhat differently. The users
of the sidechain are full validators of the parent chain, and transfers from parent
chain to sidechain do not require SPV proofs, since all validators are aware of
the state of the parent chain. Still, though, the parent chain is unaware of the
sidechain, so SPV proofs are required to transfer back. As a result, prerequisite
for the adoption of this scheme consists that the sidechain’s validators are forced
to track the parent chain, whereas in the symmetric scenario no such thing is
needed. In conclusion, it is obvious that the symmetric peg has a dreadful drawback
concerning its waiting periods, whilst the assymetric one requires more information
to be stored in the clients of the sidechain’s users.

SPV proofs

In order to transfer coins from a sidechain back to Bitcoin, we need to embed
proofs that sidechain coins were locked in the Bitcoin blockchain. These proofs
should contain (a) a record that an output was created in the sidechain, and (b) a
DMMS proving sufficient work on top of this output. Because Bitcoin’s blockchain
is shared and validated by all of its participants, these proofs must not impose
much burden on the network. Outputs can be easily recorded compactly, but it is
not obvious that the DMMS can be.

Compact SPV Security. The confidence in an SPV proof can be justified by
modelling an attacker and the honest network as random processes. These random
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processes have a useful statistical property: while each hash must be less than its
target value to be valid, half the time it will be less than half the target; a third
of the time it will be less than a third the target; a quarter of the time less than
a quarter the target; and so on. While the hash value itself does not change the
amount of work a block is counted as, the presence of lower-than-necessary hashes
is infact statistical evidence of more work done in the chain. We can exploit this
fact to prove equal amounts of work with only a few block headers. It should
therefore be possible to greatly compress a list of headers while still proving the
same amount of work. We refer to such a compressed list as a compact SPV proof
or compressed DMMS.

However, while the expected work required to produce a fraudulent compact
SPV proof is the same as that for a non-compact one, a forger’s probability of
success no longer decays exponentially with the amount of work proven: a weak
opportunistic attacker has a much higher probability of succeeding “by chance”;
i.e., by finding low hashes early. To illustrate this, suppose such an attacker has
10�of the network’s hashrate, and is trying to create an SPV proof of 1000 blocks
before the network has produced this many. Following the formula in we see that
his likelihood of success is ≈ 10=196. To contrast, the same attacker in the same
time can produce a single block proving 1000 blocks’ worth of work with probability
roughly 10 , a much higher number.

For now we will describe an implementation of compact SPV proofs, along with
some potential solutions to block this sort of attack while still obtaining significant
proof compaction. Note that we are assuming a constant difficulty. We observe
that Bitcoin’s difficulty, while non- constant, changes slowly enough to be resistant
to known attacks. We therefore expect that corrections which take into account
the adjusting difficulty can be made.

Implementation. The inspiration for compact SPV proofs is the skiplist, a
probabilistic data structure which provides log-complexity search without requiring
rebalancing (which is good because an append-only structure such as a blockchain
cannot be rebalanced). We require a change to Bitcoin so that rather than each
blockheader committing only to the header before it, it commits to every one of its
ancestors. These commitments can be stored in a Merkle tree for space efficiency:
by including only a root hash in each block, we obtain a commitment to every
element in the tree. Second, when extracting SPV proofs, provers are allowed to
use these commitments to jump back to a block more than one link back in the
chain, provided the work actually proven by the header exceeds the total target
work proven by only following direct predecessor links. The result is a short DMMS
which proves just as much work as the original blockchain.

How much smaller is this? Suppose we are trying to produce an SPV proof of an
entire blockchain of height N. Assume for simplicity that difficulty is constant for
the chain; i.e., every block target is the same. Consider the probability of finding
a large enough proof to skip all the way back to the genesis within x blocks; that
is, between block N −x and block N. This is one minus the probability we don’t
equals x over N and the expected number of blocks needed to scan back before
skipping the remainder of the chain is thus N+1 over 2.

Therefore if we want to skip the entire remaining chain in one jump, we expect
to search only halfway; by the same argument we expect to skip this half after
only a quarter, this quarter after only an eighth, and so on. The result is that the
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expected total proof length is logarithmic in the original length of the chain. For a
million-block chain, the expected proof size for the entire chain is only log 1000000
≈ 20 headers. This brings the DMMS size down into the tens-of-kilobytes range.

However, as observed above, if an attacker is able to produce compact proofs
in which only the revealed headers are actually mined, he is able to do so with
non-negligible probability in the total work being proven. One such strategy is for
the attacker to produce invalid blocks in which every backlink points to the most
recent block. Then when extracting a compact proof, the attacker simply follows
the highest-weighted link every time. We can adapt our scheme to prevent this in
one of several ways[8]:

• By limiting the maximum skip size, we return to Bitcoin’s property that the
likelihood of a probabilistic attack decays exponentially with the amount of
work being proven. The expected proof size is smaller than a full list of
headers by a constant (proportional to the maximum skip size) factor.

• By using a maximum skip size which increases with the amount of work being
proven it is possible to get sublinear proof sizes, at the cost of subexponential
decay in the probability of attack success. This gives greater space savings
while still forcing a probabilistic attacker’s likelihood of success low enough
to be considered negligible.

• Interactive approaches or a cut-and-choose mechanism may allow compact
proofs with only a small security reduction. For example, provers might be
required to reveal random committed blockheaders (and their connection to
the chain), using some part of the proof as a random seed. This reduces the
probability of attack while only increasing proof size by a constant factor.

If we expect many transfers per sidechain, we can maintain a special output in
the parent chain which tracks the sidechain’s tip. This output is moved by separate
SPV proofs (which may be compacted in one of the above ways), with the result
that the parent chain is aware of a recent sidechain’s tip at all times. Then transfer
proofs would be required to always end at this tip, which can be verified with only
a single output lookup. This guarantees verifiers that there are no “missing links”
in the transfer proofs, so they may be logarithmic in size without increased risk of
forgery. This makes the total cost to the parent chain proportional to the number of
sidechains and their length; without this output, the total cost is also proportional
to the number of inter-chain transfers.
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Chapter 5

Cryptographic Protocols

Introduction

Cryptographers aim to deliver protocols which preserve security requirements
in the presence of an arbitrary adversary. However, such an adversary should not
be expected to follow any prescribed rules, nor adhere to any particular behavioral
patterns. Moreover, the ingenuity of the adversary should be considered boundless.
As an analogy, let’s consider, for example, the challenge faced by the architects of
the ‘inescapable’ Alcatraz. The prison is situated 1.5 miles from San Francisco,
California, and isolated from the mainland by the strong currents of San Francisco
Bay. In addition to the treacherous waters and the physical security features,
inmates were counted twelve times a day and the ratio of inmates to armed guards
was three to one. Despite this, an elaborate escape plan was hatched by Clarence
Anglin, John Anglin, Frank Morris and Allen West which involved the fabrication
of: life-like dummies, fashioned from soap, toilet paper and hair (the dummies
were used to avoid detection during evening head counts); tunneling equipment,
built from the motor of a stolen vacuum cleaner; and a raft, constructed from
the rain coats of fellow inmates. On June 11, 1962 the two Anglin brothers and
Morris escaped the prison. Their whereabouts are currently unknown. Given the
water temperature and tidal direction, the official FBI investigation presumes the
three men drowned; however, the only thing known for certain, is the security of
Alcatraz was violated. Designing a resilient prison to contain such devious inmates,
whom are determined to escape, is difficult. In some sense, cryptographers face a
more challenging problem: a prison may be considered inescapable if no inmate
has successfully broken out; by comparison, we will only consider a protocol to be
secure, if security requirements cannot be violated by any adversary.

Cryptographic protocols are small distributed algorithms that aim to provide
some security-related objective over a public communication network, such as the
Internet. Since the communication medium is public, an adversary may interfere
with the transmitted messages. This introduces the possibility of interference by
a powerful adversary and has made the design of secure protocols notoriously
difficult. The canonical example is the Needham-Shroeder public key protocol[30],
which is intended to provide mutual authentication of two principals. The protocol
was scrutinized by experts for nearly two decades before Lowe discovered a man-
in-the-middle attack[31]. This dictates the necessity for protocol verification and
moreover, highlights the need for automated support to overcome the inherent
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human weaknesses present in the manual verification process.

Verification of protocols

When verifying protocols there are two distinct cases: the ideal and the real
world. Firstly, in the ideal scenario there exists two schools as to how to verify a
protocol: the computational and the formal methods one.

• Computational: In this school, often called the provable security school,
a protocol is analyzed according to some well-defined model. A complexity
theoretic reduction is given which turns an adversary against the protocol
into an adversary against a component. Thus the protocol is secure if all of
its components are secure. To determine whether the component is secure
(which is often a cryptographic scheme) a further reduction is provided to a
cryptographic primitive. These reductions can be complex, with proofs being
many pages long, and needing to be produced and verified by hand.

• Formal Methods: In this school, often called the symbolic school, a pro-
tocol is analyzed assuming perfect cryptography. The protocol is then ab-
stractly described in, for example, a process algebra, with the attacker’s goals
being described by equations and the attacker’s capabilities defined by equa-
tional theories. After this stage an automated checking process is applied
to ensure that the attacker can never reach the stated goals. This type of
analysis is often said to use the “Dolev-Yao” model.

Each school has its advantages and disadvantages. The first school has the
disadvantage that it requires hand generated and checked proofs; on the other hand
it models the cryptography and adversary as close to the real world as possible. The
second school has the disadvantage that it assumes perfect cryptography (which
we know is not possible in real-life systems), but it allows for tools that automate
devising proofs, or at the very least checking them.

Now, in the real world protocols are almost always designed, deployed, patched
and extended before any formal analysis of their properties happens. This is ei-
ther for historic reasons (the protocols date to a time before verification techniques
were understood), or for business reasons (for example a protocol is defined “in
house” and only then is made public for public analysis, after a product has been
produced). Thus formal verification using either symbolic or computational means
is often applied post-hoc. Often this post-hoc analysis finds faults in the stan-
darized/deployed protocols or it can only be applied to small subsets of the actual
protocol. In the latter case one can obtain verification of the small part, but not
of the whole protocol. This leads to a major problem concerning protocols: their
composability. A protocol when run in isolation may be secure but should it be
run in composition (either sequentially or in parallel) it may not retain its security
properties. Since most protocols are run in an online environment, with multiple
executions happening at any one time, the issue of parallel composition is vital to
ensure. Techniques exist to enable composition of protocols to be designed in from
the start, for example the Universal Composability Framework, which consists the
strongest composability framework today.
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Ideal/ Real paradigm

One of the main objectives of cryptography, as stated before, is to construct
protocols, which are ”secure” even in the presence of corrupted parties. But, first
of all, we have to define what secure means. In order to do so imagine what
properties we would have in an ideal world and then we call a protocol secure if
the real (the constructed) protocol has similar properties. This is the basic idea of
the Ideal/Real paradigm.

There are two main kinds of adversaries: static and adaptive. In the first case,
the adversary chooses which party it corrupts before the protocol begins[32]. In the
latter case, the adversary chooses the party to be corrupted during the execution
of the protocol. The network, which is used might be either authenticated, which
means that the receiver always knows who the sender was, or not. It might also
have secure or public channels. The former ensure that the transmitted messages
reveal useful information only to the receiver, while the latter do not. Here, for sim-
plicity, we may assume static adversaries and a network with secure, authenticated
channels.

For example let us see a ZK protocol for some relation R, where generally the
verifier V has as input some y and the prover P wants to prove to V that there
exists some x such that (x, y) ε R. In an ideal world we can imagine a third party,
which is honest and trustful and can communicate with both P and V . In this
ideal scenario, P could give (x, y) to this trusted party the latter would check if
(x, y) ε R and then tell V if this is true or false.

However, in the real world we do not have such trusted parties and we have
to substitute them with a cryptographic protocol π between P and V . Roughly
speaking, the Ideal/Real paradigm requires that for whatever information an ad-
versary A (which plays the role of either P or V ) could retrieve in the Real world,
there is a way to retrieve it in the Ideal world as well.

The trusted third party can be viewed as the functionality we want to achieve
and we denote it by FZK . If some protocol satisfies the above property regarding
this functionality, we call it secure. The formal definition of security follows:

Definition 1. A protocol π realizes FZK if for all ppt A, there exists a ppt S
such that

RealπA ≈ c IdealFZK
S .

Now let us see what is the role of simulator S in each case of corruption. In the
case where the adversary A corrupts the verifier V , the simulator S only learns
in the ideal world whether the statement is true or not, while in the real world A
also sees a proof for that. Thus, S must be able to simulate an accepting proof,
while only knowing that the statement is true. On the other hand, if A corrupts
P , S must be able to provide the witness x to the functionality F ZK in the Ideal
world. Observing that S can simulate V we see that S must be able to extract the
witness from P (which is corrupted). The next theorem must be intuitively clear:
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Random oracle

Another primitive is the Random oracle model which is commonly used in
cryptographic protocols and we shall now give its definition:

A function H : {0, 1}∗ → {0, 1}k, mapping bit strings of arbitrary length to bit
strings of a fixed length k, k > 0, is called a hash function. Function H is called a
cryptographic hash function, if it is easy to compute H(x) given any string x, and
one or more of the following requirements are satisfied:

• preimage resistance (onewayness): given a k-bit string y, it is hard to
find a bit string x such that H(x) = y.

• 2nd-preimage resistance (weak collision resistance): given a bit string
x, it is hard to find a bit string x’ 6= x such that H(x’) = H(x).

• collision resistance (strong collision resistance): it is hard to find a
pair of bit strings (x, x’) with x 6= x’ such that H(x) = H(x’).

In general, collision resistance implies 2nd-preimage resistance, but collision
resistance need not imply preimage resistance. In practice, however, cryptographic
hash functions usually satisfy all three requirements[11].

Practical examples of cryptographic hash functions are MD5, SHA-1, SHA-
256, with output lengths k = 128, k = 160, and k = 256, respectively. If collision
resistance is not required, one may truncate the outputs by discarding, e.g., the
last k/2 bits; the resulting hash function is still preimage resistant.

Many protocols make use of a cryptographic hash function. In order to be
able to prove anything useful on the security of such protocols one commonly uses
the so-called random oracle model. In this model, a cryptographic hash function
is viewed as a random oracle, which when queried will behave as a black box
containing a random function H : {0, 1}∗ → {0, 1}k , say. If the oracle is queried
on an input value x, it will return the output value H(x). As a consequence, if the
oracle is queried multiple times on the same input, it will return the same output
value, as H is a function. Moreover, if one observes the distribution of the output
value for different input values, the distribution will be uniform, as H is a random
function.

Note that the use of the random oracle model is a heuristic. If we prove a
protocol secure in the random oracle model, it does not follow that the same
protocol using, e.g., SHA-256 as its hash function is secure, since SHA-256 is
simply not a random function. Thus, the practical upshot of the random oracle
model is that a protocol proved secure in it can only be broken if the attacker takes
into account specific properties of the concrete hash function used.

There are numerous further requirements that can be demanded of a crypto-
graphic hash function beyond what is stated in the definition stated earlier. In
general, any deviation from what can be statistically expected of a random func-
tion should be absent or unlikely, and in any case it should be infeasible to exploit
such statistical weaknesses. By definition, the random oracle model is robust with
respect to such additional requirements. For example, partial preimage resistance
(or, local onewayness) basically states that given a k-bit string y it is hard to find
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(partial) information about any input x satisfying H(x) = y. Many applications
of hash functions,such as the bit commitment scheme stated later, rely on this re-
quirement rather than the (much weaker) requirement of preimage resistance[11].
Clearly, partial preimage resistance also holds in the random oracle model, in which
each hash value is, by definition, statistically independent of the input value.

On-chain and off-chain protocols

Since the introduction of Bitcoin and blockchain in general, the possibility of
running cryptographic protocols on a blockchain has been explored. The desirable
properties provided by the use of the blockchain, such as, anonymity, verifiability
and traceability of assets are are some of the reasons for doing so. The issue
that was, firstly, encountered was the time of execution of such constructions,
especially in the Bitcoin’s blockchain. Imagine trying to run a Σ-protocol where
three messages need to be exchanged. For doing so, while being close to certain
that there will be proof of the protocol’s execution, at the time of writing this
thesis and supposing the use of Bitcoin’s blockchain, the two parties would have
to wait approximately three hours, for the messages to be burried deeply enough
in the blockchain and thus be forever verifiable.

For even more complex designs, the time needed to be spent, before the com-
pletion of the protocol, consists in reality a prohibitive factor in designing on-chain
protocols. So, the idea of constructing off-chain protocols is being entertained
and in fact the first results seem to be very efficient both with respect to time
and to computational complexity of the designs. In particular, an off-chain proto-
col for executing the game of poker was introduced recently and was part of the
motivation for this thesis as well. The idea behind that construction was to use
the blockchain ”only when needed” through a penalizing mechanism for players’
misbehavior, while, otherwise, executing the protocol over a public network.
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Chapter 6

Our construction

Introduction

In this chapter the game of roulette will be executed. It is a game played
in rounds, where each round has a random outcome that affects the balances of
the players according to their respective bets. Specifically, a protocol will be con-
structed for this purpose which must have certain limitations and properties. In
order to identify them the game has to be broken down. Firstly, let’s think of this
as a house game, where there is the owner of the game, RouletteMaster (RM) and
the rest of his guests are playing against him (players). In this scenario all people
have direct contact with the physical aspect of the game, a game which has some
rules by default and the ones that are of major importance to our construction,
specifically, are the following:

• The maximum payout in each round for every player, should one decide to
go all-in on a number, with balance b is 36 ∗ b.

• At any given point, before the spinning of the ball, the game owner has to
be able to cover the maximum payout for all of her guests.

Now, let’s assume that we want to execute this game remotely, where all com-
munication is being done over a private network. A first idea would be for all
players to send their input concerning their choices, in numbers and bets, then
wait for the RM to spin the ball, tally the result and inform accordingly all the
players. In this case an extreme amount of trust towards the RM is required as:

• There are no guarantees of any kind that RM will not lie, concerning the
input received from the players

• There can be no verification of the randomness of the result.

In fact, RM is practically incentivised to lie about the choices of the players or
even generate biased results. In order to avoid this extreme trust prerequisite the
idea of using a blockchain to store the communication between each player and RM
was explored alongside a multi-party computation in order to generate a random
result for all players. In order to go deeper into the construction let’s state some
preliminaries.
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Preliminaries

Game overview

Initially a player places bets on numbers from 0 to 36 according to her wishes.
Upon completing the bet placement a ball is spinned on a 37-spot wheel and when
it stops on a number the bets are being payed from the host of the game towards
the players who bet on that particular number. All other bets are lost to the
game host. The spinning of the ball is used to simulate a number generation as
randomnly as possible. The game is repeated until, either the player or the host
loses all their money, or upon one of them wishes to terminate the game.

Actors

The actors of the protocol, as stated above, will be two: the RouletteMaster
(RM) and the other players. RM uses a blockchain, namely Roulettechain and is a
miner in it. Other players get Roulettechain’s tokens, in order to play against RM.
Finally, the latter is in charge of publishing on the blockchain crucial information
concerning the communication between every other player and herself.

Digital signatures

The communication between the players is being done using secure digital sig-
natures with Existential Unforgeability under Adaptive Chosen Message Attacks
(EUF-CMA). In general, a digital signature scheme is a tuple of three PPT algo-
rithms SIG = (SIG.Gen, SIG.Sign, SIG.Vrf) such that:

• SIG.Gen(1λ ) takes in a security parameter and outputs a verification key
SIG.vk and a signing key SIG.sk.

• SIG.Sign SIG.sk (m) takes in a signing key SIG.sk and a message m, out-
putting a signature σ on message m under signing key SIG.sk.

• SIG.Vrf SIG.vk (m, σ) takes in a verification key SIG.vk, a message m and
a signature σ, outputting 1 if the signature is valid and 0 otherwise.

Algorithm Calcplayers

The calculation of the players for each round is being done with the use of
the following algorithm which ensures at the start of every given round maximum
resources in game.

Idea from naive to smart

The first (naive) idea was to have RM use Roulettechain, on which the com-
munication of the protocol would be stored. Other players wanting to play would
get that blockchain’s tokens. Upon wishing, RM would broadcast her intension
to host a game and all interested parties would join. Should a player run out of
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Data: queue[n], balance[n]
Result: The players for a round of roulette
initialization;
tempbalance ← balance[0];
i ← 0;
while tempbalance > 0 and i ≤ n do

i++;
if tempbalance > balance[i]∗36 then

tempbalance ← tempbalance - balance[i];
give player with balance[i] idi;

else
swift from i+1 space balance[n] one spot right;
balance[i+1] ← balance[i] - tempbalance;
balance[i] ← tempbalance/36 ;
tempbalance ← 0 ;
give player with balance[i] idi;

end

end

Figure 6.1: Algorithm CalcPlayers

money, they would be eliminated from the game. The above scenario has some ma-
jor drawbacks needing attention in order to create a cryptographic protocol with
desirable properties. In particular, RM can exclude messages from some blocks,
thus pretending never to have gotten them in the first place. Another power she
has over the game is reorganizing the table as seeing fit, should RM lose a round
and as a result her balance would be below the threshold of being able to cover
the balances of the rest of the players. An issue needing attention as well, is that
the instance of the game described till now is a static one, where players simulate
a tournament-type roulette game. Lastly, should all messages be written on the
blockchain then, after the completion of the game, all information stored in previ-
ous blocks would be of no use to anyone, so there would be too much useless space
on-chain.

Our first attempts on tackling these weaknesses were to focus on achieving
dynamic-ability with respect to players in the game. This can be succeeded by
constructing a one-round protocol that when executed repeatedly carries out a
dynamic game of roulette. This one-round protocol would be played seperately
between the host and each other player in a ”one.vs.one” setting and would consist
of four phases and at the end of each crucial information would be included in a
block, on Roulettechain and every player would verify its legitimacy. In particular,
the four phases in time sequence would be the following:

• Request phase: All players send their intentions, for participating or not,
to RM for the round.

• Calculating players phase: RM calculates the players for the round and
publishes them on-chain.

44



• Betting Phase: All players send their bets to RM, who then publishes them
on-chain.

• Tallying result phase: RM calculates the results for the round and pulishes
them on-chain.

Having ensured the dynamic aspect of our game, playerwise, the next problem
was space. The notion of sidechains erupted and the solution was found. In more
detail, there would be, now, Roulettechain and should one wish to host a game they
would start a pegged sidechain from one of Roulettechain’s blocks. The advantage
provided was that upon completion of the game, all of its participants could erase
their locally stored sidechain with the new balances of the players being secured
on Roulettechain, having avoided the excessive space on it and therefore, on the
hard drives of the nodes of the network.

The issue with RM being able to reorder the table was conquered with the
adoption of an algorithm that would ensure maximum resources in the game at
the start of any given round. More specifically, for the algorithm to work a queue
of players wanting to take part in the game as well as a queue for the requests of
every player would need to be inserted into the construction. The algorithm works
s follows: RM takes requests for the round according to, firstly, the players of the
previous round and then her queue of players waiting to play. All these requests
are added serially to her queue of requests. Then she takes the requests of the
new, prospective, players and adds them as well, updating the queue of requests
once more. Now, RM executes the requests respecting priority and if the game
”fills up”, meaning that the insertion of another player in the game could jeoprdize
the second rule of the game, as stated before, then the player in question will be
inserted with as much money as possible so as to maintain coverability of the RM
bet-wise. The proof that this algorithm is the best for RM and all other players
derives from the fact that due to the nature of the game, RM has a 2,7�advantage.

Another improvement could be considered in the area of the multi-party com-
putation. More precisely, a commitment scheme where the commitment would be
the encrypted bets of a player and the reveal would be the secret encryption key
was explored and seemed to achieve even greater security.

In addition to all of the above, to prevent RM from excluding message, a
recovery mechanism will be inserted to our construction. The purpose of this
mechanism is to ensure that should a wrongdoing happens by the RM, the players
can reverse it and incur the apropriate penalty. If a player enters the recovery
at any step of a given phase, she complains about a mistake on Roulettechain,
providing the encriminating evidence, while haulting the flow of the game. So,
should Roulettechain have liveliness and robustness, this complaint will be inserted
in a block eventually and the incident will be corrected.

Finally the realization that there is no particular need of a universal result per
round and that it is rather an improvement if we consider the game of roulette as
many instances of an one.vs.one games. This holds because in the latter scenario,
the adversary of our model will be able to corrupt at most one player per result.
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The Roulette Functionality FRoullete

. We, now, formalize the earlier game in the ideal functionality FRoulette in the
figure below.

Functionality FRoulette

The functionality is executed with n players with identities (id0, . . . , idn ).
There is one corrupted party that is controlled by S. Whenever a message is
sent to S for confirmation or action selection, S should answer, but can always
answer abort, in which case the recovery procedure is executed; this option will
not be explicitly mentioned in the functionality description henceforth.

• Request phase: Wait to receive request[i] from each player and procced
as following depending on their choice:

– Player Check-out: Send (Check-out, i) to S. If S answers
(checkout, i), mark Pi as inactive in the game, send (payout,
coins(balance[i])) to Pi and ignore future messages from Pi . If no
active player is left, stop the execution.

– Player Check-in: Wait to recieve a message (Check-in, M ) from
each other player and store them in requests0[n] .

• Calculating players phase: Send requests0[n] to S so as to run the
algorithm CalcPlayers to decide on the eligible players of the round and
announce the final check-ins to the other players. Keep track of the active
players in the game, who are automatically considered that upon checking
in the game.

• Betting phase: Wait to receive beti[j] =Encr(mij from each player and
inform all the other players about them.

• Tallying result phase: Send beti[j] for all i,j to S. S calculates resultk[i]
= (SHA256(

∑m
j=1(Dec(Encr(mi,j)) ⊕ (Dec(Encr(m0,j)))) mod 37 and in-

forms the other players about the results.

Figure 6.2: Functionality FRoulette
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Roulette protocol

In building our protocol, we consider all ideas mentioned above and formally
express them. All actors are considered players in the manner of RM being
Player0,whereas everyone else engaging in the game being Playeri. Each player’s
balance is represented in a vector balance[i]. An array containing the requests of
each of the n players for a round is needed, requests[n] as well as one for each
player’s bets, beti[j]. Also, the hash function SHA256(x) along with the ⊕ per-
mutation is used for the calculation of the result for round k and per playeri,
resultk[i].

Protocol πRoulette

Protocol πRoulette is executed by n players with identities (id0 ,. . . , idn), pa-
rameterized by a timeout limit τ and interacting with the stateful contract
functionality FSC . We assume that the parties agree on a generator g of a
group G of order p for the El-Gamal encrypion scheme EGE and also on a
EUF-CMA secure digital signature scheme SIG. Moreover, a nonce unique to
each protocol execution and protocol round(e.g. a hash of the public proto-
col transcript up to the current round) is implicitly attached to every signed
message to avoid replay attacks.
Recovery Triggers: Whenever a signature is published, its validity is
tested. If the test fails, the party proceeds to the recovery phase. The same
happens if a party does not receive an expected message until a timeout limit τ.

Request phase: For i = 0, . . . , n, the party with idi proceeds as follows:

• Verifies information in the previous block, secretkey[i], that is the other
player’s secret key as well as resultk[i] for the previous (k) round.

• Generates the keys of the signature scheme
(SIG.vki , SIG.ski) ← SIG.Gen (1λ ).

• Uses the keys above forn the encryption scheme, such as,
EGE.ski = SIG.ski and EGE.pki = SIG.vki

• Sends:

– Check-in: (Check-in,M, walletadressi SIG.vki ), where M is the
maximum sum of money intended to be played for the round and
walletaddressi points to the transaction of a block in Roulettechain
from where the money would be bet, if she wants to play.

Figure 6.3: Protocol πRoulette
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• Or else:

– Check-out: (Check-out, balance, σ) to FSC , where σ contains all
signatures on balance, waits for confirmation from FSC and stops
execution, otherwise.

• RM, that is, Player0 with id0 publishes request[i] on the sidechain.

Calculating plyers phase:

• Each player verifies information in the previous block, that is the other
player’s request.

• Player0 runs Algorithm CalcPlayers to determine the players of the
round Pi and publishes them on the sidechain alongside her queue[0].

Betting phase:

• Each player verifies information in the previous block, that is players for
the round and queue[0].

• Each Playeri updates their queue[i].

• Each player chooses a randomness r and sends her betsi[j]= Encr(mij)
where m includes information about the number intended to be bet on
alongside the respective sum of money.

• Player0 publishes betsi[j] on the sidechain.

Tallying result phase:

• Each player verifies information in the previous block, that is the betsi[j].

• Each player sends his EGE.ski to Player0.

• Player0 decrypts betsi[j] and calculates
resultk[i] = (SHA256(

∑m
j=1(Dec(Encr(mi,j)) ⊕ (Dec(Encr(m0,j)))) mod

37.

• Player0 publishes resultk[i] and secretkey[i] = EGE.ski on the sidechain
.

Recovery request: If a party Pi enters the recovery phase at any step of a
given phase, it halts the execution of the protocol and sends a message (report,
Playeri, ski, Blockz) to FSC , where Blocki is the block that contains infor-
mation on which the verification test failed and thus contains forged or false
data.

Figure 6.4: Protocol πRoulette (continuation)

48



Stateful contract functionality FSC

Implementation of FSC. It is important to emphasize that the FSC func-
tionality can be easily implemented via smart contracts over a blockchain, more
formally, using a public available ledger. In addition, our construction (for pro-
tocol πroulette) requires only simple operations, i.e., verification of signatures and
discrete logarithm operations over cyclic groups. The regular operation of our pro-
tocol is performed entirely off-Roulettechain, without intervention of the contract.
However, in the case that any participant in the game claim problems in the execu-
tion, any player can publish their complaint in the Roulettechain. This approach
reduces the information stored in the parent-blockchain.

Assuming that the DDH problem is hard and that the digital signature scheme
SIG is EUF-CMA secure, protocol πRoulette securely computes FRoulette in the FSC
-hybrid, random oracle model in the presence of malicious static adversaries.

In order to prove the above statement we construct a non-uniform expected
probabilistic polynomial time simulator (ideal adversary) S and internal copies of
c corrupted parties. S simulates both the actions of honest and corrupted parties
and the functionality FSC . Let H denote the set of honest parties and C denote
the set of corrupted parties in the internal execution run by S. S is parameterized
by a timeout limit τ . S proceeds as follows:

Functionality FSC

The functionality is executed by n players with identities (id0 ,. . . , idn),
parameterized by a timeout limit t’.

Player checking-in: Wait to receive from each player with idi (checkin,
M, walletadressi SIG.vki ) containing the maximum balance intended to be
played, and their signature verification key.

Player checking-out: Upon receiving (checkout, balance, σ) from Playeri ,
verify that σ contains valid signatures. If everything is correct, send (payout,
balance) to Playeri. Then, send (checkedout, i, balance) to Player0.

Recovery: Upon receiving a recovery request (report, Playeri, ski, Blockz)
from Playeri containing some unverifiable signatures in another block create
a transaction with all of the above in Roulettechain and wait a timeout
limit t’. Should the transaction be included within the timeout, then send
(payout, balance[challenging] + balance[defending]) to Playerchallenging and
(payout, 0) to to Playerdefending, otherwise send (payout, balance[challenging]
+ balance[defending]) to Playerdefending and (payout, 0) to to Playerchallenging.

Figure 6.5: Functionality FSC
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Security of πroulette

Theorem 1. Assuming that the DDH problem is hard and that the digital
signature scheme SIG is EUF-CMA secure, protocol πRoulette securely computes
FRoulette in the FSC -hybrid, random oracle model in the presence of malicious
static adversaries and under the following assumptions:

• Roulettechain has liveliness and robustness.

• Honest majority on Roulettechain.

• There exists 1-honest player during the execution of the protocol.

Proof. In order to prove Theorem 1 we construct a non-uniform expected
probabilistic polynomial time simulator (ideal adversary) S that interacts with the
ideal functionality FRoulette and internal copies of at most one corrupted party. S
simulates the actions of the other honest parties and the functionality FSC . Let H
denote the set of honest parties and C denote the set of corrupted parties in the
internal execution run by S. S is parameterized by the timeout limit τ . S proceeds
as follows:

Player Check-in: S simulates FSC internally as well as the parties. Whenever
a corrupted party Pcε C sends a message (checkin, balance[i])) to FSC, S acknowl-
edges the check-in of that party with FRoulette. Whenever an honest party Phε H
checks-in with FRoulette, S is informed and simulates πRoulette’s check-in procedure
for that party. If some party fails to check-in within the timeout limit, S allows
the parties to dropout from FRoulette and reclaim their coins.

Player Check-out: S simulates FSC internally as well as the honest parties.
If a corrupted party Pc performs a check-out in the internal execution, S performs
Pc’s check-out on FRoulette and use the received coins to pay Pc . If an honest player
Ph is able to check-out in the internal execution, then S allows Ph’s check-out from
FRoulette to proceed. S follows the same recovery triggers as the real protocol to
activate the recovery phase.

Betting Phase: During the betting phase, S receives the bets of the honest
parties from FRoulette and simulates the respective actions of the honest parties in
the internal simulation. Whenever a corrupted party performs an action in the
internal simulation, S forwards that action to FRoulette. S follows the same recovery
triggers as the real protocol to activate the recovery phase.

Result Tallying Phase: During the betting phase, S receives the secret keys
of the honest parties from FRoulette and simulates the respective actions of the
honest parties in the internal simulation. Whenever a corrupted party performs
an action in the internal simulation, S forwards that action to FRoulette. S follows
the same recovery triggers as the real protocol to activate the recovery phase.

Recovery: S emulates FSC and simulates the behavior of the honest parties
according to the procedures described above for the respective part of the protocol.
If a timeout occurs S perform the check-out for that player or if a misbehavior is
detected S performs recovery: S aborts the execution in FRoulette , thus publishing
on the parent chain the evidence. Otherwise, S returns to the normal execution.

Simulator Analysis: Notice that the simulator S conducts a simulation with
internal copies of the corrupted parties by emulating FSC and executing the proto-
col exactly as an honest party would do for most of the protocol, except for phases
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where bets are placed and the keys are revealed. In these phases, S during the
betting phase waits for information on the signed and encrypted bets in the form
of commitments and in the next phase according to the keys received calculates the
result which the round is supposed to have by FRoulette and then produces bogus
secret keys that result into the ElGamal ciphertext that reprisents the bet of a
player being decrypted to the value obtained from FRoulette. S is able to do this
because it can use the simulators for the signatures used in πRoulette to produce a
valid signature showing that the bogus public key is valid even without knowing
the respective secret one. As the secret key of the player is never revealed until
the reveal phase, it is clear that the encrypted bets are indistinguishable from a
random element of the same group. Hence, the execution with S could only be
distinguished from the real execution if the signature generated by their respective
simulators are distinguishable from an actual real world signature generated by a
player. This is clearly not the case, since distinguishing the signatures generated
by their simulator from those generated by real world parties who know the secret
key would break the properties of the signature scheme.

In a more informal way, upon making a request(check-in or check-out), calculat-
ing players, betting and result tallying, S has total control over all communication
and simulates all actions with timeout limit τ. The execution of S could only be
distinguished from the real execution if S could forge signatures or decrypt cipher-
texts without having firtsly be communicatted the respective secret key. This is
clearly not the case, since by doing that the simulator would have broken the hard
cryptographic properties or assumptions stated earlier either in the signature or in
the encryption scheme.

Generalization to other games

In this section we discuss other games that may be executed by protocols con-
structed in the same setup, that is, an existing blockchain from a block of which
an actor starts a pegged sidechain, hosts the game on an off-sidechain protocol
and stores only vital information on it. By design the closest game to roulette
is actually lottery because they both share the same mechanisms with their most
different aspects being the payouts of the players. One could argue that roulette
is a distinct case of lottery games and that would not have been a false statement.
This means that by changing only the result-tallying function and the algorithm
for calculating players, with respect to the numbers of choices players have and
the maximum payout of each bet, one can construct the lottery protocol of their
choice without needing to change anything else from our design.

Craps can also be considered a game close to roulette. In fact the only difference
they have is that of the generation of randomness for the game. So as long as one
modifies accordingly the payouts and the choices of the players they would be able
to execute the game of craps as well.

Lastly, another application of this type of protocol is on specific card games.
This derives from the fact that one.vs.one type of games are commonly found in
card games and from the fact that by using a 256-bit string one can represent all
possible shuffled decks of cards (52! < 2256). Blackjack is a game that could be
executed by our protocol with some tweaks, their major ones being, a setupcal-
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culation phase would be needed after the calculating players phase and a hand
execution phase after that. Of course the algorithm and the payouts should be
corrected as well.
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Chapter 7

Conclusions

In this thesis a new innovative protocol for the game of roulette was presented.
In particular, the use of a pegged sidechain on which crucial information about
the execution of the game would be stored alongside a recovery mechanism for
penalizing deviations from the protocol was used. All of the results are based on
the indistinguishably argument, in example, players are limited on what they can
distinguish, or in a positive manner, players need enough information in order to
be able to distinguish the scenario they are in.

A number of open questions arise from this work and are described below:

• Implementation of the protocol into a cryptoeconomic system via a smart
contract.

• Generalizing the protocol to be able to execute generic one.vs.one lucky
games.

• Optimize the mechanism for transferring assets from one blockhain to an-
other.
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